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Abstract

Short term quantitative precipitation forecast (QPF) is an important task
for numerical weather prediction (NWP) models, particularly in summer.
The increase of model resolution requires the understanding of the initiation
and evolution of convection. Initialisation schemes based on radar derived
precipitation fields can reduce the model forecast error in convective cases.
Any improvement of QPF denotes a correct forecast of the dynamics and the

moisture content of the atmosphere, thus upgrading QPF generically improves
NWP forecast.

The method, which we call Physical initialisation Bonn (PIB), uses as the most
important input the precipitation estimation from the German weather service
(DWD) radar network and assimilates the data into the operational non-
hydrostatic COSMO model. During the assimilation window, PIB converts
the input data (radar precipitation and cloud top height from satellite data)
into prognostic COSMO variables, which are relevant for the development of
rain events. PIB directly adjusts vertical wind, humidity, cloud water, and
cloud ice in order to force the model state towards the measurements. The
most distinctive feature of the algorithm is the adjustment of the vertical wind
profile in the framework of a simple precipitation generation scheme.

In a first study we performed an identical twin experiment with three
convective cases. The consistency of PIB with the physics of the NWP
model is proved using qualitative comparisons and quantitative evaluations
(e.g. objective skill scores).

The performance of PIB, using real data, is investigated by applying the
scheme to the whole month of August 2007, with three simulations every day, at
00, 08 and 16 UTC. Every simulation consists of two hours of data assimilation
followed by seven hours of free forecast. The comparison with the Control run
and with Latent heat nudging, the operational radar data assimilation scheme
from the DWD, is also made. PIB succeeds in improving QPF for up to six
hours. Its results are comparable to the forecast by LHN. The sensitive of PIB
to different assimilation windows is tested. An assimilation window of only
15 minutes is enough to provide the trigger for convection and to enhance the
forecast quality. Thus PIB is much more time efficient than LHN and need
much less observation values.



Contents

1 Introduction
1.1 Motivation . . . . . . . ...
1.2 Assimilation techniques . . . . . . . . ... ... L.
1.2.1 Non variational approaches. . . . . . . . ... ... ...
1.2.2  Variational approaches . . . . . . . .. ... ... ....

1.3 Data assimilation strategies . . . . . . ... ... ... ... ..

2 Model and data
2.1 COSMO model . . . ... .. .. .. ...
2.1.1 Data Assimilation in COSMO . . . . .. ... ... ...
2.1.2 Initial and boundary conditions . . . . . . . ... .. ..
2.1.3 Forecast and assimilation cycle . . . ... ... ... ..
2.1.4 Grid scale precipitation . . . . . ... ... ... ... ..
2.2 Radardata . .. ... ... .. ... ...
221 RYproduct . . ... ...
2.2.2  Typical errors in radar precipitation estimates . . . . . .
2.2.3 The composite . . . .. ..o
2.3 Satellitedata . . . ... ... ...
2.3.1 Cloud top temperature and height . . . . . . .. ... ..
232 Cloud type . . . . . .. .

3 The PIB algorithm
3.1 Analysed precipitation . . . ... ...
3.2 Precipitation scheme . . . . .. ..o

3.2.1 Conversion efficiency determination . . . . . . .. .. ..
3.3 Cloud Analysis . . . . . . . ... ...

11

13
13
16
17
18
18
19
19
20
23
23
24
24



i

CONTENTS

3.3.1 Cloud base height . . . . .. ... ... ... ... .... 35
3.3.2 Cloud top height . . . . ... ... ... ... ...... 37
3.3.3 Corrections . . . . . ... ... 39
3.4 Modification of model profiles . . . . . . . ... ... ... ... 40
3.4.1 Forcing of precipitation . . . . . . .. ... ... ... 40
3.4.2  Suppression of precipitation . . . .. ... 42
Identical twin 45
4.1 Casestudies . . . . . . . ... 48
4.1.1 Casel: June 29,2005 . . .. .. ... .. ... ..... 48
4.1.2 Case 2: August 19,2005 . . . . . . ... ... 49
4.1.3 Case 3: June 28,2006 . . . . . .. .. ... ... 50
4.2 Precipitation and CAPE field . . . . .. ... ... ... .... 51
4.3 Cloud base in the convective regions . . . . .. . ... ... .. 61
4.4 Mass flux divergence . . . . . ... ... 65
4.5 PIB without vertical wind or without humidity assimilation . . 71
4.5.1 Precipitation . . . . ... 0oL 71
4.5.2 Vertical wind . . . .. ... ... oL 74
4.6  Summary of the Identical twin experiment . . . . . . . . .. .. 76
Real data assimilation 79
5.1 Evaluation of the free forecast . . . . . . . . ... ... .. ... 80
5.1.1 Precipitation PDF and PDF of RADAR/MODEL . . . . 80
5.1.2 Relative precipitation . . . . . . . ... 83
5.1.3 Objective skill scores . . . . . . . ... .. ... ... .. 88
5.2 Duration of the assimilation window . . . ... ... ... ... 90
5.3 Summary of the real data experiment . . . . . . . ... ... .. 96
Conclusions and future research 97
6.1 Synthesis of theresults . . . . . .. .. .. ... ... ... ... 97
6.2 Futurework . . . ... ... 100
Forecast verification methods 101
A.1 Objective skill scores . . . . . . . .. .. ... ... 102

A.2 Root mean square difference . . . . . ... ... 105



CONTENTS iii

B Differences par. seq. 107
B.1 The Newtonian approximation method . . . . . .. .. ... .. 107
B.1.1 First Newton’s method . . . . . . ... ... ... ... .. 108

B.1.2 Newton’s method . . . . . .. ... ... ......... 108

B.2 Newton’s method in COSMO . . . .. ... ... ... ... ... 109

C CAPE 111
D Additional figures of chapter 4 113

Bibliography 117



v

CONTENTS



Chapter 1

Introduction

Clouds and precipitations are essential components of the earth’s water and
energy cycle; they are important meteorological parameters of our habitat and
influence life in various ways.

The accurate forecast of precipitation events, particularly for heavy
precipitation, is of capital interest for the economy. For many applications
a Quantitative Precipitation Forecast (QPF) is essential. In agriculture,
precipitation can have different effects, sometimes positive, sometimes negative
depending also on the quantity. In hydrology, precipitation is the input of a
range of simulation models, e. g. for runoff prediction, flashflood warnings,
and water use and quality management. By improving QPF severe weather
warnings can be issued more precisely, and reduce flood damages and save
lives.

The goal of this work is the improvement of QPF, especially for convective
events in the midlatitudes. We are particularly interested in improving the
short time range forecast, up to about 9 hours.

1.1 Motivation

A Numerical Weather Prediction (NWP) model integrates the governing
equations of hydrodynamics using numerical methods subject to specified
initial conditions. Numerical approximations are fundamental to almost all
dynamical weather prediction schemes since the complexity and nonlinearity
of the hydrodynamic equations do not allow exact solutions of the continuous
equations. For this reason meteorology was one of the very first fields of
physical science that had the opportunity and necessity to exploit high speed
computers for the solution of multi-dimensional time-dependent non-linear
problems (Mesinger and Arakawa, 1976 [71]).
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In the early NWP experiments (the first unsuccessful one was from Richardson
in 1922 [81]) the need for an automatic “objective” analysis became quickly
apparent (Charney, 1951 [17]). The analysis is a procedure to estimate the
atmospheric dependent variables on a regular two- or three-dimensional grid
using the data available from irregularly spaced observation networks (Daley,
1991, [26]).

The determination of the initial condition for a NWP model and the subsequent
assimilation of new observation data in the model run are fundamental for
the quality of the forecast. The right determination of the model prognostic
variables for the analysis provides the forecast model with the starting point,
from which we can make the prognosis.

The most difficult weather element to predict correctly is rainfall ( Ebert et
al. 2003, [34]) because it is not a continuous field in space and time, like
wind and temperature for instance; it is rather a collection of solid or liquid
particles developed within weather systems with a typical life time between an
hour to few days. Furthermore its formation and evolution is highly complex
and nonlinear and occurs on scales that are several orders of magnitude
smaller than the size of a numerical grid box (in our case the grid box has
a dimension of 2.8km x 2.8km, while rain develops in spatial scales smaller
than lem). Parameterisation schemes are therefore used to treat subgrid scale
processes such as precipitation, but these had to be simplified for reasons of
computational efficiency or the lack of knowledge about the true characteristics
of those processes. We have to remark that normally the QPF skill also varies
seasonally (Uccellini et al. 1999, [93], Weckwert et al. 2004 [96]) with the
summer marked by lower forecast skill (we can clearly see this in terms of
Threat Score in Fig. 1.1, for the definition of threat score see appendix A).

The problem of warm season QPF is the high unpredictability of the convective
events (Lorenz, 1969 [68]). These events are particularly challenging to predict
because of their small spatial scale, short lifetime and non-linear, chaotic
behaviour. In the current NWP models convection is parameterized. It is
believed that an improved representation of convection in forecast models is a
necessary path through which major advances in QPF will be realized.

One necessary condition for a prediction of convective rainfall is a good
forecast of where and when convection will initially develop; moreover the
knowledge of the atmospheric state before the development of convection is
crucial in order to initialise the NWP model. Currently the prediction and
understanding of convection initiation processes, as well as the subsequent
intensity, areal coverage and distribution of convective rainfall, are largely
impeded by inaccurate and incomplete water vapour measurements (National
Research Council, 1998 [22]).
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Figure 1.1:  Monthly threat scores for quantitative precipitation forecasts for
the period form Jan 1991 to Dec 1999. Threat scores are plotted for the
NGM (Nested Grid Model, green histogram) and for the HPC' (Hydrometeorol.
Prediction Center) forecaster predictions (red line) for the 24h period., picture
from Wecwert at all., 2004 [96]
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The improvement of precipitation forecasts depends strongly on the coupling
of humidity and wind fields (Zou and Xiao, 2000 [104]). An error in the
initial state can amplify through the modelling process and result in drastic
under or overpredictions of precipitation (Park, 1999 [77]). A model-consistent
assimilation of precipitation and the corresponding fields of humidity can
reduce the lack in the hydrological variables results in the so called spin-up
(spin-down) problem (Krishnamurti, 1993 [57]), i.e. a hydrological imbalance
between precipitation and evaporation (e.g. Fig. 1.2). This improvement
is especially beneficial for nowcasting and short-range forecasting, with an
improvement of the forecast for surface pressure and dynamics.

Chang and Holt (1994 [16]) used a theoretical experiment and showed that,
for winter cases, the improvements in precipitation forecast due to data
assimilation are still noticeable after 30 hours of forecast.

Another study (Anderson et al., 2000 [4]) has investigated the impact
of observations on meso-scale model forecasts of three-hourly rainfall
accumulations. They assimilated three-dimensional humidity fields from the
Moisture Observation Processing System (MOPS). The main output from
MOPS consists of a three-dimensional analysis of cloud fraction. This is
converted into a set of relative humidity soundings at each model grid point,
which are then assimilated in the same way as radiosondes (Wright, 1993 [99]).
The MOPS leads to a significant increase in the forecasts quality. This is a
proof of the importance of humidity assimilation in NWP (see also Macpherson
et al., 1996 [69] ).

The reason for the model forecast improvement due to the humidity
assimilation is that QPF is directly linked to the model’s water cycle. The
spin-up problem is due to the fact that NWP model simulations are typically
initialised in so-called dry state, leaving the state variables for condensed water
at zero. Usually several hours of simulated weather evolution will pass until
the hydrological cycle is established in such a quasi-equilibrium.

Another parameter that influences the skill of QPF is orography; its forcing is
generally badly reproduced by the model dynamics, the precipitation pattern
(Gollvik, 1999 [40]) are especially poor for convective events in these areas. In
our work, therefore, we started with simulations in an area where orography
is not such an important factor (northern Germany) and then we applied the
model using a larger domain covering Germany as a whole including the alps.
In this way we tested the improvement of our scheme in both situations: with
and without complex orography.

We have implemented an assimilation technique that tries to improve the
forecast in terms of location, structure and movement within the area of
activity. The special aim is to improve nowcasting (about two hours) and
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short range forecasts (less then 24 hours). Specifically we restricted our
self to predictions of only 9 hours, because the life cycle of the assimilated
synoptic situation in the studied area was shorter than that. The benefit of
data assimilation in high resolution models (in this case 2.8 km) for longer
periods decreases because of the increase of unpredictability with the spatial
resolution in the NWP models (Germann and Zawadzki, 2002 [38]) and the
increasing influence of the boundaries.

For model output evaluation a comparison with radar observations is
performed, by Objective Skill Scores (OBSS, defined in appendix A) and other
statistical quantities.

1.2 Assimilation techniques

In order to perform a numerical weather forecast, it is necessary to have
not only an appropriate numerical model but also a description of the
corresponding initial conditions as accurate as possible (Talagrand, 1997 [90]).

In the early NWP model experiments (Richardson, 1922 [81], and Charney et
al., 1950 [18]) the initial conditions were derived from an interpolation of the
available observations to the grid, and these fields were manually digitized.
It becomes immediately clear that a production of an automatic objective
analysis was necessary also in order to economize time.

The available observations, however, do not provide the temporally
synchronous and the spatially homogeneous description of the atmosphere,
that is required by a numerical model. Moreover many observations are in
quantities that are not prognostic model variables (for example in our case
reflectivity from radar data has to be converted into precipitation rate). In
this sense, assimilation is the process by which observations are combined
together with a numerical model in order to produce, as accurate as possible,
a description of the state of the atmosphere in terms of model variables.

The description of that atmospheric state is called analysis. It tries to
reproduce the true state using observations.

In case the model state is overdetermined by the observations, the analysis
reduces to an interpolation problem (Bouttier and Cortier, 1999 [13]). In
most cases the analysis problem is under-determined because data is sparse
especially in ocean regions. Moreover, in these regions most of the data are
only indirectly related to the model variables (e. g. satellite data).

In order to make analysis a well-posed problem it is necessary to rely on some
background (or first guess) information in the form of an a priori estimate of
the model state. The background could be a climatological state or, in the
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recent concepts, a previous forecast. Using the background state and the new
observations a new state for the atmosphere is given from the assimilation
techniques. This state will be propagated using the NWP model. For more
detailed information about data assimilation concepts the reader is referred
to Daley, 1991 [26] or Kalnay, 2003 [53] or Bouttier and Courtier, 1999 [13].
In this section we will describe briefly only some methods, in order to have a
general idea about data assimilation.

We can subdivide the assimilation techniques basically in two categories:
variational and non-variational.

1.2.1 Non variational approaches

Successive corrections method

We take a dependent variable f(r) (Daley, 1991 [26] ), where 7 defines the
spatial location. The 7 is the ith analysis gridpoint and 7 the kth observing
location. The letter O stands for observation, B for background and A for the
analysis, the error is €. For example the background error at an analysis grid
point i is eg(75).

If we consider a single observation 7, we can estimate the analysis increment
at the analysis gridpoint i:

fa(ri) = f8(75) = Wikl fo(7k) — f5(7%)] (1.1)

where [fo(7:) — fa(7%)] is the observation increment and Wj; depends on
the expected background and observation error variance. The observation
increment is related to a weight depending on the distance w(7, — ;) (in
the original system from Cressman, 1959 [24] the weight depends only on the
distance). For such a system it si problematic to define the weight function,
Wi

Assume that the background error is homogeneous and the observation errors
are spatially uncorrelated. Then equation 1.1 at the first iteration step can be
written as

fa(m) = fs(7) + W [fo — f5] (1.2)

where JFO and f}; are column vectors of lenght K; (the number of observations
available in the range of influence) and W is a column vector of length K; of
weights.

At this point an iteration process is applied. The second step uses the f} as
background and we have f3(7;) = fi(7;) + W [fo — fg]. Then we iterate the
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process for n times, until convergence.

Optimal interpolation

Optimal interpolation, also called statistical interpolation (Daley, 1991 [26]),
is a minimum variance method. The basic form is the same as the successive
correction method. 1f we take K observation points for the analysis influencing
the ith point we get:

K
Fa(m) = fe(F) + > Walfo(Te) — fB(7)] (1.3)
k=1
or, with a more common notation (generally used in the variational approach):
A; = B; + X0 Wi[O — Bi]. The optimal interpolation uses a minimum
variance estimation procedure for the definition of the weights W;,. This
assimilation scheme tries to minimize the expected analysis error variance as a
function of the weights. The expected analysis error variance is < (A4; —T;)? >,
where T} is the true value at the point 7. In this assimilation system both the
background field and the observations are assumed to be unbiased.

Latent heat nudging

The Latent Heat Nudging (LHN) scheme is based on the work of Manobianco et
al. (1994, [70]) and on the successive application from Jones and Macpherson
(1997, [50]). The principal idea is to correct the model’s latent heating at each
time step by an amount calculated from observed and modelled precipitation.
They assumed that the vertically integrated latent heating is proportional
to the surface rain rate (Leuenberger D., 2005 [65] ). Practically this
scheme nudges (Anthes, 1974 [5] and Hoke and Anthes, 1976 [45]) the model
temperature profile to the estimated temperature profile (using a saturation
adjustment technique).

The extra heating is a source term in the prognostic model temperature
equation and that changes the buoyancy and by ascent the precipitation. For
a description of LHN and its use in recent years see Leuenberger, 2005 [65],
Leuenberger and Rossa, 2004 [66] and Klink and Stephan, 2004 [54].

The Physical Initialisation scheme

The idea of using precipitation data in NWP models was in the first
experiments applied in the tropics (Krishnamurti et al. 1984 [58]). The use
of an assimilation technique in such an area was necessary because of the
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sparse presence of the classical data (for example radiosonde and synoptic
station), especially over oceanic areas. In the tropics the sparsity of data also
results in large errors in the divergent wind which in turn usually compounds
the humidity errors through moisture convergence, resulting in a erroneous
specification of the diabatic forcing (Krishnamurti et al., 1991 [59]). The
spin up problem (described in Fig. 1.2) is inherent to any NWP models
(Krishnamurti et al., 1988 [56]). The work of Krishnamurti tries to reduce
it by assimilating the precipitation fields (a review of this work can be found
in Krishnamurt et al., 1996, [55]).

GLOBE

5
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[=] 3 ’(\\ EVAPORATION
%‘ \\"‘”H\\u/—‘ts__,//ﬁ\*
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B = ]
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e
......
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TIME { HR)

Figure 1.2: Globally averaged value of evaporation and precipitation (units
mm -day~') plotted as a function of forecast period. Krishnamurti et al. 1988,

[56]

Krishnamurti used a nudging scheme (or Newtonian relazation ) involving
linear forcing to lead the evolution of variables towards certain predetermined
space-time estimates. The general form of the equation for these processes is:

0A(z,y,1)

SO = F(A2,y,8) + N(A1) - (A9, t) = Alz.y.2) (1.4)

Where A is the predicted value of the variable at a time level during time
integration and A° is the predetermined true estimate of the variable at that
time (analysis); F'(A,x,y,t) is the time rate of change for the variable A due
to various dynamical and physical processes in the numerical model; N(A,t)
is the relaxation coefficient, the value that determines the degree with which
the variable is forced towards its analysed value A°.

When the model predicted value A is equal to the analysed value the Newtonian
term (the second on the right side in the eq. 1.4) does not operate. The value
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of the relaxation coefficient can be selected experimentally; a large relaxation
coefficient will force the variable too strongly, resulting in dynamic imbalance,
while a too weak relaxation coefficient is not efficient.

The Krishnamurti scheme uses a reverse Kuo algorithm for the improvement
of the humidity analysis. In the Kuo algorithm the moistening and heating
by the cumulus cloud are made using the temperature difference between the
cloud and the undisturbed environment and the large scale convergence of
moisture as indicators (Kuo, 1974 [62]). Therefore Krishnamurti et al. tried to
find an analysis of the humidity field consistent with an imposed precipitation
field and a cumulus parameterisation algorithm. For each time step a reverse
cumulus parameterisation algorithm provides a modified humidity field over
the convective areas each time step. A forward prediction of the humidity
variable with a direct Kuo algorithm nearly reproduces the imposed rain.

In the reverse Kuo scheme the specific humidity is calculated using the relation:

R L 55 qdp L re 0g
(p) =" z 1—-R/(—- d L.5

where ¢(p) and ¢,,(p) are the original and modified values of specific humidity
at pressure level p, w is the vertical velocity and pg and pr denote the bottom
and top pressure of the cumulus column, respectively. The modification is
applied only in the precipitation regions, with:

1 rpe Oq
—5/ wydp > 0 (1.6)

and with the restriction ¢, (p) < ¢s. In other words the modified specific
humidity has as upper limit the saturation value. This scheme was based on
observations from satellites and raingauges.

Krishnamurti’s scheme in the rain-free areas has a humidity adjustment based
on the two estimates (model and satellite) of the outgoing longwave radiation
above the planetary boundary layer (PBL). The scheme used a measure of the
advective-radiative imbalance and tries to minimize it using a modification of

q.

1.2.2 Variational approaches

Variational approaches consider the atmospheric state system as a whole and
do not deal explicitly with the individual components of the system. It involves
the determination of stationary points (Daley,1991 [26]) of integral expressions
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known as functionals'. A stationary point is a point (in the domain of the
functional) where the rate of change of the functional in every possible direction
from that point is zero.

One disadvantage of this approach, as for Optimal Interpolation and all
versions of the Kalman filter, is the assumption of Gaussian error distributions.

3D-VAR

We can write the optimal interpolation scheme (for the notation see table 1.1)
as X, = xp + K|y — H[xy).

Table 1.1: Notation used in this section with the dimensions of the matrizes

variable dim variable dim
X4 true model state n X, | background model state n
X, | analysis model state n y vector of observations p
. . trix of th
H | observation operator | n —p | B cov. Ahatix of the nxn
background error
cov. matrix of the cov. matrix of the
R . pxp | A nxn
observation error analyse error
K weight matrix nxn

The three dimensional variational assimilation principle tries to avoid the
computation of the weight matrix K completely by looking for the analysis
as an approximate solution of the equivalent minimization problem defined by
a cost function J, which could be seen as a measurement of the distance of the
estimate state from the observations.

J(x) = (x —xp)"B7 (x —x) + (y — Hx))"R™(y — H[x]) (1.7)
The problem is now to find the minimum of J using the gradient VJ(x);
usually a descent algorithm is used.

In 3D-Var the B matrix must be defined, i.e. the background error covariance
for all pairs of model variables.

4D-VAR

4D-Var is a generalization of 3D-Var for observations that are distributed in
time. We must include a forecast model operator M and an index ¢ for the
model time; My_,; is the forecast model operator from the initial time to i.

'functional: the principal meaning is a function whose domain is a set of functions
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The cost function is now defined as:

J(x) = (x —x)" B (x —x) + i:(yi — Hilx))" R ' (y; — Hilxi])  (1.8)

In this equation we assume for every model variable x that we have x; =
My_;(x); in this case we have to solve a nonlinear constrained optimisation
problem. Two assumptions are necessary:

e The forecast model can be expressed as the product of intermediate
forecast steps.

e Tangent linear hypothesis: The M operator can be linearised.

One major problem in 4D-var is, that it requires the calculation of M!, the
so-called adjoint model. For complex models the computational work can be
very high.

1.3 Data assimilation strategies

Assimilation methods can also be classified as continuous or intermittent in
time.

In intermittent methods the observations (Fig. 1.3) are assembled in small
batches. This method stops the model at regular intervals (i.e. at analysis
times) during the numerical integration, and uses the model fields at those
times as a first guess for a new objective analysis, which is used to restart the
model for the next integration interval. Intermittent updating takes advantage
of observational data that becomes available at standard time (e.g., 00:00 UTC
and 12:00 UTC). Each restart incorporates fresh data to limit error growth but
also can cause spin-up error due to imbalances in the reinitialised fields.

In continuous assimilation observation batches over long time periods are
considered. The corrections to the analysed state are smooth in time. The
observational data are incorporated in the forecasts at every time step between
the previous analysis step and the observation time. Dynamic assimilation
uses the nudging or Newtonian relaxation technique to relax the model state
toward the observed state (at the next model time) by adding extra forcing
terms to the governing equations. In this way the model fields gradually correct
themselves, requiring no further dynamic balancing through initialisation.



12 CHAPTER 1. INTRODUCTION

sequential, intermittent assimilation:

obs obs obs obs obs obs

sequential, continuous assimilation:

obs obs obs obs obs obs

U I N

non-sequential, intermittent assimilation:
\obs obs Y, N obs obs/ obs ob

analysis+model| analysis+model| [analysis+mode]

non-sequential, continuous assimilation:
obs obs obs obs obs obs

R 2R N R

analysis+model \

M

Figure 1.3:  Representation of four basic strategies for data assimilation as a
function of time, figure from Data assimilation concept and methods Bouttier
and Couttier, 1999 [13]




Chapter 2

Model and data

Data assimilation combines observations with the results of a NWP model with
the goal to produce a three dimensional picture of the atmosphere (analysis).
The output of the data assimilation procedure is used to set the initial
conditions for a forecast model. A description of data assimilation methods is
given in Chapter 1.

This Chapter introduces the COSMO model (the NWP model , Consortium
for Small-Scale MOdelling) and the observations (radar and satellite
measurements), which are the elementary components of an assimilation
system. Both the model and the data were provided from the DWD.

2.1 COSMO model

COSMO is a non-hydrostatic limited area atmospheric prediction model(Doms
and Schéttler, 2002 [29]). It is based on the primitive hydro-thermodynamical
equations describing compressible flow in a moist atmosphere. This basic set
of equations comprises the prognostic Eulerian equations for momentum, heat,
total mass, mass of water substance and the equation of the state. The model
equations are formulated in rotated geographical coordinates and a generalized
terrain following height coordinate. These characteristics are useful because
the model has been designed for both operational NWP and various scientific
applications on the meso-3 and meso-vy scale .

By employing 1 to 3 km grid spacing for operational forecasts over a large
domain, it is expected that deep moist convection and the associated feedback
mechanisms to the larger scales of motion can be explicitly resolved (Bryan et
al., 2003 [14]). In case of large grid spacings, normally 7km or more, convection
needs to be parameterised. In COSMO the Tiedtke parameterisation scheme
(Tiedke, 1989 [92]) is operationally used, which uses moisture convergence and

13
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Pressure—based hybrid coordinate Height—based hybrid coordinate
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Figure 2.1: Ezxamples of terrain following levels, with pressure (on the
right) and height (on the left) based hybrid coordinate, zr is the top of the
model domain, zp is the height where the terrain following surface change to
horizontal, figure from Doms et al., 2003 [30].

boundary layer turbulence to determine the intensity and type of convection.
Convection is separated in shallow, deep and midlevel. A Kain-Fritsch cumulus
parameterisation scheme is included as an option, here the convergence is
initiated taking into account the subcloud layer convergence and the intensity
is connected to CAPE. (Kain and Fritsch, 1993 [52]).

For small-scale grid scales we assume that the model resolves convection by
itself. Normally organized convective structures with a smaller grid spacing
than 4 km could be resolved by the model; obviously convection could be
activated also on smaller scales (1 km or less). We assume that with our
resolution (2.8 km) we can resolve the basic aspects of convective processes
using.

In case of complex topography high resolution can resolve explicitly the forcing
and the enhancement of convection due to the presence of the mountainous
regions.

The model variables are discretised on a staggered Arakawa-C/Lorenz grid
with scalars defined at the centre of a grid box and the normal velocity
components defined on the corresponding box faces (Fig. 2.2). In the vertical
direction the COSMO atmosphere is divided in 50 layers. The centre of one
layer is called level , the boundary of one layer is called half level . The principal
half levels are defined from 0 at the top of the atmosphere to 50 at the soil
interface (Fig. 2.1). The vertical velocity is defined at the half levels k 4 1/2
(from Schulz and Schéttler, 2005 [84]).

COSMO is used by DWD as the operational limited area forecast model since
December 1998; its previous name was LM (Lokal-Modell). Since then, the
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Figure 2.2: dependent COSMO wvariables on the Arakawa-c Lorenz grid , figure
from Doms et al., 2003 [30].

model has been improved constantly and has undergone many modifications.
In this work we have used COSMO-DE version 4.6. Until April 15, 2007, only
a version with a horizontal resolution of 7 km was operational, This model was

called LME (Lokal Modell Europa). Currently the new model, COSMO-DE,
with a resolution for the meso-y events (Axz ~ 2.8 km) is also operational.

The default time integration scheme is a second order leapfrog HE-VI
(horizontally explicit, vertically implicit), otherwise in this work as well as
in the operational forecast the three step Runge-Kutta scheme is used.

The new model version with high resolution (2.8km also called LMK) was
tested in many research works (i.e. Baldauf et al., 2006 [8]). The boundary
conditions are interpolated from the output of COSMO-EU ("COSMO Modell
Europa’, 7 km horizontal resolution). The further development of the COSMO
model chain are embedded in an international project. In this project (see
www.cosmo-model.org) the DWD, the German military geophysical advisory
service and the national weather services of Italy, Greece, Poland and
Switzerland are working together.

The most important differences between COSMO-EU and COSMO-DE are:

e The horizontal resolutions are different (7km in COSMO-EU | 2.8km in
COSMO-DE).

e The vertical resolution change from 40 in COSMO-EU to 50 levels in
COSMO-DE.

e Deep convection is not parameterised any more in COSMO-DE. For
shallow convection there is still a convection parameterisation active in

COSMO.

e COSMO-DE takes graupel into account as an additional microphysical
particle.
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2.1.1 Data Assimilation in COSMO

Data assimilation is a requirement for NWP. Its value increases even more for
nowcasting purposes (Laroche et al., 2005 [63]). In the operational COSMO
model a scheme based on the observation nudging technique has been chosen
for the purpose of data assimilation. The assimilation of the radar data is
realised using a latent heat nudging scheme (see Section 1.2.1).

A detailed high-resolution analysis has to be produced frequently and
efficiently. This requires a thorough use of synoptic and high-frequency
observations. For this purpose an optimal interpolation (OI) or a 3DVAR
are not optimal, since they do not allow to account for the exact observation
time of synoptic data. 3DVAR and OI also neglect most of the high-frequent
data unless the analysis scheme is applied very frequently, but in this case
the computational costs are very expensive and the data density may become
very low and inhomogeneous. Methods based on 4 dimensions offer potential
advantages since they include the model dynamics in the assimilation process
directly. The problem is that for the current available calculation power
4DVAR is too expensive for nowcasting.

In the observation nudging technique (using atmospheric fields and some
of the surface and soil fields, Doms and Schéttler, 2002 [29]) for COSMO
the observation processing is performed only once for each observation at
the timestep when the observation is available. Thus it is a continuously
assimilation scheme (see Section 1.3 for explanations). In some cases the
model values and observations are combined to complement missing pieces
of information, e.g. model humidity is used to convert virtual temperature
measured by RASS (Radio Acoustic Sounding System) into ’observed
temperature’. The nudging scheme uses the traditional data (Synop, Pilot,
...) and also precipitation derived from radar reflectivity. An observation
increment is applied, which is a function of the quality of the observation;
quality weights are calculated as well.

The observational information contained in the observation increments and in
their quality is spread explicitly to the model grid points. The assimilation
scheme works for more than one grid point because if we correct the model only
at one point the meteorological fields will not be smooth any more and we can
create instability. In this scheme the modified model field is assumed to have
an error prior to the correction. The smoothness of the meteorological fields
then suggests that the corresponding model field is likely to contain a similar
error in close vicinity. Hence we have to change the field near the observation
taking into account the errors of the model and the errors of the field as well
as their correlation.

The assimilation scheme nudges the information in a certain period of
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time (assimilation window) and not only at the observation time. Thus is
accomplished by using a temporal weight function.

COSMO-DE assimilates also precipitation from the composite of the DWD
Radar network. The data has a temporal resolution of 5 minutes and a 1 km
horizontal resolution. The Radar data are interpolated onto the COSMO-
DE grid and then assimilated with a latent heat nudging scheme (Klink and
Stephan, 2004 [54], Leuenberger and Rossa, 2004 [66] and Leuenberger, 2005
[65]).

2.1.2 Initial and boundary conditions

Regional models have a high horizontal resolution that cannot be afforded in
a global model (Kalnay, 2003 [53]). Operational regional models have been
embedded or nested into coarser resolution hemispheric or global models since
the 1970s (e.g. Jones, 1973 [51]; Harrison and Elsberry 1972, [43];Chen and
Miyakoda, 1974 [19]). The lower boundary conditions are physical but at the
top and the sides they are usually artificial. For the lateral boundary condition
a periodic one (for specific scientific applications) can be used, open or inflow-
outflow boundary conditions can be used, which allow the atmosphere in the
model interior domain to interact with the external environment.

The bottom boundary conditions play an important role since the transfer
of physical properties as heat and moisture across this interface plays a
fundamental role in most mesoscale circulation phenomena (Pielke R., 1984
180]).

In a model (in our case COSMO-DE) the information about the variables
at the lateral boundaries and their time evolution must be specified by an
external data set. These external data can be obtained by interpolation from
a forecast run of another model or from a coarser resolution run of COSMO, for
example COSMO-EU (the boundary conditions are available every hour). At
present, boundary data from the operational hydrostatic global model GME
are supported for running COSMO-EU. Time dependent relaxation boundary
conditions are used to force the solution at the lateral boundaries using the
external data.

For COSMO-DE the initial conditions are not really well defined; because
of the difference in the horizontal and vertical resolution, there is a spin-up
time of 3-6 hours, during which the humidity fluxes are adjusted to the new
topography.



18 CHAPTER 2. MODEL AND DATA

2.1.3 Forecast and assimilation cycle

NWP is an initial-boundary value problem; given an estimate of the present
state of the atmosphere (initial conditions) and appropriate surface and
lateral boundary conditions, the model simulates (forecasts) the atmospheric
evolution.

For the operational COSMO-DE forecast chain the four dimensional data
assimilation cycle based on a nudging analysis scheme is installed. The initial
and boundary conditions come from the COSMO-EU run, which initial and
boundary conditions come from the global model GME.

In every grid point between two different boundary conditions a linear
interpolation is made; in this way we can obtain the needed boundary
conditions for every time step. For a simple model chain scheme see Fig.
2.3.

The assimilation cycle has a routine time of 3 hours. Every hour an analysis
is written. Every 6 hours a new forecast simulation is performed; the forecast
is computed for 18 hours.

Boundary Boundary Boundary
GMErun + conditions conditions conditions
0BS obs b o -
. v I
A 4 t+1 +2 t+3
Initial ]
conditions g Analysis + model

Figure 2.3:  Simple model chain scheme

2.1.4 Grid scale precipitation

A cloud/precipitation model is a mathematical description (a set of equations)
for the overall evolution of a cloud. These equations allow to predict
numerically the water mass in each category of hydrometeors.

The grid scale precipitation scheme in COSMO model follows a one moment
bulk formulation; the basic idea of this method is to assume as few categories
of water as necessary and to predict the total mass fraction of water in each
category.

In COSMO model different microphysical schemes are possible: from the
simplest scheme with only cloud water content (g.) and rain water content
(g-) to the most recent one which accounts for cloud snow (gs), cloud ice (g;)
and the graupel phase (g,).
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Diagnostic and prognostic schemes are available for the rain processes
(prognostic for liquid rain and snow). In prognostic mode the full budget
equations for the precipitating hydrometeors are solved, whereas in diagnostic
mode an approximated quasi-stationary version is utilised. For high resolution
simulation, like in our case, the prognostic scheme is normally used.

The diagnostic precipitation formulation assumes a column equilibrium
for precipitating constituents; this assumption is only as an acceptable
approximation for coarse resolution. For this reason the prognostic
precipitation was introduced. For deep convection the vertical advection of
the precipitation phases must be taken into account since the air’s vertical
velocity is in the same magnitude as the fall velocity of rain and snow.

2.2 Radar data

The weather radar network of DWD consists of 16 operational Doppler
RADAR (RAdio Detection And Ranging) systems in C-Band (wavelength of
4-8 cm and a frequency of 4-8 GHz), as shown in Fig. 2.4.

The DWD uses two scanning techniques:

e In the volume scan the antenna passes through 18 different angles
of elevation from 37.0° to 0.5° every 15 minutes, thus covering the
atmosphere up to an altitude of 12 km. The volume scan consists of two
different measuring modes: the intensity mode covers the lower elevation
angles from 0.5° to 4.5°, while the Doppler mode covers the elevation
angles above. The horizontal range is 230 km for the intensity mode and
120 km for the Doppler mode.

e In the precipitation scan the lowest elevations are covered with a time
resolution of five minutes The range is 128 km and the radar beam has an
elevation between 0.5° and 1.8° depending on the orography. This scan
is made because for hydrometeorology the use of the lowest positions
(where the rain rate is estimated) has the greatest significance.

2.2.1 RY product

The RY product derived from the precipitation scan (see precedent Section), it
contains the precipitation echoes measured every 5 minutes, making very short
range forecasts of precipitation possible. This is the most important input
for our assimilation scheme. The starting point of the PIB is the observed
rain rate, which the RY product supplies based on the radar reflectivity. A
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Figure 2.4: DWD radar network. The circles around each radar site have a
radius of 128km (Figure from www.dwd.de).

quality flag is used in the generation of the precipitation fields; if the quality
is insufficient in a pixel a negative value is attributed to this pixel.

Normally an empirical power-law relationship is used (R. E. Rinehart,
2004 [82]) to convert reflectivity into precipitation. This is, however, an
approximation and a source of errors. But there are also numerous others
error sources, which will be explained in the next Section.

2.2.2 Typical errors in radar precipitation estimates

Some typical problems of radar-based rainfall estimates are:

e Anomalous propagation (anaprop): In free space the path of a
radar beam (a plane electromagnetic wave) propagates straight because
dielectric permittivity ¢, and magnetic permeability p are constant.



2.2.2 Typical errors in radar precipitation estimates 21

The refractive index n = (u,.€,)""/? is unity in vacuum; &, is the relative

dielectric permittivity and pu, the relative magnetic permeability. If v
is the phase velocity of radiation of a specific frequency in a specific
material, the refractive index is given by n = = . The atmosphere’s
permittivity € = ¢ - ¢, is larger than ¢, since the atmosphere is vertically
stratified, microwaves propagate at speeds v < c¢. Even small variations
in the refraction index can have remarkable effects in the electromagnetic

wave propagation.

Water vapour particles have a permanent dipole momentum; therefore
its refractive index depends on the wave frequency. For microwaves the
relation can be parameterised by (following Bean and Dutton, 1968 [9]):

e e
= Ky— + K3— 2.1
n 2 T + K3 T2 ( )
with e the water vapour pressure in hPa, K, and K3 are constants. If

we take into account also the dry air, with pressure P;, we can write

Pd e (&
=K — +Ky— + Ks— 2.2
n 1T—|— 2T—|- 3T2 ( )

With K, a constant. With some approximations applied we have:

77.6 e
= — (P +4810= 2.
n T (P+ SOT) (2.3)

With P is the total pressure in hPa.

In the troposphere the temperature and pressure profiles decrease with
the height. Since the pressure decrease is stronger than the temperature
one, n decreases with the height. Using the Snell’ s law (Fig. 2.5), the
wave front is beat downwards:

nysinf; = nysinbs (2.4)

Only the first kilometres of the atmosphere are important for most
radar meteorology applications, where the refractivity gradient is
approximately —40km ™! in standard conditions. In cases of temperature
inversion and very humid air conditions, this value can be lower than
—157km™!, leading to anaprop (Bech et al., 1998 [10]).

e Bright band: Whether icy precipitation is from stratiform or convective
clouds, it often falls into an environment where the temperature is above
the freezing point. When snow melts into rain, radars typically observe
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a narrow horizontal layer of stronger radar reflectivity that has been
termed the bright band (Atlas, 1990 [7]).

The falling snowflakes are crossing the 0°C' layer and melt from the
outside. The reflectivity maximum is explained by the difference in the
value of the dielectric factor of water and ice: when a water film begins
to form on a melting snowflake, its radar reflectivity may increase by
as much as 6.5 dB. The reflectivity decreases again below the melting
level when the flakes collapse into raindrops; their fall velocities increase
causing a decrease in the number of precipitation particles per unit
volume. The size of the particles also becomes smaller in the melting
process, as their density increases from that of the snow and melting
snow to that of liquid water.

In case of strong convective currents, showers and thunderstorms tend to
destroy the horizontal stratification essential for creating and sustaining
the bright band. Normally the presence of the bright-band near the
melting level is a signature that helps to distinguish convective mode
from stratiform mode (Llsat et al., 2004 ).

Attenuation: The intensity of electromagnetic radiation decreases due
to attenuation, when passing through a medium (e.g. atmosphere, cloud,
rain ...). This loss of radar energy is due to scattering and absorption.
Because of attenuation, storms close to the radar are better sampled than
storms far from the radar site. Small wavelength radar beams (i.e. X-
band) attenuate more rapidly than long wavelength radar (i.e. S-band).
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2.2.3 The composite

The composite products, e. g. by DWD, are more complicated then a simply
assemblage of separate parts. In the overlapping areas of several radar sites
the value with the best quality is selected. If the quality is the same then the
one with the strongest signal is chosen.

The data of the national composite of DWD are exchanged with the data
of the meteorological services of others European states (Belgium, Denmark,
Austria, Switzerland, France, the Netherlands, Great Britain and the Czech
Republic); in this way it is possible to build an international composite image.
Unfortunately these data was not available for the current study.

2.3 Satellite data

In our work we need information about the cloud top height. For this reason we
use products of the Satellite Application Facility on support to NoWCasting
and Very Short-Range Forecasting (SAFNWC) (for further information see
the SAFNWC manual, [72]). The SAFNWC products are based on the MSG
SEVIRI data, generate by DWD and available with a temporal resolution of
15 min.

Figure 2.6: CTTH data, image from hitp://nwcsaf.inm.es/

The general objective of the SAFNWC is to provide operational services to
ensure the optimum use of meteorological satellite data in Nowcasting and
Very Short Range Forecasting to the targeted users. In our case we will use
the data in order to define the cloud top height.

We use CTTH (Cloud Top Temperature and Height) and CT (Cloud Type).
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2.3.1 Cloud top temperature and height

This product contains information about the cloud top temperature and height
for all pixels identified as cloudy in the satellite scene.

For its determination the following process is applied:

e The RTTOV (Rapid Transmissions for TOVS ') radiative transfer model
is implemented using NWP temperature and humidity vertical profile to
simulate 6.2um, 7.3um, 10.8um, and 12.0um cloud free and overcast
(clouds successively on each RTTOV vertical pressure levels) radiances
and brightness temperatures.

e Different techniques are employed for different cloud types in order to
retrieve the best approximation for the cloud top pressure. The cloud
top temperature is linear by interpolated using the temperature of the
two nearest pressure levels in the vertical profile.

e General modules for pressure are used in order to define the cloud top
height.

2.3.2 Cloud type

The CT algorithm provides a detailed cloud analysis; it may be used as input
to an objective meso-scale analysis, as an intermediate product input to other
products, or as a final image product. The CT product is also applied in the
calculation of cloud top temperature and height. Different channels are used
to determine CTTH depending on cloud type.

The CT classification algorithm is based on a sequence of thresholds tests; the
cloud phase flag is not yet available.

The CT selects one of the following twenty-one categories :

1) not processed containing no data or corrupted data
cloud free land

cloud free sea

land contaminated by snow

)
)
)
)
) sea contaminated by snow/ice
)
)
)
)

D U = W N

very low and cumuliform clouds
very low and stratiform clouds
low and cumuliform clouds

low and stratiform clouds

~J

8
9

'TOVS instruments provide information on mainly vertical temperature and moisture
distribution
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Figure 2.7: CT data, image from http://nwcsaf.inm.es/

medium and cumuliform clouds

medium and stratiform clouds

high opaque and cumuliform clouds

high opaque and stratiform clouds

very high opaque and cumuliform clouds
high opaque and stratiform clouds

high semitransparent thin clouds

high semitransparent thick clouds

high semitransparent above low or medium clouds
fractional clouds (sub-pixel water clouds)
20) undefined by cloud mask

The algorithm for the cloud type has some typical problems: e. g. low clouds
surmounted by thin cirrus may be classified as medium clouds, very thin cirrus
can be classified as fractional clouds and very low clouds (pressure larger than
800hPa) in a strong thermal inversion may be classified as medium clouds
(pressure between 450hPa and 650hPa).



26

CHAPTER 2. MODEL AND DATA



Chapter 3

The PIB algorithm

Horizontal humidity flux convergences in the lower part of a cloud tend to
trigger updrafts and cumulus convection (Xi and Reuter, 1996 [102]). The
result from many experimental studies (see Cotton and Anthes, 1989 [20]) was
that the two quantities, which are best correlated with convective precipitation,
are upward motion and moisture convergence. In his work, G. Haase (2002 [41])
asserts that in this context instability of atmospheric stratification is secondary.
He investigated the relationship between stability indices (calculated from
model variables) and precipitation; and did not find a direct connection.

The starting point of PIB (Physical Initialisation Bonn) is the analysis of the
rain field using model precipitation and the rain rate product from the radar
composite of the DWD (see Section 2.2.1). Satellite data (Section 2.3) are
used in a simple cloud model; the PIB connects the observation space directly
with model space.

A simplified precipitation scheme connects the observation space with model
space. The vertical wind and the humidity are computed from this scheme.

The main difference between the original PIB developed by G. Haase and
the current one is in the use of satellite data (SAFNWC see section 2.3)
leading to a different definition of the cloud top and to the assimilation of
non precipitating clouds. In addition we use a different definition of cloud
base and of the analysed precipitation. We introduced a mixed phase and a
more flexible definition for the conversion efficiency of saturated water vapour
into rain. In the original version it was defined at the first time step for the
whole simulated area.

In this Chapter we describe the PIB algorithm including the data processing
from the analysed precipitation (Section 3.1) to the modification of COSMO
variables (Section 3.4). In Sections 3.2 and 3.3 the assumed precipitation
scheme and the cloud model are described. A scheme of the PIB algorithm is

27
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shown in Fig. 3.5.

3.1 Analysed precipitation

For the determination of the analysed precipitation the first step is the
measurement of the observed precipitation. After that the scheme attributes
a time weight to the analysed precipitation.

For the formulation of the observed precipitation at every time step and for
every grid point a linear interpolation between the adjacent measurements to
the current model time step is made. The scheme takes into account only the
radar data in a time range of 10 minutes (5 before and 5 after the current time
step).

Upon the availability of radar observation directly after the current model time
step and before it, the time weight («, eq. 3.1) is set to one. In other cases the
time weight is reduced depending on the time distance of the observation to
the current time step. In other words, if one measurement is missing either at
the last or the following observation time, the available data is used but with
a reduced « depending on the difference between the observation time and the
current model time.

In COSMO model we use the prognostic precipitation scheme where
precipitation can be horizontally advected when falling from the cloud base
to the surface. Thus the position of the precipitation at the soil can be shifted
relative to the cloud base. The position of the observed precipitation is defined
at the height of the lowest radar beam which can be approximated by the cloud
base. We avoid this problem, due to the use of different heights, by using the
model precipitation at the cloud base.

For every time step and every grid point the analysed precipitation R, is
calculated using:

Rana = OéRTad -+ (1 — Oé)Rmod (31)

R,4q is the radar precipitation flux and R,,.q the model precipitation flux.

The model rainfall rates are provided by the COSMO grid-scale cloud and
precipitation scheme. If « is small (large), Ry, is approximated by R4
(R,qq). Radar data and model field are mixed only if the temporal availability
of observations is inadequate. In this case measurements can be merged partly
with model values, because the latter are already affected by assimilation.
Finally, the analysed precipitation rates in [mm/h] are transformed to fluxes
in [kg - (m?/s)~!] which are used by COSMO as diagnostic output. The Ry,
field can now be used as input to the one-dimensional cloud model (Section
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3.3).

3.2 Precipitation scheme

The PIB uses a one-dimensional cloud model with the aim to generate
COSMO-consistent vertical wind profiles. PIB consequently reproduces the
precipitation rates available from our radar products, which are used also in
the verification. In other words, the validation of the COSMO output field
is made by a comparison with the same type of data that we assimilate. We
want to check the ability of PIB to change the model atmosphere to a state
similar to the radar state. We assume the radar data to be perfect.

The PIB cloud scheme takes into account both liquid water and ice, when
calculating the water vapour saturation mixing between —5°C' and —25°C'. In
this temperature region the fraction of liquid water and ice is calculated as a
function of temperature, and the saturated vapour pressure is determined as a
weighted mean of the saturated vapour pressure over ice and water (see Kuell
et al., 2007 [60]). Between cloud bottom and cloud top the specific humidity
is set to its saturation level.

In this Chapter we describe the precipitation scheme using only the liquid
phase for simplicity.
PIB starts using the partial densities of saturated water vapour (p?) and rain

water (p,), both in [kg/m3]. The latter is in the form of liquid-phase drops,
which are large enough to have a non-negligible fall velocity.

The continuity equations for p! and p,, taking into account the conversion
rates, build the basic framework of the scheme and can be written as:

Ip,

Era =V (p;V) — Scon (3.2)
apr o — -
i =V (pr0r) — Ses (3.3)

where ¢ and v, are the three dimensional velocity vectors of water saturated
air and rain water, respectively. The terms S, and S., are the conversion
rates due to condensation and evaporation, respectively. Assuming that the
microphysical auto conversion process of cloud water into rain water has
an efficiency of 100% additional water vapour is instantaneously converted
into rain water. In case of saturation equilibrium within water clouds,
both conversion rates (S, and S.,) has the same absolute value. Another
assumption is stationarity, which is also applied in the COSMO grid scale
cloud and precipitation parameterization scheme. Adding equations 3.2 and
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3.3 under these assumptions and splitting each term into a horizontal and a
vertical part, leads to:

- N 8p;iu? = - aprwr o
Vi(pitvn) + 9 + Vi (prtn,y) + % =0 (3.4)

where (p,w,) is the precipitation flux, R in [kg/(m?-s')]. The sign of R is the
same as the one of the vertical velocity of rain water (w,) because p, is always
positive. R and w, are defined positive in downward direction. Neglecting
horizontal transport of rain water (i.e. condensate falls out instantaneously
and completely) we have:

opyw — OR
0z 0z

Since the derivation of vertical wind is the main goal of the cloud model,
a precipitation flux profile has to be assumed (the right part of eq. 3.5).
Currently, no observational information is available about its actual vertical
structure, because available radar data do not include the complete volume
scans. Therefore, a synthetic first guess profile yet has to be assumed. It has
two fixed points: at the cloud top (z.) the precipitation flux is zero and at the
cloud base (z) it is derived from the analysed precipitation flux (R,,, at the
cloud base, see Section 3.1). Inside the cloud, the precipitation flux is assumed
to change linearly:

ﬁh(piﬁh) + (3.5)

0 : z2=2z4
— R(ZC )_R(zc ) _ .
R(z) =4 Rlzap) + =522 (2 = 2) 0 2 > 2> 20 (3.6)
Rana(zcb) 2= Zeb

All microphysical interactions beneath the cloud base (e.g. evaporation of rain
water) are neglected. The use of radar derived precipitation profiles instead
of the above linear approximation has a serious drawback: the reflectivity
structure of a rain shower, e.g. measured by a vertically pointing Doppler
radar, varies extremely in time and space (Rogers and Yau, 1989 [83]).
Therefore, profiles have to be filtered before they can be applied to the cloud
model. Additionally, the measured reflectivity factor cannot be subdivided
into components caused by different hydrometeor types unless the radar has
polarimetric capabilities. Another problem is that the mid-latitude convective
storms are dominated by the ice phase.

From the PhD thesis of G. Haase ([41]) we have some information about
COSMO precipitation flux profiles of the one-category ice scheme (stationarity
and homogeneity assumed). In his study parts of the horizontally averaged rain
rate profiles show a linear behaviour, at least inside the cloud. Beneath the
cloud (approximately 1500 m ASL) evaporation effects are visible.
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Figure 3.1:  Profiles of horizontal humidity fluz divergences (kg/(m® - s))
according to eq 3.7, using different rain rate at the cloud base. the conversion
efficiency defined in eq. 3.11 is 0.9; cloud base and top heights are 1000m and
8000m, respectively.

Summing up, the use of COSMO-consistent linear profiles is favourable, but
as soon as three-dimensional polarimetric measurements from the DWD radar
network are available, this approach should be reconsidered.

The vertical advection contributes to create the clouds. The cloud top is
defined by the height where no further advection is present and at this level
the vertical wind must vanish. In order to derive an equation for the vertical
wind, the divergence of the horizontal flux of saturated water vapour in eq.
3.5 must satisfy this condition; the result follow on eq. 3.9; a sinusoidal profile
meets all requirements:

Vi (pith) = ésin <g%> (3.7)
where R(za) () (2c)
~ Zeh) T PZ Zeb) W\ Zeb

_ Z (1 3.8

¢ Zet — Zcb 2 < * R(ZCb) ) ( )

It has to be mentioned that a cosine approach would provide a similar profile
characteristic as the sinusoidal one. The divergence of the horizontal flux of
saturated water vapour vanishes at the cloud base and becomes maximum at
cloud top (Fig. 3.1). The approximation in Eq. 3.7 is confirmed by simulations
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with the non-hydrostatic Mesoscale Model (MM5) performed by Fehr (2000,
[36]).
Inserting Eqs. 3.6 and 3.7 in Eq. 3.5 inside the cloud leads to:

8/)2113 . R(Zcb)
0z Za— %
T P:(Zcb)w(zcb) . <7T Z— Zeh )
1—=(14+ =" S .
[ 2 < + R(Zcb> o 2 Zet — Reb (3 9)

After the discretisation of 3.9 an expression for the vertical wind inside the
cloud at model level k can be derived:

~ * O\ — * ~ R Ze
wr = ()" {pv,k—lwk—l — (21 —Zk)M
Zet — Recb
T 1IN . (T 2k — Zcb>:|}
1——(1+- e 3.10
[ 2 ( _'_C) SZH(Q Zet — Zcb ( )
with
c = - 0,1
bl [0,1]

The level (k — 1/2) is located between levels k and (k — 1). The parameter ¢
is a measure for the conversion efficiency of saturated water vapour into rain
water at cloud base . This is the closure assumption of the cloud model and
characterizes the shape of the vertical wind profile. Assuming a constant rain
rate, large (small) values of ¢ mean high (low) conversion efficiencies resulting
in moderate (strong) vertical updrafts.

The cloud model includes several assumptions and simplifications, the only
tuning parameter is ¢. This parameter is set using a search algorithm in the
nearby model points or dynamically adjusted (see par. 3.2.1). Some idealised
vertical wind profiles for different rain rates and conversion efficiencies are
shown in Fig. 3.2. These profiles strongly depend on the partial density of
saturated water vapour profiles. According to this dependence we took p; from
the model precipitation point in order to calculate w.

We can note that the maximum wind speed grows with increasing conversion
efficiency and, from our calculation, also with cloud depth. For the explanation
we take a deep convective (cumulus clouds) case, with estimated cloud top
height of 8000 m. A strong vertical wind located in the upper third of the
cloud is well represented. As clearly seen Fig. 3.2, the max vertical wind is
near 20m/s for strong precipitation (20 mm/h) and ¢ = 0.1.
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Figure 3.2: Vertical wind profiles for different rain rates(from 0.1 mm/h to
20 mm/h) and conversion efficiencies (from 0.1 to 1 with 0.1 step size) from
the simplified precipitation scheme. In this case we have artificial set the cloud
base to 1000m and the cloud top to 8000m. The essential partial density of
saturated water vapour is taken from a COSMO run.

PR: 1.0- 3.0mm/h CB:2000-3000m CT:7000-9000m PR:19.0-20.0mm/h CB:2000-3000m CT:7000-9000m
T T T T T T T T T

10000 10000
n. points = 623 n. points = 29

8000 [ 8000

E 60001 E 6000
= £
2 =

2 4000 £ 4000

2000 [ 2000

0 I 0 L L L I
0.0 0.1 0.2 0.3 0.4 0.0 0.5 1.0 1.5 2.0
vertical wind (m/s) vertical wind (m/s)

Figure 3.3: COSMO reference run vertical wind profiles. Mean of the vertical
wind for the points with a precipitation at the cloud base of about 0.1 mm/h
on the left side and 20 mm/h on the right side.
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In Fig. 3.3 average vertical wind profiles simulated by the COSMO reference
run without the use of convection parameterization are plotted. Averages
have been made over profiles are from a run of 5 hours with an output every
5 minutes. We compare clouds and precipitation with similar characteristics
as in Fig. 3.2. In the COSMO wind profiles (Fig. 3.3) we took the profiles
with cloud base between 2000m and 3000m and cloud top between 7000m and
9000m. Two rain rate intervals are taken into account, in the range of one and
three millimetres per hour (plot on the left side) and between 19 and 20 mm/h
(plot on the right side).

The curves on fig. 3.3 and Fig. 3.2 look similar, the location of the maximum
wind speed is lower for the COSMO reference run especially for the higher rain
rate, maybe due to the low number of points that we could find with strong
precipitation. For strong rain rates a weak downdraft (maximal —0.3m/s) is
present in the region below the cloud base.

Negative velocities are not present in the one-dimensional cloud model. We
are not assimilating the downdraft but only the updraft for the precipitative
clouds. We assumed that the downdraft is weaker than the updraft (Emanuel,
1994 [35]). This relationship and the consistency with the model vertical wind
is proven in Chapter 5. In case of no precipitating clouds the vertical wind is
set to 0.

The results of the simplified precipitation scheme demonstrate that the simple
approach meets all requirements and provides COSMO-consistent vertical wind
profiles similar to observations (Rogers and Yau 1989 [83], Shibagaki et al. 2000
[86] , Xu and Randall 2001 [103], Stull, 1999 [88]) for convection in continental
areas (first statistics from Byers and Braham, 1949 [15]). However, all these
studies were made with the motivation of improving cumulus parameterization
and not an initialisation scheme.

3.2.1 Conversion efficiency determination

According to eq. 3.11, ¢ is important for the determination of the profile shape
and the intensity of the vertical wind. Thus c is adapted in a dynamical way
using a search algorithm taking into account the quality of the forecast. The
main idea is that columns close to each other with similar precipitation rate
also have similar values of c.

For the estimation of ¢, a constant background field (with a value of 0.4) is
chosen; this value matches best the mean observed vertical wind profile for
raining clouds (Haase et al., 2000 [42]). Starting from this value, ¢ is changed
in order to move the model state into the direction of the observation state.
The first step is the definition of a good forecasted point using the criterion:
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Rona — 20% Runa < Rmod < Rana + 20% Rana (3.11)

Here R,,,q is the model precipitation at lowest radar height for the considered
grid point and R,,, the analysed precipitation.

In the model columns, where eq. 3.11 is fulfilled, ¢ is not changed. In the
other columns we search in the surrounding area (within a radius of 5 points)
for the column with the best matching rain rate. In this case ¢ is calculated
using the model variables (precipitation and wind both at the cloud base), the
resulting model-consistent parameter is then applied.

If no columns satisfy eq. 3.11 we apply a dynamical determination of the
conversion efficiency. The adjustment is made using the difference between
analysed precipitation and the model precipitation (normalized with the sum
of the two precipitation rates), and the value of the parameter at the previous
time step in order to enhance or reduce the vertical wind (and then the
precipitation) to meet the requirements in eq. 3.11.

The conversion efficiency is adapted using:

(3.12)

c(n) = c(n —1) [1 +0.25 - sin (”M)]

5 Rana + Rmod

Here ¢(n) is the conversion efficiency at the time step n. A sinusoidal profile
is used. The conversion efficiency is confined to the interval:

0.25 < ¢(n) < 1 (3.13)

3.3 Cloud Analysis

In this Section we describe how the lower and upper boundaries for the clouds
are set. Normally the cloud base and cloud top heights derived from the
COSMO itself are not in agreement with the observation. On the other hand,
the use of observed clouds with their properties is often thermodynamically
inconsistent with the model state. The intention of the PIB is to assimilate
clouds in accordance with the observations but without losing the model
balance.

3.3.1 Cloud base height

The first assumption is a well mixed atmospheric boundary layer. Under this
condition lifting condensation level (LCL) and convective condensation level
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T

Figure 3.4: Convective condensation level

(CCL) are identical (Rogers and Yau, 1989 [83]). The LCL is defined as the
level to which a parcel of moist air can be lifted adiabatically until it becomes
saturated (Wallace and Hobbs, 1977 [95]). The CCL on a thermodynamic
diagram is defined as the point of intersection of a sounding curve (representing
the vertical distribution of temperature in an atmospheric column, red line in
Fig. 3.4) with the saturation mixing ratio line corresponding to the average
mixing ratio in the surface layer (black line). In both cases the air parcel
is displaced to the level where it will become saturated as a result of its
adiabatic cooling, for the LCL the displacement depend on mechanical lifting
while for the CCL is the results of turbulent circulations forced by surface
heating (Holton et al., 2003 [46]).

PIB calculates the LCL using the model variables and identifies it with the
cloud base. For Craven et al. (2002, [23]) a clearly wrong calculation for
the LCL is possible if the surface temperature and/or the dewpoint is not
representative of the thermodynamic profile in the boundary layer. Thus, PIB
uses the mean temperature and the mean dewpoint temperature calculated
from the model variables in the lowest 100-hPa layer; the choice of 100-hPa is
recommended from the results of Craven et al..

The calculation of the temperature at the LCL (77,) uses the temperature (77)
and the dew point temperature (7)) of the mixed layer, consequently (Bolton,
1980 [12]):

TL — T/TD) ‘|— 56 (314)

1 In(
Tp—56 + 800

all temperature values are in Kelvin.
From the temperature of the LCL the cloud base model level is searched.

Another approximation of the cloud base is derived from the calculation of
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the CCL. An air parcel with environmental properties (plus a small excess
temperature) is lifted dry-adiabatically from the lowest model level. The
convective condensation level is then defined to be the (full) level where the
parcel becomes saturated and its buoyancy is greater or equal zero. Also in
this case a mixed layer of 100-hPa is used.

Both estimates of the cloud base are nearly independent so we assume that
the average of both has a smaller error than the individual estimates.

The determination of the cloud base height is a very sensible parameter for
the PIB; an error in its definition leads to a different CAPE, since not only the
vertical wind is changed but also saturation occurs at different levels, for the
levels from cloud base to cloud top; therefore the dynamics of the atmosphere
is strongly influenced.

Forsythe et al. (2000, [37]) proposed a combination of satellite cloud
classification with surface cloud reports, which results in a superior estimate of
cloud base height (especially for broken cloudiness) compared with an estimate
using only interpolated surface data.

3.3.2 Cloud top height

The cloud top height is taken from the SAFNWC product from the DWD (see
Section 2.3). The assimilation is made every 15 minutes and the cloud top
height is left constant in the time between two assimilations.

An algorithm for the definition of a cloud top height depends on the cloud
type (for the cloud type definition see Section 2.3.2). The satellite data are
interpolated to the model grid and the algorithm assigns the following values
to each grid point:

e -1 for missing data.
e -2 for no cloud type or cloud type with a low water content.
e -3 in case high clouds obscure the top of the precipitating clouds.

e the cloud top height in the other cases.

An important part in the PIB algorithm (Fig. 3.5) is the assimilation of the
precipitating grid points. These are the points where the analysed precipitation
is greater than 0.1 mm/h. In areas where the radar data indicate precipitation
and where the cloud top height is set to a value less than 0, an optimal
interpolation algorithm is used to fill these gaps (Ament, 2001 [3]). The
interpolation algorithm follows the general theory in Daley, 1991 [26] (see
Chapter 1.2.1). The background cloud top height is set to 8000m, which
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is approximately the average height for a convective cloud (Lopez, 1977 [67],
Sherwood et al., 2004 [85]).

An optimal interpolation algorithm aims to minimize the excepted analysis
error variance as a function of the weights (from eq. 1.3 ), i and k are the
analysis and the observation grid points, respectively:

O(A; — T;)*
Wi

where A; = B; + S5, Wi[Or — Bi] (for notation see Chapter 1.2.1).
Subtracting the true values leads to:

=0 (3.15)

K
A =T, =B, —T; + Y Wi[Or, — By (3.16)
k=1

We assume that both the background field and the observations are unbiased,
< --- > is the expected value operator:

< B —T;,>=< By —Tp, >=< Oy, — T}, >=0 (3.17)

Thus < Oy — By >=< (O — T}) — (Bx, — T}) >. This implies from 3.16 that
the analysed value A; is also unbiased. With these assumptions the analysis
error at grid point i, E% is given by:

2 = < (A -T)?>=<(B;—T)*>+2- ka< (Or — By)(B; — Ty) >
k=1
K K
ZZ WiuWy < (O — Bg)(O; — By) > (3.18)
k=11=1

< (O — By)(O; — B;) > is the covariance between observation increments
at observation location 7 and 7. < (O — By)(B; — T;) > is the covariance
between background error at r; and the observation increment at 7. Using
eq. 3.15, we obtain:

2

Z il < Ok — Bk)(Ol — Bl) >= — < (Ok — Bk)(B, — TZ) > (319)

The term at the right side of the eq. 3.19 is determined using :

< (O — By)(B; — T;) >= Cy|ry, — 71 (3.20)
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The value for C} is set to:
Cy = exp(—0.001841 - |7, — 77]) (3.21)

The parameterisation of C} is based on an experiment performed in August
1998 using the analysis of the cloud data for the whole month, in an analysis
by F. Ament, 2001.

At this point an analysis of the cloud top height is available. The model
cloud top height derived from the cloud water content profile is nudged to the
analysed cloud top height, with a nudging coefficient of 0.5:

(3.22)

tlevm, tl
ctlev = INT (C CUmod + € ev>+1

2

where ctlev,,.q is the model level closest to the cloud top, and ctlev is the cloud
top from the analysis.

3.3.3 Corrections

A difference between shallow and deep convection is made using the results
from Bechtold et al. (2001, [11]), who give some parameters for the minimum
cloud depth in case of deep convection.

Since the cloud top can be reasonably retrieved from satellite measurements,
we assume that the definition of the cloud base can lead to the bigger errors.
Since cloud depth is a very sensitive parameter in PIB, we use a correction for
cases when the calculated cloud base and top height (see cap. 3.3.1 and 3.3.2)
are inconsistent with the model dynamics.

For every cloudy grid point we check whether shallow or deep convection
is expected. The deep convection grid points are defined, in the first
approximation, as the points where precipitation greater than 5 mm/h occurs.
For this decision we apply the criteria of the convection parameterisation
by Tiedtke (1989, [92]), i.e. we assume that deep convection takes place
in connection with strong low-level convergent flows. Thus we use a
parameterisation based on the three dimensional humidity convergence (Q)
and the boundary layer turbulence diffusion (€2). Deep convection in a grid
point occurs in case of:

g (FQ-p

Rd 0 T
where R, is the gas constant for dry air, g the acceleration of gravity, H the
height of the model atmosphere, p the pressure, T' the temperature, z the
height.

dz>-11-Q-g (3.23)
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For deep convection the cloud depth should be at least 250 hPa (Bechtold et
al., 2001 [11]). If the differences between cloud base and cloud top is less, the
cloud base is lowered in order to match this thickness. Similarly, if shallow
convection is analysed and the difference between the cloud boundaries is too
large, the cloud base is raised until the cloud thickness is less than 250 hPa.

3.4 Modification of model profiles

After introducing the simplified precipitation scheme, including its input
parameters (par. 3.2), the model is now applied to assimilate the vertical
wind profiles into COSMO. Additionally, the fields of specific water vapour,
cloud water content and cloud ice content are adjusted (see Tab. 3.1). PIB
is applied only when the difference between model precipitation and analysed
precipitation exceeds 20%. This threshold is a rough guess of the minimal
uncertainty of the radar-based precipitation estimate.

The applied modification depends on the intensity of the analysed precipitation
rate (eq. 3.6) and on the vertical location of the model grid point. When PIB
is used a threshold for the precipitation rates (Ry,) of 0.1 mm/h is assumed.
Therefore, at grid points where radar data are available with an analysed
rainfall rate of 0.1 mm/h or less, model precipitation has to be suppressed
taking into account the presence of clouds from the satellite data. PIB (as
described in table 3.1) divides the 1D vertical atmosphere in three Sections:
a subcloud layer (z < z4), a cloud layer (z4 < z < z4) and an above-cloud
layer (z > zq).

The PIB scheme changes the model variables considering:

e Changes made to the COSMO fields should be as small as possible.

e The model fields should be drawn to an atmospheric state comparable
with the observations.

3.4.1 Forcing of precipitation

Using the analysed rainfall rate, grid points with precipitation greater than
0.1 mm/h are forced to the analysed precipitation. To achieve this purpose
the vertical wind in the entire column is changed. Inside the cloud (from z
to z.) w is replaced using the artificial profile described in Section 3.2, eq.
3.11. Since the upper boundary of the cloud is defined by the zero-buoyancy
level, vertical wind above the cloud top height is set to zero. Between cloud
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Table 3.1: Modification of prognostic COSMO variables w, q, and q. depending
on the intensity of the analysed surface precipitation rate , see the calculation
of W eq. 3.11, and the vertical location of the model grid point, zsy is the
height of the surface above the sea level. Ry, 1S the analysed precipitation,
Ry a threshold to determine the rain area 0.1 mm/h, g} specific humidity at
the saturation point, qcmin is the threshold for stratocumulus 0.24qg - kg~ 1.
Outside of the radar area the variables are not modified.

height Runa > R, Runa < Rep,
cloud area no cloud area
Z > 2ot w=0 w=0 w : not modified
rh =min(rh,99%) | rh = min(rh,99%) | rh = min(rh,99%)
e =0 e =0 e =0
¢ =0 g =0 g =0
Zet > 2 > Zep w = w(z) w=0 w : not modified
@ = qy @ = qy rh = min(rh, 99%)
qc : not modified | ¢, = min(qc, gemin) g.=0
q; : not modified q =0 ¢ =20
z < Zepy w =W (zep) Zib__z;:ff w=20 w : not modified
0w = ¢ (2ep) 0w = q5(2ep) rh = min(rh,99%)
qGc =10 qGc =70 ge=0
=0 =0 =0

base and surface the vertical wind is replaced by a linearly decreasing updraft
(from the value at the cloud base to 0 at the surface):

N Z = Zsrf

= ) ———— 3.24
wlz) = i) = e, (324)
with 2z, ; the height of the surface above sea level (Fig. 3.2 for the vertical
wind profiles). The change of the vertical wind in the model could create
instabilities in the model dynamics. In order to minimize the formation of

gravity waves Newtonian nudging is used.

The maximum relative humidity above the cloud top is fixed to 99%. Therefore
the maximum of the specific water vapour content above the cloud top is
calculated by:

0.622 - 0.99¢*
, = 3.25
T = 0378 0.99¢ (3.25)

Inside the cloud the air is assumed to be saturated (¢, = ¢, where ¢ is the
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saturation specific humidity). Below the cloud base the specific humidity is
equal to the saturation specific humidity at the cloud base: ¢, = ¢} (2). It is
assumed that the specific water vapour content is a conservative quantity in
the PBL (Stull, 1999 [88]).

The specific cloud water and cloud ice content above the cloud top and below
the cloud base are set to zero. Inside the assimilated cloud, water and ice
contents are not modified. Therefore the COSMO is forced to generate clouds
according to the prescribed specific humidity distribution.

3.4.2 Suppression of precipitation

In the case of no radar data (or missing data) the PIB is not applied, and all
profiles remain unchanged. No radar data are grid points where the composite
has no information, while missing data are points where the radar data are
not available for a limited time.

For grid points where the analysed surface precipitation rate is equal or less
than 0.1 mm/h, PIB suppresses precipitation taking into account the presence
of clouds (derived from satellite data).

At grid points where no cloud is observed the model vertical wind field is not
changed, but the maximum relative humidity is reduced to 99%. The cloud
water and ice content is set to 0 in order to remove the source of precipitation
formation consistent with the previous request.

For the cloud area the vertical wind is set to 0 in the entire column, and in the
cloud the specific cloud water content has a maximum of 0.24¢g/kg. This value
reflects a usual property of stratocumulus (Miles et al., 2000 [74]). Generally
PIB tries to build broad regions of gentle downdraft, or vertical wind set to 0,
surrounding smaller regions of strong updraft, as described in Stull, 1999 [88].

By this assumptions the model precipitation is suppressed at grid points with
an analysed surface rainfall rate of 0.1 mm/h or less without influencing the
nearby assimilated clouds.
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Chapter 4

Identical twin

In this Chapter an identical twin experiment is performed with the aim to check
the possible existence of inconsistencies between the assimilation scheme and
the NWP model in generating precipitation.

In an identical twin experiment (a broad literature to this issue exists, e.
g. Elbern et al. 1997 [33], De Lima Nascimento and Drogemeier 2006 [27],
Orlandi et al. 2001, [76], Jiang et al. 2002 [48] ) the model is first run
without any assimilation (control run , CTL). The output from CTL is used
to generate a set of pseudo observations (the reference atmosphere), in our case
the fields of rain rate and cloud top height. In the second step the model is run
while assimilating these pseudo observations (identical twin run, IDTWIN).
For a good description of the identical twin experiment theory see Arnold and
Dey (1986, [6]) where the development of this technique through 30 years is
described.

In such experiments both the model and observation error are added to the
pseudo observations before assimilation in order to judge how well the analyses
fit the reference atmosphere. In our case we only check the existence of
imbalances and the consistency of PIB-modified model variables with the
reference atmosphere. PIB is therefore applied without adding errors. A
perfect assimilation algorithm must be consistent with the NWP model, it
must not change the model field during this type of experiment. However a real
assimilation algorithm changes the model fields and its physics. The IDTWIN
run differs from the CTL because the pseudo-observations are generated only
from a restricted CTL output to mimic the availability of the observations
in space and time, i.e. 5 minutes for the radar data and 15 minutes for the
satellite data.

A comparison of the control and the identical twin runs allows to investigate the
properties of the assimilation algorithms, setting aside the observation errors.
During the initialisation window, the improvements from the PIB procedure

45
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Figure 4.1: Experiment methodology

are evaluated by analysing the time evolution of the differences between the
state of the atmosphere simulated in the two runs. We require for our scheme
that the differences between the forecasted fields remain small (something like
a near approximation to a perfect algorithm), also at the end of the forecast
period. The model fields for the two runs will have always differences at the
end of the initialisation period because the assimilation scheme is not perfect
consistent with the model. The two free forecasts start from two different
states.

In our case the numerical model (COSMO model 4.6) is first integrated
from the initial conditions over 5 hours for the reference run. Then the
pseudo observations are assimilated into a run that has an hour of control
run, followed by a two hours assimilation window, and then by another two
hours of free forecast (as elucidated in the Fig. 4.1). Normally PIB modifies
only those columns for which the difference between analysed and modelled
precipitation is larger than 20%; this constraint is not applied for the identical
twin experiment, because in that case PIB would not apply any action; CTL
and IDTWIN would be identical. We change the model variables using PIB
for every model time step during the assimilation window. We do not apply
PIB for those points where both CTL and IDTWIN show no precipitation.

The model domain is the operational used by COSMO-DE (see Fig. 4.2), the
operational horizontal resolution (2.8km x 2.8km) is used as well.

First we describe the three test cases (Section 4.1) then the results are discussed
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Figure 4.2: orography of the COSMO integration area, the coordinate are for
the rotated grid model

(Section 4.2).

The position of the cloud base (Section 4.3) is revealed in this work as an
interesting parameter in the PIB precipitation forecast success, because of
the sensitivity of CAPE to this parameter. The simulated convection is
sensitive to low level humidity: even small changes can lead to different storm
developments, particularly in environments classified at the transition between
different storm regimes (Park, 1999 [78], Weisman and Klemp, 1982 [97]).
Generally the low-level moisture controls the timing and persistence of clouds
(Hong et al., 1995 [47]) and variations in moisture content can alter convective
rainfall significantly (Cotton and Tripoli, 1981 [21]). Moreover, Crook (1996,
[25]) showed that the storm strength is more sensitive to the variability in
moisture than in temperature.

The comparison between the horizontal wind (direction, absolute value and
divergence) in CTL and IDTWIN is interesting. We demonstrate that the
change of the vertical wind adjusts also the horizontal wind field (from the
mass conservation equation). The convergence near the cloud base as well as
the divergence near the cloud top will be analysed too (Section 4.4).

Finally results without the assimilation of the vertical wind and without the
humidity adjustment will be evaluated (Section 4.5), in order to determine the
impact of this parts of the scheme.
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4.1 Case studies

We investigate the performance of the PIB scheme with three convective cases
in Germany:

e CASE 1: system characterised by a convective line moving toward central
Germany.

e CASE 2: cold front leading to many small convective systems.

e CASE 3: convective precipitation that moves across southern and south
eastern Germany.

The synoptic descriptions are based on the radar composite output from DWD
(Figs. 4.3, 4.4 and 4.5) and the Berliner Wetterkarte (Figs. D.1, D.2 and D.3).
The description of the weather was performed by the Freie Universitat Berlin

4.1.1 Case 1 : June 29, 2005

An upper-air low pressure zone (the surface pressure chart is in Fig. D.1) is
present near the west part of Brittany in the early hours of the day. Its cold
front moves eastward. A strong upper-level ridge, whose axis extends from the
North Sea above West Germany and North Italy to Tunisia, advects warm air
from North Africa to middle Europe.

Southwest Germany reaches high temperatures, for example in Freiburg the
maximum temperature was 35°C and in Karlsruhe 34°C. In the afternoon
several storms developed along the Danube and near the Black Forest, which
are pulled southward with the upper air flow. The studied event, well visible
in the radar data (Fig. 4.3), is a convective line moving across Southern and
central Germany during the night. It starts at about 00 UTC and finishes
at 11 UTC. As measured by DWD the precipitation amount for this event is
high, e.g. 48 mm for a six hours accumulation at the Cologne-Bonn airport.

The distinctive feature of this case is a poor forecast: the operational DWD
forecast between 00 and 06 UTC predicted no rain or only small amounts in
the area of interest. The cold front is not caught from this forecast.
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Figure 4.3: Radar composite image for June 29, 2005, 06:00 UTC (CASE1).

4.1.2 Case 2 : August 19, 2005

The influence of ex-hurricane Irene is important for this event. This leads
to advection of tropical sea air in the middle latitudes, (Fig. D.2). Near
the Azores hurricane Harvey dissipated some days before, leaving an upper
level trough extended until Madeira and moving to South-West Europe by the
westerly flow. At the same time the anticyclone EDDA moves to the Baltic
region and a cold front evolves on the west part of Germany. Convective
precipitation started around 12 UTC and covered the area for the rest of the
day until about 22 UTC.

This day is interesting for our study because it is a possibility to test the
behaviour of PIB in the presence of multicells (Fig. 4.4).
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Figure 4.4: Radar composite image for August 19, 2005, 16:00 UTC (CASE2).

4.1.3 Case 3 : June 28, 2006

In northern Germany the influence of the low pressure region QUEENY leads
to low temperatures; in southern Germany a high pressure ridge advects warm
air from northern Africa. Therefore a high temperature gradient is present.
The maximal temperature rises from 16°C in List/Sylt to 30°C' in Bavaria,
the minimum temperature rises from 6°C' in Lower Saxony to 18°C' in Baden-
Wiittemberg.

In Southern Germany a convective region, activated by a weak trough, moves
castward during the first hours of the day (Fig. 4.5).
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Figure 4.5: Radar composite image for June 28, 2006, 05:00 UTC (CASE3).

4.2 Precipitation and CAPE field

In this Section the precipitation field is analysed, at the end of the two hours
assimilation window and after one hour of free run. It is important to note
that the behaviour of the model during the free run depends on the general
predictability of the situation. The first hours of free run are useful to analyse
how the model reacts to the adjustments due to the PIB without any other
constriction.

A first comparison between CTL and IDTWIN is made, looking at the
precipitation fields for every case study (Figs. 4.6, 4.8 and 4.10). The
comparison reveals the general ability of PIB to capture the main features
of the storm evolution but also the general tendency to underestimate the
precipitation amount at the end of the assimilation window. Otherwise the
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position of convective cells is well represented. A relationship with the positive
CAPE field (defined in appendix C) is also discussed.

One hour after the end of the assimilation window (that means one hour free
run at the beginning, two hours of assimilation and then one hour free run;
as described in Fig. 4.1), the precipitation of IDTWIN has the common
feature to remain in good approximation with CTL, this is a prove of the
PIB’s consistency with the model. In other words the PIB does not upset the
model physic.

In CASE1 IDTWIN underestimates CAPE, and consequently precipitation,
during the assimilation window. As visible in Figs. 4.6 and 4.7 for the eastern
part of France CAPE presents in CTL is reduced during the assimilation
window in IDTWIN. In the same region after one hour of free run the two
CAPE fields are very similar but in the precipitation fields some differences
are present, in the amount as well as in the path. In this case PIB assimilates
the weather situation quite well but it suppresses also some convective cells
in east France, moreover PIB anticipate the end of convection. A possible
explanation for this behaviour of PIB is present in the next sections.

For CASE2 the path of CTL CAPE is very similar to the IDTWIN ones,
also the approximation of the quantity is good (Fig. 4.9), at the end of the
assimilation window as well as after one hour of free run. Only small differences
are present, consequently the precipitation is well reproduced with respect to
position and size of the convective cells (Fig. 4.8). In this case PIB is able to
reproduce the same dynamic present in the model.

The IDTWIN in CASE3 underestimates the CAPE in the precipitating regions
(Fig. 4.11). In the CTL the CAPE in the precipitating regions is very low
(about 350 J/kg). The precipitation in the IDTWIN is underestimated (Fig.
4.10) although the path is very well approximated.

The good CAPE approximation of IDTWIN leads to the good quantitative
approximation in precipitation for these regions, as we expected. The
initialisation of the model variables leads to a CAPE initialisation and
furthermore improves the forecast during the free run. Generally PIB has
the characteristic to underestimate CAPE, this feature will be discussed also
in the next Sections.



4.2. PRECIPITATION AND CAPE FIELD 53

mm/h

>30.0

0.1
s F‘J ; _'TQ%L\\ mm/h
'bij?'iw |
Q >30.0

. _.-,_J\\

T — |
(@)
-4 ’“‘f’ Q
5
\
\\
< 3
7
e ]

TRy

Vow i

) N
‘)E A
2\
B} / 2.0
ikl
“A
ry \\ N
™
S

0.1

Figure 4.6: Selected results of the hourly accumulated precipitation field for
29/06/2005. After two hours of assimilation. a) control run, b) identical
twin. After an hour of free run. ¢) control run, d) identical twin.
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Figure 4.7: The same as in Fig. 4.6 but for the CAPFE field.
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Figure 4.8: Selected results of the hourly accumulated precipitation field for
19/08/2005. After two hours of assimilation. a) control run, b) identical
twin. After an hour of free run. ¢) control run, d) identical twin.
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Figure 4.9: The same as Fig. 4.8 but for the CAPFE field.
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Figure 4.10: Selected results of the hourly accumulated precipitation field for
28/06/2006. After two hours of assimilation. a) control run, b) identical twin.
After an hour of free run. c) control run, d) identical twin.



58 CHAPTER 4. IDENTICAL TWIN

JI kg
> 2000

A
120

200

J/ kg
> 2000

120

200

Figure 4.11: The same as Fig. 4.10 but for the CAPE field.
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Figs. 4.12, 4.13 and 4.14 show the pdf of the ratio of precipitation generated
by the CTL to precipitation generated by the IDTWIN, and the frequency bias
of IDTWIN. In the pdf distributions only grid points, where both simulations
produced precipitation between 1 and 60 mm/h were compared. Note the
change of axis increments in the pdf plots, from ratios lower than 1 to higher
than one.

A value of one would indicate a perfect reproduction by IDTWIN of the
precipitation field produced by CTL. Values less (more) than 1 indicates
overestimation (underestimation) by IDTWIN. In order to simplify the
comparison between different pdfs the integral between 1/3 and 3 is added.
This quantity denotes the probability that the IDTWIN precipitation is
between 1/3 and 3 times the CTL precipitation.

The frequency bias (see Appendix A.1) with a threshold of 0.1 mm/h indicates
an overestimation (values bigger than 1) or an underestimation (less than 1) of
the precipitative area, in this case the frequency bias completes the information
given from the PDF, because it takes into account also the points where the
simulations have no precipitation.

During the assimilation window the pdf of CTL/IDTWIN is always shifted
to values larger than one, with the maximum placed between 1 and 2. This
means that the amount is underestimated. The integral values underlines that
IDTWIN approximates CTL worst in the second hour of assimilation compared
to the first one, especially in CASE1. During the free run the pdf is closer to
one, moreover the integral values increases or remain quite constant. The
IDTWIN tends to return to the CTL state. The model dynamics and physics
are not upset proving the PIB consistency with the model.

The frequency bias stays close to one in CASE2 and CASE3, but for CASE1 the
precipitation areas is clearly underestimated (frequency bias always negative
with values of also 0.5).
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Figure 4.12: PDF of CTL/IDTWIN for CASE1. Continuous line during the
assimilation window, dashed line during the free run. In the legend beside
the hour, the integral between 1/3 and 3 is written. On the right side Bias
frequency for the IDTWIN.
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Figure 4.14: The same as Fig. 4.13 but for CASES.
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4.3 Cloud base in the convective regions

In the following Section we analyse in particular the convective subareas
marked as black boxes in Figs. 4.6, 4.8 and 4.10.

A strong relation exists between cloud base height and CAPE, when cloud
base is estimated from the level of free convection. In a conditionally unstable
atmosphere the parcel becomes warmer than its surroundings when passing
that level. This also means that the modelled precipitation increments are
sensitive to the cloud base determination. The PIB is also sensible to this
determination because above the cloud base the air is assumed to be saturated,
which changes CAPE accordingly.

In Figs. 4.15, 4.16 and 4.17 we compare precipitation (upper pictures) and
cloud base (lower pictures) in the convective areas, in order to visualize the
behaviour of IDTWIN in the convective regions. The cloud base height is
given as model level (level 50 is closest to the soil, level 1 is the top of the
atmosphere). The figures show the situations at the end of the assimilation
window. IDTWIN assimilates the precipitation of CTL, thus the cloud base
in IDTWIN must be associated with the precipitation in CTL.

In this work the prognostic precipitation is used (for explanation see Section
2.1.4). The precipitation is advected on its way from the cloud base to the
ground. The cloud base can be displaced somewhat from the precipitating
area.

In CASE1 (Fig. 4.15) such a displacement is present. The convective cells in
IDTWIN has both position and intensity errors. The large area with a low
cloud base in CTL (red colour) is not present in IDTWIN, consequently no
precipitation is formed in this area. Also looking to precipitation in CTL and
cloud base in IDTWIN the large precipitating area at the box bottom has no
correspondence in the IDTWIN cloud, for the other convective cells clouds are
present. A connection between low cloud base height and the precipitation
field is however well visible. Where IDTWIN succeeds into form low cloud
base also precipitation is present. In this case precipitation in IDTWIN is
underestimated and connected with the overestimation of cloud base.

In CASE2 (Fig. 4.16) a positioning error is present. Consequently a
displacement is also present in the precipitation field. The cloud base is better
approximated concerning its height than in CASE1, but an underestimation is
visible. Accordingly to that the precipitation estimation is also overestimated
and the convective cells are more intense. In particular a cloud area at the
bottom-right part for IDTWIN produces strong convective cells not presents
in CTL.

In CASE3 (Fig. 4.17) the cloud area is underestimated but its structure is
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Figure 4.15: Convective area for the day of 29/06/2005 (area defined in Fig.
4.6). Hourly accumulated precipitation at the end of the assimilation window,
a: for the control run, b: for the identical twin run. ¢ and d: the corresponding
cloud base distribution.

well approximated. Also for this event the relationship between convective
cells and cloud base is evident.

In presence of convective cells PIB succeeds quite well into assimilate the
corresponding cloud base, however in CASE1 a precipitating area in CTL
is not reproduced in the IDTWIN clouds.

From this more qualitative approach we can assert that the height of the cloud
base is higher in IDTWIN than in CTL. But PIB maintains the relationship
between the presence of precipitation and the height of the cloud base. As
already seen in Section 4.2, the computation of the cloud base influences CAPE
and thus precipitation.

This bias of PIB in the determination of the cloud base is also evident in the
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Figure 4.16: Convective area for the day of 19/08/2005 (area defined in Fig.
4.8). Hourly accumulated precipitation at the end of the assimilation window,
a: for the control run, b: for the identical twin run. ¢ and d: the corresponding
cloud base distribution.

relative frequency of the cloud base levels, for the whole simulated area at the
end of the assimilation window, described in the histogram plot in Fig. 4.18.
Generally IDTWIN overestimates the determination of the cloud base level.
In CASE1 the CTL has a larger area with a cloud base close to 700hPa,
in other words IDTWIN underestimates the second peak and we have an
overestimation of the frequency of higher and lower clouds. Also in CASE2
and CASE3 the frequency peak close to 700hPa is underestimated but the
overestimation interests only the higher clouds (more than 600hPa).
Commonly PIB underestimates the medium height cloud bases and
overestimates the upper level cloud bases, the lower cloud bases are in good
agreement with CTL, thus the frequency of clouds more sensible to CAPE is
well assimilated.
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Figure 4.17: Convective area for the day of 28/06/2005 (area defined in Fig.
4.10). Hourly accumulated precipitation at the end of the assimilation window,

a: for the control run, b: for the identical twin run. ¢ and d: the corresponding
cloud base distribution.
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4.4 Mass flux divergence

PIB changes the vertical wind (Section 3.2), thus the horizontal wind should be
adjusted to this change via the mass conservation equation. This assumption
is verified in this Section.

In a convective boundary layer (Stull, 1999 [88]) horizontal convergence region
under the cloud base should be connected to the updraft. Above the level
of neutral buoyancy divergence should prevail. Both are connected with the
position of the convective cells shown in Figs. 4.15, 4.16 and 4.17.

We analyse the convergence for the model level 31 (corresponding to a pressure
of about 700~ Pa), which should be near the cloud base, according to the results
of Section 4.3. In this Section we focus on the fields at the end of the two hours
assimilation window.

From the results shown in Section 3.2 we expect the maximum of the vertical
wind lower for CTL than for IDTWIN, as well as for the corresponding
maximum of the divergence field. Thus the divergence near the cloud top is
analysed at model level 15 (corresponding to a pressure of about 250hPa) for
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IDTWIN and at model level 20 (corresponding to a pressure of about 400hPa)
for CTL.

The horizontal wind field (Figs. 4.19, 4.20 and 4.21, ¢ and d) near the cloud
base is well approximated in the Identical Twin run. Both the distributions
of the divergence field and the direction of the wind field are similar to CTL,
for all cases. The magnitude of divergence and convergence in the convective
region is properly reproduced. Convergence (negative divergence) is consistent
with the different positions and intensities of the convective cells.

At the cloud top (Figs. 4.19, 4.20 and 4.21, a and b) the wind field and the
correspondent maximum of mass flux divergence are quite well approximated
in CASE2 as well as in CASE3. In CASE1 a position error is present, as
in the precipitation (Fig. 4.15). In all cases the correspondence between
convective cells and divergence at high levels is clear. Moreover, the error in the
precipitation is low near the cloud top, because the most part of the humidity
is situated in the lower level. Therefore, the influence on the precipitation field
is low.

The precipitation fields (Figs. 4.15, 4.16 and 4.17) for the IDTWIN and CTL
simulations contain some differences; the convective cells have not the same
position, therefore the corresponding horizontal wind divergence fields are not
expected to be correlated.

For this reason the total horizontal wind divergence field is analysed in more
detail using its statistic. We subdivide divergence into classes with regular
intervals of 107 s7! (Figs. 4.22 and 4.23). As a measure of the differences
between the IDTWIN and CTL distributions we use as metric the Kullback-
Leibler divergence, also named relative entropy, of Z;pr/Zcrr (Kullback, 1968
[61]):

n

A
rel.entropy = > (Zerr log CTL) (4.1)
; Zrpr

where n is the number of bins used, Zopp is the frequency of values in a
given bin of CTL, Z;pr is the frequency of values in a given bin of IDTWIN.
A perfect simulation will have a relative entropy equal to 0. In the relative
entropy larger values denote a model output with a poorer approximation to
the reference data. With this analysis we are able to compare IDTWIN and
CTL in terms of relative frequency.

This analysis is performed for all cases, for cloud top and for cloud bottom. In
every plot the distributions are very similar with a low relative entropy (less
than 0.02, Figs. 4.22 and 4.23 ).

For a better analysis of the convective regions only the grid points with
precipitation above 2 mm are taken into account. With regard to the cloud
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Figure 4.19:  29/06/2005. Horizontal wind divergence (colour field) and wind
(black arrows) for the area in figure 4.15. The upper panel refers to the cloud
top, the lower panel to the cloud base. a and c: IDTWIN; b and d: CTL.

base (Fig. 4.24) a good approximation for all cases is still evident, for CASE2
and CASE3 (Fig. 4.24 b and c) a slight overestimation of the positive values
is present. The relative entropy increases respect to the entire field but it
remains less than 0.1.

Close to cloud top (Fig. 4.25) the approximation between IDTWIN and
CTL is worst than near the cloud base. In all cases the mass flux
divergence in IDTWIN has a flatter distribution; the extreme values of
divergence/convergence are overestimated. Nevertheless, the central parts of
the two distributions are fitting well and the relative entropy remains less than
0.25.
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In spite of the PIB changes of the vertical wind, the horizontal wind near
the cloud base seems to be adjusted in a model consistent way, that from the
analysis of its divergence. A local problem is present near the cloud top for
the grib points with strong precipitation. Anyway the divergence distributions
are similar and the relative entropy remains limited.
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Figure 4.20: The same as the Fig. 4.19 but for CASE2.
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Figure 4.21: The same as the Fig. 4.19 but for CASES.
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Figure 4.23: The same as the Fig. 4.22 but for the cloud top
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Figure 4.24: Relative frequency of the mass flux divergence at the cloud base
subdivided in classes, for the points where the precipitation is greater than

2 mm. a) CASEL, b) CASE2, ¢) CASES3
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Figure 4.25: The same as the figure 4.24 but for the cloud top
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4.5 PIB without vertical wind or without
humidity assimilation

An identical twin run without the vertical wind (PIB nowind) and one without
the humidity assimilation (PIB noqv) are made in order to evaluate their
respective impact in the assimilation scheme.

As measure of the error in the vertical wind field we use the Root Mean Square
Difference (RMSD, see appendix A) between CTL and IDTWIN wind fields,
the comparison is made between outputs with time resolution of five minutes.

4.5.1 Precipitation

In Figs. 4.26, 4.27 and 4.28 the precipitation distribution of the two hours
of assimilation and the two hours of free run is shown. These hours relate to
the time between 04 UTC and 06 UTC for CASE1 and CASE3, and between
15 UTC and 17 UTC for CASE2. As in Section 4.2 the integral of the pdf
between 1/3 and 3 is added.

For CASEL1 from the second hour of assimilation, the precipitation from PIB
nowind and from PIB noqv is more strongly overestimated (CTL/IDTWIN less
than 1 has a higher probability). The complete PIB scheme is generally better
distributed around 1. Only in the first hour of assimilation the distribution is
better in PIB noqv. The probability that the IDTWIN precipitation is between
1/3 and 3 times the CTL is, during the assimilation window, better for PIB
noqv. During the free run the integral values are comparable.

In CASE2 PIB noqv shows a better behaviour than the complete PIB during
the assimilation window, but not during the free forecast. Moreover, the
integral value for PIB noqv is better than the one of the complete PIB during
the assimilation window but not during the free run. Thus the assimilation
with the complete PIB seem to disturb the model dynamic less than the
assimilation with the PIB noqv. The PIB nowind is the worst option.

The behaviour of CASE3 is very similar to the one of CASEL.

The complete PIB system has a pdf of the precipitation similar to the CTL’s
pdf, during the assimilation window and also during the free forecast. The
PIB without the humidity adjustment has generally better results during the
assimilation window, the only change of the vertical wind field maintain the
PIB noqv state near the CTL state. On the contrary the quality of the
complete PIB does not decrease during the free run, thus we can conclude
that it has demonstrated a major model consistency. Both the assimilation
of humidity and vertical wind are necessary in order to maintain model
consistency.
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The PDF is again calculated only from those grid points where in both
IDTWIN and CTL precipitation is greater than 0.1 mm/h. This type of
verification doesn’t take into account overestimations or underestimations of
the precipitative area in the IDTWIN in comparison to the CTL. The frequency
BIAS with threshold 0.1 mm/h is given in Fig. 4.29 in order to give a complete
information. In all cases all schemes have good scores, but particularly for
CASE3 PIB nowind and PIB noqv have the tendency to slightly overestimate
precipitative areas during the free run (frequency BIAS bigger than 1.5).

We can conclude that both the assimilation of vertical wind and humidity are
useful and necessary.
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4.5.2 Vertical wind

The RMSD between IDTWIN and CTL of the three dimensional vertical wind
field is calculated (Fig. 4.30). The error is similar for all cases. For the
complete PIB the error at the beginning of the assimilation window is very high
(a mean in the whole field between 0.5 and 0.7 m/s). That is exactly what we
expect, since we are changing the vertical wind directly. The error decreases,
however, during the assimilation window. The two phase states become even
more similar when PIB is applied for a longer assimilation window. The
opposite behaviour is visible for PIB nowind and PIB noqv, their application
lead to an error that increases with the time. Thus we can gather that the state
of the complete PIB tends to return to the CTL state, but that not happens
for PIB nowind and PIB noqv.

At the beginning of the free run the four different model simulations (CTL and
three PIB versions) have the same boundary conditions but different initial
condition. After enough time they will converge to the same phase state,
for this reason the error decrease with the time but generally the PIB has a
better score (lower RMSD) because it modifies the model dynamics less than
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PIBnowind and PIB noqv.

This effect could be due to the feedback effect of the vertical wind assimilation
and humidity assimilation. If we assimilate only the humidity (PIB nowind) we
overestimate the vertical wind due to false CAPE production. If we assimilate
only the vertical wind we enhance the vertical wind in the precipitation field
in order to recreate the precipitation. But without the humidity adjustment
we need more vertical wind to obtain the same result.

COSMO’s response to the assimilation of the merely water component (cloud
water content, cloud ice content, water vapour, the PIB nowind) is a strong
enhancement of the vertical wind. The maximum values of the vertical wind
are plotted in Fig. 4.31. In all PIB versions for all cases the maximum of
the vertical wind is overestimated during the assimilation window, the CTL
remains between 10 and 20 m/s while the PIB simulations have values of
also 50 m/s. The behaviour of PIB and PIB noqv are very similar, that
means that the overestimation is originated from the direct wind adjustment.
The value increases at the beginning of the assimilation window and remains
quite constant during the initialisation time. PIB nowind needs some time
to reach these high values and the maximum of the vertical wind fluctuates
sharply. This variable also converges to CTL during the free run. Generally
the convergence of the complete PIB is faster than the other two.
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4.6 Summary of the Identical twin experiment

We made an identical twin experiment for three convective cases. A convective
line drawn from a synoptic situation, a quasi-chaotic convective event, and a
large convective region on mountainous terrain.

The PIB has shown the ability to maintain the main features of the storm
evolution, during the assimilation window as well as during the free forecast.
The determination of the cloud base in PIB is connected to the amount of
CAPE available for the atmosphere. Furthermore the presence of CAPE is of
crucial importance for the development of the convection. The link between
CAPE and precipitation is obvious. In CASE1 PIB has the tendency to
overestimate the cloud base height and consequently to underestimate the
precipitation. In CASE2 and CASE3 the coincidence between CTL and
IDTWIN is better. This is also proved from the pdf of CTL/IDTWIN (Figs.
4.12,4.13 and 4.14), where the probability of CTL/IDTWIN to lie between 1/3
and 3 at the end of the assimilation window is 0.570 for CASE1 and about 0.7
for CASE2 and CASE3. The probability remains quite constant during the
free forecast. The PIB changes the model variables but during the free run the
model states do not further diverge.

At the end of the assimilation window the variation of the horizontal wind
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is analysed. PIB succeeds in reproducing the mass flux convergence near the
cloud base. The relative entropy of the IDTWIN pdf of divergence compare
to the CTL pdf of divergence is bigger close to cloud top than near cloud
base. However such a problem seems not to have negative consequence for the
precipitation field.

PIB mainly consists of the adjustment of the humidity and the adjustment
of the vertical wind. In order to test the impact of the two components, two
additional simulations are made, with either one part switched off (PIB nowind
and PIB noqv). For PIB nowind and PIB noqv the error during the free run
increases, for the complete PIB it remains quite constant. Both, humidity and
wind, assimilation are necessary in order to avoid the presence of imbalances.
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Chapter 5

Real data assimilation

In this Chapter the performance of the PIB scheme is investigated with meso-~
scale simulation for August 2007 in the COSMO-DE area (Fig. 4.2). The
simulations are initialised every eight hours (at 00:00, 08:00 and 16:00 UTC)
and consist of forecasts of 9 hours. We want to quantify the improvement
achieved using PIB for QPF. The evaluation is made, based on the statistical
distribution of the precipitation to take the stochastic nature of precipitation
into account, this method is useful in order to understand the main features
of the forecast.

The control run (CTL) is created from a nine hours forecast from the COSMO-
DE 4.6, the same model as in the previous Chapter. It will be compared with
the run using PIB and LHN, both with an assimilation window of two hours
followed by 7 hours of free runs.

The model’s ability to reproduce the precipitation and the response of the
model dynamics will be investigated during the step by step assimilation, where
the model state is forced to the observation state (Section 5.2), as well as during
seven hours of free forecast (Section 5.1).

The simulations are validated with radar-estimated precipitation data (RY-
product, see Section 2.2.1), the same data used for the assimilation. Statistiscal
scores are used to quantify the quality of the forecasts. An improvement due
to the radar data assimilation is well visible, for both assimilation schemes.
The suitability of PIB for nowcasting purposes is very similar to the LHN one.
However, LHN has the tendency to overestimate the number of grid points with

stronger precipitation during the time periods dominated by diurnal convection
(simulations initialised at 08:00 and 16:00 UTC).

Furthermore, the sensitivity of PIB to the width of the assimilation window is
tested during the three case studies described in Chapter 4. The results show a
high performance of PIB using short initialisation period, also 15 minutes. On

79
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the contrary LHN shows poor forecast quality with short assimilation windows.

5.1 Evaluation of the free forecast

The precipitation fields of all forecasts for August 2007 are evaluated using
statistical quantities. For PIB and LHN we analyse the seven hours of free
forecast, for the CTL we take the same time range (that means the seven
hours of forecast between the third and the ninth hour).

5.1.1 Precipitation PDF and PDF of RADAR/MODEL

The pdf of the ratio of estimated precipitation (RADAR) to the forecasted
precipitation (MODEL) is computed (see Section 4.2 for explanations), the
computation is based on the accumulated precipitation over August, using
hourly data. Together with the pdf of the accumulated precipitation over the
seven hours of free forecast (Figs. 5.1, 5.2 and 5.3), it is used to test the ability
of the control run and the assimilation methods to simulate the distribution of
the precipitation. In order to estimate how well the model pdf approximates
the radar pdf, we use as metric the relative entropy of the model probability
compared to the radar probability, described in Section 4.4, Eq. 4.1.

The uncertainty of the model pdf is defined using a bootstrapping method
(Wilks, 2006 [98]). The used bootstrap method resamples the sequence of
days with repetition, in this way we do not disturb the spatial correlation of
the pdf.

The pdf of seven hours accumulated precipitation from the three simulations
indicates general underestimation of heavy rainfall. = The frequency of
precipitation rates less than 4 mm is overestimated with respect to the radar
data, while stronger rain values are underestimated. This behaviour is
particularly strong for CTL. Both assimilation methods are able to reduce
these tendencies significantly.

For the simulations initialised at 00 UTC, the behaviour of the three model
types are similar. They well approximate precipitation between 0.1 and 12 mm
and the relative entropies are very similar, they are within the uncertainty
limits. All simulations show underestimation of the precipitation greater than
12 mm. Also for the simulations initialised at 08 UTC, CTL and LHN show
very similar relative entropies. PIB shows a lower relative entropy (better
skill), due to the better approximation of the precipitation between higher
than 4 mm. CTL has the larger underestimation of precipitation greater than
8 mm. PIB and LHN have similar pdf for the simulations initialised at 16
UTC. They underestimate less than CTL the strong precipitation (more than
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12 mm). In this case the relative entropy of the two assimilation schemes are
very similar, while the one of CTL is higher.
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The relationship between the pixel sum of precipitation from the radar data
and the model data is described by the pdf of RADAR/MODEL (see Chapter
4 for explanation). For this quantity we take into account the precipitation
sum over the entire month during the seven hours of free forecast, for each
initialisation time. As in Chapter 4, in order to simplify the comparison
between different pdfs the integral between 1/3 and 3 is added.

For the cases initialised at 00 UTC PIB exhibits a slightly lower quality (the
reference integral is less than the one of the CTL, 0.818 for PIB and 0.856 for
CTL). In the other cases PIB leads to an improvement. The two assimilation
methods show comparable results.

CTL tends to underestimate the precipitation (the right tail of the pdf is always
bigger then the left). This problem is reduced by both assimilation methods.

The improvement due to the initialisation schemes is clear, the distribution is
always closer to one compared to CTL. For the runs initialised at 00 UTC,
PIB leads to a larger overestimation than LHN (the curve is higher on the left
side). The opposite happens for the simulations initialised at 08 and 16 UTC
where PIB overestimates less than LHN, but underestimate.

Both assimilation schemes (especially PIB) improve the forecast when

the initialisation is during daytime. Both PIB and LHN employ
precipitation/cloud models which better represent convective rainfall.
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5.1.2 Relative precipitation

We use the quantity total relative precipitation (in per cent) to measure the
reproduction of precipitation by the three types of simulations:

Rrad - Rmod

100 5.1
Rrad + Rmod ( )

Where R,.q is the radar precipitation and R,,.q the model precipitation. The
precipitation is referred to the precipitation sum over the entire month during
the seven hours of free forecast, for each initialisation time.

The quantity is computed for every pixel in the radar area, thus we can identify
local bias which may be caused by orography. The value of the total relative
precipitation is between —100 (the model has precipitation but not the radar)
and 100 (precipitation absent in the model but present in the radar). A value
of 0 means perfect forecast by the model, values greater (lower) than 0 indicate
underestimation (overestimation).

Figs. 5.5, 5.6 and 5.7 display the spatial behaviour of the error of the model
precipitation for the three different initialisation times. Nearby the frequency
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of the total relative precipitation is shown using bins of 5%. The areas mean
the integral on the left side of 0 (probability of overestimation) and on the
right side of 0 (probability of underestimation).

Generally CTL exhibits more large errors, both in overestimation and
underestimation leading to a flatter distribution. Large areas with strong
underestimation/overestimation are visible especially for the runs initialised
at 08 and 16 UTC.

For the simulations initialised at 00 UTC all three scheme show higher
probability of overestimation, especially PIB. The CTL shows a local large
area with high underestimation on the northern side of Germany, this feature
is diminished in LHN and completely disappeared in PIB.

For the simulations initialised at 08 UTC, PIB exhibits a better quality in
the east side parts (the underestimation has values with less intensity) of the
radar composite compared to CTL and LHN. But LHN is better in the centre
of the area. CTL has large areas with overestimation and underestimation, as
visible from its highly flat distribution (maximum of the frequency about 0.04
and quite constant between —40% and 40%). Both the assimilation schemes
succeed into improve the precipitation frequency, the distributions have both
the maximum nearby 0, with a value about 0.06.

For the simulations initialised at 16 UTC a large area of underestimation is
present mainly in the centre and in the northern part of Germany for the
CTL simulations. This underestimation has a minor intensity in PIB and
the improvement is even better for LHN. Also in this case the pdfs of the two
assimilation schemes are well distributed around 0, while the CTL distribution
is flatter. As in the previous Section we can conclude that both assimilation
schemes improve the forecast when the initialisation is during daytime. For
both assimilation schemes, errors induce by the orography or local bias could
not be determined.
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5.1.3 Objective skill scores

In the previous Sections the quality of the forecast is estimated from a
statistical and a qualitative point of view. In this Section we want to use
objective skill scores based on contingency tables. The ability of the models
to reproduce the radar data can be quantify by the ROC (Relative operating
characteristic, see appendix A), with the use of the ROC area as additional
measure for the comparison between the models. ROC is, however, not
sensitive to biases, for this reason the frequency bias is also computed. The
ROC shows the behaviour of the forecast in terms of FAR (false alarm rate ,
see appendix A) and HR (hit rate, see appendix A), the ROC area has a range
between 0 and 1 with a perfect score of 1.

The same time periods and forecast ranges as in the previous Section are
analysed. The contingency table (Tab. A.1) is computed based on the
cumulative precipitation during the forecast time. The skills are then related
to the sum of the marginal distributions over the whole month. The quantities
are computed for different thresholds (in mm for every 7 hours): 0.1, 0.5, 1.0,
2.0, 5.0, 10.0 .

The behaviour of the three models is shown in Figs. 5.8, 5.9, 5.10.

The improvement of the skills in terms of ROC by using the initialisation
schemes is clear, as the ROC area shows an enhancement between 0.05 and
0.1, for both PIB as well as LHN. For all simulations, both curves of PIB and
LHN are over the curve of CTL. In every simulation PIB and LHN have lower
FAR and higher HR. In all cases LHN shows the lowest FAR for all thresholds,
that means the lowest per cent of forecasted yes events that did not occur in
the observation, on the contrary PIB shows higher HR for smaller threshold
(the fraction of observed yes events correctly forecasted). The ROC areas of
PIB and LHN are similar for the simulations initialised at 00 UTC and 16
UTC, for the simulations initialised at 08 UTC the ROC area of LHN is bigger
than the PIB area (about 0.06).

The BIAS frequency is influenced by the amount of precipitation. Normally
the assimilation schemes leads the model to a state with more precipitation,
as shown in Section 5.1.1 from pdf of the ratio RADAR/MODEL and from
the total relative precipitation. In the time range between 02 and 09 UTC
the CTL has a better skill. The two initialisation schemes have larger BIAS
frequencies, the worst one is from PIB. For the other two time ranges (between
10 and 17 UTC and between 18 and 01 UTC) the initialisation schemes improve
also the bias frequency. CTL underestimates the precipitation area, while LHN
strongly overestimates especially for the higher thresholds. The overestimation
by PIB is moderate compared to LHN; this is in agreement with the results
show by the ROC. Using a verification based on objective skill scores PIB and
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Figure 5.8:  Objective skill scores for the accumulated precipitation during the
free forecast between 02 UTC and 09 UTC, for CTL, PIB and LHN. a) ROC,
b) frequency BIAS.
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Figure 5.9: The same as Fig. 5.8 but for the hours between 10 and 17 UTC.
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Figure 5.10: The same as Fig. 5.8 but for the hours between 18 and 01 UTC.
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LHN enhance the quality of the forecast. From these results LHN has the
tendency to overestimate the stronger precipitation rates and both assimilation
schemes overestimates the precipitation when the assimilation is during the

night (from 00 to 02 UTC).

5.2 Duration of the assimilation window

The PIB assimilates directly the model variables connected with the
convection: specific water vapour content, cloud water and ice content, and
vertical wind. Thus we expect the scheme to react faster compared to LHN,
which very indirectly forces convection. In this Section we want to quantify
this assumption by reducing the assimilation window for PIB and LHN. The
shorter the necessary window the more efficient PIB.

The comparison between simulations with different assimilation windows with
radar data is made in terms of ETS and BIAS score. A threshold of 0.1 mm/h
is used in order to apply the statistics only to the precipitative area. A
quantitative evaluation using a fuzzy logic system based on the work of Ebert,
2008 [32] is also applied. A upscaling method is used, forecast and observation
are averaged to consecutively larger scale and compared using ETS for a range
of thresholds. The basic idea is that even for high resolution forecasts the
verification should also take into account the large area mean and not only
a grid point value. This accounts in some way for the stochastic nature
of convective precipitation. In a consistent forecast the ETS score should
decrease with increasing threshold value and it should increase when enlarging

the spatial scale. For a better readability the values are colour coded (Figs.
5.13, 5.14, 5.15).

The calculations are based on hourly accumulated precipitation. Different
durations of the assimilation window are chosen, from 15 minutes (the time
range between two satellite observations) to two hours. We change the starting
time of PIB, while the time step when the free run starts is maintained
constant. The output is compared to that of LHN. For this study we only
analysed the three cases evaluated in the IDTWIN (Chapter 4).

For CASE 1 looking at the skills (BIAS score and ETS) during the free forecast
(Figs. 5.11 a and 5.12 a; and Fig. 5.13 for the upscaling) after one hour of
forecast (at 04:00 UTC) all assimilation simulations using PIB have a very
similar quality, even with a 15 minutes assimilation window. This behaviour
persists until the end of the simulation time. The upscaling ETS also shows no
large discrepancies between PIB 2h and PIB 15min. Large differences can be
found in the BIAS score, where for the run using 2 hours of assimilation window
an overestimation during the first three hours of free forecast is present. This
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overestimation is decreasing with the decreasing of the assimilation duration,
with 15 minutes the BIAS score is everywhere less than one, showing an
underestimation of the precipitation.

For this case the simulation with 2 hours of assimilation using LHN exhibits
a similar behaviour to the PIB simulations. Looking at ETS and BIAS score,
with regard to the upscaling ETS, LHN has a slightly better quality at the
beginning of the free forecast. This could not be observed after 3 or 6 hours of
forecast. The poor quality of LHN when using an assimilation window of only
15 minutes is well visible. The ETS remains always less than 20 % and the
BIAS score denotes an underestimation of the precipitative area. The quality
of this forecast is comparable to the quality of the CTL.

For CASE 2 (Figures 5.11 b and 5.12 b) the results using PIB with only 15
minutes of assimilation are reasonable compared with the other simulations.
Like in the previous case the PIB overestimates the precipitation area for the
longer assimilation windows at the beginning of the free run. However in this
case the ETS and the BIAS score at the end of the free run are quite different
with better results for the simulations with longer assimilation windows, as
well visible also in the upscaling ETS (Fig. 5.14). The LHN shows the same
behaviour than in CASE1, with better skills for 2h of assimilation windows

and poorer skills for the shorter one, where the ETS is very similar to that of
the CTL.

The CTL skills for CASE3 are better than in the other cases, as clear described
from the upscaling ETS (Fig. 5.15). ETS and BIAS score for the two
assimilation schemes are very similar to that of the first two cases. In this
case for PIB the simulation using 15 minutes of assimilation is even better
than the one using two hours of assimilation. For LHN the short assimilation
run exhibit skills comparable to the PIB, this performance is maybe due to
the already good skills of CTL. In this case the LHN with 2h of assimilation
shows better skills than PIB.

The result of this test is that PIB proves to be a very fast initialisation scheme,
an assimilation window of 15 minutes is sufficient to change the direction of
the state of the model to the state of the atmosphere. On the contrary LHN
seems to need longer assimilation windows in order to produce comparable
results.
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Figure 5.13: CASE1 : ETS for hourly accumulated precipitation. Results after
an hour, first column, after three hours, second column, and after six hours of
free forecast, third column.
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Figure 5.14: CASE2 : ETS for hourly accumulated precipitation. Results after
an hour, first column, after three hours, second column, and after six hours of
free forecast, third column.
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Figure 5.15: CASE3 : ETS for hourly accumulated precipitation. Results
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5.3 Summary of the real data experiment

In this work the whole august 2007 is simulated using CTL, PIB and LHN.
For every day and every model type three different initial times are used:
00, 08 and 16 UTC. With those simulations we can check the quality of the
assimilation schemes in relationship to different initial time. The comparison
uses radar-estimated precipitation data as reference.

During the considered month COSMO generally underestimates precipitation,
especially for stronger rain rates. LHN and PIB succeed in reducing this error,
mainly for the simulations started at 08 and 16 UTC. That is in the case when
convection happens.

No local biases or orography influences are detected in this experiments, with
and without assimilation.

The quality of PIB for different assimilation windows is tested, for the three
cases described in Section 4.1. PIB has demonstrated high quality in the free
forecast also with an assimilation window of 15 minutes, especially in the first
hours (3-4) of forecast. In this time range the enhancement in the ETS for
PIB with short assimilation window is comparable to the one of PIB with two
hours of assimilation window, for every threshold and spatial scale.



Chapter 6

Conclusions and future research

6.1 Synthesis of the results

Radar data can be used to describe mesoscale and convective-scale states
of the atmosphere, for this reason they are useful in order to initialise
numerical models with a resolution able to describe convective processes. The
assimilation of such type of data improves precipitation forecast (Sun, 2005
[89]).

In this work the original Physical initialisation algorithm developed at the
University of Bonn, PIB, is extended by an improved cloud characterisation
and an adaptive efficiency factor. The performances of PIB are analysed by
identical twin experiments and forecasts using observations. In the latter one,
PIB is applied to assimilate precipitation estimates from weather radar network
into operational non-hydrostatic NWP model at midlatitudes.

PIB includes a one-dimensional cloud model (see Section 3), which takes into
account two cloud processes (condensation and evaporation) over ice and
water, the existence of a mixed phase is also included. The definition of
the cloud top is derived from the SAFNWC data, while the cloud bottom is
approximated from the model variables. Both cloud bottom and cloud top are
very sensitive parameters within PIB, because they determine the total water
vapour content (influencing the CAPE) and the vertical wind profile inside
the assimilated cloud. Originally the cloud top was defined as fix all over the
assimilation window. With the current PIB, the cloud model is connected to
the observations.

Besides the cloud variables, the other important assimilated model variable,
is the vertical wind (table 3.1). The assumed vertical wind inside the
precipitating cloud is derived from the original simplified precipitation model
from Haase G., 2002 [41]. In the original PIB the conversion efficiency of

97
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saturated water vapour into rain at the cloud base was general defined for all
weather situations, while in the current scheme it is changed using a search
algorithm and a dynamic approach.

The new PIB uses the advantage of the cloud analysis also in the assimilation
outside the precipitating area. Such an approach leads to an analysed
atmospheric state, which is more consistent with the reality. The original
scheme has ”dried” the columns where the analysed precipitation was zero.
For a comparison between the original and the current scheme see Milan et
al., 2008 [73].

The use of the prognostic precipitation decreases the positional errors of the
rainfall estimates. Several sensitivity studies demonstrate that positional
errors of rainfall lead to significantly reduced forecast quality, comparable to
intensity errors (Manobianco et al., 1994 [70]). We used a definition of analysed
precipitation at the cloud base (see Section 3.1) in order to avoid the errors due
to the different height of model and radar precipitation. In this way we apply
PIB at places where we actually have precipitation and therefore initialise a
convective state.

The PIB nudges the model state to the observed one and it is applied to the
variables which are directly related to development and evolution of convection,
in particular humidity (e. g. Drucrocq et al., 2002 [31]; Lascaux et al., 2004
[64]). The relationship between PIB assimilation and CAPE is also proved
in Section 4.2. The vertical wind is changed in order to give the model a
convective profile related to the analysed precipitation.

The change of the model variables could lead the model state to instable
condition. We checked the effects of inconsistencies between PIB and the
model using an identical twin experiment (Section 4). Using this type of test,
the monitoring of the behaviour of all model variables (e. g. the vertical wind),
is possible and not only for precipitation.

Here, the main results from this study are assembled:

e A consistency between PIB and COSMO is found using the identical twin
test. The dynamic of the model is not mainly influenced, the position
of the convective cells remains very close to the original ones. The
horizontal wind convergence at cloud base is connected to the convective
cells position.

e In the Identical Twin experiment, PIB has the tendency to overestimate
the cloud base (see Section 4.3), which leads to a local underestimation
of CAPE and also of precipitation.

e The use of the prognostic precipitation leads to a more consistent
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assimilation scheme with the observed data. The definition of the
analysed precipitation at the cloud base, helps to reach this purpose.

Both, assimilation of vertical wind and humidity, are useful in order to
maintain the model consistency and the quality of the forecast.

The assimilation of the non precipitative clouds avoid the creation of dry
area outside the radar precipitative domains in presence of clouds.

Assimilation experiments over August 2007 with observed radar data
have demonstrated that COSMO simulations with PIB and LHN (Latent
Heat Nudging, the operational radar data assimilation scheme in use
by the German weather service) provide more realistic precipitation
forecast than CTL. Assimilation of radar data has a positive impact
on nowcasting of rainfall. From our results the quality of PIB is close
to the one of LHN, moreover the LHN has the tendency to enhance the
overestimation of the points with strong precipitation (rain rate greater
10 mm in 7 hours).

PIB and LHN conserve the good impact of the assimilated precipitation
for at least three hours of free forecast. Positive results are visible also
after 6 hours (see Section 5.2). Both assimilation schemes reduce spin-up
and position errors of precipitation forecasts.

PIB has demonstrated the ability to assimilate the development of the
convection when it is triggered from a synoptic situation (as CASE 1),
as well as in a quasi-chaotic case (CASE 2).

An assimilation window of 15 minutes is enough for nudge the model
state to the observational state, which is a consequence of changing the
variables directly related to convection.

The quality of the rainfall observation is important. PIB is sensitive
to the precipitation amplitude of the target precipitation in that it
produces convective events with strong vertical wind in presence of
rainfall observations with positive BIAS.

Non-rain echoes derived from radar clutter can be significantly amplified,
because PIB assimilates "stationary convective cells” leading to a strong
local precipitation. At the end of the assimilation window these ”fake
cells” will be advected. With a negative effect in the quality of the
forecast.
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6.2 Future work

PIB and COSMO vertical wind profiles are analysed in Section 3.2, a difference
in the position of the maximum is found. In order to enhance the model
consistency of PIB the vertical wind profile should be revised.

In this thesis the quality of PIB was verified by using radar data products
(RY-data), the same data as used in the assimilation. An evaluation based
on other sources of data could be made by using the COPS (Convectively and
Orographically induced Precipitation Study, Wulfmeyer et al.,2008 [100] ) data
base.

PIB is suitable for nowcasting, the coupling with other nowcasting methods
could leads to interesting results, where the enhancement of the QPF reaches
longer time ranges.

The radar precipitation patterns can be analysed and the motion field of
precipitation can be advected. The lifetime and the state of the convection
can be also approximated. The idea is apply PIB to such an algorithm, in this
case the output of the "radar forecast” will substitute the radar observation
used in PIB.

An ensemble approach to the forecast is useful in order to generate a
representative sample of the possible future states. The first crucial problem
is therefore to construct a representative ensemble, based on the numerous
sources of uncertainty in the forecast (Stensrud et al., 2000 [87]).

Both, LHN and PIB can be used to generate ensemble spread and to enhance
ensemble density close to the observations. This goal can be reached using a
SIRF (Sequential Importance Resampling Filter). For more information see
Van Leeuwen, 2003 [94].



Appendix A

Forecast verification methods

This appendix describes the verification methods used in this work. The
forecast verification has the aim to assign a quality to the forecast using the
available observations (Wilks, 2006 [98], Jolliffe, 2004 [49] and the web site of
WWRP/WGNE Joint Working Group on Verification, [101] ).

The quality of the forecast can be described from nine aspects or “attributes”
(Murphy, 1993 [75]):,

e Bias the correspondence between mean forecast and mean observation.

e Association the strength of the linear relationship between forecasts
and observations (for example the correlation coefficient).

e Accuracy the level of agreement between forecast and truth (the
observations). The difference between forecast and observation is the
error. The lower the errors, the greater the accuracy.

e Skill the relative accuracy of the forecast. The reference forecast
is generally an unskilled forecast such as random chance, persistence
(defined as the most recent set of observations, persistence implies no
change in condition) or climatology. Skill refers to the increase in
accuracy due purely to the quality of the forecast system. Weather
forecasts may be more accurate simply because the weather is easier
to forecast, skill takes this into account.

e Reliability the average agreement between forecast values and observed
values. If all forecasts are considered together, then the overall reliability
is the same as the bias.

e Resolution the ability of the forecast to sort or resolve the set of events
into subsets with different frequency distributions. This means that
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the distribution of outcomes when A is forecasted is different from the
distribution of outcomes when B is forecasted. Even if the forecasts are
wrong, the forecast system has resolution if it can successfully separate
one type of outcome from another.

e Sharpness the tendency of the forecast to predict extreme values. To use
a counter-example, a forecast of climatology has no sharpness. Sharpness
is a property of the forecast only.

e Discrimination ability of the forecast to discriminate among
observations, that is, to have a higher prediction frequency for an
outcome whenever that outcome occurs.

e Uncertainty the variability of the observations. The greater the
uncertainty, the more difficult the forecast will tend to be.

A.1 Objective skill scores

A variety of Objective skill scores (OSS) can be computed from a yes/no
contingency table (see table A.1).

Table A.1: the contingency table

Observation
yes no Total
Forecast | hits false alarms forecast yes
no misses correct negatives | forecast no
Total observed yes observed no total

The contingency table is a useful way to see what types of errors are being
made. A perfect forecast system would produce only hits and correct negatives
but neither misses or false alarms . The elements of the table A.1 are named
marginal distributions.

In this section we describe some usefull OSS.

Bias score

BIAS — hits + false alarms

(A1)

hits + misses

The bias score or frequency bias is a number between 0 and infinity with a
perfect score of 1. This OSS wants to answer to the question: How did the
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forecast frequency of yes events compare to the observed frequency of yes
events?

It measures the ratio of the frequency of forecast events to the frequency of
observed events. A value less than 1 (more than 1) suggest that the system
has the tendency to underforecast (overforecast) events. It is only a measure
for the relative frequency not for how well the forecast corresponds to the
observation.

Hit rate
B hits
"~ hits + misses

The Hit rate has a value between 0 and 1 with a perfect score of 1. This OSS
wants to answer to the question: What fraction of the observed "yes” events
were correctly forecasted?

HR (A.2)

It is sensitive to hits, but ignores false alarms.

False alarme ratio

false alarms

FAR =

A3
hits + false alarms (4.3)
The Fualse alar ratio has a value between 0 and 1 with a perfect score of 0.
This OSS wants to answer to the question: What fraction of the predicted yes
events actually did not occur?

It is sensitive to false alarms, but ignores misses.

Relative Operating Characteristic

The Relative operating characteristic (ROC), plots hit rate (HR) vs false alarm
rate (FAR), using a set of increasing probability thresholds (for example for
Rain, 0.1, 0.5, 1.0, etc.). The area under the ROC curve is used as score. An
example is visible on Figure A.1.

The ROC area has a range between 0 and 1 with a perfect score of 1. While
0.5 indicates no skill.
A forecast completely non-discriminatory is represented in the ROC by the
diagonal HIT=FAR.

ROC is no sensitive to bias in the forecast, a biased forecast may still have
good resolution and produce a good ROC curve.
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HIT RATE

—— Worthless
—— Good

—— Excellent

FALSE ALARME RATE
Figure A.1: example of ROC
Threat score

B hits
 hits +misses + false alarms

(A4)

The Threat score has a value between 0 and 1 with a perfect score of 1. This
OSS wants to answer to the question: How well did the forecast yes events
correspond to the observed yes ?

It measures the fraction of observed and/or forecast events that were correctly
predicted. It doesn’t take into account the correct negatives and it is sensitive
to hits, penalizes both misses and false alarms. It has not a filter for the
random chance.

Equitable threat score or Gilbert skill score

hits — hat
ETS — s W Srandom

hits +misses + false alarms — hits,endom

hits. . — (hits + misses)(l;it: ;r false alarms) (A.5)
ota

The Equitable threat score has a value between —1/3 and 1 with a perfect score
of 1, a value of 0 indicates no skill. This OSS wants to answer to the question:
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How well did the forecast yes events correspond to the observed yes events
(accounting for hits due to chance)?

This OSS is very similar to T'S (see above) but it is adjusted for hits associated
wit random chance. It is sensitive to hits. Because it penalises both misses
and false alarms in the same way, it does not distinguish the source of forecast
error.

The Brier score

The Brier Score (Wilks, 2006 [98] ) is essentially the mean squared error of the
probability forecast, using a binary approach. Considering that the observation
oy can have a value of 1 if an event occurs (for example precipitation more than
0.1 mm/h) or a value of 0 if not. The Brier score (for n points) is defined as:

BS = -3 (s — o) (A6)

k=1

Where y; is the binary value for the forecast. The BS has a value between
0 and 1, O for a perfect forecast. The score averages the square differences
between points of forecast probability and the subsequent binary observations.

A consequent skill score of the BS is the Brier Skill Score:

BS —BS,.; _, __BS

BSS = -
SS O—BSref BSref

(A7)

This score is conventionally used for a comparison with a reference forecast
(for example the climatology). The BSS has a range value between minus
infinity to 1. Negative values means that the detected forecast is worst than
the reference one.

A.2 Root mean square difference

The root mean square difference (RMSD, Giorgi and Yungiang, 2000 [39]) is
a variable to measure the deviation between run and the baseline experiment
for a given field.

Talking about a general variable ¢ the RMSD between a reference run ref and
another run ctl at a certain model level and simulation time, is given by:

ref _ et
RMSD = JZ W (A.8)

i
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the summation is carried out over the number of grid points N. A corresponding
bias for the difference is defined from:

ref ct
BIASp =Y Ljﬁl) (A.9)

7

both quantities are measures of deviation: the RMSD compounds all the
magnitudes of deviations at individual points regardless of their sign, while the
BIASp measures predominant or systematic deviations in given directions.



Appendix B

Differences between parallel and
sequential simulations in

COSMO

At the beginning of this work we run the COSMO model (the former Lokal
Modell) in sequential mode, that means with only one processor and without
using any parallel subroutine, that was possible because our first run-domain
was not so big, only 200 points times 200 points (with 35 vertical level).

When we started with the operational COSMO-DE area (421 points times 461
points) we run in parallel mode also the little domain with 16 processors and we
noted some differences in the output. At the beginning we hadn’t explanation
for that but we found that LM has different behaviour in case of sequential or
parallel runs, due to the different use of a Newtonian approximation.

In this appendix we want to introduce the Newtonian approximation method,
and than explain how it is implemented in LM and where is our source of
discrepancies.

B.1 The Newtonian approximation method

In many computational cases, general in fields like Physics, Mathematics,
Chemistry ... we need to solve equations in form of :

f(2) =0 (B.1)

We describe here the Newton’s methods for the resolution (Pascal and Xavier,
2001 [79]).
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B.1.1 First Newton’s method

In the method developed by Newton there are no use of derivative but only
application of polynomial equations. Around 1669 Newton should solve the
polynomial equation 2 + 2y — 5 = 0. The method starts with the guess of the
root, in this case y ~ 2. Then just takes y = 2 + p and after a substitution:

PP +6p+10p—1=0 (B.2)

we suppose that p is small p < 1, for this reason we can take into account only
the part 10p—1 = 0, we have p ~ 0.1. We have now a better approximation for
our root, y < 2.1. At this point we can iterate this process using p = 0,1+ ¢
and with a substitution we have:

> +6.3¢> +11.23¢ + 0.061 = 0 (B.3)

using the same method of the B.2 we can say ¢ < —0.061/11.23 = —0.0054...
and the new approximation for the root is y = 2.0946.... We can iterate this
process how many times that we want.

B.1.2 Newton’s method

Nowadays the method is generalize for C? functions on a given interval, we
can use a Taylor’s expansion for a variable h in a given interval near x, where

f(x)=0:

f(z+h) = f(x) +hf'(x) +O(R? (B.4)

If we stop at the first order (linearization of the equation) we are looking for
a small i such as:

fle+h)=0< f(z)+hf'() (B.5)
giving
_ =)
h = F(2) (B.6)
IC
x+h= () (B.7)

The Newton iteration start with an initial guess of the root g, then find the
limit of recurrence:
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n

(B.8)

B.2 Newton’s method in COSMO for the
saturation adjustment

The saturation adjustment in COSMO is called in many modules but at the
end of the dynamical time stepping (leapfrog or two time levels ) there are some
differences in the case of we are running in sequential mode or in parallel.

The Newton’s iteration method is used for solved the equation for the
temperature.

If we defined the enthalpy related temperature 7}, ( Doms et al., 2005 [28]) as:

L,
Th =T+ —qv (Bg)
Cpd
where ¢" is the specific humidity, L, the latent heat of vaporisation and c,q
the specific heat of dry air at constant pressure.

If we general defined 2 the provisional values of z, in the case of the saturated
cloud we have, for the total water content ( g7 = ¢¥ + ¢¢, where ¢¢ is the liquid

water content) 7 < ¢, with ¢% the saturation specific humidity.

We have for the temperature:

Ly

P

Where p is the pressure. The B.10 is solved with the Newton’s iteration
method:

B B ) T (),

where v, a natural number, denotes the iteration index.

(B.11)

The temperature at time level n is used as an initial estimate for the iteration,
i.e. T¥=° = T". TFollowing the last iteration step, the saturation specific
humidity is not calculated from TV but extrapolated from its value for 7V ~!
using a linearly truncated Taylor series expansion. This is done to satisfy
thermal energy conservation for the approximate iterative solution. The final
values of the variables at time level n 4 1 are given by:
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T =1V
v v - - 8q§w

TN-1
qc — q~T . qv

By default, the number of iterations NV is set to one, it changes in relation of
the maximal vertical wind of the considered level:

w < 2m/s — N=1
2m/s <w < 10m/s = N =2 (B.13)
w > 10m/s — N =3

In the sequential case the maximal is calculated between the all point in the
level for the simulation, instead for the parallel only between the point in the
processor.



Appendix C

CAPE

CAPE (Convective Available Potential Energy) is defined as the amount of
the available energy for the convection of a particular parcel (Emanuel 1994,
[35]).

On the diagram in figure C.1 CAPE is the positive area between the lifted
parcel profile (curve with 6, , constant) and the environmental sounding, from

the parcel’s level of free convection (LFC) to its level of neutral buoyancy
(LNB). It may be defined as:

CAPE, /p "(a, — a)dp (C.1)

Here « is the environmental specific volume profile, «, is the specific volume
of a air parcel moving upward moist-adiabatically from the level of free
convection, p; is the pressure at the level of free convection, and p, is the
pressure at the level of neutral buoyancy. All is integrated in dp (differential
of pressure). The value depends on whether the moist-adiabatic process is
considered reversible or irreversible (conventionally irreversible) and whether
the latent heat of freezing is considered (conventionally not).

SPC (Storm Prediction Centre) forecaster at the USA national weather service
often refer to "weak instability” (CAPE less than 1000 Jkg-1), "moderate
instability” (CAPE from 1000-2500 Jkg-1), "strong instability” (CAPE from
2500-4000 Jkg-1), and ”extreme instability” (CAPE greater than 4000 Jkg-
1); from the web side of the NOAA (National Oceanic & Atmospheric
Administration), Thompson [91] .

111



112 APPENDIX C. CAPE

environmental lapse rate

/
LNB
o)
e const
7p]
/9]
o)
| .
o
CAPE ~
q=const —> P
0 = const
\A >
temperature

Figure C.1: The CAPE, in our calculations only the positive part is considered,
is defined as the integral between the level of free convection and the level of
neutral buoyancy. Here q is the specific humidity, 6 the potential temperature
and 0., equivalent potential temperature, picture from Hense, 2002 [44].
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Additional figures of chapter 4
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