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ABSTRACT 
Active substances in crop protection agents (CPA) are assessed by a community procedure, 
and a comprehensive dossier including data and tests is part of the application. The studies 
must be performed according to specified standards and by certified testing facilities. 
Recently, it is discussed, whether it is necessary to extend these tests to aquifers to investigate 
the environmental behaviour of CPA in the groundwater. This was the main motivation to 
develop a dynamic artificial aquifer incubation system (DAISY) at the lab-scale for standard use 
(Good Laboratory Practice, GLP). DAISY is operated fully automated via online control 
(Figure 19; page 125) at different redox conditions (Figure 12; page 48), and it is possible to 
simulate different groundwater flow rates (Figure 11; page 47). This is important, as I showed 
that dynamic flow conditions generally increase the degradation kinetics of the model compound 
benzoic acid (BA), an effect that can also be assumed for the degradation of other aromatic 
substances (3.1.3). A test system is now available that enables to study the intrinsic microbial 
degradation potential of shallow aquifers at realistic low concentrations of ≤ 10 µg l-1. 
As part of the work I conducted, I compiled important information on the design of future 
groundwater studies. BA was used to investigate processes relevant to degradation within the 
scope of developing a static and dynamic test system. It was shown that simple physical 
parameters, such as the dynamic solubility of carbon dioxide (CO2) in water, were not taken into 
account in groundwater studies in the past (12). This led, for example, to an incorrect estimation 
of the existing degradation potential in the existing BA studies (Figure 15; page 56). It was also 
determined that continuous absorption of CO2, by e.g. sodium hydroxide that is widely used for 
the absorption of mineralized 14C-labelled test substances (53;140;141), interferes considerably 
with the chemical groundwater equilibrium. The reason for this is the unspecific absorption of 
CO2, its supply from the groundwater bicarbonates, and the resulting enrichment of OH- ions 
(2.2.4). This ultimately gives rise to a strong increase in the pH value (3.1.2), and future 
degradation studies should therefore completely dispense without continuous absorption of 
CO2. 
The test systems developed within the scope of this work (2.5) were also used to investigate the 
current intrinsic degradation potential of three shallow aquifers for Imidacloprid (IMI), 
Isoproturon (IPU) and Diketonitrile (DKN). In various long-term incubation studies, a general 
degradation potential was assessed under oxygen-, iron-, and sulfur-reducing conditions and at 
a concentration of 0.1, 1, and 10 µg l-1. It was revealed, however, that the lower mineralization 
rates led to accumulation of metabolites becoming the most important parameter for estimating 
the degradation potential at a concentration of ≤ 10 µg l-1. The combined application of test 
substances had e.g. an effect on the degradation of individual substances here (3.2.2). 
Furthermore, I demonstrated the degradation of IPU under anaerobic conditions for the first time 
(3.2.1). 
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Not all of the findings from the BA acid studies (3.1.4) could be taken into account when setting 
up and conducting the long-term studies (> 360 days). Moreover, the test systems were only 
developed in the final stages of this work and led to a patent application for the dynamic test 
system, as well as a contract for another GLP study from the same sponsor. The test systems 
and methods developed enable a realistic estimate to be made of the intrinsic microbial 
degradation potential of aquifers near the surface in the laboratory under GLP conditions. 
Further studies will be conducted to estimate the hazard potential associated with different test 
substances and to transfer the results to the field scale. 
The intrinsic degradation potential of the aerobic shallow aquifers was analysed in enrichment 
cultures, for which a variety of carbon (C) sources were available (2.4). The microorganisms 
metabolised IPU as both the only C-source as well as co-metabolically. This was accompanied 
by an increase in the microbial biomass. Furthermore, using fingerprint techniques (DGGE) a 
strong displacement of the microbial population was confirmed (3.3). The experimental 
approach (Figure 39; page 141) has good potential to isolate future bacterial strains with a 
specific degradation potential for individual CPA. 
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ZUSAMMENFASSUNG 
Innerhalb der Europäischen Union werden die Wirkstoffe von Pflanzenschutzmitteln (PSM) in 
einem Gemeinschaftsverfahren bewertet, zu dem ein umfangreiches Dossier mit Daten und 
Tests erstellt wird. Die Studien müssen dabei nach vorgegebenen Normen von zertifizierten 
Versuchseinrichtungen durchgeführt werden. 
Aktuell wird diskutiert, ob die Notwendigkeit besteht, das bestehende Dossier auch auf 
Grundwasserleiter auszudehnen, um das Umweltverhalten von PSM im Grundwasser zu 
untersuchen. Ein essentieller Meilenstein ist hierbei die Entwicklung eines dynamischen 
artifiziellen Testsystems, um Grundwasserstudien standardisiert unter der „Guten Laborpraxis“ 
(GLP) im Labormassstab durchführen zu können. Dies war die wesentliche Motivation für die 
Entwicklung des dynamischen Testsystems DAISY, das einen vollautomatischen 
Remotebetrieb (Figure 19; page 125) unter verschiedenen Redoxbedingungen (Figure 12; page 
48), bei der gleichzeitigen Simulation verschiedener Grundwasserflusssraten (Figure 11; page 
47), ermöglicht. Der Simulation verschiedener Flussraten kommt eine besondere Bedeuting zu, 
da ich im Rahmen der Arbeit zeigen konnte, dass dynamische Flussbedingungen die 
Abbaukinetik der Modellsubstanz Benzoesäure (BA) grundsätzlich erhöhen, ein Effekt der auch 
für den Abbau anderer aromatischer Substanzen angenommen werden kann (3.1.3). Ein 
Testsystem ist jetzt verfügbar, welches es ermöglicht, dass intrinsische mikrobielle 
Abbaupotential oberflächenaher Grundwasserleiter bzgl. PSM bei realistischen geringen 
Konzentrationen von ≤ 10 µg l-1 zu untersuchen. 
Darüber hinaus wurden wesentliche Erkenntnisse erarbeitet, die das Design zukünftiger 
Grundwasserstudien betreffen. Stellvertretend für viele aromatische Moleküle diente BA als 
Modellsubstanz, um die den Abbau betreffenden relevanten Prozesse im Rahmen der 
Entwicklung eines statischen und dynamischen Testsystems zu untersuchen. Es zeigte sich, 
dass einfache physikalische Parameter, wie z.B. die Löslichkeit von Kohlenstoffdioxid (CO2) in 
Wasser, in Grundwasserstudien bislang keine Berücksichtigung fanden (12). Dieses führte in 
den vorliegenden BA-studien zu einer falschen Einschätzung des vorhandenen 
Abbaupotenzials (Figure 15; page 56). Es wurde ebenfalls festgestellt, dass die kontinuierliche 
Absorption von CO2, durch z.B. Natronlauge, die in Abbaustudien häufig für die Absorption von 
mineralisiertem 14C-markiertem Kohlenstoff eingesetzt wird (53;140;141), einen starken Effekt 
auf das chemische Grundwassergleichgewicht zur Folge hat. Begründet ist dies durch die 
unspezifische Absorption des CO2, dessen Nachlieferung aus dem Bikarbonat des 
Grundwassers und der daraus resultierenden Anreicherung von OH- Ionen (2.2.4). Diese führt 
letztendlich zu einem starken Anstieg des pH Wertes (3.1.2) und zukünftige Abbaustudien 
sollten deshalb vollständig auf die kontinuierliche Absorption von CO2 verzichten. 
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Die im Rahmen dieser Arbeit entwickelten Testsysteme wurden ferner dazu eingesetzt, das 
aktuelle intrinsische Abbaupotenzial dreier oberflächennaher Grundwasserleiter gegenüber 
Imidacloprid (IMI), Isoproturon (IPU) und Diketonitrile (DKN) zu untersuchen. In verschiedenen 
Langzeitstudien konnte ich ein generelles Potenzial unter sauerstoff-, eisen- und 
schwefelreduzierenden Bedingungen und bei einer Konzentration von 0.1, 1, und 10 µg l-1 
nachweisen. Es zeigte sich jedoch, dass, bedingt durch die geringen Mineralisationsraten, es zu 
einer Anreicherung der verschiedenen Abbauzwischenprodukte kam. Diese waren somit die 
wichtigere Kenngröße, um das Abbaupotenzial bei einer Konzentration ≤ 10 µg l-1 

abzuschätzen. In diesem Zusammenhang hatte die gemeinsame Applikation der 
Testsubstanzen oftmals einen positiven Effekt auf den Abbau einzelner Substanzen (3.2.2). 
Des Weiteren wurde für IPU erstmals ein Abbau unter anaeroben Bedingungen nachgewiesen 
werden (3.2.1). 
Nicht alle Erkenntnisse der BA-studien konnten für das Setup und die Aufarbeitung der 
Langzeitstudien (> 360 Versuchstage) Berücksichtigung finden (3.1.4). Darüber hinaus wurde 
die Entwicklung der Testsysteme erst mit dem Ende der Arbeit abgeschlossen, die für das 
dynamische Testsystem in einer Patentanmeldung, sowie in einer weiteren GLP Auftragstudie 
durch den Sponsor resultierte. Die entwickelten Testsysteme und Methoden ermöglichen eine 
realistische Abschätzung des intrinsischen mikrobiellen Abbaupotenzials oberflächennaher 
Grundwasserleiter im Labor unter GLP Bedingungen. Weitere Studien sollten folgen, um eine 
Abschätzung des Gefährdungspotenzials verschiedener Testsubstanzen zu ermitteln und eine 
Übertragung der Ergebnisse auf die Feldskala zu ermöglichen. 
Desweiteren wurde das intrinsische Abbaupotenzial des aeroben oberflächenahen 
Grundwasserleiters in mikrobiellen Anreicherungskulturen untersucht, denen verschiedene 
Kohlenstoffquellen (C-quellen) zur Verfügung gestellt wurden (2.4). Die Mikroorganismen waren 
in der Lage, IPU sowohl als alleinige C-quelle, als auch co-metabolisch zu verstoffwechseln, 
einhergehend mit einer Zunahme der mikrobiellen Biomasse. Darüber hinaus konnte ich mittels 
einer Fingerprint-technik (DGGE) eine starke Verschiebung der mikrobiellen Population 
nachweisen (3.3). Der Versuchsansatz hat großes Potenzial, um zukünftig Bakterienstämme zu 
isolieren, die ein spezifisches Abbaupotenzial gegenüber einzelnen PSM besitzen. 
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ACN   Acetonitrile 

AR   Applied radioactivity 

AI   Active ingredient 

BA   Benzoic acid 

CPA   Crop protection agent 

cpm   Counts per minute 

DAISY  Dynamic aquifer incubation system 

DGGE  Denaturing gradient gel electrophoresis 

DOC   Dissolved organic carbon 

DKN   Diketonitrile 

DM   Dry matter 

DNA   Deoxyribonucleic acid 

DT50   Half-life time 

GLP   Good laboratory practice 

HCI   Hydrochloride acid 

HPLC   High performance liquid chromatography 
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K   Krauthausen 

LC   Liquid chromatography 
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M   Microcosm 

MB   Mulder-Beilen 

MBq   Mega Becquerel 

mbs   Meter below surface 

NA   Nature A 

n.a.   not analyzed 

n.c.   not calculated 

n.d.   not detectable 
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1 INTRODUCTION 

Pollution of water bodies such as lakes, rivers, and groundwater is a major environmental 

problem. No access to clean water causes worldwide deaths and diseases (1;2) of about 

14000 people daily (1). Humans depend on water, and the protection of water resources is 

becoming more and more a grand challenge for a sustainable life. Up to date, agricultural 

production accounts for the usage of 70% of the freshwater resources worldwide. Surface water 

and groundwater have often been studied and managed as separate resources, although they 

are a continuum (3). Aquifers that provide sustainable fresh groundwater to urban areas and for 

agricultural irrigation are typically close to the ground surface and depend on recharge by fresh 

water. This recharge is typically from rivers or meteoric water (precipitation) that percolates into 

the aquifer through overlying soils and unsaturated subsoils (4). For this reason, the water 

quality of shallow aquifers particularly depends on the filter and buffering capacity of the 

overlaying unsaturated matrix. Due to intensive agricultural practice that mostly comes along 

with intensive pest control, the filter and buffering capacity of soils can be overstrained and as a 

consequence thereof, contaminations of groundwater might occur (5). 

Modern plant protection means guaranteeing sustainable plant production and simultaneously 

safeguarding the legitimate interests of consumer and environmental protection. The term plant 

protection comprises many preventative non-chemical measures and is much more than the 

use of chemical pesticides. Despite this, chemical pesticides are still one of the cornerstones of 

modern agriculture, and in Germany domestic sales rose e.g. from 29,769 t in 1994 to 

40,744 t in 2007. The European Union has set drinking water standards of 0.1 µg l-1 for an 

individual pesticide, and 0.5 µg l-1 for the total number of pesticides and related substances to 

protect humans for any toxicological side effects of these substances (6). Application modes 

and physical-chemical behaviour should generally prevent the appearance of these crop 

protection (CPA) agents in e.g. groundwater reservoirs. However, groundwater contaminations 

occur (7), and there is only sparse knowledge about the intrinsic microbial degradation potential 

of aquifers (8). It is therefore even more surprising that aquifers near the surface have rarely 

been studied in terms of their degradation potential. One of the main reasons for this is the lack 

of an adequate study design permitting laboratory investigations under realistic conditions and a 

subsequent transfer of results to the field scale. 

Near-natural aquifers are more or less black boxes with respect to e.g. treshold levels of low 

concentrated contaminants for the induction of potentially proceeding biological degradation 

processes, or even more with respect to their degradation kinetics. 
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In degradation studies, the application of radiolabeled test substances has been proven to be of 

exceptional value, especially when dealing with extremely low concentrations. But even if 

radiolabeled test substances are used, it is a special challenge to determine the metabolisation 

of CPA at concentrations in the range of ≤ 10 µg l-1, as e.g. specific labeling intensities for 

organic molecules are limited due to the risk of radiolysis. The distribution of the applied 

radioactivity between different compartments (e.g. water, aquifer material, gas-phase) accounts 

for an additional challenge concerning the detection limits of the analytical methods applied 

(e.g. liquid scintillation counting, radio-HPLC). 

In this work, the intrinsic microbial degradation potential of three near natural shallow aquifers 

was studied with respect to Isoproturon (IPU), Imidacloprid (IMI), and Diketonitrile (DKN). The 

studies were accomplished under simulated aquifer conditions at the lab-scale with 14C-labeled 

test compounds. In order to mimic the specific natural conditions of the respective aquifers at 

the lab-scale, a static and a so-called “dynamic” artifical aquifer system were developed. The 

test systems enabled a long term incubation (> 360 days), the use of 14C radiolabeled test 

substances, and the recovery of mass balances. Both systems were checked on the basis of 

mass balances, determined in 14C benzoic acid (BA) test series. BA is easily degraded by 

microorganisms (9-11), and can be used as a model compound for the degradation of aromatic 

molecules in aquifers (12). Prior to the experiments, the groundwater and aquifer materials were 

sampled and handled with special techniques that allowed for keeping their particular chemical 

and physical properties as close as possible to their natural conditions (2.2). An elaborate 

sampling device (sonic drill technique) prevented aquifer material from being contaminated with 

microorganisms from above soil layers. 

1.1 BACKGROUND 
The fate of CPA in topsoils is regularly studied at lab-, lysimeter-, or field-scale (15), and 

existing data sets focus on concentration ranges of about 100 µg l-1 and higher. These results 

are non-transferable to metabolic rates of diffuse concentration loads ≤ 10 µg l-1 in near-natural 

aquifers, although the physiological capacities of subsurface microorganisms and their potential 

to degrade xenobiotics seem to be the same, as those found in microorganisms from 

agricultural soils (14). Compared to topsoils, near-natural aquifers are characterized by e.g. a 

different availability of in- and organic nutrients, variable redox conditions, and minor changes in 

temperature (13;15-18). The dissolved organic carbon content (DOC) of the test aquifer 

Krauthausen (2.2.1) is e.g. just about 1.1 mg l-1, which is roughly the equilibrium concentration 

between DOC input rate, typically in forms of recalcitrant humic substances, and microbial DOC 

degradation rate. 
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The pH is of special importance, which can determine the environmental behaviour of a 

xenobiotic, as e.g. described for sulfadiazine (19). The presence of aerobic, facultative aerobic, 

and anaerobic bacteria in aerobic aquifers suggests the existence of anaerobic microhabitats. 

This is additionally an important parameter to determine the microbiology of a site, which is 

governing the degradation pathway of a CPA (17). Reduced redox conditions favour e.g. the 

dehalogenation of chlorinated compounds (20), but on the other hand many CPA contain 

aromatic structures, which are more easily cleaved under aerobic than under anaerobic 

conditions (21). Nevertheless, the measurement of the redox potential (Eh) is complex, due to 

the relationship between Eh measured in bulk soil, and the concentration of NO3
−, Mn2+, Fe2+, 

and [SO4]2− in the soil solution (22-24). 

Aquifers have a broad array of microbial metabolic capabilities that is comparable to agricultural 

soils, which is related to the complexity, and heterogeneity of the aquifer matrix itself (16). 

Microbial populations consist predominantly of bacteria, which have a central function in the 

biotic degradation of many CPA. They can live immobilised to sediment surfaces, or suspended 

in the groundwater, being at least mobile by the lateral movement of the groundwater (17). The 

population size is decreasing with increasing depth (17;25), and the horizontal distribution is 

also heterogeneous and differs greatly, e.g. as a function of soil and sediment type (14). 

Subsurface bacteria appear to be rather inactive, but seem to be well adapted to the stringent 

oligotrophic conditions of their environment (26;27). The absence of a direct correlation between 

plate count numbers and degradation activity (culture media are selective for metabolic types of 

organisms, and some bacteria are even not able to produce colonies) illustrates that it is 

necessary to differentiate between metabolic active and inactive microorganisms (17). The 

mineralization of CPA generally requires multiple enzymatic steps (e.g. removal of side-chains, 

followed by ring cleavage), including reactions like e.g. hydroxylation, N-dealkylation, 

decarboxylation, dechlorination, beta-oxidation, ester-hydrolysis, or sulfoxidation (21;28). 

Several factors influence the time for enzyme induction (lag period), and synthesis prior to 

microbial degradation (29). Enzymatic modifications usually initiate the biodegradation of non-

aromatic molecule structures (28), and several enzymes can degrade different structures, as 

described for the organophosphates, the phenoxyalkanoic acids, and a large group of related 

compounds including acetanilide, carbamates and phenylureas (30). 

The concentration of the inducing CPA can enhance or accelerate biodegradation (29) in 

response to agricultural application rates at high frequencies (31). The microbial adaptation and 

cross-adaptation can lead to shortened lag phases, as well as enhanced degradation rates, as 

observed in pure cultures, aquatic environments, soils, and subsurface aquifers (29;32;33). 
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For example, the previous exposure to the herbicide EPTC (S-ethyl dipropyl (thiocarbamate)) 

resulted in the microbial adaptation, as evidenced by increased degradation and mineralization 

of EPTC (34). Shorter and more reproducible lag periods may reflect the time required for 

growth of a small population of bacteria, already having a specific degradation potential. On the 

other hand, extended and variable lag periods seem to indicate that microorganisms are 

actually not capable to degrade the respective CPA. The time might be required to evolve the 

ability to degrade the CPA through mutation, genetic exchange, or selection (33). The author 

further reported that specific p-nitrophenol (PNP) degrading bacteria did not respond to the 

addition of PNP at low concentrations. The exposition of a small population of microorganisms 

to a low substrate concentration, under less than ideal conditions, did not lead to the expected 

enzyme induction and activation under near natural aquifer conditions. The threshold level, 

which is the minimum concentration necessary to produce a measurable physiological effect, 

was not reached. 

The presence of inhibitors can also delay the induction of biodegradation by toxicity of the 

inhibitor itself, or as a competitive substrate for the specific microbes under consideration (29). 

On the other hand, if CPA are present in only very low concentrations, the addition of organic 

nutrients can also promote microbial degradation (35). However, the presence of a CPA at 

threshold levels (≤ 1 µg l-1) must not necessarily lead to microbial metabolism, or co-metabolism 

(18). Instead, the amount of molecules in these habitats might slow their degradation by failing 

to induce, or activate enzymes, necessary for their degradation (36;37). If the concentration of 

the substance is additionally low, there may not be an increase in the total number of the 

heterotrophic bacteria, whereas the number of specific degraders may increase (38). Very low 

concentrations might also cause an increase in degradation rates, but without detectable 

increases in population size (36;37). Degradation kinetics can also change, as e.g. found for 

MCPP [(+/-)-2-(4-chloro-2-methylphenoxy) propanoic acid; mecoprop] and 2,4-D [2,4-

dichlorophenoxyacetic acid]. Non-growth kinetics were typically found below 10 µg l-1, whereas 

growth-linked kinetics with accelerating degradation rates were measured at higher 

concentrations (18;39). The authors suggested the existence of specific threshold 

concentrations to which microorganisms decompose a single substrate under steady state 

conditions. This is in accordance with calculated threshold concentrations of Schmidt et al. (40), 

who suggested a growth-linked degradation of approximately 0.2 µg l-1 for many organic 

chemicals in an aquatic environment. In such cases, biotransformation is supposed to occur by 

co-metabolism as secondary substrate, constant and independently of the test substance 

concentration (41;42). 
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The mineralization of xenobiotics, either by microbial individuals or by linked consortia, depends 

on several factors, and it is speculated that four major variables regulate the rate of degradation 

in soils (17;43;44): 

 

 1.) The molecular structure of the CPA. 

2.) The quantities and distribution of “reactive sites” in the ecosystem that can degrade the 

CPA (e.g. ions, microbial cells), as well as the accessibility at these sites. 

 3.) The degradability of CPA by living cells, as well as their activity. 

 4.) The fractions of the soil, like e.g. the mineral or organic matter content. 

 

Factors regulating the variables are: 

 

 1.) The total amount of CPA. 

 2.) The test site itself. 

 3.) The available electron acceptors (e.g. oxygen). 

 4.) The ambient temperature. 

 5.) The water availability. 

 6.) The pH. 

 

A guideline from the Netherlands recommends the use of 14C-labelled test compounds for 

aquifer degradation studies under different redox conditions at the lab-scale, using water-

saturated batch (static), or column (dynamic) systems (45). Depending on the specific scientific 

question, each approach has its advantages and biases (15). The design of a batch system is 

simple, and studies can include a large number of replicates (12;46;47). However, batch 

systems can reflect only a limited part of the biotic and abiotic complexity, as they e.g. are not 

able to consider the probable impact of groundwater flow on degradation kinetics. The design of 

a column system is more complex, including a source reservoir, matrix space, waste container, 

and peristaltic pump. Breakthrough curves of CPA are determined by in- and effluent 

measurements that enables additionally a metabolite screening, but the number of treatments 

and applications is limited (48-53). However, aquifer studies should generally reflect natural 

aquifer conditions, in particular to the concentration of test subsances (≤ 10 µg l-1) and flow 

conditions (38;53;54). 
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In this work, test systems were developed to assess the microbial degradation activity at static, 

as well as at dynamic flow conditions at the lab-scale. Liquid scintillation counting (LSC) was 

used to quantify the radioactivity, whereas high-performance liquid chromatography (HPLC) was 

used to identify active ingredients, metabolites, and their relative distribution. 

The physiology of bacteria was additionally studied in small bioreactors, referred to as 

Retentostat, operated with complete biomass retention using internal cross-flow filtration (55). 

A cumulative selective enrichment of aquifer bacteria took place, due to the complete retention 

of the bacteria inside the bioreactor at continuous supply of different organic media (3.3). 

Growth conditions were reflecting to some extend the natural growth conditions concerning 

substrate availability inside the respective aquifer. The method ensured a continuous 

accumulation of the bacterial biomass at lowest growth rates to access the microbial aquifer 

degradation potential. 

1.2 OBJECTIVES 
Artificial aquifer incubation systems at the lab-scale: The first objective of the thesis was to 

develop a static, as well as a dynamic artificial aquifer test system at the lab-scale for standard 

use (Good Laboratory Practice, GLP). Both systems should be airtight, operable under aerobic 

and anaerobic conditions, and mimic natural aquifer conditions. The application range of the 

test systems was dedicated to near-natural aquifers, as at higher concentration (≥ 100 µg l-1) 

clogging problems (due to microbial growth), or oxygen depletion (due to higher organic carbon 

turnover rates) were most likely. 

Aquifer degradation studies and their comparability: The second objective was to establish 

standard methods for aquifer degradation studies concerning setup, and analytics to improve 

the comparability between the static and dynamic study design, as well as between different 

experimental approaches. 

The study of the current aquifer degradation activity: The third objective was to study the 

intrinsic microbial degradation activity of shallow aquifers with respect to Isoproturon (IPU), 

Imidacloprid (IMI), and Diketonitrile (DKN) at the lab-scale under static and dynamic flow, as 

well as under oxygen, iron- and sulphur-reducing conditions at a concentration of 

0.1, 1 and 10 µg l-1. Results should represent the current microbial degradation activity of the 

selected aquifers Krauthausen, Mulder-Beilen, and Nature A at natural aquifer conditions. 

The study of the aquifer degradation potential: Besides these three objectives, the microbial 

degradation potential was additionally studied under optimized growth conditions to characterize 

the degradation potential of the indigenous aquifer microorganisms. These experiments were 

not part of the thesis, and are illustrated only briefly. 
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2 MATERIAL AND METHODS 

For the degradation studies, a lab facility, including an atmospheric chamber, was installed in 

the lysimeter basement of the institute (http://www.fz-juelich.de) to match natural aquifer 

conditions with respect to light (dark), and temperature throughout long-term operation. During 

the studies, the basement temperature was synchronized to the temperature amplitude in 

1.5 mbs of the test field Merzenhausen (Forschungszentrum Jülich), as below this depth, 

temperature fluctuations are only marginal (56). The atmospheric chamber (Figure 11; page 48) 

was filled with forming gas (95/5  N2/H2) to control iron- and sulphur reducing conditions 

during incubation (> 450 days). Besides the specifications of the sponsor, the degradation 

studies were set up in accordance to a guideline for the transformation of xenobiotics in aquifers 

by means of incubation studies, issued in the Netherlands (45). 

2.1 TEST SUBSTANCES 
The following chapter will summarize some key facts about the selected test substances, which 

were provided by the sponsor (BayerCropScience). 

2.1.1 BENZOIC ACID 

Test substance was [14C-UL] benzoic acid, and [phenyl-UL-14C] benzoic acid. 

 

 

 

 

 

 

Figure 1: Benzoic acid: Chemical structure and label position* 
 

Nomenclature: Common name: Benzoic acid (9) 

Other names:  Benzene carboxylic acid, phenyl carboxylic acid 

Molecular weight: 122.12 g mol-1 

Molecular formula:  C7H6O2 

Form: White, needle-like crystals 

Melting point: 122°C 

Boiling point: 249°C 
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Solubility: In water: 2.9 g l-1 (20 °C); 69 g l-1 (95 °C) 

Stability: Stable under common conditions of use, and storage 

Vapour pressure: 0.11 to 0.53 Pa (20°C) 

log Kow: 1.9 

Specific radioactivity: 120-mCi mmol-1 

Radiochemical purity: > 99% 

 

Benzoic acid (BA) is mainly known as a food preservative, but it occurs naturally as well in 

many plants and animals. Well established derivatives are salicylic acid, 2-O-acetylsalicyclic 

acid, also known as aspirin, and as food additive E210 as pure compound, and E211, E212, or 

E213 as salts (11). BA is easily degradable by microorganisms, and it is taken up either by 

passive diffusion, or via highly specific permeases (57). The degradation pathway is supposed 

to be via aerobic, as well as anaerobic microbial mineralization (58). The aerobic metabolism is 

characterized by an extensive demand of molecular oxygen, essential for the hydroxylation, and 

activation of the aromatic ring structure, leading to a small number of different aromatic 

intermediates (59;60). The most common is benzoyl-CoA, a central intermediate in the 

degradation pathway of a large number of aromatic substrates (61). The anaerobic degradation 

starts with the activation of benzoic acid to benzoyl-CoA by a benzoate-CoA ligase (62). The 

subsequent ring reduction to a non-aromatic compound can differ in several ways (60). The 

volatilization and adsorption potential to sediment or soil particles is low (9), and mobility studies 

of 14C-labeled BA in different soils showed that BA is moderately mobile. The mobility increases 

with pH increase, whereas it decreases with anion exchange capacity increase (11;63;64). 

A study with an alkaline soil showed a mineralization up to 63% within 10 weeks, initial 

concentration 2 mg 100 g-1 (65). At aerobic conditions, the calculated DT50 in groundwater was 

41 hrs, initial concentration from 1 to 100 µg l-1 (66). Described half-life times ranged from 

7.2 to 76.8 hrs in a sandy soil, and the mineralization did not vary in any systematic way with 

depth. Mineralization kinetics in the saturated and overlying vadose zone were quite similar and 

included no lag period. The author concluded that most of the microbes are already adapted to 

the utilization of aromatic substrates, as a high proportion of humic substances include aromatic 

moieties (67). BA was also included as a model compound in a chalk aerobic aquifer study, and 

was mineralized up to 60% within 144 days in all depths (12). Several microorganisms are 

isolated which are able to degrade BA. Among others, they include fungal species such as 

Rhodotorula glutinis, other yeast-like fungi (68), the mould Penicillium frequentans (69), and 

bacteria such as Alcaligenes denitrificans (57), Rhodopseudomonas palustris, and several 

strains of denitrifying pseudomonads (58;60;61;65). 
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2.1.2 ISOPROTURON 

Test substance is [phenyl-UL-14C] Isoproturon (70). 

 

 

 

 

Figure 2: Isoproturon: Chemical structure and label position* 
 

Nomenclature: Common name: Isoproturon 

Chemical name (IUPAC): 3 -(4-isopropylphenyl)-1,1-dimethylurea 

Molecular weight: 206.3 g mol-1 

Molecular formula:  C12H18N2O 

Form: Colourless crystals 

Melting point: 158°C; (technical 153-156 °C) 

Vapour pressure: 3.15 x 10-3 mPa (20 °C); 8.1 x 10-3 mPa (25 °C) 

log Kow: 2.5 (20 °C) 

Henry: 1.46 x 10-5 Pa m3 mol-1 

Density: 1.2 (20 °C) 

Solubility: In water: 65 mg l-1 (22 °C) 

Stability: Very stable to light, acids, and alkalis 

Specific radioactivity 12.3 MBq mg-1 

Radiochemical purity > 99% 

 

The non-polar phenylurea herbicide Isoproturon (IPU) is used for pre- and post emergence 

control of annual grasses and broad-leaved weeds in wheat, rye, and barley crops (70). It is 

widely used, and frequently detected in ground- and surface water, exceeding the drinking 

water limit of the European Commission (5). This is probably due to its moderate persistence, 

as well as relatively low adsorption to soil particles (70). The persistence for at least 3 years 

after treatment, as well as a leaching potential was e.g. shown in a field study from the UK (71). 

Microbial degradation is the significant mechanism for the dissipation of Isoproturon from soil 

(72-74), although photochemical, as well as chemical processes can be involved (75;76). The 

mineralization of the phenyl-moiety is slow, and its extent is often limited. It achieves about 

5 to 25% within 2 and 3 months, often attended by the formation of large fractions of bound 

residues (71;77). 
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The mineralization in soil includes the metabolic pathway of N-demethylation to N-(4-

isopropylphenyl)-N-methylurea (MDIPU), and hydroxylation to 3-(4-(2-hydroxyisopropyl)-

phenyl)-1.1-dimethylurea (74;78;79), which are subsequently degraded to several other 

metabolites, including DDIPU, and 4IA (80;81). The mineralization potential decreases with 

increasing depth, and is either absent or slow in groundwater and aquifers (12;80;82-84). 

Johnsen et al. (82) observed a small but significant sorption together with a partial 

mineralization of IPU in a chalk aquifer, leading to the accumulation of MDIPU. 

Kristensen et al. (12) reported about the vertical mineralization potential of IPU in a chalk 

aquifer (0.15 to 4.45 mbs). They measured a mineralization up to 37% in the plough layer, and 

up to 6% in the chalk, attended by lag periods of at least 40 days within 258 days. This is in 

accordance to a study with sandy aquifer material (0.06 to 7.68 mbs) from Denmark (52), where 

the mineralization was greatest in the plough layer (upper 0.30 m), and reached about 

14% within 267 days. IPU was recalcitrant, and showed a small time-depending sorption in a 

column study with sandy, gravely aquifer material within 140 days. IPU was not mineralized in 

batch study with a sandy aquifer profile (0 to 7.7 mbs) from Denmark within 270 days, as well as 

in a batch study with in-situ groundwater and aquifer material, whether incubated at aerobic or 

anaerobic conditions (85). Larsen et al. (86) measured that IPU was not anaerobically 

mineralized in the presence of nitrate with sandy aquifer material within 312 days, and Larson 

and Aamand (83) failed to detect any mineralization with denitrifying, sulphate reducing or 

methanogenic aquifer material within 312 days at 10°C. They assumed that the cleavage of the 

aromatic ring, according to current knowledge, is an oxygen demanding step. Several studies 

failed to isolate IPU degrading microorganisms in liquid cultures (75;80). This could be related 

to the insufficient exposure of the used soils towards IPU (81;87), as a mixed bacterial culture 

was isolated from a field regularly treated with IPU for over 10 years, having the ability to 

mineralize IPU (31). The high pH of the field (> 7) possibly favoured specific bacteria, 

suggesting an in-situ adaption upon highly repeated application to the metabolism of IPU 

(31;72;81;88). Sorensen et al. (89) isolated the bacteria strain SRS2 from the mixed culture that 

mineralized about 50% of IPU by successive N-demethylation, cleavage of the urea side chain 

and mineralization of the phenyl structure. They identified SRS2 as a Sphingomonas sp., a 

microorganism that belongs to the alpha-subdivision of the proteobacteria. SRS2 is unable to 

grow on rich media, suggesting the adaptation to an oligotrophic environment. If the strain was 

cultured together with strain SRS1, isolated from the same field and unable to degrade IPU or 

its known metabolites, the mineralization of IPU was significantly enhanced. The authors 

concluded that SRS2 might be auxotrophic, and required components supplied by synergistic 

interactions between the two strains (90). 
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The narrow pH optimum of SRS2 (7 to 7.5) might be responsible for the spatial variation of 

degradation rates across the field (91;92). The aging of IPU, MDIPU and 4IA in an agricultural 

soil study for 131 days implied that the partial degradation might lead to a reduced 

mineralization by SRS2, due to sorption (93). These suggestions are in accordance with results 

of Walker et al. (84), who reported a significant negative linear relationship between DT50 values 

(from 6 to 30 days), and soil pH in an agricultural soil previously treated regularly with IPU for 

over 8 years. 

2.1.3 IMIDACLOPRID 

Test substance is [methylene-14C] Imidacloprid (70). 

 

 

 

 

Figure 3: Imidacloprid: Chemical structure and label position* 
 

Nomenclature:  Common name: Imidacloprid 

Chemical name (IUPAC): 1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine 

Molecular weight: 255.7 g mol-1 

Molecular formula:   C9H10ClN5O2 

Melting point: 144°C 

Vapour pressure: 4 x 10-7 mPa (20°C); 9 x 10-7 mPa (25°C) 

log Kow: 0.57 (21°C) 

Solubility: In water: 0.61 g l-1 (20°C) 

Stability: Stable to hydrolysis at pH 5 - 11 

Specific radioactivity: 4.11 MBq mg-1 

Radiochemical purity: > 99% 

 

Imidacloprid (IMI) is a polar, systemic, chloro-nicotinyl insecticide used in soil, seed, and foliar 

for the control of sucking insects, including rice hoppers, aphids, thrips, whiteflies, termites, turf 

insects, soil insects, and some beetles (94). It is affecting the transmission of stimuli in the 

insect nervous system by the blockage in a type of neuronal pathways (nicotinergic). These are 

more abundant in insects than in warm-blooded animals, making the chemical more toxic to 

insects than to warm-blooded animals. 
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The blockage leads to the accumulation of acetylcholine, an important neurotransmitter, 

resulting in the insects paralysis, and eventually death (95). The main elimination pathway is 

due to microbial degradation, and half-life times (DT50) depend on e.g. the soil type, the use of 

organic fertilizers, and the presence or absence of ground cover (96-102). The absence of any 

detectable metabolite accounting for more than 10% of applied amounts indicates that the 

primary attack of the parent molecule determines the aerobic degradation kinetic (main 

metabolites in soil include Imidacloprid-urea (1-(6-chloro-3-pyridinylmethyl)-2-imidazolidinone), 

6 chloro-nicotinyl acid, and 6-hydroxynicotinic acid). First steps of the anaerobic degradation are 

promoted, leading to the formation of Desnitro Imidacloprid, and no new degradation products, 

not already known from aerobic degradation, are formed (103-105). Lee et. al. (99) studied the 

microbial degradation of IMI in a field lysimeter, and postulated the accumulation of intermediate 

anaerobic degradation products. They measured an increase in 14CO2 evolution, when the 

redox conditions switched from anaerobic to aerobic. DT50 of different field studies ranged 

between 74 and 174 days, and the presence of a ground cover shortened DT50 (48 days) by a 

factor of three. The degradation via photolysis resulted in a DT50 of 39 days (103;106). A 

desorption hysteresis is reported for IMI, and for its metabolites that is increasing with 

incubation time (107-110). Low application rates show highest sorption (111;112), affected by 

smectite, as well as organic carbon content (109;110;113;114). The physical-chemical 

properties may indicate a mobility of IMI, but column-, field-, and lysimeter studies did not 

confirm a leaching potential into deeper soil layers (115;116). Only Jenkins (117) suggested a 

leaching potential in sensitive soils, such as porous or gravelly soils, depending on irrigation 

practices and preferential flow. 

2.1.4 DIKETONITRILE 

Test substance is [phenyl-UL-14C] Diketonitrile (70). 

 

 

 

 

Figure 4: Diketonitrile: Chemical structure and label position* 
 
Nomenclature: Common name: Diketonitrile 
  (Main metabolite and active ingredient of the herbicide Isoxaflutole) 

Chemical name (IUPAC): 2-cyano-3-cyclopropyl-1-(2-methanesulfonyl-4-trifluoromethyl- 
 phenyl) propane-1.3-dione 
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Molecular weight: 206.3 g mol-1 
Molecular formula:  C12H18N2O 
log Kow: 0.4 
Solubility: In water: 326 mg l-1 
Specific radioactivity 4.3 MBq mg-1 
Radiochemical purity > 98% 
 

Diketonitrile (DKN) is the main metabolite, and active ingredient of the pre-emergence herbicide 

Isoxaflutole (5-cyclopropyl-1.2-oxazol-4-yl α,α,α-trifluoro-2-mesyl-p-tolyl ketone). Isoxaflutole 

(ISO) belongs to the isoxazole class of herbicides, and is applied at low doses (between 75 and 

150 g ha-1) for grass and broadleaf control in corn (maize) and sugar cane (118). DKN is a 

potent inhibitor of the primary molecular target 4-hydroxyphenylpyruvate dioxygenase (HPPD). 

The inhibition affects the carotenoid biosynthesis, resulting in bleaching of newly developed 

leaves, followed by growth suppression and necrosis prior to the plant death (119;120). The 

reduction of the carotenoid and chlorophyll content is associated with an indirect in vivo 

inhibition of the phytoene desaturase by the depletion of its essential co-factor plastoquinone, 

caused by the inhibition of HPPD (119;121). 

In soil, water, and plants, ISO converts fast to the more mobile DKN that hydrolysis to 2-

methanesulonyl-4-trifluoromethyl benzoic acid, a herbicidal inactive benzoic acid derivative 

(122). A grass treatment did not promote the hydrolysis in a lysimeter study, but significantly 

influenced the transport of DKN through enhanced evapotranspiration (123). The author 

assessed a poor correlation between the conversion of DKN and the microbial biomass, 

suggesting a mainly abiotic process. A hypothetical pathway for the chemical cleavage may 

involve an oxidative mechanism and the possible involvement of fungal oxidases (124). 

In contrary, Taylor-Lovell et al. (125) reported about a reduced conversion in abiotic controls 

and concluded that the dissipation of DKN is primarily a biological process. In agreement, 

Beltran et al. (126;127) concluded that the isomerisation of ISO is a chemical process, whereas 

the subsequent conversion of DKN is biologically mediated (128;129). They assessed a strong 

correlation between conversion and the degree of susceptibility, being most rapid in tolerant 

corn and slowest in susceptible Abutilon theophrasti. DKN laboratory half-life times (DT50) range 

between 20 and 30 days (122;130). Mitra et al. (131-133) increased the reversible sorption of 

DKN by the amendment of organic matter. They concluded a positive sorption-desorption 

hysteresis, influenced primary by the organic matter and secondly by the clay content. DKN has 

a higher mobility in soil compared to ISO, and strong precipitation events seem to enhance the 

leaching potential (125) that decreases, as the organic matter- and clay content increases 

(133). 
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2.1.5 APPLICATION 

Isoproturon (IPU), Imidacloprid (IMI), and Diketonitrile (DKN) were provided as powders, which 

were diluted in distilled water, whereas benzoic acid (BA) was solved in ethanol. To avoid the 

addition of extra organic carbon to the oligotrophic aquifer environment, the ethanol was 

evaporated by N2, and BA was resolved in double distilled water. Stock and application solutions 

of all test substances were directly prepared before application, and radioactivity and 

radiochemical purity were checked by LSC, and HPLC. It was impossible to install an analytical 

balance in the lysimeter hall, and the test substances were directly applied into the groundwater 

by a pipette (METTLER TOLEDO, Rainin, EDP3), as well as into a vial (PACKARD) to check 

the applied radioactivity by LSC. 

2.2 AQUIFERS AND AQUIFER MATERIALS 
Aquifer materials and groundwater were sampled from the water-saturated zone by the use of 

special sampling techniques to avoid the affection of microorganisms originating from topsoil or 

other layers. The aerobic aquifer material was sampled by a sonic drill technique (Figure 6; 

page 35), whereas the groundwater was collected from an already installed well by a peristaltic 

pump (Figure 21; page 126). Anaerobic aquifers were sampled by J. Smelt from the 

Alterra Institute Wageningen (134), who developed a special method to sample anaerobic 

aquifer material and groundwater from the water saturated zone (Figures 23, 24; pages 127, 

128). For all aquifer materials, temperature (10°C), moisture content (water saturated), and 

lighting conditions (dark) were maintained during sampling, transport, storage, and long-term 

operation. Groundwater and aquifer materials were analyzed by LUFA NRW, 

BayerCropScience, and Forschungszentrum Jülich to determine the physical and chemical 

characteristics (Tables 10 - 13; pages 78 - 81). 

2.2.1 AEROBIC TEST SITE KRAUTHAUSEN 

 Krauthausen: Near the city of Jülich, province North Rhine-Westphalia 

 Coordinates: N latitude 52 ° 38’ 025’’; E longitude 25° 30’ 079’’  

 Contact: Forschungszentrum Jülich GmbH, ICG-4, Leo Brand Strasse, D-52425 Jülich 

 

As a part of the geological so-called “Zwischenscholle”, the gravel, sandy aquifer “Krauthausen” 

is located in the southern part of the Lower Rhine region Germany, approximately 10 km 

northwest of the city of Düren, and 7 km southeast from the Forschungszentrum Jülich between 

the river Rur, and the opencast Hambach. 
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The test site (Figure 5; page 34) is about 200 × 70 m in size, and has a permanent grass cover 

(fallow land), influenced by agricultural activity of the surrounding area (production of 

sugar beets, winter wheat, and barley). Flood plain deposits at the top, and a clay layer at the 

bottom, originated from the branched Rur river system, limit the first aquifer, which has a 

thickness of about 9 m (Figure 20; page 125). 

 

 

 

 

 

 

 

 

 

Figure 5: Aerobic test site Krauthausen 
 

The average annual precipitation in this area is about 690 mm, and the groundwater table 

varies between 1 and 3 mbs throughout the year. Mean groundwater velocity is about 

2 m per day, but geo-electric and seismic tomography showed locations with high and low 

groundwater flow velocities (135;136). The groundwater has a high bicarbonate content, and 

the pH is about 6.8 (Table 9; page 77). Intensive agricultural land use of the region causes high 

concentrations of nitrate. Content of dissolved oxygen increases up to 7.7 mg l-1, and Eh values 

vary between 250 mV and 300 mV. Clay and silt content of the aquifer varies between 0.5 and 

7.5%, and the mean total porosity is 26% ± 7%. Mean cationic exchange capacity of aquifer 

sediments is 0.44 meq 100 g-1, and mean specific surface is 0.7 m2 g-1 (137). 

The aquifer material was sampled from the water-saturated zone from 4 to 6.5 meter below 

surface (mbs) by the use of a sonic drill module (Figure 6; page 35). The device generated 

vibrations (200 Hz) that caused the fluidization of the surrounding sediment (1 to 5 mm), which 

reduced the friction at the head of a special sampler, referred to as aqua lock sample system 

(Figure 25; page 128). For the groundwater, a plastic tube was implemented into an observation 

well of the test field (Figure 21; page 126), and a Teflon® tube was released inside. 

Afterwards, the groundwater was sampled by a peristaltic pump (6 l h-1) that was finally stored in 

sterilized bottles (SCHOTT, 10 l). 
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Figure 6: Aerobic aquifer material sampling by Axiom & Eijkelkamp 

2.2.2 ANAEROBIC TEST SITE MULDER-BEILEN AND NATURE A 

 Mulder-Beilen: Near the village of Beilen in the province Drenthe (NL) 

 Coordinates: N latitude 52 ° 51’ 6.393’’; E longitude 6° 28’ 57.410’’ (Bessel)  

 Contact: Mr. J.H. Mulder, De Musels 3, 9411 VN Beilen 

 

The agricultural field above the aquifer Mulder-Beilen is situated in the “valley” of a small water 

stream, and has always been used as a pasture. The sandy aquifer is directly in contact with 

the peat topsoil (70 to 80 cm), and might sometimes include a thin layer of silt at 1.3 to 1.5 mbs 

(Figure 7; page 35). The groundwater table varies between 0.7 and 1.3 mbs, and Eh values, 

measured by platinum electrode, as well as flow-through cell, vary between 228 mV and 

245 mV, and 39 mV and 95 mV, respectively. A quantitative iron/sulphur test confirmed iron-

reducing conditions (Table 9; page 77). Pesticide use (mecoprop, MCPA, or glyphosate) was 

minimal, and restricted on spots to control undesired plant species. Groundwater analysis by 

the sponsor showed no IMI, and IPU concentrations > 50 ng l-1. 

 

 

 

 

 

 

 

 

Figure 7: Anaerobic test site Mulder-Beilen 
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 Nature A: Near village of Slootdorp, province N-Holland (NL) 

 Coordinates: N latitude 52° 51’ 25,284’’; E longitude 4° 44’ 44,944’’ (Bessel)  

 Contact: Hoogheemraadschap (NL) Noorderkwartier, Gorslaan 60; 1441 RG Purmerend 

 

This aquifer Nature A does not underlie an agricultural field, but a strip of natural land 

(about 60 m wide), grown with trees and wild plants (Figure 8; page 36). The test site is situated 

on a slope between two agricultural areas with different surface levels that are used as 

grassland alternated with flower-bulb growing (Figure 22; page 127). At the sampling spot, a 

clay layer exists under the loamy and humic topsoil (about 30 cm), which reaches to about 

1.8 mbs with a higher clay content at greater depth, and a very dark colour (reduced and with 

some organic matter). Apparently, the clay layer acts as a barrier for the (upper) groundwater 

flow from the area with the higher surface level. The fine to middle fine sand layer beneath (with 

some shells) appeared strongly reduced, and Eh values, measured by platinum electrode, as 

well as flow-through cell, vary between 173 mV and 187 mV, and -86 mV and 4 mV, 

respectively (Table 9; page 77). A quantitative iron/sulphur test also confirmed sulphur reducing 

conditions, and groundwater analysis by the sponsor showed no IMI and IPU concentrations 

> 50 ng l-1. 

 

 

 

 

 

 

 

 

 

Figure 8: Anaerobic test site Nature A 
 

Aquifer materials and groundwater were sampled by digging a ditch until the groundwater 

level was reached. Afterwards, a hole, which was stabilized by a casing tube, was further 

deepened by a special bailer (Figure 24; page 128). Aquifer materials were collected from the 

specific strata by a special core sampling tube, while N2 was injected into the hole to prevent 

oxygen contact. Aquifer materials were stored in polyethylene containers, which were flushed 

by argon gas, again to minimize oxygen contact (Figure 9; page 37). A peristaltic pump was 

finally used to sample the groundwater that  were then stored in sterilized flasks (2.5 l). 
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Figure 9: Anaerobic aquifer material sampling by J. Smelt 
 

2.2.3 DRY MATTER CONTENT 

The dry matter content (%) was calculated by the following equation: 

 

 

 

Table 1: Dry matter content – calculation 
 

Petri dishes (3 x) were scaled (tare weight), and wet aquifer material (50 g) was weighed in 

(initial weight) to determine the dry matter content (DM) for each charge of aquifer material. 

Samples were dried to constant weight (105°C, 12  hrs), and gross weights were determined 

after the samples were cooled down in an exsiccator. 

 

 

(initial weight + tare weight - gross weight)
Dry matter content [%] = * 100

(gross weight - tare weight)
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2.2.4 CARBON DIOXIDE IN AQUEOUS SOLUTIONS AND MODIFICATION OF 
GROUNDWATER 

The solubility of CO2 in aqueous solutions depends upon several aspects (138), as: 

 

 1.) The pressure of CO2 in equilibrium with the solution - the solubility increases with the

 pressure. 

 2.) The temperature – the solubility decreases with increasing temperature. 

 3.) The pH – the solubility increases with increasing pH (133;139). 

 

In aqueous solution, CO2 exists in the following different species: 

 

 1.) CO2 (g)  CO2 (l) 

 2.) CO2 (l) + H2O  H2CO3 

 3.) H2CO3+ H2O  H3O+ + HCO3
- pKa1 (25°C) = 6.37 

 4.) HCO3
- + H2O  H3O+ + CO3

2- pKa2 (25°C) = 10.25 

 

First, it simply dissolves (1), related to a chemical equilibrium with carbonic acid (2). At 

equilibrium, most of the CO2 remains as solvated molecular CO2, and only a small fraction 

(0.2 to 1%) is converted into carbonic acid (H2CO3) that dissociates in two steps (3/4). 

Bicarbonate (HCO3
-), and carbonate (CO3

2-) are dominating at a pH > 8.3, CO3
2- at a pH > 12.3, 

and CO2 at a pH < 4.3 (Figure 42; page 144). All these carbonate anions can interact with the 

cationic present in the groundwater to form insoluble carbonates (e.g. limestone (CaCO3), or 

manganese carbonate (MgCO3) (142). 

The sampling of aquifer materials and groundwater from deeper layers (2.2) was affected by an 

atmospheric pressure change for CO2 that resulted in a minor solubility of CO2, which finally 

increased the pH of the collected groundwater (Table 14; page 81). This “natural” increase was 

stronger for the aquifer Krauthausen, probably due to the lower sampling depth, and could not 

be prevented, as the studies were accomplished at the normal atmospheric pressure. 

Sodium hydroxide and soda lime are strong sinks for CO2, and both are regularly used in 

degradation studies with 14C-labelled test compounds to absorb mineralized 14CO2 from the gas 

phase (6;12;13;17;53;140;141). However, the benzoic acid (BA) studies had shown that the 

continuous absorption of CO2 by the use of CO2 absorber traps resulted in a displacement of the 

groundwater chemical equilibrium (Table 15; page 81). 
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The increase of the groundwater pH was correlated with an increase of the hydroxide ion 

concentration, which was related to the transformation of bicarbonate that was caused by the 

diffusion potential of the CO2 sinks, strongly depending on incubation time (2.2.4). The 

groundwater samples were modified to stabilize the pH as follows: A magnetic stirrer was used 

to warm up the acidified (HCL, 6 M) groundwater (50 to 60°C) in order to support the degassing 

of CO2 by N2 (aquifer Mulder-Beilen and Nature A), or synthetic air (aquifer Krauthausen). After 

12 hrs, groundwater samples were cooled down to about 10°C, and sodium hydroxide (1 M) 

was added to adjust the pH to about 7. Na2HPO4 and KH2PO4, (each 1 mM) were finally added 

to re-buffer the groundwater to pH 6.8. 

2.3 DETERMINATION OF RADIOACTIVITY 
The following chapter provides information about the detection of the applied radioactivity by 

liquid scintillation counting (LSC), and radio high performance liquid chromatography (HPLC). 

Both methods were used  to accomplish quantitative (LSC) and qualitative (HPLC) analysis. 

2.3.1 LIQUID SCINTILLATION COUNTING 
14C measurements were accomplished by a liquid scintillation counter (CANBERRA, TRI-

CARBTM 2500TR) with quench correction by means of sample-specific calibration series, and 

external standardization. For the measurement, the sample solutions were mixed with a 

scintillation cocktail, typically composed of an aromatic organic solvent, a scintillation 

substance, and suitable solubilizers. The detection limit of the liquid scintillation counter (LSC) is 

defined as the sense of a discrimination limit of the smallest quantifiable amount of radioactivity, 

differentiated from a zero value in a statistically significant manner. Based on the double zero 

value, this amount was 0.4 Bq for all measured LSC samples. Specific background values were 

determined by measuring blank samples that matched the study samples as close as possible 

in terms of cocktail, vial type, volume, and sample composition and standards of known 14C 

radioactivity were additionally measured for internal standardization. 

2.3.1.1 14CO2 GAS PHASE AND DISSOLVED 14CO2 

Aqueous sodium hydroxide (NaOH) solution (1.5 ml, molarity (M) 0.5) was filled into test tubes 

(5 ml) to absorb 14CO2 from the gas phase of the static, as well as dynamic test systems after 

the following equation: 

 

 2NaOH + CO2 + H2O  Na2CO3 + 2H2O 
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The test tubes were processed as follows: The NaOH solution was transferred into LSC vials 

(PACKARD), and the tubes were twice rinsed by distilled water (5 ml) to trap 14C residuals. The 

water additionally enhanced the solubility of carbonates, as only single phases are measurable 

by LSC. Afterwards, INSTA-Gel plus (10 ml) was added to the samples, and 14CO2 gas phase 

was measured by LSC. 

Dissolved 14CO2 from the groundwater and the extracts was measured after the same 

principle, following the separation of dissolved organic 14C. Liquid samples were carefully filled 

into flasks (SCHOTT, Duran) that were immediately closed airtight. Temperature and 

atmospheric pressure were kept constant, and sample disturbance was minimized to avoid 

losses of dissolved CO2. Afterwards, a syringe was used to acidify the samples (HCL, 37%) via 

a septum, and ultra sonic waves (ROTH, Elmasonic S 15, 3 x 5 min) were used to release the 

dissolved 14CO2, which was then trapped in aqueous NaOH solution. The procedure ensured to 

measure even the smallest amounts, as the dissolved 14CO2 was trapped from the entire 

sample volume. 

The absorption kinetic of the NaOH traps was determined by a sodium bicarbonate 

(NaH14CO3) study (0.5 - 11 hrs) to fix the required absorption time after the release of the 

dissolved 14CO2. As more than 50% of the released 14CO2 was absorbed from the gas phase 

within 1.5 hrs, and about 99% within 11 hrs (Figure 27; page 129) the absorption time was fixed 

to 12 hrs. The total absorption capacity of the NaOH traps was additionally calculated on 

molari masses, and the maximum applied quantities of Isoproturon (C12H18N2O), Imidacloprid 

(C9H10ClN5O2), and Diketonitrile (C15H12F3NO4S), which were all 14C ring-labeled at only one 

atom (2.1). For the calculation, it was assumed that 100% of the relative carbon content of IPU 

(70%), IMI (42%), and DKN (50%) were converted. Results confirmed that the quantity, and 

molarity of the NaOH trap was sufficient to aborb 100% of the relative carbon contents, even if 

the test substances were applied in a mixture at a concentration of 10 µg l-1 (7.5 x 10-3 Mol 

sodium hydroxide  approximately 1.53 x 10-9 Mol CO2 Isoproturon, 7.39 x 10-10 Mol CO2 

Imidacloprid, and 6.26 x 10-10 Mol CO2 Diketonitrile). 

At the beginning of my thesis, two additional methods were developed to separate dissolved 

organic 14C and dissolved 14CO2. Method A: Quantities of dissolved organic 14C and dissolved 
14CO2, as well as dissolved organic 14C (after acidification with HCL, 37%, and outgassing with 

N2 for 45 min) were measured to calculate dissolved 14CO2, as the difference of the two 

measurements. However, if the metabolic rates are very low, this method can not be 

recommended. LSC samples had a strong quench, and acidified blank samples had higher 

backgrounds than alkaline blank samples. Unfortunately, this effect was not linear, and it was 

not possible to establish a calibration curve. 
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Method B: Aliquots (20 ml) of the liquid samples were filled into vials (PACKARD), and placed 

into a customized separation device (Figure 43; page 144). Afterwards, the samples were 

acidified (HCL, 37%), and outgassed with N2 (45 min) to trap the dissolved 14CO2 in two vials, 

connected in-line, and filled with 15 ml OXYSOLVE scintillator (ZINSSER). Aliquots (3 x 5 ml) of 

the remaining liquids were finally mixed with INSTA-Gel plus (10 ml), and all samples were 

measured by LSC. This method had the advantage to process up to 20 samples on each run, 

but the couplings had to be replaced rapidly because they were corroded by the volatile 

scintillator solution. 

2.3.1.2 DISSOLVED ORGANIC 14C 

Groundwater aliquots (20 ml) of the dynamic test system (2.5.2) were sampled, and stored in 

flasks (SCHOTT, 500 ml). After the separation of dissolved 14CO2 (2.3.1.1), aliquots of the 

remaining groundwater (3 x 5 ml) were mixed with INSTA-Gel plus (10 ml) to quantify the 

dissolved organic 14C by LSC. If the radioactivity was below the detection limit of LSC, the liquid 

samples were evaporated by the means of a Syncore® Analyst (BUECHI), which allowed for a 

smooth concentration of the samle volume down to pre-defined residual volumes of 0.3, 1.0, or 

3.0 ml, respectively. 

2.3.1.3 EXTRACTABLE ORGANIC 14C  

Aquifer materials were extracted three times with methanol (70 ml) to differentiate between the 

extractable, and non-extractable organic 14C. Acetonitrile and ethanol, which are generally used 

in degradation studies to extract solid sample material, did both not fit, as the sample 

composition (extract plus scintillator; INSTA Gel plus, Ultima Gold) influenced the LSC 

measurement. LSC quench and count per minute (CPM) rate were affected by phase 

separation, precipitation, and ionic strength of the sample itself. Aquifer materials were 

tranferred into centrifuge tubes (BECKMANN, 250 ml), and NaOH (0.5 M, 1 ml) was added 

(pH > 8.5) to exclude losses of dissolved 14CO2. The samples were then placed for 30 min on a 

vertical shaker (BÜEHLER & OTTO, SM-30), centrifuged for 10 min at 14.000 rpm 

(BECKMANN, J2-21), and filtrated (fluted filter, typ 101, 240 mm). The aquifer materials were 

extracted twice again, and extracts were merged in flasks (SCHOTT, 500 ml). Afterwards, 

extractable organic 14C, and dissolved 14CO2 were separated (2.3.1.1), and aliquots (3 x 5 ml) of 

the remaining extract were finally mixed with INSTA-Gel plus (10 ml) to measure the amount of 

extractable organic 14C by LSC. 
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2.3.1.4 NON-EXTRACTABLE ORGANIC 14C 

Quantitative 14C radioactivity measurements by LSC are based on liquid samples. Therefore, 

the non-extractable organic 14C fraction was combusted, and trapped as 14CO2 in scintillator 

solution by the use of an automated biological oxidizer (ZINSSER, Robox 192). Extracted 

aquifer materials were dried to constant weight (12 hrs, 105°C), and homogenized 

(15 min, 400 rpm) by the use of a vibratory disc mill (RETSCH, PM 400). 

Aliquots (3 x 3 g) were then combusted, and the non-extractable organic 14C was trapped as 
14CO2 in 15 ml OXYSOLVE scintillator (ZINSSER). Several samples ranged below the detection 

limit of the LSC, and it was not possible to establish a mass balance. This was due to the low 

applied radioactivity, organic carbon detection limit of the oxidizer (300 mg per single probe), as 

well as maximum sample size of the oxidizer (3 g). Specific background values were 

determined by blank samples for each run and aquifer, and standards of known 14C radioactivity 

were additionally combusted for internal standardization. 

2.3.2 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 

Radio high-performance liquid chromatography (HPLC) was used to identify active ingredients, 

metabolites, and their relative distribution. However, analysis were only accomplished, if the 

radioactivity of the samples exceeded the detection limit of HPLC (about 10 Bq per sample). 

Liquid samples were separated in a solid phase column under high pressure 

(MZ Analysentechnik Mainz, PefectSIL Target ODS-3, 3 µm, 150 * 4.6 mm) with the maximum 

HPLC injection volume (200 µl). The polarity of the mobile phase was gradually modified by 

means of a gradient program (Table 26; page 87), where the aqueous solution became 

increasingly non-polar after the addition of acetonitrile (flow 1 ml min-1, 

0.1 wt% aqueous H3PO4). Substances with a large number of polar OH groups, in this case the 

metabolites, were first routed to the detector after chromatographic separation. The detection 

was then performed by a radioactivity detector (BERTHOLD, type LB506C), equipped with a 

solid scintillator (yttrium glass), and the radioactivity of the injected sample was quantified by the 

area under a peak. Qualitative information concerning sample composition (relative distribution, 

integration % of all) was finally determined by a HPLC analysis program (WINFLOWTM 

Version 1.3, Radiochromatography Software). If the radioactivity was below the detection limit of 

HPLC, the liquid samples were concentrated by freeze-drying. Sample solutions (20 ml) were 

filled into a vial (PACKARD), coated by cellulose cloths, and stored in a freezer (-18°C). The 

frozen samples were dried in a freeze-drying unit (STERIS, Lyovac GT2) to constant weight, 

and the radioactivity was resolved in 1 ml acetonitrile (ACN). 
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Precipitation, probably carbonates, remained undissolved, but were transferred, together with 

the acetonitrile, into an Eppendorf vial (2 ml). Samples were then centrifuged 

(5 min, 12000 rpm, HETTICH, Mikro Rapid), and the supernatants were used to rinse the vials 

(PACKARD) to trap 14C residuals. Afterwards, the liquid samples were measured by HPLC, 

whereas the remaining precipitations were diluted in distilled water (5 ml), mixed with 10 ml 

INSTA-Gel plus (PACKARD), and measured by LSC to determine 14C residuals. 

2.4 THE INTRINSIC MICROBIAL DEGRADATION POTENTIAL - 
ENRICHMENT OF MICROBIAL AQUIFER COMMUNITIES IN 
BIOREACTORS 

The following chapter provides information about the enrichment of microbial communities in 

small bioreactors (Figure 39; page 141). This method ensured a continuous separation and 

feedback of the bacterial biomass and high cell densities at lowest growth rates in long term 

continuous cultivations (143). 

2.4.1 ENRICHMENT IN RETENTOSTATS 

Microbial communities of the aquifer Krauthausen (2.2.1) were enriched according to 

Tappe et al. (55). Three Retentostats were filled with groundwater (300 ml), derived from 

observation well 69 of the test field Krauthausen (Figure 21; page 126). The microbial 

communities were enriched by a continuous supply of a specific media (144) that included 

peptone, yeast, and the selected CPA as organic carbon sources (Table 2; page 43). 

 

 

 

 

 

 

 

 

Table 2: Enrichment cultures: Organic media components (10 l) 
 

Anorganic media components (Table 17; page 82) were added to double distilled water, and 

placed for 12 hrs on a stirrer to dissolve all components. Afterwards, the organic media 

components were added, and the water was filtrated (0.2 µm) to sterilize the media. 

 

Retentostat 1 (R1) R2 R3

Peptone [mg l-1] 25 25 -

Yeast [mg l-1] 25 25 -

Isoproturon [mg l-1] - 0.5 10

Imidacloprid [mg l-1] - 0.5 10

Diketonitrile [mg l-1] - 0.5 10
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The media were supplied at a flow rate of approximately 50 ml h-1, and aliquots of R1 (2 ml), 

R2 (2 ml), and R3 (5 x 2ml) were sampled after 4, 10, 50, 71, and 77 days of enrichment. 

Microbial populations were characterized by bacterial cell number (2.4.5), and denaturing 

gradient gel electrophoresis (DGGE) of PCR products (2.4.3). Starting with incubation day 50, 

the in- and outflow test substance concentrations of R2 and R3 were measured by HPLC 

(2.4.4). 

2.4.2 DNA EXTRACTION, PURIFICATION AND POLYMERASE CHAIN REACTION 

The total community DNA was extracted from sterile filtrated groundwater (2 l) of the test aquifer 

Krauthausen (2.2.1), and from aliquots of the three enrichment cultures (5 x 2 ml)  using Fast 

DNA kit (Q-BIOgene, BIO 101 Systems). DNA was purified using Wizard®DNA Clean-Up 

System (PROMEGA), extraction and purification followed the instructions of the manufacturer. 

16S rDNA from nucleotide 968 to nucleotide 1401 was amplified using the eubacterial universal 

primer set U-968-GC, and L-1401. Polymerase chain reaction (PCR) was performed with a total 

volume of 50 µl in 0.2 ml reaction tubes, using the following profile: Denaturation for 10 min at 

95°C, 35 cycles consisting of denaturation at 95°C for 1 min, annealing at 54°C for 1 min, and 

elongation at 72°C for 1 min. PCR was finished by a final elongation step at 72°C for 10 min, 

and aliquots (5 µl) of each amplification reaction were then analyzed on 1.2% w/v agarose gels, 

cast and run in 1x TAE buffer. Gels were finally stained with ethidium bromide, and documented 

using PDQuest (BIO-RAD). 

2.4.3 DENATURING GRADIENT GEL ELECTROPHORESIS 

Denaturing gradient gel electrophoresis (DGGE) of PCR products (145) was performed using a 

DCode system (BIO-RAD). The PCR products encounted increasingly higher concentrations of 

chemical denaturant as they migrated through a polyacrylamide (6%) gel with gradients 

between 30% and 70% denaturants (urea-formamide). Gels were prepared, and polymerized to 

a sheet of PAG film (AMERSHAM Biosciences, GelBond) for being stabilized during the 

subsequent staining steps. Upon reaching a threshold denaturant concentration, the weaker 

melting domains of the double-stranded PCR product begun to denature at which time migration 

slows dramatically. Differing sequences of DNA (from different bacteria) denatured at different 

denaturant concentrations resulting in a pattern of bands. Each band is theoretically 

representing a different bacterial strain present in the community. Gels were running in 1x TAE 

buffer for 16 hrs at a constant voltage (100 V), and temperature (60°C). After electrophoresis, 

the gels were silver stained, and scanned (AGFA, DUOScan f 40). 
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2.4.4 HIGH PERFORMANCE LIQUID CHROMOTOGRAPHY 

The concentation of non-radiolabeled test substances was measured in the in- and outflow of 

R2 and R3 by HPLC. The active ingredients were determined by a UV detector (GYNKOTHEK, 

UVD 160) at a wavelength of 270 nm for Imidacloprid (IMI), 251 nm for Isoproturon (IPU), and 

300 nm for Diketonitrile (DKN). 

2.4.5 BACTERIAL CELL NUMBER 

The bacterial cell number of the enrichment cultures, as well as their distribution was measured 

using an automated particle counter (BECKMANN Coulter, Multisizer II). The particle 

concentration was calculated after the following equation: 

 

 

 

 

Table 3: Bacterial cell number: Particle concentration (particles ml-1) 

 

2.5 DEVELOPMENT OF A STATIC AND DYNAMIC TEST SYSTEM FOR 
AQUIFER DEGRADATION STUDIES 

The following chapter provides information about the development, setup, and testing of a 

static, as well as a dynamic artifical aquifer incubation system at the lab-scale, referred to as 

Microcosm (2.5.1) and DAISY (2.5.2). Both systems were used to study the intrinsic microbial 

degradation potential of the selected aquifers (2.2) with respect to Isoproturon (IPU), 

Imidacloprid (IMI), and Diketonitrile (DKN). The comparability between the static and dynamic 

approach was additionally characterized with the main intention to identify the relevant 

parameters with respect to aquifer degradation studies. In the following studies, the headspace 

and the groundater of the dynamic test system was sub-sampled in regular time intervals to 

measure the amount of 14CO2 gas phase, dissolved organic 14C, and dissolved 14CO2 

groundwater. At time of final processing, the amount of extractable organic 14C, as well as non-

extractable organic 14C was additionally measured to establish a mass balance. This was in 

contrast to the static system, where a mass balance was determined at each sampling point. 

 

 

buffer volume [ml] + sample volume [ml] particle counts
Particle/ ml = x x 1000

                sample volume [ml] measured volume [µl]
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2.5.1 THE STATIC INCUBATION SYSTEM 

Specifications of the static Microcosm incubation test system were as follows: Simple design, 

easy to handle in- and outside of atmospheric chambers in order to run an ample of replicates. 

The sponsor additionally decided to set up the incubations with the highest achievable ratio of 

aquifer material to groundwater to allow for a water table of about 2 cm above sediment, 

depending of the grain size of the selected aquifer. A glass flask (SCHOTT, 250 ml) was 

selected as Microcosm that was placed on a precision balance (METTLER TOLEDO) to fill in 

the wet aquifer material by a spatula, excluding stones > 0.5 cm, and to add the groundwater by 

the use of a pipette (METTLER TOLEDO, Rainin, E3). After application (2.1.5), the Microcosms 

were closed airtight until processing with a special screw cap (Figure 10; page 46) that was 

equipped with an absorber trap for 14CO2 (2.3.1.1). Setup, sample processing, and analytical 

methods were checked on the basis of mass balances, determined in two 14C benzoic acid (BA) 

studies using first Milli-Q water, and subsequently methanol as eluant. Both studies did not 

distinguish between dissolved 14CO2 and dissolved organic 14C, since it was not known at this 

time that a large portion of 14CO2 remained dissolved in the groundwater (3.1.4). 

The Microcosm incubation study - M1 and Microcosm incubation study - M2. were set up 

with aquifer material (100 g, DM), as well as groundwater (40 ml) from the aquifer Krauthausen 

(2.2.1), and [UL-14C]-benzoic acid (2.1.1) was applied at a concentration of 4.5 µg l-1. After 

12 hrs of incubation, the microcosms were processed as described in chapter (2.3). 

 

 

 

 

 

 

 

 

 

 

Figure 10: The Microcosm incubation test system: Technical draft 
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2.5.2 THE DYNAMIC INCUBATION SYSTEM 

Specifications of the dynamic incubation system (DAISY) were as follows: Simple and technical 

reliable, operable in- and outside of atmospheric chambers to accomplish long-term degradation 

studies ≥ 360 days. Airtight to establish mass balances by the use of 14C radiolabeld test 

substances (concentration ≤ 10 µg l-1), and monitored by an automated online control unit 

(Figure 19; page 125), which can be used to adjust different flow velocities of at least 20 

replicates. With respect to the Microcosm (2.5.1), the dynamic test systems were set up with a 

different aquifer material (150 g, DM) to groundwater (450 ml) ratio to enable dynamic flow 

conditions, as well as the sub-sampling of the test system. Two flasks (A, B), a glass column 

(C), and peristaltic pump (D) were connected in line (A, C, B, D, A) by Teflon®-PVA, and 

stainless steel tubes (Figure 11; page 47). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The DAISY incubation test system: Technical draft 
 

The test systems were then closed airtight by screw caps, equipped with an absorber trap for 
14CO2, and a liquid level sensor  The test systems were filled with groundwater (flasks), and 

aquifer material (column) to establish a constant water column between flask A, column, and 

flask B. After the the test systems were closed airtight, the groundwater flow was achieved by 

generating an atmospheric pressure difference between the two headspaces of the flasks 

(shifting of the constant water column, due to high- and low pressure). The adjustable, bi-

directional, continuous, and automated flow is comparable to the principle of a beam balance. 
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For DAISY, the weights were substituted through high- and low pressure, realised by a 

switchable peristaltic pump, operated in online mode by the control unit that monitored the water 

level inside the two flasks (Figure 19; page 125). The test systems were placed on a precision 

balance (METTLER TOLEDO) to fill in the aquifer material by a spatula, excluding 

stones > 0.5 cm, and to fill in the groundwater by the use of a pipette (EPPENDORF, Easypet). 

Afterwards, the test substances were applied (2.1.5), and the test systems were closed until 

sub-sampling, or final processing (Figure 12; page 48). Prior to the automated version, the flow 

was first achieved by gravitation, and alternate lifting of flask A and B. The flow volume was 

adjusted by the difference in height between flask A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The DAISY incubation test system: Design and experimental setup inside an 
atmospheric chamber 
 

Like for the Microcosm, the DAISY was checked on the basis of mass balances, determined in 

three 14C benzoic acid (BA) studies: 

 

 1.) The long-term DAISY incubation study - D1. 

 2.) The mid-term DAISY incubation study - D2. 

 3.) The short-term DAISY incubation study - D3. 
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The automation was not performed at the start of the BA studies, and the flasks were lifted from 

Monday to Friday twice a day. Contrary to the mid- and short-term incubation test series, the 

first long-term incubation study did additionally not distinguish between dissolved 14CO2 and 

dissolved organic 14C. It was not known at this time that a large portion of the 14CO2 remained 

dissolved in the groundwater (2.2.4). 

The long-term DAISY incubation study - D1 was set up in triple repetition with aquifer 

material (150 g, DM) and groundwater (450 ml, unmodified) from the test aquifer Krauthausen 

(2.2.1). [UL-14C]-benzoic acid (2.1.1) was applied at a concentration of 0.1 and 10 µg l-1 and 

sampling was scheduled after 1, 3, 7, 11, 15, 21, 35, 56, and 84 days of incubation. The 

processing was accomplished as described in chapter (2.3). 

The mid-term DAISY incubation study - D2 was set up in fourfold repetition with aquifer 

material (100 g, DM) and groundwater (300 ml, unmodified). [UL-14C]-benzoic acid was applied 

only at a concentration of 10 µg l-1, and the sampling was scheduled after 1, 4, 6, 8, 11, and 

15 days of incubation. Processing was accomplished as in D1, but dissolved 14CO2 was fixed by 

the addition of sodium hydroxide, as well as dissolved 14CO2 and dissolved organic 14C were 

separated by method A (2.3.1.1). 

The short-term DAISY incubation study - D3 was set up and processed like D2, with the 

following exceptions: The sampling was scheduled after 3, 6, 8, 24, 32, 48, 56, 120, 144, and 

168 hrs of incubation, [Phenyl-UL-14C]-benzoic (2.1.1) was used, and the dissolved 14CO2 was 

trapped in 14CO2 absorber traps (2.3.1.1). 

2.5.3 COMPARABILITY OF THE STATIC AND DYNAMIC TEST SYSTEM 

It was scheduled to compare degradation rates of the static and dynamic test system to study 

the effect of groundwater flow on degradation kinetics. However, the specifications of the 

static and dynamic test system (2.5.1/ 2.5.2) were different in more than one factor, and it 

was not possible to compare the degradation rates between the two test systems. 
As a consequence, it was necessary to implement a third test system that was filled with the 

same quantity of aquifer material and groundwater like the dynamic test system to match the 

absolute amount of the test substance, as well as the number of microorganisms. For this “new” 

test system, referred to as Column test system, a self-made glass column was used that was 

closed airtight until processing by a special screw cap, equipped with an absorber trap for 14CO2  

(2.3.1.1). Degradation rates were then compared again on the basis of mass balances, 

determined in one 14C benzoic acid (BA) test series. In contrast to all other experiments, this 

study was accomplished at 25°C to study the estimated small, but specific differences at 

enhanced microbial metabolic rates more precisely. 



 50 

The comparability incubation study - C1 included samplings in triple (Microcosm and Column 

test system), or twofold repetition (DAISY) after 9, 24, 33, 48 hrs of incubation. The test systems 

were filled with aquifer material (50 g, DM), as well as groundwater (Microcosm 20 ml; Column/ 

DAISY 350 ml) from the aquifer Krauthausen (2.2.1), and [Phenyl-UL-14C]-benzoic acid (2.1.1) 

was applied at a concentration of 1 µg l-1. After the application, aquifer material and 

groundwater were mixed within the Microcosm and Column test system once to ensure the 

uniform distribution of test substance at the beginning of the study. As the groundwater flow rate 

was adjusted to about 30 cm h-1, this was not necessary for DAISY. All incubations were 

processed as described in chapter (2.3.1), including the separation of dissolved 14CO2 and 

dissolved organic 14C. 

2.6 THE ACTUAL MICROBIAL DEGRADATION ACTIVITY 
The actual microbial degradation activity of the aquifer Krauthausen (2.2.1), Mulder-Beilen, and 

Nature A (2.2.2) was studied with respect to the selected test substances Isoproturon (2.1.2), 

Imidacloprid (2.1.3), and Diketonitrile (2.1.4). It was scheduled to accomplish long-term 

degradation studies using the static Microcosm (> 450 days), as well as dynamic DAISY 

(> 360 days) test system to study the effect of groundwater flow on the degradation kinetics. 

Four incubation studies were accomplished: 

 

 1.) The microcosm incubation study - M3. 

 2.) The microcosm incubation study - M4. 

 3.) The DAISY incubation study - D4. 

 4.) The DAISY incubation study - D5. 

 

The incubation studies were started after about ½ year of experimental work, and it was not 

possible to consider all findings of the benzoic acid studies, which were developed meanwhile 

(3.1.4). Therefore, the first Microcosm incubation study - M3 and the first DAISY incubation 

study - D4 were accomplished with unmodified groundwater, which caused an increase of the  

pH (3.1.2). The second Microcosm incubation study - M4 was set up with unmodified 

groundwater, as well as modified groundwater to “bridge” the results between M3 and M4. This 

was in contrast to the second DAISY incubation study - D5 that was accomplished only with 

modified groundwater, as the findings of the “bridging” were meaningful for both systems. M4 

and D5 were additionally and contrary to M3 and D4 set up one week before the application of 

test substances to measure redox, pH, and oxygen, as well as to adjust the flow volume of the 

groundwater (> ½ of the total groundwater volume) and the velocity (ml min-1) for DAISY. 
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The first Microcosm incubation study - M3 scheduled samplings after 0, 225, and 450, as well 

as after 0, 90, 180, 270, 360, 450 days of incubation (Table 22; page 85). A total number of 186 

Microcosms were filled with aquifer material (100 g, DM), and unmodified groundwater (40 ml) 

from the aquifer Krauthausen, Mulder-Beilen, and Nature A (2.2). The effect of temperature on 

degradation kinetics was studied by including samples that were incubated at 20°C, and biotic 

degradation was additionally checked by sterilized samples. The test substances were applied 

as single substances, as well as in a mixture (1:1:1) at a concentration of 0.1, 1,  and 10 µg l-1 

(Table 21; page 85). Due to the number of replicates, the application was done on three 

consecutive days. The samples were processed as described in chapter (2.3) with the 

exception that the differentation of dissolved organic 14C and dissolved 14CO2 started with 

incubation day 180. 

The second Microcosm incubation study - M4 scheduled samplings after 0, 180, 330, as well 

as after 0, 90, 180, 270, 330 days of incubation (Table 24; page 86). A total number of 132 

Microcosms were filled with aquifer material (100 g, DM), as well as groundwater 

(Nature A 65 ml; Krauthausen and Mulder-Beilen 40 ml) from the three selected test aquifers 

(2.2). The study included variants with modified (2.2.4), as well as unmodified groundwater 

(Table 23; page 86) to study the effect of the groundwater treatment. Afterwards, the three 

selected test substances were applied, and the incubations were processed as described for 

M3. 

The first DAISY incubation study - D4 scheduled a sub-sampling interval of 45 days of 

incubation (Table 25; page 87). A total number of 22 DAISY´s were filled with aquifer material 

(150 g, DM), and unmodified groundwater (450 ml) from the three selected test aquifers (2.2). 

Isoproturon, Imidacloprid and Diketonitrile were applied as single substances, as well as in a 

mixture (1:1:1) at a concentration of 0.1, 1 and 10 µg l-1. All incubations were processed as 

described in chapter (2.3), including the differentation of dissolved organic 14C and dissolved 
14CO2. 

The second DAISY incubation study - D5 started with the same variants (Table 25; page 87) 

and specifications as D4, but instead of using modified groundwater (buffer, 1 mM), and 

applying the test substances after nine days of stable operation at a constant pH. 
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Test Test  Test  Flow  Incubation  
Study substance aquifer conditions days Groundwater Dissolved 14CO2 pH

Microcosm - M1 BA K static ½ unmodified not determined increasing

Microcosm - M2 BA K static ½ unmodified not determined increasing

C1 BA K static 2 unmodified not determined increasing
dynamic

DAISY -D1 BA K dynamic 84 unmodified not determined increasing

DAISY -D2 BA K dynamic 15 unmodified not determined increasing

DAISY -D3 BA K dynamic 7 unmodified not determined increasing

Microcosm - M3 IPU K static 450 unmodified not determined increasing
IMI MB
DKN NA

Microcosm - M4 IPU K static 330 modified measured stable
IMI MB unmodified increasing
DKN NA

DAISY -D4 IPU K dynamic 330 unmodified not determined increasing
IMI MB
DKN NA

DAISY -D5 IPU K dynamic 300 modified measured stable
IMI MB
DKN NA

 The microbial degradation activity

2.7 SUMMARIZED TEST STUDY DESIGN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Summarized test study design (BA = Benzoic acid, K = Krauthausen, MB = 
Mulder-Beilen, NA = Nature A, IPU = Isoproturon, IMI = Imidacloprid, DKN = Diketonitrile) 

 Development of a static and a dynamic test system for aquifer degradation studies
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3 RESULTS AND DISCUSSION 

3.1 DEVELOPMENT OF A STATIC AND DYNAMIC TEST SYSTEM FOR 
AQUIFER DEGRADATION STUDIES 

As benzoic acid was mineralized within a few hours, it was possible to test the two developed 

test systems (2.5) based on the sum of the radioactivity detected in the respective fractions of 

the different studies (2.5.1; 2.5.2). DAISY was introduced as a dynamic test system that enables 

the determination of mass balances by the use of 14C radiolabeled test substances, 

recommended for aquifer degradation studies at a concentration ≤ 10 µg l-1 (45). 

3.1.1 THE STATIC INCUBATION SYSTEM 

The radioactive balance of the first Microcosm incubation study - M1 was based on the sum 

of the radioactivity detected in the following fractions: 

 

 1.) Mineralized 14CO2 gas phase. 

 2.) Extractable organic 14C. 

 3.) Non-extractable organic 14C. 

 

The radioactive balance of the study was 89.3%±1.6% (Table 18; page 82) of the applied 

radioactivity (AR). This confirmed that benzoic acid (BA) was an appropriate model compound 

to check the static and dynamic test systems on the basis of mass balances (12) at a 

concentration range ≤ 10 µg l-1. BA was additionally suitable to assess the microbiol activity of 

the selected aquifers, as between 4.5 and 7.1% of AR were mineralized (14CO2 gas phase) 

within 12 hrs of incubation. The extractable organic 14C fraction ranged between 48.3 and 

51.6%, whereas the non-extractable organic 14C was between 31.8 and 35.1%. The standard 

deviations of LSC measurements were acceptable (< 2.0%), but about 11.6% of AR were not 

recovered. Therefore, the eluant Milli-Q water was replaced by methanol to reliably stop the 

microbial degradation during processing. 

The radioactive balance of the second Microcosm study - M2 was detected in the same 

fractions as for M1, and 99.0%±2.5% (Table 19; page 83) of the applied radioactivity (AR) was 

recovered. The change of the eluant improved the recovery of the applied radioactivity, and 

setup, processing, and analytics were adapted for the dynamic incubation system (DAISY). 
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3.1.2 THE DYNAMIC INCUBATION SYSTEM 

The radioactive balance of the first long-term DAISY incubation study - D1 was based on the 

sum of the radioactivity detected in the following fractions: 

 

 1.) Mineralized 14CO2 gas phase. 

 2.) Organic 14C groundwater (including extractable organic 14C). 

 3.) Non-extractable organic 14C. 

 

Only one system of the triplicate incubation at 0.1 µg l-1 could be processed (one system failed 

due to leakage, and one due to sodium hydroxide contamination), and the radioactive balance 

was 95.7% of the applied radioactivity (AR). The mineralization (14CO2 gas phase) increased 

during incubation from 8.2% to 63.4%, whereas the organic 14C in the groundwater decreased 

from 78.9 to 10.1%, and the non-extractable organic 14C fraction was 22.3% at final processing. 

The radioactive balance of the 10 µg l-1 concentration was 95.9%±0.2%, and the mineralization 

(14CO2 gas phase) increased from 4.1%±0.3% to 48.1%±0.7%, whereas the organic 14C in the 

groundwater decreased from 71.2%±0.5% to 26.7%±0.5%, and the non-extractable organic 14C 

fraction was 21.1%±0.9% at final processing (Table 20; page 84, Figure 13; page 54). 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 13: The long-term DAISY incubation study – D1: Distribution of applied 
radioactivity [%] 
 

The mass balances and standard deviations were acceptable, and the study design was 

unaltered. However, the test substance concentrations varied with respect to the fraction of 

organic 14C in the groundwater, as well as 14C in the gas phase (Figure 13; page 54). 
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If the incubation time increased, the relative ratio decreased for 14C in the gas phase, whereas it 

increased for organic 14C in the groundwater (Table 20; page 84). The groundwater samples 

were acidified, and measured by LSC to study this effect in detail. Results showed that a huge 

amount of mineralized 14CO2 still remained as dissolved 14CO2 in the groundwater. The 

dissolved 14CO2 was slowly, but steadily released to the gas phase during the incubation time, 

probably due to the low diffusion kinetic in the groundwater (68). The benzoic acid degradation 

kinetic was consequently highly underestimated, and methods were considered to measure the 

dissolved 14CO2 fraction. 

The radioactive balance of the second mid-term DAISY incubation study - D2 was based on 

the sum of the radioactivity detected in the following fractions: 

 

 1.) Mineralized 14CO2 gas phase. 

 2.) Dissolved 14CO2 groundwater and extract. 

 3.) Organic 14C groundwater and extract. 

 4.) Non-extractable organic 14C. 

 

The radioactive balance was 97.5%±11.3%, and standard deviations were increased as 

compared to the previous study. Higher standard deviations were especially measured for the 

combustion, where the basic extraction (pH > 8.5) enhanced the quench of the LSC, and the 

radioactivity of the solid samples additionally ranged close to the detection limit of LSC. The 

mineralization (14CO2: gas phase, groundwater, extract) increased up to 43.4%±3.2% within 4 

days of incubation (Figure 14; page 56). This confirmed the extreme underestimation of the BA 

degradation kinetic, as for D1 the mineralization, in this case only the 14CO2 gas phase, was just 

42% after 56 days of incubation (Figure 15; page 56). The maximum turnover was already 

reached before incubation day 4, and the sampling intervals were shortened for the following 

study D3. 

The setup and processing of the third short-term DAISY incubation study - D3 was unaltered, 

and the radioactive balance was based on the sum of the radioactivity detected in the same 

fractions as for D2. The radioactive balance was 110.3%±13.9% for the 0.1 µg l-1 concentration, 

and 83.7±0.37% for the 10 µg l-1 concentration. The larger deviation from full mass balance was 

most likely a result of the frequent, and short sampling intervals at high metabolic rates with 

respect to the kinetic of the sodium hydroxide traps (2.3.1.1). However, the mass balances were 

in the range for degradation studies with 14C-radiolabeled test substances (140), but should be 

improved once again for the following studies. 
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Figure 14: The mid-term DAISY incubation study - D2: Distribution of applied 
radioactivity [%] 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: The DAISY incubation test system and the amount of dissolved 14CO2: 
Comparison of incubation studies D1/ D2  
 

 

The mineralization of [Phenyl-UL-14C]-benzoic acid confirmed the cleavage of the aromatic ring 

structure that was already assumed in the studies with [UL-14C]-benzoic acid (3.2.1). For the 

10 µg l-1 concentration, the mineralization reached 12.9% within 24 hrs, 29.7% within 48 hrs of 

incubation, and a maximum of about 50% after 56 hrs. 

 

0 20 40 60 80
0

10

20

30

40

50

 14CO2 NaOH & groundwater 

 14CO2 NaOH

days

CO2 sodium hydroxide trap

CO2 sodium hydroxide trap plus dissolved CO2 groundwater

14
C

 [%
 o

f A
R

]  
 

D1: Mineralized 14CO2 gas phase

D2: Mineralized 14CO2 gas phase +

       Dissolved 14CO2 groundwater and extract

final processing



 57

The degradation was generally faster, and about 6% higher compared to the 0.1 µg l-1 

concentration. The extractable organic 14C fraction was below 5% for both concentrations, 

whereas the non-extractable organic 14C was about twice for the 0.1 µg l-1 concentration 

(57.9%±4.4%). However, the samples of the 0.1 µg l-1 concentration were measured close to the 

detection limit of LSC, influenced by specific background values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: The short-term DAISY incubation study - D3: Distribution of applied 
radioactivity [%] 
 

3.1.3 COMPARABILITY OF THE STATIC AND DYNAMIC TEST SYSTEM 

The degradation rates of the Microcosm, DAISY, and Column test system were compared in the 

comparison study - C1 that was set up and processed as the previous study D3. The mass 

balances were determined at each sampling point for the two static systems, and radioactive 

balances ranged between 86.5±4.9 and 93.8%±1.7 for the Column test system, as well as 

between 81.9±0.8 and 95.9%±10.7 for the Microcosm. The headspace and the groundwater of the 

dynamic system was sub-sampled, and mass balance was 94.3%±2.1 at final processing. 
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The study was accomplished at 25°C, which generally increased the BA degradation kinetic as 

compared to the studies at 10°C (2.5.2). After 48 hours, the mineralization (=14CO2 gas phase + 

groundwater + extract) was 53.3% for the DAISY, 46.1% for the static column, and 33.4% for 

the Microcosm (Figure 17; page 59). At the start of the thesis, it was scheduled to compare the 

degradation rates of the Microcosm and DAISY test system (1.2) to study the influence of 

groundwater flow on degradation kinetics. Based on the results of this study, this was obviously 

impossible to accomplish, as the study design was different in more than one factor. The 

specifications of the static and dynamic test system (2.5.1, 2.5.2) did not take into account the 

aquifer material (CPA “sink”) to groundwater ratio (CPA “source”). Both systems were set up 

with the same concentration (µg l-1), but with a different absolute amount of test substance (µg), 

groundwater (ml), and aquifer material (g). It was also not possible to compare the two test 

systems based on metabolic rates (µg) per aquifer material (g), as Microcosm and DAISY were 

set up with a different ratio of aquifer material and groundwater. In the studies concerning the 

microbial degradation activity, these ratios differed for example, by a factor of 7.5 (Table 16; 

page 82). 

DAISY and the Column test system had the same aquifer packing to equalize contact 

surfaces, and both test systems were filled with the same amount of aquifer material and 

groundwater to match the relative and absolute amount of test substance. After the application 

and uniform distribution of test substances, this experimental setup enabled to study the effect 

of water flow on degradation kinetics, as both systems differed in only one factor, the 

groundwater flow. Results showed that the mineralization was about twice that for the DAISY, 

and dynamic flow conditions enhanced the BA degradation kinetic. Within 9 hrs of incubation, 

total mineralization reached 46.6% for DAISY, whereas only 24.2% were mineralized for the 

Column test system. The degradation-limiting factor was almost certainly the availability of test 

substance, as 57.0% (static column), and 24.6% (DAISY) of the applied radioactivity (AR) 

remained dissolved in the groundwater. The aquifer microorganisms were probably mainly 

immobile, and attached to the solid aquifer matrix. Furthermore, as about 20% of AR (DAISY 

and SC) was not extractable, and BA is known to have a low adsorption potential (9), it was 

assumed that the non-extractable organic 14C fraction was mainly incorporated into the 

microbial biomass, and not bound to sediment particles. After 48 hrs, the 14CO2 gas phase 

fraction was 5.1% for the Column test system, and 24.3% for DAISY. Although the two systems 

had a different headspace volume, and two traps were used within the dynamic system, the 

dynamic flow conditions enhanced the diffusion of dissolved 14CO2 into the gas phase, most 

probably due to the movement of the groundwater. 
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The study was accomplished with aquifer material that was stored at +4°C for about two years. 

Results showed that the microbial degradation potential of the aquifer with respect to BA was 

unaltered, and comparable to those, determined in the studies immediately after sampling. The 

storage time and storage conditions probably had no negative effect on the general microbial 

degradation potential of all selected aquifers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The comparison study – C1: Distribution of applied radioactivity [%] 
 

3.1.4 CONCLUSIONS 

Sparse knowledge was available with respect to the degradation of CPA in near-natural 

aquifers, and even no data were availabe about specific test systems at the lab-scale for aquifer 

degradation studies. However, If the degradation of CPA is studied in aquifers, the study design 

must take into account the special physical and microbiological settings of a water-saturated 

matrix. The BA studies clarified that e.g. the amount of dissolved 14CO2, which is not yet 

considered in other studies (12), or the pH, which is governing the degradation pathway of a 

xenobiotic (19), are of particular importance. At a concentration of ≤ 10 µg l-1, analytics are 

additionally a special challenge. On the one hand to detect mineralization and metabolisation of 

CPA at treshold levels, on the other hand to characterize microorganisms with respect to 

population shift, growth, or maintenance. 

 

DAIS Column Microcosm
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The comparability study C1 confirmed that the dynamic flow conditions enhanced the 

degradation kinetic of BA, which can also be accepted for Imidacloprid, Isoproturon, and 

Diketonitrile. At static flow conditions, the relevant transport mechanism was molecular 

diffusion, which led to the transport of molecules from a region of higher concentration to one of 

lower concentration by random molecular motion. This was in contrast to DAISY, where the 

transport was dominated by the given groundwater flow. 

Based on the results of the BA studies, and with respect to a guideline from the 

Netherlands (45), the following specifications were derived to study the microbial degradation 

potential of a shallow aquifer with respect to CPA. 

 

1.) Degradation rates of the Microcosm and DAISY test system are only comparable, if the 

incubations are set up with the same specifications, in particluar with respect to the 

concentration (µg l-1), absolute amount of test substance (µg), and groundwater (ml) to 

aquifer material (g) ratio. 

2.) Degradation studies in water-saturated matrices should be set up with regard to the 

groundwater chemistry, in particular to the solubility of CO2 in aqueous solutions, which is 

variable and strongly influences the pH (2.2.4). 

3.) Degradation studies in water-saturated matrices have to consider the amount of dissolved 
14CO2, otherwise degradation kinetics are highly underestimated (2.5.3). As many water-

saturated aquifer, as well as topsoil degradation studies did not consider the dissolved CO2 

fraction, the degradation rates of several CPA should be confirmed. 

4.) The Microcosm and DAISY test systems were developed to accomplish degradation 

studies with near-natural aquifer material. Due to the concentration (≤ 10 µg l-1) and organic 

carbon content (≤ 0.5%), the accumulation of CO2 within the two test systems was in the 

non-toxic range. 

5.) Degradation studies are regulary set up with sodium hydroxide or soda lime to trap 

mineralized CO2 (53;141). This leads to a pH shift, due to a displacement of the 

groundwater equilibrium (Table 15; page 81). As the pH can govern the pathway of CPA 

(19), the degradation rates of several studies should be confirmed. 

6.) Degradation studies should be set up without sodium hydroxide or soda lime traps. In this 

case, CO2 gas phase could be measured by flushing the gas phase of the test system at 

each sampling intervall, whereas accumulated dissolved CO2 should be separated and 

measured as already described (2.3.1.1). 
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7.) Degradation studies should use analytical methods as e.g. FT-ICR-MS or LC-MS to study 

the mineralization and metabolisation of CPA in detail. At a concentration range ≤ 10 µg l-1, 

LSC and Radio-HPLC are only of restricted use, as the specific detection limits are reached 

to several metabolites (due to e.g. limited specific radioactivity, or distribution of applied 

radioactivity). 

3.2 THE MICROBIAL DEGRADATION ACTIVITY 
The studies with respect to the microbial degradation activity were already set up when the 

comparability study C1 (2.5.3) was accomplished, and it was not possible to change the set of 

settings to consider the results that were developed meanwhile. Therefore, the degradation 

rates of Microcosm and DAISY were not comparable, and it was not possible to study the effect 

of groundwater flow on degradation kinetics of Imidacloprid, Isoproturon, and Diketonitrile. This 

strongly limited the informative value of the microbial degradation activity studies. 

On the other hand, standard methods for aquifer degradation studies were established 

concerning setup and analytics (3.1.4), and DAISY was introduced as a new artifical aquifer test 

system at the lab-scale to study the microbial degradation activity with respect to CPA. The 

groundwater was modified for the long-term incubation studies, which was only a compromise 

to suppress the increase in the pH value by continious carbon dioxide trapping. Further studies 

should be set up without sodium hydroxide traps, and 14CO2 could be measured after flushing 

the headspace of the respective test system. Liquid scintillation counting was used to provide 

quantitative information with respect to the mineralization [% of AR] of selected CPA. Although 

the detection limits of LSC were reached at a concentration of 0.1 µg l-1, future studies should 

still use this method to determine the radiolabeled test substances in the respective fractions. 

This is important to access the mineralization of CPA at reasonable diffuse concentration. As 

the mineralisation in aquifers is generally low, the metabolisation is of special importance. 

Methods as FT-ICR-MS should be used to study the metabolisation of test substances at 

concentrations ≤ 10 µg l-1 in more detail. Radio-HPLC is only of limited use, as the specific 

detection limits are reached. 

3.2.1 THE STATIC INCUBATION SYSTEM 

The first Microcosm study - M3 was set up with unmodified groundwater, and sodium 

hydroxide was used to trap 14CO2 from the gas phase. This had a deep impact on the chemical 

groundwater equilibrium (Table 15; page 81), and increased the pH. The pH was measured in 

the thin water layer (about 0.5 cm) above the aquifer material, and it was impossible to 

determine a general trend. 
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pH-Values ranged between 6.9 and 8.7 for Krauthausen, ≈80% of all values ranged between 

8.0 and 8.7, between 4.6 and 8.6 for Mulder-Beilen, ≈40% of all values ranged between 7.0 and 

7.5, and between 7.0 and 9.0 for Nature A, ≈60% of all values ranged between 8.5 and 9.0 

(Tables 75 - 87; pages 115 - 124). The dissolved 14CO2 and dissolved organic 14C fractions were 

separated starting with incubation day 180, and the liquid samples were not analyzed by radio-

HPLC. It was also impossible to determine a mass balance for the 0.1 µg l-1 variants, as the 

radioactivity of the liquid and solid samples was often below the detection limit of the LSC. M3 

suffered from the methodological weaknesses that considerably limit the validity that can be 

drawn from the results. Therfore, only general statements could be derived from M3, especially 

with respect to the scheduled “bridging” with the following second Microcosm study – M4. 

M4 was set up with water-saturated aquifer material, and modified groundwater. For the aquifer 

Nature A, the microcosms had to be filled with a total groundwater volume of 65 ml to buffer the 

bicarbonate of the groundwater that was bound to the aquifer material (the molarity of the buffer 

was limited by the groundwater chemistry). This was in contrast to Krauthausen and Mulder-

Beilen, where the specifications of the sponsor had to be fulfilled and 40 ml groundwater were 

added. Unfortunately, the BA results showed that this limited the comparability between the 

respective aquifers, due to a different aquifer material to groundwater ratio (3.1.3). 

The radioactive balance of Microcosm incubation study - M3 was based on the sum of the 

radioactivity detected in the following fractions: 

 

 1.) 14CO2 gas phase. 

 2.) Dissolved 14CO2, (1+2 = mineralization). 

 3.) Dissolved organic 14C groundwater. 

 4.) Extractable organic 14C (3 + 4 = extraction). 

 5.) Non-extractable organic 14C (= combustion). 

 

A mineralization potential with respect to IPU was assessed in all aquifers and it generally 

increased, when the redox potential decreased (Krauthausen < Mulder-Beilen < Nature A). This 

was a new result, since up till now the mineralization of IPU at reducing redox conditions was 

not described in the literature. Most authors supposed that the cleavage of the aromatic ring is 

an oxygen demanding step (83;85;86). The adsorption potential was correlated with the type of 

sediment, being strongest for the aquifer Nature A, followed Mulder-Beilen and Krauthausen 

(Tables 75, 78, 79, 82, 83, 86, 87; pages 115, 118, 118, 121, 121, 124, 124). 
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IMI was mineralized in all selected test aquifers and at all concentrations. However, a strong 

variation (> 10% for Mulder-Beilen; > 7% for Krauthausen) was measured between all values 

(Tables 76, 78, 80, 82, 84, 87; pages 116, 118, 119, 121, 122, 124), and it was impossible to 

detect a general trend. The adsorption potential was low for the aquifers Krauthausen and 

Mulder-Beilen (10 µg l-1), and higher for Nature A. This was probably due to the specific physical 

and chemical characteristics of the respective sediments (Tables 10, 11, 12; pages 78, 79, 80), 

as it is known that the adsorption of IMI is affected by e.g. the smectite-, as well as organic 

carbon content (109;112-114). 

The mineralization potential of DKN decreased with increasing concentration of test substance, 

being greatest for the aquifer Nature A, followed by Krauthausen and Mulder-Beilen (Tables 77, 

82, 85, 86, 87; pages 117, 121, 123, 124, 124). This was in contrast to the adsorption potential, 

which was highest for the aquifer Nature A at 0.1 µg l-1. Mulder-Beilen and Krauthausen had 

only a low adsorption potential, and the non-extractable organic 14C fraction was < 6.5% of AR 

after 450 days of incubation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: The microcosm incubation study - M3: Selected values Isoproturon [% of AR] of 
tables 75, 78, 79, 82, 83, 86, 87 (pages 115, 118, 118, 121, 121, 124, 124) 
 

IPU, IMI, and DKN were also applied in a mixture (1:1:1), and the adsorption-, as well as the 

mineralization potential of the selected aquifers was comparable to the results of the single 

substances (Nature A > Mulder-Beilen > Krauthausen). If the test substances were incubated at 

20°C, the mineralization was generally enhanced (Table 86; page 124). The test substances 

were not significantly mineralized in the biological control samples, which confirmed the biotic 

degradation of IMI, IPU, and DKN (Table 87; page 124). 

Aquifer Concentration Incubation
[µg l-1]  [days]

K 0.1 450 4.56 80.21 n.d.

1 450 4.53 79.17 11.16

10 270 8.77 - -

10 450 2.06 77.84 7.33

MB 0.1 450 12.93 37.83 n.d.

1 450 13.48 40.11 36.32

10 450 10.28 45.26 32.04

NA 0.1 450 14.28 7.63 n.d.

1 450 15.44 9.29 71.13

10 360 16.08 - -

10 450 5.39 4.60 72.48

Mineralization Extraktion Combustion
[%] [%] [%]

ExtractionExtraction
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However, it was not possible to determine specific degradation rates of the active ingredients, 

as the radioactivity of the liquid samples was below the detection limit of HPLC. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: The microcosm incubation study - M3: Selected values Diketonitrile [% of AR] of 
tables 77, 82, 85, 86, 87 (pages 117, 121, 123, 124, 124) 
 

The second Microcosm incubation study - M4 was processed, and evaluated in the same 

manner as M3. A mass balance was not determined for the 0.1 µgl-1 concentration because the 

radioactivity of the 14CO2 gas phase and non-extractable organic 14C fraction was below the 

detection limit of LSC and HPLC. The recovery of all other incubations was acceptable and 

ranged between 89 and 103% of the applied radioactivity (Tables 42, 45, 48, 51, 53, 56, 59, 62, 

64, 67, 73; pages 101, 102, 104, 105, 106, 107, 108, 110, 111, 112, 114). 

The study included unmodified and modified groundwater samples (K, MB, NA, mixture, 0.1 and 

10 µg l-1) to confirm that the “re-buffering” of the groundwater had no effect on the degradation 

of selected CPA. However, on the one hand it was difficult to measure the pH in the 

supernatants (about 0.5 cm), and on the other hand the pH of the unmodified samples was 

additionally increased by the continuous CO2 absorption. This strongly limited the comparability 

of the incubations, and future studies should be set up without the use of sodium hydroxide. 

If the CPA were applied as single substances, the pH of the unmodified samples was increased 

by the continuous absorption of CO2, whereas the pH of the modified samples fluctuated more 

or less around the adjusted value. A general upward trend of the unmodified groundwater pH 

was measured, if the selected test substances were applied in a mixture. However, the pH of 

the modified samples was also slighlty increased, which was unexpected and only detected in 

the mixtures. 

Aquifer Concentration Incubation
[µg l-1]  [days]

K 0.1 450 11.9 84,82 -

1 450 0.48 88.70 6.11

10 450 0.18 90.51 2.77

MB 0.1 450 5.54 78.68 -

1 450 0.96 89.76 2.69

10 360 0.29 90.56 1.85

10 450 0.46 76.42 3.14

NA 0.1 450 21.15 12.59

1 450 11.38 18.78 56.12

450 8.91 42.10 37.88

Mineralization Extraktion Combustion
[%] [%] [%]
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The distribution of the applied radioactivity (AR) was similar between the unmodified and 

modified incubations for all fractions, aquifers, and concentrations (Tables 51, 62, 73; pages 

105, 110, 114). This indicated that the “re-buffering” of the groundwater had no significant effect 

on the aquifer degradation activity. Due to the fluctuating pH values, it was impossible to make 

a clear statement, which showed that a revision of the test system design was necessary. 

Future studies should be set up without continuous 14CO2 absorption, as e.g. already mentioned 

in the conclusions of the BA studies (3.1.4), to avoid the displacement of the chemical 

groundwater equilibrium and finally the increase of pH (Table 15; page 81). 

The mineralization [% of AR] of Isoproturon (IPU) in the aerobic aquifer Krauthausen 

(modified groundwater) was nearly constant for the 0.1 µg l-1 concentration after 90 days of 

incubation (Table 42; page 101), which was in contrast to the 10 µg l-1 concentration. HPLC 

analysis showed that the metabolization of the active ingredient [AI] was low and stopped after 

170 days of incubation (Figure 35; page 137, table 44; page 102). Metabolites of IPU were 

further degraded and finally mineralized up to 1.7% (0.0725 µg kg-1) within 310 days of 

incubation (Table 42; page 101). This is in accordance with results from a chalk aquifer, where 

the mineralization of the phenyl-moiety was low and its extend was limited (71;77). However, if 

IPU was applied in a mixture with modified, as well as unmodified groundwater, the 

metabolization of the parent compound was about 20% higher, probably due to the “interaction” 

with IMI and DKN (Table 51; page 105). The aquifer Krauthausen had only a low adsorption 

potential with respect to IPU, applied as single substance and in a mixture, probably due to the 

low organic carbon content and sediment properties (Table 10; page 78). After 310 days of 

incubation, more than 85% of the applied radioactivity were extractable, and only < 5% were not 

extractable, which was in agreement with results from a sandy aquifer from Denmark (52). 

The mineralization [% of AR] of IPU in the iron-reducing aquifer Mulder-Beilen (modified 

groundwater) and applied as single substance was in the range of radiochemical purity (Table 

53; page 106; 2.1.2), and therefore not significant. This is in accordance to results from various 

aquifer studies, who failed to detect the anaerobic mineralization of IPU (83;85;86). If IPU was 

applied in a mixture with IMI and DKN, the metabolisation of the active ingredient [% of AR] was 

between 10 and 20% higher, compared to the single replicates (Figure 35; page 137, table 55; 

page 107). This was independent from the groundwater treatment (Table 63; page 110). Like 

Krauthausen, the sandy aquifer Mulder-Beilen (2.2.2) had only a low adsorption potential with 

respect to Isoproturon and the non-extractable fraction was > 3% for the 10 µg l-1 concentration 

after 310 days of incubation (Table 11; page 79). 
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The mineralization [% of AR] and metabolisation of IPU in the sulphur-reducing aquifer Nature 

A was comparable to the iron-reducing aquifer Mulder-Beilen. If IPU was applied in a mixture 

with modified, as well as unmodified groundwater, the recovery of the parent compound was 

lowest (about 60% of AR) with respect to all aquifers (Figure 35; page 137), whereas the 

amount of the non-extractable fraction was highest (about 11% of AR), probably due to the 

higher clay content of the aquifer Nature A (Table 12; page 80). During incubation time 

(310 days), the mineralization [% of AR] of Imidacloprid (IMI) in the aerobic aquifer 

Krauthausen (modified groundwater) was not detectable for the 0.1 µg l-1 concentration. It was 

low, but steadily increased up to 0.5% of AR, and 0.02 µg kg-1 aquifer material for the 10 µg l-1 

concentration (Tables 45, 46; pages 102, 103). After 310 days of incubation, more than 84% of 

IMI were extractable at a concentration of 0.1 and 10 µg l-1, whereas the non-extractable 

fraction was about 5% of AR. The recovery of the active ingredient (AI) was comparable 

between the modified and unmodified groundwater samples (Table 51; page 105), and reached 

about 75%, independent whether applied as single substance (Figure 34; page 136, table 47; 

page 103) or in a mixture with IPU and DKN (Table 52; page 106). 

The mineralization, extraction and combustion [% of AR] of IMI in the iron-reducing aquifer 

Mulder-Beilen showed also no significant differences between the unmodified and modified 

groundwater treatment (Table 62; page 110). The mineralization [µg kg-1 aquifer material] 

reached about 0.02 µg for both concentrations, whereas the extractable organic 14C fraction 

was about 20% less for the 10 µg l-1 concentration. If IMI was applied as a single substance, the 

recovery of the active ingredient was constant (about 50%) after 170 days of incubation 

(Figure 34; page 136). Unlike the mixtures, where the recovery of the active ingredient was only 

about 20% of AR after 310 days of incubation (Table 63; page 110). Mulder-Beilen had a higher 

adsorption potential than Krauthausen, and about 30% of AR were bound to soil particles. 

IMI was strongly bound to sediment particles of the aquifer Nature A, probably due to the clay 

content (Table 12; page 80). After 310 days of incubation, about 90% of AR were measured in 

the non-extractable organic C-fraction (Table 67; page 112). 

The mineralization [% of AR] was in the range of radiochemical impurity, and the recovery of the 

AI steadily decreased and was even not detectable at the end of the study (Table 69; 

page 112). Therefore, it is supposed that mainly the active ingredient was bound to the 

sediment particles (Figure 34; page 136). As a result, Imidacloprid was not available to 

microbial degradation, whether applied as a single substance or in the mixture (Table 74; 

page 114). At a concentration of 10 µg l-1, Diketonitrile (DKN) was steadily mineralized up to 

0.003 µg kg-1 aquifer material in the aquifer Krauthausen (Table 49; page 104). 
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However, the mineralization was in the range of radiochemical impurity and, like for 0.1 µg l-1, 

where the measured values fluctuated and ranged between 0.4 and 0.8% of AR (Table 48; 

page 104), was therefore not singnificant. More than 90% of AR remained solved in the 

groundwater, mainly the active ingredient (Figure 37; page139, table 50; page 105), and less 

than 2% of AR were bound to the sediment particles. The recovery of the active ingredient was 

flucuating between 68.7 and 92.7% at a concentration of 10 µg l-1  (Table 50; page 105), and 

with respect to the results from the mixtures (Table 52; page 106), no clear trend could be 

assessed. 

DKN was not mineralized in the aquifer Mulder-Beilen (Table 60; page 109). About 90% of AR 

remained solved in the groundwater, and less than 2% were bound to soil particles (Table 60; 

page 109). The recovery of the AI steadily decreased to about 60% after 310 days of incubation 

(Figure 37; page 139), showing no difference whether applied as a single substance or in a 

mixture, as well as between the groundwater treatments (Table 63; page 110). 

The mineralization of DKN in the aquifer Nature A was in the range of radiochemical impurity 

and therefore not significant. About 90% of AR remained solved in the groundwater, composed 

to about 50% of the active ingredient (Table 72; page 113), whereas about 4% of AR were 

bound to sediment particles (Table 70; page 113). If DKN was applied in a mixture with IMI and 

IPU, the recovery of the active ingredient was somewhat less compared to the single substance 

(Figure 37; page139, table 74; page 114). 

3.2.2 DYNAMIC INCUBATION SYSTEM 

The first DAISY incubation study - D4 was accomplished with unmodified groundwater and 

due to the limited space of the anaerobic chamber (TOEPFER Lab Systems, Göttingen) only 

one single system was operated for Mulder-Beilen and Nature A. For the anaerobic aquifers, 

the CPA were applied in a mixture at a concentration of 10 µg l-1. This was in contrast to the 

aerobic aquifer, where 20 replicates were included, in twofold repetition, applied as single 

substance and in a mixture (Table 25; page 87). After the setup and again one day after the 

application of the CPA, the pH, redox potential, and oxygen content of the groundwater were 

measured. The groundwater pH values were strongly increased (Krauthausen between 8.4 and 

10, Mulder-Beilen up to 9.1, Nature A up to 9.0) and the study was stopped seven days after the 

setup to determine the relevant processes. 

The second DAISY incubation study - D5 was set up and processed as the study D4 with the 

exception of using modified groundwater (2.2.4), a flow volume of about ½ of the total 

groundwater volume, and a flow velocity of about 0.2 m h-1. 
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The test substances were applied after nine days of stable operation at a constant pH and 

redox potential (Krauthausen 6.8, oxygen-, Mulder-Beilen 7.4, iron-, Nature A 7.2, sulphur-

reducing conditions). The microbial degradation activity should be studied by the measurement 

of mineralization rates, determined by LSC. After the second sampling point, it got obvious that 

qualitative informations were necessary to study also the metabolisation of CPA, as the 

measured mineralization rates were to low to study the microbial degradation activity 

(Figures 28, 29, 30, 32; pages 130, 131, 132, 134). During incubation time, and starting with 

day 75, radio high performance liquid chromotography (HPLC) was used to distinguish between 

active ingredients and metabolites. However, the measurements were restricted to the 10 µg l-1 

concentration, as the radioactivity of all other replicates was below the detection limit of HPLC 

(Tables 28, 31, 34, 37, 39, 41; pages 89, 92, 95, 98, 99, 100). HPLC analysis started only with 

incubation day 75, and specific degradation rates [µg kg-1 aquifer material] were determined for 

the single substances (Tables 29, 32, 35; pages 90, 93, 96). This was impossible for the 

mixture, as it was impossible to distinguish between the mineralization of the respective CPA. 

However, the test systems were set up with an equal amount of groundwater (450 ml) and 

aquifer material (150 g). Therefore, it was possible to compare degradation rates [µg kg-1 

aquifer material] between the 0.1,  1,  and 10 µg l-1 concentration of the aquifer Krauthausen 

(applied as single substance), as well as the mineralization [% of AR] and metabolisation 

[AI% of AR] between the selected aquifers of a single concentration. The mass balances 

(=recovery) of all replicates ranged between 88.98 and 109.35% of AR, and standard deviations 

of LSC measurements were acceptable (Tables 27, 30, 33, 36, 38, 40; pages 88, 91, 94, 97, 99, 

100). This confirmed the good reproducibility of DAISY. 

The mineralization [% of AR] of IPU in the aquifer Krauthausen steadily increased during 

incubation time (Figure 28; page 130), and was 8.3% for 0.1 µg l-1, as well as 1.3% for 1 and 

10 µg l-1 at final processing. However, the mineralization [% of AR] did not allow any statement 

about degradation rates [µg kg-1 aquifer material], which were 0.678 µg for 10 µg l-1, 0.023 µg 

for 1 µg l-1, and 0.015 µg for 0.1 µg l-1 (Table 29; page 90). Degradation rate and concentration 

were probably positively correlated, as the degradation rate of 10 µg l-1 was about 29 times as 

large compared to 1 µg l-1, and about 45 times to 0.1 µg l-1. This was most likely due to the 

availability of IPU at the reactive sites, as most of the microorganisms were supposed to be 

attached to sediment surfaces. The revovery of the active ingredient [% of AR] decreased from 

about 90% to < 5% for 10 µg l-1 (Figure 28; page 130, table 28; page 89), which approved that 

the metabolisation of the parent compound was much faster than the mineralization of the entire 

molecule (Table 27; page 88). 
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This was in accordance to the mixture, where the recovery of the active ingredient in the 

groundwater was only 1.9 and 9.6% for 10 µg l-1, as well as 3.1% for 1 µg l-1 (Table 37; 

page 98), showing a strong decrease of the active ingredient between day 75 and 150. For all 

variants, between 5 and 7% of the AR were recovered in the extract (almost 100% AI). They 

were probably bound to sediment particles, and therefore not accessible to the microbial 

degradation (Figures 28, 29; pages 130; 131). However, only about 2% of the AR were 

measured as non-extractable, and more than 80% were dissolved in the groundwater, which 

confirmed the general low adsorption potential of the aquifer Krauthausen (Table 27; page 88). 

The mineralization [% of AR], and the respective degradation rates [µg kg-1 aquifer material] of 

IMI in the aquifer Krauthausen were 4.3%  0.008 µg for 0.1 µg l-1, 1.1%  0.02 µg and 1.8% 

 0.033 µg for 1 µg l-1, as well as 0.35%  0.063 µg and 0.36%  0.064 µg for the 10 µg l-1 

concentration (Table 30, 32; pages 91, 93). Degradation rate and test substance concentration 

were correlated, as the degradation rate of 10 µg l-1 was about 4 times as large compared to 

1 µg l-1, and about 8 times to 0.1 µg l-1. The extractable organic 14C fraction was between 6.5 

and 8.3% of AR (almost 100% AI), and no significant differences were measured between the 

selected concentrations. The revovery of the active ingredient [% of AR] for 10 µg l-1 decreased 

in the groundwater from about 80% to about 70% within 300 days of incubation (Figure 28; 

page 130, table 31; page 92). For the mixture, the metabolisation of the active ingredient was 

considerably faster (Figure 29; page 131), and the recovery of the active ingredient ranged 

between 49.8 and 57.2% at 10 µg l-1, and 55.9% and 73.7% at 1 µg l-1 (Table 37; page 98). Due 

to the absence of any metabolite > 10%, a primary attack of the parent molecule was supposed, 

which probably determined the aerobic degradation kinetic of IMI (103-105). The aquifer 

Krauthausen had low adsorption potential with respect to IMI and the non-extractable organic 
14C fraction increased, if the test substance concentration decreased (Table 30; page 91). This 

was in accordance with results from the literature, where low application rates showed highest 

sorption (111;112). 

The mineralization [% of AR] and degradation rates [µg kg-1 aquifer material] of DKN in the 

aquifer Krauthausen were 1.68%  0.003 µg for 0.1 µg l-1, 0.66%  0.011 µg and 1.25%  

0.022 µg for 1 µg l-1, as well as 0.33%  0.060 µg for 10 µg l-1 (Tables 33, 35; pages 94, 96). 

The degradation rate and concentration of DKN were also correlated, as the degradation rate at 

10 µg l-1 was about 3 times as large compared to 1 µg l-1, and about 20 times to 0.1 µg l-1 

(Table 35; page 96). For all samples, more than 86% of AR remained as dissolved organic 14C 

fraction in the groundwater, and only less than 2% were recovered as non-extractable organic 
14C (Table 33; page 94). This confirmed the general and DKN specific low adsorption potential 

of the aquifer Krauthausen. 
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DKN had the lowest specific radioactivity with respect to all selected test substances (2.1), and 

the radioactivity of liquid samples was often below the detection limit of radio HPLC (Table 34; 

page 95). However, the revovery of the active ingredient [% of AR] in the groundwater 

decreased from about 84% (day 75) to about 13% (day 300) for the 10 µg l-1 concentration 

(Figure 28; page 130). The presence of IPU, and DKN probably increased the metabolisation of 

the parent compound, but standard deviations were high, and it was impossible to put a clear 

statement (Figure 29; page 131). The extractable organic 14C fraction ranged between 6.6 and 

7.8% of AR for all samples and concentrations, which was composed of almost 100% active 

ingredient for the 10 µg l-1 (Table 34; page 95). After 300 days of incubation, the aquifer 

Krauthausen showed the strongest mineralization and metabolisation potential with respect to 

IPU, followed by DKN and IMI, applied as single substances (Figure 28; page 130). This was in 

contrast to the mixture, where the metabolisation of IMI strongly increased, whereas the 

metabolisation of IPU strongly decreased (Figure 29; page 131). 

 

 

 

 

 

 

 

 

 

Table 7: The DAISY incubation study - D5: Aquifer Krauthausen, mineralization [% of AR] 
and active ingredient [% of AR], test substances Isoproturon (IPU), Imidacloprid (IMI), and 
Diketonitrile (DKN), selected values of tables 27, 28, 30, 31, 33, 34, 36, 37 
 

The mineralization [% of AR] of IMI, IPU, and DKN, applied in a mixture (1:1:1), in the aquifer 

Mulder-Beilen was < 0.2% within 300 days of incubation (Table 38; page  99), in the range of 

radiochemical impurity (2.1) and therefore not significant. Dissolved organic 14C was 73.5%, 

extractable organic 14C was 10.9%, and non-extractable organic 14C was 7.7%. Mulder-Beilen 

had a somewhat greater adsorption potential compared to the aquifer Krauthausen, probably 

due to the higher potential cation exchange capacity (Table 10, 11; pages 78, 79). The 

extractable organic 14C fraction was analysed by radio HPLC to measure the metabolisation of 

CPA. After 300 days of incubation, the recovery of the active ingredients [% of AR] were only 

0.4% for IPU, 6.2% for IMI, and 1.9% for DKN. 

 

Concentration [µg l-1] IPU IMI DKN

0.1 8.3 4.3 1.7

single substance       1 1.3 1.1/ 1.8 0.7/ 1.3 [14CO2% of AR]

10 1.3 0.4 0.3

10 3.3/ 4.3 68.2/ 72.5 13.3/ 14.0

Mixture [AI% of AR]

10 57.2/ 49.8 2.0/ 9.6 4.9/ 10.1
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For Isoproturon, between 10.6% (day 75) and 4.5% (day 300) were recovered as active 

ingredient [% of AR] in the groundwater, which was in contrast to Krauthausen, where 49.8% 

and 57.2% were detected. The recovery of the IMI active ingredient [% of AR] was between 

54.6% (day 75) and 34.9 (day 300) that was also in contrast to Krauthausen, where 1.9 and 

9.6% were recovered. At iron-reducing redox conditions, the metabolisation of the IPU parent 

compound was increased, whereas it was decreased for IMI, and was unaltered for DKN 

(Figure 30; page 132). 

 

 

 

 

 

 

 

 

 

 

Table 8: The DAISY incubation study - D5: Krauthausen (K), Mulder-Beilen (MB), and 
Nature A (NA), active ingredient [% of AR] Isoproturon (IPU), Imidacloprid (IMI), and 
Diketonitrile (DKN), concentration 10 µg l-1, selected values of tables 31, 34, 37, 39, 41 
 

The mineralization [% of AR] of the selected CPA in the aquifer Nature A and applied in the 

mixture was < 0.2% (Table 40, page 100), and like for Mulder-Beilen in the range of 

radiochemical impurity and therefore not significant. The adsorption potential was greatest for 

the aquifer Nature A and the non-extractable 14C fraction reached 22.9% at final processing 

(Mulder-Beilen 11.0%; Krauthausen 0.8%). The dissolved organic 14C fraction in the 

groundwater was 45.6% of AR, whereas the extractable organic 14C was 23.5%. Like for 

Mulder-Beilen, it was supposed that primarily the parent compounds were adsorbed, as the 

extractable organic 14C fraction was composed of 19.1% IMI and 1.8% DKN [% of AR]. 

In addition and also in accordance to Mulder-Beilen, IMI had the strongest adsorption potential 

with respect to the selected CPA, probably due to the highest potential cation exchange 

capacity of the aquifer (Table 12; page 80). After 75 days of incubation, only 0.4% of the IPU 

active ingredient [% of AR] were recovered in the groundwater (Figure 32; page 134). This 

confirmed that the metabolisation of IPU was correlated with the redox potential. 

 

Active ingredient [% of AR]

Aquifer Fraction IPU IMI DKN

K groundwater 49.8/ 57.2 2.0/ 9.6 4.9/ 10.1

MB 4.5 35.0 14.8

NA n.d. 29.9 13.1

K extract 7.1/ 7.1 4.9/ 6.2 0.9/ 7.5

MB 0.4 6.2 1.9

NA n.d. 19.1 1.8
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The recovery of the IMI active ingredient [% of AR] in the groundwater was somewhat lower 

compared to Mulder-Beilen (Figure 30; page 132), but confirmed the already supposed 

correlation of metabolisation rate and redox potential (Table 41; page 100). 

3.3 THE INTRINSIC MICROBIAL DEGRADATION POTENTIAL – 
ENRICHMENT OF MICROBIAL AQUIFER COMMUNITIES IN 
BIOREACTORS  

Microbial growth was supposed, as the bacterial cell number increased for all enrichment 

cultures from about 7.6 x 105 particles ml-1 (in-situ groundwater) to about 8 x 108 (R1), 

2 x 109 (R2), and 7.6 x 107 (R3) within two weeks (Figure 41; page 143). This assumption was 

confirmed by the subsequent accumulation of biofilms in R1 and R2, which inhibited further 

particle measurements. In addition, the comparison of DGGE fingerprints of R1, R2, and R3 

with the in-situ groundwater population, showed a significant shift with respect to the pattern of 

bands (Figure 18; page 73). However, due to the objectives of the thesis (1.2) and limitations 

in time, the DNA fingerprints were not uploaded into a database to assess similarities, or to 

determine the microbial structural differences among the treatments. But as each band is 

theoretically representing a certain bacterial strain present in the community (145), a strong 

impact of the enrichment conditions, as well as available C-source on the in-situ groundwater 

population was assessed. 

For R1, some single bands strongly increased, accociated with a decrease of the general 

population differentiation, which can be explained by the fact that some bacteria from the near-

natural aquifer have profited more, or faster than others from the C-sources supplied. 

After day 50, the occurrence and accumulation of biofilms lead to a lower DNA concentration in 

the sampled aliquots of R1. The shift of the R2 fingerprint seemed to be somewhat comparable 

to the fingerprint of R1, but one single band was more dominant, and the influence of the 

biofilms on the DNA concentration in the sampled aliquots was additionally less. The 

enrichment of the microbial community was not really expected for R3, as IMI, IPU, and DKN 

were the only available C-sources in the medium. Therefore, it was a great success to 

determine an increase of the DNA concentration after day 50, as the appearance of DGGE 

bands must have been associated with the metabolism of one of the three CPA. 

UV-HPLC was used to detect the metabolisation of CPA , and the in- and outflow concentration 

of CPA was quantified for R2 and R3. HPLC results did support the assumption of microbial 

growth. After 50 incubation days, only 40.8% of the initial IPU concentration was measured in 

the outflow of R2, as well as 94.3% in the outflow of R3 (Figure 40; page 142). 
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IPU was probably degraded as a single substrate in R3, as well as a co-metabolic substrate in 

R2, as IMI and DKN were not degraded, IPU was the only available C-source in R3, and the 

recovery of IPU in R2 was less compared to R3. Analysis by denaturing gradient gel 

electrophoresis revealed that the microbial community was responsible for the mineralization 

activity, as e.g. described for Linuron (146). The results showed that the bacterial community 

was disturbed after the start of treatment, continued to change for about 50 days and then 

formed a relatively stable community, different from the original community structure. The 

findings are in accordance with the results from topsoil studies (89), where a soil bacterium 

(designated strain SRS2) was isolated from a previously IPU-treated agricultural soil, able to 

metabolize the phenylurea herbicide Isoproturon 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU). 

However, the results are even more significant, as the inoculum was derived from a near-

natural aquifer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: DGGE Fingerprints: In-situ groundwater and microbial enrichment cultures 
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4 GENERAL CONCLUSIONS AND OUTLOOK 

The results of the static and dynamic degradation studies confirmed that near natural aquifers 

do have a general microbial degradation potential with respect to aromatic molecules at 

concentrations ≤ 10 µg l-1 (3.2). It was shown that the storage of aquifer material at +4°C for 

about two years had no detectable effect on the microbial degradation potential of benzoic acid 

(3.1), and biological control samples proved that the degradation of selected CPA was a 

biological process (3.2.1). By developing a static and dynamic test system (2.5) and using 

comparative degradation studies with benzoic acid (BA), I showed that dynamic flow conditions 

generally increase the degradation kinetics of benzoic acid (3.1.3). This effect can also be 

assumed for the degradation of other aromatic substances. However, comparative degradation 

studies are only feasible when the test systems differ exclusively in the factor under 

investigation. In addition to the concentration of the test substance, the selected quantities of 

aquifer material and groundwater, and particularly their ratio, are crucial factors concerning the 

degradation kinetics and the comparability of the studies. 

Microbial aquifer populations appear to have distinct capabilities with respect to the degradation 

of aromatic substances (16), although the degradation kinetics were generally slower decreased 

as compared to topsoils. One reason is probably the ambient temperature, as it was shown that 

the degradation kinetics of the aquifer microflora, which should be adapted to even and low 

temperatures, were enhanced at higher termperatures (3.1.3; 3.2.1). The microbial degradation 

activity was strongly dependent on the molecule structure, as e.g. BA was mineralized within 

hours, whereas Imidacloprid (IMI), Isoproturon (IPU) and Diketonitrile (DKN) were more 

recalcitrant and only noteworthy metabolized on the long-term scale (> 360 days). 

The mineralization [% of AR] was predominant small and it was more important to measure the 

metabolisation of CPA. However, the dissipitation of the active ingredient 

[% of applied radioactivity] has to be supplemented with information concerning the main 

metabolites, involved in the subsequent degradation pathways. This was shown for IMI at 

anerobic conditions, where an appreciable accumulation of metabolites was measured (3.2.1), 

as already described in the literature (103-105). The simulation of different aquifer conditions 

included oxygen, iron- and sulphur reducing conditions, as the redox-conditions are an 

important parameter to study the degradation of CPA (17). 
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As part of the work, I compiled important information on the experimental design of future 

groundwater studies. BA was introduced as a suitable model compound to assess the 

microbiological activity of shallow aquifers with respect to various aromatic substances. 

We used it to investigate processes relevant to degradation within the scope of developing a 

static and dynamic test system. It was shown that simple physical parameters, such as the 

dynamic solubility of carbon dioxide in water, were not taken into account in groundwater 

studies in the past (12). This led, for example, to an incorrect estimation of the existing 

degradation potential in the existing benzoic acid studies (3.1.2). 

It was also determined that continuous absorption of CO2, by e.g. sodium hydroxide that is 

widely used for the absorption of mineralized 14C-labelled test substances (53;140;141), 

interferes considerably with the chemical groundwater equilibrium. The reason for this is the 

unspecific absorption of CO2, its supply from the groundwater bicarbonates, and the resulting 

enrichment of OH- ions (2.2.4). This ultimately gives rise to a strong increase in the pH value 

(3.1.2). As the pH value is an important factor for the degradation pathway of many aromatic 

molecules, it is astonishing that this fact has not been taken into account in the past. Future 

degradation studies should therefore completely dispense without continuous absorption of 

CO2. 

The test systems developed within the scope of this work (2.5) were also used to investigate the 

current intrinsic degradation potential of three shallow aquifers for IMI, IPU and DKN. In various 

long-term studies, a general potential was assessed under oxygen-, iron-, and sulfur-reducing 

conditions and at a concentration of 0.1,  1,  and 10 µg l-1. These were only comparable, if the 

measured mineralization was refered to the amount of aquifer material. Degradation rates and 

concentration of test substances were generally correlated, as e.g. shown for IPU in the DAISY 

incubation study – D5 (3.2.2). It was revealed, however, that the lower mineralization rates led 

to the accumulation of metabolites becoming the most important parameter for estimating the 

degradation potential at a concentration of ≤ 10 µg l-1. 

The combined application of test substances had a positive effect on the degradation of 

individual substances here, as e.g. shown for IPU in the microcosm incubation study – M4 

(3.2.1). Furthermore, I demonstrated the degradation of IPU under anaerobic conditions for the 

first time. The absorption potential of the selected CPA was influenced by the physical and 

chemical characteristics of the selected aquifers (Tables 10, 11, 12 ; pages 78, 79, 80). The 

strongest absorption potential was measured for the sulphur-reducing aquifer Nature A, where 

most of IMI was bound to the sediment particles (3.2). 
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Not all of the findings from the BA studies could be taken into account when setting up and 

conducting the long-term studies (3.1.4). Moreover, the test systems were only developed in the 

final stages of this work and led to a patent application for the dynamic test system, as well as 

to a contract for another GLP study from the same sponsor. At the end of the thesis, I was able 

to operate DAISY without the continuous absorption of CO2, which offered the possibility to 

accomplish aquifer degradation studies using in-situ groundwater. The test systems and 

methods developed enable a realistic estimate to be made of the intrinsic microbial degradation 

potential of shallow aquifers in the laboratory under GLP conditions. Further studies will be 

conducted to estimate the hazard potential associated with different test substances and to 

transfer the results to the field scale. 

The intrinsic degradation potential of the aerobic shallow aquifer was analysed in enrichment 

cultures, for which a variety of carbon sources were available (2.4). The microorganisms 

metabolised IPU as both the only C-source as well as co-metabolically. This was accompanied 

by an increase in the microbial biomass. Furthermore, using molecular biological “fingerprint” 

techniques (DGGE) a strong displacement of the microbial population was confirmed. The 

results confirmed that it is necessary to distinguish between the current microbial degradation 

activity and the total microbial degradation potential. Further studies should focus on questions 

concerning the effect of substrate limitation, where DGGE analysis should be used to monitor 

changes in bacterial diversity. The approach (Figure 39; page 141) holds the potential to isolate 

bacterial strains with a specific degradation potential for individual pesticides in future 

enrichment experiments. 
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Aquifer Date Measurement Time Eh (mV) pH Temperature (°C)

Krauthausen 03/16/2004 flow-through 14:00 installation
14:20 308 6.79 11.5
14:30 311 6.83 11.6

Mulder-Beilen 03/12/2004 in-situ 10:55 installation
11:16 234
12:05 230

flow-through 11:56 61 8.9
11:59 46 7.18
12:02 39
12:03 7.21

04/08/2004 in-situ 13:30 installation
13:40 245
14:25 229
14:50 228

flow-through 11:59 95 7.09 8.3
12:10 57 7.23
12:25 51 7.23

Nature A 03/18/2004 flow-through 17:13 4 7.38
17:19 -30
17:25 -58
17:30 -65 7.44 10.5

04/07/2004 in-situ 13:30 installation
13:45 173
14:05 195

14:30 installation
14:40 180
14:45 187

flow-through 12:35 -5 7.29
12:50 -27 7.40 9.6
12:58 -26 7.38
14:28 -80 7.39
14:40 -86 7.40

5 ANNEX 

Table 9: The aquifer Krauthausen (K), Mulder-Beilen (MB), and Nature A (NA): Redox 
potential, temperature, and pH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78 

Groundwater Assay Result Unit
pH 6,90 -
electrical conductivity 908,00 µS cm-1

nitrite-nitrogen < 0,02 mg l-1

nitrate-nitrogen 14,06 mg l-1

phosphate-phosphorous < 0,50 mg l-1

fluoride 0,37 mg l-1

cyanide < 0,06 mg l-1

mercury < 0,20 µg l-1

boron 22,90 µg l-1

calcium 124500,00 µg l-1

potassium 65700,00 µg l-1

magnesium 19000,00 µg l-1

sodium 29200,00 µg l-1

total hardness of water according to 
German standards 21,80 °dH
TOC (total organic carbon) n.m. mg l-1

DOC (dissolved organic carbon) 1,1 mg l-1

Aquifer matrial Assay Result Unit
pH (CaCl2) 6,8 -
pH (H2O) 7,0 -
phosphorous (CAL) < 1 mg 100g-1

potassium (K2O in CAL) 2 mg 100g-1

magnesium (Mg) in CaCl2 2 mg 100g-1

sodium (Na) in CaCl2 1,2 mg 100g-1

iron (Fe) in EDTA 13 mg kg-1

copper (Cu) in CAT < 0,5 mg kg-1

manganese (Mn) in CAT 9,6 mg kg-1

zinc (Zn) in CAT 0,4 mg kg-1

boron (B) in CAT < 0,10 mg kg-1

aluminum (Al) in H2O 17 mg kg-1

calcium (Ca) in
sodium formate solution 176 mg kg-1

humus < 0,70 %
total carbon (TC) < 0,40 %
total nitrogen (TN) < 0,10 %
clay (<0,002 mm) 0,8 %
fine silt (0,002 - 0,0063 mm) 1,4 %
medium silt (0,0063 - 0,02 mm) 1,2 %
coarse silt (0,02 - 0,063 mm) 1,5 %
fine sand (0,063 - 0,2 mm) 4,0 %
medium sand (0,2 - 0,63 mm) 57,4 %
coarse sand (0,63 - 2 mm) 33,7 %
sulfur (S) 13 mg kg-1

potential cation exchange capacity 2,354 cmol + kg-1

exchangeable sodium < 0,10 cmol + kg-1

exchangeable potassium 1,77 cmol + kg-1

exchangeable calcium 0,435 cmol + kg-1

exchangeable magnesium 0,149 cmol + kg-1

Aquifer material

Table 10: The aquifer Krauthausen (K): Physical and chemical characteristics of sampled 
groundwater and aquifer material 
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Groundwater Assay Result Unit
pH 7,40 -
electrical conductivity 255,00 µS cm-1

nitrite-nitrogen < 0,02 mg l-1

nitrate-nitrogen < 0,23 mg l-1

phosphate-phosphorous < 0,50 mg l-1

fluoride 0,25 mg l-1

cyanide < 0,06 mg l-1

mercury < 0,20 µg l-1

calcium 41250,00 µg l-1

iron 218,50 µg l-1

potassium 2460,00 µg l-1

magnesium 14950,00 µg l-1

manganese 171,50 µg l-1

sodium 8020,00 µg l-1

TOC (total organic carbon) 3 mg l-1

DOC (dissolved organic carbon) 3,3 mg l-1

Aquifer matrial Assay Result Unit
pH (CaCl2) 7,3 -
pH (H2O) 7,5 -
phosphorous (CAL) < 1 mg 100g-1

potassium (K2O in CAL) 3 mg 100g-1

magnesium (Mg) in CaCl2 1 mg 100g-1

sodium (Na) in CaCl2 1,0 mg 100g-1

iron (Fe) in EDTA 79 mg kg-1

copper (Cu) in CAT 0,8 mg kg-1

manganese (Mn) in CAT 2,3 mg kg-1

zinc (Zn) in CAT 0,8 mg kg-1

boron (B) in CAT < 0,10 mg kg-1

aluminum (Al) in H2O 101 mg kg-1

calcium (Ca) in
sodium formate solution 255 mg kg-1

humus < 0,70 %
total carbon (TC) < 0,40 %
total nitrogen (TN) < 0,10 %
clay (<0,002 mm) 2,2 %
fine silt (0,002 - 0,0063 mm) 0,4 %
medium silt (0,0063 - 0,02 mm) 0,7 %
coarse silt (0,02 - 0,063 mm) 1,5 %
fine sand (0,063 - 0,2 mm) 31,3 %
medium sand (0,2 - 0,63 mm) 61,4 %
coarse sand (0,63 - 2 mm) 2,5 %
sulfur (S) 46 mg kg-1

potential cation exchange 
capacity 2,667 cmol + kg-1

exchangeable sodium < 0,10 cmol + kg-1

exchangeable potassium 2,01 cmol + kg-1

exchangeable calcium 0,524 cmol + kg-1

exchangeable magnesium 0,133 cmol + kg-1

Aquifer material

Table 11: The aquifer Mulder-Beilen (MB): Physical and chemical characteristics of 
sampled groundwater and aquifer material 
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Groundwater Assay Result Unit
pH 7,40 -
electrical conductivity 2410,00 µS cm-1

nitrite-nitrogen < 0,02 mg l-1

nitrate-nitrogen < 0,23 mg l-1

phosphate-phosphorous < 0,50 mg l-1

fluoride 0,63 mg l-1

cyanide < 0,06 mg l-1

mercury < 0,20 µg l-1

boron 293,00 µg l-1

calcium 127000,00 µg l-1

potassium 48300,00 µg l-1

magnesium 33100,00 µg l-1

manganese 528,00 µg l-1

sodium 333000,00 µg l-1

TOC (total organic carbon) 14 mg l-1

DOC (dissolved organic carbon) 14,0 mg l-1

Aquifer matrial Assay Result Unit
pH (CaCl2) 5,7 -
pH (H2O) 7,7 -
phosphorous (CAL) 3 mg 100g-1

potassium (K2O in CAL) 10 mg 100g-1

magnesium (Mg) in CaCl2 6 mg 100g-1

sodium (Na) in CaCl2 8,9 mg 100g-1

iron (Fe) in EDTA 190 mg kg-1

copper (Cu) in CAT 0,5 mg kg-1

manganese (Mn) in CAT 14 mg kg-1

zinc (Zn) in CAT 3,3 mg kg-1

boron (B) in CAT 0,42 mg kg-1

aluminum (Al) in H2O 17 mg kg-1

calcium (Ca) in
sodium formate solution 15056 mg kg-1

humus 0,99 %
total carbon (TC) 0,58 %
total nitrogen (TN) < 0,10 %
clay (<0,002 mm) 2,7 %
fine silt (0,002 - 0,0063 mm) 0,8 %
medium silt (0,0063 - 0,02 mm) 0,9 %
coarse silt (0,02 - 0,063 mm) 2,0 %
fine sand (0,063 - 0,2 mm) 65,9 %
medium sand (0,2 - 0,63 mm) 27,5 %
coarse sand (0,63 - 2 mm) 0,1 %
sulfur (S) 1008 mg kg-1g
capacity 10,37 cmol + kg-1

exchangeable sodium < 0,10 cmol + kg-1

exchangeable potassium 8,45 cmol + kg-1

exchangeable calcium 1,61 cmol + kg-1

exchangeable magnesium 0,313 cmol + kg-1

Aquifer material

Table 12: The aquifer Nature A (NA): Physical and chemical characteristics of sampled 
groundwater and aquifer material 
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Krauthausen Mulder-Beilen        Nature A
year 1995 2005 20051 20052 2005                 2005

cations mg/ l
Na+ 28.1 38.8 74.7 148.0 391.2 13.0
K+ 3.3 4.7 8.7 72.6 96.2 7.8
Mg2+ 21.9 20.1 20.1 24.0 50.8 4.2
Ca2+ 135.0 130.5 133.3 125.4 180.5 33.8
∑ Fe 0.1 < 0.03 0.086 0.094 1.5 5.0
∑ Mn n.d. 0.007 < 0.02 < 0.02 1.8 0.068
Nh4

+ 0.27 - - - - -
∑ cations 188.67 194.14 236.9 370.15 722 63.8

anions mg/ l
HCO3

- 201 204 - - 119 319
CL- 75.8 74.7 221.0 218.0 242 12.5
NO3

- 96.8 69.0 68.6 67.7 0.02 0.02
Br2- - 0.15 0.15 0.15 2.91 < 0.02
SO2-

4 139.0 138 136 136 243 22.6
PO4-

3 - < 0.05 < 0.05 98.2 0.09 < 0.05
∑ anions 512.6 240.77 289.82 287.22 242.11 15.54

Krauthausen Mulder-Beilen        Nature A
year 1995 2005 20051 20052 2005                 2005

cations mg/ l
Na+ 28.1 38.8 74.7 148.0 391.2 13.0
K+ 3.3 4.7 8.7 72.6 96.2 7.8
Mg2+ 21.9 20.1 20.1 24.0 50.8 4.2
Ca2+ 135.0 130.5 133.3 125.4 180.5 33.8
∑ Fe 0.1 < 0.03 0.086 0.094 1.5 5.0
∑ Mn n.d. 0.007 < 0.02 < 0.02 1.8 0.068
Nh4

+ 0.27 - - - - -
∑ cations 188.67 194.14 236.9 370.15 722 63.8

anions mg/ l
HCO3

- 201 204 - - 119 319
CL- 75.8 74.7 221.0 218.0 242 12.5
NO3

- 96.8 69.0 68.6 67.7 0.02 0.02
Br2- - 0.15 0.15 0.15 2.91 < 0.02
SO2-

4 139.0 138 136 136 243 22.6
PO4-

3 - < 0.05 < 0.05 98.2 0.09 < 0.05
∑ anions 512.6 240.77 289.82 287.22 242.11 15.54

Method pH 1 pH 2

pH/Ion meter 6.8 8.3

litmus paper < 7 > 8

incubation time (days)
Matrix CO2 sink 0 3 7
Groundwater (GW) 40 ml Sodium hydroxide 6.8 8.8 9.2

Aquifer material (AM) - Soda lime 6.8 8.9 9.3

GW /AM 40 ml/ 100 g Sodium hydroxide 6.8 8.8 8.9

GW /AM 40 ml/ 100 g Soda lime 6.8 8.7 8.7

Table 13: The aquifer Krauthausen (K), Mulder-Beilen (MB), and Nature A (NA): 
Groundwater chemistry (selected values unmodified, bicarbonate free, and modified 
groundwater) 

 

 

 

 

 

 

 

 

 

 
Table 14: The aquifer Krauthausen (K): Increase of pH by atmospheric pressure change 

 

 

 

The pH 1 was measured directly after groundwater sampling (temperature 12°C), whereas pH 2 was 

measured after two weeks at atmospheric equilibrium (temperature 20°C) 

 
Table 15: The aquifer Krauthausen (K): Increase of groundwater pH by continuous CO2 
absorption  
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Microcosm DAISY Column
static dynamic static

matrix
groundwater [ml] 40 450 450

aquifer material [g] 100 150 150

test substance
 [µg] 0.4 4.5 4.5

[µg l-1] 10 10 10
 [µg g-1] 0.004 0.03 0.03

Components
KH2PO4[g] 0.35 Stock solution A

K2HPO4 [g] 2.19 MgSO4 x 7 H2O [g l-1] 10.0

(NH4)2SO4 [g] 0.5 Na2MoO4 x 2 H2O [g l-1] 1.0

Stock solution B

Stock solution A [ml] 10.0 NaCl [g l-1] 10.0
Stock solution B [ml] 10.0 CaCL2 x 2 H2O [g l-1] 26.0

Trace element solution [ml] 10.0 Na2(EDTA) x 2 H2O [g l-1] 2.8

FeCl3 x 6 H2O [g l-1] 2.0

Minerlization Extraction Combustion Recovery
Sample [% of AR] [% of AR] [% of AR] [% of AR]

1 5.69 48.28 31.77 85.74
2 5.60 51.63 34.46 91.69
3 7.10 48.61 35.11 90.82
4 6.60 50.00 32.45 89.05
5 4.50 51.52 34.00 90.03
6 5.40 50.95 34.36 90.71
7 6.26 48.65 33.01 87.92
8 5.89 48.84 33.65 88.37
9 5.53 49.16 34.98 89.67

10 5.43 51.35 32.10 88.89
11 5.22 51.62 32.68 89.52
12 5.35 51.43 32.90 89.68

mean value 5.71 50.17 33.46 89.34
standard deviation 0.68 1.38 1.13 1.55

Mineralization

Table 16: The relative and absolute amount of test substance with respect to the aquifer 
material to groundwater ratio of the Microcosm, DAISY, and Column test system 
 

 

 

 

 

 

 

 

 

 

Table 17: Enrichment cultures: Inorganic media components (10 l) 

 

 

 

 

 

 
Table 18: The microcosm incubation study - M1: Distribution of applied radioactivity [%], 
aquifer Krauthausen, test substance benzoic acid 
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Table 19: The microcosm incubation study - M2: Distribution of applied radioactivity [%], 
aquifer Krauthausen, test substance benzoic acid 
 

 

 

 

 

 

 

 

 

 

 

 

Minerlization Extraction Combustion Recovery
Sample [% of AR] [% of AR] [% of AR] [% of AR]

1 14.87 52.00 32.90 99.77
2 11.16 52.59 37.71 101.45
3 11.37 54.69 34.88 100.95
4 - - - -
5 12.45 52.56 34.89 99.90
6 11.96 51.15 35.29 98.40
7 12.83 47.11 33.60 93.54
8 12.06 54.19 34.22 100.46
9 12.77 52.44 32.71 97.92

mean value 12.43 52.09 34.53 99.05
standard deviation 1.15 2.31 1.60 2.53

Mineralization
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Table 20: The long-term DAISY incubation study - D1: Distribution of applied radioactivity [%], aquifer Krauthausen, test substance 
benzoic acid 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concentration combustion
[µg l-1] [% of AR]

0.1 1 8.20 n.a. 78.87
3 17.56 n.a. 68.65
7 22.72 n.a. 65.22

11 30.03 n.a. 56.43
15 33.99 n.a. 46.78
21 39.78 n.a. 38.72
35 48.03 n.a. 30.77
56 58.05 n.a. 21.11
84 63.38 n.a. 10.06 22.30 95.74

10 1 4.10 ± 0.34 n.a. 71.20 ± 0.50
3 10.52 ± 0.37 n.a. 63.47 ± 0.27
7 14.23 ± 0.38 n.a. 60.87 ± 0.63

11 19.80 ± 0.49 n.a. 54.87 ± 0.84
15 23.17 ± 0.54 n.a. 50.26 ± 1.45
21 27.45 ± 0.61 n.a. 45.76 ± 0.83
35 34.08 ± 0.79 n.a. 39.41 ± 0.51
56 42.56 ± 0.45 n.a. 31.61 ± 0.29
84 48.07 ± 0.66 n.a. 26.74 ± 0.51 21.13 ± 0.94 95.94 ± 0.22

incubation 
gas phase[days] dissolved
mineralization [% of AR] groundwater

[% of AR]
recovery
[% of AR]
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Table 21: The microcosm incubation study - M3: Variants 
 

compound: total
aquifer: temperature K MB NA K MB NA K MB NA K MB NA flasks

0.1 µg l⎯¹ 10°C 7 7 7 7 7 7 7 7 7 3 3 3 72
1.0 µg l⎯¹ 10°C 3 3 3 3 3 3 3 3 3 27
10 µg l⎯¹ 10°C 7 7 7 7 7 7 7 7 7 3 3 3 72
10 µg l⎯¹ 20°C 3 3 3 9

10 µg l⎯¹ sterile 10°C 2 2 2 6
sum 17 17 17 17 17 17 17 17 17 11 11 11 186

IMI IPU DKN Mixture (1:1:1)

 
 

Table 22: The microcosm incubation study - M3: Time schedule 
 

compound: incubation processing
aquifer [days] date K MB NA K MB NA K MB NA K MB NA

0* May-05 2 2 2 2 2 2 2 2 2
90 ± 10 Aug-05 2 2 2 2 2 2 2 2 2
180 ± 10 Oct-05 2 2 2 2 2 2 2 2 2
270 ± 10 Jan-06 2 2 2 2 2 2 2 2 2
360 ± 10 Apr-06 2 2 2 2 2 2 2 2 2
450 ± 10 Jul-06 2 2 2 2 2 2 2 2 2

spare sample 2 2 2 2 2 2 2 2 2
0* May-05 1 1 1 1 1 1 1 1 1 3 3 3

225 ± 10 Dec-05 1 1 1 1 1 1 1 1 1 3 3 3
450 ± 10 Jul-06 1 1 1 1 1 1 1 1 1 4 4 4

spare sample 1 1 1
sum 17 17 17 17 17 17 17 17 17 11 11 11

IMI IPU DKN Mixture (1:1:1)

 
 

Number in cell: number of sampling intervals (incl. one spare sample per variant) 

Test aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA) 

Test substance Imidacloprid (IMI), Isoproturon (IPU), Diketonitrile (DKN) 
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Table 23: The Microcosm incubation study - M4: Variants 

 

 

 

 

 
Table 24: The microcosm incubation study - M4: Time schedule 
 

 

 

 

 

 

 

 

 

 

Number in cell: number of sampling intervals (incl. one spare sample per variant) 

Aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA), Groundwater: M = modified, IS = in situ 

Test substance Imidacloprid (IMI), Isoproturon (IPU), Diketonitrile (DKN) 

 

compound: incubation processing
aquifer: [days] date K MB NA K MB NA K MB NA
groundwater M M M M M M M M M IS M IS M IS M

0* Dec-05 4 4 4
90 ± 10 Mar-06 4 4 4
180 ± 10 Jun-06 4 4 4
270 ± 10 Sep-06 4 4 4
330 ± 10 Nov-06 4 4 4

0* Dec-05 2 2 2 2 2 2 2 2 2 2 2 2
180 ± 10 Jun-06 2 2 2 2 2 2 2 2 2 2 2 2
330 ± 10 Nov-06 2 2 2 2 2 2 2 2 2 2 2 2

sum 20 6 6 20 6 6 20 6 6 6 6 6 6 6 6

K MB NA
IMI IPU DKN Mixture (1:1:1)

compound:
aquifer: K1 K2 MB NA K1 K2 MB NA K1 K2 MB NA
groundwater temperature M M M M M M M M M M M M IS M IS M IS

0.1 µg l⎯¹ 10°C 5 5 3 3 5 5 3 3 5 5 3 3 3 3 3 3 3
1.0 µg l⎯¹ 10°C
10 µg l⎯¹ 10°C 5 5 3 3 5 5 3 3 5 5 3 3 3 3 3 3 3
10 µg l⎯¹ 20°C

10 µg l⎯¹ sterile 10°C
sum 10 10 6 6 10 10 6 6 10 10 6 6 6 6 6 6 6

K MB NA
IMI IPU DKN Mixture (1:1:1)

M
3

3

6



 87 

Table 25: The DAISY incubation study - D4/ D5: Variants 
 

compound: total
aquifer: K MB NA K MB NA K MB NA K MB NA number

0.1 µg l⎯¹ 1 1 1 1 4
1.0 µg l⎯¹ 2 2 2 2 8
10 µg l⎯¹ 2 2 2 2 1 1 10

sum 5 0 0 5 0 0 5 0 0 5 1 1 22

IMI IPU DKN Mixture (1:1:1)

 
 

Number in cell: number of test systems 

Aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA) 

Test substance Imidacloprid (IMI), Isoproturon (IPU), Diketonitrile (DKN) 

 

 

Table 26: Radio-HPLC gradients of test substances Imidacloprid (1), Isoproturon (1), and Diketonitrile (2)  

1.)   2.) 

 

 

 

 

 

 

time gradient time gradient
[min] (ACN, H2O (H3PO4 0.1%)) [min] (ACN, H2O (H3PO4 0.1%))

0 40 : 60 0 60 : 40
3 40 : 60 6 60 : 40
6 100 : 0 11 90 : 10
9 100 : 0 11.5 90 : 10
10 40 : 60 16 60 : 40
20 40 : 60 21 60 : 40
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Concentration Incubation Mineralisation Groundwater Extraction Combustion Recovery
[µg l-1] [days] [%] [%] [%] [%] [%]

0.1 1 1.12 91.72
45 4.29 91.31
75 5.04 90.74

150 6.38 89.44
200 7.41 87.16
300 8.30 87.92 7.25 5.89 109.35

1 1 0.07 87.51
45 0.38 85.95
75 0.51 86.81

150 0.77 83.18
200 1.01 82.47
300 1.30 81.09 7.12 1.35 90.87

1 1 0.06 88.50
45 0.36 87.43
75 0.50 88.66

150 0.79 85.70
200 1.06 84.68
300 1.29 83.19 7.14 1.20 92.82

10 1 0.10 91.32
45 0.39 90.59
75 0.52 90.39

150 0.82 89.19
200 1.09 88.25
300 1.29 86.20 8.07 1.07 96.62

10 1 0.12 92.43
45 0.40 90.84
75 0.54 90.39

150 0.81 89.09
200 1.01 89.19
300 1.28 86.85 7.51 0.98 96.62

Table 27: The DAISY incubation study - D5: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Isoproturon [IPU] 
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Active ingredient [% of AR]
Concentration Incubation IPU

[µg l-1] [days] Groundwater Extract

0.1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 n.d. n.d.

1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 4.94 7.12

1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 1.59 7.14

10 1 n.a.
45 n.a.
75 89.71

150 70.37
200 39.13
300 3.25 7.33

10 1 n.a.
45 n.a.
75 89.29

150 68.14
200 47.77
300 4.27 7.03

Table 28: The DAISY incubation study - D5: Active ingredient [AI] groundwater and 
extract [% of AR], aquifer Krauthausen (K), test substance Isoproturon [IPU] 
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Concentration 
[µg l-1]

0.1 1 1.12 0.002
45 4.29 0.008
75 5.04 0.009

150 6.38 0.011
200 7.41 0.013
300 8.30 0.015

1 1 0.07 0.002
45 0.38 0.009
75 0.51 0.011

150 0.77 0.015
200 1.01 0.019
300 1.30 0.023

1 1 0.06 0.001
45 0.36 0.008
75 0.50 0.011

150 0.79 0.016
200 1.06 0.020
300 1.29 0.023

10 1 0.10 0.052
45 0.39 0.207
75 0.52 0.275

150 0.82 0.430
200 1.09 0.572
300 1.29 0.678

10 1 0.12 0.065
45 0.40 0.209
75 0.54 0.284

150 0.81 0.424
200 1.01 0.529
300 1.28 0.675

[days] [% of AR] [µg kg-1 aquifer material]
Incubation Mineralisation Mineralisation

Table 29: The DAISY incubation study – D5: Aquifer Krauthausen (K), test substance 
Isoproturon [IPU], mineralization [% of AR  µg kg-1 aquifer material]  
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Concentration Incubation Mineralisation Groundwater Extraction Combustion Recovery
[µg l-1] [days] [%] [%] [%] [%] [%]

0.1 1 2.49 91.92
45 3.93 91.13
75 3.93 86.11

150 3.93 85.14
200 4.28 84.35
300 4.31 81.87 8.17 4.53 98.87

1 1 0.07 90.78
45 0.62 88.80
75 0.82 88.82

150 1.25 87.92
200 1.61 87.46
300 1.82 86.02 7.56 3.04 98.45

1 1 0.08 89.30
45 0.42 90.24
75 0.56 90.64

150 0.75 88.95
200 0.91 88.22
300 1.08 86.62 6.54 3.14 97.38

10 1 0.09 86.24
45 0.25 85.99
75 0.27 85.22

150 0.31 84.44
200 0.34 83.50
300 0.36 80.90 6.67 1.04 88.98

10 1 0.09 89.87
45 0.25 88.84
75 0.26 88.81

150 0.29 88.16
200 0.32 87.56
300 0.35 85.16 8.34 0.83 94.68

Table 30: The DAISY incubation study - D5: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Imidacloprid [IMI] 
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Active ingredient [% of AR]
Concentration Incubation IMI

[µg l-1] [days] Groundwater Extract

0.1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 n.d. n.d.

1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 62.70 7.56

1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 46.80 6.54

10 1 n.a.
45 n.a.
75 77.50

150 70.93
200 -
300 72.45 6.47

10 1 n.a.
45 n.a.
75 81.90

150 69.64
200 71.87
300 68.17 8.26

Table 31: The DAISY incubation study - D5: Active ingredient [AI] groundwater and 
extract [% of AR], aquifer Krauthausen (K), test substance Imidacloprid [IMI] 
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Concentration 
[µg l-1]

0.1 1 2.49 0.004
45 3.93 0.007
75 3.93 0.007

150 3.93 0.007
200 4.28 0.008
300 4.31 0.008

1 1 0.07 0.002
45 0.62 0.014
75 0.82 0.018

150 1.25 0.025
200 1.61 0.031
300 1.82 0.033

1 1 0.08 0.002
45 0.42 0.010
75 0.54 0.012

150 0.75 0.015
200 0.91 0.017
300 1.08 0.020

10 1 0.09 0.017
45 0.25 0.044
75 0.27 0.048

150 0.31 0.055
200 0.34 0.061
300 0.36 0.064

10 1 0.09 0.017
45 0.25 0.044
75 0.26 0.044

150 0.29 0.053
200 0.32 0.058
300 0.35 0.063

Incubation Mineralisation Mineralisation
[days] [% of AR] [µg kg-1 aquifer material]

Table 32: The DAISY incubation study – D5: Aquifer Krauthausen (K), test substance 
Imidacloprid [IMI], mineralization [% of AR  µg kg-1 aquifer material]  
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Concentration Incubation Mineralisation Groundwater Extraction Combustion Recovery
[µg l-1] [days] [%] [%] [%] [%] [%]

0.1 1 0.89 89.64
45 1.63 90.75
75 1.63 89.80

150 1.63 90.28
200 1.66 87.81
300 1.68 87.70 7.81 1.66 98.80

1 1 0.15 89.67
45 0.36 90.27
75 0.38 91.09

150 0.46 88.21
200 0.55 87.80
300 0.66 87.73 7.39 1.08 96.85

1 1 0.18 91.58
45 0.50 91.82
75 0.60 91.99

150 0.84 89.96
200 1.07 89.41
300 1.25 88.18 6.60 1.46 97.49

10 1 0.10 87.75
45 0.23 87.26
75 0.25 86.03

150 0.27 83.35
200 0.30 84.63
300 0.33 82.87 7.10 0.41 90.71

10 1 0.13 90.19
45 0.24 89.74
75 0.25 89.98

150 0.28 86.01
200 0.30 87.95
300 0.33 86.34 7.68 0.41 94.75

Table 33: The DAISY incubation study - D5: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Diketonitrile [DKN] 
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Active ingredient [% of AR]
Concentration Incubation DKN

[µg l-1] [days] Groundwater Extract

0.1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 n.d. n.d.

1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 n.d. n.d.

1 1 n.a.
45 n.a.
75 n.a.

150 n.a.
200 n.a.
300 n.d. n.d.

10 1 n.a.
45 n.a.
75 n.d.

150 63.86
200 n.d.
300 14.02 7.00

10 1 n.a.
45 n.a.
75 83.68

150 n.d.
200 n.d.
300 13.30 7.61

Table 34: The DAISY incubation study - D5: Active ingredient (AI) groundwater and 
extract [% of AR], aquifer Krauthausen (K), test substance Diketonitrile [DKN] 
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Concentration 
[µg l-1]

0.1 1 0.98 0.002
45 1.63 0.003
75 1.63 0.003

150 1.63 0.003
200 1.66 0.003
300 1.68 0.003

1 1 0.15 0.003
45 0.36 0.008
75 0.38 0.008

150 0.46 0.009
200 0.55 0.010
300 0.66 0.011

1 1 0.18 0.004
45 0.50 0.011
75 0.60 0.013

150 0.84 0.016
200 1.07 0.020
300 1.25 0.022

10 1 0.10 0.018
45 0.23 0.043
75 0.25 0.045

150 0.27 0.050
200 0.30 0.055
300 0.33 0.060

10 1 0.13 0.024
45 0.24 0.044
75 0.25 0.046

150 0.28 0.051
200 0.30 0.054
300 0.33 0.060

Incubation Mineralisation Mineralisation
[days] [% of AR] [µg kg-1 aquifer material]

Table 35: The DAISY incubation study – D5: Aquifer Krauthausen (K), test substance 
Diketonitrile [DKN], mineralization [% of AR  µg kg-1 aquifer material]  
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Concentration Incubation Mineralisation Groundwater Extraction Combustion Recovery
[µg l-1] [days] [%] [%] [%] [%] [%]

0.1 1 0.85 92.70
45 2.26 88.20
75 2.39 89.10

150 2.64 86.13
200 2.86 86.27
300 3.23 82.95 10.44 1.93 98.54

1 1 0.08 90.05
45 0.30 88.05
75 0.38 88.76

150 0.56 85.95
200 0.72 84.96
300 0.95 83.40 6.68 1.00 92.03

1 1 0.08 91.02
45 0.30 90.59
75 0.37 90.73

150 0.54 87.96
200 0.70 87.41
300 0.81 85.98 7.38 1.16 95.32

10 1 0.10 88.61
45 0.35 88.34
75 0.44 87.72

150 0.81 85.90
200 0.77 85.80
300 0.93 83.04 7.20 0.86 92.04

10 1 0.15 92.22
45 0.33 91.30
75 0.42 90.69

150 0.62 89.16
200 0.78 89.10
300 0.96 86.66 6.83 0.83 95.28

Table 36: The DAISY incubation study - D5: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
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Active ingredient [% of AR]
Concentration Incubation IPU IMI DKN

[µg l-1] [days] Groundwater Extract Groundwater Extract Groundwater Extract

0.1 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 n.a. n.a. n.a.

150 n.a. n.a. n.a.
200 n.a. n.a. n.a.
300 n.d. n.d. n.d. n.d. n.d. n.d.

1 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 n.a. n.a. n.a.

150 n.a. n.a. n.a.
200 n.a. n.a. n.a.
300 55.97 7.79 3.11 0.19 13.20 n.d.

1 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 n.a. n.a. n.a.

150 n.a. n.a. n.a.
200 n.a. n.a. n.a.
300 73.68 n.d. 3.08 n.d. n.d.

10 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 79.40 82.02 31.69

150 77.71 4.63 30.95
200 79.67 5.99 n.d.
300 57.16 7.12 1.99 6.19 4.85 7.51

10 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 85.26 92.11 7.47

150 90.97 12.38 5.90
200 83.05 19.12 1.95
300 49.76 7.12 9.57 4.89 10.14 0.94

Table 37: The DAISY incubation study - D5: Active ingredient [AI] groundwater and 
extract [% of AR], aquifer Krauthausen (K), mixture (1:1:1) of test substances Isoproturon 
[IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
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Active ingredient [% of AR]
Concentration Incubation IPU IMI DKN

[µg l-1] [days] Groundwater Extract Groundwater Extract Groundwater Extract

10 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 10.58 54.64 10.06

150 9.11 38.05 11.00
200 5.56 35.02 7.97
300 4.47 0.44 34.99 6.16 14.81 1.88

Concentration Incubation Mineralisation Groundwater Extraction Combustion Recovery
[µg l-1] [days] [%] [%] [%] [%] [%]

10 1 0.13 91.72
45 0.14 86.69
75 0.14 85.85

150 0.16 80.80
200 0.16 77.72
300 0.17 73.53 10.97 7.67 92.34

Table 38: The DAISY incubation study - D5: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
 

 

 

 

 

 

 

 

 

Table 39: The DAISY incubation study - D5: Active ingredient (AI) groundwater and 
extract [% of AR], aquifer Mulder-Beilen (MB), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
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Active ingredient [% of AR]
Concentration Incubation IPU IMI DKN

[µg l-1] [days] Groundwater Extract Groundwater Extract Groundwater Extract

10 1 n.a. n.a. n.a.
45 n.a. n.a. n.a.
75 0.38 37.10 8.03

150 n.d. 36.02 3.93
200 n.d. 21.73 3.46
300 n.d. n.d. 29.88 19.14 13.06 1.76

Concentration Incubation Mineralisation Groundwater Extraction Combustion Recovery
[µg l-1] [days] [%] [%] [%] [%] [%]

10 1 0.09 72.61
45 0.14 56.69
75 0.15 55.17

150 0.17 51.27
200 0.19 50.25
300 0.19 45.56 23.52 22.94 92.21

Table 40: The DAISY incubation study - D5: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
 

 

 

 

 

 

 

 

 

Table 41: The DAISY incubation study - D5: Active ingredient (AI) groundwater and 
extract [% of AR], aquifer Nature A (NA), mixture (1:1:1) of test substances Isoproturon 
[IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d 97.78 ± 0.61 n.d n.c.

90 1.85 ± 0.05 94.77 ± 3.67 n.d n.c.

170 1.63 ± 0.01 93.10 ± 1.67 n.d n.c.

260 2.01 ± 0.17 86.19 ± 1.88 n.d n.c.

310 1.99 ± 0.39 85.94 ±10.30 n.d n.c.

10 1 n.d 93.27 ± 0.78 1.97 ± 0.10 95.24 ± 0.87

90 0.78 ± 0.04 92.01 ± 0.95 3,16 ± 0.40 95.95 ± 1.39

170 1.22 ± 0.00 92.11 ± 0.17 2.98 ± 0.03 96.31 ± 0.20

260 1.60 ± 0.01 89.95 ± 0.29 4.08 ± 0.14 95.64 ± 0.17

310 1.73 ± 0.02 88.82 ± 0.60 4.59 ± 1.23 95.14 ± 1.82

Mineralization Extraktion Combustion Recovery
[%] [%] [%] [%]

Table 42: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Isoproturon [IPU], 
groundwater modified 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 43: The microcosm incubation study - M4: Aquifer Krauthausen (K), test substance 
Isoproturon [IPU], mineralization [% of AR  µg kg-1 aquifer material], groundwater 
modified 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concentration Incubation Mineralization Mineralization
[µg l-1] [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d n.d

90 1.85 0.0008

170 1.63 0.0007

260 2.01 0.0008

310 1.99 0.0008

10 1 n.d n.d

90 0.78 0.0326

170 1.22 0.0511

260 1.60 0.0671

310 1.73 0.0725
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d 98.62 ± 0.18 n.d n.c.

90 n.d 96.95 ± 0.30 n.d n.c.

170 n.d 94.69 ± 2.18 n.d n.c.

260 n.d 86.30 ± 0.26 n.d n.c.

310 n.d 84.86 ± 9.22 n.d n.c.

10 1 n.d 92.14 ± 0.38 2.23 ± 0.05 94.37 ± 0.42

90 0.20 ± 0.00 91.78 ± 0.34 3.13 ± 0.00 95.11 ± 0.34

170 0.30 ± 0.01 91.51 ± 1.97 3.37 ± 0.04 95.18 ± 2.01

260 0.45 ± 0.02 90.18 ± 0.71 5.76 ± 0.18 96.40 ± 0.90

310 0.51 ± 0.03 87.77 ± 2.70 4.85 ± 1.82 93.13 ± 0.91

RecoveryExtraktion
[%] [%]

Mineralization Combustion
[%] [%]

Concentration Incubation
[µg l-1]  [days]

10 1

90

170

260

310

Active ingredient [% of AR]
IPU

90.47  ± 3.1

73.51  ± 4.1

83.16  ± 0.2

84.72  ± 0.9

83.74  ± 1.1

Table 44: The microcosm incubation study M4: Active ingredient (AI) extract [% of AR], 
aquifer Krauthausen (K), test substance Isoproturon [IPU], groundwater modified 

 
 

 

 

 

 

 

 

 

Table 45: The microcosm incubation study M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Imidacloprid [IMI], 
groundwater modified 
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Concentration Incubation Mineralization Mineralization
[µg l-1] [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d n.d

90 n.d n.d

170 n.d n.d

260 n.d n.d

310 n.d n.d

10 1 n.d n.d

90 0.20 0.086

170 0.30 0.0128

260 0.45 0.0190

310 0.51 0.0213

Concentration Incubation
[µg l-1] [days]

10 1

90

170

260

310

Active ingredient [% of AR]
IMI

-

-

88.98  ± 1.9

89.55  ± 0.1

76.01  ± 13.8

Table 46: The microcosm incubation study - M4: Aquifer Krauthausen (K), test substance 
Imidacloprid [IMI], mineralization [% of AR  µg kg-1 aquifer material], groundwater 
modified  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 47: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Krauthausen (K), test substance Imidacloprid [IMI], groundwater modified 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d 96.41 ± 1.73 n.d n.c.

90 0.82 ± 0.06 94.06 ± 2.65 n.d n.c.

170 0.73 ± 0.22 92.95 ± 4.78 n.d n.c.

260 0.47 ± 0.14 90.88 ± 6.99 n.d n.c.

310 0.86 ± 0.57 95.86 ± 3.61 n.d n.c.

10 1 n.d 94.87 ± 0.44 1.87 ± 0.07 96.75 ± 0.37

90 0.12 ± 0.00 93.31 ± 0.29 1.74 ± 0.01 95.18 ± 0.28

170 0.19 ± 0.01 95.23 ± 1.14 1.63 ± 0.09 97.04 ± 1.22

260 0.24 ± 0.00 92.49 ± 0.81 1.81 ± 0.01 94.54 ± 0.82

310 0.25 ± 0.02 91.74 ± 0.74 1.68 ± 0.25 93.68 ± 0.97

Recovery
[%] [%] [%] [%]

Mineralization Extraktion Combustion

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d n.d

90 0.82 0.0003

170 0.73 0.0003

260 0.47 0.0002

310 0.86 0.0003

10 1 n.d n.d

90 0.12 0.0003

170 0.19 0.0003

260 0.24 0.0002

310 0.25 0.0003

Table 48: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Diketonitrile [DKN], 
groundwater modified 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 49: The microcosm incubation study - M4: Aquifer Krauthausen (K), test substance 
Diketonitrile [DKN], mineralization [% of AR  µg kg-1 aquifer material], groundwater 
modified 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 93.90 n.d. n.c.

170 0.82 92.42 n.d. n.c.

310 1.94 91.40 n.d. n.c.

0.1 1 n.d. 93.67 n.d. n.c.

170 0.87 92.82 n.d. n.c.

310 1.58 90.23 n.d. n.c.

10 1 n.d. 92.09 1.76 93.85

170 0.74 91.21 3.07 94.28

310 1.27 89.82 3.34 93.16

10 1 n.d. 93.36 2.26 95.62

170 0.75 91.24 3.09 94.33

310 1.29 90.05 3.52 93.57

phosphate
buffered

[1 mM]

in-situ

phosphate
buffered

[1 mM]

in-situ

[%]
Recovery

[%] [%] [%]
Groundwater Mineralization Extraktion Combustion

Concentration Incubation
[µg l-1]  [days]

10 1

90

170

260

310

Active ingredient [% of AR]
DKN

92.66  ± 0.0

68.65  ± 5.5

91.44 ± 2.2

90.62  ± 2.1

78.73  ± 12.8

Table 50: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Krauthausen (K), test substance Diketonitrile [DKN], groundwater modified 
 

 

 

 

 

 

 

 

 

 

Table 51: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 86.58 n.d. n.c.

170 n.d. 87.60 n.d. n.c.

310 6.23 52.93 n.d. n.c.

10 1 n.d. 94.46 1.21 95.67

170 0.07 91.61 2.81 94.44

310 0.11 86.92 2.72 89.69

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IMI IPU DKN

10 1 phosphate 68.35 - n.d.
buffered

170 [1 mM] 84.85 77.85 85.30

310 65.02 77.55 65.46

10 1 in-situ 76.40 90.99 n.d.

170 75.17 77.25 89.65

310 64.02 71.52 82.09

Table 52: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Krauthausen (K), mixture (1:1:1) of test substances Isoproturon [IPU], 
Imidacloprid [IMI], Diketonitrile [DKN] 
 

 

 

 

 

 

 

 

 

 

 

Table 53: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), test substance Isoproturon [IPU] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 96.69 n.d. n.c.

170 n.d. 100.08 n.d. n.c.

310 1.91 89.82 n.d. n.c.

10 1 n.d. 88.94 5.53 94.47

170 0.06 67.58 33.78 101.38

310 4.51 63.23 26.49 91.62

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IPU

10 1 phosphate 94.30
buffered

170 [1 mM] 91.28

310 85.33

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d. n.d.

170 n.d. n.d.

310 6.23 0.0623

10 1 n.d. n.d.

170 0.07 0.0003

310 0.11 0.0005

Table 54: The microcosm incubation study - M4: Aquifer Mulder-Beilen (MB), test 
substance Isoproturon [IPU], mineralization [% of AR  µg kg-1 aquifer material]  
 

 

 

 

 

 

 

 

 

 

Table 55: The microcosm incubation study - M4: Active ingredient (AI) extract and 
groundwater [% of AR], aquifer Mulder-Beilen (MB), test substance Isoproturon [IPU] 
 

 

 

 

 

 

 

Table 56: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), test substance Imidacloprid [IMI] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 87.30 n.d. n.c.

170 2.52 85.79 n.d. n.c.

310 n.d. 137.84 n.d. n.c.

10 1 n.d. 91.18 0.63 91.82

170 n.d. 89.88 1.57 91.46

310 n.d. 89.09 1.39 90.48

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IMI

10 1 phosphate n.a.
buffered

170 [1 mM] 53.80

310 50.33

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d. n.d.

170 n.d. n.d.

310 1.91 0.0191

10 1 n.d. n.d.

170 0.06 0.0003

310 4.51 0.0190

Table 57: The microcosm incubation study - M4: Aquifer Mulder-Beilen (MB), test 
substance Imidacloprid [IMI], mineralization [% of AR  µg kg-1 aquifer material]  
 

 

 

 

 

 

 

 

 

 

 

Table 58: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Mulder-Beilen (MB), test substance Imidacloprid [IMI] 
 

 

 

 

 

 

 

Table 59: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), test substance Diketonitrile [DKN] 
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Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] DKN

10 1 phosphate 90.66
buffered

170 [1 mM] 74.82

310 60.38

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d. n.d.

170 2.52 0.0025

310 n.d. n.d.

10 1 n.d. n.d.

170 n.d. n.d.

310 n.d. n.d.

Table 60: The microcosm incubation study - M4: Aquifer Mulder-Beilen (MB), test 
substance Diketonitrile [DKN], mineralization [% of AR  µg kg-1 aquifer material]  

 

 

 

 

 

 
Table 61: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Mulder-Beilen (MB), test substance Diketonitrile [DKN] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 92.67 n.d n.c.

170 n.d 91.96 n.d n.c.

310 0.36 75.68 n.d n.c.

0.1 1 n.d 91.36 n.d n.c.

170 n.d 91.05 n.d n.c.

310 2.66 66.71 n.d n.c.

10 1 n.d 95.92 1.57 97.50

170 0.04 84.82 10.03 94.86

310 0.08 76.88 14.64 91.53

10 1 n.d 95.63 1.42 97.05

170 0.04 84.19 12.16 96.35

310 0.06 78.28 14.22 92.50

phosphate
buffered

[1 mM]

in-situ

phosphate
buffered

[1 mM]

in-situ

Recovery
[%] [%] [%] [%]

Groundwater Mineralization Extraktion Combustion

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IMI IPU DKN

10 1 phosphate 62.19 95.77 -
buffered

170 [1 mM] 49.64 89.90 79.04

310 18.62 66.97 71.22

10 1 in-situ 59.29 97.04 -

170 37.51 86.01 68.95

310 20.08 76.82 61.22

Table 62: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 
 

 

 

Table 63: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Mulder-Beilen (MB), mixture (1:1:1) of test substances Isoproturon [IPU], 
Imidacloprid [IMI], Diketonitrile [DKN] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 90.24 n.d. n.c.

170 n.d. 85.91 n.d. n.c.

310 n.d. 33.77 n.d. n.c.

10 1 n.d. 94.52 1.83 96.35

170 0.07 88.62 6.11 94.78

310 0.08 82.03 11.03 93.12

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IPU

10 1 phosphate 93.29
buffered

170 [1 mM] -

310 81.35

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d. n.d.

170 n.d. n.d.

310 n.d. n.d.

10 1 n.d. n.d.

170 0.07 0.0005

310 0.08 0.0005

Table 64: The microcosm incubation study – M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), test substance Isoproturon [IPU] 
 

 

 

 

 

 

 

 

 

 

 

Table 65: The microcosm incubation study - M4: Aquifer Nature A (NA), test substance 
Isoproturon [IPU], mineralization [% of AR  µg kg-1 aquifer material]  
 

 

 

 

 

 

 

 

 

 

Table 66: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Nature A (NA), test substance Isoproturon [IPU] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 93.10 n.d. n.c.

170 n.d. 95.76 n.d. n.c.

310 n.d. 12.77 n.d. n.c.

10 1 n.d. 87.25 3.47 90.73

170 0.93 29.87 73.42 103.92

310 0.06 9.63 87.01 96.68

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IMI

10 1 phosphate 82.45
buffered

170 [1 mM] 14.66

310 n.d.

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d. n.d.

170 n.d. n.d.

310 n.d. n.d.

10 1 n.d. n.d.

170 0.93 0.0063

310 0.06 0.0004

Table 67: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), test substance Imidacloprid [IMI] 
 

 

 

 

 

 

 

 

 

 

 

Table 68: The microcosm incubation study - M4: Aquifer Nature A (NA), test substance 
Imidacloprid [IMI], mineralization [% of AR  µg kg-1 aquifer material]  
 

 

 

 

 

 

 

 

 

 

Table 69: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Nature A (NA), test substance Imidacloprid [IMI] 
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Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 90.99 n.d. n.c.

170 n.d. 90.16 n.d. n.c.

310 n.d. - n.d. n.c.

10 1 n.d. 91.11 1.96 93.08

170 0.02 91.29 4.24 95.55

310 0.09 88.68 4.03 92.77

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] DKN

10 1 phosphate 89.45
buffered

170 [1 mM] 85.63

310 51.36

Concentration Incubation Mineralization Mineralization
[µg l-1]  [days] [%] [µg kg-1 aquifer material]

0.1 1 n.d. n.d.

170 n.d. n.d.

310 n.d. n.d.

10 1 n.d. n.d.

170 0.02 0.0002

310 0.09 0.0002

Table 70: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), test substance Diketonitrile [DKN] 
 

 

 

 

 

 

 

 

 

 

Table 71: The microcosm incubation study - M4: Aquifer Nature A (NA), test substance 
Diketonitrile [DKN], mineralization [% of AR  µg kg-1 aquifer material]  
 

 

 

 

 

 

 

 

 

 

Table 72: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Nature A (NA), test substance Diketonitrile [DKN] 
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Concentration Incubation Groundwater Active ingredient [% of AR]
[µg l-1]  [days] IMI IPU DKN

10 1 phosphate 91.39 87.10 80.56
buffered

170 [1 mM] 22.01 59.77 66.54

310 n.d. 59.79 87.06

10 1 in-situ 93.94 85.14 89.26

170 20.47 78.27 64.02

310 n.d. 63.87 59.03

Concentration Incubation
[µg l-1]  [days]

0.1 1 n.d. 88.90 n.d. n.c.

170 0.29 72.31 n.d. n.c.

310 n.d. 70.19 n.d. n.c.

0.1 1 n.d. 87.98 n.d. n.c.

170 1.63 73.80 n.d. n.c.

310 0.26 64.89 n.d. n.c.

10 1 n.d. 90.29 2.46 92.75

170 0.05 71.01 23.90 94.90

310 0.07 67.93 26.43 94.36

10 1 n.d. 89.45 2.83 92.28

170 0.04 73.00 23.84 96.84

310 0.08 71.02 26.27 97.29

phosphate
buffered

[1 mM]

in-situ

phosphate
buffered

[1 mM]

in-situ

Recovery
[%] [%] [%] [%]

Groundwater Mineralization Extraktion Combustion

Table 73: The microcosm incubation study - M4: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 

 
 

Table 74: The microcosm incubation study - M4: Active ingredient (AI) extract [% of AR], 
aquifer Nature A (NA), mixture (1:1:1) of test substances Isoproturon [IPU], Imidacloprid 
[IMI], Diketonitrile [DKN] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 87.48 n.d. n.c.

90 - 1.28 85.12 n.d. n.c.

180 8.0 1.30 72.21 n.d. n.c.

270 8.0 2.51 86.22 n.d. n.c.

360 7.6 4.96 79.39 n.d. n.c.

450 7.9 4.56 80.21 n.d. n.c.

1 1 - - 90.14 4.37 94.51

245 8.0 1.28 86.73 9.71 97.73

450 8.7 4.53 79.17 11.16 94.86

10 1 - - 97.05 3.10 100.15

90 - 0.55 89.85 2.30 92.69

180 8.0 1.05 88.24 4.08 93.37

270 8.3 8.77 32.60 32.85 74.23

360 8.1 1.04 88.24 6.03 95.32

450 8.0 2.06 77.84 7.33 87.23

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 75: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Isoproturon [IPU] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 87.27 n.d. n.c.

90 - 2.76 90.16 n.d. n.c.

180 7.2 4.59 86.78 n.d. n.c.

270 7.7 4.75 83.47 n.d. n.c.

360 6.9 7.10 93.22 n.d. n.c.

450 6.9 2.72 89.47 n.d. n.c.

1 1 - - 90.95 5.03 95.98

245 8.3 0.42 81.73 20.45 102.60

450 7.8 0.41 72.34 30.03 102.77

10 1 - - 89.42 4.66 94.08

90 - 0.22 94.82 3.76 98.80

180 8.0 0.16 90.36 4.62 95.14

270 8.1 0.24 87.76 4.88 92.89

360 7.4 0.54 88.47 5.10 94.12

450 8.0 0.54 87.68 5.14 93.35

Mineralization Extraktion Combustion Recovery
[%] [%] [%] [%]

Table 76: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Imidacloprid [IMI] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 80.38 n.d. n.c.

90 - 2.24 82.87 n.d. n.c.

180 8.2 4.51 82.24 n.d. n.c.

270 8.6 15.06 86.15 n.d. n.c.

360 7.8 1.25 83.64 n.d. n.c.

450 7.2 11.90 84.42 n.d. n.c.

1 1 - - 93.58 2.65 96.23

245 8.4 0.15 91.87 4.45 96.47

450 8.6 0.48 88.70 6.11 95.29

10 1 - - 90.07 2.50 92.57

90 - 0.03 95.46 1.84 97.34

180 8.2 0.07 91.70 3.25 95.01

270 8.6 0.09 56.30 2.03 58.41

360 8.2 0.05 92.36 1.90 94.30

450 8.3 0.18 90.51 2.77 93.46

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 77: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), test substance Diketonitrile [DKN] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 81.11 n.d. n.c.

90 - 1.06 77.37 n.d. n.c.

180 7.2 7.86 43.08 n.d. n.c.

270 6.0 7.10 36.69 n.d. n.c.

360 6.7 - 42.36 n.d. n.c.

450 6.9 12.93 37.83 n.d. n.c.

1 1 - - 72.47 8.08 80.55

245 7.2 11.94 47.52 28.56 88.02

450 8.5 13.48 40.11 36.32 89.91

10 1 - - 91.85 2.14 93.99

90 - 0.26 89.85 2.58 92.69

180 8.5 4.28 72.98 15.29 92.55

270 7.2 8.08 51.61 29.59 89.29

360 6.8 9.07 46.66 33.49 89.22

450 7.9 10.28 45.26 32.04 87.58

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Temperature Incubation pH
[µg l-1] [°C]  [days]

0.1 10 1 - - 94.51 8.61 103.12

245 7.0 2.76 79.84 15.45 98.05

450 7.0 3.25 77.02 21.52 101.79

10 10 1 - - 91.01 1.86 92.89

245 7.9 0.84 88.32 5.00 94.16

450 8.4 2.13 83.79 6.74 92.65

10 20 1 - - 89.70 1.37 91.07

245 8.5 3.60 79.91 7.47 90.98

450 8.7 4.01 87.08 6.12 97.21

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 78: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Krauthausen (K), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 

 
Table 79: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), test substance Isoproturon [IPU] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 81.91 n.d. n.c.

90 - 2.16 76.16 n.d. n.c.

180 7.0 11.73 68.27 n.d. n.c.

270 8.0 - 65.67 n.d. n.c.

360 7.2 5.65 62.30 n.d. n.c.

450 7.1 7.29 58.05 n.d. n.c.

1 1 - - 82.77 4.73 87.49

245 8.2 1.67 67.01 38.35 107.03

450 7.1 2.94 61.94 39.83 104.71

10 1 - - 84.87 1.36 86.22

90 - 0.52 84.05 6.41 90.97

180 7.6 1.25 84.06 12.86 98.17

270 8.4 1.83 44.12 13.23 59.18

360 5.6 0.82 74.12 15.12 90.05

450 4.6 10.24 94.25 - n.c.

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 80: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), test substance Imidacloprid [IMI] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 75.21 n.d. n.c.

90 - 3.30 75.36 n.d. n.c.

180 7.2 7.09 67.98 n.d. n.c.

270 7.5 25.14 76.66 n.d. n.c.

360 7.0 4.95 78.21 n.d. n.c.

450 7.0 5.54 78.68 n.d. n.c.

1 1 - - 89.34 2.46 91.80

245 8.1 0.26 90.92 4.60 95.78

450 8.5 0.96 89.76 2.69 93.41

10 1 - - 92.33 1.81 94.14

90 - 0.12 90.73 1.46 92.31

180 7.4 0.15 92.57 2.29 95.05

270 8.4 0.18 58.87 2.98 62.03

360 7.2 0.29 90.56 1.85 92.71

450 8.0 0.46 76.42 3.14 80.02

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 81: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), test substance Diketonitrile [DKN] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 81.21 n.d. n.c.

90 - 7.43 32.44 n.d. n.c.

180 8.6 9.86 27.14 n.d. n.c.

270 8.8 13.82 14.38 n.d. n.c.

360 7.8 11.32 16.18 n.d. n.c.

450 8.0 14.28 7.63 n.d. n.c.

1 1 - - 87.12 5.32 92.44

245 8.3 14.86 20.86 56.99 92.71

450 8.6 15.44 9.29 71.13 95.86

10 1 - - 89.29 3.57 92.86

90 - 3.29 41.90 38.58 83.77

180 8.0 8.69 36.16 44.68 89.53

270 8.0 9.97 16.73 57.67 84.37

360 8.7 16.08 7.73 70.76 94.57

450 7.9 5.39 4.60 72.48 82.47

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Concentration Temperature Incubation pH
[µg l-1] [°C]  [days]

0.1 10 1 - - 77.87 18.67 96.54

245 8.5 5.17 62.87 36.44 104.48

450 8.1 5.29 40.38 43.45 89.12

10 10 1 - - 85.30 1.47 86.81

245 7.6 3.16 73.27 12.78 89.21

450 8.4 6.45 57.76 23.22 87.44

10 20 1 - - 86.49 1.44 87.93

245 7.9 6.07 64.92 18.13 89.13

450 8.6 10.36 50.33 30.31 91.00

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 82: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Mulder-Beilen (MB), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 

 
Table 83: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), test substance Isoproturon [IPU] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 82.23 n.d. n.c.

90 - 3.02 68.97 n.d. n.c.

180 8.6 3.30 66.76 n.d. n.c.

270 9.0 2.71 40.22 n.d. n.c.

360 8.8 2.64 40.16 n.d. n.c.

450 7.0 3.44 37.14 n.d. n.c.

1 1 - - 85.83 3.31 89.14

245 8.9 0.66 66.51 23.14 90.31

450 - - - - -

10 1 - - 87.86 3.67 91.53

90 - 0.32 65.98 25.98 92.28

180 7.8 1.69 16.82 68.65 87.16

270 8.8 1.25 78.50 13.85 93.60

360 7.7 0.61 63.87 24.69 89.16

450 8.6 3.60 12.76 80.78 97.13

Extraktion Combustion Recovery
[%] [%] [%] [%]

Mineralization

Table 84: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), test substance Imidacloprid [IMI] 
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Concentration Incubation pH
[µg l-1]  [days]

0.1 1 - - 95.74 n.d. n.c.

90 - 1.30 64.86 n.d. n.c.

180 8.7 2.15 55.56 n.d. n.c.

270 8.2 9.04 28.74 n.d. n.c.

360 7.8 14.61 18.59 n.d. n.c.

450 7.4 21.15 12.59 n.d. n.c.

1 1 - - 82.36 24.83 107.19

245 8.0 4.26 43.46 40.12 87.84

450 9.0 11.38 18.78 56.12 86.27

10 1 - - 84.69 9.48 94.17

90 - 0.23 77.07 17.12 94.41

180 8.6 1.00 - 29.17 n.c.

270 8.6 2.21 45.88 24.57 72.66

360 8.6 3.60 48.29 42.61 94.50

450 8.7 8.91 42.10 37.88 88.88

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery

Table 85: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), test substance Diketonitrile [DKN] 
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Concentration Temperature Incubation pH
[µg l-1] [°C]  [days]

0.1 10 1 - - 83.43 7.94 91.37

245 7.9 4.18 35.82 58.89 98.88

450 7.5 10.58 22.67 63.21 96.47

10 10 1 - - 88.79 2.92 91.74

245 8.8 7.43 35.86 47.40 90.69

450 8.7 15.16 22.63 55.19 92.98

10 20 1 - - 87.87 3.54 91.41

245 8.8 10.75 33.37 47.27 91.38

450 8.6 18.82 13.44 60.15 92.43

RecoveryCombustionExtraktion
[%][%][%][%]

Mineralization

Table 86: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], aquifer Nature A (NA), mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 

 
Table 87: The microcosm incubation study - M3: Radioactive balance and distribution of 
applied radioactivity [%], biological control, mixture (1:1:1) of test substances 
Isoproturon [IPU], Imidacloprid [IMI], Diketonitrile [DKN] 

 

 

 

 

 

 

 

 

 

 

 

Concentration Aquifer Incubation
[µg l-1]  [days]

10 K 477 0.39 97.08 2.90 100.37

10 MB 477 0.14 84.58 4.75 89.47

10 NA 477 0.19 80.44 16.77 97.39

[%] [%] [%] [%]
Mineralization Extraktion Combustion Recovery
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Figure 19: The DAISY test system: Online control (Screen shot) 

 

 

 

 

 

 

 

 

 

 

Figure 20: The aquifer Krauthausen: Generalized cross-section of the uppermost aquifer, 
derived from field studies (137;148) 
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Figure 21: The aquifer Krauthausen: Installed observation wells and groundwater flow 
direction (137;148) 
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Figure 22: The aquifer Nature A (NA): Drawing of position of sampling spot 

 

 

 

 

 

 

 

Figure 23: Scheme of the anaerobic sampler to collect water-saturated subsoil 

 

 

 

 

 

 

 

 

 

1.Vacuum pump with pressure regulator 2. Nitrogen cylinder with pressure regulator 3. Three-way valve 

to apply under pressure or N2  pressure to head of sampler 4. On-off switching valve to apply N2  to tube 

(9) to overcome under pressure with pulling up sampler 5. Flexible plastic tubing 6. Head of sampler, 

connected to 1m extension rods with marks 7. Glass filter, mounted in head of sampler 8. Sampling tube 

(50 cm length, 6 cm effective diameter), airtight connected to head 9. 1/8 inch steel tube inside sampling 

tube through which N2 is blown while pulling up sampler to compensate 
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Figure 24: Principle of the anaerobic sampling method 

 

 

 

 

 

 

 

 

 

1.Dug trench, 50-70 cm deep 2. Wide casing tube, protection against collapsing of topsoil into deeper 

layers 3. Casing tube, 1 m sections (to max. 5 m) connected with screw thread 4. Sampler with extension 

rods 

 

Figure 25: Principle of the aerobic sample system (aqua lock sampler) 
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Figure 26: Ground temperature: Mean monthly isotherms (56) 

 

 

 

 

 

 

 

Figure 27: Absorber traps: Kinetic (flask, V = 500 ml) 

 

 

 

 

 

 

 

 

 

 

x axis = remaining Bq in the headspace of the flasks 

y axis = time in hrs after the addition of HCL to the NaH14CO3  and the release of 14CO2 
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Figure 28: The DAISY incubation study - D5: Distribution of applied radioactivity [%], aquifer Krauthausen (K), active ingredient [AI] - 
Imidacloprid [IMI], Isoproturon [IPU], and Diketonitrile [DKN], concentration 10 µg l-1 
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Figure 29: The DAISY incubation study - D5: Distribution of applied radioactivity [%], aquifer Krauthausen (K), active ingredient [AI] 
– mixture (1:1:1) of test substances Imidacloprid [IMI], Isoproturon [IPU], and Diketonitrile [DKN], concentration 10 µg l-1 
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Figure 30: The DAISY incubation study - D5: Distribution of applied radioactivity [%], aquifer Mulder-Beilen (MB), active ingredient 
[AI] – mixture (1:1:1) of Imidacloprid [IMI], Isoproturon [IPU], and Diketonitrile [DKN], concentration 10 µg l-1 
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Figure 31: The DAISY incubation study - D5: HPLC chromatograms, aquifer Mulder-Beilen (MB), day 300, active ingredient [AI] – 
mixture (1:1:1) of Imidacloprid [IMI], Isoproturon [IPU], and Diketonitrile [DKN], concentration 10 µg l-1 
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Figure 32: The DAISY incubation study - D5: Distribution of applied radioactivity [%], aquifer Nature A (NA), active ingredient [AI] – 
mixture (1:1:1) of Imidacloprid [IMI], Isoproturon [IPU], and Diketonitrile [DKN], concentration 10 µg l-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 135 

Figure 33: The DAISY incubation study - D5: HPLC chromatograms, aquifer Nature A (NA), day 300, active ingredient [AI] - mixture 
(1:1:1) of Imidacloprid [IMI], Isoproturon [IPU] and Diketonitrile [DKN], concentration 10 µg l-1 
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Figure 34: The microcosm incubation study - M4: Distribution of applied radioactivity [%], active ingredient [AI] – Imidacloprid [IMI], 
aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA), concentration 10 µg l-1 
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Figure 35: The microcosm incubation study - M4: Distribution of applied radioactivity [%], active ingredient [AI] – Isoproturon [IPU], 
aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA), concentration 10 µg l-1 
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K NAMB

Figure 36: The microcosm incubation study - M4: Selected HPLC chromatograms day 300, active ingredient [AI] – Isoproturon [IPU], 
aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA), concentration 10 µg l-1 
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Figure 37: The microcosm incubation study - M4: Distribution of applied radioactivity [%], active ingredient [AI] – Diketonitrile 
[DKN], aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA), concentration 10 µg l-1 
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Figure 38: The microcosm incubation study - M4: Selected HPLC chromatograms day 300, active ingredient [AI] – Isoproturon [IPU], 
aquifer Krauthausen (K), Mulder-Beilen (MB), Nature A (NA), concentration 10 µg l-1 
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Figure 39: Enrichment cultures: Experimental setup and technical draft of the Retentostat (55;143) 
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#BMP(379) Peak name Rt. Area
1 IMI 3,75 6801,94
2 IPU 8,05 4162,04
3 DKN 13,62 2785,86

SUM 13749,83

#BMP(379) Peak name Rt. Area
1 IMI 3,75 6806,6
2 IPU 8,05 4413,89
3 DKN 13,6 2783,58

SUM 14004,07

Figure 40: Enrichment cultures: Retentostat 3 - HPLC measurements (UV, 02.03.2006) of the in- and out flow concentration of 
Imidacloprid [IMI], Isoproturon [IPU], and Diketonitrile [DKN] 
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Figure 41: Enrichment cultures: Particle concentration 
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Figure 42: Equilibria pH/ CO2  

 

 

 

 

 

 

 

 

 

Figure 43: Separation of dissolved 14C and dissolved 14CO2  
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