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Abstract 

Declining productivity in the Republic of Benin (West Africa) highlighted the need for a study 

to determine both the effect of fertilization on yam (Dioscorea spp.) yield and biomass 

production, as well as the best agronomic management options available for stabilizing yam 

productivity, via the modeling of yam growth and development. This study addressed the 

above issues by conducting plot experiments in the Benin Republic, which analyzed the 

effect of mineral fertilizer, manure and crop residue application on total biomass production, 

tuber yield and dry matter partitioning pattern, in two species of yam (Dioscorea alata var. 

Florido and Dioscorea rotundata var. Kokoro). Significant positive effects of mineral fertilizer 

were observed on yam total biomass production and tuber yield, but the magnitude of its 

effect were dependent on the species of yam. Crops receiving crop residues and manure 

also registered increases in yield, but were not significantly different from the yield under 

unfertilized conditions. Regarding partitioning pattern of dry matter to different plant organs, 

no significant difference was observed between control and fertilized treatments. An attempt 

has been made to simulate the effect of fertilization and fallow availability on yam (Dioscorea 

alata var. Florido) production by using the Environmental Policy Integrated Climate (EPIC) 

model. A new crop parameter file for Dioscorea alata was developed. The model accurately 

simulated the effect of fertilizer on the yam yield as indicated by a relatively low mean relative 

error (MR) ranging from 4.3 to 9.7 %. Different scenarios of fallow availability (Scenario S1 

[100 % of the bush savannah is available as fallow land], Scenario S2 [50% of the bush 

savannah is available as fallow land] and Scenario S3 [25% of the bush savannah is 

available as fallow land]) were explored in the Upper Ouémé basin of Benin Republic (West 

Africa) by incorporating the EPIC model into the spatial decision support system (SDSS) 

PEDRO (Protection du sol Et Durabilité des Ressources agricoles dans le bassin versant de 

l'Ouémé). The best agreement between simulated and observed crop yields was found under 

the assumption that 50% of the bush savannah is available as fallow land under the 

prevailing cropping patterns. The results show the capacity of the EPIC model in connection 

with the SDSS PEDRO to capture both the biomass production and sensitivity of regional 

yields of yam to fallowing. They further reveal how a crop model can be used to analyze 

fallow practices at the regional scale. However, the models accuracy is most likely to be 

improved by a more detailed modeling of the phenological development of yam. In order to 

increase yam productivity and maintain soil fertility in the Upper Ouémé basin, fallowing the 

crop land is not a viable option due to increased demographic pressures. Mineral fertilizer 

application appears to be essential, but its high cost and accessibility restraints, limit its use 

by the farmers. The solution lies in providing mineral fertilizers to the farmers at subsidized 

rates. Additionally, nitrogen fixing crops could partially provide the N inputs needed, if 

included within crop rotations. 
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Kurzfassung 

Abnehmende Produktivität von Yam (Dioscorea spp.) bedingt durch Einschränkungen der 

Bodenfruchtbarkeit in der Republik Benin (West-Afrika) erfordern eine Analyse der 

Auswirkungen von Düngungsmaßnahmen auf das Wachstum und die Biomasseproduktion 

von Yam. Diese Analyse wird begleitet von der Modellierung der Entwicklung und  

Ertragsbildung von Yam um geeignete Managementoptionen zur Stabilisierung der Erträge 

zu identifizieren. Dazu wurden in der Republik Benin in einem ersten Schritt Feldexperimente 

durchgeführt, um die Auswirkungen der Anwendung von Mineraldüngern, Mist und 

Ernterückständen auf die Biomasseproduktion, Knollenerträge und Trockenmasseverteilung 

in zwei Yam-Arten (Dioscorea alata var. Florido und Dioscorea rotundata var. Kokoro) zu 

untersuchen. Durch den Einsatz von Mineraldüngern wurden signifikant positive Effekte auf 

die Biomasseproduktion und die Knollenerträge beobachtet, jedoch hingen diese Effekte von 

der Art und der Düngermenge ab. Bei der Anwendung von Ernterückständen und Mist 

wurden ebenfalls Ertragszuwächse festgestellt jedoch unterschieden sich diese nicht 

signifikant von den ungedüngten Varianten. Bezüglich der Verteilung der Trockenmasse in 

die einzelnen Pflanzenorgane konnte kein signifikanter Unterschied zwischen gedüngten und 

ungedüngten Varianten festgestellt werden. 

Basierend auf den Daten der Feldexperimente wurde der Versuch unternommen die Effekte 

der Düngung sowie Bracheeffekte auf die Produktivität von Yam (D. alata var. Florido) mit 

dem EPIC (Environmental Policy Integrated Climate) Modell zu simulieren. Für Dioscorea 

alta wurde ein neuer Datensatz von physiologischen Parametern zusammengestellt. Mit 

diesem Datensatz simulierte das Modell hinreichend genau den Düngungseffekt auf den 

Ertrag von Yam ausgedrückt durch einen relativ kleinen relativen Fehler von 4,3 bis 9,7%. 

Unterschiedliche Landnutzungsszenarien mit unterschiedlicher Bracheverfügbarkeit 

[Szenario S1 (100% der Buschsavanne als Brache verfügbar), Szenario S2 (50% der 

Buschsavanne als Brache verfügbar) und S3 (25% der Buschsavanne als Brache verfügbar)] 

wurden im Oberen Einzugsgebiet des Ouémé untersucht, indem man das EPIC Modell in 

das räumliche Entscheidungsunterstützungssystem PEDRO einbaute. Die beste 

Übereinstimmung zwischen beobachteten und simulierten Erträgen erzielte man unter der 

Annahme dass, unter den momentanen Anbaubedingungen, 50% der Buschsavanne als 

Brache in der Rotation mit den Kulturpflanzen zur Verfügung stehen. Die Ergebnisse zeigen 

das Potential des EPIC Modells, in Verbindung mit dem SDSS PEDRO, die 

Biomasseproduktion und die Sensitivität des regionalen Yam-Ertrages auf die Veränderung 

der Bracheverfügbarkeit zu erfassen. Es wurde aufgezeigt, wie ein 

Pflanzenwachstumsmodell dazu beitragen kann die Anbaupraktiken in Brachesystemen auf 

regionaler Ebene zu analysieren. Allerdings könnte die Genauigkeit des Modells 
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voraussichtlich weiter verbessert werden, indem man die die phänologische Entwicklung der 

Yam-Pflanzen in detaillierterer Weise beschreiben würde. Um die Produktivität im oberen 

Einzugsgebiet des Ouémé zu erhöhen und die Bodenfruchtbarkeit zu erhalten, ist die 

Brachewirtschaft kein nachhaltiges System angesichts des ständig steigenden 

Bevölkerungsdrucks. Die Anwendung von Mineraldüngern scheint unabdingbar, aber die 

hohen Kosten und das Verfügbarkeitsproblem erschweren die Anwendung durch die Bauern. 

Die Subventionierung von Mineraldüngern könnte eine Lösung für dieses Problem sein. 

Zusätzlich könnte ein Teil des Stickstoffbedarfs durch den verstärkten Einbau von 

stickstoffbindenden Pflanzen in der Fruchtfolge gedeckt werden.   
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1.1. Yam (Dioscorea spp.) 

 

Yams are members of the genus Dioscorea and belong to the family Dioscoreaceae. Yams 

are dioecious plants and produce tubers and bulbils (aerial tubers) of economic importance. 

The stems are viny, leaves are cordate or ovate, tubers mostly cylindrical and rich in 

carbohydrate which make them suitable to be used as food (Mandal,1993). Tuber 

development is an evolutionary adaptation to a dry season, when leafy shoots die back and 

tubers become dormant (Purseglove,1972). During the evolution of the edible Dioscoreas, 

the thickening and lobbing of the ancestral rhizome gave way to a well developed tuber 

system (Burkill,1960). In most species, they are renewed and produced annually, while in 

others they are perennial. As crops, yams are harvested every season and replanted using 

tuber pieces to regenerate the plant. Unlike other tropical root and tuber crop species, once 

harvested, yams can be stored for 4-6 months in ambient tropical conditions without 

significant deterioration of their nutritional properties. Tubers are also often dried and later 

milled into flour for reconstituting as a stiff paste (fufu), which is highly appreciated in West 

Africa.   

The family Dioscoreaceae comprises six genera but the genus Dioscorea is the major one. 

About 600 species of Dioscorea have been identified, among which 12 species are edible 

(Coursey,1976). Within this genus, edible and marketable species are: Dioscorea rotundata 

(white yam or Guinea yam), Dioscorea alata (greater yam or water yam), Dioscorea 

esculenta (lesser yam or Asiatic yam), Dioscorea bulbifera (aerial yam or potato yam) and 

Dioscorea cayenensis (yellow yam) which produces edible tubers and bulbils (aerial tubers 

located in the axils of leaves). Among these, D. alata (Figure 1) covers major areas in Asia, 

whereas D. rotundata and D. cayenensis is commonly cropped in Africa (Mandal,1993). 

Some Dioscorea species, like floribunda and composite, are appreciated due to their high 

tuber content of steroidal saponins, being used in the manufacturing of oral contraceptives, 

sex hormones and cortisone (Purseglove,1972; Applezweig,1977). The drug yams are still 

essentially wild species (Coursey,1976).  

 The English term “yam” is most likely derived from the Portuguese word, ynhame, found in 

early documents, itself being the transcription of niam, the word used in the Malinke 

language spoken widely through the Guineas, Sierra Leone and Ivory Coast (Coursey, 

1976). 
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                       Yam tuber                              Yam plant                               Yam cakes 

Figure 1: Yam (Dioscorea alata) 

 

1.2. Domestication 

 

Dioscorea alata is probably the most widely distributed cultivated yam species in the world 

and is likely also one of the oldest cultivated. It was not found in the wild and was thought, 

based on morphological affinities, to result from interspecific hybridization between two Asian 

species (D. hamiltonii and D. persimilis) (Burkill,1960). However, AFLP markers indicate that 

D. alata shares a common genetic background with D. nummularia and D. transversa 

(Malapa et al., 2005a,b). As these two species do not occur on the western, Asian side of the 

Wallace line, it is possible that D. alata was domesticated after the arrival of the Australoids, 

60,000 years ago on the Sahul plate, in the present New Guinea, or in Melanesia (Lebot, 

1999). This geographic region is also the centre of diversity of the species (Martin and 

Rhodes, 1977; Lebot,1992; Lebot et al.,1998) and hundreds of different morphotypes exist. 

In West Africa, Paleolithic man, while food gathering, most likely domesticated edible yams 

during his wanderings. A tuber from a wild plant can be removed without fatal damage to the 

vine and roots and the plant will recover and produce another one in a year or so. Possibly, 

hunter-gatherers noticed such an interesting phenomenon and would have come back 

regularly to harvest edible wild forms. Selection of the most palatable genotypes would then 

follow naturally. It has been suggested that this process could have started c. 7000 BP for 

West African yams (Dumont et al., 2006), although there is no accurate dating to support this 

hypothesis. 

In Benin, many cultivars are clones of edible wild forms and a few putative wild forms are 

probably feral plants escaped from cultivation. Some cultivars are also clones of hybrids 
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between wild forms and feral or cultivated plants. Human selection operates on the most 

vigorous plants and vigor is sometimes associated with heterozygosity or heterotic effect.  

 

1.3. Present Geographical distribution 

 

Yams are now cultivated in about 50 tropical countries, but not all (e.g. China) provide their 

annual production statistics to the Food and Agriculture Organization (FAO). The world 

annual production is approximately 50 million t fresh tubers. More than 96% of it are 

cultivated in Africa. Four countries (Nigeria, Ivory Coast, Ghana and Benin) produce 90% of 

this output with more than 45 million t yr -1. The greater yam, D. alata, is the most widely 

distributed species in the humid and semi-humid tropics and, together with D. rotundata, 

accounts for the greater part of world production.  

A few temperate countries also grow yam (Japan, France) and this is where, thanks to the 

long days and maximum solar radiation, the highest yields are obtained, reaching more than 

20 t ha-1. Traditionally, and in most countries, yam farmers maintain a wide range of genetic 

diversity but as pressures on land availability increase, so fewer varieties are grown, 

intensifying the effects of yam diseases. The most important producing countries in Africa, 

Latin America, and Asia are presented in Table 1. 

  

Table 1: Major yam producing countries in the world 

Region Country Production(t *10
3
) Area (ha*10

3
) Av. yield (t ha

-1
) 

Africa Nigeria 34,000 2,957 11.5 

  Ivory Coast 5,012 577 8.6 

  Ghana 4,102 319.4 12.8 

  Benin 2,084 178 11.7 

       

America Colombia 333 28 11.8 

  Brazil 236 25.7 9.2 

  Haiti 207 37.3 5.5 

       

Asia Papua New Guinea 256 15.5 16.5 

  Japan 204 8.8 23.3 

 

Source: www.fao.org (2007). 
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1.4. Geographical location of the study site 

 

The experiments were carried out for six years (2001 to 2006) at Dogué village (Southern 

Donga Department) in Benin Republic (West Africa); which is located at 9° 06 N and 1° 56 E; 

at a distance of about 87 km from Parakou (Figure 2). The climate on the site is Soudano-

Guinean. The rainfall distribution is unimodal with two seasons; a rainy season from mid of 

April to mid of October, and the subsequent dry season. The maximum temperature is 40°C 

in the dry season, the minimum is 10°C and the average is 25°C. On the average, rainfall 

shows its peak in August. First rainfall begins in March, and becomes significant from May to 

September, the period of intensive farming activities. Harmattan (cold and dry wind) and the 

monsoon (warm and humid wind) are the wind systems in the north of Benin, with harmattan 

as the dominating system. 
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   Figure 2: Geographical location of the study area (Judex and Thamm, 2008). 
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1.5. Problem statement  

 

Falling yam productivity has fuelled calls for increased research activities in yam – a crop 

that serves as staple food to millions of people in Africa. There are great differences in yield 

between individual countries (FAO, 2007), but for all countries, the average yield level is far 

below the potential one, which has been estimated (Gurnah,1974; Martin,1972) at 15-20 t for 

dry tubers ha-1 yr-1 (equivalent to 60-75 t ha-1 yr-1 on a fresh weight basis). Particularly in the 

Upper Ouémé basin (Benin Republic), the average recorded yield for dry tubers was only 4.3 

t ha-1yr-1 from 1988 to 2005 (INRAB, 2005). One major constraint highlighted for its 

contribution to declining yam productivity is soil fertility degradation, due to nutrient depletion 

by leaching, and erosion, and the loss of organic matter from most soils in the savannah 

zone of Benin Republic. With increasing demographic pressure, land use intensity and 

reduced forest cover, suitable land for yam cultivation becomes gradually scarcer (Carsky et 

al., 2001). In Benin Republic, farmers practice slash-and-burn agriculture for yam production, 

which places great pressure on scarce virgin and fallow land resources. Natural fallow, crop 

rotation with grain legumes, and mineral fertilizer are the main soil fertility management 

strategies practiced here. However, most farmers do not use fertilizers and manures to any 

appreciable extent on yams. Furthermore, fallow periods in the savannahs are shorter and 

most farmers increasingly cultivate yam without any fallow or fertilizer application, leading to 

increased pathogen and pest attacks, and soil fertility degradation (Manyong et al., 1996; 

Carsky et al., 2001). These constraints call for appropriate management techniques to 

restore, replenish, conserve and maintain the quality of agricultural land, in order to increase 

yam yield. There is a lack of information on the usage of different sources of fertilization for 

soil fertility maintenance in yam production systems. Most studies on fertilizer use in yams 

have observed an increase in tuber yield with nitrogen application. Yield increases recorded 

are normally about 10%. In Trinidad, Chapman (1965) obtained a 30% tuber yield response, 

only when nitrogen fertilizer application was delayed until three months after planting. No or 

limited effects are reported in other studies in the humid forest in Côte d’Ivoire (Dibby et al., 

2004), as well as the savannahs and coastal humid regions in Benin (Baimey et al., 2006). 

Therefore, this study sought to obtain more quantitative information on the effect of fertilizer 

on tubers and total dry matter production of the yam species used in Benin Republic (D. alata 

and D. rotundata), and to derive growth parameters that could further be used for modeling 

of yam growth. 

  

Modeling plant growth has a tradition starting long before today’s computer models. Their 

core questions – what is limiting crop growth and what is the optimal management ? – are 

still being addressed by modern crop models. Due to the complexity and dynamics of agro-



 

 
11 

ecosystems, in addition to a detailed analysis of yield determining processes, the use of 

dynamic simulation models for describing crop production is recommended. At present, a 

multitude of simulation models for one or several field crops is available. Most of them have 

been developed in temperate or subtropical regions, under management practices inherent 

to industrialized countries. Tropical regions like Benin Republic, however, show some 

differences with regard to soil conditions (highly weathered, low pH, etc.) and land use 

management (slash-and-burn, low-input agriculture), which necessitate the detailed testing 

and potential adjustment of existing models to tropical conditions. Modeling of yam growth 

can be an effective aid for the interpretation of experimental data and for the assessment of 

constraints affecting yam production. Concerning yam (Dioscorea spp.), only a few attempts 

of modeling have been made. In 1997, YAMSIM (a crop growth model), was used to model 

the growth and development of Dioscorea alata (Montero, 1997); more recently, a potato 

development model has been used to simulate the effect of temperature and photoperiod on 

yam development (Marcos et al., 2009). Tillage date, yam growth and tuber formation has 

never been modeled in Benin Republic. Hence, the second aim of this study was to model 

the yield and biomass production of yam species used in Benin Republic (the sub-humid 

Guinea Savannah of West Africa). 

As shown above, soil fertility restoration and crop performance in many developing countries 

(with low input agriculture), strongly relies on fallow management. Yams are known to 

demand high levels of soil fertility; therefore, they are given first priority in the cropping cycle 

of traditional farmers employing long bush-fallow rotations (O’Sullivan, 2008). In general, 

farmers in Benin Republic practice intensive agriculture on a small piece of land i.e., the land 

is cropped for a long duration and they do not clear new land every year for yam cultivation 

(Adjei-Nsiah, 2006). Yam occupies the first place in the sequence of cropping after a bush 

fallow, in which yam has the advantage of using the mineral reserves accumulated during the 

soils rest period or after the burning of vegetation (Bamire and Amujoyegbe, 2005). Hence, 

the third goal of the study was to analyze the effect of fallow management on yam production 

in the Upper Ouémé basin of Benin Republic. 

Thus, the three objectives of this thesis can be summarized as follows: 

 

• Measuring the influence of fertilizer application on biomass production and 

partitioning pattern of yam (Dioscorea alata L.) in Benin Republic; 

 
• Calibrating the EPIC model for yam production under rainfed conditions in Benin 

Republic; 

 
• Using the calibrated EPIC model for analyzing the effect of fallow availability on yam 

productivity. 
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CHAPTER  2 
 

 Effect of different source of fertilization on Yam (Dioscorea rotundata) 

biomass production 
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2.1. Introduction 

 

Edible yam (Dioscorea spp.) production occurs in nearly every region of the tropical world, 

and it is considered the most important tuber crop in West Africa and the Caribbean Basin 

(Purseglove,1972). Worldwide, > 20 million tons of yam tubers are produced annually in an 

area of ≈ 2.5 million hectares (FAO,1987). White Guinea yam (Dioscorea rotundata) is 

indigenous to West Africa, and Nigeria produces the largest quantity of the tubers in the 

world. However, yam as a staple and traditional food is not always available at affordable 

prices to the poor, and the farmers complained of low and unattractive price which does not 

cover their cost of production. In Edo state, Nigeria and under traditional landuse and 

cropping system, yam is usually the first crop to be planted after the land has been cleared 

(Coursey,1967). This is due to the high fertility requirement of the crop; it has relatively long 

seasonal growth (Onwueme,1978). Under this practice, yam has the advantage of utilizing 

the nutrient reserve accumulated when the soil is rested.  

Rising population pressure and increased demands on land for non-agricultural purposes 

have made soil fertility maintenance through prolonged fallows an untenable proposition, 

leaving maintenance of soil fertility through fertilization the only viable alternative. The poor 

crop yields on degraded land further suggest that soils involved in the production of yam 

require supplementary application of nutrients if they are to do well. However, lack of 

knowledge and information on such usage and their importance in yam production constitute 

a constraint to their use by resource-poor farmers. In this present study the dry matter 

production of white yam (Dioscorea rotundata) “kokoro”, late variety of yam, tuber biomass 

and dry matter distribution to the plant parts as influenced by different fertilization practices 

(i.e., N, P and K fertilizers, crop residue and manure) was determined by analyzing data from 

field experiments set up in the Upper Ouémé basin, (Republic of Benin) in the years 2001, 

2002 and 2003.  

 

2.2. Materials and methods 

2.2.1. LOCATION  

 

The experiments were carried out in year 2001, 2002 and 2003 at Dogué village (Southern 

Donga Department) in Benin Republic (West Africa); which is located at 9° 06 N and 1° 56 E; 

at a distance of about 87 km from Parakou. 
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2.2.2. CLIMATE 

 

The climate on the site is Soudano-Guinean. The rainfall distribution is unimodal with two 

seasons; a rainy season from mid of April to mid of October, and the subsequent dry season. 

Weather stations close to the experimental plots registered average total annual rainfall of 

1167.6 mm. The temperature does not vary within the year. The maximum temperature is 

40°C in the dry season, the minimum is 10°C and the average is 25°C. On the average 

rainfall shows peak in August. First rainfall begins in March, and becomes significant from 

May to September (Table 1), the period of intensive farming activities. Harmattan (cold and 

dry wind) and the monsoon (warm and humid wind) are the wind system in the north of 

Benin, with harmattan as the dominating system. 

 

Table1: Monthly rainfall measurement in year 2001, 2002 and 2003 

 

Months 

 

Year 2001 Rainfall 
(mm) 

 

Year 2002 Rainfall 
(mm) 

 

Year 2003 Rainfall 
(mm) 

January 0 0 0 

February 0 0 11 

March 0 62 17.7 

April 0 110 79.5 

May 122 94.3 86 

June 224 95.9 253 

July 86 152.6 138 

August 144 177.1 263 

September 288 291.5 194.3 

October 71 101.1 12.8 

November 0 1.3 25.3 

December 0 0.2 0.4 

Total 935 1087 1081 
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2.2.3. SOIL CHARACTERIZATION 

 

Soil textures found in the top 20 cm were loamy sand with 3-10% of clay and 76-81% of 

sand. According to FAO soil classification the soils on the experimental plots are 

characterized as Lixisols and Plinthosols. 

 

2.3. Treatments and Field layout 

 

The experimental design was a randomized complete block with four replications. Altogether 

there were eight plots divided into two groups consisting of four plots each, one was treated 

with manure (at the rate of 10 t ha-1), second plot with mineral fertilizer               

(N30:P30:K60 kg ha-1), third plot with combination of manure and mineral fertilizer, whereas 

the fourth plot was left as control (no application of fertilizer). In year 2002 and 2003 the 

same combinations were made taking crop residues (at the rate of 10 t ha-1) from external 

sources as a source of organic matter at the place of manure (Table 2).  

Organic matter was either farmyard manure provided by the farmers or crop residues at the 

rate of 10 t ha-1. 

 

Table 2: Average composition of manure and crop residue (DM) applied in Dogué. DM= Dry Matter 

 % mg kg
-1 

Organic 
fertilizer 

 

N 

 

P 

 

K 

 

Ca 

 

Mg 

 

Na 

 

Mn 

         

Zn 

         

Manure 

  

 Crop 
residue 
(Maize) 

 

1.59 

 

0.90 

 

0.24 

 

0.13 

 

1.51 

 

0.42 

 

0.66 

 

0.31 

 

0.36 

 

0.48 

 

0.05 

 

 

- 

 

542.19 

 

 

- 

    

49.57 

 

 

- 
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2.4. Field and plant sample preparation 

 

The trial was established on a fallow land during the previous 3 years and had not received 

fertilizer before. The soil was ploughed once and harrowed twice. Hand hoe was used to 

manually establish 0.5 m high mounds spaced 1.0 m apart. Perennial weeds were controlled 

by weeding manually using a hand hoe before planting and at crop emergence. Sections 

from tubers heavier than 1 kg and without damages were used as planting material. In order 

to avoid heterogeneity, “head” and “tail” of the tubers were eliminated. Thus only middle 

tuber sections were used as cuttings. At planting, cuttings were placed 10 cm deep at the top 

of the mounds with the epidermal tissue area facing down. Plants were allowed to grow in 

the field and three samples of crop were harvested at maturity from each plot randomly. 

Aboveground plant parts were harvested by cutting the stem just above the soil surface. 

Fallen leaves were also collected. The plant tubers were harvested, and the soil and fine 

roots were gently washed off in a water bath. Tubers and shoots (leaves, fallen leaves, 

stems) were rinsed with de-ionized water before oven drying at 70° C to constant weight. Dry 

matter yield of tubers and shoots was determined by weighing. 

2.5. Data analysis  

 

Treatment effects were determined by analysis of variance by ANOVA using computer 

package SPSS version11 (SPSS Inc. ©2002, Chicago, Illinois, USA) and SAS program 

package (SAS Institute, 1987). Significance was regarded at p≤ 0.05. 

2.6. Results and discussion 

 

2.6.1. THE EFFECT OF MANURE APPLICATION IN COMBINATION WITH MINERAL 

FERTILIZER ON YAM (DIOSCOREA ROTUNDATA) BIOMASS PRODUCTION.    

   

Table 3: Comparison of Total biomass production and tuber yield of yam under control and different source of 

fertilization (i.e., Manure, mineral fertilizer and combination of manure and mineral fertilizer) at Dogué (value in 

parentheses are values of standard deviation). 

  Control Manure (M) Mineral Fertilizer (MF) M + MF 

Total Biomass 2669 (1952) 2969(1526) 3149 (1877) 2863 (1262) 

Tuber yield 2130 (1760) 2470(1378) 2621 (1755) 2348 (1174) 
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Table 3 shows the effect of manure in combination with mineral fertilizer on the biomass 

production of yam (Dioscorea rotundata). The poor biomass production of yam under 

unfertilized condition could be explained by the negative nutrient balance in the soil because 

of high removal of nutrients through the harvested tuber. In this study an increase of 18% in 

total biomass production under mineral fertilizer application was registered compared to 

control (without fertilization) although its not significant. There is also no significant effect of 

manure application and its combined effect together with mineral fertilizer on the yam 

biomass production in this experiment. Normally yam is grown just after fallow, i.e. at a 

relatively high level of available nutrients, and thus no fertilizer is applied to this crop. This 

was also the case in this experiment which may explain the overall poor effect of fertilizer 

application. Little research has been conducted on the effect of fertilization on yam crop 

growth and productivity. Studies by Nwinyi (1983) with D. rotundata showed significantly 

higher yields in fertilized plants; however, the yields among fertilizer treatments were not 

significantly different. The same study showed no significant yield differences between 

control and fertilizer treatments when yam was grown at locations with soil of higher fertility. 

Gbedolo (1986) reported that experimentation with mineral fertilizers in Benin has rarely 

produced positive results, and that the application of N fertilizer has resulted in tubers of low 

organoleptic quality. In contrast, Chapman (1965) obtained a 30% increase in tuber yield of 

Dioscorea alata when the application of N fertilizer was delayed until 3 months after planting. 

In a 2-yr. study, Obigbesan et al. (1977) obtained positive yield responses to K fertilization in 

three species of yam in West Nigeria. 

 

2.6.2. THE EFFECT OF MANURE APPLICATION IN COMBINATION WITH MINERAL 

FERTILIZER ON YAM (DIOSCOREA ROTUNDATA) TUBER PRODUCTION.       

                 

Table 3 shows the effect of manure in combination with mineral fertilizer on tuber biomass 

production of yam (Dioscorea rotundata). There is an increase of about 23% in tuber 

biomass production under mineral fertilizer application, 16% increase under manure 

application and around 10% increase under combined application of manure and mineral 

fertilizer when compared to the unfertilized control. The positive response of yam tuber to 

fertilization was due to a prolonged vegetative growth phase leading to longer growth 

duration. However, the increase in tuber biomass production is not significant. Working with 

D. rotundata, Sobulo (1972) found no significant differences in dry matter yield when plots 

were fertilized with 0, 28, 56, 84, and 112 kg N ha-1 and attributed the lack of response to the 

high level (0.06%) of total N in the soil. 
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2.6.3. THE EFFECT OF MANURE APPLICATION IN COMBINATION WITH MINERAL 

FERTILIZER ON PARTITIONING PATTERN OF YAM (DIOSCOREA ROTUNDATA) 

BIOMASS.  
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Figure 1: Comparison of dry matter partitioning of yam under control and different sources of fertilization          

(i.e., Manure 10 t ha-1, mineral fertilizer 30 kg ha-1 and combination of manure and mineral fertilizer) at Dogué.  

Figure 1 shows the effect of manure in combination with mineral fertilizer on dry matter 

partitioning of yam (Dioscorea rotundata). No significant effect of fertilization on partitioning 

rate of dry matter within the crop was observed. The crop behaves identically (i.e., 

partitioning rate) in both fertilized and unfertilized management practices (Srivastava et al., 

2008).  

2.6.4. THE EFFECT OF CROP RESIDUE IN COMBINATION WITH MINERAL FERTILIZER ON 

YAM (DIOSCOREA ROTUNDATA) BIOMASS PRODUCTION. 

 

Table 4: Comparison of Total biomass production and tuber yield of yam under control and different source of 

fertilization. (i.e., Crop residue, mineral fertilizer and combination of crop residue and mineral fertilizer) at Dogué   

(value in parentheses are values of standard deviation). 

   Control  Crop Residue (CR) Mineral Fertilizer (MF) CR +MF 

Total Biomass 3968(1476) 4486 (1955) 4811 (1880) 4528 (1560) 
Tuber yield 3501(1401) 3985 (1805) 4570 (1733) 3953 (1412) 
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There is significant (p<0.05) positive effect of mineral fertilizer treatment on yam total 

biomass production. We observed an increase in total biomass production of yam by 21% 

under mineral fertilizer treatment, increase of 13% under crop residue treatment whereas 

14% increase was registered under the combination of crop residue and mineral fertilizer 

when compared to control (no fertilization). An overall increase of about 52% in yam total 

biomass production was observed under fertilized condition in year 2002 and 2003 compared 

to that in year 2001. This could be due to the higher rate of nitrogen application (42 kg ha-1 

compared to 30 kg ha-1 in 2001) and high rainfall in year 2002 (1087mm) and 2003 

(1081mm) compared to a lower precipitation in year 2001 (935mm). Sufficient water supply 

enhances the uptake of nutrients by the crops from the substrate. It is known from earlier 

experiments that the Leaf Area Index (LAI) generally increased with mineral fertilizer treated 

yam plants. This is caused by an increased leaf production and longer leaf life span (Law-

Ogbomo et al., 2007). As a consequence, a higher amount of radiation was intercepted 

contributing to an increase in tuber yield. LAI of any plant is an indicator of its photosynthetic 

capacity and translocation into tubers (Igwilo, 1988).   

 

2.6.5. THE EFFECT OF CROP RESIDUE APPLICATION IN COMBINATION WITH MINERAL 

FERTILIZER ON YAM (DIOSCOREA ROTUNDATA) TUBER BIOMASS.      

             

There was a positive effect of all fertilizer treatments (CR, F and CR+F) on yam tuber 

biomass production. However, only mineral fertilizer treatment showed a significant effect  

(p<0.05). An increase of 14%, 30% and 13% in tuber biomass production under crop residue, 

mineral fertilizer and combined treatment of crop residue and mineral fertilizer was observed, 

respectively. The beneficial effects of crop residue on tuber yield were probably due to 

favorable hydrothermal regimes of the soil for emergence and early development of yam 

plants. The crop residue also increased growth and tuber yield of yam possibly by reducing 

nutrient losses through controlling runoff in the rainy season. The beneficial effect is partly 

due to possible release of nutrients, particularly N and K, from the decomposition of previous 

year crop roots and shoots. In our experimental field, the previous crop was cotton which is 

usually fertilized and maize in the years 2002 and 2003 respectively, where maize frequently 

also receives a (low) amount of fertilizer. 
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2.6.6. THE EFFECT OF CROP RESIDUE APPLICATION IN COMBINATION WITH MINERAL 

FERTILIZER ON PARTITIONING PATTERN OF YAM (DIOSCOREA ROTUNDATA) 

BIOMASS.   
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Figure 2: Comparison of dry matter partitioning of yam under control and different sources of fertilization          

(i.e., Crop residue 10 t ha-1, mineral fertilizer 42 kg ha-1 and combination of crop residue and mineral fertilizer) at 

Dogué. 

Figure 2 shows that there was no significant effect of different source of fertilization on yam 

dry matter partitioning. The crop behaved identically (i.e., partitioning rate) in both fertilized 

and unfertilized treatments. An adequate balance between shoot, root and tuber growth 

should be achieved in order to obtain high yields, as it has been proposed by Osaki et al. 

(1996). 
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CHAPTER  3 
 

Biomass production and Partitioning pattern of Yam (Dioscorea alata) 
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3.1. Introduction 

 

Tuber yield of yam (Dioscorea alata) is determined by the total production of dry matter (DM) 

and its distribution within the crop. Dry matter partitioning is of great importance in crop 

production. Improvement of crop yield by plant breeding has resulted from higher harvest 

indices rather than improved DM production (Cock & El-Sharkawy, 1988; Gifford et al., 

1984). However, there are limits to the fraction of assimilates that can be diverted to the 

harvestable organs. A plant should invest sufficient assimilates in other plant parts to realize 

and maintain a high production capacity. The balance between assimilates for different plant 

parts is of importance for optimal crop production (Marcelis, 1994). In this present study the 

distribution of dry matter increments to the plant parts of white yam (Dioscorea alata) in 

relation to the application of mineral fertilizer was determined by analyzing data from field 

experiments set up in the Upper Ouémé basin (Benin Republic) over two years where yam 

was harvested periodically during the entire stages of its growth. The distribution tended to 

follow a regular pattern if expressed as a function of phenological growth phase of the crop.  

 

3.2.  Materials and methods 

 

3.2.1. FIELD AND PLANT SAMPLE PREPARATION  

 

The study was conducted as on-farm trials at Dogué village on latitude 9° 05´N and longitude 

01° 55´E of Benin Republic. The village is characterized by a bimodal rainfall pattern with a 

short rainy season which usually starts in May and lasts till September. The soil was 

ploughed once and harrowed twice. Spade was used to manually establish 0.5 m high 

mounds spaced 1.0 m apart. Perennial weeds were controlled by weeding manually using 

hand hoe before planting and crop emergence. Sections from tubers heavier than 1 kg and 

without damages were used as planting material. In order to avoid heterogeneity, the “head” 

and “tail” of the tubers were eliminated. Thus only middle tuber sections were used as 

cuttings. At planting, cuttings were placed 10 cm deep at the top of the mounds with the 

epidermal tissue area facing down. The experiments were laid out as a randomized complete 

block design with three replications. Altogether there were six sub-plots of 8m × 8m size 

(three main plots with two sub-plots within each main plot). Out of these six sub-plots, three 

were fertilized with 200 kg NPK ha-1 at planting, 100 kg NPK ha-1 (60 days after planting) and 
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100 kg ha-1 Urea (60 days after planting) for assuring that nutrients would not become a 

limiting factor for crop growth and development. The remaining three sub-plots were treated 

as control. Plants were allowed to grow in the field and four samples of crop were harvested 

at five different times i.e., first harvesting at 55th day after planting, 2nd at 126th day, 3rd at 

154th day, 4th at 168th day and final harvest at 231st day after sowing from each sub-plot 

randomly. Aboveground plant parts were harvested by cutting the stem just above the soil 

surface. Fallen leaves were also collected. The plant tubers were harvested then put into a 

water bath, gently washing the soil and fine roots from the tubers. The tubers and shoots 

(leaves, fallen leaves, stems) were rinsed with deionized water before oven drying at 70° C 

to constant weight. Dry matter yield of tubers and shoots was determined by weighing. 

3.2.2. DATA ANALYSIS  

 

Treatment effects were determined by analysis of variance by ANOVA using computer 

package SPSS version 11 (SPSS Inc. ©2002, Chicago, Illinois, USA). Significance was 

regarded at p≤ 0.05. 

3.3.  Results and discussion 

 

3.3.1. THE EFFECT OF FERTILIZER TREATMENT ON YAM (DIOSCOREA ALATA) BIOMASS 

PRODUCTION.                                                               
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Figure 1: Comparison of total biomass and tuber biomass production of Yam under control and fertilized 

conditions in year 2005 and 2006 (p<0.001). 

There is highly positive significant effect of fertilizer on biomass production of yam in year 

2005 and 2006. In year 2005, under fertilized condition, an increase of 44% in tuber yield and 
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42 % in total biomass production of yam had been registered, whereas it was higher in year 

2006, which accounted 85% and 84% of increase in tuber yield and total biomass production 

respectively when compared with control (without fertilizer) (Figure1). The stronger effect in 

year 2006 could be explained by the better water use efficiency (WUE) of the crop as this 

year was dry and mineral nutrition may improve the stomata regulation and the metabolic 

efficiency as higher nutrient availability may enhance the uptake of nutrients under lower soil 

moisture condition (Payne et al., 1992). Normally yam is grown just after fallow and no 

fertilizer is applied to this crop. The poor biomass production in yam under unfertilized 

condition could be explained by the negative nutrient balance in the soil because of high 

removal of nutrients through the harvested tuber. The poor performance of yam in terms of 

total biomass production in year 2006 compared with the total biomass production in year 

2005 could be explained by the shorter vegetation period due to erratic distribution of rainfall 

in the year 2006. 

Table 1: Total biomass yield at five harvesting dates in relation to the application of mineral fertilizer (p<0.05) in 

year 2005 and 2006. 

 

 
Days after Planting (DAP) 

 
Control 

 
Fertilized 

 
Level of Significance (p) 

 
Year 2005 

   

57 327 196 0.012 

126 1482 2257 0.052 

154 3313 5921 0.002 

168 3501 5527 0.021 

231 3217 4553 0.002 

 

Year 2006 

 

   

55 532 988 0.028 

125 2325 4094 0.0002 

155 3845 6168 0.0005 

165 4760 7381 0.0005 

216 2254 4142 0.00001 
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3.3.2. RELATIVE DRY MATTER DISTRIBUTION  

 

Partitioning is the differential distribution and deposition of assimilates among tissues. 

Because in yams the tuber yield is more relevant than the total dry matter yield, it is 

important to study the distribution of the produced dry matter among the different plant parts.  
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Partitioning of dry matter in plant parts (with fertilizer, year 2005)
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Figure 2: Comparison of partitioning rate of dry matter in different yam tissues under control and fertilized 

condition in year 2005. 

 

 

Figure 2 shows the partitioning rates of leaves, stems and tubers in year 2005. The 

proportion of leaves and stems was increasing until 57th day after planting and gradual 

decrease can be observed until day of final harvest (i.e., 231st Days after planting). By 

contrast, the tuber partitioning rate was always positive, increasing rapidly during the period 

between 57 and 126 Days after planting. There was no effect of fertilizer observed on the 

partitioning pattern within the crop. 
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Partitioning of dry matter in plant parts (fertilzed, year 2006)
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Figure 3: Comparison of partitioning rate of dry matter in different yam tissues under control and fertilized 

conditions in the year 2006. 
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Figure 3 shows the partitioning rates of leaves, stems and tubers in year 2006. In case of 

2006, we observed the same pattern of dry matter distribution in yam crop as we saw in year 

2005. There was a gradual decrease in leaves and stem partitioning rates after about 55th 

DAP, whereas it was positive until 55th DAP. However, tuber partitioning rate followed always 

positive trend and showed a rapid increase during the period between 55 and 155 DAP. The 

probable reason for the decrease in tuber dry matter partitioning between 155 and 165 DAP 

is not yet known. No fertilizer effect was observed on the partitioning rate of dry matter within 

the crop. In case of tubers, environmental factors such as light and temperature contributed 

less to explain DM accumulation than time. As in potatoes, tuber production in yams is 

determined by time of tuber initiation and bulking rate (Bremner & Taha, 1966; Enyi, 

1972ab). According to Milthorpe (1963), the bulking rate is the first derivative of tuber growth 

which in our experiment rapidly increased after about 55 DAP (Figure 2 and 3). 

Haynes et al. (1967) for the same yam species (Dioscorea alata) showed that leaf area 

declines at the onset of tuber formation. An adequate balance between shoot, root and tuber 

growth should be achieved in order to obtain high yields, as it has been proposed by      

Osaki et al. (1996). They found that high productivity root crops are able to maintain a 

balance between root and shoot activity since in root crops the main sink is underground, 

photosynthates are actively distributed also to roots. Additional information is needed to 

optimize shoot-root, shoot-tuber and root-tuber interactions in root crops such as yam. 
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CHAPTER  4 
 

Simulating biomass accumulation and yield of yam (Dioscorea alata) in the 

Upper Ouémé basin (Benin Republic) – I. Compilation of physiological 

parameters and calibration at field scale 
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4.1. Introduction 

 

Two of the key topics in current agronomic research are: finding management strategies that 

maximize crop production and minimizing environmental degradation. An appropriate 

complement to experimental data is the utilization of simulation models, which can provide 

both an efficient interpretation of data and an analysis of the behavior of agricultural systems 

under diverse environmental conditions. Investigations using models are faster and more 

economical than experimental studies alone – they (models) further represent helpful tools 

through which decision-making processes in sustainable agricultural systems can be 

assisted. The testing of models against experimental datasets is an essential step towards 

evaluating either the performance of the model as a whole, or simply a set of its components. 

A large range of crop growth models have been developed for an array of crops including 

major root and tuber crops like potatoes (Solanum tuberosum). Some examples of these 

models, for potatoes for instance, include the DSSAT model (Clavijo, 1999; Mekinnie et al., 

2003); SUBSOTER-potato model (Travasso et al., 1996) and the NPOTATO model (Wolf, 

2000; Van Delden et al., 2003). Models used for cassava (Manihot esculenta) include 

Richard’s growth model (Amanullah et al., 2007) and the GUMCAS model (Matthews et al., 

1994).  However, none of these have yet been used to simulate the biomass development 

and yield of yam (Dioscorea alata). The Environmental Policy Integrated Climate (EPIC) 

model (Williams, 1995), originally named Erosion Productivity Impact Calculator, is an agro-

ecosystem model capable of simulating crop growth as a function of weather, soil, and 

management conditions (e.g., tillage, fertilization, irrigation, crop rotations), as well as other 

processes related to managing agro-ecosystems (e.g., wind and water erosion, water 

balance, pesticide fate, etc.). 

EPIC has been evaluated and used worldwide under many types of management practices 

and climatic soil conditions with reasonable success, indicating the robustness of the model. 

One of the most comprehensive tests of the crop growth sub-model was performed by 

Williams et al. (1989), who describe the results of testing an updated EPIC crop growth 

model for simulating barley, corn, rice, soybean, sunflower, and wheat yields at several U.S. 

locations and sites in Asia, France, and South America. The predicted yields were compared 

with measured yields for periods ranging from 1 to 11 years. The average predicted yields 

were always within 7% of the average measured yields, and there was no significant 

difference between any of the simulated and measured yields at the 95% confidence level. 

EPIC has also been evaluated at both the continental and global scale against national (Liu 

et al., 2008; Tan and Shibasaki, 2003) and regional (van der Velde et al., 2009) yield data. 

Although several authors have observed the overestimation of yield predictions in water 
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limited conditions or for summer crops (Ceotto et al., 1993; Steduto et al., 1995; Kosovan, 

1998), the model has been used to evaluate cropping systems and crop yields in Argentina 

(Bernardos et al., 2001), France (Cabelguenne et al., 1990), and Jordan (Hughes et al., 

1995). This model has been calibrated for several crops but remains unused in the 

simulatation of yam (Dioscorea alata) biomass accumulation and yield. Considering the 

urgent need for effective and efficient management practices that maximize yam yields, the 

objectives of the present study were to develop a set of phenological parameters and to 

calibrate the EPIC model for simulating yam (Dioscorea alata) growth and yield. 

 

 

4.2.   Materials and methods 

 

4.2.1. MODEL DESCRIPTION  

 

The EPIC model consists of nine integrated sub-models: hydrology, weather, erosion, carbon 

and nutrient cycling (N, P, and K), plant growth, soil temperature, tillage, economics, and 

plant environment control. In its current form, EPIC is well suited for assessing the effects of 

soil erosion on crop productivity; predicting the effects of management decisions on soil, 

water, nutrient, and pesticide movements, and tracing the allocation and turnover of C and N 

in soil. The model operates with a daily time step.  

 

4.2.2.  CROP GROWTH MODEL  

 

A single crop growth model is used in EPIC to simulate biomass accumulation and crop yield 

for approximately 130 crops, each with a unique set of growth parameters (e.g., radiation use 

efficiency [RUE]; potential harvest index [HI]; optimal and minimum temperatures for growth; 

maximum leaf area index [LAI]; and stomatal resistance). The final HI is an estimation based 

on the potential HI, minimum harvest index, and water use ratio. The potential biomass 

estimate is based on the interception of solar radiation and the RUE that is affected by both 

the vapor pressure deficit and atmospheric carbon dioxide level. Water, nutrient, 

temperature, aeration, and radiation stresses restrict the daily accumulation of biomass, root 

growth, and yield (Williams, 1995). Stress factors are calculated daily and range from 0.0 to 
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1.0. The estimation of the daily increase in crop biomass, considers, on a given day, the 

maximum among water, nutrient, temperature, and root zone aeration constraints. For root 

growth, calculated soil strength, soil temperature, and aluminum toxicity stresses are chosen 

as maximum constraint factors. Water stress occurs when available water in the soil is below 

crop-water demand. The same holds for nitrogen stress, that is, when available nitrogen is 

lower than crop nitrogen demand. The water stress factor is computed daily by considering 

the supply and demand concept, while the nitrogen stress factor is calculated by comparing 

accumulated crop nitrogen content to the optimal nitrogen content. The nitrogen stress factor 

varies non-linearly from 1.0, at sufficient nitrogen supply of the crop, to 0, when nitrogen 

supply is half the nitrogen demand. For non-stressed conditions, the HI is affected only by 

the heat unit index. 

 

4.2.3. EXPERIMENTAL DATA 

 

Data for the models calibration were obtained from researcher managed on-farm trials at 

Dogué village (9°05´N, 01° 55´E), Benin Republic (Figure 1). The rainfall distribution is 

unimodal with two seasons; a rainy season from mid April to mid October, and the 

subsequent dry season. Weather stations close to the experimental plots registered an 

average annual total rainfall of 1168 mm, which peaks in August. The first rains start in 

March, and become significant from May to September – the period of intensive farming 

activities. The mean temperature varies only slightly within the year. The maximum 

temperature is 40°C in the dry season, the minimum is 10°C and the average is 25°C. 

Harmattan (cold and dry winds from the Sahara desert) and monsoon (warm and humid 

wind) wind systems occur in the north of Benin, with the Harmattan being most dominant.  
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Figure 1: Map of the study area (Dogué, Upper Ouémé basin). 

 

The experiments were laid out as a randomized complete block design with three replications 

(Figure 2). 
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   Figure 2: Schematic diagram of Experiment, where –F = Without fertilization, +F = With fertilization. 
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The experiments were laid out as a randomized complete block design with three replications 

(Figure 2). Altogether there were six sub-plots of 8m × 8m size (three main plots with two 

sub-plots within each main plot). Of these six sub-plots, three were fertilized, via manual 

incorporation into the soil, with 200 kg NPK ha-1 (at planting), 100 kg NPK ha-1 (60 days after 

planting), and 100 kg Urea ha-1 (60 days after planting), to ensure that nutrients would not 

become a limiting factor for crop growth and development. NPK fertilizer contained 14% N, 

23% P2O5 and 14% K2O. The remaining three sub-plots were treated as control. The soil was 

ploughed once and harrowed twice. A spade was used to manually establish 0.5 m high 

mounds spaced 1.0 m apart. Weeds were manually controlled using a hand hoe both before 

planting and after crop emergence. Plant density was 0.88 plants per square meter because 

the germination rate was only 88%. Undamaged tuber sections heavier than 1 kg were used 

as planting material. Middle tuber sections were used as planting setts after removing the 

“head” and “tail” of the tubers. At planting, setts were placed 10 cm deep in the top of the 

mounds. Plants were grown without staking the vines. 

 

4.3. Model input preparation 

 

4.3.1. WEATHER 

 

A 2 year database (2005 and 2006) was used in the models calibration for daily records of 

precipitation (mm); maximum and minimum temperature (°C); solar radiation (MJ m-2); 

relative humidity (as a fraction), and wind speed (m s-1). Figure 1(a and b), gives the 

comparison of long term annual means over 24 years and annual means of air temperatures 

and precipitation during the experimental period (2005 and 2006). 
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Figure 3(a & b): 24 years long term annual means at Parakou station (Benin Republic) and annual means of 

maximum and minimum temperatures as well as precipitation at Dogué (Benin Republic) during the experimental 

period. 

 

The long term annual mean values of maximum and minimum temperatures were 32.9°C 

and 21.4°C, whereas the corresponding values for the experimental period (2005 and 2006) 

were 29.6 °C and 22.4 °C respectively, thus, comparatively, the weather conditions in the 

experiment period were fairly typical. The long term mean value of precipitation was 1137 

mm, whereas for the experimental period it was 1054 mm.  

 

4.3.2. SOIL 

 

The texture of the top soil (~ 20 cm) was loamy sand with 3-10% of clay and 76-81% of sand. 

According to the FAO soil classification system, the soils of the experimental plots are 

characterized as Lixisols and Plinthosols.      

 

4.3.3. FIELD MANAGEMENT 

 

For each sub-plot, information from the six preceding years on crops, fertilization, tillage, 

planting, and harvesting, were available and grouped together to create a history of field 

operations input file for each of the two treatments (fertilized and non-fertilized). The amounts 
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and dates of fertilizer applications in the model were carried out according to the field 

experiment described in Section 2.3. In 2005 and 2006, the two treatments had the same 

tillage operations, as well as planting and harvesting dates. Potential heat units were 

estimated at 1945°C using the average of a 2 year growing degree day period, accumulated 

during the normal growing season. The average start and end of the growing season were 

determined as the 20th May and 9th January, respectively, by averaging the planting and 

harvest dates of the 2 years. In both years, the same yam variety “Discovery” (popularly 

known as “Florido”, introduced by Institut de Recherches Agronomiques Tropicales [IRAT] – 

Ivory Coast), was used; it is a short-cycle variety producing medium sized tubers, chosen 

mostly for frying. This variety is preferred among farmers for both the good stability and 

extended storage life of its tubers, as well as its resistance to most pests, wilting and 

diseases – especially the internal brown spot disease, which predominantly affects the 

production of Dioscorea alata varieties (Zannou et al., 2005). 

 

4.4. Model calibration 

 

The Cassava (Manihot esculenta) crop parameter dataset (provided with the EPIC model – 

version 3060), was used as a starting point to establish a new parameter set for yam 

(Dioscorea alata). It was chosen as a starting point because cassava can be regarded as the 

representative crop for yam on the basis of its agro-climatic requirements for growth and 

development. Subsequently, this data set was modified using data from the yam grown in the 

fertilized treatments in 2005 and 2006, together with other values from the literature. Table 1 

lists the values using the original EPIC nomenclature (Kiniry et al., 1995). 

 

 

 

 

 

 

 

 



 

 
35 

Table 1: Crop parameter values of yam (Dioscorea alata var. Discovery) for the Environmental Policy Integrated 

Climate (EPIC) model used in the simulations.  

Parameter   Values 

      

BN1 (a) Normal crop N concentration at emergence 0.06 

BN2 (a) Normal crop N concentration at mid-season 0.036 

BN3 (a) Normal crop N concentration at maturity  0.025 

BP1 (a) Normal crop P concentration at emergence 0.006 

BP2 (a) Normal crop P concentration at mid-season 0.003 

BP3 (a) Normal crop P concentration at maturity 0.002 

CNY (a) Normal fraction of N in yield 0.013 

CPY (a)  Normal fraction of P in yield  0.003 

DLAP1 (a) Defines a point on the LAI development curve early in the season (% season, % max LAI) 30.01 

DLAP2 (a) 
Defines a point on the LAI development curve when LAI is near maximum (%season, % max 
LAI) 65.95 

DLAI (b) Fraction of the growing season when LAI begins to decline 0.8 

DMLA (c) Potential leaf area index (m2 m-2) 8 

GSI (b) Maximum stomatal conductance (m s-1) 0.007 

HI (a) Harvest index (%) 0.95 

HMX (a) Maximum crop height 0.3 

PPC1 (b) 1st point plant population for crops 1 

PPC2 (b) Fraction of maximum leaf area at 1st point 300 

PPT1 (b) 1st point plant population for trees 3 

PPT2 (b) Fraction of maximum leaf area at 2nd point 980 

RBMD (b) Rate of decline in WA after LAI starts to decline 10 

RDMX (b) Maximum rooting depth (m) 2 

RWPC1(b) Fraction of root weight early in the season 0.4 

RWPC2(b) Fraction of root weight at maturity  0.95 

RLAD (b) Rate of LAI decline 2 

TB (c) Optimum temperature (°C) 30 

TG (c) Base temperature (°C) 15 

VPTH (b) Threshold value for sensitivity of leaf conductance to VPD (kPa) 1 

VPD2 (b) Rate of decline of leaf conductance with increasing VPD (kPa, fraction GSI) 4.3 

WA (d) Radiation use efficiency (kg ha-1 MJ-1 m2) 10.5 

WCY (b) Fraction of water in yield 0.5 

WAVPD(b)  Rate of decline in WA per unit increase in vapor pressure deficit (VPD) (kg ha-1 MJ-1 m2 kPa-1 10 

 
Where,  
 

(a) = Parameter values are derived from our experiments (Srivastava and Gaiser, 2008; Dagbenonbakin, 
2005). 

(b) = Parameter values are taken from cassava parameter file from EPIC (version 3060). 
(c) = Parameter values taken from literature (Goenaga and Irizarry, 1994; Suja et al., 2000; FAO, 2005; 

Marcos et al., 2009). 
(d) = Parameter value adjusted.   

 

Yam yield simulations were sensitive to several parameters. Two parameters are critical to 

the calculations of yield: biomass energy ratio (WA) and the fraction of root weight at maturity 

(RWPC2). Biomass energy ratio is used in the model for converting energy to biomass. This 

parameter has been adjusted for yam (Dioscorea alata) to 10.5 kg ha-1 M J-1 m-2 in the final 

calibration step. The biomass energy value is slightly lower than the value of 15, as is 
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indicated for Cassava (Manihot esculenta). Harvest index is defined as the ratio between 

crop yield and above ground biomass. The final HI used to calculate yield in the model was 

adjusted, based on the heat unit index (HUI), percentage of the growing season, and the 

fraction of HI. Harvest index is the main determinant of yield when the adjusted HI is larger 

than the water stress-yield factor (WSYF); otherwise, yield is determined by WSYF. The HI 

was calculated using observed data (range: 0.91-0.98), with the mean value of 0.95 used for 

the HI (Srivastava and Gaiser, 2008) and the minimum value of 0.2 for the WSYF. The value 

of 8.0 used for DMLA in the yam parameter set was based on the findings of field 

experiments at the Corozal Research Station of the University of Puerto Rico (Goenaga and 

Irizarry, 1994; Suja et al., 2000). The values of DLAP1, DLAP2, DLAI, RLAD and RBMD, 

were determined through fitting the simulated values to the observations made in the field 

experiment (Srivastava and Gaiser, 2008). Base temperature (TG) 15°C and optimum 

temperature (TB) 30°C were fixed according to the ECOPORT database (FAO, 2005; 

Marcos et al., 2009). Maximum rooting depth (RDMX) was set at 2.0 m, the same as used by 

EPIC for other tuber crops like potato or cassava, and maximum crop height (HMX) was set 

as per the findings in the field experiment (Srivastava and Gaiser, 2008). The values for the 

normal concentrations of N and P in the biomass and tubers were set according to the 

findings of field experiments with mineral and organic fertilization conducted in the Upper 

Ouémé Basin from 2001-2003 (Dagbenonbakin, 2005). The values concerning fractions of 

root weight at emergence and maturity were set according to the findings of Srivastava and 

Gaiser (2008). Values for the rate of decline in WA per unit increase in vapor pressure deficit 

(WAVP); the threshold for sensitivity of leaf conductance to vapor pressure deficit (VPTH); 

the rate of decline of leaf conductance with increasing vapor pressure deficit (VPD2); 

maximum stomatal conductance (GSI), and fraction of water in yield (WCY), were the same 

as used by EPIC for Cassava. The value of 300 for PPC2 and 980 for PPT2 was adopted to 

bring the values of observed and simulated LAI in congruence. 

As a measure of precision to compare observed data and simulated values, the following 

parameters were used (Papula 1982): 
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b. The mean relative  error MR as 

MR
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Where n is the sample number, x is the observed and y is the simulated value. The mean 

relative error (MR) gives an indication of the mean magnitude of the error in relation to the 

observed value. Small values indicate little difference between simulated and measured 

values. Regression analysis was performed with the MS EXCEL software program. The 

means of measured yield were regressed against simulated values to test if slopes and 

intercepts of linear regression were significantly different from 1.0 and 0.0 respectively.  

       

4.5. Results and discussion 

 

4.5.1. SIMULATION OF PLANT GROWTH AND YIELD 

  

Yam (Dioscorea alata) yields, under fertilized and unfertilized conditions during 2005-2006, 

were simulated with the parameterized EPIC (version 3060) model. Observed yields were 

converted to dry matter yields (0% moisture) to enable comparisons against the simulated 

values. In 2005 and 2006, the means of simulated yields agree well with the observed means 

resulting in simulation errors ranging from 5.7 to 9.7 % (Table 2a). The model has adequately 

predicted the total biomass production (Table 2b) for both fertilized (Figure 4b) and 

unfertilized treatments (Figure 4a). The analysis of the models results reveal that mean 

simulated water stress days (number of days where water stress is the most serious 

constraint to biomass increase) over the two growing seasons were 12.0 in the unfertilized 

treatment and 14.7 in the fertilized treatment. Thus, water stress was not the major reason 

for the differences in biomass production between fertilized and unfertilized treatments. 

Simulated nitrogen stress days (number of days where nitrogen stress is the most serious 

constraint to biomass increase) in the unfertilized treatment was 55.4 days and 17.9 days in 

the fertilized treatment. This difference in stress days explains the overall lower biomass 

production in the unfertilized treatment. 
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Figure 4a: Observed (means of three plots) and simulated values by the model of leaf area index (LAI) and 

biomass under unfertilized condition (Bars are values of standard deviation). 

 

 

The model slightly underestimated the total biomass produced under fertilized conditions 

between 150-195 days after planting. In the fertilized treatments, simulated nitrogen stress 

was probably too high between 150 and 195 days after planting. This could be due to an 

overestimation of yam nitrogen demand during this period, which caused increased nitrogen 

stress and lowered biomass production in the model. The overestimation of nitrogen demand 

and nitrogen stress simultaneously affects both leaf area development and duration of 

maximum leaf area extension as shown in Figure 4b. When the model optimizes the dose of 

nitrogen fertilizer, an underestimation of roughly 6.1% in  total biomass production is 

registered, which is well in agreement with the observed values compared to the simulated 

biomass production under non- optimized fertilization (an underestimation of about 11.3%). 

These observations suggest an overestimation of nitrogen demand at different growth stages 

of yam (Dioscorea alata) by the EPIC model. The same result was observed by He et al. 

(2006) in the case of corn yield, where EPIC underestimates the yield by 10%. Cabelguenne 

et al. (1990) also reported an underestimation of wheat yield and biomass by the EPIC 

model. In another study, simulations obtained with EPIC show an overall underestimation of 

maize biomass when compared with measurements averaged over all input levels; the mean 

production was 17.16 Mg ha-1, instead of the 18.63 Mg ha-1 measured (Cabelguenne et al., 

1999). 
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Figure 4b: Observed (means of three plots) and simulated values by the model of leaf area index (LAI), and 

biomass under fertilized condition (Bars are values of standard deviation). 

 

 

Table 2a: Comparison of mean values of observed tuber yield (from field experiments) and simulated tuber yield 

(from model output), mean residual error (ME), and mean relative error (MR).  

 

    
Table 2b: Comparison of mean values of observed total biomass production (from field experiments) and 

simulated total biomass production (from model output), mean residual error (ME), and mean relative error (MR).  

 

Treatment Simulated (Mg ha-1) Observed (Mg ha-1) ME MR (%) 

 

Control 

 

2.64 

 

2.78 

 

0.14 

 

- 5.0 

Fertilized 

Optimum 

fertilization 

 

3.92 

4.15 

 

4.42 

4.42 

0.50 

0.27 

- 11.3 

- 6.1 

  

Treatment Simulated (Mg ha-1) Observed (Mg ha-1) ME MR (%) 

        

      Control 

Fertilized 

Optimum 

fertilization 

 

2.44 

3.72 

3.94 

 

2.59 

4.12 

4.12 

 

0.15 

0.40 

0.18 

 

- 5.7 

- 9.7 

- 4.3 
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When EPIC was used to simulate sunflower growth, LAI and yield, Kiniry et al. (1992) found 

that measured and simulated yields were very similar. The mean square error (Wallach and 

Goffinet, 1987) of prediction was 0.078, representing an absolute root mean squared error of 

0.28 Mg ha-1, which was equal to 10% of the observed yield. A similar study was conducted 

to evaluate EPIC’s ability to simulate the growth and yield of corn (Zea mays L.), grain 

sorghum (Sorghum bicolor L.), Sunflower (Helianthus annuus L.), soybean (Glysine max L.) 

and wheat (Triticum aestivum L.). When grown in rotations at three levels of management 

inputs, including three levels each of fertilizer, irrigation and tillage over a 5-year period, the 

root mean square error of simulated model grain yield ranged from 0.4 Mg ha-1 for sunflower 

to 1.6 Mg ha-1 for corn. The conclusion rests in the proven capacity of EPIC in simulating 

yield for the above mentioned crops (Cabelguenne et al., 1989).  

 

        

Figure 5: Determination of coefficient between observed and simulated yield of yam (data of fertilized and 

unfertilized yield together from year 2005 and 2006 have been plotted). 

 

YAMSIM (a crop growth model) simulates dry matter accumulation by using the SUCROS 

(Spitter et al., 1989) sub-model as EPIC does. Montero (1997) compared simulated yam 

yields with results from field trials in Costa Rica (with Dioscorea alata). The model 

overestimated LAI by 45-55%, as well as leaves and stems (mostly above 50%), whereas 

tuber DM was underestimated. However, general agreement between the pattern of the 

curves describing measured and simulated DM production was promising. It has been 

indicated that EPIC is best suited for long-term simulations and that it did not adequately 

simulate variability in yields between years (Williams et al., 1989; Kiniry et al., 1995). This is 
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shown in Figure 5, which indicates some variance when simulated and observed yields from 

single plots and individual years are plotted. Bryant et al. (1992) pointed out that EPIC, and 

other simulation models, are best used to generate simulated yield distributions that are 

similar to measured yield distributions, rather than trying to match measured yields in each 

single year. The estimation of parameters is a complex approach in dynamic simulation 

models, because of the great number of sensitive parameters involved. Additional data sets 

are necessary for a complete and rigorous optimization of the model for the large range of 

yam varieties used in Africa and elsewhere. In crops receiving normally distributed rainfall 

and adequate fertilization, the variability between years in plant growth is usually not very 

high, provided that incidence of weeds, pests and diseases is minimal. Under such 

conditions, the model can provide adequate predictions. 
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CHAPTER 5 

 
Estimating the availability of fallow for yam (Dioscorea alata) production using 

a crop model 
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5.1. Introduction 

 

Yam (Dioscorea spp.) is the third most important tropical root crop after cassava (Manihot 

esculenta Crantz.) and sweet potato (Ipomoea batatas L. Lam.) in West Africa, Central 

America, the Caribbean, Pacific Islands and Southeast Asia (Onyeka et al., 2006). Although, 

there has been a decline in yam production relative to cassava and rice in Africa, yam is a 

preferred staple food and, considering projected population increases, total production is 

likely to increase in the future (Srivastava and Gaiser, 2008).  

Agriculture practices in the Republic of Benin (West Africa) are characterized by low input 

technologies and soil fertility is restored by fallowing the cropland for a number of years 

depending on the availability of land. Few attempts have been tried to incorporate fallow 

effects into crop modeling at the catchment or regional scale (Van Nordwijk, 2002). However, 

information about fallow duration and management across farms within a region is often not 

available but will affect simulation results. Fallow availability may be a way to consider fallow 

effects in regional modeling and assessment studies but has not been explored yet.  

The objective of this study was to estimate the fallow availability for yam production using the 

crop growth model EPIC (Environmental Policy Integrated Climate). The EPIC (version 3060) 

model was calibrated at field scale for yam (Srivastava and Gaiser, 2009) and applied at the 

district scale in the sub-humid savannah zone in West Africa. Different scenarios of fallow 

availability and its effect on yield were explored and compared with yields obtained from 

regional statistics.  

 

 

5.2. Material and methods 

 

5.2.1. MODEL DESCRIPTION  

 

The EPIC model consists of nine integrated sub-models: hydrology, weather, erosion, carbon 

and nutrient cycling (N, P, and K), plant growth, soil temperature, tillage, economics, and 

plant environment control. In its current form, EPIC is well suited for assessing the effects of 

soil erosion on crop productivity, predicting the effects of management decisions on soil, 

water, nutrient, and pesticide movements, and tracing the allocation and turnover of C and N 
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in soil. The model operates on a daily time step and is capable of long-term simulations of up 

to 4000 years with soil profiles having up to 10 layers. 

 

5.2.2. CROP GROWTH MODEL  

 

A single plant growth model is used in EPIC to simulate biomass accumulation and crop yield 

of about 130 crops, each with a unique set of growth parameters (e.g., radiation use 

efficiency, RUE; potential harvest index, HI; optimal and minimum temperatures for growth; 

maximum leaf area index, LAI; and stomatal resistance). EPIC is capable of simulating 

growth for both annual and perennial crops. Annual crops grow from planting date to harvest 

date or until the accumulated heat units during the simulation equal the potential heat units 

for the crop (Williams, 1995). EPIC estimates crop yields by multiplying aboveground 

biomass at maturity by a harvest index. For non-stressed conditions, the harvest index is 

affected only by the heat unit index. The final HI is estimated based on the potential HI, 

minimum harvest index, and water use ratio. The model estimates potential biomass based 

on the interception of solar radiation and the RUE that is affected by vapor pressure deficit 

and by atmospheric carbon dioxide concentration. Water, nutrient, temperature, aeration, 

and radiation stresses restrict daily accumulation of biomass, root growth, and yield 

(Williams, 1995). Stress factors are calculated daily and range from 0.0 to 1.0. For plant 

biomass, the stress used on a given day is the minimum of the water, nutrient, temperature, 

and aeration stresses. For root growth, it is the minimum of the calculated soil strength, 

temperature, and Aluminum toxicity stresses. In addition, crop yield reductions are calculated 

through water stress-induced reductions of the HI. 

A prerequisite to use a field scale model at the regional scale lies in the evaluation of the 

model performance at different areas in the target region. EPIC model has been applied for 

yam (Srivastava and Gaiser, 2009), cassava, millets, sorghum (Adejuwon, 2004) and maize 

with reasonable accuracy except for sites with highly acid soils (Gaiser et al., 2008b). The 

same model version (EPIC 3060) has been used in the present study.  
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5.2.3. STUDY AREA AND SIMULATION UNITS 

 

The Upper Ouémé basin covers an area of 14,500 km2 within the Republic of Benin. The 

climate is tropical sub-humid with a mean annual temperature of 26.8°C and mean annual 

precipitation of 1150 mm (Mulindabigwi et al., 2008). According to the FAO soil classification, 

the predominant soils are Luvisols with variable depth and coarse fragment content. Soils 

with plinthic layers occur frequently (Giertz and Hiepe, 2008). Soil texture in most of the 

cases is sandy in the top layers and loamy to clayey in the subsoil. Soil pH is neutral to 

slightly acid.  

The catchment has been subdivided into 121 sub-basins. Each sub-basin is composed of up 

to 15 response units of variable size which constitute the spatial simulation units (LUSAC= 

Land Use-Soil Association-Climate units). A total of 960 simulation units were identified. The 

LUSAC units have variable surface and represent an area with similar climate conditions, soil 

characteristics and a representative crop and soil management. All data were gathered in the 

database of the spatial decision support system PEDRO (Protection du sol Et Durabilité des 

Ressources agricoles dans le bassin versant de l'Ouémé), which combines the agro-

ecosystem model EPIC with the hydrological model SWAT (Arnold et al., 1998). PEDRO 

provided representative soil profile data for the dominant soil type of each of the 38 mapping 

units of the soil association map. Topographical information for each sub-basin including 

average slope inclination and length were extracted from the DEM (Digital Elevation Model) 

provided by the global SRTM (Satellite Radar Topographic Mission). 

 

5.2.4. SIMULATION OF TUBER YIELD 

 

The simulation of tuber yield and upscaling of the simulation results to obtain regional 

estimations of mean tuber yield for each sub-basin was done according to the procedure 

described by Gaiser et al. (2008a). The procedure consists in the following steps (Figure 1).  

 

• Preparation of EPIC input database file for each LUSAC unit 

• Running the simulations for each LUSAC unit. 

• Extracting the output files and transfer it to the database. 

• Aggregation of the results at district level. 
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Figure 1: Workflow for the upscaling of EPIC simulation results to the sub-basin and district level. 

 

Each sub-basin was linked to the nearest climate station. A total of 14 rain guage stations 

were available with daily rainfall measurements from 1960 to 2005. Daily minimum and 

maximum temperature for these 14 stations were generated by the REMO model which has 

been previously calibrated for the period 1960 to 2000 (Paeth and Thamm, 2007). For the 

calculation of the potential ET the approach given by Hargreaves and Samani (1985) was 

used. Cropping systems in the Upper Ouémé basin are characterized by low-input 

agriculture. In case of yam no fertilizer is applied and soil fertility restoration depends 

exclusively on the duration of the fallow period. Hence, the availability of fallow area, which is 

reflected in the duration of the fallow period is crucial for crop production.  

 

5.2.5. AVAILABILITY OF FALLOW AREA AND FALLOW DISTRIBUTION PROCEDURE 

 

In order to assess the availability of fallow in each of the 121 sub-basins, in the first step, the 

total cropland in the year 2000 as well as the non-cropped area excluding settlements were 

estimated from satellite images (Judex, 2008). The cropland had a proportion of 1745 km2 or 

12.1%. The non-cropped area was classified into “Bush savannah” and “Tree savannah 
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(including forest)” with a total proportion of 58.2 and 29.7%, respectively. The major part of 

the land use class “Tree savannah” belongs to protected forest areas, where cropping is 

prohibited. Therefore, in a second step, the sub-basins which are located entirely or with a 

major proportion within these protected areas were excluded from the study, as well as sub-

basins where the proportion of cropland was lower than 5%. Then, for the remaining 64 sub-

basins, different scenarios of fallow availability were defined: 

Scenario 1: Total savannah area is available as fallow land 

Scenario 2: 50% of the bush savannah is available as fallow land 

Scenario 3: 25 % of the bush savannah is available as fallow land 

 

In the remaining sub-basins the percentage of cropland was on average 19.8% (Table 1), 

which corresponds to a fallow-crop ratio of 4:1 or a fallow-crop-cycle with 1 years cropping 

and 4 years of fallow. However, in some sub-basins the proportion of cropland was lower or 

higher. Therefore, for the simulations at the LUSAC level, fallow-crop cycles with 1 year of 

cropping and 5 years of fallowing and a crop rotation without fallow were also defined. 

Simulation duration was 18 years from 1988 to 2005.  

 

Table 1: Proportion of land use classes and resulting fallow-cropland ratio within the Upper Ouémé basin. 

 

 All sub-basins Sub-basins with cropland 

 Km
2 

% of total  

area Km
2 

% of total 

area 

Cropland 1745 12.1 1745 19.8 

Bush savannah 8403 58.2 5324 60.4 

Tree savannah 4284 29.7 1752 19.9 

Total 14432 100.0 8821 100.0 

Average fallow-cropland ratio 7.3  4.1 
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In further step, each of the 64 sub-basins were classified according to their average fallow-

cropland ratio in the three scenarios. Seven fallow-crop classes were defined with average 

percentage of cropland between 17% (Fallow-crop class 1) to 100% (Fallow-crop class 7). In 

fallow-cropland class 1 the average fallow-cropland ratio is 4.9 (Table 2) which means that 

4.9 ha of fallow are available against 1 ha of cropland, whereas in fallow-crop class 7 no 

fallow land is available and all land is used for cropping. Thus, from class 1 to 7 the fallow-

cropland ratio and hence fallow availability are decreasing. Each sub-basin was categorized 

into one of these seven classes. 

 

Table 2: Definition of regional fallow-crop classes according to their average fallow-cropland ratio. 

 

Fallow-

cropland 

class 

Cropland 

area  

 

Fallow-cropland 

ratio 

 Crop cycles without fallow    Fallow-crop cycles 

 
 

 Area Cropland Area Cropland 

 (%)  (%) (%) (%) (%) 

1 17 4.9 0 100 100 17 

2 25 3.0 10 100 90 17 

3 38 1.6 25 100 75 17 

4 50 1.0 40 100 60 17 

5 67 0.5 60 100 40 17 

6 83 0.2 80 100 20 17 

7 100 0.0 100 100 0 17 

   

Crop management was defined in the simulations according to the prevailing, traditional field 
activities. 

 

5.2.6. DATA AGGREGATION AND STATISTICAL ANALYSIS 

 

For the regional analysis, yield data are available at the district (French: commune) level in 

Benin (INRAB, 2005). Data series from 1988-2005 were available from the National 
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Agricultural Research Organization (INRAB). Therefore, tuber yield of yam was calculated 

within each LUSAC for the period 1988 to 2005. Then, tuber yields were aggregated from the 

LUSAC level to both the sub-basin and commune level taking into account the area share of 

the LUSACs within these larger spatial units in order to obtain the average tuber yield Ys. as  

   ∑=
ii

N

i

s
AreaYY *  

with 

 Ys is the average tuber yield per sub-basin/ district in t ha-1 a-1 

 Yi is the tuber yield in LUSAC unit i in t ha-1 a-1 

 Areai is the decimal area percentage of LUSAC unit i in the respective sub-basin/ 

district. As a measure of precision to compare statistical data and simulated values the 

following parameters were used (Papula 1982): 

 

a. The mean residual error ME as 

ME
n

y x
i

i

n

i
= −

=

∑
1

1

( )  

b. The mean relative error MR as 

MR
n

y x

x

i i

ii

n

=
−

=

∑
1

1

( )
 

Where n is the sample number, x is the observed and y is the simulated value. The mean 

relative error (MR) gives an indication of the mean magnitude of the error in relation to the 

observed value. Small values indicate little difference between simulated and measured 

values. Regression analysis was performed with the MS EXCEL software program. 
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5.3. Results and discussion 

5.3.1. DISTRIBUTION OF FALLOW CLASSES AND MODEL CALIBRATION 

 

The frequency distribution of fallow-cropland classes obtained by the fallow distribution 

procedure is sensitive to the scenarios of fallow availability. In Scenario 1, where all non-

cropped land is available for fallowing, 38 out of 64 sub-basins belong to the fallow-cropland 

class 2 with an average fallow-cropland ratio of 3.0, which means that 3 ha of fallow are 

available for one hectare of cropland (Figure 2). 

 

 

 

 

 

 

 

 

 

                           

Figure 2: Spatial distribution of fallow-cropland classes in the Upper Ouémé catchment as affected by three 

different scenarios of fallow availability (left: 100% availability of fallow land; right: 25% availability of fallow land; 

down: 50% availability of fallow land). For description of fallow-cropland classes see text and Table 2. 



 

 
51 

On the other hand, in scenario 3, where it is assumed that only 25% of the bush savannah is 

available as fallow land, none of the sub-basins falls into this class, but 50% of the sub-

basins fall into class 4 with a fallow-cropland ratio of 1.0.  

 

Table 3: Mean observed and simulated tuber yields of the nine districts of the Upper Ouémé basin from 1988 to 

2005 for three scenarios with different fallow availability (ME = Mean Residual Error and MR = Mean Relative 

Error). 

 

 Weighted 

mean 

fallow 

area over 

all 64 

sub-

basins 

(%) 

   Observed 

(tons ha-1) 

    Simulated 

    (tons ha-1) 

        ME               

(tons ha
-1

) 

MR (%) 

 

All 

rangeland  

as fallow 

 

75.2 

 

4.3 

 

5.3 

 

1.0 

 

23 

 

50% 

rangeland as 

fallow 

 

59.5 

 

4.3 

 

4.6 

 

0.3 

 

8.0 

 

25% 

rangeland as 

fallow 

 

44.7 

 

4.3 

 

3.4 

 

-0.9 

 

-20 

 

  

In the period 1988-2005, the mean annual observed tuber yield in the nine districts of the 

Upper Ouémé basin was 4.3 tons ha-1 according to the reports of the agricultural statistics 

(Table 3).  
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Figure 3: Simulated versus Observed average yam tuber yields (in tons ha-1) of 9 districts belonging to the Upper 

Ouémé basin for three different scenarios with decreasing fallow availability. 

 

Figure 3 shows that the correlation between the observed and simulated mean yam tuber 

yields for the nine districts, with coefficients of determination between 0.32 and 0.03 

depending on the assumptions with respect to fallow availability. However, the mean yield 

over the nine districts, i.e., 4.3 tons ha-1 (INRAB 2005), is overestimated by 22 % if the entire 

not cropped area would be considered to be available as fallow land (Scenario 1).         

Gaiser et al. (2008b) reported from a multi-location validation in tropical regions, that maize 

yield predictions by the EPIC model at the field scale are overestimated on highly acid soils. 

However, this is not the case in the Central Benin, where mean soil pH ranges between 6.1 

and 7.4 in the topsoil and 6.1 to 7.9 in the subsoil (Junge 2004, Igue 2000). However, a 

major factor determining yields at the farm and regional scale is the availability of fallow and 

to which extent it is included in the crop rotations. With decreasing availability of fallow land, 

the mean simulated crop yield at the district level decreases. When available fallow land is 

reduced to 50 or 25% (Scenario 2 and 3) the mean annual yam yield is 4.6 and 3.4 tons ha-1 

over all districts (Table 3). For the scenarios 2 and 3 the mean errors between simulated and 

observed yields are 0.3 tons ha-1 a-1 and -0.9 tons ha-1 a-1, with mean relative errors of 8 % 

and -20%, respectively. Therefore, the best agreement has been realized from the Scenario 

2 (i.e., 50% of the bush savannah is available as fallow) that falls under fallow-cropland class 

3 (Table 2) which suggests that 59.5 % of the land area fallowed are available for yam 

cultivation (Table 3) and also corresponds to an average fallow period of 1.6 years compared 
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to 1 year of cropping (Table 2). This is in the concordance with the regional surveys done in 

farms and villages within the districts. The small overestimation in this scenario can be 

explained by the fact that in the present version of EPIC, allocation of assimilates is 

regulated only by the plant developmental stage and is based on observations from few 

experiments. Direct responses of the partitioning pattern to changing environmental 

conditions across fields in the regions are considered. Also, EPIC simulates except for weed 

competition only effects of abiotic stresses. Hence, yield losses due to pests, diseases and 

extreme events (storm, hail) which can be observed frequently on farmer fields in Benin, are 

not considered in the model.  
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CHAPTER 6 

 

 Discussion 
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6.1. Overall Discussion 

 

The importance of yam (Dioscorea spp.) as a major staple food in the Republic of Benin 

(West Africa), together with its decreasing productivity, motivated this study which involved 

both investigating the effect of different management practices on yam production and 

combining the results within a crop growth model. 

With the first experiment in this thesis (chapter 2), we tried to analyze the effect of different 

sources of fertilizer (i.e., N P K fertilizer, manure and crop residue) on yam (Dioscorea 

rotundata var. Kokoro), tuber and total biomass production, along with the partitioning pattern 

of photosynthetic assimilates among different plant parts from a 3 year (2001 to 2003) 

dataset. The same study was carried out for a different yam species (Dioscorea alata var. 

Discovery), which considered only the effect of mineral fertilizer in a 2 year (2005 and 2006) 

experiment. We concluded from the experiments that mineral fertilizer treatment had a 

significantly (p<0.05) positive effect on the total biomass production and tuber yield of both 

yam species. In 2001, the total biomass production and tuber yield of D. rotundata increased 

by 18% and 23% respectively in mineral fertilized plots, as compared to the unfertilized plots. 

Whereas greater effect of mineral fertilizer on total biomass production and tuber yield was 

observed in 2002 and 2003 (around 21% and 30% increase respectively), as compared to 

unfertilized plots. This observation could be attributed to the higher rate of fertilizer 

application (N42:P30:K60 kg ha-1 in 2002 and 2003 compared to N30:P30:K60 kg ha-1 in 

2001) and a higher, well distributed rainfall registered in 2002 (1087 mm) and 2003        

(1081 mm), compared to 935 mm rainfall in 2001. In year 2005 and 2006, yam (D. alata) was 

fertilized at the rate of (N88:P69:K42 kg ha-1) and increases of about 44% in tuber yield and 

42% in total biomass production, were registered. Whereas in 2006, the response to fertilizer 

treatment was more pronounced, with a highly significant increase (p<0.001) of about 85% 

and 84% in tuber yield and total biomass production respectively, as compared with 

unfertilized treatment. The stronger effect in 2006 could be explained by the better water use 

efficiency of the crop, as this year received well distributed rainfall throughout the growing 

period of yam; the same was observed in 2002 and 2003 (mentioned above). This may have 

enhanced the uptake of nutrients by the crop resulting in improved stomata regulation and 

the metabolic efficiency of the crop. We also know from earlier studies that leaf area index 

(LAI) generally increased with mineral fertilizer application in yam plants due to increased 

leaf production and leaf duration (Law-Ogbomo et al., 2007). Law-Ogbomo and Remison 

(2008) have observed a significant correlation between yam growth rate and LAI (r = 0.66; 

p<0.05). They further demonstrated the effectiveness of higher LAI resulting from fertilizer 
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application in influencing plant growth and vigor. These findings were in agreement with the 

findings of Nwinyi (1983), which showed significantly higher yields in fertilized than in 

unfertilized yam plants. Chapman (1965) also obtained a 30% increase in tuber yield of D. 

alata. However, Gbedolo (1986) reported that experimentation with mineral fertilizers in 

Benin has rarely produced positive results. D. alata responded more to mineral fertilization 

compared to D. rotundata, which was also observed in the 2005 and 2006 experiment. A 

recent study conducted in International Institute of Tropical Agriculture (IITA), Yam Research 

Coordination Unit, Benin Republic (Personal communication) showed that among all the 

types of fertilization used, D. alata seems to respond more frequently to mineral fertilizer 

(67% positive response), as compared to the species D. rotundata (45% positive response). 

This difference in response between species has already been shown for D. alata and D. 

rotundata (Obigbesan et al., 1977; Ferguson and Haynes, 1971). In the experiment from 

2001 to 2003, the effect of organic fertilizer on yam (D. rotundata) yield was positive, but not 

significantly different from the yield under unfertilized conditions. We observed an increase of 

16 % and 13 % yield under manure and crop residue application respectively. Regarding 

partitioning pattern of photosynthetic assimilates to different plant parts of D. rotundata and 

D. alata, there was no significant difference observed in the partitioning rate between 

fertilized and unfertilized conditions, but a positive correlation between harvest index and 

fertilizer application rate was noticed in D. rotundata (Figure 1). This observation is in 

accordance with the reports of Anon (1980) and Law-Ogbomo and Remison (2008), who 

also reported a consistent positive correlation between harvest index and fertilizer application 

rate. The positive correlation between HI and fertilizer rate is an indication of the enhanced 

efficiency of translocation of photosynthetic assimilates to the tuber, resulting in a higher HI 

due to increasing fertilizer rate. 
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Figure 1: Effect of different rate of fertilizer application (kg ha-1) on the harvest index of D. alata and D. rotundata. 

From the experiments above, we derived some values of the growth parameters required for 

the modeling of yam growth and development in the next stage of the research work, which 

deals with the parameterization and calibration of the EPIC model (version 3060), at field 

scale, for simulating the yield and biomass production of yam (Dioscorea alata var. Florido). 

We developed a new crop parameter file for yam (D. alata) and evaluated the performance of 

the EPIC model by comparing simulations of two years of yam yields with the experiment 

conducted in Chapter 3. The model accurately simulated the effect of fertilizer on yam yield, 

as indicated by relatively low mean residual errors of the calculated values ranging from 0.15 

to 0.40 Mg ha-1 with mean relative errors ranging from 4.3 to 9.7 %. There was a good 

correlation between simulated and observed mean yields during 2005 and 2006                  

(R2 = 0.69, p < 0.01). The model could be used for improving the fertilizer management in 

Dioscorea alata production. Figure 2 clearly demonstrates that yam yield could be increased 

to about 74%, by applying nitrogen fertilizer at the rate of 200 kg ha-1 with a planting density 

of 0.88 plants m-2. Whereas, a profound increase of about 160% in yam yield could be 

achieved with the same rate of nitrogen fertilizer application, by setting the planting density at 

2 plants m-2. As the model has been calibrated for the growing conditions of yam (Dioscorea 

alata var. Florido), in sub-humid tropical savannah regions, care should be taken when using 

the model to simulate production quantities, if yam varieties and climatic conditions differ.   
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Figure 2: Yam yield under different nitrogen fertilizer application rate (kg ha-1) at two levels of planting density 

(plants m-2). 

 

Finally, the calibrated EPIC model was used for estimating the fallow availability for yam 

cultivation at the regional scale, which is particularly important for yam production because of 
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its high nutrient requirements. The model was incorporated into the spatial decision support 

system (SDSS) PEDRO (Protection du sol Et Durabilité des Ressources agricoles dans le 

bassin versant de l'Ouémé). Different scenarios of fallow availability were explored in a 

typical catchment within the sub-humid Savannah zone of West Africa. Yam-fallow rotations 

were simulated within 960 quasi-homogenous spatial units (LUSAC) and then aggregated to 

the 121 sub-basins within the catchment under three different scenarios of fallow availability: 

(S1) Total savannah area is available as fallow land; (S2) 50% of the bush savannah is 

available as fallow land, and (S3) 25% of the bush savannah is available as fallow land. A 

new aggregation procedure was developed based on changes in the frequency of fallow-

cropland classes within the sub-basins to render the SDSS PEDRO sensitive to changes in 

fallow availability. Comparison of the average simulated tuber yield with the observed mean 

yield over the catchment shows that the simulations overestimated yam tuber yields by 23% 

and 8% for scenario S1 and S2 respectively, but underestimated the yield by about 20% 

under scenario S3. The best agreement between simulated and observed crop yields over 

the whole catchment was found when using the assumption that 50% of the bush savannah 

is available as fallow land under the prevailing cropping pattern. If we compare the decrease 

of 20% in yam tuber yield under scenario S3 (which would be the most likely situation in the 

days ahead for Benin Republic because of increasing demographic pressure), with the yield 

obtained under fertilized conditions (mean value over 3 yrs. experiment, from 2001 to 2003), 

an increase of about 0.6 t ha-1 (about 22 % increase) dry matter equivalent to 1.8 t ha-1 fresh 

matter has been registered by applying nitrogen at the rate of 38 kg ha-1 (mean value over 

3yrs. experiment, from 2001 to 2003). We can conclude from this that by applying nitrogen at 

the rate of 38 kg ha-1, current level of yam productivity (i.e., 4.3 t ha-1, Source: INRAB, 2005) 

could be maintained. 

The results show the sensitivity of regional yields of yam to fallowing and how a crop model 

can be used to analyze fallow practices in a region. However, the results obtained from the 

EPIC applications stress the need for more research to better understand and model fallow 

duration and fallow management practices (at the regional scale) and to consider these 

effects in regional assessments of cropping systems in which fallowing is an important soil 

fertility restoration measure.  
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6.2. Cost-Benefit Ratio 

 

Based on the fertilizer rate required to maintain the current yam productivity in the Upper 

Ouémé basin derived from the field experiments, here we have tried to analyze whether the 

application of fertilizer is a profitable venture to the farmers or not. 

 

Additional Cost    
    
- Urea (kg-1) 300 CFA 
- Total urea required to maintain the current yam productivity (kg ha-1)  83 
- Total urea cost (ha-1 yr-1) 24900 CFA  

    
Additional Revenue   
    
- Current market price of yam in Benin Republic (kg-1) 300 CFA 
- Increase in yam tuber productivity (kg ha-1)  1800 
- Additional revenue generated per year 540,000 CFA  

    
 
Net benefit [(Additional Revenue) - (Additional Cost)] 515100 CFA = 860 € 

    
 

On calculating the cost-benefit ratio, application of nitrogen fertilizer is a profitable option to 

the farmers. 
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CHAPTER 7 

 

Conclusions at a Glance 
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7. Conclusions at a Glance 

 

Motivated by the problem of declining productivity of yam species in Benin Republic, the 

effect of organic and inorganic fertilizers on yam yield and biomass production were 

analyzed. We also modeled the growth and development of yam by using a process based 

biophysical crop model. From this work, the following conclusions can be drawn:  

 

• Application of mineral fertilizer significantly increases the yield of both species of 

yam (Dioscorea alata and Dioscorea rotundata), in the Upper Ouémé basin 

(Benin Republic). Whereas, the effect of organic fertilizer was positive but not 

significant. The magnitude of effect depends on the species of yam, and rainfall 

amount and distribution. 

• With the newly developed crop file for yam (Dioscorea alata var. Discovery), the 

EPIC (Environmental Policy Integrated Climate) model (version 3060) is able to 

simulate the mean biomass production and tuber yield of yam over two years 

under fertilized and unfertilized conditions with acceptable accuracy at field scale. 

However, validation of the model performance is still required. 

• The EPIC (Environmental Policy Integrated Climate) model was successfully 

applied to analyze the sensitivity of yam productivity to fallow periods at the sub-

basin scale in Benin Republic. The results show that on an average 59.5 % of the 

total available land must be under fallow for maintaining the current yam 

productivity in the study area. This corresponds to an average fallow period of 1.6 

years compared to 1 year of cropping. 

• Yam productivity could be increased by maintaining soil fertility via fallowing the 

crop land and applying mineral fertilizer. Nitrogen fertilizer application is a 

profitable venture. However, its accessibility to the farmers holds the key. 
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