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Abstract

One general aim of medicinal chemistry is the understanding of
structure-activity relationships of ligands that bind to biological targets. Ad-
vances in combinatorial chemistry and biological screening technologies allow
the analysis of ligand-target relationships on a large-scale. However, in order to
extract useful information from biological activity data, computational methods
are needed that link activity of ligands to their chemical structure.

In this thesis, it is investigated how fragment-type descriptors of molec-
ular structure can be used in order to create a link between activity and chem-
ical ligand space. First, an activity class-dependent hierarchical fragmentation
scheme is introduced that generates fragmentation pathways that are aligned
using established methodologies for multiple alignment of biological sequences.
These alignments are then used to extract consensus fragment sequences that
serve as a structural signature for individual biological activity classes.

It is also investigated how defined, chemically intuitive molecular frag-
ments can be organized based on their topological environment and co-
occurrence in compounds active against closely related targets. Therefore, the
Topological Fragment Index is introduced that quantifies the topological envi-
ronment complexity of a fragment in a given molecule, and thus goes beyond
fragment frequency analysis. Fragment dependencies have been established on
the basis of common topological environments, which facilitates the identifica-
tion of activity class-characteristic fragment dependency pathways that describe
fragment relationships beyond structural resemblance.

Because fragments are often dependent on each other in an activity class-
specific manner, the importance of defined fragment combinations for similarity
searching is further assessed. Therefore, Feature Co-occurrence Networks are
introduced that allow the identification of feature cliques characteristic of in-
dividual activity classes. Three differently designed molecular fingerprints are
compared for their ability to provide such cliques and a clique-based similarity
searching strategy is established. For molecule- and activity class-centric fin-
gerprint designs, feature combinations are shown to improve similarity search
performance in comparison to standard methods. Moreover, it is demonstrated
that individual features can form activity-class specific combinations.

Extending the analysis of feature cliques characteristic of individual ac-
tivity classes, the distribution of defined fragment combinations among several
compound classes acting against closely related targets is assessed. Fragment



Formal Concept Analysis is introduced for flexible mining of complex structure-
activity relationships. It allows the interactive assembly of fragment queries
that yield fragment combinations characteristic of defined activity and potency
profiles. It is shown that pairs and triplets, rather than individual fragments
distinguish between different activity profiles. A classifier is built based on
these fragment signatures that distinguishes between ligands of closely related
targets.

Going beyond activity profiles, compound selectivity is also analyzed.
Therefore, Molecular Formal Concept Analysis is introduced for the systematic
mining of compound selectivity profiles on a whole-molecule basis. Using this
approach, structurally diverse compounds are identified that share a selectivity
profile with selected template compounds. Structure-selectivity relationships of
obtained compound sets are further analyzed.
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Chapter 1

Introduction

In medicinal chemistry, small molecules, or ligands (usually ≤500 Da) are dis-
tinguished from macromolecular biological targets that they bind.1 Ligands can
be physiological mediators, like the neurotransmitter acetylcholine, xenobiotics,
and drugs. For example, the drug Aspirin inhibits the enzyme cyclooxygenase,
which is involved in inflammation processes. This inhibition leads to the anti-
inflammatory effect of the drug. Targets are usually proteins, but also include
nucleic acids or lipids.1 A primary goal of medicinal chemistry is the identifica-
tion and optimization of compounds that bind with high affinity and specificity
to defined biological targets in order to induce a specific therapeutic effect.1,2

Target-, Ligand-, and Target-Ligand Space

Chemical space is estimated to theoretically contain up to 1060 organic
molecules.3,4 In the genomic era, disease-associated proteins are assessed as
potential drug targets on a large-scale4 and chemical library design approaches
have increasingly shifted from diversity-oriented to target-focused design strate-
gies.5 Despite the growth of both target and chemical space, only a subset of the
estimated 1,000-3,000 “druggable” targets6 has been investigated by pharma-
ceutical industry.7,8 The emerging interdisciplinary field of chemogenomics aims
at establishing relationships between all possible targets and ligands. Therefore,
target-, ligand-, and target-ligand spaces are defined.4,9,10

Proteins are often organized in target space based on their amino
acid sequence or structural similarity.4 However, in chemogenomics-related ap-
proaches, the primary focus lies on their binding sites, where the interaction
with ligands takes place. Thus, targets can be classified according to binding
site characteristics or based on the ligands they share. Since most ligands bind
to a subset of related proteins in target space, there is a considerable overlap
between these two classification schemes.4,7

In ligand space molecules are organized based on their chemical sim-

1



2 Chapter 1. Introduction

ilarity. Connectivity tables are a standard computational representation of
molecular structure, which are a computationally accessible form of molecular
graphs used by chemists to depict compounds. However, connectivity tables
are difficult to compare using computational methods, because graph match-
ing algorithms are of high computational complexity.11 Therefore, compounds
are often represented using descriptors that are amenable to fast computational
comparison.4,12,13 These can be classified into 1D, 2D, and 3D descriptors based
on the dimensionality of the molecular representation that serves as the basis
for their calculation. 1D descriptors can be calculated from the molecular com-
position formula and include, for example, molecular weight and atom counts.
2D descriptors are calculated from the connectivity table, i. e. the specific way
in which atoms are connected. 2D descriptors are of varying complexity and
range from substructure counts, over more complex shape indices that summa-
rize bonding patterns, to abstract descriptors that are calculated using matrix
operations on the atom adjacency matrix.11 3D descriptors are dependent on
spacial atom positions and can be used to distinguish different molecular confor-
mations. They include electrostatic field potentials and three-dimensional shape
descriptors like solvent-accessible surface area. Another example are pharma-
cophore descriptors. Pharmacophores represent the specific three-dimensional
arrangement of atoms or functional groups that are essential for receptor bind-
ing, specifically hydrogen bond donors and acceptors, charged groups involved
in electrostatic interactions, and hydrophobic moieties accounting for van-der-
Waals interactions with the receptor.11 Molecular fingerprints are representa-
tions that are amenable to fast computational processing. They are usually
bit strings where each bit accounts for the presence or absence of a defined
structural feature or descriptor range. Descriptors of all dimensionalities and
combinations of them can serve as the basis for fingerprint design.11 Figure 1.1
summarizes the different descriptor types.

Target-ligand space considers the interactions between ligands and tar-
gets. A straightforward way to establish such a space utilizes compound-target
affinity that is reported in form of binding constants (Ki) or functional effects,
e. g. compound concentration at which half of the maximal effect is measured
(EC50) or inhibited (IC50).

4 This data can be used to predict ligand affinity
based on its affinity to other targets,14 analyze structure-activity relationships
between two targets having common ligands,15 or predict global pharmacologi-
cal profiles of compounds.16 Replacement of affinities with interaction descrip-
tors, e. g. structural interaction fingerprints, is possible.4,17 These fingerprints
capture information about functional groups of a ligand, the amino acids of the
protein’s binding site, and their specific interactions. Figure 1.2 summarizes
the relationships between target, ligand, and target-ligand space.

Using chemogenomic approaches, in a retrospective study, a drug-target
network has been established that integrates information about approved drugs,
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Figure 1.1: Molecular descriptors. Examples of different descriptors including finger-
print representations are shown for Aspirin. Based on the dimensionality of the molecular
representation for which they are calculated, descriptors are classified as 1D, 2D, and 3D
descriptors.

their targets, the protein-protein interactions between drug targets, and the
underlying disease-related genes.8 The analysis of this network has revealed
that most drugs act on well-known protein targets and in many cases do not
target proteins that are directly involved in pathogenesis. This trend is evident
for established drugs that do not yet target defined disease-associated genes,
e. g. oncogenes, which are involved in cancerogenesis.8 In a related approach,
approved drugs and their targets have been organized based on phenotypic
side-effect similarities.18 Using the so defined networks, unexpected drug-target
interactions have been predicted.18

Structure-Activity Relationships

The projection of molecules into ligand space or target-ligand space, focuses
on related yet distinct properties of biologically active compounds. In ligand
space, chemical properties of ligands are compared and clusters of molecules
identified.4,13 Projection into target-ligand space does not consider chemical
resemblance of ligands, but rather similarity in their biological activity. Thus,
from a ligand-centric point of view, chemical and activity space can be defined
for biologically active compounds.
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Figure 1.2: Target-, ligand-, and target-ligand space. Caspase-7 and caspase-8 are
compared in target space based on their primary sequence and structural homology. On
the right, ligands are shown that bind to one or both targets. In ligand space, molecules
are organized based on their chemical resemblance. Targets and ligands are projected into
target-ligand space where targets can be compared based on shared ligands.

In chemical space, ligands are compared based on their atom bonding
patterns and derived properties and a variety of chemoinformatics methods
have been developed to assess structural similarity of molecules.12,13 For ex-
ample, the Tanimoto coefficient (Tc)13 represents a widely accepted metric
of molecular similarity based on fingerprint overlap. Distinct from structural
similarity, compound similarity in activity space is calculated from affinity pro-
files against a set of targets.10,14,19 Activity profile similarity can be used, for
example, to predict missing potency values.4

Ultimately, the specific physical and chemical properties of a compound
define its interaction with a particular macromolecule.1,20 This notion has lead
to the formulation of the similarity property principle, which states that struc-
turally similar compounds are likely to have similar biological activity.21 How-
ever, structure-activity relationships (SARs) are often complicated. On the one
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hand, structurally distinct compounds can bind to the same target; on the other
hand, small structural changes can lead to great differences in biological activ-
ity.22–24 Ligand-target space can thus be viewed as an “activity landscape”.
Structurally similar compounds with big activity differences constitute activity
cliffs, whereas gradual changes in structure leading to only moderate activity
differences correspond to smooth regions.25 Optimization efforts exploit ac-
tivity cliffs in order to increase compound potency by introducing only small
structural changes. Different SAR types, such as continuous and discontinuous
SAR have been quantified based on pair-wise molecule comparison in both ac-
tivity and chemical space.23,24 For example, the SAR Index (SARI)23 relates
differences in compound activity to the structural similarity of two compounds.
Figure 1.3 shows an example of continuous and discontinuous SARs.

6 nM 6 nM

259 nM 2390 nM

Discontinuous SAR,
activity cliffs

Continuous SAR,
smooth activity landscape

Figure 1.3: Activity cliffs. Four inhibitors of vascular endothelial growth factor receptor
(VEGFR-2) tyrosine kinase are shown. The two upper structures are dissimilar, but neighbors
in activity space. By contrast, structural analogues (bottom) of each of the ligands show
greatly reduced activity, thus constituting an activity cliff. Structural differences between
analogues are highlighted in red. The figure is adopted from Peltason and Bajorath.23

Recent efforts have focused on systematic exploration and visualization
of activity landscapes.24,26–28 In network like similarity graphs different layers of
information are incorporated, including compound potency, pairwise structural
similarity and SAR (dis)continuity.26 This allows the identification of repre-
sentative compounds for distinct local SARs and the identification of potential
compound optimization pathways in biological screening data.27 Utilizing dif-
ferent measures for the assessment of structural ligand similarity, consensus
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activity cliffs have been identified that are recurrent for different structural
representations of compounds.28

Integration of Activity and Chemical Space

For ligand-based identification of novel compounds with a defined biological ac-
tivity, the integration of chemical and activity space is essential.22,29 Chemical
similarity searching13 relies on the similarity property principle and assumes
that neighbors in chemical space will also be closely related in activity space.12

In ligand based virtual screening, database compounds are prioritized based
on their similarity to active reference molecules. General chemical space de-
signs as well as similarity metrics have been established that can identify active
compounds based on reference ligands of the same or related targets.12,29,30

Going beyond the similarity property principle, methods have been de-
veloped that use structural information of active reference compounds for the
design of activity class dependent chemical spaces and similarity metrics.22

Current methodologies for the integration of compound activity and structural
similarity often rely on reference compound sets representing clusters in activ-
ity space.31,32 For example, in Bayes Affinity Fingerprints31 the assessment of
compound similarity is carried out in a two-step process. Descriptors consti-
tuting the chemical space are first transformed to a hypothetical affinity profile
by calculating the structural similarity of a compound to a wide panel of activ-
ity classes. The scores from individual activity class models then constitute a
vector that is used to compare molecules. This allows the definition of a global
low-dimensional bioactivity space that is characterized by prototypic activity
classes representing distinct target families.31 In a reverse approach, mapping
of structural similarity to activity space organizes biological targets based on
the structural resemblance of their ligands. These ligand-based target networks
can be used to predict off-target affinities of known drugs.33,34

A more structure-centered approach to the integration of activity and
chemical space is the annotation of structural descriptors with activity infor-
mation. The notion of privileged substructures allowed linking structural mo-
tifs to different target families,5,35,36 including G Protein Coupled Receptors
(GPCRs)37 and kinases.38–40 A privileged substructure can be defined as “a
substructure/scaffold exhibiting strong preferences for a particular area of the
target space (for example, GPCRs) and suitable to orient the design of targeted
compound libraries”.38 Furthermore, recurrent structural motifs and combi-
nations of molecular fragments have been identified in known drugs41,42 and
compound libraries.43,44

Extending the concept of privileged substructures, individual activity
classes can be mined for activity class-characteristic features. This can be done
on the basis of predefined or hierarchically generated substructures,45,46 random
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fragment populations,47,48 or through exhaustive substructure mining.49 Also,
structural motifs have been identified that distinguish compounds with different
potency against defined targets.50

In summary, searching for bioactive compounds and SAR assessment
benefit from the integration of activity and chemical space. This integration
can be based on structural similarity of test compounds to active reference
molecules. However, the similarity property principle underlying this concept
is often not sufficient to fully describe complex SARs. Therefore, molecular
descriptors should be designed and evaluated in a compound activity-sensitive
manner.22

Goals and Approaches

The primal aim of this thesis project was the development of computational
methods for the integration of biological activity and chemical ligand spaces.

First, it was assessed how activity class-specific structural information
can be used to guide systematic fragmentation of compounds. Therefore, an
activity-class directed fragmentation approach was introduced.

Then, the organization of defined structural descriptors was analyzed
based on activity criteria. The topological environment of chemically intuitive
fragments in molecules was quantified, which allowed their organization in hi-
erarchies based on co-occurrence of fragments in active compounds.

In order to assess the significance of feature combinations for the identi-
fication of active compounds in different chemical space designs, activity class-
specific feature combinations were systematically extracted from three distinct
molecular fingerprints and applied to virtual screening.

Furthermore, the distribution of molecular fragment combinations
among compounds with different biological activity and potency was ex-
plored. Therefore, Formal Concept Analysis (FCA) was adapted, a data min-
ing technique from information theory.51 Fragment Formal Concept Analysis
(FragFCA) has been designed for the mining of molecular fragment combina-
tions specific for defined activity and potency profiles.

Extending this approach to the molecular level, Molecular Formal Con-
cept Analysis (MolFCA) has also been developed. The method has been de-
signed to systematically explore activity space with a particular focus on com-
pound potency and selectivity. MolFCA identifies compounds satisfying com-
plex selectivity profiles in activity space. The identified compounds can then
be used to assess structure-selectivity relationships.
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Thesis Outline

In Chapter 2, an overview of currently used molecular fragmentation methods
is provided. Four major fragmentation schemes, i. e. systematic / hierarchical,
knowledge-based, retrosynthetic, and random are presented. Furthermore, it
is described how random fragment populations are mined for substructures
that are characteristic of defined activity classes. Core Trees are introduced
as an activity class-directed hierarchical fragmentation scheme. From Core
Trees, fragment pathways are extracted and aligned using a multiple sequence
alignment algorithm, yielding Consensus Fragment Sequences (CFS) that can
be used as signatures for individual activity classes.

In Chapter 3, the Topological Fragment Index (ToFi) is presented, which
assesses the topological environment of defined substructures within active com-
pounds. Using this index, fragments generated based on retrosynthetic criteria
have been organized in hierarchies that reflect fragment co-occurrence in com-
pounds with different biological activities. These hierarchies allow the identifi-
cation of fragment topology clusters that are characteristic of individual activity
classes.

Chapter 4 reports the development and application of Feature Co-
occurrence Networks (FCoN). FCoN are utilized to systematically extract
molecular feature cliques of varying size that are characteristic of individual
activity classes. Feature cliques are prioritized using information about their
distribution in a background database and utilized for virtual screening. Three
fingerprint representations of molecules have been assessed for their potential
to provide activity class characteristic feature combinations.

In Chapter 5, Formal Concept Analysis (FCA) is described and Frag-
ment Formal Concept Analysis (FragFCA) is introduced, which allows mining
of molecular fragment combinations that are specific to defined activity and
potency profiles of active compounds. FragFCA has been applied to GPCR
ligands with partially overlapping activity against seven targets. Furthermore,
the design and evaluation of a compound activity classifier based on fragment
combinations identified by FragFCA is reported.

Chapter 6 introduces Molecular Formal Concept Analysis (MolFCA) for
selectivity profile mining in biologically annotated databases. MolFCA allows
systematic exploration of activity space including multiple biological activities.
MolFCA queries assess compound potency and selectivity against multiple tar-
gets. Compounds are identified in a structurally unbiased manner, yielding
diverse molecules. These compound sets can then be assessed for SARs and
structure-selectivity relationships (SSRs).



Chapter 2

Molecular Fragmentation
Approaches

This chapter provides an overview of four major types of molecular fragmenta-
tion approaches: knowledge-based, systematic/hierarchical, retrosynthetic, and
random. It further describes how random fragment populations can be mined
for Activity Class Characteristic Substructures (ACCS) and introduces Core
Trees as an activity class-directed fragmentation and organization scheme.

2.1 Historical Overview of Fragment Design

Molecular fragments have a long history as structural descriptors. They are
chemically intuitive and can be much easier understood than many other more
complex mathematical models of chemical structure and properties. Most im-
portantly, however, given the simplicity and intuitive nature of their design,
substructures and fragment descriptors are surprisingly powerful in analyzing
and predicting SARs. This is very likely the case because these types of de-
scriptors implicitly capture much chemical information.52–54

The introduction of molecular fragments as tools for chemical data anal-
ysis dates back to the 1950s, when fragment collections were generated on
the basis of topological criteria, i.e. by adding layers of bonded atoms to pre-
selected central atoms.55 These so-called atom-centered fragments were orig-
inally applied to estimate physical properties of synthetic molecules such as,
for example, P(o/w), the octanol-water partition coefficient, a measure of hy-
drophobicity.56 Property estimation was often attempted by addition of known
values for substructures forming a molecule. The distribution of atom-centered
fragments in chemical databases was first studied in the early 1970’s57 and later
on fragment descriptors were used to associate small molecules with biological
activities.20,58 During the same decade, methods were introduced for the sys-
tematic generation of sets of atom- or bond-centered fragments that occur with

9
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a certain frequency, or equal frequency, in a database59,60 During the 1970s,
atom- and bond-centered fragments were also first encoded as bit strings,61,62

and these fingerprint representations of molecular structure have continued to
be one of the most widely used descriptor formats for chemical similarity search-
ing to this date, such as, for example, the set of 166 publicly available MACCS
structural keys63 or the BCI standard dictionary (1,052 fragments).64

2.2 Molecular Fragmentation Approaches

Four principal approaches to the generation of fragments from 2D molecular rep-
resentations can be distinguished: knowledge-based, systematic / hierarchical,
retrosynthetic, and random. All of these methodologies have in common that
they operate on the connectivity tables of molecules. However, the individ-
ual fragmentation strategies are distinct from each other and tailored towards
different applications.

2.2.1 Knowledge-Based Molecular Fragmentation

Knowledge-based methods make use of chemical and pharmaceutical expertise
to design substructures. For example, knowledge-based dictionaries have been
introduced for the prediction of ADMEa properties of bioactive substances64

or the removal of compounds with reactive or toxic fragments from screening
sets.65–67 Figure 2.1 shows examples of reactive groups that are often avoided
in the design of pharmaceutical compound libraries.

N

HN

N

S

N
+

-
O O

O

Nitro group Aldehyde Epoxide Quinone

Figure 2.1: Examples of non-drug-like chemical groups. Four compounds are shown
that contain chemical entities (highlighted in red) that are undesired in the design of drug-like
compounds. The examples are taken from Walters et al.67

Another example of knowledge-based design is the definition of privi-
leged substructures that are recurrent in compounds active against members of
therapeutic target families such as GPCRs37 or protein kinases.38–40

aADME stands for Absorption, Distribution, Metabolism, and Excretion. ADME proper-
ties characterize the pharmacokinetics of a compound.
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2.2.2 Hierarchical and Systematic Fragmentation

Systematic approaches to generate atom- and bond-centered fragments were one
of the origins of molecular fragmentation, as discussed above. Atom-centered
fragments are illustrated in Figure 2.2A. They are generated by adding layers of
bonded atoms to preselected central atoms. Today this type of fragments serves
as the basis for the design of fingerprints that capture strings of layered atom
environments and are currently among the state-of-the-art similarity search
tools.68,69 For example, extended connectivity fingerprints (ECFP) represent
molecules as ensembles of atom-centered fragments that are encoded as integers
using a hash function.59

Atom pairs represent another pioneering development of fragment-type
descriptors that were systematically derived following topological criteria.70

These descriptors are of the form ATi−Distij−ATj, where Distij is the length
of the shortest bond path between an atom of type ATi and another one of type
ATj. Often atom types correspond to the element of the atom. Further refined
atom types encode the element as well as the number of attached non-hydrogen
atoms and the number of π-bond electrons.71 A recent study has shown that
atom pair descriptors can be utilized for encoding virtual combinatorial libraries
(i. e.monomers that can be theoretically combined in various ways) without the
necessity of enumerating all virtual compounds.72 Figure 2.2B shows examples
of atom pair descriptors.

OH

O

O

O

OH

O

O

O Atom Layer 1 Layer 2

A

O

O

B

OH

O

O

O

O-2-O

C-4-O

Figure 2.2: Atom-centered fragments and atom pairs. (A) Examples of atom-centered
fragments of Aspirin are shown that were derived using different numbers of atom layers. (B)
For Aspirin, examples of atom pairs are provided that correspond to pathways in the molecule.

Hierarchical fragment design strategies introduced by Bemis and Mur-
cko41,42 focus on structural elements that are thought to be important for drug
design and SAR analysis. Molecular graphs are decomposed by distinguishing
ring assemblies, linkers connecting these ring assemblies, and side chains. Rings
and linkers together form molecular scaffolds that are often regarded as central
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building blocks in medicinal chemistry. Different levels of abstraction can be
applied to represent core structures. In the context of hierarchical methods,
heteroatom-containing core structures without side chains (functional groups)
are regarded as scaffolds and molecular frameworks are obtained from scaffolds
by replacing all heteroatoms with carbon atoms. Furthermore, bond types
can be reduced to single bonds in order to compare molecules on the basis of
carbon skeletons, which represent the highest level of structural abstraction.
Figure 2.3 illustrates the hierarchical fragmentation of a compound and ap-
plication of different abstraction levels. A refined hierarchical fragmentation
scheme has been proposed for the organization of scaffolds present in virtual
compound libraries.45 It disintegrates molecular frameworks and ring assemblies
based on a set of elaborate rules. The so obtained “Scaffold Trees” have been
annotated with biological activity allowing mining for activity class-prevalent
scaffolds.45,73

Side chains

Rings

Linkers
Scaffold

Carbon skeleton

Molecular framework

Molecule

Figure 2.3: Hierarchical fragmentation and scaffold abstraction. Hierarchical frag-
mentation of an exemplary compound is shown. The scaffold is obtained by deleting all side
chains (red). It is decomposed into rings (black) and linkers (green). A molecular framework
is obtained by replacing all heteroatoms by carbons and a carbon skeleton is generated by
setting all bond orders to single bonds.
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2.2.3 Fragmentation Based on Retrosynthetic Criteria

A prominent example of fragmentation design strategies that use retrosyn-
thetic criteria is the Retrosynthetic Combinatorial Analysis Procedure (RE-
CAP), which has been introduced in order to provide fragment libraries that
are suitable as the basis for the design of combinatorial libraries.74 Therefore,
fragments in RECAP are generated by breaking bonds that are formed by
common chemical reactions. The identification of frequently occurring RECAP
fragments in compounds with defined biological activities provides guidelines
for the generation of combinatorial libraries that are tailored towards an ac-
tivity of interest. Originally, eleven cleavable bond types have been defined.
However, this list has been extended, for example, in the Molecular Operating
Environment (MOEb). Figure 2.4A reports the original bond type definitions
and Figure 2.4B depicts five additional bond types introduced in MOE. The
RECAP fragmentation of an exemplary compound is illustrated in Figure 2.4C.
In order to specify the attachment points of a fragment, isotope-like labels are
used that represent the bond class of individual atoms. Note that RECAP
fragmentation does not have to be complete, i. e. only a subset of possible bond
cleavages can be applied to generate valid RECAP fragments.

2.2.4 Random Fragmentation Methods

Random fragmentation approaches deliberately depart from knowledge-based
or systematic fragmentation schemes. This allows the assessment of chemical
information content75 and mining for activity class characteristic substructures
in an unbiased manner, without the need of exhausting fragment enumera-
tion.47,76

Brownian processing has been used to assess and quantify the informa-
tion content of organic molecules. In Brownian processing,75 so-called tape
recordings of random walks (Brownian motion) through molecular graphs are
generated. Two types of processing are distinguished: sequential and parallel.
In sequential processing, each step is recorded in the order atoms are visited as a
code unit. In parallel processing, code units of a given length are extracted from
random walks (e.g. “H-C-C-H”). These units represent random substructures
of a compound that correspond to topological pathways. Brownian processing
is illustrated in Figure 2.5. On the basis of tape recordings, the chemical infor-
mation content of molecules can be compared by analyzing the frequency with
which substructures up to a certain length (e.g. atom pairs, triplets, etc.) occur
and by determining their overlap. Complex molecules producing code units of
high diversity show high chemical information content, whereas structures that
are topologically less complex contain less chemical information.

bAn overview of the software and databases used in this study is provided in Appendix A.
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Figure 2.4: RECAP fragmentation. (A) The eleven original RECAP bond types are
shown. (B) shows five additional bond types introduced in MOE. (C) An exemplary com-
pound is fragmented by cleaving three bonds (red). Isotope-like labels of atoms identify the
RECAP bond type.

A random fragmentation approach termed MolBlaster has been intro-
duced76,77 that generates fragment populations by iteratively deleting a num-
ber of randomly chosen bonds in the hydrogen-suppressed molecular graph.
Figure 2.6 illustrates the MolBlaster fragmentation protocol. For the compu-
tational processing of fragments, they are represented as strings in Simplified
Molecular Input Line Entry Specification (SMILES) notation.78 The SMILES
notation encodes the connectivity table as a linear string of element labels (like
C, N, O, Cl) and special characters that encode branches and rings. Canonical
SMILES79 strings are used, which has the advantage that identical fragments
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Figure 2.5: Brownian processing. Serial (A) and parallel (B) Brownian processing of
Aspirin is illustrated. While serial processing records atom pairs that are visited in sequence,
parallel processing yields independent code units of a predefined length (here four atoms).

can be found by string comparison. MolBlaster allows fragmentation in an un-
biased manner, because all bonds have equal probability to be cleaved during
one iteration. Fragments generated from multiple iterations are sampled and
the fragment frequencies recorded. It has been shown that 2,000 iterations are
sufficient to produce stable fragment populations of individual molecules that
show only minor fluctuations in fragment composition.76,77

It has also been demonstrated that random fragment populations can be
used to assess molecular similarity and structure-activity relationships of bioac-
tive compounds based on histogram comparison of fragment distributions.76

Furthermore, histogram comparison has been applied to database searching,
which has revealed that random fragments preferentially occur in given activ-
ity classes.77 Accordingly, fragment populations derived from sets of bioactive
compounds have been filtered against a background fragment population of
inactive molecules in order to extract Activity Class Characteristic Substruc-
tures (ACCS). ACCS have been defined as fragments that occur in at least two
active compounds but no background molecules.48,80 Figure 2.7 illustrates the
derivation of ACCS.
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Figure 2.6: MolBlaster fragmentation. Three MolBlaster fragmentation iterations are
shown for Aspirin with increasing numbers of bonds deleted. Cleaved bonds are highlighted in
red. Dashed bonds represent fragmented aromatic systems. The fragments from all iterations
are sampled and fragment frequencies recorded.
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Figure 2.7: Activity class characteristic substructures. Random fragments are gen-
erated from a set of active reference compounds. Circles represent random fragment popu-
lations. Fragments that occur in at least two of the reference molecules are retained. The
resulting population is compared to a background fragment population (red circle).
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2.3 Activity Class Directed Fragmentation

This section describes how ACCS isolated from random fragment populations
are used to map molecular core structures in an activity class-dependent man-
ner. Mapped cores represent the origin of ACCS extracted from molecules
using MolBlaster and discriminate between conserved core regions and variable
peripheral parts of active compounds.

Core Trees are introduced that are based on core mapping and represent
an activity class-directed hierarchical fragmentation scheme. From core trees,
activity class-dependent fragment pathways are extracted that are amenable to
sequence alignment. Consensus Fragment Sequences (CFS) are then derived
from multiple core path alignments that serve as activity class signatures.

2.3.1 Molecular Core Mapping

The structural origin of ACCS has been assessed in a study using molecular
maps of ACCS overlap in active compounds.80 The study has revealed that
overlapping ACCS form coherent molecular cores. Core mapping provides a
molecular map of structural hot spots that confer activity class characteristic
information encoded in random fragment populations. Figure 2.8 illustrates
the core mapping procedure. For each ACCS, atom counters of the molecule
are increased by one for each successfully mapped atom. After all ACCS have
been mapped, atom match rates are calculated by dividing the counters by the
number of successfully matched ACCS.

The characteristic distribution of atom match rates produced by a set
of ACCS yields molecular cores by grouping atoms together that exceed a pre-
defined match rate threshold, e. g. atoms with a match rate ¿ 80%. By apply-
ing different thresholds, 10 cumulative cores have been defined for active com-
pounds. Cores can be formed in a systematic way for different activity classes
and represent coherent structural entities that are characteristic of individual
classes.80

2.3.2 Core Trees

The Core Tree methodology comprises five consecutive steps. First, an activity
class-directed hierarchical fragmentation scheme is applied that utilizes atom
match rate distributions in molecules with a mapped core. This fragmentation
scheme separates peripheral parts of molecules from conserved core regions.
Then, Core Trees are described for the organization of all generated fragments
in a tree structure based on iterative hierarchical disintegration of fragments. In
Core Trees, fragments are annotated with average match rates of their atoms.
This allows the distinction of conserved core fragments from variable parts of the
molecule. In a following step, core paths are extracted from Core Trees that
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Figure 2.8: Molecular core mapping. The mapping of three exemplary ACCS (right)
onto a compound is shown. Dashed double bonds indicate bonds in aromatic rings. For each
mapped ACCS, atom counters of matched atoms are increased (small numbers; zero counters
are omitted for clarity). Atom match rates are calculated by dividing each counter by the
total number of successfully mapped ACCS (here three). Cores are defined as sets of atoms
with match rates exceeding a predefined threshold. In this example, three cumulative cores
can be distinguished: ¿ 66%, red; ¿ 33%, red and green; ¿ 0%, red, green, and blue (structure
at the bottom). Black atoms are not mapped by any ACCS.
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represent conserved core regions of the molecule in form of defined fragment
sequences. Core paths contain fragments of decreasing specificity and size, but
increasing conservation within active compounds, and hence balance fragment
specificity and conservation.

In order to compare core paths, methods for the global alignment of
biological sequences are applied. Therefore, individual core path fragments are
compared using a fragment similarity scoring function. Corresponding frag-
ments are identified and molecular similarity quantified based on core path
alignments. Core paths of individual activity classes are then organized in mul-
tiple core path alignments. From multiple alignments, Consensus Fragment
Sequences (CFS) are derived that combine core path fragments from the entire
activity class and organize them in an alignment-specific manner. Thus, in a
last step, activity class signatures are extracted in form of CFS.

Data Sets

Core Trees have been generated for a previously published set of 1,025 com-
pounds that was also used to evaluate core mapping.80 In this set, individual
compounds are annotated with biological activity and grouped into 45 activity
classes. Random molecular fragment populations were generated by applying
the MolBlaster fragmentation procedure with 3,000 iterations per molecule.
ACCS have been isolated by filtering against a background database of 2,000
randomly selected and fragmented molecules from ZINC.c ACCS have then
been mapped onto the compounds they originated from and atom match rates
calculated as described above. Cores were successfully mapped for ∼95% of the
compounds.

Core-Oriented Molecular Fragmentation

Core mapping of ACCS onto active compounds produces characteristic atom
match rate distributions. Atom match rates distinguish between molecular
regions that are characteristic of an activity class (high match rates) and re-
gions that are variable (low atom match rates). In order to separate conserved
core regions from variable peripheral regions of a molecule, atom match rates
are systematically compared. Bonded atoms with high match rate difference
(∆MR) belong to distinct regions of the molecule, while bonds with low ∆MR
constitute coherent regions. Figure 2.9 illustrates match rate distributions of a
molecule with a mapped core.

Cleavage of bonds with high ∆MR separates core regions of a molecule
from peripheral fragments. The resulting fragments are further divided by
deleting bonds with maximal ∆MR. Thus, sorting of bonds by decreasing

cZINC is a publicly available database of small weight molecules (see Appendix A).
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Figure 2.9: Core-based fragmentation. The core mapping for a serotonin receptor
antagonist is shown. Match rates are encoded as a color spectrum. The core region is red,
whereas peripheral regions are shown in purple. Individual bonds are annotated with match
rate differences. Bonds are iteratively cleaved starting with bonds for which match rate
differences are maximal. Thus, peripheral fragments are separated from the core region.

∆MR defines a hierarchical fragmentation scheme. Bonds with high ∆MR
are cleaved first, whereas bonds connecting atoms with equal match rates are
cleaved last.

Core-oriented molecular fragmentation combines activity class-specific
information encoded in random fragment populations with a hierarchical frag-
mentation scheme. This scheme allows the generation of activity class-directed
fragments, which is not possible using conventional hierarchical fragmentation
schemes, where bonds are cleaved based on general rules rather than active
core information. By contrast, core-based fragmentation distinguishes different
molecular regions in an activity class-sensitive manner.

Core Trees

The fragment hierarchy produced by iterative bond deletion is encoded in a tree
structure termed the Core Tree. If a fragment A is separated into fragments B
and C, fragment A is considered the parent fragment of its children B and C.
Core Trees organize all of these parent-child relationships by connecting each
parent with its children, as illustrated in Figure 2.10.

The root of a Core Tree is the original molecule and the leaves are indi-
vidual atoms. The full Core Tree visualizes the entire fragmentation hierarchy
and reports all fragments that are generated. In order to distinguish core from
peripheral fragments, an average atom match rate MRfrag is calculated for
each fragment. Core fragments receive a high MRfrag, in contrast to peripheral
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Figure 2.10: Exemplary core tree. Part of the Core Tree for a serotonin receptor
antagonist is shown. For clarity, only nodes constituting a path are retained. The numbers
report average match rates of each fragment.
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fragments, which obtain low average match rates.
This annotation allows the distinction of fragments forming part of the

conserved core of active compounds from fragments that describe variable pe-
ripheral regions. Thus, in addition to the generation of hierarchical fragments
in an activity class-directed manner, Core Trees quantify the structural con-
servation of individual fragments within an activity class on the basis of atom
match rates.

Identification of Core Fragmentation Pathways

In Core Trees, children of individual fragments can have lower or higher MRfrag

values than their parents. A child has a higher fragment match rate if it de-
scribes the core region more closely than its parent, and a lower match rate
if it describes peripheral fragments separated from the core. Fragment match
rate distributions after separation of peripheral fragments from the core are
illustrated in Figure 2.10.

Fragment match rates are used to delineate fragmentation pathways that
represent conserved or peripheral regions in molecules. In order to identify these
pathways, a scoreedge is assigned to each edge in the Core Tree. The score is
calculated from fragment match rates and the number of atoms (N) of two
fragments connected by the edge. If the parent’s average match rate is 0, then
scoreedge is also 0. Otherwise, it is calculated as

scoreedge =
Nchild

Nparent

√
MRchild

MRparent

.

Starting at the root node, which corresponds to the molecule, a core
path is identified by following maximal edge scores until an atom is reached. In
Figure 2.10 the core path (red) contains nine fragments including the molecule
and the terminal carbon atom. In analogy to the core path, additional fragmen-
tation pathways representing peripheral regions can be identified. Therefore,
the starting fragments are chosen from the remaining nodes in the Core Tree
that do not belong to the core path, but are children of core path fragments.
In order to ensure that peripheral fragmentation pathways can originate at
five-membered rings, fragments with ≥ 5 heavy atoms are chosen as potential
starting points.

Core and peripheral paths have been identified for 1,025 molecules span-
ning 45 activity classes. Figure 2.11 reports the path length distribution for
core and peripheral paths. On average, a test molecule was described by one
core path and 1.7 peripheral paths. Core paths are generally longer (seven to
ten fragments) than peripheral pathways (three to seven fragments).

Core paths encode the conserved regions of test molecules as a sequence
of fragments with decreasing specificity for individual compounds, but increas-
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Figure 2.11: Fragmentation pathways. The histogram shows the length distribution of
core (black) and peripheral (gray) paths.

ing conservation within the activity class, expressed in higher MRfrag values.
Most molecule-specific and large fragments (including the molecule) are found
at the beginning of the core path, and most conserved and small fragments
(including the terminal atom) at the end. Thus, core paths balance fragment
specificity and conservation in active compounds.

Core Path Alignment

Fragmentation pathways constitute a defined sequence of molecular fragments.
Hence, in order to compare two core pathways, methods for the alignment of
biological sequences can be applied. For this purpose, the Needleman-Wunsch
algorithm,81 which is used to globally align protein and DNA sequences, has
been adapted for core path alignment. In this implementation, the algorithm
uses the dynamic programming method to find the optimal alignment between
two fragmentation pathways by comparing individual fragments and introduc-
ing gaps. For two sequences with length i and j, an i× j alignment matrix A
is initialized with multiples of the gap penalty gp:

Ai,0 = i× gp, A0,j = j × gp.

Affine gaps are used with a gap opening penalty of −5 and a gap ex-
tension penalty of −2. Thus, if n is the length of the gap, gp is calculated
as

gp = −5 + (n− 1)× (−2).
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The alignment matrix is then filled iteratively by calculating the maxi-
mum score depending on the left, upper, and upper left (diagonal) neighbor of
each cell and a fragment similarity function S that compares fargment i of the
first core path with fragment j of the second core path:

Ai,j = max


Ai−1,j + gp
Ai−1,j−1 + S(i, j)
Ai,j−1 + gp

.

The final global alignment score is given by the lower right cell of the
alignment matrix. In order to make different pathway alignments comparable,
the alignment score is normalized by dividing it by the average of the alignment
scores of each pathway aligned with itself.

The fragment similarity function S is applied instead of an amino acid
substitution matrix utilized in protein sequence alignment. It is based on unique
SMILES strings and compares individual fragments within core paths. The
function comprises a fragment size term and a string similarity term, which are
added in order to yield the final fragment score. The size term is calculated as

sizeterm =

{
10× min(Na,Nb)

max(Na,Nb)
: Na 6= Nb

20 : Na = Nb

.

Na and Nb are the numbers of atoms in fragments a and b, respectively.

The string similarity is evaluated and scored in three steps: (1) if
SMILES strings of two fragments are identical, a string similarity score of 15
is returned; (2) if they are not identical, branches (i. e. parts of the SMILES
in parenthesis) are eliminated and if the resulting cropped strings are identi-
cal, a score of 5 is returned; (3) if the cropped strings are not identical, but
a largest common substring exists, a score of 2 is returned. Otherwise, 0 is
returned. This is the case for some small fragments in pathways that terminate
at heteroatoms, where a common substring is not always found. Figure 2.12
illustrates string similarity calculation.

Score levels with an approximately three-time change in magnitude (i.e.
2, 5, and 15) have been empirically determined to produce meaningful fragmen-
tation pathway alignments.

Thus, core path alignment allows systematic quantitative comparison
of core paths. Because fragmentation pathways from different molecules show
overlapping yet distinct substructures, sequence alignment methods are partic-
ularly suited for the comparison and alignment of core paths. Corresponding
core path fragments of two molecules are found in core path alignments and
global alignment scores can be used to quantify molecular similarity.
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Figure 2.12: Fragment string similarity. Four possible scores for fragment SMILES
string similarity are shown. Exemplary fragments are shown with corresponding SMILES
strings. Red: branches that are deleted. Green: common substring.

Multiple Alignment and Consensus Fragment Sequence

Extending pair-wise core path alignments, all core paths of an activity class
can be aligned in a multiple core path alignment. Therefore, a phylogenetic
tree is calculated based on the normalized pair-wise alignment scores using the
Unweighted Pair Group Method with Arithmetic Mean (UPGMA).82 This tree
resembles a hierarchical clustering of compounds and is used as a guidance
for multiple core path alignment. Closely related paths are aligned first, and
subsequent paths are aligned to the existing alignment. Therefore, an alignment
is treated as one fragment sequence; the scores for each position in multiple
alignments are derived as unweighted averages of pair-wise fragment similarity
scores.81

For multiple pathway alignments, the fragment similarity scoring func-
tion is adjusted in order to avoid gaps at the termini: the first and the last
fragment (i. e. the molecule and terminal atom of the core path) are each sub-
stituted with a placeholder (“*”) that yields a very high score of 100 when
matched with another “*”. After completion of the alignment, the placeholders
are replaced by the original fragments. This has the advantage that a multiple
core path alignment always starts with a column of molecules and ends with a
column of terminal atoms, as shown in Figure 2.13.

For a multiple core path alignment, a Consensus Fragment Sequence
(CFS) is derived by combining non-redundant fragments at each alignment po-
sition. Figure 2.13 illustrates the CFS derivation from a multiple core path
alignment. For the 45 classes studied here, the CFS contained between 11 and
215 unique fragments, with an average number of 63 fragments per CFS. Thus,
activity classes were described with a comparably small number of fragment-
type descriptors. Activity class-relevant information in CFS is encoded in two
ways. First, the individual fragments are generated in an activity class-directed
manner. Second, the multiple alignment encodes fragment specificity and con-
servation in form of position-specific sets of unique fragments.
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Figure 2.13: Multiple core path alignment. Part of a multiple core path alignment
is shown for serotonin receptor antagonists. The top row numbers indicate positions in the
alignment. Every core path begins with the whole molecule at position 1 and ends with a
terminal atom. The positions 2 and 8 contain gaps for four and three molecules, respectively.
Three CFS positions (4, 5, and 7) are shown at the bottom.
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Thus, multiple core path alignments allow clustering of molecules based
on core path similarity. All core path fragments of an activity class are organized
in a Consensus Fragment Sequence that serves as an activity class signature.
The CFS provides position-encoded information about the conservation and
specificity of all core path fragments derived from an activity class.

2.4 Summary

Different methodologies have been developed for the generation of molecular
fragments that serve as molecular descriptors for active compounds. Different
fragmentation strategies are tailored towards distinct applications.

An activity class-directed hierarchical fragmentation scheme has been
introduced by combining random and hierarchical fragmentation approaches.
Core Trees organize the generated fragments and allow the distinction of con-
served core fragments from peripheral substructures on the basis of atom match
rates resulting from ACCS core mapping. Core Trees go beyond standard hier-
archical fragmentation methods, which do not take activity class-characteristic
cores into account.

Core paths have been identified that encode most activity class-
characteristic molecular information in form of fragment sequences of decreasing
specificity. They usually contain the largest number of fragments compared to
peripheral fragmentation pathways. Large fragments at the beginning of core
pathways are highly specific for individual compounds, but not well-conserved
within the activity class. By contrast, small fragments represent highly con-
served core regions, but are less specific. Thus, core paths allow balancing
activity class conservation and specificity of fragments.

Individual core paths have been compared using methods for the global
alignment of biological sequences. Alignment scores quantify molecular similar-
ity and find corresponding core path fragments. It has been shown that all core
paths of individual activity classes can be combined in multiple alignments.
A multiple core path alignment organizes all core path fragments in a Con-
sensus Fragment Sequence that serves as an activity class signature. Unique
fragments are grouped together in position-specific sets that allow the selection
of conserved and/or specific fragments.

Thus, the Core Tree methodology extends existing hierarchical fragmen-
tation schemes by activity class-directed fragmentation and fragment organiza-
tion in consensus sequences that reflect conserved molecular cores.





Chapter 3

Analysis of the Topological
Environment of Substructures in
Active Compounds

The previous chapter has described different approaches to the generation of
molecular fragments and introduced an activity class-directed hierarchical frag-
mentation scheme. Multiple alignments of fragmentation pathways were then
used as activity class signatures. It is also often of interest to analyze activ-
ity class-specific properties of known, chemically well-defined substructures like
RECAP fragments that are easily interpretable by medicinal chemists.

In this chapter, the Topological Fragment Index (ToFI) is introduced
for the quantitative assessment of the topological environment of a fragment
within active compounds. ToFI extends fragment counts because it also takes
into account bond patterns that are relevant for the generation of a given frag-
ment. Moreover, it is applicable to any type of molecular fragments, regardless
of how they are derived. Here, ToFI calculations have been applied to RECAP
fragments. On the basis of ToFI calculations, fragments can be organized in
hierarchies that are based on topological fragment environment and fragment
co-occurrence in active compounds and define fragment pathways that are spe-
cific for individual activity classes.

First, the ToFI calculation method is described in general. Then, its ap-
plication to RECAP fragments and formation of dependency graphs is reported.
Structural relationships of dependent fragment are assessed and Activity Class
Characteristic RECAP Fragments are identified. Furthermore, subgraphs rep-
resenting fragment topology clusters with characteristic distributions of ACCRF
are extracted.

29
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3.1 Topological Fragment Index Method

Libraries of molecular fragments can be mapped onto active compounds to de-
termine their presence or absence or count the number of fragment occurrences.
Both presence or absence and counts can serve as the basis for the generation of
molecular fingerprints. Figure 3.1 shows a binary (i. e. presence/absence) and
count fingerprint of Aspirin.

OH

O

O

O

1 0 1 1

1 0 2 4

Figure 3.1: Binary fingerprints and counts. Two hypothetical fingerprints reporting
the presence of individual fragments or their counts are shown for Aspirin. Fingerprints based
on counts have higher information content than binary fingerprints.

The Topological Fragment Index (ToFI) extends fragment counts and
quantifies the topological environment of a given fragment in a molecule us-
ing an integer score. ToFI operates on hydrogen-suppressed molecular graphs,
i. e. only bonds between non-hydrogen atoms are considered. In principle, three
parameters account for fragment generation and topological environment infor-
mation:

1. the total number of bonds in the molecule (n),

2. the number of bonds that must be cleaved in order to obtain the fragment
(k),

3. the number of bonds that are not permitted to be cleaved because atoms
connected by these bonds constitute the fragment (l).

Fragments can often be mapped in different ways onto molecules. ToFI
independently assesses fragment instances that differ in matched molecule
atoms. First, ToFI values are calculated for each fragment instance:

ToFIInstance(n, k, l) =
1

n + 1

n−(k+l)∑
i=0

(
n−(k+l)

i

)(
n

k+i

) .
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Figure 3.2: ToFI calculation. The ToFI calculation for the extraction of a fragment
(green) from piperidine is shown. Bonds that have to be cleaved are drawn in red, whereas
bonds that constitute the fragment are shown in green. The bottom panels enumerate bond
cleavage patterns leading to separation of the fragment. Small boxes indicate bonds and
an “x” is placed into a box if the corresponding bond is cleaved. Red boxes correspond
to bonds 1 and 4, i. e. bonds that must be cleaved, and always contain an “x”. Green boxes
represent bonds 5 and 6 and never contain an “x”. The remaining bonds provide four degrees
of freedom for choosing bond cleavage patterns leading to fragment generation.

The variable i denotes the number of bonds that are deleted in addition
to k, but do not influence the generation of the given fragment instance. Fig-
ure 3.2 illustrates the ToFI calculation for a fragment and provides a structural
interpretation of the parameters n, k, l, and i.

The final ToFI value is the sum over all ToFI values calculated for indi-
vidual fragment instances. In order to control computational cost and provide
easily interpretable ToFI scores, floating point ToFI values are transformed
into integers by multiplying each calculated value with an empirically chosen
constant of 106 and rounding the resulting value to the nearest integer.

Figure 3.3 illustrates how ToFI distinguishes different topological envi-
ronments of a fragment that are not captured by fragment counts. The larger
the ToFI value becomes, the less complex is the topological environment of
the fragment. Fragments with equal counts in different compounds are further
distinguished by ToFI, if they occur in distinct topological contexts. In ToFI
calculations, the complexity of a fragment is increasing with the number of
bonds within the fragment and the number of bonds between fragment atoms
and other atoms in the molecule. Therefore, it is also possible to interpret
ToFI values as the likelihood for any given fragment to be isolated from source
molecules by randomized bond cleavage. According to this interpretation, a
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ToFI = 5,159 ToFI = 7,937

Figure 3.3: Exemplary ToFI values. ToFI values for a phenyl fragment (red) in two
molecules are given. Fragment counts in both cases are equal (2 fragments). ToFI further
distinguishes the mappings based on the topological environment of the fragments.

ToFI value of five means that if the compound was randomly fragmented one
million times, the expectation value for its generation is five times.

3.2 Application of ToFI to RECAP Fragments

3.2.1 Data Sets

Eighteen activity classes have been assembled from the MDDR on the basis of
MDDR activity indices associated with defined biological targets. The activity
classes were grouped into five supersets of ligands binding between two and four
closely related targets (for example, dopamine receptors D1-D4). The supersets
contained between 252 and 2,267 ligands. Compound numbers and individual
activity classes are reported in Table 3.1.

Superset Biological activity Cmpds. MDDR act. indices

CCK CCK A/B agonists/antagonists 730 42705, 42706, 42712, 42713
Dopamine Dopamine D1-4 antagonists 1557 07702, 07701, 07703, 07710
MAO MAO A/B inhibitors 711 08410, 08420
Opioids κ/δ/µ agonists 01131, 01132, 01133
PDE Phosphodiesterase I-IV inhibitors 2567 78415, 78416, 78417, 78418

Table 3.1: Datasets for ToFI calculation and distribution analysis. Five supersets
containing a varying number of activity classes against related targets, as defined by “MDDR
act. indices”, were used for the generation of dependency graphs. “Cmpds.” reports the
number of compounds in each superset.

3.2.2 RECAP Fragmentation and Mapping

ToFI calculations have been systematically applied to RECAP fragments. In
RECAP analysis, fragments are generated by cleaving bonds that are formed
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by common chemical reactions. Atoms of RECAP fragments that participate in
cleaved bonds are annotated with bond type information in form of isotope-like
labels (see Figure 2.4). These RECAP atom types are used to further distin-
guish fragments that are otherwise identical. A library of 10,246 RECAP frag-
ments was generated from the MDDR using MOE. For substructure mapping
purposes, RECAP fragments were encoded using recursive SMARTS strings,83

which allows for the definition and mapping of chemical atom environments.
Table 3.2 on page 36 reports the number of mapped RECAP fragments for each
superset.

3.2.3 ToFI Calculation for RECAP Fragments

ToFI values have been calculated for all mapped RECAP fragments. Figure 3.4
shows exemplary ToFI value distributions for two RECAP fragments in all test
molecules. Often different ToFI values were obtained for a fragment, hence dis-
tinguishing its topological environment in active compounds. Three examples
are shown in Figure 3.4 for the top histogram. The fragment count is one for
all three molecules. ToFI further distinguishes the different topological envi-
ronments. Five different ToFI values were observed for the top fragment and
nine different values were found for the second fragment.
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Figure 3.4: RECAP ToFI calculation. The histograms report the distribution of ToFI
values for two RECAP fragments. Three exemplary fragment mappings are shown for the
first fragment.
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3.3 Hierarchical Organization of RECAP Frag-

ments based on ToFI Value Distributions

In the previous chapter, Core Trees were introduced that organize activity class-
directed fragments in hierarchies allowing the identification of core paths. Hier-
archically generated fragments have also been organized in Scaffold Trees that
reflect the fragmentation procedure.45 In Scaffold Trees, small core fragments
constitute the root of each tree and are augmented by other structures until
complete molecules are formed. Thus, from each fragment in a Scaffold Tree
molecules containing the scaffold can be reached. These hierarchies can be an-
notated with activity information and used to derive common scaffolds of active
compounds, facilitating SAR analysis.73

A conceptually distinct approach developed for the organization of ran-
dom fragments defines hierarchies based on fragment co-occurrence in active
compounds, rather than structural criteria. Fragment dependency relationships
are encoded in dependency graphs that incorporate activity information of frag-
ments and enable the identification of activity class-specific fragment pathways.
This approach has revealed that random fragment populations contain activity
class-specific information that is associated with fragment combinations and
frequencies of fragment occurrence.47

However, dependency graphs have not yet been applied to non-random
fragments because the method depends on fragment frequencies, which are typ-
ically derived from random fragment populations. These fragment frequencies
can be interpreted as an indicator for the complexity of the topological frag-
ment environment in molecules.76 ToFI allows the extension of this type of
hierarchical organization to non-random fragments. This section describes the
calculation of dependency graphs based on ToFI values, identification of Ac-
tivity Class Characteristic RECAP Fragments, and analysis of structural rela-
tionships between dependent fragments.

3.3.1 Dependency Graph Calculation

Dependency graphs have been designed to account for fragment co-occurrence
in molecules. They report subsets of fragments that only occur together with
others, i. e. a fragment A must be present (conditional) for a fragment B to occur
(dependent). Fragment dependencies are quantified based on ToFI values using
the following formalism. Given N compounds, each fragment is represented as
an N -dimensional vector where each component reports the ToFI score for
a specific molecule in the data set. For each fragment, its dependency on
other fragments is expressed as the ratio of the respective ToFI components.
A fragment dep only depends on a fragment cond if all vector components of
dep are smaller or equal to the respective components of cond and at least one
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component of dep is smaller than the corresponding component of cond. The
dependency is then calculated as:

dependency(dep, cond) = δ

N∑
i=1

ToFIi(dep)

ToFIi(cond)
.

The δ operator summarizes the above stated conditions. Formally, it is
defined as:47

δ =


1 if ∀ 1 ≤ i ≤ N : ToFIi(dep) ≤ ToFIi(cond)

and ∃ 1 ≤ i ≤ N : ToFIi(dep) < ToFIi(cond),
0 else

.

Here, N is the total number of compounds, ∀ means “for all” and ∃
means “there exists at least one”. Dependency relationships are then encoded
in a graph representation. Therefore, for each fragment, the set of conditional
fragments with maximal dependency value is retained and an edge is drawn
between the conditional and dependent fragments. Figure 3.5 illustrates the
calculation of dependency graphs.

Molecules are added to the dependency graph as “superfragments”. In
the ToFI vector of a molecule, the component that corresponds to the molecule
is set to 1, whereas all other components are set to 0. This ensures that
molecules constitute the termini of dependency pathways. Fragment pathways
in the graph that do not terminate at a molecule are deleted because they
contain fragments that have low signature character for active compounds.47

Table 3.2 reports the number of RECAP fragments retained in the dependency
graph of each superset.

Superset Mapped Graph ACCRF
CCK 1268 203 59
Dopamine 1789 406 111
MAO 252 148 80
Opioids 1480 231 62
PDE 1836 444 167

Table 3.2: ToFI dataset statistics. Reported are the number of successfully mapped
substructures (“Mapped”), and the number of fragments remaining in the dependency graph
after deletion of paths that did not terminate at a molecule (“Graph”). “ACCRF” refers to
the number of Activity Class Characteristic RECAP fragments found in the graph.

Fragments that are connected in the dependency graph most strongly
depend on each other, i. e. they are most similar with respect to their topological
context and distribution among active compounds. An edge between a fragment
A and fragment B in the dependency graph indicates two relationships: first,
fragment A is always present in a molecule, if fragment B is present; second,
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Figure 3.5: Dependency graph calculation. The calculation of the dependency graph
is illustrated. Colored shapes correspond to individual fragments that build up a molecule
(bottom). The ToFI value vector for three molecules is reported above each fragment. Edges
in the graph are annotated with the dependency score. The pentagon fragment depends
on three of four fragments. It is independent of the blue circle fragment, because the third
component of the circle fragment violates the dependency condition, i. e. it is smaller than the
third component of the pentagon fragment. The dependency score shown in gray (i. e. 1.95)
is smaller than the maximal value for the pentagon fragment (i. e. 2.16), and, therefore, no
edge is drawn in the graph between the triangle and the pentagon fragment. The box on the
right illustrates the calculation of the dependency score from ToFI vectors.

of all fragments that co-occur with fragment A, fragment B has the highest
likelihood to do so. Fragments that do not depend on any other fragments
constitute root nodes in the graph. They are per definition the most abundant
fragments with high ToFI scores. Multiple root fragments that are independent
of each other can be present in a graph.

3.3.2 Activity Class-Characteristic RECAP Fragments

In ToFI dependency graphs, all fragments are annotated based on their ToFI
scores in compounds with different biological activity. Activity Class Charac-
teristic RECAP Fragments (ACCRF) are defined as those fragments that show
non-zero ToFI values for compounds of one individual activity class only. Nodes
are color coded according to the biological activity of the respective compounds.
Table 3.2 reports the number of ACCRF in each superset. Figure 3.6 shows part
of the dependency graph for the superset MAO. Dependency graph depictions
were generated using the freely available software Tulip.84

Dependency graphs facilitate the identification of ACCRF and show
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their co-occurrence patterns in active compounds. ACCRF constitute activity
class specific fragment dependency pathways because they exhibit ToFI distri-
butions that have signature character for different sets of active compounds.
For the supersets MAO, Opioids, and Dopamine ACCRF have been identified
for all activity classes. For both CCK and PDE, ACCRF were found for three
of four classes (except for CCK B agonists and PDE II inhibitors).

Thus, ToFI dependency graphs allow for the hierarchical organization
of chemical space based on reference compounds that are neighbors in activity
space. Here, chemical space is defined by RECAP fragments but ToFI is appli-
cable to any type of substructures that can be mapped onto active molecules.
Co-occurrence dependencies link the structural information encoded in molec-
ular fragments to activity information represented in form of closely related
activity classes.

3.3.3 Fragment Relationships

In order to assess structural resemblance of dependent fragments, edges in the
dependency graphs have been annotated with information about substructural
relationships between fragments. Therefore, four categories of substructure re-
lationships are distinguished for a pair of a conditional (parent) and a dependent
(child) fragment: (1) the parent is a substructure of the child; (2) the child is
a substructure of the parent; (3) the fragments are identical but differ in indi-
vidual RECAP atom types; (4) no substructural relationship exists. Table 3.3
reports the distribution of dependency relationships among these categories.

CCK Dopamine MAO Opioids PDE Average
No subgraph 67.2 60.2 56.4 63.7 52.4 60.0
Parent in child 25.2 28.4 33.4 27.0 37.6 30.3
Child in parent 0.3 0.7 0.7 0.7 0.2 0.5
Equal 7.2 10.8 9.5 8.6 9.8 9.2

Table 3.3: Substructural relationships of dependent fragments. For each superset,
the percentage of edges is reported that connect fragments having four distinct structural
relationships: “No subgraph”, no sub- or supergraph relationship; “Parent in child”, the
parent is a subgraph of the child; “Child in parent”, the child is a subgraph of the parent;
“Equal”, fragments differ only in individual RECAP atom types.

On average, 60% of the detected dependencies did not correspond to a
structural (sub- or supergraph) relationship, as exemplified in Figure 3.6 for
fragments 5 and 13. The second largest subset of fragment dependencies (30%)
included fragment pairs where the dependent (child) fragment contained the
conditional (parent) fragment as a substructure, i. e. the child was larger than
the parent. An example is shown in Figure 3.6 for fragments 13 and 14.

This result shows that fragment relationships in ToFI dependency graphs
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Figure 3.6: Exemplary ToFI dependency subgraph. For the superset “MAO”, the
subgraph containing all nodes reachable from the root fragment 3C is shown. Numbers are
fragment identifiers. The pie chart reports the ACCRF distribution of this subgraph. Grey
nodes correspond to generic fragments, i. e. fragments that occur in more than one activity
class. Color-coded segments report the distribution of ACCRF (red: MAO A, green: MAO B).
At the bottom, fragments are shown that correspond to the boxed region in the subgraph.
The isotope-like labels define RECAP atom types.
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go beyond structural resemblance of fragments, but instead reflect the distribu-
tion of fragments among activity classes based on their topological environment.

3.3.4 Fragment Topology Clusters

ToFI based dependency graphs make it possible to analyze individual subpop-
ulations of RECAP fragments that are dependent on each other. Therefore,
subgraphs are extracted on the basis of root fragments. Each root fragment
defines one subgraph, i. e. the collection of nodes and edges that are reachable
from the root fragment. These subgraphs describe topology clusters of RECAP
fragments that can overlap with other clusters. Fragments of each topology
cluster form fragment dependency pathways originating at the root fragment.

Systematic analysis of ToFI-based fragment dependencies revealed that
ToFI fragment hierarchies accurately described the interdependence of RECAP
fragments containing atoms with correspondning atom types. Table 3.4 shows
that most fragments (∼ 90%) in ToFI topology clusters shared the same chem-
ical environment of individual atoms with their root fragment.

Atom type CCK Dopamine MAO Opioids PDE Average
1 83.8 96.5 95.0 97.6 94.0 93.4
2 100.0 100.0 100.0 100.0 91.7 98.3
3 53.7 91.3 86.8 90.0 80.5
4 100.0 100.0 90.0 93.8 95.9
5 86.1 85.1 78.0 92.3 66.7 81.6
6 78.6 83.3 100.0 100.0 90.5
8 100.0 87.8 93.9

10 100.0 98.4 99.2
11 100.0 75.0 87.5
12 100.0 100.0
15 100.0 84.6 92.3

Table 3.4: RECAP atom type distribution in ToFI topology clusters. For each
superset, the percentage of fragments is reported that contain at least one atom having the
same RECAP atom type as the corresponding root fragment. Eleven of 16 possible RECAP
atom types were present in root fragments.

This result indicates that ToFI value distributions reflect similar topolog-
ical contexts of fragments that have atoms with the same chemical environment
in common.

3.3.5 Distribution of ACCRF in Topology Clusters

Topology clusters have been systematically compared and their overlap quanti-
fied based on the number of shared fragments and/or molecules. Furthermore,
the distribution of ACCRF in each topology cluster was assessed. Figure 3.7
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shows a representative organization graph of topology clusters for the MAO
superset. Topology clusters generally shared only few, if any fragments.

8M 8M, 1F

3M

5M, 4F

6

Figure 3.7: ToFI fragment topology clusters. The dependency graph topology for
superset “Opioids” is shown. Each pie chart corresponds to a topology cluster. The root
fragments are reported next to each pie chart. Grey segments correspond to generic fragments.
Colored segments report the distribution of ACCRF (red: κ, green: δ, blue: µ). Pie charts are
scaled proportionally to the number of nodes (i. e. fragments and molecules) and connected if
the respective subgraphs overlap. Edges are annotated with the number of shared fragments
(F) and/or molecules (M).

Different topology clusters show distinct ACCRF distributions, as can
be seen in Figure 3.7. In this example, the distribution of ACCRF is similar
for the 3C and the 5O topology cluster, but differs from the largest 1N cluster.

The distribution of structurally equivalent fragments that belonged to
different ToFI topology clusters was further systematically assessed. For all
supersets, such fragments could be found. Moreover, among these fragments,
ACCRF could be identified that belonged to different ToFI topology clusters
and were characteristic of different activity classes. Figure 3.8 provides exam-
ples of such fragments that occur in different MAO activity classes and distinct
ToFI topology clusters.

These results demonstrate that ToFI topology clusters capture activity
class-specific distribution of RECAP fragments with different atom types. Dif-
ferent topology clusters show distinct ACCRF distributions. Similar fragments
that differ only in individual atom types but are characteristic of different activ-
ity classes often belong to different topology clusters. Thus, ToFI dependency
graphs can be used to organize RECAP fragments in an activity class-dependent
manner.
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Figure 3.8: ACCRF topology cluster distribution. For the “MAO” superset, four
examples of structurally identical fragments are shown that belong to different topology
clusters identified by ToFI and differ in their biological activity (red box: MAO A; green box:
MAO B). The root fragment of the topology cluster is reported in each cell.

3.4 Summary

Conventional fragment mapping approaches determine the presence of substruc-
tures in test compounds and fragment counts, i. e. the number of fragment in-
stances present in a molecule. However, these methods do not account for the
topological environment of fragments, which often differs in active compounds.

In order to assess and quantify the topological environment of molecular
fragments, the Topological Fragment Index (ToFI) has been introduced. ToFI
extends fragment counts in molecules because it incorporates information about
the atom bonding patterns constituting the fragment environment within a
compound. It has been shown that ToFI values distinguish between different
fragment environments.

On the basis of ToFI value distributions, RECAP fragments of active
compounds have been organized in dependency graphs that encode topological
environment similarity and fragment co-occurrence information. These graphs
facilitate the identification of Activity Class Characteristic RECAP Fragments
(ACCRF) and encode fragment relationships that go beyond structural resem-
blance, reflecting activity class-characteristic fragment co-occurrence patterns.
Moreover, ToFI fragment dependencies accurately account for inter-dependence
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of RECAP fragments with common atom types.
From ToFI dependency graphs, topology clusters of RECAP fragments

have been extracted that show characteristic ACCRF profiles and group frag-
ments according to similar topological environment and distribution among
active compounds.

Thus, ToFI adds to the repertoire of fragment mapping methods and
allows the organization of non-random fragments in activity class-dependent
hierarchies.





Chapter 4

Relevance of Feature
Combinations for Similarity
Searching

Activity class dependent hierarchies of randomly generated fragments, or pre-
defined fragments using ToFI revealed that the occurrence of molecular sub-
structures is often determined by dependency relationships. Thus, fragments
might co-occur in an activity class-characteristic manner. Therefore, this chap-
ter extends the analysis of fragment co-occurrence. In particular, the relevance
of structural feature combinations for recall of active compounds in similarity
searching is assessed.

First, three different molecular fingerprints used in this study are de-
scribed that take activity class-related information to different degrees into
account. In addition, current strategies for similarity searching using multiple
reference compounds are discussed.

Feature Co-occurrence Networks (FCoN) are then introduced for the sys-
tematic extraction of feature combinations from multiple reference molecules.
Individual structural features are organized in networks that account for their
pair-wise co-occurrence in active reference compounds. From these networks,
cliques are extracted that represent activity class-characteristic feature combi-
nations. FCoN cliques are ranked based on their occurrence in a large compound
database. Furthermore, a search strategy has been designed that assembles
compound selection sets based on FCoN clique ranking.

4.1 Structural Fingerprints

Fingerprint representations enable fast computational comparison of reference
and database compounds in molecular similarity searching. Here, three molec-
ular fingerprints are compared that use fragment-type descriptors to encode

45
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molecular structure: MDL Molecular ACCess System (MACCS),63 Extended
Connectivity Fingerprints (ECFP4),59 and Activity Class Characteristic Sub-
structures Fingerprints (ACCS-FP).48 These fingerprints represent different de-
sign strategies that incorporate activity class-specific information to a different
extent, as illustrated in Figure 4.1.

MACCS
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predefined

keys

AC 1 AC 2

...

...

...

...

ECFP4

AC 1 AC 2

Circular fragment

sampling

...

...

...

...

ACCS-FP

...

...

...

...

AC 1 AC 2

AC 1

ACCS

AC 2

ACCS

Figure 4.1: Fingerprint design strategies. Three fingerprint design strategies are com-
pared. Circles represent compounds and squares represent fingerprint bit positions or fea-
tures. MACCS uses a dictionary of 166 predefined structural keys to encode active compounds
from different activity classes. In ECFP4, features are generated in a molecule-centric way
utilizing layered atom environments. ACCS-FP are derived in an activity class-dependent
manner and also represent a structural key-type fingerprint.

MACCS keys are general in their design. Originally, they have been in-
troduced for fast identification of compounds in large databases. They account
for the presence or absence of 166 predefined features that were selected to cover
a large number of chemical structures. MACCS keys do not take any activity
class- or molecule-specific information into account. Instead, they use the same
general feature library to encode both reference and database compounds as a
fixed-length fingerprint.

By contrast, Extended Connectivity Fingerprints use circular features
(see Figure 2.2) to encode molecular structure. In ECFP4, each non-hydrogen
atom in a test molecule is combined with bonded atoms at a one- to a four-bond
radius. The circular features are converted to integers using a hash function
that incorporates information about atom type, charge, and number of bonded
atoms. The fingerprint consists of unique integers that have been generated
during the hashing procedure. Thus, in ECFP4, fingerprint features are derived
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in a molecule-centric manner: individual compounds (i. e. reference as well as
database molecules) serve as the source for ECFP4 features. Theoretically,
billions of possible ECFP4 features may be produced, but individual compounds
typically yield only a small fraction of this hypothetical feature space. Because
ECFP4 features are extracted from individual molecules they form fingerprints
of variable length.

ACCS-FP utilize ACCS extracted from random fragment populations
of reference compounds (see Section 2.2.4). ACCS are organized in hierarchies
using the formalism described in Section 3.3.1. This organization is based on
fragment co-occurrence patterns within the reference set.48 Then ACCS are se-
lected that are independent of other ACCS. These de-correlated fragments serve
as the basis for fingerprint generation. Thus, ACCS-FP features are generated
in an activity class-dependent manner on the basis of multiple reference com-
pounds. ACCS-FP consist of small numbers of features, sometimes only 10.48

ACCS-FP thus represent an activity-class directed, variable-length fingerprint
format.

4.2 Multiple Template Similarity Searching

Fingerprint based similarity searching quantifies the structural resemblance of
two compounds using fingerprint overlap as a similarity measure.13 When only
a single reference compound is available, database molecules can be prioritized
according to their similarity values. However, when using multiple reference
molecules, data fusion techniques are applied in order to exploit information
from all fingerprints of the reference set.30

4.2.1 Quantification of Fingerprint Overlap

For comparison of binary fingerprints, a variety of different similarity metrics
have been proposed.13 One of the most popular metrics is the Tanimoto coeffi-
cient (Tc). It utilizes three sets of features to compare two fingerprints A and
B: the number of features present in A (a), the number of features present in
B (b), and the number of features shared by A and B (c). The Tc for binary
fingerprints is then defined as:13

Tc =
c

a + b− c
.

For comparison of fingerprints with non-binary values such as feature
counts, the general form of the Tc is used. It incorporates dot products of the
fingerprint vectors instead of bit numbers:13

Tcgeneral =

∑
xjAxjB∑

x2
jA +

∑
x2

jB −
∑

xjAxjB

.
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Here, xj is the jth component of the feature vector x.

4.2.2 Nearest Neighbor Searching

In order to score database compounds on the basis of their similarity to mul-
tiple reference compounds, in nearest neighbor searching, individual similarity
values between the database molecule and each of the reference compounds are
combined. In 1NN searching, the maximal score is retained, i. e. the similar-
ity of the database compound to the reference set is estimated using the most
similar reference compound. In the general case of kNN searching, the top k
scores are averaged.30 Figure 4.1 illustrates the different nearest neighbor search
strategies.

1NN 3NN nNN Centroid

Figure 4.2: Multiple template similarity searching. In kNN searching, a database
compound (gray circle) is compared to n reference molecules (green circles). The k highest
similarity scores are averaged to yield the final compound score. In the centroid approach,
first a centroid (green square) is calculated. The similarity of a database compound to the
reference set is estimated through its similarity to the centroid.

4.2.3 Centroid Searching

An alternative to the fusion of pair-wise similarity scores is the fusion of ref-
erence compound fingerprints. Therefore, a centroid vector is calculated that
reports the relative frequency of each feature within the reference set. Database
compound fingerprints are then compared to this centroid rather than to all ref-
erence fingerprints individually. Since the centroid is not a binary fingerprint,
the general form of the Tc must be used for similarity assessment.30 Figure 4.1
compares centroid to kNN searching.

Modal fingerprints represent another form of fingerprint fusion. In these
fingerprints, a predefined threshold is applied to the centroid and all vector
components that meet or exceed this threshold are set to 1, whereas all other
positions are set to 0.43 Thus, modal fingerprints are binary vectors.
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4.3 Feature Co-occurrence Networks

In fingerprint overlap calculations, individual features are treated independently
of each other and there is no need to determine whether or not features occur
in combinations. Consequently, the potential role of feature combinations for
fingerprint search performance has so far been only little explored. Fingerprint
bits that are strongly conserved in active compounds have been identified85 as
well as characteristic bit patterns85,86 and, furthermore, consensus fingerprints
have been derived for different compound classes.43 However, whether or not
feature combinations might influence fingerprint search performance has not
yet been investigated.

In order to determine whether fingerprint features are set in combination
and assess the potential impact of such combinations on similarity searching,
a generally applicable methodology is presented in this section for the identifi-
cation of feature combinations of variable size that are preferentially found in
active reference compounds. For this purpose, Feature Co-occurrence Networks
(FCoN) are introduced that are calculated based on conditional probabilities
of feature pair occurrence in active compounds. A clique detection algorithm
is then applied to these networks in order to extract feature combinations that
are prevalent in different activity classes. The frequency of these feature com-
binations in a large screening database has been determined, thus enabling
compound selection on the basis of selective feature cliques.

4.3.1 FCoN Generation and Clique Detection

Data Sets

For the generation and assessment of Feature Co-occurrence Networks, fourteen
activity classes were assembled from the MDDR. Table 4.1 summarizes the bio-
logical activities and composition of these classes. The structural homogeneity
of activity classes was assessed by pair-wise Tc calculations using the MACCS
fingerprint. These 14 classes consisted of six relatively homogeneous (average
MACC Tc ≥0.5) and eight more heterogeneous (average MACCS Tc 0.4 - 0.5)
ones. A randomly selected ZINC subset containing 500,000 molecules was used
as a database for virtual screening trials. Each activity class was randomly
divided into ten reference and test sets of equal size.

Molecular structure was encoded using three fingerprints described in
Section 4.1. ACCS have been generated for each activity class individually
by filtering against a randomly selected ZINC subset of 500 compounds (see
Figure 2.7). Table 4.1 reports the average number of ACCS generated for
individual activity classes.
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Activity class Biological activity Cmpds. ACCS Tc

AA2 Adrenergic alpha 2 antagonists 35 25.3 0.39
BK2 Bradykinin BK2 antagonists 22 31.0 0.55
CAL Calpain inhibitors 28 23.7 0.48
DD1 Dopamine D1 agonists 30 55.9 0.56
F7I Factor VIIa inhibitors 23 16.1 0.46

GLG Glucagon receptor antagonists 33 34.1 0.44
GLY Glycoprotein IIb-IIIa antagonists 34 34.0 0.57
KRA Kainate receptor antagonists 22 15.7 0.55
LAC Lactamase (beta) inhibitors 29 33.2 0.44
SQE Squalene epoxidase inhibitors 25 7.7 0.40
SQS Squalene synthetase inhibitors 42 65.4 0.50
THI Thiol protease inhibitors 34 42.8 0.49
ULD LDL upregulators 21 16.6 0.43
XAN Xanthine oxidase inhibitors 35 33.8 0.56

Table 4.1: FCoN data sets. The number of compounds (“Cmpds.”) in each activity
class is provided together with the average number of activity class characteristic substruc-
tures (“ACCS”) generated per reference set. “Tc” reports the average intra-class pair-wise
similarity of active compounds based on MACCS Tc calculations.

FCoN calculation

In order to identify structural features that predominantly occur in combination
in a compound reference set, FCoN are calculated for molecular fingerprints.
Individual features encoded by a fingerprint are connected in these networks if
they preferably occur in combination. In order to build an FCoN, the frequency
of occurrence is calculated first for each feature by dividing the number of
compounds containing the feature by the total number of compounds in the
reference set, analogously to centroid fingerprints. Pairs of features are assigned
a score based on the conditional probabilities of feature pair occurrence:

score (A, B) = min

(
f (AB)

f (A)
,
f (AB)

f (B)

)
.

Here, f (A) denotes the frequency of feature A, f (B) the frequency of
feature B, and f (AB) the frequency of the pair AB. Feature pairs that ex-
clusively occur in combination receive the maximal score of 1, whereas features
that never occur in combination in any reference compound are assigned the
minimal pair score of 0. Scores serve as weights for edges connecting indi-
vidual features in the FCoN. In order to identify combinations of frequently
co-occurring features, a co-occurrence threshold ν is applied and only edges are
retained that have a weight equal to or greater than ν. Maximal cliques are
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largest completely connected subgraphs that are not contained in any other
completely connected subgraph.11 These cliques are identified in the pruned
network and corresponding feature combinations are reported. For clique de-
tection, the Bron-Kerbosch algorithm87 was implemented in MOE. The clique
detection procedure is illustrated in Figure 4.3.
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Figure 4.3: FCoN clique detection. FCoN generation is illustrated for a co-occurrence
threshold value of one. For four fingerprints of active reference compounds the relative
frequency of each feature (bit) is determined. Shaded boxes correspond to fingerprint bit
positions that are set on. The corresponding co-occurrence network (FCoN) is calculated by
connecting features that occur in combination. Cliques are detected and feature combinations
are identified. Although features A, B, and C are only present in two molecules, they form a
clique based on a threshold value of one, because neither feature occurs without the other two
in any compound. Feature D is not part of a clique and therefore not considered in search
calculations.

The co-occurrence threshold ν was systematically varied from 0.5 to 1
in increments of 0.1. Increasing threshold values yield cliques that are highly
conserved among reference compounds. In addition to cliques identified for each
ν, all cliques that were unique to an activity class have been pooled irrespective
of the threshold value.

FCoN were systematically generated for all activity classes and finger-
prints. Clique numbers and sizes were determined for each ν and the pooled
sets. Statistical analyses were carried out using Perl scripts. Table 4.2 reports
the medians of feature clique numbers that were first calculated for individual
co-occurrence thresholds for all reference sets and then pooled. Table B.1 in
Appendix B provides clique numbers for individual co-occurrence thresholds.
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Figure B.1 reports the distribution of clique numbers for pooled sets. ACCS-
FP produced the smallest number of feature cliques. Median clique numbers
ranged from four to 83 and correlated with the ACCS-FP length, yielding a
Pearson correlation coefficient of R2 = 0.89. MACCS and ECFP4 produced on
average ∼ 200 and 300 cliques, respectively, and hence significantly more than
ACCS-FP.

Activity class MACCS ECFP4 ACCS-FP
AA2 5 7 3
BK2 11 9 5
CAL 5 7 4
DD1 5 8 6
F7I 8 6 3

GLG 8 7 3
GLY 6 6 3
KRA 8 11 5
LAC 8 12 4
SQE 7 6 2
SQS 10 13 6
THI 5 5 3
ULD 8 8 4
XAN 5 10 3

Table 4.2: FCoN clique numbers. Median numbers of cliques in pooled sets are reported
for each activity class and fingerprint. Medians were calculated from ten independent trials.

As reported in Table 4.3, the median number of features per clique was
comparable for MACCS and ECFP4 (five to 13 features), whereas ACCS-FP
cliques were smaller (two to six features). However, for all fingerprints, large
individual cliques were also detected, in some cases containing more than 40
features, as illustrated in Figure B.2. The median numbers of features per
clique for individual co-occurrence threshold values is reported in Table B.2.

Database Distribution of Cliques

The distribution of identified cliques in 500,000 ZINC database compounds was
analyzed. As shown in Table 4.4 and Figure 4.4, the three fingerprints signif-
icantly differed in the average number of database compounds that contained
their feature cliques.

MACCS keys produced cliques that were typically found in large num-
bers (∼ 2,000 to 23,000) of database compounds. Thus, the most general of
the three fingerprints produced feature combinations that were least specific
for active compounds, as one would expect. However, for all three fingerprints,
feature combinations were also identified that matched only a few or a sin-
gle database molecule. Cliques extracted from ECFP4 occurred on average in
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Figure 4.4: Feature clique distribution in database. Box plots show the distribution
of cliques among screening database compounds. Thick bars mark median values.
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Activity class MACCS ECFP4 ACCS-FP
AA2 156 136 21
BK2 184 715 20
CAL 133 201 15
DD1 109 229 46
F7I 248 346 13

GLG 312 325 28
GLY 138 350 24
KRA 141 154 8
LAC 184 275 32
SQE 224 296 4
SQS 239 499 83
THI 243 238 47
ULD 245 287 13
XAN 123 182 23

Table 4.3: FCoN clique size. Median numbers of features in cliques in pooled sets are
reported for each activity class and fingerprint.

Activity class MACCS ECFP4 ACCS-FP
AA2 23193 62 101
BK2 3273 20 96
CAL 22725 636 282
DD1 17246 12 46
F7I 4886 775 77

GLG 9131 1410 81
GLY 16744 100 51
KRA 2272 7 15
LAC 2713 16 51
SQE 16490 7 29
SQS 3285 4 13
THI 17646 3173 151
ULD 10153 747 80
XAN 21485 7 6

Table 4.4: Database clique distribution. For each activity class and fingerprint, median
numbers of database compounds that contained a clique are reported.

considerably smaller numbers of database compounds (∼ 5 to 3,000). Nev-
ertheless, individual cliques were also detected for both MACCS and ECFP4
that occurred in nearly all database molecules. By contrast, ACCS-FP cliques
matched only ∼ 5 to 300 database molecules and the most generic ones were
found in ∼ 25,000 compounds (i. e. 5% of the database). Thus, compound class-
directed ACCS-FP produced the most specific feature combinations.

MACCS structural keys are frequently correlated.85 For example, a num-
ber of individual keys account for combinations of others and, consequently,
their bits are typically set on in concert. Furthermore, many ECFP4 features
are overlapping and therefore describe similar or identical substructures. By
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contrast, ACCS utilized for fingerprint generation are selected to be maximally
independent of each other.48 Thus, correlation effects are expected to play a
different role for these three fingerprints. In particular, ACCS-FP feature com-
binations are not necessarily a consequence of structural fragment correlation
effects, as shown in Section 3.3 for ToFI based dependency graphs. Cliques
that are formed by overlapping features are expected to frequently occur in
database molecules because the substructures they represent tend to be more
generic than molecular substructures formed by non-overlapping features. How-
ever, the finding that all three fingerprints produced feature combinations that
rarely occur in ZINC compounds also shows that MACCS and ECFP4 yield
compound class-specific feature cliques that can not be attributed to general
correlation effects and that can be identified using FCoN clique ranking. Thus,
in addition to generic feature combinations, activity class-specific combinations
are formed that can be utilized in clique searching, as described in the next
section.

Generally, feature cliques identified at higher thresholds, i. e. highly con-
served combinations, were smaller than cliques at lower thresholds and occurred
in more database compounds. This finding indicates that fingerprint features
that are highly conserved in reference sets are not necessarily a compound
class-specific signature because they might also be generic and present in many
different, active as well as inactive compounds. Database clique distributions
at different co-occurrence threshold levels are reported in Table B.3.

Taken together, the results of FCoN clique detection show that finger-
print features can occur in activity class-characteristic combinations; this corre-
sponds to an activity-dependent extraction of structure correlation patterns in
chemical space. For all activity classes and reference sets, multiple cliques were
detected. These cliques are often small in size (two to 10 features per clique) and
the total number of cliques roughly scales with the length of the original finger-
prints. Moreover, the distribution of reference set cliques in a large compound
database is an indicator of fingerprint information content. Feature cliques of
active molecules extracted from the general MACCS fingerprint are found in
many database compounds, the molecule-centric ECFP4 feature combinations
occur in fewer database compounds, and many feature combinations produced
by the activity class-directed ACCS-FP are only matched by fingerprints of
small numbers of database molecules.
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4.3.2 Clique-Based Similarity Searching

The distribution of ACCS-FP cliques in active and database molecules sug-
gested the design of a clique-based similarity search strategy that takes activity
class specificity of individual cliques into account.

Feature Clique Search Strategy

For search calculations using cliques (rather than fingerprints), a strategy has
been designed that takes the degree of compound class-specificity of individ-
ual cliques into account. For each clique, the number of database molecules
containing all of the clique features is determined. A clique is matched to a
database compound if all of its features match. Cliques are ranked in ascending
order of their database frequency, i. e. cliques occurring in only small numbers
of database compounds are prioritized. Database compounds are selected se-
quentially according to the ranked clique list. Thus, each feature clique adds
compounds to the selection set that have not been retrieved in previous steps by
cliques with lower overall database frequency, thereby producing a compound
ranking. This selection procedure is illustrated in Figure 4.5.
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Figure 4.5: Feature clique search strategy. From fingerprints of active compounds, fea-
ture cliques are identified. For each clique, the number of database compounds containing all
of its features is determined. Cliques are sorted by ascending database frequencies (i. e. rarely
occurring cliques are preferred). From this ranking, cumulative compound selection sets are
generated. In this example, for clique EF, the selection set contains two compounds. Cliques
EF and ABC share one compound, resulting in a selection cumulative selection set of 11
(2+10-1) compounds for clique ABC.
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The clique detection strategy extends the concept of conserved bit po-
sitions utilized in the centroid approach and modal fingerprints. Calculating
relative frequencies of individual features does not provide information about in-
dividual feature combinations that might be present in reference set compounds.
By contrast, the FCoN strategy explicitly utilizes conditional probabilities of
feature co-occurrence, rather than relative frequencies. Thus, it provides an
ensemble of feature cliques that can overlap and vary in size.

Computational Complexity

Feature clique searching is computationally more complex than standard fin-
gerprint calculations because cliques need to be identified and mapped. Thus,
clique searching has the complexity O(n2), with n being the number of refer-
ence compounds. The time complexity of the centroid approach scales linearly
with the number of reference compounds, O(n). Additionally, clique searching
has O(m2) complexity with regard to the total number of unique features m.
However, feature combinations are only extracted from small numbers of active
reference molecules, the number of unique features in a small compound set is
limited, and mapping to database compounds utilizes their fingerprint repre-
sentations. Thus, additional computational costs are low and practical clique
searching requirements are comparable to standard fingerprinting.

Virtual Screening Trials

FCoN selection sets were transformed into ranked compound lists with equal
scores assigned to compounds belonging to identical FCoN selection sets. Such
non-contiguous score distributions also occur for ranking methods when com-
pounds are assigned the same similarity value. This binning effect is accounted
for by calculating the expected number of retrieved compounds for each selec-
tion set. For example, given two selection sets with 90 and 110 compounds con-
taining five and seven active compounds, respectively, the number of retrieved
active compounds for the selection set size of 100 is calculated as follows. Five
active compounds are contained in the set of 90 compounds. The remaining 10
(100 − 90) compounds are randomly selected from 20 (110 − 90) compounds
that are additionally present in the set of 110 molecules. The expected number
of additional actives in this randomly selected set is given by (7−5)∗10/20 = 1.
Thus, for a selection set of 100 compounds, the method is expected to retrieve
six compounds.

Recovery rates for 100 top-ranked database compounds were calculated
based on clique sets derived using different co-occurrence thresholds as well as
for the pooled sets. Table B.4 reports recovery rates of active compounds at
different co-occurrence threshold values and the pooled sets. Generally, pooled
clique sets produced results that were better or comparable to those obtained
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at individual threshold levels. Therefore, pooled cliques were used for further
analysis.

Significance of Feature Combinations for Search Performance

In order to assess the contribution of feature combinations to search perfor-
mance, clique-based compound selection was compared to 1NN, 3NN, centroid,
and modal fingerprint search strategies on the basis of Tanimoto similarity. For
modal fingerprints, three thresholds were utilized: 50%, 70%, and 100%. As
a measure of search performance, active compound recovery rates for selec-
tion sets of 100 top-ranked compounds were calculated for both Tc- and clique
frequency-based compound rankings and averaged over ten independent trials.
Table 4.5 reports recovery rates for all activity classes and database selection
sets of 100 top-ranked compounds. For modal fingerprints, the 50% threshold
performed consistently better for all fingerprints than other thresholds and thus
only the best results for modal fingerprints are reported.

Depending on the fingerprint, clique-based search performance substan-
tially varied. Figure 4.6 shows recovery rate bar charts for three structurally
heterogeneous (CAL, F7I, GLG) and two homogeneous (GLY, KRA) activity
classes. For MACCS, feature combinations produced lower recovery rates than
standard search strategies for all but one activity class, consistent with the
high database frequency of many MACCS-derived cliques, which mirrors the
fact that MACCS structural keys have been designed for a broad spectrum of
small molecules.63,88 For the ECFP4 fingerprint that includes features derived
from individual molecules, the results of clique searching were overall compa-
rable to the other search strategies. For six out of 14 classes, cliques produced
highest recall rates. In particular, this was the case for structurally heteroge-
neous classes (F7I, GLG, THI) where standard search strategies had difficulties
to retrieve active compounds. For ACCS-FP, clique searching produced highest
recall for 11 of 14 compound classes. Similar to ECFP4, a notable improve-
ment in recovery rates was observed for heterogeneous classes that represented
difficult test cases for nearest neighbor or centroid searching. Table 4.6 summa-
rizes the virtual screening results for the three fingerprints and different search
strategies.

The consistently high performance of ACCS-FP clique searching com-
pared to the other search strategies suggests that these cliques preferentially
represent activity class-characteristic feature combinations that have high po-
tential to retrieve active compounds, even if they are only partly conserved
in reference sets. These findings also indicate that specific feature combina-
tions, rather than individual features, contain most class-specific information
in ACCS-FP. By contrast, for structural fingerprints of general design such
as MACCS, feature combinations do not determine search performance. In
this case, counts of individual features and fingerprint overlap are a more re-
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Activity Class FCoN Centroid Modal 1NN 3NN
MACCS

AA2 4.23 13.33 10.78 24.47 28.33
BK2 18.18 21.82 6.36 26.36 17.27
CAL 14.29 22.86 24.25 32.86 32.14
DD1 13.81 47.33 56.00 65.07 64.67
F7I 6.36 1.67 1.67 9.17 7.50

GLG 4.17 5.29 2.35 0.00 7.65
GLY 19.60 19.41 15.88 41.67 32.94
KRA 61.94 20.91 11.98 82.73 63.64
LAC 35.71 24.67 5.87 60.67 52.00
SQE 35.00 20.77 16.15 3.85 27.69
SQS 36.53 18.57 16.19 46.67 46.90
THI 0.97 0.59 1.76 10.59 7.06
ULD 3.38 5.45 4.74 0.00 3.64
XAN 45.48 43.33 38.33 58.26 56.11

ECFP4
AA2 32.13 28.61 0.00 46.11 51.11
BK2 69.09 46.36 19.09 69.09 73.64
CAL 60.04 40.71 42.86 55.71 54.29
DD1 75.69 63.33 17.68 84.67 86.67
F7I 67.26 3.33 1.67 25.00 24.17

GLG 36.87 0.59 0.00 6.47 33.53
GLY 78.82 34.71 26.47 48.82 67.65
KRA 75.45 50.00 10.00 89.09 86.36
LAC 72.26 40.00 2.67 76.00 68.00
SQE 66.36 31.54 3.08 40.00 63.85
SQS 48.47 25.71 0.00 57.14 57.62
THI 45.86 4.71 0.00 29.41 33.53
ULD 40.30 13.64 0.00 29.09 42.73
XAN 72.94 53.33 15.00 73.33 67.22

ACCS-FP
AA2 16.76 1.24 2.50 9.33
BK2 44.63 46.36 26.28 21.15 48.18
CAL 28.76 14.84 10.44 7.63 24.53
DD1 65.62 51.01 38.00 54.93 73.88
F7I 13.65 5.14 15.14 0.62 5.42

GLG 35.26 6.47 1.70 12.07
GLY 37.86 17.07 2.54 27.98 26.08
KRA 57.02 33.94 7.51 26.56 55.12
LAC 54.99 23.93 3.57 52.87 42.39
SQE 32.39 11.83 13.19 7.53 16.09
SQS 52.89 36.19 7.29 12.91 42.86
THI 10.99 1.76 6.67 8.18 3.33
ULD 31.67 1.82 6.82 0.36 13.78
XAN 61.21 42.78 22.78 28.19 55.62

Table 4.5: FCoN virtual screening performance. Average recovery rates in percent
are reported. For activity classes AA2 and GLG, no bits were set on in the modal ACCS-FP.
Maximal recovery rates are highlighted in bold.
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Figure 4.6: FCoN virtual screening trials. Recovery rates are shown for different fin-
gerprints and search strategies. Modal fingerprints behaved similar to the centroid approach
and are not shown.
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Fingerprint FCoN Centroid Modal 1NN 3NN

MACCS RR 21.40 19.00 15.17 33.03 31.97
Best 1 1 0 9 3

ECFP4 RR 60.11 31.18 9.89 52.14 57.88
Best 6 0 0 3 5

ACCS-FP RR 38.84 21.03 11.45 18.08 30.62
Best 11 0 1 0 2

Table 4.6: Fingerprint comparison. Reported are average recovery rates (“RR”, in
percent) over 14 activity classes. “Best” reports the number of classes with highest recovery
rate for each search strategy.

liable measure, which is exploited in the calculation of Tanimoto similarity.
For ECFP4, emphasizing individual features or feature combinations produces
comparable search results. For ACCS-FP, feature combinations effectively dis-
criminate between active and database compounds and hence clique searching is
much superior to established search strategies for multiple reference compounds
such as nearest neighbor or centroid calculations.
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4.4 Summary

In this chapter, FCoN have been introduced for the systematic extraction of
feature cliques from molecular fingerprints. Clique detection in co-occurrence
networks can generally be applied to identify feature combinations that are
conserved in active compounds. A search strategy has been designed that uses
frequency-based ranking of cliques and prioritizes database compounds that
contain rarely occurring cliques.

The analysis has revealed three major findings. First, fingerprint features
frequently occur in well-defined combinations that can be activity class-specific,
even if individual features are of generic origin. Second, feature combinations
are highly relevant for the performance of compound class-directed fingerprints,
in contrast to generic fingerprints like MACCS. Class-directed cliques rarely oc-
cur in the screening database and are capable of significantly enriching selection
sets with active compounds. Third, clique-based similarity searching represents
a generally preferred strategy for ACCS-FP.

These results are consistent with the identification of activity class-
specific pathways in fragment dependency graphs (Chapter 3) and show that
combinations of individual structural features often become activity class sig-
natures.



Chapter 5

Fragment Formal Concept
Analysis for the Assessment of
Complex SARs

In this chapter the activity signature character of fragment combinations is
analyzed in more detail. In particular, the focus lies on related activity classes
and fragment combinations that they share or are distinguished by.

An adaptation of formal concept analysis (FCA), a data mining and vi-
sualization technique originally developed in information science in the 1980s51

is introduced. First, the general methodological foundation of FCA is described.
Then, Fragment Formal Concept Analysis (FragFCA) is introduced, which is
designed to extract fragment combination signatures of compound sets with
non-trivial SAR profiles including multiple activities. Also, fragment combina-
tions specific for defined compound potency ranges can be identified. On the
basis of signature fragment combinations extracted using FragFCA, a classifi-
cation method has been developed that assigns compounds to one of several
closely related targets.

5.1 Formal Concept Analysis

Formal concept analysis (FCA) is a method for data analysis, knowledge repre-
sentation and information management.51 FCA organizes relationships between
a set of objects and a set of attributes in concepts and represents this organiza-
tion in concept lattices.

5.1.1 Concept Lattices

The input to FCA is a formal context, which describes binary relationships be-
tween objects and attributes of the general form “is” and “is not”, e. g. “Aspirin

63
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(object) is a cyclooxygenase inhibitor (attribute)”. Formal contexts can be re-
ported as a two-dimensional matrix with attributes in columns and objects
in rows. Figure 5.1 shows an exemplary formal context describing the dis-
tribution of fragment combinations among molecules with different biological
activity. Here, the relationships have the form “fragment combination A is/is
not contained in molecule B”.

Formal concepts are defined as sets of objects that share a set of at-
tributes. Objects and attributes are connected by a so called Galois connec-
tion. This connection implies that the set of objects can not be extended by
additional objects without covering additional attributes and the attribute set
can not be extended without losing some of the objects. For any given formal
context, the formal concepts are unambiguously defined.

A B C
Attr.

X X X

X X

X

X X

Obj.
A B C

Figure 5.1: Formal concept analysis. A formal context is shown on the left that describes
the distribution of formal objects (fragment combinations in FragFCA, colored shapes) among
attributes (activity classes in FragFCA) A, B, and C. An “X” indicates occurrence of the
combination in the particular activity class. On the right, the corresponding concept lattice
is shown. Each node represents a concept. Attributes are written above, objects below nodes.
The concept containing fragment combinations characteristic of classes B and C is selected
and shown in red. The activity annotations are found by following edges towards the top, the
corresponding fragment combinations by following edges towards the bottom of the lattice.
The fragment combination inside the dashed box belongs to the concept, but is not selected
because it also occurs in activity class A.

Individual formal concepts are not independent of each other, but share
objects and/or attributes. These relationships are visualized in concept lattices,
as shown in Figure 5.1. Each node in a concept lattice corresponds to one
particular concept. Attributes are written above and objects below nodes.
The attributes of a concept can be found by tracing all paths towards the top
node. Objects that belong to the concept and do not share any other attributes
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reported in the lattice are associated directly with the node. In order to extract
all objects belonging to the concept, the paths towards the bottom node are
followed. Hence, the concept represented by the top node contains all objects,
whereas the concept represented by the bottom node contains all attributes.

5.1.2 Scales

For large formal contexts with many attributes, concept lattices quickly become
difficult to read and navigate. For example, for three independent attributes
eight (23) possible concepts exist, whereas for four attributes, 16 (24) nodes
have to be incorporated into one single lattice in order to cover all possible
concepts. This problem is addressed by introducing scales that focus on subsets
of attributes. Scales correspond to formal contexts that have identical objects
but different attributes. Figure 5.2 shows multiple scales. For each scale, a
concept lattice is generated. In the following, concept lattices that are based
on a specific scale will simply be referred to as “scale”. Each scale thus provides
information about the distribution of objects among a subset of attributes.

A B C

D E

Figure 5.2: FCA scales and scale combination. Two scales are shown focusing on
different subsets of activity annotations: “A, B, C” and “D, E”. On the first scale, fragment
combinations are selected that are characteristic of activity classes B and C, but do not occur
in class A (red box). This selection is projected onto the second scale, which reports fragment
distribution among classes D and E. On this scale, a subset of the selection is chosen that
occurs exclusively in activity class E. Thus, the combination in the green box occurs in B, C,
and E, but it is not present in any compound with activity A or D.

Scales are combined in order to extract objects that share attributes
reported in different scales. Queries that utilize scale combination play a central
role in FCA. During the query procedure, a subset of objects selected on one
particular scale is projected onto following scales, allowing the selection of a
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(sub-)subset based on different attributes. Figure 5.2 shows how scales are
combined in order to define a query.

5.2 Fragment Formal Concept Analysis

This section introduces an FCA adaptation for the analysis of fragment combi-
nation distributions among bioactive compounds binding to different but closely
related targets. In FragFCA, fragment combinations are formal objects and lig-
and activity and potency annotations are attributes. Scales are designed to ac-
count for a hierarchical organization of desired targets. Furthermore, scales are
defined that focus on different potency ranges for specific targets and also report
the number of compounds a fragment combination occurs in. The combination
of different scales allows the interactive definition of queries for the extraction of
signature fragment combinations. It is shown that these signatures are specific
for molecules with a defined activity and/or potency profile.

5.2.1 Definition of the Formal Context

Data Set

A previously reported89 and publicly available set of 267 biogenic amine GPCR
antagonists has been utilized in order to define the formal context. Compounds
in this set are active against multiple receptors at different potency levels. A
compound was assigned to a class if it was active against the target receptor
with an IC50 value of 10µM or lower. On the basis of this threshold value,
the 267 antagonists received a total of 687 activity assignments. The activity
classes and number of activity annotations are reported in Table 5.1.

Activity class Biological activity Ann.

D1 Dopamine D1 receptor antagonists 84
D2 Dopamine D2 receptor antagonists 216
D3 Dopamine D3 receptor antagonists 75
D4 Dopamine D4 receptor antagonists 93

5-HT1A Serotonin 5-HT1A receptor antagonists 95
5-HT2A Serotonin 5-HT2A receptor antagonists 32

α1 Adrenergic α1 receptor antagonists 92

Table 5.1: FragFCA GPCR dataset. The 267 compounds in this set have multiple
activities and represent a total of 687 activity annotations (“Ann.”).
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Fragment Generation

A hierarchical fragmentation scheme has been applied that divides compounds
into rings, linkers, and side chains (see Section 2.2.2). As a refinement of con-
ventional hierarchical fragmentation,41 condensed rings are not only considered
as fragments, but are also further divided into non-fused individual ring com-
ponents. This is done in order to increase the information content of fragment
ensembles. Fragments were generated from all GPCR antagonists and pooled.
From the initial set of 701 unique fragments, small fragments with fewer than
four atoms and large fragments with more than 20 atoms were removed, result-
ing in a final set of 427 fragments.

Enumeration of Fragment Combinations

From these 427 GPCR fragments, a structural key-type fingerprint was gen-
erated and calculated for each of the 267 antagonists. For each compound,
all individual fragments, pairs, triplets, and quadruplets were extracted from
its fingerprint representation, yielding a total of 231,464 different combina-
tions, which are formal objects in FragFCA. Because fragment combinations
are enumerated from fingerprints, FragFCA can be applied to any fragmenta-
tion scheme and structural key-type fingerprint representation.

Activity Annotation of Fragment Combinations

Fragment combinations were annotated with qualitative and quantitative com-
pound activity information, which represent formal attributes in FragFCA. An
antagonist was considered active against a GPCR target if its IC50 was equal
to or below 10µM and inactive if it was above this value. Furthermore, five
different potency ranges were distinguished for active compounds: ≤ 1nM ,
1nM − 10nM , 10nM − 100nM , 100nM − 1µM , and 1µM − 10µM . If a frag-
ment combination was found in several active compounds with different activity
or potency, it was annotated with multiple activities or potency ranges, respec-
tively.

5.2.2 Fragment Formal Concept Analysis

FragFCA Scale Design

Two types of scales have been designed that reflect compound activity dis-
tribution among the seven GPCR targets. First, global scales were used to
qualitatively compare multiple compound activity classes at different levels of
detail. Second, specific scale types were defined, namely a frequency, activity,
and three potency scales for each activity class. The frequency scale determines
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the number of active compounds that contain a particular fragment combina-
tion. The activity scale distinguishes between fragment combinations that oc-
cur only in active, active and inactive, or only in inactive compounds. Potency
scales differentiate active compounds according to potency ranges. Scales were
designed using the freely available ToscanaJ package.90

Figure 5.3 shows the target hierarchy and global scales utilized to distin-
guish different activity classes and Figure 5.4 shows prototypic specific scales
that were calculated for each activity class.

For the generation of global scales, biological activity has been defined
in an “all or nothing” manner, i. e. through application of a 10µM threshold
level. However, using scales, other criteria can be readily applied. For example,
by combining potency and frequency scales, queries with varying threshold
levels for activity and/or fragment occurrence can be designed. Here FragFCA
has been applied to 267 active compounds, but compound numbers are not a
principal limit of FragFCA.

FragFCA Query Design

The two scale types represent versatile and intuitive tools to build specific and
increasingly complex fragment queries. Global scales enable the comparison of
biological activity profiles at different levels of detail, while specific scales pro-
vide information, for example, about the potency characteristics or frequency
of occurrence of individual fragment combinations. The utility of FragFCA
goes beyond fragment frequency analysis that has been applied in a number
of previous studies36,44,46 and extends fragment signature identification from
individual activity classes to activity and potency profiles.

Combinations of scales define queries that are capable of revealing differ-
ent types of fragment-based relationships between active compounds, as demon-
strated in the following. Due to the presence of overlapping activities and
differences in potency, the GPCR antagonists analyzed in this study present
complicated SARs. For the analysis of these compound sets, four global GPCR
scales were used and, in addition, five specific scales for each of the seven GPCR
targets, resulting in a total number of 39 scales.

A major goal of FragFCA is the identification of molecular fragments
and fragment combinations that are specific for complex compound activity
or potency profiles. These fragment combinations can be used to distinguish
ligands of closely related targets from each other.

Nonredundant Fragment Sets

From each fragment set retrieved by a query, redundant fragment informa-
tion was omitted by removal of fragment combinations that contained selected
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GPCR
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D2 likeD1
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α1
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5-HT1A 5-HT2A D1 D2 like

Figure 5.3: General GPCR scales. The tree structure (top) reflects the hierarchical
organization of global scales based on target families. Each node and its children correspond
to a particular scale (with attributes provided by the children). At the bottom, the different
scales are shown. Parents in the tree and corresponding scales are color-coded.
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Figure 5.4: Specific GPCR scales. Three types of specific scales are defined for each
target. Potency scales account for different potency levels. Frequency scales report the
number of molecules a fragment combination occurs in. Activity scales distinguish between
fragment combinations that are only present in active compounds and fragment combinations
that also occur in inactive molecules.
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signature singletons, pairs, or triplets as subsets. Figure 5.5 illustrates the re-
dundancy filtering of fragment combinations that have been identified as an
activity profile signature by FragFCA.

Reduced 

signature set

FragFCA

signatures

Figure 5.5: Redundancy filtering. Signature fragment combinations identified by
FragFCA are filtered to eliminate redundant information. Signature combinations that con-
tain other combinations are removed from the set.

5.2.3 FragFCA Queries

Fragments Characteristic of Dopamine and α1 Receptor Antagonists

First, fragment distributions in different activity classes have been compared.
As an example, fragment combinations characteristic of dopamine antagonists
were determined. The D1 activity scale was used to extract 41,049 fragment
combinations that occurred in compounds active against D1, but not in inactive
compounds. Figure 5.6 shows that 90% (37,098) of these combinations only
occurred in dopamine receptor antagonists, 3,367 fragment combinations were
shared with serotonin receptor antagonists, but did not occur in α1 ligands, and
584 combinations were shared by 5-HT, D, and α1. As also shown in Figure 5.6,
3,367 and 584 shared fragments were unevenly distributed in serotonin receptor
antagonists; they mostly occurred in 5-HT1A, rather than 5-HT2A antagonists.
In addition, none of the fragment combinations found in α1 ligands also occurred
in 5-HT2A antagonists.

Next, the three fragment subsets were analyzed using the global D2 scale.
Most fragment combinations were found to be D2 specific (Figure 5.6). None
of the fragments shared with serotonin receptor ligands were specific for either
D3 or D4 and the 584 fragment combinations shared among all classes on the
global GPCR scale only occurred in D2, but not D3 or D4 antagonists. This
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Figure 5.6: D1 signature fragment distribution. At the top, the distribution of 41,049
fragment combinations occurring in D1 antagonists among other targets is shown on the
GPCR global scale. Two subsets are selected and projected onto the 5-HT scale and the D2
like scale, respectively. The color-code of the boxes corresponds to each selected subset.
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example demonstrates that global scales allow the assessment of complex frag-
ment combination distributions for several activity classes. Using these scales
to build queries, signature fragments and combinations can be easily identified
and compared. An example is shown in Figure 5.7. The benzimidazol-2-one
fragment in the center is found in both D2 and serotonin receptor antagonists.
However, in combination with each of the surrounding fragments, it is only
present in D2 antagonists.

N
+

Figure 5.7: D1 signature fragment combinations. The boxed benzimidazol-2-one
fragment in the center is found as a singleton in both D2 and serotonin antagonists. By
contrast, the combination with each of the surrounding fragments (yielding pairs) only occurs
in D2 antagonists.

The same type of FragFCA analysis was carried out for α1 antagonists.
In contrast to dopamine receptor antagonists, no α1-specific fragment combina-
tions were found, as shown in Figure 5.8. However, fragments with dual receptor
specificity existed. For example, a subset of 27,777 fragment combinations was
identified that only occurred in α1 and serotonin receptor antagonists and that
could be further reduced to 246 non-redundant combinations. The composition
of this non-redundant set is reported in Figure 5.9. As can be seen, the set is
dominated by fragment pairs (63%).
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Figure 5.8: α1 fragment distribution. The distribution of fragment combinations occur-
ring in α1 antagonists is shown on the global GPCR scale. A subset of fragment combinations
not occurring in dopamine antagonists is selected.
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Figure 5.9: Fragment combinations in α1 and serotonin antagonists. The pie chart
reports the distribution of 246 non-redundant combinations. 76% of all combinations are
pairs or triplets.
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Fragments Distinguishing α1 and D2 from 5-HT Receptor Antago-
nists

Next, more complex fragment relationships were determined. Fragment com-
binations were extracted that were shared by α1 and D2 antagonists, but did
not occur in serotonin receptor antagonists. Therefore, the α1 and D2 activ-
ity scales and the global GPCR scale were applied in a sequential manner. A
total of 42,265 fragment combinations were extracted shared by α1 and D2 an-
tagonists and not present in compounds inactive against these two receptors;
9,265 of these combinations did not occur in serotonin receptor ligands. These
fragments were reduced to a non-redundant set consisting of 98 fragment com-
binations. These fragment combinations correctly retrieved all 18 compounds
from the GPCR set having the corresponding activity profile (i. e. active against
D2 and α1 but not 5-HT). Moreover, all 18 compounds were described by two
fragment pairs covering 12 and 14 compounds, respectively, as shown in Fig-
ure 5.10.

12 compounds

14 compounds

Figure 5.10: Fragment combinations specific for α1 and D2 against 5-HT antago-
nists. The minimal set of fragment combinations describing all desired compounds is shown
at the left. For each fragment pair, the number of identified molecules is reported. On the
right, three representative antagonists are shown that are detected by these fragments.

Fragments Specific for 5-HT1A Receptor Antagonists

A minimal set of fragment combinations that distinguish 5-HT1A from
dopamine and α1 antagonists has been identified. Therefore, the activity scale
specific for 5-HT1A was used and fragment combinations were selected that
did not occur in 5-HT1A inactive compounds. This query was then further
refined using the GPCR global scale. 3,311 combinations from this set were
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shared between serotonin and dopamine antagonists, but were not present in
α1 ligands. Most fragment combinations were shared among all three classes or
were specific for serotonin receptor antagonists (35% each). A total of 37,641
fragment combinations specific for 5-HT1A were selected and reduced to a non-
redundant set of 199 unique fragment combinations. Again, fragment pairs and
triplets constituted the major part (80%) of all specific combinations.

N N

111 (7)

16 (9)

7 (7)

Figure 5.11: Fragment combinations specific for 5-HT1A antagonists. The left pan-
els show three fragment combinations that distinguish all 5-HT1A antagonists from dopamine
and α1 antagonists. The right panel reports the distribution of individual fragments belong-
ing to the second fragment pair (butaldehyde and cationic phenylpiperazine). Reported is
the total number of matched molecules and, in parenthesis, the number of matched 5-HT1A
antagonists.

Figure 5.11 shows the minimal set of fragment combinations that con-
sisted of two fragment pairs and one fragment triplet. This minimal set identi-
fied all nine compounds in the database having the corresponding activity profile
(i. e. active against 5-HT1A, but not dopamine or adrenergic receptors). The
second fragment pair (butaldehyde and cationic phenylpiperazine) described
seven of the nine compounds. This pair was further analyzed with respect to
the selectivity of its individual fragments. As also shown in Figure 5.11, the
individual fragments were not specific for 5-HT1A antagonists. By contrast,
the combination of these two fragments was specific.

Fragments in Potent 5-HT1A and D4 Receptor Antagonists

The 5-HT1A query discussed above was further refined using the 5-HT1A po-
tency scale to initially extract 17,225 fragment combinations occurring in com-
pounds with ≤ 100nM potency. The GPCR antagonist set contained six spe-
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cific 5-HT1A antagonists at this potency level. Then, the 5-HT1A frequency
scale was used to select 3,542 fragment combinations that occurred in all of
these compounds. The non-redundant set contained 32 fragment combinations,
27 of which were pairs or triplets. Thus, adding two scales to the pre-defined
5-HT1A query made it possible to identify fragment combinations that were
specific for a subset of potent 5-HT1A antagonists.

In order to search for signature fragments of highly potent D4 antag-
onists, the D4 potency scale was directly applied to extract 35,593 fragment
combinations occurring only in D4 antagonists with ≤ 100nM potency. The
query was further refined using a D4 high potency scale that selected 588 combi-
nations specific for the highest potency range (≤ 1nM), as shown in Figure 5.12.
The reduced set consisted of nine fragment combinations that identified four of
six D4 antagonists with ≤ 1nM potency present in the database, and detected
no other compounds.

≤100 nM >100 nM

35593 189306

6565

≤1 nM 1 – 10 nM 10 – 100 nM

23282 7400

4095

143

85

588

Figure 5.12: Fragment combinations specific for highly potent D4 antagonists.
Specific D4 potency scales are combined in order to extract 596 fragment combinations that
occur in highly potent D4 antagonists.
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5.2.4 Query Summary and Concluding Remarks

The results for all GPCR selectivity queries are summarized in Table 5.2.
FragFCA signature sets identified all relevant GPCR ligands in three of four
cases, and four of six relevant ligands for the last, most complex, query. No
other ligands were mapped by the identified fragment combinations.

Query Signatures Cmpds. Recovered cmpds.

α1 and D2 vs 5-HT 98 18 18
5-HT1A vs D and α1 199 9 9
Potent selective 5-HT1A 32 6 6
Potent selective D4 9 6 4

Table 5.2: FragFCA GPCR queries. For each selectivity query, the number of reduced
fragment combinations (“Signatures”), the total number of available selective compounds
(“Cmpds.”), and the number of compounds correctly identified by the query (“Recovered
cmpds.”) are reported.

The application of FragFCA to the GPCR ligand set has shown that
FragFCA is capable of extracting signature fragment combinations that are
highly descriptive of complex SARs including potency information. The dis-
tribution of fragment combinations among ligands with overlapping activities
is visualized in concept lattices that represent defined scales, which focus on
individual activity classes or potency ranges. Scales are combined in order to
design fragment queries of increasing complexity and provide signature frag-
ment combinations that retrieve compounds with the desired activity and/or
potency profile.

Moreover, combinations of two or three fragments are most relevant for
distinguishing between different activity profiles or compound potency levels,
rather than single fragments or quadruplets. The results demonstrate that
FragFCA provides an easy and systematic access to structural signatures of
complex profiles in activity space that exploit structural information encoded
in feature combinations, rather than individual fragments.
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5.3 FragFCA Classifier

The predictive power of FragFCA signatures has also been evaluated. There-
fore, eight supersets have been assembled consisting of two to four closely re-
lated activity classes from the MDDR. Here, the FragFCA approach is extended
by designing queries for selectivity analysis within supersets of closely related
targets in a systematic manner. It is demonstrated that fragment signatures
resulting from these queries can be successfully applied for compound classifi-
cation and virtual screening of external data sets.

5.3.1 Data Sets and Fragment Generation

A total of 24 different activity classes were assembled from the MDDR contain-
ing between 65 and 1,994 agonists, antagonists, or inhibitors. These activity
classes were grouped into eight supersets of compounds active against one of
two to four closely related targets. In addition to the MDDR sets, two su-
persets that shared no compounds with the MDDR sets were assembled from
BindingDB. The composition of MDDR and BindingDB supersets is reported
in Table B.5.

The hierarchical fragmentation scheme described in Section 5.2.1 has
been applied to each MDDR compound superset. Fragments containing be-
tween four and 12 heavy atoms were sampled that occurred more than once
in a superset fragment population. Table B.5 reports the size of the resulting
fragment library for each superset, ranging from 40 to 676 fragments.

5.3.2 Scale and Query Design

Scales and queries have been designed for each superset that correspond to
general scales described in Section 5.2.2. For supersets containing two or three
targets, single scales were utilized. For supersets containing four targets, three
scales were defined. Thus, taken together, a total of 12 scales were used in order
to identify signature fragment combinations for 24 activity classes.

Each activity class was 10 times randomly divided into a reference and
a test set. Reference sets contained one third of the activity class, but maxi-
mally 50 compounds. For all reference compounds, combinations of up to three
fragments were enumerated from their fingerprint representations based on the
corresponding superset fragment library. Using FragFCA, fragment combina-
tions were isolated for each activity class that only occurred in its reference
compounds but no other activity classes belonging to the superset. This sys-
tematic scale and query design has been implemented in MOE.

FragFCA queries consistently identified significant numbers of signature
fragment combinations for all 24 activity classes in eight supersets. Average
numbers of fragment combinations per class ranged from 28 for adenosine A2
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agonists to 13,161 combinations for thrombin inhibitors, as reported in Ta-
ble B.5.

5.3.3 Compound Classification

Sets of activity class-specific fragment combinations were utilized to establish
ligand-target relationships by mapping them onto test set compounds. For a
successful match, all fragments of a signature combination had to be present
in a test compound. Given the fragment combination set of an activity class,
the relative frequency of successfully mapped fragment combinations yields a
fragment score in the interval [0, 1] for each test set compound.

The FragFCA classifier introduced here utilizes signature sets to predict
the activity class of database molecules with activity against the target family.
A test compound is assigned to the activity class for which it produces the
largest fragment score. Protocols for compound classification calculations were
implemented in Pipeline Pilot.

The identified signature fragment combinations were applied to classify
test compounds taken from each superset. For seven of eight supersets, on av-
erage more than 95% of test compounds were successfully matched by signature
fragment combinations. Moreover, ∼ 40% of the test compounds only matched
fragment combinations of a single class, thus demonstrating the high specificity
of fragment combinations identified using FragFCA. Only for one superset,
Adenosine, fewer test compounds, ∼ 50%, were matched. Table B.6 reports
detailed compound classification results and Figure 5.13 shows the distribution
of correctly classified, incorrectly classified, and unclassified test compounds for
each superset. On average, more than 75% of matched test compounds were
correctly classified for all supersets.

The results for the Adenosine superset illustrate that the presence of
only a limited number of mapped combinations did not negatively affect classi-
fication accuracy because 80% of the mapped compounds in this superset were
correctly classified. Furthermore, the number of correctly classified compounds
that matched fragment combinations of only a single activity class was analyzed
(Table B.6). More than 90% of single class matches were found to represent cor-
rect predictions, which further illustrates the high degree of specificity of the
structural information captured by fragment combinations. Taken together,
these findings show that FragFCA consistently identified signature fragment
combinations that successfully discriminated between compounds with closely
related biological activities.

To complement benchmark calculations on the MDDR compound su-
persets, signature fragment combinations derived for MDDR phosphodiesterase
and serine protease inhibitors were also utilized to map non-overlapping cor-
responding supersets assembled from BindingDB (see Table B.5). For these
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Figure 5.13: FragFCA classification results. Pie charts show the fraction of correctly
classified (green), incorrectly classified (red) and not mapped (grey) compounds for each
superset. In addition to the MDDR supersets, results for the two BindingDB sets are shown.

external test compounds, no fragments were derived. As shown in Figure 5.13,
comparable prediction accuracy was achieved for BindingDB molecules when
MDDR-derived fragment combinations were mapped. On average, 56% of the
available phosphodiesterase inhibitors and 69% of serine protease inhibitors
were correctly classified.



82 Chapter 5. Fragment Formal Concept Analysis

5.3.4 Similarity Searching

In order to evaluate the utility of fragment signature sets for similarity search-
ing, the MDDR test sets were added to a randomly selected ZINC background
of 100,000 molecules and fragment mapping of the resulting database was car-
ried out. In a first step, database compounds matching only a single signature
set were selected. The selected compounds were then ranked according to their
fragment score, i. e. the relative number of fragment combinations that matched
the compound. For the ranked database compounds, “Area Under the Receiver
Operating Characteristic Curve” (ROCAUC) calculations were carried out to
monitor compound recall. A ROC curve is constructed by plotting the true pos-
itive rate against the false positive rate for increasing selection set size. ROC
curves illustrate the recall performance of a classifier. Figure 5.14 shows three
exemplary ROC curves for supersets Opioid, Dopamine, and MAO.
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Figure 5.14: FragFCA classification ROC curves. Three representative ROC curves
are shown for supersets Opioid, Dopamine, and MAO. The dashed grey line represents random
selection of active compounds.

The area under the curve is a convenient parameter that summarizes
the curve properties. It can be interpreted as the probability that a randomly
chosen active is ranked higher than a randomly chosen inactive compound.91 A
ROCAUC of 1 indicates perfect recall of actives (i. e. no false positives), whereas
a score of 0.5 corresponds to random selection. As reported in Table 5.3, up to
30% of the ZINC compounds did not match any signature combination. Com-
pounds matching a single class were ranked according to their fragment score,
which produced significant enrichment of active compounds for six of eight su-
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persets, with ROCAUC values ¿ 0.8. These results showed that FragFCA signa-
tures in combination with class-directed compound ranking were also effective
in database searching for active compounds.

Superset ROCAUC Single score Unclassified
Opioid 0.90 33.87 17.94
Serine Proteases 0.88 20.76 8.12
Dopamine 0.87 23.06 8.59
Adrenergic 0.84 36.01 17.80
Serotonin 0.84 22.53 10.28
PDE 0.82 21.96 6.55
MAO 0.77 58.27 28.54
Adenosine 0.59 48.21 31.54

Table 5.3: Similarity searching using FragFCA classifier. “ROCAUC” reports the
Area Under the Receiver Operating Characteristic Curve. “Single score” reports the percent-
age of the screening database compounds that were only matched by fragments from a single
activity class and “Unclassified” the percentage of screening database compounds that were
not matched by any signature set.
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5.4 Summary

In this chapter, FragFCA has been introduced for the analysis of complex SARs
and extraction of signature fragment combinations for defined activity pro-
files. It has been shown that pairs and triplets of hierarchically generated frag-
ments are capable of distinguishing ligands selective for one of several closely
related targets. Using knowledge-based scale design reflecting target hierar-
chies, FragFCA allows the definition of flexible queries of increasing complexity
and identifies discriminative fragment combinations.

Moreover, systematic analysis of the predictive ability of FragFCA signa-
tures reveals that compounds selective for one of several closely related targets
can be successfully distinguished using these signatures. Application to simi-
larity searching has shown that FragFCA signatures can also be used to find
active and selective compounds in a large database.

FragFCA thus links activity and chemical space by identifying struc-
tural feature combinations characteristic of defined activity profiles. FragFCA
directly associates molecular fragments and their co-occurrence patterns with
biological activity of ligands. The results presented in this chapter confirm that
structural patterns captured by fragment combinations can serve as signatures
for activity classes and distinguish between complex activity profiles.



Chapter 6

Molecular Formal Concept
Analysis for Systematic
Exploration of Activity Space

This chapter extends the FCA-based analysis of activity and potency profiles to
compound selectivity. First, it is briefly discussed how compound selectivity can
be defined and assessed using computational methods. Then, Molecular Formal
Concept Analysis (MolFCA) is introduced for systematic mining of activity
space. Different from FragFCA, MolFCA focuses on complete molecules and
extracts diverse compound sets that share a defined selectivity profile. These
compound sets can then be further analyzed to explore structure-selectivity
relationships (SSRs).

6.1 Compound Selectivity

In chemogenomics, ligand affinity profiles are often generated using biological
screens that test ligands across a range of different targets. The availability of
such profiles makes it possible to study SSRs that explicitly take into account a
ligand’s affinity towards multiple targets.10 Going beyond ligand activity anal-
ysis and prediction, recent studies have begun to assess ligand selectivity by
computational means.30,92–97

In order to define ligand selectivity, potency values measured against
multiple targets must be systematically compared and selectivity threshold ra-
tios defined.10,96 In particular, for closely related targets, ligand binding is often
not an “all or nothing” event; rather, active small molecules bind with differ-
ent potency against related targets and thereby potency differences essentially
determine target selectivity. Therefore, potency ratios for each pair of targets
are calculated, which provides a measure of compound selectivity.

Computational approaches have recently been developed that address
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the issue of target selectivity on the basis of binary potency relationships.94–97

For example, virtual selectivity searching has been introduced to identify com-
pounds that are selective for one particular target over another.96 However,
computational methods for the exploration of more complex selectivity profiles
involving more than two targets have thus far not been available.

6.2 Molecular Formal Concept Analysis

In this section, MolFCA is introduced for the mining of selectivity profiles in
biologically annotated compound databases. MolFCA utilizes selectivity anno-
tations as attributes that are derived from compound potency values against
targets of interest. Objects in MolFCA are individual compounds. Importantly,
MolFCA exclusively uses selectivity profiles as a molecular representation, but
no structural descriptors or similarity measures. This makes it possible to
identify structurally distinct compounds sharing a desired selectivity profile,
without structural bias towards reference molecules.

6.2.1 Compound Selectivity Annotation

Compound selectivity was calculated on a target-pair basis. Given a compound
with reported potencies against targets A and B, three selectivity categories
were defined: (1) if compound potency for A was ≥50-fold higher than for B, the
compound was considered selective for A over B (e. g. A: 1nM , B: 70nM); (2)
if compound potency for B was ≥50-fold higher than for A, the compound was
defined as selective for B over A (e. g. A: 70nM , B: 1nM); (3) if the compound
potency ratio for target A and B was ≤10, the compound was considered non-
selective (e. g. A: 1nM , B: 7nM). Different thresholds for selectivity (≥50-fold)
and non-selectivity (≤10-fold) were applied in order to avoid boundary effects.
Thus, compounds could be reliably classified as selective or non-selective despite
possible fluctuations in potency measurements.

6.2.2 MolFCA Scale Design

In MolFCA, two types of scales are utilized. Selectivity scales distinguish be-
tween selective, “inverse selective”, and non-selective compounds for a target
pair. For capturing selectivity relationships, the type of scale depicted in Fig-
ure 6.1 was applied throughout the analysis. These scales assess compound se-
lectivity independently of a specific compound potency range. Only compounds
with potencies reported against both targets are considered for selectivity an-
notation. Compounds with no defined selectivity are assigned to the topmost
node in MolFCA selectivity scales, which is not used in query definitions.
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Figure 6.1: MolFCA scales. The top panel shows a prototypic selectivity scale that
discriminates between two targets A and B. The lower panel depicts a prototypic potency
scale. The numbers correspond to pKi values.
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Potency scales have been designed to report the distribution of com-
pounds among nine potency bins ranging from 100µM to 10pM . Each range
contains compounds within one log unit (pKi), e. g. compounds having a po-
tency value falling into the sub-range 10nM - 100nM . A prototypic potency
scale is shown in Figure 6.1. Potency scales complement selectivity scales be-
cause selectivity is assessed based on potency ratios, rather than specific po-
tency ranges. Hence, two compounds might share the same selectivity profile,
but differ in potency. Thus, the design of the two scale types is optimized for
selectivity queries that combine different scales.

6.2.3 MolFCA Queries

The central feature of MolFCA is the combination of different selectivity and
potency scales for the definition of increasingly complex queries that yield com-
pounds with specific selectivity and potency profiles. The selectivity scale de-
sign renders queries and their information content highly variable. For example,
selectivity scales can be combined to identify non-selective compounds, as il-
lustrated in Figure 6.2 on page 90. In this example, three scales are combined
into a query that yields 22 histone deacetylase (HDAC) inhibitors that have
comparable potency against three histone deacetylases (HDAC1, HDAC3, and
HDAC6). The total number of compounds reported in the second scale corre-
sponds to the number of compounds selected on the first one and the number
of compounds reported in the third scale to the number of compounds selected
on the second one. Thus, pre-selected compounds are sequentially transferred
from scale to scale, similar to fragment combinations in FragFCA.

MolFCA has been implemented in MOE. The implementation enables
the definition of scales, interactive survey of compound databases using these
scales, generation of concept lattice representations, and storage of queries.
This permits re-querying of updated compound databases without the need to
re-assemble individual queries.

Selectivity Profile Mining

MolFCA has been applied to the BindingDB database in order to identify in-
hibitors with defined selectivity profiles. BindingDB is suitable for this analysis
because it contains compound potency annotations (in form of Ki or IC50 val-
ues) for targets grouped into different target families. In order to obtain single
potency values for each compound, multiple potency annotations for human
targets, if available, were combined using the geometric mean of provided po-
tency values.

MolFCA queries were generated in order to find inhibitors with defined
selectivity profiles directed against one of the following four target families: his-
tone deacetylases, phosphodiesterases, inosine monophosphate dehydrogenases,
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and caspases. Table 6.1 reports individual targets for each family.

Target family Scales BindingDB targets

Histone deacetylase 3
Histone Deacetylase 1 (HDAC1)
Histone Deacetylase 3 (HDAC3)
Histone Deacetylase 5 (HDAC6)

Phosphodiesterase 6

Phosphodiesterase Type 4 (PDE4B)
Phosphodiesterase Type 4 (PDE4D)

Phosphodiesterase Type 10 (PDE10A)
Phosphodiesterase Type 11 (PDE11A)
Phosphodiesterase Type 1 (PDE1B)
Phosphodiesterase Type 2 (PDE2A)
Phosphodiesterase Type 3 (PDE3B)

Dehydrogenase 3 Inosine Monophosphate Dehydrogenase Type 1 (IMPDH1)
Inosine Monophosphate Dehydrogenase Type 2 (IMPDH2)

Caspase 3
Caspase-3
Caspase-7
Caspase-8

Table 6.1: Target families and MolFCA queries. Reported are the four target families
studied using five MolFCA queries. “Scales” reports the number of individual scales used
to design each query. Names of individual targets reported in BindingDB are given under
“BindingDB targets”.

Utilizing reference compounds taken from BindingDB or literature
sources, MolFCA has been applied to search for BindingDB compounds with
corresponding selectivity profiles. Furthermore, specific MolFCA queries were
relaxed by omitting or softening individual selectivity constraints in order
to identify additional compounds with defined deviations from the reference
profile. The reference compounds included: suberoylanilide hydroxamic acid
(SAHA, marketed as Vorinostat, brand name Zolinza), a histone deacetylase in-
hibitor approved for the treatment of cutaneous T-cell lymphoma;98 SB 207499
(Cilomilast, brand name Ariflo), a selective phosphodiesterase type 4 (PDE4)
inhibitor used for the treatment of asthma and chronic obstructive pulmonary
disease;99 mycophenolic acid (MPA, brand name Myfortic), a reversible, non-
competitive inosine monophosphate dehydrogenase (IMPDH) inhibitor used as
an immunosuppressant to prevent transplant rejection;100 and IDN 6556, a
pan-caspase inhibitor that is used as an apoptosis (i. e. programmed cell death)
inhibitor to prevent liver tissue damage during liver transplantation.101

The application of MolFCA to search for inhibitors of the four different
target families in the BindingDB using reference selectivity profiles of individual
reference compounds is described in the following. Table B.7 in Appendix B
summarizes all queries.
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Selectivity Profile Mining - Vorinostat

The selectivity profile of Vorinostat was derived from BindingDB potency data
against histone deacetylases HDAC1 (93nM), HDAC3 (52nM), and HDAC6
(43nM). Thus, according to the MolFCA selectivity classification, this com-
pound was non-selective for each target pair, i. e. HDAC1 vs.HDAC3, HDAC1
vs.HDAC6, and HDAC3 vs.HDAC6. In order to mine the database for com-
pounds matching this selectivity profile, three selectivity scales have been com-
bined (i. e. one scale for each pair). Figure 6.2 illustrates this query.

HDAC3 HDAC6

1

32

99

HDAC1 HDAC3

30

2

HDAC1 HDAC6

22

1

7

Figure 6.2: Vorinostat selectivity profile query. Three selectivity scales are combined
in order to select compounds (colored nodes) active with comparable potency against HDAC1,
HDAC3 and HDAC6. Seven compounds with undefined selectivity are removed by the last
scale and also one compound selective for HDAC6 over HDAC1.

Only one possible arrangement of scales is shown for clarity. However, in
query design, scales can be combined in an arbitrary order. On the first scale, 32
compounds non-selective for targets HDAC3 and HDAC6 were extracted. These
compounds were then projected onto the second scale. For two compounds,
the selectivity profile for these two targets was not defined. The remaining 30
compounds were transferred to the third scale and the final set of 22 compounds
(including Vorinostat) was selected from the bottom node. Thus, 21 additional
compounds matching the selectivity profile of Vorinostat were identified. Nine
of these compounds belonged to the triazole structural class and eight other
compounds were thiophene derivatives. The remaining four compounds were
structurally distinct and included LAQ-824, CRA-024781, PXD101, and a 4-
phenylimidazole derivative.

Figure 6.3 shows Vorinostat, a representative triazole ligand, a thio-
phene derivative, and the four additional inhibitors. Strikingly, the thiophene
derivatives and the 4-phenylimidazole derivative lack the hydroxamic acid group
that is a hallmark of Vorinostat and other HDAC inhibitors. Nevertheless, the
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most potent thiophene derivative is comparable to Vorinostat (i. e. HDAC1:
210nM , HDAC3: 120nM , and HDAC6: 240nM). This example illustrates
that MolFCA is capable of identifying structurally distinct compounds with
corresponding selectivity profiles.
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Figure 6.3: Compounds matching the Vorinostat profile. The reference compound
Vorinostat (A, green) is shown together with two representative thiophene derivatives and
two triazole ligands. Four additional compounds not belonging to these structural classes are
also shown. A: Vorinostat; B: thiophene derivative, 3b; C: PXD101; D: 4-phenylimidazole,
17; E: LAQ-824; F: CRA-024781; G: Triazole Ligand, 10a.
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In order to find other compounds that only partly matched the Vorinos-
tat selectivity profile, the HDAC query was relaxed by systematically modifying
the selectivity category on each scale or by removing an individual scale, leading
to the identification of three additional compounds. First, Apicidin, a cyclic
peptide antibiotic acting through protozoal HDAC inhibition and also inhibiting
tumor proliferation102 was found to be non-selective for HDAC1 over HDAC3,
but selective for these two targets over HDAC6. Second, an additional triazole
ligand was identified as selective for HDAC6 over HDAC1, but non-selective
for the target pairs HDAC1/HDAC3 and HDAC6/HDAC3 (HDAC1: 97.8nM ,
HDAC3: 13.7nM , HDAC6: 1.9nM). Third, another thiophene derivative was
also found to be selective for HDAC6 over HDAC1 (HDAC1: 9.7µM , HDAC6:
15nM) and identified by omitting HDAC3 from the query (potency data for
HDAC3 was not available for this compound). Figure 6.4 shows these three
compounds and structurally similar molecules that were identified to match the
Vorinostat profile. It is evident that only subtle structural deviations between
these compounds altered their selectivity profiles. Thus, compounds identified
with original and relaxed MolFCA queries were structurally similar but had
different selectivity profiles. Because MolFCA does not utilize structural repre-
sentations as input, any structurally similar or diverse subset of molecules can
be identified.
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Figure 6.4: Compounds deviating from the Vorinostat profile. Three compounds
are shown that deviate from the Vorinostat profile. For the thiophene derivative and the
triazole ligand, structurally highly similar compounds that match the Vorinostat profile are
also displayed. Structural differences between each pair of similar compounds with distinct
selectivity profiles are highlighted in red. A: Apicidin (HDAC3 / HDAC6; HDAC1 / HDAC6);
B: thiophene derivative, 3h (Vorinostat profile); C: thiophene derivative, 15h (HDAC6 /
HDAC1); D: Triazole Ligand, 6b (HDAC6 / HDAC1); E: Triazole Ligand, 10b (Vorinostat
profile).
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Cilomilast

As a second profile mining application, Cilomilast has been chosen as a tem-
plate, a potent and selective PDE4 inhibitor used for the treatment of respi-
ratory disorders.99 Based on BindingDB potency data provided for Cilomilast
(PDE4B: 25nM , PDE4D: 11nM , PDE1B: 87µM , PDE2A: 160µM , PDE3B:
87µM , PDE10A: 73µM , and PDE11A: 21µM) a selectivity query combining
six selectivity scales was assembled. Figure 6.5 depicts the query. Compounds
non-selective for PDE4B and PDE4D were selected on the first scale. The
subsequent scales assessed the selectivity of these compounds for PDE4B over
the other targets. This query yielded one additional compound, Piclamilast,
which shared the Cilomilast selectivity profile but was overall more potent
(i. e. PDE4B: 41pM , PDE4D: 21pM , PDE1B: 68µM , PDE2A: 54µM , PDE3B:
11µM , PDE10A: 21µM , PDE11A: 1.6µM) and is shown in Figure 6.6.

In order to identify additional compounds that only partly matched the
Cilomilast profile, individual scales for PDE4B selectivity over the other related
targets were assessed. Three additional compounds were found that that were
non-selective for PDE4B and PDE4D, but selective for PDE4B over PDE11A
including Zardaverine (PDE4B: 930nM , PDE4D: 390nM , PDE11A: 140µM),
Filaminast (PDE4B: 960nM , PDE4D: 1µM , PDE11A: 57µM), and Roflumilast
(PDE4B: 840pM , PDE4D: 680pM , PDE11A: 25µM). All of these compounds
are currently also evaluated or used as bronchodilatory agents to treat respira-
tory disorders.103–105 Furthermore, two other compounds were found that were
non-selective for PDE4B and PDE4D, but selective for PDE4B over PDE10A
including Mesopram (PDE4B: 420nM , PDE4D: 1.1µM , PDE10A: 63µM) and
Rolipram (PDE4B: 915nM , PDE4D: 1.1µM , PDE 10A: 140µM). Different
from the inhibitors discussed above, Mesopram is evaluated for the treatment
of multiple sclerosis106 and Rolipram for the treatment of depression,107 but also
has immunosuppressive properties.108 Figure 6.6 shows these five compounds.
Thus, through relaxation of a complex PDE4 selectivity query, compounds with
related yet distinct selectivity profiles having in part different therapeutic indi-
cations were identified.
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Figure 6.5: Cilomilast query. Six selectivity scales used to define the Cilomilast query
are shown. Colored nodes represent subsets selected on each scale. Each subset is projected
onto the next scale, indicated by colored boxes.
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Figure 6.6: Compounds (partly) matching the Cilomilast profile. The reference
compound Cilomilast (A, green) is shown together with Piclamilast that was identified by
MolFCA. Compounds C-E partly match the Cilomilast query and are also used to treat
respiratory disorders. Compounds E and F partly match the query and are currently eval-
uated for the treatment of neurodegenerative disorders. A: Cilomilast; B: Piclamilast; C:
Filaminast; D: Zardaverine; E: Roflumilast; F: (R,S)-Mesopram; G: Rolipram.
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Mining for Highly Potent Inhibitors - Mycophenolic Acid

Mycophenolic acid (MPA) inhibits IMPDH1 and IMPDH2 in a non-selective
manner with high potency values of 33nM and 11nM , respectively. In order
to identify other potent (i. e.≤ 100nM) IMPDH inhibitors, a MolFCA query
consisting of one selectivity and two potency scales has been designed. A selec-
tivity scale was applied to select a total of 13 inhibitors that were non-selective
against IMPDH1 and IMPDH2. These compounds were then transferred to the
IMPDH1 potency scale. Eleven of these 13 compounds (including MPA) were
found to fall into the desired IMPDH1 potency range. These eleven inhibitors
were then projected onto the IMPDH2 potency scale. Six of these compounds
fell into the desired IMPDH2 potency range.

The 12 additional inhibitors belong to two structural classes, nine tia-
zofurin adenine dinucleotide (TAD) analogues and three mycophenolic adenine
dinucleotide (MAD) analogues, shown in Figure 6.7. In addition to MPA, the
six highly potent inhibitors included four TAD analogues and one MAD ana-
logue.

De novo Selectivity Profiles - IDN 6556

The caspase inhibitor IDN 6556 was taken from the literature,101 but was not
available in BindingDB. This compound prevents apoptosis in liver transplants
and has been indicated to act as a pan-caspase inhibitor by inhibiting both ini-
tiator and effector caspases.101 In order to find potential pan-caspase inhibitors
in BindingDB, a selectivity query for pan-caspase inhibitors shown in Figure 6.8
was built. This query was designed to identify caspase inhibitors with compara-
ble potency against caspase 3, 7 and 8. Caspase 8 is an initiator caspase, i. e. it
activates downstream caspases by cleavage, whereas the other two caspases are
effector caspases, which induce apoptosis by chromatin fragmentation.109

Because MolFCA scales utilize two selectivity thresholds, it was possible
to design the query, although no exact potency information was provided for the
compound. The query identified nine compounds representing five chemotypes,
all of which were distinct from IDN 6556 (Figure 6.9). Seven of these nine
compounds had potency values in the range of 10nM to 500nM . The two
remaining compounds represented a weakly active chemotype with potency
values of 40µM and 4µM . This example illustrates that effective MolFCA
queries can also be defined in the absence of suitable reference compounds
exclusively on the basis of selectivity criteria.
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Figure 6.7: Compounds matching the MPA profile. The reference compound MPA is
shown together with the core structures of the 12 additional non-selective IMPDH inhibitors.
The R-group of each inhibitor is shown in the boxes on the right and R-groups of the five
highly potent compounds selected using potency scales are colored red. A: MPA; B: Tiazofu-
rin Adenine Dinucleotide (TAD) Analogues; C: Mycophenolic Adenine Dinucleotide (MAD)
Analogues.
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Figure 6.8: De novo MolFCA query design. Three selectivity scales are combined in
order to select nine compounds with comparable activity against caspases 3, 7, and 8. Col-
ored nodes represent compound subsets, which are projected onto subsequent scales (colored
boxes).
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Figure 6.9: Compounds matching the de novo MolFCA query. IDN 6556 (A, green),
a literature compound with indicated pan-caspase inhibitory activity is shown together with
four structurally diverse compounds with high to medium potency that match a MolFCA
query for pan-caspase inhibitors. A: IDN 6556; B: Ac-DEVD CHO; C: Inhibitor 3; D: valine
aspartyl ketone 35; E: Isoquinoline-1,3,4-trione 9k.
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6.3 Summary

In this chapter, MolFCA has been introduced for the systematic mining of
complex selectivity and potency profiles. Going beyond the analysis of fragment
distribution among active compounds, MolFCA focuses on the analysis of target
selectivity on a whole-molecule basis. MolFCA queries were designed to identify
compounds that shared defined selectivity profiles with reference molecules.
The selectivity queries consisted of up to six MolFCA scales and involved up
to seven targets.

MolFCA identified structurally diverse compounds matching each selec-
tivity profile. The indentified compounds represented in part very different
structure-selectivity relationships. The findings demonstrate that MolFCA is
capable of detecting sets of compounds that are active against target families
with different selectivity. Diverse compound sets identified by MolFCA can be
used to analyze SSRs and relate structural features to molecular selectivity.

This kind of SSR analysis has not been possible so far, because no
generally applicable framework for the definition of selectivity profiles existed.
MolFCA provides a basis for the assembly of intuitive and flexible compound
queries. A query can be easily extended to an arbitrary number of targets by in-
corporating the selectivity and potency scales introduced here. Thus, MolFCA
represents a flexible, but well-defined framework for the mining of complex
selectivity profiles.





Chapter 7

Summary and Conclusions

In this thesis, methods have been presented that provide a link between chemical
and biological activity space.

Approaches have been introduced

Core

Peripheral

Core Trees distinguish 

between core and peripheral 

regions of active compounds. 

to abstract from the chemical struc-
ture of individual ligands through the
use of fragment-type structural descrip-
tors in an activity class-directed man-
ner. Furthermore, the annotation of
fragments with biological activity infor-
mation was studied. First, an activ-
ity class-directed hierarchical fragmenta-
tion approach has been presented. The
fragments were organized in Core Trees
that represent active compounds in form
of fragmentation pathways. Core paths
correspond to structurally conserved re-
gions within individual activity classes
and can be aligned using sequence align-
ment methods. Multiple core path align-
ments yield Consensus Fragment Se-
quences that serve as an activity class signature.

Then, the Topological Fragment Index (ToFI) has been introduced for
the assessment of the topological environment of substructures in active com-
pounds. ToFI values distinguish between different topological environments and
thus extend fragment counts. RECAP fragments were organized in hierarchies
based on ToFI value distributions in compounds with biological activity against
multiple, closely related targets. Fragment relationships in these hierarchies al-
lowed the identification of Activity Class Characteristic RECAP Fragments and
revealed activity class-specific fragment topology clusters.
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features extracted from three differ-
ent molecule fingerprint representations
was analyzed. Therefore, Feature Co-
occurrence Networks have been introduced
that enable the identification of feature
cliques characteristic of individual activity
classes. A similarity search protocol has
been established that utilizes these cliques
in order to rank database compounds. It
has been found that generic structural
features can form combinations that are
activity class-specific.
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Fragment Formal Concept Analysis has been introduced in order to an-
alyze the distribution of defined fragment combinations in compounds active
against closely related targets. Again, fragment combinations, rather than in-
dividual fragments best distinguished between compounds with closely related
biological activity profiles. Furthermore, it has been shown that signature
fragment combinations were predictive in compound classification and virtual
screening for active and selective compounds.

FragFCA scales are combined in order to extract 

signature fragment combinations.
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Molecular Formal Concept Analysis (MolFCA) has been introduced for
mining of complex selectivity relationships in biologically annotated databases.
MolFCA identified structurally diverse compounds that matched selectivity pro-
files of drug-like reference molecules. Structure-selectivity relationships of these
compound sets can be further analyzed. Thus, MolFCA allows the flexible de-
sign and exploration of complex selectivity queries for multiple targets.

MolFCA queries yield structurally diverse 

compounds having a defined selectivity profile.

HDAC1 HDAC6

22
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106 Chapter 7. Summary and Conclusions

In summary, fragment-type descriptors of molecular structure are capa-
ble of integrating activity and chemical space. Activity class-relevant informa-
tion is predominantly encoded in fragment combinations, rather than individual
fragments. Two adaptations of formal concept analysis have been introduced
that allow compound data mining at the level of fragments or molecules in order
to elucidate structure-activity and structure-selectivity relationships.



Appendix A

Software and Databases

Software and databases used in this thesis are listed in alphabetical order.

ACCS-FP Life Science Informatics, University of Bonn (Germany)

Description: Activity Class Characteristic Substructures Fingerprints are ac-
tivity class-directed, small key-typed fingeprints.

Reference: Batista et al.48

BindingDB

Description: BindingDB is a public, web-accessible database of measured
binding affinities, mainly focusing on the interactions of proteins
considered to be drug targets with small, drug-like molecules.

Reference: BindingDB110–113

WebSite: http://www.bindingdb.org/bind/index.jsp

MACCS Symyx Software: San Ramon, CA (USA)

Description: MACCS structural keys represent a 2D fingerprint that consists
of 166 structural features.

Reference: MACCS63

WebSite: http://www.symyx.com
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MDDR Symyx Software: San Ramon, CA (USA)

Description: MDL Drug Data Report (MDDR) is a database containing ap-
prox. 160,000 biologically active compounds with target and/or
therapeutic annotations.

WebSite: http://www.symyx.com/

MOE Chemical Computing Group Inc.: Montreal, QC (Canada)

Description: The Molecular Operating Environment (MOE) provides appli-
cations for the calculation of property descriptors and several
fingerprint formats including MACCS.

WebSite: http://www.chemcomp.com

Perl Larry Wall

Description: Perl is a freely available programming language.

WebSite: http://www.activestate.com/activeperl/

Pipeline Pilot Accelrys Software Inc.: San Diego, CA (USA)

Description: SciTegic Pipeline Pilot allows the creation of workflows
for chemoinformatics analyses and the calculation of ECFP
fingerprints.

WebSite: http://www.chemcomp.com

ToscanaJ DSTC, the University of Queensland, and the Technical Uni-
versity of Darmstadt

Description: ToscanaJ is a freely available viewer / browser for concept
lattices.

Reference: ToscanaJ90

WebSite: http://toscanaj.sourceforge.net/index.html
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Tulip 3.0.1 InfoViz, David Auber

Description: Tulip is a freely available graph visualization software package.

Reference: Tulip84

WebSite: http://www.labri.fr/perso/auber/projects/tulip/news.php

ZINC UCSF University of California: San Francisco, CA (USA)

Description: ZINC (ZINC Is Not Commercial) is a public-domain database
of commercially available compounds in predicted 3D conforma-
tional states.

Reference: Irwin et al.114

WebSite: http://blaster.docking.org/zinc





Appendix B

Additional Data

B.1 Feature Co-occurrence Networks

Figure B.1 shows box plots of clique numbers and Figure B.2 clique size distri-
butions.
Table B.1 reports median clique numbers and Table B.2 clique size distribution
for different co-occurrence thresholds.
Table B.3 reports median values of database compounds matching FCoN feature
cliques for different co-occurrence thresholds.
Table B.4 provides recovery rates of active test compounds for different co-
occurrence thresholds and pooled sets.
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Figure B.1: Clique number distribution. Box plots report the distribution of clique
numbers for each activity class calculated from ten independent trials. Thick bars mark
median values.
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Figure B.2: Clique size distribution. Box plots report the distribution of clique sizes
for each activity class. Thick bars mark median values.
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Activity Class ν = 0.5 ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9 ν = 1.0 Pooled
MACCS

AA2 62 46 36 29 23 20 156
BK2 70 52 45 33 19 18 184
CAL 52 44 33 25 19 20 133
DD1 40 29 25 23 18 16 109
F7I 103 66 50 40 25 22 248

GLG 129 91 58 38 24 19 312
GLY 49 36 30 22 17 13 138
KRA 52 36 28 25 18 19 141
LAC 66 46 32 30 22 18 184
SQE 89 55 44 34 22 20 224
SQS 64 58 58 46 26 12 239
THI 120 75 43 27 15 12 243
ULD 93 65 46 34 20 19 245
XAN 38 33 35 24 21 18 123

ECFP4
AA2 57 46 40 36 35 34 136
BK2 182 199 158 88 62 56 715
CAL 58 64 63 55 55 47 201
DD1 81 75 59 46 41 40 229
F7I 178 95 61 49 41 40 346

GLG 144 108 70 65 55 50 325
GLY 158 112 80 75 63 58 350
KRA 57 54 44 36 29 29 154
LAC 105 81 60 46 38 36 275
SQE 143 88 72 77 59 59 296
SQS 132 165 132 88 54 52 499
THI 94 83 66 55 45 43 238
ULD 136 89 60 50 38 38 287
XAN 59 64 60 47 43 41 182

ACCS
AA2 9 8 6 7 5 5 21
BK2 7 8 5 6 7 7 20
CAL 6 6 5 6 6 6 15
DD1 12 15 12 10 9 10 46
F7I 7 5 3 3 3 3 13

GLG 14 12 10 10 10 10 28
GLY 14 9 7 7 6 6 24
KRA 3 4 3 4 4 4 8
LAC 11 11 10 10 8 8 32
SQE 3 1 2 2 1 1 4
SQS 15 19 20 20 17 17 83
THI 20 20 13 11 9 9 47
ULD 5 4 4 4 4 4 13
XAN 8 8 7 8 9 9 23

Table B.1: FCoN clique numbers. The median number of cliques calculated from ten
independent trials is reported at different co-occurrence thresholds and for pooled sets.
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Activity Class ν = 0.5 ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9 ν = 1.0 Pooled
MACCS

AA2 7 4 3 3 2 2 5
BK2 20 10 8 4 2 2 11
CAL 8 5 3 3 3 3 5
DD1 7 5 3 3 3 3 5
F7I 15 8 6 3 2 2 8

GLG 13 9 5 3 2 2 8
GLY 7 8 5 3 3 2 6
KRA 12 7 6 4 3 2 8
LAC 14 9 6 4 3 3 8
SQE 11 6 4 3 3 2 7
SQS 20 11 8 5 3 3 10
THI 9 5 3 2 2 2 5
ULD 15 8 5 3 3 3 8
XAN 6 5 4 3 3 2 5

ECFP4
AA2 9 7 6 6 6 6 7
BK2 14 9 7 5 3 3 9
CAL 13 8 7 4 4 4 7
DD1 9 8 7 5 6 6 8
F7I 7 5 3 3 3 3 6

GLG 9 6 5 4 4 5 7
GLY 9 5 5 5 4 3 6
KRA 14 10 9 9 9 9 11
LAC 15 16 6 5 4 4 12
SQE 9 5 4 4 3 3 6
SQS 12 7 12 17 5 6 13
THI 7 5 4 4 4 5 5
ULD 11 7 5 4 6 6 8
XAN 13 10 7 6 5 5 10

ACCS
AA2 3 3 2 2 2 2 3
BK2 4 4 4 4 3 3 5
CAL 4 4 2 2 2 2 4
DD1 9 7 5 4 3 3 6
F7I 3 3 2 2 2 2 3

GLG 5 3 2 2 2 2 3
GLY 3 3 3 2 2 2 3
KRA 5 4 3 3 3 3 5
LAC 6 4 3 3 2 2 4
SQE 2 3 2 2 2 2 2
SQS 8 9 7 5 2 2 6
THI 5 3 3 2 2 2 3
ULD 5 5 4 3 3 3 4
XAN 4 3 2 2 2 2 3

Table B.2: FCoN clique size. The median number of features per clique is reported at
different co-occurrence thresholds and for pooled sets.
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Activity Class ν = 0.5 ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9 ν = 1.0 Pooled
MACCS

AA2 7730 20885 53094 65435 91088 88006 23193
BK2 158 3541 6425 38528 75803 102747 3273
CAL 7078 24961 54214 59199 54214 64120 22725
DD1 7532 13740 37286 55423 69663 88004 17246
F7I 348 6333 18515 48227 74604 79421 4886

GLG 1136 7842 40932 85941 144425 113971 9131
GLY 3255 11182 31568 50112 75455 92245 16744
KRA 192 2207 7201 19914 43101 44758 2272
LAC 212 1449 5212 26080 67093 71593 2713
SQE 3803 17649 52751 81292 102744 102745 16490
SQS 129 1311 3256 13539 88005 102750 3285
THI 3102 26918 64501 92377 92552 92376 17646
ULD 914 9454 32052 64088 91528 101083 10153
XAN 8175 15494 22415 43582 57061 92247 21485

ECFP4
AA2 60 108 103 61 58 13 62
BK2 7 19 58 1354 2336 414 20
CAL 8 38 959 1741 1632 960 636
DD1 3 17 32 46 7 6 12
F7I 89 1354 6971 9026 8065 3751 775

GLG 156 1959 3610 3962 3610 2655 1410
GLY 9 276 573 279 818 384 100
KRA 5 7 77 27 24 24 7
LAC 9 2 223 225 51 25 16
SQE 3 10 32 11 10 10 7
SQS 5 47 5 2 7 6 4
THI 305 3964 8743 11894 2013 759 3173
ULD 127 421 4649 5054 2671 2671 747
XAN 5 7 19 188 188 188 7

ACCS
AA2 37 63 219 287 249 249 101
BK2 15 58 99 188 309 309 96
CAL 22 227 344 476 1117 1118 282
DD1 8 20 94 377 511 655 46
F7I 14 95 491 1062 1062 1062 77

GLG 5 175 668 668 702 702 81
GLY 14 82 232 411 434 434 51
KRA 11 12 34 32 32 32 15
LAC 4 34 74 169 432 432 51
SQE 25 26 26 80 218 218 29
SQS 5 6 15 25 289 513 13
THI 75 158 367 517 694 694 151
ULD 8 25 241 662 760 760 80
XAN 2 5 9 8 11 11 6

Table B.3: FCoN database compound retrieval. The median number of database
compounds containing a clique is given for each co-occurrence threshold and for pooled sets.
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Activity Class ν = 0.5 ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9 ν = 1.0 Pooled
MACCS

AA2 4.8 0.1 0.5 0.1 0.1 0.1 4.2
BK2 10.8 18.4 13.6 8.0 0.2 0.0 18.2
CAL 14.3 13.1 4.1 2.3 1.8 1.8 14.3
DD1 9.4 15.1 9.9 6.4 1.1 0.2 13.8
F7I 5.5 5.7 2.6 1.6 1.6 1.6 6.4

GLG 4.9 2.3 0.3 0.0 0.0 0.0 4.2
GLY 15.7 13.8 12.1 9.2 3.5 1.0 19.6
KRA 61.3 54.5 32.0 26.2 6.9 6.2 61.9
LAC 34.2 36.1 34.8 34.9 31.2 31.2 35.7
SQE 31.6 33.6 32.0 25.4 10.3 10.3 35.0
SQS 33.4 29.8 31.2 10.1 1.0 0.3 36.5
THI 1.0 0.1 0.1 0.1 0.1 0.1 1.0
ULD 3.4 5.7 3.9 3.8 3.8 3.8 3.4
XAN 39.1 44.9 21.6 6.1 0.5 0.1 45.5

ECFP4
AA2 29.0 34.8 32.8 34.0 34.3 34.3 32.1
BK2 61.8 66.4 63.6 63.6 62.7 62.7 69.1
CAL 50.7 48.7 47.4 52.4 53.6 54.8 60.0
DD1 63.6 76.3 72.4 67.7 60.8 60.8 75.7
F7I 63.7 58.8 56.8 50.7 53.6 53.6 67.3

GLG 36.1 39.1 38.2 32.8 34.0 34.0 36.9
GLY 76.2 74.1 74.7 76.1 76.7 76.7 78.8
KRA 62.1 64.1 70.0 73.6 75.5 75.5 75.5
LAC 57.9 69.3 69.4 70.0 68.7 68.7 72.3
SQE 59.8 62.2 59.4 56.8 57.3 57.3 66.4
SQS 39.7 41.2 45.9 47.7 46.0 46.0 48.5
THI 40.8 40.7 46.4 46.5 46.4 46.4 45.9
ULD 36.3 36.0 35.9 36.9 36.9 36.9 40.3
XAN 56.2 67.1 65.3 69.2 69.4 70.6 72.9

ACCS
AA2 14.6 15.9 15.5 15.0 15.0 15.0 16.8
BK2 32.3 43.5 44.5 44.6 41.5 41.5 44.6
CAL 28.3 30.5 16.9 12.6 11.7 11.7 28.8
DD1 56.4 64.1 64.4 59.2 48.4 44.4 65.6
F7I 11.7 13.9 6.9 5.9 5.9 5.9 13.6

GLG 25.9 27.7 22.0 18.9 11.5 11.5 35.3
GLY 37.0 27.8 21.6 17.4 15.2 15.2 37.9
KRA 36.0 47.7 47.7 51.3 50.9 50.9 57.0
LAC 47.7 49.3 47.2 34.6 22.7 22.7 55.0
SQE 28.0 29.4 26.9 19.7 17.9 17.9 32.4
SQS 34.0 41.7 50.3 43.4 44.0 43.5 52.9
THI 12.3 8.3 6.1 5.7 5.9 5.9 11.0
ULD 22.6 27.1 23.4 18.7 18.7 18.7 31.7
XAN 36.9 46.3 46.7 51.3 57.1 57.1 61.2

Table B.4: FCoN recovery rates. The recovery rates at different co-occurrence thresholds
and pooled sets are given in percent. Top recovery rates are highlighted in bold.
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B.2 Fragment Formal Concept Analysis

Table B.5 reports the data sets used for FragFCA classifier benchmarking.

Table B.6 reports the FragFCA classification results for all supersets.
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Superset MDDR act. index Activity class Cmpds. Frags. Sig.

MDDR

Adenosine
07707 A1 agonists 146 40 27.8
07708 A2 agonists 114 28.7

MAO
08410 MAO A inhibitors 67 86 47.2
08420 MAO B inhibitors 158 75.6

Adrenergic
31251 β1 blockers 65

284
846.5

31261 α1 blockers 507 1188.9
31262 α2 blockers 268 1167.8

Opioid
31251 κ agonists 243

201
690.5

31261 δ agonists 347 464.1
31262 µ agonists 89 434.8

PDE
78415 PDE I inhibitors 69

589
437.2

78417 PDE III inhibitors 408 1973.4
78418 PDE IV inhibitors 1994 2634.3

Serine proteases
37110 Thrombin inhibitors 1037

676
13160.8

37121 Factor Xa inhibitors 1121 7436.8
37125 Factor VIIa inhibitors 156 5422.8

Dopamine

07702 D1 antagonists 136

330

332.1
07701 D2 antagonists 439 2006.8
07703 D3 antagonists 249 1191.2
07710 D4 antagonists 647 1009.5

Serotonin

06235 5-HT1A agonists 943

430

3141.1
06237 5-HT1C agonists 180 579.8
06246 5-HT1D agonists 528 1702.7
06251 5-HT1F agonists 110 1116.6

BindingDB

PDE
PDE III inhibitors 69
PDE IV inhibitors 51

Serine proteases
Thrombin inhibitors 89
Factor Xa inhibitors 597

Factor VIIa inhibitors 95

Table B.5: FragFCA classifier dataset. The composition of the compound data sets
is reported. BindingDB sets were used as additional test cases from which no fragment
information was derived. “Cmpds.”: number of compounds; “Frags.”: number of fragments
in superset fragment library; “Sig.”: average number of signature fragment combinations.
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Activity class CS CM IS IM NM E
Adenosine 37.2 4.6 3.4 6.9 47.9 84.3

A1 41.3 5.3 4.4 2.4 46.7 94.5
A2 32.0 3.7 2.3 12.6 49.4 71.7

MAO 78.7 6.7 3.9 5.1 5.6 93.9
MAO A 72.6 12.8 3.5 8.0 3.1 90.1
MAO B 81.3 4.1 4.1 3.9 6.7 95.4

Adrenergic 45.5 35.4 15.2 2.5 1.4 94.8
β1 61.3 33.9 4.8 0.0 0.0 100.0
α1 37.7 40.3 18.1 2.6 1.3 93.6
α2 58.8 25.5 11.1 2.8 1.8 95.4

Opioid 55.2 31.9 7.6 2.1 3.3 96.4
κ 52.7 38.6 6.9 1.0 0.7 98.1
δ 59.0 28.6 6.2 1.7 4.7 97.2
µ 44.6 26.6 16.5 7.1 5.1 86.3

PDE 25.4 48.1 23.6 1.9 1.0 93.0
PDE I 49.8 44.9 3.4 1.1 0.9 97.9

PDE III 27.7 46.5 21.8 2.9 1.1 90.4
PDE IV 24.4 48.5 24.4 1.8 1.0 93.3

Serine proteases 12.9 56.5 28.4 1.5 0.8 89.6
Thrombin 13.7 57.1 27.0 1.4 0.8 91.0
Factor Xa 10.1 55.9 31.3 1.8 0.9 85.2

Factor VIIa 32.5 56.5 10.9 0.0 0.1 100.0
Dopamine 30.6 35.9 23.1 6.8 3.6 81.9

D1 54.9 29.8 5.5 5.0 4.8 91.7
D2 22.1 43.7 27.6 4.6 2.0 82.9
D3 38.6 41.8 17.5 1.2 0.9 97.0
D4 29.7 29.8 24.8 10.7 5.4 73.5

Serotonin 27.5 46.0 21.4 2.6 2.5 91.2
5-HT1A 24.1 50.9 21.9 1.9 1.2 92.7
5-HT1C 42.5 37.5 8.7 4.7 6.7 90.1
5-HT1D 28.7 38.9 25.2 3.5 3.8 89.3
5-HT1F 33.2 48.4 14.4 2.8 1.2 92.3

Table B.6: FragFCA compound classification. Compound classification results are
reported for each superset and activity class in percent of classified compounds. CS: correct,
single class match; CM: correct, multiple classes matched; IM: incorrect, multiple classes
matched; IS: incorrect, single class match; E: enrichment, calculated as the ratio of correct
matches against only one class over all single class matches (both correct and incorrect) in
percent.
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B.3 Molecular Formal Concept Analysis

Table B.7 reports reference and identified compounds for each MolFCA query.



122 Appendix B. Additional Data

Query Compound name Note

HDAC

4-phenylimidazole, 17
Apicidin selective HDAC1,HDAC3 / HDAC6

CRA-024781
LAQ-824
PXD101
SAHA reference compound

thiophene derivative, 15h selective HDAC6/HDAC1
thiophene derivative, 19c
thiophene derivative, 3b
thiophene derivative, 3c
thiophene derivative, 3d
thiophene derivative, 3f
thiophene derivative, 3g
thiophene derivative, 3h
thiophene derivative, 3i
Triazole Ligand, 10a
Triazole Ligand, 10b
Triazole Ligand, 10c
Triazole Ligand, 10d
Triazole Ligand, 12b
Triazole Ligand, 14a
Triazole Ligand, 14b
Triazole Ligand, 14c
Triazole Ligand, 14d
Triazole Ligand, 6b selective HDAC6/HDAC1

PDE

(R,S)-Mesopram selective PDE2B/PDE10A
Cilomilast reference compound
Filaminast selective PDE2B/PDE11A
Piclamilast
Roflumilast selective PDE2B/PDE11A
Rolipram selective PDE2B/PDE10A

Zardaverine selective PDE2B/PDE11A

IMPDH

C2-Mycophenolic Adenine Dinucleotide (C2-MDA)
Mycophenolic Acid (MPA) reference compound, ≤ 100nM

Mycophenolic Adenine Dinucleotide (MAD) Analogue, 37
Mycophenolic Adenine Dinucleotide (MAD) Analogue, 38 ≤ 100nM

Tiazofurin Adenine Dinucleotide (TAD)
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 25 ≤ 100nM
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 26
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 27 ≤ 100nM
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 28
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 29
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 30
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 31 ≤ 100nM
Tiazofurin Adenine Dinucleotide (TAD) Analogue, 32 ≤ 100nM

Caspase

Ac-DEVD-CHO
Burnham Institute Compound 1 low potency
Burnham Institute Compound 2 low potency

Inhibitor 3
Inhibitor 66a

Isoquinoline-1,3,4-trione 13f
Isoquinoline-1,3,4-trione 9k
valine aspartyl ketone 14
valine aspartyl ketone 35

Table B.7: Selected BindingDB compounds. For all four queries, the identified Bind-
ingDB compounds are reported. “Compound name” corresponds to the BindingDB field
“BindingDB Monomer Display Name”.
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