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Ocular Onchocerciasis - the Role of Toll-Like Receptor 2 and Interferon-γ

Abstract

by

KATRIN GENTIL

River Blindness is still highly prevalent in subsaharan Africa with millions of people

suffering from the infection with Onchocerca volvulus. This filarial worm harbors the

endosymbiont Wolbachia which was found to be essential for worm survival. The im-

mune system of chronically infected individuals is constantly stimulated with worm

proteins, lipids, carbohydrates and released Wolbachia from dying worms. In this study,

I investigated the activation of the adaptive immune system by O. volvulus and Wol-

bachia in a mouse model of onchocercal keratitis.

Toll-like receptors (TLRs) are innate immune receptors that are activated by con-

served bacterial and viral products. Lately, it was also demonstrated that fungal and

helminth products can activate selected TLRs. During filarial infection, stimulation oc-

curs through both bacterial and parasitic products, I therefore focused on the role of

TLR2 and TLR4 in the pathogenesis of adaptive immune responses and keratitis devel-

opment.

Using a mouse model of onchocercal keratitis, I immunized C57BL/6, TLR2-/- and

TLR4-/- mice with O. volvulus protein extract and examined granulocyte migration to

the corneal stroma following local injection of this protein extract. I found that TLR2

was required for IFNγ production by splenocytes, CXC chemokine production in the
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cornea and neutrophil migration to the corneal stroma, but not for IL-5 production or

eosinophil migration.

IFNγ was shown to increase surface expression of TLR2 on macrophages, priming

them for further activation via TLR2 agonists like onchocercal protein extract. The pro-

inflammatory cytokines produced by macrophages induced chemokine production by

corneal fibroblasts. This is one pathway of IFNγ enhanced neutrophil migration to the

corneal stroma.

Other parts of this study showed that pro-inflammatory Th1 responses were pre-

dominantly induced by the endosymbiont Wolbachia rather than the filarial worm itself,

whereas Th2 responses were mainly induced by the worm.

One wolbachial protein that has been previously described and acts as immuno-

activator is the Wolbachia surface protein. I characterized TLR2-dependent activation of

primary macrophages and splenocytes and identified the region 121-240 of the protein

as the main immunostimulatory domain.
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1

1 Introduction

1.1 River Blindness

Filarial nematodes cause the debilitating diseases river blindness and lymphatic

filariasis. Lymphatic filariasis is caused by Brugia malayi or Wuchereria bancrofti. It

is characterized by immense swelling of mainly the lower limbs and the scrotum. An

estimated 120 million people are affected by this disease, the majority of them in India

and Africa (1).

Onchocerca volvulus is the causative agent of river blindness. River blindness is

mainly prevalent in Africa and distributed along rivers. O. volvulus is transmitted by

Simulium species. Upon a blood meal on infected individuals, first stage larvae are

taken up. The larvae undergo two molting steps before reaching the infectious L3 stage.

During the next blood meal, L3 larvae are transmitted into humans. They undergo 2 fur-

ther moltings and mature into adult male and female worms. Female worms produce

L1 microfilariae thus completing the life cycle.

Infections with O. volvulus are classically treated with ivermectin, a microfilaricidal

drug, which is also used for mass drug administration to decrease transmission of O.

volvulus. Treatment with the filaricidal drug diethylcarbamazine, especially for mass
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drug administration, is now contraindicated due to severe adverse reaction, especially

increased corneal inflammation (2, 3).

1.2 Wolbachia

Intracellular bacteria in filarial worms were first described by Kozek et al. in 1977 (4). At

this time, bacteria showing three distinct developmental forms were found in the lateral

chords and larvae, and were suspected to be more closely related to Chlamydiae than

to Rickettsiae. Sironi et al (5) could demonstrate by phylogenetic analysis of 16S rDNA

that these bacteria belong to the α-Proteobacteria, order Rickettsiales with Wolbachia

pipientis of arthropods as the closest relative.

Wolbachia are present in nematodes throughout larval development with microfi-

lariae having the lowest Wolbachia load and increasing numbers during development

to L4 larvae in the human host (6, 7). The levels of Wolbachia in nematodes correlate

with severity of disease (8). It has also been shown that neutrophils accumulate around

Wolbachia-containing worms, but not around worms that are Wolbachia-depleted (9).

Treatment with ivermectin or diethylcarbamazine causes microfilarial death. Upon

worm death, microfilariae are released into the blood and cause pro-inflammatory im-

mune responses: fever, tachycardia, and hypotension. Exacerbated corneal inflamma-

tion was also found during post-treatment reactions (10). These increased inflammatory

responses are shown to be correlated with wolbachial DNA in the blood (10, 11).

Alternatives to the traditional treatment with ivermectin and diethylcarbamazine

now include tetracyclines that kill Wolbachia. It was found that bacterial death is asso-

ciated with decreased worm fecundity and growth retardation (12). Other studies found
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decreased embryogenesis after treatment with rifampicin (13) and macrofilaricidal ef-

fects with longer dose regimens of doxycycline (14).

1.3 Cornea

The cornea is the transparent outer part of the eye (Figure 1.1). Together with the lens,

it forms the optical apparatus. The cornea consists of three layers: the inner single layer

endothelium, the 450 µm thick corneal stroma and the outer multilayer epithelium (Fig-

ure 1.2). Corneal transparency is essential for intact vision and depends on the orga-

nized structure of the corneal matrix, mainly made up of collagen fibrils. Disruption

of the collagen fibril structure results in opacification of the cornea, visual impairment

and eventual blindness. Infection or inflammation of the cornea usually leads to the in-

filtration of inflammatory cells (15). During O. volvulus infection, eosinophils and neu-

trophils migrate to the corneal stroma. The granulocytes release cytokines and granular

components, disrupting the corneal structure and leading to visual impairment.

Lipopolysaccharide-induced corneal inflammation has been studied in more detail.

Neutrophils extravasate from limbal vessels and migrate through the corneal stroma,

depending on the presence of TLR4 and PECAM-1 (16). Migration of neutrophils is de-

pending on the presence of the neutrophil chemokines KC, MIP-2 and LIX with corneal

fibroblasts as the most probable source for KC and LIX while resident macrophages are

producing MIP-2 (17). Activated neutrophils in the cornea release additional MIP-2 (17).

Neutrophils also express MMP-8 to facilitate migration through the corneal stroma as

there is no MMP-8 expression in CXCR2-/- corneas where neutrophils are absent fol-

lowing LPS challenge and neutrophil migration to the cornea is decreased in MMP-8-/-
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mice (18). MMP-8 induces proteolytic cleavage of the extracellular collagen matrix (18),

causing disruption of the organized corneal structure and thus opacification.

Figure 1.1. Ocular structure (19). The eye consists of the anterior part
with the cornea, conjunctiva, anterior chamber and lens and the poste-
rior part with the ciliary body, vitreous, choroidea, sclera and retina.

1.4 Mouse Model of River Blindness

In the 1980s, several groups attempted to establish a mouse model of O. volvulus infec-

tion. Aoki et al. (21) injected live O. volvulus microfilariae in the inguinal region and

recovered blood at up to 18 weeks post inoculation to analyze microfilarial counts. After

16 weeks, no live microfilariae were detected. Kozek et al. (22) infected rhesus monkeys,

bonnet monkeys, golden spider monkeys, black spider monkeys, galagos, opossums,
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Figure 1.2. Corneal structure (20). The cornea consists of the outer multi
layer epithelium, the corneal stroma with well organized fibrils and few
cells and the single layered endothelium.

jirds, mice kinkajou, cebus monkeys, rats and calves with live O. volvulus microfilariae.

They could not detect any adult worms, larvae or patent infection in any of these an-

imals. Other groups attempted to establish infections with related Onchocerca worms

(23–25). Even though CBA mice are described as relatively susceptible (25), infections

terminated without intervention after about 100 days post infection. James et al. (26) in-

jected Onchocerca cervicalis microfilariae subcutaneously between the eyes and found

microfilariae migrating into the cornea as early as 12 hours post injection. Microfilariae

could persist for up to 42 days. However, no inflammatory response was present (27).



Introduction 6

Therefore an artificial mouse model of onchocercal keratitis has been developed.

Mice immunized with soluble O. volvulus extract (OvAg) in either complete Freund’s

(CFA) or squalene based adjuvant (STP) develop corneal inflammation. The differ-

ent adjuvants cause differences in cellular corneal infiltrates: CFA-immunized mice

show strong neutrophil infiltration whereas in STP-immunized mice eosinophils are

predominant (27). Recent studies mainly used STP as adjuvant. In current studies,

mice are immunized with OvAg-STP three times in weekly intervals, inducing adap-

tive immune responses. One week after the third immunization, corneas are injected

with OvAg and eyes are excised at various time points. Corneal changes include edema,

neovascularization, disruption of the corneal matrix (collagen fibrils) and infiltration of

neutrophils and eosinophils (28). Whereas neutrophil migration to the corneal stroma

can also be induced by the injection of OvAg into unimmunized mice (29), the migration

of eosinophils depends on the presence of adaptive immunity (30).

1.4.1 Immune responses in the mouse model of river blindness

Splenocytes produce increased levels of IL-4, IL-5 and IFN-γ during in vitro stimula-

tion with filarial extract when previously immunized with filarial extracts (Brugia malayi

adult or whole microfilariae, O. volvulus extract) (31). Lymph nodes and splenocytes

from OvAg immunized mice showed higher levels of IL-4 and IL-5 production upon re-

stimulation in vitro compared with PPD (Mycobacterium tuberculosis purified protein

derivative) immunized mice, indicating a preference for Th2 responses (28). This cy-

tokine profile was found to depend on the presence of CD4+ T cells and could be trans-

ferred by the adoptive transfer of splenocytes from immunized mice (28).
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The preference for Th2-responses can be skewed by the injection of rIL-12 during

the immunization. In this case, IFN-γ production and IgG1 levels in the serum are in-

creased compared with normally immunized mice (32). The shift towards Th1 responses

is associated with decreased eosinophil infiltration into the lung and expression of ma-

jor basic protein (32). However, although eosinophil migration to the lung is decreased

in IL-12 injected mice, eosinophil infiltration into the corneal stroma is increased after

IL-12 injection (33).

Following injection with filarial extracts, neutrophils and eosinophils migrate to the

corneal stroma. At seven days post injection, infiltration of inflammatory cells is re-

solved in unimmunized mice, and the corneas appear normal (28). The infiltration was

found to be specific for filarial injection as compared with injections of Mycobacterium

tuberculosis purified protein derivative (PPD) (28).

Even though eosinophils are usually associated with parasite infections and were

found to infiltrate the corneas, studies using IL-5-/- could demonstrate that while

eosinophils are absent from the corneas of these mice, the disease manifestations

(corneal opacification and neovascularization) are identical to that of wild-type mice

(32). This was found to be due to neutrophil infiltration at earlier time points. Neutro-

phil as well as eosinophil infiltration was dependent on the presence of B cells, anti-

bodies (34) and Fcγ (35). Splenocytes from B cell deficient µMT mice also showed de-

creased IL-5 production after OvAg stimulation. However, decreased levels of IL-5 did

not correspond to diminished blood eosinophilia (34). Migration of eosinophils to the

cornea is depending on the presence of CD4+ T cells (36), P-selectin (37) and ICAM-1

(38), while neutrophil migration is decreased in PECAM-1 depleted mouse corneas (38)
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and CXCR2-/- mice (39). ICAM-1 expression is regulated by IL-4 and IL-13 (40). Using IL-

4-/- mice, it was determined that corneal opacification and neovascularization is depen-

dent on the presence of functional IL-4 (28). IL-4-/- mice also showed reduced number

of eosinophils in the corneal stroma (30).

A schematic of the sequence of events is shown in Figure 1.3. To briefly summarize,

T cells are responding to filarial extracts by increased production of IL-4 and IL-5 and to

a lesser degree IFN-γ and B cells produce increased levels of IgE and IgG1. In the cornea,

IL-4, IL-5 and IL-12 enhance P-Selectin- and ICAM-1-dependent eosinophil migration

to the cornea while PECAM-1 and CXCR2 are required for neutrophil migration.

Figure 1.3. Sequence of events (adapted from (41)). The figure is ex-
plained in the main text.
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1.5 Antigen-presenting cells

Traditionally, only dendritic cells, macrophages and B cells were considered antigen-

presenting cells. However, lately it has been shown that neutrophils and eosinophils

are capable of presenting antigen to T cells in a contact-dependent manner (42–46). In

this section, I will give background information on the cell types relevant for this study:

dendritic cells, macrophages and neutrophils.

1.5.1 Dendritic cells

Dendritic cells are the most efficient of the antigen-presenting cells. Upon recogni-

tion of microbial products, dendritic cells begin maturation. This is characterized by

the upregulation of MHCII and the co-stimulatory molecules CD40, CD80 and CD86

as well as the production of cytokines and chemokines (47). Antigen presented on

MHC molecules provides the first specific signal of T cell activation. The co-stimulatory

molecules provide the second activatory signal to T cells, thus making dendritic cells ef-

ficient antigen-presenting cells (48). A third signal is provided by the cytokines secreted

by activated dendritic cells (49).

Depending on the nature of the antigen (bacterial, viral, helminth origin), dendritic

cells are primed towards a DC1 cells or DC2 cells type cell. DC1 induce T cells via IL-12

and IL-23 to differentiate towards Th1 (50, 51). This is mainly found during bacterial

and viral infection. During helminth infection, DC2 cells dominate, producing IL-10

and TGF-β (51, 52) and inducing a Th2 and regulatory T cell response (50, 53).
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Typical Th1 responses include the production of IFN-γ and IL-2, activation of

macrophages, IgG2 antibody production. Neutrophils are also associated with Th1 im-

mune responses (54). Th2 responses are characterized by the production of the cy-

tokines IL-4, IL-5 and IL-10 as well as a predominant eosinophil response (55). Inter-

estingly, during filarial infection, we find mixed Th1 and Th2 responses. This is thought

to be due to the Wolbachia endosymbionts inducing Th1 type responses with the worm

itself inducing Th2 type responses.

1.5.2 Macrophages

Macrophages are important in the innate immune responses as well as for antigen-

presentation and induction of adaptive immune responses. Precursor cells are gener-

ated in the bone marrow entering the blood stream as monocytes. Following circulation

for about 18 hours, monocytes migrate into tissues and differentiate into macrophages

(56).

Activation of macrophages is tightly regulated by cytokines. Exposure to Th1 cy-

tokines IFN-γ, Tumor-necrosis factor (TNF) or lipopolysaccharide induces the classi-

cal type 1 activation of macrophages. This pathway is usually activated by intracellular

pathogens (56) and is characterized by activation of the interferon regulatory factors

(IRF). In response, pro-inflammatory cytokines are produced.

If macrophages are instead activated via the alternative pathway, including expo-

sure to Th2 cytokines IL-4 and IL-13, type 2 activation occurs and requires mast cell and

eosinophil involvement, and granuloma formation. This is usually found in helminth

infections or in response to extracellular pathogens (56). Production of macrophage-

derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC) is
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promoted, while production of reactive oxygen species and pro-inflammatory cytokines

is inhibited (56).

Priming of macrophages ensures survival of the cells and prepares the cells for expo-

sure to a secondary signal. Primed macrophages respond to lower doses of antigen, but

are not yet activated. Classically, IFN-γ primes macrophages (56).

1.5.3 Neutrophils

For a long time, neutrophils were only regarded as responder cells in the innate im-

mune system. Recent publications have demonstrated a role for neutrophils in antigen-

presentation (43), including the expression of MHCII and co-stimulatory molecules on

neutrophils (42).

Neutrophils contain secretory vesicles, gelatinase (tertiary) granules, specific (sec-

ondary) granules and azurophil (primary) granules. Each granule type shows a specific

content: secretory vesicles contain only albumin and heparin binding protein, gelati-

nase granules contain gelatinase (matrix metalloproteinase 9), specific granules con-

tain CD66b in the granule wall and azurophil granules are characterized by myeloper-

oxidase content (57). Upon stimulation, granule proteins are released and take part in

neutrophil extravasation and migration (gelatinase granules) and antimicrobial activity

(specific granules, azurophil granules) (58).

Myeloperoxidase (MPO) is found in neutrophils where it is stored in azurophil gran-

ules. It has a central role in the regulation of inflammation. MPO catalyzes the pro-

duction of hypochlorous acid and serves as a marker for respiratory burst (57, 59). If

released by the cell, it contributes to the pathogenesis of the disease (59).
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Previous studies demonstrated down-regulation of L-Selectin on the neutrophil sur-

face in response to activation (60). L-Selectin is an adhesion molecule found on leuko-

cytes and functions as homing receptor for leukocytes that are extravasating in lym-

phoid tissues through the high endothelial venules. L-Selectin expression increases

rolling of neutrophils along the endothelium and thus helps extravasation. In addition

to adhesion to endothelial cells, L-Selectin also functions in neutrophil activation. Upon

L-Selectin activation, neutrophils become less deformable (60, 61). L-Selectin is usually

shed by neutrophils in response to stimulation and activation. It is hypothesized that the

now soluble L-Selectin can bind to the L-Selectin receptor and prevent neutrophil bind-

ing at subacute sites of inflammation (60). Increased serum levels of L-Selectin have

been associated with disease, e.g. AIDS (60).

CD18 is found colocalized with L-Selectin (61) but is upregulated upon stimulation.

CD11b often forms complexes with CD18. These surface molecules affect aggregation

and adhesive properties of neutrophils.

Matrix metalloproteinases (MMPs) are Ca2+-dependent Zn-endopeptidases that de-

grade the extracellular matrix (62). MMPs are regulated by hormones and cytokines

among other factors (63). They are produced as pro-form and stored inside granules

(57). Upon activation, they are cleaved and excreted (63). MMP-9 (gelatinase B) and

MMP-2 (gelatinase A) are both gelatinases important in corneal remodeling (64). They

contain a fibronectin-like domain which binds the gelatin (65). MMP-2 is not expressed

by neutrophils, but on keratinocytes (64, 65). MMP-8 (collagenase-2) is expressed by

neutrophils, corneal epithelial cells and keratinocytes (among others) (62). In contrast

to MMP-2 and MMP-9, it digests a variety of substrates: collagen, chemokines, protease
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inhibitors (62). It has been described as a regulator of neutrophil infiltration in LPS-

induced keratitis (18).

Neutrophils respond to chemotactic gradients of keratinocyte-derived chemokine

(KC, CXCL1), monocyte-inhibitory protein-2 (MIP-2, CXCL2) and LPS-induced

chemokine (LIX, CXCL5). Neutrophils only contribute to MIP-2 production, whereas

KC and MIP-2 are produced by macrophages and KC and LIX by corneal fibroblasts (17).

1.6 Toll-like Receptors

Pattern recognition receptors (PRRs) recognize pattern associated molecular patterns

(PAMPs) in microbes. PAMPs are highly conserved among different microbes, absent

from eukaryotes and essential for the survival of the microbe. The family of PRRs con-

sists of Toll-like receptors (TLRs), Dectin-1 (a C-type lectin) and Nod-like receptors

(NLRs). Other less studied receptors include NALP3, ISD sensor and RIG-I/MDA5 (66).

TLRs are germ-line encoded receptors recognizing a great variety of microbial

products. The receptors were first characterized in Drosophila. The family currently

consists of at least 10 TLRs in humans (67) and 13 TLRs in mice (68, 69). Some studies

refer to 11 human TLRs (70), however the original article identifying the 11th human TLR

could not be identified. The receptors recognize conserved microbial PAMPs, although

chemical agonists (e.g. imiquomid) have also been described (71, 72). Host proteins

like heat-shock proteins were shown to bind TLR2 and TLR4 (73–75). The receptors

contain an extracellular leucin-rich repeat domain and an intracellular domain. The

intracellular domain is homologous to the IL-1 receptor and therefore referred to as the

Toll/IL-1R (TIR) domain (76). Signaling through TLRs recruits the adaptor molecules
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myeloid differentiation primary response gene 88 (MyD88) or TIR-domain-containing

adapter-inducing interferon-β (TRIF). MyD88 is involved in the signaling of every TLR

except TLR3 while only TLR3 and (partly) TLR4 signal through TRIF. MyD88 is recruited

by Mal, then signals through IRAK and NFκB activation to induce production of pro-

inflammatory cytokines.

TLR2, TLR4 and TLR9 recognize bacterial products. TLR2 specifically interacts with

acylated lipoproteins, TLR4 with lipopolysaccharides and TLR9 with methylated DNA.

TLR3, TLR7 and TLR9 are specific receptors for viral products, TLR5 interacts with flag-

ellin. TLR2 is the most promiscuous receptor. Depending on coreceptor usage (TLR1,

TLR6 and TLR10) different bacterial products are recognized. TLR1 and TLR2 together

specifically interact with triacylated lipoprotein, TLR2 and TLR6 interact with diacylated

lipoproteins, ligands for TLR2/TLR10 are not yet described.

TLR2, TLR4 and TLR11 have been implicated in the activation of immune cells by

Leishmania major, Trypanosoma cruzi and Toxoplasma gondii (77–79). In contrast to

bacterial or viral activation of TLRs, activation via TLRs by eukaryotic parasites pre-

vented immunopathology (77–79).

TLRs are not only important during the generation of innate immune responses, but

cells activated via TLR can also induce adaptive immune responses. TLRs have been

shown to increase the antigen uptake by dendritic cells (80), induce maturation of and

cytokine production by dendritic cells thus increasing the capability to present antigen.

B cell proliferation also increases after stimulation with TLR ligands either directly or

indirectly via activation of dendritic cells (81). Activation of dendritic cells via Pam3CSK

or LPS induced T cell proliferation and differentiation to Th1 and Th2 cells, respectively

(82).
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1.6.1 Toll-like Receptors in Filarial Infection

Studies examining the role of TLRs in filarial infection focused on TLR2, TLR4 and TLR9.

It was reasoned that the most likely agonist for these receptors was not the worm itself

but its endosymbiont Wolbachia. It was therefore thought that bacteria specific TLRs

would be used. In a mouse model of O. volvulus keratitis, involvement of Wolbachia

and MyD88 in corneal inflammation was demonstrated (29). Further investigation iden-

tified TLR2 as the receptor activated by Wolbachia. No role for TLR4 or TLR9 could be

identified (83), although early studies showed TLR4-dependent neutrophil migration to

the corneal stroma (84) and TLR4-dependent activation of dendritic cells by Wolbachia

surface protein (WSP) (85). It was demonstrated that TLR2 required TLR6 as corecep-

tor in neutrophil and macrophage migration to the cornea in response to O. volvulus,

Wolbachia and recombinant Wolbachia lipoprotein (86, 87).

Other groups showed filaria-dependent expression of TLRs. Expression of TLRs was

down-regulated in filaria-infected individuals corresponding to decreased cytokine pro-

duction after stimulation with TLR ligands (88, 89). Repeated exposure to filarial ex-

tracts also decreased macrophage responsiveness to B. malayi and Wolbachia in a TLR2-

dependent manner (90). Finally, secreted products of the nematode Acanthocheilonema

viteae are able to activate dendritic cells in a TLR4-dependent manner (91). Activation of

macrophages and dendritic cells via this TLR4 and MyD88-dependent pathway results

in decreased responsiveness of these cells to TLR2 and TLR9 agonists (91).
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1.7 Interferon-γ

Interferonγ (IFN-γ) is the classical Th1 cytokine. It is produced only at low levels during

filarial infection. It has been described in human biliary epithelial cells and in human

monocytes from human rheumatoid arthritis patients that TLR2 is upregulated in re-

sponse to stimulation with IFN-γ (92, 93). Harada et al. (93) showed upregulation of

TLR1-5 by measuring mRNA levels and confirming synergistic effects of IFN-γ and LPS

and peptidoglycan stimulation. Similar results were recently shown for murine CD11b+

cells where TLR2 expression was increased after IFN-γ stimulation (94).

IFN-γ also affects differentiation of monocytes. It was shown that human precur-

sor cells developed into macrophages rather than dendritic cells if IFN-γ was supplied

in addition to the normal growth factors granulocyte-macrophage colony stimulating

factor (GM-CSF) and IL-4 used for dendritic cell differentiation. This effect could only

be observed in the early differentiation stages and was dependent on the production of

macrophage colony stimulating factor (M-CSF) and IL-6 (95).

In addition, as has been described in the section on macrophages, IFN-γ activates

macrophages via the classical pathway rather than the alternative pathway that is in-

duced by IL-4 and IL-13.

IFN-γ has been shown to regulate expression of platelet endothelial cell adhesion

molecule 1 (PECAM-1) in a mouse model of Herpes simplex keratitis. Blockade of IFN-γ

reduced neutrophil infiltration into the cornea and expression of PECAM-1 on corneal

vessels (96). It has been shown by other groups that PECAM-1 expression enhances

directional neutrophil migration (97). Our group previously demonstrated a role for

PECAM-1 in neutrophil migration during O. volvulus keratitis (38).
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Additionally, IFN-γ induces the production of neutrophil chemoattractant CXC

chemokines in Staphylococcus aureus infected tissues (98).

1.8 Aims

Previous studies described Pam3CSK and LPS as differential inducers of T cell responses

via TLR2 and TLR4, respectively (82). It was also shown that TLR2 and TLR4 are impli-

cated in the recognition of filarial products (84, 85). I therefore reasoned, that filarial

products (in addition to Wolbachia surface protein) might activate TLR2 and TLR4 and

this might lead to a skewing of the adaptive immune resonses.

In this study, I first wanted to characterize TLR-dependent activation of dendritic

cells by O. volvulus. After I demonstrated a role for TLR2 in the activation of dendritic

cells, I examined the role of TLRs in the adaptive arm of the immune responses in a

mouse model of river blindness. The aim was to show that the initial requirement for

TLR2 in the innate immune response was reflected by altered adaptive immune re-

sponses. I was interested in the generation of systemic immune responses (T cell ac-

tivation, serum antibody production) and in the local migration of antigen-presenting

cells to the cornea.

With the surprising result of TLR2 being required only for Th1-like responses IFN-γ

production and neutrophil migration, the next goal was to identify a mechanism, linking

systemic IFN-γ production to neutrophil infiltration into the cornea.
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2 Materials and Methods

2.1 Reagents

2.1.1 OvAg

During previous studies (Eric Pearlman, personal communication), Onchocercomata

were excised from patients from the Ivory Coast. Nodules were stored frozen at -80◦C

until further processing. Then, nodules were thawed overnight at 4◦C in digestion solu-

tion (HBSS/1 % Penicillin+Streptomycin/50 µg/ml Gentamicin) and washed with sterile

ice cold HBSS. 1 % collagenase, 0.5 % elastase and 0,5 % trypsin were added to the diges-

tion solution (enzyme solution). Nodules were incubated in enzyme solution for 8 hours

at 37◦C until worms were released from the nodules. Worms were collected in a sterile

tube and transferred onto 40 µM filter. Worms were then washed six times with sterile

digestion solution, followed by four washes with sterile HBSS. Worms were processed in

1 ml HBSS in glass mortars for 30 minutes. Protein extracts were sonicated three times

for 5 minutes, then centrifuged for 10 minutes at 1000 xg. Soluble extract was used for in

vitro stimulation and in vivo intrastromal injection. Unsoluble proteins were dissolved

in 1 ml HBSS and used for immunizations. Protein concentrations in both extracts were
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determined by BCA protein assay (Pierce). WSP and filarial 5S were quantified by quan-

titative PCR, 40 cycles of 30 seconds extension at 95◦CC, 30 seconds annealing at 60◦C

and 30 seconds elongation at 72◦C. Primers used in this study are shown in table 2.1.

2.1.2 Wolbachia

Wolbachia infected SF9 insect cells were kindly provided by Dr. Mark Taylor (Liver-

pool School of Tropical Medicine, Liverpool, Great Britain). Cells were maintained

under sterile conditions at 27◦C, no CO2. Insect cell medium contained 50 % Mit-

suhashi Maramorosh Medium, 50 % Schneider’s Insect Medium, 10 % FBS and 1 % Peni-

cillin+Streptomycin. Wolbachia infected SF9 cells were harvested, centrifuged at 2000 xg

for 10 minutes and the cells were disrupted by sonication for 2 minutes. Cell debris was

then pelleted at 600 xg for 5 minutes. Supernatants were transferred into a clean tube

and pelleted again. This was repeated four times to remove cellular debris. Wolbachia

were then pelleted at 16000 xg for 10 minutes. For controls, tetracycline treated SF9 cells

were processed identically.

2.1.3 Wolbachia Surface Protein

We obtained Wolbachia Surface Protein (WSP) cloned into the pET100 TOPO vector

from Alan Scott (Johns Hopkins University, Baltimore, MD). The gene was cloned with-

out the signal sequence (first 30 amino acids). Deletion mutants were generated by re-

verse PCR. Briefly, primers (table 2.1) were designed at both ends of the sequence to

be deleted. PCR reactions were run amplifying the full plasmid minus the deleted se-

quence. PCR amplification consisted of 2 minutes at 95◦C, followed by 10 cycles of
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Table 2.1. Primers used in this study.

Primer name Sequence Annealing temp

5S Fw GTCTACGACCATACCACGTTG 60◦C

5S Rev CCCAGGCCGTCTCCGATCC 60◦C

12S Fw AAACTAGGATTAGATACCCTATTAT 60◦C

12S Rev AAGAGCGACGGGCGATGTGT 60◦C

WSPOvF64 AAGCTTCTTTTATGGCTGGTGG 60◦C

WSPOvR173 AGCTGTTTCAAATGTATCCCTGC 60◦C

WSPAa23qF TAACGAGCACCAGCATAAAG 60◦C

WSPAa23qR TGCAGCATATATCAGCAATCC 60◦C

WSPplasmidF CACCATGCATTATAAAAAGTTTTTTTCAGC 55◦C

WSPplasmidR TTAGAAATTAAACGCTATTCCAGC 55◦C

WSPpetc495 CCCCGGATCCGCTGATGAGGAAACTA 60◦C

WSPpetnc385 CCCCGGATCCGGTGAAGGGATGATC 60◦C

WSPpetc585 CCCCGGATCCCAAAAGGATAGTAAA 60◦C

WSPpetnc474 CCCCGGATCCTATTGGACCAACAGGA 60◦C

WSPpetc675 CCCCGGATCCGTGGACATTGAAGGAG 60◦C

WSPpetnc564 CCCCGGATCCAGCTCCTGTGATACCA 60◦C

WSPpetc765 CCCCGGATCCTCAGGACTAGTTAATG 60◦C

WSPpetnc651 CCCCGGATCCTCTGATATCATCCATT 60◦C

WSPpetc855 CCCCGGATCCAGCAACCCTGCAAAG 60◦C

WSPpetnc741 CCCCGGATCCAATTGCTGTTAAATTAT 60◦C

WSPpetc945 CCCCGGATCCACCCCAGAAATTAAAC 60◦C

WSPpetnc835 CCCCGGATCCGATATATGCTACACCA 60◦C

WSPpetc1035 CCCCGGATCCAGTGAGGATAAAGAA 60◦C

WSPpetnc924 CCCCGGATCCTACATCATAGCTAATA 60◦C

WSPpetc1125 CCCCGGATCCTAAGGGCGAGCTCAA 60◦C

WSPpetnc1011 CCCCGGATCCAGTTCCTTTATTTACT 60◦C
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1 minute at 95◦C, 1 minute at 60◦C and 7 minutes at 72◦C, then 30 cycles of 30 sec-

onds at 95◦C, 1 minute at 60◦C and 7 minutes at 72◦C, followed by final extension at

72◦C for 10 minutes. Primers contained a BamH1 site to allow religation after digestion.

Circular plasmids were then transformed into competent BL21 cells.

WSP and WSP deletion mutants were purified using the Qiagen NiNTA fast start kit

with the native purification protocol. Cells were grown for 3 hours at 37◦C on shaking

incubator. Cells were then induced with 1 mM IPTG for 5 hours. Cells were harvested at

4000 xg for 20 minutes and frozen overnight at -20◦C. Cells were then thawed and lysed

in Native Lysis Buffer containing 1 µg/ml lysozyme and 25 U/ml benzonase nuclease for

30 minutes on ice. The lysate was then centrifuged at 14,000 xg for 30 minutes at 4◦C.

The supernatant was applied to NiNTA Fast Start Column. The column was then washed

twice in Native Wash Buffer and the protein was eluted in 1 ml Native Elution Buffer.

Purity was determined by Western Blot and Coomassie stain and protein concentration

was determined by BCA protein assay (Pierce).

2.1.4 Control reagents

To determine activation of dendritic cells, macrophages, neutrophils, MK/T-1 cells and

HEK cells depending on the TLR profile these cells expressed, I used synthetic TLR lig-

ands. For TLR2 activation, I used Peptidoglycan (Invivogen), Pam3CSK (Invivogen) and

FSL-1 (Invivogen), for TLR3 activation, Poly(I:C) (Invivogen) was used, for TLR4 acti-

vation ultrapure E. coli LPS (Invivogen) and for TLR9 activation CpG-DNA (Invivogen).

Positive control for T cell activation was anti-CD3 (kind gift by Dr. Thomas Forsthuber,

now at the University of Texas at San Antonio, TX).
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2.1.5 Other reagents

STP adjuvant: 10 % squalene (Sigma, St. Louis, MO, USA), 0.4 % Polyoxyethylenesorbi-

tanmonooleate (Tween 80) (Sigma, St. Louis, MO, USA), 1 % Pluronic L (BASF, Germany)

in PBS

Recombinant cytokines: IFN-γ, IL-1α, IL-1β, IL-6, TNFα, GM-CSF (Peprotech,

Rocky Hill, NJ, USA)

2.2 Mice

C57BL/6 mice were bred at the Wolstein Animal Resource Center at Case Western Re-

serve University (Cleveland, OH) or purchased from Jackson Laboratories (Bar Harbor,

ME). TLR2-/-, TLR4-/-, TLR2/4-/-, MyD88+/+ and MyD88-/- mice were bred at the Wol-

stein Animal Resource Center. IFN-γ-/- mice were a gift by Dr. Tom McCormick (Case

Western Reserve University, Cleveland, OH), IL-1R-/- mice were kindly provided by Dr.

Susan Mohr (Case Western Reserve University, Cleveland, OH) and TNFαR-/- mice were

kindly provided by Dr. Claire M. Doerschuk (Case Western Reserve University, Cleve-

land, OH). All animal protocols were approved by the IACUC office at Case Western Re-

serve University.

2.3 In vivo studies

2.3.1 Innate immune responses

Mice were anaesthetized with tribromoethanol (TBE). Corneas of mice were rinsed, then

carefully scratched with a 27 gauge needle. A 33 gauge needle (Hamilton Company,
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Switzerland) was inserted into the cornea through the scratch in the corneal epithelium

and 4 µl of experimental and control reagents were injected. Eyes were taped closed with

loosely adherent tape that mice could remove themselves upon awakening. 24 hours

post injection, mice were euthanized using CO2 and corneal haze was examined by con-

focal microscopy. Whole eyes were removed for sectioning and immunohistochemistry,

the corneas were excised carefully with a 2 mm trephine for FACS analysis of the cellular

infiltrate or ELISA analysis of chemokines present in the cornea.

2.3.2 Adaptive immune responses

Mice were immunized subcutaneously three times in weekly intervals with 10 µg

insoluble OvAg extract in a 1:1 dilution in STP adjuvant. One week past the final im-

munization, mice were immunized and injected into the corneal stroma as described

under innate immune responses. Mice were then euthanized at 24 or 72 hours post in-

trastromal injection and eyes removed for sectioning and immunohistochemistry. In

some experiments, corneas were excised for ELISA analysis of chemokines.

2.4 Cell culture

2.4.1 Dendritic cells

C57BL/6, TLR2-/-, TLR4-/-, TLR2/4-/-, MyD88+/+ and MyD88-/- mice were euthanized.

Femurs and tibias were dissected aseptically. Bones were cleaned under sterile condi-

tions, then opened at the distal and proximal ends. For harvesting bone marrow cells,

the opened bones were centrifuged for 30 seconds at 6000 xg in a sterile 0.5 ml tube with

a hole in the bottom, set into a sterile 1.5 ml tube. Cells were resuspended in HBSS.
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Red blood cells were lysed with RBC lysis buffer (eBioscience, San Diego, CA, USA). Cell

numbers and viability were determined under trypan blue exclusion. Viability was gen-

erally greater than 90 %. Cells were plated at a concentration of 1x106 per ml in six-well

plates. DC medium contained RPMI (BioWhittaker), 10 % fetal bovine serum (Cellgro,

Herndon, VA, USA), 1 % sodium pyruvate (BioWhittaker), 1 % HEPES (BioWhittaker),

1 % L-glutamine (BioWhittaker), 1 % 50/50 penicillin/streptomycin (BioWhittaker) and

1 mM 2-mercaptoethanol (Sigma, St. Louis, MO, USA). Medium was supplemented with

GM-CSF (Peprotech, Rocky Hill, NJ, USA) at a final concentration of 20 ng/ml. Fresh

medium was added on days 3 and 5. Cells were harvested on day 7 by carefully removing

non-adherent cells (dead cells and mature dendritic cells) and then dislodging loosely

adherent cells with HBSS (immature dendritic cells). Viability was greater than 90 %.

Dendritic cells were purified with CD11c magnetic beads according to the manu-

facturer’s instructions (MACS, Miltenyi Biotech, Auburn, CA, USA). Dendritic cells were

enriched to about 90-95 %.

1x106 cells were plated in 96-well plates and stimulated for 24 hours with the fol-

lowing antigens: OvAg at different concentrations, 50 µg/ml Pam3CSK (InvivoGen, San

Diego, CA, USA), 100 ng/ml lipopolysaccharide (LPS) (Invivogen, San Diego, CA, USA)

or 20 µg/ml CpG-DNA (Invivogen, San Diego, CA, USA). Supernatants were analyzed for

cytokine production by ELISA and cells were examined by flow cytometry.

2.4.2 Macrophages

C57BL/6 and TLR2-/- mice were injected intraperitoneally with 4 % thioglycollate

(Remel, Lenexa, KS, USA) at 4-5 days prior to euthanization. Mice were euthanized by

CO2. The peritoneum was lavaged with 10 ml HBSS. Red blood cells were lysed with
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RBC lysis buffer (eBioscience, San Diego, CA, USA) and cells were plated at 1x105 per

well. After overnight rest, cells were stimulated with medium, OvAg, Pam3CSK, IFN-γ

and OvAg + IFN-γ.

2.4.3 Neutrophils

9 % Casein solution was prepared in 0.9 mM CaCl2 and 0.5 mM MgCl. 1 ml Casein

solution was injected at 18 hrs and 3 hours prior to euthanizing the mice. Cells were

harvested from the peritoneal cavity, washed with HBSS and purified on 90 % Percoll

gradient at 32000 xg for 20 minutes. Neutrophil fraction was harvested and washed to

remove residual Percoll. 1x105 cells were stimulated with medium, OvAg and Pam3CSK.

2.4.4 MK/T-1 cells

The corneal fibroblast cell line MK/T-1 (99) was maintained by the Ophthalmology

Tissue Culture Core Facility at Case Western Reserve University. Cells were maintained

in DMEM( high glucose), 10 % FBS and 50 µg/ml hygromycine. Cells were stimulated at

70 % confluency for 18 hours with medium, OvAg, rIFN-γ, rIL-1α, rIL-1β, rIL-6, rTNFα

and Pam3CSK.

2.4.5 HEK cells

HEK293/hTLR2 8.10 CFP, HEK293/hTLR3 flag and HEK/hTLR4 MD2 1.6 were a kind

gift by Dr. Amy G. Hise (Case Western Reserve University, Cleveland, OH). Cells

were maintained in DMEM (high glucose), 10 % low endotoxin FBS, 10 µg/ml

ciprofloxacin with 5 µg/ml geneticin added every 4th passage. HEK293/hTLR1/hTLR2
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and HEK293/hTLR2/hTLR6 were a kind gift by Dr. Clifford Harding (Case Western Re-

serve University, Cleveland, OH). These cells were maintained in DMEM (high glucose),

10 % FBS, 10 µg/ml blasticidin (Invivogen). 1x105 cells were stimulated with medium

alone, OvAg, rWSP, Pam3CSK, Poly(I:C) or LPS for 18 hours. Activation was determined

by hIL-8 ELISA.

2.4.6 T cells

Spleens were dissected from C57BL/6, TLR2-/-, TLR4-/-, TLR2/4-/-, IFN-γ-/-, IL-6-/-, IL-

1R1/2-/- and TNFαR-/- mice. Single cell suspensions were prepared and 1x106 cells were

stimulated with medium, OvAg, BmAg or anti-CD3 for 72 hours. For measuring mIL-4

production, soluble anti-IL-4 was added to prevent re-uptake of mIL-4 by the spleno-

cytes. Cell activation was measured by mIL-4, mIL-5 and mIFN-γ ELISA.

2.5 FACS

Following stimulation, cells were harvested and washed with FACS buffer (HBSS without

Ca2+ or Mg2+, 1 % FBS, 1 mM EDTA) and blocked with Fcγ for 30 minutes on ice. Cells

were then stained with 1 µg antibody per 1x106 cells. Antibodies used are shown in

table 2.2.
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Table 2.2. Antibodies used in this study.

Name Clone Company

CD11b M1/70 eBioscience

CD11c N418 eBioscience

CD3 17A2 eBioscience

MCHII M5/114.15.2 eBioscience

CD40 HM40-3 eBioscience

CD80 16-10A1 eBioscience

CD86 GL1 eBioscience

PECAM MEC13.3 eBioscience

TLR2 6C2 eBioscience

F4/80 BM8 eBioscience

NIMP/R14 N/A hybridoma supernatant

L-Selectin MEL-14 eBioscience

CD18 M18/2 eBioscience

CD21/35 eBio8D9 eBioscience

Major Basic Protein N/A James Lee

2.6 Immunohistochemistry

2.6.1 Cell staining

Eyes were enucleated, embedded in OCT compound (Sakura Finetek U.S.A., Torrance,

CA) and frozen at -20◦C. 5 µm sections were cut at -20◦C and dried at room tempera-

ture overnight. Sections were stored at -20◦C. Prior to staining, sections were brought

to room temperature and fixed in 4 % formaldehyde for 30 minutes. Slides were then

washed with PBS pH 7.6 and blocked for 30 minutes at room temperature in PBS/1 %
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fetal bovine serum (PBS/1 % FBS). Generally, sections were stained with primary anti-

body diluted 1:100 in PBS/1 % FBS for 2 hours at room temperature in a humid chamber.

Slides were washed in PBS and stained with 1:1000 dilution of Alexa Fluor 488 labeled

secondary antibody (except for eosinophil staining where FITC labeled secondary anti-

body at 1:200 dilution was used) at room temperature in a humid chamber in the dark.

After the final wash, slides were mounted in anti-fade medium (Vector Laboratories,

Burlingame CA). The number of cells per section was determined by counting stained

cells on a fluorescence microscope in a 400x magnification from limbus to limbus.

Primary antibody for neutrophil staining was anti-NIMP-R14 and for eosinophil

staining anti-major basic protein (anti-MBP). Secondary antibody for neutrophil

staining was rabbit-anti-rat antibody in PBS/1 % FBS, goat-anti-rabbit antibody for

eosinophil staining.

For staining with PECAM-1, I used FITC-conjugated PECAM-1 antibody.

2.6.2 PECAM-1 analysis

Images of PECAM-1 stained corneal sections were taken and vessels identified. Inten-

sity of PECAM-1 staining was analyzed using ImagePro software. Vessels were marked

with this software and the intensity of fluorescence per vessel was calculated and based

on these numbers, the average fluorescent intensity of vessels per eye as described (38).

Average vessel fluorescent intensity per eye was graphed and analyzed for statistical dif-

ferences.
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2.7 ELISA

2.7.1 Cytokine ELISA

All cytokine ELISA kits were commercially obtained from R&D Systems and used accord-

ing to the manufacturer’s direction. Briefly, Immulon4 plates were coated with primary

antibody in PBS overnight at 4◦C, then blocked in PBS/5 % bovine serum albumin (BSA).

Standards and samples were applied overnight at 4◦C, followed by 2 hours incubation

with detection antibody and 20 minutes with HRP-streptavidin. HRP was detected with

3,3’,5,5’-tetramethylbenzidine (TMB), the reaction was stopped with 20 % H2SO4 and

absorption measured at 450 nm.

2.7.2 Antibody ELISA

Immulon4 plates were coated with 10 µg/ml filarial extract in carbonate buffer overnight

at 4◦C. Plates were blocked with PBS/1 % FBS for 2 hours. Serum dilutions ranging from

1:100 to 1:100 000 were then incubated for 2 hours at room temperature, followed by

1 hour detection with biotinylated anti-IgG1 or anti-IgG2c antibodies. Antibodies were

detected with HRP-streptavidin and TMB. The color reaction was stopped with 1 N HCl

and absorption was measured at 450 nm.

2.8 Statistical analysis

Experiments were analyzed by student’s t-test and p-values of less than 0.05 were con-

sidered significant. Data are shown as mean with standard error of the mean.
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3 Results

3.1 In vitro activation of antigen-presenting cells

3.1.1 Dendritic cells

Bone marrow was harvested from C57BL/6, TLR2-/-, TLR4-/- and TLR2/4-/- mice and

myeloid dendritic cells were differentiated in GM-CSF enriched culture for 7 days. Cells

were purified with anti-CD11c magnetic beads and purity was generally greater than

90 % compared with dendritic cells without CD11c enrichment, that were 70 % CD11c

positive cells. I then stimulated dendritic cells to determine which TLRs are involved in

activation by filarial extracts.

1x106 cells were stimulated for 24 hours with O. volvulus extract (OvAg), or with

defined TLR agonists, peptidoglycan (PGN) (TLR2), Pam3CSK (TLR2), LPS (TLR4), and

CpG-DNA (TLR9); and IL-6 and RANTES were measured by ELISA. I could not show IL-6

or RANTES production in response to Poly(I:C). Other groups also showed only absent

or low levels of IL-10, IL-12p40, IL-12p70 and TNFα upon stimulation with Poly(I:C)

(100). Surprisingly, no increased levels of mIL-12p70 were detected after stimulation

with worm antigen or TLR ligands (data not shown). Association of IL-12p70 with Th1

responses and IL-6 with Th2 responses were shown previously (50).
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Figure 3.1 shows OvAg stimulated IL-6 production by DCs from C57BL/6 and TLR4-/-

mice, but not from TLR2-/- or TLR2/4-/- mice, which is similar to the effect of the TLR2

ligand Pam3CSK. As controls, the TLR4 ligand LPS induced cytokine production by

C57BL/6 and TLR2-/- DCs, but not by DCs from TLR4-/- or TLR2/4-/- mice, and the TLR9

ligand CpG-DNA induced IL-6 by DCs from all TLR knockout mice. Similar results were

found with BmAg (data not shown), and with RANTES production by OvAg stimulated

DCs (Figure 3.1). Together, these findings clearly demonstrate that filaria-induced IL-

6 and RANTES production by dendritic cells is TLR2-dependent. Decreasing doses of

OvAg did not alter the requirement of TLR2 for the activation of dendritic cells (data not

shown).

Figure 3.1. Dendritic cells were purified from C57BL/6, TLR2-/-, TLR4-/-

and TLR2/4-/- mice and stimulated with OvAg for 24 hours. As controls,
dendritic cells were stimulated with Pam3CSK, LPS and CpG. IL-6 and
RANTES were produced by dendritic cells in response to filarial extracts
in a TLR2-dependent manner.

As an additional indicator of dendritic cell activation, I examined CD40 expression

on enriched CD11c+ DCs from C57BL/6, TLR2-/-, TLR4-/- and TLR2/4-/- mice. Cells were

incubated with OvAg or TLR ligands for 24 hours, and mean fluorescence intensity for
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CD40 was determined on the gated CD11c+ CD3- CD11b+ MHCII+ cells. As shown in

Figure 3.2, OvAg increased CD40 surface expression on dendritic cells from C57BL/6

mice and TLR4-/- mice, but not from TLR2-/- mice or TLR2/4-/- mice, which was similar

to Pam3CSK activation. LPS-induced CD40 expression was TLR4-dependent, and CpG-

DNA up-regulated CD40 expression in DCs from all mouse strains. To further illustrate

these findings, representative profiles are shown in Figure 3.3, with stimulation shown

as the clear peak. These findings support the cytokine data and demonstrate further that

filaria-induced activation of DCs as measured by CD40 surface expression is dependent

on the expression of TLR2, but not TLR4.

Figure 3.2. Dendritic cells were purified from C57BL/6, TLR2-/-, TLR4-/-

and TLR2/4-/- mice and stimulated with OvAg for 24 hours. As con-
trols, dendritic cells were stimulated with Pam3CSK, LPS and CpG. CD40,
CD80 and CD86 are upregulated following OvAg stimulation in a TLR2-
dependent manner.

As additional activation markers, I also analyzed upregulation of CD80 and CD86

on filaria stimulated dendritic cells and found, similar to CD40 expression, increased

expression only on C57BL/6 and TLR4-/- dendritic cells (Figure 3.2 and Figure 3.3).

3.1.2 Macrophages

Peritoneal macrophages were stimulated with OvAg and cytokine production was de-

termined by ELISA. I measured MIP-2, KC, TNFα, IL-1α, IL-1β and IL-6 production.
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Figure 3.3. Dendritic cells were purified from C57BL/6, TLR2-/-, TLR4-/-

and TLR2/4-/- mice and stimulated with OvAg for 24 hours. Shaded
peaks correspond to medium stimulation, black lines to OvAg stimula-
tion. CD40, CD80 and CD86 are upregulated in response to OvAg stim-
ulation in C57BL/6 and TLR4-/- dendritic cells, but not in TLR2-/- and
TLR2/4-/-.
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I found increased levels of all cytokines in response to OvAg stimulation (Figure 3.4).

Our results agreed with the previous work by Hise et al. (86). In this study TLR2- and

TLR6-dependent macrophage activation by O. volvulus as measured by IL-6, TNFα and

RANTES production was demonstrated.

Figure 3.4. Macrophages were purified from C57BL/6 mice and stimu-
lated for 18 hours with OvAg. Production of MIP-2, KC, TNFα, IL-1α, IL-
1β and IL-6 were measured by ELISA. All cytokines are upregulated in
response to OvAg.

3.1.3 Neutrophils

It was previously demonstrated that neutrophils are responsible for corneal opacifica-

tion following injection of filarial extracts, Wolbachia, LPS and others (17, 29, 101). I

therefore investigated neutrophil activation in addition to neutrophil infiltration into
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the corneal stroma. Neutrophils were purified from the peritoneal cavity of Casein in-

jected mice. Cells were purified over a 90 % Percoll gradient. Purity was generally greater

than 95 %. 1x105 cells were stimulated with OvAg or TLR ligands for 18 hours unless oth-

erwise noted. Cells and supernatants were analyzed for activation parameters.

Release of myeloperoxidase (MPO) was measured following stimulation of neutro-

phils with OvAg and Pam3CSK for up to 6 hours. A slight increase in MPO production

could be demonstrated for OvAg stimulation as early as one hour (Figure 3.5). After one

hour of stimulation, no further increase in MPO release could be detected for six hours,

when the remaining MPO was released by all cells independent of the stimulus. Neither

Pam3CSK nor LPS could induce MPO release by neutrophils.

Figure 3.5. Neutrophils were purified from C57BL/6 mice and stimulated
for 6 hours with OvAg. Neutrophils release myeloperoxide in response
to OvAg stimulation. Numbers given are p-values calculated by student’s
t-test.

MIP-2 (CXCL2) production was determined by sandwich ELISA (Figure 3.6). A dose-

dependent increase in MIP-2 production could be demonstrated.

TLR2-dependent production of chemokines by neutrophils in response to stimula-

tion with O. volvulus was shown by Gillette-Ferguson et al. (83).
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Figure 3.6. Neutrophils were purified from C57BL/6 mice and stimulated
for 18 hours with OvAg. Neutrophils produce MIP-2 in response to OvAg
in a dose-dependent manner.

Nitric oxide production was determined by fluorescence analysis using 4-amino-5-

methylamino-2’,7’-difluorofluorescein diacetate (DAF-FM). DAF-FM permeates the cell

membrane. Upon contact with nitric oxide, DAF-FM forms a fluorescent product. Cells

were incubated with DAF-FM for 1 hour to allow penetration of DAF-FM. Remaining dye

was then washed off and cells were stimulated with OvAg and Pam3CSK. Fluorescent

measurements were taken for a total of 24 hours, with 1 minute intervals for the first

10 minutes, followed by 10 minute intervals for 1 hour and then 1 hour intervals for 24

hours. No NO production above background level was detected upon stimulation with

OvAg or Pam3CSK (Figure 3.7).

Reactive oxygen species (ROS) were detected using carboxylated dichlorodihydroflu-

orescein diacetate (carboxy-H2DCFDA). By this method, hydrogen peroxide, peroxyl



Results 37

Figure 3.7. Neutrophils were purified from C57BL/6 mice and stimulated
with OvAg. Production of nitric oxide was measured at different time
points. Neutrophils do not produce increased levels of nitric oxide upon
stimulation with OvAg or Pam3CSK.

radicals and peroxynitrite anions can be detected. The fluorescent dye permeates the

neutrophil membrane and, in the presence of reactive oxygen, intermediates undergoes

oxidation to 2’,7’-dichlorofluorescein. The cells were primed with carboxy-H2DCFDA

for one hour, then the extracellular dye was washed off. Cells were stimulated with OvAg

and Pam3CSK and fluorescence measurements commenced immediately, at 1 minute

intervals for 10 minutes, followed by 10 minutes intervals for 1 hour and then hourly

measurements for 24 hours (Figure 3.8). Increase in ROS production could be detected

within the first 10 minutes with the highest increase during the first six hours. Interest-

ingly, activation of ROS occured independent of TLR2 and the TLR2 agonist Pam3CSK

could not induce ROS production in neutrophils.

I investigated surface expression of L-Selectin and CD18 by flow cytometry. Neutro-

phils were stimulated with filarial extracts and control reagents for 18 hours. In addition

to L-Selectin and CD18 expression, I also examined CD11b and CD21/CD35 expression.
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Figure 3.8. Neutrophils were purified from C57BL/6 and TLR2-/- mice
and stimulated with OvAg. ROS release was measured at different time
points. Neutrophils produce ROS in response to stimulation with OvAg in
a TLR2 independent manner. TLR2-/- neutrophil stimulations are shown
as dotted lines.

As expected I found a significant increase in CD11b and CD18 expression following stim-

ulation with the TLR2 agonist Pam3CSK and a significant down-regulation of L-Selectin.

Stimulation with OvAg increased the expression of CD11b. The expression of CD18 and

L-Selectin was not significantly altered, although a trend to higher expression of CD18

and decreased expression of L-Selectin could be observed. Up- and down-regulation of

these surface markers was TLR2-dependent. Neutrophils from TLR2-/- showed an unal-

tered expression of CD11b, CD18 and L-Selectin expression following stimulation with

OvAg or Pam3CSK. The expression of CD21/35 remained unaffected after the different

stimulations (Figure 3.9).

Finally, I also examined the release of matrix metalloproteinases 2 and 9 by zymo-

graphy. Both are gelatinases and would degrade the gelatin matrix of the protein gel,

then be visualized by Coomassie blue staining. Several experiments revealed a multi-

tude of bands of different sizes, however, some of it was shown to be due to gelatinase
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Figure 3.9. Neutrophils were purified from C57BL/6 and TLR2-/- mice
and stimulated with OvAg. Upon stimulation with OvAg, CD11b and
CD18 were upregulated in a TLR2 dependent manner, whereas L-Selectin
is downregulated in a TLR2 dependent manner as shown by mean flu-
orescent intensity (MFI). CR1 expression remained unaffected. The full
bars correspond to responses by C57BL/6 neutrophils, checked bars cor-
respond to responses by TLR2-/- neutrophils. Numbers given are p-values
calculated by student’s t-test comparing stimulation with medium back-
ground.

activity of filarial extracts (data not shown). No clear conclusion could be drawn from

that data.
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3.2 The role of TLR2 and TLR4 in the generation of adaptive im-

mune responses

3.2.1 T cell activation

Previous studies demonstrated that immunization with BmAg or B. malayi microfilariae,

or with OvAg induced a predominant, but not exclusive Th2-like response (28, 102). To

examine the role of TLRs on the development of T cell phenotype, C57BL/6, TLR2-/-,

and TLR4-/- mice were immunized subcutaneously three times over three weeks with

OvAg. One week after the last immunization, mice were euthanized, splenocytes were

stimulated in vitro with OvAg, and IL-5 and IFN-γ were measured by ELISA. Figure 3.10

shows IFN-γ production by splenocytes from OvAg immunized C57BL/6 and TLR4-/-

mice, but not by TLR2-/- mice, indicating that filaria-induced IFN-γ production is TLR2-

dependent. In contrast, IL-5 production was similar in splenocytes from all mouse

strains. My findings indicate that TLR2 has a critical role in filaria-induced production

of Th1-associated IFN-γ, but not Th2-associated IL-5.

3.2.2 Antibody production

Previous studies demonstrated that Th2-associated isotypes IgE and IgG1 are predom-

inant after immunization with filarial extracts (34, 39). To determine the role of TLR2

and TLR4 on production of these isotypes, C57BL/6, TLR2-/-, and TLR4-/- mice were

immunized as described above, and total serum IgE and filaria-specific IgG1 were mea-

sured by ELISA. IgE was elevated in immunized C57BL/6 mice compared with unimmu-

nized mice (Figure 3.11); however, there was no decrease in IgE levels among immunized

TLR2-/- and TLR4-/- mice compared to C57BL/6 wildtype mice as shown in Figure 3.11.
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Figure 3.10. Splenocytes from immunized C57BL/6, TLR2-/-, and TLR4-/-

mice were stimulated for 72 hours with medium, OvAg and anti-CD3 and
IL-5 and IFN-γ production was measured by ELISA. Splenocytes from
TLR2-/- mice produced significantly less IFN-γ when stimulated with
OvAg.

The only difference I detected were increased levels of IgE in TLR2-/- mice. Similarly,

filaria-specific IgG1 in immunized C57BL/6 mice was detected at up to 1:100,000 di-

lution (filaria-specific IgG1 in unimmunized mice was undetectable); however, as with

IgE, there were no significant difference between C57BL/6 and TLR2-/- or TLR4-/- mice

(Figure 3.12). Previous studies also demonstrated that filaria-specific IgG2a, which is

associated with IFN-γ production (103–105), is produced at low levels compared with

IgG1 (106). Filaria-specific IgG2c levels were low in C57BL/6 mice, and there was no dif-

ference between these and TLR2-/- and TLR4-/- mice. These findings indicate that TLR2

and TLR4 have no major role in production of filaria-specific antibodies.

3.3 The role of TLR2 and TLR4 in corneal inflammation

Previous studies showed that neutrophils and eosinophils are recruited to the corneas of

immunized mice in a biphasic manner after injection of parasite extracts to the corneal
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Figure 3.11. Serum levels of IgE in immunized C57BL/6, TLR2-/- and
TLR4-/- mice were measured by ELISA. IgE was increased in immunized
mice compared with naive mice. TLR2-/- showed higher levels of IgE com-
pared with C57BL/6 mice. Numbers given are p-values calculated by stu-
dent’s t-test.

Figure 3.12. Serum levels of antigen-specific IgG1 and IgG2c in immu-
nized C57BL/6, TLR2-/- and TLR4-/- mice were measured by ELISA. No
difference in antibody levels was detected in those strains.

stroma. In this model of Onchocerca keratitis (river blindness), neutrophil recruitment

peaks 24h after injection, whereas eosinophils are the predominant cell type after 72

hours (32, 41). To determine if TLRs regulate neutrophil and eosinophil migration to the

corneal stroma, I injected OvAg into the corneal stroma of immunized C57BL/6, TLR2-/-,



Results 43

and TLR4-/- mice, and quantified the number of neutrophils in the corneal stroma after

24 hours, and the number of eosinophils after 72 hours.

3.3.1 Cellular infiltration

A representative figure of neutrophil infiltration in C57BL/6 and TLR2-/- mice can be

seen in Figure 3.13. As shown in Figure 3.14, neutrophils are present in the corneas

of immunized C57BL/6 mice and TLR4-/- mice after intrastromal injection of OvAg,

whereas in TLR2-/- mice, the number of neutrophils was significantly lower than in

C57BL/6 mice.

Figure 3.13. Cross section of the cornea: neutrophil infiltration into the
corneas of C57BL/6 (left panel) and TLR2-/- (right panel) mice.

In contrast, there was no significant difference in eosinophil numbers among any of

the strains (Figure 3.15). If anything, slightly increased levels of eosinophils were found

in TLR2-/- mice.
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Figure 3.14. Neutrophil infiltration into the corneas of naive and im-
munized C57BL/6, TLR2-/- and TLR4-/- mice at 24 hours post injection.
Neutrophil infiltration was decreased in TLR2-/- mice compared with
C57BL/6 mice. Numbers given are p-values calculated by student’s t-test.

Figure 3.15. Eosinophil infiltration into the corneas of naive and im-
munized C57BL/6, TLR2-/- and TLR4-/- mice at 72 hours post injection.
Eosinophil infiltration was slighly increased in TLR2-/-.

I only found low numbers (50 cells per 5 µm section) of CD4+ T cells in the cornea.

Those cells mainly remained in the periphery and failed to migrate to the central cornea

(data not shown). There were no differences among the different mouse strains.
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Macrophage numbers were quantified as F4/80+ and CD169+ positive cells. F4/80

is expressed on tissue macrophages, whereas CD169 is upregulated on activated

macrophages. I found decreased macrophage infiltration into the corneas of TLR2-/-

mice one day post injection (data not shown). This corresponds to findings in naive

mice injected with filarial extract, where macrophage migration was also dependent on

the presence TLR2 (86).

3.3.2 PECAM expression

Previous studies have identified decreased PECAM-1 expression on limbal vessels in the

absence of IFN-γ (96). I therefore examined PECAM-1 expression in TLR2-/- mice in

comparison to wildtype C57BL/6 to investigate the effect of decreased IFN-γ produc-

tion in TLR2-/- mice on PECAM-1 expression as a potential mechanism of decreased

neutrophil infiltration into the corneas of these mice. Corneal sections were stained

with FITC labelled anti-PECAM-1 antibodies and images were recorded and analyzed

using ImagePro software. Vessels were marked using this software and the fluorescence

intensity per vessel area was calculated. I then averaged the fluorescence intensity per

vessel for each eye. As shown in Figure 3.16, no significant differences in PECAM-1 ex-

pression were detected, although a trend to reduced PECAM-1 expression was found.

3.3.3 Chemokine production

To determine whether decreased neutrophil infiltration was caused by decreased

chemokine production, mice were immunized and injected with filarial extracts as de-

scribed above. One day post injection, I excised a 2 mm button of the cornea, homoge-

nized the tissue and measured KC, MIP-2 and LIX by ELISA. In TLR2-/- mice no increased
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Figure 3.16. Expression of PECAM-1 on the limbal vessels in immunized
C57BL/6 and TLR2-/- mice at 24 hours post injection. Numbers given are
p-values calculated by student’s t-test.

levels of all three chemokines in response to OvAg injection was measured compared to

naive, HBSS injected corneas. (Figure 3.17). There was an increased chemokine produc-

tion in immunized C57BL/6 and TLR4 -/- mice mice with no difference between C57BL/6

and immunized TLR4-/- mice.

Thus decreased chemokine production is one mechanism for reduced neutrophil

infiltration into the corneal stroma.

Figure 3.17. CXC chemokine production following HBSS injection (naive)
or OvAg injection into immunized mice. CXC chemokine production is
decreased in TLR2-/-, but not in TLR4-/- mice. Numbers given are p-
values calculated by student’s t-test.
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3.4 The role of IFN-γ in the generation of adaptive immune re-

sponses

3.4.1 T cell activation

C57BL/6 and IFN-γ-/- mice were immunized as described previously. Spleens were

dissected and single cell suspensions prepared. Splenocytes were stimulated for 72

hours with medium, OvAg and anti-CD3. Figure 3.18 shows that anti-CD3 and OvAg

treated splenocytes from C57BL/6 produced IFN-γ, while it was absent in cultures from

IFN-γ-/- mice, and that IL-5 production by IFN-γ-/- mice was not significantly different

from IL-5 production by C57BL/6 mice.

Figure 3.18. Splenocytes of immunized C57BL/6 and IFN-γ-/- mice were
stimulated for 72 hours with OvAg and IL-5 and IFN-γ production were
measured by ELISA. There was no IFN-γ production in IFN-γ-/- mice. IL-
5 production did not differ between the two strains. Numbers given are
p-values calculated by student’s t-test.
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3.4.2 Cellular infiltration

Corneas of immunized C57BL/6 and IFN-γ-/- mice were injected with OvAg and eyes

enucleated at one day post injection. Neutrophil infiltration was determined by im-

munohistochemistry as described above. As shown in Figure 3.19, the number of

neutrophils in the cornea was significantly lower in IFN-γ-/- mice compared with

C57BL/6 mice, indicating that IFN-γ affects OvAg-induced neutrophil recruitment to

the corneal stroma.

I found no significant difference in the number of eosinophils in the corneas of im-

munized C57BL/6 and IFN-γ-/- mice.

Figure 3.19. Neutrophil and eosinophil migration to the corneas of im-
munized C57BL/6 and IFN-γ-/- mice at 24 hours post injection. Neu-
trophil infiltration was decreased in IFN-γ-/- mice. Numbers given are
p-values calculated by student’s t-test.
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3.4.3 PECAM expression

Studies by other groups showed IFN-γ-dependent PECAM-1 expression in the mouse

corneas following injection of Herpes simplex virus (96). Therefore I determined the ex-

pression of PECAM-1 in C57BL/6 and IFN-γ-/- mice. PECAM-1 expression was analyzed

as described above. I found no difference in PECAM-1 expression between C57BL/6 and

IFN-γ-/- mice (Figure 3.20).

Figure 3.20. PECAM-1 expression on limbal vessels of the cornea was de-
termined at 24 hours post injection. PECAM-1 expression did not differ in
the corneas of C57BL/6 and IFN-γ-/- mice. Numbers given are p-values
calculated by student’s t-test.
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3.5 IFN-γ induced cytokine responses in macrophages and fi-

broblasts

3.5.1 Macrophages

To examine whether IFN-γ has a synergistic effect with OvAg on cytokine production,

macrophages isolated from the peritoneal cavity were stimulated for 18 hours with ei-

ther OvAg, rIFN-γ alone, or with both, then IL-1α, IL-1β, TNFα and IL-6 were mea-

sured by ELISA. Previous studies from our group showed macrophage activation with

filaria/Wolbachia antigens (86), and I found a dose-dependent increase of cytokine pro-

duction, and chose 2 µg/ml OvAg (half maximum cytokine production) as an optimal

dose. As shown in Figure 3.21, macrophages incubated with rIFN-γ alone did not in-

duce cytokine production, and incubation with OvAg alone produced increased levels

of IL-1α, IL-1β, TNFα and IL-6. In marked contrast, rIFN-γ added to macrophages to-

gether with OvAg stimulated greatly elevated levels of all four cytokines (Figure 3.21).

The synergistic effect of IFN-γ and OvAg was further increased if macrophages were in-

cubated for 6 hours with rIFN-γ prior to stimulation with OvAg (Figure 3.22). Priming

was most efficient for production of IL-6 and TNFα. Priming with OvAg followed by

IFN-γ stimulation did not have a similar effect.

As CXC chemokines are important for recruitment of neutrophils to the corneal

stroma, with macrophages producing CXCL1/KC and CXCL2/MIP-2 (17), I examined if

there is a synergistic effect of IFN-γ on OvAg-induced production of these chemokines.

Peritoneal macrophages were stimulated with OvAg, rIFN-γ or both, and CXCL1/KC

and CXCL2/MIP-2 were measured by ELISA. As shown in Figure 3.23, OvAg stimulated
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Figure 3.21. Primary macrophages were purified from C57BL/6 mice and
stimulated for 18 hours with rIFN-γ. rIFN-γ did not induce cytokine pro-
duction in primary macrophages. Stimulation with rIFN-γ and OvAg in-
duced increased levels of IL-1α, IL-1β, TNFα and IL-6. Numbers given
are p-values calculated by student’s t-test.

macrophages produced more chemokines than unstimulated cells; however, the addi-

tion of IFN-γ did not increase production of any of these chemokines. Therefore, in con-

trast to pro-inflammatory cytokines, production of CXC chemokines is not enhanced by

IFN-γ, and indicate that IFN-γ has a selective effect on macrophage production of pro-

inflammatory cytokines.
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Figure 3.22. Macrophages were purified from C57BL/6 mice and primed
with rIFN-γ or OvAg, followed by stimulation with OvAg or rIFN-γ. For
controls, cells were incubated with medium only prior to "restimulation".
Priming was only effective with rIFN-γ and induced increased cytokine
production by macrophages. Numbers given are p-values calculated by
student’s t-test.

3.5.2 Neutrophils

Neutrophils were shown to be activated by OvAg. Although they do not reside in the

corneal stroma, these cells are the first responders upon injection of filarial extract and

could enhance further neutrophil migration by CXC chemokine production. I did not

find increased production of MIP-2 by neutrophils in responses to stimulation with

rIFN-γ and OvAg (Figure 3.24).
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Figure 3.23. Macrophages were purified from C57BL/6 mice and stimu-
lated with rIFN-γ and OvAg. KC and MIP-2 production by macrophages
was not increased by costimulation with rIFN-γ and OvAg. Numbers
given are p-values calculated by student’s t-test.

Figure 3.24. Neutrophils were purified from C57BL/6 mice and stimu-
lated with rIFN-γ and OvAg. MIP-2 production following stimulation of
neutrophils with rIFN-γ or costimulation with rIFN-γ and OvAg was not
increased.

3.5.3 MK/T-1 cells

As CXC chemokines are important for recruitment of neutrophils to the corneal stroma,

with corneal fibroblasts producing CXCL1/KC and CXCL5/LIX (17), I examined if there

is a synergistic effect of IFN-γ on OvAg-induced production of either chemokine.
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MK/T-1 murine corneal fibroblasts were stimulated with OvAg, rIFN-γ or both, and

CXCL1/KC and CXCL5/LIX were measured by ELISA. As shown in Figure 3.25, OvAg

stimulated corneal fibroblasts produced more chemokines than unstimulated cells;

however, the addition of rIFN-γ did not increase production of any of these chemokines

by MK/T-1 cells.

Figure 3.25. The murine fibroblast cell line MK/T-1 was stimulated for 18
hours with rIFN-γ or OvAg or both. rIFN-γ alone did not induce produc-
tion of CXC chemokines and did not increase CXC chemokine production
following stimulation with OvAg. Numbers given are p-values calculated
by student’s t-test and compared to medium stimulation alone (no bar),
or comparing OvAg alone to rIFN-γ+OvAg when marked with a bar.

3.5.4 TLR2 expression on macrophages

As macrophages and dendritic cells are present in the normal corneal stroma (107, 108)

and macrophages respond to IFN-γ stimulation, I examined if IFN-γ regulates TLR2

expression by macrophages. Macrophages isolated from the peritoneal cavity were in-

cubated for 6 hours with OvAg, IFN-γ or both, and surface expression of TLR2 was ana-

lyzed by flow cytometry. As shown in Figure 3.26, TLR2 surface expression was elevated

after stimulation with rIFN-γ. Co-stimulation with rIFN-γ together with either OvAg or
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the TLR ligand Pam3CSK further increased TLR2 expression above that of either ligand

or IFN-γ alone. These observations indicate that one mechanism of IFN-γ synergism

with OvAg is to elevate expression of TLR2 on macrophages.

Figure 3.26. Macrophages were purified from C57BL/6 mice and stimu-
lated for 6 hours with rIFN-γ. Stimulation with rIFN-γ increased surface
expression of TLR2. Numbers given are p-values calculated by student’s
t-test

3.6 Activation of macrophages, neutrophils and fibroblasts by

pro-inflammatory cytokines.

As I demonstrated that IFN-γ increases production of pro-inflammatory cytokines but

not chemokines, I determined whether the pro-inflammatory cytokines rather than

IFN-γ affected the production of chemokines by macrophages, fibroblasts and neutro-

phils.



Results 56

3.6.1 Macrophages

Peritoneal macrophages were isolated as described above, incubated with rTNFα, rIL-

1α, rIL-1β or rIL-6. Stimulation with rTNFα and rIL-1α increased the production of KC

and MIP-2 (Figure 3.27), but stimulation with IL-1β and IL-6 did not.

Figure 3.27. Stimulation of C57BL/6 macrophages for 18 hours with
TNFα and rIL-1α, but not with rIL-1β or rIL-6, inreased the production
of KC and MIP-2. P-values shown are comparing stimulation with recom-
binant cytokines to medium stimulation.

3.6.2 Neutrophils

Peritoneal neutrophils were purified as described above. Cells were stimulated with

rTNFα, rIL-1α, rIL-1β or rIL-6. Low levels of MIP-2 were induced by rIL-1α, rIL-1β

or rIL-6, but not rTNFα (Figure 3.28). This does not appear to be a major activation

pathway.

3.6.3 MK/T-1 cells

Previous studies from our lab showed that corneal fibroblasts secrete high levels of

CXCL5/LIX in addition to CXCL1/KC in response to LPS (17); therefore I examined KC
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Figure 3.28. Stimulation of C57BL/6 neutrophils for 18 hours with rIL-1α,
rIL-1β or rIL-6, but not with rTNFα inreased the production of MIP-2. P-
values shown are comparing stimulation with recombinant cytokines to
medium stimulation.

and LIX production by ELISA. As shown in Figure 3.29, corneal fibroblasts produced KC

and LIX in response to rTNFα, rIL-1α and rIL-1β. rIL-6 did not induce cytokine produc-

tion by MK/T-1 cells.

Figure 3.29. Activation of MK/T-1 cells by stimulation with recombinant
cytokines was measured by ELISA. rTNFα, rIL-1α and rIL-1β induced
production of KC and LIX. P-values shown are comparing stimulation
with recombinant cytokines to medium stimulation.
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3.7 The role of IL-1R1, IL-6 and TNFα in T cell responses and

corneal inflammation

With my studies in vitro I demonstrated that IL-1, IL-6 and TNFα production are af-

fected by increased levels of IFN-γ. Therefore I examined whether deficiency in these cy-

tokines affected corneal inflammation in vivo. C57BL/6, IL-1R1-/-, IL-6-/- and TNFαR-/-

mice were immunized as described above and the corneas were injected with soluble

OvAg. T cell activation was examined to determine if cytokine deficiency led to insuffi-

cient immunization systemically and therefore decreased corneal inflammation.

3.7.1 T cell activation

Following euthanisia, spleens were dissected and splenocyte cultures were incubated

with medium, OvAg or anti-CD3 for 72 hours. IL-5 and IFN-γ production was deter-

mined by ELISA. In IL-1R1-/- mice, IL-5 and IFN-γ production remained unaffected in

comparison to C57BL/6 mice as shown in Figure 3.30. If anything, a slight, but not sig-

nificant, increase of IL-5 was detected. As I was investigating neutrophil infiltration in

response to OvAg stimulation via increased systemic levels of IFN-γ, these experiments

were not affected by this increase.

In IL-6-/- mice, IL-5 production remained unaffected in comparison to C57BL/6

mice as shown in Figure 3.31. If anything, a slight, but not significant, increase of IL-

5 was detected. IFN-γ levels were undetectable following OvAg stimulation in both

C57BL/6 and IL-6-/- mice. However, in this experiment, splenocytes from IL-6-/- mice

did not produce similar amounts of IFN-γ in response to anti-CD3 when compared with
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Figure 3.30. IL-5 and IFN-γ production remained unaffected in immu-
nized IL-1R1-/- mice compared with C57BL/6 mice. P-values shown are
comparing stimulation with OvAg in C57BL/6 and IL-1R1-/- mice.

C57BL/6 mice. This was not reproducible in other experiments. Cells were viable as they

produced normal amounts of IL-5 in response to anti-CD3.

Figure 3.31. IL-5 production remained unaffected in immunized IL-
6-/- mice compared with C57BL/6 mice, but IFN-γ production was de-
creased. Numbers given are p-values calculated by student’s t-test.
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In TNFαR-/- mice, IL-5 and IFN-γ production remained unaffected in comparison to

C57BL/6 mice as shown in Figure 3.32. If anything, a slight, but not significant, increase

of IL-5 was detected. As I was investigating neutrophil infiltration in response to OvAg

stimulation via increased systemic levels of IFN-γ, these experiments were not affected

by this increase.

Figure 3.32. IL-5 and IFN-γ production remained unaffected in immu-
nized TNFαR-/- mice compared with C57BL/6 mice.

3.7.2 Granulocyte migration into the corneal stroma of cytokine (receptor)

knockout mice

Corneas of immunized C57BL/6, IL-1R1-/-, IL-6-/- and TNFαR-/- mice were injected with

OvAg and neutrophil infiltration was determined at 24 hours post injection by immuno-

histochemistry.

In IL-1R1-/- mice, neutrophil infiltration was significantly reduced compared to

C57BL/6 mice (Figure 3.33). In contrast, eosinophil infiltration remained unaffected in

these mice (Figure 3.33).
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Figure 3.33. Neutrophil infiltration into the corneal stroma is abro-
gated in immunized IL-1R1-/- mice compared to C57BL/6 mice while
eosinophil infiltration remains unaffected. Numbers given are p-values
calculated by student’s t-test.

In IL-6-/- mice, neutrophil infiltration was significantly reduced compared to

C57BL/6 mice (Figure 3.34). In contrast, eosinophil infiltration remained unaffected in

these mice, even though there was a slight trend towards decreased levels in IL-6-/- mice

(Figure 3.34).

In TNFαR-/- mice, migration of neutrophils and eosinophils to the corneal stroma

showed no difference to C57BL/6 mice (Figure 3.35).

3.8 In vivo responses to Wolbachia

3.8.1 Injection of Wolbachia depleted filarial extract into the cornea.

As previous studies suggested that pro-inflammatory immune responses are at least par-

tially induced by the endosymbiont Wolbachia (29, 84, 101), I next immunized C57BL/6
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Figure 3.34. Neutrophil infiltration into the corneal stroma is abro-
gated in immunized IL-6-/- mice compared with C57BL/6 mice while
eosinophil infiltration remains unaffected.

Figure 3.35. No difference in neutrophil and eosinophil infiltration to the
corneal stroma between immunized C57BL/6 and TNFαR-/- mice.

mice with 100 000 B. malayi microfilariae to induce an adaptive immune response com-

parable to OvAg immunization. I then injected the corneas with B. malayi extract and
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extract from B. malayi worms that were treated with tetracycline (BmAgtet) for an ex-

tended period of time, thus depleting the Wolbachia. Following BmAgtet injection into

corneas of immunized mice, I found neutrophil infiltration into the corneal stroma sim-

ilar to that of unimmunized mice injected with BmAg, but significantly decreased com-

pared with immunized C57BL/6 mice injected with BmAg (Figure 3.36). This shows a

role for Wolbachia in the migration of neutrophils, in the presence of a full adaptive im-

mune response. In contrast to neutrophil infiltration, eosinophil infiltration remained

unaffected by the absence of Wolbachia from filarial extract.

3.8.2 Adaptive immune responses to A. viteae and Wolbachia

To determine Wolbachia-dependent granulocyte migration to the corneal stroma by a

second experimental design, I immunized mice with extract from A. viteae worms (AvAg)

that are naturally devoid of Wolbachia endobacteria or with Wolbachia purified from

insect cells. I then injected the corneas with AvAg, Wolbachia purified from insect cells

or a mixture of both.

After euthanasia, spleens were excised and single cell suspensions were stimulated

with AvAg, Wolbachia or both for 72 hours. IL-5 and IFN-γ production were determined

by ELISA. IL-5 production was dependent on the immunization and stimulation being

carried out with the same reagent, and AvAg as well as Wolbachia could induce similar

levels of IL-5. In contrast, IFN-γ was only induced when Wolbachia were present dur-

ing both the immunization and stimulation, indicating Wolbachia-dependent priming

events during immunization (Figure 3.37).

I then determined neutrophil and eosinophil infiltration into the corneal stroma fol-

lowing injection of AvAg or Wolbachia. Eosinophil infiltration was dependent on the
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Figure 3.36. C57BL/6 mice were immunized with B. malayi microfilariae.
Neutrophil infiltration into the corneal stroma of immunized mice was
significantly reduced after injection of tetracycline treated B. malayi ex-
tract in comparison to untreated B. malayi extract, whereas eosinophil
migration remained unaffected.
The legend corresponds to:
HBSS: naive mice, injected with HBSS,
BmAgnaive: naive mice, injected with BmAg,
BmAgtet: immunized mice, injected with Wolbachia depleted worm ex-
tract,
BmAgadaptive: immunized mice, injected with BmAg.

presence of the same antigens during immunization and stimulation, similar to IL-5

production by splenocytes. AvAg induced eosinophil infiltration when present during

the immunization and challenge period, whereas there was hardly any eosinophil mi-

gration in the Wolbachia injected corneas. Neutrophil infiltration could be induced by
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Figure 3.37. C57BL/6 mice were immunized with AvAg, Wolbachia or
both for 3 weeks and spleens were dissected for in vitro stimulation. IL-
5 and IFN-γ production by splenocytes stimulated with AvAg and Wol-
bachia was measured by ELISA.

both, AvAg and Wolbachia with the highest levels of neutrophils after Wolbachia injec-

tion (Figure 3.38).

Figure 3.38. C57BL/6 mice were immunized with AvAg, Wolbachia or
both for 3 weeks and corneas were injected with AvAg, Wolbachia or both.
Neutrophil and eosinophil infiltration into the corneal stroma following
immunization and intrastromal injection with AvAg and Wolbachia were
determined by immunohistochemistry.
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3.9 In vitro responses to rWSP

Previous studies indicated a role for the major surface protein of Wolbachia in the in-

duction of pro-inflammatory immune responses. Brattig (85) described a role for TLR2

and TLR4 in the activation of dendritic cells and macrophages by rWSP. To further char-

acterize the activation by rWSP, I generated deletion mutants of the surface protein of B.

malayi (BmWSP). BmWSP cloned into the pet100 vector was obtained from Alan Scott’s

laboratory (John Hopkins University, Baltimore, MD). The gene sequence of the cloned

BmWSP is shown in Figure 3.39. The amino acid sequence is depicted in Figure 3.40.

The full sequence contains 240 amino acids (720 base pairs). The 69 base pairs leader se-

quence (23 amino acids) was previously deleted. I generated sequential deletions from

the WSP gene by inverse PCR, replicating the complete plasmid minus the deleted se-

quence. The following deletion mutants were generated: BmWSP∆61-90, BmWSP∆91-

120, BmWSP∆121-150, BmWSP∆181-210 and BmWSP∆211-240. The wildtype and mu-

tant amino acid sequences are shown in Figure 3.40.

Proteins were purified from E. coli under native conditions.

3.9.1 HEK cell responses

To investigate activation of TLR2 by rWSP and deletion mutants, HEK cells transfected

with hTLR2 or hTLR3 were stimulated for 18 hours with the different proteins. hTLR4

transfected HEK cells were not used for this experiment as the recombinant proteins

were purified from E. coli and thus LPS contamination was very likely. For control

reagents, I used Pam3CSK (TLR2), Poly(I:C) (TLR3) and LPS (TLR4). Upon stimulation,

hTLR3 transfected HEK cells only produced IL-8 in response to Poly(I:C). All other stim-

ulations were at similar levels to the medium control. Stimulation of hTLR2 transfected
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Figure 3.39. Gene sequence of BmWSP. The red sequence corresponds to
the leader sequence that was previously deleted.

HEK cells yielded IL-8 production in response to rWSP and Pam3CSK. Strikingly, even

Poly(I:C) induced IL-8 production, though at much lower levels than in hTLR3 trans-

fected HEK cells. Stimulation with mutant rWSP induced lower levels of IL-8 for the

deletion 181-210 (Figure 3.41).

3.9.2 Macrophage responses

To exclude signaling via TLR4, I purified macrophages from TLR4-/- and TLR2/4-/- mice

to determine activation via TLR2. Following an overnight rest period, macrophages were
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BmWSP minus LP HHHHHHGMASMTGGQQMGRDLYDDDDKDHPFTMDPVGPIADEETSYYI
BmWSPΔ61-90 HHHHHHGMASMTGGQQMGRDLYDDDDKDHPFTMDPVGPIADEETSYYI
BmWSPΔ91-120 HHHHHHGMASMTGGQQMGRDLYDDDDKDHPFTMDPVGPIADEETSYYI
BmWSPΔ121-150 HHHHHHGMASMTGGQQMGRDLYDDDDKDHPFTMDPVGPIADEETSYYI
BmWSPΔ181-210 HHHHHHGMASMTGGQQMGRDLYDDDDKDHPFTMDPVGPIADEETSYYI
BmWSPΔ211-240 HHHHHHGMASMTGGQQMGRDLYDDDDKDHPFTMDPVGPIADEETSYYI

BmWSP minus LP RLQYNSEFSPLNTKVDGITGAQKDSKDTNDLYKPSFMAGGSAFGYRMD
BmWSPΔ61-90 RLQYNSEFSPLNTKVDGITGAG
BmWSPΔ91-120 RLQYNSEFSPLNTKVDGITGAQKDSKDTNDLYKPSFMAGGSAFGYRMD
BmWSPΔ121-150 RLQYNSEFSPLNTKVDGITGAQKDSKDTNDLYKPSFMAGGSAFGYRMD
BmWSPΔ181-210 RLQYNSEFSPLNTKVDGITGAQKDSKDTNDLYKPSFMAGGSAFGYRMD
BmWSPΔ211-240 RLQYNSEFSPLNTKVDGITGAQKDSKDTNDLYKPSFMAGGSAFGYRMD

BmWSP minus LP DIRVDIEGLYSQLSKSTLSRAPTPDIVDNLTAISGLVNVYYDVVIEDI
BmWSPΔ61-90   SVDIEGLYSQLSKSTLSRAPTPDIVDNLTAISGLVNVYYDVVIEDI
BmWSPΔ91-120 DIRG                            SSGLVNVYYDVVIEDI
BmWSPΔ121-150 DIRVDIEGLYSQLSKSTLSRAPTPDIVDNLTAIG    
BmWSPΔ181-210 DIRVDIEGLYSQLSKSTLSRAPTPDIVDNLTAISGLVNVYYDVVIEDI
BmWSPΔ211-240 DIRVDIEGLYSQLSKSTLSRAPTPDIVDNLTAISGLVNVYYDVVIEDI

BmWSP minus LP PITPYVGVGLGVAYISNPAKAQVIADQKHGFGFAYQAKAGISYDVTPE
BmWSPΔ61-90 PITPYVGVGLGVAYISNPAKAQVIADQKHGFGFAYQAKAGISYDVTPE
BmWSPΔ91-120 PITPYVGVGLGVAYISNPAKAQVIADQKHGFGFAYQAKAGISYDVTPE
BmWSPΔ121-150               SSNPAKAQVIADQKHGFGFAYQAKAGISYDVTPE
BmWSPΔ181-210 PITPYVGVGLGVAYISNPAKAQVIADQKHGFGFAYQAKAGISYDVG
BmWSPΔ211-240 PITPYVGVGLGVAYISNPAKAQVIADQKHGFGFAYQAKAGISYDVTPE

BmWSP minus LP IKLFAGARYFGSYGANFDKSEEVNKGTSEDKETKVTAGAYKVLYSTIG
BmWSPΔ61-90 IKLFAGARYFGSYGANFDKSEEVNKGTSEDKETKVTAGAYKVLYSTIG
BmWSPΔ91-120 IKLFAGARYFGSYGANFDKSEEVNKGTSEDKETKVTAGAYKVLYSTIG
BmWSPΔ121-150 IKLFAGARYFGSYGANFDKSEEVNKGTSEDKETKVTAGAYKVLYSTIG
BmWSPΔ181-210                           SSEDKETKVTAGAYKVLYSTIG
BmWSPΔ211-240 IKLFAGARYFGSYGANFDKSEEVNKGTG                 

BmWSP minus LP AEAGIAFNF
BmWSPΔ61-90 AEAGIAFNF
BmWSPΔ91-120 AEAGIAFNF
BmWSPΔ121-150 AEAGIAFNF
BmWSPΔ181-210 AEAGIAFNF
BmWSPΔ211-240        SF

Figure 3.40. Amino acid sequence of BmWSP and deletion mutants. Gaps
in the amino acid sequence correspond to the deletion in the sequence.
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Figure 3.41. HEK-TLR2 and HEK-TLR3 cells were stimulated for 18 hours
with rWSP and the deletion mutants. Stimulation with rWSP∆181-210 in-
duced lower levels of huIL-8 compared to wildtype rWSP or other dele-
tion mutants. For controls, cells were stimulated with Pam3CSK (TLR2),
Poly(I:C) (TLR3) and LPS (TLR4).

stimulated with BmWSP and the deletion mutants. Pam3CSK and LPS were used as con-

trol reagents. Levels of the pro-inflammatory cytokine TNFα and the chemokine MIP-

2 were determined by ELISA. Decreased activation could be detected after stimulation

with BmWSP∆121-150, BmWSP∆181-210 and BmWSP∆211-240. No cytokine produc-

tion was measured in macrophages obtained from TLR2/4-/- mice (Figure 3.42).

3.9.3 Splenocyte responses

TLR4-/- and TLR2/4-/- mice were immunized with BmWSP three times at weekly inter-

vals. One week after the final immunization, mice were euthanized and splenectomized.

Splenocyte cultures were incubated with BmWSP and its deletion mutants. Anti-

CD3 was used as positive control. TLR2/4-/- cultures showed signficantly decreased

IFN-γ levels even though levels were already low in TLR4-/- cultures. Stimulation with
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Figure 3.42. C57BL/6 macrophages were stimulated with rWSP and
deletion mutants. Decreased levels of cytokine production by
macrophages after stimulation with BmWSP∆121-150, BmWSP∆181-210
and BmWSP∆211-240 and in TLR2/4-/- cells were measured by ELISA.

BmWSP∆121-150, BmWSP∆181-210 and BmWSP∆211-240 led to reduced IFN-γ pro-

duction in TLR4-/- cultures (Figure 3.43). IL-5 levels were undetectable in these experi-

ments (data not shown).
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Figure 3.43. TLR4-/- and TLR2/4-/- mice were immunized with rWSP
for 3 weeks. Spleens were excised for restimulation in vitro with rWSP
and the deletion mutants. Decreased levels of IFN-γ after stimulation
with BmWSP∆121-150, BmWSP∆181-210 and BmWSP∆211-240 and in
TLR2/4-/- cells were measured by ELISA.

3.9.4 Antibody responses

C57BL/6 mice were immunized with BmAg as described before. After three immu-

nizations, mice were bled and serum was obtained for antibody detection. I measured

antigen-specific IgG1 responses by ELISA with WSP as coating antigen. I did not measure

IgG2c as the antibody levels were low to begin with. As I measured cross-reactivity from

BmAg immunized mice (BmAg containing Wolbachia and thus BmWSP) with recombi-

nant BmWSP purified from E. coli I expected IgG2c levels below the limit of detection.

BmWSP-specific IgG1 levels were clearly detectable and increased to about 4-fold above

background level of unimmunized mice (Figure 3.44). IgG1 specific for deletion mutants

was also clearly detectable for BmWSP∆61-90, BmWSP∆91-120 and BmWSP∆211-240.
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Levels were significantly decreased when BmWSP∆151-180 and BmWSP∆181-210 were

used to detect IgG1.

Figure 3.44. C57BL/6 mice were immunized with BmAg and serum was
taken after 3 weeks. Decreased levels of BmWSP-specific IgG1 were mea-
sured when detected with BmWSP∆181-210 and BmWSP∆211-240.
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4 Discussion

4.1 Activation of antigen-presenting cells

With the results from this study and the experiments by colleagues, we could demon-

strate that dendritic cells, neutrophils and macrophages are all activated by filarial

extracts (83, 86). All three cell types require TLR2 expression for activation. For

macrophage activation, the requirement of TLR6, MyD88 and Mal was also shown. Ex-

pectedly, dendritic cells required MyD88 expression for activation by filarial extracts

(data not shown).

Dendritic cell and macrophage activation are essential for efficient induction of

adaptive immune responses. Dendritic cells can efficiently activate T cells when previ-

ously activated by TLR ligands (80). Upon activation, antigen uptake, membrane trans-

port and antigen presentation are described to be more efficient (80). Typical DC1 cy-

tokines are IL-12, IL-23 and typical DC2 cytokines are IL-10 and TGF-β (51), cytokines

more recently associated with the generation of regulatory T cells than in the generation

of Th2 cells, whose generation is characterized by low levels of IL-12 produced by den-

dritic cells (51). Myeloid dendritic cells in humans are capable of inducing Th1 or Th2

responses, depending on the production of IL-12 (109) whereas plasmacytoid dendritic



Discussion 74

cells induce Th1 cells. Initial studies with plasmacytoid dendritic cells did not show con-

sistent cytokine production (data not shown), so I focused on myeloid dendritic cells

instead. I initially measured IL-6, IL-12, IP10, TNFα and RANTES and found signficant

production of IL-6, RANTES and TNFα (data not shown). Missing production of IL-12

implicates differentiation towards Th2 which is the common pathway during filarial in-

fection. It has also been shown that activation of TLR2 does not induce IL-12 or IP10

production in human monocyte-derived dendritic cells (110).

Activation of the costimulatory molecules CD80 and CD86 will cause CD28 engage-

ment on the T cells (49). Interaction between CD80/CD86 and CD28 in combination

with T cell receptor activation via MHCII induces differentiation of naive T cells into Th1

or Th2 cells (111). I only found a slight increase of CD86, but higher levels of CD80. How-

ever, dendritic cells are differentially regulated and do not express all activation markers

upon each stimulation. Similar to cytokine production, the upregulation of costimula-

tory molecules was TLR2-dependent.

CD40 upregulation has been demonstrated early in the activation of dendritic cells.

Increased expression of CD40 can lead to higher MHCII expression upon CD40 ligand

engagement and thus more efficient antigen presentation (111). CD40-CD40 ligand in-

teractions were shown to be critical during dendritic cell responses to parasite antigens

(112). I found increased CD40 expression on wild-type dendritic cells, that was absent

in TLR2-/- cells.

To protect themselves from ROS produced by macrophages, neutrophils and

eosinophils, O. volvulus and B. malayi contain thioredoxin peroxidase (113–115). In-

creased production of ROS has been related to expulsion of the nematode Nippostrongy-

lus brasiliensis (116). Neutrophil activation by filarial extracts was investigated using
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several markers: myeloperoxide production, MIP-2 production, generation of nitric ox-

ide and reactive oxygen species, expression of CD11b, CD18 and L-Selectin and release

of MMPs. I found production of MPO and MIP-2, generation of ROS and upregulation of

CD11b and CD18, while L-Selectin was shed. No generation of NO or release of gelati-

nases could be clearly demonstrated. Expression of surface activation markers CD11b,

CD18 and L-Selectin was regulated TLR2-dependent as was the production of MIP-2.

ROS generation occured independent of TLR2 and could not be induced by TLR2 ago-

nists. This response could therefore be due to the filarial component more than to the

Wolbachia content of the protein extract. Future experiments may address this question

by stimulating neutrophils with the Wolbachia-free extract from A. viteae.

4.2 TLR2 in the adaptive immune response

This study examined the role of TLRs in the generation of eye disease. Previous studies

had shown (i) that neutrophil infiltration into the cornea was dependent on the pres-

ence of functional TLR4 and Wolbachia (84), and (ii) TLR2- and TLR4-dependent acti-

vation by Wolbachia surface protein (85). Studies carried out in our lab at the same time

could show neutrophil migration to the cornea depending on the presence of MyD88

(29) without previous immunizations. Further investigations revealed requirement of

TLR2, but not TLR4 for neutrophil infiltration (83). In this study, it was also shown by

using bone-marrow chimeric mice that TLR2 expression on either hematopoetic and

resident stromal cells can induce neutrophil infiltration, though not to the same levels

as in wildtype reconstituted bone-marrow chimeric mice.
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In this study I could also show dependence on TLR2 for neutrophil infiltration in the

presence of adaptive immune responses. Systemic responses as characterized by anti-

body responses were normal in TLR2-/- mice. As previous studies showed a requirement

for antibody production for neutrophil migration to the cornea (34), we anticipated nor-

mal neutrophil migration and were surprised that the requirement of the innate receptor

TLR2 was more important than the presence of antibodies. Neutrophil numbers in the

corneas of OvAg-injected immunized TLR2-/- mice were comparable to that of OvAg-

injected unimmunized wildtype mice. This indicates a role for the adaptive arm of the

immune system in further enhancing neutrophil migration. A potential pathway was

presented by TLR2-dependent IFN-γ production by splenocytes. Decreased levels of

systemic IFN-γ were hypothesized to affect the expression of PECAM on corneal vessels

as shown previously (96) and CXC chemokine production in the cornea.

Taken together, I found requirement for TLR2 at the stages: (i) activation of antigen-

presenting cells, (ii) IFN-γ production by splenocytes, (iii) CXC chemokine production

and (iv) neutrophil migration to the cornea. While decreased IFN-γ production could be

linked to decreased activation of dendritic cells and macrophages and decreased neu-

trophil migration is caused by decreased chemokine production in the cornea, there

is no obvious link between IFN-γ production and CXC chemokine production in the

cornea. This surprising finding resulted in the second part of this study, investigating

IFN-γ dependent neutrophil migration to the corneal stroma.
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4.3 IFN-γ in the adaptive immune response

I could also demonstrate increased neutrophil infiltration into the corneal stroma in

the presence of adaptive immune responses and showed that this increased neutrophil

infiltration is at least partially caused by IFN-γ.

Previous studies have shown strong IL-5 and weak IFN-γ production by splenocytes

in response to restimulation with filarial extracts (32, 117). IFN-γ levels were usually

only slightly above the limit of detection. I was therefore surprised that this low response

was even further reduced in the absence of TLR2. Previous studies on Herpes simplex

keratitis have identified IFN-γ as a regulator of PECAM-1 expression in the vascular en-

dothelium of limbal vessels (96). It was shown that the decreased expression of PECAM-

1 corresponded to decreased neutrophil infiltration into the corneal stroma (96). Studies

by our lab have also shown PECAM-1 expression being important for neutrophil migra-

tion during onchocercal keratitis (38). However, I could not show decreased PECAM-1

expression in TLR2-/- mice compared to C57BL/6 mice. I then wanted to investigate if

there was a connection between decreased systemical IFN-γ production and neutrophil

migration to the cornea. First, I investigated neutrophil migration in IFN-γ-/- mice and

found decreased levels of neutrophil infiltration in the absence of IFN-γ although neu-

trophil levels were still above background levels. However, neutrophils also migrate to

the corneas of naive mice injected into the corneal stroma in the absence of an adap-

tive immune response (29). It is therefore easily explained that neutrophil migration in

IFN-γ-/- mice reached similar levels compared to neutrophil migration in the absence

of adaptive immune responses. However, as in TLR2-/- mice, PECAM-1 expression in the

corneas of IFN-γ-/- mice was not different from C57BL/6 mice.
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Therefore I investigated alternative pathways of IFN-γ mediated neutrophil migra-

tion to the corneal stroma.

Resident cells in the cornea include keratinocytes (fibroblasts) and macrophages,

with a very low number of dendritic cells present (118). The first cells to reach

the cornea upon inflammation are neutrophils. I then investigated activation of fi-

broblasts (using the immortalized mouse corneal fibroblast cell line MK/T-1 (99)),

macrophages and neutrophils by IFN-γ and found no activation of either chemokines

or pro-inflammatory cytokines. As priming effects of IFN-γ stimulation in macrophages

have been demonstrated previously (56), I then investigated costimulation of fibrob-

lasts, macrophages and neutrophils with IFN-γ and filarial extract. I could demonstrate

significantly increased production of pro-inflammatory cytokines by macrophages. Nei-

ther fibroblasts nor neutrophils showed synergistic responses to IFN-γ and OvAg, nor

did macrophages produce increased levels of neutrophil attractant chemokines. How-

ever, pro-inflammatory cytokines alone will not increase neutrophil migration to the

cornea. I hypothesized autokrin or parakrin effects of those pro-inflammatory cytokines

on macrophages, fibroblasts or neutrophils. Stimulating fibroblasts with recombinant

IL-1α, IL-1β, IL-6 and TNF-α did indeed induce production of chemokines. No signifi-

cant effect on macrophages or neutrophils was observed.

I examined alternative pathways of macrophage priming by IFN-γ. Regulation

of TLR2 expression on biliary epithelial cells (93) and on rheumatoid synovial tis-

sues (92) by IFN-γ was previously shown. I therefore investigated TLR2 expression in

macrophages in response to recombinant IFN-γ and could show by Western Blot that

total TLR2 expression was increased and by FACS that surface expression of TLR2 was

upregulated as well.
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I attempted to investigate whether I could substitute the increased systemic levels

of IFN-γ that I achieve during immunization by local injection of rIFN-γ or rIL-12 into

the cornea. Injection of rIFN-γ had no effect on neutrophil migration (data not shown).

As rIFN-γ is known for a short half life, I then injected rIL-12 as an inducer of rIFN-γ.

I anticipated that rIL-12 would induce IFN-γ over an extended period of time and thus

efficiently prime corneal macrophages. However, repeated experiments produced only

inconclusive data with the occasional increase in neutrophil migration or without hav-

ing an effect on neutrophil migration (data not shown). The reason for this missing re-

sponse could be fast degradation of the recombinant cytokines or insufficient amounts

injected. I calculated the amount injected on other studies using rIL-12, however, in-

jection volume into the cornea is limited and non-physiological, high concentrations of

rIL-12 could have side effects like damaging the corneal matrix.

With this part of the study I clearly showed that even though IFN-γ is only pro-

duced at low levels by splenocytes, it does play an important role in the priming of

pro-inflammatory immune responses and in the development of Onchocerca keratitis.

Though it does induce higher levels of IL-1α, IL-1β, IL-6 and TNFα in macrophages,

only IL-1α and TNFα induce chemokine production in corneal fibroblasts. When exam-

ining the role of the two corresponding cytokine receptors, only IL-1R1 could be shown

to be involved in neutrophil migration, but not TNFαR1/2. Though I could show that

IL-6 affected neutrophil migration to the corneal stroma, this is likely to be due to a dif-

ferent mechanism.
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4.4 Wolbachia

Previous studies have shown a requirement of Wolbachia for neutrophil migration to

the corneal stroma (29, 84, 101). However, these studies only examined neutrophil infil-

tration in the absence of adaptive immune responses. Other studies showed that neu-

trophil infiltration into onchocercal skin nodules was depending on the presence of Wol-

bachia (9). Yet other studies implicated Wolbachia in the development of Th1 immune

responses (119). Wolbachia was also shown to cause severe pro-inflammatory responses

when released from worms upon treatment with diethylcarbamazine (11). I therefore

wanted to test the role of Wolbachia in the adaptive phase of the immune response.

I first generated a full adaptive immune response by immunizing mice with B. malayi

microfilariae. No difference could be detected in the cytokine and antibody responses

of mice then treated with BmAg or with BmAgtet. I then injected BmAg and BmAgtet

into the corneas. BmAgtet was obtained from worms of tetracycline treated Meriones

unguiculatus. Migration of neutrophils was found to be decreased in the absence of

Wolbachia while the migration of eosinophils was not affected. The decreased migration

of neutrophils is therefore likely to be due to the lack of Wolbachia.

In a second model, I immunized mice with A. viteae and/or Wolbachia, then injected

the corneas with A. viteae and/or Wolbachia. I used A. viteae as Wolbachia-free filarial

control. As before, the presence of Wolbachia increased neutrophil migration. In con-

trast, there was no eosinophil infiltration in response to Wolbachia alone. This all im-

plicates a role for Wolbachia in neutrophil migration while at the same time, Wolbachia

appears dispensable for the migration of eosinophils.
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A. viteae also induced neutrophil migration. This is in contrast to the results ob-

tained with Wolbachia-depleted B. malayi extract, however, this might be due to work-

ing with a related, but not identical organism that is naturally void of Wolbachia. Litera-

ture suggests that A. viteae may have harbored the endosymbiont Wolbachia, but lost it

during evolution (120) and incorporated essential genes into its genome.

Previous studies have shown Wolbachia dependent generation of Th1 immune re-

sponses (119). Similarly, I found IFN-γ production only when mice were immunized

and splenocytes challenged with Wolbachia. In contrast, I found IL-5 production in re-

sponse to both filarial and bacterial stimulation, but only when mice were previously

immunized with the same reagent.

With these findings, Wolbachia alone can induce a functional immune response at

the splenocyte level and neutrophil infiltration into the cornea. However, eosinophil

infiltration is caused by filaria alone.

4.5 BmWSP

BmWSP has been previously cloned by other laboratories (85, 121). I obtained the plas-

mid from Alan L. Scott (John Hopkins University, Baltimore).

Porksakorn et al. (121) demonstrated activation of the murine cell line RAW264.7 by

recombinant BmWSP. The cells presented increased expression of IL-1α, IL-1β, IL-6 and

TNFα at the RNA level. To exclude LPS contamination, purified proteins were (1) treated

with proteinase K and decreased macrophage activation was shown, implying a role for

the protein component in activating macrophages; and (2) treated with polymyxin B.

Treatment of LPS with polymyxin B decreased cytokine expression to background levels,
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while there was only a slight reduction of cytokine expression when BmWSP was treated

with polymyxin B.

BmWSP was purified under native and denaturing conditions. I obtained higher

protein levels from purification under denaturing conditions, however, the activation

of HEK cells and macrophages was decreased compared with native BmWSP (data not

shown). I therefore continued my studies with native BmWSP. I was especially interested

in activation of TLR2 by the recombinant BmWSP. Previous studies have also identified

TLR4 as receptor for WSP (85).

As I was purifying the proteins from E. coli, I assumed endotoxin contamination and

therefore TLR4 activation. For the studies comparing deletion mutants of BmWSP, I then

used TLR4-/- macrophages as controls and TLR2/4-/- macrophages as cells of interest. I

found activation of TLR4-/- macrophages that was completely abrogated in TLR2/4-/-

macrophages, clearly indicating involvement of TLR2 in the activation pathway. I con-

firmed activation of TLR2 by stimulation of TLR2-transfected HEK293 cells and again

found activation of TLR2-transfected HEK293 cells, but not TLR3-transfected HEK293

cells. As expected, TLR4-transfected HEK293 cells were activated (data not shown), at-

tributing this activation to endotoxin contamination.

I also stimulated splenocytes from BmWSP immunized mice and found increased

IFN-γ production in response to BmWSP compared with medium stimulation.

I then stimulated the same cells with deletion mutants of BmWSP. I consistently

showed wildtype cytokine production when cells were stimulated with BmWSP∆61-

90 and BmWSP∆91-120. Deletion mutants BmWSP∆181-210 consistently showed

decreased cytokine production in TLR2-transfected HEK293 cells, macrophages and
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splenocytes. This sequence is likely to be important for recognition by TLR2. Mu-

tants BmWSP∆121-150 and BmWSP∆211-240 showed decreased cytokine production

in some assays but not all. The role of those sequences will have to be further analyzed.

Finally, I tested antibody responses of BmAg immunized mice against recombinant

BmWSP. Serum from immunized mice could recognize recombinant BmWSP, showing

homology to the in vivo expressed proteins. Again, I could demonstrate clear decrease

in antibody responses for the mutants BmWSP∆121-150 and BmWSP∆181-210.

I extended previous studies to investigate the sole role of TLR2 in the activation pro-

cess.

When purifying recombinant proteins from E. coli, there will always be low level en-

dotoxin contamination. I therefore decided not to investigate the involvement of TLR4

in more detail especially since my previous studies as well as those of collegues could

not identify a role for this receptor in the mouse model of river blindness. While endo-

toxin effects can be minimalized by the addition of polymyxin B, I was more interested

in TLR2 activation.

BmWSP lacks signal sequences required for acylation. Usually TLR2 ligands are di-

or triacylated lipoproteins, depending on the coreceptor usage (122). There is only one

known non-acylated TLR2 ligand: PorinB of Neisseria meningitidis (123, 124). Direct

interaction between Neisseria porin and TLR2 was shown by an ELISA-like assay (124).

Coreceptor for activtion by this protein is TLR1.

Smaller studies also implicated porin of Shigella dysenteriae as a TLR2 ligand (125).

However, studies by this group never analyzed TLR2 activation in either TLR2-/- mice

or used single TLR-transfected HEK cells. Binding of porin to TLR2 was never demon-

strated by co-immunoprecipitation either. The requirement of TLR2 was concluded
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from upregulation of TLR2 upon stimulation of B cells and macrophages with porin and

from decreased activation (50 %) following anti-TLR2 treatment of macrophages. Fol-

lowing the same reasoning that upregulation of RNA levels of TLRs reflected TLR usage

by porins, this group also implicated TLR6 in the activation by Shigella porin.

Summarizing studies on those two porins, there is one confirmed TLR2 ligand that

requires TLR1 as coreceptor and the second porin might activate TLR2 with TLR6 as

coreceptor.

It will therefore be very interesting to confirm TLR2-dependent activation of

macrophages by BmWSP. Future studies will focus on purifying the protein from insect

cells to prevent LPS contamination. The protein will then be used for interaction stud-

ies with TLR2, TLR4, TLR1, TLR6 and CD14. Molecular interactions will be interesting

because of the lack of acylation. The binding will then be further analyzed by using the

here described deletion mutants. BmWSP is more likely to require TLR6 as coreceptor

as I am only showing TLR2- and TLR6-dependent activation when using whole filarial

extracts.

In addition to endotoxin contamination, there could also potentially be lipoprotein

contamination from E. coli. This problem will not be solved by expressing BmWSP in

insect cells as insect cells contain large numbers of lipoproteins. Lipoprotein activity

can be decreased by incubation of BmWSP with cleanascite.
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4.6 Revised mouse model of Onchocerciasis

With findings from this study I revised the previous model of O. volvulus induced ker-

atitis. Dendritic cells in the skin take up filarial antigen. Upon activation (TLR2-

dependent), dendritic cells migrate to lymphoid tissues where antigen is presented to

CD4+ T cells. T cells differentiate into IFN-γ producing Th1 (TLR2-dependent) and IL-

5 producing Th2 cells. Systemically, IL-5 mobilizes eosinophils from bone marrow and

other tissues (126). IL-4 induces B cells to produce IgE (127). The IFN-γ induced re-

sponses are discussed in the next paragraph. Upon challenge with filarial extract in the

cornea, CXC chemokines are produced (TLR2-dependent) that attract neutrophil migra-

tion to the corneal stroma. Migration of neutrophils is also dependent on the presence

of TLR2. Systemic responses are shown in Figure 4.1.

Figure 4.1. Systemic responses to filarial extracts. TLR2-dependent pro-
cesses are marked with a *. A detailed explanation is given in the main
text.
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Neutrophil migration is further enhanced by IFN-γ-dependent processes. IFN-γ in-

creases TLR2 expression on macrophages and responsiveness to OvAg. Macrophages in-

crease production of pro-inflammatory cytokines IL-1α, IL-1β and TNFα. KC and MIP-

2 production by macrophages is induced by filarial extracts, but independent of IFN-γ.

Macrophages in the cornea are close to corneal fibroblasts. These cells are activated by

IL-1α, IL-1β and TNFα and produce high amounts of KC and LIX. All chemokines attract

the migration of neutrophils. Activated neutrophils then also start to produce KC, MIP-2

and LIX, further enhancing neutrophil migration. IFN-γ-dependent corneal responses

are shown in Figure 4.2.

Figure 4.2. IFN-γ-dependent responses to filarial extracts. A detailed de-
scription is given in the text.
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5 Summary

In this study, I first identified a critical role for TLR2 in Th1 associated immune re-

sponses: decreased dendritic cell activation, decreased IFN-γ production by spleno-

cytes, decreased chemokine production in the cornea, and decreased neutrophil migra-

tion to the corneal stroma, whereas TLR4 does not appear to be involved in these steps.

Typical anti-helminth responses as IL-5 production and eosinophil migration were in-

dependent of TLR2.

Linking the systemic IFN-γ production to neutrophil migration to the corneal

stroma, I could show, that IFN-γ increases TLR2 expression and thus responsiveness to

the TLR2 ligand OvAg in macrophages. Primed macrophages do not produce increased

levels of chemokines, but proinflammatory cytokines that prime chemokine production

by corneal fibroblasts. The importance of these cytokines in neutrophil migration could

be confirmed in vivo where neutrophil migration was decreased in the absence of IL-

1R1, TNFαR1/2 and IL-6.

Examining the role of filarial proteins and the endosymbiont Wolbachia in the ac-

tivation of proinflammatory immune responses, I found that IFN-γ was only induced

by Wolbachia, but not by filarial extracts. Similarly, neutrophil migration to the corneal

stroma was induced by Wolbachia, although A. viteae could induce some neutrophil



Summary 88

migration as well. Eosinophil migration to the corneal stroma, in contrast, was only de-

pendent on the presence of filarial proteins.

Analyzing the recombinant proinflammatory protein BmWSP for its activation po-

tential, I found that I could activate TLR2-transfected HEK293 cells, primary murine

macrophages and splenocytes, all in a TLR2-dependent manner. Deletion mutants of

BmWSP identified region 121-240 as immunostimulatory part of BmWSP.

Summarizing, I identify Th2 responses as TLR2-independent, but filaria-dependent,

whereas Th1 responses are TLR2- and Wolbachia-dependent, with BmWSP as one can-

didate protein for the induction of proinflammatory responses via TLR2.
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