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Abstract  VII

MicroRNAs in the bovine ovary and placentas derived from in vivo, in vitro and nuclear 

transfer pregnancies 

 

MicroRNAs are the major class of gene regulating molecules playing pivotal roles at post-

transcriptional level. Identification and expression profiling are the initial steps to understand 

their regulation of biological processes. Despite increasing efforts in miRNAs characterization 

in different species, little is known in the bovine reproductive tissues especially in ovary and 

placenta. Two subsequent studies were carried out to the expression of miRNAs in bovine ovary 

and Day-50 placenta derived from different sources of pregnancy. The first study aims to 

identify and characterize miRNAs in bovine ovary through cloning, expression analysis and 

target prediction. The constructed miRNA library revealed cloning of 50 known and 24 novel 

miRNAs. Among these, 38 were new miRNAs which were derived from 43 distinct loci with 

characteristic secondary structure. Most of the miRNAs were cloned multiple times and thereby 

reflecting their expression level and potential role in the ovary. Analysis of identified miRNAs 

in different intra-ovarian structures and other tissues reveals their stage and tissue specific 

expression patterns. Furthermore, in silico target prediction and Gene Ontology analysis of the 

targets genes identified several biological processes and pathways underlying the ovarian 

function. Results of this study suggest the presence of miRNAs in the bovine ovary; thereby 

elucidate their potential role in regulating diverse mechanisms underlying the ovarian 

functionality.  

 

The second study aimed to elucidate the difference in expression profile of miRNAs in the 

placenta at day 50 derived from Somatic cell nuclear transfer (SCNT), in vitro production (IVP) 

and artificial insemination (AI) pregnancies by quantifying 377 miRNAs. The study reveals a 

massive deregulation of miRNAs which were poorly reprogrammed and affected as large 

chromosomal cluster as well as miRNA families in the NT and IVP placenta compared to that 

of AI. Furthermore, cell specific localization miRNAs in the expanded blastocysts and 

expression profiling in different developmental stages of embryos and placenta identified that 

the major deregulation of miRNAs arises at day 50 of NT and IVP pregnancies. This 

deregulation were found to be less dependent on global DNA methylation, rather aberrant 

miRNA processing molecules were evidenced. Among them, observed down regulation of 

AGO2 could be a reason for global down regulation of miRNAs in the NT or IVP placenta. 

Identified deregulation of miRNAs might associate to the abnormal placentogenesis in NT or 

IVP pregnancies, which are the results of aberrant genetic and epigenetic modification. Result 

of this study will help to move one step closer towards improving the efficiency of nuclear 

transfer pregnancy.  

 

Altogether, the present study has discovered miRNAs in the bovine ovary and elucidated the 

pattern of expression of miRNAs along with their regulatory mechanism in the placenta derived 

from pregnancies of various origins. 



Abstract (German)  VIII

Untersuchung von MicroRNAs in bovinen Ovarien und Plazenten aus geklonten, in 

vivo und in vitro erzeugten Trächtigkeiten 

 

MicroRNAs gehören zur großen Klasse der genregulierenden Moleküle und spielen eine 

bedeutende Rolle auf der posttranskriptionellen Ebene. Die Identifikation und die Erstellung 

von Expressionsprofilen sind die ersten Schritte für ein besseres Verständnis der miRNA und 

ihrer Beteiligung an der Regulierung von biologischen Prozessen. Trotz der zunehmenden 

Charakterisierung der miRNA in verschiedenen Spezies, sind kaum Untersuchungen in bovinen 

Ovarien und Plazenten bekannt. In zwei Studien wurde die miRNA Expression in bovinen 

Ovarien und in Plazenten am Tag 50 der Trächtigkeit, in unterschiedlich erzeugten 

Schwangerschaften untersucht. Das Ziel der ersten Studie war die Identifizierung und 

Charakterisierung von miRNAs in klonierten bovinen Ovarien, Expressionsanalysen sowie 

Target-Vorhersagen. Die konstruierte miRNA-Bibliothek ergab 50 bekannte und 24 neue 

miRNAs. Unter diesen waren 38 neue bovine miRNAs die von 43 eindeutigen Loci abgeleitet 

werden konnten, die eine charakteristische sekundäre Struktur zeigten. Durch die mehrfache 

Klonierung der meisten miRNAs, konnte ihr Expressionsniveau in den Ovarien erfasst werden. 

Analysen von miRNAs in unterschiedlichen intra-ovariellen Strukturen sowie anderen Geweben 

zeigten ihr phasen- und gewebsspezifisches Expressionsmuster. Des Weiteren konnte durch 

bioinformatische Auswertungen und Gen Ontology Analysen der Target Gene verschiedene 

biologische Prozesse und Pathways der Ovarienfunktion identifiziert werden. Die Ergebnisse 

dieser Studie deuten auf das Vorhandensein von miRNAs in bovinen Ovarien hin und 

verdeutlichen die potenzielle Bedeutung in der Regulierung diverser Mechanismen der 

Ovarienfunktion. Die zweite Studie sollte die Unterschiede von Expressionsprofilen von 

miRNAs in Plazenten am Tag 50 der Trächtigkeit von SCNT, IVP und AI Schwangerschaften 

durch Quantifizierung von 377 miRNAs aufklären. Die Studie zeigte eine starke reduzierte 

Expression und eine geringe Reprogrammierung der miRNAs in NT und IVP im Vergleich zu 

AI. Diese miRNAs gehören vermutlich zu einer miRNA Familie in einem chromosomalen 

Cluster. Des Weiteren zeigten zellspezifische Lokalisationen von miRNAs in der 

expandierenden Blastozyste und Expressionsprofile von unterschiedlichen Entwicklungsstadien 

im Embryo und in der Plazenta, dass die wichtigsten Deregulierungen von miRNAs am Tag 50 

der Trächtigkeit in NT und IVP entstehen. Diese Deregulierung erwies sich als weniger 

abhängig von einer globalen DNA-Methylierung, vielmehr wurde eine Abweichung in den 

miRNA-Prozessgenen belegt. Von diesen könnte die reduzierte Expression von AGO2 die 

Ursache für die globale Deregulierung der miRNAs in NT oder IVP Plazenten sein. Die 

identifizierten Deregulationen der miRNAs könnten im Zusammenhang mit abnormaler 

Plazentogenese in NT oder IVP Trächtigkeiten stehen. Die Ursachen für Abnormalitäten in der 

Plazentogenese liegen in genetischen und epigenetischen Modifikationen.  

Zusammenfassend konnte durch diese Studien miRNAs in bovinen Ovarien identifiziert werden 

und Expressionsmustern der miRNAs sowie ihre regulierenden Mechanismen in der Plazenta 

von unterschiedlichen Trächtigkeiten beschrieben werden.  
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General introduction 1

1 General introduction 

 

1.1 miRNAs in the bovine ovary 

 

Folliculogenesis is the result of series of complex and coordinated processes, which 

include morphological and functional changes in different types of follicular cells and 

their interactions. Sequential recruitment, selection and growth of the follicles, atresia, 

ovulation and luteolysis are dynamically regulated events that occur on a cyclical basis 

within the ovary. These processes are under control of closely coordinated endocrine 

and paracrine factors to develop a number of ovulatory follicles that are species and 

breed dependent (Hunter et al. 2004). All those events entail substantial changes and 

balance between many processes such as the cell cycle, cellular growth, proliferation, 

differentiation, angiogenesis, steroidogenesis and atresia to determine the ultimate fate 

of follicles. All of these steady state cyclic changes are controlled by tightly regulated 

expression and interaction of a multitude of genes in different compartments of the 

ovary (oocyte, cumulus granulosa, mural granulosa cells and theca cells) to facilitate 

oocyte development (Bonnet et al. 2008).  

 

In oogenesis and embryo development, there are different mechanisms regulating gene 

expression at the post-transcriptional level. These include events of mRNA adenylation 

and deadenylation, the CAP structure at the 5’ end of the mRNA and the effective 

action of mRNA binding factors (Eichenlaub-Ritter and Peschke 2002, Piccioni et al. 

2005). Recently, a new post-transcriptional gene regulation is opened up after promising 

discovery of hundreds of miRNAs in different mammalian species. Diverse expression 

pattern of miRNAs and high number of their potential target mRNAs suggests their 

involvement in the regulation of various developmentally related genes at post-

transcriptional level (Alvarez-Garcia and Miska 2005, Ambros 2004, Bartel 2004, Chen 

and Rajewsky 2007, Lai 2003, Lau et al. 2001, Plasterk 2006). The tiny (18-24 nt in 

length) and single-stranded miRNAs are derived from primary transcripts termed as 

"pri-miRNAs”, which have an RNA hairpin structure of 60-120 nt with a mature 

miRNA in one of the two strands. This hairpin in turn is cleaved from the pri-miRNA in 

the nucleus by the double-strand-specific ribonuclease, Drosha (Lee et al. 2002). The 

resulting precursor miRNA (or pre-miRNA) is transported to the cytoplasm via a 

process that involves Exportin-5 (Yi et al. 2003) and subsequently cleaved by Dicer 
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(Lee et al. 2003) to generate a short, double-stranded (ds) RNA duplex. One of the 

strands of the miRNA duplex is incorporated into a protein complex termed RNA 

induced silencing complex (RISC). RISC is guided by the incorporated miRNA strand 

to mRNAs containing complementary sequences in 3´ untranslated region, which 

primarily results in inhibition of mRNA translation (Pillai et al. 2005). Those mRNAs 

which are repressed by miRNAs are further stored in the cytoplasmic foci called P-

bodies (Liu et al. 2005a, Liu et al. 2005b, Rehwinkel et al. 2005).  

 

Several studies have shown the involvement of miRNAs in animal development. 

Inhibition of miRNA biogenesis has resulted in developmental arrest in mouse and fish 

(Bernstein et al. 2003, Giraldez et al. 2005, Wienholds et al. 2003). Similarly, loss of 

important miRNA processing machinery, Dicer1 resulted in female infertility in mouse 

(Otsuka et al. 2007, Otsuka et al. 2008). Targeted knockdown of mir-17-5p and let-7p in 

wild type mice revealed impaired corpus luteum (CL) angiogenesis and decreased 

serum progesterone levels. In the same study, injection of these miRNAs revealed the 

restoration of vasculature within the CL and increased progesterone levels (Otsuka et al. 

2008). In addition to loss-of-function approach, efforts have been done to identity 

miRNAs by cloning. For example, small RNA-cDNA libraries from the ovaries of 2-

wk-old and adult mice have generated a number of miRNAs with potential role in 

ovarian function (Ro et al. 2007b). Subsequent study on ovarian miRNAs in mouse 

showed the post-transcriptional regulation of CtBP1 gene by miR-132 and miR-212 in 

cultured granulosa cells (Fiedler et al. 2008). In addition to miRNA, several other non-

coding small RNAs including rapiRNAs, napiRNAs, rasiRNAs and tncRNAs are 

identified and reported in different species (Ambros et al. 2003b, Aravin et al. 2003, 

Reinhart et al. 2002).  

 

Bio-informatic approaches and construction of small RNA-cDNA libraries from bovine 

adipose tissue, mammary gland, embryo, thymus, small intestine, mesenteric lymph 

node and abomasum lymph node have identified most of presently annotated bovine 

miRNAs (Coutinho et al. 2007, Gu et al. 2007). The number of bovine miRNAs (117) 

in comparison to Human (695), Chicken (475), Mouse (488), Chimpanzee (595), 

Rhesus Monkey (463) in miRBase 12.0 are inadequate to disclose global miRNAs 

regulation of gene expression for various biological functions and disease conditions. 

Recently, the dynamics of miRNAs expression during bovine oocyte maturation in vitro 
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have been studied using heterologous approach (Tesfaye et al. 2009). This together with 

previous report in mouse supports the possible role of miRNAs during follicular 

development and oocyte growth. Identifying entire set as well as ovary-specific 

miRNAs may lead to understanding miRNA-guided gene regulation in the ovary. So, 

the present study has been conducted with the objective to get insight into the miRNA 

population present in bovine ovary by investigating their characteristics, expression 

pattern and features of their target genes. 

 

1.2 miRNAs in the placentas derived from in vivo, in vitro and somatic 

cell nuclear transfer pregnancies 

 

Animal Cloning is a break-through technology with emerging potential applications in 

agricultural and biomedical research, but the technology is hindered by very low rates of 

live birth due to high incidence of placental abnormalities leading to embryonic losses 

(De Sousa et al. 2001, Hill et al. 2000, Humpherys et al. 2002, Ogura et al. 2002, Ono et 

al. 2001, Stice et al. 1996, Yang et al. 2007). The major source of these abnormalities is 

thought to be due to genetic and epigenetic modifications arise from improper 

reprogramming of the donor cell after nuclear transfer, but the effect last long 

throughout the embryonic development (Jouneau and Renard 2003, Latham 2004, 

Piedrahita et al. 2004, Santos and Dean 2004, Smith and Murphy 2004, Tamada and 

Kikyo 2004).  

 

Incomplete epigenetic reprogramming of the donor cell nucleus by the cytoplasm of the 

oocyte during early development leads to postimplantation lethality with ultimate 

placental defects (Lambertini et al. 2008, Niemann et al. 2008, Wagschal and Feil 2006, 

Yang et al. 2007). Key mechanisms underlying this epigenetic reprogramming are DNA 

methylation, histone remodeling and telomere maintenance, which are involved in the 

control of gene expression, X chromosome inactivation and genomic imprinting 

(Holmes and Soloway 2006, Li et al. 1993, Perecin et al. 2009), but all mechanisms are 

not contributing equally to the embryonic and extra-embryonic lineage (McGrath and 

Solter 1984, Oudejans et al. 1997, Surani et al. 1984, Wagschal and Feil 2006). 

Specially, genomic imprinting has been shown to be less or not dependent on DNA 

methylation in the placenta for its somatic maintenance than in the embryo. Rather, 

placenta-specific imprinting involves repressive histone modifications and non-coding 
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RNAs (Brockdorff 2002, Higashimoto et al. 2002, Lewis et al. 2004, Li et al. 1993, 

Sado et al. 2000, Sado and Ferguson-Smith 2005, Yatsuki et al. 2004).  

 

When considering non-coding RNAs, miRNAs a recently discovered class of small 

RNAs appeared as first and foremost epigenomic tool or modifier that regulate gene 

expression epigenetically at the post-transcriptional or transcriptional level and were 

found to play important roles including but not restricted to cell proliferation, apoptosis, 

diseases and differentiation during mammalian development (Ambros 2004, Bartel 

2004, Kloosterman and Plasterk 2006). They were found to be targeted by epigenetic 

modification and eventually controlling epigenetics and some imprinted miRNAs found 

to undergo subsequent epigenetic reprogramming in mouse embryos (Cui et al. 2009, 

Kircher et al. 2008, Williams et al. 2007). Many of the miRNAs have been predicted 

and found to have pivotal roles in controlling DNA methylation, regulating chromatin 

structure and controlling telomere recombination (Benetti et al. 2008a, Benetti et al. 

2008b, Fabbri et al. 2007, Guil and Esteller 2009, Lewis et al. 2005, Lujambio and 

Esteller 2007, Ting et al. 2008, Valeri et al. 2009). Interestingly, they could be 

imprinted like genes and many of X-linked microRNAs escape meiotic sex 

chromosome inactivation (Kanellopoulou et al. 2009, Song et al. 2009). 

 

Taking all promising information together, this experiment has been conducted to 

answer even more deep question by quantifying 377 miRNAs in the placenta derived 

from artificial insemination (AI), in vitro produced (IVP), nuclear transfer (NT) 

pregnancy at day 50 and in the donor fibroblast cells along with their detailed 

characterization. Present study hypothesized that aberrant expression of transcriptional 

regulatory miRNA molecules during redifferentiation for placentogenesis leading to 

abnormal genetic and epigenetic modification in the placenta of cloned conceptuses are 

likely caused by re-programming errors after cloning and in vitro culture. The 

objectives of the study were to identify the expression pattern of miRNAs in the 

placentas derived from in vitro and nuclear transfer pregnancies compared to the 

placenta from the in vivo or artificial insemination pregnancies. 
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2 Literature review 

 

This chapter addresses the fundamental aspects and current knowledge on miRNAs 

mediated regulation of bovine ovarian development, folliculogenesis, ovarian 

steroidogenesis, fertilization, early embryonic development, implantation and placental 

functions in addition to the overview of miRNAs biosynthesis and their mechanisms of 

regulation of gene expression. Sound ovarian physiology and folliculogenesis is leading 

to ovulation of competent oocyte, which is directly related to successful fertilization, 

embryogenesis and subsequently pregnancy outcome. So, beside the major 

investigations on miRNAs which are carried out in the ovary and placenta derived from 

artificial insemination, in vitro production and nuclear transfer pregnancy for this 

dissertation, miRNAs in other associated sequential events are also presented to 

maintain logical flow and their inter-relationship. However, a large portion of this 

review is focused on basics of ovary and placenta in relation to miRNAs. The review 

concludes in the end of respective sections with a problem statement and the rationale 

for conducting the research contained within this dissertation. 

 

2.1 Brief overview of miRNAs 

 

Genomic research over the past few years has exposed a striking result in the discovery 

of noncoding RNAs (ncRNAs) as a representation of a substantial component of all 

metazoan genomes. Among the noncoding RNAs, microRNAs (miRNAs), so called 

because of their tiny size (~18-24 nucleotides long) currently represent a new class of 

small RNA molecules, those are receiving the highest interest as they inhibit translation 

and/or induce degradation of protein-coding mRNAs that contain complementary 

sequences to miRNAs (Gu et al. 2007, Ying and Lin 2006). miRNAs are first identified 

simply as a part of 'junk' RNA, in 1993 by Victor Ambros and his colleagues Rosalind 

Lee and Rhonda Feinbaum at Harvard University, while studying developmental 

mutants of the nematode Caenorhabditis elegans. During analyzing a putative 'protein', 

lin-4, a sequence regulating heterochronic temporal control of development, the 

research team has identified that lin-4 has no protein, but actually a short hairpin RNA. 

Since the discovery of the founding members of the microRNA family, lin-4 and let-7 

(Lee et al. 1993, Reinhart et al. 2000, Wightman et al. 1993), hundreds of miRNAs have 

been identified in insects, plants, animals and viruses by small RNA cDNA library 
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construction, advance sequencing techniques and bioinformatic analysis (Berezikov et 

al. 2006, Lau et al. 2001, Lee et al. 2001, Stark et al. 2007). miRNAs were found to 

down regulate gene expression by base pairing with the 3´ untranslated regions (3´ 

UTRs) of target messenger RNAs (mRNAs) (Lee et al. 1993, Reinhart et al. 2000, 

Wightman et al. 1993). Advances in the analysis of this widespread class of miRNA 

molecules after initial discovery, has opened up a new layer of gene regulation in many 

organisms. Mechanism for the generation of miRNAs in the cells, their mode of 

regulation as well as the available methodological approaches to study such miRNAs 

mediated post transcriptional gene regulation are presented bellow.  

 

2.1.1 Biogenesis of miRNAs and their regulation of gene expression 

 

Following sections highlight the synthesis of miRNAs, from primary transcription up to 

formation of mature functional state through a group of processing factors and miRNAs 

mediated genetic or epigenetic regulation of post transcriptional gene expression. 

 

2.1.1.1 Biogenesis of miRNAs 

 

Most miRNA genes are transcribed by RNA polymerase II (Pol II) to generate a 

primary transcript called ‘primary miRNA’ (pri-miRNA), which can range in size from 

several hundred nucleotides (nt) to tens of kilobases (kb) (Cai et al. 2004, Lee et al. 

2004) (Figure2.1). Like mRNAs, Pol II transcribed pri-miRNAs contain 5’ cap 

structures, are polyadenylated and may be spliced (Bracht et al. 2004, Cai et al. 2004). 

The tiny (18-24 nt in length) and single-stranded miRNA molecule, derived from this 

pri-miRNAs, having a RNA hairpin structure of 60-120 nt with a mature miRNA in one 

of the either two strands (Figure 2.1). The pri-miRNA is processed within the nucleus 

by a multi-core protein complex called the Microprocessor, which is composed of the 

RNAse III enzyme Drosha and the double-stranded RNA binding domain (dsRBD) 

protein DGCR8/Pasha (Denli et al. 2004, Gregory et al. 2004, Han et al. 2004, 

Landthaler et al. 2004, Lee et al. 2003). This microprocessor cleaves the hairpin from 

the pri-miRNA in the nucleus (Lee et al. 2002). The resulting precursor miRNA (pre-

miRNA) is transported to the cytoplasm via a process that involves binding of Exportin-

5 to pre-miRNA through recognizing the 2-nt 3’overhang produced by RNAse III 

mediated cleavage (Yi et al. 2003). This pre-miRNA undergoes a cleavage mediated by 
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another RNAse III enzyme, Dicer, which interacts with the dsRBD proteins TRBP to 

generate the mature ~22nt miRNA:miRNA* duplex (Chendrimada et al. 2005, 

Forstemann et al. 2005, Hutvagner et al. 2001, Jiang et al. 2005a, Ketting et al. 2001, 

Lee et al. 2003, Lee et al. 2006, Saito et al. 2005). Subsequently, TRBP/Loquacious 

recruits the Argonaute protein and together with Dicer they form a trimeric complex 

that initiates the assembly of the RNA-induced silencing complex (RISC), a 

ribonucleoprotein (RNP) complex (Gregory et al. 2005, Maniataki and Mourelatos 

2005). Based on the relative stability of the two ends of the duplex, the miRNA strand, 

with relatively unstable base pairs at the 5’ end, remains incorporated into the RISC, 

whereas the passenger strand, or miRNA* strand, is degraded (Leuschner and Martinez 

2007, Matranga et al. 2005, Schwarz et al. 2003). 

 

 

Figure 2.1: Biogenesis of miRNAs and their mechanism of gene regulation. 

Argonaute proteins 1-4 (Ago1-4), inhibition of initiation of translation (-), 

Promoting deadenylation (+), 7-methyl-G cap (m7G)  

 

Recently, it is proposed that an alternative pathway also involved in microRNA 

biogenesis from the pre-miRNA hairpin to the mature functional miRNA (Diederichs 

and Haber 2007)(Figure 2.2) where, Ago2 has been found as a highly specialized 

member of the Argonaute family with an essential nonredundant Slicer-independent 

function within the mammalian miRNA pathway (O'Carroll et al. 2007). Ago2-

mediated pre-miRNA cleavage has been observed in the processing of miRNAs derived 

from the 5´-arm of the pre-miRNA hairpin having no mismatches at the immediate 
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cleavage site (Diederichs and Haber 2007, Han et al. 2006). The product of Ago2-

mediated pre-miRNA cleavage (ac-pre-miRNA), was found to be an intrinsic on-

pathway intermediate during miRNA biogenesis and hence a substrate to Dicer, or it 

could be a byproduct which cannot be further processed toward the mature miRNA. 

These data identify the ac-pre-miRNA as a pathway intermediate in miRNA biogenesis 

that is generated from the pre-miRNA by Ago2 and serves as a substrate for Dicer to 

mature into the active miRNA. Although some microRNAs are processed by Drosha 

(also known as Rnasen), its maturation does not require Dicer. Instead, the pre-miRNA 

becomes loaded into Ago and is cleaved by the Ago catalytic centre to generate an 

intermediate 3´ end, which is then further trimmed and processed into mature miRNA 

(Cheloufi et al. 2010). So, Ago2-mediated cleavage of pre-miRNAs, followed by 

uridylation and trimming, generates functional miRNAs independently of Dicer 

(Cifuentes et al. 2010). 

 

 

Figure 2.2: Alternative model of miRNA processing including the ac-pre-miRNA. 

After nuclear export, the pre-miRNA binds to a preformed complex of 

Dicer, TRBP and Ago2 to build the RISC-Loading Complex (RLC). This 

model of miRNA processing includes an additional endonuclease step in 
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which Ago2 cleaves the pre-miRNA within the RLC generating the nicked 

ac-pre-miRNA hairpin (shown in gray box). The impact of Dicer and TRBP 

on the Ago2 cleavage step, as well as the influence of Ago2 to Dicer 

cleavage, have not been determined, these proteins are depicted with a 

dashed outline. Since miRNA maturation is diminished but not completely 

abrogated in Ago2-KO MEF cells, a less efficient salvage pathway is likely 

to exist that either omits the ac-pre-miRNA (left arm of the pathway) or 

generates it by using a different, unknown RNase. The left arm of the 

pathway is also likely used for miRNAs derived from the 3´ arm of the pre-

miRNA and miRNAs with mismatches at the cleavage site. After cleavage 

by Dicer, the resulting miRNA duplex is unwound, Dicer and TRBP 

dissociate, the passenger strand of the miRNA duplex is degraded and the 

mature miRNA forms the RISC together with Ago2. The stabilization of 

mature miRNAs by Ago proteins is independent of this Ago2-specific 

processing step (modified from Diederichs and Haber 2007). 

 

2.1.1.2 miRNA mediated regulation of gene expression 

 

miRNAs incorporated within the RISC complex, direct RISC to downregulate 

expression of target mRNAs containing complementary sequences in 3´ untranslated 

region to 7- to 8-nt region of 5´ end of miRNA called seed sequence (Pillai et al. 2005) 

(Figure 2.1). Depending on the degree of complementarity between the miRNA and the 

target sequence, mRNAs are either cleaved or degraded (perfect or near perfect 

complementarity) or their translation is repressed (imprecise complementarity) 

(Hutvagner and Zamore 2002, Martinez and Tuschl 2004). The miRNP complex which 

is loaded onto the target mRNA exhibits direct or indirect effect in translational 

repression. Direct effects occur either through inhibition of initiation of translation 

through binding of Ago2 to m7G (7-methyl-G cap) results in prevention of ribosome 

association with the target mRNA, or through inhibition of translation post-initiation, 

which includes premature ribosome drop off, slowed or stalled elongation and co-

translational protein (Figure 2.1).  

 

In addition to direct effects on translation (or protein accumulation), miRNPs can have 

other effects on targeted mRNAs, including promoting deadenylation, which might 
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result in degradation (increased turnover) (Nilsen 2007). Recent reports have also 

indicated that miRNA with or without perfect sequence complementarity, can cause an 

increase in mRNA degradation by endonucleolytic cleavage or deadenylation, 

respectively (Jackson and Standart 2007) or changes in proteins associated with RISC 

can cause a shift from translational inhibition to translational enhancement (Orom et al. 

2008, Vasudevan et al. 2007). Translational repression and/or deadenylation occurs 

followed by decapping and exonuclease mediated degradation if base-pairing is partially 

complementary or in the case of perfect complementarity and provided the miRNP 

contains specifically Ago2, may result in endonucleolytic cleavage of the mRNA at the 

site where the miRNA is annealed (Standart and Jackson 2007). Those mRNAs which 

are repressed by miRNAs are further stored in the cytoplasmic foci called P-bodies (Liu 

et al. 2005a, Liu et al. 2005b, Rehwinkel et al. 2005). miRNAs have found to play an 

integral part of animal gene regulatory networks as one of the most abundant classes of 

gene regulators. Roughly 30% of all animal genes are predicted to be targeted by 

miRNAs. An algorithm which attempts to identify miRNA target sites without relying 

on cross-species conservation or miRNA sequences (Miranda et al. 2006) predicts even 

higher numbers of miRNA regulated genes.  

 

2.1.1.3 Regulation of genes by miRNA mediated epigenetics 

 

The term epigenetics refers to all heritable changes in gene expression that are not 

associated with concomitant alterations in the DNA sequence. Reversible DNA 

methylation and histone modifications are known to have profound effects on 

controlling gene expression. Correct DNA methylation patterns are paramount for the 

generation of functional gametes with pluripotency states, embryo development, 

placental function and the maintenance of genome architecture and expression in 

somatic cells. Aberrancies in both the epigenetic and in the miRNA regulation of genes 

have been documented to be important in diseases and early development. However, 

little is known about the miRNAs mediated epigenetic processes or epigenetic control 

of miRNAs expression, which could be potentially involved in regulating reproduction 

and early development. The potential role of Dicer has been postulated in 

heterochromatin formation (Fukagawa et al. 2004). In addition, Dicer-deficient mutants 

are shown to reduce epigenetic silencing of expression from centromeric repeat 

sequences as a result of alterations in DNA methylation and histone modifications 
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(Kanellopoulou et al. 2005). As contradictory to this, no apparent changes were 

observed in the centromeric heterochromatin later on (Murchison et al. 2005). However, 

result in the recent study has shown the Dicer deficient stem cells to have reduced levels 

of both de novo DNA methylation and DNA methyltransferases (Dnmts) (Benetti et al. 

2008b, Sinkkonen et al. 2008) as well as increased telomere recombination and 

elongation (Benetti et al. 2008b). This result supports a model in which the miR-290 

cluster maintains ES cells by controlling de novo DNA methylation via Rbl2 and 

indirectly telomere homeostasis and by repressing the self-renewal program through 

modulating the epigenetic status of pluripotent genes upon differentiation [reviewed in 

(Wang et al. 2009)].  

 

Epigenetic regulation by the miRNAs has opened up a new dimension of mode of 

regulation from translational suppression and classical RNAi degradation. In addition to 

regulation of gene expression at the posttranscriptional level in the cytoplasm, recent 

findings suggest additional roles for miRNAs in the nucleus. miRNAs which are 

encoded within the promoter region of genes could be involved in silencing such genes 

at transcriptional level epigenetically. Such cis-regulatory roles of miRNAs have been 

observed in transcriptional silencing of POLR3D expression and endothelial nitric oxide 

synthase (eNOS) promoter activity (Kim et al. 2008, Zhang et al. 2005). Moreover, 

miR-122 has been shown to facilate replication of hepatitis C viral RNAs without 

affecting mRNAs translation or RNA stability (Jopling et al. 2005).  

 

Recently, aberrant epigenetic reprogramming of imprinted miR-127 in cloned murine 

embryos has been reported in relation to the aberrant epigenetic reprogramming of the 

mouse retrotransposon-like gene Rtl1 (Cui et al. 2009). miRNA mediated switching of 

chromatin remodeling complexes in neural development by repression of BAF53a has 

been observed in mouse (Yoo et al. 2009). This repression is accomplished through the 

3´ UTR of BAF53a and mediated by the simultaneous activities of miR-9* and miR-

124. Repressor-element-1-silencing transcription factor participates in this switch by 

repressing miR-9* and miR-124, thereby permitting BAF53a expression in neural 

progenitors. Interestingly, the aberrant DNA methylation and histone modifications 

were found to simultaneously induce silencing of miRNAs in colorectal cancer 

(Bandres et al. 2009). The relation of miRNA and epigenetics is presently being 

elucidated. So, much less is known about the specific miRNA and their targets to 
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regulate epigenetic machinery or epigenetic regulation of specific miRNAs that are 

required for normal physiological condition or for any phenotypic effects, but this area 

of research is rapidly moving forward. 

 

2.1.2 Methodological approaches to discover, expression profiling and functional study 

of miRNAs 

 

Substantial attempts have been made to recognize new miRNAs like molecules since 

their early discoveries. The approaches, which were effectively used to identify new 

miRNA sequences, can be classified in to four major groups. Those are - computational 

approach, through library construction, heterologous approach and finally by advanced 

nucleotide sequencing methods. The least proficient advance is the identification of 

miRNAs through computational approach or genetic screening. In addition to lin-4 and 

let-7 miRNAs, founder member of miRNAs family, hundreds of miRNAs in different 

species has been identified by forward genetic screening. But now-a-days the most 

efficient way of miRNA discovery is through construction of cDNA libraries of 

endogenous small RNAs (Ambros and Lee 2004, Berezikov et al. 2006). Different 

approaches to construct small RNAs cDNA library are presented in the figure 2.3. 

Briefly, size-fractioned RNA from diverse sources is ligated to 5' and 3' adapter 

molecules, which are then, reverse transcripted and subsequently amplified by PCR in 

order to construct a cDNA library. The PCR products are concatemerized by DNA 

ligation and cloned into the sequencing vectors for identification (Berezikov et al. 

2006). Small RNA is discovered by cDNA cloning, is categorised as a miRNA when it 

meets up certain criteria. First, the small RNA sequence should be at the arm of a 60-80 

nucleotide hairpin RNA structure.  

 

Second, if the small RNA is not cloned repeatedly, the expression of the small RNA 

should be established experimentally, classically by Northern blotting or by other 

defined methods. The sequence in most cases should also be phylogenetically conserved 

between related species (Ambros et al. 2003a). Third, the heterologous approach refers 

detection of known miRNAs from known species in a new species followed by detailed 

characterizations. This approach is carried out either by real time qRT-PCR or through 

microarray based technologies or by the both methods. However, the approach is 

limited to only conserve miRNAs families and requires further validation either by 
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sequencing or by northern blotting. So, one of the limitations of heterologous 

approaches is the requirement of prior sequence information, to be used for probe 

design. Until recently, this method has been limited mostly to that found in public 

databases (i.e. miRBase), having been gathered mainly through a combination of 

bioinformatics and extensive cloning experiments. Forth, instead of individual clone 

sequencing, deep sequencing of small RNA libraries is an effective approach to uncover 

rare and lineage- and/or species-specific miRNAs in any organism by utilizing 

massively parallel sequencing, generating millions of small RNA sequence reads from a 

given sample. Deep sequencing technology is becoming more available to researchers 

studying microRNAs and the analysis of profiling data by deep sequencing may be 

carried out using both publicly available and custom-made software. This approach is 

not dependent on any prior sequence information instead, providing information about 

all RNA species in a given sample and allowing for discovery of novel miRNAs or 

other types of small RNAs. Thus providing an excellent tool for those studying species 

where limited sequence information is currently available. Additionally, new sequence 

information provided by deep sequencing can be used to design microarray probe 

content for future large scale expression studies. 

 

Diverse approaches have been followed to profile miRNA expression, such as Northern 

blotting with radiolabeled probes (Sempere et al. 2004, Valoczi et al. 2004), 

oligonucleotide macroarrays (Krichevsky et al. 2003), quantitative PCR-based 

amplification of precursor or mature miRNAs (Jiang et al. 2005b, Schmittgen et al. 

2004, Shi and Chiang 2005), bead-based profiling methods (Barad et al. 2004, Lu et al. 

2005) and DNA microarrays spotted onto glass surfaces (Babak et al. 2004, Baskerville 

and Bartel 2005, Liu et al. 2004, Miska et al. 2004). The most extensively used 

technique to profile the expression of hundreds of miRNAs are miRNA microarrays 

(Babak et al. 2004, Barad et al. 2004, Baskerville and Bartel 2005, Krichevsky et al. 

2003, Liu et al. 2004, Miska et al. 2004, Sun et al. 2004, Wienholds et al. 2005).  
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Figure 2.3: Approaches to discover miRNA by small RNAs-cDNA library construction. 

 In 1, total RNA is separated on a polyacrylamide gel and the fraction 

corresponding to RNAs of 18–25 nt is recovered. In 2, a 3′ adapter can be 

introduced in different ways: the adapter can be ligated to a 

dephosphorylated RNA, which is then phosphorylated (2a); a preadenylated 

adapter can be ligated to RNA without free ATP in the reaction (2b); or the 

RNA can be polyadenylated by poly(A) polymerase (2c). In 3, a 5′ adapter is 

introduced either by ligation (3a), or by template switching during reverse 

transcription (3b). In 4, cDNA is amplified by PCR and cloned into a vector 

to create a library. Alternatively, PCR products can be sequenced directly by 

single-molecule sequencing methods (massive parallel sequencing) (adapted 

from Berezikov et al. 2006).  
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The usual microarray systems are not favourable to detect miRNAs as short targets. 

Consequently most of the miRNA microarray systems targeted pre-miRNA expression 

instead of mature miRNAs (Barad et al. 2004). Nevertheless, miRNA processing can be 

regulated and pre-miRNA expression may not always correlate to the mature miRNAs 

(Obernosterer et al. 2006). Recent microarray studies for detecting mature miRNAs by 

specific probes (like LNA modified probs), though closely sequence-related miRNAs 

might also be cross-hybridized. This constitutes an efficient methodology using locked 

nucleic acid (LNA)-modified oligonucleotides to screen in a parallel fashion for the 

expression of a large number of miRNAs through extensive sample collections. Where, 

there is no need for RNA size fractionation and/or amplification and that can 

discriminate among closely related miRNA family members (Castoldi et al. 2006). For 

sensitive miRNA array analysis, to compare the miRNA expression profiles of tumor 

and normal adjacent tissues from lung, colon, breast, bladder, pancreatic, prostate or 

thymus cancer microarray platform has already been used. For absolute quantification 

of miRNA expression, Northern blot assay is preferred for some cases over microarray. 

Several miRNAs has already profiled in different samples related to diseases, 

development and differentiation. Studies on miRNAs expression profiles in cancer 

samples have identified a handful of miRNAs that are differentially regulated in tumors, 

suggesting a possible link between miRNAs and oncogenesis (Calin et al. 2002). 

 

 

 

Figure 2.4: Experimental strategies to study miRNA function using molecular, genetic 

and bioinformatic techniques (adapted from Krützfeldt et al, 2006) 
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Experimental strategies to study miRNA function using molecular, genetic and 

bioinformatic techniques are shown in figure 2.4. Identification of miRNAs in the 

distinct cell types can be achieved by qRT-PCR, microarray expression profiling or 

random sequencing of miRNAs from any given tissue or cells. The effect of collective 

silencing of miRNA expression can be studied by inactivation of Dicer by appropriate 

methods. Alternatively, the expression of specific miRNAs can be manipulated by 

either over expression or gene silencing. Gene-expression analysis can then be used to 

validate miRNA targets and analyze phenotypes. Expression profiling can be used to 

test whether miRNA levels are altered in specific disease states to screen the functions 

of specific miRNAs. Thereafter, altered miRNA profiles can then be restored in vivo by 

over expression or silencing of specific miRNAs. The effect on the disease phenotype 

and gene expression at mRNAs or protein level can then be assessed (Krutzfeldt et al. 

2006). Aside from direct experimental tests for site function, further indication of the 

importance of the seed region in miRNA target recognition has been inferred from 

computational studies showing significant overrepresentation of conservation of 

matches to miRNA seeds or, in some cases, avoidance of miRNA seed matches 

(Brennecke et al. 2005, Farh et al. 2005, Krek et al. 2005, Lewis et al. 2005, Stark et al. 

2005, Xie et al. 2005). miRNA targets have been predicted using different 

computational approaches but to validate such miRNA-target interactions there is no 

high throughput approaches and must be tested one by one in reporter assays. However, 

from the recent study (Easow et al. 2007, Karginov et al. 2007) it seems that a quite 

large fraction of miRNA targets are not significantly destabilized at the mRNA level or 

that the magnitude of repression conferred by the miRNA is small. This could be the 

general case for miRNA-target relationships in which the miRNA is not absolutely 

required to reduce the target expression to an inconsequential level, but to buffer it to 

optimal levels, when it is required for optimum cellular functions. 

 

2.2 Overview of role of miRNAs in reproduction 

 

miRNAs are estimated to comprise 1–5% of animal genes (Bartel 2004, Bentwich et al. 

2005, Berezikov et al. 2005) or a given genome could encode nearly thousands of 

miRNAs (Bentwich et al. 2005). Moreover, a typical miRNA regulates hundreds of 

target genes (Brennecke et al. 2005, Krek et al. 2005, Lewis et al. 2005, Xie et al. 2005) 

and altogether they could target a large proportion of genes up to 30% of the genome 
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(Lim et al. 2005). Changes in the expression of even a single miRNA found to have a 

significant impact on the outcome of diverse cellular activities. Inhibition of miRNA 

biogenesis has been found to be resulted in developmental arrest in mouse and fish 

(Bernstein et al. 2003, Giraldez et al. 2005, Wienholds et al. 2003) and female infertility 

in mouse (Otsuka et al. 2007, Otsuka et al. 2008). miRNAs seem well suited to maintain 

the delicate balance between normal reproductive biology, system development and 

tissue maintenance versus deregulated growth and tumor formation. These small non-

coding RNAs have been found to play a central role in various cellular activities, 

including developmental processes, cell growth, differentiation and apoptosis, cell–cell 

communication, inflammatory and immune responses through gene expression stability. 

As many of these processes are an integrated part of gonadal functions, germ cell 

formation, differentiation, uterine and oviductal cellular activities during different stage 

of reproduction and steroid synthesis, it is possible to postulate the potential role of 

miRNAs in regulation of reproductive processes along with other physiological 

functions. Alteration of the expression of miRNAs in any of these processes could lead 

to subsequent infertility, reproductive and other steroid-dependent disorders with 

ultimate failure in reproduction. Investigation on the potential role of miRNA in 

reproduction up-to-date has been accomplished by the different approach. First, by 

identifying the population of miRNAs in the germ cells and reproductive tissues 

through cloning method. Second, by investigating the expression of candidate miRNA 

or group of miRNAs using microarray platform or RT-PCR approach. Third, by 

localizing candidate miRNA in the tissue or cell using in-situ hybridization approach. 

Forth, by knocking down global miRNA expression by creating Dicer1 knockout mice. 

Finally, by investigating specific miRNA function through using the oligonucleotide 

inhibitors and/or miRNA mimics or precursors. There are substantial studies by using of 

the first and second approach to discover and detect the expression of miRNAs in the 

sperm, oocyte, granulosa cells, and preimplantation embryos during spermatogenesis, 

fertilization, oocyte and embryonic development providing initial evidence for the 

potential involvement of miRNAs in reproduction. In addition, the depletion of global 

miRNAs by knocking out Dicer in various reproductive cells and tissues of mouse 

supplements and provides the eventual functional importance of miRNAs in 

reproduction. 
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2.3 Mammalian ovarian functions and miRNAs 

 

Ovary, the primary gonad is only the source of female germ cells called oocyte which is 

the pre-requisite for sexual reproduction and female hormones namely estrogen and 

progesterone for the regulation of sexual behavior and function as well as maintenance 

of pregnancy. All the processes which are involving in the development of follicles and 

steroidogenesis in ovary are dependent on complex- co-coordinated cyclic mechanisms 

from the beginning of development of ovary upto the end of reproductive age. Brief 

overview of development, structure, functions and particularly follicular development in 

the ovary are presented in the following sub-sections. In addition, initial evidences for 

the involvement of miRNAs although it is very limited but discussed later on.  

 

2.3.1 Structural-functional insight in to the ovary 

 

The process of oocyte development involves gradual ovarian follicular development 

from primordial follicles. Folliculogenesis is the developmental process in which an 

activated primordial follicle develops to a preovulatory size following the growth and 

differentiation of the oocyte and its surrounding granulosa cells. During 

folliculogenesis, a follicle may be classified as primordial, primary, secondary or 

tertiary (antral, vesicular). This classification is commonly based on the size of oocyte, 

the morphology of granulosa cells and the number of granulosa cell layers surrounding 

the oocyte. Following sections describe in brief about the development of ovary, 

different ovarian cell types and mechanisms of ovarian follicular development as a main 

ovarian function and their transcriptional regulation. 

 

2.3.1.1 Formation of ovary and different ovarian cell types 

 

Gonadal ridges develop as a thickening of the coelomic epithelium on the medial aspect 

of the mesonephric kidneys (Dyce et al. 1996) and make connections with mesonephric 

tissue by rete-ovarii (Byskov and Hoyer 1994). At the gonadal ridge, oogonia become 

enclosed in germ-cell cords (Byskov and Hoyer 1994), consisted of epithelial cells and 

oogonia (Hirshfield and DeSanti 1995), which are delineated from surrounding 

mesenchymal cells by a basal lamina (Byskov and Hoyer 1994). The epithelial cells or 

the somatic cells are originated from the coelomic epithelium haveing cuboidal or 
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spherical nuclei and serve as precursors to the granulosa or follicular cells (Hirshfield 

and DeSanti 1995). The mesenchymal or stromal cells are originated from the stratified 

medial aspect of the mesonephric kidney having elongated nuclei and give rise to theca 

cells (Hirshfield and DeSanti 1995). In cattle, the gonadal ridge is transformed to a 

definitive ovary by Day 40 of gestation. With the disruption of the germ cell cords, the 

ovary divides into cortical and medullary parts (Smitz and Cortvrindt 2002). Developed 

ovary consists of stromal tissue containing primordial follicles (homologous to tubules 

in the testis) and also interstitial glands (homologous to Leydig cells). As in the male, 

gamete production comprises mitosis, meiosis and maturation. However, in the female 

the primordial germ cells that entered the embryonic gonad continued their development 

and proliferated mitotically. They are known as oogonia during this process and they 

stop once they have entered their first meiotic division which is known as primary 

oocytes. As they enter meiosis, the oocytes become surrounded by single flatten layer of 

granulosa cells to form primordial follicles. From puberty, a few primordial follicles 

recommence growth every day, so a continuous trickle of developing follicles is 

formed. 

 

2.3.1.2 Bovine ovarian follicular dynamics 

 

Development of follicles within the ovary is a dynamic process which occurs 

throughout the menstrual/estrous cycle and involves recruitment of follicles into the 

growing pool, physiologic selection of an ovulatory follicle and ovulation or regression. 

Although the fate of the vast majority of follicles is atresia, a single follicle (in 

monovular species) is somehow selected for continued development and eventual 

ovulation. Sequential recruitment, selection and growth of the follicles, atresia, 

ovulation and luteolysis, which are reoccurred on a cyclical basis within the ovary are 

resulting in the development of a number of ovulatory follicles (Hunter et al. 2004). 

Essentially all of these steady state cyclic changes are controlled by tightly regulated 

expression and interaction of a multitude of genes and their proteins in different 

compartments of the ovary (oocyte, cumulus granulosa, mural granulosa, internal and 

external theca cells) during the follicular programme with the ultimate goal of oocyte 

development (Bonnet et al. 2008). There is a large pool of resting (primordial) follicles 

in the mammalian ovary (~100,000 follicles), which are released from the resting pool 

throughout the life cycle. But, there are a few hundred growing follicles in the bovine 
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ovary at any one time (Erickson 1966). The ultimate fate for most of the follicles is 

atresia, which may occur at any stage but the dominant follicle (DF) must survive and 

become the part of healthy pool of antral follicles.  

 

Figure 2.5: Bovine ovarian follicular wave dynamics (adapted from lucy et al, 1992) 

 

Bovine follicular development found to be occurred in a wave like pattern which 

includes 2 or 3 waves and transient increases in FSH secretion precede the emergence of 

follicular waves in cattle (Figure 2.5) (Fortune 1994, Webb et al. 1992). Where as, a 

subsequent decrease in circulating FSH concentrations is temporally associated with 

selection of the dominant follicle (Adams et al. 1992) as has been observed in primates. 

Hence, it is assumed that it is the ability of follicles to respond to the endocrine 

environment on an individual basis that dictates their particular patterns of growth and 

development (Zeleznik and Hillier 1984). Granulosa cells acquire FSH receptors and 

theca cells acquire LH receptors before follicular recruitment (wave emergence) and 

selection of the dominant follicle proceeds (Richards 1994). During the later stages of 

follicle development, the granulosa cells of large healthy, estrogen-secreting follicles 

also acquire LH receptors (Ireland and Roche 1982, Ireland and Roche 1983b, Ireland 

and Roche 1983a, Spicer et al. 1986b, Xu et al. 1995). During the bovine estrous cycle, 

granulosa cells of large healthy antral follicles have more LH receptors than smaller 

atretic follicles (Ireland and Roche 1982, Ireland and Roche 1983a, Ireland and Roche 

1983b, Spicer et al. 1986a) and levels of messenger RNA (mRNA) for LH receptor in 

granulosa cells of dominant follicles increase as follicular development progresses (Xu 

et al. 1995). It has been suggested that the acquisition of LH receptors on granulosa 

cells plays an important role in the selection of dominant follicles (Jolly et al. 1994, 

Spicer et al. 1986b, Xu et al. 1995, Zeleznik and Hillier 1984). 
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2.3.1.3 Transcriptional regulation of ovarian folliculogenesis 

 

Transition from primordial to primary follicles commences the follicular growth, which 

are regulated by multiple genes. Variety of locally produced growth factors along with 

gonadotropins have been identified (Bao and Garverick 1998, Gutierrez et al. 2000) by 

mouse knockout study (Matzuk and Lamb 2002) and reviewed (Knight and Glister 

2006, McNatty et al. 2005, Skinner 2005). Most noteworthy among these are members 

of the TGF-beta superfamily (including the BMP, their receptors and GDF-9), bFGF, 

EGF (Knight and Glister 2006, McNatty et al. 2005, Webb and Campbell 2007), IGF 

and IGFBP (Lucy 2000, Spicer 2004, Webb et al. 2003) (Figure 2.6). Oocyte-specific 

transcriptional regulators (Figla, Nobox, Sohlh1 and Lhx8), oocyte-secreted factors 

(Gdf9 and Bmp15), as well as genes expressed in the granulosa and other surrounding 

somatic cells were found to initiate and control follicular growth (Dumesic and Abbott 

2008, Matzuk and Lamb 2002). Among the key intra-ovarian factors, the transforming 

growth factor b (TGFb) family members, including bone morphogenetic protein-4 have 

been identified as regulators of primordial germ cell generation (van den Hurk and Zhao 

2005) (Figure 2.6).  

 

 

Figure 2.6: TGF-β superfamily members and their associated receptors and binding 

proteins in the ovarian cells. Members of this family are expressed by theca 

cells, granulosa cells and oocytes consistent with their proposed roles as 

intrafollicular autocrine (white arrows) and paracrine (black arrows) 

signaling molecules (adapted from Knight and Glister 2003). 
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Participation of follicle pool in recruitment is FSH-dependent, which later on acquires 

LH receptors in the granulosa and theca cells and becomes dependent on LH (Ireland 

and Roche 1983a). Once the dominant follicle exposed to LH surge, its fate is ovulation 

and its cells will differentiate into the corpus luteum, unless and otherwise lead them to 

be atretic (Valdez et al. 2005). In addition, the dominant follicle is dependent on growth 

factors for promoting the G1- to S-phase transition of the cell cycle and prevent 

apoptosis of granulosa cells (Quirk et al. 2004). Even though a persistent follicle with a 

low-level progestogen treatment have been shown to retain its capacity (Savio et al. 

1993, Sirois and Fortune 1990) to trigger an LH surge and ovulate less healthy oocytes 

by premature activation (Revah and Butler 1996). The LH surge converts the 

proliferating cells of the follicle into dormant cells that are resistant to apoptosis (Quirk 

et al. 2004). In response to FSH, the granulosa cell–derived factors such as kit ligand, 

transforming growth factor α (TGF-α) and epidermal growth factor (EGF) activate the 

resting follicular growth (Figure 2.7). 

 

Figure 2.7: Diagram 

summarising experimental 

observations on follicle

stage-dependent expression 

of TGF-β superfamily 

members in ruminants and 

their putative roles as 

intrafollicular autocrine or 

paracrine signaling 

molecules. Superscripts (o, 

g, and t) refer to oocytes, 

granulosa cells and theca 

cells, respectively. Adopted 

from (adapted from Knight 

and Glister 2003). 
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The interactions between ovarian germ (oocytes) and somatic cells (granulosa cells) and 

expression of several intra-ovarian autocrine/paracrine regulators (FSH, estrogen and 

androgen receptors) are the major contributing factors in the ovary leading to preantral 

and antral follicles development (Filicori et al. 2003). But, how all these receptors 

proteins are being regulated in temporal manner rapidly is not yet understood. 

 

2.3.2 miRNAs in the mammalian ovarian functions  

 

Available information on expression and regulation of miRNAs in the mammalian 

ovary are presented and discussed below.  

 

2.3.2.1 Expression and regulation of miRNAs in the ovarian cells 

 

Dynamically regulated, complex and coordinated ovarian functions include sequential 

recruitment, selection and growth of the follicles, atresia, ovulation and luteolysis are 

under control of closely coordinated endocrine and paracrine factors. All these factors 

are controlled by tightly regulated expression and interaction of a multitude of genes in 

different compartments of the ovary (Bonnet et al. 2008). As one of the major classes of 

gene regulators, miRNAs are considered to be involved in the regulation of ovarian 

genes (Hossain et al. 2009, Ro et al. 2007a). Several studies expanding from 

identification and expression profiling to functional involvement of miRNAs in the 

ovary have been carried out in different animal species. Four attempts have led to 

identify the distinct and major population of miRNAs in 2 weeks old and adult mouse 

ovary (Ro et al. 2007b), adult mouse ovary and testis (Mishima et al. 2008) and new 

born mouse ovary through small RNA library construction and sequencing (Ahn et al. 

2010). Abundant miRNAs which were observed in newborn and adult mouse ovary are 

presented in figure 2.8. The presence of miRNAs and their differential expression can 

give the primary clue for their potential role in ovarian functions. However, discovery 

and further functional characterization of miRNAs in the bovine ovary along with 

different ovarian cell types (oocyte, granulosa, theca cells and ovarian stroma) at 

different follicular stage or at different estrus cycle remains to be elucidated. Several 

studies highlighted the expression and regulation of some individual miRNAs in 

different ovarian cells especially in oocyte and granulosa cells. After disclosing the 

absence or less role of sperm born miRNAs in mammalian fertilization (Amanai et al. 
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2006), further studies were directed towards these two cell types (oocyte and granulosa). 

For example, the first attempt was made in 2006 and the study identified small number 

of miRNAs as well as some other small noncoding RNAs (rasiRNAs, gsRNAs) in 

mouse oocyte (Watanabe et al. 2006). However, further identification of entire set of 

miRNAs in oocytes through direct cloning method is still missing rather more initiative 

has been taken for microarray or RT-PCR based miRNAs detection through 

homologous or heterologous approaches. 

 

 

 

 

Figure 2.8: Different stages of ovarian development and a subset of abundant miRNAs 

that are expressed at the newborn ovary and adult stages. (A) Newborn 

ovary and (C) 7-week (adult) mouse ovary. Germ-cell clusters (GCC), 

primordial follicles (PF), secondary follicles (SF), and antral follicles (AF) 

are indicated by appropriate arrows. miRNAs abundantly expressed are 

listed below the corresponding stage of ovarian development (adapted from 

Zhao and Rajkovic 2008). 

 

The Microarray experiments have shown that Dicer1 is highly expressed and 

functionally important in the oocytes during folliculogenesis as well as in the mature 

oocytes (Choi et al. 2007, Murchison et al. 2007, Su et al. 2002). Conditional knockout 

of Dicer1 in growing oocytes revealed unaffected oocyte growth and folliculogenesis 

during the early stage but meiosis I has been found to be arrested with defective spindle 

organization in oocytes lacking Dicer1 (Murchison et al. 2007). Transcriptional analysis 
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through microarray experiments has identified the major portion of the transcripts as 

misregulated in Dicer1-deficient oocytes. Moreover, Dicer knock out ovaries are found 

to have increased rate of apoptosis (Figure 2.9). These efforts not only provide initial 

evidence for the role of miRNAs in the oocyte but also suggested that a large proportion 

of the maternal genes are directly or indirectly under the control of miRNAs (Murchison 

et al. 2007, Tang et al. 2007). Information on the regulatory role of miRNAs in the 

ovarian cells of ruminants compared to human and mouse are so limited and these are 

the open field for the researcher working on ruminant reproductive biology. Currently, 

the expression and functional evidence of miRNAs in the follicular theca cells in any 

physiological states of any species remains to be elucidated.  

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Dicer1 knock out ovaries have increased apoptosis. Comparison of ovarian 

histology from 12-wk-old control (A) and cKO (B) females shows that 

Dicer1 mutant ovaries contain follicles at all stages of folliculogenesis as 

well as corpora lutea (cl). Despite these observations, a trend toward 

increased atretic follicles in cKO ovaries at 6 wk of age. TUNEL staining of 

6-wk-old ovaries from control (C) and cKO (D) mice revealed increased 

apoptotic granulosa cells (green/yellow) in the Dicer1 mutant. Nuclei are 

counterstained with propidium iodide (red). E, TUNEL-negative control. F, 

High magnification of TUNEL positive follicles in the Dicer1 cKO ovary. 

Note that granulosa cells (gc, arrowheads) are TUNEL positive, whereas 

oocytes (oo, arrow) are negative. G, The proportion of TUNEL-positive 

follicles was quantified and found to be significantly higher in cKO ovaries 

(44.9±5.4%) as compared with control ovaries (23.5±10.8%), * P <0.05 

(Student’s t test), (adapted from Nagaraja et al. 2008). 
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2.3.2.2 Ovarian steroidogenesis and miRNAs 

 

Recent studies revealed interesting relationship between ovarian steroids and miRNAs. 

Several studies suggested ovarian steroid dependent biogenesis & maturation of 

miRNAs and reversely some set of miRNAs could regulate the secretion of ovarian 

steroid. It has been demonstrated that ovarian steroids influence the expression of some 

miRNAs (hsa-miR20a, hsa-miR21 and hsa-miR26a) in endometrial stromal cell and 

glandular epithelial cell in human (Pan et al. 2007). The molecular mechanism by which 

ovarian steroids regulate the expression of miRNAs is unclear but such regulatory 

function has been suggested to alter the expression of their target genes and cellular 

activities manifested by their products thereby (Pan et al. 2007). It has been also shown 

that LH/hCG regulates the expression of selected miRNAs, which affect 

posttranscriptional gene regulation in mouse within ovarian granulosa cells (Fiedler et 

al. 2008). Estrogen was found to suppress the levels of a set of miRNAs in mice and 

human cultured cells through estrogen receptor α (ERα) by associating with the Drosha 

complex and preventing the conversion of pri-miRNAs into pre-miRNAs (Yamagata et 

al. 2009). As down-regulation of miRNAs appeared to stabilize human VEGF mRNA, 

the posttranscriptional control by estrogen appears to mediate the half-life of estrogen 

target genes via regulated miRNA maturation (Yamagata et al. 2009). In addition, 

upregulation of subset of miRNAs in female mice lacking estrogen receptor α and down 

regulation of some miRNAs in the estrogen target organ (Uterus) was observed 

following estradiol (E2) treatment in ovariectomized female mice (Macias et al. 2009). 

Altogether, these studies suggested that ERα bound to E2 inhibits the production of a 

subset of miRNAs by a mechanism whereby ERα blocks Drosha-mediated processing 

of a subset of miRNAs by binding to Drosha in a p68/p72-dependent manner and 

inducing the dissociation of the microprocessor complex from the pri-miRNA (Macias 

et al. 2009).  

 

In contrast, some miRNAs are also found to play important role in the ovarian 

steroidogenesis (Sirotkin et al. 2009). Genome-wide screening of miRNAs revealed the 

involvement of miRNAs in control of release of the ovarian steroid hormones 

progesterone, androgen and estrogen in human ovarian cells (Sirotkin et al. 2009). They 

have evaluated the effect of transfection of cultured primary ovarian granulosa cells 

with gene constructs encoding the majority of identified human pre-miRNAs on release 
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of progesterone, testosterone and estradiol. These results revealed thirty-six out of 80 

tested miRNA constructs inhibiting the progesterone release in granulosa cells and 10 

miRNAs have been found to promote progesterone release. Subsequent transfection of 

cells with antisense constructs to two selected miRNAs (miR-15a and miR-188) 

revealed induction of progesterone output due to lack of blockage of progesterone 

release. While fifty-seven tested miRNAs were found to inhibit testosterone release, 

only one miRNA (miR-107) enhanced testosterone output. Fifty-one miRNAs 

suppressed estradiol release, while none of the 80 miRNAs tested were found to 

stimulate it (Sirotkin et al. 2009). The complex regulatory mechanisms for controlling 

miRNAs biogenesis by the steroids or vice versa are still unclear. The involvement of 

miRNAs for such mechanisms as regulator of several hundreds of genes as potential 

target could be much higher than ever speculated. While the investigations on the 

involvement of miRNAs in ovarian function and steroidogenesis in mouse and human 

are progressing, no information was available in case of bovine. Even the identity, 

existence, characteristics, expression pattern, functions and regulatory mechanisms was 

completely unknown until the work has been carried out as part of this dissertation.   

 

2.4 miRNAs in embryogenesis and early development 

 

Following sections discussed the fundamentals of mammalian embryogenesis from 

fertilization to preimplantation embryo development association of miRNAs in the 

relevant processes. 

 

2.4.1 Fertilization, embryogenesis and miRNAs 

 

Following ovulation, the cumulus-oocyte complex (COC) is released into the perionetal 

or bursal cavity where it is picked up by the infundibulum of the oviduct. Cilia covering 

the exterior surface of the infundibulum direct the COC into the oviduct (Talbot et al., 

2003). Immediately prior to ovulation, elevated estradiol concentrations increase height 

(Murray, 1996) and ciliation of the luminal epithelial cells of the fimbria and ampulla 

(Murray, 1995, 1996) to facilitate COC transport to the ampulla, the site of fertilization. 

Prior to fertilization, sperm deposited into the reproductive tract must undergo a process 

termed “capacitation”. Capacitation is mediated by cAMP-dependent protein tyrosine 

phosphorylation (Wassarman, 1999) and involves a series of functional, biochemical 
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and biophysical modifications of the ejaculated spermatozoa to allow for proper 

fertilization of the oocyte (Baldi et al., 2000). These modifications of the spermatozoa 

include increased membrane fluidity due to loss of cholesterol and remodeling of the 

sperm surface proteins, increased intracellular Ca
2+ 

and pH and membrane 

hyperpolarization (Baldi et al., 2000; Töpfer-Pertersen et al., 2000). These changes of 

the spermatozoa during capacitation induce hyperactivated motility of the sperm and 

allow the sperm cell to respond to stimuli that induce the acrosome reaction upon 

interaction with the oocyte’s zona pellucida (Baldi et al., 2000). This reaction facilitates 

the degradation and sperm penetration of the zona pellucida and subsequently exposes 

the equatorial segment of the sperm, which allows for fusion of the sperm membrane 

with the oolemma (Roldan et al., 1994; Baldi et al., 2000). The steroids progesterone 

and estradiol also mediate the acrosome reaction. Moreover, estradiol modulates that 

action of progesterone to ensure the appropriate time of the acrosome reaction (Baldi et 

al., 2000).  

 

Following the acrosome reaction the spermatozoa passes through the zona pellucida, the 

sperm head crosses the perivitelline space and the equatorial segment of the sperm then 

fuses to the oocyte plasma membrane (Yanagimachi, 1988). The fusion of the 

spermatozoa with the oocyte results in oocyte activation characterized by exocytosis of 

cortical granules and the resumption of meiosis of the oocyte. Prior to activation, the 

nucleus of the oocyte is in the metaphase stage of the second meiosis, where it was 

arrested following the transition from the dictyate stage of prophase I and the exclusion 

of the first polar body following the LH surge (Jones, 2005). The basic steps involved in 

the mammalian fertilization are presented in figure 2.10. 



Literature review 29

 

Figure 2.10: Basic steps of mammalian fertilization.  

(A) Binding of sperm to the zona pellucida of oocyte induces the sperm 

acrosome reaction. The release of lytic enzymes from the acrosome and the 

forward motility of the sperm permit penetration of the zona pellucida. 

After fusion with the egg's plasma membrane, the sperm enters the 

cytoplasm and forms the male pronucleus of the one cell zygote. Following 

fertilization, the zona pellucida is biochemically modified to prevent 

additional sperm binding (B) The acrosome, a lysosomallike structure on 

the anterior head of sperm, contains an inner and outer membrane that fuse 

during the acrosome reaction (adapted from Dean, 1992). 

 

The resumption of meiosis results in cell cycle resumption, extrusion of the second 

polar body and the formation of the female pronucleus. Likewise, the sperm nucleus 

decondences and transforms into the male pronucleus. The sperm and egg pronuclei 

come into close approximation, their nuclear envelopes disintegrate and their 

chromosomes mingle for the first mitotic division (cleavage). The mingling of the 

chromosomes can be considered the end of fertilization and the beginning of embryonic 

development (Yanagimachi, 1988). Regarding molecular aspects of oocyte-sperm 

membrane interaction, several important molecules were identified as pivotal regulator. 

As many as two-dozen different sperm proteins have been implicated in species-specific 

binding of sperm to eggs (Snell and White 1996, Wassarman 1999). These include a 

variety of enzymes (such as β-galactosyltransferase and α-fucosyltransferase, protein 
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tyrosine kinase (ZRK) and phospholipase A2) and lectin-like proteins (such as mannose- 

and galactose-binding proteins and spermadhesins), as well as several other sperm 

proteins (such as zonadhesin and sperm protein-56 (SP56)).  

 

In addition, results of recent experiments with homozygous-null mice have implicated 

two members of the ADAM (so-called because they contain a disintegrin and a 

metalloprotease domain) family of proteins, sperm β-fertilin and cyritestin, as potential 

EBPs (Cho et al. 1998, Primakoff and Myles 2000, Shamsadin et al. 1999). Binding of 

sperm to the egg plasma membrane is thought to be mediated by this member of the 

ADAM family of transmembrane proteins on sperm and integrin α6β1 receptors on eggs 

(Snell and White 1996, Wassarman 1999). Two mouse-sperm ADAM proteins in 

particular, the heterodimer fertilin (- , ADAM-1; - , ADAM-2) and cyritestin (ADAM-

3), have been studied in some detail and found to interact with integrin in the egg 

plasma membrane through their disintegrin domains. Results of recent studies indicate 

that at least two components that are essential for intracellular membrane fusion in 

somatic cells, Rab3A GTPase and SNAREs, may be present in mammalian sperm and 

may participate in membrane fusion during the acrosome reaction (Iida et al. 1999, 

Ramalho-Santos et al. 2000). Results of several investigations indicate that CD9 a 

member of the tetraspan superfamily of integral plasma-membrane proteins that 

associate with each other, as well as with a subset of β1 integrins and integrin α6β1 in 

the egg plasma membrane has a vital function in sperm–egg fusion in mice (Chen et al. 

1999). 

 

While considering miRNAs, it has been shown that miRNAs are present in mouse 

sperm structures that enter the oocyte at fertilization (Amanai et al. 2006). The sperms 

were found to contain a broad profile of miRNAs and a subset of potential mRNA 

targets, which were expressed in fertilizable metaphase II (mII) oocytes. Similarly, 

oocytes were found to have transcripts responsible for miRNAs processing and 

regulatory mechanisms namely RNA-induced silencing complex (RISC) catalytic 

subunit, EIF2C3. However, the levels of sperm-borne miRNA (measured by 

quantitative PCR) were found to be very low relative to those of unfertilized mII 

oocytes and fertilization did not alter the mII oocyte miRNA repertoire that included the 

most abundant sperm-borne miRNAs. Coinjection of mII oocytes with sperm heads plus 

anti-miRNAs to suppress miRNA function did not perturb pronuclear activation or 
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preimplantation development. In contrast, nuclear transfer by microinjection altered the 

miRNA profile of enucleated oocytes. These data suggest that sperm-borne prototypical 

miRNAs play a limited role in mammalian fertilization or early preimplantation 

development (Amanai et al. 2006).  

 

2.4.2 miRNAs and preimplantation embryo development 

 

Early embryonic development is characterized by the number of nuclei (blastomere) 

present within the developing embryo. Following fertilization, the cell formed by the 

union of parental chromosomes is referred to as a zygote, which is then undergoes a 

number of cleavage and resulting in the development of a 2-, 4-, 8- and 16- cell embryo. 

Early embryonic developmental events in domestic animals are presented in figure 2.11. 

As cleavage continues, the blastomeres compact, merging into a single mass of cells 

called a morula. It is at this point that the embryo moves from the oviduct into the 

uterus, which occurs between days 4 to 5 of pregnancy in the bovine (El-Banna and 

Hafez 1970). During this period genes encoding E-cadherin, β-cantenin and ZO-1 are 

responsible for gap junction assembly and trophectoderm differentiation (Watson et al. 

1999). The next distinguishing event is blastocoel formation, which is accomplished by 

the development of a differentiated polarized epithelium (trophectoderm) that 

implements a Na/K-ATPase ion transport pump to force fluid into the blactocoel cavity 

(Biggers et al. 1988). The blastocoel will eventually turn into the cavity of the yolk sac 

(Schlafer et al. 2000). Cells forming the outer wall of the blastocyst assume specialized 

function and are known as trophoblast cells. At one pole of the hollow blastocyst, 

another type of specialized cells called the inner cell mass (ICM) form. This cluster of 

cells will become the embryo proper. From the ICM, two distinct cell layers develop; 

the endoderm, which lines the yolk sac and the mesoderm which extends from the ICM 

to form a layer between the trophectoderm and the endoderm (Schlafer et al. 2000). The 

initial development of the preimplantation embryo is controlled by maternally inherited 

molecules in the oocyte but upon the embryonic genome activation which begins at 2-

cell stage during this early embryogenesis and eventually acquires developmental 

control (Maddox-Hyttell et al. 2003). This shift from maternal to zygotic genomic 

control is referred to as the maternal/zygotic transition (MZT). A unique feature of early 

embryonic cells is their ability to maintain a full range of developmental capacity, 

termed totipotency. Blastomeres maintain complete totipotency until the 16-cell stage of 
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development, afterward increasing differentiation of cell lineages prevents complete 

totipotency (Pedersen 1988). Lineages differentiation of trophectoderm and ICM results 

in loss of totipotency of the trophectoderm cells.  

 

 

 

Figure 2.11: Early embryonic developmental events in domestic animals.  

Fertilization occurs in the oviduct and morula-stage embryos enter the 

uterus where they develop into spherical blastocyst and hatch from the 

zona pellucida by actions of proteases. Thereafter, spherical blastocysts 

migrate, change to a tubular and then a filamentous form due to rapid 

elongation of trophectoderm before initiation of implantation (adapted 

from Bazer et al. 2009). 

 

In mouse, pluripotent cells can be characterized by the expression of specific gene 

transcripts such as octamer-binding transcription factor-4 (Oct-4), alkaline phsophatase, 

E-cadherin, stage-specific embryonic antigen-1 (SSEA1), zinc-finger protein-42 

(REX1) and Nanog (Boiani and Scholer 2005). In 2-, 4-, 8- and 16-cell bovine embryo, 

mRNA for Oct-4 has been found to be absent or very low but increased during morula 

development. Elevated expression of Oct-4 in the ICM and down regulation in the 

trophectoderm is reflecting the loss of totipotency in trophectoderm cells (Kurosaka et 



Literature review 33

al. 2004). During the progress of embryonic development, the blastocyst with three 

concentric cell layers (trophectoderm, mesoderm and endoderm), expands, hatches from 

the zona pellucida and begins to elongate. Hatching of bovine blastocyst occurs between 

days 9 and 10 of gestation (Guillomot 1995, Maddox-Hyttel et al. 2003). Following 

blastocyst hatching there is no definitive cellular contact between the trophectoderm and 

the endometrial epithelium for several days during embryo elongation in ruminants 

(Spencer et al., 2004a) and the embryo appears spherical and then becomes ovoidal. The 

embryo appears tubular in shape and finally assumes a filamentous appearance by 

approximately day 13 to 14 of gestation as elongation progressed (Guillomot 1995, 

Maddox-Hyttel et al. 2003, Spencer et al. 2004). 

 

The well-orchestrated expression of genes that are derived from the maternal and/or 

embryonic genome is required for the onset and maintenance of distinct morphological 

changes during the embryonic development. Optimum regulation of genes or critical 

gene regulatory event in favor of early embryonic development have been shown to be 

directly (individual miRNAs study) or indirectly (disrupting miRNAs biogenesis) under 

the control of miRNAs. Disruption of Dicer1 - an enzyme important for biogenesis of 

miRNAs and RNA interference related pathways in mammals was first demonstrated 

and shown that loss of Dicer1 lead to lethality early in development, where Dicer1-null 

embryos were found to be depleted of stem cells in mouse (Bernstein et al. 2003). 

Another report has been published in the same year to show the importance of Dicer1 in 

vertebrate development through inactivation of the Dicer1 in zebrafish and subsequently 

observed the early developmental arrest (Wienholds et al. 2003). While defective 

generation of miRNAs was observed in Dicer-null mouse embryonic stem cells with 

severe defects in differentiation both in vitro and in vivo, the re-expression of Dicer in 

the knockout cells has been found to rescue these defective phenotypes (Kanellopoulou 

et al. 2005). Additionally, maternal miRNAs have been shown to be essential for the 

earliest stages of mouse embryonic development through the loss of maternal 

inheritance of miRNAs following specific deletion of Dicer from growing oocytes 

(Tang et al. 2007). So, these initial reports suggest that miRNAs are essential for 

embryonic development as the effect of loss of Dicer1 could primarily arise from an 

inability to process endogenous miRNAs which later on functioning in the gene 

regulation.  
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The role of miRNAs has been suggested first for differentiation or maintenance of tissue 

identity during early embryonic development in zebrafish (Wienholds et al. 2005). 

Several attempts were made to clone miRNAs from the embryo or embryonic tissues to 

understand the miRNA-mediated regulation of embryonic development. A significant 

number of miRNAs has been identified at specific stages of mouse embryonic 

development through massively parallel signature sequencing technology (Mineno et al. 

2006) and in bovine embryo through small RNAs library construction (Coutinho et al. 

2007). The coexistence of dynamic synthesis and degradation of miRNAs has been 

shown but overall quantity and stage-dependent miRNAs increases as the embryos 

develop during mouse preimplantation stage embryonic development (Yang et al. 

2008b). Even, during the preimplantation stage miRNAs are shown to participate in 

directing the highly regulated spatiotemporally expressed genetic network as well. The 

miRNAs profile observed in mouse embryos are provided with a clear insight into the 

embryonic stage-specific miRNA transcriptome, and facilitated the identification of the 

primary target for each miRNA and thereby the pathways regulated by embryonic 

specific mRNAs (Mineno et al. 2006). A dynamic change in miRNA expression during 

oogenesis in growing and mature mouse oocytes has observed and miRNA levels in 

mature mouse oocytes and early embryos fall precipitously in the two-cell embryo, but 

rise again at the four-cell stage, presumably as a result of new transcription from the 

embryonic genome (Tang et al. 2007). They are also engaged by playing important roles 

in diverse cellular processes as well. Examination of miRNAs expression in mouse 

through to the eight-cell stage revealed that dynamic changes of miRNAs during early 

embryonic development (Tang et al. 2007). Where, the total amount of miRNA was 

found to be downregulated by 60% between one- and two-cell-stage embryos and then 

increases, resulting in a 2.2-fold difference between two- and four-cell-stage embryos. 

Which suggests that a very significant proportion (>90%) of the maternally inherited 

miRNAs present in the zygote is probably actively degraded during the first cell 

division, although maternal mRNAs are globally degraded at this time (Hamatani et al. 

2004). So, miRNAs may be involved in the regulation of maternal transcripts in oocytes 

and embryos and whose degradation may be essential for successfully completing 

meiotic maturation and subsequent development. Study has been also suggested that 

sperm-borne miRNAs play a limited role, if any, in mammalian fertilization or early 

preimplantation development (Amanai et al. 2006).  
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Significant proportion of the maternally inherited miRNAs present in the Zygote is 

probably actively degraded during the first cell division. The total miRNA in a four-

cell-stage embryo has bund to be ~2.2 times higher than the levels in a two-cell stage 

embryo which suggested that there is de novo expression of miRNAs between the two- 

and four-cell stages of development (Tang et al. 2007). MicroRNAs belong to the let-7 

family are found to be abundant in mouse oocytes and shown dynamic regulation for 

the period of oogenesis and early embryonic development. In a four-cell-stage embryo 

the miR-290 clusters (Houbaviy et al. 2003) among the upregulated miRNAs were 

abundant. Compared with the two cell-stage embryos, they were up-regulated by 15-

fold and by 24-fold in four-cell and eight-cell-stage embryos, respectively. Thus, 

miRNAs from the miR-290 cluster are amongst the earliest to be expressed during early 

mouse embryonic development. Abundance of miR-17-92 cluster has been shown to be 

significantly increased during oogenesis and was inherited by the zygote and increased 

again after the two-cell embryo stage (Tang et al. 2007). 

 

2.4.3 miRNAs in embryonic stem cells development and maintenance 

 

Recent studies have identified a unique set of miRNAs expressed and its functional 

importance in embryonic stem cells (ES cells). Initial effort has identified that miR-290 

through miR-295 (miR-290 cluster) are ES cell-specific and there after suggested that 

they could potentially participate in early embryonic processes such as the maintenance 

of pluripotency in mouse (Houbaviy et al. 2003). Similar study in human has also 

identified some clustered miRNAs (miR-296, miR-301 and miR-302: homologous to 

the miRNAs reported by Houbaviy et al. in mouse) specifically expressed in human ES 

cells and not in differentiated embryonic cells or adult tissues (Suh et al. 2004). These 

clustered miRNA organization is presumably effective for coordinated regulation of 

their expression and regulation of common targets because a common seed is shared 

between some miR-290 cluster miRNAs, miR-302a-d and miR-93 (Houbaviy et al. 

2003, Houbaviy et al. 2005). The role of miR-290 cluster in embryogenesis has been 

evidenced in a study, in which the generation of a mouse mutant with a homozygous 

deletion of the miR-290 cluster resulted in the death of embryos (Ambros and Chen 

2007). By the loss- or gain-of-function studies of Dicer, DGCR8 and ES-related 

miRNA genes such as miR-290-295 cluster have strongly suggested that miRNAs play 

an important role in ES cell maintenance, differentiation (Benetti et al. 2008b, 
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Sinkkonen et al. 2008) and lineage determination (Ivey et al. 2008, Kanellopoulou et al. 

2005, Tay et al. 2008, Wang et al. 2007). Despite the fact that knowledge on the role of 

miRNAs in the embryonic development and stem cell maintenance, differentiation and 

lineage in mouse and human is increasingly building, it is yet to be elucidated for 

ruminants. 

 

2.5 miRNAs in the embryo produced by assisted reproductive technologies  

 

The advancement of manipulation of reproductive process and application through 

assisted technology is impressive in the last two decades. Since 1970, artificial 

insemination (AI) and the associated techniques such as semen cryopreservation and 

ovulation synchronization dominated the reproductive techniques. The female 

contribution to genetic progress was achieved with the advent of embryo transfer and 

the associated techniques such as non-surgical embryo collection, in vitro maturation, 

fertilization and culturing of bovine oocytes. ET can be accomplished by different 

approaches. Dams can be super-ovulated, artificially inseminated (AI) and later the 

resulted fertilized oocytes are collected by flushing. These fertilized oocytes are then 

cultured till blastocyst stage and are implanted in synchronized heifers. This technique 

is referred as multiple ovulation and embryo transfer (MOET). Oocytes can also be 

collected directly from mother's body through ultra-sonography, cultured for maturation 

and then fertilized with spermatocytes (IVF). If fertilization is successful, similar to 

MOET, the fertilized ovum after undergoing several cell divisions, is either transferred 

to the surrogated mother's for normal development in the uterus, or frozen for later 

implantation. In IVF and in vitro culture procedure, approximately 30 to 40% of the 

matured oocytes develop to transferable blastocysts (Hagemann et al. 1998, Keskintepe 

and Brackett 1996). However, IVP bovine embryos display a number of marked 

differences compared to in vivo one. These differences are evident in gross morphology 

(color, density, cell number and size), timing of development (Greve et al. 1995), in 

biochemical features such as buoyant density, chilling sensitivity, zona pellucida 

stability and resistance to freezing as well as in certain features of embryonic 

metabolism (Niemann et al. 1993). Another advance technique is somatic cell nuclear 

transfer (SCNT) with promising implication for the agricultural and biomedical 

research. Conventional SCNT or cloning involves fusion of a somatic donor cell into an 

enucleated metaphase II (MII) arrested oocyte. The resulting embryo is cultured to the 
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blastocyst stage before being transferred to a surrogate cow to produce live offspring. 

So, cloning procedures adopt to some extent the same procedure as in-vitro fertilization. 

Additional steps in cloning are enucleating the mature oocyte and thereafter transfer of 

the somatic nuclei in this enucleated oocyte. Later the cultivation and transfer to 

recipient heifers follows the same protocol as described for IVF derived foetuses. 

However, Cloning cattle using Somatic Cell Nuclear Transfer (SCNT) is an inefficient 

process, where the surviving offspring only represent approximately 5% of the embryos 

transferred into the surrogate cow (Oback and Wells 2003).  

 

The IVF and SCNT technology has opened the possibilities to manipulate and cultivate 

the embryo. However, it has also been linked to many abnormalities in embryo 

development. Well evident abnormalities in foetuses or calves following transfer of in 

vitro cultivated embryos includes lower pregnancy rate, increased abortion, oversized 

calves, musculoskeletal deformities and abnormalities of placental development, which 

are often described as “Large Offspring Syndrome” (LOS). LOS has been described for 

bovine (Farin et al. 2006), sheep (Sinclair et al. 1999) and mice (Eggan et al. 2001). The 

abnormalities associated to the IVF, SCNT and in vitro culture of embryo are in 

principle due to aberrant or alteration of transcriptional activity at sub-cellular level. 

Several lines of evidence in mouse and cattle indicate that expression patterns of genes 

from in vitro-produced embryos are not necessarily representative of those of in vivo 

embryos (as reviewed) (Niemann and Wrenzycki 2000). An important gene that has 

been found to be expressed by in vivo-derived bovine blastocysts, but not in their in 

vitro-produced counterparts, is the Connexin-43 that is crucial for maintenance of 

compaction. The bovine leukemia inhibitory factor (bLIF) and LIF-receptor-R (LR-8) 

genes were found to be expressed by in vitro produced embryos, but not in their in vivo 

counterparts. The heat shock protein gene 70.1 (Hsp70.1) has been found upregulated 

by blastocysts produced in vitro compared to in vivo embryos, while the glucose 

transporter-l mRNA (Glut-l) is downregulated by morulae produced in vitro as 

compared to in vivo-derived morulae (Niemann and Wrenzycki 2000). However, such 

abnormalities are found to be more pronounced in cloned animals. The clones have a 

high mortality rate due to suffering a number of developmental abnormalities such as 

higher birth weights, muscular-skeletal problems and incorrect placental formation 

(Wells et al. 2004). Candidate gene study reveals that the failure of implantation may be 

due to aberrant expression of genes in the preimplantation cloned embryo, which are 
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crucial for the early regulation and differentiation of the placenta (Hall et al. 2005). At 

the cellular level, a higher incidence of apoptosis (Park et al. 2004) and aberrant 

allocation of inner cell mass (ICM) (Koo et al. 2002) is evident. At the sub-cellular 

level, aberrant DNA methylation patterns (Bourc'his et al. 2001) and the dysregulation 

of genes occurs (Humpherys et al. 2002). These abnormalities are thought to mainly be 

due to epigenetic defects (changes in chromatin structure, not involving a change in 

DNA base sequence) which occur during cell reprogramming, where the donor cell 

DNA is reprogrammed by the oocyte cytoplasm to a embryonic state (Schurmann et al. 

2006). 

 

Recent global gene expression profiling study has also evidenced aberrant regulation of 

gene expression either by genetic or epigenetic modification due to manipulation and 

culture of preimplantation embryos (Aston et al. 2009, Zhou et al. 2008). According to 

the nature and extend of regulatory mechanisms it could be consider that miRNAs are 

playing pivotal roles in such aberrant transcriptional processes. Since, miRNA has been 

appeared as first and foremost epigenomic tool or modifier that regulate gene expression 

epigenetically at the post-transcriptional or transcriptional level and were found to play 

important roles during mammalian development (Ambros 2004, Bartel 2004, 

Kloosterman and Plasterk 2006). They were found to be targeted by epigenetic 

modification and eventually controlling epigenetics and some imprinted miRNAs found 

to undergo subsequent epigenetic reprogramming in mouse embryos (Cui et al. 2009, 

Kircher et al. 2008, Williams et al. 2007). Although few reports until now have been 

addressed the differential miRNAs regulation in the IVP and SCNT embryo compared 

to the artificial inseminated one with particular aspects of their function. Among them, 

one has revealed the disregulated expression of several micro RNAs (miRNAs) in 

bovine cloned elongated embryos using a heterologous microarray (Castro et al. 2010). 

miRNAs expression profiling in elongated cloned and in vitro-fertilized bovine embryos 

has suggested that the different state of reprogramming of miRNAs occurred in cloned 

bovine elongated embryos (Castro et al. 2010). Among the most notable downregulated 

miRNAs found in their study were miR-30d and miR-26a. Both of these miRNAs 

interacted with TKDP, which is involved in maternal recognition of pregnancy in cattle 

(Lagos-Quintana et al. 2001). However, status of reprogramming error in the extra 

embryonic tissues (or placenta) has not yet been separated which could be the main 

reason for the cloned pregnancy loss during the first trimester. Based on these 
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preliminary data, it can be inferred that aberrant trophoblast gene and miRNAs 

expression in cloned embryos contributed to pregnancy failures at and beyond 

implantation. At this moment, much and more information is remaining to elucidate the 

role of miRNAs in the alteration of important transcripts in the IVP and SCNT embryo 

and their association to the abnormal embryonic development.  

 

2.6 Maternal recognition of embryo, implantation and miRNAs 

 

A critical need arises early in gestation for the mother to "recognize" that she is 

pregnant in most species. More specifically, the concentration of progesterone in 

maternal blood must be sustained at a high level in order that the endometrium be 

maintained in a state conducive to embryonic survival. This means that the corpus 

luteum must not die and regress, as it normally does just prior to the onset of the next 

cycle. The early ruminant embryo secretes copious quantities of a protein called 

interferon tau. Exposure of the endometrium to this hormone dampens the secretion of 

PGF, thereby blocking the signal for luteolysis. As a result, the corpus luteum survives 

and progesterone levels are maintained. During post hatching stage, the mononuclear 

trophoblast cells of embryo begin to transcribe mRNA for interferon tau (trophoblastin 

or trophoblast protein-1) at day 12. Highest transcription of mRNA for IFNt occurs on 

days 15 to 17 and continues until approximately day 25 when the initial adhesion of the 

conceptus to the luminal epithelium of the uterus halts IFNt gene expression (Figure 

2.12) (Bartol et al. 1985, Farin et al. 1990). The expression of IFNt is limited to the 

trophectoderm and is not transcribed in the endoderm or yolk sac (Farin et al. 1990). 

The site specific production of IFNt by trophoblast cells may be due to exclusive 

expression of the blastocyst-specific transcription factor Cdx2 in trophoblast cells 

regulating IFNt gene transcription (Imakawa et al. 2006) and/or the absence of Oct-4 in 

these same cells (Ezashi et al. 2001). Uterine produced factors, such as granulocyte-

macrophage-colony stimulating factor (Ezashi and Roberts 2004), interleukin 3 and 

insulin-like growth factors -I and -II (Ko et al. 1991) appear to enhance IFNt secretion 

by the conceptus by acting via the Ets-2 enhancer region (Ezashi and Roberts 2004). 

Synthesis and secretion of IFNt by the developing conceptus blocks the luteolytic 

signal, maintaining the function of the corpus luteum and is thereby the signal for 

maternal recognition of pregnancy (MRP) in ruminants (Bazer et al. 1989, Bazer et al. 

1991, Bazer 1992). In addition to signaling MRP, IFNt is also responsible for inducing 
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or enhancing the expression of numerous genes referred to as IFNt-stimulated genes 

(ISGs). These ISGs contribute to the regulation of uterine receptivity and conceptus 

development at early gestation (Hansen 1998, Spencer et al. 2004).  

 

Figure 2.12: Maternal recognition of pregnancy and different phases of blastocyst 

implantation. (A) Maternal recognition and preattachment, which is 

involving shedding of the zona pellucida (phase 1) on day 8 and 

precontact and blastocyst orientation (phase 2) on day 9-11. (B) 

Apposition and transient attachment (phase 3) after day 11 (C) Adhesion 

(phase 4) between days 15 and 16 (adapted from Spencer et al. 2004). 
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Following MRP, the adhesion between trophoblastic cell membranes and the tips of the 

microvilli of uterine luminal eptithelial cells is evident by days 19 to 20 of gestation 

(Guillomot 1995). Maternal recognition of pregnancy and different phases of blastocyst 

implantation are shown in figure 2.12. To facilitate adhesion of the conceptus, 

remodeling of the uterine endometrial extracellular matrix (ECM) is necessary 

(MacIntyre et al., 2002; Yamada et al., 2002b). ECM proteins in the uterine 

endometrium includes several proteins namely types I and IV collagen, laminin and 

fibronectin (MacIntyre et al. 2002, Yamada et al. 2002). Coordinated production of 

matrix metalloproteinases (MMPs) by the conceptus and the production of tissue 

inhibitors of MMPs (TIMPs) by the endometrium are also reported (Salamonsen et al. 

1995). Among the several proteins those are involved with adhesion of the 

trophectoderm to the luminal epithelium of the uterus, the most important are integrins 

which play a dominant role in the interaction with the ECM to convey cellular signals 

between the conceptus trophectoderm and uterine epithelial cells (MacIntyre et al. 

2002). The adhesion stage is usually characterized by firm adhesion between the 

conceptus and luminal epithelium, which begins between days 21 to 22 of bovine 

gestation (Guillomot 1995) and is completed by day 27 (King et al. 1980). Once cellular 

contact is established between the trophectoderm and luminal epithelium, IFNt gene 

expression drops immediately down (Guillomot et al. 1990). This attachment is 

transient and it is replaced within a few days by a more robust adhesion in the glandular 

intercaruncular region between the trophoblast and luminal epithelium, called an areolae 

(Guillomot 1995, Spencer et al. 2004). These areolae are specialized areas within the 

intercaruncular placenta that form openings of gland ducts on the surface of the luminal 

epithelium (Guillomot 1995). Syncytial plaque formation in the uterine epithelium 

during implantation is facilitated by the migration and fusion of the trophoblastic 

binucleate cell (BNC) with uterine cells (Wooding 1983).  

 

Binucleate cells are responsible for the formation of the hybrid feto-maternal syncytia, 

allowing for successful implantation and subsequent cotyledonary growth of the 

placentome (Spencer et al. 2007). Binucleate cells- a specialized group of cells in 

ruminants that are produced by nuclear division of uninucleate trophoblast cell without 

cytoplasmic division. These cells are responsible for the simultaneous production and 

paracrine secretion of proteins and growth factors at the materno-fetal interface (Kessler 

and Schuler 1997). About 20 % of the surface of the trophectoderm comprises 
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binucleate cells (BNC) (Xie et al. 1997), which migrate through adjacent cell tight 

junctions and across the microvillar junction to reach the maternal luminal epithelium. 

They fuse with maternal epithelial cells forming a multicellular complex (Wooding 

1983). In the bovine, this migration is maximal at approximately d 24 of gestation, but 

remains functional throughout gestation (Wooding, 1983). The process of migration and 

attachment of the BNC is a relatively undefined process but appears to involve such 

factors as glycoprotein CD9 and fertilin (Xiang and MacLaren 2002). Secretion from 

BNC includes members of the growth hormone/prolactin family, including: chorionic 

somatomommotropin 1 (CSH1; also know as placental lactogen), several prolactin-

related proteins (PRP; -I, -VII, -VIII and -IX) and members of the aspartic proteinase 

family called pregnancy associated glycoproteins (PAGs; also known as pregnancy 

specific proteins B) (Spencer et al. 2007). These factors are placental specific hormones 

that are not synthesized or secreted by any other endocrine gland (Anthony et al. 1995). 

In the bovine, mRNA for CSH1 is detected between days 26 to 30 of gestation and 

increases throughout gestation, however PRP-1 mRNA expression begins between days 

20 to 25 of gestation, is of maximal concentration at day 60 of gestation and decreases 

thereafter (Yamada et al. 2002). Placental CSH1 binds to prolactin homodimer and 

prolactin/growth hormone heterodimer receptors in the glandular epithelium and 

stimulates uterine gland growth and/or differentiated functions during pregnancy 

(Spencer et al. 2007). 

 

Maternal recognition of pregnancy and subsequent implantation is largely dependent on 

steroidogenic balance and specific transcriptional activities. So there is a strong 

possibility for the miRNAs to be involved in such mechanism, since miRNAs 

dependent regulation of steroidogenesis and steroidogenic control of miRNAs 

biosynthesis has already been evidenced as discussed in the literature on ovary. The 

receptivity of uterus during blastocyst implantation is achieved through transition from 

elevated estrogen dependent highly proliferative state to progesterone dependent highly 

secretory state. miRNAs could also be involved in implantation process via uterine 

changes through regulating or interfering the post transcriptional and translational 

activity of vast number of genes. Supported studies suggest that miRNAs participate in 

regulating dynamic changes in uterine gene expression patterns that occur during the 

transition from the pre-receptive to the receptive phase and miRNAs mediated 

regulation of uterine gene expression in the context of implantation is evidenced 
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(Chakrabarty et al. 2007). Hence, it clear that miRNAs potentially regulate gene 

expression and participate in directing the highly regulated spatiotemporally expressed 

genetic network during implantation (Chakrabarty et al. 2007). In addition, several 

studies have already reported the regulation of miRNAs in the endometrium by the 

ovarian steroid (Macias et al. 2009, Pan et al. 2007, Toloubeydokhti et al. 2008b). 

Further, in vitro gain- and loss-of-function experiments showed that the expression of 

cyclooxygenase-2, a gene critical for implantation, is post-transcriptionally regulated by 

two miRNAs namely, mmu-miR-101a and mmu-miR-199a* (Chakrabarty et al. 2007). 

Another study has identified higher expression of miR-21 in the subluminal stromal 

cells at implantation sites on day 5 of pregnancy but not detected during pseudo-

pregnancy or even under delayed implantation (Hu et al. 2008). This revealed that the 

expression of mmu-miR-21 in the implantation sites regulated by the active blastocysts. 

Moreover, in the same study, the role of miR-21 in embryo implantation has been 

suggested due to targeted regulation of the Reck gene (Hu et al. 2008). The topic 

becomes interesting when it is identified that miRNAs could be released in the extra 

cellular environment and functioning (Chim et al. 2008, Luo et al. 2009). So, there is a 

possibility that miRNAs in regulating extra cellular signaling network as like as 

interferon tau and other associated molecules during the maternal recognition of 

pregnancy in the pre attachment period. However, relevant study to identify such 

involvement is still remaining to be elucidated. 

 

2.7 miRNAs in the development and physiology of placenta 

 

The development of the early embryos and placentas in bovine is markedly different 

from primates and rodents. Human blastocyst gets implanted to the uterus at day 5-7 

while in mouse implantation occurs at day 4 of gestation (Paria et al. 2001, Vigano et al. 

2003). The bovine placenta is characterized as chorioallantoic type and by structures or 

by developmental patterns it is different in comparison to human or mouse. 

Development of the bovine placenta is dependent on proper gastrulation during 

extended pre-attachment period, which gives rise to the development of the germ layers 

(endoderm, mesoderm and ectoderm), concomitant trophoblast elongation and the 

subsequent development and vascularization of the allantois (Maddox-Hyttel et al. 

2003). The hypoblast cells or primitive endoderms are formed from the ICM and 

confluent hypoblast cells are lining the inside of the trophoblast occurs around day-8 
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and day-10, respectively. Epiblast (ICM at day12) displaces the overlying trophoblast 

lining (Rauber’s layer) and develops the embryonic disk. Later on between days 14 and 

16 mesoderm formation is initiated (Maddox-Hyttel et al. 2003). Trophoblast cells 

together with the somatic mesoderm form the chorion successively. Folds of 

trophectoderm cells fuse with the somatic mesoderm and form the amnion that create a 

fluid-filled space and surrounds the embryo proper. During the progress of the embryo 

to develop into a fetus, an out pocketing of the hindgut extends from the fetus into the 

loose tissues of the splanchnic mesoderm forming the allantois at around day 20. The 

allantois is responsible for vascularizing the chorion and amnion. The allantois expands, 

becomes directly apposed to the chorion and the two tissues fuse to form the 

chorioallantois. Together with the amnion these tissues form the extra-embryonic fetal 

membranes, refereed to as the placenta (Schlafer et al. 2000). The early placenta when 

comes in contact with maternal caruncles, it induces villous processes undergo 

hypertrophy and hyperplasia and subsequently forms cotyledons. Small villi or papillae 

develop on the regions of the trophoblast that are apposed to the intercaruncular 

endometrium and project into the openings of the uterine glands (Wooding et al. 1982). 

These villi allow for a primary route for absorption of glandular secretions and provide 

an initial anchor for the conceptus as well. During this period in the luminal surface of 

the uterine caruncles are found to become wrinkled and concave to allow the ridged 

surface of the trophoblast to align with the undulated surface of the caruncle (Guillomot 

1995). This is the initial development of the placentome, which is the site of fusion of 

the placental cotyledons with the endometrial caruncles (Spencer et al. 2004). By day 42 

fused placental cotyledons with endometrial caruncles are progressed to form larger and 

complex placentomes (Noden and De Lahunta 1985). Placentomes with extensive 

villous formation are the primary site of transport for easily diffusible molecules such as 

amino acids, glucose, oxygen and carbon dioxide, while macromolecules are 

transported in the inter placentomal areas adjacent to uterine glands (Wooding and Flint 

1994).  

 

Regarding involvement of miRNAs in the process of placentogenesis is yet to be 

discovered in detail. However, complex physiological process and multitude of gene 

expression in the placentation and function indicates that miRNAs could be involved to 

play a pivotal role as they are found to be important regulator in many other cellular 

processes. Recently some sporadic attempts were taken to study miRNAs during 
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pregnancy, prostaglandin regulation and patho-physiological condition of women 

placenta. First demonstration was to study the existence of human placental miRNAs in 

maternal plasma and their  stability through out with physical nature by TaqMan 

MicroRNA Assays (Chim et al. 2008). Interestingly, 4 most abundant placental 

miRNAs (miR-141, miR-149, miR-299-5p and miR-135b) were detected in the maternal 

plasma during pregnancy and found to be reduced expression in post-delivery plasma. 

The plasma concentration of miR-141 has been found to increase as pregnancy 

progressed into the third trimester. Compared with mRNA encoded by CSH1 [chorionic 

somatomammotropin hormone 1 (placental lactogen)], miR-141 was stable in maternal 

plasma (Chim et al. 2008). This initial evidence indicates that miRNAs are involved in 

the regulation of placental functions and pregnancy. Another study was performed by 

small RNA library sequencing and miRNA histochemistry using human placental 

chorionic villi to identify miRNA expression profiles in the human placenta (Luo et al. 

2009). The miRNA cluster genes were observed to be differentially expressed in 

placental development and further revealed that villous trophoblasts express placenta-

specific miRNAs. In addition, analysis of small RNA libraries from the blood plasma 

showed that the placenta-specific miRNAs are abundant in the plasma of pregnant 

women and the rapid clearance of the placenta-specific miRNAs from the plasma after 

delivery. It has been also demonstrated that miRNAs are indeed extracellularly released 

via exosomes while studied trophoblast cell line cultured in vitro (Luo et al. 2009). The 

study has been suggested that miRNAs are exported from the human placental 

syncytiotrophoblast into maternal circulation, where they could target maternal tissues. 

This result interestingly coincides with the previous study (Chim et al. 2008) and 

placental miRNAs has been identified to enter into maternal circulation. These data 

provide initial evidence and important insights into miRNA biology of the human 

placenta. Growth and differentiation of the placenta are fundamental to mammalian 

reproduction, including humans and functional impairment of this organ by 

misregulation of miRNAs could lead to severely abnormal pregnancies as well as other 

associated diseases. For instance, miRNAs were found as differentially regulated in the 

placenta with severe pre-eclampsia when compared to normal one (Hu et al. 2009). Pre-

eclampsia (PE) is usually caused by poor placentation with impaired remodeling of the 

spiral arteries. It has been found that miR-16, miR-29b, miR-195, miR-26b, miR-181a, 

miR-335 and miR-222 were significantly increased in placenta from women with severe 

PE (Hu et al. 2009). This suggests that different miRNAs may play an important role in 
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pathogenesis of PE. Investigation to elucidate the importance of miRNAs in regulation 

of placental development and function is just at the beginning. Whatever involvement 

identified in human even though it is very few, in case of ruminants it is untouched and 

could be an interesting field of investigation.   

 

2.8 miRNAs and abnormal placentogenesis in the IVP and SCNT pregnancy 

 

There have been many problems associated with the effect that nuclear transfer has on 

the normal development of the cloned animal. By far, the most commonly reported 

theme of deformity is that of placental development. Following sections describe and 

highlight some commonly observed abnormalities, transcriptional aberration and 

abnormal epigenetic modification found to arise in the placenta from IVP and SCNT 

pregnancies together with probable involvement of miRNAs and problem statement. 

 

2.8.1 Abnormal placentogenesis in the SCNT pregnancy 

 

It has been well recognized that animals produced via SCNT method exhibit a wide 

range of placental abnormalities that result in a substantial loss of live births, the birth 

of deformed offspring and an inordinate amount of stress on the recipient animal. 

Abortion throughout gestation and perinatal death of cloned calves has been attributed 

to such placental abnormalities noted after nuclear transfer. Placental anomalies have 

been reported in many studies with some of the more common pathologies include, but 

are not limited to, lack of adventitial placentation, lower number of placentomes, thick 

and oversized placentomes, edematous membranes, edematous amnion, edematous 

chorioallantois, intercotyledonary edema (Hill et al. 1999), retarded allantoic growth 

(Wells et al. 1999), hydroallantois, decreased vascularization, decreased number of 

cotyledons and binucleate cells, enlarged umbilical vessels (Wells et al. 1999) and 

increased cotyledonary size and cell numbers (Batchelder et al. 2005, Chavatte-Palmer 

et al. 2002, Cibelli et al. 1998, Hashizume et al. 2002, Heyman et al. 2002, Hill et al. 

2000, Hill et al. 2001, Hoffert et al. 2005, Ravelich et al. 2004a, Stice et al. 1996, 

Zakhartchenko et al. 1999). Many of the failed pregnancies abort during the middle of 

the first trimester, around day 40 (Hill et al. 1999, Stice et al. 1996), even though the 

fetus appears to be developing in a normal manner (Wells et al. 1999). Major causes for 

the mentioned placental abnormalities are thought to be due to aberrant gene expression, 
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imprinting loses and defective epigenetic modification resulted from donor cell nuclear 

reprogramming error by the oocyte cytoplasm. Primary findings related to this field are 

discussed bellow. 

 

2.8.2 Aberrant gene expression in the placenta of different sources of pregnancies 

 

Abnormal gene expression has been noted in cloned mouse and bovine fetuses and 

placenta. Dysregulated gene expression has been identified in the placentas or 

placentomes of cloned bovine fetuses as early as day 25 and throughout gestation to 

term by several studies (Hashizume et al. 2002, Hill et al. 2002). At the protein level, 60 

proteins were found to be differentially expressed in term placentas of cloned calves 

compared with fertilized controls (Kim et al. 2005). Abnormal expression of over 200 

genes was noted in cloned mouse placentas (Humpherys et al. 2002). Further support 

for dysfunctional placental development in clones comes from the recent study (Jouneau 

et al. 2006), which showed that the majority of the cloned mouse embryos die before a 

functional placenta can develop. Elevated interferon tau expression was detected in one 

study from bovine cloned embryos (Wrenzycki et al. 2001). Major histocompatibility 

complex I expression has been detected abnormally early in cloned bovine embryos and 

fetuses and has indicated immunologic rejection by the recipient as a possible cause of 

early embryonic death (Hill et al. 2002, Pfister-Genskow et al. 2005). Insulin-like 

growth factor binding proteins 2 and 3 showed increased expression in the 

extraembryonic membranes of bovine nuclear transfer fetuses (Ravelich et al. 2004a). 

Examination of gene expression patterns in bovine placentomes collected from SCNT, 

IVF and AI pregnancies demonstrates gross abnormalities in gene expression associated 

with SCNT cloning (Everts et al. 2008, Oishi et al. 2006). Finally, when gene 

expression in cloned mice derived from nuclei of different cell types was examined 

(Humpherys et al. 2002), some cell type-specific effects were seen, but most of the 

abnormalities in cloned mice were independent of donor cell type and seemed to be a 

consequence of the nuclear transfer procedure. Moreover, a comparison of the effects in 

placenta and liver of cloned pups demonstrated that the placental effect is especially 

pronounced, with at least 4% of genes expressed in the placenta showing dysregulation. 

Aberrant placental lactogen, pregnancy-associated glycoprotein, leptin levels and 

heparanase levels were noted in the placental tissues derived from cloned bovine 

pregnancies (Hashizume et al. 2002, Ravelich et al. 2004b). These studies have 
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indicated widespread abnormalities in gene expression from both fetal and placental 

tissues of cloned offspring. The common occurrence of aberrant gene expression in 

early SCNT cotyledons compared to cotyledons from artificial insemination derived 

pregnancy (Aston et al. 2009). In particular, most aberrant expression was found for the 

imprinted transcripts in SCNT placenta compared to AI placenta. These issues are 

discussed detail in the following section. 

 

2.8.3 Aberrant epigenetic reprogramming and genomic imprinting in the placenta from 

SCNT pregnancies 

 

Epigenetic process is the heritable differences in gene function and expression leading 

to phenotypic differences which cannot be explained by the DNA sequence itself (Smith 

and Murphy 2004, Wolffe and Matzke 1999, Wu and Morris 2001). Cellular 

development and function may be affected by changes in epigenetic processes altering 

gene expression (Smith and Murphy 2004). Abnormal epigenetic mechanisms including 

aberrant DNA methylation, X-chromosome inactivation and histone modification have 

been shown to be associated with cloned placenta. It is obvious that gene expression 

patterns affected by epigenetic processes may not be correctly reestablished after 

nuclear transfer. After SCNT chromatin structure and transcriptional activity of donor 

nuclei must revert to that of an early one-cell embryo after nuclear transfer in order to 

direct embryonic development. This process is known as nuclear reprogramming and 

essentially involves both morphological and biochemical changes (Di Berardino 1997, 

Kikyo and Wolffe 2000, Sun and Moor 1995). In mammals, nuclear remodeling after 

nuclear transfer has been recognized as chromatin condensation, nuclear envelope 

breakdown and the formation of a pronuclear-like structure that undergoes swelling and 

transferred nucleus tends to behave more like that of early stage embryos (Adenot et al. 

1997, Baran et al. 2002, Collas and Robl 1991, Czolowska et al. 1984, Hyttel et al. 

2001, Kanka et al. 1991, Prather et al. 1990, Stice and Robl 1988, Szollosi et al. 1988). 

Transcription from the donor nucleus is normally ceased after nuclear transfer during 

nuclear remodeling, but reappeared later on during genomic activation at 8- to 16- cell 

stage (Kanka et al. 1991, Kim et al. 2002). Protein and lamin expression have been 

reported to change after nuclear transfer in mammalian studies (Kubiak et al. 1991, 

Prather et al. 1989, Prather et al. 1991, Prather and Rickords 1992). Nuclear transfer 

bovine embryos were found to be absent of immunoreactive somatic histone H1 after 
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nuclear transfer and then reappeared at the time of genomic activation in bovine 

embryos (Bordignon et al. 1999). Epigenetic alterations of the genome are found to be 

occurred primarily by histone modification and DNA methylation (Smith and Murphy 

2004) and affecting critical developmental processes, namely genomic imprinting, X-

chromosome inactivation and gene expression.  

 

DNA methylation involves the addition of a methyl group to the 5th position of the 

cytosine pyrimidine ring or the number 6 nitrogen of the adenine purine ring (cytosine 

and adenine are two of the four bases of DNA with the specific effect of reducing gene 

expression. Changes in embryo-wide DNA methylation patterns and global DNA 

methylation levels were also reported in association with adverse preimplantation 

development (Cezar et al. 2003, Hiendleder et al. 2004). In cloned mice, individual 

clones showed differing aberrant methylation patterns of CpG islands in placental 

tissues (Ohgane et al. 2001). Elevated methylation levels were found in cloned bovine 

embryos (Dean et al. 2001, Santos et al. 2003). It has been found that an initial 

demethylation of the donor nucleus takes place immediately after transfer but no further 

demethylation during early embryogenesis followed by precocious de novo methylation 

at the 8-cell stage (Dean et al. 2001). Demethylated euchromatin and hypermethylated 

heterochromatin in cloned bovine embryos has also been reported (Bourc'his et al. 

2001). The methylation of the ninth lysine residue on histone H3 has been shown to 

correlate with the pattern of DNA methylation in cloned bovine embryos with abnormal 

elevation and altered histone acetylation levels in many of the cloned embryos and 

placenta (Enright et al. 2003, Santos et al. 2003). 

 

X-inactivation is a process by which one of the two copies of the X chromosome 

present in female mammals is inactivated. The inactive X chromosome is silenced by 

packaging into transcriptionally inactive heterochromatin. X-inactivation occurs so that 

the female, with two X chromosomes, does not have twice as many X chromosome 

gene products as the male, which only possess a single copy of the X chromosome. In 

cattle, X-chromosome inactivation was found to be abnormal (Xue et al. 2002). Random 

X-inactivation in the placental tissues cloned calves and abnormal methylation as well 

as altered expression patterns of X-linked genes were observed (Gutierrez-Adan et al. 

2000, Niemann et al. 2002, Wrenzycki and Niemann 2003, Wrenzycki et al. 2005). In 

contrast, surviving cloned calves were found to have normal X-linked gene expression 
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patterns (Xue et al. 2002). Just as X-chromosome dosage compensation can be impaired 

in cloned offspring, histone modification patterns may be abnormal in cloned embryos. 

Genomic imprinting is a genetic phenomenon by which certain genes are expressed in a 

parent-of-origin-specific manner. It is an inheritance process independent of the 

classical Mendelian inheritance. Imprinted genes are either expressed only from the 

allele inherited from the mother (e.g. H19 or CDKN1C), or in other instances from the 

allele inherited from the father (e.g. IGF-2) through DNA methylation and histone 

modifications in order to achieve monoallelic gene expression without altering the 

genetic sequence. Nuclear transfer and inadequate in vitro culture conditions leading to 

improper genetic reprogramming which results in improper establishment of imprinting 

at the regulatory imprinting centers during the critical period of pre implantation and 

later on, such errors are affecting placental development. Sequences associated to the 

control of the imprinted genes H19 and Snprn have been found to be demethylated in 

cloned mouse embryos (Mann et al. 2003). Investigations on imprinted gene expression 

in bovine and ovine fetuses derived from IVP and SCNT have been suggested that 

improper genomic imprinting. Examination of gene expression patterns in the placentas 

of cattle, sheep and mice produced using in vitro culture procedures demonstrated 

altered expression of imprinted (Bertolini et al. 2002, Blondin et al. 2000, Doherty et al. 

2000, Wrenzycki et al. 2004, Young et al. 2001) and autosomal non-imprinted genes 

(Ravelich et al. 2004a, Ravelich et al. 2006, Wrenzycki et al. 2004). Adult cloned 

animals were generally considered to be normal when analyzed for epigenetic changes, 

suggesting that perhaps only the most epigenetically normal embryos survive to 

adulthood (Cezar et al. 2003, Ohgane et al. 2001). These studies all indicate that 

widespread chromatin remodeling, modification of DNA methylation and histone 

modification occurs during nuclear reprogramming which could be the primary reason 

for abnormal placentogenesis leading to the loss of cloned embryos. 

 

2.8.4 miRNAs in the placenta from SCNT pregnancy in relation to its aberrant genetic 

and epigenetic modification 

 

According to the aforesaid reviews, it is completely evident that the placental 

deformities are a major hindrance in the production of nuclear transfer animals. So, 

studying the important factor which is involved in regulating aberrant genetic and 

epigenetic gene regulation, reprogramming errors, aberrant genomic imprinting and in a 
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word the genetic or epigenetic modification associated to the abnormal placentogenesis 

in somatic cell nuclear transfer pregnancies is paramount important. As mentioned, key 

mechanisms underlying this epigenetic reprogramming are DNA methylation, histone 

remodeling and telomere maintenance, which are involved in the control of gene 

expression, X chromosome inactivation and genomic imprinting (Holmes and Soloway 

2006, Li et al. 1993, Perecin et al. 2009). Interestingly, all mechanisms are not 

contributing equally to the embryonic and extra-embryonic lineage (McGrath and Solter 

1984, Oudejans et al. 1997, Surani et al. 1984, Wagschal and Feil 2006). Specially, 

genomic imprinting has been shown to be less or not dependent on DNA methylation in 

the placenta for its somatic maintenance than in the embryo. Rather, placenta-specific 

imprinting involves repressive histone modifications and non-coding RNAs (Brockdorff 

2002, Higashimoto et al. 2002, Lewis et al. 2004, Li et al. 1993, Sado et al. 2000, Sado 

and Ferguson-Smith 2005, Yatsuki et al. 2004). When considering non-coding RNAs, 

then miRNAs a recently discovered class of small RNAs appeared as first and foremost 

epigenomic tool or modifier that regulate gene expression epigenetically at the post-

transcriptional or transcriptional level and were found to play important roles including, 

but not restricted to, cell proliferation, apoptosis, diseases and differentiation during 

mammalian development (Ambros 2004, Bartel 2004, Kloosterman and Plasterk 2006). 

So, miRNA could be consider as an important regulatory factor directly link to 

mentioned aberrant molecular mechanisms for genetic and epigenetic modification. 

They were found to be targeted by epigenetic modification and eventually controlling 

epigenetics and some imprinted miRNAs found to undergo subsequent epigenetic 

reprogramming in mouse embryos (Cui et al. 2009, Kircher et al. 2008, Williams et al. 

2007). Many of the miRNAs have been predicted and found to have pivotal roles in 

controlling DNA methylation, regulating chromatin structure and controlling telomere 

recombination (Benetti et al. 2008a, Benetti et al. 2008b, Fabbri et al. 2007, Guil and 

Esteller 2009, Lewis et al. 2005, Lujambio and Esteller 2007, Ting et al. 2008, Valeri et 

al. 2009). Interestingly, they could be imprinted like genes and many of X-linked 

microRNAs escape meiotic sex chromosome inactivation (Kanellopoulou et al. 2009, 

Song et al. 2009).   

 

Recent epigenetic regulation by the miRNAs has opened up a new dimension of mode 

of regulation from translational suppression and classic RNAi degradation. In addition 

to regulation of gene expression at the posttranscriptional level in the cytoplasm, recent 
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findings suggest additional roles for miRNAs in the nucleus. MiRNAs which are 

encoded within the promoter region of genes could be involved in silencing such genes 

at transcription level epigenetically. Such cis-regulatory roles of miRNAs have been 

observed in transcriptional silencing of POLR3D expression and endothelial nitric oxide 

synthase (eNOS) promoter activity (Kim et al. 2008, Zhang et al. 2005). Recently, 

aberrant epigenetic reprogramming of imprinted miR-127 in cloned murine embryos 

has been reported in relation to the aberrant epigenetic reprogramming of the mouse 

retrotransposon-like gene Rtl1 (a key gene in placental formation) (Cui et al. 2009). 

Moreover, the miRNA has been recognized as an important regulator of genetic and 

epigenetic modifier but study on their role in the well recognized aberrant genetic and 

epigenetic mechanism associated to malformation or abnormal development of placenta 

in somatic cell nuclear transfer pregnancies is missing. Thereby, very little or no 

information are available about the specific miRNA and their targets to regulate 

epigenetic machinery or epigenetic regulation of specific miRNAs that are required for 

normal physiological condition or for any phenotypic effects of placenta derived from 

SCNT pregnancies. Considering this important facts, part of the present study has been 

conducted to identify the expression, regulation or deregulation if there is, in the 

placenta derived from in vitro, SCNT pregnancies compared to that in vivo pregnancies 

as well other associated molecular mechanisms.  
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3 Part I: miRNAs in the bovine ovary 

 

Follicular development begins with the establishment of a finite pool of primordial 

follicles, which culminates in either by the atretic degradation or release of a mature 

oocyte from the follicle. Entire process is governed by numerous intra-ovarian factors 

through complex mechanisms including transcriptional regulation which could be 

regulated by recently identified new class of non-coding small RNAs of ~22nt i.e. 

miRNAs. Most miRNAs in animals are thought to function through the inhibition of 

effective mRNA translation of target genes through base pairing with the 3´-untranslated 

region. They are already proved as one of the key transcriptional regulators in different 

biological processes for disease, development and fertility. But their presence & 

expression in bovine ovary has not yet determined. The present study was conducted 

with a view to discover distinct miRNAs in bovine ovary as well as to find out their 

pattern of expression and characteristics. 

 

To identify miRNAs in bovine ovary, small RNA-cDNA library was constructed. For 

this purpose, total RNA enriched with small RNA was isolated from ovary and size 

fractionated (18-24 nt) by denaturing PAGE using 21nt size marker. Once the enriched 

small RNA fraction has been recovered from the acrylamide gel slice, the small RNAs 

were ligated with a 3´ linker and containing a Ban-I restriction site, which upon 

purification from dPAGE again, were subjected to reverse transcription. At this point an 

exonuclease digestion was carried out and then a second 3´ ligation was done using a 

different linker sequence. Linkered product (60 nt) was purified from dPAGE and 

subsequently, the amplification of the RT product was done. Then the amplicon was 

subjected to Ban I digestion, concatemerization, end filling and non-templated 

adenosine addition for serially ligated fragments. Concatemers were later on cloned in 

to PCR cloning vector and transformed into TOP 10 chemically competent cells. 

Colonies were picked and sequenced. Bioinformatic analysis was done according to the 

published criteria’s for the small RNAs by means of publicly available web tools. In 

addition, bioinformatic characteristics, target prediction, molecular mechanisms 

including different pathways and functions of the predicted targets and expression 

patterns of the identified miRNAs in other reproductive tissues and cells were studied. 

Detail materials and methods used for this study and the findings obtained thereafter in 

the study are presented below. 
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3.1 Material and methods 

 
3.1.1 Materials and tools 

 

3.1.1.1 List of chemicals, kits, biological and other materials 

 
List of Chemicals, kits and other 

materials 

Manufacturer/Supplier 

1-STEP NBT/BCIP Thermo Fisher Scientific Inc. IL, USA 

2- Propanol Roth, Karlsruhe, Germany 

5-Bromo-4-chloro-3-inolyl-

phosphate (BCIP) 

AppliChem GmbH, Darmstadt, Germany 

Acetic acid Roth, Karlsruhe, Germany 

Agar-Agar Roth, Karlsruhe, Germany 

Agarose Sigma-Aldrich Chemie GmbH, Munich, Germany 

Ammonium acetate Sigma-Aldrich Chemie GmbH, Munich, Germany 

Ammonium peroxide sulphate Roth, Karlsruhe, Germany 

Ampicillin Roth, Karlsruhe, Germany 

Anti-Digoxigenin-AP Roche Diagnostics GmbH, Mannheim, Germany 

Ban I restriction endonuclease New England Biolabs, MA, USA 

BioThermD™ Taq DNA Pol Ares Bioscience GmbH, Cologne, Germany 

Bovine serum ablbumin (BSA) Promega, Mannheim, Germany 

Bromophenol blue Roth, Karlsruhe, Germany 

Chloroform Roth, Karlsruhe, Germany 

dNTPs Roth, Karlsruhe, Germany 

Dye terminator cycle sequencing Beckman Coulter, Krefeld, Germany 

Ethidium bromide Roth, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid Roth, Karlsruhe, Germany 

ExoSAP-IT USB, Ohio, USA 

Fast Red Substrate System Dako Deutschland GmbH, Hamburg, Germany 

Fish sperm DNA Roche Diagnostics GmbH, Mannheim, Germany 

Formaldehyde Sigma-Aldrich Chemie GmbH, Munich, Germany 

GelStar® Nucleic Acid Stain Lonza Bioscience, Köln, Germany 

GenEluteTM plasmid Miniprep kit Sigma-Aldrich Chemie GmbH, Munich, Germany 



Part I: Material and methods 55

Glycogen MBI Fermentas GmbH, Leon-Rot, Germany 

Glycogen for sequencing Beckman Coulter, Krefeld, Germany 

Heparin Sigma-Aldrich Chemie GmbH, Munich, Germany

Isopropyl β-D-thiogalactoside IPTG Roth, Karlsruhe, Germany 

Levamisol Sigma-Aldrich Chemie GmbH, Munich, Germany

Methylsalicylate Sigma-Aldrich Chemie GmbH, Munich, Germany

MiniEluteTM reaction cleanup kit Qiagen, Hiden, Germany 

miRCat-33TM Conversion Oligo  Integrated DNA Technologies, Munich, Germany 

miRCatTM Small RNA Cloning Kit Integrated DNA Technologies, Munich, Germany 

miRCURY™ LNA Detection probe Exiqon, Vedbaek, Denmark 

mirVana miRNA isolation kit Applied Biosystems, Foster City, CA, USA 

miSPIKE internal RNA control Integrated DNA Technologies, Munich, Germany 

Oligonucleotide primers Eurofins MWG Operon, Ebersberg, Germany 

One Shot® TOP10 E. coli Invitrogen, Carlsbad, CA,USA 

Penicillin Sigma-Aldrich Chemie GmbH, Munich, Germany

Performa® DTR Gel Filtration Edge BioSystems, Maryland, USA 

Permount* Mounting Medium Fisher Scientific GmbH, Schwerte, Germany 

Phenol:Chl:Isoamyl Alcohol Invitrogen, Carlsbad, CA, USA  

Poly(A) Tailing Kit Ambion Inc, Austin, TX, USA 

QIAquick Gel Extraction Kit Qiagen, Hiden, Germany 

QIAquick PCR purification kit Qiagen, Hiden, Germany 

Ribo-nuclease inhibitor (RNasin) Promega, Mannheim, Germany 

RNA later Sigma-Aldrich, MI, USA 

RNAse-OUTTM Invitrogen, Carlsbad, CA, USA 

RNeasy mini kit Qiagen, Hiden, Germany 

Sample loading solution (SLS) Beckman Coulter, Krefeld, Germany 

Sequagel XR Sequencing Gel Beckman Coulter, Krefeld, Germany 

Sheep serum Sigma-Aldrich Chemie GmbH, Munich, Germany

Sodium acetate Roth , Karlsruhe, Germany 

Sodium pyruvate Sigma-Aldrich Chemie GmbH, Munich, Germany

SuperScript™ III RT  Invitrogen, Carlsbad, CA, USA  

T4 DNA ligase Promega, Mannheim, Germany 

TOPO TA Cloning® vector Invitrogen, Carlsbad, CA, USA 

Tris Roth , Karlsruhe, Germany 
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Triton X-100 Roche Diagnostics GmbH, Mannheim, Germany 

Vectashield Mounting Medium  Vector Laboratories, Inc. Burlingame, CA USA 

Vector Methyl green nuclear  Vector Laboratories, Inc. Burlingame, CA USA 

X-Gal (5-bromo-4-chloro-3-

indolylbeta-D-galactopyranoside) 
Roth, Karlsruhe, Germany 

Yeast tRNA Invitrogen, Carlsbad, CA, USA  

 

3.1.1.2 List of equipments 

 

ABI PRISM® 7000 SDS Applied Biosystems, Foster City, CA, USA

Agilent 2100 bioanalyzer Agilent Technologies , CA, USA 

ApoTome microscope Carl Zeiss MicroImaging, Germany 

Centrifuge Hermel, Wehing 

CEQ 8000 genetic analysis apparatus Beckman Coulter, Brea, CA, USA 

Confocal laser scanning microscope-510 Carl Zeiss, Germany 

Electrofusion machine, CFA 400 Kruess, Hamburg, Germany 

Electrophoresis unit (for agarose gels) BioRad, Munich, Germany 

Fluorescence microscope (DM-IRB) Leica, Bensheim, Germany 

Inverted fluorescence microscope DM IRB Leica, Bensheim, Germany 

Millipore apparatus Millipore Corporation, USA 

My Cycler Thermal cycler Bio-RadLaboratories, CA, USA 

NanoDrop 8000 spectrophotometer NanoDrop, Wilmington, Delaware, USA 

Power supply PAC 3000 Biorad, Munich, Germany 

PTC-100 thermal cyclers BioRad, Munich, Germany 

Savant SpeedVac GMI, Inc. Minnesota, USA 

SHKE6000-8CE refrigerated Shaker Thermoscinentific, IWA, USA 

Spectrophotometer, Ultrospec™ 2100 pro  Amersham Bioscience, Munich, Germany 

Stereomicroscope SMZ 645 Nikon, Japan 

Tuttnauer autoclave Conn. unlimited, Wettenberg, Germany 

Ultra low freezer (-85 °C) Labotect GmbH, Gottingen, Germany 

UV Transilluminator (Uvi-tec) Uni Equip, Martinsried, Germany 
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3.1.1.3 List of softwares 

 

BLAST cow sequences  http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/ 

Blast ncRNA database  http://ncrnadb.trna.ibch.poznan.pl/blast.html  

ENSEMBL genome browser http://www.ensembl.org/index.html 

Entrez Gene  www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 

Gene Ontology http://www.geneontology.org 

Genomic tRNA database  http://lowelab.ucsc.edu/GtRNAdb/ 

Mfold web server v 3.2 http://frontend.bioinfo.rpi.edu/applications/mfold/  

miRBase Targets Version 5 http://microrna.sanger.ac.uk/targets/v5/ 

miRBase_12.0 http://microrna.sanger.ac.uk/sequences/  

Multiple Sequence Alignment http://searchlauncher.bcm.tmc.edu/ 

Primer Express 2.0  Applied Biosystems, Foster City, CA, USA 

Ribosomal RNA BLAST  http://bioinformatics.psb.ugent.be/webtools/rRNA/  

RNAdb  http://research.imb.uq.edu.au/rnadb/default.aspx  

tRNAscan-SE  http://lowelab.ucsc.edu/tRNAscan-SE  

 

3.1.1.4 Reagents and media preparation 

 

All solutions used in this investigation were prepared with deionised and demineralised 

(Millipore) and where necessary the pH was adjusted with Sodium hydroxide or 

hydrochloric acid. In addition, the solutions or buffers were subsequently filtered 

through 0.2 µ filter and autoclaved at 120°C for 20 minutes where it is necessary. 

Prepared solutions were aliquot in to small volume and stores at desired temperature 

according to the recommendation of suppliers.  

 
Name of the medium/buffer Constituents Amount/

volume

10X PBS                                            : NaCl 8.77 g

 Na2HPO4 1.50g

 NaH2PO4 2.04g

 Water upto 1000.0 ml

1X PBS                                              : 10X PBS 100.0 ml

 DEPC upto 900.0 ml
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10x TBE buffer                                 : Tris base 218.0 g 

 Boric Acid 105.0 g 

 EDTA solution (pH.8.0) 80.0 ml 

 Water upto 2000.0 ml 

Ammonium Persulfate (APS) 10%   : APS 0.12 g 

 H2O 1.2 ml 

40% acrylamide                                : Acrylamide 76.0 g 

 bis-acrylamide 4.0 g 

 Water to final volume of  200.0 ml 

SDS (10%)                                        : Sodium dodecil sulphate 5.0 g 

 Water  100.0 ml 

LB-agar                                             : Sodium chloride 8.0 g 

 Peptone 8.0 g 

 Yeast extract 4.0 g 

 Agar-Agar 12.0 g 

 Sodium hydroxide (40 mg/ml) 480.0 µl 

 ddH2O upto 800.0 ml 

LB-broth                                            : Sodium chloride 8.0 g 

 Peptone 8.0 g 

 Yeast extract 4.0 g 

 Sodium hydroxide (40 mg/ml) 480.0 µl 

 ddH2O upto 800.0 ml 

DEPC-treated water (1000 ml)         : DEPC 1.0 ml 

 Water upto 1000.0 ml 

Lysis buffer (100 μl)                         : Igepal (0.8%) 0.8 μl 

 RNasin 5.0 μl 

 DTT 5.0 μl 

 Water upto 100.0 μl 

TAE (50x) buffer, pH 8.0                 : Tris  242.0 mg 

 Acetic acid   57.1 ml 

 EDTA (0.5 M) 100.0 ml 

 ddH2O upto 1000.0 ml 

TE (1x) buffer                                   : Tris (1 M) 10.0 ml 

 EDTA (0.5 M) 2.0 ml 
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X-gal                                                 : ddH2O upto 1000.0 ml

 X-gal 50.0 mg

PBS + PVA (50 ml)                          : Polyvinyl alcohol (PVA) 

PBS upto 

300.0 mg

50.0 ml

Physiological saline solution            : Sodium chloride 9.0 g

 Water upto 1000.0 ml

Agarose loading buffer                     : Bromophenol blue 0.0625 g

 Xylencyanol 0.0625 g

 Glycerol 7.5 ml

 ddH2O upto 25.0 ml

dNTP solution                                   : dATP (100 mM) 10.0 l

 dCTP (100 mM) 10.0 l

 dGTP (100 mM) 10.0 l

 dTTP (100 mM) 10.0 l

 ddH2O upto 400.0 l

IPTG solution                                    : IPTG 1.2 g

 ddH2O upto 10.0 ml

3M Sodium Acetate, pH 5.2             : Sodium Acetate  123.1 g

 ddH2O upto 500.0 ml

1M EDTA, pH 8.0                            : EDTA 37.3 g

 ddH2O upto 1000.0 ml

1x PBS-Tween (PBST)                     : 1x PBS 999.50 ml

 Tween®20 0.50 ml

SSC (20x)                                          : NaCl 87.65 g

 Sodium citrate 44.1 g

 Water upto 500.0 ml

4% paraformaldehyde (pH7.3)          : Paraformaldehyde 4.0 g

 1X PBS 100.0  ml

0.5M Sucrose/PBS (30% sucrose)    : Sucrose 85.57 gm

 1X PBS upto 500.0 ml

Acetylation solution                          : triethanolamine  2.33 ml

 acetic anhydride  500.0 µl

 DEPC water  upto 200.0 ml

Yeast tRNA (10 mg/ml)                    : Yeast tRNA 25.0 mg
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 DEPC-treated H2O 2.50 ml 

Hybridization solution                      : Formamide -65% 32.25 ml 

 20X SSC -5X 12.5 ml 

 Tn-20- 0.1% 50.0 µl 

 1M citric acid 460.0 µl 

 Heparin 50 µg/ml 2.5 mg 

 10mg/ml tRNA-500µg/ml 2.5 ml 

 DEPC water upto 50.0 ml 

Hybridization wash solution             : Formamide -65% 65.0 ml 

 20X SSC -5X 25.0 ml 

 Tn-20- 0.1% 100.0 µl 

 1M citric acid 1.2 µl 

 DEPC water upto 100.0 ml 

50% Formamide/SSC                       : Formamide 1000.0 ml 

 1X SSC 1000.0 ml 

50% formamide/Tn-20/SSC             : Formamide,  50% 500.0 ml 

 Tween-20, 0.1% 1.0 ml 

 1X SSC 499.0 ml 

5X SSC                                             : 20X SSC 250.0 ml 

 DEPC water 750.0 ml 

2X SSC                                             : 20X SSC 100.0 ml 

 DEPC water 900.0 ml 

1X SSC                                             : 20X SSC 100.0 ml 

 DEPC water 1900.0 ml 

0.2X SSC                                          : 20X SSC 10.0 ml 

 DEPC water 990.0 ml 

1X PBST                                           : 1X PBS 999.0 ml 

 Tween-20 1.0 ml 

Blocking solution                              : 0.5% blocking powder 0.2 g 

 10% inac. Sheep serum 4.0 ml 

 0.1% tween-20 40.0 µl 

 1X PBS upto 40.0 ml 

 dd H2O up to 1000.0 ml 

Stop solution                                     : EDTA 1mM 14.61 mg 
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 PBS pH 5.5 upto 50.0 ml

10N NaOH                                        : NaOH 40 gm

 dd H2O upto 100.0 ml

 

3.1.2 Methods 

 

3.1.2.1 Isolation of Small RNAs and subsequent miRNAs fractionation 

 

Bovine ovaries were obtained from a cyclic heifer with the age of 30 months at a stage 

of mid cycle with a visible mature corpus luteum including normally distributed 

different types of follicles. Small RNA samples from different bovine tissues and cells 

were isolated using mirVana miRNA isolation kit (Applied Biosystems Inc, Foster City, 

CA) according to the manufacturer’s instructions. For cloning, 10 µg of the ovarian 

small RNA was loaded into 12% denaturing poly acrylamide gel electrophoresis with 

size markers miSPIKE (Integrated DNA Technologies, Inc., Iowa, USA) and fractions 

of 18-26 nt were recovered using DTR gel filtration cartridge (Edge BioSystems, 

Maryland, USA). 

 

3.1.2.2 Cloning of small RNAs 

 

For cloning the small RNAs, “5´ Ligation independent Cloning” was followed to ensure 

complete recovery of conventional small RNAs as well as small RNAs with 5´ 

modifications or non-standard 5´ ends. All the linkers and primers were obtained from 

Integrated DNA Technologies, Inc., Iowa, USA. List and sequence of linkers and 

primers are given in table 3.1. Briefly, once the enriched small RNA fraction has been 

recovered from the acrylamide gel slice, the small RNAs were ligated with a 3´ linker - 

adenylated oligos, modified with a 3´-terminal dideoxy-C (ddC) containing Ban-I 

restriction site (Lau et al. 2001). The ligated products were loaded on dPAGE for 

purification and reverse transcription was performed. An exonuclease digestion was 

carried out after first strand cDNA synthesis and then a second 3´ ligation was done 

using a different linker sequences. The second 3´ linkered product (60nt) was purified 

from dPAGE to remove free linkers. Subsequently, the amplification of the RT-PCR 

product was done using linker specific primer set with the thermocycler program of 

95.0ºC for 10 minutes, 35 cycles of (95.0 ºC for 30 seconds, 52.0 ºC for 30 seconds 72.0 
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ºC for 30 seconds) and followed by incubation at 72.0ºC for 5 minutes. Then, the 

amplicon was subjected to Ban I digestion, concatemerization and end filling with non-

template adenosine followed by cloning into TOPO TA Cloning® vector (Invitrogen, 

Carlsbad, CA). Concatemer clones were picked up, cultured and colony PCR was 

performed for screening the insert size. Plasmid DNA preparation and DNA sequencing 

was performed for screened clones and small RNAs which were separated by well 

defined linker units with the reconstituted Ban I site. 

 

3.1.2.3 Bioinformatic analysis of small RNA sequences 

 

The small RNA sequences were first compared with the sequences in miRBase 

(Ambros et al. 2003a, Griffiths-Jones 2004, Griffiths-Jones et al. 2006, Luciano et al. 

2005). Small RNAs completely or partially matched by less than two mismatches to any 

registered miRNA in miRBase were considered putative bovine miRNA. The remaining 

sequences were compared to the bovine nucleotide collection (nr/nt) and the expressed 

sequence tags (EST) database in NCBI (Bettegowda et al. 2008) and different 

noncoding RNA databases (Babiarz et al. 2008, Gonzalez and Behringer 2009, 

Toloubeydokhti et al. 2008a, Watanabe et al. 2005, Yang et al. 2008b). Sequences, 

which were matched 100% to any mRNA, rRNA or tRNA were excluded from further 

evaluation to generate novel miRNA candidates. All the remaining sequences and the 

putative bovine miRNA sequences were submitted to BLAST-search in the Ensembl 52: 

bovine genome assembly (Btau_4.0) (De La Fuente and Eppig 2001) and the 75 bp 

genomic flanking sequence upstream from the 3´ end or downstream from the 5´ end of 

the miRNA was considered putative precursor of the matching miRNA.  

All the putative precursor sequences were analyzed for hairpin structure using the mfold 

Web server (version 3.2) (Goud et al. 1998) to evaluate the ability to form 

thermodynamically stable hairpin structures (Zuker 2003) based on other criteria 

described elsewhere (Ambros et al. 2003a). Chromosome locations, orientation and 

genomic features of the predicted miRNA precursors as well as other small RNAs 

sequences (not meeting miRNAs criteria) and whether they were located in intragenic or 

intergenic genomic regions were determined using ensembl. Other small RNAs were 

categorized according to published research articles (Ambros et al. 2003b, Aravin et al. 

2003, Aravin and Tuschl 2005). 
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3.1.2.4 Detection of miRNAs expression by semi-quantitative RT-PCR  

 

Small RNA samples isolated from the 11 different tissues and cells, such as ovarian 

cortex, fetal ovary at about six month of pregnancy, cumulus cells, matured corpus 

luteum, oviduct (entire), uterus (horn), placenta, heart, liver, lung and spleen were used 

for the detection of miRNAs by PCR method according to Ro et al (Ro et al. 2006) with 

some modifications. In this, the poly (A)-tailed small RNA was purified by acid phenol: 

chloroform: iso-amyl alcohol and ethanol precipitation method. All small RNA-cDNA 

samples were diluted to the same concentration of 6 ng/μl (which was the lowest 

amount obtained from cumulus cells). Three microliters of cDNA was used as template 

for conventional PCR and the products were analyzed on a 2% agarose gel. List of 

primers and oligos used are shown in the table 3.1. Some representative RT-PCR 

products were cloned into PGEM-T easy vector (Promega Corporation, Wisconsin, 

USA) and transformed to E. coli and sequenced to verify the specificity of PCR 

amplification. 

 

Table 3.1: List of oligos and primers used for cloning and detection of miRNAs 

NameA Sequence (5´-3´) Usage 

3´ Linker rAppCTGTAGGCACCATCAAT/3ddC Library 
RT Primer GATTGATGGTGCCTACAG Library 

2nd 3´Linker rAppTGGAATTCTCGGGTGCCAAGGT/ddC Library 
PCR Primer CCTTGGCACCCGAGAATT Library 

M13 Forward GTAAAACGACGGCCAG Sequencing

M13 reverse CAGGAAACAGCTATGAC Sequencing
RTQ1 CGAATTCTAGAGCTCGAGGCAGGCGACATGGCT

GGCTAGTTAAGCTTGGTACCGAGCTCGGATCCAC
TAGTCC(T)25

VN 

RT PCR 

RTQ2  GAATTCTAGAGCTCGAGGCAGGCGACATG(T)25
VN RT PCR 

RTQ-UNI CGAATTCTAGAGCTCGAGGCAGG RT PCR 
Bta-Let7b TGAGGTAGTAGGTTGTGTGGTT RT PCR 

Bta-miR-15b GTAAACCATGATGTGCTGCTA RT PCR 

Bta-miR-18a ATCTGCACTAGATGCACCT RT PCR 
Bta-miR-29a AACCGATTTCAGATGGTGCTA RT PCR 

Bta-miR-101 TTCAGTTATCACAGTACTGTA RT PCR 
Bta-miR-125b TCACAAGTTAGGGTCTCAGGGA RT PCR 

Bta-miR-126 CGCATTATTACTCACGGTACG RT PCR 

Bta-miR-145 GTCCAGTTTTCCCAGGAATCC RT PCR 
Bta-miR-199a TAACCAATGTGCAGACTACTGT RT PCR 

Bta-miR-222 ACCCAGTAGCCAGATGTAGCT RT PCR 
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Bomir-22/22* ACAGTTCTTCAACTGGCAGCTT RT PCR 
Bomir-140/140* CAGTGGTTTTACCCTATGGTAG RT PCR 
Bomir-143: TGAGATGAAGCACTGTAGCTC RT PCR 

Bomir-152 CCAAGTTCTGTCATGCACTGA RT PCR 

Bomir-193a GGGACTTTGTAGGCCAGTT RT PCR 
Bomir-378 CTGGACTTGGAGTCAGAAGGC RT PCR 

Bomir-382 GAATCCACCACGAACAACTTC RT PCR 

Bomir-409 AGGGGTTCACCGAGCAACAT RT PCR 
Bomir-424 CAAAACGTGAGGCGCTGCTA RT PCR 

Bomir-503 TGCAGTACTGTTCCCGCTGCTA RT PCR 
Bomir-542 TCTCGTGACATGATGATCCCCGA RT PCR 

Bomir-578 TGTGGGTGTGTGCATGTGCGTG RT PCR 

Bomir-652 CACAACCCTAGTGGCGCCATT RT PCR 
Bomir-940 GCAGGGCCCCCGCTCCCC RT PCR 

Bomir-A4052 GGGAGCCTCGGTTGGCCTCGG RT PCR 

Bomir-A3341 GTGGCTGTCCCTGGAGGTGGG RT PCR 
Bomir-C2841 GCCCCGGCCGCTCCCGGCC RT PCR 

Bomir-E2664 AGGGCGGGCGGCGACTGGAA RT PCR 

Bomir-G2511 AGGCGGGCCGGGGTTGGAAGG RT PCR 
Bomir-F2531 TGGTGGAGATGCCGGGGACGT RT PCR 

Bomir-A2143 CGGCAGATGAAGTCCATCGG RT PCR 

Bomir-C1931 CCTGCTGATCTCACATTAATT RT PCR 
Bomir-F1821 AGCCCTGGCCCTGCCATCGTG RT PCR 

Bomir-C1511 GTGGAGGAGAATGCCCGGGG RT PCR 
Bomir-D1431 GGCGACGGAGGCGCGACCCCC RT PCR 

Bomir-F1353 ATCTTTGGGCTAGGTTAGTTC RT PCR 

Bomir-F1351 GCCCCGGCCGCTCCCGGCCTT RT PCR 
Bomir-A3711 TTCCGCGCTCTACGCCAGC RT PCR 

Bomir-F0131 GGGGCGGGGGGGCGGGTG RT PCR 

Bomir-F0132 AGCCCGGGCCCCTCCCCTG RT PCR 
Bomir-H0121 ACTTCCCGTGTGTTGAGCC RT PCR 

Bomir-F0244 GCTACTACCGATTGGATGG RT PCR 

Bomir-H0222 CGGCGGCAGCGCCGGGGC RT PCR 
Bomir-A0321 AGCGCCGCCGGCCGCACC RT PCR 

Bomir-C0533 CGGGACCGGGGTCCGGTGC RT PCR 

Bomir-F0522 GGTGGGGTGGGGGGGTTGG RT PCR 
Bomir-B0821 GTCCCCGGGGCTCCCGCC RT PCR 

Bomir-F2422 GGTGGGAGGGTCCCACCGAG RT PCR 
Bomir-D3011 CCGAGTGCTCCCGCGAGCGCT RT PCR 

VN: Two variable nucleotides, where V is A, G, or C; N is A, G, C, or T 
A: Name started with Bta and Bomir denotes annotated and new miRNAs bovine 
miRNAs, respectively. 
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3.1.2.5 In situ hybridization of miRNAs in ovarian cryo-sections and whole mount 
cumulus oocyte complexes 
 

For in-situ hybridization of miRNAs, bovine ovary (21/0) days of estrus cycle was fixed 

in 4% PFA overnight at 4°C followed by overnight incubation in PBS with 30% sucrose 

at 4°C and frozen in Tissue-Tek OCT reagent (Sakura Finetek, Zoeterwoude, NL). 

Cryo-sections (10 µm) preparation, post-fixation, acetylation and proteinase K treatment 

was done as described previously (Obernosterer et al. 2007). Two hours of pre-

hybridization was performed at 52°C in hybridization solution (50% formamide, 5 × 

sodium chloride/sodium citrate [SSC; pH 6.0], 0.1% Tween-20, 50 μg/ml heparin, and 

500 mg/ml yeast tRNA). Ovarian sections were incubated overnight at 52°C with 3'-

Digoxigenin (DIG) labeled LNA-modified oligonucleotide probes (1pM) for miR-29a, 

U6 RNA and scrambled miR (Exiqon, Vedbaek, Denmark) in hybridization buffer in a 

humidified chamber. Blocking, incubation with anti-DIG-AP antibody, washing and 

color development using Fast Red reaction was performed as described previously 

(Obernosterer et al. 2007). The slides were mounted with VectaShield containing DAPI 

(Vector laboratories, Burlingame, CA) and analyzed by confocal laser scanning 

microscope (CLSM LSM-510, Carl Zeiss, Germany). For whole mount in-situ 

hybridization, cumulus oocyte complexes were aspirated from more than 8 mm of 

ovarian follicles. Pre-fixation, processing, digestion with Proteinase K, pre-

hybridization, hybridization, post-hybridization washing was performed in 4-well 

embryo culture dishes according to the high-resolution whole mount in situ 

hybridization protocol from Exiqon. The rest of the procedures were similar to cryo-

section hybridization protocol.  

 

3.1.2.6 Prediction and analysis of ovarian miRNA targets  

 

For this purpose, initially a raw list of all genes found to be targeted by cloned miRNA 

was generated using MIRANDA algorithm, miRBase target version 5 (Hong et al. 

2008). Subsequently, about 800 distinct important genes related to mammalian 

reproductive system development, function and disorders were extracted from Ingenuity 

knowledge base (IPA 7.0) by key word search. Then, two filtration steps were applied 

to generate a comprehensive list of target genes. Firstly, raw target set and genes set 

extracted from database were cross matched and common genes were extracted. 

Secondly, the condition of multiple genes targeted by multiple miRNAs from the 



Part I: Material and methods 66

common target list was cosidered. From these screened target sets, 11 miRNAs having 

the highest number as well as overlapping target genes were enlisted. Then, the Gene 

Ontology (GO) analysis of the screened and sub sets of miRNAs target genes were 

performed in order to predict the possible biological processes and functions that were 

most likely to be affected by miRNAs using web delivered tools of Ingenuity Pathway 

Analysis (Redwood City, California). Top significant GO categories, biological 

functions and different canonical pathways were analyzed for miRNA specific targets as 

well as for all screened targets based on significant over-representation of genes using a 

selected threshold for p-values ≤ 0.05 of hypergeometric distribution (Delfour et al. 

2007). 
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3.2 Results 

 

3.2.1 Description of the bovine ovarian small RNA library 

 

To identify miRNAs in the ovary, RNAs of 18 to 26 nt in length from bovine ovarian 

small RNAs (~ 200 nt) were purified, cloned, sequenced and analyzed. About 233 

concatemer clones were sequenced to generate 479 sequences (after discarding non-

quality and self ligated linker sequences). Of these 80 small RNA-cDNA sequences 

were beyond the expected range of nucleotides (18-26nt) in length. Only sequences of 

18 nt or more in length were subjected to detail analysis. Distribution of different 

lengths of nucleotide sequences found in this library is presented in figure 3.1. All 

identified sequences were categorized according to their properties as determined by in-

silico analysis based on the criteria reported elsewhere for different types of small 

RNAs (Ambros et al. 2003a, Ambros et al. 2003b, Aravin et al. 2003, Aravin and 

Tuschl 2005). The 479 sequences identified in the library represented 41% miRNAs, 

12% mRNA, 12% rRNA, 6.3% tRNA, 6.0% repeat associated siRNA, 2.7% small 

antisense RNA, 3.5% tiny noncoding RNA, 1% small nuclear RNA and 15.2% 

sequences that did not match to bovine genome (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Size distribution of 479 small RNAs sequences cloned from the bovine 

ovary 
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Figure 3.2: Frequency (%) of different types of RNA represented in the library 

 

3.2.2 Distinct miRNAs identified in the bovine ovary 

 

In cDNA library a total of 196 sequences were found to be miRNA like molecules, of 

which 74 revealed distinct miRNAs (Table 3.2). Out of these 74 miRNAs, 36 were 

found to be reported in miRBase 12.0 for different species including bovine, 14 are 

registered only for other species and 24 were completely new. Of these 38 new bovine 

miRNAs, 15 miRNAs were identical or differed by only one or two nucleotides from 

known mammalian miRNAs. All the new miRNAs were denoted as starting with prefix 

‘bomir’ followed by their homologue miRNA number or by clone name in case of no 

sequence homology. Already annotated miRNAs were named as they were stated in 

miRBase.  

 

Two miRNAs, namely: mir-22/22* and 140/140* which are cloned from 5´ fold back 

arm of the hairpin precursor, have shown exact match to human miRNAs but not to 

bovine as annotated in miRBase. So, previously annotated bta-miR-22 and 140 seem to 

be miR-22* and miR-140*, respectively. The number of times that each miRNA cloned 

in the library ranged from 28 clones for let-7b to a single clone (singleton) for 39 of the 

73 miRNAs. All in all, 22 of the 73 miRNAs were cloned for three or more times 

(Figure 3.3).  
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Figure 3.3: Frequency (%) of cloned miRNAs along with their copy number 

 

The corresponding bovine genomic sequences and their locations were identified for 

each miRNA. The 5´ or 3´ flanking genomic sequences were then tested for the ability 

to fold into canonical ~70-nt miRNA precursor hairpin structures by using the MFOLD 

web server (Eppig 1991). Small RNA clones with proper positioning within an arm of 

the hairpin suggest that they have been excised during dicer processing in the cells. 

Nearly in all of those cases, sequences were found to be conserved in different species 

including the predicted precursors (Table 3.2 and Table 3.3). The Bomir-652, which 

could not be located in bovine genome, was found to be cloned for five times in the 

library and share sequence homology with already identified miRNA in other species.  
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Table 3.2: List of new miRNAs cloned from bovine ovary 

 

miR ID L Homolog C S Sequence Genomic Location e T  

bomir-22*/22-5p a 22 hsa-miR-22 3  +/- ACAGUUCUUCAACUGGCAGCUU 19:22901905:22901926:1f mt

bomir140*/140-5pb 22 hsa-miR-140 1  + CAGUGGUUUUACCCUAUGGUAG 18:35987052:35987073:1f mt

bomir-143-3p 22 ggo-miR-143 11  +/- UGAGAUGAAGCACUGUAGCUCG 7:60268857:60268878:1f Ie 

bomir-152-5p 21 hsa-miR-152 1  - CCAAGUUCUGUCAUGCACUGA 19:39650399:39650419:-1f It 

bomir-193a-2-3pc 19 bta-miR193a 1  - GGGACUUUGUAGGCCAGUU 14:889828:889846:-1f In 

bomir-378-1-3p 21 hsa-miR-378 1  + CUGGACUUGGAGUCAGAAGGC 7:60536513:60536533:1f In 

bomir-378-2-5p 21 hsa-miR-378  -   + CUGGACUUGGAGUCAGAAGGC 4:11116898:11116918:1h In 

bomir-382-3p 22 hsa-miR-382 1  - GAAUCCACCACGAACAACUUC 21:66031757:66031777:-1f In 

bomir-409-5p 22 hsa-miR-409 2  - GGGGUUCACCGAGCAACAUUC 21:66042162:66042182:-1f In 

bomir-424-3p 22 hsa-miR-424* 1  -  CAAAACGUGAGGCGCUGCUAU Un.04.53:446874:446894:-1f In 

bomir-503-3p 23 mmu-miR-503 1  + UGCAGUACUGUUCCCGCUGCUA Un.004.53:446563:446584:1f Ie 

bomir-542-3p 23 hsa-miR-542 1  + UCUCGUGACAUGAUGAUCCCCGA Un.004.53:441604:441626:1f Ie 

bomir-574-5p 22 hsa-miR-574 1  - UGUGGGUGUGUGCAUGUGCGUG 16:59370677:59370698:-1f Ie 

bomir-652-3pd 21 hsa-miR-652 5  + CACAACCCTAGTGGCGCCATT (from H. sap.)   --

bomir-940-5p 18 hsa-miR-940 1  - GCAGGGCCCCCGCUCCCC 20:75274475:75274492:-1h Ie 

bomir-F0131-5p 18 mmu-miR-667 1  + GGGGCGGGGGGGCGGGUG 7:10905965:10905982:1h Ie 

bomir-F0132-5p 19 hsa-miR-1469 1  + AGCCCGGGCCCCUCCCCUG 7:13891718:13891736:1h It 

bomir-H0121-3p 19 hsa-miR-1471 1  + CUUCCCGUGUGUUGAGCC 18:7202610:7202627:1h Ie 

bomir-F0244-5p 19 osa-miR1423 1  - GCUACUACCGAUUGGAUGG 12:45758300:45758318:-1g Ie 

bomir-H0222-3p 22 cre-miR1172.1 1  - GGACGGCGGCAGCGCCGGGGCG 29:41706141:41706159:-1f Ie 

bomir-A0321-3p 18 mml-miR-638 1  + AGCGCCGCCGGCCGCACC 19:39110507:39110524:1g In 

bomir-C0533-5p 20 oan-miR-1418* 1  + CGGGACCGGGGUCCGGUGCG 18:59928733:59928752:1f Ie 

      21:52041918:52041937:-1f Ie 

bomir-F0522-1-3p 19 hsa-miR-1234 1  + GGUGGGGUGGGGGGGUUGG 21:35870379:35870397:1h Ie 

      22:59347395:59347413:1h In 

bomir-B0821-5p 21 oan-miR-1394 1  - GUCCCCGGGGCUCCCGCCGGC 20:19373746:19373766:-1h Ie 

bomir-F1351-3p 20 gga-miR-1607 3  + GCCCCGGCCGCUCCCGGCCU 25:41129497:41129516:1h Ie 

bomir-F1353-5p 20 dre-miR-430c 1  + AUCUUUGGGCUAGGUUAGUU 28:27885036:27885055:1h In 

bomir-D1431-5p 22 pta-miR1310 2  - GGCGACGGAGGCGCGACCCCCC 12:75102030:75102051:-1g Ie 

bomir-C1511-5p 20 hsa-miR-877 1  + GUGGAGGAGAAUGCCCGGGG Un.04.1059:20639:20658:1h In 

bomir-F1821-3p 21 hsa-miR-631 1  + AGCCCUGGCCCUGCCAUCGUG Un.04.152:123191:123211:1h In 

bomir-C1931-5p 23 gma-miR1523 1  + CCUGCUGAUCUCACAUUAAUUCA 26:12405838:12405860:1h Ie 

bomir-A2143-3p 18 oan-miR-181c* 1  + CGGCAGAUGAAGUCCAUC 16:47801336:47801353:1h In 

bomir-F2422-5p 20 hsa-miR-659 1  + GGUGGGAGGGUCCCACCGAG 18:53584142:53584161:1h It 

bomir-F2531-3p 18 ppt-miR1030i 3  + UGGUGGAGAUGCCGGGGA 8:77307661:77307678:1g Ie 

bomir-G2511-3p 18 bmo-miR-92 1  + AGGCGGGCCGGGGUUGGA 18:41190536:41190553:1h Ie 

bomir-E2664-3p 20 mml-miR-638 1  - AGGGCGGGCGGCGACUGGAA 18:64361001:64361020:-1h It 

bomir-D3011-3p 21 mml-miR-650b 1  + CCGAGUGCUCCCGCGAGCGCU 18:39424938:39424958:1g It 

bomir-A3341-1-3p 22 bta-miR-487a 1  + GUGGCUGUCCCUGGAGGUGGG 3:124988008:124988028:1h Ie 

      Un.04.4799:1335:1355:1h Ie 

bomir-A3711-5p 19 hsa-miR-937 2  + UUCCGCGCUCUACGCCAGC 9:63475804:63475822:1g Ie 

bomir-A4052-1-5p 19 hsa-miR-615 1  + GGGAGCCUCGGUUGGCCUC 18:59928630:59928648:1f Ie 

      21:52042022:52042040:-1f It 

      Un.04.2732:16069:16087:-1f Ie 

 

L:length, C: copy number, S: strand, In: intronic, It: intragenic, Ie: intergenic, mt: 

miR transcript, a: Cloned sequence is homolog to has-miR 22 but not to bta-miR-22, 

may bta-miR-22 presented in miRBase v. 12 is bta-miR-22*, b: Cloned sequence is 

homologue to has-miR-140 but not to bta-miR-140, may bta-miR-140 presented in 
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miRBase v. 12 is bta-miR-140*, c: Sequence is smaller than bta-miR-193a and has 

different genomic locus. d: Sequence does not match to bovine genome, e: Genomic 

location presenting chromosome number with start and end position along with 

sense/antisense orientation by 1/-1 of cloned mature sequence. Conservation pattern 

of the predicted precursor sequences from flanking bovine genome sequence is 

indicated by- f: found in more than 6 mammalian species, g: present at least in 2 

species, h: only in bovine. 

 

3.2.3 Genomic distribution, properties and clustering of new miRNAs 

 

Genomic locations and properties of the new miRNAs are shown in table 3.2. All newly 

identified bovine miRNAs (except bomir-652) are corresponded to 43 distinct loci. 

Putative precursor hairpin structures have been predicted for all these 43 loci using 

genomic sequences flanked from candidate miRNAs (Table 3.3). Thirty three of these 

are found to be encoded by single copy miRNA genes, whereas the other five (bomir-

378, bomir-C0533-5p, bomir-F0522-3p, bomir-A3341-3p and bomir-A4052-5p) have 

multiple loci in the bovine genome (Table 3.2). The analysis of the genomic positions of 

61 sequences corresponding to 38 distinct new miRNA genes showed that the majority 

(23 out of 44 loci) are localized to intergenic regions and the rest corresponded to the 

intragenic regions in either sense or antisense orientation (Table 3.2). However, 11 

sequences are found to be exclusively from known intronic region.  

 

Table 3.3: Predicted secondary structure of new miRNAs 

 

1. >bomir-22*/22-5p:Btau_4.0:19:22901896:22901976:1(10-31) dG = -31.40 kcal/mol 
CAGAGGGCAacaguucuucaacuggcagcuuUAGCUGGGUCAGGACAuaaagcuugccacugaagaacuACUGCGGCUCAG 
     CA   G-   ac         ac     -      GC  GGU  
       GAG  GCA  aguucuuca  uggca gcuuUA  UG   C 
       |||  |||  |||||||||  ||||| ||||||  ||   | 
       CUC  CGU  ucaagaagu  accgu cgaaau  AC   A 
     GA   GG   CA         c-     u      --  AGG  

2. >bomir-140*/140-5p:Btau_4.0:18:35987036:35987127:1(17-38) dG = -51.10 kcal/mol 
UCUCUCUGUGUCCUGCcagugguuuuacccuaugguagGUUACGUCAUGCUGUUCuaccacaggguagaaccacggACAGG 
AUACCGGGGCA 
     UC    U        -  a             a       UU   UC  
       UCUC GUGUCCUG Cc gugguuuuacccu ugguagG  ACG  A 
       |||| |||||||| || ||||||||||||| |||||||  |||  | 
       GGGG CAUAGGAC gg caccaagauggga accauCU  UGU  U 
     AC    C        A  -             c       --   CG 
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3. >bomir-143-3p:Btau_4.0:7:60268810:60268888:1(57-78) dG = -48.50 kcal/mol 
UCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCugagaugaagcacuguagcucgGGAAGGGAGA 
           AG      G         G      U  -  AG  
     UCUCCC  CCUGAG UGCAGUGCU CAUCUC GG UC  U 
     ||||||  |||||| ||||||||| |||||| || ||  | 
     AGAGgg  gggcuc augucacga guagag CU AG  U 
           aa      g         a      u  G  GG  

4. >bomir-152-5p:Btau_4.0:19:39650354:39650424:-1(6-26) dG = -38.00 kcal/mol 
CGGGCccaaguucugucaugcacugaCUGCUCCAGAGCCCGAGUCGGAGUGUAUCACAGAACCUGGGCCGG 
     CG      a       c       --    ---   C  
       GGCcca guucugu augcacu  gaCU   GCU C 
       |||||| ||||||| |||||||  ||||   ||| | 
       CCGGGU CAAGACA UAUGUGA  CUGA   CGA A 
     GG      C       C       GG    GCC   G  

5. >bomir-193a-2-3p:Btau_4.0:14:889826:889878:-1(32-50) dG = -17.80 kcal/mol 
AUGGCUGCCUCACAAGGUUUGGAGCUGUGCCUgggacuuuguaggccaguuCA 
     AU    -    C       - UG A  U  
       GGCU GCCU ACAAGGU U  G GC \ 
       |||| |||| ||||||| |  | ||  G 
       uuga cgga uguuuca g  C CG / 
     AC    c    -       g gU -  U  

6. >bomir-378-1-3p:Btau_4.0:7:60536464:60536541:1(49-69) dG = -47.70 kcal/mol 
CCACCCAGGGCUCCUGACUCCAGGUCCUGUGUGUUACCUCGAAAUAGCAcuggacuuggagucagaaggcCUGAGUGG 
         C    G  C              UGU      CCU  
     CCAC CAGG CU CUGACUCCAGGUCC   GUGUUA   C 
     |||| |||| || ||||||||||||||   ||||||   | 
     GGUG GUCc ga gacugagguucagg   cACGAU   G 
         A    g  a              u--      AAA  

7. > bomir-378-2-5p:Btau_4.0:4:11116890:11116965:1(9-29) dG = -14.80 kcal/mol 
GGAGAGCAcuggacuuggagucagaaggcUGGAGCUUACAGGGCAGCACCGUCAUCUACUGGUGGAGAACUACGCC 
       AG-  CA  gg   ugg   c   a   U  A   UAC  
     GG   AG  cu  acu   agu aga ggc GG GCU   A 
     ||   ||  ||  |||   ||| ||| ||| || |||   | 
     CC   UC  GA  UGG   UCA UCU CUG CC CGA   G 
       GCA  AA  GG   ---   -   A   -  A   CGG 

8. >bomir-382-3p:Btau_4.0:21:66031742:66031827:-1 (51-71)dG = -28.30 kcal/mol 
UUUGGUACUGAAAAAAGUGUUGUCCGUGAAUGAUUCGUCAUAAGUAAAGCgaauccaccacgaacaacuucUCUUCAAGUA 
CCACA 
     UU      -    AAAAGU     C    AAU       CAUA  
       UGGUAC UGAA      GUUGU CGUG   GAUUCGU    A 
       |||||| ||||      ||||| ||||   |||||||    | 
       ACCAUG ACUU      caaca gcac   cuaagCG    G 
     AC      A    CUcuu-     a    cac       AAAU 

9. >bomir-409-5p:Btau_4.0:21:66042116:66042194:-1(13-33) dG = -33.60 kcal/mol 
UGAUACCGAAAAgggguucaccgagcaacauucGUCGUCCAGAUGCAAAGUUGCUCGGGUAACCUCUCCCCGCGUACCA 
     U A   -  AAA       ca         a  -    GU  
      G UAC CG   Agggguu  ccgagcaac uu cGUC  \ 
      | ||| ||   |||||||  ||||||||| || ||||  C 
      C AUG GC   UCUCCAA  GGCUCGUUG AA GUAG  / 
     A C   C  CCC       UG         A  C    AC 

10. >bomir-424-3p:Btau_4.0:Un.004.53:446853:446952:-1(59-79) dG = -46.20 kcal/mol 
UUCGUUGACUCCGAGGGGAUGCAGCAGCAAUUCAUGUUUUGAAGUGCUUUAAACGGUUcaaaacgugaggcgcugcuauACCC 
CCUUGCGAGGAAGUAGG 
     U CG  GA   -       A  C      AA             G  CUU  
      U  UU  CUC CGAGGGG UG AGCAGC  UUCAUGUUUUGAA UG   \ 
      |  ||  ||| ||||||| || ||||||  ||||||||||||| ||   U 
      G  GA  GAG GUUCCCC Au ucgucg  gagugcaaaacUU GC   / 
     G AU  AG   C       C  a      cg             G  AAA  

12. >bomir-542-3p:Btau_4.0:Un.004.53:441560:441637:1(45-67) dG = -25.80 kcal/mol 
CCCAGACCUUUCAGUUAUCAAUCUGUCACAAGUGCACAGUGGUAucucgugacaugaugauccccgaGAUGUCUGAGG 
       -     C    A---       AUC      A  -   AC  
     CC CAGAC UUUC    GUUAUCA   UGUCAC AG UGC  A 
     || ||||| ||||    |||||||   |||||| || |||  | 
     GG GUCUG AGag    uaguagu   acagug uc AUG  G 
       A     U    cccc       ---      c  u   GU  

13. >bomir-574-5p:Btau_4.0:16:59370641:59370704:-1(7-28) dG = -25.20 kcal/mol 
AGAGUGugugggugugugcaugugcgugUGUGCACAUGCAUAUGUGUGUGGCUAUCUUAGCUGU 
     AG   Gu--    g  ug             G  
       AGU    gugg ug  ugcaugugcgugU U 
       |||    |||| ||  ||||||||||||  | 
       UCG    UAUC GU  GUGUAUACGUACA G 
     UG   AUUC    G  GU             C  
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14. >bomir-652-3p: hsa:X:109185213-109185310:-1, dG = -50.10 kcal/mol 
CACAUCCAACACGUGACguguugggaucaccgcgguaaGUUAAUAUCAGAUACACUUACCGUGGGAGAGGAUCCCAACACGUC 
ACGUAUCGGUAAGCA       
   CACAU-  AAC                  a----           UAAUAU  
         CC   ACGUGACguguugggauc     ccgcgguaaGU      \ 
         ||   ||||||||||||||||||     |||||||||||      C 
         GG   UGCACUGCACAACCCUAG     GGUGCCAUUCA      / 
   ACGAAU  CUA                  GAGAG           CAUAGA  

15. >bomir-940-5p:Btau_4.0:20:75274429:75274494:-1(3-20) dG = -39.80 kcal/mol 
CCgcagggcccccgcuccccGUGGCCACCAGAGUGCCCUGUGGGGAGGCGGGGGAGCCACCUGGGG 
       g    g----      -       UG C-   C  
     CC cagg     cccccg cuccccG  G  CAC A 
     || ||||     |||||| |||||||  |  ||| | 
     GG GUCC     GGGGGC GAGGGGU  C  GUG G 
       G    ACCGA      G       GU CC   A 

16. >bomir-F0131-5p:Btau_4.0:7:10905950:10906020:1(16-33) dG = -29.40 kcal/mol 
UGUGUUUGGGAGUUGggggcgggggggcgggugGAUUCCAGCUGUCUUCCCCUCGUGGACACUGUGACAUA 
           UG  A   Gg-   c          g   A  
     UGUGUU  GG GUU   ggg gggggggcgg ugG \ 
     ||||||  || |||   ||| |||||||||| ||| U 
     AUACAG  UC CAG   CUC CCCUUCUGUC ACC / 
           UG  A   GUG   -          G   U  

17. >bomir_F0132-5p:Btau_4.0:7:13891717:13891774:1(2-20) dG = -23.40 kcal/mol 
CagcccgggccccuccccugGCUCCGCCCACAGCAUCAUGGGACCCAGCCCAGGGCCU 
     Ca    -    ccc-    c  --   CCG  
       gccc gggc    uccc ug  GCU   C 
       |||| ||||    |||| ||  |||   | 
       CGGG CCCG    AGGG AC  CGA   C 
     UC    A    ACCC    U  UA   CAC  

18 >bomir-H0121-3p:Btau_4.0:18:7202568:7202632:1(43-60) dG = -27.60 kcal/mol 
GAGGCGGCCAGACCAGCAGGGCGCAGGGGACCAUGUGUCCUCcuucccguguguugagccGCGUG 
     GAG     CA   CA   -   CGC   -    CA  
        GCGGC  GAC  GCA GGG   AGG GGAC  \ 
        |||||  |||  ||| |||   ||| ||||  U 
        CGccg  uug  ugu ccc   ucC CCUG  / 
     GUG     ag   --   g   u--   U    UG  
 

19. >bomir-F0244-5p:Btau_4.0:12:45758242:45758332:-1(15-33) dG = -20.10 kcal/mol 
GCCACUGCCCCAUUgcuacuaccgauuggauggUUUAGUGUUGCCCUUGGAUAAUCCAAUAAGUAGAAUUAAUAGGUGAAAA 
GUUGUGAGC 
       -   U  ------  C    cua    cg       g      UGU  
     GC CAC GC      CC AUUg   cuac  auuggau gUUUAG   U 
     || ||| ||      || ||||   ||||  ||||||| ||||||   |  
     CG GUG UG      GG UAAU   GAUG  UAACCUA UAGGUU   G 
       A   U  AAAAGU  A    UAA    AA       A      CCC  

20 >bomir-H0222-3p:Btau_4.0:29:41706131:41706188:-1(30-48) dG = -31.50 kcal/mol 
UCUGGGGCGCCCCGCACCGGCGGGCAGGAcggcggcagcgccggggcgCCGUCUCGGA 
          ---        -  A---   G  GGC  
     UCUGG   GGCGCCCC GC    CCG CG   \ 
     |||||   |||||||| ||    ||| ||    A 
     AGGCU   CCgcgggg cg    ggc gc   / 
          CUG        c  cgac   g  AGG  

21. >bomir-A0321-3p:Btau_4.0:19:39110468:39110542:1(40-57) dG = -20.40 kcal/mol 
CCGGCCUACUUGGGGCUCCGAGCCGCUGCCGCAUACAUUagcgccgccggccgcaccGCCGUCACCUUCAGCGCU 
     CC   -  ACU--   -   UC--  A    C  C   AUA  
       GGC CU     UGG GGC    CG GCCG UG CGC   C 
       ||| ||     ||| |||    || |||| || |||   | 
       UCG GA     ACU CCG    gc cggc gc gcg   A 
     --   C  CUUCC   G   ccac  -    c  c   aUU 

22. >bomir-C0533-1-5p:Btau_4.0:18:59928730:59928786:1(4-23) dG = -26.70 kcal/mol 
CGUcgggaccgggguccggugcgGAGAGCCCUUCGUCCCGGGACACGGGGCGCGGCC 
     C    gga-   ggg     ug     A  
      GUcg    ccg   uccgg  cgGAG G 
      ||||    |||   |||||  ||||| | 
      CGGC    GGC   GGGCC  GCUUC C 
     C    GCGG   ACA     CU     C  

23. >bomir-C0533-2-5p:Btau_4.0:21:52041884:52041940:-1(4-23) dG = -26.70 kcal/mol 
CGUcgggaccgggguccggugcgGAGAGCCCUUCGUCCCGGGACACGGGGCGCGGCC 
     C    gga-   ggg     ug     A  
      GUcg    ccg   uccgg  cgGAG G 
      ||||    |||   |||||  ||||| | 
      CGGC    GGC   GGGCC  GCUUC C 
     C    GCGG   ACA     CU     C 
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24. >bomir-F0522-1-3p:Btau_4.0:21:35870333:35870398:1(47-65) dG = -27.40 kcal/mol 
CCUCUCUCCCUGCAGCAUCUCAGGGCACUGUGUGACUUGGGUCGGGggugggguggggggguuggU 
     -  UC      UG AG      AG   A   UGU  
      CC  UCUCCC  C  CAUCUC  GGC CUG   \ 
      ||  ||||||  |  ||||||  ||| |||   G 
      gg  gggggg  g  guggGG  CUG GGU   / 
     U  uu      gu gg      G-   -   UCA  

25. >bomir-F0522-2-3p:Btau_4.0:22:59347353:59347420:1(43-61) dG = -34.40 kcal/mol 
GGAGGGUGCCUCUAAGCCUCACUUGUCCUGCCUGUCAAAUGGggugggguggggggguuggCCUUUCC 
           U   UCUA      A  UG   UG   GUC  
     GGAGGG GCC    AGCCUC CU  UCC  CCU   A 
     |||||| |||    |||||| ||  |||  |||   | 
     CCUUUC Cgg    uugggg gg  ggg  ggG   A 
           -   ----      -  gu   gu   GUA  

26. >bomir-B0821-5p:Btau_4.0:20:19373708:19373768:-1(3-23) dG = -32.60 kcal/mol 
GCguccccggggcucccgccggcGGAGUUCGGUUUGCACCGGGGAGGGGGCCGGGGAUCGG 
     G  -     gg       g  gg   A  UCG  
      Cg ucccc  ggcuccc cc  cGG GU   \ 
      || |||||  ||||||| ||  ||| ||   G 
      GC AGGGG  CCGGGGG GG  GCC CG   / 
     G  U     --       A  G-   A  UUU  

27. >bomir-F1351-3p:Btau_4.0:25:41129445:41129520:1(53-72) dG = -44.20 kcal/mol 
CGGCGGCCGGGAAAGGUGGGCUGGGCUCCGGGGCCCCUCCCCGCCCGGUGCUgccccggccgcucccggccuUGUG 
     CGGC-        AA   --    UG   U     G CCC  
          GGCCGGGA  GGU  GGGC  GGC CCGGG C   U 
          ||||||||  |||  ||||  ||| ||||| |   |      
          ccggcccu  ccg  cccg  UCG GGCCC G   C 
     GUGUu        cg   gc    --   U     - CCC  

28. >bomir-F1353-5p:Btau_4.0:28:27885032:27885119:1(5-24) dG = -18.30 kcal/mol 
AAAAaucuuugggcuagguuaguuCUAUUUUAUGAUCUGUUAUGAAAUGGGUUAAGGAAAAGGAUCCAUGUGGAAGA 
AAGAUCAGAGA 
     AAAAA-      ggg   g  ua     A   UA         A  
           aucuuu   cua gu  guuCU UUU  UGAUCUGUU U 
           ||||||   ||| ||  ||||| |||  ||||||||| | 
           UAGAAA   GGU UA  UAGGA AAG  AUUGGGUAA G 
     AGAGAC      GAA   G  CC     A   GA         A  

29. >bomir-D1431-5p:Btau_4.0:12:75101950:75102053:-1(3-24) dG = -44.60 kcal/mol 
GUggcgacggaggcgcgaccccccCCCCCCCCCCCCCCCCCCGCCCCGGUCCGACGGUGCGACCCGCCAGGGGCGCUC 
UGGGGACAGUCCGCCCCGCCCCGCCC 
     GU    a--   a    c   cc-    CCCC--    CCCCCCCC   C   GU  
       ggcg   cgg ggcg gac   cccC      CCCC        CGC CCG  C 
       ||||   ||| |||| |||   ||||      ||||        ||| |||  | 
       CCGC   GCC CCGC CUG   GGGG      GGGG        GCG GGC  C 
     C-    CCC   -    -   ACA    UCUCGC    ACCGCCCA   U   AG  

30. >bomir-C1511-5p:Btau_4.0:Un.004.1059:20638:20698:1(2-21) dG = -32.00 kcal/mol 
CguggaggagaaugcccggggCGUGCUGGGCGGUGCGGGCUGGGCUGGCAGCUCCUCCCUC 
     Cgu       aau---      gg  UG  G  
        ggaggag      gcccgg  CG  CU G 
        |||||||      ||||||  ||  || | 
        CCUCCUC      CGGGUC  GC  GG G 
     CUC       GACGGU      GG  GU  C  

31. >bomir-F1821-3p:Btau_4.0:Un.004.152:123132:123213:1(60-80) dG = -31.60 kcal/mol 
CGCAACGAGGGCUCGGGACACAGCCCUGCUUCCUGGCCCACGUCACCCGUCGUGGCCAGagcccuggcccugccaucgugUC 
     C  A    G   UC   ACA   CCCU   UC      C   UCA  
      GC ACGA GGC  GGG   CAG    GCU  CUGGCC ACG   C 
      || |||| |||  |||   |||    |||  |||||| |||   | 
      Ug ugcu ccg  ccc   guc    cga  GACCGG UGC   C 
     C  -    a   u-   g--   c---   --      -   UGC  

32. >bomir-C1931-5p:Btau_4.0:26:12405822:12405907:1(17-39) dG = -11.60 kcal/mol 
CCCUGAGUUGCAAUUCccugcugaucucacauuaauucaUCUUUGCUAGAGAAAUAUCUGAGUGUCUGUUUUGGUUCAAU 
AAAGCC 
     CC  GA    C    Cccu  u   -    cau  a   a   UU  
       CU  GUUG AAUU    gc gau cuca   ua uuc UCU  \ 
       ||  |||| ||||    || ||| ||||   || ||| |||  G      
       GA  UAAC UUGG    UG CUG GAGU   AU AAG AGA  / 
     CC  AA    -    UUU-  U   U    CU-  A   -   UC 

33. >bomir-A2143-3p:Btau_4.0:16:47801303:47801359:1(34-51) dG = -18.50 kcal/mol 
ACACCCGGCUGGCGUCAACUCUGAACAGAUUCUcggcagaugaaguccaucGGGAAG 
     ACA     C   - G   A  -    ACA  
        CCCGG UGG C UCA CU CUGA   G 
        ||||| ||| | ||| || ||||   | 
        GGGcu acc g agu ga ggcU   A 
     GAA     -   u a   a  c    CUU  
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34. >bomir-F2422-5p:Btau_4.0:18:53584142:53584210:1(1-20) dG = -35.50 kcal/mol 
ggugggagggucccaccgagCACCCUGUCGGCUGGCAGCCCCGGCCCAGGUAGUGGGUGCUCUGCCACA 
     g    g     -     cgagCAC    UC      CA  
      gugg agggu cccac       CCUG  GGCUGG  \ 
      |||| ||||| |||||       ||||  ||||||  G 
      CACC UCUCG GGGUG       GGAC  CCGGCC  / 
     A    G     U     AU-----    --      CC  

35. >bomir-F2531-3p:Btau_4.0:8:77307612:77307688:1(50-67) dG = -13.80 kcal/mol 
GGUUUAAUGCUCUGCUGUCAGCGCUUUGAAAUUCUUACUAAUCUUUUUUugguggagaugccggggaCGUAAUAAUU 
     GGUUUA-   -     CU   AG    UU    UUCUUA  
            AUG CUCUG  GUC  CGCU  GAAA      \ 
            ||| |||||  |||  ||||  ||||      C 
            UGC ggggc  uag  gugg  UUUU      / 
     UUAAUAA   a     cg   ag    uU    UCUAAU  

36. >bomir-G2511-3p:Btau_4.0:18:41190497:41190564:1(40-57) dG = -21.10 kcal/mol 
AGGGGGAGAGUUGCGGCUCAUGAACUGGGUCCAGGUGGAaggcgggccgggguuggaAGGUUCCAGCU 
     AGGG    AG  G      A  AA   GG-   A  
         GGAG  UU CGGCUC UG  CUG   UCC G 
         ||||  || |||||| ||  |||   ||| | 
         CCUU  Aa guuggg gc  ggc   AGG G 
     UCGA    GG  g      -  cg   gga   U  

37. >bomir-E2664-3p:Btau_4.0:18:64360999:64361052:-1(33-52) dG = -21.10 kcal/mol 
AGUCAAGUGAGCGGCCGCACCGGCUCUCCCGGagggcgggcggcgacuggaaAG 
     AG-  A   GAGCG     A   G     C  
        UC AGU     GCCGC CCG CUCUC \ 
        || |||     ||||| ||| |||||  C 
        ag uca     cggcg ggc gggaG / 
     GAa  g   g----     -   -     G  

38. >bomir-D3011-3p:Btau_4.0:18:39424877:39424959:1(62-82) dG = -47.50 kcal/mol 
ACGCGCUUCUCGGCGCUCACUCGGCGGCACCACUGCCGCAAAUGCGGCUUCGUGGUCUGCGccgagugcucccgcgagcgcuU 
     AC    U  U   CGCU         GC-     U--     A  
       GCGC UC CGG    CACUCGGCG   ACCAC   GCCGC A 
       |||| || |||    |||||||||   |||||   ||||| | 
       cgcg ag gcc    gugagccGC   UGGUG   CGGCG A 
     Uu    -  c   cuc-         GUC     CUU     U  

39. >bomir-A3341-1-3p:Btau_4.0:3:124987968:124988032:1(41-61) dG = -28.00 kcal/mol 
UCACCCCAGUCUCUAGUGAGAGAGCCAUGGCGGCAGGGGCguggcugucccuggaggugggACUG 
     UCAC    G       UGA  G       G GGC  
         CCCA UCUCUAG   GA AGCCAUG C   \ 
         |||| |||||||   || ||||||| |    A      
         gggu ggagguc   cu ucggugC G   / 
     GUCA    -       c--  g       - GGG  

40. >bomir-A3341-2-3p:Btau_4.0:Un.004.4799:1295:1359:1(41-61) dG = -28.00 kcal/mol 
UCACCCCAGUCUCUAGUGAGAGAGCCAUGGCGGCAGGGGCguggcugucccuggaggugggACUG 
     UCAC    G       UGA  G       G GGC  
         CCCA UCUCUAG   GA AGCCAUG C   \ 
         |||| |||||||   || ||||||| |    A 
         gggu ggagguc   cu ucggugC G   / 
     GUCA    -       c--  g       - GGG  

41. >bomir-A3711-5p:Btau_4.0:9:63475787:63475874:1(18-36) dG = -64.40 kcal/mol 
CGCCGCUCCGCUCCCGGuuccgcgcucuacgccagcCCGCUGCCUGCCGGGCUGGUGCAGGCCGCGGAGCCGGGCGGCCCGG 
CAGGCA 
     C   -   CC   -            cu  a         -  UG  
      GCC GCU  GCU CCCGGuuccgcg  cu cgccagcCC GC  \ 
      ||| |||  ||| ||||||||||||  || ||||||||| ||   C 
      CGG CGG  CGG GGGCCGAGGCGC  GA GUGGUCGGG CG  / 
     A   A   CC   C            CG  C         C  UC  

42. >bomir-A4052-1-5p:Btau_4.0:18:59928617:59928686:1(14-32) dG = -38.20 kcal/mol 
ACGGCAGCGCCGCgggagccucgguuggccucGGAUAGCCGGUCCCCCGCCGUCCCCGCCGGCGGGCCGU 
          AG     -    ag cu   uu  cc    A  
     ACGGC  CGCCG Cggg  c  cgg  gg  ucGG U 
     |||||  ||||| ||||  |  |||  ||  |||| | 
     UGCCG  GCGGC GCCC  G  GCC  CC  GGCC A 
          G-     C    CU CC   --  CU    G  

43. >bomir-A4052-2-5p:Btau_4.0:21:52041984:52042053:-1(14-32) dG = -38.20 kcal/mol 
ACGGCAGCGCCGCgggagccucgguuggccucGGAUAGCCGGUCCCCCGCCGUCCCCGCCGGCGGGCCGU 
          AG     -    ag cu   uu  cc    A  
     ACGGC  CGCCG Cggg  c  cgg  gg  ucGG U 
     |||||  ||||| ||||  |  |||  ||  |||| | 
     UGCCG  GCGGC GCCC  G  GCC  CC  GGCC A 
          G-     C    CU CC   --  CU    G 
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44. >bomir-A4052-3-5p:Btau_4.0:Un.004.2732:16031:16100:-1(14-32) dG = -38.20 kcal/mol 
ACGGCAGCGCCGCgggagccucgguuggccucGGAUAGCCGGUCCCCCGCCGUCCCCGCCGGCGGGCCGU 
          AG     -    ag cu   uu  cc    A  
     ACGGC  CGCCG Cggg  c  cgg  gg  ucGG U 
     |||||  ||||| ||||  |  |||  ||  |||| | 
     UGCCG  GCGGC GCCC  G  GCC  CC  GGCC A 
          G-     C    CU CC   --  CU    G  
 

45. > bomir-106-2-5p:Btau_4.0:Un.004.53:181658:181738:-1(14-34) dG = -30.10 kcal/mol 
CCUUGGCCAUGUAaaagugcuuacagugcagguaGCUUUUUGAGAUCUACUGCAAUGCAAGCACUUCUUACAUUACCAUGG 
       U   CC      -        a  g     g   C  UU  
     CC UGG  AUGUAa aagugcuu ca ugcag uaG UU  \ 
     || |||  |||||| |||||||| || ||||| ||| ||   U      
     GG ACC  UACAUU UUCACGAA GU ACGUC AUC AG  / 
       U   AU      C        C  A     -   U  AG  
 

46. >bomir-24-3-3p:Btau_4.0:8:85962803:85962876:1(47-71) dG = -27.20 kcal/mol 
GCCCUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACACuggcucaguucagcaggaacaggagUCG 
     GCC    G  G   A         UA     UCUCAU  
        CUCC GU CCU CUGAGCUGA  UCAGU      \ 
        |||| || ||| |||||||||  |||||       U 
        gagg ca gga gacuugacu  gguCA      / 
     GCU    a  a   c         c-     CACAUU  

47. >bomir-26-2-3p:Btau_4.0:22:11464097:11464186:-1(54-75) dG = -34.00 kcal/mol 
CAGGCCCGCGUCCGCGUGCAAGUAACCGAGAAUAGGCCCCUUGGGACCUGCACagccuauccuggauuacuugaaCGAGGCC 
ACGGCCUU 
     C     CGC U  G   G       -  G  A      ---------  C  
      AGGCC   G CC CGU CAAGUAA CC AG AUAGGC         CC U 
      |||||   | || ||| ||||||| || || ||||||         || | 
      UCCGG   C GG GCa guucauu gg uc uauccg         GG U 
     U     CAC -  A   a       a  -  c      aCACGUCCA  G  

48. >bomir-199a-2-5p:Btau_4.0:7:13733556:13733633:1(8-29) dG = -33.50 kcal/mol 
CCCAGCCuaaccaaugugcagacuacuguACACAUUCAGAGCCCCCUGAACAGGUAGUCUGAACACUGGGUUGGCGGG 
        A   uaa   a   g         guACACA     AG  
     CCC GCC   cca ugu cagacuacu       UUCAG  C 
     ||| |||   ||| ||| |||||||||       |||||  | 
     GGG CGG   GGU ACA GUCUGAUGG       AAGUC  C 
        -   UUG   C   A         AC-----     CC  

49. >bomir-199a-3-5p:Btau_4.0:11:102419020:102419092:1(6-27) dG = -21.00 kcal/mol 
CAGCCuaaccaaugugcagacuacuguACAAUUUGGGAGUCCUGAACAGAUAGUCUAAACACUGGGUAGACGG 
     CAGC   a   a   gc      -    ACAAU UG  A  
         Cua cca ugu  agacua cugu     U  GG \ 
         ||| ||| |||  |||||| ||||     |  ||  G      
         GAU GGU ACA  UCUGAU GACA     A  CC / 
     GGCA   G   C   AA      A    ----- GU  U  

50. >bta-let-7b-2-3p:Btau_4.0:5:123308015:123308097:-1(60-81) dG = -22.90 kcal/mol 
CUCGAGGAAGGCAGUAGGUUGUAUAGUUAUCUUCCGAGGGGGCAACAUCACUACCCUGAaaccacacaaccuacuaccucaCC 
     GAC    AAGGC          AUA   A  UUCCG  G  GC  
        GAGG     AGUAGGUUGU   GUU UC     AG GG  A 
        ||||     ||||||||||   ||| ||     || ||  |      
        cucc     ucauccaaca   caa AG     UC CU  A 
     CCa    a----          cac   -  UCCCA  A  AC  

 

Secondary structure for new miRNAs and new loci of annoated miRNAs predicted 

by mfold web server. First line started with the name of the miRNA followed by 

database (Ensemble 52; Btau_4.0), genomic location (chromosome number: start: 

end: sense or antisense orientationand orientation, (position of the mature sequence 

in the precursor) and minimum free energy. Position of the mature sequence in the 

hairpin precursor is indicated as lower case and by the red color. 

 

Characterization of miRNAs was done based on the annotation in the bovine genome 

data base Ensembl 52: Btau_4.0 (De La Fuente and Eppig 2001). Bomir-F0522-3p and 

bomir-A4052-5p were mapped to both intergenic and intronic locations. Bomir-F0132-
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5p (sense), bomir-E2664-3p (antisense) and bomir-A4052-5p (antisense) are originated 

from the exons of protein-coding genes. While searching the genomic location for all 

miRNAs, six new genomic locations for annotated miRNAs like bta-mir-106, 24, 26, 

199a and let-7b were found.  

 

All the 50 new genomic loci were found to be distributed in 19 chromosomes (Chr.) 

namely: Chr. 3, 4, 5, 7, 8, 9, 11, 12, 14, 16, 18, 19, 20, 21, 22, 25, 26, 28 and 29. 

However, eight loci were found to be mapped to unknown chromosome in the Ensembl 

52: Btau_4.0 (end note). Among all newly identified loci, eight miRNA genes were 

found to be located on Chr. 18 and five miRNAs found on Chr. 7 and 21. Further 

analysis of the already annotated miRNAs and the newly predicted loci has revealed six 

miRNAs gene clusters which were mapped within < 10 kb. This clusters are i) bta-miR-

10a and bomiR-A0321 on Chr. 19; ii) bta-miR-23b, bta-miR-27b and bta-miR-24-3 on 

Chr. 8; iii) bta-let-7a-3 and let 7b-2-3P on Chr. 5; iv) bomiR-A4052-1 and bomiR-

C0533 on Chr. 18; v) bta-miR-487a, bta-miR-487-b, bomiR-382 and bomiR-409 on 

Chr. 21; vi) bomiR-C0533-2 and bomiR-A4052-2 on Chr. 21.  

 

To determine whether new miRNAs are conserved among closely related species, 

homology for precursor sequence in the ENSEMBL genome databases have been 

searched. Results revealed that 17 precursor loci (out of 43 loci for 38 new bovine 

miRNAs) were found to be conserved in at least six species. While five miRNAs 

(bomiR-F0244, bomiR-A0321, bomiR-F2531, bomiR-D3011 and bomiR-A3711) were 

found to be conserved in at least two species, 21 miRNA loci were specific to bovine. 

All of the newly cloned miRNAs were found to be conserved as mature sequences in 

the genome of different species. Thermo-dynamically stable hairpin structures have 

been found for those conserved and new miRNAs as shown in table 3.3.  

 

3.2.4 Other small RNAs and their genomic properties found in the library 

 

Analysis of small RNA library in the present study has enabled us to identify 57 

different endogenous siRNAs. They were categorized broadly into two groups, namely: 

29 sequences composed of 27 distinct RNAs derived from genomic repetitive region as 

repeat associated small interfering RNAs (rasiRNAs) and other 30 RNAs associated to 

non repetitive regions as non-repeat associated small interfering RNAs (nasiRNAs). 
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According to their sequence properties 13 out of 30 nasiRNAs were found to be natural 

antisense transcripts with ~20 nt in length. Therefore, since they seem to be endogenous 

siRNAs, they were denoted as small antisense RNAs (santRNAs) and the rest 17 as tiny 

non-coding RNAs (tncRNAs). Size ranges for rasiRNAs were 18-28 nt with mean ± SD 

21.5 ± 3.1 nt, which do not reveal a sharp size distribution characteristic. However, for 

the santRNAs and tncRNAs the size distribution was 19.6 ± 1.9 and 19.5 ± 1.1 nt, 

respectively. Cloned rasiRNAs were found to be distributed on various chromosomes 

and mapped to repeat sequences mostly corresponding to retrotransposons in both sense 

and antisense orientation. Total numbers of hits for 27 rasiRNAs were 581 (ranging 

from 4 to100). Seventy five percent of the rasiRNAs were found to have preference for 

uridine and adenine residues in either 3´ or 5´ end position. While seven of the 

santRNAs were precisely mapped to intergenic region, six fitted to intronic region. All 

the 13 santRNAs were cloned as antisense orientation to the genome or intron of the 

protein coding genes on 12 different chromosomes.  

 

Secondary structure analysis of all santRNAs revealed no characteristic hairpin as found 

for the miRNAs. While eleven tncRNAs were mapped to intergenic region, five were 

mapped to intronic and two to exonic regions. Two of the seventeen tncRNAs are 

predicted to form potential fold back structures like the miRNAs. However, these 

putative tncRNA precursor structures deviate significantly from the miRNA hairpins in 

key features and they were found to be poorly conserved in closely related species.  

 

3.2.5 Detection and expression of miRNAs in the ovary and other bovine tissues 

 

The expression of all new miRNAs including nine annotated miRNAs (let-7b, mir-15b, 

mir-18a, mir-29a, mir-125b, mir-126, mir-145, mir-199a and mir-222) in 11 different 

bovine tissues were analyzed using semi-quantitative RT-PCR (details in figure 3.4, 

table 3.4). As small RNAs cloned in the library derived from all compartments of the 

ovary, samples from ovarian cortex, cumulus cells and matured corpus luteum were 

used to determine the sub-cellular expression profile of the new miRNA using RT-PCR 

(Table 3.4). This is because of two facts: firstly, the bovine ovary is continuously 

changing throughout the process of folliculogenesis and secondly, the distinct nature of 

function of intra-ovarian cells and tissues compartments in the ovary.  
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Figure 3.4: Detection and expression analysis of selected miRNAs in multiple tissues. 

Expression profiles of some representative miRNAs (out of detected 44 

miRNAs) in multiple tissues by PCR approach. The expressions for all 

miRNAs are summarized in the table 3.4. Amplicons were analyzed on 2% 

agarose gel. 5S rRNAs and U6 RNA were used as a loading control. A 

DNA ladder (M) indicating the size of the fragments (50-100-150 nt) on 

each side. Ovary denotes only the ovarian cortex without corpus luteum. 
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Table 3.4: Detection and expression of selected miRNAs in multiple tissues 

miRNAs 
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5s rRNA +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
U6 RNA +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
bta-let7b ++ +++ +++ +++ ++ + +++ ++ + ++ +++ 
bta-mir-15b + +++ +++ +++ +++ +++ +++ +++ +++ + +++ 
bta-mir-18a +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
bomir-22*/22-5p + + + - - - - + - + + 
bta-mir-29a +++ - +++ - - - +++ +++ + ++ ++ 
bta-mir-125b - ++ +++ ++ ++ + ++ ++ - +++ + 
bta-mir-126 ++ +++ ++ +++ +++ +++ +++ +++ +++ +++ +++ 
bomir140*/140-5p +++ +++ +++ ++ ++ ++ ++ ++ ++ - ++ 
bomir-143-3p ++ +++ + ++ + + +++ ++ + + ++ 
bta-mir-145 ++ +++ - ++ - - +++ ++ ++ - +++ 
bomir-152-5p ++ ++ - ++ +++ +++ ++ ++ +++ +++ +++ 
bomir-193a-2-3p + ++ ++ - ++ ++ ++ + + ++ ++ 
Bta-mir-199 +++ ++ +++ ++ ++ ++ +++ +++ ++ +++ +++ 
bta-mir-222 - - +++ - - ++ - - + + + 
bomir-378-3p +++ +++ - - ++ +++ + ++ + + - 
bomir-382-3p + - - - +++ +++ +++ +++ - - +++ 
bomir-409-5p + +++ +++ ++ +++ +++ +++ +++ +++ +++ ++ 
bomir-424-3p ++ - - - + ++ - - ++ - + 
bomir-503-3p ++ +++ +++ ++ + + ++ ++ + ++ ++ 
bomir-542-3p - ++ ++ ++ +++ ++ +++ ++ ++ + + 
bomir-574-5p + + - + + ++ ++ ++ ++ ++ ++ 
bomir-652-3p + +++ - +++ ++ +++ - - ++ - - 
bomir-940-5p + - - - +++ + - + +++ ++ - 
bomir-F0132-5p +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 
bomir-F0244-5p + ++ +++ ++ + ++ ++ + ++ + + 
bomir-H0222-3p - ++ - +++ + + ++ ++ - + + 
bomir-A0321-3p ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ 
bomir-C0533-5p + +++ ++ + - + + + - - - 
bomir-F0522-3p - - ++ ++ - - - + - - - 
bomir-F1351-3p ++ - - +++ ++ +++ + +++ +++ ++ +++ 
bomir-F1353-5p ++ ++ - ++ + +++ +++ + +++ - + 
bomir-D1431-5p ++ +++ ++ +++ ++ + ++ +++ - + - 
bomir-C1511-5p + + - + ++ ++ + ++ ++ + + 
bomir-F1821-3p ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
bomir-C1931-5p + ++ - +++ +++ +++ +++ +++ +++ - +++ 
bomir-A2143-3p - ++ - +++ +++ +++ ++ ++ ++ ++ +++ 
bomir-F2422-5p +++ - - + + +++ - - ++ - + 
bomir-F2531-3p + - - + ++ ++ + +++ ++ + - 
bomir-G2511-3p + - - + + +++ + +++ ++ ++ - 
bomir-E2664-3p ++ ++ ++ ++ + ++ ++ + ++ + ++ 
bomir-D3011-3p + + ++ + + + + + + ++ + 
bomir-A3341-3p + + + + + + + + + + + 
bomir-A3711-5p + + - + + + +++ + + + + 
bomir-A4052-5p + + - ++ ++ ++ ++ ++ +++ ++ ++ 

 

Expression profiles of 44 miRNAs including all new miRNAs in multiple tissues 

by PCR approach. Amplicons were analyzed on 2% agarose gel. 5S rRNAs and 

U6 RNA were used as a loading control. Relative band intensity was categorized 
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into four groups like ‘+++’ for Strong signal, ‘++’ for Medium signal, ‘+’ for 

Weak signal or smear like product and ‘-’ for not detected by comparing the 

expression signal of each miRNA to the expression level of 5S rRNA and U6 

RNA.  a: Ovarian cortex with no visible corpus luteum, b: Ovary from fetus at 

about 5th  month of pregnancy, c: Mature corpus luteum from the same Ovary. 

 

Of all 47 miRNAs (38 new and 9 already annotated miRNAs) 44 were detected in both 

ovarian cells and multiple tissues. Five miRNAs (bta-mir-126, bomir-F0132, bomir-

A0321 and bomir-F1821) were found to be expressed at similar level in all experimental 

tissues. Seven miRNAs (bta-mir-18a, bta-mir-29a, bomir-140, bta-mir-199, bomir-378, 

bomir-F0132 and bomir-F2422) were found to be expressed at relatively higher levels 

in ovarian cortical portion (Table 2). On the other hand, all undetected or less expressed 

miRNAs in ovarian cortex have been shown to be highly expressed in cumulus cells or 

corpus luteum. Most of the miRNAs were found to be differentially expressed between 

adult ovarian tissues and fetal ovary. Among them bta-mir-15b, bomir-409, bomir-652, 

bomir-C0533 and bomir-D1431 were highly expressed in the fetal ovary compared to 

that of adult ovarian cortex. However, bta-mir-29a, bta-mir-199 and bomir-F2422 were 

found to be expressed at higher level in the adult ovarian cortex than that of the fetal 

ovary (Table 2). Bta-mir-125b, bta-mir-222, bomir-542, bomir-652, bomir-H0222, 

bomir-F0522, bomir-C1931 and bomir-A2143 were found to be expressed at very low 

level or not detected at all in the ovarian cortex. However, their abundance was higher 

in the cumulus cells and matured corpus luteum. The expression of bta-mir-222 was 

detected exclusively in the cumulus cells. In addition, higher expression of bta-mir-

125b, bomir-409, bomir-503 and bomir-F0244 was also observed in the cumulus cells. 

The expression of bomir-652, bomir-H0222, bomir-C1931 and bomir-A2143 was 

higher in the corpus luteum.  

Moreover, higher expression level of different miRNAs in various reproductive tissues 

was also observed. This includes bomir-940 in the oviduct; bta-mir-222, bomir-F2422 

and bomir-G2511 in the uterus; and bta-mir-29a, bomir-143, bta-mir-145, bta-mir-199, 

bomir-542 in the placenta. All these investigated miRNAs were detected at least in one 

of the non-ovarian somatic tissues including heart, liver, lung and spleen (Table 3.4). 

The RT-PCR analysis did not confirm the expression of three novel miRNAs (bomir-

F0131, bomir-H0121 and bomir-B0821) in any of the tissues under investigation (image 

not shown). 
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In order to elucidate the cellular localization of one miRNA, bta-miR-29a was selected 

due to its differential expression between adult and fetal ovary, which are distinct in 

their functional activity.  

 

Accordingly, in-situ localization of this miRNA in the sections of bovine ovarian 

follicle revealed its expression in the different intra-ovarian cells (theca, mural 

granulosa, cumulus granulosa and oocyte) of different stages of development including 

primordial, primary, growing and matured/tertiary follicles (Figure 3.5). Stable 

expression was detected in the whole mount cumulus-oocyte-complexes derived from 

the follicles of more than 8 mm in diameter. In the semi-quantitative RT-PCR data, 

expression of this miRNA was found in the cortex region of the adult ovary where 

follicles with cumulus cells are residing. Moreover, the expression of this miRNA was 

detected further until early stage of corpus luteum (Figure 3.5), but very low or no 

expression in the matured corpus luteum (Figure 3.4).    
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Figure 3.5: In-situ detection of mir-29a in the ovarian sections and whole mount COCs. 

Bovine ovarian cryo-sections and whole mount cumulus-oocyte complexes 

were in situ hybridized with 3'-digoxigenin labeled locked nucleic acid 

(LNA) microRNA probes for miR-29a (1), U6 RNA (2) and scrambled 

miRNA (3). BL- Basement Laminae, TI- Theca Interna, TE- Theca Externa, 

GR- Multiple layers of Granulosa, ZP-Zona Pellucida, OO-Oocyte, CR- 

Corona Radiata, AN-Antrum of the follicle, PT- Presumptive theca in the 

growing follicle. 
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3.2.6 Prediction and functional categorization of cloned miRNA targets  

 

The goal of this prediction and analysis was to find the major biological processes and 

signaling pathways in the ovary that are most likely affected by a group of miRNAs. 

Even though there were many potential target genes predicted for the cloned miRNAs, 

several filtering and screening procedures (see materials and methods) have enabled us 

to generate a comprehensive target list consisting of 115 potential genes from all the 

predicted targets. From this screened target set, let-7b, mir-15b, mir-18a, mir-29a, mir-

101, mir-125b, mir-126, mir-143, mir-145, mir-199a and mir-222 found to have the 

highest number and overlapping targets (Figure 3.6). Interestingly, all of these targeting 

miRNAs were represented at higher frequency in the constructed library.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Eleven miRNAs with highest number of screened target genes (sub-set 

miRNAs targets). Each circle representing one miRNAs and the 

surrounding genes are targeted by that miRNA. Genes shared by the 

different circles highlighted as blue (overlapping genes between miRNAs), 

which are commonly targeted by the corresponding miRNAs. 
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Table 3.5: Ingenuity analysis of the genes targeted by top eleven screened miRNAs  

 

miRNAs Functions and disease categories enriched with 
the selected miRNA targets 

Canonical Pathways enriched with the 
selected miRNA targets 

Let-7b Tissue morphology, cellular growth and 
proliferation, endocrine system disorders 

IGF-1 signaling, hepatic 
fibrosis/hepatic stellate cell activation 

mir-15b cell death, connective tissue development and 
function, cell cycle 

p53 signaling, PPARα/RXR activation 
 

mir-18a Cell cycles, cellular function, endocrine system 
development 

Cell cycle: G1/S checkpoint 
regulation, TGF-β signaling 

mir-29a Reproductive system development and 
function, organ development, endocrine system 
development 

Ephrin receptor signaling 
Aminophosphonate metabolism 

mir-101 Endocrine system development, lipid 
metabolism, small molecule biochemistry 

C21-steroid hormone metabolism, 
Androgen and estrogen metabolism 

mir-125b Inflammatory response, cell cycle, cellular 
function and maintenance 

LPS/IL-1 Mediated inhibition of RXR 
function, LXR/RXR activation 

mir-126 Cellular movement, Endocrine system 
disorders, cell mediated immune response 

Pro-apoptosis, PXR/PXR activation 
 

mir-143 Cellular growth and proliferation, DNA 
replication, recombination and repair, gene 
expression 

G1/S transition of the cell cycle, p53 
signaling 

mir-145 Reproductive system diseases, reproductive 
system development and function, cell death 

BMP signaling pathway, VEGF 
signaling 

mir-199a Cellular development, cell death, cellular 
growth and proliferation 

Cell cycle: G2/M DNA damage 
checkpoint regulation, p38 MAPK 
signaling 

mir-222 Cellular development, reproductive system 
development and function, cell death 

IGF-1 signaling, Axonal guidance 
signaling 

 

Eleven top miRNAs targeting highest number of genes from the screened and 

filtered all predicted targets and their top Gene Ontology categories and pathways 

based on Fisher' Exact P-value (<0.05) are presented in the table.  
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Figure 3.7: Top biological function, disease categories and pathways enriched with 

predicted and screened miRNA target genes. A. Top biological functions 

and disease categories and B. pathways enriched with predicted and 
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screened miRNA target genes. Ratio is the number of affected genes to 

total number of genes in the pathway. Threshold p < 0.05 is shown as 

yellow line. Bars that are above the line indicate significant enrichment of 

a functional category or pathway. 

 

Detailed Gene Ontology (GO) analysis of the screened and sub-sets of miRNAs target 

genes were found to be associated with reproductive system development, function and 

disorders. These include cell cycle, morphology, cell death, cell to cell signaling, 

cellular growth, development and proliferation, DNA replication, recombination & 

repair, endocrine system disorder and different pathways underlying the ovarian 

functions. To further elucidate the specific functions of these genes, a detailed pathway 

analysis was performed using Ingenuity Pathway Analysis (Redwood City, California) 

for all target sets (Figure 3.7) as well as for the sub-set of genes (Table 3.5). 
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3.3 Discussion 

 

3.3.1 Identification of small RNAs 

 

MicroRNAs play an integral part of animal gene regulatory networks as one of the most 

abundant classes of gene regulators. They are estimated to comprise 1–5% of animal 

genes (Bartel 2004, Bentwich et al. 2005, Berezikov et al. 2005) or a given genome 

could encode nearly thousands of miRNAs (Bentwich et al. 2005). Moreover, a typical 

miRNA regulates hundreds of target genes (Brennecke et al. 2005, Krek et al. 2005, 

Lewis et al. 2005, Xie et al. 2005) and altogether they could target a large proportion of 

genes up to 30% of the genome (Lim et al. 2005). Changes in the expression of even a 

single miRNA could have a significant impact on the outcome of diverse cellular 

activities regulated by the product of these genes. Beyond the strict conservation of 

miRNAs across different species, some miRNAs appears to be species specific (Ambros 

et al. 2003a, Bentwich et al. 2005, Stark et al. 2007). Compared with computational or 

heterologus approaches, direct cloning has the advantage of identifying non-conserved 

and new miRNAs.  

 

Cloning and expression analysis led to the identification of 74 miRNAs out of which 38 

are new in bovine. Mature sequences were found to be conserved in closely related 

species, but when considering precursor sequence only 51% was found to be conserved 

in human, mouse, rat, dog, horse and also in other non-mammalian vertebrates. 

However, in the present study 17 miRNA precursors corresponding to 21 genomic loci 

were found to be not conserved (Table 1). This could be either due to the lack of 

sequences in draft genome assembly or these miRNAs are bovine specific. The genomic 

properties of identified new miRNAs showed that they are derived from exon, intron 

and intergenic region. This may suggest that these miRNAs can be transcribed in 

parallel with their host transcripts. In addition, two different transcription classes of 

miRNAs (‘exonic’ and ‘intronic’) recognized here may require somewhat different 

mechanisms of bio-genesis as stated previously (Rodriguez et al. 2004). Discovery of 

six clusters composed of 15 miRNA genes on six chromosomes showed that these 

closely located host genes may share the same cis-regulatory elements and the miRNAs 

within the clusters might be expressed in the same tissues or at the same developmental 

or physiological stage. 
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The representation of many known and novel miRNAs in this single library indicates 

the presence of potential miRNAs, which are not yet discovered. Both in-depth analysis 

of the existing library and cell-type-specific analysis of individual miRNAs will give 

insight into the functional mechanisms and pathways involved in ovarian 

folliculogenesis in particular and female fertility in general. All the sequences for new 

and known miRNAs were submitted to the miRBase for official annotation and 

recognition. The accession number and annotated name for all novel miRNAs were 

assigned by the miRBase in version 15.0 according to the universal criteria specific to 

the miRNAs, which are presented in table 3.6. 

 

Table 3.6: Annotated novel miRNAs with their accession number provided by the 

miRBase organization   

 

 Original clone ID Sequence (5´-3´) Annotated  
new name 

Assigned 
accession 

 bomir-424-3p CAAAACGUGAGGCGCUGCUAU bta-mir-424* MI0012212
 bomir-193a-2-3p GGGACUUUGUAGGCCAGUU bta-mir-193a-2 MI0013051
 bomir-378-1-3p ACUGGACUUGGAGUCAGAAGGC bta-mir-378-2 MI0013052
 bomir-574-5p UGUGGGUGUGUGCAUGUGCGUG bta-mir-669 MI0013053
 bomir-F0131-5p GGGGCGGGGGGGCGGGUG bta-mir-2881 MI0013054
 Bomir-F0132-5p AGCCCGGGCCCCUCCCCUG bta-mir-2882 MI0013055
 bomir-H0121-3p CUUCCCGUGUGUUGAGCC bta-mir-2883 MI0013056
 bomir-F0244-5p GCUACUACCGAUUGGAUGG bta-mir-2884 MI0013057
 bomir-H0222-3p CGGCGGCAGCGCCGGGGCG bta-mir-2885 MI0013058
 bomir-A0321-3p AGCGCCGCCGGCCGCACC bta-mir-2886 MI0013059
 bomir-C0533-1-5p CGGGACCGGGGUCCGGUGCG bta-mir-2887-1 MI0013060
 bomir-C0533-2-5p CGGGACCGGGGUCCGGUGCG bta-mir-2887-2 MI0013061
 bomir-F0522-1-3p GGUGGGGUGGGGGGGUUGG bta-mir-2888-1 MI0013062
 bomir-F0522-2-3p GGUGGGGUGGGGGGGUUGG bta-mir-2888-2 MI0013063
 bomir-B0821-5p GUCCCCGGGGCUCCCGCCGGC bta-mir-2889 MI0013064
 bomir-F1351-3p GCCCCGGCCGCUCCCGGCCU bta-mir-2890 MI0013065
 bomir-F1353-5p AUCUUUGGGCUAGGUUAGUU bta-mir-2891 MI0013066
 bomir-D1431-5p GGCGACGGAGGCGCGACCCCCC bta-mir-2892 MI0013067
 bomir-C1511-5p GUGGAGGAGAAUGCCCGGGG bta-mir-2893 MI0013068
 bomir-F1821-3p AGCCCUGGCCCUGCCAUCGUG bta-mir-2894 MI0013069
 bomir-C1931-5p CCUGCUGAUCUCACAUUAAUUCA bta-mir-2895 MI0013070
 bomir-A2143-3p CGGCAGAUGAAGUCCAUC bta-mir-2896 MI0013071
 bomir-F2422-5p GGUGGGAGGGUCCCACCGAG bta-mir-2897 MI0013072
 bomir-F2531-3p UGGUGGAGAUGCCGGGGA bta-mir-2898 MI0013073
 bomir-G2511-3p AGGCGGGCCGGGGUUGGA bta-mir-2899 MI0013074
 bomir-E2664-3p AGGGCGGGCGGCGACUGGAA bta-mir-2900 MI0013075
 bomir-D3011-3p CCGAGUGCUCCCGCGAGCGCU bta-mir-2901 MI0013076
 bomir-A3341-1-3p GUGGCUGUCCCUGGAGGUGGG bta-mir-2902-1 MI0013077
 bomir-A3341-1-3p GUGGCUGUCCCUGGAGGUGGG bta-mir-2902-2 MI0013078
 bomir-A3711-5p UUCCGCGCUCUACGCCAGC bta-mir-2903 MI0013079
 bomir-A4052-1-5p GGGAGCCUCGGUUGGCCUC bta-mir-2904-1 MI0013080
 bomir-A4052-1-5p GGGAGCCUCGGUUGGCCUC bta-mir-2904-2 MI0013081
 bomir-A4052-1-5p GGGAGCCUCGGUUGGCCUC bta-mir-2904-3 MI0013082
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 bomir-22*/22-5p ACAGUUCUUCAACUGGCAGCUU bta-mir-3600 MI0015943
 bomir-152-5p CCAAGUUCUGUCAUGCACUGA bta-mir-2957 MI0015944
 bomir-382-3p GAAUCCACCACGAACAACUUC bta-mir-3578 MI0015945
 bomir-409-5p GGGGUUCACCGAGCAACAUUC bta-mir-3581 MI0015946
 bomir-542-3p UCUCGUGACAUGAUGAUCCCCGA bta-mir-3601 MI0015947
 bomir-652-3p GUGUUGGGAUCACCGCGGUAA bta-mir-3602 MI0015948
 bomir-26-2-3p AGCCUAUCCUGGAUUACUUGAA bta-mir-3603 MI0015949
 bomir-199a-2-5p UAACCAAUGUGCAGACUACUGU bta-mir-3604-1 MI0015950
 bomir-199a-2-5p UAACCAAUGUGCAGACUACUGU bta-mir-3604-2 MI0015951
 bta-let-7b-2-3p AACCACACAACCUACUACCUCA bta-mir-3596 MI0015952

 

In the present study several types of endogenous small interfering RNAs were identified 

along with the miRNAs. Among them, 27 distinct rasiRNAs represented the frequent 

class of small RNAs. Thirteen RNAs were classified as small antisense RNAs, while 17 

small RNAs were tiny non-coding RNAs. The small RNA cloning and profiling from 

another study revealed less representation of that group of rasiRNAs compared to the 

miRNAs (Aravin and Tuschl 2005). The properties identified for rasiRNAs here support 

the notion that they are presumably emerged from dsRNA produced by annealing of 

sense and antisense transcripts that contain repeat sequences related to transposable 

elements (Aravin et al. 2003). These rasiRNAs are known to repress the repeat 

sequences at the transcriptional or post-transcriptional level and maintain a centromeric 

heterochromatic structure (Lippman and Martienssen 2004). Identity and properties of 

new types of small RNAs in the present study showed the presence of diverse modes of 

small RNA-mediated gene regulation in bovine ovary, as reported in other species 

(Ambros et al. 2003b). Therefore, identification and characterization of other small 

RNAs and their expression patterns are important for elucidating detailed gene 

regulatory networks involved in the ovary. So, all these endogenous small interfering 

RNAs need to be further characterized to elucidate their cellular functions.  

 

3.3.2 Expression of miRNAs in diverse tissue types 

 

Expression analysis of 44 miRNAs in different ovarian cells and tissues types has 

enabled us to determine their site of action in terms of tissue specific abundance as well 

as functional regulation (Table 2). Nearly all of these miRNAs in at least one part of the 

entire ovary and other somatic tissues have been detected. In the present study, some 

miRNAs appear to be extremely tissue specific. For example; bomir-C0533 and bomir-

F0522 were found to be exclusively expressed in ovarian tissues suggesting their 

potential role in ovary-specific miRNA-dependent regulatory processes. Five miRNAs 
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(miR-29a, miR-125b, bomir-409, bomir-503 and bomir-F0244) were found to be highly 

abundant in the cumulus cells and four (bomir-652, bomir-H0222, bomir-C1931 and 

bomir-A2143) in corpus luteum. These cumulus enriched miRNAs in the present study 

may represent those miRNAs with potential association with the regulation of cumulus 

secreted factors, which are important for cumulus-oocyte communication and 

subsequent oocyte development. Similar study in mouse showed hormonal regulation of 

miRNAs expression in preovulatory mural granulosa cell (Fiedler et al. 2008). 

 

The expression of various ovary related genes was reported to be differentially regulated 

between ovaries from fetal, new born and adult animals (Baillet et al. 2008, Herrera et 

al. 2005, Olesen et al. 2007, Vaskivuo et al. 2001). Furthermore, alteration in expression 

of small RNAs has been addressed at different stages of mouse ovary (Ro et al. 2007b). 

Similarly, in the present study, differential expression of mir-29a, bomir-140, mir-199, 

mir-378, bomir-F0132 and bomir-F2422 in the ovarian cortical portion between fetal 

and adult cows. This may indicate their possible involvement in regulating follicular 

development in the adult cyclic ovarian function. This notion was further supported by 

higher detection of miR-29a in different follicular cells (theca, cumulus-granulosa, and 

oocyte) of adult ovary by in situ hybridization (Figure 5) and higher expression in 

cumulus cells by RT-PCR but no detection in the fetal ovary. The expression of 

miRNAs in ovarian cells is reported to be regulated by FSH and LH / hCG (Fiedler et 

al. 2008, Yao et al. 2009) which functions in the cyclic ovary but not in fetal ovary 

(Abel et al. 2000). Moreover, most of the targets predicted for this miRNA (Figure 6) 

are known to be involved in various cyclic adult ovarian functions.  

 

Noticeable expression level of miR-29a was found in different phases of corpus luteum 

(CL) development. According to RT-PCR and in situ hybridization results, expression 

of miR-29a was detected in the early phase CL but not in mid phase (matured) CL. 

These two phases of CL development are known to vary in multiple aspects of luteal 

physiology, angiogenesis and sensitivity to luteolytic actions, which are accompanied 

by differential expression of multiple genes (Copelin et al. 1988, Goravanahally et al. 

2009, Watts and Fuquay 1985, Wiltbank et al. 1995). Bovine corpus luteum is reported 

to be resistant to luteolysis by exogenous PGF2α in early stage of CL (before Day 5) 

due to differential expression of genes associated with the PGF2α receptor 

(Goravanahally et al. 2009). Considering these facts and restricted expression of miR-
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29a in early phase of CL in the present study, it is possible to suggest that miR-29a is 

involved in gene regulatory action during early phase of CL. All in all, present results 

on miR-29a may elucidate the potential involvement of this regulatory miRNA in 

growth and differentiation of cumulus cells, endocrine regulation of theca cells and 

early luteinisation in cyclic ovary. 

 

Cloning, determining potential secondary structures and expression analysis of all new 

miRNAs in multiple tissues indicate their tissue specific existence and regulation of 

gene expression. Only 7.8% of the new miRNAs could not be detected by the RT-PCR 

procedure in various reproductive tissues. This may be due to the fact that these 

transcripts were cloned at lower frequency (only once) showing their lower abundance 

and subsequent difficulty to detect them (Gu et al. 2007). In general, the expression 

profiling analysis in the present study revealed that cloned miRNAs were either 

ubiquitously expressed in multiple tissues or preferentially expressed in a few tissues 

including the intra-ovarian cells and tissues. 

 

3.3.3 Features of predicted target genes 

 

Multiple genes contributing to mammalian folliculogenesis have been identified in 

mouse knockout study (Matzuk and Lamb 2002). Primarily, oocyte-specific 

transcriptional regulators like Figla, Nobox, Sohlh1 and Lhx8, oocyte-secreted factors 

such as Gdf9 and Bmp15, as well as genes expressed in the granulosa and cumulus cells 

(FSHR and PTX3) were found to initiate and control follicular growth (Dumesic and 

Abbott 2008, Matzuk and Lamb 2002). Among the key intra-ovarian factors, the 

transforming growth factor b (TGFb) family members, of which bone morphogenetic 

protein-4 have been identified as regulators of primordial germ cell generation (van den 

Hurk and Zhao 2005).  

 

In response to FSH, the granulosa cell–derived factors such as kit ligand, transforming 

growth factor alfa (TGF-α) and epidermal growth factor (EGF) activate the resting 

follicular growth. The interactions between ovarian germ and somatic cells (granulosa 

cells and the oocytes) and expression of several intra-ovarian autocrine/paracrine 

regulators (FSH, estrogen and androgen receptors) are the major contributing factors in 

the ovary leading to preantral and antral follicles development (Filicori et al. 2003).  
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During follicle growth, IGF system works in synergy with gonadotrophins (follicle-

stimulating hormone and luteinising hormone) to regulate proliferation and 

differentiation of granulosa and theca cells (Campbell et al. 1998, Gutierrez et al. 1997). 

In addition, it has been shown that the processes of follicular dynamics (Recruitment, 

selection, dominance and ovulation) are associated with temporal changes of peripheral 

gonadotropins concentration and IGF system (Austin et al. 2001, Fortune et al. 2001, 

Ginther et al. 2002, Ireland et al. 2000, Mihm and Evans 2008, Quintal-Franco et al. 

1999, Schams et al. 1999). All the above-mentioned genes are represented in the 

predicted and analyzed targets. Altogether 115 genes were among potential target genes 

of identified miRNA. These target genes are already experimentally validated for 

potential ovary related functions in different mammalian species. Interestingly, several 

well-known target genes including IRS1, IGFBP3, DNMT3A, HOXA9, TNF, etc. 

which are identified by new screening approach, are already validated in wet lab 

experiments and reported as targets of multiple miRNAs (miR-145, miR-125b, miR-126 

and miR-29) (Fabbri et al. 2007, Shen et al. 2008, Shi et al. 2007a, Shi et al. 2007b, Tili 

et al. 2007). Accordingly these studies have elucidated the potential involvement of 

these miRNAs in broad class of functions related to apoptosis, differentiation signal, 

cell differentiation, tumorogenesis, DNA methylation and innate immune responses.  

 

Gonadotropins, intra-ovarian mediators and their receptors which are identified as target 

genes for identified miRNAs might mediate important intracellular actions necessary 

for normal follicular development and other ovarian functions. Alterations in the 

expression of these mediators by miRNAs will result in various ovarian dysfunctions 

causing infertility, polycystic ovary syndrome and tumorigenesis. Recent evidences also 

support the hypothesis, where at least six of 11 top ranked ovarian miRNAs were found 

to be related to cancer or tumors in the ovary. For example, miR-199a, miR-145, miR-

125b and let-7 clusters were found to be the most differentially regulated miRNAs in 

human ovarian cancer (Iorio et al. 2007, Yang et al. 2008a). While miR-145 (Iorio et al. 

2005) and mir-199a (Murakami et al. 2006) have recently been shown to be down-

modulated in the tumor cells, the miR-222 is reported to be down-regulated in ovarian 

epithelial carcinomas (Iorio et al. 2007). Furthermore, higher expression of miR-18a 

and lower expression of let-7b and miR-199a were shown to be correlated with serous 

ovarian carcinoma (Nam et al. 2008). In another study, miR17-5p and let-7b were found 

to be involved in the regulation of development and function of the ovarian corpus 
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luteum specially angiogenesis of corpus luteum (Otsuka et al. 2008). Interestingly, 

nearly all of these 11 selected miRNAs (Figure 6) in the present study are reported to be 

differentially regulated in endometrium of women with and without endometriosis (Pan 

et al. 2007). Altogether present findings and other evidences support the relevance of 

these 11 miRNAs to ovarian physiology and may be the most important regulatory 

miRNA group in ovary, as their predicted and analyzed target genes are involved in a 

broad range of signaling cascades and pathways of the ovarian function. 
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4 Part II: miRNAs in the placentas derived from in vivo, in vitro and somatic cell 

nuclear transfer pregnancies 

 

Somatic Cell Nuclear Transfer is a break-through technology but it is hindered by very 

low rates of live birth due to high incidence of placental abnormalities. The major 

source of these abnormalities is thought to be due to genetic and epigenetic 

modifications arise from improper reprogramming of the donor cell after nuclear 

transfer, which leads to post-implantation lethality to embryo with ultimate placental 

defects. miRNAs have been evidenced as an important modifier that regulates gene 

expression. However, the role of miRNAs in placenta derived from SCNT is unknown. 

The study aimed to elucidate the difference in expression profile of miRNAs in the 

placenta (at day 50) derived from artificial insemination (AI), in vitro production (IVP), 

SCNT pregnancy and in the donor cells (fibroblast from the same bull used to generate 

AI & IVP derived pregnancies) by quantifying 377 miRNAs. For this purpose, in vitro 

fertilization and SCNT was performed using semen and fibroblast, respectively from the 

same bull to generate embryo in vitro. Then the both group of embryos were cultured in 

vitro up to day-7. Some blastocysts were fixed and freezed for in situ hybridization and 

expression profiling, respectively. The rest of the embryos were transferred to the 

synchronized recipients to maintain pregnancy. On the other hand artificial insemination 

was performed to generate control embryos which were recovered at day 7 by flushing 

and the rest of the heifers were used to maintain pregnancy up to slaughter stage to 

recover control placentas. Animals were slaughtered gradually at day 16, day 50 and 

day 225 of pregnancy from all three groups (AI, IVP and NT) to recover elongated 

embryos, placenta and placentomes, respectively. Total RNAs from the frozen placenta 

(20 mg) of different sources and fibroblast cells were isolated and real time qRT PCR of 

miRNAs was performed using 384-well miRNAs arrays comprised of 377 individual 

miRNAs. Furthermore, cell specific expression of some selected miRNAs in the 

expanded blastocysts of different sources by whole mount in situ hybridization was 

performed. Temporal expression of selected miRNAs in fibroblast, blastocyst, expanded 

blastocyst, day-16 elongated embryo, day-50 placenta and day 225 placenta (AI, IVP 

and SCNT pregnancies) by real time qRT-PCR. In addition, global DNA methylation in 

the day 16 elongated embryos and day 50 placenta of different sources of pregnancies 

were performed. The detail materials and method followed and the obtained findings are 

presented in the following sections. 
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4.1 Materials and methods 

 

Following sections describe the detail materials which were utilized and brief methods 

followed in this experiment to study the pattern of miRNA expression and their 

regulation in the placenta and embryos from the pregnancy derived by nuclear transfer 

and in vitro produced embryo comapared to that from artificial insemination pregnancy. 

List of some materials which have also been used in the part I and mentioned in the 

related previous section are not listed here.     

 

4.1.1 Materials and tools 

 

4.1.1.1 List of chemicals, kits, biological and other materials 

 

List of Chemicals Manufacturer/Supplier 

2-Mercaptoethanol Sigma-Aldrich Chemie GmbH, Munich, Germany

5 α DH E. coli competent cells Stratagene, Amsterdam, The Neatherlands 

6-dimethylaminopyridine Sigma-Aldrich Chemie GmbH, Munich, Germany

Agar-Agar Roth, Karlsruhe, Germany 

Digoxigenin-AP Roche Diagnostics GmbH, Mannheim, Germany 

BioThermD™ Taq DNA Pol Ares Bioscience GmbH, Cologne, Germany 

Bovine serum ablbumin (BSA) Promega, Mannheim, Germany 

Dimethyl sulfoxide (DMSO) Roth, Karlsruhe, Germany 

DNA/RNA/Protein purification kit Norgen Biotek corporation, Thorold, Canada 

dNTPs Roth, Karlsruhe, Germany 

DMEM-F12 Ham Sigma-Aldrich Chemie GmbH, Munich, Germany

Dulbecco’s phos buff saline D-PBS Sigma-Aldrich Chemie GmbH, Munich, Germany

Epinephrine Sigma-Aldrich Chemie GmbH, Munich, Germany

Essential amino acids (BME) Gibco BRL, life technologies, Karlsruhe 

EZ DNA Methylation direct Kit Zymo Research, Orange, CA, USA 

Fast Red Substrate System Dako Deutschland GmbH, Hamburg, Germany 

Fast Red Substrate System Dako Deutschland GmbH, Hamburg, Germany 

Fertal Bovine Serum (FBS) Sigma-Aldrich Chemie GmbH, Munich, Germany

Fetal calf serum (FCS) Gibco, Karlsruhe, Germany 

FSH Sigma-Aldrich Chemie GmbH, Munich, Germany
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GenEluteTM plasmid Miniprep kit Sigma-Aldrich Chemie GmbH, Munich, Germany

Goat anti-EIF2C2 antibody Santa Cruz Biotechnology, Santa Cruz, CA, USA 

Goat anti-GAPDH antibody Santa Cruz Biotechnology, Santa Cruz, CA, USA 

Heparin sodium salt Sigma-Aldrich Chemie GmbH, Munich, Germany

Hepes Sigma-Aldrich Chemie GmbH, Munich, Germany

Penicillin G sodium salt Sigma-Aldrich Chemie GmbH, Munich, Germany

Streptomycin sulfate salt Sigma-Aldrich Chemie GmbH, Munich, Germany

Hoechst 33342 Invitrogen, Carlsbad, CA, USA 

Ionomycin Sigma-Aldrich Chemie GmbH, Munich, Germany

iTaq SYBR Green Supermix  Bio-Rad laboratories, Munich, Germany 

ROX Reference Dye Roche Diagnostics GmbH, Mannheim, Germany 

L-Glutamine Sigma-Aldrich Chemie GmbH, Munich, Germany

LNA™ PCR primer set, UniRT Exiqon, Vedbaek, Denmark 

Medium 199 Sigma-Aldrich Chemie GmbH, Munich, Germany

Methylamp Global DNA Meth kit Epigentek, Brooklyn, NY, USA 

Mineral oil Sigma-Aldrich Chemie GmbH, Munich, Germany

miRCURY™ LNA Detection probe Exiqon, Vedbaek, Denmark 

miRNeasy mini kit QIAGEN GmbH, Hilden, Germany 

Mouse anti-goat IgG-HRP Santa Cruz Biotechnology, Santa Cruz, CA, USA 

Nitrocellulose membrane Protran®, Schleicher & Schuell Bioscience 

Penicillin Sigma-Aldrich Chemie GmbH, Munich, Germany

pGEM-T vector and related reagents Promega, Mannheim, Germany 

pGEM-T vector and related reagents Promega, Mannheim, Germany 

Phenol red solution (5% in D-PBS) Sigma-Aldrich Chemie GmbH, Munich, Germany

QIAquick Gel Extraction Kit Qiagen, Hiden, Germany 

QIAquick PCR purification kit QIAGEN GmbH, Hilden, Germany 

Random primer Promega, Mannheim, Germany 

Ribo-nuclease inhibitor (RNasin) Promega, Mannheim, Germany 

Rigid thinwall 96X0.2ml microplate STARLAB GmbH (Ahrensburg) 

RNA later Ambion Inc, Austin, TX, USA 

RT2 miRNA first strand kit SABioscienecs, Frederick, MD, USA 

RT2 qPCR-Grade miRNA isolation SABioscienecs, Frederick, MD, USA 

RT2 Sybr green master mix SABioscienecs, Frederick, MD, USA 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich Chemie GmbH, Munich, Germany
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Streptomycin Sigma-Aldrich Chemie GmbH, Munich, Germany

Streptomycin sulfate Sigma-Aldrich Chemie GmbH, Munich, Germany

SuperScriptTM II cDNA syn kit Invitrogen, Carlsbad, CA, USA 

SYBR Green master mix, Uni-RT Exiqon, Vedbaek, Denmark 

Trypsin-EDTA Sigma-Aldrich Chemie GmbH, Munich, Germany

Universal cDNA synthesis kit Exiqon, Vedbaek, Denmark 

 

4.1.1.2 List of equipments 

 

ABI 7900 HT real time PCR system Applied Biosystems, CA, USA 

ABI PRISM® 7000 sequence detection sys Applied Biosystems, CA, USA 

Agilent 2100 bioanalyzer Agilent Technologies , CA, USA 

Biomek® NXP, Multichannel laboratory 

automation workstation 

Beckman Coulter, Krefeld, Germany 

Centrifuge Hermel, Wehing 

CEQ 8000 genetic analysis apparatus Beckman Coulter, Brea, CA, USA 

CO2-incubator (MCO-17AI) Sanyo, Japan 

Confocal laser scanning microscope-510 Carl Zeiss, Germany 

ECL plus western blotting detection system GE Healthcare, Freiburg, Germany 

Electrofusion machine, CFA 400 Kruess, Hamburg, Germany 

Electrophoresis unit (for agarose gels) BioRad, Munich, Germany 

Embryo flushing catheter CH15, Wörrlein, Ansbach, Germany 

Embryo transfer syringe and sheath IMV, L’Aigle, France 

Fluorescence microscope (DM-IRB) Leica, Bensheim, Germany 

Four well dishes Thermo Fisher Sc, Roskilde, Denmark 

Four-well culture dishes Nunc, Roskilde, Denmark 

Inverted fluorescence microscope DM IRB Leica, Bensheim, Germany 

Memmert CO2 incubator  Fisher Scientific, Leicestershire, UK 

Millipore apparatus Millipore Corporation, USA 

My Cycler Thermal cycler Bio-RadLaboratories, CA, USA 

NanoDrop 8000 spectrophotometer NanoDrop, Wilmington, Delaware, USA 

PTC-100 thermal cyclers BioRad, Munich, Germany 

SHKE6000-8CE refrigerated Shaker Thermoscinentific, IWA, USA 

Stereomicroscope SMZ 645 Nikon, Japan 
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ThermoMax microplate reader Molecular Devices, CA, USA 

Ultra low freezer (-85 °C) Labotect GmbH, Gottingen, Germany 

UV Transilluminator (Uvi-tec) Uni Equip, Martinsried, Germany 

 

4.1.1.3 List of softwares 

 

BDGP Search tools http://www.fruitfly.org/seq_tools/promoter.html 

BLAST cow sequences  http://www.ncbi.nlm.nih.gov/genome/seq/BlastGen/ 

ENSEMBL genome browser http://www.ensembl.org/index.html 

Entrez Gene  www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 

Gene Ontology http://www.geneontology.org 

Genomatix software suite 2.0 http://www.genomatix.de 

MethPrimer http://www.urogene.org 

Methyl Primer Express® v1.0 Applied biosystem, Foster City, CA 

miRBase_12.0 http://microrna.sanger.ac.uk/sequences/  

PCR array data analysis portal http://www.sabiosciences.com/pcr/arrayanalysis.php

Primer Express 2.0  Applied Biosystems, Foster City, CA, USA 

Promoter 2.0 Prediction Server http://www.cbs.dtu.dk 

SAS (version 8.02) SAS Institute Inc., NC, USA 

 

4.1.1.4 Reagents and media preparation 

 

All solutions used in this investigation were prepared with deionised and demineralised 

(Millipore) and where necessary the pH was adjusted with Sodium hydroxide or 

hydrochloric acid. In addition, the solutions or buffers were subsequently filtered 

through 0.2 µ filter and autoclaved at 120°C for 20 minutes where it is necessary. 

Prepared solutions were aliquot in to small volume and stores at desired temperature 

according to the recommendation of suppliers.  

 
Name of the medium/buffer Constituents Amount/

volume

10X PBS                                        : NaCl 8.77 g

 Na2HPO4 1.50g

 NaH2PO4 2.04g
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 Water upto 1000.0 ml 

1X PBS                                          : 10X PBS 100.0 ml 

 DEPC upto 900.0 ml 

10x TBE buffer                             : Tris base 218.0 g 

 Boric Acid 105.0 g 

 EDTA solution (pH.8.0) 80.0 ml 

 Water upto 2000.0 ml 

Capacitation medium (50 ml)        : Sodium chloride 0.2900 g 

 Potassium chloride 0.0115 g 

 Sodium hydrogen carbonate 0.1050 g 

 Sodium dihydrogen phosphate 0.0017 g 

 Hepes 0.1190 g 

 Magnesium chloride hexahydrate 0.0155 g 

 Calcium chloride dihydrate 0.0145 g 

 Sodium lactate solution 60% 184 μl 

 Phenol red solution (5% in D-

PBS) 

100.0 μl 

 Water upto 50.0 ml 

CR1-aa culture medium (50 ml)   :  Hemi-calcium lactate 0.0273 g 

 Streptomycin sulphate 0.0039 g 

 Penicillin G 0.0019 g 

 Sodium chloride 0.3156 g 

 Potassium chloride 0.0112 g 

 Sodium hydrogen carbonate 0.1050 g 

 Sodium pyruvate 0.0022 g 

 L-Glutamine 0.0073 g 

 Phenol red solution 100.0 μl 

 Sodium hydrogen carbonate 0.080 g 

Epinephrine solution                     : Sodium hydrogen sulfite 0.04 g 

 Sodium lactate solution (60%) 100.0 μl 

 Epinephrine 0.00183 g 

Fertilization medium                     : Sodium chloride 0.3300 g 

 Potassium chloride 0.0117 g 

 Sodium hydrogen carbonate 0.1050 g 
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 Sodium dihydrogen phosphate 0.0021 g

 Penicillin 0.0032 g

 Magnesium chloride hexahydrate 0.0050 g

 Calcium chloride dihydrate 0.0150 g

 Sodium lactate solution (60%) 93.0 μl

 Phenol red solution (5% in D-

PBS) 

100.0 μl

 Water upto 50.0 ml

Modified parker medium               : HEPES 0.140 g

 Sodium pyruvate 0.025 g

 L-Glutamin 0.010 g

 Gentamicin 500.0 μl

 Medium 199 99.0 ml

 Hemi calcium lactate 0.06 g

 Water upto 110.0 ml

Ammonium Persulfate (APS)10%: APS 0.12 g 

 H2O 1.2 ml

40% acrylamide                             : Acrylamide 76.0 g

 bis-acrylamide 4.0 g

 Water to final volume of  200.0 ml

SDS (10%)                                    : Sodium dodecil sulphate 5.0 g

 Water  100.0 ml

LB-agar                                         : Sodium chloride 8.0 g

 Peptone 8.0 g

 Yeast extract 4.0 g

 Agar-Agar 12.0 g

 Sodium hydroxide (40 mg/ml) 480.0 µl

 ddH2O upto 800.0 ml

LB-broth                                        : Sodium chloride 8.0 g

 Peptone 8.0 g

 Yeast extract 4.0 g

 Sodium hydroxide (40 mg/ml) 480.0 µl

 ddH2O upto 800.0 ml

DEPC-treated water (1000 ml)      : DEPC 1.0 ml
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 Water upto 1000.0 ml 

Lysis buffer (100 μl)                     : Igepal (0.8%) 0.8 μl 

 RNasin 5.0 μl 

 DTT 5.0 μl 

 Water upto 100.0 μl 

TAE (50x) buffer, pH 8.0              : Tris  242.0 mg 

 Acetic acid   57.1 ml 

 EDTA (0.5 M) 100.0 ml 

 ddH2O upto 1000.0 ml 

TE (1x) buffer                               : Tris (1 M) 10.0 ml 

 EDTA (0.5 M) 2.0 ml 

X-gal                                              : ddH2O upto 1000.0 ml 

 X-gal 50.0 mg 

PBS + PVA (50 ml)                       : Polyvinyl alcohol (PVA) 

PBS upto 

300.0 mg 

50.0 ml 

Permeabilizing solution (10 ml)    : Triton X-100 5.0 μl 

 Glycine + PBS added  10.0 ml 

Physiological saline solution         : Sodium chloride 9.0 g 

 Water upto 1000.0 ml 

Agarose loading buffer                  : Bromophenol blue 0.0625 g 

 Xylencyanol 0.0625 g 

 Glycerol 7.5 ml 

 ddH2O upto 25.0 ml 

dNTP solution                               : dATP (100 mM) 10.0 l 

 dCTP (100 mM) 10.0 l 

 dGTP (100 mM) 10.0 l 

 dTTP (100 mM) 10.0 l 

 ddH2O upto 400.0 l 

IPTG solution                                : IPTG 1.2 g 

 ddH2O upto 10.0 ml 

3M Sodium Acetate, pH 5.2          : Sodium Acetate  123.1 g 

 ddH2O upto 500.0 ml 

1M EDTA, pH 8.0                         : EDTA 37.3 g 

 ddH2O upto 1000.0 ml 
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0.2% Triton-X100                         : Triton 2.0 ml

 10x PBS upto 1000.0ml

0.3% BSA in PBS                         : BSA 3.0 g

 10x PBS upto 1000.0 ml

3% BSA in PBS                            : BSA 30.0 g

 10x PBS upto 1000.0 ml

1x PBS-Tween (PBST)                 : 1x PBS 999.50 ml

 Tween®20 0.50 ml

SSC (20x)                                      : NaCl 87.65 g

 Sodium citrate 44.1 g

 Water upto 500.0 ml

4% paraformaldehyde (pH7.3)      : Paraformaldehyde 4.0 g

 1X PBS 100.0  ml

0.5M Sucrose/PBS (30% sucrose): Sucrose 85.57 gm

 1X PBS upto 500.0 ml

Acetylation solution                      : triethanolamine  2.33 ml

 acetic anhydride  500.0 µl

 DEPC water  upto 200.0 ml

Yeast tRNA (10 mg/ml)                : Yeast tRNA 25.0 mg

 DEPC-treated H2O 2.50 ml

Hybridization solution                   : Formamide -65% 32.25 ml

 20X SSC -5X 12.5 ml

 Tn-20- 0.1% 50.0 µl

 1M citric acid 460.0 µl

 Heparin 50 µg/ml 2.5 mg

 10mg/ml tRNA-500µg/ml 2.5 ml

 DEPC water upto 50.0 ml

Hybridization wash solution         : Formamide -65% 65.0 ml

 20X SSC -5X 25.0 ml

 Tn-20- 0.1% 100.0 µl

 1M citric acid 1.2 µl

 DEPC water upto 100.0 ml

50% Formamide/SSC                    : Formamide 1000.0 ml

 1X SSC 1000.0 ml
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50% formamide/Tn-20/SSC          : Formamide,  50% 500.0 ml 

 Tween-20, 0.1% 1.0 ml 

 1X SSC 499.0 ml 

5X SSC                                          : 20X SSC 250.0 ml 

 DEPC water 750.0 ml 

2X SSC                                          : 20X SSC 100.0 ml 

 DEPC water 900.0 ml 

1X SSC                                          : 20X SSC 100.0 ml 

 DEPC water 1900.0 ml 

0.2X SSC                                       : 20X SSC 10.0 ml 

 DEPC water 990.0 ml 

1X PBST                                       : 1X PBS 999.0 ml 

 Tween-20 1.0 ml 

Blocking Solution                          : FCS 2.0 ml 

 B1 solution 18.0 ml 

B1 solution                                    : 1 M Tris pH 7.5 100.0 ml 

 5 M NaCL 30.0 ml 

 dd H2O up to 1000.0 ml 

Stop solution                                  : EDTA 1mM 14.61 mg 

 PBS pH 5.5 upto 50.0 ml 

10N NaOH                                    : NaOH 40 gm 

 dd H2O upto 100.0 ml 

 

4.1.2 Methods 

 

This section describes the detail material used and methods followed to carried out the 

present study. All experimental animals were heifers of the same breed (Simmental), 

age (15-20 months) and body weight (380-500 kg) and were housed within one farm 

under identical conditions. All experiments have been carried out according to the 

existing animal protection law of Germany. Semen for artificial insemination, in vitro 

insemination and donor cells for nuclear transfer were originated from the same sire. 

The detail materials and methods are outlined below.    
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4.1.2.1 In vitro production (IVP) and processing of blastocysts 

 

Bovine ovaries were collected from local abattoir and transported to the laboratory in a 

thermosflask (35°C) containing physiological NaCl solution (0.9% NaCl supplemented 

with 50 μl/100 ml Streptocombin (Albrecht GmbH, Germany). Cumulus-oocyte 

complexes (COCs) were aspirated from 2- to 8-mm-diameter follicles using a 10-ml 

syringe loaded with an 18- gauge needle upon washing the ovaries once with 70% 

ethanol and twice with physiological saline. Quality of COCs has been assessed under 

stereomicroscope and those with multiple cumulus layers including evenly granulated 

cytoplasm were selected, washed three times in pre-warmed maturation (MPM 

supplemented with 12 % heat-inactivated estrous cow serum, 10 μg/ml FSH, 0.73 

mg/ml of sodium bicarbonate, 50 μg/ml of gentamicin, 0.23 mg/ml of sodium pyruvate, 

1.27 mg/ml HEPES and 0.55 mg/ml calcium lactate). Selected COCs were subsequently 

transferred in groups of 50 to each well of four-well dishes (Nunc, Roskilde, Denmark) 

containing 400 μ1 maturation medium without being covered with mineral oil. 

Maturation was carried out at 39°C in a humidified atmosphere with 5% CO2 for 22 h. 

Sperm cells were separated by ‘‘swim up’’ technique for in vitro fertilization (IVF) 

according to (Parrish et al. 1988), where 50 matured oocytes in a well were co-cultured 

for 18 hours with 1 X 106 spermatozoa/ml at the same condition followed for 

maturation step. Following IVF, presumed zygotes were gently vortexed to separate 

them from the surrounding cumulus cells and attached or dead spermatozoa. Cumulus 

free zygotes were washed three times in CR-1aa culture medium (Rosenkrans & First 

1994) supplemented with 10% oestrus cow serum, 10 μl/ml basal medium Eagle (BME-

essential amino acids) and 10 μl/ml minimum essential medium (MEM-non essential 

amino acids) and were transferred into the well containing 400 μl culture medium 

covered with mineral oil. Embryos were cultured in vitro for 8 days. At day 7 

(blastocyst) and day 8 (fully expanded blastocyst) of culture, 5-8 embryos (washed in 

PBS) were freezed in liquid nitrogen in triplicates with 2 μl of lysis buffer [(5mM DTT, 

Promega, P1171), 0.8% Igepal (Sigma, I 3021), 1U/ μl RNasin (Promega, N 2511)]. A 

group of 20 embryos from each developmental stage were fixed in 4% parafomaldehyde 

overnight at 4°C for whole mount in situ hybridization. In addition, in vitro derived day-

7 blastocysts (n=20) were transferred singly to the recipients by nonsurgical standard 

procedures to generate day-16, day-50 and day-225 pregnancies. 
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4.1.2.2 In vivo embryo production and establishing control (artificial insemination) 

pregnancy  

 

To collect in vivo derived blastocysts, six Simmental heifers were synchronized by intra 

muscular injection of cloprostenol (PGF2α, Estrumate; Essex Tierarznei, Munich, 

Germany) twice within 11 days and subsequently superovulation was performed by 

injection of FSH (Stimufol, Ulg FMV, Belgium) starting at day 11 after onset of estrus. 

Frozen–thawed semen was used to inseminate all heifers. The blastocysts were flushed 

out with 500 ml D-PBS at day 7.5 post inseminations by embryo flushing catheter 

(CH15, Wörrlein, Ansbach, Germany) fixed in the uterine horn. All flushed blastocysts 

were assessed under stereo microscope for their quality and stages. Only 

morphologically good-quality early blastocyst and expended blastocysts (5 embryos per 

pool in triplicate for both stages) were snap frozen for the isolation of RNA as 

mentioned before. Another group of 20 expanded blastocysts were fixed overnight in 

4% paraformaldehyde at 4°C for whole mount in situ hybridization. Heifers (n=15) 

synchronized with a single dose of PGF2α followed by estrus check were artificially 

inseminated (AI) using frozen semen of the same sire (except the sire used to generate 

day 225 pregnancies) after 10 hours of standing estrus and pregnancy were maintained 

to provide control placenta tissue at day-50 (n=3) and day-225 (n=4). 

 

4.1.2.3 Donor cell preparation and nuclear transfer 

 

Preparation of donor cells, nuclear transfer and culture of reconstructed embryos has 

been performed according to the protocol described elsewhere with some modification 

(Hölker et al. 2005). Briefly, a primary cell line was established from ear skin biopsy of 

the bull used also production of in vivo and in vitro derived embryos and placentas. The 

biopsy was minced, washed, dispersed in T25 cell culture flask and cultured in 

Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 2 mM glutamine, 

1% non-essential amino acids, 0.1 mM β-mercaptoethanol, 100 U/ml penicillin, 100 

µg/ml streptomycin (all from Sigma, Deisenhofen, Germany) containing 10% fetal calf 

serum (FCS) (Gibco, Karlsruhe, Germany) in a humidified atmosphere of 95% air and 

5% CO2 at 37°C. Outgrowing cells were trypsinized (0.05% Trypsin/0.53 mM EDTA; 

Gibco) and replated to allow proliferation to 90% confluence. The harvested cells were 

reconstituted at a concentration of 1x 106 cells/ml and then either frozen in 10% 
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dimethyl sulfoxide (Sigma, Deisenhofen, Germany) in DMEM until later use or 

returned to culture. The fibroblasts used for nuclear transfer were from passages 4-5 and 

were induced to enter a period of quiescence (presumptive G0) by serum starvation for 

7 days (0.5% fetal calf serum).  

 

Oocytes were placed in hepes-buffered TCM-199 (25mM Hepes, 5mM NaHCO3) 

medium containing 1 µg/ml Hoechst 33342 (Sigma, B-2261) and 7.5 µg/ml 

cytochalasin B (Sigma, C-6762) for ~ 10 min prior to enucleation. Metaphase II oocytes 

were enucleated by removal of the polar body and the attached cytoplasm with the 

metaphase plate utilizing a 25 µm beveled glass pipette under the microscope. The 

absence of the metaphase plate or enucleation was confirmed by a brief exposure of the 

karyoplast to ultraviolet light. Successful enucleation was also indicated by the typical 

blue fluorescence of Hoechst 33342 within the pipette. Cytoplasts derived from 

enucleated oocytes were maintained in TCM-air for up to 2 h and nuclear transfer was 

conducted in the same medium as enucleation, but without Hoechst 33342 stain.. 

Immediately before donor cell transfer, a suspension of the donor cells was prepared by 

standard trypsinization. The cells were pelleted and resuspended in TCM-air and 

remained in this medium until injection. A single cell was sucked into a 30-µm (outer 

diameter) bevelled glass pipette and carefully transferred into the perivitelline space of 

the recipient oocyte in close contact with the oocyte membrane. Reconstructed embryos 

were electrically fused at 26 h after onset of maturation. Fusion of donor cell and oocyte 

was induced with a single electrical pulse of 25 V DC for 45 µsec between two 

electrodes with a spacing of 150 µm by electrofusion machine (CFA 400; Kruess, 

Hamburg, Germany). Fusion was assessed approximately 45 min later by light 

microscopy. At 28-29 hours after onset of maturation, the reconstructed embryos  were 

chemically activated by incubation in 5 µM ionomycin (Sigma) in hepes-buffered TCM 

199 for 4 min followed by a 3.5 hours incubation in 2 mM 6-dimethylaminopyridine (6-

DMAP; Sigma) in CR-1aa culture medium at 39°C.  

 

In vitro culture of activated reconstructed complexes has been performed as described 

for the production of in vitro blastocyst. Developmental rates were assessed periodically 

up to day 7.5 of culture. Produced embryos were used for three purposes in this study. 

First, 5 triplets of both early and expanded blastocysts in were freezed as described 

before. In addition, another group of embryos were fixed overnight in 4% 
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paraformaldehyde for whole mount in situ hybridization. Finally, rest of the blastocysts 

were transferred singly to the synchronous recipients (n=30) by nonsurgical standard 

procedures as described below. 

 

4.1.2.4 Recipient preparation and embryo transfer 

 

Estrous synchronization and transfer of embryos to the recipients has been carried out 

according to the previous report (El-Sayed et al. 2006). Briefly, estrous cycles in normal 

cycling heifers were synchronized by intra-muscular injection of prostaglandin F2a (2 

ml Estrumate; Fa. Essex, Germany) followed by a second administration 11 days later. 

Standing estrus was monitored and embryos were matched with synchronous recipients 

of no more than ~12 h asynchrony. Single NT (n=30) and IVP (n = 20) embryos that 

were of good or excellent quality (Grades 1 or 2) were transferred into the uterine horn 

ipsilateral to the corpus luteum of recipients, respectively. 

 

4.1.2.5 Pregnancy monitoring and retrieval of experimental material 

 

All recipients were monitored for coming back to estrus at day 21. Heifers that returned 

to estrus at day 21 were considered as non-pregnant. Pregnancy diagnosis was 

performed at gestation days 28 and 42 by transrectal ultrasonography (Pie Medical, 5 

MHz) and by rectal palpation at day 42 and 56. A viable pregnancy was defined as the 

presence of fetus with a detectable heartbeat. Beginning on Day 120, recipients 

underwent repeated transabdominal ultrasonography (Pie Medical, 3,5 MHz) every 2–3 

wk until day 220. Recipients of IVP embryos, NT embryos and artificial insemination 

were slaughtered at day 16 (IVP-N=5, AI-N=5, NT-N=5), day 50 (IVP-N=3, AI-N=3, 

NT-N=3) and day 225 (IVP-N=4, AI-N=4, NT-N=4) of pregnancy. Assessment of the 

morphometric quality or any abnormalities in the embryos, fetus and placenta were 

noted accordingly. On day 16, the entire conceptus was weighed together with 

measurement of length; on Day 50 the fetus and placenta were weighed separately; on 

Day 225 the fetus was dissected and the major organs (liver, heart) were weighed and 

the weight of the fetal membranes and number of cotyledons was recorded.  

 

Morphologically similar elongated embryos at day 16, chorioallantois with early 

cotyledon (placentomes) at day 50 and placentomes at day 225 of pregnancy were 
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collected, washed twice in PBS, cut into reasonable pieces if required and stored in 

RNA later (Ambion Inc, Austin, TX, USA) for later use. Three samples of apparently 

same morphological quality from each group were used for the present study. 

 

4.1.2.6 Extraction and purification of small RNAs from placenta 

 

Total RNAs from the three individual frozen placentas (15 mg) of from each group of 

pregnancy (IVP, NT and AI) and fibroblast cells (4x106) were isolated using miRNeasy 

mini kit (QIAGEN GmbH, Hilden, Germany). Large (>200 nt) and small RNAs (<200 

nt)) were separated using special silica membrane spin column and chemicals of RT2 

qPCR-Grade miRNA isolation kit (SABioscienecs, Frederick, MD, USA) according to 

manufacturer’s instructions. For every case, the quality and the concentration of the 

small RNAs and large RNAs were assessed by NanoDrop 8000 spectrophotometer 

(NanoDrop, Wilmington, Delaware, USA). Isolated small RNAs were used for the 

study of expression profiling of 377 individual miRNAs and large RNAs originated 

from the same sample were used for analysis of regulatory miRNAs processing 

transcripts in different groups of placenta.  

 

4.1.2.7 Genomic DNA, total RNA and protein extraction from different stages of 

placenta and embryos 

 

To study the global methylation pattern and quantification of selected transcript at 

mRNA and protein level, genomic DNA, total RNAs and proteins were isolated from 

the same sample. Whole individual elongated embryo at day 16, placenta at day 50 (15 

mg) and placentomes at day 225 (15 mg) of pregnancy from IVP, NT and AI (at least 

three of each) were used for isolation using DNA/RNA/Protein purification kit (Norgen 

Biotek corporation, Thorold, Canada) according to methods recommended by the 

manufacturer. In addition, 5 early blastocysts, 5 expanded blastocysts (from each IVP, 

NT and AI method), donor fibroblast cells with serum starvation and without starvation 

(each in triplicate) were also used to isolate total RNAs using the same procedures. For 

every cases the quality and the concentration of the nucleic acid was assessed by 

NanoDrop 8000 spectrophotometer (NanoDrop, Wilmington, Delaware, USA) and 

subsequent analysis was performed using Agilent, 2100 Bioanalyzer 

(AgilentTechnologies, Santa Clara, CA). Protein quantity was assessed by NanoDrop 



Part II: Materials and methods 110

using the absorbance at 280 nm. All these nucleic acids and protein were stored at -

80°C in aliquots for the downstream experiments. 

 

4.1.2.8 Large scale expression profiling of miRNAs by real-time quantitative PCR 

 

Total of 166 ng small RNAs from 3 placentas derived from every group of pregnancy at 

day 50 (IVP, NT and AI) and donor cells (in triplicate) were synthesized individually 

into first strand cDNAs using RT2 miRNA first strand kit (SABiosciences). Real time 

qPCR of miRNAs was performed using 384-well miRNAs primed PCR plate 

(SABiosciences) comprised of 377 individual miRNAs (most of them are conserved in 

human, mouse and bovine), 4 endogenous controls (U6, Snord44, Snord47 and 

Snord48), 2 reverse transcription controls and 2 positive PCR controls according to the 

protocols provided by the manufacturer. The assays were performed in ABI 7900 HT 

real time PCR system (Applied Biosystems, Foster City, CA, USA) with sybr green 

technology (SABiosciences). Synthesized cDNAs were diluted 10 times, mixed with 2 

ml of 2 X RT2 Sybr green PCR master mixes (SABiosciences) and 1.9 ml of ddH2O. 

Mixed cocktail (10 µl per well of 384 well plate) was added and thermal cycling was 

performed as 95°C for 10 min, 40x of (95°C for 15 sec, 60°C for 40 sec and 72°C for 30 

sec). Multichannel laboratory automation workstation was used pipette the mix into 384 

well plates precisely (Biomek® NXP, Beckman Coulter, Krefeld, Germany). Each 

individual sample was applied to one 384 well PCR plate and quality of the assay was 

assessed by the result of control wells and melting curve analysis as recommended. 

Instrument was set to automatic baseline but threshold value was adjusted manually to 

0.045 (above the background signal but within the lower half to one-third of the linear 

phase of the amplification plot) for all assays performed in the study. Data were 

analysed by ΔΔCt method and normalization was performed by geometric mean of four 

endogenous controls through SAbiosciences’s PCR array data analysis on-line web-

based analysis portal, which is provided with t test 

(http://www.sabiosciences.com/pcr/arrayanalysis.php). Expression levels were 

compared in multiple ways for different group of placenta to find out fold regulation 

and a fold regulation 2 or more with the value of P less than 0.05 were considered as 

significant different expression. 
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4.1.2.9 Whole mount blastocyst in situ hybridization of miRNAs 

 

Whole mount in situ hybridization of miRNAs in the in vitro produced expanded 

blastocysts was performed as described elsewhere (Hossain et al. 2009). At least 3 

embryos were used for the hybridization of each miRNA. According to the expression 

patterns miRNAs in IVP embryos, selected candidate trophoblast and inner cell mass 

specific and imprinted miRNAs were localized to the expanded blastocysts derived 

from AI and nuclear transfer. For hybridization, embryos were rehydrated in series of 

methanol/PBS, post-fixation (4% paraformaldehyde for 10 minutes), acetylation (2.33 

ml triethanolamine, 500 µl acetic anhydride, H2O up to 200 ml, readily prepared and 

treated for 10 minutes) and proteinase K treatment (10 µg/ml, 10 minutes) were carried 

out, where each step was followed by a 3 times brief wash (10 minutes) in PBS. Two 

hours of pre-hybridization was performed at 55-59°C in hybridization solution (50% 

formamide, 5× SSC, 0.1% Tween-20, 50 μg/ml heparin, and 500 mg/ml yeast tRNA). 

Embryos were incubated overnight with 3'-Digoxigenin (DIG) labeled LNA-modified 

oligonucleotide probes (1 pM) for mir-31, -96, -127, -215, -222, -223, -299, -320a, -

302b,- 431, -450, -544 and let-7d, together with U6 RNAs (Exiqon, Vedbaek, Denmark) 

in hybridization buffer in a humidified chamber at the temperature 20°C below the Tm 

of probes. After overnight incubation, embryos were washed briefly in wash buffer 

(similar to hybridization buffer but without tRNA) and serial wash in 2XSSC/wash 

buffer (each time 10 minutes) to final three washes in 0.2X SSC each for 30 minutes at 

hybridization temperature was performed. Blocking, incubation with anti-DIG-AP 

antibody, washing and color development (Fast Red substrate reaction) was performed 

as described previously (Obernosterer et al. 2007). Embryos were mounted individually 

with VectaShield containing DAPI (Vector laboratories, Burlingame, CA) and analyzed 

by confocal laser scanning microscope (CLSM LSM-510, Carl Zeiss, Germany). 

 

4.1.2.10 Reverse transcription and SYBR green qPCR for selected miRNAs 

 

Temporal expression of selected miRNAs has been examined in blastocyst, expanded 

blastocyst, day-16 elongated embryo, day-50 placenta and day 225 placentome (from 

AI, IVP and SCNT). All the reagents and kits used for this purpose were obtained from 

Exiqon (Exiqon, Vedbaek, Denmark). A 36 ng total RNA from each sample was 

applied to synthesize first strand cDNA using Universal cDNA synthesis kit. Real time 



Part II: Materials and methods 112

qPCR was performed using LNA™ PCR primer set for mir- 21, -24, -127-3p, -135b, -

299-5p, -302, -376a, -431, and mir-544a with universal RT primers using SYBR Green 

master mix in ABI PRISM® 7000 sequence detection system (Applied Biosystems, 

Foster City, CA, USA). Dilution of cDNA, preparation of mix and thermal cycling 

condition was performed as recommended by the manufacturer. Data were analyzed as 

mentioned before except, normalization was performed using the mean Ct value of U6 

RNA and 5S ribosomal RNA. 

 
4.1.2.11 Reverse transcription and SYBR green qPCR for miRNA processing genes 

 

Important candidate genes involved in transcription, processing and generating mature 

miRNAs were quantified in day 50 placenta derived from IVP, AI and NT pregnancy by 

qPCR. Primers for qRT-PCR analysis (Table 4.1) were designed using the Primer 

Express 2.0 software program (Applied Biosystems, Foster City, CA) and synthesized 

by Eurofins MWG Operon (Ebersberg, Germany). The sequences of PCR primers are 

listed in Table 4.1. Reverse transcription of 600 ng total RNA from each sample was 

performed using Superscript II Reverse Transcriptase (Invitrogen, Carlsbad, CA) in 

combination with random primers (Invitrogen, Carlsbad, CA) and oligo (DT)23(Sigma). 

The cDNA was stored at -20°C until use. All primers utilized were designed and 

optimized in order to ensure optimum reaction efficiencies both for target and 

housekeeping reference genes (GAPDH, Histone). Triplicate reactions were performed 

for each gene by standard PCR protocol with a 20 µl reaction volume consisting of 10 

µl of iTaq SYBR Green Supermix with ROX (Bio-Rad, Hercules, CA), forward and 

reverse primers at 200-300 nM final concentration and 2 µl diluted template cDNA. A 

universal thermal cycling parameter specified for the instrument was 50°C for 10 sec, 

95°C for 10 min, followed by 40 amplification cycles at 95°C for 15 sec and at 60°C for 

1 min. In addition, at the end of the last cycle, dissociation curve was generated by 

starting the fluorescence acquisition at 60˚C and taking measurements every 7 sec 

interval until the temperature reached 95˚C. The same PCR protocol was used for all 

primers and Data was normalized using ΔCt (average Ct for the housekeeping gene 

minus Ct for the gene of interest) and subsequent analysis was performed using ΔΔCt 

methods (Livak and Schmittgen 2001). One-way analysis of variance with tukey test 

was performed to compare expression of each gene in different types of placenta. A 

probability of P≤ 0.05 was considered to be significant differentially expressed. 
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Table 4.1: List of miRNA processing genes and primers used in this study 

Gene   Sequences (5´-3´) TA (°C) 

Forward AATGGAAAGGCCATCACCATC GAPDH : 
Reverse GTGGTTCACGCCCATCACA 

57 

Forward GCCGTATTCATCGACACCTGA Histone : 
Reverse CTCCACGAATAGCAAGTTGCAA 

55 

Forward AATGGCTTTGCTGCAGAGTT ADAR1 : 
Reverse GCGCTCTGCTTTCTCTGTTT 

55 

Forward GGAAGCTGGCAAACAAGATCC DGCR8  : 
Reverse GGTTGGTTTCATGTGCTCGAA 

55 

Forward AGAGTGGAGTATGCAGTGCTCG EIF2C1/AGO1 : 
Reverse GGGCATCAACATCGTTGTCA 

55 

Forward AGCGCTGCATTAAGAAGCTGA EIF2C2/AGO2 : 
Reverse CCGTCATGTCATCCTTCACCTT 

55 

Forward TTCCACACGGGCATTGAGAT EIF2C3/AGO3 : 
Reverse TATTTACAGAAGCATGGCTGGC 

55 

Forward CAACACCAAGCCACGGAGTAT EIF2C4/AGO4 : 
Reverse GAAATCTTCCGCAGCTGGTCT 

55 

Forward TAGTGGCAGGACAGCGATGTA FMR1 : 
Reverse TTTAAGGTATGGGTCAGGGCC 

55 

Forward TCCCAACAAACCTGCCACA GEMIN4 : 
Reverse TCACTGATGGACAAAACCACG 

55 

Forward TGGTGGGAAATGATGAAGCAC GEMIN6 : 
Reverse GCATGGTTGGACACACATCTG 

55 

Forward AGAGCTGAGTGGGTTTGAGCA GEMIN7 : 
Reverse TGTTACGCTGACCGCTTTGTA 

55 

Forward ACCTGGACGTGGCCAATTT POLR2A : 
Reverse AACATATGGAGGCCTGGGAGA 

54 

Forward AACCTGTGCAGGAAACATGA POLR2G : 
Reverse CTTGGAAGAGTCCACAAGCA 

54 

Forward GATGATTACCTGGGGCTTGT RNASEN : 
Reverse GGCTGCTAAGCCATAGGAAG 

55 

Forward AGGGTCTTCCCATCGATTCT RANGAP1 : 
Reverse GCTTGCTCCCTTAAGCAATG 

55 

Forward GGCACAATTTTCGACTGTTCG SIP1 : 
Reverse AGCCCCTTCAGCACATAACCT 

55 

Forward TCCGACTTGCTCCAACAATGT XPO1 : 
Reverse CAAGGAACCAATGTGAAGGGA 

55 

Forward CAAGGTACACACGGTCCAAAGA XPO4 : 
Reverse GGCTCCAAATGTACAAGCCAA 

55 

Forward TCTTTGTGAAGCCTCTGGTG XPO5 
 

: 
 Reverse TGTTCCTCCAGCATCTCTTG 

55 
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4.1.2.12 Quantification of global DNA methylation 

 

Genomic DNA isolated from the 3 elongated day 16 embryos and 3 day 50 placenta 

from each IVP, AI and SCNT pregnancy was used to quantify the global methylation 

status using Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek, 

Brooklyn, NY) according to user instruction provided by the manufacturer. Briefly 200 

ng of genomic DNA from each sample was immobilized to the strip well specifically 

coated with DNA affinity substance. The methylated fraction of DNA was recognized 

by 5-methylcytosine antibody and quantified through an ELISA-like reaction. Serial 

dilution of positive control (synthesized polynucleotide methylated at every 5-cytosine) 

in 6 points (0.4, 1, 2, 5, 10 and 20 ng/well) was used to generate a standard curve. Color 

was developed and absorbance read was performed in ThermoMax microplate reader 

(Molecular Devices, Sunnyvale, CA) at 450 nm. Slope was determined as OD/ng by 

plotting OD value versus amount of positive control. DNA methylation (%) was 

calculated by using the formula [x 100%] where, 41.7 is the GC content in bovine 

genomic DNA and Methyl DNA (ng) = {Sample OD- Negative control OD)/slope}.  

 

4.1.2.13 Western blotting 

 

Total proteins extracted from three Day-50 placentas from each group (IVP, AI and 

SCNT) were pooled equally (30 µg) and separated by SDS-PAGE (gradient 4-18%) and 

transferred onto a nitrocellulose membrane (Amersham Biosciences) and blocking was 

performed in buffer (20 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween-20 and 1% 

polyvinylpyrolidone) at room temperature for 1 hour. The membrane was then 

incubated with goat anti-eIF2C2 polyclonal antibody (Santa Cruz Biotechnology, Santa 

Cruz, CA) in the blocking medium overnight at 4°C. Non-specific binding of antibody 

was washed off with six changes of 0.1% PBST. The HRP-conjugated mouse anti-goat 

IgG (Santa Cruz) was used as the secondary antibody. The membrane was incubated for 

1 h at room temperature with secondary antibody, followed by washed with six changes 

of 0.1% PBST. The chemiluminescence was detected by using the ECL plus western 

blotting detection system (Amersham Biosciences) and visualized by using Kodak 

BioMax XAR film. GAPDH antibody (Santa Cruz) was used as a loading control. The 

membrane was stripped by incubation in 2% SDS, 100 mM Tris-HCl and 0.1% beta-

mercaptoethanol for 30 min at 60°C and re-probed with GAPDH antibody. 
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4.2 Results 

 

4.2.1 Differential miRNA expression in Day-50 placenta of different sources of 

pregnancy 

 

The miRNAs expression profiles of the Day 50 NT placenta (n=3) were compared 

either to that of AI (n=3) or IVP (n=3) placenta. In addition, the level of miRNAs 

expression in the IVP placenta has subsequently been compared to that of AI placenta. 

The magnitude and number of differentially regulated miRNAs in different comparisons 

are presented in figure 4.1 and 4.2, respectively. 

 
 

Figure 4.1: Hierarchical cluster of NT, IVP and AI Day 50 placenta compared to each 

other and characterization of differentially expressed miRNAs. The log2 

fold change value of 377 miRNAs from each comparison is cluster arranged 

to highlight global differential miRNA expression. 

 

Of the 377 miRNAs used in the comparison of their expression between Day 50 NT and 

AI placenta, 320 miRNAs were found to be downregulated in NT placenta with 2 or 

more fold change (278 miRNAs with P-value ≤ 0.05), while only 5 miRNAs (miR-527, 

miR-608, miR-637, miR-649 and miR-938) were found as upregulated by 2 or more 
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fold change in NT placenta compared to the placenta of AI group (Figure 4.2). Out of 

these 5 miRNAs miR-608 was uniquely upregulated in NT placenta compared either to 

AI or IVP placenta. On the other side, out of 320 downregulated miRNAs 116 miRNAs 

were uniquely downregulated in the NT placenta compared either to AI or IVP placenta.  

 

 
 
Figure 4.2: Venn diagram of the distribution and the number of differential miRNA 

expression between and specific to different types of Day 50 placenta. Each 

circle represents the number of differentially expressed miRNAs between 

two placenta types out of 377 analyzed miRNAs. For example, NT vs. AI 

represents the number of differentially regulated miRNAs (↓ denotes down 

regulation and ↑ denotes upregulation) in the NT placenta compared to that 

of AI. Similarly IVP vs. AI and NT vs. IVP represent the number of 

differentially regulated miRNAs in IVP compared to AI and the number of 

differentially regulated miRNAs in NT compared to IVP placenta. The 

circle (upper left) shows a total of 325 miRNAs that are differentially 

expressed between AI and NT placenta where 5 are upregulated and the 

rest are downregulated; 1 miRNA (red) are uniquely overexpressed in the 

comparison of NT vs. AI, 4 miRNAs (pink) are overexpressed commonly 

in the comparison between NT vs. AI and NT vs IVP and no miRNA 

(yellow) are commonly upregulated in NT vs. AI and IVP vs. AI placenta. 

Number in the center (gray) shows the common differential miRNAs in any 

of the three ways of comparison. 
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Similarly, the expression profiles in the NT placenta were compared to that of IVP 

placenta. In this comparison, 233 miRNAs were found to be differentially expressed in 

the NT placenta (Figure 4.2). Among them only 21 miRNAs were upregulated (4 

common when compared to AI as mentioned before) and rest (212) were found to be 

downregulated. The 17 miRNAs which are uniquely upregulated in NT placenta 

compared to that of IVP placenta were miR-17*, miR-19a, miR-106b,, miR-219-2-3p, 

miR-296-5p, miR-372, miR-450a, miR-502-5p, miR-520d-5p, miR-548d-3p,, miR-549, 

miR-564, miR-566, miR-612, miR-616*, miR-619 and miR-937. Among the 212 

downregulated miRNAs, 204 were found to be commonly downregulated in NT 

placenta compared to that of AI. The rest (miR-124, miR-302b, miR-302c, miR-525-3p, 

miR-526b and miR-590-3p) were down regulated uniquely in NT placenta compared to 

IVP placenta. Overall, about 62 % miRNAs were found to be differentially regulated in 

the NT Day 50 placenta compared to that of IVP placenta, where 90% of them were 

found to be downregulated.  

 
 
Figure 4.3: Plot diagram of the magnitude of fold regulation of most differentially 

regulated miRNAs in Day 50 placenta of different sources of pregnancies. 

The diagram shows the degree of expression difference of 49 miRNAs in 

Day 50 NT placenta compared to AI (red circle), in Day 50 IVP placenta 

compared to that of AI (blue rectangle) and in Day 50 NT placenta 

compared to that of IVP (green triangle).  
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Additional comparison of miRNAs expression between IVP placenta and AI placenta 

has been performed. Analysis revealed differential expression of 238 out of 377 tested 

miRNAs (Figure 4.2). Of the 238 differentially miRNAs, 230 were found to be 

downregulated and 8 miRNAs (miR-122, miR-302a, miR-302b, miR-302c, miR-525-

3p, miR-526b, miR-590-3p and miR-944) were upregulated in IVP placenta compared 

to their expression in AI placenta. Among the 230 downregulated miRNAs, 215 

miRNAs were also downregulated in the comparison of NT vs. AI and 112 miRNAs of 

them were commonly downregulated in the comparison of NT vs. IVP. So, the rest 15 

downregulated miRNAs (miR-219-2-3p, miR-346, miR-372, miR-502-5p, miR-516a-

3p, miR-520e, miR-549, miR-564, miR-616*, miR-619, miR-632, miR-647, miR-766, 

miR-875-3p and miR-940) were exclusively differential in the comparison between IVP 

and AI placenta and not appeared in any other way of comparison.  

 

4.2.2 miRNA expression profile comparison of donor cells and NT Day-50 placenta 

 

To investigate any source of origin specific expression of miRNAs in the Day-50 NT 

placenta being reflecting ultimate differential expression compared to that AI placenta, 

expression profiling of same 377 miRNAs in the fibroblast donor cells (serum starved 

condition at exactly before nuclear transfer stage condition) has been performed. The 

expression profiles of Day-50 NT placenta were compared to that of fibroblast donor 

cells. Analysis revealed 244 miRNAs differentially expressed in the Day 50 NT 

placenta compared to fibroblast with 2 or more fold change (209 miRNAs with P value 

≤0.05 and 2 or more fold change). Among the 209 miRNAs, 185 and only 24 miRNAs 

were found to be up and down regulated in NT placenta compared to fibroblast. Out of 

the 24 downregulated miRNAs, miR-486-5p, miR-508-3p, miR-519b-5p, miR-519e*, 

miR-548b-3p and miR-885-5p were also found to be down regulated in the Day 50 NT 

placenta compared to that of AI. miR-302b and miR-432 were found to be down 

regulated in NT placenta compared to that of IVP placenta. Among the miRNAs which 

are not differentially regulated (less than 2 fold regulation with P value ≥ 0.05) in the 

Day 50 NT placenta compared to fibroblast, 18% of them were found also not to be 

differentially regulated in NT placenta when compared to either that of AI or IVP 

placenta. Whereas, 22% of them were different to AI and collectively 39% of them were 

different when compared to both AI and IVP placenta.  
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4.2.3 Genomic patterns of deregulated miRNAs in NT and IVP placenta 

 
Majority of the identified deregulated miRNAs in the Day 50 NT and IVP placenta 

compared to placenta from artificial insemination were further characterized bio-

informatically. Chromosomal location of selected all miRNAs were retrieved from 

miRBase v 14 and ENSEMBL genome browser has been used to find out the features of 

genomic regions of interest.       

 
 
Figure 4.4: Genomic region (44kb) of bovine chromosome 21 harboring at least 3 big 

clusters of miRNAs which are down regulated in Day 50 NT and IVP 

placenta compared to that of AI. Text in blue above the black line (forward 

genomic strand) represents the residing miRNAs; number in pink represents 

range and scale of the region in kilo bases (kb) , number in black starting 

with rs- denotes dbSNPs, others are different types of transposone (red or 

orange) namely type I line/SINE, type II, tandem repeats (trf) and pseudo 

transfer RNA (tRNA).     

 
Interestingly, different deregulated miRNAs in the NT and IVP placenta were found to 

be affected in similar patterns and they are located in the chromosome as polycistronic 

clusters. For example, one such genomic region in bovine chromosome 21 is presented 

in figure 4.4 representing 44 kilo bases (66000000-66044000 bases). This region found 

to be harboring at least 3 clusters of miRNAs comprised of more than 38 miRNAs. 

Most of these clustered miRNAs tested were found to be downregulated in NT and 

some in IVP placenta compared to the placenta of artificially inseminated pregnancy. 

Most of the genomic region of the miRNAs cluster were found to be absent of any 

protein coding gene but abundant in a number of other genomic variable region. These 

include different types of transposone elements, (type I LINE, type I SINE, type II), 

tandem repeats (TRF), long terminal repeats (LTRs) and numerous SNPs. However, 

most of these elements were found to be residing out side and no SNPs were present in 
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side the miRNA precursors. So, any transcriptional disturbance or lack of optimum 

transcription process could lead to the deregulation of all miRNAs belong to the same 

cluster.  

 
 
Figure 4.5: Family wise differential expression of miRNAs in different sources of Day 

50 placenta. Log2 fold change of 43 miRNAs belong to 9 miRNA families 

which were deregulated in different sources of placenta were plotted to 

visualize the family wise expression differences in the placenta of different 

sources of pregnancy.      

 
In addition to cluster wise regulation, deregulated miRNAs in the NT and IVP placenta 

compared to that of AI were found to be affected family wise (Figure 5). Forty three top 

deregulated miRNAs were in either three ways of comparison between three sources of 

placenta were found to belong 9 distinct miRNA families. All the 9 miRNA families 

were found to be downregulated in the NT and IVP Day 50 placentas compared to the 

placentas from AI. Similarly most of the miRNAs having highly similar sequence 

between them (denoted and distinguish by a, b, c, etc at the end of miRNA name) were 

also found to be deregulated in the placenta in an identical manner.  

 

4.2.4 Localization of selected miRNAs in expanded blastocyst of NT, IVP and AI origin 

 

Whole mount in situ hybridization of 10 miRNAs in in vitro, in vivo and NT expanded 

blastocyst was performed to identify specific expression pattern either in the 

trophectoderm or inner cell mass. The study has identified several cell specific miRNAs 

in embryo from AI and subsequently compared their expression pattern to the embryo 
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of IVP and NT. Among the localized miRNAs, miR-24, and miR-299 were found to be 

intensively localized to the trophectoderm and miR-203b were inner cell mass specific 

in the expanded blastocyst from AI group (Figure 4.6). Tested other miRNAs were 

found to be generally expressed both in trophectoderm and inner cell mass but when 

their expression patterns in AI blastocyst were compared to that in NT or IVP group, the 

extent of their expression were found to be different. 

 

Figure 4.6: Whole-mount in situ hybridization of miRNAs in in vivo, in vitro and NT 

expanded blastocysts (miRNAs are stained red and blue represents nuclear 

stain by DAPI). About half of the blastocyst comprising approximately 

middle of the inner cell mass and corresponding trophectoderm has been 

visualized in the upper image (a) in each group as obtained by scanning the 

blastocyst at every 2 µm interval using laser scanning confocal microscope 

and projected in three dimensions (3D). Similarly lower image (b) for every 

group of embryos represents a 3D transverse region of upper and same 

blastocyst to visualize inner cell mass and trophectoderm clearly. Scale bar 

represents 50 µm and ‘i’ indicates the region of inner cell mass.  



Part II: Results 122

Expressions of trophectoderm specific miRNAs were entirely different in the NT 

blastocyst which can be characterized as very low compared to that in AI blastocysts. 

Whereas, their expressions in the IVP blastocysts were similar or in some blastocysts 

slightly decreased compared to AI blastocysts. In case of miR-302b, the expression 

pattern has been identified not to be largely different in the NT or IVP blastocysts 

compared to the blastocyst from artificial insemination. In addition, two other miRNAs 

(miR-127 and miR-431), which are originated from the large imprinted chromosomal 

region were also localized in the NT, IVP and AI blastocysts (Figure 4.6). Interestingly, 

they were found to be similarly expressed either in the inner cell mass or trophectoderm 

of the AI blastocysts but aberrantly expressed in NT blastocyst. In the NT blastocysts, 

miR-127 shows almost depletion of its expression in different part of the trophectoderm 

with no change in the inner cell mass and this pattern was not noticeable in AI or IVP 

blastocysts. On the other side, miR-431 shows opposite pattern in the NT blastocysts, 

where the expression was found to be depleted from the inner cell mass but such 

anomalies was not evident in case of AI or IVP blastocysts. Result of in situ 

hybridization of miRNAs has revealed more aberrant or deregulated sate miRNAs 

expression in the trophectoderm and inner cell mass of NT expanded blastocyst and 

which was less in the IVP blastocysts.       

 

4.2.5 Temporal differences in the expression of selected miRNAs in different sources of 

placenta 

 

Later on expression profiling of the candidate trophectoderm, embryonic specific and 

imprinted miRNAs in the fibroblast, day-7 blastocyst, expanded blastocyst, day-16 

elongated embryo, and day-225 placenta derived from in vivo, in vitro and NT placenta 

has identified that the major deregulations are likely to happen in the NT placenta at 

day-50 of the pregnancy when compared to the in vivo placenta (Figure 4.7).  
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Figure 4.7: Expression pattern (in fold change) of the candidate trophectoderm/placenta 

specific (A) and imprinted miRNAs (B) in blastocyst, expanded blastocyst, 

Day-16 elongated embryo, Day-50 placenta and Day-225 placentome 

derived from NT pregnancy compared to that of AI pregnancy    

 

However, the extent of this deregulation in IVP placenta at day 50 was not evident and 

showed very less difference compared to the placenta of AI at day 50 (Figure 4.8). 

Moreover the result reveals that deregulation of miRNAs started after construction of 

nuclear transfer embryo due to improper reprogramming and it is progressing to the 

later stage specially in the placenta around day-50 has most aberrant miRNAs 

expression when redifferentiation for placentogenesis is happening. Later stage, (around 

day-225) NT placenta were found likely to recover some anomalies of miRNAs 

expression. 

 
 

A 

B 
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Figure 4.8: Expression pattern (in fold change) of the candidate trophectoderm/placenta 

specific (A) and imprinted miRNAs (B) in blastocyst, expanded blastocyst, 

Day-16 elongated embryo, Day-50 placenta and Day-225 placentome 

derived from IVP pregnancy compared to that of AI pregnancy.    

 

4.2.6 Global DNA methylation status in different sources of elongated embryos and 
placentas 
 

Global DNA methylation has been quantified in the elongated embryos at day 16 and 

placenta at day 50 derived from NT, IVP and AI pregnancies. Level of DNA 

methylation was expressed in percentage compared to the positive control (synthetic 

oligos where every 5 cytosin were methylated). Analysis revealed a global 

hypomethylation of DNA either in three groups (NT, IVP and AI) across two stages of 

A 

B 
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development (Elongated embryo and placenta). Status of DNA methylation is presented 

in figure 4.9. Study has identified that there is no significant differences in global DNA 

methylation in the elongated embryos at Day 50 as well as same in the Day-50 placentas 

of NT, IVP and AI pregnancies.  

 
 
Figure 4.9: Global DNA methylation (%) in Day-16 elongated embryos and Day-50 

placenta of different sources of pregnancy 

 
 
4.2.7 Aberrant regulation of miRNAs processing genes in IVP and NT placentas 
 

 

Figure 4.10: Normalized expression level of significantly differentially regulated 

miRNAs processing machinery genes in Day-50 placenta derived from 

NT, IVP and AI pregnancy. Bars denoted by different alphabet (a, b) 

were found to be significantly different (P≤0.05). 
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Figure 4.11: Expression of AGO2 protein in Day-50 placenta derived from NT, IVP and 

AI pregnancies. GAPDH was used as loading control  

 

Expression profiling of 18 miRNA processing machinery genes (ADAR1, DGCR8, 

AGO1, AGO2, AGO3, AGO4, FMR1, GEMIN4, GEMIN6, GEMIN7, POLR2A, 

POLR2G, RNASEN, RANGAP1, SIP1, XPO1, XPO4 and XPO5), in Day-50 placentas 

from NT and IVP pregnancies was performed and compared to that of AI (Figure 4.10). 

Analysis revealed that most of them except AGO2 are well reprogrammed in NT 

compared to AI palcentas. Expression of the miRNAs processing molecules were found 

to be similar or in some cases upregulation in NT placenta. Whereas, it was not the case 

in IVP placenta, where more machinery genes were found to be deregulated compared 

to AI (Figure 4.10). Among them especially AGO3, GEMIN7, XPO4 including AGO2 

were noticeable. In both NT and IVP Day-50 placentas, AGO2 or EIF2C2 was found to 

be down regulated compared to that of AI. The reduced expression of AGO2 protein in 

the NT and IVP placentas was also observed (Figure 4.11).        
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4.2 Discussion 

 
4.2.1 Day-50 placentas from nuclear transfer and IVP pregnancy 

 

Nuclear transfer and in vitro embryo production are the promising technology with 

potential applications in agricultural as well as biomedical research. However, only 2% 

of NT embryos result in live birth and frequent abnormalities are observed in IVP 

pregnancy. The losses or abnormalities being mostly due to improper placenta 

formation due to nuclear reprogramming error after nuclear transfer and in vitro culture 

(Yang et al. 2007). The normal bovine placenta progressively attaches to the 

endometrium throughout the first trimester and the initial contact with a maternal 

caruncle induces villous processes to undergo hypertrophy and hyperplasia to form 

cotyledons that progress to form large and complex placentomes by Day 42 (King et al. 

1979). Poor viability of somatic cell cloned fetus during Days 35-60 (period of 

placentome development) has been found to be associated with either rudimentary or 

marginal chorioallantoic development (Hill et al. 2000). Due to the critical importance 

of this period, present study has been conducted on Day-50 as a baseline stage of 

placenta from different sources of pregnancies. Placentas from all NT Day-50 

pregnancies were characterized with reduced by half the number of barely visible 

cotyledons having sporadic hemorrhagic areas compared to those in AI placentas. 

Where as, the placentas from Day-50 IVP pregnancies were apparently normal in size 

and similar number of cotyledons compared to those in AI.    

 

4.2.2 miRNAs are deregulated in Day-50 NT and IVP placentas 

 

The aberrant genetic or epigenetic modifications in the NT placenta from nuclear 

reprogramming error have been evidenced due to aberrant non-coding RNA expression, 

imprinting problem, DNA methylation and histone/chromatin modification. Among the 

non-coding RNAs, miRNAs were found to be aberrantly reprogrammed in cloned 

mouse blastocyst (Cui et al. 2009) and bovine Day-17 elongated embryos (Castro et al. 

2010). In addition, miRNAs were also evidenced to be regulated by and/or regulate 

epigenetic processes (Kircher et al. 2008, Williams et al. 2007). Present study has 

identified that most of the miRNAs studied being reprogrammed but a large number 

among them are not reprogrammed correctly in the NT (68% miRNA) and IVP (36% 

miRNA) placentas. Relative expression reveals a massive down regulation of miRNAs 
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in Day-50 NT and IVP placenta compared to the Day-50 placenta from AI pregnancy. 

This difference in expression of miRNAs could be due to the cumulative effects of 

embryos constructed by somatic cell nuclear transfer and in vitro culture of embryos 

which were absent in control AI pregnancies. At least 62% of the miRNA studied in 

Day-50 NT placenta were deregulated compared to IVP placenta, where 90% of them 

were found to be downregulated. This difference could be due to effect of embryos 

constructed by nuclear transfer and transferred to the recipients for establishing the NT 

pregnancy. Overall 36% miRNAs of 377 miRNAs tested were differentially regulated 

between IVP and AI placentas, where about 96% of these differentially regulated 

miRNAs were downregulated in IVP placentas. This difference in the expression of 

miRNAs could be attributed due to the effect of the transfer of embryos which were 

fertilized and cultured in vitro. The study has identified that most of the miRNAs are 

reprogrammed but may not be in proper way or any error in the regulatory molecule for 

regulation of miRNAs expression are responsible for massive deregulation of miRNAs 

in NT or IVP placentas compared to that of AI. These massive deregulations could be 

entailed to the reported radically altered gene expression in cloned placenta (Aston et al. 

2009, Everts et al. 2008, Hall et al. 2005, Oishi et al. 2006) associated to poor 

placentomes development in NT pregnancy in first trimester leading to pregnancy loss.  

 

4.2.3 Major deregulation of miRNAs in NT or IVP happened during Day-50 of 

pregnancy 

 

Reprogramming error in the NT or IVP has been postulated to be happened as a 

multistep process and the effect could be different in different stage of development 

(Jouneau et al. 2006). It has been suggested that the commonly observed low 

developmental efficiency of NT embryos may not be largely due to nuclear 

reprogramming during early embryo development but may be potentially caused by 

abnormal gene reprogramming during postimplantation feto-placental development 

(Smith et al. 2005). Where, NT blastocyst closely resemble to in vivo, but not to in vitro 

fertilized embryos in terms of global gene expression (Smith et al. 2005) but later stage, 

trophoblast lineage was found to be affected more by the reprogramming error arised 

from epigenetic modifications after the blastocyst stage (Jouneau et al. 2006). However, 

differences between trophectoderm and inner cell mass could be different in NT 

blastocyst compared to AI blastocyst which should be exploited to conclude precisely 
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that they are similarly reprogrammed also in cell specific manner. Comparison of either 

expression of miRNAs as a major modifier of genetic/epigenetic gene regulation or 

global gene expression between different stage of the embryo and placental 

development through out the NT or IVP pregnancy has not been carried out. Present 

study has identified that the major deregulation of miRNAs in the NT placenta are 

appearing at around Day-50 of pregnancy. Although the differences in their expression 

are evident during expansion of blastocyst and at elongation stage, but the deregulation 

are more profound at around Day-50 of pregnancy in NT and less in IVP compared to 

that of AI. In addition, trophectoderm specific miRNAs were found to be aberrantly 

expressed in the NT and IVP expanded blastocysts compared to that of AI. Where as, 

inner cell mass specific miRNAs were less or not aberrantly expressed in either NT or 

IVP expanded blastocyst compared to the expanded blastocyst from AI. In case of 

miRNAs which are located within or nearby imprinted region of the chromosome 

showed a clear abnormality in their expression in NT and IVP expanded blastocyst 

when compared to their expression in the expanded blastocyst from AI. Results of this 

study indicate that trophoblast specific and imprinted miRNAs are aberrantly expressed 

in the NT blastocysts which were not the case for inner cell mass or embryonic stem 

cell specific miRNA. In addition to this result, reported changes of miRNAs during 

trophectoderm specification (Viswanathan et al. 2009) and aberrant epigenetic 

reprogramming and expression of imprinted miRNAs (e. g. miR-127, miR-136) in 

cloned mouse embryo (Cui et al. 2009) suggest that deregulation of miRNAs expression 

due to reprogramming error is the primary cause of early improper placentation and that 

is magnified during Day-50 of the NT pregnancy while the complex placentomes are 

thought to be developed. This is more evident in elongated Day-16 embryo and Day-50 

placenta from cloned pregnancy. In the elongated embryos, the deregulation of miRNAs 

could be attributed also due to their cell specific aberrant expression, but this could not 

be elucidated because the elongated embryos were comprised of embryonic and extra-

embryonic tissues. However, at day 50 the differences of miRNAs expression 

characterized by their down regulation in NT placentas compared to that of AI were 

more clear which was not noticeable in IVP placenta. Interestingly, the degree of 

deregulation of miRNAs at day 225 of pregnancy either in NT or IVP compared to AI 

were found to be very less which shows almost optimum or some increased expression. 

This is possible that those cloned fetuses that survive up to term could recover the 

aberrant expression of miRNAs in the cloned placenta. At approximately Day 50, those 
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fetuses with subnormal placentomes formation and with more deregulated miRNAs 

expression could be slowly starve to death but the fetus that progress beyond this stage 

have better placentome development as studied previously (Hill et al. 2000).                

 

4.2.4 Major causes of miRNAs deregulation in NT and IVP placenta 

 

Major sources of aberrant gene expression in the NT placentas have been found to be 

due to abnormal epigenetic and genetic processes. These include non-coding RNA 

mediated regulation, aberrant DNA methylation, genomic imprinting and chromatin 

remodeling. Maintenance of imprinting has been shown to be less dependent on DNA 

methylation in the placenta than in the embryo, with involvement of repressive histone 

methylation rather than DNA methylation (Wagschal and Feil 2006). Present findings 

revealed that there is no significant difference in global DNA methylation in the Day-16 

elongated embryos and placentas at day 50 between NT or IVP and AI. There is no 

correlation between identified global hypomethylation of DNA to the massive down 

regulation of miRNAs in the NT placenta compared to that of AI. So, it is possible that 

other genetic or epigenetic processes (aberrant regional chromatin remodeling) rather 

than DNA methylation are responsible for massive deregulation of miRNAs in the NT 

or IVP placenta.  

 

Bioinformatic analysis of the deregulated miRNAs reveals that the miRNAs are oftenly 

deregulated as cluster and shows similarities in their deregulation between the members 

of the same miRNAs family. In addition to the own promoters as independent entities or 

as polycistrons, they were found to be transcribed in a large transcription units of coding 

or non-coding genes (Kim 2005). So, any transcriptional or processing disturbance 

during the earlier stage of cloned embryo and extra embryonic lineage differentiation 

due to improper reprogramming of specific regulatory molecules which are responsible 

for global transcription, processing and maturation of miRNAs could be the possible 

reason for global down regulation of miRNAs in the NT or IVP placentas. To elucidate 

these possibilities, present study has profiled 18 well known miRNA processing 

machinery molecules in different sources of placentas under investigation. Results 

indicate that several of such molecules are not well reprogrammed in the NT or IVP 

placentas when compared to that of AI or donor fibroblast cells. Among them, 

eukaryotic transcription initiation factor 2C2 (EIF2C2) or AGO2 has been found to be 
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down regulated in the NT or IVP placenta compared to that of AI, which could be 

linked to massive down regulation of miRNAs as also reported previously (Cifuentes et 

al. 2010, Zhang et al. 2009). Expression of AGO2 has been shown to be important in 

many biological processes and development including mouse oogenesis (Kaneda et al. 

2009), early development (Morita et al. 2007) and maternal-zygotic transition (Lykke-

Andersen et al. 2008). Mouse embryonic fibroblasts and hematopoietic cells from Ago2 

knockout showed subsequent reduction of all mature miRNAs (Diederichs and Haber 

2007, O'Carroll et al. 2007). So, according to the previous reports and our findings, it 

could be postulated that global down regulation of miRNAs in the NT or IVP Day-50 

placenta compared to that of AI is due to down regulation of AGO2 and aberrant 

reprogramming of other factors if there is any.   
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5 General summary 
 
MicroRNAs are the major class of gene-regulating molecules playing diverse roles 

through sequence complementarity to target mRNAs at post-transcriptional level. 

Identification of entire set of miRNAs and study of their expression patterns are the 

fundamental step towards understanding miRNA-guided gene regulation in different 

biological functions. Tightly regulated expression and interaction of a multitude of 

genes for ovarian folliculogenesis and their aberrant expression due to genetic or 

epigenetic modification widely addressed in feto-placental development by different 

assisted reproductive biotechnology could be regulated by these miRNAs. Despite 

increasing efforts in miRNAs identification across various species and diverse tissue 

types, little is known about miRNAs in bovine reproductive tissues specially ovary or 

placenta. For the elucidation of this research gap, two subsequent studies have been 

carried out.  

 

First study hypothesized that tightly regulated expression and interaction of a multitude 

of genes for ovarian folliculogenesis are regulated by miRNAs and thereby aimed to 

identify and characterize them in bovine ovary through cloning, expression analysis and 

target prediction. For this purpose, RNAs of 18 to 26 nt in length from bovine ovarian 

small RNAs (< 200 nt) were purified, small RNA library constructed, sequenced and 

analyzed. A total of 233 concatemer clones were sequenced to generate 479 sequences. 

The 479 sequences identified in the library represented 41% miRNAs, 12% mRNA, 

12% rRNA, 6.3% tRNA, 6.0% repeat associated siRNA, 2.7% small antisense RNA, 

3.5% tiny noncoding RNA, 1% small nuclear RNA and 15.2% sequences that did not 

match to bovine genome. A total of 196 sequences were found to be miRNA like 

molecules, of which 74 revealed distinct miRNAs. Out of these 74 miRNAs, 36 were 

found to be reported in miRBase 12.0 for different species including bovine, 14 were 

registered only in other species and 24 were completely new. All in all, 22 of the 74 

miRNAs were cloned for three or more times where, let-7a, let-7b, let-7c, miR-21, miR-

23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 

11 times, respectively. This multiple cloning reflects the abundant expression in the 

ovary and potential involvement in ovarian functions. In addition to miRNAs, small 

RNA library has enabled us to identify 57 different endogenous siRNAs.  
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The expressions of 47 miRNAs were analyzed in 11 different bovine tissues using semi-

quantitative RT-PCR. Among these, 44 were detected in both ovarian cells and multiple 

tissues. Seven miRNAs (bta-mir-18a, bta-mir-29a, bomir-140, bta-mir-199, bomir-378, 

bomir-F0132 and bomir-F2422) were found to be expressed at relatively higher levels 

in ovarian cortical portion. On the other hand, all undetected or less expressed miRNAs 

in ovarian cortex have been shown to be highly expressed in cumulus cells or corpus 

luteum. Bta-mir-15b, bomir-409, bomir-652, bomir-C0533 and bomir-D1431 were 

highly expressed in the fetal ovary compared to that of adult ovarian cortex. However, 

bta-mir-29a, bta-mir-199 and bomir-F2422 were found to be expressed at higher level in 

the adult ovarian cortex than that of the fetal ovary. Bta-mir-125b, bta-mir-222, bomir-

542, bomir-652, bomir-H0222, bomir-F0522, bomir-C1931 and bomir-A2143 were 

found to be expressed at very low level, but as abundant in the cumulus cells and 

matured corpus luteum. All these investigated miRNAs were detected at least in one of 

the non-ovarian somatic tissue. Bta-miR-29a was localized in ovarian section by in situ 

hybridization and found to be expressed in different intra-ovarian cells of different 

stages of development.   

 

miRNA target gene prediction and analysis by in silico method has identified the major 

biological processes and signaling pathways in the ovary that are most likely affected by 

a group of miRNAs. From the screened target genes, let-7b, mir-15b, mir-18a, mir-29a, 

mir-101, mir-125b, mir-126, mir-143, mir-145, mir-199a and mir-222 were found to 

have the highest number and overlapping targets. Gene Ontology analyses of the 

miRNAs target genes were found to be associated with reproductive system 

development, function and disorders. These include cell cycle, morphology, cell death, 

cell to cell signaling, cellular growth, development and proliferation, DNA replication, 

recombination & repair, endocrine system disorder and different pathways underlying 

the ovarian functions. So, the results of the first study suggest the presence of miRNAs 

in the bovine ovary, thereby elucidate their potential role in regulating diverse 

molecular and physiological pathways underlying the ovarian functionality.  

 

The second study carried out to identify the expression pattern of miRNAs in the 

placenta at day 50 derived from SCNT, IVP and AI pregnancy. The reasons or 

background behind this study was the abnormal placentogenesis in SCNT and IVP 

which were widely admitted due to genetic and epigenetic modifications. Since, 
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miRNAs have been evidenced as one of important modifiers of genetic and epigenetic 

gene regulation so, this study was aimed to elucidate the differences in expression 

profile of miRNAs in the placenta of different sources of pregnancies by quantifying 

377 miRNAs using qRT-PCR. The miRNAs expression profiles of the Day 50 NT 

placenta (n=3) were compared either to that of AI (n=3) or IVP (n=3) placenta. In 

addition, level of miRNAs expression in the IVP placenta has subsequently been 

compared to that of AI placenta. Of the 377 miRNAs used in the comparison of their 

expression between Day 50 NT placenta and AI placenta, 320 miRNAs were found to 

be downregulated in NT placenta with 2 or more fold change, while only 5 miRNAs 

were found to be upregulated by 2 or more fold change in NT placenta compared to the 

placenta of AI group. The comparison revealed that about 68% of the miRNAs tested in 

this analysis were differentially regulated in Day 50 NT placenta compared to that of 

AI, where 98% of them were found to be downregulated. This difference in expression 

of miRNAs could be due to the cumulative effect of embryos which were constructed 

by somatic cell nuclear transfer, treatment, in vitro culture and transfer to the recipients.  

 

Similarly, about 62 % miRNAs were found to be differentially regulated in the NT Day 

50 placenta compared to that of IVP placenta, where 90% of them were found to be 

downregulated. This difference could be due to effect of embryos constructed by 

nuclear transfer and transferred to the recipients for establishing the NT pregnancy. On 

the other way, 36% miRNAs were differentially regulated between IVP and AI 

placenta, where about 96% of these differentially regulated miRNAs were 

downregulated in IVP placenta. This difference in the expression of miRNAs could be 

attributed to the effect on the transfer of embryos which were fertilized and culture in 

vitro.  

 

Additionally, the expression profiles of Day 50 NT placenta were compared to that of 

fibroblast donor cells which revealed 209 differentially regulated miRNAs Among the 

209 miRNAs, 185 and only 24 miRNAs were found to be up and down regulated, 

respectively in the NT placenta compared to fibroblast. So it could be postulated that 

most of the miRNAs were reprogrammed in NT placenta. However, but due to their 

lower expression compared to that of AI it is evident that they were not reprogrammed 

in a correct manner. Most of the miRNAs were found be deregulated and affected as 

large chromosomal cluster and miRNA families. Further, cell specific localization of 
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miRNAs in the expanded blastocysts and expression profiling in different 

developmental stages of embryos and placenta derived from AI, IVP and SCNT by real 

time qRT-PCR identified that the major difference in miRNAs expression arises at day 

50 of pregnancy. Analysis of global DNA methylation revealed common 

hypomethylation in the Day-16 elongated embryos and Day-50 placentas from NT, IVP 

and AI pregnancy with no significant differences in level among them. So, deregulation 

of miRNAs were found to be less dependent on global DNA methylation, rather 

aberrant miRNA processing molecules were evident as one of the major causes. Among 

the aberrant expression of miRNAs processing regulatory molecules Eukaryotic 

transcription initiation factor 2C2 (EIF2C2) or AGO2 were found to be downregulated 

both in NT and IVP Day-50 placenta compared to that of AI. Hence, deregulation of 

AGO2 could be a reason for global down regulation of miRNAs in the NT or IVP 

placenta, as AGO2 knock out animals evident with such deregulation of miRNAs.  

 

Taken together, present findings suggest that the genome wide aberrant expression of 

miRNAs due to reprogramming error of miRNA processing regulatory molecules for 

example AGO2 or aberrant regional chromatin remodeling or imprinting problem or 

other mechanism if there is any in the NT placenta may result abnormal transcriptional 

regulation leading to the early stage of pregnancy loss.   
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6 Conclusion and future perspectives 

 

Results of the first study revealed the presence of different classes of miRNAs in the 

bovine ovary, thereby elucidate their potential role in regulating diverse molecular and 

physiological pathways underlying the ovarian functionality. The presence of distinct 

miRNAs and other small RNAs, with different expression patterns and various target 

genes in bovine ovary suggest the potential role of such miRNAs in follicular 

development in particular and female fertility in general. Further functional 

characterization of some selected miRNAs including expression profiling and in situ 

localization in the ovarian follicles at different cyclic stages will supplement the results 

of this study and help to get insight into their specific roles in the ovarian function. 

Moreover, the results of this study will help to identify candidate miRNAs targeting 

specific molecular and cellular pathways important for ovarian follicular development, 

atresia, ovulation as well as ovarian dysfunction. The results of the second experiment 

revealed a massive deregulation of miRNAs in the placenta from cloned and IVP 

pregnancies. Most of the miRNAs were found as poorly reprogrammed and affected as 

large chromosomal cluster and miRNA families. Taken together, present findings 

suggest that the genome wide aberrant expression of miRNAs due to reprogramming 

error of miRNA processing regulatory molecules for example AGO2 or aberrant 

regional chromatin remodeling or imprinting problem in the placenta from nuclear 

transfer pregnancy, which may result abnormal transcriptional regulation leading to 

pregnancy loss. Moreover, the result of this study will help to move one step closer 

towards the development of a genetic screen to select healthier genetic profiles in 

cloned embryos and will enable to improve the pregnancy outcome from nuclear 

transfer embryos. Additional research is needed to address whether the low efficiency 

and abnormal placentogenesis in clone pregnancies are caused by the deregulation of 

miRNAs during the first trimester.  

 

Collectively, the present study has discovered miRNAs in the bovine ovary and 

elucidated the pattern of expression of miRNAs along with their regulatory mechanism 

in the placenta derived from pregnancies of various origins. Being an important gene 

regulator, miRNAs could be an interesting avenue to resolve lot of questions on 

different regulatory mechanisms of ovarian folliculogenesis and aberrant genetic or 

epigenetic modification in the placenta from NT or IVP pregnancies along with 

ruminant’s other reproductive processes. 
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