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Abstract

This dissertation deals with auctions and other, financial market mechanisms, and

how they work in real life situations. Such mechanisms have been extensively studied

in economics and many elegant results have been gained. These results have been

also used in the design of real life auctions, competitions and financial markets. In

this dissertation, I show that there are relevant facts that should influence mechanism

design for practical purposes, but are omitted in the main corpus of the literature.

One of these facts, explored in the first chapter of the dissertation, based on a

single authored manuscript of this author, deals with resale possibilities. Whenever

a durable good is sold, there is always a possibility that it will be resold. Even

when such resale is forbidden, many imaginative ways have been found to overcome

the restrictions. The possibility of resale alters many standard results regarding

the efficiency of the commonly used mechanisms and their revenue ranking. While

the importance of resale has been recognized early (see Milgrom 1987) there is a

relative dearth of models including resale until quite recently (see the work of Philip

Haile 1999, 2001, 2003). This is probably due to the widespread belief that resale

possibilities are adequately covered by models with common values. However Haile

(1999, 2001, 2003) has shown theoretically that this is often not true. The first

chapter of the dissertation shows that resale also matters in the laboratory. Two

treatments were designed and tested for this purpose. In both there is an English

auction where bidders have private values. The initial auction is followed by a second

stage where the winner is allowed to resell the good to the other players in an English

auction with a reserve price. In one treatment, the winner can only base his reserve

price on the signals the other players sent through their bids. In the other treatment
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however, all private values become public after the initial auction and thus the reserve

price is set equal to the highest private value among all players. In both treatments,

bidding your value was an equilibrium strategy, exactly as in a simple English auction

without resale. The results of the experiments show that resale possibilities, do

indeed influence bidding even when the theory predicts no change. We attribute

this deviation to the phenomenon of noisy behavior and employ a range of bounded

rationality models like a QRE and a levels of reasoning model to formally test the

hypothesis. Additionally we find that the exact structure of the resale market matters,

as behavior in the two resale treatments differed significantly.

In the second chapter of the dissertation, based on a paper coauthored with Rose-

marie Nagel, another kind of omitted characteristic of many auctions is treated,

namely toeholds. In many auctions one or many of the potential bidders already

own a part of the asset that is being sold. In these cases the equilibrium strategies

can be very different. In Bulow et al. (1999) the authors predict that even very small

toeholds can have an explosive effect. Strong players, ie the ones with the highest

toehold, bid in equilibrium much more aggressively than in the simple case without

toeholds and weak players bid much less aggressively. We decided again to test this

prediction in the lab and failed to find any signs of an explosive equilibrium. However,

bidders behave differently with respect to normal auctions without toeholds and the

size of the toeholds matters. We attribute the failure of the Nash prediction to the ex-

treme nature of this equilibrium. Payoff functions are unusually flat, in effect bidders

can deviate as much as 50% from the equilibrium strategy with only minimal losses

in payoffs. Such an equilibrium is highly implausible and unstable; if bidders have

even small biases towards some particular action, in many cases there is no sufficient

force, in the form of pecuniary incentives, that will move them towards equilibrium.

The results of these first two chapters not only advance knowledge in the applica-

tion of the auctions and mechanism design theory. The behavioral results should add

to the predictive power of game theoretic models in general. It is a widely applicable

observation that in games where the equilibrium payoffs are flat, real players do not

necessarily play strategies predicted by theory. Additionally, the papers focus on the

behavioral effect of noisy behavior and the anticipation thereof. If a small amount of
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noise changes the players’ best responses drastically, they will tend to deviate from

equilibrium in order to insure themselves from unexpected behavior on behalf of their

opponents. In most real life situations such noise is to be expected. It may also be

a kind of experimentation, players try a range of strategies before they settle down.

Moreover, noisy communication or false interpretation of instructions -when players

interact through agents- can also have an effect. A final source for such noise can be

just other considerations that are treated as exogenous in these models, reasons for

which players might want to deviate from equilibrium such as focal points, altruism,

fairness etc

The third chapter is based on joint work with Michael Zaehringer. It proposes a

mechanism to sell an asset when there are many small players who have information

about the private values of other players. In concrete terms, we think of the case

where there is a seller of a large asset (say a company) and some strategic buyers

who want to acquire the control of the asset. We divide the value of the asset in a

common value part, that stems from the cash flow and a private value part that stems

from private benefits of control. The first part is common knowledge. The private

values however are not known to the seller, but are known to some small informed

speculators, for example investment banks. The seller’s problem is then to get this

information in order to appropriate more rents from the potential buyer.

A mechanism that is often proposed when selling an asset to a few strategic

buyers is an auction. However, such an auction will fail to use the information of

the informed speculators, who are too small to participate. A mechanism with better

information aggregation properties is a sale of shares of this company through an

IPO. The downside of an IPO is that it removes power from the hands of the seller.

The chapter proposes a two stage mechanism that combines the strengths of these

two mechanisms. In the first stage a small part of the shares is sold through an IPO

and a price is formed that, as we shall see, aggregates the information of the small

speculators. The seller then uses this information to design an optimal auction in the

second stage and maximize his revenue when selling the rest of the asset (including

the controlling rights) to the large strategic investor.

A key detail that makes the two stage mechanism work is minority shareholder
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protection, in the form of the sell-out rule. This rule specifies minority shareholders

can force majority shareholders to buy their shares for a fair price. Because of this

rule, the speculators have an incentive to buy shares in the first stage and reveal their

information. Thus the paper shows that a previously unstudied result of minority

shareholder protection is that speculators are induced to participate and thus add to

the informational content of market prices.
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Chapter 1

English Auctions with Resale

1.1 Introduction

Auctions are very often followed by a resale opportunity. For instance, after virtually

every durable good auction, the winner can choose to resell the good to the competing

bidders or other third parties. Even when resale is explicitly prohibited, ways can

be found to get around the prohibition. Consider the case of mobile phone and

wireless spectrum licences where often "use-it-or-lose-it" conditions to prevent resale

are imposed. Still these restrictions can be circumvented. The company holding the

licence can be bought and there have even been cases where special companies were

used to buy and resell the licence.

Until recently resale was not considered in auction models. However the work of

Haile (1999, 2000, 2001, 2003) has shown that the existence of resale opportunities

is important and can change many results of auction theory. In order for resale to

be meaningful, the outcome of the initial auction must be inefficient with a positive

probability. In Haile’s paper (2003) the highest value player does not necessarily win

in the initial auction because he does not perfectly know his value or because he is

not participating. Other ways to induce resale in equilibrium can be asymmetries in

the values of the bidders (Hafalir and Krishna 2008, Garratt and Troeger 2006) or

new participants arriving in the resale stage (Haile 1999).

In this paper I test auctions with resale in the laboratory based on a simple model
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CHAPTER 1. ENGLISH AUCTIONS WITH RESALE 2

from Haile (1999) and find an alternative reason for resale that has not yet been

considered in the abstract theoretical models but is plausible when human players are

involved, namely noisy decision making. People make mistakes and anticipate others

to make mistakes. This can lead players to deviate from theoretical predictions in

systematic ways. To see how it can induce resale, consider the following example.

Suppose you are participating in an English auction for works of art, regarded

often to be a textbook example of private values, in the absence of resale possibilities.

Suppose that the current price for the Picasso painting under sale is 10 euros. Even

if you do not have a taste for cubism and thus your private value is zero you might

still want to participate in the auction, expecting to resell the painting for a higher

price. Thus resale introduces a common value element to the valuations of bidders

and can induce overbidding. We could use a similar argument in the markets for real

estate, bonds, operating licences and more.

Thinking in line with standard models one could note that in such a simple set-

ting, bidding one’s value is still a symmetric equilibrium. A strategy of overbidding

expecting to resell is not consistent with this equilibrium. If others bid their values,

no profitable resale is possible. Thus winning with a bid higher than your value can

only result in zero or negative payoffs. Crucially however, this is only true if bidders

never make mistakes, as is usually assumed.

From our experience in the lab and the field, we know humans are prone to making

mistakes. Expecting high value bidders to make mistakes can make it optimal for low

value bidders to bid more than their values. This in response can lead to high value

bidders bidding less and expecting to buy cheaper in the resale stage. Thus resale

opportunities can be exploited even if standard theory predicts they will not and

they can give rise to richer bidding strategies than theoretically expected. Let it be

emphasized that this deviation from standard models is quite natural. There is no

need for restrictive assumptions on the structure of markets or the private information

of bidders to induce resale in real life situations. A sufficient condition, as will be

shown, is the presence of a small amount of noise. Such noise exists in many markets,

even in financial markets where stakes are very high (see Shleifer and Summers 1990).

It can stem from experimentation, lack of experience or misunderstanding of the rules,
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false transmission of information and mistakes in the execution of orders, liquidity

constraints or other exogenous reasons that are not adequately modeled in theory but

whose presence in real markets cannot be easily dismissed.

To examine the importance of resale opportunities and the effect of noise in a

controlled environment, I designed and ran two experimental treatments of English

auctions with resale, with different informational backgrounds but with the same equi-

librium bidding functions prescribing that players bid their values. Subjects exhibited

significantly different behavior with respect to both the theory and previous auction

experiments without resale. Instead of bidding their values in both treatments, they

overbid relative to equilibrium when they can be certain they can reap all the rents

in the resale markets, and they tend to underbid when the resale outcomes are un-

certain. Moreover this result should not be attributed simply to irrational behavior

in the laboratory, but seems to have a reasonable explanation. Subjects do try to

maximize their profits. But while doing so, they anticipate the possibility of oth-

ers making mistakes and they use this knowledge more or less optimally. In that

sense, this paper presents a previously unstudied example of a more general class of

games where the anticipation of noise drastically changes players’ best responses1. In

such cases, standard game theory loses much of its predictive power and concepts of

bounded rationality, such as a Quantal Response Equilibrium (McKelvey and Palfrey

1995) and levels of reasoning (Nagel 1995, Stahl 1995, Camerer 2004, Crawford and

Iriberri 2008), perform much better.

The experimental economics literature has not focused on auctions with resale yet,

for the same reasons that there were precious few theoretical models of resale until

recently. To my knowledge there exist three other experimental papers on auctions

with resale. Two of these analyze symmetric auctions, Georganas (2003) on which

part of the present paper is based and recent independent work by Lange, List and

Price (2004). Their experimental treatments are similar to the ones in this paper,

but they differ in important ways: first they used first-price sealed-bid auctions and

1Games with this property include the guessing game, the centipede game and the traveler’s
dilemma.
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secondly they gave players noisy signals about their private values. They found devi-

ations from equilibrium predictions, which they attribute to risk aversion. However

risk aversion alone does not change the equilibrium in our games, so it cannot explain

the data in the present study. Subsequent to the present paper, Georganas and Kagel

(2008) analyze asymmetric first price auctions with resale and find support for the

equilibrium that predicts weak players bidding more aggressively than without resale.

Even though the possibility of resale and its potential importance has been recog-

nized in the theoretical literature (Milgrom and Weber, 1982 and Milgrom 1987 with

the first models of auctions with resale) there has been a striking absence of formal

models featuring resale until recently. A frequent argument has been that resale is

covered by the assumption of common values. However, as shown in Haile (2003)

players in the initial auction have common values when there is a possibility of resale

but, importantly, valuations are endogenously determined and equilibrium strategies

are not the same as in the simple common value model. Moreover Revenue Equiva-

lence holds under some assumptions although it does not in the CV case. In Haile

(2003) bidders have noisy signals about their values in the initial auction. Noisy sig-

nals work in a similar way as the noisy bids in this paper, as they lead to inefficient

outcomes and profitable resale.

There are of course other possibilities to make resale potentially profitable. Haile

(1999) assumes that an a priori known number of bidders is added to the bidder

pool in the second period. These new subjects arriving in the resale auction can

have higher private values than the winner of the first auction, opening up resale

possibilities.

Alternatively, one can construct models with asymmetric equilibria. Intuitively,

resale seems plausible in such an equilibrium, as the players will have asymmetric

strategies and thus the highest value player will not necessarily be the highest bidder

in the initial auction. This option is explored in Garratt, Troeger (2006). In a setup

similar to ours they include speculators with zero valuations and find asymmetric

equilibria where the speculator wins with positive probability. Gupta and Lebrun

(1999) and Hafalir and Krishna (2008), on which the aforementioned Georganas and

Kagel paper is based, have bidders with potentially positive use values, which however
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are asymmetrically distributed. This setup also gives rise to inefficient outcomes and

subsequent resale.

Finally some other models including some flavor of resale are Ausubel and Cram-

ton (1999), McAfee (1998) and Jehiel and Moldovanu (1999), although their setups

are not directly related to the one in this paper.

This paper is structured as follows. The experimental procedure is introduced

in section 1.2. Section 1.3 presents the equilibrium predictions and the results are

presented in section 1.4. Models of bounded rationality involving some flavor of noisy

decision making are presented in section 1.5. Ideas for future work are discussed in

section 1.6 and section 1.7 concludes.

1.2 Experimental design

There are two stages in the game. In the first stage four bidders i = 1, 2, 3, 4 bid

in an English auction2 for one unit of an indivisible object. Each bidder has a use

value vi, which is identically independently drawn from a discrete uniform distribution

with support [0,100]. The distribution of the use values is common knowledge, but

the actual use values are private knowledge. We have to emphasize the distinction

between a bidder’s use value, i.e. the value a bidder places on owning the object

ignoring any resale possibilities and the bidder’s valuation, which is the value she

places on winning the auction and which is determined endogenously, taking account

of the resale opportunity.

For the auction we use an ascending clock design (see Kagel et al. 1987). There is

a clock on each computer screen, starting simultaneously from zero and synchronously

rising every second in steps of one unit. Each subject can exit the auction at any

time by pressing a button. Once out of the auction no reentry is possible. The other

bidders can observe the price at which one exits. After three bidders have left the

auction, the last remaining bidder obtains the good and has to pay the price p1 at

2To be more specific we use the Japanese variant of the English auction (see Milgrom and Weber
1982). There exist of course other, quite different variants which are not so practical to implement
in a laboratory experiment.
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which the last one left. This concludes the first stage.

Observe that the use of the English auction does not allow us to observe the

intended bid of the winner, but only a lower bound. One could possibly argue that a

second-price sealed-bid auction in the first stage would suit our purpose better. With

this configuration the unobservable final bid problem is avoided. However behavior in

sealed bid auctions usually presents large deviations from equilibrium, even without

resale. Thus it is not sure one can separate the effect of resale from the other factors

which are pushing behavior away from equilibrium3. On the other hand the English

auction is widely studied and subjects seem to understand the Nash equilibrium and

follow the predicted strategies quite closely.

In the second stage there is the possibility of resale. This is done through an Eng-

lish auction, where the seller can choose a reservation price. The difference between

the two resale treatments, lies in the informational background of the second stage.

As discussed there are many ways to model the resale stage. We chose two extremes

with a big span between them, to test for a wide range of possibilities. In the first,

incomplete information treatment (hence INC), the only information the bidders get

about the others’ values is through the bids in the initial auction. The seller decides

about the reservation price r and then the remaining bidders can see the reserve price

and decide simultaneously if they want to participate in the resale auction or not4.

If no bidder chooses to participate then the ownership of the good and the payoffs

remain the same as in the first stage. If only one bidder participates, then she obtains

the good and pays the reservation price to the owner. Thus the final payoffs are r−p1
for the first stage winner and vi − r for the second stage winner. If more than one

bidder decides to participate we have an English auction like in the first stage, with

the difference that this time the clock starts at the reserve price. Again when only

one bidder remains, she obtains the good and has to pay the price p2 where the last

3For results in sealed bid experiments see for example Kagel et al. (1987). Despite the mentioned
problems, testing a second price sealed bid auction remains an interesting idea for the future. Ad-
ditionally these experiments would afford a test of the theoretical result of revenue equivalence of
the English and sealed-bid auctions under complete information in the resale stage (for a proof of
revenue equivalence see Haile 2003).

4We did not give the seller the explicit choice not to put the good up for resale, however sellers
were advised to set a reservation price of 100 if they did not want to resell.
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bidder left the auction. The following payoffs are then communicated to the subjects:

p2−p1 for the first stage winner, vi−p2 for the winner in the second stage and zero for
the others. In the same screen they can see the price of the initial auction, the reserve

price, the number of participants and the price in the resale auction (zero if there was

no resale auction), the highest private value and information about past periods. The

information feedback was so rich in order to facilitate learning, as otherwise bidders

would be getting too few experiences of winning and thus learning chances. Note that

subjects win on average only 1/4 of the time, which means in the 30 periods they

only get to win 7 or 8 times.

In the second treatment with complete information (COMP), after the first stage

bidders get to know the use values of the others as in Gupta and Lebrun (1999). Thus

in equilibrium they will ask for a reservation price equal to the highest private value.

This amounts to a take-it-or-leave it offer to the person with the highest private value

equal to his private value. We know however that subjects in experiments very often

deviate from the equilibrium in the direction of a 50-50 split of the surplus, probably

because of fairness considerations. As it is not the subject of this paper to treat

bargaining games5 we decided to avoid this problem by forcing the winner of the first

auction to automatically resell the object in the second stage to the bidder with the

highest value. She then received as payoff the highest private value minus the price

she paid in the first auction. The rest of the players, including the person who obtains

the good after resale, have a payoff of zero. After each auction players can see their

payoffs, private values, the auction price, the private value of the winner, the highest

private value and information about past periods.

A last treatment we ran is a standard English auction (ENG), with IPV drawn

from a uniform distribution [0,100]. The experimental mechanism was in all other

respects equal to the one used in COMP and INC, so we can use this as a reference

treatment to check the robustness of our results. Thus, we will show that our unex-

pected results in COMP and INC are not due to some kind of framing effect. ENG

will not be discussed on its own, but only in comparison with the other treatments,

5For a good review of this problem in bargaining games see Chapter 4, specially pages 258-274
in the Handbook of Experimental Economics by Kagel and Roth (1995).
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Session Treatment Exchange rate Paying Periods Players Location
1 COMP 20 30 16 UPF
2 COMP 20 30 16 UPF
3 INC 25 30 16 UPF
4 INC 25 35 16 UPF
5 ENG 20 30 16 UPF
6 COMP 20 30 16 Bonn
7 COMP 20 30 16 Bonn
8 INC 25 30 16 Bonn
9 INC 25 30 16 Bonn
10 ENG 20 30 16 Bonn

Table 1.1: Summary of sessions

as simple English auctions have been extensively discussed in the literature (see for

example Kagel et al. 1987) and our results are quite similar to these previous studies.

We conducted 10 experimental sessions, with 16 participants in each. For the

first 5 sessions, subjects were undergraduate students, mainly from the faculties of

law and economics, at the Universitat Pompeu Fabra in Barcelona. The next five

sessions were conducted at the University of Bonn, with subjects from many faculties.

The analysis finds no consistent differences6 between the two groups, so the data are

pooled together.

At the beginning of the experiment the participants were divided in two sub-

groups7 of 8 and then the players in every subgroup were randomly rematched every

period in groups of 4. Subjects did not know what group they have been assigned to

or who are the other members of the group. There were 31 periods in almost8 every

experimental session. The first period was a practice period that did not count for

the players’ payoffs and was not used in the statistical analysis of the data. After this

period subjects received an initial capital of 150 units of our experimental currency,

6A Mann Whitney U test could not reject the hypothesis that behaviour was the same at the
0.05 level.

7This was done for statistical purposes, in order to have two independent observations in every
session. Still the subjects did not know this and they thought they were being rematched with an-
other 15 players. So the probability they will try to induce cooperating behaviour and the interperiod
effect should remain small.

8There was one session with two practice periods, but they did not seem necessary so subsequent
sessions had only one. It does not matter for the analysis, as we always use observations after the
9th paying period.
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the drachma. In the following periods subjects were rewarded according to their

success and their profits or losses were added to the initial capital. Despite the some-

times quite aggressive bidding, there were no bankruptcies, although two subjects

came close. After the end of the game the experimental currency was transformed

to euros in a ratio of 25 drachmas per euro in COMP and 20 drachmas per euro in

INC. The reason for this difference is that INC is more complicated. Sessions lasted

about thirty minutes longer than COMP and we wished to keep average profits per

hour constant. Thus average profit in COMP was 10.56 euro and in INC 15.5 euro.

Naturally, this difference is not only due to the different exchange rate but due to the

different bidding behavior too.

1.3 Equilibrium predictions

1.3.1 Complete information - COMP

In this section I compute the symmetric equilibrium of COMP. An important differ-

ence with respect to usual auction models, is that in the presence of resale, players

have a value vi (their exogenous private value) for the good and a valuation ui which

is something else, the value she places on winning the auction. The valuation is

determined endogenously, as it depends on the outcome in the resale market too.

Use values vi are drawn from a discrete uniform distribution with support [0, 100].

Consider the two-stage game COMP played by 4 risk-neutral players for a single in-

divisible object as described above. Let yi1 = max{vj|j 6= i}, i, j ∈ {1, 2, 3, 4} denote
the highest use value among a given bidder’s opponents and let v−i denote the vector

of the use values of all players, except i. Let f denote the final price of the game,

which is equal to

f =

⎧⎪⎪⎨⎪⎪⎩
p2 , if there was a resale auction

r , if exactly one bidder participates in the resale auction

p1 , if no bidder participates in the resale auction
We have following result for bidding in the first stage, similar to Theorem 1 in

Haile (1999).
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Proposition 1 The symmetric bid your value equilibrium for an English auction

without resale is also a Perfect Bayesian Equilibrium bidding strategy when the same

auction is followed by a resale opportunity, where the private values of the bidders are

publicly announced.

Proof. Suppose bidder i with use value vi deviates to a bid ṽ > vi, while all other

bidders follow the proposed equilibrium strategy and bid their use values. This would

change i’s payoff only in the event that ṽ > yi1 > vi. However if this is the case, i

would have to pay yi1 for the object but could only resell it for some price p2 in the

interval [r, yi1]. In equilibrium the reseller will set r = yi1 under complete information

in the resale market, but this still leaves him with nonpositive expected profit. By

bidding vi, i would have received zero profit with certainty. A similar argument shows

that bidder i would not profit by bidding less than vi.

This proposition provides the risk-neutral symmetric Nash equilibrium9 under

complete information in the resale market, but as we shall see later the theorem

remains valid under risk aversion and incomplete information. Therefore we will refer

to this equilibrium as symmetric10 Nash equilibrium (SNE). Also, this equilibrium

covers the special case of the automated resale market that we actually used in the

lab.

A characteristic of the equilibrium that should be noted is, that unlike the simple

English auction, bidding your value is not a weakly dominant strategy in the presence

of a resale possibility. If the person with the highest use value were to deviate from

equilibrium and bid less than his value, it is clear that the best response for the others

would be to bid up to this highest value (see Section 1.5 for an extensive discussion

of this).

9Note that we treat the game as a second price sealed bid auction. The equilibrium we find is
the equilibrium for the last stage of the English auction too, where only two bidders remain, as the
previous 2 exits do not carry any important information that alters the players’ strategies.
10It is worth noting here that in discrete value English auctions there exists an asymmetric equi-

librium too where one player bids his value and the other bids her value minus one increment. In
the non payoff relevant questions we asked after our experiments, some subjects actually reported
playing such a strategy! However a few players emplying such a strategy does not significantly
influence our analysis.
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1.3.2 Incomplete Information - INC

In treatment two the theoretical prediction is the same as in COMP. The argumen-

tation is similar to the one above. The only difference is that since private values

do not become common knowledge in the resale stage, the reserve price has to be

calculated in a more complicated way using the information that the signals (bids) in

the initial auction have given us. However, independently of these signals the reserve

price has to be higher than the private value of the first stage winner. This makes

sure that in equilibrium we do not have resale and thus bidding one’s value remains

an equilibrium strategy in the initial auction. More formally:

Proposition 2 Let bidders in INC have following pure strategy: i) In the first stage

player i bids her value, ie bi = vi ii) if i wins in first stage she sets a reserve price

ri ∈ [vi, 100) iii) if i loses in first stage she participates in the second iff vi ≥ r iv)

bidders in second stage bid their values, ie bi = vi This is a continuum of strategies

which constitute an equilibrium.

Proof. The proof is similar to Proposition 1 and is omitted.

1.4 Experimental Results

In the following we present the general results and in the subsequent sections we offer

explanations for the data. When making the statistical analysis of the results we will

start with period 10 unless otherwise stated. The reason for this is that in almost all

sessions there was a small number of subjects who indicated problems understanding

the game, up to period 9 in the worst of these cases11. Additionally, this assumption

of learning taking place before the 10th period is confirmed by the data.

The main question we are posing, is if resale possibilities alters behavior in auc-

tions. The answer from our data seems to be a definite yes. In Figure 1 we compare

11See also Kagel et al (1987), p. 1286 where the authors claim “subjects’ adjusting to experimental
conditions argue for throwing out the first three auction periods” or Fehr/Schmidt (1999) who only
use last period values.
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the bidding in the three treatments, using simple boxplots12 which include all but the

winning bids13.
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Figure 1.1: Series of boxplots of private values vs exits in the various treatments.
Each box drawn represents the distribution of the bids for a block of values. The
length of the box represents the interquartile range (IQR). The whisker extends from
the box to the most extreme data value whithin 1,5 times the IQR.

We can see that although the three games have equilibria with the same bidding

functions in the first stage, actual bidding behavior is quite different. The mere

presence of a resale market makes subjects deviate much more from the equilibrium

than in the simple English auction. The deviation is confirmed in Table 2, where we

see that bidding in the simple English auction is significantly different to behavior in

the treatments with resale (COMP, INC)14. This result shows that studies of auctions

should take resale possibilities explicitly into account.
12More detailed ones follow in the individual analysis of each treatment.
13Keep in mind that the exit price of the last bidder is not equal to the maximum bid he was

prepared to make, because he exits automatically once the last-but-one bidder exits the auction. As
a consequence we only have a lower bound on the actual bidding strategy of these players. For the
graphs and other statistics we exclude the winning bids. Although it leads to some bias, including
them leads to an even higher bias. Techniques such as censored regressions do not completely elimi-
nate this problem and they introduce new ones, e.g. they would rely on the restrictive assumptions
that bidding is symmetric and follows some particular functional form.
14Bidding in COMP is significantly different from the bidding in the treatment ENG (without

resale). Comparing INC with ENG we do not always have statistic significance. This can be
attributed to some reasons. First, we do not have many observations for the simple English auction.
Most previous experiments however, have found bidding which is very close to the bid-your-value
equlibrium, and including these experiments we would get a significant difference between ENG and
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Values
Treatments 0-20 21-40 41-60 61-80 81-100
COMP - SNE -20.23 -13.80 —5.69 -1.12 1.91

(0.000) (0.000) (0.006) (0.083) (1)
INC - SNE -4.47 -0.99 2.16 7.97 20.25

(0.000) (0.404) (0.0404) (0.000) (0.000)
ENG - SNE -8.03 -2.70 -0.27 -0.40 5.73

(0.004) (0.004) (0.150) (1) (0.000)
COMP - INC -15.75 -12.81 -7.85 -9.09 -18.33

(0.003) (0.001) (0.015) (0.003) (0.008)
COMP - ENG -12.20 -11.10 -5.42 —0.71 —3.81

(0.072) (0.008) (0.072) (0.808) (0.153)
INC - ENG 3.55 1.71 2.43 8,38 14.52

(0.682) (0.153) (0.808) (0.004) (0.153)

Table 1.2: Differences in average deviations (private values minus bids), calculated
excluding the censored observations. The numbers in parentheses are the p values of
a Mann Whitney U test.

This is not the only interesting result. The specific structure of the resale market

makes a difference for the bidding strategies. We see in Figure 1 that in COMP,

when subjects have common knowledge of the private values before the second stage,

resale gives the low value types an incentive to overbid.15 On the other hand, low

value types bid close to their values in INC and ENG. High value types bid close to

their values in COMP and ENG but not in INC. In general, bids in COMP are highly

significantly different from bids in INC for all possible values.

Note that the underbidding of the high types in INC is not a spurious phenomenon

due to the censoring of winning bids or to a presence of extreme observations driving

the average down. A Mann Whitney U test shows that the percentage of bidders with

use values greater 50 who bid less than 20 in INC are with 5.4% highly significantly

more than the 1.2% in COMP. Comparing high value bidders who bid less than 50

we get an even higher difference with 17.97% versus 6.23% respectively.

INC. The second problem is that for high values, where bidding differs most from the equilibrium ,
in INC, we have a strong problem of unobservable bids. We tried to control for this by running a
censored regression of bids on values including data from ENG and INC. The dummy and interaction
terms were highly significant, which supports the hypothesis that bidding in ENG and INC was
indeed different.
15In this paper we use the term overbidding/underbidding loosely, to describe bids higher/lower

than a subject’s use value, even when such bids are not necessarily irrational.
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Theoretically the only difference between the two treatments was in the informa-

tional background of the resale stage. Naturally it is possible that differences in the

bidding strategies of the subjects are not only due to the theoretical difference, but

also due to the different mechanisms used in practice. In particular there is evidence

from bargaining games where subjects do not behave “rationally” and split the sur-

plus in ways that do not follow the Nash prediction. In COMP we did not allow

subjects to deviate, enforcing on them exogenously the predicted outcome of the sec-

ond stage. In INC this was not possible and as a consequence subjects were allowed

to play the resale game themselves. This difference in the mechanisms used could be a

problem, however the data about the rationality in the choice of reserve prices and in

the choice of participation presented in Section 4.2 indicates that subject’s behavior

was fairly competitive. Any deviations from optimal behavior in the resale stage are

probably not due to fairness concerns but can be attributed to other effects16.

The difference in strategies between treatments translates into different prices in

the auction. As we can see in Table 3, average prices in COMPwere almost 18% higher

than in INC and 15% higher than in ENG, whereas the average private values were

very similar, as happened with the average equilibrium prices too. This difference is

not only highly significant17 but also quite large and economically important. Observe

that the average highest value in every auction was ca. 80 so revenues in COMP

were almost halfway between the Nash prediction and the maximum rents the seller

could possibly appropriate. Prices in ENG were slightly higher than in INC but the

difference is not so big and not significant. It should be noted that prices in both are

a bit lower than the predicted ones though18.

In the following we will analyze these results in more depth individually for every

treatment and we will compare some behavioral models that could explain them.

16For instance, there is evidence that subjects cannot calculate difficult equilibria. As a matter of
fact setting an optimal reserve price given your beliefs is a fairly complex task even for theorists.
17P values of a Mann Whitney U test using the 8 independent observations of COMP and ING

and the four of ENG are 0.002 for the INC-COMP comparison and 0.008 in the case of COMP vs
ENG.
18Our results regarding the simple English auction should be received a bit carefully as we did

not have many observations. We did not run many experiments, as there exists already a very large
literature on simple English auctions. Thus for our conclusions and comparison purposes we will
use these results too.
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COMP INC ENG
Average Observed Price 67.04 56.85 57.97
Average Equilibrium Price 60.41 60.99 60.68
Average Pr. Value 50.37 51.34 50.68

Table 1.3: Average Prices, Equilibrium Predictions and Private Values. The Differ-
ence between COMP/INC and COMP/ENG are highly significant

1.4.1 Complete Information - COMP

Figure 1.2 graphs average19 prices in the initial auction, average resale prices20 p2

and SNE predictions - which as shown in Proposition 1 are equal to second highest

values in the group- over time, for the pooled data of all sessions of COMP. There

were differences between individual sessions but the general tendency to overbid was

the same in all of them, so it is not necessary to present individual session data.

Table 3 reports median deviations from the SNE predictions pooled over all sessions

of treatment COMP.21

In treatment COMP some underbidding is observed in the first few periods. As

explained before, we can view these periods as adaptation periods. In the next periods

mean prices in the initial auction lie always over the theoretical prediction, sometimes

substantially so. Nonetheless, resale occurred in about 25.6% of the cases and mean

resale prices are still higher than the initial auction prices, so the winners in the initial

auction realize positive profits on average.

A closer view of individual bidding behavior, the box plot of values versus exits

in Figure 1.3 can be very informative. Note that if the SNE prediction were valid, all

bids should lie on the 45-degree line through the origin. In this plot the overbidding

is even clearer than if we only look at auction prices, especially if we compare bids in

19In every period we take the average over the four groups that were formed in every experiment.
20Recall the resale price of the good is automatically equal to the highest value in group. Thus,

the profit of the initial auction winner is just the difference between the highest value and the initial
auction price.
21Following Harrison (1989) it seemed important to use two metrics to measure the deviation.

Metric 1 is the usual metric, measuring the deviation in the message space of the auction, ie the
deviation in the bids. Metric 2 measures the deviation in the payoff space. This measures the
incentives the subjects have to play the equilibrium strategy, or alternatively how high is the cost
of deviation. In this table only the results for Metric 1 are presented, as the statistical significances
are quite similar using Metric 2.
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Figure 1.2: Prices, highest values and SNE predictions over time in first stage of
treatment COMP.

this plot with the bidding in ENG or INC. We also see that the high auction prices

come almost entirely from the overbidding of the low value players. In fact low value

players overbid 40% of the time and in about 83% of the cases where they do so,

the highest value bidder does not win the auction. But since there were 4 bidders

in every group, overbidding did not necessarily lead to winning. Thus, players who

did not have the highest value could keep overbidding without obvious punishment,

as they did not win the auction very often and when they won their profits were not

very low22.

The persistent excess of bids and prices above the equilibrium predictions has to

be compared with the results of ENG and the previous results in the literature, like

the English auction experiment in Kagel et al. (1987). In that study the fast learning

and eventual convergence to the equilibrium predictions was attributed partly to the

22Mean profit of bidders who did not have the highest value but won was 0.77 over all periods
and -0.20 in the last 15.
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Figure 1.3: Box plots of values (x axis) versus exits (y axis) in all sessions of treatment
COMP. The length of the box represents the interquartile range (IQR). The whisker
extends from the box to the most extreme data value whithin 1,5 times the IQR. The
crosses represent outliers outside this range. The middle of the notches is the mean,
and the extent of the notches graphs a robust estimate of the uncertainty about the
means for a box to box comparison.

negative profits of subjects who started by overbidding in the first periods. This

effect, pushing subjects towards equilibrium behavior does not exist in sessions 1 and

6 and was very weak in sessions 2 and 7.

Thus subjects were not always best responding to the other bidders, but they

were still choosing strategies that yielded payoffs close to their best response payoffs.

In Section 1.5 I present models that allow for this kind of behavior, by assuming

that subjects do not play pure best responses but have a mixed strategy, choosing

a probability for an action depending on its expected payoff. I show that such a

model rationalizes overbidding as a response to high value players underbidding with

a positive probability and explains behavior better than the SNE.
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1.4.2 Incomplete Information - INC

Figure 1.4 graphs average prices in the initial auction, average highest values and

SNE predictions over time, for treatment INC. Table 3 reports mean deviations from

the SNE model’s predictions pooled for all sessions of treatment INC.
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Figure 1.4: Prices, highest values and SNE predictions over time in first stafe of
treatment INC.

As in treatment COMP we observe some learning in the first periods and then

behavior tends to stabilize. We do not observe any big differences from session to

session of treatment INC. It has to be noted that in this treatment the asymmetric

information in the resale stage makes a richer strategic behavior possible. In particular

signaling can be expected to play a significant role, so that looking just at prices or at

aggregate values is less informative and a closer look on individual bidding behavior

should be more revealing. Still there are some important facts to notice in Figures

1.4. The most obvious is that the overbidding from COMP has virtually disappeared.

In most periods we even have underbidding. As we can see in Tables 2 and 3 this
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underbidding is small, but statistically significant. This underbidding for the high

types means the highest value player loses the initial auction in about 13.4% of the

cases. In the resale stage, prices are always higher than the prices in the initial

auction, but still sometimes lower than the second highest value. In these cases it

has to be that the subject with the second highest value does not participate in the

resale auction or that she exits this auction before her use value has been reached.

Measuring the rationality of subjects’ behavior in the second stage is warranted.

To this end I have prepared two rationality indices. The first, RatR, is a measure

of the optimality of the reserve prices in the resale auction. The optimal reserve price

depends on the beliefs of the subjects and the beliefs depend on the signals from

the initial auction, so it is impossible for us to calculate the optimal reserve price

and deviations from it without knowing the subjects’ beliefs. However we can expect

that when all subjects are rational, the seller has to set a reserve price that is weakly

higher than her use value for the good23. RatR measures the percentage of sellers

who choose a reserve price r > vi− 3. This index varied a bit in the four sessions. In
the first session of INC it ranged from 0.5 to 1 with no trend to disappear over time.

In session 2, RatR was higher and time had an effect. While in the first 10 periods

it mostly ranges from 0.5 to 0.75 in the next periods it is always between 0.75 and 1

and the average is 0.88. In sessions 3 and 4 RatR was quite high, at 0.97 after the

10th period in both treatments. It is not clear why some subjects set reserve prices

with such errors. The seller has her use value as an outside option and she should

ask for this value at least, if others are rational. However as noted above there are

subjects who think it is not interesting to participate in an auction where the starting

price is below their value but very close to it, so maybe setting these reserve prices

was a rational response to this behavior. A second explanation is that subjects just

did not understand that when calculating the optimal reserve price they should think

about their use values24. In an experiment such as this one, which was arguably more

23Note that if one of the subjects is not rational setting a reserve price becomes even more complex.
The reasons for such irrationality vary. For instance it is possible and it was observed in some extreme
cases that subjects do not participate in the auction when the reserve price is 10 units lower, or less,
than their use value. This can be due to fairness considerations. Subjects may find an offer unfair
if it gives them a small part of the available rent.
24In the questions subjects had to answer following the reading of the instructions, a number
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complex than usual auction experiments, such mistakes could occur, so one might

think more learning periods are necessary. However this argument is contradicted by

the second index I calculated.

RatC, measures the percentage of the subjects who chose not to participate in the

resale auction, despite the fact, that their use value was higher than the reserve price.

Apart from very few mistakes in the early periods, subjects’ behavior according to

this index was 100% rational. This result is encouraging and suggests that probably

the low RatR figures are also not due to miscalculation of the profits, but deliberate

choices.

Figure 1.5 shows boxplots of values versus bids. The stark contrast to COMP

becomes clear. Low value players bid close to their values with a small tendency

to overbid, while high value players greatly underbid. Furthermore there are some

cases, many more than in COMP, where subjects bid 0 or very close to it. These

characteristics of the bids can also be explained with the anticipation of noisy bidding

or signalling, as we shall see in the next section.

1.5 Bounded rationality and noisy decision mak-

ing

In this section I present a variety of models of bounded rationality which are prominent

in the literature, to explain subjects’ behavior. Before proceeding I will first show that

common explanations for overbidding in other auction experiments, like first-price

auctions (see Cox et al. 1992), cannot explain the data. Consider "joy of winning”,

meaning that a player’s utility is increased by a fixed amount if they manage to get

the object and realize profits in the auction. A pure joy-of-winning model predicts the

same absolute value of overbidding, for all private values, unless the joy of winning is

of subjects had answered the questions about second stage profits wrongly. Despite the efforts of
the instructors to make these points clear after observing these mistakes, it could be the case that
some players mistakenly thought the profit from the first period to be their outside option and set
a reserve price that was just higher than this number but possibly lower than their value.
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Figure 1.5: Box plot of values (x axis) versus exits (y axis) in all sessions of treatment
INC. The length of the box represents the interquartile range (IQR). The whisker
extends from the box to the most extreme data value whithin 1,5 times the IQr. The
crosses represent outliers outside this range. The middle of the nothces is the median,
and the extent graphs a robust estimate of the uncertainty about the means for a box
to box comparison.

somehow correlated with use values. However, as we saw in the previous section low

value bidders bid much higher than their values, whereas high value players’ bids are

very close to their values. More evidence against this hypothesis is that in the simple

English auction, no overbidding is observed after the initial learning periods.

A second explanation, used for example in Kagel et al. (1987), is risk aversion.

If subjects are risk averse they could value the higher probability of winning, when

bidding above their values, more than the loss in their expected profit. In English

auctions with no resale the equilibrium is, as noted before, in dominant strategies, so

risk aversion does not induce different behavior. In COMP risk aversion alone does

not change the equilibrium predictions. However risk aversion combined with some
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noise in the bidding (explained in the following section) could be a factor influencing

the results.

Another motive for low value players overbidding is spite, as has been found for

example in Andreoni et al. (2007). The authors gave subjects information about

other bidders’ values in second price private value auctions. When players have a low

chance of winning due to a low value, but know that some other player has a high

value they sometimes tend to overbid in order to lower the winner’s earnings. The

authors observe that when subjects get more information about others’ value, this

behavior becomes less risky and overbidding is more frequent. Note that if we model

the auction as a series of stages (see Milgrom, Weber 1982), entering a new stage

every time a bidder leaves the auction, this behavior is compatible with individual

rationality. The SNE equilibrium described in Section 3 is unique only in the last

stage of the auction when there are only two bidders left, while in the earlier stages

other equilibria are possible. Of course any equilibrium arrives to the same outcome

regarding the identity of the winner and the auction price.

While this explanation seems plausible it cannot account for the entire amount

of overbidding observed. The first reason is that in simple English auctions with no

resale, the extent of overbidding in early stages is much lower although the risk from

overbidding is exactly the same as in INC and COMP. Secondly, in the last stage of

the initial auction in COMP when only two bidders are left, overbidding is indeed less

risky than in ENG, but unlike the previous stages it is still not part of any symmetric

equilibrium strategy and can lead to negative profits25. It seems there is a need for

more complex explanations, and in the following we propose some that consider noise.

1.5.1 Complete information in the resale market - COMP

Let us start from the basic observation that the Nash equilibrium of the games we

tested is not robust to noisy behavior, as will be shown. That is, it is not robust

to small perturbations of the bidding strategies. Human players make mistakes and

25In fact it can be part of an asymmetric equilibrium, where everyone bids his value except for
one player who overbids. This strategy however is very risky. If for example there are two spiteful
players with low values and they both overbid, the winner of the two will suffer a serious loss.
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anticipate others to make mistakes. In general, as has been shown for example in

Goeree et al. (2002), adding noise to the equilibrium bids can shift subjects’ best

responses quite radically. It remains to be seen if the same effect can be found in

the present experiment. In the complete information treatment, if the other players

use the SNE strategy, the expected payoff functions of a subject contemplating a

deviation from this strategy are broadly the same as in a simple English auction with

no resale. However, I will show that if there exists some kind of noisy behavior, which

means that subjects make errors when choosing their bids, the payoff functions are

quite different.

The following graphs in Figure 1.6 plot expected profits, depending on one’s bid,

in the case of a simple English auction (ENG) and an auction with resale (COMP).

There are 4 curves plotted in every figure, representing expected profits calculated for

use values of, 20, 30, 40 and 50. The upper left graph represents expected profits in

ENG when three opponents bid their values without any noise, averaged over every

possible value of the opponents. Notice that a bid is a best response given a use

value, if it lies at the point where the expected profits reach their maximum value.

In this case, payoff is maximized when a player bids her value. For example, the

curve drawn for a use value of 50 reaches its highest value exactly for a bid of 50. In

the upper right figure I calculate the expected profits, again given that other three

subjects bid according to the Nash equilibrium but adding a normally distributed

noise to these bids. This means that an opponent with a value of v is assumed to bid

v + ε, where ε ~N(0, σ2) and σ = 9. I proceed to calculate by numerical simulation

the expected profit functions of a player facing three opponents employing this noisy
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Nash bidding26. Bid-your-value is still a best response. This is to be expected, as bid-

your-value is a weakly dominant strategy in English auctions, ie. an optimal strategy

regardless what others do.

The lower graphs depict the same for COMP. The utility functions without noise

look similar to the ones of ENG. Expected utility now has a lower bound, equal to

zero27, but has a maximum at exactly the same points as in ENG. This corresponds

to proposition 1, which says that bidding-your-value is the equilibrium strategy in

COMP. However when we add noise as described previously, the curves change dra-

matically, as is evident in the lower right figure.28 For every value we have a new

maximum and its exact position depends on one’s value. For all use values however,

it is now optimal to bid very high (approximately 90).

The existence of the new hump29, when opponents bid with some small errors,

26I calculate this by independently drawing 2 million sextuples of private values v and errors ε for
the three opponents. For every opponent I obtain the noisy bid b̃ = v+ ε. I then calculate for every
possible bid bi of player i the winning frequency given this bid and the mean highest bid and highest
value of her opponents, conditional on the highest bid max{b̃−i} being lower than bi. A player’s
expected profit is then caclulated for any given private value vi as
Πi = prob{bi > max{b̃−i}}E[max{vi, v−i}−max{b−i}|bi > max{b̃−i}]
The numerical simulation is helpful because we can calculate these functions for any noise specifi-

cation and the accuracy of the method is very high, as I have verified in the cases where an algebraic
solution is straightforward to obtain.

27If I bid more than my value and I win, given that others bid their values, I can never pay more
than the highest value among the other bidders. But this is exactly equal to what I receive in the
second stage.
28The intuition of how mistakes can make overbidding with a low value profitable, is as follows.

There are two cases of possible mistakes, opponents can (A) underbid or (B) overbid. In A there is
a chance of winning and reselling at a profit. On the other hand in case B defeating opponents who
have accidentally overbid is a bad idea, as there will be no profitable resale. Overbidding is a best
response because, conditional on winning, case A is more likely than case B.
29It is interesting to note how the emergence of the new maximum is the result of the resale

opportunity. The expected profit of a first stage bidder is a maximum of two values, expected utility
if she consumes the good now and expected profit if she resells it in the second stage. The utility
functions graphed are thus the maximum of these two utilities. In the right part of these curves,
the resale effect dominates. In the left part, the usual utility enjoyed when she consumes the good
herself is dominant. Without noise the utility from resale is zero, as the expected revenue in the
second stage equals the expected price in the first auction (both equal the highest value among the
other bidders). With noise however this not true anymore, as the expected price in the first stage
becomes smaller than expected revenue in the second. This difference is maximized for a bid of
around 90 (which is actually higher than the unconditional expected highest value, 75), depending
on the size of the errors.
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Figure 1.6: Expected utilites in ENG (upper two figures) and COMP (lower two)
without and with noise (normally distriubuted with a σ of 9). The curves are drawn
for private use value signals equal to 20, 30, 40 and 50. In the lower left panel utility
is very flat but still maximized at a bid equal to value.

means that best responses change discontinuously with noise. Optimal bids jump

from being equal to player’s value to a bid that is significantly higher than a bidder’s

value, especially in the case of low values. Note that this discontinuity exists for

many different specifications regarding the functional form of the noise distribution

(e.g. triangle, logistic, uniform, Laplace) and even when the standard deviation is very

small (a standard deviation of σ = 1 is enough in the case of the normal distribution).

The intuition is that the hump rises higher the more noisy the bids, but its position

on the x axis does not change much. Even when there is not much noise and the

hump is very low, it will still be higher than the utility derived from a bid equal to

or lower than one’s value and its maximum will be positioned in the upper part of

the interval [0, 100]. This means that even the lowest value players should overbid
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massively in the presence of small amounts of noise.

To test in a systematic way if the characteristics of the game discussed above are

indeed influencing the bidders’ behavior we can consider following model. Suppose

a player believes her 3 opponents want to bid their values but make small errors,

distributed normally30 with σ = 15. Then this player’s best response31 given such

beliefs is approximated by:

BRnaive = 0.000057v
3 − 0.0046v2 + 0.098v + 79

This is a concave bidding function that starts at 79 for a value of zero and reaches

approximately 100 for a value of 100. An alternative to this model is to calculate the

best response to the actual bidding distribution (and not to the one predicted by the

theory). It predicts serious overbidding of approximately32 the following form:

BRact =

(
47, v ≤ 39

0.87(v − 39) + 47, v > 39

The hypothesis that subjects were responding optimally to the actual play of the

others can be tested using the BRact model. The fit of both these models is presented

in table 1.4.

Levels of reasoning A model that has been found to explain many anomalies in

experiments is a level of reasoning model (see for example Nagel 1995, Stahl 1995,

Camerer 2004). In specific I will use the level-k version (Crawford and Iriberri, 2008).

30I choose here a σ that is lower than the minimum of the actual estimated standard deviation σ
of players’ bids in the various sessions of COMP, assuming errors are distributed normally, as can
be seen in Table 4. I also tried other distributions and the result was robust to these variations.
31The BR and other alternative models we present will be under the assumption that bidders do

not update their beliefs after they observe the exits of other players. It does not change the results
by much but it greatly simplifies the calculations. Additionally it is confirmed by the data, the
main determinant of a player’s bid was her use value and the unconditional distribution of the other
player’s values. Actual observed exits were not a significant factor.
32To calculate this best response I first estimated a joint bid-value distribution using the data

from the experiments. Then I find by numerical simulation the bidding function that maximises a
player’s expected payoff when playing against 3 opponents who are employing this empirical bidding
strategy. The best response is not exactly piecewise linear, but well approximated by the given
function.
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The idea is simple and rather intuitive. There exist k types of players, varying in

their degree of sophistication. Level 0 (L0) players bid randomly with a uniform

distribution. Their bids can be interpreted as pure noise, given that values do not

correlate with bids at all. In this way this version of the levels of reasoning model

used in the literature has built-in the idea of noisy behavior. Level 1 players believe

they are playing against L0 players and play a best response, Level 2 players play a

best response to Level 1 and so on. I first derive the strategy for a Level 1 player

best responding to N players who bid randomly. Her expected profit will equal the

maximum of her value and the expected highest value among the opponents minus

the expected highest bid, given that the latter is lower than her own bid.

Πi =
biR
0

(max{vi, E[max{v−i}]}− x)NF (x)N−1dx

Note that opponents’ values and bids are not correlated. Rearranging and taking

first order conditions (see appendix) leads us to following strategy for a level 1 player

when we have 4 bidders in total and values are uniform in [0,100]

bL1 = 25(vi/100)
4 + 75

Thus, Level 1 players bid an increasing concave function of their values, from a

bid of 75 for a zero value type to a bid of 100 for a bidder with value 100. Level 2

types best respond to Level 1. It is simple to show that this results in a bid your value

strategy. Given that the opponents all bid at least equal to their values there is no

opportunity for profitable resale, thus the game reduces to a simple English auction

with no resale and bid your value is a best response33. However the expected profit

curves are not the same as in the Nash equilibrium, as the probability of winning

with a bid lower than 75 is zero34. L3 is then exactly equal to the Nash equilibrium,

with the same expected payoff functions.
33The best response to a level one player is actually a correspondence and not a function, for

private values under 75. Any bid is in principle part of the best response, however bid your value
is the obvious focal part of this best response. I accordingly expect L2 players to bid their values.
Note this is only important for the calculation of L3 as a response to L2. For the actual fitting of L2
the errors are logistic, which means that every action yielding the same payoff is treated as equally
likely, thus every action in the best response correspondence is treated the same.
34This will be important when fitting the model to the data using logistic errors, as they depend

on the exact structure of the expected payoff curves.
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The model is fit assuming that each observed bid is a draw from a common

distribution over the three types. The frequency of L1 players in the population is

χ1, χ2 is the frequency of L2 players and the remaining 1− χ1 − χ2 is the frequency

of L3. L0 just exists in the mind of L1, as has been found in Crawford and Iriberri’s

work35. For each type we can calculate expected utility for every possible action,

given the beliefs of this type. I assume that a player of a certain type makes errors

with a frequency that depends on the expected utility of each action, according to

a logit specification. This means the probability for a subject i playing a particular

action j out of all actions J is calculated in the following way:

pij(λ) =
eλUij

JP
k=1

eλUik

The numerator is the utility from each action transformed by an exponential

function, in the denominator we have the sum of all these exponential weights as a

scaling factor, so the probabilities add up to one. The parameter λ determines how

sensitive errors are to payoff differences. Bids become uniform as λ → 0 and errors

are eliminated when λ→∞.

QRE The last model I calculate is a Quantal Response Equilibrium which captures

the idea of noisy behavior but predicts that players’ deviations will be systematic.

Similar to the level k model, I use a logit specification that has been found to give

intuitive theoretical predictions in auctions (see Anderson et al. 1998) and to fit

experimental data well (see Goeree et al. 2002). Bidders with a given use value

have a probability distribution over every possible bid which depends on their payoff

sensitivity parameter λ and the actual payoffs.

Players correctly anticipate the bidding distributions of their opponents and all

choose the probabilities according to the rule above. Thus, a best response will

be played with a higher probability, but not with certainty. The equilibrium is a

35In this paper there is also an alternative specification of the model with truthful bidding as a
L0 starting point, but it is not useful here, as it would obviously lead to the L1 type bidding her
value and thus no difference with the SNE.
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fixed point of a mapping from choice probabilities to choice probabilities. Note, that

although a QRE approaches a Nash equilibrium in the limit when the noise parameter

tends to infinity, it can be far away from it for intermediate values of the parameter.

Calculating a QRE with such a large strategy space is a daunting task. With the

usual differential equations approach (used for example by Goeree et al. 2002) it is

even considered numerically impossible, to the best of my knowledge, as it involves

solving a system of 101 simultaneous non-linear differential equations. Therefore I use

a different method to calculate the QRE, namely a Cournot process. Starting with

a random bidding function36, the expected utility of a player facing three bidders

employing such a bidding function is calculated. I proceed to calculate a quantal

response by weighing the utility, to get choice probabilities according to the formula

above. This process is then iterated until the quantal responses converge to a stable

state.37 Convergence is usually reached after about 15 periods and does not depend

much on the initial bid function.

A question when calculating the QRE is the choice of the parameter λ, which

is a measure of sensitivity to payoff differences. A different λ can lead to radically

different predictions. Because of this I decided to restrict λ to values found in earlier

research with auction data38, that is to values around 1 and not to include a risk

aversion parameter39. It so happens that the restriction of λ was not binding and

the values estimated in other experiments, including auctions, gave a very good fit

36Note that the way we calculate the QRE reveals an interesting relationship to the levels of
reasoning model. Every iteration of the Cournot process to find the QRE, corresponds to a level of
reasoning. A somewhat similar analysis is done in Goeree and Holt (2004), where they propose a
model of noisy introspection using logit response functions, but relaxing the equilibrium assumption.
Their model can be seen as an alternative to the level k model (which it includes as a special case),
where there is more noise associated with players’ beliefs about higher levels of iterated expectations.
37An iterative method has been used to calculate a QRE in coordination games and the traveller’s

dilemma using a simple spreadsheet (see chapters 25-26 in Holt 1996).
38Note that λ depends on the payoff space and we adjust it accordinlgy. For example, in Goeree et

al (2002), where the private values have a support of [0,11], λ is found to be on average 10 (actually
they use a parameter μ which is equivalent to 1/λ and they find μ = 0.1). Then for this auction
where values are in [0, 100], the values of λ are restricted to be close to 1.
39Haile et. al (2006) note that a QRE with two parameters, suitably chosen, can be used to fit

any data. This is an additional reason why I did not want to include a risk aversion parameter. This
critique does not apply to this analysis, as with the logit structure of the errors I have assumed, the
payoff perturbations are i.i.d. See Goeree, Holt and Palfrey (2005) for a discussion.
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Figure 1.7: Comparison of the different models for treatment COMP. The QRE pre-
dicts a distribution of bids for every use value, so the mean of these bids is presented.
Keep in mind however, the model with the best fit is not the one closest to the mean
actual behaviour but the one where the whole predicted distribution is closest to the
actual one.

for our data too, which indicates that the QRE is an appropriate model to explain

behavior in a wide range of auction experiments.

Comparison of models The different models calculated above for treatment COMP

are fit to the data in this section and compared with the same models for treatment

ENG. The predictions of the various models in the simple English auction are straight-

forward. The strategy is actually equal to bid your value for all models except QRE,

as this is the weakly dominant strategy in simple English auctions with IPV. Note

that unlike in treatment COMP, L0 is exactly equivalent to bid your value, as the

L1 type’s payoff is not influenced any more by the values of his opponents but just

by their bids, which are uniform in both L0 and Nash. The QRE predictions are
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calculated by simulation, as in the case of COMP.

Results are shown in Figure 1.7 and the goodness of fit can be found in Table 4.

Maximized log likelihood values for each model are presented in the first row. In the

case of the pure strategy models (Nash and BR), where no dispersion is predicted

by theory, I allowed for normally distributed errors and the estimated σ is shown in

brackets. The QRE predicts a dispersion according to the logit formula presented

above, so there was no need for additional errors. For the levels of reasoning models I

posit logistic errors as described above and calculate them numerically. I assume that

λ is independent of subject or type.40 Thus in total the model has three parameters,

the common precision λ, χ1 and χ2.

Lastly I estimate a Nash model but with logistic instead of normal errors, calcu-

lated in the same way41. This gives us a fairer comparison to the QRE and level k.

Since the models are not nested I use the Bayesian Info Criterion (BIC) for model

selection. Recall that we have more observations for treatment COMP than ENG so

the respective likelihoods are not directly comparable. Note that all models except

the level k have just one free parameter.

Model Nash BRnaive BRact L1 L2 L1+L2+L3 QRE L3/Nash+logit
LL COMP -4469.2 -5044.5 -4391.5 -4555.8 -4492.8 -4312.9 -4207.7 -4367.5
BIC 8945.3 10095.9 8789.9 9118.6 8992.6 8646.6 8422.3 8741.9
Est. λ or σ 20.9 37.1 19.4 0.1 0.22 1.84 1.23 0.87
LL ENG -2706.2 -2706.2 -2706.2 -2732.4 -2732.4 -2732.4 -2715.1 -2732.4
BIC 5419 5419 5419 5471.4 5471.4 5471.4 5436.8 5471.4
Est. λ or σ 10.38 10.38 10.38 1.13 1.13 1.13 1.1 1.13

Table 1.4: Goodness of fit of different models for treatments COMP and ENG. LL is
the maximised log likelihood.

The model that performs best in explaining the results in COMP is the QRE

model, followed by the mixed levels of reasoning model. The estimated frequencies

40In Crawford and Iriberri’s study they compared such a model to models where precisions can
be type-specific or subject-specific. Forcing subjects to be of a single type in COMP leads to a very
large increase in the number of parameters, without adding much to the fit. Also the estimated
population frequencies do not change much. If we assume type-specific precisions we get a LL of
4199.6, BIC=8433.8, a frequency of 4.3% L1 types with precision λ = 0.039, 33.3% L2 with λ > 18
and 62.4% L3 with λ = 12.7.
41Actually note that Nash+logit is exactly the same as the L3 model fitted with logistic errors.
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of the types was 1% for L1, 24.8% for L2 and 74.2% for L3. Nash with normal errors

does not fit the data well, while BRact (the best response to actual behavior model)

performs better. There is a leap in the likelihood when we estimate the Nash model

with logistic errors instead of normal. This means that the assumption of symmetric

errors is not plausible. Still, the QRE with logistic errors performs even better than

Nash+logit which shows that logistic errors are not enough to explain the subjects’

behavior. Players not only make errors in a systematic way as is modelled through the

logistic distribution, but anticipate others to make errors too, which leads them away

from the Nash prediction and towards a quantal response equilibrium. These results

are reinforced by the fact that the estimated error parameter λ was quite similar for

both treatments and for both models, Nash and QRE.

All the models except Nash predict overbidding in the resale treatment COMP.

Thus there is no way to separate them based on the qualitative predictions. They

differ however in their predictions when we vary the number of bidders in the auction.

The levels of reasoning model clearly predicts a monotonic rise in the total amount of

overbidding while the QRE predicts an initial rise up to 4 bidders and then a slight

fall in parts of the bidding function42. In specific, for middle-of-the-range use values,

the QRE prediction falls when there are many bidders. Thus an experiment with

COMP and 5 or more bidders would help to separate the models.

In ENG all models exhibit a similar performance, which is not surprising given

that their predictions are very similar and the greatest difference stems from the

different distributions of the errors (logit vs normal). The Nash and BR models

have the lowest log likelihood with the QRE a bit worse and the mixed LOR and

Nash+logit with still a bit higher LL. Overall however the great improvement in fit

given by the last three models in COMP means that the total predictive power of

these models is higher. If we use the average performance in the two treatments as a

42The reason for the fall has to do with the feature of the QRE, where strategies with a payoff
of zero are played with a positive probability. As the number of players grows the probability of
winning with a low to middle bid falls dramatically. Thus the part of the bidding function that
gives an expected payoff of zero grows and the bidding distribution for a given value comes close to
uniform. Thus while for n = 3 the QRE predicts a bidder with a value of 70 to bid on average close
to 60, for n = 8 she will bid close to the average of the uniform distribution in [0,100] which equals
50.
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selection criterion, the levels of reasoning model and QRE emerge as clear winners43.

1.5.2 Incomplete information in the resale market - INC

As in treatment COMP, the anticipation of noisy behavior can be used to explain the

data in INC. Very high value players know they will win with a very high probability.

But if they try to win in the first stage they would possibly have to pay a price higher

than the second highest value in the group because some low value players can be

(relatively costlessly) overbidding. They prefer to signal low values44 and wait for

the second stage auction where they know that overbidding for the low value players

is exactly as costly as in a simple English auction and will thus be avoided. Given

actual behavior such a strategy would be more profitable than the Nash prediction.

Note that this logic is exactly captured by the logistic errors which allow for

the fact that players do not always best respond, but still try to avoid the most

costly mistakes. Low value types can costlessly overbid in the first stage but avoid

overbidding in the second stage. High value types will not avoid underbidding in

INC as much as in COMP or ENG, since in case of losing in the initial auction they

can still make some profit in the second stage. The question that arises is which of

the previously discussed models employing logistic errors will fit the actual behavior

better. The QRE assumes that subjects correctly anticipate the logistic errors of their

opponents and arrive at an equilibrium where subjects play noisy best responses to

each other. On the other hand the level k model assumes bidders do not think past

a limited number of iterated best responses. They intend to play a best response

to their opponents, given the beliefs that correspond to their level of reasoning, but

make logistic errors. Finally the Nash+logit model just assumes players intend to

43Since Nash+logit is equivalent to L3, it is nested in the level k model. A likelihood ratio test
rejects the hypothesis that the two models are equivalent at the 0.001 level.
44Suppose there are two biders. Imagine a bidder with value 50 believes the other player is

playing the bid your value equilibrium with small symmetric mistakes of maximum magnitude 10,
as described in the previous section. He will then bid more than his value, say 60, expecting to
resell. In that case, his opponent will have an incentive to bid much less, if he has a high value, say
90. For example if he bids 40 he will lead the winner to believe that he has a value of maximally
50 and he will thus get the good in the second stage for a price of 50. See example 1 in Hafalir and
Krishna (2008) for a similar argumentation.
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play the Nash strategies, but make logistic errors.

Due to the interdependence of the two stages and the additional complexity, it is

not straightforward to calculate the logistic errors and the QRE and level k models

for treatment INC. One has to use a shortcut, building a reduced form of the game

to make it tractable. I therefore assume that the reserve price in the second stage is

equal to the use value of the seller and that players who have a higher value than the

reserve, do participate in the auction. I also assume that players who have decided

to participate in the second stage auction proceed to play exactly as in a simple

English auction, bidding their values. These assumptions are largely consistent with

actual behavior and partly with theoretical arguments too45. I then plug the expected

continuation payoffs from the second stage subgame in the first stage payoffs and

this results in a game where the various models’ predictions can be calculated46 as

described in treatment COMP. The main difference of this reduced version of INC

with COMP is that the winner of the first stage can only expect to get the second

highest value among the other bidders in the second, but the losers now have a chance

to win in the second stage and appropriate a part of the rent (for example in case they

have the highest value, they will get the difference between this value and the second

highest). Note that in this reduced game, bid your value is still a Nash equilibrium.

Level 1 play, meaning a best response against opponents who are bidding ran-

domly, results in a bidding function that starts at (N-1)/(N+1) for a value of zero

(see appendix). It rises monotonically to N/(N+1) for a value of 100. Level 2 players

bid their values47, up to a maximum bid of N/(N+1) and level 3 do the same, but

have different expected payoff functions and thus different error distributions.

45The bidding behaviour prescribed for the second stage bidders is rational. On the other hand,
for the second stage seller setting a reserve price equal to her use value is not an optimal choice.
However, when the number of bidders is high enough, the reserve price becomes irrelevant. For
example when selling to 3 bidders as in our experiments with values uniformly distributed in [0,1]
the expected revenue under the optimal reserve price is around 0.53 and the second highest value
(which is the expected revenue without a reserve price) is 1/2. This means the reserve price enhances
revenues by not more than 6%.
46BRact is not caclulated as we did not have enough observations in the second stage to estimate

the empirical distribution of reserve prices, participation strategies etc.
47As with treatment COMP, the best response to level 1 is a correspondence. Where multiple

bids are possible for a given value, bid your value is chosen as the obvious focal one.
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Model Nash L1+L2+L3 QRE Nash+logit
LL INC -4659.8 -4559.3 -4216 -45863
BIC 9326.6 9152 8466 9179.6
Est. λ or σ 18.1 0.65 1.1 0.73

Table 1.5: Goodness of fit of different models for treatment INC. LL is the maximised
log likelihood, BIC is the Bayesian Information Criterion for model selection.

The estimated frequencies for the mixed levels of reasoning mode are 31.5% for L1,

1% for L2 and 67.5% for L3, relatively close to the values estimated in the previous

section for COMP. The simple Nash model with symmetric normal errors performs

once more very badly. All the models using logistic errors fit the data better. As in

treatment COMP, the QRE outperforms the mixed levels of reasoning model.

These models improve upon Nash mainly by predicting some underbidding for the

high types. An alternative reasoning for very low bids is reported in Kamecke (1994).

In this study it has been found that some subjects tended to bid very low when they

thought they did not have a good chance of winning in order to raise the profits of

the winner. In Cox et al. (1982) this tendency for low value holders to throw away

bids was argued to make economic sense, once one accounts for subjective costs of

calculating a more meaningful bid under the circumstances. However this can not

explain why so many high value players were underbidding. Also, all these arguments

can not explain the level of very low bids in INC. After all in the similar COMP

the magnitude of low bids was significantly lower as noted in the beginning of this

section.

1.6 Discussion and ideas for future work

The preceding results show, that when we are interested in real bidding behavior,

Nash equilibrium analysis is not adequate. It does not suffice to study the best

responses in equilibrium to arrive at an equilibrium bidding strategy and work with

this as a prediction, as is commonly done. The exact shape of the expected payoff

functions is important, as it will influence the errors of players. We find these errors to

be asymmetric and systematically depending on the expected payoff of each action.
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The stability of the equilibrium is important too, that is, we have to study what

happens to expected payoffs and best responses when some player deviates a bit from

equilibrium. In games such as the present, where as we have seen the best responses

change dramatically when opponents tremble a bit around the equilibrium, we should

not expect subjects to play according to the Nash prediction.

As an extension of this work, in order to test our hypothesis of subjects anticipat-

ing mistakes, one could run an experiment where human players face computerised

opponents. As computerised opponents do not make mistakes, we should expect very

similar behavior in all three treatments. On the other hand it is questionable whether

players’ behavior when playing against machines allows us useful predictions of how

they will play against real humans.

A promising idea for future research is the explicit inclusion of a speculator in

the game as in the Garratt and Troeger (2006) paper. This experiment will be very

useful to compare with INC and will give us valuable insights to the source of the

asymmetric behavior in our data. Other models where resale happens in equilibrium

are also interesting, in particular the model of Hafalir and Krishna with asymmetric

values seems to be promising and our results hint that the weak players will indeed bid

much higher with resale than without, if the resale market is appropriately designed.

Finally, as discussed in the design section, experiments with sealed bid auctions

can also be interesting. It would be additionally useful to design these experiments in a

way that makes the results comparable with the results of the empirical study in Haile

(2001), which has found evidence of the effect of resale markets on US Forest Service

timber auctions. As already mentioned, independent work of List et al. (2004) has

run first-price sealed bid experiments and compared them with these timber auctions.

They seem to have found a significant presence of risk aversion in the data. While

this seems like a plausible explanation, it is very likely that the combination of risk

aversion with noisy behavior can enhance their results.
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1.7 Conclusions

In the resale treatment under complete information it seems we have a case similar

to the “ten little treasures” in Goeree and Holt (2001). The simple English auction

represents the “treasure treatment”, the case where Nash theory seems to work per-

fectly, predicting subjects’ behavior with a very high accuracy. When we change the

game a bit, adding the resale opportunity, the Nash equilibrium remains the same,

prescribing that players should bid their values. Nonetheless, subjects seem to see a

difference where theory does not see one. Players significantly overbid in the presence

of a resale opportunity, under complete information in the resale market, and that

this overbidding does not tend to fade away with the passage of time and the effect

of learning.

However when there is no complete information in the resale market, the results

are quite different. Subjects with low values tend to bid a bit more than their values,

whereas high value bidders bid much less than their values. This indicates that instead

of the usual separating equilibria there is pooling48, high value players pretend to have

smaller values and expect to get a better offer in the resale market.

In both cases the addition of the resale opportunity alters the strategic behavior of

the subjects significantly in comparison to common results in simple English auctions.

In most cases these changes in the bidding behavior lead to substantial differences in

the revenues that accrue to the initial seller. For policy prescription purposes these

findings should be taken carefully into account. While some features of a laboratory

experiment will probably not apply in real markets (for instance we do not expect

real-life investors to have fairness concerns or to display altruistic behavior), others

like noisy behavior and the anticipation thereof are surely present and of significant

importance. Thus we believe our results to have some external validity.

The second and more general result of this paper is the importance of thinking

about noisy decision making and the exact form of expected payoff functions. The

three treatments I tested had exactly the same Nash equilibrium, but subjects’ be-

havior was quite different in each one of them. I argued that the reason for this is the

48For a similar pooling effect see Haile (2000).
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presence of errors (even small ones suffice) on behalf of some players. These errors

can be attributed to experimentation with different strategies, trembling, idiosyn-

cratic preferences and moreover, not adequately modelled liquidity constraints in the

case of auctions in the field. Errors and noise are present even in the most important

financial markets where the stakes are very high (see Shleifer and Summers 1990).

In cases where the anticipation of such errors on behalf of some players does not

alter best responses by much, the Nash prediction can be valid. However, in cases as

the present experiments where best responses are sensitive even to small amounts of

noise, we should not expect rational human subjects to follow the Nash equilibrium

strategies. Additionally, I find that whatever the reason for subjects making errors,

they systematically try to avoid the most costly ones, thus the shape of the payoff

functions is a good indicator for the empirical distribution of players’ errors.

1.8 Appendix

Derivation of level 1 bids for treatment COMP (all values in the interval [0,1]).

All values are scaled to be in the interval [0,1], N is the number of opponents.

Πi =
biR
0

(E[max{vi, v−i}]− x)NF (x)N−1dx

=
biR
0

(E[max{vi, v−i}]− x)NxN−1dx =
biR
0

N(E[max{vi, v−i}]xN−1 − xN)dx

= [N(E[max{vi, v−i}] 1NxN −
1

N+1
xN+1)]bi0 = N(E[max{vi, v−i}] 1N bNi −

1
N+1

bN+1i )

Taking first order conditions:

N(E[max{vi, v−i}]bN−1i − bNi ) = 0→ bi = E[max{vi, v−i}]
E[max{vi, v−i}] = prob(vi > max{v−i})vi + (1− prob(vi >

max{v−i}))E[max{v−i}|vi < max{v−i}]

= vNi vi + (1− vNi )

1Z
vi

xNxN−1

1−vNi
dx = vN+1i + (1− vNi )

1Z
vi

NxN

1−vNi
dx

= vN+1i + (1− vNi )[
NxN+1

(N+1)(1−vNi )
]1vi = vN+1i +

N(1−vN+1i )

N+1
=

N+vN+1i

N+1

In the case of N = 3, as in the experiments, we have bi = 1
4
v4i +

3
4



Chapter 2

Auctions with Toeholds

2.1 Introduction

Competition for the control of a company can be essentially viewed as an ascending

auction. The bidders in such an auction have more or less similar valuations for the

contested company. This leads to the literature often viewing such takeover battles

as common value auctions. While there is a strong common value element in these

auctions there very often exist small asymmetries which can radically change the

strategic interplay between the bidders and the outcome of the contest.

If the asymmetries are due to some private control benefits or idiosyncratic syner-

gies then we can speak of almost common value auctions (Klemperer 1998), auctions

where one of the bidders has a small payoff advantage, a value that is slightly higher

than the common value. The asymmetries can also arise when some bidders already

own a part of the company that is being sold. Ownership of such a part is called

a toehold and is quite common in takeover battles (Betton and Eckbo 2000). This

paper presents results from experiments on auctions with toeholds and compares

these results with the theory and other experimental results in almost common value

auctions.

In theory ownership of a toehold can deter competitors from bidding for the com-

pany and can give its owner a strong strategic advantage. Bulow et al. (1999) give

a good illustration of how toeholds can be useful in takeover battles. The authors

39
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use an English auction framework, where bidders for a company have similar restruc-

turing plans but differing estimates of the expected returns. Under this setup, the

buyers have common values but imperfect signals. The analysis proceeds to find that

with common values, toeholds can have a profound effect on players’ optimal strate-

gies. Players with a toehold bid more aggressively as they know they will not have

to pay the full price and in the case they lose they will get part of this payment.

On the other hand players facing an opponent who owns a toehold, have to play less

aggressively than in the case the playing field were level. In equilibrium, even with a

small toehold of 5% or 10% the bidder who owns it will get the company for a much

lower price than without toeholds. Thus, theory gives strong reasons for bidders to

acquire toeholds. The empirical findings however are not in full support of this idea.

Betton and Eckbo (2000) find that only about half of the bidders acquire toeholds

before trying to buy a majority stake.

Our paper addresses the conflict between this observation and theoretical results.

Although theory predicts that the toeholds should have a big effect on the players’

predicted strategies, the effect could be much smaller when human players participate

in this game, for reasons that will become clear in the analysis. Thus we designed

and ran a series of experiments to test this idea. We choose an English auction

with two players and common values, similar to the Bulow et al. (1999) setup. The

major simplification is that we let the total value simply be the sum of the signals

the players receive. This is to keep the setup simple and to avoid understanding

problems on behalf of the players. What we found is indeed that although toeholds

give bidders an advantage, it is not nearly as strong as theory predicts. Thus, under

some circumstances it is not advisable for an agent planning a takeover to acquire

toeholds. Moreover, we find that the players’ deviation from the theoretical prediction

is not unreasonable, but rather has deep roots in the structure of the equilibrium

proposed by Bulow et al (1999). The equilibrium payoff functions are in some cases

extremely flat,meaning that large deviations from equilibrium are practically costless.

In particular, we find that when the ratio of the two players toeholds is larger than 10

(e.g. 1% and 10%), the strong bidder can deviate almost 50% from his optimal bid

with a negligible loss in expected payoff. Consequently, there is no reason to believe
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that human agents — be it in the lab or in real markets — would play their exact

best responses and thus convergence to the theoretical equilibrium is very unlikely.

We show that a levels-of-reasoning model with bounded rationality of the players

generates more intuitive predictions and fits the observed behavior more precisely.

To our knowledge there are no other experimental studies focusing on toeholds.

There are however models with almost common values that as mentioned above lead

to similar theoretical results (see for example Kagel and Levin 2003). When a player

is known to enjoy a payoff advantage in a common value auction, theory predicts

an explosive effect in the bidding strategies, similarly to the effect of toeholds. The

player with the advantage bids more aggressively, his opponents less, which leads to

the strong player winning almost all the time. Avery and Kagel (1997) have sought

to test this theory and they found that the differences in common values have a linear

and not explosive effect. Moreover, they find advantaged bidders’ behavior resembles

a best response to the behavior of disadvantaged bidders. The latter bid much more

aggressively than in equilibrium, which leads to negative average profits. Experienced

players bid consistently closer to the Nash equilibrium than inexperienced bidders,

although these adjustments towards equilibrium are small.

In a recent paper with a similar setup, Kagel and Rose (2006) again find that

the Nash prediction fails to prognose the subjects’ behavior. They find rather that

behavior is characterized by a behavioral model where the advantaged bidders simply

add their private value to their private information signal about the common value,

and proceed to bid as if in a pure common value auction. The model they chose is

actually, as we shall see later, a special case of the more general toehold framework.

The main theoretical difference between their model and ours is that the high types

should win the auction with probability one in the almost common value setting,

while in our experiments the effect is predicted to be much weaker.

While our paper finds no explosive effect of small asymmetries, similarly to the

above papers, our design has the advantage of varying toehold differences which allow

us to see if the comparative statics predicted by theory hold, even when subjects are

not following exactly the equilibrium strategies. Our finding is that in general weak

types tend to bid less aggressively the higher the toehold difference, which is only
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partially in accordance with the theory but much more consistent with the predictions

of the levels of reasoning model.

Section 2.2 introduces the model. Section 2.3 presents the experimental setup and

Section 2.4 analyzes the data. Section 2.5 concludes.

2.2 The model

Two risk neutral bidders i and j bid in an English auction for one unit of an

indivisible good. Bidders’ signals tk are independently drawn from the uniform dis-

tribution in [0,1]. The value of the good to every bidder is then just the sum of these

signals. Additionally the bidders already own a share of the company θk, which we

will call a toehold. Ownership of a toehold means that in case the company is sold the

owner will get θk times the sale price, thus if she wins she only pays 1− θk. Bidder’s

shares are exogenous and common knowledge.

The unique symmetric equilibrium is calculated in Bulow et al. (1999).

Proposition 1 The equilibrium bidding functions of the game are given by bi(ti) =

2 − 1
1+θj

(1 − ti) − 1
1+θj

(1 − ti)
θu
θj A discussion and the proofs can be found in the

aforementioned paper.

The proposition is true for all θ > 0. For θ = 0 we would have a usual English

auction with common values, with the well known equilibria. That is, in the ab-

sence of toeholds the equilibrium bidding functions would be just symmetric, straight

lines1 through the origin with slope 2. Even when players have toeholds, if they are

symmetric, the bidding functions are still symmetric straight lines with a slope that

depends on θ.

Now, when the toeholds are asymmetric there is the explosive effect described in

the introduction. The bidding functions of the two players grow apart very rapidly.

1This can be seen by the standard methods used in the literature. There is however a more
straightforward way to see what happens for very small toeholds, by taking the limit of the bidding
function in proposition 1 with the toeholds being equal and tending to zero. The function then
reduces to just b(t) = 2t.
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In Figure 2.1 you can see the shapes of the equilibrium bidding functions, separately

for the low and high types. It can be observed that for toehold differences greater

than 10 percentage points, the functions have parts with extremely high slopes. For

signals close to 0 the high types’ bids rise very steeply and similarly for signals close

to 100 the low types’ functions are rising very fast.
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Figure 2.1: The equilibrium bidding functions for θi = 0.01 and θj = 0.05, 0.2 and
0.5. The lower thick lines represent the bids of the low toehold type, the upper thin
lines are the bids of the high type.

Observe that the bidder with the large toehold bids for every possible signal more

than in the symmetric case where no bidder has a toehold. On the other hand, the

bidder with the smaller toehold bids lower than in the symmetric case for almost all

but the smallest values of her signal. Finally it is obvious from the figure that when

the difference between the toeholds becomes larger, the high type tends to become
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more aggressive for all signals he can get. The low type tends to bid less aggressively

for almost all of her possible signals.

Results from the theoretical paper that will be useful for our analysis are

a) the probability of winning the auction for agent i is just θi/(θi + θj)

b) increasing a bidder’s toehold always makes the bidder more aggressive.

c) increasing a bidder’s toehold increases her profits regardless of her signal.

2.3 The experimental setup

The experiments were run with undergraduates of all faculties in the LeeX of the

Universitat Pompeu Fabra, in Barcelona. No subject could participate in more than

one session. Upon arrival students were randomly assigned to their seats. One of

the instructors read the instructions aloud and questions were answered in private.

Sessions lasted about 1 hour including the reading of the instructions. All sessions

presented here were run by computer using z-tree tools (Fischbacher 2007).

Our design consisted of three treatments with two players, one owning a low

toehold and the other owning a high toehold. The low toehold was always equal to

1%, the high toeholds were equal to 5%, 20% and 50% respectively. We had one

session of the combination 1%-5% (hence treatment 1-5), two sessions of 1%-20%

(treatment 1-20) and three sessions of 1%-50% (treatment 1-50). Players alternated

roles every turn2 and the assignment of the toeholds was common knowledge. Note

that the treatments we chose are representative of all cases where the toeholds have

a ratio of 1/5, 1/20 and 1/50. This means treatments 1-20 and 1-50 should not be

dismissed as extreme cases that have no practical relevance.3

2We had the players alternate roles because of the big asymmetry induced by the toeholds.
Theoretically the low toehold types were predicted to make close to zero profits in treatments 1-20
and 1-50!

3For the bidding strategies the ratio of the toeholds is of big significance, but the absolute size
of the toeholds plays a much smaller role. It is easy to see that the predicted bidding functions
are virtually identical between the case of 1-20 and other cases with the same toehold ratio. This
includes for example cases that are more frequently found in the field, such as toeholds of 0.1% and
2%. The toehold configuration of 1-20 and 1-50 was chosen in order to make computations easier
for the subjects.
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Each session consisted of 16 subjects, which were divided into 2 independent

subgroups of 8 subjects. This way we obtain two independent observations for each

session. Each session consisted of 50 rounds. In each round or period, a signal between

1 and 100 was drawn randomly and independently for every bidder. Subsequently

the players participate in an English auction. This means they had in their screen

a clock that was constantly ticking upwards. Bidders were considered to be actively

bidding until they pressed a key to drop out of the auction. Once they dropped out,

they could not re-enter the auction. As usual in English auctions, when all but one

players have exited the auction stops. Since we had only two players, once one of

them dropped out, the auction ended and the other player was assigned the good.

The winner was paid the common value (sum of the two values of the two players)

and had to pay the price shown in the clock. Additionally every player received her

portion of the price according to her toehold. The information feedback the players

received after every round was the value of the asset, the selling price, whether she

was the buyer of the asset or not, the gain/loss that she made if she was the buyer of

the asset or the gain/loss that she made if she was not the buyer of the asset. Players

were given some time to review this information before going to the next round. After

every round subjects were randomly matched with the next opponent.

During the experiment, subjects were always able to check the History of the last

six rounds they played, with all the relevant information. The rest of the rounds were

viewable by using a scroll bar.

The currency of the experiment were Thalers. At the outset of the experiment,

each of the subjects received a capital balance of 1000 Thalers. Total gain from

participating in this experiment was equal to the sum of all the player’s gains and

her capital balance minus her losses. If ever the player’s gains fell below 0, she would

not be allowed to participate any more. Fortunately this did not happen. At the end

of the experiment the gains were converted to pesetas at the rate of 1.5 pesetas per

Thaler4.
4The peseta has meanwhile given its place to the euro. One euro corresponds to approximately

166 pesetas.
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2.4 Experimental results

The main question we are trying to answer is to what extent owning a toehold alters

the strategic behavior of a bidder in an English auction. Then we want to see if this

change in behavior is translated into a difference in prices.
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Figure 2.2: Actual (thick lines) vs theoretical bid functions (thin lines) in the three
treatments. The dotted lines represent bids of the low type, solid lines are bids of the
high type.

We start with the strategies. In Figure 2.2 we have plotted the average exits for

the three treatments for given signals5. Furthermore, we plot the equilibrium bids

of all players. Clearly for the treatment 1-5 and there seems to be no difference in

behavior between the two types. For treatments 1-20 and 1-50 high types bid more

than low types. Players in general do not follow the shape of the equilibrium bidding

functions ie, bidding seems to be linear instead of the highly convex and concave

shapes of the equilibrium bids.

Players do not even seem to be influenced by the toehold, when it is low, as can

be seen from the fact that in Treatment 1-5 the low toehold type wins approximately

half the time, when theoretically she should win only 17% of the time. These results

are presented in Table 1. Note that although the signals were drawn at random,

5For graphs with details for every individual experiment see Appendix.
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Observation should win won
Treatment 1-5 1 0.2 0.48

2 0.135 0.54
treatment average 0.167 0.51
Treatment 1-20 3 0.055 0.495

4 0.045 0.39
5 0.015 0.495
6 0.04 0.425

treatment average 0.038 0.451
Treatment 1-50 7 0.01 0.37

8 0.02 0.36
9 0.03 0.255
10 0.015 0.345
11 0 0.385
12 0.02 0.31

treatment average 0.0158 0.3375

Table 2.1: Win Frequency of the low type: Theoretic vs Actual

the theoretical ex post winning possibilities are close to the ex ante ones6 of 1/6 for

treatment 1-5, 1/21 for 1-20 and 1/51 for treatment 1-50. In treatment 1-20 the

low toehold type still wins more often than she should, and the discrepancy between

the theoretical frequency and the predicted one is slightly bigger. In treatment 1-50

the discrepancy between the theoretical winning frequency and the empirical one is

smaller. However it has to be noted that the low type should win only about 1.5% of

the time, while actually she won in 33.8% of the cases!

In total, there seems to be a tendency for the low toehold type to win less often,

the higher the toehold of her opponent. This means naturally that a higher toehold,

brings a higher chance of winning, both theoretically and in the experiments. However

this effect of the toehold on bidding behavior is not very clear, so we try to estimate

its statistical significance. Note, that it is an inherent characteristic of an English

auction that we cannot observe the intended bids of the winners, as the winner exits

the auction automatically once the one but last bidder leaves. To overcome this we

use tobit techniques, or censored regressions (see Kirchkamp, Moldovanu 2004) to

6Recall from section 2 that the ex ante probability of player i winning is θi/(θi + θj).
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estimate these unobserved bids. The regression we estimated was

Bid = constant + α*value + β*toehold+ε

We run this regression for each independent observation. Note the toehold variable

is not a binary dummy, but equals the value of the toehold (1, 5, 20 or 50). We add

a dummy for the period variable, to control for learning effects. There seemed to be

some learning in the first 5 to 10 periods. We always excluded these first 10 periods

from the subsequent analysis. Other factors we tried in the analysis, like cubic or

interaction terms were not significant and thus are not presented. The results of the

regressions for the various treatments are summarized in Table 2.

Treatment constant value toehold mean R2

1-5 55.876 1.08 0.74 0.67
σ 3.82 0.06 0.79

(2/2) (2/2) (1*/2)
1-20 49.53 0.84 0.365 0.51
σ 4.15 0.07 0.19

(4/4) (4/4) (2**/4)
1-50 43.92 0.887 0.51 0.60
σ 3.88 0.068 0.08

(6/6) (6/6) (6***/6)

Table 2.2: Results of the tobit regressions. There was one regression for each indepen-
dent session. Numbers in parentheses are significant cases out of total. In treatment
1-5 the one asterisk means that one observation was significant at the 0.1 level. In
1-20 there were two significant observations, both at 0.05. In 1-50 all cases were
significant at the 0.01 level.

In parentheses is the number of observations where the coefficient was significant

and the asterisks denote the level of significance. Note that the toehold dummy is

equal to 5, 20 and 50 in the relevant cases. We observe that in treatment 1-5 the

possession of a higher toehold makes almost no difference for the subjects’ bidding

behavior. However, in 1-20 the toehold sometimes has a significant effect. On average,

the high toehold type bid 0.365*20=6.94 more than the low toehold type. In 1-50 the

effect of the toehold is always significant and quite high. The high toehold type will

bid on average 24.99 more than the low toehold type.
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Now, for economic applications it is interesting to see how this difference in the

bidding behavior translates into auction prices. If the different bidding behavior were

to result in similar prices as theoretically predicted, then our results would show that

the theory is valid for all practical purposes where the prices are the point of interest.

As we can see in Figure 2.3 this is not the case.
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Figure 2.3: Predicted and actual prices over time in the three treatments.

The unique equilibrium predicts7 prices should fall slightly with the high type

getting a toehold 20 instead of 5. This is reflected in our data. The mean price in

treatment 1-5 was 89.7, in treatment 1-20 it was much lower at 73.8. Going from a

high type with toehold 20 to the high type having 50, the prices were expected to

rise by more than 10%, but they only rose to 76.9 which is a 4.2% rise. In general

our results mean that ceteris paribus the seller’s revenues will tend to fall when there

7The a priori expected price is θj(2θj+θi+1)
(θj+1)(2θj+θi)

+
θi(2θi+θj+1)
(θi+1)(2θi+θj)

, which gives us 63.1, 62.8 and 69.2
for treatments 1-5, 1-20 and 1-50 respectively. For our purposes however we use the theoretical
prices given the actual values that the players had, so there is a small difference.
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exist players with larger toeholds.

Interestingly the deviation of actual prices from the theoretical ones tended to

fall the higher the toehold. Actual mean deviations over all periods were 28 for

treatment 1-5, 14 for treatment 1-20 and 8 for treatment 1-50. Note of course that

when calculating the mean, positive and negative deviations tend to cancel out. This

is why it seems useful to have a look at Figure 4, where we present the evolution of

the deviation of observed prices from the equilibrium prices, over time and for the

different treatments.
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Figure 2.4: Deviation in average prices (actual minus predicted) over time for the
three treatments.

The deviation in prices seems to be highest in treatment 1-5, where prices were

usually quite a bit higher than predicted by the theory. This is due to the fact that

the low types bid more aggressively than they should. In treatments 1-20 and 1-50

the deviation becomes smaller, with a tendency for the deviation to be higher in

treatment 1-20. This again can be explained by the fact that low toehold bidders in

treatment 1-20 were a bit more aggressive. Table III summarizes these results.
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Treatment Mean actual price Mean predicted price Mean deviation
1-5 88.7 61 27.7
1-20 73.8 60.3 13.5
1-50 76.9 69.2 7.7

Table 2.3: Mean prices and deviations from the theoretical predictions, in the various
treatments

2.4.1 Theoretical analysis

As we have seen in Figure 2, the subjects’ behavior constitutes a deviation with respect

to the equilibrium prediction. Does this deviation evade any systematic rational

analysis or are subjects responding to a feature of the game that was not obvious

from the previous theoretical analysis? Our paper claims that the latter is the case.

There is some literature showing that we should not expect subjects to play the

equilibrium strategies if a deviation from these does not cost very much (Harrison

1989). Players will make some small errors when bidding, which produces noise

and this noise will be in some way indirectly proportional to the cost of a deviation

(see for example McKelvey, Palfrey 1995). To examine this, we will calculate the

equilibrium expected payoff functions for each type in every treatment. To be precise,

the equilibrium expected payoff functions are the functions which depict one player’s

expected payoff depending on her bid. The expectation is taken over all possible

signals of the opponent, given that this opponent will play the strategy predicted by

the Nash equilibrium in Section 2.2.

A closer look at these functions in our experiments, reveals that payoffs are very

flat around the maximum. This means that a player anticipating the others to be in

equilibrium, will not expect a big punishment for deviating from his equilibrium bid.

Figure 2.5 visualizes the concept. The different lines in each of the graphs in figure 5

are drawn for selected signals (0, 25, 50, 75, 100) of a player with toehold 1 (graphs on

the left) and those of a player with a high toehold (graphs on the right). The x-axis

depicts a players bid and the y-axis the expected payoff given the behavior of the

other type, and given the private signal (0, 25, ... ,100). As we can see for the low

toehold type the expected payoff is near 0 in treatments 1-20 and 1-50 as theoretically
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Figure 2.5: Payoff flatness in the various treatments. The various curves depict
expected profits depending on bids (both scaled by 100) for signals 0, 25, 50, 75 and
100 given that the opponents play their equilibrium strategies.

the low type never wins. Additionally this flatness is growing with the difference in

the toehold sizes8. This means the punishment for deviations is smallest in treatment

1-50, where it makes virtually no difference for the high toehold type if she bids even

50% less than the theoretical best response.

The flatness we observe has a quite intuitive explanation and is a general feature

of other auction models too, whenever parts of the bidding function are very steep. In

the ”explosive” equilibria predicted by theory the low types bid very defensively up

to a very steep last part. In treatment 1-50 the low type bids less than 140 for almost

all signals he gets. This means the high type has no big incentive to bid more than

8Recall here that as explained in the design, our treatments are representative of a much wider
class of possible configurations. This means that payoffs are flat not only in 1-20 and 1-50 but in all
cases where the toehold ratio is greater than 20.
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this value, as the probability of winning remains virtually unchanged. This flatness in

the payoff functions can explain the difference between the results in our experiments

and the usual results in common value English auctions, where bidders tend to follow

their equilibrium strategies more closely. In common value English auctions, payoffs

are not flat and the payoff maxima are quite pronounced. Thus bidders get stronger

incentives to play the equilibrium strategies.

Now, given the flatness of the payoff functions it is interesting to investigate, how

big was the deviation of our subjects in the payoff space9? The reason is that although

bid differences might be significant, they could lead to insignificant differences in

payoffs, which is what really motivates subjects. Figure 2.6 illustrates the difference

between actual and theoretical payoffs in all treatments.

If subjects’ payoffs were close to the equilibrium payoffs all dots should lie close to

the 45 degree line. We see however that this is not the case. Only in some observations

in Treatment 1-20 and in almost all observations in treatment 1-50 are the payoffs of

the high type close to equilibrium. The payoffs of the low type are very often away

from equilibrium. This is due to the fact that in Treatments 1-20 and 1-50 the low

type sometimes wins the auction, although, as we have seen in table I, theoretically

she should virtually never win!

So we see, bidders in our experiment had no incentives to play the equilibrium

strategy. But their behavior doesn’t seem to be completely irrational. Their strategies

were approximate best responses10 to the actual bidding behavior of the others in

treatments 1-5 and 1-20, at least qualitatively as we can see in Figure 7. The low

toehold types bid more than predicted and the high types less, thus they converge to

a middle ground.

It is worth noting that the best responses given actual behavior are not very

different between the low and the high type in the first two treatments and even the

inter treatment difference is not high. Only in treatment 1-50 do we have a clear

separation of the two types. Note that unlike in Kagel and Rose (2006), the high

9According to many authors (eg Harrisson 91) this is the naturally relevant space to study.
10We get the best responses by calculating the expected payoff given actual bids, and then max-

imising it. Actually, we calculated the average payoff for each bid in the sample when matched up
with every other bid and signal value in the distribution, including that players other bids.
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Figure 2.6: Actual vs Theoretical payoffs. The straight lines describe the equilibrium
relationship.

type would not have made a much higher profit in expectation, had he chosen the

equilibrium bids instead of the actual ones. This is due to the substantial overbidding

of the low types, which makes the option of winning less attractive to the high type

than predicted by the equilibrium.

We also observe that the expected payoff functions are not so flat, if we calculate

them this time assuming that the opponents’ strategies follow the actual empirical

distribution of the bids. This means that subjects now have higher incentives to play

strategies that resemble their best responses. This is visualized in Figure 2.8.
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Figure 2.7: Best responses to actual bidding behaviour of the opponents. The dashed
lines are the bids of the low type type, solid lines are bids of the high type. The thin
lines depict the equilibrium best responses, while the thicker lines depict the best
responses to the actual bid distributions.

Bounded rationality

As the shape of the payoff functions is leading to deviations from equilibrium, one

could use an equilibrium concept that incorporates the ideas of subjects being in-

fluenced by the exact shape of payoff functions. In particular, we could calculate a

quantal response equilibrium (McKelvey and Palfrey 1995), where players put weights

on their strategies that are proportional in some way to the expected payoff from each

action. Unfortunately the calculation of a QRE in auctions with continuous strategy

spaces is to date generically impossible. An approximation using a discrete version of

the game with a 10x10 bidding space, shows that the QRE would go in the direction

we observed.

Given that payoffs are very flat, any kind of learning model would predict very slow
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Figure 2.8: Payoff functions given the actual behaviour in the various treatments.
The various curves depict expected profits depending on bids (both scaled by 100)
for signals 0, 25, 50, 75 and 100.

convergence to the equilibrium. So instead of an equilibrium concept it is interesting

to use an explanation that assumes bounded rationality and does not expect subjects

to reach an equilibrium, such as a levels of reasoning model (see Nagel 1995, Stahl

1995, Camerer 2004, Crawford 2008). Suppose there exist some Level 0 players who

are completely irrational and play randomly. Then the expected payoff of a Level 1

(L1) player who anticipates this behavior is:

Πi(bi) = Pr{bi > bj}E[ti + tj − (1− θi)p|bi > bj] + Pr{bi ≤ bj}E[θip|bi ≤ bj]

Since Level 0 bids randomly with a uniform distribution
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Figure 2.9: Levels of reasoning: actual behaviour vs the Nash prediction and the
Level 1 and 2 models.

Πi(bi) = 0.5bi[ti + 50− 0.5(1− θi)bi] + (1− 0.5bi)θibi

Maximization for a Level 1 player leads to following best response bidding function:

bL1(t, θ) =
1

1+θi
ti +

50+2θi
1+θi

Note that for a toehold of zero, L1 means the player bids the expectation of the

other type’s signal (50) plus her own signal, that is just her unconditional expectation

for the total value of the company. As toeholds become larger the constant part of

the bidding function rises above 50 and the slope falls. L1 bidding is identical to the

behavior of a naive player who does not know how the opponents will bid and thus

assumes they will bid randomly. Alternatively it describes a player who does not

realize that in the event of winning with a given bid his expectation of his opponent’s

signal has to be updated. In both these cases the player is willing to bid up to the

unconditional expectation of his opponent’s signal plus his own, known, signal.

Another interesting feature is that for L1 players the size of the opponent’s toe-

hold is irrelevant. This is quite intuitive as L1 players do not follow the chain of

reasoning that leads to a Nash equilibrium, where bids are usually dependent on the

best responses of the others (except if there exists a dominant strategy). In Figure 9

we observe that L1 fits our experimental results rather well in treatment 1-5, much

better than the Nash prediction. For treatments 1-20 and 1-50, recall that the bids
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of the winner are censored. As the high type tends to win more often in these treat-

ments the observed exits tend to be more downwardly biased than the underlying

bidding strategy. If instead of the observed exits we use the results of the censored

regression from table 2, L1 describes the high type’s strategies better than the Nash

prediction. Also, in general, unlike the Nash equilibrium, L1 bidding predicts a linear,

non explosive, effect of toeholds. This is qualitatively in line with actual bidding.

What is missing however is an explanation of the fact that some low toehold types

tended to bid a bit less aggressively in treatment 1-50 and 1-20 than in 1-5. Such

an effect can be explained when we examine the bidding strategy of level 2 players,

who are more sophisticated than L1 players. They anticipate the bidding strategies

of L1 and realize that winning against players who use this strategy has implications

for their estimate of the asset value. They thus best respond to L1 players. The

calculation of these Level 2 strategies is not so simple as above and the players do

not use a linear strategy like L1. However, as expected, they do respond to the L1

players in a way that makes low toehold types bid less the higher the toehold of their

opponent.

We fit the levels of reasoning model to the data, assuming that the population

consists of a mixture of L1 and L2 types, as is found in most experiments in the

literature. The model has two parameters, the frequency of the L1 types which is μ

and the SD of the normally distributed errors σ which we assume is equal for both

types11. We also fit the unique Nash equilibriummodel assuming normally distributed

errors with a SD of σ. A comparison of the models follows in table 2.4.

Overall the mixed L1+L2 model performs better than the Nash prediction and

the estimation of the mixture parameter μ is similar across types and treatments.

A serious outlier is found in the case of toehold 50 in treatment 1-50. We think

the explanation is to be found within the fact that this case suffers most from the

aforementioned unobservable final bid problem.

11In the presented estimations we forced the individual mixture of levels to be equal to the overall
frequency in the population for the same type in the same treatment. We have done calculation
with individual estimation of the level and the fit was not enhanced by much, but the number of
free parameters grows by the number of subjects. Thus we preferred the more parsimonious model.
However it is of interest that the type frequencies found with individual estimation where quite close
to previous results at ca. 0.05 for L0, 0.6 for L1 and 0.35 for L2.



CHAPTER 2. AUCTIONS WITH TOEHOLDS 59

1-5 5-1 1-20 20-1 1-50 50-1
Nash -LL 798.87 864.32 1744.0 1581.1 2999.8 1734.3
σ 44.81 42.8 32.91 62.11 26.07 55.56
mixed L1+L2 -LL 709.08 758.49 1742.2 1437.5 3125.5 1610.5
σ 24.92 22.71 32.74 37.52 31.72 37.67
μ 0.9316 0.9781 1 0.8591 1 0

Table 2.4: Maximized log likelihoods for the Nash and LOR models.

2.4.2 Does a toehold grant its holder a real advantage?

We can now answer the question if a toehold is beneficial for its holder, at least in the

lab. There are two ways to view this, from the ex ante or from the ex post viewpoint.

In the interim stage, where the company has bought the toehold and is preparing

for the acquisition, all the investment the company initially made to buy the toehold

is a sunk cost. So the only important questions is: does a toehold raise my chances

to win in the auction? Does the expected price fall? As we have seen, the answer

is positive in both cases. The bidding in the various experiments depends on the

size of the available toeholds. Although the high toehold type does not always win

(especially not in treatment 1-5), the auction prices fall monotonically in the size of

the high type’s toehold. This means the presence of a bidder with a high toehold

benefits both bidders, usually asymmetrically, and lowers the revenue that the seller

can expect. The choice of what toehold to have is fairly clear cut. As we see in

Figure 10, the bidders with a toehold of 50 fared better than the others for almost

any private value they had.

The ex ante discussion is a bit more complicated. In particular, it is not generally

known how the bidder acquired the toehold in the first case. Let us assume that the

price per share paid by the prospective owner of the toehold was reflecting the true

value of the company12, so that for example a 50% toehold of a company of value 100

would have cost exactly 50. Assume additionally that each bidder got a signal of 50.

Then we find that buying this toehold was a wise choice for this bidder in case he

12This assumption can be justified, if we suppose that shares of the object under sale were floated
in financial markets. Then in these markets some informed investors would drive the price to the
true value of the company, as in Kyle 1989.
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Figure 2.10: Average profits of holders of toeholds 5 (low curve), 20 and 50 (highest
curve) in our experiments for different signals.

wins the auction as he gets the rest of the company for only ca. 40 (as we can see in

Figure 2), but a suboptimal choice in case he loses, as he would just get ca. 40 for

his share of the company, leaving him with a loss of 10.

In general given the average behavior of subjects in our experiments we can cal-

culate the expected profit for a bidder with a signal X if he buys a toehold of 5, 20

or 50 and given that the other bidder has a toehold of 1. The results are depicted in

Figure 11. The difference between the ex ante and ex post cases is just the inclusion

of the payment for the toehold13.

We now see the results are now reversed! Acquiring a toehold of 50 is almost never

a good strategy. For low signals all toeholds are quite close, but for signals higher

than 50 a toehold of 20 is always the best choice.

We could assume a different setup. Imagine the players acquire the toeholds before

the private signals are drawn. The player does not know his own private signal and

13We calculated these expected payoffs assuming that the signal of the other bidder is unknown.
Thus we just take its expectation which is equal to 50. It it is of course conceivable that a bidder
knows the signal of the other bidder (or has an estimate thereof), but this would completely change
the game.
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Figure 2.11: Average profits of bidders holding a toehold of 5, 20 and 50, including
the expenditure to acquire the toehold, calculated with method 1 (see text).

thus the only information available is the expected value of the company, which equals

100. Then a 5% toehold would cost exactly 5, a 20% would cost 20 and a 50% toehold

would cost 50. The results with the toehold prices calculated with this method, are

illustrated in Figure 12.

The image is similar to the one above in Figure 11, with the difference that toehold

50 becomes more attractive for high signals and less attractive for low signals. Still

in each case we conclude that acquiring a high toehold can sometimes be too costly.

2.4.3 Toeholds and almost common values

Almost common values can be seen as a limit case of the more general toehold frame-

work. In an almost common value auction all but one subjects have the same common

value, that is they possess a toehold of zero. The last person has an advantage over

the common value, that is, a positive toehold. As the probability of winning in the

two person toehold game is equal to θi/(θi+θj) in the limiting case of almost common

values the strong type wins with probability one!
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Figure 2.12: Average profits of bidders holding a toehold of 5, 20 and 50, including
the expenditure to acquire the toehold, calculated with method 2 (see text).

The size of the private advantage of the strong type, that is the size of his toe-

hold, does not influence her probability of winning theoretically. However Rose and

Kagel (2006) find that bidders do not follow the strategies predicted by the explosive

equilibrium. The authors find that advantaged bidders won only 27% of the auctions,

where 25% would be predicted by chance factors alone. Additionally there was no

significant change in average revenue compared to a series of pure common value

English auctions.

Combining our results with these findings leads to the following hypothesis: the

explosive equilibria are not to be found in real markets. At and close to these equi-

libria, payoffs are extremely flat, which means subjects have no pressure to play the

predicted strategies. Instead they seem to be playing a naive linear strategy. The

explanation of Rose and Kagel that the strong type just adds her private advantage

to her signal and proceeds to bid like in a pure common value auction, seem to be a

plausible first explanation, similar to our L1 model. There is however a feature that

remains unexamined: how is the low type playing, how does he respond to a variation
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of the high type’s private advantage? We claim the low type will bid lower the higher

the toehold of the opponent, as predicted by the L2 model. Thus, we can make a

testable prediction for almost common value auctions. The winning probability of the

high type should not be independent of her private advantage as predicted by the-

ory. This is the case because as Rose and Kagel predict, the high type will be more

aggressive but critically the probability will also rise because the low type as in our

experiments will become less aggressive in his bidding behavior. This effect however

does not converge to the explosive bidding as predicted because due to the flat payoffs

subjects do not have sufficient monetary incentives to follow such a counterintuitive

strategy.

2.5 Conclusions

We have found that higher toeholds do raise the probability of winning and the profits

of their owners. Moreover the seller’s revenue tends to fall the higher the discrepancy

between the two players’ toeholds. However, this fall is not linear, which means that

the revenues fall faster when the toeholds are small than when they are greater. We

additionally find that these results are not as strong as predicted by theory, although

they are broadly in the right direction. Importantly, we show that the high deviations

from equilibrium bids are not reflected in high differences of payoffs between actual

and equilibrium payoffs, which could thus be an explanation of the subjects’ behavior.

Our results have some implications for the seller. When one player has a small toehold,

it might be of benefit to the seller to award the other buyer some shares to level the

playing field.

In general we conclude that small toeholds are not very effective when we observe

real human players, in contrast to the theory which predicts a very high effect of

even the smallest toeholds. On the other hand, we have seen that big toeholds give

their owners a significant advantage in the laboratory. Our result is in support of the

empirical literature which finds acquiring companies owning sometimes quite large

toeholds. This observation is contrary to the theory which predicts a small advantage

would do as well and contrary to the strategic thought which says potential buyers
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should avoid signalling their intentions by prematurely buying too big shares of the

company. Finally, although we find big toeholds to be effective, we show that, under

some circumstances, acquiring such large toeholds might be too costly and their cost

might not be justified by the advantage one gets in the subsequent bidding for the

control of the company.



Chapter 3

Information Revealing Speculation

3.1 Introduction

The owner of a highly valuable and divisible asset contemplating to sell it, is faced

traditionally with two options: an auction with a reserve price and an initial public

offering (IPO). The typical setting of an IPO is a large market where small players

have pieces of relevant information. The information aggregation properties of these

markets are the main points of interest. On the other hand, an auction is used to sell

an asset to relatively few, big players, who act strategically. Revenue is maximized

by manipulating the incentives of the buyers to reveal their true valuations. While

the seller is imperfectly informed, the buyers’ valuations are not necessarily private

information. There may exist third parties with relevant information and inducing

them to share it is of great interest to the seller, as it influences her ability to extract

surplus from a transaction.

In this paper is that we analyze an alternative two-stage mechanism which brings

forth a higher revenue by revealing the information of the third parties and allowing

the seller to appropriate more rents from the buyers. It consists of

1. an emission of a minority part of the shares (partial IPO)

2. an auction with optimal reserve price for the rest of the shares.

65
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The two stage mechanism is a mixture of the one stage alternatives and combines

their respective advantages. It exploits the presence of the informed agents to gather

information about the buyers’ valuations and uses this information to set an optimal

reserve price in the second stage.

Both one-stage options mentioned above, are often encountered empirically. Rus-

sia for example has privatized many companies (Yukos, Sibneft) by direct bargaining

with the prospective owners. Germany has organized large auctions for former East

German assets (through the Treuhandanstalt). On the other hand, the Japanese mo-

nopolistic power utility was recently privatized through an IPO for all shares. But

there are cases, where due to a variety of reasons, first a part of the company is sold

through an IPO and then the majority is sold to a strategic partner. Such a two-

stage method is widely followed in Europe1 in countries like France (EdF), Greece

(Hellenic Telecom, Emporiki Bank), the Scandinavian countries or during the privati-

zation programmes in Central Europe (e.g. Czech Telecom). Gaz de France is another

prominent example. After an initial offer of ca. 20% of its shares to the public, is

it now being effectively privatized through bargaining with Suez. And lastly there

are cases where the public unloads its shares in a series of public offerings, as in the

case of Deutsche Telekom, TeliaSonera, National Bank of Greece and others. Thus

the mechanisms we examine represent options encountered in real markets. We will

argue that the two stage mechanism is the most effective one under some conditions,

based on three basic features: the existence of big buyers with control benefits, the

existence of small agents with information about these and minority shareholder pro-

tection rules in financial markets. We will also argue that the same forces that make

our mechanism effective are at play whenever a listed company is considered a possible

takeover target and thus influence the market price of shares.

Small informed agents are ubiquitous in financial markets. These can be invest-

ment banks, pension funds or even individual analysts, who acquire this information

in the course of their everyday business. Before we proceed to a further analysis of

their information, it will be of use to dissect the value of the company in two parts:

1One can plausibly explain the use of such methods by the need for public revenues without the
backlash privatizations tend to bring in these countries. However we do not think this method would
be continuously used if it brought consistently suboptimal results.
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a cash flow part and a corporate control part (see for example Zingales, 1995). Cash

flow rights are enjoyed by all shareholders, in proportion to their equity stake. There-

fore we assume the cash flow part is the same for every shareholder, and commonly

known. The corporate control part however, depends on who controls the manage-

ment of the company. Every possible owner of the company has different benefits

she can derive from controlling the company, which are known only to herself. These

benefits accrue only to the owner and can range from the purely psychological value

of being in control (Aghion, Bolton 1992) to perks enjoyed by top executives2. An ad-

ditional reason for private control benefits is that the ownership of some share might

affect other shareholdings of an individual or company. For example Porsche recently

acquired a 20% stake in fellow carmaker Volkswagen. This control gives it strategic

benefits that the other shareholders of Volkswagen do not enjoy.

Control benefits can be quite large.3 There are empirical studies estimating them,

based mainly on the different prices paid for individual shares and for packages of

shares carrying the control of the company. The size of this discrepancy is found to

be quite significant, for example by Dyck and Zingales (2004) it is estimated at 14%

on average. Thus the control benefits are a private value and constitute a sizeable

portion of the possible total value of the company to any particular majority owner.

The informed agents have some knowledge of these private values, but no control

benefit value of their own. This is due to the fact that the banks and analysts we

mentioned above do not have the intention or the capacity to manage the company.

They are just buying shares with the speculative motive to resell them at a higher

price. Usually these financial investors are liquidity constrained4 and thus unable to

2Perks can be the use of corporate assets and infrastructure, club memberships, special discounts
etc but also importantly other indirect benefits. For example, the suitability if a new subcontractor
or partner in a new project is not always clear. The person who has the power to choose a partner
can expect personal benefits from this choice, without any anticipated damage to, or reaction from,
the shareholders.

3A spectacular example was observed in the recent takeover of TXU, where KKR and Texas
Pacific offered a 25% premium over the average closing price in the 20 days before the offer. The
New York Times actually reported the control benefits must be even higher, as the markets (some
informed agents?) responded by raising the stock price even higher than the offered by KKR.

4Most financial investors are small relative to the size of the companies they study. In the case
of large investment banks their size is not that insignificant, but the investors who have the relevant
information will belong to a division of this bank, which surely can not use all resources of the
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influence the outcome of an eventual sale of 100% of the company through e.g. an

auction. Under some circumstances it can be of benefit to the seller if these financial

investors somehow revealed their information or participated in the sale. However,

the identity of the informed financial investors is unknown, so the use of a direct

mechanism to elicit their information is impossible. And a simple auction is not a

solution either, as the small financial investors cannot possibly influence the outcome,

due to their liquidity constraints. A big impersonal market, e.g. the stock market, is

a natural alternative to these mechanisms.

In most important financial markets, small investors are protected by minority

shareholder protection regulation, in particular by a sell out rule. This rule states

that when any investor buys more than a certain percentage of the shares of a com-

pany (ranging from 30% to 50%) she has to offer a fair price5 for the shares of all

other remaining minority shareholders. Such regulation has very important conse-

quences, as it allows the small investors to acquire stakes in the company using their

information regarding its value to a potential buyer, without fearing they will be by-

passed in the takeover agreement. The presence of these speculating investors, who

just buy to resell, could be a factor raising the revenue of sellers conducting IPOs.6

Our model examines the role of these speculators and provides insights in the way

minority protection influences the investors’ behavior and how it enhances the infor-

mation aggregation properties of financial markets. We claim this is an unintended

and not much studied effect of minority shareholder protection. The usual analysis

deals with this protection on the basis of its effects on the efficiency of takeovers (see

the seminal paper of Grossman and Hart, 1980) or perceives it as a rule to protect

company. Additionally, regular banks almost never buy majority stakes in a whole corporation from
a non-related field. This can be due to regulation and/or diversification reasons.

5According to a recent EU directive, a fair offer is an offer equal to the maximum price the
acquiring investor has paid for shares of the company under sale, in the recent months. The length
of the period considered is allowed to vary in the member states between 6 and 12 months.

6From this hypothesis it follows we should expect these investors to be more active, the higher the
possibility of an eventual takeover after the IPO. Actually, empirical evidence suggests that many
IPOs are followed by an eventual merger or acquisition by another company. Pagano, Panetta and
Zingales (1998) find that IPOs are followed by a much higher turnover of control than that of similar
privately held companies.
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small shareholders from exploitation by the private benefit seeking majority own-

ers. In this paper we show how, further to these effects, minority protection makes

markets informationally more efficient, which can benefit all types of investors, be

they in the minority or majority. Our model also applies to cases where an agent

attempts a takeover of an already listed company. Our results can thus be used to

answer questions regarding the reaction of the share price and its information content

after the announcement of the takeover attempt. We find that under some conditions

the target company can plausibly claim that its share is undervalued, even after the

takeover is announced7.

Our model differs from most IPO papers in the techniques applied, as our focus is

on the special informational structure outlined above and how a strategic player (the

seller) can use it to his advantage. We want to abstract from other phenomena like

the strategic behavior of the underwriting banks and consequent underpricing which

are often discussed in this literature on the role and design of IPOs when outsiders can

generate information about the firm (see Rock 1986, Benveniste and Spindt 1989).

Due to this, we build mainly upon the theoretical literature on financial markets,

among others the seminal paper of Grossman and Stiglitz (1980). They use a simple

model, where agents can either be fully informed or uninformed. Assuming traders

have CARA utility function and that the return of the asset is normally distributed,

they are able to find linear equilibria. The authors proceed to analyze how information

is conveyed from the informed to the uninformed through the price.8 We addition-

ally include the standard assumption of noise traders (see for example Hellwig 1980)

who bring a stochastic element to the models and allows an only partial information

revelation in the markets. The assumptions of CARA utility and normally distrib-

uted random values, are crucial in these and most other papers in the literature (e.g.

Verrechia 1982, Admati 1985) for the existence of a tractable model with a linear

solution. Unfortunately, as we shall see, in our two-stage mechanism it is guaran-

teed that the posteriors will not be normally distributed, which precludes the use of

standard techniques. Due to this, we follow Barlevy, Veronesi (2000) which is one of

7Yahoo has recently claimed its share was undervalued, while bargaining over a merger with
Microsoft.

8In our model information flows from the informed traders to the uninformed seller.
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the few tractable models which do not make use of these assumptions. The authors

construct a model with a binomial state space and risk neutral informed/uninformed

traders.

There are few theoretical models asking similar questions to our paper. Boone and

Goeree (2005) explore the sale of an asset when there is a single insider bidder who

possesses better information about the asset’s risky value and bidders differ in their

costs of exploiting the asset. The insider’s presence results in a strong winner’s curse

for the uninformed bidders and devastates expected revenue. The authors show that

the optimal mechanism discriminates against the informationally advantaged bidder

to ensure truthful information revelation by employing a two stage mechanism. In

the qualifying auction, non-binding bids are submitted to determine who enters the

second stage, which consists of a standard optimal auction (i.e. second-price auction

with an optimal reserve price).

Zingales (1995) focuses on the role of an IPO when there is perfect information

about the buyer’s impact on cash flow and the control premium. He shows that

direct bargaining maximizes the proceeds from the sale of the control right. On the

other hand, an IPO is more appropriate to extract rents from cash-flow rights to

dispersed shareholders. The decision whether to go public and which fraction to issue

depends on the trade off between the two effects. Biais et al (2002) discuss optimal

IPO mechanisms when there exist professional investors with private information and

liquidity constrained retail investors. However private control benefits and a possible

takeover of the company are not considered in this paper. Thus, there is no role for

speculating small agents who are covered by minority shareholder protection, which

is crucial in our model. In Subrahmanyam and Titman (1999) firms do IPOs because

the price revealed in secondary market trading can be useful. This paper shares with

our model the market microstructure approach to how information gets reflected in

the firm’s price. However the analysis focuses on the way that information in the

stock market can help entrepreneurs make better production choices. A possible sale

of the company and agents’ information about the values of potential buyers is not

considered.

Section 3.2 introduces the model, section 3.3 presents the results followed by
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remarks and extensions in section 3.4. Section 3.5 concludes. Omitted proofs and a

numerical example including comparative statics can be found in the appendix.

3.2 The model

There are two assets. One is a riskless asset, with return R, scaled without loss of

generality to zero. The other asset is a firm with a total value θ, which is the sum

of the common value created by the cash flow part plus the private control benefit,

which can differ depending on who owns the company. To simplify the setup, we

assume there is only one strategic investor B interested in acquiring the company and

her control benefits are binomially distributed as in Barlevy and Veronesi (2000). We

further assume the cash flow part is equal to zero.9 This gives us following distribution

for the total value θ:

eθ = ( θ with prob σ

θ with prob 1− σ
.

From the discussion of the control benefits, it follows we can assume they are

always positive. We have 0 < θ < θ.

The prior probability σ of θ being high is assumed to be low:

0 < σ < θ/θ (A.1)

As we shall see later, this assumption means that without additional information

the optimal take-it-or-leave-it (tioli) offer to a single buyer is θ.

There is a continuum of financial investors i ∈ [0, 1] whose valuation of the firm is
zero. These agents all have the same endowment of money, which we set equal to 1.10

We assume they are risk neutral, so they invest all their endowment in the asset with

the highest expected return. This allows us to avoid the usual problems of investors

9Any value of the cash flow part, as long as it is deterministic, results in a binomial distribution
of the total value.
10Setting the endowment equal to one is not restrictive, as for our results only the relative size to

w matters.
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having a nonlinear demand, as described in the introduction. Additionally, we assume

that the financial investors are liquidity constrained and short selling is prohibited.

This precludes spending more than their endowment. These assumptions represent

the idea that there are many small financial investors, with no market power. All

these investors are assumed to be informed11 of the true value of θ.

The original owner chooses a mass of shares λ of the company to sell in an IPO

and 1−λ to offer subsequently to the strategic investor. He enjoys no private control

benefits12, thus it is always efficient to sell the control of the company to the strategic

investor. In the setup we have described so far, the revenue maximization problem

of the seller can be quite trivial. Given that the total wealth of the investors is high

enough to clear the market, she can offer any mass of shares (though less than 0.5

to avoid ceding management control) through an IPO in the first stage, announcing

she will use the price of the IPO as a reserve price for the rest of the shares in the

second stage. For all prices less than θ, aggregate demand will exceed the supply

as informed investors buy all shares up to a price equal to θ. Note that we have as

many possible realizations of the market clearing price as states of the world, in this

case two. This invertible price function leads to full information revelation. The

seller uses this information to extract all rents in the second stage, by charging the

strategic investor her full value to transfer control. The informed, financial investors,

subsequently sell all their shares to the strategic investor at a price equal to θ, due

to the fair price rule described in the introduction.

Of course this example is highly stylized. The model becomes more plausible when

we introduce some noise into the system, which precludes prices from revealing all

available information. According with standard practice we include so called noise

traders, who possess total wealth w > 0. Due to exogenous reasons which will not

11We will later explain what happens when this is not true and how the key insights of our model
transfer to the more general case, where we allow for the presence of uninformed, rational players.
Also, the assumption that speculators are perfectly informed can be replaced by the assumption
that every speculator gets a noisy signal, with the noise having a zero mean and cancelling out on
aggregate. It is straightforward to extend the results of our model to this case, however the analysis
would be unnecessarily complicated.
12Actually he might have control benefits which we suppose are lower than the potential buyer’s.

Especially when talking about privatizations, we could speak about the higher efficiency private
ownership brings.
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be motivated strategically in the current study (for a nice discussion of noise trade

see Shleifer and Summers 1990), they spend a random share ex of their wealth buying
stock.13 Let p denote the price of the total asset; total noise trade becomes

x0(p) = ex w

p
(A.2)

Since this model is describing an IPO, we do not allow the noise trade to become

negative, i.e. there can be no short sales.

As is usually found in the literature, the seller cannot distinguish between demand

coming from the noise traders or from the informed investors, else she could just invert

the price function to reveal the state of the world. We furthermore assume that w

is large enough to keep the market liquid for a given part of the shares λ that are

offered and for any reasonable price below the maximum value of θ,

w >
1

2
θ (A.3)

The game proceeds as a sequence of seven steps.

Step 1: Random draw of θ out of a binomial distribution with prob(θ = θ) = σ.

Step 2: Choice of λ

The seller S selects a portion λ ∈ [0, 1
2
] of the company to be sold through an

initial public offer. The fraction λ is publicly announced. In the case λ = 0 steps 3

to 5 are omitted.

Step 3: Random draw of the noise trader wealth investment share ex ∈ (0, 1]. The
share ex has a twice continuously differentiable and logarithmically concave density f ,
which is positive on the whole interval [0, 1]. No information about the realization ofex is given to any player.
Step 4: Given a θ, each investor i ∈ [0, 1] chooses a piecewise continuous demand

schedule xi (p). This schedule assigns a set of demands xi(p) to every p > 0, with

13To allow for prices below θ we need an additional assumption that informed traders are relatively
poor, i. e. wI = 1 < λθ
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sup{xi(p)}p 6 1 (due to the liquidity constraint). No other player than i receives any
information about xi (p) .

Step 5: Market for the stock of the initial public offer

The price p of the stock is determined using the equilibrium in demand functions

concept (see Kyle 1989) as follows. Define the aggregate demand of the informed

investors

xI(p) =

1Z
0

xi (p) di

for values of p such that the integral on the right hand side exists14.

If the market equation

ex w

p
+ xI(p) = λ (3.1)

has a smallest solution po for p, then po is the publicly announced market price.

We speak of market failure15 if no smallest solution po exists. In this case the price

is set at +∞ and no shares are sold in the IPO.

Step 6:

The seller makes a take it or leave it offer r > 0 to the buyer. This means that
S is willing to sell the fraction 1− λ of the company for r(1− λ) money units to B.

The offer r is then made public.

Step 7:

14Note the demand schedule is a correspondence, as we allow the investors to be indifferent between
many demands for a given price. We use here the integral of a correspondence, for a definition see
Handbook of Mathematical Economics, p. 206.
15There are three possible reasons for a market failure. (a) The integral defining f(p) may not

exist for any price. (b) The market equation has no solution. (c) The market equation has no
smallest solution (the set of all solutions is an open interval). In real markets such market failure
can happen, if for example the computerized systems overload or the software is confronted with
unforeseen contingencies. We specify that in the case of market failure no orders are executed. Note
that in our equilibrium there will never be a market failure.
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The buyer can accept (ψ = 1) or reject (ψ = 0) the offer r of the seller. The game

ends with step 7, unless it has already ended in step 5.

3.2.1 Equilibrium

We focus on pure strategies. A strategy combination will always be a combination of

pure strategies and an equilibriumwill be an equilibrium in pure strategies. A strategy

of a player is defined as a function which assigns a choice at every information set u

of the player.

Information sets Player S has one information set u2 at step 2 and an information

set u6(λ, p0) for every pair (λ, p0) with λ ∈ (0, 1
2
) and p0 > 0 at step 6.

An investor i has an information set ui(λ, θ) for every pair (λ, θ) with λ ∈ (0, 1
2
)

and θ ∈ {θ, θ}.
Player B has one information set u7(λ, p0, r) for every triple (λ, p0, r) with λ ∈

(0, 1
2
], p0 > 0 and r > 0 at step 7. Player B also has an information set u7(0, r) for

λ = 0 and every r > 0.

Strategies A strategy ϕS of S assigns a λ ∈ [0, 12 ] to u2 and an offer r(λ, p0) > 0 to
every u6.

A strategy ϕi of an investor i assigns a demand schedule xi (θ, p, λ) = ϕi(ui(λ))

to every one of his information sets ui(λ). This schedule must have the properties

mentioned in the description of step 4.

A strategy ϕB of B assigns ϕB(u7) ∈ {0, 1} to every information set u7(λ, p0, r) or
u7(0, r) of player B.

A strategy combination ϕ is a collection of exactly one strategy ϕS for S, an

ϕB for B as well as exactly one strategy for every investor i ∈ [0, 1] . A strategy

combination is symmetric if for every λ and θ all investors i gave the same demand

schedule xi (θ, p, λ) = ϕi(λ). A combination ϕ0 is a deviation from ϕ, if the strategy

of exactly one player is different in ϕ and ϕ0. This player is called the deviator from
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ϕ in ϕ0. A strategy combination is an equilibrium if no deviation ϕ0 from ϕ yields a

higher payoff to the deviator.

Table 3.1 shows the payoffs. Payoffs are calculated by assuming that in case of

market failure or rejection of the reserve price, the company is liquidated. Then the

payoff of the seller S and the buyer B is zero.

AS Ai AB

λ ∈ (0, 1
2
) market price p0 ψ = 1 λp0 + (1− λ)r (r − p0)xi (p0) θ − r

market price p0 ψ = 0 0 −p0xi (p0) 0
λ = 0 or market failure ψ = 1 r 0 θ − r

ψ = 0 0 0 0

Table 3.1: Player payoffs. AS is the payoff of the seller, AB is the payoff of the buyer,
Ai is the payoff of the informed investors.

In the following we focus on the substructure of the game where some λ ∈ (0, 1
2
)

has already been chosen16, that is we treat λ as exogenous and the strategies of

the buyer B and the investors i do not depend on λ17. We then solve by backward

induction. The seller knows the equilibrium strategies of the players in the first stage,

this means he knows the (stochastic) equilibrium relationship of the price with the

unknown variable θ and thus can build a price rule. He uses it in the second stage to

determine his posterior beliefs about the value of the asset, after observing the stock

price. We then characterize the optimal take-it-or-leave-it (tioli) offer the seller will

make to the strategic investor, focusing on subgame perfect Nash equilibria where

the seller is allowed to use a cutoff rule. Using the outcome of the second stage to

calculate the returns for the buyers in the first stage, we derive the optimal demand

schedules.

3.2.2 Second stage

In the second stage the seller knows the price rule, which she uses to update her

beliefs about the state of the world. Given the posterior probability bσ18 (which is a
16For an actual calculation of an optimal λ we refer to the numerical example.
17This is true because the best responses of B and the investors i are the same for all λ ∈ (0, 12).
18We explicitely determine the seller’s posterior beliefs in the next subsection.
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function of the observed price p) she offers the asset to the investor for the price r. If

the investor rejects her offer, the asset will be liquidated which results in zero payoffs

for all parties. The seller’s expected revenue, given she observes p and offers r, is:

E[ev| p, r] = ( bσ(p) · θ if r > θ

θ if r ≤ θ

It is obvious that all reserve prices other than one of the two realizations of theta

are dominated.19 If the seller charges more than θ the company is liquidated and her

payoff is zero. This offer is dominated by r = θ which results in positive revenue if the

buyer’s control premium is high. The converse holds for reserve prices below θ that

are always accepted. A transaction price between the two realizations only occurs ifeθ = θ and is therefore dominated by θ. In equilibrium the seller offers

r∗(p) =

(
θ if bσ(p) > θ/θ

θ if bσ(p) ≤ θ/θ
(3.2)

and the buyer accepts whenever the reserve price r∗ does not exceed his value θ.

The seller’s second-stage behavior feeds back to the valuation of financial investors.

Thus, to determine the first stage outcome, we have to make a conjecture about the

optimal reserve price which in turn depends on the IPO outcome itself. By assump-

tion, only aggregate demand can be observed. Relevant information can therefore

solely be revealed by the market-clearing price. Suppose that the price rises weakly

monotonically in the true value θ, as we shall show to be true in equilibrium. This

monotonicity means that a high IPO price signals a high value of the company. Then,

due to the binary state space it seems sensible that the seller’s offer will have a single

discrete jump in the IPO price. Thus we focus on strategies where the seller uses the

19The simple optimization problem the seller faces in the second stage is one major advantage of
our binary setup, as it allows for tractability of the model. In most other cases reserve prices can
only be defined implicitly.
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following cut-off rule p∗ in the price interval (θ, θ̄) :

r∗ =

(
θ if p ∈ (p∗, θ]
θ if p ∈ [θ, p∗]

(3.3)

If the financial investors anticipate this cut-off rule correctly, their demand has to

be zero for any price p ∈ (θ, p∗], independently of their information, since the price
will then exceed the proceeds from the second stage (θ according to (3.3)). On the

other hand, if the price lies in the interval (p∗, θ] investors’ demand does depend on

their information. If the actual value and the reserve price (resulting from the IPO

price) coincide, they invest all their wealth in the risky asset. In the contrary case

however, their demand is zero.

Let us now consider prices outside the interval (θ, θ̄). Financial investors act

rationally, i.e. they never buy stock for a price above θ. For prices below θ we have

to proceed one step further: the seller could now potentially choose a high reserve

price, which would give the informed agents a zero payoff in case the company value

is in fact low. In such a case the investors’ demand schedule xI should become zero,

even for very low IPO prices. On the other hand, if the reserve price is indeed low,

the informed agents demand becomes positive for every price lower than θ. As we

will argue later, the only reserve price consistent with equilibrium behavior for prices

below θ is θ. Thus the informed investor’s equilibrium demand will be strictly positive

for p ∈ (0, θ].
In contrast to the financial investors, noise traders’ demand is by construction

inelastic to the seller’s second-stage decision. Their demand is simply a hyperbolic

function in p for any x > 0 and contains no information about the state of the world.

To determine the optimal reserve price, the seller is interested in the realization

of eθ but not in the amount of noise ex. Both random variables affect the price though.
She knows which parties exhibit a positive demand in equilibrium, given a certain

price. To be able to update her beliefs about the probability of a high θ, we need

that at least one party’s demand is elastic with respect to eθ. If the seller for example
observes a price below the cut-off point, no information is revealed since the noise
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traders’ demand does not depend on the state of the world and informed traders do

not buy in any case. Prices outside the interval [θ, θ] reveal no information either.

If p is smaller than the lower bound, informed agents demand in both states of the

world while for prices exceeding the upper bound, their demand is always zero. For

prices in (p∗, θ) the seller has to deliberate about which probability mass to put on

combinations of (x, θ) which are consistent with the observed outcome. To be able

to run through this procedure we first have to determine the equilibrium relationship

of the price with the unknown variables P (x, θ).

In the next section we derive the equilibrium in the financial market given that

the seller uses the cut off rule in the second stage.

3.2.3 First stage

In the first stage informed investors submit demand schedules xi (θ, p) given the ex-

pected value of ev from the second stage. Recall that these demand schedules can be

any piecewise continuous correspondence mapping prices p into non empty subsets of

the interval [0,+∞). An auctioneer receives the demand schedules and calculates the
set of market clearing prices and corresponding allocations as described in Section 2.

This procedure gives a well defined price for any pair (x, θ) , which will be denoted as

P (x, θ).20

Notice that in our setup a positive and finite equilibrium price always exists due to

the following. Noise trade is always positive but monotonically continuously falling

in the price, asymptotically reaching zero as price goes to infinity21 and going to

infinity as p goes to zero. The informed buyer’s demand is an upper hemi continuous

correspondence in (0,+∞) except for the upward jump in p∗, going to zero as price

goes to infinity. Also recall that short selling is not allowed. Given these facts it

is easy to verify that aggregate demand is surjective in (0,+∞), thus if supply is
constant and non trivial or infinite, there is always a positive, finite price at which

20Note that due to the liquidity constraints there is no need to account for the case of infinite
demands as in the Kyle model.
21Note that the liquidity constraints actually imply demand becomes zero for some large enough

price.
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demand equals supply.

In equilibrium all informed agents maximize utility given the demand functions

of the others and the information revealed by the resulting price. Formally, we have

Definition 1 A symmetric Nash equilibrium in trading strategies is defined as a func-

tion xi (θ, p) such that xi solves the maximization problem of the agents conditional

upon their information:

max
xi

Ex,θ[ev]xi + (1− pxi)

We have assumed there is a continuum of financial investors who are price takers.

In contrast to the one-stage model the asset’s return to the financial investors is

determined endogenously. It depends on the realization of the random variable eθ but
also on the resulting price in the aftermarket, ev. Recall that in case the asset is not
sold, it has to be liquidated22.

In equilibrium, the informed financial investors correctly anticipate the seller’s

reserve price decision when the market clears at price p. We have assumed that these

agents are perfectly informed about the value to the investor, therefore they can

foresee whether a transaction will take place in the aftermarket. If the seller asks for

a high price θ̄, no transaction will take place when the true value is low. This leads

to a liquidation and zero payoff. On the other hand, a reserve price of θ ensures an

efficient transaction but does not extract the full surplus if the control premium is

high. The reduced form value function to the informed financial investors is:

v(p, θ) =

⎧⎪⎪⎨⎪⎪⎩
θ if r∗(p) = θ and θ = θ

θ if r∗(p) = θ

0 else

(3.4)

We are now equipped with all the ingredients to solve stage 1. Recall that the

financial investors are risk neutral and liquidity constrained. Optimal behavior —

as defined above— requires that they invest all available funds in the asset with the

22At this point one has to mention the Coase Conjecture. To ensure the credibility of the reserve
price, the seller could delegate the sale in stage 2 to an agent who is committed to the strategy of
selling for the ex-ante optimal reserve price or liquidating the asset otherwise.
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Figure 3.1: Demand of the informed investors depending on price, when the value of
the company is high/low.

highest return. Due to the riskless bond having zero yield, demand for stock will

be positive as long its value exceeds its price. Thus, the aggregate demand of the

informed sector, denoted by xI , becomes:

xI (p, θ) =

⎧⎪⎪⎨⎪⎪⎩
1
p

if p < v (p, θ)h
0, 1

p

i
if p = v (p, θ)

0 if p > v (p, θ)

(3.5)

Note that no individual informed agent has an incentive to deviate from this

strategy as she can not influence the equilibrium price.

Let P (x, θ; p∗) denote the market-clearing price for a pair (x, θ) given a cut-off

point p∗. Using the market clearing condition leads to the following price function in

equilibrium23:

23We limit our analysis to θ > 1/λ in order to avoid additional case distinctions.
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Proposition 1 Given that the seller issues a fraction λ of the asset and determines

her optimal offer to the buyer by a cut-off rule p∗ ∈ (θ, θ). Then there exists an
equilibrium in the asset market, where

1. Aggregate demand is given by (A.2) and (3.5).

2. The market-clearing price is

P (x, θ; p∗) =

⎧⎪⎪⎨⎪⎪⎩
wx
λ

if x > λθ
w

θ if x ∈
h
λθ−1
w

, λθ
w

i
wx+1
λ

if x < λθ−1
w

(3.6)

and

P (x, θ; p∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx
λ

if x > λθ
w

θ if x ∈
h
λθ−1
w

, λθ
w

i
wx+1
λ

if x ∈
³
λp∗−1
w

, λθ−1
w

´
wx
λ

if x ∈
³
min{λθ

w
, λp

∗−1
w
}, λp∗−1

w

i
θ if x ∈

h
λθ−1
w

,min{λθ
w
, λp

∗−1
w
}
i

wx+1
λ

if x < λθ−1
w

(3.7)

Proof. The price function is obtained by inserting the informed demand xI and

the noise trade x0 into the market clearing condition 3.1 and solving for the market

clearing price.

If the cut-off price p∗ is sufficiently close to θ and the realized premium is high

then there is an interval of x, each consistent with two different prices: in the low-

price case, only noise traders demand while at the higher price also informed traders

participate.24 We have constructed the function in proposition 1 by selecting the

higher of the two prices.

Using (3.6) and (3.7), we can calculate the posterior probability Pr(θ|p, p∗) of the
true value being high after the seller has observed a price p. The determination of

these beliefs is illustrated in Figure 3.2.

24This is a consequence of the non-monotonic demand function of the informed financial investors.
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Figure 3.2: Determination of posterior beliefs.

If the seller observes a market-clearing price p0, then inverting the family of price
functions P (θ) gives her two realizations of ex which are consistent with equilibrium,
x1(p0) and x2(p0). From the ex ante distribution of the noise she can infer how likely

it is that this price was generated by a high θ or high noise trade. On the contrary,

p00 contains no such information since it is associated with a single realization of ex.
Full information revelation is only possible for prices which correspond to just one

state of the world. Such a price can be found in Figure 2 as a point on the y axis

from which a line parallel to the x axis intersects with only one of the two depicted

curves.

Algebraically, the application of Bayes’ rule25 leads to the following posterior

probability for a high control premium:

25

Pr(θ|p) = Pr(θ ∩ p)
Pr(p)

=
Pr(θ) Pr(p|θ)

Pr(p)

=
σPr(p|θ)

σPr(p|θ) + (1− σ) Pr(p|θ)
=

σ

σ + (1− σ) f(λp/w)
f((λp−1)/w)
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Pr(θ|p, p∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ if p > θ

1 if p = θ

ξ(p) if p ∈ (p∗, θ)
0 if p ∈ (p∗ − 1

λ
, p∗]

σ if p ≤ p∗ − 1
λ

(3.8)

with ξ(p) ≡ σ
h
σ + (1− σ) f(λp/w)

f((λp−1)/w)

i−1
.

Prices outside (p∗ − 1
λ
, θ] contain no information. Their occurrence stems from

high and low realizations of the noise trade component ex respectively. In contrast, if
the price hits the upper bound, information is fully revealed due to the indifference

of the informed traders. At this price they will demand any amount of shares, which

leads to a range of realizations of ex that support P = θ. However, when the state

of the world is θ the value of the asset is strictly lower than its price. Thus demand

is solely driven by noise traders which leads to exactly one x where demand equals

supply26. Only for prices in (p∗ − 1
λ
, θ] can the seller actually update her beliefs.

Now we can proceed to characterize the equilibrium of the game.

3.2.4 Existence of equilibrium

In the next proposition we show which conditions ensure the existence of an equilib-

rium.

Proposition 2 Suppose the seller floats a fraction λ of the asset in the financial

market. If the distribution f is log-concave there exists a cut-off equilibrium p∗ ∈ [θ, θ]
such that the optimal tioli-offer to the buyer is

r∗ =

(
θ if p ∈ [p∗, θ]
θ else

26This results hinges upon the distribution of ex. Since we modeled it as a continuous random
variable, every realization of ex which could cause the price to correspond to θ when this is not the
true state of the world is a zero-probability event.
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Proof. Recall from (3.2) that the seller sets a reserve price r = θ whenever the

posterior probability of a high value exceeds θ/θ and r = θ otherwise. According

to (3.8), the posterior probability can only exceed the ratio of the two realizations

for prices in [θ, θ]. Thus, an optimal cut-off has to lie in this interval. Choosing any

cut-off point, the resulting posterior will always be, by construction, consistent with

optimal behavior for prices below the cut-off: the resulting posterior is either σ or

0, and by assumption A.1 lower than θ/θ. This cut-off is suboptimal if there are

prices above p∗ for which the posterior ξ(p) induces a low instead of a high offer, i.e.

ξ(p) < θ/θ. Suppose ξ(p) is monotonically increasing. Then there are three possible

cases:

1. ξ(p) > θ/θ ∀p ∈ [θ, θ] : the posterior always exceeds the ratio and the optimal
cut-off is θ (high offer at all prices)

2. ξ(p) < θ/θ ∀p ∈ [θ, θ] : the posterior lies always below the ratio and the optimal
cut-off is θ (low offer at all prices)

3. ∃!p∗ ∈ [θ, θ] : ξ(p∗) = θ/θ : the posterior and the horizontal line at θ/θ intersect

just once. Uniqueness and existence are guaranteed by strict monotonicity and

continuity of ξ in p. The latter property follows from the differentiability of f .

What remains to be shown is that the log-concavity of f is sufficient for the monotonic-

ity of ξ.

∂ξ(p)

∂p
= −σ (1− σ)

λ

w

f 0(λp/w)f ((λp− 1)/w)− f 0 ((λp− 1)/w) f (λp/w) f ((λp− 1)/w)−2³
σ + (1− σ) f(λp/w)

f((λp−1)/w)

´2
This derivative is strictly positive if ∀p ∈

¡
θ, θ
¢
:

f 0(λp/w)

f(λp/w)
<

f 0 ((λp− 1) /w)
f ((λp− 1) /w)

This is true if ln(f(.))00 < 0. The log-concavity of f is therefore sufficient for the

monotonicity of ξ(p).
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The interpretation of the conditions is straightforward. The interior solution re-

quires the seller’s decision to change from a low to a high reserve price in
£
θ, θ
¤
. If

she observes a low market-clearing price, the conditional probability of a high control

premium has to be sufficiently low to choose θ. Or, in other words, the probability

of a realization x associated with a low premium has to be sufficiently high, if prices

approach θ. The contrary has to hold for prices above the cut-off. Note that for

the existence of a cut-off equilibrium log-concavity is sufficient but not necessary.27

Common cases that fulfill log-concavity include the Normal, Poisson, and triangle

distributions (see [8] for a detailed survey). When this monotonous ratio condition

is violated, any number of cutoff points is possible. Cases 1 and 2 in the proof are

corner solutions. To ensure an inner cut-off point we need two additional endpoint

conditions (see appendix).

In the next section we compare the expected revenue generated by the two-stage

mechanism with two obvious alternatives: a sealed-bid auction with optimal reserve

price and a public offering of 100% of the shares.

3.2.5 Revenue comparison

Let us start with the calculation of the expected revenue in an auction for the whole

asset. Recall that the financial investors would never plausibly participate, as they

are financially constrained and cannot influence the outcome of a second price sealed

bid auction with a reserve price. Thus the optimal indivisible good auction with just

one strategic investor reduces to an optimal take-it-or-leave-it offer.

The prior distribution of the control premium is such that the seller offers θ and

the buyer always accepts. Therefore, the expected revenue from the one-stage auction

yields θ in equilibrium.

ΠA = θ (3.9)

In the case of an IPO for 100% of the shares, as we have explained in the previous

section, the strategic investor will not participate as she can purchase a majority

27Necessary is that the density function is such that once the posterior probability exceeds the
indifference point θ/θ it remains above it.
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stake later by making a minimal offer to the small investors. In contrast to the noise

traders, informed traders anticipate this behavior correctly and demand no stocks at

any positive price. The only demand component which drives the price above zero

is the noise trade. Therefore, the expected revenue for the seller equals the total

expected wealth of the noise traders

ΠIPO = w

Z 1

0

xf(x)dx (3.10)

The advantage of going public over an optimal tioli-offer is obvious: the seller can

fleece noise traders. If sufficiently high probability mass is on realizations below θ/w

then an optimal auction outperforms the wholesale IPO.28

If the seller chooses the two-stage mechanism instead and issues a fraction λ of

the asset, her expected revenue consists of the expected IPO price (ΠPIPO) and the

revenue from the subsequent bargaining (ΠRP ):

ΠTS = λΠPIPO + (1− λ)ΠRP (3.11)

The IPO price serves as a signal for the seller to extract information from the

informed financial investors and thus to update her beliefs. She will only switch from

θ to θ if a higher reserve price generates a higher expected revenue. It immediately

follows that in the two-stage mechanism she will be better off than in the optimal

auction regarding the non-issued fraction (1− λ) . If an interior cut-off point exists

then the expected revenue from the second stage can be written as

Πr∗ =

Z
[0,p∗]∪(θ,∞)

θg(p)dp+

Z
(p∗,θ]

θPr(θ|p)g(p)dp

with g(p) as the distribution of prices in equilibrium.

28If an auction with optimal reserve price is chosen by the seller, this results in a market with
a monopolist facing a monopsonist. Such a case should leave the buyer worse off compared to
bargaining with a continuum of agents who all possess the same outside option: liquidation of the
asset. We claim that any other reasonable bargaining specification should not alter our results
qualitatively but would make the analysis more cumbersome. See section 4 for further discussion of
this issue.
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Let us compare this to the expected revenue of the wholesale auction, which is

the lower realization according to (A.1):

ΠRP > ΠOA

⇔
Z
[0,p∗]∪(θ,∞)

θg(p)dp+

Z
(p∗,θ]

θPr(θ|p)g(p)dp > θ

Since [0,∞) covers the whole support of prices in equilibrium, the first integral can
be rewritten as one minus θ times the probability of prices in [p∗, θ]. Therefore we getZ

(p∗,θ]

θPr(θ|p)g(p)dp >
Z
(p∗,θ]

θg(p)dp

Sufficient for this inequality to hold is that the integrand in the left part is point-

wise bigger than the integrand to the right, i.e. for all p ∈ (p∗, θ]

θPr(θ|p)g(p) > θg(p)⇔ Pr(θ|p) > θ/θ

which follows from Proposition 3. Thus we have shown the revenue per share in

the second stage is always higher than in the auction.

Now, it is easy to show that the revenue in the first stage λΠPIPO is always

greater than the revenue in the full IPO ΠIPO. Observe that the revenue in an IPO

without a second stage, where only the noise traders participate will always be the

same, independently of λ.This is due to the fact that the noise traders always spend

their whole wealth so that the price elasticity of demand is always −1, a higher
supply λ leads to a one to one reduction in the price and vice versa. This implies

λPIPO(λ) = ΠIPO.Given that the only difference between the first stage of the two

stage mechanism and an IPO without a second stage is the possible extra demand

coming from the informed traders, the revenue λΠPIPO will always be higher than

λPIPO which in turn is equal to the revenue in the full IPO. Thus we see the revenue

in the first stage is always higher than the revenue in a full IPO. Combining these

two observations we have following result:
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Remark 1 The two stage mechanism performs always better than the full IPO and

the optimal auction. The ranking between the optimal auction and the full IPO is

ambiguous and depends on the size of the noise trade E[x]w and the prior σ.The

higher the noise trade, the more attractive the IPO becomes while the opposite is true

when the prior σ becomes higher.

The first part follows from the discussion above and the fact that λ is chosen

optimally.29 The revenue in the two stage mechanism is a convex combination of

two elements that are always respectively higher than the revenues in the two other

mechanisms. Thus an optimal λ leads to always higher revenues than each of the two

other mechanisms. Actually, as we have shown, the two stage mechanism is better

than the the full IPO for any possible λ < 0.5. In both mechanisms the seller extracts

all the noise traders’ wealth, but in the two stage one she can also extract a part of

the strategic investor’s revenue.

A natural question arises as to why a full IPO is not a good alternative, especially

if we think that a two stage mechanism is more complicated and probably more costly

in reality. The answer lies in the incentives of the financial investors. In the absence

of a second stage the financial investors cannot expect a resale and with it a sell-out

rule to apply30. They cannot try to buy a majority stake themselves in order to

resell it, as they are liquidity constrained. Thus their valuation of the shares equal

just the cash flow part. The strategic buyer has no incentive to participate in a full

IPO either, as he can always wait and make an offer to the small investors after the

IPO. Recall there is a continuum of them so they have no bargaining power and the

strategic investors will just pay their reserve price, which equals the common part of

the valuation of the company.

Another remark is in order here. In real markets IPOs bring along significant un-

derwriting and marketing31 costs. Assuming a fixed cost of underwriting, the auction

29We do not derive the optimal λ explicitely but there is at least one solution in [0, 0.5). For an
explicit determination be referred to the numerical example.
30In all IPOs no investor gets more than a limited percentage of the company. Buying a majority

stake is usually impossible. Examining the optimality of these rules is outside the scope of this
paper. However it should be noted that our framework can be useful in analyzing such regulations.
31Actually part of the job of the underwriting banks is to raise the amount of noise trade!
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can actually be more interesting to the seller than the two stage mechanism. Addi-

tionally, having several potential acquirers improves the performance of the auction.

To illustrate our results we calculate a simple numerical example and present some

comparative statics in appendix B.

3.3 Discussion and Extensions

In this section we will discuss some characteristics of the model and present possible

extensions.

An unusual result of our model is that the informed investors benefit from more

informative market prices and thus have a preference for low amounts of noise trade.

This is in contrast to models like Kyle (1989) where the noise traders are exploited

by the informed, who as a consequence prefer markets with plenty of noise trade.

The intuition is that in our model informed traders want to signal the value of the

premium to the seller accurately, in order for him to set a more beneficial reserve

price. Noise traders are only hindering this task.

Also worth noting is the seemingly paradoxical result that in our model more

(correct) information can lead to less efficiency. The most efficient reserve price is

one set at the lowest value of the premium, where the company is sold for sure. If the

seller chooses direct bargaining she sets such a reserve price, given our assumption

on the prior. However when the seller uses the two stage mechanism she gets more

information and updates her prior. The updated probability of a high premium can

induce her to raise the reserve price even if the premium is not actually high! There

is an intuitive parallel we can draw with models of imperfect competition where

market power in general lowers efficiency. In our model information gives the seller

an advantage in the bargaining game which raises his expected revenue but is possibly

detrimental for overall efficiency.

Another interesting property of the equilibrium is that it involves a demand func-

tion which is discontinuous and non-monotonic in the price. This is due to the cutoff

strategy of the seller. Even when the value of the premium is high, informed traders

are interested in buying only if the price is above some limit (in our model p∗). For
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prices under this limit they expect the seller to set a low reserve price in the second

stage and thus do not want to pay more than θ for the shares. This characteristic

of the demand function is a robust feature of the two stage mechanism and will not

fade away if we have more states of the world.

Lastly, a natural extension would be a deeper modelling of the information gather-

ing process. Endogenous information acquisition, where the investors can buy degrees

of precision would add generality to our model. Naturally, this addition will make the

model very complicated, as we can see in the following section on strategic uninformed

traders, but is a promising avenue for future research.

3.3.1 Strategic uninformed traders

So far we have assumed there is a continuum of informed traders and an exogenous

amount of noise trade, thus there are no real strategic players in the first stage market.

In the other extreme case where all agents act strategically there would actually be

no uncertainty, once a market-clearing price is observed, as we have seen in Section

3.2. The non-strategic noise trade component in aggregated demand is responsible

for shading the true θ.

Now, what happens if there is still some noise trade but only a fraction z informed

about the control premium? Such a structure is consistent with the majority of

financial market models.

Starting from the setup we analyzed before we add uninformed investors with total

wealth wU . Recall that total initial endowment of the informed agents was normalized

to one. Since all atomic agents are identical except for the information they hold we

can express the fraction z of the informed investors in the following way:

z =
1

1 + wU

Uninformed investors face a similar problem than the seller when they observe a

market-clearing price: to which extent is the price driven by noise traders and by

informed agents respectively? To determine how their presence alters the outcome
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we proceed in the following way: we take the original equilibrium and analyze opti-

mal behavior of the uninformed when they enter this market. Demand schedules are

submitted simultaneously. Thus in the second step we have to check whether this

behavior is consistent with an equilibrium and how it affects the other market par-

ticipants’ strategies. A priori we do not know if the seller’s cut-off point is a function

of z and how it affects informed investors’ optimal demand.

Recall that the inner optimal cut-off point was implicitly defined as the price p∗

such that

Pr
¡
θ|P = p∗; p∗

¢
=

θ

θ

given the conditions stated in Proposition 3 are met.

Informed agents invest all their wealth in the asset with the highest yield, i.e. they

buy stocks whenever the price is lower than their value. Uninformed traders conduct

a similar calculation. Since they cannot observe θ, they form conditional expectation

of ev (which is a function of θ) based on the price.
Let xu denote the optimal demand schedule, represented by

xU (p) =

⎧⎪⎪⎨⎪⎪⎩
wU
p

if p < E[ev|P = p]h
0, wU

p

i
if p = E[ev|P = p]

0 if p > E[ev|P = p]

(3.12)

Let us ignore the impact of this additional demand component on the market-clearing

price for a moment. It is therefore very easy to determine the net benefits as a function

of the price. If the price is smaller greater than θ we know that no info is revealed

but net benefits are positive. Unless the price exceeds the cut-off point p∗, the seller’s

action results in a second-stage price of θ and demand will thus be zero in (θ, p∗).

As the price approaches the upper realization net benefits converge to

Pr(θ|p; p∗)θ − θ ≤ 0

There are two possible cases how net benefits evolve between the cut-off point and
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the high realization as demonstrated by the next figure.

µp∗
p

µ

µ

µ− p∗

¡b½(µ))− 1¢µ

E [ev − P |P = p]

Case 2:
E [ev − p] < 0 ∀p

Case 1:
∃p : E [ev − p] > 0

Figure 4: Net value for uninformed investors.

We know from the previous analysis that the conditional probability of a high

premium is a continuous function in the price in the upper interval. Therefore, net

benefits are also a continuous function and we can distinguish two generic cases:

1. There exists a non-degenerate price interval in the interior of (p∗, θ) such that

net benefits are strictly positive.

2. Net benefits are negative for all prices greater than θ.

In the latter case the only change occurs to the price function for the interval

below θ. Proposition 3 remains valid. On the other hand in the first case a general

analytical result is not attainable.

If a cut-off exists then prices where the uninformed exhibit positive demand are

always a strict subset of prices for which the informed investors buy. This means
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that being informed is truly better independent of the fraction z. If the cost of

information acquisition is small enough all investors will be informed in equilibrium.

This resembles the situation we analyzed throughout the paper.

3.3.2 More than two states of the world and zero information

equilibria

The equilibrium in Proposition 1 is informative, in the sense that the speculators

reveal their private information and the noise traders are the only hindrance to full

information revelation. In case we have more states of the world such an equilibrium

continues to exist. Assume for example there are three states of the world θl, θm and

θh with a vector of prior probabilities σ. Let ξ
∗ be a vector of posterior probabilities

for each state of the world (ξl, ξm, ξh) such that, for all ξ
0
where θm and/or θh are

more likely than in ξ∗, the seller chooses a reserve price of θm and conversely for all

ξ
00
that assign a lower probability weight on θm or θh than in ξ∗, θl is chosen. Define

ξ∗∗ similarly as the vector of probabilities so that the seller switches from θm to θh. A

sufficient condition for the informative equilibrium is that the posterior ξ "crosses" ξ∗

and ξ∗∗ once and only once, meaning that there is a price such that ξm+ξh < ξ∗m+ξ∗h

for all lower prices and for all higher prices ξm + ξh > ξ∗m + ξ∗h. The analogous must

be true for ξh and ξ∗h. There are parameters for which these conditions hold.

However there also exist zero information equilibria. Suppose for example the

informed speculators believe that the company will be sold for θl and no other spec-

ulator will buy shares. Independently of the number of possible states of the world,

if the prior is such that without additional information the seller chooses a reserve

price equal to θl, such beliefs are self fulfilling. The speculators buy no shares and

the seller does not update the prior. This actually leads to a reserve price of θl and

in this equilibrium the market price reveals no information whatsoever.

Note there are also partially informative equilibria of this type. Assume the spec-

ulators believe the company will never be sold for more than θm. Then, if the above

conditions hold, the speculators will sometimes be able -depending on the noise- to

signal that θ is not low by buying shares at the appropriate prices. However they
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will never buy above θm and the seller will never ask for a reserve price higher than

this32. Thus this equilibrium is also self fulfilling and not all private information is

included in the market price.

A way to discard these equilibria is market power. If one informed speculator has

enough market power to move the market price and reveal his information, subgame

perfection requires that the seller responds by choosing the appropriate reserve price.

Since the speculator always wants the reserve price to reflect his information it is

optimal for him to indeed buy shares and signal his information. Thus with market

power zero information equilibria do not exist.

3.3.3 Bargaining Power

A point that should be discussed is the extreme bargaining power we attribute to

the seller, by allowing him to make a take it or leave it offer. Obviously, if we move

to the other extreme and the expected allocation does not depend on the seller’s

information, e.g. if the seller has no bargaining power, the seller will not want to

acquire information and the two stage mechanism is rendered useless. Arguably such

a case will be very rare.

A more plausible configuration is a bargaining model where the seller has no full

bargaining power but the expected allocation still depends on the information the

agents possess. For example in Rubinstein andWollinsky (1985) one of the two parties

is selected randomly to propose a split of the gains from trade. In our framework this

means the seller will want to acquire information, to choose a better proposal in case

she is selected to make an offer. In the simplest case where the bargaining game is

played just once and rejection of the offer leads to liquidation the basic results of our

model hold. There is no qualitative change, just a quantitative shift in the parameter

constellations where a two-stage mechanism dominates the others.

32There is an additional condition on the prior probabilities and on the θ0s for this equilibrium to
exist. It must be that the seller wants to set a medium reserve price whenever he cannot distinguish
between demand coming from a high state of the world and demand coming from a medium state.
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3.3.4 Information structure

As a last note, we would like to point out that the special information structure of

our model can have an alternative interpretation. Assume there is no control pre-

mium, but the value of a company stems just from its discounted stream of dividends.

Investors, however, differ in their prognosis of events that can have an industry-wide

effect on all firms in the relevant market. Insiders, such as companies in the field or

industry-specific analysts, can be assumed to have a superior prediction of the future.

On the other hand, governments or large non-focused corporations do not have ac-

cess to such information. When these large agents try to sell a firm, they can benefit

from the information of the small players in a very similar way to the one described

above33.

3.4 Conclusions

Our analysis shows that small financial investors can help a seller extract higher

rents from the potential buyers in an IPO. The use of a two-stage mechanism for

this purpose yields a higher revenue, under some conditions, than a simple IPO

or an optimal auction. Important parameters for a seller contemplating a decision

between the three alternatives, are the amount of noise trading in the market, the

number of financial investors that can be informed of the value of the company and

the number of strategic investors who are possibly interested in acquiring it. With

a large number of strategic investors the advantage that a reserve price can give,

becomes quite small. On the other hand a large number of informed investors makes

the information aggregation through the IPO stronger and the two-stage mechanism

more attractive. A great amount of noise trade can have ambivalent effects. It will

make the information aggregation in the IPO worse. On the other hand, it will raise

the demand for the shares and thus raise the seller’s revenues. When there is a lot of

noise trade, as might be the case in a bull market, the best option for the seller is to

33The only siginificant difference in this case, is that the value of the company to potential owners
would be an affiliated/common value and for reasons that become clear when one tries to solve the
model, we would like to abstract from problems coming with such a specification.
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sell the entire company through a full IPO.

In general we think our framework is a useful tool to discuss the ongoing privatiza-

tion programs all around the World and the sale of divisions by big corporations. This

paper demonstrates that the presence of informed but liquidity constrained financial

investors, can explain in part the broad usage of IPOs in the field. Additionally we

show that sell-out rules are important for the presence of small informed investors and

thus for the informational content of prices in a stockmarket. Our analysis should thus

interest regulators contemplating plans to impose sell-out rules in financial markets,

such as the recently voted EU takeover directive.

Finally, our results can be useful to analyze the informational content in the

price of a company’s shares in the stock market once a takeover attempt has been

announced. Under some conditions the share price will be an accurate signal for the

valuation of the target company. On the other hand, an unfavorable result is also

possible. The market can be stuck in a zero information equilibrium and the market

prices only reflect noise. However, when some informed agents have market power

these zero information equilibria cease to exist.

3.5 Appendix A: Proofs

Let us define the following parameter for the ex ante profitability of a high offer in

stage 2:

ζ ≡ θ − θ

θ

σ

1− σ
.

By assumption A.1, ζ < 1, that is without additional information the optimal tioli-

offer is θ. The following proposition contains technical conditions when the cut-off

equilibrium is an interior solution:

Proposition 3 If f is log-concave and

f(λθ/w)

f ((λθ − 1) /w) > ζ (C.1)
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f(λθ/w)

f
¡¡
λθ − 1

¢
/w
¢ < ζ (C.2)

then there exists a unique cut-off p∗, implicitly defined by Pr(θ|P = p∗, p∗) = θ/θ, in

the interior of [θ, θ].

Proof. In proposition 2 we have shown that log-concavity of the density function

is sufficient for the existence of a unique cut-off. It lies in the interior if the posterior

starts below θ/θ and eventually exceeds it in the relevant interval. This is fulfilled if

ξ(θ) < θ/θ (C.1’)

ξ(θ) > θ/θ (C.2’)

It remains to see that conditions (C.1) and (C.2) are sufficient for (C.1’) and (C.2’)

to be true. C1’ can be rewritten asµ
1 +

1− σ

σ

f(λθ/w)

f ((λθ − 1) /w)

¶
θ

θ
> 1

Rearranging terms leads us immediately to the expression in (C.1). Note that neces-

sary for this condition to hold is

1 +
1− σ

σ

f(λθ/w)

f ((λθ − 1) /w) > 1

since θ/θ < 1 by assumption A.1. This is always true as long as the density is strictly

positive. If we proceed in the same manner with (C.2’) we getÃ
1 +

1− σ

σ

f(λθ/w)

f
¡¡
λθ − 1

¢
/w
¢! θ

θ
< 1

which is equivalent to (C.2.). The term in brackets cannot get smaller than one while

θ/θ is always smaller than one. This means that the first term must be sufficiently

close to one, given the realizations of eθ. In other words, the density must have a
sufficiently lower value at x = λθ/w than x =

¡
λθ − 1

¢
/w. Note that the lower σ
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the more difficult it becomes to meet this condition. The reverse holds for condition

(C.1.).

Corollary 4 (of Lemma 3) There is no density function f which ensures the exis-

tence of an interior cut-off independent of the other parameters of the model.

Proof. Suppose that f is log-concave (i.e. the posterior for prices above p∗ is

monotonically increasing in p) and the parameters ω = (θ, θ, σ, w, λ) are such that

the conditions of Lemma 3 are fulfilled. Then there exists a interior cut-off p∗ defined

by Pr(θ|P = p∗, p̂ = p∗) = θ/θ. Take a second parameter vector ω0 which differs from

ω in the first two components such that their ratio does not change:

θ
0
= (1− �)p∗ and θ0 =

θ

θ
(1− �)p∗ for � > 0

The indifference condition remains unchanged by this transformation of parameters

and is fulfilled at a same price p∗ which lies now outside the interval. Since such

a transformation can be conducted for any density f , the existence of an interior

solution has to depend on the parameters of the model.

3.6 Appendix B: Numerical Example

In this section we will use a specific density to illustrate our results and conduct some

comparative statics. As we have noted, there is a wide range of distributions that

fulfill the log-concavity assumption. We choose a simple bounded distribution with

enough versatility. Kumaraswamy’s double bounded distribution [39] has a simple

closed form for both its PDF and CDF. In the simplest case, we can take the bounds

to be x ∈ [0, 1] in which case the probability density function is:

f(x) = abxa−1 (1− xa)b−1

The mode for a, b > 1 is given by



CHAPTER 3. INFORMATION REVEALING SPECULATION 100

¡
a−1
ab−1

¢1/a
With parameters a = 1.5 and b = 8 we have following density.
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For a given σ we can now find the optimal cutoff p∗ depending on the emission

size λ. The optimal cutoff is going to fall in λ, as the increased percentage of shares

offered makes the noise trader component of the demand less important and thus the

price more informative.
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Given this we can calculate the optimal λ by maximizing expected revenues. In

following plot we draw the expected revenue for a series of σ ∈ [0.2, 0.5]. Observe for
high σ the revenue has an inverse U shape so λ∗ is an interior solution, while for low

values we get a corner solution; the seller tries to issue an infinitesimally small share

in the first stage IPO.
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The revenue comparison, as we described in the previous section, is strict. The

revenue of the two stage mechanism depends on σ but is always higher than the

revenue in two other mechanisms which are independent of σ. The auction is better

than the full IPO only when there is not much noise (which means when E[x] is low,

or when w is low).

3.6.1 Comparative statics

We will now evaluate our model under different parameterizations of the noise trade

distribution. In particular we keep a = 1.5 and let b = 1.1, 2, 4, 8 and 15.
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b=15
b=8
b=4
b=2
b=1.1

Now we find the optimal IPO issue size λ∗ plotted against the prior σ for the

different distributions. We will assume there is an exogenously given minimum λmin =

0.2. Observe that for b = 1.1 and distributions that are even more left skewed (that is

have a lower b) we have a corner solution, λ is always low. In general there is no clear

relationship between the shape of the distribution and the optimal λ, independently

of σ. For low values of σ right skewed distributions lead to a higher λ, while for high

values of σ the opposite is true.
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In the next graph we plot the optimal cutoffs depending on sigma for the 5 dif-

ferent parameterizations. Here a clear relationship can be seen. Again for b = 1.1 we

have a corner solution, but for higher b (more right skewed distributions) the cutoff

is falling.
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It is also worth investigating what happens for different sizes of the noise trade,

that is when we vary the noise trader wealth w. We find that the effect of a change

in w affects the optimal cutoff and optimal λ in a very similar way as a change in the

distribution parameters. That is, a higher w makes the cutoff p∗ always smaller, but

the effect on λ is ambiguous and it depends on σ.
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