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1. Zusammenfassung 
 

Der Nociceptin-Rezeptor (NOP) gehört zur Gruppe der G-Protein-gekoppelten Rezeptoren und 

weist eine 60%-ige Strukturhomologie zu klassischen Opiodrezeptoren auf. Nociceptin/Orphanin 

FQ (N/OFQ), der endogene NOP-Ligand, ist an zahlreichen physiologischen Prozessen beteiligt. 

Bei weitgehender Sequenzhomologie zu klassischen Opioidpeptiden besitzt N/OFQ jedoch ein 

typisches eigenes pharmakologisches Profil. Menschliches Hirn- und Rückenmarksgewebe, aber 

auch Immunzellen exprimieren NOP and N/OFQ. Das lässt auf eine wichtige Rolle des N/OFQ-

NOP-Systems sowohl für zentralnervöse als auch für immunologische Abläufe schließen. Eine 

Induktion von N/OFQ durch LPS in Zellkulturen von murinen sensorischen Neuronen und 

Astrozyten wurde beschrieben. Zahlreiche weitere Studien am Tiermodell untersuchen die 

Expression von NOP und N/OFQ in Zellen des Nervensystems. Deutlich weniger ist bekannt über 

Veränderungen in der Expression von N/OFQ und seines Rezeptors in menschlichen Blutzellen 

unter inflammatorischen Bedingungen. 
 

Im Rahmen dieser Studie wurde Vollblut von 30 gesunden Probanden bis zu 24 Stunden mit 

Lipopolysaccharid (LPS) (10 ng/ml), Tumornekrosefaktor alpha (TNF- α) (3 ng/ml), Interleukin 

beta (IL-1β) (3 ng/ml), Interleukin-10 (IL-10) (50 ng/ml) oder Interferon gamma (IFN-γ) (10 

ng/ml) inkubiert. Anschließend wurde die Expression von NOP- und N/OFQ-mRNA mittels RT-

PCR analysiert und quantifiziert. Der Überstand wurde mit einem ELISA-Assay auf Konzen-

trationen von TNFα, IL-1β and IL-10 untersucht. Zusätzlich erfolgte eine Interventionsstudie mit 

neutralisierenden Antikörpern gegen TNF-α, IL-β, IFN-γ und IL-10, um mögliche modulierende 

Faktoren der LPS-Wirkung auf das N/OFQ-NOP-System zu untersuchen. 
 

Die quantitative RT-PCR zeigte die konstitutive Expression von NOP und N/OFQ auf der mRNA-

Ebene im peripheren Blut, die nach Stimulation mit LPS stark herabreguliert wurde. Die 

inflammatorischen Zytokine TNF-α, IL-β, IL-10 und IFN-γ führten gleichfalls zu einer 

Verringerung der Konzentration von NOP- und N/OFQ-mRNA. Die Blockade von LPS-

induziertem TNF-α and IL-1β konnte den supprimierenden Effekt von LPS auf die NOP-

Expression während der frühen inflammatorischen Phase (3h) teilweise antagonisieren. 
 

Unsere Ergebnisse belegen eine Modulation der NOP- und N/OFQ-Expression durch 

inflammatorische Mediatoren im Rahmen der Immunreaktion. TNF- α und IL-1β könnten an der 

Regulation der LPS-induzierten Expression von NOP-mRNA im Vollblut während der akuten 
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Phase der Hyperinflammation beteiligt sein.  
 

Der Mechanismus des modulierenden Einflusses inflammatorischer Zytokine auf das N/OFQ-

NOP-System und die Bedeutung dieser Mechanismen für die Regulation von immunologischen 

Prozessen humaner Zellen sollte weiter untersucht werden. 
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2. Introduction 
 

The nociceptin receptor (NOP) and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are 

widely distributed throughout the immune system as well as the nervous system and have been 

implicated in a wide range of biological functions. There is abundant evidence that the NOP and 

N/OFQ are correlated with immune responses suggesting the N/OFQ-NOP system play a role in 

immune systems. In recent years, a growing literature documented that the functional regulation 

between N/OFQ-NOP system and inflammatory mediators is bidirectional. 
 

 

2.1 Nociceptin receptor 
 

The nociceptin receptor (NOP), also known as opioid receptor-like-1 (ORL-1) receptor (Mollereau, 

1994), LC132 (Bunzow, 1994) or ROR-C (Fukuda, 1994) was discovered in 1994 (Fukuda, 1994; 

Mollereau, 1994). As the fourth member of the opioid receptor family, NOP possesses overall 60% 

homology with the classic opioid receptors (Fukuda, 1994; Mollereau, 1994). Although NOP is a 

member of the G-protein coupled receptor (GPCR) superfamily with close homology to classical 

opioid (μ, δ and κ) receptors, native opioid peptides and synthetic agonists selective for μ, δ and κ 

receptors do not show significant affinity for NOP receptor (Meunier, 1997).  

Among the μ, δ and κ and NOP, the highest homology is found in the first extracellular loop, 

transmembrane domains, as well as the intracellular loops and the carboxyl-terminal domain adja-

cent to the seventh transmembrane domain (Figure 1). Specific features that are retained in the 

four opioid receptors are the aspartate residues in transmembrane domains II and III as well as 

cysteine residues in extracellular loops II and III.  

The gene coding for NOP is located on Ch20q13.33 in humans. This gene may be involved in the 

regulation of numerous brain activities, particularly instinctive and emotional behaviors. A promo-

ter for this gene also functions as a promoter for another gene, regulator of G-protein signaling 19 

(RGS19), located on the opposite strand. Two transcript variants encoding the same protein have 

been found for this gene. 

There is also homology among the four receptors at the level of the gene. Conserved intron/exon 

boundaries are present in the sequences encoding the areas following the first and fourth trans-

membrane domains. However, unlike the opioid receptors, there is evidence that the NOP is alter-

natively spliced at these two intron/exon boundaries in various species (Figure 1) (Zaki, 1998). 
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Figure 1 Structure of human nociceptin receptor. 

 

 

NOP is mainly distributed in the brain and the central nervous system (CNS) (Meunier, 1997; Bi-

goni, 1999; Mollereau, 2000). Moreover, the presence of NOP receptor mRNA was reported in pe-

ripheral organs, such as intestine, skeletal muscle, vas deferens and spleen (Wang, 1994). Aside 

from the nervous system the immune system is one of the principal locations of the NOP synthesis 

(Miller, 2007). mRNA Transcripts have been detected in mouse splenic lymphocytes (Halford, 

1995). In addition, human circulating lymphocytes and monocytes also express NOP mRNA as 

well as lymphocytic B and T and monocytic cell lines (Peluso, 1998; Wick, 1995). Recently, it was 
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shown that NOP mRNA is expressed in both CD8+ T cells and CD4+ T cells isolated from human 

PBMCs (Arjomand, 2002). Moreover, CD3+ T cells were also able to express N/OFQ when the 

peripheral blood lymphocytes were activated with the phytohemagglutinin (PHA) mitogen (Arjo-

mand, 2002).  

The wide distribution and localization of the NOP mRNA and/or protein indicates that the receptor 

has the potential to modulate a variety of central processes. The NOP seems to be associated with a 

large number of physiological responses. It has been observed that NOP is involved in modulating 

pain mechanisms in the spinal cord and forebrain. Previous in vivo studies with NOP and its pep-

tide analogs have demonstrated that NOP modulates a variety of biological functions, such as feed-

ing, learning, diuresis, drug addiction, cardiovascular function, and locomotor activity and that it 

controls the release of neurotransmitters including serotonin and dopamine at peripheral and cen-

tral sites (Mogil, 1996; Calo, 2000; Calo, 2002). Some researchers suggested that NOP may also 

be relevant in the treatment of CNS disorders including anxiety and drug abuse (Mogil, 1996; Ue-

da, 1997; 2000; Calo, 2002). Since the functional capacity of NOP was demonstrated by the ability 

of nociceptin to induce the chemotaxis of immune cells (Serhan, 2001; Trombella, 2005), and the 

expression of NOP may actually be greater on cells of the immune system (Pampusch, 2000), the 

receptor seems to play a pivotal role in the immune responses. Moreover, human immune cells al-

so express the precursor protein for nociceptin and prepronociceptin, suggesting the presence of an 

intact NOP-nociceptin circuit entirely within the immune system (Fiset, 2003). Thus the N/OFQ-

NOP system might be an important new molecular target for the treatment of various human dis-

orders. The identification of potent and selective NOP agonists and antagonists could provide new 

classes of drugs for some human disorders involving pain and anxiety or for the treatment Parkin-

son’s disease (Morari, 2006).  
 

 

2.2 Nociceptin/orphanin FQ 
 

Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the NOP. This 17 amino acid pro-

tein has been isolated by two independent groups in 1995, and was named nociceptin by Meunier, 

because of its apparent pronociceptive properties (Meunier, 1995), and orphanin FQ named by 

Reinscheid to denote its relation to an orphan receptor and to specify its first amino acid F (pheny-

lalanine) and last Q (glutamine) (Reinscheid, 1995). It is derived from the prepronociceptin protein, 

as are a further two peptides, nocistatin and NocII (Okuda, 1998). The gene coding for prepronoci-
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ceptin is located on Ch8p21 in humans (Mollereau, 1996). As a classic neuropeptide, N/OFQ is 

present as a single copy flanked by basic proteolytic cleavage sites, in a larger, highly conserved, 

precursor (Meunier, 1995; Mollereau, 1996; Nothacker, 1996; Saito, 1995).  

N/OFQ is a novel heptadecapeptide with N-terminal tetrapeptide reminiscent to that of the opioid 

peptides and strikingly homologous to the endogenous opioid Dyn17, a high-affinity κ-opioid re-

ceptor agonist, and BAM18, a high-affinity μ and κ-opioid recptor agonist (Figure 2) (Zaki, 1998). 

However, it binds to the NOP with high affinity and interacts poorly with the opioid receptors, in 

part because of the presence of a phenylalanine residue at position 1 of the peptide in place of the 

tyrosine of opioid peptides (Butour, 1997; Henderson, 1997; Meunier, 1997; Reinscheid, 1995). 

Furthermore, in vitro and in vivo effects induced by N/OFQ are not reversed by the opioid anta-

gonist naloxone. Up to now, the analog [Phe1c(CH2-NH)Gly2]- nociceptin-(1–13)-NH2 is the on-

ly peptide reported to behave as an antagonist at the NOP (Guerrini, 1998). And this peptide has 

also been shown to have agonist properties both in vitro (Butour, 1998) and in vivo (Grisel, 1998; 

Xu, 1998). 

 

 
 

Figure 2 Structural homology between N/OFQ, dynorphin17 (Dyn17) and BAM18. N/OFQ is strikingly homo-

logous to the endogenous opioid peptides Dyn17and BAM18. The three peptides have a number of basic amino 

acid residues (red) after a highly conserved amino-terminal sequence (blue) and end with a carboxyl-terminal 

glutamine residue. 
 
 

Studies demonstrated that N/OFQ is abundantly expressed in the brain and spinal cord and may 

have important roles in broad physiological functions, including the nervous system (central and 

peripheral), the cardiovascular system, the airways, the gastrointestinal tract, the urogenital tract 

and the immune system (Mogil, 2001; Chiou, 2008; Lambert, 2008). As described in Figure 3, 

N/OFQ is involved in a wide range of responses and thus has wide potential for drug development. 
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Figure 3 Pleiotropic effects of N/OFQ on major organ system. (-): inhibition 

 

The effects in the nervous system are complex and have received much attention. It was suggested 

that the spinal N/OFQ is antinociceptive with many features that are common to the classical 
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members of the opioid family (Zeilhofer, 2003). Whereas, when given supraspinally, it reverses the 

effects of opioids and induces hyperalgesia (Zeilhofer, 2003). In the brain, this peptide produces 

hyperphagia and affects the responses to the stress, anxiety and locomotion (Mogil, 2001; Chiou, 

2008).  

Recently, accumulating evidence demonstrated that outside of the CNS, a major location of 

N/OFQ synthesis is the peripheral immune system. RT-PCR analyses support the capacity of vari-

ous immunocyte populations to synthesize mRNA for the N/OFQ (Serhan, 2001). In addition, sti-

mulated human polymorphonuclear cells rapidly secrete N/OFQ by exocytosis, suggesting that the 

neuropeptide is stored in preformed vesicles (Fiset, 2003). The fact that both NOP and N/OFQ are 

expressed in the human central nervous system as well as in immune cells at similar levels, indi-

cating that the N/OFQ-NOP system may act as an important mediator of both nervous and immune 

responses in humans (Peluso, 1998; Serhan, 2001), led to the hypothesis that it is involved in the 

functioning of the brain-immune axis (Wick, 1995). In recent years, a number of separate lines of 

evidence showed that the N/OFQ-NOP system is correlated with immune responses, suggesting 

that NOP and N/OFQ may be potential regulatory elements in the immune system (Lambert, 2008; 

Waits, 2004). Moreover, NOP knockout prevents the development of colitis, thus indicating a fur-

ther link between NOP-N/OFQ and the immune system (Kato, 2005). 
 
 

 
2.3 Inflammatory mediators 
 

2.3.1 Lipopolysaccharide 
 

Lipopolysaccharide (LPS) is a major structural feature of gram-negative bacteria and has been 

found to stimulate various immune cells by increasing their production of cytokines, generation of 

oxygen free radicals, facilitation of phagocytosis, and chemotaxis (Ziegler-Heitbrock, 1995; Guha, 

2001). This potent proinflammatory agent promotes hyperalgesia and pain (Watkins, 1994; Kanaan, 

1996; Reeve, 2002). In the immune system, the core components of the most thoroughly characte-

rized LPS receptor complex are CD14, Toll-like receptor 4 (TLR4). Several results suggested that 

LPS might quickly trigger a cascade of inflammatory events that are self-perpetuating, establishing 

an activated state that is no longer dependent of LPS. Still other lines of evidence indicated that 

soluble mediators derived from LPS-stimulated macrophages are responsible for the lethal effect 

of LPS. In addition, LPS is a potent stimulus for the production of tumor necrosis factor alpha 
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(TNF-α), interleukin-1beta (IL-1β), interleukin-1ra (IL-1ra), interleukin-10 (IL-10) in the whole 

blood culture.  

 
 
2.3.2 Inflammatory cytokines 
 

Cytokines are small proteins produced by most cells in the body, which possess multiple biologic 

activities that promote cell-cell interaction. Abundant evidence suggests that cytokines play an im-

portant role in several physiological and pathological settings such as immunology, inflammation 

and pain (Benveniste, 1992; Theoharides, 2004). It is well documented that cytokines play a very 

important role in the immune responses. Furthermore, pro-inflammatory cytokines, such as TNF-α 

(Kiguchi, 2009; Scholl, 2009) and IL-1β (Li, 2009; Honore, 2009), as well as anti-inflammatory 

cytokines, e.g. IL-10 (Vale, 2003), have been shown to play a significant role in the modulation of 

pain threshold and could contribute to trigeminal nervefibers sensitization. LPS stimulates the syn-

thesis and the release of cytokines in the whole blood. During the early hyperinflammatory phase 

induced by LPS in the whole blood system, maximum concentrations of cytokines such as TNF-α, 

IL-1β, IL-1ra and IL-10 can be detected (van Crevel, 1999). 

 
2.3.2.1 TNF-α 
 

TNF-α is a pleiotropic cytokine with diverse activities in inflammation, cell activation and migra-

tion. It is a cytokine involved in systemic inflammation and is a member of a group of cytokines 

that stimulate the acute phase reaction. The primary role of TNF is the regulation of immune cells. 

TNF is also able to induce apoptotic cell death, to induce inflammation and to inhibit tumorigene-

sis and viral replication. Systemic exposure to TNF-α causes a syndrome of shock and tissue injury. 

In addition to its well-known role in septic shock, it has been implicated in the pathogenesis of 

chronic processes. It is the central mediators of immune regulation and of the pathophysiological 

changes associated with bacteremia and sepsis syndrome. 

TNF-α is produced mainly by macrophages, but is also synthesized by a broad variety of other cell 

types, including lymphoid cells, mast cells, endothelial cells, cardiac myocytes, adipose tissue, fi-

broblasts and neuronal tissue. Large amounts of TNF are released in response to lipopolysaccha-

ride. 
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2.3.2.2 IL-1β 

 

IL-1β is a pro-inflammatory cytokines involved in immune defense against infection. It is pro-

duced by macrophages, monocytes and dendritic cells and forms an important part of the inflam-

matory response of the body against infection. IL-1β increases the expression of adhesion factors 

on endothelial cells to enable transmigration of leukocytes, the cells that fight pathogens, to sites 

of infection and re-set the hypothalamus thermoregulatory center, leading to an increased body 

temperature. The production of IL-1β in peripheral tissue has also been associated with hyperalge-

sia (increased sensitivity to pain) and with fever (Morgan, 2004). 

 
2.3.2.3 IFN-γ 
 

IFN-γ is a cytokine critical for innate and adaptive immunity against viral and intracellular bacteri-

al infections and for tumor control. Aberrant IFN-γ expression is associated with a number of au-

toinflammatory and autoimmune diseases. The importance of IFN-γ in the immune system stems 

in part from its ability to directly inhibit viral replication, but most importantly derives from its 

immunostimulatory and immunomodulatory effects. IFN-γ is produced predominantly by natural 

killer cells and natural killer T cells as part of the innate immune response, and by CD4 and CD8 

cytotoxic T lymphocyte effector T cells, once antigen-specific immunity develops (Schoenborn, 

2007).  

 
2.3.2.4 IL-10 
 

IL-10 is a potent, anti-inflammatory cytokine, which is produced predominantly by activated ma-

crophages and T cells. Originally demonstrated to inhibit cytokine production by macrophages 

(Fiorentino, 1991), numerous studies have shown that this cytokine plays a critical role in shaping 

the development of the immune response. It blocks class II major histocompatibility complex ex-

pression, inhibiting T helper cell type 1 effector cell development, and decreasing proinflammatory 

cytokine expression (Donnelly, 1999; Moore, 2001). 

It is widely acknowledged that IL-10 plays a central role in down-regulating the inflammatory re-

sponse through its ability to inhibit macrophage proinflammatory gene expression (Donnelly, 

1999). Studies in IL-10 knockout mice have clearly documented overproduction of proinflamma-

tory cytokines and the development of a chronic enterocolitis (Takakura, 2002; Berg, 1995; Kühn, 

1993). The overexpression of IL-10 in macrophages results in an “autocrine deactivation” of the 

cells and in an impaired ability to clear pathogens (Lang, 2002a). Recently, gene expression profil-
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ing studies in macrophages have demonstrated a rather limited profile of genes induced in re-

sponse to IL-10 (Lang, 2002b; Williams, 2002). One of the genes most strongly induced by IL-10 

is suppressor of cytokine signaling 3, which, like IL-10, has been implicated in the inhibition of 

macrophage responses to IFN-γ and IL-6 (Ito, 1999; Lang, 2003). 
 

 

2.4 Hypothesis 
 

NOP and N/OFQ are involved in a wide range of physiological responses. Recently, accumulating 

evidence suggested that N/OFQ-NOP system play a role in immunomodulation with the relation-

ship between N/OFQ-NOP system and immune system being bidirectional. The hypothesis of the 

present study is that inflammatory cytokines are related to the regulatory effect of LPS on NOP 

and N/OFQ mRNA expression in a human whole blood culture system. So the purpose of this ex 

vivo study is to: 

• Investigate the LPS regulatory effect on NOP and N/OFQ mRNA levels in human whole blood 

• Evaluate effects of inflammatory cytokines on NOP and N/OFQ expression 

• Determine whether changes in inflammatory cytokines are related to the modulating effects of 

LPS on NOP and N/OFQ mRNA expression. 
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3. Material and Methods 
 
3.1 Equipment and Reagents 
 

3.1.1 Equipments 
 

Sterile syringe 5ml, 10ml and 20ml (Becton Dickinson, Germany) 

3M Walter paper (Schleicher & Schuell, Germany) 

24-well plate (Greiner Bio-One, Germany) 

Biofuge fresco (Heraeus Instruments GmbH, Germany)  

BioPhotometer 6131 (Eppendorf, Germany) 

Butterly-23 (Venisystems)  

Centrifugator (Heraeus, Germany) 

CO2 incubator (Heraeus, Germany) 

Falcon Tube 15 ml and 50 ml (Becton Dickinson, Germany) 

Filter tip (Biozyme, Germany) 

Gel Doc 1000 Video Gel Documentation System (Bio-Rad Laboratory, USA) 

GeneAmp PCR System 2400 (Applied Biosystems, USA) 

GeneMapperTM Software (Applied Biosystems, USA) 

Genetic Analyzer Sample Tube 0.5 ml (Applied Biosystems, USA) 

Genetic Analyzer Septa for 0.5 ml Sample Tubes (Applied Biosystems, USA) 

HP spectrophotometer (Hewlett-Packard, USA) 

LightCycler Capillary (Roche, Germany) 

LightCycler Carousel Centrifuge (Roche, Germany) 

LightCycler Instrument (Roche, Germany) 

MagnaPure LC Cooling Block (Roche, Germany) 

Microtubes 0.2ml, 1.5ml and 2ml (Biozyme, Germany) 

Microwave oven (Siemens, Germany) 

Mini-Sub Cell Electrophoresis Systems (Bio-Rad Laboratory, USA) 

Model 583 Gel GRYER (Bio-Rad Laboratory, USA)  

PAXgene Blood RNA Tube (Qiagen/Becton Dickinson, Germany) 

Pipette 10µl, 100µl, 1000µl (Eppendorf, Germany) 

Polaroid MP4+ Instant Camera System and Polaroid 667 (Fabrique an Royanme-Uni, U.K) 
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PowerPac 200 Power Supply (Bio-Rad Laboratory, USA) 

Round bottom tube (Greiner Bio-One, Germany) 

Thermomixer 5436 (Eppendorf, Germany) 
 

 

3.1.2 Reagents 
 

10×TBE Buffer (SIGMA, USA) 

100% Ethanol (Merck, Germany) 

1st Strand cDNA Synthesis Kit (AMV) (Roche, Germany) 

Agarose (Biozym, Germany) 

Anti-IL-10 mAb (R&D, UK) 

Anti-IL-1β mAb (R&D, UK) 

Anti-IFN-γ mAb (R&D, UK) 

Anti-TNF-α mAb (R&D, UK) 

DMEM-medium (Gibco, Germany) 

DMSO (Sigma, Germany) 

Ethidium Bromide (SIGMA, USA) 

Heparin (Ratiopharm GmbH) 

HPRT primers (OPERON, Germany) 

IFN-γ (R&D, UK) 

IL-10 (R&D, UK) 

IL-1β (R&D, UK) 

IL-6-ELISA-CB Kit (R&D, UK) 

IL-10-ELISA-CB Kit (R&D, UK) 

IL-1β-ELISA-CB Kit (R&D, UK) 

Isotype control IgG1 (R&D, UK) 

Kodak X-OMAT 5000RA (Kodak) 

LightCycler® FastStart DNA MasterPLUS SYBR Green I (Roche, Germany) 

LightCycler® TagMan® Master (Roche, Germany) 

LPS (SIGMA, Germany) 

NOP primers (OPERON, Germany) 

Nociceptin primers (TIB MOBIOL, Germany) 
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PBS 10×buffer (invitrogen, UK) 

Penicillin/Streptomycin (Invitrogen, USA) 

Photometer (Hewlett Packard) 

QIAamp RNA Blood Kit (Qiagen, Germany) 

RNeasy® Mini Kit (Qiagen, Germany) 

RPMI 1640 (Biochrom, Germany) 

SK-N-DZ cell (DSMZ ATCC/LGC, Promochem) 

TNF-α (R&D, UK) 

TNF-α-ELISA-CB Kit (R&D, UK) 

Transcriptor First Strand cDNA Synthesis Kit (Roche, Germany) 

Universal ProbeLibrary #73 (Roche, Germany) 

UV-Stratalinker (Stratagene) 
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3.2 Blood donors 
 

30 healthy volunteers (13F/17M) between ages of 26 and 50 years were included in the present 

study. The study was approved by the local ethics committee and either the participants or a legal 

custodian gave written informed consent.  

Exclusion criteria were:  

• Lack of informed consent 

• Age younger than 18 years 

• Concomitant infectious, neoplasmatic or autoimmune diseases 

• Administration of antibiotic or immunostimulating agents for at least 30 days before entering 

the study 

• Pregnancy 
 

 

3.3 Blood culture 
 

In all experiments, blood samples were drawn from healthy individuals between 07:00 and 08:00 

a.m. All experiments were performed using 24 well culture plates. The following stimuli were used: 

LPS (E.coli serotype 0127:B8; Sigma, Steinheim, Germany); TNF-α, IL-1β, IL-10 and IFN-γ (all 

from R&D system, Germany); anti-TNF-α monoclonal antibody (mAb), anti-IL-1β mAb, anti-IL-

10 mAb, anti-IFN-γ mAb and isotype control IgG1 (all from R&D system, Germany). Stimuli 

were dissolved in RPMI 1640 to the expected concentrations and added shortly before heparinized 

blood (900µl) into the respective culture wells. After the indicated times of incubation in a humidi-

fied atmosphere (95% air/5% CO2 at 37 ºC), blood was centrifuged at 1500 ×g for 5 min and the 

supernatant was stored at -80°C until final analysis. 

 
3.3.1 Dose-response effect of different inflammatory mediators 
 

Blood from four healthy volunteers was analyzed for NOP and N/OFQ mRNA expression after co-

incubation with various concentrations of TNF-α, IL-1β, IL-10 and IFN-γ for 3 h or LPS for 6 h. 

The final concentrations ranged from 0.5 to 104 pg/ml LPS; 1 to 10 ng/ml TNF-α and IL-1β; 0.5 to 

50 ng/ml IL-10; 1 to 20 ng/ml IFN-γ. Quantitative RT-PCR was used for detecting the mRNA ex-

pression of NOP and N/OFQ. 

 



25 
 

 

3.3.2 Whole blood incubation with different inflammatory mediators 
 

According to the results of dose-response experiments, heparinized blood was stimulated with fi-

nal concentrations of LPS (10 ng/ml), TNF-α (3 ng/ml), IL-1β (3 ng/ml), IL-10 (50 ng/ml) or IFN-

γ (10 ng/ml), respectively. Incubation time varied between 0, 3, 6 and 24 hours. For control pur-

poses, blood samples were simultaneously cultured without any stimulation. Subsequently, at the 

end of each incubation time, blood was harvested and centrifuged at 1,500 ×g for 5 minutes. The 

supernatant was stored at -80°C until final analysis. 

 

3.3.3 Intervention study 
 

Blood from 10 volunteers was used for the intervention study. From the results of LPS dose-effect 

dependency on NOP and N/OFQ, the concentration of LPS 50 pg/ml was used (Figure 9). Neutra-

lizing antibodies to human TNF-α or IL-1β or IL-10 or IFN- γ or TNF-α and IL-1β were added to 

the whole blood prior to the addition of LPS (50 pg/ml) at a final concentration of 5μg/ml, respec-

tively. In addition, isotype control IgG1 was chosen to estimate the non-specific binding of target 

antibodies due to fragment, crystallizable (Fc) receptor binding or other protein-protein interac-

tions, according to the immunoglobulin type of the antibodies used in the present study.  

To completely antagonize the cytokines induced in LPS-challenged (LPS 50 pg/ml) whole blood 

neutralizing antibodies to human TNF-α or IL-1β or IL-10 or IFN- γ or TNF-α and IL-1β (all from 

R&D Systems, UK) were added at final concentration of 5 μg/ml prior to addition of LPS. At the 

same time blood incubated with LPS (50 pg/ml) and isotype control IgG1 (5 μg/ml) and blood 

without any stimulation or only treated with LPS was also cultured. NOP and N/OFQ expression 

were assessed throughout the 24 h culture (0, 3, 6 and 24 h). Blood incubated with isotype control 

IgG1 and LPS was served as the active control.  

 

3.4 Total RNA isolation  
 

Whole blood was collected at each point of incubation. Total RNA was isolated from whole blood 

by means of QIAamp RNA Blood Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions and then dissolved in diethylpyrocarbonate-treated water and stored at -80°C until fur-

ther analysis. The concentration of RNA was determined by measuring the absorbance at 260 nm 

(A260) in a spectrophotometer. 
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3.5 cDNA synthesis 
 

cDNA was synthesized from 8.2 μl (approximately 500 ng RNA) with polymerase chain reaction 

(PCR) template using 1st Strand cDNA Synthesis Kit (AMV). The reaction mixture was prepared 

with the components listed below (Table 1).  

The reaction was incubated at 25°C for 10 minutes, 42°C for 60 minutes, and 99°C for 5 minutes 

and then cooled to 4°C for 5 minutes. The cDNA product was stored at -20 ºC for the further anal-

ysis. 

 
 

Table 1 Reaction mix preparation for the cDNA synthesis 
 

Component Vol. (μl) Final 

10x Reactions-Puffer 2 1x 

25 mM MgCl2 4 5 mM 

dNTP-Mix 2 1 mM 

Random Primer p(dN)6 2 3,2 μg 

RNase Inhibitor 1 50 U 

AMV Reverse Transkriptase 0.8 ≥ 20 U 

RNA 8.2 - 

Total volume  20  

 

 

 

3.6 Calibrator  
 

3.6.1 SK-N-DZ cell line culture 
 

SK-N-DZ cell line was cultured with DMEM-medium, in which 10% FKS and 1% Penicil-

lin/Streptomycin was added under sterile conditions. Cells were grown in a humidified atmosphere 

in 95% air/5% CO2 at +37 ºC. 
 
3.6.2 RNA isolation  
 

Total RNA was extracted from SK-N-DZ cells using of RNeasy® Kit (Qiagen, Hilden, Germany) 
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according to the manufacturer’s instruction, then dissolved in diethylpyrocarbonate-treated water 

and stored at -80°C until further analysis. 

 

3.6.3 cDNA synthesis 
 

RNA was transcribed to cDNA in 20-μl reaction volume using the Tramscriptor First Strand cDNA 

Synthesis Kit (Roche, Germany) with Achored-oligo (dT)18 primer, 50 pmol/μl following the man-

ufacturer’s instructions.  
 

Procedure 
 

Anchored-oligo (dT)18 primer was used in the reverse transcription. In each single reaction tem-

plate-primer mix was prepared with 1 μg total RNA, 0.5 μl Anchored-oligo (dT)18 Primer (50 

pmol/μl) and variable volume of PCR-grade H2O to make total volume 13 μl. Subsequently, the 

template-primer mixture was denatured by heating the tube for 10 min at 65 ºC in a thermal block 

cycler. 

Following component of the RT mix were added to the plate-primer mix (Table 2): 
 

 
Table 2 RT mix preparation for the cDNA synthesis 
 

Component Vol. (μl) Final 

Concentration 

Transcriptor Reverse Transcriotase Reaction Buffer, 

5x conc.  

4 1x  

(8 mM MgCl2) 

Protector Rnase Inhibitor, 40 U/μl 0.5 20 U 

Deoxybycleotide Mix, 10 mM each 2 1 mM 

Transcriptor Reverse Transcriptase 0.5 10 U 

Total volume  20  

 

 

Mix the reagents in the tube carefully. Depending on the primer used and the length of the target 

mRNA, incubate the RT reaction for 60 min at 50 ºC and 5 min at 85 ºC. Then the reaction was 

stopped by placing the tube on ice and the cDNA products were stored at -20 ºC. 
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3.7 Quantitative real-time PCR 
 

The relative levels of NOP and N/OFQ mRNAs in cultured whole blood were determined by RT-

PCR. NOP, N/OFQ and the house-keeping gene human hypoxanthine phosphoribosyl-transferase 

(HPRT) were conducted in separate capillaries as duplicates on a LightCycler 2.0 (Roche Diag-

nostics, Mannheim, Germany), with threshold cycles for each sample being compared to a stan-

dard curve. The calibrator used in the real-time PCR was cDNA prepared from the SK-N-DZ cell 

line. Analysis of melting point for each sample revealed the presence of only one amplified prod-

uct. For each gene of interest, the sample data were expressed in arbitrary units based on the stan-

dard curve. Quantitative determination of human NOP and N/OFQ mRNA levels relative to a ref-

erence gene and was normalized to the amount of the Calibrator RNA using the LightCycler Rela-

tive Quantification Software. Moreover, Amplified PCR products were resolved by electrophoresis 

in the 1.5% or 4% agarose gel containing 0.5 μg/ml ethidium bromide, and visualized under UV 

illumination. 

 

3.7.1 Standard curve 
 

In the quantitative RT-PCR experiments, the LightCycler compares the amplification of target 

nucleic acids in an unknown sample against a standard curve prepared with known concentrations 

of the same target. The standard samples are amplified in separate capillaries but within the same 

LightCycler run. 

The standard curve is the linear regression line through the data points on a plot of crossing point 

(threshold cycle) (Cp) versus logarithm of standard sample concentration. 

In the present experiments, the concentration chosen for the standard curves matches the expected 

concentration range of each target. Standard curves were generated from five samples, which were 

prepared by serial 10-fold dilutions for NOP and HPRT, 2-fold serial dilutions for N/OFQ (Figure 

4).  
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Figure 4 Standard curves for NOP (A), N/OFQ (B) and HPRT (C) were generated from five samples, which 

were prepared by serial 10-fold dilutions for NOP and HPRT, 2-fold serial dilutions for N/OFQ.  
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All the samples were tested in triplicate and the average values were used for quantification. The 

LigheCycler software calculates the slope for each standard curve.  

Since the crossing point values of the unknowns will be converted to concentration using the data 

derived from the standards, the amplification efficiency (E) of the standard and the target must be 

identical. Since the LightCycler software calculates the slope for each standard curve, the PCR ef-

ficiency may be calculated from the following formula: 

 

 

 

E = 10-1/slope 

 

 

 

 

3.7.2 Housekeeping gene 
 

A housekeeping gene is typically a constitutive gene that is transcribed at a relatively constant lev-

el. The housekeeping gene's products are typically needed for maintenance of the cell. Housekeep-

ing genes are used as internal standards in quantitative polymerase chain reaction since it is gener-

ally assumed that their expression is unaffected by experimental conditions.  

HPRT plays an important role in the purine salvage pathways, where it mediates the recycling of 

hypoxanthine and guanine into the usable nucleotide pools. The HPRT gene is reported as a consti-

tutively expressed housekeeping gene (Pernas-Alonso, 1999). HPRT RNA levels are very low, 1 to 

10 molecules per cell (Steen, 1990) which makes it suitable as an endogenous mRNA control in 

RT-PCR for highly sensitive quantification of low copy or rare mRNAs (Rey, 2000; Specht, 2001; 

Sellner, 1996). To detect the relative quantification of the NOP and N/OFQ expression in the cul-

tured whole blood, HPRT was used as the housekeeping gene in the present study. 

 

Procedure 
 

The cDNA fragments were amplified for the HPRT with sequencing primers (Table 3).  
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Table 3 Sequences of primers used in HPRT analyses 
 

Primer Sequence (5´→3´) Size of products 

HPRT 1 (forward) TgACCTTgATTTATTTTgCATACC 102 bp 

HPRT 2 (reverse) CgAgCAAgACgTTCAgTCCT  
 

 

The PCR reaction mix was performed using LightCycler® TagMan® Master Kit (Table 4) 

 
 

Table 4 Reaction mix preparation for HPRT gene detection 
 

Reagent Vol. (μl) Final 

H2O (PCR grade)   13.4 - 

Probe #73 0.2 - 

Primer: HPRT 1 0.2 0.2 μM 

Primer: HPRT 2 0.2 0.2 μM 

LightCycler® TagMan® Master 4  

cDNA 5 - 

Total volume 20  

 

 

Table 5 PCR Program for HPRT detection 
 

Cycle 

number 

Temperature 

Target (°C) 

Hold Time 

(sec) 

Slope 

(°C/sec) 

Acquisition 

Mode 

Program 

1 95 600 20 None Initial denaturation 

 95 10 20 None  

45 60 30 20 None Amplification 

 72 1 20 Single  

 95 0 20 None  

1 50 15 20 None Melting curve 

 98 0 0.1 Continuous  

1 40 30 20 None Cooling 

 

 



32 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 5 HPRT amplification curves. cDNA from SK-N-DZ cell line was used as calibrator in each PCR run. 

Samples were cDNAs obtained from blood cells of healthy volunteers. 
 

3.7.3 Target gene 
 

3.7.3.1 NOP 
 

cDNA fragments were amplified for the NOP with the following sequencing primers (Table 6). 
 

Table 6 Sequences of primers used in NOP analyses 

Primer Sequence (5´→3´) Size of products  

NOP 1 (forward) TgCCgTTCTgggAggTTATCTA  404 bp 

NOP 2 (reverse) TTAgggTgAAggTgCTggTgA   
 

 

Procedure 
 

Reaction mix preparation 

The PCR reaction was performed using LightCycler® FastStart DNA MasterPLUS SYBR Green I. 

The reaction mixture was prepared as Table 7. 
 

Table 7 Reaction mix preparation for NOP gene detection 

Reagent Vol. (μl) Final 

H2O (PCR grade)  13 - 

Primer: NOP 1 0.5 0.5 μM 

Primer: NOP 2 0.5 0.5 μM 

LightCycler® FastStart DNA MasterPLUS SYBR Green I 4 1× 

cDNA 2 - 

Total volume 20  
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Table 8 PCR Program for amplification of NOP 
 

Cycle 
number 

Temperature 
Target (°C) 

Hold Time 
(sec) 

Slope 
(°C/sec)

Acquisition 
Mode 

Program 

1 95 600 20 None Initial denaturation 

 95 5 20 None  

45 60 10 20 None Amplification 

 72 20 20 None  

 88 0 20 Single  

 95 10 20 None  

1 40 60 20 None Melting curve 

 99 0 0.2 Continuous  

1 40 30 20 None Cooling 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 NOP amplification curves. cDNA from SK-N-DZ cell line was used as calibrator in each PCR run. 

Samples were cDNAs obtained from blood cells of healthy volunteers. 

 

 

 

3.7.3.2 N/OFQ 
 

cDNA fragments were amplified for the N/OFQ with the following sequencing primers (Table 9). 
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Table 9 Sequences of primers used in N/OFQ analyses 
 

Primer Sequence (5´→3´) Size of products 

Noci 1 (forward) CCTgCACCAgAATggTAATg  108 bp 

Noci 2 (reverse) gCTgAgCACATgCTgTTTg   

 

Procedure 
 

Reaction mix preparation 

The PCR reaction was performed using LightCycler® FastStart DNA MasterPLUS SYBR Green I. 

The reaction mixture was prepared as Table 10. 
 

 

Table 10 Reaction mix preparation for N/OFQ gene detection 
 

Reagent Vol. (μl) Final 

H2O (PCR grade) 13 - 

Primer: Noci 1 0.5 0.5 μM 

Primer: Noci 2 0.5 0.5 μM 

LightCycler® FastStart DNA MasterPLUS SYBR Green I 4 1× 

cDNA 2 - 

Total volume 20  

 
Table 11 PCR Program for amplification of N/OFQ 
 

Cycle 

number 

Temperature 

Target (°C) 

Hold Time 

(sec) 

Slope 

(°C/sec) 

Acquisition 

Mode 

Program 

1 95 600 20 None Initial denaturation 

 95 10 20 None  

40 60 10 20 None Amplification 

 72 5 20 Single  

 95 0 20 None  

1 65 15 20 None Melting curve 

 95 0 0.1 Continuous  

1 40 30 20 None Cooling 
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Figure 7 N/OFQ amplification curves. cDNA from SK-N-DZ cell line was used as calibrator in each PCR run. 

Samples were cDNAs obtained from blood cells of healthy volunteers. 

 
3.7.4 Relative quantification 
 

The relative quantification results were calculated with the LightCycler relative quantification 

software (Roche). The relative amount of a target and a reference gene is determined for each 

sample and one calibrator integrated in each LightCycler run. The calculation of the relative 

amount of any target or reference gene was based on the crossing point of a sample and the effi-

ciency of the PCR reaction. For the calculation of the final result only the Cp-values obtained by 

the LightCycler analysis software were required. 

After the relative ratio of target to reference for each sample and for the calibrator was calculated 

the target/reference ratio is then divided by the target/reference ratio of the calibrator. Thus, the 

normalized ratio was calculated with the following formulas: 

 
 

 

 

 

 

 

 

 

concentration reference (sample)      concentration reference (calibrator) 

Normalized Ratio = ET
CpT(C)-CpT(S)×ER CpR(S)-CpR(C)

concentration target (sample)            concentration target (calibrator) 
:Normalized Ratio  = 
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In the present experiments, the coefficient files were created by PCR amplification of NOP, 

N/OFQ and HPRT in a series of diluted cDNA (relative standard curve) in triplicates. Data of real-

time PCR, including calibrator and samples, were imported into the Relative Quantification Soft-

ware and analyzed with the Fit Coefficients File. NOP and N/OFQ mRNAs expression was calcu-

lated with the formula above. The normalized ratios (arbitrary units) calculated directly reflected 

the expression level of NOP and N/OFQ mRNA.  

 

3.8 Enzyme-linked immunosorbent assay (ELISA) 
 

Supernatants collected after the indicated time points were detected for cytokine concentrations. 

For determining the concentrations of TNF-α, IL-1β and IL-10 in the plasma, the TNF-α-ELISA-

CB Kit, IL-1β-ELISA-CE Kit and IL-10-ELISA-CB Kit (R&D, UK) and the ELISA-Reader (Bio-

Rad Lab, USA) were employed. 

 

3.9 Statistics 
 

Statistical analysis was performed using Statistica 6.0 and GraphPad Prism 4. Data were presented 

as mean±SEM or mean±SD. Results of up to 24 h blood culture with diverse inflammatory media-

tors and area under the time concentration curve (AUC) for NOP and pN/OFQ expression of the 

different treatment groups were compared by Mann-Whitney U test. Paired t test was used for 

comparison of NOP and pN/OFQ expression under co-incubation with different stimulants. Re-

sults were corrected for multiple testing. A p<0.05 was regarded as statistically significant.  
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4. Results  
 

4.1 Spontaneous NOP and N/OFQ expression in whole blood  
 

NOP and N/OFQ mRNA expression in peripheral blood cells from healthy volunteers were deter-

mined by quantitative RT-PCR. Both, the receptor and its ligand were constitutively detected at the 

mRNA level in the peripheral blood from all healthy volunteers enrolled in the present study (Fig-

ure 8). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 8:  NOP (Δ) and N/OFQ (●) mRNA expression in whole blood from twenty healthy volunteers was de-

tected using quantitative RT-PCR. Bars represent mean±SEM.  

 

 

 
4.2 LPS modulated NOP and N/OFQ mRNA expression 
 

4.2.1 LPS Dose-effect  
 

Whole blood was incubated with increasing concentrations of LPS (0.5-104 pg/ml) for 6 h. The 

results showed that NOP and N/OFQ expression was inhibited in the whole blood stimulated by 
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LPS and the down-regulation was dose dependent. Dose-response analysis showed that the con-

centration of 10ng/ml was maximally effective for NOP and N/OFQ expression (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 9: NOP (A) and N/OFQ (B) mRNA expression (mean±SEM) in whole blood from 4 healthy individuals 

after incubation with increasing concentrations of LPS (0.5 to 104 pg/ml) for 6 h.  

 
 

4.2.2 Time course of LPS effect on NOP and N/OFQ expression 
 

To determine the time course of LPS effect on NOP and N/OFQ expression, whole blood was in-
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cubated in the absence or presence of the LPS (10 ng/ml) for 0, 3, 6 and 24 h, respectively. Using 

quantitative RT-PCR, NOP and N/OFQ expression were detected in all the samples from the re-

spective time points. 

Results showed that both of the NOP and N/OFQ mRNAs were expressed constitutively across the 

indicated incubating time points. The expression of NOP and N/OFQ was decreased in the pres-

ence of LPS across time (Figure 10).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 NOP (A) and N/OFQ (B) mRNA expression in whole blood stimulated with LPS 10 ng/ml for 0, 3, 6 

and 24 h. Data present mean±SEM (n=20). Whole blood cultured without stimulation served as control. Statistics 

were analyzed with Mann-Whitney U test, ** p<0.01. 
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The NOP mRNA expression was inhibited further at 3 h and 6 h, compared with 24 h, with each 

value significantly different compared with the respective control (p<0.01, Figure 10A, Figure 

11A). For N/OFQ, the expression was down-regulated after incubation with LPS at 3 h and 

reached the lowest measures at 6 h, with a significant difference compared to the respective con-

trols (p<0.01, Figure 10B, Figure 11B). After 3, 6 and 24 h incubation, LPS elicited a 78%, 85% 

and 60% decrease in NOP mRNA levels, when compare to respective controls. For N/OFQ mRNA 

expression level a 55%, 62% and 20% suppression were observed at 3, 6 and 24 h compared to 

respective controls. 

Interestingly, self suppression was observed in both of the NOP and N/OFQ expression in the 

blood samples without any stimulation during the 24 h incubation. This phenomenon was more 

obvious in the expression of N/OFQ than NOP (Fig 10). Comparing with the samples at the 0 h 

point, NOP expression in the untreated samples was decreased 10%, 5% and 31% after 3, 6 and 24 

h, respectively (Figure 10A). For N/OFQ the respective values were 25%, 41% and 45% (Figure 

10B). 

 
4.3 Cytokines production in LPS-challenged whole blood 
 

LPS is a potent stimulus for the production of TNF-α, IL-1β, IL-10 in whole blood and, thus, the 

concentrations of these cytokines were measured in the supernatants of the blood cultures. Before 

stimulation as well as after incubation without stimuli, TNF-α, IL-1β and IL-10 were at a very low 

concentration (TNF-α, IL-1β) or could not be detected (IL-10). After the blood cells were treated 

with LPS 10 ng/ml, concentrations of TNF-α, IL-1β and IL-10 increased (Table 12). 
 

Table 12 Cytokines induced by LPS 10 ng/ml in whole blood from 20 healthy volunteers. TNF-α, IL-1β and IL-

10 (mean±SD) were measured in supernatants after whole blood was incubated at 37°C for 3, 6 and 24 h.  

Cytokine 

(pg/ml) 

Before stimu-

lation 

       

3 h 
LPS stimulated 

6 h 

 

24 h 

TNF-α 1.4±2.84 7078±3404 10754±4941 4321±3437 

IL-1β 2.14±4.9 915.5±981.7  6392±3211 7536±3438 

IL-10 0 0   201.2±283.2  3279±1242 
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4.4 Inflammatory cytokines modulated NOP and N/OFQ mRNA expression  
 

4.4.1 Inflammatory cytokines dose-effect dependence 
 

To determine whether the cytokines effect the expression of NOP and N/OFQ and whether there  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure 11 NOP and N/OFQ expression (mean±SEM) after co-incubation with different cytokines for 3 h (n=4). 

A, B: TNF-α (1-10 ng/ml); C, D: IL-1β (1-10 ng/ml); E, F: IL-10 (0.5-50ng/ml); G, H: IFN-γ (1-20 ng/ml).  
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is dose-dependent effect, the expression of the receptor and its ligand was investigated in whole 

blood stimulated with different concentrations of TNF-α, IL-1β, IL-10 and IFN-γ (Figure 11).  

Since the previous experiments indicated that LPS down-regulated the expression of NOP and 

N/OFQ after 3 hours, an incubation time interval of 3 h was chosen for the next series of experi-

ments. The different concentrations for each cytokine were chosen according to previously pub-

lished data (van Crevel, 1999) and the present ELISA results.   

Whole blood from four healthy volunteers was treated with increasing concentrations of TNF-α (1-

10 ng/ml), IL-1β (1-10 ng/ml), IL-10 (0.5-50 ng/ml) or IFN-γ (1-20 ng/ml). Results showed that 

all studied cytokines have a dose dependent effect on NOP and N/OFQ mRNA expression (Figure 

12). According to these dose-response curves and the ELISA results, TNF-α 3 ng/ml, IL-1β pg/ml, 

IL-10 50 ng/ml and IFN-γ 10 ng/ml were used for the subsequent experiments. 

 

4.4.2 Time course of inflammatory cytokines effect on NOP and N/OFQ expression  
 

To further characterize the mediators involved in the regulation N/OFQ and NOP expression, the 

effects of the inflammatory cytokines TNF-α, IL-1β, IL-10 and IFN-γ was investigated. Culture 

periods of 0, 3, 6 and 24 h were chosen. Results showed that inflammatory cytokines also mod-

ulated expression of NOP and N/OFQ to a varying extent, but less potently than LPS (Figure 12).  

After stimulation with different inflammatory cytokines, comparison by Mann-Whitney U test 

showed a significant decrease of NOP expression for TNF-α (p<0.001), IL-10, IFN-γ (p<0.001) 

and IL-1β groups (p=0.03) when compared to the control (Figure 12A). 
 

For N/OFQ expression a trend to down-regulation was observed for all the groups treated with di-

verse inflammatory cytokines, however, level of significance was not met when compared to the 

control group (Figure 12B).  
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Figure 12 Time course of NOP (A) and N/OFQ (B) mRNA expression (mean±SEM) stimulated with LPS 10 

ng/ml (n=20), TNF-α 3 ng/ml (n=7), IL-1β 3 ng/ml (n=7), IL-10 50ng/ml (n=16) or IFN-γ 10 ng/ml (n=6) for 0, 

3, 6 and 24 h. 

 

AUCs of NOP and N/OFQ expression for the different treatment groups under stimulations for up 

to 24 h were calculated. Data are shown in Table 13. 
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Table 13 AUCs for the course of expression of NOP and N/OFQ (normalized ratio) in a 24 hours blood culture 

presented as means±SEM.  
 

Whole blood culture AUCa 

ORL expression

    pb AUCa 

N/OFQ expression 

      pb 

 
Without stimulation 

 
21.59±1.05 

  
      76.06±5.81 
 

 

LPS 10 ng/ml  6.26±0.78 <0.001 44.60±3.18 <0.001 

IL-10 50 ng/ml 11.98±1.39 <0.001 51.88±4.32 0.018 

TNF-α 3 ng/ml 10.58±0.88 0.002 48.38±8.50 n.s. 

IL-1 β 3 ng/ml 14.64±1.17 0.032 52.94±7.91 n.s. 

IFN-γ 10 ng/ml 11.17±0.59 0.002 71.59±8.89 n.s. 

 
 

 
 

a: AUC: Area under the time concentration curve,  b: p values from Mann-Whitney U test,  n.s.= no significant 
 

 

4.5 Blockade of TNF-α and IL-β partly prevented LPS effect on NOP and N/OFQ expression 
 

As the inhibition of NOP and N/OFQ expression was observed both with LPS and diverse cyto-

kines, we asked whether the suppression effect by LPS alone was mediated by endogenous cyto-

kines.  

To explore the functional relevance of cytokines in mediating the response of blood cells to LPS, 

we investigated the effect of anti-TNF-α mAb, anti-IL-β mAb, anti-IL-10 mAb and anti-IFN-γ on 

the expression of NOP and N/OFQ in the LPS stimulated whole blood.  

After a 3 h interval of incubation, the LPS induced deteriorated NOP expression could be partly 

antagonized by co-incubation of antibodies against TNF-α or IL-1β or both. The NOP expression 

of anti-TNF-α mAb, anti-IL-β mAb and the combination of these two antibodies was 1.6 

(p<0.001), 1.3 (p<0.01) and 1.7-fold (p<0.001) higher compared to that of the isotype control 

group (Figure 13A). 
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Figure 13 NOP (A) and N/OFQ (B) expression (mean±SEM) co-cultured with LPS 50 pg/ml, LPS + anti-TNF-α 

mAb 5 μg/ml, LPS + anti-IL-1β mAb 5 μg/ml, LPS + anti-TNF-α mAb 5 μg/ml + anti-IL-1β mAb 5 μg/ml, LPS 

+ isotype IgG1 5 μg/ml or without any additional substances (untreated control) for 3 h. n=10. Paired t-test, * 

p<0.01;  ** p<0.001. 
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However, these preventive effects were not observed at the later incubation time points of 6 and 24 

hours, respectively (data not shown). 

In contrast, for N/OFQ expression, there was only a very weak trend of inhibition of LPS effects at 

3 h, without any statistical significance (Figure 13B). For the 6 h and 24 h time points anti-TNF-α 

and anti-IL-1β mAbs did not display any antagonistic effects on LPS induced down-regulation of 

N/OFQ expression (data not shown).  

For both, anti-IL-10 mAb or anti-IFN-γ mAb, there was no antagonistic effect on LPS mediated 

down-regulation on NOP and N/OFQ expression observed at each respective incubation time point 

(data not shown). 
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5. Discussion 
 

The purpose of the present study was to evaluate the expression of NOP and N/OFQ mRNA in 

whole blood cultures under inflammatory conditions ex vivo and explore the possible mechanisms 

involved in the modulation of the NOP system. The present series of experiments demonstrated 

that both, NOP and N/OFQ expression is modulated by LPS as well as by TNF-α, IL-1β, IFN-γ 

and IL-10 in this experimental setting. Cytokines are one of the possible factors involved in the 

regulation on the NOP and N/OFQ expression in the LPS-challenged whole blood. 

 

 

5.1 N/OFQ-NOP system and inflammation 
 

Although NOP and N/OFQ are mainly distributed in brain and CNS, recent researches explored 

that the immune system is one of the principal locations aside from the nervous system. Moreover, 

it is reported that both genes are expressed in the central nervous system as well as in immune 

cells at similar levels. Therefore, it was suggested that the N/OFQ-NOP system may play an im-

portant role in the immune responses. Previous investigations revealed that peripheral blood mo-

nonuclear cells transcribe mRNA encoding NOP (Williams, 2007), and the receptor and its ligand 

are expressed and functional in cell of the immune system (Fiset, 2003). In addition, the NOP pro-

tein was detected on the cell surface of all types of white blood cells without any age or sex de-

pendent differences (Krüger, 2006). The ability of immune cells to produce N/OFQ (Fiset, 2003; 

Williams, 2008a) and the existence of NOP on circulating lymphocytes and monocytes (Wick, 

1995; Peluso, 1998; Waits, 2004) suggested an immunomodulatory role of this N/OFQ-NOP sys-

tem. Administration with N/OFQ dose-dependently induced polymorphonuclear chemotaxis to the 

injection site and human polymorphonuclear cells secreted N/OFQ rapidly when stimulated with 

exocytosis (Serhan, 2001), suggesting that the neuropeptide is stored in preformed vesicles and the 

presence of an intact N/OFQ-NOP circuit entirely within the immune system (Fiset, 2003). More-

over, high initial nociceptin concentrations in non-survivors of sepsis add further evidence to the 

hypothesis of a considerable up-regulation of the NOP system in inflammatory states (Williams, 

2008b). 
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5.2 Evaluating NOP and N/OFQ expression in whole blood cultures 
 

It was reported that N/OFQ is expressed in human PBMC (Williams 2008a) and the functional re-

levance of immunological N/OFQ is dependent on expression of functional NOP. Studies showed 

that NOP transcripts are distributed in human normal circulation monnocytes, lymphocytes, neu-

trophils and human lymphoid cell lines. NOP mRNA is expressed in both CD8+ T cells and CD4+ 

T cells isolated from human PBMC’s. Moreover, N/OFQ precursor mRNA has been localized to 

the CD19+
 B cell subset of unstimulated human peripheral blood lymphocytes and the CD3+ T cell 

following activation with PHA. 

Up to now, numerous studies focused on the regulation of inflammatory mediators on NOP or 

N/OFQ expression in nervous system, but seldom investigated the relevant of modulation of NOP 

and N/OFQ expression in immune responses in whole blood cultures. Examination of the time 

course of NOP and N/OFQ expression response to individual mediators, such as LPS or cytokines, 

has not previously been reported in whole blood. In the current series of experiments, LPS and di-

verse cytokines were studied in ex vivo whole blood cultures. Specifically, it was investigated 

whether cytokines induced by LPS stimulation accounted for variations in NOP and N/OFQ 

mRNA expression.  

Whole blood culture retains all blood components including serum and maintains the different cell 

types at their in vivo ratios with non-cellular components in their nature environment. Therefore, 

stimulating whole blood with inflammatory mediators can mimic the inflammatory condition that 

is closer to the pathophysiological phenomena of the individual. Furthermore, whole blood culture 

can be performed immediately after sampling and with small volumes of blood.  

The present results demonstrated that both of NOP and N/OFQ are constitutively detected in 

mRNA levels in the peripheral blood samples from all of the healthy volunteers. This is in accord 

with the previous study (Williams 2008a). The expression of NOP and N/OFQ was modulated in 

the whole blood under the inflammatory responses. The finding that the NOP and N/OFQ expres-

sion is modulated by inflammatory mediators in whole blood suggests that the N/OFQ-NOP sys-

tem is involved and might play a role under the inflammatory responses in the whole blood system. 
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5.3 LPS regulates NOP and N/OFQ expression 
 

LPS is a potent pro-inflammatory agent and its co-administration to whole blood cultures served as 

a model of a bacterial endotoxin challenge. It has been well documented that the LPS-stimulated 

whole blood system has been used widely as a model to investigate the production of inflammato-

ry mediators during sepsis (Foca, 1998). The cellular recognition of LPS is initiated by a cascade 

of three LPS receptors, LPS-binding protein (LBP), CD14 and the Toll-like receptor 4 

(TLR4)/MD-2 complex (Triantafilou, 2002). LBP is acutely induced in serum by infection and can 

extract LPS from the membranes of invading bacteria, or vesicles derived from them (Tobias, 

1997). LPS acts as the prototypical endotoxin because it binds the CD14/TLR4/MD2 receptor 

complex, which promotes the secretion of pro-inflammatory cytokines in many cell types, but es-

pecially in macrophages. In addition, LPS activates many transcription factors and induces many 

types of mediators, which also play an important role in the “LPS challenge”. It was revealed that 

transcription factors not only act downstream of signaling cascades related to biological stimuli, 

but also can be downstream of signaling cascades involved in environmental stimuli. 

According to our previous study and the current dose-effect dependency of LPS, the concentration 

10 ng/ml for LPS was used to evaluate the modulation of NOP and N/OFQ mRNA expression in 

response to inflammatory stimuli. The present results showed that both of the NOP and N/OFQ 

expression was strongly down-regulated by LPS in the whole blood, and it reached the maximum 

degree of inhibition after the blood cells were treated for 6 hours. In addition, LPS suppressed 

NOP more than N/OFQ when compared with the untreated blood samples at each incubating time 

point, respectively. Interestingly, it was observed that both of the NOP and N/OFQ expression in 

the samples without any treatment was also decreased during the 24 h incubation. And this self 

suppression was more obvious in the N/OFQ expression crossing the incubation. The possible ex-

planation for the phenomena might be that the metabolism of the cells in the whole blood system 

also effects the expression of the NOP and N/OFQ. NOP and N/OFQ mRNA expression is effected 

by multiple factors. In untreated whole blood samples the expression of the N/OFQ might depend 

more on cell conditions, such as the cell metabolism, cell density and cell quality etc., which may 

have also influenced N/OFQ mRNA levels and may be responsible for part of this observed varia-

bility. 

Inconsistent with our results in whole blood cultures, studies using astrocytes (Buzas, 2002) or 

sensory neurons culture (Acosta, 2008) showed that N/OFQ expression was up-regulated by treat-

ment with LPS. Furthermore, the MAP kinase pathways and NFκB were identified to be the two 
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major mechanisms by which LPS regulated the expression of N/OFQ in astrocytes. In addition, 

both of the NOP and N/OFQ mRNA expression was reported to be induced after mice thymus 

challenged with Staphylococcal enterotoxin A (SEA) in (Goldfarb, 2006) or human PBMC stimu-

lated with PHA (Wick, 1995).  

Interestingly, in contrast to the trend in thymus, the amount of splenic mRNA for NOP and N/OFQ 

was significantly reduced under the challenge of SEA in mice. The author suggested that the in-

verse relationship was due to variable demands imposed on the N/OFQ-NOP system or may reflect 

changes in the movement of lymphocytes. Moreover, using the severe stressor model rats, the in-

hibition of NOP mRNA transcripts in cerebral cortex, hippocampus and hypothalamus was re-

ported (Zhao, 2002). However, experimental conditions in these studies were different from ours 

and measurement of NOP and N/OFQ mRNA in peripheral whole blood were not performed. In 

summary, the regulation of NOP and N/OFQ by inflammatory mediators did not show consistent 

modes in different tissue or cell lines. Overall, data on NOP and N/OFQ are still inconsistent and 

the bidirectional results, mainly from animal studies and the different culture systems, make it dif-

ficult to interpret the present findings. 

 

 

5.4 Inflammatory cytokines regulate NOP and N/OFQ expression  
 

Cytokines are small proteins produced by most cells in the body, which possess multiple biologic 

activities that promote cell-cell interaction. Several lines of evidence suggested that cytokines play 

an important role in several physiological and pathological settings such as immunology, inflam-

mation and pain (Benveniste, 1992; Theoharides, 2004). Earlier studies showed that the elevated 

cytokines were associated with the hyperalgesic effects of nerve (Ignatowski, 1999) and inflamma-

tion (Souter, 2000; Sweitzer, 1999). Some pain conditions were suggested due to the increase of 

cytokines or the imbalance of the pro- and anti-inflammatory cytokines (Anderberg, 1998; Uçeyler, 

2008). Treatment with TNF-α (Watkins, 1995) and IL-1β (Oka, 1996) as well as administration 

with LPS (Maier, 1993), have all been shown to produce hyperalgesia. Moreover, IL-1 receptor 

antagonism attenuated the hyperalgesia induced by LPS (Maier, 1993; Oka, 1996), indicating that 

IL-1 may be one of the mediate factors in the LPS-induced hyperalgesia.  

To investigate the effects of cytokines on the expression of N/OFQ-NOP system in the whole 

blood cultures, blood cells was treated with diverse exogenous cytokines, such as TNF-α, IL-1β, 

IL-10 and IFN-γ, respectively. The results revealed that inflammatory cytokines caused a decrease 
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in expression of NOP and N/OFQ from the unstimulated whole blood to varying extent, but less 

potently than LPS.  

 

 

5.5 Cytokines involved in the regulation of N/OFQ-NOP system by LPS 
 

It was well known that challenge with LPS caused the induction of the inflammatory cytokines 

TNF-α, IL-1β, IL-10 and IFN-γ in whole blood. Exogenous cytokines modulated NOP and N/OFQ 

expression as well as LPS in whole blood culture. In addition, it was revealed that the activation of 

second messenger pathways by LPS and TNF-α and IL-1β is similar. Given that it is reasonable 

hypothesis whether the high levels of endogenous cytokines presented in the whole blood cultures 

challenged with LPS participate in the regulation of N/OFQ and NOP expression.  

There was considerable literature demonstrating that the level of circulating TNF increases rapidly 

in human subjects injected with endotoxin. TNF reaches peak elevation 60 to 90 minute following 

treatment, and the peak levels of IL-1β occur at s 3 to 4 hours (Cannon, 1990; Michie, 1988). Still 

other lines of evidence indicated that soluble mediators induced by LPS-stimulated macrophages 

are responsible for the lethal effect of LPS. Among these mediators TNF-α appears to be the cen-

tral agent, which is produced earlier than most other cytokines after LPS challenge and is secreted 

in large amounts by activated macrophages (Cope, 1998; Beutler, 1995). Furthermore, the IL-1 

levels are suppressed by anti-TNF therapy suggesting that IL-1 is under the control of TNF in 

some inflammatory model (Fong, 1989).  

Our ELISA results showed that both TNF-α and IL-1β are induced during the 3 h after whole 

blood is treated with LPS, whereas IL-10 is detected after 6 h incubation. This is in line with the 

previous studies (van Crevel, 1999). Moreover, the present intervention study further supported the 

evidence that cytokines are the mediate factors regulating the NOP expression involved in the 

LPS-stimulated whole blood system. The observation that neutralizing anti-TNF-α mAb and anti-

IL-1β mAb partly blockade the suppression effect of LPS on the NOP expression at the early cul-

ture time point (3 h) is consistent with the kinetics of the cytokine production induced by LPS. 

Taken all together, TNF-α and IL-1β are the two main cytokines induced by LPS in the whole 

blood system at the early inflammatory phase (3 h), which are seems to play a role in inhibiting the 

expression of NOP during this period. While after the whole blood was cultured for 6 h and 24 h, 

other inflammatory mediators and a large number of cytokines, including IL-10, IFN-γ and IL-6, 

are abundantly derived from the blood cells as well as the TNF-α and IL-1β. The net effect often 
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exceeds the additive effect of each cytokine, when kinds of cytokines are induced by the LPS in 

the whole blood system. Thus, the observed inhibition of the NOP expression is due to the com-

prehensive effects of all of the diverse cytokines and other inflammatory mediators in the blood at 

these time points (6 and 24 h). On the other hand, the partial blockade effects of anti-TNF-α mAb 

and anti-IL-1β mAb indicated that cytokines are only part of the factors participating in the mod-

ulation on the NOP expression in the LPS-induced whole blood.  

Interestingly, these neutralizing effects are not observed for the N/OFQ expression, except a weak 

trend of blockade effect was shown at the 3 h point. However, it didn’t reach the statistical signi-

ficance. According to the present results, the reason of this phenomenon is still not clear at this 

point. This possibly due to the small sample size enrolled in the current intervention study. In addi-

tion, the obvious self suppression of N/OFQ also makes it difficult to estimate its current interven-

tion results. Furthermore, there might be other dominant factors or/and more complex mechanisms 

involved in the regulation of N/OFQ expression in the LPS-induced whole blood system.  

 

 

5.6 Relationship between N/OFQ-NOP system and immune system 
 

It has been well documented that the N/OFQ-NOP system acts with important effects in brain and 

neuronal cells. Recently, numerous studies demonstrated that this system also played an important 

role in immune function.  

Reasearches suggested that N/OFQ modulates several immune parameters including proliferation 

of human PBMC (Peluso, 2001; Waits, 2004), monocyte (Trombella, 2005) and neutrophil chemo-

taxis (Serhan, 2001) and mast cell histamine release (Kimura, 2000). In addition, the functional 

capacity of NOP was demonstrated by the ability of nociceptin to induce the chemotaxis of im-

mune cells (Serhan, 2001; Trombella, 2005). A recent study demonstrated that expression of NOP 

may actually be greater abundance in cells of the immune system than opioid receptor (Pampusch, 

2000). Investigation into the N/OFQ-NOP system suggested a role for NOP as a down-regulator of 

immune function (Finley, 2007). These studies were based on the observed effects of exogenously 

applied N/OFQ, whereas the functional significance of endogenous N/OFQ in immune responses 

is less well understood.  

In the current study we addressed the regulation of the expression of endogenous N/OFQ and its 

receptor NOP in ex vivo whole blood cultures. The results suggested that inflammatory mediators, 

such LPS and cytokines, suppressed the expression of NOP and N/OFQ in the whole blood system. 
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LPS was reported to induce N/OFQ in rat astrocytes culture (Buzas, 2002) and sensory neurons 

(Acosta, 2008). Moreover, the pro-inflammatory cytokines, TNF-α and IL-1β both caused a 

marked increase in secretion of N/OFQ in splenocytes (Miller, 2007). The activation of the lym-

phocytes with PHA results in at least a 10-fold induction of the AT7-5EU message in human 

PBMC, suggesting that NOP may have an important immunological function with the (Wick, 

1995). Furthermore, Goldfarb and his co-works found that endogenous and exogenous N/OFQ 

modulate the cytokine response and mRNA levels of NOP and prepro-N/OFQ were altered in thy-

mus and spleen after SEA challenge (Goldfarb, 2006).  

These studies, combined with the results from the present investigations, suggest that the N/OFQ-

NOP system can influence immune function and is itself influenced by immune stimuli. The rela-

tionship between the N/OFQ-NOP system and the immune system is bidirectional. 
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6. Prospect 
 

The basic findings of NOP and N/OFQ mRNA in peripheral blood cells have previously been re-

ported. The present study is the first to report changes in the mRNA expression of N/OFQ and 

NOP as a result of an in vitro immune challenge. The current results indicate that cytokines are 

those immuno-modulatory factors that regulate the expression of NOP and N/OFQ in the LPS-

stimulated whole blood system. At the very least, this reinforces the candidacy of TNF-α and IL-

1β as the potential variables attenuating the expression of NOP and N/OFQ during the early in-

flammatory phase induced by LPS in whole blood. 

Our present findings suggest that inflammatory mediators regulate NOP and N/OFQ expression 

providing some support for the hypothesis that the N/OFQ-NOP system is involved in inflamma-

tion. Further work is required to identify to which extent NOP and N/OFQ are involved in the im-

mune function. Further potential mechanisms and pathways influencing the N/OFQ-NOP system 

via inflammatory mediators have to be investigated. Moreover, the relevance of these findings in 

immune-related diseases and inflammatory processes like sepsis has yet to be determined. 
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7. Summary 
 

The nociceptin receptor (NOP) is a member of G-protein-coupled receptor superfamily and pos-

sesses overall 60% homology with the classic opioid receptors. Nociceptin/orphanin FQ (N/OFQ), 

the endogenous ligand for NOP, is involved in a wide range of physiological responses. It shares 

sequence homology with classical opioid peptides but with a distinct pharmacological profile. 

Both NOP and N/OFQ were shown to be abundantly expressed in the brain and spinal cord, and 

may have important roles in broad physiological functions. The fact that N/OFQ and NOP are ex-

pressed in the central nervous system as well as in immune cells at similar levels indicates that the 

N/OFQ-NOP system may act as an important mediator of both nervous and immune responses in 

humans. It was reported that lipopolysaccharide (LPS) induced N/OFQ expression in the rat sen-

sory neurons and astrocytes cultures. Although numerous animal studies extensively investigated 

in the expression of NOP and N/OFQ in the nervous system, much less is known about changes of 

N/OFQ and its receptor expression in human blood cells under the inflammatory condition. 
 

In this experimental setting peripheral blood from 30 healthy volunteers was cultured for up to 24 

hours with LPS 10 ng/ml, tumor necrosis factor alpha (TNF-α) 3 ng/ml, interleukin-beta (IL-1β) 3 

ng/ml, interleukin-10 (IL-10) 50 ng/ml or interferon-gamma (IFN-γ) 10 ng/ml. NOP and N/OFQ 

mRNA levels were detected by quantitative RT-PCR. The supernatants of the whole blood culture 

were harvested and assayed for TNFα, IL-1β and IL-10 concentrations by Enzyme-linked immu-

nosorbent assay (ELISA). In addition, intervention studies with neutralizing antibodies to TNF-α, 

IL-β, IL-10 and IFN-γ were performed to investigate the mechanism possibly involved in the 

modulation of LPS on the N/OFQ-NOP system.  
 

Quantitative RT-PCR results showed that both NOP and N/OFQ were constitutively detected at the 

mRNA level in the peripheral blood. The expression of NOP and N/OFQ was strongly down-

regulated by LPS. Inflammatory cytokines, i.e. TNF-α, IL-β, IL-10 and IFN-γ, also attenuated 

NOP and N/OFQ mRNA levels to varying extents. Blockade of the LPS-induced TNF-α and IL-1β 

partially antagonized the down-regulating effects of LPS on NOP expression during the early in-

flammatory phase (3 h). 
 

The present results suggest that both, NOP and N/OFQ expression are modulated by inflammtory 

mediators. The effects of TNF- α and IL-1β might be related to the regulatory effect of LPS on 

NOP mRNA expression during the hyperinflammatory phase.  
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The mechanism that regulates the N/OFQ-NOP receptor system via cytokines and the role of this 

system in the regulation of immune response need to be further defined. 
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