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Chapter 1

Introduction

1.1 Convertible Bond: Definition and Classification

A convertible bond in a narrow sense refers to a bond which can be converted into a

firm’s common shares at a predetermined number at the bondholder’s decision. Con-

vertible bonds are hybrid financial instruments with complex features, because they have

characteristics of both debts and equities, and usually several equity options are embed-

ded in this kind of contracts. The optimality of the conversion decision depends on equity

price, future interest rate and default probability of the issuer. The decision making can

be further complicated by the fact that most convertible bonds have call provisions al-

lowing the bond issuer to call the bond back at a predetermined call price. Similar to a

straight bond, the convertible bondholder receives coupon and principal payments. The

broad definition of a convertible bond covers also e.g. mandatory convertibles, where the

issuer can force the conversion if the stock price lies below a certain level.

The options embedded in a convertible bond can greatly affect the value of the bond. Def-

inition 1.1.1 gives a description of different conversion and call rights and the convertible

bonds can thus be classified according to the option features.

Definition 1.1.1. American-style conversion right gives its owner the right to convert a

bond into γ shares at any time t before or at maturity T of the contract. The constant

γ ∈ R+ is referred to as the conversion ratio. While European-style conversion right can

only be exercised at maturity T. If the firm defaults before maturity, the conversion

value is zero. American-style call right refers to the case where issuer can buy back the

bonds any time during the life of the debt contract at a given call level H, which can

be time- and stock-price-dependent. Whereas in the case of European-style call right the

bond seller can only buy back the bonds at maturity. A European-style (callable and)

convertible bond can only be converted (or called) at maturity T while an American-

style (callable and) convertible bond can be converted or called at any time during the life

of the debt.

1



2 Introduction

There are numerous research on different types of convertible bonds. One example is

mandatory convertible bonds, which belong to the family of European-style convertible

bonds, where both bondholder and issuer own conversion rights. The holder will exercise

the conversion right if the stock price lies above an upper strike level, whereas the issuer

can force the conversion if the stock price lies below a lower strike level. In other words,

the bondholder is subject to the downside risk of the stock, while he can also participate

(usually partially) in the upside potential of the stock at maturity. Mandatory convertible

bonds have been studied by Ammann and Seiz (2006) who examine the empirical pricing

and hedging of them. They decompose the bond into four components: a long call, a

short put, par value and coupon payments. In their pricing model, simple Black-Scholes

formula is used for the valuation of the option component, the volatility is assumed to be

constant and credit spreads are only considered for the valuation of coupons. It means

that no default risk is considered for the payoff at maturity only the coupons are consid-

ered to be risky, therefore there is no comprehensive treatment of the default risk.

The American-style callable and convertible bond1 has attracted the most research atten-

tion due to its exposure to both credit and market risk and the corresponding optimal

conversion and call strategies. The bondholder receives coupons plus the return of prin-

cipal at maturity, given that the issuer (usually the shareholder) does not default on the

obligations. Moreover, prior to the maturity the bondholder has the right to convert the

bond into a given number of stocks. On the other hand, the bond is also callable by

the issuer, i.e. the bondholder can be enforced to surrender the bond to the issuer for a

previously agreed price. In the context of the structural model the arbitrage free pricing

problem was first treated by Brennan and Schwarz (1977) and Ingersoll (1977). Recent

articles of Sirbu, Pilovsky and Schreve (2004) and Kallsen and Kühn (2005) treat the

optimal behavior of the contract partners more rigorously. In McConnell and Schwarz

(1986) and Tsiveriotis and Fernandes (1998) credit spread is incorporated for discounting

the bond component. This approach is implemented and tested empirically by Ammann,

Kind and Wilde (2003) for the French convertible bond market. More recently, the so-

called equity-to-credit reduced-form model is developed e.g. in Bielecki, Crèpey, Jeanblanc

and Rutkowski (2007) and Kühn and van Schaik (2008) to model the interplay of credit

risk and equity risk for convertible bonds. In Bielecki et al. (2007) the valuation of callable

and convertible bond is explicitly related to the defaultable game option.

1.2 Modeling Approaches and Main Results

Convertible bonds are exposed to different sources of randomness: interest rate, equity

and default risk. Empirical research indicates that firms that issue convertible bonds

often tend to be highly leveraged, the default risk may play a significant role. Moreover,

1In praxis it is simply called callable and convertible bond.
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the equity and default risk cannot be treated independently and their interplay must be

modeled explicitly. In the following we will summarize the modeling approaches and the

main results achieved in this thesis.

Default risk models can be categorized into two fundamental classes: firm’s value models

or structural models, and reduced-form or default-rate models. In the structural model,

one constructs a stochastic process of the firm’s value which indirectly leads to default,

while in the reduced-form model the default process is modeled directly. In the struc-

tural models default risk depends mainly on the stochastic evolution of the asset value

and default occurs when the random variable describing the firm’s value is insufficient

for repayment of debt. For example, by the first-passage approach, the firm defaults im-

mediately when its value falls below the boundary, while in the excursion approach, the

firm defaults if it reaches and remains below the default threshold for a certain period.

Instead of asking why the firm defaults, in the reduced-form model formulation, the inten-

sity of the default process is modeled exogenously by using both market-wide as well as

firm-specific factors, such as stock prices. The default intensities, like the stock volatilities

cannot be observed directly either, but explicit pricing formulas and/or algorithms, which

are derived by imposing absence of arbitrage conditions, can be inverted to find estimates

for them.

1.2.1 Structural approach

While both approaches have certain shortcomings, the strength of the structural approach

is that it provides economical explanation of the capital structure decision, default trig-

gering, influence of dividend payments and of the behaviors of debtor and creditor. It

describes why a firm defaults and it allows for the description of the strategies of the

debtor and creditor. Especially for complex contracts where the strategic behaviors of

the debtor and the creditor play an important role, structural models are well suited for

the analysis of the relative powers of shareholders and creditors and the questions of op-

timal capital structure design and risk management. Moreover, the structural approach

allows for an integrated model of equity and default risk through common dependence on

stochastic variables.

In this thesis, we first adopt a structural approach where the Vasic̆ek–model is applied

to incorporate interest rate risk into the firm’s value process which follows a geomet-

ric Brownian motion. A default is triggered when the firm’s value hits a low boundary.

Within the structural approach we will discuss the problem of no-arbitrage prices and fair

coupon payments for bonds with conversion rights. The idea is the following: Consider

a firm that is financed by both equity and debt. In periods where the value of the firm

increases the bondholders might want to participate in this growth. For example, this

can be achieved by converting debt into a certain number of shares. If such a conversion
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is valid the equity holders are short of call options. One can limit the upside potential of

the payoff through a call provision such that equity holders have the right to buy back

the bonds at a fixed price. Convertible bonds put this idea into practice by giving the

bondholder the right to convert the debt into equity with a prescribed conversion ratio at

prescribed times or time periods. A concrete example is the European-style callable and

convertible bond. The holder of a convertible bond has the possibility to participate in

the growth potential of the terminal value of the firm, but in exchange he receives lower

coupons than for the otherwise identical non-convertible bond.

In the case of American conversion rights, meaning that conversion is allowed at any

time during the life of the contract, and by existence of a call provision for the issuer

this leads to a problem of optimal stopping for both bondholder and issuer. Therefore

when we compute the no-arbitrage price of such a contract, we have to take into account

the aspect of strategic optimal behaviors which are the study focus of this thesis. Based

on the results of Kifer (2000) and Kallsen and Kühn (2005) we show that the optimal

strategy for the bondholder is to select the stopping time which maximizes the expected

payoff given the minimizing strategy of the issuer, while the issuer will choose the stopping

time that minimizes the expected payoff given the maximizing strategy of the bondholder.

This max-min strategy of the bondholder leads to the lower value of the convertible bond,

whereas the min-max strategy of the issuer leads to the upper value of the convertible

bond. The assumption that the call value is always larger than the conversion value prior

to maturity T and they are the same at maturity T ensures that the lower value equals

the upper value such that there exists a unique solution. Furthermore, the no-arbitrage

price can be approximated numerically by means of backward induction. In absence of

interest rate risk, the recursion procedure is carried out on the Cox-Ross-Rubinstein bi-

nomial lattice. To incorporate the influence of the interest rate risk, we use a combination

of an analytical approach and a binomial tree approach developed by Menkveld and Vorst

(1998) where the interest rate is Gaussian and correlation between the interest rate pro-

cess and the firm’s value process is explicitly modeled. We show that the influence of

interest rate risk is small. This can be explained by the fact that the volatility of the

interest process is in comparison with that of the firm’s value process relatively low and,

moreover, both parties have the possibility for early exercise.

In practice it is often a difficult problem to calibrate a given model to the available data.

Here one major drawback of the structural model is that it specifies a certain firm’s value

process. As the firm’s value, however, is not always observable, e.g. due to incomplete

information, determining the volatility of this process is a non-trivial problem. In this the-

sis, we circumvent this problem by applying the uncertain volatility model of Avellaneda,

Levy and Parás (1995) and combining it with the results of Kallsen and Kühn (2005) on

game option in incomplete market to derive certain pricing bounds for convertible bonds.

Hereby we only known that the volatility of the firm’s value process lies between two

extreme values. The bondholder selects the stopping time which maximizes the expected
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payoff given the minimizing strategy of the issuer, and the expectation is taken with the

most pessimistic estimate from the aspect of the bondholder. The optimal strategy of

the bondholder and his choice of the pricing measure determine the lower bound of the

no-arbitrage price. Whereas the issuer chooses the stopping time that minimizes the ex-

pected payoff given the maximizing strategy of the bondholder. This expectation is also

the most pessimistic one but from the aspect of the issuer, thus the upper bound of the

no-arbitrage price can be derived. Numerically, to make the computation tractable a con-

stant interest rate is assumed. The pricing bounds can be calculated with recursions on

a recombining trinomial tree developed by Avellaneda et al. (1995). It can be shown that

due to the complex structure and early exercise possibility a callable and convertible bond

has narrower bounds than a simple debt contract. One reason is that the former contract

combines short and long option positions which have varying convexity and concavity of

the value function. In the approach of Avellaneda et al. (1995), however, the selection of

the minimum or maximum of the volatility for the valuation depends on the convexity of

the valuation function. Moreover, both parties can decide when they exercise. Therefore

each of them must bear the strategy of the other party in mind, and consequently the

pricing bound is narrowed.

Modeling of the American-style callable and convertible bond as a defaultable game option

within structural approach has been studied by Sirbu et al. (2004) and further developed

in a companion paper of Sirbu and Schreve (2006). In their models the volatility of the

firm’s value and the interest rate are constant. The bond earns continuously a stream

of coupon at a fixed rate. The dynamic of the firm’s value does not follow a geometric

Brownian motion, but a more general one-dimensional diffusion due to the fixed rate of

coupon payment. Default occurs if the firm’s value falls to zero which means both equity

and bond have zero recovery. The no-arbitrage price of the bond is characterized as the

result of a two-person zero-sum game. Viscosity solution concept is used to determine the

no-arbitrage price and optimal stopping strategies. Our model differs from theirs mainly

by allowing non-zero recovery rate of the bond and default occurs if the firm’s value hit a

low but positive boundary. The dynamic of the firm’s value follows a geometric Brownian

motion which means that the underlying process, the evolution of the firm’s value, does

not depend on the solution of the game option. Therefore the results of Kifer (2000) can

be applied to the valuation of the bond. Simple recursion with a binomial tree can be

used to derive the value of the bond and the optimal strategies. Moreover, stochastic

interest rate and uncertain volatility can be incorporated into our model.

1.2.2 Reduced-form approach

Sometimes the true complex nature of the capital structure of the firm and information

asymmetry make it hard to model the firm’s value and the capital structure. In this case

the reduced-form model is a more proper approach for the study of convertible bonds.
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Stock prices, credit spreads and implied volatilities of options are used as model inputs.

In this thesis the stock price is described by a jump diffusion. It jumps to zero at the

time of default. In order to describe the interplay of the equity risk and the default risk of

the issuer, we adopt a parsimonious, intensity-based default model, in which the default

intensity is modeled as a function of the pre-default stock price. This assumes, in effect,

that the equity price contains sufficient information to predict the default event. To make

the combined effect of the default and equity risk of the underlying tractable, it is assumed

that the default intensity has two values, one is the normal default rate, and the other one

is much higher if the current stock price falls beneath a certain boundary. Thus, during

the life time of the bond, the more time the stock price spends below the boundary, the

higher the default risk. This model has certain similarity with some structural models,

e.g. in the first-passage approach, the firm defaults immediately when its value falls below

the boundary, while in the excursion approach, the firm defaults if it reaches and remains

below the default threshold for a certain period.

Within the intensity-based default model, we first analyze mandatory convertible bonds,

which are contracts of European-style. The coupon rate of a mandatory convertible bond

is usually higher than the dividend rate of the stock. At maturity it converts mandatorily

into a number of stocks if the stock price lies below a lower strike level. The holder will

exercise the conversion right if the stock price lies above an upper strike level. They are

issued by the firms to raise capital, usually in times when the placement of new equi-

ties are not advantageous. Empirical research indicates that firms that issue mandatory

convertibles tend to be highly leveraged. In some literature it is argued that, due to

the offsetting nature of the embedded option spread, a change in volatility has only an

unnoticeable effect on the mandatory convertible value. Therefore, the influence of the

volatility on the price is limited. But we show that if the default intensity is explicitly

linked to the stock price, the impact of the volatility can no longer be neglected.

In the case of American conversion and call rights, there are two sources of risks which

are essential for the valuation, one stemming from the randomness of prices, the other

stemming from the randomness of the termination time, namely the contract can be

stopped by call, conversion and default. In the intensity-based default model the default

time is modeled as the time of the first jump of a Poisson process and it is not adapted

to the filtration (Ft)t∈[0,T ] generated by the pre-default stock price process. To price a

defaultable contingent claim we need not only the information about the evolution of the

pre-default stock price but also the knowledge whether default has occurred or not which

is described by the filtration (Ht)t∈[0,T ] . The filtration (Gt)t∈[0,T ] , with Gt = Ft ∨ Ht ,

contains the full information and is larger than the filtration (Ft)t∈[0,T ] . This problem

can be circumvented with specific modeling of the default time, e.g. Lando (1998) shows

that if the time of default is modeled as the first jump of a Poisson process with random

intensity, which is called doubly stochastic Poisson process or Cox process and under

some measurable conditions, the expectations with respect to Gt can be reduced to the
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expectation with respect to Ft. With the help of the filtration reduction we move to the

fictitious default-free market in which cash flows are discounted according to the modified

discount factor which is the sum of the risk free discount factor and the default intensity.

Hence the results of the game option in the default-free setting can be extended to the

defaultable game option in the intensity model2. The embedded option rights owned by

both of the bondholder and the issuer can be exercised optimally according to the well

developed theory on the game option. The optimization problem is not approximated

with recursions on a tree as in the case of the structural approach, it is formulated and

solved with help of the theory of doubly reflected backward stochastic differential equa-

tions (BSDE) which is a more general approach developed by Cvitanić and Karatzas

(1996). The parabolic partial differential equation (PDE) related to the doubly reflected

BSDE is provided by Cvitanić and Ma (2001) and it can be solved with finite-difference

methods. Furthermore, pricing bound is derived under rational optimal behavior, if the

stock volatility is assumed to lie in a certain interval.

Defaultable game option and its application to callable and convertible bonds within

reduced-form model have been studied in Bielecki, Crèpey, Jeanblanc and Rutkowski

(2006) and Bielecki et al. (2007). They consider a primary market composed of the sav-

ings account and two primary risky assets: defaultable stock and credit default swap with

the stock as reference entity. In our model, instead of credit default swap contract we

assume zero-coupon risky bonds are traded in the market. They and the callable and

convertible bonds default at the same time. Another difference is that we formulate the

default event according to Lando (1998), where the time of default is modeled directly

as the time of the first jump of a Poisson process with random intensity, which is called

Cox process. The reduction of filtration from (Gt)t∈[0,T ] to (Ft)t∈[0,T ] is applied for the

derivation of the no-arbitrage price of the bond. It simplifies the calculations. Some com-

plex contract features of the callable and convertible bond treated by Bielecki et al. (2007)

are not investigation subjects of our model, instead we focus on the uncertain volatility

of the stock and the derivation of the no-arbitrage pricing bounds.

1.3 Structure of the Thesis

The remainder of the thesis is structured as follows. From Chapter 2 to Chapter 5 con-

vertible bonds are treated within structural approach. Chapter 2 introduces the model

framework of the structural approach: market assumptions, dynamics of the interest rate

and firm’s value processes, capital structure and the default mechanism are established.

The Vasic̆ek–model is applied to incorporate interest rate risk into the firm’s value pro-

2In the structural approach, the default time is a predictable stopping time, and adapted to the
filtration (Ft)t∈[0,T ] generated by the firm value process, thus the discounted payoff of the convertible
bond is adapted to the filtration (Ft)t∈[0,T ] . Therefore we can apply the results on game option developed
by Kifer (2000) directly to derive the unique no-arbitrage value and the optimal strategies.
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cess which follows a geometric Brownian motion. The model covers both the firm specific

default risk and the market interest rate risk and correlation of them. Moreover the con-

tract features of a straight coupon bond are described and closed form solution of the

no-arbitrage value is derived. European-style convertible bonds are studied in Chapter

3. They are essentially a straight bond with an embedded down and out call option if

the bond is non-callable or a call spread if the bond is callable. Closed form solutions are

presented. Chapter 4 focuses on the American-style callable and convertible bond: its

contract feature and the decomposition into a straight bond and a game option compo-

nent. The optimal strategies and the formulation and solution of the optimization problem

are first presented with constant interest rate, then the interest rate risk is incorporated.

Furthermore, a closely related contract form, the Bermudan-style callable and convert-

ible bond is discussed. In Chapter 5 uncertain volatilities of the firm value are introduced

and pricing bounds are derived for both European- and American-style convertible bonds.

Throughout Chapter 6 to Chapter 8 the convertible bonds are dealt within reduced-form

approach, where stock price, credit spreads and implied volatilities of options are used as

model inputs for the valuation. Chapter 6 describes the intensity-based default model.

According to Lando (1998) the time of default is modeled directly as the time of the

first jump of a Poisson process with random intensity. The stock price is modeled as

a jump diffusion. It jumps to zero at the default. The default intensity is modeled

as a function of the pre-default stock price. Reduction of filtration is introduced. In

Chapter 7 the mandatory convertible bond is studied while Chapter 8 is dedicated to the

American-style callable and convertible bond, the formulation of the optimal strategies

and the solution of the optimization problem with the doubly reflected BSDE. Chapter 9

concludes the thesis.



Chapter 2

Model Framework Structural

Approach

In the structural approach, firm’s value is modeled by a diffusion process. Default occurs

if the firm’s value is insufficient for repayment of the debt according to some prescribed

rules. The liability of the firm can be characterized as contingent claim on the firm’s value.

The origin of the structural approach goes back to Black and Scholes (1973) and Merton

(1974). These models assume that a default can only occur at the maturity of the debt,

therefore the debt value can be characterized as a European contingent claim on the firm’s

value. It is extended by Black and Cox (1976) to allow for defaults before the maturity

of the debt if the firm’s value hits a certain boundary, which is also called first passage

model. In this case the debt value is a contingent claim on the firm’s asset which has sim-

ilar payoffs as in case of a barrier option. Longstaff and Schwartz (1995) extend the first

passage model by allowing interest rate to be stochastic and correlated with the firm’s

value process. Semi-closed-form solutions are derived for defaultable bonds. Another,

similar but mathematical simpler approach is developed by Briys and de Varenne (1997),

where a default is triggered when the T− forward price of the firm’s value hits a lower

barrier. Further extension of the first passage model is carried out by Zhou (1997). It is

assumed that the firm’s value follows a jump-diffusion process. The aim of the introduc-

tion of jumps in the firm value process is to capture the feature of the sudden default of

the firm. These are representative models and there are numerous literature with exten-

sions to the original firm’s value approach. A survey of the various models is beyond the

scope of this thesis. The structural approach finds its application in the praxis. It is e.g.

implemented in a commercial model package marketed by KMV corporation.

The aforementioned structural models all assume a competitive capital market where the

borrowing and lending interest rate are the same and the trading takes place without any

restrictions. There is no constraint for short-sails of all assets, no cost for bankruptcy and

no tax differential for equity and debt. Thus the Modigliani-Miller theorem is valid, i.e.

9
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the value of the firm is invariant to its capital structure. For example, in Merton (1974),

Section V, the validity of the Modigliani-Miller theorem in the presence of bankruptcy is

proved explicitly.

Our model is a first passage model and the model assumptions are made mainly accord-

ing to Briys and de Varenne (1997) and Bielecki and Rutkowski (2004)1, with some slight

modifications. The model covers both the firm specific default risk and the market in-

terest rate risk and correlation of them. The remainder of the chapter is organized as

follows: Section 2.1 summarizes the general market assumptions. The dynamics of the

interest rate and firm’s value are given in Section 2.2 and 2.3. The default mechanism is

described in Section 2.4. The distribution of the default time and the joint distribution

of the firm’s terminal value and the default probability which are useful for the further

calculations are derived in Section 2.5. The valuation formula for a straight coupon bond

is derived in Section 2.6

2.1 Market Assumptions

We adopt the standard assumptions in structural models:

• The financial market is frictionless, which means there are no transactions costs,

bankruptcy costs and taxes, and all securities in the market are arbitrarily divisible.

• Every individual can buy or sell as much of any security as he wishes without

affecting the market price.

• Risk-free assets earn the instantaneous risk-free interest rate.

• One can borrow and lend at the same interest rate and take short positions in any

securities.

• The Modigliani-Miller theorem is valid, i.e. the firm’s value is independent of the

capital structure of the firm. In particular, the value of the firm does not change at

the time of conversion and is reduced by the amount of the call price paid to the

bondholder at the time of the call.

• Trading takes place continuously.

Under these assumptions, financial markets are complete and frictionless, according to

Harrison and Kreps (1979) there exists a unique probability measure P ∗ under which

the continuously discounted price of any security is a P ∗ -martingale.

1See, Section 3.4 of their book.
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2.2 Dynamic of the Risk-free Interest Rate

In the literature, there exist different approaches for modeling of the interest rate risk.

We adopt the bond price approach, where the dynamics of a family of bond prices, usually

the zero coupon bond prices, are modeled exogenously. The interest rate dynamics can

be derived endogenously. Let us fix a time interval [t0, T ∗] , and let B(t, T ) stand for

the price of a zero coupon bond at time t0 ≤ t ≤ T , where T ≤ T ∗ is the maturity time

of the bond. The payment at maturity is normalized to one monetary unit, formally,

B(T, T ) = 1, P ∗ − a.s. ∀ T ∈ [t0, T
∗].

Definition 2.2.1. B(t, T ) is driven by an n –dimensional standard Brownian motion

in the filtered probability space (Ω,F , F, P ∗) ,

dB(t, T ) = B(t, T ) (r(t) dt + b(t, T ) dW ∗(t)) , (2.1)

where W ∗(t) = (W ∗
1 (t), ...,W ∗

n(t))> ∈ Rn denotes an n –dimensional Brownian motion

with respect to the martingale measure P ∗ . b(t, T ) describes the volatility of the zero

coupon bond, which is a time dependent deterministic function and must satisfy the

following conditions

• at the maturity date the volatility should be zero,

b(T, T ) = (b1(T, T ), ..., bn(T, T ))> = 0,∈ Rn, ∀ T ∈ [t0, T
∗]2

• for each t ∈ [t0, T ] , b(t, T ) is square integrable with respect to t,∫ T

0

||b(u, T )||2 du :=

∫ T

0

n∑
j=1

bj(u, T )2 du < ∞

• for each t ∈ [t0, T ] , b(t, T ) is differentiable with respect to T.

The solution of Equation (2.1) can be expressed as

B(t, T ) = B(t0, T ) exp


t∫

t0

(r(u)− 1

2
||b(u, T )||2) du +

t∫
t0

b(u, T ) dW ∗(u)

 . (2.2)

The term structure of the spot interest rate can be derived endogenously according to

the bond dynamic defined by Equation (2.1)3. The corresponding conform spot rate

is normally distributed, therefore, it is also called n− factor Gaussian term structure

model. Due to its analytical tractability, the Gaussian term structure is widely applied.

2 > denotes the transpose of the matrix
3Details can be found, e.g. in Sandmann (2000), Chapter 10.
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Although there exists a positive possibility that negative spot rates will be generated, but

the probability that such situation occurs can be minimized through proper parameter

choices. Moreover, Gaussian term structures can be easily integrated with Black and

Scholes (1973) model to valuate stock option under stochastic interest rate.

A prominent example of Gaussian term structure is the Vasic̆ek–model, in its simplest

form a one-factor mean-reverting model which has received broad application. In this

case W ∗(t) denotes a 1 –dimensional Brownian motion. The volatility of the zero coupon

bond has the following form

b(t, T ) =
σr

br

(1− e−br(T−t)),

with constant speed of mean reverting factor br > 0 and constant volatility σr > 0.

This specification of volatility satisfies all conditions in definition 2.2.1. Accordingly, the

conform short rate follows an Ornstein–Uhlenbeck process,

dr(t) = (ar − brr(t))dt + σrdW ∗
1 (t), (2.3)

where ar is a constant, W ∗
1 (t) is a 1 -dimensional standard Brownian motion under the

martingale measure P ∗, and it governs the movement of the interest rate. W ∗
1 and W ∗

move in opposite direction, i.e. dW ∗
1 (t) = −dW ∗(t) because the increase of the interest

rate causes the reduction of the zero bond price. The short rate is pulled to the long-run

mean
ar

br

at a speed rate of br .

2.3 Dynamic of the Firm’s value

the Vasic̆ek–model is applied to incorporate interest rate risk into the process of the firm’s

value. The interest rate rt is governed under the martingale measure P ∗ by Equation

(2.3). Equation (2.1) describing the value of a default free zero coupon bond B(t, T ) can

be reformulated as4

dB(t, T ) = B(t, T )(rtdt− b(t, T )dW ∗
1 (t)) (2.4)

The firm’s value V is assumed to follow a geometric Brownian motion under the mar-

tingale measure P ∗ of the form

dVt

Vt

= (rt − κ)dt + σV (ρdW ∗
1 (t) +

√
1− ρ2dW ∗

2 (t)) (2.5)

where W ∗
2 (t) is a 1 -dimensional standard Brownian motion, independent of W ∗

1 (t) and

4Instead of W ∗(t) , here we let W ∗
1 (t) govern the movement of the risk-free bond price with the

purpose to emphasize the impact of the interest rate risk and its correlation with the firm’s value.
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ρ ∈ [−1, 1] is the correlation coefficient between the interest rate and the firm’s value.

The volatility σV > 0 and the payout rate κ are assumed to be constant. The amount

κVtdt is used to pay coupons and dividends.

Under the martingale measure P ∗ the no-arbitrage price of a contingent claim is derived

as expected discounted payoff, but in the case of stochastic discount factor the calculation

can be quite complicated. It has been shown in the literature that the calculation can be

simplified if the T -forward risk adjusted martingale measure P T is applied.

Definition 2.3.1. A T -forward risk adjusted martingale measure P T on (Ω,FT ) is

equivalent to P ∗ and the Radon-Nikodým derivative is given by the formula

dP T

dP ∗ =
exp{−

∫ T

0
r(u)du}

EP ∗

[
exp{−

∫ T

0
r(u)du}

] =
exp{−

∫ T

0
r(u)du}

B(0, T )
,

and when restricted to the σ− field Ft ,

dP T

dP ∗ |Ft := EP ∗

[
exp{−

∫ T

0
r(u)du}

B(0, T )

∣∣∣Ft

]
=

exp{−
∫ t

0
r(u)du}B(t, T )

B(0, T )
.

Especially for Gaussian term structure model, when the zero bond price is given by

Equation (2.4), an explicit density function exists. Namely,

dP T

dP ∗ |Ft = exp

{
−1

2

∫ t

0

b2(u, T )du−
∫ t

0

b(u, T )dW ∗
1 (u)

}
Furthermore,

W T
1 (t) = W ∗

1 (t) +

∫ t

0

b(u, T )du (2.6)

follows a standard Brownian motion under the forward measure P T .

Thus the forward price of the firm’s value FV (t, T ) := Vt/B(t, T ) satisfies the following

dynamics under the T -forward risk adjusted martingale measure P T 5,

dFV (t, T )

FV (t, T )
= −κdt + (ρσV + b(t, T ))dW T

1 (t) + σV

√
1− ρ2dW ∗

2 (t)

= −κdt + σF (t, T )dW T (t), (2.7)

where W T
1 (t) is given by Equation (2.6) and

σ2
F (t, T ) =

∫ t

0

(
σ2

V + 2ρσV b(u, T ) + b2(u, T )
)
du, (2.8)

5The dynamic of the forward firm value is derived by application of Itô’s Lemma.
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and W T (t) is a 1-dimensional standard Brownian motion that arises from the indepen-

dent Brownian motions W T
1 (t) and W ∗

2 (t) 6 by the following equality in law aW T
1 (t) +

bW ∗
2 (t) ∼

√
a2 + b2W T (t), where a , b are constant. Thus the auxiliary process

F κ
V (t, T ) := FV (t, T )eκt (2.9)

is a martingale under P T and is log-normally distributed. Specifically, we have

dF κ
V (t, T ) = F κ

V (t, T ) · σF (t, T )dW T (t). (2.10)

According to Equation (2.5) a constant payout rate of κ is assumed, and κVtdt is the

sum of the continuous coupon and dividend payments. Thus the firm’s value FV (t, T ) is

not a martingale under the T -forward risk adjusted martingale measure P T , but after

compensated with the payout, the auxiliary process F κ
V (t, T ) is a martingale under P T .

2.4 Capital Structure and Default Mechanism

The equity price may drop at time of conversion, as the equity-holders may own a smaller

portion of the equity after bondholders convert their holdings and become new equity-

holders. To capture this effect, we assume that until time of conversion, at time t , the

firm’s asset consists of m identical stocks with value St and of n identical bonds with

value Dt, thus

Vt = m · St + n ·Dt.

The bonds can be straight bond or any kind of convertible bond with European- or

American-style conversion and/or call right. Especially, at time t = 0, the initial firm’s

value satisfies

V0 = m · S0 + n ·D0. (2.11)

Moreover, we set the principal that the firm must pay back at maturity T to be L for

each bond and assume that bondholders are protected by a safety covenant that allows

them to trigger early default. The firm defaults as soon as its value hits a prescribed

barrier νt, and the default time τ is defined in a standard way by

τ = inf {t > 0 : Vt ≤ νt} . (2.12)

Assumption 2.4.1. The default barrier νt at time t is supposed to be a fixed quantity

K with 0 < K ≤ nL discounted with the default-free zero coupon bond B(t, T ) and

compensated with the effect due to the payout of coupons and dividends. The value of

6The independence of WT
1 (t) and W ∗

2 (t) is due to the assumption that W ∗
1 (t) and W ∗

2 (t) are
independent and this property remains after the change of measure acted on W ∗

1 (t) .
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the default barrier depends on the discount factor and the payout rate,

νt =

{
KB(t, T )e−κt t < T

nL t = T.
(2.13)

Since interest rates are stochastic in this setting the default barrier νt is stochastic as

well. But if νt is expressed in forward price and compensated with the payout it equals K

which is a constant. Combined with the forward price of the firm’s value this specification

is mathematically convenient because it eases the further calculations and enables closed-

form solutions of the no-arbitrage prices of the straight and European-style (callable and)

convertible bond. This default mechanism is also economical reasonable as the barrier and

the firm’s value move with the same trend. Furthermore, it ensures that the discounted

rebate payment to the bondholders is always smaller than the discounted principal. In

this case the forward value of the barrier can be computed as

KB(t, T )e−κt

B(t, T )
= Ke−κt.

2.5 Default Probability

The default time defined by Equations (2.12) and (2.13) can be further calculated as

τ := inf{t > 0, Vt ≤ νt} = inf

{
t > 0,

Vt

B(t, T )
eκt ≤ K

}
= inf {t > 0, F κ

V (t, T ) ≤ K} = inf {t > 0, yt ≤ ln K} (2.14)

where

yt := ln F κ
V (t, T )

= ln F κ
V (0, T )− 1

2

∫ t

0

σ2
F (t, T )du +

∫ t

0

σF (t, T )dW T
u .

Define
F0 := F κ

V (0, T ) = V0/B(0, T ),

y0 := ln F0.

To eliminate the time-dependence in the volatility and consider the following deterministic

time change. The time changed Brownian motion has the volatility σ = 1 , and the time

is scaled to At , and satisfies the following relationship

yt = ỹAt
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with

At :=

∫ t

0

σ2
F (t, T )du =

∫ t

0

(
σ2

V + 2ρσV b(u, T ) + b2(u, T )
)
du. (2.15)

Let A−1 stand for the inverse time change, define ỹt := yA−1
t

, then

ỹt = y0 + Zt −
1

2
t

where Zt is a standard Brownian motion in the filtration F̃t = FA−1
t

.7 For the default

time τ in Equation (2.14) we have

{τ > t} = {τ̃ > At}

where

τ̃ := inf{t ≥ 0, ỹt ≤ ln K}. (2.16)

The distribution of the firm’s value VT given that the firm survives can be transformed

similarly as

P [VT ≥ x, τ ≥ T ] = P

[
VT

B(T, T )
eκT ≥ x

B(T, T )
eκT , τ ≥ T

]
= P

[
F κ

V (T, T ) ≥ xeκT , τ ≥ T
]

= P [yT ≥ ln x + κT, τ ≥ T ]

= P [ỹT ≥ ln x + κT, τ̃ ≥ AT ] (2.17)

where we used that B(T, T ) = 1.

Remark 2.5.1. For the calculation of Equations (2.16) and (2.17) we need the following

distribution laws, which can be found in Musiela and Rutkowski (1998), p. 470. Let

Xt = νt + σWt denote a Brownian motion with drift and denote its minimum up to time

t by mt, and the first hitting time of a ≤ 0 by τa := inf{t ≥ 0, Xt ≤ a}. Then we

have

P [τa ≤ t] = P [mt ≤ a] = N
(a− νt

σ
√

t

)
+ e2νaσ−2

N
(a + νt

σ
√

t

)
, (2.18)

P [Xt ≥ b, mt ≥ a] = N
(−b + νt

σ
√

t

)
− e2νaσ−2

N
(2a− b + νt

σ
√

t

)
, (2.19)

for b ≥ a, where N(·) denotes the cumulative distribution function of the standard

normal distribution.

7See Revuz and Yor (1991) for details.
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Setting ν = −1/2, σ = 1, t = At, T = AT , a = ln(K/F0), b = ln(x/F0) + κT in

Equations (2.18) and (2.19), and after some calculations we obtain the default probability

and the terminal distribution of the firm’s value given that there is no pre-maturity default

P [τ ≤ t] = N(d1(t)) +
F0

K
N(d2(t)) (2.20)

and P [VT ≥ x, τ ≥ T ] = N(d3(x, T ))− F0

K
N(d4(x, T )) (2.21)

with

d1(t) :=
ln K

F0
+ 1

2
At√

At

, d2(t) := d1(t)−
√

At,

d3(x, t) :=
ln F0

x
− κt− 1

2
At√

At

, d4(x, t) :=
2 ln K − ln(F0x)− κt− 1

2
At√

At

.

(2.22)

where At is defined by Equation (2.15).

Accordingly the survival probability is

P [τ > t] = N(−d1(t))−
F0

K
N(d2(t)), (2.23)

and it shows that due to the specific choice of the random barrier, the stochastic interest

rate and the payout rate κ have no influence on the default time distribution in this

situation. Another distribution needed for the later calculations is

P [VT ≤ x, τ > T ]

= P [τ > T ]− P [VT > x, τ > T ]

=
(
N(−d1(T ))− F0

K
N(d2(T ))

)
−
(
N(d3(x, T ))− F0

K
N(d4(x, T )

)
. (2.24)

2.6 Straight Coupon Bond

Before describing convertible bonds in detail, we first study a straight coupon bond, i.e.

a non-convertible and non-callable coupon bond. In praxis coupons are usually paid at

discrete equally spaced time points. For calculation purpose we assume that the coupons

are paid out continuously with a constant rate of c , till maturity T or default time τ ,

given that the firm’s value is above the level ηt , t ∈ [0, T ] with

ηt = wB(t, T )e−κt,

where w is a constant. For mathematical convenience ηt is defined in the similar manner

as the default barrier νt . The assumption on the mechanism of the coupon payments is
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to solve a technical problem and to make the computation tractable. The amount κVtdt

is used to pay coupons and dividends. Each bondholder receives the coupon payment cdt,

and the total amount of the coupons is n · cdt. The remaining amount κVtdt − n · cdt

is used to pay dividends. Because the payout rate κ in the model is held constant, by

lower firm’s value the total payout may not suffice to pay the coupons. However, the

shareholders in our model are not allowed and not able to raise short term credit to pay

the coupons. The assumption is also economically reasonable, as in praxis there exist

such coupon bonds. The firm can interrupt the coupon payments in the case that the

firm does not operate properly and the firm’s value is too low. If there is no default till

maturity T the bondholders receive at maturity min
(
L,

VT

n

)
for each bond. In the case

of an early default, the residual of the firm’s value is divided among the bondholders and

a rebate of
ντ

n
will be paid to each bond at default time τ . Applying Equation (2.23),

one can calculate the no-arbitrage value of the coupons and rebate payment at default.

The no-arbitrage value or price of a claim can be derived as the expected discounted value

under the martingale measure P ∗ or the discounted expected value under the T -forward

risk adjusted martingale measure P T .

The no-arbitrage value of the accumulated coupons amounts to

c

∫ T

0

B(0, s)P T [Vs > ηs , τ > s]ds

= c

∫ T

0

B(0, s)

{
N(d3(w, s))− F0

K
N(d4(w, s))

}
ds

where for derivation of the equality Equation (2.21) is applied.

The no-arbitrage value of the rebate payment in the case of an early default is

B(0, T )

∫ T

0

K

n
e−κτdP T [τ ≤ t] =

1

n
B(0, T )(KJ1 + F0J2)

with

J1 =

∫ T

0

e−κsdN
(
d1(s)

)
J2 =

∫ T

0

e−κsdN
(
d2(s)

)
.

The no-arbitrage value of the payment at maturity is the sum of two components

B(0, T )EP T [L1{VT >nL, τ>T}] + B(0, T )EP T

[VT

n
1{VT≤nL, τ>T}

]
.

Applying Equations (2.21) and (2.24) the following results can be derived

EP T [L1{VT >nL, τ>T}] = L
[
N(d3(nL, T ))− F0

K
N(d4(nL, T ))

]
,
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and

EP T

[VT

n
1{VT≤nL, τ>T}

]
= −

∫ nL

Ke−κT

x

n
dN
( ln F0

x
− κT − 1

2
AT√

AT

)
+

∫ nL

Ke−κT

x

n

F0

K
dN
(2 ln K − ln(F0x)− κT − 1

2
AT√

AT

)
=

F0

neκT
[N(−d2(T ))−N(d5(nL, T ))] +

K

neκT
[N(d6(nL, T ))−N(d1(T ))],

where d5 and d6 are defined in Equation (2.27), and the second equality is derived with

the aid of the following integrations∫ y

0

xdN
( ln x + a

b

)
= e

1
2
b2−aN

( ln y + a− b2

b

)
,

∫ y

0

xdN
(− ln x + a

b

)
= e

1
2
b2+aN

(− ln y + a + b2

b

)
.

To sum up, the no-arbitrage value of a (single) straight coupon bond equals

SB(0) = c

∫ T

0

B(0, s)

{
N(d3(w, s))− F0

K
N(d4(w, s))

}
ds +

1

n
B(0, T )(KJ1 + F0J2)

+B(0, T ) ·

{
L
[
N(d3(nL, T ))− F0

K
N(d4(nL, T ))

]

+
F0

neκT
[N(−d2(T ))−N(d5(nL, T ))]

+
K

neκT
[N(d6(nL, T ))−N(d1(T ))]

}
(2.25)

where

d1(t) :=
ln K

F0
+ 1

2
At√

At

, d2(t) := d1(t)−
√

At,

d3(x, t) :=
ln

F0
x
−κt− 1

2
At√

At
, d4(x, t) :=

2 ln K − ln(F0x)− κt− 1
2
At√

At

,

d5(x, t) := d3(x, t) +
√

At, d6(x, t) := d4(x, t) +
√

At

(2.26)
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J1 :=

∫ T

0

e−κsdN
(
d1(s)

)
, J2 :=

∫ T

0

e−κsdN
(
d2(s)

)
(2.27)

and At is defined by Equation (2.15). The coupon payments and the rebate payment

have no explicit solutions and thus the integrals in the first term of the right hand side

(rhs) of Equation (2.25), J1 and J2 have to be integrated numerically.

Example 2.6.1. As a concrete numerical example with initial flat term structure and

the initial interest rate equal to the long run mean we compute the no-arbitrage prices

of straight coupon bonds with parameters T = 8, σV = 0.2, b = 0.1, V0 = 1000, L =

100, K = 400, w = 1300, m = 10, n = 8, r0 = 0.06. 8

The bond prices can be derived with Equations (2.25) and (2.27). Set σr = 0 , interest

rate risk is neglected. The results for straight coupon bonds with and without interest

rate risk are listed in Table 2.1.

σr = 0.01 σr = 0.02 σr = 0

κ c ρ = −0.5 ρ = 0 ρ = 0.5 ρ = −0.5 ρ = 0 ρ = 0.5
0.02 0 58.60 57.77 56.98 58.94 57.30 55.77 57.93
0.04 0 56.62 55.67 54.79 57.04 55.15 53.53 55.85
0.04 2 65.69 64.33 63.13 66.24 63.57 61.42 64.60
0.04 4 74.76 73.00 71.47 75.45 72.00 69.32 73.35

Table 2.1: No-arbitrage prices of straight bonds, with and without interest rate risk

Table 2.1 shows that depending on negative or positive correlation of interest rate and

firm’s value process, interest rate risk may increase or decrease the prices of the straight

bonds. The reason is that increasing correlation ρ between the interest rate process and

the firm’s value process causes increasing volatility of the forward prices of the firm’s

value which can be verified by Equation (2.15). The coupons will only be paid out, if the

firm’s value is above a certain level ηt , and the coupon payment terminates as soon as

the default barrier is touched. The value of the coupons can rise or fall with volatility,

depending on the choice of the level ηt . In our example the level is chosen below the initial

firm’s value, therefore the value of the coupons decreases in volatility. The redemption

of the principal part of a straight bond consists of a long position in the principal and a

short position of a down and out put with rebate paid at the hitting time τ. Because the

value of the latter position increases, therefore the value of the redemption falls with the

increasing volatility. In total, the value of the non-convertible bond decreases in ρ. This

8The choice of w and in combination with the discount factor and κ , make the level ηt fluctuate
around 800, which is lower than the initial value of the firm.
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effect is amplified by a larger interest rate volatility. In comparison with the case there is

no interest rate risk, the price of the straight bond is higher in the case that the interest

rate and firm’s value process are negatively correlated and vice versa. In accordance with

the intuition, the numerical results demonstrate that the straight bond is more valuable

by higher coupons and thus lower dividend payments.
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Chapter 3

European-style Convertible Bond

A European-style convertible bond entitles its holder to receiving coupons plus the prin-

cipal at maturity, given that the issuer does not default on the obligations. Moreover,

at maturity the bondholder has the right to convert the bond into a given number of

shares. To limit the upside potential of the payoff, a call provision may be incorporated

to provide the equity holders with the right to buy back the bond for a previously agreed

price. This type of contract is called the European-style callable and convertible bond.

The chapter is organized as follows: Section 3.1 shows that a European-style convertible

bond is essentially a straight bond with an embedded down and out call option. Closed-

form solution for the valuation is derived. The European-style callable and convertible

bond can be decomposed into a bond component and a component consisting of down

and out call option spread. Its valuation formula is given in Section 3.2. In Example 3.1.1

and 3.2.1 no-arbitrage prices of the bonds are calculated for given conversion ratios while

in Example 3.2.3 the no-arbitrage conversion ratios are computed for given initial values

of the bonds.

3.1 Conversion at Maturity

By a European-style convertible bond conversion can only take place at the maturity date

of the contract. According to the assumption on the capital structure made in Section

2.4, the asset of the firm consists of m shares and n bonds. Moreover, we assume that

all n bonds are converted at the same time, and there is no partial conversion. The

parameters n and m in this model describe the ratio of equity and debt. Together with

the conversion ratio γ , they determine how the firm value will be divided among the

shareholder and bondholder if conversion happens.

The bondholder has the right but not the obligation to convert. Each bond can be con-

verted into γ shares. In the case of conversion, the number of shares amounts m + γn ,

23
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and the conversion value for each bond would be
γVT

m + γn
. The bondholder will only

exercise the conversion right if
γVT

m + γn
> L. Therefore, given no premature default, the

bondholder receives at maturity the maximum of L and
γVT

m + γn
for each bond. Com-

pared to an otherwise identical straight bond the convertible bond has an extra payment

of
( γVT

m + γn
−L

)+
1 which is a European call option given no default on the firm value

process.

Thus the no-arbitrage price of a European-style convertible bond CB(0) at time t = 0

can be expressed as the sum of the price of an otherwise identical straight bond and the

discounted expected value of the conversion right, CR(0) , i.e.

CB(0) = SB(0) + CR(0) (3.1)

with

CR(0) := B(0, T )EP T

[( γVT

m + γn
− L

)+

1{VT >nL, τ>T}

]
The price of a straight bond SB(0) has been derived in section 2.6, and can be solved

with Equation (2.25).

For the calculation of the no-arbitrage price of the conversion right we need the following

result which is derived with the help of Equation (2.21)

EP T [VT1{VT >y, τ>T}] =

∫ ∞

y

xd

(
−N(d3(x, T )) +

F0

K
N(d4(x, T ))

)
.

Finally the discounted expected value of the conversion right, CR(0) can be solved with

CR(0) = B(0, T )
γ

m + γn

(
F0

eκT
N(d5(L̃, T ))− K

eκT
N(d6(L̃, T ))

)
−B(0, T )L

(
N(d3(L̃, T ))− F0

K
N(d4(L̃, T ))

)
(3.2)

where L̃ :=
(
n + m

γ

)
L, d3 , d4 , d5 , and d6 are defined in Equation (2.27).

Example 3.1.1. (Continuation of Example 2.6.1) The same model parameters as in

Example 2.6.1 are assumed. The initial term structure is flat and the parameters are

T = 8, σV = 0.2, σr = 0.02, b = 0.1, V = 1000, L = 100, K = 400, w = 1300, γ =

2, m = 10, n = 8, c = 2, r0 = 0.06.

1 (x)+ := max[x, 0]
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SB(0) CR(0) CB(0)

κ ρ = −0.5 ρ = 0.5 ρ = −0.5 ρ = 0.5 ρ = −0.5 ρ = 0.5
0.02 68.15 63.67 14.72 18.79 82.87 82.46
0.03 67.28 62.62 11.63 15.55 78.91 78.17
0.04 66.24 61.43 9.05 12.77 75.30 74.19

Table 3.1: No-arbitrage prices of European-style convertible bonds

The results in Table 3.1 show that due to the specific choice of the random barrier, the

payout rate κ has no influence on the distribution of default time, which can be veri-

fied by Equation (2.20), but rebate payment decreases in κ . Therefore the value of the

straight bond SB(0) decreases in payout rate κ . Meanwhile, the value of conversion

right CR(0) decreases when κ rises. It is quite intuitive as the firm value at maturity

declines if more dividends are paid out. The total effect is that the value of a European

convertible bond decreases in the payout rate κ .

Increasing correlation ρ between the interest rate and the firm’s value causes increasing

volatility of the forward price of the firm’s value. The default probability rises in volatility,

which results in a reduction of the value of the straight bond SB(0) . But on the other

side, the value of conversion right CR(0) increases in volatility, therefore the total effect

is not monotonic. The influence of the interest rate risk on the price of the convertible

bond is relatively small which is recognized by the value of the convertible bond, i.e. the

numbers listed in the columns under CB(0) in Table 3.1. The reason is that in the

example the volatility of the interest rate is much smaller than that of the firm’s value.

Remark 3.1.2. For the model parameters chosen in Example 3.1.1, due to the offsetting

nature of the value of the straight bond and conversion right, the value of the European-

style convertible bond is insensitive to the change of volatility. With κ = 0.02 and

σV = 0.2 the price of CB(0) e.g. equals 82.46. If the volatility of the firm value is raised

to σV = 0.4 , the price is 81.92, and it changes only slightly.

3.2 Conversion and Call at Maturity

In a contract with conversion rights the equity holder is short of call options. The upside

potential of the payoff can be limited through a call provision which provides equity

holders the right to buy back each bond at a fixed price H. The bondholder will exercise

the conversion right if
γVT

m + γn
> L, but the conversion value is capped by H . Thus

if VT >
m + γn

γ
H the convertible bond with call provision will no longer profit from

the upside potential of the firm value. Therefore given no default, the extra payment
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additional to an otherwise identical straight bond amounts to(
γVT

m + γn
− L

)+

−
(

γVT

m + γn
−H

)+

which is a European call spread on the firm’s value.

Thus the no-arbitrage value of a European callable and convertible bond CCB(0) at

time t = 0 is given as the sum of the value of a straight bond plus the value of the

capped conversion right, CCR(0) ,

CCB(0) = SB(0) + CCR(0), (3.3)

with

CCR(0) := B(0, T )EP T

[{(
γVT

m + γn
− L

)+

−
(

γVT

m + γn
−H

)+
}

1{VT >nL, τ>T}

]
.

The price of a straight bond SB(0) has been derived in section 2.6, and can be solved

with Equation (2.25). The value of CCR(0) can be derived with the same method as by

calculation of CR(0) ,

CCR(0) = B(0, T )

{
− L

[
N(d3(L̃, T ))− F0

K
N(d4(L̃, T ))

]

+H

[
N(d3(H̃, T ))− F0

K
N(d4(H̃, T ))

]

+
γ

m + γn

[
F0

eκT

(
N(d5(L̃, T ))−N(d5(H̃, T ))

)

− K

eκT

(
N(d6(L̃, T ))−N(d6(H̃, T ))

)]}
(3.4)

with H̃ :=

(
n +

m

γ

)
H, d3 , d4 , d5 , and d6 are defined in Equation (2.27).

Example 3.2.1. (Continuation of Example 3.1.1) The same model parameters as in

Example 3.1.1 are assumed. The initial term structure is flat and the parameters are

T = 8, σV = 0.2, σr = 0.02, b = 0.1, V = 1000, L = 100, K = 400, w = 1300, γ =

2, m = 10, n = 8, c = 2, r0 = 0.06, H = 150.

Table 3.2 summarizes the values of the capped conversion right CCR(0) and the prices

of the callable and convertible bond CCB(0) . And for comparison reason, the prices of
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SB(0) CCR(0) CCB(0) CB(0)

κ ρ = −0.5 ρ = 0.5 ρ = −0.5 ρ = 0.5 ρ = −0.5 ρ = 0.5 ρ = −0.5 ρ = 0.5
0.02 68.15 63.67 8.99 8.85 77.14 72.52 82.87 82.46
0.03 67.28 62.62 7.44 7.67 74.72 70.29 78.91 78.17
0.04 66.24 61.43 6.05 6.58 72.29 68.00 75.30 74.19

Table 3.2: No-arbitrage prices of European-style callable and convertible bonds

the otherwise identical convertible but non-callable bond are also listed in Table 3.2. One

can see that the prices are reduced substantially through the call provision with a call

price of H = 150 , which is 1.5 times of the principal.

The value of the capped conversion right CCR(0) decreases as κ rises. The impact

of the correlation ρ on the value of CCR(0) is relative small but not monotonic and

depends on the value of κ . Positive or negative ρ may increase or decrease the volatility

of the forward price of the firm’s value. The option component CCR(0) is a call spread

and its sensitivity to the change of volatility is not monotonic, and depending on other

factors CCR(0) may increase or decrease in volatility. In our example in the case that

κ = 0.03 and κ = 0.04 , higher volatility results in larger value of the CCR(0), while

by κ = 0.02 the effect is reversed. The influence of the interest rate risk is relatively

small which is recognized by the results listed in the columns under CCR(0) in Table 3.2.

Increasing correlation ρ between the interest rate process and the firm’s value causes

higher default probability, subsequently smaller value of the straight bond SB(0) , while

ρ has relative small effect on the value of the capped conversion right CCR(0) . There-

fore, in our example, the total effect is that the interest risk that positively correlated with

the firm’s value process reduces the value of the callable and convertible bond CCB(0) .

In Examples 3.1.1 and 3.2.1, the initial firm value V0 , the principal of the debt L , the

number of the shares m , the number of the bonds n and the conversion ratio γ are given

exogenously, hence, the no-arbitrage bond price can be calculated explicitly. Subsequently

the initial equity price S0 can be determined endogenously via the assumption on the

capital structure made in section 2.4

V0 = m · S0 + n ·D0,

where D0 stands for the price of convertible bond CB(0) or callable and convertible

bond CCB(0) . The results are summarized in Table 3.3.

Example 3.2.2. (Continuation of Example 3.1.1 and 3.2.1) The same model parameters

are assumed. The initial term structure is flat and the parameters are T = 8, σV =
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0.2, σr = 0.02, ρ = 0.5, b = 0.1, V = 1000, L = 100, K = 400, w = 1300, γ = 2, m =

10, n = 8, c = 2, r0 = 0.06, H = 150.

κ CB(0) S(0) CCB(0) S(0)
0.02 82.46 34.04 72.52 41.98
0.03 78.17 37.47 70.29 43.77
0.04 74.19 40.64 68.00 45.60

Table 3.3: No-arbitrage prices of S0 under positive correlation ρ = 0.5

The empirical relevance of Example 3.2.2 could be that a firm is established to finance a

project with equities and convertible bonds. The initial capital demand and the features

of the convertible bond, e.g. the conversion ratio, the principal and coupons, with or

without call provision, are given as model parameter, the no-arbitrage value of the shares

can be derived and used as the emission price.

There can also be situations that a firm wants to expand and finance a further project

with convertible debt. Suppose that till expansion the firm is solely financed with equity

and the share price is given. And given the principal and coupons, conversion and call

features, the task is to find a no-arbitrage conversion ratio which does not change the

value of the shares at the issuance time of the the bond. Within our model framework the

no-arbitrage conversion ratio can be determined and it is illustrated with Example 3.2.3.

Example 3.2.3. Till expansion the firm is financed solely with equity, the number of

shares is n and the total value of equity amounts to E0 . The firm issues convertible

bonds to finance the expansion of a total amount of V0 − E0 . The convertible bond has

a maturity of T = 8 years, a principal of L = 100 and an annual coupon of c = 2 , and

there are n such bonds. In one case it is assumed that there is no call provision, while

in another case the conversion value is capped at H = 250 . The task is thus to find

the conversion ratio such that the emission price of each bond equals 100. Initial term

structure is flat, the model parameters are V0 = 1000, σV = 0.2, σr = 0.02, b = 0.1, L =

100, K = 400, w = 1300, r0 = 0.06. The no-arbitrage conversion ratios for two different

capital structures are listed in 3.4.

In Example 3.2.3, the share and debt price are the same for different cases with S0 = 50

and S0 = 100 . The results in Table 3.4 demonstrate that by the same initial share and

bond price, the no-arbitrage conversion ratio is higher if the debt ratio is higher. The

conversion ratio of the callable and convertible bond is more sensitive to the change of

the debt ratio than the convertible but non-callable bond. Positive correlation of interest

rate risk and firm’s value process reduces the conversion ratio of the convertible but non-

callable bond, while by the callable and convertible bond the effect reverses. This effect
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E0 = 500, m = 10, n = 5 E0 = 300, m = 6, n = 7

ρ CB CCB CB CCB
-0.5 2.00 2.28 2.16 2.79
0.5 1.92 2.74 2.16 5.25

Table 3.4: No-arbitrage conversion ratios

is stronger if the firm is higher leveraged.
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Chapter 4

American-style Convertible Bond

In Chapter 3 we deal with the case that conversion and call can only take place at ma-

turity. We find that the debt can be decomposed into a bond component and an option

component. The no-arbitrage price of the option component is solely determined by the

firm’s value at maturity. For a more flexible and realistic contract, call and conversion

rights are considered to be American-style, granting continuous exercise opportunities for

both bond- and shareholder. Closely related to the American-style is the Bermudan-style

conversion and call rights, which can only be exercised at certain discrete time points

during the life of the contract.

In practice, bonds with American-style conversion and call options are named callable and

convertible bond. In the following, sometimes we use this term without explicitly referring

of American-style. A callable and convertible bond entitles its holder to receiving coupons

plus the principal at maturity, given that the issuer does not prematurely default on the

obligations. Moreover, prior to the maturity date the bondholder has the right to convert

the bond into a given number of shares. While on the other hand, the issuer can enforce

the bondholder to surrender the bond for a previously agreed price. It is essentially a

straight bond with an embedded option. Thus, it tends to offer a lower coupon rate.

Two sources of risks are related to the optimal investment in the callable and convertible

bond, one stemming from the randomness of firm’s value, and the other stemming from

the randomness of the termination time, namely the contract can be stopped by call,

conversion and default.

After the inception of the contract, the bondholder’s aim is to exercise the conversion

option in order to maximize the value of the bond. The issuer will call the bond if he

can reissue a bond with lower debt cost. Another incentive of the issuer to call a bond is

to limit the bondholder’s participation in rising stock prices. Such considerations lead to

the problem of optimal stopping for both bond- and shareholder where certain aspects of

strategic behaviors play an important role. The problem of callable and convertible bond

can generically be reduced to the pricing problem of so-called game options.

31
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Modeling of callable and convertible bond as a defaultable game option within structural

approach has been studied by Sirbu et al. (2004) and further developed in a companion

paper of Sirbu and Schreve (2006). They assume that the firm’s value comprises the equity

in the form of a single stock, and a single callable and convertible bond. The volatility of

the firm’s value is constant. The bond earns continuously a coupon at a fixed rate while

the dividends are paid at a rate which is a fixed fraction of the equity value. The interest

rate is also assumed to be constant. In their model the dynamic of the firm’s value does

not follow a geometric Brownian motion, but a more general one-dimensional diffusion due

to the fixed rate of coupon payment. Default occurs if the firm’s value falls to zero which

is caused by the coupon payment. According to this default mechanism both equity and

bond have zero recovery. In the first paper, they assume that the bond is perpetual, i.e.

it never matures and can only be terminated by conversion, call or default. In the second

paper the bond has finite maturity while the other assumptions remain unchanged. The

determination of the optimal call and conversion strategies is characterized as a optimal

stopping game between the equity- and bondholder. Viscosity solution concept is used to

determine the no-arbitrage price and optimal stopping strategies. They show that if the

coupon rate is below the interest rate times the call price, then conversion should precede

call. On the other hand, if the dividend rate times the call price is below the coupon rate,

call should precede conversion.

Our model differs from theirs mainly by allowing non-zero recovery rate of the bond and

default occurs if the firm’s value hits a lower but positive boundary. The dynamic of the

firm’s value follows a geometric Brownian motion which means the underlying process,

the evolution of the firm’s value, does not depends on the solution of the game option.

Therefore the results of Kifer (2000) can be applied to the callable and convertible bond.

Simple recursion with a binomial tree can be used to derive the value of the bond and the

optimal strategies. Moreover, stochastic interest rate can be incorporated into our model.

The remainder of the chapter is structured as follows. Section 4.1 gives a formal de-

scription of the contract feature of the callable and convertible bond. The theoretical

fundamental for the pricing of the game option is summarized in Section 4.2.1, and the

optimal stopping times are derived in Section 4.2.2. Given the optimal strategies, the

callable and convertible bond is valued by means of a tractable recursion method, we first

assume that there is no interest rate risk, and in particular, the interest rate is assumed

to be constant in Section 4.3. Then the results are extended in Section 4.5 to the case

with stochastic interest rate. Section 4.4 gives a description of the contract feature of

a Bermudan-style callable and convertible bond. The valuation is carried out with the

similar recursion as in the case of American-style contracts. The only difference is that

the conversion and call payoff is zero on dates when conversion and call are not allowed.
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4.1 Contract Feature

In the following we assume that the bond matures at time T ∈ R+. The same features

of coupon payments and default mechanism as in the case of European convertible bonds

are proposed for the American-style contract. The coupons are paid out continuously

with a constant rate of c , given that the firm’s value is above the level ηt . The con-

tract terminates either at maturity T or, in case of premature default, at the default

time τ, which is the first hitting time of the barrier νt by the firm’s value. Moreover,

the contract stops also by conversion or call. The bondholder can stop and convert the

bond into equities according to the prescribed conversion ratio γ. The conversion time

of the bondholder is denoted as τb ∈ [0, τ ]. The shareholder can stop and buy back the

bond at a price given by the maximum of the deterministic call level Ht and the current

conversion price. This ensures that the payoff by call is never lower than the conversion

payoff. This assumption makes the aspect of game option relevant and interesting for the

valuation of callable convertible bonds. The call time of the seller is denoted as τs ∈ [0, τ ] .

4.1.1 Discounted payoff

First, we introduce the notation β(s, t) = exp{−
∫ t

s
r(u)du} which is the discount factor,

where r(t) is the instantaneous risk-free interest rate. The discounted payoff of a callable

and convertible bond can be distinguished in four cases.

(i) Let τb < τs ≤ T, such that the contract begins at time 0 and is stopped and

converted by the bondholder. In this case, the discounted payoff conv(0) of the

callable and convertible bond at time 0 is composed of the accumulated coupon

payments and the payoff through conversion

conv(0) = c

∫ τb∧τ

0

β(0, s)1{Vs>ηs}ds +
ντ

n
· β(0, τ)1{τ≤τb}

+β(0, τb)1{τb<τ}

( γVτb

m + γn

)
. (4.1)

(ii) Let τs < τb ≤ T, such that the contract is bought back by the shareholder before

the bondholder converts. In this case, the discounted payoff call(0) of the callable

and convertible bond at time 0 is composed of the accumulated coupon payments

and the payoff through call,

call(0) = c

∫ τs∧τ

0

β(0, s)1{Vs>ηs}ds +
ντ

n
· β(0, τ)1{τ≤τs}

+β(0, τs)1{τs<τ} max
{

Hτs ,
γVτs

m + γn

}
. (4.2)
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(iii) If τs = τb < T the discounted payoff of the bond equals the smaller value, i.e. the

discounted payoff with conversion.

(iv) For τb ≥ T and τs ≥ T, the discounted payoff of a callable and convertible bond

at time 0 is

term(0) = c

∫ τ∧T

0

β(0, s)1{Vs>ηs}ds +
ντ

n
· β(0, τ)1{τ≤T}

+β(0, T )1{T<τ} max

{
γVT

m + γn
, min

{
VT

n
, L

}}
.

Note that
VT

n
>

γVT

m + γn
since n, m ∈ N+ and γ ∈ R+. Hence in the case

VT

n
≤ L the

bondholder would not convert and

1{VT≤nL} max

{
γVT

m + γn
, min

{
VT

n
, L

}}
=

VT

n
.

Thus, in the case (iv), we can rewrite the discounted payoff term(0) as

term(0) = c

∫ τ∧T

0

β(0, s)1{Vs>ηs}ds +
ντ

n
· β(0, τ)1{τ≤T}

+β(0, T )1{T<τ,VT >nL} max

{
γVT

m + γn
, L

}
+ β(0, T )1{T<τ,VT≤nL}

VT

n
.(4.3)

Denote the minimum of conversion and call time by ζ = τs ∧ τb. Then, all in all, the

discounted payoff of a callable and convertible bond ccb(0) is given as the sum of the

payoffs in the former four cases and amounts to

cbb(0) = 1{ζ<τ}

(
c

∫ ζ∧T

0

β(0, s)1{Vs>ηs}ds + 1{ζ=τs<τb≤T}β(0, ζ) max

{
Hζ ,

γVζ

m + γn

}

+1{ζ=τb<τs<T}β(0, ζ)
γVζ

m + γn
+ 1{ζ=T}β(0, ζ) max

{
γVT

m + γn
, L

})

+ 1{τ≤ζ}

(
c

∫ τ∧T

0

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)
ντ

n

+1{T<τ}β(0, T ) min

{
VT

n
, L

})
. (4.4)
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4.1.2 Decomposition of the payoff

Same as in the case of European convertible bond, the American-style callable and con-

vertible bond can also be decomposed into a straight bond component and an option

component. We can reformulate ccb(0) in Equation 4.4 as follows

ccb(0) = 1{ζ<τ}β(0, ζ)

(
1{ζ=τb<τs<T}

γVζ

m + γn
+ 1{ζ=τs<τb≤T} max

{
Hζ ,

γVζ

m + γn

}

+1{ζ=T} max

{
γVT

m + γn
, L

})

+

(
c

∫ τ∧T

0

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)
ντ

n
+ 1{T<τ}β(0, T ) min

{
VT

n
, L

})
︸ ︷︷ ︸

=d(0)

−1{ζ<τ}

(
c

∫ τ∧T

ζ

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)
ντ

n
+ 1{T<τ}β(0, T ) min

{
VT

n
, L

})
︸ ︷︷ ︸

:=β(0,ζ)φζ

.

Since
VT

n
≥ L if ζ ≤ T, 1 thus the following decomposition can be achieved, which

enables us to investigate the pure effect caused by the conversion and call rights.

Theorem 4.1.1. The payoff of a callable and convertible bond can be decomposed into

a straight bond d(0) and a defaultable game option component g(0) .

ccb(0) = d(0) + g(0) (4.5)

with

d(0) := c

∫ τ∧T

0

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(0, τ)
ντ

n
+ 1{T<τ}β(0, T ) min

{
VT

n
, L

}
,

and

g(0) := 1{ζ<τ}β(0, ζ)

{
1{ζ=τb<τs<T}

(
γVζ

m + γn
− φζ

)

+1{ζ=τs<τb≤T}

(
max

{
Hζ ,

γVζ

m + γn

}
− φζ

)
+ 1{ζ=T}

(
γVT

m + γn
− L

)+
}

,

1Otherwise the bondholder would not make use of his conversion right.
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where

φζ := c

∫ τ∧T

ζ

β(0, s)1{Vs>ηs}ds + 1{τ≤T}β(ζ, τ)
ντ

n
+ 1{T<τ}β(ζ, T ) min

{
VT

n
, L

}
(4.6)

is the discounted value (discounted to time ζ ) of the sum of the remaining coupon pay-

ments and the principal payment of a straight coupon bond given that it has not defaulted

till time ζ .

4.2 Optimal Strategies

After the inception of the contract, the bondholder’s aim is to maximize the value of the

bond by means of optimal exercise of the conversion right. The incentive of the issuer to

call a bond is to limit the bondholder’s participation in rising stock prices. The embedded

option rights owned by both of the bondholder and issuer can be treated with the well

developed theories on the game option.

4.2.1 Game option

In this section we summarize the valuation problem of game options 2 and highlight some

important results derived by Kifer (2000), Kallsen and Kühn (2004) and Kallsen and

Kühn (2005).

Definition 4.2.1. Let T ∈ R+. Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ).

A game option is a contract between a seller A and a buyer B which enables A to

terminate it and B to exercise it at any time t ∈ [0, T ] up to the maturity date T. If B

exercises at time t, he obtains from A the payment Xt. If A terminates the contract

at time t before it is exercised by B, then he has to pay B the amount Yt, where Xt

and Yt are two stochastic processes which are adapted to the filtration (Ft)t∈[0,T ] , and

satisfy the following condition

Xt ≤ Yt, for t ∈ [0, T ], and XT = YT . (4.7)

Moreover, if the seller A terminates and the buyer B exercises at the same time, A

only has to pay the lower value Xt. Loosely speaking, the seller must pay certain penalty

if he terminates the contract before the buyer exercises it.

Game options include both American and European options as special cases. Formally, if

we set Yt = ∞ for t ∈ [0, T ), then we obtain an American option. A European option

is obtained by setting Xt = 0 for t ∈ [0, T ) and XT is a nonnegative FT -measurable

2In Kifer (2000) and Kallsen and Kühn (2005) game options are alternatively also called game con-
tingent claims, but we will only use the term game option.
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random variable.

If the seller A selects a stopping time τA as termination time and the buyer B chooses

a stopping time τB as exercise time, then A promises to pay B at time τA ∧ τB the

amount

g(τA, τB) := XτB
1{τB≤τA} + YτA

1{τA<τB}, (4.8)

which denotes the payoff of a game option.

The aim of the buyer B is to maximize the payoff g(τA, τB), while the seller A tends to

minimize the payoff. It is proved in the literature that under a martingale measure P ∗ 3,

the optimal strategy for the buyer is therefore to select the stopping time which maximizes

his expected discounted payoff given the minimizing strategy of the seller, while the seller

will choose the stopping time that minimizes the expected discounted payoff given the

maximizing strategy of the buyer. This max-min strategy of the buyer leads to the lower

value of the game option, whereas the min-max strategy of the seller leads to the upper

value of the game option. In a complete market the condition described by Equation (4.7)

ensures that the lower value equals the upper value such that there exists a solution for

the pricing problem of a game option.

The existence and uniqueness of the no-arbitrage price in a complete market where the

filtration {Fu}0≤u≤T is generated by a standard one-dimensional Brownian motion is

proved in Kifer (2000), Theorem 3.1. The no-arbitrage price of a game option equals

G(0) ,

G(0) = sup
τB∈F0T

inf
τA∈F0T

EP ∗ [e−r(τA∧τB)g(τA, τB)]

= inf
τA∈F0T

sup
τB∈F0T

EP ∗ [e−r(τA∧τB)g(τA, τB)] (4.9)

where F0T is the set of stopping times with respect to the filtration {Fu}0≤u≤T with

values in [0, T ]. After the inception of the contract, the value process G(t) , t ∈ (0, T ]

satisfies

G(t) = esssupτB∈FtT
essinfτA∈FtT

EP ∗ [e−r(τA∧τB)g(τA, τB)|Ft] (4.10)

= essinfτA∈FtT
esssupτB∈FtT

EP ∗ [e−r(τA∧τB)g(τA, τB)|Ft].

Where FtT is the set of stopping times with values in [t, T ]. Further, the optimal stop-

3In complete market, the equivalent martingale measure P ∗ is unique, while in incomplete market a
martingale measure P ∗ can be chosen with some hedging arguments.
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ping times for the seller A and buyer B respectively are

τ ∗A = inf{t ∈ [0, T ] | e−rtYt ≤ G(t)}

τ ∗B = inf{t ∈ [0, T ] | e−rtXt ≥ G(t)}. (4.11)

It is optimal for the seller A to buy back the option as soon as the current exercise value

e−rtYt is equal to or smaller than the value function G(t) , while the optimal strategy

for the buyer B is to exercise the option as soon as the current exercise value e−rtXt is

equal to or greater than the value function G(t).

Kallsen and Kühn (2004) and Kallsen and Kühn (2005) study the game option in incom-

plete market. The authors assume that the game option can be traded together with

the other primary assets during the entire contract period [0, T ], which means that the

payoff processes X and Y may depend on the market price process of the game option

G . If the condition Xt ≤ Gt ≤ Yt for 0 ≤ t ≤ T is satisfied and the lower payoff Xt is

bounded, i.e. it cannot take the value infinity, Theorem 2.9 of Kallsen and Kühn (2005)

states that the max-min strategy of the buyer and the min-max strategy of the seller can

be applied and the similar result as in the case of complete market can be achieved. G(t)

is an arbitrage-free price process if and only if it is a semi-martingale and satisfies

G(t) = esssupτB∈FtT
essinfτA∈FtT

EQ[e−r(τA∧τB)g(τA, τB)|Ft] (4.12)

= essinfτA∈FtT
esssupτB∈FtT

EQ[e−r(τA∧τB)g(τA, τB)|Ft]

for some Q ∈ Q. The optimal stopping times τ ∗A and τ ∗B can also be described with

Equation (4.11). The only difference is that G(t) is derived under the expectation of

some Q ∈ Q.

A possible martingale measure Q is derived in Kallsen and Kühn (2004) in the following

way. The underlying securities are assumed to be governed by some objective probability

measure P. In incomplete market the derivation of the no-arbitrage price of the game

option can no longer be done independently of the market agent’s preference. A unique

price can only be derived under stronger assumptions. They use the neutral derivative

pricing rule which relies on both utility maximization and market clearing condition of

the game option market4. The investors maximize their expected utility of financial gains.

They may have different risk aversion parameters but they behave quite identically in the

sense that all of them have the same form of utility function. Thus all of the investors can

be summarized as a representative investor who has the aggregated utility function in the

same form of the individual utility functions. The aggregated risk aversion parameter can

be specified explicitly. The market clearing condition requires that the optimal portfolio

of the representative investor contains no contingent claims. Under these quite strong

4No clearing of the underlying risky assets is required
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assumptions the neutral pricing measure Q can be derived. The unique arbitrage free

price process of the game option is then recovered as the value of a zero-sum Dynkin game

under the neutral pricing measure Q .

4.2.2 Optimal stopping and no-arbitrage value of callable and

convertible bond

The discounted conversion value of the callable and convertible bond, described with

Equation (4.1), contains expressions about default times. As in the structural approach,

the default time is a predictable stopping time, and adapted to the filtration (Ft)t∈[0,T ]

generated by the firm’s value. Thus the discounted conversion value is adapted to the

filtration (Ft)t∈[0,T ] . And the same is valid for the discounted call value and the dis-

counted terminal payoff, described with Equations (4.2) and (4.3) respectively. Moreover,

the call value is always larger than the conversion value for t < T , and they coincide at

maturity T . Hence, the payoffs in the case of conversion and call satisfy the requirements

on the payoffs of the game option. Furthermore, the market in our structural approach is

assumed to be complete. Therefore the theory on game option developed by Kifer (2000)

can be applied to derive the unique no-arbitrage value and the optimal strategies.

Proposition 4.2.2. Plugging the payoff functions ccb(0) in Equation (4.9), the unique

no-arbitrage price CCB(0) at time t = 0 of the callable and convertible bond is given

by

CCB(0) = sup
τb∈F0T

inf
τs∈F0T

EP ∗ [ccb(0)] = inf
τs∈F0T

sup
τb∈F0T

EP ∗ [ccb(0)]. (4.13)

After the inception of the contract, the value process CCB(t) satisfies

CCB(t) = esssupτb∈FtT
essinfτs∈FtT

EP ∗ [ccb(0)|Ft] (4.14)

= essinfτs∈FtT
esssupτb∈FtT

EP ∗ [ccb(0)|Ft].

The optimal strategy for the bondholder is to select the stopping time which maximizes

the expected payoff given the minimizing strategy of the issuer, while the issuer will choose

the stopping time that minimizes the expected payoff given the maximizing strategy of

the bondholder. This max-min strategy of the bondholder leads to the lower value of the

convertible bond, whereas the min-max strategy of the issuer leads to the upper value

of the convertible bond. The assumption that the call value is always larger than the

conversion value prior to the maturity and they are the same at maturity T ensures that

the lower value equals the upper value such that there exists a unique solution.

Furthermore, the optimal stopping times for the equity holder and bondholder respectively
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are

τ ∗b = inf{t ∈ [0, T ] | conv(0) ≥ CCB(t)}
τ ∗s = inf{t ∈ [0, T ] | call(0) ≤ CCB(t)}. (4.15)

It is optimal to convert as soon as the current conversion value is equal to or larger than

the value function CBB(t), while the optimal strategy for the issuer is to call the bond

as soon as the current call value is equal to or smaller than the value function CBB(t).

Remark 4.2.3. The no-arbitrage value of the callable and convertible bond and the

optimal stopping times described by Equation (4.13) and (4.15) incorporate also the case

of stochastic interest rate. Kifer (2000) assumes that the interest rate is constant, but

this assumption is not necessary, because game option is essentially a zero-sum Dynkin

stopping game and the min-max and max-min strategies are also valid for the stochastic

discount factor. For details, see e.g. Kifer (2000) and Cvitanić and Karatzas (1996).

In section 4.1.2 it has been shown that the callable and convertible bond can be decom-

posed into a straight bond and a game option component

ccb(0) = d(0) + g(0).

Therefore the no-arbitrage price of the callable and convertible bond can also be derived

in the following way

CCB(0) = EP ∗ [d(0)] + EP ∗ [g(0)].

The no-arbitrage price of the game option component G(0) equals

G(0) := EP ∗ [g(0)]

= sup
τb∈F0T

inf
τs∈F0T

EP ∗ [g(0)] = inf
τs∈F0T

sup
τb∈F0T

EP ∗ [g(0)]. (4.16)

4.3 Deterministic Interest Rates

In general, closed-form solutions of the optimization problems stated in Equations (4.13)

and (4.16) are not available. One alternative solution is to approximate the continuous

time problem with a discrete time one. The no-arbitrage value of the callable and convert-

ible bond can then be derived by a recursion formula. In order to focus on the recursion

procedure, we assume in the first step that the interest rate is constant. Theorem 2.1

of Kifer (2000) illustrates the recursion method for the game option and the optimal

stopping strategies of both counterparts. The discretization method and its convergence

is proved in Proposition 3.2 of the same paper. We will apply and adapt this recursion
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method to determine the no-arbitrage value and optimal stopping times of the callable

and convertible bond.

4.3.1 Discretization and recursion schema

The time interval [0, T ] is discretized into N equidistant time steps 0 = t0 < t1 < . . . <

tN = T , with ti−ti−1 = ∆ . Assume that the bondholder does not receive the coupon for

the period in which the bond is converted, while receives the dividends for the converted

shares, though. If the bond is called, coupon will be paid. CCB(tn) , the recursion value

of the callable and convertible bond at time tn , can be derived by means of the max-min

or min-max recursion, illustrated in Figure 4.1 and 4.2. Note that in complete markets

the max-min strategy leads to the same value as the min-max strategy. Hence it does not

matter whether we carry out the recursion according to the strategy of the bondholder

or that of the shareholder.

For n = 0, 1, ..., N − 1,

CCB(tn) =



min

{
e−rtn max

{
H + ctn ,

γVt+n

m + γn

}
,

max
{

e−rtn
γVt+n

m + γn
, EP ∗ [CCB(tn+1)|Ftn ] + e−rtnctn

}}
if Vt+n

> νtn

e−rtn
Vt+n

n
if Vt+n

≤ νtn

(4.17)
and

CCB(T ) =


e−rT max

{
γVT+

m + γn
, L + ctN

}
if VT+ > n(L + ctN )

e−rT VT+

n
if VT+ ≤ n(L + ctN )

(4.18)

Figure 4.1: Min-max recursion callable and convertible bond, strategy of the issuer

where Vt+n
is the firm’s value just before payout and νtn is the default barrier. The

discretized coupon ctn equals c∆ , and will only be paid out if the firm’s value is above

certain level, i.e. Vt+n
> ηtn , therefore ctn is path-dependent.

Furthermore, for each i = 0, 1, ..., N−1, the rational conversion time after time ti equals

τ ∗b (ti) = min
{

tk ∈ {ti, ..., tN−1}
∣∣∣ e−rtk

γVt+k

m + γn
= CCB(tk)

}
,
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For n = 0, 1, ..., N − 1,

CCB(tn) =



max

{
e−rtn

γVt+n

m + γn
, min

{
e−rtn max

{
H + ctn ,

γVt+n

m + γn

}
,

EP ∗ [CCB(tn+1)|Ftn ] + e−rtnctn

}}
if Vt+n

> νtn

e−rtn
Vt+n

n
if Vt+n

≤ νtn

(4.19)
and

CCB(T ) =


e−rT max

{
γVT+

m + γn
, L + ctN

}
if VT+ > n(L + ctN )

e−rT VT+

n
if VT+ ≤ n(L + ctN )

(4.20)

Figure 4.2: Max-min recursion callable and convertible bond, strategy of the bondholder

the rational call time after time ti equals

τ ∗s (ti) = min
{

tk ∈ {ti, ..., tN−1}
∣∣∣ e−rtk max

{
H + ctk ,

γVt+k

m + γn

}
= CCB(tk)

}
.

Therefore at time tk , it is optimal to convert or call when the current conversion or call

value equals the payoff function CCB(tk) .

Remark 4.3.1. For convenience of notation, the call value H is assumed be constant,

but the same recursion formulas also hold in the case of a deterministic and time dependent

call level H(t). In that case H has to be replaced by H(t+n ) in the above formulas.

Analogously, the no-arbitrage value of the pure game option component G(tn) at time tn
can be derived through the recursion shown in Figure 4.3 with φtn as discretized value

defined by Equation (4.6).

4.3.2 Implementation with binomial tree

As the firm’s value in our structural model follows a geometric Brownian motion, in

absence of interest rate risk, it can be approximated by the Cox-Ross-Rubinstein model.

The time interval [0, T ] is divided in N subintervals of equal lengths, the distance

between two periods is ∆ = T/N. The stochastic evolution of the firm’s value is then

modeled by

V (i, j) = V (0)ujdi−jκ̂i, for all j = 0, ..., i, i = 1, ..., N, (4.21)



4.3. DETERMINISTIC INTEREST RATES 43

For n = 0, 1, ..., N − 1,

G(tn) =


min

{
e−rtn

(
max

{
H + ctn ,

γVt+n

m + γn

}
− φtn

)
,

max

{
e−rtn

(
γVt+n

m + γn
− φtn

)
, EP ∗ [G(tn+1)|Ftn ]

}}
if Vt+n

> νtn

0 if Vt+n
≤ νtn

or

G(tn) =



max

{
e−rtn

(
γVt+n

m + γn
− φtn

)
,

min
{

e−rtn

(
max

{
H + ctn ,

γVt+n

m + γn

}
− φtn

)
,

EP ∗ [G(tn+1)|Ftn ]
}}

if Vt+n
> νtn

0 if Vt+n
≤ νtn

and

G(T ) =

 e−rT max

{
γVT+

m + γn
− L− cN , 0

}
if VT+ > n(L + cN)

0 if VT+ ≤ n(L + cN)

Figure 4.3: Max-min and min-max recursion game option component

and

u = eσV

√
∆, d = e−σV

√
∆, κ̂ = e−κ∆,

where V (i, j) denotes the firm’s value at time ti after j up movements, and less the

amount to be paid out. And according to Equation (4.21), the firm’s value just before the

payment equals
V (i, j)

κ̂
, and the total amount to be paid out at time ti is V (i, j)

κ̂

1− κ̂
.

We see that u, d and κ̂ are time and state independent. The equivalent martingale

measure P ∗ exists if the periodical discount factor d < 1 + r̂ = er∆ < u. The transition

probability is given by

p∗ :=
1 + r̂ − d

u− d
.

Concretely, the recursion procedure of the min-max strategy 5 of the issuer of a callable

and convertible bond, described by Equations (4.17) and (4.18), can be implemented

within the Cox-Ross-Rubinstein model with Algorithm I (Figure 4.4). And the recursion

of the best strategy of the game option component is given in Algorithm II (Figure 4.5).

5The algorithm of max-min strategy can be written in the similar way, therefore we omit this case.
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The no-arbitrage price of the callable and convertible bond is then given by CCB(0, 0)

while the no-arbitrage value of the game option component is given by G(0, 0).

for j = 0, 1, . . . , N,

if
V (N, j)

κ̂
> nL + ncN,j,

then CCB(N, j) = max
{ γ

m + γn
· V (N, j)

κ̂
, L + cN,j

}
else, CCB(N, j) =

V (N, j)

n · κ̂

for i = N − 1, . . . , 0,

for j = i, . . . , 0,

if V (i, j) > K, then

CCB(i, j) = min

{
max

[
H + ci,j,

γ

m + γn
· V (i, j)

κ̂

]
,

max
[ γ

m + γn
· V (i, j)

κ̂
,

1

1 + r̂

(
p∗ · CCB(i + 1, j)

+(1− p∗) · CCB(i + 1, j + 1)
)

+ ci,j

]}
,

else, CCB(i, j) =
V (i, j)

n · κ̂

Figure 4.4: Algorithm I: Min-max recursion American-style callable and convertible bond

The first loop in Algorithm I (Figure 4.4) and II (Figure 4.5) determines the optimal strat-

egy and thus the optimal terminal value CCB(N, j) or G(N, j) respectively. While the

second loop in the both algorithms determines the value of CCB(i, j) or G(i, j) ac-

cording to the min-max strategy at node (i, j) of the tree. D(i, j) in Algorithm II

denotes the time diecretized value of the sum of the remaining coupon payments and the

principal payment of a straight coupon bond given by Equation (4.6). The value of each

CCB(i, j) is stored in a data matrix, and the event of conversion, call or continuation of

the contract is recorded for each node (i, j) . Then given the development, i.e. the path of

the firm’s value V (i, j) , the bondholder and issuer can determine their optimal stopping

times by moving forward alongside the tree. At the time the contract is terminated, i.e.

converted, called or default at the node (i, j) , CCB(i, j) is then the discounted payoff

of the callable and convertible bond for this realization of the firm’s value.
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for j = 0, 1, . . . , N,

if
V (N, j)

κ̂
> nL + ncN,j,

then G(N, j) = max
{ γ

m + γn
· V (N, i)

1− κ̂
− L− cN,j, 0

}
else, G(N, j) = 0

for i = N − 1, . . . , 0,

for j = i, . . . , 0,

if V (i, j) > K, then

G(i, j) = min

{
max

[
H + ci,j,

γ

m + γn
· V (i, j)

κ̂

]
−D(i, j),

max
[ γ

m + γn
· V (i, j)

κ̂
−D(i, j),

1

1 + r̂

(
p∗ ·G(i + 1, j)

+(1− p∗) ·G(i + 1, j + 1)
)]}

,

else, G(i, j) = 0

Figure 4.5: Algorithm II: Min-max recursion game option component

4.3.3 Influences of model parameters illustrated with a numer-

ical example

The no-arbitrage value of the callable and convertible bond is affected by the randomness

of the firm’s value, and the randomness of the termination time. It is a complex contract

and influenced by a number of parameters: e.g. the value of coupon and principal, default

barrier, volatility of the firm’s value, conversion ratio, call level, maturity, etc. The firm’s

value in total follows a diffusion process, while the bond and equity value are results of a

strategic game, which are not simple diffusion processes. Change of one parameter causes

simultaneous changes of the value of bond and equity. For example, intuitively, the in-

crement of the conversion ratio causes the rise of conversion value, thus the rise of the

bond price, but at the same time the reduction of the equity value, and consequently the

decline of the conversion value. The direction and quantity of the total effect cannot be

determined without numerical evaluation. Moreover, to design a meaningful callable and

convertible bond, the parameters should in accordance with each other. The situation

such that the bond will be converted or called immediately after the start of the contract,

should not happen. In the following, we will illustrate the influences of the model param-

eters and their interactions with a close study of a numerical example.
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Example 4.3.2. As an explicit numerical example we choose the following parameters:

T = 8, σV = 0.2, r = 0.06, V (0) = 1000, K = 400, ω = 1300, L = 100, γ = 1.5, m =

10, n = 8, H = 120.

σV = 0.2 σV = 0.4

κ c SB(0) G(0) CCB(0) S(0) SB(0) G(0) CCB(0) S(0)
0 0 59.40 16.92 76.32 38.94 48.01 26.85 74.86 40.11

0.04 2 65.15 8.65 73.80 40.96 52.38 20.41 72.79 41.77
0.04 3 69.83 7.82 77.65 37.88 56.39 18.72 75.12 39.91
0.04 4 74.50 6.99 81.50 34.80 60.40 17.03 77.44 38.06

Table 4.1: Influence of the volatility of the firm’s value and coupons on the no-arbitrage
price of the callable and convertible bond (384 steps)

Remark 4.3.3. Within the example all results, except for the results in Table 4.2, are

derived with ∆ = 1/48, which approximately corresponds to a weekly valuation. By

∆ = 1/48 and a maturity of T = 8 it corresponds to a tree with 384 steps.

The results in Table 4.1 are derived for different payout ratios κ and coupons c 6. They

illustrate first that the value of the game option component decreases when coupon pay-

ment rises. The reason is that the value of the remaining coupon and principal payment

defined by Equation (4.6) can be thought as the strike of the game option, which is an

increasing function of coupon rate c , and the value of the game option component de-

creases in strike. The large price difference of G(0) in the case κ = 0, c = 0 , to the case

κ = 0.04, c = 2 is due to the increment of payout ratio and coupon rate. Both factors

together result in a large drop of the value of G(0) . The second effect shown by Table

4.1 is that the more volatile the firm’s value, the larger the default probability, hence the

smaller the value of straight bond. But on the other side the game option component

G(0) becomes more valuable. In our example, the value of the callable and convertible

bond which is the sum of the both components decreases in volatility7.

The stability of the recursion is demonstrated with Table 4.2. The recursions are carried

out alongside trees with different steps for σV = 0.2 and σV = 0.4. We can see that

the numerical results stabilized at ∆ = 1/48. Further refinements ( ∆ = 1/100 and

∆ = 1/250 ) of the tree do not change the numerical results considerably while much

more time are needed for the calculation. Therefore, for the further calculations in this

example ∆ is always set to be 1/48.

6The coupons are to be paid if the firm’s value is above ηt = ω · e−r(T−t)e−κt , The default barrier is
νt = K · e−r(T−t)e−κt

7In Example 4.3.2, the value of the callable and convertible bond increases in volatility, but one cannot
argue it generally, as it depends also on other factors e.g. default barrier and maturity.



4.3. DETERMINISTIC INTEREST RATES 47

σV = 0.2 σV = 0.4

∆ SB(0) CCB(0) G(0) SB(0) CCB(0) G(0)
1 69.37 77.00 7.64 54.30 73.83 19.54

1/12 69.82 77.65 7.82 56.14 75.12 18.96
1/48 69.83 77.64 7.81 56.39 75.12 18.72
1/100 69.83 77.64 7.81 56.45 75.11 18.66
1/250 69.83 77.64 7.81 56.51 75.12 18.61

Table 4.2: Stability of the recursion

γ = 1.5 γ = 2

κ c SB(0) G(0) CCB(0) S(0) SB(0) G(0) CCB(0) S(0)
0 0 59.40 16.92 76.32 38.94 59.40 22.96 82.35 34.12

0.04 2 65.15 8.65 73.80 40.96 65.15 13.12 78.27 37.38
0.04 3 69.83 7.82 77.65 37.88 69.83 11.71 81.54 34.77
0.04 4 74.50 6.99 81.50 34.80 74.50 10.39 84.90 32.08

Table 4.3: Influence of the conversion ratio on the no-arbitrage price of the callable and
convertible bond (384 steps)

Table 4.3 has the same structure as Table 4.1 and shows the influence of the conversion

ratio γ on G(0) and CCB(0) . The volatility of the firm’s value is kept to be con-

stant, i.e. σV = 0.2. The change of conversion ratio γ does not affect the price of the

straight coupon bond and it only changes the value of G(0) . The increase of γ from 1.5

to 2.0 makes the game option component more valuable, thus in total the callable and

convertible bond more valuable8. The case by κ = 0.04, c = 2 and γ = 2 is not a good

contract design. As with CCB(0) = 78.27 , and S(0) = 37.38 , the initial price of the

bond is almost equal to the initial conversion value, which means that the conversion may

take place very quickly after the inception of the contract, because a slight increase of the

firm’s value will make conversion the optimal choice of the bondholder. Usually it is not

the intention of the issuer to issue a bond which will be converted or called immediately

after the inception of the contract.

Table 4.4 is also structured in the same way as Tables 4.3 and 4.1. It demonstrates the

influence of the maturity T on G(0) and CCB(0) . The volatility of the firm’s value

and conversion ratio are σV = 0.2 and γ = 1.5 . Comparing the case T = 8 with

T = 6 , we observe that the straight bond is more valuable with shorter maturity, because

the default probability is lower and by positive interest rate the principal is more valuable

if it is paid earlier. The game option component G(0) is less valuable in the case of

shorter maturity. It is due to two effects: first, shorter maturity means less conversion

8Again we cannot take it as a general result, as it depends also on the parameters m and n .
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T = 8 T = 6

κ c SB(0) G(0) CCB(0) S(0) SB(0) G(0) CCB(0) S(0)
0 0 59.40 16.92 76.32 38.94 67.21 11.91 79.12 36.71

0.04 2 65.15 8.65 73.80 40.96 71.75 6.22 77.97 37.62
0.04 3 69.83 7.82 77.65 37.88 75.57 5.75 81.33 34.94
0.04 4 74.50 6.99 81.50 34.80 74.50 5.27 84.67 32.26

Table 4.4: Influence of the maturity on the no-arbitrage price of the callable and convert-
ible bond (384 steps)

chances for the bondholder, and secondly, an increase of the value of the straight bond

reduces the value of the equity thus the conversion value. The reduction of G(0) may

in turn increase the value of equity, here the final result is that reduction in maturity

increases the value of the callable and convertible bond CCB(0) .

κ c ω = 0, σV = 0.2 ω = 0.04, σV = 0.2 ω = 0, σV = 0.4 ω = 0.04, σV = 0.4

0 0 16.92 14.84 26.85 24.40
0.04 2 8.65 7.67 20.41 19.00
0.04 4 6.99 3.64 17.03 13.58

Table 4.5: Influence of the call level on the no-arbitrage price of the game option compo-
nent (384 steps)

The value of the game option component can be restricted when the call level is reduced.

This effect is confirmed by the results in Table 4.5. The reduction of the call level is

achieved by making the call level to be time dependent

H(t) = e−ω(T−t)H , ω ≥ 0. (4.22)

The value of H(t) increases in time and reaches H at maturity T. By ω = 0 , the

call level reaches its maximum and is a constant H . The impact of the call level on

the no-arbitrage price of game option component is stronger in the case of higher coupon

rate c and lower volatility of the firm’s value σV . Finally, we compare the value of the

European and American conversion and call rights.9 The model parameters are assumed

to be the same for both cases. For the results in the column G(0)1 the call level is set to

be constant with H = 120 , while by G(0)2 , the call level is time dependent and defined

according to Equation (4.22) with ω = 0.04 and H = 120 .

9As we have shown that both European and American convertible bond can be decomposed into a
straight coupon bond and an option component, therefore the price difference of European and American
convertible bond is solely determined by the characteristic of the option components.
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σV = 0.2 σV = 0.4

κ c G(0)1 G(0)2 CR(0) CCR(0) G(0)1 G(0)2 CR(0) CCR(0)
0 0 16.92 14.84 7.12 3.40 26.85 24.40 17.91 3.82

0.04 2 8.65 7.67 5.46 1.87 20.41 19.00 12.38 2.92
0.04 4 6.99 3.64 3.46 1.87 17.03 13.58 12.38 2.92

Table 4.6: Comparison European- and American-style conversion and call rights (384
steps)

Table 4.6 illustrates that the game option component G(0)1 and G(0)2 are much more

valuable than the European callable conversion right CCR(0) . The reason is that the

latter is capped by H at maturity regardless of the firm’s value while the call value of

the former is the maximum of H and the conversion value till maturity and equals the

conversion value at maturity. The value of G(0)1 and G(0)2 are also larger than the

European non-callable conversion right CR(0) . The only exception is that G(0)2 differs

only slightly from CR(0) for a higher coupon of c = 4 . Both G(0) and CR(0) are

sensitive to changes of volatility σV , while CCR(0) varies only slightly by a relative

large change of σV .

4.4 Bermudan-style Convertible Bond

Closely related to the American-style is the Bermudan-style conversion and call rights,

which can only be exercised at certain discrete time points during the lifetime of the

contract. For derivation of the no-arbitrage value of the Bermudan-style callable and

convertible bond we only need to modify the recursion schema displayed in Figures 4.1

and 4.2 such that on dates tn when conversion and call are not allowed10

CCB(tn) = EP ∗ [CCB(tn+1)|Ftn ] + e−rtnctn .

Assume that conversion and call are allowed only on M equidistant discrete time points.

The time interval [0, T ] is discretized into N equally distanced time steps 0 = t0 <

t1 < . . . < tN = T , and N is chosen such that N/M = δ , and δ is an integer, the

conversion and call can only take place at time points 0 < tδ < t2δ . . . < tMδ = T .

The modified recursion procedure for the max-min strategy11 thus can be written as, for

n = 0, 1, ..., N − 1 and m = 1, ...,M − 1 ,

10See, Kifer (2000), p. 461 and Wilmott (2006) Vol. 3, p.1245.
11The modification is the same for both max-min and min-max strategy.
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CCB(tn) =



max

{
e−rtn

γVt+n

m + γn
,

min
{

e−rtn max
{

H + ctn ,
γV

t+n

m+γn

}
,

EP ∗ [CCB(tn+1)|Ftn ] + e−rtnctn

}}
if Vt+n

> νtn , n = δm

EP ∗ [CCB(tn+1)|Ftn ] + e−rtnctn if Vt+n
> νtn , n 6= δm

e−rtn
Vt+n

n
if Vt+n

≤ νtn

and

CCB(T ) =


e−rT max

{
γVT+

m + γn
, L + ctN

}
if VT+ > n(L + ctN )

e−rT VT+

n
if VT+ ≤ n(L + ctN )

Figure 4.6: Max-min recursion Bermudan-style callable and convertible bond

Furthermore, for each i = 1, ...,M−1, the rational conversion time after time tiδ equals

τ ∗b (tiδ) = min
{

tk ∈ {tiδ, ..., t(M−1)δ}
∣∣∣ e−rtk

γVt+k

m + γn
= CCB(tk)

}
,

the rational call time after time tiδ equals

τ ∗s (tiδ) = min
{

tk ∈ {tiδ, ..., t(M−1)δ}
∣∣∣ e−rtk max

{
H + ctk ,

γVt+k

m + γn

}
= CCB(tk)

}
.

Example 4.4.1. (Continuation of Example 4.3.2) The parameters are set to be the same

as in Example 4.3.2: T = 8, r = 0.06, V (0) = 1000, σV = 0.2, K = 300, L = 100, γ =

1.5, m = 10, n = 8, H = 120. The results are derived for different payout ratios κ

and coupons c . In the first case the call level is constant with H = 120 , while in the

second case the call level is time dependent and defined according to Equation (4.22),

where ω = 0.04.

The no-arbitrage prices of the game option component of the American- (Am)12 and

Bermudan- (BmM and BmY) style callable and convertible bond are summarized in Ta-

12The solution of the no-arbitrage value of an American style game option is achieved by approximating
the continuous time problem with a discrete time one, hence strictly it is also the no-arbitrage value of a
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ω = 0 ω = 0.04

κ c G(0)Am G(0)BmM G(0)BmY G(0)Am G(0)BmM G(0)BmY
0 0 16.92 17.41 17.44 14.84 15.10 24.40

0.04 2 8.65 8.66 8.52 7.67 7.84 8.23
0.04 3 7.82 7.89 7.96 5.68 5.93 6.83
0.04 4 6.99 7.11 7.43 3.64 3.92 5.15

Table 4.7: Comparison American- and Bermudan-style conversion and call rights (384
steps)

ble 4.7. The values of G(0) BmM and G(0) BmY are derived under the condition that

the conversion and call are only allowed on a fixed date of each month or year. Interest-

ingly, in our example, G(0) BmM and G(0) BmY are more valuable than their American

pendant G(0) Am in almost all cases. The only exception is κ = 0.04 and c = 2 , where

G(0) Am is larger than G(0) BmY. The reason is that the value of a game option is

determined by strategies of both contract partners. If the bondholder has less chances to

convert, this means also that the shareholder has less chances to call and thus to control

the maximization strategy of the bondholder. Thus we cannot argue generally that the

Bermudan-style contract is always more or less valuable than the American one. Their

price differences are more evident, if the call level is low ( ω = 0.04 ), coupons are high

( c = 4 ) and less exercise dates are allowed.

4.5 Stochastic Interest Rate

4.5.1 Recursion schema

In this section we solve the optimization problems stated in Equations (4.13) and (4.16)

by allowing stochastic interest rate. Similar as in Section 4.3, the continuous time prob-

lem is approximated with a discrete time one and the no-arbitrage value is derived by a

recursive formula. We discretize the forward price of the firm’s value process modeled in

Section 2.3. Accordingly, the call level and coupons are adjusted to the forward value.

The recursion is carried out on the T -forward adjusted values, see Figure 4.7, where

FV (t+n , T ) is the forward price of the firm’s value just before payout and CCBF (tn) is

the T -forward value of the callable and convertible bond at time tn . At the terminal

date T , FV (T, T ) = VT thus CCBF (T ) = CCB(T ) . νtn is the default barrier. The

coupon ctn will only be paid out if the firm’s value is above certain level, i.e. Vt+n
> ηtn .

The no-arbitrage price of the callable and convertible bond equals B(0, T )CCBF (0) .

Bermudan-style contract, but with much more exercise chances than the other contracts where conversion
and call are only allowed monthly or yearly.
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For n = 0, 1, ..., N − 1,

CCBF (tn) =



min

{
max

{ H + ctn

B(tn, T )
,
γFV (t+n , T )

m + γn

}
,

max
{γFV (t+n , T )

m + γn
,

EP T [CCBF (tn+1)|Ftn ] +
ctn

B(tn, T )

}}
if FV (t+n , T ) > νtn

FV (t+n , T )

n
if FV (t+n , T ) ≤ νtn

(4.23)
and

CCB(T ) =


max

{
γVT+

m + γn
, L + ctN

}
if VT+ > n(L + ctN )

VT+

n
if VT+ ≤ n(L + ctN )

(4.24)

Figure 4.7: Min-max recursion callable and convertible bond, T -forward value

4.5.2 Some conditional expectations

The recursion formula, Equation (4.23) contains both FV (tn, T ) and B(tn, T ) as vari-

ables. In order to circumvent a two-dimensional tree, we solve CCBF (tn, T ) as condi-

tional expectation given FV (tn, T ) . To achieve the analytical closed-form solution, we

first explore the relationship between FV (t, T ) and B(t, T ) .

According to the assumptions on the firm’s value made in Section 2.3, under P T the

auxiliary forward price of the firm’s value F κ
V (t, T ) and the T -forward price of the

default free zero coupon bond FB(t, s, T ) :=
B(t, s)

B(t, T )
, t ≤ s < T are both martingales,

and satisfy

dF κ
V (t, T ) = F κ

V (t, T ) · σF (t, T )dW T
t .

dFB(t, s, T ) = FB(t, s, T ) · σB(t, s, T )dZT
t

with

σ2
F (t, T ) =

∫ t

0

σ2
V + 2ρσV b(u, T ) + b2(u, T )du

σ2
B(t, s, T ) =

∫ t

0

(b(u, s)− b(u, T ))2du
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and

b(t, s) =
σr

b
(1− e−b(s−t)).

W T
t and ZT

t are two correlated standard Brownian motion with constant coefficient of

correlation equals ρ .

Hence F κ
V (t, T ) and FB(t, t, T ) =

B(t, t)

B(t, T )
=

1

B(t, T )
are bivariate normally distributed

and have the following variances, expectations and covariances13

σ2
1 := VP T [ln F κ

V (t, T )] =

∫ t

0

(σ2
V + 2ρσV b(s, T ) + b2(s, T ))ds

σ2
2 := VP T [ln FB(t, t, T )] =

1

2b3
(1− e−2bt)b(t, T )2

µ1 := EP T [ln F κ
V (t, T )] = ln F κ

V (0, T )− 1

2
σ2

1

µ2 := EP T [ln B(t, T )] = E[− ln FB(t, t, T )] = ln
B(0, T )

B(0, t)
+

1

2
σ2

2

and

γ := CovP T (ln F κ
V (t, T ), ln B(t, T ))

= −CovP T (ln F κ
V (t, T ), ln FB(t, T ))

=

∫ t

0

(
ρσV (b(u, T )− b(u, t)) + (b(u, t)b(u, T )− b(u, t)2)

)
du.

Given these relationships the expectation and variance of ln B(t, T ) conditional on the

forward price of the firm’s value can be derived with the following formulas

µ3 := E
[
ln B(t, T ) | ln F κ

V (t, T ) = w̄
]

= µ2 +
γ

σ2
1

(ln w̄ − µ1), (4.25)

σ2
3 := V

[
ln B(t, T ) | ln F κ

V (t, T ) = w̄
]

= σ2
2 −

γ2

σ2
1

. (4.26)

Therefore, conditional on ln F κ
V (t, T ) = w̄ the random variable ln(B(t, T )) equals

ln B(t, T )
(

ln F κ
V (t, T ) = w̄

)
= µ3 + σ3x

where x is a standard normal random variable. Thus the following conditional expecta-

13For details see Menkveld and Vorst (2000).
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tion can be derived after some elementary integration

E
[ 1

B(t, T )

∣∣∣ ln F κ
V (t, T ) = w̄

]
= exp

(
−µ3 +

1

2
σ2

3

)
(4.27)

E

[( p

B(t, T )
− q
)+ ∣∣∣ ln F κ

V (t, T ) = w̄

]
=

∫ h

−∞

( p

eµ3+σ3·x
− q
)e−

x2

2

√
2π

dx

= p · e−µ3+
σ2
3
2 N(h + σ3)− q ·N(h) (4.28)

with h = (ln(p/q) − µ3))/σ3 for some p, q ∈ R+. Here, N(·) denotes the cumulative

distribution function of a standard normal distribution.

4.5.3 Implementation with binomial tree

For the implementation of the recursion schema displayed in Figure 4.7 we apply the

method developed by Menkveld and Vorst (1998) which is a combination of an analytical

approach and a one-dimensional binomial tree approach. A simple recombining binomial

tree for the forward price FV (t, T ) := Vt/B(t, T ) of the firm’s value can be constructed

with the trick that the interval [0, T ] is not divided into periods of equal length, but into

periods of equal volatility. Recursion is then carried out alongside the T -forward risk

adjusted tree. The interval [0, T ] is divided into periods 0 = t0 < t1 < ... < tN = T of

equal volatility

σN
F :=

1

N

∫ T

0

(σ2
V + 2ρσV b(s, T ) + b2(s, T ))ds.

The stochastic evolution of the forward price of the firm’s value is then modeled by

FV (n, j) = F (0)ujdn−jκ̂n, ∀j = 0, ..., n, n = 1, ..., N

with F (0) = V (0)/B(0, T ) and

u = eσN
F , d = e−σN

F , κ̂n = e−κ∆n , ∆n = tn − tn−1,

where FV (n, j) denotes the forward price of the firm’s value after payout, at time tn after

j up-movements. F (0) is the initial forward price of the firm’s value. The expressions

show that u and d are time and state independent. κ̂n is time dependent as the time

steps are no longer of equal length. The (time dependent) coupon payment is given by

c(n) = c∆n. The forward martingale measure P T exists because d < 1 < u and the

transition probability is given by

pT :=
1− d

u− d
.
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Thus the conditional expectation in the recursion schema can be calculated as

EV (n, j) := pT · CCBF (n + 1, j) + (1− pT ) · CCBF (n + 1, j + 1)

The forward price of the firm’s value at time tn after j up movements and just before

payout is

FV (n+, j) :=
FV (n, j)

1− κ̂n

.

At each node (n, j) we calculate the expected value of the min-max strategy under the

measure P T conditional on the available information FV (n, j). The calculation is tedious

but can be solved analytically. We make first some simplifications of the notations which

are only used for the calculation of CCBF (n, j) . H(n, j) and c(n, j) are written as H

and c , and

CV :=
γFV (n+, j)

m + γn
EV := EV (n, j)

which are conversion and simple recursion value. According to the recursion formula

Equation (4.23),

CCBF (n, j) = min

{
max

{ H + c

B(tn, T )
, CV

}
, max

{
CV, EV +

c

B(tn, T )

}}
= min

{[
H + c

B(tn, T )
− CV

]+

+ CV,

[
EV +

c

B(tn, T )
− CV

]+

+ CV

}

= CV +

[
EV +

c

B(tn, T )
− CV

]+

−
[

H

B(tn, T )
− EV

]+

1{ H+c
B(tn,T )

>CV }1{EV + c
B(tn,T )

>CV }. (4.29)

Equation (4.29) can be further calculated in two cases.

(i) CV ≤ EV

CCBF (n, j) = EV +
c

B(tn, T )
−
[

H

B(tn, T )
− EV

]+

(4.30)

because in this case the second term of Equation (4.29) is certainly positive and
H

B(tn, T )
> CV includes also the case

H + c

B(tn, T )
> CV .

(ii) CV > EV

CCBF (n, j) = CV +

[
c

B(tn, T )
− (CV − EV )

]+

−
[

H

B(tn, T )
− EV

]+

1{B(tn,T )>MIN} (4.31)
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where

MIN := min

[
H

EV
,

H + c

CV
,

c

CV − EV

]
.

According to the conditional expectations given in Equations (4.27) and (4.28), the ana-

lytical solution of Equations (4.30) and (4.31) can be derived as conditional expectations

given F κ
V (n, j) = FV (n, j)eκtn = w̄ .

(i) CV ≤ EV

CCBF (n, j) = EV +c ·exp
[
−µ3+

σ2
3

2

]
−H ·exp

[
−µ3+

σ2
3

2

]
N(h1+σ3)+EV ·N(h1)

where

h1 :=
ln H

EV
− µ3

σ3

.

(ii) CV > EV

CCBF (n, j) = CV + c · exp
[
− µ3 +

σ2
3

2

]
·N(h2 + σ3)− (CV − EV )N(h2)

+H · exp
[
− µ3 +

σ2
3

2

]
·N(h3 + σ3)− EV N(h3)

where

h2 :=
ln c

CV−EV
− µ3

σ3

h3 :=
ln MIN − µ3

σ3

.

And µ3 and σ3 have been defined in Equations (4.25) and (4.26).

In the following numerical example we compute the no-arbitrage price of a callable and

convertible bond with stochastic interest rates.

Example 4.5.1. The initial term structure is flat, choose T = 8, σV = 0.2, K =

400, ω = 1300, σr = 0.02, b = 0.1, V (0) = 1000, L = 100, K = 400, m = 10, n =

8, H = 120, γ = 1.5, r0 = 0.06. 14 The recursions are carried out alongside a tree with

384 steps.

The no-arbitrage prices of a straight bond, a callable and convertible bond and the game

option component in American-style with and without stochastic interest rates are pre-

sented in Table 4.8. “Non” stands for no interest rate risk, “-0.5” and “0.5” give the

14The default barrier is ηt = KB(t, T )e−κt , the same assumption as by European callable and con-
vertible bond. The coupons are to be paid if the firm’s value is above ηt = ωB(t, T )e−κt .



4.5. STOCHASTIC INTEREST RATE 57

correlation coefficient of the interest rate and firm’s value. The values are derived for

different payout and coupon combinations.

G(0) CCB(0) SB(0)
κ c Non −0.5 0.5 Non −0.5 0.5 Non −0.5 0.5

0 0 16.92 15.80 19.07 76.32 76.00 76.49 59.40 60.21 57.41
0.04 2 8.65 7.42 9.97 73.80 73.97 73.40 65.15 66.56 62.35
0.04 4 6.99 6.03 8.88 81.05 82.09 80.29 74.50 76.06 71.41

Table 4.8: No-arbitrage prices of the non-convertible bond, callable and convertible bond
and game option component in American-style with stochastic interest rate (384 steps)

Increasing correlation between the interest rate and the firm’s value causes increasing

volatility of the forward price of the firm’s value. The default probability rises with

increasing volatility, which results in a reduction of the value of the straight bond SB(0) .

But on the other side, the value of the game option component G(0) increases in volatility.

Therefore in general the total effect is uncertain, in our concrete example the total value

declines with increasing correlation. Moreover, the influence of the interest rate risk is

relatively small which is recognized by the value of the convertible bond, the results listed

in the columns under CCB(0) .
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Chapter 5

Uncertain Volatility of Firm Value

In practice it is often a difficult problem to calibrate a model to the available data. Here

one major drawback of the structural model approach is that it specifies a certain firm’s

value process. As the firm’s value, however, is not always observable, e.g. due to in-

complete information, determining the volatility of this process is a non-trivial problem.

Moreover, the interest rate risk and the uncertainty about the correlation of the interest

rate and firm value process are other contributors to the uncertainty of the volatility.

To relax the assumption of constant volatility of the firm’s value, one can specify volatility

as a particular function of the firm’s value, or model volatility itself with a stochastic pro-

cess. However, specification of a reasonable model for the volatility dynamics and precise

estimation of the parameters would be a difficult task. We circumvent these problems by

assuming that the volatility of the firm’s value process lies between two extreme values.

The volatility is no longer assumed to be constant or a function of underlying and time.

It is instead assumed to lie between two extreme values σmin and σmax, which can be

viewed as a confidence interval for the future volatilities. This assumption is less stringent

compared to the approaches where the volatility is modeled as a function of the underly-

ing or as a stochastic process. It needs also less parameter inputs.

Valuation of European-style convertible bonds in this setting can be solved with e.g. the

PDE approach proposed independently by Avellaneda et al. (1995) and Lyons (1995).

The no-arbitrage pricing bound is derived in the following way: at each time and given

the firm’s value, the volatility is selected dynamically from the two values σmin and σmax

in a way that always the one with the worse effect on the value of the convertible bond

from the aspect of bondholder or shareholder is chosen, thus to determine the no arbitrage

bound. Pricing bound of a European-style convertible bond can also be derived with the

probabilistic approach proposed e.g. by Frey (2000). The author shows that by applying

time change for continuous martingales, the problem is equivalent to optimal stopping

of a corresponding American-style derivative with partial exercise feature under constant

volatility, i.e. the optimal stopping time is confined in a time window. One can then

59
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use numerical methods for the pricing of American type securities to solve the valuation

problem.

We treat the American-style callable and convertible bond with uncertain volatility by

applying the model of Avellaneda et al. (1995) and combining it with the results of Kallsen

and Kühn (2005) on game option in incomplete market such that certain pricing bounds

can be derived. The bondholder selects the stopping time which maximizes the expected

payoff given the minimizing strategy of the issuer, and the expectation is taken with

the most pessimist estimate from the aspect of the bondholder. The optimal strategy

of the bondholder and his choice of the pricing measure determine the lower bound for

the no-arbitrage price. Whereas the issuer chooses the stopping time that minimizes the

expected payoff given the maximizing strategy of the bondholder and the expectation is

also the most pessimist one but from the aspect of the issuer, thus the upper bound of

the no-arbitrage price can be derived. Same as in case of European convertible bonds

the volatility is selected dynamically from the two values σmin and σmax in a way that

always the one with the worse effect, thus the most pessimist pricing measure is chosen.

The remainder of the chapter is structured as follows. Section 5.1 summarized the so-

lution concepts for models with uncertain volatility. In Section 5.2 they are applied for

computing pricing bounds for a European convertible bond. Section 5.3 studies the pric-

ing bounds of an American-style callable and convertible bond.

5.1 Uncertain Volatility Solution Concept

5.1.1 PDE approach

The uncertain volatility model on a single asset is first proposed independently by Avel-

laneda et al. (1995) and Lyons (1995). It is an extension of the Black-Scholes framework

to deal with the biased estimate of the historical volatility or the smile effect of the im-

plied volatility1. Avellaneda et al. (1995) study the case of derivatives written on a single

underlying asset. The volatility of the asset is not assumed to be a constant or a function

of the underlying or rather stochastic. Instead, it is only assumed to lie between two ex-

treme values σmin and σmax, which can be viewed as a confidence interval for the future

volatilities. This assumption is less stringent compared to other approaches and it needs

also less parameter inputs. The derivation of a no-arbitrage pricing bound is based on a

super-hedging strategy which is a worst case estimation. At each (t, x) the volatility is

selected dynamically from the two values σmin and σmax in a way that always the one

with the worse effect on the value of the derivative from aspect of seller or buyer is chosen.

1The volatility implied from the traded options, plotted as a function of the strike price, often exhibits
a specific U-shape, which is referred to as the smile effect.
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For a given martingale measure Q , suppose the stock price evolves according to the

following dynamic

dSt = St(rdt + σtdW ∗
t ),

where, for simplification the interest rate r is assumed to be constant. The super-hedge,

i.e. the worst case scenario leads to the solution of a non-linear PDE, which is called

Black-Scholes-Barenblatt equation

∂f

∂t
+ r

(
S

∂f

∂S
− f

)
+

1

2
Σ2

[
∂2f

∂S2

]
S2 ∂2f

∂S2
= 0, (5.1)

with terminal value f(S, T ) = F (S), and Σ2[x] stands for a volatility parameter which

depends on x , the convexity of function f . For example, the super-hedge price for the

seller of a call option can be obtained by setting

Σ2 [x] =

 σ2
max if x ≥ 0

σ2
min else.

The authors provide also a simple algorithm for solving the equation by a trinomial tree

and prove the convergence of this discrete scheme. In case of vanilla European options,

the pricing bounds can be derived simply with the Black-Scholes equations using the ex-

treme values of the volatility parameter, thus the nonlinear solution is reduced to the

linear Black-Scholes solution.

Lyons (1995) treats the case of derivatives written on multiple assets. The volatility is

assumed to lie in some convex region depending on the prices of the underlying and time.

Same as Avellaneda et al. (1995), the volatility matrix is chosen such that the worst effect

on the derivative is achieved. However, vanilla European options written on multi-assets,

in general, cannot be derived simply by using the extreme values of the volatility param-

eter. Moreover, it is only possible under particular conditions to reduce the nonlinear

solution to the linear Black-Scholes solution.

5.1.2 Probabilistic approach

In one-dimensional case, Frey (2000) shows that by applying time change for continuous

martingales, the super-hedge of a European type derivative under uncertain volatility is

equivalent to optimal stopping of a corresponding American type derivative with partial

exercise feature under constant volatility, i.e. the optimal stopping time is confined in

a time window. One can then use numerical methods for the pricing of American type

securities to solve the super-delta-hedge problem. We summarize the idea and result. For

details of proof see Frey (2000).
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The forward price Ft satisfies under the forward martingale measure P T the stochastic

differential equation

dFt = FtσtdWt,

or equivalently

ln Ft = ln F0 −
∫ t

0

1

2
σ2

u du +

∫ t

0

σudWu.

Applying the deterministic time change

At :=

∫ t

0

σ2
udu,

and let A−1 stand for the inverse time change, define F̃t := FA−1
t

, then given F0 ,

F̃t = F0 + Zt −
1

2
t

where Zt is a standard Brownian motion with σ = 1 in the time changed filtration

F̃t = FA−1
t

.2 Therefore,

sup
σ∈[σmin, σmax]

EP T [f(FT )|F0] = sup
τ∈T[τ1,τ2]

EP T [f(F̃T )|F̃0]. (5.2)

with τ1 =

∫ T

0

σmin(u)2du , τ2 =

∫ T

0

σmax(u)2du and T[τ1,τ2] is a set of stopping times

with respect to the filtration {F̃u}0≤u≤AT
.

5.2 Pricing Bounds European-style Convertible Bond

To make the computation tractable, we make some simplifications on the firm’s value

process described in Section 2.3 and the default mechanism defined in Section 2.4. The

interest rate r, the payout rate κ and the default barrier K are assumed to be constant.

The volatility of the firm’s value lies between two extreme values σmin and σmax which

are two constant. The firm’s value process can thus be described with the following

diffusion process

dVt = Vt((r − κ)dt + σtdWt)

and

σmin ≤ σt ≤ σmax.

As an example we examine the upper and lower bound of a European convertible but

2See Revuz and Yor (1991) for details on deterministic time change of Brownian motion.
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non-callable bond3, its no arbitrage price should lie between the bounds

CB+(0) = sup
Q∈Q

EQ [cb(0)] (5.3)

and

CB−(0) = inf
Q∈Q

EQ [cb(0)] , (5.4)

where

cb(0) =

∫ τ∧T

0

c · e−rsds +
K

n
· e−rτ1{τ<T}

+e−rT1{T<τ,VT >nL} max

{
γVT

m + γn
, L

}
+ e−rT1{T<τ,VT≤nL}

VT

n
,

and Q is the family of equivalent martingale measures.

According to Avellaneda et al. (1995), the upper and lower bound CB+(0) and CB−(0)

can be obtained by solving the Black-Scholes-Barenblatt equation

∂CB

∂t
+ (r − κ)

(
V

∂CB

∂V
− CB

)
+

1

2
Σ2

[
∂2CB

∂V 2

]
V 2∂2CB

∂V 2
− c = 0 for V > K (5.5)

with terminal value

CB(T, VT ) = max

{
γVT

m + γn
, L

}
1VT >nL} +

VT

n
1VT≤nL},

and boundary condition

CB(t,K) = e−rt K

n
.

Σ2[x] stands for a volatility parameter which depends on x. CCB+(0) is derived by

setting

Σ2 [x] =

 σ2
max if x ≥ 0

σ2
min else

(5.6)

CB−(0) is derived by setting

Σ2 [x] =

 σ2
max if x ≤ 0

σ2
min else

(5.7)

3The upper and lower bound of a European callable and convertible bond can be derived in the same
way, we only need to change the terminal value.
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Avellaneda et al. (1995) provide also a simple algorithm for solving the Black-Scholes-

Barenblatt equation by a trinomial tree. According to this discretization, Equation 5.5

can be solved in the following way. The time interval [0, T ] is divided in N subintervals

of equal lengths. The distance between two periods is ∆ = T/N. After each period ∆,

the firm’s value will go up, in the middle way, or down, and then has the corresponding

value

Vtn+1 = u · Vtn , Vtn+1 = m · Vtn , Vtn+1 = d · Vtn ,

where

u = eσmax

√
∆+(r−κ)∆, m = e(r−κ)∆, d = e−σmax

√
∆+(r−κ)∆.

The so constructed tree is recombining because m2 = u · d. The stochastic evolution of

the firm’s value is then modeled by

V (n, j) = V (0) · ej·σmax

√
∆+n·(r−κ)∆, ∀j = 0, ..., 2n, n = 1, ..., N,

where V (n, j) denotes the firm’s value at time tn := n∆ in state j. At time tn+1

there are three possible nodes conditional on (n, j) : in case of an up-movement we have

(n + 1, j + 1), in case of a down-movement (n + 1, j − 1) and in case of the middle way

(n + 1, j). Thus higher j indicates a higher firm’s value at time tn. V (0) is the initial

firm’s value. The transition probability for the up- and down-movement is, respectively,

given by

pu(p) := p ·

(
1− σmax

√
∆

2

)

pd(p) = p ·

(
1 +

σmax

√
∆

2

)
pm(p) = 1− 2p

where the parameter p varies in the range σ2
min/(2σ

2
max) ≤ p ≤ 1/2. 4 This condition

ensures that the uncertain volatility σ takes values such that σmin ≤ σ ≤ σmax. The tri-

nomial tree has one degree of freedom at each node, thus the choice of risk-adjusted prob-

abilities is not unique. This freedom is used to model heteroskedasticity. For p = 1/2 ,

highest probabilities are assigned to the extreme nodes u and d which yields the largest

volatility. While for p = σ2
min/(2σ

2
max) highest probability is assigned to center node m ,

thus the lowest volatility is achieved. Therefore, by fixing u , d and m and allowing the

risk-adjusted probabilities to vary over a one-dimensional set, a range of variances within

the volatility band [σmin, σmax] can be modeled.

4The transition probabilities depend on p because otherwise we would have a deterministic volatility
model.
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For each node (n, j) , the upper and lower bound can be calculated as

CB+(n, j) = c∆ + e−r∆Supp

[
pu(p)CB+(n + 1, j + 1)

+pm(p)CB+(n + 1, j) + pd(p)CB+(n + 1, j − 1)
]

(5.8)

and

CB−(n, j) = c∆ + e−r∆Infp
[
pu(p)CB−(n + 1, j + 1)

+pm(p)CB−(n + 1, j) + pd(p)CB−(n + 1, j − 1)
]
. (5.9)

Equations(5.8) and (5.9) can be further written in more explicit form

CB+(n, j) = c∆ + e−r∆


CB+(n + 1, j) +

1

2
Z+(n + 1, j) if Z+(n + 1, j) > 0

CB+(n + 1, j) +
σ2

min

2σ2
max

Z+(n + 1, j) if Z+(n + 1, j) ≤ 0

and

CB−(n, j) = c∆ + e−r∆


CB−(n + 1, j) +

1

2
Z−(n + 1, j) if Z−(n + 1, j) < 0

CB−(n + 1, j) +
σ2

min

2σ2
max

Z−(n + 1, j) if Z−(n + 1, j) ≥ 0

where Z+(n + 1, j) and Z−(n + 1, j) are the approximations of the second-derivative

operator Σ2 in Equation (5.5) and are defined as

Z±(n + 1, j) := (1− σmax

√
∆

2
)CB±(n + 1, j + 1) + (1 +

σmax

√
∆

2
)CB±(n + 1, j − 1)

− 2CB±(n + 1, j).

Example 5.2.1. As a concrete numerical example, we set T = 8, V0 = 1000, L =

100, K = 300, m = 10, n = 8, γ = 2, r = 0.06.

κ c σV ∈ [0.2, 0.4] σV = 0.2 σV = 0.4
0.04 2 70.20 79.05 75.72 73.33
0.04 3 73.50 83.96 80.52 76.75
0.04 4 76.72 88.94 85.32 80.16

Table 5.1: Pricing bounds for European convertible bonds with uncertain volatility (384
steps)

Table 5.1 shows that the upper and lower bound of a European convertible bond cannot

be derived by using the extreme value of the volatilities. Because it has a mixed convexity,
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κ c σV ∈ [0.2, 0.4] σV = 0.2 σV = 0.4
0.04 2 56.29 72.91 71.70 57.24
0.04 3 59.66 77.86 76.50 60.66
0.04 4 63.01 82.88 81.30 64.08

Table 5.2: Pricing bounds European callable and convertible bonds with uncertain volatil-
ity (384 steps)

and the Black-Scholes-Barenblatt equation selects the volatility path that generates the

best or worst estimation. The upper and lower bound of a European callable and con-

vertible bond are shown in Table 5.2. They differ only slightly from the prices calculated

with the extreme volatilities σmax and σmin . The reason is that although the European

callable and convertible bond has mixed convexity, but the value of the conversion right is

capped with H , and the default probability plays a more important role by the valuation.

Remark 5.2.2. Sometimes the volatility bound is time dependent, for example one can

estimate a narrow bound for the near future, but the long-term volatility is hard to esti-

mate and would have a wider interval. In this case, and suppose there are no coupons, the

probabilistic approach developed by Frey (2000) would be simple to deal with. Through

the time change the process is no longer time dependent and thus simpler to discretize,

and the recursion is easy to carry out.

5.3 Pricing Bounds American-style Convertible Bond

The relax of the assumption of deterministic volatility and the adoption of the uncertain

volatility introduce market incompleteness. There would be a set of possible equivalent

martingale measures which are compatible with the no arbitrage requirement. The holder

and issuer of an American callable and convertible bond must not only decide their opti-

mal stopping strategies but also the proper pricing measure.

This problem has been considered by Kallsen and Kühn (2005) in context of game option

in incomplete market. Theorem 2.2 of their paper tells us that: suppose that only a

buy-and-hold strategy is allowed in the game option, while the underlying risky asset and

the savings account can be traded dynamically, the set of initial no-arbitrage prices is

determined by super hedging and lies in the interval [Glow(0), Gup(0)] with

Glow(0) = sup
τB∈F0T

inf
τA∈F0T

inf
Q∈Q

EQ[e−r(τA∧τB)g(τA, τB)] (5.10)

Gup(0) = inf
τA∈F0T

sup
τB∈F0T

sup
Q∈Q

EQ[e−r(τA∧τB)g(τA, τB)] (5.11)

where Q is the family of equivalent martingale measures, F0T is the set of stopping
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times with respect to the filtration {Fu}0≤u≤T with values in [0, T ], and g(τA, τB) is

defined in Section 4.2.1 by Equation (4.8). The bondholder selects the stopping time

which maximizes the expected payoff given the minimizing strategy of the issuer, and the

expectation is taken with the most pessimistic estimate from the aspect of the bondholder.

The optimal strategy of the bondholder and his choice of the pricing measure determine

the lower bound of the no-arbitrage price. Whereas the issuer chooses the stopping time

that minimizes the expected payoff given the maximizing strategy of the bondholder. This

expectation is also the most pessimistic one but from the aspect of the issuer, thus the

upper bound of the no-arbitrage price can be derived.

Suppose that the callable and convertible bond is not traded dynamically, applying the

results from the theory of game option which are given in Equations (5.10) and (5.11),

the set of initial no-arbitrage prices can be determined. It is given by the interval

[CCBlow(0), CCBup(0)] with

CCBlow(0) = sup
τB∈F0T

inf
τA∈F0T

inf
Q∈Q

EQ[ccb(0)] (5.12)

and

CCBup(0) = inf
τA∈F0T

sup
τB∈F0T

sup
Q∈Q

EQ[ccb(0)] (5.13)

where Q is the family of equivalent martingale measures, F0T is the set of stopping

times with respect to the filtration {Fu}0≤u≤T with values in [0, T ], cbb(0) is defined in

Section 4.1.1 by Equation (4.4). The upper and lower bound CCBup(0) and CCBlow(0)

can be derived by solving Equations (5.13) and (5.12) which can be approximated with

the recursions demonstrated in Figures 5.1 and 5.2.

Applying the trinomial tree developed by Avellaneda et al. (1995), the expectation in the

recursions can be further written in a more explicit form. Define

EV +(tn) := sup
Q∈Q

EQ[CCBup(tn+1)|Ftn ]

and

EV −(tn) := inf
Q∈Q

EQ[CCBup(tn+1)|Ftn ],

at each node (n, j)

EV +(n, j) =


CCBup(n + 1, j) +

1

2
Z+(n + 1, j) if Z+(n + 1, j) > 0

CCBup(n + 1, j) +
σ2

min

2σ2
max

Z+(n + 1, j) if Z+(n + 1, j) ≤ 0
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For n = 0, 1, ..., N − 1,

CCBup(tn) =



min

{
e−rtn max

{
H + ctn ,

γVt+n

m + γn

}
,

max
{

e−rtn
γVt+n

m + γn
,

supQ∈Q EQ[CCBup(tn+1)|Ftn ] + e−rtnctn

}}
if Vt+n

> νtn

e−rtn
Vt+n

n
if Vt+n

≤ νtn

and

CCB(T ) =


e−rT max

{
γVT+

m + γn
, L + ctN

}
if VT+ > n(L + ctN )

e−rT VT+

n
if VT+ ≤ n(L + ctN )

Figure 5.1: Recursion: upper bound for callable and convertible bond by uncertain volatil-
ity of the firm’s value

and

EV −(n, j) =


CCBlow(n + 1, j) +

1

2
Z−(n + 1, j) if Z−(n + 1, j) < 0

CCBlow(n + 1, j) +
σ2

min

2σ2
max

Z−(n + 1, j) if Z−(n + 1, j) ≥ 0

where Z+(n + 1, j) and Z−(n + 1, j) are the approximations of the second-derivative

and are defined as

Z+(n + 1, j) := (1− σmax

√
∆

2
)CCBup(n + 1, j + 1) + (1 +

σmax

√
∆

2
)CCBup(n + 1, j − 1)

− 2CCBup(n + 1, j)

Z−(n + 1, j) := (1− σmax

√
∆

2
)CCBlow(n + 1, j + 1) + (1 +

σmax

√
∆

2
)CCBlow(n + 1, j − 1)

− 2CCBlow(n + 1, j).

We show the influence of the uncertain volatility with a numerical example.

Example 5.3.1. Let T = 8, σmin = 0.2, σmax = 0.4, V = 1000, L = 100, K =

300, m = 10, n = 8, H = 120, γ = 1.5, r = 0.06. In Table 5.3 the call level is kept
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For n = 0, 1, ..., N − 1,

CCBlow(tn) =



max

{
e−rtn

γVt+n

m + γn
, min

{
e−rtn max

{
H + ctn ,

γVt+n

m + γn

}
,

inf
Q∈Q

EQ[CCBlow(tn+1)|Ftn ] + e−rtnctn

}}
if Vt+n

> νtn

e−rtn
Vt+n

n
if Vt+n

≤ νtn

and

CCB(T ) =


e−rT max

{
γVT+

m + γn
, L + ctN

}
if VT+ > n(L + ctN )

e−rT VT+

n
if VT+ ≤ n(L + ctN )

Figure 5.2: Recursion: lower bound for callable and convertible bond by uncertain volatil-
ity of the firm’s value

constant with H while in Table 5.4 the call level is time dependent with

H(t) = e−w(T−t)H, w = 0.04.

κ c σV ∈ [0.2, 0.4] Am σV ∈ [0.2, 0.4] BmY σV = 0.2 σV = 0.4
0 0 73.68 78.67 74.00 80.80 76.33 74.90

0.04 2 69.20 75.70 69.16 76.91 73.81 71.60
0.04 3 71.23 79.22 71.49 81.11 77.66 73.35
0.04 4 73.20 82.94 73.84 85.45 81.50 75.08

Table 5.3: Pricing bounds for American callable and convertible bond with uncertain
volatility and constant call level H (384 steps)

The pricing bounds for American- and Bermudan-style callable and convertible bonds

with uncertain volatility which lies in the interval [0.2, 0.4] are summarized in Tables

5.3 and 5.4. Am and BmY are abbreviations for American and Bermudan-style callable

and convertible bond where the latter can only be exercised on the last day of a year.

These price bounds are compared with the results if they are calculated with the extreme

values of the volatility. Since we chose a relatively wide range of volatilities, σmin = 0.2

and σmax = 0.4, the price differential of the lower and upper bound is relatively large.

Moreover, the lower (upper) bounds are smaller (larger) than the results calculated with

extreme volatilities. The Bermudan-style contract has almost the same lower bound as its

American-style pendant, while its upper bound is considerably higher, e.g. in Table 5.3
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for κ = 0.04 and c = 4 the price bounds are [73.20, 82.94] in the American case and

[73.84, 85.45] for the Bermudan case. The difference in upper bounds is more evident.

κ c σV ∈ [0.2, 0.4] Am σV ∈ [0.2, 0.4] BmY σV = 0.2 σV = 0.4
0 0 71.97 75.06 72.56 78.90 74.25 72.37

0.04 2 69.04 73.56 69.13 76.00 72.83 70.57
0.04 3 70.26 76.24 70.91 79.38 75.51 71.49
0.04 4 71.20 78.94 72.47 82.56 78.16 72.41

Table 5.4: Pricing bounds for American callable and convertible bond with uncertain
volatility and time dependent call level H(t) (384 steps)

The reduction of the call level is achieved in Table 5.4 by making it time dependent.

Comparing the results in Tables 5.3 and 5.4, we see that both lower and upper bound are

lower in Table 5.4. It is intuitive as the callable and convertible bond is less valuable by

a lower call level. The reduction of the call level has larger impact on the upper bound.

For example, for κ = 0.04 and c = 4 , in American case, the lower bound goes from

73.20 to 71.20 while the upper bound drops from 82.94 to 78.94.

From Section 4.1.2 we know that the callable and convertible bond can be decomposed

into a straight bond and a game option component. We could make a näıve computation:

calculate the price of the straight bond with σmax ( σmin ) and the price of game option

component with σmin ( σmax ), add them together and compare the sum1 ( sum2 ) with

the lower (upper) bound of the callable and convertible bond. The results are listed in

Table 5.5.

κ c σV ∈ [0.2, 0.4] Am Sum1 Sum2
0 0 71.97 75.06 64.93 86.25

0.04 2 69.04 73.56 61.03 85.56
0.04 3 70.26 76.24 64.21 88.55
0.04 4 71.20 78.94 67.39 91.53

Table 5.5: Comparison between no-arbitrage pricing bounds and “näıve” bounds

We see that the “näıve” lower bounds Sum1 are smaller than the no-arbitrage lower

bounds, while the “näıve” upper bounds Sum2 are larger than the no-arbitrage upper

bounds. It confirms that the callable and convertible bond must be calculated as an en-

tity. One reason is that it contains positions with varying convexity and concavity. In

the approach of Avellaneda et al. (1995), however, the selection of the minimum or max-

imum of the volatility for the valuation depends on the convexity of the entire portfolio.

Moreover, both parties can decide when they exercise, therefore each of them must bear

the strategy of the other party in mind and the decision is made on the expected value

of the aggregated positions.



Chapter 6

Model Framework Reduced Form

Approach

In the former chapters convertible bonds are treated within structural approach. The

firm’s value is modeled as a diffusion process and the liability and equity of the firm are

characterized as contingent claims of the firm’s value. The liability can be different types

of convertible bonds, an interesting case is the American-style callable and convertible

bond, where the optimal strategies of the counterparts play an important role and the

prices of the liability and equity are results of strategic optimal stopping. Our idealized

model has been well-suited and convenient for the analysis of the relative powers of bond-

and shareholders and the illustration of the optimal strategies. However, sometimes the

true complex nature of the capital structure of the firm and information asymmetry make

it hard to model the firm’s value and the capital structure. Often the firm’s value can-

not be observed continuously. Furthermore, if the full set of the liabilities from different

creditors of a real firm is to be modeled, the structural model will soon be unfeasible. In

this case the reduced-form model is a more proper approach for the study of convertible

bonds, and the traded stock price should be used as primary model input.

Instead of asking why the firm defaults, reduced form models treat default as an unpre-

dictable event governed by an exogenous default rate or intensity process. Reduced form

models go back to Jarrow and Turnbull (1995), the authors consider the simplest case

where the default is driven by a Poisson process with constant intensity. The constant

intensity is relaxed in Madan and Unal (1998), and the default arrival rate is characterized

as responsive to abnormal equity returns. In Duffie and Singleton (1999) random inten-

sity of the default time is treated with recursive methods and affine model of default is

introduced. In Lando (1998) the time of default is modeled directly as the time of the first

jump of a Poisson process with random intensity, which is called doubly stochastic Poisson

process or Cox process. Since then the intensity-based reduced-form credit risk modeling

literature has enjoyed remarkable development. Surveys of the literature are provided e.g.

by Duffie and Singleton (2003), Bielecki and Rutkowski (2004) and Schönbucher (2003).

71
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Within the reduced-form approach, stock price, credit spreads and implied volatilities of

options are used as model inputs for pricing of convertible bonds. The reason is that

stock is a traded asset, credit spreads and implied volatilities are parameters which can

be estimated from the market data. One of the early models is proposed by Davis and

Lischka (1999). They construct a model framework that incorporate Black-Scholes stock

price, Gaussian stochastic interest rate and stochastic default intensity driven by a Brow-

nian motion that also governs the movement of the stock price. It is called two-and-a-half

factors model and has found its application in the industry. A similar model has been de-

veloped by Ayache, Forsyth and Vetzal (2003). Linetsky (2006) and Duffie and Singleton

(2003)(p.206ff) model the default intensity as a negative power function of the underlying

stock price. In Linetsky (2006) closed-form solutions in form of spectral expansions are

derived for European-style derivative securities which are exposed to equity and credit

risk simultaneously. Duffie and Singleton (2003) valuate a callable and convertible bond

with the intensity-based default model. In Bielecki et al. (2007) and Kovalov and Linet-

sky (2008) the default intensity is modeled as a deterministic function of the underlying

stock price. The valuation of callable and convertible bond is explicitly related to the

defaultable game option and BSDE or PDE is applied to solve the optimization problem.

In order to describe the interplay of the equity risk and the default risk of the issuer, we

adopt a parsimonious, intensity-based model, in which the default intensity is modeled

as a function of the pre-default stock price. This assumes, in effect, that the pre-default

stock price contains sufficient information to judge the credit quality of the firm. To

make the combined effect of the default and equity risk of the underlying tractable, it is

assumed that the default intensity has two values, one is the normal default rate, and the

other one is much higher if the current stock price falls beneath a certain boundary. Thus,

during the life time of the bond, the more time the stock price spends below the boundary,

the higher the default risk. In this setting, default intensity is strongly influenced by the

stock price but they are not perfectly correlated. This model has certain similarity with

some structural models. For example, in the first-passage approach, the firm defaults

immediately when its value falls below the boundary, while in the excursion approach,

the firm defaults if it reaches and remains below the default threshold for a certain period.

However, different as in the case of structural models where the default time is predictable,

by reduced form models the default is a sudden event and it is a further source of risk other

than the price risks. It may bring incompleteness to the market if there is no defaultable

security traded in the market.

6.1 Intensity-based Default Model

In the following we will formulate the default event according to Lando (1998), where the

time of default is modeled directly as the time of the first jump of a Poisson process with
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random intensity, which is called Cox process.

6.1.1 Inhomogenous poisson processes

An inhomogeneous Poisson process N with intensity function h(t) > 0 is a non-

decreasing, integer-valued process with independent increments. N0 = 0 and the proba-

bility of n jumps in [s, t] is

P [Nt −Ns = n] =
1

n!

(∫ t

s

h(u)du

)n

exp
{
−
∫ t

s

h(u)du
}

.

In particular, the probability of no jumps in [s, t] equals

P [Nt −Ns = 0] = exp
{
−
∫ t

s

h(u)du
}

.

The first jump time of N is

τ = inf

{
t ≥ 0 :

∫ t

0

h(u)du ≥ E1

}
.

where E1 is an exponentially distributed random variable with parameter 1.

The compensated Poisson process Mt , 0 ≤ t ≤ T

Mt := Nt −
∫ t

0

h(u)du, t ≥ 0

is a martingale with respect to the filtration (FN
t )t∈[0,T ] generated by the process Nt ,

0 ≤ t ≤ T .

6.1.2 Cox process and default time

A Cox process is a generalization of the Poisson process in which the intensity is allowed to

be random but in such a way that if it is conditional on a particular realization h(·, ω) of

the intensity, the jump process becomes an inhomogeneous Poisson process with intensity

h(s, ω) . The random intensity is often characterized as a function of the current level of

a set of state variables

h(s, ω) = h(Xs).

X is an Rd -valued stochastic process in the filtered probability space (Ω,G, (Gt)t∈[0,T ], Q) .

And h : Rd → [0,∞) is a nonnegative, continuous function. According to this construc-

tion the Cox process has the following properties

EQ[dN ] = h(t)dt
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and given the realization (path) of the intensity h ,

P [Nt −Ns = n] = EQ

[
P [Nt −Ns = n]| h

]
= EQ

[
1

n!

(∫ t

s

h(u)du

)n

exp
{
−
∫ t

s

h(u)du
}]

.

In particular, the probability of no jumps in [s, t] equals

P [Nt −Ns = 0] = EQ

[
exp

{
−
∫ t

s

h(u)du
}]

. (6.1)

Lando (1998) models the default time as the first jump time of a Cox process with intensity

process h(Xt) ,

τ = inf

{
t ≥ 0 :

∫ t

0

h(Xs)ds ≥ E1

}
.

where E1 is an exponentially distributed random variable with parameter 1. The state

variables X may include information about stock price, risk-free interest rate and other

economical relevant factors which can predict the likelihood of default. Given that a firm

survives till time t , its default probability within the next small time interval ∆t equals

h(Xt)∆t + o(∆t) . According to Equation (6.1) the survival probability of a firm thus

equals

P [τ > t] = EQ

[
exp

{
−
∫ t

0

h(u)du
}]

.

6.2 Defaultable Stock Price Dynamics

In the Black and Scholes (1973) economy, it is assumed that, in the absence of default risk,

the stock price is driven by an n –dimensional standard Brownian motion in the filtered

probability space (Ω,F , F, P ∗) . Ω is a set which contains all states of the world, and

P ∗ is the risk neutral probability measure. F is a σ− algebra of subsets of Ω , and Ft

contains all information about the stock price till time t . The filtration F := (Ft)t∈[0,T ]

is a family of σ− algebras and describes the information structure on the stock market,

and T denotes a fixed finite time horizon. The dynamics of the stock can be described

by the following stochastic differential equation (SDE),

dSt = St (r(t) dt + σt dW ∗(t)) (6.2)

where r(t) > 0 is the risk free instantaneous interest rate and the volatility of the

stock price σ : R≥0 → Rn
>0 is an n –dimensional bounded, deterministic function.

{W ∗(t)}t∈[0,T ] is a n –dimensional standard Brownian motion under the martingale mea-
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sure P ∗ . Solving the differential Equation (6.2), we obtain

St = S0 exp


t∫

0

(r(u)− 1

2
‖σu‖2) du +

∫ t

0

σu dW ∗(u)

 ,

where S0 is the initial stock price.

The literature on stock options usually model the firm’s stock price as geometric Brow-

nian motions and preclude the possibility of default. Whereas modeling of default event

and credit spread is an essential task of study on corporate bond. Apart from convertible

bonds there are also other hybrid products which have both the characteristics of equity

and debt. Facing these problems, the two strands of research have merged recently. De-

fault risk is integrated in the diffusion of the stock prices. In the reduced-form framework,

one specifies the default intensity as a decreasing function of the underlying stock price.

The default event is modeled as the first jump time of a doubly stochastic Poisson process.

For example, Linetsky (2006) and Duffie and Singleton (2003) (p.206ff) model the default

intensity as a negative power function of the underlying stock price. This assumes, in

effect, that the equity price conveys sufficient information for the prediction of the default

probability.

In the following, the dynamic of the defaultable stock prices will be introduced. The

Brownian motion which governs the movement of the stock prices is assumed to be 1-

dimensional1. The model framework is established according to Linetsky (2006).

Assumption 6.2.1. A filtered probability space (Ω,G, G, Q) where G := {Gt}t∈[0,T ]

is assumed. It supports a 1-dimensional Brownian motion {Wt, t ≥ 0}, and an expo-

nentially distributed random variable E1 with parameter 1. The random variable E1

is independent of the Brownian motion W . The stock price process S is subject to

default. The pre-default stock price is denoted as S̃t . The default intensity is specified

as a decreasing function of the underlying stock price, and is denoted as h(S̃) where

h : R → [0,∞) is a nonnegative, continuous function. The default time τ is modeled

as

τ = inf

{
t ≥ 0 :

∫ t

0

h(S̃u)du ≥ E1

}
. (6.3)

It corresponds to the first jump time of a doubly stochastic Poisson process with intensity

h(S̃t) . Take an equivalent martingale measure Q as given. Under Q , the pre-default

stock price S̃t is a diffusion process solving the following stochastic differential equation

dS̃t = (rt + h(S̃t))S̃tdt + σtS̃tdWt, (6.4)

1It is a rough approximation of the reality but it makes the computation tractable and closed-form
solution can be derived.
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where rt is the risk-free instantaneous interest rate and σt is the volatility of the pre-

default stock price. Furthermore, it is assumed that if the firm defaults the stock price

jumps to zero. Therefore the price process of the defaultable stock S follows the jump

diffusion

dSt = St−(rtdt + σtdWt − dMt), (6.5)

with

Mt = 1{τ≤t} −
∫ t∧τ

0

h(S̃u)du ,

which is a martingale with respect to the filtration G .

Assumption 6.2.2. In particular, we assume that the intensity function h(S̃t) has two

values

h(S̃t) =

{
a if S̃t ≤ K

b if S̃t > K
(6.6)

where a , b and K are constant and a > b > 0 .

The firm has a normal default intensity b . If the firm is in trouble, i.e. the stock price

is lower than the constant level K , it has a higher default rate a . Thus, during the life

time of the bond, the more time the stock price spends below the boundary, the higher

the default risk. Thus, the default intensity is strongly influenced by the stock price but

they are not perfectly correlated. Moreover, this model has certain similarity with some

structural models, e.g. in the first-passage approach, the firm defaults immediately when

its value falls below the boundary, while in the excursion approach, the firm defaults if it

reaches and remains below the default threshold for a certain period.

Linetsky (2006) and Duffie and Singleton (2003)(p.206ff) model the default intensity as

a negative power function of the underlying stock price. In Linetsky (2006) closed-form

solutions in form of spectral expansions are derived for bonds and stock options. The

expansions contain several special functions and integration of them. In both papers, the

parameters of the negative power function are chosen in the way that, there is a small

region, if the stock price is above it, the default probability is quite low. As soon as the

stock price goes below this region, the default probability rises dramatically. Therefore

our simple assumption can be seen as an approximation of the power function modeling.

6.3 Information Structure and Filtration Reduction

At first, we will explain the information structure due to the interplay of the stock and

default risk. According to assumption 6.2.1 on the stock price and the default intensity,

the information about the aforementioned two risks is contained in the full-filtration G ,
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which is composed of two sub-filtrations

G = F ∨H,

where G := {Gt}t∈[0,T ] is given by Gt = Ft ∨ Ht . Ft = σ{S̃s : 0 ≤ s ≤ t} contains

information about the evolution of the pre-default stock price S̃t. In our model the default

intensity h(S̃t) depends only on the pre-default stock price S̃t, and there are no other

state variables involved, therefore, the information about the likelihood of the default is

given by Ft . Ht = σ{1τ≤s : 0 ≤ s ≤ t} holds the information whether there has been

a default till time t . Gt = Ft ∨ Ht then corresponds to knowing the evolution of the

stock price up to time t and whether default has occurred or not. E1 is independent of

sigma field FT and Ht ⊆ σ(E1) . In this information setting,

Ft ⊆ Gt ⊆ Ft ∨ σ(E1). (6.7)

Under such construction of filtration, it has been shown in Lando (1998) that, under

some measurable conditions, the expectations with respect to Gt can be reduced to the

expectation with respect to Ft. There are three basic components for the valuation of

default contingent claims: promised payment X at expiry, a stream of payments Ys1τ>s

which stops when default occurs and recovery payment Zτ at time of default. In particular

for convertible bonds the expiry time can be the maturity date T , the conversion or call

time τb or τs , which is written as T̃ = τb ∧ τs ∧ T . For a given equivalent martingale

measure Q , the expected value of these three basic components are:

EQ

[
exp

(
−
∫ T̃

t

rsds
)
X1τ>T

∣∣∣Gt

]
= 1τ>tEQ

[
exp

(
−
∫ T̃

t

(rs + hs)ds
)
X
∣∣∣Ft

]
, (6.8)

EQ

[∫ T̃

t

Ys1τ>s exp
(
−
∫ s

t

rudu
)
ds
∣∣∣Gt

]
= 1τ>tEQ

[∫ T̃

t

Ys exp
(
−
∫ s

t

(ru + hu)du
)
ds
∣∣∣Ft

]
,

(6.9)

and

EQ

[
exp

(
−
∫ τ

t

rsds
)
Zτ

∣∣∣Gt

]
= 1τ>tEQ

[∫ T̃

t

Zshs exp
(
−
∫ s

t

(ru + hu)du
)
ds
∣∣∣Ft

]
,

(6.10)

Where X is FT̃ measurable2, i.e. X ∈ FT̃ . Y and Z are adapted processes, i.e. Yt

and Zt are measurable for each t ∈ [0, T̃ ] . hu is the abbreviation of h(S̃u) and stands

for the default intensity. The lhs (left hand sides) of Equations (6.8), (6.9) and (6.10) show

that, in the original market subject to default risk, cash flows are discounted according

to the risk free discount factor exp(−
∫ t

s
rudu). With the help of filtration reduction we

2Note that τb and τs can be any time in the interval [0, T ] . The measurable condition is satisfied
because conversion and call payoff are adapted processes.
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move to the fictitious default-free market in which cash flows are discounted according to

the modified discount factor exp(−
∫ t

s
(ru + hu)du) . This effect is demonstrated by the

rhs (right hand sides) of Equations (6.8), (6.9) and (6.10).

Remark 6.3.1. If the market is complete, e.g. the defaultable stock and defaultable

discount bond with maturity T are tradeable, there exists a unique martingale measure

P ∗ for the valuation. In incomplete market, the equivalent martingale measure Q can

e.g. be the so-called minimal martingale measure introduced by Föllmer and Schweizer

(1990) or the minimal entropy martingale measure proposed by Frittelli (2000). The

former measure emerges from the mean-variance optimal hedging strategy which mini-

mizes the variance between the random payoff and the terminal wealth generated from a

self-financing strategy. Whereas the latter minimizes the relative entropy to the original

objective measure P. Both measures have the nice property that zero risk premium is

associated with default timing risk, i.e. the risk-neutral intensity under Q remains the

same as the original intensity under P . Details about these results can be found e.g. in

Blanchet-Scalliet, El Karoui and Martellin (2005).



Chapter 7

Mandatory Convertible Bond

Mandatory convertibles are equity-linked hybrid securities. The coupon rate of a manda-

tory convertible is usually higher than the dividend rate of the stock. Given no default, at

maturity the bond converts mandatorily into a number of stocks if the stock price lies be-

low a lower strike level. The holder will exercise the conversion right if the stock price lies

above an upper strike level. Typically the bondholder is subject to the full downside risk

of the stock, while he can only participate partially in the upside potential of the stock.

Usually they have a maturity of 3-5 years. They are issued by the firms to raise capital,

usually in times when the placement of new stocks are not advantageous. Empirically, it

can be observed that firms that issue mandatory convertibles tend to be highly leveraged.

They intend to improve the future ratings by issuance of mandatory convertibles.

In some literature it is argued that, due to the offsetting nature of the embedded option

spread, a change in volatility has only unnoticeable effects on the value of the mandatory

conversion. Therefore, the influence of the volatility on the no-arbitrage price is limited.

But in the following we will show that if the default intensity is explicitly linked to the

stock price, the impact of the volatility can no longer be neglected.

The remainder of the chapter is structured as follows. We start in section 7.1 with a

description of the contract feature and in section 7.2 the mandatory convertible bond is

valuated in a default-free complete market. Section 7.3 aims to treat the joint effect of

equity and default risk. Finally, section 7.4 relaxes the assumption of constant volatility

and no-arbitrage pricing bound is determined.

7.1 Contract Feature

A typical payoff of mandatary convertible bond at the maturity is shown by figure (7.1).

Formally the payoff at maturity can be summarized as max{min{γ1ST , L}, γ2ST}, with

conversion ratio L
Kl

=: γ1 > γ2 := L
Ku

. The payoff can be further decomposed into 1

79
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Figure 7.1: Payoff of mandatory convertible bond at maturity

long position in the principal L , γ1 short position of put with lower strike Kl , and

γ2 long position of call with upper strike Ku . Zero recovery of the bond is assumed1,

thus the total payoff of the bond is the sum of the mandatory conversion value and the

coupon payments. Assume that the bondholder receives coupons at discrete time points

0 = t0 < ti < . . . < tN = T, and the coupon rate is constant, therefore the discounted

payoff of a mandatory convertible coupon bond at time t amounts to

mcb(t) = c ·
N∑

i=[t]+1

β(t, ti)1{ti<τ} + β(t, T ) max{min{γ1ST , L}, γ2ST}1{T<τ} (7.1)

= c ·
N∑

i=[t]+1

β(t, ti)1{ti<τ} + β(t, T ){L− [L− γ1ST ]+ + [γ2ST − L]+}1{T<τ},

where c is the coupon rate, L is the principal and β(s, t) = exp{−
∫ t

s
r(u)du} is the

discount factor, where r(t) is the risk-free instantaneous interest rate, [t] denotes the

integer part of t , and [x]+ stands for max[x, 0] . It’s no-arbitrage price under the

equivalent martingale measure Q is

MCB(t) = EQ[mcb(t)]. (7.2)

7.2 Default-free Market

The mandatory convertible bond is exposed to equity, interest and default risk. At the

first step, we ignore the default risk and valuate the mandatory convertible bond in a

traditional Black-Scholes model with constant interest rate r . The no-arbitrage price of

1It is a economical reasonable assumption because the mandatory bonds are junior debt with low
priority.
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a mandatory convertible bond amounts to

MCB(t) = c
N∑

i=[t]+1

e−r(ti−t) + e−r(T−t)L

{
N
(
− d1(

L

γ1

, t)
)
−N

(
− d1(

L

γ2

, t)
)}

(7.3)

+γ1StN
(
d2(

L

γ1

, t)
)

+ γ2StN
(
− d2(

L

γ2

, t)
)
,

where

d1(x, t) :=
ln x− ln St − r(T − t) + 1

2
σ2T

σ
√

T

d2(x, t) := d1 − σ
√

T ,

and N(.) denotes the cumulative normal distribution.

Example 7.2.1. The prices of different bonds with parameters T = 4, S0 = 100, L =

100, Kl = 100, r = 0.06, c = 6 are shown in the figure 7.2.

Figure 7.2: Value of mandatary convertible bond by different stock volatilities and different
upper strike prices

We can observe that the price of the mandatory convertible bond is not monotonic to

the change of the volatilities, and sensitive to the choice of the upper strike price. In this

setting, the argument is justified that due to the offsetting nature of the embedded option

spread, a change in volatility has only a slight effect on the no-arbitrage value of the

mandatory convertible bond. But the situation will change if the default risk, especially

the combined effect of default risk and equity risk is taken into account.
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7.3 Default Risk

The combined effect of default risk and equity risk of the underlying will be demonstrated

with a parsimonious model. The price dynamic of a defaultable stock is modeled in Sec-

tion 6.2, i.e. according to the Assumptions 6.2.1 and 6.2.2. Moreover, constant stock

volatility and interest rate are assumed.

Under an equivalent martingale measure Q the pre-default stock price S̃t follows a

diffusion process solving the stochastic differential equation

dS̃t = (r + h(S̃t))S̃tdt + σS̃tdWt (7.4)

= (r + a− (a− b)1{S̃t>K})S̃tdt + σS̃tdWt

The price process of the defaultable stock S follows the jump diffusion

dSt = St−(rdt + σdWt − dMt). (7.5)

The bond defaults at the time the stock price jumps to zero. Moreover, zero recovery of

the bond is assumed. In the following sections we will calculate the no-arbitrage price of

a mandatory convertible bond which payoff is described with Equation (7.1).

7.3.1 Change of measure

For derivation of the expected value of a mandatory convertible bond written on a default-

able stock we need the survival distribution and joint distribution of survival probability

and terminal value at the maturity. First we define the auxiliary process

Yt :=
ln S̃t

σ
=

(r + a− σ2

2
− (a− b)1{Yu>h}

σ

)
dt + dWt (7.6)

where h :=
ln K

σ
.

Girsanov transform is used to remove the drift term of S̃t . The relationship between the

original and new probability measure is

Q|Gt = Zt · Q̃|Gt (7.7)

with

Zt = exp

(∫ t

0

(
z − f(Yu)

σ

)
dW̃u −

1

2

∫ t

0

(
z − f(Yu)

σ

)2

du

)
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where

z :=
r + a− σ2

2

σ
f(Yt) := (a− b)1{Yt>h}.

W̃t is a standard Brownian motion under Q̃ and satisfies

W̃t = Wt +

∫ t

0

(
z − f(Yu)

σ

)
du .

Under the new measure Q̃ the auxiliary process Yt is a Brownian motion without drift.

The Tanaka formula states that for d ∈ R and a standard Brownian motion Bt ,

(Bt − d)+ = (−d)+ +

∫ t

0

1{Bs>d}dBs +
1

2
Ld

t

where Ld
t is the local time of a standard Brownian motion at the level d

Ld
t := lim

ε→0

1

2ε

∫ t

0

1{|Bs−d|≤ε}ds.

Lemma 7.3.1. (Atlan, Geman and Yor (2006)) Using the Tanaka formula, the martingale

Zt can be expressed in terms of Brownian motion at time t and its local and occupation

time till time t .

Zt = exp(2λ(−dK)+)φ(W̃t) exp(λLdK
t ) exp(−α+Γ

(dK ,+)
t − α−Γ

(dK ,−)
t ) (7.8)

with

dK :=
ln K

S0

σ
, λ :=

a− b

2σ

α+ := 2λ2 +
z2

2
− 2λz , α− :=

z2

2

φ(x) := exp(zx− 2λ(x− dK)+) ,

and

Γ
(d,+)
t :=

∫ t

0

1{Bs≥d}ds, Γ
(d,−)
t :=

∫ t

0

1{Bs≤d}ds (7.9)

denote the time spent by the standard Brownian motion till time t in interval [d,∞)

and (−∞, d] respectively, which are the occupation times.
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7.3.2 Valuation of coupons

The survival probability till time t under the original equivalent martingale measure Q

can be expressed as

P [t < τ ] = EQ

[
e−

R t
0 h(S̃u)du

]
= EQ

[
e−

R t
0 a−(a−b)1{Yt>h}du

]
.

Under the new measure Q̃

P [t < τ ] = EQ̃

[
Zt · e−

R t
0 a−(a−b)1{Yt>h}du

]
.

After inserting equation(7.8) and some simple calculations we obtain,

P [t < τ ] = e2λ(−dK)+−at EQ̃

[
φ(W̃t) exp(λLdK

t ) exp(−α̃+Γ
(dK ,+)
t − α−Γ

(dK ,−)
t )

]
(7.10)

with

α̃+ = α+ − (a− b).

We assume first that S0 > K , thus dK < 0 2. It means that, at the inception of the

contract, the stock price lies above the critical level and the firm is not in trouble. The

calculation of equation (7.10) can be decomposed into two cases:

(I) the level K is never touched during the life of the contract,

(II) the level K is touched during the life of the contract.

Thus equation (7.10) can be expressed as

Surv(t) := P [t < τ ] = SurvI(t) + SurvII(t) (7.11)

with

SurvI(t) := e−2λdK−(α++b)t EQ̃

[
1{mt>dK}φ(W̃t)

]
and

SurvII(t) := e−2λdK−at EQ̃

[
1{mt≤dK}φ(W̃t) exp(λLdK

t ) exp(−α̃+Γ
(dK ,+)
t − α−Γ

(dK ,−)
t )

]
where φ(x) = exp(zx − 2λ(x − dK)+) and mt denotes the minimum of the standard

Brownian motion W̃ till time t .

Lemma 7.3.2. According to the joint density of Brownian motion and its running max-

ima (see Proposition 8.1 Karatzas and Shreve (1991), p.95) and the symmetric of the

Brownian motion, the joint density of Brownian motion at time t and its minimum till

2The case dK > 0 can be solved in the similar way.
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time t , is given as, for y ≤ 0 and x ≥ y ,

P [Wt ∈ dx, mt ∈ dy] =
2(x− 2y)√

2πt3
exp

(
− (2y − x)2

2t

)
dxdy.

After integration with respect to x we obtain,

EQ̃

[
1{mt>dK}φ(W̃t)

]
=

∫ − dK√
t

−∞

1√
2π

exp(2λdK) · exp
(
− y2

2
+ (2λ

√
t− z

√
t)y
)
dy

−
∫ dK√

t

−∞

1√
2π

exp(2(z − λ)dK) · exp
(
− y2

2
+ (2λ

√
t− z

√
t)y
)
dy .

Then integrate with respect to y , we obtain

SurvI(t) = exp

(((2λ− z)2

2
− α+ − b

)
t

)
(7.12)

×{N(d1(t, dK))− exp(2(z − 2λ)dK) ·N(d1(t,−dK))}

with

d1(t, x) := (z − 2λ)
√

t− x√
t

and N(.) denote the cumulative distribution function of a standard normal distribution.

For derivation of the value of SurvII(t) we use the result stated in the following Lemma.

Lemma 7.3.3. (Atlan et al. (2006) Proposition II.15) For a standard Brownian motion

Wt , any function φ ∈ L1(R) , LdK
t denotes its local time at level dK ≤ 0 , mt denotes

its minimum, ΓdK ,+
t and ΓdK ,−

t denote the times spent above and below the level dK

till time t . The laplace transform of the function

g(t) := E
[
1{mt≤dK}φ(Wt) exp(λLdK

t ) exp(α+ΓdK ,+
t − α−ΓdK ,−

t )
]

with respect to the maturity time t is given as

ĝ(θ) :=

∫ ∞

0

e−θtg(t)dt (7.13)

= 2edK

√
2(θ+α+)

∫∞
0

e−x
√

2(θ+α+)φ(dK + x)dx +
∫∞

0
e−x

√
2(θ+α−)φ(dK − x)dx√

2(θ + α+) +
√

2(θ + α−)− 2λ
.

Insert φ(x) = exp(zx− 2λ(x− dK)+) in the former equation and after some elementary
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calculations the Laplace transform of SurvII(t) can be stated as

ŜurvII(θ) = 2
(S0

K

) 2λ−z−
√

2(θ+b+α+)

σ

1√
2(θ+b+α+)+2λ−z

+ 1√
2(θ+a+α−)+z√

2(θ + b + α+) +
√

2(θ + a + α−)− 2λ
, (7.14)

where θ must be sufficient large to satisfies the both conditions

θ >
(z − 2λ)2

2
− (α+ + b)

θ >
z2

2
− (α− + a) .

The survival probability SurvII(t) can be derived by inverting ŜurvII(θ) numerically.

Notation 7.3.4. We use the EULER algorithm introduced by Abate and Whitt (1995)

for inversion of Laplace transform throughout the paper. It is a Fourier-series method

and Euler summation is employed to accelerate the convergence.

Proposition 7.3.5. In summary, for dk ≤ 0 , the no-arbitrage value of coupon payments

is,

EQ

[
c ·

N∑
i=1

e−rti1{ti<τ}

]
= c ·

N∑
i=1

e−rtiSurv(ti) (7.15)

where Surv(ti) can be computed with equations(7.11), (7.12) and (7.14).

7.3.3 Valuation of terminal payment

The expected value of the payment of mandatory convertible bond at maturity is com-

posed of three parts, the principal payment, γ1 short position of put with lower strike Kl

and γ2 long position of call with upper strike Ku . The following calculation is carried

out for the case that the following three conditions are satisfied,

• dK < 0, the stock price lies above the critical level and the firm is not in trouble.

• S0 > Kl, at inception of the contract, the put component is out of money.

• S0 < Ku, at inception of the contract, the call component is out of money.

Value of principal

Proposition 7.3.6. The expected value of the principal payment is,

e−rT EQ

[
e−

R T
0 h(S̃u)duL

]
= e−rT L · Surv(T ) (7.16)
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where Surv(T ) can be computed with help of equations(7.11), (7.12) and (7.14).

Value of put component

Denote the expected value of put component as

PC(T ) := e−rT EQ

[
e−

R T
0 h(S̃u)du(L− γ1S̃T )+

]
(7.17)

= e−rT EQ̃

[
ZT · e−

R T
0 h(S̃u)du(L− γ1S̃T )+

]
.

The valuation of equation (7.17) is decomposed into two cases:

(I) the level K is never touched during the life of the contract,

(II) the level K is touched during the life of the contract.

Thus equation (7.17) can be expressed as

PC(T ) = PCI(T ) + PCII(T ) (7.18)

with

PCI(T ) := e−2λdK−r(α++b)T EQ̃

[
1{mT >dK}φ(W̃T )

]
and

PCII(T ) := e−2λdK−(a+r)T EQ̃

[
1{mT≤dK}φ(W̃t) exp(λLdK

T ) exp(−α̃+Γ
(dK ,+)
T − α−Γ

(dK ,−)
T )

]
where φ(x) = ezx−2λ(x−dK)+(L− γ1S0e

σx)+ .

Proposition 7.3.7. Under assumptions that dK < 0 and S0 > Kl,

PCI(T ) = L ·K1(T ) ·K2(T )
{

(N(d1(T, dK))−N(d1(T, dL1)) (7.19)

−K4(N(d1(T,−dK))−N(d1(T,−dγ1))
}

−γ1S ·K3(T )
{

(N(d2(T, dK))−N(d2(T, dL1))

−K5(N(d2(T,−dK))−N(d2(T,−dγ1))
}

,
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where

dL1 :=
ln Kl

S0

σ
dγ1 :=

ln K2

KlS0

σ

d1(t, x) := (z − 2λ)
√

t− x√
t

d2(t, x) := (z − 2λ + σ)
√

t− x√
t

K1(t) := exp(−(α+ + b)t) K2(t) := exp(
(2λ− z)2t

2
)

K3(t) := exp(
(2λ− z − σ)2t

2
) K4 := exp(2(z − 2λ)dK)

K5 := exp(2(z − 2λ + σ)dK).

the Laplace Transform of PCII(t) is,

P̂CII(θ) =
2M(θ)(Z1(θ)− Z2(θ) + Z3(θ)− Z4(θ))

N(θ)
(7.20)

where

µ := r + b + α+, ν := r + a + α−.

M(θ) =
(K

S0

) z−2λ+
√

2(θ+µ)

σ
N(θ) =

√
2(θ + µ) +

√
2(θ + ν)− 2λ

Z1(θ) =
L√

2(θ + µ) + 2λ− z

(
1−

(γ1K

L

) 2λ−z+
√

2(θ+µ)

σ

)

Z2(θ) =
γ1K√

2(θ + µ) + 2λ− z − σ

(
1−

(γ1K

L

) 2λ−z−σ+
√

2(θ+µ)

σ

)

Z3(θ) =
L√

2(θ + ν) + z

Z4(θ) =
γ1K√

2(θ + ν) + z + σ
.

Value of call component

Denote the expected value of call component as

CC(T ) := e−rT EQ

[
e−

R T
0 h(S̃u)du(γ2S̃T − L)+

]
(7.21)

= e−rT EQ̃

[
ZT · e−

R T
0 h(S̃u)du(γ2S̃T − L)+

]
.
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The valuation of equation (7.21) is decomposed into two cases:

(I) the level K is never touched during the life of the contract,

(II) the level K is touched during the life of the contract.

Thus equation (7.21) can be expressed as

CC(T ) = CCI(T ) + CCII(T ) (7.22)

with

CCI(T ) := e−2λdK−r(α++b)T EQ̃

[
1{mT >dK}φ(W̃T )

]
and

CCII(T ) := e−2λdK−(a+r)T EQ̃

[
1{mT≤dK}φ(W̃t) exp(λLdK

T ) exp(−α̃+Γ
(dK ,+)
T − α−Γ

(dK ,−)
T )

]
where φ(x) = ezx−2λ(x−dK)+(γ2S0e

σx − L)+ .

Proposition 7.3.8. Under assumptions that dK < 0 and S0 < Ku,

CCI(T ) = L ·K1(T ) ·K2(T )
{

N(d1(T, dL2))−K4 ·N(d1(T,−dγ2))
}

(7.23)

−γ2S0 ·K3(T )
{

N(d2(T, dL2))−K5 ·N(d2(T,−dγ2))
}

,

where K1(T ), K2(T ), K3(T ), K4 , K5 , d1(t, x) and d2(t, x) are defined in equa-

tion(7.19) and

dL2 :=
ln Ku

S0

σ
dγ2 :=

ln K2

KuS0

σ
.

the Laplace Transform of CCII(t) is,

ĈCII(θ) =
2M(θ)(Z5(θ)− Z6(θ))

N(θ)
(7.24)

where M(θ) and N(θ) are defined in equation(7.20) and

Z5(θ) =
γ2K√

2(θ + µ) + 2λ− z − σ
·
(γ2K

L

) 2λ−z−σ+
√

2(θ+µ)

σ

Z6(θ) =
L√

2(θ + µ) + 2λ− z

(γ2K

L

) 2λ−z+
√

2(θ+µ)

σ
.
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7.3.4 Numerical example

Example 7.3.9. As a concrete numerical we compute the prices of different mandatory

convertible bonds with parameters T = 4 , r = 0.06 , a = 0.5 , b = 0.02 , K = 60 ,

S0 = 100 , Kl = 100 , L = 100 , and c = 6 . The results are compared with the

default-free case and summarized in table(7.1)

Ku = 120 Ku = 130 Ku = 140

σ default-free defaultable default-free defaultable default-free defaultable
0.2 108.75 106.64 104.93 102.33 102.07 99.04
0.3 108.89 106.47 104.85 102.07 101.67 98.58
0.4 108.67 105.41 104.42 100.80 100.97 97.05
0.5 108.33 104.11 103.86 99.26 100.17 95.27

Table 7.1: No-arbitrage prices of mandatory convertible bond without and with default risk

The results in table 7.1 show that default risk reduces the price of the mandatory con-

vertible bond. The influence of the stock volatility on the price is no longer limited if

default risk is considered. For example, in default free case, by Ku = 120, the price of the

mandatory convertible bond is 108.75 if σ equals 0.2, and it amounts 108.33 if σ equals

0.5. The price difference is 0.42, which is quite small. But by consideration of default

risk, the price difference amounts to 2.53, and can no longer be neglected. Therefore, the

argument in some literature, that due to the offsetting nature of the embedded option

spread, a change in volatility has only a minor effect on the mandatory convertible value

cannot be justified if the default intensity is explicitly linked to the stock price.

7.4 Default Risk and Uncertain Volatility

Suppose that the seller and buyer relax the assumption of constant volatility by the

valuation and adopt the uncertain volatility approach to super-hedge the position3. Define

the price of the mandatary convertible bond at time t as

Jt := EQ[mcb(t)]

= 1τ>t

N∑
i=[t]+1

EQ

[
exp

(
−
∫ ti

t

(r + h(S̃s))ds
)
· c
∣∣∣ Ft

]

+ 1τ>tEQ

[
exp

(
−
∫ T

t

(r + h(S̃s))ds
)
Φ(S̃T )

∣∣∣ Ft

]
3In this case the default risk are linked to the equity price, the probabilistic approach proposed by

Frey (2000) does not work, because we can no longer achieve constant volatility by applying time change
for continuous martingales. We can only apply the PDE approach.
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where

Φ(S̃T ) := L− [L− γ1S̃T ]+ + [γ2S̃T − L]+.

Applying Black-Scholes-Barenblatt equation, the pricing bounds of Jt can be expressed

with the following PDE on non-coupon dates,

∂Jt

∂t
+

1

2
Σ2
[∂2Jt

∂S̃2
t

]
S̃2

t

∂2Jt

∂S̃2
t

+ (r + h(S̃t))S̃t
∂Jt

∂S̃t

− (r + h(S̃t))Jt = 0, (7.25)

the lower bound can be achieved by setting

Σ2 [x] =

{
σ2

max if x ≤ 0

σ2
min else,

while the upper bound can be derived with

Σ2 [x] =

{
σ2

max if x ≥ 0

σ2
min else,

and on coupon dates tc
Jt−c

= Jt+c
+ c.

where t−c and t+c are the time just before and after the coupon payment respectively. In

the following Example 7.4.1 explicit finite-difference method is applied for the numerical

solution.

Example 7.4.1. The volatility of stock is supposed to lie within the interval [0.2, 0.4].

The other model parameters are the same as in Example 7.3.9, with T = 4 , r = 0.06 ,

K = 60 , S0 = 100 , Kl = 100 , L = 100 , and c = 6 . The no-arbitrage pricing bounds

are listed in table 7.2.

a = 0.5, b = 0.02 a = 0, b = 0

Ku lower upper spread lower upper spread
120 104.05 108.78 4.73 106.91 110.80 3.89
130 98.86 105.14 6.28 102.15 107.55 5.40
140 94.74 102.27 7.53 98.37 105.00 6.63

Table 7.2: No-arbitrage pricing bounds mandatory convertible bonds with stock price
volatility lies within the interval [0.2, 0.4].

Results in table 7.2 show the no-arbitrage pricing bounds due to uncertainty about the

stock volatility. Explicit modeling of default risk enlarges the price spread.
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7.5 Summary

A mandatory convertible bond can be considered as a straight bond with embedded put

and call option. It is exposed to equity, interest and default risk. The focus of our study is

the joint effect of default and equity risk on the valuation of mandatory convertible bond.

We adopt a parsimonious model and assume that the default intensity can only have two

constant values. A normal default rate, which is relative low, but if the stock price falls

beneath a critical boundary, the default intensity is much higher. Laplace transform of

the price of mandatory convertible bond is derived. Numerical example shows that if the

default risk is incorporated, the influence of the stock volatility is no longer negligible for

the valuation. Finally, we drop the assumption of constant volatility which is one of the

critical assumptions in the option valuation, and derive the pricing bound by application

of uncertain volatility approach.



Chapter 8

American-style Convertible Bond

In Chapter 4 and Chapter 5 the American-style callable and convertible bond has been

studied within the structural approach. Strategical optimal behavior of the bond- and

shareholder has been the focus of the investigation. In Kifer (2000) the existence and

uniqueness of the no-arbitrage price of a game option is derived for a underlying process

which follows a Brownian diffusion and the payoffs of the game option are adapted to

the filtration generated by the underlying process. In the structural approach, the firm’s

value follows a geometric Brownian motion and the default time is a predictable stopping

time, thus the payoffs of the convertible bond are adapted to the filtration generated

by the firm’s value. Thus, we can apply the results on game option developed by Kifer

(2000) to derive the unique no-arbitrage value and the optimal strategies of the callable

and convertible bond. The optimal strategy for the bondholder is to select the stopping

time which maximizes the expected payoff given the minimizing strategy of the issuer,

while the issuer will choose the stopping time that minimizes the expected payoff given

the maximizing strategy of the bondholder. Furthermore, the no-arbitrage price can be

approximated numerically by means of backward induction on a recombining binomial

tree.

Within the reduced-form approach, stock price, credit spreads and implied volatilities

of options are used as model inputs. The price of a defaultable stock is described by a

jump diffusion (See Section 6.2). The default is an unpredictable event governed by an

exogenous default rate or intensity process. It is not adapted to the filtration (Ft)t∈[0,T ]

generated by the pre-default stock prices which follows a Brownian diffusion. The price

of a defaultable stock S is adapted to a larger filtration (Gt)t∈[0,T ] , with Gt = Ft ∨ Ht

which contains the information about the evolution of the pre-default stock prices and

the knowledge whether default has occurred or not. We apply the results of Kallsen and

Kühn (2005) to derive the unique no-arbitrage value and the optimal strategies. Because

their results are derived for more general stochastic processes which include the jump dif-

fusion process. Within the reduced-form approach, the max-min and min-max strategies

are still valid for the callable and convertible bond but they are derived with respect to

93
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the filtration (Gt)t∈[0,T ] . In Section 6.2.1 it has been shown that if the time of default

is modeled as the first jump of a Cox process and under some measurable conditions,

the expectations with respect to Gt can be reduced to the expectation with respect to

Ft. Further calculations can thus be simplified. The results of doubly reflected backward

stochastic differential equations (BSDE) for continuous diffusions developed by Cvitanić

and Karatzas (1996) can be used for computing the no-arbitrage price.

One of the early models on callable and convertible bond within reduced-form approach

is proposed by Davis and Lischka (1999). They construct a model framework that incor-

porate Black-Scholes stock price, Gaussian stochastic interest rate and stochastic default

intensity driven by a Brownian motion that also governs the movement of the stock price.

To derive the price of a callable and convertible bond the continuous processes are ap-

proximated with a multi-dimensional tree. It is called two-and-a-half factors model and

has found its application in the industry. A similar model has been developed by Ayache

et al. (2003). But in both models the game option character of the contract is not con-

sidered. Defaultable game option and its application to callable and convertible bonds

within reduced-form model have been studied in Bielecki et al. (2006) and Bielecki et al.

(2007). Some complex contract features of the callable and convertible bond are treated

in the latter paper. The approach in this thesis differs from theirs in that we formulate

the default event directly as the time of the first jump of a Poisson process with random

intensity. The derivation of the further results is simpler. Furthermore, instead of the

contract features such as no-call period or delayed call we focus on the uncertain volatility

of the stock and the derivation of the no-arbitrage pricing bounds.

The remainder of the chapter is structured as follows. We start in section 8.1 and 8.3 with

a description of the contract feature of the callable and convertible bond and its expected

discounted payoff. Section 8.2 describes the optimal strategies. Section 8.4 summarized

some results of BSDE which are closely related to financial market. Section 8.5 formu-

lates the solution of callable and convertible bond as doubly reflected BSDE and 8.6 solves

the problem numerically. Section 8.7 treats the case that there is uncertainty about the

volatility of the stock price.

8.1 Contract Feature

The contract feature of the American-style callable and convertible bond has been de-

scribed in Section 4.1. The payoff of the bond within the reduced-form model differs

from that within a structural model only at one point that the former use stock price as

input while by the latter the firm’s value is the model input1. The bondholder can stop

1For ease of reading we give a complete description of the payoff and accept that there are some
repetitions of Section 4.1
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and convert the bond into stocks according to the prescribed conversion ratio γ. The

conversion time of the bondholder is τb ∈ [0, τ ], where τ is the default time. The issuer

which is often the shareholder can stop and buy back the bond for a price given by the

maximum of call level H and the current conversion price, where H can be constant or

time dependent. The call time of the seller is τs ∈ [0, τ ] .

The payoff of a defaultable callable and convertible bond can be distinguished in four

cases. The principal of the bond is L , Rt stands for the recovery process, St is the

stock price at time t and c the coupon rate.

(i) Let τb < τs ≤ T, such that the contract begins at time 0 and is stopped and

converted by the bondholder. In this case, the discounted payoff ccb(0) of the

callable and convertible bond at time 0 is composed of the accumulated coupon

payments and the payoff through conversion

conv(0) = c

∫ τb∧τ

0

β(0, s)ds + Rτ · β(0, τ)1{τ≤τb} + β(0, τb)1{τb<τ}γSτb
.

(ii) Let τs < τb ≤ T, such that the contract is bought back by the issuer before the

bondholder converts. In this case, the discounted payoff call(0) of the callable and

convertible bond at time 0 is composed of the accumulated coupon payments and

the payoff through call,

call(0) = c

∫ τs∧τ

0

β(0, s)ds + Rτ · β(0, τ)1{τ≤τs} + β(0, τs)1{τs<τ} max[H, γSτs ].

(iii) If τs = τb < T the discounted payoff of the bond equals the smaller value, i.e. the

discounted payoff with conversion.

(iv) For τb ≥ T and τs ≥ T, the discounted payoff of a callable and convertible bond

at time 0 is

term(0) = c

∫ τ∧T

0

β(0, s)ds + Rτ · β(0, τ)1{τ≤T} + β(0, T )1{T<τ} max[γST , L].

Denote the minimum of conversion and call time by ζ = τs ∧ τb. Then, the discounted

payoff of a callable and convertible bond in all four cases can be expressed with one
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equation,

cbb(0) := 1{ζ<τ}

(
c

∫ ζ∧T

0

β(0, s)ds + 1{ζ=τs<τb≤T}β(0, ζ) max {H, γSζ}

+1{ζ=τb<τs<T}β(0, ζ)γSζ + 1{ζ=T}β(0, T )γST

)
+ 1{τ≤ζ}

(
c

∫ τ∧T

0

β(0, s)ds + 1{τ≤T}β(0, τ)Rτ + 1{T<τ}β(0, T )L
)
.

(8.1)

Theorem 8.1.1. Same as within the structural model, the payoff of a callable and con-

vertible bond can be decomposed into a straight bond and a defaultable game option

component g(0) .

ccb(0) = d(0) + g(0) (8.2)

with

d(0) := c

∫ τ∧T

0

β(0, s)ds + 1{τ≤T}β(0, τ)Rτ + 1{T<τ}β(0, T )L

and

g(0) := 1{ζ<τ}β(0, ζ)
{
1{ζ=τb<τs<T} (γSζ − φζ)

+1{ζ=τs<τb≤T} (max {Hζ , γSζ} − φζ) + 1{ζ=T} (γST − L)+
}

.

where

φζ := c

∫ τ∧T

ζ

β(0, s)ds + 1{τ≤T}β(ζ, τ)Rτ + 1{T<τ}β(ζ, T )L (8.3)

is the discounted value (discounted to time ζ ) of the sum of the remaining coupon

payments and the principal payment of a straight coupon bond given that it has not

defaulted till time ζ .

8.2 Optimal Strategies

As the call value is strictly larger than the conversion value prior to maturity and they

are the same at the maturity, thus, we can apply the the theories of game option de-

veloped by Kallsen and Kühn (2005). Within the reduced-form approach, the max-min

and min-max strategies are still valid for the callable and convertible bond but they are

derived with respect to the filtration (Gt)t∈[0,T ] . The optimal strategy for the bondholder

is to select the stopping time which maximizes the expected payoff given the minimizing

strategy of the issuer, while the issuer will choose the stopping time that minimizes the

expected payoff given the maximizing strategy of the bondholder. This max-min strategy

of the bondholder leads to the lower value of the convertible bond, whereas the min-max

strategy of the issuer leads to the upper value of the convertible bond. The assumption
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that the call value is always larger than the conversion value prior to the maturity and

they are the same at maturity T ensures that the lower value equals the upper value

such that there exists a unique solution.

Under an equivalent martingale measure Q , the no-arbitrage price of the callable and

convertible bond at the inception of the contract, CCB(0) is given by

CCB(0) = sup
τb∈G0T

inf
τs∈G0T

EQ[ccb(0)|G0] = inf
τs∈G0T

sup
τb∈G0T

EQ[ccb(0)|G0]. (8.4)

where G0T is the set of stopping times with respect to the filtration {Gu}0≤u≤T with

values in [0, T ]. After the inception of the contract, the value process CCB(t) satisfies

CCB(t) = esssupτb∈GtT
essinfτs∈GtT

EQ[ccb(0)|Gt] (8.5)

= essinfτs∈GtT
esssupτb∈GtT

EQ[ccb(0)|Gt].

where GtT is the set of stopping times with respect to the filtration {Gu}t≤u≤T with values

in [t, T ]. Furthermore, the optimal stopping times for the equity holder and bondholder

respectively are

τ ∗b = inf{t ∈ [0, T ] | conv(0) ≥ CCB(t)}
τ ∗s = inf{t ∈ [0, T ] | call(0) ≤ CCB(t)}. (8.6)

It is optimal to convert as soon as the current conversion value is equal to or larger than

the value function CBB(t), while the optimal strategy for the issuer is to call the bond

as soon as the current call value is equal to or smaller than the value function CBB(t).

In general, the optimization problem formulated via equation(8.4) has no closed-form

solution.2 After the reduction of the filtration from (Gt)t∈[0,T ] to (Ft)t∈[0,T ] the no-

arbitrage value can be formulated as adapted solution of backward stochastic differential

equations (BSDE) with two reflecting barriers. In Section 8.4 we give a brief summary of

the results on BSDE which are closely related to the financial market. At first we show

the reduction of the filtration.

8.3 Expected Payoff

Applying the methodology of filtration reduction described in Section 6.3 expected payoffs

related to a callable and convertible bond have simple and explicit expressions. For a given

2The continuous time problem can be approximated with a discrete time one and the no-arbitrage
price of the callable and convertible bond can then be derived e.g. by recursion alongside the branches
of a tree. But the dynamic of the stock price is modeled as jump diffusion with varying drifts and it
is sometimes difficult to construct a recombining tree especially if the uncertain volatility is considered.
Therefore we need to solve it with the help of BSDE.
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equivalent martingale measure Q , the no-arbitrage price of a straight coupon bond with

face value L , constant continuous coupon rate c , maturity T and a constant recovery

amount R upon default time τ is

D(t) = 1τ>tEQ

[
exp

(
−
∫ T

t

(rs + hs)ds
)
L
∣∣∣Ft

]
(8.7)

+1τ>t EQ

[∫ T

t

(c + R · hs) · exp
(
−
∫ s

t

(ru + hu)du
)
ds
∣∣∣Ft

]
.

In the fictitious default-free market, the sum of the discounted cash flows in equation(8.7)

corresponds to a default-free coupon bond with face value L and variable coupon rate

c̄+R ·hs . The modified discount factor amounts exp(−
∫ t

s
(ru +hu)du) . At the inception

of the contract, t = 0 , the expression can be simplified to

D(0) = EQ

[
exp

(
−
∫ T

0

(rs + hs)ds
)
L

]
(8.8)

+EQ

[∫ T

0

(c̄ + R · hs) · exp
(
−
∫ s

0

(ru + hu)du
)
ds

]
.

where EQ[ . ] is an abbreviation for EQ[ . |F0] .

Equations (8.4) and (8.5) can be reformulated as

CCB(0) = sup
τb∈F0T

inf
τs∈F0T

EQ[ccb(0)|F0] = inf
τs∈F0T

sup
τb∈F0T

EQ[ccb(0)|F0]. (8.9)

where F0T is the set of stopping times with respect to the filtration {Fu}0≤u≤T with

values in [0, T ]. After the inception of the contract, the value process CCB(t) satisfies

CCB(t) = 1τ>tesssupτb∈FtT
essinfτs∈FtT

EQ[ccb(0)|Ft] (8.10)

= 1τ>tessinfτs∈FtT
esssupτb∈FtT

EQ[ccb(0)|Ft].

where FtT is the set of stopping times with respect to the filtration {Fu}t≤u≤T with

values in [t, T ], and

EQ[ccb(0)|Ft] = 1{τ>t}EQ

[∫ ζ∧T

t

(c̄ + R · hs) · exp
(
−
∫ s

t

(ru + hu)du
)
ds

+1{ζ=τb<τs<T} exp
(
−
∫ ζ

t

(rs + hs)ds
)
γS̃ζ

+1{ζ=τs<τb<T} exp
(
−
∫ ζ

t

(rs + hs)ds
)

max[H, γS̃ζ ]

+ 1{ζ=T} exp
(
−
∫ T

t

(rs + hs)ds
)

max[L, γS̃T ]
∣∣∣ Ft

]
.
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8.4 Excursion: Backward Stochastic Differential Equa-

tions

The study of non-linear BSDE is initiated by Pardoux and Peng (1990). The authors prove

existence and uniqueness of the solution under suitable assumptions on the coefficient

and the terminal value of the BSDE. Since then it has been recognized that the theory

of BSDE is a useful tool to formulate and study many problems in finance, e.g. hedging

and pricing of European contingent claims, see El Karoui and Quenez (1997). Further

studies are carried out in El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) to

BSDE’s with reflection, i.e., the solution is forced to stay above a given stochastic process.

Existence and uniqueness of the solution is proved. Moreover they show that in a special

case the solution is the value function of a mixed optimal stopping and optimal stochastic

control problem. Concrete examples are pricing of American option in complete and

incomplete market. These results are further generalized in Cvitanić and Karatzas (1996)

to the case of two reflecting barrier processes, i.e. the solution process of the BSDE has

to remain between the prescribed upper- and lower-boundary processes. They prove the

existence of the solution and show that the solution coincides with the value of a Dynkin

game, therefore establish the uniqueness of the solution. There are numerous studies on

theory and numerics of BSDE’s. A comprehensive review will go out of the range of our

study. We will only summarize the results closely related to financial market, especially

the game option.

8.4.1 Existence and uniqueness

The existence and uniqueness of the backward stochastic differential equation was first

treated in Pardoux and Peng (1990).

Definition 8.4.1. Let T ∈ R+. Given a filtered probability space (Ω,F , {Ft}t∈[0,T ], P ).

The filtration {Ft}t∈[0,T ] is generated by a d -dimensional Brownian motion W . Con-

sider the following BSDE

− dYt = f(t, Yt, Zt)dt− Z>
t dWt, YT = ξ, (8.11)

or equivalently

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z>
s dWs

where

- The terminal value ξ is an n -dimensional FT -measurable square integrable ran-

dom vector.

- f maps Ω × R+ × Rn × Rd×n into Rn . f is assumed to be P
⊗
Bn
⊗
Bd×n

measurable. P denotes σ -algebra of Ft -progressively measurable subsets of Ω×
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R+ . Moreover f is uniformly Lipshitz, i.e. there exists C > 0 such that dt× dP

a.s. for all y1, z1, y2, z2

|f(t, y1, z1)− f(t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|).

- Y and Z are Rn and Rd×n valued progressively measurable processes and Y is

continuous. Z> denotes the transpose of the matrix Z .

- f is called the driver of the BSDE.

There exists a unique pair of adapted process (Y, Z) satisfies equation (8.11).

8.4.2 Comparison theorem

Let (f 1, ξ1) and (f 2, ξ2) be two pairs of driver and terminal value of two BSDE’s, and

(Y 1, Z1) and (Y 2, Z2) be the associated solutions. Suppose that ξ1 ≥ ξ2 P a.s., and

δ2ft := f 1(t, Y 2
t , Z2

t )− f 2(t, Y 2
t , Z2

t ) ≥ 0 dt× dP a.s.. Then we have Y 1 ≥ Y 2 P a.s..

Moreover the comparison is strict, i.e. on the event {Y 1
t = Y 2

t } , we have ξ1 = ξ2 ,

f 1(s, Y 2
s , Z2

s ) = f 2(s, Y 2
s , Z2

s ) dt × dP a.s. and Y 1
s = Y 2

s , t ≤ s ≤ T a.s.. The

comparison theorem is e.g. useful for calculation of upper bound of contingent claim in

incomplete market.

8.4.3 Forward backward stochastic differential equation

A well-investigated class of BSDE’s is of the following form, it is also called forward

backward stochastic differential equation (FBSDE)

Yt = g(XT ) +

∫ T

t

f(s, Xs, Ys, Zs)ds−
∫ T

t

Z>
s dWs

where g and f are deterministic functions and X satisfies the following SDE

Xt = x +

∫ t

0

b(s, Xs)ds +

∫ t

0

σ(s, Xs)
>dWs

where b and σ are measurable functions. The adapted solution of Y is associated to

the solution of a quasi-linear parabolic PDE ut +
1

2
tr{σσ>uxx}+ bux + f(t, x, u, uxσ) = 0

u(T, x) = g(x).
(8.12)

The explicit expression of the solution (Y, Z) is

Yt = u(t,Xt), Zt = ∂xu(t,Xt)σ(t,Xt).



8.4. EXCURSION: BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS 101

8.4.4 Financial market

Consider a complete market there are n + 1 primary assets which are denoted by the

vector S = (S0, S1, ..., Sn)> . S0 is a non-risky asset and has the following price dynamic

dS0
t = S0

t rtdt

rt is the deterministic interest rate. The price process for Si , i ∈ (1, ..., n) is modeled

by the linear SDE driven by an n -dimensional Brownian motion W , defined on the

filtered probability space (Ω,F , (Ft)t∈[0,T ], P ),

dSi
t = Si

t

(
bi
tdt +

n∑
j=1

σi,j
t dW j

t

)
.

P is the objective probability measure. Assume that the number of risky assets equals

the dimension of the Brownian motion3. By absence of arbitrage there exists an n -

dimensional bounded and progressively measurable vector θ such that

bt − rt1 = σtθt, dt× dP a.s.,

where 1 denotes n -dimensional unit vector. σt is an n× n matrix and is assumed to

have full rank. θ is called the premium of the market risk. Under these assumptions the

market is complete.

For hedge of a European contingent claim in complete market a self-financing and repli-

cating portfolio can be builded. At time t the trading strategy φt = (φ1
t , ..., φ

n
t )> can be

decided. And under the assumption of self-financing the investment in the risk-less asset

must satisfy φ0
t S

0
t = Vt −

∑n
i=1 φi

tS
i
t . Therefore the value of the self-financing portfolio

has the following dynamic

dVt = rtVtdt + π>t (bt − rt1)dt + π>t σtdWt

= rtVtdt + π>t σt(dWt + θtdt).

The vector πt = (π1
t , ..., π

n
t )> with πi

t = φi
tS

i
t denotes the amount of the money invested

in risky assets i at time t . In expression of BSDE

Vt = ξ +

∫ T

t

f(s, Vs, Zs)ds−
∫ T

t

Z>
s dWs,

where ξ is the terminal value of contingent claim, Z>
t = π>t σt and

f(t, y, z) = −rty − z>t θt. (8.13)

3This assumption and the full rank of volatility matrix ensure the completeness of the market
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The driver in equation (8.13) is a linear function of y and z .

Non-linear BSDE can arise in incomplete market. A simple example is that the borrowing

interest rate is higher than lending. Denote the borrowing interest rate as Rt . The

amount of money borrowed at time t equals to (Vt −
∑n

i=1 πi
t)
− , where (x)− denotes

min{x, 0} . The dynamic of the portfolio is

dVt = rtVtdt + π>t σtθtdt + π>t σtdWt − (Rt − rt)
(
Vt −

n∑
i=1

πi
t

)−
dt.

The value process and trading strategy can also be summarized in expression of BSDE

Vt = ξ +

∫ T

t

f(s, Vs, Zs)ds−
∫ T

t

Z>
s dWs,

but in this case the driver is sub-linear

f(t, y, z) = −rty − z>t θt + (Rt − rt)(y − 1>(σ>t )−1z)−. (8.14)

The non-linear term (the third term) depends on both y and z . Due to the existence and

uniqueness theorem of BSDE unique price process and dynamic hedge can be determined.

Usually BSDE has no closed-form solution. The value can be derived with the help of the

solution of a quasi-linear parabolic PDE according to equation (8.12) or with numerical

simulations.

Remark 8.4.2. For hedge of a European contingent claim in complete market no essen-

tial gain can be achieved by introducing the BSDE concept, but it is a useful tool to deal

with market incompleteness.

8.5 Hedging and Optimal Stopping Characterized as

BSDE with Two Reflecting Barriers

In general, the optimization problem formulated via Equation (8.9) has no closed-form

solution. Cvitanić and Karatzas (1996) show that, the no-arbitrage value can be for-

mulated as adapted solution of backward stochastic differential equations (BSDE) with

two reflecting barriers. The proper BSDE for valuation of callable and convertible bond

will be derived via hedging arguments. It has been shown in literatures that the most

significant risk factor for a typical convertible bond is the equity price subject to default

risk. Interest rate risk is usually a secondary consideration. Therefore we assume that

the default-free interest rate is deterministic. Another hypothesis which make the hedge

possible, requires that two kinds of risky assets are traded in the market:
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- defaultable stock, with its dynamic described by equation(7.5),

- defaultable zero-coupon bond with zero recovery, based on the assumption of absence

of interest rate risk, its dynamic can be expressed as

dB̄t = B̄t−(rtdt− dMt), (8.15)

with

Mt = 1{τ≤t} −
∫ t∧τ

0

h(S̃u)du ,

equivalently, the pre-default bond price B̃t satisfies

dB̃t = (rt + h(S̃t))B̃tdt.

The bond holder pays the price, which is a non-random amount at time zero and is

entitled to the cumulative coupon payments and the lump-sum settlement at conversion

or call time, or at default. While the issuer receives the price, but must provide the

aforementioned random payments to the bondholder. The issuer’s objective is to hedge

his short position by trading in the market in such a way as to make the necessary

payments and still be solvent at the termination of the contract, almost surely. The price

process of the callable and convertible bond is then associated with the following hedging

strategy, with investment in risky zero bonds and stock,

dCCB(t) + (c̄ + R · ht)dt = (rt + ht)CCB(t)dt− dK+(t) + dK−(t) + πtσtdWt, (8.16)

where K+(t) and K−(t) are two continuous, increasing and adapted processes satisfy∫ T

0

(CCB(t)− CV (t))dK+(t) =

∫ T

0

(CCB(t)− Call(t))dK−(t) = 0

where πt denotes the amount of money invested in the risky stock, CV (t) the conversion

value, Call(t) the call value.

Proposition 8.5.1. In standard expression of BSDE,
CCB(t) = g(S̃T ) +

∫ T

t
f(s, S̃s, CCB(s))ds−

∫ T

t
ZsdWs +

∫ T

t
dK+

s −
∫ T

t
dK−

s

CV (S̃t) ≤ CCB(t) ≤ Call(S̃t) ∀0 ≤ t ≤ T∫ T

0
(CCB(s)− CV (S̃s))dK+

s =
∫ T

0
(Call(S̃s)− CCB(s))dK−

s = 0
(8.17)

with

dS̃t = (rt + h(S̃t))S̃tdt + σtS̃tdWt

f(t, CCB(t)) = (c̄ + R · ht)− (rt + ht)CCB(t).
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where Zt = πtσt , and f(t, CCB(t)) is the driver.

The value process of the convertible bond is forced to stay between the upper- and lower-

boundary, which are the call and conversion value respectively. This effect is achieved

through the two reflection processes K+(t), and K−(t), , which push the value process of

the callable and convertible bond upward or downward to prevent the boundary crossing.

The ”push” is minimal in the sense that it will only be carried out in the case that

CCB(t) = CV (t) or CCB(t) = Call(t) . According to Cvitanić and Karatzas (1996),

the existence and uniqueness of the solution of equation(8.17) is ensured, if additional to

the general conditions on terminal value and the driver defined in definition 8.4.1, the

following conditions are satisfied

- K+ and K− are continuous, increasing and adapted processes.

- CV and Call are two continuous, progressively measurable processes and satisfy

CV (t) < Call(t), ∀ 0 ≤ t ≤ T and CV (T ) ≤ ξ ≤ Call(T ) a.s.

Having formulated the no-arbitrage value of the callable and convertible bond as solution

of BSDE with two reflecting barriers, our next task is to derive numerical solutions.

Remark 8.5.2. According to our assumptions, the bondholder can only exchange the

bond against stock of one prescribed firm. However, BSDE with two reflecting barriers

usually encompasses the more general case, where the bondholder can convert the bond

into a basket of risky stocks, i.e. Z can be Rd, d ≥ 1 valued and the hedge portfolio

contains positions in d different risky stocks.

8.6 Numerical Solution

There are basically two types of schemes for solving BSDE’s. The first type is the numer-

ical solution of a parabolic PDE related to the BSDE and the second type of algorithms

works backwards and treats the stochastic problem directly via simulation. For financial

problems with few random factors, the associated PDE provided by Cvitanić and Ma

(2001) can be solved with finite-difference methods. For callable and convertible bond

with more than three risky stock as underlying, a direct treatment with Monte Carlo

method is a better method. A recursion algorithm is provided e.g. in Chassagneux

(2007). Equation (8.17) belongs to a well-investigated class of BSDE’s in a Markovian

framework, the FBSDE.

Proposition 8.6.1. According to Cvitanić and Ma (2001) the solution of equation (8.17)
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is associated with the following PDE, which is called the obstacles problem, (Call − CV ) ∧ {(u− Call) ∨ −[ut +
1

2
σ2x2uxx + (r + ht)xux + f(t, x, u)]} = 0

u(T, x) = g(x).
(8.18)

For simplicity of the notations, x stands for S̃ and ht the default intensity h(S̃t) .

The driver f(t, x, u) = (c + R · ht) − (rt + ht)u . The explicit expression of the solution

(CCB, Z) is

CCB(t) = u(t, xt), Zt = ∂xu(t, xt)σ(t, xt).

Here, we will not give an exact mathematical definition of the obstacle problem, and

discuss the existence and uniqueness of its solution, for details see Cvitanić and Ma

(2001). We apply explicit finite difference method for derivation of the numerical solution,

i.e. we work step by step down the grid. Finite difference methods can be thought as

a generalization of the binomial concept and is more flexible. In the finite-difference

methods the grid is fixed but parameters change to reflect a changing diffusion. At first,

we derive the value ũk
i backwardly from the next time period, then compare it with the

payoffs by conversion or call. If ũk
i is greater or lesser than the call or conversion value,

it will be replaced by the call or conversion value respectively. For each time step k and

stock step i ,

uk
i = min[Call, max[CV, ũk

i ]].

Example 8.6.2. As an illustrative example we compute the no-arbitrage price of a de-

faultable callable and convertible bond. The default intensity is modelled as piecewise

constant function of the pre-default stock price.

h(S̃t) =

{
a if S̃t ≤ K

b if S̃t > K

In default case, the stock value jumps to zero, while the bond has a constant recovery

rate of R = 30% of the face value. The convertible value is CVt = γS̃t , and the call

value is always lager than the convertible value and amounts Callt = max[H, γS̃t] . The

model parameters are given as T = 4, r = 0.06, S0 = 70, a = 0.5, b = 0.02, K =

30, L = 100, c = 3, γ = 1.2. The no-arbitrage values by different stock volatilities and

the comparison with the default free case are summarized in table 8.1. The stability of

numeric is ensured by proper choice and combination of the steps for the stock price and

time.

The results in table 8.1 show that, in default free case, the price of callable and convertible

bond increases in volatility. But if default risk is considered and the default intensity is

explicitly linked to the stock price, the price increases at first with increasing volatility then

decreases after the volatility excesses a certain value. The increasing volatility increase

the conversion value but it also increases the default probability.
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H = 110 H = 120 H = 130

σ defaultable default-free defaultable default-free defaultable default-free
0.1 95.02 96.52 96.59 97.73 97.51 98.36
0.2 97.34 99.21 99.56 101.45 101.11 102.94
0.3 98.33 100.88 101.32 103.99 103.45 106.32
0.4 97.85 101.96 101.25 105.68 103.70 108.65
0.5 96.85 102.65 100.33 106.84 102.91 110.21

Table 8.1: No-arbitrage prices of American-style callable and convertible bond without
and with default risk by reduced-form approach

8.7 Uncertain Volatility

Suppose that the seller and buyer relax the assumption of constant volatility by the

valuation and adopt the assumption of uncertain volatility. In this case the market is

incomplete, i.e. there is no unique price of market risk, there is a set of possible equivalent

martingale measures which are compatible with the no arbitrage requirement.

Proposition 8.7.1. Suppose that only a buy-and-hold strategy is allowed in the callable

and convertible bond, while only the risky stock and defaultable zero-coupon bond can be

traded dynamically. The set of initial no-arbitrage prices is determined by super hedging

and lies in the interval [CCBlow(0), CCBup(0)] with

CCBlow(0) = sup
τB∈F0T

inf
τA∈F0T

inf
Q∈Q

EQ[ccb(0)] = inf
τA∈F0T

inf
Q∈Q

sup
τB∈F0T

EQ[ccb(0)], (8.19)

CCBup(0) = inf
τA∈F0T

sup
τB∈F0T

sup
Q∈Q

EQ[ccb(0)] = sup
τB∈F0T

sup
Q∈Q

inf
τA∈F0T

EQ[ccb(0)], (8.20)

where Q is the family of equivalent martingale measures.

Proof 8.7.2. Applying theorem 2.2 of Kallsen and Kühn (2005).

The lower and upper bound are derived under the most pessimistic expectations of the

buyer and seller respectively.

Theorem 8.7.3. Combine proposition 8.6.1 with proposition 8.7.1. The solution of equa-

tion (8.19) and (8.20) is associated with the following PDE (Call − CV ) ∧
{

(u− Call) ∨ −
[
ut +

1

2
Σ2[uxx]x

2uxx + (r + hs)xux + f(t, x, u)
]}

= 0

u(T, x) = g(x).
(8.21)

where Σ2[x] stands for a volatility parameter which depends on x. CCBlow is derived
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by setting

Σ2 [x] =

 σ2
max if x ≤ 0

σ2
min else

and CCBup is derived by setting

Σ2 [x] =

 σ2
max if x ≥ 0

σ2
min else

Example 8.7.4. The volatility of stock is supposed to lie within the interval [0.2, 0.4].

The other model parameters are the same as in example 8.6.2, with T = 4 , R = 30% ,

r = 0.06 , K = 30 , S0 = 70 , L = 100 , and c = 3 . The bid and ask prices are listed in

Table 8.2.

a = 0.5, b = 0.02 a = 0, b = 0

H lower upper spread buyer lower upper
120 99.19 102.97 3.79 101.45 105.68 4.22
130 100.76 105.69 4.94 102.91 108.65 5.73
140 101.64 107.75 6.11 103.70 110.85 7.15
150 102.15 109.17 7.02 104.11 112.36 8.25

Table 8.2: No-arbitrage pricing bounds with stock price volatility lies within the interval
[0.2, 0.4] , reduced-form approach

Default risk reduces the price but in contrast to example 7.4.1, explicit modeling of default

risk does not enlarge the price spread. The reason is that default risk brings varying con-

vexity and concavity to the value function. Moreover, both parties can decide when they

exercise. Therefore each of them must bear the strategy of the other party in mind. The

pricing bound is not only determined by the default risk and volatility but also depends

on the optimal exercises.

8.8 Summary

The exposure of callable and convertible bonds to both credit and equity risk and the

corresponding optimal conversion and call strategies build the focus of our study. Same

as in case of mandatory convertible bond, the interplay between equity and credit risk is

taken into account by adopting an intensity-based default model in which the risk-neutral

default intensity is linked to the equity price. The embedded option rights owned by

both of the bondholder and issuer is treated by the well developed theories on the Dynkin
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game and can be solved with help of the associated doubly reflected backward stochastic

differential equations (BSDE). Valuation of callable and convertible bond as defaultable

game option has been proposed by Bielecki et al. (2007). But our model framework is

more simple and we give pricing bounds for uncertain stock volatility.
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Conclusion

Firms raise capital by issuing debt, equity and hybrid instruments. Convertible bonds,

usually with call provision, are an important example of the hybrid instrument. Issuance

of callable and convertible bonds is closely related to the aim of a firm to increase the

value of debt or to achieve a lower coupon level than that of a simple coupon bond. In

order to study the no-arbitrage value of conversion and call we adopted first an idealized

firm value model where the firm issues only stocks and convertible bonds and the value of

the firm is the aggregate value of both. We discussed the case when conversion and call

can only take place at maturity. The value of conversion and call is then equivalent to a

European call spread. More interesting and more relevant for practical applications is the

American-style conversion and call right. The optimal conversion and call times and the

value of the convertible and callable bond were derived with the aid of the game option

theory. We then extended the results by integrating stochastic interest rates. Finally, we

discussed the problem of uncertain volatility of the firm value, e.g. due to incomplete

information. We derived pricing bounds for callable and convertible bonds under the

assumption that the volatility of the firm value process lies between two extreme values.

The pricing bounds can be improved if a narrower confidence interval of the volatility of

the firm value is available, or we need more market information and/or more knowledge

of the risk preferences of the bond- and shareholder.

The example studied in this thesis assumes that the interest rate follows the Vasicěk

model and the firm’s value evolves according to a geometric Brownian motion. Within

this setting we first derived the no-arbitrage values of European callable and convertible

bonds. The example shows that the no-arbitrage price is essentially determined by the

terminal firm’s value, the conversion ratio, the call price and the payout ratio. The influ-

ence of the interest rate is relatively small, because in the example, and also in practice,

the volatility of the firm value is much larger than that of the interest rate. The influence

of stochastic interest rates in the case of American-style convertible and callable bonds

is also not prominent in this context because its volatility is relatively low and moreover

there are early exercise possibilities of both contract sides.

109
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Our idealized firm value model illustrates how the optimal strategies work and what

are the important underlying factors. For practical use other features have to be taken

into account. For example, a firm issues usually several different kinds of debt with

different priorities. Convertible bonds are usually junior debt. The mutual dependence

of the different debts and stocks must also be modeled. For pricing purpose it may be

more convenient to model the stock price process directly because the firm’s value is

not directly observable. In this case the reduced-form model is a more proper approach

for the study of convertible bonds. Within the intensity-based default model, we first

analyzed mandatory convertible bonds, which are contracts of European-style then the

American-style callable and convertible bond. We studied the interplay of the equity risk

and the default risk of the issuer within a parsimonious, intensity-based default model, in

which the default intensity is modeled as a function of the pre-default stock price. Within

the reduced-form approach, the max-min and min-max strategies are still valid for the

American-style callable and convertible bond. BSDE and the associated PDE were used

for the calculation of the no-arbitrage price and pricing bounds if uncertain volatility of

the stock price is assumed.
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Kühn, C. and Kyprianou, A. (2007), Callable Puts as Composite Exotic Options,

Mathematical Finance 17, 487–502.
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