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Chapter 1

Introduction

The design of VLSI logic circuits is fascinating in itself because of the enormous com-
plexity and multitude of structures packed on an area of five square centimeters or
smaller, and it is a fascinating field for applying mathematics. Millions of elementary
devices, called standard cells, and a few hundred or thousand more complex building
blocks (macros) have to be placed on a limited area, connected with each other, with
power supply, and with the “outside world” via primary inputs and outputs of the chip.
They all have to be synchronized with each other by feeding clock signals to each of
them, and optimized with respect to timing, power consumption and other metrics such
as manufacturing yield which can be significantly affected by how the devices and wires
connecting them are arranged in physical design.

Figure 1.1 shows an example of a standard cell which computes a four-way NAND
function f(a,b,c,d) :=a A b Ac Ad for Boolean input variables a, b, c, and d. Although
it is well known that the two-way NAND function is universal, i.e. all complex Boolean
functions can be expressed using only two-way NAND operators, standard cell libraries
used in practice comprise also the other common elementary functions such as AND,
OR, exclusive OR (evaluating to true iff exactly one input is true), NOR, NOT, etc.
There are also a number of other standard cells, including low-complexity composite
functions of these elementary Boolean functions, and latches for storing the result of a
computation performed in one clock cycle, allowing to use it as input for computations
in the next cycle. Each device comes in different discrete sizes, larger versions offering
a higher driving strength, and thus the ability to send the output signal across a longer
wire to its destination, at the cost of higher power consumption. Altogether, a standard
cell library in current technologies typically contains a few thousand different of such
device templates. A state-of-the-art chip can contain ten million and more instantiations
of them. If the design of such a chip was printed at the same scale as figure 1.1, it would
cover an area of 700 x 700 square meters, i.e. roughly the area of 70 soccer fields.

While the designs of the earliest chips in the 1960’s were composed by hand, subse-
quently complemented by simple automated solutions as the number of elements to be
arranged grew larger, mathematical methods began to become increasingly important to
find “good” solutions. Today, given the huge instance sizes, even the attempt to find a
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: A 4-way NAND circuit with four input pins a, b, ¢, and d (small yellow
areas) computing the function a Ab A c Ad (identifying variables and pins for simplic-
ity), whose resulting value is output at the large yellow pin. The orange solid and dotted
structures at the top and bottom constitute power supply, and the lined rectangles are
other blockages.

feasible solution often is hopeless without mathematics. Also with advanced combina-
torial optimization algorithms, the VLSI design problem is too complex to be solved in
one single step. It is therefore split up into design stages:

» Logic design translates the specification of the desired logic function to be per-
formed by a chip into a list of standard cells (and some complex macros) and for
each source pin, i.e. output pin of a device or primary input of the entire chip,
a list of sink pins, i.e. input pins of other devices or primary output pins of the
chip, to which its signal is to be communicated. This set of sink pins plus the
source pin is called a ner and is a statement that electrical equivalence of these
pins is required in the final solution. Logic design usually is not considered as
part of physical design, but there is no strict borderline as logic design does affect
physical design, and logic design optimizations can help to reach design closure,
see Werber [2007].

* Placement arranges the devices on the chip area. This step significantly affects the
timing of the chip, as placement imposes lower bounds on the lengths of the wires
by which the pins of each net can be connected. Also with respect to routability,
feasibility crucially depends on placement. Because placement is done early in
the design process, little information on timing and routability is available, so esti-
mations are often used to guide the placement process. See e.g. Brenner, Struzyna



and Vygen [2008] for a comprehensive overview and advanced placement algo-
rithms developed and implemented as part of BonnPlace®.

» Timing optimization is an important step to optimize the tradeoffs between power
and area consumption, and the cycle time that can be achieved. There are numer-
ous opportunities for optimization: The size of the standard cells used, and wire
widths selected to connect the pins of each net with each other, directly affect
timing. Simply put, larger versions of cells and wider wires yield a better timing,
but besides the higher power consumption of larger circuits, there is contention
on limited space which has to be shared between different nets. Further, buffering
of long connections is an important step to bridge long distances with acceptable
delay. See Held [2008] for a recent and comprehensive work on timing closure
(i.e. the process to achieve required timing specifications) in VLSI design.

* Clock tree synthesis organizes the synchronization between the devices on a chip.
As part of timing optimization, desired time windows for required arrival times at
each sink pin are computed, and based on these windows and the choices made
for device and wire sizes which determine the delay across a connection from
source to sink pins, also time windows during which each output pin of a latch (or
other storage element) must send its signal. The task of clock tree synthesis is to
distribute clock signals to all latches, controlling the time at which they send their
output signals and accept signals at their input pins, and to do this such that the
time windows prescribed by timing optimization are respected. Additional com-
plexity arises from the need of variation tolerance, 1i.e. as high fidelity to the time
windows as possible under variation of signal delays due to uncontrollable im-
precisions in the manufacturing process. See MaB3berg [2009] for an introduction
and algorithms applied in BonnClock®.

* Routing is the last major step in the VLSI design process. Although almost all
important decisions (placement of devices, choice of device and wire sizes) have
been made already in previous design stages, a good routing solution is needed in
order to realize the connection of each net with electrical characteristics that do
not deviate too much from those prospected during timing optimization. Particu-
larly, an unnecessarily long detour in the wiring of a single out of ten million nets
can render the design unusable. Apart from connecting the pins of each net with
each other, pins and wires of different nets must be disjoint, and in fact even keep
a certain minimum distance from each other, to avoid short-circuits. Also, the
way in which nets are routed affects global objectives such as power consumption
and manufacturing yield. As the focus of this thesis is routing, we go further into
details below.

We also refer to Korte, Rautenbach and Vygen [2007] who show how combinato-
rial optimization algorithms are utilized in chip design by the BonnTools program suite
which comprises programs for each of the design steps mentioned above. The book
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edited by Alpert, Mehta and Sapatnekar [2009] provides a general and up-to-date re-
source on state-of-the-art algorithms and methods applied to VLSI physical design. The
short descriptions of each of the major design stages given above make clear that there
are various interdependencies among them. In fact, they often cannot be done sequen-
tially, but have to be executed in a feedback loop. E. g., a placement might turn out to be
unroutable in the last step, meaning that it is impossible to find a connection for each net
meeting the timing constraints, or finding a connection for each net at all. In such cases
designers have to iterate, and much effort is spent in earlier steps on good estimations of
achievable results in later steps to avoid this as much as possible. Targeting the interde-
pendency between placement and routing, elaborate congestion estimation techniques
are employed, see e.g. Shelar and Saxena [2009], Brenner and Rohe [2002], and Menge
[2008].

To give an example of a routing problem, let us take one step back and abstract
the geometric shapes of pins to points or vertices in a two-dimensional grid graph as
shown in figure 1.2 a). Points of the same color (red, green or blue) define the pins of
a net that have to be connected with each other using the edges of the grid graph. A
connection for one net, such as the one shown in b) for the red net, is called a Steiner
tree, and in this example it is a shortest one. However, choosing this solution for the
red net makes the green and blue nets unroutable because they have pins on either side
of the vertical red wire, and Steiner trees for different nets must be disjoint. A feasible
solution to the routing problem is thus possible only with a detour in the routing of
the red net, as shown in c¢). In this solution, the green and blue net are both routed
shortest possible. This solution however is not globally optimum: Figure 1.2 d) shows a
solution with shorter fofal wiring length, which indeed is an optimum solution and also
has the advantage of a lower detour in the red net. The example demonstrates that some
coordination has to take place between the nets not only to find a globally optimum
solution, but even a feasible solution.

Except for very small instances, also the routing problem, even though only a part
of the overall VLSI design problem, is too complex to be solved in a single step, for a
number of reasons:

1. At the outset, even if extremely simplified as in the example given in figure 1.2,
it contains many elementary combinatorial optimization problems such as finding
a minimum length Steiner tree or a vertex-disjoint packing of paths, which are
NP-hard already in their simplest forms, see e.g. Korte and Vygen [2008].

2. Increasingly intricate design rules which enforce or forbid certain geometric metal
shape configurations to ensure manufacturability add substantially to the com-
plexity which is inherent already in abstract formulations of the routing problem.
This is especially true for those parts of the wiring that access pins because of the
irregular geometric structures exhibited by standard cell libraries used in industry.
Cho et al. [2009b] and Pan et al. [2008], respectively, provide a comprehensive
overview of manufacturability-related constraints.
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Figure 1.2: Example of a small routing instance: The task is to find three vertex disjoint
Steiner trees in a two-dimensional grid graph connecting all red, green and blue vertices,
respectively (see a)). If, as in b), the red Steiner tree is chosen shortest possible, a
feasible solution cannot be found for the green and blue terminals. Figure c) shows that
with a suboptimal red Steiner tree a feasible solution with total length (here: number
of edges) 31 is possible. In this solution the green and blue Steiner trees are optimal.
A globally optimum solution (shown in d)) however requires a detour also in the green
Steiner tree. The total number of edges in this solution is 29.
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3. At the same time it becomes more important to satisfy timing constraints, as elec-
trical characteristics of wires scale significantly worse than transistors across suc-
cessive process generations, and thus the relative contribution of wiring delay to
overall latch-to-latch delay continuously grows with shrinking feature sizes.

4. Of course also some objective is to be optimized in routing, and the objectives
that are of practical interest — manufacturing yield and power consumption —
make the VLSI routing problem a non-linear optimization problem.

5. Finally, instance sizes are enormous: On the largest chips today ten million and
more Steiner trees have to be packed within eleven wiring layers of about 22 x 22
mm? in size. The track graph which we define in chapter 2 as a discretized and
thus simplified representation of routing space, and in which the Steiner trees
are to be disjointly embedded, comprises more than 100 billion vertices on such

designs.

Although VLSI routing is a most challenging problem, it can be tackled impressively
well in practice, and mathematics contributes substantially to this. One factor that eases
the routing problem is that design rules take effect only on a rather local scale, while
timing constraints and the value of the objective to be optimized depend rather on global
decisions. This suggests a decoupling into a global and a detailed routing step: In
global routing, only an approximate wiring is generated, defining corridors for each net
to which search space is restricted in detailed routing. The basic idea is that detailed
routing performs a legalization of the global routing solution w.r.t. those constraints that
have been neglected during global routing, and if doing this step carefully, does not
significantly degrade timing or the overall objective that has been (nearly) optimized in
global routing.

Remark. Detailed routing can indeed adversely affect timing even if all connections run
inside the corridors prescribed by global routing, and all timing constraints have been
met in global routing: One example are connections of chains of pins done entirely
on one of the lowest wiring layers (saving vias and wiring length because the pins can
be used as “bridges” in most cases), instead of connecting all of them to a backbone
route running on a higher routing layer. This costs routing space, but can significantly
reduce RC delay because all source-sink paths have high-resistive elements (vias and
wire segments on lower layers) almost only close to the sink (see e.g. Hu, Robins and
Sze [2009] for a survey on timing-driven interconnect synthesis).

In this partitioning of the routing task into global and detailed routing, global rout-
ing performs a coordination among all nets to find a feasible, and ideally, a globally
optimum or close-to-optimum solution. Detailed routing performs only a coordination
among nets sharing a corridor, which significantly reduces complexity.

While partitioning into global and detailed routing is very common, there are ap-
proaches which add further steps: First, global routing sometimes is done hierarchically
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on a series of decreasingly coarsened instances of the problem. The purpose of this ap-
proach, first proposed by Burstein and Pelavin [1983], is to control runtime: Wider cor-
ridors increase detailed routing search space and runtime (while potentially decreasing
accuracy relative to the computed global routing solution), but narrower corridors in-
crease global routing runtime. Performing a coarse global routing followed by a second
global routing step restricted to corridors obtained from the coarser level can overcome
these problems. Theoretically, such a series of routing steps could result in a detailed
routing solution in the end, but in practice a — more or less sharp — line can be drawn
between coarsening stages in which most design rules can be neglected, and where they
become critical.

Second, so-called track routers solve the ordering problem of wires within a corridor
obtained from global routing, which means that they have to deal with local scale effects
induced by design rules, but only a limited subset of these because they do not handle pin
access. Although a (very simple) track routing step sometimes is done mainly to save
runtime, considering several nets at once in principle offers potential for optimization
which a detailed router that processes nets sequentially does not have. As realizing
the objective value achieved in global routing, and ensuring that timing constraints are
still met after detailed routing legalization, depends on the arrangement of wires within
corridors, such a step can help to narrow the gap between global and detailed routing
solution quality. Cho et al. [2007], for example, present a track routing approach for
optimizing manufacturing yield.

Apart from track routing, there are more methods to work on groups of nets in
detailed routing: First, there are iterative ripup-and-reroute approaches (see e.g. Salowe
[2009] for a survey) which remove already routed wires of one or more nets to free
up space for routing another net, and try to reroute the connections which have been
“ripped up” in a different way. To do so, in turn other connections might be ripped
up. In practice, such heuristical methods work well for resolving most local conflicts.
Grotschel, Martin and Weismantel [1996b], on the other hand, present a cutting plane
algorithm for packing Steiner trees which might help to resolve very difficult conflicts.
This approach, like ripup-and-reroute and track routing, is usable however only on rather
small groups of nets.

1.1 BonnRoute®

BonnRoute® is the routing tool in the BonnTools program suite and contains a global
routing and a detailed routing module. Earlier versions of BonnRoute® contained a
global router based on a linear programming formulation of a Steiner tree packing prob-
lem with relaxed integrality constraints, developed by Albrecht [2001a,b] and later ex-
tended by Miiller [2006a] based on the work of Vygen [2004] to take linearized spacing
dependent costs into account. This version has been recently replaced by an implemen-
tation of a new convex min-max resource sharing algorithm which can (approximately)
find a provably optimum solution with respect to the real non-linear objective functions
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defined by manufacturing yield and power consumption. Moreover, as running time is
an important metric for a router, the new algorithm has been parallelized very efficiently.
The new global router was developed in a joint project with IBM and Magma Design
Automation, Inc. It is used today at IBM to route most current chip designs, and has
become part of Magma’s tool suite.

In detailed routing, BonnRoute® takes a sequential approach, i.e. one connection is
routed after another. Routing space is represented by an efficient interval data structure
that is decribed in chapter 2, and an extremely fast interval-based Dijkstra algorithm
due to Hetzel [1998] and subsequently generalized by Peyer, Rautenbach and Vygen
[2006] and Humpola [2009] is employed for sequentially routing all connections, using
a ripup-and-reroute approach to resolve local conflicts. Also the detailed routing module
of BonnRoute® looks back on a success story of hundreds of chip designs routed with it
at IBM.

BonnRoute® does not contain a track routing module. Schulte [2006] showed that
yield optimization by a post-routing wire spreading approach gives very good results
in practice. As the prime objective of any router is design closure, i.e. getting all nets
routed without violating design rule or timing constraints, targeting a major step in the
routing flow towards a single objective such as manufacturing yield (which certainly is
secondary relative to design closure) is not a viable approach in practice. Routing nets
individually usually offers the advantage that some optimality guarantee on the solution
quality for a single net can be given. The interval-based Dijkstra algorithm employed
in BonnRoute® provably finds shortest paths and provides a significant advantage over
other routers w.r.t. total wiring length and via count.

The detailed routing engine of BonnRoute® was parallelized by Rohe [2001], dis-
tributing routing tasks over different client machines and communicating over a network
using a message passing protocol. A master process was used to coordinate the work
and accept or reject solutions returned by clients depending on if they contained con-
flicts among each other.

A more efficient parallelization approach, both with respect to memory consumption
and parallelization speedup, was implemented by Panten [2005] and later enhanced
by Ziihlke [2008]. This method is based on area partitioning and the shared-memory
paradigm, i.e. the routing tasks are not distributed across different machines. It partitions
the chip area into subareas, one for each processor that is used, and lets each processor
sequentially route all connections that can be made without leaving the subarea that it
has been assigned. Nets with pins in different subareas are not (completely) routed, so
BonnRoute® iteratively chooses new partitionings to close connections that could not be
done in the earlier partitionings. With a small number of different partitionings, almost
all nets can be routed, and a final step using just one processor on the whole chip area is
done to route a very small number of connections that could not be done within any of
the subareas before. This approach scales reasonably well up to 8 processors on current
designs.
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1.2 Outline

The main focus of this thesis is on the resource sharing aspects inherent in the VLSI
routing problem, and on fast algorithms and data structures that allow instances with
millions of nets to be routed in acceptable time.

We begin with efficient data structures for modeling routing space in chapter 2. As
geometries of shapes (see figure 1.1) have become more irregular compared to “grid-
ded” technologies a few years ago, efficient representation of routing space, both with
respect to memory consumption and query time, becomes more involved. We develop
a space-efficient spatial data structure, called fast-grid, that stores precomputed and
continuously updated information to enable very fast queries on legality of a wire of a
certain type on an edge of the track graph which we define as a discretized represen-
tation of routing space. This data structure is queried by the interval-based path search
algorithm used in BonnRoute®, reducing path search runtime by a factor of more than
5. The routing tracks defining the track graph need not be placed at uniform distances to
each other, but should align well with blockage structures on the chip, such that total us-
able track length is maximized, making it easier to find feasible solutions to the Steiner
tree packing problem restricted to the discrete track graph. We formulate this problem
as an abstract interval covering problem and show that it can be solved efficiently.

In chapter 3 we discuss the convex MIN-MAX RESOURCE SHARING PROBLEM,
which is a generalization of linear fractional packing problems, and present a simple
fully polynomial approximation scheme to (approximately) minimize the maximum
relative resource utilization, also called congestion. Our algorithm makes use of the
block-angular structure of many resource sharing algorithms, using block solver sub-
routines to find (1 + &)-optimum solutions to subproblems defined by each block, for
some & > 0, and provably finds an (1 + &) + €)-optimal solution to the overall resource
sharing problem, for any value of an approximation parameter € > 0. The algorithm
allows to use weak block solvers which do not provide an approximation guarantee for
arbitrarily small values of &y, and achieves the best currently known runtime in this case.
Further, we present a shared-memory-parallel variant of our algorithm which achieves
very good parallelization speedup because it does not use mutex locking for synchro-
nization between concurrent threads. The MIN-MAX RESOURCE SHARING PROBLEM
is formulated as an optimization problem over conex sets. In many applications, includ-
ing global routing, one is interested in integral solutions, i.e. solutions from discrete
subsets. At the end of chapter 3, we show how to obtain an integral solution from a
fractional solution by randomized rounding without increasing maximum congestion
too much.

The algorithm presented in chapter 3 is applied to the GLOBAL ROUTING PROBLEM
in chapter 4. We show how the important objectives in VLSI routing, manufacturing
yield and power consumption, can be optimized by formulating the GLOBAL ROUTING
PROBLEM as a MIN-MAX RESOURCE SHARING PROBLEM, at the same time obeying
timing constraints on critical paths of the design. These constraints and objectives de-
pend nonlinearly on wire-to-wire spacing, and BonnRoute® is the first global router to
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directly optimize over this model without linearization. Moreover, we present a block
solver which, based on dynamic programming, can be used to route nets with certain
topology restrictions and can be used for port assignment in hierarchical design scenar-
ios. Finally, we discuss implementation details and present experimental results, prov-
ing the efficiency of our algorithm in practice and showing yield-, power- and wiring
length optimization results on state-of-the art industrial chips.



Chapter 2

Modeling Routing Space

In this chapter we introduce a simple model of the routing space and the design rules that
the metal shapes implementing a chip — especially wires generated by a routing tool
— have to respect. We focus on minimum distance rules that can be viewed as packing
constraints. We do not cover rules here that govern shapes of a single net, such as short
edge rules, via reliability rules, minimum area rules, or connectivity rules that state
conditions under which a net is considered electrically connected. See e.g. Peyer [2007]
for a survey of these and other so-called same net rules, and the LEF/DEF Language
Reference [2007] for a formal standard widely used in industry for specifying design
rules to routing tools. We just remark that achieving correctness of a routing solution
w.r.t. same net rules, although non-trivial, is almost always possible by rather local
modifications to the routing in practice if the underlying Steiner tree packing problem
has been solved and some simple heuristics have been applied that help to avoid most
same net rule violations.

Because of the complexity and enormous problem sizes faced in VLSI routing,
BonnRoute® restricts wires to run on predefined tracks located at a certain minimum
distance to each other. Only for connecting pins that cannot be accessed in this way
short wire segments are used that do not run on a track. Although theoretically this
restricts the solution space, it can be justified in practice for current technologies: With
almost no routability degradation and considerably reduced complexity, many design
rule violations are avoided. See chapter 2.5 for a discussion of key properties of current
technologies supporting this approach, and of challenges that might be faced in future
technologies if these properties do not continue to hold.

BonnRoute® uses a spatial data structure, called shape grid, to query objects like
pins, wires or blockages in the proximity of a given location on a chip, and to relate them
to the nets they belong to, if any. It is used to find out if a wire can be put somewhere
without violating minimum distance rules to already existing objects, or if this is not
the case, to determine if existing wires can be removed such that the answer becomes
positive. The shape grid consumes a large part of the memory used by BonnRoute®,
so memory efficiency plays a key role. We show how the current implementation of
the shape grid can be generalized to support irregular track-to-track distances without

11
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sacrificing memory efficiency.

For querying legality of wires to be routed on the predefined tracks, we develop
a second data structure, called fast grid, in section 2.3 that stores precomputed and
continuously updated legality information for the most frequent wire types. We show
experimental results that demonstrate considerable runtime reductions achieved when
employing this data structure in BonnRoute®. Finally, in section 2.4 we propose a
method to determine routing tracks such that the limited space available for routing
is used efficiently.

2.1 Basic Definitions

Definition 2.1. The base coordinate system used in BonnRoute® is a three-dimensional
cartesian coordinate system. The chip area is an axis-parallel cuboid

A= {(x,y,p) ez’ * Xmin < X < Xmaxs Ymin <Y < Ymax, 0 < p < pmax}v

in the base coordinate system with Xmin,Xmax, Ymins Ymax € Z and pmax € 2Z such that
A#£D. Let P:=10,..., pmax | the set of plane numbers. For each p € P, we refer to the
number p and to the set A, = {(x,y,z) € A:z= p} as plane p. If p is even, we call
A, a wiring plane and synonymously refer to it as layer p/2, otherwise we call it a via
plane.

Two wiring planes p, p’ € P are called neighbouring if |p — p'| = 2.

All objects on the chip, e.g. pins, wires or blockages, will have their borders on
integral coordinates in the base coordinate system.

On each layer, with very few exceptions wires run into the same direction, called
preferred direction of that layer. We restrict ourselves to Manhattan routing, meaning
that in each layer wires run parallel to the x- or y-axis. This still is common design
practice today, although there are design systems that allow wires running in directions
that are integer multiples of 45 degrees. Proposed as early as 1968 by Heiss [1968]
for printed circuit boards, this “diagonal routing” approach was later considered also
for VLSI chips, e.g. by Lodi [1988], Chiang and Sarrafzadeh [1991], Natarajan et al.
[1992] and Ho et al. [2005], and termed “X architecture” by Teig [2002]. In order to
make full use of the potential for wire length, power and die size reduction offered by
this approach, of course the placement has to be adapted, too. Teig et al. [2009] describe
a design system, including placement and routing, for the X Architecture. Diagonal
routing however must be supported not only by the placement and routing tools, but also
by many other tools in the tool chain, also in manufacturing. The practical difficulties
entailed in this are one of the main reasons why Manhattan routing is still prevalent
today. Analogously to the X Architure, a “Y architecture” (using preferred directions
that are integer multiples of 60 degrees) has been proposed (Chen et al. [2003a,b]), but
was adopted in practice even less than the X architecture.
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We assume that preferred directions alternate between neighbouring layers, which
is rather a requirement to than a limitation of our router. The main practical rationale
behind this is to avoid crosstalk problems between wires running close to each other in
neighbouring layers for a long distance. Cross-talk sensitive wires can be shielded from
neighbouring wires in the same layer by metal shapes connected to ground voltage, but
this is not possible between different layers. We call a plane horizontal if the preferred
direction is parallel to the x-axis, and vertical otherwise, and assume to have at least two
wiring planes. We start with a few convenient definitions:

Definition 2.2. For any a := (a1,az,a3) € R, let x(a) := a1, y(a) := ay and z(a) = a3.
For any b := (b1,by) € R?, let x(b) := by and y(b) := b,.
For ACR? or ACR, let x(A) := {x(a) : a € A}, and y(A) := {y(a) : a € A}.
Definition 2.3. Let A C R3 and B,C C R2. We define
i) A+B:={(x(a) +x(b),y(a) +y(b),z(a)) :a € A,b € B}
ii) —B:={—b:bec B}
iii) A—B:= A+ (—B)
v) C+B:={b+c:beB,ccC}
v) C—B:=C+(—B)

Definition 2.4. For any F CR3 or F C R?, let |F|, := sup{|x(a) —x(b)| : a,b € F} and
|F|y :=sup{|y(a) —y(b)| :a,b € F}. IfF is a closed set, F° denotes the interior of F.

Definition 2.5. For any compact A C R¥, k € N, let bbox(A) be the minimal axis-parallel
cuboid containing A, called bounding box of A.

Definition 2.6. A shape on plane p, p € P, is a pair (R, c), where R := [x1,x2] X [y1,¥2] X
{p} with x; <xp, y1 <yz and x1,x2,y1,y2 € Z is an axis-parallel rectangle intersecting
A, and ¢ € N is called a shape class.

For a shape (R, c) and an axis-parallel rectangle R’ we define the intersection (R,c)N
R := (RNR',c), which is again a shape. For convenience, we define area(S) := R for a
shape S = (R,c), area(S) := Ugcsarea(S) for a set S of shapes, and area(A) := A for
any A C R3.

Naturally, we say that a shape, shape set or set of points A intersects or covers
another shape, shape set or set of points B if area(A) intersects or covers area(B).
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2.1.1 Wire and Via Representation

Definition 2.7. A routing shape model is a pair (R,c), where R = () or R is an axis-
parallel rectangle in R* with (0,0) € R and integral boundary coordinates, and ¢ € N is
a shape class. If R =), the routing shape model is called empty. For convenience, we
define area(S) := R for a routing shape model S = (R, c).

A wire model is a routing shape model, and a via model is a triple (b, m,t) of routing
shape models, where b is called bottom pad model, m via middle model and t top pad
model.

A wire type t is a function that maps each even number in P to a wire model and
each odd number in P to a via model. A wire type t is called undefined on plane p
(p € P) ift(p) is or contains, respectively, an empty routing shape model.

Let T be the set of all wire types. For a plane p € P, the set M, of routing shape
models of plane p is

o the set of non-empty wire models t(p), bottom pad models int(p+1) (if p < Pmax)s
and top pad models int(p—1) (if p > 0) fort € T, if p is a wiring plane

* the set of non-empty via middle models in t(p) fort € T, if p is a via plane

Electrical connections in a net are encoded by one-dimensional line segments, also
called stick figures, with an associated wire type:

Definition 2.8. A wire segment is a pair (w,t), where w is a (possibly zero-dimensional)
axis-parallel line segment contained in a plane A,,p € P, and t is a wire type which is
not undefined on plane p. A via is a pair (v,t), where v is a line segment parallel to the
z axis with endpoints in A, and A, for some 0 < p <= pmax —2, and t is a wire type
which is not undefined on plane p+ 1.

The wire shape of, or induced by a wire segment (w,t) in plane p € P is the shape
(w+R,c) if t(p) = (Rc).

The via shapes of, or induced by a via (v,t) connecting planes p and p+2, 0 <
P <= Pmax — 2, are the shapes

{((vNAp) +Rp,cp), (VN Api1) +Rinyem) , (VN Api2) +Reycr)

called bottom, middle and top shape, respectively, if t(p+ 1) = ((Rp,¢p), (Rm,Cm),
(R, ct)). See figure 2.1 for an illustration.

Remark. These definitions require stick figures to run inside the wire or via shapes
they define. We make use of this property later in Lemma 2.20 and section 2.3.1 for
efficiency reasons, but the strict requirement that (0,0) € R for each non-empty routing
shape model (R,c) can actually be relaxed to the requirement that R intersects the x-
or y-axis, respectively, depending on the preferred direction of the plane on which a
routing shape model (R,c) is used. If neither the x- nor the y-axis is intersected, this
only affects efficiency, but not correctness of BonnRoute®.
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a) Stick figure b) Physical shapes ¢) Shapes as modeled
representation in BonnRoute®

Figure 2.1: Stick figure representation, physical shapes and shapes modeled as in
BonnRoute® for two wire segments (red) and a via (blue)

Figure 2.2: Small part of a real chip viewed by an electron microscope (artificially
colored).

We remark that the three-dimensional shapes shown in figure 2.1 b) are still an ide-
alization of the actually produced shapes. In particular, shapes cannot be manufactured
with sharp corners as in the idealized picture. Figure 2.2 shows a photography of a small
part of a real chip taken by an electron microscope.

The stick figure representation is convenient because wire and via models are defined
such that sufficient electrical conductance among wire and via shapes is guaranteed
if the corresponding wire segments and vias are connected. Wire shapes sometimes
are abstractions in the sense that they are not fully metallized, but contain electrically
disjoint parts like ground shielding. In this case ensuring electrical correctness by the
connectivity of the stick figure representation keeps even more complexity out of the
router.
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2.1.2 Minimum Distance Rules

Definition 2.9. A minimum distance rule is a triple (c1,cp,D), where c1,c3 € N are
shape classes, and D is a non-empty closed set in R? with (A1x,A2y) € D for each
(x,y) €Dand 0 < A1,2, < 1.

Two shapes (Ry,7Y1) and (Ry,7») respect a minimum distance rule r := (cy, ¢, D) iff
either (c1,¢2) # (11,72) or (R1 +D)NRS = (). Otherwise we say that they violate rule r.

X D X
a) Euclidean distance b) Liax distance
y y
D
X X
¢) hor./ver. distance d) Typical minimum

distance rule for via and
wide metal shapes

Figure 2.3: Examples of minimum distance rules

Figure 2.3 shows examples of minimum distance rules. The ordering of the two
shape classes in the definition of a minimum distance rule is important for encoding
direction-dependent minimum distance requirements. However, one minimum distance
rule per unordered pair of shape classes suffices:

Proposition 2.10. Let ry := (c1,c2,D) and ry := (c1,c¢2,D") be minimum distance rules.
Two shapes (R1,c1) and (R, c;) respect ry and ry if and only if they respect the minimum
distance rule (c1,co,DUD’). Further, (Ry,c1) and (Ra,c3) respect ry if and only if they
respect the minimum distance rule (cy,c1,—D). a

We assume that for any pair {c;,c,} of shape classes that can occur in shapes on
plane p (p € P) there is a minimum distance rule (cy,cz,D) that prohibits intersection
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of the two shapes (which is not applied, however, if both shapes belong to the same net).
By proposition 2.10 we can assume w.l.o.g. that there is exactly one such rule, but for
convenience we assume that for each rule (cy,cy,D) we also have the rule (cz,c1,—D).

Remark. Minimum distance rules can be considerably more complex than introduced
in definition 2.9. Notably, the minimum distance between two shapes might not only
depend on direction (which is covered by definition 2.9), but also on the presence of
other objects of a certain type within the proximity of one or both shapes, see e.g. Cho
et al. [2009b]. However, practically all of these complex rules so far can be successfully
handled in BonnRoute® by a skillful combination of

1) allowing some rarely occuring types of errors which are corrected by a post-
processing step, and

2) introducing (small) safety margins in the minimum distance rules.

This is possible because combinations of shapes that violate only complex rules, but
none of the simple minimum distance rules as introduced in this section do not occur
frequently. If this assumption should turn out to be unsustainable in future technologies,
the fast grid data structure presented in section 2.3 offers the opportunity to handle more
complex rules in BonnRoute® without too much additional runtime.

In the following, let p € P. Let B, be a set of shapes intersecting A, called block-
ages. Blockages are given as input to the router, and the router cannot modify them.
Besides structures for power supply, abstractions of complex circuits (called macros)
used as building blocks of the chip, and areas reserved by designers for various reasons,
the blockages also comprise the set Bgm C B, of all pin shapes.

At any time, W, denotes the set of all wire and via shapes on plane p, i.e. shapes
induced on plane p by all wire segments and vias, given as input or generated by the
router. For convenience we assume that each point outside A is covered by a blockage
shape, so all wire and via shapes are forced to be contained in 4. Each wire, via or
pin shape belongs to exactly one net. As stated at the outset, we do not consider rules
between shapes of the same net. Further, since blockages cannot be modified by the
router, we check minimum distance rules between two shapes only if at least one of
them is induced by some via or wire segment.

Because minimum distance requirements depend on metal width, rules are extended
to sets of shapes as follows: Let {(wf,c]),..., (wF,cf)} CNXN,keN,0<wi <...<
wh, and w? > max{Xmax — Xmin,Ymax — Ymin }. Let Q be the set of shapes (S,c;) with S
being a maximal axis-parallel square covered by W, U BY", and i the smallest number
such that w; is greater than or equal to the width of S. Analogously, let Q' be the set of
shapes (8',¢;) with S’ being a maximal axis-parallel square covered by B,, and i’ the
smallest number such that wy is greater than or equal to the width of S’. For simplicity,
we assume here that all shapes are fully metallized.
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Definition 2.11. Let R be a set of minimum distance rules. Then with the above notation
we say that W), is legal w.r.t. (B,,R) iff each sy € W, U Q and s, € W,UQUB,U Q'
that are not intersected by shapes belonging to the same net respect all rules in R.

We can safely assume that R and B), are given such that if s € W, U Q and s, €
Q'\ B, violate a rule r € R, there is also an s, € I8, such that sy, s violate arule /' € R,
for otherwise one can efficiently construct B;, and R’ with this property and

Wylegal w.rt. (B,,R) < W,legal w.r.t. (B;,,R/).

This means that it suffices to consider single blockage shapes in B, \Bgm when checking
minimum distance rules. However, groups of pin shapes and/or shapes induced by vias
or wire segments might be involved in a rule violation while this is not the case for
any individual shape among them. In practice, this is mainly a concern in pin access,
and can be avoided in most cases. In the following we therefore restrict ourselves to
checking minimum distance rules only for pairs of shapes and, assuming a fixed set R
of rules given as input, define legality of wire or via shapes accordingly:

Definition 2.12. A wire or via shape s on plane p (p € P) is called legal (w.r.t. the
already existing shapes (W,,,Bp)) if there exists no s, € W, U B, not belonging to the
same net such that any minimum distance rule r € R is violated by s| and s;.

2.1.3 Routing Tracks and Track Graph

To limit the number of routing tracks in a wiring plane, we will require them to run at
a certain minimum distance from each other which we define as the minimum pitch of
this plane:

Definition 2.13. Let p € P be a wiring plane and T, C T those wire types t € T with
t(p) non-empty. If p is horizontal, we define

Ap(t,1) := [max{y: (x,y) € Ry —R, +D}],

for (t1,12) € T, x T, where t|(p) = (Ry,c1), t2(p) = (R2,¢2) and (c1,¢2,D) € R is the
minimum distance rule to be respected between these wire models. We define Ap(t1,t2)
analogously if p is vertical.
The minimum pitch of plane p is
AT — min A, (¢, 1
14 1T, P( ) )7

i.e. the minimum distance orthogonal to the preferred direction at which any two wire
segments with the same wire type can run without violating minimum distance rules.

Remark. Note that wire segments with different wire types can be closer to each other
than the minimum pitch.
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Definition 2.14. Let p € P. We define

w), := min{|area(m)|, :m € M, UB,}

as the minimum extension of any possible shape on plane p in x-direction, and

dy, := min{(gyl?é(l)x: (Ri,c1),(Ra,c2) € MpUB,,(c1,¢2,D) € R}

as the minimum distance in x-direction required between any two possible shapes on
plane p. wf, and dly, are defined analogously.

Remark. In practice Aglin = w), +d), on horizontal and A?m = wy, +d,, on vertical wiring
planes p € P, respectively. The wire type ¢ € 7, attaining the minimum pitch of plane
p in practice is used for almost all wires in current technologies; see also the discussion
in chapter 2.5.

Now we define a track coordinate system on each plane. Let p € P. First assume that
p is a horizontal wiring plane. Let T, = {11, ... ,t|Tp|} be the coordinates of horizontal
tracks on which wires shall run, with ymin <#1 < ... <f1,| < ymax. For convenience
we assume two artificial tracks 7 < ymin and 7|7, |11 > ymax that are not used for routing.
We require Ag‘in <ti—ti1 < cAglin for 1 <i < |T,|+ 1 and some constant ¢ > 1. In
most cases, neighbouring tracks will have distance Agli“ to each other, but sometimes
it may be desirable to align tracks with blockage structures extending for long distance
in preferred direction, like power rails or large macros. Track coordinates are either
specified as input to the router, or determined during initialization, e.g. as described in
section 2.4.

For convenience we define T,y := () for p’ ¢ P. As p is a wiring plane and has at
least one neighbouring wiring plane, we can assume that Q, := T,,,, UT), > is non-
empty and call this set the set of points of interest on plane p. Let Q) = {q1,...,q0,|}
with g1 < ... < g|p,|- We call pairs of indices (i, j) with 1 <i <|[T},| and 1 < j <[Q,|
track coordinates on plane p. We associate track coordinates with the base coordinates
of the corresponding tracks by the mapping b(i, j, p) := (¢j,t;, p) forall 1 <i <|T},| and
1 <j<|Q,|. We call base coordinates (x',y’, p) € A, on-grid if they are contained in
the image of this mapping. Trivially, b(-) can be computed in constant time. This is also
true for the reverse mapping:

Lemma 2.15. Let (x,y, p) € A be a point on a wiring plane. The closest track to (x,y, p)
and the closest point of interest on this track can be found in constant time and with
O(|T,| +|Qp|) bytes of precomputed information.

Proof. W.l.o.g. assume that p is a horizontal plane. Let kK € N be the largest number

such that 2k < Agﬁn. Compute y' := L%J and look up the smallest i € N with #; > 2&y/

in an array indexed by y’. Then ¢; or fmin{i,|T,|}+1 1S the next higher track from (x,y,p),
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and #; Or fyax ;1,0 1S the next lower track from (x,y,p). Analogously the next higher or
lower point of interest on this track can be found. a

Note that the lookup arrays needed for this are relatively small, and divisions by
powers of two are very fast.

If p is a vertical wiring plane, track coordinates are defined analogously, and the
mapping to base coordinates is b(i, j, p) := (t;,qj, p) forall 1 <i <|T,|and 1 < j < |Q,].

If p is a via plane, we define track coordinates as pairs of indices (i, j) with 1 <i <
|Tp—1] and 1 < j < |T},11|, defining intersections of tracks in the neighbouring wiring
planes projected to plane p. Analogous to above, b(-) maps track coordinates on via
planes to these projected intersection points.

Definition 2.16. We call a via or a wire segment on-track if both endpoints are on-grid,
and off-track otherwise.

Note that this definition includes on-track wire segments orthogonal to preferred
direction, called jogs, that of course are not contained in a track.

As mentioned at the beginning of this chapter, BonnRoute® uses on-track vias and
wire segments for all connections of a net except for accessing pins which often requires
off-track wiring locally around a pin. The core routing engine of BonnRoute® is a gen-
eralization of Dijkstra’s algorithm (Dijkstra [1959]) that can make use of the structure
of the given graph and edge costs to process whole sets of vertices at once. The graph
used for on-track routing is a subgraph of the track graph which is defined as follows:

Definition 2.17. Given a set of routing tracks on each wiring plane, the track graph is
the graph G = (V,E), where V is the set of all on-grid points on wiring planes, and
E the set of edges {vi,vo} CV xV such that (bbox({vi,v2}),t) is a via or a minimal
on-track wire segment with length greater than zero for some wire type t € T.

The on-track path search used in BonnRoute® goes back to the work of Hetzel 1995,
1998] who proposed a shortest-paths algorithm for regular track graphs (i.e. restricted
to uniform track-to-track distances over all layers) that labels intervals of vertices on
the same track with distance functions. It was extended by Peyer, Rautenbach and
Vygen [2006] from intervals to more general vertex sets. Humpola [2009] improved
the runtime bound of Hetzel’s algorithm and generalized it to irregular track graphs,
allowing arbitrary distances between tracks, even within the same layer. This interval
based shortest paths algorithm motivates the interval structure of the data structures
presented in sections 2.2 and 2.3.

2.2 The Shape Grid

The shape grid is a spatial data structure that efficiently stores all relevant data about
blockage, wire and via shapes. The information in the shape grid allows to decide if
a wire (of any given wire type) can be placed somewhere without violating minimum
distance rules. If not, it allows to find out if there is a set of nets which can be ripped
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up such that the answer becomes positive, and to explicitly determine such a set of
minimum size.

Each plane A, p € P, is tiled by a grid of so-called cells. In the following, let p € P
w.l.o.g. be a plane with horizontal preferred direction. Let xpin = x0 < x1 < ... <X, =
Xmax and ymin = Yo < ¥1 < ... < Yn, = Ymax> x, Ny € N, be integral coordinates of cell
boundaries.

For i, j € Z, we define cell (i, j, p) by the area

C(i, j,p) = [xic1,x] X [yj—1,5;] x {p}

if1<i<ncand 1< j<n,y and C(i, j,p) := 0 otherwise. We call the non-empty
intersections of shapes in B, UW, with C(i, j, p) cell shapes of cell (i, j, p). We define
the cell configuration of cell (i, j,p) as the set of its cell shapes, each translated by
—(ax,ay,0), where (ay,ay,p) € C(i, j,p) is a well-defined anchor point within the cell
area. The shapes in a cell configuration are called cell configuration shapes. 1f cell
boundary coordinates and anchor points are chosen well, the number of different cell
configurations is not very high in practice (see below for further discussion). Each of
them is assigned a cell configuration number k € N.

Basically, the shape grid stores a set Z,, of intervals {(i1,/,p),...,(i2,j,p)}, 1 <
i1 <ip <nyand 1< j<n,, of cells in preferred direction in plane p having the same
cell configuration number k. The intervals stored in this way are disjoint, and cells not
contained in any of them have a default configuration number denoting an empty cell
configuration. For an interval I € Z,,, we write k(I) to denote the cell configuration
number of the cells contained in /. Storing intervals in a balanced search tree (e.g. an
AVL tree, see Adel’son-Vel’skii and Landis [1962]) allows to find the interval containing
a cell in time logarithmic in the total number of intervals.

Remark. BonnRoute® uses one search tree per cell row (or cell column on vertical
planes), which does not change the theoretical bound on interval lookup time, but makes
a considerable difference in practice. Further, this saves space because it suffices to store
only the three numbers iy, iy and k(I) for an interval I = {(iy, j, p), ..., (i2, j, p)}, i.e. not
storing the cell row index (or cell column index on vertical planes, respectively).

Additionally a table is stored that maps each cell configuration number to the actual
cell configuration. In order to decide if adding or removing a shape to or from a cell
configuration results in an already existing or a new configuration, another balanced
search tree is maintained.

The presented data structure can be updated efficiently if wire or via shapes are
added to or removed from W,, and allows for efficient queries on legality of a given
new wire or via shape that is not yet contained in W,. This relies on two important
conditions that are fulfilled on all chips in practice:

1) Most wire segments run in preferred direction, and wire segments running orthog-
onal to preferred direction are very short (often only 1-2 tracks).
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2) Wire (and via) shapes span only a small constant number of cells orthogonal to
preferred direction. This is even true for the widest wires that occur, and most
wire shapes completely fit into a row of cells.

We align cell rows with tracks by choosing cell boundaries in the middle of neighbour-
ing tracks (see section 2.2.2 for details). In this way most wires split intervals only in
one cell row, which is important to keep memory consumption low. The current version
of BonnRoute® uses uniform cell sizes within each plane. This enables an alignment of
cells and tracks only if distances between neighbouring tracks within a plane are regular.
With the non-uniform cell-sizes that we propose in section 2.2.2 in order to align cells
and tracks also if track-to-track distances are irregular, special attention has to be paid
to storing net identifiers memory efficiently. We propose a method for this in the next
section.

2.2.1 Storing Net Identifiers

If a shape is not legal, we often want to determine if there is a set of wire or via shapes
of other nets that can be ripped up in order to make it legal and to find such a set, ideally
of minimum cost w.r.t. some objective function. In order to support this task, for each
removable cell shape the information on which net it belongs to must be available. To
store this information, we introduce a function o; ; , for each cell (i, j, p) that maps a
subset of its cell configuration shapes to a set of net identifiers. These functions are not
stored explicitly for each cell. Instead, they are stored at intervals of cells, and intervals
are chosen maximal such that mapping functions and cell configurations are equal for
all cells in an interval. For simplicity we assume in the following that all non-blockage
shapes are removable.

We now propose a method for storing these mapping functions memory efficiently.
Let 1 <i<nyand 1< j<n, Forany shape F that intersects C(i, j, p), let % ; ,(F)
the cell configuration shape induced by F in the cell configuration of cell (i, j, p), that
is FNC(i, j,p) translated by —(ayx,ay,0), where (ay,ay, p) is the anchor point of cell
(i,j,p). Now let S € W, be a removable shape intersecting C(i, j, p). We store a net
identifier for S in cell (i, j, p), i.e. add ¥ j »(S) to the domain dom(o; ; ) of 0;  , if and
only if the conditions

. (S)]x = |C (i, J, p)Ix or (1%,5,p(S) |, 1) Z1x (minf{|C (i, j, p)l, % jr,p(S)]x},0) (2.1)

and

%0 (S)ly = 1C(G, j, )y or (1%,7,p(S)y, /) Zix (min{|C(i, j, p)y 1% 1 p(S)|y}, j) (2:2)

are satisfied for each i’ € {i — 1,i,i+ 1} and j/ € {j — 1, ,j+ 1}, where >x denotes
lexicographical ordering, i.e. (a,b) >1x (d',b') iff a > a’ or (a=a' and b > b’). For ex-
ample, if |Yi—1.j p(S)|x = [%,j.p(S)|x <|C(i, j, p)|x, we donot add ; ; ,(S) to dom(a; j ).
We make use of this in the proof of Lemma 2.20 below.
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It is easy to see that if (2.1) and (2.2) are not met, the corresponding net identifier is
in the image of the mapping function of one of the eight neighbouring cells in x-, y- or
diagonal direction. Because we require minimum distance rules to prohibit intersection
of any two shapes not both belonging to blockage or to the same net, two intersecting
cell shapes A C C(i,j,p) and BC C(/,j,p) (' e {i—1,i+1}and j € {j—1,j+1})
must both belong either to blockage or to the same net. Assuming that the functions that
map cell configuration shapes to net identifiers can be evaluated in constant time (which
will be the case with our choice of cell boundaries), we therefore have the following
fact:

Proposition 2.18. For a removable cell shape, the identifier of the net to which it be-
longs can be found in constant time.

We refer to the image img(o; j ) of 0; j , as the set of net identifiers stored for cell
(i, J,p). Cell sizes will be chosen such that, given the minimum distance rules R, with
only very few exceptions at most one net identifier has to be stored for a cell. o ; ) is
then encoded by a number n € Z and a lookup table as follows: if n is non-negative,
this means that at most one net identifier is stored for this cell. In this case each cell
configuration shape of cell (i, j,p) that is in dom(o; ;) is mapped to this identifier,
which is directly encoded by n. If n is negative, cell configuration shapes belonging to
different nets are in the domain of o; ; ,. In this case, n is used as negated index into a
table which explicitly stores the mapping function for this cell. The size of this table is
very small in practice.

If cell sizes are uniform in preferred direction, mapping function domains can be
stored in the cell configurations without increasing the interval count, as the following
Lemma shows.

Lemma 2.19. Let x; = x;_1 +c for 1 <i < n, and some c € N. Then if cell configu-
rations are extended to store the domain of a cell’s mapping function additionally to
cell configuration shapes, the number of different cell configurations and the number of
intervals do not change.

Proof. Let S € W, intersecting C(iy, j,p) and C(ia, j,p), 1 <ij,ip <ny, 1 < j<n,
and iy # i>. Then, ¥, ;,(S) = ¥%,,jp(S) implies that either ¥ ; ,(S) € dom(oy ; ,) for
both i’ € {iy,i} or none of them. O

Remark. Choosing uniform cell sizes in preferred direction is advisable also to avoid
unnecessary changes of cell configuration numbers along a wire running in preferred
direction, as this would mean an increased number of intervals that have to be stored.

If we store mapping function domains in the cell configurations, e.g. by marking
those cell configuration shapes that belong to the domain, we do not have to inspect
neighbouring cells to decide if the net identifier for a removable cell shape can be deter-
mined by the cell’s mapping function. Neighbouring cells have to be inspected only if
the answer is negative.



24 CHAPTER 2. MODELING ROUTING SPACE

2.2.2 Choosing Cell Boundaries

With the above considerations, we suggest to choose cell boundaries as follows:

i) Choose an offset value m € Z with 0 < m < min{xmax — Xmin, d, + Wf,} and set
ny = [(Xmax — Xmin —m)/(dy +w},)| + 1 and x; ;= m+ (i —1)(d; +w},) for 1 <
I < ny.

ii) ny:=|T,| and y; := [ (¢t; +1j41)/2] for 1 < j <n,.

We then define (minx(C(i, j,p)),t;,p) as anchor point of cell (i, j) for I <i < n, and
1 < j < ny. With these choices, only for cells that contain cell shapes not induced by
on-track vias or wire segments it may become necessary to explicitly store mapping
functions in the lookup table:

Lemma 2.20. If there are no minimum distance rule violations and cell (i, j,p) (1 <i <
ny and 1 < j < ny) contains only cell shapes induced by on-track vias or wire segments,
we have |img(o; j )| < 1.

Proof. Assume there are two cell configuration shapes S;, S> € dom(o; ;) with
0i,j,p(S1) # 0; j.p(S2). As p is a horizontal plane without loss of generality, and by
the definition of cell boundaries, exactly one horizontal track runs through each cell.
First assume that both S| and S, intersect this track, and w.l.o.g. maxx(S;) < minx(S,).
Then |S1|x > w},/2 and [S3[x > w),/2 by (2.1). Hence, by the choice of cell bound-
aries, S7 and S, must have distance less than dz to each other in x-direction, which is a
contradiction as the definition of d;; implies that S and $; violate a minimum distance
rule.

Now assume that one of the shapes, w.l.o.g. S;, does not intersect the track. Sy is
induced by an on-track via or wire segment, so the corresponding via or wire shape
S must intersect the track running through a neighbouring cell (i, j/, p) with j/ € {j —
1,74 1} because (0,0) € R for each routing shape model (R,c) € R? x N by definition
2.7. By the choice of horizontal cell boundaries, j/ = j+ 1 implies |Si|, < ¥ 7. »(S)]y.
and /' = j—1implies |S1|, < |7 j7 »(S)]y. in both cases contradicting (2.2). O

Remark. For the proof of Lemma 2.20, it actually suffices that R intersects the x-axis
for each routing shape model (R,c) € M, (as plane p was assumed to have horizontal
preferred direction). Analogously, R has to intersect the y-axis if plane p has vertical
preferred direction.

Further, endpoints of vias and wire segments in most cases split intervals only in
one row of cells, so the number of intervals and thus memory consumption is kept low.
This is owed to the fact that most wire segments on plane p have a wire type t € 7, with
Ap(t,t) = Agi“ and stick figures centered within shapes. Besides that, also the expected
number of cell configurations is less than if cell rows are not aligned with tracks.

Choosing m can considerably influence the number of intervals, see figure 2.4 for an
example. We suggest choosing m such that the number of intersections of cell bound-
aries with the shapes induced on plane p by all possible on-track vias of some “standard”
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a) 3 intervals b) 5 intervals

Figure 2.4: A wire shape and two via shapes represented by a different number of
intervals depending on the choice of m

wire type is minimized. It is not hard to see that this can be done in O(|Q,|log|Q,|) or
O(dy +w), +10p|) time.

Remark. With a copper atomic radius of around 10~!°m and one coordinate unit in x-
or y-direction in the base coordinate system corresponding to a step length of at least
this value, d}, +w, is dominated by the number of tracks on today’s largest chip routing
instances. Therefore the second (pseudopolynomial) bound above is actually better in
practice.

Cell boundaries and anchor points are defined analogously for vertical wiring planes.
Although all vias of course run in z direction, we define the “preferred direction” of a via
plane to be equal to the preferred direction of the next lower plane. This definition is just
used for grouping neighbouring cells in preferred direction to intervals. Let p € P be a
via plane with horizontal preferred direction, xo,...,x,, the coordinates of vertical cell
boundaries on plane p+1 and y, . . ., y, the coordinates of horizontal cell boundaries on
plane p — 1, n,,n, € N. Then it is natural to use these boundary coordinates for defining
cell boundaries on plane p, and intersections of tracks in the neighbouring wiring planes
projected to plane p as anchor points of cells.

We finally remark that if a design uses a standard cell library that is not designed
in a “gridded fashion” (meaning that all pins can be accessed by on-track vias or wire
segments if cells are placed on a certain grid and routing tracks are suitably defined),
many off-track wire or via shapes can be necessary in the lowest wiring and via plane,
respectively, in order to access pins. This is the standard case today because industry-
standard cell libraries are not designed with routing tracks in mind. In such cases it
might be better not to align cells with tracks on the lowest plane, but to choose cell sizes
small enough such that the number of net identifiers to be stored for an interval cannot
exceed one.

2.3 The Fast Grid

In this section we present a data structure, called fast grid, that, using precomputed
and continuously updated data, can determine very fast if a given on-track via or wire
segment is legal or not.

Let p € P w.l.o.g. be a horizontal wiring plane, and M C M p be a subset of the
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routing shape models that can occur in plane p. The fast grid data structure will store
information for each m € M. We discuss how to choose M at the end of this section.
Let M} := {t(p) : t € T} be the wire models that can be used on plane p. We write

As above, let T, = {t1,...,t;;,| } with 1y < ... <f7|, and Q) = {q1,...,9|g,|} With
q1 < ...<q|g,|- Form=(R,c) EM,1<i<|T,land 1 < j<|Q,|let

S(i,j,m) = ({b(i,j.p)}+R.c),

be shapes induced by potential on-track vias or zero-dimensional wire segments in plane
p, i.e. not contained in W, yet, and

Se(i,j,m) = ([b(i,j,p),b(i,min{j+1,|Q,},p)] +R,c),
Sy(i,j,m) = ([b(i,j,p),b(min{i+1,|T,|},j,p)] +R.c)

for m € M}, be shapes induced by potential minimal one-dimensional wire segments in
plane p. Further, let

0:5is legal w.r.t. (B,,V,)
1 : otherwise

Bls)={
for any wire or via shape S. Figure 2.5 shows, in a small example, the stick figures that
induce

* the illegal shapes S\ (i, j,m) (i.e. with B-value 1) for a wire model m and

o the illegal shapes S(i, j,m’) for a via model m'.

The fast grid stores a set F), of intervals {(i, ji),..., (i, j2)} for plane p that form a
partition of the track coordinates on plane p, i.e. Urcr, = {1,...,|Tp[} x{1,...,|Qp|}.
Foreach 1 <i<|T,|and 1 < j <|Q,| we define

MM M|
Blij)= > 2BSclijoma)+ Y., 2°B(S(Gij,ma)),
a=1 a=|MNMY|+1

and intervals are chosen maximal such that for each I € F,, and (i, j), (i, j) € I we have
B(i,j)=PB(i, ). Wedefine B(I) := B (i, j) ((i,j) € I) for I € F}, and store B(I) together
with /.

With this information, legality of a shape induced in plane p by an on-track via or
wire segment in preferred direction (w,7) can be checked in

O(log|Fp| + {1 € Fp, : b(I) Nw # 0}])

time if F), is stored as a balanced search tree and neighbouring intervals on the same
track are linked with each other, where

b(X) :=bbox({b(i,j,p): (i,j) € X})
forany X C {1,...,|T,|} x{1,...,|Qp|}.
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Figure 2.5: For some existing wire and via shapes, this figure shows the wire segments
(red lines) and vias (blue dots) that induce the illegal shapes Sy (i, j,m) for some wire
model m and S(i, j,m") for some via model m’, respectively. Only 4 intervals are needed
to represent them, while the shape grid stores 10 intervals. Dashed gray lines denote
preferred tracks, black lines are cell borders.

2.3.1 On-Track Jogs

Of course we also need information on legality of on-track jogs. Explicitly storing the
values f(Sy(i, j,m)) can considerably increase the number of intervals, even if stored
only in intervals on the lower or higher track connected by the jog. Figure 2.6 shows an
example. However, the equivalence

B(Sy(i,j,m)) =0 <= B(S(i,j,m)) = B(S(i+1,j,m)) =0 (23)

will hold for most 1 <i < |T,|, 1 < j <|Q,| and m € M. E. g., if there were only shapes
induced by on-track vias and wire segments on plane p, (2.3) would hold for all jogs
in this plane, which follows from the definition of routing shape models and minimum
distance rules.

Remark. The requirement that (0,0) € R for each (R,c) € M, can actually be relaxed
to the requirement that R intersects the x-axis if p has horizontal preferred direction, or
y-axis in the other case.

With blockages or shapes induced by off-track vias or wire segments on plane p,
(2.3) remains true if neighbouring tracks are closer than 2dy, +w), to each other and for
each minimum distance rule (cj,cp,D) € R, D is an axis-parallel rectangle. In these
cases it suffices to redefine

) o
BGj)= S 2B(Silima)+ S 2OM B (s my)),  24)
a=1 a=1

foreach 1 <i < |7,| and 1 < j <|Q,| to answer queries on legality of jogs.
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Figure 2.6: Wire segments inducing the sets S, (i, j,m) and Sy (i, j,m) for a wire model m
(red lines), and vias inducing the sets S(i, j,m") for a via model m’ (blue dots). Explicitly
storing legality of jogs between neighbouring tracks can increase interval count.

Remark. In practice the number of intervals increases only marginally by defining f3-
values as in (2.4) since

B(Sx(i,j—1,m)) = 0or B(Sx(i, j,m)) = 0 => B(S(i, j,m)) =0,

and only rarely B(S,(i,j— 1,m)) = B(Si(i,j,m)) =1 and B(S(i, j,m)) = 0.

In the general case, i.e. distances between tracks not bounded by 2d,y, + wf, and ar-
bitrary minimum distance rules, we modify B(i,j) (1 <i < |T,| and 1 < j < |Q,]) as
defined in (2.4) by adding 1 iff (2.3) does not hold for i, j and some m € M N M. Soif
B (i, j) is an odd number, we answer a query on f(S,(i, j,m)) for any m € M N M}, by
returning 1 if | M N M| =1 or otherwise querying the shape grid, i.e. querying all cell
shapes in a sufficiently large area around S, (i, j,m), and checking all minimum distance
rules that apply.

In practice, there are extremely few situations in which (2.3) is violated. The lowest
two planes that are used for off-track pin access are an exception to this, however these
planes are not used by the on-track path search at all, so the fast grid data structure does
not have to be built on these planes.

Remark. In BonnRoute®, for each bit encoded in B(i,j) (1 <i<|Tp/ and 1 < j <
|Q,)), a second bit is stored that encodes if the value of the original bit could change
by removing shapes from W, i.e. ripping up wires of some already routed connections.
In ripup path searches, this saves querying the shape grid for net identifiers at locations
where a desired shape is prohibited by a non-removable shape.
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2.3.2 Updating the Fast Grid

When a shape W = (R, c) is added to W, the fast grid must be updated. If any shape
S=(R,c) € {8(i, j,m) : m € MyU{S:(i,j,m) :m e MNMy} (1 <i<|Tp| and
1 < j <|Q,|) intersects R+ D for the (unique) minimum distance rule (c,c’, D), B(S) is
setto 1. If B(i, j) is even, R+ D intersects Sy(i, j,m), but not (S(i, j,m) or S(i+1, j,m)),
and B(S(i,j,m)) = B(S(i+1,j,m)) =0, B(i,j) is incremented by 1. Since f3-values
are stored at intervals and all track coordinates in an interval are supposed to have the
same values, these operations may require intervals to be splitted. On the other hand,
two neighbouring intervals 7,1’ in the same track can be joined if 3(I) # B(I") before
adding W to W, but B(i, j) = B(i,j’) for all (i, j) € IUI" afterwards.

If a shape W = (R, ¢) is removed from W, shapes in B, UW, in the proximity of W
must be considered in order to update the fast grid data structure. Let A be the set of track
coordinates (i, j) € {1,...,|T,|} x{1,...,]Qp|} for which B(i, /) may change. Then the
values B (i, j) for each (i, j) € A can be computed from all cell shapes intersecting

b(A+{(0,0),(1,0),(0,1)}) + U r+D

(R'.c"em
(! ¢!\ D"eR

We do not have to iterate over the cell shapes in each cell separately, but can deal with
entire intervals in the shape grid at once:

Proposition 2.21. Let p € P be a plane with horizontal preferred direction. If cells in
the shape grid have size at most 2w, in x—direction and the anchor points ac,,.. ., dc,
of cells in an interval I := {(c1,1,p),...,(c2,1,p)} € L, are equal relative to the lower
left cell corner, cell shapes in U, <c<.,C(c,r, p) can be replaced by the shapes

U (S +[ac;,ac,)) (2.5)

SESk([)

in the computation of B-values without affecting the result. Here Sy ) denotes the set of
cell configuration shapes of cell configuration k(I ). O

An analogous result of course holds for planes with vertical preferred direction.
Usually the shapes in (2.5) are covered by the corresponding original shapes that in-
duced the cell shapes, but not always, as the example in figure 2.7 shows. Proposition
2.21 shows that nonetheless, due to our choice of cell boundaries and anchor points,
we do not have to iterate over single cells if d, < wy,. In practice, we have dj, = w, in
most cases, but if df, > w}‘, holds, cell boundaries can be defined such that cell sizes in
x-direction are at most 2w,.
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Figure 2.7: A shape in (2.5), drawn with a thick red line, which is not covered by the
original shapes (small squares) that induced this interval of identical cell configurations.

2.3.3 Choosing Wire and Via Models for the Fast Grid

We finally discuss the choice of M. There are two aspects to consider: the more fre-
quently on-track legality queries for a certain wire or via model are made, the more
time can be saved by including this model in M and querying the fast grid data struc-
ture instead of the shape grid. On the other hand, some routing shape models require
a relatively large update radius when shapes are added to or removed from V), and the
information stored in the fast grid needs to be updated, leading to a considerable over-
head. In practice, the most frequently used routing shape models require a relatively
low updating overhead.

In BonnRoute® a routing shape model (R, c) on plane p is included in M only if it
occurs in the wire type used for routing a certain minimum fraction of all nets, weighted
by an estimate of the net length as e.g. half of the perimeter of the bounding box of the
net’s pin shapes. The model is not included in M if (still assuming w.l.0.g. that p is a
horizontal plane)

max |R+D|, > aA?i“,
(c,c!,D)ER
where a is some constant and R is the set of minimum distance rules that apply on
plane p. Currently for each interval I € F, in the fast grid data structure BonnRoute®
uses 32 bits to store §(I), so M is limited to the most frequent routing shape models if
necessary.

2.3.4 Results

We now present results on some state-of-the-art industrial chips that demonstrate the
benefits of the fast grid data structure. Table 2.1 shows the design characteristics. In ta-
ble 2.2 we present sequential runtimes of the on-track path search engine of BonnRoute®
with and without using the fast grid data structure, and the runtime overhead needed to
update it when wires are added or removed. Including the overhead for updating, we
obtain a speedup factor of roughly 5.5 x on average.

Planes 0 and 1, i.e. the lowest wiring and via plane, respectively, are used almost only
for pin access, which is done by a special gridless routing subroutine for connecting a
pin to a close on-grid point on plane 2, limiting the influence of complex pin geometries
and design rules to a small scope. The on-track path search engine of BonnRoute® then
connects these access points on planes > 2. Because the pin access subroutine uses its
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own representation of routing space, the fast grid data structure thus is initialized only
for planes > 2, too.

Chip Technology Die Size # Nets
Jacques 65nm| 0.44 mm x 1.33 mm 47,031
Brigitte 65nm 1.16 mm x 1.21 mm| 120,248
Inaya 65nm| 6.01 mm x 6.0l mm| 170,582
Timo 65nm 1.45 mm x 2.0l mm| 276,552
Jo 65nm| 3.07mm x 1.65mm| 515,044
Renate 65nm| 3.25mm x 2.95mm| 529,004
Dorothea 65nm| 6.07 mm x 6.07 mm| 679,820
Georg 65nm| 2.67 mm X 4.10 mm| 783,685
Tomoko 65nm|14.81 mm x 15.61 mm | 5,340,088
Andre 65nm | 15.61 mm x 14.81 mm | 7,039,094

Table 2.1: The testbed used for evaluating the fast grid data structure.

Chip Runtime (SG) | Runtime (FG) | FG updating time | Speedup
Jacques 0:17:55 0:02:59 0:01:10] 4.31x
Brigitte 1:38:49 0:16:16 0:02:32]  5.25x
Inaya 1:51:37 0:21:06 0:09:41] 3.62x
Timo 1:25:28 0:13:29 0:04:16| 4.81x
Jo 5:16:39 0:50:33 0:12:41 5.00x
Renate 4:28:39 0:35:08 0:09:40 5.99x
Dorothea 17:11:53 3:08:33 0:17:21 5.01x
Georg 6:31:13 1:10:18 0:20:16| 4.31x
Tomoko 70:51:56 10:19:55 2:38:42| 5.46x
Andre 100:35:53 14:39:56 3:04:47| 5.66x
Sum 210:17:44 31:39:11 7:01:25| 5.43x

Table 2.2: Sequential runtimes (in hours) of the on-track path search routine of
BonnRoute® using the shape grid (SG) only, and using the fast grid (FG) for frequent
wire types. The third column shows the time needed for initializing and updating the fast
grid data structure when wires are added or removed. The last column is the quotient of
the first and the sum of the second and third column.

Table 2.3 shows that the peak memory consumption increases by less than 4 percent
on average and less than 9 percent on all instances if the fast grid data structure is built.
Finally, table 2.4 compares the number of intervals stored in the shape grid and in the
fast grid data structure.
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Chip Memory (SG only)| Memory (with FG)

Jacques 0.53GB| 0.55GB (+5.1600 %)
Brigitte 1.19GB| 1.28GB (+7.8700 %)
Inaya 8.16 GB| 8.55GB (+4.7400 %)
Timo 222GB| 231GB (+3.8700 %)
Jo 419GB| 4.49GB (+7.3200 %)
Renate 497GB| 5.25GB (+5.5500 %)
Dorothea 9.92GB| 1042 GB (+5.0800 %)
Georg 6.68 GB| 7.23 GB (+8.2800 %)
Tomoko 57.57GB| 59.51 GB (+3.3700 %)
Andre 72.67 GB| 73.96 GB (+1.7600 %)
Sum 168.43 GB [173.85 GB (+3.2200 %)

Table 2.3: Peak memory consumption of BonnRoute® with and without the fast grid
data structure.

Table 2.4: Number of intervals stored in the shape grid (SG) and in the fast grid (FG)

Chip # Intervals (SG) | # Intervals (FG)
Jacques 10,860,283 4,611,859
Brigitte 28,822,333 11,359,473
Inaya 284,315,488 97,587,743
Timo 48,745,463 21,213,095
Jo 104,643,825 45,027,055
Renate 132,022,423 53,414,281
Dorothea 282,675,573 105,239,391
Georg 181,697,799 73,906,055
Tomoko 1,855,635,639 702,059,680
Andre 2,334,605,100 873,469,276
Sum 5,266,896,418| 1,989,158,451

data structures at the end of the routing.
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2.4 Determining Routing Tracks

We now discuss how to determine routing tracks, given a set of blockages, pins to be ac-
cessed and already existing wiring that should align with the tracks. Roughly speaking,
the goal is to maximize a weighted sum of

* the total track length usable for wiring,
* the number of on-track pin access stubs (defined later) and
* the total length of on-track wire segments in the input.

We will go into details in section 2.4.2. Certainly, neighbouring tracks should be usable
at the same time, so a certain minimum distance between tracks is required. As we shall
see, the problem can be formulated as an interval covering problem which we define
and efficiently solve in the next section.

2.4.1 The Maximum Weighted Stable Interval Covering Problem

MAXIMUM WEIGHTED STABLE INTERVAL COVERING PROBLEM

Instance: A set Z of intervals in R, weights w:Z — R4 \ {0} and a number d €
R\ {0}.

Task: Find numbers X C [minye7 (), max;e7 u(I)] with |x; — x| > d for any
x1,Xx2 € X with x| # xp, maximizing the sum

W) =D > w(l).

xeX 1€
xel

For an interval I = [a,b], let [(I) := a and u(I) := b its boundary coordinates, I° :=
I\{l(I),u(I)} the interior of I and |I| := b — a the length of /. We define

U::d[%ﬂ(ﬂ.

In the following w.l.o.g. we assume U > 0 and min;c7I/(I) = 0. We will show the
following result in this section:

Theorem 2.22. The MAXIMUM WEIGHTED STABLE INTERVAL COVERING PROB-
LEM can be solved in O((U /d + |Z|)log|Z|) time.

This result implies a complexity polynomial in |Z|, or in |Z|+ |X| if the elements of
the output set have to be explicitly listed:
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Corollary 2.23. Given an instance (Z,w,d) of the MAXIMUM WEIGHTED STABLE
INTERVAL COVERING PROBLEM, the value of an optimum solution and a set R C
[0,U] x N can be found in O(|Z|log|Z|) time such that

X = U {x+(—-1d:1<i<r}
(x,r)ER

is an optimum solution to (Z,w,d).

Of course constructing X from R takes O(|X|) time, assuming |R| = O(|X|). We
need the following definition:

Definition 2.24. Let J be a set of pairwise disjoint intervals in R, and T =R\ UyesJ°.
We define c; : J — R by
cglo)i=x— > ||

JeTJu(J)<x

for x € J, and denote the reverse mapping by c}l.
For an interval I with [(I),u(I) € J, we write c7(I) := [c7(I(I)),c7(u(I))], and

c}l (I'):=1ifI' =cy(I). Finally, for a set T of intervals I with [(I),u(I) € J, we write
cy7(Z):={cy(I):1€TI}. Wesaythatcy(I) arises from T by cutting J from Z.

Proof of Corollary 2.23. W.l.o.g. we can assume d = 1. For an instance (Z,w, 1) of
the MAXIMUM
WEIGHTED STABLE INTERVAL COVERING PROBLEM, let

J = { (1) +2+J]—[M]], u(J)] : J € [0,U] maximal s.t. for each I € T holds

JClorJ°nI=0,|J] 23}.

Then | 7| = O(|Z|), and we can construct J and sort the elements of 7 and Z w.r.t.
non-decreasing left boundaries in O(|Z|log|Z|) time. Observe that |J| € N for each
JeJ.

We construct Z' := c7(Z) in O(|Z|) time and solve the instance (Z’,w’, 1), where
w () = w(c31 (I')) foreach I' € 7. If X C [0, U] is an optimum solution to (Z,w, 1),
then there is a solution X’ to (Z’,w’, 1) with value

W) =Y MWL),

JeJg

as there isno J € 7 with [(J) on a boundary of any I € Z, and hence w({/(J)}) = w({x})
for each J € J and x € J \ {u(J)}. Let now X’ be an optimum solution to (Z’,w’, 1),
a(J) :=[c7(I(J)) —2,c¢7(L(J))] for each J € J, and observe that by construction X' N



2.4. DETERMINING ROUTING TRACKS 35

a(J) # 0 for each J € J contained in some I € 7 because all weights are strictly positive.
Let

R::{(c}l(x),l):xeX'}U U {(c}1 (max{x € X'Na(J)}),|J|+1)}

JeJ el JCI

U {x+i—-1:1<i<r}

(x,r)ER
is a solution to (Z,w, 1) with value

=D D WD+ w{Iu))

xeX’ 1e7’ JeJ
x€el

hence X is optimal. We have |R| = O(]X’|), and it is easy to verify that

X-1<
X1 < maxu(r) = U =Y 1| = O(1Z))
JeJg
so the claim follows from Theorem 2.22. O

Before we prove Theorem 2.22, we observe that if interval boundaries and d are in-
tegral numbers, the MAXIMUM WEIGHTED STABLE INTERVAL COVERING PROBLEM
can be solved by dynamic programming in O(U + |Z|) time:

Lemma 2.25. If interval boundaries and the value d in an instance (Z,w,d) of the
MAXIMUM WEIGHTED STABLE INTERVAL COVERING PROBLEM are integral num-
bers, the INTEGRAL MAXIMUM WEIGHTED STABLE INTERVAL COVERING ALGO-
RITHM shown below computes an optimum solution to (Z,w,d) in O(U + |Z|) time.

Proof. The runtime claim is trivial. To see correctness, let wi , be the value of wiq at
the end of the i-th iteration in step 2 and observe that wiy = > ;. 7..c,w(I) for 0 <i < U

and s(j) =s(j—d) —I—W{Ot for any value of j in step 3. O

By the same arguments as in the proof of Corollary 2.23, we can assume w.l.o.g.
that U = O(d|Z|). This still gives only a pseudo-polynomial runtime bound for the
INTEGRAL MAXIMUM WEIGHTED STABLE INTERVAL COVERING ALGORITHM, but
the number of different values of s(-) over {0,...,U} can then be bounded by O(|Z|?):

Lemma 2.26. Let (Z,w,d) an instance of the MAXIMUM WEIGHTED STABLE INTER-
VAL COVERING PROBLEM with U = O(d|Z|), and s : [0,U] — Ry the function that for
any y € [0,U] gives the optimum value of a solution X to (Z,w,d) under the restric-
tion that X C [0,y]. Then the number of different function values of s(-) over [0,U] is
bounded by O(|Z|*).
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INTEGRAL MAX. WEIGHTED STABLE INTERVAL COVERING ALGORITHM
Input : Intervals Z with boundaries / : Z — N and u : Z — N, and weights
w:Z — R4\ {0}. Anumberd € N.
Output: Integral numbers X C [0,U] maximizing w(X), with |x; — x| > d for
any x1,xp € X with x| # x;.

1 Setwior :=0and §; :=0foreach0<i<U+1.
foreach I = [a,b] € 7 do
Set 0, := 8, +w(I).
L Set 5],+1 = 517—0—1 - W(I).
2 fori=0toU do
Set Wiot +— Wtot + 3,'.
if i < d then
| Sets(i) :=w.
else
| Set s(i) :=max{s(i—1),s(i — d) + Wiot }

3 SetX:=Pandi:=U.
while i > 0 do
Set j:=min{0 < j/ <i:s(j) =s(i)}.
Set X :=XU{/}.
Seti:=j—d.

Proof. A simple induction overi € {1,...,U/d} shows that if s(y) > s(y — &) for some
(i—1)d <y <id and all € > 0, there must be an interval I € |Z| with [(I) € {y— jd :
0 < j < i}. Hence s(-) can increase at most at O(|Z|?) points in [0, U]. O

This bound is sharp: Let d € N and T := {[2a,2a+1]:0 < a < d/2} U{[d,d?*]}
with weights w([2a,2a+1]) ;= a for 0 < a < d/2 and w([d,d?]) := d. Then the number
of different values of s(-) over {0,...,U} is in ®(]Z|>). We shall see that nonetheless a
runtime of O(|Z|log|Z|) can be achieved, even if not restricting interval boundaries to
integral coordinates:

Proof of Theorem 2.22. 'We propose an algorithm for the general MAXIMUM WEIGHTED
STABLE INTERVAL COVERING PROBLEM, i.e. not restricted to integral interval bound-
aries. Like the INTEGRAL MAXIMUM WEIGHTED STABLE INTERVAL COVERING
ALGORITHM, this algorithm will (implicitly) compute a non-decreasing step function

s :[0,U] — R that for any y € [0,U] gives the optimum value of a solution X under the
restriction that X C [0,y|. However, the function values of s at the step points

Z:={0}U{z€ (0,U]:s(z—¢) < s(z) Ve > 0},

are not stored explicitly. Instead, our algorithm performs U /d phases and maintains a
set V that at the end of the i-th phase is equal to

V= {Z—(i—l)dZZEZﬂB,‘},
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where B; := [(i— 1)d,id), and a function §: V — R with
Sv)=5(v):=s(v+(i—1)d)

for v € V at the end of phase i, 0 < i < U /d (the initialization step before the first phase
starts will be called phase 0). For this purpose it will consider the intervals

Ji={1eZ:{l(I),u()}NB; # 0}

and
Jl={1€T:B: CIand {{(I),u(l)}NB; = 0}.

in phase i, 1 <i < U/d. Our algorithm generates backtrace information for elements
in Vi1 \ V; that allows to construct an optimal solution after the last phase has been
executed.

We store the set V as vertices of a binary search tree 7 := (V,E). We also write
V(T):=V. T will be an AVL tree (see Adel’son-Vel’skii and Landis [1962]), which is
a binary search tree that maintains a balance value for each vertex that is defined as the
difference of the subtree heights at this vertex. If there is a vertex with balance value
not in {—1,0,1} after insertion or deletion of an element, a series of rebalancing steps
(called rotations and double rotations) is carried out to ensure that all balance values are
—1, 0 or 1. Adel’son-Vel’skii and Landis [1962] show that by this balancing the height
of an AVL tree with n vertices can be bounded by O(logn), and rebalancing the tree
after an insertion or deletion requires O(logn) rotation or double rotation operations
each of which takes constant time.

The function § is not stored explicitly. Instead we store a value ¢ (v) for each v €
V and define §(v) := 3~ /ey (p)0(v'), where P is the path from v to the root of T in
T. Whenever a rotation or double rotation operation is carried out to rebalance 7, we
modify o such that § does not change. This can be done in constant time. Also if
an element is removed from V(T'), o is modified such that § does not change for the
remaining elements. Again, this can be done in constant time.

We need the following definitions to present our algorithm. root(7) € V denotes the
root node of 7'. For two adjacent nodes vy and v, in T, let

/" :vq is left child of v,
. : vy is right child of v,
N\, : v is right child of v,
/vy is left child of vy

rel(vi,v) =

denote the relationship between v and v;.

The algorithm is shown on page 38. Iterations of the outer loop starting in line
2 are called phases 1 to U/d. Phase 0 consists of line 1. To prove correctness, first
observe that for each z € Z with z —d ¢ Z, there must be an I € 7 with z = [(I), and
thus the number 7’ := z mod d is inserted into V(T') in line 4 in phase |z/d| +1. We
now inductively show that at the end of phase i (0 < i < U/d) we have V(T) =V, and
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MAXIMUM WEIGHTED STABLE INTERVAL COVERING ALGORITHM
Input : A setZ of intervals in R, weights w: Z — R, \ {0}, a number d > 0.
Output: Numbers X C [0,U] maximizing w(X ), with |x; —x| > d for any
x1,x2 € X with x| # x;.

1 Set T := (0,0). Set p := —1 and 9y := 0.

2 fori=1toU/d do

3 foreach I € J; with non-increasing [(I) do

4 ifv:=I1(I)—(i—1)d >0andv ¢ V(T) then

5 Set y(v) :=1i, 6(v) := 0 and insert v as a leaf into T'. Rebalance T.
6 if 3V e V(T): v <vthen

7 | Letv' :=max{y" € V(T) :v" <v}. Set p;(v) := (v, w(v/),i— 1).
8 else if i > 2 then

9 | Letj:=—[0i2/d|. Set pi(v) := (V-2 + jd, $i—2,i — 2~ j).
10 else

1 L Set pi(v) :=(0,0,0).

12 | Set o(root(T)) := o(root(T)) +w(T/).

13 foreach I € J; with non-increasing u(I) do

14 Let v :=min{w € V(T):w > I(I) — (i—1)d}.

15 Let v :=max{w e V(T):w <u(l)—(i—1)d}.

16 Let vy,...,v; (k € N) be the vertex sequence on the v/-v*-path in 7.
17 Set dir :=" and A := w(I).

18 forn=1tok—1do

19 if dir # rel(vy,,v,+1) then

20 Set 6(vy) := 0 (vn) +A.

21 L Set A:= —A.

2 Set dir := rel(vy, vyy1).

23 ifdire {,,/} then o(v;) := o (v) +w(I).

24 if v left child of V' then o(v) := o (v) —w(I).

25 if v right child of v" then 6 (v) := o (v) —w([).

26 foreach v € V(T') with v > v* and §(v) < §(v*) do

27 | Delete v from T'. Rebalance 7.

28 foreach v € V(T') with §(v) < p do

29 | Delete v from T'. Rebalance 7.

30 Set V; :=max{v:ve V(T)U{¥_1 —d}}.

31 if ¥; > 0 then set ¢; := y(¥;) and p := §(V;) else set ¢; := @;_1.

2 SetX:=0,v:= VU s Istart = W(v) and ieng := U /d.
33 while (v, isars,ienq) 7 (0,0,0) do

34 Set X :=XU{v+ (i— 1)d : istart < i< lend}-

35 L Set (v, istart, fend) := Pigar(V)-

36 return X.
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§(v) =s(fi(v)) for all v € V(T), where fi(v) :=v+ (i—1)d forve V(T)and 0 <i <
U/d. Clearly, this claim is true for i = 0.

So let now 1 <i < U/d. For convenience let us define s(y) := 0 for y < 0. We
have V; C V(T') immediately before line 12 is executed in phase i, and further (by the
induction hypothesis) §(v) = s(fi—1(v)) for each v € V(T). In line 12 and lines 17 to 25
o is then modified such that we have

§(v) = s(fisr(v)) +w({£i(v)}) < s(fi(v)) (2.6)

for each v € V(T) when line 28 is reached, with equality for v € V;. To verify this,
observe that A is always positive in line 20 if v, is the vertex closest to the root on the
vl-v#-path in T. For an element x € V(T) with x > v* in line 26, §(x) cannot increase
any more in phase i. As § never decreases, x ¢ Z if §(v*) > §(x), so x can be removed
from V(T) in this case. Similarly, §(x) < p for an element x € V(T) in line 28 implies
x ¢ Z since by induction hypothesis there is a 0 < y < (i — 1)d with s(y) = p, so x
can be removed from V(7T) (observe that this does not happen in phase 1). So we
have V; C V(T) also at the end of phase i. When line 30 is reached, §(v) > p for each
v € V(T), and § is strictly increasing on V(T'), so we have indeed V; = V(T). As (2.6)
holds with equality for v € V;, this proves the claim.

We now verify that the returned set X is an optimum solution to the given instance.
Let X’ be an optimum solution, and x € X’. If x > d, we can assume w.l.0.g. that

7i=max{z€Z:z<x—d}eX (2.7)

(observe that 0 € Z), because by definition of Z and s there is a feasible solution X" C
[0,7'] with
wX") >w(X'N[0,x—d]),

hence X" U (X' N [x,U]) is an optimum solution.
At the end of the last phase we have

max{z € Z} = Vy/q+U —d.

As s(x) < s(max{z € Z}) for any x € [0,U], there is an optimum solution that contains
the number vy /s + U —d, so we add it to X the first time line 34 is executed. Using
(2.7), the solution can now be completed as follows: If x = v+ (i — 1)d is added to X
(0O<v<dand 1 <i<U/d), we have v € V;. If also v € V,_|, x—d is in Z and by
(2.7) can be added to X as well. Otherwise v has been added to V(T') in phase i. If there
is an element v/ € V(T) with v/ < v at the time v is added to V(T') in phase i, we have
v/ € V;_1 because the intervals I € J; are processed in the order of non-increasing left
boundaries. Therefore in line 7 we have v/ := max{V" € V(T) :V' <v} =max{z € Z:
z < x—d} — (i—2)d. Moreover, v' € Vy for each y(v') <i' <i—1, but v & Vi ().
The values v/, (V') and i — 1 are stored in p;(v) and used in lines 32 to 35 in order to
add {V+ (' —1)d:y(V)<i<i—1}t0X.



40 CHAPTER 2. MODELING ROUTING SPACE

If there isno Vv € V(T) with V' < vin line 6, but there is a z € Z with z < v+ (i —2)d,
we must have i > 2 and

Zmax ‘= max{z €Z:z<x—d} =V;_2+ (i—3)d.

Similarly as above, p;(v) is set to (zmax mod d, ¢;_,i—2 — j) in line 9, and {(zmax mod
d)+ (i —1)d: ¢_» <i' <i—2—j} canbe added to X.

We finally prove the claim on runtime. It is straightforward to see that generating the
sets J; and J/ for each 1 <i < U/d is possible in time O((U/d + |Z|)log|Z|) in total.
Lines 4 to 11 are executed O(|Z|) times, so the height of T is bounded by O(log|Z|)
and hence total runtime spent in lines 4 to 11 is in O(|Z|log|Z|). The time needed
in lines 12 to 29 for updating ¢ and deleting elements from V(T') can be bounded by
O(U/d+ |Z|log|Z|): Line 12 is executed U /d times, and total runtime spent in lines
14 to 25 clearly can be bounded by O(|Z|1og|Z]|). The same holds for the runtime spent
in lines 26 and 27: Because intervals are processed in the order of non-increasing right
boundaries, § strictly increases on {v € V(T) : v > v*}. Therefore the runtime spent in
line 26 to find all elements v € V(T) with v > v* and §(v) < §(»*) can be bounded by
the runtime of line 27 which obviously is in O(|Z|log|Z|) since the algorithm does only
|Z| insertions into V(T') in total and thus can perform at most |Z| deletions. Similarly,
the runtime of lines 28 and 29 can be bounded by O(|Z|log|Z|). As construction of X
at the end of the algorithm takes linear time, the claim follows. O

2.4.2 Application

We now discuss how the MAXIMUM WEIGHTED STABLE INTERVAL COVERING AL-
GORITHM can be used to determine routing tracks. Given a set 3, of blockage shapes
in plane p € P, assume we want to find routing track locations such that the total length
of those parts of the tracks that are simultaneously usable (i.e. without violating any
minimum distance rules) by on-track wire segments with a certain standard wire type ¢
is maximized.

Assume plane p is vertical, and there is no existing wiring yet. Let 7(p) = (R,c) be
the wire model of wire type ¢ on plane p, and ‘R be the set of minimum distance rules
that apply on plane p. First we compute a set

B :={B-D-R:(B,)€B,(c,c,D)eR}

of extended blockages that define an area

A\ U B°

BeB!

of points where a wire segment with wire type ¢ can be legally placed. We approxi-
mate each element B € B’ by a constant number of rectangles and call the resulting set
B”. Since in practice most elements of B extend very long in preferred direction, this
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simplification introduces only a small error. By a standard sweep line method as in the
book of Preparata and Shamos [1988] we now compute a set B of disjoint axis-parallel
rectangles within 4, such that

JBnz?) = (A,,\ U B°> nz3.

BeB BeB"

We can compute B in O(|B|+ |B|log|B|) time. Although |B| can be in Q(|B]?), it
is linear in O(|B|) in practice. As all vias and wire segments shall begin and end on
integral coordinates, the restriction to integer points makes no difference.

Now it is easy to compute a set of O(|B)|) intervals Z and weights w : Z — R such

that
w({xh)= > Bl

BeB:xe(x(B))

for each x € x(A,). We finally discard intervals with zero weight and start the MAXI-
MUM WEIGHTED STABLE INTERVAL COVERING ALGORITHM with d := A?i“, i.e. the
minimum pitch on plane p.

If some wires already exist in the input, we might want the tracks to align with
existing wire segments. To this end, let S, be the wire segments on plane p running in
preferred (i.e. vertical) direction. We then add the zero-length intervals

7" := {x(area(S)) : S € S, }

to Z with weight

W= S kilarea(s)),

SESp
x(area(8))=1I
for I € 7', where k; € Ry \ {0} is some constant value given as parameter.

Further we want to align tracks with pins in such a way that for a large fraction of
pins there is an on-track pin access stub that obeys all design rules (including same net
rules). An on-track pin access stub is a via or wire segment (w,) running in preferred
direction and of length within a specified interval, and is required to start at a point
contained in one of the pin’s shapes and to end at an on-track point outside the pin
shapes. t € 7 here denotes the wire type of the corresponding net.

We do not specify the conditions under which a pin access stub obeys all design
rules. For our purposes it suffices that we can compute a (possibly empty) interval
I C x(Ap) for each pin with the property that if a track is created at coordinate x € I
in plane p, there is an on-track pin access stub for this pin which ends on this track
and obeys all design rules. We add all intervals obtained in this way to Z and set their
weights to some constant value ky € R4\ {0}. Of course we might assign a higher
weight if there is a stub running in the “right” direction, e.g. towards the center of
gravity of all pin shapes of the net or towards the closest other pin of the net.
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2.5 Discussion and Outlook

Restricting all connections to run on-track with exceptions allowed only for pin access
of course may cause an otherwise routable design to become unroutable. However,
the design characteristics of current technologies for which BonnRoute® is used are in
favour of this simplification as almost no routing space is wasted in practice. One key
property exhibited by far by most current designs is that there is one prevalent standard
wire type t € 7 that is used for the greatest part of the wiring, and this wire type attains
Ap(t,t) = Agﬂn on all wiring planes. A second property is that, at least if stick figures
are not required to be centered within wire shapes, for each wiring plane p € P there is
a number 6, > A?i“ such that A, (t1,2) is an (almost) integral multiple of &, for pairs
(t1,12) € T, x T, of “substantially often used” wire types, i. e. there is a small € > 0
such that

5pk<tl7t27p)_£§Ap(tl7t2) §5pk<t17t27p) (28)

with k : 7 x T x P — N. In practice usually 6, = Aglin holds.

In future technologies, these properties may not be granted any more, making it
more difficult to use routing resources efficiently without increasing computing time
too much. Specifically, without a prevalent value of A,(t,72) within a layer p € P
(t1,t> € T,,), one problem to be addressed in a sequential routing approach is to control
gaps unusable for any wire shapes between wires that are not closest possible to each
other. In some regions of the chip — where enough space is available — such gaps may
be desirable to reduce coupling, while in other more “dense” regions routability may be
achieved only after closing such gaps by a compactification of already routed wires, or
avoiding emergence of such gaps as far as possible. It is questionable if standard ripup-
and-reroute techniques suffice to achieve this goal. We remark that for this reason,
without substantial modifications in BonnRoute®, routability might actually degrade by
adding tracks between the currently used ones, even though it improves in theory.

If the second property does not hold any more, even on easily routable chips the
restriction to on-track vias and wire segments may prohibit the existence of a routing
solution, at least unless the distance between tracks is considerably reduced. Reducing
the track-to-track distances however increases the size of the track graph, the number of
intervals stored in the shape grid and fast grid data structures, and thus also the runtime
of the interval based Dijkstra algorithm used in BonnRoute®.

To keep the size of the track graph manageable, an extended fast grid data structure
could store precomputed information on legality of a wire segment of a certain wire type
in a region around a track. Whereever the width of this region changes, intervals have
to be splitted, and short jogs might be necessary to continue a wire (if this is possible
at all). Of course special care is required in the path search algorithm to keep track
of the wiring length (which is to be minimized, but is increased by these jogs), and to
avoid so-called short-edge errors which are a class of same net rule violations (see Peyer
[2007] and Cho et al. [2009b]).

The fast grid data structure may help to support more complex design rules in the
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future. Such rules e.g. might prescribe a minimum distance between two shapes which
depends on the existence of another shape of certain type close to one of the shapes. Also
more general two-dimensional patterns that are difficult to produce with the available
lithography technology may be prohibited in the future, or should at least be used only
at a high penalty cost. See Dai et al. [2009] for examples, and Cho et al. [2009b] and Pan
et al. [2008] for an overview over manufacturing-related issues and further references.
The information if placing a wire segment or via somewhere would generate such a
pattern may be considerably more difficult to compute than checking minimum distance
requirements between pairs of shapes, so precomputing (and updating) this information
can save even more time.
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Chapter 3

Resource Sharing

The problem of sharing a set of limited resources between users (customers) in an opti-
mal way is fundamental. The common mathematical model has been called the min-max
resource sharing problem. Well-studied special cases are the fractional packing problem
and the maximum concurrent flow problem. The only known exact algorithms for these
problems use general linear (or convex) programming. Shahrokhi and Matula [1990]
were the first to design a combinatorial approximation scheme for an important special
case, the maximum concurrent flow problem. Subsequently, this result was improved,
simplified, and generalized many times.

The results presented in this chapter are a further step on this line. In particular
we provide a simple algorithm and a simple proof of the best performance guarantee in
significantly smaller running time. For even further reducing running time, we present
an efficient lock-free shared-memory-parallel variant of this algorithm. This algorithm
is non-deterministic as it allows concurrent allocations of the same resource by different
processors, each of them unaware of the others. Although keeping the frequency of such
concurrent accesses low is important for obtaining good parallelization speedups, our
algorithm does not rely on this for correctness.

The MIN-MAX RESOURCE SHARING PROBLEM has many applications (e.g., Garg
and Konemann [2008], Grigoriadis and Khachiyan [1994], Jansen and Zhang [2008]).
In section 4 we show how the resource sharing algorithm can be applied to global rout-
ing of VLSI chips to optimize practically relevant objectives such as power and manu-
facturing yield while at the same time obeying constraints on signal delay or crosstalk
sensitivity. These constraints and objectives naturally give rise to instances of the (non-
linear) MIN-MAX RESOURCE SHARING PROBLEM. An implementation of the shared-
memory-parallel version of our algorithm developed as part of the BonnRoute® pro-
gram package at the Research Institute for Discrete Mathematics in Bonn is used today
at IBM for routing almost all chip designs, solving problem instances with several mil-
lion resources and customers in less than an hour. The experimental results presented in
chapter 4 also demonstrate that a very good parallelization speedup can be reached in
practice.

45
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This chapter is organized as follows. Section 3.1 introduces the MIN-MAX RE-
SOURCE SHARING PROBLEM and gives an overview of the previously known results
and of our contribution. Section 3.2 presents the sequential version of our algorithm
and analyzes its runtime, also showing that the worst-case runtime bound w.r.t. the ap-
proximation parameter € obtained in the analysis is tight. With small modifications, this
algorithm and its analysis correspond to our publication in Miiller and Vygen [2008].
In section 3.3 we present the new lock-free shared-memory-parallel variant of our al-
gorithm. In many applications, including VLSI routing, a discrete problem has to be
solved, but the formulation as a resource sharing problem actually yields a fractional
relaxation of the original problem. In this case a randomized rounding step generates an
integral solution from the fractional solution obtained from the MIN-MAX RESOURCE
SHARING ALGORITHM. This is discussed in section 3.4.

3.1 Problem Statement and Overview

The MIN-MAX RESOURCE SHARING PROBLEM is defined as follows.

MIN-MAX RESOURCE SHARING PROBLEM

Instance: Finite sets R of resources and C of customers, a convex set B, called
block, of feasible solutions for each customer ¢ € C, and a nonnegative
continuous convex function g, : B, — [RZE for ¢ € C specifying the re-
source consumptions of each element b € B,.

Task: Find b, € B, (c € C) approximately attaining

A ::inf{max (gc(be))r

bceBc(ceC)}, 3.1)

i.e., approximately minimizing the largest resource consumption.

We assume that g. can be computed efficiently and we have a constant &y > 0 and or-
acle functions f : IR7+z — B, called block solvers, which forc € C and @ € IR7+z return an
element b, € B, with ®"g.(b.) < (1+ &)opt,.(®), where opt,.(®) := infpep, @ g-(b).
Block solvers are called strong if €y = 0 or & > 0 can be chosen arbitrarily small, oth-
erwise they are called weak.

Note that previous authors often required that B, is compact, but we do not need
this assumption. Some algorithms require bounded block solvers: for ¢ € C, o € R¥,
and p > 0, they return an element b, € B, with g.(b;) < ul and ®"g.(b.) < (1 +
g)inf{@ " g.(b) | b € B.,g.(b) < ul} (by 1 we denote the all-one vector). They can
also be strong or weak.



3.1. PROBLEM STATEMENT AND OVERVIEW 47

All algorithms that we consider are fully polynomial approximation schemes rel-
ative to &y, i.e., for any given € > 0 they compute a solution b. € B, (¢ € C) with
max,cr D .cc(8c(be))r < (1+€ +€)A, and the running time depends polynomially
oneg L. By 6 we denote the time for an oracle call (to the block solver). Moreover, we

write ,
P ::max{l,sup{w ] rER,cEC,bEBc}},

denoting the width of the problem instance. Often p = 1 in practical applications.

3.1.1 Previous work

Grigoriadis and Khachiyan [1994] were the first to present an algorithm for the gen-
eral MIN-MAX RESOURCE SHARING PROBLEM. Their algorithm uses O(|C|?log |R|
(€72 410g|C|)) calls to a strong bounded block solver. They also have a faster random-
ized version.

In a later work (Grigoriadis and Khachiyan [1996]) they proposed an algorithm
which needs O(|C||R|(e 2loge~" +log|R|)) calls to a strong, but not bounded, block
solver. They also showed that O(|C|*log|R|(¢ =2 +1og|R|)) calls to a strong bounded
block solver suffice.

Jansen and Zhang [2008] generalized this and allowed weak block solvers. Their
algorithm needs O(|C||R|(log|R|+ & 21loge™1!)) calls to a block solver.

Khandekar [2004] needs only O((¢ =2 +loglog |R|)(|C|+|R|)(log(|C|+|R|))) calls
to an unbounded oracle, which matches our runtime if |R| = O(p|C|). It is not clear
from his work however if this bound can also be achieved with weak block solvers.

block solver running time
Grigoriadis and Khachiyan [1994] || strong, bounded 0(e72|C|?0)
Grigoriadis and Khachiyan [1996] || strong, unbounded| O(&g~2|C||R|0)

Khandekar [2004] strong, unbounded | O(e~2(|C| +|R|)0)
Jansen and Zhang [2008] weak, unbounded | O(£72|C||R|0)
our algorithm weak, unbounded O(e2p|C|0)
our algorithm weak, bounded O(e7?|C|0)

Table 3.1: Approximation algorithms for the MIN-MAX RESOURCE SHARING PROB-
LEM. Running times are shown for fixed &y > 0, and logarithmic terms are omitted.

3.1.2 Fractional packing

The special case where the functions g. (c € C) are linear is often called the FRAC-
TIONAL PACKING PROBLEM (although sometimes this name is used for different prob-
lems). For this special case faster algorithms using unbounded block solvers are known.
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Plotkin, Shmoys and Tardos [1995] require a strong block solver and at most
0(e7%p|C|(log|R| + &™) calls to the block solver to solve the feasibility version
(where A* = 1 is known). The algorithm of Young [1995] needs O(e~2p|C|(1 + &)?
In|R]) calls to a weak block solver. Charikar et al. extended the result of Plotkin,
Shmoys and Tardos [1995] to weak block solvers resulting in O(¢ ~2p|C|(1+&)? log(p (1 +
g)e 1)) oracle calls.

Bienstock and Tyengar [2006] managed to reduce the dependence on € from O(£7?)
to O(e~!). Their algorithm does not call a block solver, but requires the resource con-
sumption functions to be explicitly specified by a |R| x dim(B,)-matrix G. for each
¢ € C. So their algorithm does not apply to the general MIN-MAX RESOURCE SHAR-
ING PROBLEM, but to an interesting special case which includes the MAXIMUM CON-
CURRENT FLOW PROBLEM. The algorithm solves O(¢~!'\/Knlog|R|) separable con-
vex quadratic programs, where n := ) _.dim(B;), and K := max | <;<|R| > cec ki, with
k{ being the number of nonzero entries in the i-th row of G..

block solver running time
Plotkin, Shmoys and Tardos [1995] || strong, unbounded | O(e~2p|C|6)
Young [1995] weak, unbounded | O(e72p|C|0)
Charikar et al. [1998] x weak, unbounded | O(£72p|C|0)
Bienstock and Iyengar [2006] — O(e~! \/HTQP)
our algorithm weak, unbounded | O(e~2p|C|6)
our algorithm weak, bounded | O(£72|C|0)

Table 3.2: Approximation algorithms for the fractional packing problem. Entries with x
refer to the feasibility version (A* = 1). Running times are shown for fixed & > 0, and
logarithmic terms are omitted. Tpp is the time for solving a convex separable quadratic

program over B, X ... X Bc‘c‘.

3.1.3 Our Results

We describe an algorithm for the general MIN-MAX RESOURCE SHARING PROBLEM.
It uses ideas of Grigoriadis and Khachiyan [1996], Young [1995], Albrecht [2001a,b],
and Vygen [2004]. The same algorithm and a quite simple analysis yields two re-
sults: With a weak unbounded block solver we obtain a running time of O(|C|0p(1 +
€0)*log|R|(log|R|+€72(1+&))). This generalizes several results for the linear case
and improves on results for the general case for moderate values of p. With a weak
bounded block solver the running time is O(|C|0(1 + &)*log|R|(log|R| + e~ 2(1 +
€0))). This improves on previous results by roughly a factor of |C| or |R].

We incorporate a speed-up technique that drastically decreases the number of oracle
calls in practice. We generalize the randomized rounding paradigm to our problem and
obtain an improved bound. For experimental results, we refer to section 4.9. It turns
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out that instances from current chips, with millions of customers and resources can be
solved efficiently in practice.

Remark. Consider the instance where |C| = 1, ¢ € C is the only customer, g. is the
identity function, and B, the convex hull of the unit vectors y(r), r € R\ {r*}, where
r* is a special resource which is not used by any of the feasible solutions b € B, for c.
This corresponds to s-z-flows in the digraph containing only parallel arcs (s,#) of unit
capacity. We call this example the parallel-arc example.

In this example the only (near-) optimal fractional solutions are convex combinations
of (almost) all of the |R \ {r*}| vectors. Thus the running time of any algorithm that
outputs an explicit convex combination will depend at least linearly on |R|. Moreover,
any algorithm that has access to B, only via the oracle does not know r* and hence needs
at least @ oracle calls for an approximation ratio of 2. To get a speed-up we need some
bound on p, or a bounded block solver.

3.2 A Sequential Algorithm

Our algorithm will perform a number ¢t € N of phases, in each phase finding a near-
optimum element b € B, for each ¢ € C w.r.t. resource prices which we will define
below depending on cumulative resource utilizations of all previously found solutions
for each customer. For each ¢ € C and b € B, it counts in a variable x.; how often
solution b has been selected for customer c. In the end these variables, divided by #, will
provide the coefficients of a convex combination of elements b € 3. for each customer
¢ € C in a near-optimum solution to (3.1).

Our algorithm maintains a variable o, for each r € 'R which at any point in time
before dividing the x-variables by 7 at termination stores the sum

Z Z xc,bgc(b)

ceC \beBe r

of utilizations of resource r by the solutions selected so far. Although we will call
o = () ,er the vector of current resource utilizations, because of convexity of the
resource consumption functions it is an upper bound on resource utilizations

Z 8c Zxc,bb
ceC beB.

by the corresponding convex combinations (scaled by >, - x. ;) for each customer ¢ €
C. We define resource prices that depend exponentially on given resource utilizations:
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Definition 3.1. Let y € [RZS be a vector of weights with W, > 1 for each r € R, and let
& > 0. We define resource prices by y, : R — R4 with

yr(C) = Wreszc

for each resource r € R with utilization { € Ry.

The weights y € [R7+2 will not affect the optimality guarantee given by our algorithm,
and will increase worst-case runtime only by a factor log ¥, where ¥ := Y orer Wr
In practical applications one can achieve considerable runtime reductions by weighting
resource prices, having to accept an increase of the worst-case bound by only a very
small (constant) factor (see section 4.7.1).

For each ¢ € C, we assume to have lower bounds /. € [RE on resource consumption,
i.e. satisfying (I.), < (g.(b)), for each b € B, and r € R. We can set (I.), = 0 for
all ¢ and r without affecting the worst-case running time, but better lower bounds are
essential for obtaining good running times in practice.

The algorithm is shown on page 51. Of course x is not stored explicitly, but rather
by a set of triples (c, b, x, ;) for those ¢ € C and b € B, for which x; > 0. Also @ does
not need to be stored explicitly, but is computed on-the-fly from o and L := 3" ./,
which is computed once during initialization.

We will call the outer iterations (p = 1,...,¢) of the algorithm phases. To simplify

notation we assume C = {1,...,k},k € N. Let Oc(p’c), cb(pvc), aﬁf’), zﬁf’) and ¢§”) denote
the respective values of o, @, a., z. and ¢, at the end of the c-th inner iteration within
the p-th phase (c€C, p=1,...,t). Let aP) .= a(Pk) be the resource utilizations at
the end of phase p. We write aP0) .= gp=1) etc., and a0 is the value of « after
initialization.

From a theoretical point of view, it makes no difference if the block solvers are
called with resource prices

® = (yr(max{e, 0" " +L,})) r (3.2)

in phase p (1 < p <1), or with (y-()), - With the latter choice however, in early
iterations of the algorithm prices of resources which are shared by many customers are
extremely small for the first customers that are processed. Making use of our knowledge

that resource prices will be at least (y, (Ocr(p - +L,)), p atthe end of phase p (1 < p <

t) can help the algorithm to converge faster towards optimality in practice.

Remark. In many applications, L, > 0 only for a very small number of resources r € R,
and of course storing Ocr(p Vs necessary only for these resources to compute the maxi-

mum in (3.2). If there are many resources r € R with L, > 0, it might be preferable to use

resource prices (y,(max{ ., pL,})) ;e instead of (vr(max{ o, o" VL, 1) rer 1O
save memory (and memory bandwidth).
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RESOURCE SHARING ALGORITHM

Input : An instance of the MIN-MAX RESOURCE SHARING PROBLEM, i.e.,
finite sets R and C, and for each ¢ € C an oracle function f, : IRZS — B,
with the property ®" g.(f.(®)) < (1+ &) opt.(®) for all @ € R’ and
some & > 0. Lower bounds /. € [RE for each customer ¢ € C, and
weights Y, > 1 for each resource r € R. Parameters €, > 0, & > 0, and
treN.

Output: For each ¢ € C a convex combination of vectors in 3. , given by
> beB, Xebb. A cost vector ® € IRZS.

Set o, ;=0 foreachr € R.

Set x.p := 0 foreachc € C and b € B..
Compute L:=5 " 1.

for p:=1tordo

L foreach c € C do

| AllocateResources(c).

ceC

Set x.p 1= %xqb for eachc € C and b € B,.
Set @, :=y,(a,) for each r € R.
Return (x, ).

Procedure AllocateResources(c € C):
begin
Let @ € [Rl2 with @, := y, (max {ocr, Otr(pfl) —|—Lr}> forr e R.
ifp=lor®a.>(1+¢)(zc+(1+&) (@l — ¢.)) then
Set b, 1= f.(®).
Set a. := g¢(be).
Set z.:= @' a,.
Set ¢, :=@D"I..
Set x. p. :=Xxcp,+1and & := a +ac.

end
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3.2.1 Analysis

The first Lemma provides us with a lower bound on the optimum value of (3.1).
Lemma 3.2. Let w € [Riz be some cost vector with @' 1 # 0. Then
ZCGC Optc(a)) < AF
(OXNIE -

Proof. Let 6 >0 and (b € Be)cec With max,er D .co(8c(be))r < (1+6)A*. We
have

2eccOPL(®) _ Yeec@'8e(be) _ 07 (148)A"1
o'l - o'l o1l

= (1+8)A".
O

Lemma 3.3. Let (x,®) be the output of the RESOURCE SHARING ALGORITHM, and

lr = Z 8c Z xqbb

ceC beBB,

r

and A := max,cr A,. Then

1 1

A< —MI) 2 < —In(0'1).
&t &t

re’R

Proof. The first inequality is trivial. Using the convexity of the functions g. we have

forr e R:
5 3 SEMCAVIEED 9 DT G IErs
ceC beBB, p 1 ceC
We thus get
A< —lnz 80 < an y,e2% = — (a)T]l),
rer rer
proving the claim. O

We can now bound the approximation ratio guaranteed by the RESOURCE SHARING
ALGORITHM for fixed parameters €1, & and ¢ (and & implicitly given by the block
solvers):

Theorem 3.4. Let A € R with g.(b) < Al for c € C and b € B,. Let &,&; > 0 and
& > 0. Let € := £ (e2M — 1)(1+ &) (1 +&). Assume that €'A* < 1, where A* is the

/

optimum value of (3.1). Lett € N and & .= 188% 5+ 811;‘;'* Then the RESOURCE

SHARING ALGORITHM computes a - approxzmate solution to (3.1).




3.2. A SEQUENTIAL ALGORITHM 53

Proof. By construction we have x., > 0 forall b€ B.and ), B.%c» = 1. Hence we
have a convex combination of vectors in B,.
We will consider the term (®(?)) "1 for all phases p, where ®”) := o(?/I°) and

= o )
reR

for 0 < k < |C|. Initially we have
(@)1 = . (3.3)
We can estimate the increase (@) — (=) "1 as follows (1 < p <1).

1

C c— ( ) Cc— Cc—
w£p7 ) S w}g]% 1)eez(acp )r S w,(p7 1) +X(€£2A_ l)w’(p/ 1)<a£p))r (3.4)
for each r € R because (a.)f < Aforr € R, oA <1, and &* <1+ xf0r0§x§
&A. We get
1
T —1)\T &A ~(pc—1)\T .(P)
(@71 < (oY) L+ (e —1)> (@) Tal, (3.5)

ceC

as clearly @P<=1) > @pe=1),
Next we observe that for each ¢ € C we have

(@) < (1+e) (&) + (1 +e) (7<) 1 9")) (6
and
2+ (1+e) (@) 1= 9”) < (1+e)opt (@< ). 37)

Both inequalities are evident if the oracle f, is called in phase p and
P = (@) g, (fc( (pc— 1))) = (@) (a,)?)

and q)ép ) = (@@<=1)"I.. Inequality (3.6) also holds in the other case, i.e. if at? =

D ¢C(p ) = q)c(p —1) , and zép ) = zﬁp -l . Inequality (3.7) continues to hold when ¢, and
Zc remain constant and the prices @ increase, because (I.), < a, for each a € A, and
reR.
By combining (3.5), (3.6), and (3.7), and using that the monotonicity of @ implies
opt. (@<~ 1) < opt (@7 IN), we obtain:

(@)1 < (@7 D)1+ &> opt (@PID) (3.8)

ceC
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where &' := 1 (28 — 1) (1 + &) (1 +&).
Now we use that @€ = (7€) because o(P~1) + L clearly is a lower bound on
Oc(f’), and get

(0")T1 < (@P~)T1 + g’Zoptc(a)(p)). (3.9)
ceC

By Lemma 3.2

10— LeccoPt(0)
b (@P)T1

(3.10)

is a lower bound on the optimum value A* of (3.1). As &’ ll(bp ) < €/A* < 1, inequality

(3.9) yields

(0P)71 < 1_2%*(w@—1>m. (3.1D)
Combining (3.3) and (3.11) we get:
1 * ! /19 % /19 %
@)1 < o =¥ (1T ) S wEATA Gy

as 1 +x < e for x > 0. Lemma 3.3 and (3.12) yield:

1 te' ¥
< — —_— . .
S e Twm ] < 8t(1nl1!+(1_8%*>) G3.13)

ceC beB. r 2

We now show how to set &1, & and ¢:

Lemma 3.5. Let A > 1 and 6,6’ > 0. Suppose that we have g.(b) < Al for all b € B,
and ¢ € C and A* < 1. Then we can compute an (1+ &+ 6 + f—;)-approximate solution
in 0((88")~11C|6OA(1 + &) log \P) time, where 8 is the time for an oracle call.

min{1,6/2} andt:— "3A(1+£0)2(1+81)ln‘11-‘

Proof. We choose &) := 7l s and & = 8 min{1,8/2)

[5)
1+&) T 3A(1+g)2(1+€))
1
We have oA < %, e’ < %, and thus e©2% — 1 < ,A (1 + %82/\). We get

e = (e =1)(1+e)(1+er)

& (1+2eA)(1+&)(1+¢)

2min{1,§/2} _ 2min{1,§/2} _ 2
SA(I+e) —  S5(1+g8) =35

IN

IA

and
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We obtain an approximation ratio of

g In¥
§ < Gierm Tan

< (I4+g&)(1+&) (14 2A) <1+3(1i£0)>+%
< (+a) (1+e+d+(1+5)3)+£& (3.14)
— (1+81) 1+€0+g>+£—;
= l+e+5+L.
The claim follows as & < 1. O

Remark. We can alternatively set €] :=0, & := % andt := {%W in the
proof of Lemma 3.5, which reduces the number ¢ of phases which have to be performed
by the algorithm roughly by a factor of 2 for small values of 0 (we do not repeat the
proof for this choice of parameters). In practice however allowing & > 0 offers an
enormous potential for runtime reduction, often even more than a factor of 2, because
in many cases the last solution computed for a customer can be reused instead of calling
the block solver again (i.e. branching into the body of the if-statement in the procedure
AllocateResources). If gy =0 and & = 0, such reuse is possible for a customer ¢ € C
only if the last solution is equal to the vector /. of lower bounds for ¢, which is almost
never the case in practice. Moreover, allowing € > 0 is of advantage for the PARALLEL
RESOURCE SHARING ALGORITHM which we will present in section 3.3.

Together with an iterative scaling of resource consumption functions we get a fully
polynomial approximation scheme (relative to &) for the case that % is bounded. More
precisely:

Theorem 3.6. Let p > 1. Suppose that for all b € B, and ¢ € C we have g.(b) <
PA*1L. Assume a (1+ &)-optimal block solver for some €y > 0. Then a (1+ &)+ €)-
approximate solution can be computed in

0(|C16p (1 + &) log ¥ (log¥ + & 2(1+&)))

time, or

O(IC|6p (1 + &) log|R|(log|R| + & *(1+ &))))

time if >_,cr Wr < |R|¥ for a constant value k > 1, where 0 is the time for an oracle
call.

Proof. We first compute fc((Z)(O)) for all ¢ € C and set

ﬂ,ub := max (gc(fc((b(o))))r'
rerR ceC
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W.lo.g. A*’ > 0 since otherwise we already have an optimum solution. Of course
A* < A" Moreover, by Lemma 3.2 we have

l* > Zcecoptc(d)(()))
- (@O)T1

- (1+so)z ())TJLZ(@(O))TgC(fC(@(O)))
ceC

= Zchfc(D

re’R ceC

A1,

1
> -
- lP(l —|—80)

To make sure that the RESOURCE SHARING ALGORITHM is called only on in-
stances for which A* < 1 is known (allowing us to apply Lemma 3.5 and Theorem 3.4),
we iteratively scale resource consumption functions as follows. For j =0,..., [log, ¥]

we define a new instance /() by setting gg )(b) =2/g.(b)/A"" foreachc € Cand b € B,.

Let A*(/) be the optimum of the 1nstance 1Y), We start with j = 0. We have A+0) <1
We apply Lemma 3.5 with § = §' = § and A = p (note that gg )(b) - }(J; < pxl 2 1<

p1l). Let AU) be the corresponding solution value.
If j < [log, ¥] and A1) < 3, then A*U+1) <1, so we increment j by one and iterate.

if AU > % then A1) < ( +£0)?L*( ) 44 7- Hence 1> A0 > - (A0) — %) >

+€ =
ﬁ. If j = [log, ¥] we have 1 > A*U) > ﬁ In both cases 1 > A*() > 5+1480
We then apply Lemma 3.5 once more, now with & := £ and 6’ := (e + e We get an
approximation guarantee of 1 4+¢&+ 6 + F <l+g+&+ % <Il+g+e.

The total running time is dommated by applymg Lemma 3.5 O(logP) times with
§=¢"=andonce with § = £ and §' = (]+80) and is hence bounded by O(|C|6p (1 +

€)?log¥(e72(1+ &) +1og'P)). a
Sometimes variants of the algorithm can be useful:

« Splitting up a customer, e.g. replacing ¢ € C by two customers ¢’,c¢” with B :=
B =B, and g/ 1= g 1= %gc, does not change the problem. This can be use-
ful if (g.(b)), > 1 for some b € B, and r € R. It can even be done during the
course of the algorithm. Note that the analysis only requires updates of the dual
variables before a resource r is used more than A. Splitting up a customer also
increases the running time by a factor of A in the worst case, but in fact only by
ﬁ > ccemax{l,max{(g.(b)), | r € R,b € B.}}. In VLSI routing, for example,
there are usually only very few customers ¢ € C with max{(g.(b)), | r € R,b €
B.} > 1, so splitting these up in the described way is a viable approach to the
fractional problem. It must be noted however that this can increase the integrality

gap.
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e Parallelize (performing the if-statements of ¢,c¢’ in parallel): Replacing c¢,c’ by
one customer ¢ and setting A; := A, X A and fz := f. X f does not change the
problem. Note, however, that p may increase. Note that this variant updates the
cost function only once for ¢,c¢’. Uniting all customers thus amounts to updating
costs only once per phase.

Remark. Even without an increase of p, this parallelization approach in practice will
not result in good speedups in most cases as the time needed for an oracle call often is
very different for each customer. We present a parallel algorithm for shared-memory
machines in section 3.3, which turns out to be very efficient in practice.

We finally show that if we have a bounded (weak) block solver, we can get rid of p
in the running time bound of Theorem 3.6:

Theorem 3.7. Suppose that we have (1 + &)-optimal bounded block solvers for some
& > 0. Then a (1+ &+ €)-approximate solution can be computed in
0(|C|6(1+&)*log ¥ (log¥ + £ 2(1 +£)))
time, or
0(IC|6(1+ &) log|R|(log|R| +&~*(1 + &)))

time if Y .o Wr < IR|¥ for a constant value k > 1, where 0 is the time for an oracle
call.

Proof. Note that the algorithm is called only for instances where we know A* < 1.

Hence we can restrict B, to B..:= {b € B, | g.(b) < ’lz—bjbjl} in iteration j (in the proof of
Theorem 3.6) without changing the optimum. This means that we can choose A =1 in
Lemma 3.5. With the bounded block solver we can optimize over B.. O

3.2.2 An Example Attaining the Worst Case Runtime

The worst-case runtime obtained in the analysis of the RESOURCE SHARING ALGO-
RITHM provides a tight bound w.r.t. the approximation parameter €. It is easy to see this
by looking at the following instance of the RESOURCE SHARING PROBLEM which re-
quires ®(&~2) phases to compute a (14 & -+ &)-optimal solution to (3.1): Let 0 < £ < 6
and k € N, kK > 2, such that % ¢ N, and consider the instance with

£ C={c}

« R={r,....rs1}

e B.=conv({b;,bs}) with
i) ge(b1):=(1,0,...,0)

ii) gC(bZ) = (07 1771)
iii) ge(aby+ (1 —a)by) :=agc(b1)+ (1 —a)ge(by) for0 <a <1
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For simplicity, let /. := 0 and y, := 1 for each r € R. In an optimum solution clearly
Xepy = Xepys .60 A¥ =0.5. We have A = 1. Now assume & = 0, i.e. we have a strong
block solver. In the final iteration of the binary search procedure in the proof of Theorem

3.6, we start the RESOURCE SHARING ALGORITHM with parameters € :=0 and & :=
min{l,e/6} _ ¢
3A(l+g)? 18
we use the alternative parameters mentioned after the proof of Lemma 3.5). In the

first [%1 = [%1 phases b is the cheapest element in B, so x., = 0 for all b €
B\ {b1}. After the [12127] th phase we have @b, < @by < e2@ by, so starting
with this iteration the algorithm alternatingly picks b and b,. Therefore Q(¢~2) phases
are needed until x. 5, < (1+ 2£)xc7b2, which is a necessary condition for the solution to
be (1+ €)-optimal.

It is important however to note that this example does not preclude existence of an
algorithm with a runtime of O(e~*(|C| +|R|)0) with k < 2. Indeed, as mentioned in
section 3.1, Bienstock and Iyengar [2006] showed that a runtime proportional to £~ is
possible for the fractional packing problem (i.e. all g, ¢ € C restricted to linear func-
tions), although, as they rely on quadratic programming, their runtime is not bounded by
a linear number (w.r.t. |C| + |R|) of calls to a block solver. Klein and Young [1999], on
the other hand, showed that there are instances of the fractional packing problem which
require at least Q(£72) calls to a block solver by any algorithm that accesses the sets

B, (c € C) only indirectly by calling a block solver. However, their proof is restricted

to instances with pe =2 = O < |R|>, so they do not make a statement for an arbitrarily

small € > 0 with fixed |R| and p.

in order to obtain an (1 + &)-optimal solution (for simpler calculation

3.3 Parallelization

In this section we present a lock-free and non-blocking parallel resource sharing algo-
rithm for shared-memory machines. Unlike in distributed algorithms running on in-
dependent machines and using message passing protocols for synchronization, in the
shared-memory model all processors have direct access to the same physical memory.

The conventional method for synchronizing concurrent access to shared memory
locations is mutual exclusion: All so-called critical sections of the program code that
potentially change the content of a memory location (or a set of memory locations) not
privately owned by one thread first has to acquire or lock a token, called mutex, in order
to be allowed to do so. The mutex is shared among all threads and can be locked by
at most one of them at a time. Therefore if a thread tries to acquire a mutex which is
locked by another thread, it has to wait until the mutex is released or unlocked again.
This imposes several problems:

* Preemption: If a thread is delayed and holds a lock that other threads are waiting
for, these threads are delayed also. If they in turn hold locks, transitively even
more threads are blocked. This is termed lock convoying in literature. Reasons
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for such delays include e.g. scheduling by the operating system or page faults (i.e.
swapping).

* Priority Inversion: If threads have different priorities, and a low priority thread
currently holding a lock is preempted, threads with higher priority are stalled.

* Deadlocks: Implementations of parallel algorithms based on mutual exclusion
are susceptible to deadlocking, i.e. a circular dependency between threads trying
to lock mutexes currently owned by other threads. Much care has to be taken to
guarantee that such situations cannot occur.

Of course these issues are of different importance in different areas. In our case we are
concerned mainly about performance degradation due to preemption of threads (pre-
suming that a proof of impossibility of deadlocks in our case would be possible). In
contrast, so-called real-time systems that guarantee response times for completion of
certain operations preclude use of mutual exclusion for synchronization.

In addition to the preemption problem, there are more reasons why synchronization
by mutual exclusion can cost performance: Standard mutex locking implementations as
e.g. provided by the Pthreads library (cf. Nichols, Buttlar and Proulx Farrell [1996])
incur a large overhead for operating system calls and, if trying to lock an already locked
mutex, for suspending and resuming thread execution. If the code section protected by
the mutex takes very short time to complete, e.g. if just some shared counter variable is
incremented, this overhead is enormous.

In such cases, so-called spin locks improve performance drastically: A spin mutex
consists of a binary variable whose value is, say, 0 if it is not locked, and 1 otherwise.
A thread that wants to lock a spin mutex basically loops (spins) until the variable is
zero and then sets it to 1 to declare that it acquired the lock. To avoid that two threads
concurrently see a value of zero and set it to 1 (both thinking they acquired the lock),
practically all modern microprocessors provide machine instructions for atomically, i.e.
uninterruptably, test if a variable contains a certain value (0 in this case) and, if the
answer is positive, set it to a new value. For example, Intel and AMD x86 processors
provide such a compare-and-swap (CAS) instruction. Other architectures, e.g. Pow-
erPC, provide a stronger (also non-blocking) mechanism by a pair of load-link and
store-conditional (LL/SC) instructions. We will explain CAS and LL/SC instructions in
more detail below. Acquiring a spin mutex is by far cheaper than an operating system
call if the mutex is not currently being held by another thread. If however a thread has to
wait for the lock to be released, it consumes CPU time because it performs a loop until
the mutex is unlocked. This is called busy waiting and is a disadvantage over operating-
system based mutex locking (which suspends the thread in this case) if the time spent
for busy waiting exceeds the operating system overhead. Using spin locks therefore can
be regarded as an optimistic locking approach.

However, even spin locks impose a performance penalty, namely for the following
two reasons:
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1) There are additional variables (the spin mutexes) which have to be read from and
written to. This can degrade performance if many resources (variables) shall be
lockable independently from each other — in this case a new variable has to be
introduced for each variable to be locked.

ii) Mutual exclusion constrains ordering of memory accesses. Because processors
become increasingly faster compared to system memory, performance can be
drastically improved by reordering memory accesses. Guaranteeing mutual ex-
clusion, i.e. execution of instructions in a critical code section by at most one
processor at a time, means that all effects of instructions performed by any other
processor in a critical section protected by the same mutex must become visible
(i.e. travel through the cache hierarchy) before a read from memory can be al-
lowed. Unless this point is reached, execution of the corresponding instructions
cannot be regarded as finished by all processors. This means that a so-called
memory barrier must be introduced which prohibits reordering of memory access
operations across it, and delays until memory operations of other threads become
visible. We go into more detail in section 3.3.1

Because of the reasons mentioned above, lock-free algorithms and data structures
are of considerable interest. Following the notion of Herlihy and Moss [1993], a lock-
free algorithm or data structure is characterized by not requiring mutual exclusion. If
a lock-free algorithm at each point during its execution guarantees that within a certain
bounded time at least one thread among those that are not blocked by external influences
(e.g. scheduling by the operating system) will make progress, i.e. perform an operation
that would be necessary also in sequential processing and not only for serving synchro-
nization among threads, it is called non-blocking (see e.g. Herlihy [1990] or Sundell
[2004]). Assuming such external influences, algorithms based on mutual exclusion can-
not be guaranteed to be non-blocking. Going one step further, wait-free algorithms at
any point in time guarantee that each thread not stalled by external influences will make
progress within a certain bounded time. While there are theoretical universality results
(see e.g. Herlihy [1991]) showing that from each sequential algorithm a wait-free algo-
rithm on an arbitrary number of processors can be constructed provided that sufficiently
powerful instructions as e.g. CAS are available, developing practical wait-free algo-
rithms is considerably harder than non-blocking algorithms. We do not go into details
here and refer to Sundell [2004] for an overview.

Boehm [2005] shows a comparison of two parallel implementations of the Sieve of
Eratosthenes, one based on mutex locks provided by the Pthreads library, and another
using spin locks. As expected, the second version performs much better. In addition, a
lock-free implementation is compared, showing even better performance than if using
spin locks, and indeed almost optimum speedups.

There exist many lock-free algorithms and data structures for elementary tasks. For
example, Sundell and Tsigas [2005] show how lock-free concurrent linked lists can be
built upon the CAS primitive. In contrast to an earlier work by Valois [1995], they also
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support concurrent deletions of list items. Michael [2004] presents a scalable lock-free
approach to concurrent dynamic memory allocation. There are also general frameworks
for object-based transactional memory (Fraser and Harris [2007]) that allow atomic ac-
cess to arbitrary objects without resorting to mutual exclusion. See also Sundell [2004]
for an overview.

3.3.1 The Memory Model

Shared-memory computers are becoming more and more standard, with an increasing
number of processors jointly using the same memory. This allows very fast communica-
tion among the processors compared to distributed computing where distinct machines
communicate over a network. Developing a parallelized algorithm of course involves
some synchronization protocol, and for shared-memory machines this requires a mem-
ory model which specifies certain guarantees that can be relied upon, or if not, can be
enforced by using a special kind of synchronization instructions. This is particularly
important as with multi-threaded programs, many intuitively correct assumptions on the
ordering in which memory accesses performed by different processors are observed by
other processors turn out to be invalid on modern architectures because of aggressive
hardware optimizations.

Therefore without a memory model specification, it is not possible to reason about
the behaviour of programs executing more than one thread concurrently on a shared-
memory machine. Indeed, the current C++ language standard as e.g. described by
Stroustrup [2000] does not define semantics of multi-threaded programs. However,
many compilers provide high-level (machine independent) access to machine dependent
instructions that can be used to enforce certain ordering restrictions on memory access
and thus, if used correctly, provide sufficient guarantees in order to make a reasoning
about the semantics of a shared-memory-parallel algorithm possible. The designated
next C++ standard, commonly termed C++0x (see C++ Standards Committee [2009]
for the current draft) will define a memory model, specifying some rather weak guar-
antees and providing a set of primitives that can be used to enforce stronger guarantees
where needed. Boehm and Adve [2009] give a comprehensive introduction.

We will not define a complete memory model in this section, but provide enough
background to describe the effects of certain synchronization operations on memory
and the guarantees they provide, which we will use in the correctness proof of our al-
gorithm in the next section. The assumptions that we will make correspond to or are
weaker than the specifications of current microprocessors (see e.g. AMD64 Architec-
ture Programmer’s Manual [2007], Intel®64 and 1A-32 Architectures Software Devel-
oper’s Manual [2009], Power Instruction Set Archtitecture [2009] or SPARC Architec-
ture Manual [2000]). The synchronization operations that we define correspond directly
to machine instructions available on practically all current processors, and are similar to
the synchronization primitives that will become part of the next C++ standard.

We will make a few simplifications for easier presentation which — for our pur-
poses — do not affect validity of the model. First we assume that memory is partitioned
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into equally-sized cells or locations, each of which stores a variable that is read atomi-
cally, meaning that its content does not change while being read. If each variable is also
atomically written (i.e. each write operation has exclusive access to the corresponding
memory location while changing its contents), a read operation thus will always read a
value that was the result of some write operation, and not a mixture of two or more write
operations. We will need atomical write operations only for a special class of synchro-
nizing write instructions which we will define below. However, because our algorithm
will not use non-synchronizing write instructions on variables that are concurrently ac-
cessed by different threads, we can assume atomicity of write operations in general for
simplifying presentation.

Remark. These assumptions are justified in practice by the specifications of current
microprocessors for variables of machine word size that are aligned in memory at ad-
dresses which are integral multiples of the machine word size. All bits of such variables
are read or written in a single step. If not told otherwise by using special commands,
compilers usually adhere to this memory layout for efficiency reasons: An access to an
aligned variable requires only one — atomic — memory access, whereas an access to
an unaligned variable is performed by two or more accesses to aligned locations, which
together appear as a non-atomic (i.e. interruptible) access. In our algorithm, we will
use only variables of machine word size. Each memory location in our setting therefore
corresponds to a machine word.

We distinguish between instructions and operations, which correspond to instruction
executions by some processor. In the following, let m € N be the number of memory
locations.

Definition 3.8. We define 1. as the set of instructions that read from memory location i,
and 1}" as the set of instructions that try to write to memory location i, 1 <i <m.

We write 1" := Uj<j<nZ] and 1" := Ui <i<n I}, and define T* as the set of all other
instructions.

Note that Z"NZ" # () (see below). A program text or program is a sequence
(Iy,...,I,) of instructions (n € N). When executed, each instruction besides its pri-
mary purpose determines a next instruction to be executed. We assume for simplicity
that execution starts with I} and call the resulting sequence (/ PIRTEY | pk) athread, k € N,

p1=1land py,....,pr €{1,...,n}.
Remark. In practice, p;j+1 = pj+ 1 unless I;,; is a special jumping instruction used for
implementing loops, conditional branchings or function calls (1 < j < k).

For simplicity we assume IT threads running in parallel on II processors throughout
the execution of a program, for some II € N, and each thread is bound to a processor
whose number 1 < 7 < IT initially is stored in one of its registers.

Even for identical input, the instruction sequences defining each thread can be differ-
ent in each execution of a program if I1 > 1 (if I = 1, this is normally not the case). The
reason for this is that in a multi-threaded program execution, a thread may read from
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memory locations other threads write to, so it can depend on relative thread execution
speeds which values are read. Each instruction in a thread performs an operation:

Definition 3.9. Let P be a program and I1 € N a number of processors. An execution of
P on 11 processors is defined by its threads

(IT,...IF) € (T'UT*uT")*

concurrently executing a set of operations

0= U {Ufm D) (U mkn)}

1<n<II
and a reads-from mapping
if : {(l,m,x) € O: 11"} - {(I,m,x) € O:1€TI"}

defining for each read operation o, € O a unique o,, € O that writes to the same memory
location and whose output is read from o,.

Remark. Note that by the above definition we preclude programs that can have execu-
tions in which a value is read from an uninitialized memory cell.

In the following, let (O, rf) be a program execution. We define O} € O as the set
of all write operations and O € O the set of all read operations on memory location i
performed in (O, rf), 1 <i <m, and we have O" := U <<, O and O" := U; <<, OF.
Finally, O* := O\ {O"UO"} is the set of all other operations.

With a few important exceptions, the operations in O* will not be relevant in our
memory model considerations. They include e.g. arithmetic operations, i.e. all opera-
tions that do the actual work performed by an algorithm, or operations that move data
among a set of processor registers privately owned by the same thread. We assume that
memory is the only means of communication between threads, i.e. without using read or
write operations, no operation o € OF has an effect observable by any other thread (ex-
cept fence and barrier operations defined below). In particular, this means that we dis-
allow operations that move data between processor registers owned by different threads
running on the same processor.

Remark. Besides moving data between processor registers, different threads can also
influence each other by inferrupt instructions, not necessarily writing to memory. How-
ever, we will not use such instructions.

Instruction Reordering and Pipelining

Modern processors actually do not execute the instructions of a thread sequentially. A
processor usually has several units for performing arithmetic operations, instruction de-
coding or memory operations, respectively, which are used in parallel. Further, pipelin-
ing leads to temporally overlapping instruction executions. However, the semantics of
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instructions are specified sequentially, i.e. within a thread instructions appear to be exe-
cuted sequentially in an order conforming to the specification of each instruction which,
as mentioned above, based on its input determines a next instruction to be executed
(we do not go into details here as this would go beyond the scope of this work). The
instruction sequence of each thread corresponds to this program order <pro:

Definition 3.10. For o1 := (I}, 7,x1),02 := (b, T, x2) € O with x; < X2 we write 01 = prog
07 and say that oy precedes 0, in program order.

The partial execution order <exec defines when operations performed in the same
thread are actually executed relatively to each other:

Definition 3.11. For 01,0, € O performed in the same thread (i.e. 01 <prog 02 OF 02 <prog
01), we define the partial execution order < yec by 01 <exec 02 iff execution of oy finishes
before execution of o, starts.

The processor guarantees that, if executed w.r.t. the partial order <exec, all opera-
tions perform identically as if executed in program order <prog. In a simplified view, if
01 <prog 02 and 0, depends on the outcome of 01, 03 is guaranteed to be executed after
o01. For example, for r € O and w € O} for some 1 < i < m, this enforces

W <prog I' < W <exec I (3.15)

Similarly, of course
r "<pr0g W<=r {exec w (3.16)

is guaranteed for r € O] and w € O}

Remark. This is a simplification for two reasons: Even if 0, depends on the outcome of
o1,

1) there are cases in which the outcome of o0; is known already before o; finishes
(e.g. if 01 writes to a memory location which 0, subsequently reads from, o, can
start already before the content of the memory cell is actually overwritten), and

1) o might be speculatively executed before 01 (03 <exec 01) Or concurrently with
01 (01 Aexec 02 and 07 Aexec 01), gUessing a certain outcome of o;. If o] produces
a different outcome, either o, is executed again, or — in case of a branch mispre-
diction — the outcome of 0 is discarded and program execution continues in a
different branch.

For the sake of simplicity, we do not go into further details. See Hennessy and Patterson
[2006] for a thorough introduction to modern processor architectures.

The important consequence is that the program order <pog Of operations can be
assumed only from the point of view of the respective thread, and some intuitively
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correct deductions are invalid for multi-threaded programs. For example, while the
condition that

rf(r1) #wo forall ri,ro € O",wi,wa € O" 1 11 <prog Wi,72 <prog W2,7f(12) = wi
(3.17)
is satisfied by (3.15) and (3.16) if all four operations are performed in the same thread,
it is not necessarily true in general: Assume that r;,w; in (3.17) are executed in thread i,
respectively (i € {1,2}). Now it is possible that w| <exec 71 and wp <exec 12, 80 1f(r1) #
wy becomes possible. This example demonstrates that in multi-threaded programs a
“happens-before”-relation defined by <poe and the reads-from mapping 7f can contain
cycles or contradictions because reading from and writing to a memory cell concurrently
by different threads adds dependencies that are not considered by a processor when
reordering instructions.
In order to make it possible to write correct multi-threaded programs despite instruc-
tion reordering, so-called fence instructions Z/ C Z* are provided for enforcing program
order where necessary:

Definition 3.12. Let O/ := {(I,7,x) € O : 1 € T/} be the set of fence operations in the
program execution (O, rf). Then

01 <prog f =prog 02 => 01 <exec S <exec 02

forall oy, f,0, € O.

Of course executing a fence instruction means a performance penalty as fences limit
concurrency within the same thread, so they should not be used more often than neces-
sary for guaranteeing correctness. For example, as each locking and unlocking operation
in mutual exclusion based parallelization approaches involves a fence to guarantee that
operations working on a shared variable are not reordered out of the critical section,
much performance can be lost with fine-grained locking.

Remark. Aside from the processor, also compilers that generate machine code from
source code written in a high-level language like C++ can order instructions in the re-
sulting machine code in a way that does not correspond to the original source code. If
the language does not define a memory model for multi-threaded programs, equivalence
can be guaranteed only for single-threaded programs (and indeed is not guaranteed by
current C++ compilers for multi-threaded programs). However, most C++ compilers
provide some means to suppress compiler reordering across a certain point in the source
code.

Caching and Non-Uniform Memory Architectures

In order to mitigate the increasing gap between processor speed and main memory
speed, increasingly deep cache hierarchies are used. A cache is a fast buffer mem-
ory that speeds up access to memory locations that have already been queried earlier, or
are located close to memory locations already queried. If the processor performs a read
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CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8
| L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache |
| L2 Cache | | L2 Cache | | L2 Cache | | L2 Cache | | L2 Cache | | L2 Cache | | L2 Cache | | L2 Cache |
| | | |
| L3 Cache | | L3 Cache |
Memory Controller Memory Controller
Memory Memory

Figure 3.1: Non-uniform memory architecture (NUMA) with a typical cache hierarchy

from a memory location that has not been loaded to the cache yet, a whole cache line
(e.g. 64 bytes on current Intel x86 processors) is loaded from the next cache level closer
to memory, or from memory itself. Three cache levels are common in today’s systems,
and there are even systems with four cache levels as intermediary between processor
and main memory, with caches becoming smaller but faster the closer they are to the
processor in the hierarchy. We do not go further into details here, see e.g. Hennessy and
Patterson [2006]. Caches are often shared between subsets of processors. Additionally,
in so-called non-uniform memory architectures, memory is partitioned, and each part
bound to a group of processors (see figure 3.1 for an illustration). Although all proces-
sors may access all memory locations, accesses to different memory parts may take a
different amount of time. Because of this, and the cache sharing mentioned above, re-
quiring write operations to be observable by all processors in the same order can mean
a considerable performance penalty.

We say that a memory model provides local view order consistency if it guarantees
that in any program execution (O, rf), write operations to the same memory location
1 <i < m cannot be observed in different orders on different processors, i.e.

£r17r27r/17r/2 € Olr D11 <exec r27r/1 <exec rlzarf(rl> #rf(rz),

if (r1) = 1f(r3) and 1f (r2) = rf (r}).

Remark. AMD and Intel x86 processors provide a considerably stronger memory model
than other architectures. In contrast e.g. to the PowerPC architecture they guarantee
condition (3.18) (see e.g. AMD64 Architecture Programmer’s Manual [2007], Intel®64
and TA-32 Architectures Software Developer’s Manual [2009] and Owens, Sarkar and
Sewell [2009]).

We cannot rely on local view order consistency in general, but we will enforce a
slightly weaker form of it in the algorithm which we present in section 3.3.2 by using

(3.18)
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certain synchronizing write instructions (defined below) for writing to variables that
are concurrently accessed by different threads. Assuming thus that local view order
consistency holds, let <. be the smallest ordering relation on @" which for each
memory location contains a total order of write operations to this location and

1f(r1) <cen 1f(r2) or rf(ry) =rf(rp) forany ry,rp € O with r| <exec 72,  (3.19)

1.e. write operations on different memory locations are not ordered w.r.t. each other
by <cen- For convenience we will write w; =.e; w2 in the following iff wi = wy or
W1 <cell W2.

The stronger condition of global view order consistency requires that local view
order consistency is guaranteed, and additionally

ro . / /
/Brlar27r17r2€or D1 <exec 12,7 <exec s

rf<r2) =ecell rf(rll) and rf(r/z) =cell ’f(rl)

holds for any program execution (O,rf), i.e. no pair of write operations to the same
or different memory cells can be observed in different orders by any processors. This
condition is not even guaranteed by the x86 architecture.

(3.20)

Remark. Intel x86 processors, in contrast to the AMD x86 architecture, guarantee a
restricted version of (3.20) for read and write operations that are performed on different
processors (see Owens, Sarkar and Sewell [2009] and section 8.2.3.7 of Intel®64 and
IA-32 Architectures Software Developer’s Manual [2009]). However, both architectures
do not guarantee this condition in general, as they allow an early read of a value written
to memory by the same processor, before it becomes visible to other processors (called
Intra-Processor Forwarding in Intel®64 and IA-32 Architectures Software Developer’s
Manual [2009]).

We now define synchronizing write instructions (denoted 2" C 7") and synchro-
nizing read instructions (denoted Z"™* C 7") in terms of the guarantees they provide:

Definition 3.13. Let O C O be the set of write operations in a program execution
(O,1f) that perform a synchronizing write instruction, and analogously O™ C O" the
set of synchronizing read operations.

Let 1 <i<m. If O C O, then

Ari,ra, v, rh € OFNO™C 2 r| <exee 12,1} <exec Ty, 1f(r1) # 1f(r2),
tf(r1) = 1f(r}) and rf(ry) = rf(r}).

Note that the difference between (3.18) and (3.21) is that the latter guarantees local
view order consistency only for synchronizing read operations. So even if all write
operations on a memory location are synchronizing, non-synchronizing read operations
on this location performed by different processors might still observe different orders.
We will only use synchronizing write instructions for variables accessed by different
threads, so we do not require (3.18), but can rely on (3.21) and therefore from here on
restrict (3.19) to ry,r, € O™ in the definition of <] for memory locations accessed
by more than one thread.

(3.21)
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Remark. Synchronizing read and write instructions are often referred to as atomic in-
structions. We prefer the term “synchronizing” to distinguish between the synchroniza-
tion aspect (i.e. an ordering agreement between processors) and atomicity in the sense
that a read operation always reads the value written by some write operation, and never
a mixture of bits written by two different write operations.

In order to enable the programmer to enforce certain visibility conditions where
needed, current processors offer so-called barrier instructions which impose an ordering
of memory access operations on either side of a barrier operation w.r.t. program order
~<prog- There are two types of barrier instructions, acquire barriers (denoted 294 C
T*) and release barriers (denoted 7™ C T%), which provide the following guarantees
(again assuming that only synchronizing write operations are used on memory locations
accessed by different threads):

Definition 3.14. Let 0“4 := {(I,m,x) € O : I € 1%} be the set of acquire barrier
operations in a program execution (O,rf), andlet 1 <i< j<m, r| € O;Sy ", e Ol
wi € Olwync and wy € (’)}”ync. If 11 <exec 12 and w1 <prog b <prog wo for some b € O,
then

w2 Reen f(r1) = wi Zeen tf(r2) (3.22)
is guaranteed to hold.

L.e., if a synchronizing read operation r; performed on any processor reads the value
written by some write operation wy (or a newer value w.r.t. <cJ1), any later read opera-
tion (w.r.t. the execution order <qxec) must see the value (or a newer value w.r.t. <cej)
written by an operation wj that “happens before” w; w.r.t. the ordering constraint intro-
duced by the barrier.

Similarly, release barriers provide the following guarantee:

Definition 3.15. Let O := {(I,m,x) € O : 1 € ™'} be the set of release barrier op-
erations in a program execution (O,rf), and let 1 <i< j<m, r; € O, r, € O/,
w € O;Vsync and wy € Oysync. If 11 <exee 12 and wi <prog b <prog w2 for some b € orel,
then

I‘f(rz) <cell W1 = rf(rl) = cell W2 (3.23)
is guaranteed to hold.

Note that these guarantees are provided also for non-synchronizing read operations
on the right-hand side of (3.22) and (3.23), respectively. We shall see that this will
allow us to restrict the use of synchronizing read operations, which may be more ex-
pensive than normal read operations on some architectures, to a small subset of variable
accesses.

Remark. The commonly used names acquire barrier and release barrier match the
fact that a barrier of the corresponding type is necessary in mutual exclusion based
algorithms when acquiring or releasing a lock, for the reasons sketched at the beginning
of section 3.3. Barriers are also called memory fences sometimes. Most processors
provide also full barrier instructions which act both as an acquire and a release barrier.
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Sequential Consistency

A widely adopted notion of consistency for multi-threaded programs is sequential con-
sistency, first stated by Lamport [1979] as the requirement that

“the result of any execution is the same as if the operations of all the pro-
cessors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its
program.”

We do not define this formally as we will neither assume nor enforce sequential con-
sistency in our algorithm. Although sequential consistency can make correctness proofs
easier for multi-threaded programs, it does not imply correctness of a multi-threaded
program if correctness has been shown for sequential executions. The reason for this is
that the sequential order mentioned above might result in an interleaving of operations
that cannot appear in any correct sequential execution. Examples for this are e.g. pro-
grams that have to update two memory locations atomically. Because ensuring sequen-
tial consistency causes considerable performance losses in practice, modern processors
provide only much weaker guarantees and leave it to the programmer to strengthen them
by using fence and barrier instructions as needed.

Atomic Addition

We will need to concurrently perform additions
i=i+]j

by different threads on the same variable stored in memory location 1 < i < m (for
convenience, we use variables and memory locations synonymously). This involves
performing read instructions r; and r; to load the current values stored in memory cells
i and j to some processor registers R and R», respectively, then adding the values in R
and R, and finally writing the result back in a write operation w; to memory location i.

Even if synchronized read and write operations are used, two threads might concur-
rently read the same value x € R from location 7, calculate x4+ A and x4 A;, respectively,
for some values A1, A, € R and write their respective result back to memory in some or-
der, so at the end memory location i contains x + Aj or x + A, but not x +A; + A,.

One solution to this problem is to prevent other threads from accessing memory
location i between execution of the read and write operations. This would mean mutual
exclusion, however, with all disadvantages mentioned above. Modern processors offer
a better solution, either by a compare-and-swap instruction (CAS), or a load-link and
store-conditional instruction pair (LL/SC), which we already sketched at the beginning
of section 3.3.

The CAS instruction takes a memory location 1 <i < m and two processor registers
Rp and R; as input. By calling CAS(i, R;, R») the value stored in R; is written to
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memory location i if the values stored in memory location i and in R are equal; other-
wise the instruction has no effect. In the first case we say that the operation is successful,
and unsuccessful otherwise. Checking the condition and writing to memory in case of
success is performed atomically, which means that

i) no other thread can read from or write to memory location i during execution of
the CAS instruction, and

ii) the CAS instruction cannot be preempted, i.e. thread execution can be suspended
only before or after, but not during execution of the CAS instruction, so even
though it forbids other threads to read from or write to memory location i for
some time, it is non-blocking.

The CAS instruction both reads from and (if successful) writes to memory location i. It
is also a synchronizing instruction, so CAS € Z™" N "¢ For convenient notation,
we denote by val(w) the value written by a write operation w, and synonymously use a
processor register R to refer to the value stored in it.

An AtomicAddition procedure can now be implemented by iteratively reading the
value stored in memory location i, perform the addition in the processor registers, and
trying to write the result back with the compare-and-swap instruction until it succeeds:

procedure AtomicAddition(i,A)
Requires: A memory location 1 <i < m, and a value A € R, given in some
processor register R
Assures : Exactly one write operation w is performed that has an effect on
memory. Returns val(w) and guarantees that val(w) = val(w’) + A,
where w' is the last write operation on i before w w.r.t. the ordering

=cell-
1 repeat
2 Sync_Read(i, Roiq). /* Synchr. read of memory location i to register Rqg */
3 Set Ryew := Rola + R. /* Perform addition and store result in Rpew */
4 until CAS(i,Ryjq, Rpew) = “Success”.
5 return Ry .

For each unsuccessful CAS operation in an iteration k > 2, by definition 3.13 another
thread must have written to memory location i after the CAS operation performed in
iteration kK — 1 w.r.t. the < 1 order. This means that if one thread is busy waiting, i.e.
spinning in the loop of the AtomicAddition procedure, there is some other thread that
makes progress. AtomicAddition is therefore non-blocking, but of course not wait-free
because the number of iterations of the loop cannot be bounded.

Remark. It is not precluded that in a (final) successful iteration other threads change the
content of memory location i from some value a to another value b and then back to a
again between the Sync_Read and the CAS operation, still allowing the latter to succeed.
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This can lead to problems commonly known as ABA problems in literature if the content
of memory location i does not define the complete state of a shared object and thus
atomically updating i does not guarantee the entire object to be in a consistent state.
Valois [1995] illustrates this problem in detail for a lock-free concurrent linked list data
structure, and shows how the ABA problem can be circumvented, allowing lock-free
concurrent linked lists to be implemented on the basis of CAS. In our case, the entire
object or variable is stored in memory location i, so AtomicAddition is not susceptible
to the ABA problem.

Some processor architectures, e.g. PowerPC, provide a stronger mechanism than
CAS by a pair of load-link (LL) and store-conditional (SC) instructions. Like CAS, both
of them are synchronizing instructions. A load-link operation establishes a reservation
for the memory location it reads from. Reservations for the same memory location
can be established by different threads simultaneously. A store-conditional instruction
then checks if the reservation established by the respective thread still exists and in this
(successful) case kills all reservations for this location made by any threads. Therefore
LL/SC instruction pairs do not establish a critical area as mutual exclusion approaches
do, but avoid ABA problems as mentioned above. The only important fact in our case
however is that AtomicAddition can be equivalently implemented by replacing the
Sync_Read by an LL instruction, and the CAS by an SC instruction on platforms where
LL/SC is available, but not CAS. Practically all modern microprocessors provide at least
one of CAS or LL/SC.

As each call to AtomicAddition performs exactly one operation that modifies the
content of the target memory location, we can say that a call a; to AtomicAddition
precedes another call a; w.r.t. < iff the same holds for the corresponding successful
CAS or SC operations, respectively.

3.3.2 A Lock-free Parallel Algorithm for the Resource Sharing
Problem

The approximation algorithm that we presented in section 3.2 — naturally — leaves
some room for suboptimality, which we will use for allowing the block solvers to work
on outdated resource prices in the parallel variant of the algorithm that we are going
to present in this section. A certain tolerance of volatility in resource prices will be
essential as price increments caused by resource allocations made in one thread are
seen with a delay by other threads, and of course two threads might also decide at
the same time to use some resource for different customers. Because local view order
consistency might be provided only for synchronizing read operations, resource prices
seen by non-synchronizing read operations might not even be guaranteed to be non-
decreasing, which was a crucial property in the analysis of the sequential RESOURCE
SHARING ALGORITHM. To accomodate this, we introduce the notion of volatility-
tolerant block solvers which provide some optimality guarantee also if prices change
within certain bounds while they perform their computations. It will be possible that
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these bounds are exceeded and a sufficient optimality guarantee cannot be given. This
will be detected by the algorithm, and the customer will then be scheduled for sequential
recomputation at the end of the current phase. Thus low volatility of resource prices will
not be relevant for correctness, but only for achieving good parallelization speedups.

Like the sequential RESOURCE SHARING ALGORITHM, the parallel algorithm main-
tains a vector o of (upper bounds on) resource utilizations stored in memory. However,
now « is volatile (i.e. can change at any point in time) from each threads’ perspective
because other threads can modify it without prior coordination. To capture this formally,
we will not pass a static vector to block solvers any more as in the sequential algorithm,
but a resource price oracle H} : R x Ry — Ry for each thread & € {1,...,IT} (IT € N)
with

HE(r,7) = yo(max{e (1), 0"~V + L,}),

where o (7) € R¥? for each r € R is the value of ¢, that thread 7 would observe in
his view of memory at time 7, 1 < p <t is the current phase and L = ) cec le 1s the
sum of lower bounds as in the sequential algorithm. As in the sequential algorithm, the
value of Ocr(p -l + L, is constant throughout phase p (1 < p <t), but @, can be changed
concurrently by all threads. A query HJ (r,7) now amounts to a read operation on the
variable @, performed by thread 7 (1 < m <TI) at time T € R, and the computation

of y,(max{x, alP V4 L,}), where x is the value of @, observed by this read operation.

Of course thread & € {1,...,IT} will not call Hg/ for ' # m. Moreover, we define that
thread @ (7w € {1,...,II}) always calls the price oracle H} with T equal to the time
at which the call is issued. Therefore the time parameter becomes redundant and is
omitted in the following. Due to the weak memory model that we assume, resource
prices observed by two threads can be different at the same time, i.e. it is possible that
HE(r7) #Hg/(r,’c) forsomerc R, T€Ryand 1 <7m< 7’ <II.

We can now define volatility-tolerant block solvers. A call to a block solver will be
processed by exactly one thread, i.e. there is no multi-threading inside a block solver.

Definition 3.16. Let c € C, and I € IRZE lower bounds on resource consumptions g.(b),
b € B.. Let Solver, be a procedure that gets a resource price oracle H as input and
produces a pair (b,y) € B, X Ry as output. Solver, is called a volatility-tolerant block
solver if for any call to it the following condition is guaranteed to be satisfied:

Let Y, (r € R) be the set of resource prices sampled by calling H (r) in this execution
of Solver,. Then there is a vector @' € IRZE with @, € Y, for each r € R with Y, # ),
and . = 0 otherwise, such that for each vector @ € R¥ with ®, = @] for r € R with
Y, # 0 we have

Y=0"g(b)
and
Y < (14 &)opt,.(®).

A volatility-tolerant block solver thus guarantees that the result it returns is (1 + &)-
optimal w.r.t. some resource prices @ that it observed (not necessarily at the same time)
during its computations, or that cannot be relevant for optimality.
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Trivially, from each block solver as defined in section 3.1 for static resource prices
we can construct a volatility-tolerant block solver by querying the price of each re-
source once, thus creating a copy which we pass to the original block solver. Sometimes
however this copying step is not necessary, e.g. if the block solver is implemented by
Dijkstra’s algorithm:

DIJKSTRA’S ALGORITHM WITH VOLATILE EDGE COSTS
Input : An undirected graph G := (V,E), vertex sets S,7 C V, and a volatile
edge costoracle H : E — R.
Output: (P,y) € 2F x R,.

1 Setd(s):=0forse Sandd(v):= oo foreachve V\S.

2 Set p(v) :=vforeachveV.

3 Set Q := 0.

4 0,:=0foreachecE.

s while TNQ=0do

6 | LetveV\Qwithd(v) <d(V)forallv' e V\Q.

7 Set 0 := QU {v}.

8 foreach ¢ := {v,w} € E withw ¢ O do

9 Set w, := H(e). /* Query current cost of edge e */

—
=

if d(w) > d(v) + @, then
L Setd(w) :=d(v) + @,.

-
N =

Set p(w) :=v.

13 Chooset € TN Q and setv :=t.
14 Set P:={).

15 while p(v) #v do

16 L Set P:=PU{{v,p(v)}}.

17 Setv:= p(v).
18 Return (P,d(1)).

Proposition 3.17. Let G = (V,E) be an undirected graph, H : E — R4 a volatile edge
cost oracle and S, T C'V such that there is an S-T -path in G, i.e. a path from s to t for an
s€ Sandt €T. With a block being the convex hull of all incidence vectors of S-T -paths,
DIJKSTRA’S ALGORITHM WITH VOLATILE EDGE COSTS is a volatility-tolerant block
solver for the shortest paths problem and &y := 0.

Proof. Clearly, the algorithm returns an S-T-path. At the end of the algorithm, d’ :
V — Ry with d'(v) := min{d(v), min;e7 d(t) } is a feasible potential w.r.t. the edge costs
o, so for each e = {v,w} € E we have

=0:ecP

W, +d' (v) —d'(w) { 0 otherwise (3.24)
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This follows from the fact that the cost of any edge is sampled at most once in line 9, and
for each edge {v,w} € E whose cost has not been sampled we must have
min{d(v),d(w)} > min;c7 d(t). Thus by (3.24) P is a shortest S-T-path w.r.t. the edge
costs that have been sampled in line 9, and independent of the costs on those edges
which have not been queried (increasing ®, from zero to a positive value for an edge
e € E whose cost has not been queried cannot violate (3.24)). O

Our shared-memory-parallel resource sharing algorithm will make use of the fol-
lowing simple fact:

Proposition 3.18. Ler (b,7y) € B. x Ry be the result of a call to Solver,, and choose
@' € RY as in definition 3.16. Let ®" € RY with @" > @', and € > 0. Then

ge(b) 0" <(1+&)y (3.25)

implies
ge(b) 0" < (1+e1)(1+&o)opte(a”).
Proof. Let g.(b)"®"” < (1+¢)y. Then by definition 3.16 we have

ge(b) 0" < (1+¢)(1+€)opt.(@).

The claim follows from the fact that opt.(®’) < opt,(®”) since " > @'. O

In the analysis of the algorithm, @’ will be unknown, but we will know the value
v = g.(b) " @ returned by the block solver, and g.(b) " @” for a vector @” that is guar-
anteed to satisfy @” > @’. The algorithm will check if condition (3.25) is satisfied, i.e.
resource prices did not increase too much. If this is the case, the solution returned by
the block solver provides a sufficiently strong optimality guarantee, and the algorithm
accepts it. Otherwise it rejects the solution and schedules the customer to be processed
again sequentially at the end of the current phase. Therefore with higher volatility the
algorithm becomes increasingly sequential, and better parallelization speedups can be
obtained with lower volatility. However, we do not rely on low volatility for correctness.
We will prove that a near-optimum solution is found independent of how fast resource
prices change during the computation of a block solver. Results on large resource shar-
ing instances from VLSI global routing presented in section 4.9 show that by a simple
partitioning heuristic the “collision probability”, i.e. the probability that block solvers
called by two threads concurrently return a solution using the same resources (and thus
increasing observed volatility), is sufficiently small to achieve very good speedups in
practice.

The algorithm distinguishes between resource utilizations & : R — Ry of accepted
solutions and resource utilizations &’ : R — R of tentative solutions, i.e. solutions that
have been computed already by a volatile price tolerant block solver, but have not yet
been accepted. It will call two functions Cost(a) and Cost’(a,b) to sample the current
cost of some resource allocation vector a € IRZS w.r.t. costs induced by observed resource
utilizations o and o + o’ — b, respectively:
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procedure Cost (a € RY):

begin

Return Z a-HL(r).
reR:a;>0

end

procedure Cost’ (a € R¥,b € R}):

begin
Return Z ar (HYr ().
reR:ar>0
end

Similarly to the oracle H}, H g, a—b performs a read operation on Oc;, o, and b,,
(p—1)

respectively, and computes y,(max{x'+x —b,, o + L, }) if called for resource r €
R, where x’ and x are the values sampled by the read operations on @ and @, (b, is
a local, i.e. non-volatile, variable owned by the thread). We will need that the read
operation [’ on @/ (r € R) is executed before the read operation [ on 0, i.e. I’ <exec I
This requires a fence between the corresponding read instructions (note that even x86
processors do not guarantee that read operations are not reordered with each other).

The algorithm is shown on page 76. During each phase, it assigns a different number
n to each customer ¢ € C. This number is used for the correctness proof in Theorem
3.27 below, where we will analyze the increase in total resource prices sequentially
with customers ordered w.r.t. increasing numbers assigned to them. Although the value
stored in n. for each ¢ € C in each phase of the algorithm is not of importance otherwise,
the fact that all threads have to read from and write to the shared variable n in line 22
is used in the proofs of Lemmata 3.24 and 3.25 below. On some architectures, it might
be possible to collapse lines 21 to 23 to a single full barrier instruction and a reordering
fence. In our weaker model however we actually need the pivot line 22 for correctness.

We do not specify how the scheduling of customers to processors is done in lines 7
and 8. One possibility is e.g. to use a lock-free linked list as proposed by Sundell and
Tsigas [2005] that holds all customers at the beginning of a phase, and let each thread
concurrently remove the first item from the list to get the next customer to process, until
the list is empty. In our application of the algorithm to VLSI routing we will employ a
job selection heuristic for reducing collision probabilities, see section 4.7.2. With €, >0
as in the proof of Lemma 3.5, the number of solutions which have to be rejected in this
way becomes extremely small in practice.

Lock-free linked lists can also be used to maintain the set S of customers which

have to be processed again sequentially at the end of a phase. As mentioned above, we
will make use of the numbers assigned to customers for the analysis of the algorithm:
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PARALLEL RESOURCE SHARING ALGORITHM
Input : An instance of the MIN-MAX RESOURCE SHARING PROBLEM as in
the sequential RESOURCE SHARING ALGORITHM, but with volatile
price tolerant block solvers. A number I1 of processors.
Output: For each ¢ € C a convex combination of vectors in B, , given by
> e, Xepb. A cost vector @ € IRZS.

1 Set o, ;=0 and o := 0 for each r € R.
2 Setx.p :=0foreachceCandb c B..
3 Compute L:= ) .ol

4 for p:=1totdo

5 Set S := ().

6 Setn:=0.

7 foreach ¢ € C do in parallel on processors 1 < & <TI
8 L ParallelAllocateResources (c, 7).

9 acquire_memory_barrier.

10 foreach c € S do sequentially

11 L ParallelAllocateResources (c, 1).

12 Setxgp = %xc’b foreachc € C and b € B,.

13 ParallelAllocateResources (c € C,1 < 7w <II):
14 begin
15 Set @ := Cost(l,).

16 | if p=1orZ?:=Cost(a;) > (1+&) (ze+ (1+&) (P —¢.)) then
17 ‘ Set (b¢,Z.) := Solver (HE), a. := g.(b.) and @ := oo.

18 else

19 L Seta,.:=a., 7. := z. and ¢3€ = Q.

20 | foreach r € R with (a.), >0do AtomicAddition(a,(a.),).

21 acquire_memory_barrier. fence.

22 Set n. := AtomicAddition(n,1).

23 release_memory_barrier. fence.

24 Set Z40 := Cost’ (ac, ac).

25 if ¢, = oo then

26 L Set ;= Cost’(l.,a.) and ¢, := P,
w | i Z < (1+&) (Z+ (1+&) (PP — @) then

28 Set b, :=b¢, ac = dc, 70 := Zc and @, := @. /* accept */
29 Set x¢ p, :=Xep, + 1.

30 foreach r € R with (a.), >0 do AtomicAddition(a,(dc),).

31 acquire_memory_barrier.

32 else

3 L Set S :=SU{c}. /* reject */

34 | foreach r € R with (a;), > 0do AtomicAddition(a],—(ac),).
35 end
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Definition 3.19. For eachc € Cand 1 < p <t, let nE” ) be the value of n. at the end of
phase p. For each 1 < p <t, let n'P) be the value of n at the end of phase p.

We say that an execution of the procedure ParallelAllocateResources is suc-
cessful iff it executes lines 28 to 31. We start with the following simple observation:

Lemma 3.20. Assume that a call to ParallelAllocateResources is executed in some
thread. If o = 0 for each r € R initially, and no other thread is active throughout the
call, it cannot be unsuccessful.

Proof. Resource utilizations o and o are only changed by the single active thread that
executes ParallelAllocateResources, so we have o' = @, when reaching line 24. If
line 17 has been executed, the statement follows because Z“* = 7. and §. = ®*> = P!V,
Otherwise we have

zl < (1+&) (ze+ (1+£0) (@ — 1))

by the check performed in line 16, z. = Z., ¢. = @ and Zf,b = Zg‘b because o' =a,. O
Lemma 3.21. o/ = 0 for each r € R immediately after line 9.

Proof. The sum of values added to ¢ in a call to ParallelAllocateResources is
clearly zero for each r € R. Updates to o’ by different threads can be interleaved, but as
AtomicAddition is used, no terms are lost, and therefore after all concurrent executions
of ParallelAllocateResources have finished, o, = 0 must become visible for each
r € R after the acquire barrier. O

Corollary 3.22. In each phase 1 < p <t, there is exactly one successful call to Parallel-
AllocateResources for each c € C.

Proof. The statement follows from Lemmata 3.20 and 3.21 and the fact that ¢ is added
to S if the first call to ParallelAllocateResources for customer ¢ € C in phase p is
unsuccessful. O

Definition 3.23. Foreach 1 < p <tand(0<i< nP), let

CGC:ngm <i

where o0 := 0, a(P) := alp al?)) and aﬁf’ ) is the resource allocation vector a, at the end
of the unique successful call to ParallelAllocateResources for customer c in phase
p. Further, let (x)(p”), @) ¢ [Riz with

o =y, (o)
and . .
5" = yi(max{os™, 0"~V L)),

and ®P) ;= a)(p’”m) and ®P) := (D(P’”(p))for each1 <p<t.
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Remark. For given 1 < p<tand 0 <i< n(p), there may be no point in time during
execution of the PARALLEL RESOURCE SHARING ALGORITHM at which @ = a/(P+).
We need these definitions only for the correctness proof of our algorithm.

In the following, we consider an execution (O,rf) of the PARALLEL RESOURCE
SHARING ALGORITHM. We will use the following Lemma to bound the resource prices
observable by a block solver:

Lemma 3.24. Let 1 < p<randc€C. Let r € R, and @, be the value returned by a re-
source price oracle call HL (r) in the successful call to ParallelAllocateResources
for customer c in phase p before line 21. Then

- (pnP 1
;S r(lw )_

Proof. Let [ be the (non-synchronizing) read operation that the call to H} performed

on the variable a,, sampling the value x € R, with y,(max{x, alf~ +L,}) =@ As-

sume that o
P _
@, > o Y.

Let w; be the write operation whose output is read by /, i.e. rf(l) = wy. As y, is strictly
monotone, there must be a write operation w3 with w3 <. w; that is performed in
line 30 in the successful call to ParallelAllocateResources for a customer ¢’ € C in
phase p with ng) ) > nﬁl’ ). Let b denote the barrier operation performed in line 23 in that
call, and w, the write operation that writes ng’ ) to n in the call to AtomicAddition in
phase p.

If [, is the synchronizing read operation performed by AtomicAddition immedi-

ately before writing n£” Jtonin phase p, we clearly have 7f(l2) <cei w2. Since wy <prog

b <prog w3 and [ <exec [ because of the fence in line 21, we must have rf (I) <cen w3 by
definition 3.15, which is a contradiction. O

Similarly, we have:

Lemma 3.25. Let 1 < p <rtandc€C. Let r € R, and @ be the value returned by a
resource price oracle call Hy, . (r) in the successful call to ParallelAllocate-
Resources for customer c in phase p after line 23. Then

(p)_
(Z);/ > @r(p,nc 1).
Proof. Let [ and [/, respectively, be the read operations that the call to the oracle

HY, +o_g, Performed on the variables o and o/, sampling the values x and x’ with

yr(max{x+x — (@), o’V + L)) = @

Let ¢’ € C be any customer with ng’ ) < nEP ) and (aﬁp )), > 0, and let w; be the write
operation performed on the variable ¢ in line 20 in the successful call to Parallel-
AllocateResources for customer ¢’ in phase p. Similarly, let w, be the write operation

on @, in the same call in line 30, and w3 the write operation on @ in line 34.
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By a similar reasoning as in the proof of Lemma 3.24, we can deduce wi =cen
rf(I') because of the acquire barrier in line 21. If w3 <oy rf (1), then because of the
acquire barrier in line 31 and our assumptions on the execution order of read operations
performed in the procedure Cost’, we also have wy =cep 7f(1). Moreover, if p > 1,
w =cen 1f (1) for any write operation w on variable a, performed in phase p — 1, so we

have

X zaP Dy Y ) = op)

c”EC:nﬁ’,’,)gnEP)

and the claim follows by the monotonicity of y,. O

We obtain the following Corollary:

Corollary 3.26. Let 1 < p <tandc €C. Then
Ib ~(p.nP 1) ! ub
ol < (@Pne [, < "

and
) T
max {Zébyzc} < (@(p,nc. —1)) aE.”) < Zgb

in the successful call to ParallelAllocateResources for customer c in phase p. O

We can now prove the same approximation guarantee as for the sequential RE-
SOURCE SHARING ALGORITHM in Theorem 3.4 also for the PARALLEL RESOURCE
SHARING ALGORITHM:

Theorem 3.27. Let A € R with g.(b) < Al for c € C and b € B.. Let &,€ > 0 and

& > 0. Let € := £ (e2M — 1)(1+ &) (1 +&). Assume that €'A* < 1, where A* is the
optimum value of (3.1). Lett € N and & := 82(1_8;%*) + 25}2 Then the PARALLEL

RESOURCE SHARING ALGORITHM computes a &-approximate solution to (3.1).

Proof. By Corollary 3.22 we have ), x.; = 1 at the end of the algorithm. Clearly
xcp > 0 for all b € B, so the algorithm determines a convex combination of vectors in
B, foreach c € C.

Again we will consider the term (a)(p))T]l for all phases p. Initially we have

(@71 = w. (3.26)

We can estimate the increase (w(p) — a)(pfl))T]l as follows (1 < p<y¢). Let1 <i<

nP)_If the call to ParallelAllocateResources in phase p in which i was written to
variable n was unsuccessful, we have

(a)(p,ifl))T]l — (w(pvi))Tﬂ. (3.27)
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Otherwise, i = n£” ) for a unique customer ¢ € C. We have

i i— (p) i— 1 i
a),(pa ) S a)’(p/ l)egz(acp )r S w’(pv 1) + X(eezl\ _ 1)(0,([)7 1)(Cl£p)>r (3‘28)
for each € R because (a.)f < Aforre R, A< 1,and e <1+ esgglx for0<x<

&A. We get

1 (r) _
((D(p))T]]_ < (w(pil))T]]_—f—/—\(eng—I)Z(w(p’n; 1))Ta£{7) (3.29)
deC

and thus

1 () _
(a)(P))le < (w(P—l))T]l_i_/_\(eszA_1)2(@(19,an 1))Ta£1/n)7 (3.30)
ceC

as clearly @\ ’"Ef)_l) > o'? 7"5-1’))_1) for each ¢’ € C. Next we show that
(@) Tal? < (e (& + (1+2) ((@PD) 1 -6)) (33D
and
4 (L) (077)) 1 —0) < (14 a)op (@) 332)

Inequality (3.31) follows directly from Corollary 3.26 and the fact that the condition
checked in line 27 is satisfied. If Solver, is called in this execution of Parallel-
AllocateResources, inequality (3.32) holds because by Lemma 3.24

2P < (1+g)) opt (@)

for some @ € R%? with @ < @), and ¢£”) > (®(p7i*1))Tlc by Corollary 3.26.
Otherwise, we have p > 1, ZE"’) = ZEP‘” and <p§”) = q)c(p_l). Letl1 << n?=1) with
Jj= nE.’"”. Then we had

7D+ (1) (0197D) 71— 97 < (1+20) opt (@171
in phase p — 1, so inequality (3.32) must hold because
Optc <d)(l77i—1)> _Optc ((D(P_l,j—l)> Z (('D(p,i—l) . (Z)(p_Lj_]))Tlc,

as (I.), <a,foreacha € A, and r € R.
By combinjng (3.30), (3.31), and (3.32), and using that the monotonicity of @ im-
plies opt. (@~ 1)) < opt (@) we obtain:

(@)1 < (P )1+ &> opt (@), (3.33)

ceC
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where 8/ — %(682[\ o 1)(1 +£l)(1 +8()). Because a(P—l) +L S a(p) and thus d)(p) —
a)(p), we get
(@)1 < (@)1 +€) opt (). (3.34)
ceC

The remaining part of the proof proceeds as the proof of Theorem 3.4 for the se-
quential RESOURCE SHARING ALGORITHM: By Lemma 3.2

) . DeccOopt (@)
AP = oo (3.35)

is a lower bound on the optimum value A* of (3.1). As &' /ll(bp ) < €'A* < 1, inequality

(3.34) yields

(@P)T1 < 1_;%(@@—1))%, (3.36)
Combining (3.26) and (3.36) we get:
\P 8/)_,* ! /9 % /9 %
@)% gy =¥ (1) S e

as 1 +x < e for x > 0. Lemma 3.3 and (3.37) yield:

1 te'A*
. < — —_— . .
E gc E Xepb S o (lnlp+(1—8’?t*)> (3.38)

ceC beB, r

O

Using Theorem 3.27, Theorems 3.6 and 3.7 apply unchanged to the PARALLEL
RESOURCE SHARING ALGORITHM.

We finally remark that it is possible to replace the sequential processing of the cus-
tomers in S at the end of a phase by another parallel processing step (possibly with fewer
threads and hopefully accepting most solutions) followed by a sequential processing of
a smaller set of customers.

3.4 Randomized Rounding

Now we show how to round a fractional solution without increasing the worst con-
gestion A too much. We need the following Lemma by Raghavan and Spencer (see
Raghavan [1988]), a variation of Chernoff’s bound (Chernoff [1952]).

Lemma 3.28. Let Xy, ..., X; be independent random variables in [0,1]. Let 1 be the
sum of their expectations, and let € > 0. Then Xy + - - -+ X;. > (1 + €)u with probability
less than e M/ (8), where f(€) = (1+€)In(1+¢) —&.
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Proof. Let Prob[-] denote the probability of an event, and let Exp|[-| denote the expec-
tation of a random variable. Using (1 +¢€)* <1+ eéexfor0 <x <1 and 1 +x < ¢ for
x > 0 we compute

_Hk (1+¢€)%
Prob[X; +---+X; > (14+¢€)u] = Prob (1’+1£ e o
< Prob H’ 11+ €X) >1
- (1_|_g (1+e)n
- Exp [, 1+ ex)] _TIL, (1 -+ eBxplx)
(1+8)(1+s)u (1_|_£) (1+e)u
k .
My ™5 e e

(1+e)d+em — (14¢)+em
([

Note that f(€) > 0 for € > 0. Generalizing and strengthening results of Raghavan
[1988], we can now bound the effect of randomized rounding:

Theorem 3.29. Given numbers x.j; > 0 for all c € C and b € B, with Zbe& Xep =1
forallc €C. Let & :=max,er D .cc D _peB, Xe b(gc(b))

Consider a “randomly rounded” solution, b, € B. for ¢ € C, given as follows.
Independently for all ¢ € C we choose b € B, as b with probability Xcp Let A=

max,cR Zcec(gC(b ))r
Forr € R let p, > (g‘ for all b € B, and c € C, and let p := max,cr p,. Let

Q.= pmax{l,ln (ZreRel_%>} and & .= (Q+e—2) m
Then A < A (14 8) with positive probability.

(86(1;;1 ))s
Ps

variables in [0, 1]. The sum of the expectations of these |C| random variables is at most
plx' Hence, by Lemma 3.28, their sum is greater than 1;5 with probability less than

_ 1)
e Ps

We will show that f(8) > Q. This implies that 3" ¢ (gc(bc))s > psA - L2 = (1+
0)A with probability less than

p 1-£ p -£ p
7(5) —py maxq Lln Se Pr — py —max{ 0,ln Se Pr e ps
e s <e reR <e reR < -

Considering all resources we then conclude that with positive probability we have A<

(1+8)A.

Proof. Consider any resource s € R. Note that , ¢ € C, are independent random
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To show f(8) > Q, note that € — % i1s monotonically decreasing for € > 0 (as
observed by Raghavan) and f(€) > € —e+2 forall € > 0. For A := Q-+ e —2 we have

Q=A—e+2< f(A) and hence 6 = A, /% < A. We conclude that %(2) > 1) e,

f(8) =843 >0 =

In a typical instance there are a few resources r for which p, is 1, but for most
resources this value is much smaller. The algorithm can be derandomized by the method
of conditional probabilities; we omit the details here.

We remark that another attempt of improving the bound has been made by Leighton
et al. [2001], who showed how the (de)randomized rounding can be improved by using
an algorithmic version of the Lovasz Local Lemma (Erd6s and Lovész [1975]), exploit-
ing the fact that most Steiner trees are short and their rounding does not affect regions
that are far away.

3.5 Discussion and Outlook

In this chapter we presented an efficient fully polynomial approximation scheme for
the MIN-MAX RESOURCE SHARING PROBLEM, providing the best currently known
runtime for weak block solvers. We showed how to parallelize our algorithm on shared
memory machines with weak memory models, making use of the approximation pa-
rameter to allow calculations to be performed on outdated data without affecting cor-
rectness, and obtaining very good speedup values over single-threaded execution (see
experimental results in chapter 4).

An important direction of future research is to further reduce the runtime dependence
on the approximation parameter €. Bienstock and Iyengar [2006] managed to reduce this
dependence to O(¢~!) for fractional packing, and obtaining a similar result for the more
general MIN-MAX RESOURCE SHARING PROBLEM would be a significant progress.

Another interesting question with practical relevance is how to obtain guarantees on
the number of resources (approximately) attaining A* in a solution to the MIN-MAX
RESOURCE SHARING PROBLEM generated by a fast combinatorial approximation al-
gorithm, and on the maximum congestion of other resources.
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Chapter 4

Global Routing

As described in the introduction, global routing is an abstraction of the actual routing
problem in VLSI design to a coarser model of the routing space. The reduced instance
sizes allow to perform a global coordination among all nets to find a feasible solution,
and to globally optimize various objectives such as total wiring length, manufacturing
yield or power consumption. Constraints are given not only by available space, but also
by limits on detours, or more generally by delay bounds on groups of nets to avoid
estimated signal propagation delay to increase uncontrollably due to detours in routing.

Global Routing largely determines the quality of the final routing solution, so it is a
key step in the VLSI design process. The prime objective of course is design closure, i.e.
meeting all constraints. In particular, available space in a region must not be exceeded
by the wires running through it, including minimum spacing requirements (see figure
4.1 for an example of a congestion plot showing space utilization). Fast running times
are important especially when global routing is run in early design stages to obtain good
estimations on routability and achievable results w.r.t. various quality metrics. The clas-
sical metric for judging the quality of a routing solution, still used in most benchmarks,
is wiring length. However, because of significant differences in the characteristics of
wiring layers, and spacing dependency of the practically relevant objectives power and
manufacturing yield, wiring length in most cases provides a very bad estimate on these
metrics.

In this chapter we show how yield and power can be optimized directly in global
routing using the (PARALLEL) RESOURCE SHARING ALGORITHM presented in chap-
ter 3. While many global routers address optimization objectives heuristically, this al-
gorithm guarantees to find a globally near-optimum solution. After giving a definition
of the GLOBAL ROUTING PROBLEM and a survey on previous work on global routing
in section 4.1, we show in section 4.2 how a fractional relaxation can be formulated
as a RESOURCE SHARING PROBLEM. In section 4.3 we show how the global rout-
ing graph, which models routing space in global routing, is constructed, and define the
global routing net model in section 4.4. Feasible routings for standard nets in global
routing are Steiner forests in the global routing graph, but a more general net model
allows to support certain topology constraints. We demonstrate in section 4.5 how an

85
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Figure 4.1: Edge capacity congestion map for a global routing instance. Utilization of
edge capacities is very low in white and green areas, and close to (but at most) 100
percent in red areas.

important step in hierarchical design methodologies, the port assignment at hierarchy
boundaries, can be addressed by global routing with topology constraints imposed on
nets which cross hierarchy borders. In section 4.6 we present an optimum algorithm
for routing a single global routing net under topology constraints. This algorithm is
a dynamic programming approach generalizing the DIJKSTRA-STEINER ALGORITHM
of Vygen [2001]. It is limited in practice to nets with few terminals, but by far most
nets have five terminals or less in typical global routing instances. Section 4.7 discusses
various implementation aspects and tradeoffs that have been made in the implementa-
tion of the BonnRoute® global router. Section 4.8 proposes an approach to implement
a significantly faster block solver that limits the number of bends in a routing for a net.
For long connections, this restriction might leave enough flexibility to avoid congested
regions without unnecessarily long detours. Finally, we present in section 4.9 experi-
mental results on state-of-the-art industrial chips, demonstrating that our global router
can significantly improve on manufacturing yield and power consumption, and that our
implementation of the PARALLEL RESOURCE SHARING ALGORITHM scales very well
with the number of processors. The results also show that on most chips a feasible
integral solution can be generated from a feasible fractional solution by randomized
rounding and a simple ripup-and-reroute method. We conclude this chapter in section
4.10 with a discussion and outlook on future challenges in global routing.
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4.1 Problem Statement and Overview

In a simplified form, the global routing problem can be stated as follows:

SIMPLIFIED GLOBAL ROUTING PROBLEM

Instance: 1. An undirected graph G = (V,E) with edge capacities u : E — R4
and lengths | : E — R.

2. A set N of nets, and a set Ty of feasible Steiner forests in G for
each N € \.

3. Wire widths w : N x E(G) — R4 \ {0}, including the minimum
spacing required to neighbouring wires.

Task: Find a Steiner forest Ty € 7y for each N € N such that

Z w(N,e) < u(e)

NeN:ecE(Ty)

for each e € E(G), and total wire length

PIDIRIC

NEN ecE(Ty)

is minimized, where E(Ty) denotes the set of edges contained in Ty.

The elements of 7y for N € N usually are Steiner trees if each pin is a single point or
vertex in G. We deliberately choose a more general formulation here. Specifically, this
allows to model larger pins and, depending on the type of pin, to use their metal shapes
as “bridges” in the connection of a net. The set 7y is usually not specified explicitly. In
this case it is implicitly given by all forests in G that establish connectivity among the
pins of net N. We shall consider only routes without cycles, but remark that this would
be easy as long as a block solver is available that can optimize over Zy. Global routing
nets and the connectivity model are more precisely defined in section 4.4.

We do not make any assumptions about the structure of the global routing graph
G here, as this is not important for the abstract problem formulation. However, many
global routers, including BonnRoute®, work on a graph with a grid-like structure, as
this does not impose practical restrictions in most cases given the prevalent Manhattan
routing methodology, and is convenient for a number of reasons that become clear later
in this chapter.

The SIMPLIFIED GLOBAL ROUTING PROBLEM as defined above is still a widely
adopted formulation of the global routing problem. Many academic global routers solve
an even more restricted version where w(N,e) = w(N,e;) foreach N € N and ey, e; €
E. See below for an overview of previous work on global routing.

While minimizing wiring length has been the classical objective in global routing for
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a long time, manufacturing yield and power consumption are the cost metrics which are
important in practice. In both cases, using an edge e € E(G) by some N € N induces
costs (measuring defect sensitivity or electrical capacitance, respectively, or a weighted
sum of both) which can be reduced by allocating extra space in addition to the minimally
required value w(N,e). We therefore consider the following more general problem in
this chapter:

GLOBAL ROUTING PROBLEM
Instance: 1. An undirected graph G = (V, E) with edge capacities u: E — R.

2. A set NV of nets, and a collection 7y of multisets of edges in E
induced by feasible routings for each N € N under certain topology
constraints (see section 4.4).

3. Wire widths w : N x E(G) — R4 \ {0}, including the minimum
spacing required to neighbouring wires.

4.Sets Py,...,P; C N (g € N) of critical paths with delay bounds rt
for each 1 <i < g, and convex functions y]\’;‘ . - Ry — Ry for each

1<i<gq, NecNandecE, with ¥ (s) = 0 for each s € R if
N ¢P.

5. Convex functions }/N Ry — Ry foreachNe N ande € E.

Task: Find a Ty € 7y and extra space assignment sy : E(Ty) — Ry for each
N € N such that

Y. (wN,e)+sn(e) <ule)

NeN:ecE(Ty)

for each e € E(G),

S5 Adowten <1

NeP; EGE(TN)

foreach 1 <i<gq, and

>y y;’,bg, (4.1)

NEN ecE(Ty)

is minimized, where E(Ty) denotes the set of edges contained in Ty.

We shall define feasible routings w.r.t. topology constraints precisely in section 4.4.
The only relevant fact at this point is that topology constraints might require wires of
different “parts” of a net to cross the same edge, hence we need multisets of edges to
represent feasible routings for a net under topology constraints.
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For each 1 <i< g, N € N and e € E, the function }/1(,)’ . specifies for all possible
values of extra space how much using edge e by net N with the corresponding extra
space contributes to total delay of path P;.. This assumes that the delay contributions of
the edges are independent from each other and from routing topology, which of course

is a simplification. Note that for N € PN P; with i # j, 715’ ., and }/;j ., can be different
because of slew effects. . 7 7

Similarly, the objective cost functions yl(\’,bi for each N € N and e € E specify the
spacing-dependent contribution to the total oﬁjective value that is to be minimized. By
setting }/](\),bi(c) :=1(e) foreach N € N, e € E and o > 0, total wiring length is min-
imized, but the more general formulation of the GLOBAL ROUTING PROBLEM also
includes optimization of manufacturing yield and minimization of power consumption.
In both cases the objective cost functions are roughly x — ¢ + <2 for constants ¢y, ¢ >0
and extra space x > 0. We show in detail in section 4.2.1 how to define objective cost
functions for directly optimizing manufacturing yield in global routing.

4.1.1 Previous Work

Automated routing solutions have a long history, and so do global routing algorithms.
Many algorithms that have been applied to global routing are based on heuristics, the
most popular approaches being ripup-and-reroute methods that iteratively refine an ini-
tial solution until a feasible solution has been found, or a certain objective cannot be
further improved. An early and influential ripup-and-reroute algorithm is described by
Ting and Tien [1983].

The first to consider global routing as a multi-commodity flow problem were
Shragowitz and Keel [1987]. Their algorithm also is an iterative refinement method,
but they show that it is guaranteed to find a feasible solution if one exists. No guaran-
tees are given though on running time and the achieved objective value.

Carden, Li and Cheng [1996] applied the approximation algorithm of Shahrokhi and
Matula [1990] for the maximum concurrent flow problem to global routing, providing
an approximate optimality guarantee for the first time. They solve a fractional relaxation
of the SIMPLIFIED GLOBAL ROUTING PROBLEM in which each net is to be routed by
a convex combination of feasible Steiner forests. At the end, an integral solution is
generated from a provably near-optimum fractional solution by a randomized rounding
technique which was first proposed by Raghavan and Thompson [1987, 1991]. With
high probability, congestion increases only within a certain bound when applying this
procedure, and the resulting violations of capacity constraints can easily be eliminated
by a conventional ripup-and-reroute method.

Building on Carden, Li and Cheng [1996], Hong et al. [1997] incorporate delay
budgets on critical paths. Although the authors claim to generate an (1 + €)-optimal so-
lution for each € > 0, this optimality guarantee refers only to edge capacity constraints,
as delay budgets are distributed heuristically among the nets belonging to a critical path
in the course of the algorithm.
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Albrecht [2001a,b] applied the simpler and faster multicommodity-flow approxima-
tion algorithm of Garg and Konemann [2008] to the SIMPLIFIED GLOBAL ROUTING
PROBLEM, allowing for the first time to give approximation guarantees on huge designs,
which means between half a million and a million nets according to the standards at that
time. This algorithm was targeted to optimize wiring length and did not support timing
constraints. It was extended by Vygen [2004] to incorporate coupling, delay bounds
and power consumption, and subsequently used by Miiller [2006a] to optimize manu-
facturing yield. However, objective cost functions in these works are restricted to be
linear.

Hu and Sapatnekar [2001] give a survey of global routing algorithms published until
2001, including many approaches that we did not mention here, such as hierarchical
global routing. The book of Saxena, Shelar and Sapatnekar [2007] treats routing con-
gestion in more generality, including the influences on congestion by early design stages
such as logic synthesis and floorplanning, and interconnect planning, which means rout-
ing in conjunction with buffer insertion.

Moffitt, Roy and Markov [2008] give a survey on recently developed global rout-
ing approaches. Much of the research done in the last years has been stimulated by
the ISPD global routing contest [2007, 2008]. The routing instances which have been
made publicly available in this contest are anonymized and, as it seems, considerably
simplified versions of industrial designs. Particularly, the wires of each net consume the
same amount of routing space (metal width plus minimum spacing required to neigh-
bouring wires) on each layer, and capacities of via edges are assumed to be infinite.
The optimization objective is total wiring length, where all via edges are assigned the
same length value / € N. Not surprisingly, with all layer characteristics being equal,
most recent academic global routers solve the original problem by merging all layers
with horizontal and vertical preferred direction, respectively, into one layer and subse-
quently perform a layer assignment step as described by Lee and Wang [2008, 2009],
for example. Although the resulting “projected” problem instance comprises two layers
and is not planar, it is commonly called a 2D global routing problem, while the original
problem is called a 3D global routing problem.

All recently published global routing algorithms contain heuristic elements in cen-
tral components and thus are far from providing global optimality guarantees. Still,
empirically many of them prove to work well based on the results on publicly available
benchmarks.

NTHU-Route, developed by Chang, Lee and Wang [2008] and winner of the ISPD
global routing contest [2008], employs various techniques, ranging from low-effort
pattern routing to close almost all connections in uncongested parts of a design, over
iterative shifting of tree segments and monotonic routing (restricted to stair-case-like
paths computed by dynamic programming), to computationally more expensive ripup-
and-reroute based on computing shortest paths w.r.t. heuristically chosen edge costs.
These costs contain an objective cost (in this case: wiring length and via count) compo-
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nent, and a congestion component that takes into account the history of congestion on
each edge. Such heuristics are often called history based or negotiation based routing,
and different variations are applied by most recently proposed global routing meth-
ods. These heuristics can be viewed as Lagrangean relaxation methods in the sense
that they relax capacity constraints and penalize violations, but we are not aware of any
global router for which convergence was proven given the step sizes used for updat-
ing Lagrange multipliers. NTHU-Route first solves the projected 2D problem and then
generates a solution to the original 3D instance by the layer assignment method of Lee
and Wang [2008]. MaizeRouter, winner of the 3D category of the ISPD global rout-
ing contest [2007] and developed by Moffitt [2008], mainly relies on an iterative edge
shifting method. No details are given however on the cost function used to evaluate a
candidate edge shift operation. FastRoute (Xu, Zhang and Chu [2009]) employs similar
techniques as NTHU-Route, but extends the pattern routing part slightly to allow routes
with at most 3 bends in order to resolve a significant part of congestion problems with-
out resorting to shortest-paths computations. Other successful contestants include FGR
(“Fairly Good Router”’) by Roy and Markov [2008], Archer (Ozdal and Wong [2009])
and BoxRouter (Cho et al. [2009a]), all containing a variety of methods similar to those
mentioned above.

FGR is the only among the global routers that took part in the ISPD contest which
additionally to a 2D routing approach followed by layer assignment offers a “full 3D”
mode to route directly in the original graph. Roy and Markov [2008] observe consider-
ably higher runtimes with full 3D routing, but better wiring length and via count results
than by 2D routing on the easier routing instances of the contest, however at the cost of
finding a feasible solution on much fewer routing instances.

BoxRouter, in contrast to the others, uses a progressive integer linear program ap-
proach to perform layer assignment. This can be thought of as a greedy method which
assigns wire segments to layers within a small area (“box’) of the chip, minimizing the
number of vias by solving an integer linear program of tractable size, and then iteratively
extending the box. In each iteration, the solution from the last iteration is fixed and aug-
mented to a solution for the larger box, again by solving a relatively small integer linear
program, until finally all wire segments have been assigned.

Wu, Davoodi and Linderoth [2009] also use integer linear programming, but follow
a different strategy. Similar to multi-commodity flow based global routing algorithms,
they generate a fractional solution by iteratively finding least-cost routes for each net
w.r.t. some costs (not giving an approximation guarantee, however). Then they solve
mixed integer-linear programs using CPLEX on small parts of a chip to generate an
integral solution from the fractional solution.
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4.2 Application of the Resource Sharing Algorithm to
VLSI Global Routing

We first consider the SIMPLIFIED GLOBAL ROUTING PROBLEM. Solving this prob-
lem is hard since it contains the edge-disjoint paths problem. Relaxing integrality con-
straints, i.e. allowing convex combinations of feasible Steiner forests for each net, is
a standard way to simplify the problem. The relaxed problem can be formulated as a
RESOURCE SHARING PROBLEM as follows.

First the objective function is replaced by a constraint, imposing an upper bound
Fon ) nenDec E(Ty) I(e) (binary search can be applied to find the optimum value of
D). Let ET :={ey,...,em} C E(G) be the edges with positive edge capacity. We set
C:=N,R:={l,...,m+1} and

B, :=conv ({x(T) : T € T.with |[E(T) N (E(G)\ E™)| minimal } ) C R"’

for each ¢ € C, where x (T') is the edge-incidence vector of a Steiner forest 7 with entries
for edges in E(G) \ E™ removed. If there is a net N € A/ with

min{|E(T)N(E(G)\E")|:T € Iy} >0, (4.2)

there is of course no feasible solution to the SIMPLIFIED GLOBAL ROUTING PROBLEM.
Because usually there are only very few such nets, and this is almost always due to local
modeling inaccuracies (see section 4.4.1), one is often interested in a near-optimum
global routing which uses as few zero capacity edges as possible and is feasible w.r.t. all
other constraints. Finally, we set

[ biw(c,e) bnw(c,em) 1 = e
gc(b).—( e aen ,r<;b,z( ,)))

foreachc € C and b € B,.

Since mingep, @' g.(b) is always attained by some element of {x(7) : T € 7.} for
a given ¢ € C and @ € R, the oracle can be implemented by any algorithm for solving
the (group) Steiner tree problem in graphs (exact or approximate). Note that the number
of terminals is small for most nets, and hence using an exact algorithm (i.e., & = 0) is
not impossible.

For obtaining an integral solution, i.e. a Steiner forest for each ¢ € C, one can pick
one of the b € B, with positive coefficient x.; as set by the RESOURCE SHARING
ALGORITHM (see chapter 3) because the oracle returns only incidence vectors of Steiner
forests. In section 3.4 we saw that by picking b. € B, with probability x., for each
customer, respectively, the maximum relative resource utilization does not increase too
much. In practice, only few violations occur, i.e. A, > 1 only for a small number of
resources r € R, and these violations can easily be eliminated by iteratively replacing
the Steiner forests for some of the nets (“ripup and reroute”).
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We now show that also the general GLOBAL ROUTING PROBLEM defined in section
4.1 can be formulated as a RESOURCE SHARING PROBLEM. First, feasible routings for
anet in this setting are more general than Steiner forests because of topology constraints,
and correspond to multisets of edges in E(G). Let therefore x (T') € Z{E: be the vector of
edge multiplicities in a multiset 7 € 7y corresponding to a feasible routing for N € N,
with entries for edges in E(G) \ E™ removed (actually feasible routings are sets of trees
whose unions are not necessarily forests, see the definition of the global routing net
model in section 4.4).

Again, we set C := N. As for the SIMPLIFIED GLOBAL ROUTING PROBLEM, we
impose some bound 'Y on the total cost instead of minimizing the objective function
directly. In addition to the edge capacity resources and the resource for modeling the
objective function, we introduce a resource for each of the critical paths P;,...,P, CC,
so R :={l,...,m+q+ 1}. For running the RESOURCE SHARING ALGORITHM, we
set B := conv (BM) with

g (2T _gon. T € Towith [E(T)N (E(G)\ E)| minimal,
€ s Tt 5>0,5;=0fore; ¢ E(T) '

The resource consumption functions are defined as follows:
(byw(c,e1) +bms1)/uler)

(b (s em) + bom) /14(em)
gc(b) = (Zlgigm:bi>0 bi?’c}jlei(bmﬁ/bi))/rﬂ 4.3)

P
(X1 <im0 bi?’cgi (bmi/bi))/ FP”.
(X 1<icmpr=0biYeel (bm+i/bi)) /T
for each ¢ € C and b € B,. The structure of these resource consumption functions allows
to optimize over B! instead of B, for each ¢ € C:

Lemma4.1. Let c € C and some price vector @ € IRE be given. Then inf),cgin 0'g.(b)=
infbeBc a)TgC (b)'
Proof. Assume there is a b* € B, with @' g.(b*) < inf,gm @'gc(b). We have b* =
Zl<j<k)“jbj for some b',...bKk € B™, A,..., 4 € Ry \ {0} with >i<j<kAj =1, and
keN. o

For 1 < j <k, let bl e IRi’" with 13{ = b{ foreach 1 <i<mand

5o blbk . ./bY © bF>0
T 0 . b =0
Then b* = 37, j< A;b/. Using the fact that g.(b), as defined in (4.3) is linear for all
beB.and 1 <r<m,and
b*

m+i _ “m+i

ok
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for 1 <j<kand1<i<m, wegetw g (b*)= Zlgjgklja)Tgc(l_)j). Therefore we
have 0" g.(b/) < 0" g.(b*) < inf, gim ®" gc(b) for at least one 1 < j <k, which con-
tradicts the assumption since b/ € B, O

Finding a b* € B with 0" g(b*) < (1+&)inf, gin ©' gc(D) is equivalent to com-
puting @ := (@y, ..., d,) with

P; obj
. w(c,e;) +s Yere; (5) Yeei (si)
®;, .= inf | ,————— E Wyt i —— o, = 4.4

’ 3%0( ) +1<j<q A T/ A @4

for1 <i<m,andtofindaT* € 7, with ®" x(T*) < (1+ &) mingez. @ x(T). There-
fore, if feasible routings for ¢ € C are Steiner trees, a graph Steiner tree algorithm can be
used to implement the oracle function f., and the GENERALIZED DIJKSTRA-GROUP-
STEINER ALGORITHM presented in section 4.6 can be used for the general case.

4.2.1 Yield Model

Defects occuring in the manufacturing process of a chip have a variety of reasons which
contribute to yield loss. While some of these, e.g. wafer mishandling or mask misalign-
ment, are independent of the physical design of a circuit, and can be well controlled in
mature production processes, there is a class of defects caused by small particles which
cannot be entirely eliminated and deposit on the wafer or on the photo masks (partly,
these particles actually originate from the wafer being processed). In a simplified view,
there are defects which cause metal to be replaced by insulator material (called “open”
or “missing material” defects) or vice versa (called “short” or “extra material” defects).
See figure 4.2 for an illustration.

Short defect Open defect

Figure 4.2: Short (extra material) and open (missing material) defects, and resulting
damages to the chip layout (“faults”)

Of course not every defect causes a chip to fail: Focusing on routing, only extra
metallization which shorts wires of two different nets, or missing material defects that
actually disconnect a wire make a chip unusable. We therefore distinguish between de-
fects and faults caused by defects. Given a distribution of defect sizes and locations, the
layout of the wiring therefore can influence the expected yield loss due to uncontrollable
particles in the production process. We make some simplifications in the following:
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First, we assume particles to be of quadratic shape, and second we assume a defect to
cause a fault only if it entirely disconnects a wire, or intersects two wires belonging to
different nets (instead of only causing minimum distance violations). A widely used
defect size distribution is
0,r<rg
f(r) = { ¢

ﬁ?rzr()

for some ry € IRJr smaller than the smallest possible particle that can cause a fault, and
& such that fo r)dr = 1. We also use this defect size distribution, and assume the
spatial dlstrlbutlon of defects to be uniform. The critical area or defect sensitivity w.r.t.
short-defects on a wiring or via plane p of a chip is

short = KSI;OIT/// drdydx (45)
[short XY, p

where fghore(x,y, p) is the smallest size of a particle centered at location (x,y, p) that
causes a short-defect, and Kﬁlot is a weighting factor provided by manufacturing that

encodes the relative probability of short defects on plane p. Similarly,

Open = Ké’pen/// r)drdydx, (4.6)
topen (X,y,p

where fopen(x,y, p) is the smallest size of a partlcle centered at location (x,y,p) that
causes an open-defect, and Ké’pen again is a parameter provided by manufacturing. A
simple and Widely used model based on the Poisson distribution estimates the yield loss
tobe 1 —e~C, where C:= " pe p(Ch .+ Choen) is the total critical area summed over
all planes. There are also other models which are not restricted to uniform spatial defect
distributions; we do not go into details and refer to Koren and Koren [1998] for an
overview and further references. Here we focus on minimizing critical area. In the rest
of this chapter, we therefore synonymously speak of yield optimization and critical area
minimization.

For simple situations like a straight wire without neighbours or straight wires run-
ning in parallel, critical area can be computed analytically. For yield optimization in
global routing, we can compute spacing-dependent costs as follows: For a wire of width
w in plane p surrounded by neighbouring wires at distance d on both sides, we define the
contribution of this wire to critical area by integrating (4.5) and (4.6) over the Voronoi
region of this wire, i.e. the set of points in plane p where this wire is the closest object.
Ignoring wire ends and assuming ro < min{%, 2} we thus get a contribution of

d+w

Copen(W,d) 1= 25/ / r—3drdx
+W

. /

0 W
= % (%_djtlzw>
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Figure 4.3: Critical area contribution of a unit-length piece of wire of width w := 0.5
for unit weights Kopen and Kgpore (scaled by EN.

to open critical area for a unit-length piece of wire if kfpen = 1. Similarly, for xf =1
the contribution to short critical area is

1 1
Cshort(W,d) = 2& (3 — w+2d) )

Fig. 4.3 shows copen(W,d), Cshort (W, d) and copen (W, d) + Cshort (W, d) for w = 0.5 length
units and d from 0.5 to 5 length units (assuming a required minimum space equal to the
wire width). Apparently, if short critical area is not weighted considerably higher than
open critical area, not much can be gained in the sum of both by having more than 3 or
4 times the wire width of extra space in addition to minimum spacing. _

Based on the above calculations, we define the spacing dependent costs y](\),t_’i Ry —
R, as follows for net N € A and e € E(G). Let [(e) be the length of edge e, p the
(wiring or via) plane of e, and dy . the minimum required spacing of a wire of net N
crossing edge e. Then we set

Taa(s) = U(e) (Kdpencopen(W(N, ) —dy, di.e+5)
-+ KsILortcShOﬂ(W(N’ e) — dN,e, dN,e —l—S))

(note that w(N, e) includes the minimum required spacing for net N € N on edge e €
E(G)). In our previous approach to yield optimization based on linear programming
(cf. Miiller [2006a]), y](\),tji had to be linearized; this is not necessary any more. Note
that realizing the global routing solution in detailed routing requires that all wires which
have been assigned extra spacing are put next to each other, which might not always be
possible.
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4.3 Global Routing Graph

For most parts of the global routing module in BonnRoute® it does not matter whether
the graph has a grid-like structure as in definition 4.2 below. There are two areas how-
ever where this does play a role, or can potentially play a role, respectively:

1. In capacity estimation (see section 4.3.2), BonnRoute® relies on a graph structure
based on an axis-parallel tiling. More elaborate methods might have to be ap-
plied in case of a less regular graph structure to map between global routing edge
capacities and the underlying detailed routing space.

2. The block solver might rely on a regular graph structure. The standard block
solver employed in BonnRoute® (see section 4.7.3) does not, but in section 4.8
we propose a data structure which relies on a grid-like graph structure and can be
used to implement a fast heuristic block solver.

BonnRoute® defines and uses a global routing grid graph with the following struc-
ture:

Definition 4.2. A global routing grid graph is a graph G := (V,E) with vertex set

V = {0’ et 7xmax} X {07 . 7ymax} X {Oa e 7Zmax}

(Xmax, Ymax,Zmax € N) and edges

E=EiU| |J E|,
OSZSZmax

where either E, = {{(x,y,2),(x+1,,2)} : (x,,2),(x+ 1,y,z) € V} (called horizontal
wiring edges) or E; = {{(x,y,2), (x,y+ 1,2)} : (x,,2), (x,y+ 1,2) € V'} (called vertical
wiring edges) for 0 < z < Zmax, and Eyiq := {{(x,v,2), (x,y,z+ 1) } : (x,9,2), (x,y,2+1) €
V} (called via edges).

The numbers 0 < z < zmax are called layers. If E, contains horizontal edges (0 <
7 < Zmax), we say that layer z has horizontal preferred direction or that it is a horizontal
layer, otherwise we say it has vertical preferred direction or that it is a vertical layer.

A vertex (x,y,z) € V is called a vertex on layer z, and {(x,y,z),(x',y',2)} € E is
called an edge on layer z (0 < x,X' < Xmax, 0 < ¥,V < ymax and 0 < z < Zmax)-

Some parts of BonnRoute® can however also work on general graphs. We shall
make use of this later. Of course we need at least one horizontal and one vertical layer.
As mentioned in chapter 2, horizontal and vertical layers alternate in practice to avoid
electrical crosstalk problems between wires running on neighbouring layers, but this is
not important in the following. Note that a global routing graph contains only edges
running in preferred direction within each layer because jog edges in the global routing
graph would be fairly long and thus block too many wires running in preferred direction.
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Remark. For an efficient implementation of the block solver, lower bounds on the cost
for completing a partial routing to a feasible routing for a net are important, see section
4.7.3. Often, reasonably good lower bounds can be obtained fast from L;-distances be-
tween points in R? associated with graph vertices. A global routing grid graph provides
a natural such mapping by taking the center of a tile as the position associated with the
corresponding vertex.

4.3.1 Construction of the Global Routing Grid Graph

A global routing grid graph can be imagined to result from the track graph used for
detailed routing (definition 2.17 on page 20) by deleting jog edges and then contracting
sets of vertices in the same region and on the same layer, where regions are defined by
an axis-parallel rectangular tiling of the chip area .A:

Definition 4.3. Let Gy := (V,E) be a track graph for a chip with area A, and X :=
{x1,..., x|} andY = {y1,...,yy|} cutlines with minx(A) = x; <... <xx| = maxx(A)
and miny(A) =y; < ... <y = maxy(A). Let pmax := max{p: (x,y,p) € V} and
Zmax := Pmax/2 (note that wiring planes in Gt have even numbers).

Then for 1 <i<|X|, 1 < j<|Y|and 0 <1 < zmax the vertex set

Bi7j71 = U (x,y,2l)
(xy,2h) eV
X SH<xp ]

S

is called global routing tile with index (i, j,1).

Vijil Vitl,jl

e N
4 4

B; i Bii1,j1

Figure 4.4: Contraction of vertex sets defined by global routing tiles in the track graph
to vertices of a global routing grid graph.

A global routing grid graph is then constructed from a track graph by contracting

the vertex sets defined by global routing tiles, as illustrated in figure 4.4.

4.3.2 Capacity Estimation

Each edge in the global routing graph must be assigned a capacity value that specifies
the available space for routing wires between the tiles corresponding to the vertices it
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connects. If there are no obstacles, e.g. blockages, pins or wires existing already in the
input, the tile width orthogonal to the preferred direction can be used as capacity value,
and each wire consumes an amount corresponding to its effective width of the available
space. The effective width includes the metal width and minimum distance requirements
of the wire. In case of uniform track-to-track distances it is advantageous to round up
the effective width to the next integer multiple of this distance on the corresponding

plane.
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Figure 4.5: A window of 2 x 2 tiles showing a wiring of some “short” nets.

On a typical chip, there are many connections among pins of a net intersecting the
same tile. The routing resources required for these connections are not considered in
global routing because these pins result in intersecting global routing pins (see sec-
tion 4.4.1). Figure 4.5 shows such short connections (including some short connections
crossing tile boundaries). The amount of routing resources required for these connec-
tions is hard to estimate a priori, so it is natural to preroute these connections and then
ask for routing capacities which remain for all other connections.

However, with obstacles that do not block whole tracks as e.g. power rails usually
do, determining good edge capacities that do not over- or underestimate the value that
can be realized by detailed routing is a more difficult task: As the number of wires routed
between two neighbouring global routing tiles can be increased by using other layers, it
is natural to formulate the capacity estimation problem as an integer multi-commodity
flow problem, as figure 4.6 illustrates.

As even the integer two-commodity flow problem with planar supply graphs is NP-
hard (see Miiller [2006b] and Naves [2009], and Seb6 and Naves [2008] for a survey),
there is no hope to solve millions of problem instances optimally in short time, even
though only a few hundred paths are to be found in each instance. Miiller [2002] shows
how to find good approximations very efficiently in practice by a fast bit-pattern based
path augmentation procedure.



100 CHAPTER 4. GLOBAL ROUTING

Figure 4.6: Capacity estimation by (approximately) solving a maximum multi-
commodity flow problem. Each layer makes up a commodity, and the flow value ob-
tained for a commodity is distributed to two neighbouring edges in the corresponding
layer.

4.4 Global Routing Net Model

Definition 4.4. Let G := (V,E) be an undirected graph. A global routing pin in G is
an element of 2V x {hard, soft} x N, i.e. a set of vertices in G with an attribute “hard”
or “soft”, and a number used to identify the pin. For convenience, we write V(p) := A
for p = (A, a,n) and say that p is hard or soft if o = hard or o0 = soft, respectively. A
global routing net N in G is a set of global routing pins in G.

In this chapter, if not otherwise stated, a pin means a global routing pin and not a
real physical pin. A global routing pin is an abstraction of one or more physical pins, as
will be explained in detail below.

We require in the following that two global routing pins have different identifier
numbers, so a set of global routing nets can have two elements that would be identical
if stripping the identifiers off the pins. Also, sometimes we will consider sets of pins
belonging to different nets and then have to distinguish pins covering the same vertex
sets. In most places however we shall not need the pin identifier.

In the SIMPLIFIED GLOBAL ROUTING PROBLEM, feasible solutions for a net N €
N are defined by feasible Steiner forests:

Definition 4.5. Let G be an undirected graph, and N a global routing net in G. A
feasible Steiner forest for N in G is a subgraph F := (V' E') of G without cycles such
that

(V',E" U {{vi,v2} :vi,v2 € p €N, p is hard})

is connected, and V' intersects each pin of N.

In the general GLOBAL ROUTING PROBLEM formulation, we allow topology re-
strictions (defined below), and therefore need a more general connectivity model. In
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the following, a tree 7 in an undirected graph with some distinguished root vertex
root(T) € V(T) is called a rooted tree, and subtree(7,v) denotes the subtree of T
which contains all vertices w for which the unique w-root(7)-path in T contains v, and
root(subtree(7,v)) :=v. For w € V(T)\ {root(T)}, father(w,T) is the unique vertex
adjacent to w in a w-root(T")-path in 7.

Because of topology restrictions, feasible routings will be collections of trees whose
unions are not necessarily trees:

Definition 4.6. Let G be an undirected graph. A tree hierarchy in G is a pair (T ,H),
where T is a collection of rooted trees in G numbered by an injective function idx :
7 — N, and H is a rooted tree on T which spans T, such that root(T) € V(T') if
father(T,H) = T'. idx(T) is the image of idx, and we write T|i| to denote the tree
T €T withidx(T) = i.

We define subhierarchies in a natural way:

Definition 4.7. Let (7 ,H) be a tree hierarchy, i € idx(T) and v € V(T]i]). Let J C
idx(V (subtree(H,Ti]))) \ {i} maximal with idx(father(T [j|,H)) € {i} UJ forall j € J,
and root(T [j]) € V (subtree(T[i],v)) for all j € J with father(T [j],H) = T i].

The subhierarchy of (7 ,H) rooted at (i,v) is the tree hierarchy (T',H') with

T' = {subtree(T[i],v)} U U T1]]
jel

and the numbering idx' : T' — N inherited from (T ,H), i. e. idx'(T'[j]) = j for j € J and
idx' ({subtree(T|i],v)}) =i, and H' is the subtree of H induced by {T[j]: j € JU{i}}
with T [i] replaced by subtree(T [i],v).

See fig. 4.7 for an example of a tree hierarchy and subhierarchies of it. Feasible

routings for global routing nets N with |V (p)| = 1 for all hard pins p € N are defined as
follows:

Definition 4.8. Let G be an undirected graph, N a set of global routing pins in G with
|V(p)| =1 for each hard pin p € N, and ©:V(G) — 2(2") topology restrictions for N
with N" € ©(v) for each N C N’ € ©(v) and v € V(G). A tree hierarchy (T ,H) is a
feasible routing for (N, T) iff there is a “connected-by” mapping f : N — idx(7T) such
that the following conditions are satisfied:

i) V(p)NV(T[f(p)]) # 0 forall p € N.

ii) For any i € idx(T) and v € V(T]i|), let (T',H’) be the subhierarchy of (T ,H)
rooted at (i,v) with idx' : T' — idx(T) as in definition 4.7, and

D(T".H',f):={p€eN: f(p) € id<'(T")andV (p) "\V(T'[f(p)]) # 0}

be the set of global routing pins connected by (T',H’) according to f (see fig. 4.8
on page 103 for an illustration). Then D(T',H', f) C t(v).
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b) c) d)

Figure 4.7: a) shows a tree hierarchy (7, H) with three trees 7 [1] (black edges), 7 [2]
(red edges) and 7 [3] (blue edges), where the highest vertex in each tree is its root, and
T [1] is the father of 7 [2] and 7 [3] in H. Figures b), ¢), and d) show the subhierarchies
of (7,H) rooted at (1,v2), (2,v4) and (1,v3), respectively. Note for example that in
d), 7[2] does not appear in the subhierarchy rooted at (1,v3) because father(7 [2],H) =
T [1], root(7 [2]) = v4 and v4 & V (subtree(7 [1],v3)).
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b) ) d)

Figure 4.8: a) shows seven global routing pins p; (drawn shaded) which are con-
nected by the same tree hierarchy as in fig. 4.7 a), with V(p;) = {v;}, i € I :=
{1,6,7,8,9,10,11}. For simplicity, we identify each pin with the vertex it covers. The
shading color of each pin denotes a “connected-by”’-mapping f: {p;:i € I} — {1,2,3}
as in definition 4.8, i.e. p1, pe, pg and pjo are connected by 7 [1], p7 and pg by 7 [2], and
p11 by 7[3]. To illustrate the set D in ii) of definition 4.8, figures b), c), and d) show
the subhierarchies of (7,H) rooted at (1,v2), (2,v4) and (1,v3), respectively, and the
global routing pins connected by them (again drawn shaded) w.r.t. the “connected-by”-
mapping f. Note for example that in d), p7 is not connected because f(p7) = 2, but
7 [2] does not appear in the subhierarchy rooted at (1,v3).
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Feasible routings for the general case with hard pins covering more than one vertex
are defined by a simple reduction as follows. Let N" C N be the set of hard pins in N.
If there are p € N"4 with [V (p)| > 1, we require that there is a mapping £ : NP4 —
22" such that
= |

pENbard:y eV (p)

for each v € V(p) : p € N4, Feasible routings are then defined by the following re-
duction (note that contracting vertices V (p) for each p € N4 is not equivalent because
hard pins belonging to different “parts” of a net might intersect):

Definition 4.9. Let G be an undirected graph and N a set of global routing pins in G.
LetT:V(G) — 22") be topology restrictions with N" € 7(v) for each N" C N' € 1(v)
and v € V(G), and with T(v) = U,ennaryey () E(P) for each v € U ,enmanaV(p), for
some % : Nhard —, 2(2"),

Let G’ be the undirected graph with

V(G)=V(G)U{v,: pe N},

where {v,: p € N"rdY gre new vertices, and

EG)=EG)U | {{rpv}ivevip}

pE Nhard

Further, let p' := p for each p € N\N""", and p' := ({v,},&,n) for each p= (X, a,n) €

N Define N' := {p': p € N}, and v : V(G') — 22"Y) yith () ={{p:pel}:
I € 1(v)} foreachv € V(G), and T'(v,) := (p) for v, € V(G') \V(G).

Then the feasible routings for N in G are the feasible routings for N' in G' with all
edges in E(G') \ E(G) removed.

This allows us to assume w.l.o.g. that hard pins consist of only one vertex, which
simplifies notation in some places (note that the graph G’ from the reduction in 4.9 can
be implicit in the block solver for the corresponding net).

We finally remark that tree hierarchies constructed in global routing are to be real-
ized by trees in detailed routing such that the detailed routing realizations of two trees
7 [i] and 7[j] in a tree hierarchy (7,H), i, j € idx(7 ), intersect if and only if 7 [i] and
T[J] are adjacent in H, and (w. 1. 0. g. assuming 7 [j] is the father of 7 [i]) an intersec-
tion is possible only in the area of the global routing tile corresponding to root(7 [i]).
Therefore the resource consumption of a tree hierarchy (7, H) is given by the multiset

Uiciax(T)E(T[i])-

4.4.1 Construction of Standard Global Routing Nets

From each detailed routing pin p;, a global routing pin p,, is created that covers all
vertices of the global routing graph corresponding to tiles intersected by the shapes of
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Figure 4.9: Detailed routing pin p;, (yellow) at the border of a macro on a layer with
vertical preferred direction. The global routing pin constructed from p,, (orange ver-
tices) is extended to cover also the vertex of the neighbouring global routing tile outside
the macro.

Pdr- Dgr 1s defined to be a hard pin if and only if p,, is hard, and a global routing
net is created from each detailed routing net by replacing detailed routing pins by their
corresponding global routing pins. Standard global routing nets do not have topology
restrictions, but we shall see an application of topology restrictions in the next section
where we define nets of “subnets” whose routes may meet only in a subset of vertices
of the global routing graph.

It may be desirable to merge subsets of global routing pins of the same net into
single global routing pins if a feasible routing exists for each respective subset which
does not contain any edges, e.g. if two global routing pins originate from detailed routing
pins lying within the same tile. The set of vertices at which such a merged group can
be connected however is not necessarily the union of all vertices covered by pins of
the group if it contains soft pins or there are topology constraints. Grouping of global
routing pins already connected among each other is therefore optional on a per-net basis
in BonnRoute®, and should not be done if a net containing soft pins is to be routed
optimally by the algorithm presented in section 4.6.

Because in detailed routing all corresponding physical pin shapes have to be con-
nected with each other and this is not reflected in global routing resource usage, edge
capacities are reduced slightly depending on an estimated amount of detailed routing
connections required among physical pin shapes corresponding to the same global rout-
ing pin.

Global routing pins constructed from detailed routing pins at the border of macros
are often accessible only using zero capacity edges in the global routing graph even
though the pin can be accessed legally in detailed routing. Figure 4.9 illustrates this
problem: Here the edge connecting the two orange vertices has zero capacity because
the global routing tile containing the yellow detailed routing pin is entirely covered by
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blockage. Therefore the global routing pin constructed from the yellow pin is extended
such that it covers both orange vertices in the global routing graph. This technique
solves most false unroutability issues, i.e. cases in which

i —w(N,e)) <0
;ne%eg;;(l;)(u(e) w(N,e))

for a global routing net N € V, but the corresponding detailed routing net can be legally
routed. The remaining problems of this type involve more complex blockage structures,
very wide wires used by a small number of nets N € N (i.e. large w(N,e) for all or
some edges ¢ € E(G)), and the fact that a wire in our global routing formulation cannot
share capacities of two neighbouring global routing edges running in parallel in the same
layer. Most nets are not affected by these problems in practice because the standard wire
type has a small wire width and tile borders can usually be chosen such that there are
only very few edges with extremely small non-zero edge capacities.

As by far most remaining false unroutability issues involve zero capacity edges in
practice and are due to local modeling inaccuracies, restricting feasible routings to those
with a minimum number of zero capacity edges yields corridors within which a detailed
routing solution can be found, if they are extended by a small amount. Minimizing the
number of zero capacity edges in a routing for a net is (approximately) achieved by high
costs on such edges; see also the discussion in sections 4.7.1 and 4.7.3.

Wire widths w(N, e;) and w(N, e,) for a global routing net N € A and edges e1,e; €
E(G) in practice are equal if e| and e; are wiring edges within the same wiring layer, or
via edges between the same layers. This is due to the fact that with very few exceptions,
the same detailed routing wire type is used for all wires of the corresponding detailed
routing net. Therefore only few numbers have to be stored to encode wire widths for
a global routing net. For two nets Ni,N, € N whose corresponding detailed routing
nets use the same detailed routing wire type, these numbers are grouped into a global
routing wire type. A global routing net then stores only a pointer to a global routing wire
type instead of a list of wire widths. The maximum width ratio between wiring edges
in different wiring layers used by the same global routing net of course depends on the
technology. Typical values are in the range of 4 to 10.

By far most pins are hard in current technologies because their internal resistance
between all pairs of access points is comparable to the resistance of a wire connecting
these points. This is the case e.g. for pins with only one shape that consists of metal
(usually copper), as opposed to pin shapes consisting of polysilicon, which has a far
lower conductance than copper. While the distinction between hard and soft pins is not
essential for standard cell pins which are much smaller than the tile size used in the
construction of the global routing graph, supporting soft pins can be useful for solving
a special case of the port assignment problem which is discussed in the next section.
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4.5 Port Assignment in Hierarchical Design

Hierarchical design means grouping disjoint sets of circuits on a chip together and work-
ing on each group more or less independently. Each group, called random-logic macro
or RLM for short, is assigned a subarea of the chip area within which all its elements
have to be placed and connections among them have to be routed. Subareas assigned
to different groups are disjoint, and all circuits not in one of the RLMs define a special
group called the fop level which can use those parts of the chip not assigned to one of
the RLMs. This grouping can be done recursively, i.e. circuits within an RLM might
again be grouped to RLMs. A design with one hierarchy level, i.e. without RLMs, is
called flat.

Of course nets can contain pins of circuits that belong to different RLMs (or to
the top level), therefore RLMs and the top-level are not fully independent from each
other. In order to allow to work on an RLM or on the top level independently from
other parts, an interface is defined, both in terms of geometry and timing. For a net
that has to connect pins both inside and outside of an RLM, a port consisting of a set
of interconnection points is defined where the wiring of the net may cross the boundary
of the RLM area. To make the netlist data of RLMs and the top level independent from
each other, nets are splitted then: For each net having a pin in some RLM or the top level,
a subnet is created containing the pins that belong to circuits assigned to this RLM or
the top level, respectively. Additionally, port locations on the boundary of the RLM or
top level, respectively, are added to the subnet. The reverse operation, i.e. merging all
subnets of the same net and deleting the pins which are defined by port locations, is
called flattening of a hierarchical netlist.

For simplicity we assume to have two levels of hierarchy, i.e. RLMs contain no other
RLMs, and that RLM areas keep a certain minimum distance from each other such that
a port always defines interconnection points between an RLM and the top level. If a
port consists of more than one point, the routing on the top level can choose a point to
connect to, and inside the RLM all interconnection points must be connected with each
other such that they are guaranteed to be electrically equivalent.

Similarly to the geometric interface defined by the ports, the interface must define
timing requirements, i.e. signal arrival times or required arrival times, respectively, of
signals at the ports. Of course hierarchical design in general limits the possibilities for
optimization compared to the results that can be obtained on a flat design. Hierarchy
however is required sometimes because of tool limitations (e.g. running times becoming
inacceptably high on large problem instances) or organizational needs. In these cases
defining a good interface, i.e. port locations and timinig assertions, between RLMs and
the top level is essential for hierarchical solutions to be not too far away from a global
optimum that could (approximately) be reached with a flat design approach.

In this section we focus on how global routing can help in finding good port lo-
cations, assuming a flat placement is given. After the interface definition, RLM and
top-level design can be refined independently from each other as long as designers ad-
here to the defined interface.
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Often several copies of an RLM, called an RLM group, are instantiated on a chip,
where each copy is required to have an identical physical design up to mirroring and
rotation. Given a placement which is identical within each member of an RLM group,
we can use the algorithm presented in section 4.6 as block solver in a global routing
of the flat netlist in order to define ports such that congestion and objective costs are
globally minimized, and the global routing inside each member of an RLM group is
identical. This optimizes also over ports that do not consist of a single point, and yields
a least-cost connection among the port locations inside the RLM. This is important
because sometimes not all copies of an RLM can be entered at the same point because
the neighbourhood (top level congestion and blockages) is different for each copy of the
RLM.

Consider an RLM group with & members, k € N. We assume for simplicity that
RLMs have axis-parallel rectangular areas and are not mirrored or rotated, and require
that the sets of nodes they cover are pairwise disjoint and identical up to translation, i.e.
there are ny,ny,n; € N such that

M; = {(x,y,2) :d, < x < d\+ny,d, <y<d,+n,0<z<n} CV(G)

is the set of vertices of the global routing graph G covered by the area assigned to
member i of the group for some anchor (aj'c, a;) € N2, and 1 < i < k. Further, we require
that edge capacities are identical in each copy of the RLM, i.e. u(e) = u(e’) for each
e ={(x1,y1,21), (x2,2,22)} € E(G[M;]) and

¢ = {(x1 +a,—al,y +a;—a§7Z1)7 (x2+ai—al,y +a§—a§722)},

1<i<j<k

We shall see later that mirroring and rotation is easy to take into acccount. Requir-
ing each copy to cover an identical set of nodes up to translation, and identical edge
capacities is easiest achieved in practice by using a regular tiling for defining the global
routing graph, and then restrict the placement to snap RLM boundaries to this raster
(of course also intersections of top-level blockages like the power grid with RLM areas
have to match each other).

Now consider k nets Ny, ...,Ni, and assume that each net &V; has ¢ € N pins inside
RLM i, and all others outside, i.e. N/ := {pil .-y P} C N, NI =1, V(p) € M; for each
p € Nj, and V(p) C V(G) \ M; for each p € N;\ N/. Further we require that Nj and N,
are identical up to translation according to the RLM anchors and pin identifiers, i.e.

proj (p{ i) = prOj(p{}, )
for1 <i<i <kand1< j<t, where
proj((V, e, n),i) := ({(zx—a;,zy—a;,zz) (I, Ly, I;) €V}, @)

for (V,a,n) € 2" x {hard,soft} x N and 1 <i < k. Analogously to edge capacities, of
course we require wire widths of all k nets to be identical on edges in different RLM
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copies that correspond to each other. This is the case in practice if all k nets have the
same wire type.

For simplicity, let us assume that the pins in N; \ N/ are in the top level and not
inside other RLMs (1 < i < k). We create a graph G’ = (V' E’) from G by contracting
the vertex sets

{(di+dy,d}+dy,d;): 1 <i<k}

for each 0 < dy < n,, 0 <d, <ny and 0 < d, < n; and denote the set of contracted
vertices V! C V', Parallel edges ey, ..., e; between vertices in V! are replaced by a single
edge e with objective cost

Kk
y;\’,l?i(s) = Z y;\’,l?ii (s) forall NeN and s>0,
i=1

as using edges inside the RLM means adding a wire segment to all k£ copies of the RLM,
and capacity u(e) := u(ey).
We merge the nets Ny, ..., N into a single net N with pins

1<i<k

where N7’ are the pins in N| mapped to the corresponding contracted vertices.
Informally, we look for routes that connect the pins Ni\Nl-/ for 1 <i < k indepen-

dently from each other, but merge inside the RLM, i.e. within the vertex set ch . In other

words, the original nets N; are to be treated as different nets outside V/, and as parts of

the same net within V. More precisely, given ropology restrictions T :V(G') — 2(2Y)
with
( ) 2N . Ve VC{
T(v) = ,
' Ui <i<k 2<Ni\Ni ) : otherwise,

we seek a feasible routing for (N, 7) in G’. The next section shows how this can be done.

Remark. Sometimes copies of RLMs are mirrored. This can be dealt with by contracting
different sets of vertices. For example, if the i-th copy of the RLM group above (1 <
i < k) is mirrored with a vertical symmetry axis, simply exchange vertices (a’. + j,y,z)
and (a. +n, — j,y,z) in the vertex sets to be contracted, for each 0 < j < [n,/2], a; <
y§a§—|—ny and 0 < z < n.

Of course, if there are nets with pins in different RLMs, a larger set of nets has to
be grouped into a single net to be routed at once. We also remark that the topology
restrictions defined above allow the routing for N inside the RLM to have more than
one connected component. This can happen if for one of the original nets N; (1 <i <k)
paying k times the objective cost plus (once) the congestion cost inside the RLM is
cheaper than paying for global congestion somewhere outside the RLM, so the wiring
for N; could “run through” a part of the RLM to evade extreme top level congestion and
then enter the RLM somewhere else to join the routes of the other nets.
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We finally discuss some special cases of the port assignment problem. First we
consider port assignment in early design stages where the RLM design (placement or
even logic design) is very incomplete, but a rough floorplanning of the top level has to
be done. We only assume that each copy of the RLM has been assigned an area identical
up to translation as above, and there are nets that contain pins “inside” the RLM, but
with unspecified locations. In this case we replace these pins for a net by a single large
pin covering the RLM area, declaring it as hard if the RLM designer should connect
all port locations among each other inside the RLM (so that the top level designer can
pick one of them to connect to in each copy), or as soft otherwise. In the latter case,
edges in the subgraph induced by the RLM must be deleted, which enforces a single
port location in an optimum routing for the net combined from the nets that connect the
same logical pin in each RLM copy. In the first (hard pin) case, the new edges added in
the reduction given in definition 4.9 should get a high weight corresponding to half of
the expected cost for connecting port locations identically in each RLM copy.

The simplest case is that there is only one copy of each RLM and the physical design
of the RLM is available. In this case a flat global routing without topology restrictions
suffices to determine port locations.

We finally remark that at some point in physical design port locations must also be
legalized, i.e. placed disjointly on the RLM boundary within the global routing corridor.
This has to be done as soon as the RLM or top level designer wants to compute a
detailed routing. If there is only one copy of each RLM, legalization can be done by
a normal detailed routing run. Otherwise some procedure that ensures that legalized
port locations are identical in each RLM copy is necessary, e.g. an enhanced pin access
procedure that for each RLM pin (coarsely defined as the intersection of the RLM area
with the global routing area) finds a set of pin access stubs such that at least one element
of this set can be used to access the pin from the top level in each RLM copy, and the
sets for different pins are conflict-free.

4.6 An Optimum Algorithm for Routing a Single Net

Let G be an undirected graph, N a set of global routing pins in G, and 7: V(G) — 2(2")
topology restrictions with I € t(v) for each I C I’ € t(v) and v € V(G). A minimum-
cost feasible routing for (N, 7) w.r.t. edge costs ¢ : E — R can be found by a dynamic
programming approach shown on page 112. In the returned routing (7, H), for conve-
nience H is a tree on the indices of the trees in 7, instead of the trees themselves. We
can safely assume that |V (p)| = 1 for each hard pin p € N because of definition 4.9.
Vygen [2001] presented a dynamic programming algorithm for the minimum weight
Steiner tree problem in graphs and suggested an extension to the group Steiner tree
problem by changing the initialization step (treating all groups like soft pins in our
terminology). We explicitly allow soft pins, but as we can assume hard pins to cover
only one vertex, the main difference of our algorithm is that it can handle topology
restrictions, as needed in the last section for hierarchical routing. The correctness proof
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of our algorithm is similar to the one in Vygen [2001]:

Theorem 4.10. The GENERALIZED DIJKSTRA-GROUP-STEINER ALGORITHM works
correctly.

Proof. For any / C N and v € V(G), let opt;(c,v) be the minimum total cost
>_reT 2ecr(r)c(€) of a feasible routing (7', H) for (/,7) with root(root(H)) = v, if
such a routing exists, or oo otherwise.

We prove that the following invariants hold for each non-empty subset I C N each
time when line 4 is executed:

a) ForeachveV(G)and I’ D I: [;(v) <Ip(v) and Ry C Ry.

>l {(wi,0),...,(wj,I;)}, then

b) For each v € V(G) with 0 < [;(v) < oco: Let Vy(v) =
<i< jwehavew; € Ry, and

(
IN{peN:veV(p)}=NU...UIj and for each
b(v) =32 U (wi) + c({vwi})).

¢) Foreach v € R;: [;(v) = opt;(c,v).

d) ForeachveV(G)\Ry: l;(v) >opt(c,v). IfI€et(v)and I C{peN:veV(p)},
we have [;(v) =0, and [;(v) = co if I € T(v). Otherwise /;(v) is the minimum of
SoL (L (wi) + c({v,wi})) over all partitions I\ {p e N:veV(p)} =LU...Ul;
and all neighbours wy,...,w; of v withw; € Ry, fori=1,...,].

All four statements are satisfied after initialization (lines 1 and 2) because I € 7(v)
foreach I CI' € 7(v), v € V(G). We show that they are preserved by lines 5 to 11. In
the following, let I and v be the set and the vertex chosen in line 4 in some particular
iteration.

Because a) was true in the last iteration, by the properties of 7 and the choice of I in
line 4 it continues to hold after lines 5 to 11 have been executed in this iteration. Clearly,
b) is still true after line 5. By a), (v,1) is not added to Vy(w) for I’ D I in lines 8 or 11 if
IN{peN:weV(p)}+#0,sob)remains true at the end of this iteration. By a) and the
induction hypothesis, also d) is preserved by lines 5 to 11.

It remains to show that ¢) holds for the new element v added to /R in line 5. Because
I;(v) > opt;(c,v) by statement d) of the induction hypothesis, we need to prove only
I1(v) < opt;(c,v).

Let (7,H) be a feasible routing for / with root(root(H)) = v and indexing idx :
7 — N, and f : I — idx(7) a “connected-by”-mapping as in definition 4.8. We as-
sume w.l.o.g. that root(7") = root(father(7, H)) only if father(7,H) = root(H), for T €
T \root(H). For i€ idx(7) and w € V(T[i]), let (7;,,,H|;,) be the subhierarchy
of (7,H) rooted at (i,w), and J(; ) := D(7(; ), H,j), f) the pins connected by this
subhierarchy according to f. We call (i,w) € idx(7) x V(G) with w € V(T [i]) proper
if we Ry, or Ji,) = 0. The “leaves” (i,w) of the routing (7 ,H), i.e. w leaf in
T[] for some i € idx(7), are all proper, and (idx(root(H)),v) was not proper before
v was added to R; in line 5. This implies that there is an i € idx(7") and w € V(7 [i])
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GENERALIZED DIJKSTRA-GROUP-STEINER ALGORITHM

Input : An undirected graph G, weights ¢ : E(G) — R4, a set N of global
routing pins in G, and topology restrictions 7 : V(G) — 22" with
I€1(v)foreachI CI' € t(v) and v € V(G).

Output: Either “infeasible”, or a feasible routing (7 = {Ti,...,T;},H),g € N,
with minimum total cost Y 7, > eck(m)cle):

1 Set Ry :=0,l;(v) :=o0c0and Vy(v) :=0 forall] CN and v € V(G).

2 Forall 1 C N, set [;(v) :=0forv e NyeV(p) withI € T(v).

3 while Ry = () and there isan I C N and v € V(G) \ Ry with I;(v) # oo do

4 Choose a nonempty I C N and v € V(G) \ R such that / is minimal with
Ii(v) <Ilp(w)forany I’ CTandw € V(G)\ Ry.

5 Set Ry :=R;U{v}.

6 | foreache={v,w} € E(G)withw¢ R;do

7 if I;(w) > I;(v) +c(e) and I € T(w) then

8 | Setlj(w) :=1;(v)+c(e) and Vi(w) := {(v,])}.

9 foreach I' DI withI' € t(w) do

10 if I/ (w) > [;(w) + 7\ ;(w) then

1 L Set Iy (w) := li(w) +Ip\;(w) and Vi (w) := Vi(w) UVp\ 1 (w).

12 if Ry # () then

13 | Choosere€ Ryandsetq:=1,T; := ({r},0), root(7;) := r, and root(H) := 1.

14 Call Backtrace(r,N).

15 else
16 L return “infeasible”.

17 Procedure Backtrace(v € V(G),I C N):

18 Setg* :=gq.

19 foreach (w,I') € V;(v) do

20 | if E(subtree(Ty,v)) # () then

2 Setq:=q+1, T, := ({v},0) and root(T}) := v.
2 L Set H:=HU{{q,q"}}.

23 Set T, := T, U{{v,w}}.
u | Call Backtrace(w,I’).
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such that (i,w) is not proper before executing line 5 in this iteration, but all “neigh-
bours” (i1, w1), ..., (i, wk) in (7, H;) are, where (ij,w;) is a neighbour of (i,w)
in (,T(i.,w)7H(i,w)> iff wj € V(,T(i,w) [l]]) \I‘OO'[(’T(I"W) [ij]), father(wj,’T(,-7w) [l]]) = w and ei-
ther i; = i or father(7(; ,,) [i;], H(iw)) = T(iw)i] and root(7; ,,[i;]) = w.

Then c) holds for (w1, J(;, w;))s -+ > (Wk;J (i, w,)) Decause (i, w;) are proper for each
1 < j <k. Because J; ) C 7(w) and d) is true for J(i,w) and w, we have

Uy ) < 51U () e({wjw})
= Zimiopy, (emy) +el{wjw}) )
< Zﬁ:l(ZTeT(,-j’wj) c(T)+c({wj,w})) '
= ZTG’]Z[’W) c(T)
By the choice of I and v in line 4 we must therefore have [;(v) < Y o7 c(T). O

The runtime can be bounded by O3V |V (G)|+2V|V (G) |1og |V (G)|). As our algo-
rithm can only make less labels than that of Vygen [2001] due to topology restrictions,
we do not reproduce the proof from that work. As in Vygen [2001], a lower bounding
technique can be added to significantly reduce runtimes in practice, making the algo-
rithm practically usable as the majority of global routing nets has a very small number
of pins. If in the application of the last chapter, the number of pins outside an RLM in
each of the “subnets” of N is small, and 3/¥|V (M)] is not too large, where M is the set
of RLM vertices, the GENERALIZED DIJKSTRA-GROUP-STEINER ALGORITHM might
therefore be of value. The number of nets for which port assignment has to be done is
usually very small compared to the number of all nets, and a high-quality solution to
the port assignment problem justifies an increased computational effort. However, sim-
ilarly to topology-unrestricted nets, it might turn out that a series of path searches using
Dijkstra’s algorithm achieves reasonably good results in practice. This approach could
then also be used on larger instances.

Volatility Tolerance

Unlike Dijkstra’s algorithm for connecting two sets of vertices by a path (see section
3.3.2), the GENERALIZED DIJKSTRA-GROUP-STEINER ALGORITHM queries the cost
of an edge more than once in general. For a volatility-tolerant implementation of the
GENERALIZED DIJKSTRA-GROUP-STEINER ALGORITHM one therefore has to save
the cost of an edge after the first query, and use this value later instead of performing a
new query on the same edge.

4.7 Implementation Aspects

This section discusses some key aspects and tradeoffs that have been made in the imple-
mentation of the PARALLEL RESOURCE SHARING ALGORITHM, the block solver, ran-
domized rounding, and ripup and reroute in the global routing module of BonnRoute®.
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As in the abstract formulation, block solvers are not part of the resource sharing algo-
rithm and can be implemented individually for different classes of nets, or even single
nets. In fact, the implementation of the resource sharing algorithm is independent of
global routing and is kept separate from global routing specific data structures.

For example, an implementation of the GENERALIZED DIJKSTRA-GROUP-STEINER
ALGORITHM can be used as block solver for nets with topology restrictions as needed
for port assignment in hierarchical design, or to find optimum Steiner forests for nets
with large soft pins. For most nets, a heuristic decomposition of the routing task for
multi-pin nets into a series of Dijkstra path searches achieves sufficient quality. This
method is used in the standard block solver presented below in section 4.7.3, which
currently is the only block solver implemented in BonnRoute®.

The modular implementation also makes it easier to add new types of resources. An
important example is buffering space, which currently is not represented in BonnRoute®.
Adding this resource type neither affects the implementation of the resource sharing al-
gorithm, nor of the already existing standard block solver. Of course a buffering-aware
block solver must be provided for those nets that require buffering, and the iterative re-
finement routine employed after randomized rounding to find a feasible integral solution
must consider the new resources.

4.7.1 Resource Sharing Algorithm
Weighting of resource prices

The cost for using one unit of a resource » € R in the RESOURCE SHARING ALGO-
RITHM is y,({) := y,e2%, where { is the current utilization of resource r € R, & is a
parameter to the RESOURCE SHARING ALGORITHM, and v, > 1 is a weighting factor
(see definition 3.1).

Let now G = (V,E) be the global routing graph, N € A/ a global routing net in G,
and T € 7y in an instance of the GLOBAL ROUTING PROBLEM. Let us assume for
simplicity that there are no critical paths with delay bounds, and objective costs do not
depend on spacing, i.e. yNe( 1) = '}/N e(sz) for 51,50 > 0. Then using edge ¢ € E(T)
consumes w(N,e)/u(e) units of the resource r, which models edge capacity of edge e,
and }/](\),bj( 0) /I units of the resource rop; which models the optimization objective, so
the contribution of using edge e in T to the total cost of the feasible routing T € 7y for
N is o

yl(\)/ .]e( ) &8sy, L e w(N,e)

. &5 4.8
[obj Tob € u() Y€ (4.8)

(see section 4.2), where Crobj and {,, are the current resource utilizations of Fobj and 7,
respectively. Typically, w(N,e)/u(e) > 1072, but }/ObJ( 0)/T°% < 1078 on large designs
because the average size of global routing tiles is chosen such that at most 50 to 100
nets can share the same edge in the global routing graph, but all nets of course share the
resource ropj. The consequence of this is that for reasonable values of the parameter €,
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and with unit weights y, utilization of resource rp; in the first phases of the RESOURCE
SHARING ALGORITHM is almost for free compared to edge congestion costs, 1.e. costs
for using edge capacity resources. Hence, the algorithm spreads the wiring very far
across the chip area in the first phases, at the cost of increased wiring length, critical
area and power consumption. In later phases, when ¢©%% has increased sufficiently,
many nets are rerouted with shorter wiring length. We observed considerably faster

convergence towards an optimum solution in practice by setting ;. such that

ob]

YNe W( 78)
w”objz Z Z Z max{u(e ’W(N’e)},

NeN ecE(G) NeN ecE(G

and y,, := 1 for e € E(G). This can increase the worst-case runtime only by a constant
factor under reasonable assumptions: First, we can restrict % to be at most

|E(G)|U ¥ax,

where Ymax := max{y]?,t”i(O) :e € E(G),NeN}and U := max{wlzz(\f)e) e € E(G),N €
N}, as we are interested only in feasible solutions or a certificate of infeasibility. Then
with Yin 1= min{y]?,bi( 0):e € E(G),N € N'} we have

< ZNEN |E (G)|
Vg = > Yonin
NEN U max
S ‘R‘ U ’}/max
'}/mm

Because U % is much smaller than |R| in practice, we have
min

V= Z ¥, = O(IR|?)

reR

and thus an increase of worst-case runtime by only a small constant factor compared to
unit weights (see Theorem 3.6). The practical benefit however outweighs this by far.

Numerical Precision

If numbers are not represented symbolically, but explicitely by listing their (binary)
digits, precision of calculations is of course limited. While there are software packages
for calculating with arbitrary precision (only limited by memory space), using hardware
operations on floating point numbers as defined in the IEEE 754 standard [1985] is
much faster. Our C++ implementation of the RESOURCE SHARING ALGORITHM takes
a template argument specifying the data type for implementing numbers, so precision
limits are not fixed by the implementation. By default the C++ double data type is used,
corresponding to 64-bit double-precision IEEE-754 floating point numbers for which
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hardware instructions performing elementary calculations are provided on all important
processors. Switching from double-precision to extended-precision numbers (with 80
bits instead of 64), also directly supported in hardware, already causes a significant
runtime penalty, but offers almost no benefit in practice.

With double-precision IEEE-754 floating point numbers a,b € Q4 \ {0}, the condi-
tion that

a+b > max{a,b} 4.9)

holds only if max{a,b}/min{a,b} < 2°2, as the mantissa of double-precision numbers
encompasses 52 bits (11 bits are used for the exponent, and one bit for the sign). Ensur-
ing this condition is important because otherwise resources can be used at an effective
cost of zero, causing unnecessary routing detours.

Although resources are introduced only for edges with positive edge capacity, the
block solver (see section 4.7.3 below) operates directly on the global routing graph.
Because we want to minimize the number of zero capacity edges, i.e. edges in E(G) \
E™, in a feasible routing generated by a call to the block solver, we have to impose costs
on e € E(G) \ ET which are greater than the sum of costs for using edges with positive
capacity. Further, the block solver has to increment total costs a of partial routings for
a net by costs b for adding an edge, so the ratio between maximum and minimum edge
costs on edges with positive capacity may be limited to

n:=22/|RJ? (4.10)

in the worst case if (4.9) is to be guaranteed under all circumstances. For simplicity,
we neglect here that using an edge also consumes other resources than edge capacity,
feasible routings can use an edge more than once in the general GLOBAL ROUTING
PROBLEM, and that 1/k < w(N,e;)/w(N,ez) < k for a small constant k, N € A/ and
e1,e» € E(G). Based on the value of 17, we define an interval [lflin,),rﬁax] of conges-
tion values for which (4.9) can be guaranteed in phase p of the fractional RESOURCE
SHARING ALGORITHM, A" AL, € Ry, with AP = A8 — 1.:72 (assuming uniform
resource weights y for simplicity), and replace y, from definition 3.1 by

ye(§) = WreszmaX{min{Cyp/lflax}mlrﬁm} (4.11)

in phase p of the RESOURCE SHARING ALGORITHM.

The value of n drops below 10 on the largest of todays global routing instances,
providing only a very small congestion interval. In practice, it suffices to ensure that
costs for using an edge with zero capacity are 100 times higher than the highest cost
for using an edge with positive capacity; this minimizes the number of zero capacity
edges in a shortest path by far in most cases. Usually, not more than ten zero capacity
edges are needed per path (in most cases only for accessing blocked pins). Therefore
it is relatively safe in practice to replace the factor |R|* above by 2!°, providing a ratio
of 2*2 between maximum and minimum edge congestion costs. With wire type widths
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w(N,e) typically differing only by a small factor for fixed N € N, we can choose /'Llfnn
and A2, such that

ol 22
min T &p

In(24?)
&p

2'anx A’rlrjlln
in phase p of the algorithm. For example, with & = 1, the interval | mm,ﬂmax] can
be set to [0,29] in the first phase, [0.71,1.29] in the 50-th phase and [0.855,1.145] in
the 100-th phase of the RESOURCE SHARING ALGORITHM. This suffices in practice
because routable chips typically have A* € [0.9, 1], and on unroutable chips the value of
A* is not of high interest if A* > 1.1. Also, a number ¢ of phases with &, = 100 usually
is sufficient to obtain good results.

As expected, if the maximum congestion exceeds A%,y at some time during phase p
of the algorithm (1 < p <), it often increases significantly from that point. Bounding
{ from below by pllfnn in (4.11) with lrﬁm < A* does not cause significantly different
behaviour of the algorithm.

For these reasons, 64-bit floating point numbers can be chosen in practice as data
type to represent costs in the implementation of the RESOURCE SHARING ALGORITHM
applied to the GLOBAL ROUTING PROBLEM.

Ordering of Nets

Although the analysis of the RESOURCE SHARING ALGORITHM is independent from
the ordering of customers within a phase, this ordering can considerably speed up or
slow down convergence in practice on instances of the GLOBAL ROUTING PROBLEM.
In this context, it is advantageous to process nets in the order of non-decreasing esti-
mated wiring length (given e.g. by the half perimeter of the bounding box or an initial
Steiner tree computed for each net). The reason is that with longer connections there
is more flexibility for evading congested areas without a large detour. Therefore, with
€1 > 0, less nets have to be rerouted in each phase. Of course, in the PARALLEL RE-
SOURCE SHARING ALGORITHM, there is no total order in which nets are processed. In
this case, nets should appear in the order of non-decreasing estimated wiring length in
the task list which is processed in parallel by fetching new tasks from the beginning of
the list.

Setting the Bound I'°" on Objective Costs

Let (Ty, sy )nen be a feasible solution to the GLOBAL ROUTING PROBLEM minimizing
(4.1), and let y* be the value of (4.1) in this solution. Instead of narrowing down y* by
binary search, we set I'°? to an empirically determined estimate k| ¥, of ¥* and adapt it
after each phase of the RESOURCE SHARING ALGORITHM, where

— i £ /00
Yoi= > min > infyyi(s) (4.12)
NeN eCE(T)
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and k; € Ry. The ratio y* /7 of course depends highly on the functions y](\),bje forNe N
and e € E(G), and thus on the optimization objective: 7

Total wiring length: The solution 7 € 7y for net N € N in (4.12) uses only the
lowest two wiring layers in practice if N is not restricted to run only on higher layers
and has pins only in the lowest layer (this is the case for the majority of nets). However,
for minimization of total wiring length, via edges are usually assigned a length value
(specified as parameter) which is considerably larger than the physical length of a via,
and not all nets can be routed on the lowest two layers at the same time because of edge
capacity restrictions. Still, the ratio y*/¥jp is small in most cases and typically within
[1.0,1.05]. Exceptions are chips which can be routed only with considerable detours in
a large number of nets.

Critical area: The ratio ¥* /¥, in most cases is considerably greater for critical area
minimization than for wiring length minimization. One reason for this is that wiring
length, in contrast to critical area, of course does not depend on spacing. Larger wire
widths on higher routing layers contribute even more to the increase of y*/¥y,: The
contribution to open critical area of a wire on a higher routing layer can be much less
than that of a wire on a lower routing layer because of increased metal width, and also
the contribution to short critical area can reduce drastically, even at zero extra spac-
ing, because the higher metal width imposes greater minimum distance requirements.
Although using higher metal layers causes extra costs because more vias are required,
typically the demand for routing space on the desired layers in (4.12) significantly ex-
ceeds the available space. Typically, y*/vp € [1.05,1.5] for the 65 nanometer chips in
our tests, for example.

Power: For power optimization, the ratio ¥* /7 typically is much smaller than for
critical area minimization, but larger than for wiring length minimization. The differ-
ences between routing layers are rather small (greater wire widths in high routing layers
are compensated by higher distance to the substrate), but assigning extra space can re-
duce coupling capacitance significantly. Typically, y*/¥p € [1.0,1.2].

Let now rqp; be the resource which models the optimization objective, and let

(p)
ol
AL = ;"J (4.13)

be the congestion of this resource after phase p of the RESOURCE SHARING ALGO-
RITHM, p > 1. We choose k| as the maximum of the above intervals depending on the
optimization (ol))jective, or slightly larger, and starting with a value T°% = k; %, multi-
p
ply T°% by /l,‘(’—zt” at the end of phase p for some k € Ry, implicitely changing g.(b),,
for each customer ¢ € C and b € B.. In our experiments, we chose k, := 0.95. This
keeps congestion of rq,; approximately at 0.95 throughout the RESOURCE SHARING
ALGORITHM. In regions of a chip with very low edge congestion, reducing the objec-
tive value becomes the primary goal, and in regions with edge congestion above 0.95
the algorithm rather works towards feasibility (similarly for delay constraints). Con-
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vergence to a feasible fractional solution to the GLOBAL ROUTING PROBLEM is much
faster with k> := 0.95 than with k; := 1.0 in practice.

4.7.2 Parallelization

The global router in BonnRoute® is an implementation of the PARALLEL RESOURCE
SHARING ALGORITHM presented in section 3.3. An important aspect of the implemen-
tation is to reduce the probability of collisions in the sense that block solvers concur-
rently executed by two threads work on nets in the same region of a chip and simul-
taneously use some edge without seeing the other’s resource allocation. This leads to
rejections of solutions and sequential reprocessing at the end of a phase. To reduce col-
lision probability, each thread tries to choose nets (or customers) to process such that
the search spaces of different threads overlap as little as possible.

Much time can be saved by choosing clusters of nets instead of individual nets.
BonnRoute® therefore creates a partition J;UJ...UJ; = N of the global routing nets
or customers, where kK € N and 71, ..., J; are called jobs. Each job J;, 1 <i <k, has
a job area which is an extended bounding box of the pins of the nets in J;. The jobs
are inserted into a list at the beginning of each phase of the algorithm, and each of the
IT worker threads (IT € N) concurrently deletes a job from the beginning of the list
and processes the customers contained in it, until the list is empty. Instead of always
choosing the first job in the list, a thread determines a job J; among the first [ jobs
in the list (/ € N) whose job area has smallest overlap with the areas of jobs currently
processed by other threads.

Although this can be done in principle without a clustering of nets, i.e. k = |N|, a
partitioning based on geometric clustering offers several advantages:

1. Nets in the same region of a chip are processed consecutively by the same pro-
cessor. This improves caching efficiency, even if IT = 1, because of overlapping
search space in the block solver calls for these nets.

2. The number of accesses to the job list decreases significantly, so instead of a
more complicated lock-free list data structure as e.g. proposed by Sundell and
Tsigas [2005], a normal linked list protected by mutex locking can be used almost
without performance loss.

3. Checking overlap of job areas has to be done less often, again reducing contention
on the job list (threads cannot remove items from the list while other threads scan
the first / items to determine a best next job to process)

4. While a thread determines the next job to process, currently active jobs might
complete. This leads to superfluous overlap checks, and probability of this situa-
tion is reduced with larger job sizes.

Because shorter connections should be routed before longer connections, global
routing nets are first partitioned into length classes based on estimated wiring length,
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and then a geometrical clustering is done within each length class. With typical wiring
length distributions, it is natural to choose exponentially increasing length class bound-
aries allowing estimated wiring length within a class to differ by some constant factor
(in our experiments we used a factor of two). Geometrical clustering of nets within the
same length class is done based on the center of mass of each net (computed from the
pins of the net, or wires in initial Steiner forests). The chip area is recursively subdi-
vided by horizontal or vertical lines until the total estimated wiring length of nets with
their center of mass contained in an area falls below a certain minimum desired job size.
Of course estimated wiring length is only a very rough measure for the computational
effort needed to process the corresponding set of nets in the PARALLEL RESOURCE
SHARING ALGORITHM, but to even the processing times by this simple method helps
sufficiently to avoid idle times at the end of a phase (threads are idle if there are other
threads still working on a job, but there are no more jobs to be processed in the job
list). Jobs within the same length class are ordered randomly, which provides sufficient
probability in practice for each thread to find a job among the first / jobs in the list with
little or no overlap with jobs currently processed by other threads, for small values of /.
In our experiments, we chose [ := 4.

It turns out that with this simple strategy for collision reduction, sequential recom-
putations are necessary only very rarely (see experimental results in section 4.9). There-
fore BonnRoute® offers a parallelization mode in which all solutions returned by block
solvers are accepted, and no sequential recomputation is done at the end of a phase.
In this parallelization mode, of course also the check if a solution is to be rejected can
be skipped, so the vector o’ of tentative resource usages does not need to be updated
(see the PARALLEL RESOURCE SHARING ALGORITHM on page 76). The resulting
reduced number of write operations on memory saves in fact much more time than only
eliminating sequential recomputations. While speedups with sequential recomputations
are impressive already, they improve even further in this “unsafe” parallelization mode.
Experimental results show no significant differences in the quality of results.

Deterministic Parallelization

The PARALLEL RESOURCE SHARING ALGORITHM is not deterministic because re-
source utilizations observed by threads depend on thread execution speeds, which are
impossible to control in practice. The clustering of nets described above can also be
used for a deterministic parallelization approach. In this approach, each thread has its
own vector of resource utilizations, and increments are communicated at certain syn-
chronization points between threads. The sets of customers to be processed between
two synchronization points are determined a priori and not changed before the next syn-
chronization point. Disjoint search spaces in different threads are of course even more
important compared to the non-deterministic parallelization described above because
resource allocations by other threads are seen with a much higher delay. Another chal-
lenge is reducing idle times: Threads cannot be dynamically assigned new jobs if they
finished their job early, but other threads take longer than expected. Good estimates of
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processing times are essential, but difficult to obtain. Increasing job sizes helps to even
out wrong estimates of processing times, but increase the delay with which resource
allocations of other threads become visible to a thread.

Determinism is of course desirable for debugging, but otherwise stability w.r.t. qual-
ity of the returned solution is sufficient. As there are no significant deviations between
different runs of BonnRoute® with non-deterministic parallelization, we do not further
pursue deterministic parallelization.

Memory Management

The functions for dynamic memory allocation provided by system libraries often do
not scale well with the number of threads simultaneously using them. While there are
approaches to memory allocation that provide a significantly better scaling (see e.g.
Michael [2004]), we use independent memory management for each thread (only oc-
casionally calling a system library function to obtain a large block of memory which
is internally subdivided into smaller blocks to satisfy memory allocation requests). A
drawback of this is that some data have to be moved between contexts, 1.e. copied into
memory allocated by the memory manager of another thread, because memory blocks
have to be freed by the same memory manager that allocated them, and (most of the
time) a thread must not access the memory manager of another thread. As this affects
only a rather limited amount of data in our case, independent memory management in
each thread is the easiest way to overcome parallelization bottlenecks in memory man-
agement.

4.7.3 The Standard Block Solver

The standard block solver used in BonnRoute® does not support topology restrictions
and finds a Steiner forest for N € N satisfying the connectivity requirement stated in
definition 4.5. Given edge costs ¢ : E(G) — Ry, it heuristically tries to find a Steiner
forest F € Ty for a net N € N in a global routing graph G with near-optimum cost
>_cck(r)C(e) by a series of shortest-path computations in (G, c), using a variant of the
algorithm of Dijkstra [1959] to find shortest paths between vertex sets S,T C V(G) as
shown in section 3.3.2. An approximation guarantee cannot be given in general, but it
turns out that this approach works surprisingly well in practice. Details are given below.

Edge Costs

When routing net N € N, edge costs are given implicitely by

bj
. Ne Y , ) M0, (5)
c(e;) == gg( Wi, +s Z Om+j—p, Ne + Ontg+1 A{Libj )

1<j<q
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for each edge ¢; € E*, where ; is the price for using one unit of the edge capacity
resource of edge e;, 1 <i<m:=|E"|, @y, ; is the unit price of delay on the critical
path P;, 1 < j < g, and @441 the unit price of the objective function resource (see
section 4.2). Due to the modeling inaccuracies discussed in section 4.4.1, sometimes
a small number of nets can only be routed using zero capacity edges, and the block
solver should minimize the number of zero capacity edges used in these cases. With

™ .= max{c(e) : e € ET}, we therefore set

c(e) := kc™™

for each edge e € E(G) \ E™, where k € R is a large constant. Although

k> cniax Z c(e)

ecETt

is required to minimize the number of zero capacity edges in a shortest path, we set
:= 100 for the reasons discussed in section 4.7.1.

Decomposition into Shortest-Path Computations

In the initialization of the global router, we compute a near-optimum rectilinear (group)
Steiner tree for each net N € N/, where center points of tiles covered by each detailed
routing pin (projected into the x-y-plane) define the groups to be connected. Optimum
solutions can be found fast for small numbers of groups each consisting of only one
point (as is the case for the majority of nets), and fast heuristics are used in the other
cases. See Robins and Zelikovsky [2009] for an up-to-date survey on Steiner tree al-
gorithms. With groups originating from hard pins, the solutions are of course Steiner
forests in general.

From the resulting Steiner points, artificial global routing pins are created and added
to the corresponding net. These Steiner pins are defined to be soft pins and extend over
all routing layers. They are not required to be connected in order to avoid unnecessary
congestion in areas with high utilization of edge capacity resources.

The STANDARD BLOCK SOLVER algorithm, called for a net N € V, iteratively con-
nects connected components with each other by performing shortest-path computations,
starting with single global routing pins of N and stopping as soon as all non-Steiner pins
are in the same component (see below). For convenient notation, let N Steiner — N pe the
Steiner pins in N. For a set C of global routing pins, we write

C(UpeV) - lcl<
vie)= { UnecrmaV(p) © 1C]> 1

Further, we require V(P) # () for any path P in G. Specifically, for S,7 C V(G) with
SNT # (), we need V(P)NSNT # () for an S-T-path P in G.

Proposition 4.11. The STANDARD BLOCK SOLVER works correctly.
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STANDARD BLOCK SOLVER

Input : An undirected connected graph G, edge costs ¢ : E(G) — R4, and a
global routing net N € A in G.

Output: A feasible Steiner forest F for N\ NS©"T in G.

SetC:={{p}:peN}, V(F):=0and E(F) := 0.

while AC € C: (N \ NS¢y C C do

Choose a C € C with CN (N \ NS®€"er) £ () and |V (C)| minimum.

Let §:=V(C) and T := Upree\ g3 V(C).

Find a shortest S-T-path P in (G, ¢).

Choose C' € C\ {C} with V(P)NV(C') # 0.

Choose an unused identifier n € N and set Cpey := CUC' U{(V(P),hard,n)}.

Set C := (C\{C,C'}) U{Chew}-

SetV(F):=V(F)UV(P)and E(F) :=E(F)UE(P).

o 0 NN At R W N

Proof. Assume that for each D € C with |[D| > 1, F is a feasible Steiner forest for D at
the beginning of a specific iteration of the while-loop. By the definition of V(C) for a
set C of global routing pins, (V(F)UV(P),E(F)UE(P)) is therefore a feasible Steiner
forest for the component Cyey, constructed in this iteration. As |D| =1 for each D € C
in the first iteration, the statement hence follows by induction. O

We do not choose Steiner pins as source components in line 3 because this would
enforce to connect them. Choosing C € C with |V(C)| minimum is not required for
correctness, but increasing the number of target vertices T often reduces the number of
label operations in Dijkstra’s algorithm.

Although an optimality guarantee cannot be given in general for the STANDARD
BLOCK SOLVER, experiments indicated that total objective cost and edge congestion
in a solution to the SIMPLIFIED GLOBAL ROUTING PROBLEM do not improve sig-
nificantly when using an exact graph Steiner tree algorithm instead of the STANDARD
BLOCK SOLVER for nets with < 5 terminals. The STANDARD BLOCK SOLVER is con-
siderably faster however in practice.

Goal-Oriented Path Search

Let S C V(G) be a set of source vertices, and T C V(G) target vertices. A standard
approach to speed up the search for a shortest path from S to 7 with Dijkstra’s algorithm
is to compute lower bounds 7 : V(G) — Ry on the length distc (v, T) := min{}_,cpp) :
t € T, P shortest v-t-path in (G, ¢) } of a shortest path from v to T for each v € V(G), and
to use reduced edge costs

cx((vyw)) :=c(e) —m(v) + m(w)

if the undirected edge e = {v,w} € E(G) is traversed from v to w, and cz((w,v)) if
traversed in the other direction (formally, each undirected edge e € E(G) is replaced by
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two oppositely directed edges ‘e and "¢ which share the same edge capacity resource).
T is required to be a feasible potential, which means that ¢ ((v,w)) > 0 for each {v,w} €
E(G) to ensure that shortest paths w.r.t. ¢; are shortest paths w.r.t. ¢ and vice versa.

Many global routing nets have the same wire widths and objective cost functions
on all edges of the global routing graph because the corresponding detailed routing nets
have the same wire type. Denote this set of nets N/ C A and assume for simplicity that
we have no delay bounds and the sequential RESOURCE SHARING ALGORITHM is run.
Then edge costs in subsequent block solver calls for nets in N do not decrease because
o does not decrease, and hence a feasible potential computed at some point in time for
routing a net Ny € N remains feasible when routing another net N, € N” at a later time.

Of course the target vertex set 7' changes in different shortest-path computations,
so instead of storing lower bounds on the distance to a vertex set 7 for each vertex
v € V(G), we compute and store distances d'.(v) := dist.(v,{l;}) for each v € V(G),
edge costs ¢ : E(G) — R4 and a small set of landmark vertices I; € V(G), 1 <i < h,
h € N, and use the triangle inequality to obtain a feasible potential

r(v) = 112?§)(hmax {dé(v) — rtneayg(dé(t), rtréi%ldé(t) - dé(v)}
for a shortest-path computation with target vertices T C V(G) and edge costs ¢, or edge
costs ¢’ : E(G) — Ry with ¢/(e) > c(e) for each e € E(G). The values min,c7 d’(t) and
max;cr di.(t) for 1 <i < h can be determined at the beginning of the path search, so
in each labeling step only 2/ subtractions and max-operations have to be performed to
obtain a lower bound on dist (v, T) for some v € V(G). This technique of goal-oriented
path search using precomputed distances to a small set of landmark vertices is due to
Goldberg and Harrelson [2005]. In our case, landmark distances dist.(v,{/;}) have to
be recomputed from time to time as edge costs ¢ increase and lower bounds gradually
become weaker. In BonnRoute®, we use 4 landmark vertices in the “corners” of the
global routing graph.

An advantage of the landmark-based lower bounding technique is that it takes edge
congestion costs into account. Often, a lower bound ignoring edge congestion can be
computed very simply from geometric distance between vertices w.r.t. a natural embed-
ding of the graph vertices into R (provided by global routing tile centerpoints in case of
a global routing grid graph). Taking edge congestion into account turns out to be very
effective if critical area is to be minimized because in this case the demand for routing
on the highest layers exceeds the available routing space by far because of large wire
widths, resulting in considerable congestion also on easily routable chips.

Volatility Tolerance

The block solver presented in this section is not volatility-tolerant because volatility
tolerance requires a block solver to return a (1 + &)-optimal solution w.r.t. observed
edge costs (see definition 3.16 on page 72), but we do not know &y even for constant
edge costs. Nonetheless, our standard block solver returns the sum of observed path
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costs, so assuming that these costs are (1 + &)-optimal w.r.t. observed edge costs for a
given & > 0, the PARALLEL RESOURCE SHARING ALGORITHM can check if resource
costs have increased too much until termination of the call to the block solver. The
experimental results in section 4.9 indicate that this happens only very rarely.

4.7.4 Randomized Rounding and Iterative Refinement

After a fractional solution to the GLOBAL ROUTING PROBLEM has been found by
running the RESOURCE SHARING ALGORITHM, we generate an integral solution from
it by randomized rounding as described in section 3.4. If € N phases were performed
in the RESOURCE SHARING ALGORITHM, we randomly and independently for each
net N € N choose a phase index 1 < p <1, selecting the solution used in phase p of
the fractional algorithm for net N. Each phase index is chosen with probability 1/7. We
repeat this procedure several times and pick one of the integral solutions to the GLOBAL
ROUTING PROBLEM obtained in this way. This solution of course violates some of
the constraints in general, so an iterative refinement procedure (discussed below) tries
to achieve feasibility changing the routing for nets involved in constraint violations.
Instead of picking a randomized rounding solution with smallest maximum congestion,
in practice picking a solution which minimizes the sum

> max{0,4,— 1} (4.14)

reR

of constraint violations results in slightly less runtime spent in iterative refinement,
where A, denotes the congestion of resource r € R in the corresponding solution. As
the variance of (4.14) over different randomly rounded solutions is low in practice, and
reducing max,cr A, is achieved faster by iterative refinement than by increasing the
number of randomized rounding steps, only a few such steps are performed. In our
experiments, we did eight randomized rounding steps.

Iterative refinement of a randomly rounded solution is done by a combination of
choosing alternative routings from the fractional solution for nets involved in constraint
violations, and computing new routings if constraint violations cannot be reduced by
rechoosing from the fractional solution.

A basic subprocedure IMPROVE(r) is called iteratively, getting a resource r € ‘R with
congestion A, > 1 as input and for one net N in the set N/ C A of nets with positive
utilization of this resource tries to replace the current routing of N by another routing
such that

(rrrg%/lr, r;zmax{O,)Lr—l}, }/) (4.15)

becomes lexicographically smaller, where § is the objective value of the current global
routing solution. The number of zero capacity edges is not considered here; each net
is required to be routed with a minimum number of zero capacity edges. Three steps
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with increasing computational cost are performed to find an alternative routing for a net
N € N’ such that (4.15) is improved:

1. First a small number of nets N € N is selected randomly, and for each of them an
alternative routing from the fractional solution is chosen at random. If exchanging
the current routing by the alternative improves on (4.15) for some of them, the best
of these exchange operations is selected.

2. If the first step did not improve (4.15), all alternative routings in the fractional
solution are evaluated for each N € N/,

3. If the first two steps did not improve (4.15), the block solver is called for each N €
N’ to generate a new routing, using resource prices which depend exponentially
on resource utilization as in the fractional RESOURCE SHARING ALGORITHM.
As soon as a new routing is found for some N € N/ which improves (4.15), the
procedure is stopped.

If step 3) did not improve (4.15), IMPROVE(r) fails. Otherwise it returns an alternative
routing for some N € \”.

The overall iterative refinement procedure works multi-threaded as follows. A mas-
ter thread assigns pairwise disjoint sets R; C R of overcongested resources (i.e. re-
sources with congestion greater than 1) to slave threads 1 < i < II, IT € N. Each
thread 1 < i < II executes IMPROVE(r) for each r € R;, but does not actually change
the routing of any net in the current solution. After termination of the slave threads, the
master thread evaluates the resulting candidate exchange operations in the order of non-
increasing improvements which were observed by the slave threads, and applies each of
them which still improves (4.15). All other candidate exchange operations are rejected.
To keep the number of rejections small, not all overcongested resources are assigned to
slave threads at once. We limit the sets R; to contain at most a few hundred resources
and distribute only the most congested resources to slave threads. This process is re-
peated iteratively until either a feasible solution to the GLOBAL ROUTING PROBLEM is
found, or the observed improvement stays below some threshold over several iterations,
or a time bound is exceeded.

Although the described procedure is a simple heuristic approach, it works reasonably
well on state-of-the-art industrial chips.

4.7.5 Technical Aspects

We finally discuss some technical issues which we observed to impact performance
significantly:

1. First of all, storing frequently accessed data memory-efficiently can improve
caching performance considerably. For example, resource prices, represented by
64-bit floating numbers, are not stored explicitely, but computed on-the-fly from
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resource utilizations which need only 32 bits per resource. In the global routing
grid graph implementation, the graph structure is used to implicitely derive the
neighbours of a vertex from an index assigned to it, instead of explicitly storing
adjacency lists. Both techniques together reduce runtime by about 30 percent.

2. For obtaining good parallelization speedups, it is very important to eliminate con-
current accesses to the same cache line as far as possible. A cache line is an inter-
val of k bytes in memory at an address divisible by k, where k € N depends on the
processor. For example, on current Intel processors k = 64. Elementary data types
in most cases require less than k bytes (this is true for all elementary data types
on Intel processors). For example, storing eight 32-bit counter variables accessed
by different threads in successive entries of an array will most likely cause all of
them to lie within the same cache line and thus significantly degrade speedup if
these variables are accessed frequently. In this example, the problem can be easily
eliminated by filling the array with unused entries.

4.8 Fast Tree Enumeration

In this section we present a data structure which, building on a global routing grid graph,
allows extremely fast queries on edge segments:

Definition 4.12. A segment is a connected set of edges contained in one of the sets E,
(1 <z < zmax) or Eyjq. A maximal segment is called a line.

This data structure allows to enumerate and determine the cost of a large number
of trees in short time, providing a fast alternative to maze routing based on Dijkstra’s
algorithm as in the standard block solver presented in section 4.7.3. See section 4.8.1
below for further details.

Let L = {61,---,€|L\} be a line in G, with edge numbers such that e; and e, | are
incident for each 1 < j < |L|. Let ® € RE be a vector of edge costs, and S C L be a
segment in L specified by numbers 0 < jmin < jmax < |L| such that S = {e; : jmin < j <
jmax} S= 0 if Jmin = jmax)-

We present a data structure which allows to compute ), @, in O(log|S|) time
(assuming S # (), and which can be updated in O(|S|+log|L|) time if @ is changed on
edgesin S.

Since the number of layers in G is very small in practice (up to 11 in current tech-
nologies), we will use this data structure only for segments of horizontal or vertical
edges, but not for via edges.

Definition 4.13. For 0 < j < |L|, let p°(j) := j and
P =rt e ) -1

for k € N, where the ®-operator denotes the bitwise and operation.
For 0 < ji < jo <|L|, let p*(j1, j2) == max{p*(jn) : k> 0 and p*(j2) < j1}.
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Figure 4.10: The underlying structure of the segment cost lookup table. Each arc spans
the set of edges whose weights are summed up in the corresponding table entry.

We assume the standard binary representation of natural numbers. The representa-
tion of negative numbers does not matter since the only operation in which a negative
number occurs is 0 ® —1 = 0.

First observe some simple facts:

Lemma 4.14. Let 0 < j <|L|.
(i) p*(j) >0 forall k >=0,
(ii) phi(j) > p*2(j) for all 0 < ky < ko with p*1(j) > 0.
(iii) p*(j) =P () = 201 () = PH())) for each k > 1 with p*(j) > 0.

(iv) If p°(j) — p'(j) > 1, then j > 1 and p°(j —1) — p'(j — 1) = 1, and furthermore
PrG=1)=p (G =1) =2(p" (= 1) = p*(j = 1)) for all k > 1 with p**+1(j —
1) >p'(j).

(v) For0 < ji < jo <|L|, there is a number k > 0 such that p*(j1) = p*(j1, j2)

Definition 4.15. Let L be a line in G and @ € RE. The segment cost lookup table T'(L, @)
for L and o is

T(L,®):={do,...,dy}

dj = Z ;

pr)<i<j

with

foreach 0 < j<|L|.
Fig. 4.10 visualizes the underlying structure of the segment cost lookup table. Ob-
viously,
D 0= > dyy= DL i
e€s 0<i<[log,(jmax)] 0<i<[(logy jmin)

and this sum can be computed in O(log|L|) time (actually, [10g, (jmax)] and [ (10, jmin) ]|
can be replaced by the number of one’s in the binary representation of jyax and jmin,
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respectively, but this is no improvement in the worst case). However, we can compute
> ecs @We also in O(log|S|) time:

Theorem 4.16. Using the segment cost lookup table, the total cost ) . ¢ ®. of segment
S can be computed in O(log|S|) time.

Proof. Let kpax be the smallest number such that p ™ (o) = p* (jimin, jmax). Then
kmax < [10g,(|S])] + 1. If jmin — P* (Jmin, Jmax) < |S|, then there is also a number kpi, <
Ung(\SDJ + 1 such that pkmin (jmin) =p* (jmina jmax), and

ng: Z A (jman) ~ Z A (juin)

ecS 0<i<kmax 0<i<kmin

can be computed in O(log|S|) time.

Otherwise, let jpiit := prox=1( o). Tt is easy to observe that jpi, < Jsplit < Jmax-
We split S into three segments S; := {€jm1n+1,...,€jsplit_1}, Sy = {ejspm} and S3 :=
{€jpiii+15 - - €jmax - Where 1 and S3 might be empty. Obviously, > ¢, @ can be com-
puted in O(log|S3|) time. To see that }_ ¢ @, can be computed in O(log|S|) time,
assume that S is not empty and observe that p®(jspii) — P! (jsptit) = P ! (fmax) —
P (jimax) > |S| > 1, so lemma 4.14 (iv) implies that jimin — p* (jmins jsptic — 1) < [S1]s
and the claim follows. O

The improvement from O(log|L|) to O(log|S|) is significant in practice since most
nets are very short and thus require only very short segments.

We now show how to update the segment cost lookup table.

Theorem 4.17. If T (L, ®) is the segment cost lookup table for a line L in G and @ € R,
and A € RE with A, =0 for e € L\ S is given for a segment S C L, the segment cost lookup
table T (L, + A) for L and @ + A can be computed in O(|S| +log|L|) time.

In particular, T (L, ®) can be computed from @ in O(|L|) time.

Proof. Letagain0 < jyin < jmax < |L| suchthat S={e; . +1,---,€jmy }- Letdo,. .., d|
be the entries of T'(L,®). We show how the entries d, ... ,d|’L‘ of T(L,®+ A) can be
computed.

Initially, set d} :=0 for each 0 < j < |L| (of course this does not have to be done
explicitly). Then, for each jyin < j < jmax 1n increasing order do the following:

! . g/ )
1) Setd):=d)+A;.

=d

2) It 2j - p'(j) < |L| setd), 2j-p'())

/
) +dj.
For each 1 < ¢ < |L|, let I, := {p°(g —1),...,p*"'(g— 1)}, where k is the smallest
number such that p*(¢— 1) = p'(g) (so I, = 0 if ¢ is an odd number). Inductively, the
following two invariants are fulfilled immediately after each iteration jyin < j < jmax
of the two steps above:

D) dy =3 (g)<icgDi =Dg+ 2 ¢y, di foreach 1 < g < j
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DAL

Figure 4.11: Pattern routing by at most three non-via segments for two-terminal con-
nections: a) shows an I-pattern, b) and c) L-patterns, d) and e) Z-patterns and f) an
U-pattern

ii) dy=> ic;nq,.. jydi foreach j < g <|L|.

After all jmin < j < jmax have been processed, set j := 2jmax — P (Jmax) and repeat
the following steps as long as j < |L|:

D If2j—p'(j) <|L|,setdy, , , =dj

!
G) =i T

2) Set j:=2j—p'(j).

Let j' be the value of j in step 1) of the 7-th iteration of this loop and assume 7 > 2. If a
(t + 1)-st iteration is performed, then jU+1) — j* > 2(; — j=1)) 50 at most O(log|L|)
iterations are performed.

Finally, set d;. = d; +dj foreach 0 < j <|L]|. O

4.8.1 Application

Not surprisingly, runtime of the standard block solver based on Dijkstra’s algorithm
depends very much on how long the connections are that have to be made. Of course also
short connections can require a large number of labeling operations in presence of high
edge congestion, but in most cases global routing runtime in BonnRoute® is dominated
by block solver calls that have to find long paths. In practice, long connections still offer
much flexibility to avoid congested regions with only small relative detour length if they
are restricted to a small number of segments, i.e. a limit is imposed on the number of
bends. E.g., restricting two-terminal nets to be routed by a path with at most three non-
via segments (called I/L/Z/U pattern routing, see fig. 4.11) is a popular and successful
approach in placement congestion estimation (see Shelar and Saxena [2009] or Menge
[2008] for details and further references) and is also used in some global routers, see
section 4.1.1.

Figure 4.12 shows the three-segment Steiner trees for a set of three terminal points
(ignoring via segments). If the limit on the number of segments is raised to four or five
in this example, the number of solutions increases drastically, of course. An alternative
to full enumeration is to iteratively shift segments with high edge congestion costs such
that a tree structure is preserved, as depicted in fig. 4.13. As segment costs have a
length-dependent component because of the resource which models the optimization
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Figure 4.12: For a given set of three terminal points, a) and b) show the two short-
est Steiner trees w.r.t. Lj-distance, each consisting of three axis-parallel line segments.
c)-f) show all other Steiner trees with three axis-parallel line segments: c) and d) origi-
nate from a) by shifting the horizontal line segment, and e) and f) originate from b) by
shifting the vertical line segment.

Figure 4.13: Three possible results of a segment shift operation. Length-dependent
costs allow to limit the scope to the red-shaded area in this example.
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objective, the detour incurred by a shift can be bounded. With a constant limit on the
number of segments, each shift operation can be evaluated in O(log|S|) time using the
the segment cost lookup table, where S is the longest segment that changes by a segment
shift operation.

4.9 Experimental Results

In this section we present experimental results on recent industrial chips designed at
IBM with the help of BonnTools. The problem sizes range from about hundred thousand
to several million nets and edges in the global routing graph, see table 4.1. The table
also shows process technology, die size, number of routing layers, number of nets, and
total Steiner length, i.e. the sum of wiring lengths of a shortest Steiner tree for each net,
for all chips in our testbed. In our experiments we do not consider delay bounds, so
we have one resource for each edge in the global routing graph, and one resource for
modeling the objective function.

Comparison with the Previous Version of BonnRoute®

We first compare our new global router based on the RESOURCE SHARING ALGO-
RITHM presented in chapter 3 with the previous version of BonnRoute®, demonstrating
that it converges to a near-optimum solution in considerably shorter time. Table 4.2
shows a comparison between the old and new version. The old implementation is based
on the work of Albrecht [2001a,b] and neither supports power and yield optimization,
nor 3D global routing. For this reason, the optimization objective in this comparison
is wiring length, and both versions are run on a global routing grid graph in which all
horizontal and vertical layers, respectively, are merged into a single layer. We only con-
sider the computation of a fractional solution in this comparison. The bound I'°® on
objective costs has been set to 1.03%j, initially for these experiments, and 20 phases of
the RESOURCE SHARING ALGORITHM were performed with & := 5.0. In the table,
“% Gap” denotes the percentaged deviation of the objective value ¥, Of the fractional
solution achieved in the corresponding run from the lower bound %}, i.e. the value

100 Yiract — ¥ (4.16)
Yo

Afract denotes the maximum congestion in the fractional solution. It is the maximum of
the congestion in the resource which models the objective function, and the maximum
over edge congestion values. Both values are given additionally in parentheses.

The old and new version of BonnRoute® show a remarkable difference in (4.16); in
most cases, the new version is better. On the other hand, maximum edge congestion
values are considerably lower with the old version in most cases, leaving room for re-
ducing wiring length. The reason for this difference is the weighting of resource prices
as discussed in chapter 3 and section 4.7.1 of this chapter. Without this weighting, the



Table 4.1: The testbed.

4.9. EXPERIMENTAL RESULTS
Chip Technology | Die size |Routing IR| IC| =|N]| Steiner
[mm?] layers length [m]
Lucius 65nm| 2.3 x 1.7 10 337,330 78,426 5.08
Heijo 65nm| 1.1 x 1.8 10 168,319 | 105,257 5.17
Ruediger 65 nm 2.1 x0.8 10 164,740 | 103,899 5.61
Timo 65nm| 1.4 x2.0 10 239,960 | 276,552 8.57
Jo 65nm| 3.1 x1.6 10 419,005| 515,044 26.70
Renate 65nm| 3.2 x 3.0 10 827,965 | 529,004 26.79
Rosemarie 65nm| 2.5x24 10 594,084 | 437,406 28.19
Tuula 65nm| 4.4 x49 10| 1,807,436| 321,770 38.20
Georg 65nm| 2.7 x 4.1 10| 1,132,940 783,685 43.28
Sigurd 65nm| 3.3 x2.6 10 848,818 | 515,054 43.77
Wighart 65nm| 52x45 10| 2,338,526| 936,396 72.55
Claus 65nm| 49 x33 10| 1,590,875| 709,007 78.31
Paula 65 nm | 14.0 x 14.0 10|16,533,335| 327,194 78.66
Dorothea 65nm| 6.1 x 6.1 10| 3,647,013 | 679,820 79.26
Richard 65nm|16.4 x 16.4 10 (26,083,860 | 1,513,967 254.41
Laci 65 nm | 18.0 x 18.8 10 32,652,236 | 1,300,577 271.12
Vasek 65 nm | 18.8 x 18.8 10/36,519,998 | 434,945 280.97
Camilla 65 nm | 10.0 x 10.0 10| 10,255,304 | 3,582,559 316.65
Chiara 65 nm | 14.8 x 14.0 10 20,757,260 | 3,293,378 401.79
Tomoko 65 nm | 14.8 x 15.6 10 |23,680,235 | 5,340,088 469.71
Andre 65 nm | 15.6 x 14.8 10 |23,923,565 | 7,039,094 589.83
Ludwig 65 nm | 14.8 x 15.6 10 (23,577,166 | 7,677,972 869.84
Raphaelo 45nm| 0.5 x 1.0 11 104,765 | 124,376 3.14
Nelu 45nm| 08 x 1.4 11 214,355| 189,543 4.58
Gerhard 45nm| 23 x 1.7 11 749,359 | 348,860 11.13
Victor 45nm| 25x 1.2 11 589,481 | 345,087 12.44
Henrik 45nm| 1.0 x 15.9 11| 3,142,548 | 476,397 32.63
Emilia 45nm| 6.3 x 6.3 11| 7,947,101 | 430,551 34.43
Milena 45 nm 3.7x29 11| 2,101,489 1,314,074 41.58
Simona 45nm| 34 x1.9 11| 1,271,069 | 1,410,540 42.92
Angela 45nm| 6.0 x 6.0 11| 7,040,649 | 1,008,736 59.35
Guido 45nm| 4.0 x 4.0 11| 3,127,653 1,797,719 68.23
Dirk 45nm| 3.8 x5.6 11| 4,201,325 1,603,290 83.11
Thilo 45nm| 3.9 x 3.7 11| 2,816,277 2,785,100 97.26
Martina 45nm| 5.1 x5.3 11| 5,329,900 3,788,281 151.46
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Chip Old BonnRoute® New BonnRoute®

Atract (Obj./edges)| % Gap|Runtime||  Agacee (Obj./edges)| % Gap|Runtime
Lucius 0.991 (0.991/0.932)| 2.10| 0:00:34{/0.993 (0.993/0.961)| 2.25| 0:00:12
Ruediger |{0.971 (0.971/0.889)| 0.04| 0:00:27(/0.972 (0.972/0.925)| 0.07| 0:00:04
Timo 0.973 (0.973/0.902)| 0.22| 0:00:41(/0.974 (0.974/0.937)| 0.33| 0:00:09
Jo 0.983 (0.983/0.885)| 1.25| 0:04:41({0.980 (0.980/0.949)| 0.89| 0:00:52
Renate 0.971 (0.971/0.845)| 0.02| 0:02:05|/0.971 (0.971/0.925)| 0.05| 0:00:19
Rosemarie|[0.974 (0.974/0.873)| 0.29| 0:03:27(/0.973 (0.973/0.927)| 0.24| 0:00:21
Tuula 0.977 (0.977/0.887)| 0.65| 0:04:43]/0.976 (0.976/0.941)| 0.51] 0:00:26
Georg 0.972 (0.972/0.836)| 0.16| 0:04:13(/0.973 (0.973/0.931)| 0.17| 0:00:38
Sigurd 1.013 (1.013/0.923)| 4.34| 0:11:46{/0.997 (0.997/0.978)| 2.72| 0:03:14
Claus 0.982 (0.982/0.865)| 1.15| 0:25:36({0.982 (0.982/0.971)| 1.14| 0:03:12
Dorothea |[1.003 (1.003/0.884)| 3.30| 0:42:03([0.996 (0.996/0.967)| 2.62| 0:04:14
Laci 0.973 (0.973/0.840)| 0.11| 9:06:19({0.972 (0.972/0.968)| 0.14| 0:03:32
Vasek 0.980 (0.980/0.878)| 0.92| 7:50:39{/0.996 (0.980/0.996)| 0.96| 0:16:00
Camilla 1.017 (1.017/0.821)| 4.91| 1:37:34|{0.981 (0.981/0.968)| 1.05| 0:09:53
Chiara 0.987 (0.987/0.824)| 1.74| 2:42:07|/0.981 (0.981/0.976)| 1.07| 0:13:49
Andre 1.039 (1.039/0.755)| 7.11| 4:45:33]/0.980 (0.980/0.948)| 0.91| 0:13:59
Ludwig 1.167 (1.167/0.944)| 20.60|16:13:09{/0.989 (0.989/0.988)| 1.84| 0:51:06

Table 4.2: Comparison between the old and new BonnRoute® global router on 2D global
routing instances. Runtimes (hh:mm:ss) are sequential on an Intel Xeon E7220 proces-
sor at 2.93 GHz and only include computation of the fractional solution.
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cost of detours is marginal in the first phases of the algorithm, in particular on large
chips where the number of nets is higher which share the resource for modeling the
objective function.

This is also the most important reason for the better runtimes with the new version:
A higher weight of the objective function resource yields better lower bounds for goal-
oriented path search in the block solver and thus speeds up path search considerably.

Parallelization Speedup

Because of different layer characteristics, global routing has to be done without merging
layers as in 2D global routing if power and yield, or a weighted sum of wiring length
and number of vias is to be optimized. Also feasibility is affected because not all wire
types have the same width ratios over different layers, and some nets usually are allowed
to be routed only on a subset of layers.

Full 3D routing has a considerable impact on runtime, however: First, the number
of vertices and edges in the global routing graph is 5-6 times higher than in a 2D global
routing graph if global routing tiles have the same size. In addition to that, restrictions on
usable wiring layers for some nets can cause congestion on some layers which cannot
be distributed to other layers, and higher congestion not only causes more nets to be
rerouted in each phase of the RESOURCE SHARING ALGORITHM, but also increases
the runtime of the STANDARD BLOCK SOLVER based on Dijkstra’s algorithm because
the lower bounds for guiding path searches become weaker.

We show in tables 4.3 and 4.4 that the PARALLEL RESOURCE SHARING ALGO-
RITHM scales very well with the number of processors and thus can reduce runtime
considerably. All experiments have been performed on the original (3D) global routing
grid graph, i.e. layers are not merged as above for the comparison with the old version
of BonnRoute®, and wiring layer restrictions are respected for all nets.

The results shown in table 4.3 have been obtained on a machine with 8 Intel Xeon
E7220 processors running at 2.93 GHz, and table 4.4 shows results on a machine with
16 slightly slower AMD Opteron 8384 processors, running at 2.7 GHz. As above, & is
set to 5.0, and the number of phases is 20.

All runtimes in these tables are runtimes of the fractional (PARALLEL) RESOURCE
SHARING ALGORITHM only; runtimes for randomized rounding and iterative refine-
ment are not included here. The sequential runtimes reported in the second column are
without parallelization overhead. In particular, normal addition operations are used in-
stead of atomic addition. The third column shows runtimes with 8 threads in table 4.3
and 16 threads in table 4.4, and the corresponding parallelization speedups compared to
sequential runtimes. In these runs, atomic addition is used, but no sequential recompu-
tation of rejected solutions is performed. Consequently, also the checking if a solution
is to be rejected is not done. The last three columns show results for a strict imple-
mentation of the PARALLEL RESOURCE SHARING ALGORITHM, including sequential
recomputation of rejected solutions. Column 4 again shows runtimes and correspond-
ing parallelization speedups. Column 5 shows the average percentage of nets over all
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Chip 1 thread 8 threads, 8 threads, seq. recomp.:
no seq. recomp. % of nets seconds
Lucius 0:00:50| 0:00:07 (6.68x)|0:00:08 (6.21x)| 0.0135 0.1
Heijo 0:00:07 | 0:00:02 (3.58x)|0:00:03 (2.29x)| 0.0456 0.1
Ruediger | 0:00:06 | 0:00:01 (3.55x)|0:00:03 (2.18x)| 0.0505 0.0
Timo 0:00:12 | 0:00:04 (2.93x)|0:00:07 (1.66x)| 0.0157 0.0
Jo 0:02:57]0:00:27 (6.43x)|0:00:32 (5.46x)| 0.0054 0.2

Renate 0:00:26 | 0:00:08 (3.26x)|0:00:13 (1.97x)| 0.0130 0.0
Rosemarie | 0:00:49 | 0:00:09 (5.14x) |0:00:13 (3.58x) 0.0106 0.1
Tuula 0:01:20 | 0:00:13 (5.94x) | 0:00:16 (4.83x)| 0.0076 0.1
Georg 0:01:05 [ 0:00:14 (4.59x) | 0:00:22 (2.93x)| 0.0068 0.1
Sigurd 0:21:430:02:49 (7.70x) | 0:02:52 (7.53x)| 0.0013 0.2
Wighart 0:03:44 1 0:00:36 (6.18x)|0:00:46 (4.84x)| 0.0031 0.3
Claus 0:17:14 1 0:02:13 (7.76x)|0:02:25 (7.10x)| 0.0041 3.7
Paul 0:12:2910:03:28 (3.60x) | 0:03:42 (3.38x)| 0.0037 9.9
Dorothea | 0:23:17|0:03:11 (7.29x) | 0:03:25 (6.80x)| 0.0038 6.6
Richard 0:30:28 | 0:04:34 (6.65x) | 0:04:54 (6.21x)| 0.0012 2.3
Laci 0:36:35[0:04:57 (7.38x)|0:05:21 (6.84x)| 0.0018 2.8
Vasek 7:16:06 | 0:57:39 (7.56x) | 1:00:07 (7.25x)| 0.0026 44.6
Camilla 0:56:50 [ 0:07:10 (7.92x)|0:07:37 (7.45x)| 0.0004 0.4
Chiara 0:27:00 [ 0:03:53 (6.93x) | 0:04:28 (6.03x)| 0.0007 0.4
Tomoko 0:12:2910:02:19 (5.36x) | 0:03:18 (3.78x)| 0.0008 0.1
Andre 1:04:3710:09:14 (7.00x) |0:10:17 (6.28x)| 0.0003 0.4
Ludwig 7:58:2210:57:28 (8.32x) [ 0:59:08 (8.09x)| 0.0000 0.6

Table 4.3: Running times (hh:mm:ss) of the fractional resource sharing algorithm, and
parallelization speedups on a machine with 8 Intel Xeon E7220 processors at 2.93 GHz.
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Chip 1 thread 16 threads, 16 threads, seq. recomp.:
no seq. recomp. % of nets seconds
Lucius 0:01:08 | 0:00:06 (10.97x)|0:00:07 (9.45x)| 0.0331 00.4
Heijo 0:00:10|0:00:02  (3.89x) [ 0:00:04 (2.69x)| 0.1023 00.2
Ruediger | 0:00:09{0:00:02 (4.39x) [0:00:03 (3.01x)| 0.0976 00.1
Timo 0:00:16 | 0:00:04 (3.35x)|0:00:07 (2.19x)| 0.0369 00.2
Jo 0:04:05|0:00:29 (8.27x)|0:00:33 (7.38x)| 0.0119 00.7

Renate 0:00:37|0:00:07 (4.80x)|0:00:12 (3.14x)| 0.0296 00.1
Rosemarie | 0:01:06|0:00:09 (7.31x)[0:00:12 (5.33x)| 0.0241 00.3
Tuula 0:01:5910:00:13 (9.00x) | 0:00:16 (7.28x)| 0.0164 00.7
Georg 0:01:28 | 0:00:13  (6.69x) | 0:00:19 (4.51x)| 0.0144 00.2
Sigurd 0:30:34 1 0:02:29 (12.30x) [0:02:35 (11.81x)| 0.0031 01.2
Wighart 0:05:26 [ 0:00:31 (10.34x) [0:00:40 (8.11x)| 0.0069 01.3
Claus 0:25:31]0:01:44 (14.69x) | 0:02:14 (11.42x)| 0.0086 15.5
Paul 0:21:34 1 0:05:57 (3.62x) |0:06:44 (3.20x)| 0.0103 28.8
Dorothea | 0:34:44|0:02:32 (13.69x) | 0:03:12 (10.84x)| 0.0087 29.5
Richard 0:44:41 1 0:04:03 (11.03x) [0:04:39 (9.59x)| 0.0034 20.2
Laci 0:55:04 1 0:03:58 (13.85x) [0:04:36 (11.94x)| 0.0045 23.0
Vasek 11:23:42|0:44:08 (15.49x)|0:51:31 (13.27x)| 0.0090| 209.0
Camilla 1:21:15 | 0:05:34 (14.55x) | 0:06:01 (13.48x)| 0.0009 01.1
Chiara 0:40:16 [ 0:03:15 (12.38x) [0:03:40 (10.94x)| 0.0016 02.0
Tomoko 0:17:4410:02:01 (8.75x) [0:02:42 (6.57x)| 0.0015 00.3
Andre 1:35:17 1 0:07:30 (12.69x) | 0:08:27 (11.27x)| 0.0006 01.6
Ludwig 10:25:43 | 0:44:21 (14.11x)|0:46:04 (13.58x)| 0.0001 03.3

Table 4.4: Running times (hh:mm:ss) of the fractional resource sharing algorithm, and
parallelization speedups on a machine with 16 AMD Opteron 8384 processors at 2.7
GHz.
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phases which have been rerouted sequentially, and column 6 shows the runtime used for
sequential rerouting. Note that the difference between columns 3 and 4 is considerably
higher than the time needed for sequential rerouting. This difference is caused by the
checking if a solution has to be rejected.

The tables show that the PARALLEL RESOURCE SHARING ALGORITHM scales very
well with the number of processors on many chips. On chips with a bad speedup,
sequential runtime is already low in relation to wiring length (cf. table 4.1). On such
instances, only few nets are rerouted on average in each phase, and a significant amount
of runtime is spent on write operations to update resource utilizations. This of course
has to be done for all nets, including those that are not rerouted. Write operations
on memory thus seem to cause a bottleneck for parallelization speedup. In addition,
unparallelized parts of the program code gain a larger fraction of runtime on instances
which run fast already sequentially.

On the other hand, speedup on instances with high sequential runtime in relation
to wiring length comes always close to the number of processors in table 4.3 if no
sequential recomputation of rejected solutions is done at the end of a phase. Even with
sequential recomputation, speedup is not much worse. Parallelization speedup on the
chip Ludwig even exceeds the number of processors in table 4.3. There are two possible
reasons for this:

1. In the PARALLEL RESOURCE SHARING ALGORITHM, nets are not routed in the
same order as in the sequential RESOURCE SHARING ALGORITHM (in fact, there
is no total order), but the ordering can have a significant impact on runtime in
practice (see the discussion in section 4.7.1).

2. In spite of geometrical clustering, the search space for nets routed on different
processors may overlap. In such cases, a processor may save a memory access
by reading a variable from a shared cache which another processor previously
fetched from memory. This benefit may compensate part of the disadvantage due
to increased probability of write access collisions when search spaces overlap.

The results with 16 processors in table 4.4 show a slightly worse ratio between
parallelization speedup and number of processors, but using 16 processors still improves
speedup considerably compared to 8 processors.

We finally remark that table 4.3 shows that the new BonnRoute® global router al-
ready with 1 thread is faster on almost all 3D instances than the old global router on the
corresponding 2D instances, despite the increased graph size.

Quality of Results and the Approximation Parameter

Tables 4.5 and 4.6 show the quality of results in wiring length optimization obtained for
different settings of the approximation parameter &. By the standard parameter settings
used in the last years with BonnRoute®, vias are weighted relative to wiring length by
assigning them a length corresponding to 7-11 routing tracks, depending on the layer.
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The number ¢ of phases is always chosen such that &,¢ = 100. All runs in these tables
were done multi-threaded using 8 Intel Xeon E7220 processors running at 2.93 GHz.
As for the parallelization speedup tests, all experiments have been performed on the
original (3D) global routing grid graph. The bound I'®® on objective costs has been
set to 1.1%p initially. Because considerably more vias are needed in 3D global routing
instances compared to 2D instances, a bound of 1.03%, as in the 2D comparisons above
would sometimes be exceeded.

As above, Agact in column 4 is the maximum congestion over all resources in the
fractional solution, and the breakdown on the maximum over edge capacity resources
and the objective function resource is given in parentheses. Ay, is a lower bound on the
maximum congestion in an optimum solution obtained by applying the weak duality
Lemma 3.2 on the resource prices returned by the RESOURCE SHARING ALGORITHM.
Arounded 18 the maximum congestion after randomized rounding, and Agp,) after iterative
refinement by rechoosing and ripup-and-reroute. Column 8 shows the total overload
of the final integral solution (abbreviated TOL), which is the sum

Z max {0, 4, — 1},

rERedges

where A, is the congestion of resource r € R, and Redges 1s the set of resources corre-
sponding to global routing edge capacities.

Columns 9 and 10 show the percentaged deviation of the objective value Yac¢ Of the
fractional solution and the final integral solution, respectively, from the lower bound i,
on the objective value. Finally, the last column shows the runtime needed altogether for
computing initial Steiner trees, running the PARALLEL RESOURCE SHARING ALGO-
RITHM, randomized rounding and iterative refinement.

Not surprisingly, runtime increases considerably when running the PARALLEL RE-
SOURCE SHARING ALGORITHM with a smaller value of & and more phases. With
smaller values of &,

* the maximum congestion improves or remains approximately equal on all chips

 with the exception of the chip Gerhard (see below), the lower bound Ay, on the
maximum congestion in an optimum solution improves

* total overload is reduced or stays equal in most cases; where this is not the case,
maximum congestion is reduced

* the objective value achieved, both in the fractional and in the final integral solu-
tion, improves by far on most chips; where this is not the case, it becomes only
marginally worse

On the chip Gerhard, the lower bound Ay, obtained with & := 0.5 and 200 phases
performed in the PARALLEL RESOURCE SHARING ALGORITHM is only 0.443 com-
pared to 0.93 with & := 1.0 and 100 phases. Of course the number of phases required
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Chip & | phases Atract (Obj./edges) Mb | Arounded Afinal | TOL | % Gap | % Gap | Runtime
(fract.) | (final)
Lucius 0.5 200 | 0.963  (0.963/0.961) | 0.946 1.500 1.000 0.0 4.36 4.42 | 0:00:58.2
1.0 100 | 0.960  (0.960/0.949) | 0.938 1.636 | 0.971 0.0 4.55 4.67 | 0:00:37.5
5.0 20 | 0961 (0.961/0.932) | 0.915 1.532 1.000 0.0 5.77 5.85 | 0:00:11.7
Heijo 0.5 200 1.008  (0.950/1.008) | 0.992 1.333 1.000 0.0 1.42 1.39 | 0:00:23.1
1.0 100 1.007  (0.950/1.007) | 0.809 1.333 1.000 0.0 1.46 1.41 | 0:00:14.5
5.0 20 1.035  (0.950/1.035) | 0.716 1.333 1.000 0.0 1.84 1.91 | 0:00:06.7
Ruediger | 0.5 200 | 0.949  (0.949/0.944) | 0.943 1.167 | 0.969 0.0 0.89 0.94 | 0:00:20.1
1.0 100 | 0.948  (0.948/0.930) | 0.942 1.138 | 0.969 0.0 0.96 1.00 | 0:00:12.9
5.0 20 | 0.949  (0.949/0.946) | 0.938 1.122 | 0971 0.0 1.27 1.27 | 0:00:06.6
Timo 0.5 200 | 0.950 (0.950/0.950) | 0.943 1.333 | 0.971 0.0 1.31 1.38 | 0:00:48.7
1.0 100 | 0.950  (0.950/0.950) | 0.942 1.222 | 0.971 0.0 1.34 1.39 | 0:00:29.8
5.0 20 | 0.949  (0.949/0.939) | 0.934 1.145 | 0.970 0.0 1.82 1.79 | 0:00:15.2
Jo 0.5 200 | 0.950  (0.950/0.950) | 0.938 1.517 | 0.971 0.0 1.65 1.64 | 0:03:47.8
1.0 100 | 0.950  (0.950/0.950) | 0.937 1.517 | 0.971 0.0 1.67 1.69 | 0:02:38.6
5.0 20 | 0.950 (0.950/0.948) | 0.924 1.517 | 0.970 0.0 2.24 2.17 | 0:00:48.7
Renate 0.5 200 1.000  (0.949/1.000) | 0.962 1.400 1.000 0.0 0.82 0.81 | 0:01:27.2
1.0 100 1.000  (0.950/1.000) | 0.961 1.333 1.000 0.0 0.86 0.85 | 0:00:56.5
5.0 20 1.000  (0.934/1.000) | 0.961 1.178 1.000 0.0 0.93 0.94 | 0:00:29.3
Rosemarie | 0.5 200 | 0.950  (0.950/0.949) | 0.941 2.000 1.000 0.0 1.91 1.96 | 0:01:45.5
1.0 100 | 0.950  (0.950/0.947) | 0.939 2.000 1.000 0.0 1.97 2.01 | 0:01:08.4
5.0 20 | 0.949  (0.949/0.944) | 0.930 2.000 1.000 0.0 2.41 2.43 | 0:00:28.4
Tuula 0.5 200 | 0.950  (0.950/0.950) | 0.941 2.000 | 0.971 0.0 1.27 1.30 | 0:02:23.9
1.0 100 | 0.950  (0.950/0.948) | 0.940 2.000 1.000 0.0 1.26 1.27 | 0:01:21.9
5.0 20 | 0.949  (0.949/0.944) | 0.937 2.000 | 0.971 0.0 1.50 1.50 | 0:00:30.4
Georg 0.5 200 | 0.950  (0.950/0.949) | 0.942 2.000 1.000 0.0 1.53 1.56 | 0:02:38.5
1.0 100 | 0.950  (0.950/0.945) | 0.940 3.000 1.000 0.0 1.61 1.63 | 0:01:40.2
5.0 20 | 0.949  (0.949/0.941) | 0.934 2.000 1.000 0.0 1.90 1.91 | 0:00:49.7
Sigurd 0.5 200 | 0.968  (0.968/0.967) | 0.945 2.286 1.000 0.0 471 4.79 | 0:15:47.8
1.0 100 | 0.964  (0.964/0.964) | 0.936 2.545 1.000 0.0 4.95 4.99 | 0:12:45.1
5.0 20 | 0970  (0.970/0.968) | 0.885 2.500 1.000 0.0 6.75 6.94 | 0:03:36.8
Wighart 0.5 200 | 0.950  (0.950/0.950) | 0.939 3.000 1.000 0.0 1.92 2.00 | 0:05:48.7
1.0 100 | 0.950  (0.950/0.948) | 0.937 2.333 1.000 0.0 1.99 2.05 | 0:03:40.2
5.0 20 | 0.949  (0.949/0.941) | 0.929 2.000 1.000 0.0 2.39 2.43 1 0:01:32.7
Claus 0.5 200 | 0.972  (0.950/0.972) | 0.932 3.000 1.030 0.1 1.81 1.96 | 0:12:36.9
1.0 100 | 0.972  (0.950/0.972) | 0.923 3.000 1.029 0.1 191 2.04 | 0:08:16.2
5.0 20 | 0977  (0.950/0.977) | 0.844 2.222 1.034 1.0 2.83 2.87 | 0:03:04.9
Paul 0.5 200 | 9.476  (0.947/9.476) | 4.465 | 20.286 | 9.091 | 771.6 1.45 1.30 | 0:34:21.3
1.0 100 | 10.571 (0.932/10.571) | 3.973 | 20.857 | 9.091 | 778.8 1.47 1.28 | 0:21:48.6
5.0 20 | 20.143 (0.928/20.143) | 3.524 | 21.857 | 9.429 | 745.5 1.80 1.57 | 0:05:24.7
Dorothea | 0.5 200 | 0.951  (0.951/0.937) | 0.935 3.000 1.000 0.0 3.11 3.27 | 0:24:02.4
1.0 100 | 0.950  (0.950/0.946) | 0.930 3.000 1.000 0.0 3.26 340 | 0:14:49.8
5.0 20 | 0.950 (0.949/0.950) | 0.913 3.000 1.000 0.0 3.84 3.94 | 0:04:48.6
Richard 0.5 200 | 3.000  (0.944/3.000) | 1.205 3.000 | 3.000 | 49.5 1.27 1.31 | 0:58:04.5
1.0 100 | 3.000 (0.922/3.000) | 1.122 3.000 | 3.000 | 524 1.31 1.32 | 0:30:35.1
5.0 20 | 3.000 (0.923/3.000) | 0.379 3.000 | 3.000 | 70.8 1.66 1.62 | 0:11:30.7
Laci 0.5 200 | 15.000 (0.933/15.000) | 2.706 | 15.000 | 15.000 | 211.1 1.90 1.93 | 0:59:35.5
1.0 100 | 15.000 (0.928/15.000) | 2.682 | 15.000 | 15.000 | 217.1 1.98 1.97 | 0:46:01.3
5.0 20 | 15.000 (0.929/15.000) | 2.581 | 15.000 | 15.000 | 220.0 2.27 2.23 | 0:12:00.4
Vasek 0.5 200 | 3.500  (0.955/3.500) | 1.177 4.667 | 4.000 | 294.7 2.80 2.95 | 8:09:04.7
1.0 100 | 3.500 (0.959/3.500) | 1.106 5.000 | 4.000 | 338.1 2.96 2.99 | 4:23:15.3
5.0 20 | 3.500  (0.948/3.500) | 0.670 4.000 | 4.000 | 440.8 5.30 4.77 | 1:27:40.8
Camilla 0.5 200 | 0.950  (0.950/0.946) | 0.937 4.000 1.000 0.0 2.52 2.56 | 0:51:09.6
1.0 100 | 0.950  (0.950/0.950) | 0.933 4.000 1.000 0.0 2.59 2.61 | 0:33:05.5
5.0 20 | 0.950 (0.950/0.947) | 0.918 3.000 1.000 0.0 3.34 3.33 | 0:11:23.6
Chiara 0.5 200 | 0.950  (0.950/0.949) | 0.939 3.000 1.000 0.0 1.41 1.48 | 0:36:32.8
1.0 100 | 0.950  (0.950/0.950) | 0.938 3.500 1.000 0.0 1.47 1.52 | 0:22:12.9
5.0 20 | 0.950  (0.950/0.948) | 0.932 3.000 1.000 0.0 1.86 1.88 | 0:08:30.1
Tomoko 0.5 200 1.629  (0.950/1.629) | 1.449 3.000 1.600 0.8 1.12 1.14 | 0:23:43.0
1.0 100 1.625  (0.950/1.625) | 1.449 3.000 1.600 0.8 1.18 1.20 | 0:15:21.2
5.0 20 1.667  (0.949/1.667) | 1.369 2.500 1.600 0.9 1.36 1.36 | 0:07:09.0
Andre 0.5 200 | 0.950  (0.950/0.948) | 0.938 3.000 1.000 0.0 2.25 2.38 | 1:18:54.8
1.0 100 | 0.950  (0.950/0.950) | 0.935 3.000 1.000 0.0 2.38 2.48 | 0:50:43.3
5.0 20 | 0.950  (0.950/0.949) | 0.923 3.000 1.000 0.0 2.92 2.96 | 0:17:32.3
Ludwig 0.5 200 | 0.971  (0.957/0.971) | 0.937 4.000 1.000 0.0 3.00 3.04 | 5:58:18.7
1.0 100 | 0.971  (0.955/0.971) | 0.930 4.000 1.000 0.0 3.14 3.17 | 4:24:53.3
5.0 20 | 0.984  (0.957/0.984) | 0.875 3.000 1.000 0.0 4.35 4.44 | 1:09:30.0

Table 4.5: Results of the BonnRoute® global router on the 65 nm chips in our testbed,
optimizing wiring length and vias (8 threads)
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Chip & | Phases Atract (Obj./edges) Ab | Arounded | Afinal TOL | % Gap | % Gap | Runtime
(fract.) | (final)
Raphaelo | 0.5 200 | 0.949 (0.949/0.865) | 0.944 1.200 | 0.971 0.0 2.78 2.74 | 0:00:21.5
1.0 100 | 0.948 (0.948/0.938) | 0.942 1.211 | 0.971 0.0 2.84 2.77 | 0:00:13.3

5.0 20 | 0.947 (0.947/0.889) | 0.926 1.233 | 0.971 0.0 3.43 3.39 | 0:00:06.4
Nelu 0.5 200 | 0.949 (0.949/0.935) | 0.943 2.000 | 0.971 0.0 2.99 3.11 | 0:00:32.4
1.0 100 | 0.949 (0.949/0.935) | 0.940 2.000 | 0.971 0.0 3.10 3.22 | 0:00:20.1
5.0 20 | 0.948 (0.948/0.910) | 0.925 1.852 | 0.971 0.0 3.66 3.78 | 0:00:09.3

Gerhard | 0.5 200 | 0.954 (0.954/0.946) | 0.443 2778 | 1.177 0.0 4.75 491 | 0:01:49.7
1.0 100 | 0.972 (0.953/0.972) | 0.930 3.000 | 1.293 0.3 4.82 4.95 | 0:01:18.1
5.0 20 | 1.021 (0.960/1.021) | 0.712 3.000 | 1.158 0.3 5.60 5.65 | 0:00:48.2
Victor 0.5 200 | 0.971 (0.971/0.971) | 0.946 1.719 | 0.985 0.0 6.95 7.15 | 0:11:27.5
1.0 100 | 0.973 (0.973/0.973) | 0.942 1.637 | 1.004 0.0 7.21 7.27 | 0:08:51.0
5.0 20 | 0.989 (0.989/0.987) | 0.918 1.619 | 0.997 0.0 8.97 9.23 | 0:01:56.0
Henrik 0.5 200 | 1.646 (0.950/1.646) | 1.409 3.000 | 1.630 29.0 2.33 2.58 | 0:03:46.3
1.0 100 | 1.647 (0.949/1.647) | 1.400 3.000 | 1.647 28.8 2.44 2.64 | 0:02:23.8
5.0 20 | 1.651 (0.949/1.651) | 1.372 3.000 | 1.647 28.7 3.37 3.46 | 0:00:57.9
Emilia 0.5 200 | 0.950 (0.950/0.946) | 0.943 2.456 | 0.971 0.0 1.56 1.59 | 0:02:20.5
1.0 100 | 0.950 (0.950/0.950) | 0.942 2.000 | 0.971 0.0 1.55 1.55 | 0:01:27.7
5.0 20 | 0.950 (0.950/0.945) | 0.941 2.000 | 0.971 0.0 1.66 1.65 | 0:00:39.4
Milena 0.5 200 | 0.991 (0.966/0.991) | 0.949 3.666 | 0.996 0.0 6.22 6.36 | 0:07:10.6
1.0 100 | 0.991 (0.967/0.991) | 0.944 3.000 | 1.004 0.0 6.36 6.48 | 0:04:40.9
5.0 20 | 1.007 (0.984/1.007) | 0.919 3.000 | 1.007 0.0 8.24 8.26 | 0:01:58.3
Simona | 0.5 200 | 0.973 (0.973/0.972) | 0.949 3.333 | 1.004 0.0 7.02 7.25 | 0:24:55.8
1.0 100 | 0.975 (0.975/0.974) | 0.942 3.333 | 1.000 0.0 7.22 7.43 | 0:18:30.6
5.0 20 | 0.994 (0.994/0.987) | 0.904 3.486 | 1.011 0.1 9.30 9.36 | 0:03:44.8
Angela 0.5 200 | 0.956 (0.956/0.955) | 0.949 3.000 | 1.000 0.0 2.59 2.59 | 0:06:48.1
1.0 100 | 0.953 (0.953/0.953) | 0.944 3.000 | 1.000 0.0 2.58 2.57 | 0:04:20.9
5.0 20 | 0.950 (0.950/0.946) | 0.931 3.000 | 1.000 0.0 2.89 2.86 | 0:01:54.6
Guido 0.5 200 | 0.950 (0.950/0.947) | 0.938 3.055 | 0.990 0.0 3.66 3.79 | 0:07:12.2
1.0 100 | 0.950 (0.950/0.943) | 0.935 3.055 | 1.000 0.0 3.74 3.84 | 0:04:33.0
5.0 20 | 0.950 (0.950/0.927) | 0.918 3.000 | 1.000 0.0 4.45 4.50 | 0:01:51.6
Dirk 0.5 200 | 1.893 (0.982/1.893) | 1.102 4.122 | 1.872| 3727.0 | 12.88 | 12.48 | 1:09:19.0
1.0 100 | 1.894 (0.982/1.894) | 1.069 4.036 | 1.872| 40235 | 14.41 | 13.93 | 0:40:51.4
5.0 20 | 1.967 (1.015/1.967) | 0.838 6.778 | 1.872 | 6269.3 | 21.84 | 22.26 | 0:11:59.3
Thilo 0.5 200 | 1.402 (0.971/1.402) | 1.088 3.000 | 1.397 | 786.9 7.53 7.33 | 0:24:14.3
1.0 100 | 1.406 (0.974/1.406) | 1.048 3.000 | 1.397 | 806.7 791 7.58 | 0:15:06.2
5.0 20 | 1.478 (0.996/1.478) | 0.817 3.027 | 1414 | 1188.6 | 10.78 9.89 | 0:06:48.4
Martina | 0.5 200 | 0.954 (0.954/0.953) | 0.939 4.000 | 1.000 0.0 4.98 5.14 | 0:26:55.6
1.0 100 | 0.955 (0.955/0.954) | 0.935 4.000 | 1.000 0.0 5.09 5.20 | 0:17:57.7
5.0 20 | 0.967 (0.967/0.959) | 0.919 3.889 | 1.011 0.0 6.34 6.39 | 0:07:35.2

Table 4.6: Results of the BonnRoute® global router on the 45 nm chips in our testbed,
optimizing wiring length and vias (8 threads)
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by Theorem 3.6 increases quadratically in 1/e. With 400 phases instead of 200, A,
increased from 0.443 to 0.928.

On all chips for which none of the three parameter settings produced a feasible frac-
tional or integral solution, A, provided a certificate of infeasibility in the runs with
& = 0.5 or &, = 1. For most chips, a feasible integral solution is found if a feasible
fractional solution has been found. Claus is the only 65nm chip for which this is not
the case; on the 45nm testcases, this happens on five out of 13 chips, depending on the
approximation parameter &. It is not clear if this is due to the integrality gap or the sim-
ple iterative refinement heuristic. In all these cases however, the maximum congestion
in the final integral solution is not much above 1, and total overload of this solution is
small.

On the chip Heijo, the fractional solution is not feasible, but iterative refinement
manages to find a feasible integral solution in the end. This does not contradict Theorem
3.6, and indeed the lower bound Aj;, does not prove that no feasible solution exists.

On many chips the maximum congestion in the fractional solution is very close to
0.95. This is due to the fact that the bound I'°® on objective costs is tightened only such
that congestion in the objective function resource does not exceed 0.95 (see section
4.7.1). On the other hand, the maximum edge congestion tends to increase as long as it
has not reached this value if this allows to reduce wire length and the number of vias.

Yield- and Power Optimization

Tables 4.7 and 4.8 show results on wiring length-, yield- and power optimization ob-
tained with & := 5.0 and 20 phases, and with & := 1.0 and 100 phases, respectively, in
each run of the PARALLEL RESOURCE SHARING ALGORITHM. The experiments were
done using 8 Intel Xeon E7220 processors running at 2.93 GHz. For each chip there
are three lines in the tables, one for each optimization objective. For wiring length opti-
mization, as above vias are assigned a length which corresponds to 7-11 routing tracks
(depending on the layer) by the standard parameters of BonnRoute®, and the bound
I"°% on objective costs is set to 1.1y initially. For yield optimization, objective costs
are weighted by factors obtained from manufacturing. 95 percent of vias are assumed
to be realizable as so-called redundant vias, i.e. pairs of two neighboured vias, which
drastically reduces contribution of vias to manufacturing yield loss. Often single vias
are replaced by redundant vias in a post-processing step after routing, resulting in a
lower percentage of redundant vias, but this figure can be raised significantly by making
redundant vias default and switch to single vias only in case of routability problems.
Also, local loops can be added to the wiring to increase via redundancy, see Bickford et
al. [2006]. For yield optimization, we set I'°% := 2.0, initially. For power optimiza-
tion, we use extracted capacitances for closest possible spacing and one track of extra
spacing. For simplicity, the extraction values of the standard wire type are used for all
nets, although a small fraction of nets is routed with other wire types, and maximum
allocated extra space is limited to one track. We set the bound I'°® := 1.27jy, initially for
power optimization.
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As earlier, Ay, is the lower bound obtained on the maximum congestion in an opti-
mum solution, and runtimes include construction of initial Steiner trees, the PARALLEL
RESOURCE SHARING ALGORITHM, randomized rounding and iterative refinement.
Columns 4 to 7 refer to the final integral solution: Column 4 is the percentaged devia-
tion of the achieved objective value from the lower bound %y, and Columns 5 to 7 relate
the results to each other by evaluating the global routing solution obtained in each line
w.r.t. the objective costs of each of the three objectives and dividing the resulting value
by the value achieved when actually optimizing this objective. The diagonal entries in
each of the 3 x 3-matrices therefore are all 1. For a fair comparison, before evaluating
a global routing solution ((7y,sy))nven W.r.t. one of the objectives, remaining unused
capacity

max ¢ 0,u(e) — Z (W(N,e)+sn(e))

NeN:ecE(Ty)

for each edge e € E(G) is distributed in discrete amounts equal to the wiring pitch on
the layer of edge e in an optimal way among the nets N € A/ with e € E(Ty). This
obviously can be done in a greedy fashion on each edge.

The results clearly show that when optimizing one of the objectives, results improve
considerably compared to a routing optimized for a different objective. This becomes
apparent most distinctly in critical area, which reduces by up to 30 percent compared to
a wiring length- or power-optimized routing. The reason for this is that both for wiring
length and power optimization, using higher routing layers causes high via costs, but
costs of wire segments are the same on all layers for length optimization, and almost
the same for power optimization for wires with the same spacing. Hence optimizing
a weighted sum of wiring length and number of vias, as is done in most classical rout-
ing benchmarks, can significantly degrade manufacturing yield. The difference between
wiring length and power optimization is much smaller. This is due to the fact that power
consumption is reduced mainly by assigning extra space to wires. In a routing opti-
mized for wiring length, a large part of wires however runs through regions with low or
medium edge congestion, so assigning extra space in a post-processing step as sketched
above comes already close to the objective value achieved when actually optimizing
power. Note that in the runs with & = 5.0, power consumption of the solution gener-
ated by wiring length optimization on the chips Sigurd and Claus is even better than the
result obtained by actually optimizing power. In table 4.8 (with & = 1.0) this does not
happen any more.

Runtimes for yield and power optimization are considerably higher than for wiring
length minimization. This is due to the weaker lower bounds which not only increase
the runtime of a single block solver call, but also cause a higher number of block
solver calls, as lower bounds on the achievable objective costs for a net are used also in
the recomputation criterion in the RESOURCE SHARING ALGORITHM (see chapter 3).
Nonetheless, critical area optimization takes less than an hour on most of our testcases,
and only a few hours on the largest chips (depending on the approximation parame-
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Chip Optimization A | % Gap Relative obj. value Runtime
objective wiring | critical | power
length area

Lucius wiring length | 0.914 5.75 1.000 | 1.115 | 1.007 || 0:00:15.2
critical area | 0.860 | 20.72 1.060 | 1.000 | 1.067 || 0:00:53.8

power | 0.881 | 1592 || 1.050 | 1.196 | 1.000 || 0:00:36.6

Heijo wiring length | 0.364 1.84 1.000 | 1.163 | 1.014 || 0:00:07.3
critical area | 0.797 6.21 1.032 | 1.000 | 1.072 || 0:00:23.5

power | 0.532 6.20 || 1.049 | 1.302 | 1.000 || 0:00:19.9

Ruediger | wiring length | 0.939 1.27 1.000 | 1.186 | 1.012 || 0:00:07.1
critical area | 0.898 4.48 1.034 | 1.000 | 1.058 || 0:00:20.9

power | 0.913 3.98 1.047 | 1.327 | 1.000 || 0:00:17.6

Timo wiring length | 0.934 1.82 1.000 | 1.132 | 1.017 || 0:00:16.1
critical area | 0.899 440 || 1.034 | 1.000 | 1.068 || 0:00:34.5

power | 0.913 5.19 || 1.055| 1.286 | 1.000 || 0:00:35.3

Jo wiring length | 0.924 2.21 1.000 | 1.145 | 1.013 || 0:00:53.0
critical area | 0.855 | 13.12 || 1.028 | 1.000 | 1.058 || 0:04:38.0

power | 0.892 8.56 || 1.051 | 1.291 | 1.000 || 0:02:59.6

Renate wiring length | 0.961 0.93 1.000 | 1.198 | 1.005 || 0:00:31.5
critical area | 0.940 3.33 1.027 | 1.000 | 1.065 || 0:01:35.5

power | 0.949 3.61 1.036 | 1.353 | 1.000 || 0:01:07.3

Rosemarie | wiring length | 0.930 2.43 1.000 | 1.216 | 1.010 || 0:00:31.9
critical area | 0.777 | 34.18 1.054 | 1.000 | 1.070 || 0:05:24.3

power | 0.896 9.23 1.058 | 1.286 | 1.000 || 0:02:59.0

Tuula wiring length | 0.937 1.50 || 1.000 | 1.246 | 1.005 || 0:00:31.8
critical area | 0.866 | 10.15 1.039 | 1.000 | 1.086 || 0:04:31.0

power | 0.903 7.52 || 1.037 | 1.389 | 1.000 || 0:02:27.3

Georg wiring length | 0.934 1.91 1.000 | 1.302 | 1.011 || 0:00:53.7
critical area | 0.794 | 23.79 || 1.061 | 1.000 | 1.088 || 0:05:45.9

power | 0.909 6.04 || 1.057 | 1.424 | 1.000 || 0:02:53.3

Sigurd wiring length | 0.884 6.92 || 1.000 | 1.122 | 0.980 || 0:04:15.6
critical area | 0.701 | 60.03 1.053 | 1.000 | 1.024 || 0:19:35.5

power | 0.779 | 21.64 || 1.083 | 1.218 | 1.000 || 0:11:49.3

Wighart wiring length | 0.929 2.42 || 1.000 | 1.274 | 1.006 || 0:01:42.9
critical area | 0.762 | 31.81 1.073 | 1.000 | 1.082 || 0:15:25.2

power | 0.450 842 || 1.053 | 1.344 | 1.000 || 0:07:55.3

Claus wiring length | 0.850 2.85 1.000 | 1.192 | 0.997 || 0:03:38.9
critical area | 0.671 | 50.52 || 1.050 | 1.000 | 1.067 || 0:28:58.6

power | 0.733 | 10.02 || 1.049 | 1.269 | 1.000 || 0:26:46.5

Dorothea | wiring length | 0.913 3.95 1.000 | 1.281 | 1.004 || 0:05:29.9
critical area | 0.754 | 37.68 1.064 | 1.000 | 1.064 || 0:43:26.7

power | 0.870 | 11.08 1.050 | 1.396 | 1.000 || 1:07:15.6

Camilla wiring length | 0.918 3.33 1.000 | 1.255| 1.011 || 0:13:57.4
critical area | 0.719 | 42.38 1.055 | 1.000 | 1.073 || 1:25:15.9

power | 0.883 | 10.75 1.047 | 1.338 | 1.000 || 0:58:13.6

Chiara wiring length | 0.932 1.88 1.000 | 1.284 | 1.002 || 0:08:27.7
critical area | 0.778 | 41.17 1.061 | 1.000 | 1.079 || 2:03:34.0

power | 0.897 8.48 1.042 | 1.360 | 1.000 || 1:30:20.3

Tomoko wiring length | 1.369 1.36 1.000 | 1.387 | 1.009 || 0:07:40.4
critical area | 1.220 | 26.74 1.061 | 1.000 | 1.086 || 1:18:53.0

power | 1.373 5.23 1.043 | 1.496 | 1.000 || 0:38:21.0

Andre wiring length | 0.923 296 || 1.000 | 1.255 | 1.004 || 0:17:36.3
critical area | 0.746 | 34.80 || 1.064 | 1.000 | 1.070 || 3:04:24.2

power | 0.893 8.47 1.048 | 1.332 | 1.000 || 2:10:58.5

Ludwig wiring length | 0.875 4.44 1.000 | 1.304 | 1.007 || 1:21:47.3
critical area | 0.679 | 51.76 1.058 | 1.000 | 1.081 || 6:15:17.6

power | 0.799 | 12.87 1.049 | 1.399 | 1.000 || 3:04:10.6

Table 4.7: Relative objective values obtained for wiring length, yield and power opti-
mization with & := 5.0 and 20 phases performed in the PARALLEL RESOURCE SHAR-
ING ALGORITHM. Runtimes are for the complete global routing runs, using 8 threads.
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Chip Optimization A | % Gap Relative obj. value Runtime
objective wiring | critical | power
length area

Lucius wiring length | 0.938 4.65 1.000 | 1.106 | 1.013 0:00:50.5
critical area | 0.904 | 20.19 1.083 | 1.000 | 1.097 0:03:46.5

power | 0.919 | 14.07 1.030 | 1.161 | 1.000 0:02:00.1

Heijo wiring length | 0.809 1.47 1.000 | 1.196 | 1.027 0:00:16.6
critical area | 0.925 5.31 1.035 | 1.000 | 1.078 0:01:23.3

power | 0.927 5.75 1.043 | 1.299 | 1.000 || 0:01:06.2

Ruediger | wiring length | 0.942 0.98 1.000 | 1.200 | 1.025 0:00:13.1
critical area | 0.912 342 || 1.037 | 1.000 | 1.066 0:01:01.8

power | 0.917 3.51 1.041 | 1.340 | 1.000 || 0:00:58.7

Timo wiring length | 0.942 1.36 1.000 | 1.161 | 1.031 0:00:32.4
critical area | 0.916 3.33 1.039 | 1.000 | 1.076 0:01:37.0

power | 0.923 4.66 || 1.049 | 1.288 | 1.000 || 0:01:44.8

Jo wiring length | 0.937 1.67 1.000 | 1.166 | 1.027 0:03:00.4
critical area | 0.897 | 12.51 1.033 | 1.000 | 1.065 0:17:45.9

power | 0.921 7.75 1.036 | 1.268 | 1.000 || 0:08:33.8

Renate wiring length | 0.961 0.86 1.000 | 1.244 | 1.017 0:00:50.6
critical area | 0.944 2.66 || 1.032 | 1.000 | 1.074 0:04:26.5

power | 0.950 3.16 || 1.031 | 1.363 | 1.000 || 0:03:07.9

Rosemarie | wiring length | 0.939 2.01 1.000 | 1.274 | 1.030 || 0:01:19.1
critical area | 0.877 | 31.73 1.050 | 1.000 | 1.074 0:19:13.9

power | 0.919 8.41 1.043 | 1.281 | 1.000 || 0:07:43.8

Tuula wiring length | 0.940 1.28 1.000 | 1.290 | 1.020 || 0:01:35.7
critical area | 0.902 8.83 1.041 | 1.000 | 1.096 0:18:34.2

power | 0.921 6.47 1.024 | 1.393 | 1.000 || 0:07:22.9

Georg wiring length | 0.940 1.62 1.000 | 1.354 | 1.027 0:01:45.3
critical area | 0.882 | 21.57 1.055 | 1.000 | 1.092 0:22:22.8

power | 0.919 532 || 1.047 | 1.432| 1.000 || 0:07:56.7

Sigurd wiring length | 0.936 4.99 1.000 | 1.117 | 1.012 0:14:53.6
critical area | 0.853 | 57.15 1.061 1.000 | 1.064 0:58:33.6

power | 0.909 | 15.84 || 1.032 | 1.149 | 1.000 || 0:34:07.7

Wighart wiring length | 0.937 2.04 1.000 | 1.320 | 1.021 0:04:03.2
critical area | 0.869 | 28.63 1.068 | 1.000 | 1.091 1:00:47.9

power | 0.920 7.25 1.039 | 1.360 | 1.000 || 0:17:58.5

Claus wiring length | 0.925 2.05 1.000 | 1.228 | 1.016 0:10:05.1
critical area | 0.846 | 45.34 1.036 | 1.000 | 1.070 1:40:35.5

power | 0.907 7.75 1.028 | 1.283 | 1.000 || 0:47:53.7

Dorothea | wiring length | 0.930 3.40 1.000 | 1.338 | 1.019 0:17:28.8
critical area | 0.866 | 34.18 1.062 | 1.000 | 1.079 3:21:38.0

power | 0.913 9.15 1.027 | 1.398 | 1.000 1:41:38.2

Camilla wiring length | 0.933 2.60 || 1.000 | 1.288 | 1.023 0:38:38.3
critical area | 0.852 | 40.10 1.053 | 1.000 | 1.079 5:13:32.1

power | 0.918 9.66 || 1.032 | 1.325| 1.000 2:14:00.2

Chiara wiring length | 0.937 1.52 || 1.000 | 1.332 | 1.018 0:26:04.9
critical area | 0.878 | 37.88 1.054 | 1.000 | 1.084 8:18:08.2

power | 0.920 7.13 1.027 | 1.370 | 1.000 2:30:23.2

Tomoko wiring length | 1.449 1.20 1.000 | 1.434 | 1.026 0:16:55.1
critical area | 1.342 | 24.35 1.054 | 1.000 | 1.091 5:01:36.5

power | 1.449 446 || 1.033 | 1.513 | 1.000 1:27:42.2

Andre wiring length | 0.935 2.47 1.000 | 1.282 | 1.018 0:58:14.6
critical area | 0.861 | 31.57 1.060 | 1.000 | 1.083 || 12:22:40.8

power | 0.917 6.86 || 1.029 | 1.337 | 1.000 || 4:12:02.3

Ludwig wiring length | 0.930 3.17 1.000 | 1.316 | 1.021 4:58:45.7
critical area | 0.841 | 50.12 1.060 | 1.000 | 1.092 || 20:15:24.1

power | 0.908 | 10.42 || 1.028 | 1.368 | 1.000 8:52:50.8
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Table 4.8: Relative objective values obtained for wiring length, yield and power opti-
mization with & := 1.0 and 100 phases performed in the PARALLEL RESOURCE SHAR-
ING ALGORITHM. Runtimes are for the complete global routing runs, using 8 threads.
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ter), making it very valuable in practice because a 30 percent reduction in critical area
increases manufacturing yield correspondingly.

4.10 Discussion and Outlook

In this chapter, we showed how a fractional relaxation of the GLOBAL ROUTING PROB-
LEM in VLSI design can be formulated as a RESOURCE SHARING PROBLEM and ef-
ficiently solved by the PARALLEL RESOURCE SHARING ALGORITHM presented in
chapter 3. A near-optimum integral solution can be obtained fast in practice from the
fractional solution by randomized rounding and an iterative refinement procedure.

We showed experimental results which demonstrate that the algorithm can be used
to optimize not only wiring length very efficiently, but also the practically relevant ob-
jectives, manufacturing yield and power consumption. Moreover, the algorithm scales
very well with the number of processors used. This makes it possible to optimize even
the largest chips in a few minutes to a few hours, depending on the optimization ob-
jective. Critical area in routing can be reduced by up to 30 percent, and manufacturing
yield increased correspondingly.

Nonetheless, runtime can be reduced further when lower bounds (for guiding path
search or for deciding which nets to reroute in a phase of the RESOURCE SHARING AL-
GORITHM) are weak. This is the case in yield optimization because of the large differ-
ences in layer characteristics, in power optimization because of the significant influence
of spacing, and in general in presence of high congestion. To drastically reduce runtime
spent on routing very long connections, a fast tree enumeration approach as proposed in
section 4.8 is likely to help to achieve near-optimum solutions (or indicate infeasibility
of the global routing instance) much faster. Although a strict proof of infeasibility re-
quires the call to an exact block solver at least once for each net on the resource prices
obtained from the RESOURCE SHARING ALGORITHM and applying the weak duality
Lemma 3.2, using such heuristic block solvers in most cases — if an instance is not
on the edge of infeasibility — should suffice in practice to distinct between feasible
and infeasible instances. Ideally, a global router based on the RESOURCE SHARING
ALGORITHM with very fast block solvers could be used for congestion estimation in
placement, replacing probabilistic approaches (see e.g. Shelar and Saxena [2009]).

A further challenge is imposed by the continued shrinking of feature sizes. Electri-
cal characteristics of wires scale significantly worse than transistors across successive
process generations, and thus the relative contribution of wiring delay to overall latch-
to-latch delay continuously grows in each new technology generation. Because wiring
delay is roughly quadratic in electrical capacitance of the wiring, bridging long distances
with the shortest possible signal delay requires insertion of repeater circuits, 1.e. buffers
or inverters, to refresh signals. Saxena et al. [2004] investigate the consequences of
continuously shrinking feature sizes and predict a dramatic increase of buffering needed
in forthcoming technologies. Hence there is a growing need of doing buffering during
global routing in order not to cut down flexibility by a fixed placement of repeaters, thus
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coupling routing, timing optimization and placement more closely with each other. As
buffering space is a limited resource, it is natural to understand buffers as parts of global
routing wires and to incorporate them into the RESOURCE SHARING PROBLEM formu-
lation of the global routing problem. The RESOURCE SHARING ALGORITHM does not
have to be changed to accomodate this, but it is an important challenge to write a block
solver which in short time finds a near-optimum buffered routing for a global routing
net w.r.t. given prices for delay, buffering space and edge capacity consumption.
Finally, integration of global routing and timing optimization must be investigated
further. Imposing constraints on total delay of critical paths as proposed in this chap-
ter should improve timing after routing considerably, but this is only a first step. A
more accurate computation of delay which takes resistance into account is important for
timing critical nets, and delay-optimal solutions for a single net require it to be routed
with a certain topology. In particular, block solvers cannot rely on the assumption that
the contribution of using some edge in the global routing graph to signal delay is inde-
pendent of the routing topology. An important task is to develop a block solver which
finds a (near-)optimum routing for a single net w.r.t. a combination of topology-aware
delay costs and costs for routing space consumption. Recomputing timing slacks dur-
ing global routing might give more accurate results, and integration with other timing
optimization steps, such as gate sizing, can increase the potential for optimization.
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Summary

Routing is the last major step in chip design. It naturally splits into global and detailed
routing: In global routing, an approximate layout of electrical connections is computed,
subject to constraints on space and signal propagation delays. Among the feasible so-
lutions, a solution with (near-)optimum power consumption, manufacturing yield or a
combination of both is to be found. Detailed routing generates an exact layout subject
to constraints on the geometrical arrangement of metal shapes (so-called design rules),
restricting search space to corridors defined by the approximate solution obtained in
global routing. BonnRoute®, the routing tool developed at the Reasearch Institute for
Discrete Mathematics at the University of Bonn, follows this partitioning and contains
a global and a detailed routing module.

In detailed routing, BonnRoute® discretizes routing space by a track graph in order
to simplify the problem. Routing tracks can be left if necessary, e.g. for pin access, but
most wires are supposed to run on-track in order to reduce search space. In chapter 2
we show how track positions can be found such that routing space is optimally used in
this discretized representation. In general, track-to-track distances are not uniform with
optimum track positions. We present data structures for representing the track graph
and gridless routing space, respectively, which are fast and memory efficient also with
irregular track-to-track distances. To achieve this, both data structures have to be aligned
with each other in a certain way. With our fast grid data structure for representing the
track graph, we obtain a runtime improvement of more than a factor 5 in the core path
search algorithm of the BonnRoute® detailed router.

At global routing scale, most design rules are irrelevant; only minimum spacing
requirements are translated into resource consumptions of edge capacities in a global
routing graph which is used as a much coarser representation of routing space than in
detailed routing. Signal delays, power consumption and manufacturing yield depend
non-linearly on the spacing between wires. Because all these dependencies are given by
convex functions, we can show that a fractional relaxation of the global routing problem
can be formulated as min-max resource sharing problem, which is defined as follows:
Given finite sets R of resources and C of customers, a convex set 1., called block, and
a continuous convex function g, : B, — IRLz for ¢ € C, the task is to find b, € B, (¢ € C)



approximately attaining
A* = inf{rrrée%;(gc(bc))r | be € Be(c € C)} :

Given a constant & > 0 and oracle functions f, : [RE — B, called block solvers, which
forceCand w € [RZS return an element b, € B, with

o g.(be) < (1+¢g) inf 0" g.(b),
beB,:

we describe a simple algorithm in chapter 3 which solves this problem with an approx-
imation guarantee 1+ & + € for any € > 0, and whose running time is

O(|C|6plog|R|(log |R|+e%))

for any fixed &y > 0, where 0 is the time for an oracle call and

P ::max{l,sup{% | rGR,CEC,bEBC}}.

While the fastest previously known algorithms have a linear runtime dependency on
|R|, the runtime of our algorithm grows only logarithmically with |R|. In contrast to
many previous results which require strong block solvers, i.e. & = 0 or & > 0 can be
chosen arbitrarily small, our result applies to both strong and weak block solvers, i.e.
there is no constraint on the choice of &.

In the context of global routing, customers are sets of pins (called nets) to be con-
nected with each other, blocks are convex hulls of incidence vectors of Steiner forests,
and block solvers are implemented by an algorithm for the (group) Steiner tree algo-
rithm in graphs. Our result is of immediate significance for global routing: Here, as in
many other practical applications, p is bounded by a small constant (in most cases even
p = 1), and weak block solvers are used to achieve fast runtimes. With our algorithm,
it is possible for the first time to find solutions to large instances of the global routing
problem with provably near-optimum power consumption or manufacturing yield. In
the largest instances today, up to 10 million customers must be coordinated to concur-
rently use 40 million resources in a (near-)optimum way.

In order to further reduce runtime, we present an efficient parallelized version of our
algorithm designed for shared-memory parallel computers. It allows block solvers to
work on outdated data, making use of the approximation parameter € to accomodate for
communication delays between processors in a shared-memory multi-processor com-
puter. The algorithm detects cases in which solutions returned by a block solver have
been computed based on too old data and in these cases schedules the corresponding
block solver for sequential recomputation. This makes it possible to prove correctness
of the algorithm despite block solvers working with outdated information. It turns out
that the time spent on sequential recomputations is sufficiently low to obtain speedups of



up to 8x on 8 processors and 14x on 16 processors, in particular on large global routing
instances.

In chapter 4 we discuss the global routing problem in detail and show how it can be
(fractionally) solved by the resource sharing algorithm developed in chapter 3. As we
are interested in an integral solution, i.e. a Steiner forest for each net, we combine our
algorithm with randomized rounding. A feasible integral solution can then be found eas-
ily by an iterative refinement procedure in practice. We generalize Steiner forests to tree
hierarchies with topology restrictions and present a block solver algorithm which for
given resource prices computes a tree hierarchy of minimum cost. This allows to address
an important step in hierarchical design methodologies, namely the port assignment at
hierarchy boundaries. We discuss many implementation details of the new BonnRoute®
global router developed within the scope of this thesis and propose an approach to im-
plement very fast block solvers by fast tree enumeration. Finally, experimental results
on a large number of recent industrial chips demonstrate that optimizing yield or power
with our algorithm significantly improves these objectives. Our algorithm reduces criti-
cal area, which measures the defect sensitivity of a chip, by up to 30 percent, increasing
manufacturing yield correspondingly. Thanks to the efficient parallelization of the re-
source sharing algorithm, the runtimes to achieve these results are drastically cut down.
Even the largest chips with millions of customers and resources can be optimized in a
few minutes to a few hours, depending on the optimization objective.





