
Plasmon-Fano Resonance in Electron Conduction Band
Coupled to Single Laser Mode

Dissertation

zur

Erlangung des Doktorgrades (Dr.rer.nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Jiarong Zheng

aus

Guangdong, V.R.China

Bonn 2009



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1.Gutachter: Prof. Dr. Johann Kroha

2.Gutachter: Prof. Dr. Herbert Dreiner

Tag der Promotion: 15.01.2010

Erscheinungsjahr: 2010



Abstract

Plasom related physics has been the subject of extensive reserach inter-
ests. In this thesis single laser mode coupled to electron conduction band is
studied. The system is nonequilibrium. Keldysh Green’s function formalism
is applied in this problem. We obtain self-consistency equation in Keldysh
space. Numerical results are shown for the electron density of states and
distribution function. The competition between laser intensity and electron
coulumb interaction has also been studied.
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Chapter 1

Introduction

Nowadays the study of plasmon and photonic physics is becoming more and
more important. Research progress of these fields can be soon turned into
real application in the industry[1, 2, 3, 4]. One of the example is the appli-
cation in computer technology. Nowadays the chip scale has reached the size
as small as nano meter. At this scale, quantum fluctuations will become sig-
nificant. The electronic circuit would have failed to work properly if it keeps
reducing the scale of the chip structure. The neuest CPUs of our computers
are produced in the size of some 10 nano meters. It will be very difficult
to continue to improve the performance of CPU chip by reducing electronic
circuits scale. Thus the performance of electronic circuits is becoming very
limited when large amount of digital information need to be processed. It is
necessary to find another way out of this. Photonics offers a possible solution
to this difficult problem[5]. Communication systems based on optical fibers
and photonic circuits[6, 7, 8] offers a plausible solution. The optical inter-
connects such as fiber optic cables can carry digital data with capacity much
greater than that of electronic interconnects. But typical photonic circut
components are of micrometer scale, and it is not possible to integrate them
into electronic chips. With plasom physics, the electronics and photonics can
be combined and work together at nanoscale. This is only one of the per-
spectives. Plasmons have also been basis of high-resolution lithography and
microscopy due to their extremely small wavelengths. In lab environment
these applications have been demonstrated successfully.

In general, plasmon physics describes the coupling of photons to electrons
unter different geometry. In this thesis, we will work on electron conduction
band coupled to a single photon mode. The nonequilibrium Green’s function
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8 1. Introduction

enable us to introduce a nonequilibrium laser distribution function.
This thesis is organized as follows. In chapter 2, we discuss experimental

motivation related to plasmon physics. Chapter gives an overview to plas-
mon related physics. Chapter 4 introduces the Keldysh Green’s function
formalism. Chapter 5 focus on our model: electrons coupled to a single laser
mode. In chapter 6, numerical implementation is presented. We will discuss
results in chapter 7. Chapter 8 gives a summary to this thesis.



Chapter 2

Experimental Motivation

2.1 A Plasmonic Revolution

Nowadays the human being are basically using two ways to tranfport data.
The first one is with electronic circuits. But the performance of electronic
circuits is now becoming rather limited. This has become evident since the
annual increase of the microprocessor clock speed has slowed down, might
reach the limit in the short future. The other way is the photonic fiber. They
can carry huge amounts of data, but are much bigger in size. Now people
are considering a technology combining the advantages of photonics and elec-
tronics. The plasmonic is so far a promising candidate. Theoretically, it is
possible to design plasmonic components with the same materials used by
chipmakers, but with frequency 100,000 times larger than that of micropro-
cessors. The idea is to have a circuit in nanoscale, carries both optical signals
and electric currents. Labor experiments are leading to this goal although
there is still quite a long way[9, 10, 11, 12].

Difficulty in integrating the optical and electronic circuits are their dif-
ferent sizes. The electronic circuits are usually at the scale of below 100 nm.
On the other hand, in photonics circuits the wavelength of light is in the
order of 1000 nm. The photonic crystal doesn’t help to solve the problem,
because the crystal is still too large comparing to electronic.

Surface plasmon is a outstanding candidate who provides the opportunity
to confine photons to a very small volume. When photons reach the metal-
dielectric interface[13, 14], where a group of electrons is collectively moving
back and forth, they are trapped near the surface and interact with the elec-
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10 2. Experimental Motivation

Figure 2.1: Ozbay,Ekmel. Science 311:189-193 (2006)

trons near the surface of metal. Due to the resonant interaction between the
photons and electron-charged oscillations, it appears spatially confinement
of photons.

The decay length of the surface plasmon is determined by the skin depth[4],
about two orders of magnitudes smaller than the wavelength of the light in
the air. Thus there is a possibility to apply plasmon to localize and guide
the photons in the subwavelength metallic structures.

Therefore plasmonic waveguides are capable of guiding the plasmonic
signals in circuits. There are kinds of geometry design to do this. Thin metal
dots with finite width are embedded in dieletric so that it forms a plasmonic
waveguides. Stefan et al[15] sucessfully demonstrated an effective plasmonic
waveguide structure (see Fig2.1). In their experiment, nanoscale gold dots
were patterned on a silicon-on-insulator to define the plasmon propagation
path (Fig2.1 part A). Figure 2.1B shows the scanning electron micrographs of
the fabricated plasmonics waveguides designed for operation at wavelength of
1500 nm. Nanoscale gold dots are assembled on silicon-on-insulator surface.
The waveguide structure is not uniform across its width where the size of
metal dots is reduced from 80nm × 80nm at the center to 50nm × 50nm
at the edges. The light propagation is better concentrate in the middle of
the waveguide. Figure 2.1A show a FDTD simulation of the electric field
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Figure 2.2: A.Manjavacas and F.J.Garcia de Abajo arXiv:0806.1881v1

within the plasmon waveguide structure.In the experiment, the decay length
is around 50µm, while theoretical simulations predict a decay length in the
order of 500µm.

Manjavacas and Garcia de Abajo [16] recently demonstrated further pos-
sibility for plasmonic circuits. They used square and circular sivler nanowire
array in silica to form a versatile and tunable platform for highly-integrated
plasmon interconnects (Fig 2.2). In this plasmon guided modes, the pho-
ton propagation distance and degree of confinement depend strongly on the
separation distance between wires. At large separation, one observes only
the individual mode. As soon as the spacing is reduced, mode hybridization
is reduced. Gap modes occur at small separations, highly localized in the
regions between two adjacent wires. In Figure2.2, the gap plasmon modes of
two parallel silver nanowires is shown on the left side. (a) is the schematic
view of the geometry. (b) − (e) show the photonic density of state as the
function of energy and momentum, parallel to the wires for various dimer
separations d. The insets show the spatial distribution of the local density
of states for the lowest energy gap mode at a free-space light wavelength
of 1550nm. On the right side of Figure2.2 is the evolution of gap plasmon
modes with the nanowire number in the array. In (a) is again the schematic
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Figure 2.3: N.Fang,H.Lee,C.Sun,X.Zheng, Science 308,534(2005)

view of the geometry. (b)− (c) is the DOS as the function of energy and mo-
mentum parallel to the wires for arrays of N = 1, 3 and∞ nanowires. The
insets show LDOS maps for the lowest-frequency gap mode at a wavelength
of 1550 nm.

These gap modes we have seen, are quite robust against unintended vari-
ations of wire cross section or curvature. Furthermore, the gap modes are
highly confined to the gap region, so that intermixing between neighboring
wire-dimers can be minimized. This scheme is probably the solution for
highly-integrated plasmonic circuits in three dimensional spaces.

2.2 Plasmonic Nanolithography

The performance of nanolithography can be admirable improved by Plas-
monic.
Pendry[17, 18] introduced the concept ”superlens”. A superlens can be used
to enhance evanescent wave by the excitation of surface plasmons. The gain
obtained from plasmonic excitation inside the superlens compensates for the
loss of the evanescent waves outside of the superlens. The reconstructed
evanescent waves can then be used to restore an image below the diffraction
limit on the other side of the lens. The lens is made of a thin slab of material
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Figure 2.4: A.Christ, H.Giessen et al. Phys.Rev.Lett 91 18391,2003

with negative permittivity and permeability. In Fig2.3A, the word ”NANO”
was printed as a mask by a focused ion beam system(FIB). Figure 2.3B was
obtained with the superlens, the resulting image is almost perfect. Fig2.3C
is the diffraction limited image obtained from the conventional lithography.
Fig2.3D compares both methods: the plasmonic nanolithography method
was able to generate image of much better resolution.

2.3 Waveguide-Plasmon Polaritons

The coupling between localized particle plasmons and optical waveguide
modes leads to strong modifications of the transmission light in metallic
nanowire arrays on dielectric waveguide substrates. Experiments (A.Christ
et al) show evidence for the formation of a new quasiparticle, or waveguide-
plasmon polariton[19]. They investigated one-dimensional periodic gold nanowire
arrays on top of a dielectric waveguide system. The extinction spectra showed
peaks with a complex behavior against period and angle, where the maxima
correspond to the resonant modes. In Figure2.4C, the narrow peaks (dash
line) in the TE spectra are there due to excitation of TE quasiguided modes.
They are example of Fano-type resonances caused by the interaction of the
discrete waveguide mode with photon continuum.
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Figure 2.5: Extinction Spetra adapted from [19]

In the TM polarization (solid lines in Fig2.4 and 2.5), there are one broad
peak and other narrow peaks. The broad peak is due to the particle plasmon
in individual gold wire. If the period or angle is changed, the broad plasmon
line shows an anticrossing behavior with the narrower TM-waveguide reso-
nances(Fig 2.5). The anticrossing behavior can be explained by considering
a new quasiparticle, the polaritons. On the other hand, one can say the an-
ticrossing behavior are evidence for the existence of polariton quasiparticles.

According to the results, two polariton mode are observed (see Fig2.6).
The splitting between the lower and upper polariton mode branches is about
250meV . We notice that the lower polariton mode is mainly due to the
plasmon in goldwire, which is not depend on the period of the goldwire. In
contrast, the upper polariton mode is considerably influenced by the period.

Sofar we have present several experiments. In fact, they are all related to
photon-electron coupling. Thus is in our interest to study photon-electron
coupling theoretically. Photons in the laser beam have non-thermal distri-
bution function. They are out of equilibrium. We will need Keldysh Green’s
function formalism to calculate this nonequilibrium problem. Next chapter
we will introduce Keldysh Green’s function formalism.
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Figure 2.6: Polariton mode adapted from [19]
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Chapter 3

Plasmon Antiresonance and
particle-hole excitation with
external field

3.1 Plasmon-Fano Resonance

Exchange and correlation effects in the excitation spectra of nearly-free-
electron systems, such as metals and sp-band semiconductors have been
of great research interests [20, 21, 22, 23]. It has been shown that local-
field effects in simple metals and semiconductors couple the plasmon into
the particle-hole excitation spectrum, leading to a plasmon antiresonance
(Plasmon-Fano Resonance) [24]. External light interacting with periodically
nanostructured metal sufaces has also been intensive studied [25, 26, 27],
even to three-dimensional [28]. Extraordinary transmission with resonant
phenomena has been observed in subwavelength hole arrays [29]-[36], metallic
grating [37]-[40]. absorption of the incoming radiation[41]-[45], and coherent
thermal emission[46]-[48].

Plasmon-Fano Resonance has even observed in carbon nanotubes[49],
which have been of great interests in chemistry, physics, electronics, and
material science [50, 51], and have the potential for future nanoengineering
[52, 53].

The mathematic form of fano resonance is

(q + ε)2

(1 + ε2)
= 1 +

q2 + 2qε− 1

(1 + ε2)
ε =

E − E0

Γ/2
(3.1)

17



18 3. Plasmon Antiresonance and particle-hole excitation with external field

where q is the Fano-Parameter. In Feshbach?Fano partitioning theory it is
interpreted as the ratio between the resonant and direct scattering probabil-
ity. Γ is the line width, E0 is the position of the resonance. ε is the reduced
energy.

3.1.1 Plasmon Resonance in Photonic Crystals

Plasmonic and photonic resonances by metallic photonic crystals have been
the subject of intensive studies [54]-[61]. A lot of research activities take ad-
vantage of template-assisted assembly of micorporous and nanoporous metal
sturcture to produce periodically arranged nanopores[62, 63]. Extraordinary
transmission and absorption of light caused by excitation of plasmons in
nanopores have been theoretically predicted[65, 66], and observed by exper-
iment [62]. These knowledge help to tune the optical properties of metallic
photonic crystals by nano-engineering the structure parameters.

3.1.2 Plasmon mode coupling

Optical properties of metal surfaces can be influenced by the coulping of
different plasmon modes. The surface plasom excitation, so called plasom-
polaritons, are usually propagating on the metal planar surface. Systems
with delocalized surface plasom have optical properties different to those with
delocalized plasmon. It is quantitatively and experimentally demonstrated,
the coupling of two or more plasom mode leads to spetral shift and other
optical property variation [68, 69].

3.1.3 Plasmon Coupled to External Environment

The radiative coupling between surface plasmon and its electromagnetic en-
vironment arises fundamental quantum-optical phenomena like vaccum Rabi
or normal mode splitting [70]-[73]. Radiative coupling have been studied
for various quantum system, for example, single atoms [70], semiconductor
quantum dots [72], quantum wells coupled to microcavity [73, 74]. The co-
herent coupling between surface plasmon polaritons and excitons in a hybrid
metal-semiconductor nanostructures has also been observed [75]. Metallic
nanostructures
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Figure 3.1: A Equivalent ciruit to the Lattice of voids; B the lattice of voids

3.2 Simple Model for optical plasmonic prop-

erties of planar surface

The essential physics of optical properties of a 2D lattice of voids in metal
(see Fig3.1 B) are described by the equivalent impedance Zeff . From the
Drude model, the conductivity of the metal is

σe(ω) =
e2Ne

m(νe − iω)
(3.2)

whhere e and m are the electron charge and mass, Ne is the bulk free electron
density, νe is the free electron scattering rate. The effective areal impedance
can be written as

Ze =
1

σeδ
= Re − iωLe (3.3)

where δ is the metal characteristic skin depth. The effective areal electronic
resistance Re = mνe/(e

2δNe) determines the amount of power absorbed, and
the areal reactance −ωLe concerns the phase shift of the electric field.
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An equivalent RLC circuit (see Fig 3.1 A ) was suggestted in [66] to
describe the plasma oscillations. The Effective areal impedance to the lth
mode is related to RLC circuit by

Zl =
Rl − iωLl

1− ω2LlCl − iωRlCl
(3.4)

with phenomenological assumptionsRl = 2mνl/(e
2∆lδNe), Ll = m/(e2∆lδNe),

and Cl = |fl|2dε0, one finds

Zl =
m

e2∆lδNe

ω2
l (2νl − iω)

ω2
l − ω2 − 2iωνl

(3.5)

where

ωl =

√
e2∆lδNe

|f |2dε0m (3.6)

νl is the damping of the lth plasmon mode, ∆l is the fraction of free electrons
participating in the plasma osillations at lth mode, d is the void diameter, ε0
is the electrical constant, |fl|2 is the dimensionless factor. At the vicinity of
the resonance ω ' ωl, assuming νl � ωl, the total effective areal impedance
is

Zeff ' −i m|βl|2
2e2∆lδNe

ω2
l

ωl − ω − iνl (3.7)

|βl|2 is the phenomenological coefficient of coupling between the external
oscillating electric field and the lth plasmon mode.

3.3 The Hubbard Model With A Driving Ex-

ternal Field

The coupling of plasmon to external field is already investigated in the Hub-
bard model for hypercubic lattice in the limit of infinite dimensions [67].

The Hamiltonian is

H = −
∑
<ij>σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
i

ni↑ni↓ +
∑
iσ

Vi(t)c
†
iσciσ (3.8)
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where c†(c) is the fermion creation(annihilation) operator, U is the coulomb
interaction constant. The third term describes an external time-dependent
field with frequency Ω and wave vector q.

Vi(t) = Acos(Ωt− qxi) (3.9)

In momentum space representation, the coupling term can be written as∑
iσ

Vi(t)c
†
iσciσ =

∑
kσ

A

2
(c†k+qσckσe

−iΩt + c†k−qσckσe
iΩt) (3.10)

3.4 Outlook for Further Theoretical Model

The model above treats the external field in classical description, Vi(t) =
Acos(Ωt − qxi). We will quantize the photon field, introduce Green’s func-
tion to describe photons. The external field is nonhomogenous and nonequi-
librium. Therefore we need to apply nonequilibrium Green’s function, also
known as Keldysh Green’s function formalism. The next chapter gives an
introduction to Keldysh Green’s function formalism.
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Chapter 4

Kelysh Green’s Function
Formalism

4.1 Introduction

The schrodinger equation is one of the basis to the quantum theory.[76]:

i
∂

∂t
Ψ(r1, r2, ..., rN , t) = H Ψ(r1, r2, ..., rN , t) (4.1)

This equation is only solvable at very simple situation like single particle
inside one dimensional rectangle potential trap. For more than 2 body phys-
ical system, it would be not easy to obtain a analytical solution for the
Schrodinger’s equation. Our world is always complex, full of diversity and
variety, so solving the Schrodinger equation exatly is not possible, far beyond
the ability of the computing power. One of the ideas to solve them is to use
Green’s function.

Green’s Functions are propagators representing the particles[77]. Once
the Green’s functions are calculated, many property of the system can also
be calculated. Green’s functions are among the most methods in condensed
matter physics.

There are kinds of many-particle Green’s function for specific purpose.
In equilibrium theory, there are zero-temperature and finite temperature
formalism.[78, 79, 80]

We are going to use a more general nonequilibrium Green’s Function
formalism, first introduced by P.C.Martin[81] and J.Schwinger[82] and

23
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L.V.Keldysh[83]. Further Development was done by Kadanoff and Baym[84].
A detailed review of this method is given by J.Rammer and H.Smith[85].

4.2 Various Quantum Mechanical Pictures

The Keldysh method is based on real-time Green’s functions. It is designed
to handle physical systems with explicitely time-dependent Hamiltonian

H = H0 +H i (4.2)

where H0 is the non-interacting Hamiltonian. Only with this non-interacting
Hamiltonian, it is usually a strictly solvable problem. The H i is the Hamil-
tonian describing the interactions among particles, for example the coulomb
interaction.

We consider a general system, which is in contact with a heat bath of
temperature T and a particle reservoir whose chemical potential is µ. Con-
sidering a grand canonical ensemble, the state of system in thermodynamic
equilibrium is described by the equilibrium density operator:

ρ(H) =
e−βH

Tr[e−βH ]
(4.3)

Tr[] denotes the trace of the matrix. We have chosen µ = 0 , that means
we are going to measure the particle energy with respect to µ = 0. In order
to understand the non-equilibrium problem, we assume that the system is
in thermodynamic equilibrium until the time t0. And then the system is
instantaneously disconnnected from the reservoirs, then a disturbance comes
to the system, who gives rise to a non-equilibrium situation. This disturbance
can be many things like time varying electric-magnetic field or laser pulse. We
denote this disturbance Hd(t). Than we can write our total time-dependent
hamiltonian H as

H = H + Hd(t) (4.4)

Hd(t) = 0, t < t0 (4.5)

H is defined in Eq.(3.2). Now we want to calculate the nonequilibrium expec-
tation values of operators corresponding to physical observables. In Heisen-
berg picture, the state vectors are time independent. On the other hand, the



4.2. Various Quantum Mechanical Pictures 25

operators are time dependent. We are going to write the expection value of
observable in Heisenberg picture.

< OH (t) >= Tr[ρ(H)OH (t)] (4.6)

where the OH (t) is the observable in the Heisenberg picture. It is im-
portant to notice the Hd(t) is not included in the density operator ρ. It is
discussed by Mahan[79]. One should not include Hd(t) directly in ρ. In order
to understand the description of the non-equilibrium problem, it is important
to understand various quantum mechanical pictures. We shall start with the
Schrodinger equation:

i~∂t|ΨS(t)〉 = H (t)|ΨS(t)〉 (4.7)

The ket |ΨS(t)〉 is the abstract state vector in Schrodinger picture. We can
integrate Eqa(3.7)

|ΨS(t)〉 − |ΨS(t0)〉 = −i~−1

∫ t

t0

dt1H (t1)|ΨS(t1)〉 (4.8)

If one does it iterately,

|ΨS(t)〉 =
∞∑
n=0

(−i~−1)n

n!

∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtn

H (t1)H (t2) . . .H (tn)|ΨS(t0)〉
(4.9)

The above equation can be written as a shorter form

|ΨS(t)〉 =
∞∑
n=0

(−i~−1)n

n!

∫ t

t0

dt1· · ·
∫ tn−1

t0

dtnTt{H (t1) . . .H (tn)}|ΨS(t0)〉
(4.10)

The Tt is the usual time-ordering operator that organizes all the other oper-
ators behind him by their time arguments.

Tt{O1(t1)O2(t2) . . . On(tn)} = (±)POi1(ti1)Oi2(ti2) . . . Oin(tin)

ti1 > ti2 > · · · > tin
(4.11)

Oin are either fermion operators or boson operators. In (±)P , plus sign is
for bosons and minus sign for fermions. P is the number of interchanges of
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operators from their original given order. For a Hamiltonian containing an
even number of fermion fields this sign is always positive.
If we want to use the Heisenberg picture, the operators are no longer time-
independent. Instead, the state vectors are time-independent. The following
equation relates the two pictures.

〈ΨS(t)|OS|ΨS(t)〉 = 〈ΨH |OH (t)|ΨH 〉 (4.12)

|ΨS(t)〉 stands for state in Schrodinger picture, and |ΨH 〉 stands for state
in Heisenberg picture. If we choose the pictures to coincide at time t0 ,then
|ΨH 〉 = |ΨS(t0)〉 The operators from the two different pictures have the
relation

OH (t) = u†H (t, t0)OSuH (t, t0) (4.13)

uH (t, t0) is called evolution operator with respect to H .From Eq.(3.10) we
see

uH (t, t0) =
∞∑
n=0

(−i~−1)n

n!

∫ t

t0

dt1· · ·
∫ tn−1

t0

dtnTt{H (t1) . . .H (tn)}

= Tt{e−i~
−1

R t
t0
dt′H (t′)}

(4.14)

We have expressed the Operator OH (t) in Heisenberg picture. Now we
try to find out the operator with a evolution operator, which is governed by
the time-independent part H

OH(t) = u†H(t, t0)OSuH(t, t0) (4.15)

now the time evolution operator with respect to H is given by

uH(t, t0) = e−i~
−1H(t−t0) (4.16)

There is relation between OH and OH

OH (t) = u†H (t, t0)uH(t, t0)OHu
†
H(t, t0)uH (t, t0) (4.17)

We define
vH(t, t0) = u†H(t, t0)uH (t, t0) (4.18)

Then we can write

OH (t) = v†H(t, t0)OH(t, t0)vH(t, t0) (4.19)
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c+

c−

t

Figure 4.1: The Keldysh Contour

Differentiating vH() with respect to t

i~∂tvH(t, t0) = [i~∂tu†H(t, t0)]uH (t, t0) + u†H(t, t0)[i~∂tuH (t, t0)]

= [−Hu†H(t, t0)] + u†H(t, t0)[H (t)uH (t, t0)]

= −Hv†H(t, t0) + u†H(t, t0)H (t)uH(t, t0)u†H(t, t0)uH (t, t0)

= −Hv†H(t, t0) + H (t)vH(t, t0)

= Hd(t)vH(t, t0)

(4.20)

if one integrates the above equation, similar to Eq(3.15),one finds

vH(t, t0) = Tt{e−i~
−1

R t
t0
dt′Hd(t′)} (4.21)

The ordinary time-ordering can also be written as the contour ordering as
depicted in [Fig4.1]. This contour consists of two parts, c+ and c−. t1 on c+

is always ealier than a time t2 on c−. Thus we can write

vH(t, t0) = Tc+{e−i~
−1

R
c+

dτHd(τ)} (4.22)

v†H(t, t0) = Tc−{e−i~
−1

R
c− dτHd(τ)} (4.23)

Tc is the contour-ordering operator that organizes a product of operators
according to the sequence of their time arguments on the contour depicted
in Fig4.1.
Thus the operator in Eq.(3.19) can be written as

OH (t) = Tc−{e−i~
−1

R
c− dτHd(τ)}OH(t)Tc+{e−i~

−1
R
c+

dτHd(τ)} (4.24)

Combine the two contours. c = c+ + c−, write it in a compact form

OH (t) = Tc{e−i~−1
R
c dτHd(τ)}OH(t) (4.25)

With Eq(3.26), we have an expression, where the nonequilibrium distur-
bance part Hd(t) is separated from the other part of the Hamiltonian, and
the time-evolution of the operators are governed by H only.
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4.2.1 The Interaction Picture

Remember H = H0 + H i, now we want a simpler situation where the time
evolution operator is only governed by H0. The interaction picture is defined
by

OH0(t) = u†H0
(t, t0)OSuH0(t, t0) (4.26)

The evolution operator is given by

uH0(t, t0) = e−i~
−1H0(t−t0) (4.27)

Similar to the derivation in Heisenberg picture, we have

OH (t) = u†H (t, t0)uH0(t, t0)OHu
†
H0

(t, t0)uH (t, t0) (4.28)

with further definiton

vH0(t, t0) = u†H0
(t, t0)uH (t, t0) (4.29)

Then we can write

OH (t) = v†H0
(t, t0)OH0(t, t0)vH0(t, t0) (4.30)

Differentiating vH0() with respect to t

i~∂tvH0(t, t0) = [i~∂tu†H0
(t, t0)]uH (t, t0) + u†H0

(t, t0)[i~∂tuH (t, t0)]

= [−H0u
†
H0

(t, t0)] + u†H0
(t, t0)[H (t)uH (t, t0)]

= −H0v
†
H0

(t, t0) + u†H0
(t, t0)H (t)uH0(t, t0)u†H0

(t, t0)uH (t, t0)

= −H0v
†
H(t, t0) + H (t)vH(t, t0)

= {H i +Hd(t)}vH0(t, t0)

(4.31)

Similarly, we have the expression for vH0

vH0(t, t0) = Tt{e−i~
−1

R t
t0
dt′(Hi+Hd(t′))} (4.32)

Then we see, the relation between the interaction picture and Heisenberg
picture is

OH (t) = Tc{e−i~−1
R
c dτHd(τ)e−i~

−1
R
c dτH

i(τ)OH0(t)}
= Tc{SdcSicOH0(t)} (4.33)
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Figure 4.2: The contour c̄ = c ∪ cω are used in the transformation into the
interaction picture of H0

with
Sdc = e−i~

−1
R
c dτHd(τ) (4.34)

Sic = e−i~
−1

R
c dτH

i(τ) (4.35)

The next step is to write the quantum mechanical average of the OH0 in
the interaction picture. First of all, we need to replace the ensemble average
with respect to ρ(H) by ρ(H0). For the convenience,we define a operator
k(t, t0)

k(t, t0) = Tt{v†H0
(t, t0)vH(t, t0)} (4.36)

Differentiating k(t, t0) with respect to t

i~∂tk(t, t0) = −[H i(t) +Hd(t)]k(t, t0) +Hd(t)k(t, t0)

= −Hd(t)k(t, t0)
(4.37)

The solution of k(t, t0) comes out to be

k(t, t0) = Tt{e−i~
−1

R t
t0
dt′Hd(t′)} (4.38)

Comparing k(t, t0),uH(t, t0) and uH0(t, t0) we find out that

uH(t, t0) = uH0(t, t0)k(t, t0) (4.39)

remembering that uH(t, t0) = e−i~
−1H(t−t0) and uH0(t, t0) = e−i~

−1H0(t−t0),we
see

eβH = eβH0k(t0 − iβ, t0) (4.40)

We are now able to write the ensemble average

〈OH (t)〉 =
Tr[e

−βHOH (t)]

Tr[e−βH ]

=
Tr[e

−βH0k(t0 − iβ, t0)OH (t)]

Tr[e−βH0k(t0 − iβ, t0)]

(4.41)
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Now we are going to use a notation 〈. . . 〉0, which denote the ensemble average
with respect to ρ(H0), then the ensemble average can be written as

〈OH (t)〉 =
〈k(t0 − iβ, t0)OH (t)〉0
〈k(t0 − iβ, t0)〉0 (4.42)

The operator k(t0 − iβ, t0) defines a contour section cβ, which runs along a
imaginary time axis from t = t0 to t = t0 − iβ. Besides, one has to notice
the fact that

Tc{e−i~−1
R
c dτHd(τ)e−i~

−1
R
c dτH

i(τ)} = 1 (4.43)

We combine this imaginary time course with the original one, we call this
new contour c̄

c̄ = c ∪ cω (4.44)

then k(t0, t0 − iβ) can be written as

k(t, t0) = Tc̄{e−i~−1
R
c dτHd(τ) e−i~

−1
R
c̄ dτH

i(τ)}
= Tc̄{SdcSic̄}

(4.45)

with
Sdc = e−i~

−1
R
c dτHd(τ) (4.46)

Sic̄ = e−i~
−1

R
c̄ dτH

i(τ) (4.47)

At last, we can write the ensemble average as

〈OH (t)〉 =
〈Tc̄{SdcSic̄OH0}〉0
〈Tc̄{SdcSic̄}〉0

(4.48)

The advantage of this ensemble is that we separate the H i and Hd from the
density matrix ρ. The ensemble matrix is now to evaluate with the non-
interacting density matrix ρ(H0). In other words, all the time dependence
of the ensemble is decided by the simple part H0, which is exactly solvable.
The difficult parts are handled in Sdc and Sic̄, where one can do perturbation
expansion.

In the most situations, we focus in steady state problem. We simply let
t0 → −∞. It means the non-equilibrium disturbance is considered to be
turned on for a suffient time, so suffient that the system becomes steady. If
the interactions among the particles are turned on adiabatically, we have:

lim
t0→−∞

k(t0 − iβ, t0) = lim
t0→−∞

Tc̄{e−i~−1
R t0−iβ
t0

dtHi(t)} = 1 (4.49)
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4.3 Green’s Functions

As mentioned at the beginning of this introduction, we need to calculate the
Green’s functions. Green’s functions are powerful in many particle physics
because they contain much information about the system. In non-equilibrium
system, instead of time order Green’s functions, we are going to evaluate the
contour-ordering single particle Green’s function

Gc(i, j) = −i~−1〈Tc{ΨH (i)Ψ†H (j)}〉 (4.50)

where ΨH is the field operator in the Heisenberg picture. The argument
stands for a short-hand notation

i = (ri, σ, ti) (4.51)

The field operators are linear combinations of the creation and annihilation
operators

Ψ(r, σ) =
∑
k

ψk(r)ckσ (4.52)

and

Ψ†(r, σ) =
∑
k

ψ∗k(r)c
†
kσ (4.53)

ψk(r) and ψ∗k(r) are the single particle wave functions. ckσ and c†kσ are the
annihilation and creation operator. They raise or lower the occupation of
particles in the state |kσ〉. The sum is over a complete set of quantum
numbers.

The nonequilibrium steady state Green’s function can be written in the
interaction picture that is discussed in the previous section.

Gc(i, j) = −i~−1
〈Tc{SdcSicΨH0(i)Ψ†H0

(j)}〉0
〈Tc{SdcSic}〉0

(4.54)

With this expression, one can easily see the way to do perturbation theory.
The numerator and denominator are ready to be expand.Then one can apply
Wick’s theorem similarly as one had done in the equilibrium theory with nor-
mal time-ordering Green’s function. They are discussed in many standard
many-body physics textbooks. They have given knowledge the Wick’s theo-
rem and Feynman rules and diagram representations. Theses are also valid in
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non-equilibrium theory, because the denominator exactly cancels the discon-
nected diagrams. In the perturbation theory, one calculates the connected
diagram from different order expansion of Sdc and Sic.

The perturbation expansion in nonequilibrium theory with contour-ordered
single particle Green’s function G(i, j) is similar to the time-ordered single-
particle Green’s function in equilibrium theory. The only difference is the
time integrations over the real axis are replaced by contour integrations along
c.

The contour-ordered Green’s function Gc can be mapped into the Keldysh
space[79]

Gc −→ Ĝ =

[
G++ G+−

G−+ G−−

]
(4.55)

where ± specifies which time argument lies on the upper (+) contour and
which lies on the lower time contour. G++ is the usual time-ordered Green’s
function and G−− is the anti-time-ordered Green’s function. The remaining
two components are correlation functions

G++(i, j) = −i〈T [ψ(i)ψ†(j)]〉 (4.56)

G−−(i, j) = −i〈T̃ [ψ(i)ψ†(j)]〉 (4.57)

G+−(i, j) = ±i〈ψ†(j)ψ(i)〉 (4.58)

G−+(i, j) = −i〈ψ(i)ψ†(j)〉 (4.59)

In the equation for G+−, the upper sign is for fermion,and the lower sign is
for boson.

The anti-time-ordering operator T̃ is defined as

T̃ [ψ(i)ψ†(j)] =

{
ψ(i)ψ†(j) if ti ≤ tj

∓ψ†(j)ψ(i) if ti > tj
(4.60)

The components of the Keldysh matrix are not independent. From the defi-
nitions we know that they are related linearly

G++ +G−− = G+− +G−+ (4.61)
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The functions G−− and G++ are connected by the relation of ”anti-Hermitian
conjugacy”.

G++(i, j) = −G−−∗(j, i) (4.62)

The functions G−+ and G+− and themselves anti-Hermitian

G−+(i, j) = −G−+∗(j, i) G+−(i, j) = −G+−∗(j, i) (4.63)

It is convenient to calculate the retarded Green’s function Gr and ad-
vanced Green’s function instead of time-ordered G++ and anti-time-ordered
G−−. Because the retarded and advanced Green’s functions are directly
related to the density of state(DOS) of the particles. The retarded and ad-
vanced Green’s functions are so defined:

Gr(i, j) = −i~−1θ(ti − tj)〈ψ(i)ψ†(j)± ψ†(j)ψ(i)〉 (4.64)

Ga(i, j) = i~−1θ(tj − ti)〈ψ(i)ψ†(j)± ψ†(j)ψ(i)〉 (4.65)

The retarded and advanced Green’s function are Hermitian conjugates.

Ga(i, j) = Gr∗(j, i) (4.66)

There are more relations between the components.

Gr = G−− −G−+ = G+− −G++

Ga = G−− −G+− = G−+ −G++ (4.67)

if the system is steady and spatial homogeneity, all functions are depend-
ing only on the difference t = ti − tj and r = ri − rj. One can do Fourier
tranformation to the Green’s function. The Fourier components satisfy the
equations

G−−(w, p) = −G++∗(w, p) (4.68)

Ga(w, p) = Gr∗(w, p) (4.69)

Following Eq(3.63) ,the Fourier components G+−(w, p) and G−+(w, p) are
purely imaginary.
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Σ= +

Figure 4.3: Diagrammatic representation of Dyson’s equation. The single
line is the unperturbed Green’s function. The double line is the full Green’s
function

4.4 Dyson’s Equation

with the Dyson’s equation we are able to calculate the full Green’s function,
as long as we know the selfenergy. In the non-equilibrium theory the selfen-
ergy, the same as the Green’s functions, is mapped onto the Keldysh space,
a matrix with components

Σ̂ =

[
Σ++ Σ+−

Σ−+ Σ−−

]
(4.70)

The contour-ordered single-particle Green’s function obeys Dyson’s equa-
tion. It is a matrix equation in Keldysh space

Ĝ(i, j) = Ĝ0(i, j) +

∫∫
dk dh Ĝ0(i, k)Σ̂(k, h)Ĝ(h, j) (4.71)

where Ĝ0(i, j) is the unperturbed Green’s function. A diagrammatic illustra-
tion to the Dyson’s equation is depicted in Fig4.3. In the Dyson’s equation,
a short-hand notation has been introduced∫

dk =

∫
drk

∫
dtk (4.72)

We will introduce Langreth’s rule and convert the contour integration into
real-time integrations.

The set of equations of Ĝ and Σ̂ is not directly to be used. It is better to
do such a transformation that one of the elements of matrix Ĝ to be reduced
to zero. This can be done by a linear transformation

G̃ = R−1ĜR =

[
0 Ga

Gr Gkeld

]
(4.73)

with the transformation matrix

R =
1√
2

[
1 1
−1 1

]
R−1 =

1√
2

[
1 −1
1 1

]
(4.74)
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and the Keldysh component is defined by

Gkeld = G++ +G−− = G+− +G−+ (4.75)

Due to the Dyson’s equation,the matrix Σ̂ is also transformed by R.

Σ̃ = R−1Σ̂R =

[
Σkeld Σr

Σa 0

]
(4.76)

with the notation

Σkeld = Σ−− + Σ++ (4.77)

Σr = Σ−− + Σ−+ (4.78)

Σa = Σ−− + Σ+− (4.79)

We usually work with the Fourier transformed Dyson’s equation

Ĝ = Ĝo + ĜoΣ̂Ĝ (4.80)

Because the Keldysh components are not linearly independent, we can
choose to work with any three of them. The Dyson’s equation for different
components reads (detail see Appendix)

GA = GA
0 +GA

0 ΣAGA (4.81)

GR = GR
0 +GR

0 ΣRGR (4.82)

G+− = (1 + ΣRGR)G+−
0 (1 + ΣAGA)−GRΣ+−GA (4.83)

G−+ = (1 + ΣRGR)G−+
0 (1 + ΣAGA)−GRΣ−+GA (4.84)
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4.5 Langreth’s Theorem

Langreth’s theorem helps us to convert the contour integration into real time
integration. One needs to evaluate products parallel or antiparallel in the
time arguments

C⇔(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) (4.85)

C�(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) (4.86)

The +−(−+) part corresponds to the particular ordering of the time argu-
ments on the contour τ ∈ c+ (c−) and τ ′ ∈ c− (c+). From the definition of
+− and −+ components:

C≶⇔(t, t′) = A≶(t, t′)B≶(t, t′) (4.87)

C≶�(t, t′) = A≶(t, t′)B≷(t′, t) (4.88)

The compact representation of Langreth’s theorem are collected in table
below.
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Contour Real axis

C =
∫
c
AB C≶ =

∫
t
[ArB ≶ +A ≶ Ba]

Cr(a) =
∫
t
Ar(a)Br(a)

D =
∫∫

c
ABC D≶ =

∫∫
t1t2

[ArBrC≶ + ArB≶Ca + A≶BaCa]

Dr(a) =
∫∫

t1 t2
Ar(a)Br(a)Cr(a)

C⇔(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C≶⇔(t, t′) = A≶(t, t′)B≶(t, t′)
Cr(t, t′) = Ar(t, t′)B<(t, t′) + A<(t, t′)Br(t, t′)

+Ar(t, t′)Br(t, t′)
Ca(t, t′) = Aa(t, t′)B<(t, t′) + A<(t, t′)Ba(t, t′)
−Aa(t, t′)Ba(t, t′)

C�(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) C≶�(t, t′) = A≶(t, t′)B≷(t′, t)
Cr(t, t′) = Ar(t, t′)B<(t′, t) + A<(t, t′)Ba(t′, t)
Ca(t, t′) = Aa(t, t′)B<(t′, t) + A<(t, t′)Ba(t′, t)
−Aa(t, t′)Ba(t, t′)

4.6 Information from Green’s Functions

The diagonal element of G̃ characterizes the states of the quantum system,
while the off-diagonal components contain information on the occupation of
these states. This can be seen easily,considering, for instance, noninteracting
electrons in equilibrium,with the Hamiltonian

H0 =
∑
k

εk c
†
kck

.The Fourier transformed Keldysh component is given by

Gkeld
k (w) = −2πi(1− 2f(ω))δ(w − εk) (4.89)
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where f(εk) is the statistical distribution function,either the Fermi Dirac
nF (ω−µ) = (eβ(ω−µ) +1)−1 for fermions or the Bose-Einstein nB(ω) = (eβω−
1)−1. Once we know the Gkeld, the distribution function can be calculated:

f(ω) =
1

2
+

∫
dω

2πi
Gkeld
k (ω) (4.90)

In steady state non-equilibrium problem, there are two independent Green’s
functions. In equilibrium situation, some further relations are:[84]

G+−(ω) = ±if(ω)A(ω) (4.91)

G−+(ω) = i[±f(ω)− 1]A(ω) (4.92)

where A(ω) is the spectral function

A(ω) = i[Gr(ω)−Ga(ω)]

= i[G−+(ω)−G+−(ω)]
(4.93)

The upper sign in front of f(ω) applies to fermions and lower sign to bosons.
One can understand the meaning of Green’s functions with their physical

interpretation. We have already seen that in equilibrium, the lesser Green’s
function G+− is the energy resolved density of particles. It is the density
of state A(ω) multiplied by nF (ω), the statistical probability that these are
occupied. In non-equilibrium situation, this multiplication relation doesn’t
hold, but the physical interpretation is always right. The G+− contains
the information about the distribution function and the density of states.
Similarly,the greater Green’s function, for instance in case of fermion, is the
energy resolved density of holes.

The picture from the retarded Green’s function is a vivid one. In the case
of fermion, if one adds an extra particle at space-time (rj, tj), the retarded
Green’s function Gr(i, j) tells us what’s the probability that one is able to
remove a particle at a later space-time (ri, ti). The retarded Green’s function
is defined for ti > tj, this assures it’s causality. Actual systems are always
causual. That’s why we are interested in retarded Green’s function. The
Fourier transformed function Gr(ri, rj, ω) correspondingly tells the probabil-
ity of adding one particle with energy ω at space rj and removing another
particle with energy ω at space ri.
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The advanced Green’s function Ga(i, j) interprets, on the other hand,
how the hole excitation propagates. If we look at the definition of Spectral
function, it is actually the combination of the retarded and advanced Green’s
function. It tells us that both the particles and hole excitations are involved
in the physics. They are playing the same role in the system.

The Green’s functions, besides having contained information in them-
selves, they are in fact related to physical observables. In principle, the
ensemble average of any one-body operator O can be related to the Green’s
function[78]

〈O(r, t)〉 = Tr[ρO(r, t)]

= Tr[ρΨ†H (r, t)O(r, t)ΨH (r, t)]

= lim
r′→r

lim
t′→t

O(r, t)Tr[ρΨ†H (r′, t′)ΨH (r, t)]

= lim
r′→r

lim
t′→t

O(r, t)〈Ψ†H (r′, t′)ΨH (r, t)〉
= ∓i~ lim

r′→r
lim
t′→t

O(r, t)G+−(r′t′, rt)

(4.94)

O(r, t) is the operator in first quantization[78]. As an important example,
let’s consider the quantum average of the fermion particle density

〈n(r, t)〉 = −i~ lim
r′→r

lim
t′→t

G+−(r′t′, rt) (4.95)

It is obviously that the G+− is related to particle density.
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Chapter 5

Electron Conduction Band
Coupled to Single Photon
Mode

5.1 Introduction

People have been interested in plasmon physics. The fundamental point is
the photon-electron interaction. How the photon-electron interaction will
influence the electron states is an interesting problem. In this chapter, we
are going to study electron conduction band coupled to a single photon mode.
We introduce the coupling constant λ. We also consider the local coulomb-
interaction between electrons and introduce its constant U . In the end it will
be interesting to see the competition between the photon-electron interaction
and the coulomb-interaction.

5.2 The Hamiltonian

We consider the following hamiltonian.

H =
∑
pσ

εpc
†
pσcpσ + ω0 a

†a

+
U

2 V

∑
pp′σσ′
q

c†p+qσc
†
p′−qσ′cp′σ′cpσ +

λ√
V

∑
p

c†pcp(a+ a†)
(5.1)

41
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λ
Figure 5.1: photon-electron interaction vertex. The full line is the electron’s
Green’s function, the dash line is the photon’s Green’s funtion

ω0 is the photon mode frequency. U is the constant for the electron
coulomb interaction. We use λ for the coupling strength of photons to electon.
V is the volume of the system

The first term of the hamiltonian describes a electron conduction band.
c†(c) is the electron creation(annihilation) operator.

The free electron density of state we are going to use is a smicircle

ρ(εp) =
2

πD

√
1− (

εp
D

)2 (5.2)

where εp is the energy of electron, and D is the half bandwidth. The
second term describes a single photon mode, where a†(a) is the photon cre-
ation(annihilation) operator. Electron coulomb interaction is considered by
the third term. In the last term, we couple the electron with the photon.

We are going to do perturbation theory to solve the problem. A graphical
representation of the photon-electron vertex is illustrated in Figure5.1.

5.3 Definition of Green’s function

We define Green’s function components in the Keldysh space for electrons

G+−(p, t1, t2) = i < c†p(t2)cp(t1) > (5.3)

G−+(p, t1, t2) = −i < cp(t1)c†p(t2) > (5.4)

Gret(p, t1, t2) = θ(t1 − t2)[G>(p, t1, t2)−G<(p, t1, t2)] (5.5)
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Gadv(p, t1, t2) = −θ(t2 − t1)[G>(p, t1, t2)−G<(p, t1, t2)] (5.6)

For photons we have

D+−(t1, t2) = i < A(t2)A(t1) > (5.7)

D−+(t1, t2) = i < A(t1)A(t2) > (5.8)

Dret(t1, t2) = θ(t1 − t2)[D−+(t1, t2)−D+−(t1, t2)] (5.9)

Dadv(t1, t2) = −θ(t2 − t1)[D−+(t1, t2)−D+−(t1, t2)] (5.10)

where A(t) = a(t) + a†(t).

5.4 Useful Relations

Usually we will work with the Fourier-transfered Green’s function. There are
some relationship:

Gret(ω) = [Gadv(ω)]† (5.11)

Dret(ω) = [Dadv(ω)]† (5.12)

The spectral funtions of electrons and photons are defined:

Γ(ω) = i[Gret(ω)−Gadv(ω)] (5.13)

B(ω) = i[Dret(ω)−Dadv(ω)] (5.14)

There are also relationships between various self-energies that we are
going to use later

i[Σ−+(ω)− Σ+−(ω)] = i[Σret(ω)− Σadv(ω)] = ∆(ω) (5.15)

and

Σret(ω) = P

∫
dω′

π

∆(ω′)

ω − ω′ −
i

2
∆(ω) (5.16)

These relations are valid for both boson and fermion.
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U U

Figure 5.2: Selfenergy diagram for electron from coulomb interaction

5.5 Electron Selfenergy

After doing the second order perturbation expandsion, there are two self
energy diagrams to be calculated for the electron self-energy. One is the dia-
gram for photon-electron interaction, the other one comes from the coulomb
interaction. We will apply local approximation to calculate the coulomb in-
teraction self-energy. Therefore the coulomb interaction self-energy will be
momentum independent.

5.5.1 Contribution from Coulomb Interaction

Figure5.2 represents the second order diagram for coulomb interaction. Now
we calculate it with keldysh Green’s Function.

Σ+−
coulomb(ω) = U2

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
G+−(ω1 + ω2)G+−(ω − ω2)G−+(ω1)

(5.17)

Σ−+
coulomb(ω) = U2

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
G−+(ω1 + ω2)G−+(ω − ω2)G+−(ω1)

(5.18)
In order to write them in a compacter form,we define the distribution

functions

f+−(ω) = − G+−(ω)

2i=Gret(ω)
(5.19)
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f−+(ω) =
G−+(ω)

2i=Gret(ω)
(5.20)

We also define

Ξ(ω) =
=Gret(ω)

π
(5.21)

Then we can write the selfenergy as

Σ+−
coulomb(ω) =2πU2

∫ ∞
−∞

dε1
π

∫ ∞
−∞

dε2
π

Ξ(ε1)Ξ(ε2)Ξ(ε1 + ε2 − ω)

f+−(ε1)f+−(ε2)f−+(ε1 + ε2 − ω)

(5.22)

Σ−+
coulomb(ω) =− 2πU2

∫ ∞
−∞

dε1
π

∫ ∞
−∞

dε2
π

Ξ(ε1)Ξ(ε2)Ξ(ε1 + ε2 − ω)

f−+(ε1)f−+(ε2)f+−(ε1 + ε2 − ω)

(5.23)

where,

f−+(ω) =
G−+(ω)

2i=Gret(ω)
f+−(ω) =

G+−(ω)

2i=Gret(ω)
(5.24)

Unter Gleichgewicht,f+−(ω) = nF (ω) and f−+(ω) = 1− nF (ω)
Then the imaginary part of the retarded selfenergy can be written as

=Σret
coulomb(ω) = −1

2
{Σ−+

coulomb(ω)− Σ+−
coulomb(ω)}

Σret
coulomb(ω) =2πU2

∫ ∞
−∞

dε1
π

∫ ∞
−∞

dε2
π

Ξ(ε1)Ξ(ε2)Ξ(ε1 + ε2 − ω)

{f+−(ε1)f+−(ε2)f−+(ε1 + ε2 − ω)

− f−+(ε1)f−+(ε2)f+−(ε1 + ε2 − ω)}
(5.25)

As a special case, these expression have simplified forms unter two con-
ditions. One is equilibrium, the other is zero temperature. If conditions are
fullfilled, then we have

T → 0K f+−(ω) = θ(−ω) (5.26)

where the θ function is defined as
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λλ

Figure 5.3: Electron selfenergy diagram from photon-electron interaction

θ(x) =


1 if x > 0
1
2

if x = 0

0 if x < 0

Then under the assumption that T = 0K we have

Σ+−
coulomb(ω) = 2πU2

∫ 0

ω

dε1
π

∫ 0

ω−ε1

dε2
π

Ξ(ε1)Ξ(ε2)Ξ(ε1 + ε2 − ω)

ω < 0

(5.27)

Σ−+
coulomb(ω) = −2πU2

∫ ω

0

dε1
π

∫ ω−ε1

0

dε2
π

Ξ(ε1)Ξ(ε2)Ξ(ε1 + ε2 − ω)

ω > 0

(5.28)

The retard selfenergy in this case reads

Σret
coulomb(ω) = −2πU2

∫ ω

0

dε1
π

∫ ω−ε1

0

dε2
π

Ξ(ε1)Ξ(ε2)Ξ(ε1 + ε2 − ω) (5.29)

5.5.2 Contribution from Photon-Electron Interaction

Self-energy from photon-electron interaction is calculated according to the
diagram showed in Figure5.3.

Σ+−
pho−elec(εp, ω) = λ2

∫
dω̃

2π
G+−(εp, ω̃ + ω)D−+(ω̃) (5.30)

Σ−+
pho−elec(εp, ω) = λ2

∫
dω̃

2π
G−+(εp, ω̃ + ω)D+−(ω̃) (5.31)
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Ω

λλ

Figure 5.4: Selfenergy diagram for photon from photon-electron interaction

Again the retarded part can be calculated with the less and larger part

=Σret
pho−elec(εp, ω) =

i

2
{Σ−+

pho−elec(εp, ω)− Σ+−
pho−elec(εp, ω)} (5.32)

5.6 Photon Selfenergy

The selfenergy for photons comes from the Bubble diagram, see figure5.4. It
is in fact the plasmon. In this way, the photons are coupled to electrons and
obtain self-energy from the plasmon. For the electron lines in the Bubble
diagram, we use the local Green’s function to calculate

Ω+−(ω) = −λ2

∫
dω̃

2π
G+−(ω̃ + ω)G−+(ω̃) (5.33)

Ω−+(ω) = −λ2

∫
dω̃

2π
G−+(ω̃ + ω)G+−(ω̃) (5.34)

=Ωret(ω) =
i

2
{Ω−+(ω)− Ω+−(ω)} (5.35)

5.7 Self-consistent Theory

In order to solve this problem numerically, we are going to set up a self-
consistent process. We calculate the physical quantities iteratly until a stable
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solution is found.
It is the dyson’s equation that connects the selfenergy to their full Green’s

function. In the previous chapter, we have discussed the dyson’s equation
for different components in Keldysh space.

GR = GR
0 +GR

0 ΣRGR

G+− = (1 + ΣRGR)G+−
0 (1 + ΣAGA)−GRΣ+−GA

G−+ = (1 + ΣRGR)G−+
0 (1 + ΣAGA)−GRΣ−+GA

These equations are also valid to the photon Green’s function. In the
retarded component to the electrons, we have

Σret(εp, ω) = Σret
coulomb(ω) + Σret

pho−elec(εp, ω) (5.36)

We define electron free Green’s function,

Gret
0 (εp, ω) =

1

ω − εp + iη
(5.37)

Then using dyson’s equation we can calculate the full Green’s functionGret(ε, ω)
Then we can solve the full local retarded Green’s function out of the dyson’s
equation

Gret(εp, ω) =
1

ω − εp − Σ(εp, ω)
(5.38)

Then we can calculate the local retarded Green’s function:

Gret(ω) =

∫ D

−D
dεpρ(ε)

1

ω − εp − Σ(εp, ω)
(5.39)

The imaginary part of full local retarded Green’s function is

=Gret(ω) =

∫ D

−D
dεpρ(εp)

=Σret(ω)

(ω − εp −<Σret(ω))2 + =Σret(ω)2
(5.40)

where ρ is given at the beginning of this chapter. It is easy to see, the free
local retarded Green’s function is

=Gret
0 (ω) = −πρ(ω) (5.41)
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Now we come to the components G+− and G−+. As soon as we introduce
interaction, under the assumption of a homogeneous and steady system, the
first term on the right side of the dyson’s equation for G+− and G−+ will be
zero. Only the second term survives.

G+−(εp, ω) = Gret(εp, ω)Σ+−(εp, ω)Gadv(εp, ω) (5.42)

G−+(εp, ω) = Gret(εp, ω)Σ−+(εp, ω)Gadv(εp, ω) (5.43)

and the local Green’s function are:

G+−(ω) = −
∫ +D

−D
dεpρ(εp) G

ret(εp, ω)Σ+−(εp, ω)Gadv(εp, ω)

= −
∫ D

−D
dεpρ(εp)

Σ+−(εp, ω)

(ω − ε−<Σret(εp, ω))2 + =Σret(εp, ω)2

(5.44)

G−+(ω) = −
∫ +D

−D
dεpρ(εp) G

ret(εp, ω)Σ−+(εp, ω)Gadv(εp, ω)

= −
∫ D

−D
dεpρ(εp)

Σ−+(εp, ω)

(ω − ε−<Σret(εp, ω))2 + =Σret(εp, ω)2

(5.45)

Similarly to the retarded one, selfenergy components Σ+−(ω) and Σ−+(ω)
consist of two contributions

Σ+−(εp, ω) = Σ+−
coulomb(ω) + Σ+−

pho−elec(εp, ω) (5.46)

Σ−+(εp, ω) = Σ−+
coulomb(ω) + Σ−+

pho−elec(εp, ω) (5.47)

The free retarded Green’s function of photon is:

Dret
0 (ω) =

1

ω − ω0 + iη
− 1

ω + ω0 − iη (5.48)

The photon retarded Green reads

Dret(ω) =
1

ω2−ω2
0

2ω0
− Ωret(ω)

(5.49)
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We are interested mostly in the imaginary part of the Green’s function

=Dret(ω) =
=Ωret(ω)

{ω2−ω2
0

2ω0
−<Ωret(ω)}2 + =Ωret(ω)2

(5.50)

We now treat the problem as a steady and homogeneous problem, it is
necessary to give it a boundary condition. A suitable position to introduce
the boundary condition is to define the laser distribution function.

nL(ω) =
W√
2πσ

( e−
(ω−ω0)2

2σ2 − e−
(ω+ω0)2

2σ2 ) (5.51)

the parameter σ controls the laser width in the frequency domain.
With the boundary condition, the unperturbed less und larger Green’s

functions for photon are found to be

D
+−/−+
0 (ω) = 2i nL(ω)=Dret

0 (ω) (5.52)

and the full Green’s function:

D+−/−+(ω) = 2i nL(ω)=Dret(ω) (5.53)

So far, we have developed the equations for each component of Green’s
function in the Keldysh space and the equations for selfenergy. They can be
calculate self-consistently. In the next chapter, we will discuss the numerical
implementation.



Chapter 6

Numerical Implementation

6.0.1 Introduction

In the previous chapter, we have set up a self-consistent theory for the prob-
lem. This chapter concerns about the numerical implementation.

We have chosen the C programming language. The C programming lan-
guage uses a straightforward compiler, to provide low-level access to memory.
It can provide language constructs that map efficiently to machine instruc-
tions, requires minimal run-time support.

In order to find the self-consistent solution, one has to calculate the
Green’s function and selfenergy iterately until the results converge. First
of all, we set our parameters and boundary conditions, then we calculate the
Keldysh selfenergy components. With the selfenergies, we can again calculate
the corresponding Green’s functions. This will be done until the selfenergy
and Green’s functions don’t change anymore. Figure 6.1 show the iterative
procedure.

6.0.2 Program Structure

At the beginning of the calculation, one sets up the parameters for the system.
This includes the conduction band structure. We choose for the electrons the
free density of states to be ρ(ε) = 2

πD

√
1− ( ε

D
)2. For convenience, we are

going to choose D to be the unit. We will measure other quantities with
respect to the half bandwidth. Variables are constant U for the electron
coulomb interaction, and the constant λ for photon-electron interaction. One
of the interesting point is to look at the competition between U and λ.

51



52 6. Numerical Implementation

Gret
0 G<

0 , G>
0

Calculate Ωret Ω+− and Ω−+

Calculate Dret D+− D−+

Input system parameters : U , λ ∆conv

Calculate Σret Σ+− Σ−+

Calculate Gret G+− G−+

the change of Green′s function < ∆conv

converged ?

No ?

Y es ?

obtain self − consistent solution of the system

Figure 6.1: Block diagram illustrating the iterative procedure
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With the free density of states, we can initiate the Green’s functions for
electrons: Gret , G+− and G−+. By using Eq.(4.33),Eq.(4.34) and Eq.(4.35)
one can calculate the retarded selfenergy for photons. Then with Eq.(4.30),
Eq.(4.31) and Eq.(4.32), the selfenergy from photon-electron interaction can
be calculated. Meanwhile, one calculates for electrons the selfenergy due to
the coulomb interaction.One has to notice that the selfenergy for electrons
consists of two parts. They are to be calculated separately. Remember that

Σ+−(ω) = Σ+−
coulomb(ω) + Σ+−

pho−elec(ω)

Σ−+(ω) = Σ−+
coulomb(ω) + Σ−+

pho−elec(ω)

=Σret(ω) =
i

2
(Σ−+(ω)− Σ+−(ω))

The real part of the Σ can be calculated using Kramers-Kronig relation, see
Appendix

<Σret(ω) =
1

π
P
∫ ∞
−∞

dω′
=Σ(ω′)

ω′ − ω (6.1)

With the selfenergy, one can evaluate the full Green’s function. Then the
pointer comes to the evaluation of photon selfenergy again, and so on. The
iteration will go on until the criterion ∆conv is fullfilled. In the programm
we set ∆conv to be 10−4%, which means the fluctuation of Green’s function
is less than 10−4%.



54 6. Numerical Implementation



Chapter 7

Results and Discussion

In the previous chapters, we have present a model, which describes single
photon mode with non-equilibrium laser distribution interacting with a elec-
tron conduction band. In this model, there are two important parameter: U
and W . U is the parameter to define the coulomb-interaction strength. W
controls the laser intensity. Numerical results will be shown in the following
order: Firstly set U = 0, treat the electron as free particle, vary the laser
intensity to see what the laser can do to the electron spectral function. Sec-
ondly we switch on the U parameter. The competition between U and W are
going to be interesting. All the results are calculated under zero temperature.
Remember our laser distribution function:

nL(ω) =
W√
2πσ

( e−
(ω−ω0)2

2σ2 − e−
(ω+ω0)2

2σ2 ) (7.1)

7.1 Situation U = 0

As soon as the single laser mode is coupled with electron band, fano resonance
occurs in electron density of states. The larger is the laser intensity, the
stronger is the fano resonance (Fig7.1 and Fig7.2). The resonance structure
occurs exactly at the laser mode frequency. Fig 7.2 is the zoom-in of Fig 7.1,
the laser frequency is 0.3, in the unit of half conduction band width. At large
laser intensity, even the higher order resonance structure can be recognize.
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Figure 7.1: (A) Electron distribution function (B) Electron DOS, as function
of frequency. Unit: half bandwidth
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Figure 7.2: Electron DOS as function of frequency, Unit: half bandwidth.
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Figure 7.3: Electron retarded self-energy from photon-electron interaction

Parallel to the fano resonance in DOS, the fermi edge in the electron
distribution function is changed by the laser, we observe clear harmonic effect
at the the laser frequency (Fig 7.1(A)).

In the self-energy graph (Fig 7.3), the laser arouses two resonance peaks,
whose distance is nothing else but the laser frequency. As the intensity
becomes larger, the gap between those two peak gradually diminish (see the
green line in Fig 7.3). The trend suggests that over-strong laser might wash
out the resonance structure as well.
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Figure 7.4: Imaginary part of photon retarded Green’s Function
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Figure 7.5: Imaginary part of photon retarded self-energy
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Figure 7.6: Electron density of state , Ω = 0.1

In Fig 7.4, it shows the imaginary part of photon retarded Green’s Func-
tion, also tells about the photon spetrum function. The photon mode fre-
quency is 0.3 of the half bandwidth. We can see, the photon spetrum function
has two sharp peaks located at plus and minus photon mode frequency. If
one changes the photon mode frequency, the location of those peaks will also
be shifted.

The photon self-energy is asymmetric at the frequency domain (Fig 7.5).
Photon self-energy is calculated from the bubble diagram, this diagram is
essentially the plasom. From Fig 7.5, we see the amplitude of photon self-
energy des not monotonically increase with the laser intensity. That suggusts
the plasom can be disturbed by strong nonequilibrium photon field, leading
to optical properties variation.
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Figure 7.7: Electron density of state , Ω = 0.1

Now we change the photon mode frequency to 0.1, see Fig 7.6 and Fig
7.6. The laser mode frequency is now 0.1, the position of fano resonance is
correspondingly shifted. This is also true with the harmonic effect in the
distribution function (Fig 7.6).
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Figure 7.8: Electron DOS under different U , Ω = 0.1

7.2 Situation U 6= 0

Now we turn on the electron coulomb interaction U .

We can see from Fig 7.8 and Fig 7.9 (zoom in of Fig 7.8), the electron
coulomb interaction causes damping to the resonance structure. Let’s look
at another example. In Fig 7.10 and Fig 7.10 (Fig 7.10) , this phenomenon
is very obvious to see. It tells us, the coulomb interaction tends to prevent
the laser field from arising resonance structure to electron density of state.
Let’s also look at the electron distribution function. For U = 0, we can see
only the electron whose absolute energy value less than laser mode frequency
are pumped to above fermi surface. But as U increases, the electrons can
exchange energy through coulomb interaction. The electrons are easier to be
pumped with large U value. On the other hand, the coulomb interaction are
destroying the resonance effects.
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Figure 7.9: Electron DOS under different U , Ω = 0.1
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Figure 7.10: Electron DOS under different U , Ω = 0.3
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Figure 7.11: Electron DOS under different U , Ω = 0.3

In Fig 7.13, we can see the peaks in eletron retarded self-energy are
damped as the U increases. That is the reason why the resonance effects
in electron DOS are damped. We can explain this with the electron spetral
function. For near-free-electron system, the electron spectral function for
each momentum is sharp peak in frequency domain. Then when coulomb
interaction comes up, the width of electron spectral functions are boardened.
The electron spectral functions are coupled to the photon field to contribute
to the electron self-energy, leading to the peak-boardening in self-energy.

The coulomb interaction also contributes to the electron self-energy, see
Fig 7.14. In equilibrium (W = 0), Σret

coulomb(ω) has quadratic behavior ∼ ω2

in the vicinity of zero, see the black curve in Fig 7.14. At the presence of
laser field, the curve in the vicinity of zero frequency grows up. That is due
to the coulomb interaction contributed from the excited electron above the
fermi edge.

From Fig 7.15, one can see again, the amplitude of photon self-energy
does not monotonically increases with the laser intensity. This agrees with
the result in Fig 7.5, which is without coulomb interaction.
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Chapter 8

Summary

In the beginning of this thesis, we have taken a overview on plasmon physics.
Than we present the Keldysh Green’s function, which has been employed to
handle nonequilibrium problem.

In the previous chapters, we discussed the coupling an electron conduction
band to a single laser mode. We treat the laser as second quantized photons.
The coulomb interaction is also included in the model. The numerical results
confirm that the coupled laser field arises fano resonance structure in the
electron density of state. Laser pumps electrons from blow the fermi edge
to above, but only those with |εp| < mode frequency. Therefore, we can see
in the distribution function harmonic stage, asymmetric to the fermi edge.
On the other hand, over strong laser intensity might wash out the resonance
effect.

The electron coulomb interaction diminishes the effect caused by the laser.
As the coulomb interaction strength increases, either fano resonance in the
electron DOS or harmonic effect in the electron distribution function will be
extenuated.
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Appendix A

Derivation of Dyson’s Equation
In Keldysh Space

The Derivation will follow the notation of Landau-Lifschitz Volume 10.

Ḡ =

(
0 GA

GR F

)
Σ̄ =

(
Ω ΣR

ΣA 0

)
where F = G> +G< and Ω = Σ++ + Σ−− = −(Σ> + Σ<)

The dyson equation has the form:

Ḡ(~p, w) = Ḡo(~p, w) + Ḡo(~p, w)Σ̄(~p, w)Ḡ(~p, w)

For Convinience, we shall omit the arguments

Ḡ = Ḡo + ḠoΣ̄Ḡ

We do the matrix multiplication now:(
0 GA

GR F

)
=

(
0 GA

0

GR
0 F0

)
+

(
0 GA

0

GR
0 F0

)(
Ω ΣR

ΣA 0

)(
0 GA

GR F

)
Then we get:(

0 GA

GR F

)
=

(
0 GA

0

GR
0 F0

)
+

(
0 GA

0 ΣAGA

GR
0 ΣRGR GR

0 ΩGa+F0ΣAGA+GR
0 ΣRF

)
then we obtain the dyson equations for each component:

GA = GA
0 +GA

0 ΣAGA (A.1)
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GR = GR
0 +GR

0 ΣRGR (A.2)

F = F0 +GR
0 ΩGa+F0ΣAGA+GR

0 ΣRF (A.3)

Equations (1) and (2) are useful. We need to do some simplification to
Equation (3).
According to the defination of Green’s function, we have these relations:
F = G< +G> and GR −GA = G> −G< from that we know

F = GR −GA + 2G< (A.4)

Similarly we have Ω = −(Σ> + Σ<) and ΣR − ΣA = Σ< − Σ>

Then we know
Ω = ΣR − ΣA − 2Σ< (A.5)

Plug (4) and (5) into (3), we get:

GR −GA + 2G< = GR
0 −GA

0 + 2G<
0 +GR

0 (ΣR − ΣA − 2Σ<)GA

+ (GR
0 −GA

0 + 2G<
0 )ΣAGA +GR

0 ΣR(GR −GA + 2G<)

(A.6)

Again using (1) and (2) to (6), we get:

G< = G<
0 −GR

0 Σ<GA +G<
0 ΣAGA +GR

0 ΣRG<

=⇒ (1−GR
0 ΣR)G< = G<

0 (1 + ΣAGA)−GR
0 Σ<GA

=⇒ G< = (1 + ΣRGR)G<
0 (1 + ΣAGA)−GRΣ<GA (A.7)



Appendix B

Kramers-Kronig Relation

The Kramers-Kronig relations are related to mathematical properties of the
function. It is useful when we need to know about the imaginary part of any
complex function from it’s real part or the other way around. In physiks,
they are used to connect the real part and the imaginary part of response
functions.

B.1 Derivation

Starting with the application of the residue theorem for complex integration,
for any analytic function χ, which is analytic in the upper half plane, we
have ∮

χ(ω′)

ω′ − ωdω
′ = 0 (B.1)

The contour encloses the upper half plane at infinity, the real axis and a
small half circle over the pole at ω = ω′, leaving no pole inside. So the evalu-
ation of the integral is zero. After decompose the integral into contributions
along each of the segments, there are only two terms that are non-zero. The
segment at infinity vanishes with the assumption χ(ω) vanishes as |ω| → ∞.
Survived are the integrals along the real axis and the half-circle around the
pole

P
∫ ∞
−∞

χ(ω′)

ω′ − ωdω
′ − iπχ(ω) = 0 (B.2)

The second term on the left-hand side is obtained by using the theory of
residues. Then we have the compact form of the Kramers-Kronig relations.
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Figure B.1: Integral contour for deriving Kramers-Kronig relations

χ(ω) =
1

iπ

∫ ∞
−∞

χ(ω′)

ω′ − ωdω
′ (B.3)

With this simple relation, there comes the connection between the real
and imaginary components. Let’s define χ1 and χ2 to be the complex com-
ponents of χ

χ(ω) = χ1(ω) + iχ2(ω) (B.4)

Then from Eq.(B.3) we can solve

χ1(ω) =
1

π
P
∫ ∞
−∞

χ2(ω′)

ω′ − ω (B.5)

χ2(ω) = − 1

π
P
∫ ∞
−∞

χ1(ω′)

ω′ − ω (B.6)

The hypothesis one has to make about the complex function χ is analytic
in the upper half-plane. This corresponds to the causality of retarded func-
tion. Therefore we can apply this relation to calculate the real part from the
imaginary part of the selfenergy

<Σret(ω) =
1

π
P
∫ ∞
−∞

dω′
=Σret(ω′)

ω′ − ω (B.7)
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The advanced functions are analytic in the lower half plane, they have a sign
difference comparing to the retarded functions

<Σadv(ω) = − 1

π
P
∫ ∞
−∞

dω′
=Σadv(ω′)

ω′ − ω (B.8)



74 B. Kramers-Kronig Relation



Appendix C

Green’s Function for
Noninteracting Particles

The real time Green’s function for noninteracting particles can be found in
almost all the textbook on many-particle physics. It it convenient to have it
in the appendix.

C.1 Fermions

We start with the noninteracting fermions. The Hamiltonian is:

H0 =
∑
kσ

ξkc
†
kσckσ (C.1)

where ξk = εk − µ is the single-particle energy measured with respect to the
chemical potential. ckσ and c†kσ are the fermion annihilation and creation
operator. We are going to solve time dependency of the operator. In the
Heisenberg picture, the time-evolution of the annihilation operator is

ckσ = eiH0t/~ckσe
−iH0t/~ (C.2)

We differentiate Eq.C2 with repect to t

i~
∂

∂t
ckσ(t) = [ckσ, H0]

= ξkckσ

(C.3)
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where we have used the relation

[A,BC] = {A,B}C −B{A,C} (C.4)

and the usual fermion anticommutation relations

{ckσ, ck′σ′} = 0 {c†kσ, c†k′σ′} = 0 (C.5)

{ckσ, c†k′σ′} = δk,k′δσ,σ′ (C.6)

Then Eq.C3 has the simple solution

ckσ(t) = e−iξt/~ckσ (C.7)

c† is the hermitian conjugate of ckσ

c†kσ(t) = eiξt/~c†kσ (C.8)

With the definition of Green’s function, it is easy to calculate the unper-
turbed Green’s function

G+−
0 (kσt, k′σ′t′) = i~−1〈c†k′σ′(t′)ckσ(t)〉0

= i~−1e−iξ(t−t
′)/~〈nkσ〉δk,k′δσ,σ′

(C.9)

G−+
0 (kσt, k′σ′t′) = −i~−1〈ckσ(t)c†k′σ′(t

′)〉0
= −i~−1e−iξ(t−t

′)/~[1− 〈nkσ]〉δk,k′δσ,σ′
(C.10)

Gret
0 (kσt, k′σ′t′) = −i~−1θ(t− t′)〈c†k′σ′ , (t′)ckσ(t)〉0

= −i~−1e−iξ(t−t
′)/~θ(t− t′)〈nkσ〉0δk,k′δσ,σ′

(C.11)

Gadv
0 (kσt, k′σ′t′) = i~−1θ(t′ − t)〈c†k′σ′ , (t′)ckσ(t)〉0

= i~−1e−iξ(t
′−t)/~θ(t− t′)〈nkσ〉0δk,k′δσ,σ′

(C.12)

The Fourier transforms of the Green’s functions are

G+−
0 (kσ, ω) = 2πi〈nkσ〉δ(ω − ξk) (C.13)
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G−+
0 (kσ, ω) = 2πi{〈nkσ〉 − 1}δ(ω − ξk) (C.14)

Gret
0 (kσ, ω) =

1

ω − ξk + iη
(C.15)

Gadv
0 (kσ, ω) =

1

ω − ξk − iη (C.16)

where η = 0+. In thermal equilibrium case, the distribution funtion of
fermion is the Fermi-Dirac distribution function

〈nω〉 = nF (ω) =
1

eβω + 1
β =

1

kBT
(C.17)

We define the fermion spectral function A0(kσ, ω) is defined as

A(kσ, ω) = i[Gret(kσ, ω)−Gadv(kσ, ω)] = −2=Gret(kσ, ω) (C.18)

The spectral function fullfill the sum rule∫ +∞

−∞

dω

2π
A(kσ, ω) = 1 (C.19)

For the noninteracting Green’s function, we can write

G+−
0 (kσ, ω) = inF (ω)A0(kσ, ω) (C.20)

G−+
0 (kσ, ω) = i{nF (ω)− 1}A0(kσ, ω) (C.21)

C.2 Bosons

The hamiltonian for single mode boson is

H0 = Ω0 a
†a (C.22)

where Ω0 is the single mode frequency. a and a† are the boson annihila-
tion and creation operator. In Heisenberg picture, the time-evolution of the
annihilation operator

a(t) = eiH0t/~ae−iH0t/~ (C.23)
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the equation of motion to this operator is

i~
∂

∂t
a(t) = [a,H0] = Ω0a(t) (C.24)

where we have used the relation

[A,BC] = {A,B}C −B{A,C} (C.25)

and the usual boson commutation relations

[a, a] = 0 [a†, a†] = 0 (C.26)

[a, a†] = 1 (C.27)

The a(t) has the simple solution

a(t) = e−iH0t/~a (C.28)

The creation operator is just the hermitian conjugate of a

a†(t) = eiH0t/~a† (C.29)

The real-time single-particle Green’s function for single mode boson are
to be calculated according to the definition

D+−
0 = −i~−1〈[a†(t′) + a(t′)][a†(t) + a(t)]〉

= −i~−1(〈a†(t′)a(t)〉0 + 〈a(t′)a(t)†〉0
= −i~−1(e−iΩ0(t−t′)/~〈a†a〉0 + eiΩ0(t−t′)/~〈aa†〉0)

= −i~−1(e−iΩ0(t−t′)/~〈n0〉0 + eiΩ0(t−t′)/~[〈n0〉0 + 1])

(C.30)

D−+
0 = D+−

0 (C.31)

Dret(t, t′) = −i~−1θ(t− t′)〈[(a†(t) + a(t)), (a†(t′) + a(t′))]〉0
= −i~−1θ(t− t′)(〈[(a†(t), a(t′)]〉0 + 〈[a(t), a†(t′))]〉0)

= i~−1θ(t− t′)(−eiΩ0(t−t′)/~ + e−iΩ0(t−t′)/~)

(C.32)
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Dadv(t, t′) = i~−1θ(t′ − t)〈[(a†(t) + a(t)), (a†(t′) + a(t′))]〉0
= i~−1θ(t′ − t)(〈[(a†(t), a(t′)]〉0 + 〈[a(t), a†(t′))]〉0)

= i~−1θ(t′ − t)(−eiΩ0(t−t′)/~ + e−iΩ0(t−t′)/~)

(C.33)

where n0 = a†a. The Green’s functions have the Fourier transforms

D+−
0 (ω) = −2πi{〈n0〉δ(ω − Ω0) + (〈n0〉+ 1)δ(ω + Ω0)} (C.34)

D−+
0 (ω) = −2πi{〈n0〉δ(ω + Ω0) + (〈n0〉+ 1)δ(ω − Ω0)} (C.35)

Dret =
1

ω − Ω0 + iη
− 1

ω + Ω0 + iη
η = 0+ (C.36)

Dadv =
1

ω − Ω0 − iη −
1

ω + Ω0 − iη η = 0+ (C.37)

In a thermal equilibrium, the distribution function is the Bose-Einstein
distribution

〈n0〉 = nB(Ω0) =
1

eβΩ0 − 1
(C.38)

The boson spectral function is defined in a similar way as for fermion

B(ω) = i[Dret(ω)−Dadv(ω)] = −2=[Dret(ω)] (C.39)

with the sum rule ∫ +∞

−∞

dω

2π
B(ω) = 0 (C.40)
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