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Abstract

A system comprised of a small number of neutral atoms coupled to the mode of a
high finesse optical resonator is a model system to study light-matter interaction
at the quantum level and to explore fundamental effects like the influence of
the measurement process on the atomic state. Promising proposals to generate
entangled states in such systems are based on the simultaneous coupling of two
atoms to one resonator mode.

In chapter 1 of this thesis I shortly summarise the experimental tools to cap-
ture, trap, and transport single atoms using a magneto-optical trap and an
optical conveyor belt. I discuss theoretical foundations to describe our system
and present numerical simulations, the results of which enter the analysis of
our experimental data. The average atom-cavity coupling strength is deduced
from the measured cavity transmission and compared to a model taking atomic
motion into account.

The dynamics of the hyperfine spin state of one and two coupled atoms is
the focus of chapter 2. I describe a nondestructive cavity-based state detection
method, quantify the state detection fidelity, and identify optimum experimen-
tal parameters. This method is then used to record random telegraph signals,
exhibiting quantum jumps on a timescale of milliseconds. Telegraph signals for
two atoms are analysed employing Bayesian statistics, yielding additional infor-
mation on the evolution of the hyperfine states.

A good localisation of the atom is necessary to achieve stable coupling to the
cavity mode. In chapter 3, I discuss two different aspects of how the motion of
the atom can be controlled. Firstly an intracavity dipole trap is characterised
and it is shown that it results in improved confinement of the atom. Secondly I
examine the dependence of cavity-cooling forces on our experimental parameters
and compare two different cooling regimes.

Zusammenfassung

Einige wenige Atome, die an das Feld eines optischen Resonators hoher Finesse
gekoppelt sind, stellen ein Modellsystem zur Untersuchung von fundamentalen
Prozessen der Licht-Materie-Wechselwirkung dar, wie etwa die Rückwirkung
des quantenmechanischen Messprozesses auf den atomaren Zustand. Vielver-
sprechende Vorschläge zur Erzeugung von verschränkten Zuständen in solchen
Atom-Resonator-Systemen basieren auf der simultanen Wechselwirkung zweier
Atome mit dem Resonatorfeld.

Im ersten Kapitel dieser Arbeit fasse ich die wesentlichen Komponenten des ex-
perimentellen Aufbaus zusammen. Theoretische Grundlagen zur Beschreibung



des Systems werden diskutiert, sowie darauf aufbauende numerische Simula-
tionen, deren Ergebnisse in spätere Auswertungen von Messergebnissen einge-
hen. Den Abschluss des Kapitels bildet eine Bestimmung der mittleren Atom-
Resonator-Kopplungsstärke und deren Vergleich mit einem theoretischen Modell,
welches die atomare Bewegung berücksichtigt.

Die Dynamik der internen Hyperfein-Spinzustände bildet den Schwerpunkt
des zweiten Kapitels. Eine nicht-destruktive Methode zur Messung des Spins
mit Hilfe der Cavity wird vorgestellt und charakterisiert; dabei werden optimale
experimentelle Parameter identifiziert. Mit Hilfe dieser Methode wurden sog.
Telegraphen-Signale aufgenommen, bei denen Quantensprünge auf der Zeitskala
einiger Millisekunden beobachtet werden können. Im Falle zweier Atome werden
derartige Signale zusätzlich mittels Bayes’scher Statistik analysiert um Informa-
tionen über die zeitliche Entwicklung der Spinzustände zu erhalten.

Eine wichtige Voraussetzung für stabile Atom-Resonator-Kopplung ist eine
gute Lokalisierung der Atome. Im dritten Kapitel werden zwei Phänomene disku-
tiert welche die Bewegung der Atome beeinflussen. Zum einen wird gezeigt, wie
eine innerhalb des Resonators gebildete zusätzliche Dipolfalle zu einer verbesserten
Lokalisierung führt. Des Weiteren wird theoretisch und experimentell unter-
sucht, wie Kühleffekte, die ausschließlich auf der Atom-Resonator-Wechselwirkung
basieren, von der Wahl der experimentellen Parameter abhängen.
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Introduction

Since the development of quantum mechanics one century ago, studying quantum
physical effects on the single particle level has made the transition from thought
experiments to setups in real world laboratories. In this context, small model
systems comprised of only a few constituents have always been of special interest
for testing and illustrating fundamental quantum-physical concepts.

The elementary system of light-matter interaction consists of a single atom
interacting with a single excitation of a mode of the electro-magnetic field, as
described by quantum electrodynamics (QED). In free space, the experimental
realisation of this system is hardly possible due to the small cross section, but this
obstacle can be overcome by confining the light field to a cavity. The interaction
of one atom coupled to a single quantised mode of a cavity is one of the building
blocks of cavity-QED (CQED) and was investigated theoretically by Jaynes and
Cummings in 1963 [1]. In this closed system, energy is coherently exchanged
without losses between atom and light field at a rate usually called the coupling
strength.

A realistic and more complete picture includes coupling to the environment
by two decay channels, namely light leaking out of the cavity and spontaneous
emission by the atom. This open quantum system, as discussed in [2], does
not only add decoherence, but losses are a necessary means for any observer to
study the processes which would otherwise be completely hidden in a perfectly
closed system. If the coherent evolution dominates over the aforementioned
decay channels, the system is in the so called strong coupling regime.

Experimentally, it took several decades of technological advances to realise the
conceptually simple arrangement of a single atom and a cavity in the laboratory,
because three objectives have to be met: Firstly a single atom has to be cooled
and trapped, which became possible with the advent of laser cooling [3]. Sec-
ondly, cavities of sufficiently high quality factors had to be manufactured, which
was first achieved in the microwave regime [4, 5] and later in the optical regime
using miniaturized cavities [6]. Thirdly, one or a small number of atoms has to
be inserted into the cavity in a controlled way.

This third aspect is vital for performing deterministic experiments. In the
microwave experiments, a stream of Rydberg atoms traverses the cavity, and
also the first experiments in the optical domain were performed with an atomic
beam [7–9] where one atom was present in the mode volume, but only on average
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2 Introduction

and for a short time. Two similar techniques were used to trap a single atom
inside the cavity, namely letting atoms fall from a magneto-optical trap [10] or
ejecting them from below the cavity by means of an atomic fountain [11] and
capturing them inside the cavity. Exact positioning, however, was realised in
our and other research groups using an optical conveyor belt to transport atoms
from a trapping region into the cavity [12–14].

A special advantage of the setup developed in our group is that this controlled
coupling has been extended to the case of two or more atoms [15], thereby
paving the way to experiments studying the simultaneous interaction of a small
ensemble of atoms coupled to the same cavity mode. This photon-mediated
interaction is the basis for promising proposals to generate entangled states in
CQED systems [16–18].

In order to plan and perform such experiments, the properties of the experi-
mental setup and its limitations have to be explored and quantified. This is
the focus of this thesis, in which I studied both the internal and external dy-
namics of one and two caesium atoms coupled to an optical cavity in the strong
coupling regime. Caesium, as an alkali atom, has two stable hyperfine ground
states, which would be the two qubit states acted on in entanglement generation.
Thus it is important to understand why and to which degree these states are
influenced by our measurements, and the evolution of these spin states is what
I refer to as internal dynamics.

In the strong coupling regime, already a single atom can shift the cavity res-
onance such that an initially resonant laser is no longer transmitted. Since this
shift depends on the hyperfine state, it facilitates a nondestructive state de-
tection technique [19]. It was used in this thesis to observe quantum jumps
between hyperfine states for one and two atoms, a phenomenon observed for the
fluorescence in trapped ions [20–22] but not yet for neutral atoms.

For all experiments we plan to pursue in our group, a stable strong coupling be-
tween atom and cavity mode is important. My analysis of our measurement data
shows a considerable variation of the coupling strength, leading to an effectively
lower value than theoretically predicted. This variation is mainly attributed to
thermal motion. Therefore I investigated two approaches to reduce the external
dynamics, firstly by trapping the atom using an intracavity dipole potential [23]
and secondly by employing “cavity cooling” [24], where the dissipative role of
spontaneous emission in free space Doppler cooling is replaced by the photons
emitted from the cavity having a higher energy than the incoming photons.



1 The atom-cavity system

In this chapter I present the set of tools and techniques that are used to perform
single-atom cavity-QED experiments. At the beginning of every experimental
sequence, a controlled number of atoms is trapped and loaded into a standing
wave dipole trap. Subsequently, the atoms are transported into a high-finesse
optical resonator, which is probed by a weak laser. The time-dependent trans-
mission signal is the main source of data which we use to study the atom-cavity
system.

The setup has evolved for several years and is described in detail in former
theses [15, 25–30]. In the following, I will therefore only give a short summary
of the main components of our apparatus. Subsequently, I will present some
theoretical background on cavity QED as well as simulation results relevant for
this work.

1.1 Trapping and transporting single atoms

1.1.1 Magneto-optical trap

Neutral caesium atoms are trapped from the background gas in a magneto-
optical-trap (MOT) [3]. The transitions for cooling and repumping are shown
in fig. 1.1. The MOT is operated in two different regimes: If the magnetic field
gradient is high (300 Gs/cm), the MOT is “closed” and almost no atoms are
captured. To load new atoms, the gradient is reduced to 30 Gs/cm for a variable
time of several 10 ms, which is adjusted such that the average number of loaded
atoms is suitable for the experiment. In the context of this thesis, this means
either one or two atoms.

The number of atoms in the MOT is determined by measuring the fluorescence
with a single-photon counter (EG&G SPCM-200). Using computer control and
feedback, the MOT loading process is repeated until the desired number of atoms
is captured. Using this technique, we only transfer atoms from the MOT into
the dipole trap and continue the experimental sequence if the number of atoms
equals the desired one [31].
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Figure 1.1: Relevant Cs-levels and MOT lasers.

1.1.2 Optical conveyor belt

From the MOT, the atoms are transferred into a standing wave far-off-resonant
dipole trap (FORT) [32]. This trap is formed by two counter-propagating laser
beams at λFORT = 1030 nm, delivered by an Yb:YAG-Laser (ELS Versa Disk
1030), see fig. 1.2. For mode cleaning and to improve the pointing stability, high-
power single mode optical fibres are used along the optical path. For a detailed
description and characterisation of this fibre-setup see [15]. Both beams are
focussed to a beam waist of wFORT,0 = 34 µm, located 3 mm away from the
MOT-position and 1.6 mm away from the cavity. The beam radius at the cavity
position is therefore wFORT,cav = 37 µm. With typically 1.8 W per beam, this
results in a trap depth of

UFORT =
3πc2IΓ

2ω2
0∆eff

= 1 mK , (1.1)

where Γ = 2π × 5.22 MHz and the effective detuning ∆eff takes into account
contributions from both the D1 and D2 line, see e.g. [26,27].

The transport of atoms is realised by inducing a time-dependent phase shift
between the two counter-propagating laser beams, which causes the whole inter-
ference pattern to move, acting as an optical conveyor belt [33]. This is achieved
with two acousto-optical modulators (AOMs) driven by a custom-build dual
frequency driver (DFD 100, APE Berlin). With this setup, atoms can be trans-
ported over several mm within a few ms with sub-micrometer precision [34]. In
order to transport the atoms to a predetermined position, e.g. exactly into the
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Figure 1.2: Schematic setup of MOT, optical conveyor belt and imaging optics.

cavity centre, their initial position is determined by fluorescence imaging. Atoms
stored in the dipole trap are illuminated for 1 second with the MOT-molasses
and imaged with an intensified CCD-camera (ICCD, Roper Scientific PI-MAX).
Having done distance-calibration measurements before, the pixel coordinate of
an imaged atom can then be translated into the required transportation distance,
e.g. from the atomic position to the cavity-centre. Figure 1.2 shows the main
components of our setup to capture, count, image, and transport single atoms.

1.2 Two-level atoms in a cavity

1.2.1 Cavity field and output power

Before treating the atom-field interaction, I will summarise relations between the
cavity output and the intracavity field. The probe laser power Pout , transmitted
by the cavity, is our main source of experimental information. In analytical
expressions and numerical simulations, the mean intracavity photon number
np = 〈a†a〉, where a† is the photon creation operator, and the local intensity
are usually used. Therefore it is required to relate those quantities including all
experimental losses and imperfections.

The electric field operator for one cavity mode is given by [35]

Ec(r) = E0ecψ(r)(a+ a†) , (1.2)
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where ec is the unit polarisation vector,

E0 =

√
~ω

2ε0V
(1.3)

is the r.m.s. electric field amplitude of the vacuum in the mode and ψ is the
spatial amplitude mode function, which in our case is always the fundamental
Gaussian mode TEM00. Neglecting the divergence of the Gaussian mode, which
is justified for a cavity much shorter than the Rayleigh length, the mode function
is given by

ψ(r) = sin(kz) exp

(
−x

2 + y2

w2
cav,0

)
, (1.4)

i.e. the mode function is normalised to |ψ(r)| = 1 at its maximum. The mode
volume V is

V =

∫
|ψ(r)|2d3r =

πw2
cav,0

4
L , (1.5)

where L is the length of the mode and wcav,0 its waist. On resonance, input,
circulating and output power are related according to [36]

Pcirc = ηmode Pin
1

T

(
T

T +A

)2

, Pout = T Pcirc , (1.6)

where ηmode is the mode matching efficiency and T and A are the intensity
transmission and absorption coefficients of each mirror, respectively (see table
1.1 for the measured values), for which A +R + T = 1 holds. With the round
trip time τr = 2L/c, the circulating power can be written in terms of the mean
photon number np as

Pcirc = np
~ω
τr

. (1.7)

For the output power transmitted through one mirror we thus have

Pout = Pcirc T = np
~ω
τr
T . (1.8)

This expression can be re-formulated to obtain a more compact form contain-
ing the commonly used cavity field decay rate κ, which is the half-width-half-
maximum (HWHM)-linewidth of the cavity, using the relation

κτr =
π

F
, F =

π
√
R

1−R
R≈1
≈ π

T +A
⇒ 1

τr
=

κ

T +A
, (1.9)
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where the finesse F was introduced. The expression for the output power thus
reads

Pout = κnp~ω
T

T +A
= κnp~ωηcav , (1.10)

where

ηcav =
T

T +A
(1.11)

is the ratio of losses due to mirror transmission to total losses. In the exper-
iment, we do not measure the transmitted power but the photon flux, which
is

Φout =
Pout

~ω
= κnpηcav . (1.12)

Photon flux Φout and output power Pout always refer to the light transmitted
through one mirror; we do not measure the reflected probe laser light. In terms
of the measured flux, the circulating power and the mean photon number are
thus

Pcirc = ~ω
Φout

T
, np = τr

Φout

T
=

Φout

κηcav

. (1.13)

The circulating intensity Icirc is connected to the circulating power Pcirc by

Icirc =
2Pcirc

πw2
cav,0

=
1

4

c

V
~ωnp , (1.14)

where (1.5) for the mode-volume was inserted. The local intensity of the
standing wave is given by

Isw (r) = 4Icirc |ψ(r)|2 , (1.15)

so at the antinode we have the maximum intensity of

Isw,max =
c

V
~ωnp =

8Pcirc

πw2
0,cav

. (1.16)

The second expression on the right hand site reflects the analogy to the free
space case of a standing wave formed by two beams each with a power Pcirc , so
that in the familiar expression Isw,max = 4Ptotal /(πw

2
0) one has to replace Ptotal

by 2Pcirc .
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1.2.2 Dressed states and the master equation

The interaction of a single atom with the mode of an optical resonator is a
textbook example of cavity quantum electrodynamics (CQED) [37–39]. The
closed system of a two-level atom interacting with the field is described by the
Jaynes-Cummings model [1].

The single-excitation Rabi-frequency is 2g, where g is called the coupling
strength which is given by

g(r) =
d · Ec

~
= d

√
ω

2~ε0V
ψ(r) . (1.17)

Here d is the atomic dipole and d is the matrix element of the corresponding
|F,mF 〉 → |F ′,m′F 〉 transition. An avoided crossing between the atomic and
cavity energy levels leads to the formation of new eigenstates, which on resonance
are spaced by 2g. The lowest two dressed states above the ground state |g, 0〉
are given by

|+〉 = sin θ |g, 1〉+ cos θ |e, 0〉 (1.18a)

|−〉 = cos θ |g, 1〉 − sin θ |e, 0〉 , (1.18b)

where |g(e), n〉 is the state of the atom in the ground (excited) state with n
photons in the cavity and θ is the mixing angle defined by

tan 2θ = −2g/(ωc − ωa) , (1.19)

with ωc and ωa being the cavity and atomic resonance frequencies, respectively.

In a real world situation the atom-cavity system is always coupled to the
environment, which is included into the formal description by two dissipation
channels, namely light leaking from the cavity, described by κ as explained above,
and spontaneous emission by the atom. The latter is characterised by Γ =
1/τe = 2π × 5.22 MHz, where τe = 30 ns is the lifetime of the excited state,
i.e. Γ is the population decay rate. Often also γ = Γ/2 is used, meaning the
dipole decay rate. A system is in the strong-coupling regime, if the coherent
interaction g is larger than the two dissipation channels, i.e. g > (κ, γ) [35].
Three dimensionless parameters that are often used to characterise cavity-QED
systems are the single-atom cooperativity C1, the critical photon number ncr ,
and the critical atom number Ncr , defined as

C1 =
g2

2κγ
, ncr =

γ2

2g2
, Ncr =

2κγ

g2
=

1

C1

. (1.20)
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For strongly coupled systems, C1 > 1 and Ncr < 1, which means that already
a single atom changes the cavity response. ncr is the intracavity photon number
for which the atom is saturated and is < 1 for typical systems in the strong
coupling regime. The dissipative processes are included into the description
using a master-equation [2], which in a frame rotating with the probe laser
frequency ωp can be written as

ρ̇ = − i
~

[HJC , ρ]− i

~
[HP , ρ] + γ(2σρσ† − σ†σρ− ρσ†σ)

+ κ(2aρa† − a†aρ− ρa†a) , (1.21)

where

HJC = −~∆paσ
†σ − ~∆pca

†a+ ~g(aσ† + σa†) (1.22)

is the Jaynes-Cummings Hamiltonian, σ = |g〉 〈e| is the atomic lowering oper-
ator, and the detunings are defined as

∆pa = ωp − ωa , ∆pc = ωp − ωc , (1.23)

i.e. probe-atom and probe-cavity detuning. It is useful to define the cavity-
atom detuning as

∆ca = ωc − ωa = ∆pa −∆pc , (1.24)

because in the laboratory we usually first set ∆ca and then vary ∆pc. Cavity
driving by the probe laser with frequency ωp is described by

HP = −i~ε(a+ a†) , (1.25)

where ε is the driving strength1. For an ideal empty cavity on resonance, i.e.
without mirror losses, and assuming perfect mode matching, the driving strength
is connected to the intracavity photon number np = 〈a†a〉 by

np,0 = np(ωc = ωp = ωa, g = 0) =
ε2

κ2
, (1.26)

where np,0 is the photon number for an empty cavity on resonance.

1The symbol varies throughout the literature, also η is often used



10 1 The atom-cavity system

1.2.3 Equations of motion for weak driving

In the following I will summarise some outcomes of [24] relevant for our system.2

The derivation is based on the assumption of a weakly driven cavity, i.e. only
the states |g, 0〉, |g, 1〉, and |e, 0〉 contribute to the system dynamics. In this case,
equations of motion for the expectation values of the operators a and σ can be
obtained:

〈Ẏ〉 = A〈Y〉+ Zε , (1.27)

where

Y =

(
a
σ

)
, A =

(
i∆pc − κ −ig
−ig i∆pa − γ

)
, Zε =

(
ε
0

)
, (1.28)

For the description of interaction, photon number, and excited state popula-
tion we need a similar expression for the corresponding operator products, which
reads

〈Ẋ〉 = B〈X〉+ ε〈I〉 , (1.29)

with

X =


a†σ + σ†a

−i (a†σ − σ†a)
a†a
σ†σ

 , B =


−γ̃ −∆ca 0 0
∆ca −γ̃ −2g 2g
0 g −2κ 0
0 −g 0 −2γ



I =


σ + σ†

−i (σ − σ†)
a+ a†

0

 , γ̃ = γ + κ ,∆ca = ∆pa −∆pc = ωc − ωa .

(1.30)

Steady state solution for an atom at rest

Solving 〈Ẋ〉 = 0 yields the expectation values for a motionless atom at steady
state:

2In the cited article, the decay rate Γ is the dipole decay rate, which is labelled γ in this
thesis
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Figure 1.3: Cavity transmission spectrum calculated according to (1.33) with param-
eters (g, κ, γ)/2π = (13.1, 0.4, 2.6) MHz. White = no transmission, black = maximum
transmission.

〈X〉(0) =
ε2

|det(A)|2


2∆pag
−2gγ

∆2
pa + γ2

g2

 , (1.31)

where the superscript (0) indicates the steady state solution and the determi-
nant of A is given by

det(A) = γκ+ g2 −∆pa∆pc − i(∆pcγ + ∆paκ) . (1.32)

One important result is an analytical expression for the average intracavity
photon number, 〈X3〉(0) = 〈a†a〉, which is

np(∆pa,∆pc, g) = np,0
κ2(∆2

pa + γ2)

(γκ+ g2 −∆pa∆pc)2 + (∆paκ+ ∆pcγ)2

= np,0T̄ (∆pa,∆pc, g) , (1.33)

where the normalised transmission T̄ was introduced and np,0 is the photon
number for an empty cavity on resonance. Fig. 1.3 shows a plot of T̄ for our
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parameters. For all data presented in chapter 2, the probe laser is initially
resonant with the cavity, i.e. ∆pc = 0. For this case, ∆pa = ∆ca and the
expression for the normalised transmission simplifies to

T̄ (∆pc=0)(∆ca, g) =
κ2(∆2

ca + γ2)

(γκ+ g2)2 + (∆caκ)2
. (1.34)

For large cavity-atom detunings ∆ca � γ the expression for the normalised
transmission reads

T̄ (∆pc=0)(∆ca � γ, g) =
κ2

κ2 +
(
|g|2
∆ca

)2 , (1.35)

which is a Lorentzian lineshape with a HWHM-linewidth of κ. So in the dis-
persive regime the resonance-splitting of the coupled atom-cavity system passes
into a shift of the cavity resonance frequency by g2/∆ca.

1.3 Cavity setup and characteristics

The high-finesse cavity was integrated into the existing single-atom setup con-
taining the MOT-optics, dipole trap etc. by means of a holder that allows 3-D
positioning of the cavity. Details of the cavity setup and on characterisation mea-
surements are discussed in [14,15,29,30]. Here I summarise the main parameters
in table 1.1.

Because of the very small cavity linewidth, stabilising the cavity is a very
important and demanding aspect of our experimental setup. In addition to the
probe laser, an additional stabilisation laser (referred to as “lock laser” from
now on) is coupled into the cavity. From its reflected light field an error signal is
generated using the Pound-Drever-Hall (PDH) method [40]. The cavity length
is controlled by piezo-electric shear actuators to which the mirror substrates are
glued, see fig. 1.4.

The lock laser wavelength for the experiments covered in chapter 2 is λlock =
845 nm, i.e. blue detuned from the atomic resonance. In chapter 3 I will present
results on using a red-detuned lock laser at 857 nm. The lock laser is stabilised to
a transfer-cavity with good passive stability, which in turn is locked to the probe
laser. Using this “locking-chain”, it is possible to set the cavity-length such that
both probe and lock laser are resonant with the cavity at the same time. Using
AOMs, the detunings ∆ca and ∆pc can be controlled independently over a wide
range. This allows us to perform experiments in very different regimes, from
resonant to far dispersive and either blue- or red-detuned.
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Parameter Value
mirror distance∗ L 158.5µm
mode waist w0,cav 23.15 µm
free spectral range ωFSR = 2πc/(2L) 2π × 946 GHz
cavity field decay rate† κ 2π × (0.40± 0.02) MHz
cavity linewidth (FWHM) ωFWHM = 2κ 2π × (0.80± 0.04) MHz
birefringent splitting ∆ωbr 2π × 3.9 MHz
finesse† F = cπ/(2Lκ) (1.2± 0.1)× 106

mirror transmission† T (0.6± 0.1) ppm
mirror absorption† A (2.0± 0.2) ppm
maximum coupling strength gmax 2π × 13.1 MHz
atomic dipole decay rate γ 2π × 2.6 MHz
cooperativity parameter C1 = g2

max /(2κγ) 82
critical photon number ncr = 2g2

max /γ 0.020
critical atom number Ncr = 1/C1 0.012

Table 1.1: Summary of some important cavity and coupling parameters. The value
of the maximum coupling gmax is explained later. ∗ The mirror distance is given
for typical experimental conditions, including heating effects by the YAG laser. This
explains the difference to the cavity length given in [29], which is valid for a “cold”
cavity. † See [30] for details on the measurement.

As mentioned already, the transmitted probe laser light is our main source of
experimental information. However, the transmitted lock laser co-propagates in
the same transversal mode with its power being around 6 orders of magnitude
higher (a typical lock laser power coupled into the cavity is Plock ≈ 1 µW). Since
the two signals have to be detected separately the lock laser must be filtered out
to a high degree to facilitate detection of the probe-light on a single-photon level.
The two fields are orthogonally polarised, and in a first step most of the lock laser
light is reflected and send to an APD by a Glan-Taylor polariser. Behind the
polariser, an interference filter is used to further reduce the amount of lock laser
light. The probe light is then guided to a sealed box on an optical table via a
single-mode fibre, thereby making sure that no stray light is detected. Inside the
box, the light is reflected by a volume holographic grating (company ONDAX,
for details see [30]), filtering the remaining lock laser light, and is finally detected
by a single-photon APD (Perkin Elmer SPCM-AQRH-13).

1.3.1 Detection efficiency

Losses along the optical path are due to various optical components (glass cell,
lenses, half- and quarter wave plate), leading to a transmission coefficient of
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Figure 1.4: Sketch of the cavity setup showing MOT beams, dipole trap beams and
cavity mirrors approximately up to scale. For details on the probe-detection setup,
see [30]. The APD is used to detect the lock laser transmission.

ηopt = 0.82. The interference filter has a transmission of ηIF = 0.77 and the
coupling efficiency into the single-mode fibre is ηfibre = 0.66. The volume holo-
graphic grating’s reflectivity at the probe laser wavelength is ηVHG = 0.93 and
the quantum efficiency of the SPCM at 852 nm is ηSPCM = 0.49. This leads to
a detection efficiency of

ηdet = ηopt ηIF ηfibre ηVHG ηSPCM = 0.19 . (1.36)

Compared to the detection setup presented in [15], the detection efficiency
could be improved by more than a factor of three. Knowing the overall detec-
tion efficiency, we can infer the average intracavity photon number np or the
intracavity intensity from the actual SPCM count rate RD . The detector count
rate RD is equal to the photon flux directly behind the cavity, reduced by the
aforementioned losses:
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RD = Φout · ηdet (1.37)

The expressions derived in section 1.2.1 are extended to include the detection
efficiency and now read

Pcirc = ~ω
RD

ηdet T
, (1.38)

np = τr
RD

ηdet T
=

RD

κηdet ηcav

=
RD

κη
, (1.39)

Isw,max =
8Pcirc

πw2
0,cav

, (1.40)

where the total efficiency η = ηdet ηcav was introduced. With the measured
values for T and A, we get ηcav = 0.23 and η = 0.044. Since all quantities
are proportional to RD (typically 20 to 30 ms−1) and contain otherwise only
constants and experimental parameters which do not change, their numerical
values are calculated for ω = ωp = 2π × 351.7 THz to be

Pcirc =
RD

1 ms−1 · 2.0 nW , (1.41)

np =
RD

1 ms−1 · 0.009 , (1.42)

Isw,max =
RD

1 ms−1 · 9.7 W m−2 . (1.43)

1.3.2 Confinement and beat length

An atom inside the cavity is subject to two dipole potentials: firstly the conveyor-
belt created by the YAG laser (FORT), and secondly the potential which results
from the lock laser. In the experiments discussed in chapters 1 and 2, the
lock laser wavelength is λlock = 845 nm, i.e. 3 cavity free spectral ranges blue
detuned from the atomic transition. In this case the dipole potential is repulsive,
thus not forming potential wells but “walls”. An atom is therefore confined
along the cavity axis (z-axis) to a node of the lock laser standing wave. In the
direction along the conveyor belt (y-axis), it is trapped at an anti-node with a
small oscillation radius, since λFORT /2 = 515 nm. Along x, the atom can move
over several µm, because the beam radius of the dipole trap at this point is
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Figure 1.5: Effect of a blue-detuned lock laser. (a) Combined potential of the YAG-
dipole trap and the potential “walls” of a blue detuned laser. (b) Schematic drawing
of the confinement by the lock laser, which is symbolised as blue disks in this images.
The standing-wave nature of the probe laser (yellow) is not shown. This drawing is
meant to be descriptive and is not based on actual physical length scales, lock laser
powers etc.

wFORT,cav = 37 µm and thus the dipole potential in this radial direction is very
shallow. This situation is schematically depicted in fig. 1.5 in a sketch of the
cavity and the combined potential.

The lack of a strong confinement along one axis is clearly a disadvantage in
terms of good localisation and therefore strong coupling. Notwithstanding this
fact, the main reason to use a blue-detuned laser is that the atoms are located at
the intensity minima, where the scattering rate and the absolute AC-Stark shift
are lowest. In contrast, for a red-detuned laser where the atoms are trapped at
the intensity maxima, the atoms will be affected by photon scattering to a higher
degree. In chapter 3 I will present experiments making use of a red-detuned lock
laser.

Beating between probe and lock laser

Due to the lock laser potential, the z-position of the atoms is restricted to an
equally spaced series of trapping sites, namely the nodes of the lock laser standing
wave, separated by λlock /2. Since the probe laser has a different wavelength
λprobe , there is a beating between these two different standing waves. If we
choose the z axis coordinate such that for z = 0 node and antinode of lock and
probe laser, respectively, coincide, the intensities are written as
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Figure 1.6: Beating between probe and lock laser standing wave. For illustrative
purposes, here λprobe = 1.05λlock , yielding dbeat = 10.5λlock . The dotted vertical
lines mark the trapping sites given by lock laser nodes, indicated also in the lower
graph by the black dots. The solid black line in the lower graph is the continuous
expression for |g(z)/gmax |.

Ilock (z) = Il,0 sin2

(
2π

λlock

z

)
, Iprobe (z) = Ip,0 cos2

(
2π

λprobe

z

)
(1.44)

The beat length dbeat , defined as the distance between places of the same
phase, i.e. the envelope of Ilock (z) + Iprobe (z), is given by

2π

λlock

dbeat =
2π

λprobe

dbeat + π ⇒ dbeat =
λprobe λlock

2|λprobe − λlock |
. (1.45)

The beating leads to a position-dependent maximum coupling strength as
depicted in fig. 1.6. At the trapping sites, the local coupling strength is given
by

gmax,local (z) = gmax,0 cos

(
2π

λprobe

z

)
for z = n

λlock

2
, n = 0, 1, 2, 3, ... , (1.46)
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which is a discrete expression for g only valid at the trapping sites, plotted
as black dots in fig. 1.6. A continuous expression for g(z), which describes the
envelope of g(z) and not the oscillations on the lengthscale of λprobe , reads

g(z) = gmax,0

∣∣∣∣cos

(
π

dbeat

z

)∣∣∣∣ (1.47)

and is shown in fig. 1.6 as the black solid line. This expression will be used
later in a numerical simulation describing the effect of thermal motion of the
atom.

In the experiment, we want the trapping site located at the centre of the cavity
(halfway between the mirrors) to coincide with a probe laser antinode, because
this is the position where the atoms are most likely to be inserted by the optical
conveyor belt. Expressing the cavity length as L = mpλprobe /2 = mlλlock /2,
this is achieved if ∆lp = ml − mp = 1, 3, 5, ... for λlock < λprobe . Likewise,
∆lp = −2,−4,−6, ... for λlock > λprobe . For the two cases relevant to this thesis,
the magnitude of the beat length is

dbeat =

{
51.4 µm for λlock = 845 nm,∆lp = 3 ,
73.0 µm for λlock = 857 nm,∆lp = −2 .

(1.48)

When the atoms are transported into the cavity, they randomly enter one
of the possible trapping sites along the cavity axis because of their thermal
oscillation. The magnitude of those oscillations and the beat length determine
to which extend this effects reduces the ensemble-averaged coupling strength.

Obviously the issue of insertion into different positions along the cavity axis
is less critical for a larger beat length, i.e. if the lock laser wavelength is close
to the probe wavelength. On the other hand, being detuned by only one free
spectral range has the drawback that the separation of probe and lock laser using
interference filter and grating is more difficult, owing to the finite bandwidth of
the optical components. Empirically we found out that being blue detuned by
three free spectral ranges, i.e. λlock = 845 nm, is a good compromise.

1.4 Optical pumping

In the theory outlined in section 1.2.2 the atom was treated as a two-level system,
but in our experimental setting there is no closed transition we can use. This
is because of the birefringent splitting of the cavity resonances, which has the
effect that the cavity supports only linearly polarised modes. Depending on
the direction of the quantization axis (QA), the interaction of the probe laser
with the atom can thus either by described by π-transitions (for Ep ‖ QA) or
simultaneous σ+ and σ− transitions (for Ep ⊥ QA), referred to as σ± from now
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on. The atom can be off-resonantly excited to |F ′ = 4〉 and decay to the other
ground state |F = 3〉. Therefore a repumping laser (short: repumper) resonant
with the |F = 3〉 → |F ′ = 4〉 transition is applied along the dipole trap to bring
the atom back to |F = 4〉.

Assuming the repumper is sufficiently strong, I will neglect optical pumping
to the state |F = 3〉 in this section and will only consider the two manifolds
|F = 4〉 and |F ′ = 5〉. Hyperfine-state-changing scattering will be treated in
section 1.5.2.

Excitation by the probe laser leads to a specific population distribution of
the mF groundstates P (mF ), depending on the orientation of the electric field
and the quantization axis. A distribution over many Zeeman levels implies that
there is not a single, well defined coupling strength g, but different g(mF , q),
where q is −1, 0, 1 for σ+, π, and σ− transitions, respectively. In the following,
I will first consider free space optical pumping using an analytical solution of
the density matrix equation. To include the effects of the cavity and evaluate
to which degree the results are different, a master equation including the mF

sublevels is formulated and solved numerically.

1.4.1 Free space optical pumping: Analytical expressions

The effect of Zeeman degeneracy on the steady-state of an atom was studied
theoretically in a series of papers by Bo Gao [41–43]. In the limit of weak
pumping and for a coordinate system where Ep ‖ QA, the analytical result for
the steady-state population of state |F,m〉 for a transition from a ground-state
|F 〉 to an excited-state |F ′〉 is given by

P (mF ) = 〈F,m|ρSS|F,m〉 =
χm∑F
i=−F χi

, (1.49)

where ρSS is the steady-state density matrix, and χm is defined by

χm =

(
F∏

i=−m+1

f 2
i h

2
i

)(
F∏

j=m+1

f 2
j h

2
j

)
, (1.50)

and

fk = (−1)F
′−k
(

F ′ 1 F
−k 1 k − 1

)
, hk = (−1)F

′−k
(

F ′ 1 F
−k 0 k

)
, (1.51)

where the parentheses are Wigner 3j-symbols. A general theoretical outcome
is that for this choice of a coordinate system all coherences vanish. For σ±
pumping, no analytical formula is given in the cited article, but the density
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m = -4        -3       -2       -1       0       +1      +2      +3      +4F
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Figure 1.7: Ground state population for π and σ± pumping without taking any
cavity effects into account. The area of the dots is proportional to the probability that
the mF sublevel is occupied.

matrix ρ(σ±) can be obtained from the diagonal density matrix ρ(π), which
contains only the populations. Since the physical situation is the same for both
cases, i.e. a linearly polarised laser interacting with an ensemble of atoms, ρ(σ±)
can be calculated by a rotation of the coordinate system of the form

ρ(σ±) = D(0, π/2, 0)ρ(π)D(0, π/2, 0)T , (1.52)

where D(α, β, γ) is the Wigner-D-matrix [44] (or Wigner rotation matrix) as
a function of the Euler angles α, β, γ. The diagonal elements (populations) of
ρ(π) and ρ(σ±) are shown in fig. 1.7. In contrast to ρ(π), the rotated matrix
ρ(σ±) contains also nonzero off-diagonal elements (coherences).

1.4.2 Optical pumping in the cavity: Numerical calculation

In the free space calculations above, the light intensity was assumed to be small
and constant, but from (1.34) it is clear that in the cavity the intensity depends
on mF due to g(mF , q). To answer the question, to which extend the results of
the free space calculations are still valid, the master equation for a multi-level
atom is solved numerically.

Any expectation value, e.g. the intracavity photon number or the population
of a certain state, can be calculated from the steady-state density matrix ρSS of
the system. The following formulation of the Hamiltonian including the Zeeman-
sublevels, and the numerical implementation in MATLAB with the Quantum
Optics Toolbox [45] are based on [46,47].

A dipole transition operator for the |F = 4〉 → |F ′ = 5〉 transition is defined
as
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Dq =
4∑

mF =−4

|F = 4,mF 〉 〈F = 4,mF | dq |F ′ = 5,mF + q〉 〈F ′ = 5,mF + q| ,

(1.53)
where q = {−1, 0, 1} and dq is the dipole operator for {σ−, π, σ+} transitions,

respectively. The normalisation is such that 〈4, 4| d1 |5′, 5′〉 = 1. The Hamilto-
nian is

H = −~∆pa

5∑
m′

F =−5

|F ′ = 5′,m′F 〉 〈F ′ = 5′,m′F | − ~∆pca
†a+ ~ε(a+ a†) +Hint ,

(1.54)
where the interaction Hamiltonian depends on the transitions q:

H
(q)
int = ~g(a†Dq +D†qa) , (1.55)

when q is either -1,0, or 1. For the case of simultaneous σ− and σ+ coupling,
the interaction Hamiltonian is given by

H
(±1)
int = ~g

(
a†
(

1√
2

(D−1 +D+1)

)
+

(
1√
2

(D−1 +D+1)

)†
a

)
. (1.56)

The master equation for the system is

ρ̇ = Lρ = − i
~

[H, ρ] + κD[a]ρ+ γ
1∑

q=−1

D[Dq]ρ , (1.57)

where the decay operator D for any operator c is defined as

D[c]ρ = 2cρc† − c†cρ− ρc†c . (1.58)

The steady state solution can be obtained numerically by setting ρ̇ = 0.

Results of the numerical simulation – ground state population

I considered the special case ∆pc = 0, which is the usual setting for our ex-
periments. I calculated the steady state density matrix ρSS for different detun-
ings ∆ca and for both optical pumping settings discussed so far. The pumping
strength ε is set to a value fulfilling the weak excitation limit. The results for
the ground state populations 〈F = 4,m| ρSS |F = 4,m〉 are summarised in table
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mF -state
detuning ∆ca/2π (MHz)

50 100 200 500 1000

0 38 37.9 37.4 35.9 34.9
±1 24.4 24.3 24.3 24.1 24.0
±2 6.12 6.2 6.4 7.1 7.5
±3 0.51 0.53 0.61 0.84 1
±4 0.01 0.01 0.02 0.03 0.05

Table 1.2: Ground state population P (mF ) in % for π-pumping by the probe laser
for different detunings ∆ca.

1.2 for different detunings ∆ca and the case of π-pumping. For large detunings,
P (mF ) approaches the result of the free-space calculation, cf. fig. 1.7. Closer to
resonance, the population is more centred around |F = 4,mF = 0〉.

For simultaneous σ− and σ+ coupling, the variation in the population distri-
bution is less than 1 % for a range of ∆ca/(2π) = 50 to 500 MHz and agrees with
the free-space result presented above. In summary, for both cases the modifica-
tion of P (mF ) compared to free space optical pumping due to the mF dependent
intracavity power is rather small.

Results of the numerical simulation – transmission

The main source of information in our system is the transmission of the probe
laser through the cavity. A time-averaged transmission signal allows us to infer
the average coupling strength and to compare it with theoretical predictions, see
section 1.6 at the end of this chapter.

Using the formalism explained above, the normalised transmission for different
detunings ∆ca and with ∆pc = 0 was calculated for different polarisation settings
(q = 0, q = +1, q = ±1) from the steady-state density matrix. Figure 1.8 shows

that T̄
(∆pc=0)
ρ (∆ca, q) is exactly the same for q = 0 and q = ±1, i.e. the intra

cavity photon number does not depend on the orientation of the quantisation
axis. For q = 1 the transmission is lower, which is to be expected because the
coupling is strongest for the cycling transition |4, 4〉 → |5′, 5′〉.

In the the two-level model T̄
(∆pc=0)
2L (∆ca, g), cf. (1.33), g is a free parameter.

With a least squares method, a value of g/(2π) = 13.1 MHz was determined
which provides the best agreement with the density-matrix curve for q = 0.
Hence our system can – in terms of cavity transmission – be described as a two-
level atom interacting with the cavity. This value of 13.1 MHz is given in table
1.1 as gmax .
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Figure 1.8: Normalised transmission of the probe laser through the cavity, T̄ (∆ca).
The blue solid line shows the result of the density-matrix calculation for the case of π-
transitions (q = 0) and simultaneous σ+ and σ− transitions (q = ±1), which coincide
exactly. The red line is the case of pure σ+ pumping, corresponding to a coupling of
g = 2π × 18 MHz, which is not realised in the experiment. The circles are the best-fit
with g as a fitting parameter for the two-level model.

Results of the numerical simulation – time dependence

With the Quantum Optics Toolbox, also the time dependence of observables
can be computed by integrating the master equation, yielding an array of den-
sity matrices for successive time-steps. Using this method, I calculated how
the population of the mF states evolves from an initial equal distribution to
the steady-state result presented above. Assuming realistic experimental pa-
rameters, it turns out that it takes a few milliseconds until the steady-state
is reached, for both orientations of the quantization axis, see fig 1.9 (a) and
(b). The transmission also changes because the initial average coupling is lower
than the steady state value. This is an important insight, the implications of
which will be discussed in conjunction with nondestructive state measurements
in chapter 2.
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Figure 1.9: Results of a numerical density matrix simulation yielding ρ(t), from which
the time-dependent expectation values 〈F = 4,mF | ρ(t) |F = 4,mF 〉 are obtained. The
detuning is ∆ca/(2π) = 50 MHz for all graphs, the intracavity intensity was calculated
for an empty cavity photon number of np,0 = 0.1. (a) and (b): Time-dependent mF

distribution for π and σ± transitions, respectively. (c): Normalised transmission curve,
which is identical for both polarisation settings.
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1.5 Total and hyperfine state changing photon
scattering

In the last section, I assumed that a sufficiently strong repumper is applied at
all times, justifying a treatment of the |F = 4〉 and |F ′ = 5〉 manifolds only. In
chapter 2, I will present quantum-nondemolition (QND) measurements [48–50]
of the atomic hyperfine state utilising the cavity transmission. For this state
detection a repumper must not be applied and I will discuss that the “quality”
of the QND-measurement is limited by state-changing photon scattering, because
after a finite time of some milliseconds the atomic state is changed due to our
measurement. In this section, I will discuss how the rate of total and hyperfine-
state-changing scattering is determined.

1.5.1 Total scattering

One of the long-term goals pursued in this experiment is the creation of en-
tangled states of two atoms simultaneously coupled to the cavity field. In this
context, the total scattering rate should be as low as possible to avoid decoher-
ence. Photon scattering also plays a role for cavity-cooling and -heating (see
chapter 3).

In general, the scattering rate for a two-level system is given by

Rscatt = 2γρee , (1.59)

where ρee is the excited state population. Let us first consider the result for
ρee for a two-level atom in free space obtained from the optical Bloch equations,
which is [51]

ρee =
(Ω/(2γ))2

1 + 4(∆/(2γ))2 + 2(Ω/(2γ))2
, (1.60)

where Ω is the Rabi-frequency for the incident light. Making the substitutions
Ω→ 2g

√
np and ∆→ ∆pa we have

ρee =
g2

γ2 + ∆2
pa + 2g2np

np . (1.61)

In the weak excitation regime, the third term of the denominator can be
neglected, thus the excited state population is

ρee =
g2

γ2 + ∆2
pa

np . (1.62)
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The excited state population ρee = 〈σ†σ〉 in the weak excitation regime can
also be directly inferred from (1.31):

ρee = 〈σ†σ〉 = 〈X4〉(0) =
g2

γ2 + ∆2
pa

np . (1.63)

The total scattering rate thus reads

Rscatt,tot =
2g2γ

γ2 + ∆2
pa

np . (1.64)

With the substitution Ω → 2g
√
np, also the saturation parameter, defined as

S = I/Isat = Ω2/(2γ2), can be formulated in terms of the intracavity photon
number, namely

S =
2g2

γ2
np =

np
ncr

. (1.65)

So for np = ncr , the saturation parameter is equal to one, but (1.63) and
(1.64) are only valid for S � 1. To estimate the total photon scattering rate
from a measured count rate RD in an experiment, np can be inferred according
to (1.39).

For measurements where the detuning ∆ca is varied, we usually keep the count
rate RD,0 for the empty cavity on resonance and thus np,0 constant.3 To assess
the dependence of Rscatt,tot on the detuning for this special case, np can be
replaced by T̄ np,0. The analytical expression for the usual case that the probe
laser is resonant with the empty cavity, i.e. ∆pc = 0⇒ ∆pa = ∆ca, is then given
by

R
∆pc=0
scatt,tot (∆ca, g) =

2g2γ

γ2 + ∆2
ca

T̄∆pc=0(∆ca, g) np,0

(1.34)
=

2g2/γ

[1 + g2/(κγ)]2 + (∆ca/γ)2
np,0

=
4κC1

(1 + 2C1)2 + (∆ca/γ)2
np,0 . (1.66)

Fig. 1.10 shows the total scattering rate as a function of detuning for our
experimental parameters. Compared to the situation in free space, the scattering
rate decreases only very slowly with increasing detuning. This is due to two
competing effects: The scattering rate decreases with 1/∆2 for a fixed intensity,

3In this context the index “0” always indicates a quantity for an empty cavity (g = 0) and
ωp = ωc.
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Figure 1.10: Total scattering rate as a function of detuning ∆ca calculated for
an empty cavity count rate of RD,0 = 20 ms−1, corresponding to np,0 = 0.18, and
(g, κ, γ)/(2π) = (13.1, 0.4, 2.6) MHz.

but the intracavity intensity approaches the empty cavity level for increasing
detuning and is strongly suppressed for ∆ca → 0.

The expression for the total scattering rate (1.64) is based on a two-level model.
Close to resonance, this is justified because the contribution of the |F = 4〉 →
|F ′ = 4〉 transition is much smaller than that of the |F = 4〉 → |F ′ = 5〉 tran-
sition because of the 1/∆2

ca dependence of the scattering rate. But for ∆ca =
∆pa = 2π×500 MHz, a detuning of ωp−ω4,4′ = 2π×750 MHz means that scatter-
ing from this channel is almost half as likely, since (500 MHz/750 MHz)2 = 0.44.
Therefore the real total scattering rate is underestimated by the two level ap-
proximation for large detunings.

For planned experiments involving the creation of entangled states, the prob-
ability pscatt to scatter a photon during the measurement time ∆tm is an impor-
tant quantity, since photon scattering is a cause of decoherence. From fig. 1.10
one might conclude that going to a higher detuning is advantageous to minimise
pscatt . The implications of the total scattering in terms of decoherence in a prob-
abilistic entanglement scheme [17] are discussed in detail in [30]. An important
outcome is that for ∆pa � γ the signal to noise ratio for a QND measurement
of the atomic state, as presented in chapter 2, is connected to the scattering
probability by
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SNR2 = αpscatt , α =
ηg2

2κγ
= ηC1 = C1,eff , (1.67)

where η := ηdet ηcav and C1,eff is the effective one-atom cooperativity, includ-
ing experimental imperfections. So for a fixed SNR, the scattering probability
pscatt is independent of ∆pa. This is because for higher detunings, the number
of detected photons must be increased accordingly to obtain the same signal to
noise ratio.

1.5.2 Inelastic Raman scattering

For the processes studied in chapter 2, the relevant quantity is not the total
scattering rate, but the rate of hyperfine state changing scattering events which
causes the atom’s state to change from |F = 4〉 to |F = 3〉 via an excited state.
Thus in the following I will discuss how to calculate this rate taking multiple
excited levels into account.

Off-resonant spontaneous scattering is a two-photon process, after which the
atom can either be in the same or a different internal state, corresponding to
elastic Rayleigh or inelastic Raman scattering, respectively. This process is of
general interest in terms of hyperfine coherence [52] and the scattering rate can
be calculated using the Kramers-Heisenberg formula, see e.g. [51]. Hyperfine-
state relaxation for Rubidium was treated in [53], and I will follow the notation
used in that reference. In this section, inelastic scattering always refers to a
hyperfine state changing transition from |F = 4〉 to |F = 3〉.

Kramers-Heisenberg-formula

The rate of spontaneous Raman transitions from one hyperfine ground state
|F,mF 〉 to another ground state |F ′′,m′′F 〉 via a number of intermediate states
|F ′,m′F 〉 is given by

ΓF,mF→F ′′,m′′
F

=
3πc2ω3

LI

2~d4
4,5′

∣∣∣∣∣∣
a

(1/2)

F,mF→F ′′,m′′
F

∆1/2

+
a

(3/2)

F,mF→F ′′,m′′
F

∆3/2

∣∣∣∣∣∣
2

, (1.68)

where ∆J ′ = ωL − ωJ ′ and

a
(J ′)
F,mF→F ′′,m′′

F
=

ΓJ ′

ω3
J ′

∑
q,F ′,m′

F

〈F ′′,m′′F |dq|F ′,m′F 〉〈F ′,m′F |d · eL|F,mF 〉 . (1.69)
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Here d is the electric dipole operator, dq are its spherical components with
q = −1, 0, 1 for σ−, π, and σ+ transitions, respectively, eL is the unit polar-
isation vector of the incident light and ωL its frequency, ωJ ′ and ΓJ ′ are the
transition frequencies and spontaneous decay rates of the corresponding 62PJ ′

states, and d4,5′ is the dipole matrix element for the strongest transition, i.e. d4,5′

= 〈F = 4,mF = 4|d1|F ′ = 5,m′F = 5〉.
In our case, the laser causing the scattering is the probe laser, so ωL = ωp,

which is close to resonance with the Cs D2 line within one GHz. Thus ∆1/2 �
∆3/2, which means the first term in the sum can be neglected. Because of
the relatively small detuning ∆pa of at most a few hundred MHz, we can set
ωp = ω3/2 = ωD2 = 2π × 351.7 THz in the prefactor. In (1.68), the detuning
in the numerator depends only on J ′, but since in our case the detuning is
comparable to the hyperfine splitting of the excited states, the expression is
extended to contain the F ′-dependent detunings ωp − ωF ′ and reads

ΓF,mF→F ′′,m′′
F

=
3πc2IpΓ

2
3/2

2~d4
4,5′ω

3
D2

∣∣∣∣∣∣
∑

q,F ′,m′
F

〈F ′′,m′′F |dq|F ′,m′F 〉〈F ′,m′F |d · ep|F,mF 〉
ωp − ωF ′

∣∣∣∣∣∣
2

.

(1.70)

Another form is also often found, which results from the replacement

Γ =
d2

4,5′ω
3
D2

3πε0~c3
, (1.71)

where Γ ≡ Γ3/2 = 2π × 5.22 MHz, yielding

ΓF,mF→F ′′,m′′
F

=
IpΓ

2~2cε0d2
4,5′

∣∣∣∣∣∣
∑

q,F ′,m′
F

〈F ′′,m′′F |dq|F ′,m′F 〉〈F ′,m′F |d · ep|F,mF 〉
ωp − ωF ′

∣∣∣∣∣∣
2

.

(1.72)

In calculating absolute numbers for scattering rates, one has to take care of the
definition and normalisation of the matrix elements d4,5′ and dq. D.A. Steck [54]
defines the matrix elements as multiples of the so called reduced matrix element
〈J = 1/2| |er| |J ′ = 3/2〉 = 4.484ea0, and with this normalisation the matrix
element for the cycling transition is 〈4, 4| d+1 |5′, 5′〉 = d4,5′ =

√
1/2× 4.484ea0.

On the other hand, the matrix elements are often used as dimensionless numbers
with 〈4, 4| d+1 |5′, 5′〉 = 1, cf. section 1.4.2. The form (1.70) has the advantage
that matrix elements in the pre-factor and the sum appear at the same power,
so both conventions work if they are used consistently.
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Calculation for our experimental parameters

The Kramers-Heisenberg formula as presented above in (1.68) describes the scat-
tering process from one initial state to one final state. In our case, we are inter-
ested in the rate of transitions from any sublevel within the |F = 4〉 manifold
into the |F ′′ = 3〉 manifold.4 The total inelastic scattering rate is therefore

Rscatt,inel =
4∑

mF =−4

P (mF ) · Γ4,mF→3′′,m′′
F
, (1.73)

where the distribution over the mF states P (mF ) was calculated in section 1.4.
The physical process of Raman scattering is independent of how a quantisation
axis is chosen and I will describe the problem in a coordinate system where
Ep ‖ QA, i.e. the probe laser induces π transitions. The transition rate from
one initial state |F = 4,mF 〉 into the |F ′′ = 3〉 manifold is given by

Γ4,mF→3′′,m′′
F

= A
1∑

q=−1

∣∣∣∣∣ ∑
F ′=3,4

M(q, F ′)

∣∣∣∣∣
2

, (1.74)

M(q, F ′) =
〈3,m′′F | dq |F ′,m′F 〉 〈F ′,m′F | d0 |4,mF 〉

ωp − ωF ′
, (1.75)

where m′F = mF (π-excitation), m′′F = m′F + q, and q parameterises the
polarisation of the scattered photon, thus paths leading to the same final state
|F ′′ = 3,m′′F 〉 are added up coherently. The amplitude A was derived to be

A =
3πc2Γ2

2~d4
4,5′ω

3
D2

Ip . (1.76)

For the usual case of the probe laser being initially resonant with the cavity
(∆pc = 0), the intensity Ip is calculated as

Ip(∆ca) = Ip,0 T̄
∆pc=0(∆ca, gmax ) , (1.77)

i.e. using the two-level result (1.34) with gmax = 2π × 13.1 MHz. I assume
that the atom is located at an antinode of the standing wave, thus the intensity
for the empty cavity Ip,0 = Isw,max is related to the corresponding count rate
RD,0 by (1.40).

Fig. 1.11 shows the state changing scattering rate as a function of detuning.
The striking difference compared to the total scattering in fig. 1.10 is that

4The notation F ′′ for the lower ground state is only used in the context of this section.
Otherwise the two ground states are labelled by |F = 3〉 and |F = 4〉, respectively
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Figure 1.11: Inelastic hyperfine state changing scattering rate as a function of de-
tuning ∆pa calculated for RD,0 = 20/ms and (g, κ, γ)/(2π) = (13.1, 0.4, 2.6)MHz. ∆ca

is the detuning from the |F = 4〉 → |F ′ = 5〉 transition.

it approaches zero towards smaller detunings. Close to resonance, mainly the
|F ′ = 5〉 state is excited, but from there decay to the lower ground state |F = 3〉
is not possible, thus the total scattering rate has its maximum for ∆ca = 0
and falls off slowly for higher detunings, but the state changing scattering rate
rises to a maximum at around ∆ca = 2π × 420 MHz for our parameters and
then also falls off. In chapter 2 I will show that this prediction was also observed
experimentally and I will discuss the implications on measuring the atomic state.

The outcome of the theoretical considerations in this and the preceding section
as well as the numerical simulations provide an understanding of the physical
effects and deliver reasonable estimates on the ground state population, the
timescale of probe laser induced optical pumping and the scattering rates. I
will conclude this chapter by presenting a measurement of the effective coupling
strength, which is inferred from the averaged normalised transmission.
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1.6 Effective atom-cavity coupling

As can be seen from (1.33), for fixed and known detunings the transmission
level is determined by the coupling strength g. So by measuring T̄ (t), we obtain
information about both the average coupling strength and its variation.

1.6.1 Single atom transmission signal

To measure the transmission, we first prepare a single atom in the dipole trap
using the number-locked loading technique [31]. After determining the position
of the atom from an image, the atom is transported into the cavity centre. The
probe laser is switched on before the transport and the transmission level for
the empty cavity is set to a predetermined count rate at the detector RD,0 of
typically 20 to 30 counts/ms by a computer-controlled Pockels-cell as a part of
the optical path of the probe laser beam. In all the measurements presented
here and in chapter 2 the probe laser is in resonance with the empty cavity, i.e.
∆pc = 0 ⇒ ∆ca = ∆pa. As the atom enters the cavity, the transmission drops
because the probe laser is no longer resonant with the dressed states. After a
fixed time of usually several hundred milliseconds the atom is removed from the
cavity and the transmission rises to its initial value.

Figure 1.12 shows a typical transmission trace for one atom coupled to the cav-
ity. The photon counts are binned in 1 ms time intervals, which is a compromise
between having a sufficient signal-to-noise ratio and being able to observe dynam-
ical processes. The graph shows that the transmission is obviously suppressed,
but the fluctuations in the count rate exceed shot noise. Since the detunings are
fixed, this can be attributed to a variation of the coupling strength g, caused
by motion of the atom. In chapter 3 I will discuss approaches to improve the
localisation and thereby the coupling stability.

1.6.2 Transmission level as a function of cavity-atom
detuning

The average transmission level was measured for a wide range of detunings ∆ca,
see fig. 1.13. The data shows the count rate with an atom coupled to the cavity
normalised to the empty-cavity signal:

T̄ (exp)
av (∆ca) =

RD (∆ca, g)

RD,0

, (1.78)

where RD,0 = 30 /ms was fixed for all detunings. The atomic frequency ωa
is always meant to be ω4→5′ , and the detunings also refer to this transition,
including the AC-Stark shift caused by the YAG-laser. The measured data can
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Figure 1.12: Probe laser transmission signal for one atom coupled to the cavity for
400 ms. The arrows indicate the points in time of insertion and removal, respectively.
The photon counts are binned in 1 ms time intervals. The cavity-atom detuning is
∆ca = 2π × 34 MHz.

be compared to the theoretical model of the normalised transmission for ∆pc = 0,
see (1.34). In section 1.4.2 it was shown that irrespective of the polarisation
setting, the two-level formula for the transmission dependence is still valid with
a coupling strength of gmax = 2π × 13.1 MHz.

For detunings ∆ca/(2π) & 200 MHz, the data points are well described by an
effective coupling strength geff /(2π) ≈ 9 MHz, whereas for ∆ca/(2π) . 100 MHz
the data suggest a smaller coupling strength. The lack of data points in the range
of detunings from 100 to 160 MHz is owing to strongly fluctuating transmission
signals, which prohibited a reliable value for the average transmission to be
determined. This behaviour was observed repeatedly in this detuning range.

The main reason for the coupling to be lower than the calculated maximum of
gmax = 2π × 13.1 MHz is the atomic motion, because averaging due to different
Zeeman-levels is already included in this value of g. The coupling strength g(r)
follows the mode function, see (1.17), so when the atom moves, g(r) changes and
so does the transmission. The output flux Φout (t) follows the coupling variation
on the timescale of the photon lifetime τcav = 1/(2κ) = 200 ns, which can be
considered instantaneous for our purposes, but the measured transmission T̄ is
the result of two averaging processes. From many single-shot traces like the one
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Figure 1.13: Normalised averaged transmission for one atom coupled to the cavity
as a function of cavity-atom detuning ∆ca. The solid lines are calculated according to
(1.34) for different values of g.

shown in fig. 1.12 we get an ensemble-average, the mean value of which, averaged
over the time of the whole trace (400 ms), is the transmission data shown in fig.
1.13.

The theoretical two-level model for T̄ , cf. (1.34), only deals with a constant
coupling g. So in saying the data can be described by an effective coupling
strength of geff /(2π) ≈ 9 MHz, this means means a stationary atom experiencing
a coupling geff would result in the same normalised transmission level we obtain
after the two averaging processes:

T̄ (geff ) =

〈〈
T̄
(
g(r(t))

)〉
ensemble

〉
time

=: T̄av (1.79)

So far it was not possible to improve the effective coupling strength geff by
changing experimental conditions, so 2π × 9 MHz will be used as a realistic
estimate for geff henceforth. The value geff contains no information about the
physical processes leading to this reduction in coupling strength, it subsumes all
possible effects that could lead to a lower coupling. In the following, I will discuss
a physical model taking the limited confinement of the atom into account.
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1.6.3 Effect of thermal motion on the averaged transmission

As discussed in section 1.3.2, in the direction perpendicular to the cavity axis and
the conveyor belt, i.e. along x, the atom is only weakly confined by the relatively
shallow FORT, whereas motion along the conveyor belt axis can be neglected.
Along the cavity axis (z), the atom can be inserted into different trapping sites
for each realisation of an experimental sequence. The local coupling strength is
therefore

g(x, z) = gmax exp

(
− x2

w2
0,cav

) ∣∣∣∣cos

(
π

dbeat

z

)∣∣∣∣ , (1.80)

where here the variation of g(z) is expressed as a continuous function for the
purpose of uniform numerical implementation, see (1.47). The position of the
atom is assumed to follow a 2-D Gaussian probability density function in the
x− z-plane of the form

f(x, z, σx, σz) =
1

2πσxσz
exp

(
− x2

2σ2
x

− z2

2σ2
z

)
. (1.81)

The averaged normalised transmission is then given by

T̄av (∆ca, σx, σz) =

+∞∫∫
−∞

κ2(∆2
ca + γ2)

(γκ+ g(x, z)2)2 + (∆caκ)2
f(x, z, σx, σz)dx dz . (1.82)

In figure 1.14 the measured data points T̄
(exp)
av (∆ca) are presented again, along

with the numerical integration of T̄av (∆ca, σx, σz) for a maximum coupling of
gmax = 2π × 13.1 MHz, and Gaussian widths of σx = 11.7 µm and σz = 9.5 µm,
which were determined from a least-squares fit to the data. Both parameters
were varied independently, because σz characterises the distribution before the
atoms are inserted, given by the temperature in the conveyor belt at the end of
the transport, whereas σx is given by a potentially different equilibrium temper-
ature inside the cavity. To illustrate how a different value of σx and σz affects
T̄av (∆ca, σx, σz), also curves for a width of σx,z ± 1 µm are plotted in fig. 1.14.
Since all except of two data points are within this range, ±1 µm is a reasonable
estimate for the accuracy of the values for σx,y determined by the least squares
fit.

If the radial oscillation frequency Ωrad in the dipole trap and the width of the
spatial distribution σ are known, the temperature is given by [26]

T =
mCs Ω2

rad σ
2

kB
. (1.83)
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Figure 1.14: Measured averaged transmission (black dots) as a function of detuning,
showing the same data as fig. 1.13. The black dotted lines are calculated according
to (1.34) for different values of geff for an atom at rest. The blue solid lines show
the averaged transmission T̄av (∆ca, σx, σz), where the centre line is calculated for the
fit results σx = 11.7 µm and σz = 9.5 µm for gmax = 2π × 13.1 MHz, and the upper
(lower) curve corresponds to a larger (smaller) spatial width of σx,z + (−)1 µm.

In [15], Ωrad /(2π) was measured to be 1.6 kHz, thus yielding here temperatures
of Tz = 145 µK and Tx = 220 µK for σ = σz and σ = σx, respectively. These
temperatures are higher than previously measured temperatures of atoms stored
in the FORT and seem unrealistically high. One reason is that here the observed
transmission is solely attributed to thermal motion, thereby including also other
possible effects which could lead to a lower coupling strength.

However, a higher average temperature inside the cavity is conceivable and
could be due to parametric heating by the lock laser. Residual fluctuations of
the cavity resonance frequency with respect to the lock laser frequency translate
into intensity variations of the intra cavity lock laser light and thus its dipole
potential. This assumption is confirmed by our experience that the settings of
the control loop used to stabilise the cavity onto the lock laser are critical for
the lifetime of atoms coupled to the cavity.
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Fig. 1.14 shows that two different models can be utilised to describe the mea-
sured data reasonably well, namely the two-level model for a stationary atom
with a reduced coupling strength geff and the thermal model with the theo-
retically determined maximum coupling strength gmax and a Gaussian spatial
distribution for the motion along x and z. Using geff allows us to draw upon
results derived for an ideal two-level system, e.g. when doing first estimates of
the feasibility of entanglement schemes, without taking the motion of the atom
into account. The second model provides additional physical insight, but it at-
tributes the fact, that the transmission is higher than for the ideal case, to one
effect only.

In chapter 3 I will come back to the question of how to control the external
dynamics. There I will also explain the process of cavity cooling which is the
reason why we can observe an atom coupled to the cavity for several hundred
milliseconds at all.





2 Internal spin-dynamics of one and two
atoms

In this chapter I will explain how the atom-cavity interaction can be used to
nondestructively measure the spin-state of the atom. This technique is used to
study quantum jumps of one and two atoms.

2.1 Nondestructive state detection

The nondestructive detection of the internal state of an atom is of general inter-
est for all our current and planned experiments, especially for creating entangled
states. In the terminology of quantum information, in our system the two long-
lived groundstates |F = 3〉 and |F = 4〉 serve as qubit states, cf. the work on
realising a quantum register in [27,55]. In order to detect the state, a “push-out”
technique was successfully applied in our group in past experiments where the
atoms were stored and manipulated in the dipole trap. There a laser resonant
with the |F = 4〉 → |F ′ = 5〉 transition was applied to an array of atoms, remov-
ing atoms in |F = 4〉 from the trap, without affecting atoms in |F = 3〉. Taking
an ICCD image of the remaining atoms and comparing it with an earlier image
of all atoms, it was then possible to spatially detect the state of each atom. This
method has the obvious disadvantage that it is “destructive” in the sense that
atoms in |F = 4〉 are lost.

For the coupled atom-cavity system we detect the atomic state by tuning
the cavity close to the |F = 4〉 → |F ′ = 5〉 transition, where only an atom in
the |F = 4〉 state changes the transmission, while an atom in |F = 3〉 is so far
detuned (around 9.2 GHz) that it effectively decouples from the system and does
not influence the cavity transmission [19], see fig. 2.1. If the probe laser was
tuned to resonance with the empty cavity before, an atom in |F = 4〉 inserted
into the cavity causes a reduction in the transmission, see fig. 1.12. This state
detection technique works only if there is no repumper applied, which would
always bring an atom in |F = 3〉 back to the |F = 4〉 → |F ′ = 5〉 cycle.

Clearly this state detection method relies on the fact that the change in trans-
mission is detectable. So if the detuning is too large, the signal to noise ratio
gets worse because the transmission change gets smaller, see fig. 1.13. Likewise
the coupling g has to be sufficiently strong, because from the transmission the
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Figure 2.1: Simplified Cs level scheme. (a) An atom in |F = 3〉 is so far detuned
from the cavity resonance that it does not alter its transmission. (b) If the atom is in
|F = 4〉, it changes the transmission, depending on ∆ca and g.

situation g = 0 can not be distinguished from an atom in |F = 3〉 or no atom
in the cavity at all. To experimentally check whether an atom is in |F = 3〉 or
it was lost from the trap, we can always switch the repumper on again. If these
conditions are met and one coupled atom reduces the transmission sufficiently,
the atomic hyperfine spin state can be deduced from the transmission within 1
ms. This measurement is nondestructive in the sense, that the atom remains in
the dipole trap irrespective of its state.

If the state detection technique described above gave the same result for an
unlimited series of state measurements, it would be a perfect projective quantum
nondemolition (QND) measurement [48–50]. However, in our situation the same
laser that we use to detect the atomic state (the probe laser) can change it via
inelastic Raman scattering, see section 1.5.2. The experimental challenge is to
measure the state faster than R−1

scatt,inel with a high fidelity.

2.2 Single atom quantum jumps

2.2.1 Measurement technique

To experimentally determine Rscatt,inel , compare it with the theoretical results
obtained in section 1.5.2, and identify optimum experimental conditions, we
performed the following measurement: An atom, optically pumped into |F = 4〉
by switching the MOT repumper off after the MOT cooling laser, is transported
into the cavity centre. The probe laser is initially set to be resonant with the
cavity, but in contrast to the continuous observation presented in fig. 1.12, in
this case no repumper is applied. Therefore, after some ms the atom undergoes
a spontaneous Raman transition to |F = 3〉, causing an instantaneous rise in
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Figure 2.2: (a) to (c): Single traces of quantum jump measurements. The arrows
indicate insertion and removal of an atom. At the end of the sequence, the repumper
is switched on again to check that the atom was not lost. (d): Ensemble average over
31 single traces. The time R−1

43 is obtained from the exponential fit.

transmission back to the empty cavity level. This quantum jump was observed
in trapped ions before [20–22, 56], but not in single neutral atoms. To check
whether the rise in transmission is really due to a quantum jump and not caused
by the atom being lost, the repumper is switched on at the end of the sequence.

Fig. 2.2 (a) to (c) show three different experimental traces. The jump occurs
at a random point in time, but the jump rate is time independent. So for an
ensemble average, we obtain the expected exponential curve, fig. 2.2 (d). The
averaged transmission level at the end of the sequence, when the repumper is
switched on, is higher than the initial drop. We attribute this to increased
thermal motion, which leads to a lower effective coupling strength. This could
be because the atom is not cooled by the probe laser while it is in |F = 3〉.

The time constant extracted from the exponential fit is the inverse inelastic
Raman scattering rate

R43 = Rscatt,inel , (2.1)



42 2 Internal spin-dynamics of one and two atoms

where the terminology R43 was introduced for the rate of quantum jumps
from |F = 4〉 to |F = 3〉. The probability that such a jump occurs during a
measurement time ∆tm is given by

pj,4,3 = 1− e−∆tmR43 . (2.2)

We have analysed how the jump rate R43 depends on the cavity-atom detuning
to find an optimum setting for our experiments.

2.2.2 Influence of the detuning

The scattering time R−1
43 was measured as a function of the detuning ∆ca for a

fixed detector count rate of RD,0 = 20 ms−1, corresponding to a maximum inten-
sity at the probe anti-node of Isw,max = 194 W m−2, see (1.40). The measured
data is compared with results of a calculation based on the theory presented
in chapter 1, cf. (1.73) with the steady state distribution P (mF ), see fig. 1.7,
leading to an equivalent maximum coupling strength for a two-level model of
gmax = 2π × 13.1 MHz.

A coupling strength geff smaller than gmax , as deduced from the averaged
transmission in section 1.6.3, is attributed to thermal motion of the atom. There-
fore the probe laser intensity relevant for calculating the scattering rate is not
Isw,max T̄

∆pc=0(∆ca, gmax ), but it is subject to a spatial modulation as well. I will
apply the 2D-model developed in section 1.6.3 to take this effect into account.
The spatial distribution of the atom leads to a position dependent normalised
transmission of the form

T̄∆pc=0(∆ca, x, z) =
κ2(∆2

ca + γ2)

(γκ+ g(x, z)2)2 + (∆caκ)2
, (2.3)

where g(x, z) was defined in (1.80). In addition, the intensity for the empty
cavity Ip,0 also follows the Gaussian mode profile, and since I ∝ E2 ∝ g2, we
have

Ip,0(x, z)

Isw,max

=

(
g(x, z)

gmax

)2

, (2.4)

leading to a spatially dependent probe intensity with one coupled atom of

Ip(x, z) = Isw,max

(
g(x, z)

gmax

)2

T̄∆pc=0(∆ca, x, z) . (2.5)

The averaged probe laser intensity Iav reads



2.2 Single atom quantum jumps 43

0 1 0 0 2 0 0 3 0 0 4 0 0
0

1 0

2 0

3 0

4 0

5 0

d e t u n i n g  ∆c a / ( 2 π)  ( M H z )

sca
tte

rin
g t

im
e 1

/R 43
 (m

s)

Figure 2.3: Measured scattering timeR−1
43 as a function of detuning ∆ca for a constant

count rate RD,0 = 20 ms−1 and with the guiding field applied perpendicular to the
probe laser field. The dashed black and solid blue curves are the result of a numerical
calculation with gmax /(2π) = 13.1 MHz and 11.2 MHz, respectively.

Ip,av (∆ca, σx, σz) =

+∞∫∫
−∞

Ip(x, z)f(x, z, σx, σz)dxdz , (2.6)

which is used as Ip in the factor A of the inelastic Raman scattering rate, see
(1.76). In figure 2.3, the measured scattering times R−1

43 (∆ca) are compared with
the theoretical calculation for two different cases. The black dashed line is based
on the same parameters obtained from the least squares fit in section 1.6.3, i.e.
σx = 11.7 µm and σz = 9.5 µm, and the maximum coupling was assumed to be
gmax = 2π × 13.1 MHz.

The measured scattering times are mostly lower than theoretically predicted
by this model. One possible reason is that the value of gmax is based on the
equilibrium distribution P (mF ), which is a result of optical pumping by the
probe laser. But this pumping takes place on a millisecond timescale, see fig.
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1.9, i.e. on the same order of magnitude as the quantum jump process. It is
important to note that in this measurement the repumper is off already when
the atoms are inserted into the cavity. Since we have no knowledge about the
mF distribution prior to the insertion into the cavity, I calculated R−1

43 (∆ca) with
the same values for σx and σz, but with a lower value of g̃max = 2π× 11.2 MHz,
corresponding to an equal distribution over all mF states. The result, shown as
the blue solid curve in fig. 2.3, agrees much better with the measured data.

The general tendency predicted by the theory is confirmed in both cases, i.e.
the scattering time R−1

43 rises steeply for lower detunings and is almost flat for
higher detunings. But especially for detunings ∆ca > 2π×200 MHz the variation
in the measured data is quite strong, in contrast to the transmission measurement
(fig. 1.13). There are several possible explanations for this observation:

One reason ist that the analysis of the scattering time measurements depends
more critical on sufficient statistics, compared to the transmission measurements,
as the exponential fit only gives a reliably outcome if the ensemble-average is
composed of enough single shots. Another reason could be non-optimal fibre-
coupling to the detection setup. In this case the same count rate at the detector
would be compatible with different intracavity intensities, which affect the jump
rate directly. A third possible reason is that the cooling and heating processes
vary during one measurement day and on a day-to-day basis, e.g. because of
electronic noise in the servo-loop stabilising the cavity frequency. This leads to
a variation in temperature and thermal motion.

Despite the variations, the values and the general characteristics of R−1
43 (∆ca)

predicted by theory are confirmed by the data. It shows that in this configuration
of the experiment the best regime for a projective QND-measurement is close
to resonance, where the scattering time is longest. A practical limitation is that
stable coupling was never observed for detunings ∆ca . 2π × 30 MHz.

2.2.3 Random telegraph signal for a single atom

In the preceding section it was shown that the probe laser transmission facilitates
a nondestructive state detection method if the repumper is switched off. Finally
a quantum jump from |F = 4〉 to |F = 3〉 occurs, causing the transmission to rise.
In the experimental data presented in fig. 2.2, a strong repumper was switched
on a the end of the sequence to check whether the atom is still present. When
during this time the atom undergoes inelastic Raman transitions to |F = 3〉, it
is pumped back so quickly by the repumper that this spin change is not visible
at the 1 ms time resolution set by the binning time.

If the repumper is deliberately attenuated to a level at which the repumping
rate R34 from |F = 3〉 to |F = 4〉 is comparable to R43, jumps in both direc-
tion occur on a timescale of milliseconds and are thus detectable as a random
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Figure 2.4: Example traces of random telegraph signals. (a) Most traces show
variations of the lower transmission level. (b) In 27 out of those 348 traces, for which
the atom survived the whole 400 ms observation time, the reduced transmission for
an atom in |F = 4〉 remains fairly constant. The detuning is ∆ca = 2π × 38 MHz and
the guiding magnetic field is applied along the cavity axis.

telegraph signal [20–22,56–58].
Several hundred telegraph signals of 400 ms duration each were recorded in

order to study the dynamics of quantum jumps. Two example traces are shown
in fig. 2.4, differing in the variation of the lower transmission level. For most
traces, the lower transmission level shows significant variations, by far exceeding
the shot noise. This is due to changes in the coupling strength, which in turn
are caused by thermal motion.

As will be explained in chapter 3, the probe laser itself provides cavity cooling,
but an atom in |F = 3〉 is effectively decoupled from the cavity and thereby not
cooled, but it is still affected by lock-laser-induced heating. It is therefore likely
that after spending several milliseconds in |F = 3〉, the atom will “heat up”. In
less than 10% of the measured data (27 out of 348 traces), however, the observed
variation of the coupling is very small. These signals show how important a stable
and strong coupling is and how it directly affects the quality of our measurement.

2.2.4 State detection fidelity

To quantify how well the atomic state can be deduced from the transmission
signal, two sources of errors have to be taken into account. If the two trans-
mission levels are not well separated, an atom being in |F = 4〉 will occasionally
lead to a count rate compatible with |F = 3〉 and vice versa. The other source
of a measurement error occurs if the atom undergoes a quantum jump during
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Figure 2.5: Histogram of photon counts obtained from (a) all random telegraph
signals and (b) the same subset of 27 best selected shots referred to in fig. 2.4 (b).
The solid lines are Poissonian fits. The vertical dashed line is a threshold minimising
the overlap.

the measurement time, here 1 ms. In the following I will address both issues.

Count rate overlap

To quantify the count rate overlap, a histogram of the photon count rate is
extracted from all transmission traces, see fig. 2.5 (a), and for the selected group
with a small variation of the low transmission level, see (b). If the atom is in
|F = 3〉, the transmission is the same as for an empty cavity and its variation is
given by the photon shot noise. This can be seen by fitting the right peak of the
histogram with a Poissonian distribution, which describes the data accurately.

Subtracting these counts from the total histogram results in the distribution
of the photon count rate for an atom in |F = 4〉, which can again be fitted with
a Poissonian distribution. The analysis of all traces shows that the left peak
is significantly broader than the fit, whereas for the selected group of traces
the histogram is closer to the shot noise limit. Thus the variation of g is the
dominating effect that limits the signal to noise ratio.

A threshold between the count rate assigned to |F = 3〉 and |F = 4〉 is set
such that the overlap between the two measured histogram peaks is minimised,
see fig. 2.5. The overlap of 2.4 % in case (a) and 1.3 % in case (b) determines
the probability pcr of a false state detection caused by a wrong interpretation of
the measured count rate. Compared to the results presented in [59], the overlap
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could be reduced by about a factor of two owing to a more stable coupling and
an improved detection efficiency. The latter means that the same empty cavity
count rate RD,0 corresponds to a lower intracavity power and thus a lower jump
rate.

Jump rates

The random telegraph signals can be digitised applying the threshold obtained
from the histogram, yielding a binary signal F (t) where F is either 3 or 4. For
the following discussion in this and the next section I introduce the notation N4

for the number of atoms in |F = 4〉. This notation might not be obvious at this
point when describing the processes involving only one atom and N4 is either
0 or 1, but the usefulness of this terminology will become apparent when the
dynamics of two atoms are discussed later in this chapter.

Let p0 be the probability that no atom is in the state |F = 4〉, i.e. for the
one-atom case discussed here p0 = 1 means the atom is in |F = 3〉. Likewise,
p1 is the probability for an atom to be in |F = 4〉. With this notation, the rate
of jumps from |F = 4〉 to |F = 3〉, labelled by R43 so far, is then written as R10

and the repumping rate R34 corresponds to R01. The dynamics of the quantum
jumps are them described by the following rate equations [56]:

dp0(t)

dt
= −R01p0(t) +R10p1(t) (2.7a)

dp1(t)

dt
= −R10p1(t) +R01p0(t) = −dp0(t)

dt
(2.7b)

The average probabilities p̄0 and p̄1 for timescales much longer than the inverse
jump rates, obtained by setting dp0(t)

dt
= dp1(t)

dt
= 0 and using p̄0 + p̄1 = 1, are

related to the jumprates by

p̄0 =
R10

R10 +R01

(2.8a)

p̄1 =
R01

R10 +R01

. (2.8b)

The values of p̄0 = 58% and p̄1 = 42% are extracted from the area of the right
and left histogram peak, respectively (fig. 2.5 (b)). These averaged values are
determined by the ratio between the rates, not by their absolute values.

To obtain R10 and R01 from the digitised random telegraph signal, the relative
frequency of the dwell times Td is analysed. The dwell times Td,0 are the lengths
of the time intervals between two quantum jumps for which N4 = 0, i.e. the
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Figure 2.6: Histogram of dwell times for the atom being in (a) |F = 3〉 and (b)
|F = 4〉, obtained from digitised telegraph signals of all 348 traces.

atom is in |F = 3〉 and the transmission is constantly high, and Td,1 are the
durations between two quantum jumps for which N4 = 1. Assuming an atom
is in |F = 4〉 at t = 0, i.e. p1(0) = 1, the probability that no quantum jump to
|F = 3〉 occurs during the time T is given by

pnj,1,0 (T ) = exp(−R10T ) , (2.9)

where nj,1,0 means no quantum jump (“nj”) fromN4 = 1 toN4 = 0. The dwell
times Td,1, corresponding to a low transmission level, are therefore exponentially
distributed with a probability density of [56]:

p(Td,1) ∝ exp(−R10Td,1) (2.10)

In analogy, the probability density of the dwell times Td,0, when the atom is
in |F = 3〉 and the transmission is high, is given by

p(Td,0) ∝ exp(−R01Td,0) . (2.11)

The histograms of the dwell times for low and high transmission levels, com-
puted from the digitised signals, are shown in fig. 2.6. The result of the ex-
ponential fit depends strongly on the starting point of the fitting range, but
the fitted rate remains fairly constant for a lower limit of Td > 6 ms, therefore
shorter dwell times are excluded from the analysis. Comparing the histogram
with the fit shows that the number of short dwell times is “too high”, which
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could be caused by measurement errors, if a change in transmission is regarded
as a quantum jump, although it is only noise. The rates obtained from the fit
are

R10 = (57± 1) s−1 , R01 = (35± 1) s−1 , (2.12)

which are confirmed by analysing the second-order correlation function of the
telegraph signals, see [30]. The probabilities that state changing scattering hap-
pens during a 1 ms interval is thus

pj,1,0 (1 ms) = 1− pnj,1,0 (1 ms) = 5.5% (2.13a)

pj,0,1 (1 ms) = 1− pnj,0,1 (1 ms) = 3.4% , (2.13b)

which gives a total error probability, including the peak overlap of the count
rate histogram, of

perr = p̄j + pcr − p̄j pcr = 0.069 , (2.14)

where the weighted jump probability pj = p̄1pj,1,0 + p̄0pj,0,1 = 4.6% was used.
The overlap error pcr = 2.4% was determined before from all telegraph signals.
The fidelity of the state detection for a binning time of 1 ms is thus

FSD (1 ms) = 1− perr = 93.1% . (2.15)

2.3 Spin dynamics of two atoms

So far I have presented experiments revealing the internal spin dynamics of
one atom coupled to the cavity mode. Placing two atoms into the resonator
leads to an effective interaction between them, mediated by the cavity field [59].
Detecting the number of atoms being in a particular state is the basis for a
promising theoretical proposal on entanglement generation in CQED-systems
[16, 17]. In free space, the internal atomic state evolution of a dipole-trapped
ensemble of cold atoms was inferred from the phase shift of a far detuned laser
beam [50], where the large number of atoms yielded a sufficiently strong signal.
In a CQED experiment, already a single atom can cause a significant phase shift,
if the system is in the strong coupling regime.

In the following, I will present experiments on the spin dynamics of two atoms.
The state detection is again based on cavity transmission, using a variation of
the method discussed in the previous section. Because the photon scattering rate
during our detection time is too high, these measurements are not compatible
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with entanglement generation, but they are an important step in this direction
and they allow us to quantify the parameters and explore the limits of our system.

2.3.1 Counting the number of coupled atoms

In the previous section it was shown that it is possible to determine if an atom is
in |F = 3〉 or |F = 4〉 based on the probe laser transmission. Without changing
the experimental settings, this is not directly possible for two atoms coupled to
the resonator. Both atoms in |F = 3〉, i.e. N4 = 0, will lead to a transmission
level T̄0 = 1 equal to the empty-cavity case. One atom in |F = 4〉 and one in
|F = 3〉 (N4 = 1) will cause the transmission T̄1 to drop almost to zero, cf. the
one-atom case in fig. 2.4, which implies that N4 = 2 is indistinguishable from
N4 = 1. To deduce N4 = 0, 1, 2 from the corresponding transmission levels
T̄0, T̄1, T̄2, the experimental settings have to be chosen such that one atom alone
does not block the cavity transmission completely. A higher detuning ∆ca causes
a higher transmission T̄1, cf. fig. 1.13 and equation (1.34).

Variation of the detuning

In the weak excitation limit, two atoms at rest coupled with the same strength g
can be theoretically described as a single atom experiencing a coupling strength
g2 =

√
2g [16, 17]. In the dispersive limit (∆ca � γ), the transmission levels are

then given by (1.35)

T̄1 =
1

1 +
(

g2

κ∆ca

)2 , T̄2 =
1

1 +
(

2g2

κ∆ca

)2 , (2.16)

and the level difference ∆T̄12 = T̄1 − T̄2 reaches its maximum value of 33%
for g2/(κ∆ca) = 1/

√
2, when T̄0, T̄1, and T̄2 are equally spaced. The average

normalised transmission T̄2 for two atoms coupled to the cavity was measured
alongside the data already presented in fig. 1.13 for detunings ∆ca/(2π) >
160 MHz. Figure 2.7 shows that for two atoms the transmission is lower, but
instead of the theoretically expected value of

√
2 × 9 MHz = 12.7 MHz, it is

compatible with an effective coupling of geff ≈ 2π×11 MHz, i.e. about 15% less.
Here 9 MHz is the effective two-level coupling strength for an atom at rest which
best describes the one-atom transmission data, i.e. I do not consider the model
of thermal atomic motion in this discussion.

One contribution to this discrepancy is the variation of the atomic position.
In the case of one atom, the fitting-routine implemented in the image acquisition
software is used to determine the initial position of the atom, which is then used
to transport the atom to the cavity centre using the optical conveyor belt. The
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Figure 2.7: Normalised transmission T̄1 (black dots) and T̄2 (blue diamonds) for one
and two atoms, respectively. The solid lines are calculated according to the effective
two-level model (1.34) for one atom at rest with different values for geff . The one-atom
data is the same as in fig. 1.13.

distance between two atoms loaded from the MOT into the YAG-dipole trap
is distributed according to the size of the MOT, which is about 20 µm. For
the presented measurement, those single shots were postselected for which the
distance between two atoms was less than 10 µm, and the transport is performed
such that both atoms have the same distance from the cavity centre. If both
atoms are 5 µm away from the cavity centre, each one-atom coupling strength is
reduced to g(r)/g(0) = ψ(z = 0, r = 5 µm) = exp(−52/232) = 0.95. Equation
(1.33) is still valid for many atoms, if g2 is replaced by [16]

g2
tot =

∑
i

g2
i , (2.17)

where gi is the one-atom coupling strength for atom i. So even for two atoms
maximally separated by 10 µm, assuming g1(r = 0) = g2(r = 0) = 2π × 9 MHz,
the expected total coupling strength is still gtot = 2π×12.1 MHz. Other averag-
ing effects due to thermal motion are already included in the effective one-atom
coupling strength of 9 MHz. It remains unclear why the transmission for the
case of two atoms is significantly higher, thus the combined coupling lower than
expected.
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An important consequence of this measurement is that the predicted maximum
level separation of ∆T̄12 = 33% is never obtained for any detuning ∆ca. The
maximum difference is ∆T̄12 = 19% at ∆ca = 2π × 270 MHz, where T̄1 = 61%
and T̄2 = 42% . Assuming an empty-cavity count rate of RD,0 = 30 ms−1, the
shot noise is comparable with the difference in counts for N1 and N2, making it
almost impossible to deduce the number of atoms in |F = 4〉 from the measured
transmission within 1 ms.

We can use the position of the atoms as another degree of freedom in our
system to achieve a good distinction between T̄1 and T̄2, while at the same time
working close to resonance.

Variation of the atomic position

A detuning of ∆ca in the range of 200 to 300 MHz has two disadvantages for
studying the spin-dynamics of two coupled atoms. Firstly, the difference in count
rate is too small, and secondly, the scattering time R−1

43 is almost constant at
its minimum value for ∆ca > 2π × 150 MHz, with a very shallow slope towards
higher detunings. Closer to resonance, the rate of inelastic Raman scattering
R43 is lower, but if two atoms are at the cavity centre, the transmission levels
T̄1 and T̄2 are almost indistinguishable.

The level difference ∆T̄12 can, however, be controlled for a constant detuning
∆ca by changing geff . This is possible by means of our optical conveyor belt,
which allows us to transport atoms not only exactly into the cavity centre, but
also to stop the transport at a predetermined distance ∆y away from it. For
the following discussion I will neglect the radial oscillation and the issue of
insertion into different trapping sites, cf. section 1.6.3, and instead use the
phenomenological parameter g0 = geff (y = 0) = 2π × 9 MHz for the coupling
strength in the cavity centre. Thus the coupling strength as a function of position
along the conveyor belt axis reads

geff (∆y) = g0 exp

(
− ∆y2

w2
0,cav

)
. (2.18)

As mentioned above, the level difference ∆T̄12 has its maximum value for
g2/(κ∆ca) = 1/

√
2. With g = geff (∆y), for each detuning ∆ca < 2π × 280 MHz,

a distance ∆y 6= 0, given by

|∆y(∆ca)| = w0,cav

√√√√1

2
ln

(√
2g2

0

∆caκ

)
, (2.19)

yields ∆T̄12 = 0.33. For ∆ca > 2π× 280 MHz, ∆T̄12 is always at maximum for
∆y = 0, i.e. at the cavity centre.
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Figure 2.8: (a) Effective coupling as a function of distance ∆y from the cavity centre.
(b) Transmission level difference ∆T̄12, (c) scattering rate R43 as a function of detuning
∆ca and distance ∆y. The white solid lines are points of maximum ∆T̄12 calculated
according to (2.19).

Figure 2.8 shows the level difference ∆T̄12 (b) and the inelastic Raman scat-
tering rate R43 (c) as a function of detuning ∆ca and distance from the cavity
centre ∆y. By choosing a lower detuning, the scattering rate R43 is reduced,
and it is still possible to obtain optimal distinction ∆T̄12 by positioning the
atoms away from the cavity centre. Empirically we found that a detuning of
∆ca = 2π × 38 MHz yields rather stable transmission traces and a distance of
∆y = 21 µm was adjusted for optimum distinction of one and two atoms.

2.3.2 Two-atom random telegraph signals

The experimental procedure described in section 2.2.3 was extended to the case
of two atoms, which were positioned at ∆y = 21 µm. At this position of around
one cavity-waist away from the mode centre, the coupling strength depends more
critical on the exact position. Two atoms loaded into the FORT were therefore
only transported if the inter-atomic spacing was ≤ 2 µm, which allowed us to
easily select useful data. As for the one-atom case, the repumper was attenuated
to a level at which it induced quantum jumps from |F = 3〉 to |F = 4〉 at a rate
comparable with the probe laser induced jumps.

Figure 2.9 (a) shows an example single trace of a two-atom telegraph signal.
For t ≈ 200...300 ms, steps corresponding to N4 = 2 (low transmission), N4 = 1
(intermediate level), and N4 = 0 (empty cavity level) are discernible, but in
general the distinction between the levels is not as clear as for the one-atom
case, cf. fig. 2.4. The quality of the level separation can be deduced from a
histogram extracted from several hundred telegraph signals, see fig. 2.9 (b).

The normalised histogram does obviously not show a three-peak structure.
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Figure 2.9: (a) Example trace of a random telegraph signal for two atoms placed
∆y = 21 µm away from the cavity centre. The cavity-atom detuning is ∆ca = 2π ×
38 MHz. (b) Normalised photon count histogram (bars) of many two-atom telegraph
signals. The blue, red, and green lines are independently measured histograms for 0,
1, and 2 atoms coupled continuously to the cavity, respectively. The black line is a
weighted sum of those three histograms.
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To understand the contributions of the transmission levels T̄0, T̄1, and T̄2 we
independently measured photon count histograms for 0, 1, and 2 atoms coupled
to the resonator at the same position and for the same detuning. These were
obtained from signals of continuously coupled atoms, i.e. a sufficiently strong
repumper was applied. These three histograms, depicted as coloured solid lines
in fig. 2.9 (b), obviously overlap to a high degree. A weighted sum of the three
histograms (black line) with two independent weight factors as fit parameters
agrees well with the measured two-atom random telegraph histogram. Because
of the overlapping photon count histograms it is not possible to determine N4

from the detected counts within 1 ms, but using statistical methods, it is possible
to calculate probabilities for the number of atoms in the |F = 4〉 state.

2.3.3 Bayesian statistical analysis

Using the notation introduced in section 2.2.4, pN4 is the probability that N4

atoms are in the state |F = 4〉. The following statistical analysis allows us to
extract p0(t), p1(t) and p2(t) from a measured random telegraph signal. The
dynamics of the telegraph signal is described by a set of rate equations similar
to (2.7a) and (2.7b):

dp0

dt
= −R01p0(t) +R10p1(t) , (2.20a)

dp1

dt
= R01p0(t)−R10p1(t)−R12p1(t) +R21p2(t) , (2.20b)

dp2

dt
= R12p1(t)−R21p2(t) . (2.20c)

A transition of one atom from |F = 3〉 to |F = 4〉 is only induced by the
repumper at a rate Rrep , which is independent of N4 because the laser is applied
from the side of the cavity. Thus R12 = Rrep and R01 = 2Rrep , because for the
latter case two atoms both in |F = 3〉 are present. In contrast, R21, i.e. the rate
that one out of two atoms in |F = 4〉 undergoes a quantum jump to |F = 3〉, is
not simply given by 2R10, because this transition is induced by the probe laser,
the intensity of which depends on N4 [59]. Theoretically, the jump rate depends
linearly on the intracavity intensity, therefore I assume that

R21 = 2
T̄2

T̄1

R10 . (2.21)

For the statistical analysis, the three rates R10, R21 and Rrep have to be known
in advance. A good guess for the rate R10 can be obtained from an ensemble
average of quantum jumps for a single atom placed at the same position ∆y
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away from the cavity centre, with no repumper applied, similar to the measure-
ment presented in fig. 2.2 (d). The transmission levels T̄2 and T̄1 are measured
independently, which yields an estimate for R21. However, the relation (2.21) is
not fixed for the algorithm described below, it serves only as a starting value for
R21, thus the three rates are considered to be independent for the calculation.

The rate Rrep cannot be measured independently, but since the power of
the repumping laser is adjusted such that the transition rates from |F = 4〉 to
|F = 3〉 and vice versa are approximately equal, Rrep is set to R10 as a starting
value for the calculation. The exact value of the three rates is determined by an
iterative self-consistent method, see below.

The probabilities pN4(t) are governed by the rate equations discussed above,
and in addition, the detected photon counts provide partial information about
the current state. Using Bayes rule, the current value of each probability is
updated after each time bin. Let us assume the probabilities pN4(ti) at some
time ti are known. The problem to solve is: What are the probabilities pN4(tj),
where tj = ti + ∆tm and ∆tm is the binning time step, taking the number of
photons nD (tj) detected during the time interval [ti, tj] and a-priori knowledge
about our system into account?

Using the usual notation for conditional probabilities, we write

pN4(tj) ≡ p(N4|nD )(tj) , N4 = 0, 1, 2 . (2.22)

Applying Bayes rule and omitting the explicit time-dependence tj for the sake
of clarity, we have

p(N4|nD ) =
p(nD |N4)p(N4)

p(nD )
, (2.23)

where the conditional probability p(nD |N4) to detect nD photons, given that
N4 atoms are in |F = 4〉, is indeed time-independent and is extracted from the
photon count histograms for 0,1, and 2 atoms, shown in fig. 2.9 (b).

The unconditional probability p(N4) that N4 atoms are in |F = 4〉 at t = tj
is obtained by extrapolating from the preceding time step, because pN4(ti) is
supposed to be known. In a linear approximation for Rx∆tm � 1, where Rx =
max(R10, R21, Rrep ), this update according to the rate equations is given by

p(0) = p0(ti) + (R10p1(ti)− 2Rrep p0(ti))∆tm (2.24a)

p(1) = p1(ti) + (2Rrep p0(ti) +R21p2(ti)− (R10 +Rrep )p1(ti))∆tm (2.24b)

p(2) = p2(ti) + (Rrep p1(ti)−R21p2(ti))∆tm . (2.24c)

For the unconditional probability p(nD ) to detect nD photons during the
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Figure 2.10: (a) Example trace of a random telegraph signal. (b) Probabilities for
0,1, or 2 atoms to be in |F = 4〉, calculated using the Bayes method.

interval [ti, tj], the photon count histograms for 0,1, and 2 atoms are weighted
with the state occupation probability, thus yielding

p(nD ) =
∑

N4=0,1,2

p(N4)p(nD |N4) . (2.25)

Setting the initial probabilities to p0(0) = 0, p1(0) = 0, and p2(0) = 1, because
both atoms are prepared in |F = 4〉 before they are transported towards the
cavity, pN4(t) is then updated stepwise for each time bin. In this way, the time-
dependent probabilities are computed successively for the whole transmission
trace. The outcome of this algorithm applied to the single trace shown in fig.
2.9 (a) is displayed in fig. 2.10 and shows that, despite the noisy raw data and
the overlap of the photon count histograms, it is possible to extract additional
information when the available knowledge about the dynamics of the system is
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included. The two important characteristics of the Bayesian method are that no
additional assumptions going beyond the available a-priori knowledge enter the
calculation and that it provides all information that can be extracted from the
measurement.

Self-consistent calculation of the quantum jump rates

The rates R10, R21 and Rrep , entering the algorithm described above, were
guessed or indirectly deduced from other measurements. Applying the Bayes
method to many single traces permits a self-consistent calculation in the follow-
ing way: An analytical solution of the rate equations (2.20) for p0(t), p1(t) and
p2(t), with the initial conditions p0(0) = 0, p1(0) = 0, and p2(0) = 1, yields the
ensemble-averaged probabilities 〈pN4〉(t) with the three jump rates as parame-
ters.

Averaging over the probabilities pN4(t) obtained from the analysis of many
traces provides an experimental result for 〈pN4〉(t), which can be fitted with
the analytical solution, in which the rates R10, R21 and Rrep are used as fit
parameters. With the rates obtained in this way, the Bayes algorithm is applied
again to all experimental traces, yielding an updated set of probabilities pN4(t),
which is again averaged to extract the rates. This process is continued until the
difference between the rates obtained from two successive iterations is smaller
than a predefined threshold. The set of rates obtained from this analysis is

R10 = 104 s−1 , R21 = 52 s−1 , Rrep = 45 s−1 . (2.26)

The experimentally averaged probabilities 〈pN4〉(t) and the fitted solution of
the rate equations, plotted in fig. 2.11, are in good agreement. However, there
is an apparent inconsistency in the ratio of the two rates R10 and R21: From the
photon count rate histogram, the average transmission levels are obtained to be
T̄1 = 19.5 ms−1 and T̄2 = 9.3 ms−1. Thus according to the assumption (2.21), we
would expect that R21 ≈ R10, but the result (2.26) shows that R21 = 1

2
R10.

The ratio of the rates can be independently checked by analysing the photon
count histogram (fig. 2.9 (b)). The weight factors for the three individual
histograms represent an additional information that has not entered the Bayes
algorithm described above. They are connected to the rates analogous to the
one atom case described by (2.8a) and (2.8b). The steady state probabilities
p̄N4 = 〈pN4〉(t → ∞), obtained by setting ṗN4(t) = 0 in (2.20), are determined



2.3 Spin dynamics of two atoms 59

0 2 0 4 0 6 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

pro
ba

bili
ty

t i m e  ( m s )

Figure 2.11: Probabilities for 2 atoms (green), 1 atom (red), and 0 atoms (blue)
to be in |F = 4〉 calculated with the Bayes method for all individual traces and then
averaged. The solid lines are the best fitting analytical solution of the rate equation.

by the jump rates in the form

p̄0 =
R10R21

D
= 38% (2.27a)

p̄1 =
2R21Rrep

D
= 33% (2.27b)

p̄2 =
2R2

rep

D
= 29% (2.27c)

D = R10R21 + 2R21Rrep + 2R2
rep , (2.27d)

where (2.26) was inserted for the rates. These probabilities are almost identical
to the independently determined weight factors. Thus the factor of two difference
in the rates R10 and R21 is confirmed. Probably the processes involving two
atoms are more complicated than described by the simple relation (2.21).
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2.4 Conclusion

The experiments presented in this chapter demonstrate that with the existing
setup it is possible to study the internal dynamics of one and two atoms. For
the one atom case, a high state detection fidelity of 93% for a binning time of
1 ms was realised. For two atom coupled to the cavity, the signal to noise ratio
is not sufficient to deduce the number N4 of atoms coupled to the cavity from
a single time bin, since the corresponding histograms overlap. However, using
a-priori knowledge about our system (jump rates and photon count histograms),
probabilities can be extracted employing Bayesian statistics. The histograms
also show that the width of the N4 = 1 and N4 = 2 peaks is not shot-noise
limited, owing to variations in the coupling. In the next chapter, I will discuss
how control over the external degrees of freedom can be improved with the goal
to achieve a more stable and higher coupling strength.



3 External dynamics – cooling and
trapping atoms inside the cavity

The experiments presented so far show that the measured effective coupling
strength geff is lower than the theoretically expected maximum coupling. In
section 1.6.3, radial oscillation across the cavity mode was used as a model to
explain this discrepancy. Methods to improve the localisation of atoms coupled
to the cavity are the focus of this chapter, because a stable coupling strength is
vital for all envisioned experiments.

In the first part, I will present results on using a red-detuned lock laser, which
acts as an intracavity dipole trap. In the second part, I begin by providing a
theoretical background on cavity cooling. Subsequently I discuss experiments
which demonstrate a different regime of cavity cooling, where the cavity is red-
detuned from the atomic resonance, in contrast to all experiments presented in
chapter 2.

3.1 Intracavity dipole trap

To study the possible effects of an improved localisation of the atoms, we changed
the lock laser wavelength to λlock = 857 nm, red detuned by two free spectral
ranges. For this wavelength, the beat length between probe and lock laser stand-
ing wave is 73 µm, see (1.48), thus the effect of insertion into different trapping
sites along the cavity axis is very small. The main difference compared to the
blue-detuned lock laser used in the experiments discussed so far is that the atoms
are not repelled by the lock laser, but trapped at its anti-nodes axially as well
as radially. In the following I will present different measurements to characterise
the intracavity trap.

3.1.1 Trapping atoms inside the cavity

In order to verify that the atoms are indeed trapped by the lock laser, we trans-
ported a single atom into the cavity centre, switched the conveyor belt off after
5 ms, and observed the cavity transmission continuously. Applying a strong re-
pumper all the time, a rise in transmission thus indicates atom losses. From the
ensemble average we can then infer the average survival probability as a function

61
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Figure 3.1: Trapping of atoms by the lock laser. The three curves are ensemble
averages for the cases with the FORT switched on (black curve) and switched off (blue
and red curve). For this measurement, the guiding field was applied along the cavity
axis and ∆ca = 2π × 196 MHz.

of trapping time. Figure 3.1 shows the result for two different lock laser powers
and for comparison the case when the YAG laser is not switched off. For this
measurement we chose a detuning of ∆ca = 2π× 196 MHz, because in this range
we have observed a more stable coupling and thus transmission traces with less
variations than close to resonance.

The lock laser potential U0,lock is obtained from a calibrated avalanche photo-
diode (APD), as will be explained in the next section. For U0,lock = kB×170 µK,
the trap is obviously so shallow that almost all atoms are lost after approximately
200 ms, whereas for U0,lock = kB×330 µK the survival probability is much higher,
but still not the same as if the conveyor belt is switched on as well. This result
shows that atoms can be trapped inside the cavity by the lock laser alone, which
has the advantage that the system is “cleaner” in many ways, e.g. the AC-Stark
shift of the conveyor belt does not have to be taken into account.
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3.1.2 Lock laser trap depth

To determine the depth of the intracavity dipole trap we measured the axial trap
frequency, which in the harmonic approximation is determined by the potential
depth U0,lock according to

Ωax = 2π

√
2U0,lock

mCs λ2
lock

. (3.1)

The trap frequency was measured using parametric heating of single atoms
[26]. This was facilitated by amplitude modulation of the lock laser, which
translates into a modulation of the potential depth with the modulation fre-
quency Ωmod . The modulation frequency was swept from 400 to 800 kHz in
40 kHz steps and vice versa, while the cavity transmission was continuously ob-
served. A sufficiently strong repumper was constantly applied so that a rise in
transmission indeed indicates loss of atoms and not a change in the hyperfine
ground state. Furthermore, the conveyor belt was switched off during the sweep
to make sure that only the characteristics of the lock laser trap are measured.

The sweep was done in both directions because from one trace alone, e.g.
from 400 to 800 kHz, the trap frequency cannot be derived. Depending on the
amplitude of the excitation, the resonant excitation frequency could be at e.g.
30% or 70% cumulative atom loss. Employing the symmetry of the situation,
an additional reverse sweep determines the resonant excitation frequency to be
approximately at the crossing of the two loss curves. In contrast to [26], here the
ensemble average is obtained from many realisations of single atom loss curves,
because with two or more atoms trapped inside the cavity, only the last atom
lost from the cavity would cause the transmission to rise to the empty cavity
level, rendering the analysis of the data impossible.

Figure 3.2 (a) shows the raw data of an ensemble average for stepping the
modulation frequency in both directions. For further analysis, the part of the
data containing the sweep was binned in 10 ms time steps, which was the dwell
time for each frequency step, and normalised from 0 to 100%, see fig. 3.2 (b).
Two sets of data are shown, now as a function of modulation frequency, for
different amplitude modulation strengths. The numbers of -10 and -13 dBm,
respectively, indicate the setting of a signal generator, the output of which was
used for amplitude modulation of the VCO (voltage controlled oscillator) driving
the lock laser AOM and thereby modulating its power. The two crossing points
are at the same position, thereby verifying the symmetry assumption. From
the resonance excitation frequency Ωmod,0 ≈ 2π × 580 kHz, the axial oscillation
frequency is obtained to be
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Figure 3.2: Measurement of the axial trap frequency. (a) Ensemble average showing
the measured transmission as a function of time while sweeping the lock laser mod-
ulation frequency. (b) Cumulative atom loss for ramping the modulation frequency
up and down. The black (blue) data points are for an amplitude modulation setting
of the signal generator of -13 (-10) dBm. The crossing of the curves is at twice the
axial trap frequency. For this measurement, the guiding field was applied along the
cavity axis, the detuning was ∆ca = 2π× 196 MHz, and the lock laser potential depth
extracted from the data is U0,lock = kB × 0.5 mK.
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Ωax ≈ 2π × 290 kHz⇒ U0,lock = kB × 0.5 mK = h× 10 MHz , (3.2)

where Ωax = 1
2
Ωmod,0 because of parametric heating. In this calculation

an uncertainty lies in applying the harmonic approximation, because in our
measurement the atoms are heated until they escape from the trap. Due to
the anharmonicity of the trap potential the oscillation frequency of the atom
changes as the atom’s energy approaches the potential depth. However, for this
context a reasonable estimate of the trap depth is sufficient, thus I neglect the
effect of the anharmonicity.

The result for U0,lock can be used for a calibration based on the transmitted
lock laser power, which is measured using an amplified avalanche photodiode
(APD) after probe and lock laser are separated using a Glan-Taylor polariser,
cf. section 1.3 and [30]. The APD voltage is always recorded along with the
SPCM counts by the data acquisition software and is directly proportional to the
intracavity lock laser power and therefore also to the lock laser potential. Since
the APD voltage for this measurement is known, the potential depth for different
laser intensities is directly calculated. However, this calibration is only valid
for the specific wavelength of λlock = 857 nm because the cavity transmission
and loss coefficients (T ,A) are also wavelength dependent. In addition, it is
important to keep the reverse voltage applied to the APD constant (here -230
V), since otherwise the signal voltage of the APD is not a reliable reference.

From the potential depth the intracavity power and intensity of the lock laser
can be inferred. U0,lock is equal to the AC Stark shift of the ground state, which
is mF independent due to the linear polarisation of the lock laser mode. In the
appendix of [27], the S1/2 ground state shift for π transitions for a red-detuned
laser was derived to be

∆E(S)
π = − e2I

12mecε0

(
2

ω3/2∆′3/2
+

1

ω1/2∆′1/2

)
, (3.3)

where ω3/2 and ω3/2 are the transitions frequencies of the D2 and D1 line,
respectively, and

1

∆′J ′
=

1

ωl + ωJ ′
+

1

ωl − ωJ ′
(3.4)

defines the detuning of the laser frequency ωl from the excited PJ ′ state. With
∆E

(S)
π = U0,lock , the intracavity lock laser intensity can thus be calculated. From

the measured data presented above, one obtains Isw,lock = 1.1× 108 W m−2 for
the intracavity lock laser intensity and with Isw,lock = 8Pcirc,lock /(πw

2
0,cav ), the

circulating lock laser power is Pcirc,lock = 22 mW.



66 3 External dynamics – cooling and trapping atoms inside the cavity

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

90

100

9
9.5
10
10.5
11

 blue-detuned lock-laser, lock = 845 nm
 red-detuned lock-laser,  lock = 857 nm

tra
ns

m
is

si
on

 (%
)

detuning ca/(2)  (MHz)

geff/(2 (MHz) = 

Figure 3.3: Normalised cavity transmission as a function of detuning for the case of
a red-detuned and blue-detuned lock laser. The blue data points are taken from fig.
1.13. The solid lines are calculated according to (1.34) for different values of geff .

Continuously measuring the escape of atoms from the trap as a function of
modulation frequency is a fast and reliable technique to measure the trap fre-
quency. In former experiments on measuring the radial trap frequency, the
relative atom loss as a function of excitation frequency had to be determined
from a whole ensemble average for each frequency [26]. With the method used
here, averaging over 20 to 30 single traces directly yields this information.

3.1.3 Improved localisation

An intracavity dipole trap should lead to a better localisation of atoms, de-
tectable by a lower probe laser transmission. The normalised cavity transmis-
sion was measured for a range of different detunings ∆ca. Figure 3.3 shows the
data for the red lock laser, compared to the data already discussed at the end
of chapter 1 in section 1.6.

The transmission was not measured for the same range of detunings because
changing ∆ca over such a big range is rather time-consuming due to technical
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Figure 3.4: Telegraph signal with no external repumper applied. The quantum jumps
from |F = 3〉 (high transmission) to |F = 4〉 (low transmission) are induced by the lock
laser alone. The detuning is ∆ca = 2π × 139 MHz, the circulating lock laser power,
inferred from the APD voltage, is Pcirc,lock = 14.7 mW.

reasons. Here we were mainly interested in a qualitative result, which is indeed
clearly obtained from the measured data points. The normalised transmission is
systematically lower for the red-detuned lock laser, indicating a higher geff and
thus a better localisation.

Another interesting observation is that we could also measure the transmission
for detunings in the range of 100 to 160 MHz. This had not been possible with
the blue-detuned laser, since for these detunings we had repeatedly observed
very unstable transmission signals. This measurement shows that an intracavity
trap leads to a better localisation of the atoms. However, it also poses a problem
in terms of state detection, as I will discuss in the following.

3.1.4 Lock laser induced quantum jumps

Trapping atoms at the intensity maxima will lead to a much higher photon
scattering rate compared to the case of a blue-detuned laser. In order to assess
how severe this scattering is in the context of the experiments presented in
chapter 2, we continuously measured the cavity transmission for one coupled
atom without a repumper, see fig. 3.4. As discussed in section 2.2, the probe
laser induces transitions from |F = 4〉 to |F = 3〉 by virtue of inelastic Raman
scattering via excited intermediate states. Since the lock laser detuning of 5 nm
is much larger than the hyperfine splitting of 9.2 GHz, it will induce transitions
both from |F = 3〉 to |F = 4〉 and vice versa at a similar rate.
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Analysing the telegraph signal in the same way as presented in section 2.2.4,
the rates obtained from dwell time histograms are

R34 = Rscatt,lock = 41s−1 , (3.5)

R43 = Rscatt,lock +Rscatt,probe = 164s−1 , (3.6)

⇒ Rscatt,probe = 123s−1 . (3.7)

The value of R−1
scatt,probe = 8 ms for ∆ca = 2π × 139 MHz is compatible with

earlier measurements, cf. fig. 2.3.1. The order of magnitude of the rate of
hyperfine state changing scattering by the lock laser alone is confirmed by a
calculation based on the Kramers-Heisenberg-formula (1.73).

A red-detuned lock laser as an intracavity dipole trap is not compatible with
QND measurements of the atomic state – at least not in the configuration pre-
sented here, where the lock laser is still rather close to the atomic resonance. A
possible solution for future modifications of the experimental setup would be to
use a far-detuned laser to better localise the atoms.

This could still be done by a an intracavity trap, but further detuned, similar
to the setups in the groups of Prof. Kimble at Caltech [60] and Prof. Rempe at
MPQ [61]. If the trapping laser is far detuned, e.g. at the “magic wavelength”
of 936 nm as in the case of the Caltech experiment, it can not serve as a lock
laser at the same time, because for such a large detuning the cavity finesse is
much lower than on resonance and not suitable for precise cavity stabilisation
any more. An additional lock laser is necessary for this configuration, which
should then be blue detuned and as weak as possible in order to avoid additional
competing confinement. Another conceivable solution is to shine in an additional
laser from the side of the cavity, along the conveyor belt axis but with a small
focus at the position of the cavity centre, creating a “dimple trap”.2

So far I have treated the geometric localisation by conservative dipole poten-
tials. In the second part of this chapter, I will discuss cavity cooling, which is a
cavity-QED effect providing cooling forces within the cavity.

1For the measurements presented in fig. 2.3, the empty cavity countrate was RD,0 = 20 ms−1,
whereas here it is 30 ms−1, explaining the higher scattering rate

2See outlook of [15] for a simulated beam profile which shows that a waist of w0 ≈ 11 µm is
achievable with standard optical elements.
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3.2 Cavity cooling

3.2.1 Introduction

The theory of an atom coupled to a cavity presented in chapter 1 describes a
point-like atom at rest. Forces on the atom and effects due to motion of the
atom were not considered. An exception is section 1.6.3, where radial oscillation
was used as an explanation for geff < gmax . But this treatment only considered
the spatial variation ψ(r) and its consequence for the measured transmission T̄ .

The mechanical effects of the atom-field interaction inside a cavity were stud-
ied theoretically by different research groups. The elementary system under
consideration is a point-like two-level atom interacting with the standing wave
mode of the cavity field, without further trapping potentials [24,62–67].

In a real experiment, atoms are always trapped by an optical lattice, realised
either as an intracavity trap, a lattice perpendicular to the cavity, or a combi-
nation of both, see e.g. [23, 60, 68, 69]. Theoretical work taking the effect of an
additional optical lattice into account includes [70–75]. The combination of an
optical lattice perpendicular to the cavity and an additional pump beam under
45° led to 3D-cooling and long lifetimes [76], which was theoretically investigated
in [77]. Cooling to the ground state of axial motion was reported in [19], but in
that experiment cavity independent Raman cooling was employed, and no cavity
cooling in the sense described in the aforementioned publications was used. An
extension of the theory to the scenario of more than one atom interacting with
the cavity field can be found in [78–80].

Our system is quite complex, involving two dipole potentials, created by the
conveyor belt and the lock laser. I will, nonetheless, only consider the theory
developed for a point-like atom interacting with one mode of a driven cavity, be-
cause already for this system interesting predictions on different cooling regimes
are obtained. One of the main outcomes of [24] is that two cooling regimes exist
for different settings of probe-cavity and probe-atom detunings, and this is what
is confirmed by our measurements. Although an additional dipole potential is
initially not treated by this theory, the confining effect of the lock laser is in-
cluded in the calculations by incorporating the discrete trapping sites along the
cavity axis into the model.

3.2.2 Theoretical description of cavity cooling

For the theory discussed here, only the axial variation of the coupling strength
of the form
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g(z) = gmax cos

(
2π

λprobe

z

)
(3.8)

is taken into account, radial motion along x like in the 2-D model in section
1.6.3 is not considered. In section 1.2.3, steady-state solutions for operators and
operator products were derived from the master equation. Here we are interested
in the force acting on the atom, which can be expressed as

F (z) = ṗ =
i

~
[H, p] = −~∇g(z)(a†σ + σ†a) , (3.9)

from which the expectation value of the force for the steady state can be
obtained by inserting 〈X1〉(0) (first component of the steady-state vector 〈X〉(0),
see (1.31)), which yields

F0(z) = 〈F (z)〉(0) = −2~ε2 ∆pag(z)

|det(A)|2
∇g(z) = −2~

∆pag(z)

∆2
pa + γ2

np∇g(z) , (3.10)

where |det(A)|2 = (γκ+ g(z)2 −∆pa∆pc)
2 + (∆paκ+ ∆pcγ)2, and np = 〈a†a〉.

The dipole force F0 is a conservative force since it is not velocity dependent.
The atom is attracted to the antinodes of the cavity field for ∆pa < 0 (high field
seeker), whereas the opposite holds for positive detuning, i.e. F0 describes a
probe-laser-induced dipole trap. For typical experimental parameters, detuning
∆pa = 2π × 50 MHz and photon count rate of RD = 10 ms−1, corresponding to
np = 0.09, the potential depth is Udip,probe ≈ kB × 15 µK, much smaller than all
other potentials.

Dissipative force

The force acting on an atom moving with the velocity v along the cavity axis is
expanded in powers of v:

F (z) = F0(z) + vF1(z) + ... , (3.11)

where F0 is the conservative part of the force, see (3.10) and F1 is the friction
coefficient. In terms of a Taylor expansion,

F1(z) =
∂F (z)

∂z
= −~∇g(z)〈X1〉(1) , (3.12)

where 〈X1〉(1) is the first component of the vector 〈X〉(1), which is part of
an expansion in v of the form 〈X〉 = 〈X〉(0) + v〈X〉(1) + ... . By expanding
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the density matrix in powers of v, 〈X〉(1) is calculated from the following set of
equations [24]:

v
∂

∂z
〈Y〉(0) = A〈Y〉(1) , (3.13)

v
∂

∂z
〈X〉(0) = B〈X〉(1) + ε〈I〉(1) , (3.14)

where also for the other vectors 〈...〉(0) and 〈...〉(1) denotes the zeroth and
first-order expectation values, respectively, and the matrices A and B were de-
fined in section 1.2.3. The friction coefficient can be written as a sum of two
contributions,

F1 = Fat + Fcav , (3.15)

where Fat dominates for a strongly damped cavity, when the cavity relaxation
is much faster than the atomic relaxation. In this case the system is governed
by the atomic dynamics. In the extreme limit, when the cavity decouples from
the system, Fat is purely due to Doppler cooling. This regime is a valid approx-
imation if κ � g and if the atom is driven, which is both not the case in our
system. For a weakly damped cavity, Fcav dominates. Here one assumes that
the internal dynamics of the atom is faster than that of the cavity, which is a
good approximation for g, γ � κ and driving the cavity, which corresponds to
our experimental settings.

The complete analytical result for F1 is rather lengthy, thus I do not state it
here. It can be found in the appendix of [24] and is the basis for the numerical
simulations presented in the next section.

The physical origin of the cooling force is a retardation effect. If an atom
moves along the cavity axis, the coupling strength changes according to the
spatial dependence g(z), but the cavity field does not adapt to this situation
instantaneously. The cooling force can also be understood as a mechanism sim-
ilar to Sisyphus cooling in free space, see [24] for a detailed account on this
interpretation.

3.2.3 Numerical simulations

Owing to the spatial variation of g(z), also F1 is position dependent. If confine-
ment by the lock laser is not taken into account, as in the original publication [24],
the atom can move freely along z, thus the friction coefficient is averaged over all
z. Due to the periodicity of |g(z)| of 1

2
λprobe , it is sufficient to average over one
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Figure 3.5: Averaged friction coefficient as a function of detunings ∆pa and ∆pc,
where blue (red) represent a negative (positive) friction coefficient, i.e. cooling and
heating, respectively. The parameters are (g, κ, γ) = 2π × (13.1, 0.4, 2.6) MHz. The
dressed states are plotted as black solid lines, cf. fig. 1.3. The colorbar indicates
F1/mCs in MHz.

period for the calculation. Fig. 3.5 shows the averaged friction coefficient for
our experimental parameters. Two different cooling regimes can be identified.
For a blue detuned probe laser, ∆pa > 0, cooling, indicated by negative friction,
occurs if the probe laser is resonant with the empty cavity, i.e. ∆pc = 0. For
∆pa < 0, cooling is obtained for a probe laser red-detuned from the cavity, such
that it is shifted into resonance once an atom is coupled to the cavity.

In our experiment, the atom is confined by the lock laser along the cavity
axis, and it can be inserted into trapping sites not coinciding with a probe
laser antinode, see the discussion in section 1.3.2. At z = zmin = 1

4
λprobe , the

atom is at a position of zero coupling (see fig. 1.6). The friction coefficient
F1(∆pa,∆pc) for different positions z is plotted in fig. 3.6 (b) to (f). Cooling and
heating regions are always next to the dressed states, which “move closer” to
∆pc = 0,∆pa = 0 for weaker coupling. The magnitude of the friction coefficient
increases as the atomic position approaches zmin . For z = 0, i.e. at a probe laser
antinode, the friction is around three orders of magnitude smaller than for the
other positions.

In principle, our experimental data cannot be describes by just one of the
“cooling maps” presented in fig. 3.6. Regarding the measurement of the aver-
aged transmission as a function of detuning, each data point for one detuning



3.2 Cavity cooling 73

(b)

(c) (d)

(e) (f)

Figure 3.6: (a) Normalised coupling strength |g(z)/gmax | as a function of position
z along the cavity axis. The black dots indicate the positions for which the friction
coefficient F1(∆pa,∆pc) is calculated. The positions are 0.2zmin (b), 0.4zmin (c) etc.
Note the factor of 10−3 in the color bar (indicating F1/mCs in MHz) of (b) compared
to (c) to (f). Cooling and heating regions are always close to the dressed states, which
are shown as black solid lines.
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as presented in fig. 1.13 is obtained from many single shots. It therefore repre-
sents an ensemble average over experimental realisations with different trapping
sites along the cavity axis. A more realistic description could be obtained by
a weighted average over many cooling maps. But also for a single trace, the
atom oscillates along the cavity axis between two potential “walls” with a small
amplitude (in the case of a blue detuned lock laser) and radially along x.

The data presented in section 1.6 allows us to compare the theoretical predic-
tions for ∆pa > 0 to the experimental results, because long observation times of
several hundred milliseconds like the one shown in fig. 1.12 are a consequence
of cavity cooling. We verified this assumption by transporting an atom into the
cavity and measuring its lifetime without any probe light coupled into the cavity.
The lifetime, limited by lock laser induced heating, is around 130 ms, see [15],
which is most likely due to parametric excitation of atomic motion, caused by a
fluctuating intracavity lock laser intensity.

Continuous transmission traces were measured for ∆pc = 0 and ∆pa/(2π) ≈
30...450 MHz, cf. fig. 1.13. From the simulations we see that cooling for ∆pc =
0,∆pa > 0 is predicted for a freely moving atom, see fig. 3.5. For a localised
atom, the cooling region deviates from the ∆pc = 0 axis, following the dressed
states, see fig. 3.6. This is a possible explanation for the fact that we could not
observe stable coupling close to resonance.

Although heating and cooling processes in our system are probably more com-
plex than described by the theory outlined above, due to the additional dipole
potentials of the conveyor belt and the lock laser, the simulations indicate that
cavity cooling should also be possible for ∆pa < 0. In the next section, I will
present measurements that demonstrate this red-detuned cooling.

3.2.4 Demonstration of red-detuned cavity cooling

In the experiments presented in chapters 1 and 2, the probe laser was always
tuned to resonance with the empty cavity, i.e. ∆pc = 0. For the experiments
described in the following, the red-detuned probe laser (∆pa < 0) is initially
off-resonant, such that instead of a transmission drop, a rise in transmission is
expected upon an atom transported into the cavity.

Figure 3.7 (a) shows the result of a measurement where the cavity-atom
detuning was set to ∆ca = −2π × 94 MHz and the probe-cavity detuning to
∆pc = −2π × 1 MHz. In the experimental sequence, firstly we set the probe-
atom detuning ∆pa to the desired cavity-atom detuning ∆ca by choosing an
appropriate setting of an AOM in the path of the probe laser. Secondly, the
cavity is tuned into resonance with the probe laser (∆pc = 0) by sweeping the
lock laser frequency until maximum transmission is observed. On resonance,
the empty-cavity transmission is set to a predetermined value. In fig. 3.7, this
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Figure 3.7: (a) Transmission signal for a single measurement (red curve) and averaged
over 20 traces (black curve). (b) Longer observation to measure the lifetime, which
is extracted from an exponential fit to be 330 ms. The detunings were set to ∆ca =
−2π × 94 MHz and ∆pc = −2π × 1 MHz. for both measurements.



76 3 External dynamics – cooling and trapping atoms inside the cavity

count rate of RD,0 (∆pc = 0) = 200 ms−1 is observed for 20 ms. In a third step,
the probe laser frequency is changed to ∆pc/(2π) = −1 MHz at t = 30 ms while
the cavity is still empty, causing the drop in transmission to RD (g = 0). In the
trace presented here, RD (g = 0) ≈ 55 ms−1. The transmission does not drop
to zero because the detuning of 1 MHz is only slightly larger than the FWHM
cavity-linewidth of 2κ. After measuring the empty cavity transmission for 25 ms,
a single atom is inserted into the cavity. At that point in time, the transmission
rises to RD (g 6= 0).

The averaged transmission signal (black curve) is almost flat within the noise,
which shows that no atoms are lost on this timescale. A strong repumper was
applied during the whole sequence, so that a loss of atoms would be visible by
a decreasing transmission for this settings. Measuring the transmission for one
second and performing an ensemble average over many traces, see fig. 3.7 (b),
yields a lifetime of (330± 10) ms from an exponential fit.

To measure the lineshift caused by the atom-cavity coupling, the same mea-
surement, here again with the short observation time, was repeated for different
probe-cavity detunings ∆pc, see fig. 3.8 (a). For each detuning ∆pc, the three
count rates introduced above can be determined, yielding the normalised trans-
mission levels

T̄0(∆pc) =
RD (g = 0)

RD,0

, T̄g(∆pc) =
RD (g 6= 0)

RD,0

(3.16)

for the empty cavity and the case of a coupled atom, respectively.
A Lorentz-fit to T̄0(∆pc) yields a frequency offset of 0.17 MHz and a HWHM

linewidth of κ′ = 0.49 MHz. The frequency offset is probably due to a small
error in the second step of the experimental sequence, at which the cavity is set
to be resonant with the probe laser, i.e. we obtain ∆pc ≈ 0, but not exactly.
The discrepancy between the linewidth obtained from the fit and κ = 0.4 MHz
is similar to an observation made by Igor Dotsenko [29], where the linewidth
obtained by sweeping the cavity resonance and measuring the Lorentz profile was
also larger than the result of the cavity ringdown measurement. The suggested
explanation was that both the finite bandwidth of the probe laser and the limited
relative frequency stability between cavity resonance and probe laser could cause
this effect.

The lineshift, obtained by fitting the one-atom transmission data T̄g(∆pc) with
a Lorentz profile using the width κ′, is ∆s = 2π × 0.22 MHz. For the two-level
model and in the dispersive regime, the resonance shift is given by ∆s = g2/∆ca,
cf. (1.35), which yields a coupling strength of g = 2π × 4.5 MHz for ∆ca =
−2π × 94 MHz.

It is not yet understood why the coupling should be so low. Using data from
a broader range of detunings would be beneficial, but it was not possible to
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Figure 3.8: (a) Averaged transmission traces for a fixed cavity-atom detuning of
∆ca = −2π × 94 MHz and a varying probe-cavity detuning ∆pc. (b) Normalised
transmission levels for the empty cavity (black dots) and with one atom coupled to
the cavity (red dots), extracted from the transmission levels in (a). The solid lines are
fit results.
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measure stable transmission signals closer to resonance, since the atoms were
lost after a very short time. This is why we could not measure the complete
transmission profile. This almost abrupt transition from cooling to heating is
compatible with fig. 3.6, where the two regions of positive and negative friction
are close together near the dressed states.

One possible explanation for the low value of g is that the two-level model is
not appropriate to interpret the measured lineshift, because for ∆ca = −94 MHz
the influence of the |F ′ = 4〉 state should be taken into account. All detun-
ings referred to are defined with respect to the |F = 4〉 → |F ′ = 5〉 transition,
thus when the laser is red-detuned by ≈ 100 MHz from this transition, it is
≈ 150 MHz blue-detuned from |F = 4〉 → |F ′ = 4〉. The combined effect of two
competing dispersive shifts acting in opposite directions could explain why the
measured lineshift is lower than expected. For a theoretical investigation of this
phenomenon, the master equation must be extended to contain multiple excited
states [46, 47].

3.2.5 Conclusion

The numerical simulations discussed in this section provide a qualitative explana-
tion for our observations, especially that stable coupling close to resonance could
not be achieved. Future experiments on cavity cooling require a more extensive
study of the underlying theory, including the influence of additional optical lat-
tices and cooling mechanisms for two or more atoms coupled simultaneously to
the cavity.

A conceptual problem remains with all cooling schemes for which the cav-
ity is shifted into resonance. They can hardly be combined with the state-
measurement technique described in chapter 2, because instead of causing a
transmission drop, an atom coupled to the cavity increases the intracavity probe
laser intensity, leading to a higher inelastic Raman scattering rate.

If it turns out that with the right setting of detunings the red-detuned and
off-resonant cooling is preferable in terms of localising the atom to reach a higher
geff , it would be necessary to alternatively switch between stages of cooling and
performing the actual measurement, similar to procedures used by other research
groups [81, 82]. In conjunction with measuring the vacuum-Rabi-splitting [15],
we showed that with our existing setup it is indeed possible to change both
detunings and keep the cavity stabilised within one experimental sequence.

Summarising, cavity-cooling provides an interesting perspective and is an im-
portant mechanism that we have already taken advantage of. For most planned
experiments, a stable and high coupling strength g is vital, justifying further
research in this direction.
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In this thesis I have investigated the internal state dynamics of one and two
atoms coupled to a high-finesse cavity and have studied mechanisms to control
the atomic motion. My findings show both the capabilities and the limits of the
current setup, and they provide a basis to asses and plan future experiments
and modifications of the experimental setup. In the following I address two
issues currently imposing constraints on our experiment and present an extended
measurement method allowing us to gain more information about the dynamics
in our system.

4.1 Optical pumping and birefringent splitting

Because of the mirror birefringence, our cavity supports only linear polarisa-
tion, which has the effect that we cannot use the closed cycling transition
|F = 4,mF = 4〉 → |F ′ = 5,m′F = 5〉. Instead, the atomic population is dis-
tributed over the whole ground state manifold. This is a disadvantage for our
experiments in several ways:

First of all, instead of the theoretically achievable maximum coupling of g4,4→5′,5′

= 2π×18 MHz we expect an ideal maximum coupling strength of 2π×13.1 MHz.
In terms of the single atom cooperativity parameter C1, this amounts almost to
a factor of two. A high cooperativity is desirable because it is a universal figure
of merit entering e.g. the fidelity of entanglement schemes.

Secondly, a distribution over all mF states increases the complexity for theoret-
ical considerations and experimental studies alike. In [27] it was calculated that
the AC-Stark shift of the excited states is mF dependent, therefore also the de-
tunings ∆pa and ∆ca, which always refer to the Stark-shifted atomic resonance
frequency, are mF dependent. This effect can be neglected in the dispersive
regime since the AC-Stark shift is only on the order of 10 to 20 MHz, but closer
to resonance it means that the detuning varies on the timescale of redistribution
over the mF states.

Thirdly, one result of the numerical simulations is that, starting from equal
populations, it takes a few ms until optical pumping by the probe laser leads
to the steady state mF distribution. Thus for the telegraph signals studied in
chapter 2 a quantum jump from |F = 4〉 to |F = 3〉 can occur during this optical
pumping process, followed by redistribution by virtue of photon scattering while

79
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the atom is in |F = 3〉. A jump back to |F = 4〉 causes the process of probe-
laser induced mF redistribution to start again etc. Therefore also the effective
coupling strength, even for a perfectly localised atom, is constantly changing
during the observation of random telegraph signals. This effect could only be
neglected if the average dwell time in |F = 4〉 would be much larger than the
timescale of optical pumping.

Finally, for a perfectly circularly polarised probe laser inducing only σ+ (or σ−)
transitions, inelastic Raman scattering to |F = 3〉, i.e. the state-changing effect
of our measurement, would be strongly reduced. This means the projective QND
measurement discussed in chapter 2 would be almost perfect. For measurements
where elastic scattering is not an issue, the probe laser intensity or the integration
time could be increased to a level where the signal to noise ratio is sufficient to
distinguish 0, 1, and 2 atoms in |F = 4〉, before pumping to |F = 3〉 takes place.

All these considerations show that for a next generation of this cavity-QED
experiment it would be very beneficial if birefringent splitting of the cavity res-
onance could be reduced to a negligible level. This could be possible by either
engineering the process of mirror assembly such that the stress induced birefrin-
gent splitting ∆ωbr is much smaller than for the current setup, or to use a more
open configuration with a higher cavity linewidth 2κ � ∆ωbr. For the latter
case, obviously the coupling strength g has then also to be higher to still obtain
a good cooperativity, which can be realised by a smaller mode volume. How-
ever, a shorter distance between the two mirrors is difficult to combine with the
current experimental setup, because the high-power YAG laser beams traverse
the cavity laterally and already now we observe heating of the glass substrates.

4.2 Controlling the coupling strength

The magnitude and variation of g is influenced by both the internal and external
atomic degrees of freedom, since g ∝ d(mF ) · E(r). Increasing d(mF ) is possi-
ble by working with the strongest cycling transition as just discussed, whereas
controlling E(r) requires that the thermal motion of the atom is limited.

As reported in section 3.1.3, the intracavity dipole trap generated by a red-
detuned lock laser gives rise to an improved coupling strength due to better
three-dimensional confinement. In the configuration used here the lock laser was
close to the atomic resonance, causing a high photon scattering rate. A further
red-detuned off-resonant trap, either intracavity or from the side, superimposed
with the existing conveyor belt, would allow us to benefit from the improved
confinement while keeping the scattering rate low.

The model of thermal motion which I have applied to analyse the averaged
transmission yields high temperatures of around 150 to 200 µK, compatible with
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earlier estimates [14]. These values are upper limits since they subsume all other
possible effects leading to a lower g. But to effectively localise the atom by a
trapping potential of reasonable low depth, AC Stark shift, and scattering rate,
the temperature has to be reduced. To this end heating of the atom by the lock
laser must be minimised and effective cooling procedures should be applied.

Regarding the first point, much effort has already gone into improving the
electronics of the control loop stabilising the cavity to the lock laser, so in terms
of active stabilisation we have almost reached a limit. A better passive stability
of the whole cavity setup would permit using a much lower lock laser power, but
this is only feasible in conjunction with a major overhaul of the experiment.

In terms of cooling procedures, we already employ cavity cooling, which is
evident by the long observation times, exceeding the lifetime of atoms subject to
the lock laser alone. A theoretical investigation and numerical simulations based
on a more complete picture than studied in section 3.2, taking additional optical
lattices into account, could hint at more effective ways to exploit cavity cooling.
Another approach is to use cavity-independent schemes like Raman sideband
and molasses cooling [19,60].

4.3 Photon click analysis of the spin dynamics

The analysis of two-atom telegraph signals demonstrate that it is possible to ex-
tract additional information about the spin dynamics by exploiting all available
knowledge about the system and applying Bayesian statistics. For the results
presented in this thesis, some information about the spin dynamics was hidden
by the limited resolution of 1 ms given by the binning time. Using another data
acquisition hardware it is possible to record a list of all individual photon arrival
times. A modified version of the Bayesian algorithm discussed in section 2.3.3
could then be applied to this single-photon record, possibly yielding extended
information about the dynamical processes in our system.

This hardware, a special timer card, was not used for the experiments pre-
sented in this thesis, but it has recently been implemented. Figure 4.1 (a) shows
a trace of a one-atom telegraph signal with the usual binning time of 1 ms. The
photon arrival times are plotted for a 10 ms window, where the quantum jump
is clearly visible as a transition to a reduced density of lines. Currently the data
is analysed after a whole series of traces is stored and the data acquisition is fin-
ished. Recording the photon clicks and streaming them “live” to some analysis
software, it might become feasible to apply quantum feedback to steer the atom
towards a desired state [83,84].
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Figure 4.1: (a) Single-atom telegraph signal recorded with a resolution of 1 ms. (b)
Photon arrival times of the same signal for a 10 ms window, exhibiting a quantum
jump at t ≈ 24.9 ms.
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