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Ich werde nicht sterben.  

Heute an diesem Tag voller Vulkane,  

ich trete hervor, der Menge entgegen, dem Leben zu. 

Pablo Neruda 

(„Voy a Vivir“, Canto General, 1949) 





ABSTRACT 
 
 
In the irrigated agriculture of Central Asia, low nitrogen (N) fertilizer use efficiency in cotton 
(Gossypium hirsutum L.) and winter wheat (Triticum aestivum L.) decreases yields and farm income. 
Current N-fertilizer use is based on recommendations from Soviet times when fertilizer supply was 
subsidized to maximize production at all costs. Modern N management needs to enable farmers to 
obtain stable crop yields of good quality and preserve the environment. The present study, based on 
field experiments conducted 2004-2006 in the Khorezm region, Uzbekistan, intended to (i) establish 
cotton and wheat yield and quality responses to N fertilization; (ii) evaluate N-fertilizer use 
efficiency of officially recommended N use and farmers’ practice; (iii) simulate soil N dynamics and 
yields under varying N rates, irrigation water quantities and groundwater levels with CropSyst; and 
(iv) determine the financial feasibility of different N practices. The study included labeled N 
fertilizer (15N) experiments in 2005 to quantify the fate of the applied N fertilizer. 

Although N was the most limiting nutrient, the N response curve of cotton and wheat 
yield to increasing N rates was rather flat with a yield maximum at 120 and 180 kg N ha-1, 
respectively. This can be attributed to unaccounted N supplements from ground- and irrigation water 
of around 5-61 kg ha-1. The official N recommendations of 200 and 180 kg N ha-1, for cotton and 
wheat respectively, corresponded well with both the measured and simulated N uptake at yield 
maximum. However, at this rate, the opening of cotton bolls was delayed beyond the period during 
which the ginneries offer the highest prices for cotton.  

Total N-use efficiency was very high for both crops (81-84 %). The large share of soil-
15N (48 and 47 %, respectively) indicates that immobilization processes and/or pool substitution 
strongly influenced recovery rates. Farmers’ N fertilization practice gave highest cotton yields, but 
around 22 % lower total 15N recovery rates (64 %). For wheat, an additional late N application at the 
heading stage yielded highest total 15N recovery rates (52 and 53 % in plant biomass and the soil, 
respectively). N fertilization with diammonium phosphate before seeding showed the highest N-use 
efficiency for wheat and cotton as compared to urea fertilizer. 

Cotton fiber quality was of lowest grade (i.e. 31 mm length, 25 g tex-1 strength, and 
4.08 micronaire) and remained unaffected by N treatments, timing of applications or N-fertilizer 
types. Fertilized with the recommended N amount, protein and gluten content of wheat kernels (12.3 
and 23.0 %, respectively) met the criteria of only satisfactory to good wheat filler and low to 
medium flour thickener. Increasing N rates enhanced kernel protein (15 % at 300 kg N ha-1), but not 
gluten content (25.0 %). Protein content and yield were negatively related, showing the need for 
breeding or introducing wheat varieties with narrower quality and yield potential suitable for 
irrigated conditions in Uzbekistan.  

The cotton-generic routine developed for the CropSyst model predicted the experimental 
yields with a high accuracy (RSME 1.08 Mg kg-1). Simulations show that gaseous N losses can be 
reduced by lowering the groundwater level. Increasing cotton yields without increasing N losses 
seems possible when matching water demand and supply more closely.  

For cotton, returns to N investments were highest (1,069,332 UZS ha-1 net benefit) for the 
farmers’ N practice and for N rates below 120 kg ha-1, which encouraged fast maturation of cotton 
bolls at pick 1 and 2. The economic optimum thus diverged from the plant-N demand and 
recommendations of 200 kg ha-1. The economically most promising wheat treatments were those 
fertilized with the recommended N rate of 180 kg ha-1 and those receiving additional N just before 
anthesis (340,669 UZS ha-1 net benefit). However, the present reimbursement system at the mills 
lacks attractive quality-based incentives to encourage high quality production. 

Overall, the N management and N-use efficiency in irrigated cotton and wheat production 
can be improved by changing the payment system of the ginneries and mills to encourage 
sustainable N practices and increase crop quality. Wheat quality can be further enhanced through 
late N application, or by (breeding for) better varieties. CropSyst could demonstrate the impact of 
different agricultural practices on cotton yields and soil parameters and thus can help identifying 
changes in the current management system. 



KURZFASSUNG 
 
 
VERBESSERUNG DER STICKSTOFFEFFIZIENZ UND QUALITÄT VON 
BAUMWOLLE UND WEIZEN IN DER REGION KHOREZM, USBEKISTAN 
 
 
In den bewässerten Regionen Zentralasiens verringert die geringe Effizienz der 
Stickstoffdüngung (N) im Baumwoll- (Gossypium hirsutum L.) und Weizenanbau (Triticum 
aestivum L.) die Erträge und das Einkommen der Landwirte. Der derzeitige Einsatz von N-
Düngern basiert auf Empfehlungen noch aus der Sowjetzeit. Damals wurde Dünger 
subventioniert, um mit allen Mitteln die landwirtschaftliche Produktion zu maximieren. 
Modernes N-Management muss den Landwirten ermöglichen, stabile Erträge von guter Qualität 
zu erzielen und dabei die Umwelt zu schonen. Die vorliegende Arbeit basiert auf 
Feldexperimenten, die 2004-2006 in der Region Khorezm in Usbekistan durchgeführt wurden. 
Darin werden (i) Baumwoll- und Weizenertrags- und -qualitätsfunktionen für die N-Düngung 
etabliert; (ii) die Düngeeffizienz offiziell empfohlener mit der von Landwirten praktizierter N-
Düngung verglichen und evaluiert; (iii) mit Hilfe von CropSyst die Stickstoffdynamik in Böden 
und die Erträge unter variierenden N-Düngeraten, Bewässerungsmengen und 
Grundwasserständen simuliert ; und (iv) die finanzielle Machbarkeit dieser verschiedenen N-
Praktiken bestimmt. Die Studie beinhaltete Experimente mit markiertem N-Dünger (15N) im 
Jahr 2005, um das Verbleiben des applizierten N-Düngers zu quantifizieren.  

Obwohl N der limitierendste Nährstoff war, verlief die N-Ertragskurve für 
Baumwolle und Weizen mit zunehmenden N-Raten relativ flach, mit einem Ertragsmaximum 
von jeweils 120 und 180 kg N ha-1. Dies kann nicht erfasstem N-Eintrag von rund 5-61 kg ha-1 

durch Grund- und Bewässerungswasser zugeschrieben werden. Die offiziellen N-Empfehlungen 
von 200 und 180 kg N ha-1 für Baumwolle und Weizen stimmen gut mit der gemessenen und 
simulierten N-Aufnahme für den maximalen Ertrag überein. Jedoch wird bei dieser N-Rate das 
Öffnen der Baumwollkapseln über den Zeitraum der Ernte hinaus verzögert, in welchem die 
Baumwollfabriken den höchsten Preis für Rohbaumwolle bezahlen. 

Die gesamte N-Nutzungseffizienz war für beide Kulturen sehr hoch (81-84 %). Der 
große Anteil an Boden-15N (jeweils 48 und 47 %) weist darauf hin, dass 
Immobilisierungsprozesse und die Substitution des N-Pools im Boden die Wiederfindungsraten 
stark beeinflussen. Düngung gemäß der lokal gängigen Praxis führte zu höchsten Erträgen, 
jedoch zu etwa 22 % niedrigeren totalen 15N-Wiederfindungsraten (64 %). Für Weizen führte 
eine zusätzliche späte N-Applikation zum Zeitpunkt des Ährenschiebens zu höchsten Gesamt-
15N-Wiederfindungsraten (52 und 53 % in Pflanzen und Boden). N-Düngung mit 
Diammoniumphosphat vor der Saat zeigte die höchste N-Nutzungseffizienz für Weizen und 
Baumwolle im Vergleich zu Ureadünger. 

Die Baumwollfaserqualität war von niedrigster Kategorie (usbekische Klassifikation, 
d.h. 31 mm Länge, 25 g tex-1 Faserstärke, und 4,08 Micronaire) und blieb unbeeinflusst von N-
Anwendung, Zeitpunkt der Applikation oder N-Düngeform. Trotz Düngung in empfohlener 
Höhe erwiesen sich die Protein- und Klebergehalte (jeweils 12,3 and 23,0 %) lediglich als von 
befriedigender und guter Qualität und als schlechte bis mittlere Mehlverbesserer. Zunehmende 
N-Raten erhöhten das Protein in den Körnern (15 % bei 300 kg N ha-1), jedoch nicht den 
Klebergehalt (25,0 % bei 300 kg N ha-1). Der Proteingehalt und der Ertrag waren negativ 
korreliert. Dies zeigt die Notwendigkeit der Züchtung oder Einführung von Weizensorten mit 
einem engeren, auf die Bewässerungslandwirtschaft Usbekistans zugeschnittenen Qualitäts- und 
Ertragspotenzialverhältnis.  

Die generische Baumwollroutine, die für das CropSyst-Modell entwickelt wurde, 
prognostizierte die experimentellen Erträge mit hoher Genauigkeit. Die Simulationen zeigten, 
dass gasförmige N-Verluste durch die Absenkung des Grundwasserspiegels reduziert werden 



können. Eine Erhöhung der Baumwollerträge ohne zunehmende N-Verluste ist möglich, wenn 
Wasserbedarf und -verfügbarkeit besser aufeinander abgestimmt werden.  

Für Baumwolle waren die Renditen der N-Investitionen am höchsten zu den von den 
Bauern praktizierten Düngezeitpunkten (1.069.332 UZS ha-1 Gewinn), und auch bei niedrigen 
N-Gaben, welche die schnelle Reifung der Baumwolle zur ersten und zweiten Pflücke 
stimulieren. Das ökonomische Optimum unterschied sich daher sowohl vom N-Bedarf der 
Pflanzen als auch von den offiziellen (höheren) Düngeempfehlungen. Die ökonomisch 
vielversprechendsten Weizenexperimente waren diejenigen, welche mit der empfohlenen N-
Menge gedüngt wurden und jene, die eine zusätzliche N-Düngung kurz vor der Blüte erhielten 
(340.669 UZS ha-1 Gewinn). Jedoch fehlt dem Zahlungssystem der Weizenmühlen derzeit der 
qualitätsbezogene finanzielle Anreiz, um die Bauern zu motivieren, Weizen höherer Qualität zu 
erzeugen. 

Das N-Management und die N-Nutzungseffizienz in der Baumwoll- und 
Weizenproduktion können durch Veränderungen im Zahlungssystem der Baumwollfabriken und 
Weizenmühlen verbessert werden. Die dort geschaffenen Anreize können zur nachhaltigen N-
Düngepraxis anregen und gleichzeitig die Produktqualität erhöhen. Die Weizenqualität kann 
durch späte N-Düngeapplikationen oder durch bessere Sorten(züchtung) gesteigert werden. Das 
Model CropSyst konnte den Einfluss verschiedener landwirtschaftlicher Praktiken auf den 
Baumwollertrag und auf die Bodenparameter aufzeigen. Es kann somit helfen, Veränderungen 
im derzeitigen Mangementsystem anzuregen. 

 



 

АБСТРАКТ 
 
 
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ АЗОТА И 
КАЧЕСТВА ПРОДУКЦИИ В ХОРЕЗМСКОЙ ОБЛАСТИ УЗБЕКИСТАНА 
 
 
В условиях орошаемых почв Центральной Азии низкий уровень эффективности азотных 
удобрений на посевах хлопчатника (Gossypium hirsutum L.) и озимой пшеницы (Triticum 
aestivum L.) приводит к снижению урожайности и доходов фермерских хозяйств. 
Применение азота (N-удобрений) в настоящее время основано на рекомендациях 
разработанных в бытность Союза, где основной целью являлось получение 
максимальных урожаев культур. Современные методы применения N-удобрений 
призваны оказать помощь фермерам в получении стабильных урожаев, обеспечивая при 
этом высокое качество продукции и сохранение окружающей среды.  

Настоящее исследование, основанное на полевых опытах, проведенных в 
период 2004-2006 гг. в Хорезмской области Узбекистана, имеет следующие цели: (i) 
определение влияния N-удобрений на урожай и качество хлопка-сырца и озимой 
пшеницы; (ii) оценка эффективности использования N-удобрений на основе 
официальных рекомендаций и фермерской практики; (iii) с помощью модели CropSyst 
симуляция динамики азота почвы и урожайности в зависимости от норм азота и полива, а 
также уровня грунтовых вод; (iv) экономическая оценка разных практик применения N-
удобрений. В исследованиях (2005 г.) использовался изотоп азота 15N для количественной 
оценки эффективности использования растениями азота вносимых удобрений. 

Результаты исследований показали то, что хотя азот и является основным 
лимитирующим элементом питания растений, отзывчивость урожаев хлопка-сырца и 
зерна озимой пшеницы на возрастающие нормы N-удобрений была слабой, с 
максимумом при 120 и 180 кг N га-1, соответственно. Это можно объяснить влиянием 
неучтенных количеств азота, содержащихся в поливной и близлежащей к дневной 
поверхности почвы грунтовой воде в объеме 5-61 кг га-1. Нормы азота 200 и 180 кг га-1 по 
рекомендации узбекских НИИ хорошо согласовываются с нашими данными по выносу 
азота растениями при максимуме урожаев, определенных на основе полевых опытов и 
модели. Однако при данных нормах азота раскрытие коробочек хлопчатника 
запаздывало, что календарно не совпадает с периодом, когда со стороны 
хлопкопринимающих организаций устанавливается наивысшая цена за качество волокна.  

Общая эффективность использования азота была высокой для обеих культур 
(81-84 %) и значительная часть азота 15N (соответственно 48 и 47 %) закрепилась в почве. 
Это указывает на существенное влияние процесса иммобилизации и/или азотного пула на 
связывание азота в почве. Фермерская практика использования N-удобрений обеспечила 
самый высокий урожай хлопчатника, но самый низкий вынос и коэффициент 
использования азота 15N растениями (64 %). Внесение N-удобрений и проведение 
последующего полива на ранних стадиях развития хлопчатника способствовало 
значительному увеличению непроизводительных потерь азота. Дополнительное внесение 
N-удобрений в фазе колошения пшеницы обеспечило наибольший коэффициент (52 % и 
53 % в биомассе растений и в почве, соответственно) использования азота 15N 
растениями. Наивысшая эффективность использования азота пшеницей и хлопчатником 
достигнута при применении диаммофоса в предпосевном удобрении.  

Качество хлопкового волокна в опыте было низким (в соответствии с узбекской 
классификацией, т.е. длиной в 31 мм, прочностью 25 г tex-1 и 4,08 micronaire) независимо 
от применяемых норм, сроков и форм N-удобрений. С применением рекомендованного 
количества азотного удобрения содержание протеина (12,3 %) и клейковины (23,0 %) в 
зерне пшеницы соответствовало критерию от «удовлетворительный» до «хорошо», а 



 

муки - «низкий» до «средний». Повышение норм N-удобрений способствовало 
увеличению содержание протеина в зерне зерне (15 % при норме азота 300 кг га-1), но не 
повлияло на клейковину (25 %). Между содержанием протеина и урожаем зерна 
существовала обратная связь, что указывает на необходимость выведения или внедрения 
новых сортов пшеницы с суженной взаимосвязью качества и потенциала урожайности, 
приемлемой для орошаемых условий Узбекистана.  

С использованием базового набора данных по хлопчатнику, собранных 
специально для модели CropSyst, было возможным с высокой точностью прогнозировать 
урожай хлопка-сырца (RSME 1,08 мг кг-1). Симуляция показала, что газообразные потери 
азота могут быть сокращены путем понижения уровня грунтовых вод. Повышение 
урожайности хлопчатника без увеличения потерь азота считается возможным при точном 
соблюдении соответствия потребностей и обеспечения растений оросительной водой. 

Отдача от вложенных средств на использование N-удобрений под хлопчатник 
была наибольшей (1069332 узбекских сумов га-1 чистой прибыли) в случае с фермерской 
практикой применения удобрения и при применении низких норм азота (120 кг га-1), 
способствовавших раннему созреванию урожаев первого и второго сборов хлопка-сырца. 
Экономически оптимальная норма азота, таким образом, не была вкупе с потребностями 
растений в азоте и существующими рекомендациями (200 кг га-1). Экономически 
наиболее перспективной нормой азота на озимой пшенице было использование N-
удобрений в соответствии с существующими практическими рекомендациями  
(180 кг га-1), а также при перенесении части нормы N-удобрений в период цветения 
культуры (340669 узбекских сумов га-1 чистой прибыли). Однако существующая в 
настоящее время система оплат на мукомольных комбинатах не предоставляет стимулы 
фермерам для производства более качественного зерна пшеницы. 

В целом, эффективность использования азотных удобрений на хлопчатнике и 
озимой пшенице в условиях орошаемых почв может быть улучшена посредством 
усовершенствования методов орошения и управления грунтовыми водами, системы 
оплат на хлопковых заводах и мукомольных комбинатах с целью стимулирования 
использования совершенной практики применения N-удобрений и повышения качества 
продукции. Качество зерна может быть улучшено посредством внесения N-удобрений в 
поздние фазы развития культуры или выведения улучшенных сортов озимой пшеницы. 
Симуляционная модель CropSyst может продемонстрировать влияние различных 
агротехнологии на урожай и параметры почвы и, таким образом, стимулировать 
изменения в существующей системе возделывания культур. 
 
Ключевые слова: хлопчатник, озимая пшеница, отзывчивость на азотные удобрения, 
коэффициент использования растениями азота, качество волокна, хлебопекарное 
качество, симуляция с помощью модели CropSyst, анализ затрат и доходов 



 

АБСТРАКТ 
 
 
УЗБЕКИСТОН РЕСПУБЛИКАСИНИНГ ХОРАЗМ ВИЛОЯТИДА 
ЭКИНЛАР АЗОТДАН ФОЙДАЛАНИШ САМАРАДОРЛИГИ ВА 
МАХСУЛОТ СИФАТИНИ ОШИРИШ 
 
 
Ўрта Осиё суғориладиган тупроқлар шароитида азотли ўғитлар самарадорлигининг 
пастлиги ғўза (Gossypium hirsutum L.) ва кузги буғдой (Triticum aestivum L.) нинг 
хосилдорлиги ва фермер хўжаликларининг иқтисодини пасайишига олиб келади. Ҳозирги 
вақтда азотли ўғитларни қўллашнинг асосий мақсади Иттифоқ даврида ишлаб чиқилган 
тавсияномаларга асосланган бўлиб, экинлардан фақат юқори ҳосил олишга қаратилган. 
N- ўғитлар қўллашнинг замонавий услублари атроф муҳитни муҳофазалаш, юқори ва 
сифатли махсулотни таъминлаш, фермерларга барқарор ҳосил олишда ёрдам кўрсатишга 
қаратилган.  

Мазкур тадқиқот 2004-2006 йиллар мобайнида Ўзбекистонинг Хоразм 
вилоятида ўтказилган дала тажрибаларимизга асосланиб, қуйидаги мақсадларга эриши 
учун олиб борилган: (i) кузги буғдой ва пахта ҳосили ҳамда сифатига N-ўғитларнинг 
таъсирини аниқлаш; (ii) фермер тажрибаси ва расмий тавсияномалар асосида N-
ўғитлардан фойдаланиш самарадорлигини баҳолаш; (iii) CropSyst модели ёрдамида 
тупроқ азоти ва ҳосилдорликни азот меъёри ва суғоришга ҳамда сизот суви сатҳига 
боғлиқ равишда симуляция қилиш; (iv) Тажрибаларда N-ўғитлар қўллашнинг иқтисодий 
баҳолаш. Изланишларда ишлатилган минерал ўғит азотидан ўсимликларнинг 
фойдаланиш коэффициентини аниқлашда 15N азот изотопидан фойдаланилди. 

Изланишлар натижалари кўрсатишича, экинлар озиқланишида азот асосий 
чекловчи элемент хисоблансада, пахта ва кузги буғдой дони хосилига N-ўғитларнинг 
ортиб борган меъёрининг таъсири паст бўлди, бунда максимум ҳосил мутаносиб равишда 
120 ва 180 N га-1 қўлланилганда кузатилди. Буни тупроқ юзасига яқин жойлашган сизот 
ва суғориш сувлари таркибидаги ҳисобга олинмаган азот миқдорининг (5-61 кг га-1) 
ҳосилга бўлган таъсири билан тушунтириш мумкин. Бизнинг дала тажрибаларимизда ва 
модел асосида аниқланган максимум ҳосилда ўсимликларнинг азот ўзлаштириши бўйича 
маълумотлар, N-ўғити меъёрлари 200 ва 180 кг га-1 бўлганда, Ўзбекистон ИТИ 
тавсияномаларига тўлиқ мос келади. Бироқ, қўлланилган азот меъёрлари ғўза 
кўсакларининг етилиб пишишига нисбатан кечикади ва бу албатта пахта қабул қилувчи 
ташкилотлар томонидан тола сифатига бирмунча юқори баҳо белгиланган даврга тўғри 
келмайди. 

Икки экин учун ҳам азотдан фойдаланишнинг умумий самарадорлиги юқори 
бўлди (81-84 %) ва 15N азотнинг маълум бир қисми (тегишлича 48 ва 47 %) тупроқда 
бирикади. Бундан кўринадики, азот манбаси тупроқда азотнинг боғланишига ёки 
иммобилизация жараёнига жиддий таъсир кўрсатади. Фермер тажрибасига асосан N-
ўғитлар қўлланганда энг юқори пахта ҳосилига эришилди, аммо ўсимликлар азот 
ўзлаштириши ва 15N азотидан фойдаланиш коэффиценти жуда паст бўлди (64 %). Ғўза 
ривожланишининг илк даврида N-ўғитларнинг қўлланилиши билан дарҳол суғориш ўтказ 
амалиёти азотнинг беҳуда йўқолишининг кўпайишига сезиларли таъсир кўрсатди. 
Буғдойни бошоқлаш даврида қўшимча N-ўғит қўлланилиши, ўсимликлар 15N азотидан 
фойдаланиш коэффицентини бирмунча ошишини таъминлади (52 % ўсимлик 
биомассасида ва 53 % туплоқда). Ғўза ва буғдойни азотдан фойдаланишининг энг юқори 
самарадорлиги экишдан олдин ўғитлашда диаммофос қўлланилганда кузатилди. 

Тажрибада пахта толасининг сифати (ўзбекистон классификацияси бўйича 
узунлиги 31 мм, толанинг мустаҳкамлиги 25 г tex-1 и 4,08 micronaire) N-ўғитларнинг 
шакли, муддати ва қўлланилган меъёрига боғлиқ бўлмаган холда паст бўлди. Тавсия 



 

этилган азот ўғитининг миқдори қўлланилганда буғдой донида протеин (12,3 %) ва 
клейковина (23,0 %) миқдорлари мезон бўйича “қониқарли” дан “яхши” гача, ун эса 
“паст” дан “ўртача” га тўғри келди. N-ўғит меъёрининг ортиши дон таркибидаги протеин 
миқдорини ошишига сабаб бўлди (300 кг га-1 миқдордаги ўғит нормаси қўлланилганда 
15 %), лекин клейковинага таъсир қўрсатмади (25 %). Дон ҳосили ва протеин миқдори 
ўртасида тескари боғлиқлик бўлиб, Ўзбекистоннинг суғориладиган тупроқлари учун мос 
келадиган, сифати ва потенциал хосилдорлиги юқори янги буғдой навларини жорий этиш 
заруриятини кўрсатади. 

Ғўза бўйича CropSyst модели учун махсус тўпланган маълумотлардан 
фойдаланиб, пахта ҳосилини юқори аниқликда (RSME 1,08 мг кг-1) башорат қилиш 
имконияти мавжуд. Симуляция натижалари кўрсатишича, азотнинг газ шаклида 
йўқолишини сизот сувлари сатҳини пасайтириш йўли орқали камайтириш мумкин. 
Ўсимликни суғориш сувига талаби ва таъминланганлигига аниқ риоя қилинган ҳолда 
азотни беҳуда йўқолишини камайтириб, ғўза ҳосилдорлигини ошириш мумкин. 

Фермер тажрибасига асосан N-ўғитлар қўлланганда ҳамда пахта ҳосилининг 
биринчи ва иккинчи теримларини эрта пишиб етилишига имконият яратувчи белгиланган 
меъёрга нисбатан кам бўлган N-ўғитлар (120 кг га-1) қўлланганда харажатларнинг 
қопланиши энг юқори бўлган (1069332 узбек сўм га-1 соф фойда). Шундай қилиб, 
ўсимлик учун азотнинг иқтисодий мақбул меъёри, унинг талаби ва мавжуд 
тавсияномалар билан бир хил бўлмади. Кузги буғдойда N-ўғитнинг тавсияланган 180 кг 
га-1 миқдорини қўллаш тажрибаси ва N-ўғитлар меъёрининг маълум бир қисми экиннинг 
гуллаган даврида қўллаш тажрибаси иқтисодий жиҳаттдан энг истиқболли деб 
топилдилар (340669 ўзбек сўм га-1 соф фойда). Бироқ, ҳозирги вақтда ун 
комбинатларидаги мавжуд тўлов тизимлари сифатлироқ буғдой донни етиштириш учун 
фермерларни рағбатлантирмайди. 

Умуман, суғориладиган тупроқ шароитида етиштирилаётган ғўза ва кузги 
буғдойда маҳсулот сифатини ошириш, N-ўғитлар қўллашнинг амалда яхшилаш ва азотли 
ўғитлардан фойдаланиш самардорлиги ошириш масалаларни суғориладиган тупроқ 
шароитида сизот сувларини бошқариш ва суғориш услубларини, пахта заводларда ва ун 
комбинатларидаги мавжуд бўлган тўлов тизимларини такомиллаштириш орқали амалга 
ошириш мумкин. Кузги буғдойни яхшиланган навларини тадбиқ қилиш ёки ўсимлик 
ривожланишининг кейинги фазаларида N-ўғитларни қўллаш орқали дон сифатини 
яхшилаш мумкин. CropSyst модели ёрдамида экинларни етиштиришда мавжуд бўлган 
тизимнинг ўзгариш сабабларини, турли агротехнологияларнинг тупроқ кўрсаткичлари ва 
зироатлар ҳосилига бўлган таъсирини кўрсатиш мумкин. 

 
Калит сўзлар: ғўза, кузги буғдой, азотли ўғитга талабчанлик, ўсимликнинг азотдан 
фойдаланиш коэффициенти, тола сифати, новвойлик сифати, CropSyst модели ёрдамида 
симуляциялаш, фойда ва харажат таҳлили.  
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1 GENERAL INTRODUCTION 

 

1.1 Problem setting 

Shortly after its independence from the Soviet Union in 1991, Uzbekistan embarked on 

a wide range of unprecedented agricultural reforms. With the dissolution of the Soviet 

structure of the agricultural production system, the newly established farmers had to 

cope with substantial changes such as increasing privatization, new land-tenure 

regulations (Pomfret 2000, Spoor 2004, Müller 2006b), and increasing prices of 

fertilizers, pesticides and machinery (Kandiyoti 2004a). At the same time, they were 

still bound to contracts with the state to produce a fixed amount of crop produce on a 

given share of land (Trevisani 2005, Müller 2006b). Hence, farmers were stuck between 

the new agricultural legacies and the burden of ensuring their livelihood in view of 

increasing input prices and uncertain commodity markets (Trevisani 2007). 

During the era of the Soviet Union, Uzbekistan’s agriculture was developed 

primarily to supply the inner Soviet market with raw cotton (Gossypium hirsutum L.) 

(Trevisani 2008). Other agricultural products such as wheat were imported to 

Uzbekistan from other Soviet states (Rudenko 2008). After independence, increasing 

domestic winter wheat (Triticum aestivum L.) production became the declared strategy 

of the national administration to reduce the dependency on imports (Guadagni et al. 

2005). Today, cotton and winter wheat are the most important crops in the Uzbekistan 

economy, contributing 30 % to the national GDP (Rudenko and Lamers 2006, 

Djanibekov 2008). However, although the country has achieved its goal in obtaining 

food security and is now independent of wheat imports (Guadagni et al. 2005), the 

domestically produced winter wheat does not meet the flour quality standards of the 

formerly imported wheat (Abugalieva et al. 2003a, Rudenko 2008). 

Sufficient supply of nitrogen (N) to crops is essential to improve quality and 

sustain yields. In the irrigated areas of Uzbekistan, however, the efficiency of N-

fertilizer use in cotton and wheat production is low, as N is frequently lost to the 

environment via denitrification or leaching (Ibragimov 2007, Scheer et al. 2008c). Due 

to heavy input subsidies during Soviet times, excessive use of fertilizers was common 

(Wegren 1989, Herrfahrdt 2004), and state and cooperative farms had little incentives to 

use fertilizers efficiently, pay attention to losses to the environment, or consider the 
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cost-effectiveness of input management. Similarly, most fertility research before 

independence aimed at maximizing production rather than at promoting sustainable 

fertilizer use or improving the quality of cotton fiber or wheat flour.  

Following the land reforms, Uzbek farmers remedy soil N deficiencies by 

applying the N fertilizers they can afford, which often differs from the N-fertilizer 

amounts recommended by Uzbek research institutions (WARMAP and EC-IFAS 1998, 

Djanibekov 2005). The constant mismatch between the N applied and removal of N 

with the harvested products will, however, eventually affect crop yield and quality due 

to the decline in soil fertility. In fact, declining cotton yields in Uzbekistan have already 

been reported (e.g., Herrfahrdt 2004), although the reasons for this trend are not fully 

understood. Given the on-going economic and agronomic changes in crop production in 

Uzbekistan, the N-fertilizer recommendations for irrigated cotton and wheat production 

need to be updated to meet the expectations of producers, minimize losses to the 

environment and improve or sustainably maintain soil fertility. 

 

1.2 Research objectives  

Considering the major legal and economic changes imposed on the agricultural sector 

and on the newly emerged private farmers after independence, the overall goal of this 

study was to identify N-fertilizer use inefficiencies under the current irrigated cotton 

and wheat production practices, to optimize its use while minimizing environmental 

impacts, to develop balanced N-fertilization strategies for those crops, and to provide 

appropriate management strategies to improve the efficiency and crop quality. The 

outcome is, therefore, expected to assist farmers in the irrigated regions in their decision 

making process regarding balanced N-fertilizer applications with respect to technical 

and economic optimization and environmental impact. 

The specific research objectives were to: 

1. Assess cotton and wheat yield response to increasing N-fertilizer application rates 

under the current management; 

2. Evaluate N-fertilizer use efficiency under various N-management practices with 

special focus on fertilizer timing and N-fertilizer types; 

3. Determine cotton fiber and wheat kernel quality at different N-fertilizer rates, and 

timing; 



General introduction 

 3  

4. Simulate the effects of alternative N applications, irrigation water quantities and 

groundwater levels on N dynamics in the soil and on crop yield; 

5. Determine the financial feasibility of different N-fertilizer management practices. 

 

The German-Uzbek project of the Center for Development Research (ZEF) of the 

University of Bonn, Germany (www.khorezm.uni-bonn.de), has identified the Khorezm 

region south of the Aral Sea in Uzbekistan as a suitable pilot area for developing 

concepts for ecological and economic sustainable land use in the Aral Sea basin (ZEF 

2001, ZEF 2003). This study was conducted in this region, which relies completely on 

irrigated agriculture with cotton and winter wheat as main crops in various rotations. 

Eventually, the research results may be used as orientation for regions of similar agro-

climatic conditions in the Aral Sea basin.  

The research involved three years of completely researcher-managed fertility 

management experiments conducted in close collaboration with local research structures 

in the Khorezm region. These studies were complemented with a series of 

researcher/farmer-managed on-farm experiments scattered across Khorezm to cover 

potential geographical and edaphological differences. In addition, this research was 

carried out in close collaboration with other on-going studies within the ZEF project. 

 

1.3 Outline of thesis  

The thesis consists of thirteen chapters. Following the general introduction, Chapter 2 

comprises a literature review on the topics related to irrigated cotton and wheat 

production in Uzbekistan with special reference to the region-specific conditions of 

Khorezm, including the agricultural, economic and agronomic settings before and after 

independence, actual N-fertilizer use and recommendations, a theoretical background to 

N-use efficiency and cotton and wheat quality, and a comparison of crop-soil simulation 

models for cotton modeling. Details on the study region and the materials and methods 

used are provided in Chapters 3 and 4. The results are presented and discussed in 

Chapters 5 through 12. Chapters 5 summarizes the N-fertilizer effects on cotton and 

winter wheat yields from 2004-2006, and Chapter 6 describes the soil and groundwater 

nitrate dynamics. Plant-N uptake and 15N recovery rates in cotton and wheat are 

presented and discussed in chapters 7 and 8. Chapter 9 comprises data on the quality of 
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cotton fiber and seed and wheat kernels quality in relation to different N management. 

The parameterization and calibration of the crop-soil simulation model CropSyst for 

cotton and the simulation results for N dynamics under different fertilizer and irrigation 

practices are given in Chapter 10. A financial assessment and yield gap analysis 

between official statistical data and the research findings is provided in chapters 11 and 

12. The thesis closes with a summary of the main outcomes of this research and the 

general conclusions further research and policy outlooks in Chapter 13. 
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2 LITERATURE REVIEW 

 

2.1 Uzbekistan’s agricultural setting  

2.1.1 Cotton and wheat production 

Cotton (Gossypium hirsutum L.) is the predominant crop in the agricultural production 

system of Uzbekistan. It had a central role in the country’s economic development 

during Soviet Union time over the last 70 years (1924-1991), which has continued since 

the country’s independence in 1991. With an annual raw cotton production of 

3.55 million t in 2006 (FAOSTAT 2008), Uzbekistan is the 6th largest world cotton 

producer after China, US, India, Pakistan, and Brazil (FAOSTAT 2008). In 2004, it was 

the 2nd, in 2005 still the 4th largest producer of cotton lint (0.55 million t in 2005) after 

the US (3.40 million t in 2005), Australia and India (FAOSTAT 2008). The production 

of raw cotton per hectare (2.4 t ha-1 in 2006) was above world average (2.0 t ha-1), but 

only 53% of the leading per-hectare-producer Australia (4.5 t ha-1) (FAOSTAT 2008) .  

The agricultural sector contributes around 26-30 % to the Uzbek gross 

domestic product (GDP) (FAO 2006, Rudenko and Lamers 2006), of which cotton 

alone accounts for ca. 13-18 % (Wehrheim and Martius 2008). Due to the high share to 

the foreign exchange revenues (25-50 % according to Saigal 2003, Guadagni et al. 

2005, Martius et al. 2005) and as cotton is a substantial source of tax revenues 

(Guadagni et al. 2005), the “white gold” is considered the cash crop of Uzbekistan, and 

consequently still has a high economic and political priority in the country (Müller 

2006b).  

After Uzbekistan’s independence in 1991, however, winter wheat (Triticum 

aestivum L.) gained increasing importance. Formerly imported from other regions of the 

Soviet Union, winter wheat then became a second strategic crop to supply domestic 

food needs (Guadagni et al. 2005). A national food self-sufficiency program was 

initiated to decrease imports from neighboring, former Soviet countries (Rudenko 

2008), and the area of winter wheat increased rapidly. While in 1992 only around 

0.62 million ha, mainly in the rain-fed areas, were cropped with winter wheat, in 2006 

the wheat area had expanded to 1.45 million ha (FAOSTAT 2008) covering 31 % of the 

irrigated regions of Uzbekistan (FAO 2002).  
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Today, winter wheat ranks as the second most important crop after cotton (FAO 2002). 

In fact, with the impressive production increase from 1.0 in 1992 to 6.0 million t in 

2006, and average yield improvements from 1.5 to 4.1 t ha-1 in the same time period 

(FAOSTAT 2008), the country has achieved its goals in obtaining food security, and is 

now independent of imports (Guadagni et al. 2005). On the other hand, the domestically 

produced winter wheat has not reached the quality standards of the formerly imported 

wheat and consequently smaller quantities are still imported to mix with the locally 

produced winter wheat to increase the baking quality (Rudenko 2008). 

 

2.1.2 The state order 

Production targets 

Cotton and winter wheat are grown as state order crops, i.e., production targets are set 

by the state authorities (Müller 2006b, Rudenko 2008). Uzbek farmers are legally 

obliged to turn in a share of 25-30 % of the cotton and winter wheat harvest to the 

cotton ginneries and the state mills at a fixed price, and another 20-25 % share on a 

state-paid contractual basis (Guadagni et al. 2005, Rudenko 2008). The remaining share 

of the harvest usually can be sold freely, i.e., at the market at higher prices (Rudenko 

2008). However, despite these declarations, Müller (2006b) and Rudenko (2008) 

reported no free competition on the Uzbek cotton market and only a very small private 

demand for cotton, so that in fact the state still buys the complete harvest. Similarly, the 

share of winter wheat handed in by the farmers is subject to deviations from the legal 

frame (Rudenko and Lamers 2006), as the percentage of wheat to be turned in to the 

state is in fact bound to the actual yield, so that in cases of low harvest farmers are 

obliged to submit as much as the total harvest (Rudenko and Lamers 2006). 

 

Soil bonitet 

The production goals imposed on the two strategic crops by the state are determined 

before sowing according to the soil “bonitation”, a classification system for soil fertility 

established in Soviet times, ranking land quality of particular soils on a 100-point scale 

depending on parameters such as groundwater depth, salinity levels, soil organic matter 

(SOM) and gypsum content in the soil (Soil Science Institute 1989, FAO 2003). Every 

score point equals a yield capacity of 0.04 t ha-1, so that soils with a bonitet of 100 
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points are assumed to yield 4 t ha-1 cotton (FAO 2003). The official soil bonitet, 

however, often differs from the achievable harvest due to biases that influence the 

calculations for the yields that have to be handed to the government (e.g., Müller 

2006b). 

 

Subsidies 

Aside from production targets, the government provides bank credits for cotton and 

winter wheat production at low interest rates, e.g., for the purchase of the required 

inputs such as fertilizers, fuel and seeds (Rudenko 2008). The inputs and irrigation 

water are supplied at low costs (Rudenko 2008). However, the state controls the prices 

of processing, irrigation water distribution and scheduling (Spoor 2004, Müller 2006b). 

Furthermore, the state provides an income security to the cotton producers by accepting 

practically all cotton handed in at the ginneries (Rudenko 2008).  

 

Quality assessment 

Cotton: The remuneration by the cotton ginneries varies with time of picking, and 

quality of the raw cotton (Rudenko 2008). The cotton quality is pre-assessed within half 

an hour of arrival of the raw cotton by laboratories owned by the cotton ginneries. The 

laboratories assign the quality classes and grades of the cotton based on the percentage 

of impurity and moisture in the raw cotton (State Ginnery laboratory staff, personal 

communications), which in turn depends on the time of picking. For each quality level, 

a different price is paid, ranging in 2004 from roughly 260 Uzbek soum per kg to 50 

Uzbek soum per kg for the lowest quality. However, these preliminary quality classes 

are still subject to change, as the quality is frequently downgraded depending on the 

cleanliness and degree of moisture and pollution of the raw cotton (own observations). 

Winter wheat: As bread products and pasta, produced by the state mills, are 

part of the state order system, the quality of the delivered winter wheat is determined 

upon delivery of the wheat (Rudenko 2008). Two laboratories are responsible for the 

quality check at the state mills. As they have different tasks, they follow different 

analysis standards. One is responsible for wheat quality analyses following the former 

Soviet Union and now national standard (GOST) for moisture and natural weight 

measurements, transparency, gluten content and quality analyses (e.g. GOST 13586.1-
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68 and GOST 27186). The other laboratory conducts analyses for fodder quality 

measuring raw protein (e.g. GOST 134-96.4-4-84), heavy metal and pesticide content 

according to Uzbek standards. After analyses, the wheat is classified into four classes, 

with class 1 representing the best and class 4 the lowest quality (Khonka State Mill 

laboratory staff, personal communications) according to which farmers receive their 

payments. However, as for the cotton, the classes are still subject to changes after the 

laboratory analyses, as they may be downgraded depending on the cleanliness and the 

degree of pollution of the wheat.  

 

2.1.3 Land reforms 

Until independence, 80 % of the agricultural area was divided amongst state-owned 

(sovkhozes) and collective farms (kolkhozes) bound to state-set cotton production 

targets (Kandiyoti 2004a, Veldwisch 2008). Most of the remaining agricultural land was 

given to households as plots of less than one hectare, the so-called tamorkas, free of any 

state order and adjoining the house (Kandiyoti 2004b, Müller 2006b, Veldwisch 2008).  

Shortly after independence, gradual agrarian reforms towards market economy 

(Wehrheim 2003) and partial foreign exchange and trade liberalization were 

implemented (Müller 2006b). State and collective farms were dissolved step by step 

during the land-tenure reform process, becoming joint-stock companies, so-called 

shirkats or farmers’ associations (Müller 2006b).  

In March 2003, a decree was passed that postulated the replacement of shirkats 

by private farms as main agricultural producers (Trevisani 2005, Trevisani 2008). The 

further transformation of shirkats into private/independent farms began with the 

incomplete dismantlement of the shirkats and was planned to be finished in 2010 

(Trevisani 2005). However, this process was already completed to 55 % in 2004 and 

finally completed by 20071. 

Despite the land tenure-reforms, the land remained state property, with private 

land-use rights (Pomfret 2000, Trevisani 2007, Trevisani 2008) based on a land lease 

for farmers for officially up to 50 years with the possibility for renewing the contract 

(Trevisani 2005, Müller 2006b). The farmers are obliged to produce a given quota of 

                                                 
1 For a detailed description of the land reform process see Trevisani (2008) 
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cotton and winter wheat on the given share of land (Trevisani 2005, Müller 2006b). The 

production of animal products, fruit and vegetables consequently shifted to the small-

scale agricultural producers, who are free from any state order (Pomfret 2000, 

Wehrheim 2003, Müller 2006b, Rudenko 2008). Today, the arable land in Khorezm is 

to 100 % cultivated by farmers (Veldwisch 2008). 

Politically, the land reform with its increasing privatization, land-tenure 

regulations, reduction of production area, etc., are an economic and organizational 

challenge to the recently emerging group of private farmers (Pomfret 2000, Kandiyoti 

2004a, Spoor 2004, Müller 2006b, Trevisani 2007, Djanibekov 2008, Trevisani 2008). 

The newly established private farmers bound to the state contracts still have access to 

subsidized inputs such as seeds, fertilizer, fuel and others, which can be bought with 

credits of previous harvest benefits via bank transfers (Trevisani 2005). However, 

farmers now are accountable for losses in production where before the collective farm 

or shirkat took responsibility (Trevisani 2006, Trevisani 2007). If the plan is repeatedly 

not fulfilled, the land will return to the state and the lease contract ceases (Trevisani 

2005). The farmers thus face the balancing act between the new agricultural 

policies/legacies with continuous state-order requests on the one hand and the burden of 

ensuring their own livelihood in view of increasing input prices on the other hand 

(Trevisani 2007). Trevisani (2006), therefore, describes the land privatization process as 

more a privatization of risk than of land.  

 

2.2 Agriculture in the Khorezm region 

2.2.1 Cotton and winter wheat production 

In the Khorezm region, approximately 7-8 % of the Uzbek cotton (MAWR 2004a, 

OblStat 2004, FAOSTAT 2008) and 4-5 % of the total winter wheat are produced 

(OblStat 2004, FAOSTAT 2008). Between 1998 and 2003, around 60 % of the 

275,000 ha of irrigated agricultural land in Khorezm was annually allocated to cotton 

and winter wheat: cotton covered around 45 % and winter wheat 21 % in 2003 

(Djanibekov 2008) and agriculture produce accounted for 67 % of the regional GDP 

(45 % in 2005) (OblStat 2004, Djanibekov 2008) and to virtually 100 % of the export 

(Rudenko 2008). The remaining area is dedicated to rice, sunflower, maize, fodder 

crops, vegetables, fruits and others (OblStat 2004, Djanibekov 2008). 
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In the Soviet era, the area under cotton was higher. In the course of the country’s food-

security program in the early 1990’s, however, the area under winter wheat in Khorezm 

more than doubled from 36,800 ha to 86,000 ha in the period 1990-2003 at the expense 

of fodder crops, while the area of cotton remained stable at around 100,000-110,000 ha 

(Figure 2.1) (OblStat 2005, Djanibekov 2008). As a result, the crop rotation scheme was 

significantly changed. 
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Figure 2.1 Area under cotton and cereals in Khorezm 1991-2003 according to the 
regional department of statistics 2004 (OblStat 2005, Djanibekov 2008). 

 

2.2.2 Crop rotations 

Before the invasion of the Russian army, agricultural production in Khorezm in the time 

of the Khan (around 1909) was very diverse. Winter wheat made up the largest share of 

the area (24 %) followed by alfalfa (16 %) and sorghum (14 %), as well as cotton 

(10 %) and rice (10%). Millet, melons, barley other crops were produced in smaller 

shares (N. Ibragimov, personal communications).  

Already in the late 1930s, the area under cotton had expanded at the expense 

of cereal and alfalfa (Robertson 1938). During the Soviet period, the so-called “3:6” 

rotation was strongly enforced, a alfalfa-cotton-rotation where six years of cotton where 

cropped following three years of legume (Tursunkhodjiaev et al. 1977). Often, seven to 

nine (3:7, 3:8 or 3:9 rotation schemes) or even more years were consequently under 

cotton, up to the extent of complete cotton monoculture (Glantz et al. 1993). In the 
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1970s, the share of cotton amounted to more than two thirds of the irrigated area (Glantz 

et al. 1993).  

After independence, this rotation was radically changed with the enforced 

introduction of winter wheat: The rotation scheme now usually involves one to three 

years of cotton followed by two years of winter wheat. Cotton is planted in April-May 

and harvested in September-November, while winter wheat is planted in September-

October and harvested in mid June. In the remaining time after winter wheat harvest 

from July to October, summer crops such as rice, maize, sunflower or vegetables are 

sown.  

The particularity of this rotation in Khorezm is that further extension of 

agricultural land was not possible without first investing in the extension of the 

irrigation and drainage network, which however ceased after independence. Hence, the 

pressure on land increased and, as a result, a cropping system similar to the Punjab 

regions in India was adopted (Byerlee et al. 1987) where in the first year after cotton, 

winter wheat is sown into not yet harvested cotton rows (Figure 2.2). 

 

 

 

Figure 2.2 Winter wheat seeded into cotton rows in September.  
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2.2.3 Khorezmian cotton varieties and irrigation  

Upland cotton (Gossypium hirsutum L.) is considered a salinity-tolerant crop (Ayers and 

Westcot 1985). No yield decreases were found due to salinity until saturated electrical 

conductivity levels (ECe) of 7.7 dS m-1 at germination, and 50 % yield decrease at 

17.0 dS m-1 (Ayers and Westcot 1985, Rhoades et al. 1992). However, WARMAP data 

show yield reductions of 20-30 % already at medium salinity (ECe levels of 6 dS m-1). 

Only during seed germination may salinity levels in the topsoil horizons constrain seed 

germination (Kent and Läuchli 1985, Chaudhry and Guitchonouts 2003). Therefore, 

Khorezmian farmers leach as often as necessary to bring the salt concentration well 

below the threshold.  

The most widely cropped cotton variety in Khorezm is the local cultivar 

Khorezm-127 (Table 2.1), covering 50-60 % of the area (OblStat 2004, OblStat 2006). It 

was introduced in 2000 by J. Yuladashev, O. Iskandarov, K. Matnazarov and others 

(Masharipov 2006). Its physiological features made it quite a popular cultivar in the 

region. The variety has a vegetation period of 125-135 days, which is shorter than those 

previously cultivated. It is more tolerant to the fungus Fusarium wilt (Fusarium 

oxysporum f. sp. Vasinfectum) than the previous cultivars such as variety 108-f, variety 

175-F or varieties Tashkent-1, Tashkent-2 and Tashkent-3 (Djumaniyazov 2005); it has 

an open boll weight of 6.0-6.5 g and a fiber output rate of around 37 %.  

 

Table 2.1 Area (ha, %) of cotton varieties planted in the Khorezm region in 2006, total 
raw cotton yield (t ha-1) and total production (t) (OblStat 2006) 

Variety Planted area Planted area Yield Production 

 ha % kg ha-1 t 

Khorezm-127 51942 49.1 2.61 135722 

Mehnat 31415 30.7 2.64 83080 

Bukhara-6 8320 7.9 2.41 20079 

Bukhara-8 7400 7 2.63 19454 

AN-Bayaut-2 4567 4.3 2.47 11301 

Khorezm-150 1985 1.9 2.64 5248 

New varietes & lines 135 0.1  453 

Total 105764 100 (45)  275337 

 

The average irrigation norms for crops grown in Uzbekistan are calculated 

based on so-called hydro-module zones (MAWR 2000, HydroModRay 2003). These 
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zones were established to forecast the approximate water demand from the Amu Darya 

river for the area under the respective crop. Nine hydro-module zones were identified 

according to groundwater depth, losses in the canals, soil properties including salinity, 

and the expected crop evaporation (Cotton Research Institute 1992). The most wide-

spread zone in Khorezm is the hydro-module zone VII, covering the main soil types (i.e. 

sandy and sandy-loamy soils with groundwater table 1-2 m) (Cotton Research Institute 

1992). For this zone, irrigation recommendations (Appendix 15.1) are given in 

accordance with the phenological growth phase of cotton, amounting to a total of 490-

640 mm irrigation water per season (MAWR 2000, HydroModRay 2003). In Australia, 

cotton yields were maximum at total water application amounts of 700-750 mm (Roth et 

al. 2004).  

 

2.2.4 Khorezmian winter wheat varieties and irrigation 

Winter wheat (Triticum aevestum L.) can grow in moderately saline soil conditions if 

the irrigation water salinity level (ECw) does not exceed 4.0 dS m-1 during germination 

(Ayers and Westcot 1985, FAO 2008). At salinity levels in the soil of 6.0 dS m-1, yield 

decreases are still negligible; however, 50 % of the yield will be lost due to salinity at 

levels of 13.0 dS m-1 (Ayers and Westcot 1985) 

The length of the vegetation period for winter wheat is 180-250 days (FAO 

2008). It is commonly planted in September and harvested in June. The Krasnodarian 

winter wheat cultivar Kupava is the most common variety in the region at present and 

covers 43 % of the area (Table 2.2) (FAO 2001). It is mainly used as bread wheat. It 

was registered in 1998 as soft wheat and released in 1999 after breeding the cultivars 

Caucasus x Atlas 66 for special yellow rust resistance (FAO 2001). Average height is 

90-100 cm.  

For Soviet wheat, the FAO (2008) recommends “high yield with one full 

irrigation and one to four spring irrigations with soil water depletion in the first 1 m soil 

depth not exceeding 70 percent of the total available water”. The official Uzbek 

recommendations for irrigating winter wheat range from 250-450 mm for the growth 

season (Appendix 15.2) depending on the groundwater level (Mansurov et al. 2008). 

The FAO (2008), on the other hand, assumes water requirements of 450-600 mm for 

optimal yields depending on the environment.  
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Table 2.2 Seeded area (ha, %) of winter wheat varieties in the Khorezm region in 2006 
(OblStat 2006) 

Wheat variety Planted area Planted area 

 ha % 

Kupava 13100 43.0 

Kroshka 9500 31.1 

Bozkala 4300 14.1 

Polovchanka 1200 3.9 

Intensivnaya 1000 3.3 

New varieties 1400 4.6 

Total 30500 100 

* Krasnodarkaya-99 and Andijan-2 will replace Kupava and Kroshka from 2008 
 

2.2.5 Fertilizer research history and recommendations 

Due to the strong interest of the former Soviet Union and present Uzbek government in 

maximal production, crop-specific research institutes such as the Cotton Growing 

Research Institute, Wheat Research Institute, Rice Research Institute and their related 

regional branches were established during the time of the Uzbek Soviet Socialist 

Republic (Uzbek SSR). To meet governmental demands, fertilizer research has been 

conducted mostly to optimize yields by harmonizing fertilizer rates and timing to crop 

demand (Ibragimov 2007). Fertilizer uptake efficiency (section 2.3.4) has only become 

part of the research agenda in the past decades, and has only recently been thoroughly 

assessed by Ibragimov (2007).  

 

Cotton 

The Uzbek Cotton Growing Research Institute has 11 regional branches, where 

researchers conduct field experiments on fertilization recommendations and timing, 

cotton varieties and planting techniques (Djumaniyazov 2004). The Khorezm Cotton 

Research Station was established in January 1926 (Djumaniyazov 2004) and is still in 

place today. 

In 1926, the Khorezm Cotton Research Station reported that fields receiving 

no fertilizer produced cotton amounts of 1.3-1.7 t ha-1 (Djumaniyazov 2004). Following 
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the introduction of mineral N and P fertilizers2 to the Uzbek SSR in the 1930s, first 

official recommendations, the so-called “Instructions of Narkozem Uzbek SSR about 

Chemical and Cake Fertilization on Cotton Lands”, were published in 1935 

recommending systematic N and P fertilizer use to increase cotton production 

(Ibragimov 2007). In the Cotton Grower’s Guide, published in 1932 by Krivetz, an 

annual rate of 60 kg N ha-1 was advised. The distribution was to be in the center of the 

furrow in 10 cm depth and for soils with shallow groundwater in Khorezm and 

Karakalpakstan application before sowing or after crop emergence was recommended 

(Ibragimov 2007). Krivetz (1932) also listed the types of N fertilizer according to their 

effectiveness: ammonium nitrate (NH4NO3) was the most efficient, followed by urea, 

calcium cyan amide, and ammonium sulphate (Ibragimov 2007). Reported cotton yields 

from that time, with 90 kg N and 90 kg P ha-1, were as high as 3.0-3.5 t ha-1 (Zverlin 

1934 in Djumaniyazov 2004) (Appendix 15.3).  

From 1951 until 1960, research focused more intensively on issues of effective 

use of N fertilizers, i.e., N-rate differentiation depending on stocks of NO3-N in the soil 

(Ibragimov 2007). On fields with residual soil-NO3 concentrations of 200-300 kg ha-1 

down to 1-m depth, around 4 t ha-1 could be harvested without additional fertilizer, for 

soils containing 100 kg NO3-N ha-1 in the profile, applications of 150 kg N ha-1 were 

recommended, and in case of 200 kg NO3-N ha-1 an additional 50 kg N ha-1 applied 

during budding and flowering was advised (Ibragimov 2007).  

Most of the research on N-fertilizer efficiency conducted in the 1950s and 60s 

was undertaken in the Tashkent region. In the Khorezm region, the first guidelines for a 

balanced fertilization comprising all three macro nutrients N, P, and K were developed 

by Khaitbayev in 1960 and 1963. He proposed rates of 100-120 kg N, 90-100 kg P and 

40-50 kg K ha-1 to produce cotton yields of 2.9 and 4.2 t ha-1 (cotton variety Khorezm-8) 

(Djumaniyazov 2004). The N applications were to be split, applying 25-40 % before 

seeding, and depending on the total annual rate, the rest should applied at 2-4 leaves, 

budding and mid-flowering (Pershin 1961, Protasov 1961), as excessive basal N 

applications were found to increase undesired plant biomass and delay boll opening 

                                                 
2 In the following, the abbreviations P and K are used for phosphorous and potassium fertilizers. These 

 acronyms stand for P2O5 and K2O. 
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while reducing the economic efficiency of N fertilizers (Protasov 1961, Ibragimov 

2007).  

Application rates of NPK similar to those used today were developed only a 

few years later in the mid-1960s by researchers such as Yusupov, Ruzmetov, and 

Tahtashev (cotton variety 108-f), who suggested 200-225 kg N, 150-200 kg P and 50-

75 kg K ha-1 (Djumaniyazov 2004). These rates were kept to until 1970, with cotton 

yielding 4.3 to 5.3 t ha-1 at the Cotton Research Station in 1970 (Ruzmetov 1970, 

Yusupov and Tatashev 1970 in Djumaniyazov 2004).  

From the mid-1970s onward, however, not only a new cotton variety was 

introduced (cultivar Tashkent-1), as the previous cultivar 108-f had proven to be 

vulnerable to pests (N. Ibragimov, personal communications), but also the N rates used 

in the research studies increased to 300-450 kg ha-1 (Djumaniyazov 2004). In 1974 and 

1976, Sabirov suggested N rates of 400 kg ha-1 for 4.5-5.1 t ha-1 cotton (Sabirov 1974, 

Djumaniyazov 2004), and in 1982, Nazarov recommended rates of even 450 kg N, 

450 kg P and 225 kg K ha-1 to obtain around 4.7 t ha-1 cotton yield (Djumaniyazov 

2004).  

Only in 1983-84 where the N rates in the research studies were reduced again 

to 250-300 kg ha-1, which coincided with the introduction of the new cotton cultivar 

175-f (Djumaniyazov 2004, Ibragimov 2007). However, based on the research results, 

the optimal N:P ratio of 1:0.7 is sill applied (Kadirhodjayev and Rahimov 1972, 

Cotton Research Institute 2007). Khodjizadaeva and Yakhina (1983) studied the effect 

of nitrification inhibitors on cotton growth, development and quality. While in the first 

year of the experiment no effect on raw cotton yield was observed, in the second year 

the cotton increase with inhibitors amounted to around 5 t ha-1, and fiber quality had 

improved (Ibragimov 2007).  

Atajanov (1984) and Tashpulatova (1985) proposed fertilizer norms of 250-

350 kg N, 150-250 kg P and 100-140 kg K ha-1 to produce 4.0-4.9 t ha-1 cotton 

(Djumaniyazov 2004). Their suggestions are the basis of the fertilizer recommendations 

still used. For the cultivar Khorezm-127 introduced in Khorezm after independence, a 

special committee revised those fertilizer guidelines in 2000, but the rates changed only 

slightly from the recommendations published in the 1980s (Djumaniyazov 2004, 

Masharipov 2006, Cotton Research Institute 2007, Ibragimov 2007). The experimental 
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yields on the Khorezm Cotton Research Station for these fertilizer amounts ranged from 

3.6-4.6 t ha-1 (Djumaniyazov 2004). Also, the most recent research work conducted by 

Sabirov and Rustamova (2002) and Masharipov (2004) documented cotton yields to be 

3.8-4.0 t ha-1, and 3.2-3.4 t ha-1 for applications of 200-250 kg N ha-1, respectively 

(Djumaniyazov 2004). The latest fertilizer recommendations of the Cotton Research 

Institute (2007) (Table 2.3) do not deviate much from the established norms and can 

actually be dated back to the beginning of the 1980s (Ibragimov 2007). 

 

Table 2.3 Average research-based application rates of mineral fertilizers according to 
soil nutrient status and yield (Cotton Research Institute 2007) 

Amount available in the soil in 0-
60 cm depth prior to seeding 

Fertilizer to be added for achieving the expected yield of 

   3.0-3.5 t ha-1 3.5-4.0 t ha-1 
Content Nmin

* / P K N P K N P K 
 mg kg-1 mg kg-1  kg ha-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 
very low 0 - 15 0-100 200 140 100 250 175 125 
low 16-30 101-200 175 100 80 225 120 100 
medium 31-45 201-300 150 80 60 200 90 80 
high 46-60 301-400 125 50 40 175 60 60 
very high > 60 > 400 100 25 20 150 45 40 
* Nmin stands for soil mineral N content 

 

These fertilizer recommendations are valid for any cotton variety used in 

Uzbekistan, but adjustments should be made according to determined indices (i.e., for 

soil type, preceding crop, and nutrient status of the soil). These indices then should be 

multiplied with the fertilizer norm to give the final application rate 

(Cotton Research Institute 2007).  

To overcome N, P and K limitations during the vegetation period, split 

applications are recommended. All P and K should be applied bere seeding together 

with 25-30 % of the annual rate of N (Masharipov 2006, Cotton Research Institute 

2007). The remaining N should be applied in two splits with 35 % N at mid-budding 

and 35 % N at the beginning of flowering, directly followed by irrigation 

(Cotton Research Institute 2007). In case of the first N application being delayed, the 

share could also be applied at 2-4 leaves (Ibragimov 2007). Uzbek farmers prefer the 

latter timing, i.e., to apply the N fertilizers before seeding, at 2-4 leaves and at 

flowering, as the application then coincides with other agro-technical measures such as 
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general cultivation and furrow shaping for irrigation (N. Ibragimov, personal 

communications).  

The present official Uzbek cotton fertilization rates as well as the split-

application and timing for N largely correspond to recommendations of other major 

cotton producers such as western USA: 180-200 kg N ha-1 (Hutmacher et al. 2004, IFA 

2006); Pakistan (Punjab): 120-170 kg N ha-1 (FAO 2004); Egypt: 145-170 kg N ha-1 

(FAO and IFA 2000, FAO 2005a); India: 150-300 kg N ha-1 (IFA 2006); and Iran 

(Khuzestan): 190 kg N ha-1 (FAO 2005b). For irrigated cotton produced in Australia, 

around 180-200 kg N ha-1 were found to be sufficient (Constable and Rochester 1988, 

Constable et al. 1992, CRC 2007).  

 

Winter wheat 

For winter wheat and summer crops, the development of guidelines for a balanced 

fertilization and production only started systematically after independence at the Wheat 

Research Institute and its regional branches (MAWR 1995, MAWR 1996)3. According 

to FAO (2003), the application rate in the past has been as high as 250 kg N ha-1. The 

present research-based application recommendations for 5 t ha-1 winter wheat for soils 

of low nutrient status are 150-180 kg N, 90-100 kg P, and 60-70 kg K ha-1 (MAWR 

2000). All P and K should be applied before seeding together with 30 kg N. The 

remaining N is to be applied in two split applications with 50 % at the beginning of 

tillering (Zadoks-25; Feekes-2 (Zadoks et al. 1974)) and 50 % at stem elongation 

(Zadoks-30; Feekes-4-5 (Zadoks et al. 1974) (MAWR 1996, MAWR 2000).  

In Pakistan (Punjab), a similar amount of N is applied: 75-160 kg ha-1 (FAO 

2004). Also, in Iran (Khuzestan) and Egypt, recommendations are in the range of those 

for Uzbekistan with 180 kg ha-1 (FAO 2005b) and 168-180 kg N ha-1 (FAO 2005a), 

respectively. However, to increase winter wheat flour quality, many authors also 

propose late applications of N at anthesis/flowering (Zadoks-60, Feekes-10.51 (Zadoks 

et al. 1974)) or kernel milk development (Zadoks-73, Feekes-11.1 (Zadoks et al. 1974)) 

(section 2.3.2) (Fowler and Brydon 1989, Woolfolk et al. 2002, IFA 2006), a practice 

uncommon in Uzbekistan. 
                                                 

3 Unfortunately, researchers of the Khorezm Wheat Research Station were reluctant to share latest 

 research results with the author. 
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2.2.6 Actual yield trends in Khorezm 

Cotton production has a long history in Central Asia as well as in Khorezm. The 

continuous expansion of irrigated cotton area in Central Asia since the late 1930s was 

due to the fact that the raw cotton was easily transportable, so that the plant could be 

cropped even at great distances from the location of the actual textile industry 

(Robertson 1938). With the exception of the war years, where cotton pickers were sent 

to the army, and the years of famine (1941-1947), Khorezmian cotton yields 

experienced a steady increase until 1983 (Figure 2.3). The record cotton yield of 

6.1 million t on the national level was reached and celebrated in 1981. Highest yields in 

Khorezm were achieved in 1974 and 1980, where 4.5 t raw cotton ha-1 were harvested. 

Based on the findings, it can be assumed that since the mid 1970s, cotton yields 

continuously declined. With Uzbekistan’s independence and the introduction of winter 

wheat on farm-level, winter wheat yields increased, while cotton yields continued to 

decrease.  
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Figure 2.3 Yield of cotton and wheat (t ha-1) in Khorezm 1932-2005 (official 
statistics).  

 

However, it is unclear how trustworthy these official statistical data on cotton 

are, as over-reporting of cotton production was common (Trevisani 2007), and 

frequently pushed to a maximum as evidenced by the Cotton Scandal in the late 1970s 
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and early 1980s, which revealed a major falsification of harvest data records during the 

period Sharaf Rashidov4, the First Secretary of the Uzbek Communist Party in the 

Uzbek Soviet Socialist Republic (Uzbek SSR) (1959-1983). In the aftermath of the 

scandal, Mikhail Gorbachev demanded that all statistical documents be thoroughly re-

checked and when necessary adjusted (Saiko 1995). Following the statistical 

corrections, the new officially recorded cotton yields were lower by 1 t ha-1 than those 

of the late 1970s, and have continued to decrease slightly until today. Due to the 

manipulated harvest data records until 1983, however, it remains unclear when the 

turning point in cotton yield actually occurred. 

Nevertheless, there are indications that cotton yields in Khorezm have 

declined in recent years according to Glazovsky (1995), Brookfield (1999), Herrfahrdt 

(2004) and others. Reasons for the decline are repeatedly related to the extensive 

irrigation and cotton production campaigns of Premier Khrushchev in the late 1950s 

(Virgin Lands Program), which encouraged unsustainable agricultural practices, and 

cotton monoculture causing soil degradation, salinization, and waterlogging, which 

accumulated in the desiccation of the Aral Sea (Mickin 1988, Glantz et al. 1993, Saiko 

1995, Spoor 1998, Brookfield 1999, Roll et al. 2006). On the other hand, the change in 

the economical setting after independence and political events such as the cotton 

scandal in 1983 or the agrarian reforms after independence (Glazovsky 1995, Herrfahrdt 

2004) had a negative effect on the production dynamics of cotton in Uzbekistan.  

 

2.2.7 Actual fertilizer trends in Khorezm 

As for all crops, during Soviet times, cotton yields were firstly governed by fertilizer 

application. Mineral nitrogen fertilizers (N) were introduced to Khorezm in the 1930-

1940’s during the so-called Period of Chemicalization (Ibragimov 2007) (Figure 2.4). 

For the 5-year-plan of that time, the amount of fertilizers was calculated based on the 

optimal rate for cotton production of 60 kg N ha-1 (Ibragimov 2007). Initiated in 1966 

by Brezhnev’s plans to intensify agriculture, fertilizers, pesticides and other related 

inputs for cotton production were heavily subsidized (Wegren 1989, FAO 2003). 

Together with the input subsidies, this policy encouraged cultivation of even marginal 
                                                 

4 Sharaf Rashidov was First Secretary under Nikita Khrushchev (1953-1964) and Leonid Brezhnev (1964-

 1982) 
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and low-fertile lands, leading to substantial expansion of cotton production to areas such 

as the Hungry and Djizzak Steppe, as well as in the Karshi region (Sabirov 1974, 

Glazovsky 1995). An over-application of fertilizers was common (Wegren 1989, 

Herrfahrdt 2004), as employees of the kolkhozes and sovkhozes had little incentives to 

use fertilizers efficiently. The same applied to losses and to the pollution of the 

environment, and cost-effective management. 
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Figure 2.4 NPK fertilizer use in cotton production (kg ha-1), 1935-2006 (official 
statistics). Lines indicate fertilizer use in Khorezm, dotted lines use on 
national level. Interruptions in the lines are missing data.  

 

In 1991, Uzbekistan became independent from the Soviet Union. This was a 

political and economical turning point. The break-up of the Soviet Union and the 

declaration of independence brought about a breakdown in the supply of agrochemicals 

and cheap fertilizer, especially potassium (K), which was formerly imported from 

Kazakhstan and Byelorussia (Ibragimov 2008, personal communications). Also, the 

phosphorous (P) enterprises, built in the 1950-80s on South Kazakhstan territory and 

that usually supplied Uzbekistan, stopped working after independence (UZEX 2004). 

The statistics show that despite constructions of fertilizer plants, i.e. a new K-mining 

chemical plant was constructed in 1999 (UZEX 2004), and N fertilizer production 
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within Uzbekistan was promoted again after 2002 (UZEX 2004, FAO 2006), the 

fertilizer application rates in cotton decreased steadily: N-fertilizer use declined 

considerably from around 400 kg N ha-1 in 1990 to 210 kg ha-1 in 2003. In the same 

period, the use of P and K fertilizers decreased from 115 kg P ha-1 and 95 kg K ha-1 to 

31 kg ha-1 and 5 kg ha-1, respectively (OblStat 2004).  

One of the reasons for this development was mainly the price increase for 

mineral fertilizers (Figure 2.5), especially for P (single superphosphate, SSP), which 

increased twice as fast as the price of N and K fertilizers (WARMAP and EC-IFAS 

1998, Kandiyoti 2004a, Rudenko 2005). Prices for fuel, seeds and pesticide also rose 

(Figure 2.6) (FAO 2002, Kandiyoti 2004a, Müller 2006b), leading to a significant 

decrease in input use and thus crop production (FAO 2003, Müller 2006b, Djanibekov 

2008). An Uzbekistan-wide farm management survey conducted in the framework of a 

EU-Tacis-Project during the years 1996-1998 documented a misbalanced use of NPK 

fertilizers and an almost completely minimized pesticide use in cotton production for all 

regions (WARMAP and EC-IFAS 1998).  
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Figure 2.5 Average fertilizer prices (UZS kg-1) in Khorezm (1995-2005) according 
to official statistics (Djanibekov, Rudenko and Bobojanov, personal 
communications).  
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Figure 2.6 Input costs (UZS kg-1) for cotton production in Khorezm (1995-2005) 
according to official statistics (Djanibekov, Rudenko and Bobojanov, 
personal communications).  

 

At the same time, state prices for cotton and winter wheat yields did not keep 

pace with the increase in input prices such as for fuel, fertilizers or pesticides (Rudenko 

and Lamers 2006). Although inputs for state-ordered cotton production are still 

considered to be subsidized, in Khorezm in 2005, the costs for fuel, seeds and mineral 

fertilizer amounted to around 30 % of the total input cost for cotton production (Figure 

2.7) (Rudenko 2005). The fertilizers were 17 % of the total farm expenditure in cotton 

production, ranking third after wages and mechanization service (paid to the machine 

tractor park) costs. In winter wheat production, the fertilizers are the most expensive 

input making up 32 % of the total costs, followed by seeds and mechanization services. 

Labor costs in wheat production are generally low, as there is only one harvest, and 

other labor resources are mostly the farmer’s family (Djanibekov 2008).  
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Figure 2.7 Share of total costs in cotton and winter wheat production in Khorezm 
(%) according to official statistics (Rudenko, personal communications).  

 

However, this new situation is not reflected in the official fertilizer 

recommendations developed by Uzbek research institutions (section 2.2.5). A farm 

management survey conducted during 1996-1998 found large discrepancies in actual 

use of N, P and K fertilizers as opposed to the recommendations or norms (WARMAP 

and EC-IFAS 1998). Scientific research institutions such as the Institute of Soil Science 

and Agro-chemistry as well as the Ministry of Agriculture and Water Resources 

(MAWR) estimate the under-use of mineral fertilizers in cotton and cereal production as 

high as 20-30 % of the recommended rates (FAO 2003, FAO 2006).  

Plotting the yields against the N fertilizer use in cotton for the two main time 

periods before and after independence (1950-1990 and 1991-2003) (Figure 2.8), one can 

observe a complete move downwards of the response curve after independence. 

Whereas in the years before independence, cotton yields still amounted to around 

3.0 t ha-1 at the fertilizer rate of 200 kg N ha-1, after 1991 the same fertilizer input 

yielded around 1 t less. Thus, assuming the recommended fertilizer rates for cotton and 

wheat production to be correct, the mismatch between actual and recommended 

fertilizer application practices is likely to have immediate effects on crop yield and 

quality and in the long run negatively affect soil fertility.  
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Figure 2.8 Raw cotton yield (t ha-1) in relation to N fertilizer applied (kg ha-1) in 
Khorezm 1950-2003 (official statistics). Data are split in years before 
Uzbekistan’s independence (1950-1990) and after independence (1991-
2003).  

 

2.3 Nitrogen in plant-soil systems 

2.3.1 Soil-nitrogen cycle 

The soil-N cycle involves several N transformations, which essentially make soil-

organic N or fertilizer-N usable for plants. Processes increasing plant available N are 

mineralization, nitrification and biological N2 fixation, while processes such as 

ammonia (NH3) volatilization, immobilization, denitrification and leaching foster 

temporal or permanent N losses from the plant rooting zone (Figure 2.9) (Scheffer and 

Schachtschabel 1998).  
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2002, 2003 
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Figure 2.9 Simplified soil-N cycle (modified after Hofman and van Cleemput 
(2004) in van Cleemput and Boeckx 2005). 

 

Nitrification, immobilization and mineralization 

The dynamics of soil-N follow a continuous cycle of nitrification, immobilization and 

mineralization processes, and thus a continuous change of N between organic and 

inorganic forms of N (Jansson and Perssson 1982, Schmidt 1982). Nitrification 

processes are particularly promoted under higher soil temperatures and in well-aerated, 

moist soils (Schmidt 1982). In fact, Halevy and Klater (1970) assumed that most of the 

NH4-fertilizer applied in Israel is taken up by cotton in the form of NO3-N, since 

nitrification in the summer months is particularly high. Drawing on this, also for 

Khorezmian soils high nitrification rates can be expected, and low NH4-N 

concentrations have been reported.  

In case the mineral N supply (i.e., sum of NH4-N and NO3-N) in the soil is 

lower than the carbon (C) content, which is needed for microbial respiration energy, 

preferably NH4-N (and only later NO3-N) will be taken up by the microorganisms, 

transformed to organic N compounds and thus temporarily immobilized (Jansson and 

Perssson 1982, Jenkinson et al. 1985, Recous and Mary 1990). In case more mineral N 

is available than needed to satisfy the microorganisms, the remaining N will be subject 

to uptake or nitrification processes.  
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Mineralization, which is the reverse of the immobilization process, increases with 

increasing temperatures (Jansson and Perssson 1982) and is more or less independent of 

soil moisture, although changing patterns of drying and re-wetting also enhance the 

mineralization processes (birtch effect) (Birtch 1958, Vlek et al. 1981). The high 

temperatures prevailing during the summer period in Khorezm and the frequent wetting 

and drying cycles in the course of the irrigation events particularly boost mineralization 

during the vegetation period and create soils of low organic N content (Riskieva 1989).  

 

Volatilization, denitrification and leaching 

The process of volatilization comprises loss of NH4-N, which is converted to gaseous 

NH3, to the atmosphere. Especially (sandy) soils with low cation exchange capacity 

(CEC) and higher pH, and in conditions favoring high evaporation such as warm and 

windy weather, and low partial NH3 pressure are susceptible to volatilization (Vlek et al. 

1981, Stevenson 1982). Even though these factors prevail in the Khorezm region, 

volatilization losses have not yet been documented.  

Denitrification, i.e., the conversion of NO3-N into molecular N (N2), takes 

place mainly under anaerobic conditions when the soil is saturated (>60% water-filled 

pore space) (e.g., Burford and Bremner 1975, Craswell 1978, Mahmood et al. 2000). 

For denitrification, microorganisms use easily accessible soil organic C (Corg) as an 

electron donor instead of oxygen (O2), which in warm, irrigated environments is 

available from readily decomposable plant material due to high turnover rates 

(Mahmood et al. 1997), or from organic matter mineralizing in the course of wetting 

and drying cycles (Franzluebbers et al. 1994).  

Denitrification rates in Khorezmian soils under current land-use practices have 

recently been studied in detail (Scheer et al. 2008a, Scheer et al. 2008b, Scheer et al. 

2008c). The findings show that denitrification losses were especially pronounced in 

cotton production as opposed to winter wheat or paddy rice (Scheer et al. 2008c) due to 

the higher soil temperatures in summer. Both cotton and winter wheat showed highest 

losses when N-fertilizer application was concomitant with irrigation. These N2 losses 

exceeded N2O losses by far, which resulted in total gaseous losses of N ranging from 

10-70 % of the total N applied (Scheer et al. 2008c). From the N losses, the N2O 
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emissions were from 0.2-2.6% of the N fertilizer applied for all annual crops, while N2 

losses were estimated to be up to 40 % of the N fertilizer applied.  

Frequent irrigation events with large amounts of water as well as heavy 

rainfall increase the potential for N losses below the rooting zone or even to the 

groundwater via leaching of the mobile fractions (Smika and Watts 1978, Young and 

Aldag 1982, Burkart and Stoner 2002, Ju et al. 2006). As it is not attracted by the 

negatively charged clay surfaces, NO3-N is not retained by the soil particles (Scheffer 

and Schachtschabel 1998).  

High concentrations of NO3-N in the surface waters and aquifers are of 

concern regarding water quality (e.g., Addiscott 1996, Burkart and Stoner 2002, Ju et al. 

2006, WHO 2006). More than 50 mg l-1 NO3-N or 3 mg l-1 NO2-N in the drinking water 

are reported to cause health hazards such as the blue-baby syndrome 

(Methaernoglobinaernia) and other chronic effects (WHO 2006, WHO 2007). In 

Khorezm, drinking water mostly comes from groundwater tube wells located close to 

intensively cultivated gardens (Herbst 2005) and from hand pumps installed near 

agricultural fields. Herbst (2005) found substantial fluctuations in the pollution of the 

drinking water in the tube wells, although the average NO3-N concentrations did not 

exceed the critical drinking-water threshold (median 25 mg l-1, range 0-250 mg l-1). For 

drainage canals and lakes in the region, Shanafield (personal communications) reported 

low monthly NO3-N levels of less than 1 mg l-1 and NH4-N pulses in March and April 

of maximum 3 mg l-1. 

 

Khorezmian soils 

The prevailing soils of the lower reaches of the Amu-Darya river are essentially light 

and medium loams (Rizayev 2004) originating from coarse-textured deposits of the 

ancient river delta during the tertiary era, which in turn are covered with 20-100 m finer 

textured alluvial sand layers from the quaternary (Tursunov and Abdullaev 1987, 

Riskieva 1989, Popov et al. 1992, Djumaniyazov 2006). Especially the sandy loams and 

loams (Figure 2.10) with their low to medium clay and silt content have a low cation 

exchange capacity (CEC) and ion adsorption capacity (Yuan et al. 1967, Miller 1970, 

Syers et al. 1970). 
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Figure 2.10 Particle size distribution (USDA classification) of soils in Khorezm 
(Sommer et al. 2008a). Modified after data from the Soil Science 
Institute Tashkent. 

  Main soil classes and their abundance: 1: silt loam (55 %); 2: loam 
(13 %); 3: sandy loam (12 %); 4: loamy sand (5 %); 5: sand (3 %) 

 

The soils in Khorezm region are furthermore characterized by low amounts of 

soil organic matter (SOM, 0.33-0.60 %) and a high carbonate rock content (Riskieva 

1989, Ibragimov 2007). The topsoil contains 1 % or less SOM, and SOM sharply 

decreases with depth (Figure 2.11) (Riskieva 1989, Soil Science Institute 2003, Sommer 

et al. 2008) owing to high temperatures and intensive irrigation and tillage practices, 

which enhance fast decomposition in the plowing layer (Vlek et al. 1981, Riskieva 

1989, McGiffen et al. 2004). However, as the CEC in the loamy soils prevailing in the 

Khorezm region depends mainly on SOM content, its content is crucial for the nutrient 

holding and buffering capacity (Yuan et al. 1967, Miller 1970, Syers et al. 1970).  
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Figure 2.11 Soil organic matter (SOM) content (g C kg-1 soil) in Khorezmian soils 
(cm) (Sommer et al. 2008a). Modified after data from Soil Science 
Institute Tashkent. 

 

In the Khorezmian soils, N is considered to be the most limiting nutrient 

(Ibragimov 2007). Total organic N (Norg) usually comprises around 90-95% of the soil 

total N content in the plowing layer of agricultural soils, and is closely associated with 

the SOM5 (Vlek et al. 1981). For Khorezm, the Norg-content in the soils has been 

reported to vary from 0.012-0.073 % in 0-30 cm depth (Riskieva 1989, 

Soil Science Institute 2003, Ibragimov 2007). 

While total soil P (0.10-0.21 %) and K (1.0-2.2 %) are relatively high in the 0-

30 cm layer, the concentration of the plant-available form of P (P2O5) are generally 

moderate (15-93 mg P2O5 kg-1) (Riskieva 1989, WARMAP and EC-IFAS 1998, 

Djumaniyazov 2004, Djumaniyazov 2006). The exchangeable form of K (K2O) in the 

soil reportedly ranged from low (84 mg K kg-1) to high amounts (470 mg K kg-1), 

greatly depending on preceding crops and fertilizer management (Riskieva 1989, 

WARMAP and EC-IFAS 1998, Djumaniyazov 2004). 

Riskieva (1989) found the quantity of NO3-N in the Khorezmian soil profile to 

vary to a great extent depending on the time of soil sampling and on the amount of 

                                                 
5 SOM = 1.56 organic C (Corg) 



Literature review 

 31  

irrigation water applied. In the top 0-30 cm, the average residual NO3-N content in 

several surveyed soil profiles was 25 mg kg-1 (range 6-96 mg kg-1) and decreased to 

8 mg kg-1 in 70-100 cm (range 4-17 mg kg-1). NH4-N on the other hand showed a rather 

homogeneous distribution in the soil with 10 mg kg-1 in the topsoil (range 6-20 mg kg-1) 

and 9 mg kg-1 in 70-100 cm depth (range 3-16 mg kg-1) (Riskieva 1989). These NO3-N 

and NH4-N concentrations were documented also by Kadirhodjayev and Rahimov 

(1972) and Tashpulatova (1974), who reported initial NO3-N levels of 3 and 5 mg kg-1 

in the plowing layer of a medium loamy soil, respectively, while Khodjizadaeva et al. 

(1978) and Nazarov (1985) found higher initial amounts of around 15 mg NO3-N kg-1 

and 7 mg NH4-N kg-1, respectively. These nutrient levels, therefore, generally demand 

an N application for the cultivation of cotton or winter wheat.  

 

2.3.2 Plant-nitrogen cycle 

Balancing crop N demand and supply from the soil is essential for sustainable crop 

growth and development (Olson and Kurtz 1982). Constant removal of N with the 

harvest or improper N management will eventually cause deficiencies and substantially 

reduce yields (Balasubramanian et al. 2004). For agronomists, therefore, “the challenge 

is to manipulate N availability before, during and after crop peak N demand” (Dinnes et 

al. 2002, p. 156) while minimizing N losses.  

Once absorbed from the soil, N is readily transported to the leaves, where it is 

stored (CRC 2007). The N-deficiency symptoms often appear first as yellowing of older 

leaves or chlorosis, since a scarce N supply from the soil or fertilizers inhibits 

chlorophyll synthesis and decelerates photosynthesis (Epstein 1972). Other visible N-

deficiency symptoms are reduced or weak growth and shorter height, while an excess N 

supply may encourage pest manifestations and late ripening (IFA 2006). In the case of 

cotton, N deficiencies will produce fewer branches and induce early fruit shedding and 

premature termination of fruit formation, while an excess supply can create rank growth 

and delay boll opening and maturity (Chaudhry and Guitchonouts 2003). The N 

deficiency during winter wheat growth has detrimental effects on the protein content 

and quality (section 2.3.2) (Olson et al. 1976), and will produce smaller ears and less 

kernels per ear, and decrease kernel weight (Langer and Liew 1973). High N supply to 

winter wheat can cause high plant densities due to intensive tillering (Strong 1986, Eck 
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1988), lodging and subsequent difficulties during harvest (Hucklesby et al. 1971, Hobbs 

et al. 1998). 

 

Nitrogen uptake and fertilization 

Most plant-N taken up during the vegetation period comes from the soil in the form of 

inorganic N, i.e., Nmin (soil-NO3 and -NH4). The relationship between pre-sowing 

mineral-N amounts in the soil and dry matter production and ultimately yield has been 

studied for various crops to estimate the N-fertilizer requirements.  

The most common practice to mitigate the N status of agricultural soils is the 

use of mineral or organic N fertilizers. The first Russian researcher to declare that the 

fertilizer N supply should be adjusted to the soil-NO3 was Balyabo in 1938 (Ibragimov 

2007). For contents of more than 200-300 kg N ha-1 in the profile (1 m), no additional N 

was needed for obtaining cotton yields of 4.0 t ha-1.  

The rate of N-fertilizer uptake by plants depends on many factors, such as 

fertilizer application rates, timing, method, type of fertilizer, soil history and biological 

features of the crops (Olson and Kurtz 1982). Riley et al. (2001) compared farmers’ 

practices with better plant-N uptake related applications and found that good timing of 

N in relation to crop demand is very efficient in reducing losses, i.e., adequate splits and 

also timing of splits. Also, meeting crop nutrient needs by applying the appropriate 

amount of N with the appropriate technique reduces losses and increases the N-use 

efficiency (NUE) (Wuest and Cassman 1992a).  

Soil N deficiencies are met by Khorezmian farmers by applying available 

and/or most affordable straight N fertilizers such as ammonium nitrate (“selitra” 

containing 34 % N) and urea (“carbamid” or “mochevina” containing 46% N6) (FAO 

2003). Also, N-containing fertilizers are used including ammonium phosphate 

(“ammofos”, AP, 11-12 % N and 46 % P2O5), ammonium sulphate (“sulfat”, 20.5-

21.0 % N) and ammonium superphosphate (“ASF”, 13-14 % N and 9 % P2O5) (FAO 

2003). Other available N-containing fertilizers such as mono- or diammonium 

phosphate (DAP, 18 % N and 46 % P2O5) are uncommon in the region (own 

observations, WARMAP and EC-IFAS 1998, FAO 2006). The N fertilizers such as 

                                                 
6 Percentages estimated by the Cotton Research Institute (2007) 
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anhydrous ammonia which are favored in Australia (Constable and Rochester 1988) are 

not available in Uzbekistan.  

Urea (CO[NH2]2) is favored in the world as N fertilizer as it is highly soluble 

(CRC 2007), and with 46 % N the highest concentrated N fertilizer, which makes it very 

attractive because of a good N per kg fertilizer ratio (FAO and IFA 2000). However, it 

has to be hydrolyzed to NH4 and then nitrified before it can be taken up by most plants. 

During this time, it is subject to volatilization, and, therefore, it should be incorporated 

into the soil rapidly (FAO and IFA 2000).  

Mono- and diammonium phosphate are frequently applied as starter fertilizers, 

as they accelerate early growth of seedlings (IFA 2006). The combination of both N and 

P at the onset has shown to be effective, as phosphate serves as a carrier for ammonium, 

which makes the latter better available for plants (Olson and Kurtz 1982).  

Ammonium nitrate has hardly been used after the Oklahoma City bombing in 

the US in 1995 although it provides both ammonium and nitrate. 

 

2.3.3 Nitrogen and crop quality 

Cotton 

The quality of cotton is generally related to its fiber. The fiber properties can be 

summarized in the terms shape and maturity. Fiber shape is described by length, 

diameter, etc., of the cotton seed hair, which is very much governed by its genetics 

(Bradow and Davidonis 2000). The realization of the genetic potential of cotton usually 

depends on the environmental conditions such as fertilizer and irrigation, temperature, 

day length, and solar radiation (Bradow and Davidonis 2000).  

Fiber physical maturity and micronaire (fineness, fiber cross section and 

relative wall thickening), on the other hand, is more sensitive to environmental 

conditions and management (Bradow et al. 1997, Johnson et al. 2002), and is not so 

much affected by its genetic potential. Higher fiber maturity and micronaire can be 

expected with earlier picks, and decreasing properties with later picks (Bradow et al. 

1997, Bradow and Davidonis 2000). The longer the opened cotton bolls remain in the 

field on the plant, the more likely is a change of color (especially weather strongly 

affects the color) and shrinking of fibers, which inevitably reduces the quality with 

respect to fiber length, strength and micronaire (Chaudhry 1997). Fibers of lower 
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micronaire generally contain a higher percentage of less developed cellulosic secondary 

fiber walls (Bradow et al. 1997). These walls are more likely to collapse in the process 

of maturing, hence, increasing dye defects in yarn and fabric (Bradow et al. 1997). 

Therefore, cotton is usually picked 3-4 times in one season after the bolls have opened. 

Aside from the harvest time, the nutrient supply influences the fiber quality. A 

low N supply, for example, causes weak and short fibers (Bradow and Davidonis 2000, 

Chaudhry and Guitchonouts 2003), while a high N supply causes immature and weak 

fibers, which is associated with lower micronaire, but greater length (Chaudhry and 

Guitchonouts 2003, Montalvo 2005). 

On the international market, the fiber value increases with fiber color 

(whiteness), length, strength, and decreasing micronaire (Bradow and Davidonis 2000). 

Most problematic are very short fibers and a high content of immature and weak fibers. 

Also, high micronaire fibers are coarser and more uneven and thus problematic in the 

dying process (Bradow and Davidonis 2000, Montalvo Jr. 2005). Longer fibers yield a 

smoother and stronger yarn, and immature fibers give matted yarns that are difficult to 

handle during the spinning process (Martin et al. 1976). In addition, fiber length classes 

of upland fiber cotton differ between countries. The US, for example, uses the 

classification short fiber (<21 mm), medium (22-25 mm), medium-long (26-28 mm) and 

long (29-34 mm) (Bradow and Davidonis 2000). In Uzbekistan, the classes for fiber 

length are much closer, i.e., 31-33 mm, 33-35 mm, 35-37 mm, 37-38 mm and 38-

41 mm (Ibragimov et al. 2008). Micronaire classes range from 3.0 to 5.0, and fiber is 

considered strong at 36 g tex-1 and weak at 33 g tex-1 (Ibragimov et al. 2008). 

In Uzbekistan, the certification center for cotton quality, the Uzbek Center for 

Certification of Cotton Fiber (SIFAT), is a joint-stock company responsible for 

evaluating the fiber export quality. It was established after Uzbekistan’s independence 

and uses national certification standards that are in line with the USDA certification 

classes (SIFAT 2001, Rudenko 2008). According to SIFAT, the fiber length of the fiber 

cotton variety Khorezm-127 is 33.6-35.0 mm (SIFAT 2005), the micronaire index 

(fineness) is 4.4, and the relative strength (measured by the stelometer) is 25.6-

27.6 g tex-1 (SIFAT 2005, Masharipov 2006). This variety, therefore, is classified as 

middle-fiber (Bremen Cotton Exchange 2004). 
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Important for the fodder industry is the cotton seed weight. The Uzbek cotton cultivar 

Khorezm-127 produces between 30 and 37 % fiber (Masharipov 2006, Rudenko 2008). 

Ginned seeds usually comprise 60-65 % of the total raw cotton weight, of which around 

16 % are crude oil and 46 % are meal (Chaudhry and Guitchonouts 2003, Rudenko 

2008). The seed serves as an important oil source when pressed. The residues from 

pressing, i.e., the cotton seed cake, serve as energy-rich fodder for livestock (Martin et 

al. 1976, DLG 1997). Seed weight increases with increasing N supply (Khaitbayev 

1963).  

 

Winter wheat 

Around 60 % of the wheat production world wide is used for food (Gwirtz et al. 2007). 

Most widely grown is soft winter wheat (Triticum aevestium L.), which is especially 

used for cakes, biscuits and pastry (Oliver 1988, Fowler et al. 1990, Farrer et al. 2006). 

Hard winter wheat (Triticum durum L.) accounts for only 10 % of the total global 

production (Raiffeisen 2008) and is used mainly for pasta, bread and Chinese noodles 

(Oliver 1988, Habernicht et al. 2002). It is grown especially in the Mediterranean region 

and in the water-limited regions of the US (Great Plains) (Habernicht et al. 2002, 

Raiffeisen 2008). 

Quality criteria for wheat include high flour protein, high water absorption, 

good dough extensibility and tolerance to mixing, and high loaf volume (Schofield and 

Blair 1937, Schofield 1994, Shewry et al. 1995, Bruckner et al. 2001). Wheat kernels at 

maturity, for example, may contain 8-20 % proteins (Johnson et al. 1973, Farrer et al. 

2006). Providing viscosibility and elasticity, the gluten is responsible for the 

functionality of wheat flours and the processability into different foods (Shewry et al. 

2002). A balance between viscosibility and elasticity is important, as highly extensible 

or too strong gluten will not produce the desired voluminous, fluffy, evenly pored 

dough (Shewry et al. 1995). Also, a low protein content will cause problematic starchy 

kernels (Fowler et al. 1989). The optimal ratio for bread making is provided at protein 

contents of 11.5-14.0 % (Oliver 1988, Panozzo and Eagles 2000).  

Cereals are the main source of protein intake in the developing world after 

meat and diary products (Olson et al. 1976, Friedman 1996). Proteins are essential in the 

diets of humans, as they provide some essential amino acids, complex carbohydrates 
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and many valuable vitamins (e.g., vitamin B) and minerals (Hucklesby et al. 1971, 

Pellett and Young 1980, Oliver 1988, Friedman 1996). Gluten and protein content are, 

therefore, key indicators for baking quality and food quality of kernels, and a measure 

for assessing the baking quality of wheat flour (Gupta et al. 1992, Shewry et al. 1995).  

Hard wheat varieties grown in semi-arid environments are usually likely to 

have higher protein content than soft wheat varieties (Habernicht et al. 2002). Roughly, 

for bread wheat, the German classification distinguishes three protein and four gluten 

classes (Raiffeisen 2008): low protein (10.5 %), medium protein (12.5 %) and high 

protein (16.5 %) content; and little gluten (< 20 %), low gluten (20-23 %), medium 

gluten (24-27 %) and high gluten (> 28 %) content. The official Soviet standard for hard 

wheat provides a more detailed system for protein and gluten (Table 2.4) (Abugalieva et 

al. 2003b).  

 

Table 2.4 Soviet wheat protein and gluten classification for hard and medium winter 
wheat varieties (Abugalieva et al. 2003b)  

 
Strong wheat types Value 

wheat 
types 

Wheat filler 
Weak 
wheat Excellent 

improver 
Good 

improver 
Satisfactory 

improver 
Good Satisfactory 

Protein content, %   
(not less than) 

16.0 15.0 14.0 13.0 12.0 11.0 8.0 

Kernel gluten content, %   
(not less than) 

32.0 30.0 28.0 25.0 24.0 22.0 15.0 

 

The content of protein and gluten in the wheat kernels can be managed 

successfully by targeted N supply to the wheat crop (e.g., Farrer et al. 2006). Also, the 

kernel weight can be improved by applying higher N-fertilizer rates (e.g., Alaru et al. 

2003). However, there is a natural limit above which increasing protein content is 

associated with decreasing yields, as protein content and yield are known to be 

negatively correlated (e.g., Olson et al. 1976, Alaru et al. 2003). Once the response 

curves for both protein content and yield for a given variety are known, breeders can 

narrow the ratio of yield-to-protein content beyond the potential by targeted selections 

of particular varieties (e.g., Terman 1979, Lanning et al. 1994, Ortiz-Monasterio R. et 

al. 1997, Fowler 2003). 

Aside from increasing N rates, also NH4-based fertilizers (IFA 2006) and the 

appropriate timing of N application significantly affects protein content (e.g., Farrer et 

al. 2006). By delaying N applications until the reproduction phase (i.e. the periods of 
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maximum N assimilation or of maximum carbohydrate formation) e.g., prior to 

anthesis/flowering (Zadoks-60, Feekes-10.51 (Zadoks et al. 1974)), or after anthesis/at 

milk formation stages (Zadoks-73, Feekes-11.1 (Zadoks et al. 1974)), increased protein 

contents of the kernels can be achieved without affecting the vegetative growth. In fact, 

the efficiency of acquired N after anthesis was higher than for earlier N applications, as 

the partitioning of the absorbed N to the kernels was more effective (section 2.3.4) 

(Wuest and Cassman 1992b). On the other hand, during this growth stage the mineral N 

content in the soil is usually low (Smith and Whitfield 1990), which also may impact N 

efficiency.  

Uzbek local winter wheat is reported to have gluten contents of less than 20 %, 

which is an overall low gluten quality, and often starchy kernels (Abugalieva et al. 

2003a) caused by low protein content (Fowler et al. 1989). Given the genetic potential, 

it can be concluded that the winter wheat production practices in Uzbekistan provoke an 

under performance of its potential in terms of quality. Consequently the N-fertilizer 

management strategies need to be revised and adjusted should quality become a priority. 

 

2.3.4 Nitrogen-fertilizer use efficiency 

Knowing the fate of N applied as fertilizer is particularly important to improve its 

availability for crops, since inefficient fertilization may lead to nutrient losses to the 

environment via volatilization or leaching, while sacrificing crop yields and quality 

(section 2.3.1). The efficiency of crops to use the applied N from fertilizer depends on 

the uptake and the utilization efficiency. While the first can be managed by cultivation 

practices (section 2.3.4), the latter is genetically predetermined (Hirel et al. 2007). The 

labeled N (15N) recovery and N uptake efficiency, in the following referred to as N-use 

efficiency (NUE), is high where losses to the environment are minimized.  

The N-fertilizer use efficiency is usually assessed by two procedures: (i) by 

estimating the agronomic N-use efficiency (NUEAE), which is also commonly referred 

to as the difference or apparent method, and (ii) by the use of the 15N isotope dilution 

technique (Harmsen and Moraghan 1988).  

For the first method, the yield increase in the economically important 

component (i.e., raw cotton, wheat kernels, etc.) per unit of N fertilizer applied is 

calculated (IAEA 2008) under the assumption that the N uptake is similar for fertilized 
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and non-fertilized plants. Despite its widespread use, this assumption has been a subject 

for an on-going debate, in particular since root growth may differ depending on N input 

(Olson and Swallow 1984, Belford et al. 1987). The yield increase may also be 

expressed per increase of biomass N uptake (NUEP), which is equivalent to the 

physiological efficiency (Hirel et al. 2007, IAEA 2008), or per N absorbed from the soil 

(Moll et al. 1982). However, Fritischi et al. (2004b) among others reported a high 

variability and contradicting tendencies with respect to increasing N rates in 

physiological N-use efficiencies. Moreover, some critics underline that the estimation of 

the NUE does not provide insight as to which part of the assimilated plant-N originated 

from fertilizers, or from other sources such as the soil or irrigation water (Smith et al. 

1989).  

The isotope dilution method, on the other hand, assesses the fate of 15N, be it 

from the fertilizer (or soil, or irrigation water) by determining the recovery rates of the 
15N fertilizer in the plant tissue, soil and groundwater (IAEA 2001, IAEA 2008). An 

additional advantage is that this method does not need control plots (Krupnik et al. 

2004), and permits the direct calculation of fertilizer- and soil-N used by the crop 

(Harmsen and Moraghan 1988). A disadvantage is the necessity for advanced and 

expensive laboratory equipment, a larger number of samples and the need for extreme 

accuracy during the work and computations. 

Previous research shows that both methods may give different results, and this 

has fuelled a controversial debate. Hauck and Bremner (1976) stated that the difference 

method results in higher recovery rates as compared to the isotope dilution method 

when initial soil Nmin content is low or N-fertilizer application rates are high. Harmsen 

(2003a) confirmed these findings. The discrepancy between the two methods was also 

high under conditions promoting losses of fertilizer-N during fertilizer applications 

(Harmsen and Moraghan 1988, Harmsen and Gabaret 2003). Wheat kernel data analysis 

of Krupnik et al. (2004) proved the opposite - with the 15N technique higher recovery 

rates were obtained - postulating that the results of this method may overestimate these 

rates whereas the difference method may underestimate them. However, when the 

information from the kernels was complemented with data on the N recovery in straw, 

Hauck and Bremner’s findings could be confirmed (Krupnik et al. 2004). In a test with 

both methods, Olson and Swallow (1984) reported a good agreement between the two 
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methods, although the data variability of the difference method was much greater. 

Fritischi et al. (2004a) also found no statistically significant differences between the 

methods. Comparing several continents and cropping systems, the two methods showed 

both directions of over- or underestimation of N recoveries (Harmsen and Gabaret 2003, 

Krupnik et al. 2004). Krupnik et al. (2004) reviewed the advantages and disadvantages 

of both methods and concluded that both are prone to errors due to circumstances that 

promote the so-called apparent and real “added N interactions” as defined by Jenkinson 

et al. (1985). 

 

Added nitrogen interactions 

Jenkinson et al. (1985, p. 426) termed the added N interactions of a given N pool or 

compartment as “any increase (or decrease) in the quantity of soil-derived N in that 

compartment caused by the added N”. By differentiating between real and apparent 

interactions independent of the plants present, Jenkinson et al. (1985) extended the until 

then existing term “priming effect” of Bingeman et al. (1953): The mechanism 

underlying the term priming effect or apparent added N interaction is mostly a 

biological process, where inorganic fertilizer-N is immobilized by microbial activity 

and instead soil-derived N is taken up by plants (Jenkinson et al. 1985, Kuzyakov et al. 

2000). This pool substitution and mineralization-immobilization turnover of soil-N was 

found to be the major cause of low fertilizer use efficiencies and the dominating 

phenomenon in soils (Harmsen and Moraghan 1988, Harmsen 2003b, Harmsen and 

Gabaret 2003), which is the more pronounced, the more high-energy organic matter was 

available (Craswell 1978, Jansson and Persson 1982, Hart et al. 1986). Although, to a 

lesser extent, apparent added N interactions also can be caused directly by plant uptake, 

denitrification or isotope displacement (Jenkinson et al. 1985). The latter, i.e., process of 

isotopic diffusion where 15N incorporated into soil microbial biomass will subsequently 

release residual unlabelled N to the inorganic pool, can however be neglected 

(Jenkinson et al. 1985, Kuzyakov et al. 2000).  

Altogether, the potential of apparent added N interactions taking place in the 

soil makes it difficult to accurately quantify the 15N uptake by plants (Wuest and 

Cassman 1992a), as the amount of 15N fertilizer taken up by the crop may frequently be 

underestimated (Krupnik et al. 2004).  
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The real added N interactions will occur where N-fertilizer applications directly 

enhance the rooting development of the crop (Jenkinson et al. 1985, Harmsen and 

Moraghan 1988). As plants with well developed rooting systems are able to extract N 

from deeper soil layers (Olson and Swallow 1984), with the difference method, crop 

available N is underestimated and consequently N recovery rates are overestimated 

(Harmsen and Moraghan 1988, Krupnik et al. 2004). 

 

Irrigated cotton systems 

The fate of N in irrigated systems has been intensively studied. Efficiency in cotton 

production settings similar to those in Uzbekistan has been described in detail by 

researchers in Australia (e.g., Rochester et al. 1997), in the US (e.g., Fritschi et al. 

2004a, Hutmacher et al. 2004), in Pakistan (e.g., Mahmood et al. 2000), and in China 

(e.g., Hou et al. 2007).  

In Uzbekistan, research on N balances in cotton using the difference method or 
15N technique dates back to the end of the 1970s (Ibragimov 2007). In the 

“Recommendations on Fertilization in Kolkhozes and Sovkhozes in the Uzbek SSR” 

published in 1980, a fertilizer-N uptake by cotton of around 40 % is assumed 

(Ibragimov 2007). Depending on the N rate, application method and crop management, 

Маsharipov (1990), Rashidov (1990), Тurdialiyev (1990), Khidirnazarov (1990), 

Kаriyev (1991) found 28-55 % of the fertilizer-N applied in the plants. Also, in most 

recent 15N research conducted by Ibragimov (2005a, 2005b) using lysimeters, the rate of 

urea-N uptake by the cotton plant amounted to 33-44 %.  

These recovery rates are similar to those in other regions. For Australian 

cotton, Rochester et al. (1997) reported plant-N recoveries to be less than 50 %, 

Constable and Rochester (1988) found 40 %, and Freney et al. (1993) and Rochester et 

al. (1993) recovered less than 30 % of the N fertilizer applied. A recent cotton report 

estimated the recovery rate at around 33 % (CRC 2007). Plant recovery rates of 

fertilizer-N in the US ranged from 32-36 % (Silvertooth et al. 2001a) and 19-38 % 

(Chua et al. 2003). However, in Pakistan and China, Mahmood et al. (2000) and Huo et 

al. (2007) observed higher N recoveries than in Australia or the US with 39 % and 45 % 

N recovery, respectively. 
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Microplot experiments of Khajiyev and Bairov (1992), conducted from 1978-79 in the 

Tashkent region, showed different recovery rates depending on fertilizer type, with 

NH4-containing fertilizers performing better than NO3-based ones. Urea-derived N in 

the cotton plant was found to be around 33 %, ammonium sulfate fertilizer recovery was 

31 %, and the recovery of calcium nitrate fertilizer was 28 % (Ibragimov 2007).  

The N-recovery rates in the soil under irrigated conditions, however, vary 

widely in the literature. Silvertooth et al. (2001a), for example, found recovery rates of 

up to 60 % in the soil in the US, mostly in the top 0-60 cm. In China, Hou et al. (2007) 

recovered 27-34 % in 0-50 cm, while only 19 % remained in the soil in Pakistan 

(Mahmood et al. 2000). In Uzbekistan, Khadjiyev (1998) reported recovery rates for 

different soil types: fertilizer-derived N on an irrigated meadow soil, which also prevails 

in Khorezm, was 37-44 %, on a soil typical of the Tashkent region it ranged from 28-

34 %, and on a light Tashkent soil it was only 21-31 % (Ibragimov 2007). Similarly, 

Fritschi et al. (2004a) found higher 15N-recovery rates on clay loam soils (49 %) than on 

sandy loam soils (43 %), especially with increasing N rates. The clay loams also showed 

a better N response than the sandy loam (Fritschi et al. 2004a). Furthermore, of the total 

N fertilizer remaining in the soil at crop maturity, less than 3 % were fixed in mineral-N 

form, and 17-27 % in (slowly available) organic-N form (Khadjiyev 1998). Australian 

researchers found similar rates of 25 % remaining in the soil as organic N (CRC 2007).  

Unaccounted N losses of 8-51 % observed in the Tashkent region of 

Uzbekistan (Ibragimov 2007) correspond with N-fertilizer inefficiencies found in other 

regions, e.g., 42-43% (Freney et al. 1993, Mahmood et al. 2000), 25-50 % (Chua et al. 

2003), where N is assumed to be lost from the system through denitrification and 

leaching.  

For the region of Khorezm, there has been little research on efficiency in 

cotton or winter wheat using the 15N technique. Therefore, it is difficult to judge the 

efficiency of the farmers’ current fertilizer management and to approximate hazards to 

health and the environment, and to give targeted recommendations.  
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Irrigated winter wheat systems 

Similar to cotton, the fate of N in winter wheat systems has also been widely 

investigated. Raun and Johnson (1999), for example, estimated the overall world 

average N-use efficiency of cereal kernels to be 33 % (+ 9 % in the straw as corrected 

by Krupnik et al. (2004)), suggesting high inefficiency in global cereal management. 

Generally, also for irrigated production systems as in Pakistan (Hamid and Ahmad 

1993, Mahmood et al. 2001), India (e.g., Krupnik et al. 2004), Australia (e.g., Smith and 

Whitfield 1990, Fischer et al. 1993), Argentina (e.g., Melaj et al. 2003), the US (e.g., 

Bronson et al. 1991, Wuest and Cassman 1992a, Ottman and Pope 2000), and Canada 

(e.g. Carefoot and Janzen 1997), fertilizer-N use efficiency varies around these levels. 

Australian authors found 40-56 % fertilizer-N in the plants (Smith and 

Whitfield 1990, Fischer et al. 1993). Recent 15N-recovery rates in above-ground matter 

of winter wheat published for Pakistan were as high as 48 % (Mahmood et al. 2001). 

Earlier publications, however, reported lower efficiency of N fertilizer in Pakistani 

wheat of 39 % (Mahmood et al. 1998) and 28-33 % (Byerlee and Siddiq 1994). The 

mean recovery efficiency of fertilizer-N in irrigated wheat in India was also in the range 

of 33-45 % (Krupnik et al. 2004). Similarly, Carefoot and Janzen (1997) observed 30-

45 % fertilizer-N in winter wheat in irrigated Canadian soils, which depended on the 

straw and tillage treatments and on the timing of N applications. The plant-N derived 

from fertilizer in Argentina varied highly from 18-58 % depending on the tillage 

management and fertilizer timing, with lowest rates for the non-tilled treatments (Melaj 

et al. 2003). The efficiency of different N sources was nearly identical (Vlek et al. 1981, 

IFA 2006). 

In the study of Hamid and Ahmad (1993), increasing N-fertilizer rates 

increased plant-N derived from fertilizer in steps of 25 % (N-0), 30 % (N-60), and 34 % 

(N-120). However, Ottman and Pope (2000) observed statistically insignificant 

increases in N recovery with increasing N rates, e.g., from 42 to 48 % for sandy loam. 

In contrast, the amount of soil-derived N decreased when more N fertilizer was applied. 

In fact, more frequently, decreasing recovery rates have been observed with higher N 

application rates (Wuest and Cassman 1992b, Krupnik et al. 2004). It was postulated 

that the decreased recoveries observed for increased N applications were due to 

increased potential for losses (Krupnik et al. 2004). Rather than large N amounts, late 
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dressings at anthesis (Zadoks-60, Feekes-10.51 (Zadoks et al. 1974)) were shown to 

affect recovery rates of 15N in plants (Ottman and Pope 2000). Of the total 15N fertilizer 

applied before seeding, only 41-49 % was recovered in the plant, while at anthesis, 

uptake efficiency was on average 64-68 % (Wuest and Cassman 1992a, Ottman and 

Pope 2000). 

Of the 15N applied, Mahmood et al. (1998) found around 28 % remaining in the 

soil after harvest; Ottman and Pope (2000) found on average 24 %, while Bronson et al. 

(1991) found around 20 %. In Australian soils, less than 20 % fertilizer-derived N were 

recovered (Smith and Whitfield 1990). As for wheat, the largest share of 15N fertilizer 

applied was found in the organic soil pool, indicating substantial fertilizer 

immobilization (Bronson et al. 1991, Mahmood et al. 1998). Losses generally ranged 

from 20-40 % (Smith and Whitfield 1990, Fischer et al. 1993, Ottman and Pope 2000), 

and did not decrease with delayed N applications (Smith and Whitfield 1990). Most of 

the 15N was lost when fertilizer was applied prior to planting and while the crop was still 

small (Smith et al. 1989). Losses occurred mainly in the form of volatilization, 

denitrification or leaching (section 2.3.1). Mahmood et al. (1998), however, warned that 

the losses based on the 15N balance are often higher than the directly measured 

denitrification losses. They assumed that this was due to an overestimation of NH3-

volatilization combined with an underestimation of denitrification losses. 

 

2.4 Modeling cotton yield and nitrogen dynamics 

Computer-based simulation tools for agricultural production have been in use for a long 

time. Based on mathematical equations, they are designed to mirror the complex 

processes in crop growth and development in a simplified but straight-forward way. 

Therefore, models are frequently used as aids in interpreting experimental results and as 

agronomic research tools (Whisler et al. 1986), as crop system decision management 

tools (Boote et al. 1996), or even for policy analysis (Boote et al. 1996). 

For assessing agricultural sustainability and evaluating effects of changes in 

soil and management or weather on crops, system-dynamic models have been proven to 

be a good approach (Boote et al. 1996, Boulanger and Bréchet 2005). The models 

quantify the biophysical processes of complex cropping systems over time using feed-

back loops and stocks and flows. Amongst them are crop-soil models, which generally 
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are mechanistic and comprehensive based on the understanding of plants, soil, weather, 

and management interactions such as phenological development, photosynthesis and 

growth, stress effects (water, N, salt), and root water uptake (Whisler et al. 1986). For 

simulation runs, site-specific information about weather, soil chemical and physical 

properties, and initial soil status data give the local adjustment (Whisler et al. 1986).  

Using the model as a research tool, crop responses to a particular factor or 

process information can be derived (Boote et al. 1996) that could not have been 

measured in the field or designed in field experiments. Crop-soil models also support 

the analysis of current or optimized crop management, examine the crop performance in 

a specific environment (Boote et al. 1996) or help to determine the optimum efficiency 

of irrigation and other agronomic practices (e.g., Pala et al. 1996, Clouse 2006). In this 

respect, models have become indispensable tools in quantifying the gap between 

potential and actual yields and forecasting changes as well as calculating leaching losses 

of chemicals and nitrate (Boote et al. 1996). 

However, the models vary in their precision and data input requirements. 

Examples of single-crop models for cotton growth management include the model 

GOSSYM (Whisler et al. 1986, Wanjura and Barker 1988, Reddy and Baker 1990, 

Watkins et al. 1998) or its derivatives, COTONS (Jallas et al. 2000) and Cotton2K 

(Marani 2004, Clouse 2006, Haim et al. 2008). A research emphasis has been to 

integrate several crop sequences for applying management-oriented models also to 

multiple cropping systems (Stockle et al. 1994). In this respect, several scientifically 

acknowledged agronomic decision and planning support softwares are available, 

amongst which the following are the most frequently used: the Decision Support 

System for Agrotechnology Transfer (DSSAT) (Thornton and Hoogenboom 1994, 

Jones et al. 2003), the Agricultural Production Systems Simulator (APSIM) (McCown 

et al. 1996, Wang et al. 2002, Keating et al. 2003), the Root Zone Water Quality Model 

(RZWQM) (Hanson et al. 1998, Hanson et al. 1999), the ecosystem simulation model 

(ecosys) (Grant et al. 1993, Grant 1995, Grant et al. 2001, Grant et al. 2006), and the 

Cropping Systems Simulation Model (CropSyst) (Stockle et al. 1994, Stockle et al. 

2003).  
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2.4.1 CropSyst 

All of the above models have been applied in various systems. Also, CropSyst has 

already been tested for various crops, systems and environments including wheat-fallow 

systems in the US (Pannkuk et al. 1998), durum wheat varieties in Mediterranean Syria 

(Pala et al. 1996), several rice varieties in Italy (Confalonieri and Bocchi 2005, 

Confalonieri et al. 2006), rotations including barley, maize, and soybean or durum 

wheat, sunflower and sorghum in Italy (Donatelli et al. 1997), and alfalfa (Confalonieri 

and Bechini 2004), 3-year spring wheat rotation in China (Wang et al. 2006), various 

rotations in the semi-arid Murray-Darling Basin in Australia (Díaz-Ambrona et al. 

2005), and conservation agriculture rotations in Mexico (Sommer et al. 2007).  

CropSyst is quite popular because amongst the integrated models it is freeware 

and the one with the least requirements for inputs while providing a sound functional 

balance (Confalonieri and Bechini 2004). Furthermore, for the Khorezm region with 

changing groundwater tables and soil salinity hazards, CropSyst seemed the most 

appropriate software, as it can simulate crop yield and detailed N and SOM dynamics 

applying algorithms used in the CENTURY model (Parton et al. 1987, Parton and 

Rasmussen 1994) while considering fluctuating shallow groundwater tables and salinity 

stress (Ferrer-Alegre and Stockle 1999, Stockle et al. 2003).  

CropSyst is a multiyear, daily time step model comprising several annual 

herbaceous crops, which is designed to simulate crop growth and yield responses to 

daily changes in the environment and agronomic management such as soil conditions, 

salinity levels, irrigation, N fertilization, tillage or residues (Stockle et al. 2003). It also 

simulates water and N budgets, i.e., leaching or denitrification losses, plant biomass 

production, root growth, residue accumulation and decomposition, and potential erosion 

(Stockle et al. 1994, Stockle and Nelson 2000, Stockle et al. 2003).  

In addition, although no cropping routine for cotton growth has been 

implemented so far, the generic routine in CropSyst allows adaptation to any new 

annual herbaceous plants (Sommer et al. 2008b). Given that it calculates water transport 

for each soil node using a finite difference solution of Richards’ equation (Stockle et al. 

1997), results from Forkutsa (2006) and Forkutsa et al. (2009a) could be integrated in 

the parameterization. 
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The links between the module components for water budget, N budget and crop growth 

and phenology are numerous (Stockle et al. 1994) (Figure 2.12). The water budget 

accounts for precipitation, irrigation, soil evaporation, canopy and residue interception 

and transpiration, runoff, surface storage and ponding, infiltration and deep percolation 

(Stockle et al. 1994, Stockle et al. 2003). In the modeling process, daily crop growth and 

development are limited by light, temperature, water and N (Pala et al. 1996, Stockle et 

al. 2003). Therefore, crop growth is determined by potential transpiration, transpiration 

use efficiency, radiation use efficiency, temperature, water and N supply and vapor 

pressure deficit (Sadras 2002, Stockle et al. 2003). Model details for the water budget 

and crop growth and development are described elsewhere (e.g., Stockle et al. 1997, 

Jara and Stockle 1999, Stockle and Nelson 2000, Sadras 2002, Fuentes et al. 2003, 

Stockle et al. 2003, Bechini et al. 2006).  
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Figure 2.12 Flow diagram of CropSyst (Stockle et al. 1994) 
 

Crop nitrogen uptake  

CropSyst has been used to assess N balances (e.g., Pala et al. 1996, Stockle and 

Debaeke 1997, Peralta and Stockle 2001, Sadras 2002, Fuentes et al. 2003). Included in 
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the balance are N transformations (i.e., net mineralization from organic matter and crop 

residues), losses (i.e., leaching, volatilization, denitrification), NH4-N sorption, 

symbiotic N2 fixation, and crop demand and acquisition (Stockle et al. 1994, Stockle et 

al. 2003). The model further differentiates between NO3-N and NH4-N in the N budget 

calculations, and N movement in the soil is driven by the interactions between the water 

and N components (Stockle et al. 2003). The crop quality, however, is not considered 

(Stockle and Debaeke 1997). 

The N availability for a given crop is determined by soil N status, moisture 

and root distribution throughout the growing season (Hansen et al. 1991, Stockle et al. 

1994, Stockle and Debaeke 1997). Although the daily uptake rate for cotton is estimated 

to be around 4.3 kg N ha-1 day-1 (Boquet and Breitenbeck 2000, CRC 2007), crop N 

uptake is not constant during the growing season (Stockle and Debaeke 1997, Boquet 

and Breitenbeck 2000, Ooesterom et al. 2001). In cotton, for example, the N demand is 

highest during the period of fastest growth; i.e., from flowering to boll filling (Boquet 

and Breitenbeck 2000, CRC 2007). During this time, uptake is also fast. As the crop 

matures, the uptake rate decreases (Boquet and Breitenbeck 2000, CRC 2007).  

Thus, N requirements for a given crop are driven by the minimum N demand 

and the maximum potential uptake (Stockle et al. 2003). In CropSyst, as in APSIM or 

DSSAT, until flowering the concept of growth dilution is applied, where the maximum, 

critical, and minimum plant N concentration are in relation to the above-ground biomass 

accumulation (Stockle and Debaeke 1997, Ooesterom et al. 2001). Plant growth is not N 

limited for concentrations above the critical level; below this growth will be reduced. 

Maximum or luxury uptake occurs for concentrations higher than the critical N content, 

and at the minimum concentration growth is stopped (Stockle and Debaeke 1997, 

Ooesterom et al. 2001). 

Beyond flowering, all concentrations are linearly decreased to match the 

observed/specified N concentrations at crop maturity (Stockle and Debaeke 1997). 

Stockle and Debaeke (1997) found this approach to be more satisfactory than, for 

example, relating N uptake to growing degree days as in the Danish N-simulation model 

DAISY (Hansen et al. 1991).  

The plant N concentration (%) in CropSyst is, therefore, determined by 

equation (2.1):  
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bBaN   (2.1) 

where a and b are fitted parameters, and B is the accumulated biomass (kg ha-1) (Stockle 

and Debaeke 1997). The maximum N plant uptake rate per unit of root length during 

early growth is a required input and allows for crop- or cultivar-specific calibration 

(Stockle and Debaeke 1997, Stockle and Nelson 2000).  

The daily potential uptake Nup (kg N ha-1 day-1) directly governs crop growth 

and plant N demand. Knowing the Nmin concentration in the soil solution, it is 

calculated for each soil layer. The potential uptake follows equation (2.2): 

2
availRmaxupup PAWNLNN    (2.2) 

where Nup-max is maximum uptake per unit root length (kg N day-1 m-1), LR the root 

length (m ha-1), and PAW the plant available water factor (dimensionless, 0-1) (Stockle 

et al. 1994, Donatelli and Stockle 1999). Navail is the dimensionless N availability factor 

(0-1), a function of N in the bulk soil (Stockle et al. 1994, Donatelli and Stockle 1999). 

The actual N uptake (Nact) is then a function of potential uptake, Nup, and the 

actual crop demand, Nd (kg ha-1). Nact is driven by the maximum crop N demand and the 

potential plant N uptake, i.e., the sum of deficiency demand and N demand for new 

growth (equation (2.3)) (Stockle et al. 1994): 

  tmaxpcpmaxpd BNBNNN    (2.3) 

where Np-max is the maximum plant N concentration or demand (kg N kg-1 biomass) and 

Np is the current N concentration before new growth (kg ha-1) (Stockle et al. 1994, 

Donatelli and Stockle 1999). Bc is the current cumulative biomass consisting of top and 

root biomass  (kg ha-1), while Bt is the potential biomass to be produced today 

comprising new top and root growth (kg ha-1) (Stockle et al. 1994, Donatelli and Stockle 

1999).  

N-limited growth (BN) is simulated by a linear decrease in response to N stress 

(equation (2.4)): 
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where B is the growth limited by radiation or water, Np-crit is the critical plant N 

concentration, and Np-min is the minimum plant N concentration (Donatelli and Stockle 

1999). 

 

Soil nitrogen transformation 

CropSyst is designed to simulate microbial N transformation, i.e., mineralization, 

nitrification and denitrification, for the top 30-50 cm of the soil profile based on first-

order kinetics (equation (2.5)) (Stockle et al. 1994, Donatelli and Stockle 1999):  

  tKe  1Nt N 0  (2.5) 

where NΔt is the transformed fraction of N in time t (kg m-2 t-1), and N0 is the initially 

available N (kg m-2 t-1). In CropSyst, the rate constant in CropSyst is a fixed value 

(Stockle and Nelson 2000). However, as the transformations are temperature and 

moisture dependent, changes in temperature and soil water capacity in the rate constant 

K (t-1) are accounted for (Stockle et al. 1994, Stockle and Nelson 2000). CropSyst 

furthermore provides multipliers (0-2) that change the rate constant to adjust it to the 

natural variation in the specific environment, i.e., a multiplier of 2 will increase the rate 

constant 2 times as coded in CropSyst (Stockle and Nelson 2000). However, changing 

the nitrification rate has no direct effect on the N balance (Donatelli et al. 1997). Losses 

via NH4-volatilization are estimated based on gas concentration gradients for surface-

broadcast fertilizer applications (Donatelli et al. 1997, Donatelli and Stockle 1999). 

Organic matter was considered as single mineralizing organic matter pool fed 

by residue decomposition (Stockle and Nelson 2000), as the routine with different pools 

(labile, meta-stabile and passive) had not been implemented at the time of this study. 

The amount of organic matter N mineralized is calculated by equation (2.6): 

  ΔtMeMF1MinMin ratepot   (2.6) 

where Min (kg ha-1) is the amount of organic N mineralized to NH4 in time t (day), and 

Minpot (kg ha-1) is the potential amount of organic N available for mineralization 

(Donatelli and Stockle 1999). MF is a soil moisture function dependent on the fraction 

of pore space containing water (equation (2.7)).  
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with DS being the degree of saturation (0-1) obtained by equation (2.8):  
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The Mrate (day-1) is the mineralization rate constant computed according to equation 

(2.9): 
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where Ts (ºC) is the soil temperature (Donatelli and Stockle 1999).  

Nitrogen leaching is related to water movement in the soil (concentration of N 

in the water), which is determined by the amount of soil water in each soil layer and free 

movable Nmin in the profile and the soil CEC (Stockle et al. 1994, Donatelli and 

Stockle 1999). Simulations of infiltration and water redistribution in the profile are done 

via the cascade approach (Sadras 2002). NO3-N is not retained by the soil matrix, and 

NH4-N movement is dependent on the absorption capacity of the solid soil matrix as 

described by Langmuir (equation (2.10)) (Stockle et al. 1994): 

 
 4

4
4 NHk1

NHqk
NHX





 

(2.10)

where X-NH4 is the amount of NH4-N absorbed by the exchange sites (kg kg-1), [NH4] 

is the concentration of NH4 (g l-1) in the soil solution, and k and q are constants           

(kg kg-1). Effects of diffusion and hydrodynamic dispersion are not considered (Stockle 

et al. 1994). The total soil NH4-N is then calculated by using soil bulk density (BD, 

kg m-3) and the gravimetric soil water content ω (kg kg-1) (equation (2.11)) (Donatelli 

and Stockle 1999): 

  BDNHωNHXNH soil Total 444   (2.11)

Although CropSyst is not a new model, the performance of the nitrogen routine has not 

been thoroughly tested yet for irrigated systems on field scale.  
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3 STUDY REGION 

 

3.1 Geographical location 

This research work was carried out within the framework of the German-Uzbek 

ZEF/UNESCO project (ZEF 2003) in 2004-2006 in the Khorezm region of Uzbekistan. 

The Khorezm region (60.05°-61.39°N latitude, 41.13°-42.02°E longitude) covers about 

6,200 km² and is situated in the northwest of Uzbekistan on the lower left and right bank 

of the Amu-Darya river; the largest part of the region is on the left bank (Figure 4.1). It 

is part of the northern Turan lowlands of Central Asia and surrounded by deserts: to the 

north and east by the Kyzylkum desert, while in the south it borders on the Karakum 

desert (Yagodin and Betts 2006). The topography of the region is characterized by flat 

slopes (Djumaniyazov 2006) with a slight inclination from north-west towards south-

east (Mukhammadiev 1982) and an elevation of 90-138 m above sea level (Katz 1976).  

 

 

Figure 3.1 Terra-MODIS satellite image of the Aral Sea region, and the project 
region (outlined in yellow), June 15, 2006 (Conrad, personal 
communications) 
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Administratively, the region borders on the Amu Darya district of the autonomous 

Republic of Karakalpakstan in the north and east, while in the west and south the 

Dashauz region of the Republic of Turkmenistan is located. With a total population of 

1.5 million in 2005 (OblStat 2006), it is administratively subdivided into 10 districts, 

i.e., Bogot, Gurlen, Khazarasp, Khiva, Khonka, Kushkupir, Pitnjak, Shavot, Urgench, 

Yangibozor, and Yangiaryk.  

Cotton production in Uzbekistan is in the extra-arid (desert) and arid (semi-

arid) climatic zones (Umarov 1975). The cotton belt of Uzbekistan is located in flat and 

mountainous areas – Chimbay and Termez are north and south borders.  

 

3.2 Climate 

According to Köppen-Geiger climate classification, the Khorezm region has a typical 

sharply continental, cold arid desert climate (BWk) (Kottek et al. 2006) with long hot 

summers and cold dry winters. The meteorological station in Urgench reported a mean 

annual temperature of 13.4°C with a minimum in February (-9°C) and a maximum in 

June/July (40°C) for the last 30 years (Glavgidromet 2003). Mean annual rainfall during 

the same period amounted to 90 mm (Figure 3.2). Maximum precipitation usually 

occurs in April and November (Glavgidromet 2003, UNEP 2005, Forkutsa 2006).  

The climatic conditions favor the cultivation of annual, warm-season crops 

such as cotton, since this plant grows in frost-free regions with high temperatures, high 

solar radiation and little precipitation (Chaudhry and Guitchonouts 2003). The average 

cotton growing period in the Khorezm region spans from April to October. However, 

the desiccation of the Aral Sea, once the natural meteorological buffer against the cold 

Siberian winds during winter time (Chub 2000), has caused the frost period to stretch 

longer into spring and start earlier in autumn, thus decreasing the number of frost-free 

days from 220 to 170 (Vinogradov and Langford 2001, Ibragimov 2007). Cotton 

sowing dates are delayed by 1-2 weeks, causing frost-induced damage (seed quality 

reduction) at harvest time (Chaudhry and Guitchonouts 2003). The temperatures during 

winter wheat harvest in mid June regularly exceed the 20-year average air temperature 

(1980-2000) of 27.1°C (GIS-Lab, ZEF). The maximum temperatures for the years of 

this study were 40.2°C (18.06.04), 43.0°C (15.06.2005) and 42.0°C (13.06.06) (own 

climate data recordings, see section 4.4.1).  
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Khorezm

 

Figure 3.2 Annual precipitation in the Aral Sea region (UNEP 2005) 
 

 

-10

0

10

20

30

J F M A M J J A S O N D

[°C]

0

20

40

60

[mm]

1980-2004

2005

Urgench (95 m)
[25]

13.4 °C     101 mm

 

Figure 3.3 Climate diagram for Urgench, Khorezm, Uzbekistan, according to Walter 
and Leith (1967) 

 

The Walter-Leith diagram (Walter and Leith 1967) shows high temperatures 

and radiation as well as low relative humidity and an evapotranspiration of 1400-
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1600 mm per year that exceeds precipitation during almost every month of the year 

(Figure 3.3). 

 

3.3 Groundwater, irrigation water and salinity 

Already in 1940, due to the extension of the irrigated area, a systematic increase in the 

groundwater level was reported for the lower reaches of the Amu-Darya river 

(Djumaniyazov 2006). Despite the step-wise construction of the drainage network that 

was more or less completed in 1975, the area with groundwater tables of less than 1.0 m 

increased (Figure 3.4) due to rising irrigation amounts, thus influencing the salt 

dynamics (Jabborov 2005). Jabborov reported that only in the early 1980s when 

irrigation amounts were reduced, did the groundwater tables also decrease.  

 

 

0

10

20

30

40

50

60

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

A
re

a 
w

it
h

 r
es

p
ec

ti
ve

 G
W

 t
ab

le
 (

%
)

<1.0m (%) 1.0-1.5m (%) 1.5-2.0m (%)
 

Figure 3.4 Dynamics of irrigated areas (%) for three groundwater depths (GW; 
< 1.0 m; 1.0-1.5 m; 1.5-2.0 m) in Khorezm during the period 1966-1990, 
adapted after (Jabborov 2005). 

 

Lateral groundwater flow is slow with only 19-26 mm per year (Katz 1976). 

Fast movement of the groundwater is experienced in the riverbeds only. Groundwater 

dynamics for the Khorezm region throughout the year are described in detail by 

Ibragimov (2004). The shallowest groundwater table of around 1.25 m was observed 

during the vegetation period (July). After cotton harvest and thus closure of the 

irrigation canals (September to October), the groundwater table was the deepest 
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(average 1.82 m). During the winter period, the groundwater level usually drops below 

2 m (Katz 1976). The critical groundwater depth for cotton growth is around 1.5 m 

below the ground surface (Rakhimbaev in Shmidt 1985, Riskieva 1989, Ibragimov 

2007), as under the present cultivation practices, 25-49 % of the cotton water demand is 

taken from shallow groundwater (Forkutsa 2006).  

Groundwater salinity in the region ranges between 1.0 and 3.0 g l-1 (Ibragimov 

2004, Forkutsa 2006), which is considered low, and tolerable for cotton growth (FAO 

1979). Only at times of elevated evapotranspiration does the upward movement of 

saline groundwater and thus salts thus lead to topsoil salinization (Abdullaev 2003, 

Ibragimov 2004), a process which has affected more than 60 % of the irrigated lands in 

the region (Letunov 1957, Ibragimov 2004). A survey show that chloride (Cl) ions are 

the dominating form of salinity in the lower reaches of the Amu-Darya river 

(WARMAP and EC-IFAS 1998). The survey findings indicate that the chloride-sulfate 

type of salinity is common, with one third chloride and one third sulfate ions in the soil 

solution. Soil saturated electrical conductivity (ECe) measured in spring 1996-1998 

ranged from 0.7 to 8.8 dS m-1 with an average of 3.4 dS m-1 (WARMAP and EC-IFAS 

1998).  

To reduce the salinity level in the topsoil, the fields are generally leached three 

times with water from the Amu-Darya river prior to sowing (Forkutsa 2006). Leaching 

prior to cotton cultivation takes place between March and April, whereas for winter 

wheat, the fields are leached in September. The leaching includes a complete flooding 

of the bare soil and drying for at least one week. During the vegetation period, the field 

crops in the Khorezm region are irrigated several times. The water is supplied via a 

sophisticated system of extended irrigation channels, while the outflow leaves the fields 

via drains (Conrad 2006). The irrigation and drainage network dates back to the years 

1938-1940, constructed during the Uzbek leadership of Usman Yusupov (Teichmann 

2006) and the early Krushchov era (1950s) (Wegren 1989). The salinity of the irrigation 

water during the last decade was below 1 g l-1 (Ibragimov 2004), which is still tolerable 

for cotton and wheat cultivation (FAO 1979).  
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3.4 Soils 

The Khorezmian soils are of alluvial origin. According to Russian and Uzbek literature, 

the main soil type found in the region is the so-called irrigated alluvial meadow soil 

covering about 60 % of the area (Rasulov 1989, Djumaniyazov 2006). Other soils such 

as boggy-meadow (covering 16 % of the area), takyr-meadow (15 %), boggy (5 %), 

grey-brown (2 %) and takyr soils are also common in the Khorezm region (Sabirov 

1980, Rasulov 1989). The FAO classification (Figure 4.1) (FAO 2003), in comparison, 

gives a rather rough description. As it does not capture the detailed characteristics of the 

Uzbek soil classification, it will not further be used in this study.  

Along the delta of Amu Darya river and on the first river terrace, mainly 

hydromorphic meadow soils are found due to continuous shallow groundwater (1-3 m) 

(Riskieva 1989). Floodplain alluvial soils were formed in the floodplains, terraces and 

the present delta of the river, where meadow soil development was constrained by 

periodical flooding followed by rapid drainage. After the cessation of the floodings, the 

so-called virgin meadow alluvial soils formed, which are rich in carbonate rocks 

(Riskieva 1989). Newly irrigated meadow alluvial soils, mostly found in North 

Karakalpakstan and the present delta of Amu Darya, differ from the virgin meadow 

alluvial soil by a plow layer, i.e., the agro-irrigative horizon, covering the alluvium 

(Riskieva 1989). Those soils with a long history of irrigated agriculture are called old 

irrigated meadow alluvial soils as they lack turf and sub-turf horizons. They have a 

thick surface layer of monotonic color, i.e., agro-irrigative horizon (sediment), 

according to which the soil is separated into three groups depending on the thickness: 

thin – < 30 cm; thick – 30-70 cm; very thick – > 70 cm. The stratified alluvium is 

generally not visible in the soil profile (Riskieva 1989).  

In the district of Yangibozor, around 80 % of the soils consist of light and 

medium loamy textures, in Urgench, Khonka and Bogot district ca. 70 %, and in 

Kushkupir district ca. 60 % (Rizayev 2004). In the southern districts Khiva, Khazarasp 

and Yangiaryk, soils are composed of finer particle sizes, with only around 40 % light 

and medium loams (Rizayev 2004) (see also section 2.3.1). 
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4 MATERIALS AND METHODS 

 

4.1 Statistical cotton yield and fertilizer data 

Official statistical records for cotton yield trends and fertilizer use in cotton production 

for Khorezm (OblStat 2004, OblStat 2005, OblStat 2006) were compiled from 1950 to 

2003 for fertilizer use and from 1932 to 2005 for cotton yields. Additionally, fertilizer 

use in cotton production on the national level was collected 1935-2006 (Djumaniyazov 

2004, FAOSTAT 2008).  

 

4.2 Experimental setup 

4.2.1 Minus-1 and nitrogen-fertilizer response experiments 

The most limiting nutrients for cotton and wheat grown in the Khorezm region were 

examined by implementing so-called minus-1 experiments in the years 2004 and 2005. 

For the macro minerals N, P and K four different treatments were set up (Table 4.4, 

Table 4.5). In addition, N-fertilizer response experiments were established in 2004 and 

2005 (Table 4.6, Table 4.7) to determine the optimal crop growth and yield. Both sets of 

experiments were planned as joint farmer-researcher-managed experiments. The 

researcher did not interfere during the management except for providing the fertilizer 

and the fertilization scheme.  

 

Site selection for cotton experiments 

The sites for the minus-1 experiments were selected to cover the three prevailing soil 

textures of irrigated alluvial meadow soils in the region: light, medium and heavy loam 

(Rizayev 2004). With the help of the German Agro Action (GAA)7, 11 collaborative 

farmers in 7 districts near Urgench city were identified. During the growth period, four 

sites had to be excluded from the study for several reasons. The particular farmers either 

had forgotten to exclude the experimental site during fertilizer application or fertilized 

all plots, or they did not feel comfortable having nutrient-deficient yellow plants 

standing close to the road, or they used other fertilizers than provided. Therefore, in the 

                                                 
7 German Agro Action (Deutsche Welthungerhilfe (DWHH)) has been working in this region for a long 

time and has conducted extensive experiments with farmers. The farmers in this study were selected 

from their list of farmers. 
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following analyses, only data from the remaining 7 sites were used (Table 4.1, Figure 

4.1). Two N-fertilizer response experiments were established in the Urgench district, 

one on a medium loamy soil and the other on a light loamy soil (Table 4.1).  

 

Table 4.1 Cotton minus-1 and response experiments in 2004. LL: light loamy soil; ML: 
medium loamy soil; HL: heavy loamy soil. 

Experiment Location Shirkat8 Farmer 
Soil 

texture 
Name/Code 

Minus-1 Khonka Sharaf Rashidov Kurramboy Rajabov LL Khonka 

Minus-1 Kushkupir Nezagas Farhod Rakhimov LL Kushkupir-LL 

Minus-1 Kushkupir Nezagas Farhod Rakhimov HL Kushkupir-HL 

Minus-1 Shavot Sohibkor Bekhtemir Boltaev LL Shavot 

Minus-1 Urgench Amir Temur Maksud Jumaniyasov ML Urgench 

Minus-1 Yangibozor Modanyiat Haylulla Rakhimboyev HL Yangibozor 

Minus-1 Yangiaryk Khorezm Shavkat Abdullaev HL Yangiaryk 

Response Urgench Amir Temur Ruzemboy Yuldashev ML Response-ML 

Response Urgench Amir Temur Ruzemboy Yuldashev LL Response-LL 

 

Site selection for winter wheat experiments 

The sites for the wheat minus-1 experiments were implemented at four farms. 

Unfortunately, at wheat harvest, the site in the Kushkupir district had to be excluded 

from the study as the farmer harvested the wheat early (still green) in order to plant rice 

in time. Analogous to the cotton experiments, the wheat response experiments were 

established in a factorial design in the Urgench district. The same farmers were involved 

as during the cotton experiments (Table 4.2, Figure 4.1).  

 

Table 4.2 Winter wheat minus-1 and response experiments in 2004/05. LL: light loamy 
soil; ML: medium loamy soil; HL: heavy loamy soil. 

Experiment Location Shirkat Farmer 
Soil 

texture 
Name/Code 

Minus-1 Urgench Amir Temur Maksud Jumaniyasov ML Urgench-ML 

Minus-1 Urgench Amir Temur Maksud Jumaniyasov LL Urgench-LL 

Minus-1 Yangibozor Modanyiat Haylulla Rakhimboyev HL Yangibozor 

Response Urgench Amir Temur Maksud Jumanyasov ML Response-ML 

Response Urgench Amir Temur Maksud Jumanyasov LL Response-LL 

 

                                                 
8 Joint-stock companies (shirkats), which had not completely been dissolved in 2004 (see section 2.1.3). 
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Figure 4.1 Spatial distribution of the cotton minus-1 experiments in the Khorezm region. Sites in brackets had to be excluded during the 
growing period. Soil types in the Khorezm region according to FAO classification (GIS-Lab, ZEF) 
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Fertilizers and treatments 

For cotton and wheat, the official fertilizer recommendations of the Cotton Research 

Institute (CRI) and the Wheat Research Institute (WRI) were followed (see section 

2.2.5). Single compound fertilizers were applied as ammonium nitrate (AN), single 

super phosphate (SSP), and potassium chloride (KCl) (Table 4.3). 

 

Table 4.3 Nutrient content of applied fertilizers.  

Fertilizer type 
N P K 

% % % 

Diammonium phosphate (DAP) 18 46  

Monoammonium phosphate (AP) 11 46  
Urea [CO(NH2)2] 46   
Ammonium nitrate (AN) 34   
Single superphosphate (SSP)  16  
Potassium chloride (KCl)   58 

 

For the cotton and wheat minus-1 experiments, N, P and K fertilizers were 

combined in four treatments (“-N”, “-P”, “-K” and “NPK”) (Table 4.4, Table 4.5). For 

the response experiments, the application levels of N were varied in equal steps (Table 

4.6, Table 4.7). Recommended P and K rates were equally applied to each treatment. 

Total doses of P (single superphosphate) and K (potassium chloride) were 

applied before sowing along with the first dose of N (ammonium nitrate). The 

remaining splits of N (ammonium nitrate) were applied during the season. Nitrogen was 

applied in three splits for both crops: 

Cotton: 30 % before seeding, 35 % at budding and 35 % at flowering-fruiting stage 

(square formation; around 104 days after sowing (DAS)).  

Wheat: 20 % before seeding, 40 % at tillering and 40 % at booting stage. 

Following fertilizer application, the soil was chiseled and cotton was seeded. 

During the vegetation season fertilizers were applied manually, and each application 

was directly followed by irrigation. 
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Table 4.4 Cotton fertilization scheme for minus-1 experiment 

Treatment 
N P2O5 K2O 

kg ha-1 kg ha-1 kg ha-1 
-N 0 140 

100 
-P 

200 

0 

-K 
140 

0 

NPK 100 

 

 

Table 4.5 Winter wheat fertilization scheme for minus-1 experiment 

Treatment 
N P2O5 K2O 

kg ha-1 kg ha-1 kg ha-1 
-N 0 100 

70 
-P 

180 

0 

-K 
100 

0 

NPK 70 

 

 

Table 4.6 Cotton fertilization scheme for response experiment 
Treatment N P2O5 K2O 

kg ha-1 kg ha-1 kg ha-1 
N-0 0 

175 125 

N-80 80 

N-120 120 

N-160 160 

N-200 200 

N-250 250 

 

 

Table 4.7 Winter wheat fertilization scheme for response experiment 
Treatment N P2O5 K2O 

kg ha-1 kg ha-1 kg ha-1 
N-0 0 

100 70 

N-120 120 

N-180 180 

N-240 240 

N-300 300 
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Experimental layout 

The size of the experimental sites and hence the necessary fertilizer amounts were 

adjusted according to the machinery and field size of the farmers’ fields. Four 

replications of each treatment were set up in a complete randomized block design. 

Cotton. Each plot consisted of 8 rows spaced at 0.60 m with a plant to plant 

distance of 0.15 m average. Gross plot size was 4.8 m x 30 m (total 144 m²). Only the 

Shavot site was seeded with 0.90 m row spacing. Gross plot size was 7.2 m x 30 m 

(total 216 m²).  

Wheat. The size of the minus-1 winter wheat basins were 15 m x 15 m (total 

225 m²) in Yangibozor, and 15 m x 18 m (total 270 m²) in Urgench (LL and ML). Plot 

size of the response experiments was 15 m x 18 m (total 270 m²).  

 

4.2.2 15N-fertilizer experiment 

The 15N-fertilizer experiment for cotton and winter wheat was located in the Urgench 

district, 16 km west of the regional capital Urgench in the farmers’ association “Amir 

Temur”. The experimental site (Figure 4.2) was entirely researcher managed, with the 

exception of irrigation water allocation and electricity provision for pumping, which 

could only be managed by the farmer himself.  
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Figure 4.2 Maksud Garden research site (10 ha) in the farmers’ association Amir 
Temur in the Urgench district; locations of the minus-1 experiment 
(2004), response experiment (2004/05), and 15N experiments with cotton 
(2005) and winter wheat (2005/06). Adapted from Google-Earth©, 2007.  

 

Cropping history 

Prior to the cotton seeded for the 15N-fertilizer experiment in 2005, the experimental 

field Maksud Garden had been seeded with cotton fertilized with approximately 

270 kg N ha-1 (Table 4.8).  

 

Table 4.8 Cropping history of Maksud Garden from 1988-2005 
Year Crop Fertilization 

1988-2002 apple trees, cut in 2002 no 
2002/03 winter wheat no 

2003 maize 400 kg AN* (=  130 kg N) 
2004 cotton 700-800 kg AN (= 250-290 kg N) 
2005 cotton own 

* AN: ammonium nitrate 
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Main plots 

For the N-fertilizer response cotton and wheat were fertilized with SSP and KCl as P 

and K fertilizer. The timing and form of the N fertilizer were varied using 

monoammonium phosphate, urea and ammonium nitrate. 

For cotton, rates of 175 kg P ha-1 and 125 kg K ha-1 were used. Increasing rates 

of N fertilizer were applied (Table 4.9). Winter wheat was fertilized with 100 kg P ha-1 

and 70 kg K ha-1, while the N steps were increased from 0 to 160 kg N ha-1 (Table 

4.10); N fertilizer was hand-broadcasted throughout the vegetation season.  

 

Cotton 

For the cotton experiment, three split applications and four fertilization regimes were 

implemented (Table 4.9). The timing allowed the comparison between the officially 

recommended (“DUUr”) (Cotton Research Institute 2007) and the farmer’s fertilizer 

management (“DUUf”) (N. Ibragimov, pers. comm.), and included the growth stages 

before seeding, 2-4 true leaves, budding and flowering. 
 

 AP – Urea – Urea, timing according to recommendations (“DUUr”) 
 Urea – Urea – Urea, timing according to recommendations (“UUU”) 
 AP – AN – AN, timing according to recommendations (“DAA”) 
 AP – Urea – Urea, timing according to farmers’ practice (“DUUf”) 

 

Table 4.9 Cotton 15N-fertilizer treatments according to rate (kg ha-1), split (%) and 
timing of N fertilization, 2005. 

Treatment 
Fertilizer 

regime 

N rate N split according to growth stage (%) 

kg ha-1 before seeding 2-4 leaves budding flowering 

   29.05. 11.06. 25.06. 11.07. 
1 NPK-0 0 - - - - 
2 N-0 0 - - - - 
3 DAP* (40) 100 - -  
4 DUUr 

80 

25 - 35 40 
5 UUU 25 - 35 40 
6 DUUf 20 50 - 30 
7 DAA 25 - 35 40 
8 DUUr 

120 

25 - 35 40 
9 UUU 25 - 35 40 

10 DUUf 20 50 - 30 
11 DAA 25 - 35 40 
12 DUUr 

160 

25 - 35 40 
13 UUU 25 - 35 40 
14 DUUf 20 50 - 30 
15 DAA 25 - 35 40 

* for the main plots AP was used as no DAP was available, but for simplification this treatment will be 
called DAP as in the microplots labeled DAP was used 
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Wheat 

For the winter wheat experiment, three split applications and four fertilization regimes 

were implemented (Table 4.10). The timing allowed the comparison between the 

currently recommended (“DUUr”) and the hypothetically more appropriate fertilizer 

management (“DUUf”) (IFA 2006), and included the growth stages before seeding, 

tillering (F-2-3), booting (F-9-10) and heading (F-10.1). A later N fertilization at growth 

stage F-10.51 was not possible due to the lack of spraying equipment. 

 

 AP – Urea – Urea, timing according to recommendations (“DUUr”) 
 Urea – Urea – Urea, timing according to recommendations (“UUU”) 
 AP – Urea – Urea – Urea, timing according to IFA (2006) (“DUUu”) 
 AP – AN – AN, timing according to recommendations (“DAA”) 

 

Table 4.10 Winter wheat 15N-fertilizer treatments according to rate (kg ha-1), split (%) 
and timing of N fertilization, 2005/06. 

Treatment Fertilizer 
regime 

N rate N split according to growth stage (%) 

kg ha-1 before seeding tillering booting heading 

   25.09.05 18.03.06 04.04.06 03.05.06 
1 - 0 - - - - 
2 - 0 - - - - 
3 DAP (24) 100 - - - 
4 DUUr 

80 

20 40 40 - 
5 UUU 20 40 40 - 
6 DUUu 20 30 30 20 
7 DAA 20 40 40 - 
8 DUUr 

120 

20 40 40 - 
9 UUU 20 40 40 - 

10 DUUu 20 30 30 20 
11 DAA 20 40 40 - 
12 DUUr 

160 

20 40 40 - 
13 UUU 20 40 40 - 
14 DUUu 20 30 30 20 
15 DAA 20 40 40 - 

 

Experimental layout  

The 15 treatments of the cotton and wheat experiments were set up in a randomized 

block design with four replications. The fertilizer amounts were adjusted to the size of 

the plots.  
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Cotton 

Each cotton treatment plot had 8 rows with 60-cm spacing. The 4 center rows were used 

for phenological observations, plant sampling at harvest and cotton yield determination. 

With a plot length of 10 m, a total plot size of 48 m² was obtained, while the harvested 

plot size was 24 m².  

 

Wheat  

The size of the basins was 11 m x 12 m.  

 

Microplots 

The N uptake pathway was monitored by isotopes as tracers, an appropriate method to 

assess N uptake efficiency of fertilizers (IAEA 2001). The use of 15N as tracer allows 

the determination of the real rate of N use by plants.  

Microplots were established within the main plots and fertilized with 

120 kg N ha-1 (T8 – T11) to secure 15N fertilizer uptake by the crop, avoid fertilizer 

losses via irrigation and mixing with the plot fertilizer (Follett et al. 1991, Silvertooth et 

al. 2001b).  

The N-fertilizer amounts in the microplots were split and timed as in the main 

plots. Around 5%-enriched 15N-labeled fertilizer pellets of DAP [(15NH4)2PO4]) and 

urea [CO(15NH2)2] were used, and 99%-enriched liquid AN (15NH4
15NO3) from 

Georgia, which was diluted to 5% enrichment, was applied to the microplots following 

the IAEA (2001) scheme. Each microplot received one dose of 15N-labeled fertilizer in 

the course of the vegetation period. Meanwhile, for the other fertilization events, regular 

N fertilizer was used (Table 4.3). This allowed the calculation of partial fertilizer use 

efficiency of the respective split (Table 4.11, Table 4.12).  

 

Cotton 

Three microplots (A, B, and C) of 2.4 m x 1.2 m size (2.88 m²) were installed. The 

microplots thus enclosed four rows of cotton (Figure 4.3) of which the two center rows 

were used for plant sampling and yield determination at the end of the vegetation 

period. Roofing cardboard (tar paper) was inserted on all sides of the microplots to 

50 cm depth for protection.  
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Wheat 

The winter wheat microplots were of 0.9 m x 0.9 m size (0.81 m²) (Figure 4.4). Ridges 

were made out of soil around each 15N treatment to secure the uptake of the marked 

fertilizer.  

 

 

 

Figure 4.3 Experimental plot with microplots for cotton, Maksud Garden, 2005 
 

 

Table 4.11 Timing of 15N application (adapted after IAEA (2001)) in the cotton 
microplots, 2005; bold numbers denote the 15N-labeled plots  

Treatment 
Fertilizer 

regime 
Microplot 

N split according to growth stage (%) 

before seeding 2-4 leaves budding flowering 

   
29.05. 11.06. 25.06. 11.07. 

 50 DAS** 64 DAS 81 DAS 

8* DUUr 
A 25 - 35 40 
B 25 - 35 40 
C 25 - 35 40 

9* UUU 
A 25 - 35 40 
B 25 - 35 40 
C 25 - 35 40 

10* DUUf 
A 20 50 - 30 
B 20 50 - 30 
C 20 50 - 30 

11* DAA 
A 25 - 35 40 
B 25 - 35 40 
C 25 - 35 40 

* Fertilization rate for these treatments was 120 kg N ha-1  
** DAS: days after sowing  
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Figure 4.4 Experimental plot with microplots for winter wheat, Maksud Garden, 
2005/06 

 

 

Table 4.12 Timing of 15N application (adapted after IAEA (2001)) in the winter wheat 
microplots, 2005/06; bold numbers denote the 15N-labeled plots  

Treatment Fertilizer Microplot 
N split according to growth stage (%) 

around 
seeding 

tillering booting heading 

   
25.09.05 18.03.06 04.04.06 03.05.06 

 185 DAS 202 DAS 231 DAS 

8* DUUr 
A 20 40 40 - 
B 20 40 40 - 
C 20 40 40 - 

9* UUU 
A 20 40 40 - 
B 20 40 40 - 
C 20 40 40 - 

10* DUUu 

A 20 30 30 20 
B 20 30 30 20 
C 20 30 30 20 
D 20 30 30 20 

11* DAA 
A 20 40 40 - 
B 20 40 40 - 
C 20 40 40 - 

*    Fertilization rate for these treatments was 120 kg N ha-1  
**     DAS: days after sowing  

 

 

4.3 Agronomic measurements 

4.3.1 Cotton growth 

The Uzbek cotton variety Khorezm-127 was seeded in all experiments to allow 

comparisons across the years and experiments. Seeding density for all experiments was 
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around 200 kg ha-1. Cotton in the minus-1 experiments was seeded between April 3 and 

April 30, 2004 (Appendix 15.4). The response experiments were seeded with cotton on 

April 10, 2004. Reseeding occurred on April 28 due to heavy rain on April 15. 

In April 2005, the 15N experimental field was chiseled and leveled before 

seeding, and the fertilizers surface-applied to the treatment plots. 15N-cotton was seeded 

on April 22, 2005 (Appendix 15.5). Due to low initial soil moisture and subsequent 

irregular germination rates and plant stand, reseeding was conducted on May 12, 2005.  

After 15-20 DAS, the cotton rows of all experiments were thinned manually in 

all plots to achieve a uniform plant population. Plant to plant distance was then 0.15 m 

average, giving a plant density of 8 plants per m².  

 

4.3.2 Winter wheat growth  

The Uzbek winter wheat variety Kupava-R2 was seeded in all experiments. Seeding 

density was 220 kg ha-1. Wheat of the minus-1 experiments was seeded between 

September 24 and October 8, 2004 (Appendix 15.6). The response sites were sown on 

September 25, 2004 (ML-site) and on October 8, 2004 (LL-site). The wheat for the 15N 

experiment was seeded on September 14, 2005. 

 

4.3.3 Phenological cotton observations 

Phenological measurements were carried out only on the cotton plants. Wheat 

observations were conducted by PhD student Yulduz Djumaniyazova and will be 

available in her dissertation (Djumanyiazova forthcoming). 60 cotton plants of the four 

central rows of the main plots and all plants in the microplots were observed throughout 

the vegetation period. Data of the phenological growth stages 2-4 leaves, budding, 

fruiting, flowering and maturity were collected from each treatment (Appendix 15.4). 

This information was partly used to calibrate the model CropSyst.  

 

4.3.4 Weed, pest, and growth control 

Minus-1 and yield response 

Cotton 

Weeds on the cotton minus-1 and response experiments were removed by tractor-driven 

machines (farmers’ practice) twice during the vegetation period. Unfortunately, low 
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temperatures in 2004 led to a high infestation of the cotton plants with pests (thrips, 

Frankliniella fusca Hinds, and cotton aphids, aphis gossypii Glover). Consequently, 

most of the farmers sprayed a small amount of concentrated urea-water mixture 

(carbamid, 5-6 kg ha-1) and the organophosphorous insecticide Phosalone9 

(C12H15CINO4PS2, CAS-Nr. 2310-17-0 (EPA 2007)). 

Cotton growth was controlled by manually cutting off the tips of the plants 

(pruning) during the fruiting-flowering stage once the cotton plants had reached the 

height of 1 m (farmers’ practice) to reduce void growth and enhance fruit formation 

rates.  

To facilitate the harvest, a recommended defoliant (from China, magnesium 

chloride, MgCl26H2O, at a rate of 8-12 kg ha-1) was sprayed when 60% of the cotton 

bolls were open. World wide, cotton plants frequently are sprayed with defoliants to 

encourage artificial leave-shedding (Eaton 1955, Chaudhry 1997) by stopping 

respiration temporarily and forcing an early ripening of the plant (Eaton 1955). In 

Australia and Israel, application of defoliants is common (100%), while in Uzbekistan, 

only around 70 % of the cotton area is treated with defoliants (Chaudhry 1997). 

 

Wheat 

Weeds on the wheat plots were removed manually by local labor every two weeks.  

 
15N experiments 

Weeds were controlled with a hand hoe to prevent uptake of 15N by weeds. Biological 

insect control measures against the cotton bollworm (Helicoverpa armigera Hübner) 

were implemented during the growing period by releasing egg parasitoids of the genus 

Trichogramma spp. to the field after sunset, following the common augmentative 

release programs of the former Soviet Union (Luttrell et al. 1994). Also pheromone 

traps were set up as biological control measures.  

Cotton growth on the minus-1 experiments was controlled by applying a 

common chemical growth regulator (from South Korea, Mepiquat chloride, CAS-Nr. 

                                                 
9 Since 2006 banned in the EU (EU 2006, http://eur-lex.europa.eu/LexUriServ/site/de/oj/2006/l_379/)  
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24307-26-4 (EPA 2007)). The liquid was foliar-applied twice to enssure complete plant 

samples at harvest time.  

 

4.4 Weather and water measurements 

All experimental fields were leached 2-3 times prior to seeding according to common 

practice in Khorezm. However, water amounts required for leaching were not recorded 

for the experiments. Irrigation amounts for the minius-1 and response experiments were 

not documented, as the management was left to the respective farmer. Meteorological 

data were obtained from the weather stations of the project.  

 

4.4.1 Meteorological station 

Close to the 15N experiments at Maksud Garden, a meteorological station (WatchDog 

Model 2700 Weather Station, Spectrum®) was set up 1.5 m above ground. It 

automatically recorded maximum and minimum air temperature (°C), relative humidity 

(%), precipitation (mm), and solar radiation (W m-²) on an hourly basis. 

 

4.4.2 Soil moisture, water content 

Cotton 

Five pF-meters (GeoPrecision, Germany ecoTech® 2004) were installed at 10, 20, 40, 

60, and 80 cm depth in the 15N-experiment plots T7-R1 and T12-R1 (later reinstalled at 

T14-R1). These sensors recorded the soil pressure head in the range of pF 0 to pF 7 by 

measuring the molar heat capacity irrespective of soil salinity level (ecoTech 2007b).  

Furthermore, 15 Frequency Domain Reflectometry (FDR) sensors 

(ThetaSonde ML2x Eijkelkamp® theta probe, Delta-T Devices, UK) were installed at 

20, 40, 60, 80 and 100 cm depth in the profiles of the plots T13-R1, T14-R1 and T15-

R1. The FDRs allow the quantification of volumetric water content in the range of 0-

50 % with a precision of 2 Vol.-% (ecoTech 2007a), by measuring the dielectric 

constant and conductivity, thus, eliminating salt interference (Pinto and Liu 1996). The 

pF-meters and FDR sensors were connected to a logger, and data were automatically 

recorded on a 30-min basis. 

Data from both pF-meters and FDR sensors were used to adjust the water 

balance of the model CropSyst to the particular soil conditions (see section 10.1). 
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Wheat 

The same set of pF meters and FDR sensors was installed in the 15N wheat experiment. 

The pF meters were placed in plots T2-R2 and T15-R2, next to the FDR sensors in 20, 

40, and 80 cm depth. Five FDR sensors were installed at plots T2-R2, T15-R2 at 20, 40, 

60, 80, and 100 cm depth. A further 3 FDR sensors were positioned at plot T14 in 20, 

40, and 80 cm depth. 

 

4.4.3 Leaching and irrigation 

At the 15N experimental site, a submersible pump was installed down to 9 m depth to 

guarantee irrigation water at all times. 

 

Cotton 

Prior to cotton sowing, the15N field was leached 3 times. During the vegetation season, 

it was irrigated 5 times. Irrigation was scheduled to keep 70-70-60 % of the field 

capacity (Ibragimov et al. 2007b), where 70 % was used from cotton germination to 

budding stage, 70 % from budding to flowering-fruiting, and 60 % during maturation of 

the cotton bolls. 

For approximation of irrigation water application rates at plot level, two sharp-

crested quadratic weirs (12 cm x 12 cm) and two flumes (RBC flume (Eijkelkamp 2001) 

and SANIIRI flume were installed (Figure 4.5). The plots were chosen to match the 

installation of the pF and FDR sensors (T7-R1, T12-R1 (later reinstalled at T11-R1), 

T13-R1 and T15-R1). 

 

   

a) quadratic weir b) RBC flume c) SANIIRI flume 

Figure 4.5 Discharge measurement devices at plot level 
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Calculations of irrigation water discharge for the quadratic weirs followed equation 

(4.1) (USDA 1997): 
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where Qn is discharge, Cd the coefficient of discharge (0.61 (USDA 1997)), bc the weir 

width (12 cm), g the acceleration caused by gravity (9.81 m s-1) and hl is the head 

measured above the weir crest (cm). For the RBC flume, equation (4.2) was applied to 

determine the irrigation water discharge (Eijkelkamp 2001):  
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where Qn is the discharge, and h is the water level (cm). The SANIIRI flume had been 

previously calibrated and allowed readings representing the given discharge per time 

unit (Forkutsa 2006). The total irrigation amount of the respective weirs and flumes was 

then computed according to equation (4.3): 
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where dt is the time interval observed; plot size was 24 m² for the first irrigation (inter-

row irrigation) and 48 m² for all following irrigation events. 

Groundwater level and salinity were monitored in 10 observation wells with 

piezometers. These consisted of 2.2-m long poly-ethylene pipes of 4-cm diameter. The 

pipes were blocked at the bottom, and the lower half of the pipe was perforated. To 

protect the perforated holes from clogging, the pipes were wrapped in fine synthetic 

fiber. The groundwater and salinity data were used to approximate groundwater table 

dynamics throughout the season; the data were later used in the modeling. The 

groundwater had an EC of 2.1 dS m-1 and fluctuated only little throughout the season. 

Average depth was 1.1 m below the surface. Irrigation water and groundwater salinity 

were on average 1.2 dS m-1 and 2.2 dS m-1, respectively. 
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Wheat 

Prior to wheat sowing, the 15N field was leached 3 times. Throughout the vegetation 

season, it was irrigated 8 times. Irrigation was initiated when field capacity dropped 

below 70 %. The EC of the irrigation water was around 1.2 dS m-1. Groundwater data 

were recorded by PhD student Yulduz Djumaniyazova, and will be available in her 

dissertation (Djumanyiazova forthcoming).  

 

4.4.4 Nitrate content in irrigation water and groundwater 

Nitrate content in the irrigation water and groundwater was only measured after the 

cotton and wheat harvest in 2007. Four piezometers were installed in July 2007 in a 

transect towards the drainage canal in the summer crops (carrots, cabbage and maize) 

following the 15N wheat and cotton experiment. After harvest, all piezometers were 

removed to allow for winter wheat seeding. In February 2008, four new piezometers 

were installed in the wheat field perpendicular to the drainage at 20, 40, 80 and 100 m 

distance from the drain.  

Water samples were taken from the irrigation and groundwater when research 

assistants were available. In the summer crop, water depth and nitrate was measured 4 

times (20.07., 31.07., 20.08., and 07.09.2007). The groundwater under winter wheat in 

2008 was measured more frequently until April 19, with higher frequency after 

fertilization and irrigation events. After this date, the groundwater level fell below the 

detectable limit of the piezometer, and measurements became impossible.  

Nitrate content in the water was determined using nitrate test sticks (color 

scale in steps of 10-25-50-100-250-500 mg NO3 l
-1 (Merkoquant®, Merk® KGAA) and 

photometrically with a calibration solution (0.5-20 mg l-1) (Spectroquant®, Merk® 

KGAA).  

The upward flux of nitrate-containing groundwater was assumed to not be 

adsorbed in the soil but to contribute to the nitrate content in the rooting zone of cotton 

(Burns 1980). The upward movement of nitrate was thus estimated according to 

equation (4.4) 

1212 ha nitrate kg 28.4m g 2.84l mg 8m l 355onContributi    (4.4)
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using the simulated groundwater contribution of 355 mm (see section 10.2) and an 

average nitrate concentration in the groundwater of 8 mg l-1. The equivalent NO3-N 

amount (in kg ha-1) was obtained by multiplying the respective amount of nitrate with 

0.2259 (i.e. atomic mass of N divided by atomic mass of nitrate). 

A more detailed contribution to the subsoil nitrate content for the cotton 

vegetation period was computed using the daily water balance simulations from the 

model CropSyst (section 10.2). The bottom flux (Vbot) was calculated using equation 

(4.5) and equation (4.6): 

WTabot  EFV  (4.5)

PmPiRI  PF (4.6)

where F is the infiltration (mm), ETa the actual evapotranspiration (mm), W the 

storage change, P the precipitation (mm), I the irrigation amount (mm), R the surface 

runoff (mm), Pi the crop interception (mm) and Pm the mulch interception. The storage 

change was calculated as the daily water fluctuation in the soil between the rooting zone 

and the groundwater table. The daily nitrate concentration during the season was 

approximated by interpolating from groundwater nitrate measurements in 2007 and 

2008 taking into account the groundwater table dynamics in 2005 (section 10.2). 

 

4.5 Harvest 

4.5.1 Cotton  

Sampling and preparation for harvest 

The cotton in the four central rows of each treatment was hand-picked for determining 

the total seed cotton yield. It was first picked in the second half of September when 30% 

of the bolls were open with a second, third and fourth picking in approximately 3-week 

intervals (Appendix 15.7). Fresh weight of cotton was determined in the field with a 

mechanical balance to the nearest gram. Dry matter was determined following drying to 

constant weight at 70°C in the drying oven. Total (dried) raw cotton yield per hectare 

was calculated by adding all harvested cotton yields.  
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Microplot sampling 

Prior to harvest, three average plants were selected from the four central rows of each 

treatment according to the last phenological measurement. Plants were sampled on 

September 7/8, 2005. From the 15N microplots, four central plants were taken.  

The cotton plants were weighed (fresh weight). Then, leaves, fruit elements, 

and mature raw cotton from open bolls were removed, and the unopened cotton bolls 

were cracked open to allow further ripening. Next, the plants were air dried, and once 

the remaining bolls were ripe, the fiber, squares, and stems were separated (see Table 

4.14).  

All plant parts were oven dried at 105°C to constant weight, except for the 

cotton fiber, which was oven-dried at 70°C. The harvest index (HI) was calculated as 

the ratio of raw cotton to total biomass (equation (4.7))  

 
 1

1

plant g biomass Total

plant gcotton  Raw
HI 



  (4.7)

The weighed samples (leaves, stems, squares, and fruit elements) then were 

milled to pass through a 1-mm sieve and analyzed for total N and 15N following Buresh 

et al. (1982). For 15N-determination, the cotton fiber was separated from the seeds 

before grinding.  

 

Picking 

Following the harvest of the sub-samples, the four central rows of each treatment were 

hand-picked for determining the total seed cotton yield. For the 15N microplots, all four 

rows were harvested.  

Cotton was first picked on September 13, 2005, when 30% of the bolls were 

open with a second, third and fourth picking in approximately 3-week intervals 

(Appendix 15.8). Total raw cotton yield per hectare was calculated by adding all 

harvested cotton yields.  

The computer software ArcGIS was used to display the spatial layout of the 

respective yields in the field. As cotton was harvested in several picks, only the 

averaged sum of yields was allocated to the respective plot. 
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4.5.2 Winter wheat 

Winter wheat samples for all experiments were taken at harvest time (June 15-21, 

Appendix 15.9). For analysis, 3 samples of 1 m² each of each treatment was harvested 

using a quadrant, and the yield component data of those three sub-samples were 

averaged for statistical analysis.  

The wheat samples were further divided and processed to determine yield 

components such as average kernel weight per m2, spikes per m2, weight of kernels per 

spike and 1000-kernel weight (TKW). Additionally, fresh and dry (105°C) weight of 

total biomass, stems, spikes, and chaff, the length of plant and spikes, and plant density 

(number of plants with spikes per m2) were measured for each m2. The harvest index 

(HI) was calculated as the ratio of kernel weight to total biomass (equation (4.7)). 

Because of lacking information on weed-specific N uptake and weed density, 

weeds were treated like winter wheat with regard to N uptake characteristics. It was thus 

assumed that wheat N uptake in the same treatments did not differ despite the 

differences in plant density.  

In order to account for differing plant density of the sub-samples (e.g., 

Appendix 15.23) as result of different seeding and germination rates, and weed 

manifestation when comparing wheat yields across the years, the overall plant density 

mean of all sub-samples was calculated to be 354 plants with spikes m-2. The yield per 

wheat sub-sample was divided by the observed plant density of the respective treatment 

to calculate the yield per plant. This value then was multiplied with the overall plant 

density mean (354 plants m-2) to obtain the density-adjusted yield for all treatments.  

For those samples where the number of plants was not counted, the missing 

values were estimated using the regression equation of plant number vs. stem weight 

(see also section 4.10.3). The computer software ArcGIS was used to display the spatial 

layout of the respective yields in the field. 

 

4.6 Soil Sampling 

4.6.1 Minus-1 and yield response 

From all minus-1 and response experiments, soil samples were taken prior to seeding 

and after harvest at 0-30, 30-50 and 50-70 cm depth. Soil samples were taken as bulk 
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samples combining 4 points on the field. Sampling after harvest was conducted in one 

replication only. 

The samples were air-dried and passed through a 0.25-mm and 1-mm sieve for 

chemical analysis. They were then analyzed in Tashkent, Uzbekistan, at the Soil 

Science Institute for SOM, total N, NH4-N and NO3-N content, total and available P, and 

total and exchangeable K (section 4.6.3).  

 

4.6.2 15N experiment 

Before seeding 

Cotton. On February 4, 2005, three sites were selected in Maksud Garden. Soil was 

sampled at three depths (0-30, 30-50 and 50-70 cm) and analyzed by the Cotton 

Research Institute, Tashkent, for total and available forms of N, available P and 

exchangeable K, and C content, and for soil texture (section 4.6.3).  

Furthermore, soil salinity was checked between the second and final leaching 

event to determine whether the values were below the threshold of 7.7 dS m-1 for cotton 

germination and growth (Ayers and Westcot 1985, Rhoades et al. 1992). 

Wheat. For winter wheat, soil samples were taken from three sites prior to seeding. 

Unfortunately, however, the soil samples before wheat seeding were lost during 

transport from the field to the laboratory.  

 

After harvest 

After harvest, three soil profiles were dug to 1.4 m depth to determine soil bulk density 

every 10 cm. The microplots were sampled at 0-10, 10-20, 20-30, 30-40, and 40-60 cm 

depth. The samples were air dried at 40°C and milled to pass through a 1-mm sieve. The 

samples were analyzed at the Soil Science and Cotton Research Institute in Tashkent, 

Uzbekistan for EC, total N, NH4-N and NO3-N content, and for available P and 

exchangeable K (section 4.6.3). At the Institute of Crop Science and Resource 

Conservation of the University of Bonn, the soil samples were analyzed for total N and 

atom% 15N content (section 4.7.3).  

Furthermore, visible cotton and wheat roots in the soil samples of 0-10 cm 

depth (and 10-20 cm for cotton) were removed from the soil, dried at 105°C, ground to 

pass through a 1-mm sieve, and analyzed for total N and atom% 15N in Bonn, Germany. 
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4.6.3 Soil analysis 

Soil samples were analyzed at the Soil Science and Cotton Research Institute in 

Tashkent, Uzbekistan. Soil chemical analyses in the Uzbek institutes usually differ 

slightly from the international methods. The methodology applied in the Uzbek 

laboratories is mostly based on established Russian soil analysis methodologies (e.g., 

Cotton Research Institute 1977, Durynina and Egorov 1998). The chemicals used, 

however, are in many cases no longer used in international soil laboratories, which 

means that results are difficult to compare.  

Uzbek soil texture determination according to Karchinksy (1980) follows the 

pipette method of Köhn as described in the German DIN 19683, part 2. However, 

particle size classes have different upper and lower limits. Therefore, the seven Uzbek 

size classes with the diameters 0.25, 0.1, 0.05, 0.01, 0.005, 0.001 and <0.001 mm 

according to Kachinsky were converted to the USDA system. 

The EC (dS m-1) was measured in a 1:1 soil:water extract in 2 replications for 

all samples in the ZEF/UNESCO laboratory in Urgench using a hand-held EC 

measurement device (Shirokova et al. 2000). The conversion from EC1:1 to ECe (FAO 

standard) was calculated by the empirical equation (4.8): 

1:1e ECκEC   (4.8)

where κ is the calibration factor empirically determined by the Regional Chemical 

Laboratory of Uzbekistan (Shirokova et al. 2000), which can range from 3.3 to 3.7. For 

this study, the coefficient κ = 3.5 was used. 

SOM (%) was determined according to Tyurin (Cotton Research Institute 

1977, Durynina and Egorov 1998), which is a modified Walkley-Black (Nelson and 

Sommers 1982) method10. Total N was analyzed by Kjeldahl method11 (Bremner and 

Mulvaney 1982). The NO3-N content (mg kg-1) was analyzed calorimetrically with 

phenol disulphonic acid according to the modified method of Granval-Lajoux from 

1886 (Silber 1913, Haper 1924, Durynina and Egorov 1998), and NH4-N content 

(mg kg-1) was examined by the Nessler reagent (Yuen and Pollard 1952, Yuen and 

                                                 
10 Acidification of humus carbon with a solution of chromic anhydride in the presence of sulphuric acid, 

and titration of unused chromic anhydride with ferrous ammonium sulfate/ Fe(NH4)2(SO4)2*6H2O 
11 Wet oxidation of soil organic matter using sulfuric acid 



Materials and Methods 

 80  

Pollard 1954, Durynina and Egorov 1998). Available P2O5 (mg kg-1) and exchangeable 

K2O (mg kg-1) were analyzed according to the method described by Machigin-

Protasov12, which can be compared to the Olsen methodology (Olsen and Sommers 

1982). 

 

4.7 Plant analyses  

4.7.1 Plant quality 

Raw cotton from the four picks was analyzed for fiber quality at the Cotton Research 

Institute in Tashkent. The raw cotton bolls were analyzed for fiber length, gin turnout, 

1000-seed weight, micronaire (indicator for air permeability, an indirect measure for 

linear density/fineness and maturity), fiber linear density, fiber ripeness coefficient, and 

the relative breaking strength of fiber (Stelometer) (Cotton Research Institute 1977). 

Sub-samples of wheat kernels were analyzed for gluten and protein content, 

transparency, and gluten quality at the local Khonka State Mill. As no national standard 

for protein analysis of wheat available at the mill laboratory, the author provided a copy 

of the Uzbek standard procedure (GOST 10846-91) for analysis of winter wheat kernels 

and their products for protein. According to this standard, protein content should be 

determined using the Kjeldahl method. 

 

4.7.2 Critical nitrogen level 

To determine the critical concentration of N (protein = N x 5.7) “above which there is 

luxury consumption and below which there is poverty adjustment” (Macy 1936, p. 751), 

the method of Pierre et al. (1977) was used. First, the relationships of N rate/yield 

(equation 1) and N rate/protein content (equation 2) were expressed by quadratic 

functions. From the first equation, the maximum yield was derived, and percentages of 

the maximum and the associated N rates were calculated. Substituting these N rates into 

the second equation, the protein levels associated with the relative yield levels were 

derived.  

The percentage of maximum yield (relative yields) were plotted on the y-axis 

against the protein content (Cate and Nelson 1971, Pierre et al. 1977, Goos et al. 1982) . 

                                                 
12 Extraction of P and K compounds with 1%-solution ammonium carbonate, рН 9.0, flame photometer 
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4.7.3 Analyses of the 15N-enriched plant and soil samples, and fertilizers 

All harvested plant materials were analyzed by mass spectrometry for total N and 15N at 

the Institute of Crop Science and Resource Conservation, Dept. Plant Nutrition of the 

University of Bonn. Total fertilizer-N and atom% 15N (abundance) content of DAP and 

urea was also determined (Table 4.13).  

 

Table 4.13 Total N and atom% 15N (abundance) content of the labeled fertilizers (n = 2). 
The standard deviation is given in brackets.  

Fertilizer type Total N, % 15N, % 

Diammonium phosphate (DAP) 18.52 (±0.11) 5.52 (±0.00) 

Urea 42.84 (±0.26) 5.68 (±0.00) 

Ammonium nitrate (AN) 34 95.4 

 

Isotope ratio mass spectrometer (IRMS) 

The principle of the isotope ratio mass spectrometer (IRMS) is based on ionizing atoms 

and molecules with an ion source, separating them according to their mass-to-charge 

ratio in a mass analyzer, and recording them in an ion collector (Buresh et al. 1982, 

IAEA 2001). The IRMS (GC-MS, PDZ Europe now SERCON Ltd., Crewe, Cheshire, 

UK, 1998) used for this study was located in the Institute of Crop Science and Resource 

Conservation, Dept. Plant Nutrition of the University of Bonn.  

Depending on total N content in the plant tissue or soil sample, 6-30 g finely 

milled substrate were weighed into zinc tin capsules and placed in the elemental 

analyzer (GC-MS). Each sample was measured twice. Four samples were used as 

standards. Subsequently, total N and atom% of 15N (abundance) were determined. 

 

Freezer mill  

Cotton fiber, cotton seed samples, and winter wheat kernels could not be grinded well 

enough with the conventional mill for analysis with the IRMS. Therefore, a freezer mill 

(SPEX CertiPrep 6750 Tiefkühl-Schlagbolzen-Mühle, C3 Prozessanlysentechnik 

GmbH, München, 2006) was used. This mill has successfully been used for other 

substances such as plant and muscle tissue, hair, polymers, etc. (C3 PA GmbH 2006).  



Materials and Methods 

 82  

Liquid nitrogen (boiling point -195.8°C) served as a cooling agent to deep-freeze the 

sample material prior to and during milling. Two magnetic inductors magnetically move 

a striker (impactor) inside the milling container, pulverizing the deep-frozen sample 

material (C3 PA GmbH 2006). By grinding at such low temperatures, chemical and 

organic structures and properties are preserved (C3 PA GmbH 2006). 

Around 2 g of the plant samples were filled into the milling container, pre-

cooled for 7 min and milled for 2 min at a frequency of 10 beats per second. The finely 

ground material was filled into plastic bags and used for the analyses in the IRMS.  

 

4.8 Agronomic calculations 

4.8.1 Nitrogen response 

Mean raw cotton yield data and the harvest index (HI) for the main plots of the 15N 

experiments were grouped according to the respective N step. For the crop modeling, 

the NPK-0 and N-0 treatments were averaged to become N-0* as did not differ 

significantly. Also the mean cotton harvest indices derived from this grouping were 

used in the crop modeling. 

 

4.8.2 Calculation of plant-nitrogen uptake 

For plant N uptake estimation, the N content (%) was multiplied with the respective dry 

weight of the plant component (DM) (equation (4.9)) 

    %Nha kg yield DMha kg uptake N 11    (4.9)

Total plant biomass, above-ground biomass and exported biomass were calculated as 

the sum of the respective plant parts (Table 4.14), i.e., cotton stems, leaves, squares, 

fiber, seed, fruit elements, and roots from 0-20 cm depth. For winter wheat, the total 

plant biomass comprised stems, kernels and roots from 0-10 cm depth. As the weight of 

total root biomass was neither measured for cotton or wheat, simulation results from 

CropSyst were used to estimate total dry weight and the root weight in the soil layers 0-

10 and 10-20 cm (see Forkutsa et al. (2009a) and Djumaniyazova et al. (2010)).  
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Table 4.14 Weight of plant parts included for calculations of total, above-ground and 
exported biomass (kg ha-1) 

 Cotton Winter wheat 

Total dried biomass (kg ha-1) 

 Stems 
 Leaves 
 Squares 
 Fiber 
 Seed 
 Fruit elements 
 Roots (0-20 cm) 

 Stems 
 Chaff 
 Kernels 
 Roots (0-10 cm) 
 

Above-ground biomass (kg ha-1) 

 Stems 
 Leaves 
 Squares 
 Fiber 
 Seed 
 Fruit elements 

 Stems 
 Chaff 
 Kernels 
 

Exported biomass (kg ha-1) 

 Stems 
 Squares 
 Fiber 
 Seed 

 Stems 
 Kernels 

 

4.8.3 Estimation of nitrogen recovery (isotope dilution method) 

Data obtained from the IRMS were used to calculate the N recovery derived from 

applied 15N fertilizer following modified equations of Hauck and Bremner (1976), 

Cabrera and Kissel (1989), and IAEA (2001). Nitrogen-recovery values are based on 

total dry weight of the plant and soil parts and their total N and 15N content. The excess 

enrichment of the labeled 15N fertilizer (atom %) was calculated by equation (4.10)) 

    nat
151515 N%  atomabundance Natom% excess N%  atom   (4.10) 

where atom% 15Nnat is the assumed natural abundance (0.366 atom% 15N (IAEA 2001)). 

The N derived from fertilizer (Ndff) was estimated as the ratio of atom% 15N (excess) in 

the soil and plant sample divided by the atom% 15N (excess) in the fertilizer (equation 

(4.11)): 

   
  100
excess N%  atom

excess N%  atom
% Ndff

fertilizer
15

sample
15

  (4.11)

The fertilizer-N recovery rates from plant and soil samples were calculated 

using equation. (4.12) and equation (4.13):  
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100

%N
ha kg yield DMha kg yield N 11    (4.12)

 
100

Ndff
yield Nha kg yield N Fertilizer 1   (4.13)

where DM yield is dry-matter yield and %N the total N content in the sample. The 

partial fertilizer N recovery for the respective soil or plant sample was calculated 

(equation (4.14)) as fertilizer-N yield per rate of labeled fertilizer: 

  100
fertilizerlabelledofRate

yield N Fertilizer
%recovery  N Fertilizer   (4.14)

Summing up the fertilizer N recovery yielded the total N recovery derived from 

fertilizer for the different plant parts and soil layers.  

For comparing the recovery rates of the different fertilizer treatments, the 

values were weighted based on the different quantities applied at different times.  

 

4.8.4 Estimation of nitrogen-use efficiency (difference method) 

The agronomic N-use efficiency (NUEAE, kg ha-1) was calculated according to Good et 

al. (2004) (equation (4.15)): 

F

CF
AE N

)Y(Y
NUE


  (4.15)

where YF is the yield with fertilizer (kg ha-1), YC is the yield of the unfertilized control  

(kg ha-1), and NF is the N fertilizer applied (kg ha-1). For the rate of 0 kg N ha-1, the 

treatments NPK-0 and N-0 (T1 and T2) were averaged and used as reference. 

Furthermore, the apparent N recovery (NUEAR, %) was computed following Good et al. 

(2004) (equation (4.16)): 

100
N

uptake) Nuptake (N
NUE

F

CF
AR 


  (4.16)

where NF uptake is the N content of the plants from the fertilized plots (kg ha-1), and NC 

uptake is the N content in the plants from the unfertilized control (kg ha-1). The 

calculated NUEAR rates were then compared to the rates derived from the 15N isotope 

dilution method.  
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4.8.5 Financial assessment 

Financial assessment of fertilizer use in cotton and winter wheat production were 

conducted for the main plots of the 15N experiment. A partial crop budget analysis 

(CIMMYT 1985, Perrin et al. 1988) was employed to estimate the profitability of cotton 

production for the different fertilizer applications.  

The partial budget method considers only the total costs that vary (TCV) 

across experiments and the benefits. Variable costs include the fertilizer and other costs 

associated with fertilizer transportation or/and application, while assuming that the other 

costs do not differ between treatments (i.e., general farm overhead). This technique 

allows tracking the direct influence of different fertilizer levels on the profit (Perrin et 

al. 1988). Hence, recommendations for farmers can be developed and alternative 

fertilization practices selected that are based not only on the profitability of the 

alternative practice, but also on the marginal rate of return being greater than the 

acceptable minimum rate of return (Evans 2008).  

For the beneficial sites, the average yields and prices according to quality were 

considered. The total gross field benefit for cotton and winter wheat (GB, UZS13 ha-1) 

was calculated for the respective harvest product, i.e., cotton of different picking times, 

cotton stems and oil and oilcake, wheat kernels and wheat straw (equation (4.17)): 

 
 


a

1j

n

1i
ii phGB  (4.17)

where hi is the harvest product (quantity), and pi the market price (UZS) for the 

respective hi. The TCV (UZS ha-1) of fertilizers, transport and harvest labor were 

estimated using equation (4.18): 

 
 


a

1j

n

1i
ii pcTCV  (4.18)

where ci is the cost of the respective activity. The gross margin or partial budget net 

benefits (NB, UZS) and the rate of return (RR, UZS) were determined (equation (4.19 

and equation (4.20)): 

                                                 
13 UZS stands for the Uzbek currency Soum; the average exchange rate in 2005 was approximately 

1114.5 UZS / 1 US dollar 
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TCVGBNB   (4.19)

TCV

NB
RR   

(4.20)

To assess the economically most profitable fertilizer practices, a dominance 

analysis was performed. First, the data were sorted in an increasing order from the 

lowest to the highest TCV and listed with their respective net benefit. In a next step, the 

lowest and next higher costs and respective net benefit were compared to identify the 

dominating fertilizer treatments that cost more than the previous but yielded higher net 

benefit (CIMMYT 1985, Perrin et al. 1988). Those fertilizer treatments, for which the 

difference in TVC exceeded the difference in net benefit, were excluded from further 

analysis (dominated treatments). For the remaining treatments, the marginal rate of 

return (MRR) was determined giving the minimum acceptable rate of return (Perrin et 

al. 1988), i.e., the return for one additional applied unit of input. 

All parameters such as input and output prices and quantities were acquired 

through official agencies such as the Committee on Demonopolization and 

Entrepreneurship Support in the Khorezm region. The provided inputs had been 

calculated as value of sold fertilizers divided by volume (Table 4.16, Table 4.17). 

Information on cotton class price was obtained from the cotton ginneries in the 

Khorezm region (Table 4.15). One bale of cotton stems was 50 UZS per bale, with one 

bale being 2.5 kg of stems (Tursunov, personal communications).  
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Table 4.15 Official state price (Uzbek soum, UZS) per ton of raw cotton according to 
class and sub-class, 2005 for cotton varieties Khorezm-127 and Khorezm-150 
(Уs PCT 615-94)  

Class Sub-class State price per ton, UZS 

1 
1 299,080 
2 291,320 
3 233,160 

2 
1 258,490 
2 250,740 
3 230,580 

3 
1 239,360 
2 219,000 
3 150,700 

4 
1 17,830 
2 138,290 
3 105,720 

5 3 74,190 
 Source: OblVodKhoz (Khorezm Province Agriculture and Water Management Office) 
 
 
Table 4.16 Fertilizer, salary and transportation prices per unit used for the partial budget 

calculation (Uzbek soum, UZS), 2005 

Input prices per unit in 2005* 

Fertilizer  

Urea 173 UZS kg-1 

Ammonium nitrate (AN) 122 UZS kg-1 

Monoammonium phosphate (AP) 305 UZS kg-1 

Single superphosphate (SSP) 75 UZS kg-1 

Potassium chloride (KCl) 217 UZS kg-1 

Salary (cotton harvesting) 

Pick 1 35000 UZS harvested ton-1 

Pick 2 35000 UZS harvested ton-1 

Pick 3 38000 UZS harvested ton-1 

Pick 4 42000 UZS harvested ton-1 

Transportation  

Transportation cost 170 UZS t-1 km-1 

Transportation distance 20 km 
*   Fertilizer prices taken from ОАО "Kishlakkhudjalikkime”(calculated by the Committee on 

Demonopolization (value of sold fertilizers divided by volume)) 
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Table 4.17 State, negotiated and market prices (UZS) for winter wheat kernels (kg) for 
the respective quality class in 2004, and prices for wheat straw transportation 

Quality class State price 
Negotiated price* 
(state price + 20 %) 

Average market 
price** 

 UZS kg-1 wheat kernels 

1 102.57 123.08 

130 
2 87.23 104.68 
3 75.10 90.12 
4 67.18 80.62 

Sale share, % 50 25 25 
Straw, UZS truck-1   5000 
Straw, t truck-1   6 

*   according to the accountant of the Khonka State Mill 
** taken from interviews in 2004 
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4.9 Crop modeling 

For this study, the crop-soil simulation model CropSyst (version 4.09.05) was selected. 

It is freeware (http://www.bsyse.wsu.edu/cropsyst/) and programmed in C++ (object-

oriented).  

Model parameters needed for CropSyst were either estimated from the 15N 

cotton field measurements or adjusted for cultivar characteristics based on literature 

data. Most of the components necessary for the water balance were measured in the 

field (i.e., irrigation water, precipitation, soil water fluxes) in 2005. Those parameters 

not measured in the field were estimated using the model HYDRUS 1-D (see also 

Forkutsa et al. (2009a, 2009b). Runoff was negligible as the soils were fairly leveled. 

 

4.9.1 Scenarios 

After the model had been calibrated, several settings were altered to mimic changes in 

current management practices and allow estimations of non-measured parameters.  

First, the observed yields of the 15N cotton experiment were compared to the 

predicted yields using the measured harvest indices. Then, the outcome of the water 

balance simulations was used to estimate potential and actual evapotranspiration in 

relation to the irrigation management. In a next step, the N dynamics for increasing 

fertilizer amounts and different N-fertilizer sources were modeled, and plant N uptake, 

yields and losses via leaching, volatilization and denitrification were estimated.  

Following these results, management practices were modified to increase 

yields while reducing gaseous losses. Two N fertilizer levels, 120 kg ha-1 (T10) and 

250 kg ha-1 (T18), of treatment DUUf were selected as base treatments. The yields and 

emissions of these base treatments were compared to the several scenarios. First, the 

timing of the second fertilizer split was varied and the number of splits was increased. 

Second, the irrigation management of the base treatments was modified. Amounts of 

40 mm or 30 mm were automatically applied every 14 days (Table 4.18) thereby 

subsequently reducing the total amount of water from 280 mm (observed) to 240 mm 

(treatments auto-10.1 and auto-18.1) and 180 mm (treatments auto-10.2 and auto-18.2). 

Additionally, the automatic irrigation events were set to start 11 days earlier (treatments 

auto-10.3 and auto-18.3) or 16 days later (treatments auto-10.4 and auto-18.4) than the 

base treatments (observed).  
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Table 4.18 Observed and simulated (automatic irrigation every 14 days) irrigation 
events during the 15N experiment in 2005.  

Irrigation Observed Automatic (simulated) 

Treatment 10 / 18 auto-10.1 / 
18.1 

auto-10.2 / 
18.2 

auto-10.3 / 
18.3 

auto-10.4 / 
18.4 

Amount per event individual 40 mm 30 mm 30 mm 30 mm  
Total amount 280 mm 240 mm 180 mm 180 mm 150 mm 

D
ay

 a
ft

er
 s

ee
di

ng
    14  

25 24 24 28  
 38 38 42 41 

55 52 52 56 55 
72 66 66 70 69 
88 80 80 84 83 

106 94 94  97 
* treatment 10: DUUf, 120 kg N ha-1  
  treatment 18: DUUf, 250 kg N ha-1  

 

4.10 Data validation and statistical analysis 

4.10.1 Data pre-testing 

For data pre-testing, Moore and McCabe (2006) were followed. For sample sizes larger 

than 40, no test of normality is necessary, even if the distribution would clearly be 

skewed (Moore and McCabe 2006). A pre-test on the equality of variance, e.g., the 

Levene’s Test, should be avoided (Underwood 1998). Furthermore, parametrical tests as 

analysis of variance (ANOVA) are robust against departures from homoscedasticity 

(Underwood 1998, Moore and McCabe 2006). In case of heteroscedacity, the ANOVA 

would give most conservative results. For cases of largely unequal standard deviations, 

however, and for non-significant model results, simultaneous confidence intervals 

(90 %) were displayed to facilitate data interpretation (Gardner and Altman 1986, 

Tukey 1991, Almond et al. 2000, Hoenig and Heisey 2001). 

 

4.10.2 ANOVA and post-hoc procedures 

The ANOVA was carried out with the statistical programs SAS for Windows 

version 9.1 (SAS Institute 2005) and SPSS for Windows version 14.0 (SPSS Inc. 2005). 

The ANOVA was handled in the classical linear form (general linear model) 

and as a special case of the generalized linear model (GLM) according to the more 

recent theory of McCullagh and Nelder (1999). The statistical program STATA for 

Windows version 9.2 (StataCorp 2007) was then used for the GLM-ANOVA for 

running maximum likelihood ratio tests (model checking), bootstrapping (robustness 
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tests) and permutation tests (non-parametric) as described in Moore and McCabe 

(2006). The maximum likelihood test in STATA was used to confirm that the reduced 

model was sufficient. Using GLM has the advantage that an objective test for model 

checking can be used, i.e., maximum likelihood ratio test.  

Means of factors were separated (least significant difference, LSD) by 

multiple comparisons (post-hoc procedure) at the 10 % level of significance using F-

tests (Tukey’s Honestly Significant Difference (HSD) test (Tukey 1953)). For 

unbalanced designs, the conservative Tukey-Kramer F-test was used (Kramer 1956, 

Hayter 1984). The threshold significance level of p<0.25 was used to exclude effects of 

factors or interactions from further analysis (Winer et al. 1991). 

 

4.10.3 Outliers and missing values 

An outlier is an individual observation that is located outside the particular pattern of a 

distribution (Good and Hardin 2006, Moore and McCabe 2006). However, 

straightforwardly correcting or deleting outliers from the data sets is problematic, as the 

outlier is always relative to a pattern of the expected data (i.e., a model). Thus, first 

detecting outliers by assuming a model to be true and then later testing that model with 

the same data just corrected would be rather controversial. Such a flaw was avoided by 

using disjoint hypotheses, i.e., the assumption that was used to check for irregularities 

was not tested later.  

To validate the soil Ntot and 15N data for cotton and wheat obtained from the 

laboratory, the simple assumption was that the concentration of surface-applied N (Ntot 

and 15N) decreases exponentially with soil depth due to enhanced mineralization in the 

top layer (equation (4.21)) (Ottman and Pope 2000, Gastal and Lemaire 2002):  

depthBeAN   (4.21)

where A und B are parameters describing the surface concentration and the half-life 

characteristic of the soil.  

Influential observations, therefore, are those singular extreme points that, by 

pulling the regression line towards them, distinctly change the parameter estimates 

(Belsley et al. 1980, Good and Hardin 2006, p.158, Moore and McCabe 2006, p. 162). 

There are two main measures that could be used to describe such data irregularities from 

this simple pattern: residuals and dfbetas (Belsley et al. 1980). Rather than using 
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residuals, i.e., the difference between the observed and the predicted value of the 

regression line (Moore and McCabe 2006, p. 154), the measure dfbeta was chosen to 

detect putative outliers14. A size-adjusted cutoff of dfbeta values 
n

2
 , with n being 

the number of sample observations, was applied to reject those influencing cases 

(Belsley et al. 1980). For the determination of dfbeta values via linear regression, the 

data were log-transformed (ln(Ntot, 
15N)). Those calculated dfbeta values were selected 

that were larger than 45.0
20

2
  (n = 4 fertilizer treatments x 5 soil depth steps). 

Declared influential outliers were excluded from further analysis and were replaced by 

imputation (replacement by means of the remaining group replicates). 

For outliers in the wheat plant data, the relationship between plant number per 

m² (plant density) and total dry stem weight per m² of the original complete data set15 

was checked with the regression (equation (4.22)): 

StWmP   (4.22)

where P is the expected plant density, m is the slope, and StW the measured stem 

weight. Those plant density measurements differing more than the 90% confidence 

interval from the calibrated values were corrected by halving their difference 

(measured-expected) towards the calibration line. Missing values were imputed by their 

calibration values multiplied with 1 %.  

Similarly, missing values in the data sets were substituted by means of the 

remaining replications (e.g., yield data of the 15N experiment: replication 1, T2, T3 and 

T8). 

 

                                                 
14 “The dfbeta statistics are the scaled measures of the change in each parameter estimate and are 

calculated by deleting the ith observation: In general, large values of dfbetas indicate observations that 

are influential in estimating a given parameter” (Belsley et al. 1980). This diagnostic was preferred 

over the residuals as criterion as a small residual value might still be an influential data point (i.e., 

large dfbeta) (Cook and Weisberg 1982, Agresti 1990, Williams 19878) 
15   Non-averaged data, i.e., all sub-plots of all treatments 
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4.10.4 Evaluation of model performance 

The model performance can be evaluated by indicators such as the root mean square 

error (RMSE) of the observed vs. simulated results (e.g., Stockle et al. 2003). The 

RMSE gives the variance of the estimates (also standard error of the estimates), i.e., the 

distance of the observations from the regression line, and is calculated following 

equation (4.23) (Underwood 1998): 

    

1-n

b,tStM
RMSE

n

1i

2
ii




  

(4.23)

where M(ti) is observed value at time ti, S(ti,b) is predicted value at time ti, and n is the 

total number of parameters. When relating the RMSE to the observed mean, the relative 

magnitude of the standard error can be derived (Stockle et al. 2003). Yields from the 
15N experiment and from the response experiments were used for the model evaluation. 
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5 FERTILIZER EFFECTS ON YIELD 

 

5.1 Cotton experiments (2004-2005) 

5.1.1 Cotton minus-1 experiments  

The average total raw cotton yield from the minus-1 experiments was 4.5 t ha-1. The 

ANOVA16 was significant for the main factors location (p = 0.00) and treatment 

(p = 0.00). Also, the interaction location x treatment were significant (p = 0.09), 

reflecting the fact that not all locations had the same cropping and fertilization history, 

seeding date and management. (Table 5.1). For all locations except Kushkupir-LL, the 

treatment without N application (-N) was always amongst the lowest-yielding 

treatments. However, it did not differ significantly from the fully fertilized treatment 

(NPK), except at location Shavot. Significant differences were only found in relation to 

the treatment without K fertilizer (-K), i.e., at the locations Shavot, Yangiaryk and 

Yangibozor. The treatments at locations Khonka, Kushkupir-LL, Kushkupir-HL and 

Urgench did not differ significantly.  

The post-hoc test shows that from all experimental locations, highest yields 

were achieved at Shavot (4.6 ± 0.8 t ha-1) and Kushkupir-HL (4.5 ± 0.6 t ha-1). 

Significantly lower cotton yields were harvested at Kushkupir-LL (3.8 ± 0.4 t ha-1), 

Urgench (3.6 ± 0.6 t ha-1), Yangibozor (3.7 ± 0.4 t ha-1) and Yangiaryk (4.0 ± 0.6 t ha-1). 

Total raw cotton yield for the treatment without N application (-N) was 

significantly lower (mean: 3.6 ± 0.5 t ha-1) than for all other treatments. Yields of -P and 

-K treatments did not significantly differ from the yields of the fully fertilized treatment 

(NPK, mean: 4.2 ± 0.6 t ha-1). 

 

                                                 

16 The ANOVA model used was 0εtreatloctreatlocμyield  ; in the following only 

 models differing from this will be noted. 
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Table 5.1 Average total raw cotton yield (t ha-1) for the minus-1 treatments at seven 
locations in Khorezm (n = 4) in 2004.  

Location Treatment 
Mean SE 

p<0.1 
NUEAE 

kg ha-1  kg kg-1  

Khonka 

-N 3.9 0.3 -  
-P 4.4 0.1 -  
-K 4.3 0.1 -  

NPK 3.9 0.1 - 0.5 

Kushkupir HL 

-N 4.3 0.2 -  
-P 4.4 0.3 -  
-K 5.0 0.4 -  

NPK 4.4 0.1 - 0.6 

Kushkupir LL 

-N 3.9 0.3 -  
-P 3.8 0.3 -  
-K 3.9 0.2 -  

NPK 3.7 0.1 - -0.9 

Shavot 

-N 3.6 0.1 a  
-P 4.4 0.2 a  
-K 5.0 0.3 b  

NPK 5.3 0.4 b 8.3 

Urgench 

-N 3.1 0.1 -  
-P 3.8 0.4 -  
-K 3.7 0.4 -  

NPK 3.8 0.3 - 3.6 

Yangibozor 

-N 3.4 0.2 a  
-P 3.6 0.2 ab  
-K 4.0 0.0 b  

NPK 3.8 0.2 ab 1.9 

Yangiaryk 

-N 3.3 0.1 a  
-P 4.0 0.4 ab  
-K 4.4 0.2 b  

NPK 4.1 0.2 ab 4.0 

Mean (n = 28) 

-N 3.6 0.1 a  
-P 4.1 0.1 b  
-K 4.3 0.1 b  

NPK 4.2 0.1 b 2.6 
 Means with the same letter in the column are not significantly different according to the Tuckey test; 

“-“= model not significant, no significant differences 
 

The agronomic N-use efficiency (NUEAE), i.e., the yield increase for each kg 

N applied, was calculated only for treatment NPK using the -N treatment as the base 

treatment (the treatment NPK in the minus-1 experiments was fertilized with 

200 kg N ha-1 (see section methods, Table). The average NUEAE for this treatment was 

2.6 kg kg N-1. 

The different locations show different increases in yield between the 

unfertilized -N treatment and the NPK treatment. In Shavot, the NUEAE was highest 
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with 8.3 kg yield increase per kg N applied followed by Yangiaryk and Urgench, where 

treatments show little increases of 4.0 and 3.6 kg kg-1, respectively. The NPK treatment 

in Yangibozor also yielded more cotton than the -N treatment, although only with a very 

low NUEAE of 1.9 kg yield kg N-1. The other three locations do not show any difference 

in NUEAE between the -N and NPK treatments.  

The absence of relevant yield differences between the treatments -N and NPK 

due to the high yields of the treatments without N fertilizer is striking as several 

experimental locations had shown the typical visual symptoms of N deficiencies such as 

yellow leaves at flowering stage (IFA 1992, CRC 2007) in the -N treatments as 

compared to the NPK treatments (Figure 5.1). 

 

 

Figure 5.1 Cotton minus-1 experiment in Yangiaryk, July 2004. The -N treatment 
shows yellow leaves in comparison to the greener adjacent -K treatment. 

 

Cotton yields differed according to the four picking times. The ANOVA (pick, 

location, treatment) was highly significant for the interactions location x pick (p = 0.00), 

and location x treatment x pick (p = 0.00). This indicates the influence of location-

related management differences and the individual picking times (see Figure 5.2). The 

interactions location x treatment (p = 0.23) and treatment x pick (p = 0.25) were not 

significant. 

The share of the total yield generally followed the order of pick 1 > pick 2, 

pick 3 > pick 4 for all treatments, i.e., the later the pick, the less cotton was harvested. 

Overall, the -N treatments yielded less cotton at all picks than the other three treatments 

(Figure 5.2). The difference was less pronounced for pick 1 and 2, and significant for 
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the other two picks (Appendix 15.10). At pick 3 and 4, the average yields of the NPK 

treatment were significantly higher than for the -N treatment.  
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Figure 5.2 Cumulative raw cotton yield (t ha-1) of the four picks of the minus-1 
treatments in 2004.  

 

5.1.2 Cotton response experiments  

The average total raw cotton yield of the response experiments was 3.5 t ha-1, and 

ranged from 3.2 t ha-1 (N-0) to 3.7 t ha-1 (N-160 and N-200). The ANOVA model for 

the different N rates and locations as well as the interactions, therefore, was not 

significant (p = 0.29). Generally, average cotton yields for the response-LL site were 

relatively higher than those of the response-ML site (Figure 5.3).  

Evaluating the cotton response to N fertilizer, the NUEAE was highest for N-80 

with 4.7 kg yield increase for each kg N applied (Table 5.2). All other N rates had a 

lower efficiency, although the differences were not statistically significant due to high 

standard deviations (model significance p = 0.44). Also, no significant interactions were 

detected. The treatments N-0 and N-200 of the response experiment are similar to the  

-N and NPK treatments of the minus-1 experiments with respect to the N rate applied 

and cotton yields of the respective treatments were similar. The yield difference (0 vs. 

200 kg ha-1) ranged between 0.5 and 0.6 t ha-1, and the NUEAE of the treatments NPK 

and N-200 was 2.6 and 2.2 kg yield kg N-1, respectively.  
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Figure 5.3 Average total raw cotton yield (t ha-1) of the response experiments per 
treatment for six N rates (kg ha-1) and two locations in Khorezm in 2004. 
Error bars represent 1 SE of the mean.  

 

Table 5.2 Agronomic N-use efficiency (NUEAE, kg yield kg N-1) according to N rates 
and location (n = 4). SE indicates the standard error of the mean.  

N rate 
NUEAE 

Response-LL Response-HL 
Mean SE Mean SE 

kg ha-1 kg yield kg N-1 
80  5.3 2.4 4.1 2.9 

120 -2.0 2.5 5.4 3.9 
160  0.5 1.1 5.4 5.0 
200  0.3 2.0 4.2 2.3 
250 -0.4 1.5 3.6 0.1 

 

Distinguishing yields of the individual picks, the ANOVA indicated that the 

factors location (p = 0.00), pick (p = 0.00) and location x pick (p = 0.00) had a 

significant influence on the yield. The significant interaction reflects the effect of 

management at the different locations on the picking time. On the other hand, the N rate 

had no significant effect on the yield at either location (p = 0.76). Also, the interactions 

location x N rate (p = 0.53) and N rate x pick (p = 0.74) and location x N rate x pick 

(p = 0.99) were not significant. Cotton yields of all picks were significantly higher for 

the response-LL than for the response-ML site. This tendency coincided with the total 
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yields (Figure 5.3). The yields significantly decreased in the order pick 2 > pick 1> pick 

3, pick 4 (Figure 5.4).  
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Figure 5.4 Cumulative raw cotton yield (t ha-1) of the response experiments for four 
picks for the respective N rates (kg ha-1) in 2004.  

 

5.1.3 Cotton 15N Experiment  

Irrigation 

The total irrigation water applied to the 15N experiment was on average 275 mm 

(detailed irrigation events and amounts for the 15N cotton experiment are given in 

Appendix 15.11). For some devices such as the RBC flume, measurements were 

frequently not possible due to cracks in the dried soil. According to calculations from 

treatment T12-R1, where measurements could be taken continuously with the quadratic 

weir, the total water applied to the experimental field was 285 mm.  

 

Yield, harvest index and agronomic nitrogen-use efficiency 

The total raw cotton yield was on average 4.4 t ha-1. Yields in the first three plots in 

replication 1 (T3, T2 and T8), however, were exceptionally low (1.1-1.9 t ha-1) due to 

rather patchy cotton germination (Figure 5.5). These treatments were excluded from 

analysis and replaced with the mean of the other replicates. Treatment T12 (160-DUUr) 

in replication 2 was the only plot where more than 6 t cotton ha-1 were harvested 
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(6.2 t ha-1), while lowest cotton yields were harvested from treatment T14 (160-DUUf) 

in replication 4 (3.2 t ha-1). As both treatments were located at the outer left side (main 

wind direction North-South) of the experimental field, there seemed to have been no 

consistent influence in this direction of the experimental site (wind direction N-S).  
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Figure 5.5 Field layout and spatial distribution of total raw cotton yields (t ha-1) in 
Maksud Garden in 2005. 
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The ANOVA (N rate, fertilizer) was not significant for yield (p = 0.93) or NUEAE 

(p = 0.93). Also, the N rate x fertilizer interactions for yield were not significant 

(p = 0.88). For the harvest index, it was significant for the N rates (p = 0.01). The 

interactions were not significant (p = 0.89). A slight N-fertilizer response could be 

observed with yields increasing from 4.3 ± 0.8 t ha-1 to 5.0 ± 0.2 t ha-1 from treatment 

N-0 to treatment 120-DUUf (Table 5.3). In comparison to the fertilized treatments, the 

treatments NPK-0 and N-0 yielded unexpectedly high amounts of cotton of 4.0 and 

4.3 t ha-1, respectively, as also observed in the minus-1 and response experiments (see 

section 5.1.1).  

 

Table 5.3 Average total raw cotton yield (t ha-1), and harvest indices for fertilizer 
treatments in 2005 (n = 4). SE denotes standard error of the mean.  

Treatment N rate Fertilizer* 
Cotton yield Harvest index 

Mean SE Mean SE 
 kg ha-1  t ha-1  
1 0 NPK-0 4.0 0.3 0.46 0.04 
2 0 N-0 4.3 0.4 0.48 0.01 
3 40 DAP only 4.2 0.2 0.51 0.01 
4 

80 

DUUr 4.1 0.2 0.46 0.03 
5 UUU 4.1 0.5 0.45 0.02 
6 DUUf 4.6 0.3 0.45 0.03 
7 DAA 4.3 0.3 0.46 0.03 
8 

120 

DUUr 4.5 0.2 0.44 0.01 
9 UUU 4.6 0.4 0.44 0.02 

10 DUUf 5.0 0.1 0.46 0.02 
11 DAA 4.6 0.3 0.48 0.02 
12 

160 

DUUr 4.7 0.6 0.43 0.04 
13 UUU 4.5 0.3 0.40 0.03 
14 DUUf 4.3 0.5 0.38 0.04 
15 DAA 4.3 0.5 0.41 0.02 

* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
   UUU = 3 splits at the recommended plant growth stages, using urea, urea,and urea fertilizer 
   DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 
   DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium rate 
 

The harvest index decreased with increasing N application amounts in the 

order N-0 > N-80, N-120 > N-160 (Table 5.3). The harvest indices of treatments DUUr 

and UUU decreased continuously with increasing N rates, while the harvest index of 

treatments DUUf and DAA increased at N-120 before decreasing again. At the highest 

N rate, the harvest index of treatment DUUr was the highest and that of DUUf the 

lowest.  
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The harvest index of treatment DAP was highest of all treatments with 0.51 ± 0.02. This 

indicates a “haying-off” effect (McDonald 1989), i.e., stimulated biomass production in 

response to initial high soil N content and lack of N and soil at later stages (this 

treatment received N only at seeding). 

 

Table 5.4 Average total agronomic N-use efficiency (NUEAE, kg yield kg N-1) for 
fertilizer treatments in 2005 (n = 4). SE denotes standard error of the mean.  

Treatment N rate Fertilizer 
NUEAE 

Mean SE 
 kg ha-1  kg yield kg N-1 
1 0 NPK-0   
2 0 N-0   
3 40 DAP only 1.0 5.7 
4 

80 

DUUr 0.0 4.9 
5 UUU -0.5 3.9 
6 DUUf 6.1 2.9 
7 DAA 2.4 6.6 
8 

120 

DUUr 2.8 2.3 
9 UUU 3.9 3.5 

10 DUUf 6.8 3.5 
11 DAA 4.0 1.1 
12 

160 

DUUr 3.6 1.6 
13 UUU 2.1 3.0 
14 DUUf 0.9 1.8 
15 DAA 1.2 2.6 

 

The average NUEAE was very low for all treatments and N rates (Table 5.4), 

ranging from -0.5 kg kg-1 (80-UUU) to maximum 6.8 kg kg-1 (120-DUUf). However, 

the standard deviation of the NUEAE was very large, and no significant differences for 

the main factors or interactions could be detected. Such large deviations for NUEAE 

values have been also reported elsewhere (e.g., Harmsen and Moraghan 1988) 

The yields of pick 1 were always significantly higher than those of pick 2 or 

pick 3: Between 40-59 % of the total yield was harvested at pick 1, 29-40 % at pick 2 

and 11-24 % at pick 3. The full ANOVA showed significant differences only for the 

picking time (p = 0.00). The interactions (N rate x treatment, treatment x pick, N 

rate x pick, and N rate x treatment x pick) were not significant (p = 0.97, p = 0.28, 

p = 0.46, and p = 0.89, respectively).  
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Figure 5.6 Cumulative raw cotton yield (t ha-1) of the 15N cotton experiment for 
three picks for the respective N rates (kg ha-1) in 2005.  
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Figure 5.7 Cumulative raw cotton yields for three picks (t ha-1) for fertilizer 
treatments in 2005 (N rate: 80 kg ha-1).  
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There was no particular trend in the different treatments, as the yields changed for the 

different N rates (Figure 5.6). For N-0, the yields were high at pick 1 and lowest at pick 

3. For the higher N rates, the trend was the opposite: treatments N-120 and N-160 

yielded lowest at pick 1 and highest at pick 3.  

The N rates N-80 and N-120 for the treatments DUUf and DAA gave the 

highest yields for pick 1and lowest for pick 3, whereas for treatments UUU and DUUr 

the yield dynamics were found to be the other way around (Figure 5.7). 

 

5.1.4 Comparison of cotton experiments (2004-2005)  

The data of the minus-1 experiments, the response experiments and the 15N experiments 

were combined for comparing the yield dynamics and lint quality (see section 9.1) for 

both years of experimentation.  

Overall cotton yield was significantly higher in 2005 than in 2004 (Appendix 

15.12). Comparing the yields of the three experiments, a similar yield response to N 

fertilizer to that of the 15N experiment can be seen for all experiments. Unfertilized plots 

yielded on average 3.7 t cotton ha-1, whereas the highest fertilized treatments (N-250) 

produced 3.6 t cotton ha-1. Maximum cotton yields of 4.2 t ha-1 were achieved at the 

fertilizer rate of 128 kg N ha-1.  

The official average yields in Khorezm in 2004 and 2005 were reported to be 

2.58 and 2.64 t ha-1, respectively (Djumaniyazov 2004). In relation to the official 

Khorezm-wide yield, the experimental yields were higher for any fertilizer rate, 

including the control. In relation to official fertilizer recommendations, the harvested 

cotton from the experimental sites was higher for the rate of 200 kg N ha-1, while for the 

recommended rate of  250 kg N ha-1, the yields were at the lower end of the predicted 

yield.  
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Figure 5.8 Total raw cotton yields (t ha-1) for N rates (kg ha-1) of the minus-1 
experiments (2004), the response experiments (2004) and the 15N 
experiment (2005).  

  Symbols: Total mean (black) values for N rates. Error bars represent 1 SE 
of the mean. The short lines represent the expected yield at the officially 
recommended N rates (Cotton Research Institute 2007) 

  Lines: Regression line (black) for average yields for the respective N 
rate. 90%-confidence intervals (grey, U = upper boundary; L = lower 
boundary). Maximum points are indicated by the dotted line. 

 

5.2 Winter wheat experiments (2005-2006) 

5.2.1 Winter wheat minus-1 experiments 

The average yield of the minus-1 winter wheat experiments in 2006 was 3.0 t ha-1. 

Significant differences were found for the main factors location (p = 0.00) and treatment 

(p = 0.00), but not for the interactions (p = 0.41): Kernel yield in Yangibozor was 

significantly higher (3.5 ± 0.8 t ha-1) than on the sites in Urgench-LL and Urgench-ML 

(2.7 ± 0.7 and 2.8 ± 0.6 t ha-1) (Table 5.5).  

The minus-N treatment yielded significantly lower values than to all other 

treatments (2.2 ± 0.7 t ha-1). The yield increase for every kg N applied (NUEAE) was 

calculated for treatment NPK (N-180) with treatment -N (N-0) as reference. The 

average NUEAE was 5.2 kg kernels kg N-1. The rather low NUEAE, reflecting the low 
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yield increase between the -N and the NPK treatment17, is similar to the low yield 

response in the cotton experiments (section 5.1).  

 

Table 5.5 Average total winter wheat kernel yield (t ha-1) for the minus-1 treatments at 
three locations in Khorezm (n = 4) in 2005.  

Location Treatment 
Mean SE 

p<0.1 
NUEAE 

kg ha-1 kg kg-1 

Urgench-LL 

-N 1.8 0.3 a  
-P 3.0 0.2 b  
-K 3.1 0.1 b  

NPK 3.0 0.3 b 6.7 

Urgench-ML 

-N 2.2 0.4 a  
-P 2.7 0.2 ab  
-K 3.2 0.3 b  

NPK 3.0 0.1 ab 4.4 

Yangibozor 

-N 2.6 0.3 a  
-P 4.1 0.1 b  
-K 4.0 0.1 b  

NPK 3.4 0.4 ab 4.4 

Mean (n = 12) 

-N 2.2 0.2 a  
-P 3.3 0.2 b  
-K 3.4 0.2 b  

NPK 3.1 0.2 b 5.2 
 Means with the same letter in the column are not significantly different according to the Tuckey test 
 

 

5.2.2 Winter wheat response experiments  

The calculated average winter wheat kernel yield was 2.9 t ha-1, but the two locations 

differed significantly (p = 0.07): At the site response-LL, the yield was significantly 

lower (2.7 ± 0.5 t ha-1) than at the response-ML site (3.0 ± 0.3 t ha-1). Only for the 

treatment N-0, did the response-ML site yield more winter wheat (Figure 5.9). The N 

amount applied influenced the yield (p = 0.03): N rates of 180 and 240 kg ha-1 resulted 

in significantly higher yields (3.0 ± 0.4 t ha-1) than the treatment N-0 (2.3 ± 0.6 t ha-1). 

However, higher N rates, i.e., N-300, did not increase yields any further. The 

interactions were not significant (p = 0.30). 

 

                                                 
17 The calculations were done for normed yield data (see section 4.5.2). The measured harvested data are 

given in Appendix 15.14. 
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Figure 5.9 Average total winter wheat yield (t ha-1) of the response experiments per 

treatment for five N rates (kg ha-1) and two locations in Khorezm in 
2005. Error bars represent 1 SE.  

 

The average fertilizer-response ratio for the treatment N-180 was relatively 

low (NUEAE: 2.9 kg kernels kg N-1) compared to that calculated for the NPK treatment 

of the minus-1 experiments (see above). Highest NUEAE values were found for 

treatment N-120 (3.4 kg kernels kg N-1) (Table 5.6), although the differences between 

the treatments were not significant.  

 

Table 5.6 Agronomic N-use efficiency (NUEAE, kg kernels kg N-1) for increasing N 
rates (kg yield increase per kg N applied) for two locations. SE denotes the 
standard error of the mean.  

N rate 
NUEAE 

Response-LL Response-HL 
 Mean SE Mean SE 

kg ha-1 kg kernels kg N-1 

120 3.4 2.7 3.3 1.4 

180 2.8 1.2 2.9 1.6 
240 1.6 2.2 2.5 0.9 
300 0.8 1.3 1.6 0.6 
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5.2.3 Wheat 15N experiment  

Irrigation 

Total irrigation water amount applied to the winter wheat 15N experiment was 919 mm 

(Appendix 15.13), which was more than officially recommended (600 mm). This was 

mainly due to a second irrigation event in 2005 (19.10.) following a series of warm days 

in autumn, and to pre-fertilization irrigation at the beginning of March 2006 (01.03.). 

But the individual irrigation amounts were also always higher than recommended (100 

mm). Given that irrigation scheduling based on this schedule prevented any significant 

plant-water stress in 2005 which underlines the robustness of such management 

(Forkutsa et al. 2009a). 

 

Yield, harvest index and agronomic nitrogen-use efficiency 

The experimental layout and yield distribution is shown in Figure 5.10 (wind direction 

N-S).  
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Figure 5.10 Spatial distribution of total winter wheat yield (t ha-1) in 2006.  
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The average kernel yield was 3.2 ± 0.7 t ha-1. The highest yield (3.8 ± 0.6 t ha-1) was 

harvested from the treatment with the fertilizer rate N-160.Yields of fertilizer rates 0 

and 20 kg N ha-1 were significantly lowerby around 1.2 t ha-1 than all other N rates 

(Figure 5.11,Table 5.7). Similarly, the harvest index of N-0 was significantly lower 

(0.40) than that of the other N rates. The highest harvest index of 0.45 was observed at 

N rates of 120 and 160 kg ha-1.  

 

 

Figure 5.11 Wheat 15N experiment in Urgench, April 2006. The lighter colored 
treatments received 0 or 20 kg N ha-1, while the dark green areas were 
fertilized with more than 80 kg N ha-1. 

 

The overall ANOVA for yield for the individual fertilizer treatments was 

significant (p = 0.03). However, the yields did not differ significantly amongst the 

different fertilizer treatments (p = 0.17), nor were they different for the N rates 80, 120 

and 160 kg ha-1 (p = 0.25). The interactions were also not significant (p = 0.64). In 

general, treatment DAA gave lowest yields for all N rates, whereas treatment DUUu 

always yielded highest (Table 5.7).  
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Table 5.7 Averaged total winter wheat yield (t ha-1), harvest indices and agronomic 
N-use efficiency (NUEAE, kg kernels kg N-1) in 2006 (n = 4). SE denotes 
standard error of the mean.  

Treat 
N rate 

Fertilizer* 

Wheat yield Harvest index NUEAE 

Mean p<0.1 SE Mean p<0.1 SE Mean SE 

kg ha-1 t ha-1    
kg kernels kg 

N-1 
1 0 NPK-0 2.1 a 0.3 0.40 a 0.02   
2 0 N-0 2.3 ab 0.4 0.40 a 0.03   

3 40 DAP 2.1 a 0.1 0.41 ab 0.02 -4.9 12.9 
4 

80 

DUUr 3.1 abc 0.2 0.43 ab 0.01 11.3 5.1 
5 UUU 3.4 bc 0.4 0.43 ab 0.01 15.0 6.3 
6 DUUu 3.6 bc 0.2 0.45 ab 0.01 17.1 3.8 
7 DAA 3.0 abc 0.3 0.43 ab 0.02 10.4 4.6 
8 

120 

DUUr 3.8 c 0.3 0.45 ab 0.01 13.4 2.8 
9 UUU 3.5 bc 0.3 0.45 ab 0.02 10.9 3.4 

10 DUUu 3.3 abc 0.2 0.47 ab 0.02 8.9 1.3 
11 DAA 3.0 abc 0.2 0.45 ab 0.02 6.6 1.1 
12 

160 

DUUr 3.5 bc 0.1 0.45 ab 0.01 8.0 1.3 
13 UUU 3.8 c 0.4 0.44 ab 0.02 9.9 1.2 
14 DUUu 3.9 c 0.3 0.48 b 0.02 10.4 3.2 
15 DAA 3.3 abc 0.2 0.44 ab 0.01 7.0 2.2 

* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
  UUU = 3 splits at the recommended plant growth stages, using urea, urea, and urea fertilizer 
  DUUu = 4 splits, using DAP, urea, urea, and urea fertilizer 
 DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate 
 Means with the same letter in the column are not significantly different according to the Tuckey test 

 

The harvest indices of the different N rates did not significantly differ 

(p = 0.20). Furthermore, the treatments had similar harvest indices, yet treatment DUUu 

had always a higher harvest index for all N rates than the other treatments (Table 5.7). 

Especially pronounced was this difference for the N rate of 160 kg ha-1, where the 

harvest index was 0.03 units higher as compared to the other treatments.  

The mean NUEAE decreased with increasing N rates (Table 5.7). As in cotton, 

the spread of NUEAE amongst the treatments was very large with -4.9 to 17.1 kg yield 

increases per kg N fertilizer for treatments DAP and 80-DUUu, respectively, resulting 

in an absence of significant differences (p = 0.60). Treatment DAA tended to have the 

lowest yields, whereas treatment DUUu and UUU always show the highest NUEAE.  
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5.2.4 Comparison of winter wheat experiments (2005-2006) 

The data of the minus-1 experiments, the response experiments and the 15N experiments 

were combined for comparing the yield dynamics and quality for both study years. Data 

from the rotation experiments conducted in 2003/04 in Urgench district were also added 

(Appendix 15.14) 
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Figure 5.12 Total winter wheat yields (t ha-1) for the respective N rates (kg ha-1) from 
the rotation experiments (2003/04), the minus-1 experiments (2004/05), 
the response experiments (2004/05) and the 15N experiment (2005/06).  

  Symbols: Total mean (black) values for the respective N rate. Error bars 
represent 1 SE of the mean.  

  Line: Regression line (black) for average yields for the respective N rate. 
90%-Confidence intervals (grey, U = upper boundary; L = lower 
boundary). Maximum points are indicated by the dotted line. 

 

Combining the total winter wheat yields of the different experiments gave a 

clear N response (Figure 5.12, Table 9.2). The yield response to N fertilizer follows the 

quadratic functional form. Highest yields (3.6 t ha-1) were achieved at the N rate 

180 kg ha-1. Yields declined for N rates lower or higher than 180 kg ha-1, with 

significantly lower yields at the rate of N-0 (2.3 t ha-1) and N-300 (2.9 t ha-1).  



Fertilizer effects on yield 

 114  

According to official statistics, in Khorezm 4.2, 4.3 and 4.6 t wheat ha-1 was harvested 

in the years 2004 to 2006 (OblStat 2004, OblStat 2005, OblStat 2006). Uzbekistan-

wide, the wheat harvest increased from 3.7 to 4.1 t ha-1 from 2004 to 2006 (FAOSTAT 

2008). A direct comparison of the research results shown above and the official data, 

however, is limited, as the presented results were calculated using the same (outlier-

corrected) plant density (see section 4.5.2; Appendix 15.14). Looking at the 90 %-

confidence intervals of the research data, the official wheat yield data are within the 

upper interval boundaries of the experiments for the rates 160 to 200 kg 

 N ha-1. The yield predictions with the official fertilizer recommendations of 

5 t wheat ha-1 for application rates of 180 kg N ha-1, however, are much higher than the 

research or the official yields.  

 

5.3 Discussion of cotton and wheat yield response to nitrogen fertilizer 

Cotton yields of the fertilized treatments in this study were comparable to those 

observed by other Uzbek researchers (e.g., Sabirov 1974, Khodjizadaeva et al. 1978, 

Djumaniyazov 2004, Ibragimov 2007). For the N rate of 200 kg ha-1, for example, 

studies document yields of 4.0 t ha-1 (Khodjizadaeva et al. 1978), 4.4 t ha-1 (Ibragimov 

and Rustamova 1988 in Djumaniyazov 2004), 3.8 t ha-1 (Sabirov and Rustamova 2002 

in Djumaniyazov 2004), and 3.2 t ha-1 (Masharipov 2004 in Djumaniyazov 2004). Up-

to-date data on winter wheat yield response to N-fertilizer amendments under irrigated 

conditions, on the other hand, were not available to the author. This is in part due to the 

fact that winter wheat production in the past was conducted in the rain-fed areas of 

Uzbekistan (Khakimov 2008, Djumanyiazova forthcoming). In one study, however, 

Ergamberdiev (2007) reported wheat yields in the Khiva district of Khorezm of  

5.5 t ha-1 fertilized at the recommended rate of 180 kg N ha-1, which is 1 t higher than 

the reported wheat yields for Khorezm (OblStat 2004, OblStat 2005, OblStat 2006) and 

on the national level (FAOSTAT 2008). In this study, the highest wheat yields at this N 

rate also were 4.0 and 6.0 t ha-1 in 2005 and 2006, respectively (Appendix 15.14, 

Appendix 15.15, thus confirming the findings of Ergamberdiev (2007).  

A striking result of the cotton and wheat experiments, however, was the high 

yield on the unfertilized plots, and the absence of significant yield differences with 

increasing N-fertilizer rates, even though several experimental locations show the 
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typical visual symptoms of N deficiencies such as light green wheat plants particularly 

on the control treatments (no N fertilizer) as compared to the fertilized treatments 

(Figure 5.11). High yields comparable to those in this study on unfertilized plots were 

also observed by Hasanov (1970) (3.6 t ha-1) in the Bukhara region, and by 

Khodjizadaeva et al. (1978) (3.0 t ha-1) and Ibragimov and Rustamova (1988 in 

Djumaniyazov 2004) (3.3 t ha-1) in the Khorezm region. The comparatively low 

response to N fertilization contrasts with the generally reported response of cotton to N 

applications worldwide. 

A lack of N responses of cotton to N amendments have been documented 

extensively. Ibragimov and Rustamova (1988) found no differences in yields between N 

rates of 200, 250 or 300 kg ha-1 (Djumaniyazov 2004). In the San Joaquin Valley of 

California, USA, Fritschi et al. (2003) show significant yield increases for irrigated 

Pima and Acala cotton grown on a sandy and a clay loam with differences of up to 

1136 kg ha-1 lint (around 3.1 t raw cotton ha-1). At the same time, the authors found no 

response to N fertilizers on a sandy loam where the yield difference between minimum 

and maximum was 186 kg ha-1 lint, equal to approximately 0.5 t raw cotton ha-1. Also, 

Chua et al. (2003) found no significant differences for the Ropesville site between the 

treatment receiving between 0 and 202 kg N ha-1. At the Lubbok site, yields differed 

significantly only between the unfertilized and all other fertilized treatments, 

irrespective of the N rate (Chua et al. 2003).  

Winter wheat grown in South Australia also show significantly enhanced 

vegetative growth for higher N rates, but wheat grain yield was not necessarily 

increased (McDonald 1992). In fact, only in 3 out of 10 experimental sites responses 

were significant (McDonald 1992). In the US, rain-fed wheat yields did not respond 

significantly to N rates above 67 and 90 kg ha-1 (Westerman et al. 1994). Lloveras et al. 

(2001) found responses in Spanish winter wheat only to late applications when the 

previous N supply was insufficient for maximum yields. However, at the Gimenells site, 

differences in yield increases were insignificant. The authors argue that this could be 

caused by various factors including increased lodging of wheat with higher N rates, 

water stress at grain filling, or high residual soil NO3-N levels before seeding.  
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6 SOIL AND GROUNDWATER NITRATE 

 

6.1 Soil-N content of the 15N experiments (cotton and wheat) 

Soil characteristics before the start of the 15N experiment with cotton in Maksud Garden 

were determined for 0-100 cm depth. After the cotton and wheat harvests in November 

2005 and June 2006, samples were taken only down to 60 cm depth (Appendix 15.16, 

Appendix 15.17, and Appendix 15.18) as the main transformations of soil N and SOM 

were expected to take place in the upper soil layers. Furthermore, these samples were 

used for 15N analysis, and only limited amounts of 15N fertilizer were expected below 

this layer.  
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Figure 6.1 Mean NO3-N content (mg kg-1) and soil mineral N content (Nmin,  
mg kg-1 and kg ha-1) in February 2005 (before cotton seeding), in 
November 2005 (after cotton harvest), and in June 2006 (after winter 
wheat harvest). Error bars represent the standard error of the mean.  

 

The initial soil mineral N content (Nmin; sum of NH4-N and NO3-N) in the 0-

70 cm profile before cotton seeding in 2005 was 9.5 mg kg-1, which, based on bulk 

density measurements taken after the cotton harvest, equaled 29.8 kg Nmin ha-1 (Figure 

6.1, Appendix 15.19). After cotton harvest, the Nmin content had increased to around   

38.5 mg kg-1 in 0-60 cm, which is equivalent to 65.7 kg ha-1. The Nmin content 

decreased to the depth of around 40 cm and then sharply increased for all sampling 

times, being especially pronounced for the time after the cotton and winter wheat 
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harvest. No significant differences at p<0.1 in Nmin content were found for the fertilizer 

treatments; only the factor depth was significant (Figure 6.1). 

 

6.2 Groundwater nitrate content in 2007 and 2008 

The concentration of nitrate in the irrigation water during cotton and wheat growth was 

rather low (< 0.5 mg l-1). Groundwater nitrate content was monitored after winter wheat 

harvest for the summer crops (carrot, cabbage and maize) in 2007 and during the whole 

winter wheat growth period in 2007/08.  

The average nitrate content in the groundwater under the summer crops was 

1.8 mg nitrate l-1 (Figure 6.2). However, the temporal dynamics of were very much 

linked to the irrigation and fertilization practices. Almost immediately after fertilization, 

however, the contamination of the groundwater with nitrate increased to a maximum of 

7.8 mg nitrate l
-1 in the piezometer Pz4. At the beginning of September, the levels had 

reached levels similar to those prior to fertilization.  

The average nitrate content of the groundwater under winter wheat in 2008 

was high (23.9 mg nitrate l-1) (Figure 6.3). The minimum nitrate amount in the 

groundwater of 13.8 mg nitrate l-1 on 29.03.08 was measured one week after the last 

irrigation event (22.03.), while the maximum content of 44.4 mg nitrate l-1 on 02.04.08 

was found one day after fertilization and irrigation had occurred (01.04.).  
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Figure 6.2 Nitrate measurements (mg l-1) in five piezometers (Pz) for four irrigation 
events in 2007. Average groundwater depth is indicated in brackets. Pz 1 
and 2 were installed in carrot and cabbage fields, Pz 3-5 in maize fields.  

 

All measurements in 2008 represent the means of the nitrate test-sticks color 

step, as photometric measurements were not available. Therefore, individual 

observation wells showing 75 mg nitrate l-1 directly following irrigation could have an 

actual nitrate content ranging from 50-100 mg nitrate l-1. Still, the overall trend was that 

nitrate levels in the groundwater increased with every management activity in the field 

(fertilization, irrigation).  

Furthermore, the dynamics of the nitrate content in the water correspond to the 

changes in groundwater table depth: At times of shallow groundwater (due to irrigation 

inputs) the nitrate level in the water was also enhanced.  

Both nitrate content and water table in general decreased in the direction of the 

drainage, i.e., from piezometer 1 (Pz1) to piezometer 4 (Pz4). Especially piezometer 

Pz1 reacted rapidly to fertilization and irrigation events.  
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Figure 6.3 Nitrate measurements in groundwater (mg l-1) and groundwater depth (m) 
in four piezometers (Pz) under winter wheat in 2008. The mean of the 
four piezometers is indicated as blue line. Fertilization occurred on 
March 5th and April 1st.  

 

Under the assumption that nitrate is not adsorbed in the soil (Burns 1980), the upward 

flux of groundwater could be assumed to lead to the nitrate accumulation in the rooting 

zone. A groundwater contribution of 355 mm (see section 10.2) and an average nitrate 

concentration in the groundwater of 8 mg l-1 would therefore give an approximated 

upward movement of nitrate of 28 kg nitrate ha-1 or 6 kg NO3-N ha-1 (see section 4.4.4). 

Presuming higher concentrations of 10 mg nitrate l-1 and higher (up to 75 mg nitrate l-1 

as measured directly after irrigation) would consequently enhance also the NO3-N 

amounts in the soil. The nitrate input from the irrigation water (280 mm) was with 

3 kg nitrate ha-1 (at a concentration of 1 mg nitrate l-1) noticeably lower. The calculated 

upward flux of water using the daily water balance simulations (see section 4.4.4) was 

250 mm. With a groundwater flux between 250 and 355 mm and nitrate concentrations 

of 8-75 mg nitrate l-1 the nitrate contribution from the groundwater to the subsoil during 
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the growing season was approximated to be around 23-269 kg nitrate ha-1 or 5-

61 kg NO3-N ha-1.  

 

6.3 Discussion - Soil and water nitrogen dynamics  

6.3.1 Soil mineral nitrogen content 

In the study by Chua et al. (2003), the soil-NO3-N content after cotton harvest in the 0-

60 cm layer was 182 and 159 kg ha-1 for treatments receiving 202 kg N ha-1, and 36 and 

44 kg NO3-N ha-1 for the non-fertilized treatments. These authors argued that with such 

soil-N levels, N was not limiting yields. Also, in the North China Plain, wheat yield 

responses to N were not found when residual N in 0-90 cm depth was on average 

212 kg N ha-1 (15.7 mg kg-1 assuming a bulk density of 1.5 g cm-3) (Cui et al. 2006). 

Hutmacher et al. (2004) compared cotton yields over 5 years at 8 different locations in 

the same valley and found significant increases to be dependent on the residual NO3-N 

content in the soil: With 70 kg NO3-N ha-1 in 0-60 cm depth (7.8 mg kg-1 assuming a 

bulk density of 1.5 g cm-3), the response to N applications was significant, whereas with 

an initial NO3-N content of more than 125 kg ha-1 (13.9 mg kg-1 assuming a bulk density 

of 1.5 g cm-3), only 2 out of the 11 sites responded significantly (Hutmacher et al. 

2004). In Israel, Halevy and Klater (1970) found significant N response in Acala cotton 

of around 870 and 1200 kg lint ha-1 for application rates of 0 and 120 kg N ha-1 at the 

Kefar Glickson site. At the Bet She'an site, however, no response was observed despite 

the low NO3-N content of around 171 kg ha-1 (19.0 mg kg-1 assuming a bulk density of 

1.5 g cm-3) in the top 0-60 cm (Halevy and Klater 1970). The authors argued that NO3-

N levels in the subsoil layer were found to be high enough to supply sufficient mineral 

N to the cotton plant, so that no response to N could be expected. For the Tashkent soils 

in Uzbekistan, Rasikov et al. (1980 in Ibragimov 2007) noted that in places where soil 

NO3-N was as high as 200-300 kg ha-1, cotton yields of 4.0 t ha-1 could be achieved 

without additional N applications. 

The Uzbek classification for available N in the 0-60 cm soil horizon 

categorizes soil with N contents of < 135 kg ha-1 (around 15 mg kg-1 assuming a bulk 

density of 1.5 g cm-3) as very low for cotton if yield levels of 3-4 t raw cotton ha-1 are to 

be achieved (section 2.2.5) (Cotton Research Institute 2007). With an initial NO3-N 

content of 26 kg ha-1 (2.9 mg kg-1) and 3 kg ha-1 NH4-N (0.33 mg kg-1) in the top 0-
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60 cm, the soil of the 15N experiment would, therefore, classify as very low in the 

Uzbek system, containing considerably less than the thresholds for cotton defined by 

Hutmacher et al. (2004). For winter wheat, Olson et al. (1976) reported yield responses 

to N amendments to become insignificant when residual NO3-N concentrations where 

higher than 120 kg ha-1. Thus, according to the topsoil NO3-N content as measured 

before the implementation of the experiments, a significant cotton and wheat yield 

response to N amendments would have been expected.  

After cotton and wheat harvest, the Nmin content in the soil of the experiments 

was with 63 and 89 kg Nmin ha-1, which is still below the Uzbek soil fertility class. 

Riskieva (1989) reported increasing quantities of NO3-N for samples taken in 0-50 cm 

depth before cotton seeding and after harvest, ranging between 140 to 234 kg ha-1. The 

magnitude of Nmin increase in the topsoil layer, however, depended on the time of soil 

sampling and on the amount of irrigation water applied (Riskieva 1989).  

The subsoil (60-150 cm) of the 15N cotton experiment contained 25 kg NO3-N 

ha-1 before cotton seeding, 21 kg after cotton harvest and 62 kg after wheat harvest (see 

section 6.1). These concentrations were well below the subsoil concentrations of the 

responsive Kefar Glickson site (94.5 kg ha-1) in the study of Halevy and Klater (1970). 

Also, in the soil survey conducted in Karakalpakstan, Riskieva (1989) found the NO3-N 

content after cotton harvest to decrease marginally from around 151 to 147 kg ha-1 in 

the 50-150 cm soil horizon. However, the threefold subsoil NO3-N increase after wheat 

harvest has also been documented in other studies (e.g., Westerman et al. 1994, Ju et al. 

2006, Ju et al. 2007).  

 

6.3.2 Crop water demand and subirrigation 

While the 15N winter wheat field was sufficiently supplied with irrigation water, water 

supplied to the 15N cotton experiment turned out to have been too low to meet the crop 

water demand. However, the groundwater table under the 15N cotton experiment 

throughout the growing season was generally shallow (< 1.2 m). Similar levels have 

also been measured by Zakharov (1957), Khaitbayev (1963), Kadirhodjayev and 

Rahimov (1972) and Ibragimov et al. (2007a) in previous research experiments with 

cotton in the Khorezm region. During their cotton experiments, the groundwater level 

during the vegetation period ranged from around 0.5-1.2 m below the surface. After 
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harvest, the levels decreased to 2.0 m and more (Zakharov 1957, Khaitbayev 1963, 

Kadirhodjayev and Rahimov 1972, Ibragimov 2004, Ibragimov et al. 2007a).  

For regions with particularly shallow groundwater during the vegetation 

season (see Ibragimov 2004, Forkutsa 2006), a significant amount of crop water is 

supplied via upward flow of groundwater, which supplement irrigation inputs (Ayars et 

al. 2006). For loamy soils with a similar groundwater table to that in this study, Ayars et 

al. (2006) calculated a potential evapotranspiration of around 45 %. Other studies also 

evidenced a substantial contribution of shallow groundwater tables to satisfy crop water 

demand (e.g., Chaudhary et al. 1974, Rhoades et al. 1989, Ayars and Hutmacher 1994, 

Ayars 1996, Ayars et al. 2006). For the Khorezm conditions, Forkutsa (2006) calculated 

these so-called supplemental irrigations or subirrigations to cotton to be as high as 17 to 

89 % of the actual evapotranspiration. The capillary rise of water ranged between 92 

and 277 mm depending on the irrigation management (Forkutsa 2006). Forkutsa et al. 

(2009-a) show that none of the six irrigation events on the 15N cotton field leached 

water amounts below 80 cm depth. The calculated upward flux of 250 mm from the 

mass balance equation (section 6.2) is, therefore, in line with these findings, whereas the 

assumed groundwater contribution, calculated, as actual evapotranspiration minus 

irrigation amounts, was much higher (355 mm). Furthermore, Conrad (2006) simulated 

higher actual evapotranspiration amounts over cotton fields in 2005 of 853 mm as 

compared to the 633 mm in this study. Although his evapotranspiration values were 

based on a 2-week longer growth period and included crop coefficients and input data 

based on information of the Central Asian Scientific Irrigation Research Institute 

(SANIIRI), which may have led to this high value, all results substantiate the 

plausibility of a large contribution of shallow groundwater to crop evapotranspiration, 

making even a contribution of 355 mm feasible. Thus, despite the low irrigation 

amounts applied to cotton during the 15N experiment, the crop water demand was likely 

met, as the irrigation water amounts were complemented by shallow groundwater. 

 

6.3.3 Supplemental nitrogen fertilization from groundwater 

Crops have show enhanced N-utilization, reduced water stress, and stabilized or 

increased yields when subirrigated via shallow groundwater tables (Drury et al. 1997, 

Fisher et al. 1999, Patel et al. 2001, Elmi et al. 2002). The accumulated NO3-N in the 
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groundwater may thus function as supplemental N fertilizer if taken up by the crop 

(Steenvoorden 1989). During the vegetation period of the 15N cotton experiment, the 

groundwater table was shallow enough to contribute with approximately 5-61 kg NO3-N 

ha-1 to crop N uptake. Together with an input of 3 kg N ha-1 via the irrigation water, this 

amount is the equivalent to a single N-fertilizer application. This N supply may 

contribute to the weak response of cotton to the N amounts applied in this study. The 

data set collected in this study was not aimed at quantifying the N contribution from 

groundwater. However, the observations do suggest that the NO3-N dynamics in the 

Khorezmian system deserve further study.  
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7 PLANT-NITROGEN CONTENT, AND UPTAKE  

 

7.1 Cotton plant-nitrogen content, and uptake 

The biomass and plant components calculated from the four plant samples of the 

microplots were compared to the samples taken from the main plots using the fiber: 

seed ratio of the total cotton harvest and the harvest index. The root biomass was 

estimated based on modeling results using CropSyst.  

Total above-ground biomass on average was 9.3 ± 1.8 t ha-1. The highest 

contribution to total biomass dry weight came from cotton seeds (28-30 %) followed by 

leaves (20-22 %) (Figure 7.1). Fiber, stems and squares contributed only with 16-17 % 

to the total biomass. The computed root dry weight was 25 % of the total plant biomass 

with 2.6 t ha-1 (2634 kg ha-1), and the root biomass in the top 0-20 cm was 893.6 kg ha-1. 

The plant material that had accumulated on the soil surface was collected but not 

included in the analysis.  

Although no significant differences were found at p<0.1 between the 

treatments for any of the plant parts, treatment UUU on average yielded higher dry 

weight for leaves and stems than the other treatments. Treatment DUUf on the other 

hand produced more dry weight of cotton fiber and seed. The treatment DAA tended to 

have lowest biomass and cotton dry weight. 
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Figure 7.1 Cotton plant components (kg ha-1) as affected by treatment in 2005 (N 
rate: 120 kg ha-1). Error bars indicate 1 SE.  
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The N uptake into cotton biomass was calculated including the root biomass of 0-20 cm 

depth (Table 7.1). On average, the N uptake was 165 ± 32 kg N and 159 ± 31 kg N into 

the total biomass and above-ground biomass, respectively. The exported amount of N as 

stem, squares and raw cotton was around 119 ± 21 kg N. Around 50 % of the biomass-

N was taken up by the cotton seeds, 23 % by the leaves, while less than 10 % were 

found in the stems, squares and fiber. Differences between the fertilizer treatments or 

timing could not be statistically detected although the plants on the treatment DUUr 

followed by DUUf and UUU on average took up more N in comparison to treatment 

DAA.  

 

Table 7.1 N uptake (kg ha-1) of cotton plant components as affected by fertilizer 
treatments (N rate: 120 kg ha-1, n = 12). SE denotes the standard error of the 
mean.  

Plant component 
 

DUUr* UUU DUUf DAA 

Mean SE Mean SE Mean SE Mean SE 

 --- kg N ha-1 --- 

Total biomass** 174.3 11.0 167.9 11.1 169.2 5.5 149.8 8.1 

Above-ground biomass 167.6 10.5 161.3 10.7 162.6 5.3 144.2 7.6 
Leaves 42.6 3.8 42.0 4.2 38.3 3.0 32.5 3.2 
Stems 13.4 1.2 13.9 1.7 13.9 1.2 11.7 1.2 
Squares 15.4 1.4 14.6 1.6 13.2 1.0 11.6 1.3 
Fruit elements 59.2 8.6 45.1 7.4 56.7 8.1 63.9 11.2 
Cotton fiber 11.1 1.1 9.64 1.6 10.2 2.1 8.3 0.8 
Cotton seed 83.9 4.4 80.6 5.2 86.0 2.2 78.9 3.6 
Export 123.8 6.9 118.6 7.5 123.3 4.2 110.5 5.0 

*  DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
   UUU = 3 splits at the recommended plant growth stages, using urea, urea,and urea fertilizer 
   DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 
   DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 
  ammonium nitrate 
** Including root biomass from 0-20 cm depth 

 

The average N uptake into above-ground cotton biomass of treatments NPK-0 

and N-0 was 148 kg ha-1, which was only 10 kg lower than the average N uptake of 

plants fertilized with 120 kg N ha-1 (Table 7.2). The apparent N recovery (NUEAR) in 

the biomass was extremely low with 8.8 %, as was the yield increase per kg N fertilizer 

applied (agronomic efficiency; NUEAE).  
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Table 7.2 Calculated cotton N efficiency (kg x kg N-1) for the N rate 120 kg ha-1. 
NUEAR denotes the apparent N recovery, and NUEAE the agronomic 
efficiency of the cotton plant.  

N rate Cotton yield Biomass N uptake* NUEAR NUEAE 
kg ha-1 kg ha-1 kg ha-1 kg ha-1 % kg yield kg N-1 

0 4148 8923 148.3   
120 4676 9454 158.9 8.8 4.4 

* above-ground biomass 
 

7.2 Discussion of cotton N uptake 

Although in general, higher N amendments result in higher plant-N uptake by cotton, 

the documented uptake rates for cotton and wheat vary greatly across studies. The N 

uptake for an unfertilized treatment in the study of Chua et al. (2003) in the US,  

for example, was 68 kg ha-1 but increased to 94 kg N ha-1 when fertilized with 

134 kg N ha-1. At an N-application rate of 202 kg ha-1, the N uptake was 104 kg ha-1. In 

Australia, Rochester et al. (1997) reported even a higher plant-N yield of 193 kg N ha-1 

for the fertilizer rate N-150, and 208 kg N ha-1 for N-200. In this study, the observed N 

assimilation of the cotton plants of around 160 kg N ha-1 for the N-application rate of 

120 kg ha-1 were closer to the Australian cotton than to that in the US.  

As in the study of Rochester et al. (1997), the cotton plants in the 15N 

experiments took up around 120 kg more N than was supplied by the fertilizers. The 

difference between the N-fertilizer rate and plant-N uptake has usually been attributed 

to the contribution of the residual soil Nmin content and of N that has mineralized 

during the growth period (e.g., Jansson and Persson 1982, El Gharous et al. 1990, 

Rochester et al. 1993, Stevens et al. 2005). In this study, however, the sum of the initial 

Nmin content (approximately 30 kg ha-1) and the mineralized soil-N (30 kg ha-1 

according to simulations) was too low to explain the increased N uptake by cotton. Only 

when the supplemental N contributions from the groundwater and irrigation water, 

estimated to be around 5-61 kg ha-1 (section 6.3.3) are included in the overall balance, 

does the calculated external N supply match plant-N uptake better.  

Although the mineralizable N pool has to be quantified more accurately to 

complete the N balance (section 10.3), it can already be concluded that irrespective of 

supplemental N sources such as irrigation and groundwater, fertilizer rates below 

200 kg N ha-1 would lead to slow mining of the soil-N resources by the cotton plants. 

Such rates thus are not to be recommended. The recommended fertilizer rates of 200 
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and 250 kg N ha-1 for cotton in the study region (Cotton Research Institute 2007) 

(section 2.2.5) can, therefore, be confirmed as appropriate for the Khorezmian cotton 

production conditions.  

 

7.3 Winter wheat plant-nitrogen content and uptake 

The total above-ground biomass of wheat was 10.5 ± 1.6 t ha-1 in the microplots, but 

only 6.9 ± 1.4 t ha-1 in the main plots. The stems and kernels equally contributed to the 

plant dry weight with on average 40 and 41 %, respectively. The remaining 19 % of the 

weight came from the chaff. The total simulated root biomass was 2.9 t ha-1 

(2901 kg ha-1), and the root dry weight in the top 0-10 cm was computed to be around 

320 kg ha-1.  

Wheat kernel dry weight of treatment DUUu was significantly higher than that 

of treatment DAA (p = 0.05 Figure 7.2). For all other plant parts, no significant 

differences at p<0.1 according to treatment or fertilizer timing were detected.  
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Figure 7.2 Winter wheat plant components (kg ha-1) as affected by treatment in 
2006.  

 

The N uptake into the different components of the plant was calculated also 

including dry weight of roots from 0-10 cm depth (Table 7.3). The average N uptake 

into total plant biomass was 99.3 ± 18.4 kg ha-1. The highest N uptake was found in the 
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wheat kernels (72 % of total N uptake), while only 10 % of the N uptake was found in 

the stems and 16 % in the chaff.  

The ANOVA (fertilizer, time) of N uptake was significant for the total 

biomass (p = 0.03) and the kernels (p = 0.00) with respect to the fertilizer treatments. 

Neither the fertilizer timing nor the interactions were significant at p<0.1. For  

both biomass and kernels, the uptake for the fertilizer treatment DUUu were 

significantly higher than for treatment DAA (Table 7.3). Kernels of treatment DUUu 

took up more N (83.0 ± 9.5 kg ha-1) than treatments DUUr and UUU (70.1 ± 15.2 and 

71.3 ± 15.4 kg ha-1), and the N uptake from treatment DAA was lowest 

(59.5 ± 8.1 kg N ha-1) in comparison to all other treatments (p<0.1).  

 

 

Table 7.3 N uptake (kg ha-1) of winter wheat plant components as affected by fertilizer 
treatments (N rate 120 kg ha-1). SE denotes the standard error of the mean 
(n = 12).  

Treat 
Total biomass** Above-ground Kernels Stems Chaff 

Mean SE p<0.1 Mean SE p<0.1 Mean SE p<0.1 Mean SE Mean SE 
 --- kg ha-1 --- 
DUUr* 97 7 ab 96 7 ab 70 4 bc 10 1 16 2 
UUU 98 5 ab 97 5 ab 71 4 b 11 0 15 1 
DUUu 112 3 a 110 3 a 83 2 a 11 0 16 1 
DAA 86 3 b 85 3 b 60 2 c 10 0 15 1 
*  DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
   UUU = 3 splits at the recommended plant growth stages, using urea, urea, and urea fertilizer 
   DUUu = 4 splits, using DAP, urea, urea,and urea fertilizer 
   DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 
  ammonium nitrate 
**  Including root biomass from 0-10 cm  
  Means with the same letter in the column are not significantly different according to the Tuckey test 

 

The average N uptake into the above-ground biomass of treatments NPK-0 

and N-0 was 50 kg ha-1 (Table 7.4). Almost double this amount (95 kg ha-1) was taken 

up by plants fertilized with 120 kg N ha-1. The apparent N recovery (NUEAR) was 

36.9 %, and the agronomic efficiency (NUEAE) was 10 kg yield increase per kg N 

fertilizer applied.  
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Table 7.4 Calculated winter wheat N efficiencies (kg kg N-1) for the N rate of 
120 kg N ha-1. NUEAR denotes the apparent N recovery; and NUEAE 
agronomic efficiency of the wheat plant.  

N rate Wheat yield Biomass N uptake* NUEAR NUEAE 
kg ha-1 kg ha-1 kg ha-1 kg ha-1 % kg yield kg N-1 

0 2191 5358 50.2   
120 3387 7164 94.5 36.9 10.0 

* above-ground biomass 
 

7.4 Discussion - Wheat N uptake 

The N uptake of the winter wheat plants was not higher than the N fertilizer applied (N-

120). Even the best performing treatment DUUu, which received an additional N 

application at the heading stage, still took up less N (111 kg ha-1). The plant-N yield was 

nevertheless in the range reported in other studies. Bronson et al. (1991), for example, 

found total plant N to increase from 90 kg ha-1 to 118 kg ha-1 when N rates were 

doubled from 67 to 134 kg ha-1. At higher N rates (150 kg N ha-1), the values increased 

to 127 kg ha-1 (Smith and Whitfield 1990) and 159 kg ha-1 (Wuest and Cassman 1992a). 

As found in other studies (e.g., Wuest and Cassman 1992a, Fischer et al. 1993), total N 

uptake increased linearly from before seeding to the heading stage. Increased plant N 

simultaneously increased the protein content of the kernels (sections 8.3.3 and 9.3), 

which confirms findings by others (e.g., Ottman et al. 2000, Lloveras et al. 2001, 

Woolfolk et al. 2002, Farrer et al. 2006). 
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8 15N RECOVERY 

 

8.1 Total 15N recovery under cotton cultivation 

The recovery of the fertilizer, applied at different growth stages, is provided in Table 

Table 8.1. The average recovery of 15N fertilizer applied before seeding in plant 

biomass and soil was 89 ± 1 %. The average recovered 15N amount of that applied at the 

2-4 leaves stage was about 20 % lower (64 ± 9 %) but later applications (at budding and 

flowering) were in the 80-90 % range again (Figure 8.1, Table 8.1). As a result, the 

overall 15N recovery averaged over all treatments and weigted for the different amounts 

applied with the different splits was 82± 3. However, differences in tital recovery among 

treatments for the total 15N recovery were not significant (p = 0.39). 

In the plant (Table 8.1), the 15N derived from fertilizer significantly increased 

for N applied before seeding (20 ± 12 %) to that applied at flowering (50 ± 26 %). The 

N applied at 2-4 leaves and budding did not significantly differ from that applied before 

seeding (20 ± 9 and 33 ± 10 %, respectively). In the soil, the 15N recovery was 

significantly less, the later the N was supplied, decreasing from 70 ± 18 to 31 ± 9 %.  
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Figure 8.1 Confidence intervals of total 15N content (%) in cotton biomass and soil 
(0-60cm) for the respective timing of fertilizer application in 2005. 
Group IDs were defined for visualization purpose only.  
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Figure 8.2 Confidence intervals of total 15N content (%) in cotton biomass and soil 
(0-60cm) for the four fertilizer treatments in 2005. Group IDs were 
defined for visualization purpose only.  

 
 
Table 8.1 15N-fertilizer recovery (%, for 120 kg N ha-1) in total cotton biomass and soil 
 (0-60 cm) as a function of N application time (2005). SE denotes the 
 standard error of the mean.  

N application time 
Biomass* SE p<0.1 Soil SE p<0.1 Total SE 

%  %  % 
Before seeding 19.9 2.9 a 69.5 4.6 a 89.4 4.5 
2-4 leaves 19.6 4.7 a 44.7 8.0 b 64.4 9.0 
Budding 32.9 2.9 a 53.1 4.9 b 86.0 4.6 
Flowering 50.2 6.6 b 31.0 2.2 c 81.2 5.7 
Average 34.6 3.2  47.7 3.1  82.3 2.9 

* including roots (0-20 cm); means with the same letter in the column are not significantly different 
according to the Tuckey test; the recovery rates were weighted according to the fertilizer quantity 
applied at the respective time 

 

8.1.1 15N recovery in cotton biomass  

The ANOVA test for the overall 15N recovery in the plant components shows significant 

differences for the different fertilizer application times (p = 0.00) but not for fertilizer 

type, with the recovery significantly increasing from application before seeding to 

flowering (see Figure 8.1).  
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Table 8.2 Absolute and relative 15N recovery (kg ha-1 and %) in cotton biomass of the 
four fertilizer treatments as affected by timing of the microplots (n = 4). SE 

denotes the standard error of the mean.  

Timing Fertilizer* N applied 
Plant 15N recovery 

Mean SE Mean SE p<0.1 
  kg ha-1 kg ha-1 % of 15N applied  

before 
seeding 

DUUr 30 6.1 1.5 20.5 6.8 - 
UUU 30 5.9 0.3 19.6 3.4 - 
DUUf 24 4.6 2.1 19.1 7.9 - 
DAA 30 6.1 1.6 20.2 7.1 - 

budding DUUr 42 12.9 1.8 30.6 5.1 ab 
budding UUU 42 10.3 1.1 24.6 1.5 ab 
2-4 leaves DUUf 60 11.8 2.9 19.6 4.7 a 
budding DAA 42 18.3 1.3 43.5 2.2 b 

flowering 

DUUr 48 29.0 7.8 60.4 17.7 - 
UUU 48 19.7 6.9 41.0 16.4 - 
DUUf 36 22.5 4.4 62.4 11.2 - 
DAA 48 19.2 2.6 40.0 3.4 - 

*   DUUr = 3 splits at the recommended plant growth stages using DAP, urea, and urea fertilizer 
    UUU = 3 splits at the recommended plant growth stages, using urea, urea, and urea fertilizer 
    DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 
    DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate 
   Means with the same letter in the column are not significantly different according to the Tuckey test; 

“-“= model not significant, no significant differences; the recovery rates were weighted according 
to the fertilizer quantity applied at the respective time 

 

The 15N recovery rates, however, differed significantly for the second 

fertilization: For treatment DAA the highest amounts of 15N were recovered (44 ± 4 %; 

fertilized at the budding stage). Lower amounts of 15N were found for treatment DUUf 

(20 ± 9 %; fertilized at the 2-4 leaves stage), although statistically not significant at 

p<0.1. Also, for the last fertilizer application at flowering, plants in treatment DUUr and 

DUUf contained relatively more 15N (60 ± 35 and 62 ± 22 %) than in treatments UUU 

and DAA (41 ± 33 and 40 ± 7 %), although again these differences were not significant 

at p<0.1.  
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Figure 8.3 Average 15N-fertilizer recovery (% of 15N applied) in cotton plant 
components for three times of N applications in 2005 (total N rate: 
120 kg ha-1). Error bars show 1 SE.  

 

In the cotton biomass, most fertilizer-derived N was found in the seed and in 

the leaves with 49 and 25 %, respectively, of the total 15N applied (Figure 8.3,Appendix 

15.20). The recovery of 15N in the plant components was significantly influenced by the 

fertilizer timing of the fertilizer application. The highest 15N recovery rates were 

observed when N was applied at flowering in the cotton seeds with 27 ± 15 %, whereas 

12 ± 6 % were recovered in the leaves.  

 

8.1.2 15N recovery in soil under cotton 

The largest percentage of 15N applied before seeding was recovered in the soil with 

70 ± 18 % (Table 8.3). The total recovery of soil 15N was significantly different for the 

different fertilizer application times (p = 0.00), but not for the types of N (p = 0.33) or 

interactions (p = 0.11). The recovery rates in the soil decreased from before seeding to 

flowering. The relative 15N recovery was not significantly different for the 2-4 leaves 

vs. budding stage. However, the treatments UUU and DUUr show the highest 15N 

recovery rates at budding (59 ± 16 %). At the flowering stage, the 15N recovery rate in 

UUU (43 ± 8 %) differed significantly from those of the other treatments (mean 27 %).  
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Table 8.3 Absolute and relative soil profile 15N recovery (kg ha-1 and %) as affected by 
treatment and timing in cotton (n = 4). SE denotes the standard error of the 
mean.  

Timing Fertilizer* 15N applied 
Soil 15N recovery (0-60 cm) 

Mean SE Mean SE p<0.1 

  kg ha-1 kg ha-1 
% of 15N 
applied 

 

before 
seeding 

DUUr 30 18.4 0.6 61.3 2.0 - 
UUU 30 20.6 2.1 68.5 7.0 - 
DUUf 24 15.4 0.7 64.3 2.7 - 
DAA 30 24.9 4.9 83.0 16.2 - 

budding DUUr 42 24.7 2.0 58.8 4.8 - 
budding UUU 42 24.6 4.5 58.5 10.8 - 
2-4 leaves DUUf 60 26.8 4.8 44.7 8.0 - 
budding DAA 42 17.6 3.3 42.0 8.0 - 

flowering 

DUUr 48 13.7 0.9 28.5 1.9 a 
UUU 48 20.5 1.8 42.7 3.8 b 
DUUf 36 8.5 0.8 23.5 2.2 a 
DAA 48 13.2 0.6 27.5 1.2 a 

* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
  UUU = 3 splits at the recommended plant growth stages, using urea, urea,and urea fertilizer 
  DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 
  DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate 
 Means with the same letter in the column are not significantly different according to the Tuckey test; 

“-“= model not significant, no significant differences; the recovery rates were weighted according 
to the fertilizer quantity applied at the respective time 

 

Overall, around 57 ± 20 % of the total soil-15N was recovered in the top 0-

20 cm where 15N fertilizer was applied before seeding, whereas only 40-43 ± 7 % was 

found when applied at 2-4 leaves/budding, and 23 ± 10 % at flowering (Figure 8.4). No 

significant differences were detected for the recovery rates with respect to fertilizer 

treatment (p = 0.18) and for the three-way interactions (depth x treatment x time, 

p = 0.21). For the factors treatment, time, and depth, and the interactions the ANOVA 

was significant (p<0.02). At flowering, only treatment UUU shows significantly higher 

values than all other treatments with a 15N recovery rate of 25 ± 7 % in 0-10 cm depth.  
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Figure 8.4 Relative recovery (% of 15N applied) in the soil profile as affected by 
fertilizer timing of the cotton microplots in 2005. Error bars represent 
1 SE.  

 

The total plant N uptake of around 160 kg ha-1 was on average 45 kg higher 

than the total amount of N fertilizer applied (120 kg) (Figure 8.5, section 7.1). Around 

30 kg of soil mineral N was available before seeding (section 6). Together with the N 

fertilizer, this would have covered total N uptake by the plants. However, the fertilizer-

derived N in the plant was on average 42 kg only. Apparently, the fertilizer was not the 

only N source, as the initial soil mineral N and fertilizer amounted to only 78 kg. At the 

same time, the mineral N content in the soil after harvest was more than twice as high as 

at the beginning of the study (66 kg).  
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Figure 8.5 Relationship between soil-derived (non-labeled) mineral N (before 
seeding, 0-60 cm depth), uptake of total N in cotton plant, fertilizer-
derived (15N) N in plant, and fertilizer-derived N in soil following 
application of 120 kg N ha-1 for four N-fertilizer treatments. Error bars 
represent the standard error of the mean.  

 

8.2 Total 15N recovery under winter wheat cultivation 

Total recovery of 15N derived from fertilizer in winter wheat biomass and soil was on 

average 83 ± 20 %. The ANOVA (fertilizer, time) shows significant differences for the 

factor time (p = 0.00). The fertilizer treatments (p = 0.11) and the interactions were 

statistically not different (p = 0.24). Total 15N recovery increased with later application 

in the order before seeding < tillering, booting < heading, i.e., N applied before seeding 

was recovered at around 67 ± 14 % of 15N, whereas that applied at the heading stage 

was nearly fully recovered (Figure 8.6,Table 8.4).  

The post hoc test for the type or method of application shows no significant 

difference between treatment means, although 15N recoveries from treatment DAA were 

relatively higher than, for example, from treatment UUU (Figure 8.7). 

The average plant recovery of 15N fertilizer was 36 ± 19 %, and the average 

soil recovery was 47 ± 14 %. However, the recovered amount of 15N in the biomass was 
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significantly lower for N applied before seeding (11 ± 2 %) and increased steadily with 

later application until heading (52 ± 18 %). Soil 15N recovery rates were similar for all 

application times (50-55 ± 11 %) except the booting application (38 ± 11 %). While for 

the application before seeding, the 15N recovery rate in the biomass was 20 % of the soil 

recovery rate, at the heading stage, the same amount of 15N was recovered in the 

biomass and soil.  
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Figure 8.6 Confidence intervals of the total 15N content (%) in winter wheat biomass 
and soil (0-60 cm) for different N application times in 2005/06. Group 
IDs were defined for visualization purposes only.  
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Figure 8.7 Confidence intervals of the total 15N content (%) in winter wheat biomass 
and soil (0-60 cm) for four fertilizer treatments (type and method of 
application) in 2005/06. Group IDs were defined for presentation 
purposes only.  
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Table 8.4 15N-fertilizer recovery (% of 120 kg ha-1 N applied) in total winter wheat 
biomass and soil (0-60 cm) for the respective N application time in 2006. SE 
denotes the standard error of the mean.  

N application time 
Biomass* SE p<0.1 Soil SE p<0.1 Total SE p<0.1 

%  %  %  
Before seeding 11.3 0.6 a 55.2 3.8 a 66.5 3.5 a 
Tillering 34.3 2.1 b 50.0 2.6 b 84.2 4.1 ab 
Booting 49.1 3.8 c 37.8 2.6 b 86.9 5.4 bc 
Heading 51.7 8.9 c 53.2 4.4 b 104.9 5.3 c 

Average 36.1 2.6  46.6 1.9  82.7 2.8  
* including roots (0-10 cm); means with the same letter in the column are not significantly different 

according to the Tuckey test; “-“= model not significant, no significant differences; the recovery 
rates were weighted according to the fertilizer quantity applied at the respective time 

 

8.2.1 15N recovery in winter wheat biomass  

The recovery rates of 15N in the biomass (time, fertilizer) were significant only for the 

fertilizer time (p = 0.00). The differences caused by fertilizer type (p = 0.48) and 

interactions (p = 0.81) were not significant. The 15N recovery rates increased with later 

application in the season for all treatments. However, the amount recovered in treatment 

DAA increased more sharply until the booting stage (59 ± 12 % of 15N applied) than in 

the other treatments (44-46 ± 14 % of 15N applied).  

The highest amount of 15N was found in the kernels (Figure 8.8, Appendix 

15.21) with significant differences only for the fertilizer timing (p = 0.00). The 

interactions were not significant (p = 0.84). The 15N in the kernels increased 

significantly in the order of N application before seeding (7 ± 2 %) < tillering 

(24 ± 2 %) < booting (35 ± 3 %), heading (42 ± 16 %).  

The 15N recovery in the stems and chaff was significant for time of application 

(p = 0.00). In addition, recovery in the stems was also significant for the fertilizer types 

(p = 0.00) as were the interactions (p = 0.07). The recovery rate in stems and chaff was 

highest when applied at tillering and the booting stage (4 ± 1 and 5 ± 1 %), and 

significantly so. The trend was: before seeding < heading < tillering, booting.  
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Table 8.5 Absolute and relative 15N recovery (kg ha-1) in winter wheat biomass of the 
microplots as affected by treatment and timing of fertilizer application 
(n = 4). SE denotes the standard error of the mean.  

Time of 
application 

Fertilizer* 
N 

applied 
Plant 15N recovery 

Mean SE Mean SE 
  kg ha-1 kg ha-1 % of 15N applied 

before 
seeding 

DUUr 24 2.5 0.3 10.5 1.4 
UUU 24 2.6 0.1 10.9 0.5 

DUUu 24 3.3 0.2 13.6 0.7 
DAA 24 2.5 0.3 10.3 1.4 

tillering 

DUUr 48 16.9 1.5 35.1 3.2 
UUU 48 13.9 2.6 28.9 5.3 

DUUu 36 12.6 0.9 35.1 2.5 
DAA 48 18.4 2.6 38.4 5.5 

booting 

DUUr 48 22.3 3.8 46.4 7.9 
UUU 48 22.0 1.1 45.8 2.2 

DUUu 36 15.7 4.4 44.4 11.5 
DAA 48 28.2 3.0 58.7 6.2 

heading DUUu 24 12.4 2.1 51.7 8.9 
* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
  UUU = 3 splits at the recommended plant growth stages, using urea, urea, and urea fertilizer 
  DUUu = 4 splits, using DAP, urea, urea,and urea fertilizer 
  DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate; the recovery rates were weighted according to the fertilizer quantity applied at 
the respective time 
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Figure 8.8 Average N-fertilizer recovery (% of 15N applied) in winter wheat plant 
components at different fertilizer application times in 2006.  
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8.2.2 15N recovery in soil under winter wheat 

The average 15N amount recovered in the soil in 0-60 cm depth was 47 ± 14 % of the 

total 15N applied with significant differences for fertilizer types (p = 0.05) and time of 

the fertilizer application (p = 0.00) as well as for the interactions (p = 0.03). 

The 15N recovery rate in the soil decreased from the first fertilizer application 

(before seeding, 55 ± 15 %) to the booting-stage application (38 ± 11 %), and increased 

again for the last fertilizer application time (heading; treatment DUUu) to 53 ± 9 %. The 

percentage of 15N applied was found at the booting stage was significantly lower than at 

all other fertilizer application times (Table 8.6). Only for treatment DUUu was the 

decrease not as linear, but of the N applied at the tillering, comparably more 15N was 

recovered than for the N applied before seeding.  

 
Table 8.6 Average soil N recovery (kg ha-1 and %) in profile (0-60cm) as affected by 

treatment and fertilizer application time in winter wheat (n = 4). SE denotes 
the standard error of the mean, respectively.  

Time of 
application 

Fertilizer* 
N 

applied 
Soil 15N recovery (0-60cm) 

Mean SE Mean SE p<0.1 

  kg ha-1 kg ha-1 
% of 15N 
applied 

 

before 
seeding 

DUUr 24 13.6 2.7 56.5 11.1 - 
UUU 24 15.1 0.6 63.0 2.5 - 

DUUu 24 9.9 1.0 41.4 4.1 - 
DAA 24 14.4 1.6 59.8 6.7 - 

tillering 

DUUr 48 24.2 2.7 50.4 5.6 ab 
UUU 48 18.2 1.7 37.9 3.6 a 

DUUu 36 19.6 0.7 54.5 1.8 b 
DAA 48 27.8 1.8 57.9 3.7 b 

booting 

DUUr 48 21.7 2.3 45.3 4.7 a 
UUU 48 18.0 0.9 37.5 1.9 ab 

DUUu 36 9.7 1.8 26.9 4.9 b 
DAA 48 18.7 2.7 38.9 5.6 ab 

heading DUUu 24 12.8 1.1 53.2 4.4 - 
* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea,and urea fertilizer 
  UUU = 3 splits at the recommended plant growth stages, urea, urea, and urea fertilizer 
  DUUu = 4 splits, using DAP, urea, urea, urea fertilizer 
  DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate 
 Means with the same letter in the column are not significantly different according to the Tuckey test;  

“-“= model not significant, no significant differences; the recovery rates were weighted according 
to the fertilizer quantity applied at the respective time 

 

The ANOVA for the recovery of soil 15N was highly significant for all factors 

(depth, fertilizer, time) and all interactions (p<0.03). The 15N fertilizer content in the 
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soil decreased exponentially with depth (Figure 8.9), and was significantly higher in the 

top 0-10 cm (25 ± 11 % of 15N applied) than in the rest of the soil profile (around 6 %) 

irrespective of fertilizer application time or treatment. However, the 15N recovery in the 

soil profile differed depending on soil layer. The 15N recovery amounts in the soil 

differed also according to the fertilizer application times. Generally, in the 0-10 cm 

layer, the significantly lowest recovery of 15N was for N applied at the heading stage 

(16 ± 0.5 %). Below this layer, however, the value was highest for fertilizer applied at 

the heading stage (e.g., 12 ± 6 % in 10-20 cm depth). This corresponds with relative 

values for the treatment DUUu which, in the top 0-10 cm depth, were significantly 

lower than for the other treatments before seeding and at the booting stage. At tillering, 

the significantly lowest value was found for 0-10 cm in treatment UUU.  
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Figure 8.9 Relative recovery (% of 15N applied) in the soil profile of the winter 
wheat microplots as affected by fertilizer timing in 2006. Error bars 
represent 1 SE.  
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Figure 8.10 Relationship between soil-derived (non-labeled) mineral N (before 
seeding, 0-60 cm depth), uptake of total N into biomass, fertilizer-derived 
(15N) N in the boimass, and fertilizer-derived N in the soil following 
application of 120 kg N ha-1 for four N-fertilizer treatments for winter 
wheat. Error bars represent the standard error of the mean.  

 

In relation to the total N uptake of around 99 kg ha-1, the applied N fertilizer 

amount of 120 kg ha-1 was sufficient (Figure 8.10), and even covered the significantly 

highest N uptake in treatment DUUu (112 kg ha-1). The soil mineral N content was 

stable at around 65 kg ha-1 from before seeding to after harvest, and was not 

significantly different for any of the treatments at p<0.1. Total fertilizer-derived N in 

biomass and soil also do not show any effect related to the fertilizer treatment. The 15N 

recovery in the soil was lower (56 kg ha-1) than the mineral N content after harvest. As 

the 15N derived from the plant (43 kg ha-1) together with the initial soil mineral N 

content was still lower than the total plant-N uptake, the remaining N must have come 

from other sources.  
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8.3 Discussion of nitrogen-fertilizer efficiency in cotton and wheat 

8.3.1 Plant-derived nitrogen 

The 15N found in the cotton plants (35 %) is comparable to previous recovery studies 

from Uzbekistan. From fields receiving 120 kg N ha-1, Ibragimov (2007) recovered 

32 % 15N. Results are further in line with those of American and Australian studies, 

which reported less than 35 % recovery of the 15N fertilizer (Constable and Rochester 

1988, Freney et al. 1993, Rochester et al. 1993, Rochester et al. 1997, Silvertooth et al. 

2001a). The wheat plant 15N recovery in this study of around 36 % is also in the range 

of other studies in irrigated regions (e.g., Smith et al. 1989, Smith and Whitfield 1990, 

Hamid and Ahmad 1993, Carefoot and Janzen 1997, Mahmood et al. 1998), although 

higher rates of wheat plant-derived N of 38-58 % have also been reported (e.g., Bronson 

et al. 1991, Wuest and Cassman 1992a, Fischer et al. 1993, Ortiz-Monasterio et al. 

1994, Ottman and Pope 2000). There is no difference in the recovery values for the 

different cotton and wheat plant components as compared to other studies (e.g., Smith 

and Whitfield 1990, Fritschi et al. 2004a).  

Fritschi et al. (2004a) measured no differences in 15N-fertilizer recovery in 

cotton, i.e., the rates ranged between 43 and 49 % irrespective of the N rate applied. 

Also, Norton and Silvertooth (2007) observed no clear trend in 15N recovery rates when 

increasing N rates from 168 to 336 kg ha-1. In 1997, they reported even decreasing 

recovery rates from 35 to 26 % for higher N applications, whereas in 1999, the recovery 

increased from 32 % to 35 % (Norton and Silvertooth 2007). In this study, 15N recovery 

rates were calculated as the agronomic N-use efficiency for the respective N-fertilizer 

treatment (NUEAE) (see section 4.8). In comparison to previous results from fertilizer 

research conducted in the same study region Khorezm, the reported average NUEAE 

values of 4.4 kg cotton yield increase per kg N applied (N-120) were much higher than 

the estimated 1.9 kg N kg-1 (N-160) in this study. The maximal NUEAE in 1972 was 

8.0 kg N kg-1 (N-250) but only 4.3 kg N kg-1 in 1973 (Sabirov 1974). The N use 

efficiencies calculated by Khodjizadaeva et al. (1978) and Rustamova (1988 in 

Djumaniyazov 2004) were 5.1 kg N kg-1 for similar yield response experiments (N-200, 

N-250). For winter wheat, no results were available for Uzbekistan. The present results, 

however, show that NUEAE values did not significantly change when increasing N 

applications from 0/20 to 160 kg ha-1. Also, in similar studies conducted in Khorezm, 
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increasing N rates to 300 kg ha-1 did not influence the amount of recovered N in cotton 

(Djumaniyazov 2004). Similar to cotton, the NUEAE values for winter wheat in this 

study are not significantly affected by the N-fertilizer amounts, i.e., 10.0 kg kg-1 and 

8.8 kg kg-1 for N-120 and N-160, which confirms findings by Fischer (1993). For both 

crops, however, the results from the difference method (NUEAE) vary extremely 

between positive and negative values, greatly exceeding the efficiencies derived from 

the 15N method. This confirms findings by Olson and Swallow (1984), who noted that 

the values derived from the difference method fluctuated even in the negative range in 

some years and replications. Therefore, the dilution technique usually is preferred as the 

more consistent method (Rao et al. 1992) despite its limitations as previously discussed 

(section 2.3.4).  

Comparing the N-fertilizer recovery rates for the rate of 120 kg N ha-1 

calculated from the isotope dilution method (15N) with the apparent N recovery rates 

(NUEAR) computed using the difference method, the values diverge widely for cotton 

and wheat. Whereas the discrepancy between the two values for cotton was remarkable 

(9 % NUEAR vs. 35 % 15N), the winter wheat values from both methods only slightly 

differed (37 % NUEAR vs. 36 % 15N). These findings contradict those of Fritschi et al. 

(2004a), who found NUEAR values for irrigated cotton in the US to be comparable to 

efficiencies derived from the 15N technique. A method comparison conducted by Norton 

and Silvertooth (2007) in turn revealed no differences for the first year 1997; however, 

in 1999, the 15N method produced 10-30 % lower N-recovery values than the difference 

method. In contrast to both values, Rochester et al. (1993) reported significantly higher 

NUEAR values (48 %) than 15N-derived cotton recoveries (28 %) in Australia.  

Differences between the two methods usually indicate added N interactions 

(section 2.3.4) (Jenkinson et al. 1985, Harmsen and Moraghan 1988, Rao et al. 1992), 

which may lead to an underestimation of 15N-fertilizer recovery (Olson and Swallow 

1984, Krupnik et al. 2004). In this study, however, the diverging recovery rates in the 

cotton experiment can be attributed to the calculation procedure of the apparent N-

recovery rate NUEAR. This method is based on the assumption that plant-N uptake 

substantially/significantly differs between the fertilized and the unfertilized (control) 

treatments. As in this study plant-N uptake for the unfertilized treatments was very high 

(section 7), and in fact did not significantly differ from the fertilized treatment. The 
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method thus underestimated the N recovery. The 15N-soil recovery rates give rise to the 

assumption that immobilization processes strongly influenced the recovery rates 

(section 8.3.2 and section 2.3.4).  

 

8.3.2 Soil-derived nitrogen 

The 15N recovery rates in the soil of around 48 and 47 % in the 15N cotton and wheat 

experiments, respectively, were between 14 and 30 % higher than those found in other 

studies and regions (section 2.3.4) (e.g., Bronson et al. 1991, Freney et al. 1993, 

Mahmood et al. 2001, Fritschi et al. 2004a, Ibragimov 2007). Only Smith et al. (1989) 

recovered relatively higher rates of 43 % in Australian soil under wheat.  

High soil-15N recovery rates indicate that considerable N-fertilizer 

immobilization and/or pool substitution must have taken place (Jenkinson et al. 1985, 

Harmsen 2003b) (section 2.3.4). According to Ibragimov (2007), in a Tashkent soil 

receiving 120 kg N ha-1, 39 % of the N fertilizer was immobilized in the organic 

fraction. In comparison, the immobilization rates simulated from CropSyst were only 

24 %. The lower estimation, however, is likely due to the limitations of the model 

(section 10.3), as the high observed 15N-recovery rates point towards higher 

immobilization levels than those computed with the model.  

When immobilized, the 15N fertilizer may be protected against leaching or 

denitrification. In this study, more than 25 % of the N fertilizers applied are recovered 

in the top 20 cm of the soil. Evidently, the high irrigation amounts in the winter wheat 

experiment had not caused movement of 15N to lower depths. The fertilizer timing did 

not affect the depth of 15N movement into the soil either. This confirms findings by 

others, where despite the high variation in N recovery in the soils, in most cropping 

systems, the highest amount of soil-15N was recovered from the top 60 cm (e.g., 

Harmsen and Moraghan 1988, Smith et al. 1989, Ju et al. 2006). Thus, 15N leaching can 

be considered of minor importance in this study. However, it can not be excluded that 

following the high irrigation application rates commonly applied by farmers in the 

region, substantial amounts of soil-N are regularly leached into deeper soil horizons, 

including some of the N that was released due to pool substitution. Ottman and Pope 

(2000) assumed that the NO3-N leached to the groundwater must not necessarily come 

from the (15)N fertilizer, but could also be from re-mineralized soil organic N.  
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The low soil-15N recovery rates below 50 cm suggest that some fertilizer losses 

evidently may have occurred from the topsoil layer. Chua et al. (2003) suggested that 

the 25-50 % of N fertilizer not accounted for may have been subject to denitrification as 

the main loss pathway. Denitrification research from flood-irrigated cotton fields 

conducted by Mahmood et al. (2000, 2008) in the Central Punjab region of Pakistan, or 

by Scheer et al. (2008a, 2008b) in the Khorezm region of Uzbekistan support this 

estimate. Applying nitrification inhibitors proved successful in increasing the soil 

recovery rates from 27 to 37 % using 3-methyl pyrazole (Rochester et al. 1996), and the 

plant recovery rates from 57 to more than 70 % by using acetylenic compounds (Freney 

et al. 1993). Also, changes in N-fertilizer placement practices, i.e., deep placed urea in 

the study by Rochester et al. (1993), reduced gaseous losses while enhancing plant-

derived 15N to up to 56 %.  

The 15N fertilizer unaccounted for could also be attributed to real losses caused 

by uneven N-fertilizer distribution in the field, uptake by weeds, and pest competition 

(Byerlee and Siddiq 1994). Furthermore, fertilizer-N could also be lost in the form of 

NH3 through the plant, e.g., during cotton flowering and fruiting (Chua et al. 2003). 

Especially NH4-N-based fertilizers applied to the soil surface, which are rapidly 

hydrolyzed to NH3, may be lost via volatilization from unsaturated warm soils (Sadeghi 

et al. 1988, Sadeghi et al. 1989). Such volatilization losses, calculated as the difference 

between surface-applied and deep-placed urea treatments, were estimated to be up to 

55 % (Rochester et al. 1993).  

 

8.3.3 Effect of fertilizer timing 

While the increasing plant-15N recovery rates over time monitored in this study are 

related to increasing crop-N demand and N uptake (Olson and Kurtz 1982, Sieling and 

Beims 2007), the high initial soil-15N recovery rates show poor utilization of fertilizer-N 

of the young plants, giving the opportunity for the applied N to be immobilized 

(Jenkinson et al. 1985) (sections 8.3.2 and 2.3.4). Rochester et al. (1993) found the 

initially applied 15N-urea rapidly immobilized and only re-mineralized later, whereas 

during the vegetation period, pool substitution occurred only once the Nmin pool was 

empty (Jenkinson et al. 1985).  
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It is recommended to apply N fertilizer at the 2-4 leaves stage (treatment DUUf) 

(Ibragimov 2008, personal communications) in case fertilizer was not applied before 

seeding. The N fertilizer should then be incorporated into the soil. However, during 

extremely hot summers such as in 2005, cotton fields already had to be irrigated at the 

2-4-leaves stage. This creates conditions for denitrification (Scheer et al. 2008b). At this 

stage cotton plants are still small, N uptake is low, and consequently plant-N recovery is 

low (Olson and Kurtz 1982). The low 15N recovery rates for N applied at the 2-4 leaves 

stage, where 60 kg 15N fertilizer were applied but only 20 % (12 kg) recovered in the 

plant, corresponds to measurements of Ibragimov (2007) who found recovery rates of 

<10 kg ha-1. The 15N fertilizer remaining in the soil is susceptible to losses. Soil-15N 

recovery rates of the N applied at the 2-4 leaves stage were around 14 % lower than the 

N fertilizer applied at the budding stage (treatments DUUr and UUU). The farmers’ 

fertilizer management (DUUf), i.e., applications at the 2-4 leaves stage, always yielded 

highest cotton yields but lowest uptake and plant- and soil-15N recovery rates in 

comparison to the recommended N-fertilizer timing, i.e., at budding stage. The 

additional N application at the heading stage (treatment DUUu) yielded highest total 15N 

recovery rates in the winter wheat. Smith and Whitfield (1990) attributed the high 

recovery rates at anthesis to the fact that the soil mineral N content was so low, that any 

additional N would be rapidly taken up by the plant. Most importantly, the high plant-
15N recovery levels prove that fertilizer N contributes to the observed high plant-N 

uptake and increased protein content suggesting that kernel quality levels can be 

improved by split applications of fertilizer-N at the heading stage without negative 

economics effects.  

 

8.3.4 Effect of fertilizer types 

The different N-fertilizer types behaved similarly in terms of plant-N recovery by 

cotton. Nevertheless, plant-N recovery was significantly higher for treatments receiving 

ammonium-nitrate fertilizer (DAA) instead of urea during the budding stage, which 

suggests an uptake preference of NO3-N over NH4-N during this growth stage. Uptake 

preference of cotton for NO3-N over NH4-N, especially during dry-matter production, 

has been reported previously (CRC 2007). Sabirov (1974) and Belousov (1975) in turn 

found no preferences of NO3-N or NH4-N usage for cotton, whereas Khajiyev and 
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Bairov (1992) and Elbordiny et al. (2003) found higher cotton yields and recovery rates 

after urea than after nitrate-containing fertilizer application.  

For winter wheat, the total 15N-recovery and plant-15N recovery were higher 

for the DAA treatment than for the other treatments. Plant-N recovery rates for this 

nitrate-containing treatment were especially high during the tillering and booting stage 

in comparison to the other times of application (Table 8.5). These findings are in line 

with those of Olson and Kurtz (1982), who found NO3-N uptake rates to be higher later 

in the season. Also, Recous et al. (1988) reported higher NO3-N recovery rates 

throughout the season as compared to labeled ammonium-containing fertilizers.  
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9 CROP QUALITY 

 

9.1 Cotton fiber and seed quality 

Fiber and seed quality of cotton obtained from the response and 15N experiments were 

analyzed. Out of all quality parameters, the three main fiber quality determinants such 

as length, strength, and micronaire, and the cotton thousand-seed weight (TSW) are 

presented (Table 9.1).  

 

Table 9.1 Average raw cotton fiber length (mm), strength (g tex-1), micronaire and 
1000-seed-weight (TSW, g). SE represents the standard error of the mean.  

Year Pick 
Length Strength Micronaire TSW 

Mean SE p<0.1 Mean SE p<0.1 Mean SE p<0.1 Mean SE p<0.1 

  mm  g tex-1     g  

2004 
1 31.0 0.3 a 24.4 0.1 a 4.25 0.02 a 113.8 0.9 a 
2 31.6 0.3 a 24.2 0.0 b 4.12 0.02 b 109.9 1.1 b 
3 30.9 0.3 a 24.2 0.0 b 3.81 0.03 c 102.0 0.9 c 

2005 

1 31.6 0.4 a 26.3 0.1 a 4.36 0.03 a 115.1 1.3 a 
2 31.0 0.4 a 26.1 0.1 a 4.32 0.03 a 114.5 1.5 a 
3 30.5 0.7 a 25.3 0.1 b 4.07 0.03 b 113.0 1.8 a 
4 30.4 0.5 a 24.4 0.1 c 3.58 0.05 c 100.5 1.5 b 

Mean  31.0 0.2  25.0 0.1  4.08 0.02  109.9 0.6  
 Means with the same letter in the column are not significantly different according to the Tuckey test 
 

On average, the fiber length was 31.0 ± 2.3 mm, within the range of the 

officially reported length for this variety of around 28.6 mm (SIFAT 2005, Ustyugin 

and Gulyayev 2005). Statistical analysis (year, pick, N rate) shows that only  

the interactions of pick x N rate are significant (p = 0.05). At lower N rates (0 to 

80 kg ha-1), the fiber of the first pick was longer than that of later picks. The fiber length 

at higher N rates, on the other hand, was longer at the later picks.  

In comparison to the officially reported strength of 30.1 g tex-1 (SIFAT 2005, 

Ustyugin and Gulyayev 2005), the fiber strength determined in this study was notably 

lower (25.0 ± 0.9 g tex-1). The fiber strength (stelometer) was significantly different for 

the factors year (p = 0.00) and picking time (p = 0.00), and for the interactions with the 

picking time (pick x year: p = 0.06; pick x N rate: p = 0.00). The fiber harvested in 2004 

was significantly weaker (24.3 ± 0.3 g tex-1) than that of 2005 (25.5 ± 0.6 g tex-1). The 

strength also significantly decreased from pick 1 to the last for both years. It was also 

lowest for the N rates 200 and 250 kg ha-1 for any picking time.  
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Similar to fiber strength, the micronaire was significantly lower for the cotton harvested 

in 2004 than for that in 2005 (4.06 ± 0.13 vs. 4.08 ± 0.20), and decreased with every 

pick (Table 9.1). The fiber micronaire (year, pick, N rate) was significantly affected by 

the factors year (p = 0.00) and pick (p = 0.00) and for the interaction pick x N rate 

(p = 0.00). The fiber maturity (ripeness) and linear density (fineness) followed the same 

tendency as presented for micronaire. N fertilizer rates did not affect the micronaire. A 

positive relationship between fiber fineness and micronaire was observed for both years 

and all picks (Figure 9.1). The R² for both years was high with 0.95 and 0.97, 

respectively. In comparison to the official Uzbek reports of micronaire values of 4.62 

(SIFAT 2005, Ustyugin and Gulyayev 2005), the overall micronaire from the 

experiments was notably lower with 4.08 ± 0.31.  
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Figure 9.1 Relationship between cotton fiber micronaire and fineness (mtex) of the 
cotton variety Khorezm-127 and picking time (response and 15N 
experiments).  

 

Cotton 1000-seed weight was on average 109.9 ± 9.1 g and increased with 

increasing N-application (Figure 9.2). All main factors (pick, year, N rate) were 

significant. Also, the interaction year x pick (p = 0.07) was significant. The remaining 

interactions year x N rate (p = 0.10), pick x N rate (p = 0.17) and pick x N rate x year 

(p = 0.87) were not significant. In 2004, the weight of the seeds was significantly lower 

(108.5 ± 5.3 g) than in 2005 (110.8 ± 8.3 g). The weight also decreased with picking 

time in both years, although more pronouncedly in 2004 (Table 9.1). The heaviest seeds 

2004

2005
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were found for the N rate of 160 kg ha-1 and the lightest for the rate N-0. The weight of 

all other N rates ranked between those two.  
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Figure 9.2 Cotton 1000-seed weight (g) of the cotton variety Khorezm-127 
according to N fertilizer rate (kg ha-1) and picking time (response and 15N 
experiments).  

 

9.2 Discussion of cotton quality 

The results of this study confirm findings of Constable et al. (1992) and Blaise et al. 

(2005) that cotton fiber quality remains unaffected by N rates in contrast to the seed to 

fiber ratio, which significantly increases with N applications (Blaise et al. 2005). Also, 

in the study of Girma et al. (2007), the micronaire did not change with N amendments. 

Length and strength, however, were found to have a positive linear relationship 

(Bradow and Davidonis 2000, Fritschi et al. 2003, Girma et al. 2007). However, no 

effect of N application on strength was reported in an earlier study by Boman and 

Westerman (1994).  

Cotton seed weight showed a slight response to increasing N rates. As the 

delinted seed consists of around 60 % crude protein and crude fat (DLG 1997), any 

increase in N would be expected to be reflected in the seed weight (Khaitbayev 1963). 

Cotton boll quality decreased from the first pickings to the last, which can be 

attributed to decreasing fiber maturity (Chaudhry and Guitchonouts 2003). With 

decreasing light duration and temperature especially the micronaire decreases (Bradow 
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et al. 1997, Jones and Wells 1998). Micronaire and fiber fineness were also significantly 

affected by the year. Former findings show that cotton bulk micronaire and length are 

indeed sensitive to planting date, and that irrigation practices, especially timing, and 

other environmental factors affect the carbon assimilation in the cotton plant (Bradow et 

al. 1997, Johnson et al. 2002). The difference in cotton quality between the study years 

2004, 2005 and 2006 confirmed the above. According to the Uzbek breeding 

classification (Ibragimov et al. 2008), the length, strength and micronaire characteristics 

of the cotton variety Khorezm-127 qualify the cotton as lowest grade.  

 

9.3 Wheat kernel quality 

For the statistical quality analysis, data were taken from the above-mentioned 

experiments (minus-1, response and 15N experiment) and from the rotation experiments 

conducted in 2003/04 in Urgench district (Appendix 15.22).  

 

Table 9.2 Average winter wheat yield (Mg ha-1), protein and gluten content (%) and 
1000-kernel weight (TKW, g) for 2004-2006. SE denotes standard error of 
the mean.  

N rate 
Wheat yield Protein content Gluten content TKW 

Mean SE p<0.1 Mean SE p<0.1 Mean SE p<0.1 Mean SE p<0.1 

kg ha-1 
Mg 
ha-1 

Mg 
ha-1 

 % %  % %  g g  

0 2312 182 a 10.4 0.5 abc 22.4 1.3 a 33.3 0.5 a 
24 2093 137 a 8.9 0.9 a 21.7 2.5 a 35.3 0.6 bc 
80 3269 133 bc 9.8 0.3 ab 21.0 0.8 a 37.2 0.3 cd 

120 3572 139 c 11.0 0.2 bc 20.7 1.0 a 36.7 0.4 bc 
160 3603 139 c 11.1 0.3 bc 23.5 1.1 a 39.0 0.4 d 
180 3927 274 c 12.3 0.3 c 23.0 1.3 a 35.5 0.4 bc 
240 3980 344 c 14.1 0.5 d 24.0 1.3 a 36.3 0.9 bc 
300 2598 461 ab 15.2 1.3 d 25.0 5.0 a 34.9 1.0 ab 

 Means with the same letter in the column are not significantly different according to the Tuckey test 
 

The protein content was significantly higher in 2004 (13.1 ± 1.5 %) and 2005 

(12.4 ± 1.7 %) than in 2006 (10.2 ±1.3 %) (Figure 9.3). Also, the N rates made a 

difference at p<0.1 (Table 9.2): Kernels with N rates of 240 and 300 kg ha-1 had 

significantly higher protein content (14.1 ± 1.4 and 15.2 ± 1.8 %) than those from the 

lower N rates. The critical protein value of 11.5 % was used to create the Cate-Nelson 

diagram (Figure 9.4), as it corresponded to the maximum yield of the entire data set. At 
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70 % of the maximum yield, the horizontal line divided the data set into three groups. 

Below the critical value, the data were especially scattered in the upper left quadrant  

The fertilizer treatments also significantly influenced the protein content of the 

kernels. Wheat from treatment DUUu had a significantly higher protein content 

(10.3 ± 0.8 %) than that from the other treatments (Figure 9.5).  
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Figure 9.3 Relationship of mean protein content (%) and mean wheat kernel yield    
(kg ha-1) of the rotation experiment (2003/04), the minus-1 experiments 
and response experiments (2004/05), and the 15N experiment (2005/06) 
(Symbols). 

  Line: Regression line (black) for the average N rates. 
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Figure 9.4 Cate-Nelson diagram to locate the critical protein content after Cate and 
Nelson (1971) 
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Figure 9.5 Average protein content (%) of wheat of the 15N experiment (N rate of 
120 kg ha-1). Error bars represent 1 SE. Same letters are not significantly 
different at p<0.05.  

 

The regional wheat quality reported by the state mills was class 3, i.e. class 3 

is equivalent to unsatisfactory soft wheat of a gluten quality value of 105-120. All wheat 

from the experiments, except four cases, was in better classes (1 and 2). Comparing the 
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data with the German protein classification for baking quality (Raiffeisen 2008), the 

protein class low (10.5 %) was met when 120 kg N ha-1 was applied. At the application 

rate of more than 180 kg N ha-1, the kernels reached the protein class medium (12.5 %). 

All wheat kernels receiving less than 120 kg ha-1 of N fertilizer were below the 

minimum requirements.  

Kernel gluten content was on average 22.1 ± 4.3 %. Gluten content changed 

significantly for the year to year and the interactions year x N rate were significant as 

well. The factor N rate alone was not significant. The gluten content was significantly 

lower in 2004 (20.7 ± 5.7 %) than in 2005 (23.7 ± 3.0 %). Significant differences for the 

fertilizer management treatments were found only between the DAA and DUUr: DAA 

kernels yielded the highest gluten content of 23.9 ± 3.9 %, and DUUr kernels the lowest 

(19.9 ± 3.5 %).  

The kernels of all N rates were above the threshold level of 20.0 % gluten 

content according to the international classification (Raiffeisen 2008). However, the 

medium class (23.5 %) was reached only for wheat fertilized with 160-180 kg N ha-1. 

Higher N application rates did not bring the kernels to the highest gluten class. 

The 1000-kernel weight (TKW) of the Khorezmian wheat was generally 

higher than the 5-year average of 33 g in US wheat for soft red wheat (SRW) (Gwirtz et 

al. 2007) (Figure 9.6). The weight, however, differed according to the harvest year: 

kernels were significantly lighter in 2005 (34.1 ± 2.5 g) than in 2004 and 2006 

(37.4 ± 2.1 g). The TKW followed the trend of the yield; the response to the N rate can 

be described by a quadratic function. The TKW was significantly higher for N-160 

(38.9 ± 1.6 g) than for the other N rates. The lowest TKW was found for N-0 

(33.3 ± 2.6 g).  

The fertilizer management also had a significant effect on TKW (data from the 
15N experiment). The kernels of treatment DUUu were 2 g heavier (39.3 ± 1.9 g) than 

those of the other fertilizer combinations (on average 37.5 g). Treatment 160-DUUu had 

the heaviest kernels (42.9 g). 
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Figure 9.6 1000-kernel weight of winter wheat (g) for the respective N rates   
(kg ha-1) of the rotation experiment (2003/04), minus-1 experiments and 
response experiments (2004/05), and 15N experiment (2005/06).  

  Symbols: Mean (black) and median (white) values for the respective N 
rate. Error bars represent 1 SE of the mean.  

  Line: Regression line for average yields for the respective N rate. The 
dotted lines indicate the 5-year average of US wheat for hard red wheat 
(HRW) and soft red wheat (SRW) (Gwirtz et al. 2007).  

 

9.4 Discussion of wheat quality 

Similar to the yield increase, the protein content in the wheat kernels also increased with 

higher N rates. However, the increase was more linear for kernel protein than for yield, 

which followed a quadratic function. Although the curves of the regression were rather 

flat, a quadratic relationship between yield and protein content could be discerned. 

Maximum yield of the variety Kupava R2 therefore did not correspond to the highest 

protein content, but decreased again for maximum protein content as a result of higher 

N amendments. The highest protein level of 15.2 % was achieved by applying 

300 kg N ha-1. At this N rate, however, yields decreased from the maximum of 3.6 to 

approximately 2.7 t ha-1. The protein content at the highest yield level (N rate of 

181 kg ha-1) in return was only around 12.2 %, just reaching the medium protein level 

(Raiffeisen 2008). A similar relationship was previously reported (Johnson et al. 1973), 

where the potential for protein and yield increase for the wheat variety Lancer was 

quadratic as opposed to the variety Comanche that had a more linear potential. Also, 
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Selles and Zentner (2001) attributed the negative correlation between kernel protein and 

yield to water stress rather than N availability for the crop. Many researchers, therefore, 

stress the need to breed wheat varieties with high quality and yield potential so that the 

farmers have a higher guarantee of high yields at acceptable quality levels (e.g., Johnson 

et al. 1973, Cox et al. 1985, Calderini et al. 1995, Ortiz-Monasterio et al. 1997, Fowler 

2003). 

Several post-harvest criteria for N-deficiency assessment via protein-yield 

relationships have been developed and discussed (Terman 1979, Goos et al. 1982, 

Glenn et al. 1985, Fowler et al. 1990, Engel et al. 1999, Fowler 2003). Graphical 

methods such as the Cate-Nelson-Split (Black 1993) by Cate and Nelson (1971) and 

statistical methods using an interaction chi-square (Keisling and Mullinix 1979) or the 

corrected sum of squares (Cate and Nelson 1971) have been applied to identify critical 

protein concentrations as a predictor for sufficient N fertilization for high wheat yields. 

According to Fowler (2003), however, these critical concentrations strongly depend on 

location and genotype. Values for soft wheat varieties were lower, ranging from 8.8 % 

(Glenn et al. 1985) to 12.0 % (Goos et al. 1982), whereas for hard wheat varieties higher 

protein concentrations of 12.8 % (Selles and Zentner 2001) to around 13 % (Fowler and 

Brydon 1989) indicated the boundary of N sufficiency and -insufficiency.  

In this study, the Cate-Nelson method was also applied to the protein and yield 

data using the protein value of 11.5 % as the critical level (see Figure 9.4). However, 

below this value the data were extremely scattered in the vertical direction making it 

difficult to conclude that N nutrition was limiting for wheat quality and yield. Goos et 

al. (1982) noted that in the absence of a linear relationship between yield and protein 

level, the latter is of limited use for post-harvest assessment of N need. This is due to 

the fact that for flat yield response curves as in this study, large steps in kernel protein 

concentrations implied only small changes in yield, which made meaningful 

quantitative predictions of N rates more difficult (Fowler 2003). 

Gluten did not significantly change with increasing N rates but differed 

between the years. Significant year and location effects on yield, protein and gluten 

levels have also been observed by others (e.g., Fowler et al. 1989, Lloveras et al. 2001, 

Alaru et al. 2003, Farrer et al. 2006). Generally, these effects were considered of equal, 

if not of more importance than the influence of the wheat genotypes (Miezan et al. 
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1977, Terman 1979, Fowler et al. 1990, Fowler 2003). Especially planting dates, 

seasonal temperatures, irrigation timing and related water stress during spring up to 

anthesis are known to influence the tiller density, N accumulation, seed size and wheat 

quality (Fowler et al. 1990, Farrer et al. 2006). 

The 1000-kernel weight show a similar (slight) response to N rates as wheat 

yields. This agrees with findings by Alaru et al. (2003). However, Frederick et al. 

(2001) found 1000-kernel weight to be only slightly correlated with overall yield. They 

attributed this to the selection performance of breeders, who select for higher kernel 

number per square meter rather than for heavier kernels. Also, Eck (1988) and 

Badaruddin et al. (1999) found insignificant differences in seed weight among N 

treatments. The 1000-kernel weight was more affected by warm dry weather conditions 

and water stress during grain filling (Eck 1988, Frederick et al. 2001). Water-stress 

induced premature ripening had the effect of decreasing seed numbers and kernel 

weights, thus reducing yields (Eck 1988).  

Overall, officially recommended N-fertilizer rates of 150-180 kg N ha-1 

(MAWR 2000) were found to be acceptable for wheat production. However, the protein 

and gluten data show that Khorezmian winter wheat can meet the criteria only of a 

satisfactory to good wheat filler and flour thickener of low to medium quality (Oliver 

1988, Abugalieva et al. 2003b, Raiffeisen 2008). There is thus much room for 

improvement, in particular by increasing N use efficiencies through more judicious 

application strategies (sections 8.3.3 and 8.3.4). The present results show that those 

treatments receiving an additional N rate at the heading stage yielded highest protein 

content in the kernels of the local variety. Late applications of N thus should be 

included as an option to increase N concentrations in the wheat kernels to improve their 

quality. Indeed, supplemental fertilization at this development stage is a common 

management strategy to raise protein levels in specific environments (e.g., Fowler and 

Brydon 1989, Ottman et al. 2000, Woolfolk et al. 2002, IFA 2006).  

As long as Khorezmian farmers are not adequately paid according to protein 

yield (see section 2.1.2), it is unlikely that under present conditions they will apply 

higher N rates at extra cost to produce maximum protein. Without reimbursement for 

the additional costs for protein production, farmers only produce maximum yields at 

lowest costs. However, in view of the currently worldwide escalating food prices, the 
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shortage in wheat production and the necessity for Uzbekistan to import better quality 

flour to mix with the domestically produced wheat in order to upgrade the baking 

quality (Rudenko 2008). Any progress in wheat production and kernel quality would 

alleviate the present bottlenecks.  
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10 CROPSYST – MODELING  

 

10.1 Model parameterizationand calibration 

The model CropSyst was parameterized using data from the observed 15N raw cotton 

yield in 2005 and from the response experiments in 2004 (Appendix 15.24).  Soil 

properties such as texture, and total and available N content (0-1 m) were determined in 

February 2005 (Appendix 15.16, Appendix 15.17, Appendix 15.18, as in section 6). Soil 

hydraulic properties were derived using an inverse modeling procedure, in which soil 

moisture and pressure head dynamics observed in 2005 in the same field were used for 

optimization (Forkutsa et al. 2009a). Soil pH and CEC were set as observed values. For 

initiating state variables, results of soil samples taken at the 15N experiment in February 

2005 were used (Appendix 15.16). The soil textural analysis in November 2005 

identified this soil as a loam with 43-50 % sand and 14-18 % clay with an average 

topsoil (0-30 cm) bulk density of 1.51 g cm-3 (Appendix 15.16). In the soil profile, two 

bulk density peaks were observed at 30-40 cm (1.64 g cm-3) and 115 cm depth 

(1.71 g cm-3). Water content at the onset of the simulation run (January 1, 2005) was 

assumed to be at field capacity or at or close to saturation, if in the range of groundwater 

(soil layer 3-5).  

The optimum growing temperature for cotton was calibrated to 25˚C. The base 

and cutoff temperature was set to 8˚C and 20˚C, respectively. Given the high vapor 

pressure deficit prevailing in Khorezm, the above-ground biomass transpiration 

coefficient and the unstressed light to above-ground biomass conversion (radiation use 

efficiency) had to be adjusted above values observed for temperate regions. With a 

transpiration coefficient of 8.1 kPa kg m-3, simulated above-ground biomass production 

and yield under fully fertilized conditions matched observations (Sommer et al. 2008b). 

The radiation-use efficiency was adjusted to 2.0 g MJ-1. Maximum expected leaf area 

index at the end of the vegetative growth (LAI) and the leaf area per unit of leaf 

biomass (specific leaf area, SLA) were measured at 3 m2 m-2 and 13 m2 kg-1, 

respectively. According to the phenological observations (Appendix 15.4), the 

senescence of the new green leaf area index (leaf duration) of the plant was reached 

after 950 growing-degree days (GDD). Moreover, based on observations, the crop 

stages emergence, flowering, beginning of grain filling, end of vegetative growth (peak 
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LAI), and physiological maturity were adjusted to 110, 1165, 1180, 1200 and 1630 

GDD, respectively. Cotton rooting depth was at its maximum with 90 cm after a thermal 

time of 1040 GDD following observations made by Forkutsa (2006). The model 

assumes that at 0-5 cm depth there are no roots. This fitted well the conditions in 

Khorezm, where high salinity levels may occur in the soil layers close to the surface 

(Forkutsa et al. 2009b).  

The evapotranspiration crop coefficient at full canopy of 1.1 and the soil 

solution osmotic potential for 50 % yield reduction of -623.4 kPa was derived from 

FAO standards (Abrol et al. 1988, Allen et al. 1998). The extinction coefficient for solar 

radiation was calibrated to 0.9 following results of Ko et al. (2005). Observed irrigation 

dates and amounts served as input data. Three leaching events took place in early spring 

2005. Dates and quantities applied were not recorded and, hence, they were estimated 

based on studies by Awan and Tischbein (personal communications).  

The harvest indices derived from the 15N experiment were complemented with 

those from the response experiment for the higher N rates (200 and 250 kg N ha-1). The 

average N concentration in leaves, stems and squares at maturity of 0.012 kg N kg dry 

matter-1 determined for treatments T8-T11 (N rate of 120 kg ha-1) was used as chaff and 

stubble concentration. The average root N concentration on these treatments was 

analyzed to be 0.007 kg N kg dry matter-1. 
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Table 10.1 Soil hydraulic properties according to Campbell  

Layer Depth 
Air entry 
potential 

Campbell b 
Saturated water 

content 

Saturated 
hydraulic 

conductivity 

 cm J kg-1  cm cm-1 cm d-1 
1 0-5 -3.67 6.164 0.453 126 
2 5-30 -3.67 6.164 0.453 126 
3 30-50 -1.65 5.560 0.453 126 
4 50-100 -2.15 4.800 0.453 112 
5 100-200 -2.15 4.800 0.453 112 

 

 

Table 10.2 Soil profile data (water content, nitrate, ammonium, soil organic matter and 
salinity) for five horizons for model initialization.  

Layer Depth Water content NO3-N NH4-N SOM Salinity 

 cm m³ m-³ mg kg-1 mg kg-1 % dS m-1 
1 0-5 0.262* 2.6 0.25 0.94 7.0 
2 5-30 0.262* 11.7 1.24 0.94 7.0 
3 30-50 0.260* 8.1 0.97 0.80 5.0 
4 50-100 0.305** 16.1 2.37 0.66 3.0 
5 100-200 0.395** 19.9 4.46 0.35 2.2 

*   field capacity 
**  influenced by groundwater and, hence, close to saturation 
 

 

Table 10.3 Observed leaching and irrigation events and amounts (mm) used for 
simulations.  

Day of year Date Water application (mm) Event 

74 15.03.05 70* leaching 
91 01.04.05 70* leaching 

105 15.04.05 70* leaching 
146 26.05.05 41 irrigation 
147 27.05.05 18 irrigation 
177 25.06.05 59 irrigation 
197 12.07.05 62 irrigation 
209 28.07.05 28 irrigation 
210 29.07.05 20 irrigation 
227 15.08.05 27 irrigation 
228 16.08.05 25 irrigation 

Total  280  
* estimates 
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Table 10.4 Model settings and parameterization according to Sommer et al. (2008b), 
own observations and calibration (in bold); C = calibrated parameters 
(literature source in parenthesis, if applicable), D = model default, 
O = observed data 

Parameter Value Source 
Life cycle and land use Annual row crop 
Photosynthetic pathway C3 
Harvested biomass Seed (= raw cotton) 
Aboveground biomass-transpiration coefficient [kg m-2 kPa m-1] 8.1 C 
Radiation-use efficiency (= light to aboveground biomass 
conversion) [g MJ-1] 

2.0 C 

Optimum mean daily temperature for growth 25 C 
Initial green leaf area index [m2 m-2] 0.011 D 
Maximum LAI  3 O 
Fraction of maximum LAI at physiological maturity 0.55 O 
Specific leaf area [m2 kg-1]  13.0 O 
Leaf/stem partition coefficient  2.6 C 
Leaf duration [°C day]  950 O 
Extinction coefficient for solar radiation 0.9 C (Ko et al. 2005) 

ET crop coefficient at full canopy 1.1 C (Allen et al. 1998) 
Soil solution osmotic potential for 50% yield reduction [kPa] -623.4 C (Abrol et al. 1988) 

Salinity tolerance exponent (Van-Genuchten) 4 C 

Accumulated growing degree-days from   
 - seeding to emergence [◦C day] 110 O 
 - seeding to peak LAI (end of vegetative growth) [◦C day] 1200 O 
 - seeding to flowering [◦C day] 1165 O 
 - seeding to beginning grain filling [◦C day] 1180 C 
 - seeding to maturity [◦C day] 1630 C 
maximum rooting depth [◦C day] 1040 C 
Maximum rooting depth [m] 0.9 O 
Curvature of root density distribution 0.5 C 
Maximum water uptake [mm day-1] 14 C 
Base temperature [°C] 8 C 
Cutoff temperature [°C] 20 C 
Stubble area covered to mass ratio [m² kg-1] 4 C 
Surface residue area covered to mass ratio (flattened) [m² kg-1] 15 C 
Sensitivity to water and N stress   
 - during flowering 0.7 C 
 - during grain filling 0.5 C 
Unstressed harvest index (see Table 5.3) T1-T15 O 
Harvest index for T16-19 (Scenario 200 kg N ha-1)2) 0.401 O 
Harvest index for T16-19 (Scenario 250 kg N ha-1)2) 0.298 O 
Maximum N concentration in chaff and stubble [kg N kg DM-1] 0.012 O 
Standard root N concentration [kg N kg DM-1] 0.007 O 
Maximum uptake during rapid linear growth [kg ha-1 day-1] 5.00 C - D 
N demand adjustment 0.70 C 
Residual N not available for uptake [ppm] 1.00 C - D 
Soil N concentration at which N uptake starts decreasing [ppm] 5.00 C - D 
Plant available water at which N uptake starts decreasing 0.5 C - D 
Mineralization rate adjustment 0.17 C 
Nitrification rate adjustment 2.00 C 
Denitrification rate adjustment 2.00 C  
Maximum transformation depth 0.5 C - D 

2)  Harvest index was derived from the response experiment  
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The yield response to N fertilizer was further calibrated for the treatments by adjusting 

the crop N demand constant and the mineralization, nitrification and denitrification rate 

constant of the single soil organic matter (SOM) pool model. Without detailed 

information about the SOM pool, its components and decomposition dynamics, the 

mineralization rates could only be approximated. It was assumed that SOM would not 

decrease substantially during one vegetation period, which seems valid for soils in arid 

regions that have been under some type of cultivation for several decades. This was 

achieved with a mineralization rate of 0.17 that resulted in a decrease in SOM of less 

than 0.01 % in one year. The nitrification and denitrification rates were increased from 

0.8 and 0.2 to 2.0, which is the upper model default range, in order to simulate gaseous 

losses close to findings of Scheer et al. (2008b). 

The average plant N uptake measured for the N rate of 120 kg ha-1 (T8-T11) 

was used as reference for the predicted N uptake. To meet the observed N uptake, the 

maximum uptake rate during linear growth was set to 5 kg ha-1 day-1, which is on the 

one hand equal to the model default value and secondly similar to findings of Boquet 

and Breitenbeck (2000). The crop N demand constant was decreased from 1.0 to 0.7.  

 

10.1.1 Observed vs. predicted cotton yield 

In comparison to measured raw cotton yields, a yield response to lower N rates was 

simulated. The yield for the rate of 0 kg N ha-1 was calculated as 1.1 t ha-1, while the 

observed yield was 4.1 t ha-1. For the other N rates, the model predicted the observed 

yield well (Figure 10.1).  
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Figure 10.1 Observed (symbols) and predicted (lines) raw cotton yield (kg ha-1) of the 
15N experiment according to N rates (kg ha-1) in 2005.  

 

Using the measured harvest indices for the different treatments and the 

different N rates, the model best predicted the yield changes in treatments DUUf and 

DAA. The observed yields in treatment DUUr with 160 kg N ha-1 on the other hand 

were higher (0.4 t ha-1) than the predicted. This changed when a higher harvest index 

than the observed average of 0.425 ± 0.08 was used, i.e., the mean of N-120 (harvest 

index = 0.455 ± 0.04). The sensitivity of the model to different harvest indices could not 

be eliminated as yields are simulated based on the harvest index. The harvest index is 

reduced only in response to different stresses such as water, salinity, temperature or N 

supply, none of which seem to have occurred for the model. The effect that cotton 

plants develop more green biomass (see section) and less cotton bolls as response to 

higher N rates cannot (yet) be simulated in CropSyst, and requires the manual 

adjustment of the harvest indices. 
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Figure 10.2 Observed and predicted raw cotton yield (kg ha-1) of the 15N experiment 
in 2005.  

 

 

The RMSE for the complete observed and predicted yields of all treatments 

was 1.08 Mg kg-1. The model prediction was insufficient especially for the low-N 

treatments NPK-0 and N-0 (Figure 10.2). Some deviation was observed for treatments 

N-200 and N-250 from the response experiment in 2004. The RMSE for T3 through 

T15, i.e., excluding treatments NPK-0 and N-0, was four times lower with 0.3 Mg kg-1. 

The weak prediction of the low N fertilizer rates must be attributed partly to the fact that 

the current version of the model does not capture groundwater N (section 10.2.2 and 

10.3). 

 

10.2 Simulations 

10.2.1 Water balance 

For the period of cotton growth, the FAO-56 potential evapotranspiration was 714 mm 

(Table 10.5). Simulated actual evapotranspiration fluctuated around 633 mm. The 

amount of water actually transpired by cotton was 230 mm lower. Potential and actual 

evapotranspiration (Figure 10.3) diverged particularly in the first month after seeding 

(May), and during mid June, due to low water availability in the soil and subsequent 

RMSE (all) = 1.08 Mg kg-1 
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water stress until the first irrigation event. Treatment DUUf (farmers’ practice) always 

shows higher actual evapotranspiration than the other treatments. 

 

Table 10.5 Simulated potential and actual evapotranspiration (mm) and soil water 
drainage amount for increasing N fertilizer rates (kg ha-1) for two fertilizer 
treatments (DUUr and DUUf) for the cropping season 2005.  
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 kg ha-1 - m mm    

1 0 NPK-0 
1.3 27 280 714 

587 
16 

250 
DUUr 640 

18 DUUf 641 
* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
   DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 

 

Furthermore, the actual evapotranspiration (and crop transpiration) during the 

vegetation season estimated by the model was higher than the total irrigation water 

applied (Table 10.5). The difference between the simulated evapotranspiration and the 

irrigated water amount ranged from 283 mm for non-fertilized treatments to 335 mm for 

treatments receiving 250 kg N ha-1.  

The high evaporative demand and comparatively low irrigation amounts are 

according to Forkutsa (2006) responsible for a strong upward flow of groundwater 

(capillary rise); this was confirmed by the simulations (Figure 10.4). 
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Figure 10.3 Simulated actual and potential evapotranspiration (mm day-1), above-
ground biomass (green line, kg ha-1) and irrigation (blue line) for 
treatment 120-DUUf in 2005.  
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Figure 10.4 Simulated water content in 0-2 m depth during cotton vegetation period 
for treatment 120-DUUf in 2005.  

  Blue colors indicate high water content (0.43-0.45 m³ m-³), red colors 
low (0.14-0.19 m³ m-³), and yellow colors intermediate water content 
(0.30-0.34 m³ m-³).  

  Blue arrows indicate irrigation times.  
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10.2.2 Nitrogen dynamics for different nitrogen-fertilizer amounts and 

treatments 

The RMSE for the observed vs. predicted N uptake was 9.2 kg ha-1. The simulated N 

uptake into biomass increased with higher N fertilizer amounts to a maximum of 

212 kg N ha-1 for a fertilizer rate of 250 kg N ha-1 in the DUUf treatment (Table 10.6). 

For all treatments up to the N fertilizer rate of 160 kg ha-1, the uptake into the plant 

biomass was higher than the fertilizer amount applied. Only for N rates of 200 and 

250 kg ha-1 was the N uptake covered by the applied fertilizer (Figure 10.5). This 

coincides with findings by Rochester et al. (1997) who found high-yielding cotton to 

take up around 200 kg N ha-1.  

The simulated N uptake for plants in treatment DAA was the same as in the 

treatments DUUr and UUU, although in the experiment the N uptake rates were always 

lower for treatment DAA than for the other treatments.  
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Table 10.6 Simulated raw cotton yield (kg ha-1), plant N uptake into biomass   (kg ha-1) 
and N losses (kg ha-1) for increasing N fertilizer rates (kg ha-1) and different 
fertilizer treatments.  
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 kg ha-1 - Mg ha-1 kg ha-1 

1 0 NPK-0 1.08 49 30 29 2 0 10 
2 0 N-0 1.08 49 30 29 2 0 10 
3 40 DAP 3.39 85 30 29 4 1 12 
4 

80 

DUUr 4.40 122 30 29 6 1 12 
5 UUU 4.34 122 30 29 6 1 12 
6 DUUf 4.52 121 30 29 6 1 12 
7 DAA 4.47 122 30 29 6 1 12 
8 

120 

DUUr 4.42 158 30 29 10 1 12 
9 UUU 4.41 158 30 29 10 1 12 

10 DUUf 4.81 157 30 29 10 1 12 
11 DAA 4.78 158 30 29 9 1 12 
12 

160 

DUUr 4.36 193 30 29 14 2 12 
13 UUU 4.12 193 30 29 14 2 12 
14 DUUf 3.97 192 30 29 15 2 12 
15 DAA 4.16 194 30 29 13 1 12 
20 

200 

DUUr 4.13 209 30 32 20 2 12 
21 UUU 4.13 209 30 32 20 2 12 
22 DUUf 4.22 214 30 31 21 2 12 
23 DAA 4.13 209 30 32 19 2 12 
16 

250 

DUUr 3.11 211 30 33 28 3 12 
17 UUU 3.11 211 30 33 28 3 12 
18 DUUf 3.14 214 30 33 29 3 12 
19 DAA 3.11 211 30 33 27 2 12 

*  DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
   UUU = 3 splits at the recommended plant growth stages, using urea, urea, and urea fertilizer 
   DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 
   DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate 
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Figure 10.5 Difference between actual rate of N fertilizer applied and simulated 
average N uptake by cotton biomass (kg N ha-1).  

 

Predicted N leaching losses from below the rooting zone (90 cm) were low 

(10-12 kg ha-1). This is in line with the generally low irrigation amount and a 

dominating upward movement of water flow during the vegetation period (Figure 10.4). 

However, as the quantification of actual water volumes draining below the rooting zone 

was not in the scope of this study, a follow-up study should be conducted to confirm 

these data in the field. 

The average computed N losses via denitrification and volatilization (total 

gaseous losses) for all fertilizer rates was 9 ± 1 % of the N amount applied. With 

increasing N amounts, the absolute denitrified N increased from 7 to 11 % (Table 10.6). 

The denitrification losses during the vegetation period followed the pattern of 

fertilization and irrigation events (Figure 10.6). Losses were highest where N 

application was followed by irrigation, i.e., at the 2-4 leaves (DUUf), budding (DUUr) 

and flowering (DUUr and DUUf) stage. This was due to the fact that higher soil 

moisture regimes directly after fertilization boosted the release of NxOx. Although not 

fertilized at the budding stage, treatment DUUf still showed substantial denitrification 

losses. Overall, the simulated gaseous losses of all fertilizer treatments did not 

significantly differ, nor were they in the magnitude as measured by Scheer et al. (2008) 

(section 2.3.1). 



CropSyst modeling 

 172  

Increasing the mineralization rate in the model for the treatment where no N fertilizer 

was applied from 0.170 to 0.614 without changing any other parameter markedly 

improved the yield prediction for this treatment (observed 4.1 t ha-1, simulatednew 4.0 

t ha-1), as the total mineralized N during the vegetation season increased from 30 to 

69 kg N ha-1 and the N uptake increased from 49 to 102 kg ha-1. At the same time, 

however, the SOM decreased during the simulated period from 0.94 to 0.90 % in the 0-

10 cm horizon, and such sever decreases of SOM of intensively cropped fields with 

high inputs and biomass production during one year are unlikely.  

If fertilization was omitted (N[PK]-0), simulated soil NO3-N and NH4-N 

continuously decreased during the vegetation period (Figure 10.7). For the other 

treatments, the dynamics were analogous to the respective fertilization scheme but 

decreased after the last fertilization to the same level as treatment NPK-0. In 

comparison to the observed NO3-N content in the soil profile down to 2 m (80 kg ha-1) 

(section 6), however, the simulated content (around 30 kg ha-1) was rather low. 

Simulated NH4-N content in the soil (0-2 m) were closer to the observed: 

Except for the fertilizer inputs, the simulated NH4-N content decreased slightly during 

the vegetation period by around 1 kg ha-1. The final observed amount and the simulated 

amounts differed by only 2 kg (7 kg NH4-N ha-1 vs. 5 kg NH4-N ha-1).  
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Figure 10.6 Simulated denitrification losses (kg N ha-1) during the veg etation period 
for two treatments DUUr (T12) and DUUf (T14) (N rate: 160 kg ha-1). 
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Figure 10.7 Observed and predicted soil NO3-N dynamics (kg ha-1) for the top 0-2 m 
for 2005 for three treatments (NPK-0; 160-DUUr and 160-DUUf).  
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10.2.3 Increasing yields while reducing nitrogen losses 

Simulations revealed that crop production in treatment DUUf was not N-limited when 

more than 80 kg N ha-1 was applied. Hence, when maintaining the total amount of N-

fertilizer (120 or 250 kg N ha-1), changing the timing (or total number of split 

applications) did not improve yields. Furthermore, N losses in this treatment were only 

reduced by a change in irrigation regime (Table 4.18, Table 10.7).  

For all four automatic irrigation regime scenarios, the N uptake into plants was 

similar to the base simulation treatment DUUf, and did not exceed the N fertilizer 

application rate (Table 10.7). Six automatic irrigation events of 40 mm every two weeks 

starting 24 days after sowing and ending 94 days after sowing (auto-10.1 and auto-18.1) 

produced similar yields (4.8 and 3.1 t ha-1), gaseous losses (10 and 32 kg N ha-1) and 

leaching losses (11 kg N ha-1) as compared to the base simulations for treatment DUUf 

(see section 4.9.1). Irrigating already 14 days after seeding (auto-10.3 and auto-18.3) 

reduced water stress (Figure 10.9) and decreased N-leaching losses slightly more to 8 

kg ha-1 irrespective of N quantities applied.  

 

Table 10.7 Simulated N dynamics for treatment DUUf for observed and simulated 
(automatically every 14 days) irrigation events.  
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 kg ha-1 - mm mm Mg ha-1 kg ha-1 

10 

120 DUUf 

280 640 4.81 157 10 12 1 30 29 
auto-10.1 240 640 4.83 158 10 11 1 30 29 
auto-10.2 180 640 4.82 158 10 9 1 30 29 
auto-10.3 180 640 4.83 152 10 8 1 29 29 
auto-10.4 150 640 4.80 159 9 9 1 29 29 

18 

250 DUUf 

280 641 3.14 214 29 12 3 30 33 
auto-18.1 240 640 3.14 214 32 11 3 30 33 
auto-18.2 180 640 3.13 214 30 9 3 30 32 
auto-18.3 180 640 3.14 214 29 8 3 30 31 

auto-18.4 150 640 3.12 213 29 9 3 29 32 
* DUUf = 3 splits, farmers’ practice, using DAP, urea, and urea fertilizer 
** simulated yields for actual harvest indices 
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The total actual evapotranspiration was the same at the end of the cropping season for 

all of the base treatments 10 and 18 and for the simulations with 640 mm. However, the 

irrigation regime of scenario auto-18.1, auto-18.2 and auto-18.3 increased the actual 

evapotranspiration in June as compared to the base scenario T18 (Figure 10.8, Figure 

10.9). Also, scenario auto-18.4 consisted of one irrigation event less (the first observed 

irrigation was excluded) than the base simulation, which decreased the actual 

evapotranspiration in May, cotton growth was not affected (Figure 10.10, Table 10.7). 

This in line with common irrigation scheduling literature reporting that cotton is less 

sensitive to water stress at the early growth stage (Roth et al. 2004).  
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Figure 10.8 Potential and actual evapotranspiration (mm day-1) and applied irrigation 
amounts (total of 280 mm) and frequency (mm) in 2005 for treatment 
250-DUUf (T18).  
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Figure 10.9 Potential and actual evapotranspiration (mm day-1) and simulated 
irrigation amounts (total of 180 mm) and frequency (mm) in 2005 for 
treatment 250-DUUf (auto-18.3).  
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Figure 10.10 Potential and actual evapotranspiration (mm day-1) and simulated 
irrigation amounts (total of 150 mm) and frequency (mm) in 2005 for 
treatment 250-DUUf (auto-18.4).  
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10.3 Discussion of crop model application and limitations 

The cotton generic routine for the CropSyst model was developed and verified using 

independent field data from the study area of the 15N experiments. The model was 

successfully parameterized. Validating the performance using the data from the 15N 

experiments, CropSyst was able to reproduce the yields with high accuracy, except for 

those of the non-fertilized and low-fertilized treatments. This discrepancy is due to the 

lower N amounts available for uptake as the modeled crop growth for these treatments 

was influenced only by the initial soil N and SOM content, the mineralized N during the 

vegetation season, and the little amount of N fertilizer applied. Results in section 6.3 

allow the assumption that N contributions from irrigation and groundwater influence the 

N balance and enhance N uptake. However, no NO3-N routine for irrigation and 

groundwater had been incorporated into the model yet that would allow simulations of 

the N contribution via (sub-surface) water supply. Increasing the mineralization rate 

released an additional 39 kg N, which proved sufficient N for uptake to match the 

observed yields for the non-fertilized treatments. This simulated amount roughly 

corresponds to the estimations of a groundwater and irrigation water contribution of 5-

61 kg N ha-1 (section 6.3.3). However, a higher mineralization rate resulted in a 

substantial reduction of SOM during one year, which is unlikely to occur in intensively 

cropped fields.  

Therefore, the mineralization and nitrification rates were adjusted 

conservatively, as neither rates had been measured in arid environments. Thus, the 

computed dynamics of soil NO3-N and NH4-N content have to be interpreted with care, 

as mineralization, nitrification and denitrification processes substantially alter the soil N 

status. More detailed within-season measurements (Maas 1993), as was done for 

instance by Forkutsa et al. (2009b) for the salinity dynamics, and further calibration is 

necessary to improve the accuracy of the estimated parameters and confirm the 

simulations.  

The magnitude of denitrification losses predicted by Scheer et al. (2008c) for 

the 15N experimental field could not be reproduced. Even the treatments receiving 

higher irrigation water and N-fertilizer amounts that matched the measurement 

conditions of Scheer et al. (2008b, 2008c) did not produce comparable N2O emissions.  
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On the other hand, the ability of the model to handle denitrification processes  

is confined to simplified computations (C. Stockle, personal communications), and 

supplemental N input from the groundwater could not be accounted for at the time of 

the simulations. Therefore, the output can be only taken as a rough estimation of 

emission development under certain management systems or soil conditions, and the 

rates of gaseous losses need to be further verified with the help of more specialized 

models such as ecosys (Grant 1995). It should be noted, however, that a precondition 

for successful and reliable simulation of gaseous losses of N is the precise description of 

the different soil organic matter pools and the mineral N dynamics. This is in progress 

(Forkutsa, forthcoming Ph.D. thesis).  

It has to be noted that CropSyst is not a specific cotton growth model such as 

GOSSYM, COTONS, Cotton2K, OZCOT, or other cotton-only models. These models 

undoubtedly allow much more detailed simulations with respect to water and N stress 

on plant phenology and development once the detailed data has been collected, i.e., 

allocation of N to plant organs, new node and boll production, and aging of leaves 

(Marani 2004). Also, the indefinite end of cotton yield formation, i.e., cotton bolls open 

over a 3-month period, can be handled by these models, which allow calculating fiber 

harvest for several picking times (Marani 2004). CropSyst in turn calculates yield based 

on the harvest index and accumulated biomass at the termination of crop growth. 

Therefore, the yield predictions derived from CropSyst would actually be equal to one 

single pick and thus less precise than specific cotton models under conditions of 

multiple (manual) cotton picks like in Uzbekistan. However, in view of the fact that 

more than 60-70 % of raw cotton is harvested at pick 1, and the observed N uptake and 

the corresponding yields were reproduced satisfactorily, the model served the basic 

purpose.  

Recognizing the above-mentioned limitation, the results on the whole show 

that the presently developed and calibrated model can accurately estimate cotton growth 

response to N amendments, despite the uncertainty in the seasonal N dynamics and 

other factors influencing growth such as supplemental N fertilization. Simulation results 

indicate changes in crop growth and yield and the soil-N balance for different 

management practices. Potential losses and the scope for improvement of fertilizer 

management were identified. 
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11 FINANCIAL ASSESSMENT  

 

11.1 Cotton 

The results of the partial budget analysis comprise the total costs that vary (TCV), the 

net benefit and the rate of return for the 15N cotton experiment of 2005. The ANOVA 

for the TCV was significant only for the N rate (p = 0.00) and the rate of return 

(p = 0.08), but not for the net benefit (p = 0.95). The interactions (N rate x fertilizer) 

were not significant (TCV: p = 0.88; rate of return: p = 0.87; net benefit: p = 0.83). 

 

Table 11.1 Cost analyses of the fertilizer treatments for cotton. SE is the calculated 
standard error.  

Treat N rate Fertilizer 
Total costs that 

vary 
Net benefit Rate of return 

Mean SE Mean SE Mean SE 

 kg ha-1  --- soum ha-1 

1 0 NPK-0 155,366 12,190 1,016,091 69,535 6.6 0.1 
2 0 N-0 307,863 15,956 970,364 104,704 3.1 0.2 
3 40 DAP 335,070 8,666 901,142 64,130 2.7 0.1 
4 

80 

DUUr 341,015 9,535 864,072 63,992 2.5 0.1 
5 UUU 332,034 17,982 862,611 127,095 2.6 0.2 
6 DUUf 357,370 10,425 1,017,629 73,791 2.8 0.1 
7 DAA 346,853 11,943 936,806 89,176 2.7 0.2 
8 

120 

DUUr 368,937 5,823 953,518 47,480 2.6 0.1 
9 UUU 367,397 13,864 977,458 100,948 2.6 0.2 

10 DUUf 386,302 5,043 1,069,332 29,756 2.8 0.0 
11 DAA 372,657 9,574 998,579 68,423 2.7 0.1 
12 

160 

DUUr 400,762 22,402 991,421 159,943 2.4 0.3 
13 UUU 377,894 9,801 926,710 88,479 2.4 0.2 
14 DUUf 381,755 18,122 881,522 120,162 2.3 0.2 
15 DAA 384,789 18,364 885,854 128,183 2.3 0.2 

* DUUr = 3 splits at the recommended plant growth stages, using DAP, urea, and urea fertilizer 
  UUU = 3 splits at the recommended plant growth stages, using urea, urea,and urea fertilizer 
  DUUf = 3 splits according to farmers’ practice, using DAP, urea, and urea fertilizer 
  DAA = 3 splits at the recommended plant growth stages, using DAP, ammonium nitrate, and 

ammonium nitrate 
 

The TCV ranged from a minimum of 155,366 (NPK-0) to maximal  

375,142 UZS ha-1 (160-DUUf) (Table 11.1). The TCV increased with increasing N 

application, and followed the treatment order: treatment NPK-0 < N-0, DAP < DUUr, 

UUU, DUUf, DAA. The treatment of the N rate of 0 kg ha-1 had significantly lower 

TCV than any of the other treatments. Amongst the fertilizer treatments, the UUU 

treatment was the cheapest for any N rate, whereas the DUUf treatment was always the 
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most expensive for N-80 and N-120. Only for N-160 was treatment DUUr more 

expensive. 

The net benefit ranged from 862,611 UZS ha-1 (80-UUU) to 

1,069,332 UZS ha-1 (120-DUUf), but differences were not statistically significant. The 

net benefit also does not show any particular differences for any of the N rates (Table 

11.1). For the respective picking times, the raw cotton benefit paid at the cotton 

ginneries differed. Around 86 % of the total cotton benefit was obtained from the first 

and second pick (Table 11.2). Even for lower output prices for the second pick (data not 

shown), the return from the raw cotton alone would have been more than 70 % of the 

total cotton benefit. The third pick, on the other hand, brought only 14 % of the total 

cotton benefit. A fourth pick, therefore, is often not beneficial.  

 

Table 11.2 Proportion of cotton benefit (%) for the respective picking times in relation 
to total cotton benefit.  

Treat N rate Fertilizer 

First pick Second pick Third pick Total 
% of 
total 
yield 

% of 
cotton 
benefit 

% of 
total 
yield 

% of 
cotton 
benefit 

% of 
total 
yield 

% of 
cotton 
benefit 

Yield 
Cotton 
benefit 

 kg ha-1  sub-class 1-1* sub-class 1-2 sub-class 3-1 t ha-1 soum ha-1 

1 0 NPK-0 47 49 36 36 17 15 4.0 1141173 
2 0 N-0 61 63 27 28 11 9 4.3 1248736 
3 40 DAP 59 60 29 29 13 11 4.2 1211446 
4 

80 

DUUr 42 44 37 38 21 18 4.1 1175915 
5 UUU 45 48 34 35 20 17 4.1 1167697 
6 DUUf 54 56 34 34 12 10 4.6 1341832 
7 DAA 57 59 30 30 14 11 4.3 1253689 
8 

120 

DUUr 49 51 36 37 15 13 4.5 1288293 
9 UUU 40 42 40 41 20 17 4.6 1311255 

10 DUUf 48 50 36 36 16 14 5.0 1423687 
11 DAA 56 58 33 33 11 9 4.6 1341525 
12 

160 

DUUr 48 50 35 36 17 14 4.7 1348971 
13 UUU 41 43 35 36 24 20 4.5 1265345 
14 DUUf 42 44 35 37 23 19 4.3 1212212 
15 DAA 46 48 34 35 20 17 4.3 1234967 

Average 49 51 34 35 17 14 4.4 1264450 
* output prices for sub-class 1-1: 299080 soum t-1; sub-class 1-2: 291320 soum t-1; sub-class 3-1: 

239360 soum t-1 (see section 4.8.5) 
 

The rate of return, i.e., the net benefit divided by the TCV, shows significant 

differences for N rates and fertilizer treatments, but not for the interactions. The rate of 

return for the N rate N-0 was significantly higher than all other N rates (Table 11.1). 
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The fertilizer treatment NPK-0 was significantly higher than the N-0, which was 

significantly higher than all other treatments. No difference was found between the 

fertilizer treatments.  

Although treatment UUU was cheapest (TCV), the net benefit was still too 

small to achieve a high rate of return, only for N-160 was it amongst the highest. 

Although treatment DUUf mostly had the highest net benefit, the TCV was too high to 

achieve a high rate of return. However, this treatment still performed best for N-80 and 

N-120.  
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Figure 11.1 Relationship between total cost that vary (Uzbek soum, UZS) and net 
benefit for cotton (Uzbek soum, UZS) for the different fertilizer 
treatments in 2005. Error bars represent 1 SE. Black symbols (and 
labels): dominating treatments (mean + SE). 

 

The dominance analysis shows that 3 treatments dominated over all other 

treatments (Figure 11.1, Table 11.3): NPK-0, 80-DUUf and 120-DUUf. Out of these, 

treatment 120-DUUf had the highest net benefit but also the highest costs, whereas 

NPK-0 was lowest, as the fertilizer costs were zero. When the standard error is included 

in the selection criterion, the treatments N-0, 120-UUU, 120-DAA and 160-DUUr show 

a better net benefit in relation to TCV than the other treatments.  
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Table 11.3 Remaining fertilizer treatments after dominance analysis in ascending order 
of total costs that vary; SE represents the standard error of the mean.  

Treat N rate Fertilizer 
Total cost 
that vary 

Net benefit 
Net benefit 

+ SE 
 kg ha-1  soum ha-1 
1 0 NPK-0 155366 1016091  

2 0 N-0 307863 970364 1075068 

6 80 DUUf 357370 1017629  
9 120 UUU 367397 977458 1078405 

11 120 DAA 372657 998579 1067001 
10 120 DUUf 386302 1069332  
12 160 DUUr 400762 991421 1151364 

 

The marginal rate of return (data not shown) for increasing the fertilizer 

amount from 80 to 120 kg N ha-1 for treatment DUUf was 179 %, i.e., for any additional 

one soum spent on fertilizer, the farmer would recover his costs and would in addition 

gain 1.79 UZS. Changing the fertilizer source from treatment DUUf to any other source 

(UUU or DAA) would not be profitable. Only changing the timing (DUUr) and the N 

rate at the same time would yield 5.67 UZS more for every Uzbek soum invested.  

 

11.2 Winter wheat 

The TCV ranged from minimum 7,063 (NPK-0) to maximum 177,734 UZS ha-1 (160-

DUUu) (Table 11.4). The values increased significantly with increasing N amounts (N-

0 > N-20 > N-80, N-120 > N160). The fertilizer treatment had a significant influence, as 

the TCV were higher for treatments DUUu and DUUr (146,616 and 146,267 UZS ha-1, 

respectively) than for treatment DAA (143,701 UZS ha-1). The variable costs for 

treatment UUU were significantly lowest (132,214 UZS ha-1).  

The N rate significantly affected net benefit, but this was not affected by the 

treatment. Benefits were significantly lower for N-0 and N-20 than for the other N rates. 

The highest (not significant) benefits were obtained for the N rate of 80 and 120 kg ha-1. 

The lowest net benefit was found for DAP with 181,787 UZS ha-1, while the highest 

was achieved with treatment 120-DUUr with 370,292 UZS ha-1.  

The rate of return was significantly different for the N rates and the fertilizer 

treatment. A significantly higher rate of return was found for the treatment NPK-0 than 

for 80-UUU and 160-DAA. The rate of return for N-160 was significantly lower than 

for N-80 and N-120. The treatment also affected the rate of return; treatment UUU had 
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higher return rates than treatment DAA. The other treatments ranged in between these 

two.  

The dominance analysis shows that four treatments dominated all other 

treatments (Table 11.4, Figure 11.2): NPK-0, 80-UUU, 80-DUUu and 120-DUUr. Out 

of these, treatment 120-DUUr had the highest net benefit but also the highest costs, 

while NPK-0 was lowest values, as the fertilizer costs were zero. Including the standard 

error in the selection criterion, also the treatments N-0, 120-UUU, 160-UUU and 160-

DUUu show better net benefits in relation to TCV than the other treatments. The 

treatment DAA was always dominated, and treatment UUU was always dominating.  

When increasing the fertilizer rate from 80 to 160 kg N ha-1, the marginal rate 

of return for treatment UUU was 45 %, and for treatment DUUu 227 %. Changing the 

fertilizer treatment from 80-UUU to 80-DUUu increased the marginal rate of return by 

40%.  

 

Table 11.4 Cost analyses of the treatments for winter wheat (n = 4). SE is the calculated 
standard error. D stands for the dominating treatments.  

Treat N rate 
Fert* Total costs that vary Net benefit Rate of return D 

 Mean SE 
p<
0.1 Mean SE 

p< 
0.1 Mean SE 

p< 
0.1  

 kg ha-1  --- soum ha-1  

1 0 NPK-0 7063 923 a 272468 35502 a 38.6 0.0 d + 
2 0 N-0 82708 1345 b 227277 51597 a 2.7 0.6 abc + 

3 20 DAP 99974 467 c 181787 17860 a 1.8 0.2 abc  
4 

80 

DUUr 121969 807 e 294633 31082 a 2.4 0.2 abc  
5 UUU 117068 1213 d 338936 46702 a 2.9 0.4 c + 
6 DUUu 123547 555 e 355155 21408 a 2.9 0.2 bc + 
7 DAA 120795 961 de 285885 36892 a 2.4 0.3 abc  
8 

120 

DUUr 140424 1024 g 370292 39376 a 2.6 0.3 abc + 
9 UUU 130550 1126 f 340138 43118 a 2.6 0.3 abc + 

10 DUUu 138569 588 g 298641 22559 a 2.2 0.2 abc  
11 DAA 136304 534 g 265432 20429 a 1.9 0.1 abc  
12 

160 

DUUr 176409 313 i 290103 11926 a 1.6 0.1 ab  
13 UUU 149025 1368 h 358162 52522 a 2.4 0.3 abc + 
14 DUUu 177734 1003 i 340669 38359 a 1.9 0.2 abc + 
15 DAA 174005 835 i 270500 32182 a 1.6 0.2 a  

* DUUr = 3 splits at recommended time, diammonium phosphate, urea, urea fertilizer 
   UUU = 3 splits at recommended time, urea, urea, urea fertilizer 
   DUUu = 4 splits, diammonium phosphate, urea, urea, urea fertilizer 
   DAA = 3 splits at recommended time, diammonium phosphate, ammonium nitrate, ammonium 

nitrate 
   Means with the same letter are not significantly different 
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Figure 11.2 Relationship between total cost that vary (Uzbek soum, UZS) and net 
benefit for cotton (Uzbek soum, UZS) for winter wheat for the different 
fertilizer treatments in 2006. Error bars represent 1 SE. Black symbols 
(and labels): dominating treatments (mean + SE).  

 

11.3 Overall financial assessment 

In this study, amongst the fertilized treatments, the N-fertilizer rate of 120 kg ha-1, 

which was sufficient to achieve high cotton yields, coincided with the highest returns. 

However, for the input/output parameters of the late 1960s, Hasanov (1970) calculated 

highest net benefit and returns for cotton fertilized at the rate of 200 kg N ha-1 in the 

Bukhara region. Based on the input/output parameters for 2004, Kienzler et al. (2006) 

estimated lower returns of more than 200 kg ha-1 in Khorezm, even though these 

coincided with the highest gross margin, mainly because these lead to a later opening of 

the cotton bolls. The returns to N investments were highest for those treatments that 

encouraged fast opening of bolls at pick 1 and pick 2 (i.e., treatments DAA and DUUf). 

This pick dependency of the return rates is a specific characteristic of the Uzbekistan 

state-ordered raw cotton production. Cotton prices at the ginneries are fixed for each 

pick, so that a late opening of cotton bolls does not coincide with the period when the 

highest cotton price is offered by the ginneries (Table 11.2). Hence, as long as the price-

reward system is closely linked to the set picking periods, the lower N-fertilizer rates 

with the earlier opening of the cotton bolls will lead to higher rates of return to 
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investments. This is in contrast to the actual physiological N demand of cotton (see 

section 7.1). 

In contrast to cotton, the economically most promising wheat treatments were 

those with higher N rates (N-160), and treatments UUU and DUUu. Together with the 

positive performance with respect to N uptake and quality (sections 7.3 and 8.3.3), the 

fertilizer treatment DUUu is thus favorable and most likely to be accepted by the 

farmers. However, as the response of both crops to the N fertilizer was so variable, most 

likely due to the subirrigation influence, recommendations based on the marginal rates 

of returns need to be re-assessed. 
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12 THE YIELD GAP 

 

The overall trend of declining yields (Figure 2.3) is not supported by the findings in this 

study. Neither does the official N response (Figure 2.4) or the potential, achievable 

yields for the recommended N rates match the experimental N response. On the 

contrary, provided that all inputs, i.e., fertilizer, water, timing, were close to optimum 

levels, high yields, even with lower inputs, could be achieved in some places in 

Khorezm. The yield response and dynamics over time that indicate a downward trend 

thus cannot be explained solely by the commonly proclaimed soil degradation and 

salinization, or decreasing soil organic matter content, etc. (e.g., Spoor 1998, ZEF 2001, 

Herrfahrdt 2004, UNEP 2005, Roll et al. 2006). Also, a reduced use of inputs such as N 

fertilizers (WARMAP and EC-IFAS 1998, FAO 2003, Müller 2006b, Djanibekov 2008) 

could not have created the downward shift of the official N response curve, as 

increasing (or decreasing) N applications would only improve (or reduce) yields along 

the lower response curve, but not lift the curve itself. Technological aspects influencing 

the cotton yields such as deteriorated equipment and irrigation systems (Conrad 2006, 

Müller 2006b), electricity cuts, harvest delays, etc., could have contributed to the 

decline in the reported cotton yields after independence, aside from the impact of soil 

degradation.  

At least equally important to the technological aspects, however, are the non-

technological aspects driving the farmers’ investments, expenditures and crop 

management, and the farmers’ confinement to the state order in cotton and wheat 

production. While the government prefers cotton as a marketable crop that brings 

foreign exchange (Rudenko 2008), winter wheat is commonly prioritized by farmers 

(Djanibekov 2005, Veldwisch 2008), as it eases the growing livelihood insecurity 

(Müller 2006b). The wheat preference is reflected particularly in a higher willingness of 

farmers to use more fertilizers for crops of higher value instead of for cotton 

(Djanibekov 2005, Djanibekov 2008). Nevertheless, a survey with 252 private 

Khorezmian farmers conducted by Djanibekov (unpublished data) in 2003 shows that 

although the average N-application rate in cotton production was 212 kg ha-1 (median 

205 kg N ha-1), the highest relative frequencies were lower, i.e., between 160 and 

200 kg ha-1 (Figure 12.1), and the rate 180 kg N ha-1 was most favored (26 % of the 
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respondents). However, another peak was visible for the fertilizer rates 240-

280 kg N ha-1, which 18 % of the respondents reported as a common application rate. In 

cotton fertilization, therefore, at least two groups of farmers can be differentiated: those 

who under-fertilize cotton in relation to the recommended N rate and to its plant-N 

demand, and those who apply more N fertilizers than recommended.  

For winter wheat (Figure 12.2), on the other hand, a farm survey with 213 

farmers revealed only one clear peak in the relative frequency at the application rate 

between 160 and 200 kg N ha-1 (average 203 kg N ha-1; median 185 kg N ha-1) 

(Kienzler et al. forthcoming). This rate, which was favored by the largest share of 

respondents (26 %), corresponded also to the recommended rate of 160-180 kg N ha-1 

and to the plant-N uptake.  
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Figure 12.1 Probability density function and Weibull probability distribution function 
for N applications in cotton (private farm surveys of 252 respondents in 
Khorezm, 2003, (Djanibekov, unpublished data) 
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Figure 12.2 Probability density function and Weibull probability distribution function 
of N fertilizer applications in winter wheat (private farm survey of 213 
respondents in Khorezm, 2003 (Djanibekov, unpublished data)  

 

The discrepancies between actual mineral fertilizer use in cotton production by 

Khorezmian farmers and the recommended quantities have a clear socio-economic 

reasoning. In contrast to general perceptions, for farmers, optimizing yield does not 

necessarily mean maximizing yield. A key decision is rather whether or not to fertilize 

and if yes, when and how much. The revenues from cotton-yield increases due to NPK-

fertilization must be significantly higher than the sum of the direct costs (e.g., for 

fertilizer) plus indirect costs of fertilization (i.e., expenses for transport, application). 

Other factors affecting the expenditure such as labor, tillage, weed control, picking and 

harvesting need also to be considered to obtain a sound evaluation of the benefits of raw 

cotton yield. Furthermore, there is also a divergence in the financial situation and the 

risk attitude of farmers, which often are difficult to assess but should not be 

underestimated in rural Uzbekistan. While poorer farmers in Khorezm, who also mostly 

have a smaller piece of land, tend to apply less fertilizer to cotton, wealthier farmers 

may apply more hoping to achieve higher crop yields and hence maximize their profit. 

This attitude, which is reflected in the two peaks of the cotton survey data (Djanibekov, 

unpublished data), is understandable given the lack of agricultural education of the new 

private farmers emerging after a period of collective ownership and low farm decision-

making autonomy (Adams et al. 1997, Wall 2006).  
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It is difficult for the government, on the other hand, to meet the farmers’ demand for N 

fertilizers, as only 45 % of the total N supply can be covered (MAWR 2004b). These 

fertilizers are primarily distributed to those farmers with a state contract for cotton and 

wheat production. For poorer producers without a contract, the expensive agricultural 

inputs are often unaffordable, which forces them to substitute these by using cheap 

alternatives of low quality (Trevisani 2008). The subsidized inputs, however, are often 

also (illegally) allocated to paddy rice instead of cotton, since it has the highest 

marketable value and net return (Djanibekov 2005, Guadagni et al. 2005, Trevisani 

2008). Such re-allocation of fertilizers in the cropping system is not officially reported, 

and thus may falsify the official statistics regarding N use on state-ordered crops.  

The rotation design of cotton and wheat also has an undeniable influence on 

yield. Although the cotton-wheat rotation is rather new to the Khorezm region, it is 

long-practiced in Australia (e.g., Constable et al. 1992) and Pakistan (e.g., Byerlee et al. 

1987). Similar to Khorezm, also in the Punjab setting, the two crops are frequently 

grown in direct sequence (Byerlee et al. 1987). In those years where cotton is directly 

followed by wheat, however, the last cotton pick regularly interferes with the time of 

wheat seeding. Wheat that is sown into the cotton rows is known to reduce total yields 

due to lower plant densities. In the Punjab region, where neither crop is state regulated, 

and inputs are free of subsidies, farmers often opt for the food crop wheat rather than for 

the cash crop cotton, and sacrifice the last cotton pick to ensure timely seeding and 

guarantee high yields of winter wheat (Byerlee et al. 1987).  

Khorezmian farmers, who are confined to the state order, on the other hand, do 

not have the freedom of such trade-offs as in Pakistan, as institutional conflicts may 

arise when cotton production targets are not met without clear excuses (Trevisani 2008). 

In the Khorezmian setting, farmers at present, therefore, are caught in the dilemma of 

being obliged to pay fines when they do not fulfill the cotton or the wheat yield target. 

Thus, they frequently are under pressure to ensure timely wheat planting in order to 

reach the required yield, even though high-yielding cotton fields may be economically 

worth harvesting until the last pick (Rudenko and Lamers 2006). The farmers, therefore, 

plant cotton on land of lower soil fertility, while more valued crops such as wheat and 

rice are placed on better-quality sites. 
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Overall, the agricultural production system in Khorezm is more complex and 

interwoven than often assumed. It is a factor mosaic, which includes the current 

agricultural setting, i.e., the changed socio-economic situation and its on-going 

dynamics, the unclear legal environment, the preference for higher valued crops such as 

rice or fodder crops, and the financial status that drives the farmers’ decision-making in 

crop management and indirectly influences the reported N use and yields. 

Consequently, the yield gap between the officially recorded yields and those that 

technically could be achieved given the agro-ecological conditions in the Khorezm 

region cannot be narrowed by improving one single aspect such as N-fertilizer 

management. An analysis of the decline in yields over time that includes only soil 

degradation as the explaining variable would lead to inadequate recommendations. Only 

by improving the farmers’ knowledge on sustainable practices and efficient 

management, providing funds for entrepreneurial capital necessary for investments, 

adjusting the state-order regulations, and ensuring adequate payment for quality and 

yield, can changes be achieved. 
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13 CONCLUSIONS AND FURTHER RESEARCH NEEDS 

 

After a history of subsidized inputs and crop production on the state collective farms, 

the newly established private farmers are challenged by the new land-tenure regulations, 

and rising costs for fertilizers, pesticides and machinery following Uzbekistan’s 

independence. Stuck between the obligation to fulfill the state’s production targets for 

cotton and winter wheat and the burden of ensuring their livelihood, farmers only sup-

optimally apply N fertilizer to cotton and winter wheat from an agronomic viewpoint. 

Fertilizer recommendations date back to the time before independence. In this setting, 

sustainable N-fertilizer management and its efficient use are challenging, especially in 

the irrigated regions of Uzbekistan, where poor N management inevitably leads to 

losses via denitrification and leaching. This research, therefore, focused on identifying 

the current N-fertilizer use inefficiencies in irrigated cotton and winter wheat production 

to improve the N-fertilizer strategies for those crops and product quality while reducing 

losses to the environment. 

In this chapter, the key research results are recapitulated with special reference 

to the research objectives followed by general conclusions and future research needs. 

 

13.1 Conclusions for the respective research objectives 

 Objective 1: Assess cotton and wheat yield response to increasing N-fertilizer 
application rates under the current management. 

The official N-fertilizer recommendations for irrigated cotton and winter wheat of 200 

and 180 kg N ha-1, respectively, were found to correspond well with the potential N 

uptake of cotton and winter wheat measured and simulated in this study. The plant-N 

contents also matched uptake rates reported in the literature.  

The initial soil-mineral N content of the experimental sites was low and thus a 

crop response to N was expected. However, only a limited response of cotton and wheat 

yield to increasing N-fertilizer rates was observed. The flat response curve can possibly 

be attributed to supplemental N contribution from the groundwater which most likely 

influenced the soil-N balance and plant-N uptake. Most of this N is likely to come from 

N applied to neighboring fields. Although the quantification of these potentially 

contributing pools was beyond the scope of this study, first approximations suggest this 
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share to be in the range of 5-61 kg N ha-1, i.e., equal to the amount usually applied 

during one single N-fertilizer application event. Particularly cotton with its long tap 

root, may profit from such extraneous N sources. This additional N supply depends on 

many factors such as groundwater depth, its nitrate content, and the field’s proximity to 

the next drain. However, farmers can not collectively rely on this N input and reduce N 

applications, as continuously low applications of N-fertilizer would diminish the N load 

of the groundwater and will lead to slow mining of the soil-N resources by the crop. 

The reported cotton yields in Khorezm were exceeded, as high yields were 

measured for both cotton (on average 4.0 t ha-1 vs. 2.6 t ha-1 on regional level) and 

wheat (on average 3.4 t ha-1 vs. 4.3 t ha-1 on regional level) throughout the three study 

years. However, the recommended N-fertilizer amounts and the response curves of this 

study exceeded the actual N use in cotton production reported by the local 

administration in Khorezm.  

Moreover, the state-order restriction on cotton and wheat, which also dictates 

the crop rotation, combined with the farmers' unstable financial status and their 

preferences for higher-valued crops such as wheat and rice has indirectly influenced N 

use and yields, and the farmers’ crop management, risk attitudes, and expenditures. 

Consequently, without considering the impact of the economic and legal settings on 

farmers’ decision making, significant institutional and political limitations can occur 

when trying to implement the recommendations for a more sustainable N-fertilizer 

management. 

 

 Objective 2: Evaluate N-fertilizer use efficiency under various N-management 
practices with special focus on fertilizer timing and N-fertilizer types. 

For both cotton and wheat, the total fertilizer-N recovery was very high (81-84 %). 

While the plant-N recoveries of cotton (34 %) and winter wheat (33 %) were similar to 

those measured in other irrigated regions in Uzbekistan and elsewhere, the soil-N 

recovery rates were comparatively high (50 and 48 %). The large amount of 15N-

fertilizer recovered in the soil indicates that immobilization processes and/or pool 

substitution strongly influenced the recovery rates. Also, more than 70 % of the 

ammonium- and nitrate-containing N fertilizers applied were recovered in the top 30 cm 

of the soil. Evidently, leaching of the freshly applied 15N-fertilizer into deeper depths 
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under the experimental irrigation regime (300 mm) was limited, and even under doubled 

irrigation (600 mm) the modeled leaching losses were estimated to be below 20 % of 

the applied N. The nitrate found in the groundwater may have originated from re-

mineralized soil-organic N (pool substitution) in the experimental field and neighboring 

fields. 

The current N management in cotton practiced by the farmers includes an N 

application at the 2-4 leaves stage, whereas the recommendation is an application time 

at the budding stage. The research results show that the farmers’ practice leads to 8 % 

lower 15N-fertilizer uptake and around 22 % lower total 15N recovery in comparison to 

the N fertilization at budding, as 15N applications at the 2-4 leaves stage coincided with 

high temperatures and extensive irrigation water application, which substantially 

enhanced 15N losses. Yields of these two treatments, however, did not significantly 

differ, which could be attributed to the supplemental N input from other sources (see 

above). In winter wheat, an additional N application at anthesis/heading, presently not 

practiced by farmers, yielded highest total 15N recovery rates (46 % of 15N applied).  

The results underline that N-fertilizer applications cannot be standardized for a 

fixed crop growth stage, but have to be carefully synchronized with crop development, 

location specifications and other agro-technological measures. Also, irrigation practices 

should be harmonized with N management based on field-N measurements. 

The N fertilization using diammonium phosphate before seeding (DUU) 

showed the highest N-recovery for wheat and cotton compared to the complete urea 

combination (UUU). Although the yields were generally lower for nitrate-N-containing 

fertilizers, these fertilizers were taken up more efficiently during the growing season 

than those containing ammonium-N. Following N fertilization and irrigation of dry soil, 

the nitrate-N source became more rapidly available to the plant roots.  

 

 Objective 3: Determine cotton fiber and wheat kernel quality at different N-fertilizer 
rates and timing.  

The cotton fiber quality depended strongly on the time of picking and showed an 

optimum at the first pick. It decreased with each picking event due to decreasing fiber 

maturity. However, it was not affected by N treatments. In contrast, the seed to fiber 

ratio significantly increased with N applications. Increased N fertilization also delayed 
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the opening of cotton bolls, so that in this case the highest yield did not coincide with 

the period during which the ginneries offer the highest price for cotton (see financial 

section below). Differently timed N-fertilizer splits or N-fertilizer types did not 

noticeably influence fiber quality. Overall, the fiber quality of the variety Khorezm-127 

was classified as lowest grade according to the Uzbek classification, so that it could be 

used mainly for cheap cotton goods, mélange fabrics, towels, sateen, gauze or diagonal 

cloth.  

The protein and gluten results show that the winter wheat variety Kupava R2 

grown in Khorezm only met the criteria of a satisfactory to good wheat filler and low to 

medium quality flour thickener. Late applications of N at anthesis/heading significantly 

increased the fertilizer-N uptake efficiency and protein content in the kernels. Also, 

increased N rates enhanced kernel protein content, while gluten content was less 

affected by higher N rates. However, for this variety, protein content and yield were 

negatively related, i.e., the maximum protein content did not coincide with maximum 

yield, showing the need for breeding wheat varieties with higher quality and yield 

potential suitable for irrigated conditions of the irrigated lowland areas of the region. 

Furthermore, the lack of machinery for wheat harvest caused serious delays, which at 

the prevailing high temperatures in June/July increased kernel shattering and reduced 

the kernel moisture below those optimal for the milling process.  

At present, farmers are only interested in producing maximum yields at lower 

(fertilizer) costs and not in higher protein and quality grain as they are not reimbursed 

for the additional costs for protein production.  

 

 Objective 4: Simulate the effects of alternative N applications, irrigation water 
quantities and groundwater levels on N dynamics in the soil and on crop yield. 

A cotton-specific routine for the crop-soil simulation model CropSyst was developed 

and successfully verified for Khorezm conditions. CropSyst predicted the experimental 

yields with a high accuracy, except for those of the non-fertilized and low-fertilized 

treatments (RMSE = 1.08 Mg ha-1). This was likely due to the fact that possible NO3-N 

supply through irrigation and groundwater had not been incorporated into the model. 

Such a sub-routine would allow incorporation of N contributions via (sub-surface) 

irrigation. Since no sufficient data on mineralization, nitrification and denitrification 
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rates and the mineralization of organic matter fractions were available, these processes 

could only be incorporated conservatively. Despite these limitations, the cotton routine 

proved to be a useful tool in filling the gaps in the N balance.  

The potential and actual evapotranspiration and crop transpiration as simulated 

showed a potential contribution of the groundwater to crop water demand of between 

283 and 335 mm depending on the N-fertilizer rate. Cotton yields may be increased 

without simultaneously increasing N losses when the total irrigation amounts are 

reduced and the irrigation application patterns adjusted to the actual crop water 

demands.  

Overall, the developed cotton-specific routine in CropSyst can be seen to be a 

very useful tool for demonstrating changing environmental conditions and yields under 

different agricultural practices and, therefore, can be applied to encourage farmers in 

changing their current management system. 

 

 Objective 5: Determine the financial feasibility of different N-fertilizer management 
practices.  

The N uptake from sources other than the N fertilizer applied constrained the 

determination of an optimum economic N rate. For cotton, the returns to N investments 

were highest for those treatments that encouraged fast opening of bolls at pick 1 and 

pick 2, i.e., N-fertilizer rate of 120 kg ha-1, and application of N at the 2-4 leaves stage 

(farmers’ practice). However, this rate was below the actual N uptake of cotton of 

around 200 kg ha-1. In addition, the farmers’ practice proved to be the most inefficient 

application strategy in terms of timing (see above). The dependency of the rates of 

return on the time of harvest is a specific characteristic of the Uzbekistan state-ordered 

raw cotton marketing system. Hence, as long as the present price-reward system is 

closely linked to the set picking periods, the lower N-fertilizer rates, which provoke an 

earlier opening of the cotton bolls, will result in higher rates of return to investments. 

However, this practice will also result in soil nutrient mining and inefficient N-

fertilization practices. 

In contrast to cotton, the economically most promising wheat treatments were 

those with higher N rates, i.e., 160 kg N ha-1, and those receiving an additional N 

application during anthesis (Zadoks-60, Feekes-10.51).  
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13.2 Impact of different N-fertilizer combinations on selected parameters 

The overall performances of the different N-fertilizer combinations for the 15N cotton 

and winter wheat experiments are summarized in Table 13.1 and Table 13.2.  

 
Table 13.1 Relative performance of four fertilizer treatments of 15N cotton experiment. 
  Symbols indicate the impact of the respective fertilizer combination on 
  various parameters as very high (++), high (+), satisfactory (-), low (--). 

Parameter 
Fertilizer combination* 

DUUr UUU DUUf DAA 
Total yield + + ++ + 
Yield at pick 1 - - + + 
Biomass (cotton) - + ++ + 
Biomass (leaves, stems) + ++ + - 
N uptake into biomass ++ + + - 
Total N recovery ++ + - + 
N recovery in biomass + + + + 
N recovery in soil + ++ - + 
N gaseous losses (CropSyst) + + ++ - 
Fiber quality + + + + 
Net benefit + - ++ + 

* DUUr = 3 splits at recommended time, diammonium phosphate, urea, urea fertilizer 
  UUU = 3 splits at recommended time, urea, urea, urea fertilizer 
  DUUf = 3 splits, farmers’ practice, diammonium phosphate, urea, urea fertilizer 
  DAA = 3 splits at recommended time, diammonium phosphate, ammonium nitrate, ammonium 

nitrate 
 

 
Table 13.2 Relative performance of four fertilizer treatments of 15N winter wheat 

experiment. Symbols indicate the impact of the respective fertilizer 
combination on various parameters as very high (++), high (+), satisfactory 
(-), low (--). 

Parameter 
Fertilizer combination* 

DUUr UUU DUUu DAA 
Total yield + ++ ++ - 
Biomass (wheat kernels) + + ++ - 
Biomass (stems) + + + + 
N uptake into biomass + + ++ - 
Total N recovery + - + ++ 
N recovery in biomass - - + ++ 
N recovery in soil + - - + 
N recovery in kernels + + ++ + 
Kernel quality - - + - 
Net benefit - + ++ -- 

* DUUr = 3 splits at recommended time, diammonium phosphate, urea, urea fertilizer 
  UUU = 3 splits at recommended time, urea, urea, urea fertilizer 
  DUUu = 4 splits, diammonium phosphate, urea, urea, urea fertilizer 
  DAA = 3 splits at recommended time, diammonium phosphate, ammonium nitrate, ammonium 

nitrate 
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13.3 Conclusions and further research needs 

The efficiency and sustainability of the farmers’ current N-management practices 

differed for cotton and winter wheat. In cotton production, N-fertilizer amounts 

necessary for satisfying plant-N demand substantially diverge from the economic 

optimum to produce highest yields. As high yields and fast maturation of cotton bolls 

can be achieved at lower N rates, profit maximization encourages an undersupply of 

cotton at the expense of reducing soil fertility. The officially recommended N-fertilizer 

rates, which are more in line with plant-N demand, are not supported by the present 

state-imposed reward system. Also, the N-application timing practiced by the farmers 

has shown to be less efficient than the officially recommended split. 

The farmer’s current N-fertilizer management practices with winter wheat, on 

the other hand, are in line with the official recommendations and economically most 

profitable. Even with respect to proper plant nutrition and maintenance of soil fertility, 

the present practices can be considered suitable for maximum wheat yields. However, 

the efficiency of N-uptake into the kernels and the subsequent wheat quality remain low 

with the present N-fertilizer recommendations. Buyers of winter wheat, mills, do not 

offer incentives to improve yields with late N applications as they do not offer quality-

based prices.  

There is scope for improving N management, N-use efficiency, and cotton 

quality through better irrigation scheduling and application rates that correspond with 

loss-sensitive periods such as the 2-4 leaves stage (see above), by ensuring timely 

planting of cotton, and by changing the payment system of the ginneries to encourage 

N-application practices that suit crop-N demand. Nevertheless, the mismatch of N 

supply in cotton demands a more detailed macro-economic analysis of the long- and 

short-term losses and gains of more efficient N-fertilizer use.  

In irrigated winter wheat, N management can be optimized and N-use 

efficiency and kernel quality enhanced by improving the irrigation scheduling and 

promoting late application of N. Offering adequate reimbursement for higher wheat 

quality rather than quantity to the farmers, regularly monitoring protein content and other 

quality aspects of wheat would lead farmers to change their current practices. A systematic 

breeding program is called for to generate more suitable varieties that are less water 
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demanding (such as synthetic wheat) and varieties that can more easily produce high 

quality grains under Khorezm conditions.  

Further research should also include the use of slow-release fertilizers, or 

denitrification inhibitors, and foliar-N applications in wheat as approaches to improve N-

use efficiency. In-season measurements of crop and soil-N status using non-destructive 

absorbance (chlorophyll measurements) and reflectance (portable reflectometer) 

methods would further help to adjust N-fertilizer application to actual crop-N demand. 

To render the present version of the CropSyst cotton model even more effective, 

a follow-up study should determine the mineralization rate and capture the seasonal 

dynamics of mineral N in the soil and nitrate in irrigation and groundwater. Such datasets 

would allow further validation and improvement of the accuracy of the estimated 

parameters of the CropSyst simulations. Once parameterized and calibrated for irrigated 

winter wheat, the model could be applied to simulation of crop rotations and impacts of 

management practices within the dominating winter wheat rotation also on a wider 

regional scale. Also, the impact of conservation agriculture practices including improved 

residue management on N-use efficiency and soil fertility in an irrigated production system 

needs to be investigated. In combination with alternative crop rotations, these practices 

could prove a valuable approach to improve N-use efficiency and sustainable management 

in irrigated agriculture.  

This study further emphasizes the importance of assessing the income increase 

per quality increase in wheat production necessary for farmers to adapt their management 

strategy.  
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15 APPENDIX 

 

Appendix 15.1 Irrigation norms for cotton for light saline soils with shallow 
groundwater (MAWR 2000, HydroModRay 2003) 

Irrigation 
event 

Irrigation 
Irrigation period 

(date) 
Irrigation 

period length 
Phase 

 mm from to Days  
1 100 May 25 June 15 22 2-4 leaves 
2 100 June 16 June 30 15 budding 
3 110 July 1st July 15 15 fruiting 
4 120 July 16 July 31 16 flowering 
5 110 Aug 1st Aug 15 15 flowering 
6 100 Aug 16 Sept 5 21 maturation 

 

 

Appendix 15.2 Irrigation norms for winter wheat for light saline soils with shallow 
groundwater (HydroModRay 2003) 

Irrigation 
event 

Irrigation 
amount 

Irrigation period (date) 
Irrigation 

period 
Phase 

 mm from to days  
1 80 1.4 12.4 12 tillering 
2 80 13.4 24.4 12 booting 
3 80 25.4 6.5 12 heading 
4 80 7.5 18.5 12 flowering 
5 80 19.5 31.5 13 grain filling 
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Appendix 15.3 Fertilizer research (source: Djumaniyazov 2004) 

Year Author Variety N (kg ha-1) P (kg ha-1) K (kg ha-1) Yield (t ha-1) Comments 

1931 Zverlin 1306    2.71 
100 kg ammonium sulphate, 90 kg SSP 
per kg N 

1928-30 Zverlin 
N-169, Navro, 

1306 
90 90 - 2.0  

1931 Zverlin N-169 45 45 - 2.73 

Given the after-effect of high rates in 
previous years, the application of 
45 kg ha-1 sufficiently supplied the 
necessary nutrients for cotton 

1934 Zverlin  90 90 - 3.0-3.5  

1936 Novikov and Tumbinsky N-8517 240 180 - 3.16  

1954 H. Taktashev  120 60 -  

Field history 1950-1953: old irrigated site: 
Alfalfa-alfalfa-melons-cotton; newly 
irrigated site: fallow-melons-melons-
alfalfa 

1960 Khaitbayev Khorezm-8 120 90 40 2.87 
Field history: 5 years of legumes; K 
fertilizer delays maturing 

1965 A.R.Yusupov 108-f 200 150 50 6.02 Field history: 3 years of legume (alfalfa) 

1965 
K. Yakubov and J. 

Madaminov 
 268 133   

Calculated as average over Khorezm from 
statistical data 

1969 A.R. Yusupov  200 200 75 3.38 

Research conducted for 2 years; according 
to the data from the research station, N 
norms more than 200 kg ha-1 were not 
effective as expected, decreased the 
efficiency of fertilizers, and delayed the 
maturing of bolls. 

       

In the years 1965-1968, the Khorezm 
region reached the record high cotton 
yields while application of high rates of 
mineral fertilizers 

1969 S. Ruzmetov 108-f 225 150 - 4.34  
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Appendix 15.3 continued 

1969 
A.R.Yusupov and H.H. 

Tahtashev 
108-f 200 160 - 3.2-3.9  

1970 
A.R.Yusupov and H.H. 

Tahtashev 
108-f 200 160 - 4.6-5.3 

Set-up on the same fields as the year 
before 

1970 S.Ruzmetov  225 150 - 4.3-4.4 
For the soils of Khorezm it is advisable to 
apply about 30 % of the annual norm of N 
fertilizers during spring ploughing 

1970 D. Madaminov  240 140 75   
1970 D. Madaminov  288 162 22  From statistics 1950-1970 
1972 Sabirov 108-f 350 280 - 4.86  

1974-75 M. Sabirov Tashkent-3 350 250 - 4.6-5.1 
The cotton variety Tashkent was 
introduced because the variety 108-f was 
vulnerable to weeds  

1974-75 M. Sabirov Tashkent-1 400 200 50 4.0-5.3  
1978 Sabirov Tashkent-1 350 280 175 3.1-3.6  

1979-81 Nazarov Tashkent-1 450 450 225 4.6-4.7  
1971-1974 Zaynieva  150 100 75   

1977 M. Sabirov  400 nn nn   
1976-1979 I.Sabirov  300 nn nn   

1981 Azizjanov Tashkent-1 300 300 150  Field history: 3 years of cotton 
1983 Atajanov 175-f 275 150 125 4.0-4.5  
1984 Atajanov 175-f 250 210 125 4.89  
1985 Tashpulatova 175-f 250-350 150-250 100-140 4.0  
1988 Ibragimov and Rustamova 175-f 250 160 120 4.38  

1990 
E.N. Masharipov and A. 

Egamov 
175-f/C-6524 350 330 175 4.2-4.4  

1990 
E.N. Masharipov and A. 

Egamov 
175-f 250 175 125 4.0-4.2  

1991 Allayarov 175-f 250 200 100 3.8-4.7 With 10-15 t ha-1 manure 
1992 Masharipov  150 100 75 3.14  
1992 Masharipov  250 175 125 3.39  



Appendix 

 226  

Appendix 15.3 continued 

1993 
Alloerov, Madaminov, 
Ibragimov, Jumaniezov 

175-f 240 160 120 3.46  

1997 Masharipov 175-f 250 175 125 3.22  
1997 Masharipov Khorezm-126 250 175 125 3.27  

2000 Sabirov and Masharipov Khorezm-127 250 175 125 3.6-3.9  
2000 Sabirov and Masharipov 175-f 250 175 125 3.6-3.7  
2002 Sabirov and Rustamova Khorezm-127 250 175 125 3.9-4.2  
2002 Sabirov and Rustamova Khorezm-150 250 175 125 4.1-4.6  
2002 Sabirov and Rustamova Oktaryo-6 250 175 125 3.8-4.1  
2004 Masharipov Khorezm-127 250 175 125 3.4-3.5  
2004 Masharipov C-6524 250 175 125 3.3-3.4  
2004 Masharipov Khorezm-150 250 175 125 3.6-3.7  

Approx. 
1986-2006 

Official recommendations 
from the Ministry of 

Agriculture and Water 
Resources of Uzbekistan 

Any variety 200-250 140-175 100-125 2.5-3.5 
Adjustments depending on soil type, crop 
rotation, use of manure, etc. 
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Appendix 15.4 Phenological observation dates for the cotton minus-1 and response 
experiments by location, 2004 

Experiment Name 

 ––––––––––––––––––– Phenological stages ––––––––––––––– 

 
sowing 2-4 leaves budding 

fruiting / 
flowering 

maturing 

Minus-1 Khonka 
Date 03.04. 02.06. 26.06. 26.07. 10.09. 
DAS  60 84 114 160 

Minus-1 Kushkupir-HL 
Date 14.04. 05.06. 25.06. 30.07. 03.09. 
DAS  52 72 107 142 

Minus-1 Kushkupir-LL 
Date 14.04. 05.06. 25.06. 30.07. 03.09. 
DAS  52 72 107 142 

Minus-1 Shavot 
Date 07.04. 09.06. 25.06. 06.08. 09.09. 
DAS  63 79 121 155 

Minus-1 Urgench 
Date 28.04. 05.06. 30.06. 06.08. 08.09. 
DAS  38 63 100 133 

Minus-1 Yangibozor 
Date 26.04. 08.06. 28.06. 27.07. 02.09. 
DAS  43 63 92 129 

Minus-1 Yangiaryk 
Date 30.04. 10.06. 24.06. 28.07. 11.09. 
DAS 41 55 89 134 

Response Response-LL 
Date 10.04.** 09.-10.06. 07.-08.07. 02.-03.08. 13.-16.09. 
DAS      

Response Response-ML 
Date 10.04.** 11.-12.06. 09.-10.07. 04.-05.08. 17.-20.09. 
DAS     

* DAS: days after sowing 
** Reseeding on April 28 due to heavy rains on April 15, 2004 
 

Appendix 15.5 Phenological observation dates for the cotton 15N experiments, 2005.  

Phenological Stages Date of observation 
Main plot Microplot 

DAS* DAS 
Sowing 22.04.   
2-4 leaves 03. - 10.06. 45 42 
Budding 23. - 24.06. 62 62 
Flowering 07. - 11.07. 78 76 
Fruiting/flowering 05. - 06.08. 105 105 

Maturing 29. - 31.08. 130 129 

* DAS: days after sowing 
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Appendix 15.6 Winter wheat seeding dates for the minus-1, response and 15N 
experiments in 2004/05 and 2005/06 

Experiment Name Seeding 
Minus-1 Urgench-LL 08.10.04 
Minus-1 Urgench-ML 25.09.04 
Minus-1 Yangibozor 22.09.04 

Response Response-LL 08.10.04 
Response Response-ML 25.09.04 

15N experiment 15N  14.09.05 
 

Appendix 15.7 Harvest dates (picks) for the minus-1 and response experiments in 2004 

Experiment Name 
––––––––––––––Harvest date –––––––––––– 

Pick 1 Pick 2 Pick 3 Pick 4 
Minus-1 Khonka 13.09. 30.09. 22.10. 27.10. 
Minus-1 Kushkupir-HL 24.09. 05.10. 21.10. 26.10. 
Minus-1 Kushkupir-LL 24.09. 05.10. 21.10. 26.10. 
Minus-1 Shavot 21.09. 08.10. 20.10. 27.10. 
Minus-1 Urgench 23.09. 04.10. 18.10. 28.10. 
Minus-1 Yangibozor 21.09. 08.10. 19.10. 26.10. 
Minus-1 Yangiaryk 17.09. 28.09. 13.10. - 
Response Response-LL 30.09. 09.10. 18.10. 26.10. 
Response Response-ML 30.09. 09.10. 18.10. 26.10. 

 

 

Appendix 15.8 Harvest dates (picks) for the 15N experiment 2005 

Harvest Date of observation 
Main plot Microplot 

DAS* DAS 
Pick 1 13. - 14.09. 144 144 
Pick 2 04. - 05.10. 165 165 
Pick 3 24. - 25.10. 185 185 

* DAS: days after sowing 
 

 

Appendix 15.9 Winter wheat harvest dates for the minus-1, response and 15N 
experiments in 2004/05 and 2005/06 

Experiment Name Harvest date 

Minus-1 Yangibozor 21.06.2005 

Minus-1 Urgench-ML 16.06.2005 

Minus-1 Urgench-LL 16.06.2005 

Response Response-ML 16.06.2005 

Response Response-LL 16.06.2005 
15N experiment 15N  12-13.06.2006. 
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Appendix 15.10 Average total raw cotton yield (t ha-1) for the minus-1 treatments for 
four picking times in Khorezm (n = 4) in 2004.  

Pick Treatment 
Mean SE 

kg ha-1 

1 

-N 1.4 0.08 
-P 1.4 0.10 
-K 1.5 0.11 

NPK 1.4 0.12 

2 

-N 1.1 0.07 
-P 1.2 0.08 
-K 1.2 0.07 

NPK 1.1 0.06 

3 

-N 0.9 0.07 
-P 1.1 0.10 
-K 1.2 0.12 

NPK 1.2 0.13 

4 

-N 0.3 0.05 
-P 0.4 0.07 
-K 0.4 0.07 

NPK 0.5 0.08 

 

 

Appendix 15.11 Irrigation events and amounts (mm) for the 15N cotton experiment for 
the quadratic weirs, flumes, plot (T) and replication (R) in Maksud 
Garden, 2005.  

Event DAS* Date 
Quad. 
weir 

Quad. 
weir 

SANIIRI flume RBC flume Average 

   T7-R1 T12-R1 T13-R1 T15-R1  
1 a 34 26.05. 18.3 20.4 ** ** 19.4 
1 b 34 26.05. 18.9 20.8 15.4 32.4 21.9 
1 c 35 27.05. 17.2 17.8 17.5 33.0 21.4 
2 a 64 25.06. 16.5 29.3 12.4 34.1 23.1 
2 b 65 25.06. 16.5 29.3 12.4 34.1 23.1 
3 a 82 12.07. ** 36.9 ** *** 36.9 
3 b 85 12.07. ** 25.4 17.3 - 21.3 
4 a 97 28.07. 27.3 28.3 31.9 - 29.2 
4 b 98 29.07. 20.2 24.7 24.3 - 23.1 
5 a 115 15.08. 20.1 27.2 38.1 - 28.5 
5 b 116 16.08. 28.7 24.6 28.4 - 27.3 

Total (mm)  183.6 284.9 197.6  274.9 

*  DAS: days after sowing 
** no readings taken, as the soil was too dry and cracked 
***  dismounted, as water was frequently flowing around due to large cracks in the soil 
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Appendix 15.12 Average total raw cotton yield (t ha-1) for N rates (kg ha-1) of the 
minus-1 experiments (2004), the response experiments (2004) and the 
15N experiment (2005). SE denotes standard error of the mean.  

Year of experiment 
N rate 

n 
Average yield SE 

kg ha-1  t ha-1  

2004 

0 36 3.5 0.1 
80 8 3.6 0.3 

120 8 3.4 0.3 
160 8 3.7 0.3 
200 36 4.0 0.1 
250 8 3.6 0.3 

2005 

0 4 4.3 0.4 
80 16 4.3 0.2 

120 16 4.7 0.1 
160 16 4.5 0.2 

Total 

0 40 3.6 0.1 
80 24 4.1 0.2 

120 24 4.3 0.2 
160 24 4.2 0.2 
200 36 4.0 0.1 
250 8 3.6 0.3 

 

 

Appendix 15.13 Irrigation events and amounts (mm) in the 15N winter wheat experiment 
in Maksud Garden, 2005/06.  

Irrigation event DAS* Date Amount Comment 
   mm  

1 16 30.09.05 142.2 following fertilization 

2 35 19.10.05 95.5  

3 168 01.03.06 137.3  

4 187 20.03.06 107.8 following fertilization 

5 204 06.04.06 86.7 following fertilization 

6 233 05.05.06 75.9 following fertilization 

7 248 20.05.06 128.4  

8 259 31.05.06 145.6  

Total   919.3  

* DAS: days after sowing 
 



Appendix 

 231  

Appendix 15.14 Measured and adjusted winter wheat yield (t ha-1) for the respective N 
rates (kg ha-1) from the rotation experiments (2003/04), the minus-1 
experiments (2004/05), the response experiments (2004/05) and the 
15N experiment (2005/06).  

Year of 
experiment 

N rate n 
Average winter 

wheat yield 
(measured) 

SE 
Average winter 

wheat yield 
(adjusted*) 

SE 

kg ha-1  t ha-1 

2004 

120 6 4.4 0.3 4.4 0.3 

180 6 4.5 0.3 4.5 0.3 

240 6 4.7 0.3 4.7 0.3 

2005 

0 20 2.2 0.1 1.5 0.1 

120 8 2.9 0.1 2.3 0.1 

180 20 3.2 0.1 3.0 0.2 

240 8 3.0 0.2 2.9 0.3 

300 8 2.9 0.1 3.0 0.3 

2006 

0 4 2.3 0.4 1.8 0.4 

80 16 3.3 0.1 3.8 0.1 

120 16 3.4 0.1 4.5 0.2 

160 16 3.6 0.1 5.5 0.2 

Total 

0 24 2.2 0.1 1.6 0.1 

80 16 3.3 0.1 3.8 0.1 

120 30 3.5 0.1 3.9 0.2 

160 16 3.6 0.1 5.5 0.2 

180 26 3.5 0.2 3.4 0.2 

240 14 3.7 0.3 3.7 0.3 

300 8 2.9 0.1 3.0 0.3 
* outlier-corrected and plant-density-adjusted yield (see section 4.5.2) 
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Appendix 15.15 Total (adjusted) winter wheat yields (t ha-1) for the respective N rates   
(kg ha-1) from the rotation experiments (2003/04), the minus-1 
experiments (2004/05), the response experiments (2004/05) and the 15N 
experiment (2005/06).  
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Appendix 15.16 Physico-chemical soil properties before 15N cotton seeding (n = 3), 
February 2005. Soil texture classified according to the USDA.  
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cm % mg kg-1  dS m-1 cmolc kg-1 

0-30 47 37 16 0.9 0.07 3.2 0.31 39 180 6.5 1.0 21.9 
30-50 43 43 14 0.7 0.07 2.8 0.33 34 160 6.5 1.0 18.8 
50-70 50 34 16 0.6 0.05 2.5 0.31 32 160 6.5 1.0 20.3 

70-
100 

44 37 18 0.5 0.05 2.3 0.31 26 140 6.5 1.0  
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Appendix 15.17 Physico-chemical soil properties after 15N cotton harvest (n = 8), 
November 2005 

Depth ECe Total N NO3-N NH4-N P2O5 K2O 

cm dS m-1 % mg kg-1 
0-10 5.8 0.10 10.5 1.07 37.1 171.5 

10-20 2.9 0.09 8.6 0.91 29.4 146.8 
20-30 2.5 0.07 6.3 0.67 23.8 109.3 
30-40 2.0 0.06 5.4 0.53 19.5 90.8 
40-60 2.1 0.05 4.1 0.37 12.1 87.9 

 

 

Appendix 15.18 Physico-chemical soil properties after 15N winter wheat harvest (n = 8), 
June 2006.  

Depth SOM Total N NO3-N NH4-N K2O 
cm % mg kg-1 

0-10 0.83 0.07 10.8 1.3 161.5 
10-20 0.72 0.06 9.0 0.9 114.2 
20-30 0.63 0.05 9.0 1.0 110.6 
30-40 0.52 0.04 8.2 0.9 91.4 
40-60 0.39 0.03 6.7 0.7 69.6 

 

 

Appendix 15.19 Mean soil bulk density (g cm-³) of three soil profiles after cotton and 
winter wheat harvest, November 2005 and June 2006, respectively. 
Error bars represent the standard error of the mean.  
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Appendix 15.20 Average N-fertilizer recovery (%) in cotton plant components at 
different fertilizer application times (n = 4). SE denotes the standard 
error of the mean.  

Plant 
components 

Plant 15N 
before seeding 2-4 leaves/budding flowering 
Mean SE Mean SE Mean SE 

% recovery of 15N applied 

leaves 5.2 1.0 7.6 0.8 11.9 1.6 

stems 1.6 0.3 1.6 0.3 3.7 0.6 
squares 1.6 0.3 2.8 0.4 4.0 0.8 

fiber 1.5 0.7 1.5 0.2 2.5 0.5 
seed 9.3 1.5 13.4 1.7 26.7 3.7 
fruits 0.2 0.1 0.2 0.0 0.3 0.1 

roots 0-10cm 0.2 0.0 0.3 0.0 0.4 0.0 
roots 10-20cm 0.4 0.1 0.5 0.1 0.7 0.1 

 

 

Appendix 15.21 Average N-fertilizer recovery (% of 15N applied) in winter wheat plant 
components at different fertilizer application times in 2006 (n = 4). SE 
denotes the standard error of the mean. 

Plant 
components 

Plant 15N 
before seeding tillering booting booting 
Mean SE Mean SE Mean SE Mean SE 

% recovery of 15N applied 

stems 1.5 0.1 4.0 0.2 4.6 0.3 3.2 0.5 

chaff 2.0 0.2 5.5 0.5 8.4 1.0 5.6 0.6 
kernels 7.5 0.4 24.4 1.6 35.7 2.9 42.4 7.9 

weeds 0.3 0.1 1.1 0.3 1.8 0.5 13.9 10.9 
roots 0-10cm 0.4 0.0 0.5 0.0 0.4 0.0 0.6 0.1 
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Appendix 15.22 Winter wheat protein content (%) and respective yield (t ha-1) for the 
respective N rates (kg ha-1) from the rotation experiments (2003/04), 
the minus-1 experiments (2004/05), the response experiments 
(2004/05) and the 15N experiment (2005/06) 

Year of 
experiment 

N rate Wheat protein content Wheat yield* 

 n Mean SE n Mean SE 

kg ha-1  %  t ha-1 

2004 

120 6 11.8 0.3 6 4.2 0.3 

180 6 13.0 0.3 6 4.5 0.3 

240 4 13.7 0.5 4 4.2 0.3 

2005 

0 5 11.7 1.1 5 2.5 0.3 

120 2 13.5 1.1 2 3.1 0.1 

180 4 11.8 0.4 4 3.1 0.2 

240 1 14.1  1 2.9  

300 2 15.2 1.3 2 2.6 0.5 

2006 

0 8 9.6 0.2 8 2.2 0.2 

24 4 8.9 0.9 4 2.1 0.1 

80 16 9.8 0.3 16 3.3 0.1 

120 16 10.2 0.3 16 3.4 0.1 

160 16 11.1 0.3 16 3.6 0.1 

Total 

0 13 10.4 0.5 13 2.3 0.2 

24 4 8.9 0.9 4 2.1 0.1 

80 16 9.8 0.3 16 3.3 0.1 

120 24 10.9 0.3 24 3.6 0.1 

160 16 11.1 0.3 16 3.6 0.1 

180 10 12.5 0.3 10 3.9 0.3 

240 5 13.8 0.4 5 4.0 0.3 

300 2 15.2 1.3 2 2.6 0.5 
* adjusted yield (see section 4.5.2), adjustment according to Appendix 15.23 
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Appendix 15.23 Observed and adjusted winter wheat density (plants m-2) from the 
rotation experiments (2003/04), the minus-1 experiments (2004/05), 
the response experiments (2004/05) and the 15N experiment (2005/06) 

Year of 
experiment 

N rate Wheat plant density, observed Wheat plant density, measured 

 n Mean SE n Mean SE 

kg ha-1  plants m-2  plants m-2 

2004 

120 6 410 44    

180 6 438 47    

240 6 446 48    

2005 

0 20 286 23 20 245 17 
120 8 304 20 8 275 13 
180 20 349 19 20 344 21 
240 8 307 34 8 309 35 
300 8 366 31 8 366 31 

2006 

0 8 355 30 8 286 32 
24 4 376 31 4 337 48 
80 16 451 19 16 423 17 
120 16 497 21 16 492 20 
160 16 532 12 16 545 14 

Total 

0 28 306 19 28 256 15 
24 4 376 31 4 337 48 
80 16 451 19 16 423 17 
120 30 428 21 24 420 25 
160 16 532 12 16 545 14 
180 26 369 19 20 344 21 
240 14 367 33 8 309 35 
300 8 366 31 8 366 31 

*  adjustment as described in section 4.5.2 
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Appendix 15.24 Averaged harvest indices and total raw cotton yield (t ha-1) of the 
response experiments for the respective N rates (kg ha-1) in 2004 
(n = 4). SE denotes standard error of the mean.  

Location 
N rate Harvest index Cotton yield 

Mean SE Mean SE 
kg ha-1  kg ha-1 

1 

0 0.42 0.03 3.4 0.5 
80 0.38 0.03 3.9 0.9 
120 0.42 0.04 3.1 0.6 
160 0.45 0.06 3.4 0.3 
200 0.36 0.03 3.6 0.0 
250 0.42 0.03 3.3 0.5 

2 

0 0.44 0.07 2.9 0.8 
80 0.42 0.02 3.0 0.4 
120 0.43 0.04 3.1 0.1 
160 0.44 0.01 3.5 1.1 
200 0.44 0.00 3.9 0.3 
250 0.34 0.03 3.4 0.4 

Total 

0 0.43 0.03 3.1 0.4 
80 0.40 0.02 3.5 0.5 
120 0.42 0.02 3.1 0.2 
160 0.44 0.03 3.4 0.5 
200 0.40 0.03 3.7 0.1 
250 0.38 0.03 3.4 0.3 
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