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ABSTRACT 
 
 
Bangladesh is facing daunting energy challenges: Security concerns over growing fuel 
imports, limited domestic energy resources for power generation, and projected 
demands for electricity that will exceed domestic supply capabilities within a few years. 
By acknowledging the potential of renewable energy resources, the country could 
possibly meet its unprecedented energy demand, thus increasing electricity accessibility 
for all and enhancing energy security through their advancement. The integration of 
renewable energy technologies in the power sector through national energy planning 
would, therefore, be a step in the right direction, not only for sustainable development 
of the country but also as part of Bangladesh's responsibility toward the global common 
task of environmental protection. 

This study estimates the potential of renewable energy sources for power 
generation in Bangladesh from the viewpoint of different promising available 
technologies. Future long-term electricity demand in Bangladesh is projected based on 
three economic growth scenarios. The energy planning model LEAP is applied to 
forecast the energy requirements from 2005 to 2035. Different policy scenarios, e.g., 
accelerated renewable energy production, null coal import, CO2 emission reduction 
targets and carbon taxes in the power sector from 2005 to 2035 are explored. The 
analyses are based on a long-term energy system model of Bangladesh using the 
MARKAL model. Prospects for the power sector development of the country are 
identified, which ensure energy security and mitigate environmental impacts. 

The technical potential of grid-connected solar photovoltaic and wind energy 
are estimated at 50174 MW and 4614 MW, respectively. The potential of energy from 
biomass and small hydro power plants is estimated at 566 MW and 125 MW, 
respectively. Total electricity consumption was 18 TWh in 2005 and is projected to 
increase about 7 times to 132 TWh by 2035 in the low GDP growth scenario. In the 
average and high GDP growth scenarios, the demand in 2035 shows an increase of 
about 11 and 16 times the base year value, respectively.  

The results of the MARKAL analysis show that Bangladesh will not be able to 
meet the future energy demand without importing energy. However, alternative policies 
like CO2 emission reduction by establishing a target, accelerated deployment of 
renewable energy technologies, or introduction of a carbon tax to promote efficient 
technologies reduce the burden of imported fuel, improve energy security and reduce 
environmental impacts. The model predicts that alternative policies will not result in 
significantly higher cumulative discounted total energy system costs. The system costs 
increase slightly over the base scenario. The alternative scenarios reduce imported fuel 
by up to 85 %. The analysis shows a substantially higher implementation of renewable 
energy technologies compared to the base scenario. Renewable energy technologies, 
especially solar photovoltaic, play an important role in achieving acceptable energy 
security. 
 

 



 

KURZFASSUNG 
 
 
Bedeutung erneuerbarer Energien im Elektrizitätssektor von 
Bangladesch: langfristige Planungsstrategien 

 
 

Im Hinblick auf seine Energieversorgung steht Bangladesch vor großen Herausforderungen: 
Sorgen über Energiesicherheit durch wachsende Energieimporte, zu geringe einheimische 
Ressourcen für die Energieerzeugung sowie ein voraussichtlicher Strombedarf, der die 
einheimischen Versorgungskapazitäten innerhalb der nächsten Jahre übersteigen wird. Durch 
das Erschließen des Potenzials für erneuerbare Energiequellen könnte das Land möglicherweise 
den wachsenden Energiebedarf erfüllen und damit einen besseren Zugang zu Elektrizität für alle 
erreichen sowie Energiesicherheit durch Entwicklung entsprechender Techniken erhöhen. Die 
Integration von erneuerbaren Energien in den Elektrizitätssektor durch nationale 
Energieplanung wäre daher ein Schritt in die richtige Richtung, nicht nur für die nachhaltige 
Entwicklung des Landes, sondern auch wegen der Verantwortung von Bangladesch hinsichtlich 
der globalen Gemeinschaftsaufgaben im Bereich Umweltschutz. 

Die vorliegende Studie untersucht das Potenzial erneuerbarer Energien aus der Sicht 
verschiedener vielversprechender und bereits vorhandener Techniken. Der zukünftige 
langfristige Strombedarf in Bangladesch wird auf der Grundlage von drei 
Wirtschaftswachstumsszenarien prognostiziert. Mit dem Energieplanungsmodell LEAP wird 
der Energiebedarf von 2005 bis 2035 vorhergesagt. Verschiedene Politikszenarien, z.B. 
Erhöhung der Produktion erneuerbarer Energie, keine Kohleimporte, CO2-
Emissionsreduktionsziele sowie eine Kohlenstoffsteuer werden für die Bewertung des 
Energiesektors von 2005 bis 2035 untersucht. Die Analysen basieren auf einem langfristigen 
Energiesystemmodell für Bangladesch auf der Grundlage des MARKAL-Modells. Die Studie 
präsentiert eine Prognose für die zukünftige Entwicklung des Energiesektors des Landes bei 
gleichzeitiger Sicherung des Energiebedarfs und Reduzierung der Umweltauswirkungen. 

Das Potenzial solarer Fotovoltaik und Wind für die Einspeisung in das Stromnetz 
wird auf 50174 MW bzw. 4614 MW, das von Energie aus Biomasse und kleinen 
Wasserkraftwerken auf 566 MW bzw. 125 MW geschätzt. Der gesamte Stromverbrauch in 2005 
betrug 18 TWh, und er wird in dem Szenario mit niedrigem Wachstum des 
Bruttoinlandsprodukt (BIP) bis 2035 um das 7-fache auf 132 TWh zunehmen. In den Szenarien 
mit durchschnittlichem und hohem BIP-Wachstum steigt der Bedarf bis 2035 auf das ca. 11- 
bzw. 16-fache des Wertes des Grundszenarios. 

Die MARKAL-Analyse zeigt, dass Bangladesch die zukünftige Energienachfrage 
ohne Energieimporte nicht erfüllen kann. Jedoch können durch politische Maßnahmen, wie z. 
B. die Einführung von CO2-Emissionsreduktionszielen, die verstärkte Nutzung von 
erneuerbaren Energien oder die Einführung von Kohlenstoffsteuern zur Förderung effizienter 
Technologien, die Energieimporte reduziert, die Energiesicherheit verbessert und die 
Umweltauswirkungen begrenzt werden. Das Modell prognostiziert, dass die politischen 
Maßnahmen nicht zu signifikant höheren Gesamtenergiesystemkosten führen werden. Die 
Systemkosten nehmen geringfügig zu verglichen mit denen im Grundszenario. Die 
alternativeszenarien führen zu einer Reduzierung der Energieimporte um bis zu 85 %. Die 
Analyse zeigt eine bedeutend höhere Nutzung von erneuerbaren Energien verglichen mit dem 
Grundszenario. Diese Techniken, insbesondere die Fotovoltaik, spielen eine wichtige Rolle bei 
der Energiesicherheit Bangladeschs. 
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1 INTRODUCTION 

 

1.1 Problem statement 

1.1.1 Energy and environment 

The measure of development in any society of today is synonymous with the level of 

energy consumption. Energy is therefore recognized as a critical input parameter for 

national economic development. Modern day energy demands are still met largely from 

fossil fuels such as coal, oil and natural gas. In 1980, the global primary energy demand 

was only 7228 million tons of oil equivalent (mtoe) but this had increased to 11429 

mtoe by 2005 (WEO 2007). Further increases can be expected, mostly in connection 

with increasing industrialization and demand in less developed countries, aggravated by 

gross inefficiencies in all countries. Fossil fuels provide energy in a cheap and 

concentrated form, and as a result they dominate the energy supply. In the worldwide 

total energy demand, the share of fossil energy is around 80 %, while the remaining 20 

% are supplied by nuclear and renewable energy (Rout 2007). In 2005, a total of 26.6 

billion tons of CO2 emissions were generated world-wide of which more than 41 % was 

from power generation based on fossil fuels (WEO 2007). The CO2 emissions from 

power generation are projected to increase 46 % by 2030 (WEO 2007). In 1980, total 

global electricity generation was 8027 terawatt hour (TWh), which had increased to 

17363 TWh by 2005. The installed capacity of power generation was 1945 gigawatt 

(GW) in 1980 and had increased to 3878 GW by 2005 (EIA 2010) of which almost 69 

% was from conventional fuels. The main problem is that in the next 20 years the 

expected demand for electricity would require the installation of the same power 

generation capacity that was installed over the entire 20th century. This translates to the 

stunning number of one 1000 megawatt (MW) power station installed every 3.5 days 

over the next 20 years (Lior 2008).  

The concentration of greenhouse gases (GHGs) in the atmosphere has been 

increasing for a variety of reasons. CO2 in the atmosphere is increasing as a result of the 

burning of fossil fuels. Global warming and mitigation of GHGs are presently the major 

issues of international concern. The Intergovernmental Panel on Climate Change 

(IPCC) was set up in 1988 to study different aspects of climate change. One aspect is 

the progressive gradual rise of the earth’s average surface temperature, thought to be 
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caused in part by increased concentrations of GHGs in the atmosphere. This so-called 

global warming is commonly described as climate change, although it is only one of the 

changes that affect the global climate. The major key findings of IPCC 4th assessment 

report are (Dutt and Glioli 2007; IPCC 2007; WEO 2007):  

1) Most of the observed increase in globally averaged temperatures since the mid 

20th century is very likely due to the observed increase in anthropogenic GHG 

concentration. Discernable human influences now extend to other aspects of 

climate, including ocean warming, continental average temperature and 

temperature extremes. 

2) For the next two decades, a warming of about 0.2°C per decade is projected for a 

range of emission scenarios. Even if the concentrations of all GHGs were to be 

kept constant at the year 2000 levels, a further warming of about 0.1°C per 

decade would be expected. 

3) Anthropogenic warming and sea level rise would continue for centuries due to 

the time scales associated with climate processes and feedbacks, even if the 

levels of GHG concentrations were not to change. 

 

1.1.2  Energy and sustainable development 

Sustainable development can be broadly defined as living, producing and consuming in 

a manner that meets the needs of the present without compromising the ability of future 

generations to meet their own needs (Twidell and Weir 2006). Energy development is 

increasingly dominated by major global concerns of air pollution, fresh water pollution, 

coastal pollution, deforestation, biodiversity loss and global climate deterioration. To 

prevent disastrous global consequences, it would increasingly be impossible to engage 

in large-scale energy-related activities without insuring their sustainability, even for 

developing countries in which there is a perceived priority of energy development and 

use and electricity generation over their impact on the environment, society, and indeed 

on the energy resources themselves. The long-term control of global climate change and 

holding the climate at a safety levels requires a connection of policies for climate 

change to sustainable development strategies in all nations. 

Over the last few decades, a decline in fossil fuels reserves has been observed 

worldwide. Alternately, fossil fuels are not being newly formed at any significant rate, 
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and thus present stocks are ultimately finite. If the current rate of energy consumption is 

continued, the limited reserves of coal, oil and natural gas may last only for 122, 42 and 

60 years, respectively (BP 2009; Lior 2008). The amount of uranium in the world is 

insufficient for massive long-term deployment of nuclear power generation (BP 2009; 

Lior 2008). Therefore, the sustainable development issue is more than ever raised, 

stimulating the need to search for a sustainable development path. There are two paths 

to provide energy services to the people (Dabrase and Ramachandra 2000): 

1) The hard path or unsustainable path continues with heavy reliance on 

unsustainable fossil fuels or nuclear power. This leads to serious pollution 

problems and disposal of radioactive waste problems. 

2) The soft or sustainable path relies on energy efficiency and renewable resources 

to meet the energy requirement.  

 

National energy planning with an emphasis on renewable resources and 

improvement of energy efficiency contributes to sustainable development. Currently, 

the centralized planning approach is adopted for resource management and energy 

policy decisions. There is a need to move towards the softer path to ensure sustainable 

development for the present and the future. This is the path to increase reliance on clean 

renewable energy resources and improved energy use efficiency and conversion 

measures to minimize the loss of primary resources without the risk of climate or 

ecology breakdown. Consequently, almost all national energy policies include some of 

the following vital factors for improving or maintaining social benefits from energy 

(Twidell and Weir 2006):  

1) Increased harnessing of renewable supplies 

2) Increased efficiency of supply and end-use 

3) Reduction in pollution.   

  

1.1.3 Energy situation in Bangladesh 

Electricity is a pre-requisite for the technological development and economic growth of 

a nation. The future economic development of Bangladesh is likely to result in a rapid 

growth in the demand for energy with accompanying shortages and problems. The 

country has been facing a severe power crisis for about a decade. Known reserves (e.g., 
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natural gas and coal) of commercial primary energy sources in Bangladesh are limited 

in comparison to the development needs of the country (Islam 2001a). Power generation 

in the country is almost entirely dependent on fossil fuels, mainly natural gas, that 

accounted for 81.4 % of the total installed electricity generation capacity (5248 MW) in 

2006 (BPDB 2006). By that year, only about 42 % of the total population had been 

connected to electricity (Jamaluddin 2008), with vast majority being deprived of a 

power supply. The government of Bangladesh has declared that it aims to provide 

electricity for all by the year 2020, although at present there is high unsatisfied demand 

for energy, which is growing by more than 8 % annually (PSMP 2005). Demand-supply 

gaps and load shedding have increased (Figure 1.1). 

Coal is expected to be the main fuel for electricity generation. The government 

of Bangladesh has planned to generate 2900 MW power from coal in the next 5 years 

(Khan 2009), although coal power has adverse environmental effects and coal reserves 

are limited. The government has also focused on furnace-oil-based peaking power 

plants. As a result, the share of CO2 emissions coming from fossil-fuel-based power 

plants in the national CO2 inventory is expected to grow, and there is a growing 

dependency on imported fossil fuels for power generation. 

Increasing the use of fossil fuels to meet the growing worldwide electricity 

demand, especially in developing countries, not only counteracts the need to prevent 

climate change globally but also has negative environmental effects locally. In 

Bangladesh, the power sector alone contributes 40 % to the total CO2 emissions (ADB 

1998; Shrestha et al. 2009). In this case, it is necessary to develop and promote 

alternative energy sources that ensure energy security without increasing environmental 

impacts. 
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Figure 1.1: Power demand-supply gaps and load shedding in Bangladesh (BPDB 2006) 
 

Bangladesh is facing daunting energy challenges: Security concerns over 

growing fuel imports, limited domestic energy resources for power generation, and 

projected demands for electricity that will exceed domestic supply capabilities within a 

few years. 

By acknowledging the potential of renewable energy resources, the country 

could possibly meet its unprecedented energy demand, thus increasing electricity 

accessibility to all and enhancing energy security through their advancement. The 

integration of renewable energy technologies in the power sector through national 

energy planning would be, therefore, the right direction, not only for sustainable 

development of the country but also as the responsibility of Bangladesh toward the 

global common task of environmental protection. In order to avoid long-term impacts, it 

is necessary to conduct energy planning by generating transient scenarios for demand 

and the corresponding requirement of energy sources under the constraints of 

availability, cost and pollution. The present study is one of the first efforts in this 

direction. It concentrates on the Bangladesh power sector only, as this has become one 

of the most critical sectors in the country's economy and is a major bottleneck with 

respect to development. 
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At the point of power generation, renewable energy sources generally emit no GHGs, 

with the notable exception of biomass, which is neutral over its complete life-cycle in 

terms of GHGs. The renewable resources can make an important contribution to the 

security and diversity of energy supplies by providing a secure, indigenous source of 

energy that is available in a variety of forms (EEA 2001). 

These benefits have created a strong motivation for pursuing renewable 

energies in both developed and developing countries. For example, the community aim 

formulated by the European Commission is to cover 21 % of the electricity 

consumption in 2010 by renewable energy sources (Ringel 2006). The installed capacity 

of renewable energy technologies (except hydro) was 46 GW in 2000 and had increased 

to 126 GW by 2007 (EIA 2010). The contribution of renewable energy sources to 

electricity in Germany was about 37 TWh (6.3 % of gross electricity consumption) in 

2000 and had increased to 87 TWh (14.2 % of gross electricity consumption) by 2007 

(Busgen and Durrschmidt 2009). Worldwide installed capacities of solar photovoltaic 

(PV) and wind power grow at 30 % per year compared to the 1.4 % annual growth of 

conventional energy (BP 2009; EIA 2010; Green 2004). This has led to a significant 

reduction in the investment cost of solar PV and wind power generation. The unit cost 

of PV has dropped in several orders of magnitude, and the efficiency is continuously 

being improved (Brown and Hendry 2009; Gottschalg 2001; Green 2004; Ramana 

2005; Van der Zwaan and Rabl 2003). The technology of wind turbines and grid 

systems are becoming increasingly well developed and their cost has dropped 

significantly (Neij 1999). 

 

1.3 Energy planning through optimizing energy systems 

Energy planning with embedded environmental concerns as demonstrated through this 

study is therefore needed for optimum utilization of available resources including funds, 

conservation of fossil fuel reserves and advancement of renewable energy for improving 

sustainability through reduction of GHG emissions. As energy is a crucial determinant 

in the development of economy, its availability is almost necessary. Therefore, the 

following aspects require focused attention: 

• Availability of capacity for power generation 

• Minimization of generation costs of electricity 
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• Minimization of consumption of conventional resources 

• Demand-supply balancing. 

 

Besides the above issues, this study also focuses on environmental issues that 

have become increasingly important, especially since the Rio Summit in 1992 and the 

definition of targets for GHG emission reduction in the Kyoto Protocol of 1998. 

Therefore, energy planning now includes the following aspects: 

• Reduction or control of GHG emissions 

• Introduction of carbon taxes 

• Promotion of renewable energy systems. 

 

1.4 Research objectives and approach 

The main objective of this study is to examine the potential contribution of renewable 

energy to the future power supply in Bangladesh based on a least cost analysis. The 

specific objectives are: 

1) Assessment of the potential of renewable resources for power generation 

2) Projection of the long-term electricity demand 

3) Development of a reference energy system for the Bangladesh power sector 

4) Analysis of the growth of the Bangladesh power sector based on a cost-benefit 

analysis including an assessment of the introduction of emission reduction 

targets and carbon taxes through development of future scenarios 

5) Assessment of resource use and GHG emissions for all generated scenarios. 

 

The following methodological approaches are developed in connection with 

the above-mentioned objectives: 

1) Assessment of the potential of renewable energy resources for power generation 

2) Projection of the long-term electricity demand 

3) Development of the MARKAL (market allocation)-Bangladesh model as an 

analytical planning tool for the Bangladesh power sector 

4) Development of future scenarios for the Bangladesh power sector covering 

changes in resource constraints, cost factors, and technological development. 
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In this study, a MARKAL energy-system model for the Bangladesh power sector is 

developed to analyze alternative technological options for the next 30 years 

considering the base year 2005 for addressing the above-mentioned challenges. The 

intention is not to predict the future, but to provide insights into the implications of 

energy technology options that can be pursued by Bangladesh. Future possibilities are 

covered by different scenarios. Possibilities for the expansion of the power sector and 

the effects of introducing new policies like CO2 emission reduction targets or carbon 

taxes in Bangladesh are assessed. The study also projects the electricity demand for 

the next 30 years using the Long-range Energy Alternative Planning (LEAP) model 

and assesses the renewable energy potential for power generation in Bangladesh. 

 

1.5 Structure of the thesis 

In Chapter 2, a review of existing tools related to energy planning is given together with 

a description of the MARKAL model selected for this study. Chapter 3 focuses on the 

assessment of the technical potential of various renewable resources for power 

generation along with suitable technologies. Chapter 4 is devoted to the forecast of the 

electricity demand. The LEAP model along with three scenarios, namely low gross 

domestic product (GDP) growth, average GDP growth and high GDP growth, employed 

to project the demand is discussed in this chapter. Chapter 5 deals with the development 

of the MARKAL-Bangladesh model. It covers the development of a reference energy 

system for the Bangladesh power sector. This chapter includes background information 

related to availability of resources, conversion technologies characteristics, growth 

constraints and other major parameters that are supplied as input to the MARKAL 

model. This chapter also presents the study boundaries and assumptions. Chapter 6 

presents the future scenarios and the results for all scenarios. Chapter 7 provides the 

conclusions of the study. 
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2 TOOLS AND METHODS 

2.1 Review of energy planning models 

Energy planning is an important task for both national governments and international 

agencies, as it supports decision making with respect to national and international 

development. The energy planning discipline dates from the 1960s (Nguyen 2005), 

where the first studies focusing on energy supply were carried out. At that time, 

planning methodologies focused on different aspects such as cost, environmental 

damage or energy supply security. After the oil crisis in the early 1970s, energy 

planning became very important, especially for policy makers. Only after the oil crisis 

was sufficient attention given to critical assessment of fuel resources, rational use and 

conservation of energy resources, and long-term energy planning (Mathur 2001). In 

addition to this, the Rio Earth Summit in 1992 triggered environmental studies on the 

issue of GHG emissions. This was especially the case after the report of the IPCC in 

1995, which concluded that CO2 emission has a noticeable impact on the environment. 

Intensive discussions and debates followed, legislation was formulated and GHG 

emission reduction targets set (e.g. Kyoto Protocol, 1998). Aggregated energy-related 

activities contribute 80 % to the total greenhouse effect worldwide (IPCC 1995). This 

has created a need for new energy planning models that consider environmental 

problems. Therefore, besides separate models for environmental studies pertaining to 

assessment, projection and mitigation, energy planning models were expanded to cover 

the environmental aspects of power generation.  

Energy planning models differ from each other in the model purpose, model 

structure (e.g., internal and external assumptions), analytical approach (e.g., top-down 

or bottom-up), study methodology, mathematical approach, geographic coverage, 

sectoral coverage, time horizon, and data requirement (Figure 2.1). Energy-economy 

models are used for energy and environmental policy analysis (Table 2.1). The most 

important models and practices that have evolved in the field of energy-environmental 

planning are macroeconomic models, energy demand and supply models, modular 

package models and integrated models. 
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Figure 2.1: Criteria for classification of energy planning models (Nguyen 2005) 
       

Table 2.1: Classification of energy-economy models (Pandey 2002) 
Paradigm Space Sector Time Examples Issues addressed 

Top-down 
simulation 

Global, 
national 

Macro-
economic/   
energy 

Long-term Integrated assessment 
(e.g., AIM) and general 
equilibrium models), 
input-output models, 
and system dynamics 
models (e.g. FOSSIL2) 

Impact of market measures 
and trade policies on cost to 
economies and 
global/national emissions 

Bottom-up 
optimization
/accounting 

National, 
regional 

Energy Long-term Optimization (e.g., 
MARKAL, EFOM) and 
accounting (e.g., 
LEAP) models 

Impact of market measures 
and other policies (e.g., 
regulations) on technology-
mix, fuel-mix, emissions, 
and cost to energy system; 
capacity investment 
planning 

Bottom-up 
optimization
/accounting 

National, 
regional, 
local 

Energy Medium-
term/ 
short-term 

End-use sectors models 
(e.g., AIM/End use), 
power sector, coal 
sector models 

Impact of sectoral policies 
on sectoral technology-mix, 
fuel-mix, coats and 
emissions; planning for 
generation-mix; unit 
scheduling; logistics 

 

2.1.1 Macroeconomic models 

Macroeconomic models are concerned with questions on how the price and availability 

of energy influence the economy in terms of GDP, employment or labor and inflation 

rate and vice versa. These models have an aggregate macroeconomic module linked to a 
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bottom-up energy supply module. Three examples under this category are MACRO, 

ETA-MACRO and MARKAL-MACRO. 

MACRO: The MACRO model was developed by the International Institute of 

Applied System Analysis (IIASA). The model is a two-sector (production and 

consumption), aggregated view of long-term economic growth. The model has eleven 

regional versions and is widely used to compute size of economy, investment flows, 

demand of energy and non-energy products and inter-industry payments. The model's 

strength is that it treats the economy of coherent regions of the world in an integrated 

fashion and estimates energy demand. Its weakness is that the model has little resolution 

of technological choices (Grubler et al. 1999).  

ETA-MACRO: The ETA-MACRO model is a general equilibrium model 

comprising an energy technology assessment (ETA) model coupled with a 

macroeconomic growth model (MACRO). The model uses non-linear optimization. 

Energy demands and costs receive a feedback and are modified on the basis of the 

information from the economic model. This connection allows the energy model to 

interact with the macro-economy of the region/country under consideration. 

MARKAL-MACRO: The MARKAL-MACRO model is similar to the ETA-

MACRO model except that the ETA model is replaced by the much more detailed 

MARKAL model. In both models, the macro-economy is represented by a single 

production function with energy, employment or labor, and capital as the inputs, which 

does not consider the traditional sector. The integration of MARKAL is a good example 

of combined bottom-up and top-down modeling techniques. 

 

2.1.2 Energy supply models 

Energy supply models are often concerned with determining the least-cost options of an 

energy supply system meeting a given demand and subject to a number of constraints. 

These models generally use an optimization or a simulation method, where the 

optimization is usually based on linear and non-linear programming. Some of the 

energy supply models are extended to include parts of the energy demand analysis, and 

others provide additional features to calculate the impacts on the planned energy system 

including emissions, economic and social aspects. Representative energy supply models 

are: MARKAL, MESSAGE, POLES and WASP. 
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MARKAL: The unique feature of the MARKAL model is that it solves the energy 

system as a multi-period linear program; hence it is called a linear programming tool. 

The solution satisfies an exogenously specified set of energy service demands, 

minimizing the total system discounted costs. A number of technologies compete to 

satisfy a specific demand and supply of energy. MARKAL has been adopted in energy 

and environmental studies in over 70 countries and is one of the most widely used 

energy models in the world. This model is applied in this study (section 2.2). 

MESSAGE: The Model for Energy Supply Systems Analysis and their 

General Environmental Impact (MESSAGE) was developed by IIASA and is a dynamic 

linear programming model, calculating cost-minimal supply structures under the 

constraints of resource availability, given technologies, and particular energy demand. It 

models flows of energy through the energy system, from primary energy extraction via 

conversion up to final utilization in various sectors of the economy. MESSAGE uses 

two major types of variables: an activity variable (describing the fuel consumption of 

technology) and a capacity variable (annual new installations of technologies). The 

constraints applied in all modeling exercises are acquiring sufficient supplies of the 

exogenous demand, balancing quantities for all energy carriers and periods, constraining 

resource availability, and ensuring the installation of sufficient capacity of the 

technology applied. The objective function generally applied in MESSAGE is to 

minimize the sum of the discounted costs (Messner 1997).  

POLES: The Prospective Outlook on Long-term Energy Systems (POLES) 

model is a simulation model providing long-term energy supply and demand scenarios 

on the basis of hierarchical systems of interconnected sub-models at international, 

regional and national levels. The impact of the emissions reduction strategies on the 

international energy markets can be assessed. A detailed description of the oil, gas and 

coal market at a world level allows a significant increase in the size and complexity of 

the model (Nguyen 2005). 

WASP: The Wien Automatic System Planning Package (WASP) model permits the user 

to find an optimal expansion plan for a power generating system over a long-term 

period within the constraints defined by the modeler. The model is maintained by the 

International Atomic Energy Agency (IAEA), which has developed four versions of the 

program. In WASP, the optimum expansion plan is defined in terms of minimum 
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discounted costs. Using the electricity demand for the future years, the model explores 

all possible sequences of capacity additions that could be added to the system within the 

required constraints (Connolly et al. 2010).  

 

2.1.3 Energy demand models 

Energy demand models are built to forecast the energy demand of either the entire 

economy or of a certain sector. Among the energy demand models, the techno-

economic models are widespread, but econometric models are also used. Representative 

energy demand models are MEDEE, and MAED. 

MEDEE: Modele d’ Evaluation de la Demande En Energie (MEDEE) was 

developed by the Institute of Energy Policy and Economics, Grenoble, France. MEDEE 

is a techno-economic bottom-up model for long-term energy demand forecast. It 

follows the end-use method. By breaking up the energy demands into homogenous 

subgroups and identifying the direct and indirect determinants of these demands, the 

model is able to evaluate the future energy demand based on the evaluation of these 

determinants (Nguyen 2005). 

MAED: The Model for Analysis of Energy Demand (MAED) is a simulation 

model designed to evaluate medium-term and long-term demand for energy in a country 

or region. The model was developed by the IAEA and was originally based on work 

done at the University of Grenoble in France. The model offers an alternative approach 

to MACRO/DEMAND/BALANCE for estimating energy demand and electricity 

demand. The model consists of three modules: an energy demand module that calculates 

the final energy demand, an hourly electric power demand module converts the total 

annual demand for electricity in each sector, and a load duration curve module ranks the 

hourly demands imposed on the grid. The output of the model consists of detailed 

estimates of alternative energy forms used in each sub-sector for each selected year 

(Rostamihozori 2001). 

 

2.1.4 Modular packages 

These packages consist of different kinds of models such as a macroeconomic 

component, an energy supply and demand balance, an energy demand alone, etc., which 

are integrated into a package. The modeler does not need to run all the models but may 
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select only a subset depending upon the nature of the analysis to be carried out. Some of 

the well-known packages are LEAP, ENPEP and MESAP. 

LEAP: The Long-range Energy Alternative Planning (LEAP) is an integrated 

modeling tool that can be used to track energy consumption, energy production, and 

resource extraction in all sectors of an economy. The model was developed in 1980 in 

the USA and is currently maintained by the Stockholm Environment Institute (SEI). 

LEAP is usually used to analyze national energy systems. It functions using an annual 

time step, and the time horizon can extend for an unlimited number of years (typically 

between 20 and 50). The model supports a number of different modeling 

methodologies. On the demand side these range from bottom-up, end-use accounting 

techniques to top-down macroeconomic modeling. On the supply side LEAP provides a 

range of accounting and simulation methodologies for modeling electricity generation 

and capacity expansion planning (Connolly et al. 2010). The demand module is used in 

this study to forecast electricity demand (Chapter 4).  

ENPEP: The Energy and Power Evaluation Program (ENPEP), developed by 

the Argonne National Laboratory in the USA, is a simulation type model used to model 

a country’s entire energy system. The model incorporates the dynamics of market 

processes related to energy by an explicit representation of market equilibrium, i.e., the 

balancing of supply and demand. It consists of an executive module and ten technical 

modules. The main module is BALANCE. This module uses a non-linear and market-

based equilibrium approach to determine energy supply and demand balance for the 

entire energy system (Khalaquzzaman and Kim 2008). Equilibrium is reached when 

ENPEP-BALANCE finds a set of market clearing prices and quantities that satisfy all 

relevant equations and inequalities (Connolly et al. 2010). 

MESAP: The Modular Energy System Analysis and Planning (MESAP) 

software is a tool for integrated energy and environmental planning. The tool was 

developed at the Institute of Energy Economics and Rational Use of Energy (IER), 

University of Stuttgart, in 1997. It offers models for investment calculation, energy and 

environmental accounting, energy demand analysis, integrated resource planning, 

demand-side management, electricity operation and expansion planning as well as life 

cycle and fuel chain analysis. The MESAP consists of three layers of modules: the 

database tools, the models, and the external information systems. Backbone of the 
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database is the database management system. The planning tools include: PlaNet for 

demand and supply simulation, INCA for investment calculation and financial analysis, 

and TIMES for energy system optimization (Nguyen 2005).    

 

2.1.5 Integrated models 

Integrated models consist of an integrated set of equations that are simultaneously 

solved. These tools usually cover energy-economy-environmental interactions. Some of 

the well-known models are AIM, IMAGE 2.0 and PERSEUS.  

AIM: The Asian-Pacific Integrated Model (AIM) is a large-scale model for 

scenario analyses of GHG emissions and the impacts of global warming in the Asian-

Pacific region. The model was developed mainly to examine global warming response 

measures in the Asian-Pacific region, but it is linked to a world model to also make 

global estimatesl. The model comprises three main modules: the GHG emission model 

(AIM/emission), the global climate change model (AIM/climate), and the climate 

change impact model (AIM/impact). Bottom-up models can reproduce detailed 

processes of energy consumption, industrial productions, land-use changes and waste 

management as well as technology development and social energy demand changes. On 

the other hand, top-down models can estimate interactions between the energy and 

economic sector, and between land-use changes and the economic sector. The original 

AIM bottom-up components are integrated with two top-down models through a linkage 

module. This new structure maximizes the ability to simulate a variety of inputs at a 

variety of levels and to calculate future GHG emissions in a relatively full range 

analysis (Mathur 2001).       

IMAGE 2.0: The IMAGE 2.0 model is a multi-disciplinary, integrated model 

designed to simulate the dynamics of the global society-biosphere-climate system. It 

consists of three fully linked sub-systems: energy-industry, terrestrial-environment, and 

atmosphere-ocean. The energy-industry sub-model computes the emissions of GHG in 

thirteen world regions as a function of energy consumption and industrial production. 

The terrestrial-environment sub-model simulates the changes in global land cover on a 

grid scale based on climate factors and economic factors. The atmosphere-ocean sub-

model computes the build-up of GHG emissions in the atmosphere and the resulting 

zonal average temperature and precipitation patterns (Mathur 2001; Nguyen 2005).     
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PERSEUS: The Program package for Emission Reduction Strategies in Energy Use and 

Supply (PERSEUS) was developed at the University of Karlsruhe for optimizing energy 

and material flow as a tool for strategic planning of energy utilities. The model is based 

on a multi-periodic, mixed integer linear optimization approach. The present and future 

power plant technologies are characterized in great detail by technical, economical and 

environmental parameters. To account for the growing uncertainty of input data in 

liberalized markets, stochastic programming techniques have been integrated. The 

complex network of supply-side and demand-side options and their interdependencies 

are represented, and the model minimizes the costs for achieving a given reduction 

target with the help of linear programming revealing the necessary actions. In contrast 

to the widely used target function of cost minimization, a profit maximization approach 

that better reflects the situation in liberalized markets has also been implemented. This 

approach allows consideration of purchase and sale on spot markets and exchange for 

electricity (Mathur 2001). 

 

2.2 The MARKAL model 

MARKet ALlocation (MARKAL) is an energy planning tool that was developed in 

1974 just after the oil crisis by a consortium of members of the International Energy 

Agency (IEA) based on the General Algebraic Modeling System (GAMS) – a computer 

language specifically designed to facilitate the development of algebraic models. The 

Brookhaven National Laboratory (BNL), New York, USA, and the 

Kernforschungsanlage Jülich (KFA), Jülich, Germany, are the hosts of the program. The 

MARKAL acronym indicates the intention of its developers to build an instrument for 

the analysis of the market potential of energy technology and fuels. MARKAL is a 

large-scale model used for long-term analysis of energy systems for a city, province, 

country or region. It is a linear programming model that identifies the technological 

configuration of an energy system, subject to user-specified constraints, that minimizes 

the total discounted energy-system costs (Fishbone 1983).  

Later, many modifications were made to MARKAL, resulting in the present 

variants of the model. The introduction of the MARKAL User Supports System 

(MUSS), MARKAL-MACRO and the Windows-based ANSWER were the major 

events. The MUSS is a user-friendly environment permitting very quick and easy 
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development and maintenance of the database as well as management of the different 

scenarios under study. The MUSS manages all the input data required by MARKAL, 

organizes datasets into scenarios to foster sensitivity analysis, integrates seamlessly with 

the modeling system, and manages the results from model runs. The Windows interface, 

called ANSWER, was introduced in 1998. With this Windows-based system, the model 

is more readily accessible and usable to the energy policy and energy system analyst.  

ANSWER provides a number of enhancements over MUSS for the analysis and 

presentation of input assumptions and results. 

The driving force of the MARKAL model is social and economic development 

(Figure 2.2; Chen et al. 2006; Zongwin et al. 2001). The environment is an important 

constraint on development. The energy demand is driven by the availability of 

technology and the primary energy resources that can be exploited. These factors will 

then determine the energy consumption in the various economic sectors, the capital 

needs and technology deployment, and the effects on the environment through pollutant 

releases to various ecological systems.  

 

 

Figure 2.2: Schematic structure of the MARKAL model (Chen et al. 2006; Zonooz et al. 
2009) 

 

The MARKAL model mainly consists of the description of a large set of 

energy technologies, linked together by energy flows, jointly forming a reference 

energy system. The reference energy system is the structural backbone of MARKAL for 

any particular energy system, and its great advantage is that it gives a graphic idea of 
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the nature of the system. Another important characteristic of MARKAL is that it is 

driven by a set of demands for energy services. The feasible solutions are obtained only 

if all specified end-use demands for energy for all the periods are satisfied. The user 

exogenously supplies these demands in the model. Once the reference energy system 

has been specified, the model generates a set of equations that hold the system together. 

In addition, the MARKAL model possesses a clearly defined objective, which is usually 

chosen to be the long-term discounted costs of the energy system. The objective is 

optimized by running the model, which means that configuration of the reference 

energy system is dynamically adjusted by MARKAL in such a way that all MARKAL 

equations are satisfied, and the long-term discounted system costs are minimized. In this 

process, the model computes a partial equilibrium of the energy system for each period, 

i.e., a set of quantities and prices of all energy forms, such that supply equals demand in 

each period. A variety of constraints can be supplied to MARKAL for making the 

solution more realistic. The basic constraints of the model take into account the 

following (Lanloy and Fragniere 2000):  

1) The satisfaction of useful demands 

2) The limits on emissions of various pollutants imposed on the system for 

environmental reasons 

3) The energy balance for each energy carrier at different levels of the energy 

system 

4) The capacity transfer between successive periods and the capacity expansion due 

to investment 

5) The bound on production due to installed capacities or limited fuel supply 

6) Various other technological constraints needed to represent the complex 

production systems involved.   

 

2.2.1 Reference energy system 

The reference energy system is a way of representing the activities and relationships of 

an energy system depicting energy demands, energy conversion technologies, fuel 

mixes, and the resources required to satisfy the energy demands. The reference energy 

system concept is central to MARKAL, and the most convenient way of expressing the 

reference energy system is through its graphic format, which is a networked diagram 
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indicating energy flows and the associated parameters of technologies employed in the 

various stages of the energy system.  

The reference energy system can be extended to show emissions when energy 

is transported or converted from one form to another. The model describes the routes, 

energy conversion and distribution technologies and also emissions control options. 

MARKAL indentifies those routes and technologies that best satisfy the overall 

objectives of the energy system. The model describes the technical and economic 

properties of each technology and may also describe the technical and behavioral 

constraints upon their implementation (Manne and Wene 1992).  

 

2.2.2 MARKAL methodology 

The standard MARKAL version was used in this study. It requires the user to initially 

generate a set of projected energy service demands and to input them to the model for 

every interval in the analysis period. The user must also input the costs for primary 

energy production, specify primary energy resource supply limits, and create profiles 

for all current and new energy supply technology options available to the model (capital 

costs, operation and maintenance costs, efficiencies, pollutant emissions, growth 

constraints, etc.). MARKAL determines the combination of energy resources and 

conversion technologies that minimizes the overall energy-system costs for meeting the 

specified energy demands throughout the economy over the analysis period. The user 

may specify environmental and other constraints under which the model must satisfy 

the energy supply-demand balance. The design of the model enables a wide variety of 

“what if” analyses to be carried out, e.g., alternative sets of policy, technology or 

environmental constraints. Values for all user-specified inputs must be provided at each 

5-year time step during the analysis period, which is 2005 - 2035 in this study. 

The model consists of a set of constraints (equations and in-equations), and 

one objective function (the total discounted energy system cost). The constraints and 

objective function are mathematically expressed in terms of two types of quantities, 

which are decision variables and the parameters. The decision variables are unknown 

quantities which MARKAL has to determine, whereas the parameters are known 

quantities that are specified by the user. The variables and parameters are selected in 
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order to be able to state precisely all important constraints of the energy system. There 

are six sets of variables in the MARKAL model as given below: 

1)  INV (k, t): the investment in technology k, at period t; 

2)  CAP (k, t): the capacity of technology k, at period t; 

3)  ACT (k, t): the activity of technology k, at period t; 

4)  IMP (i, t): the amount of energy import, of form i, at period t; 

5)  EXP (i, t): the amount of energy export, of form i, at period t; 

6)  ENV (t, p): the emission of pollutant p, at period t. 

 

The MARKAL constraints are summarized below in the simplified form from 

the detailed mathematical formulation given in the MARKAL user manual. In the 

notations used below, the names of variables appear in upper-case italics and the 

parameters in lower-case italics. 

 

Flow conservation 

For the flow of each energy form, the consumption must not exceed the availability 

through the inequality according to: 

 

    
k s k d

fkfk tfEXPtkACTinptfIMPtkACTout 0),(),(),(),( ,,    (2.1) 

 

where k = energy technology in the model, f = any form of energy, fkout ,  = amount of 
energy form f produced by one unit activity in technology k, and fkinp ,  = amount 
of energy form f consumed by one unit of activity of technology k. 
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Demand satisfaction 

The demand for each energy service d must be met at each period through the following 

condition: 

 

 
k

tddemtkCAP ,),(     (2.2) 

 

where tddem , = demand for end-use of energy (electricity) at period t and the simulation 
is done over all the technologies k, which produce energy for demand d. The 
demand in the above expression is the gross demand that includes losses in the 
transmission, distribution and utilization, incorporated through different 
parameters in the model. 

 

Capacity transfer 

In case of each technology k, total capacity at any period results from the capacity 

installed previously that is still operative, the initial capacity and the investment in new 

capacity: 

 

 
p

tkresidpkINVtkCAP ,),(),(      (2.3) 

where tkresid ,  = residual capacity of technology k at period t; the summation extends 
over all previous periods p such that t-p does not exceed the life time of the 
technology k. 

 

Capacity utilization 

In each technology k, activity must not exceed the installed capacity at any time period 

t: 

 

0),(),(  tkCAPutiltkACT k     (2.4) 

 

where  = the annual utilization factor of technology k. The electricity generation 
technologies may have a single annual utilization factor or seasonal utilization 
factors the sum of which should be less that unity. 

 

 

 

kutil
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Source capacity 

Use of any energy carrier or form of energy f through technology k must not exceed the 

annual availability of its capacity at any time period t: 

 

 
k i

itffk srcaptkACTinp ,,, ),(     (2.5) 

 

where itfsrcap ,, =  the annual availability of energy form f from source i at period t. 
 

 

Growth constraint 

Due to reasons like limited extraction facilities for fuel or sometimes regional priorities 

and constraints, the capacity of each technology cannot grow by more than a certain 

percentage in each period: 

 

0),()1()1,(  tkCAPgrowthtkCAP k     (2.6) 

 

where  = maximum allowable growth factor for each technology at period t. 
 

Emission constraints 

Emission constraints specify the upper limit on emissions of certain pollutants by the 

energy system as a whole. These limits can be imposed in two ways, separately for each 

time period or cumulative over the whole planning horizon. For these constraints to be 

active within the model, emission coefficients must have been defined for all polluting 

technologies. Instead of an emission limit, the user may also specify an emission tax

. If so, the quantity is added to the annual cost 

expression, penalizing emissions at a constant rate. The total emissions and emissions 

limit can be expressed as: 

kgrowth

),( ptEtax ),().,( ptEtaxptENV
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(2.7) 
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and 

),(_),( ptLIMTENVptENV      (2.8) 

 

where  = emission coefficients for pollutant p linked 
respectively to the construction, capacity and activity of a technology. 

 = upper limit set by the user on the total emission of 
pollutant p at time period t. 

 

Other constraints 

Other constraints may be built explicitly by the modeler. These constraints are en-

equalities showing that the market share of a certain technology or group of 

technologies cannot exceed a certain fraction. All these special constraints are easily 

programmed in MARKAL by means of special data tables (ADRATIO tables).   

 

Objective function 

The objective function is optimized by the MARKAL model. Usually it is the total 

discounted system cost (TDSC), which is the combination of five types of cash costs: 

 

(2.9) 

 

 

where  
 Technology cost is the discounted sum of all technological investments and 

operation and maintenance (O&M) costs. It is expressed in terms of the three 
types of technology variables INV, CAP and ACT.  

 
 Import cost is the discounted cost of imports of energy. It involves the IMP 

variables. Export revenue is the discounted sum of exports revenue earned from 
export of energy the reference energy system. It involves the EXP variables.  

 
 Salvage value is the residual monetary value of all the investments remaining at 

the end of the planning horizon, and discounted to the beginning of the first 
period like other costs. It is an important refinement, which avoids largely the 
distortions that would otherwise plague the model’s decision towards the end of 

EMACTEMCAPEMINV ,,

),(_ ptLIMTENV

feesEmissionvalueSalvagerevenueExporttImporttTechnologyTDSC  coscos
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the planning horizon. Without this corrective term, the model would tend to avoid 
new investments toward the later analysis periods, since such investment would 
be productive over a short duration only. 

 
 Emission fees (emission taxes) are paid if the model user specifies a cost per ton 

of emissions within the ENV table of parameters. The parameters may involve 
any MARKAL variable (technology variables, imports, exports, etc.) that has an 
effect on the total amount of emissions like capacity level, activity level and 
others. The specification of emission fees or taxes is an alternative to the use of 
emission constraints.  

 
The set of variables and constraints constituting the model of the energy 

system is defined in the form of a coefficient matrix (Figure 2.3). 

 

Figure 2.3: Structure of the multi-period MARKAL matrix (modified from Mathur 
2001) 

 

The multi-period MARKAL matrix consists of the main matrix while each box 

represents a sub-matrix with non-zero coefficients. The X-axis of the matrix is the time 

horizon of the study with segments representing the length of each time period. The Y-

axis is divided into two sections, i.e., a lower section representing static or time-

independent constraints and an upper section with dynamic constraints or time-

dependent constraints. The horizontal bars in the area of the dynamic constraints 

represent dynamic constraints relevant in different time periods and may cross 

boundaries of single time periods, start from any point of time, and end at any time 

within the time span of the study. The bars in the lower section represent cumulative 

constraints such as an upper limit on cumulative coal and gas consumption; they are 
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relevant over the entire period and are to be satisfied in each period.  They also 

represent static constraints that are confined to a certain time period in the study only as 

a bound on the capacity in a certain period. The bound may have a different value for 

each time period, and each value is relevant for the specific time period only. Therefore, 

the length of these boxes does not exceed the length of the single time period. The 

complexity of the matrix depends upon types of energy carriers, conversion 

technologies, emissions and their linkage in the RES (Mathur 2001). 

 

2.2.3 MARKAL input 

Input specifications such as technology performance data, emission data, economic 

data, etc., are required by MARKAL (Figure 2.4). The model builds a representation of 

the energy system for a given region by specifying energy flows in and out of each 

technological component in the system. 

  

 

 

Figure 2.4: MARKAL component block example (Zongwin et al. 2001) 
 

MARKAL requires extensive data input, which can be classified as follows: 

1) The global component comprises data parameters that describe some aspect of 

the global energy system such as the discount rate. 

2) The energy carrier component encompasses all energy forms in the energy 

system. 

3) The end-use demand component comprises demands for end-use energy services 

in the economy. 
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4) The demand technology component refers to the technologies that consume 

energy carriers to meet end-use demands. 

5) The conversion technology component refers to all power plants that generate 

electricity. 

6) The process technology component indicates all processes that convert one 

energy carrier to another. 

7) The resource technology component refers to the means by which energy enters 

into the energy system. 

8) The constraint component comprises user-defined constraints that are additional 

to the standard constraints of the MARKAL model. 

9) The emission component encompasses environmental impacts of the energy 

system. 

 

Each group of input data requires a set of defined information (Table 2.2), and 

the user has to choose proper units for costs, energy flows, final energy demands, 

activity levels, and capacities of conversion technologies (Noble 2007). 

 

Table 2.2: Standard data needed for MARKAL 
Group Basic information needed for MARKAL 
Technologies Investment cost, fixed and variable operating costs, technical 

characteristics such as conversion efficiency, capacity, availability 
factor and productive life of technologies  

Energy carriers Resource costs such as import and extraction costs, annual or 
cumulative limits on availability, period of resource availability  

End-use demand Specified in terms of energy requirement or useful energy demand 
Other constraints Additional constraints using ADRATIO table 
Emissions Emission factors according to source of a fuel (e.g., CO2 emission 

from coal import) 
 

2.2.4 MARKAL output 

A typical MARKAL solution consists of the following results (Mathur 2001; Nguyen 

2005; Noble 2007):  

1) A set of investments in all technologies selected by the MARKAL at each time 

period. This set refers to the level of new investments expressed in terms of 

plant capacity of each technology in each period. 
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2)  A set of operating levels of all technologies at each period; the model suggests 

the optimum utilization level of each technology. It is expressed in terms of 

percentage utilization of installed power generation capacity. 

3) The quantities of each fuel produced, imported, and/or exported at each period. 

Based on the information on plant capacity and utilization factors, the model 

gives the total quantity of each fuel required or consumed in the energy system 

in each period. 

4) The emission of pollutants at each period. If sufficient information about 

different emissions is provided in terms of coefficients for each technology, this 

emission result set provides values of total emissions due to the utilization of 

different technologies. 

5) The overall system total discounted cost. It is the minimum value of operation of 

the reference energy system under the defined energy demand levels for each 

time period of the study. It is the value of the objective function of the 

MARKAL. 

 

2.3 Similar studies with MARKAL 

Energy planning studies are being conducted worldwide in many countries using 

various tools and practices. MARKAL alone is being used in more than 70 countries 

and 230 institutes for this purpose (Goldstein and Tosato 2008). It is not possible to 

cover all studies conducted by MARKAL so far, however, a list of a few of such studies 

conducted in some developing countries is given (Table 2.4). Bangladesh conducted a 

study on Asia Least-cost Greenhouse Gas Abatement Strategy (ALGAS) in 1998 using 

MARKAL that was executed by the Asian Development Bank to project GHG 

emissions to 2020 and to analyze GHG abatement options in energy, forestry and land 

use, and agriculture sectors (ADB 1998). 
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Table 2.4: Selected studies on renewable energy conducted using MARKAL  

Study Reference 

Renewable energy technologies for the Indian power sector: 
mitigation potential and operational strategies 

Ghosh et al. 2002 

Investigation of greenhouse gas reduction potential and 
change in technological selection in Indian power sector 

Mathur et al. 2003 

Long term optimization of energy supply and demand in 
Vietnam with special reference to the potential of renewable 
energy 

Nguyen 2005 

Future implications of China’s energy-technology choices Larson et al. 2003; 
Zongwin et al. 2001 

Modeling China’s energy future DeLaquil et al. 2003 
A power sector analysis for Cuba using MARKAL/TIMES 
model 

Wright et al. 2009 

Costing a 2020 target of 15% renewable electricity for 
South Africa 

Marquard et al. 2009 

Renewable energy resources and technologies in Nigeria: 
present situation, future prospects and policy framework 

Akinbami 2001 

Renewable energy utilization in Latvia Shipkovs et al. 1999 
 

2.4 Adopted methodology 

In this study, several methodologies were applied to assess the potential of renewable 

energy; the LEAP methodology was applied for energy demand projection (Figure 2.5). 

The MARKAL model with the ANSWER interface was selected and adapted to the 

Bangladesh power sector.  The generation sector in the MARKAL-Bangladesh database 

characterizes existing and new technologies available for electricity generation. Based 

on sector-specific electricity demand (residential, commercial, industrial, agricultural 

and other), fuel prices, technology costs, and the environmental and operational 

constraints incorporated in the model, MARKAL determines the least cost way of 

meeting the system electricity demand. 
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Figure 2.5: Methodology adopted in the study 
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3 ASSESSMENT OF RENEWABLE ENERGY RESOURCES 

Renewable energy encompasses a broad range of energy resources. Bangladesh is 

known to have a good potential for renewable energy, but so far no systematic study has 

been done to quantify this potential for power generation. In this chapter, the potential 

of renewable energy for electrical power generation in Bangladesh is estimated from the 

viewpoint of different promising available technologies. It also describes the future 

prospects of all selected renewable energy technologies for power generation. The 

results help to specify the inputs for the MARKAL optimization program as well as for 

future studies.  

 

3.1 Selection of renewable energy forms and the used technologies 

Whereas fossil energy sources are fixed in stock, renewable energy sources are not 

limited, but usually are not in ready-to-use forms for power generation. To convert 

renewable energy into electricity, energy-converting systems are needed. Therefore, the 

potential renewable energy is dependent on the technical ability of this conversion 

system. There are many technologies that can be used to harvest renewable energy, but 

not all of them appear promising. Based on the availability of renewable energy sources, 

specific conditions, and the technology level in Bangladesh, the present study focuses 

on renewable energy sources for which commercial technologies exist for power 

generation (Table 3.1). 

 
Table 3.1: Selected renewable energy technologies 

Renewable resource Technology 

Solar Solar home system (SHS) 
Hybrid system 
Grid-connected solar photovoltaic (PV) 

Wind Grid-connected wind turbine
Biomass Direct combustion 

Gasification 
Hydro Large hydro plant 

Small hydro plant 
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3.2 Selected renewable energy and related technologies 

3.2.1 Solar energy 

The energy from sunlight reaching the earth is a huge potential that can be exploited and 

used for generating electricity. Among several available technologies, solar PV is the 

most promising. PV technology converts sunlight into direct current (DC) electricity. 

When light falls on the active surface of the solar cell, electrons become energized and a 

potential difference is established, which drives a current through an external load. The 

central issue with PV technology is cost. The unit cost of PV has sunk in several orders 

of magnitude while the efficiency is continuously being improved (Brown and Hendry 

2009; Gottschalg 2001; Green 2004; Ramana 2005; Van der Zwaan and Rabl 2003). 

Solar PV is becoming more and more popular owing to high modularity, no requirement 

for additional resource (e.g., water and fuel), no moving parts and low maintenance 

required.  

Over the last two decades, the cost of manufacturing and installing solar PV 

system has decreased by about 20 % for every doubling of installed capacity (Brown 

and Hendry 2009). The solar industry has grown at a rate of 35 % per year over the last 

ten years (BP 2010).  

 

Grid-connected solar photovoltaic 

Different types of grid-interactive systems are being tested in countries where extensive 

utility grid lines are available. A PV array is connected and synchronized to the grid 

using an appropriate power conditioning sub-system that converts the DC energy to 

alternating current (AC) energy synchronized to the grid energy (Mukherjee and 

Chakrabartii 2007). Therefore, no additional energy storage is necessary. The grid itself 

is the storage medium for such a grid-interactive system, which delivers energy to the 

grid as long as enough sunshine is available. The system is usually integrated directly 

into structural elements of buildings (roof, facade). Therefore, the system has the 

following advantages (RETScreen 2005):  

1) It reduces both energy and capacity losses in the utility distribution network, as 

the electric generators are located at or near the site of the electrical load. 

2) It avoids or delays upgrades to the transmission and distribution network where 

the average daily output of the PV system corresponds with the utility’s peak 
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demand period (afternoon peak demand during summer as a result of loads from 

cooling). 

3) It is cost competitive, since the savings for building material is considered, i.e., 

no roof tiles are needed when solar panels are installed. 

 

In recent years, rapid development in grid-connected building-integrated PV 

systems is due to the government-initiated renewable energy programs aiming at the 

development of renewable energy applications and reduction of GHG emissions. This 

type of solar PV system is preferred as far as PV installations are concerned. Germany 

introduced a "100,000 roofs program" (Erge et al. 2001). The Japanese 70,000 roofs 

program started in 1994 and dominated the market for the rest of the 1990’s (Brown and 

Hendry 2009). A PV system dissemination program has been very successful in USA, 

and its 1 million solar-roof initiative is going well (Yang et al. 2004). Grid-connected 

PV systems thus took off in the mid-to-late 1990’s and since then have been the 

dominant application (Brown and Hendry 2009). 

 

Solar Home System 

The system consists of a 20 - 100 watt peak (Wp) PV array1, a rechargeable battery and 

a charge controller. Both the array size and sunlight availability determine the amount 

of electricity available for daily use (WB 1996). With an appropriate sunlight regime, 

the system has proven to be competitive for remote households. The SHS is thus 

implemented in many developing countries. In Bangladesh, by the end of 2008 a total of 

about 350,000 SHSs had been installed (IDCOL 2008). 

 

Hybrid system 

When renewable energy technologies are used in decentralized and remote areas, they 

can be coupled with diesel generators to improve the total system reliability. Wind-

diesel generator-battery, wind-solar PV-diesel generator-battery, PV-diesel generator-

battery hybrid can be used for generating electricity in the rural areas of Bangladesh.  

                                                            
1 The capacity of a PV module is defined in terms of peak of output (in watts (Wp)). The rated peak 

output is measured under standard test conditions of 1000 watts per m2 solar radiation, and 25o C cell 
temperature. SHSs are often designed to be smaller than 20 Wp and larger than 100 Wp. 
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3.2.2 Wind energy 

The energy from continuously blowing wind can be captured using wind turbines that 

convert kinetic energy from wind into mechanical energy and then into electrical energy 

(Figure 3.1). Electricity generated by wind turbines can feed to the central grid or be 

locally consumed using small stand-alone wind turbines.  Grid-connected wind turbines 

are the subject of this study. 

 

 
Figure 3.1: Main components of wind turbine system (Chen and Blaabjerg 2009) 
 

Grid-connected systems 

Two types of grid-connected systems can be distinguished. In the first type, the 

system’s main priority is to cater for the local electricity demand, and any surplus 

generation will be fed to the grid. When there is a shortage, electricity is drawn from the 

grid. The other option is the utility scale, where decentralized stations are managed by 

the utilities in the same way as large electric power plants. Some of the important 

features of the grid systems are as follows (Kaundinya et al. 2009):  

1) A grid-connected system is an independent decentralized power system 

2) The operational capacity is determined by the supply source 

3) Due to supply-driven operation, the system may have to ignore the local demand 

when the supply source is not available 

4) The system can be either used to meet the local demand and surplus can be fed 

to the grid, or may exist only to feed the grid 

5) The connectivity to a grid enables setting up relatively large-scale turbines. 

 

Suitable grid-connected wind systems need to satisfy several geographical and 

technical conditions, e.g., high average annual wind speed, easy access to the power 
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distribution grid, and low turbulence. Wind turbines for grid-connected systems are the 

most highly demanded on the market and increased by 30 % per year between 1998 and 

2008 (BP 2009). The technology of these turbines and grid systems are becoming 

increasingly well developed and their costs have dropped significantly (Neij 1999).  

 

3.2.3 Biomass 

Biomass covers all kinds of organic matter from fuel wood to marine vegetation. 

Biomass is the fourth largest source of energy worldwide and provides basic energy 

requirements for cooking and heating of rural households in developing countries.  

Energy generation using biomass offers a promising solution to environmental 

problems by reducing the emission of common greenhouse gases. A wide range of 

options exists for conversion of biomass into energy such as heat energy and electrical 

energy. Two widespread technologies are direct combustion and gasification.  

Direct combustion involves the oxidation of biomass with excess air, 

producing hot flue gases which in turn produce steam, which is used to generate 

electricity. In a condensing steam cycle only electricity is produced, while in an 

extracting steam cycle both electricity and steam are generated (DOE 1997).  

Gasification involves conversion of biomass to produce a medium or low-

calorific gas. The gained gas is then used as fuel in combined cycle power generation 

plants. Being produced in combined cycle power plants, electricity from this technology 

has higher efficiency and is more competitive than that from a steam turbine.  

Biogas is a mixture of CH4 (40 – 70 %), CO2 (30 – 60 %) and other gases (1 – 

5 %) produced from animal dung, poultry droppings and other biomass wastes in 

specialized bio-digesters (Rehling 2001).  This gas is combustible and can be used to 

generate electricity. 

 

3.2.4 Hydro energy 

Kinetic energy from flowing or falling water is exploited in hydropower plants to 

generate electricity. Hydropower plants are divided into two categories: 1) Large 

hydropower plants (>10 MW), usually with reservoirs, that cannot only produce 

electrical energy continuously but also are able to adjust their output according to 

electricity demand and 2) small hydropower plants (<10 MW) that are less flexible with 
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respect to load or demand fluctuation due to their dependence on the water resource. 

Hydropower technologies are mature and widely available. 

 

3.3 Assessment of renewable energy potential in Bangladesh 

3.3.1 Definition of energy potentials 

Renewable energy potentials are classified into four different categories (Voivontas et 

al. 1998):  

1) Theoretical potential refers to the total energy available for extraction in a 

defined region without consideration of technical restrictions. Therefore, due to 

energy forms such as solar and wind energy, the theoretical potential is huge. 

2) Available potential refers to the part of the theoretical potential that can be 

harvested easily without causing impacts on the environment. 

3) Technical potential refers to the amount of energy that can be exploited using 

existing technologies and thus depends on the time point of assessment. This 

potential is used as input to the MARKAL model. 

4) Economic potential refers to the amount of potential energy that is economically 

viable by currently given technologies. Infrastructure or technical constraints 

and economic aspects define the limits for the economic potential. Therefore, the 

economic potential depends on the costs of alternative or competing energy 

sources. The economic potential is assessed by MARKAL 

 

3.3.2 Solar energy resource potential and prospects 

Bangladesh is situated between 20.30° and 26.38° north latitude and 88.04° and 92.44° 

east longitude with an area of 147500 km2, which is an ideal location for solar energy 

utilization. Estimation of the technical potential of solar energy in Bangladesh is done 

using the GIS-based GeoSpatial Toolkit and National Aeronautics and Space 

Administration (NASA) Surface Meteorology and Solar Energy (SSE) data. The 

GeoSpatial Toolkit is one of the tools of the solar and wind energy resources assessment 

application developed by the United Nations Environmental Program project funded by 

the Global Environmental Facility. First, the theoretical potential of the solar resource is 

estimated based on the availability of data on solar irradiation and land area. This 

potential is then converted into technical potential by introducing social and technical 
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constraints. Social constraints mainly concern the identification of suitable locations for 

installation of solar energy technology. Technical constraints concern the 

characterization of exploitation technologies and the organizational setting conditions 

that have to be satisfied in the implementation of renewable energy technology projects. 

 

Theoretical potential 

The GeoSpatial Toolkit provides the solar map of Bangladesh and it shows that the 

solar radiation is in the range of 4 - 5 kWh/m2/day on about 94 % of Bangladesh (Figure 

3.2). Data on average sunny hours per day (Figure 3.3) and monthly solar radiation 

(Figure 3.4) were taken from NASA for 14 widely distributed locations in Bangladesh 

using the Hybrid System Optimization Model for Electric Renewables (HOMER) 

software. The average sunny hours per day are 6.5, and the annual mean solar radiation 

is 0.2 kW/m2. This indicates that Bangladesh theoretically receives approximately 

69751 TWh of solar energy every year, i.e., more than 3000 times higher than the 

current (2006) electricity generation in the country.  However, in the course of 

exploitation, constraints such as land use, geographical area and climate are 

encountered. In addition, several of solar energy technologies are limited by different 

factors. For detailed information, it is therefore necessary to examine the potential of 

solar energy from the viewpoint of a specific application. 

 

Technology selection 

Different solar energy technologies are available on the world market. Three 

technologies that seem to be the most suitable for Bangladesh, namely grid-connected 

solar PV, SHS and hybrid systems (solar, wind and diesel generator) are focused on in 

this study. 
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Figure 3.2: Solar radiation (kWh/m2/day) and area of Bangladesh with highest potential 
for solar energy utilization 

 

Technical potential 

The average annual power density of solar radiation is typically in the range of 100 – 

300 W/m2. Thus, with a solar PV efficiency of 10 %, an area of 3 – 10 km2 is required 

to establish an average electricity output of 100 MW, which is about 10 % of a large 

coal or nuclear power plant (Van der Zwaan and Rabl 2003). Unlike other energy 

conversion technologies, solar energy technologies cause neither noise, nor pollution; 

hence they are often installed near consumers to reduce construction costs. Thus, 

identification of suitable locations for application of solar energy is practically the 

search for suitable rooftops and unused land. A study suggests that 6.8 % (10,000 km2) 

of the land in Bangladesh is necessary for power generation from solar PV to meet the 

electricity demand (Islam and Huda 1999).  Another study states that the total 

household roof area is about 4670 km2 (ADB 2003) which is about 3.2 % of the land 
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area. In urban areas (Dhaka city), 7.86 % is suitable for solar PV electricity generation 

(Kabir et al. 2010).  

Considering the grid availability, only 1.7 % of the land in Bangladesh is 

assumed technically suitable for generating electricity from solar PV (Sorensen 2001). 

The capacity of grid-connected solar PV is derived using the annual mean value of solar 

radiation (200 W/m2) and a 10 % efficiency of the solar PV system. Thus, the technical 

potential of grid-connected solar PV in Bangladesh is calculated as about 50174 MW. 

In this study, a competitiveness analysis of solar PV with conventional power is done by 

the MARKAL software. 

 

 

Figure 3.3: Monthly average sunshine hours in Bangladesh 
 

 

Figure 3.4: Monthly average solar radiation in Bangladesh 
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Whereas the potential market for grid-connected PV systems is in the densely populated 

urban and electrified areas, the potential market for SHSs is households without access 

to the national grid network, especially those in remote and mountainous areas. 

According to a survey report, a market of SHSs of approximately 0.5 million 

households reaching 4 million in the future is envisioned in Bangladesh (Khan et al. 

2005). Considering an average standard 50-Wp solar panel for each household (Mondal 

2005), the technical total capacity will be equivalent to 200 MW. The same capacity is 

applicable for the hybrid system, as this system is suitable only for rural non-electrified 

remote areas. Economic viability of SHS was discussed in (Mondal 2010) and techno-

economic analysis of hybrid system was explained in (Mondal and Denich 2010). 

 

Prospects for solar photovoltaic 

There are many factors that can make solar PV more competitive in the future. 

 

Costs of solar PV 

The development of the cost scenario of solar PV is very important as a parameter, as it 

determines its market penetration in developing countries like Bangladesh. Most 

products show a decrease in unit cost with increased manufacturing experience. The 

cost of PV decreased from several hundred US $ /Wp in 1970 to about US $ 5 - 6 /Wp 

in the mid 1990s (Islam 2005). In an idealized model, the costs progress as a constant 

learning curve. The prospects for solar PV are revealed when extrapolating the 

historical learning cost curve, which shows a learning rate of 20.2 %. The recent 

funding initiatives on PV deployment will lead to an increase in experience, and this 

will likely lead to a significant drop in prices. At the current speed of market increase, it 

can be estimated that the price will drop about 20 % every 4 years (Gottschalg 2001). 

 

Efficiency 

The current efficiency is far below the theoretical efficiency. This indicates sufficient 

room for the improvement of solar PV efficiency. A survey of the nominal efficiency of 

first generation commercial modules gave a range of 10 – 15 % (Green 2004). The 

efficiency of a crystalline silicon cell increased from 13 % in 1976 to nearly 32 % in 

1992 (Ramana 2005). During the same period, typical module efficiency rose from 7 – 
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8 % to 10 – 13 %. The latest multi-junction concentrating PV cells offer even higher 

efficiencies. The present positive development of the industry is helping to stimulate the 

introduction of improved manufacturing techniques and technology. The second 

generation of solar PV, which is more competitive, is expected to appear over the 

coming decade (Green 2004). 

 

Limited fossil resources and increasing prices 

The depletion of fossil fuels is occurring at a fast rate due to the growing gap between 

the demand and production of fossil fuels (Mukherjee and Chakrabartii 2007). At the 

same time, these fuels experience an opposite trend to that of solar PV, e.g., the price 

for produced electricity is increasing due to the increase in the price of fossil fuels and 

environmental damage costs, e.g. externality cost for CO2 emissions.     

 

3.3.3 Wind energy resource potential and prospects 

Technical potential of grid-connected wind turbines 

Assessment of the wind energy resource and the installation of wind energy conversion 

systems in Bangladesh have long been hindered due to lack of reliable wind speed data. 

There is no reported wind map of Bangladesh that could be relied upon and used for 

wind energy assessment (Khan et al. 2004). One of the very first steps towards 

harnessing energy from the wind is to make an extensive assessment of the wind energy 

potential and a cost analysis for a site of interest. In this study, a competitiveness 

analysis of wind power with conventional power is done by the MARKAL software.  

First, the theoretical potential of wind energy is estimated by developing a 

Bangladesh wind map. This is possible using a reference wind turbine and available 

wind speed data. The technical potential is then assessed by introducing restrictions 

grouped as social and technical constraints. The definition of social constraints enable 

elimination of areas not suitable for the exploration of the wind energy potential such as 

high latitude, restricted and protected areas, and residential areas. Technical constraints 

define basic conditions for the operation of wind turbines such as arrangement of wind 

turbines and the minimum wind velocities (Nguyen 2007b).  In this study, a NASA SSE 

data set (SSE 2009) is used to develop a wind map of Bangladesh to determine potential 

sites for wind energy exploration. Then a reference wind turbine is used to find the 
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power density. Candidate sites are estimated based on the developed wind map. Finally, 

constraints were applied for the technically potential area, which was converted to the 

total technical potential of wind energy for Bangladesh.  

Unlike surface measurements, the NASA SSE data set consists of a 10-year global 

average on a 1° by 1° (about 100 km x 100 km) grid. The SSE data, which are 

essentially an average over the entire area of the cell, may not represent a particular site 

within the grid. However, this database is an excellent and easy to use source, which 

could be used for any preliminary study for renewable energy resource estimation 

(Khadem and Hussain 2006; Khan et al. 2004).  

One set of wind speed data for 50 m height was gathered for 20.5° N – 26.5° N 

and 78.5° E – 92.5° E. Based on these data, the Bangladesh wind map was developed for 

the theoretical potential (Figure 3.5). The only coastal regions appear as high wind areas 

when compared with the main land. 
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Figure 3.5: Wind map of Bangladesh at 50 m height using NASA SSE data set (m/s) 
 

Selection of wind turbine 

To find the technical potential of wind energy it is necessary to have a reference wind 

turbine so that a theoretical power output corresponding to each wind speed value can 

be calculated. This wind turbine should suit the local conditions, including the local 

possibility of manufacturing accessories. Furthermore, road conditions, the availability 

of suitable mobile cranes or trucks are the other important factors that also should be 

paid attention to (Nguyen 2007b). 

Considering the above requirements, a wind turbine of 330 kW from Enercon 

(E33) was selected (Table 3.2). From the power curve (Figure 3.6), it can be observed 
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that E33 starts operation at a cut-in wind speed of 3 m/s. Beyond 13 m/s rated power, 

output remains constant. Cut-out wind speeds are those higher than 25 m/s.  

 

Table 3.2: Specification of Enercon wind turbine E33 
Technical parameter Value 

Rotor diameter 33.4 m 
Swept area 876 m2 

Rated power 330 kW 

Starting wind speed 3 

Rated wind speed 12 m/s 

Cut out wind speed 28-34 m/s 

Generator Synchronous 

Number of blades 3 

Tower height 50 m 

 

 

Figure 3.6: Power curve of E33-330 kW wind turbine (ENERCON 2007) 
 

Calculation of energy output 

The HOMER optimization tool was used to find the total energy output of the wind 

turbine. The Weibull distribution function is mostly used to represent the distribution of 

wind. HOMER uses the distribution function as: 
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where = Weibull probability function for wind speed ,  = shape parameter, 
which typically ranges from 1 to 3 (Bala 2003).  

 

For a given average wind speed, the higher the shape parameter is, the 

narrower the distribution of wind speed around the average value. Because the wind 

power varies with the cube of the wind speed, a lower shape parameter normally leads 

to higher energy production at a given wind speed. = scaling parameter. When  

equal to 2, the Reyleigh function represents well enough the real wind speed 

distribution and it is then possible to derive the wind speed distribution if only yearly 

average wind speed is known. In HOMER,  equal to 2 and yearly average wind speed 

are used.  

Finally, HOMER calculates yearly energy production applying logarithmic or 

power low profile with standard temperature and pressure, and air density. With the 

distribution function and power curve, the yearly energy production (YEP) is calculated 

by HOMER by integrating the power output at every bin width using the following 

equation: 
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where = average wind speed, = turbine power at wind speed , = 
Weibull probability function for wind speed , calculated for the average wind 
speed .  

 

To calculate the hours per year with full power, the energy production is divided by 

reference turbine rated power. Figure 3.7 depicts the theoretical potential of wind 

energy output for Bangladesh in the form of hours with full power. 
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Figure 3.7: Theoretical potential of wind energy in Bangladesh 
 

Technical potential  

For an infinite number of wind turbines with 10 rotor diameters (10D) spacing, the 

limited array efficiency is about 60 %. For a finite number, average losses are much 

lower, and closer sitting is more practical (Grubb and Meyer 1993). For the case of the 

Bangladesh coastal area, finite or limited numbers of turbines are applicable. For 

simplicity, the present study takes 4D as the standard distance between two wind 

turbines. Thus, the area requirement for each E33 turbine will be 14016 m2 and as a 

result, wind turbine density will be 23.5 MW/km2.  

Assuming that less than 1000 hours of full power is the feasible threshold for 

the exploitation of wind energy, the areas that satisfy this condition in Bangladesh 
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would be sufficient for the installation of 4614 MW of wind power (Due to limited grid 

access and the scattered area, only 2 % of this area is considered technically potential). 

Due to limited wind resource potential, which is only in the coastal regions, stand-alone 

wind turbines are not considered in this study.  

 

Future prospects for wind energy 

In 2002, over 32 GW and in 2008 over 122 GW of wind capacity were installed 

worldwide (BP 2009; DeCarolis and Keith 2006). Although wind energy currently 

represents about 0.1 % of total electricity (Sims et al. 2003), it has the fastest relative 

growth rate of any electricity generating technology. Along with the increasing 

exploitation of wind energy, the cost of wind turbines dropped dramatically by 52 % 

between 1982 and 1997 (Neij 1999). The Danish energy agency predicts that a further 

cost reduction of 50 % can be achieved by 2020 (Ackermann and Soder 2002). 

Therefore, with increasing energy costs for conventional technologies and increasing 

environmental costs, wind power is becoming more and more attractive. 

 

3.3.4 Biomass potential and prospects 

Biomass energy is mainly from fuel wood, agricultural residues, animal dung and 

municipal solid wastes (MSW), the availability of which is linked with forestry 

resources, crop production, animal numbers and urban waste production. First, total 

biomass production is estimated and then the energy potential is estimated by applying 

the individual recovery rate, residue to yield ratio (for agricultural residues only), 

moisture content and calorific value.  

 

Agricultural residues 

Approximate land use for agriculture is 55 % of the total land area of Bangladesh (Islam 

et al. 2008). Agricultural residues from major crop residues such as straw and husks 

from rice plants, bagasse from sugarcane and jute tick contribute significantly to the 

biomass sector. There are two types of agricultural crop residues: field residues and 

process residues. Field residues are residues that are left in the field after harvesting and 

generally used as fertilizer. Process residues are generated during crop processing and 

are available at a central location.  
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Studies in neighboring Asian countries (Bhattacharya et al. 1999; Elauria et al. 2006; 

Koopmans 1998; Perera et al. 2006) produced useful residue to yield ratios for several 

agricultural crops. These ratios are used in this study together with published 

productivity figures for the individual crops (Table 3.3). It has been considered that only 

35 % of field crop residues can be removed without adverse effects on the future yields. 

Crop processing residues, on the other hand, have a 100 % recovery factor (Hossain and 

Badr 2007). In this study, only process residues are considered, as field residues are 

used for other purposes (Table 3.4). It is estimated that the total annual amount of 

recoverable agricultural crop residues is 44.1 million tons (mton), of which 60 % are 

field residues and the remaining are process residues.  

 

Wood fuel 

Total wood fuel supply and consumption in Bangladesh were projected at 8.9 mton and 

9.4 mton, respectively, in 2004 (FAO, 1997). 1.428 mton (16 %) wood fuel comes from 

deforestation. Domestic cooking uses 63 %, and the rest goes to industry and the 

commercial sectors (Islam 2002). Most of the fuel wood consumed by rural households 

is supplied by the homestead trees, and mainly consists of firewood, twigs and leaves.  

Estimates for the rate of supply of tree residues in recent years are not available. Total 

tree residues in 1992 were 1.8 mton (Hossain and Badr 2007). Both wood processing 

residues and recycled wood are an important source of energy.  In 1998, 118,000 tons of 

sawdust was available for energy purposes (Moral 2000). Considering the 100 % 

recovery rate and the unchanging production rate, the annual amount of recoverable 

biomass from forests and the forestry industry in Bangladesh is about 10.9 mton. On the 

other hand, FAO (1997) found that the future projection of demand and supply of wood 

fuel is bleak. For this reason, in this study wood fuel is not considered for power 

generation.   
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Table 3.3: Annual agricultural crop production in 2003 (Hossain and Badr 2007) 

Crop Annual production (103 ton) 

Rice 39090 
Sugarcane 6838 

Vegetables (total) 1837 

Wheat 1507 

Jute 792 

Pulse 345 

Coconut 88 

Millet 57 

Groundnut 45 

Maize 10 
 

Municipal solid waste  

Rapid urbanization and population growth are mainly responsible for the rapidly 

increasing rate of municipal solid waste (MSW) generation in the urban areas of 

Bangladesh. The per capita waste generation and calorific value of various waste 

components are the most important data for calculating the potential of MSW to 

generate electricity. It has been found that in Dhaka city, the per day waste generation 

rate varies from 4000 to 5000 tons (JICA 2005; Khatun 2008; PREGA 2005). Different 

studies have found that per capita waste production ranges from 0.4 kg/day to 0.71 

kg/day.  In other large cities, it varies from 0.36 kg/day to 0.43 kg/day (Alamgir and 

Ahsan 2007). This is comparable to an average per capita MSW generation rate of 0.3 

kg/day and 0.57 kg/day in two Indian cities namely Kanpur and Calcutta, respectively 

(Mukherjee and Chakrabartii 2007). Due to a limited MSW in other cities for generating 

electricity, only four major cities are considered in this study. Based on the total 

population of the Dhaka, Chittagong, Rajshahi and Khulna city corporations and 

average waste generation per capita of 0.5 kg/day, a total of 8300 tons waste are 

generated daily. The average recovery rate of MSW is 70 % (Alamgir and Ahsan 2007), 

i.e., 2.12 mton per year.      
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Table 3.4: Production and recoverable amounts of agricultural residues in 2003 
Crop residues Residues 

production ratio 
Residues generation 
(103 ton) 

Residues recovery 
(103 ton) 

Field residues  
   Rice straw 1.695 66258 23190 
   Wheat straw 1.75 2637 923 
   Sugarcane tops  0.3 2051 718 
   Jute stalks 3 2376 832 
   Maize stalks 2 20 7 
   Millet stalks 1.75 100 35 
  Groundnut straw 2.3 78 27 
  Cotton stalks 2.755 124 43 
  Residues from  
  vegetables 0.4 735 257 
  Residues from 
  pulses 1.9 656 229 

Subtotal  75035 26261 
Process residues  
   Rice husk 0.321 12548 12548 
   Rice bran 0.83 3244 3244 
   Sugarcane bagasse 0.29 1983 1983 
   Coconut shells 0.12 11 11 
   Coconut husks 0.41 36 36 
   Maize cob 0.273 3 3 
   Maize husks 0.2 2 2 
   Groundnut husks 0.477 16 16 
Subtotal  17843 17843 
Total   92878 44104 
 

Animal waste and poultry droppings 

Manure from cattle, goats, sheep and buffaloes are the common animal waste in the 

country. The quantity of waste produced per livestock per day varies depending on body 

size, type of feed and level of nutrition. The production rates are estimated by 

employing the number of heads of the national herds and the waste generation rate per 

head for the individual species (Rehling 2001; Table 3.5). The collection factor of 

animal waste and poultry droppings is considered to be 50 % (Hossain and Badr 2007). 

Accordingly, it is estimated that the total amount of recoverable animal and poultry 

waste in Bangladesh per year is about 40 mton.  
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Table 3.5: Number of livestock and their residues (Islam et al. 2008; Rehling 2001)  
Livestock Number of heads 

(thousand) 
Dung yield 
(kg/head/day) 

Residues (mton/year) 

Buffaloes 828 8-12 3.02
Cattle 23652 5-10 64.74 
Goats 33800 0.25-0.50 4.62
Sheep 1121 0.25-0.50 0.15
Poultry 200000 0.10 7.3
Total  79.83 

 

Theoretical energy potential from recoverable biomass resources 

The total annual recoverable rate of biomass in Bangladesh is about 126 mton per year 

(Table 3.6). Using the lower calorific values of the individual biomass components, the 

total available energy potential is about 1282 PJ. Agricultural residues represent 47 % 

of total biomass energy. 

 

Biomass energy available for electricity generation 

It can be concluded that only rice husks, MSW, poultry droppings and bagasse are 

useful for electricity generation, as field residues are used for fertilizer and animal waste 

as a cooking fuel in Bangladesh (Table 3.6). 50 % of the rice husks are used for energy 

applications such as domestic cooking and steam production for rice parboiling. 

Therefore, theoretically only 50 % of the rice husks can be used for power generation. 

MSW and bagasse can be used to 100 % for grid power generation, as sugar mills are 

connected to the grid network. Zaman (2007) found that only 57 % of poultry droppings 

are viable for small-scale power generation (Zaman 2007). Techno-economic viability 

was assessed by the MARKAL model for power generation using rice husks, MSW, 

poultry droppings and bagasse. 
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 Table 3.6: Energy potential of biomass resources 

Biomass Recovery 
rate (103 
ton/year) 

Moisture 
content (% 
by mass) 

Lower 
calorific 
value 

Energy 
content (PJ) 

Field residues     
   Rice straw 23190 12.7 16.30 329.99 

   Wheat straw 923 7.5 15.76 13.46 

   Sugarcane tops  718 50 15.81 5.68 

   Jute stalks 832 9.5 16.91 12.73 

   Maize stalks 7 12 14.70 0.09 

   Millet stalks 35  12.38 0.43 

  Groundnut straw 27 12.1 17.58 0.42 

  Cotton stalks 43 12 16.40 0.62 

  Residues from   vegetables 257 20 13 2.67 

  Residues from pulses 229 20 12.80 2.34 

  Subtotal 26261   368.43 

Process residues     

   Rice husks 12548 12.4 16.30 179.17 

   Rice bran 3244 9 13.97 41.24 

   Sugarcane bagasse 1983 49 18.10 18.31 

   Coconut shells 11 8 18.53 0.19 

   Coconut husks 36 11 18.53 0.59 

   Maize cob 3 15 14 0.04 

   Maize husks 2 11.1 17.27 0.03 

   Groundnut husks 16 8.2 15.66 0.23 

   Subtotal 17843   239.79 
Total agricultural crop 
residues 

44104    

Other biomass   
  Animal waste 72540 40 13.86 603 

  Poultry droppings 7300 50 13.50 49.28 

  MSW 2120 45 18.56 21.64 

Total 126064   1282.39 
 

The amount of agricultural residues is assumed to increase in the near future 

due to increased food production. The sugar industry is expected to produce more 

bagasse. Considering the limitation of arable land, it is assumed that the agricultural 

residues supply will increase at the rate of population growth of 1.5 % in the period 
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2005-2010 and 1 % in 2010-2015, and then will remain at the level of 2015. Similarly, 

poultry droppings and MSW residues are expected to increase at a higher rate due to 

increasing urbanization and income level. It is assumed that the MSW and poultry 

droppings supply will increase at a rate of 2 % from 2005-2015 and 1.5 % from 2015-

2025 and then will remain at the level of 2025 (Table 3.7). 

 

Table 3.7: Total biomass energy supply potential between 2005 and 2035 in PJ  
Biomass source 2005 2010 2015 2020 2025 2030 2035 

Rice husks 179 193 203 203 203 203 203 
Bagasse 18 20 21 21 21 21 21 
MSW 21 24 26 28 31 31 31 
Poultry droppings 49 54 60 65 70 70 70 

 

Biomass technologies and prospects for power generation 

A number of technologies exist for large-scale biomass combustion. Power generation 

based on biomass combustion employing boiler-steam turbine systems is well 

established. The current global installed capacity of electricity generation from biomass 

is about 40 GW (Bhattacharya and Salam 2006). Biomass-based generation technology 

is well established in the pulp and paper industry as well as in a number of agro-

industries, and there is substantial scope for improvement in efficiency. India has 

launched a sugar-mill-based modern cogeneration program; a capacity of 348 MW has 

been already commissioned. China has executed some projects for biomass based 

electricity generation. By the end of 2002, the total installed capacity of bio-energy 

power generation there was 2 GW, in which generation from bagasse was 1.7 GW, 

while the rest was based on crop residues, biogas, landfill gas and MSW (Bhattacharya 

and Salam 2006).   

Bangladesh has installed 14 sugar-mill-based cogeneration plants using 

bagasse. Total power generation capacity is 38.1 MW (BSFIC, 1994; Sarkar et al. 

2003). Bagasse is usually burned to produce steam in sugar-processing operations and 

to generate electricity to run the sugar mills themselves. The existing mills produce 

steam in boilers at 15 kg/cm2 (Sarkar et al. 2003). Hasan (2006) found that an increase 

in steam pressure in boilers would provide enough steam and electricity to run a typical 

sugar mill (Hasan 2006). The excess electricity can be pumped into the national grid. 
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Average crushed-cane capacity per sugar mill is about 1400 tons/day in Bangladesh, 

and could generate up to 12.75 MW and in total about 178.5 MW. 

In the rice processing industry in Bangladesh, there are promising prospects 

for new biomass technologies. The first rice-husk based off-grid power plant was 

commissioned in 2007. It is based on a biomass-gasifier internal combustion (IC) 

engine system and has a rated capacity of 250 kW. It can be estimated that a ton of rice 

paddy could produce 282 kg dry rice husks with a calorific value of 16.3 MJ/kg. For 

gasification in gas turbine systems, this residue would generate about 10.6 kW.  A 

survey (GTZ 2008) found that 540 rice mills exist in Bangladesh, and that the capacity 

ranges from 30 tons/day to 120 tons/day. Counting only rice mills with a capacity 

higher than 30 tons/day, the technical potential of electrical power is about 171 MW.    

Methods and technologies for power generation from MSW have developed 

gradually from traditional ones to advanced ones in the following order: landfill, mass 

burn incineration, fluidized bed incinerator, gasifier and plasma waste converter. The 

landfill gas to power technology is the most cost-effective way to deal with a large 

amount of waste with low calorific value. Landfill technology, as suggested by the ADB 

mission, seems to be the most preferred technology for Dhaka city (PREGA 2005). 

Dhaka city alone has a capacity higher than 5000 tons/day, and the potential power 

generation is about 20 MW (Khatun 2008; PREGA 2005). 

The first biogas plant in Bangladesh was installed in 1972. Since then, several 

organizations have taken this initiative to research, develop and disseminate biogas 

technology in the country. Two biogas digester types are commonly used in 

Bangladesh, e.g., the fixed dome and floating dome type. Several government-financed 

biogas projects have been implemented with different degrees of success. Over 25,000 

fixed-dome biogas plants have been installed and some large farms produce electricity 

using this technology. For heating purposes, a medium-size farm is suitable, while 

larger farms could also produce electricity. Poultry farms that have more than 500 birds 

could generate about 360 GWh per year (Zaman 2007). 

 

3.3.5 Hydro resource potential 

The scope of hydropower generation is very limited in Bangladesh. The country is 

mostly flat, except for some hilly regions in the northeastern and southeastern parts. 
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Furthermore, Bangladesh is a riverine country, and major rivers have a high flow rate 

for about 5 - 6 months during the monsoon season, which is substantially reduced 

during the winter. 

 

Large hydropower potential 

“Large hydropower” means a capacity higher than 10 MW. At present, 230 MW of 

hydropower are generated at the Karnafuli hydropower plant, which is the only hydro-

electric power plant in Bangladesh; it is operated by the Bangladesh Power 

Development Board (BPDB). The BPDB is considering extension of this power plant to 

add another 100 MW capacity. The additional energy will be generated during the rainy 

season. Two other prospective sites for large hydropower plants at Sangu and 

Matamuhuri have been identified by the BPDB. It estimates that the potential capacity 

is 140 MW at Sangu and 75 MW at Matamuhuri. 

 

Small hydropower potential 

“Small hydropower” means a capacity less than 10 MW. Within this range, hydropower 

plants are further divided into small hydro- (>3 MW <10 MW), mini hydro- (>300 kW 

<3 MW), micro hydro- (>5 kW <300 kW), and pico hydro- (<5 kW) power plants that 

differ with respect to investment cost and annual hydropower availability (Table 3.8). 

 

Table 3.8: Small hydropower potential (Islam et al. 2008) 
Capacity range Number of 

sites 
Location/Region Total capacity 

(kW) 

Small hydro (3 - 10 MW) 14 Northeastern region 111,000 
Mini hydro (300 kW - 3 
MW) 

11 Mainly at Teesta barrage, 
Rangpur and northeastern 
region 

12,900 

Micro hydro 32 Chittagong hill tracts, Sylhet, 
Dinajpur, Rangpur

798 

Pico hydro 1 Lake Fiaz , Chittagong 4 
Total    124,702 
 

3.4 Modeling of renewable energy technologies in MARKAL 

This section discusses the operation characteristics of the selected renewable energy 

technologies and how these are handled in the MARKAL-Bangladesh model. 
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Therefore, only representative and major technologies are addressed, the others that do 

not require special treatment will be ignored.   

 

3.4.1 Grid-connected solar photovoltaic 

In the MARKAL model, the weather-dependent performance of PV can be simulated 

with the table PEAK and the seasonal capacity utilization factor (CF(Z)(Y)). The table 

PEAK describes the portion of capacity of a certain technology that can be mobilized to 

meet the peak load. On the other hand, the parameter CF(Z)(Y) specifies the availability 

of solar PV technology during a defined season and during the day (Table 3.9). 

Obviously, the availability of solar energy during the summer would be higher than in 

the winter and absent during the nighttime. Grid-connected PV technology is modeled 

in MARKAL (Table 3.9). Furthermore, a 30 % upper bound2 based on the growth rate 

per annum is considered in the PV modeling using the ADRATIO table (see Chapter 2). 

The allowed growth capacity is relatively high, but in the early years of a new 

technology, a growth rate of 20 – 30 % per year in the first two decades after 

introduction is common (Larson et al. 2003). Globally, the total installed capacity of 

solar PV, which was less than 1 MW in 1976, had reached 320 MW by 1997, which 

was a growth rate of more than 31.5 % per year (Ramana 2005).  

 

3.4.2 Grid-connected wind power 

It is well known that wind speed varies continuously with time and is very sensitive to 

topography. Therefore, wind energy technologies have only a limited capacity for 

meeting the peak load. These characteristics need to be considered in the modeling. In 

MARKAL, this is possible by using the PEAK and annual availability parameter (Table 

3.10). As mentioned above, the table PEAK describes the portion of capacity of a 

certain technology that can be drawn to meet the peak load.  

This study estimates that only 4614 MW could be generated from wind energy 

in Bangladesh. In the MARKAL-Bangladesh modeling, the availability of this resource 

is not constrained by the resource size but by the upper bound of possible installed wind 

power capacity and by a growth rate averaging 30 % per year until the end of the 

                                                            
2 Upper bound refers to the limit on annual production specified in the model and is not necessarily the 

level at which the resource is used in the model. 
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analysis period. For comparison, wind electricity generation worldwide increased 

almost 32 % per year between 1992 and 2002 (DeCarolis and Keith 2006). 

 

Table 3.9: Main parameters for modeling grid-connected solar PV  
Parameter Solar PV Reference 
Seasonal Capacity Utilization Factor CF(Z)(Y) 
   • Summer daytime 
   • Summer nighttime 
   • Intermediate daytime 
   • Intermediate nighttime 
   • Winter daytime 
   • Winter nighttime 

 
0.65 
00 
0.45 
00 
0.30 
00 

Estimated based 
on APEC 
(2002) 

PEAK 0.20 APEC, 2002 
Initial investment cost (million Taka*/kW) 318750 Shafiei et al. 

2009 
Annual fixed operation & maintenance (O&M) 
cost (million Taka/kW) 

3085 NEA 2005 

Life time (year) 30  
Minimum investment level in new capacity 
(MW) 

20  

Introduction year  2010  
* Bangladeshi currency (100 Taka = 1.569 USD in 2005) 
 

Table 3.10: Main parameters for modeling grid-connected wind power 
Parameter Value Reference 
Investment cost (million Taka/kW) 64,706 Nguyen 2007a; Rout 

et al. 2009 
O&M cost (million Taka/kW) 1466 Nguyen and Ha-

Duong 2009 
PEAK 0.4 APEC 2002 
Annual availability 0.3 APEC 2002 
Life time 25
Introduction year 2010
 

3.4.3 Biomass technologies 

The four advanced technologies for electricity generation from biomass introduced 

above are modeled in the MARKAL-Bangladesh (Table 3.11).  
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Table 3.11: Main parameters for modeling biomass based power plants (APEC 2002; 
DOE 1997; Hasan 2006; IDCOL 2006; Khatun 2008; PREGA 2005; 
Zaman 2007) 

Technology 
Investment 
cost (million 
Taka/kW) 

O&M cost 
(million 
Taka/kW) 

Efficiency 
(%) 

Introduction 
year 

Life 
time 
(year) 

Upper 
bound by 
2035 

Rice-husks-
based power 
plant 

91800 5227 22.67 2010 20 100 

Biogas-based 
power plant 

157781 18900 25 2010 20 100 

Bagasse-based 
power plant 

35700 2231 22.67 2010 20 200 

MSW-based 
power plant 

71655 2805 25 2015 20 200 

 

3.4.4 Hydropower 

Due to the nation’s flat terrain and potentially large social and environmental impacts, 

further exploitation of hydropower is expected to be limited (Uddin 2006). The 

estimated exploitable capacity for hydropower generation is 745 MW, of which around 

200 MW is by small- and mini-sized hydropower plants (Wazed and Ahmed 2008). In 

2005, the total installed capacity of hydropower plants was 230 MW. It is assumed that 

a 100-MW extension of the Karnafuli hydropower plant will be added in 2015. The 

maximum capacity of hydropower is considered only after 2020 for this analysis. Water 

availability for operation of hydropower plants depends on the season, and this is 

included in MARKAL as an important factor, which is controlled by two parameters, 

namely ARAF and SRAF (Loulou et al. 2004). Parameter ARAF describes the 

maximum annual availability factor for the power plant, while parameter SRAF (Z) 

indicates seasonal reservoir availability in season Z (Table 3.12). 

 

Table 3.12: Main parameters for modeling hydropower plants in MARKAL 
Technology Investment 

cost (million 
Taka/kW) 

Fixed O&M 
cost (million 
Taka/kW) 

Variable O&M 
cost (million 
Taka/PJ) 

Introduction 
year 

ARAF SRAF 
in 
summer 

Existing 
Karnafuli 
hydropower 
plants  

95625 443 10 2005 0.43 0.7 

Large 
plants 

95625 443 10 2015 0.43 0.7 
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4 ELECTRICITY DEMAND PROJECTION 

The MARKAL optimization tool requires energy demand figures for the period under 

study. The objective of this section is to project the electricity demand using an 

accounting-type energy modeling and planning software. The Long-range Energy 

Alternative Planning (LEAP) tool was used to calculate the demand for the different 

sectors up to the year 2035 considering the base year 2005. LEAP is used to develop 

different electrical demand projections based on different gross domestic product (GDP) 

growth scenarios namely low GDP growth, average GDP growth and high GDP growth 

scenarios, as the relationship between energy consumption and economic growth has 

been widely discussed in the energy economics literature. The scenarios in LEAP are 

generated to encompass the main factors that are anticipated to change over time. The 

LEAP projections are used to provide inputs related to energy demand in the MARKAL 

model to compute the least-cost options for the Bangladesh power sector. 

 

4.1 Energy demand 

The total commercial energy availability in Bangladesh increased from nearly 366 PJ in 

1995 to around 1036 PJ by the year 2005 (BBS 2008; Islam 2001a). This implies an 

annual growth of 11 %. Natural gas is the only significant indigenous commercial 

energy resource in Bangladesh. In 2000, 46.5 % of the final energy demand was 

provided by gas, while the remaining demand was met by petroleum products (47.52 

%), electricity (5.8 %) and coal (0.2 %). In 2005, the consumption of final energy was 

dominated by imported petroleum products, which accounted for 47.3 %. The share of 

gas, electricity and coal was 46.4 %, 5.7 % and 0.2 %, respectively (BBS 2008).  

Commercial energy consumption can be divided into six different sectors 

namely domestic, commercial (service), transport, non-energy use3, agriculture and 

others. The agricultural sector consumption share increased sharply from 8.3 % in 2000 

to 11.4 % in 2005 (Figure 4.1). The consumption in the domestic, transport and 

commercial sectors also increased slightly. Non-energy use (e.g., use of gas for fertilizer 

                                                            
3 Non-energy use indicates use of natural gas as raw material in fertilizer factories and  consumption of 

energy carriers 
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production) and final consumption of commercial energy in the industrial sector 

decreased in 2005 compared to 2000.    

Non-commercial sources of energy such as fuel wood, animal dung and 

agricultural residues constitute the major share of the gross energy demand in the 

country. Estimated primary energy supplied by non-commercial energy was 335 PJ in 

1995 and 446 PJ in 2005 (BBS 2008). The annual growth rate was less than 3 %. The 

final energy share of biomass was 69 % and 60 % in 1995 and 2000, respectively (Imam 

2005; Islam 2001b). The percentage of non-commercial energy is continuously 

decreasing with time, which is a reason for the increasing percentage of commercial 

energy consumption. 

 

 

Figure 4.1: Sector wise break-up of commercial energy utilization 
 

4.2 Electricity demand: Trend and projection 

Electricity demand is divided into six categories namely agricultural, industrial, rural 

residential, urban residential, commercial and other sectors. Each of these sectors of the 

economy shows a typical trend with respect to the growth in energy demand. The 

demand for electricity in Bangladesh has always been higher than the supply, which has 

led to shortage of power. Shortage of power has shown an increase over the past few 

years, as the increase in demand has grown more rapidly than the generation of power. 

In this section, electrical demand scenarios of Bangladesh are developed. 

These scenarios are driven not only by GDP growth, but also by population, household 

number or energy intensity (energy use per activity). The scenarios are generated to 
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encompass any factor that is anticipated to change over time. The main objective of this 

projection is to achieve a rapid and sustainable development of the Bangladesh power 

sector. 

 

4.2.1 LEAP methodology 

LEAP is an accounting-type energy planning model. In a bookkeeping fashion, it 

calculates the energy requirement of the demand sector from year to year by multiplying 

the activity (energy service) by the energy intensity for all end uses. The prediction of 

the growth rates of activities or energy intensity is exogenous to LEAP. The demand 

program uses the end use driven approach. The data is assembled in a hierarchical 

format based on four levels; sector level (residential, industrial etc.), sub-sector levels 

such as rural or urban, further end-use (lighting, cooling, etc.) and finally end-uses 

according to devices (fluorescent lamp, compact fluorescent lamp, etc.) or according to 

fuel use (diesel, electricity, etc.). In the energy demand program, the energy intensity 

values along with the type of fuel used in each device are required to estimate the 

energy requirements at sector, sub-sector and end-use level. 

Projections for electricity utilization in households and in the industrial, 

commercial and agricultural sectors are made over a long-term planning horizon (2005 

– 2035). The effects of the key variables population, number of households, 

electrification levels, GDP share (mainly for industry, commerce and agriculture) by 

sector based on three different GDP growth scenarios (discussed in the following 

section) are assessed in LEAP. For the urban and rural residential (household) sectors, 

end-use methodology combined with trend analysis is used for electricity demand 

projection. The energy intensity per electrified household is applied in the residential 

sector; energy intensity per unit of GDP is applied for the other sectors (applied tree 

structure in Figure 4.2).  

A demand analysis is performed for the household sector for a particular 

activity, i.e., lighting, refrigeration, cooling (fan and air conditioning) and other end-use 

devices (TV, radio, computer, etc.). The total electricity consumption per household for 

the current account is calculated based on total consumption in the household sector and 

total electrified number of households. Twelve-year historical data (1994 – 2005) are 

used for projections based on different scenarios. The energy intensity for all sectors 
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(except residential sector) is calculated on the basis of quantity of energy used per year 

and the GDP value for this specific sector in that year. In this analysis, energy intensity 

is in kWh/Taka.  

 

 

 

 
Figure 4.2: Tree structure applied in LEAP methodology (HH = household) 
 

 

Several in-built modeling functions of LEAP were used for developing the 

scenarios. One of the most utilized functions is Growth, used for assessing the share and 

growth of electrical appliances. The change in the current (dependent) branch (electrical 

appliances) is related to the change in the named branch (income) raised to the power of 

the elasticity4 (Kadian et al. 2007). This is equivalent to the following formula: 

 

)1(

)()1(
)(





tvaluebranchNamed

tvalueNamedtvalueCurrent
tvalueCurrent    (4.1) 

 

The function interp was used to calculate a value in any given year by 

interpolation of a time series of year and value pairs. Each intermediate year value is 

calculated as: 

  

                                                            
4 Elasticity is the ratio of the change in one variable with respect to change in another variable such as the 

percentage change in energy consumption to achieve one percent change in national GDP. 
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where iy is the intermediate period, the value of which is to be interpolated, ey is the end 
period used as the basis for interpolation and fy is the first period used as the basis 
for interpolation. 

 

4.2.2 Scenario generation 

GDP has been used as the best proxy to link electricity demand with economic activities 

in many developing countries. Various studies have focused on different countries and 

time frames, and have used different proxy variables for energy consumption and 

income. In the recent last years, numerous studies (Table 4.1) have been devoted to 

studying the causal relationship between economic growth and electricity consumption 

to confirm national electricity policies, as the direction of causality has significant 

policy implications for the government regarding the design and implementation of its 

electricity policy. The empirical results of these studies have been varied and sometime 

conflicting. The outcomes differ even on the direction of causality and it’s long-term 

versus short-term impact on energy policies. 

 

Table 4.1: Relationship between electricity consumption and GDP in developing 
countries 

Study Country Variable used Period Relationship 

Morimoto and 
Hope 2004 

Sri Lanka GDP and 
electricity 
production 

1960-1998 Electricity          Income 

Aqeel and Butt 
2001 

Pakistan GDP and energy 
consumption 

1955-1996 Electricity          Income 

Mozumder and 
Marathe 2007 

Bangladesh GDP and 
electricity 
consumption 

1971-1999 Electricity          Income 

Ghosh 2002 India GDP and 
electricity 
consumption 

1950-1997 Income           Electricity 

Shiu and Lam 
2004 

China GDP and 
electricity 
consumption 

1971-2000 Electricity         Income 

Chen et al. 2007 10 Asian 
countries 

GDP and 
electricity 
consumption 

1971-2001 Electricity          Income 
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Mozumder and Marathe (2007) found unidirectional causality between GDP and 

electricity consumption in Bangladesh. Some reports also indicate that to reduce 

poverty to a moderate level, the required GDP growth is 7 %, and an electricity growth 

rate 1.5 times the GDP growth rate needs to be achieved (GSMP 2006; Jamaluddin 

2008). It is recognized that the pace of power sector development has to be accelerated 

in order to achieve overall economic development of Bangladesh. To upgrade the socio-

economic conditions and to alleviate poverty, the power sector has been prioritized by 

the government.  

During the last 12 years, Bangladesh’s economy has regained pace and GDP 

grew at a constant rate. Increased economic activity, reflected in the GDP growth, is the 

key driver behind the increase in the electricity demand. Table 4.2 shows the historical 

GDP value, GDP growth rate, net energy generation, per capita generation and per 

capita consumption (ADB 2006; BBS 2008; BER 2004&2008; BPDB 2006). 

Compound average annual GDP growth over the last 12 years (1994 - 2005) was 5.5 %. 

This compares with the average annual net energy generation growth rate of 8 % over 

the same period. It is imperative that Bangladesh maintains a strong GDP growth rate. 

Only through sustained growth will Bangladesh be able to achieve its target for poverty 

reduction and a general improvement in the quality of life for the country’s people. 

Three GDP growth scenarios updated from PSMP (2005) and GSMP (2006) are 

assumed for the Bangladesh electricity demand analysis. In all scenarios, continued 

robust growth of Bangladesh’s economy is assumed. It is assumed that as the economy 

grows, economic growth is more difficult to sustain. Therefore, the growth rates are 

higher in the early years than in the later years of the analysis period.    
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Table 4.2: GDP, electricity generation and consumption in Bangladesh 1994 - 2005 
Year GDP  

(Million 
Taka; 100 
Taka = 1.569 
USD) 

GDP growth 
(%) 

Net 
electricity 
generation 
(GWh) 

Per capita 
electricity 
generation 
(kWh) 

Per capita 
electricity 
consumption 
(kWh) 

1994   1515139  9222.1 84.19 64.08 

1995 1589762 4.93 10166.3 92.06 71.32 

1996 1663240 
 

4.62 10832.9 96.79 75.88 

1997 1752847 
 

5.39 11242.9 99.03 78.90 

1998 1844478 
 

5.23 12194.2 101.84 80.88 

1999 1934291 
 

4.87 13637.7 112.89 88.69 

2000 2049276 
 

5.94 14739.1 119.71 95.85 

2001 2157353 
 

5.27 16254.2 128.97 106.08 

2002 2252609 
 

4.42 17444.8 136.02 113.80 

2003 2371006 
 

5.26 18422.1 143.77 122.43 

2004 2501813 
 

5.52 20062.1 153.77 133.11 

2005 2669740 
 

5.96 21596.6 160.13 139.68 

 

Low GDP growth scenario 

The low GDP growth track is consistent with recent GDP growth trends and implies 

that the Bangladesh economy continues to grow the rate of the past 12 years. Under this 

scenario, the real GDP growth rate stabilized at 5.5 % in 2009 and continues at this 

level through to 2025, when it drops to 5.3 % and stays at this level until 2035.  

 

Average GDP growth scenario 

The average GDP growth track is consistent with Bangladesh’s Poverty Reduction 

Strategy Paper (PRSP) and Millennium Development Goal (MDG). Under this scenario, 

the real GDP growth rate rises to 7 % by 2011, peaks at 8 % in 2016, drops to 6.5 % by 

2026 and stays at this level until 2035. 

 

High GDP growth scenario 

The high GDP growth track is consistent with a highly optimistic level of economic and 

industrial development. The GDP growth rate increases rapidly to 7 % by 2009 and 

continues in an upward trend to a peak of 9 % in 2015 and 2016. From this peak point, 

GDP growth declines gradually to 8 % by 2035. 
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These three GDP growth scenarios and recent actual GDP growth trends will be used to 

forecast the demand for the Bangladesh electricity sector (Figure 4.3).   

 

Figure 4.3: GDP growth scenarios 
 

4.2.3 Projecting energy intensity and activities 

Bangladesh is an agrarian country with a population of 137.4 million (2005). Only 22.9 

% live in urban areas, while the remaining 77.1 % live in rural areas. An average 

household has around 5 members, and the total number of households in the country is 

27.5 million. Population levels have been growing at a steady 1.5 % per year in recent 

years, down from 2.2 % in the 1980’s and 1.8 % in the 1990’s, indicating that 

population control initiatives have been relatively successful. It is assumed that the total 

population of the country will stabilize at 200 million (Islam and Huda 1999).  

In 2005, most of the Bangladesh GDP was generated by the commercial 

sector, which accounted for 45.9 %, while the remaining 54.1 % came from agriculture 

(20.1 %), industry (19.1 %) and other (14.8 %) sectors (Table 4.3; BBS 2008; BER 

2004, 2008; FFYP 1998). Other sectors include public administration and defense, 

education, health and social services, community, social and personal services. 

Although the commercial sector is large in GDP terms, Bangladesh remains heavily 

dependent on agriculture, which provides employment for over 50 % of the workforce 

(GSMP 2006). The contribution of agriculture to the national income is the second 

highest, but this has decreased. While in 1995 the agricultural contribution to the GDP 

at constant market prices was 30.3 %, it was 20.1 % in 2005.  
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Table 4.3: Sector GDP share (%) in Bangladesh 1995 - 2007 
Sector/Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

Industry 13.8 14.28 15.6 16.3 18.02 17.86 18.57 18.34 18.55 18.88 19.14 19.89 20.61

Agriculture 30.31 32.24 29.82 29 25.58 25.58 25.03 23.98 23.46 21.04 20.14 19.61 21.11

Commerce 40.89 38.98 39.58 40.2 41.08 41.48 41.44 42.69 43.08 45.22 45.9 45.78 43.61

Other 15 14.5 15 14.5 15.32 15.08 14.96 14.99 14.91 14.86 14.82 14.72 14.67

 

To forecast electricity consumption, electricity consumption data for the 

period 1994 - 2004 were analyzed (Table 4.4; BER 2008; BPDB 2005, 2006; PSMP 

2005). The BPDB, Dhaka Electric Supply Authority (DESA) and Dhaka Electric 

Supply Company Limited (DESCO) mainly supply electricity to the urban areas while 

the Rural Electrification Board (REB) supplies the rural areas.  

 

Industrial sector 

The industrial sector is the largest consumer of electricity in Bangladesh. It consumes 

about 43 % of the total energy demand. The annual growth rate of this sector in the last 

12 years was about 8 %. Besides use of electricity from public utilities, this sector uses 

electricity from captive power generation. The energy demand is expected to grow 

rapidly in the coming years.  

The overall level of the industrial energy intensity per unit of industrial GDP 

was 0.012 kWh/Taka (100 Taka = 1.569 USD in 2005) in 1997 (Table 4.5). It grew to 

0.014 kWh/Taka in 2005 with an average annual increase rate of 1.2 %. It is assumed 

that in the high GDP growth scenario (HG scenario), the energy intensity per GDP unit 

increases with a rate of 1.5 % to 0.018 kWh/Taka in 2020, and from 2020 onwards it 

decreases by a rate of 1 % and reaches 0.015 kWh/Taka in 2035 due to the expected 

greater diversity in the output of industrial goods and improvements in product quality 

and value. Industrial modernization, restructuring and increasing efficiency will lead to 

a significant improvement in the industrial sector energy intensity. For the initial years 

2005 - 2015, the intensity increases because out-dated and low-efficiency technologies 

are widely used.  
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Table 4.4: Electricity consumption in Bangladesh 1994 - 2005 (total sales figures for each utility 
are the sum of the sales of each customer class, i.e., residential, agricultural, 
commercial and industrial) 

Year Utility 
Energy sales by customer class (GWh) Dist. 

loss 
(%)

Imported 
energy 
(GWh) 

Trans 
loss 
(%) 

Load 
shedd. 
(MW)Resid. Agricul Comm. Indus. Other Total 

1994 BPDB 1181.3 98 315.5 1303.7 123.4 3021.9 30.7 4361.5 4.7 540
  DESA 889.2 13.4 199.7 1189.9 69.7 2292.2 32.9 3519.6 
  REB 245.2 157.3 43.1 317.6 1.9 765.1 15.6 906.1 
  Total 2315.7 268.7 558.3 2811.2 125.3 6079.2 30 8787.2 

1995 BPDB 1231.1 145 305.9 1402.7 134.4 3220.2 29.9 4596.3 4.1 537
  DESA 1079.1 15.8 202.5 1294.3 72.7 2664.4 31.9 3913.5 
  REB 322.9 273.3 57.5 394.3 2.1 1050.1 15.1 1237.3 
  Total 2633.1 434.1 565.9 3091.3 209.2 6934.7 28.9 9747.1 
1996 BPDB 1313.6 125.7 314.9 1468.7 139.7 3362.6 29.1 4742.1 4.2 545

  DESA 1238.6 15.5 200.7 1383.5 80.9 2919.2 31.5 4261.1 
  REB 415.6 242 68.9 441.4 4.3 1172.2 14.6 1372.2 
  Total 2967.8 383.2 584.5 3293.6 224.9 7454 28.2 10375.4 
1997 BPDB 1291.2 107.5 306.9 1519.9 135.4 3360.9 28.3 4686.2 4.2 674

  DESA 1455.5 10.1 206.4 1484.6 83.8 3240.4 29.8 4613.5 
  REB 462 208.1 72.7 472.9 4.6 1220.3 17.1 1472.5 
  Total 3208.7 325.7 586 3477.4 223.8 7821.6 27.4 10772.2 
1998 BPDB 1322.3 104.9 320.7 1602.8 133.7 3484.4 29.8 4965.3 4.4 711

  DESA 1641.3 8.4 202.7 1523.5 87 3462.9 30.4 4973.7 
  REB 586.5 191.5 87.9 564.3 4.8 1435 16.5 1718 
  Total 3550.1 304.8 611.3 3690.6 225.5 8382.3 28.1 11657 
1999 BPDB 1446.5 111.3 354.4 1667.3 146.4 3725.9 30.6 5365.5 4.7 774

  DESA 1722.9 4.4 195.8 1583.8 82.7 3589.6 30.8 5183.7 
  REB 793.2 312.1 118.5 759.9 5.4 1989.1 18.6 2442.7 
  Total 3962.6 427.8 668.7 4011 234.5 9304.6 28.4 12991.9 
2000 BPDB 1565.6 88.4 390.7 1835.8 160.5 4041 27.7 5591.6 4.9 536

  DESA 1471.4 1.1 171.1 1886.9 51.7 3582.2 31.7 5247.7 
  REB 1005.2 262.2 149.5 1034.6 8.2 2459.7 22.5 3172.4 
  Total 4042.2 351.7 711.3 4757.3 220.4 10082 28 14011.7 
2001 BPDB 1725 111 440.3 1968.8 174.8 4419.9 26.1 5981.9 4.2 663

  DESA 1639.3 0.9 167 2002.3 48.9 3858.4 32.5 5718.7 
  REB 1230.5 370.9 180.6 1340.3 8.3 3130.6 19 3864.2 
  Total 4594.8 482.8 787.9 5311.4 232 11408 26.7 15564.8 
2002 BPDB 1891.7 96.2 473.7 2090.5 184.2 4736.3 24.5 6273.4 3.8 367

  DESA 1691.5 0.7 159.5 1419.4 51.5 3322.6 36.6 5380.5 
  DESC 267.9 0 23.8 185.8 16.1 493.6 25.2 660.3 
  REB 1659.9 357.2 219.4 1648.7 9.8 3895 17.2 4466.2 
  Total 5511 454.1 876.4 5344.4 261.6 12447 25.3 16780.4 
2003 BPDB 1993.7 75.3 497.4 2078.4 192.9 4837.7 22.4 6230.5 3.8 468

  DESA 1657.6 0.3 211.9 1547 52.7 3469.5 33 5184.6 
  DESC 348 0 41 256 31 676 21.5 861.4 
  REB 2037 399 268 2173 11 4888 14.1 5447.5 
  Total 6036.3 474.6 1018.3 6054.4 287.6 13871 21.7 17724 
2004 BPDB 2066.7 78.8 504.7 2086.8 204.3 4941.3 21.3 6281 3.5 694

  DESA 1379 0.2 222 1529 48 3178.2 34.5 4854 
  DESC 678 0 104 597 29 1408 19.1 1740 
  REB 2475 527 320 2469 14 5805 13.7 6486 
  Total 6598.7 606 1150.7 6681.8 295.3 15332 20.8 19361 
2005 BPDB 2016 76 498 1557 235 4382 20 5258.4 3.5 770

  DESA 1601 0.2 254 1979 105 3939.2 21.94 4803 
  DESC 746 0 123 631 36 1536 16.64 1791.6 
  REB 3186 793 489 2917 15 7400 13.7 8414 
  WZPD 135 73 22 153 5 388 15 446 
  Total 7684 942.2 1386 7237 396 17645 17.45 20714   
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The GDP share in this sector was only 13.8 % in 1995, while it grew to 20.16 % in 2007 

with an annual average growth rate of 3.8 %. It is projected that the GDP share in this 

sector will reach 46 % in the HG scenario (annual increase of 3 %) and 31 % (annual 

increase of 1.6 %) in the low growth scenario (LG scenario) by the year 2035. In 

average growth scenario (AG scenario), the industrial share of GDP is increased 

annually by 2.3 % in the analysis period (2005 - 2035). 

 

Table 4.5: Industrial sector GDP share and energy intensity in Bangladesh by scenario 
(2005 – 2035) 

Scenario Categor Unit 2005 2010 2015 2020 2025 2030 2035
Low growth    19 21 23 25 27 29 31
Average 
growth 

GDP 
share 

% 19 22.16 25.33 28.5 31.66 34.83 38 

High growth   19 23.5 28 32.5 37 41.5 46 
Low growth    0.014 0.015 0.015 0.016 0.015 0.014 0.014 
Average 
growth 

Intensity kWh/Taka 0.014 0.015 0.016 0.016 0.015 0.015 0.014 

High growth   0.014 0.015 0.016 0.018 0.017 0.016 0.015 

 

Commercial sector 

Forecasts on energy demand in the commercial sector are made in terms of energy 

intensity (kWh/million Taka). The consumption in this sector is relatively low in 

comparison to that in the industrial sector, i.e., only 7 to 8 % of the total electricity 

consumption. In contrast, this sector has the largest GDP share, i.e., 46 % (2005). 

Consumption is expected to increase rapidly over the next decades. The recent trend 

shows an annual increase in energy intensity by 3.5 %. The AG scenario considers an 

average annual growth rate of 2 % from the 2005 value of 1128 kWh/million Taka to 

2044 kWh/million Taka in 2035. For the HG scenario, energy intensity increases 

sharply by 4 % annually to 2000 kWh/million Taka in 2020 and remains constant due to 

improvements in the efficiency of end-use appliances in the later period (Table 4.6).  

The GDP share decreases slightly; its share is replaced by that of the industrial sector.  
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Table 4.6: Commercial sector GDP share and energy intensity projections by scenario 
Scenario Category Unit 2005 2010 2015 2020 2025 2030 2035
Low growth    46 43.74 41.6 39.6 37.6 35.77 34
Average 
growth 

GDP 
share 

% 46 43.33 41.67 39.5 37.33 35.17 33 

High growth   46 43.67 41.33 39 36.67 34.33 32 
Low growth    1128 1240 1352 1464 1576 1688 1800 
Average 
growth 

Intensity kWh/million 
Taka 

1128 1246 1376 1519 1677 1851 2044 

High growth   1128 1419 1709 2000 2000 2000 2000 

 

Agriculture and other sectors 

Agriculture is a seasonal business and therefore the demand for energy fluctuates 

throughout the year. Diesel oil and electricity are two major sources of energy in this 

sector. The total demand of electricity for agriculture has increased over the years, but 

the relative percentage of consumption has changed little in the past years. Consumption 

in this sector was only 434 GWh in 1995 but had increased to 942 GWh by 2005. The 

share of electricity consumption was 5.33 % in 2005. The total number of irrigation-

pump connections was around 43,000 in 1995 and reached around 162,000 by 2005 

(REB 2006). Due to shortage of power, the government has recently stopped the 

extension of new electricity connections for the rural residential sector, but it is 

continuing the connections to irrigation pumps.  

The agricultural sector is the largest sector in the Bangladesh economy. Its 

contribution to the national income is the second highest. However, in 2005 the share of 

the GDP at constant market prices had dropped to 20 % from around 30 % in 1995. The 

future electricity demand for this sector is also projected based on energy intensity 

(kWh/million Taka), which has increased by 5 % in recent years (Table 4.7).   

Electricity for other sectors consists of street lighting, water pumps, mosques, 

etc., and plays only a minor role in the overall power consumption. Its share of total 

electricity consumption in 2005 was about 2 %. The GDP share has hardly changed in 

recent years, although a slight decrease has been observed.  
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Table 4.7: Agricultural sector GDP share (%) and energy intensity by scenario  
Scenario Category Unit 2005 2010 2015 2020 2025 2030 2035
Low growth    20 20 20 20 20 20 20
Average 
growth 

GDP 
share 

% 20 19.1 18.33 17.5 16.66 15.83 15 

High   20 18.66 17.33 16 14.66 13.33 12 
Low growth    1764 2045 2371 2748 3186 3694 4282 
Average 
growth 

Intensity kWh/million 
Taka 

1764 1996 2258 2555 2891 3270 3700 

High   1764 1948 2150 2374 2621 2894 3195 

 

Residential sector 

Consumption of electricity and commercial energy as a whole is increasing in the 

residential sector. Population increase and access to electricity coupled with higher 

income and increased numbers of electrified households are some of the reasons for this 

change. Access to electricity of the population was only 15 % in 1996, while it grew to 

38 % by 2005 (BPSDB 2006). Between 1995 and 2005, electricity consumption in this 

sector grew at an annual rate of 11.2 %. In 1995, the demand for electricity was 2633 

GWh and increased to 7684 GWh by 2005.  

The goal of the Bangladesh government of electricity for all by the year 2020 

is ambitious. As REB forecasts that only 84 % of the population in rural areas will have 

an electricity supply by 2020, the percentage of connected urban areas is expected to be 

higher. In the residential sector scenario, it is assumed that 84 % of the rural and 100 % 

of the urban households will be connected to electricity by 2020 (Table 4.8).  

 

Table 4.8: Population, electrification and urbanization level by scenario 
Scenario Residential 

Sector 
Population Level 

(million) 
Electrification 

Level (%) 
Urbanization (%) 

  2020 2035 2020 2035 2020 2035
Low growth  54.95 80 92 100 31.4 40 
Average growth Urban 57.56 90 95 100 33.9 45 
High growth  61.4 100 100 100 36.4 50 
Low growth  120.05 120 59.6 84 31.4 40 
Average growth Rural 117.43 110 68.8 84 33.9 45 
High growth  113.59 100 84 84 36.4 50 

 

Urban and rural residential sectors are projected separately in order to account 

for their significantly different energy service demand, and to allow for the trend of 

urbanization to be included in the LEAP modeling. The categories of electricity use 
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considered in both urban and rural residential sectors are lighting, refrigerators, cooling 

and other electrical appliances, which are projected independently (Table 4.9). With 

respect to lighting and other electric appliances, it is assumed that 100 % of the 

households use these. In the rural residential sector, 69 % of the households are 

equipped with electric fans (USAID 2002) and 21 % with refrigerators (Khan 2006). 

 

Lighting 

The lighting service demand in the urban and rural electrified residential sectors is 

satisfied solely by electricity using either incandescent or mercury vapor lamps. 

Lighting consumption alone is around 40 % of the total consumption in the residential 

sector in urban areas (Islam 2003) and 48.2 % in rural areas (Khan 2006).  In 2005, the 

urban electricity demand for lighting was 358 kWh per electrified household and 315 

kWh in rural households. The lighting demand is projected to grow at a constant rate of 

1.3 % per year to reach 430 kWh in 2020 when the demand will be saturated. From 

2020 onwards, this demand is assumed to decrease by 1 % per year to reach a level of 

375 kWh in 2035 for the HG scenario due to the introduction of compact fluorescent 

lamps (CFL).  

The increase rate is relatively low considering the GDP growth rate. It is kept 

in mind that efficient lamps will decrease the total lighting demand, and the gradually 

decreasing demand growth rate reflects the saturation of the household lighting demand 

of a part of the households in the urban areas. The rural residential lighting demand is 

projected to grow to the level of the current urban demand by 2020, 2025 and 2035 in 

the HG, AG and LG scenarios, respectively (Table 4.10). 
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Table 4.9: Projected household use of refrigerators and cooling (%) by scenario  
Scenario Residential 

sector 
Category 2005 2020 2035 

Low growth  40 52.5 65 
Average growth Urban Refrigerator 40 60 80 
High growth   40 65 90 
Low growth   21 33 45 
Average growth Rural Refrigerator 21 38 55 
High growth   21 45.5 70 
Low growth   75 77.5 80 
Average growth Urban Cooling  75 85 95 
High growth   75 87.5 100 
Low growth   69 74.5 80 
Average growth Rural Cooling  69 79.5 90 
High growth   69 84.5 100 

 

Cooling 

The tropical climate in Bangladesh requires cooling, which is satisfied mainly by 

cooling fans. Only few high-income urban households have air-conditioning systems. In 

2005, an average 323 kWh was consumed for cooling per urban household and 187 

kWh per rural household. The electricity consumption is assumed to grow at an average 

annual rate of 1.5 % to reach the level of 403 kWh per household by the year 2020 in 

the urban residential sector in the HG scenario. From 2020 onwards, the consumption 

rate per household increases with a lower rate of 1 % per year to reach 468 kWh by the 

year 2035. In the AG scenario, the peak level of consumption of 403 kWh is reached by 

2025 and increases by 1 % per year till 2035. In the LG scenario, the peak level of 403 

kWh is reached by the year 2035. 

In rural households, the electricity consumption for cooling increases to the 

present consumption level of urban household by the year 2020 in the HG scenario. It is 

projected to continue to grow to 350 kWh by the year 2035. The final consumption 

levels in this category are 340 kWh and 322 kWh in the AG and LG scenario, 

respectively (Table 4.10). 

 

Refrigeration 

Electricity for refrigeration also represents an important fraction of the urban residential 

load (about 22 %; Islam 2003). In 2005, 40 % of the urban households were equipped 

with refrigerators, while this was 21 % in the rural households (Table 4.9). In the HG 
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scenario, it is assumed that 90 % of the urban and 70 % of the rural households will be 

equipped with refrigerators by the year 2035. By 2035, in the AG scenario 80 % urban 

and 55 % rural households will have refrigerators and in the LG scenario 65 % urban 

and 45 % rural households. 

The electricity consumption for refrigeration per household in the urban 

residential sector was 492 kWh in 2005. In rural areas, it was only about 318 kWh due 

to massive electricity cuts there. The demand is expected to grow at the rate of 0.7 % in 

the HG scenario until 2020 and then it remains constant for urban households. It is 

projected that in 2020, rural households will have the same consumption levels as urban 

households in 2005. After 2005 the demand increases by 1 % per year in the HG 

scenario (Table 4.10).  

 
Table 4.10: Energy intensity (kWh per electrified household) of residential sector by 

GDP growth scenario 
Scenario Residential sector Category 2005 2020 2035 

Low growth  358.4 380 380 
Average growth Urban Lighting 358.4 400 375 
High growth   358.4 430 375 
Low growth   315.2 336.6 358 
Average growth Rural Lighting 315.2 348 358 
High growth   315.2 358.4 340.5 
Low growth   323 363 403 
Average growth Urban Cooling 323 391 423 
High growth   323 403 468 
Low growth   187 254 322 
Average growth Rural Cooling 187 289 340 
High growth   187 322 350 
Low growth   493 532 571 
Average growth Urban Refrigerator 493 551 571 
High growth   493 571 571 
Low growth   318 405.2 493 
Average growth Rural Refrigerator 318 448.4 520 
High growth   318 493 571 
Low growth   99 195 247 
Average growth Urban Other  

appliances 
99 229 305 

High growth   99 265 371 
Low growth   30 59 75 
Average growth Rural  30 70 93 
High growth   30 81 112 
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Other electrical appliances 

In addition to refrigerators, households use miscellaneous electrical appliances namely 

irons, televisions, computers, etc. Consumption depends on how well equipped the 

household is with such appliances and also on the technical characteristics of the 

appliances.  

The electricity demand for the other electrical appliances in the urban 

residential sector in 2005 was 99 kWh per household. The demand is projected to grow 

in proportion to the GDP growth rate according to an elasticity of 1.0 in the initial 

period 2005 to 2015 decreasing to 0.5 in the future period 2015 to 2025 and 0.2 in the 

final analysis period 2025 to 2035 (Table 4.10).  

In 2005, around 47 % of the rural households had a television (USAID 2002). 

This percentage is expected to increase to 90 % by 2035. Consumption of other 

electrical appliances without televisions was only 30 kWh per rural household in 2005. 

This is expected to increase significantly over the next 35 years, as the improving living 

standard will lead to a growing demand for electrical appliances. Consumption in the 

rural residential sector is projected to grow at a rate proportional to the growth of GDP, 

according to the elasticity of 1.2 initially (2005 - 2015), which is then reduced to 0.8 

(2015 - 2025) and finally 0.3 (2025 - 2035) (Table 4.10). The main reasons for such 

strong growth, especially in the near future are:  

1) Introduction of the market economy clearly improves living conditions and 

offers the households a broad range of goods. The number of families who can 

buy electrical appliances increases accordingly. 

2) The urbanization process, which is increasing more than 2 % per year. 

 

4.3 Final electricity demand  

Total electricity consumption was 17.7 TWh in 2005 and is projected to increase 7.5 

times to 132 TWh by 2035 in the LG scenario (Figure 4.4). In the AG and HG 

scenarios, the demand in 2035 shows an increase that is about 11 and 16 times the base-

year value, respectively. In the HG scenario, due to the higher share of the industrial 

sector GDP, the industrial demand increases from 7.2 TWh in 2005 to 185.4 TWh in 

2035 with an annual average growth of 11.4 %. In the AG and LG scenarios, the 
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industrial sector demand is projected to increase at an annual average growth rate of 9 

% and 7 %, respectively.  

 

 

Figure 4.4: Historic and projected total electricity demand 
 

In 2005, the share of the residential, agricultural, commercial and industrial 

sectors of the total electricity consumption was 43.6 %, 5.3 %, 7.9 % and 41%, 

respectively. Other sector consumption was 2.3 % in this year. By 2035, in the HG 

scenario, the residential and agricultural sectors consume 25.8 % and 3.6 %, 

respectively, the while commercial and industrial sectors consume 5.9 % and 63.9 %, 

respectively. In the LG scenario, in 2035 the share is almost the same as in 2005. 

It is worth mentioning here that the actual GDP growth rate in Bangladesh lies 

between a low and a high rate. In the MARKAL Bangladesh model developed for this 

study, average growth rates are used. For illustrative purpose, final electricity demand 

projections for each sector in the average GDP growth scenario are discussed. 

The consumption of electricity in the residential sector increases significantly, 

as almost the entire country is connected to the electricity network. In the AG scenario, 

the total residential sector consumption was 7.7 TWh in 2005 and is projected to 

increase about 8-fold to 64.5 TWh (Table 4.11 and Figure 4.5) in 2035 with an annual 

average growth rate of 7.3 %. In the urban residential sector, the consumption was 4.5 

TWh in 2005 and increases about 8-fold by 2035. Similarly, in the rural residential 

sector, it increases about 9.4 times by 2035, as the access to electricity increases sharply 

from 23 % in 2005 to 84 % in 2025.  
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In the industrial sector, electricity consumption is projected to increase about 14-fold by 

2035 in AG scenario. The increases in electricity demand in this sector are due to the 

economic transition from the agricultural to the industrial sector. The agricultural sector 

demand also increases significantly over the analysis period. In 2005, total consumption 

was only 0.9 TWh and increases about 11.4 times by 2035. The sharp increases in this 

sector are due the use of electric motors instead of diesel engines for the irrigation 

pumps as a result of the ongoing installation of additional pumps across the country to 

achieve self-sufficiency in food production.  

In 2035, the residential and agricultural sectors consume 33.5 % and 5.5 %, 

respectively, while the industrial and commercial sectors consume 52.7 % and 6.7 %, 

respectively under AG scenario (Figure 4.6).  

 

Table 4.11: Final electricity demand in TWh in Bangladesh (2005 - 2035) 

Category 2005 2010 2015 2020 2025 2030 2035 

Urban residential 4.51 7.40 11.49 16.99 23.88 30.29 34.61 

Rural residential 3.19 6.56 10.93 16.19 22.16 27.03 29.85 

Agriculture 0.94 1.42 2.13 3.20 4.79 7.16 10.67 

Commerce 1.39 2.03 2.95 4.30 6.23 9.00 12.96 

Industry 7.24 12.26 20.31 33.07 48.64 70.65 101.50 

Other 0.40 0.56 0.79 01.11 1,56 2.19 3.09 

Total 17.67 30.23 48.6 74.86 107.3 146.3 192.7 

 

 

 

Figure 4.5: Final electricity demand under the average GDP growth scenario 
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Figure 4.6: Sectoral share of electricity demand under the average GDP growth scenario 
 

In order to provide a context for this demand forecast, all study scenarios are 

compared with the forecasts developed for the update power sector master plan (PSMP) 

using regression analysis (Figure 4.7). The PSMP’s projection was in net generation up 

to 2025 and this study considers transmission and distribution losses of 20 % in the 

initial periods (2005 - 2015) and 15 % in the later periods (2015 - 2035) to obtain net 

generation of electricity (PSMP 2005). The comparison shows that the demand 

forecasts in this study are lower than PSMP’s forecast. The reason for this is that the 

present study takes into account the demand by sectors while it analyzes the residential 

sector by category. Also, there are many other activities, events and trends that impact 

on the demand for electricity, i.e., increase in electrification level, use of energy-

intensive goods, increased use of energy-efficient devices based on GDP growth trends.  
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 Figure 4.7: Comparison demand forecast between the study and the power sector 
master plan (PSMP) 

 

The projected per capita electricity demand for Bangladesh over the next 30 

years is compared with other developing countries (WB 2007)  what they had been able 

to achieve in the past years (1976 - 2006) (Figure 4.8). The future years Bangladesh 

energy sector development follows almost the past years development of China, 

Thailand and Philippines. This is reasonable considering Bangladesh’s economic 

structure and the lower per capita electricity base value compared to other developing 

countries.  

 

 

Figure 4.8: Projected per capita electricity consumption in Bangladesh (2005 - 2035) 
and historical data of selected developing countries
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5 DEVELOPMENT OF THE MARKAL-BANGLADESH MODEL 

The exogenous parameters of power generation used for the establishment of the 

MARKAL-Bangladesh model can be grouped in three broad categories: power or 

energy demand, availability of energy resources, and conversion technologies. Issues 

like market price of power, fuel prices, etc. although individually important, are linked 

in this study with any one or with a combination of the above categories. In the 

following sections, a comprehensive view of power generation, including development 

of a perspective view of the Bangladesh energy sector with special focus on power 

generation, is presented. The renewable energy technologies were discussed previously 

(Chapter 3). Modeling with MARKAL requires establishment of relationships between 

technologies, activities and energy flows from the primary energy stage up to the end-

use through intermediate stages such as transportation and conversion. For this study, 

the Bangladesh power sector is taken as the reference energy system. 

For the purpose of this study, i.e., to select the least-cost technologies for 

power generation, the MARKAL-Bangladesh model was developed in this chapter. A 

major part of the work was to develop input parameter values. In MARKAL, the 

reference energy system is the first step towards building a MARKAL-Bangladesh 

model of the Bangladesh power sector. The reference energy system represents the 

activities and technologies of an energy system, depicting energy demands, energy 

conversion technologies, fuel mixes, and the resources required to satisfy the energy 

demand (Mathur et al. 2003). Three basic sets of input information are required for each 

time step over the entire period of the analysis: 1) energy demands, 2) potential supply 

and cost of primary energy resources and 3) cost and performance characteristics of 

technologies potentially available for use in the energy system.  

  

5.1 Energy service demand 

In 1994, the total electrical energy demand was 9.6 TWh (PSMP 2005) and by 2005 had 

increased to 17.6 TWh. Based on the projections of GSMP (2006) and PSMP (2005), 

this energy demand will increase to 102.4 TWh and 100.1 TWh, respectively, in 2025. 

The LEAP tool was used to form demand scenarios according to the trend of GDP 

growth rates of 5.5 %, 6.8 % and 8 %, and to the nature of the energy sector itself, 



Development of the MARKAL-Bangladesh model 

80 

 

taking into consideration broader factors, e.g., population, households, urbanization and 

other influencing factors for the time span 2005 to 2035 (Chapter 4). The demand based 

on the average GDP growth rate of 6.8 % is considered for the MARKAL-Bangladesh 

model (Table 5.1).  

 

Table 5.1: Final electricity demand in Bangladesh in TWh (2005 – 2035) 

Category 2005 2010 2015 2020 2025 2030 2035 

Urban residential 4.51 7.40 11.49 16.99 23.88 30.29 34.61 

Rural residential 3.19 6.56 10.93 16.19 22.16 27.03 29.85 

Agriculture 0.94 1.42 2.13 3.20 4.79 7.16 10.67 

Commerce 1.39 2.03 2.95 4.30 6.23 9.00 12.96 

Industry 7.24 12.26 20.31 33.07 48.64 70.65 101.50 

Other 0.40 0.56 0.79 01.11 1,56 2.19 3.09 

Total 17.67 30.23 48.6 74.86 107.3 146.3 192.7 

 

5.2 Energy supply 

5.2.1 Electricity supply 

Installed capacity 

Total installed power generation capacity in the country was 2908 MW in 1996 and had 

increased to 5245 MW by 2006 (Figure 5.1). Power generation in the country is almost 

entirely dependent on fossil fuels, mainly natural gas, which accounted for 81.4 % of 

the total installed capacity in 2006. Diesel, furnace oil (FO), coal and hydro generation 

capacity in the same year were 4.1 %, 5.3 %, 4.8 % and 4.4 %, respectively.  

The power generation capacity increased at a rate of 18.8 % per year during 

the 1980s. The 1990s showed a decline in the growth rate of 5.3 % per year. The power 

generation capacity had increased annually by 5.9 % between 2000 and 2006. 

 

Electricity generation 

The increase in electricity generation in Bangladesh in general corresponded to the trend 

in installed capacity expansion.  Net electricity generation was about 10.2 TWh in 1995 

and had reached 23.7 TWh by 2006 (Figure 5.2). During the 1980s, electricity 

generation increased at an annual growth rate of 18.6 %, in the 1990s at a rate of 8.7 % 

and between 2000 and 2006 at a rate of 7.5 %.  
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Figure 5.1: Power generation capacity from various technologies (BPDB 2000, 2002, 
2006) 

 

Transmission and distribution loss 

The transmission and distribution (T&D) loss amounted to more than 20 % of the 

available power between 1995 and 2006 (Figure 5.2). Transmission losses dropped to 

3.5 % in 2005 and peaked at 4.9 % in 2000. Distribution losses decreased from 28.9 % 

in 1995 to 17.3 % in 2006. The T&D losses were 21 % of the generated electricity in 

2005. 

   

 

Figure 5.2: Power generation and transmission and distribution losses in Bangladesh 
(BPDB 2006; BPSDB 2006; PSMP 2005) 
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5.2.2 Primary energy resources and constraints 

Primary energy requirement for power generation is met through conventional and non-

conventional sources of energy. The term primary energy refers to the naturally 

available form of energy that may be in the form of coal, oil, gas or renewable energy 

such as solar irradiation, wind, hydropower and biomass.. Modeling of MARKAL 

requires that the costs of all primary energy resources (either that are extracted or 

imported, conventional or renewable) be defined along with their availability 

constraints. In the following, details of conventional energy resources and their 

availability for this study together with the projected costs and annual maximum 

production limits for conventional and renewable energy sources (Table 5.2 and Table 

5.3) are presented. 

 

Coal 

Bangladesh has at least 1250 million tons of proven recoverable resources of coal and 

estimated reserves of about 2083 million tons (Imam 2005). Since the demand of coal is 

increasing in the country, total domestic coal production is mostly consumed internally 

and the coal price is, therefore, independent of the international market. In 2005, the 

average cost of coal in Bangladesh was 119.96 Taka/GJ (100 Taka = 1.569 USD) based 

on a calorific value of coal of 24 GJ/ton (BCP 2005; PSMP 2005). In this study, it is 

assumed that the cost of coal will increase at a constant rate of 2.5 % per year to reach 

252 Taka/GJ in 2035 (Table 5.2). This increase accounts for higher mining costs due to 

the expected increase in future mine depths. Coal production in 2005 was 0.5 million 

tons, and the projected production capacity is 15 million tons in 2015 and from 2020 

onwards 30 million tons (BCP 2005). In 2005, the average cost of imported coal in 

Bangladesh was 144.075 Taka/GJ (PSMP 2005). It is projected that this will increase at 

a constant rate of 4.6 % per year to reach 555 Taka/GJ in 2035 due to high transmission 

cost. A limit on imported coal is not considered here, but one scenario involves 

limitation of coal imports.   

In mined coal, the average sulfur content is 0.57 % and carbon 46.2 % (Imam 

2005). These values form the basis of the calculated emission coefficients used in this 

study. The IPCC database is used for the CO2 emission of imported coal (IPCC 1996a).  
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Table 5.2: Projected production bounds and cost of conventional energy resources in 
Bangladesh (all costs are in 2005 Bangladeshi Taka where 100 Taka = 1.569 
USD) 

 2005 2010 2015 2020 2025 2030 2035 

Extraction of natural gas        

  Upper bound  (PJ) 80005       

  Cost (million Taka/PJ) 66.67 83.48 104.53 130.88 163.89 205.22 256.96 
 Transmission cost (million 
Taka/PJ) 

8.17 9.02 9.96 11 12.14 13.41 14.80 

Extraction of coal        

  Upper bound (million ton) 0.5 7.6 14 30 30 30 30 

  Upper bound (PJ) 12.27 186.2 343 735 735 735 735 

  Cost (million Taka/PJ) 120 135.76 153.61 173.79 196.63 222.47 251.70 

Imported oil        

  Diesel (million Taka/PJ) 607.20 760.30 952.02 1192.08 1492.67 1869.06 2340.35

  Furnace oil (million Taka/PJ) 380 475.81 595.79 746.03 934.15 1169.70 1464.65

Imported hard coal        

  Cost (million Taka/PJ) 144.07 180.4 225.89 282.85 354.17 443.48 555.31 

 

Natural gas 

Bangladesh has approximately 382.5 billion m3 proven natural gas reserves and 

estimated probable gas reserves of about 810 billion m3 (Petrobangla 2008). In 2005, 

domestic natural gas production was 13.78 billion m3, and power sector consumption 

alone was 7.1 billion m3 (51 %). In 1995, the natural gas consumption was 3 billion m3 

(Figure 5.3) At the current rate of increase in consumption (around 10 % annually), the 

national proven reserve of natural gas may not last more than 15 - 20 years (Bhuiyan et 

al. 2000; Hossain and Badr 2007).  

In this study, the constraint is total gas availability for power generation based 

on the proven reserve (51 % of 382.5 billion m3). Furthermore, a transmission loss of 

gas of 6.5 % and transmission cost of 0.3 Taka/m3 are considered (Petrobangla 2008).  

Gas is highly subsidized in the power sector, where prices are lower than in other 

sectors. In 2005, natural gas in this sector was 2.6 Taka/m3 or 66.7 Taka/GJ 

(Petrobangla 2008). It is projected to increase by a historical rate of 4.6 % per year to 

2035 (Petrobangla 2008). Imported gas is not considered in this analysis. Due to 

                                                            
5 Cumulative total gas resource for power generation 
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different carbon content percentages in different gas fields in Bangladesh, the IPCC 

(1996a) emission factor is used in the model.  

 

Table 5.3: Projected production bounds and cost of renewable energy resources in 
Bangladesh (all costs are in 2005 Bangladeshi Taka where 100 Taka = 1.569 
USD) 

 2005 2010 2015 2020 2025 2030 2035 

Extraction of rice husks        

  Upper bound (PJ) 179.17 193.01 202.86 202.86 202.86 202.86 202.86 

  Cost (million Taka/PJ) 102 118.24 137.07 158.91 184.22 213.56 247.58 

  Power capacity (MW) 0 10 50 100 100 100 100 

Extraction of bagasse        

  Upper bound (PJ) 18.31 19.71 20.72 20.72 20.72 20.72 20.72 

  Cost (million Taka/PJ) 11 14 17.91 22.86 29.12 37.24 47.54 

  Power capacity (MW) 38 50 100 200 200 200 200 

Extraction of MSW        

  Upper bound (PJ) 21.46 23.89 26.38 28.41 30.61 30.61 30.61 

  Power capacity (MW) 0 0 20 50 80 100 200 
Extraction of poultry 
droppings 

       

  Upper bound (PJ) 49.28 54.40 60.06 64.70 69.67 69.67 69.67 

  Power capacity (MW) 0 10 20 100 100 100 100 

Hydro        

  Power capacity upper (MW) 230 230 330 550 550 550 550 

Wind        

  Power capacity upper (MW) 0 20 4614 4614 4614 4614 4614 

Solar        

  Power capacity (MW)6 0 20 50174 50174 50174 50174 50174 

 

Oil 

Only around 203 million liters of furnace oil (FO) and 152 million liters of diesel and 

kerosene were used to generate electricity in 2006 (BPDB 2006), which was about 13 % 

of the total imported oil products in the country (BER 2008). Proven oil reserves are 

estimated to be only about 8 million tons equivalent and Bangladesh needs to meets its 

oil demands through imports (Uddin 2006). Imported refined oil products (diesel, 

                                                            
6 The installed capacity of solar PV is allowed to grow at a maximum rate of 30 % per year during the 

study period.  
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kerosene and FO) are considered a liquid energy resource in the MARKAL-Bangladesh 

model. In general, no restrictions are placed on the level of imports. 

The cost of imported oil products is linked to world market prices. The prices of 

oil products are calculated based on Bangladesh Economic Review (BER 2008). In 

2005, the average price of FO in Bangladesh was 506 Taka/GJ. It is assumed to increase 

at a rate of 4.6 % annually reaching 1950 Taka/GJ in 2035 (EIA 2009). The fluctuation 

in oil prices is not considered in the modeling. CO2 and SO2 emission factors are 

calculated separately for diesel, kerosene and fuel oil products based on the IPCC 

workbook (IPCC 1996a) and IPCC reference manual (IPCC 1996b).  

 

 

Figure 5.3: Production of natural gas in Bangladesh 1995-2005 
 

5.3 Energy conversion technologies 

The energy conversion technologies used worldwide and in Bangladesh for power 

generation are broadly classified under two categories, namely conventional and non-

conventional technologies. They can also be classified as renewable energy 

technologies (Chapter 3) and non-renewable energy technologies. The latter 

classification is often preferred, as it directly refers to the depletable energy source or 

non-depletable kind of energy source and hence has been adopted in this study for the 

coverage of technologies.  
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5.3.1 Selected conventional technologies 

Steam turbine  

The steam turbine (ST) technology has significantly improved over the past decades 

with respect to performance, reliability and availability. The capacity of a single ST unit 

has progressed to about 800-1000 MW. In this study, a common and standard unit size 

of 300 MW is considered using coal and natural gas along with existing ST power 

plants.  

 

Simple cycle combustion (gas) turbine  

The simple cycle combustion turbine (SCGT) technology for power generation is 

relatively new compared to the ST technology. In a simple cycle (SC) configuration, the 

exhaust gas from the turbine is released to the atmosphere without utilizing much of its 

energy. However, the technology is less efficient then the ST technology. SCGT is best 

suited for burning natural gas. The capacity of a single turbine (one unit capacity) has 

progressed to more than 300 MW. The efficiency of SCGT has improved and now 

exceeds 30 %. For application in Bangladesh, a modest range for unit capacity and 

external features are considered for modeling due to their high reliability and extensive 

experience throughout the world. Two standard and common unit sizes (100 MW and 

150 MW) are used for the modeling. 

 

Combined cycle power plant 

Gas turbines are also used in combined cycle (CC) combustion, where the exhaust gas 

from the turbine is used to generate steam, which is used in a ST to generate additional 

power. Therefore, by burning the same amount of fuel, a CC gas turbine system 

generates about 50 % more power than a SCGT system. As a result, the efficiency of a 

CC power plant is approximately 50 % higher than that of a SCGT. The CC system has 

become the technology of choice for base-load power generation wherever gas is 

available. High fuel efficiency and relatively low capital cost make the technology 

attractive. Another attractive feature of the technology is that a CC power plant can be 

installed in less time than typical ST plants. In this study, 300 MW plant capacities are 

considered along with exiting CC power plants. 
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5.3.2 Conversion technology characteristics 

The characteristics of all technologies must be provided to the model. Conversion 

technologies convert primary energy into final energy carriers. The model requires users 

to create detailed profiles for two sets of energy conversion technologies: one for 

converting primary into final energy carriers, and one for converting final energy 

carriers into energy services. A reasonably representative set of conversion technologies 

is developed, which includes a total of 20 distinct conversion technology types. For 

each of the technology types, values are specified for energy input per unit energy 

output (efficiency), capital cost, fixed and variable operation and maintenance costs, 

NO2 and SO2 emissions per unit of energy output, and the first year in which the 

technology was introduced (Table 5.4 and 5.5). The characteristics are performance and 

cost level inputs to the model for 2005 - 2035. For most of the technologies, the 

performance and cost levels are assumed to be constant over the whole analysis period 

except for solar PV, where the investment cost is analyzed using technological learning 

effects. The model determines the capacity level for any technology. In this modeling, 

the most reliable studies are selected and evaluated to yield a consistent as possible set 

of cost data. 
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Table 5.4: Main parameters of conventional conversion technologies (all costs are in 
2005 Bangladeshi Taka where 100 Taka = 1.569 USD) 

Conversion technology First 
year 
available 

Effici
ency  
(%) 

Installed 
cost(million 
Taka/GW) 

Fixed 
O&M cost 
(million 
Taka/GW) 

Variable 
O&M 
cost 
(million 
Taka/PJ) 

Reference 

Coal steam 
conventional 250 MW 

2010 28.34 66363 267 684 BPDB 2006; Zongwin 
et al. 2001 

Advanced coal steam 
with flue gas 
desulphurization (FGD) 
300 MW 

2015 38.78 87082 443 32 Kaminski 2003; PSMP 
2005; Zongwin et al. 
2001 

Existing FO-based 
steam power plant 

2005 25.91 48960 516 1365 BPDB 2006; MPEMR 
2006; Zongwin et al. 
2001 

Existing diesel-based 
gas turbine 

2005 22.87 35062 753 2875 BPDB 2006; Zongwin 
et al. 2001 

Existing diesel-based 
diesel generator 

2005 22.67 28687 1300 2313 BPDB 2006; PSMP 
2005; Zongwin et al. 
2001 

Existing kerosene-based 
gas turbine 

2005 23.57 35062 753 2875 BPDB 2006; PSMP 
2005; Zongwin et al. 
2001 

Existing gas-based 
simple cycle (SC) 

2005 28.83 22248 204 648 BPDB 2006; PSMP 
2005; Zongwin et al. 
2001 

Gas-based SC 100 MW 2010 28.79 25563 321 44 PSMP 2005; Zongwin 
et al. 2001 

Gas-based SC 150 MW 2010 29.71 22248 321 44 PSMP 2005; Zongwin 
et al. 2001 

Existing gas-based 
steam turbine (ST)  

2005 31 62092 197 251 BPDB 2006; MPEMR 
2005 

Gas-based ST 300 MW 2010 39.6 62092 321 28 PSMP 2005 
Existing gas-based 
combined cycle (CC)  

2005 31.18 42712 179 310 BPDB 2006; PSMP 
2005 

Gas-based CC 300 MW 2010 46.32 42712 321 35 PSMP 2005 
 

5.3.3 Technology learning 

Technology learning is a key driving force of technological change and plays an 

important role in cost or performance improvement of technologies, simulating the 

competition and continuous substitution between them in the marketplace. A typical 

learning curve describes the specific costs of a given technology as a function of the 

cumulative capacity, a proxy for the accumulated experience (Barreto and Kypreos 

2004). It reflects the fact that some technologies may experience declining costs as a 

result of their increasing adoption, due to the accumulation of knowledge. Theories of 
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learning-by-doing and economics of scale are responsible along with technological 

breakthrough for these improvements. The cumulative capacity is used as a measure of 

the knowledge accumulation. The learning effect is represented mathematically by a 

learning curve which defines the unit cost of a given technology as a function of the 

cumulative capacity as a measure of the knowledge accumulation (Seebregts et al. 

1999). A typical learning curve can be expressed by the following equation: 

 

        (5.1) 

 

where  is cost as a function of ,  is the cumulative capacity,  is the learning 
index (constant),  is the initial cumulative capacity (at t = 0) and  the 
initial specific cost (at t = 0). 

 

Various studies have been made to obtain the learning curves for different 

technologies and to include learning curves in energy system modeling (Messner 1997; 

Rout et al. 2009; Seebregts et al. 1998; Seebregts et al. 1999; Winkler et al. 2009). 

According to the findings of the above authors, for each technology there are two 

distinct phases, i.e., the research, development, and demonstration phase, and the 

commercialization phase. Technologies belonging to the research, development and 

demonstration phase are solar PV and wind turbines. Cost reduction in this phase is 

significant owing to the learning-by-doing and learning-by-using effects. 

Three cases were analyzed for modeling the learning effect at IIASA, i.e., the 

high growth, moderate growth and the ecologically driven case (Messner 1997). The 

results from the moderate growth case have been adopted in this study, and for the 

Bangladesh context the following assumptions are made:  

1) The learning trend for power generation from solar PV (due to limited potential 

of other renewable energy technologies) observed internationally will also occur 

in Bangladesh due to the import of technologies and technical know-how. 

2) The path of learning will have a typical exponential shape as commonly 

recorded. 

3) The percentage reduction in the unit cost in Bangladesh will be the same as the 

percentage projected in the IIASA study over the period of 1990-2050. 
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The projected investment cost of solar PV obtained is 318750 million Taka/GW in 2005 

and decreases to 199609 million Taka/GW by 2035 based on the following equations: 
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where IIASAGR ,20501990   is the growth rate of investment cost between 1990 and 2050 
(IIASA), IIASAC ,1990  and IIASAC ,2050  are the investment costs in the year 1990 and 
2050 (IIASA), BangladeshC ,2005  and BangladeshnC ,  are the investment costs in year 
2005 and nth year for Bangladesh. 

 

Comments on conversion technologies not covered in this study 

A few technologies, e.g., fuel cells, solar thermal, geothermal and tidal, have not been 

covered in this study mainly due to the following reasons: 

1) Technical know-how has not yet matured and spread worldwide. Full-scale 

commercial activities will take some time to pick them up. At the initial stages, 

such technologies are expensive. This is important for countries like Bangladesh, 

where there is a financial crunch restricting the freedom of experimenting with 

new technologies. 

2) In the case of technologies like solar thermal power, better uses like water 

heating, crop drying, etc., exist that are more accepted and better proven than 

power generation. However, a few solar thermal power plants are operation in 

some countries, but most of them are more in the form of pilot projects than 

commercial ventures. 

3) Know-how on other technologies like geothermal, tidal and wave energy exists, 

and Bangladesh needs to investigate their potentiality. However, a limited 

supply of technologies and other technical barriers hinder their application in 

Bangladesh. 
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Table 5.5: Main parameters of renewable energy technologies (all costs are in 2005 
Bangladeshi Taka where 100 Taka = 1.569 USD) 

Conversion 
technology 

First 
year 
available 

Effici
ency  
(%) 

Installed 
cost 
(million 
Taka/GW) 

Fixed 
O&M cost 
(million 
Taka/GW) 

Variable 
O&M 
cost 
(million 
Taka/PJ)

Reference 

Existing hydro 2005 100 95625 443 10 BPDB 2005, 2008
Large hydro >50 
MW 

2015 100 127500 443 10 BPDB 2005, 2008 

Biomass bagasse-
fired power plant 

2010 22.67 35700 2231 - APEC 2002; Hasan 
2006 

Biomass solid 
waste gasification 

2015 25 71655 2805 - APEC 2002; Khatun 
2008 

Biomass rice 2010 22.67 91800 5227 - IDCOL 2006 
Biomass poultry 
waste 

2010 25 157781 18900 - APEC 2002; Zaman 
2007 

Solar PV 
centralized 

2010 100 298893 3085 - NEA 2005) Shafiei 
et al. 2009 

Wind centralized 2010 100 63750 1511 - Nguyen 2007a; 
Nguyen and Ha-
Duong 2009; Rout et 
al. 2009 

 

5.4 Generic details 

Besides the technical and financial parameters related to different stages of RES of the 

Bangladesh power sector, the following parameters are also required by MARKAL: 

1) Base year: 2004 - 2005 is taken as the base year. This is indicated as year 2005 

in this study, as MARKAL accepts just one year as a parameter. 

2) Duration of study: A 30-year period is covered in this study, which is a period 

covered in most of the similar studies, although some short-term studies 

covering a 20-year time span have also been conducted. However, as MARKAL 

is considered to be more useful for longer term analysis, the 30-year horizon was 

selected, especially since the degree of uncertainty related to technology and 

economic parameters increases with longer time spans. 

3) Length of periods: The 30-year span is divided into 6 periods of 5 years each.  

4) Discount rate: A financial discount rate of 10 % per year is considered. The 

current rates of interest payable on ‘fixed deposits of money’ in nationalized 

banks are close to 10 %, and this was the main reason for using this value. 

5) The main purpose of all the power plants covered in this study is to feed the 

electricity grid. In industrial countries, however, renewable energy systems like 
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solar and wind power plants are mainly used to reduce the load duration on 

conventional power plants during various times of the day (Mathur et al. 2003).  

In the case of Bangladesh, there is always a possibility of consumption of 

additional power, as economic growth is not stable, and the growth of many 

sectors is restricted due to shortage of power. 

6) No heating load is considered to be met through the heat rejected in the energy 

conversion processes.  

7) Transmission and distribution (T&D) loss amounted to 21 % of the generated 

electricity in 2005 (BBS 2008; BER 2006). It is considered that the losses will 

decrease to 15 % by 2035.  

8) It is assumed that all the existing power plants of the base case year will 

continue to work throughout the whole analysis period. Considering this 

assumption is particularly valid in Bangladesh because even very old power 

plants are kept in working condition with necessary maintenance and minor 

furnishing. 

9) An overall GDP growth of 6.8 % is considered (GSMP 2006). This assumption, 

however, is not directly imported but governs the trend of the increase in energy 

demand. 

10) The costs of the power plants are taken from Bangladesh sources rather than 

converting the costs in other countries into Bangladesh Taka. This is because 

costs in other countries may have some extra hidden cost that may not be 

relevant in Bangladesh. 

11) The study considers three main greenhouse gases: CO2, NO2 and SO2. Since 

appropriate national emission factors are not available, the emission coefficients 

of the IPCC reference approach has been adopted (IPCC 1996a, 1996b).  

12) In MARKAL, the electric load profile can be differentiated according to three 

seasons: intermediate, summer and winter, which in turn are distinguished 

between day and night. The peak load in summer at 7 PM is adopted in the 

modeling. 

13) As the focus of this study is power generation capacity and utilization, stages 

like end-use technologies (lighting load, cooling load. etc.) have been merged 

into their respective sector-wise electricity demand. The sector-wise demand 
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does not represent end-use demand, but addresses the gross demand of each 

sector, and details related to the end-use application stage are not required for 

this modeling exercise. Similarly, the cost of fuel extraction and other similar 

figures have not been specified separately, as the final costs of fuel for the power 

plants, which include the costs in all previous stages, are considered directly. 

 

5.4.1 Assumptions and boundaries of the study 

The following general assumptions are important to understand the MARKAL-

Bangladesh model: 

1) Only the centralized grid is covered in the MARKAL modeling.  

2) Daily load fluctuations are not considered. 

3) All existing and working power plants at the beginning of the base year will 

continue to work throughout the study period. 

4) There is no constraint regarding availability of financial means due to private 

sector investment in the power sector. 

5) All prices and costs are indicated in Bangladesh Taka. 

6) It is assumed that sufficient infrastructure support will be present regarding 

manufacturing, transportation, etc. 

7) Efficiencies and specific emission values correspond to full load operation of 

power plants. 

 

5.5 Reference energy system of Bangladesh power sector 

Based on the above-specified data, the reference energy system of Bangladesh can be 

built, i.e., the MARKAL-Bangladesh model. This reference system can be illustrated in 

a network diagram indicating energy flows and the associated process parameters of 

technologies employed in various stages (source to end use) of the total energy system 

(Figure 5.4). 
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Figure 5.4: Simplified reference energy system of the Bangladesh power sector (values 
indicate proven reserves, conversion & transmission efficiency, and 
demand in 2005, mton = million tons, bm3 = billion m3, PP = power plant, 
ST = steam turbine, FGD = flue gas desulphurization, CC = combined 
cycle)   
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6 SCENARIO DEVELOPMENT AND RESULTS 

 

6.1 Scenario development 

Scenarios are like storylines to predict the future within a possible range of existence. 

Researchers agree to the fact that future events related to technological development or 

economic growth cannot be predicted accurately. These are usually associated with 

some uncertainty due to unpredicted events or landmarks that decide a path of growth 

for future techno-economic scenes. However, major possibilities are usually known and 

should be incorporated in any future planning. Therefore, the scope of this study has 

also been to cover major possibilities in the form of different scenarios (Figure 6.1). 

These scenarios represent those factors most likely to affect the future development of 

renewable energy technologies in the Bangladesh power sector. Important exogenous 

model specifications for these scenarios include the demand trajectories derived from 

overall macro-economic projections, energy supply limitations, energy prices, 

technology cost and performance parameters, bounds on technology penetration, and 

environmental characteristic. 

The scenarios in this study are based on three cost minimization aspects, with 

the aim of mainly curbing the CO2 emission in the power sector: 1) simple cost 

minimization, which covers the commercial aspects related to various technologies like 

investment, operation and maintenance (O&M) costs under the defined set of 

constraints in which no artificial measures are taken to curb environmental degradation, 

2) cost minimization through a CO2 emission reduction target, and 3) cost minimization 

through carbon7 taxes. All scenarios are compared with the base scenario.  

 

                                                            
7 A carbon tax can be translated into a CO2 tax, since a ton of carbon corresponds to 3.67 tons of CO2. 
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 Figure 6.1: Structure of applied scenarios 
 

The following 11 scenarios are investigated: 

Scenario 1: Base scenario (Base) 

Scenario 2: Limited gas scenario (Limited gas) 

Scenario 3: Scenario with null coal import (Null coal import) 

Scenario 4: Scenario with accelerated renewable energy penetration (Renewable 

target production) 

Scenario 5:  Scenario with 10 % CO2 emission reduction from 2015 onwards 

compared to base scenario CO2 emission (CO210) 

Scenario 6: Scenario with 20 % CO2 emission reduction from 2015 onwards 

compared to base scenario (CO220) 

Scenario 7: Scenario with 30 % CO2 emission reduction from 2015 onwards 

compared to base scenario (CO230) 

Scenario 8: Scenario with carbon tax of 1500 Taka per ton CO2 (Low tax) 

Scenario 9: Scenario with carbon tax of 3000 Taka per ton CO2 (Medium tax) 

Scenario 10: Scenario with carbon tax of 6000 Taka per ton CO2 (Medium-high tax) 

Scenario 11: Scenario with carbon tax of 12000 Taka per ton CO2 (High tax) 

 

6.2 Scenario description  

6.2.1 Base scenario 

The base scenario presumes a continuation of current energy and economic dynamics 

and provides a reference for comparing impacts of future policies. This scenario is 
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based on an understanding of how the energy sector dynamics and specifically power 

sector dynamics have been evolving in the past as well as on an analysis of the present 

situation and most likely the future trajectory.  It incorporates changes in the economic 

growth rates and growth patterns, structural changes in the economy, changes in 

consumption patterns, rates of technological progress, penetration of innovated 

technologies, alternations in energy supply and energy prices, dependence on foreign 

imports, enforcement of environmental laws and regulations, initiation and success of 

institutional changes and policy interventions affecting the energy sector in general and 

the power sector in particular. The main assumptions and parameters of this case have 

already been defined in the previous sections including technology learning effects, 

constraints on resources and different technologies bound growths. 

  

6.2.2 Limited gas scenario 

The limited gas scenario examines the overall system in the case where a fix amount of 

natural gas is available for power generation. Instead of using the cumulative total 

proven reserve of gas for power generation as in the base scenario, it is considered that 

natural gas production continues until the end of the analysis period based on more or 

less the present limited capacity. Reason behind this assumption is the government of 

Bangladesh intends to explore offshore gas, and there is a high probability that gas 

reserves will be found and can be used for power generation. As the demand for gas in 

different sectors is increasing, it is assumed that the gas available for power generation 

is 250 PJ in 2005 with a maximum of 325 PJ in 2015, which decreases to 200 PJ by 

2035. 

 

6.2.3 Null coal import scenario 

The null coal import scenario assumes a specific policy intervention in the import of 

fossil fuels. The intention is to use all available energy resources and reduce the import 

of coal for electricity generation. This constraint specifies that there is no imported coal 

available for power generation. 

 



Scenario development and results 

98 

 

6.2.4 Renewable target production scenario 

The renewable target production scenario assumes specific policy interventions to 

accelerate deployment of renewable energy technologies. Specific national targets are 

set for supplying a certain percentage of the total power generation from renewable 

energy sources. The government targets of electricity generation using renewable 

energy technologies of 5 % of the total power generation by 2015, 10 % by 2020 (REP 

2008) and 20 % by 2035 are applied. It is assumed that manufacturing capabilities in the 

country will be developed and import restrictions for deployment of advanced 

technologies like solar PV eased. Bound growth and learning costs for solar PV are 

already introduced in the base scenario. 

 

6.2.5 CO2 emission reduction scenarios 

Presently, global warming and mitigation of greenhouse gases (GHGs) are the major 

issues of international concern. The power sector is major source of CO2 emission and 

accounts for about 36 % of the total CO2 emission in the world, 45 % in Asia and 40 % 

in Bangladesh (Shrestha et al. 2009). The power sector CO2 emission has been 

increased at an average annual rate of 8.5 % from 1990 to 2004 in Asia as a whole 

(Shrestha et al. 2009).  

Rising energy demand has lead to rapidly increasing GHG emissions from 

electricity generation in Bangladesh. Due to the large share of fossil fuels in the energy 

mix, the Bangladesh economy produces high CO2 emissions, which are likely to rapidly 

increase. In this case, it is necessary to develop and promote alternative energy sources 

that ensure energy security without increasing environmental impacts. It is also 

interesting to explore the potential of the Bangladesh energy system to meet national 

emission targets along with mitigation costs.  

Since developing countries are not obliged to reduce GHG emissions, studies 

in evaluating the impacts or co-benefits of GHG mitigation policies in developing 

countries are lacking (Shrestha and Pradhan 2010).  For a developing country like 

Bangladesh, the evaluation of the impacts of GHG mitigation policies in the power 

sector would provide a basis for more comprehensive technological choice, and 

economic and environmental analysis. Such an evaluation would also support climate 

change mitigation policies aimed at sustainable power-sector development as part of the 
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efforts to address the climate change issues identified in the United Nations Framework 

Convention on Climate Change (UNFCCC), which Bangladesh has already ratified.  

Three CO2 emission reduction targets are imposed in the CO2 emission 

reduction scenario: 10 % (scenario 5, CO210), 20 % (scenario 6, CO220) and 30 % 

(scenario 7, CO230) CO2 emission reduction from 2015 onwards compared to the base 

scenario emission level. It insures one of the objectives of the Bangladesh energy policy 

to ensure environmentally sound sustainable energy development programs and 

environmentally compatible electric energy (NEP 2004&2008) and the ultimate 

objectives of UNFCCC are to achieve stabilization of GHG concentrations in the 

atmosphere at a level that would prevent dangerous anthropogenic interference with the 

climate (Dutt and Glioli 2007; SAR 1996). 

 

6.2.6 Carbon tax scenarios 

The Kyoto Protocol to the UNFCCC has set legally binding reduction targets for GHG 

emissions for the countries listed in its Annex II8 and introduced three international 

flexibility mechanisms, namely international emission trading, joint implementation, 

and the Clean Development Mechanism (CDM) which are defined in the Article 12 of 

the Kyoto Protocol, Annex I9 countries can participate in the implementation of projects 

that reduce GHG emissions in non-Annex I10 countries. The GHG emission reductions 

achieved by implementation of such projects as compared with the emissions in a base 

scenario, duly certified, are treated as certified emission reductions, which can be 

bought and used by the Annex I countries to comply with their emission reduction 

commitments (Dutt and Glioli 2007).  

Bangladesh participation in the global carbon market through the CDM 

depends on the global carbon price. CO2 emission reduction domestically at low cost, 

i.e., at costs that are significantly lower than the carbon price, will provide opportunities 

to generate substantial contribution from participation in the global carbon market.  

While the Kyoto Protocol has not proposed any binding emission limitation 

commitments for developing countries, instruments such as CDM and the possibilities 

                                                            
8  Annex II countries consist of the OECD members of Annex I excluding the Economies in Transition 

(the EIT parties). 
9  Annex I countries consist of the industrialized countries that were members of the OECD in 1992 and 

the EIT parties.  
10  The non-Annex I countries are mostly developing countries. 
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of emission trading are likely to provide economic incentives for significant emission 

mitigation in developing countries like Bangladesh. In this context, issues related to 

compliance of developing nations to participate in GHG adaptation and mitigation 

activities and setting up of related business opportunities need to be kept in mind. A 

carbon tax is considered to favor low-emission power generation projects and 

discourage high-emission activities. Bangladesh promotes renewable energy projects 

through subsidies. These subsidies could be paid for through a tax on coal and other 

fossil fuels. The additional tax revenue would allow increases in the subsidies for 

renewable energy and other low energy technologies (Dutt and Glioli 2007)  

Therefore, four different rates of carbon tax are considered in this study 

namely low tax (1500 Taka per ton CO2, scenario 8), medium tax (3000 Taka per ton 

CO2, scenario 9), medium-high tax (6000 Taka per ton CO2, scenario 10) and high tax 

(12000 Taka per ton CO2, scenario 11).  

 

6.3 Results 

6.3.1 Simple cost minimization 

In the base scenario, the total generation capacity is expected to increase from 10.6 GW 

in 2010 to 57.3 GW in 2035, i.e., at an average growth rate of 7 % (Table 6.1). At the 

same time, the generation structure changes significantly. The share of gas-based power 

plants reduces from 90 % (9.6 GW) in 2010 to 39 % (22.5 GW) in 2035 in total 

capacity, whereas the increase in the share of coal-based power plants 2.34 % (0.3 GW) 

in 2010 to 50 % (28.7 GW) in 2035 is extremely high. The switch from gas- to coal-

based power plants leads to a strong increase in coal consumption, 3.3 PJ in 2010 to 

1784.3 PJ in 2035, i.e., at an average growth rate of 28.7 %. This coal consumption rate 

is higher than the domestic availability. Thus, the country would need to import energy 

resources such as coal from 2025 onwards to meet the required demand. The proportion 

of imported coal in the total fuel consumption would increase substantially from 18 % 

(208.4 PJ) in 2025 to 54 % (1049.3 PJ) in 2035. This deficiency would have adverse 

impacts on the country’s balance of payment and the availability of foreign currency 

resources.  

The model predicts that electricity production is dominated by advanced coal 

steam with flue gas desulphurization (FGD) power plants. In the base case, the coal 
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FGD produces electricity amounting to 24 % (14 TWh) in 2015 and 84 % (189 TWh) in 

2035 of the total generation due to the unused capacity of oil-based power plants in the 

analysis period and limited gas resources. As gas is the cheapest energy, the model 

suggests using gas in the early period. As there is no alternative, it selects the efficient 

coal-based FGD plants in the later period. As the potential of wind and biomass is 

limited and investment costs are relatively high, the model allocates the upper bound 

production of these technologies only in 2035. Due to the highest investment cost of 

solar PV, this form of energy is not selected in the base scenario. As the running costs 

of hydro power are lower, the model allocates the upper bound production of hydro. 

  

Table 6.1: Capacity development and fuel requirements in the base scenario 

 2010 2015 2020 2025 2030 2035 

Total capacity (GW) 10.64 14.16 22.99 31.28 42.76 57.26 

  Coal conventional power plant 0.25 0.25 0.25 0.25 0.25 0.25 
  Advanced coal steam with 

FGD 
0 1.89 10.16 13.93 21.94 28.48 

  Oil-based power plant 0.5 0.5 0.5 0.5 0.5 0.5 
  Natural gas simple cycle and 

steam turbine 
3.98 3.98 3.98 3.42 3.28 3.28 

  Natural gas combined cycle 5.61 7.02 7.02 11.33 12.14 19.19 

  Hydro 0.23 0.33 0.55 0.55 0.55 0.55 

  Solar PV 0 0 0 0 0 0 

  Biomass 0.05 0.12 0.25 0.28 0.3 0.4 

  Wind 0.02 0.07 0.28 1.02 3.8 4.61 

Fossil fuel requirement (PJ) 320.43 524.79 814.56 1139.47 1494.3 1940.25

  Domestic coal 3.25 134.25 683.63 735 735 735 

  Imported coal 0 0 0 208.38 622.22 1049.33

  Natural gas 317.18 390.54 130.93 196.09 137.08 155.92 

  Imported oil 0 0 0 0 0 0 

 

In the limited gas scenario (referred to hereafter as “gas scenario”), the total 

generation capacity is expected to increase from 10.3 GW in 2010 to 54 GW in 2035, 

i.e., at an average growth rate of 6.8 % (Figure 6.2). Power generation from gas-based 

combined cycle (CC) power plants decreases by 1.1 GW, 0.6 GW and 2.1 GW in 2015, 

2025 and 2035, respectively, and increases by 0.3 GW, 0.1 GW and 1.1 GW in 2010, 

2020 and 2030 compared to base scenario. The capacity level of advanced coal FGD 
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power plants decreases by 2.8 GW, 1. GW, 2.9 GW and 1.1 GW in 2020, 2025, 2030 

and 2035, respectively. In this scenario, other technologies capacity levels are kept at 

the same level as in the base scenario. Electricity generation from coal power plants 

decreases by 136 TWh between 2005 and 2035 (Figure 6.3). Consequently, electricity 

production by gas-based power plants increases by 127 TWh and by oil-based power 

plants by 9 TWh between 2005 and 2035.  

The contribution of solar energy increases significantly in the renewable 

energy target production scenario (referred to hereafter as “renewable scenario”), 

reaching almost 14.2 GW by 2035. A total capacity of 71.5 GW is expected by 2035. 

The capacity level is higher than in the base scenario because of the high capacity of 

solar PV penetration in the power generation system. Advanced coal FGD still 

dominates in this scenario (28.7 GW), followed by gas (22.5 GW) and solar PV (14.2 

GW) in 2035. Electricity generation capacity by coal power plants is expected to 

decrease from 389.5 GW in the base scenario to 378.3 GW between 2010 and 2035. 

Electricity generation from coal FGD power plants decreases from 2585 TWh to 2252 

TWh between 2015 and 2035. Solar PV generates total about 319 TWh between 2005 

and 2035 (Figure 6.3). Generation from biomass and gas-based CC power plants 

slightly increases during the study period. The total renewable capacity level increases 

from 0.5 GW in 2010 to 19.8 GW in 2035 in the renewable scenario (Figure 6.4). 

The scenario total power generation capacity level under null coal import 

(referred to hereafter as “coal scenario”) is about 100.6 GW in 2035. The capacity level 

is higher than in the other scenarios because of the high capacity of solar PV penetration 

in the power generation system. In this scenario, the total renewable generation 

capacities increase dramatically to about 46.6 GW by 2035. Under this constraint, oil-

based power plants are also selected in 2035. Coal power plants are replaced by 7.8 GW 

oil-based power plants and 41 GW total renewable-energy-based power plants in 2035 

compared to the base scenario. This reduces electricity generation from coal power 

plants by 21.7 TWh (22 %), 65.5 TWh (46 %) and 110.6 TWh (59 %) in 2025, 2030 

and 2035, respectively, compared to the base scenario. Electricity generation from solar 

PV is expected to grow from around 0.2 TWh in 2010 to 84.1 TWh in 2035 with an 

average growth rate of 27.1 %, where the allowed growth rate is 30 %. Oil-based power 

plants would be selected in the later period (2030 - 2035) in this scenario due to the 



Scenario development and results 

103 

 

limited natural gas resource and also due to increase in demand. Fossil-fuel-based 

technologies will be necessary, as renewable energy technologies cannot cater for the 

entire future demand. The technology learning cost for solar PV enhances 

competitiveness of the technologies and leads to a higher rate of implementation of 

solar PV in the analysis period.  

The results of each scenario show that in the base scenario and gas scenario, 

there is no production from solar PV technology. In the renewable and coal scenarios, 

solar PV plays an important role in the generation of electricity, and the capacity is 

expected to grow by 14.2 GW and 40.8 GW, respectively, by 2035. Other renewable 

energies reach their allowed maximum capacity levels in these scenarios.  

 

 

Figure 6.2: Technology capacity level in GW by year in the limited gas, renewable 
target production and null coal import scenarios (SC = simple cycle, ST = 
steam turbine, FGD = flue gas desulphurization, CC = combined cycle, PP 
= power plant and PV = photovoltaic) 
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Figure 6.3: Electricity production in TWh by technology by year in base, limited gas, 
renewable target production and null coal import scenarios 

 

 

Figure 6.4: Projections of renewable energy capacities in GW in the renewable scenario 
 

Renewable energy technologies in the power sector grow faster than the 

overall generation capacity in the renewable and coal scenarios. The intervention of 

these policy scenarios causes significant changes in the renewable energy trajectories 

compared to the base scenario (Table 6.2 and Figure 6.5). In the base scenario, their 

share in overall capacity increases from 4.1 % in 2005 to 9.7 % in 2035. The analysis 

shows a substantially higher implementation of renewable energy technologies 
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compared to the base scenario. The capacity shares of renewable generation in the base 

and gas scenarios are almost same from 2005 – 2030, while they slightly decrease from 

2030 – 2035 as more gas is available in the later period compared to the base scenario. 

The renewable scenario shows a 2.4 times higher renewable energy production capacity 

by 2015, about 4 times by 2025 and about 3.6 times by 2035. However, in the coal 

scenario, there is a much higher degree of renewable technologies implementation with 

a more than 8-fold capacity increase in 2035 over the base scenario. This coal scenario 

shows a renewable energy generation capacity of 5.7 %, 18 % and 46 % in 2015, 2025 

and 2035, respectively, of total power generation.  

 

Table 6.2: Renewable generation capacities across the simple-cost minimization 
scenarios in GW  

Scenario 2010 2015 2020 2025 2030 2035 

Base  0.3 0.52 1.08 1.85 4.65 5.56 

Limited gas 0.3 0.52 1.08 1.65 4.65 5.56 

Renewable target production 0.5 1.25 3.88 7.49 12.4 19.82 

Null coal import 0.4 0.9 2.48 7.23 24.1 46.6 

 

 

Figure 6.5: Share of renewable energy in overall power generation capacity 
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2035. Per capita, the increase would be from 0.3 tons in 2010 to 2 tons in 2035 

(considering 40 % emissions from the power sector and 60 % from other sectors), 

equivalent to a growth rate of 7.8 % per year. Compared to the CO2 emission in 

developed and some developing countries, these figures are still quite low (the CO2 

emission per capita in 2000 in Germany was 9.6 tons, France 6 tons, UK 9.3 tons, China 

2.19 tons and India 1.1 tons; (WB 2007).  However, if the increase continues, in only 20 

years from the end of the analysis period in 2035, the CO2 emission per capita of 

Bangladesh will reach that of Germany in 2000. Therefore, appropriate measures need 

to be taken in the power sector to control the CO2 emissions. 

The gas scenario reduces the overall energy system CO2 emission by only 28 

million tons between 2005 and 2035 compared to the base scenario. CO2 emission 

reduces by 300 million tons between 2005 and 2035 in the renewable scenario. In the 

coal scenario, it reduces by a total 644 million tons between 2005 and 2035, i.e., by 3 % 

in 2020, 18 % in 2025, 40 % in 2030 and 48 % in 2035 compared to the base scenario.  

The discounted energy system costs (referred to hereafter as system cost) 

represents the total cost for the entire analysis period 2005-2035 for investments in 

energy conversion technologies, fuel, O&M, and other costs. In the gas scenario, the 

total system cost slightly increases from 2881 billion (2005) Taka to 2917 billion Taka, 

which is about 1 % higher than in the base scenario (Figure 6.6). Import dependency on 

fossil fuels based on the base scenario value 100 % drops to 90 %, 66 %, and 21 % in 

the gas, renewable and coal scenarios, respectively, but leads to an increase in the total 

system cost. The model results show that the system cost rises to 3255 billion Taka and 

3568 billion Taka by an overall percentage increase of 13 % and 24 % in the renewable 

and coal scenarios, respectively, compared to the base scenario. The system cost in the 

coal scenario is relatively high due to high investments in solar PV generation and 

imported fuel oil to meet the total energy demand. At the end of the analysis period 

(2030 - 2035), the system costs in the renewable scenario are almost the same as in the 

base scenario. In contrast, in the coal scenario the system costs increase over the long-

term period compared to the base scenario due to high investments in fuel oil imports, 

insufficient renewable energy, and limited gas availability. The model shows that the 

best solution is to increase the investments in efficient coal FGD plants between 2015 

and 2020 immediately after their introduction in the base, renewable and coal scenarios. 
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The peak system cost is in 2020 in the renewable scenario due to higher investments in 

solar PV to meet the required percentage level of renewable energy.  

Furthermore, the results show that the increase in total system cost for 

reduction of cumulative CO2 emissions over the study period is around 1066 Taka/ton in 

the coal scenario and 1250 Taka/ton in the renewable scenario.  

   

 

Figure 6.6: Total energy system costs for investments in energy conversion 
technologies, fuel, operation and maintenance in million Taka by year in 
the base, limited gas, renewable target production and null coal import 
scenarios 

 

6.3.2 Environmental cost minimization 

CO2 emission reduction target scenarios 

The introduction of the CO2 emission reduction targets (the reductions of 10 %, 20 % 

and 30 % CO2 are referred to hereafter as CO210, CO220 and CO230, respectively) 

directly affect the shift of technologies from high carbon content fossil-based to low 

carbon content fossil-based and clean renewable energy-based technologies. As a result 

of emission reduction targets, power generation based on solar PV is introduced and its 

generation capacity gradually increases during 2010 – 2035. Compared to the base 
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and grows at a rate of 24.7 % per year. In the CO220 and CO230 scenarios, the from 

solar PV generation starts with a capacity of 0.5 GW and 1.4 GW in 2010 and a growth 

rate of 16.2 % and 13.1 % per year, respectively. The total generation capacity is 

expected to increase from 10.6 GW in 2010 to 84.7 GW, 92.6 GW and 101.5 GW in 

2035 in the CO210, CO220 and CO230 scenarios, respectively (Figure 6.7). The 

generation capacity is relatively higher in the CO2 emission reduction scenarios than in 

the base scenario due to implementation of a higher solar PV capacity, which generates 

electricity only during the day. 

Gas-based CC power plant capacity increases significantly in the short-term 

period (2005 - 2020) in all emission reduction scenarios compared to the base scenario. 

The model reveals that the least-cost solution is to use the limited gas reserves in the 

short-term period, although the gas-based CC plants are mostly unused in the long-term 

period (2025 - 2035) (Figure 6.8). That is why the power generation capacity based on 

coal FGD increases significantly in the later period (2025 - 2035) in the CO2 emission 

reduction scenarios compared to the base scenario. Due to high oil prices, oil-based 

power plants do not receive higher allocation in the CO2 emission reduction target 

scenarios. Fossil fuel-based technologies would be required, as renewable energy 

technologies cannot cater for the entire future energy demand. The learning cost for 

solar PV enhances competitiveness of the technologies and leads to a higher rate of 

implementation of this technology in the analysis period. 

Between 2015 and 2035, after the introduction of emission mitigation targets, 

i.e., 10 %, 20 % and 30 % CO2 reduction, electricity generation by coal power plants 

reduces from 2585 TWh  to 2324 TWh, 2046 TWh and 1763 TWh, i.e., by 10 %, 21 % 

and 32 % respectively, compared to the base scenario (Figure 6.8). This type of 

electricity generation is replaced by renewable energy technologies. In the base 

scenario, the expected electricity generation from renewable technologies is about 

210 TWh between 2005 and 2035; it is expected to increase by 431, 709 and 995 TWh 

in the CO210, CO220 and CO230 scenarios, respectively, during the study period.  
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Figure 6.7: Technology capacity level in GW in the base and all CO2 emission reduction 
targets by year (SC = simple cycle, ST = steam turbine, FGD = flue gas 
desulphurization, CC = combined cycle, PP = power plant and PV = 
photovoltaic) 

 

 

Figure 6.8: Electricity production in TWh by technology and year in the base and all 
CO2 emission reduction targets  
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To summarize the extensive results generated for each of the CO2 emission reduction 

target scenarios by the MARKAL-Bangladesh model, the primary energy mix in 2035 is 

selected as the principal metric (Figure 6.9). This provides a good indication of the 

types of choices made by the model to meet the various CO2 emission reduction targets 

applied. The colored bars (except yellow in the middle) in the Figure 6.9 provide the 

breakdown of primary energy use for the base scenario in 2005 and all scenarios in 

2035. The numbers above each bar indicate the total and percentage of the cumulative 

imported coal and the total cumulative and percentage of CO2 emission reduction 

compared to the base scenario during the study period. Oil is not indicated, as it is not 

selected for power generation during the study period. The center yellow bar in the three 

scenarios on the right in this figure shows the change in cumulative total system costs 

relative to the base scenario. Due to the large uncertainties in this kind of analysis, the 

percentage change in system costs between the various scenarios as the measure of the 

cost impact of the changes imposed by each scenario is applied. The system cost for the 

base scenario is the reference cost in all cost comparisons.  In the base scenario, no 

constraints were placed on CO2 emission reduction.  

CO2 emission reduction targets have positive impacts on the energy security of 

the country. The energy security issue is analyzed in terms of changes in net energy 

import dependency and diversification of energy resources resulting from the selected 

CO2 emission reduction targets. The CO210 scenario allows a reduction in imported 

coal use of about 15 % contributing an only 8.8 % increase in system costs during 2005-

2035. Coal imports average 313 PJ per year in the base scenario during the 30-year 

study period, peaking at 1050 PJ in 2035. Import dependency reduces by 33 %, and 52 

% in CO220 and CO230 scenarios, respectively, compared to the base scenario during 

the study period, but led to an increase in the total system costs of 25 % and 45 %. 

Alternatively, import dependency based on the base scenario value 100 %, drops to 85 

%, 67 %, and 48 % in the CO210, CO220 and CO230 scenarios, respectively (Figure 

6.9). On the other hand, the system cost increases by 2.5 %, 8 % and 9 % in 2035 in 

these scenarios, respectively (Figure 6.10). The system costs increase significantly in 

the early period (2005-2020) due to high investments in the deployment of solar-PV-

based power generation. The system costs decrease in the later period (2020 – 2035) 

due the effects of the high investments in renewable technologies in the early period.   
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Figure 6.9: CO2 emission reduction targets compared to base scenarios. Primary energy 
mix in 2035 and percentage change in cumulative (2005 - 2035) system 
costs. Also indicated are the energy mix in 2005, the cumulative total and 
percentage imported coal, and the total CO2 emission reduction (2005 - 
2035) 
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energy use increases by 96 PJ, 161 PJ amd 227 PJ in 2035 in the CO210, CO220 and 

CO230 scenarios, respectively. 

The analysis results reveal that a cumulative CO2 emission in the entire energy 

system in the base scenario is approximately 2410 million tons between 2005 and 2035 

(Figure 6.9). It reaches 18.25 million tons in 2010 and is expected to increase to 160 

million tons in 2035. The cumulative CO2 emission reduces by 9 %, 19 % and 28 % 

between 2005 and 2035 in the CO210, CO220 and CO230 scenarios, respectively. 

The results show that the least cost strategy to attain the CO2 emission 

reduction targets also generates benefits in the form of lower cumulative SO2 emission 

during the planning horizon by 12 %, 26 % and 40 % in the CO210, CO220 and CO230 

scenarios, respectively, as compared to the base scenario. The cumulative NO2 emission 

during 2005 – 2035 decreases by 10 %, 21 % and 31 % in the CO210, CO220 and 

CO230 scenarios, respectively. 

Furthermore, the results show that the increase in total system costs for 

reduction of cumulative CO2 emissions over the study period is around 1910 Taka/ton in 

the CO230 scenario and 1600 Taka/ton in the CO220 scenario. This reduces to about 

1140 Taka/ton in the CO210 scenario. These costs are much lower than those in 

developed countries, as the renewable-energy-based power generation is relatively 

much cheaper in Bangladesh. 

 

 

Figure 6.10: Total energy system cost in million Taka by year in the base and all CO2 
emission reduction targets 
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Carbon tax scenarios 

To summarize the results generated for each different tax scenario by the MARKAL-

Bangladesh model, the power generation capacity mix in 2035 is selected as the 

principal metric (Figure 6.11). This provides a good indication of the types of 

technology choices made by the model to meet the various carbon taxes applied. Figure 

6.11 shows a summary of the scenarios using the set of energy-supply technologies. The 

colored bars (except yellow) give the breakdown of generation capacity (GW) by 

technology. The numbers above each bar indicate the total and percentage of coal and 

oil that is imported compared to base scenario and the total cumulative electricity 

genaration from coal-based power plants and renewable technologies (expressed in 

TWh). The center yellow bar in the four scenarios on the right in this figure shows the 

change in cumulative total system cost relative to the base scenario. Due to the large 

uncertainties in this kind of analysis, it uses the percentage change in system costs 

between the various scenarios as the measure of the cost impact of the chnages imposed 

by each scenario. The system costs for the base scenario is the reference costs in all 

costs comparisons. 

The power generation capacity level in 2035 varies from 95 GW to 99 GW in 

the medium, medium-high and high tax scenarios, i.e., is roughly double the 2035 

capacity level in the base and low-tax scenarios. Capacity increases about 10-fold in the 

base and low-tax scenarios compared to 2005. Capacity levels of coal conventional, 

hydro and wind are not changed during the study period. Gas-based simple cycle, steam 

turbine and biomass-based power plant capacity levels slightly decrease when taxes 

increase. The model reveals that advanced coal FGD plants are less costly in 2015 in the 

low and medium tax scenarios. Solar PV capacity increases to a maximum of 41.63 GW 

in 2035 in the medium-high and high tax scenarios.     
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Figure 6.11: Carbon tax scenarios. Power generation capacity in GW in 2035 and 
change in cumulative (2005-2035) system costs in percent. Also indicated 
are the generation capacity in 2005, the cumulative total and percentage 
imported fuels, and the total electricity genaration from coal and 
renewable energy between 2005 and 2035 (SC = simple cycle, ST = 
steam turbine, FGD = flue gas desulphurization, CC = combined cycle, 
PP = power plant, PV = photovoltaic) 
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A cumulative total electricity generation of 3646 TWh is required to meet the entire 

energy demand. Electricity generation from gas-based power plants increases from 841 

TWh in the base scenario to 892 TWh in the high tax scenario between 2005 and 2035. 

Coal-based generation decreases from 2593 TWh in the base scenario to 2036 TWh, 

1750 TWh and 1391 TWh in the medium, medium-high and high tax scenarios, 

respectively, during the study period. On the other hand, generation from renewable 

technologies increases from 210 TWh (5.8 %) in the base scenario to 739 TWh (20.3 

%), 1020 TWh (28 %) and 1363 TWh (37.4 %) in the medium to high tax scenarios, 

consecutively between 2005 and 2035.  

A cumulative CO2 emission is 2410 million tons in the base scenario and it 

falls slightly in the low tax scenario. To achieve greater reduction in CO2 emission, 

carbon tax is needed to increase. A cumulative CO2 emission decreases by 22 %, 32 % 

and 42 % in the medium, medium-high and high tax scenarios, respectively, compared 

to base scenario. 

The emission in the low tax and high tax scenarios significantly differ in the 

entire study period, but when the tax levels are between low and high, the emission 

reduction trends are also more or less similar (Figure 6.12). In the low tax scenario, 

there is no considerable reduction of emissions, as the choices of technologies do not 

change much. Further tax increases show a gradual reduction in emissions, while the 

medium and medium-high tax scenarios show the strongest reduction after 2020. In the 

high tax scenario, the CO2 emission reduction is almost same after 2020 and varies 

between 42 % and 49 % between 2020 and 2035. Emission reduction reduces in the 

later periods due to higher renewable-energy-based power generation (mainly solar PV).  

Carbon tax and solar PV generation costs can compete with fossil-based power 

generation in the later periods. However, due to an increased demand in the future, there 

is no choice but to use fossil-fuel-based technologies, as solar PV technology cannot 

cater to the entire demand. That is why the model reveals almost the same level of CO2 

emission reduction about 71 million tons (54 %) to 74 million tons (56 %) in all tax 

scenarios in 2035 except low tax scenario where the emission slightly increases 

compared to base scenario. It clearly shows that higher tax reduces maximum 49 % in 

2030 over base scenario CO2 emission and not more than that in the later periods. In 

low tax scenario in 2015 and 2035, and medium tax scenario in 2015, the model finds a 
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least cost solution with emitting higher level of CO2 over the base scenario.  The 

mitigation of CO2 in the early periods is less than in the later periods due to the fact that 

the model makes choices in energy use and technology investment and deployment in 

early years that have consequences for later periods. It also shows that there is room to 

deployment of renewable technologies in the later periods at a certain level.    

 

 

Figure 6.12: CO2 emission reduction by percent and year in the base and all tax 
scenarios 
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7 SUMMARY AND CONCLUSIONS 

 

7.1 Summary methodology 

This study aimed at providing decision support for optimizing the long-term power 

supply in Bangladesh with a special focus on renewable energy technologies. To fulfill 

this broad objective, the MARKAL model was selected and adapted to the Bangladesh 

power sector. As MARKAL requires exogenous electricity demand, the LEAP model 

was used to calculate the future demand for different sectors of the economy. The 

following methodologies were applied: 

1) Assessment of the potential of renewable energy resources for power generation: 

Renewable energy sources such as sun and wind are widely available but 

renewable energy does not exist in ready-to-use forms for power generation. The 

theoretical potential of renewable energy resources is relatively high. However, 

in the course of exploitation, constraints such as land use, geographical area and 

climate are encountered. To make use of these resources, suitable sites need to 

be identified, which also must guarantee minimum disturbance to the 

surroundings. In the case of wind power, these conditions mean that wind 

turbines should be located within a certain distance from residential areas to 

reduce noise and shadow effects. In the case of solar photovoltaic (PV), 

however, these constraints do not apply because this technology causes almost 

no noise or pollution. Therefore, different methodologies need to be developed 

for each renewable-energy-based power generation. 

2)  Projection of long-term electricity demand: MARKAL is a demand-driven 

model. The energy demand is driven by the availability of technologies and 

primary energy resources that can be exploited. Therefore, using the LEAP 

model, the electricity demand was forecasted in as much detail as possible. The 

model was used to develop different electrical demand projections based on 

different GDP growth scenarios, as the relationship between energy 

consumption and economic growth is widely documented in the energy 

economics literature. The scenarios in LEAP were generated to encompass all 

factors anticipated to change over time. 
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3) Development of the MARKAL-Bangladesh model: The exogenous parameters 

of power generation used for the development of the MARKAL-Bangladesh 

model can be grouped in three broad categories, namely i) power or energy 

demand, ii) availability of energy resources, and iii) conversion technologies. 

Issues like market price of power, fuel prices, etc., although individually 

important, are linked in this study with any one or with a combination of the 

above categories. Modeling with MARKAL requires establishment of 

relationships between technologies, activities and energy flows. The Bangladesh 

power sector was taken as the reference energy system and represents the 

activities and technologies in an energy system. It depicts energy demand, 

energy conversion technologies, fuel mixes, and the resources required to satisfy 

the energy demand.  

4) Modeling the Bangladesh power sector with special focus on renewable energy 

technologies: Like other economic scale models, the MARKAL model was 

originally designed and applied in developed economies at a time when 

renewable energies accounted for only a small share of the overall energy use, 

and when environmental problems were not of serious concern. Therefore, the 

renewable energy technologies do not represent the central focus of MARKAL, 

and there are no separate functions to handle renewable energy technologies in 

the model. Nevertheless, the model provides several parameters that can be 

applied to specify the existence of these technologies. The overall approach is 

that first characteristic of technologies are indentified, and then possible 

parameters are looked at to take these features into account. 

5) Scenario development: In the MARKAL model, several scenarios were 

developed to determine future power supply options in Bangladesh. The effects 

of the introduction of CO2 emission reduction targets and carbon taxes were also 

modeled to determine the consequential change in the structure of the power 

supply sector and to assess the potential reduction in CO2 emissions.  
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7.2 Interpretation of results 

Potential of renewable energy for power generation 

The results of this study reveal that Bangladesh has a good potential of renewable 

energy resources for power generation. Based on the four investigated resources, i.e., 

solar, wind, biomass and hydro energy, solar energy appears to be the most promising 

because i) the technical potential of solar PV is high (50174 MW), and ii) solar PV 

technologies are experiencing great improvements in technologies and cost reduction. 

The potential of wind, biomass and small-hydro is estimated at 4614 MW, 566 MW and 

125 MW, respectively. 

 

Electricity demand 

Total electricity consumption was 17.7 TWh in 2005 and is projected to increase 7.7 

times to 131.6 TWh by 2035 in the low GDP growth scenario. In the average and high 

GDP growth scenarios, the demand in 2035 shows an increase that is about 11 and 16 

times the 2005 value, respectively. The per capita electricity consumption increases 

from 128 kWh in 2005 to 658 kWh, 963 kWh and 1451 kWh in 2035 in the low, 

average and high GDP growth scenario, respectively. The consumption of electricity in 

the residential sector increases significantly, as almost the entire country is projected to 

be connected to the electricity network by 2035. In the average GDP growth scenario, 

the total residential sector consumption was 7.7 TWh in 2005 and is projected to 

increase about 8-fold to 64.5 TWh. In the industrial sector, electricity consumption is 

projected to increase about 14-fold by 2035. The agricultural sector demand also 

increases significantly over the analysis period. In 2005, total consumption was only 0.9 

TWh and increases about 11.4 times by 2035.  

 

Base scenario 

1) The total electricity generation capacity is expected to increase from 10.6 GW in 

2010 to 57.3 GW in 2035, i.e., at an average growth rate of 7 %.  

2) The share of gas-based power plants reduces from 90 % (9.6 GW) in 2010 to 39 

% (22.5 GW) in 2035 in total capacity, whereas the increase in the share of coal-

based power plants from 2.3 % (0.3 GW) in 2010 to 50 % (28.7 GW) in 2035 is 

extremely high. 
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3) The switch from gas- to coal-based power plants leads to a strong increase in 

coal consumption of 3.3 PJ in 2010 to 1784.3 PJ in 2035, i.e., at an average 

growth rate of 28.7 %. 

4) The proportion of imported coal in the total fuel consumption would increase 

substantially from 18 % (208.4 PJ) in 2025 to 54 % (1049.3 PJ) in 2035.  

5) The model predicts that electricity production is dominated by power plants 

based on advanced coal steam with flue gas desulphurization (FGD). These 

produce electricity amounting to 24 % (14 TWh) of the total power generation in 

2015 and 84 % (189 TWh) in 2035.  

6) The share of renewable energy technologies in overall capacity increases from 

4.13 % in 2005 to 9.71 % in 2035. 

7) The cumulative CO2 emission from the entire energy system is approximately 

2410 million tons between 2005 and 2035. It reaches 18.25 million tons in 2010 

and is expected to increase to 160 million tons in 2035. 

 

Cost minimization scenarios 

1) Advanced coal FGD plants are the best choice among all fossil-fuel-based 

technologies. 

2) In the renewable target production and null coal import scenarios, solar PV plays 

an important role in the generation of electricity, and the capacity is expected to 

grow by 14.2 GW and 40.8 GW, respectively, by 2035. Other renewable 

energies reach their allowed maximum capacity levels in these scenarios.  

3) The technology learning cost for solar PV enhances competitiveness of the 

technologies and lead to a higher rate of implementation of solar PV in the 

analysis period.  

4) The renewable target production scenario shows a 2.4 times higher renewable 

energy production capacity by 2015, about 4 times by 2025 and about 3.6 times 

by 2035. However, in the coal scenario, there is a much higher degree of 

renewable technologies implementation with a more than 8-fold capacity 

increase in 2035 over the base scenario 2005. 

5) The limited gas, renewable target production and null coal import scenarios 

reduce the overall energy system CO2 emissions by 28 million tons, 300 million 
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tons and 644 million tons between 2005 and 2035, respectively compared to the 

base scenario.  

6) The total system costs rise by an overall percentage increase of 1 %, 13 % and 

24 % in the limited gas, renewable target production and null coal import 

scenarios, respectively compared to the base scenario. 

 

CO2 emission reduction scenarios 

1) The introduction of CO2 emission reduction targets directly affects the shift of 

technologies from high carbon content to low carbon content fossil-based and 

clean renewable energy-based technologies. The total power generation capacity 

is expected to increase from 10.6 GW in 2010 to 84.7 GW, 92.6 GW and 101.5 

GW in 2035 in the 10% CO2 emission reduction (CO210), 20% CO2 emission 

reduction (CO220) and 30% CO2 emission reduction (CO230) scenarios, 

respectively. 

2) The model reveals that the least-cost solution is to use the limited gas reserves in 

the short-term period, although the gas-based combined cycle plants are mostly 

unused in the long-term period (2025 - 2035). That is why the power generation 

capacity based on coal FGD increases significantly in this period. 

3) The capacity share of renewable technologies in total power generation rises by 

20%, 29% and 35% in 2035 in the CO210, CO220 and CO230 scenarios, 

respectively. In these scenarios, 12.7 GW, 21.4 GW and 30.1 GW solar-PV-

based generation capacities, respectively, are additionally selected. 

4) The cumulative net energy imports 2005 - 2035 are reduced in the range of 1400 

PJ to 4898 PJ compared to the base scenario. The total primary energy 

requirement is reduced in the range of 5.5 - 15.2 %, and the primary energy 

supply system is diversified compared to the base scenario. 

5) The total system cost slightly rises by an overall percentage increase of 9 %, 25 

% and 45 % in the CO210, CO220 and CO230 scenarios, respectively. 

 

Carbon taxes scenarios 

1) Clean technologies such as solar PV and efficient technologies such as advanced 

coal combustion with FGD and gas-based CC power plants are selected in place 
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of less costly ones, thus enabling reductions in coal imports between 2005 and 

2035 compared to the base scenario import level of 9400 PJ in all tax scenarios. 

The low tax scenario allows a reduction in imported coal of about 10 %, 

contributing an only 0.3 % increase in system cost in 2005 - 2035. 

2) Import dependency reduces by 65 %, 84 % and 85 % in the medium, medium-

high and high tax scenarios, respectively, compared to the base scenario, but 

contributes to an increase in the total system costs of 12 %, 24 % and 63 %, 

respectively. 

3) Coal-based generation decreases from 2593 TWh in the base scenario to 2036 

TWh, 1750 TWh and 1391 TWh in the medium, medium-high and high tax 

scenarios, respectively, during the study period. 

4) Generation from renewable technologies increases from 210 TWh (5.8 %) in the 

base scenario to 739 TWh (20.3 %), 1020 TWh (28 %) and 1363 TWh (37.4 %) 

in the medum to high tax scenarios between 2005 and 2035.  

 

Robust solutions 

Based on the combined analysis of normal cost minimization, CO2 emission reduction 

target and carbon tax with cost minimization scenarios, it can be summarized that the 

accelerated development of renewable energy is the most robust solution for the 

Bangladesh power sector (renewable target production scenario).  Dependency on fossil 

fuel imports decreases by 34 % compared to the base scenario, but contributes to an 

increase in the total system costs of 13 % in the renewable target production scenario.  

The primary energy supply system would diversify from a system dominated by coal in 

the later period (2025 - 2035) to one involving a greater use of renewable resources in 

the renewable target production scenario. The analysis shows that the primary energy 

requirement would decrease, which would enhance the country’s energy security. 

Furthermore, the results show that the increase in total system costs for the reduction of 

cumulative CO2 emissions over the study period is around 1250 Taka/ton in the 

renewable target production scenario. A carbon tax could also be used for subsidies to 

accelerate development of renewable energy technologies, as their investment cost is 

relatively high. 
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7.3 Conclusions  

The model results show that none of the existing power plants are used during the 

analysis period. All scenarios suggest that investment in new and efficient higher-

capacity coal (coal steam with flue gas desulphurization), gas-based combined cycle and 

solar PV power plants are more economically viable than running the existing plants.  

The results also show that the degree of diversification in the total energy 

requirement would increase in all alternative scenarios. The primary energy supply 

system would diversify from a system dominated by coal in the later period (2025 - 

2035) to a system involving a greater use of renewable resources. The analysis shows 

the primary energy requirement would decrease in the scenarios with CO2 emission 

reduction targets and carbon taxes. This would enhance the country’s energy security.  

The results show that the increase in total system costs for reduction of 

cumulative CO2 emission over the study period is around 625 Taka/ton to 1910 

Taka/ton in all alternative scenarios, except in the low tax scenario where the CO2 

emission reduction is very low. These total system costs are much lower than those in 

developed countries, as the renewable-energy-based power generation is relatively 

much cheaper in Bangladesh. This study also provides an overall picture of the 

renewable energy potential, and demonstrates to which extent renewable energy 

technologies can be integrated into the Bangladesh power sector. It could thus be 

attractive for developed countries (so-called Annex 1 countries in the UNFCCC) to 

invest in renewable energy technologies, specifically in solar PV, in Bangladesh to 

reduce their committed CO2 emissions defined in the Kyoto Protocol through the clean 

development mechanism (CDM). 

Furthermore, both targets for reduction of CO2 emissions and carbon taxes are 

to be fixed with respect to the capacity of the economy to bear the extra cost of emission 

reduction. The cost should also be compared with other means of reducing CO2 

emissions. For example, attention should be paid to the conservation measures, such as 

the use of efficient end-use equipment e.g., compact fluorescent lamp (CFL), electronic 

ballast for lighting. These measures would lead to some additional costs but would 

decrease the electricity demand, and this decrease in demand would in turn lower the 

CO2 emission level. These alternatives are to be weighed with respect to each other 
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before finalization of a national energy policy for CO2 emission reduction targets or 

carbon taxes. 

As the solar potential is relatively very high, the mission for next 20 years 

should be to make Bangladesh a solar energy country. Such a national solar energy 

mission should be a major issue of the government of Bangladesh with the aim to 

promote ecologically sustainable growth while addressing the country’s energy security 

challenge. This would also constitute a major contribution by Bangladesh to the global 

effort to meet the challenges of climate change.    

Achieving these promising objectives will require visions, strong policy 

support and the recognition that the higher near-term investment costs will be paid back 

in the long run with significantly lower costs for imported fuels, cleaner air and 

reasonable energy security for Bangladesh. 

 

Limitations of MARKAL 

1) Since the economic and energy demand projections are exogenous in the 

standard MARKAL model, there is no feedback between the technology mix 

and the technology drivers. For example, a change in the technology mix toward 

better efficiency cannot cut total demand or change fuels prices. 

2) Due to the nature of linear programming, MARKAL always chooses the least-

cost solution. In that case, energy services with the lowest cost will be taken for 

the entire market, and the competitors with only slightly higher costs will be 

excluded. 

3) To simulate the decisions needed for definition of the necessary energy supplies 

to satisfy the projected energy demand, MARKAL does not capture detailed 

characterictics of technologies, i.e., the hourly load profile, which is an 

important parameter considering the intermittent output of renewable energy 

technologies. This thus leads to a rough assessment of the influence of 

renewable energy technologies within the power generation system. 

4) The MARKAL model can answer the questions: i) when to invest in new 

generation units, ii) what type of generation units to install, and iii) what 

capacity of generating units to install. However, it cannot answer the question 

iv) where to invest in new generating units. 
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Limitations of the study 

One of the difficulties in this study was the availability of reliable data on the energy 

sector, since up to now no independent energy statistical organization has existed in 

Bangladesh. Therefore, the data used in this study were collected from different sources 

such as the Bangladesh Power Development Board, Power Cell, Ministry of Power, 

Energy and Mineral Resources, Petrobangla, numerous research studies, and from 

national and international publications. When processing these data, special attention 

was paid to synchronizing the data consistently. In cases where data was not readily 

available, the data was estimated based on internationally accessible information and 

data from various organizations and publications, taking into account the specific 

conditions in Bangladesh. Emission levels were estimated based on literature. 

Some forms of renewable energy are not considered such as solar thermal, 

wave energy, tidal and fuel-cell energy, because their development technologies are not 

advanced and are not suitable for Bangladesh.  

The costs of the renewable energy technologies are the main factor affecting 

the selection of the representative technology. The cost can be unrealistic based on 

dependence of technology development. 

All technologies with the same input and output are presented by one 

representative technology in MARKAL without considering the locations.  

 

Outlook 

The standard version of the MARKAL-Bangladesh model can be used for various 

energy-related studies. An expansion of the model can be done using the total energy 

system with the MACRO model. MARKAL-MACRO merges the bottom-up 

engineering to top-down macro-economic approaches, adds price elasticity to energy 

service demand, and links changes in the energy system to the level of economic 

activity while maintaining the technological richness and flexibility of MARKAL. 
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