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Executive Summary

This thesis is about binary decisions participants make in a laboratory environment. For this
purpose, laboratory experiments are conducted to investigate effects of individual decision
making in a microeconomic context. The first chapter is a short introduction and will give
an overview over the next four chapters In the second chapter comparisons between
theories in stationary 2x2 games and empirical data are investigated. Twelve 2x2 games
have been played in the laboratory and the results have been compared with 5 stationary
concepts. The third chapter reports experimental results on a simple coordination game in
which two players can coordinate either on an equal distribution of payoffs or on a Pareto
superior but unequal distribution of payoffs. The fourth chapter reports on simulations
applied on two similar congestion games: the first is the classical minority game. The
second one is an asymmetric variation of the minority game with linear payoff functions.
The fifth and last chapter reports results of laboratory experiments about traffic behavior of
participants with different cultural backgrounds. The minority game as an elementary
traffic scenario was chosen, in which human participants of a German and Chinese subject
pool had to choose over 100 periods between a road 4 and a road B.
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CHAPTER 1: INTRODUCTION

1. Introduction

The following five chapters are related to experimental economics. Every chapter
consists out of an already published or submitted paper.

In the second chapter, entitled “Stationary Concepts for Experimental 2x2-Games” my
coauthor Reinhard Selten and I compare experimentally five stationary concepts for
completely mixed 2x2-games: Nash equilibrium, quantal response equilibrium, action-
sampling equilibrium, payoff-sampling equilibrium (Osborne and Rubinstein 1998) and
impulse balance equilibrium. Experiments on 12 games, 6 constant sum games and 6 non-
constant sum games are run with 12 independent subject groups for each constant sum
game and 6 independent subject groups for each non-constant sum game. Each independent
subject group consists of four players 1 and four players 2 interacting anonymously over
200 periods with random matching. The comparison of the five theories shows that the
order of performance from best to worst is as follows: impulse balance equilibrium, action-
sampling equilibrium, payoff-sampling equilibrium, quantal response equilibrium, Nash
equilibrium. The paper is accepted by the Journal American Economic Review and will be
published in 2008. Reinhard Selten & Thorsten Chmura (2008) Stationary Concepts for
Experimental 2x2 Games will appear in June 2008 American Economic Review. This
paper was published in June 2008 in the American economic review. At the beginning
of 2009 Christoph Brunner, Colin F. Camerer and Jacob K. Goeree submitted a
correction of this paper “A correction and re-interpretation of ‘Stationary concepts for
experimental 2x2 games” to the same journal. We recalculated their corrections and
included these corrections in this paper.

Chapter 3 of this thesis, entiteled ,,Testing (Beliefs about) Social Preferences: Evidence
from an Experimental Coordination Game” was written with the following coauthors
Sebastian Kube, Thomas Pitz and Clemens Puppe. This chapter reports experimental
results on a simple coordination game in which two players can coordinate either on an
equal distribution of payoffs or on a Pareto superior but unequal distribution of payoffs. We
find that the higher the difference in individual payoffs, the less likely is a successful
coordination on the Pareto superior distribution. While this is well in line with the recent
models of inequity aversion, our results are best explained not by a preference for equality
per se but rather by the belief that the opponent has such a preference. Thorsten Chmura,
Sebastian Kube, Thomas Pitz and Clemens Puppe (2005) Testing (Beliefs about) Social
Preferences : Evidence from an Experimental Coordination Game. Economics Letters,
Vol. 88 (2), 214-220.

Chapter 4, “An Extended Reinforcement Algorithm for Estimation of Human Behavior in
Experimental Congestion Games” reports simulations applied on two similar congestion
games: the first is the classical minority game. The second one is an asymmetric variation
of the minority game with linear payoff functions. For each game, simulation results based
on an extended reinforcement algorithm are compared with real experimental statistics. It is
shown that the extension of the reinforcement model is essential for fitting the experimental
data and estimating the player's behavior. The paper was written with my coauthor Thomas
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Pitz and published in the Journal of Artificial Societies and Social Simulations (JASSS) in
2007. Thorsten Chmura & Thomas Pitz (2007) Journal of Artificial Societies and Social
Simulation vol. 10, no. 2.

The last chapter entitled “Are the Chinese or the Germans the better Drivers?” reports
results of laboratory experiments about traffic behavior of participants with different
cultural backgrounds. This paper is written together with my coauthors Thomas Pitz and
Fei Fangyu. We conduct the minority game as an elementary traffic scenario in which
human participants of a German and Chinese subject pool had to choose over 100 periods
between a road A4 and a road B. In each period, the road that was chosen by the minority of
players win, these participants get a payoff. The payoff in the majority group is 0. An
important observation is that the number of road changes of a participant is negatively
correlated with his/her cumulative payoff. In this paper, particular emphasis shall be laid on
a comparison of the participants’ reaction to the immediately preceding payoffs. It could be
shown that Chinese participants reacted differently to the payoffs of preceding periods than
the German participants. The Chinese players did not change the route after bad payoffs as
often as the players of the German group. The Chinese comparison group is on average
able to attain better results because “bad” payoffs are more frequent in the minority game
than “good” ones. In the current draft the paper is a working paper. Thorsten Chmura,
Thomas Pitz, Fanyu Fei (2008): Who are the smarter Drivers? The Germans or the
Chinese? An Experimental Approach (submitted working paper).
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2. Stationary Concepts for Experimental 2x2-Games

2.1. Experimental Literature and Introduction

Experimental evidence suggests that mixed Nash-equilibrium is not a very good
predictor of behavior. Thus EREV AND ROTH (1998 p. 853) conclude as their first
summary observation that “...in some of the games the equilibrium prediction does
very badly”. A normal form game is called completely mixed, if it has only one
equilibrium point in which every pure strategy is used with positive probability. 2x2-
games of this kind are of special interest. They are the simplest games for which mixed
equilibrium is the unequivocal game theoretic prediction, if they are played as non-
cooperative one-shot games.

Mixed equilibrium has several interpretations. One interpretation is that of a rational
recommendation for a one-shot game. Another interpretation looks at mixed
equilibrium as a result of evolutionary or learning processes in a situation of
frequently repeated play with two populations of randomly matched opponents. One
may speak of mixed equilibrium as a behavioral stationary concept. KEN BINMORE, JOE
SWIERZBINSKI and CHRIS PROULX (Economic Journal 2001) argue in their paper that
mixed Nash-equilibrium predicts reasonably well for completely mixed constant sum
2x2-games. However it is difficult to judge the goodness of fit, if there is no comparison
to other stationary concepts.

This paper was published in June 2008 in the American economic review. At the
beginning of 2009 Christoph Brunner, Colin F. Camerer and Jacob K. Goeree submitted
a correction of this paper “A correction and re-interpretation of ‘Stationary concepts
for experimental 2x2 games” to the same journal. We recalculated their corrections
and included these corrections in this paper.

Economic theory makes extensive use of the concept of mixed equilibrium. One of its
attractions is its independence of parameters outside the structure of the game. For the
purpose of analyzing theoretical models it is of great advantage to be able to rely on
stationary concepts.

In this paper we will present several alternative stationary concepts for 2x2-games,
which can be compared with mixed equilibrium and with each other. For this purpose
we have performed experiments on 12 completely mixed 2x2-games. Six of them are
constant-sum games and the other six are non-constant-sum games. Each of the
constant-sum games was run with 12 independent subject groups and each of the
other games with 6 independent subject groups. Each independent subject group
consisted of four players 1 and four players 2 interacting in fixed roles over 200
periods with random matching.
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The stationary concepts compared were:

Nash Equilibrium, Quantal Response Equilibrium, Action-sampling Equilibrium,
Payoff-sampling Equilibrium and Impulse Balance Equilibrium.

Quantal response equilibrium (MCKELVEY, PALFREY 1995) assumes that players
give quantal best responses to the behavior of the others (see 2.2.3). In the exponential
form of quantal response equilibrium, considered here, the probabilities are
proportional to an exponential with the expected payoff times a parameter in the
exponent.

Payoff-sampling equilibrium (Osborne & Rubinstein 1998) envisions a stationary
situation in which a player takes two samples of equal size, one for each of her pure
strategies. She than compares the sum of her payoffs in the two samples and plays the
strategy with the higher payoff sum. If both payoff sums are equal then both pure
strategies are chosen with probability %:. Payoff-sampling equilibrium is a mixed
strategy combination reflecting this picture. Here, too, the sample size is a parameter.
The best fitting sample size turns out to be 6 for each of both samples. The name
“payoff-sampling equilibrium” refers to the sampling of own payoffs for each pure
strategy.

Action-sampling equilibrium is based on the idea that in a stationary situation a
player takes a sample of 12 observations of the strategies played on the other side, and
then optimizes against this sample. If a player has a unique pure best response to her
sample than she plays this strategy. If both strategies are best responses then each of
them is chosen with probability %. This yields a mixed strategy depending on the
probabilities of pure strategies on the other side. Action-sampling equilibrium is a
mixed strategy combination consistent with this picture. The name “action-sampling
equilibrium” refers to the sampling of the opponent’s actions. The concept has been
developed by one of the authors (R. SELTEN). As far as we know it cannot be found in
the literature. However the sampling of actions of other players also appears in a paper
by Osborne and Rubinstein (1993) in the context of a sampling equilibrium for a large
voting game. The sample size is a parameter. Originally the sample size 7 was chosen in
view of the famous paper “The Magical Number 7 Give or Take Two” by MILLER (1956).
Later BRUNNER, CAMERER AND GOEREE (2009) found that 12 actually gives a better fit than
other sample sizes.

Impulse balance equilibrium proposed by one of the authors (R. SELTEN) is based on
learning direction theory (SELTEN, BUCHTA, 1999). This learning theory is applicable to
the repeated choice of the same parameter in learning situations in which the decision
maker receives feedback not only about the payoff for the choice taken, but also for the
payoffs connected to alternative actions. If a higher parameter would have brought a
higher payoff we speak of an upward impulse and if a lower parameter would have
yielded a higher payoff we speak of a downward impulse. The decision maker is
assumed to have a tendency to move in the direction of the impulse.
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It is worth pointing out that impulse learning is very different from reinforcement
learning. In reinforcement learning the payoff obtained for a pure strategy played in
the preceding period determines the increase of the probability for this strategy. The
higher this payoff is the greater is this increase. In impulse learning it is not the payoff
in the preceding period which is of crucial importance. It is the difference between
what could have been obtained and what has been received which moves the behavior
in the direction of the higher payoff. Moreover reinforcement learning is entirely based
on observed own payoffs, whereas impulse learning requires feedback on the other
player’s choice and the knowledge of the player’s own payoff function.

In SELTEN, ABBINK and Cox (2005) impulse balance theory, a semi-quantitative
version of learning direction theory has been proposed. The learning process itself is
not modeled, but only the stationary distribution. In the stationary distribution
expected upward impulses are equal to expected downward impulses. As in prospect
theory (KAHNEMANN & TVERSKY, 1979) losses are counted double in the computation
of impulses (formally this involves the computation of a loss impulse).

Impulse balance equilibrium applies the idea of impulse balance theory to 2x2-games.
The probability of choosing one of two pure strategies, say strategy A4, is looked upon
as the parameter to be adjusted upward or downward. It is assumed that the pure
strategy maximin is the reference level determining what is perceived as profit or loss.
In impulse balance equilibrium expected upward and downward impulses are equal
for each of both players simultaneously.

Following a suggestion of one of the authors (R. SELTEN) impulse balance equilibrium
has been successfully applied to special 2x2- and 2x2x2-games in a paper by AVRAHAMI,
GUTH and KAREEV (2005).

Remarks: Two of the stationary concepts compared in this paper, Nash equilibrium and
impulse balance equilibrium, are parameter free. Action-sampling equilibrium involves one
parameter, namely, the number 12. For the Payoff-sampling equilibrium this parameter is
the number 6, which yields the best fit to the data. Quantal response equilibrium involves
one parameter, namely, the constant multiplier of expected payoffs in the exponent. This
parameter has to be adjusted to the data.

Quantal response equilibrium modifies Nash equilibrium by introducing noise into the
optimization process. Thereby the best response notion is replaced by a notion of
quantal response. The two sampling equilibria, action-sampling equilibrium and
payoff-sampling equilibrium also involve noise produced by sampling error. However,
in contrast to quantal response equilibrium this noise is endogenous and is completely
determined by the sample size and the payoffs of the game.
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Quantal response equilibrium is not connected to any theory which relates the noise
parameter to the structure of the game. One could, of course, fit the parameter for
every individual game separately. However, this does not yield a method for predicting
a unique stationary mixed strategy combination for every completely mixed 2x2-game.
In order to make the concept of quantal response equilibrium comparable to other
theories involving at most one parameter, one has to look at the parameter of quantal
response equilibrium as an unknown behavioral constant which is the same for all
games. Accordingly we determine the value of the parameter which best fits all our
data and base our comparison on this.

The five concepts can be thought of as stationary states of dynamic learning models.
Learning models differ with respect to their requirements on prior knowledge of the
game and on feedback after each period. Nash equilibrium is stationary with respect to
reinforcement learning models like the ones used by Roth & Erev (1998). These
models require feedback on own payoffs but not more. A player does not even have to
know his or her own payoff matrix. The same knowledge and feedback requirements
are sufficient for learning models with quantal response equilibrium as stationary
state. The expected payoffs appearing in the formulas for quantal response equilibrium
can be estimated as average past payoffs. Simple learning models yielding payoft-
sampling equilibrium as stationary state immediately suggest themselves. It is clear
that here, too, only feedback of a player’s own period payoff is necessary.

The other two concepts seem to be more demanding with respect to learning models
yielding them as stationary states. As far as we can see one needs knowledge of one’s
own payoff matrix as well as feedback on the other player’s choice in these two cases.
Clearly a player must know his or her own payoff matrix for optimizing against a
sample of the other player’s choices. The same kind of knowledge and feedback is
necessary for perceiving impulses in learning direction theory.

The development of stationary concepts, which fit experimental data is very important
for behavioral theory. With the help of such concepts theoretically interesting
situations can be mathematically explored as, for example, a voting situation in a paper
by Osborne and Rubinstein (2003).

Learning models could also be applied to theoretically interesting situations. However,
the construction of learning models usually involves many details which may influence
the outcome of computer simulations. This makes it difficult to work with learning
models rather than stationary concepts. Moreover, in complex situations one may need
a huge number of computer simulations in order to answer questions of comparative
statics, which can be attacked mathematically on the basis of stationary concepts.
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In completely mixed 2x2-games, Nash equilibrium and impulse balance equilibrium
can be described by explicit formulas and therefore are easy to use in theoretical
investigations. However, this is not true for quantal response equilibrium, action-
sampling equilibrium and payoff-sampling equilibrium. The latter concepts can only be
computed numerically with the help of a computer. Nevertheless it is maybe
sometimes possible to investigate their comparative static properties by mathematical
operations like implicit differentiation applied to the defining equations. A similar
approach to the results of learning models seems to be almost hopeless.

In this paper all five stationary concepts will only be defined for completely mixed 2x2-
games. In the literature, Nash equilibrium, quantal response equilibrium and payoff-
sampling equilibrium are defined for normal form games in general. It is also clear how
the concept of action-sampling equilibrium can be generalized to all normal form
games. Admittedly this is less clear for impulse balance equilibrium as far as normal
forms with more than 2 strategies for some players are concerned. Here different
generalizations are possible. The basic principle would be that for each strategy of a
player, expected incoming impulses should be equal to expected outgoing impulses
unless there are no outgoing impulses as in pure Nash equilibrium. In Appendix 2.F a
sketch of a generalization of impulse balance equilibrium to general n-person games in
normal-form is presented.

The comparison of stationary concepts can also guide the search for adequate learning
rules. In the past, many authors like Selten (1990) and Sergio Hart and MasCollel
(2000) felt that a reasonable learning model should converge to Nash equilibrium or
correlated equilibrium under favorable assumptions. However, if other stationary
concepts better fit experimental data, one may want to look at learning processes
converging to them.

As we shall see, over all 200 periods and all 108 independent subjects groups the
comparison yields the following order with respect to the goodness of fit from best to
worst: Impulse balance equilibrium, payoff-sampling equilibrium, action-sampling
equilibrium, quantal response equilibrium, Nash equilibrium. However the difference
between impulse balance equilibrium and payoff-sampling equilibrium is not
statistically significant (see 2.4.8.).

In chapter 2.2 we shall present a more detailed description of the five concepts.
Chapter 2.3 will explain the experimental setup and section 2.4. will describe the
results. Chapter 2.5 concludes with a summary and discussion.
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2.2. The Five Stationary Concepts

All the experimental 2x2-games in this paper have the structure shown by figure 2.1.
The arrows around the matrix show the direction of best replies. The Parameters aj,
ar, by and bp are assumed to be non-negative. Games with negative payoffs probably
would require special behavioral considerations which we want to avoid in this paper.
The parameters c; and cg are player 1's payoff differences in favor of U and D,
respectively. Similarly dy and dp are payoff differences of player 2 for R and L,
respectively. All these payoff differences are assumed to be positive. It is clear that a
game with this structure is completely mixed in the sense that it has a uniquely
determined completely mixed Nash equilibrium.

_—

L R
U:.up D:down
a,+c, [4g L:left R:right

b B 4d Player 1's payoff in the upper left corner
U U U Player 2's payoff in the lower right corner

D 8y @iz Dy by 3.0

Cos Gl ds >0
b[)+d[) bD L R L I
—

Figure 2.1: Structure of the experimental 2x2-games.

In a completely mixed 2x2-game the arrows may also have the opposite orientation.
However, we can restrict our attention to the structure shown by figure 2.1 without
any loss of generality. The case of counter-clockwise arrows can be transformed to the
one shown above by an interchange of the two rows.

2.2.1. Equilibrium Conditions and Their Graphical Representation

Let p = (pupp) and q = (qLqr) be the mixed strategies of player 1 and player 2,
respectively. Here py and pp are player 1’s choice probabilities for U and D and g and
qr are player 2’s choice probabilities for strategy L and R. The space of mixed strategies
for a game with a structure of figure 2.1 can be described by the (puv,qi)-diagram
which shows the interval 0 < py < 1 horizontally and the interval 0 < g, < 1 vertically.
Every point (py,q.) in this square represents a strategy combination.
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Each of the five concepts involves two equilibrium conditions. The first one describes
equilibrium adjustment of player 1 for any given mixed strategy of player 2. In the
same way the second condition expresses equilibrium adjustment of player 2 to any
given mixed strategy of player 1. These two equilibrium conditions can be represented
by curves in the (py,qi)-diagram. We call the graph of the first equilibrium condition
the curve for py and the graph for the second one the curve for g;. The intersection of
both curves is the stationary equilibrium specified by the concerning concept.

Figure 2.2 shows the curves for py and q; arising in the example of our experimental
game 1 (see figure 2.5 in 3.2.). With the exception of the case of Nash equilibrium, the
curves for py are monotonically increasing and the curves for q. are monotonically
decreasing. In all five parts of figure 2.2 both curves intersect at the relevant stationary
equilibrium of our experimental game 1.

We now shortly discuss the two curves in the case of the Nash equilibrium. Let p; and
p) be the Nash equilibrium probabilities for U and L, respectively. Let us look at py on
the curve for py as g, moves from zero to 1. In the first vertical piece of the curve with
0=<g, =g, the probability py remains constant at py = 0. Then it moves on a horizontal
piece at ¢! from zero to one. The curve ends with a vertical piece with ¢}’ =g, <1 at
which py stays at py= 1. Similarly, on the curve for g; the probability g, stays at g, =1 in
a horizontal piece with 0=g¢, < p]J, then decreases from 1 to zero on a vertical piece
with g, = ¢/, and finally comes to a horizontal piece with ¢} <¢q, <1 and p, = 0. In this
sense one may say that py is increasing or constant along the curve for py and q; is
decreasing or constant along the curve for q;.

In the case of the other four concepts the curves for py and g, are continuously
differentiable. For each of these concepts equations for the two curves will be given in
the following sections 2.2.2, 2.2.3, 2.2.4. and 2.2.5. In these cases the value of py at g, on
the curve for py is denoted by puy(qr). Similarly the notation g;(py) is used for the value
of g1 at py on the curve for q;.

The curves for the concepts different from Nash equilibrium reveal a considerable
sensitivity with respect to the strategy of the other player. Suppose for example player
2 plays her Nash equilibrium strategy ¢, and that player 1 chooses the strategy p, (g} ).
The value of p,(q)) for quantal response equilibrium, action-sampling equilibrium,
payoff-sampling equilibrium and impulse equilibrium is .29, .52, .56, and .33,
respectively, whereas p; is equal to .09. It can bee seen, that in all four cases there is a
considerable difference between p, (g, ) and p, .

A look at figure 2.2 suggests a distinction of two groups of the pictures shown there.
The first group consists of the two diagrams in the first row and the second group is
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formed by the remaining three pictures. The curves for quantal response equilibrium
are near to those of Nash equilibrium. In this respect there is a close similarity within
the first group. The diagrams within the second group also look very similar to each
other, but there is a marked difference between the two groups.

As we shall see later, the concepts giving rise to the second group of pictures clearly
outperform those connected to the first group. These three concepts yield predictions
near to each other and much nearer to the observed relative frequencies.

9. 0.8

Nash equilibrium

0.2 0.4 0.6 .3

A,

action-sampling equilibrium
g

quantal response equilibrium

0.4 0.6 0.8 1

By—

payolf-sampling equilibrium

qi L

0.8}

Figure 2.2: The curves for py and qu arising in the example of game 1 for each of the

five concepts.

10
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In appendix 2.D it will be shown for each of the five stationary concepts that the curves
for py and q; always have a unique intersection. Therefore the stationary equilibrium
exists and is uniquely determined in all five cases.

In completely mixed games the Nash equilibrium strategy of a player is independent of
his own payoff. As one would intuitively expect experimental findings suggest that an
increase of a players payoff in one of the four fields with all other playoffs of both
players kept constant tends to increase the probability of this player’s strategy used at
this field. In appendix 2.E it will be shown that at equilibrium such payoff changes
always increase this probability for quantal response equilibrium and for impulse
balance equilibrium and, in the case of action-sampling equilibrium and payoff-
sampling equilibrium, this probability is never decreased, but increased if the payoff
change is big enough. The two sampling equilibria depend discontinuously on payoffs.

2.2.2. Nash Equilibrium

In the case of Nash equilibrium the curves for py and g, are the graphs of the best reply
correspondences for the two players (see figure 2.2).

In Nash equilibrium the choice probabilities are as follows:

d d c c
2.1 = D ) = v , = R , L
(21) py d, +d, Po d, +d, % C, +Cp c, +Cp

The choice probabilities of a player in Nash equilibrium are independent of his own
payoff. They are entirely determined by the payoff differences of the other player. This
is a well known counterintuitive property of Nash equilibrium.

2.2.3. Quantal Response Equilibrium

[t is assumed that players choose a “quantal best response” to the strategies of the
other player. They make mistakes, taking the mistakes of the other player into account.

11
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Let Eu(q) and Ep(q) be player 1’s expected payoff for U and D, resp., against a strategy q
of player 2. Similarly E1(p) and Er(p) are player 2’s expected payoffs for L and R, resp.,
against a strategy p of player 1.

In quantal response equilibrium the curves for py and g, are as follows.

e/lEU (¢) eflEL(p)

(22) P =

WEp(9) ! 9L = 75,

e + eAER (p)

+e

These equations yield a simultaneous equation system, which determines the choice
probabilities as functions of A. For our data A=1.05 is the best fitting overall estimate.
This value of A minimizes the sum of mean squared distances from the actually
observed relative choice frequencies for the 12 experimental games. This measure of
predictive success will be explained in section 2.4.2.

The best response structure of a 2-person game is a pair of mappings (a,f). The
mapping a maps the strategies g of player 2 to player 1’s set a(q) of pure best
responses to g and the mapping f maps the mixed strategies p of player 1 to the set
B(p) of player 2’s pure best responses to p. Nash equilibrium depends only on the best
response structure of the game. However, quantal response equilibria with the same
parameter A can be different for two games with the same best response structure. If
all payoffs of a 2x2-game are multiplied by the same positive factor x the best response
structure remains unchanged, but quantal response equilibrium for a fixed parameter
A does change. The multiplication of all payoffs by x has the same effect as not changing
payoffs and replacing A by A’= Ax.

Suppose that the payoffs are changed by adding a constant r to all payoffs of player 1 in
row R of figure 2.1 and leaving everything else unchanged. Let E,(¢)and E,(q) be the
new payoffs for U and D in the new game obtained in this way. We have

(2.3) E (@=E (@) +qzr, E (@=E,(q)+qyr

This means that the equation for py in the new game can be simplified by dividing

numerator and denominator by the common factor e’ . Therefore the equations for py
and pp do not really change in the transition to the new game. The same argument can
be applied to the case that a constant is added to player 1’s payoff in the column L or
players 2’s payoff in one of the two rows. We can conclude that such additive changes
do not have any effect on the quantal response equilibrium, even if it does not depend
on the best response structure alone.

12
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2.2.4. Action-sampling Equilibrium

In the stationary state described by pu, pp, q1, and gr player 1 takes a sample of n
choices L or R and optimizes against this sample. Player 2 behaves analogously. This
concept describes a stationary state of two large populations of players 1 and 2. Every
member takes a sample of n past decisions of players on the other side and optimizes
against it. More precisely he chooses his best response if this is uniquely determined
and plays his mixed strategy (%2,%2) if both pure strategies are best responses. The
action-sampling equilibrium is a stationary state of this system. Here, too, py, pp, pL and
pr are stationary probabilities of U, D, R and L. Consider two specific players 1 and 2 in
both populations. Let k be the number of L’s in player 1’s sample and let m be the
number of D’s in player 2’s sample. Then player’s 1 and 2 will play as follows:

player 1 plays U, D, (%2,%) for kci > (n-k)cr, kcy, < (n-k)cr, kci = (n-k)cgb,
respectively player 2 plays L, R, (Y2,%2) for mdp > (n-m)dy, mdp < (n-m)dy, mdp = (n-
m)dy, respectively

Instead of of kci, > (n-k)cr we also can write

(2.4) k >

Let au(k) be the probability of player 1 choosing U for k. and a;(m) be the probability of
player 2 choosing L for m.

[t can be seen immediately that we have

1 for — > “x 1 for — > 2
n ¢, +c n d, +d,

1 k c 1 m d,

2.5) a,(k) == for — = R, a (m) ={— for — = U
(25) a0 2f n o c,+cg L (m) 2f n d, +d,
0 else 0 else

L is played with the probability q;. Accordingly the number k of L’s in player 1’s sample
is binomially distributed. An analogous statement holds for the number of D’s in player
2’s sample. One obtains the following equations for py and q;.

13
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n n

(2.6) p, = E(ZJQ'Z (1-g,)" " a, k), q, = E(Z)(l—pu)”’pu"_m a, (m)

k=0 m=0

These equations describe the curves for py and q; explained in ILA.

Remarks: The functions ay(k) and ai(m) depend only on the payoff differences ci, cg,
dy and dp. Therefore the concept of action-sampling equilibrium depends only on the
best response structure.

The curves for py and q; are differentiable with respect to q. and py, resp., for given
payoff differences ci, cr, dy, and dp however the two curves do not depend continuously
on these payoff differences. If for example cr/(cL*+cr) is equal to %2 a small change of
either c or cr results in a jump of o, (k).

The concept of action-sampling equilibrium can easily be extended to general normal
form games. In a stationary situation a player takes a sample of 7 observations of
combinations of pure strategies for the other players and then optimizes against this
sample. In the case of several best responses each of them is chosen with equal
probability.

2.2.5. Payoff-sampling Equilibrium

The basic idea of payoff-sampling equilibrium has been explained in the introduction.
Osborne and Rubinstein (1998) did not specify the probabilities of both strategies in
the case that the payoff sums for the two samples are equal. In order to obtain a unique
prediction we added the rule that in this case each pure strategy is chosen with
probability Y.

As before py, pp, g1 and gr denote the stationary probability for the corresponding pure
strategies.

Let n be the sample size and ky and kp be the number of L’s in a player 1’s sample for U
and D respectively. Similarly let m; and mg the number of U’s in a player 2’s sample for
L and R respectively.

Player 1’s sums of payoffs Hy and Hp in the samples for U and D ,resp., are as follows

(2.7) HU = kU (aL+cL) + (n-ky)aR., Hp = kDaL + (n-kD) (aR+cR)

14
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In the same way player 2’s sum of payoffs in the samples for L and R are given by
(28) HL = mUbU+ (n-mL) (bU+dD), HD = Mg (bU+ dU) + (n-mR) bD

Player 1’s probability Su(ku, kp) of playing U if ky and kp are the numbers of L’s in his
sample as well as the probability y (m.,,mg) of player 2 playing L if she observes the
numbers m; and mg of U’s in her samples for L and R are described below.

1 for H,>H, 1 forH, > H,
1 1
(29) Bk, .ky) = 5 for H,=H,, y(m,,my)= EfOVHL =H,

0 else 0 else

Since ky and kp as well as m;, and mpr are binominal distributed we have

n n n n L
(2.10) Py = E E (k )(k )qIZUHCD(l_qL)Zn—kU © B (ky.ky)
ky=0k, =0\ U/ \ %D
” . n n n—-m;—-mp
(2.11) 4=y ( )( )(1—pU>ML+’"R Py y(my )
mp=0mp=0 my \ng

The curves for py and g;.in the case of payoff-sampling equilibrium are represented by

these two equations.

Remarks: The operation of adding a constant to player 1's payoffs in the column for R
may change f(kv, kp) and therefore the first of the two equations. Similarly adding a
constant to player 2’s payoffs in the row for U may change the second equation. For
this reason payoff-sampling equilibrium is not invariant with respect to these

operations.

As in the case of action-sampling equilibrium the curves for py and q; are differentiable
with respect to q; and py, resp., but not continuous with respect to a small change of

one payoff in the payoff-matrix for the concerning player.

15
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2.2.6. Impulse Balance Equilibrium

As has been already explained in the introduction, impulse balance theory is not
applied to the original game, but to a transformed game, in which losses with respect
to a natural aspiration level get twice the weight as gains above this level.

The natural aspiration level for a player is his pure strategy maximin value, or in other
words, the maximum of the lowest payoff he may obtain for using one of his pure
strategies. Define:

(2.12) s1=max [min (ai + ci, agr), min(ay, ar+ cr)]

(2.13) sz =max [min (by, bp + dp), min(by + du, bp)]

From now we shall refer to s; and sz as the pure strategy maximin payoffs or shortly
the security levels of players 1 and 2, respectively.

In the following it will be argued that the security level of a player is her second lowest
payoff. It may happen that the lowest payoff is obtained at more than one of the four
fields. In this case there is no difference between the second lowest payoff and the
lowest payoff. The words “second lowest payoff” will always be understood this way.

In a completely mixed 2x2-game no pure strategy can dominate an other one (see
figure 2.1). Therefore the lowest and the second lowest payoff of player 1 cannot
appear in the same row. An analogous statement holds for player 2.

The second lowest payoff is always at least obtained if it is the lowest one. Otherwise
the lowest payoff can be avoided by not choosing the pure strategy which may yield it.
Thereby the second lowest payoff is secured. It is also clear that one cannot secure
more than that by the use of a pure strategy.

The security level can be enforced, no matter what the other player does. Therefore it
is natural to look at a lower payoff as a failure and its difference to the security level as
a loss. It makes no sense to be satisfied with less than one could have got for sure. Loss
aversion is a well known behavioural concept, used for example, in prospect theory

16
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(Kahnemann and Tversky 1979). In the case of a payoff below the security level, there
are two reasons for thinking that one should have chosen the other strategy. The first
reason is that the other strategy would have yielded a higher payoff. The second reason
is that the loss should be avoided. The loss counts as a part of the foregone payoff and
in addition to this it counts once more by its quality of being a loss rather than merely a
forgone gain.

An earlier formulation of impulse balance theory concerned an auction situation in
which losses could occur only in a connection with bids appearing to be too high ex
post (Selten, Abbink and Cox 2005). Therefore in the case of a loss, the decision maker
experienced a downward impulse and a loss impulse. In 2x2-games losses may occur
for choices of one strategy or the other depending on the structure of the game. Thus in
game 1 (see figure 2.5 in 2.3.2.), player 1 at (U,R) experiences a loss of 9 and a forgone
payoff of 10. Therefore a loss impulse of 9 is added to the ordinary impulse of 10 from
Uto D at (U,R). At (D,L) player 1 receives only an ordinary impulse of 1 from D to U.

As we shall see, the combination of ordinary impulses and loss impulses is
automatically taken care of if impulses from one pure strategy to another are
computed in a transformed game in which losses receive double the weight of gains.
We construct this transformed game by leaving player i’s payoffs below and at s;
unchanged and by reducing the surplus over s; of higher payoffs by the factor %. Figure
2.3 shows the impulse balance transformation for the example of experimental
game 3 (see figure 2.5 in 2.3.2.).

8 0 7,5 |0

6| 14 6| 10
7 10 7 8,5

7 4 6,5 4

game 3 transformed game 3

*agpiration levels s, = 7,5,= 6

Figure 2.3: Impulse Balance Transformation for the example of experimental game 3.

The payoff differences in the transformed game corresponding to ci, cr dy dp are
denoted by c,, c,, d,, d,.If after a play player i could have obtained a higher payoff by
the choice of his other strategy, he receives an impulse in the direction of his other
strategy. The size of this impulse is the forgone payoff in the transformed game. If for
example player 1 chooses U and the other player chooses R, then player 1 receives an
impulse of ¢, = 8.5 in the direction of D. A player receives no impulse if the payoff for

17
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the strategy he did not choose was lower than the one he obtained. Figure 2.4 shows
the impulses in the direction to the strategy not chosen, similar to a payoff table.

L R

*
0 gy

0 d

Figure 2.4: Impulse in the direction of the strategy not chosen.

It can now be seen without difficulty that impulses in the transformed game
automatically combine ordinary impulses and loss impulses in the original game. In the
case of a payoff below s; the loss part of an impulse is fully counted and a possible
forgone-gain part is reduced by the factor %, just like an impulse in the case of a payoff
above the security level. Half of the fully counted loss corresponds to the loss impulse.

Impulse balance equilibrium requires that player 1’'s expected impulse from U to D is
equal to his expected impulse from D to U. Similarly player 2’s expected impulse from L
to R must be equal to her expected impulse from R to L. This yields the following two
impulse balance equations:

(2'14) puch; =quLC2r pUC]Ld; =quRd:)

The left hand side of the first impulse balance equation is player 1's expected impulse
from U to D and the right side is player 1’s expected impulse from D to U. If the left
hand side is greater than the right hand side then player 1 receives stronger impulses
from R to D and this will decrease gr and increase q;. This creates a tendency in the
direction of impulse balance. An analogues interpretation can be given to the second
impulse balance equation. Of course this is only a heuristic argument. In this paper we
do not want to explore the dynamics of impulse balance equilibrium.

The impulse balance equations yield the following equations of the curves for p, and

qu

_ QLCZ q, = (l_pU)d;
- * * L= * *
q.c,+(1-q,)c, pudy +(1=py)d,

(2.15) Pu
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In section 2.E4 of appendix 2.E explicit formulas will be derived for the coordinates of
the intersection (p,,,q,) of the two curves. Define ¢ = ¢, /c, and d = d,, /d,,: It will be

shown in 2.E4 that at the intersection we have pU=\/Z/(\/Z+\/§)and
q, =1/(1++cd).

In appendix 2.F a possibility of generalizing impulse balance equilibrium to n-person
normal form games will be shortly sketched. Even if for the substance of this paper no
such generalization is needed it is maybe of interest to see in which way it could be
achieved.

2.3. Experimental Design

2.3.1. Procedure

The experimental data were obtained in 54 sessions with 16 subjects each and 864
altogether. The subjects were students of the University of Bonn, mainly majoring in
economics or law. The experiments were run in the Bonn laboratory of experimental
economics. The computer program was based on the toolbox Ratlmage developed by
Abbink and Sadrieh (1995). Only one game was played in each session.

At the beginning of a session oral and written instructions were given to the subjects.
The written instructions (in German) are shown in appendix 2.B. The subjects were
informed about the game matrix including the payoffs of both players. They were told
that they would interact with randomly changing opponents and always be in the same
player role over 200 periods. Actually in each session there were two independent
subject groups with four participants in the role of player 1 and four participants in the
role of player 2. The players played against randomly chosen opponents but only
within their independent group. They were not informed about the fact that there are
two groups. We did not lie to them but conveyed the impression that they interact
directly or indirectly with 15 other players.

After the instruction the participants were sitting in separate cubicals and made their
decisions by mouse click. The decisions in a play were made without any information
about the choices of the other players. After each of the 200 plays they received
feedback about the other player’s choice and their payoff, the period number and their
cumulative payoff. No limit was imposed on the decision time. The subjects were not
permitted to take notes of any kind about their playing experience. They were also not
permitted to talk to each other during the experiment and they had no opportunity to
see the screens of other participants. After each experiment, participants had to fill in a
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questionnaire. However, no use of the questionnaire data is made in this paper.
Therefore the questionnaire is not shown here.

Each participants received 5 € and in addition to this a money payoff proportional to
his or her game payoff accumulated over the 200 periods. The exchange rate was 1.6 €-
Cent per payoff point. An experimental session took 1.5 to 2 hours and the average
earning of a subject was about 24 € including the show up fee.

In some sessions a digit span test DAvIS (1931), DELLA SALA ET AL. (1999) preceded the
game playing. This test is designed to measure the short time memory size. However
we shall make no use of the data collected by this test in this paper. Therefore the
details of the digit span test will not be explained here.

2.3.2. Experimental Games

Figure 2.5 shows the twelve games used in our Experiment. The constant sum games
are shown on the left side of figure 2.5 and the non-constant sum games on the right
side of figure 2.5. The non-constant sum game right next to a constant sum game in the
figure 2.5 has the same best response structure. We say that the two games form a pair.
The non-constant sum game in a pair is derived from the constant sum game in this
pair by adding the same constant to player 1’s payoff in the column for R and 2’s payoff
in the row for U. It is clear that this does not change the best response structure.

Nash equilibrium and action-sampling equilibrium depend only on the best response
structure and therefore yield the same predictions for both games in a pair. In section
2.2.2. it has been explained that adding a constant to all payoffs of player 1 in a specific
column or to all payoffs of player 2 in a row does not change the quantal response
equilibrium, even if this concept does not depend only on the best response structure.
Therefore quantal response equilibrium, too, yields the same prediction for the two
games in a pair.

The games in a pair also have the same action-sampling equilibrium. A best response
to a sample of pure strategies of the other player in one of the two games is also a best
response to this sample in the other game. This is an immediate consequence of the
fact that both games have the same best response structure.
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In view of the remark at the end of section 2.2..4. one cannot expect that payoff-
sampling equilibrium generates the same prediction for the games in a pair. In fact
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these predictions are different for all six pairs.

The determination of impulse balance equilibrium involves a transition from the
original game to the transformed game. The pure strategy maximin payoff, which
serves as a reference point for gains and losses may be different for the two games of
the pair and even if this is not the case, the best response structures will usually be
different. In fact, in all 6 cases the impulse balance equilibria are different for the two

games in a pair.

Constant Sum Games

Game 1

Game 2

Game 3

Game 4

Game 5

Game 6

Non-Constant Sum Games

0 |0 10 |4
: 8 _ 18| Game 7 9 12 _ 22

9 'Y 8 N
> 4V B 2 7P 16
— 1z Game & 77

2P 5 7 I 5
g 0 8 |3

6| 14 9 17
7 _ |10 Game 9 ;3

7 [ .4 2 [
710 72

2 ¥ s 13
—5 Game 10 = 77

61 2 " sl
7 5|0 7 4P o

2l 91 Game 11 i
4 5 8 7 5 ]
7 |1 7 |3

1 7 317 9
3 3 Game 12 R BT,

127 9 5177 0

L: left R: right
U: up D: down

Player 1’s payoff is shown in the upper left corner
Player 2’s payoff is shown in the lower right corner

Figure 2.5: Experimentally investigated games.
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In the selection of the experimental games we have been guided by several
considerations explained in the following. Two pilot experiments were run with the
games shown in figure 2.6. Game A is similar to the game played by OcHS (1995) and
also by GOEREE, HOLT, CHARLES and PALFREY (2000). In the questionnaires the subjects
who had played game A often reported attempts to cooperate.

Game A—?% 3! GameB|l-—%| 2

Figure 2.6: Structure of the pilot experiments.

Even if these attempts failed they may have had an influence on the observed relative
frequencies. Therefore we decided to explore constant sum games extensively.
Constant sum games offer no cooperation opportunities. We wanted to contrast them
with similar non-constant sum games offering some scope for cooperation.

The concepts of action-sampling equilibrium and impulse balance equilibrium have
been developed on the basis of the pilot experiments with games A and B. Therefore
the experimental results obtained with these games are not included in the comparison
of the five theories.

The selection of the constant sum games was guided by the idea, that on the one hand a
reasonably wide distribution over the parameter space should be achieved, and on the
other hand the number of games should be small enough to permit a sufficiently large
number of independent subject groups in every case.

The games explored here have 8 payoffs but the best response structure is
characterized by two parameters. The Nash equilibrium choice probabilities p;; and

g) will serve as these two parameters in the following figure. Figure 2.7 show the six
Nash equilibria for the experimental games.
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Nash Equilibria
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Figure 2.7: Permutations of rows, columns, or player roles transform the 6
experimental games into 44 games with the Nash equilibria shown in the figure.

In all six cases pg is between 0 and .5 and ¢} is between .5 and 1. Therefore only this
part of the parameter space is shown in figure 7. The best reply structure remains
essentially unchanged if the rows or columns or the role of both players are exchanged.
Such transformations yield all the points in figure 2.7.

It can be seen, that the six games together with their automorphic transformations are
widely distributed over the parameter space. However we intentionally
underrepresented cases in which one of the equilibrium choice probabilities is near to
.5. In our sample of 6 only game 6 has this property. In the middle of the parameter
space, where both parameters are .5, every reasonable theory predicts equal
probabilities for all strategies. The greater the distance from the midpoint is, the more
the stationary concepts compared in this paper differ with respect to their predictions.

Since constant sum games are more basic we have run experiments with 12

independent subject groups for each of the 6 constant sum games but only 6
independent subject groups for each of the non-constant sum games.
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2.4. Experimental Results

2.4.1. Predicted and Observed Relative Frequencies

We begin our descriptions of the results obtained by a number of figures showing the
predictions of the five stationary concepts together with the observed overall relative
frequencies for each of the experimental games. The numerical values are shown in table 2.1.

Quantal Payoff- Action- Observed
. . Impulse
Nash response sampling sampling Average of
o c o . Balance
Equilibrium | Equilibrium | Equilibrium | Equilibrium Equilibrium 12
(A=1.05) (n=6) (n=12) q Observations
Game 1 U [ 0.091 0.042 0.071 0.090 0.088 0.079
L | 0.909 0.637 0.645 0.705 0.580 0.690
U [0.182 0.154 0.184 0.193 0.172 0.217
Game 2
L | 0.727 0.579 0.569 0.584 0.491 0.527
U | 0.273 0.168 0.152 0.208 0.161 0.198
Game 3
L | 0.909 0.770 0.773 0.774 0.765 0.793
U | 0.364 0.275 0.285 0.302 0.259 0.286
Game 4
L | 0.818 0.734 0.726 0.719 0.710 0.736
Game 5 U | 0.307 0.307 0.307 0.329 0.297 0.327
L | 0.727 0.657 0.654 0.643 0.628 0.664
Game 6 U [ 0.455 0417 0.427 0.426 0.400 0.445
L | 0.636 0.607 0.597 0.596 0.600 0.596
Quantal Payoff- Action- Impulse Observed
Nash response sampling sampling
ey c o . balance Average of 6
Equilibrium | Equilibrium | Equilibrium | Equilibrium Eauilibrium | Observations
(A=1.05) (n=6) (n=12) q
Game 7 U | 0.091 0.042 0.056 0.090 0.104 0.141
L | 0.909 0.637 0.691 0.705 0.634 0.564
U |0.182 0.154 0.222 0.193 0.258 0.250
Game 8
L | 0.727 0.579 0.601 0.584 0.561 0.586
Game 9 U | 0.273 0.168 0.154 0.208 0.188 0.254
L | 0.909 0.770 0.767 0.774 0.764 0.827
U | 0.364 0.275 0.308 0.302 0.304 0.366
Game 10
L | 0.818 0.734 0.731 0.719 0.724 0.699
U | 0.364 0.307 0.339 0.329 0.354 0.331
Game 11
L | 0.727 0.657 0.651 0.643 0.646 0.652
U [ 0.455 0417 0.405 0.426 0.466 0.439
Game 12
L | 0.636 0.607 0.600 0.596 0.604 0.604

Table 1.1: Five stationary concepts together with the observed relative frequencies for

each of the experimental games.

In the first three columns of table 2.1 the theoretical values of the upper half are
repeated in the lower half. This is due to the fact that Nash-equilibrium and action-
sampling equilibrium depend only on the best response structure (see the remark at
the end of I1.D and the property of quantal response equilibrium explained at the end

0f2.2.3)
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In figures 2.8 and 2.14 in Appendix 2.A we show cutouts of the whole parameter space
with predictions and observed averages for all 12 games. Apart from the fact that the
Nash equilibrium of game 2 is nearer to (.5,.5) than that of game 3, the games 1-6 are
the farther from the middle of the parameter space the lower is their order in the
numbering. One can see that the discrimination between the concepts tends to be
worse for games nearer to the middle of the parameter space.

The predictions of impulse balance equilibrium, payoff-sampling equilibrium, action-
sampling equilibrium and quantal response equilibrium tend to be near to each other.
Therefore random fluctuations make the comparisons between these four concepts
difficult. The cutouts for games 7 to 12 show a similar picture. However, contrary to
what happens in other games, in game 9 Nash equilibrium is slightly nearer to the
observed averages than the other three concepts. As we shall see in 2.4..6 our data
suggest that the results of game 9 are influenced by especially large random
fluctuations.

As has been explained in 2.3.2 each of the three concepts, Nash equilibrium, action-
sampling equilibrium as well as quantal response equilibrium yields the same
prediction for the two games in a pair. This is not the case for payoff-sampling
equilibrium and impulse balance equilibrium.
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Figure 2.8: Visualization of the theoretical equilibria and the observed average in the
constant sum games.

2.4.2. The Measure of Predictive Success

We look at the five theories compared in this paper as predictions of the relative
frequencies of U and L in an independent subject group playing one of the games 1 to
12. We do not want to assert that a player uses the same mixed strategy in all 200
periods of a session and we also do not assume that all players in the same role always
behave in the same way. Presumably the players are engaged in complex learning
processes which differ from person to person. Nevertheless such behaviour may result
in frequencies of U and L which can be predicted reasonably well by stationary
concepts. It is important to know how well observed relative frequencies can be
explained without going into the details of stochastic learning models.
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For a theory predicting a point in an Euclidian space the squared distance of theoretical
and observed values is a reasonable measure of predictive success, in the sense that
the predicted success is the greater the smaller this distance is. In the following we
want to explain how this measure is applied to our data. Each Game i with i=1,...,12 has
been played by s; independent subject groups with si=12 for i= 1,..,6 and si=6 for
i=7,..,12

We use the index j with j=1,...,s; for the subject groups. Let and fiyj and fiz; be the relative
frequencies of U and L in the j-th independent subject group playing game i. Consider a
prediction py and q;, for these relative frequencies then

(2.16) Qi = (fiy-pu) 2+(fi;-qr)?

is the squared distance of the j-th observation for game i from the prediction for game i.
The mean squared distance for the data of this game i from (py,p.) is as follows

(217) 0--30,

We shall look at the overall predicted success but also at the predicted success of the
constant sum games 1 to 6 and the non-constant sum games 7 to 12 separately. Define:

218) Q=2 30.  O=:d0. Q=30

The indices C and N stand for constant sum and non-constant sum games. The mean
squared distances Qc, Qv and Q will be the basis of our comparison of the five theories.

For every game i let fiy and fi, be the mean values of fiyj and fiz; with j=1,....s:

(2.19) £, =SiEfin for i=1,...12, fa =siEfl.Lj for i=1,...12

i =1 i =1
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The expression

(2.20) S, =li(fiw — fu) +(fyy - f)* fori=1,..12
. . 4

i j=1
is the sampling variance of game i and
(2.21) T, =(fy - o) +(fy —4,) for i=1,...12

is the theory specific component of the mean squared distance. The mean squared
distance for a game can be split into these two components:

(2.22) Qi=Si+T; fori=1,...12
Define
1 6 112 1 12
2.23 S.=—)>S, Se=—>S5, S=—)»§
( ) C 6; i N 6; i 12 o i
1 6 112 1 12
(2.24) T= 2T Ty=e 2T T=—2T

The mean squared distances Q¢, Qv and Q can also be split into two components

(2.25) Qc=Sc+T¢ Qn=Sn+Th, Q=5+T

Note that each game receives equal weight in Q, S, and T in spite of the fact that there
are twice as many observations for each constant-sum game than for each non-
constant sum game. This conforms to the goal of obtaining an adequate judgment of the
overall goodness of fit for the 12 games.
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Since the mean sampling variances S¢ Sy and S do not depend on the theory under
consideration it does not really matter whether the comparison of theories is based on
Qc Qv and Q or alternatively on T¢, Ty and T. However, the mean squared distances Qc,
Qv and Q are more natural measures of predictive success. A high sampling variance
limits the accuracy of prediction even if the theory specific component is very small.
Therefore the mean squared distance of the individual observations from the theory is
more adequate as a measure of predictive success.

For no theory the mean squared distance Q can be smaller than S. The sampling
variance S is an unavoidable part of Q.

2.4.3. Comparison of Sample Sizes for Action-sampling Equilibrium

Originally action-sampling equilibrium with the sample size of 7 had been considered
as a theory to be compared with the data, since this sample size finds some admittedly
weak support in the psychological literature (Miller 1956). The sample size 7 seems to
be connected to the average capacity of short time memory. However, it is not really
clear, whether this is relevant for the behavior in our experiments. Therefore another
sample size could have yielded a better fit for our data.

In order to check this we compared the predictive success for action-sampling
equilibria with different sample sizes.

Figure 2.9 shows the overall mean squared distances Q for the action-sampling
equilibria with the sample sizes n=1,...,15. It can be seen immediately that the average
squared distance is smallest for n=12. This means that the best fit to the data is
obtained with sample size 12. In our comparison of the five concepts we therefore do
not have to consider other sample sizes for action-sampling equilibrium.
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FigureZ2. 9: Overall mean squared distances Q for the action-sampling equilibria with
different sample sizes.

The figure also shows the mean sampling variance in grey. It can be seen that for the
sample size 12 the mean squared distance Q is much nearer to its unavoidable part S
than for all other sample sizes.

2.4.4. Comparison of Sample Sizes for Payoff-sampling Equilibrium

Figure 2.10 shows the overall mean squared distances @ for the payoff-sampling
equilibria with the sample sizes n=1,...,10. It can be seen that the sample size 6 yields
the best fit to the data. Therefore our comparison of the five theories is based on the
sample size 6 for payoff-sampling equilibrium.
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Figure 2.10: Overall mean squared distances Q for the payoff-sampling equilibria
with different sample sizes.

2.4.5. Original Versus Transformed Games

The basic idea of impulse balance is applied to the transformed game rather than the
original one. This idea could also be applied directly to the original game. As we shall
see later, the application to the transformed game yields a better fit to the data. This
was already true for the pilot study on games A and B. We therefore decided to test
impulse balance theory in the form described in section 2.2.5. However, it is of interest
to examine the question how the direct application compares to the concept of impulse
balance equilibrium proposed here.

It could be the case that not only the predictive power of impulse balance equilibrium
but also that of other concepts is increased by applying them to the transformed game
rather than to the original one.

We shall examine this question for Nash equilibrium, action-sampling equilibrium and
payoff-sampling equilibrium. Contrary to Nash equilibrium, quantal response
equilibrium, action-sampling equilibrium and payoff-sampling fit the data quite well. It
is therefore of special interest to explore whether a better fit could be obtained by
applying these two concepts to the transformed game rather than the original one. If in
this way one obtained a better fitting version of one of the two concepts, then this
version should be compared with the other three theories.

We did not examine, what happens, if quantal response equilibrium is applied to the
transformed game rather the original one.

31



CHAPTER 2: STATIONARY CONCEPTS OF 2X2-GAMES

Figure 2.11 shows the overall mean squared distances for Nash equilibrium, action-
sampling equilibrium, payoff-sampling equilibrium and impulse balance equilibrium
applied directly to the original game or to the transformed game. It can be seen that
only impulse balance theory profits from being applied to the transformed game
whereas the other three theories do not gain by being modified in this way.

0.07 1
Q Nash Payoff-sampling Action-sampling Impulse balance

006 Cquilibrium equilibrium equilibrium equilibrium
0.05

0.04 1

0.02

"Ae (e | mH | A

Theory specific component T in application to the transformed game
W Theory specific component T in application to the original game
Sampling variance S

Figure 2.11: Advantages and disadvantages of applying a concept to the transformed game
rather the original one.

The figure also shows the decomposition of the mean squared distance Q into the
sampling variance S (grey) and the theory specific component T (black and white
resp.). The difference between the applications to the original game and the
transformed one are even more dramatic in the case of impulse balance equilibrium, if
one looks at the theory specific components instead of the mean squared distance.

In view of figure 2.7 it seems to be justified not to add the modifications of Nash
equilibrium, action-sampling equilibrium and payoff-sampling equilibrium to the list of
the five theories which are the main focus in this paper.

As we shall see in the next section impulse balance equilibrium fits our data best.
Figure 2.15 shows that this success is not mainly due to the use of the transformed
game. Otherwise the predictive success of other concepts should be improved as well if
they are applied to the transformed game rather than the original one. This is not the
case.
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2.4.6. Comparison of the Five Theories

Table 2.2 shows the mean squared distances of the five theories for the twelve games

separately. It also contains the sampling variance for each game.

N [ Qul Pttt Tl sonping

equilibrium | iibrium | equilibrium | equilibrium | equilibrium | Y2100
Game 1 0.0572 0.0133 0.0112 0.0103 0.0213 0.00909
Game 2 0.0483 0.0136 0.0098 0.0164 0.0102 0.00693
Game 3 0.0321 0.0058 0.0057 0.0087 0.0073 0.00523
Game 4 0.0169 0.0041 0.0041 0.0072 0.0054 0.00403
Game 5 0.0149 0.0100 0.0100 0.0115 0.0117 0.00953
Game 6 0.0042 0.0034 0.0028 0.0027 0.0045 0.00246
Game 7 0.1237 0.0171 0.0253 0.0189 0.0081 0.00178
Game 8 0.0298 0.0146 0.0063 0.0106 0.0060 0.00531
Game 9 0.0212 0.0248 0.0276 0.0332 0.0224 0.01409
Game 10 | 0.0208 0.0160 0.0109 0.0134 0.0111 0.00665
Game 11 | 0.0098 0.0037 0.0032 0.0059 0.0036 0.00307
Game 12 | 0.0045 0.0037 0.0047 0.0033 0.0039 0.00317

Table 2.2: Squared distances of the five theories.

Figure 2.12 shows the overall mean squared distances Q for the five theories compared
in this paper. It can be seen that there is a order of success: Impulse balance
equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, quantal
response equilibrium and Nash equilibrium. The figure also shows the sampling
variance S in grey and the theory specific components in black.

The sampling variance for game 9 is much greater than for other games. This is

probably the reason for the unusual constellation of the cutout for game 9 in figure
2.14, Appendix 2.A.
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Figure 2.12: Overall mean squared distances of the four stationary concepts
compared to the observed average.

2.4.7. Changes over Time

The question arises whether the order of predictive success of the five theories
remains stable over time. Of course we can investigate this question only within the
span of the 200 periods played in our experiments. For this purpose we compared the
first hundred periods with the second hundred periods. Figure 2.13 shows the mean
squared distances decomposed into sampling variance (grey) and the theory specific
components (black and white resp.) for periods 1-100 (left) and 101-200 (right) for
the five theories compared in this paper. It can be seen that in the second half of the
experiments the predictive success of action-sampling equilibrium, payoff-sampling
equilibrium and quantal response equilibrium is slightly greater than that of impulse
balance equilibrium. The difference is not significant under the Wilcoxon signed rank
test. The predictive success of impulse balance equilibrium is the same one in the first
and second half. For each of the other four theories the performance is better in the
second than in the first half.

The sampling variance is greater in the second half than in the first half. A two tailed
matched pairs Wilcoxon signed rank test applied to the sampling variances for the first
half and the second half in the twelve games shows no significant difference. Therefore
we interpret the difference between the sampling variances in figure 2.17 as due to a
random effect.
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The improvement of predictive success in the second half of the experiment is
connected to a movement of the observed relative frequencies nearer to the convex
hull of the theoretical probability vectors. The relative frequencies for the first and the
second half of game 4 are both inside the convex hull but for the other 11 games the
relative frequencies for the first half are outside the convex hull. In the second half they
are either inside (4 games) or still outside but nearer to the convex hull (7 games).
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Figure 2.13: Comparison of predictive success in the first half and second half of the
experiments.

2.4.8. Significance of the Comparisons of Predictive Success

In section 2.4.1. we have pointed out that the discrimination between the five concepts
tends to be the worse the nearer the games are to the middle of the parameter space.
Therefore we cannot expect significant results for the twelve or six observations for
each of the games separately. It is more reasonable to apply a test to all constant sum
games together and to do the same for all non-constant sum games together.

In order to compare the performance of two stationary concepts in the twelve games
we apply the Wilcoxon matched pairs signed rank test to the squared distances of the
theoretical values from the observed relative frequencies for the 108 independent
subject groups.

In the application of this test differences of the squared distances are computed for
each of the 108 observations and then ranked from 1 to 108 according to their absolute
value. Smaller absolute values receive a lower rank. The test statistic is the sum of the
ranks in favor of the first theory, in the sense that the squared distance for the first
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theory is lower than that for the second theory. This means that higher differences
count more than lower ones, since they are less likely to be disturbed by random
fluctuations. Therefore the fact, that games near the middle of the parameter space
discriminate less among the theories, is automatically taken into account by the
Wilcoxon matched pairs signed rank test.

The same test has also been applied to the 72 observations on constant-sum games and
the 36 observations on non-constant sum games separately.

Table 2.3 shows the two tailed significances in favor of the row concept.

Action Payoff Impulse Quantal Nash
sampling sampling balance response e s
equilibrium | equilibrium | equilibrium | equilibrium equilibrium
Action n.s. n.s. 2 percent .1 percent
sampling n.s. 5 percent 10 percent .1 percent
equilibrium n.s. n.s. 10 percent .1 percent
Payoff n.s. 5 percent .1 percent
sampling .1 percent .1 percent .1 percent
equilibrium reversed n.s. .1 percent
Impulse n.s. .1 percent
balance reversed .1 percent
equilibrium 5 percent 5 percent .1 percent
Quantal .1 percent
response .1 percent .1 percent
equilibrium 1 percent
Nash
equilibrium

Above: all games. Middle: games 1-6. Below: games 7-12
“n.s. “ means “ not significant
“ reversed“ indicates that the pairwise comparison yields an entry below the main diagonal

Table 2.3: Significances in favor of row concepts, two tailed matched pairs Wilcoxon
signed rank test, rounded to the next higher level among .1 percent, .2 percent,
.5 percent, 1 percent, 2 percent, 5 percent, and 10 percent.

In order to judge how well the five concepts do in the revised table 3 we form and
“significant entry index” for every concept. This index is the number of significance
entries in the row of a concept minus those in the column of the same concept. (Entries
“n.s.” and “reversed” do not count). Significances in the row of a concept indicate a
comparison in favor of this concept and those in the column of the same concept stand
for comparisons in favor of another concept. The significance entry index of the five
concepts is as follows:
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Action-sampling equilibrium: +7
Payoff-sampling equilibrium: +5
Impulse balance equilibrium: +2
Quantal response equilibrium: -2
Nash equilibrium: -12

20 of the 22 significance levels shown in table 3 are in favor of the concept with the
higher significance entry index. The two entries below the main diagonal concern
comparisons between adjacent concepts with respect to the order given by the
significance entry index and therefore represent relatively mild violations of this order.

It is also of interest that the index is positive for action sampling equilibrium, payoff
sampling equilibrium and impulse balance equilibrium, but negative for quantal
response equilibrium and Nash equilibrium. Of course the index is not more than a
descriptive device for conveying a condensed impression of the information contained
in table 3.

Nash equilibrium and impulse balance equilibrium are parameter free whereas the
other three concepts involve one parameter estimated from the data. The possibility of
adjusting a parameter to the observations adds’s a degree of freedom not available to
parameter free theory. A fair comparison between different concepts should take this
advantage into account and level the playing field. However, it is not clear how this
should be done. Therefore we did not try to remove this advantage of the one-
parameter concepts.

Moreover, when a comparison is significant it is not always consistent across data sets
(for example, impulse balance equilibrium does significantly better than quantal
response equilibrium for non-constant sum games but quantal response equilibrium
does significantly better than impulse balance equilibrium for constant sum games).
According to the Wilcoxon signed rank test all other concepts beat Nash equilibrium.

2.5. Summary and Discussion

Five stationary concepts for completely mixed 2x2-games have been compared in this
paper. For this purpose experiments on 12 games have been run, 6 constant sum
games with 12 independent subject groups each and 6 non-constant sum games with 6
independent subject groups each.

The games were selected in such a way, that the constant sum games were reasonably

well distributed over the parameter space. Each non-constant sum game had the same
best reply structure as an associated constant sum game.
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Each subject group consisted of 8 participants, four playing on one side and four on the
other. Each subject group played only one game over 200 periods with random
matching.

The literature reports about similar experiments with 2x2-games (MCKELVEY, PALFREY,
WEBER (2000), GOEREE, HOLT, and PALFREY (2000); BINMORE, SWIERZBINSKI, AND PROULX.
(2001); GOEREE, HOLT and PALFREY (2000); OcHsS (1995)). Usually the number of periods
played is much lower and more than one game has been played by the same subjects in
one session. Thus in the Experiments by GOEREE, HOLT, and PALFREY (2000) the number
of periods was 40. We wanted a greater number of periods because it is doubtful
whether a stationary state can be reached within only relatively few periods. Play must
be long enough to wash out initial effects.

An exception with respect to the number of plays is the paper by BINMORE, SWIERZBINSKI,
AND PRoOULX (2001). They report experiments about several games played 150 times.
However there was only one completely mixed 2x2-game (game 1) among them. Each
subject played 7 games (including two practice games). If several games are played one
after the other by the same subjects transfer of experience may occur from earlier to
later games. Moreover data from different games played by the same subject are not
statistically independent from each other. In our experiment each subject participated
in only one independent subject group and played only one game. This is necessary for
an appropriate application of statistical tests.

In the literature usually only two of the stationary concepts are confronted with
experimental data, Nash-equilibrium and quantal response equilibrium. An exception
is the paper by Avrahami, Kareev and Giith (2005). They successfully compared
impulse balance equilibrium with their data, following the suggestion of one of the
authors (R. Selten). The new concept of action-sampling equilibrium was never
examined before. The same is true for payoff-sampling equilibrium.

Our measure of predictive success forms mean square deviations of observed relative
frequencies from predicted probabilities for every game separately and then takes the
average over the 12 games. The comparison of the five theories over the entire time
span of 200 periods yields an order of predictive success from best to worst:

Impulse balance equilibrium
Action-sampling equilibrium
Payoff-sampling equilibrium
Quantal response
Nash equilbrium.

A remarkable result can be seen in the fact that the newer concepts of impulse balance
equilibrium, payoff-sampling equilibrium and action-sampling equilibrium and quantal
response equilibrium clearly outperform the established concept of Nash equilibrium.
It can bee seen in figure 12 that impulse balance equilibrium, action-sampling
equilibrium, payoff-sampling equilibrium and quantal response equilibrium are near to
each other with respect to their predictive success. Moreover the predictive success of
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these three newer and the one more established theories is strikingly better than Nash
equilibrium (see figure 12).

It is of great importance that even for completely mixed constant sum 2x2-games Nash
equilibrium equilibrium fails in comparison to other concepts.

In this paper we concentrated on games played repeatedly with random matching by
two populations. The literature reports also experiments on 2x2-games played
repeatedly by the same two opponents. Behavior in such games may very well be
different from that in games played by populations. If two subjects play the same 2-
person zero-sum game hundred times against each other, they will be concerned about
not being predictable. This may drive them nearer to maximin strategies. The
experimental investigation by O’NEILL (1987) and an empirical paper by WALKER &
WOODERS (2005) on “Minimax Play at Wimbledon” suggests that this may be the case.

It would be desirable to complement quantal response equilibrium by a theory which
permits the computation of the noise parameter A as a function of the payoffs of the
game. Extended in this way quantal response equilibrium could become a much more
powerful stationary concept. Since at the moment no theory of A is available we have
applied quantal response theory with A interpreted as a natural constant which is the
same one for all games.

In the same way as Nash equilibrium and quantal response equilibrium, action-
sampling equilibrium is still a concept based on best replies, even if these are not best
replies to the equilibrium strategies of the others, but to a random sample of strategies
on the other side. Payoff-sampling equilibrium is not based on best replies but rather
on the comparison of samples of payoffs obtained for own choices.

Impulse balance equilibrium is very different from the four other concepts since it is
neither based on best responses nor on payoffs obtained for own choices. Unlike the
other four concepts it cannot be considered to be a modification of Nash equilibrium.
Impulse balance is different from optimization even in one-person decision problems
(SELTEN, ABBINK AND Cox (2001), OCKENFELS AND SELTEN (2005)). Moreover impulse
balance equilibrium is applied to a transformed game. The transformation is based on
the idea that losses relative to a natural reference point (the pure strategy maximin
payoff) count double.

Impulse balance theory could also be applied to the original game but the application
to the transformed game improves its performance. If Nash equilibrium, action-
sampling equilibrium or payoff-sampling equilibrium is applied to the transformed
game rather the original one, the performance of these concepts becomes worse. The
transformation is an important part of impulse balance theory but it is not the only
reason for its success.

[t is not easy to understand why the predictions of the four newer concepts are not
very far apart, in spite of the fact, that they are based on very different principles. This
is maybe peculiar to our sample. It would be desirable to devise experiments, which
permit a better discrimination between the four concepts.
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In this paper we look at stationary concepts without any discussion of learning
processes. The comparison of our data with learning processes will be the subject
matter of a later paper. As far as movement over time is concerned we looked only at
differences between periods 1-100 and 101-200. We have seen that the order of
predictive success of impulse balance theory and payoff-sampling theory reverses from
the first half to the second half of the experiments. The reversal is not statistical
significant. No other changes of the order of predictive success from the first half to the
second half are observed. In the second half the sampling variance is slightly increased.
The predictive success of impulse balance equilibrium is the same in the second half
and in the first half but the other four concepts perform much better in the second half
than in the first half. The mean frequencies of individual observations seem to move
nearer to the convex hull of the theoretical predictions, even if within a game the
variance of the relative frequencies in independent subject groups does not change
significantly. One cannot know whether the stationary distribution is reached within
the 200 periods but the evidence conveys the impression that one comes near to it.

Stationary concepts are of great importance especially if they do not depend on
parameters, which have to be adjusted to the data. Impulse balance theory does not
involve any such parameters and can be used in theoretical investigations just like
Nash equilibrium. It is possible to generalize impulse balance theory to general games
in normal form (see Appendix F). It would certainly be desirable to gain experiences
with games with more than two strategies or more than two players.
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CHAPTER 3: TESTING (BELIEFS ABOUT) SOCIAL PREFERENCES: EVIDENCE FROM AN
EXPERIMENTAL COORDINATION GAME

3. Testing (Beliefs about) Social Preferences: Evidence from an
Experimental Coordination Game

3.1. Introduction

By now there seems to be broad agreement that in many contexts the traditional
model of narrowly self-interested individuals is not the most useful description of
economic agents. There is overwhelming experimental evidence that even in simple
situations individual behavior involves more than just the maximization of one’s own
material payoff. In response to this evidence, a focus of recent research in behavioral
economics has been the question of how to model the “social preferences” of agents,
i.e. the preferences over distributions of payoffs. Two influential approaches are the
“inequity aversion models” of BOLTON AND OCKENFELS (2000) and FEHR AND SCHMIDT
(1999) on the one hand, and the “quasi-maximin” model of CHARNESS AND RABIN (2002)
on the other hand. The inequity aversion models presume that ceteris paribus agents
prefer more equal distributions of payoffs, while the quasi-maximin model
emphasizes both the role of the worst-off individual and of the aggregate payoff for
the group. There are several studies that test the two approaches against each other.
ENGELMANN AND STROBEL (2004), for instance, find that in their simple “dictator”
experiments the influence of both efficiency concerns and maximin preferences is
stronger than that of inequ(al)ity aversion; similar evidence is reported in KRITIKOS
AND BOLLE (2001). By contrast, GUTH, KLIEMT AND OCKENFELS (2003) and FEHR, NAEF AND
ScHMIDT (2004) find that fairness concerns dominate efficiency concerns. HERREINER
AND PUPPE (2004) study the relevance of efficiency versus equity considerations in a
free-form bargaining context.

The purpose of the present study is to shed further light on the relative importance of
fairness concerns versus efficiency concerns. Specifically, in our experimental design
(to be described in the next section) “fairness concerns” are represented by an
aversion to payoff differences between two players, while “efficiency concerns”
correspond to a preference for (possibly unequal) distributions with higher total
payoff; in most cases considered here, higher total payoff in fact means Pareto
improvement, i.e. both players’ payoff increases. Two main conclusions can be drawn
from our results. First, the coordination on Pareto superior allocations is the more
difficult the greater the asymmetry between the two players, i.e. the more unequal the
resulting payoff distributions. In light of the evidence reported in CHARNESS AND RABIN
(2002) and ENGELMANN AND STROBEL (2004), this re-establishes and confirms the
importance of inequity aversion as modeled by FEHR AND SCHMIDT (1999) and BOLTON
AND OCKENFELS (2000). Secondly, and perhaps even more importantly, our results
suggest that it is not so much inequity aversion per se but rather the belief that others
are driven by fairness concerns that best explains our observed behavior.
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3.2. Experimental Setting and Design

The game underlying our experiments is the following two-person normal form
game. Both players simultaneously choose either strategy E or F. The resulting
payoffs are common knowledge.

Player 2

E F

X2 0

X4 0

0 225

Player 1

0 225

Figure 2.14: Payoff matrix.

We conducted two experiments. The first consisted of seven treatments ([T1] - [T7])
with different values for the payoff vector (x;,xz) resulting from the choice of (E,E).
Specifically, the treatments involved the following values: (x3,xz) = (375,200) [T1],
(375,225) [T2], (250,250) [T3], (325,250) [T4], (375,250) [T5] (400,250) [T6] and
(475,250) [T7]. The second experiment featured the same game, but there we held x;
fixed at 250 and let x; steadily increase from 175 to 475 in steps of 5 units, resulting
in 61 different distributions.

If both players are purely selfish (and if this is common knowledge), the game
represents a simple coordination game with two pure strategy Nash equilibria,
namely (F,F) (both choosing the “fair” outcome, i.e. the equal distribution (225,225))
and (E,E) (both choosing the “efficient” outcome, i.e. the distribution (xz,x2) which in
almost all cases! maximizes the sum of the payoffs). Note that in [T2] - [T7] the (E,E)
equilibrium is in fact Pareto superior to the (FF) equilibrium; the same holds in the
second experiment for all x; > 225.

Our experiments were computerized? and were conducted at the University of Bonn.
Participants were recruited from the campus mensa and had no previous training in
economics or game theory. Each participant played only one game and had to make
exactly one decision. In total, 402 persons participated. In the first experiment, each
treatment consisted of 20 games with 2 players, thus a total number of 7x20x2=280
subjects participated in the first experiment. In the second experiment, each of the
games corresponding to the different payoff distributions was played only once,
hence 61x2=122 subjects participated in the second experiment. Each participant
was informed about the game and his/her role as player 1 or player 2, but not about
who the other player was. The game was given in a matrix form, strategies were

! This is not true in the second experiment for distributions with x; < 200.
% The program was written in PASCAL using RATImage by Abbink and Sadrich (1995).
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labeled A and B, and the instructions® were given in a neutral language to avoid
framing effects.

After making their decision, subjects had also to fill out a questionnaire. Each subject
received a lump sum payment of 1 € plus the individual payoff converted at a rate of
1 point = 0.01 €.# If people failed to coordinate, they nevertheless got 1 €. The
average earning in the first experiment was 2,49 €, with its minimum in [T3] at 1,88 €
and its maximum in [T6] at 2,80 €. The average earning in the second experiment was
2,94 €. There were statistically significant differences in payoffs between the
treatment pairs [T1][T5], [T1][T6], [T2][T5], [T2][T6], [T3][T4], [T3][T5], [T3][T6]
and [T3][T7].

3.3. Experimental results

The experimental results from our first experiment are summarized in Tables 3.4-3.6.
In the following, special attention will be given to treatments [T3]-[T7] because in
each of these the distribution resulting from (E,E) (“efficient” outcome) is a strict
Pareto improvement relative to the “fair” outcome (225,225). Player 2 always gets a
payoff of 250. Player 1's payoff increases from 250 in [T3] to 475 in [T7], so we have
an increasing inequality in payoffs between players 1 and 2.

Under inequity aversion this has the following behavioral implications. Specifically,
assume as in Fehr and Schmidt (1999) (henceforth: [F/S]), that player i’s utility
function u; is given by u, (x,.,xj )= X, -, max(xj - x,.,O)— B, max(xi - xj,O), where x; and x;

are the payoffs of player i resp. j, and a; and f5; are parameters that measure i’s degree
of aversion against disadvantageous resp. advantageous inequality. As in [F/S], we
assume that o, = 8, and 0 < 8, < 1. Simple calculations show that in [T3]-[T7] player

I’s best response is E to E and F to F, and that he/she always prefers the efficient
distribution to the fair distribution. By contrast, whether player 2 prefers the efficient
distribution depends on her/his individual a and the specific payoff difference in
(EE). The larger the difference, the less likely it is that a player 2 will prefer (E,E) over
(EF) in [T4]-[T7]. If a > 250/(x; - 250), strategy E is strictly dominated by F for
player 2, leaving the game with only one pure strategy Nash equilibrium, namely
(E,F).5 Similar considerations apply to [T1] and [T2].

Tables 3.4 and 3.5 show the relative frequency of the observed strategy choices.

? Instructions and screenshots are available from the authors upon request.

* Thus, for instance, a payoff of 275 points corresponds to 2,75 + 1,00 = 3,75 €.

> Thanks to an anonymous referee for pointing this out. Note, however, that for a situation with just one
equilibrium to arise, one needs a large a. In [T4]-[T7], the required a value would imply a rejection of a
250/(x;+250) share in an ultimatum bargaining game when the outside option equals 0. For example,
the o needed in [T7] would lead to a rejection of an offer of < 34,46 % in the ultimatum game, the o
needed in [T4] to a rejection of an offer of < 43,47 %. But rejections of such offers are rarely observed
in experiments on ultimatum bargaining (see, e.g., [F/S]).
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Player 1| [T1] [T2] [T3] [T4] [T5] [T6] [T7]

X4 375 375 250 325 375 400 475

X2 200 225 250 250 250 250 250

E 40% | 55% | 70% | 80% | 50% | 60% | 65%

F 60% | 45% | 30% | 20% | 50% | 40% | 35%

Table 3.4: Relative frequency of decisions (player 1).

In [T3], 70% of player 1 choose E, in [T4] it is even 80%. But then it drops
significantly® down to 50% in [T5], and although it rises again, it does not get beyond
65% in [T7]. On average, 65% of player 1 choose strategy E in [T3]-[T7]. In light of
the [F/S]-predictions, this is a relatively small percentage.

Player 2| [T1] [T2] [T3] [T4] [T5] [T6] [T7]

X4 375 375 250 325 375 400 475

Xz 200 225 250 250 250 250 250

E 40% | 70% | 65% | 65% | 70% | 70% | 75%

F 60% | 30% | 35% | 35% | 30% | 30% | 25%

Table 3.5: Relative frequency of decisions (player 2).

Looking at the behavior of player 2, we see a slightly different trend. In [T3] it starts
with only 65% of subjects playing E, but then it rises steadily to 75% in [T7]. On
average, 69% of player 2 choose strategy E in [T3]-[T7]. Even if there are no
significant differences between these treatments?, the number of player 2 choosing E
nonetheless rises with increasing inequity in (E,E). This is surprising in view of the
[F/S] model, which would predict a declining number of choices of E by player 2. Note
that even in the presence of inequity aversion, (E,E) can still be a Nash equilibrium of
our simple coordination game, as long as player 2’s a does not get too large. Thus, the
[F/S] model certainly does not always rule out choices of strategy E by either player.
However, inequality aversion implies that the probability of the choice of E by player
2 should decrease with increasing payoff difference, leaving the game with just one
pure strategy Nash equilibrium (F,F) in the extreme case.

Table 3.6 lists the observed distributions in the first experiment. The first row shows
the number of games resulting in the efficient distribution, the second row the
number of games resulting in the fair distribution. The third and fourth rows give the

% Significant at 5% level using a Fisher-Test. Other significant differences in behavior of player I are
between [T1][T3] (5% level), [T1][T4] (1% level), [T1][T7] (10% level) and [T2][T4] (10% level).

7 Significance (Fisher) of 5% in [T1][T2], [T1][T5], [T1][T6], [T1][T7], and of 10% in [T1][T3],
[T1][T4].
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number of coordination failures. Obviously, more games result in the efficient
distribution than in the fair distribution. This holds for all treatments except for [T1].
In [T3] - [T7], we observe 43 efficient endings and only 9 fair ones. This might give
the impression that people are driven mainly by efficiency concerns, but it is in fact
not evident. If we look at the number of games in which one player chooses E while
the other chooses F, we see that nearly half of all games fall into this category (67 out
of 140). Thus, efficiency concerns can at least not be common knowledge.

[T1] | [T2] | [73] | [T4] | [75] | [T6] | [T7] | [T3-7] [ [T1-7]
(E.E) 4 7 7 10 8 9 9 43 | 54
(F.F) 8 2 0 1 4 3 1 9 19
(EF) 4 4 7 6 2 3 4 22 | 30
(F.E) 4 7 6 3 6 5 6 26 | 37

Table 3.6: Resulting distributions.

Taking a closer look, one can distinguish two different cases of coordination failure.
Either player 1 or player 2 can be made “responsible” for not reaching the efficient
distribution by choosing strategy F. Remarkably, the pattern of coordination failures
changes from [T3] to [T7]. In [T3] we observe 6 instances of (F,E) versus 7 instances
of (E,F), and in [T4] 3 instances of (F,E) versus 6 instances of (E,F), thus in these two
treatments the failure to reach the efficient outcome is more often due to player 2’s
choice. By contrast, as is evident from Table 3.6, in [T5] - [T7] it is more often player 1
who is responsible for not reaching the efficient outcome. Note that in the [F/S]
model one would expect the opposite pattern of behavior.

Inequity aversion does seem to influence players’ choices, but in a complex way. A
clue can be found by analyzing the questionnaires. When asked for the reason of their
decision, many subjects wrote that they tried to anticipate the other player’s choices
and determined their own strategy based on that belief. In our simple coordination
game, we may thus take the actual strategy choice as an estimator of a player’s belief.
In view of this, our results suggest that it is not so much inequity aversion per se that
matters but rather the belief that the other player is inequity averse.® Not
surprisingly, the assessment of the situation seems to be sensitive to the magnitude of
the payoff difference in the efficient distribution. In [T3] and [T4], when the
difference is small, many player 1 think that player 2 will choose E because they both
can earn more by doing so, so we see a high percentage of player 1 choosing E.
Around [T5], there seems to be a turning point. Player 1 now seems to think that the
other player regards the efficient distribution as unfair, so we see many player 1

¥ Unfortunately, the players are often wrong in their estimation of the other player’s behavior, so they
frequently fail to coordinate.
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choosing F. In the extreme, if player 1 believes that player 2’s inequity aversion is
large enough to prefer (0,0) over (x3,xz), then in equilibrium player 1 must choose F
because for player 2 F is a dominant strategy now. By contrast, player 2 seems to think
that player 1 will choose E because his/her payoff increases significantly, so in order
to coordinate player 2 chooses E. Thus, people appear to think too “badly” about the
other player’s attitude, and the strength of this effect seems to be influenced by the
size of the payoff difference resulting from (E,E).

To further examine this, we conducted the second experiment already described
above. The results are summarized by Figures 2 and 3.

Figure 3.15 shows the choices of player 1 for each x; ( 175 < x; < 475 ), Figure 3.16
shows the corresponding choices of player 2. A dot at the top marks a choice of
strategy E, a dot at the bottom a choice of F.°
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Figure 3.15: Choice player 1.

? The curves represent a polynomial trend (of fifth degree); they only serve for visualization of the
results.
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Figure 3.16: Choice player 2.

Qualitatively, the trend for player 1 decisions is similar to the behavior observed in
the first experiment. For low x; values they mostly choose E. Then, around x; = 360,
they seem to start to think that the other player may choose F and play F more
often.1? For high x; values, fairness concerns are no longer dominant and the choice of
E is observed more often. The behavior of player 2 corresponds with the results from
our first experiment as well. After a variable beginning there is a remarkably long
period (from x; = 325 to x; = 440) with the constant choice of E. At the end the
inequality seems to get too large and F is again chosen sometimes. For both players,
some choices of F are observed at high x; values after a period of constant choice of E.
Remarkably, this period ends much later for player 2 than for player 1, which again
confirms the conjecture that the qualitative nature of our observations is due to
player 1’s beliefs rather than player 2’s actual social preferences.

Combining the choices, we see that in 62% of the cases the games result in the
efficient distribution. Only in 7% of the cases the fair outcome results, and in 31% of
all cases the players fail to coordinate and earn zero payoff. We thus have a much
lower number of coordination failures than in our first experiment, and a much
higher number of efficient endings.11

Summarizing, we find that efficiency concerns are important. But if inequality gets
significant, difference aversion hampers the coordination on an efficient and even
Pareto superior outcome. Thus, the disregard of equality in favor for unanimous
improvement is at least not common knowledge.

' One could think that they care for fairness, but in the questionnaires many individuals explicitly
wrote that they chose F because they thought that the other player may do so.

"""However, each x; value was played only once in our second experiment, so the data basis is much
weaker than in the first experiment.
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4. An Extended Reinforcement Algorithm for Estimation of
Human Behaviour in Experimental Congestion Games

4.1. The Investigated Games

4.1.1. Congestion Game | (Cl) — The Minority Game

The first discussed congestion game (CI) is a well known minority game CHALLET
(1997 and 1998). The minority game is an important example of a Congestion Game.
The game can be applied on different situations with social and economic contexts.
One can analyse the minority game exemplarily as an elementary traffic scenario in
which human participants had to choose several times between a road 4 and a road B.
In each period, the road which was chosen by the minority of players won. This paper
reports about the results of laboratory experiments of minority games and a learning
algorithm witch simulates the observed human behaviour in these games.

The minority game is the most important example for a classic non-zero-sum-game
and can be applied on different situations with social and economic contests.

Imagine two big and famous gold fields in South Africa, near Cape Town and
Johannesburg. The diggers heard that a big gold-nugget was found in Johannesburg.
From now on every digger went to Johannesburg to dig gold, the city got
overcrowded and there was not enough space for all of them, so the profit was very
small. The diggers who stayed in Cape Town on the other hand had enough space for
their claims. The profit in Cape Town was very high for everybody. This is an example
of the minority game, the people who choose the majority got no payoffs, but the
people on the minority in Cape Town found enough gold for all of them, so everybody
got a payoff.

The minority game which is also called the El Farol Bar Problem (EFPB) was
introduced by Arthur 1981. The setup of the minority game is the following: a
number of agents n have to choose in several periods whether to go in room A4 or B.
Those agents who have chosen the less crowded room win, the others lose.

Later on, the EFBP was put in a mathematical framework by Challet and Zhang, the
so-called Minority Game (MG). An odd number n of players has to choose between
two alternatives (e.g., yes or no, 4 or B, or simply 0 or 1). In the Literature are many
examples, where the MG is discussed [CHALLET 1997, 1998, JOHNSON ET AL. 1998].

48



CHAPTER 4: AN EXTENDED REINFORCEMENT ALGORITHM FOR ESTIMATION OF HUMAN
BEHAVIOUR IN EXPERIMENTAL CONGESTION GAMES

In this paper we transferred the minority problem into a route choice context. We did
minority game experiments at the Laboratory of Experimental Economics (University
of Bonn). In these Experiments subjects are told that in each of 100 periods they have
to make a choice between a road A4 and road B for traveling from X to Y.

Figure 4.17: Participants had to choose between a road [A] and a road [B].

The set-up of the minority game was introduced by BRIAN ARTHUR (1991). Newer
approaches were done by CHALLET (1997 and 1998). The experimental setup is the
following: a number of players n have to choose in several periods whether to go to a
place A or B. Those players who have chosen the less crowded place win, the others
lose. The number of players in each Simulation was 9, the number of periods was 100.
The players get a payoff 7, or ¢, depending on the numbers n, and n, of

participants choosing A and B, respectively:

(4.1) t,=1,t,=0 < n,<n,
(4.2) ty=1,1t,=0 < n,>n,.

The period payoff was ¢, if 4 was chosen and ¢, if B was chosen. There are no pure

equilibria in this game. The pareto-optimum can be reached by 4 players on one and 5
players at the other place.

4.1.2. Asymmetric Congestion Games (Cll)

The second congestion game (CII) is a variation of the minority game: the number of
agents in this game was 18, 36, 54, 72 and 90. The number of played periods was in each
game 100.
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The period payoff for the 18 player setting was 40 — ¢ with ¢ = ¢, if 4 was chosen and ¢ =
t, if B was chosen, where ¢, and ¢, depend on the numbers n, and n, of participants
choosing 4 and B, respectively:

(4.3) t,=6+2n, and 1, =12+3n,.

In the route choice scenario A represents a main road and B a side road. 4 is faster if A
and B are chosen by the same number of people SCHRECKENBERG, SELTEN, PITZ, CHMURA
(2003).

All pure equilibria of the game are characterized by n,= 12 and n,= 6. The equilibrium
payoffis 10 units per player and period. The pareto-optimum can be reached by

(4.4) n,=11and ny=17.

The modified payoff functions for the experiments with 36, 54, 72 and 90 agents are

(4.5) 184, A=2,..., 5,
where

(4.6) p, =400 -[6A+2n, ]
(4.7) Py =40h=[12)+3n, ]

Table 4.7. shows all pure equilibria in the CII depending on the number of players.

Number of Equilibrium
Players
A B
18 12 6
36 24 12
54 36 18
72 48 24
90 60 30

Table 4.7: Pure equilibria in CII. The equilibria depend on the number of
participating agents.
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In the case of CII, place 4 and place B are understand as a road with high capacity (main
road) and a road with low capacity (side road) and ¢, and ¢, as travel times.

4.1.3. Experimental Set-up of Cl and ClI

Each of the games CI and CII with 9 and 18 persons were played 6 times with students at
the Laboratory of Experimental Economics in Bonn. Additionally CII was played 1 time
with 36, 54, 72 and 90 students. Subjects are told that in each period they have to make a
choice between A and B. The subjects of the CII set-up did not know the payoff function.
They were told that if 4 and B are chosen by the same number of people, subjects who had
chosen A4 get a better payoff than subjects who had chosen B. At the end of an experiment,
each participant was paid an amount in Euro proportional to his cumulated payoff sum he
had reached over the 100 periods.

The experimental data statistics are listed and compared with simulation results in chapter
4.4,

4.2. Reinforcement Learning

4.2.1. Reinforcement Algorithm with Pure Strategies

The reinforcement algorithm with pure strategies already described by HARLEY (1981) has
been used extensively by EREV and ROTH (1995) in the experimental economics literature.
The convergence in games with pure strategies was analyzed by LASLIER and WALLISER
(2005). Figure 4.18 explains the original reinforcement algorithm.

We are looking at player i who has to choose among » pure strategies 1,...,n over a number
of periods ¢, =1..T. The probability that “strategy x is chosen by player i” is proportional to

its “propensity” ¢; . In period 1 these propensities are exogenously determined
parameters. Whenever the strategy x is used in period ¢, the resulting payoff a_ is added to

the propensity if this payoff is positive. If all payoffs are positive, then the propensity is the
sum of all previous payoffs for this strategy plus its initial propensity. Therefore one can
think of a propensity as a payoff sum.
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Initialisation: For each playerilet /q,,....q;, ] be the initial propensity, where
n is the number of

strategies which are used in the simulations.

1
qi,x

n

2
=1

t+1. period: For each player j, let a; be the payoff of player i in period {,

1. period: Each player i chooses strategy x with probability

x the number of the chosen strategy in period t.

CASEl: g =0: CASEIl a; <O:
t+1 qit,y +Cl; fOV y=x t+l qit,y fOl" y=x
o g, for y=x gl +a for y=x

t+1
qi,x
n '
t+1
24

y=1

Each player i chooses strategy x with probability

Figure 4.18: Reinforcement algorithm.

4.2.2. The Empirical Foundation for an Extended Reinforcement Model

The only pure strategies in CI and CII are “place A” and “place B”. These strategies do not
represent a player’s belief about the other participant’s behaviour. In our extended model
we add two further strategies which include the consideration of players about the others
based on the last period’s payoff.

Direct: A participant who had a good (bad) payoff may stay on the last period’s place
(change his last choice). We call this direct response mode. A change is more probable the
worse the payoff was. The direct response mode is the prevailing one but there is also a
contrarian response mode.

Contrarian: Under the contrarian response mode a change of the last choice is more likely
the better the payoff was. The contrarian participant expects that a high payoff will attract
many others in the next period.

In CI a “bad” payoff could obviously be defined by 0 and a “good” payoff by 1. In CII
with 18 A, A =1,...,5 players, the pure equilibrium payoff is € =10 A . Payoffs perceived as
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“bad” tend to be below & and payoffs perceived as “good” tend to be abovee .
Accordingly we classified the strategy of a subject as direct if there is a change (stay) after
a payoff smaller (greater) than 10 A . The opposite strategy is classified as contrarian.

4.3.2. Measuring Direct and Contrarian Strategies

For each subject let c. (c+) be the number of times in which a subject changes from 4 to B
or from B to 4 when there was a bad (good) payoff in the period before. And for each
subject let s. (s+) be the number of times in which a subject stays on the same place when
there was a bad (good) payoff in the period before.

For each subject in the experiments CI and CII, a Yule coefficient O has been computed as
follows:

(4.8) 0=55"22T8T% s ve, s =0,

- +
c_'s,+cC, S

The Yule coefficient has a range from —1 to +1. In the rare cases that a subject never (in
each period) changes his last choice, we defined Q = 0 because the decision of such a
subject does not depend on the last period payoff. A subject with Yule coefficients below —
.5 could be understood to be classified as direct and subjects above +.5 as contrarian.

4.2.4. Extended Reinforcement Learning

In our simulations of CI 9 agents, respectively of CII 18, 46, 54, 72, 90, agents interact for
100 periods just like in our experiments described in section 3. In CI and CII each player
has two pure strategies:

Place A: This strategy consists in taking A.

Place B: This strategy consists in taking B.
After the first period in each of the two games (CI) and (CII) the two
extended strategies direct and contrarian are available:

(CY) direct: If the payoff of a player is 1, then the player stays on the same place
last chosen. If his payoff is 0, the players changes (from A4 to B or
from B to A).

(CIY) contrarian: If the payoff of a player is 1, then the player changes (from 4 to B or
from B to A). If his payoff is 0, the players will stay on the same
place.

(CII) direct: This strategy corresponds to the direct response mode. The payoff of
a player is compared to his median payoff among his payoffs for all
periods up to now. If the present payoff is lower then this median
payoff, then the place is changed. If the payoff is greater than this
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median payoff, the player stays on the same place as before. It may
also happen that the current payoff is equal to the median payoff. In
this case, the place is changed if the number of previous payoffs
above the median is greater than the number of previous payoffs
below the median. In the opposite case, the place is not changed. In
the rare cases where both numbers are equal, the place is changed
with probability /2.

(CII) contrarian: A player who takes this strategy stays on the last chosen place if his
current payoff is smaller then the median payoff among this payoffs
for all previous periods, and he changes the place in the opposite
case. If the current payoff is equal to this median payoff, then he
changes the place if the number of previous payoffs below the
median payoff is greater then the number above the median payoff.
If the numbers of previous payoff below and above the median
payoff are equal, the place is changed with probability '%.

The strategies direct and contrarian are necessary to be represented in the simulations for
fitting the experimental data. They appear in the simulations as the result of an endogenous
learning behaviour by which initially homogeneous subjects become differentiated over
time.

4.2.5. Initial Propensity

The difficulty arises that the initial propensities must be estimated from the empirical data.
For each game CI and CII we did this by varying the initial propensities for the strategies
place A and place B over all integer values from 1 to 120 and the initial propensities for the
strategies direct and contrarian over all integer values from 0 to 120.

For each initial propensity we tested 1000 simulations. To show the general behaviour of
the simulations, Figures 4.20-4.23 show several selected statistical parameters depending
on the initial propensities listed in figure 4.19. The numbers refer to the strategies place A,
place B, direct and contrarian in this order.

I, ={4.¢.00]:1= ¢ =120}, I, ={q.4.¢.0]:1= g <120}, 1, = {q.4.9.9]:1= ¢ <120}

I, ={4.9.0.q1:1= ¢ <120}, I, = {0,0,4,]: 1= ¢ =120}

Figure 4.19: Initial Propensities.

One could see in figure 4.4 that, for each simulation run and each initial propensity
the mean number of agents on place A is close to 4.5. The convergence to the
theoretical mixed equilibrium was already observed in the simulation data of Roth &
Erev (1995).
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Mean number of agents onroad A

Mean number of agents on road A

Initial propensity

Figure 4.20: Number of players on A.

The standard deviation of the number of players on place A per period (figure 4.5) is
correlated to the number of changes (figure 4.6) per periods. It got the highest values
with propensities from the set /,. In this cases the strategy direct is present and

contrarian is absent. The strategy directly forces changes after a “bad” payoff 0, which
is the most frequent in the majority game.
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Figure 4.21: Standard deviation of number of players on A.
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# of changes per period

# of changes

initial propensity N

Figure 4.22: Number of changes per period.

Players with high Yule-coefficients in the experiments are assigned to the direct type;
this appears also in the figure 4.7. For the initial propensities, in which no contrarian
change behaviour is implemented, for example (1110), step high Yule-coefficients up.
For the initial propensities, in which the contrarian behaviour is favoured, for
example (1101), all values of the Yule-coefficients are negative.

mean Yule-coefficients

mean yulekoefficient

initial propensity

Figure 4.23: Mean Yule-coefficients.

Similar results could be obtained by investigations of the initial propensities for
simulations of CII.
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4.3. Experimental Statistics and Simulation Results

4.3.1. Cl with 9 Players

For each propensity vector [q,,...,q,]E€ {1,...,120}* x {0,...,120}* we ran 1000 simulations
according to the experiments with 100 periods. The numbers of the propensity vector refer
to the strategies place A, place B, direct and contrarian in this order. We compared the
mean values of each of the 1000 simulations of 6 statistical variables which are listed in
table 4.8 with minimum and maximum values of the experimental data.

There were three parameter combinations which satisfied the requirement of yielding
means for the six variables between the minimal and maximal experimentally observed
values. These were the parameter combinations (7,7,2,1) and (2,2,1,1) and (3,3,4,2).

Experiment Simulations Experiment
cl Minimum {1,1,2,1} | {2,2,1,1} | {3,3,4,2} | Maximum
Player on A [mean] 4,19 4.48 4.50 4.54 4.74
Player on A [standard deviation] 0.67 1.45 1.48 1.50 1.50
Changes [mean] 0.59 4.32 4.18 4.51 5.17
Period of last Change 54.44 96.11 97.67 97.44 98.11
Yule Q [mean] -0.01 0.10 0.04 0.14 0.87
Yule Q [standard deviation] 0.33 0.50 0.40 0.35 0.76

Table 4.8: CI— 9 Players - Experimental minima & maxima vs. simulation means.

Additionally we could show that the vector (1,1,2,1) minimizes the sum of normalized
quadratic deviations of experimental data and simulation results of the six variables.
The quadratic deviations where normalized by division by the standard deviations of
the experimental results over the treatments. Figure 4.24 shows the quadratic
deviations of the best initial vectors from the average experimental data.
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Quadratic Deviations of the Best Initial Vectors

o
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[1,1.21] [3,3,4,2] [2,2,1.1]
Best Initial Vectors

Figure 4.24: Quadratic deviations of the best initial vectors from the average
experimental data.

Remark: The parameter combinations seem to be reasonable vectors of initial
propensities. There is no difference between place 4 and place B. It is clear to see that the
vectors have the same propensities for both places. In two of the three vectors the
propensity of the direct mode is greater than the value of the other propensities. The higher
initial value for the direct strategy and the smaller value of the contrarian strategy represent
the ratio of the experimental data referring to the player types (Chmura & Pitz 2006).

relative payoffsum

© ® ® ® Sy & &® Ny & s &

period

Figure 4.25: Example simulation shows the relative payoff-sum for each of the 9
players over 1000 periods.
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It is remarkable that no initial propensities which contain only pure strategies fit the
experimental data. We want the simulation model as easy as possible, therefore all
experimental players start with the same propensity vector combination in one simulation.
As in the experiments the agents become differentiated over time (see figure 4.25).

4.3.2. Cll with 18 Players

In set-up CII with 18 players, we got only one parameter combination from the set
{0,...,1 20}2 X {O,...,l 20}2 which satisfied the requirement of yielding means for the six
variables between the minimal and maximal experimentally observed values. This was the
parameter combination (4,3,3,2). In table 4.9, we compared the mean values of each of the
1000 simulations of 6 statistical variables which are listed in table 4.9 with minimum and
maximum values of the experimental data.

Additionally we could show that the vector (4,3,3,2) minimizes the sum of normalized
quadratic deviations of experimental data and simulation results of the six variables.
The quadratic deviations where normalized by division by the standard deviations of
the experimental results over the treatments.

Figure 4.26 shows the distribution of the mean player on B for the simulated vector
(4,3,3,2) in 1000 simulations.

Experiment |Simulations|Experiment
cil Minimum {4,3,3,2} Minimum
Player on B [mean] 5.85 5.95 6.17
Player on B [standard deviation] 1.59 1.65 1.99
Changes [mean] 4.62 517 5.38
Period of last Change 64.78 83.73 90.39
Yule Q [mean] 0.11 0.14 0.39
Yule Q [standard deviation] 0.53 0.61 0.75

Table 4.9: CIl - 18 Players - experimental minima & maxima vs. simulation means.
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Figure 4.26: Distribution of the mean number of players on B for the simulated vector
(4,3,3,2) in 1000 simulations.

Remark: At the beginning of the game the players know that the capacity of A is
greater than the capacity of B. It seems to be reasonable to suppose that at least in the
beginning the pure strategies A and B have a greater propensity sum than direct and
contrarian. Like in CI, no initial propensity which contains only pure strategies fits the
experimental data. Further on it seems reasonable that the initial value for A is
greater than the initial value for B. The reason for this is the game theoretical
equilibrium in the experiments with human players. The equilibrium shows a higher
value for A (equilibrium in the experiments with 18 players was A:12 B:6 ). In the
experiments occur more direct player types 40% and less contrarian player types
20% (SELTEN ET AL. (2004)). This ratio could be found in the simulations, where the 3
represents the initial value for the direct strategy and 2 represents the initial value
for the contrarian strategy.

4.3.3. Simulations of Cll with 18, 36, 54, 72, and 90 Players

Finally we compared the mean of six statistical variables of 1000 simulations with 18, 36,
54, 72, and 90 players with experiments of the same number of players. For simulations
with 18\ players we used the initial propensitiesk-(4,3,3,2), A=2,...,5. The vector

(4,3,3,2) has been determined in section 4.3.2.

In the transition from 18 to 18 A =36, 54, 72, 90 players the road capacity is also increased
by A:
3n,

A

tA=6+2n7A t, =12+
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Moreover the payoffs in points have also be miltiplied by A in order to obtain integer
numbers of pointsfor all pairs (n,,n;)

pA=)\’(4O_tA) p3=A(4O_tB)

The initial propensities may be thought of as ,,prior sums* and should therefore also be
multilplied by A in the same way as the payoff.

Additionally we could show that the vector A (4,3,3,2) minimizes the sum of
normalized quadratic deviations of experimental data and simulation results of the
six variables. The quadratic deviations where normalized by division by the standard
deviations of the experimental results over the treatments.

Statistical Data ClI Data Number of Players
Source
18 36 54 72 90
E 5.98(12.21 [17.98 |24.2 |30.02
Mean (# players on B)
S 5.95[111.91 [17.9 |23.83 |29.02
st. Dev. E 1.7812.64 (3.24 |454 [5.02
(# players on B) S 1.65(2.39 |[3.04 |3.78 |4.58
Mean E 4.82111.35 [15.57 | 22.76 |26.02
(# of place changes) S 5.17110.07 | 15.98 |21.32 | 23.04
Mean E 81 |82 86 89 88
(last place change S 84 189 84 88 90
Mean E 0.28|0.14 [0.22 |0.2 0.24
(Yule-coefficient) S 0.14]0.16 [0.15 (0.15 (0.16
st. Dev. (Yule- E 0.58|0.58 [0.58 |0.57 [0.6
coefficient) S [061[054 [054 |052 |0.56

Table 4.10: CII —Experimental means (E) vs. Simulation means (S).

4.4. Conclusion

We have run simulations based on a payoff sum reinforcement model. We applied this
model on two similar experimental set ups CI and CII. Simulated mean values of six
variables have been compared with the experimentally observed minimal and maximal of
these variables. The simulated means were always in this range. Only four parameters of
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the simulation model, the initial propensities, were estimated from the data. In view of the
simplicity of the model, it is surprising that one obtains a quite close fit to the experimental
data. With the appropriate linear transformation of the initial propensity, the simulations fit
experimental results with a higher number of players.

Two response modes can be found in the experimental data, a direct one in which changes
follow bad payoffs and a contrarian one in which changes follow good payoffs. One can
understand these response modes as due to different views of the causal structure of the
situation. If one expects that 4 is crowded in period t, and 4 is likely to be crowded in
period t+1 one will be in the direct response mode. But if one thinks that many people will
change in the next period because it was crowded today, one has reason to be in the
contrarian response mode.

The strategies direct and contrarian are necessary to be represented in the simulations for
fitting the experimental data. They appear in the simulations as the result of an endogenous
learning behaviour by which initially homogeneous subjects become differentiated over
time. A sample simulation for 9 players over 1000 periods is shown in figure 4.25. Each
player has a specific colour. The grey line indicates the separation of the player’s payoff
sums at period 100.

It is surprising that a very straightforward reinforcement model reproduces the
experimental data as well as shown by table 4.4. Even the mean Yule coefficient is in the
experimentally observed range in spite of the fact that at the beginning of the simulation
the behaviour of all simulated players is exactly the same. It is not assumed that there are
different types of players.
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5. Who are the smarter drivers? The Chinese or the
Germans? An Experimental Approach

5.1. Introduction

This paper reports about laboratory experiments concerning traffic behaviour of
participants with different cultural backgrounds. We used a classfication system for
behavioural types, which was introduced by (SELTEN ET AL. 2007). It can be shown that
different cultural backgrounds may have an influence on the cognitive decision
process in binary choice situations; we used a route choice scenario. Two subject
pools with 54 participants each were analysed:

1. German students at the University of Bonn (Germany).
2. Chinese students at the Shanghai Jiao Tong University and Nankai University
(China).

Obviously the traffic situation in Chinas densely populated cities differs from the
German and most Central European areas. The traffic in China’s cities is much more
heterogeneous. Especially in Shanghai are more bikes, motorcycles, pedestrians, cars
and busses on the road at the same time. In Germany as in most other countries of the
European Union there are often extra lanes for busses, taxies and bikes. Our approach
is not comparing the traffic situations inherently, but it could give a better
understanding whether traffic participants in China act more anticipatory in view of
the more complex situation on the roads, than the German traffic participants. It
seems necessary to react in a different way in China.

Cross Cultural Studies have become an important field in experimental economics.
The most common experimental setups deal with various specifications of the
ultimatum game, the trust game, the dictator game as well as public good games was
extensively discussed for example in BUCHAN (1997), BoTELHO (2000), 2004), BURNS
(2004), CARPENTER (2004), CHuAH (2005), HENRICH (2000, 2001, 2004, 2005),
OOSTERBEEK (2004) and RoTH (1991).

Characteristic for a traffic situation worldwide is that many subjects have to interact
without a negotiation procedure. Since there is an inherent lack of communication,
optimal coordination is rather unlikely. The only way to increase individual benefit,
what means to decrease individual travel time, is to adapt individual decisions to the
behavior of the other participants; which could be observed in the past. To model
such a situation we used a simple Minority Game.
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The Minority Game is an example of a n-person game with no strict pure equilibria
and can be applied on different situations including their specific social and economic
contexts. The Minority Game, which is also called the El Farol Bar Problem and was
introduced by (ARTHUR 1994) and theoretically analysed in detail by (CHALLET, ZHANG,
1997, 1998). There is already some literature about experimental studies of the game.
HELBING ET AL. (2005), RENAULT ET AL. (2005), CHMURA & PiTz (2006), BoTTAZZI &
DEVETAG (2007) and KETS & VOORNFELD (2007).

The rules of the Minority Game can be described in a short way: a number of agents n
have to choose during several periods whether to enter a given room A or a room B.
Those agents who choose the less crowded room win whereas the others lose. Our
aim is to present Minority Game experiments with a large number of periods and
with sufficiently many independent observations for meaningful applications of non-
parametric significance tests.

Market entry games (RAPOPORT ET AL 2002, EREV AND RAPOPORT 1998) are another
kind of games found in experimental literature, which can be compared in some
aspects with the Minority Game. In these types of games players usually have the
choice either to enter a market or to stay out of it. The payoff for entering the market
is a decreasing function of the number of entrants. The payoff for staying out is a
constant opportunity cost. One may say that the route choice game is similar to a
market entry game with two markets instead of one. However, the players do not
have the choice to stay out of both markets.

5.2. Experimental setup

The experiments were conducted during September and November 2006. The
German sessions were run at the BonnEconLab at the University of Bonn, Germany.
The first three Chinese sessions are located at the Reinhard Selten Lab at Nankai
University of Tianjin, China and the Chinese sessions 4, 5, 6 are located at the Vernon
Smith Experimental Lab of the Shanghai Jiao Tong University. At the 3 universities
students from several departments participated.

Experiments were run by local helpers comprehensively instructed and supported by
the authors, who stayed in the background. We are aware that this might result in an
experimenter e [edt. We decided to choose this procedure to avoid self-presentation
and face-saving eledts (BoND & HWANG, 1986) of inexperienced subjects resulting
from the presence of people from foreign countries. Since we are interested in the
pure presentation eledt this procedure seems to be justified. Instructions were
written in neutral language.
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To avoid translation errors regarding the task and the cadence instructions were
translated by natural speakers from German into the corresponding language and
afterwards translated back into German applying the back-translation method
(BRISLIN, 1970).

For this survey, the Minority Game was transferred to a route choice context (CHMURA
& P112 2006). In these experiments, subjects were told that in each of the periods 0 to
100, they had to make a choice between a road A and a road B for travelling from X to
Y. Six sessions were run with German and six sessions with Chinese participants. The
number of subjects in each session was 9. They were told that the travel times t4 and
tp on road A and B depended on the numbers n4 and np of participants choosing A and
B respectively:

(5.1) t,=1,t,=0 & n,<nzand t,=1,¢,=0 < n, >n,.

The period payoff was ¢, if A was chosen and ¢, if B was chosen. The total payoff of a

subject was the sum of all period payoffs (Taler) converted proportionally to money
payoffs in Euro respectively RMB. No further information was given to the subjects.
The conversion rate was 1 Taler = 0.4 € in Germany and 1 Taler = 2 RMB in China.
The difference of the conversion rate can be explained by the Laboratory standard
payoff in each country. The experimental data were obtained in 12 sessions with 9
subjects each and 108 altogether. The computer program was based on the toolbox
RatImage developed by ABBINK & SADRIEH (1995).

A number of experiments on route choice behaviour could be found in the literature
(e.g. BONSALL 1992, MAHMASSANI & LIU 1999, SELTEN ET AL. 2007, CHMURA & P11Z 2006).
Here, we focus on the route choice behaviour in a generic two route scenario, which
has already been investigated in the scientific literature (e.g. IIDA ET AL. 1992). In
HELBING ET AL (2002) volatile dynamics of decisions independent of an optimal payoff
distribution were observed in route choice experiments. It could be shown that
specific guidance strategies are able to increase the performance of all users by
reducing overreaction and stabilizing the decision dynamics. In DE MARTINO (2004) a
model for analysing the emergent collective behaviour of drivers in a city was
discussed. The results proved that in absence of information noise, inductive drivers
turn out to behave in a more effective way than random drivers during periods of low
car density, while high car densities produce the opposite effect.

In this paper, special emphasis shall be laid on a comparison of the participants’
reactions to the immediately preceding payoffs. The results showed that differences
in behaviour are observed between the culturally divergent groups.
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5.3. Experimental results

In this section, we explain the main statistical findings while later in the subchapters
we will explain the results in view of the response modes and the cumulative payoff.

5.3.1. Descriptive statistics for the Chinese and the German treatment

The basic statistical findings are shown in table 5.11. Figure 5.27 shows the number
of participants on road 4 as a function of time for a typical observation of the Chinese
participants and the German group. The mean number of players on road A is 4.5 in
the Chinese group and 4.49 in German group. That the mean is so close to the mixed
equilibrium was the expected outcome since the experimental setup does not suggest

9
a preference for one road. The Minority Game with 9 players has 2(4) =252 (non

strict) Nash equilibria in pure strategies.

The lack of strict pure strategy equilibria poses a coordination problem that may be
one of the reasons for non-convergence and the persistence of fluctuations in both
treatments. The mean number of players for the Chinese and the German
observations are shown in figure 5.28. There is no significant difference between the
German and the Chinese treatment for the mean numbers of players choosing the
road A.

Spearman rank
. number of number of .
cumulative laverson A | road changes Yule correlation road
payoff (mean) play g (mean) | changes vs. cumulative
(mean) (mean)
payoff
- sess. 101 37 4.33 5.08 .1369 -48
E sess. 102 36 4.74 3.87 .1468 .34
1 sess. 103 36 4.41 5.16 .2694 -44
()
i) sess. 104 38 4.4 5.19 0122 -7
§ sess.105 37 4.65 5.28 1128 -18
g sess. 106 38 4.44 4.35 -.0083 -.18
treat. I 37 4.50 4.82 1116 -27
- sess. 1101 38 4.23 3.99 -.1295 -49
E sess. I 02 38 4.46 3.68 1281 -35
§ sess. I1 03 37 4.49 4,97 -.0245 -42
E sess. I1 04 37 4,57 5.57 .0916 -.63
§ sess. 11 05 38 4.59 3.39 -.0029 -.35
5 sess. 1106 39 4.59 3.36 -.0747 -52
treat. II 37.83 4.49 4.16 -.0020 -46

Table 5.11: Statistical data of the experiments.
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It seems that there is no outstandingly advisable strategy for the participants to
enhance their payoffs because due to the symmetry of the game, each road has the
same properties. However, one can see in the next section that in some cases, certain
types of reactions to former payoffs are more successful than others.

Example of the Chinese group

Number of players on road A

Period

Example of the German group

Period

Figure 5.27: Number of participants on A: a typical session of the German and the

Chinese group

Table 5.1 also shows the mean number of road changes, the mean Yule-coefficient and
cumulative payoff as well as the spearmen rank correlation coefficient for the number
of road changes versus the cumulative payoff. All these values for the German
treatment are significantly different from the Chinese treatment. We will try to

explain this in section 5.3.2 and 5.3.3
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Number of players on road A (mean)
N
wv
L

German Observation Chinese

Figure 5.28: Number of participants on road A for the German and the Chinese
treatment.

5.3.2. A classifier system of response modes

We used a classifier system for behavioural types introduced by (SELTEN ET AL. 2007)
to describe reactions of former payoffs. The classifier system can be described as
follows: A participant who had a payoff 0 (1) on the road chosen may change the road
(stay on the same road) in the next period in order to travel on a less crowded route.
We call this the direct response mode. The direct response mode is the prevailing one
but there is also a contrarian response mode. The contrarian participant expects that
a payoff 1 will attract (deter) many others and that therefore the road chosen will be
crowded (free) in the next period.

For each subject, let c. (c+) be the number of times in which a subject changes the
roads when the payoff in the period before was p=0 (p=1). And for each subject let s.
(s+) be the number of times in which a subject stays on the road when there was a
payoff s=0 (s=1) in the period before.

change stay
p=0 c_ s_
p=1 c, s,

Table 5.12: 2x2 table for the computation of Yule-coefficients.

For each subject such a 2x2 table has been determined and a Yule-coefficient Q has
been computed as follows.
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c S —cC,S
(5.2) Q=——+—*—=
c_ S, +C, S

The Yule coefficient has a range from -1 to +1. Participants with a “high” Yule-
coefficient near to 1 (-1) tend to be direct (contrarian).

5.3.3. Observed Response mode

To classify behavioural types we used the Yule-coefficient we described this already
in section 5.3.1. The mean Yule-coefficients are significantly higher in the German
treatment (see figure 5.30). The null-hypothesis for both treatments is rejected by a
Wilcoxon-Mann-Whitney-Test on the significance level of 5% (one-sided). That
means that there are less contrarian response modes in the German treatment.

The reason for the smaller Yule-coefficients in the Chinese treatment lies in the fact
that contrarian reactions to former payoffs occur more frequently in this group. One
can see in table 5.11. that the number of road changes per round in the German
treatment is significantly higher than in the Chinese treatment. The null-hypothesis
for both treatments is rejected by a Wilcoxon-Mann-Whitney-Test on the significance
level of 1% (one-sided). Since the players’ mean payoff (for all the experiments) is
37.41 and since therefore a player receives more ,bad“ than ,good“ payoffs on
average, the decline in road changes in the treatment of Chinese participants is
another indicator for an increase of contrarian behavioural types. The number or
road changes for both treatments is graphically shown in figure 5.29.
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Number of road changes (mean)
o = N w I

German Observation Chinese

Figure 5.29: Mean number of road changes for the German and the Chinese
treatment.
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Yule-Coefficient (mean)

Observation Chinese

Figure 5.30: Yule-Coefficient for the German and the Chinese treatment.
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5.3.4. Cumulative Payoff

In (CHMURA & PITZ 2006), it was already pointed out that a negative correlation exists
between the cumulative payoff and the frequency of road changes of a player. Figure
5.31. shows the mean cumulative payoff for the German and the Chinese treatment.
As shown in table 5.11., the Spearman rank correlation coefficient is negative for all
Chinese sessions and 5 German sessions. This also is shown in figure 5.32. Since the
contrarian response mode could be observed more frequent in the Chinese treatment
and thus, the number of “good” payoffs was on average higher than of the “bad”
payoffs, it could be expected that the Chinese players would on average receive better
results than the group with German participants. Indeed, table 5.11 shows that the
mean payoff per session is higher in Chinese observations than in the German
observations. The related null-hypothesis was rejected by a Wilcoxon-Mann-Withney-
test on the significance level of 5% (one-sided). In the case of the Minority Game, the
contrarian response mode of the Chinese participants is the more promising strategy.
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Figure 5.31: Mean cumulative payoff for the German and the Chinese treatment.
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Spearman rank correlation coefficient

German Observations Chinese

Figure 5.32: Spearmen rank correlation coefficient for the cumulative payoff vs. the
number of road changes.

5.4. Conclusion

In this paper we discussed an elementary traffic scenario, modelled as a minority
game with subjects of different cultural backgrounds. We found two response modes
using the Yule-coefficient. The first response mode is a direct response and the
second a contrarian response to the received payoff in the last period. The reactions
of participants of the two investigated groups were significantly different. The
German subjects reacted in a more direct way than the Chinese, i. e. by the above
definition of direct, that they chose the same road after good payoffs and changed
after bad payoffs. Due to the different behaviour and the structure of the minority
game the average payoff of the German subjects in this game was lower than the
average payoff of the Chinese. The less direct reactions of the Chinese participants
may be caused by their different experience in their daily traffic situation. In a
crowded inhomogeneous traffic situation a contrarian reaction, which anticipates, the
possible reactions of the other participants more severely than the direct response
mode, seems to be reasonable.
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Appendix

Appendix 2.A: Table of Realative Frequencies

Observation | Game 1 Game 2 Game 3 Game 4 Game 5 Game 6

U L U L U L U L U L U L
1 0.104 0.716| 0.255 0.583] 0.218 0.836| 0.291  0.748| 0.154 0.873 | 0.453 0.604
2 0.079 0.640| 0.175 0.510] 0.154 0.716| 0.230 0.818| 0.378 0.690 | 0.439 0.621
3 0.091 0.794| 0.156 0.431] 0.210 0.778| 0.320 0.714| 0.358 0.676 | 0.430 0.591
4 0.109 0.688] 0.210 0.616] 0.217 0.844 | 0.245 0.748| 0.276 0.648 | 0.398 0.604
5 0.085 0.571| 0.240 0.409] 0.154 0.700| 0.318 0.684 | 0.341 0.635| 0.444 0.619
6 0.059 0.730| 0.151 0.601] 0.232 0.785| 0.360 0.718 | 0.320 0.659 | 0.389 0.654
7 0.184 0.575| 0.286 0.591] 0.081 0.856| 0.283  0.723 | 0.295 0.689 | 0.463 0.574
8 0.044 0.770| 0.195 0.580] 0.170 0.795| 0.284 0.661| 0.329 0.659 | 0.421 0.544
9 0.048 0.750| 0.225 0.563] 0.093 0.723] 0.371  0.750 | 0.353 0.561| 0.438 0.626
10 0.056 0.755| 0.229 0.448] 0.133 0.873| 0.249 0.805[ 0.328 0.651| 0.535 0.594
11 0.034 0.524| 0.206 0.551] 0.164 0.829| 0.266 0.741| 0.366 0.583 | 0.428 0.560
12 0.056 0.768| 0.275 0.441] 0.130 0.778| 0.213  0.720 | 0.431 0.640 | 0.505 0.566
Mean of 12 0.079 0.690| 0.217 0.527| 0.163 0.793| 0.286 0.736| 0.327 0.664| 0.445 0.596
Observation | Game 7 Game 8 Game 9 Game 10 Game 11 Game 12

U L U L U L U L U L U L
1 0.151 0.531] 0.199 0571] 0.164 0.744| 0.451  0.745| 0.274 0.645| 0.441 0.653
2 0.103 0.563| 0.180 0.665] 0.105 0.793| 0.416 0.711] 0.289 0.659 | 0.414 0.653
3 0.176 0.596 | 0.246 0.529] 0.188 0.839| 0.299 0.634| 0.336 0.688| 0.431 0.559
4 0.178 0.575| 0.341 0.610] 0.299 0.869| 0.365 0.729| 0.410 0.631| 0.463 0.568
5 0.090 0.530| 0.314 0.585] 0.355 0.844| 0.416 0.713| 0.378 0.678 | 0.458 0.664
6 0.149 0.586| 0.220 0.559] 0.413 0.874| 0.246 0.665| 0.301 0.611| 0.428 0.529
Mean of 6 0.141 0.564| 0.250 0.586| 0.254 0.827| 0.366 0.699| 0.331 0.652| 0.439 0.604

Table A1.13: Relative frequencies of U and L in
for games 1-12.

the 108 independent subject groups
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Game 7 Game 8 Game 9
1 0.8 1
0.9 A 0.7 0.9 A
0.8 0.6 \l—f\:‘ T 0.8
0.7 1+— <>—:‘. - 0.5 0.7 +——+—
S
0.6 0.4 0.6
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Game 10 Game 11 Game 12
17 T 0.9 - - T 0.8
0.9 1 0.8 0.7
0.7 1 . ' f 0.6 0.5
0.6 0.5 0.4
0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6
B
A Nash Pu
O Quantal
¢ Impuls

OAction-Sampling
< Payoff-Sampling
® Observation

Figure 2.A1.33: Visualization of the theoretical equilibria and the observed average

* In the cutout for game 11 the symbol for payoff sampling equilibrium is covered by the symbols for observation and Nash

in the non-constant sum games.

equilibrium
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Appendix 2.B: Written instructions

Merkblatt zum Matrixexperiment

An diesem Experiment nehmen 16 Personen teil. Jeder Teilnehmer ist entweder ein
Spieler 1 oder ein Spieler 2. Diese Rolle behalten Sie liber die ganze Dauer des
Experimentes bei.

Das Spiel erstreckt sich iiber 200 Runden.

In jeder Runde spielt jeder Spieler 1 mit einem Spieler 2. Die 8 Spielerpaare werden in
jeder Runde neu zufallig zusammengestellt.

Auf dem Bildschirm sehen sie eine Matrix mit vier Feldern.
In jeder Runde haben sie die Moglichkeit zwischen Zeile A oder Zeile B zu wahlen.

Ihre eigene Auszahlung ist auf dem Bildschirm umrandet dargestellt. Ihre Auszahlung
hangt von ihrer eigenen Wahl und der Wahl des anderen Spielers ab. Nachdem Sie
diese Wahl getroffen haben, fiarbt sich lhre gewahlte Zeile rot. Nach der Wahl des
anderen farbt sich das Feld gelb, in dem der Betrag steht, der ihnen ausgezahlt wird.

A B
A— 10 0

8 18
B — 9 10

9 8

Figure 2.B1.34: Schematics of game-matrix.

Es gibt zwei Gruppen von Spielern. In jeder Gruppe hat jeder Spieler dieselbe Matrix, aber
die Matrizen sind fiir beide Gruppen verschieden. Sie spielen immer mit einem Spieler aus
der anderen Gruppe.

In jeder Runde werden 8 Spielerpaare zufillig zusammengestellt. Thnen wird also in jeder
Runde ein neuer Mitspieler zugelost. Thre Mitspieler haben immer dieselbe Matrix.

Nach jeder Runde wird Ihnen mitgeteilt welche Auszahlung sie in der letzten Runde

erhielten. Der Umrechnungskurs fiir ihre Auszahlung wird Ihnen auf dem Bildschirm

bekannt gegeben.
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Appendix 2.C: Screenshot of Game

1 Taler = 10 Pfennig

L

Figure 2.C1.35: Screenshot of the RatImage Program.
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Appendix 2.D: Monotonicity, Existence and Uniqueness

Nash equilibrium is uniquely determined in completely mixed 2x2-games. This is clear
from what has been said in II.A. However, it is not obvious that each of the four other
concepts determines a unique stationary equilibrium for every completely mixed 2x2
game. In the following it will be shown that this is the case.

As we shall see for each of the five concepts with the exception of Nash equilibrium the
curve for py is monotonically increasing and the curve for q; is monotonically
decreasing and both curves have a unique intersection. In the following this will be
discussed for every concept separately.

2.D1 Quantal Response Equilibrium

In the following we shall drop the arguments q and p of Eu(q), EL(p) and Ep(p) Er(p).
This can be done without any danger of confusion. The curves for py and g, can the be
written as follows

AE,
e U
(2.D1) Py = P 4
}LEL
e
(2.D2) q. = 4

As we have seen in II.B. the constants a;, ag, by and bp have no influence on the right
hand sides of the two equations. Therefore we can assume that all these four constants
are zero. This leads to the following formulas for the expected payoffs Ev, Ep, E1 and Er.

(2.D3) Eu=qLCL ED=(1-qL)CR EL=(1-pu)dD ER=pudU
Define
(2.D4~) X = eMEp-Ev) _ pMer—(cr+cp)ar] Y = eMEr=EL) _ pAl(dy+dp)py=dy]
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With the help of the auxiliary variables X and Y the two equations for py and g, can be
rewritten as follows

(2.03) p”=1+lx qL=1+1Y

We have

(2.D6) gi = —Ae, + )X a): = Md, +d,)Y

This yields

@07y P vey—X Yo o 3y + dy)——
aq,, (I+X) ap, (1+7)

Since A,c,,cz.d,;,d, as well as X and Y are positive it follows that py is an increasing
function of q; and q; is a decreasing function of py. We have

1
(2.D8) py(0) = (e py() =

l+e ™

The formulas for py(0) and py(1) permit the conclusion that
1
(2.D9) 0 <pu(0) < 5 <pu(l)<1

holds. This means that the curve for py goes from the left border of the (py,q.)-diagram
to the right one. Similarly it can be seen that

(2.D10) 1>q.(0)> % > qu(1) > 0.
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holds. Therefore the curve for q.. goes from the upper border of the (py,q1)-diagram to
the lower one. In view of the monotonicity properties of the curves it is clear that they
have a unique intersection.

2.D2 A property of the binomial distribution

Consider a binomial distribution. Let g be the probability of a success in one trial. We
use the notation B(k,n,q) for the probability of at least k successes in n trials. This
probability is as follows

(2.D11) B(k,n,q) = E(’;)q" A-g)"’

For k=0,..,n and 0<g<1. For the interpretation of the right hand side of this equation
we adopt the convention

(2.D12) 0°=1

With this convention the formula also holds for g=0 and g=1.

We now show that for n=1,2,.. and k=1,2,...,n the probability B(kn,q) is a
monotonically increasing function of g in the interval 0<g<1.

In order to do this we look at n continuous random variables Rj,...,R, independently
and uniformly distributed over the interval [0,1]. The probability that at least k of the
realizations ri,...,rn of Ry,...,Ry, resp., satisfy 0<ri<q with g<1 is B(k,n,q).

Consider two numbers q and q’ with 0<q<q’<1. A realization vector (ry,...,r») with at
least k components satisfying 0<ri<q also satisfies 0<ri<q” for these components.
Moreover there is a positive probability for realization vectors (r1,...,r») with at most k-
1 components satisfying 0<ri<q but at least k components with 0<r;<q. This shows that
B(k,n,q) is monotonically increasing in q for k=1,...,n.

Of course, the case k=0 is different. The probability of at least zero successes is always
1. We have B(0,n,q)=1 regardless of the value of g.
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It can be seen immediately that we have

(2.D13) B(k,n,0)=0 and B(k,n,1)=1, for k=1,..,n and n=1,2,...

2.D3 Action-sampling Equilibrium

The equations of the curves for py and g in the case of action-sampling equilibrium
and the functions ay and a; have been described in I1.D.. Let k" be the smallest integer k
with ay(k)=0. Similarly let m* be the smallest integer with a;(m*)=0. We cannot have
k*=0 since this would imply 0=ncr contrary to cg>0. A similar argument excludes m*=0.
We have

(2.D14) k'zlandm*z1

The two equations of the curves for py and g, can be written as follows:

B(k",n,q,) for o, (k) >0
2.D15 = . . .
( ) Pu %B(k .G, + %B(k +1nq,) for a,(k')=0
B(m ,n,1- DPy) for aL(m*) >0
(2.D16) q, =

%B(m*,n,l -py)+ %B(m* +Lnl-p,) for aL(m*) =0

Since B(k,n,0) is increasing in q for k>1 we can conclude that the curve for py is
monotonically increasing in q;. Similarly the curve for g; is monotonically decreasing.

In view of B(k,n,0)=0 and B(k,n,1)=1 for k>0 it is clear that the curve for py begins at
(pv,q)=(0,0) and ends with (pu,qi)=(1,1). Similarly the curve for g, begins at
(pu,q)=(0,1) and ends at (pu,qL)=(1,0). Obviously the two curves have exactly one
intersection. Consequently the action-sampling equilibrium for sample size n is
uniquely determined for completely mixed 2x2-games.
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2.D4 Payoff-sampling Equilibrium

The equations of the curves for py and q; in the case of payoff-sampling equilibrium
and the functions f and y appearing there have been described in ILE. Let ky and kp be
the numbers of L’s in player 1’s sample for U and D, respectively. Similarly m; and my
are the numbers of D’s in player 2’s sample for L and R, respectively.

Let Hy and Hp be player 1’s payoff sums for his samples for U and D, respectively.
Similarly let K; and Kr be players 2’s payoff sums for her samples for L and R,
respectively. We have

(2.D17) Hy = ky(ai+ci) + (n-kv)ag, Hp = kpay, + (n-kp)(ar+cr)

(2.D18) K = mL(bD+ dD) + (n—mL)bU, Kr = mgbp + (n-mR)(bu+du)

As in the case of the action-sampling equilibrium the right hand sides of the two
equations can be rewritten as a linear combination of binomial probabilities of the
form B(kn,q) with positive coefficients. This has to be shown. Afterwards the
monotonicity of the right hand side with respect to g will be a simple consequence of
our result in D2.

We shall first look at the curve for py. The function f can be described by a (ku,kp)-
diagram which shows the interval 0 < ky < n horizontally and 0 < kp < n vertically. We
have

(2.D19) Hy-Hp = -nagfor ~ ky=kp=0 and Hy-Hp=na, for ky=kp=n

Therefore regardless of the payoff parameters the function £ has the following
properties:

(2.D20) $(0,0) =0, B (nn) =1

The equation Hy = Hp determines a line in the (ky,kp)-diagram. In view of the equations
for £ (0,0) and S (n,n) itis clear that we have Hy-Hp>0 above this line and Hy-Hp<0
below it. Therefore we obtain f(ku,kp) = 1 for pairs (ky,kp) above the line and S(ku,kp) =
% for such points on the line. Below the line S(kv,kp) = 0 holds.
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Define:

a(ni\n ky +k 2n—ky -k
(2D21) V(kD,C]L) = E( )(/{ )CIL v +kp (l_qL) U [)ﬁ(ky,kD)

ky=0 kU

For every kp let h(kp) be the smallest ky with f(kuv,kp)>0. It can be seen without
difficulty that for every kp=0,...,n we either have

(2.D22) V(ky.q,)=B(h(k,).,n,q,) or
(2.D23) V(kD,qL)=%B(h(kD),n,qL)+%B(h(kD)H,n,qL) or
(2.024) v<kD,qL>=%B<h<kD>,n,qL>

The first case arises if (h(kp),kp) is above the line Hy=Hp. The second equation holds, if
(h(kp),kp) is on this line and h(kp)<n holds. The third form of V(kp,q) is valid for h(kp)=n
if (h(kp),kp) is on the line Hy=Hp.

It follows by the result of D2 that in all three cases V(kp,q) is monotonically increasing
in g;. In view of

(2.D25) Py = YV (ky.q,)

kp=0

0
It is clear that we have 9Py >0

aq,

Analogous arguments have to be used for proving that the curve for g, is monotonically
decreasing in py. In this proof one has to make use of the fact that the probability of at
most k-1 successes in n trials is

(2.D26) 1-B(k,n,q)
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If q is the success probability for a single trial. It follows by the results of D2 that for
k=1,..,n and 0<q<1 this probability is decreasing in q. Apart from this difference the
proof is analogues to the one showing that the curve for py is monotonically increasing.
[t is not necessary to work out the details.

In view of $(0,0) = 0 and B(1,1) = 1 it is clear that the curve for py begins at
(pv,q.)=(0,0) and ends at (puv,q.)=(1,1). Similarly the curve for q; begins at (puv,q.)=(0,1)
and ends at (pu,q.)=(1,0). It is clear that the two curves have a unique intersection and
that therefore the payoff-sampling equilibrium of Osborne and Rubinstein (with the
slight modification introduced here) is uniquely determined for completely mixed 2x2-
games.

2.D5 Impulse Balance Equilibrium

In ILF the curves for py and q. in the case of impulse balance equilibrium have been
described. It can be seen immediately that the curve for py begins at (py,q1)=(0,0) and
then increases until it ends at (pu,q.)=(1,1). Similaryly the curve for q. begins at
(pv,q1)=(0,1) and then decreases until it ends at (pu,q.)=(1,0). It follows that both
intersect in exactly one point.

Appendix 2.E Responsiveness to Own Payoff Parameters

It is the purpose of this appendix to examine how changes of a player’s payoff
parameter for one of his strategies influence the equilibrium probability of this
strategy under the five stationary concepts examined here. It will always be assumed
that the change of a payoff parameter is sufficiently small to make sure that the new
game resulting by the change is still completely mixed. If a change is too big, it may
result in a new game which has a pure equilibrium. Without loss of generality we can
restrict our attention to changes of player 1’s payoffs for (U,L) and (U,R).

In the case of Nash equilibrium the equilibrium probability p; is not influenced by
such changes, since it only depends on payoffs of the other player. It will be shown that
for each of the four other stationary concepts the equilibrium probability for py is
increased or at least not decreased by such a change.
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2.E1 Quantal Response Equilibrium

Consider a sufficiently small change of player 1's payoff for (U,L) or (U,R). In both cases
Eu(q) will be increased for all g whereas Ep(q) remains unchanged. This results in an
upward shift of the curve for py. The curve for g, remains unchanged; therefore the
equilibrium probability for U is increased.

2.E2 Action-sampling Equilibrium

We first consider the case of a small increase of player 1’s payoff for (U,L). Since ay, the
payoff for (D,L), remains unchanged such a change results in a decrease of cr/(cL+cr).
In view of the formula for ay(k) in IL.D the quantity ay(k) cannot be decreased by the
change but it may increase or stay constant. This results in an upward shift of the curve
for pu.

The quantity ay(k) depends discontinuously on c; and cr. It may happen for very small
changes that the equilibrium is not affected but if it is affected the curve for py is
shifted upwards and the equilibrium probability for U is increased.

Now consider a small change of player 1's payoff ar for (U,R). Such an change will
decrease cr and therefore also cr/(cr+cr). The change works in the same direction as a
small increase of c;. Here, too, the equilibrium probability for U may not be affected but
if it is affected it is increased.

2.E3 Payoff-sampling Equilibrium

Consider a small increase of player 1’s payoff for (U,L) or (U,R). It can be seen
immediately that such a payoff change increases Hy-Hp. Therefore PB(kukp) either
remains unaffected or is increased. We can conclude that for every fixed q. the
associated probability py on the curve for py either is unaffected or increased. An
increase results in an upward shift of the curve for py. As in the case of action-sampling
equilibrium a small increase of a payoff for U either increases the equilibrium
probability for U, or leaves it unaffected.
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2.E4 Impulse Balance Equilibrium

In the following the formulas mentioned at the end of ILF. for the impulse balance
equilibrium values will be derived. The point of departure are the impulse balance
equations: With the help of easy algebraic transformations the two impulse balance
equations can be solved for py and qi, respectively. One obtains

(Z'El) puch; =quLC2r pUqLd:/ =quRd:)

In order to solve the impulse balance equation system we introduce the following
definitions:

(2.E2) u=ru - c=fL g%

We divide the first impulse balance equation by pp, g, and ¢, and the second impulse
balance equation by pp, q, and d,, with the help of the definitions of u, v, c and d the
impulse balance equations can be rewritten as follows:

(2.E3) u=cy duv=1

Replacing u by cv in the second equation yields

(2.E4) y=

With the help of the first equation we obtain

(2.E5) u=.|C

The definition of u together with pp = 1-py yields
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u
(2.E6) Dy =

l+u
In the same way we can conclude that

v

(2.E7) q.=

I+v
holds.

Together with the formulas for u and v this leads to the following result:

(2E8)p_Lp_'\/g q, = 1 q_ﬂ
' v W/Z+\/3’ P W/Z+\/3’ L 1+@’ K 1+@'

Explicit formula in terms of ¢ = ¢, /c, and d = d, /d,, have been derived for the impulse
balance equilibrium probabilities in II.F. Before the effects of an increase of player 1’s
payoff at (UL) or (UR) can be determined it is necessary to examine how the
transformed payoff differences ¢, and c, depend ci, cg, a; and ax.

Player 1’s security level s1 is his second lowest payoff. This payoff can be obtained at
each of the four fields of the bimatrix. We have:

ap+cp for a,+cy a,
a for a a, <a,+c
L R L R R
(2.E9) 5 =
ag for a, ap <a, +c¢,

a, +c, for a, +c, _ a;

The conditions on ¢y, cr, a; and ar in this formula for s1 can be expressed as intervals
for ar - a;. We obtain
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a, +c, for a, —a, - Cp
a or a, —a 0
(2.E10) s, =1 " J S
ag for a, —a, c,
a, +c, for . _ ap—a,
Obviously we have> if s1 is at most a;. This is the case for si=ag+cr in view of
ar+cr < ai and for s;=a;. Therefore we have
|
(2.E11) c =§CL for ar-ar<0
in the interval
(2.E12) O<ar-arscL

we have s;=ar. The payoff difference c; can be split into two parts, one below ag, and
the other above ar.

(2.E13) cL=ag-ar+ (ar+ cL-ar)

In the transition to the transformed game the first part remains unchanged and the
second one is multiplied by %. This leads to

(2.E14) c, = %+%(aR -a,)  for O<ap-a, <c,

For cr<agr-a. we have s;=ai+c;. Consequently the impulse ¢ is fully counted in the
transformed game. Therefore we have

(2.E15) ¢, =c, for =c, <a,-a,

With the help of the notation
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(2.E16) |x|, = max [0,x]

our results about ¢, can be expressed by the first of the following four equations. The

equations for c,, d,, and d, can be derived analogously.

+’CLj|
+’CR:|
n

+’dD]

(2.E17) ¢, =min

1 1
ECL +E|aR —-a;

(2.E18) Ch =min[%cR +%|aL - a

(2.E19) d, = mianU + %|bD ~b,

(2.E20) d, = mianD + %|bU -b,

With the help of these formulas we now discuss the influence of a sufficiently small
increase of player 1's payoff at (U,L) or (U,R) on the impulse balance equilibrium
probability for U.

Suppose that player 1’s payoff at (U,L) is increased. This results in an increase of c;. The
constants a; and ag as well as cg remain unchanged. This means that ¢, is increased
and c,, is not changed. Consequently in this case ¢ =c, /c, is increased and d =d,, /d,,

remains unaffected. It immediately follows by the formula for py in (60) that py is
increased.

Now assume that player 1’s payoff for (U,R) is increased. Thereby ar is increased but
not ar+cr, player 1’s payoff at (D,R). Consequently cr is decreased. Moreover |aL - aR|+is
not increased. It follows that ¢, becomes smaller. In addition to this ¢, may or may not
increase but it cannot decrease. It follows that ¢ = ¢, /c, must increase. Since d = d,, /d,,

remains unaffected the formula for py in (60) leads to the conclusion that this
probability is increased.
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It is now clear that a ceteris paribus increase of a player’s payoff at one of the four
fields of the bimatrix leads to an increase of the impulse balance equilibrium
probability of the strategy used by this player at this field.

Appendix 2.F: A Possibility of Generalizing Impulse Balance Equilibrium

In this paper we only look at impulse balance equilibrium in completely mixed 2x2-
games. The concept can be extended to general normal form games. However, this can
be done in different ways. In the following we shall sketch one of the possibilities.

The transition to the transformed game proceeds in the same way as in the 2x2-case.
The pure strategy maximin s; is the reference level of player i. Gains above s; are
counted half. In the following all our explanations refer to the transformed game.

Suppose that player i has used 7, in the preceding period and another pure strategy p,
would have yielded a higher payoff against the pure strategies played by the other
players in this period. Then the surplus of the payoff for p, which would have been
receivable against these strategies over the payoff actually received for =, is an
impulse from 7, to p.. Impulses from 7, to other pure strategies of player i are called
outgoing and those from other pure strategies of player i to x, are incoming for ..

The basic principle of impulse balance requires that for every pure strategy used with
positive probability in impulse balance equilibrium the expected sum of outgoing
impulses is either zero or equal to the expected sum of incoming impulses. Moreover
every pure strategy with a positive expected sum of incoming impulses must be used
with positive probability in impulse balance equilibrium.

According to this definition pure strategy equilibria are special impulse balance
equilibria. In pure strategy equilibrium there are no outgoing impulses for equilibrium
strategies and no incoming impulses for other pure strategies.
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Appendix 3. Leaflet to Matrix Experiment

Merkblatt

An diesem Experiment nehmen mehrere Personen teil. Jeder Teilnehmer ist
entweder ein Spieler 1 oder ein Spieler 2.

Sie sind Spieler 1.

Auf dem Bildschirm sehen sie eine Matrix mit vier Feldern. In jedem Ergebnisfeld
steht ihre eigene Auszahlung in blau (al b1 c1 oder d1) und die des Spielers 2 in
rot (a2 b2 c2 oder d2).

Ihre Auszahlung hingt von ihrer eigenen Wahl und der Wahl des anderen
Spielers ab.

Sie haben die Moglichkeit zwischen Zeile A oder Zeile B zu wahlen. Spieler 2
wahlt zwischen Spalte A oder Spalte B.

Die Zahlen in den Feldern entsprechen Cent-Betragen.

Beispiel : Sie wahlen A. Spieler 2 wahlt B. In diesem Fall erhalten Sie eine
Auszahlung von b1 Cent und Spieler 2 erhalt b2 Cent.

A B
at b1
A az b2
C1 d1
B _, C2 d2

Spielerpaare werden zufallig zusammengestellt.

Nachdem geniigend viele Entscheidungen gesammelt wurden, werden diese
zufillig einander zugeordnet. Deswegen erhalten Sie ihr Auszahlung nicht sofort.

Sie erhalten zu Beginn des Experiments eine Teilnahmepauschale von 1€.

Viel Erfolg!
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Appendix 4. Graphical Presentation of the Statistical Results

Figures A4.36-A4.41 illustrate the experimental means in comparison to the simulated
means of table 4.10. Black boxes represent the simulated values and white boxes, the
empirical data.

mean # players on Bin experiments and simulations
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Figure A4.36: Mean Number of Players on B in Experiments and Simulations.
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Figure A4.37: Standard Deviation number of Players on B in Experiments and
Simulations.
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changes

changes in experiments and simulations
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Figure A4.38: Number of Changes in Experiments and Simulations.
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Figure A4.39: Last change in experiments and simulations.
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yule-coefficients

yule-coefficients in experiments and simulations
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Figure A4.40: Mean Yule-coefficients in experiments and simulations.
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Figure A4.41: Standard Deviation of Yule-coefficients in Experiments and

Simulations.
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Appendix 5.: Who are the Smarter Drivers Leaflet and Screenshot

Appendix 5.A: Leaflet to minority experiment

Welcome to the experiment
Procedure:

- Altogether 9 persons are participating in this experiment. The game
situation is the same for every participant.

- The experiment consists of 100 periods.

- In each period you are travelling from a starting point X to an arrival
point Y. You can either choose road A or road B to get from Xto Y (see
drawing).

Road A

Road B

- After your decision which road you choose, you will get a payoff if you are
on the road, which the minority has chosen. In this game 9 players interact
with each other. An example would be:

- 3 participants choose road A and 6 participants choose road B, then each of
the 3 participants on road A get the payoff of 1 Taler and the 6 participants
on road B get the payoff 0 Taler.

5 participants choose road A and 4 participants choose road B, then each of
the 4 participants on road B get the payoff 1 Taler and the 5 participants on
road A get the payoff 0 Taler.

- You can make a new route choice in every period.

- The following information you will get after each period:
* Your route chosen in the preceding period.
* Your period payoffs in the preceding period in Talers.
* Your cumulated payoffs before the route choice in Talers.
* Number of the current period.

- The exchange rate is 0,40 € (2 RMB in the Chinese treatment) per Taler.

Thank you for participating!

99



EIDESSTATTLICHE ERKLARUNG

Appendix 5.B: Screenshot Of The Program

Your choice ?

Figure A5.42: Screenshot of the Program.
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