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Introduction

Global financial markets are highly complex systems armed with a great variety

of products, services, agents, institutions and authorities. Their functioning or

malfunctioning depends greatly on the interacting mechanisms to which all mar-

ket participants are subject. Mostly, financial crises arise from several failures of

those mechanisms, which consist commonly of underestimation, misinterpretation,

or even oversight of essential risks. Academic research tries to respond to demands

of the financial industry by exploring some of the several aspects and expressions of

risk. In line with academic responses, the purpose of the present dissertation is to

provide an investigation on some praxis-relevant attributes of three major financial

risks: credit, recovery and liquidity.

National and supranational regulation aims to ensure a stable basis for transactions

of financial securities which are undertaken within financial markets. Nonetheless,

legal frameworks are not sufficient to eliminate financial risk. Many multilateral fi-

nancial contracts feature counterparty risk, which is the possibility that an involved

party fails to accomplish some contractual agreement. One of the essential and ba-

sic types of financial contracts are bonds, which are debt obligations issued by a

sponsoring institution, the issuer, who promises to pay in a timely manner some

contractually agreed amount of capital to the counterparty, the bondholder. The

failure of the issuer to fulfill the repayment schedule and eventually other protective

clauses is known as default. Credit risk is the counterparty risk from the viewpoint

of the bondholder or simply the uncertainty of the occurrence of default. Moreover,

almost every financial obligation involving a creditor and a debtor embeds credit

risk. The current financial crisis, originated in the underestimation of credit risk of

mortgage borrowers in the United States, can be regarded as a collective and global
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failure in control and screening systems of financial institutions and authorities.

Although financial entities and market regulators have access to state-of-the-art

methods of risk management, the credit meltdown caused by the subprime crisis

was unavoidable. Financial markets lacked of confidence, financial intermediaries

reduced or abstained of taking credit risk exposure the following days, weeks and

months after the crash of the investment banking industry. This lack of available

capital extended over other business sectors and soon the global economy activity

slowed down because credit risk skyrocketed.

Recovery risk is the immediate relative of credit risk. When payments are not paid

as contractually arranged or some covenant is violated, default event occurs. The

lender faces the uncertainty about the amount to be received in those cases when

some legal clauses of the contract are infringed. This uncertainty is known as recov-

ery risk and embeds two basic unknowns: date and amount of repayment. During

the current financial crisis, when some of the largest investment companies were

about to collapsed, the uncertainty of repayment amount increased and uncertainty

about repayment date augmented even more. Increased credit and recovery risks

depressed investors economic expectations. Because institutions reduced their risk

acceptance, lending and borrowing were two functions of capital markets which were

deficients. Despite of the combine efforts of central banks to reactivate the finan-

cial system, capital was a scarce resource. Capital markets suffered under liquidity

problems, finance and refinance mechanisms evidenced serious traumas. Financial

intermediaries not only reduced their exposure to credit and recovery risks but also

to liquidity risk by maintaining large cash positions. Capital within financial mar-

kets dried up. Many economies entered into recession.

The three fundamental financial risks analyzed in this dissertation - credit, recovery

and liquidity - played a decisive roll in the evolution of the current global crisis.

In the following chapters these risks are investigated in three different scenarios,

considering different aspects and problems. Although the present work is not di-

rectly addressed to unveil the origins and development of the financial crisis, results

presented in this dissertation represent a small but further contribution in under-

standing those risks that shaped the current crisis.

Chapter 1 studies credit risk in an irreversible investment context. An investment
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project is considered to be irreversible if its initial implementation costs are lost in

case of disinvestment, or if disinvestment is impossible at all. Individuals considering

to invest in such a project, which generates uncertain cash flows after implementa-

tion, face the problem of finding an optimal time to initiate the project, known as

investment time. McDonald and Siegel (McDonald & Siegel 1986) solve the invest-

ment problem by assuming that the implementation costs are paid in cash and that

the value of the project is given by a geometric Brownian motion. In Chapter 1 we

see how the solution of McDonald and Siegel changes if the irreversible investment

project is financed by issuance of defaultable corporate debt. The investor is as-

sumed to be a firm who borrows capital to finance the implementation costs of the

project. As compensation, lenders are rewarded with coupon payments on the face

value of the debt. However, the firm is empowered with the decision whether to con-

tinue or not paying coupons. If the firm opts to abstain of coupon payments, default

event occurs and the project is turned over to bondholders. Accordingly, the firm

faces an investment and default problem. By observing the evolution of the value of

the project, the firm decides on optimal investment and default policies. Intuitively,

the firm invests if cash flows are large and defaults if they are small. The analysis

demonstrates that optimal investment time is influenced unambiguously by credit

risk. A clear cut direction of this influence is not available since debt-financed in-

vestment time depends on the parameters governing the dynamics of the value of the

project, taxes and default costs. If the firm can exploit tax shields and default costs,

then a debt-financed investment occurs earlier than a cash-financed one. Contrary,

if tax shields are low and default costs are large such that capital costs are high,

then cash-financed investments occur earlier than debt-financed ones. Hence, the

framework provides investment policies for debt-financed and cash-financed projects,

which may differ because of tax shields and default costs, and allows firms to choose

between these financing types in order to respond optimally to their corporate goals

and interests.

Chapter 2 studies the risk structure of defaultable zero-coupon bonds which are fi-

nancial obligations paying at expiry a fixed amount of capital, the principal or face

value, in case default does not occur, and paying an unknown amount, the recovery

payment, at some unknown time in case default event occurs. The uncertainty over
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the repayment amount and repayment date is defined as recovery risk. One of the

main contributions of the analysis of Chapter 2 is the formulation of the riskiness of

defaultable zero-coupon bonds. In particular, default time is modeled as a random

variable, recovery time as a further random variable which is not necessarily identi-

cal to default time, and a random recovery payment. This approach has advantages

with respect to main stream methods when trying to project real-world situations,

because real-repayment dates of defaulted debt contracts are mostly unknown at

default and in particular different than default time. The large literature on de-

faultable bonds neglects the differentiation of recovery and default times.

In academic research we find two main methodologies for valuing defaultable bonds:

structural and reduced-form models. Merton (Merton 1974) is the pioneer of the

structural valuation method. He regards the payment of a zero-coupon bond as a

function of the value of the firm which is defined by a geometric Brownian motion,

and assumes that payment date is always at expiry irrespectively of occurrence of

default event. Later structural valuation research allows for recovery time to occur

at any time before expiry, however, it is imposed to equal default time. A different

approach to introduce default is the reduced-form methodology. While structural

models consider default event to be determined as the earliest moment the value of

the firm attains some pre-specified value, reduced-form models define default event

through a stochastic process which is independent of the value of the firm. Reduced-

form models are called intensity-based models when the default process is given by a

(doubly stochastic) Poisson process. Similar as the structural framework, intensity-

based valuation let default time to occur at any time before expiry and imposes no

difference between recovery and default times as in Duffie et al. (Duffie et al. 1996)

and Duffie and Singleton (Duffie & Singleton 1999).

In Chapter 2 we find valuations formulas for defaultable zero-coupon bonds which

include parameters defining default and recovery times as well as recovery payment.

Moreover, these valuations formulas are developed within a pure structural, a pure

intensity-based and a mixed framework. By separating default and recovery times,

we can combine the two main valuation methodologies, which is why the approach

opens new frontiers of research. In addition, the valuation formulas permit a larger

class of recovery payments than intensity-based models as the commonly used re-
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covery rates in line with Duffie et al. (Duffie et al. 1996).

The last part of this dissertation is dedicated to the measurement of financial risks.

In Chapter 3 we consider financial assets whose future prices are random. An in-

vestor holding a portfolio of those assets is interested in measuring the possibility

of value losses of his positions in the future. The investor may measure such risk

by using a conventional measure of risk as value-at-risk or expected shortfall. How-

ever, we acknowledge and warn investors for the shortcomings of conventional risk

measures applied directly on portfolio values: value uncertainty originated by lack

of marketability and by large volume trading is ignored. Contrary to the common

no-transaction-costs assumption, real financial markets exhibit several types of im-

perfections. Among others, buy and sell prices are usually not equal, trading volume

may induce an unambiguous impact on prices, and not all assets can be sold and

bought at every time. These attributes are some typical traces of liquidity risk.

Although liquidity risk represents a major source of risk in real financial markets,

as evidenced in the current financial crisis, academic research has shown little in-

terest for it. The prominent work of Çetin et al. (Çetin et al. 2002) introduces

liquidity risk by differentiating asset prices during financial crisis and during normal

trading periods. Nonetheless, other liquidity problems as lack of marketability re-

main excluded. The solid and innovative approach of Acerbi and Scandolo (Acerbi

& Scandolo 2008) for measuring financial risk under consideration of liquidity risk

tackles some ignored aspects of illiquidity mentioned previously. In particular, the

researchers assume random demand and supply curves and, most important, a liq-

uidity policy to be fulfilled by the investor. Acerbi and Scandolo put forward an

adjustment to the conventional portfolio value consisting of a transaction that op-

timizes the value of the remaining positions while satisfying the required liquidity

policy. The so called liquidity-adjusted risk measure and denoted by ρL is defined

on the space of portfolio weights and implied from a coherent measure of risk ap-

plied to the liquidity-adjusted portfolio value V L. This risk measure is convex on

the space of portfolio weights, as shown in (Acerbi & Scandolo 2008). However, this

result holds only if large volume trading does not impact prices and full execution

of transactions is always possible.

In Chapter 3 we use an extended Acerbi and Scandolo setup which includes abrupt
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price changes by large volume transactions and execution restrictions. Within this

framework the liquidity-adjusted risk measure is not convex anymore. Moreover,

large volume trading and partial execution increase the probability of large losses.

Accordingly, we learn from these findings that ignoring and neglecting some aspects

of liquidity risk leads us to wrong conjectures, which may us lead to take larger risks

than wished.

All three chapters deal with different aspects of financial risk which is the most

natural and essential component in the art of investment. Commonly, people accept

risk only when there is some reward, a profit, justifying the risk exposure. If some

aspects of risk are underestimated, misspecified or even neglected agents may take

too much risk for too little reward. This dissertation provides three examples of the

consequences of such misspecifications.
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Chapter 1

Credit Risk and Optimal

Investment

1.1 Introduction

The seminal work of McDonald and Siegel (McDonald & Siegel 1986) in 1986 shows

an alternative approach in investment theory. The authors consider an irreversible

investment project - disinvestment of the project is not possible once installed -

which, once in operation, produces risky cash flows. An agent willing to invest

in such a project will install it at that moment when expected cash flows are high

enough. In other words, investors search for an optimal investment time. In order to

determine this investment time, McDonald and Siegel realize that the opportunity

to invest in an irreversible project can be regarded as an American call option with

the value of the project as underlying asset and with the project’s implementation

cost as strike. By this observation and using techniques from financial engineering

the authors provide the optimal investment time, which is fully defined by an in-

vestment threshold: if the current value of the project rises above this threshold, a

firm should invest in the project at the earliest time this boundary is reached.

After the work of McDonald and Siegel a growing number of publications and arti-

cles on this subject has appeared, some of those relax certain assumptions, consider

more complex scenarios and make further extensions. Some of these improvements

are documented in the work of Dixit and Pindyck (Dixit & Pindyck 1994). Among
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other frameworks these authors consider options to invest in an irreversible project

and options to abandon an operating project. Nonetheless, they do not present a

model where both options are enclosed in one investment problem. Additionally,

none of the models in (Dixit & Pindyck 1994) are subjected to financial constraints.

These shortcomings are addressed in studies of Trigeorgis (Trigeorgis 1993), Trige-

orgis (Trigeorgis 1996) and Sabarwal (Sabarwal 2005). The first author identifies

the advantages of having financial flexibility by considering debt financing. How-

ever, Trigeorgis’ models are time-discrete and highly simplified. Sabarwal develops a

more complex framework, where the firm finances project’s costs with risky coupon

bonds. Default occurs when revenue rate falls below coupon rate, forcing the firm

to turn over current revenue to lenders. However, in case of default the firm is not

obliged to surrender the project or any other asset to the lenders. Since the issued

coupon bonds are perpetuities and given the nature of the dynamics of the value

of the project, default occurs in several occasions. Despite the numerous defaults,

lenders neither cancel nor sell the debt contract, instead they observe passively how

default events occur. This feature makes Sabarwal framework unrealistic.

In the present work we analyze an irreversible investment problem where the

project’s implementation costs are financed by risky debt in form of defaultable cor-

porate bonds. In other words, the investment project in our setup is debt-financed,

different to cash-financed investments as those from McDonald and Siegel, and Dixit

and Pindyck. In that context, firms have to find out not only the optimal investment

time but also the optimal default time of interest payments at which the project is

turned over to lenders. Similar as in the work of McDonald and Siegel (McDonald

& Siegel 1986) we characterize an investment boundary and, additionally, a default

boundary. Optimal investment is determined under these conditions.

In situations when the project is already operating and the value of the project

reaches the default boundary, it is more convenient for the firm to default and turn

over the project to debt holders than keeping the project alive. Thus, debt holders

are exposed to default risk. As compensation for risk taking, debt holders demand

higher coupon payments and lower prices of corporate bonds, lowering proceeds of

the firm from bond sales. In some cases when coupon payments are high, available

capital to cover the implementation costs is low, which delays investment. Hence,
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default risk of corporate bonds has a significant influence on the optimal investment

strategy as well as for the value of the bonds. In order to provide - in some extent

- analytical solutions of the investment problem, the defaultable bonds analyzed in

this model are coupon bonds, without maturity and constant coupon rate, known

as consols. Infinite maturity allows for an analytical valuation formula for the de-

faultable bonds. This in turn facilitates the valuation of the project which depends

on the value of the bonds.

Recently, Sundaresan and Wang (Sundaresan & Wang 2007) present a model of irre-

versible investments where the equity holders of a firm can renegotiate the terms of

debt. Equity holders choose the optimal investment time and coupon to maximize

the value of the firm. Once the investment is operating, equity holders may threaten

to default on debt. In this case debt holders may want to renegotiate the debt con-

tract via a Nash bargaining game. In the present analysis equity holders choose a

default time which maximizes the equity value, given the terms of debt. Hence, the

present work and that of Sundaresan and Wang are complementary works, since

Sundaresan and Wang do not provide an optimal default boundary. Morellec and

Schürhoff in (Morellec & Schürhoff 2007) put forward an irreversible investment

framework where investment and default time are endogenously determined. Fur-

thermore, the firm decides on the coupon level of the issued debt to finance the

investment project. The backbone of the their analysis relies in the personal tax

advantages of the investors. The authors proceed similar as in the framework of this

chapter when computing investment and default boundaries. Contrary to Morellec

and Schürhoff, we use a verification theorem to prove optimality of our results.

Additionally, the present study analyzes the distribution probability of default as

well as expected life (or expected default time) of corporate bonds . Defaultable

bonds have been profoundly investigated in several works. The most relevant re-

search for this framework is rooted in the works of Merton (Merton 1974) and Black

and Cox (Black & Cox 1976). Here the authors price defaultable bonds with finite

maturity, where default can only happen at maturity. Merton’s study, where the

default boundary equals the stock value at maturity, presents a closed-form solution

for zero-coupon bonds with finite maturity as well as for coupon bonds with infinite

maturity. Black and Cox specify the closed-form valuation formula for zero-coupon
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bonds when the default boundary evolves exponentially in time. Further research

as in Leland (Leland 1994), Leland and Toft (Leland & Toft 1996) and Duffie and

Lando (Duffie & D. Lando 2001) among other includes dividend and coupon pay-

ments, taxes and frictional default costs. These advances are incorporated in the

present analysis of defaultable coupon bonds. By assuming existence of taxes and

frictional default costs, investment strategy depends substantially on the financing

form.

There are two main virtues of debt financing absent in cash financing which influ-

ence the investment problem unambiguously. First, debt financing allows firms to

shift some risk to lenders because firms can default on debt. Second, tax and default

costs represent important determinants of the investment boundary . In line with

these characteristics, debt financing induce an earlier or later investment time than

cash financing. Consequently, firms regard debt or cash financing as an additional

alternative to their investment problem, and choose the financing type that matches

their corporate goals the best.

The remainder of this chapter is organized as follows: Section 1.2 describes risky

nature of the irreversible investment project. Section 1.3 presents optimal invest-

ment and default times. At the end of this section debt financed and cash financed

projects are compared. Section 1.4 exhibits risk characteristics of corporate debt.

Section 1.5 summaries and concludes this chapter.

1.2 Risky Investment Projects

Consider an investment project with risky future revenue and a firm which contem-

plates the possibility of investing in that project. In order to make an investment

decision, the firm has to make conjectures about future performance of the project.

Riskiness of the investment problem is captured in a time-continuous stochastic sce-

nario embedded in a probability space (Ω,F ,P) with a filtration (Ft)t≥0 fulfilling all

usual conditions. Conjectures about project’s performance are based on this prob-

ability structure. The project is an irreversible investment meaning that once the

project is installed, disinvestment is not possible or at extremely high costs. The
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value of the irreversible investment project at time t is denoted by Vt and follows a

geometric Brownian motion

dVt = µVtdt+ σVtdWt,

where Wt is a standard Wiener process and parameters µ and σ ≥ 0 represent con-

stant and deterministic drift rate and volatility, respectively. The project generates

after-tax cash flows, which are denoted by Dt and are defined by

dDt = δVtdt,

where δ ≥ 0 represents the dividend rate that flows to equity holders. Assume that

the firm is unlevered and is run by its equity holders. In this sense, equity holders’

cash flow, i.e. dividend payments Dt, is the relevant quantity needed for investment

decisions. Let implementation costs of the project I be deterministic, constant and

positive, and consider no operational costs.

Additionally, assume that the risk-free interest rate r is deterministic and constant,

and all market participants are risk neutral.

1.3 Optimal Investment Time and Endogenous

Default Time

The investment problem for equity holders consists of two issues: (1) to find an

optimal investment time for the project that is financed by defaultable corporate

bonds, and (2) to choose the optimal time to default outstanding bonds, after the

project has been installed. The solution proposed in this analysis is based on back-

ward induction, solving first for the optimal default time, calculating the value of

the investment, and finally determining the optimal investment time.

Following sections are organized as follows: Section 1.3.1 introduces the frame-

work, in Section 1.3.2 optimal default time is determined as well as bonds’s price

and project’s equity value. Section 1.3.3 is addressed to solve for optimal invest-

ment time. Finally, Section 1.3.4 provides a comparison between firms financing the

project with defaultable bonds and firms financing the project with cash.
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1.3.1 Corporate Financing

Before investment, the firm possesses own capital K < I. In order to invest in the

project the firm needs to raise additional capital I − K by selling firm’s shares or

by borrowing from a third party. The former case leads to the same investment

problem proposed by McDonald and Siegel (McDonald & Siegel 1986). Hence, we

draw our attention to the latter case.

The firm issues coupon bonds in order to raise funds. Coupon rate is c ≥ 0 which

is paid continuously over time up to infinity. Lenders are willing to accept the debt

contract if bonds value equals the expected discounted future coupon payments.

By debt financing the firm profits from tax shields on interest payments, because

interests expenses are tax deductible. In other words and assuming a constant tax

rate θ ∈ (0, 1), the firm tax payments are reduced by tax shields of θc. Under these

circumstances, the after-tax cash flows for equity holders equal

δVt − (1− θ)c.

Since the project’s implementation costs are financed by selling corporate bonds,

the firms chooses time τ which maximizes the sum of equity holder and bond values

minus implementation costs, provided that the additional capital from bond sale is

large enough. Let the sum of equity holder value and debt be given by a function f

of the project’s value Vt, hence the firms investment problem is given by

sup
t

E
[
e−rt (f(Vt)− I)

∣∣F0

]
,

provided that d(Vτ ) ≥ I −K.

1.3.2 Corporate Bonds and Default Time

To derive optimal investment time τ , we proceed with a backward analysis of the

investment/default problem by assuming that the firm has already installed and op-

erates the project with debt issuance. Once invested in the project, the firm cannot

suspend it or abandon it because it is irreversible. Nonetheless, if the operating

project is tangled in substantially adverse conditions the firm may opt to default
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on debt, in which case the project is turned over to debt holders with a frictional

loss of value α ∈ (0, 1)1. The firm opts to default, only if renouncing on the project

is a better and more profitable option than keeping it operating. Hence, the firm

chooses a default time TB on an operating project such that the expected payoff

of the project is maximized at TB. Optimal default time is the first-passage time

T (VB) = inf {t ≥ 0 : Vt ≤ VB} that the project’s value reaches a deterministic and

constant default boundary VB. The maximizing problem of the firm can be formally

stated as follows. Let current time be t, then default time TB solves

sup
T

E
[∫ T

t

e−r(s−t)(δVs − (1− θ)c)ds
∣∣∣∣Ft] . (1.1)

This problem has been studied in several works, the closest analysis are those in

Duffie and Lando (Duffie & D. Lando 2001) and in Leland and Toft (Leland & Toft

1996). In order to use the results of these studies, consider following assumptions

that are necessary for solving the investment problem.

Assumption 1.3.1.

• Let parameters δ, c, r, I, σ and µ be deterministic, constant, positive and

r > µ.

• There exists no transaction costs and operational costs of the project.

According to Duffie and Lando, optimal equity holders value denoted by w(Vt)

which equals the supremum of after-tax cash flows (1.1) solves the Hamilton-Jacobi-

Bellman differential equation

w′(v)µv +
1

2
w′′(v)σ2v2 − rw(v) = (1− θ)c− δv, v > VB,

with boundary conditions

w(v) = 0, v ≤ VB,

and

w′(VB) = 0.

1From the irreversible nature of the project one should expect that frictional loss α is close to

1.
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By solving this differential equations with these conditions we have

VB =
γ(r − µ)(1− θ)c

r(1 + γ)δ
, (1.2)

where γ = −β2 and β2 is the negative solution2 of the quadratic equation

1

2
σ2β(β − 1) + µβ − r = 0, (1.3)

which is given by

β2 =
−m−

√
m2 + 2rσ2

σ2
. (1.4)

Thus, whenever current project value Vt falls below VB the firm defaults. Since

maturity of issued bonds and project’s life are infinite, expected value of cash flows

depends only on current value.3 Hence, the expected value of cash flows or equity

holders value is given by

F (Vt) := w(Vt) =
δVt
r − µ

− δVB
r − µ

(
Vt
VB

)−γ
+ (θ − 1)

c

r

(
1−

(
Vt
VB

)−γ)
, (1.5)

and the corresponding expected present value of the coupon payments before default

is given by

d(Vt) =
c

r
+

(
δ(1− α)VB
r − µ

− c

r

)(
Vt
VB

)−γ
. (1.6)

Notice that the debt-financed value of the operating project, denoted by f(Vt), is

given by the sum of equity holders value and debt value as following

f(Vt) = F (Vt) + d(Vt) =
δVt
r − µ

+ θ
c

r
−
(
αδVB
r − µ

+ θ
c

r

)(
Vt
VB

)−γ
, (1.7)

which coincides with the value of a firm whose unique asset is the irreversible project

and the only liabilities the outstanding coupon bonds. Further, notice that the value

of a firm with the irreversible project as unique asset but without outstanding debt

(and hence no possibility of default) denoted by f̃(Vt) equals the expected present

value of the dividend stream, i.e.

f̃(Vt) = E
[∫ ∞

t

dDs

∣∣∣∣Ft] = δ · E
[∫ ∞

t

Vsds

∣∣∣∣Ft] =
δVt
r − µ

.

We left the discussion and investigation on differences between project values f and

f̃ for further sections. In line with our arguments, we call projects financed by debt

levered projects and projects financed with cash unlevered projects.

2The solutions of the quadratic equation (1.3) are denoted with β1 > 1 and β2 < 0 as in Dixit

and Pindyck (Dixit & Pindyck 1994).

3For more details consult (Leland & Toft 1996).
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1.3.3 Investment Threshold

After debt and equity values are determined, it is possible to move to the next

level in the backward analysis to infer optimal investment time. For this consider

the problem of the firm already proposed in Section 1.3.1, where equity holders are

interested in financing the implementation costs by debt issuance. At investment

time τ , the project yields an equity value of F (Vt), bonds are issued and sold for

d(Vt) and implementation costs amount I. This implies that the firm’s problem at

current time t = 0 can be written as

sup
t

E
[
e−rt (F (Vt) + d(Vt)− I)

∣∣F0

]
. (1.8)

Recall that the expected value of the project f at time t is the sum of debt and

equity values. Consequently, the optimal reward function for the firm can be written

as

g∗(V0) = ess sup
t

E
[
e−rt (f(Vt)− I)

∣∣F0

]
.

Similar as before, the firm invests in the project at the first-passage time τ(VI) =

inf {t ≥ 0 : Vt ≥ VI} at which the value of the project reaches a deterministic, con-

stant investment boundary VI . Notice that at investment time τ(VI) the revenue

from bonds’ sale plus initial own capital of the firm must be large enough to cover

project’s implementation costs, i.e. we must have d(Vτ ) ≥ I−K. Otherwise the firm

does not have enough capital to meet implementation expenses of the project and

cannot invest. Closed-form solutions for g∗(v) as for VI are not available. However,

it is possible to characterize the investment threshold as follows.

Proposition 1.3.2. Under Assumption 1.3.1, let VB be given by (1.2) and VI be

the solution of

−
(
θ
c

r
+
αδVB
r − µ

)(
β1 + γ

β1

)
V γ
BV

−γ
I +

δ

r − µ

(
β1 − 1

β1

)
VI − I + θ

c

r
= 0, (1.9)

where β1 is the positive solution of (1.3). Provided that d(VI) ≥ I − K, then VI

solves the investment problem in (1.8) if

VI ≥
rI − θc

δ
. (1.10)
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Proof. Let g(t, Vt) = e−rt (f(Vt)− I) be the reward function and g∗(v) the optimal

reward function with g∗(v) = ess supt E [g(t, Vt)| v]. Note that the project is not

executed if the reward function is negative. Hence the investment problem can be

regarded as

g∗(V0) = ess sup
t

E [ g̃(t, Vt)| F0] ,

where g̃(t, v) := max [g(t, v), 0] is continuous and non-negative. Consider the optimal

investment time as the first-passage time τ(Vτ ) = inf {t ≥ 0 : Vt ≥ VI}. The optimal

reward function g∗, solves the Hamilton-Jacobi-Bellman differential equation

µv
∂g∗(v)

∂v
+

1

2
σ2v2∂

2g∗(v)

∂v2
− rg∗(v) = 0 for v < VI , (1.11)

with boundary condition

g∗(v) = f(v)− I for v ≥ VI , (1.12)

and smooth fit condition

∂g∗(VI)

∂v
=

δ

r − µ
+ γ

(
θ
c

r
+
αδVB
r − µ

)
V γ
BV

−γ−1
I . (1.13)

Condition (1.12) indicates that at any transgression of boundary VI it is optimal to

exercise the option, i.e. to invest in the project. Expression (1.13) is the smooth-

pasting condition derived from f(Vt) in (1.7). Assume that optimal reward function

has the following form g∗(v) = A1v
β1 +A2v

β2 where A1, A2, β1 and β2 are constants.

Coefficients β1/2 can be calculated easily from (1.11), where

β1/2 =
−m±

√
m2 + 2rσ2

σ2
, (1.14)

with m = µ− σ2

2
, β1 > 1, β2 < 0 and γ = −β2 as in the previous subsection4. Since

the value of the investment project g∗(v) needs to be zero when v = 0, we have

A2 = 0. Hence

A1 =
δ

r − µ
V 1−β1

I

β1

+
γ

β1

(
θ
c

r
+
αδVB
r − µ

)
V γ
BV

−γ−β1

I . (1.15)

Equation (1.9) follows straightforwardly from this expression.

Existence of VI . Let the left hand side of equation (1.9) be a function h(x) with

domain R++ given by

h(x) = −ηx−γ + φx+ χ, (1.16)

4The coefficients β1 and β2 coincide with those in (1.3).
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where

η =

(
θ
c

r
+
αδVB
r − µ

)(
β1 + γ

β1

)
V γ
B , φ =

δ

r − µ

(
β1 − 1

β1

)
,

χ = θ
c

r
− I.

Notice that η, φ > 0 for α, δ, θ, r σ ∈ (0, 1). This implies that h′(x) > 0 and h′′(x) <

0 for x > 0, i.e. h is strictly increasing and strictly concave. Furthermore, h is

continuous and limx→0+ h(x) = −∞ and limx→∞ h(x) =∞. Thus, as a consequence

of the intermediate value theorem, there exists a unique value x∗ > 0 such that

h(x∗) = 0.

Furthermore, in the exercise region v ≥ VI , the optimal regard function can never

be less than the induced equity value F (v) and the initial endowment K, i.e.

g∗(v) ≥ F (v)−K ≥ 0 for v ≥ VI ,

or equivalently

F (v) + d(v)− I ≥ F (v)−K ⇔ d(v) ≥ I −K,

for v ≥ VI . In particular, we must have d(VI) ≥ I −K.

Optimality of τ(VI). This part of the proof is based on the verification Theorem

10.4.1 in Øksendal (Øksendal 2003). Consider the function

ψ(v) =

{
A1v

β1 ; 0 ≤ v < VI

f(v)− I v ≥ VI ,
(1.17)

defined on R+, where A1 is given by equation (1.15) and VI from (1.9). Let w(s, v) =

e−rsψ(v). Most conditions (i)-(xi) of Theorem 10.4.1 in Øksendal are fulfilled by

construction of investment time τ(VI) and investment boundary VI . Note that

w ∈ C1, w ∈ C2 for v 6= VI , and Lw = 0 for v ≤ VI where L is the second order

partial differential operator. Thus, it remains to be shown:

(1) w ≥ g on R2
+, i.e. we need to verify that

A1v
β1 ≥ f(v)− I.
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Define u(v) := A1v
β1 − (f(v)− I). Notice that limv→0 u(v) =∞, limv→∞ u(v) =∞,

u(VI) = 0, u′(VI) = 0 and u′′(v) > 0 for v ∈ R+. Hence, the global minimum of u

occurs at v = VI , which implies w ≥ g.

(2) Lw ≤ 0 on v > VI . Equivalently, it must be shown that for all v > VI

µv
∂ψ(v)

∂v
+

1

2
σ2v2∂

2ψ(v)

∂v2
− rψ(v) ≤ 0.

This expression yields the following inequality

− δv − θc+ rI +

[
r + γ

(
µ− 1

2
σ2

)
− 1

2
σ2γ2

](
θ
c

r
+
αδVB
r − µ

)
V γ
Bv
−γ ≤ 0. (1.18)

Recall that m = µ− 1
2
σ2 and consider the following quadratic function

Q(x) := −1

2
σ2x2 +

(
µ− 1

2
σ2

)
x+ r = −1

2
σ2x2 +mx+ r,

with roots

x1/2 =
−m±

√
m2 + 2rσ2

−σ2
.

By definition of γ and equation (1.4), we have Q(γ) = 0. Further, note that the term

in the brackets of inequality (1.18) is Q(γ). Thus, inequality (1.18) is equivalent to

−δv − θc+ rI ≤ 0.

Accordingly, last equation is satisfied for all v > VI if and only if

VI ≥
rI − θc

δ
. (1.19)

Hence, τ is the optimal investment strategy and

g∗ = w, (1.20)

is the optimal reward function if condition (1.19) holds. This completes the proof.

�

For applicability of the proposed solution to the investment problem it is necessary

to compare investment and default boundaries. For this purpose, suppose that

conditions d(VI) ≥ I−K and VI ≥ rI−θc
δ

are satisfied and that VB > VI . In this case,

if the project’s value reaches the investment threshold at some time, the optimal
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strategy is to invest in the project and default on debt immediately thereafter.

Although the strategy is optimal, it seems unrealistic. A firm may not want to incur

in investment decisions and debt issuance if in the next second debt is going to be

defaulted and the project is going to be turned over. In this model default threshold

is never greater than the investment threshold, i.e. VI > VB, if initial investment

costs are larger than present value of coupon payments multiplied by a certain factor

ξ.

Proposition 1.3.3. Investment threshold that solves equation (1.9) is never smaller

than default threshold given in (1.2), i.e. VI > VB, if and only if

I > ξ
c

r
, (1.21)

where

ξ :=
γ

(1 + γ)β1

[β1 − 1− (β1 + γ) (θ + α(1− θ))] . (1.22)

Proof. Let h(x) by defined as in the proof of Proposition 1.3.2. Since h is strictly

increasing then VI > VB if and only if h(VI) > h(VB). Notice that h(VI) = 0, hence

it must hold h(VB) < 0. After rearrangement of terms, the function h(v) at VB can

be written as

h(VB) = −θ γc
β1r
− I +

δ

r − µ
VB
β1

(β1(1− α)− 1− αγ) (1.23)

=
γc

r(1 + γ)β1

[β1 − 1− (β1 + γ) (θ + α(1− θ))]− I, (1.24)

where the last equality is obtained by plugging the expression for VB of (1.2) in the

first equality and by redistributing terms. Thus, h(VB) < 0 whenever

I >
γc

r(1 + γ)β1

[β1 − 1− (β1 + γ) (θ + α(1− θ))] . (1.25)

�

Note that the coupon rate c is an important determinant of the investment boundary

VI . When the coupon rate is low enough, the lower the coupon rate c, the lower

financing costs of a levered project and the earlier the investment time. These

consequences occur because default boundary is so low that capital collected from
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bond issuance is also remarkably low and defaulting seems to be very unlikely. Under

these conditions, debt financing exhibits almost no differences to cash financing. On

the other hand, if the coupon rate is high enough, then the greater the coupon rate

c, the earlier the investment time. This implication follows from the increased tax

shields the firm captures by debt financing. In this sense, the increased financing

costs are compensated by the increased tax benefits which can be only received if

the firm invests. Thus, as tax shields grow the firm has more incentives to invest

earlier. The following lemma formalizes this discussion.

Lemma 1.3.4. Investment threshold VI that solves equation (1.9) is inversely related

to coupon rate if c < M , and positively related if c > M , i.e.

V ′I (c) < 0 if c < M and V ′I (c) > 0 if c > M, (1.26)

where

M =

 θ

r (1 + γ)
(

αδ
r−µκ+ θ

r

)(
β1+γ
β1

)
 1

γ

v

κ
, (1.27)

with κ = γ(r − µ)(1− θ)/r(1 + γ)δ.

Proof. See Appendix 1.6.1.

�

We examine next the difference between financing the project with debt and cash.

1.3.4 Unlevered and Levered Projects

Consider the case of a firm which finances the implementation costs without debt

issuance. In this case the firm cannot default on coupon payments and henceforth,

once invested, it has to keep operating the project ad infinitum. Formally, let Vt

be a geometric Brownian motion described in (1.2) and I the project’s costs. The

equity holders’ problem is to find an optimal reward function g(v) such that

g(v) := sup
t

E
[

e−rt
(∫ ∞

t

δe−r(s−t)Vsds− I
)∣∣∣∣F0

]
, (1.28)
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where v = V0. Let again τ(V ∗) = inf {t ≥ 0 |Vt ≥ V ∗} be the optimal investment

time given the low boundary V ∗. Following Øksendal (Øksendal 2003), function

g(v) solves the Hamiltonian-Jacobi-Bellman differential equation

∂g(v)

∂v
µv +

1

2
σ2v2∂

2g(v)

∂v2
(v)− rg(v) = 0, for v < V ∗, (1.29)

with the following boundary conditions:

g(V ∗) =
δ

r − µ
V ∗ − I, (1.30)

∂g(V ∗)

∂v
=

δ

r − µ
. (1.31)

Let the optimal reward function be of the form g(v) = Avβ for some constants A

and β. Then using differential equation (1.29) and boundary conditions (1.30) and

(1.31) the investment threshold for unlevered project is given by

V ∗ =
r − µ
δ

β1

β1 − 1
I, (1.32)

where β1 is again the positive solution of quadratic equation (1.3). This investment

boundary corresponds to results in (Dixit & Pindyck 1994).

Consider now a firm which is planning to finance the project’s costs with debt.

The firm invests in the project whenever v ≥ VI , where VI is given in (1.9), and

d(v) ≥ I −K, where d(v) corresponds to the value of debt given in (1.6). Assume

a special case of no taxes and no liquidation costs in case of default, i.e. θ = α = 0.

By equation (1.9), the optimal investment threshold for the levered project is given

by

VI =
r − µ
δ

β1

β1 − 1
I,

and hence VI = V ∗. In a frictionless world without taxes the manner how the

firm finances investment project is not relevant, although the firm can default on

coupon payments in case of debt financing. The reason for this result is rooted in

the Modigliani Miller Theorem in (Modigliani & Miller 1958). To see this, recall the

interpretation of the project’s present value made in previous sections as a company

with only one asset. Accordingly, consider an unlevered company which value equals

equity value since there is no debt. The investment project yields dividend cash flows

δVt and where their expected value is give by

f̃(V0) = E
[∫ ∞

0

e−rsδVsds

∣∣∣∣F0

]
=

δ

r − µ
V0,
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which represents equity value. Now consider a levered company. The value of the

firm at time zero is the sum of equity and debt value and is given by

f(V0) =
δV0

r − µ
+ θ

c

r
−
(
αδVB
r − µ

+ θ
c

r

)(
V0

VB

)−γ
. (1.33)

If there are no taxes and no default costs, θ = 0 and α = 0, then the value of the

levered firm is
δ

r − µ
V0, (1.34)

just the same as the unlevered firm. Hence, both companies face the same problem

at investment time and henceforth their investment thresholds coincide.

Consequently, optimal investment thresholds of unlevered and levered projects differ

because the existence of tax shields and default costs. Dependencies of the invest-

ment threshold on taxes and default costs are characterized as follows.

Lemma 1.3.5. Let α, θ ∈ (0, 1). Optimal investment threshold VI is increas-

ing in frictional default costs α and it is decreasing in tax rate θ whenever VI ≥(
β1+γ
β1

)1/γ

VB.

Proof. See Appendix 1.6.2.

�

Moreover, because of tax benefits and default costs, investment threshold VI may

differ from investment threshold V ∗. In other words, when taxes and default costs

exist, optimal investment time among financing types may differ. Firms invest in

unlevered projects earlier than in levered ones when tax benefits are low and default

costs are high. In this situation firms are not able to extract value from the issuance

of defaultable bonds since their value is low. Similarly, if tax benefits are high and

default costs are low firms will invest earlier in levered projects than in unlevered

ones. This intuitive reflexions can be stated as follows.

Lemma 1.3.6. Firms invest earlier in unlevered projects than in levered projects,

i.e. τ(V ∗) ≤ τ(VI), if

V ∗ ≤
[(

1 + (1− θ) αδ

θ(1 + γ)

(
γ + β1

β1

))] 1
γ

VB.
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Proof. See Appendix 1.6.3.

�

Hence, firms can, with information about taxes and default costs, determine which

financing option is of their convenience. The reader should be aware that this model

does not aim to provide arguments which indicate why investing early (or later) can

be convenient for a firm. However, these arguments can be found straightforwardly

by glancing at R&D investment projects for example, where the first firm that devel-

ops a new product not only obtains the patent of the project but also monopolistic

control over the product’s market. In such a scenario, the firm is interested in

investing optimally and as early as possible.

Numerical Example

Consider the following example which has similar parameter values as the illustration

in the work of Duffie and Lando (Duffie & D. Lando 2001):

µ = 0.0113, r = 0.06, σ = 0.05, δ = 0.05, I = 100, c = 8.

For these parameters, the quadratic equation previously introduced has solutions

γ = 12 and β1 = 4. Assuming current value V0 = 100, taxes θ = 0.35 and default

costs α = 0.3, the optimal thresholds are

VB = 78, VI = 96.8150, V ∗ = 130,

where V ∗ is the optimal investment trigger for unlevered projects. Under this pa-

rameter constellation, firms financing the project with debt invest earlier than firms

financing the project with cash.

As examined in Section 1.3.4, tax shields and default costs constitute a fundamental

key for the determination of optimal investment and default strategies of levered

firms. The next figures illustrate this importance.

Figure 1.1 presents default and investment thresholds VB and VI for levered projects

when default costs are α = 0.3. We observe that for this parameter constellation

1) the investment threshold is always greater than default threshold and 2) both
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boundaries decrease when taxes increase. Tax shields increase along with the tax

rate. Since the firm benefits from tax shields only if it invests in the project, the

opportunity costs of waiting increase if the tax rate increases. Hence, the firm waits

less if taxes increase, i.e. the investment threshold falls as taxes grow. This ex-

plains the falling shape of the investment threshold. Similarly, once the project is

installed, the firm exploits tax shields as long coupons are paid. Hence, cash flows

increase along increments in the tax rate only if coupon payments are made on a

timely manner. Therefore, the firm waits longer to default on debt if the tax rate

increases. In this example, the value of the debt at investment time d(VI) is always

larger than implementations costs and ranges between 128.93 and 125.19. Since in-

vestment threshold for unlevered projects V ∗ equals 130, firms invest always earlier

in levered than in unlevered projects.

Figure 1.1: Investment VI and default VB thresholds for different tax rates θ

Figure 1.2 shows the impact of default costs in investment threshold when taxes are

θ = 0.35. Default threshold VB stays constant at level 78 and investment threshold

for unlevered projects at 130. As default costs α increase the value of the bonds at

investment time d(VI) falls. Clearly, the greater α, the less the bondholders recover
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at default and the less they are willing to pay for the bonds. Hence, for each V0

the profitability of the project decreases as default costs α increase. Thus, the firm

waits longer in order to attained a larger profit.

The last two figures present a more detailed illustration of Proposition 1.3.2. Figure

1.2 exhibits function h(v) of the proof of that proposition. We can identify the

strictly increasing and strictly concave shape of the function, which guaranties the

existence of only one optimal investment threshold VI .

Figure 1.2: Investment VI and default VB thresholds for different default costs α

Figure 1.4 displays two functions: G(v) and f(v)− I. The former is given by

G(v) = A1v
β1 ,

and corresponds to the solution of the differential equation in the proof of Proposi-

tion 1.3.2. The function f(v)− I is the sum of the equity holders value and bonds

value minus implementation costs. As demonstrated in the mentioned proof, G(v)

is always greater than f(v)− I. The optimal reward function g∗(v) consists of G(v)

for v < VI and of f(v)− I for v ≥ VI .
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Figure 1.3: h(v) function

1.4 Credit Risk

This section analyzes the risk exposure associated with defaultable bonds. Buyers

of bonds are referred as lenders or debt holders and the firm issuing bonds is referred

as borrower or issuer. Lenders are subjected to firm’s default decision. Nonetheless,

within this framework, the firm sticks to an optimal default strategy meaning that it

is forced to default only when maintaining the project alive is suboptimal for equity

holders. Hence, lenders are able to measure default risk studying default threshold

given in equation (1.2) and the dynamics that govern the evolution of project’s value

Vt. Below we derive probability of default and expected default time.

1.4.1 Default Probability

We consider only situations when the project has been installed and is oper-

ating. Conditional default probability represents the likelihood of the project’s

value falling below default boundary at some future time given a current stock
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Figure 1.4: G(v) and f(v)− I functions

value. Formally, for an installed project with current value v and default time

TB := inf {τ ≥ t : Vτ ≤ VB} the conditional default probability is given by

Pv (TB <∞) = 1− Pv (TB =∞) =

{ (
VB
v

)|ν|+ν
for v > VB

1 otherwise,

where ν := µ/σ2−1/2. The last equality is obtained from the results in Borodin and

Salminen (Borodin & Salminen 2002) because Vt is a geometric Brownian motion

and since TB = inf {τ ≤ t : Vτ ≤ VB} = inf {τ ≤ t : Vτ = VB} for Vt > VB.

Notice that default probability is always one in cases where ν ≤ 0, that is when

the expected instantaneous mean return on the stock of the project lies below one

half of the project instantaneous volatility, formally µ ≤ σ2/2. Analogously, if the

project’s volatility is smaller than twice the expected mean return of the project’s

stocks, then default probability is less than one as long as v > VB. Following these

ideas, one can intuitively conjecture that high-volatility projects with poor rate of

return are more likely to get into financial distress than low-volatility projects with

high rate of return.

Moreover, denote Pv(TB ∈ dt) as the density of default time TB and consider the
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probability of default occurring before time T as follows5

Pv(TB < T ) =

∫ T

0

|ln (VB/v)|
σ
√

2πt3

(
VB
v

)ν
exp

(
−ν

2σ2t

2
− ln2 (VB/v)

2σ2t

)
dt. (1.35)

Consider now the α-quantile function qα(Fv) of the conditional distribution function

Fv(t) := Pv(TB ≤ t) given by

qα(Fv) = inf {t ≥ 0 |Fv(t) ≥ α} .

This quantile gives the earliest time at which default occurs with probability of α.

Let

τ̂ := qα(Fv),

and denote it as α-default time. When α is small, e.g. 0.1 per cent, investors may

use τ̂ as an approximation for calculating maturity time of a non-defaultable coupon

bond with coupon rate c and face value (1−α)δVB/(r−µ). Lenders may make this

approximation in order to hedge their position in the bond or money market.

1.4.2 Expected Conditional Default Time

In addition, firm and lenders are interested in knowing the expected life of the bonds,

which is equivalent to find the expected value of default time TB. To determine this

expected time recall the density function of TB associated to the expression in (1.35).

Hence, expected default time conditional on current project value v can be calculated

by

Ev [TB| TB <∞] =

∫ ∞
0

tPv (TB ∈ dt)

=

∫ ∞
0

∣∣ln (VB
v

)∣∣
σ
√

2πt

(
VB
v

)ν
exp

(
−ν

2σ2t

2
−

ln2
(
VB
v

)
2σ2t

)
dt.

Notice that expected default time TB is conditioned on the set {TB <∞}. Re-

arranging terms and noting that ln2 (VB/v) = ln2 (v/VB) the last equality can be

written as (
VB
v

)ν ∫ ∞
0

|ln (VB/v)|
σ
√

2πt
exp

(
−1

2

(
ln2 (v/VB) + ν2σ4t2

σ2t

))
dt.

5See Borodin and Salminen (Borodin & Salminen 2002) for details.
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After some algebra this term can be expressed as

(
VB
v

)ν−|ν| ∫ ∞
0

|ln (VB/v)|
σ
√

2πt
exp

(
−1

2

(
ln (v/VB) + |ν|σ2t

σ
√
t

)2
)
dt.

Consider this integral as the following limit

lim
T→∞

(
VB
v

)ν−|ν| ∫ T

0

|ln (VB/v)|
σ
√

2πt
exp

(
−1

2

(
ln (v/VB) + |ν|σ2t

σ
√
t

)2
)
dt. (1.36)

The next computational steps are based on the work of Leland and Toft (Leland

& Toft 1996). Let σ̄ = 2 |ν|σ, Y = v2|ν| and YB = V
2|ν|
B . Substitute this terms in

(1.36) which yields the following expression:

lim
T→∞

|ln (VB/v)|
Y σσ̄

(
VB
v

)ν−|ν| ∫ T

0

σ̄Y√
2πt

exp

(
−1

2

(
ln (Y/YB) + 1

2
σ̄2t

σ̄
√
t

)2
)
dt.

Substituting ε = σ̄
√
t√
T

the last integral is given by

lim
T→∞

2 |ln (VB/v)|
Y σσ̄

(
VB
v

)ν−|ν| ∫ σ̄

0

√
TY√
2π

exp

(
−1

2

(
ln (Y/YB) + 1

2
ε2T

ε
√
T

)2
)
dε.

(1.37)

The integral in this term is the integral over the partial derivative of a European

call option with respect to volatility with underlying Y , strike YB, maturity T and

dividend yield as well as interest rate equaling zero. Assume v > VB as previously

which implies Y > YB. By the fundamental theorem of calculus and the valuation

formula for European options in the Black-Scholes model the expression in (1.37) is

given by

lim
T→∞

2 |ln (VB/v)|
Y σσ̄

(
VB
v

)ν−|ν| [
Y N

(
ln (Y/YB) + 1

2
σ̄2T

σ̄
√
T

)
−YBN

(
ln (Y/YB)− 1

2
σ̄2T

σ̄
√
T

)
− (Y − YB)

]
= lim

T→∞

|ln (VB/v)|
|ν|σ2

(
VB
v

)ν−|ν| [
−
(

1−N
(

ln (Y/YB) + 1
2
|ν|σ2T

σ
√
T

))
+
YB
Y

(
1−N

(
ln (Y/YB)− 1

2
|ν|σ2T

σ
√
T

))]
,
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where N(·) is the cumulative standard normal distribution. In the last equality one

can substitute again Y and use the attributes of the normal distribution which yields

lim
T→∞

|ln (VB/v)|
|ν|σ2

(
VB
v

)ν−|ν| [
−N

(− ln (v/VB)− 1
2
|ν|σ2T

σ
√
T

)
+

(
VB
v

)2|ν|

N

(− ln (v/VB) + 1
2
|ν|σ2T

σ
√
T

)]
.

Notice that |ln (VB/v)| = ln (v/VB) because v > VB > 0. Hence, expected default

time follows straightforwardly from the last expression.

Proposition 1.4.1. Assume v > VB. The expected default time conditional on

current stock value v is given by

Ev [TB| TB <∞] =
ln (v/VB)

|ν|σ2

(
VB
v

)ν+|ν|

.

Accordingly, the expected life of bonds is the longer the further away the project’s

value v is from default boundary VB. This result confirms economic intuition. Fur-

ther, observe that expected default time is increasing in current stock value v and

decreasing in default boundary VB.

1.5 Concluding Remarks

This chapter presents an optimal investment strategy for an irreversible project fi-

nanced by defaultable bonds. In addition to investment threshold, the chapter shows

an optimal default strategy for the issued bonds. Projects financed with defaultable

debt and projects financed with cash are compared as well as their optimal invest-

ment strategy. In presence of taxes and default costs, optimal investment strategy

depends on the financing method. Moreover, risk embedded in defaultable bonds

allows those firms who choose this financing method to invest in the project earlier

than firms financing the project’s costs with cash, if the default threshold is small

enough. Default probability and expected default time are calculated in order to

quantify risk of the defaultable bonds.

Various extensions and modifications can be considered for the enrichment of the

model. Regarding a stochastic interest rate as a second risk factor or a variable
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coupon rate are two fundamental extensions that can be made. Irreversible invest-

ment problems with stochastic interest rates are analyzed in the work of Schulmerich

(Schulmerich 2005). However, the author does not consider issuance of defaultable

coupon bonds as a financing alternative. Analytical solutions of a model includ-

ing stochastic interest rates will be presumably not available and we will be likely

forced to recur to numerical methods. Nonetheless, a model that incorporates these

features would replicate real-world investment problems more accurately.
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1.6 Appendix

1.6.1 Proof of Lemma 1.3.4.

The lemma follows from the implicit function theorem used for the function h(VI , c)

presented in (1.16). Thus, consider

∂h

∂c
=

θ

r
− (1 + γ)

(
θ

r
+

αδκ

r − µ

)(
β1 + γ

β1

)(
VI
κ

)−γ
cγ,

∂h

∂VI
= γ

(
θ

r
+

αδκ

r − µ

)(
β1 + γ

β1

)
(VI)

−γ−1κγcγ−1 +
δ

r − µ

(
β1 − 1

β1

)
,

where κ = γ(r − µ)(1 − θ)/r(1 + γ)δ. The first order derivative of VI with respect

to c is given by

V ′I (c) = −
∂h
∂c
∂h
∂VI

,

by noticing that ∂h
∂VI

> 0. Hence, V ′I (c) < 0 if and only if

θ

r
− (1 + γ)

(
θ

r
+

αδκ

r − µ

)(
β1 + γ

β1

)(
VI
κ

)−γ
cγ > 0,

which is equivalent to

c <

 θ

r (1 + γ)
(

αδ
r−µκ+ θ

r

)(
β1+γ
β1

)
 1

γ

VI
κ
.

�

1.6.2 Proof of Lemma 1.3.5

To show the statement consider again the implicit function theorem for equation

(1.9). Hence, assuming that the investment trigger is a function of α and θ, one has

to show that
∂VI
∂α
≥ 0 and

∂VI
∂θ
≤ 0, (1.38)

for VI ≥ VB. Using the implicit function theorem for h given in (1.16) with respect

to α yields

∂VI
∂α

=

[
γ

(
θ
c

r
+
αδVB
r − µ

)(
γ + β1

β1

)
V γ
BV

−γ−1
I +

δ

r − µ

(
β1 − 1

β1

)]−1

· δVB
r − µ

(
γ + β1

β1

)
V γ
BV

−γ
I ≤ 0. (1.39)
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The partial derivative of h with respect to θ is given by

∂h

∂θ
= −V ′B

[
αδ

r − µ

(
γ + β1

β

)
V γ
BV

−γ
I + γ

(
θ
c

r
+
αδVB
r − µ

)(
γ + β1

β1

)
V γ−1
B V −γI

]
−c
r

((
β1 + γ

β1

)
V γ
BV

−γ
I − 1

)
, (1.40)

Since ∂h
∂VI

> 0,

∂VI
∂θ

= −
∂h
∂θ
∂h
∂VI

≤ 0 iff − ∂h

∂θ
≤ 0.

Because ∂VB
∂θ

= −γ(r−µ)c
r(1−γ)δ

< 0 and the term in the brackets of (1.40) is positive, we

have ∂VI
∂θ
≤ 0 if (

β1 + γ

β1

)
V γ
BV

−γ
I − 1 ≤ 0,

or equivalently

VI ≥
(
β1 + γ

β1

)1/γ

VB,

which completes the proof.

�

1.6.3 Proof of Lemma 1.3.6.

Let h(v) be the function in the left side of equation (1.9) as defined in the proof of

Proposition 1.3.2. By inserting V ∗ in h one gets

h(V ∗) = −
(
θ
c

r
+
αδVB
r − µ

)(
γ + β1

β1

)(
VB
V ∗

)γ
+ θ

c

r
. (1.41)

Since h is strictly increasing and h(VI) = 0, then VI ≥ V ∗ is equivalent to h(V ∗) ≤ 0,

i.e. (
θ
c

r
+
αδVB
r − µ

)(
γ + β1

β1

)(
VB
V ∗

)γ
≥ θ

c

r
. (1.42)

Solving this inequality for V ∗ one gets the condition of the Corollary:

V ∗ ≤
[(

1 + (1− θ) αδ

θ(1 + γ)

(
γ + β1

β1

))] 1
γ

VB. (1.43)

�
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Chapter 2

A Model on Default and Recovery

Times of Defaultable Bonds

2.1 Introduction

In order to analyze and value defaultable securities, we firstly need to set up a

framework describing default event. Issuers may default for different reasons, for

example lack of operating earnings, failure of maintaining certain financial ratios,1

bankruptcy, fraud, etc. The two most popular approaches for modeling default are

the structural and the intensity-based frameworks. In the first setup, pioneered

by Merton (Merton 1974), default occurs because the value of the issuer’s assets

falls below an acceptable level. In the second framework default is a random event

described by a point process unobservable on the default-free market. In this case,

default probability may be modeled in order to include some of the factors mentioned

above. Intensity-based models are presented in Duffie, Schroeder and Skiadas (Duffie

et al. 1996), Duffie and Singleton (Duffie & Singleton 1999), Jarrow and Yu (Jarrow

& Yu 2001) and Collin-Dufresne et al. (Collin-Dufresne et al. 2004) among others.

A further essential issue when modeling defaultable securities is the formulation

of recovery payment in case of default. In structural models, recovery payment is

defined as the remaining value of the issuer’s assets after or at default time, while

in intensity-based setups recovery payment is usually conceived as a fraction of a

1For example debt-to-equity and debt-to-assets ratio among others.
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similar but riskless security, a fraction of a fixed money amount or as a fraction of

its pre-default value. In case of default event, both valuation methodologies assume

that recovery payment occurs either at maturity or at default time, which clearly is

not always consistent with the real world. We drop the restrictive assumption that

recovery time must match either default time or maturity.

In addition, one of the main challenges that arises from market observations is the

need to incorporate correlation between default probability and recovery payment.

The empirical analysis in Altman et al. (Altman et al. 2005) and Frye (Frye 2000)

demonstrates that there exits a strong relationship between default and recovery

rates. Furthermore, recovery payments of defaulted companies may also depend

on economic-wide factors as documented in Acharya et al. (Acharya et al. 2007).

Results of their study indicate that recovery payments are lower during economy-

downturns and large during economy-upturns. Under the assumption of recovery

payment at maturity or default, recovery rates reflect only the state of the economy

at those points in time and will be inconsistent with empirical observations if real

recovery differs from those points in time. By letting recovery time occur at any

time after default, recovery rates will reflect the actual market conditions at the time

of payment which is in accordance with Acharya et al. (Acharya et al. 2007). In

line with this observation, we justify introducing a framework of defaultable bonds

where recovery time occurs at any time after default. Moreover, in our model we

can straightforwardly incorporate economic factors in default probabilities and in

recovery payments. In this sense, our model allow for integration of real world as-

pects that neither intensity-based nor structural models can offer.

Aware of the weaknesses of intensity-based and structural models, Jarrow (Jarrow

2001) introduces a new approach of valuing defaultable bonds where recovery rates

and default probabilities are correlated and depend on an economy-wide state vari-

able. Within his approach, equity prices depend on default event which results in

zero value of equity when default occurs. A zero equity value can only be accepted if

the company is liquidated. Thus, in cases when firms are reorganized, the approach

of Jarrow cannot be applied because equity value must not necessarily equal zero.

In this chapter we analyze an alternative valuation method defaultable for bonds

based on stochastic default and recovery times. The setup considers three method-
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ologies when defining default and recovery times: an intensity-based approach where

both times are defined via point processes, a structural approach where default and

recovery times occur at first-passage times of default-free market processes, and a

mixture approach which is a combination of the previous setups. The separation of

default and recovery times allow us to conceive and consider more realistic recovery

payments, which can support empirical evidence. In this chapter we face two pos-

sible formulation of recovery payments: a company-specific and an economy-wide

approach. For the company-specific approach the underlying determinant of recov-

ery payment is the company’s asset value2 and for the economy-wide factor a market

index or cycle-index is used.

By construction, the present model of defaultable bonds can combine aspects

of structural and reduced-form models. Bond valuation formulas as in Merton

(Merton 1974) and as in Duffie and Singleton (Duffie & Singleton 1999) can be de-

rived from the following general specification. Moreover, the pricing formula derived

in this chapter provides a pre-default bond value, as structural and intensity-based

valuation models, and additionally a post-default-pre-recovery bond value. The lat-

ter is known as distressed value.

This chapter is organized as follows. Section 2 introduces default and recovery pro-

cesses as well as the general market structure. In Section 3 we derive the main

result of the paper which is the price of defaultable bonds with stochastic recovery

and default times. The same section provides an analytical example of our valu-

ation formula for the intensity-based approach. We discuss company-specific and

an economy-wide specifications of recovery payments in Section 4. In Section 5 we

cover examples and applications of those recovery payments. Section 6 concludes

the chapter.

2Current and liquid asset as well as marketable securities can be consider as underlying factors

of recovery. Nonetheless, all company’s assets may be considered when the company is forced to

liquidation.
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2.2 Framework

2.2.1 Financial Market

Consider a financial market embedded in a probability space (Ω,F ,P) with a com-

plete and right-continuous filtration (Ft)t≥0 representing arrival of overall informa-

tion over time. Furthermore, assume the market is arbitrage-free and let P be an

equivalent martingale measure.

Securities are discounted with the instantaneous, continuously compounded inter-

est rate or short-rate rt. For instance let the interest rate be a càdlàg Ft-adapted

process and let the bank account or money-market account at time t ≥ 0 be

Bt = e
∫ t
0 rudu,

and the value, at time t, of a default-free zero-coupon bond with face value 1 and

maturity T be given by

P (t, T ) = EP [B−1
T Bt

∣∣Ft] = EP
[
e−

∫ T
t rudu

∣∣∣Ft] .
Additionally, consider two càdlàg Ft-adapted stochastic processes Yt and Zt repre-

senting the value of the assets of the firm and the recovery payment, respectively.

In Section 2.4 we provide some examples of the recovery process Zt which is de-

fined as a function of the assets’ value Yt which is seen as a solvency proxy of the

firm. Since the functional dependency between Zt and Yt is not required to derive

the pricing formulas below, we introduce these processes here without any further

specification. Moreover, we consider an Rn-valued, càdlàg Ft-adapted stochastic

process Vt = (V 1
t , . . . , V

n
t ) which describes other relevant state variables observed

in the financial market. In particular, under the structural and mixture approaches

presented at the end of this section, some V i
t represent additional solvency proxies

of the firm.3 We assume that all processes of the default-free market are traded.4

On the default-free market information is generated by the interest rate, the value

3The case V i
t = Yt for some i = {1, . . . , n} for all t ∈ R+ is not ruled out.

4Instead we can assume that the process Vt is not traded and that there are traded processes

Vi,t with i = 1, . . . , k, k ∈ N, which replicate Vt.

38



of the assets, by recovery payment and by other state variables, i.e. information is

generated by the real-valued vector Σt = (rt, Yt, Zt, Vt), the state process, such that

for all5 t ≥ 0

Gt := σ (Σu : 0 ≤ u ≤ t) , (2.1)

where Gt ⊆ Ft for any t ∈ R+. Recovery payment is defined on the default-free

market because it depends on solvency of the firm as well as refinancing options,

which are all observed on the default-free market.

2.2.2 Default Time and Recovery Time

Before introducing the definitions of default and recovery times consider the fol-

lowing structure of the filtration (Ft)t≥0. Let the complete and right-continuous

sub-filtrations6 (Gt)t≥0, (Ht)t≥0 and (H∗t )t≥0 be such that for any t ∈ R+,

Ft = Gt ∨Ht ∨H∗t ,

i.e. the filtration Ft coincides with the smallest σ-field containing Gt, Ht and H∗t .

We define below the sub-filtrations Ht and H∗t , which represent the information

flow generated by default and recovery times, respectively. For the intensity-based

approach we demand Ht 6⊆ Gt and H∗t 6⊆ Gt for any t ∈ R+, for the structural

approach Ht,H∗t ⊆ Gt for all t ∈ R+, and for the mixture approach either Ht 6⊆ Gt
or H∗t 6⊆ Gt for any t ∈ R+.

Intensity-Based Approach

In an intensity-based context, default event is usually modeled by an Ft-adapted

point process Nt, in the sense, that default occurs at the first jump of Nt. Analo-

gously, we define a process Nt whose jump represents default event. For this and

following Jarrow and Yu (Jarrow & Yu 2001) and Bielecki and Rutkowski (Bielecki

& Rutkowski 2004) let λt be a non-negative Gt-progressively measurable process

5We call σ(X) the σ-field generated by the random variable X.

6Where (Gt)t≥0 is defined in (2.1).
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such that for all t ≥ 0

Λt :=

∫ t

0

λudu < ∞ P− a.s., (2.2)

and

Λ0 = 0 and Λ∞ =∞. (2.3)

The process λt is called the intensity process.

We assume that the underlying probability space on which the state process Σt is

defined is large enough in order to support a unit exponential random variable ξ1

independent of the process7 Σt. This setup is known as the canonical construction

of the first jump of a point process, see for example Bielecki and Rutkowski (Bielecki

& Rutkowski 2004). Accordingly, default time τ is given by

τ := inf

{
t ≥ 0 :

∫ t

0

λudu ≥ ξ1

}
, (2.4)

the process Nt := 1{τ≤t} represents the default process and

Ht := σ(Nu : u ≤ t),

the information flow generated by default time. By definition, the distribution

function of default time τ conditioned on G∞ is given by

P ({τ > t} |G∞ ) = e−Λt ,

where G∞ = σ(Σu : u ∈ R+), and the unconditional distribution is given by

P ({τ > t}) = EP [e−Λt
]
.

In addition, by construction we have

P ({τ > t} |Gt ) = EP [P ({τ > t} |G∞ ) |Gt ] = e−Λt ,

and

P ({τ ≤ t} |Gt ) = P ({τ ≤ t} |G∞ ) , (2.5)

7Alternatively, we could defined explicitly the structure of an enlarged probability space such

that admits the existence of ξ1 defined above. Since the assumption made above is equivalent

to the explicit construction of the enlarged probability space, we opt to present the analysis in

the short form and refer for technical details to Lando (Lando 1998) or Bielecki and Rutkowski

(Bielecki & Rutkowski 2004).
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i.e. Λt represents the hazard process of τ with respect to the filtration (Gt)t≥0. As

pointed out in Bielecki and Rutkowski (Bielecki & Rutkowski 2004), note that Λt is

not the hazard process of τ with respect to (Gt)t≥0 ∨ (H∗t )t≥0.

Recovery time τ ∗ is similarly defined as default time. Let ηt be a non-negative Gt-

progressively measurable process satisfying the conditions (2.2), (2.3) and consider

the process

λ∗t := ηt1{τ≤t}. (2.6)

If default event has not occurred, recovery intensity is zero, i.e λ∗t = 0 for t < τ .

After default t > τ , we have λ∗t = ηt. Moreover, we assume again that the probability

space is large enough such that it admits an additional independent unit exponential

random variable ξ2, which is independent of the state process Σt and default time τ .

Note that the definition of λ∗t is similar to the definition of equivalent processes in

Jarrow and Yu (Jarrow & Yu 2001), where several random default times are model

in order to illustrate counterparty risk.8 Within our model, recovery time is defined

as follows.

Definition 2.2.1. Recovery time τ ∗ is given by

τ ∗ := inf

{
t ≥ 0 :

∫ t

0

λ∗udu ≥ ξ2

}
,

where λ∗t is given in (2.6), the process N∗t := 1{τ∗≤t} represents the recovery process

and

H∗t := σ(N∗u : u ≤ t),

the information flow generated by recovery time.

Analogous to the arguments above and since ξ2 is independent of Σt and τ , the

conditional distribution of recovery time τ ∗ is given by9

P ({τ ∗ > t} |G∞ ∨H∞ ) = e−Λ∗t ,

where Λ∗t =
∫ t

0
λ∗udu. As previous and by construction of recovery time we have

P ({τ ∗ ≤ t} |Gt ∨Ht ) = P ({τ ∗ ≤ t} |G∞ ∨H∞ ) , (2.7)

8Particularly, default time τ and recovery time τ∗ correspond to default times of primary and

secondary firms in Jarrow and Yu (Jarrow & Yu 2001), respectively.

9Again, we set H∞ = σ(Nu : u ∈ R+).
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i.e. Λ∗t represents the hazard process of τ ∗ with respect to the filtration (Gt)t≥0 ∨

(Ht)t≥0. In order to maintain the economic interpretation, recovery event should

never occur before default event. For this regard the assumption below.

Assumption 2.2.2. For all t ≥ 0,

P ({τ > t} ∩ {τ ∗ ≤ t}) = 0 and P ({τ > t} ∩ {τ ∗ ≤ t} |Gt ∨Ht ) = 0.

Particularly, if the conditional probability of default time occurring after time t given

that recovery time has already occurred is well defined, then it must be zero, i.e.

P ({τ > t} |{τ ∗ ≤ t}) = 0,

for all t ∈ R+ with P({τ ∗ ≤ t}) > 0.

Since we are interested in valuing defaultable bonds, the probability of default

and recovery is supposed to be positive. We assume that neither default nor recovery

occur at the origin but some time later. Formally, for ν ∈ {τ, τ ∗}

P({ν < +∞}) = 1, P({ν = 0}) = 0 and P({ν > t}) > 0 for all t ≥ 0.

Structural Approach

Alternatively, default and recovery times can be defined by some Rn-valued, Gt-

adapted process Vt which represents the solvency of the firm. Accordingly, let default

time τ be defined as the first-passage time of the real-valued, càdlàg Gt-adapted

process V 1
t such that default time is given by

τ := inf
{
t ≥ 0 : V 1

t ≤ κ1
}
, (2.8)

where κ1 ∈ R. We denote the filtration generated by default event by

Ht = σ(V 1
u : 0 ≤ u ≤ t), for any t ∈ R+.

Similarly, let recovery time τ ∗ be described by the real-valued, càdlàg Gt-adapted

processes V 1
t and V 2

t in the following

Definition 2.2.3. Recovery time is defined by

τ ∗ := inf

{
t ≥ 0 : min

0≤u≤t
V 1
u ≤ κ1, V 2

t ≥ κ2

}
,
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where10 κ2 ∈ R. As previous, the filtration generated by recovery event is denoted by

H∗t = σ((V 1
u , V

2
u ) : 0 ≤ u ≤ t), for any t ∈ R+.

Since V 1
t and V 2

t are Gt-adapted processes, default and recovery times are Gt-

stopping times, which implies Ht ⊆ H∗t ⊆ Gt = Ft for any t ∈ R+. In this section

we omit any further interpretation of the solvency proxies V 1
t and V 2

t in order to

maintain the introduction of the model as general as possible.

Mixture Approach

Clearly, we can conceive some defaultable bonds such that default event is governed

by a process unobservable in the default-free market and recovery event (after de-

fault) by a process observable in the default-free market. In such a case, we are in

the setup defined as follows.

Definition 2.2.4. Let default time by defined as in (2.4) and recovery time by

τ ∗ := inf
{
t ≥ 0 : V 2

t ≥ κ2, Nu > 0 for 0 ≤ u ≤ t
}
,

where Nt = 1{τ≤t}. The information flow is given by

Ft = Gt ∨Ht,

for all t ∈ R+. We denote this setup as Mixture Approach 1 or MA1.

Of course, we can think of default event being described by a process observable

in the default-free market and recovery event (after default) by a process unobserv-

able in the default-free market. The following definition presents this case.

Definition 2.2.5. Let default time be given by (2.8) and recovery time by Definition

2.2.1. The information flow is given by

Ft = Gt ∨H∗t ,

for all t ∈ R+. This setup is denoted as Mixture Approach 2 or MA2.

10Equivalently, we have τ∗ = inf
{
t ≥ τ : V 2

t ≥ κ2
}

.
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Note that under MA2, the definition of λ∗t has not change. In addition, λ∗t is a

non-negative Gt-progressively measurable process since 1{τ≤t} is a càdlàg Gt-adapted

process. Again, we postpone interpretation of the underlying stochastic processes

V 1
t and V 2

t defining default and recovery times.

2.3 Financial Claims

Within this section we revise pricing rules of defaultable bonds considering default

time τ and recovery time τ ∗ as previously introduced. Results of Sections 2.3.1 and

2.3.2 are general and are independent of the definition of default and recovery times.

Thereafter, we use the general results for the different approaches presented above.

2.3.1 Dividend Price Process

By definition of martingale measures,11 the price process of a dividend stream Dt

with settlement date θ is given by

St = BtE
P
[
B−1
θ Sθ +

∫
(t,θ]

B−1
u dDu

∣∣∣∣Ft] , ∀t ≤ θ. (2.9)

By assuming that the price process reflects only future dividends, it must necessarily

be zero at settlement date, i.e. Sθ = 0. This treatment is usually known as ex-

dividend price process12 because past and present dividends are omitted from the

price of the analyzed claims. The ex-dividend price process St of a financial claim

that pays dividends Dt, with settlement date θ is given by

St = BtEP
[∫

(t,θ]

B−1
u dDu

∣∣∣∣Ft] , ∀t < θ. (2.10)

The dividend process Dt of a defaultable claim consists of three elements: payoff

at maturity, payoff during the life of the claim and payment at recovery time. At

11Equation (2.9) can be derived from a self-financing strategy and by some martingale arguments

as presented in Appendix 2.7.1.

12Following the definition in Duffie et al. (Duffie et al. 1996), Duffie and Singleton (Duffie

& Singleton 1999), Bielecki and Rutkowski (Bielecki & Rutkowski 2004) and Collin-Dufresne et

al.(Collin-Dufresne et al. 2004) among others.

44



maturity T a claim with notional value X pays its face value if no default has

occurred. If default takes place during the life of the claim, payment at maturity is

R. So payoff at maturity is given by

Xd
T = X · 1{τ>T} +R · 1{τ≤T},

where R is a GT -measurable and bounded random variable. A defaultable claim may

offer a stream of payments At before maturity and default, which equals∫
1{τ>u}dAu.

Finally, if default occurs before maturity the claim pays at recovery time τ ∗ an

amount Zτ∗ which is a Gt-adapted, non-negative bounded process. Hence payment

at recovery time can be written as∫
Zud1{τ∗≤u}.

Combining these elements together we derive the dividend process Dt which is given

by

Dt = Xd
T · 1{t≥T} +

∫
(0,t]

1{τ>u}dAu +

∫
(0,t]

Zud1{τ∗≤u}, t > 0. (2.11)

2.3.2 Zero-Coupon Bonds Valuation

In case of zero-coupon bonds there is no payment stream before maturity and so

At = 0 for all t ≥ 0. Furthermore, if default occurs recovery payment is made at

recovery time and not necessarily at maturity, thus R = 0. A defaultable claim will

be priced and traded until maturity T in case of no default previous maturity or

until recovery time τ ∗ if default occurs before maturity. In this sense, the random

settlement date of a defaultable claim is given by

θ := T · 1{τ>T} + τ ∗ · 1{τ≤T}.

Note that there are only two possible repayment dates for a defaultable zero-coupon

bond either θ or τ ∗. Since St is the ex-dividend price process of a defaultable claim

that pays at maturity or recovery time, St given in (2.10) is the pre-repayment price,
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i.e. St is only given for t < τ ∗∧θ. Hence, combining definitions (2.10) and (2.11) the

price process13 of a zero-coupon bond with face value X, maturity T and random

settlement14 θ is given by

St = BtEP
[∫

(t,θ]

B−1
u Xd

Td1{u≥T} +

∫
(t,θ]

B−1
u Zud1{τ∗≤u}

∣∣∣∣Ft] , ∀t < τ ∗ ∧ θ.

Notice that on {θ = τ ∗} payoff at maturity is zero, Xd
T = 0, because R = 0 and so

inducing

St = BtEP
[
1{τ>T} ·

∫
(t,T ]

B−1
u Xd

Td1{u≥T} +

∫
(t,θ]

B−1
u Zud1{τ∗≤u}

∣∣∣∣Ft] ,
for all t < τ ∗ ∧ θ. Integrating the first term the expression is equivalent to

St = BtEP
[
B−1
T Xd

T · 1{τ>T} +

∫
(t,θ]

B−1
u Zud1{τ∗≤u}

∣∣∣∣Ft] , ∀t < τ ∗ ∧ θ. (2.12)

Notice that the integral in (2.12) is zero on {τ > T}. Hence, it suffices to consider

the price process

St = BtEP
[
B−1
T Xd

T · 1{τ>T} + 1{τ≤T} ·
∫

(t,τ∗]

B−1
u Zud1{τ∗≤u}

∣∣∣∣Ft] , ∀t < τ ∗ ∧ θ.

By adopting the notation Bd(t, T ) := St it follows

Bd(t, T ) = BtEP [B−1
T Xd

T · 1{τ>T} + 1{τ≤T} ·B−1
τ∗ Zτ∗

∣∣Ft] , ∀t < τ ∗ ∧ θ.

On the set {τ ∗ ≤ t} the price process is zero. Therefore the price of a defaultable

zero-bond results after plugging the definition of Xd
T as follows.

Proposition 2.3.1. The ex-dividend price process Bd(t, T ) of a defaultable zero-

coupon bond with maturity T and notional value X for 0 < t < T is given by

Bd(t, T ) = 1{τ∗>t} ·BtEP [B−1
T X · 1{τ>T} +B−1

τ∗ Zτ∗ · 1{τ≤T}
∣∣Ft] .

Remark 2.3.2. A special case of this framework is the model introduced in Duffie,

Schroeder and Skiadas (Duffie et al. 1996) and Duffie and Singleton (Duffie &

Singleton 1999). By letting recovery time equal default time, τ = τ ∗, the intensities

of jump processes describing default and recovery must be identical, i.e. λt = λ∗t for

13From now on all prices of defaultable bonds are ex-dividend.

14For a discussion of the validity of the pricing rule St see Appendix 2.7.1 and 2.7.2. An

alternative derivation of Proposition 2.3.1 can be also found in Appendix 2.7.2.
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all t ≥ 0. Furthermore, since recovery can never occur after maturity, settlement

date must equal maturity, θ = T . So the price process corresponding to definition

(2.10) reads

St = BtEP
[∫

(t,T ]

B−1
u dDu

∣∣∣∣Ft] , ∀t < T.

Moreover, the integral of recovery payment in (2.12) is∫
(t,T ]

B−1
u Zud1{τ≤u}.

By noticing that Mt := 1{τ>t} − Λt∧τ follows an Ft-martingale under P, the last

expression can be divided in two integrals∫
(t,T ]

B−1
u Zuλu · 1{τ>u}du+

∫
(t,T ]

B−1
u ZudMu, t ∈ [0, T ].

If Zt is a Gt-predictable process, the second integral is a local martingale and so the

price process examined by Duffie et al. follows from (2.12)

St = BtEP
[
B−1
T X · 1{τ>T} +

∫
(t,T ]

B−1
u Zuλu · 1{τ>u}du

∣∣∣∣Ft] , t < T.

Obviously, information arrival of default and recovery time coincide, that is Ht = H∗t
for all t ≥ 0, implying Ft = Gt ∨Ht.

2.3.3 Integral Representation for the Intensity-Based Ap-

proach

In order to introduce our results consider the next assumption.

Assumption 2.3.3. Let the expectations

EP
[
e−

∫ T
t (rs+λs)ds |X|

]
,

EP
[∫

(t,∞)

|Zuηu| e−
∫ u
t (rs+ηs)dsdu

]
,

and

EP
[∫

(t,T ]

∫
(t,T ]

∣∣Zuηu1{q≤u}λq∣∣ e− ∫ u
t (rs+ηs1{q≤s})ds−

∫ q
t λvdvdudq

]
,

be finite.
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In view of Proposition 2.3.1, the value of a defaultable bond under the intensity-

based approach can be expressed via the processes λt and ηt as shown in the following

result.

Proposition 2.3.4. Under Assumption 2.3.3 the ex-dividend price process Bd(t, T )

of a defaultable zero-coupon bond with maturity T and notional value X for any

0 < t < T is given by

Bd(t, T ) = 1{τ>t} · (I1
t + I2

t ) + 1{τ≤t}1{τ∗>t} · I3
t , (2.13)

where

I1
t = EP

[
e−

∫ T
t (rs+λs)dsX

∣∣∣Gt] ,
I2
t = EP

[∫
(t,T ]

∫
(t,T ]

Zuηu1{q≤u}λqe
−

∫ u
t (rs+ηs1{q≤s})ds−

∫ q
t λvdvdudq

∣∣∣∣Gt] ,
and

I3
t = EP

[∫
(t,∞)

Zuηue
−

∫ u
t (rs+ηs)dsdu

∣∣∣∣Gt] .
Proof. See Appendix 2.7.3.

�

The price of defaultable bonds is divided into pre-default and post-default-pre-

recovery prices. The pre-default value is represented by I1 + I2 and it is influenced

by default and recovery parameters λt and ηt, respectively. In the case default event

occurs, then the term 1{τ>t}(I
1 + I2) vanishes and the price of the financial claim

equals I3, which is commonly called distressed price (post-default bonds are usually

denoted as distressed debt). In the expectation I3 only the recovery parameter ηt is

present and the upper limit of the integral is ∞ reflecting the randomness of recov-

ery time τ ∗. Furthermore, note that nothing has been said about the joint density

of recovery payment Zt, default intensity λt and the process ηt conditioned on Gt.

Hence, correlation between default event and recovery payment can be introduced

in order to be consistent with empirical evidence.15

15See Altman et al. (Altman et al. 2005) and Frye (Frye 2000).

48



Example

Regard now a simple application for the valuation rule of Proposition 2.3.4 of default-

able zero-coupon bonds under the intensity-based approach. Let default intensity

λt and the process ηt be deterministic and constant such that λt = λ > 0 and

ηt = η > 0 for any t ≥ 0. Furthermore, suppose that current time t = 0 and assume

the σ-field G0 is trivial. Recovery payment is a deterministic fraction of par value,

i.e. Zt = φ for all t ≥ 0 where 0 ≤ φ ≤ X (we implicitly suppose that par value

is deterministic X > 0). In view of Cox, Ingersoll and Ross (Cox et al. 1985), the

dynamics of the instantaneous short rate process are

drt = k(θ − rt)dt+ σ
√
rtdWt,

under P where r0, k, θ, σ > 0 and 2kθ > σ2. Since the Cox-Ingersoll-Ross setup

corresponds to the class of affine term-structure models16, the value at time t of a

default-free zero-coupon bond with maturity T is given by

P (t, T ) = A(t, T )e−C(t,T )rt ,

where

A(t, T ) =

(
2h exp {(k + h)(T − t)/2}

2h+ (k + h)(exp {(T − t)h} − 1)

)2kθ/σ2

,

C(t, T ) =
2(exp {(T − t)h} − 1)

2h+ (k + h)(exp {(T − t)h} − 1)
,

h =
√
k2 + 2σ2.

Notice, that we can still apply Proposition 2.3.4 for t = 0, which consists of

Bd(0, T ) = I1
0 + I2

0 ,

since the third summand in (2.13) vanishes17. Hence, the first term is given by

I1
0 = EP [B−1

T e−λTX
]

= e−λTXP (0, T ). (2.14)

By applying Fubini-Tonelli’s theorem repeatedly, Appendix 2.7.4 shows that for

λ 6= η the second term is given by

I2
0 =

φηλ

η − λ

∫
(0,T ]

(
e−λu − e−ηu

)
A(0, u)e−C(0,u)r0du.

16See Brigo and Mercurio (Brigo & Mercurio 2006) for details.

17Recall that P({τ = 0}) = 0 is assumed.
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In order to appreciate the insights of modeling recovery time as a random time

that may differ from default time, we consider the value of the same bond under

the assumption that recovery and default events occur simultaneously, i.e. τ = τ ∗

P-a.s., and we denote that bond’s price by B̃d(t, T ). By assuming τ = τ ∗, default

and recovery processes coincide, as well as the corresponding σ-fields. In particular,

we have Ht = H∗t for all t ≥ 0, which implies Ft = Gt ∨Ht for all t ≥ 0. Hence, the

ex-dividend price process of a defaultable zero-coupon bond with par value X and

maturity T under the assumption τ = τ ∗ P-a.s. is given by

B̃d(t, T ) = BtEP
[∫

(t,T ]

B−1
u dDu

∣∣∣∣Ft] , ∀t < τ,

where

Dt = X · 1{t≥T} +

∫
(0,t]

Zud1{τ≤u}, t > 0.

Following the same arguments of Section 2.3.2, the price of the defaultable security

under τ = τ ∗ P-a.s for t < T is given by

B̃d(t, T ) = 1{τ>t}BtEP [B−1
T X · 1{τ>T} +B−1

τ Zτ1{τ≤T}
∣∣Ft] ,

which is well known18 to be equivalent to

B̃d(t, T ) = 1{τ>t}EP
[
e−

∫ T
t (rs+λs)dsX +

∫
(t,T ]

λuZue
−

∫ u
t (rs+λs)dsdu

∣∣∣∣Gt] .
In the present example this formula yields the following expression

B̃d(0, T ) = I1
0 + Ĩ2

0 ,

where I1
0 is given in (2.14) and

Ĩ2
0 = λφ

∫
(0,T ]

A(0, u)e−C(0,u)r0−λudu,

whose derivation is shown in Appendix 2.7.4. Differences between Bd(t, T ) and

B̃d(t, T ) are explained by differences between I2
0 and Ĩ2

0 , which are generated by the

existence of the recovery parameter η. In order to highlight these, we present below

a numerical illustration for which we additionally consider the credit spread s(t, T )

at time t = 0 of a defaultable bond Bd(0, T ) with face value X defined by

s(0, T ) = − 1

T
ln

(
Bd(0, T )

PX(0, T )

)
,

18See Bielecki and Rutkowski (Bielecki & Rutkowski 2004) for example.
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where PX(0, T ) = P (0, T )X.

For the numerical example, we assume the following values of the Cox-Ingersoll-Ross

term structure parameters corresponding to empirical observations19

k = 0.0373, θ = 0.0697, σ = 0.0283.

Furthermore, we set the remaining parameters of the model as follows.

X = 1000, T = 5, φ = 0.5, r0 = 0.0295, λ = 0.04, η = 0.064.

Table 2.1 shows the differences in the components of the defaultable bonds Bd(0, T )

and B̃d(0, T ). Recall that the latter price excludes the possibility of τ ∗ 6= τ . Hence,

we abbreviate this description and refer to B̃d(0, T ) as the price ignoring τ ∗ 6= τ and

to Bd(0, T ) as the price including τ ∗ 6= τ .

For the given parameters, the value of a default-free zero coupon bond with par

Bond Price I10 I20 or Ĩ20 Spread

Including τ∗ 6= τ 706.5763 694.4216 12.1547 365.2960

Excluding τ∗ 6= τ 778.4423 694.4216 84.0207 171.5687

Table 2.1: Price Differences Depending on Recovery Time Risk

value X and maturity T is PX(0, T ) = 848.1684. Figures 3.1 and 2.2 display some

interesting comparative statics.

2.3.4 Valuation under the Structural Approach

Recall pricing formula of Proposition 2.3.1

Bd(t, T ) = 1{τ∗>t}BtEP [B−1
T X1{τ>T} +B−1

τ∗ Zτ∗1{τ≤T}
∣∣Ft] , for t < T,

or equivalently,

Bd(t, T ) = 1{τ∗>t}BtEP [B−1
T X1{τ>T}

∣∣Ft]+ 1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ≤T}

∣∣Ft] .
The determinants of default and recovery events are the processes V 1

t and V 2
t . In

general, these solvency proxies cannot be assumed to be independent of the default-

free interest rate rt. For example, let V 1
t be the market value of the stock of the issuer

19See Nowman (Nowman 1997).
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Figure 2.1: Defaultable Bond Price Bd(0, T ) Including τ∗ 6= τ

firm. In addition, let the firm have variable-coupon debentures of higher seniority

with a coupon formula based on the default-free interest rate rt. If these debentures

are protected by covenants, then V 1
t cannot be supposed to be independent of rt

because the analyzed zero-coupon bond has a lower priority. However, in cases

where default time and bank account are independent, we find the following pricing

formula.

Corollary 2.3.5. Assume default time τ and default-free interest rate rt are in-

dependent. The value of a zero-coupon bond with maturity T and par value X for

0 < t < T is given by

Bd(t, T ) = 1{τ∗>t}PX(t, T )P ({τ > T} |Gt ) + 1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ≤T}

∣∣Gt] .
Proof. Follows straightforwardly from the independence of τ and rt and from the

property of the structural approach of Gt = Ft for all t ∈ R+.

�
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Figure 2.2: I2
0 Including τ∗ 6= τ

In general, the computation of the second expectation in Corollary 2.3.5 is a com-

plex task. Black and Cox (Black & Cox 1976), Kim et al. (Kim et al. 1993),

Longstaff and Schwartz (Longstaff & Schwartz 1995) and Briys and de Varenne

(Briys & de Varenne 1997) among others examine defaultable bonds within a struc-

tural framework considering recovery payment at default time. In the spirit of those

analysis, let recovery process be given by Zt := Btφ where φ is a constant with

0 ≤ φ ≤ X. Consequently, for t < T we have

BtEP [B−1
τ∗ Zτ∗1{τ≤T}

∣∣Gt] = BtφEP [
1{τ≤T}

∣∣Gt] = BtφP ({τ ≤ T}| Gt) .

Hence, for t < T the price of a defaultable bond is given by

Bd(t, T ) = 1{τ∗>t}PX(t, T )P ({τ > T} |Gt ) + 1{τ∗>t}BtφP ({τ ≤ T}| Gt) .

Note that we must take great caution when choosing the term structure model

otherwise the value of the bond may explode on {τ ≤ T}.
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2.3.5 Pricing under the Mixture Approach

From previous comments in the derivation of a pricing rule under the structural

approach, the reader may already have noted that in most cases we have to recur

to the joint density function of default and recovery times in order to compute

the bonds value. Within the mixture approach this is also true. However, there

are some cases where we can avoid finding a joint density. We assume again the

recovery payment process Zt = Btφ, where 0 ≤ φ ≤ X. Using the same assumption

of independence between default time and default-free interest rate as before, the

value of a zero-coupon bond with maturity T and par value X under both MA1

and MA2 is given by

Bd(t, T ) = 1{τ∗>t}PX(t, T )P ({τ > T} |Ft ) + 1{τ∗>t}BtφP ({τ ≤ T}| Ft) ,

for t < T . Note that the expectations are conditioned on Ft and not on Gt. For

MA1 observe that for t < T

1{τ∗>t}EP [
1{τ>T}

∣∣Ft] = 1{τ∗>t}EP [
1{τ>t}1{τ>T}

∣∣Gt ∨Ht

]
= 1{τ∗>t}

EP
[
1{τ>T}

∣∣Gt]
P ({τ > t} |Gt )

= 1{τ∗>t}
P ({τ > T} |Gt )
P ({τ > t} |Gt )

= 1{τ∗>t}e
−

∫ T
t λsds,

since default process Nt is a doubly stochastic Poisson process with intensity λt.

Similarly, for t < T we have

1{τ∗>t}EP [
1{τ≤T}

∣∣Ft]
= 1{τ∗>t}EP [

1{t<τ≤T}
∣∣Ft]+ 1{τ∗>t}EP [

1{τ≤t≤T}
∣∣Ft]

= 1{τ>t}EP [
1{τ≤T}

∣∣Ft]+ 1{τ≤t}1{τ∗>t}EP [
1{τ≤T}

∣∣Ft] . (2.15)

By previous arguments the first summand in (2.15) equals

1{τ>t}
EP
[
1{τ>t}1{τ≤T}

∣∣Gt]
P ({τ > t} |Gt )

= 1{τ>t}

(
1− e−

∫ T
t λsds

)
Hence, the pre-default value of zero-coupon bonds is given by

Bd(t, T ) = PX(t, T )e−
∫ T
t λsds + φBt

(
1− e−

∫ T
t λsds

)
, t < T,
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and the post-default-pre-recovery value of distressed debt is given by

Bd(t, T ) = φ,

since the second summand in (2.15) is one on {τ ≤ t}. Hence, after default the value

of the bond stays constant. If we neglect the possibility of τ ∗ 6= τ , i.e. recovery

occurring at default, then at default time we receive φ amount of money which we

can invest in the bank account and earn the default-free interest rate on it. When we

allow for τ ∗ 6= τ , we receive φ at recovery and we forgo interests for the time period

τ ∗−τ . Although in this simple example we avoid modeling the joint density function

of recovery and default time, the consequences of letting recovery time differ from

default time still have an impact in the value of defaultable bonds.

2.4 Recovery Modeling

Once a company defaults on its outstanding debt, recovery payment is most likely

lower than the original contractual arrangement. Recovery payment depends on the

causes of default. In case of a technical default, i.e. when a protective covenant

has been violated, recovery payment may be close to the face value. If default is

originated by insolvency or bankruptcy recovery depends on whether the company is

reorganized or liquidated. In case the company is reorganized, its capital structure is

modified, its debt refinanced and the company keeps its operations. In a liquidation

the company ceases to exist and its assets are sold in order to repay creditors. Hence,

recovery depends on the solvency of the issuer company at repayment date.

Firm-specific solvency proxies can be regarded as cash flows, net income, market

value of current assets, impairment-adjusted total assets and financial statement

liquidity ratios among others. Refinancing possibilities are also relevant for covering

outstanding debt in case of default. Additional to company-specific factors it is also

necessary to consider an economy-wide proxy reflecting company solvency within

the current economic situation. A company in financial distress is most likely to

have more problems reorganizing its capital structure during market-wide financial

crisis or industry-wide crashes than during normal economic conditions.
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In the present analysis we discuss the process governing recovery rates both from a

firm-specific and from an economy-wide point of view.

2.4.1 Firm-specific Solvency Proxy

Suppose that liquid assets of a company, which could effortlessly be sold to repay

debt, are represented by a càdlàg Gt-adapted process Ỹt. Let Ỹt be the portion of

assets designated to repayment of the face value X of a certain bond. Furthermore,

suppose that a company may obtain capital from refinancing which is represented by

a càdlàg Gt-adapted process RFt. Thus, in case of default the firm’s available capital

to redeem its obligations at recovery time equals Yτ∗ = Ỹτ∗ + RFτ∗ . Of course, we

can assumed that sale of assets and refinancing occur at an earlier point of time t′

than at recovery time τ ∗. In this case, we can model Yt as a constant after t′ or as the

value of assets’ sale and refinancing at time t′ and the corresponding accrued interest

of the bank account for the time elapse τ ∗ − t′, i.e. Yτ∗ = Bτ∗B
−1
t′ Yt′ by abuse of

notation. If Yt represents the value of regularly traded financial instruments, we can

also make the accurate assumption that recovery payment at recovery time is defined

as some function of the market price of those financial instruments. Independently

of the modeling and interpretation of Yt, consider the following definition of recovery

payment Zt.

Specification 2.4.1 (MR). Once defaulted, repayment is a fraction δ, with δ ∈ [0, 1]

of the remaining of face value and current assets, i.e.

Zτ∗ = δ(X −max(X − Yτ∗ , 0)).

The fraction δ may be specified stochastically at costs of rising complexity for

estimation methods. For practical means, δ can be fixed as the maximum recovery

rate observed from historical data within that economy and industry or equal to one

in order to reduce assumptions and calibrations. Following these ideas we denote

this specification as maximum recovery (MR).
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2.4.2 Economy-wide Solvency Proxy

During financial crisis defaults are more common than during financial stability, re-

covery rates tend to decrease and their volatility augments.20 In an economy-wide

crisis, reorganization of companies in financial distress is more difficult since there

are fewer institutions willing to provide capital for reorganization. Additional, de-

faulted companies may produce a contagion effect21 on their creditors and other

companies, increasing defaults and lowering recoveries.

In order to capture the market-wide business condition, let the process Yt repre-

sent the “state” of the economy. One can regard this process as an index reflect-

ing financial-economic cycles or a benchmark of economic climate. Further, define

economy-wide distress whenever Yt < K for some constant and deterministic K.

Hence, the specification of an economy-wide recovery rate can take the following

form.

Specification 2.4.2 (TSR). Let δ > γ be two recovery rates with δ, γ ∈ [0, 1] for

different scenarios:

Zτ∗ =
(
δ1{Yτ∗≥K} + γ1{Yτ∗<K}

)
X,

We denote this specification as two-scenario recovery (TSR). A generalization

can be achieved by differentiating between several scenarios.

Remark 2.4.3. Notice that the firm-specific framework MR can be adjusted to reflect

economy-wide effects. This can be done by letting δ be a function of macroeconomic

variables. Similarly, the economy-wide specification, TSR, can be defined such that

δ and γ are recovery rates determined by firm-specific factors.

2.5 A Special Case: Intensity-Based Approach

with Deterministic Recovery Time τ ∗ = T

Stochastic recovery time, which may differ from default time, introduces additional

uncertainty in models of defaultable claims, which leads to changes in pricing rules

20See Altman et al. (Altman 2006)

21See Jarrow and Yu (Jarrow & Yu 2001).
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as can be seen comparing Proposition 2.3.4 and results of conventional models, e.g.

Bielecki and Rutkowski (Bielecki & Rutkowski 2004). However, within our intensity-

based approach and by fixing recovery time equal to maturity, differences of bond

prices between conventional models and the present study remain. Traditionally,

intensity-based models consider recovery processes corresponding to fractions of face,

treasury or pre-default value. However, in case of liquidation recovery payment

depends mainly on solvency of the firm while in case of reorganization depends on

refinancing alternatives. In the present framework recovery process reflects the firms

solvency and not necessarily the value of other bonds.

When setting τ ∗ = T , it becomes clear that settlement date in definition (2.10)

equals maturity, that is θ = T . Moreover, information arrival of recovery time is

neglected. Accordingly, arrival of all information available on the market is driven

by default-free processes and default time, that is Ft = Gt ∨Ht. Hence, the value of

a defaultable zero-coupon bond is given by

Proposition 2.5.1. The arbitrage-free price at t < T of a defaultable zero-coupon

bond with face value X and recovery payment at maturity R is given by

Bd(t, T ) = EP
[
e
∫ T
t rsdsR

∣∣∣Gt]+ 1{τ>t} · EP
[
e
∫ T
t (rs+λs)ds(X −R)

∣∣∣Gt] ,
where R is a GT -measurable random variable.

Proof. Recall that θ = T , set Zt = At = 0 for all t ≥ 0 in definition (2.11) and

combine it with equation (2.9) to obtain

Bd(t, T ) = EP [BtB
−t
T X

d
T

∣∣Ft]
= EP [BtB

−t
T (1{τ>T}X +R(1− 1{τ>T}))

∣∣Ft]
= BtEP [B−tT R∣∣Ft]+BtEP [

1{τ>t}1{τ>T}B
−t
T (X −R)

∣∣Ft] .
For the first conditional expectation information contained in Ht is irrelevant.

Hence, the last equality can be written as

Bd(t, T ) = BtEP [B−tT R∣∣Gt]+ 1{τ>t}Bt

EP
[
1{τ>T}B

−t
T (X −R)

∣∣Gt]
P({τ > t}| Gt)

.

Since R is GT -measurable and iterating expectations we obtain after substituting

P({τ > t}| Gt) for e−
∫ t
0 λsds

Bd(t, T ) = EP [B−tT BtR
∣∣Gt]+ 1{τ>t}EP

[
B−tT Bte

−
∫ T
t λsds(X −R)

∣∣∣Gt] .
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The following examples of recovery payment specifications are based on the assump-

tion of the special case of recovery time τ ∗ = T .

2.5.1 Valuation under the MR Specification

Below we present an application of Proposition 2.5.1 for Specification 2.4.1 by setting

R = Zτ∗ , where Zt = δ(X − [X − Yt]+) and δ is constant.

Corollary 2.5.2. The value of defaultable zero-bond under MR specification for

t < T is given by

Bd(t, T ) = EP
[
e−

∫ T
t rsdsδX

∣∣∣Gt]+ 1{τ>t} · EP
[
e−

∫ T
t (rs+λs)ds(1− δ)X

∣∣∣Gt]
−EP

[
e−

∫ T
t rsdsδ[X − YT ]+

∣∣∣Gt]
+1{τ>t} · EP

[
e−

∫ T
t (rs+λs)dsδ[X − YT ]+

∣∣∣Gt] . (2.16)

If default has not occurred until time t, the price of a defaultable zero-bond is

a combination of default-free zero-bonds and European put options on the value of

current assets of the company Yt. The first term in (2.16) represents the value of a

default-free zero-bond with face value δX, the second term can be interpreted as a

synthetic default-free zero-bond whose face value (1− δ)X is discounted by rt + λt.

The third term is a short position in δ put options with respect to the assets of

the company Yt and strike X, while using rt to discount. Finally, the last term

represents a δ long position in an identical put option using rt + λt for discounting.

Let Put[Yt, X, t, T, rt; δ] be the expected value under the equivalent martingale mea-

sure P at time t of δ units of the payoff of a European put option with underlying Yt,

strike X, maturity T and interest rate rt. Hence the price of a defaultable zero-bond

is given by

Bd(t, T ) = EP
[
e−

∫ T
t rsdsδX

∣∣∣Gt]+ 1{τ>t} · EP
[
e−

∫ T
t (rs+λs)ds(1− δ)X

∣∣∣Gt]
−Put[Yt, X, t, T, rt; δ] + 1{τ>t} · Put[Yt, X, t, T, rt + λt; δ].

Denote the difference of put values in the last equation as put differential given by

∆Put(t, δ) := 1{τ>t} · Put[Yt, X, t, T, rt + λt; δ]− Put[Yt, X, t, T, rt; δ].
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By recalling that λt is non-negative for all t ≥ 0 and assuming rt is also non-negative

for any t ∈ R+, we have ∆Put(t, δ) ≤ 0. Moreover, notice

P (t, T ) = EP [B−1
T Bt

∣∣Ft] = EP [B−1
T Bt

∣∣Gt] ,
because there is no relevant information in Ht for Bt. Assuming that δ is determin-

istic and using the introduced notation22, the value of a defaultable zero bond can

be expressed as

Bd(t, T ) = PδX(t, T ) + 1{τ>t} · (1− δ)XEP
[
e−

∫ T
t (rs+λs)ds

∣∣∣Gt]+ ∆Put(t, δ). (2.17)

For the special case δ = 1, the price of a defaultable bond is given by

Bd(t, T ) = PX(t, T ) + ∆Put(t, 1),

which consists of a default-free zero-bond with face value X and the difference of put

options on the assets of the company. Note that defaultable bonds pay either the

face value or the sale value of the company’s asset, i.e. Bd(T, T ) = X on {τ > T}

and Bd(T, T ) = min{YT , X} on {τ ≤ T}, respectively. The same bonds’ payoff

profile can be found in the structural model of Merton (Merton 1974). However, the

present framework does not impose a default trigger given by some predefined asset

value as in Merton. Instead, we let default event be governed by a point process

which is not observable in the default-free market. Evidently, even in this simplified

illustration our framework offers more modeling flexibility than the model of Merton.

Depending on the underlying assumptions on the processes rt, λt and Yt, it can be

advantageous to formulate Corollary 2.5.2 under the T-forward measure QT .

Corollary 2.5.3. The value of a defaultable zero-coupon bond under the MR speci-

fication for t < T is given by

Bd(t, T ) = P (t, T )
(
EQT [δX| Gt] + 1{τ>t}EQT

[
e−

∫ T
t λsds(1− δ)X

∣∣∣Gt]
−EQT [δ[X − YT ]+

∣∣Gt]+ 1{τ>t}EQT
[
e−

∫ T
t λsdsδ[X − YT ]+

∣∣∣Gt]) ,
where QT is defined by the Radon-Nikodym derivative

dQT

dP

∣∣∣∣
GT

:=
P (T, T )B0

P (0, T )BT

=
e−

∫ T
0 rsdsP (T, T )

P (0, T )
, (2.18)

where P (t, T ) is the price of default-free zero-bond with face value 1.

22Particularly, P (0, T ) ·X = PX(0, T ).
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Proof. Let the Radon-Nikodym derivative defining QT be given by (2.18). The price

of a default-free zero-coupon bond is given by

P (t, T ) = EP [B−1
T Bt

∣∣Ft] = EP [B−1
T Bt

∣∣Gt] ,
by previous arguments. Since P (0, T ) > 0 is a martingale under P, the expression in

(2.18) represents a density function and QT is equivalent to P. For a GT -measurable

payoff HT , its present value under the risk neutral measure at time t is determined

by

EP
[
Bt

BT

HT

∣∣∣∣Gt] = P (t, T )EP
[
P (T, T )Bt

P (t, T )BT

HT

P (T, T )

∣∣∣∣Gt] = P (t, T )EQT [HT | Gt] ,

because P (T, T ) = 1. Applying this procedure to Corollary 2.5.2 the proof is com-

pleted.

�

Example 2.5.4. Assume δ = 1, t = 0 and the following conditions:

• Asset values Yt are lognormally distributed under QT with deterministic volatil-

ity σ,

dYt = σYtdW
T
t .

• Default intensity and asset values are stochastically independent.

Hence, we obtain

YT = Yt exp

{
−σ

2

2
(T − t) + σ(W T

T −W T
t )

}
,

where W T
T −W T

t ∼ N(0, T − t) and

YT = Yt exp

{
−σ

2

2
(T − t) + σ

√
T − t · z

}
,

with z as a standard normally distributed random variable. Thus, X ≥ YT for

z ≤
ln (X/Yt) + 1

2
σ2(T − t)

σ
√
T − t

=: d1,t.
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The value of a simple put option is given by

Put[Yt, X, 0, T, rt; 1] = P (0, T )EQT [[X − YT ]+
]

= P (0, T )

∫ +∞

−∞

1√
2π
e−

z2

2

[
X − Y0e

−σ
2

2
T+σ

√
T ·z
]+

dz

= P (0, T )

∫ d1,0

−∞

1√
2π
e−

z2

2

(
X − Y0e

−σ
2

2
T+σ

√
T ·z
)
dz

= PX(0, T ) ·N(d1,0)− PY0(0, T ) ·
∫ d1,0

−∞

1√
2π
e−

(z−σ
√
T )2

2 dz

= PX(0, T ) ·N(d1,0)− PY0(0, T ) ·N(d1,0 − σ
√
T ).

By defining

d2,0 = d1,0 − σ
√
T ,

the put option value is

Put[Yt, X, 0, T, rt; 1] = P (0, T )(X ·N(d1,0)− Y0 ·N(d2,0)).

Similarly, Put[Yt, X, 0, T, rt + λt; 1] is determined using the assumption of indepen-

dence between Yt and λt, which yields

Put[Yt, X, 0, T, rt + λt; 1] = P (0, T ) · EQT
[
e−

∫ T
t λsdsδ[X − YT ]+

∣∣∣G0

]
= EQT

[
e−

∫ T
t λsds

∣∣∣G0

]
· Put[Yt, X, 0, T, rt; 1]

= QT
0 ({τ > T}) · Put[Yt, X, 0, T, rt; 1],

where QT
0 ({τ > T}) is the survival probability under the T-forward measure condi-

tional on information in G0. The value of a defaultable zero-coupon bond is given

by

Bd(0, T ) = PX(0, T )− (1−QT
0 ({τ > T}) · Put[Yt, X, 0, T, r0; 1]

= P (0, T )
[
X − (1−QT

0 ({τ > T})(X ·N(d1,0)− Y0 ·N(d2,0))
]
.

The credit spread, which is the difference of the continuously compounded yield to

maturity of a defaultable and a default-free zero-coupon bond, can be computed using

the last equation. For this note that we need the yield of a default-free bond with

face value X. Accordingly, the credit spread s(0, T ) is given by

s(0, T ) = − 1

T
ln

(
Bd(0, T )

PX(0, T )

)
= − 1

T
ln

(
1− (1−QT

0 ({τ > T}))
(
N(d1,0)− Y0

X
·N(d2,0)

))
.
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By analyzing the credit spread, one can see that default risk (captured in the survival

probability) and recovery risk (illustrated in the expression for the value of the put)

are components of credit risk.

Further, the special case of zero recovery in the MR specification is given when δ = 0.

Here the company can neither sell its assets nor reorganize its capital structure when

default occurs. Thus, the value of a defaultable zero-coupon bond corresponds to

Bd(t, T ) = 1{τ>t} ·XEP
[
e−

∫ T
t (rs+λs)ds

∣∣∣Gt] .
As mentioned previously specification TSR can be used to model recovery rates

when the underlying process represents current assets or the state of the econ-

omy/industry. This specification is analyzed in the next section.

2.5.2 Valuation under the TSR Specification

During economic/industry crisis reorganization and liquidation of financially dis-

tressed companies are more difficult to conduct which induces lower recovery pay-

ments of defaulted bonds. We differentiate between a recovery rate δ during for

stable phases and a recovery rate γ during crisis. Let business cycles of the econ-

omy/industry be represented by the process Yt and the critical crisis value be given

by some constant K. This framework is the two-scenario recovery rate specification

discussed previously, where R = (δ1{Yt≥K} + γ1{Yt<K})X. By Proposition 2.5.1 the

value of a defaultable bond under TSR is given as follows.

Corollary 2.5.5. The value of a defaultable zero-coupon bond under TSR for t < T

is given by

Bd(t, T ) = EP
[
e−

∫ T
t rsdsγX

∣∣∣Gt]+ EP
[
e−

∫ T
t rsds(δ − γ)X · 1{YT≥K}

∣∣∣Gt]
+1{τ>t} · EP

[
e−

∫ T
t (rs+λs)ds(1− γ)X

∣∣∣Gt]
−1{τ>t} · EP

[
e−

∫ T
t (rs+λs)ds(δ − γ)X · 1{YT≥K}

∣∣∣Gt] .
Proof. The corollary is an immediate consequence of Proposition 2.5.1, Specification

2.4.2 and of

X −R =
(
1− δ · 1{YT≥K} − γ · 1{YT<K}

)
X

=
(
1− γ − (δ − γ) · 1{YT≥K}

)
X.
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The first two expectations in Corollary 2.5.5 represent the value of the bond when

default has occurred. It is given by the sum of conditionally expected, discounted

values of the minimum recovery payment γX and the difference of loss given defaults

δ− γ only if at maturity there is no financial crisis. If default has not occurred, the

value of the claim must be adjusted for possible future default. This adjustment is

expressed in the two last expectations of the corollary. The first of these adjusts

the minimum recovery payment by the maximum loss given default (1− γ)X. Note

that rt + λt is used for discounting. The last term corrects the loss given default

differential using rt+λt as discount rate. Hence, the second and fourth expectations

in the corollary do not cancel out. Instead a small positive value remains. So the

expectation of the discounted value of the smallest recovery payment is adjusted by

possible outcomes of no-default and default when no financial crisis takes place.

Changing numeraire in Corollary 2.5.5 by the T-forward measure and using the same

techniques as explained in the previous section, we obtain the following result.

Corollary 2.5.6. The value of a defaultable zero-coupon bond under TSR for t < T

is given by

Bd(t, T ) = P (t, T )
(
EQT [γX| Gt]

+EQT [(δ − γ)X · 1{YT≥K}
∣∣Gt]

+1{τ>t} · EQT
[
e−

∫ T
t λsds(1− γ)X

∣∣∣Gt]
−1{τ>t} · EQT

[
e−

∫ T
t λsds(δ − γ)X · 1{YT≥K}

∣∣∣Gt]) . (2.19)

Example 2.5.7. Assume that the maximum recovery rate in both scenarios can

be identified with certainty. Therefore, let δ and γ be deterministic. Additionally,

consider the same assumptions from the previous example.

• The state process Yt is lognormally distributed under QT with deterministic

volatility σ,

dYt = σYtdW
T
t .

• Default intensity and state process are stochastically independent.
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Notice that

EQT [
1{YT≥K}

∣∣G0

]
= QT

0 (YT ≥ K)

= QT
0

(
ln(YT )− (ln(Y0)− σ2

2
T )

σ
√
T

≥ −d̂2,0

)
= QT

0

(
Z ≤ d̂2,0

)
= N(d̂2,0),

where d̂2,0 =
ln(Y0/K)− 1

2
σ2T

σ
√
T

. From Corollary 2.5.6 we have

Bd(0, T ) = P (0, T )
[
γX + (δ − γ)X ·N(d̂2,0) + (1− γ)X ·QT

0 ({τ > T})

−(δ − γ)X ·N(d̂2,0) ·QT
0 ({τ > T})

]
.

By rearranging terms we obtain

Bd(0, T ) = PX(0, T )
[
1 +

(
1−QT

0 ({τ > T})
) (

(δ − γ)N(d̂2,0)− (1− γ)
)]
.

Notice that the term in the brackets is never larger than 1, since ((δ − γ)N(d̂2,0)−
(1− γ)) < 0. Again, the credit spread s(0, T ) embeds default and recovery risks

s(0, T ) = − 1

T
ln
(

1 +
(
1−QT

0 ({τ > T})
) [

(δ − γ)N(d̂2,0)− (1− γ)
])
.

2.6 Concluding Remarks

The model on defaultable bonds of this chapter incorporates stochastic default and

recovery times which may differ from each other. Observing real-world situations

where recovery payment may neither occur at default time nor at maturity, the sep-

aration of default and recovery times is well founded. Moreover, recovery payment

is modeled considering company’s solvency and governing economic conditions. The

resulting models which gathers all these concepts combines virtues of intensity-based

and structural approaches.

In this chapter we regard default and recovery times without three setups: intensity-

based, structural and mixture approaches. Under these specifications we derived a

general pricing rule for defaultable zero-coupon bonds. Furthermore, we discussed a

model for recovery processes that can take firm-specific and economy-wide settings.
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Finally, we analyzed different examples in the special case when recovery time equals

maturity.

Empirical evidence has uncovered relationships between default events and recovery

payments. Theoretical work has started to react on this findings. This chapter con-

tributes to that cause by providing a more flexible framework capable to consider

recovery risk as the uncertainty about recovery payment and the uncertainty about

the time of this payment. Within this framework correlation of recovery rates and

default have a straight economic foundation. We do not need to make unrealistic

assumptions about the bond price at default (value of distressed debt at default

time) because it is derived from the model.

Further research should concentrate in 1) empirical verification of the pricing rule

proposed and 2) hedging strategies that can be used. Additionally, other types of de-

faultable securities should be investigated. A more extensive analysis on correlation

between default and recovery rates should be also undertaken.
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2.7 Appendix

2.7.1 Self-financing strategy

Note that St given in (2.9) is defined for an arbitrary dividend process Dt. We

rephrase the borrowed derivation of the pricing rule for some non-defaultable se-

curity St from Bielecki and Rutkowski (Bielecki & Rutkowski 2004). Consider an

admissible self-financing, buy-and-hold trading strategy φt = (φ1
t , φ

2
t ) = (1, φ2

t ),

where we buy one unit of asset St and hold it until settlement date θ, and deposit

all gains in the bank account. Accordingly, the wealth process Ut of φt is given by

Ut = St + φ2
tBt, t ∈ [0, θ], (2.20)

with initial capital U0 = S0 + φ2
0B0. Since φt is self-financing, we obtain

Ut − U0 = St − S0 +Dt +

∫
(0,t]

φ2
udBu, t ∈ [0, θ], (2.21)

and by defining Ũt = B−1
t Ut it follows

Ũt − Ũ0 = S̃t − S̃0 +

∫
(0,t]

B−1
u dDu, t ∈ [0, θ], (2.22)

which corresponds to Lemma 2.1.1 in Bielecki and Rutkowski (Bielecki & Rutkowski

2004). Because the discounted wealth process is an Ft-martingale under P, we have

for all t ≤ θ

EP
[
Ũθ − Ũt

∣∣∣Ft] = 0, (2.23)

implying

S̃t = EP
[
S̃θ +

∫
(t,θ]

B−1
u dDu

∣∣∣∣Ft] . (2.24)

By assuming S̃θ = Sθ = 0 equation (2.9) results.

In Appendix 2.7.2 we provide arguments for the validity of the pricing formula for

St of Section 2.3.2 when it represents the price of a defaultable zero-coupon bond

when settlement is random and recovery time may differ from default time.
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2.7.2 Random θ

Equation (2.24) is not altered when θ is random, i.e. the ex-dividend pricing rule

St = EP
[∫

(t,θ]

B−1
u dDu

∣∣∣∣Ft] for t < τ ∗ ∧ θ, (2.25)

is valid. For this consider the following ideas.

As in Duffie and Singleton (Duffie & Singleton 1999), let any traded contingent claim

be characterized by a pair (X , ν), where ν is a stopping time and X an Fν-measurable

random variable. Given the equivalent martingale measure P, the ex-dividend price

of this contingent claim is denoted by Ct and given by

Ct = BtEP [B−1
ν X

∣∣Ft] ,
for all t < ν. In our case, a defaultable claim is a combination of two contingent

claims (X 1, ν1) and (X 2, ν2), where

ν1 := τ ∧ T, ν2 := τ ∗,

and

X 1 := X1{τ>T} + 1{τ≤T}C
2
τ , X 2 := Zτ∗ ,

where C2
τ represents the value of the second contingent claim at time τ . Formally,

the value of our defaultable claim at t < ν1 is given by

St = BtEP [B−1
ν1

(
X1{τ>T} +X1{τ≤T}C

2
τ

)∣∣Ft]
= BtEP [B−1

ν1

(
X1{τ>T} + 1{τ≤T}BτEP [B−1

τ∗ Zτ∗
∣∣Fτ])∣∣Ft] .

This implies

St = BtEP [B−1
T X1{τ>T} + 1{τ≤T}B

−1
τ∗ Zτ∗

∣∣Ft] , for t < ν1.

We assume that at default time τ on {τ ≤ T} there is no exchange of money. Instead

the investor holding the contingent claim (X 1, ν1) becomes owner of the second con-

tingent claim (X 2, ν2). Consequently, the payment of the combination of contingent

claims occur only at T or τ ∗. Thus, last equation is equivalent to

St = 1{τ∗>T}BtEP [B−1
T X1{τ>T} + 1{τ≤T}B

−1
τ∗ Zτ∗

∣∣Ft] , for t < T,

which matches the results of Proposition 2.3.1 and is equivalent to (2.25) for t < T

with At = 0 for all t ∈ R+ and R = 0. Hence, the definition of the ex-dividend price

process can be applied even if settlement θ is a random time.
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2.7.3 Proof of Proposition 2.3.4

By Proposition 2.3.1 the price of a defaultable zero-coupon bond is given by written

as

Bd(t, T ) = 1{τ∗>t}BtEP [B−1
T X1{τ>T}

∣∣Ft]+ 1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ≤T}

∣∣Ft] .
(2.26)

Consider the first summand

1{τ∗>t}BtEP [B−1
T X1{τ>T}

∣∣Ft]
= 1{τ∗>t}

BtEP
[
B−1
T X1{τ∗>t}1{τ>T}

∣∣Gt ∨Ht

]
P({τ ∗ > t}| Gt ∨Ht)

. (2.27)

Equality holds because the Ft-conditional expectation is zero on the set {τ ∗ ≤ t},

and so the only relevant information of H∗t is on the set {τ ∗ > t}. Since

1{τ∗>t}1{τ>t} = 1{τ>t} and by noticing that the expression (2.27) is zero on {τ ≤ t},

it is equivalent to

1{τ>t}
BtEP

[
B−1
T X1{τ∗>t}1{τ>T}

∣∣Gt ∨Ht

]
P({τ ∗ > t}| Gt ∨Ht)

= 1{τ>t}
BtEP

[
B−1
T XEP

[
1{τ∗>t} |G∞ ∨H∞

]
1{τ>T}

∣∣Gt ∨Ht

]
P({τ ∗ > t}| Gt ∨Ht)

,

which follows because the term B−1
T X1{τ>T} is G∞ ∨ H∞. By the properties of the

hazard process of τ ∗ pointed out in (2.7) the last argument is given by

1{τ>t}BtEP [B−1
T X1{τ>T}

∣∣Gt ∨Ht

]
= 1{τ>t}

BtEP
[
B−1
T X1{τ>t}1{τ>T}

∣∣Gt]
P({τ > t}| Gt)

= 1{τ>t}
BtEP

[
B−1
T XP({τ > T}| G∞)

∣∣Gt]
P({τ > t}| Gt)

= 1{τ>t}BtEP [B−1
T eΛt−ΛTX

∣∣Gt] , (2.28)

where the third equality follows from the properties of the hazard process of τ

presented in (2.5). Now consider the second term in (2.26)

1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ≤T}1{τ∗>t}

∣∣Ft] . (2.29)

Equivalently, for t < T this expression is given by

1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{t<τ≤T} +B−1

τ∗ Zτ∗1{τ≤t≤T}
∣∣Ft] . (2.30)
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Consider the first summand of (2.30)

1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{t<τ≤T}

∣∣Ft] = 1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ>t}1{τ≤T}

∣∣Ft]
= 1{τ>t}BtEP [B−1

τ∗ Zτ∗1{τ≤T}
∣∣Ft] .

Similarly, the second summand of (2.30) can be reformulated as follows.

1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ≤t≤T}

∣∣Ft] = 1{τ∗>t}BtEP [B−1
τ∗ Zτ∗1{τ≤t}

∣∣Ft]
= 1{τ∗>t}1{τ≤t}BtEP [B−1

τ∗ Zτ∗
∣∣Ft] .

Hence, for t < T the conditional expectation (2.29) is given by

1{τ>t}BtEP [B−1
τ∗ Zτ∗1{τ≤T}

∣∣Ft]+ 1{τ∗>t}1{τ≤t}BtEP [B−1
τ∗ Zτ∗

∣∣Ft] . (2.31)

Consider the first conditional expectation above

1{τ>t}BtEP [B−1
τ∗ Zτ∗1{τ≤T}

∣∣Ft]
= 1{τ>t}BtEP [EP [B−1

τ∗ Zτ∗1{τ≤T} |G∞ ∨H∞ ∨H∗t
]∣∣Ft]

= 1{τ>t}BtEP [EP [B−1
τ∗ Zτ∗ |G∞ ∨H∞ ∨H∗t

]
1{τ≤T}

∣∣Ft] .
Since the density of recovery time conditionally on G∞ ∨H∞ for τ ∗ > t is given by

∂P
∂s

({τ ∗ ≤ s} |τ ∗ > t;G∞ ∨H∞ ) = λ∗se
−

∫ s
t λ
∗
udu = λ∗se

Λ∗t−Λ∗s for s > t, (2.32)

the last expression can be written as

1{τ>t}BtEP
[
1{τ∗>t}

∫
(t,∞)

B−1
u Zuλ

∗
ue

Λ∗t−Λ∗udu1{τ≤T}

∣∣∣∣Ft]
= 1{τ>t}1{τ∗>t}BtEP

[∫
(t,∞)

B−1
u Zuηu1{τ≤u}e

Λ∗t−Λ∗udu1{τ≤T}

∣∣∣∣Ft]
= 1{τ>t}BtEP

[∫
(t,∞)

B−1
u Zuηu1{τ≤u≤T}e

Λ∗t−Λ∗udu

∣∣∣∣Ft]
= 1{τ>t}BtEP

[∫
(t,T ]

B−1
u Zuηu1{τ≤u}e

Λ∗t−Λ∗udu

∣∣∣∣Ft] .
We use the definition of λ∗t for the first equality. Note that the conditional expecta-

tion above is zero on the set {τ ∗ ≤ t}. Thus, the last expression results in

1{τ>t}

BtEP
[
1{τ∗>t}

∫
(t,T ]

B−1
u Zuηu1{τ≤u}e

Λ∗t−Λ∗udu
∣∣∣Gt ∨Ht

]
P ({τ ∗ > t} |Gt ∨Ht )

.
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Using the exact previous arguments of the hazard process of τ ∗ and while noticing

that the integral in the conditional expectation is G∞ ∨ H∞-measurable, the last

term is equivalent to

1{τ>t}BtEP
[∫

(t,T ]

B−1
u Zuηu1{τ≤u}e

Λ∗t−Λ∗udu

∣∣∣∣Gt ∨Ht

]
= 1{τ>t}BtEP

[
EP
[∫

(t,T ]

B−1
u Zuηu1{τ≤u}e

−
∫ u
t ηs1{τ≤s}dsdu

∣∣∣∣G∞ ∨Ht

]∣∣∣∣Gt ∨Ht

]
.

Note that the density of default conditionally on G∞ for τ > t is given by

∂P
∂s

({τ ≤ s} |τ > t;G∞ ) = λse
−

∫ s
t λudu for s > t.

Thus, last expression is given by

1{τ>t}BtEP
[∫

(t,∞)

∫
(t,T ]

B−1
u Zuηu1{q≤u}e

−
∫ u
t ηs1{q≤s}dsduλqe

−
∫ q
t λvdvdq

∣∣∣∣Gt ∨Ht

]
,

or, equivalently,

1{τ>t}BtEP
[∫

(t,T ]

∫
(t,T ]

B−1
u Zuηu1{q≤u}λqe

−
∫ u
t ηs1{q≤s}ds−

∫ q
t λvdvdudq

∣∣∣∣Gt ∨Ht

]
,

since u cannot be greater than T . By noting that the expression is zero on {τ ≤ t},

we have

1{τ>t}

BtEP
[
1{τ>t}

∫
(t,T ]

∫
(t,T ]

B−1
u Zuηu1{q≤u}λqe

−
∫ u
t ηs1{q≤s}ds−

∫ q
t λvdvdudq

∣∣∣Gt]
P ({τ > t} |Gt )

.

Since the double integral conditionally is G∞-measurable, we use the properties of

the hazard process of τ to derive the equivalent expression

1{τ>t}BtEP
[∫

(t,T ]

∫
(t,T ]

B−1
u Zuηu1{q≤u}λqe

−
∫ u
t ηs1{q≤s}ds−

∫ q
t λvdvdudq

∣∣∣∣Gt] . (2.33)

Finally, we proceed with the second term of (2.31)

1{τ∗>t}1{τ≤t}BtEP [B−1
τ∗ Zτ∗

∣∣Ft]
= 1{τ∗>t}1{τ≤t}BtEP [EP [B−1

τ∗ Zτ∗
∣∣G∞ ∨H∞ ∨H∗t ]∣∣Ft] .

By the density of τ ∗ conditioned on G∞ ∨ F∞ given in (2.32), we can write last

expression as

1{τ∗>t}1{τ≤t}BtEP
[∫

(t,∞)

B−1
u Zuηu1{τ≤u}e

−
∫ u
t ηs1{τ≤s}dsdu

∣∣∣∣Ft]

= 1{τ∗>t}1{τ≤t}

BtEP
[
1{τ∗>t}

∫
(t,∞)

B−1
u Zuηu1{τ≤u}e

−
∫ u
t ηs1{τ≤s}dsdu

∣∣∣Gt ∨Ht

]
P ({τ ∗ > t} |Gt ∨Ht )

.
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By the same procedure as before, the last term equals

1{τ∗>t}1{τ≤t}BtEP
[∫

(t,∞)

B−1
u Zuηu1{τ≤u}e

−
∫ u
t ηs1{τ≤s}dsdu

∣∣∣∣Gt ∨Ht

]

Since the conditional expectation is zero on {τ > t}, then the last expression is given

by

1{τ∗>t}1{τ≤t}BtEP
[∫

(t,∞)

B−1
u Zuηue

−
∫ u
t ηsdsdu

∣∣∣∣Gt ∨Ht

]

= 1{τ∗>t}1{τ≤t}

BtEP
[
1{τ≤t}

∫
(t,∞)

B−1
u Zuηue

−
∫ u
t ηsdsdu

∣∣∣Gt]
P ({τ ≤ t} |Gt )

= 1{τ∗>t}1{τ≤t}BtEP
[∫

(t,∞)

B−1
u Zuηue

−
∫ u
t ηsdsdu

∣∣∣∣Gt] , (2.34)

where the second equality follows from the properties of the hazard process of τ

conditioned on G∞. The value of a defaultable zero-coupon bond is the sum of

(2.28), (2.33), and (2.34).

�

2.7.4 Computation of I2
0 and Ĩ2

0 of Section 2.3.3

First, we calculate I2
0 .

I2
0 = EP

[∫
(0,T ]

∫
(0,T ]

B−1
T φη1{q≤u}λe

−
∫ u
0 η1{q≤s}ds−λqdudq

]
= φηλEP

[∫
(0,T ]

∫
(0,T ]

B−1
T 1{q≤u}e

−
∫ u
0 η1{q≤s}ds−λqdqdu

]
= φηλEP

[∫
(0,T ]

B−1
T

∫
(0,u]

e−
∫ u
q ηds−λqdqdu

]
= φηλEP

[∫
(0,T ]

B−1
T

∫
(0,u]

eq(η−λ)−ηudqdu

]
.
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For µ 6= η, we have

I2
0 = φηλEP

[∫
(0,T ]

B−1
T

1

η − λ
(
e−λu − e−ηu

)
du

]
=

φηλ

η − λ

∫
Ω

∫
(0,T ]

B−1
T

(
e−λu − e−ηu

)
dudP

=
φηλ

η − λ

∫
(0,T ]

(
e−λu − e−ηu

) ∫
Ω

B−1
T dPdu

=
φηλ

η − λ

∫
(0,T ]

(
e−λu − e−ηu

)
P (0, u)du

=
φηλ

η − λ

∫
(0,T ]

(
e−λu − e−ηu

)
A(0, u)e−B(0,u)r0du,

where A(0, u) and B(0, u) are define in Section 2.3.3. Consider Ĩ2
0 ,

Ĩ2
0 = λφEP

[∫
(0,T ]

B−1
u e−λudu

]
= λφ

∫
Ω

∫
(0,T ]

B−1
u e−λududP

= λφ

∫
(0,T ]

e−λu
∫

Ω

B−1
u dPdu

= λφ

∫
(0,T )

e−λuP (0, u)du

= λφ

∫
(0,T ]

A(0, u)e−B(0,u)r0−λudu.
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Chapter 3

Liquidity Risk Under Partial

Execution and Block Trading

3.1 Introduction

The urge of a comprehensive, tractable and computationally light model to measure

liquidity risk has increased since the last financial crisis. During the credit crunch

we have observed how liquidity risk can manifest itself in a wide variety of forms, as

for example the uncertainty about the width of the bid-ask spread, the uncertainty

about the marketability of assets, the uncertainty about the price of infrequently

traded assets, etc. Most researchers and practitioners identify mainly two types of

liquidity risks: solvency and market-price. Solvency risk is the uncertainty about

capital flows needed to cover operating costs of a firm, such as interest expenses

and debenture repayments. Exposure to solvency risk is of great concern of banks

and other financial intermediaries since their operations are based on daily lending

and borrowing of large amounts of capital. Financial institutions are also exposed to

market liquidity risk, which is the uncertainty about 1) the asset prices at which they

can be bought and sold and 2) the volume which can be traded. Generally, highly

traded assets qualify as liquid assets. Infrequently traded securities which exhibit

large price movements when medium and large volumes are traded may be regarded

as illiquid assets. One of the common approaches to measure liquidity risk is the

analysis of transaction costs represented by the bid-ask spread. Market participants
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surely agree that the bid-ask spread, as a measure of liquidity risk, explains the

problem of illiquidity only partially. Empirical models have analyzed other relevant

factors which help to explain the liquidity conundrum of assets and portfolios. Two

of the most important of these factors are trading volume and transaction price-

impact, as presented in Holthausen et al. (Holthausen et al. 1987) and (Holthausen

et al. 1990), Gallant et al. (Gallant et al. 1992) and Keim and Madhavan (Keim &

Madhavan 1996). These studies indicate that trading large volumes, specially trad-

ing large block orders, have consequences on asset prices. In particular, trading large

blocks has a great effect on the price and marketability of infrequently traded assets.

The present chapter presents a framework which includes not only the uncertainty

about the bid and ask prices but also includes price-impact originated from block

trading and the uncertainty of marketability.

This chapter analyzes market price liquidity risk on asset portfolios. According to

empirical work, the present framework formulates block trading effects as a change

in the future best bid and ask quotes after fulfillment of a large block transaction.

Additionally, marketability is modeled here as a set of executable trades, leaving all

trades outside of this set as non-executable. Hence, execution of sell or buy orders

may be partial. In addition, the framework imposes a solvency restriction on the

asset portfolio, later denoted as liquidity policy, which reflects solvency risk. Hence,

the framework introduced in the following sections covers both market price liquid-

ity and solvency risks.

Jarrow and Protter (Jarrow & Protter 2005) present a framework of liquidity risk.

Their contribution is based on the celebrated model of Çetin et al. (Çetin et al. 2002)

of liquidity risk. Concretely, they consider different states of the financial market:

business as usual and liquidity crisis. Under a liquidity crisis, asset values deterio-

rate implying a decline in portfolio values. Liquidity risk captured by their model

consists of only of a fraction of the market price liquidity risk, because the authors

neglect the importance of trading volume as a factor of risk.

Recently, Acerbi and Scandolo (Acerbi & Scandolo 2008) put forward an alternative

adjustment to portfolio values which relies on an optimization problem of portfolio

and transaction values. The authors model liquidity risk through the uncertainty

concerning future bid and ask quotes. Under a specified liquidity policy/restriction,
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the value of the asset portfolio is corrected. They denote the liquidity-adjusted port-

folio value by V L. This approach tackles issues with respect to solving risk and up

to some extent market price uncertainty .However, the authors neglect the existence

of block trading and partial execution effects. Furthermore, Acerbi and Scandolo

define a liquidity-adjusted risk measure ρL on the space of portfolio weights P us-

ing the liquidity-adjusted portfolio value V L. In their setup V L has the necessary

properties such that ρL is a convex risk measure on P .

We borrow the setup of Acerbi and Scandolo and undertake the same liquidity ad-

justment on portfolio values but we admit the existence of block trading and partial

execution effects. Under this treatment the following main contributions arises.

The liquidity-adjusted risk measure ρL fails to be convex on P whenever block trading

and partial execution effects are present,...

...and the probability distribution of V L shifts to lower values, the expected value

falls and the Value-at-Risk rises.

In other words, the fact that ρL is not convex on P indicates that the risk of the

average portfolio of a collection of portfolios is not necessarily lower than the aver-

age risk of the collection of the portfolios. The liquidity adjustment of any portfolio

consists in a correction of the mark-to-market portfolio value by answering the ques-

tion: what is the price of those positions after executing a necessary transaction in

order to maintain some liquidity restriction, while considering that this transaction

- if execution is possible - may cause an impact on the bid-ask spread? It is evident,

that this type of correction will adjust the mark-to-market portfolio downwards,

which explains why V L and its whole probability function shift to lower values than

the liquidity-adjusted value of Acerbi and Scandolo.

The remainder is organized as follows. The model and some helpful preliminary

results are introduced in Section 3.2. We advise the reader to skip Section 3.2.2

and advance to Section 3.3, where we define and investigate the properties of the

liquidity-adjusted portfolio value. Section 3.4 presents the analysis on the liquidity-

adjusted measure of risk and the consequences of introducing block trading and

partial execution effects. In Section 3.5 we find a numerical example that illustrates

the impact of those effects on ρL. We conclude in Section 3.6.
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3.2 Framework

3.2.1 Setup, Partial Execution and Block Trading

The following setup is a one-period financial model. Hence, fix some arbitrary

point in time and consider N + 1 traded assets in the financial market, N securities

denoted by Ai for i ∈ I := {1, . . . , N} := I ⊂ N and the bank account denoted by

A0. Trading takes place in a market which functions under a continuous matching

mechanism, i.e. buy and sell orders are processed immediately by their arrival,

in particular there are no auctions. Our market is order driven. Investors have

access to information of the order book, where sell orders and buy orders are listed

and ordered using a price-time priority. In other words, an asset is traded with

prices corresponding to the prices given1 in the order book. Following Acerbi and

Scandolo (Acerbi & Scandolo 2008) the order book implies a ‘Marginal Supply-

Demand Curve’ or MSDC. Formally, the MSDC describes the prices at which asset

i ∈ I can be traded is given by a map mi : X → R with X := R\{0} which satisfies

1. If x1 < x2, then mi(x1) ≥ mi(x2).

2. mi is càdlàg for x < 0 and làdcàg for x > 0.

As in (Acerbi & Scandolo 2008), cash has an special MSDC: m0(x) = 1 for all x ∈ X.

An order x < 0 (x > 0) in the order book represents a buy (sell) order. Thus, the

price of the dx-th share is given by the bid (ask) price mi(x) for x < 0 (x > 0).

Remark 3.2.1. Since our purpose is to model partial order execution, the set X

represents the set of orders and not the set of transactions as in (Acerbi & Scandolo

2008).

Each asset traded in financial markets has a finite trading volume, e.g. the

stock shares of a company, the number of futures contracts, the number of bonds,

the number of asset-backed securities. The largest possible trading volume equals

the sum of the posted orders and we call it the maximal executable transaction.

1Or implied, in case of market orders or other special cases.
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Obviously, for each asset there are a maximal executable buy transaction and a

maximal executable sell transaction, which we define as follows.

Definition 3.2.2. The maximum executable sell and buy transactions are given by

the sum of all sell and buy orders of the order book and are denoted by y
i
≤ 0

and ȳi ≥ 0 for i ∈ {0, 1, . . . , N}, respectively. The set of executable transactions is

denoted by Y := Y0×Y1×. . .×YN , where2 Yi := [y
i
, ȳi] ⊂ R. Additionally, we denote

the upper- and lower-bound vectors by ȳ := (ȳ0, ȳ1, . . . , ȳN) and y := (y
0
, y

1
, . . . , y

N
).

Note that Y is a set of transactions. Moreover, observe that the set of orders

RN+1 is larger than the set of executable transactions, i.e. Y ⊂ RN+1. In the

present analysis we are interested in the value of portfolios after execution of some

specific executable transactions. In this view, we focus on transactions and not on

orders. We find below the definition of a function that translates any order into an

executable transaction.

Definition 3.2.3. For any order θi ∈ R the corresponding executable transaction is

given by a mapping fi : R→ Yi,

fi(θi) = 1{θi∈Yi}θi + 1{θi<yi}
y
i
+ 1{θi>ȳi}ȳi.

We denote θ̂i := f(θi).

An investor trying to sell (buy) θi shares places a sell (buy) order θi which will

be matched against buy (sell) orders of the order book and receives (pays) all bid

(ask) prices mi(x) until the transaction θ̂i is completed. Hence, trading proceeds of

asset Ai from transaction θ̂i ∈ Yi is given by the function pi : Yi → R,

pi(θ̂i) =

∫ θ̂i

0

mi(x)dx.

In this sense pi(θ̂i) is the cash amount the investor receives when selling θ̂i > 0

shares and the cash amount he pays when buying |θ̂i| shares when θ̂i < 0. The

proceeds from submitting an order of θi ∈ R shares are represented by the function

Pi(θi) where Pi := pi ◦ fi. Recall that submitting order θi does not necessary

2We impose cash bounds, which can represent all current money amount on the market, just

for technical reasons.
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imply a transaction amounting θi, because of the existence of maximal executable

transactions it is possible to have θi 6= θ̂i. Since our interest is the analysis of

transactions, we focus on pi.

Based on the definition in (Acerbi & Scandolo 2008), a portfolio is a vector ψ =

(ψ0, ψ1, . . . , ψN) in RN+1 =: P . A long, short and flat position in asset Ai for

i ∈ {0, 1, . . . , N} is denoted by ψi > 0, ψi < 0 and ψi = 0, respectively. Market

participants hold portfolios ψ ∈ P and execute transactions θ̂ ∈ Y and are interested

to correctly identify corresponding transaction proceeds and mark-to-market values

of asset positions. Following (Acerbi & Scandolo 2008), the transaction proceeds of

an arbitrary transaction θ̂ ∈ Y are given by the map L : Y → R,

L(θ̂) =
N∑
i=0

pi(θ̂i) = θ̂0 +
N∑
i=1

∫ θ̂i

0

mi(x)dx.

In order to introduce the mark-to-market value of a portfolio, consider the best

bid and the best ask which are denoted by m+
i := mi(0

+) and m−i := mi(0
−),

respectively.3 In practice is common to use prevailing bid and ask prices for valuing

long and short portfolio positions, respectively. This usage is known as mark-to-

market and is given for portfolio ψ ∈ P by

Ũ(ψ) = ψ0 +
N∑
i=1

(
m+
i ψi1{ψi>0} +m−i ψi1{ψi<0}

)
. (3.1)

The mark-to-market value Ũ reflects only prevailing best bid and ask prices. As

mentioned before, the bid-ask spread is a limited measure of liquidity risk, which is

why we opt to consider the liquidity adjustment of portfolio positions ψ put forward

by Acerbi and Scandolo (Acerbi & Scandolo 2008). Tis adjustment is based on a

specific transaction θ̂∗ which is introduced later in the analysis. For now, it is enough

to keep in mind that by adjusting portfolio ψ we end up with the mark-to-market

value Ũ(ψ − θ̂). We should note, however, that Ũ is not capable to internalize any

possible liquidity effects such as block trading produced by transaction θ̂. The men-

tioned disadvantage is evident since best bids m+
i and best asks m−i are independent

of the execution of any transaction θ̂ ∈ Y . Accordingly, we call Ũ the pre-execution

mark-to-market portfolio value. Aware of the shortcomings of Ũ we consider an

3Hence, the bid-ask spread is m−i −m
+
i .
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extended version of the conventional mark-to-market value for which we define the

post-execution best bid and ask prices.

Definition 3.2.4. The post-execution best bid and ask prices after transaction θ̂i ∈
Yi are given by functions m+,θ̂i

i with m+,·
i : Yi → R+ and m−,θ̂ii with m−,·i : Yi → R+,

respectively.

Thus, if no transaction is undertaken post-execution best bids and asks coincide

with pre-execution best bids and asks, i.e. m−i = m−,θ̂ii and m+
i = m+,θ̂i

i for all i ∈ I.

However, from empirical observations presented in Klein and Madhavan (Keim &

Madhavan 1996) there are transactions that shift temporarily or permanently best

bids and asks. These transactions usually consist of large volume trades executed in

one piece (if possible), which are commonly called large block trades. Execution of

large trades may take a longer time than small transactions and may carry unveiled

essential information which is reflected in an abrupt price change. Hence, the post-

execution best bid and ask prices of a block transaction may not coincide with the

pre-execution best bid and ask prices, respectively. The possible difference between

pre- and post-execution prices represents a liquidity effect that is missing in Acerbi

and Scandolo (Acerbi & Scandolo 2008).

In order to incorporate this additional liquidity effect originated by block trading

we recur to the following simple but effective approach. Assume lower and upper

bounds bi and b̄i such that large block trades are those transactions outside these

bounds.

Definition 3.2.5. For any non-cash asset Ai for i ∈ I suppose there exits lower

and upper bounds bi, b̄i ∈ R\ {0}, which define the set

Bi = { x ∈ R
∣∣x /∈ [bi, b̄i]} .

Denote b̄ := (b̄1, . . . , b̄N) and b := (b1, . . . , bN). A transaction θ̂i ∈ Yi for i ∈ I is

called block trade or block transaction if θ̂i ∈ Bi. Additionally, denote the set of

large block transactions by

B := {ψ ∈ P | ∃ i ∈ I with ψi ∈ Bi} .

Remark 3.2.6. Note that the cash positions ψ0 and cash transactions θ̂0 are irrel-

evant for the definition of block transactions. Furthermore, notice that

Bc = {ψ ∈ P | ∀i ∈ I, ψi /∈ Bi} .
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By previous arguments, we expect that a block transaction θ̂ ∈ B induce a

difference between pre-execution and post-execution best bids and best asks. When

executing a block buy trade θ̂i < bi for asset Ai market participants interpret the

large volume of that single transaction as relevant information. For example, some

agents will foresee a future imminent increase of the price of Ai and will try to

make a trading gain by buying that asset. This will overflow momentarily the

market for asset Ai with buy orders, which will induce an increase of the best ask,

i.e. m−,θ̂ii > m−i for θ̂i < bi. Similarly, during the execution of a block sell trade

θ̂i > b̄i for asset Ai market participants will expect a drop in the price of Ai and

try to ‘dump’ their positions as fast as possible inducing a fall in the best bid, i.e.

m+,θ̂i
i < m+

i for θ̂i > b̄i. We assume that large buy trades affect only best asks while

large sell trades affect only best bids. The following assumption summarize these

ideas.

Assumption 3.2.7. For any θ̂i ∈ Yi, i ∈ I, it holds m−i ≤ m−,θ̂ii and m+
i ≥ m+,θ̂i

i .

In particular, we have m−,θ̂ii > m−i for any θ̂i < bi and m+,θ̂i
i < m+

i for θ̂i > b̄i.

Note that only the best bids and asks shift after execution of block transactions.

The previously introduced MSDCs are those price curves prevailing during the ex-

ecution of transactions. We do not model a post-execution MSDC. In addition, we

impose a nontrivial bid-ask spread, which is a common assumption when handling

liquidity risk.

Assumption 3.2.8. The bid-ask spread is always positive, i.e. for all i ∈ I we have

m−i −m+
i > 0 and m−,θ̂ii −m+,θ̂i

i > 0 for any θ̂i ∈ Yi.

In order to present the analysis as simple as possible without losing generality,

we introduce the following assumption which is consistent with Assumption 3.2.7.

Assumption 3.2.9. Consider the post-execution best bid and ask prices of asset Ai

after some transaction θ̂i ∈ Yi

m+,θ̂i
i =

{
m+,b̄i
i for θ̂i > 0, θ̂i ∈ Bi

m+
i else

,

and

m−,θ̂ii =

{
m
−,bi
i for θ̂i < 0, θ̂i ∈ Bi

m−i else
,
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respectively, where m+
i > m+,b̄i

i ≥ mi(b̄i) ∈ R++, m−i < m
−,bi
i ≤ mi(bi) ∈ R++,

whenever b̄i, bi ∈ Yi, and m+,b̄i
i ≥ 1.

Assuming the existence of the set of block trades B is not sufficient to guarantee

the existence of block trading effects. We define block trading effects as the price

change in either a best bid or a best ask caused by execution of some block transac-

tion. In other words, block trading effects exist only if block trades are executable.

If none executable transaction produces a change in best bid or ask prices, then

there is no block trading effect.4 Formally, consider the following

Definition 3.2.10. There are no block trading effects if for all executable transac-

tions all post-execution best bid and ask prices match the pre-execution best bid and

ask prices, respectively, i.e. there are no block trading effects if for all θ̂ ∈ Y we

have m+,θ̂i
i = m+

i and m−,θ̂ii = m−i for all i ∈ I.

Equivalently, we rephrase this definition by a more handy statement, which is of

great help for the presentation of the results of the next sections.

Proposition 3.2.11. There are no block trading effects if and only if Y ⊆ Bc.

Proof. It follows straightforwardly from Assumption 3.2.9 and Definition 3.2.10.

�

Because the execution of a block buy (ask) order induces a rise (fall) in the best ask

(best bid) price, any investor undertaking a block transaction must acknowledge the

impact of this transaction in the value of its portfolio. For example, if an investor

holding a large long position in asset Ai executes a block sell trade, the remaining

long position after execution will be priced with the post-execution best bid m+,b̄i
i

which is strictly smaller than the pre-execution best bid m+
i . Hence, the investor’s

portfolio experience a loss in its value due to block trading effects. Consequently,

we propose to use a concept of mark-to-market value that embeds block trading

4Usually in reality execution of small and large transactions will induce changes in best bids and

asks, which are mostly small and momentarily. We refer to block trading effects to large changes

in best bids and ask, which may bepermanently or last a long period of time.

83



effects. Accordingly, we introduce the notion of post-execution mark-to-market value

as follows.

Definition 3.2.12. The post-execution mark-to-market value (MtM) value of port-

folio ψ ∈ P after execution of transaction θ̂ ∈ Y is given by the mapping

U : P × Y → R,

U(ψ, θ̂) = ψ0 +
N∑
i=1

(
m+,θ̂i
i ψi1{ψi>0} +m−,θ̂ii ψi1{ψi<0}

)
.

As pointed out in Acerbi and Scandolo (Acerbi & Scandolo 2008), a mark-to-

market valuation approach based only on best bids and best asks fails to capture the

depth of the market, i.e. we miss the information contained in the whole MSDCs

because we regard only best bids and best asks. Alternatively, Acerbi and Scandolo

propose to consider the sum of the mark-to-market value of a portfolio after the

execution of some transaction and the value of the proceeds of that transaction as

a more informative valuation method. Formally, for some portfolio ψ ∈ P and by

choosing θ optimally they consider

Ũ(ψ − θ) + L(θ), (3.2)

as a valuation method that reflects the overall market situation more accurately

than just Ũ . Valuation method (3.2) gives an answer to the question: how much

cash can an investor holding an initial portfolio ψ collect by executing transaction

θ, and what is the mark-to-market value of the resulting portfolio? Note that val-

uation approach (3.2) evidences some weak points concerning the incorporation of

market-liquidity conditions since it neglects block trading and partial execution ef-

fects because Acerbi and Scandolo assume that any order can be traded. In order

to avoid these shortcomings we consider the following valuation of some portfolio

ψ ∈ P by choosing optimally some θ̂ ∈ Y ,

U(ψ − θ̂, θ̂) + L(θ̂). (3.3)

As mentioned previously, in Section 3.3.1 we introduce the notion of liquidity-

adjusted portfolio value, which is based on (3.3) for some special transaction θ̂∗ ∈ Y .

We denote expression (3.3) as the post-execution portfolio value of ψ ∈ P given trans-

action θ̂ ∈ Y .
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In order to provide a further argument for the validity of post-execution portfolio

values as a valuation approach reflecting liquidity effects, we discuss next portfolio

liquidation. An investor trying to liquidate an entire portfolio will face execution

restrictions if the portfolio positions are too large for the governing market situation.

In cases when the market depth does not permit full liquidation, the investor re-

ceives the liquidation proceeds from the executable portion and hold the unexecuted

portion of his portfolio. The executable portion of a portfolio ψ ∈ P is given by

ψ̂ = f(ψ) ∈ Y and the unexecutable portion by ψ− ψ̂. Hence, differently as Acerbi

and Scandolo, the liquidation value of portfolio ψ ∈ P is given by

U(ψ − ψ̂, ψ̂) + L(ψ̂),

which is the post-execution value of ψ given transaction ψ̂. Liquidation value of

portfolio ψ reflects the underlying market depth involving MSDCs, executable trans-

actions and price impacts caused by block trading, all of which are important com-

ponents of liquidity risk.

Liquidity costs of any transaction θ̂ ∈ Y are the difference of the post-execution

portfolio value given no transaction and the post-execution portfolio value given

transaction θ̂. Formally, the liquidity costs of transaction θ̂ ∈ Y for portfolio ψ ∈ P

is given by the function C : P × Y → R

C(ψ, θ̂) = U(ψ, 0)− (L(θ̂) + U(ψ − θ̂, θ̂)). (3.4)

Consequently, the liquidation costs of any portfolio ψ ∈ P are given by C(ψ, ψ̂) =

U(ψ, 0)−(L(ψ̂)+U(ψ− ψ̂, ψ̂)). Consider the following characterization of portfolios

from (Acerbi & Scandolo 2008). Let ψ, ξ ∈ P be two portfolios.

1. They are concordant, ψ � ξ , if ψiξi ≥ 0 for any i ∈ {0, 1, . . . , N}.

2. They are discordant, ψ � ξ , if ψiξi ≤ 0 for any i ∈ {0, 1, . . . , N}.

3. ψ ≥ ξ, if ψi ≥ ξi for all i ∈ {0, 1, . . . , N}.

As mentioned earlier, the liquidity-adjusted portfolio value is based on the post-

execution portfolio value given some specific transaction. Since we are modeling
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liquidity risk, we are interested only in transactions that fulfill some liquidity con-

straint or liquidity policy. By (Acerbi & Scandolo 2008), a liquidity policy L is any

closed convex subset L ⊆ P satisfying the following conditions.

1. If ψ ∈ L, then ψ + (a, 0, . . . , 0) ∈ L for all a > 0.

2. If (ψ0, ψ1, . . . , ψN) ∈ L, then (ψ0, 0, . . . , 0) ∈ L.

Accordingly, the liquidity-adjusted portfolio value of ψ ∈ P is given by U(ψ −

θ̂∗, θ̂∗) + L(θ̂∗), where the resulting portfolio ψ − θ̂∗ is in L for transaction θ̂∗ ∈ Y

which is defined in Section 3.3.1.

3.2.2 Preliminary Results

In this section we present some useful insights and results concerning post-execution

MtM value U , transactions proceeds L, post-execution portfolio value U + L and

liquidity costs C, which are needed later in the analysis. However, we advice the

reader to skip this section and proceed with Section 3.3.1. Results there cite propo-

sitions, lemmas and corollaries of this section, which can be read on timely demand.

In Acerbi and Scandolo (Acerbi & Scandolo 2008), we find that U , L, U +L and C

are continuous functions, the latter is convex and the rest concave. However, follow-

ing our setup and in presence of block trading and partial execution effects, we learn

from this section that continuity of U , L, U + L and C is destroyed. Furthermore,

when these effects exist U , L and U + L are not concave and C is not convex. We

develop these results meticulously as follows.

Proposition 3.2.13. Consider the function L : Y −→ R and for every θ̂ ∈ Y the

function U(·, θ̂) : P −→ R.

1. L is increasing5, continuous and concave on Y, subadditive on concordant

portfolios and superadditive on discordant portfolios.

2. U(·, θ̂) is increasing, continuous and concave on P, additive on concordant

portfolios and superadditive on P.

5A function f : X −→ R, X ⊆ P, is increasing if f(ψ) ≥ f(ξ) for ψ, ξ ∈ P with ψ ≥ ξ.
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Proof. Continuity of L and U(·, θ̂) follows from their definitions. By definition of

MSDC, for each i ∈ I the proceeds function pi(θ̂i), θ̂i ∈ Yi, is increasing. Hence,

L(θ̂) =
∑N

i=0 pi(θ̂i) is increasing on Y . Similarly, because of the definition of MSDC

and by construction, U is an increasing function on P . The rest of the proof can

be found in Acerbi and Scandolo (Acerbi & Scandolo 2008) by noticing that the

functions L(·) and U(·, θ̂) are decomposable.

�

Last proposition almost coincides with results in (Acerbi & Scandolo 2008). There

are two differences: transactions proceeds L is defined on the set of executable

transactions Y and we use the post-execution MtM value U given some transaction

θ̂ ∈ Y instead of the pre-execution mark-to-market value Ũ as Acerbi and Scandolo.

Note that the function U has the same characteristics as Ũ if we fix transaction

θ̂. Let us next draw our attention to the post-execution value U for the resulting

portfolio ψ − θ̂ ∈ P after transaction θ̂ ∈ Y ,

U(ψ − θ̂, θ̂),

where ψ ∈ P is the initial portfolio. For each ψ ∈ P denote the function zψ : Y → R

defined by

zψ(θ̂) := U(ψ − θ̂, θ̂) for θ̂ ∈ Y . (3.5)

The proposition below states that zψ is continuous and concave when the underlying

portfolio is not too large and on the set of small executable transactions Bc ∩ Y . If

however, the portfolio is large and block trades are executable, then zψ looses those

characteristics.

Proposition 3.2.14. Given ψ ∈ P, ȳ, y ∈ P and b̄, b ∈ RN ,

1. zψ is continuous and concave

(a) if ψ ∈ Bc.

(b) on6 Bc ∩ Y.

6By definition Bc ∩ Y 6= ∅.
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2. zψ is neither concave nor continuous if there exists some i ∈ I such that

(a) ψi < bi and y
i
< bi, or

(b) ψi > b̄i and ȳi > b̄i.

Proof. For any ψ ∈ P , zψ(x) is a decomposable function, i.e. for x ∈ Y

zψ(x) =
N∑
i=0

fψi (xi), with fψi (xi) =

∫ ψi−xi

0

gψi (u)du

where

gψi (xi) = m+,xi
i · 1{ψi−xi>0} +m−,xii · 1{ψi−xi<0},

for i ∈ I, with gψi (ψi) = 0 and gψ0 (xi) = 1 for all xi ∈ Yi.

1. (a) Continuity. By Assumption 3.2.9, we have for b̄i ≥ ψi ≥ 0 and bi ≤ ψi ≤ 0

fψi (xi) =


m+
i (ψi − xi) for xi < ψi

0 for xi = ψi

m−i (ψi − xi) for xi > ψi.

For the cases xi < ψi and xi > ψi, the function fψi is clearly continuous. For xi = ψi,

consider a sequence (ξni ), with y
i
≤ ξni < ψi for all n ∈ N and ξni → ψi as n → ∞,

and another sequence (ηni ), with ψi < ηni ≤ ȳi for all n ∈ N and ηni → ψi as n→∞.

Since fψi (ξni ) → 0 and fψi (ηni ) → 0 as n → ∞ and fψi (ψi) = 0, the function fψi is

continuous. Because all components fi of f are continuous, f is also continuous.

1. (a) Concavity. Note that

fψi (xi) =


∫ ψi−xi

0
gψi (u)du if ψi − xi > 0

−
∫ 0

ψi−xi g
ψ
i (u)du if ψi − xi < 0.

Furthermore, for ψi − xi > 0 and ψi − xi < 0 the derivative of fψi is given by

dfψi (xi)

dxi
= −gψi (ψi − xi).

Additionally, for b̄i ≥ ψi ≥ 0 and bi ≤ ψi ≤ 0 we have

−gψi (ψi − xi) =

{
−m+

i for xi < ψi

−m−i for xi > ψi.
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For b̄i ≥ ψi ≥ 0 and bi ≤ ψi ≤ 0 and ψi = xi observe the left and right derivatives

are given by

d+fψi (ψi)

dxi
= lim

ε→0

fψi (ψi + ε)− fψi (ψi)

ε
= lim

ε→0

−m−i ε
ε

= −m−i ,

and
d−fψi (ψi)

dxi
= lim

ε→0

fψi (ψi − ε)− fψi (ψi)

ε
= lim

ε→0

−m+
i ε

ε
= −m+

i ,

where ε > 0. Thus, the slope of any tangent on fψ at xi = ψi takes values in

[−m−i ,−m+
i ], i.e. −m−i ≤

dfψi (ψi)

dxi
≤ −m+

i . Since −m+
i > −m−i ,

dfψi (xi)

dxi
is decreasing

in xi. Thus, fψi is concave, hence zψ is also concave7.

1. (b) Continuity and Concavity. Since xi ∈ Bc
i ∩ Yi we have as before

fψi (xi) =


m+
i (ψi − xi) if xi < ψi

0 if xi = ψi

m−i (ψi − xi) if xi > ψi,

and
dfψi (xi)

dxi
=

{
−m+

i for xi < ψi

−m−i for xi > ψi,

for any ψi ∈ R. As observed previously
dfψi (ψi)

dxi
is decreasing. Hence, fψi is continuous

and concave, which implies that zψ is continuous and concave on Bc ∩ Y .

2. Non-Concavity. As previously found the derivative of fψi with respect to xi equals

−gψi (ψi − xi).

Let ȳi < b̄i. For ψi > b̄i we have

−gψi (ψi − xi) =


−m+

i for xi ≤ b̄i

−m+,b̄i
i for b̄i < xi < ψi

−m−i for xi > ψi.

Since −m+
i < −m

+,b̄i
i > −m−i , then −gψi is not a decreasing function. Hence, fψi is

not concave for ψi > b̄i and ȳi > b̄i. Now let y
i
< bi. Similarly, for ψi < bi

−gψi (ψi − xi) =


−m+

i for xi < ψi

−m−,bii for ψi < xi < bi

−m−i for xi > bi.

7A decomposable function is concave if and only if all of its components are concave.
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Since −m+
i > −m−,bii < −m−i , −gψi is not a decreasing function. Hence, fψi is not

concave for ψi < bi and y
i
< bi. Thus, fψ is not concave.

2. Non-Continuity. Consider ψ, ψ′ ∈ P with ψj < bj, ψ
′
k > b̄k for some j, k ∈ I.

Additionally, regard two sequences (ξn), (ηn) ⊂ Y , with

ξni =

{
ψi for i 6= j

ξnj for i = j
, and ηni =

{
ψ′i for i 6= k

ηnk for i = k
,

where y
j
< ξnj < bj, ψj < ξnj and ȳk > ηnk > b̄k, ψ

′
k > ηnk for all n ∈ N. Assume

ξn → ξ and ηn → η with ξnj → bj and ηnk → b̄k as n→∞. Hence,

fψj (ξn) = m
−,bj
j (ψj − ξnj )

n→∞−→ m
−,bj
j (ψj − bj) < m−j (ψj − bj) = fψj (ξ),

and

fψ
′

k (ηn) = m+,b̄k
k (ψ′k − ηnk )

n→∞−→ m+,b̄k
k (ψ′k − b̄k) < m+

k (ψ′k − b̄k) = fψ
′

k (η).

Thus, fψi and zψ are not continuous if either 1) ψi < bi and y
i
< bi or 2) ψi > b̄i

and ȳi > b̄i.

�

By this proposition, the function zψ is continuous and concave whenever block trad-

ing effects are not present.8

The same statements of the previous proposition hold true for the post-execution

portfolio value U(ψ − θ̂, θ̂) + L(θ̂) and for the liquidity costs C(ψ, θ̂). For this we

consider the next convenient representations. For every ψ ∈ P consider the function

vψ : Y → R given by

vψ(θ̂) := U(ψ − θ̂, θ̂) + L(θ̂), (3.6)

for θ̂ ∈ Y , and the function C(ψ, ·) : Y → R defined in (3.4). The auxiliary

function vψ represents the post-execution portfolio value when portfolio ψ is fixed

and transactions θ̂ vary.

Corollary 3.2.15. Given ψ ∈ P, ȳ, y ∈ P and b̄, b ∈ RN ,

1. vψ and C(ψ, ·) are continuous, vψ is concave and C(ψ, ·) is convex

8Recall that these effects are not present if Bc ⊆ Y.
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(a) if ψ ∈ Bc.

(b) on Bc ∩ Y.

2. vψ and C(ψ, ·) are not continuous, vψ is not concave and C(ψ, ·) is not convex

if there exists some i ∈ I such that

(a) ψi < bi and y
i
< bi, or

(b) ψi > b̄i and ȳi > b̄i.

Proof. By Proposition 3.2.13 and Proposition 3.2.14 statement 1. holds true. For

point 2., observe that

vψ(x) =
N∑
i=0

Fψ
i (xi),

where

Fψ
i (xi) =

∫ ψi−xi

0

gψi (u)du+

∫ xi

0

mi(u)du,

with gψi defined in the proof of Proposition 3.2.14. Hence and by Proposition 3.2.14,

vψ is not continuous if either conditions (a) or (b) holds true, because the derivative
dFψi
dxi

= −gψi (ψi − xi) + mi(xi) is not decreasing in cases (a) and (b). Thus, the

remaining statements hold also true by the definition of C(ψ, ·) in (3.4).

�

Last corollary and following lemma indicate that block trading effects induce dis-

continuity and non-concavity in the post-execution portfolio value vψ. This result

suggests that valuation approaches based on vψ are expected to be discontinuous

and non-concave in presence of block trading effects. In the next section we intro-

duced a liquidity-adjusted portfolio value based on vψ, which we prove to obey this

rule.

Lemma 3.2.16. Given some portfolio ψ ∈ P, ȳ, y ∈ P and b̄, b ∈ RN , the function

vψ is not continuous if and only if there exists some nonempty set J ⊆ I such that

ψj > b̄j with ȳj > b̄j for some j ∈ J or ψk < bk with y
k
< bk for some k ∈ J .

Proof. By Corollary 3.2.15 the existence of J is sufficient in order to have a dis-

continuous function vψ. We show here that its existence is a necessary condition.
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Consider the function vψ defined in Corollary 3.2.15 as a decomposable function

vψ(θ̂) =
∑N

i=0 v
ψ
i (θ̂i), where θ̂i ∈ Yi, with

vψi (θ̂i) = m+,θ̂i(ψi − θ̂i)1{ψi−θ̂i>0} +m−,θ̂i(ψi − θ̂i)1{ψi−θ̂i<0} +

∫ θ̂i

0

mi(u)du,

for i ∈ I and vψ0 (θ̂0) = ψ0. By Corollary 3.2.15, the function vψ(θ̂) is continuous

for the following cases: (i) ψi ∈ [bi, b̄i] for all i ∈ I, and (ii) ψi /∈ [bi, b̄i], (a)

bi ≤ y
i
≤ ȳi ≤ b̄i for all i ∈ I. We have the following cases left:

(b) bi > y
i

and (c) b̄i < ȳi. Additionally, for (b) we have the possibilities (1) ψi < bi

and (2) ψi > b̄i. For (ii.b.1), we obtain

vψi (θ̂i) =


m−i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du θ̂i ≥ bi

m
−,bi
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du ψi ≤ θ̂i < bi

m+
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du θ̂i > ψi,

and for (ii.b.2)

vψi (θ̂i) =

{
m−i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du θ̂i ≥ ψi

m+
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du θ̂i < ψi.

By Proposition 3.2.14 in case (ii.b.1) the function vψi is not continuous and in case

(ii.b.1) it is continuous. Analogously, non continuity of the function vψi follows for

case (c) for the possibilities (3) ψ < b̄i and (4) ψ > b̄i.

�

From Corollary 3.2.15 and Lemma 3.2.16 is clear that the post-execution portfolio

value vψ presents discontinuities and non-concavity when block trading effects exist.

Hence, regard the following corollary whose proof is the collection of last results.

Corollary 3.2.17. In general the function vψ is neither concave nor continuous.

In Acerbi and Scandolo’s setup we consider the pre-execution portfolio value

ṽψ : Y → R, given by

ṽψ(θ̂) := Ũ(ψ − θ̂) + L(θ̂), (3.7)

for θ̂ ∈ Y . The authors show that ṽψ is a continuous concave function. The liquidity-

adjusted portfolio value proposed by Acerbi and Scandolo turns out to be also

92



continuous and concave because it is based on the pre-execution portfolio value ṽψ.

In our framework, the liquidity-adjusted portfolio value introduced in the following

section is based on the post-execution portfolio value vψ, inheriting the discontinuity

and non-concavity from vψ.

However, if block trading effects are not present, i.e. Y ⊆ Bc, the post-execution

mark-to-market value U coincides with the pre-execution value Ũ . Formally, if

Y ⊆ Bc, we have by construction

U(ψ, θ̂) = Ũ(ψ),

for all ψ ∈ P and any θ̂ ∈ Y . Following this observation, we obtain the next evident

result.

Corollary 3.2.18. If Y ⊆ Bc, for all ψ ∈ P and any θ̂ ∈ Y,

vψ(θ̂) = ṽψ(θ̂).

Hence, in absence of block trading effects, i.e. Y ⊆ Bc, and by borrowing results

from (Acerbi & Scandolo 2008), vψ is continuous, concave and for λ > 1

vλψ(λθ̂) ≤ λvψ(θ̂). (3.8)

Additionally, the function C is continuous, convex and for λ > 1

C(λψ, λθ̂) ≥ λC(ψ, θ̂).

Block trading effects cause not only discontinuities, non-concavity and non-

convexity, they also induce lower mark-to-market values. To see this, recall that

Acerbi and Scandolo’s framework neglects block trading effects. Relevant mark-to-

market values of their framework are Ũ and ṽψ. Our model conceives block trading

effects as possible. Our relevant mark-to-market values are U and vψ. Hence, con-

sider the following

Proposition 3.2.19. For any ψ ∈ P and θ̂ ∈ Y

Ũ(ψ) = U(ψ, 0) ≥ U(ψ, θ̂),

and

ṽψ(θ̂) ≥ vψ(θ̂).
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Proof. The results follow from observing that m+,θ̂i
i ≤ m+

i and m−,θ̂ii ≥ m−i for any

θ̂i ∈ Yi for i ∈ I and from the definition of U , Ũ , vψ and ṽψ.

�

By this proposition we see in Section 3.3.3 that block trading effects reduce the

liquidity-adjusted portfolio value, which is introduced next.

3.3 Liquidity-Adjusted Portfolio Value

In this section we present the liquidity-adjusted portfolio value V L and prove that

it is well defined for every portfolio ψ. Then we show that V L is not concave in

general. Last, we identify the effects of block trading and partial execution on V L.

3.3.1 Liquidity Adjustment

Previously we introduced the pre-execution mark-to-market value for portfolio ψ ∈

P , which is given by Ũ(θ̂). As pointed out, this valuation approach can not reflect

liquidity conditions of the market. Moreover, Ũ(θ̂) can neither capture the specific

liquidity needs or constraints of the investor holding that position.

A more appropriate value that considers market-liquidity conditions as MSDCs,

executable transactions and block trading is the post-execution value U(ψ− θ̂, θ̂) +

L(θ̂) of portfolio ψ for some transaction θ̂ ∈ Y . In order to adequate this valuation

approach to reflect liquidity restrictions of the investor, we need to impose that the

resulting portfolio from the transaction must meet the requirements of some given

liquidity policy L to which the investor is subjected. Starting from a portfolio ψ ∈ P

and executing transaction θ̂ ∈ Y , the resulting portfolio including cash proceeds of

the transaction is given by

ψ − θ̂ + (L(θ̂), 0, . . . , 0),

where (L(θ̂), 0, . . . , 0) ∈ P represents a cash portfolio with a cash position which

equals the proceeds from transaction θ̂. Hence, given some liquidity policy L we are
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interested for liquidity adjustments θ̂ to portfolio ψ whose adjusted value is given

by

vψ(θ̂) = U(ψ − θ̂, θ̂) + L(θ̂), (3.9)

such that θ̂ ∈ Y , and ψ − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L. Note that there may be several

transactions θ̂ that fulfill last conditions but with different vψ(θ̂). Following Acerbi

and Scandolo, we impose a further condition for transaction θ̂: it must be chosen

optimally, i.e. it must maximize vψ(θ̂). Formally, we define the liquidity-adjusted

portfolio value of ψ ∈ P under liquidity policy L as a map V L : P → R given by

V L(ψ) = sup
{
U(ψ − θ̂, θ̂) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ)
}
, (3.10)

with

CL(ψ) =
{
θ̂ ∈ Y

∣∣∣ψ − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}
.

Additionally, if CL(ψ) = ∅, then V L(ψ) = −∞.

Although the function U(ψ− θ̂, θ̂)+L(θ̂) of optimization problem (3.10) is in general

non-concave in Y as shown in the previous section, the problem is solvable, i.e. the

liquidity-adjusted portfolio value V L is well defined. We show this in the following

two propositions.

Proposition 3.3.1. For all ψ ∈ P with CL(ψ) 6= ∅, the set CL(ψ) is compact and

vψ(θ̂) is bounded.

Proof. Firstly, we verify the compactness of the set CL(ψ) ⊆ Y ∩ L under the

assumption CL(ψ) 6= ∅. Consider a sequence (ξn) in CL(ψ) with ξn → ξ. Hence,

ψ − ξn + (L(ξn), 0, . . . , 0) ∈ L. Due to the continuity of L and the fact that L is

closed we have

ψ − ξn + (L(ξn), 0, . . . , 0) −→ ψ − ξ + (L(ξ), 0, . . . , 0) ∈ L.

Thus the set CL(ψ) is closed. Since Y is a bounded set, CL(ψ) is compact.

Secondly, we show that for every ψ ∈ P the function vψ(θ̂) is bounded. For this fix
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some ψ ∈ P and note that for all θ̂ ∈ Y follows

K̄(ψ, ȳ, y) := ψ0 +
∑
i∈I

(
m+
i (ψi − yi) +

∫ ȳi

0

mi(u)du

)

≥ ψ0 +
∑
i∈I

(
1{ψi−θ̂i>0}m

+,θ̂i
i (ψi − θ̂i) + 1{ψi−θ̂i<0}m

−,θ̂i
i (ψi − θ̂i) +

∫ θ̂i

0

mi(u)du

)

≥ ψ0 +
∑
i∈I

(
m−,bi (ψi − ȳi) +

N∑
i=1

∫ y
i

0

mi(u)du

)
=: K(ψ, ȳ, y). (3.11)

Notice that the second expression after the first inequality in (3.11) is vψ(θ̂). Fur-

thermore, note that |K̄(ψ, ȳ, y)|, |K(ψ, ȳ, y)| <∞ for any ψ ∈ P , and any ȳ, y ∈ Y .

Hence, |vψ(θ̂)| <∞ for any θ̂ ∈ Y .

�

Remark 3.3.2. If ψ ∈ Bc, problem (3.10) is a convex optimization problem due to

the concavity of gψ by Corollary 3.2.15 and to the convexity of CL(ψ).

Remark 3.3.3. The function U(ψ− θ̂, θ̂) +L(θ̂) does not depend on θ̂0. Hence, for

any trade θ̂ = (θ̂0, θ̂1, . . . , θ̂N) ∈ Y we set θ̂0 = 0 for the remainder of the paper.

Proposition 3.3.4. For every ψ ∈ P with CL(ψ) 6= ∅, the supremum of optimization

problem (3.10) is attained, i.e. there is some θ̂∗ ∈ CL(ψ) such that

V L(ψ) = U(ψ − θ̂∗, θ̂∗) + L(θ̂∗). (3.12)

Proof. Assume CL(ψ) 6= ∅ and there is no θ̂∗ ∈ CL(ψ) that satisfies (3.12). Because

CL(ψ) is compact and vψ is bounded, the assumption is equivalent to the existence

of some sequence (θ̂n) ⊂ CL(ψ) with θ̂n → θ̃ as n→∞ such that

V L(ψ) = lim
n→∞

U(ψ − θ̂n, θ̂n) + L(θ̂n) > U(ψ − θ̃, θ̃) + L(θ̃). (3.13)

Since CL(ψ) is closed, we have θ̃ ∈ CL(ψ). Clearly, such cases can only occur on those

regions where vψ(θ̂) = U(ψ − θ̂) + L(θ̂) is discontinuous. We prove that inequality

(3.13) does not hold true.

By Lemma 3.2.16, there are only two cases at which the function vψ is discontinuous:

(1) if there exists some j ∈ I with ψj > b̄j and ȳj > b̄j, or (2) if there exists some

k ∈ I with ψk < bk and y
k
< bk. Since the function vψi is discontinuous only at
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θ̂j = b̄j if condition (1) holds, or at θ̂k = bk if condition (2) holds, any sequence (ξn)

in CL(ψ) with ξn → ξ as n→∞ such that

vψ(ξ) 6= lim
n→∞

vψ(ξn). (3.14)

must be of the form ξn = (ξn0 , ξ
n
1 , . . . , ξ

n
N) ∈ CL(ψ) with at least one i ∈ I such that

ξni
n→∞−→ b̄i and ξni > b̄i, ∀n ∈ N,

if i satisfies condition (1), or

ξni
n→∞−→ bi and ξni < bi, ∀n ∈ N,

if i satisfies condition (2). By Lemma 3.7.1 of the Appendix we have

vψi (b̄i) ≥ vψi (θ̂i) for θ̂i ∈ (b̄i, ȳi],

if i satisfies condition (1), and

vψi (bi) ≥ vψi (θ̂i) for θ̂i ∈ [ȳi, b̄i),

if i satisfies condition (2). Hence, for any sequence (ξn) which converges to a dis-

continuous point of vψ and satisfies expression (3.14), we have

vψ(ξ) > lim
n→∞

vψ(ξn),

which contradicts (3.13).

�

3.3.2 General Properties of V L

We begin this section by presenting the basis of the main result of this chapter.

As mentioned earlier, the liquidity-adjusted portfolio value V L is non-concave in

general because vψ is not concave.

Proposition 3.3.5. The liquidity-adjusted portfolio value V L is not necessarily con-

cave.
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The proof of this proposition is undertaken via counterexample, for which we

need to introduce some concrete liquidity policies. Following Acerbi and Scandolo,

the cash liquidity policy L(a) is given by

L(a) = {(ψ0, ψ1, . . . , ψN) ∈ P|ψ0 ≥ a} , a ∈ R,

the total liquidation policy LL is defined by

LL = {(ψ0, 0, . . . , 0) ∈ P|ψ0 ∈ R} ,

and the unrestricted liquidation policy LU is given by

LU = P .

Additionally, we introduce the cash liquidity policy without buy transactions LS(a)

which is given by9

LS(a) = {(ψ0, ψ1, . . . , ψN) ∈ P|ψ0 ≥ a and ψi ≥ 0, ∀i ∈ I} , a ∈ R.

Now we provide a simple counterexample in order to prove that V L is not concave

in general. For this we consider L as a cash liquidity policy or as a cash liquidity

policy without buy transactions.

Proof of Proposition 3.3.5. For sake of simplicity we impose N = 1. Consider

a > 0, L ∈
{
L(a),LS(a)

}
, 0 < b̄1 < ȳ1 ∈ R++. Let the MSDC satisfy the following

assumption

m1(x) =

{
m for x ∈ (0, b̄1]

m′ for x ∈ (b̄1, ȳ1],

where m,m′ ∈ R++. Further assume∫ b̄1

0

m1(u)du < a and

∫ ȳ1

0

m1(u) > a, (3.15)

which is equivalent to assuming b̄1m < a and (ȳ1 − b̄1)m′ − b̄1m > a, respectively.

Set β := a −
∫ b̄1

0
m1(u)du = a − b̄1m and note that β > 0. Choose some large

γ > 0 such that γ − ȳ1 > 0 and consider the portfolios ψ1 = (β, γ) and ψ2 = (0, γ).

By construction we have CL(ψ1) 6= ∅ and CL(ψ2) 6= ∅. Denote the corresponding

9LS(a) is clearly convex and closed.
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solutions of optimization problem (3.10) for ψ1 and ψ2 by θ̂1 and θ̂2, respectively.

By Lemma 3.7.2 of the Appendix we demand that optimal transactions θ̂1 and θ̂2

satisfy β + L(θ̂1) = a and L(θ̂2) = a. Clearly, θ̂1 = (0, b̄1). Optimal transaction

θ̂2 = (0, θ̂2
1) must satisfy the following

(θ̂2
1 − b̄1)m′ − b̄1m = a,

or, equivalently,

θ̂2
1 =

β

m′
+ b̄1.

Denote ψλ := λψ1 + (1− λ)ψ2 = (λβ, γ) for λ ∈ [0, 1] and note that CL(ψλ) 6= ∅ by

condition 3.15. Hence, let the solution of problem (3.10) for ψλ be given by θ̂∗ ∈ Y ,

which satisfies

λβ + L(θ̂∗) = a, (3.16)

which is equal to

(λβ + θ̂∗1 − b̄1)m′ − b̄1m = a,

implying

θ̂∗1 = (1− λ)
β

m′
+ b̄1.

Further, consider the mapping F : [0, 1]→ R given by

F (λ) := V L(ψλ) = U(ψλ − θ̂∗, θ̂∗) + L(θ̂∗) = a+m+,b̄1

(
γ − (1− λ)

β

m′
− b̄1

)
,

for λ ∈ [0, 1], and the mapping G : [0, 1]→ R given by

G(λ) := λV L(ψ1) + (1− λ)V L(ψ2)

= λ
(
U(ψ1 − θ̂1, θ̂1) + L(θ̂1)

)
+ (1− λ)

(
U(ψ2 − θ̂2, θ̂2) + L(θ̂2)

)
= a+ λm+

1 (γ − b̄1) + (1− λ)m+,b̄1
1

(
γ − β

m′
− b̄1

)
,

for λ ∈ [0, 1]. Last, note that the difference of G and F

G(λ)− F (λ) = λm+
1 (γ − b̄1) + (1− λ)m+,b̄1

1

(
γ − β

m′
− b̄1

)
− m+,b̄1

(
γ − (1− λ)

β

m′
− b̄1

)
=

(
λm+

1 + (1− λ)m+,b̄1
1 −m+,b̄1

)
(γ − b̄1)

>
(
λm+,b̄1

1 + (1− λ)m+,b̄1
1 −m+,b̄1

)
(γ − b̄1) = 0

is positive. Hence, we have λV L(ψ1) + (1− λ)V L(ψ2) > V L(ψλ).
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�

A further general property of the liquidity-adjusted portfolio value valid for any

liquidity policy is its translation supervariance, introduced in (Acerbi & Scandolo

2008). This concept states that augmenting a cash position to a portfolio induces a

larger liquidity-adjusted portfolio value than the sum of the liquidity-adjusted value

of the initial portfolio and the cash amount.

Proposition 3.3.6. Given a liquidity policy L the liquidity-adjusted portfolio value

is translation supervariant, i.e. for ψ ∈ P, e ≥ 0

V L(ψ + (e, 0, . . . , 0)) ≥ V L(ψ) + e.

Proof. By noting that the MtM value U of a portfolio is additive on cash portfolios,

i.e. for ψ ∈ P , e ≥ 0 and θ ∈ Y we obtain U(ψ + (e, 0, . . . , 0), θ) = U(ψ, θ) + e, the

proof follows by the same arguments used in (Acerbi & Scandolo 2008).

�

When valuing portfolios under liquidity constraints, translation supervariance is a

more natural concept than translation invariance. The liquidity adjustment defined

at the beginning of the section takes into account multiple liquidity issues such

as MSDCs, partial execution, block trading and liquidity policy. These market

imperfections influence mark-to-market portfolio values U and vψ in a non-linear

manner. Accordingly, it is intuitive that the adjustment to the value of a portfolio

with a cash position is less severe than the adjustment to the value of the same

portfolio without the cash position. The severity of the liquidity adjustment is such

that adding the cash position after the adjustment to the latter portfolio is not

enough to equate the liquidity-adjustment of the former portfolio.

In addition to translation supervariance, the liquidity-adjusted portfolio value is

monotonic on P for unrestricted liquidation and cash liquidity policies.

Proposition 3.3.7. Consider some liquidity policy L ∈
{
L(a),LS(a),LU

}
. The

function V L is monotone increasing on P, i.e. for any ψ1, ψ2 ∈ P with ψ1 ≥ ψ2,

V L(ψ1) ≥ V L(ψ2).
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Proof. Let ψ1, ψ2 ∈ P with ψ1 ≥ ψ2 and L ∈
{
L(a),LS(a),LU

}
be given. First

note that

CL(ψ2) ⊆ CL(ψ1). (3.17)

First, we verify this inclusion for the case CL(ψ2) 6= ∅. Consider some θ̂ ∈ Y

satisfying

ψ2 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L, (3.18)

i.e. θ̂ ∈ CL(ψ2). Because LU = P and ψ1
0 − ψ2

0 ≥ 0, every θ̂ ∈ Y satisfying (3.18)

also fulfills

(ψ1 − ψ2) + ψ2 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L,

for L ∈
{
L(a),LS(a),LU ,

}
. Hence, θ̂ ∈ CL(ψ1). Further,

V L(ψ1) = sup
{
U(ψ1 − θ̂, θ̂) + L(θ̂)

∣∣∣θ̂ ∈ Y ; ψ1 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}

= sup
{
U((ψ1 − ψ2) + ψ2 − θ̂, θ̂) + L(θ̂)

∣∣∣θ̂ ∈ Y ;

ψ1 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}

= sup
{
U(ψ1 − ψ2, θ̂) + U(ψ2 − θ̂, θ̂) + L(θ̂)

∣∣∣θ̂ ∈ Y ;

ψ1 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}

≥ U(ψ1 − ψ2, b) + sup
{
U(ψ2 − θ̂, θ̂) + L(θ̂)

∣∣∣θ̂ ∈ Y ;

ψ1 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}

≥ U(ψ1 − ψ2, b) + sup
{
U(ψ2 − θ̂, θ̂) + L(θ̂)

∣∣∣θ̂ ∈ Y ;

ψ2 − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}

= U(ψ1 − ψ2, b) + V L(ψ2) ≥ V L(ψ2),

where b ∈ P has elements bi = bi if ψ1
i −ψ2

i < 0 and bi = b̄i if ψ1
i −ψ2

i > 0 for i ∈ I.

The first inequality follows from the definition of the post-execution best bid and

ask prices, the second follows from (3.17) and the third from definition of U and

from ψ1 − ψ2 ≥ 0.

For the case CL(ψ2) = ∅, we have either CL(ψ1) 6= ∅ or CL(ψ1) = ∅. In the first

case, it holds V L(ψ1) > −∞ and in the latter V L(ψ1) = −∞. Since V L(ψ2) = −∞

whenever CL(ψ2) = ∅, inclusion 3.17 is satisfied and V L(ψ1) ≥ V L(ψ2) is also

fulfilled.
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�

Monotonicity of V L is consistent with economic intuition. For this, regard two

portfolios ψ1, ψ2 ∈ P with ψ1 > ψ2. Consequently, consider all short positions of

portfolio ψ2 and note that for the same assets those positions must be either long,

flat or smaller (in absolute value) short positions in portfolio ψ1. Analogously, we

find larger long positions in ψ1 for those assets with long and flat positions in ψ2.

Hence, holding portfolio ψ1 is more convenient than holding portfolio ψ2 if we need to

execute some transaction θ̂ ∈ Y in order to fulfill some liquidity constraint. It seems

that, any reasonable liquidity-adjusted portfolio value for ψ1 can never be smaller

than the liquidity-adjusted portfolio value for ψ2, as stated in Proposition 3.3.7. This

is, however, not true if the liquidity-adjusted portfolio is based on the liquidity policy

LL. Under this policy the optimal adjusting transaction closes all non cash portfolio

positions, which is shown in Proposition 3.3.8 below. The nature of this adjustments

is essential for the non-monotonicity under LL. To see this, consider again portfolios

ψ1 > ψ2 ∈ P . Under partial execution, it is possible that only positions ψ2 can be

closed but positions ψ1 not, which yield V L
L
(ψ2) > V L

L
(ψ1) = −∞.

Proposition 3.3.8. Let ψ ∈ P and consider the total liquidation policy LL. The

solution of optimization problem (3.10) is given by θ̂∗ = (0, ψ1, . . . , ψN) and

V L
L

(ψ) = ψ0 + L(θ̂∗),

if θ̂∗ ∈ Y. Otherwise, V L
L
(ψ) = −∞.

Proof. By definition of LL, we have

CLL(ψ) =
{
θ̂ ∈ Y

∣∣∣ψ − θ̂ + (L(θ̂), 0, . . . , 0) = (x, 0, . . . , 0) ∈ P for x ∈ R
}
.

Clearly, if θ̂∗ := (0, ψ1, . . . , ψN) ∈ Y , then CLL(ψ) = {θ̂∗} and V L
L
(ψ) = ψ0 +L(θ̂∗).

If θ̂∗ /∈ Y , then CLL(ψ) = ∅ and V L
L
(ψ) = −∞.

�

We discuss now some additional properties of LU ,L(a) and LS(a). If all MSDCs

are strictly decreasing, the optimal transaction θ̂∗ ∈ Y that solves problem (3.10)
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under the unrestricted liquidation policy LU is a non-trade transaction, i.e. θ̂∗ = 0,

independently of block trading and partial execution effects.

Proposition 3.3.9. Consider some ψ ∈ P, the unrestricted liquidation policy LU

and assume that for all i ∈ I the MSDC is strictly decreasing, i.e.

mi(x) < mi(x
′),

for x, x′ ∈ R\ {0} with x > x′. Then,

V L
U

(ψ) = U(ψ, 0),

in other words, θ̂∗ = 0 solves problem (3.10) for ψ under LU .

Proof. Let ψ ∈ P and LU . Assume optimal transaction θ̂∗ 6= 0 where θ̂∗ ∈ Y .

Hence,

V L(ψ) = vψ(θ̂∗) =
∑
i∈I+

vψi (θ̂∗i ) +
∑
i∈I−

vψi (θ̂∗i ) +
∑
i∈I0

vψi (θ̂∗i ),

where I+, I−, I0 ⊆ I such that for all i ∈ I+ we have θ̂∗i > 0, for all i ∈ I− we have

θ̂∗i < 0, and for all i ∈ I0 we have θ̂∗i = 0. Since we assume θ̂∗ 6= 0, either I+ 6= ∅,

I− 6= ∅, or both subsets are not empty. From Lemma 3.7.3 of the Appendix we know

that vψi is strictly increasing on [y
i
, 0) and strictly decreasing on (0, ȳi]. Hence,

vψ(0) =
∑
i∈I

vψi (0) >
∑
i∈I+

vψi (θ̂∗i ) +
∑
i∈I−

vψi (θ̂∗i ) +
∑
i∈I0

vψi (0) = vψ(θ̂∗),

which contradicts optimality of θ̂∗. Since last inequality holds for all θ̂∗ 6= 0 and

CLU (ψ) 6= ∅, then the non-trade transaction, i.e. θ̂∗ = 0, must be the solution of

optimization problem (3.10).

�

In addition to the cash policy L(a) of Acerbi and Scandolo we introduced previously

a similar cash policy LS(a) which admits only sell transactions. By analyzing closer

L(a) we see that it allows buy trades as optimal solution of optimization problem

(3.10). To illustrate this possibility regard the following example.
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Example 3.3.10. Assume N = 2 and consider the following bounds

y
1

= b1 < 0, b̄1 = 2 · 103, ȳ1 = 6 · 103, y
2

= b2 = 3 · 103, ȳ2 = 0.

Let the portfolio ψ ∈ P consist of a flat cash position ψ0 = 0, of a long position

ψ1 > ȳ1 in asset A1 which is liquid and of a long position ψ2 > |y2
| in asset A2

which is sale-illiquid. Accordingly, consider the MSDCs for the assets as follows

m1(x) =

{
−10−2x+ 102 for x ≤ b̄1

8 · 10 else
, m2(x) = 102 for x < 0.

Recall that mi(0) is not defined. However, observe that m+
1 = m1(0+) = 102 =

m1(0−) = m−1 , i.e. the bid-ask spread is zero, δ1 := m−1 −m+
1 = 0. For asset A2 we

also suppose a trivial bid-ask spread δ2 = 0. Furthermore, let m+,b̄1 = 8 · 10. Regard

the cash liquidity policy L(a) where a = 2 · 105. Because the proceeds of selling b̄1

units of asset A1 are not sufficient to cover the liquidity requirement a, i.e.

p1(b̄1) =

∫ b̄1

0

m1(u)du = 1, 8 · 105 < 2 · 105 = a,

the optimal transaction θ̂∗1 solving problem (3.10) must be larger than b̄1. Particu-

larly, the liquidity constraint ψ0 + L(θ̂∗) ≥ a for an optimal θ̂∗ ∈ Y is given by

8 · 10θ̂∗1 + 102θ̂∗2 − 1, 8 · 105 ≥ 0, (3.19)

where θ̂∗1 ≥ 2, 25 · 103, since p1(2, 25 · 103) = a, and θ̂∗2 ∈ [y
2
, 0). By Lemma 3.7.2 it

suffices to regard (3.19) as an equality, which leads to

θ̂∗2 = −8 · 10−1θ̂∗1 + 1, 8 · 103.

Hence, the liquidity-adjusted portfolio value is given by

V L(ψ) = sup
{
U(ψ − θ̂∗, θ̂∗) + L(θ̂∗)

∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103
]
,

θ̂∗2 = −8 · 10−1θ̂∗1 + 1, 8 · 103
}

= sup
{

8 · 10(ψ1 − θ̂∗1) + 102(ψ2 − θ̂∗2)

+a
∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103

]
, θ̂∗2 = −8 · 10−1θ̂∗1 + 1, 8 · 103

}
,

because ψ1 − θ̂∗1 > 0 for any θ̂1 ∈ (0, ȳ1] and ψ2 − θ̂∗2 > 0 for any θ̂∗2 ∈ [y
2
, 0].

Equivalently,

V L(ψ) = sup
{

8 · 10(ψ1 − θ̂∗1) + 102(ψ2 + 8 · 10−1θ̂∗1 − 1, 8 · 103)

+a
∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103

]}
= sup

{
8 · 10ψ1 + 102ψ2 − 1, 8 · 105 + a

∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103
]}

.
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Thus, the solution set of problem (3.10) satisfying ψ0 + L(θ̂∗) = a is given by

Σ =
{
θ̂∗ ∈ Y

∣∣∣θ̂∗1 ∈ [2, 25 · 103, 6 · 103], θ̂∗2 = −8 · 10−1θ̂∗1 + 1, 8 · 103
}
.

Note that θ̂∗2 < 0 whenever θ̂∗1 ∈ (2, 25 · 103, 6 · 103]. Furthermore, consider some

c > 0 and m2(x) = c · 102. Thus, optimal transaction for A2 is given by

θ̂∗2 = −8

c
· 10−1θ̂∗1 +

1, 8

c
· 103,

and the liquidity-adjusted portfolio value has not changed

V L(ψ) = sup
{

8 · 10ψ1 + 102ψ2 − 1, 8 · 105 + a
∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103

]}
.

In view of Assumption 3.2.8 we introduce a nontrivial bid-ask spread for A2, such

that

m+
2 = 9, 5 · 10, m−2 = 102,

the liquidity-adjusted portfolio value becomes

V L(ψ) = sup
{
−4θ̂∗1 + 8 · 10ψ1 + 9, 5 · 10ψ2 − 17, 1 · 104

+a
∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103]

}
.

Hence, the solution set is a singleton given by

Σ =
{

(2, 25 · 103, 0)
}
.

Note that this result holds for any δ2 > 0 such that m−2 = 102 and m+
2 = 10 − δ2,

since

V L(ψ) = sup
{
−8 · 10δ2θ̂

∗
1 + 8 · 10ψ1 + (102 − δ2)ψ2 − (1, 8 · 102 − δ2)103

+a
∣∣∣ θ̂∗1 ∈ [2, 25 · 103, 6 · 103]

}
.

Under cash liquidity policies, optimal transaction θ̂∗ indicates which trades must

be undertaken in order to obtain at least a − ψ0 money units. If the purpose of

the liquidity adjustment to portfolio values is aimed for risk management and not

for active portfolio management, optimal buy transactions θ̂∗i < 0 fail the purpose

of the adjustment. Alternatively, a cash liquidity policy without buy transactions

LS(a), contemplates only those sell transactions10 θ̂∗i > 0 that must be undertaken

10And, of course, non-trade transactions θ̂∗i = 0.
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in order to satisfy the capital needs. Hence, in a risk management context the liq-

uidity policy LS(a) should be prefer over L(a).

However, if the MSDCs are strictly decreasing for buy trades and the capital re-

quirement is positive, a > 0, then any optimal transaction θ̂∗ under cash liquidity

L(a) consists of sales or no trades.

Proposition 3.3.11. Assume strictly decreasing MSDCs for buy trades, i.e. for all

i ∈ I let mi(x) > mi(x
′) for any x < x′ < 0. Fix some cash liquidity policy L(a)

with a > 0, some portfolio ψ ∈ P and denote θ̂∗ ∈ Y a solution of optimization

problem (3.10) for ψ. If CL(a)(ψ) 6= ∅, then θ̂∗ ≥ 0.

Proof. Let a > 0, ψ ∈ P and denote θ̂∗ ∈ Y a solution of optimization problem (3.10)

for ψ, i.e. θ̂∗ ∈ CL(a)(ψ) 6= ∅. Firstly, consider the case a − ψ0 > 0. Since optimal

transaction θ̂∗ must satisfy ψ0 + L(θ̂∗) ≥ a or, equivalently, L(θ̂∗) ≥ a − ψ0 > 0,

there exists a nonempty set I+ ⊆ I such that θ̂∗i > 0 for all i ∈ I+. Assume that

θ̂∗ contains buy transactions, also. Hence, I+ ⊂ I and there exists a nonempty set

I− ⊂ I such that θ̂∗i < 0 for all i ∈ I−. Denote the complement of the union of I+

and I− by I0 and observe that θ̂∗i = 0 for all i ∈ I0. Notice that

∑
i∈I+

pi(θ̂
∗
i ) =

∑
i∈I+

∫ θ̂∗i

0

mi(u)du > a− ψ0. (3.20)

Regard the liquidity-adjusted portfolio value of ψ given by

V L(ψ) = U(ψ − θ̂∗, θ̂∗) + L(θ̂∗) =
∑
i∈I+

vψi (θ̂∗i ) +
∑
i∈I−

vψi (θ̂∗i ) +
∑
i∈I0

vψi (0).

From Lemma 3.7.3 of the Appendix we know that vψi is strictly increasing on [ui, 0).

Consider the transaction θ̂∗∗ ∈ Y with components

θ̂∗∗i =

{
θ̂∗i if i ∈ I+

0 else
. (3.21)

By (3.20), we have θ̂∗∗ ∈ CL(ψ). Furthermore,

vψ(θ̂∗) =
∑
i∈I+

vψi (θ̂∗i ) +
∑
i∈I−

vψi (θ̂∗i ) +
∑
i∈I0

vψi (0)

<
∑
i∈I+

vψi (θ̂∗i ) +
∑
i∈I−

vψi (0) +
∑
i∈I0

vψi (0)

= vψ(θ̂∗∗), (3.22)
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which contradicts the optimality of θ̂∗. Now consider the case ψ0 ≥ a and CL(a)(ψ) 6=

∅. Because the function vψi is strictly increasing on [y
i
, 0), it is evident that for any

transaction θ̂∗ ∈ Y that solves problem (3.10) the set I− must be empty. Hence,

any optimal transaction θ̂∗ ∈ CL(a)(ψ) is nonnegative, i.e. θ̂∗i ≥ 0 for all i ∈ I.

�

3.3.3 Block Trading and Partial Execution Effects

By Corollary 3.2.18 we know that in absence of block trading effects the post-

execution portfolio value vψ coincides with the pre-execution portfolio value ṽψ. In

addition, by Proposition 3.3.4 there exists a transaction θ̂∗ ∈ Y such that V L(ψ) =

vψ(θ̂∗) for every ψ ∈ P . Hence, in absence of block trading effects, for every ψ ∈ P

we have

V L(ψ) = ṽψ(θ̂∗).

Consequently, if there are no block trading effects, the results encountered in (Acerbi

& Scandolo 2008) apply also for the present framework’s liquidity-adjusted portfolio

value V L. In particular, the liquidity-adjusted portfolio value V L is concave on P

for any liquidity policy. Additionally, for ψ ∈ P with ψ0 ≥ 0, L ∈
{
L(a),LS(a)

}
and any λ > 1, we have

V L(λψ) ≥ λV L(ψ).

However, these observations do not explain how the liquidity-adjusted value V L

behaves in presence of block trading and partial execution effects. We address this

question by defining governing market conditions as follows.

Definition 3.3.12. Consider the sets Y ,Bc,X ⊆ P with Y ⊆ X , where Y is the set

of executable transactions and Bc the set of non-block transactions. The governing

market conditions reflecting block trading and partial execution is given by the pair

MC := {Y ,Bc}.
The pair

• MC¬PEBT := {P ,P} excludes block trading and partial execution effects from

governing market conditions,
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• MC¬BT := {Y ,X} excludes block trading effects from governing market con-

ditions,

• MC¬PE := {P ,Bc} excludes partial execution effects from governing market

conditions.

Remark 3.3.13. Note that MC¬B satisfies the condition in Proposition 3.2.11.

In order to conduct an efficient comparison between market conditions consider

the following extension of the notation.

Definition 3.3.14. Let ψ ∈ P and some liquidity policy L be given. The liquidity-

adjusted portfolio value for ψ subjected to L under market conditionsMC = {X ,X ′}
where X ,X ′ ⊆ P is denoted by

V L (ψ |MC ) = sup
{
U(ψ − θ̂, θ̂) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ |MC )
}
,

with

CL(ψ |MC ) =
{
θ̂ ∈ X

∣∣∣ψ − θ̂ + (L(θ̂), 0, . . . , 0) ∈ L
}
,

and where X ′ is the set of non-block transactions.

The presence of either block trading or partial execution effects represents further

restrictions to which we must optimally adjust the post-execution portfolio value

vψ. Consequently and consistent with economic intuition, these effects impair the

liquidity-adjusted portfolio value V L.

Proposition 3.3.15. Assume some governing market conditions MC = {Y ,Bc}
where Y ,Bc ⊆ P. Consider some portfolio ψ ∈ P and some liquidity policy L. Then

V L (ψ |MC ) ≤ V L
(
ψ
∣∣MC¬PE ) ≤ V L

(
ψ
∣∣MC¬PEBT ) , (3.23)

and

V L (ψ |MC ) ≤ V L
(
ψ
∣∣MC¬BT ) ≤ V L

(
ψ
∣∣MC¬PEBT ) . (3.24)

Proof. By the definition of L, L, Definition 3.3.14 and since Y ⊆ P we have

CL(ψ |MC ) ⊆ CL(ψ
∣∣MC¬PE ) = CL(ψ

∣∣MC¬PEBT ), (3.25)

and

CL(ψ |MC ) = CL(ψ
∣∣MC¬BT ) ⊆ CL(ψ

∣∣MC¬PEBT ). (3.26)
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First, consider the case CL(ψ |MC ) 6= ∅. The first inequality in (3.23) follows

straightforwardly by the first inclusion in (3.25). By Proposition 3.2.19 and Bc ⊆ P

we obtain

V L
(
ψ
∣∣MC¬PE ) = sup

{
U(ψ − θ̂, θ̂) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ
∣∣MC¬PE )

}
≤ sup

{
U(ψ − θ̂, 0) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ
∣∣MC¬PE )

}
= sup

{
U(ψ − θ̂) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ
∣∣MC¬PEBT )

}
= V L

(
ψ
∣∣MC¬PEBT ) . (3.27)

Similarly, the second inequality in (3.24) follows straightforwardly from the second

inclusion in (3.26) and the first inequality from

V L (ψ |MC ) = sup
{
U(ψ − θ̂, θ̂) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ |MC )
}

≤ sup
{
U(ψ − θ̂, 0) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ |MC )
}

= sup
{
U(ψ − θ̂) + L(θ̂)

∣∣∣ θ̂ ∈ CL(ψ
∣∣MC¬BT )

}
= V L

(
ψ
∣∣MC¬BT ) .

Finally, consider the case CL(ψ |MC ) = ∅. Notice that V L (ψ |MC ) = −∞. More-

over, we have either CL(ψ
∣∣MC¬PE ) 6= ∅ or CL(ψ

∣∣MC¬PE ) = ∅. For the former

case ∣∣V L (ψ ∣∣MC¬PE )∣∣ <∞,
which holds by Proposition 3.3.1 and for the latter we have V L

(
ψ
∣∣MC¬PE ) =

−∞. Whenever CL(ψ
∣∣MC¬PE ) 6= ∅ we also have CL(ψ

∣∣MC¬PEBT ) 6= ∅ and

hence V L
(
ψ
∣∣MC¬PE ) ≤ V L

(
ψ
∣∣MC¬PEBT ). If CL(ψ

∣∣MC¬PE ) = ∅, then

CL(ψ
∣∣MC¬PEBT ) = ∅ and thus

V L
(
ψ
∣∣MC¬PEBT ) = −∞.

Furthermore, note that in the case CL(ψ |MC ) = ∅, we have CL(ψ
∣∣MC¬BT ) = ∅ by

definition of MC¬BT . Hence,

V L
(
ψ
∣∣MC¬BT ) = −∞,

and the first inequality in (3.24) holds with equality. Analogous to previous argu-

ments, we have either∣∣V L (ψ ∣∣MC¬PEBT )∣∣ <∞ or V L
(
ψ
∣∣MC¬PEBT ) = −∞.
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Remark 3.3.16. Notice that the liquidity-adjusted portfolio value of the Acerbi and

Scandolo’s setup in (Acerbi & Scandolo 2008) is equivalent to V L
(
ψ
∣∣MC¬PEBT ).

3.4 Measures of Risk under Liquidity Adjust-

ments

In this section we introduce the liquidity-adjusted risk measure ρL put forward in

Acerbi and Scandolo (Acerbi & Scandolo 2008), which is a risk measure implied by

a coherent measure of risk and defined on the set of portfolio weights P . Also in

this section we find one of the main contributions of the chapter, which indicates

that in presence of block trading and partial execution effects liquidity-adjusted

risk measures are not convex on P . In addition, we also examine other properties

of liquidity-adjusted risk measures ρL under consideration of those effects. At the

end of the section, we investigate the probability distribution of liquidity-adjusted

portfolio values and show that block trading and partial execution effects increase

the probability of large losses.

3.4.1 Coherent Measures of Risk

As mentioned at the beginning, we study a one-period model. Hence, given some

future point in time we model MSDCs, post-execution best bids and post-execution

best asks to be random, while we assume that all other parameters are deterministic.

In particular, we suppose that the set of executable transactions Y ⊆ P and the set

of block trades B ⊆ P are deterministic and given. Assume that some probability

space (Ω,F ,P) governs the uncertainty on the market. Accordingly, consider the

following definition of MSDCs, post-execution best bids and post-execution best

asks for non-cash assets.

Definition 3.4.1. For every non-cash asset the MSDC and the post-execution best

bid and ask prices are real-valued random variables, i.e. for each i ∈ I, x ∈ R\ {0}
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and θ̂i ∈ Yi

mi(x) : Ω → R,

ω 7→ mi(x)(ω) for ω ∈ Ω,

and

m∗,θ̂ii : Ω → R,

ω 7→ m∗,θ̂ii (ω) for ω ∈ Ω,

where ∗ ∈ {+,−}.

Hence, the liquidity-adjusted portfolio value is a random variable as defined

below.

Definition 3.4.2. Consider governing market conditions MC = {Y ,Bc} where

Y ,Bc ⊆ P, a liquidity policy L and some portfolio ψ ∈ P. Under MC and policy

L, the liquidity-adjusted portfolio value V L (ψ |MC ) for ψ is a real-valued random

variable, i.e.

V L (ψ |MC ) : Ω → R,

ω 7→ V L (ψ |MC ) (ω) for ω ∈ Ω.

We set V L(ψ) = V L (ψ |MC ) whenever there is no chance of confusion.

Furthermore we assume that whenever V L(ψ) 6= −∞ P-a.s., then V L(ψ) ∈

L1(Ω,F ,P). Following Acerbi and Scandolo’s concept, we define the liquidity-

adjusted risk measure ρL, which, differently from Acerbi and Scandolo, represents a

measure of risk reflecting block trading and partial execution effects as part of liquid-

ity risks. Formally, consider a measure of risk ρ :M→ R where M⊆ L1(Ω,F ,P).

Given a liquidity policy L and a risk measure ρ, the implied liquidity-adjusted mea-

sure of risk ρL : P → R is defined by

ρL(ψ) = ρ(V L(ψ)), ψ ∈ P .

In case V L(ψ) = −∞ we set ρ(−∞) = ∞. The liquidity-adjusted risk measure

introduced in (Acerbi & Scandolo 2008) uses a coherent risk measure ρ. Coherent

measures of risk are risk measures satisfying the following four axioms presented by
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Artzner et al. in (Artzner et al. 1999), which we call ADEH axioms.

(M) Monotonicity : For all x, x′ ∈M with x ≤ x′ a.s., we have

ρ(x) ≥ ρ(x′). (3.28)

(TI) Translation Invariance: For all x ∈M and e ∈ R we obtain

ρ(x+ e) = ρ(x)− e., (3.29)

(PH) Positive Homogeneity : For all x ∈M and λ > 0

ρ(λx) = λρ(x). (3.30)

(S) Subadditivity : For all x, x′ ∈M we have

ρ(x+ x′) ≤ ρ(x) + ρ(x′). (3.31)

A less restrictive risk measure class is the convex risk measure family. A measure of

risk ρ :M→ R satisfying properties (M), (TI) and

ρ(λx+ (1− λ)x′) ≤ λρ(x) + (1− λ)ρ(x′),

for x, x′ ∈ M and λ ∈ [0, 1], is called convex measure of risk. It is evident that a

coherent measure of risk is a convex measure. However, a convex measure of risk is

not necessarily coherent.

Furthermore, note that the liquidity-adjusted risk measure ρL is defined on the set

of portfolios P instead on the set of random variablesM, for which the ADEH and

convexity axioms are conceived. A natural question that arises with this remark is

if ρL presents similar properties on P . Acerbi and Scandolo show that the liquidity-

adjusted risk measure is always convex. They also characterize the situations when

the ADEH axioms are fulfilled. Within our setup, we show that the convexity found

by Acerbi and Scandolo does not hold, which is the main contribution of this chapter.

In particular, under block trading and partial execution effects the liquidity-adjusted

risk measure is not convex in general.

Proposition 3.4.3. Consider some coherent risk measure ρ and liquidity policy L.

In general, the liquidity-adjusted risk measure ρL is not convex on P.
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Proof. See Appendix 3.7.4.

�

By noting that block trading and partial execution effects produce non-concavity

on the liquidity-adjusted portfolio value V L shown in Proposition 3.3.5, this result

should not surprise the reader. In the appendix we use the non-concavity of V L

and the expected shortfall as a coherent risk measure to show that coherence of

ρ is not sufficient to even out the non-concavity of V L in order to have a convex

liquidity-adjusted risk measure ρL on P . Recall from the proof of Proposition 3.3.5

non-concavity of V L can arise when considering a cash liquidity policy and two

portfolios where one of them has a positive cash position and the other no cash.

Now we examine some interesting properties of ρL. The following properties in the

proposition below of the liquidity-adjusted risk measure coincide with the results of

Acerbi and Scandolo.

Proposition 3.4.4. Let L be some liquidity policy and ρ a coherent measure of risk.

1. For every ψ, ξ ∈ P with V L(ψ) ≥ V L(ξ) P-a.s., then ρL(ξ) ≥ ρL(ψ).

2. The liquidity-adjusted risk measure ρL is translation subvariant, i.e. for any

e ≥ 0 and ψ ∈ P

ρL(ψ + (e, 0, . . . , 0)) ≤ ρL(ψ)− e ≤ ρL(ψ) + e.

Proof. 1. Follows from axiom (M) of ρ and 2. follows from Proposition 3.3.6, (M)

and (TI) of ρ.

�

Both properties have a natural interpretation. The first states that if the liquidity-

adjusted portfolio value for ψ is almost surely larger than the liquidity-adjusted

portfolio value for ξ, then the liquidity-adjusted risk for the former must be lower

than the risk for the latter, which is intuitive. The second property embeds the

fact that the liquidity adjustments to portfolio values are non-linear, which makes

a portfolio with a positive cash position less risky than the same portfolio without
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the cash position.

Furthermore, liquidity-adjusted risk measures ρL for cash liquidity, total liquidation

and unrestricted liquidation policies are monotonic on the set of portfolios P .

Proposition 3.4.5. Let L ∈
{
L(a),LS(a),LU ,LL

}
and ρ some coherent measure

of risk. For any ψ1, ψ2 ∈ P with ψ1 ≥ ψ2,

ρL(ψ1) ≤ ρL(ψ2).

Proof. From Proposition 3.3.7 we have

V L(ψ1) ≥ V L(ψ2), P− a.s.

The results follows from the (M) of ρ rephrased in Proposition 3.4.4.

�

As shown previously, the total liquidation policy LL implies that the optimal ad-

justment transaction - solution of optimization problem (3.10) - consists of closing

position of the initial portfolio. Consequently, the liquidity-adjusted portfolio can be

easily be characterized, which also facilitates the characterization of ρL
L

presented

below.

Proposition 3.4.6. Let ψ ∈ P and the total liquidation policy LL. Then

1. For λ > 1,

ρL
L

(λψ) ≥ λρL
L

(ψ).

2. ρL
L

is subadditive on discordant portfolios, i.e. for ψ1, ψ2 ∈ P with ψ1 ↓↓ ψ2

ρL
L

(ψ1 + ψ2) ≤ ρL
L

(ψ1) + ρL
L

(ψ2).

Proof. By Proposition 3.3.8 we have

V L
L

(ψ) = ψ0 + L(θ̂∗) P− a.s.,

where θ̂∗ = (0, ψ1, . . . , ψN). Since L is a concave function, we have for λ > 1

L(λθ̂∗) ≤ λL(θ̂∗), (3.32)
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which is proved in (Acerbi & Scandolo 2008). Thus, inequality (3.32) holds P-almost

surely. Result 1. follows from (M) of ρ. Subadditivity follows from Proposition

3.2.13, because L is superadditive on discordant portfolios, and from (M) and from

(S) of ρ.

�

Last, consider the unrestricted liquidation policy LU and assume strictly decreasing

MSDCs. Recall that in this case the optimal liquidity adjustment solving (3.10) is

a non-trade transaction, i.e. θ̂∗ = 0. Hence, the liquidity-adjusted portfolio value

matches the pre-execution mark-to-market value, which is linear in ψ. Because

of this linearity, a coherent risk measure applied on the liquidity-adjusted portfolio

value preserves its properties on the set P . In other words, ρL
U

is coherent on P . To

see this, note that ψ > ξ implies V L
U

(ψ) > V L
U

(ξ), which guaranties monotonicity

of ρL
U

. Positive homogeneity follows from the linearity of the liquidity-adjusted

portfolio value because it equals Ũ(ψ). The remaining properties are shown below.

Proposition 3.4.7. Assume strictly decreasing MSDCs for all non-cash assets, con-

sider LU and any coherent risk measure ρ. The liquidity-adjusted measure of risk

ρL
U

is subadditive and translation invariant for positive cash positions, i.e.

1. For ψ1, ψ2 ∈ P,

ρL
U

(ψ1 + ψ2) ≤ ρL
U

(ψ1) + ρL
U

(ψ2).

2. For ψ ∈ P and e ≥ 0,

ρL
U

(ψ + (e, 0, . . . , 0)) = ρL
U

(ψ)− e.

Proof. Subadditivity. By Proposition 3.3.9 and Proposition 3.2.13 we have for

ψ1, ψ2 ∈ P

V L
U

(ψ1 +ψ2) = U(ψ1 +ψ2, 0) ≥ U(ψ1, 0)+U(ψ2, 0) = V L
U

(ψ1)+V L
U

(ψ2) P−a.s.

The result follows from (M) of ρ.

Translation Invariance. Follows from (TI) of ρ, from Proposition 3.3.9 and by noting

that for ψ ∈ P and e ≥ 0

V L
U

(ψ+(e, 0, . . . , 0)) = U(ψ+(e, 0, . . . , 0), 0) = U(ψ, 0)+e = V L
U

(ψ)+e, P−a.s.
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For the unrestricted liquidation policy LU and strictly decreasing MSDCs, the

liquidity-adjusted risk measure of risk is subadditive and translation invariant be-

cause block trading does not affect the liquidity-adjusted portfolio value.

As shown earlier, whenever block trading effects are not present, the liquidity-

adjusted portfolio value L preserves the properties put forward in (Acerbi &

Scandolo 2008). Accordingly, the liquidity-adjusted measure of risk ρL also pre-

serves all the properties presented in (Acerbi & Scandolo 2008). However, partial

execution and block trading effects lead to greater risk. This issue is discussed next.

3.4.2 Probability Distribution of V L(ψ)

In this section we analyze the probability distribution of the liquidity-adjusted port-

folio value under governing market conditions MC and under market conditions

excluding block trading MC¬BT , partial execution MC¬PE and both MC¬PEBT .

We find that block trading and partial execution produces a shift of the probability

distribution to lower values, i.e. the probability of large losses increases under these

market imperfections.

Let governing market conditions beMC = {Y ,Bc} where Y ,Bc ⊆ P , consider some

liquidity policy L and some portfolio ψ ∈ P . The cumulative probability distribu-

tion function F of the random variable V L (ψ |MC ) is denoted by

P
(
V L (ψ |MC ) ≤ x

)
= F

(
V L (ψ |MC ) ≤ x

)
= FV L(ψ|MC )(x),

for x ∈ R. Regard two real-valued random variables X, Y . We say X dominates

stochastically Y in the first order and denote X �1 Y , if for each x ∈ R we have11

P(X ≤ x) ≤ P(Y ≤ x).

If the random variables are integrable, then we have the following well known result

for which we abstain to present the proof.

Lemma 3.4.8. Observe two real-valued random variables X, Y ∈ L1(Ω,F ,P). If

X �1 Y , then E[X] ≥ E[Y ].

11Following Föllmer and Schied (Föllmer & Schied 2004).
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Previously we have examined the impact of block trading and partial execu-

tion on the liquidity-adjusted portfolio value V L. Under stochastic MSDCs and

post-execution best bids and asks, liquidity-adjusted portfolio value V L is a ran-

dom variable and the results in Sections 3.3.2 and 3.3.3 must be understood as

almost surely statements under probability measure P. By this consideration and

the following convention, the next proposition follows straightforwardly.

Notation 3.4.9. For the remainder, let Λ be either PE, BT or PEBT .

Proposition 3.4.10. Consider some given governing market conditions MC =

{Y ,Bc} where Y ,Bc ⊆ P, some liquidity policy L and some portfolio ψ ∈ P. Then

V L
(
ψ
∣∣MC¬Λ

)
�1 V

L (ψ |MC ) .

If V L (ψ |MC ) ∈ L1(Ω,F ,P) for any MC, then

E
[
V L
(
ψ
∣∣MC¬Λ

)]
≥ E

[
V L (ψ |MC )

]
.

Proof. Since inequalities (3.23) and (3.24) of Proposition 3.3.15 hold P-almost surely

we have

FV L(ψ|MC )(x) ≥ FV L(ψ|MC¬Λ )(x),

for all x ∈ R. The second part follows from Corollary 3.4.8.

�

This result points out that block trading and partial execution effects shift the

probability distribution of the liquidity-adjusted portfolio value towards left to lower

values. Furthermore, by considering these effects the expected value drops to lower

values also.

To conclude this section, we throw a glance to the quantiles of the probability

distribution of V L. In particular, we focus on the most popular quantile used in

practice: Value-at-Risk (VaR). Following McNeil et al. (McNeil et al. 2005), let the

probability distribution function of the random variable X be denoted by FX . For

α ∈ (0, 1) the right α-quantile of FX is given by

qα(FX) = inf {x ∈ R |FX(x) > α} .
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Additionally, the VaR at level α ∈ (0, 1) is given by

V aRα (X) = −qα(FX).

Although VaR is not a coherent risk measure, its usage has a wide range for which we

make it part of our analysis. According to results presented above, the quantile of the

liquidity-adjusted portfolio value is lower when block trading and partial execution

effects exist. Hence, VaR is larger under block trading and partial execution.

Proposition 3.4.11. Consider MC = {Y ,Bc} where Y ,Bc ⊆ P, any liquidity

policy L and ψ ∈ P. For α ∈ (0, 1)

qα
(
FV L(ψ|MC )

)
≤ qα

(
FV L(ψ|MC¬Λ )

)
,

and

V aRα

(
V L (ψ |MC )

)
≥ V aRα

(
V L
(
ψ
∣∣MC¬Λ

))
.

Proof. Since FV L(ψ|MC )(x) ≥ FV L(ψ|MC¬Λ )(x) for each x ∈ R, we obtain for each

α ∈ (0, 1)

qα
(
FV L(ψ|MC )

)
= inf

{
x ∈ R

∣∣FV L(x)(ψ|MC ) > α
}

≤ inf
{
x ∈ R

∣∣∣FV L(x)(ψ|MC¬Λ ) > α
}

= qα

(
FV L(ψ|MC¬Λ )

)
.

Since V aRα(X) = −qα(FX) the proof is complete.

�

3.5 Numerical Example

In order to illustrate our results by comparing them with (1) the framework of

Acerbi and Scandolo and (2) a framework without liquidity adjustments, we present

a numerical example in line with the analytically solvable class of V L exhibit in

(Acerbi & Scandolo 2008). Accordingly, the MSDCs are strictly decreasing of the

form mi(x) = Aie
−kix with Ai, ki > 0 for x ∈ R, i ∈ I. Hence, the transaction

proceeds are given by

L(θ̂) =
N∑
i=1

Ai
ki

(
1− e−kiθ̂i

)
, θ̂i ∈ Yi.
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We consider the cash liquidity policy without buy trades LS(a) for some a > 0.

Whenever block trading is not present, Y ⊆ Bc, the optimal transaction θ̂∗ that

solves problem (3.10) is given by12

θ̂∗i =
1

ki
log

( ∑N
i=1

Ai
ki∑N

i=1
Ai
ki
− a

)
,

for i ∈ I, and the liquidity-adjusted portfolio value is given by

V L
S(a)(ψ) =

N∑
i=1

Ai(ψi − θ̂∗i ) + a, ψ ∈ P .

For the Monte Carlo simulation we consider the cases Y ⊆ Bc and Bc ⊂ Y where

the vectors A := (A1, . . . , AN) and k := (k1, . . . , kN) are randomly generated from

a lognormal distribution. We impose post-execution best bid and ask prices that

conform with Assumption 3.2.9. Additionally, we also compute the portfolio value

without any liquidity adjustment. Figure 3.1 exhibits the histogram resulting from

the simulation of (i) the liquidity-adjusted portfolio value with block trading and

partial execution effects, (ii) the liquidity-adjusted portfolio value without those

effects corresponding to the framework of Acerbi and Scandolo and (iii) the portfolio

value without any liquidity risk adjustment.

Table 3.1 displays the means and quantiles for all three cases. According to

Proposition 3.4.10 and Proposition 3.4.11 we observe lower values for case (i) than

cases (ii) and (iii), which indicates greater risk for (i).

Table 3.1: Quantiles from Simulation

Quantiles 1% 5% 10% 25% 50% 75% Mean

(i) Block Trading and Partial Execution 8719.2 8848 8957.6 9159.2 9323.5 9522.4 9342.5

(ii) Without Block Trading and Partial Execution 9311.1 9442.5 9568.2 9775.8 9969.4 10159.6 9975.5

(iii) Without Liquidity Risk Adjustment 9335.6 9467.1 9590.7 9798 9990.7 10181.6 9997.2

3.6 Concluding Remarks

In the present chapter we have investigated the consequences of block trading and

partial execution on the setup from Acerbi and Scandolo (Acerbi & Scandolo 2008).

12For a formal proof see (Acerbi & Scandolo 2008).
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Figure 3.1: Histograms from Simulation

We undertake the same liquidity adjustment to portfolio values as in (Acerbi &

Scandolo 2008), which produces the liquidity-adjusted portfolio value V L. Via a

coherent risk measure we define the liquidity-adjusted risk measures ρL put forward

in (Acerbi & Scandolo 2008). Acerbi and Scandolo show that V L is concave on P
and ρL is convex on P . By introducing block trading and partial execution effects,

we show that, under these circumstances, V L is not concave on P and ρL is not

convex on P . In addition, we show that the existence of block trading and partial

execution effects induces a shift of the probability function of V L to lower values,

i.e. the probability of large losses increases.

Measuring liquidity risk is evidently not a simple task. This may rely on the fact
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that liquidity risk expresses itself through several channels. The lack of a unique

definition of liquidity risk or, more precisely, the ample variety of definitions, effects

and consequences of liquidity risk represents a cumbersome issue that researchers

may need to solve first. As this analysis points out, by ignoring some aspects

of liquidity risk, we arrive at wrong conclusions, which may cause catastrophic

damages.

Our model does not reflect all forms of liquidity risk, and those which are included

are introduced in the most simple manner. In this sense, researchers may find

worthy augmenting more forms of liquidity risk to our model or to handle more

elaborated concepts.
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3.7 Appendix

3.7.1 Additional Lemma in Proof of Proposition 3.3.4

Lemma 3.7.1. Consider the function

vψi (θ̂i) = m+,θ̂i(ψi − θ̂i)1{ψi−θ̂i>0} +m−,θ̂i(ψi − θ̂i)1{ψi−θ̂i<0} +

∫ θ̂i

0

mi(u)du,

for i ∈ I.

1. If ȳi ≥ ψi > b̄i or ψi > ȳi > b̄i, then

vψi (b̄i) ≥ vψi (θ̂i) for θ̂i ∈ (b̄i, ȳi].

2. If y
i
≤ ψi < bi or ψi < y

i
< bi, then

vψi (bi) ≥ vψi (θ̂i) for θ̂i ∈ [y
i
, bi).

Proof. 1. For ȳi ≥ ψi > b̄i,

vψi (b̄i) = m+
i (ψi − b̄i) +

∫ b̄i

0

mi(u)du,

and

vψi (θ̂i) =

{
m+,b̄i
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du for θ̂i ∈ (b̄i, ψi]

m−i (ψi − θ̂i) +
∫ θ̂i

0
mi(u)du for θ̂i ∈ (ψi, ȳi].

Thus, for θ̂i ∈ (b̄i, ψi] we have

vψi (b̄i)− vψi (θ̂i) = m+
i (ψi − b̄i)−m+,b̄i

i (ψi − θ̂i)−
∫ θ̂i

b̄i

mi(u)du

≥ m+
i (ψi − b̄i)−m+

i (ψi − θ̂i)−
∫ θ̂i

b̄i

mi(u)du

=

∫ θ̂i

b̄i

(
m+
i −mi(u)

)
du ≥ 0, (3.33)

and for θ̂i ∈ (ψi, ȳi],

vψi (b̄i)− vψi (θ̂i) = m+
i (ψi − b̄i)−m−i (ψi − θ̂i)−

∫ θ̂i

b̄i

mi(u)du

≥ m+
i (θ̂i − b̄i)−

∫ θ̂i

b̄i

mi(u)du ≥ 0.

122



1. For ψi > ȳi > b̄i, we have (3.33) for θ̂i ∈ (b̄i, ȳi].

2. For y
i
≤ ψi < bi, we obtain

vψi (bi) = m−i (ψi − bi)−
∫ 0

bi

mi(u)du,

and

vψi (θ̂i) =

{
m
−,bi
i (ψi − θ̂i)−

∫ 0

θ̂i
mi(u)du for θ̂i ∈ [ψi, bi)

m+
i (ψi − θ̂i)−

∫ 0

θ̂i
mi(u)du for θ̂i ∈ [bi, ψi).

Hence, for θ̂i ∈ [ψi, bi),

vψi (bi)− v
ψ
i (θ̂i) = m−i (ψi − bi)−m

−,bi
i (ψi − θ̂i) +

∫ bi

θ̂i

mi(u)du

≥ m−i (θ̂i − bi) +

∫ bi

θ̂i

mi(u)du

=

∫ bi

θ̂i

(
mi(u)−m−i

)
du ≥ 0, (3.34)

and for θ̂i ∈ [y
i
, ψi),

vψi (bi)− v
ψ
i (θ̂i) = m−i (ψi − bi)−m+

i (ψi − θ̂i) +

∫ bi

θ̂i

mi(u)du

≥ m−i (θ̂i − bi) +

∫ bi

θ̂i

mi(u)du

=

∫ bi

θ̂i

(
mi(u)−m−i

)
du ≥ 0.

2. For ψi < y
i
< bi we have (3.34) for all θ̂i ∈ [y

i
, bi).

�

3.7.2 Liquidity Restriction

Lemma 3.7.2. Consider some a > 0 and ψ ∈ P with a−ψ0 > 0. For every θ̂∗ ∈ Y
that solves optimization problem (3.10) for L ∈

{
L(a),LS(a)

}
, there exists some

θ̂∗∗ ∈ Y that also solves problem (3.10) for L with13

ψ0 + L(θ̂∗∗) = a.

13Note that if there is some θ̂∗ ∈ Y that solves (3.10), then V L(θ̂∗) 6= −∞.
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Proof. Let a > 0, L ∈
{
L(a),LS(a)

}
and ψ ∈ P with a − ψ0 > 0. Assume

θ̂∗ ∈ CL(ψ) 6= ∅ solves problem (3.10), i.e.

U(ψ − θ̂∗, θ̂∗) + L(θ̂∗) ≥ U(ψ − θ̂, θ̂) + L(θ̂) ∀ θ̂ ∈ CL(ψ) 6= ∅, (3.35)

such that

ψ0 + L(θ̂∗) > a. (3.36)

Hence, there exits K ⊆ I such that θ̂∗i > 0 for all i ∈ K. This implies the existence

of a some nonempty subset J ⊆ K such that transaction θ̂∗∗ ∈ Y is given by

θ̂∗∗i =

{
θ̂∗i for i /∈ J
θ̂∗i − x̂i for i ∈ J

,

where 0 < x̂i ≤ θ̂∗i such that ψ0 + L(θ̂∗∗) = a. Clearly, J 6= ∅ because of condition

(3.36). Thus,

U(ψ − θ̂∗∗, θ̂∗∗) + L(θ̂∗∗)

= ψ0 +
∑
i/∈J

(
m

+,θ̂∗i
i (ψi − θ̂∗i )1{ψi−θ̂∗i>0} +m

−,θ̂∗i
i (ψi − θ̂∗i )1{ψi−θ̂∗i<0}

)
+

∑
i∈J

(
m

+,θ̂∗i−x̂i
i (ψi − θ̂∗i + x̂i)1{ψi−θ̂∗i +x̂i>0}

+ m
−,θ̂∗i−x̂i
i (ψi − θ̂∗i + x̂i)1{ψi−θ̂∗i +x̂i<0}

)
+
∑
i/∈J

∫ θ̂∗i

0

mi(u)du

+
∑
i∈J

∫ θ̂∗i−x̂i

0

mi(u)du

≥ ψ0 +
∑
i/∈J

(
m

+,θ̂∗i
i (ψi − θ̂∗i )1{ψi−θ̂∗i>0} +m

−,θ̂∗i
i (ψi − θ̂∗i )1{ψi−θ̂∗i<0}

)
+

∑
i∈J

(
m

+,θ̂∗i−x̂i
i (ψi − θ̂∗i )1{ψi−θ̂∗i +x̂i≥0} +m

−,θ̂∗i−x̂i
i (ψi − θ̂∗i )1{ψi−θ̂∗i +x̂i<0}

)
+

N∑
i=1

∫ θ̂∗i

0

mi(u)du

≥ ψ0 +
N∑
i=0

(
m

+,θ̂∗i
i (ψi − θ̂∗i )1{ψi−θ̂∗i>0} +m

−,θ̂∗i
i (ψi − θ̂∗i )1{ψi−θ̂∗i<0}

)
+

N∑
i=1

∫ θ̂∗i

0

mi(u)du

= U(ψ − θ̂∗, θ̂∗) + L(θ̂∗).
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The first inequality follows from the decreasing shape of MSDC and condition

m+,b̄i ≥ mi(x) for x ≥ b̄i of Assumption 3.2.9, since∑
i∈J

(
m

+,θ̂∗i−x̂i
i · x̂i · 1{ψi−θ̂∗i +x̂i≥0} +m

−,θ̂∗i−x̂i
i · x̂i · 1{ψi−θ̂∗i +x̂i<0}

)
≥
∑
i∈J

∫ θ̂∗i

θ̂∗i−x̂i
mi(u)du.

For the second inequality we must consider the following three cases for i ∈ J : (i)

ψi − θ̂∗i > 0 which implies ψi − θ̂∗i + x̂i ≥ 0, (ii) ψi − θ̂∗i < 0, ψi − θ̂∗i + x̂i < 0

and (iii) ψi − θ̂∗i < 0, ψi − θ̂∗i + x̂i ≥ 0. Considering Assumption 3.2.9, for those

i ∈ J satisfying cases (i) or (ii) the second inequality becomes an equality and for

those i ∈ J satisfying case (iii) it is a strict inequality. By construction we have

θ̂∗∗ ∈ CL(ψ). Hence, it must hold

U(ψ − θ̂∗∗, θ̂∗∗) + L(θ̂∗∗) = U(ψ − θ̂∗, θ̂∗) + L(θ̂∗),

by condition (3.35) and optimality of θ̂∗. In other words, θ̂∗∗ solves problem (3.10)

and satisfies ψ0 + L(θ̂∗∗) = a.

�

3.7.3 Additional Lemma in Proof of Proposition 3.3.9

Lemma 3.7.3. Assume that for all i ∈ I the MSDC is strictly decreasing, i.e.

mi(x) < mi(x
′),

for x, x′ ∈ R\ {0} with x > x′. Then, for any ψ ∈ P and every i ∈ I the function

vψi is strictly increasing on [y
i
, 0) and strictly decreasing on (0, ȳi].

Proof. First, we analyze the function vψi on [y
i
, 0). Note that vψi can take only the

following values

vψi (θ̂i) =


m−i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du if θ̂i ≥ bi and θ̂i > ψi

m
−,bi
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du if θ̂i < bi and θ̂i > ψi∫ θ̂i

0
mi(u)du if θ̂i = ψi

m+
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du else.
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For the two first cases we have the following derivative

dvψi (θ̂i)

dθ̂i
=

{
−m−i +mi(θ̂i) if θ̂i > bi and θ̂i > ψi

−m−,bii +mi(θ̂i) if θ̂i < bi and θ̂i > ψi,

and for the fourth case the derivative is given by

dvψi (θ̂i)

dθ̂i
= −m+

i +mi(θ̂i).

Since mi(x) is strictly decreasing and by Assumption 3.2.9, we obtain
dvψi (θ̂i)

dθ̂i
> 0

for these three cases. Furthermore, from Lemma 3.7.1 we know that vψi increases

at discontinuity points θ̂i = bi. Because we assume strictly decreasing MSDCs, vψi

strictly increases at discontinuity points. For the case θ̂i = ψi, consider some ε > 0

and observe that by strictly decreasing MSDCs we have

m−,ψi−εi · ε+

∫ ψi−ε

0

mi(u)du <

∫ ψi

0

mi(u)du < −m−,ψi+εi · ε+

∫ ψi+ε

0

mi(u)du,

or equivalently,

vψi (θ̂i − ε) < vψi (θ̂i) < vψi (θ̂i + ε).

Hence, vψi is strictly increasing on [y
i
, 0) for any ψ ∈ P . We find symmetrical

arguments of the function vψi for θ̂i ∈ (0, ȳi]:

vψi (θ̂∗i ) =


m+
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du if θ̂i ≤ b̄i and θ̂i < ψi

m+,b̄i
i (ψi − θ̂i) +

∫ θ̂i
0
mi(u)du if θ̂i > b̄i and θ̂i < ψi∫ θ̂i

0
mi(u)du if θ̂i = ψi

m−i (ψi − θ̂i) +
∫ θ̂i

0
mi(u)du else.

Following the same steps as before, we find

dvψi (θ̂i)

dθ̂i
< 0,

and for the first two cases θ̂i = b̄i and θ̂i = ψi

vψi (θ̂i − ε) > vψi (θ̂i) > vψi (θ̂i + ε),

for some ε > 0. Hence, vψi is strictly decreasing on [y
i
, 0) for any ψ ∈ P .

�
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3.7.4 Proof of Proposition 3.4.3

Consider the same scenario as in the proof of Proposition 3.3.5 for the portfolios

ψ1, ψ2 ∈ P and choose some λ ∈ (0, 1) such that

λV L(a)(ψ1) + (1− λ)V L(a)(ψ2)− V L(a)(ψλ) > 0, (3.37)

as shown in the mentioned proof.

Assume there are only two states of the world. Hence, for any portfolio ψ ∈ P its

liquidity-adjusted value equals V L(a)(ψ; p) with probability p < 1/2 and V L(a)(ψ; 1−
p) with probability 1−p. Assume that the MSDC is so distributed that for the chosen

inequality (3.37) holds in both states of the world λ ∈ (0, 1). Let

V L(a)(ψ; p) < V L(a)(ψ; 1− p),

and

V L(a)(ψ; p) 6= −∞,

for ψ ∈
{
ψ1, ψ2, ψλ

}
. Furthermore, choose α ∈ (0, 1) such that p < α and consider

the following lower α-quantile

qα
(
V L(a)(ψ)

)
:= inf

{
x ∈ R|P

(
V L(a) ≤ x

)
≥ α

}
,

and set qα (ψ) := qα
(
V L(a)(ψ)

)
. Hence,

qα
(
ψ1
)

= V L(a)(ψ1; 1− p), qα
(
ψ2
)

= V L(a)(ψ2; 1− p),

qα
(
ψλ
)

= V L(a)(ψλ; 1− p).

Consider the expected shortfall ES which is a coherent risk measure and the repre-

sentation of Acerbi and Tasche (Acerbi & Tasche 2002). Accordingly, the expected

shortfall at level α ∈ (0, 1) for a discrete random variable X is given by

ESα(X) = − 1

α
E
[
X1{X≤qα(X)} +X

α− P (X ≤ qα(X))

P (X = qα(X))
1{X=qα(X)}

]
.

In our case, the expected shortfall is given for portfolios ψ ∈
{
ψ1, ψ2, ψλ

}
by

ESα (ψ) = − 1

α
E
[
V L(a)(ψ)

]
− 1

α
E
[
V L(a)(ψ) · α− 1

1− p
· 1{V L(a)(ψ)=qα(ψ)}

]
= − 1

α

[
pV L(a)(ψ; p) + (1− p)V L(a)(ψ; 1− p)

]
− 1

α
(α− 1)V L(a)(ψ; 1− p)

= − 1

α
pV L(a)(ψ; p)− 1

α
(α− p)V L(a)(ψ; 1− p).
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Thus,

α
[
λESα

(
ψ1
)

+ (1− λ)ESα
(
ψ2
)
− ESα

(
ψλ
)]

= pV L(a)(ψλ; p) + (α− p)V L(a)(ψλ; 1− p)

−λ
[
pV L(a)(ψ1; p) + (α− p)V L(a)(ψ1; 1− p)

]
−(1− λ)

[
pV L(a)(ψ2; p) + (α− p)V L(a)(ψ2; 1− p)

]
= −p

[
λV L(a)(ψ1; p) + (1− λ)V L(a)(ψ2; p)− V L(a)(ψλ; p)

]
−(α− p)

[
λV L(a)(ψ1; 1− p) + (1− λ)V L(a)(ψ2; 1− p)− V L(a)(ψλ; 1− p)

]
< 0,

which follows from inequality (3.37) and α > p. Hence,

λESα
(
ψ1
)

+ (1− λ)ESα
(
ψ2
)
− ESα

(
ψλ
)
< 0,

or, equivalently,

ρL
(
λψ1 + (1− λ)ψ2

)
> λρL

(
ψ1
)

+ (1− λ)ρL
(
ψ2
)
.

�
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