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I

Expression von Energie-Bilanz-assoziierten Genen im Fettgewebe von Milchkühen: Ein-

fluss von SCFA auf die mRNA-Expression, quantifiziert mittels qPCR sowie Relevanz der

Auswahl geeigneter Referenzgene

Ziel dieser Arbeit war es, den Einfluss von Propionat (C3) und ß-Hydroxybutyrat (BHB) auf die

mRNA-Menge von verschiedenen Referenzgenen (RGs) und von Zielgenen (GOI), die mit der

Energiehomöostase in Zusammenhang stehen, in Kurzzeitstimulationsversuchen (4 h) an

Explantaten aus zwei unterschiedlichen Fettdepots (subkutan (SC) und retroperitoneal (RP)) von

Milchkühen in vitro zu untersuchen. Hierbei haben wir uns auf drei Aspekte konzentriert: (1) die

differenzielle Wirkung von C3 und BHB auf RGs sowie deren Verwendung in der Normalisie-

rung zur Verbesserung der Zuverlässigkeit von Real-Time-quantitative-PCR- (qPCR-) daten. Zu

diesem Zweck wurden das geNormTM- und das Normfinder©- Programm verwendet, um die

stabilsten RGs zu identifizieren. Die geometrischen Mittelwerte der stabilsten RGs, gekenn-

zeichnet durch geNormTM als die stabilsten RGs bei C3- und BHB-Behandlung, wurden für die

weitere Normalisierung verwendet. (2) Die Wirkung von C3 und BHB auf die mRNA-

Abundanz der Gene, die mit der Energiehomöostase in Zusammenhang stehen, in SC und in RP

Fettgewebsexplantaten zu untersuchen. Wir haben dabei gezeigt, dass die in vitro Stimulation

von bovinem SC und RP Fettgewebe mit verschiedenen Konzentrationen von C3 oder BHB

nach kurzer Zeit (4 h) differenzierte Auswirkungen auf die mRNA-Abundanz von Adiponectin,

Adiponectin Rezeptor 1 (AdipoR1), AdipoR2, Peroxisomen-Proliferator-aktiviertem Rezeptor

gamma 2 (PPARγ2), Insulinrezeptor-Substrat 1 (IRS-1), CCAAT/enhancer-binding-Proteine α

(C/EBPα), Glucosetransporter 4 (GLUT4), Interleukin-6 (IL-6) und Sterol regulatory element-

binding protein 1 (SREBP1) hat. Die mRNA von AdipoR1/R2 wurde im bovinen Explantat-

Modell durch BHB weniger beeinflusst als durch C3; dies deutet darauf hin, dass das

Adiponectin-System gegenüber C3 sensitiver sein könnte als gegenüber BHB. Die mRNA von

PPARγ2, einem der Hauptregulatoren der Adipogenese, wurde von C3 in SC Fettgewebe erhöht,

während C3 die mRNA von IRS-1 im RP Fettgewebe reduzierte. Die Insulin-induzierten Verän-

derungen waren auf die mRNAs des Freie Fettsäuren Rezeptors 3 (FFAR3) und von IL-6 in SC

und RP Fettgewebe beschränkt, und zeigten bei beiden Genen einen Trend (P≤0,15) zur Erhö-

hung der mRNA-Menge. (3) Etablierung eines Zellkultursystems für primäre, bovine

Präadipozyten zur Charakterisierung der mRNA-Expression der Gene von C/EBPα, FFAR2,

FFAR3, Fettsäure-bindendem Protein 4 (FABP4) und PPARγ2 während der Differenzierung.

Neben dem zeitlichen Anstieg der einzelnen mRNAs haben wir als Erste den Nachweis von

FFAR2 und FFAR3 mRNA in beiden Depots des Fettgewebes erbracht.



II

Expression of genes related to energy balance in adipose tissue of dairy cattle: effects of

SCFA on mRNA abundance as quantified by qPCR and relevance of appropriate selection

of reference genes

The aim of this thesis was to study the effect of propionate (C3) and β-hydroxybutyrate (BHB)

on the mRNA abundance of reference genes (RGs) and of the genes of interest (GOI) related to

energy balance, by short term incubation (4 h) in bovine AT explants in vitro. Herein, we fo-

cused on three aspects: First, the differential effect of C3 and BHB on RGs and their use in gene

expression normalization to improve the reliability of quantitative real-time PCR (qPCR) data.

For this purpose, geNormTM and Normfinder© programs were used to identify the RGs with

highest stability. The geometric mean of the RGs identified by geNormTM as being most stable

in C3 and BHB treatment was used for accurate normalization. Second, to explore the effects of

C3 and BHB on the mRNA abundance of energy balance related genes in subcutaneous (SC)

and retroperitoneal (RP) adipose tissue (AT) explants. We demonstrated that in vitro stimulation

of bovine SC and RP AT explants with different concentrations of C3 or BHB in short-term

exerts differentiated effects on the mRNA abundance of the analyzed energy balance related

genes adiponectin, adiponectin Receptor 1 (AdipoR1), AdipoR2, peroxisome proliferation-

activated receptor gamma 2 (PPARγ2), insulin receptor substrate 1 (IRS-1), CCAAT/enhancer

binding protein α (C/EBPα), facilitated glucose transporter 4 (GLUT4), interleukin 6 (IL-6) and

sterol regulatory element-binding protein 1 (SREBP1). Adiponectin receptor 1 and AdipoR2

mRNA were less affected by BHB than by C3 in the bovine explant model, indicating that the

bovine adiponectin system might be more sensitive to C3 than to BHB. The mRNA abundance

of PPARγ2, a key regulator of adipogenesis, was increased by C3 in SC AT explants, while C3

suppressed mRNA abundance of IRS-1 in RP AT. The insulin-induced alterations were limited

to the mRNAs of free fatty acid receptor 3 (FFAR3) and IL-6 in SC and RP AT, respectively,

for which a trend (P≤0.15) for increased abundances was recorded. Third, we established a bo-

vine primary preadipocyte culture for characterizing the mRNA expression of the genes encod-

ing C/EBPα, FFAR2, FFAR3, fatty acid binding protein (FABP4) and PPARγ2 during differen-

tiation. In addition to increased mRNA abundance of the GOI during differentiation, we demon-

strated the presence of FFAR2 and FFAR3 mRNA not only in both AT depots but also in diffe-

rentiating preadipocytes isolated from bovine SC AT.
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1. Introduction

Today, ruminants account for almost all dairy lifestock and also contribute to about one-third

of the meat production worldwide. The use of high-yielding breeds such as Holstein-Friesians

has resulted in dramatic increases in milk production during the past decades. Compared to a

suckler cow which would naturally produce around 4 litres of milk per day, a high yielding

dairy cow will produce around 27 litres per day for a period of 10 months (305 d lactation

period). After parturition, milk production peaks between wk 5 to 7 post-partum, whereas

maximum feed intake is reached not until 8 to 22 wk after calving. The lag in feed intake dur-

ing this period leads to a negative energy balance (Ingvartsen et al., 2000). Energy balance is

defined as the difference between the energy consumed and the energy required for mainten-

ance, growth, pregnancy, and lactation (Grummer, 2007) and is of particular importance dur-

ing the transition from pregnancy to lactation (Drackley, 1999), particularly in high-yielding

dairy cows. The mobilization of body stores, mainly in the form of lipids accumulated in var-

ious AT depots, to compensate the energy loss via milk can be excessive and is knowingly

coupled to health disturbances, e.g. metabolic diseases and impaired immune function. Accre-

tion of body stores occurs during the preceding pregnancy and might also reach an extent pre-

disposing for metabolic disorders like obesity, reduced insulin sensitivity and fatty liver,

which affect the health and production of dairy cattle (Ametaj et al., 2005). Positive and nega-

tive energy blance as well as their impact in relation with different factors will be discussed in

further chapters. However, understanding the effect and interrelationships of both situations,

i.e. energy surplus and deficit, will helps to develop concepts for improvement of dairy cattle

health and performance. At the moment, there are several methods (e.g. in vivo and in vitro)

to study the effects of energy surplus or deficit in dairy cattle with their advanteges and disad-

vanteges. The present thesis will foucus only on an in vitro model based on the reasons ex-

plained in the further sections.

1.1. Adipose tissue

Adipose tissue represents a special loose connective tissue containing lipid-loaden adipocytes

and other cell types. The main focus of this study is white AT, whereas brown AT, which is

almost exclusively found in neonates, will not be addressed. White AT stores lipids as trigly-
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cerides and mobilizes them for systemic utilization when other tissues require energy. Besides

its role as energy store, it is an active endocrine organ producing different types of hormones,

cytokines and chemokines, collectively termed as adipocytokines to regulate homeostasis.

Adipose tissue produces also transcriptional factors and in this way influences many aspects

of energy metabolism through a network of local and systemic signals. The present study fo-

cuses on selected energy balance related genes like adiponectin, AdipoR1/2, C/EBPα,

FFAR2/3, GLUT4, G-protein-coupled receptor 109A (GPR109A), IL-6, IRS-1, PPARγ2, and

SREBP1 (Caimari et al., 2010; Herwig et al., 2009; Liu et al., 2003; Nilaweera et al., 2003)

for which the backgrounds will be provided in the following chapters. Adipose tissue mod-

ulates energy expenditure, appetite, insulin sensitivity, endocrine and reproductive functions,

bone metabolism, inflammation, and immunity (Shoelson et al., 2007).

It is localized in different places of the body. The different localizations (depots) display vari-

ous functions. Subcutanous depots are located directly underneath the dermis in the subcutis

(e.g. at the tail-head, withers, sternum); whereas the visceral depots reside in the abdominal

and thoracic cavity as fat pads (e.g. heart, intestine, liver and kidney fat). Visceral and SC AT

differ according to their structure and metabolic function. Fat accumulation in SC and visceral

depots is prone to metabolic disorders in man, particularly when visceral fat deposition is ab-

undant (Lafontan et al., 2003). However, the amount of SC AT generally exceeds the visceral

fat mass by 3 to 4 times (Chowdhury et al., 1994); both depots can interact in a coordinate and

compensatory manner. The intra-abdominal fat is subdivided into preperitoneal and RT de-

pots (Shen et al., 2003). The preperitoneal depots surrounding the intestine, i.e. that the omen-

tal-mesenteric blood vessels drains into the liver via the portal circulation, whereas RP blood

reaches the systemic circulation via the inferior vena cava; the release of mediators affecting

insulin sensitivity from the RP AT depot will thus exert systemic, rather than specifically he-

patic effects (He et al., 2008).

The cell types forming AT comprise adipocytes, which might contribute to about 35% to 70%

of adipose mass in human adults, but form only 25% of the total cell population (Frühbeck,

2008). In addition to adipocytes, AT also contains preadipocytes, endothelial cells, fibrob-

lasts, leukocytes and, most importantly, macrophages (Tilg et al., 2006; Trayhurn et al., 2004)

(Fig. 1). These diverse cell types account for the remaining 75% of the total cell population;

the multicellularity implies a wide range of targets for an extensive autocrine/paracrine cross-

talk (Frühbeck, 2008) in AT as a local effect and/or elicits endocrine effects in different or-

gans and thus affects energy homeostasis in organism via the aforementioned energy balance
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related genes. The AT of obese individuals contains a large number of macrophages, which

also are an additional source of soluble mediators in AT (Fig. 1). However, macrophages in

AT of monogastrics seem to be the main source of proinflammatory cytokines like IL-6 (Gal-

ic et al., 2010), which will be in detail discussed in the next chapters. Adipose tissue contri-

butes 30% of the IL-6 concentration in the circulation of obese individuals (Mohamed-Ali et

al., 1997). The various mediators produced by adipocytes and resident macrophages might

contribute to local and systemic inflammation (Tilg et al., 2006). Less is known about the

infiltration and resident population of the macrophages in lactating dairy cattle during differ-

ent physiological situation.

1.2. Energy balance and related genes

As mentioned above, negative energy balance during early lactation in dairy cows leads to an

altered metabolic state by drawing on body fat reserves (Bertics et al., 1992). The depletion of

AT in energy-deficit conditions is accompanied by comprehensive metabolic and endocrine

changes in dairy cows during early lactation, and may result in an increased risk for many

diseases and metabolic disorders like ketosis. In a situation of negative energy balance during

early lactation, nonesterified fatty acids (NEFA) are released from AT by lipolysis. The oxi-

dation of NEFA to acetyl-CoA represents the first step of energy generation for most organs.

In the following steps, the activated acetyl enters the tricarboxylic acid cycle by reacting with

oxaloacetate to form citrate; in a succession of reactions the acetyl is converted into carbon

dioxide and energy (ATP). The availability of oxaloacetate, however, depends on an adequate

supply of its precursors (e.g. pyruvate, which is the product of glucose degradation in glyco-

lysis). Acetyl-CoA cannot enter the citric acid cycle if the concentration of oxaloacetate is

lowered (e.g. when carbohydrate supply is limited and gluconeogenetic conditions develop).

In fasting or diabetes, oxaloacetate is consumed to form glucose by the gluconeogenic path-

way and is unavailable for condensation with Acetyl-CoA. The Acetyl-CoA is then directed

to the formation of ketone bodies, i.e. acetone, BHB and acetoacetate (Fig. 3) (Berg et al.,

2006). Ketone bodies may also originate from butyrate from ruminal fermentation and subse-

quent metabolization in the ruminal epithelium (Kristensen et al., 2000), but its concentrations

in blood, milk, and urine are closer linked to lipolysis than to ruminal absorption. Therefore,

BHB is used as an indicator for lipolysis in dairy cows and increased concentrations occur

during energy deficit and are indicative for metabolic stress which might finally result in clin-
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ical symptoms like ketosis. When the hepatic uptake of lipids exceeds the oxidation and se-

cretion of lipids by the liver, which usually is preceded by high concentrations of plasma

NEFA mobilized from AT, excess lipids are stored as triacylglycerol in the liver and are asso-

ciated with decreased metabolic functions of the liver and thus open out into the fatty liver

syndrom. In dairy cattle, the increased NEFA and BHB concentrations in blood are related to

decreased protein and mRNA abundance of adipokines like leptin in SC AT from 10 d before

parturition to 10 d thereafter (Duske et al., 2009). It is also known that BHB and butyrate in-

hibit adipocyte lipolysis in bovine AT in vitro (Metz et al., 1974). The effect of BHB and its

effect on energy balance related genes will be discussed in coming chapters.

As mentioned before, surplus energy load can cause metabolic disorders like obesity, reduced

insulin sensitivity and fatty liver, which in turn affect health and production of dairy cattle.

Short chain fatty acids (SCFA), mainly acetate, C3 and butyrate, are known as the main ener-

gy source in ruminants. In ruminantes, most of the carbohydrates from feed stuffs are fer-

mented to the SCFA, carbon dioxide, and methane in the rumen. The SCFA blood concentra-

tion is different between monogastrics and ruminants; besides SCFA concentrations differ in

blood depending on the distance to the place of absorption, i.e. when comparing portal, hepat-

ic and peripheral values (Bjorkman et al., 1986; Cummings et al., 1987). The peripheral con-

centration of acetate is between 1.2 and 2.1 mM. Acetate is the major substrate for lipogenesis

and oxidation (Brockman, 2005). Propionate is efficiently extracted (80–85%) by the liver in

first pass and provides the main substrate for hepatic gluconeogenesis (Baird et al., 1980).

About 20% of the absorbed C3 thus reach the circulation; the periperheral C3 serum concen-

trations reportedly range between 0.06–0.08 mM (Bjorkman et al., 1986). Previous studies

demonstrated that in contrast to acetate, C3 stimulates insulin secretion and increases gluca-

gon concentration immediately after the infusion in dairy cattle and sheep (Bradford et al.,

2006; Lee et al., 2002; Sano et al., 1995). Insulin increases leptin mRNA in bovine AT ex-

plants (Houseknecht et al., 2000). Therefore, the present thesis focuses on insulin dependent

or independent effect of C3 on AT.

After the discovery of leptin as the first adipokine (Taniguchi et al., 2002; Zhang et al., 1994)

our perspective about the functions of AT and adipocytes was changed. The role of adipo-

kines like adiponectin, and resistin, but also cytokines such as IL-6, which is also secreted at

high levels by the AT, became more obvious. In mouse colon, C3 elicits anti-inflammatory

effects on IL-6 mRNA and protein expression (Tedelind et al., 2007), which in turn inhibit

adiponectin gene expression and secretion (Fasshauer et al., 2003). In monogastrics, an exten-
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sive association was shown between body mass and expression and secretion of some of

energy balance related genes like leptin and adiponectin. In different physiological situations

like obesity, leptin increases and thus shows an inverse correlation with adiponectin. Adipo-

nectin and its receptors, which will be discussed in the coming chapters, influence energy

homoeostasis and increase insulin sensitivity (Guerre-Millo, 2008). Decreased insulin sensi-

tivity is defined as a pathologic state of decreased responsiveness of target tissues to normal

circulating levels of insulin. Adiponectin acts as an autocrine/paracrine factor, it is involved in

adipocyte lipid accumulation and differentiation, and affects other energy metabolism related

genes like C/EBP and SREBP1 expression (Fu et al., 2005), and regulates the expression of

its receptors in AT (Liu et al., 2008b). Several studies demonstrated the effect of C3 on

mRNA abundance of nutrient sensing receptors and adipokines in ruminant AT in vivo and in

vitro (Mielenz et al., 2008; Soliman et al., 2007). The concentrations dependent SCFA silenc-

ing by demethylation (Benjamin et al., 2001) might also lead to repression of mRNA abun-

dance of energy balance related genes as it was shown for mouse leptin promoter activity

(Yokomori et al., 2002).

As mentioned before, the transcriptional pattern and the protein expression in AT under dy-

namic physiological regulation may change. However, it is important to note that adipokines

are not all exclusively derived from AT. The cross talk between energy balance related genes

in different organs such as AT, liver, skeletal muscle, and central nervous system is assumed

to provide an important link between obesity, insulin sensitivity, immunity, appetite and ener-

gy balance, lipid metabolism, inflammatory disorders and acute phase response (Trayhurn et

al., 2004). Under the different physiological situations, energy homeostasis depends on many

factors, among which some of these factors act as nutrient sensor like FFAR2/3 (Ichimura et

al., 2009) and GPR109A. The regulation of nutrient sensing receptors trough different signal

transduction pathways leads to the expression of adipokines or other transcriptional factors

like C/EBPα, PPARγ2, GLUT4, IRS-1, SREBP1, FABP4 (Caimari et al., 2010; Fernyhough

et al., 2007), adiponectin, AdipoR1/R2, and IL-6. Most of the studies describe the regulation

of protein expression but not the regulation of mRNAs like the ones for adiponectin or IL-6

(Trayhurn et al., 2004). The aforementioned energy balance related genes will be discussed in

the following chapters in details.
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Fig. 1. Adipose tissue: cellular components, molecules synthesized and their classified
functional rules. Expansion of the AT during weight gain leads to the recruitment of macro-
phages shown in monogastrics through various signals, which might include energy balance
related genes produced by adipocytes. These macrophages are found mainly around apoptotic
adipocytes. Energy balance related genes include C/EBPα, PPARγ2, GLUT4, IRS-1,
SREBP1, FABP4, ,adipocytokines such as adiponectin, AdipoR1/2 and IL-6 and nutrient
sensing receptors like FFAR2/3 and GPR109A shown as different receptors types (Modified
after Tilg et al., 2006; Trayhurn et al., 2004).

1.2.1. Free fatty acid receptors regulate energy homeostasis

In association with the aforementioned proteins and mRNAs, the family of G-Protein coupled

receptors (GPRs) is involved in fatty acid metabolism. The members of this family are in-

volved in different physiological functions like nutritional regulation and they are of impor-

tance as pharmaceutical targets. They are localized in different organs including intestine (e.g.

GPR120), adipocytes, taste buds, and lung (Ichimura et al., 2009) or in liver, heart, and ske-

letal muscle (e.g. GPR40). The family of GPR40 is activated by medium and long-chain fatty

acids and is involved in different metabolic functions like potentiating insulin secretion, adi-

pogenesis and lipolysis (Covington et al., 2006). In the present study, we focused on those

members of this family (e.g. GPR41 and GPR43) that are activated by SCFA (Brown et al.,

2005; Le Poul et al., 2003) and on one receptor that is activated by BHB and nicotinic acid,

i.e. GPR109A (Gille et al., 2008).
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GPR41/43 are alternatively called free fatty acid binding membrane receptors 3/2, respective-

ly (FFAR2/3 labeled in the body of the text). The expression of FFAR2 and FFAR3 mRNA

was addressed in AT, isolated leukocytes (Lemor et al., 2009), mammary epithelial cells and

lactating mammary gland of bovine species (Yonezawa et al., 2009) and some other tissues

like liver, heart, spleen, and skeletal muscle (Wang et al., 2009). The highest expression was

observed for FFAR2 in spleen and immune cells such as neutrophils and monocytes (Stoddart

et al., 2008), whereas for FFAR3 the highest expression was observed in human AT (Brown

et al., 2005). However, there is one report indicating that both receptors are not expressed in

bovine AT (Wang et al., 2009).

Short chain fatty acids are identified as ligands for human FFAR2 and FFAR3, they show

differences in SCFA specificity, have key differences in the signalling pathways they activate,

and in their tissue expression patterns (Ge et al., 2008). The rank order of potency starts with

acetate (C2), C3 being equipotent followed by butyrate (C4), then valerate (C5), and formate

(C1) (Stoddart et al., 2008). Several studies indicated that the different SCFA have different

affinities to bind the receptor (Lee et al., 2008; Tedelind et al., 2007), but it should be realized

that the SCFA concentration differ largely between human and ruminants (Bjorkman et al.,

1986; Cummings et al., 1987). FFAR2/3 have been reported to stimulate leptin release and

adipogenesis, and are known as energy storage monitoring receptors (Covington et al., 2006).

Both receptors are regulated in dairy cows during the transition from pregnancy to lactation

(Lemor et al., 2009). The bovine FFAR2/3 were cloned and characterized by Wang et al.

(2009). The bovine FFAR2 and FFAR3 comprise 329 and 326 amino acids (a.a.), respective-

ly; the multiple alignment (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa

_multalin.html; (Corpet, 1988)) shows 36.4% homology between the a.a. of these two pro-

teins (Fig. 2a). The phylogram using the treeview of ClustalW shows (http://www.ebi.ac.uk/

Tools/clustalw2/index.html; (Larkin et al., 2007)) that the bovine, murine and human FFAR2

is closer related than the FFAR3 in these three species; the a.a. of men and mice are more

homolog compared to the bovine FFAR2. In addition, the murine FFAR3 is much more simi-

lar to FFAR2 of cattle, mice and humans (Fig. 2b). The bovine putative GPR109A is not yet

characterized; therefore no sequence comparisons across species were possible.

GPRs are highly important in cell function, and are membrane-spanning proteins with seven-

transmembrane spanning-helices that respond to various stimuli such as light, tastes, or hor-

mones (Hendriks-Balk et al., 2008). FFARs serve to transduce a extracellular signal to inside

a cell through a variety of second messenger cascades, such as cAMP-dependent protein ki-
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nase A (PKA) and cAMP-dependent protein kinase C (PKC) signalling pathways (Hong et

al., 2005). The heterotrimeric G proteins are divided into four families: Gs, Gi/o, Gq/11 and

G12/13 based on similarity of α-subunits (Hendriks-Balk et al., 2008). FFAR2 can couple to

both Gi and Gq; they may activate the Gi/o pathway in adipocytes to inhibit lipolysis, and are

involved in immune and inflammatory response and reduce plasma FFA levels in vivo.

FFAR3 couples only to Gi (Ge et al., 2008), resulting in inhibition of adenylylcyclase and

elevation of intracellular calcium through activation of PLC-β2 (Brown et al., 2005).

a 10        20        30        40        50        60
|         |         |         |         |         |

FFAR2 -------MPDWDSSLILTAYIIILLTGLPANLLALRAFLGRVRQPHPAPVHILLLSLTLA
FFAR3      MTNPDHSFFLGNHWLFFSVYLFTFLVGLPLNLMALVIFVGKLRR-RPLAVDVLLLNLTLS

70        80        90       100       110       120
|         |         |         |         |         |

FFAR2 DVLLLLLLPFKIIEAASDFRWELSNLACALMGFGFYGSIYCSTLLLAGISVERYLGVAFP
FFAR3 DLVLLLFLPFRMVEAASAMHWSLPFVFCPFSRFLFFTTIYLTSLFLAAVSTERFLSVAYP

130       140       150       160       170       180
|         |         |         |         |         |

FFAR2      VQYKLSRRPVYGVIAALIAWVMSFGHGTVVIIVQYLNSTQRAPKENETTCYENFTQEQLR
FFAR3      LWYKTRPRPGQAGLVSGACWLLAAAHCSVVYVIEFSGNSSPSQGINGT-CYLEFREDQLA

190       200       210       220       230       240
|         |         |         |         |         |

FFAR2 LLLPIRLELCLLLFFFPMVVTTFCYSRFVWIMLTQPHMGAQKQRRAMGLAIVSLLNFLLC
FFAR3 LLLPVRLEMAVVLFGVPLFISSYCYSRLVCIL--GRGASHRRRKRVAGLAAATLLNFLVC

250       260       270       280       290       300
|         |         |         |         | |

FFAR2 FGPYNISHLVGFYMKASPKWRREAVVFGSLNASLDPLLFYFSSSVVRRSFGKGLQALYHW
FFAR3 FGPYNMSHIVGYIQGKSPTWRSYVLLLSTLNSCVDPLVYYFSSS--------GFQADFHG

310       320       330
|         |         |

FFAR2      GSSLLGRRCKETAEAANEDPGVSQAEGAPSSDFTLD--
FFAR3      LLGRLTGSWGPWRQENGVTSKKSEGEGPPQELFNIEAS

Fig. 2. Structure and clustering of FFAR2 and FFAR3 receptors. a, amino acid alignment
of bovine FFAR2 and FFAR3 receptors. Residues identical in both receptors are shown in
red, whereas residues differences are shown in black. b, Phylogram representing sequence
similarities among amino acids of bovine, mice and human FFAR2 and FFAR3 using the
TreeView of ClustalW. Accession numbers are as follows: FFAR2 and FFAR3 of bovine,
mice and human and their National Center for Biotechnology Information (NCBI) accession
numbers (ACM07438.1; ACM07440.1), (Q8VCK6; Q3UFD7) and (O15552; O14843), re-
spectively.

b



Introduction 9

Beside the relevance of ß-adrenergic receptor in lipolysis, there are other energy related genes

like GPR109A that effect lipolysis. As mentioned before, in general the concentration of fatty

acids, NEFA and BHB increases during negative energy balance (Duske et al., 2009). Ele-

vated levels of ketone bodies (Fig. 3) in the blood may lead to ketosis; the process of ketoge-

nesis was defined in a previous chapter. The putative GPR109A in bovine is also identified as

nicotinic acid binding receptor in human placenta cDNA as template (Wise et al., 2003), and

is a Gi/o-coupled seven-transmembrane receptor expressed in adipocytes and activated macro-

phages (Taggart et al., 2005). It is also known as HM74A or PUMA-G in humans and in

mice, respectively (Tunaru et al., 2003), and is activated in pharmacological doses by nicotin-

ic acid (Gille et al., 2008), also known as niacin or vitamin B3. Niacin increases total adipo-

nectin concentrations and decreases lipolysis via GPR109A-dependent and independent

pathways in rats (Plaisance et al., 2009). Beta-hydroxybutyrate inhibits lipolysis via activation

of GPR109A and thus represents an important negative feedback to adjust lipolytic activity

during starvation (Gille et al., 2008). The mechanism of activation is illustrated in Figure. 3.

Long-term treatment with extended release formulations of niacin in humans increased insulin

sensitivity, adiponectin, C/EBPα, PPARγ and decreased GPR109A mRNA (Linke et al.,

2009). The previous reports demonstrate that GPR109A can be activated through the ketone

body BHB during starvation in mice (Taggart et al., 2005) and that the SCFA butyrate is an

endogenous ligand for this receptor (Thangaraju et al., 2009). As mentioned in a previous

chapter, BHB is of relevance to modulate lipolysis in dairy cattle during early lactation when

the dairy cattle undergo negative energy balance (Metz et al., 1974). Further reports also

showed the presence and extent of change of GPR109A mRNA in dairy cows during the tran-

sition period (Lemor et al., 2009). For the SCFA butyrate, Metz et al. (1974) already indicated

that it can inhibit lipolysis in bovine AT. Thus the ruminally produced butyrate, might also

play a role besides BHB to inhibit lipolysis via GPR109A in cattle, as both factors are known

as a ligands for GPR109A (Thangaraju et al., 2009) and during positive energy balance, lipo-

lysis should be down regulated. Less is known about the GPR109A in bovine species.
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Fig. 3. Potential physiological role of the nicotinic acid receptor GPR109A during star-
vation. Sympathetic stimulation of adipose cells via β-adrenergic receptors (β-AR) is high
and insulin levels are low, resulting in increase of intracellular cAMP levels that stimulate
lipolysis. Free fatty acids (FFAs) are released from fat cells and metabolized in the liver see
chapter 1.2.) to ketone bodies, including β-hydroxybutyrate (BHB), acetoacetate (AcAc) and
acetone. Increased plasma concentrations of BHB activate GPR109A during energy deficient
conditions. GPR109A-mediated inhibition of adenylyl cyclase (AC) activity and the resultant
decrease in cAMP synthesis would counteract the increased β-AR-mediated cAMP formation
and the decreased cAMP degradation by phosphodiesterase 3B (PDE-3B) during negative
energy balance. I-R, insulin-receptor. (Modified after Gille et al., 2008 and Rehage, 2010).

1.2.2. Adiponectin and its receptors

Adiponectin, an insulin sensitizing hormone, was discovered in mid 1990s and it is one of the

initial investigated adipokines (Scherer et al., 1995). Adiponectin is mainly expressed in adi-

pocytes (Scherer et al., 1995). Adiponectin exerts its effect by decreasing the triglyceride con-

tent in insulin-sensitizing tissues and thereby upregulates insulin signalling, increases fatty

acid combustion and energy utilization by activating PPARα via adaptor protein containing

pleckstrin homology domain (APPL1), and alsop increases fatty acid oxidation and glucose

uptake by phosphorylation of AMPK (Deepa et al., 2009). Therefore, the adiponectin system

plays an important role in energy homeostasis.
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In contrast to leptin, circulating concentrations of adiponectin in obese human and mice are

inversely correlated to adipocyte mass (Hu et al., 1996). It should be relalized that adiponectin

(µg/ml) and leptin (ng/ml) appear in plasma in a different range of concentration (Bluher et

al., 2006). The adiponectin concentrations in lean human are higher than in obese individuals.

In obese humans, a drastic reduction of energy intake caused a 33% rise in the average level

of adiponectin mRNA, whereas refeeding let to a 32.8% decrease compaired to obese baseline

values (Liu et al., 2003). In humans with anorexia nervosa, high plasma adiponectin concen-

trations were observed and this might be related to the lack of negative feedback exerted by

fat mass on adiponectin production and/or to enhanced insulin sensitivity (Delporte et al.,

2003). When comparing adiponectin blood concentrations from pre to post-partum, differenc-

es were found and the post-partum values were between 12 and 13ng/ml (Raddatz et al.,

2008). These concentrations are much lower than those reported for humans (4-20 µg/ml)

(Bluher et al., 2006; Liu et al., 2003), and are probably related to the inadequate assay used;

validated assays for bovine adiponectin are presently unavailable and the use of human assay

systems as done in the quoted study is inappropriate. In addition to its endocrine functions,

adiponectin may act in an autocrine or paracrine manner to regulate the function of its recep-

tors in AT (Liu et al., 2008b); the signal transduction pathway will be described in further

paragraphs. AdipoR1/R2 were defined as the classical receptors for adiponectin. AdipoR1 is

expressed in muscle and appears as a high-affinity receptor for globular adiponectin and a

low-affinity receptor for full-length adiponectin, whereas AdipoR2 is abundantly found in

liver and serves as an intermediate-affinity receptor for both forms of adiponectin (Kadowaki

et al., 2005). Further research showed that both receptors are expressed in muscle, adipocytes

(Fasshauer et al., 2004), bovine AT (Lemor et al., 2009) and macrophages (Chinetti et al.,

2004). The regulation of both receptors mostly was studied on the mRNA level.

Adiponectin monomers have an amino-terminal collagen-like domain and a carboxy-terminal

globular domain that generate trimers, hexamers and high-molecular-weight multimers (Ka-

dowaki et al., 2006). It is also known as AdipoQ, Acrp30, Apm1, or MGC138982 in the bo-

vine species and was characterized by Sato et al. (2001). The bovine adiponectin is a 30kD

protein, comprised 240 a.a., with a secretory signal sequence at the N-terminal part (a.a.:1–

17), a collagenous region (a.a.:43–102) and a globular domain (a.a.:103–240) (Uni-

ProtKB/Swiss-Prot: Q3Y5Z3), which are also present in the mouse adiponectin (Scherer et

al., 1995). The sequence of the open reading frame in the bovine adiponectin gene is 82.7%

(nucleotides, NCBI Acc. No: NM_174742.2) and 83.54% a.a. (NCBI Acc. No:
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NP_777167.1) homologous to the human sequence (URL www.genecards.org, (Stelzer et al.,

2009)). The genomic DNA (NCBI Acc. No: DQ156120.1) comprises 5460 bp nucleotides,

and contains 2 exons.

As mentioned above, AdipoR1/R2 are the classical receptors of adiponectin. AdipoR1/R2

were discovered and cloned from human skeletal muscle cDNA (Yamauchi et al., 2003). The

amino acid sequences of both receptors indicated that they are integral membrane proteins,

with seven-transmembrane domains, and have an internal N-terminus and external C-

terminus, which is identified to be opposite configured than other reported G-protein coupled

receptors. Adiponectin binds to the external C-terminus, while the internal N-terminus and

intracellular domain interacts with a pleckstrin homology domain-containing adaptor protein

(APPL1) (Guerre-Millo, 2008). The APPL1 transduces the signalling pathways of AMP ki-

nase (AMPK), PPAR-α and p38 mitogen activated protein kinase (p38-MAPK) (Deepa et al.,

2009; Kadowaki et al., 2006). Hexameric and high molecular weight adiponectin also binds to

another cell surface protein known as T-cadherin (Hug et al., 2004), with no intracellular do-

main. It was thought to act as a co-receptor with an unknown binding partner in HMW-

adiponectin signalling in specific cell types (Fig. 3). It is abundantly expressed in injured vas-

cular endothelial and smooth muscle cells (Liu et al., 2008a) in atherosclerotic regions, asso-

ciated with atherosclerosis (Takeuchi et al., 2007). T-cadherin expresion was observed in SC

and visceral AT and in muscle, but only muscle mRNA expression was decreased by fasting

(Liu et al., 2008a). The bovine AdipoR1 and AdipoR2 comprises 375 and 386 a.a., respective-

ly (AdipoR1, Acc. No.: AAI02260.1: AdipoR2, Acc. No.: AAI10020.1); the multiple align-

ment (Corpet, 1988) shows 62.12% homology between the a.a. of these two genes. This is

comparable to the data known from human and mice with 66.7% homology (Kadowaki et al.,

2005).

In dairy cattle restrictive feeding during dry period increased only AdipoR2 mRNA expres-

sion in liver after calving (Loor et al., 2006), while the mRNA abundance of both receptors

was reduced post-partum in SC AT (Lemor et al., 2009).
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Fig. 4. Schematic representation of adiponectin regulation and currently known me-
chanisms of metabolic and vascular effects. Abbreviations: ROS: reactive-oxygen species;
n-3 PUFA: n-3 polyunsaturated fatty acids; TZD: thiazolidiendiones; NO: nitric oxide;
APPL1: a pleckstrin homology domain-containing adaptor protein; AMPK: 5’-AMP-activated
kinase; p38 MAPK: p38 mitogen-activated protein kinase (Modified after Deepa et al., 2009;
Guerre-Millo, 2008; Kadowaki et al., 2006).

1.2.3. IL-6 as an inflammatory cytokine

In association with other adipokines, IL-6, a multifunctional proinflammatory cytokine, is

closely related with both carbohydrate and lipid metabolism (García-Escobar et al., 2010).

Effects of IL-6 were observed as early as 1921 (Richards et al., 1995). It was termed B cell

differentiation factor in the early 1970's, as it was detected to be responsible for the final ma-

turation of B cells (Schreiber et al., 1995). Approximately 30% of the IL-6 detected in plasma

are attributed to the production from white AT; however, most of the adipose derived IL-6

comes from cells of the AT stromal vascular fraction (Galic et al., 2010). Beside skeletal

muscle, in which IL-6 stimulated during physical activity (Ara et al., 2010) many other types

of cells like monocytes, macrophages, T cells, B cells, mast cells, fibroblast cell and endo-

thelial cells produce IL-6 during acute or chronic inflammation, infection and injury (Ara et

al., 2010; Fain, 2010), are another main source of IL-6 (Gustafson et al., 2007). The release of

IL-6 by omental AT is higher than by SC AT but the gene expression of IL-6 was higher in
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freshly isolated SC AT (Fain et al., 2004). The visceral depots also drain into the portal circu-

lation, therefore the metabolic effects of IL-6 on the liver become important (Pittas et al.,

2004). As mentioned above it should be realized that RP blood drains to the systemic circula-

tion via the inferior vena cava (He et al., 2008). The rest of the IL-6 is released from different

cell types, including immune cells, fibroblasts, endothelial cells, myocytes, and a variety of

endocrine cells (Fain, 2010). In monogastric species like man, the IL-6 mRNA was expressed

in heart, brain, lymph nodes, ovaries, breast, and AT (URL www.genecards.org, (Stelzer et

al., 2009)). However, IL-6 may also affect fatty acid metabolism in an auto- or paracrine

manner, or induce tissue insulin resistance in other peripheral organs (Spranger et al., 2003)

thus demonstrating the role of IL-6 and inflammation in metabolism.

The secretion of IL-6 is regulated by several physiological factors, including hormones, cyto-

kines, physical activity, stress, and diet (Ara et al., 2010), and is positively correlated to adi-

pocyte cell size (Gustafson et al., 2007). In AT IL-6 reduces insulin-dependent glycogen syn-

thesis, decreases glucose uptake, increases triglyceride release, and down-regulates lipoprote-

in lipase, thus promoting obesity, insulin resistant type 2 diabetes and atherosclerosis in hu-

mans (Ara et al., 2010; Eder et al., 2009) (Fig. 4). The impaired insulin signalling in mature

adipocytes by IL-6 is mediated through decreased tyrosine phosphorylation of key signalling

molecules, increased inhibitory serine phosphorylation, and downregulation of the expression

of several proteins in the insulin signalling pathway. These effects lead to insulin resistance,

increase lipolysis and reduce glucose uptake by the AT (Gustafson et al., 2007), and turn to

impair insulin-induced insulin receptor and IRS-1 phosphorylation in adipocytes and hepato-

cytes of monogastrics (Galic et al., 2010). Thus IL-6 promotes a local insulin resistance in-

cluding an impaired inhibitory effect of insulin on FFA, release by antagonizing cytokine-

induced activation of STAT signalling (Gustafson et al., 2007). Less data is known about IL-6

in cattle. Recently it was shown that IL-6 is expressed at low abundance in adipose depots of

cows compared to other inflammatory markers, whereby regulation of IL-6 by a proinflam-

matory stimulus, i.e. lipopolysaccharide, was shown (Mukesh et al., 2009).

The family of cytokines is characterized through the common receptor subunit gp130 and a

four-ahelix bundle structure (Heinrich et al., 1998). IL-6, one of the members of this family,

signals through a cell-surface class I cytokine receptor complex consisting of the ligand-

binding a subunit (IL-6Ra/gp80), which binds the soluble ligand IL-6 and 2b subunits

(gp130), which, through their cytoplasmic domain, function as the signal-transducing compo-

nent of the complex. Gp130 is the common signal transducer for several cytokines and is al-
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most ubiquitously expressed in most tissues. In contrast, the expression of IL-6Ra/gp80 is

restricted to certain tissue. IL-6Ra/gp80 also exists in a soluble form designated sIL-6R, and it

stabilizes IL-6, promotes the formation of a functional multimolecular complex with gp130,

and enhances signalling. This is in contrast to most of the other soluble receptors that trap the

ligand and act as antagonists. As IL-6 interacts with its receptor, it triggers the gp130 and IL-

6R proteins to form a complex, thus activating the receptor. These complexes bring together

the intracellular regions of gp130 to initiate a signal transduction cascade through certain

transcription factors, Janus family of kinases (JAK1, JAK2, and TYK2), and signal transducer

and activator of transcription (STAT)-3. Binding of STAT-3 to a specific DNA domain pro-

motes the expression of a large variety of genes that affect survival, proliferation, differentia-

tion, osteogenesis/ osteolysis, angiogenesis, and immune modulation. IL-6 activates three

different signalling pathways, STAT-3, Erk1/2, and PkB/Akt (Ara et al., 2010). It inhibits

insulin signalling by insulin-dependent IRS-1 tyrosine phosphorylation, phosphatidylinositol

3-kinase (PI3K) in association with IRS-1, and protein kinase B activation/AKT (PkB/Akt)

(Eder et al., 2009). The full length IL-6 protein are made of 208 a.a with 65, 53, 42 and 42%

homology to sequences of porcine, human, mouse and rat IL-6, respectively (Droogmans et

al., 1992).

Fig. 5. IL-6-mediated signalling, gene expression, and its cellular effects. IL-6 activates
three pathways, STAT-3, Erk1/2, and PkB/Akt, which result in upregulation of a number of
genes that affect metabolism, survival, proliferation, differentiation, osteogenesis/osteolysis,
angiogenesis and immune modulation, in a variety of target cells and affect insulin sensitivity
and accelerate atherosclerosis in humans (modified after Ara et al., 2010; Eder et al., 2009).
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1.2.4. PPARγ2 a key regulator of adipogenesis

PPARγ belongs to a class of ligand-dependant nuclear receptor transcription factors and it is

the most intensively studied PPAR isoform. The receptor participates in biological pathways

of intense basic and clinical interest, such as differentiation, insulin sensitivity, type 2 di-

abetes, atherosclerosis, and cancer (Rosen et al., 2001). It was shown that PPARγ is involved

in energy homeostasis during the feeding-fasting nutritional transition in lean rats (Caimari et

al., 2010). It is therapeutically targeted for the prevention and treatment of AT expansion and

its associated clinical disorders, including hyperlipemia, hypertension, and type 2 diabetes.

Recently, it has been discovered that the PPARs play a central role in the transcriptional con-

trol of genes encoding proteins involved in the above processes. Three homologous PPARs,

PPARα, PPARβ/δ, and PPARγ are differentially expressed, among which PPARγ displays a

dynamic and specific regulation during the differentiation of an adipocytes cell (fibroblast,

adipofibroblast or preadipocyte).

PPARγ has the highest expression levels in AT compared with other metabolic organs, such

as skeletal muscle, liver, and pancreas. PPARγ activation through insulin sensitizing com-

pounds (thiazolidinediones, (TZDs)) in type 2 diabetic patients improves whole-body insulin

sensitivity, leading to reduced insulin and glucose plasma levels in human. The mechanisms

of PPARγ-mediated insulin sensitization are complex and are thought to involve specific ef-

fects on fat, skeletal muscle, and liver, even though AT appears to be the major target of

TZD-mediated effects on insulin sensitivity. The PPARγ includes 4 mRNA isoforms,

PPARγ1, 2, 3, 4. The PPARγ2 is the one of the isoforms which functions in adipocyte diffe-

rentiation through gene regulation. It is highly expressed in AT (Fernyhough et al., 2007), and

was cloned and characterized in the bovine species by Sundvold et al. (1997). The highest

expression was detected in AT with equal amounts for PPARγ1/2. PPARγ1 was expressed at

relatively high levels in bovine spleen and lung and to a lower extent in ovary, mammary

gland, and small intestine. The amount of PPARγ2 was apparently lower than that of PPARγ1

in spleen, lung, and ovary. The common cDNA sequence of bovine PPARγ1/γ2 showed

strong conservation compared to hamster, human and mouse PPARγ cDNAs, with 98 % a.a.

identity. A comparison of the 30 a.a., found in the N-terminal extension of the bovine

PPARγ2, with the corresponding murine and human sequences showed about 60% identity.

The degree of sequence conservation in the bovine PPARγ2 N-terminal specific extension
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showed 64% identity between the respective human and mouse a.a. sequences (Sundvold et

al., 1997).

Apart from its insulin sensitizing effect, PPARγ regulates transcription and translation of

genes like GLUT4, IRS-1 (Fernyhough et al., 2007). In this way it plays an important role in

regulationg energy balance in AT. In mice, the effect of C3 on FFAR2 expression as an ener-

gy balance related gene in association with increased PPARγ2 was addressed (Hong et al.,

2005). Previous reports indicated also the close intracellular cross-talk between PPARγ,

C/EBP and SREBP1, which affects lipid and fatty acid metabolism in the body and mainten-

ance of AT. PPARγ was shown also to activate the expression of several adipocyte marker

proteins, such as FABP4 (Tontonoz et al., 1994) (Fig. 5). To our knowledge no information is

available about the PPARγ2 and its relation with energy status in lactating cows.

1.2.5. C/EBPα and its transcriptional effect

One of the putative regulators of lipogenesis and gluconeogenesis is C/EBPs. This family of

transcription factors is important in the regulation of genes involved in energy metabolism

(Breed et al., 1997) such as leptin, GLUT4 and PPARγ (Fernyhough et al., 2007). The expres-

sion of the C/EBPs is regulated under several physiological and pathophysiological conditions

through the actions of a number of factors, including cytokines, mitogens, hormones, nutrients

and agents that cause cellular stress. They play pivotal roles in a number of processes, includ-

ing differentiation, the inflammatory response, liver regeneration, metabolism and numerous

other cellular responses (Ramji et al., 2002). The therapeutic usage of this family is known.

For instance, targeted suppression of one of the members of C/EBP in pancreatic β-cells has

been recently proposed for preventing both type 1 and type 2 diabetes (Ramji et al., 2002).

The C/EBP family belongs to the large family of basic leucine zipper (bZip) transcription

factors. All members of the C/EBP family have a C-terminal leucine zipper domain for dime-

rization and a basic domain for DNA binding, respectively. C/EBPα is one of six members of

the C/EBP family of transcription factors, and plays an important role in lipid deposition and

adipocyte differentiation (Ramji et al., 2002; Taniguchi et al., 1996). Expression of C/EBPα

was observed at high levels in the AT, liver, intestine, lung, adrenal gland, peripheral-blood

mononuclear cells and placenta. In the AT and in liver, the highest levels of mRNA are

present in the terminally differentiated cells. The expression of C/EBPα transcriptionally af-

fects FABP4, GLUT4 and leptin in adipocytes. The cross regulation between PPARγ and
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C/EBPα and their transcriptional effect on adipogenesis and insulin sensitivity was indicated

by several studies (Fernyhough et al., 2007; Wu et al., 1999). The bovine C/EBPα gene, like

the rat gene, is intron-free and was characterized by Taniguchi et al. (1996). An open reading

frame (nucleotide 169-1,230) in the bovine C/EBPα gene encodes a protein of 353 a.a. resi-

dues (Taniguchi et al., 1996). The sequence of the open reading frame in the bovine C/EBPα

gene is 89.9% (nucleotides) and 92.5% (a.a.) homologous to rat (Taniguchi et al., 1996) and is

94.43% (nucleotides, NM_176784.2) and 95.18% (a.a., NP_789741.2) homologous to human

(URL www.gene cards.org, (Stelzer et al., 2009)). Less is known about the regulation of

C/EBP family under the different physiological conduction in dairy cows.

1.2.6. SREBP1 and its effect on PPARγ

SREBPs are a family of transcription factors that regulate lipid metabolism (Ma et al., 2010).

The SREBP gene in human has two isoforms SREBP1 and SREBP2 with a nucleotide speci-

ficity that precisely matches the requirement for sterol-regulated transcription (Wang et al.,

1993). SREBP2 is involved in cholesterol synthesis, as opposed to fatty acid synthesis, in

liver and AT of mice (Horton et al., 1998b). Three alternatively spliced forms of human

SREBP1 mRNA (designated SREBPla, SREBPlb, and SREBPlc) were identified (Yokoyama

et al., 1993). In AT of humans the mRNA of SPEBP1c was increased after weight reduction

(Kolehmainen et al., 2001). In dairy cattle, the dietary supplementation with unsaturated fatty

acids like from sunflower seeds leads to increased milk fat content in spite of decreased de

novo milk fat synthesis as supported by a reduction in lipogenic genes like SREBP1 in mam-

mary gland (Møller et al., 2010). Between the various effectors of insulin, the SREBP1 path-

way is considered as a system that induces the liver to prepare the carbohydrate availability

by increasing the glucose-phosphorylating activity in the liver. The lipogenic capacity in the

liver is maintained by SREBP1c. In liver glucose will be transformed to lipids and mainly

stored in AT, allowing survival during even longer periods of energy deficit. This gene has

allowed species survival in the context of successive food availability and restriction. In asso-

ciation with metabolic disease it should also be considered from an opposite view. On the one

hand it acts as transcription factor to the genomic actions of insulin on carbohydrate and lipid

metabolism, and on the other hand, a loss of function leads to impaired insulin sensitivity

(Foufelle et al., 2002). Therefore, it plays a central role in energy homeostasis by promoting

glycolysis, lipogenesis, and adipogenesis (Hoashi et al., 2007), and it is affected dramatically
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upon nutritional status (Caimari et al., 2010); this parallels closely the regulation of two adi-

pocyte genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin

(Kim et al., 1998). Under different physiological situations, the expression of SREBP1 affects

PPARγ, a key regulator of energy homeostasis (Fig. 5).

In humans, SREBP1a and 1c transcripts are produced through the use of alternative transcrip-

tion sites and differ in their first exon (exon 1a and exon 1c) and their last two exons (exon

18a and 19a or exon 18c and 19c) (Hoashi et al., 2007). The tissue expression pattern of

SREBP1a and SREBP1c expression differs; SREBP1c is the predominant isoform in vivo,

and is expressed in liver, adrenal gland, AT, brain, kidney, muscle and pancreas, with highest

expression in liver and AT (Shimomura et al., 1997). SREBP1a is the predominant isoform in

proliferative tissues such as spleen, testis and ileum. As SREBP1a has higher transcriptional

activity compared with SREBP1c, the baseline ratio of SREBP1a and SREBP1c may be par-

ticularly important in regulation of gene transcription (Hagen et al., 2010).

The SREBPs are endodoplasmatic reticulum membrane-bound transcription factors of the

basic-helix-loop-helix-leucine zipper family that were shown to regulate gene expression of

several enzymes implicated in cholesterol, lipid, and glucose metabolism (Foufelle et al.,

2002; Osborne, 2000). The bovine SREBP1 gene was characterized by Hoashi et al. (2007),

and its a.a. sequence has high homology with those of human SREBP1a (82.9%) and 1c

(71.9%), as well as mice (78.5%) and rats (76.5%). During the early stages of differentiation,

SREBP1 affects the transcriptional activity of PPARγ (Fig. 5), and also the insulin signalling

and modulation of insulin sensitivity is affected via PPARγ (Leonardini et al., 2009). The

feeding-fasting nutritional transition affects SREBP1 mRNA abundance in liver and SC AT

of mice and obese humans in a time dependent manner, respectively (Horton et al., 1998a;

Kolehmainen et al., 2001). Energy balance related genes such as SREBP1, PPARγ in SC and

retroperitoneal AT are rarely studied in bovine, except for perimuscular preadipocytes during

differentiation (Taniguchi et al., 2008). Several recent reports indicated the repression of

SREBP1 after feeding supplementary unsaturated fatty acids and the stimulated expression

during the lactation period in mammary tissue of dairy cattle (Møller et al., 2010; Ren et al.,

2010).
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1.2.7. IRS-1 and GLUT4 and their relation with insulin sensitivity

Dietary carbohydrates are mostly converted to volatile fatty acids in the rumen of ruminants,

however, only a little amount of glucose is absorbed. The most important substrate for glu-

cose synthesis in ruminants is propionate. Ruminal propionate may account for more than half

of the substrate used for glucose synthesis in fed animals. In cattle, propionate may account

for 50–60% of the glucose and 11–35% of the lactate production. In fasted animals less pro-

pionate is available, and the glucose producing organs must find endogenous sources as sub-

strate for gluconeogenesis. In this situation, glycerol produced from lipolysis becomes a more

important glucose precursor; its contribution may reach 40% during fasting. The organs that

release glucose into the blood are liver, gut, skeletal muscle and kidney, among which the

liver is the most important glucose-producing organ (85–90%) in the ruminant. Different or-

gans of ruminants like sheep utilize glucouse in different rates (muscle, 20–40%; tail fat pad,

10%; uterus, 8% to 30%; mammary gland, 25–50% depending to the stage of pregnancy or

milk) according to their blood flow (Brockman, 2005). Insulin appears to increase glucose

uptake by the help of two elements (IRS-1 and GLUT4), which will be discussed in details in

the further paragraph.

Insulin acts by binding to its cell surface receptor and phosphorylates intracellular substrates,

which include the insulin receptor substrates (IRS) family and Shc (a common substrate of

tyrosine kinase receptors). The IRS protein family is characterized by C-terminal pleckstrin-

homology and phosphotyrosine-binding domains, which are required for high-efficiency

coupling to the activated insulin receptor, and an N-terminal region with multiple sites of ty-

rosine phosphorylation (Myers et al., 1996). Tyrosine phosphorylation of IRS-1 and Shc on

the insulin receptor activates phosphatidylinositol 3-kinase (PI3K) and mitogen-activated pro-

tein kinase (MAPK) signalling. The combination of these pathways regulates glucose trans-

port by GLUT4 translocation at the plasma membrane (Khan et al., 2002), glycogen synthesis

via protein kinase B-mediated inhibitory phosphorylation of glycogen synthase kinase-3,

which negatively regulates glycogen syntheses (Cross et al., 1995), lipogenesis via up-

regulation of the expression of the fatty acid synthase gene (Bourlier et al., 2008) and protein

metabolism, and in general controls the gene expression patterns (Fig. 5).

As mentioned in the previous chapters, insulin resistance is defined as a pathologic state of

decreased responsiveness of target tissues to normal circulating levels of insulin. The patho-

physiology of insulin resistance involves the complex network of signalling pathways, acti-
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vated by the insulin receptor, which regulates intermediary metabolism in monogastrics. In

ruminants, the secretion of insulin follows the infusion of C3 (Lee et al., 2002), however insu-

lin secretion showns divergent response to acetate (Harmon, 1992). Insulin also increases lep-

tin mRNA, one of the energy balance related factors, in bovine AT (Houseknecht et al.,

2000). The skeletal muscle is the principal site of glucose uptake under insulin-stimulated

conditions in human in vivo studies, whereas less glucose is metabolized by AT (Sesti, 2006).

As mentioned above, the insulin signal transduction depends on IRS-1 and GLUT4 in mono-

gastric species. The IRS-1 is one of the best characterized and known members of four intra-

cellular IRS proteins in monogastrics (White, 1998). Analogous information is not entirely

available for cattle although the whole genomic DNA was recently identified by Zimin et al.

(2009) in the bovine species. It is known that in adipose cells of rats, IRS-1 mediates the sti-

mulatory effect of insulin on GLUT4 (Im et al., 2006) and GLUT4 in turn regulates glucose

transport by translocation to the plasma membrane (Khan et al., 2002). In coming paragraphs,

the family of facilitative glucose transporters will be discussed in detail. In general, gluconeo-

genesis in liver is the main source of glucose in ruminants, and GLUT4 is an insulin depen-

dent glucose transporter. Reports indicated that the mechanisms underlying an increase in

insulin sensitivity are related to adiponectin increased total GLUT4 expression and the num-

ber of GLUT4 transporters acutely recruited to the plasma membrane in response to insulin

(Fu et al., 2005). Activation of the insulin receptor evokes increased transcription of SREBP

and PPAR (Oliver et al., 2010). Observatory reports indicated that although GLUT4 mRNA is

affected by insulin in monogastrics in vivo, cultured adipocytes have to be stimulated with

dexamethasone in addition to insulin (Hajduch et al., 1995); the effect of insulin could be

nevertheless be different in vivo. However, in ruminants, 6 h hyperinsulinemia did not show

any effect on GLUT4 protein abundance in caprine AT or skeletal muscles (Balage et al.,

1998). GLUT4 mRNA was detected in skeletal muscle, heart, and AT, but not in liver, kid-

ney, lung, brain, or spleen, which is essentially the same as in humans and rodents.

The family of facilitative glucose transporters (GLUTs) composed of five isoforms (GLUT1-

4 and GLUTX1), was described to clear glucose from the bloodstream into cells of target tis-

sues like muscle and adipose (Watson et al., 2001). GLUT4 is the major insulin-dependent

glucose transporter in adipocytes, muscle and heart, whereby glucose uptake by AT is less

than in skeletal muscle (Olefsky, 1999). The bovine GLUT4 was cloned and characterized by

Abe et al. (1997), and is expressed in muscle and AT. Bovine GLUT4 is composed of 509 a.a.

and is 64% and 92% identical with bovine GLUT1 and rats GLUT4, respectively.



Introduction 22

Less is known about the role of insulin signalling and GLUT4 in the AT of ruminants like

bovine, but it might be relevant for glycogen synthesis in monogastric species. In these spe-

cies the insulin signalling leads to the activation of glycogen synthase, which might be also

relevant for bovine. Therefore, higher blood concentration of glucose in AT of ruminants after

feeding might be relevant for glycogen synthesis in AT (Fig. 5), in which glycogen metabol-

ism might function as a metabolic switch between feeding and fasting and/or regulation of

lipogenesis and lipolysis (Markan et al., 2010).

Fig. 6. Activation of the insulin receptor evokes increased transcription of SREBP and
PPARγ. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and SHC on the insu-
lin receptor activate phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein ki-
nase (MAPK) signalling. Growth factor receptorbound protein-2 (GRB2), protein kinase B
(PKB), glycogen synthase kinase-3 (GSK3), signalling factors that both directly and indirect-
ly regulate PPARγ. Note that PPARγ is an indirect regulator of itself through its action on
C/EBPα. Green arrows indicate direct regulation; red arrows indicate indirect regulation.
(Modified after Fernyhough et al., 2007; Oliver et al., 2010; Rosen et al., 2002).
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Less known about the regulation of the aforementioned energy balance related genes dis-

cussed in adipose tissue in relation to energy status in ruminant like dairy cattle. Some of the

studies discussed in the present thesis demonstrated the genes in view of type 2 diabetis in

human and rodents in detail. However, these studies cannot be conveyed to dairy cattle.

In modern animal husbandry, milk and beef production in association with improved welfare

of dairy cattle are of special interest. To maintain milk production and gain the highest eco-

nomical benefit, the pregnancy of cow is necessary. During the transition from pregnancy to

lactation, particularly in high-yielding dairy cows, the energy balance is of importance for

health, production, and profitability. As discussed before, under different physiological states

the AT as the energy storage and endocrine organ plays a crucial role. The optimal expansion

of AT is also of importance for beef cattle industry.

Therefore understanding the transcriptional pattern of the aforementioned energy related

genes in AT under dynamic physiological regulation is highly relevant. However, it is impor-

tant to know that the interpretation of the gene regulation in ruminant according to the mono-

gastric gene regulation under different physiological conditions is not possible due to the dif-

ferences between species (Hishikawa et al., 2005). Therefore, herein we aimed to study:

1. The effect of C3 and BHB on genes of interest (GOI) in bovine SC and RP AT, estab-

lishing an AT explant model.

2. To obtain accurate results concering the differential effect of C3 and BHB on GOI, by

optimizing the evaluation of qPCR data through selecting appropriate RGs in these

explants.

The goal of the first approach was to improve the knowledge about insulin dependent and

independent effects of C3 and BHB on the genes of interest. The goal of the second approach

was to improve the reliability of qPCR data performing accurate normalization. In addition, to

address the cell type expressing the genes C/EBPα, FFAR2, FFAR3, FABP4 and PPARγ2

increasing during differentiation, we established a bovine primary preadipocyte culture.
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Abstract

Accurate gene expression normalization using a stable reference gene (RG) improves the re-

liability of quantitative real-time PCR (qPCR) results. Therefore, a validation of RGs should

be done before their use. Only few studies on RGs have been done in cattle, and none in bo-

vine adipose tissue (AT) explants, therefore, we characterize the effects of an in vitro treat-

ment with propionate and ß-hydroxybutyric acid (BHB) on the mRNA content of these RGs

comparing the output data from the geNormTM and the Normfinder© program. geNormTM and

Normfinder© estimated the most stable RGs in the following sequence for subcutaneous and

for retroperitoneal AT explants treated with propionate: low density lipoprotein receptor-

related protein 10 (LRP10) > hippocalcin-like 1 (HPCAL1) > glyceraldehyde-phosphate-

dehydrogen- ase (GAPDH) > ribosomal protein S9 (RPS9) > RNA polymerase II (Pol II) >

beta2 actin (ACTB) > 18S ribosomal RNA (18S rRNA). BHB treated AT explants yielded a

different stability ranking for RGs using geNormTM: HPCAL1, GAPDH > Pol II > LRP10 >

ACTB > RPS9 > 18S rRNA. Normfinder© estimated a different stability ranking for the RGs

as shown in the following sequence for subcutaneous and retroperitoneal AT explants treated

with BHB: HPCAL1 > Pol II > GAPDH > ACTB > LRP10 > RPS9 > 18S rRNA. Subsequent

pairwise analysis of variation of RGs using geNormTM suggested that LRP10, HPCAL1 and

GAPDH should be used for accurate normalization of subcutaneous and retroperitoneal AT

explants treated with propionate, while HPCAL1, GAPDH and Pol II should be used for BHB

treatment.

Key words: reference gene, adipose tissue explants, propionate, ß-hydroxybutyrate
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Introduction

Adipose tissue (AT) and its functions both as a storage organ and as an endocrine gland is

increasingly recognized as being of major importance for the adaptational capability of dairy

animals to the needs of early lactation. Aiming to characterize the regulatory role of nutrients

for gene expression in bovine AT, we have established a tissue explant system in which sev-

eral variables can be tested. However, we realized that the standardization of mRNA expres-

sion data commonly done by using the abundance of one so called reference gene (RG) might

be inappropriate at least in this explant model and we therefore did the study reported herein.

Different studies evidence the role of SCFA like propionate on the abundance of mRNAs en-

coding regulatory relevant genes in ruminant AT in vivo and in vitro (Soliman et al. 2007;

Mielenz et al. 2008). In addition, BHB inhibits lipolysis in cattle (Metz et al. 1974) and af-

fects lipid metabolism (Bjorntorp and Schersten 1967). Quantification of specific mRNAs has

been extensively applied for both in vivo and in vitro adipocytokine expression studies in ru-

minant AT explants stimulated with growth hormone (Houseknecht et al. 2000), or in adipo-

cytes stimulated with SCFA (Soliman et al. 2007). qPCR provides good sensitivity, easy de-

termination of efficiency and excellent reproducibility. Critical to the application of qPCR is

normalization of target gene expression. Until now some studies in bovine mammary gland

identified stable RGs using only one software (Piantoni et al. 2008; Kadegowda et al. 2009)

but not for bovine AT or bovine AT explants. Universally, a RG is considered as optimal for

normalization when it is constitutively expressed at a constant level (Vandesompele et al.

2002). However, Tricarico et al. (2002) demonstrated that no RG can be purported to be suit-

able for any given set of conditions. The current consensus is that multiple stably expressed

RGs are required for reliable normalization and are particularly recommended for measuring

differences of expression in situations in which a single suitable gene could not be found

(Vandesompele et al. 2002).

Accordingly, a number of statistical programs, delivering potentially different results has been

developed to assess the appropriateness of RGs. For instance, geNormTM determines the ex-

pression stability of non-normalized control genes by assigning for each gene a gene stability

measure (M). Another program, Normfinder©, uses a model based approach to rank all RGs

based on inter- and intra-group expression variations (Andersen et al. 2004). In addition,

pairwise analysis of variation is recommended by geNormTM. As there is no universally ac-

cepted method to analyze the applicability of common stable RGs, the present study aimed to
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validate the stability of two novel (LRP10 and HPCAL1) and five frequently used RGs in the

bovine species comparing the output of these two programs for samples from an experiment

in which RNA was extracted from subcutaneous and retroperitoneal AT explants derived

from a typical dairy breed and treated with either propionate or BHB. Furthermore, we will

demonstrate that the analysis of a limited data set from a preliminary test is sufficient to vali-

date the larger data set for selecting the stable RGs.

Materials and methods

Subcutaneous and retroperitoneal AT was obtained from sixteen Holstein–Friesian cows

showing comparable depots sizes at the local abbatoir. The incubations were performed in

duplicate with 4.5 mL of DMEM/Ham’s F-12 with L-Glutamine (PAA, Colbe, Germany),

supplemented with 100 μg/mL of streptomycin and 50 μg/mL of gentamicin as a basal me-

dium, medium with insulin (100 nM), media with different propionate (Sigma-Aldrich Che-

mie, Taufkirchen, Germany) contents (0.5, 1, 2, and 3 mM) and media with different DL-ß-

hydroxybutyric acid sodium salt (Sigma-Aldrich Chemie) concentrations (0.5, 3 and 10 mM)

for 4 h, at 37°C and 5% CO2. Afterwards, tissue explants (200 mg) were frozen in liquid ni-

trogen. Tissue homogenization was performed after adding 1 mL of Trizol (Invitrogen,

Karlsruhe, Germany) using Precellys® homogenizator (Peqlab, Erlangen, Germany). Total

RNA extraction was done. Subsequently, total RNA was purified using RNeasy Mini Kit

(Qiagen, Hilden, Germany) after DNase digestion using RNase-free DNase set (Qiagen) in

solution. RNA integrity based on the ratio of 28S to 18S rRNA was assessed by SYBR Green

II (Invitrogen) RNA denaturing gel electrophoresis according to the instruction of manufac-

ture. RNA quantification was performed using the RiboGreen® RNA Assay Kit (Invitrogen)

in a Mx3000P-cycler (Stratagene, Amsterdam, Netherlands) and Nanodrop ND-1000 (Peqlab)

based on the manufacture instruction. First strand cDNA was synthesized from 200 ng RNA

using Revert Aid reverse transcriptase (Fermentas, St. Leon-Rot, Germany) and 250 pmol of

random hexamer primer in a final volume of 20 μL. No-RT controls were performed by omit-

ting reverse transcription, and no template controls were conducted by adding nuclease free

water. The reverse transcribed cDNAs were diluted 1:4 using ultra pure H2O except the

cDNA which was used for 18S rRNA analysis (1:400); and kept at -20°C for further use.

qPCR was conducted in a Mx3000P-cycler (Stratagene). Quantification of mRNA was ac-

complished through PCR amplicon standard curves for the purified and sequenced RGs (18S
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rRNA, ACTB, GAPDH, HPCAL1, Pol II, LRP10 and RPS9) using SYBR Green JumpStart™

(Sigma-Aldrich Chemie) in total volume of 10 μL per reaction. A melting curve was produced

to confirm the specificity and purity of the PCR product. In addition, a pooled cDNA was

used as an inter-run calibrator. Primer design was conducted for ACTB, GAPDH, HPCAL1,

LRP10, and RPS9 using Primer3 (v. 0.4.0) software (Rozen and Skaletsky 2000). 18S rRNA

and Pol II primers were derived from Thielen et al. (2007) and Murani et al. (2007), respec-

tively. qPCR cycling conditions were the same for all the primer pairs except annealing tem-

peratures and cycles number: initial denaturation at 95°C for 10' followed by different cycle

numbers (Table 1), denaturation at 95°C for 30", annealing temperature (Table 1) for 30" and

extension at 72°C for 30".

Statistical analyses were carried out using geNormTM (Vandesompele et al. 2002) and Norm-

finder© (Andersen et al. 2004) to determine the most stable genes out of seven analyzed RGs

in AT explants from four animals treated with propionate (n=24) and BHB (n=20). In detail,

geNormTM provides an algorithm which calculates all possible pairwise combinations of ex-

pression ratios for each gene versus all other genes in each sample as a gene instability meas-

ure (M), and genes with the highest M value (i.e. least stable expression) are progressively

eliminated until the two most stably expressed genes remain, regardless of the experimental

conditions or cell type. Moreover, normalization using geNormTM can also be complemented

by limited sample input amounts. Afterwards, normalization factors based on the geometric

mean of the expression levels of the best “n” RGs are calculated (Vandesompele et al. 2002).

In addition, analysis of pairwise variations of the most stable RGs (i.e. LRP10, HPCAL1 and

GAPDH for propionate; HPCAL1, GAPDH and Pol II for BHB) was performed in the data

set used for validation. The additional seven (propionate, n=84) and five (BHB, n=50) ani-

mals were analyzed for the set of samples to reinforce the pairwise variations results obtained

from the four animals in the panel of seven analyzed RGs. In contrast to geNormTM, Norm-

finder© automatically calculates the stability value for all candidate normalization genes

tested on a sample set containing any number of samples organized in any given number of

groups. In addition, nonparametric Spearman rank correlation coefficients (correlations with

P< 0.01 were considered significant) were calculated as recommended earlier (Vandesompele

et al. 2002) using SPSS 14.0 (SPSS Science Software, Erkrath, Germany).
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Results

Internal gene stability measure, M was determined as the average pairwise variation of a par-

ticular gene with all other RGs using the geNormTM. The program estimated M values of the

most stable RGs for subcutaneous and retroperitoneal AT explants treated with propionate, as

shown in Fig. 1a. RGs with the lowest M value indicate the most stable expression, and vice

versa. The stepwise exclusion of the RGs with the least stable expression showed that LRP10

and HPCAL1 (M=0.47) were the most stably expressed RGs in the samples analyzed. The

conventionally used RG 18S rRNA proved to be quite unstable in AT explants treated with

different concentrations of propionate.

In contrast to propionate treated AT explants, BHB treatment of subcutaneous and retroperi-

toneal AT explants yielded different ranking stability values. Fig. 1c shows stability ranking

of RGs estimated by geNormTM. 18S rRNA remained the least stable, whereas GAPDH and

HPCAL1 (M=0.34) were the ones with the lowest M, indicating that they were most stably

expressed in BHB treated bovine subcutaneous and retroperitoneal AT explants. The pairwise

variations (Vn/ Vn+1) were calculated between two sequential normalization factors (NFn

and NFn+1), reflecting the effect of adding an (n+1)th RG (Vandesompele et al. 2002). The

pairwise determination of variation V2/3 and V3/4 equaled 0.193 and 0.168 for propionate,

and 0.198 and 0.170 for BHB treated bovine AT explants (Fig. 2a, 2b), while the pairwise

variation V2/3 equaled 0.198 for propionate and 0.191 for BHB treated AT explants in the

data set used for validation. Spearman rank correlation coefficients (r) were calculated for

NF2 and NF3 values (r=0.85, r=0.90) and for NF3 and NF4 values (r=0.93, r=0.76), for pro-

pionate and BHB treated AT explants, respectively. Furthermore, r values equaled 0.97 for

propionate and 0.94 for BHB bovine AT explants for NF2 and NF3 in the data set used for

validation.

Normfinder© estimated the most stable RGs in the same sequence for propionate treated bo-

vine subcutaneous and retroperitoneal AT explants, among which the top ranked candidate

was LRP10 (Fig. 1b). Normfinder© estimated values of the most stable RGs for subcutaneous

and retroperitoneal AT explants treated with BHB in a different ranking sequence compared

to propionate treatment (Fig. 1d).
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Discussion

The current study was carried out using a set of reliable RGs which differ depending on the

stimulant. Applying different statistical methods might yield different results thereby poten-

tially confusing the users. Our results from gene expression stability analyses using ge-

NormTM and Normfinder© in propionate treated AT explants showed that 18S rRNA was the

least stable RG. However, the data about the gene expression stability from different studies

are controversial (De Ketelaere et al. 2006; Johnson et al. 1995). geNormTM estimated LRP10

and HPCAL1 to be the most stable RGs in AT explants treated with propionate. Normfinder©

also estimated LRP10 as the most stable gene, with the same sequence of the following RGs,

as found with geNormTM. However, only the best RG is recommended by this program as the

one to be used for normalization. In agreement with our results, LRP10 and HPCAL1 were

identified as being most stably expressed in human AT (Gabrielsson et al. 2005). Comparing

the model based approach using Normfinder© (Andersen et al. 2004) with the pairwise com-

parison approach by geNormTM (Vandesompele et al. 2002), we believe that both programs

are well applicable for precisely analyzing the qPCR data as to define a set of adequate RGs

for data normalization in the used model. Similar to previous studies (Skovgaard et al. 2007),

and also supported by our analysis of data, we emphasize that multiple stably expressed RGs

should be used for reliable normalization in such a model as the AT explants treated with pro-

pionate.

For determining the optimal number of RG, pairwise variation analysis was recommended

and performed by the integrated analysis of geNormTM (Vandesompele et al. 2002). The anal-

ysis showed that V2/3 and V3/4 equaled 0.193 and 0.168, respectively. Pairwise variation (V)

of 0.15 has been recommended as an arbitrary cut-off point below which the inclusion of ad-

ditional RGs expression is not required (Vandesompele et al. 2002). This arbitrary degree of

RG expression stability could not be achieved for AT in our and in others´ studies (De

Ketelaere et al. 2006; Ayers et al. 2007), which increased the recommended cut-off point for

pairwise variation (Vn/ Vn+1) to 0.2 for AT and bovine polymorphonuclear leukocytes. Our

study reached a cut-off point V2/3=0.193 using three most stable RGs LRP10, GAPDH, and

HPCAL1 for propionate treated AT explants. This is in contrast with Ayers et al. (2007) who

recommended to use eight RGs for reliable normalization in canine AT which might depend

on the gene panel they used or on their specific experimental model. We found no improve-

ment regarding to the defined cut-off point of 0.2 by including a fourth RG which was in ac-
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cordance to the theoretical performance proposed by Vandesompele et al. (2002). In addition,

by analyzing the effect of adding a fourth RG in propionate treated AT by Spearman rank

correlation, we observed only a marginal difference between the r values (r=0.85 for NF2 and

NF3 vs. r=0.93 for NF3 and NF4), showing again that the use of a fourth RG would not sig-

nificantly improve the quality of the normalization. Different from the stimulation with pro-

pionate, geNormTM estimated that in the BHB treated AT explants, GAPDH and HPCAL1

were the most stable genes, whereas 18S rRNA still was the most variable one. In contrast to

the results of geNormTM, Normfinder© estimated HPCAL1 as the most stable RG in BHB

treated AT explants, with 18S rRNA as the most variable one as well. Interestingly, the result

from the model-based approach by Normfinder© and from the pairwise comparison approach

by geNormTM indicated different rankings for the stability of expression in BHB-treated AT

explants.

Pairwise analysis of variation was performed for BHB treated AT explants. The results indi-

cated that V2/3 and V3/4 equaled 0.198 and 0.170, respectively, which is below the recom-

mended cut-off point 0.2 (De Ketelaere et al. 2006; Ayers et al. 2007), below which the inclu-

sion of additional RGs expression is not required (Vandesompele et al. 2002). Our study

reached a cut-off point (V2/3=0.198) using the three most stable RGs, i.e. GAPDH, HPCAL1

and Pol II for BHB treated AT explants. As discussed before, the inclusion of the fourth RG

(LRP10) had no significant effect for the calculation of a reliable normalization factor. This

estimation was reinforced by Spearman rank correlation showing a higher correlation for NF2

and NF3 (r=0.90) than for NF3 and NF4 (r=0.76). Therefore, in accordance to the suggestions

of Vandesompele et al. (2002), we decided to use only three RGs.

The validation of the data set with an enlarged number of animals (n=7 for propionate; n=5

for BHB) in comparison to two animals per treatment showed that there is no difference be-

tween the results. Therefore, as a result from our study the adequacy of using a smaller subset

of samples for identifying suitable RGs from a larger assortment of potential RGs was con-

firmed. Besides its validity, this approach implies efficient use of resources available for re-

search.

Comparing the statistical base and the results obtained by the model-based approach from

Normfinder© (Andersen et al. 2004) versus the pairwise comparison approach by geNormTM

(Vandesompele et al. 2002) for propionate and BHB treated AT explants, we believe, similar

to others (Skovgaard et al. 2007), that normalization based on a single top ranked gene admit-
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tedly is less labor intensive but may also introduce more variation than using the geometric

mean of three well ranked genes as provided by geNormTM.

In summary, we compared two treatments in bovine AT in vitro in which the SCFA propio-

nate represents a situation of positive energy balance, and the ketone body BHB, as an indica-

tor of lipolysis, increases during negative energy balance and concomitantly adjust lipolytic

activity. The outputs of two programs for the selection of RGs were compared. We found that

cautious selection of a panel of RGs is necessary for all the experimental setups. Expression

stabilities of RGs differ depending on different nutritional conditions that we liked to demon-

strate by our treatments.
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Table 1: Primer sequences and conditions

Fragment length (Len.), annealing temperature (Ta), median cycle threshold (Ct.), accession
number (Acc. No)

Name Acc. No. Forward Primer Sequence [5´-3´]
Reverse Primer Sequence [5´-3´]

Len.
(bp)

Ta.
(◦C)

Ct.

18S
rRNA AF176811 GAGAAACGGCTACCACATCC

CACCAGACTTGCCCTCCA
170 58 16.81

ACTB AY141970 CTCTTCCAGCCTTCCTTCCT
GGGCAGTGATCTCTTTCTGC

178 60 21.18

GAPDH U85042 AATGGAAAGGCCATCACCATC
GTGGTTCACGCCCATCACA

204 59 21.63

HPCAL1 NM_001098964 CCATCGACTTCAGGGAGTTC
CGTCGAGGTCATACATGCTG

99 60 28.22

Pol II X63564 GAAGGGGGAGAGACAAACTG
GGGAGGAAGAAGAAAAAGGG

86 58 21

LRP10 BC149232 CCAGAGGATGAGGACGATGT
ATAGGGTTGCTGTCCCTGTG

139 61 23.35

RPS9 NM_001101152 GTGAGGTCTGGAGGGTCAAA
GGGCATTACCTTCGAACAGA

108 62 25.86
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Fig. 1. Average expression stability value (M) of seven RGs calculated by geNormTM and
Normfinder©. Average expression stability ranking (M) estimated by geNormTM for propio-
nate (a) and BHB (c) treated adipose tissue explants, inter- and intra-group expression varia-
tions calculated by Normfinder© for propionate (b) and BHB (d) treated adipose tissue ex-
plants. RGs with lower average stability expression (M) and inter- and intra-group expression
variation (shown as group expression variation) indicate higher stability expression.
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Fig. 2. Determination of the optimal number of RGs for normalization using geNormTM.
Ratio of pairwise variations (Vn/ Vn+1) for every series of normalization factors to determine
the optimal number of RGs for accurate normalization in propionate (a) and BHB (b) bovine
adipose tissue explants.
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Abstract

Ruminants rely on short chain fatty acids (SCFA) as principal energy source. Adipose tissue

(AT) is classically known as an energy storage organ; above that, it gains increasing interest

as a regulatory active gland secreting multiple endocrine and auto/paracrine hormones. Here-

in, we compared the effects of propionate (C3), β-hydroxybutyrate (BHB) and insulin on

mRNA abundance of energy balance related genes by short term incubation (4 h) in bovine

AT explants from one subcutaneous (SC) and one visceral fat depot in vitro. Propionate in-

creased the mRNA abundance of adiponectin receptor 1 (AdipoR1), AdipoR2 and PPARγ2 in

treated samples versus controls (Treat. vs. Con.) in SC AT explants, while it suppressed

mRNA abundance of insulin receptor substrate 1 (IRS-1) in retroperitoneal (RP) AT. A trend

(P≤0.15) for an increase of mRNA abundance of AdipoR1, AdipoR2, C/EBPα, PPARγ2, faci-

litated glucose transporter 4 (GLUT4), and sterol regulatory element-binding protein 1

(SREBP1) in response to C3 was exclusively observed in SC AT. In RP AT, C3 showed a

trend for increasing mRNA abundance of AdipoR1, C/EBPα, GLUT4 and for decreasing of

IL-6. With BHB treatment, there was a trend for decreased mRNA abundance of adiponectin

and AdipoR1 in SC AT, and for increasing mRNA abundance of adiponectin in RP AT. The

insulin-induced alterations were limited to the mRNAs of free fatty acid receptor 3 (FFAR3)

and IL-6 in SC and RP AT, respectively, for which a trend for increased abundances was rec-

orded. To address the cell type mainly expressing the genes of our interest, we established a

bovine primary preadipocyte culture and demonstrated an increase in mRNA abundance of

C/EBPα, FFAR2, FFAR3, fatty acid binding protein (FABP4) and PPARγ2 during differen-

tiation. Our results show that in vitro stimulation of AT explants with different concentrations

of C3, BHB or insulin during short-term treatment exerts divergent effects in both depots on

the mRNA abundance of energy balance related genes. Adiponectin receptor mRNA was less

affected by BHB than by C3 in the bovine explant model, indicating that the bovine adiponec-

tin system might be more sensitive to C3 than to BHB. In contrast to other studies, we dem-

onstrated the presence of FFAR2 and FFAR3 mRNA not only in both AT depots but also in

differentiated preadipocytes isolated from bovine SC AT.

Key words: Propionate, β-hydroxybutyrate, cattle, energy balance related genes, nutrient sens-

ing receptors
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1. Introduction

Besides storage of energy, adipose tissue (AT) is also considered also as an endocrine organ,

secreting different factors, the so-called adipokines. Adipokines regulate insulin signalling,

food intake, energy expenditure and inflammatory processes [1]. Short chain fatty acids

(SCFA), i.e. acetate, propionate (C3) and butyrate, are the main energy source for ruminants,

whereby C3 from the portal vein is efficiently extracted (80 – 85%) by the liver [2], and pro-

vides the main substrate for hepatic gluconeogenesis. Propionate stimulates insulin secretion

directly [3]; about 20% of the absorbed C3 reach the circulation; the peripheral C3 serum

concentrations reportedly range between 0.06 – 0.08 mM [4]. Using C3 as in vitro stimulus in

tissue explants or cell culture allows for dissecting C3 and insulin effects. Short chain fatty

acids like C3 affect the abundance of mRNAs encoding genes related to energy metabolism in

ruminant AT in vivo and in vitro [5,6]. Nevertheless, the transcriptional response of subcuta-

neous (SC) and retroperitoneal (RP) AT depots in relation to energy signalling responsiveness

in dairy cattle is largely unknown. AT composed of adipocytes, stromal vascular cells includ-

ing preadipocytes and the AT matrix, produces various proteins which influence insulin sensi-

tivity and inflammation in both an endocrine, and an auto/paracrine manner [7]. Different

factors affect the adipocyte and matrix regulatory mechanisms of genes involved in energy

utilization and expenditure in vivo or in vitro. Depot-dependent differences in mRNA expres-

sion of energy balance related genes in AT (e.g. adiponectin system related genes) were ad-

dressed [8]. Short chain fatty acids are ligands for the human G protein-coupled receptors

41/43, alternatively called free fatty acid binding receptors 3/2 (FFAR2/3). Activation of

FFAR2 and FFAR3 by SCFA stimulates different signalling pathways, and both receptors

have tissue specific expression patterns [9]. Infusion of C3 in vivo augments the mRNA ab-

undance of FFAR3 in SC but not in perirenal caprine AT [6], which might be a direct C3 ef-

fect or an indirect one mediated by the C3 stimulated insulin release [3]. Activation of FFAR2

in adipocytes will lead to inhibition of lipolysis [10], and both receptors are involved in moni-

toring energy storage. We previously observed that FFAR3 but not FFAR2 mRNA in SC AT

increases in dairy cows during the transition from late pregnancy to early lactation [11]. Adi-

ponectin signals through adiponectin receptors 1 and 2 (AdipoR1/R2) and different pathways,

it is involved in energy metabolism and increases insulin sensitivity [12,13]. In dairy cattle,

restrictive feeding during the dry period increased AdipoR2 mRNA expression in liver after

calving [14], but mRNA abundance of both receptors was reduced post-partum in SC AT in
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ad libitum fed cows [11]. In AT of monogastric species, the AT matrix cross-talk between the

energy balance related factors affects insulin signal transduction, leading to adipogenesis via

PPARγ and C/EBPα. Both of them transcriptionally activate a large number of adipocyte-

specific genes including fatty acid binding protein (FABP4) [15], known as a differentiation

marker.

In dairy cattle, the circulating concentrations of NEFA and of the ketone body β-

hydroxybutyrate (BHB) often increase as result of intensive lipolysis in the energy deficient

state of early lactation. Beta-hydroxybutyrate and butyrate inhibit adipocyte lipolysis in bo-

vine AT in vitro [16]. It was shown that both compounds activate and bind the nicotinic acid

receptor [17]. A putative G protein-coupled receptor 109A (GPR109A) mRNA is expressed

and regulated during the transition period in dairy cattle [11]. Less information is available in

cattle about the regulation of energy balance related genes, in association to indicators of in-

sulin sensitivity. Therefore, we established an explant model for SC and RP adipose depots to

study transcription of energy balance related genes (i.e. adiponectin, AdipoR1/R2, C/EBPα,

FABP4, FFAR2, FFAR3, facilitated glucose transporter 4: GLUT4, GPR109A, IL-6, insulin

receptor substrate 1: IRS-1, PPARγ2, sterol regulatory element-binding protein 1: SREBP1)

in response to C3 or BHB, and to insulin in bovine AT in vitro. The AT explants comprise not

only adipocytes but also other stromal vascular cells, and we therefore established a primary

cell culture model from bovine SC AT to investigate some of the genes listed above in iso-

lated differentiating preadipocytes in vitro.

2. Materials and methods

2.1 Animals, tissue collection, explant culture  and treatments

Subcutaneous and RP AT were obtained from 14 Holstein–Friesian dairy cows (n=7 for C3

and BHB treatment each) from a local abattoir. The cows were not fed for at least 6 hours

before slaughter. Immediately after removal of the skin and opening of the abdominal cavity,

samples from the subcutaneous fat depot around the sternum and from the retroperitoneal de-

pot (near the kidney) were dissected. About 3 g tissue were placed in sterile sodium chloride

solution (0.9%) to remove the excess blood and connective tissue. The remaining tissue was

immediately transferred to a 50 mL tube containing DMEM/Ham’s F-12 with L-Glutamine

(PAA, Colbe, Germany) supplemented with 100 μg/mL of streptomycin and 50 μg/mL of

gentamicin (PAA), as basal medium. The tube was immersed in 37°C water in a thermo-flask
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dewar and transported to the laboratory. Two hundred mg of the SC and RP AT were dis-

sected and cut to 10 small pieces under the clean bench. The incubations were performed at

37°C and 5% CO2 in duplicate with 4.5 mL of basal medium, basal medium with 100 nM in-

sulin (Sigma-Aldrich Chemie, Taufkirchen, Germany), basal media with different propionate

concentrations, pH adjusted to pH 7 by NaOH (Sigma-Aldrich; 0.5, 1, 2, and 3 mM), and bas-

al media with different DL-ß-hydroxybutyric acid sodium salt concentrations (Sigma-Aldrich;

0.5, 3 and 10 mM) for 4 h, Afterwards, tissue explants (200 mg) were collected, immediately

frozen in liquid nitrogen and stored at -80°C.

2.2 Isolation of stromal vascular cells

Subcutaneous AT was obtained from 3 additional Holstein–Friesian dairy cows at slaughter.

The stromal-vascular cell fraction (SVC) was isolated under sterile conditions using the me-

thod of Grant et al. [18] with minor modifications. The mixture of the isolated SVC of three

cows was seeded at 37°C and 5% CO2 in 25 cm2 cell culture flask (Sarstedt, Nümbrecht,

Germany) at 4000 cells/cm2. The cells were exposed to differentiation for 13 d and were sub-

sequently stained using Oil Red O to specify intracellular lipid as described by Hirai et al

[19]. Sampling of differentiated preadipocytes was performed for time-course analyses at the

time points 0, 2, 4, 6, 8, 10, 12, and 13 d.

2.3 RNA extraction

Tissue homogenization was performed after adding 1 mL of Trizol (Invitrogen, Karlsruhe,

Germany) using a Precellys® homogenizator (Peqlab, Erlangen, Germany) for AT explants,

while preadipocytes homogenization was performed using a cell scraper (Sarstedt) and inver-

sion pipetting of Trizol (Invitrogen) in the culture flask (Sarstedt) during sampling for time-

course analyses. Total RNA was extracted according to the protocol of the manufacturer.

Subsequently, total RNA was purified using RNeasy Mini Kit (Qiagen, Hilden, Germany)

after DNase digestion in solution using RNase-free DNase set (Qiagen), following the manu-

facturer’s instructions. Messenger ribonucleic acid integrity, based on the ratio of 28S to 18S

rRNA, was assessed by SYBR Green II (Invitrogen) RNA denaturing gel and ethidium bro-

mide stained formaldehyde gel electrophoresis for AT explants and isolated preadipocytes,

respectively. Messenger RNA quantification was performed using the RiboGreen RNA Assay

Kit (Invitrogen) in a Mx3000P-cycler (Stratagene, Amsterdam, Netherlands) or Nanodrop
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ND-1000 (Peqlab). The analysis was performed for corresponding SC and RP depots from the

same cow in C3 and BHB treated explants. Due to technical reasons, the number of analyzed

genes (n=4) and animals varied in BHB treated samples (SC, n=7; RP, n=5).

2.4 cDNA synthesis

First strand cDNA was synthesized from 200 ng (AT explants) and 350 ng (differentiated

preadipocytes) RNA using Revert Aid reverse transcriptase (Fermentas, St. Leon-Rot, Ger-

many) and 250 pmol of random hexamer primers (Sigma-Aldrich) in a final volume of 20 μL.

The amount of total RNA used for cDNA synthesis for AT explants and preadipocytes varied

dependent of the established assay. Adipose tissue explants had lower yield of total RNA ex-

tracted from 200 mg of cultured tissue explants in comparison to the amount of total RNA

extracted from one culture flask with differentiated preadipocytes. The No-RT controls were

performed by omitting reverse transcription, and no template controls were conducted by add-

ing nuclease free water. The reverse transcribed cDNAs were diluted 1:4 using ultra pure H2O

and kept at -20°C for further use.

2.5 Quantification of mRNA

The mRNA of the different genes of interest (GOI) was quantified using quantitative real-

time PCR (qPCR) in a Mx3000P-cycler (Stratagene). Quantification of mRNA was accom-

plished using PCR amplicon standard curves for the purified and sequenced GOI. Primer de-

sign was conducted for the GOI using Primer3 (v. 0.4.0) software [20], except for the GOI

FFAR3 which was designed and obtained from Tib MolBiol GmbH (Berlin, Germany) for

hydrolysis probe qPCR assay (Table 1). SYBR Green I based qPCR was performed in total

volume of 10 μL per reaction comprising 2 μL of template, 1 μL of the assay specific primer

mix, 5 μL of the SYBR Green JumpStart Taq Ready Mix (Sigma-Aldrich Chemie) and 2 μL

water. Melting curve analysis confirmed the presence of a single product for each qPCR as-

say. Hydrolysis probe qPCR was performed in total volume of 20 μL per reaction comprising

2 μL of template, 2 μL of the assay specific primer mix (final concentration 0.5 µM each), 5

μL of the qPCR MasterMix Plus (Eurogentec, Köln, Germany), 0.5 µL of the probe (final

concentration 0.25 µM; FAM as the fluorescent reporter dye and BlackBerry as quencher),

and 3 μL water. In addition, a pooled cDNA was used as an inter-run calibrator. Hydrolysis

probe qPCR was conducted at 95°C for 10 min followed by 50 cycle numbers, denaturation at
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95°C for 10 s and annealing at 60°C for 60 s. SYBR Green qPCR cycling conditions were the

same for the rest of primer pairs except annealing temperatures and cycles number: initial

denaturation at 95°C for 10 min followed by different cycle numbers (Table 1), denaturation

at 95°C for 30 s, annealing temperature (Table 1) for 30 s and extension at 72°C for 30 s. The

geometric mean of the reference genes LRP10, HPCAL1 and GAPDH was used for accurate

normalization of SC and RP AT explants treated with propionate, while the geometric mean

of the genes HPCAL1, GAPDH and Pol II was used for BHB treatment normalization, based

on our previous studies [21] using the geNorm software [22]. The ratio of the GOI to the

geometric mean of the corresponding reference genes was calculated, and data are presented

as percentage value relative to the controls (means ± SEM).

2.6 Statistical Analyses

Statistical analyses were performed with the software package SPSS 17.0 (SPSS Science

Software, Erkrath, Germany). In view of the exploratory context of our study we considered

not only significant (P≤0.05) results but also present and discuss trends (P≤0.15). Data were

analyzed using the paired-samples t-test for the treated samples versus control comparable to

other studies [23] for all the GOI.

3. Results

3.1 Effects of propionate in AT explants

Short-term C3 treatment increased rather than decreased the mRNA abundance of 6 from the

10 GOI investigated in SC AT as summarized in Fig. 1a. The presentation of the differences

observed between controls and treatments comprises both significances (P≤0.05) and trends

(P≤0.15); for the sake of clarity, we renounce in the following text sections on detailed diffe-

rentiation between significance and trend. In RP AT, 5 of the GOI were affected, from which

IRS-1 and IL-6 were decreased, whereas C/EBPα, GLUT4, and AdipoR1 mRNA were in-

creased by C3 (Fig. 1b). The GOI solely affected in SC explants by C3 were AdipoR2,

PPARγ2, and SREBP1, for AdipoR1, GLUT4 and C/EBPα increases were observed in ex-

plants from both depots (Fig. 1 a, b). For AdipoR1, the results from SC and RP explants are

exemplarily presented as bar graphs (Fig. 1 c, d), respectively.
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3.2 Effects of ß-hydroxybuyrate in AT explants

For testing the effects of BHB, the GOI were limited to the adiponectin system (adiponectin,

and its receptors) and GPR109A, encoding the receptor for niacin and BHB, respectively.

Differences with untreated controls were established only as trends and were limited to adi-

ponectin (3 nM BHB) and AdipoR1 (10 nM BHB) in SC AT, and to adiponectin (0.5 mM

BHB) in RP explants (Fig. 2 a, b). A more detailed presentation is exemplarily shown for adi-

ponectin (Fig. 2 c, d).

3.3 Effect of insulin on AT explants

Short-term insulin stimulation (100 nM) increased the mRNA abundance of IL-6 and FFAR3

as a trend only in RP and SC AT, respectively, whereas the mRNA of adiponectin, AdipoR1,

AdipoR2, PPARγ2, IRS-1, GLUT4, C/EBPα, GPR109A, and SREBP1 remained unchanged

(Fig. 1). The lack of an effect of insulin was confirmed in the second set of cow samples (Fig.

2).

3.4 Differentiating preadipocytes

The timely changes of the mRNA abundances from the GOI in differentiating preadipocytes

are presented in Fig. 3. Data are shown as percentage values, whereby the undifferentiated

cells at d 0 were considered 100%. On d 2, a first increase was noted for the mRNAs of

C/EBPα (253%), FFAR3 (252%), PPARγ2 (326%), and, most pronounced of FABP4

(124,000%). After 13 d differentiation, all mRNAs had reached between 801 (FFAR2) and

1.19e+06 (FABP4) fold higher abundances than on d 0.

4. Discussion

Short chain fatty acids are a primary source of energy, regulate insulin and glucagon secre-

tion, and other physiological processes in ruminants. Energy balance related genes, produced

by AT and liver, such as the inflammatory cytokine IL-6, affect gluconeogenesis, ß-oxidation

and insulin sensitivity. Adipose tissue and macrophages within AT function in endocrine and

paracrine manner in monogastrics to promote inflammation and affect insulin sensitivity [7],

but less is known in cattle. Herein we used an explant model which we consider as advanta-

geous to investigate insulin dependent or insulin independent effects of C3 and BHB on tran-
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scriptional regulation of energy balance related genes in AT of different localizations. In con-

trast to in vivo studies, the effects of insulin and of SCFA on gene regulatory mechanisms can

be dissected in the explant model. In addition, it preserves AT composition, which includes

other cells besides mature adipocytes. We observed a similar degree of interindividual va-

riance of mRNA abundance as reported in previous studies for human AT [24]; to report the

responses in a descriptive manner, we herein also report trends (P≤0.15).

Recently it was shown that the expression of IL-6 mRNA and other inflammatory markers in

cattle AT explants is depot dependent [25]. In our present study, we demonstrate differential

effects of C3 and BHB on the mRNA abundance of genes linked to adiposity like IL-6 and

AdipoR1/2 in bovine SC and RP AT explants in vitro. In our study we used C3 and not ace-

tate; both SCFAs activate the same receptor, i.e FFAR3 [26], thus allowing to investigate di-

rect SCFA-mediated, insulin independent effects. Using physiological C3 concentrations of

0.5 mM and 1 mM C3 in cows, only a numerical increase in intracellular Ca2+ was observed

[27], but Soliman et al. [5] demonstrated a significant increase of leptin mRNA using 1 mM

C3 and acetate in bovine differentiated adipocytes in vitro.

In mice, C3 initiates signal transduction of FFAR3 in vitro and stimulates leptin mRNA in

vivo [28]; analogous observations were made with bovine adipocytes in vitro [5]. Activation

of FFAR2 by C3 and acetate inhibits lipolysis and stimulates adipogenesis [10], and stimula-

tion of FFAR3 by propionate increases leptin production in mice [28]. In our previous study

[11] the mRNA expression of SCFA receptors FFAR2 and FFAR3 in SC AT during the tran-

sition period in dairy cows was demonstrated. These results differ from the observations of

Wang el al. [26], who reported that AT is the only bovine tissue examined, which does not

express FFAR3 or FFAR2 mRNA. Herein we provide further evidence for the presence of

both receptor mRNAs in bovine isolated preadipocytes of SC origin during a 13 d differentia-

tion period; moreover, we demonstrate a differentially regulated expression of FFAR2 and

FFAR3 mRNA in SC and RP AT explants in vitro. In the present short-time experiments,

neither C3 nor BHB seem to be relevant regulators of both FFARs; for insulin a stimulatory

trend for FFAR3 mRNA was limited to SC AT. This result might explain for the effect of

short-term C3 infusion in goats, where an effect of a C3 infusion on FFAR3 was observed

only in SC AT [6]. In addition, insulin stimulated IL-6 mRNA in RT AT but not in SC AT

during short-term treatment in the explant model. Other energy balance related genes were not

influenced in short-term manner by insulin. Recently we reported that FFAR3 mRNA but not

FFAR2 mRNA in SC AT increases post-partum compared to prepartum in dairy cows [11]. In



Manuscript 2 47

comparison to our current results, we suggest that long-term exposure and/or other factors

besides insulin are relevant for the post-partum extent of change of FFAR3 mRNA, since

short-term insulin effects were observed as a trend for increased FFAR3 mRNA abundance.

In future, the physiological relevance of SCFA receptors in AT metabolism should be clari-

fied in more detail, not only at the mRNA level but also at the protein level. At least their

mRNAs are differentially regulated but it has to be taken into account, that physiological

SCFA concentrations are relatively low to activate the receptors in vivo [26], and effects at

least on leptin in vivo are rather limited [29]. Nevertheless, other hormones than leptin might

be influenced by C3 in vivo and Yonezawa et al. [27] observed at least a numerical change

(about 80 fold) of intracellular Ca2+ concentrations even at 0.5 µM C3.

We observed higher mRNA abundance of FFAR3 than of FFAR2 in isolated preadipocytes. A

putative GPR109A is regulated in bovine SC AT during transition period in cattle [11]. Be-

cause of the fact that BHB, a ketone body indicating negative energy balance, and butyrate

inhibit lipolysis in bovine AT in vitro [16], we expected an effect of BHB, on lipolysis in AT

explants in vitro. Surprisingly, an effect of BHB on the adiponectin system- and GPR109A

mRNA in AT explants was not observed, which might be related to short-term treatment and

therefore may differ from previous observations during the transition period in dairy cow

[11].

Energy homoeostasis is related to the adiponectin system, which increases insulin sensitivity

[12]. Adiponectin acts as an autocrine/paracrine factor, is involved in adipocyte lipid accumu-

lation and differentiation, involves C/EBP and SREBP1 expression [30], and regulates the

expression of its receptors in AT [31]. We recognized depot dependent effects of C3 on Adi-

poR1/R2 mRNA abundance. The short-term effect of C3 on adiponectin mRNA was not in-

vestigated, as adiponectin appears to reflect only long-term changes in body energy balance

with little evidence for short-term regulatory influence at least in porcine differentiated adipo-

cytes [31]. Previous studies indicated that niacin affects adiponectin secretion via GPR109A

in short-term [32]. We observed that adiponectin mRNA abundance decreased in response to

BHB in SC AT explants during short-term stimulation after at least 6 hours restrictive feeding

in slaughterhouse, while the mRNA of this gene was increased in RP AT. Desensitization in

SC AT and improved inhibition of lipolysis in RP AT might be seen in relation to functional

aspects of the different depots, whereby visceral AT is of higher relevance for immediate mo-

bilization of fatty acids [33]. Furthermore, decreased AdipoR1 mRNA abundance in SC AT

using BHB stimulus might be relevant to the situation, in which post-partum reduction of
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AdipoR1 mRNA abundance in dairy cattle during the transition period was observed [11],

where increasing amounts of NEFA and increased BHB concentrations as indicators for nega-

tive energy balance are often observed [34].

In humans, RP AT is one of the main sources for IL-6 [35], which is elevated in obesity. In-

terleukin 6 affects AT metabolism in an autocrine/paracrine manner in AT explants [36]. In

cattle, IL-6 mRNA is expressed at low abundance in AT compared to other inflammatory

markers, whereby regulation of IL-6 by a proinflammatory stimulus, i.e. lipopolysaccharide,

was shown [25]. Short chain fatty acids increased the mRNA abundance of IL-6 in intestinal

samples of piglets after long-term infusion [37]. Propionate decreased IL-6 mRNA abundance

exclusively in RP AT. Similarly to our results, C3 dose-dependently suppressed IL-6 mRNA

abundance and protein release from colon organ cultures in mice [38], in which concentra-

tion-dependent silencing by demethylation of IL-6 mRNA expression might be of relevance

too [39]. García-Escobar et al. [40] also observed a decrease of IL-6 in short-term depending

on the fatty acid pattern of dietary fat. Hunger increases IL-6 release, whereby IL-6 can act

locally to increase lipolysis [36]. Nutritional supply in short-term may reduce IL-6 and might

thus reduce its effects on lipolysis in an autocrine/paracrine manner in situations of positive

energy balance, which are different when compared to over nutrition during obesity.

Hong et al. [10] showed that C3 elevates the FFAR2 expression and up-regulates PPARγ2,

which is a key regulator of preadipocyte differentiation, regulates SREBP1 and C/EBP, and

effects lipid and fatty acid metabolism. Peroxisome proliferator-activated receptor γ mod-

ulates indirectly insulin-signalling through the up-regulation of IRS-1 and 2 of the signalling

cascade for GLUT-4 [15]. To our knowledge, no data were available about the IRS-1 and

SREBP1 mRNA abundance in bovine SC and RP AT, except for perimuscular preadipocytes

during differentiation [41], in which the time-course reported differs from our observation in

peadipocytes isolated from SC AT. Like for FFARs, our study using isolated preadipocytes

indicates the increase of mRNA abundance of these energy balance related genes during diffe-

rentiation. We observed a pronounced increase of PPARγ2 and C/EBPα as well as FABP4

mRNA abundance in preadipocytes after 10 d of differentiation. Our results suggest that po-

tential in vitro effects of short-term C3 treatment on PPARγ2 mRNA abundance are limited to

SC AT, while the potential of C3 to increase C/EBPα mRNA abundance might be limited to

SC and RP AT only in higher doses. In view of the data known from monogastric species,

increased PPARγ2 mRNA in presence of C3 might thus increase insulin sensitivity, and in

parallel may improve lipogenesis in SC AT but not in RP AT in the bovine species.
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Hepatic SREBP1 mRNA abundance was decreased in short-term after 3 h fasting and in-

creased after refeeding in mice [42], while in obese humans short term fasting (12 h) was as-

sociated with increased SREBP1 mRNA expression in SC AT, which is regulated in an insu-

lin-dependent manner [43]. In cattle, we observed insulin independent effects of C3 on

SREBP1 and IRS-1 mRNA in SC and RP AT, respectively. Our results indicate that potential

in vitro effects of short-term C3 treatment on SREBP1 mRNA abundance are limited to SC

AT, whereas C3 seemed to decrease IRS-1 mRNA abundance only in RP AT in vitro. Thus,

SREBP1 might increase fatty acid synthesis under increased energy load in the presence of

C3 in SC AT in short-term, whereas decreasing IRS-1 mRNA abundance in bovine RP AT

under higher energy load might indicate reduced insulin sensitivity. Interestingly we observed

no direct insulin effect on adiponectin, AdipoR1, AdipoR2, PPARγ2, IRS-1, GLUT4,

C/EBPα, GPR109A, and SREBP1 in our explant model, which is different to the in vivo situa-

tion. In monogastrics, partially contradicting results about insulin sensitivity and insulin resis-

tance in liver via increased SREBP1c and IRS-2 but not IRS-1 are reported [44]. We suspect

that an effect by the model, the tissue or the species cannot be ruled out.

The insulin dependent glucose transporter GLUT 4 is expressed tissue-dependently, whereby

glucose uptake by AT is less than by skeletal muscle [45]. The mechanisms underlying the

adiponectin stimulated increase in insulin sensitivity are probably due to the increase of total

GLUT4 expression and number of GLUT4 transporters acutely recruited to the plasma mem-

brane in response to insulin [30]. Ruminants rely on endogenous gluconeogenesis for their

glucose demand [46]. Glucose is the principal precursor for the synthesis of lactose (a major

osmotic agent in milk), and participates in determining the milk volume produced [47]. In

contrast to monogastric animals, insulin did not alter GLUT4 mRNA abundance in the present

explant model. However, the insulin effect on adipocytes from monogastric species might be

different in lactating animals; moreover, it requires co-incubation with dexamethasone [48].

In goats 6 h hyperinsulinemia did not affect GLUT4 protein abundance in AT or skeletal

muscles [49], suggesting that insulin might not be the prime factor involved in the short-term

regulation of GLUT4 in ruminants. Our data indicate that C3 affects GLUT4 mRNA abun-

dance in SC and RP AT during short-term treatment. An increase in GLUT4 mRNA by C3

might be seen in addition to stimulation of gluconeogenesis by SCFA in liver, higher blood

glucose concentrations after feeding and increased glucose uptake for glycogen synthesis in

AT; glycogen metabolism in AT might function as a metabolic switch between feeding and

fasting and/or regulation of lipogenesis and lipolysis [50].
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In conclusion, we compared the effects of C3, BHB and insulin in bovine SC and RP AT ex-

plants in vitro, and observed divergent effects in both depots on the mRNA abundance of en-

ergy balance related genes. Our study is the first report highlighting the effect of C3 or BHB

on the aforementioned energy status related genes in SC and RP AT of dairy cattle in vitro.

The analyzed energy balance related genes in adipose tissue were regulated specifically

trough C3 and BHB in a both depot specific and insulin-independent manner. Interestingly,

our data indicate that IL-6 as well as FFAR3 mRNA might be insulin-dependently regulated

in RP and SC AT during short-term stimulation, respectively. Adiponectin receptor 1/2 were

more influenced by C3 than by BHB in the bovine explant model indicating, that the adipo-

nectin system in cattle might be more sensitive to C3 than to BHB. Insulin sensitivity of AT,

represented by the differential regulation of energy balance related genes might be influenced

by C3 and BHB directly on the level of the AT. Differential regulation between different AT

depots is evident in cattle.
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Table 1:
Primer sequences and qPCR conditions

6-carboxyfluorescein (FAM), accession number (Acc. No), annealing temperature (Ta),
blackberry quencher (BBQ), fragment length (Len.), and median cycle threshold (Ct.)

Name Acc. No. Forward Primer Sequence [5´-3´]
Reverse Primer Sequence [5´-3´]

Len.
(bp)

Ta.
(◦C)

Ct.

Adiponectin NM_174742
CTGGAGAGAAGGGAGAGAAAG
TGGGTACATTGGGAACAGTG 204 60 25.73

Adiponectin
receptor 1 NM_001034055

GCTGAAGTGAGAGGAAGAGTC
GAGGGAATGGAGTTTATTGCC 118 60 22.3

Adiponectin
receptor 2 NM_001040499

GGCAACATCTGGACACATC
CTGGAGACCCCTTCTGAG 200 60 24.94

C/EBPα BC149006
TGGACAAGAACAGCAACGAG
TTGTCACTGGTCAGCTCCAG 130 60 22.4

FABP4 X89244
CATCTTGCTGAAAGCTGCAC
AGCCACTTTCCTGGTAGCAA 160 56 19.42

FFAR2 NM_001163784
CGCTCCTTAATTTCCTGCTG
CAAAGGACCTGCGTACGACT 174 60 30.89

FFAR3 NM_001145233
AAAGCAGCAGTGGCCATGA
GAGGTTTAGCAAGAGCACGTCC 189 60 39.94

Probe: 6FAM-TCTTCTCCGTGTACCTCTTCACCTTCCTC--BBQ

GAPDH U85042
AATGGAAAGGCCATCACCATC
GTGGTTCACGCCCATCACA 204 59 21.63

GLUT4 AY458600
ACCTTATGGCCACTCCTCCT
CTCAGCCAACACCTCAGACA 180 60 31.3

GPR109A XR_028237
GGACAGCGGGCATCATCTC
CCAGCGGAAGGCATCACAG 140 61 21.53

HPCAL1 NM_001098964
CCATCGACTTCAGGGAGTTC
CGTCGAGGTCATACATGCTG 99 60 28.22

IL-6 BC123577
TGCAGTCTTCAAACGAGTGG
TAAGTTGTGTGCCCAGTGGA 182 60 20.6

IRS-1 XM_581382
CAAGACCATCAGCTTCGTGA
GTCCACCTGCATCCAGAACT 157 59 26.48

LRP10 BC149232
CCAGAGGATGAGGACGATGT
ATAGGGTTGCTGTCCCTGTG 139 61 23.35

Pol II X63564
GAAGGGGGAGAGACAAACTG
GGGAGGAAGAAGAAAAAGGG 86 60 21

PPARγ2 Y12420
AGGATGGGGTCCTCATATCC
GCGTTGAACTTCACAGCAAA 121 60 20.75

SREBP1 AB355703
ACCGCTCTTCCATCAATGAC
GCTGAAGGAAGCGGATGTAG 120 60 22.29
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Fig. 1. Summarized presentation of the effects of insulin and four different doses of
propionate (C3) on mRNA abundance of ten energy balance related genes in bovine
subcutaneous (a) and retroperitoneal (b) adipose tissue explants. Differences between the
treatments and the controls are depicted as symbols on the line of each gene of interest. The
arrows at the symbols indicate the direction of change: arrows facing upwards indicate in-
creases and vice versa. The corresponding numbers beneath the symbols give the fold change
compared to the controls. For significant (P≤0.05) differences, circle symbols (●) and for
trends (P≤0.15) square symbols (■) are used, respectively. Exemplarily, AdipR1 mRNA ab-
undance data (means ± SEM) are shown for subcutaneous (c) and retroperitoneal (d) adipose
tissue explants in treatments versus controls.
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Fig. 2. Summarized presentation of the effects of insulin and three different doses of ß-
hydroxybutyrate (BHB) on mRNA abundance of ten energy balance related genes in
bovine subcutaneous (a) and retroperitoneal (b) adipose tissue explants. Differences be-
tween the treatments and the controls are depicted as symbols on the line of each gene of in-
terest. The arrows at the symbols indicate the direction of change: arrows facing upwards in-
dicate increases and vice versa. The corresponding numbers beneath the symbols give the fold
change compared to the controls. For trends (P≤0.15) differences, square symbols (■) are
used. Exemplarily, adiponectin mRNA abundance data (means ± SEM) are shown for subcu-
taneous (c) and retroperitoneal (d) adipose tissue explants in treatments versus controls.
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Fig. 3. Timely changes of the mRNA abundance of five genes of interest in bovine prea-
dipocytes differentiating for 13 d. The mRNA quantities of target genes were normalized to
the geometric mean of two reference genes (GAPDH and LRP10) and are presented as fold
increase in comparison to undifferentiated cells at d 0 (=100%).
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4. Conclusions

Herein, we compared the short-term effects of C3, BHB and insulin on energy balance related

genes’ mRNA abundance in bovine SC and RP AT in vitro. To obtain the accurate results

concering the differential effects of C3 and BHB on these genes, we evaluated the stability of

seven different RGs (i.e. 18S rRNA, ACTB, GAPDH, HPCAL1, LRP10, Pol II and RPS9) in

bovine SC and RP AT explants to quantify the mRNA of 13 energy balance related genes in

AT (i.e. adiponectin, AdipoR1/R2, C/EBPα, FABP4, FFAR2, FFAR3, GLUT4, GPR109A,

IL-6, IRS-1, PPARγ2 and SREBP1) in explants from both AT depots; moreover the presence

and increased mRNA abundance of FFAR2, FFAR3 and other energy balance related genes

like C/EBPα, FABP4 and PPARγ2 in bovine SC isolated preadipocytes during differentiation

was shown. All in all, in contrast to other studies, the presence of FFAR2 and FFAR3 mRNA

not only in both AT depots but also in differentiated preadipocytes isolated from bovine SC

AT was demonstrated. The lack of the presence of FFAR2 and FFAR3 in AT seems to be due

to technical aspects of the detection method applied by this groups (Wang et al., 2009).

Using two normalization programs to select highly stable RGs, different expression stabilities

of the RGs depending on the experimental conditions (i.e. C3 and BHB treatments) in bovine

SC and RP AT in vitro were obtained. Thus, the requirement and necessity for a cautious se-

lection of a panel of RGs for all the experimental setups is highly important. Exploratory data

analysis of C3 and BHB effects on AT explants indicated insulin independent and depot spe-

cific effects of both stimuli on most of the demonstrated energy balance related genes. The

lack of C3 and BHB effects on FFAR2/3 and GPR109A, respectively in the presented model

does not rule out in vivo effects of both stimuli; as the in vivo situation differs from the in vi-

tro situation (Machinal et al., 1999). AdipoR1/2 were more influenced by C3 than by BHB in

the bovine explant model indicating, that in cattle the adiponectin system might be more sen-

sitive to C3 than to BHB in short-term stimulation. Based on the results of short-term C3

treatment on bovine SC and RP AT in vitro, improved insulin sensitivity, increase glucose

uptake and lipid metabolism or lipid accumulation by C3 treatment were supposed. It is

known that adiponectin acts as an autocrine/paracrine factor which is involved in adipocyte

lipid accumulation and differentiation which involves C/EBP and SREBP1 expression (Fu et

al., 2005). Insulin sensitivity of AT, represented by the differential regulation of energy bal-

ance related genes might be influenced by C3 and BHB directly on the AT. Adiponectin as
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well as PPAR activate AMPK, which is an important regulator of energy homeostasis and

improves insulin sensitivity (Lim et al., 2010). In this context, further studies are necessary to

investigate the linkage between the mRNA abundance and protein expression of adiponectin

in bovine SC and RP AT in relation to AMPK phosphorylation as no data is available for this

interaction in the bovine species. Surprisingly, in our study, IL-6 as well as FFAR3 mRNA

seems to be insulin-dependently regulated in RP and SC AT, respectively, during short-term

stimulation. Our observation of FFAR2 and FFAR3 mediated signalling by C3, at least for IL-

6, might be related to SCFA concentration dependent silencing by demethylation in cattle and

likewise in monogastrics, might repress IL-6 mRNA abundance (Benjamin et al., 2001) as it

was shown for mouse leptin promoter activity (Yokomori et al., 2002). Therefore, to elucidate

the exact influence of C3 on IL-6 in association with the insulin signalling pathways in rumi-

nants like bovine, further studies are necessary at the protein level.

The results of this study about the mRNA of the aforementioned energy balance related genes

in bovine AT explants in vitro treated by C3, BHB and insulin might open new aspects for

further studies to improve understanding of the crucial time like transition period, during

which the dairy cattle undergoes negative energy balance. Our study of mRNA of energy bal-

ance related genes indicates differential regulation between different AT depots in cattle in

relation to C3 and BHB treatments. Less is known about the cross-talk of energy balance re-

lated genes in bovine AT; therefore, further studies are necessary to investigate this interac-

tion between the energy balance related genes not only at the level of the transcriptome but

also of the proteome.
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5. Summary

Expression of genes related to energy balance in adipose tissue of dairy cattle: effects of

SCFA on mRNA abundance as quantified by qPCR and relevance of appropriate selec-

tion of reference genes

Ruminants rely on SCFA as principal energy source. Energy balance is defined as the differ-

ence between the consumed and the required energy. States of negative energy balance may

lead to metabolic disturbances in dairy cows but are in fact inevitable during early lactation.

Energy deficits are associated with immunosuppression, in contrast, excess energy surplus

with increased body condition scores is also associated with inflammatory reactions. In high

performing dairy cattle both aspects are highly relevant; negative energy balance leads to lipo-

lysis during early lactation, during which the circulating concentrations of NEFA and the ke-

tone body BHB increase. The energy deficit in consequence might cause metabolic diseases

and reproductive disorders, and indirectly lead to infectious diseases. Besides its role as an

energy storage organ, AT is also considered as an endocrine organ. It produces various fac-

tors, among which are transcriptional factors, summarized in this study as energy balance re-

lated genes, affecting several bodily functions. Herein, we demonstrated depot-specific, insu-

lin dependent and independent effects of propionate and ß-hydroxybutyrate on the transcrip-

tional regulation of energy balance related genes in SC and RP AT in a bovine explant model.

For the mRNA quantifications using qPCR method, adequate protocols were established. To

obtain accurate results for qPCR data, a validation of RGs was performed using the ge-

NormTM and the Normfinder© program before their use. The quantified energy balance related

genes were adiponectin, AdipoR1/R2, C/EBPα, FFAR2, FFAR3, GLUT4, GPR109A, IL-6,

IRS-1, PPARγ2 and SREBP1. Furthermore, to address the cell type expressing the genes

C/EBPα, FFAR2, FFAR3, FABP4 and PPARγ2, we established a bovine primary preadipo-

cyte culture model, thus focusing on one important cell type present amongst others in AT.

To investigate the effect of C3, BHB or insulin on AT explants, the SC fat depot around the

sternum and the visceral, i.e. RP depot near the kidney of dairy cows were obtained to check

for differences between visceral and subcutaneous adipose depots. The incubations were per-

formed in basal medium, basal medium with 100 nM insulin, basal medium with different C3

concentrations (0.5, 1, 2, and 3 mM) or with different BHB concentrations (0.5, 3 and 10
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mM) for 4 h; the advantage of our studied model is the possibility to differentiate between the

C3, BHB and insulin effects which is not possible in in vivo approaches.

Comparing the two programs for optimizing RG use, similar stability rankings for the C3

treatment were obtained: LRP10 > HPCAL1 > GAPDH > RPS9 > Pol II > ACTB > 18S

rRNA. BHB treated AT explants yielded a different stability ranking for RGs using ge-

NormTM: HPCAL1, GAPDH > Pol II > LRP10 > ACTB > RPS9 > 18S rRNA than Norm-

finder© which yielded the following stability ranking in SC and RP AT explants treated with

BHB: HPCAL1 > Pol II > GAPDH > ACTB > LRP10 > RPS9 > 18S rRNA. Subsequent

pairwise analysis of variation of RGs using geNormTM suggested that LRP10, HPCAL1 and

GAPDH should be used for accurate normalization of SC and RP AT explants treated with

C3, while HPCAL1, GAPDH and Pol II should be used for BHB treatment.

Propionate increased the mRNA abundance of AdipoR1, AdipoR2 and PPARγ2 in treated

samples vs. control in SC AT explants, while it suppressed the mRNA abundance of IRS-1 in

RP AT. A trend (P≤0.15) for an increase of the mRNA abundance of AdipoR1, AdipoR2,

C/EBPα, PPARγ2, GLUT4, and SREBP1 in response to C3 was exclusively observed in SC

AT. In RP AT, C3 showed a trend for increasing AdipoR1, C/EBPα, GLUT4 mRNA abun-

dance and for decreasing concentrations of IL-6 mRNA. With BHB treatment, there was a

trend for decreased mRNA abundance of adiponectin and AdipoR1 in SC AT, and for in-

creasing mRNA abundance of adiponectin in RP AT. The insulin-induced alterations were

limited to the mRNAs of FFAR3 and IL-6 in SC and RP AT, respectively, for which a trend

for increased abundances was recorded. The results show that in vitro stimulation of AT ex-

plants with different concentrations of C3, BHB or insulin during short-term treatment exerts

divergent effects in both depots on the mRNA abundance of energy balance related genes.

AdipoR1/2 were more influenced by C3 than by BHB in the bovine explant model indicating

that the bovine adiponectin system might be more sensitive to C3 than to BHB. Herein we

have addressed one of the major cell types in AT by establishing a bovine primary preadipo-

cyte culture for which increased mRNA abundance of C/EBPα, FFAR2, FFAR3, FABP4 and

PPARγ2 were observed during differentiation; in contrast to other studies we demonstrated

the presence of FFAR2 and FFAR3 mRNA not only in both AT depots but also in differen-

tiated preadipocytes isolated from bovine SC AT.

The present thesis serves as a basis for further studies showing divergent mRNA abundance

of several energy balance related genes using C3, BHB or insulin in bovine SC and RP AT in

vitro in insulin dependent and independent manners. At the mRNA level, several of the ener-
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gy balance related genes analyzed herein, were differentially regulated between different adi-

pose depots; considering C3 and BHB as indicators for a positive and a negative energy bal-

ance at the cellular level, these results might be extrapolated to the AT response in cows un-

dergoing deficient or balanced energy supply. In future, the physiological relevance of SCFA

receptors as well as of the adiponectin system in AT metabolism should be clarified in more

detail, not only at the mRNA level but also at the protein level.
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6. Zusammenfassung

Expression von Energie-Bilanz-assoziierten Genen im Fettgewebe von Milchkühen: Ein-

fluss von SCFA auf die mRNA-Expression, quantifiziert mittels qPCR sowie Relevanz

der Auswahl geeigneter Referenzgene

Kurzkettige Fettsäuren (SCFA) bilden die hauptsächliche Energiequelle bei Wiederkäuern.

Die Energie-Bilanz ist definiert als die Differenz zwischen der aufgenommenen und der ver-

brauchten Energie. Eine negative Energie-Bilanz kann zu metabolischen Störungen bei

Milchkühen führen, ist aber besonders zu Beginn der Laktation unumgänglich. Ein Energie-

defizit ist mit Immunsuppression assoziiert, ein Energieüberschuss mit entsprechend erhöhter

Körperkondition steht hingegen mit Entzündungsreaktionen in Zusammenhang. Bei hochleis-

tenden Milchkühen sind beide Aspekte relevant: Eine negative Energie-Bilanz führt zur er-

höhten Lipolyse während der Frühlaktation und damit oft zu erhöhten NEFA- und BHB-

Konzentrationen im Blut. In Folge können metabolische Erkrankungen und reproduktive Stö-

rungen, sowie indirekt infektiöse Krankheiten stehen. Neben seiner Funktion als Energiespei-

cher wird das Fettgewebe auch als endokrines Organ angesehen. Es exprimiert verschiedene

Faktoren, u.a. auch Transkriptionsfaktoren, die im Körper pleiotrope Wirkungen ausüben.

Diese Faktoren werden hier als Energie-Bilanz-assoziierte Gene zusammengefasst, Wir konn-

ten Depot-spezifische, Insulin-abhängige und -unabhängige Wirkungen von C3 und BHB auf

die Transkriptionsregulierung von Genen, die mit der Energie-Homöostase in Zusammenhang

stehen, im bovinen SC und RP Fettgewebe-Explantat-Modell nachweisen. Für die mRNA-

Quantifizierungen mit der qPCR-Methode wurden entsprechende Protokolle entwickelt. Um

genaue Ergebnisse für die qPCR-Daten zu erhalten, wurde eine Validierung der RGs vor ih-

rem Gebrauch unter Verwendung des geNormTM- und des Normfinder© -Programms durchge-

führt. Die quantifizierten Zielgene waren Adiponectin, AdipoR1/R2, C/EBPα, FFAR2,

FFAR3, GLUT4, GPR109A, IL-6, IRS-1, PPARγ2 und SREBP1. Außerdem haben wir eine

bovine primäre Praeadipozytenkultur etabliert, um die mRNA-Expression von C/EBPα,

FFAR2, FFAR3, FABP4 und PPARγ2 während der Differenzierung zu untersuchen.

Um die Wirkung von C3, BHB oder Insulin auf das SC und viszerale Fettdepot zu untersu-

chen, wurden Gewebe-Explantate aus der Sternumregion (SC) und aus dem Fett um die Nie-

ren (RP, viszeral) entnommen. Inkubiert wurde in basalem Medium, basalem Medium mit

100 nM Insulin, sowie basalem Medium mit unterschiedlichen Konzentrationen von C3 (0,5,
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1, 2 und 3 mM) bzw. BHB (0,5, 3 und 10 mM) für 4 Stunden. Das Explantatmodells bietet

den Vorteil die C3-, BHB- und Insulin-Wirkungen separat zu betrachten, was in vivo nicht

möglich ist.

Der Vergleich der verschiedenen RGs in den beiden verwendeten Programmen ergab eine

ähnliche Reihenfolge der Stabilität für die C3-Behandlung: LRP10 > HPCAL1 > GAPDH >

RPS9 > Pol II > ACTB > 18S rRNA. BHB behandelte Fettgewebsexplantate zeigten unter-

schiedliche Stabilitäten für RGs mit geNormTM: HPCAL1, GAPDH > Pol II > LRP10 >

ACTB > RPS9 > 18S rRNA im Vergleich zu Normfinder© in dem für die RGs in SC und RP

Explantaten die folgende Stabilitätsreihung gefunden wurde: HPCAL1 > Pol II > GAPDH >

ACTB > LRP10 > RPS9 > 18S rRNA. Die paarweise Analyse der Schwankungen der RGs

mit geNormTM legt nahe, dass LRP10, HPCAL1 und GAPDH für eine optimierte Normalisie-

rung der SC und RP Fettgewebe-Explantate verwendet werden sollten, jedoch für die BHB-

Behandlung HPCAL1, GAPDH und Pol II.

Propionat erhöhte die mRNA-Menge von AdipoR1, AdipoR2 und PPARγ2 in SC Fettgewebe

in den behandelten Proben verglichen mit den Kontrollen, während es die mRNA-Menge von

IRS-1 in RP Fettgewebe reduzierte. Eine Tendenz (P≤0,15) zur Erhöhung der mRNA-Menge

an AdipoR1, AdipoR2, C/EBPα, PPARγ2, GLUT4, und SREBP1 als Antwort auf C3-

Behandlung wurde ausschließlich in SC Fettgewebe beobachtet. In RP Fettgewebe zeigte C3

eine Tendenz zur Erhöhung der mRNA-Abundanz von AdipoR1, C/EBPα, GLUT4 und einer

sinkenden Abundanz von IL-6. Unter der BHB-Behandlung ergab sich ein Trend für sinkende

mRNA-Abundanzen bei Adiponectin und AdipoR1 in SC AT, und für steigende Werte bei

Adiponectin in RP AT. Die Insulin-induzierten Veränderungen waren jeweils auf die mRNAs

von FFAR3 im SC und IL-6 im RP Fettgewebe beschränkt, für die eine Tendenz zur Erhö-

hung der mRNA-Menge beobachtet wurde. Unsere Ergebnisse zeigen, dass in vitro Stimulati-

on von Fettgewebe-Explantaten mit verschiedenen Konzentrationen von C3, BHB bzw. Insu-

lin während kurzfristiger Behandlung divergente Effekte in beiden Depots auf die mRNA-

Abundanz von Energie-Bilanz assoziierten Genen ausübt. AdipoR1/2 wurden stärker von C3

beeinflusst als von BHB. Das bovine Explantatmodell deutet darauf hin, dass das

Adiponectin-System von Rindern eventuell sensitiver gegenüber C3 als gegenüber BHB ist.

Zudem haben wir in einer selbstetablierten primären Präadipozytenkultur während der Diffe-

renzierung erhöhte mRNA-Mengen der Gene C/EBPα, FABP4 und PPARγ2 nachgewiesen.

Im Gegensatz zu anderen Studien konnten wir außerdem die Anwesenheit von FFAR2 und

FFAR3 demonstrieren.
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Die vorliegende Arbeit dient als Grundlage für weitere Studien; die mRNA-Abundanz von

mehreren Energie-Bilanz assoziierten Genen in SC und RP Fettgewebe von Rindern erwies

sich in vitro als divergent in Respons auf C3, BHB bzw. Insulin reguliert, wobei insulinab-

hängige oder –unabhängige Effekte auftraten. Die Ergebnisse zeigen, dass die verschiedenen

mRNAs in den verschiedenen Depots unterschiedlich reguliert werden, und somit auf die

Wirkungen eines ausgeglichenen bzw. unausgeglichenen Energiestatus bei der Milchkuh

schließen lassen.

In Zukunft sollten Untersuchungen zur physiologische Relevanz von sowohl SCFA-

Rezeptoren als auch des Adiponectin-Systems im Fettgewebestoffwechsel auf die Protein-

Ebene erweitert werden untersucht werden.
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