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ABSTRACT 

 

Urban segregation represents a significant barrier for achieving social inclusion in cities. 
To overcome this, it is necessary to implement policies founded upon a better 
understanding of segregation dynamics. However, a crucial challenge for achieving 
such understanding lies in the fact that segregation is a complex system. It emerges 
from local interactions able to produce unexpected and counterintuitive outcomes that 
cannot be defined a priori. 

This study adopts an agent-based simulation approach that addresses the 
complex nature of segregation. It proposes a model named MASUS, Multi-Agent 
Simulator for Urban Segregation, which provides a virtual laboratory for exploring 
theoretical issues and policy approaches concerning segregation. The MASUS model 
was first implemented for São José dos Campos, a medium-sized Brazilian city. Based 
on the data of this city, the model was parameterized and calibrated.  

The potential of MASUS is demonstrated through three different sets of 
simulation experiments. The first compares simulated data with real data, the second 
tests theories about segregation, and the third explores the impact of anti-segregation 
policies. The first set of experiments provides a retrospective validation of the model by 
simulating the segregation dynamics of São José dos Campos during the period 1991-
2000. In general, simulated and real data reveal the same trends, a result that 
demonstrates that the model is able to accurately represent the segregation dynamics of 
the study area. 

The second set of experiments aims at demonstrating the potential of the 
model to explore and test theoretical issues about urban segregation. These experiments 
explore the impact of two mechanisms on segregation: income inequality and personal 
preferences. To test the impact of income inequality, scenarios considering different 
income distributions were simulated and compared. The results show how decreasing 
levels of income inequality promote the spatial integration of different social groups in 
the city. Additional tests were conducted to explore how the preferences of high-income 
families regarding the presence of other income groups could affect segregation 
patterns. The results reveal that the high levels of segregation were maintained even in a 
scenario where affluent households did not take into account the income composition of 
neighborhoods when selecting their residential location.  

Finally, the third set of experiments provides new insights about the impact of 
different urban policies on segregation. One experiment tests whether the regularization 
of clandestine settlements and equitable distribution of infrastructure would affect the 
segregation trends in the city. The simulated outputs indicate that they had no 
significant impact on the segregation patterns. Besides this test focusing on a general 
urban policy, two specific social-mix policy approaches were explored: poverty 
dispersion and wealth dispersion. The results suggest that policies based on poverty 
dispersion, which have been adopted in cities in Europe and the United States, are less 
effective in developing countries, where poor families represent a large share of the 
population. On the other hand, the policy based on wealth dispersion was able to 
produce substantial and long-term improvements in the segregation patterns of the city. 



 

Städtische Segregation als komplexes System: Ein agentenbasierter 
Simulationsansatz 
 

KURZFASSUNG 

 

Die städtische Segregation stellt eine bedeutende Barriere für die Erreichung der 
sozialen Inclusion in den Städten dar. Um diese zu überwinden, ist es notwendig, eine 
Politik zu betreiben, die die Dynamiken der Segregation besser versteht und 
berücksichtigt. Eine besondere Herausforderung für ein besseres Verständnis dieser 
Dynamik ist die Tatsache, dass Segregation ein komplexes System ist. Dieses System 
entsteht aus lokalen Interaktionen, die zu unerwarteten und nicht eingängigen 
Ergebnissen führt, die nicht von vornherein bestimmt werden können. 

Diese Studie wendet einen multi-agenten Simulationsmodel an, das die 
komplexe Natur der Segregation berücksichtigt. Es schlägt ein Modell mit dem Namen 
MASUS (Multi-Agent Simulator for Urban Segregation) vor. Dieses bietet ein virtuelles 
Labor für die Untersuchung der theoretischen Aspekte und Politikansätze der 
Segregation. Das Modell wurde für São José dos Campos, eine mittelgroße 
brasilianische Stadt, eingesetzt. Das Modell wurde auf der Grundlage der Daten dieser 
Stadt parametisiert und kallibriert.  

Das Potenzial von MASUS wird durch drei verschiedene Arten von 
Simulationsexperimente dargestellt. Die erste vergleicht simulierte Daten mit realen 
Daten, die zweite prüft Segregationstheorien, und die dritte untersucht die 
Auswirkungen von Antisegregationspolitik. Die erste Gruppe von Experimenten liefert 
eine rückblickende Validierung des Modells durch die Simulation der 
Segregationsdynamiken von São José dos Campos im Zeitraum 1991-2000. Die 
simulierten und realen Daten zeigen im Allgemeinen die gleichen Trends. Dies zeigt, 
dass das Modell in der Lage ist, die Segregationsdynamik im Untersuchungsgebiet 
korrekt darzustellen. 

Die zweite Gruppe von Experimenten hat zum Ziel, das Potenzial des Modells 
hinsichtlich der Untersuchung und Prüfung der theoretischen Aspekte städtischer 
Segregation darzustellen. Diese Experimente untersuchen die Auswirkung von zwei 
Mechanismen auf Segregation: Einkommensungleichheit und persönliche Präferenzen. 
Um die Auswirkungen von Einkommensungleichheit zu prüfen, wurden Szenarien mit 
unterschiedlichen Einkommensverteilungen simuliert und verglichen. Die Ergebnisse 
zeigen wie abnehmende Einkommenshöhen die räumliche Integration von 
verschiedenen sozialen Gruppen in der Stadt fördern. Zusätzliche Tests wurden 
durchgeführt, um zu untersuchen wie die Präferenzen von Haushalten mit hohen 
Einkommen im Bezug auf das Vorhandensein anderer Einkommensgruppen die 
Segregationsmuster beeinflussen könnten. Die Ergebnisse zeigen, dass die Segregation 
auf hohem Niveau blieb sogar in einem Szenario wo wohlhabende Haushalte das 
Einkommensgefüge der Nachbarschaft bei der Wahl ihrer Wohngegend nicht 
berücksichtigten.  

Die dritte Gruppe von Experimenten führt zu neuen Einsichten über die 
Auswirkungen von verschiedenen städtischen politischen Maßnahmen auf die 
Segregation. Ein Experiment prüft ob die Regulierung von illegalen Siedlungen und die 
gleichmäßige Verteilung der Infrastruktur die Segregationstrends in der Stadt 



 

beeinflussen. Die Ergebnisse der Simulation zeigen, dass diese keine signifikante 
Auswirkung auf die Segregationsmuster haben. Neben diesem Test, der die allgemeine 
städtische Politik zum Inhalt hat, wurden zwei Ansätze der spezifischen Sozialen-Mix-
Politik untersucht: Armutsverteilung und Wohlstandsverteilung. Die Ergebnisse deuten 
daraufhin, dass eine Politik der Armutsverteilung, die aus europäischen und 
nordamerikanischen Städten bekannt ist, weniger wirkungsvoll in Entwicklungsländern 
ist, wo arme Familien einen Großteil der Bevölkerung darstellen. Auf der anderen Seite 
führte eine Politik der Wohlstandsverteilung zu erheblichen und langfristigen 
Verbesserungen der Segregationsmuster der Stadt. 
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 1

1 INTRODUCTION 

 

In 2008, for the first time, the majority of the population on Earth lived in urban areas. 

By the year 2030, the urban population will reach 4.9 billion, which is equivalent to 

60% of the global population. Nearly all of this population growth will take place in the 

cities of developing nations (UNFPA 2007). In this urbanized global context, the need 

to fulfill the potential of cities as engines of economic and social development has never 

been greater.  

While cities are often associated with poverty concentration, slum proliferation 

and social disorders, they have also traditionally been the centers of economic growth 

and innovation. Cities provide the cost-reducing advantages of agglomeration 

economies as well as many economic and social externalities, including social and 

cultural amenities, infrastructure, and skilled workers (Todaro and Smith 2008).  Urban 

areas, in particular the large ones, can account for substantial income and wealth 

creation. The metropolitan region of São Paulo, for example, has 10% of Brazil’s 

population and accounts for almost 25% of the gross domestic product (IBGE 

2007,2008). The capital created by cities represents an opportunity for poverty 

prevention and alleviation. Nevertheless, more than enhancing progress or development, 

the rapid spread of urbanization in developing countries associated with misguided 

urban policies has created an exclusionary urban order that reflects and reproduces the 

injustices and inequalities of society (Rolnik and Saule Jr. 2001).  

To realize the potential role of cities in fostering development, it is essential to 

remove the barriers that inhibit the formation of inclusive cities, i.e., cities capable of 

promoting growth with equity (UN-Habitat 2001a). Urban segregation represents one of 

these barriers, with impacts that have been reinforcing social exclusion1 in cities of the 

developing world (UN-Habitat 2001b). Different types of urban segregation exist 

depending on the context within a city, including income, racial or ethnical segregation. 

By concentrating on the reality of Brazilian cities, well known for its remarkable levels 

of social inequality and exclusion, this study focuses on income segregation, which is 

                                                 
1 Here, the idea of social exclusion extends the concept of poverty. While poverty is related to the 

purchasing power of individuals, social exclusion also regards ethical and cultural elements, such as 

discrimination and stigmatization (Sposati 1999). 
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defined as the separation among the residential location of families belonging to 

different income groups. 

In Brazil and other Latin America countries, the dynamic relation between 

income segregation and social exclusion has often created a continuous downward 

spiral: exclusion promoting segregation, and segregation promoting exclusion. On the 

one hand, the legal market for affordable, accessible and habitable housing in these 

countries has proven incapable of meeting the needs of socially excluded families (UN-

Habitat 2001b). For these families, informal and clandestine means of accessing and 

occupying urban land are often the only available alternative. Such exclusionary reality 

promotes the consolidation of highly segregated settlements, characterized by 

deprivation and non-realization of housing rights (UN-Habitat 2001b). On the other 

hand, segregation imposes difficulties in the daily life of disadvantaged families that 

perpetuate or worsen their condition of exclusion. For example, the lack of positive 

relations among different social groups increases prejudice and territorial stigmatization, 

keeps disadvantaged people away from participation at the societal level, and reduces 

their access to jobs and high-quality education (Bichir et al. 2004; Katzman and 

Retamoso 2006; Naiff and Naiff 2005; Torres 2004; Torres et al. 2005). In addition, 

poor segregated areas have been consistently associated with higher exposure to 

violence and diseases, bad accessibility that imposes time-consuming trips to work or 

school, and low quality of the built and natural environment (Hughes 2004; Katzman 

and Retamoso 2006; Sabatini et al. 2001; Torres et al. 2003).  

In some developed countries, attempts to promote integration among different 

social groups are not new, being first recognized at the end of the nineteenth century. At 

this time, idealistic projects like the Bournville Village and the Garden Cities were 

proposed in the United Kingdom as solutions to the urban degradation observed in 

industrial cities. These projects aimed to accommodate all social classes in a more 

balanced manner, although still keeping segregation at the micro scale (Sarkissian 

1976). 

The claims of social mix emerged again during the post war period and 

beginning of the cold war in the 1940’s, this time embedded in a discourse of national 

reconstruction and the development of universal state provision (Cole and Goodchild 

2001; Sarkissian 1976). The response to that was the development of “new towns”, 
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especially in the United Kingdom and United States, which were planned in the context 

of the welfare state, when capitalist democracies needed to evaluate the social justice of 

their systems (Cole and Goodchild 2001; Sarkissian 1976). Such egalitarian vision has 

also influenced the creation of new towns in countries like Brazil. For example, the pilot 

plan of the capital Brasília, developed by Lúcio Costa in 1957, explicitly proposes 

residential blocks that “favor a certain degree of social coexistence, avoiding undue and 

undesirable class distinctions” (Costa 1991: 6). Later, however, most of Costa’s original 

plan was modified, largely because of the growth of Brasília. Currently, the original 

area of the plan is merged with 20 satellite cities, which constitutes a metropolitan 

region with more than 3.5 million inhabitants (IBGE 2008). This region is well known 

for its high levels of income segregation and by the fact that only wealthy families can 

afford to live in the area of the pilot plan (Gouvêa 1995; Paviani 1996; Valladares 

1999). 

Under a different context, the contemporary interest in minimizing segregation 

has arisen as a response to many factors, including: (a) the development of new 

concepts such as underclass, social exclusion and social capital, which were often 

associated with studies describing the negative neighborhood effects of concentrating 

disadvantages (Cole and Goodchild 2001), (b) management difficulties and 

residualization in social housing, which was left for those who for reason of poverty, 

age or infirmity could not find suitable accommodation in the private sector (Cole and 

Goodchild 2001; Prike 1998), and (c) the emergence of protests from activists and 

journalists (Cole and Goodchild 2001). In several European and North American 

countries, traditional public housing strategies that had resulted in segregated and 

problematic areas were recognized as a mistake, and since then, housing and planning 

legislation have consistently emphasized the social mix at the neighborhood level (Allen 

et al. 2005; Cole and Goodchild 2001; Smith 2002). Different strategies have been 

followed to address this objective, including the regeneration of distressed areas, 

distribution of housing vouchers to move poor families out of neighborhoods with a 

high concentration of disadvantages, and regulations that required mixed occupancy as a 

condition for approving or funding new residential developments (Clampet-Lundquist 

2004; Claydon and Smith 1997; Kleinhans 2004; Smith 2002).  
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In Brazil, the issue of segregation started to receive attention during the 1970’s, in a 

period characterized by many critical discussions about the capitalist development in the 

country (Marques and Torres 2004). At this time, segregation was understood as the 

spatial materialization of inequalities produced by the labor market, which was driven 

by a peripheral and dependent type of capitalism (Bonduki and Rolnik 1979; Kowarick 

1979; Maricato 1979b; Santos 1980). Within this framework, the studies were more 

focused on understanding processes that were considered as causal factors of 

segregation, and less on the phenomenon itself and its consequences (Bichir 2006). 

The situation changed during the 1990’s, when Brazilian debates started to 

address segregation as an issue of its own importance (Bichir 2006). Since then, an 

increasing number of studies has emphasized the negative consequences of segregation 

and the need for well-informed policies able to promote the spatial integration among 

different income groups (Torres 2004; Torres et al. 2006). Some progress in this 

direction can be observed and is worth mentioning. For example, the Brazilian Statute 

of the City, issued in 2001, recognizes a set of legal instruments that enable 

municipalities to promote a comprehensive regulation of clandestine settlements in 

public and private areas, and to restrain speculative retention of land that promotes 

excessive urban sprawl and forces poor families to live in distant peripheral areas 

(Rolnik and Saule Jr. 2001). The increasing presence of the state in poor outskirts of the 

city, improving access to infrastructure and other facilities (Torres et al. 2003), as well 

as some punctual investments focusing on the legalization and integration of slums into 

the legal urban fabric, like the Favela-Bairro project in Rio de Janeiro (Soares and 

Soares 2005), are also initiatives that can contribute to a decrease in segregation levels. 

Despite these advances, there is still a wide gap between the scientific debates 

that advocate spatial integration of social groups and the policy practice. For example, 

Brazilian housing policies still rely on strategies that have been long condemned and 

avoided in developed countries, like the creation of large and homogeneous social 

housing settlements for the poor, located in cheap land at the outskirts of the city. By 

focusing exclusively on minimizing the housing deficit of urban areas, this type of 

policy displaces poor families to isolated areas, distant from the supply of equipments, 

services and opportunities, which very often turn into distressed neighborhoods (Luco 
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and Rodríguez 2003; Preteceille and Ribeiro 1999; Rolnik 1997; Sabatini 2006; Torres 

2004). 

Designing and implementing policies that effectively minimize segregation 

and its negative effects is not an easy task. While Brazilian attempts in this direction are 

still very incipient, studies evaluating the experience of developed countries present 

several divergences concerning the impacts of social mix policies, even when they 

evaluate outcomes of the same policy strategy. Some studies identify many 

accomplishments of social mix policies (Feins and Shroder 2005; Popkin et al. 2004; 

Rosenbaum 1995; Rosenbaum and DeLuca 2000; Turbov and Piper 2005), while others 

focus on their failures and the need for restructuring them (Musterd and Andersson 

2005; Musterd et al. 2003; Smets and den Uyl 2008; Uitermark 2003). These 

divergences indicate that there is no single formula for success: expected achievements 

are unlike to be met without well-informed policies that address the local particularities 

of mechanisms able to influence segregation dynamics.   

Contextual mechanisms that contribute to urban segregation are many and 

vary from place to place (UN-Habitat 2001b). Brazilian literature has focused on at least 

four different and complementary mechanisms that can influence the behavior of social 

groups while selecting their residential location within the city: labor market, personal 

preferences, land and real estate markets, and state policies and investments. The first 

mechanism refers to the inequalities of the labor market and its socio-economic impacts, 

such as social exclusion, which have been considered by many as responsible for 

segregation and the precarious life conditions of poor families (Bonduki and Rolnik 

1979; Kowarick 1979; Lago 2000; Maricato 1979b; Santos 1980).  

Personal preferences are considered as a second mechanism, which is closely 

related to voluntary segregation. This is particularly relevant among affluent families, 

who are often seeking for status or want to protect themselves from problems associated 

with poverty. The fear of violence, in particular, is commonly used to justify the 

creation of gated communities, where safety is guaranteed by private security 

companies (Caldeira 2000; Pessoa de Souza e Silva 2007; UN-Habitat 2001b). 

Land and real estate markets represent a third mechanism, and studies focusing 

on it stress how developers and their agents stimulate a competition for housing that 

reinforces the self-segregation of affluent groups and excludes poor families (Abramo 
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2001). Finally, the state is considered as a fourth mechanism, which permits segregation 

through its lack of action and promotes it through the unequal distribution of capital 

improvements, massive public housing projects, or regulatory devices such as 

exclusionary zoning (Rolnik 1997).   

All these contextual mechanisms are clearly interdependent. Personal 

preferences, for example, are commonly affected by the real estate market, especially by 

entrepreneurs, who are constantly advertising new ideals of living and well-being 

(Caldeira 2000; Pessoa de Souza e Silva 2007). On the other hand, the real estate market 

is always adapting and reinventing itself in order to address the preferences of 

consumers (Pessoa de Souza e Silva 2007). The labor market, another mechanism 

influencing segregation, is directly related to the purchasing power of individuals and, 

therefore, is also continuously affecting personal preferences in general and the real 

estate market.  

Improving the understanding about the relation between the aforementioned 

mechanisms and segregation is an essential step towards the development of social mix 

policies that are able to address clear goals. However, a crucial challenge for studies that 

seek a better comprehension of such relations relies on the fact that segregation displays 

many hallmark features of so-called complex systems. A complex system is “an entity, 

coherent in some recognizable way but whose elements, interactions, and dynamics 

generate structures and admit surprise and novelty that cannot be defined a priori” 

(Batty and Torrens 2005: 745). As a complex system, the dynamics of segregation are 

characterized by emergence, scale dependencies, interdependencies, and feedback 

loops. Urban segregation is a macro-scale phenomenon, but emerges from the 

residential choices of many individuals at the micro level (Schelling 1971). This 

emergent process results in a coherent form, with recognizable patterns, that adapts and 

organizes itself over time without any singular entity deliberately managing or 

controlling (Holland 1998).  

The individual choices driving urban segregation dynamics are influenced by 

many contextual mechanisms which, as previously mentioned, are highly 

interdependent and constantly affecting each other. On the other hand, urban 

segregation is not only shaped and reshaped by the individual choices and the 

mechanisms influencing these choices, but is also able to influence them. In other 
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words, there is a feedback loop between the emergent properties of segregation and the 

individual choices at the micro level. For example, not only do households often cluster 

in segregated neighborhoods, but they also recognize and react to emergent patterns of 

segregation: neighborhoods are named and can acquire reputations that further affect the 

residential choices of those living or considering living there (Gilbert 2004). The 

feedback loops between the different components involved in segregation dynamics 

introduce non-linearity into the system. As result, small differences in context or local 

behavior are able to produce large, unexpected, and sometimes counterintuitive 

outcomes that are not equivalent to the simple sum of the constituent parts (Holland 

1998).  

By facing the challenge of improving our understanding about segregation 

through the lens of complexity theory, it is likely that we will obtain a much more solid 

background for the development of well-informed policy strategies, which are able to 

properly address the phenomenon. Considering that, this study is motivated by the need 

for a scientific tool that is able to represent segregation as a complex system and to 

provide alternative scenarios that:  

1. Improve the understanding about urban segregation and its relations with 

different contextual mechanisms, and  

2. Support planning actions by offering insights about the adequacy of policy 

strategies.  

 

The complex nature of segregation imposes difficulties regarding the use of 

traditional tools that are based on an aggregate static modeling approach, such as 

statistical modeling or classical optimization. Instead of focusing on the correlation 

between elements or relying on the idea of equilibrium, it is necessary to grasp 

segregation from the bottom-up, prioritizing the process rather than the product (Batty 

et al. 2006). By addressing the shortcomings of traditional techniques, agent-based 

modeling (ABM) has proven to be a promising approach for dealing with complex 

systems.  

ABM focuses on individual decision-making units, called agents, which 

interact with each other and their environment (Gilbert 2008). These agents, which are 

autonomous and heterogeneous, are constantly acting according to a specific set of rules 
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that can be changed through adaptation and learning (Gilbert 2008). By explicitly 

simulating interaction processes that occur at a micro level, ABM enables researchers to 

explore the emergence of macro structures from bottom-up in a very natural way 

(Gilbert and Troitzsch 1999; Miller and Page 2007).  

Contrasting with traditional models and reflecting a movement towards 

relativism and post-modernism, agent-based models do not focus on making exact 

predictions (Batty 2009). Instead, they are mainly exploratory, more likely to be 

frameworks for assembling relevant information, more oriented towards understanding 

and structuring debates in processes of decision support that are much more consensual 

and participative (Batty 2009; Batty and Torrens 2005).  

Thomas Schelling’s model of racial segregation has been recognized as the 

first attempt at agent-based modeling in social sciences (Schelling 1971,1978). The 

model is based on a regular lattice representing the urban space on which agents, 

representing households, are placed at random. The agents belong to two different 

groups (e.g., white and black) and have a certain degree of tolerance in relation to the 

other group: they are satisfied with a mixed neighborhood, as long as the number of 

neighbors belonging to the same group is sufficiently high. What is revealing about this 

abstract model, and demonstrates its ability in representing emergent properties of 

segregation, is the counter-intuitive fact that extreme segregation patterns take place 

under a very mild preferential bias.  

Schelling’s work inspired many others, who developed variations of his model 

by using alternative utility functions (Bruch and Mare 2006; Clark 1991; Pancs and 

Vriend 2003), including individual preferences for housing or neighborhood quality 

(Fossett and Senft 2004), adopting different notions of neighborhoods (Fossett and 

Waren 2005; Laurie and Jaggi 2003; O'Sullivan et al. 2003), considering an additional 

hierarchical level (Omer 2005), adding game theory principles (Zhang 2004), and using 

vector-based representations (Crooks 2008).  

Despite the existence of many agent-based models for segregation, only a few 

examples of models that rely on empirical data and methods can be found. Benenson 

and his colleagues, for example, developed an ethnical segregation model for the Yaffo 

area of  Tel Aviv, which is occupied by Arab and Jewish residents (Benenson et al. 

2002). Another example is the model of Bruch (2006), which explores the relationship 
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between race and economic factors, and how both govern residential mobility to 

produce and maintain segregated neighborhoods in Los Angeles. No empirically-based 

model, however, has been developed to address the particularities of segregation in 

Brazilian cities. The research objectives of this study address this gap.  

 

1.1 Research objectives 

The goal of this study is to develop an operational agent-based simulation model of 

urban segregation in a spatially and temporally explicit manner, which is able to provide 

alternative scenarios that explore the impacts of different contextual mechanisms on the 

emergence of segregation patterns and support planning actions.  

The specific objectives are:  

1. To develop a conceptual and theoretical agent-based framework for modeling 

urban segregation dynamics; 

2. To specify and estimate statistical models that depict the residential choice 

behavior of urban households (agents) and dynamics of the urban environment 

based on empirical data collected at São José dos Campos, a medium-sized 

city located in the State of São Paulo, Brazil; 

3. To build an operational agent-based model for urban segregation by 

converting the specifications and parameters resulting from objectives (1) and 

(2) into a executable computer program;  

4. To execute simulation experiments for testing the operational model’s ability 

to accurately represent the real target system (validation) and to provide new 

insights about theories and policies on segregation.   

 

1.2 Outline of the thesis 

This thesis consists of seven chapters. After the introduction to the general problem and 

research objectives (Chapter 1), Chapter 2 defines the concept of urban segregation 

adopted in this work and describes its recent trends in Brazilian cities, impacts on the 

urban space and population, and different mechanisms that are able to promote and 

counter the phenomenon. Also included are segregation indices, which are useful tools 

for monitoring segregation patterns through time.  
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Chapter 3 redefines urban segregation under the mindset of complex systems science 

and introduces methods that are more appropriate to account for its complex nature. It 

presents conceptual and technical aspects of agent-based models (ABM), including a 

methodological protocol for developing ABM simulations.  

Chapter 4 addresses the first specific objective. It introduces the conceptual 

principles and architecture of an agent-based framework named Multi-Agent Simulator 

of Urban Segregation (MASUS). Regarding the implementation level, the simulation 

protocol developed for the operational MASUS model is also presented.  

Chapter 5 addresses the second specific objective. It provides empirical 

parameters that are used as inputs for the first operational MASUS model. The chapter 

begins with a brief description of the study site, which comprises the urban area of São 

José dos Campos, a medium-sized municipality located in the State of São Paulo, 

Brazil. Further, the chapter presents the empirical parameterization of the MASUS sub-

model responsible for simulating the residential choice behavior of households (agents), 

and the empirical parameterization of MASUS sub-models that simulate dynamics of 

the urban environment, including urban sprawl, land value, and housing stock. 

Chapter 6 addresses the third and forth specific objectives. It presents the 

operational MASUS model built from the specifications given in Chapter 4 and the 

empirical parameters provided in Chapter 5. In addition, simulation experiments that 

aim to validate the MASUS model and illustrate its potential for testing theories and 

policies on urban segregation are described. 

Finally, Chapter 7 provides an evaluation of the study regarding the 

achievements of the objectives and recommendations about possible applications and 

further development of the MASUS model. 
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2 URBAN SEGREGATION: DEFINITIONS, TRENDS, AND MEASURES 

 

2.1 Defining urban segregation 

In general terms, the concept of urban segregation is related to the idea of distance or 

isolation among different social groups in an urban environment. The perception that 

such ‘distance or isolation’ can assume different meanings led White (1983) to 

distinguish two types of segregation: sociological and geographical. Sociological 

segregation regards the lack of interaction among population groups, while geographical 

segregation focuses on the spatial separation among the groups. These two types of 

segregation often present a high correlation: physical separation can promote social 

distance, and vice versa. However, this relationship is far from being universal. The 

caste system in India and the hacienda system in Latin America, for instance, are 

extreme cases that show the prevalence of strong social distances despite the spatial 

proximity of the different social groups (Rodríguez 2001; Sabatini et al. 2001).  

Urban segregation has different meanings and effects depending on the 

specific form and structure of the cities, as well as their cultural and historical context. 

Its categories depend on the criteria adopted for classifying social groups, such as 

income, class, race, migratory origin, or ethnicity. In the United States, where 

segregation has received increasing attention since the beginning of the Civil Rights 

Movement in the 1950’s, most studies focus on  racial issues (Clark 1991; Duncan and 

Duncan 1955; Massey and Denton 1987,1993; Morgan 1983a; Schelling 1972). In Latin 

America, however, most studies concentrate on socioeconomic segregation (Feitosa et 

al. 2007; Lago 2000; Marques and Torres 2004; Ribeiro 2001; Rodríguez 2001; Sabatini 

and Salcedo 2007; Torres 2004; Torres et al. 2002; Villaça 1998). This interest emerges 

because social inequality, of income or social classes, is considered one the most 

outstanding features of Latin American countries, even more than poverty (Sabatini 

2006).  

Following the Latin American studies, this study adopts a concept of urban 

segregation that is explicitly spatial and regards the distances among the residences of 

families belonging to different income groups: the income residential segregation. An 

important advantage of this approach is the possibility of developing and using 
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analytical indicators that measure segregation (see section 2.5) and allow comparisons 

between different periods and regions (Torres 2004). 

 

2.1.1 Dimensions of segregation 

There is a consensus among researchers that urban segregation is a multidimensional 

phenomenon, whose depiction demands measuring each dimension (Massey and Denton 

1988; Reardon and O´Sullivan 2004; Sabatini 2006). Different dimensions of 

segregation produce distinct impacts on the development of urban communities and 

landscapes and, therefore, have different implications for public policies (Sabatini 

2006). The classical paper The Dimensions of Residential Segregation, written by 

Massey and Denton and published in 1988, was the first to present a compound 

definition for segregation. Massey and Denton pointed out five dimensions of 

segregation: evenness, exposure, clustering, centralization, and concentration (Table 

2.1). According to them, evenness and exposure are non-spatial dimensions of 

segregation. On the other hand, clustering, centralization, and concentration are spatial 

dimensions, since they need information about location, shape, or size of areal units.  

 

Table 2.1 Dimensions of segregation according to Massey and Denton (1988). 
Dimension Definition 

Evenness Differential distribution of social groups in an urban environment. 

Exposure Potential contact among different social groups in an urban 
environment. 

Clustering Degree to which members of a certain group live disproportionately in 
contiguous areas. 

Centralization Degree to which a social group is near the center of an urban area. 

Concentration Relative amount of physical space occupied by a social group in an 
urban environment.  

 

By arguing that segregation has no non-spatial dimension, Reardon and 

O’Sullivan (2004) reviewed Massey and Denton’s work. According to these authors, the 

difference between the non-spatial dimension evenness and the spatial dimension 

clustering is simply an effect of data aggregation at different scales. The evenness 

degree at a certain scale of aggregation (e.g., census tracts) is related to the clustering 

degree at a lower level of aggregation (e.g., blocks). Reardon and O’Sullivan combined 
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both concepts into the spatial evenness/clustering dimension, which refers to the balance 

of the population groups’ distribution. Centralization and concentration were considered 

subcategories of the spatial evenness/clustering dimension. The authors also 

conceptualized the dimension exposure as explicitly spatial. They proposed the spatial 

exposure/isolation dimension, which refers to the chance of having members from 

different groups (or the same group, if we consider isolation) living side by side (Figure 

2.1). 

 

Figure 2.1 Spatial dimensions of segregation according to Reardon and O’Sullivan 
(2004). 

 

This research adopts the segregation dimensions proposed by Reardon and 

O’Sullivan and monitors segregation by computing measures that are able to depict each 

spatial dimension (see section 2.5). These spatial dimensions are similar to the objective 

dimensions of segregation advocated by Sabatini (2006). The first objective dimension 

of segregation defined by Sabatini, named ‘spatial concentration’, is similar to the 

dimension spatial evenness/clustering, while the second objective dimension, called 

‘social homogeneity’, is analogous to the dimension spatial exposure/isolation. Sabatini 

asserts that spatial concentration represents the first stage of segregation, and its impacts 

are usually less harmful than those resulting from social homogeneity, which is the 

second stage of segregation. 
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2.2 Patterns of urban segregation 

The most influential approach for explaining patterns of segregation relies on the human 

ecology tradition associated with the Chicago School (Burgess 1924; Harris and Ullman 

1945; Hoyt 1939). The Chicago School refers to a set of urban studies that emerged in 

Chicago during the first half of the 20th century. They became famous for their 

systematic and formal approach, focused on the city as a social laboratory. The efforts 

to understand the spatial organization of human activities yielded classical urban models 

that translate distinct patterns of residential segregation. Following these classical 

models, cities are developed through a competition for space that produces concentric 

zones (Burgess 1924), specific sectors (Hoyt 1939), or multiple nuclei (Harris and 

Ullman 1945) that accommodate households with different resources.    

The concentric model, proposed by Burgess (1924), states that a city grows 

outward from a central point in a series of rings. Burgess observed that there was a 

correlation between the distance from this central point (the CBD) and the wealth of 

residential areas. Since Burgess’s studies relied on the study of Chicago, he observed 

that wealthier families tended to live further away from the CBD. Later interpretations 

of the Burgess model pointed out an inverse correlation between the CBD and the 

wealth of neighborhoods. This ‘center-periphery’ pattern can be observed in some 

Latin-American cities (section 2.2.1), where wealthier families tend to concentrate in 

central areas, while poorer families occupy the outskirts of the city.   

Hoyt (1939) proposed a second model, known as sector model, which 

advocates the idea that a city develops in sectors instead of rings. According to him, if a 

district is set up for high-income residences, any new development in that district will 

expand from the outer edge and, therefore, the sector shape emerges. A third model, 

known as multiple nuclei model, was proposed by the geographers Chauncy Harris and 

Edward Ullman (Harris and Ullman 1945), who wanted to demonstrate that not all cities 

fit into the concentric and sector model. They argued that the activities of many cities 

revolve around many nuclei rather than around a single CBD. According to them, the 

location of different land uses within a city, which includes the residential areas for 

distinct socioeconomic groups, cannot always be predicted. Historical, cultural, and 

socio-economic values will have differing impacts on cities, and the exact location of an 

economic or ethnic nucleus cannot be determined for all cities. The formation of these 
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nuclei depends on a variety of factors - topographical, historical, cultural, racial, 

economic and political - that do not result in the same combination for each urban area 

(Harris and Ullman 1945). 

Considering that this thesis develops an agent-based model for segregation and 

illustrate its potential through a case study in a Brazilian city, the next paragraphs 

present an overview of segregation patterns that have been observed in this country. 

This overview indicates some similarities between the Brazilian patterns and the 

classical models of the Chicago School.  

 

2.2.1 Segregation in Brazilian cities 

Brazilian studies have analyzed urban segregation since the 1970’s. The studies 

developed during the 1970’s and 1980’s qualified the Brazilian segregation pattern 

under a ‘dual’ perspective (Lago 2000), i.e., characterized by a strong contrast between 

the wealthy center and the poor outskirts (Bonduki and Rolnik 1979; Caldeira 2000; 

Kowarick 1979; Lago 1998). This pattern, known as ‘center-periphery’, resulted from 

an urban growth stimulated by the influx of migrants, mostly from rural areas, seeking 

for employment opportunities. Its spatial arrangement, which is analogous to the 

concentric model proposed by Burgess (see section 2.2), keeps families belonging to 

different social classes far from one another. While affluent families occupy central and 

well-equipped neighborhoods (Figure 2.2), they are also able to influence public 

investments and regulations that displace the poorest families to further areas known as 

periferias (peripheries) and make the city’s underdevelopment less visible (Caldeira 

2000).  

Periferias are socially homogeneous settlements located in the outer fringes of 

the city (Figure 2.2). These settlements are typically clandestine, created and sold by 

private developers who conducted land subdivisions without any formal review or 

approval by the appropriate county agencies. Due to the lack of affordable housing 

offers in the ‘legal city’, the land ownership in these settlements and the self-

construction of houses became the only alternative for many poor families (Bonduki and 

Rolnik 1979; Maricato 1979a; Santos 1980).  These families are excluded from the 

advantage of living in neighborhoods with basic infrastructure, facilities and urban 

services (Kowarick 1979; Torres et al. 2002). In particular, their accessibility to jobs is 
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limited, since workers usually have to face long commuting trips to and from work 

(Caldeira 2000; Santos 1980).   

 

 (a)   

(b)  

Figure 2.2 (a) Wealthy center: São Paulo’s downtown (Fernandes 2005), and (b) 
Poor periferia: Jardim Ângela, a district of São Paulo (McHugh 2008).  

 
 



Urban segregation: definitions, trends, and measures 

 17

This center-periphery pattern, however, has been overlapped by a new pattern of 

segregation, which arose due to political and socioeconomic changes that occurred in 

the 1980’s (Caldeira 2000; Lago 2000; Torres et al. 2002). During the period 1981-

1989, the Brazilian gross domestic product (GDP) increased at an average annual rate of 

only 1.6%, and the per capita income declined by 8.3% (Bresser Pereira 1992). The 

1980’s are known as the ‘lost decade’ because of the stagnation, hyperinflation, and the 

increase in the external debt during the period. While the economic crisis led to an 

impoverishment of the population and an increase in social inequalities, the growth of 

peripheral irregular settlements occurred at a slower pace. This fact is partially 

explained by the establishment of the Federal Law for Urban Land Parceling (6766/79). 

This law regulates the minimal requirements for approval and development of urban 

settlements and introduced penalties for land developers who ignore these. It also 

propitiated a more active presence of the state in the outskirts, improving access to 

infrastructure and public facilities. This expansion of the legalized city promoted a 

larger social diversity in areas that were only occupied by the underclass (Caldeira 

2000; Lago 2000). 

The impoverished population that remained unable to afford a dwelling in the 

‘legal city’ or even to build their own house at an irregular settlement also contributed 

to the attenuation of the spatial duality of the urban space. This population group 

promoted the proliferation of favelas, the Brazilian equivalent of shantytowns. Unlike 

informal settlements, favelas are the product of some form of land invasion and their 

residents do not hold any land ownership. A particular characteristic of favelas is that 

they can emerge in different regions of the city, including those closer to wealthy 

neighborhoods (Torres et al. 2002).  This characteristic challenges the social 

homogeneity of the center-periphery pattern, since it diffuses poverty through many 

parts of the city (Figure 2.3).  

Finally, the emergence of wealthy and gated urban developments also 

promoted smaller geographical distances among different social classes. The spread of 

gated neighborhoods introduced residential alternatives for the high- and middle-income 

groups outside the traditional areas where these social groups concentrate (Caldeira 

2000). Therefore, the separation among population groups, which had been guaranteed 
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by absolute distances, began to be maintained by other types of obstacles, such as 

protection walls, which are able to reinforce exclusion and preserve homogeneous areas.  

 

Figure 2.3 Favela Paraisópolis beside a fortified enclave in Morumbi, São Paulo 
(Vieira 2005).  

 
Based on this new reality, Caldeira (2000) introduced the idea of fortified 

enclaves. Fortified enclaves are spaces for the middle and upper classes that are 

typically isolated from surrounding neighborhoods by physical barriers and other 

surveillance resources, such as guards, warning signs, and high-tech alarms (Figure 2.3). 

Such developments impose challenges for society through their “privatization of public 

space, conflict with planning norms, and interference with the integrated planning of the 

cities in which they are built” (Pessoa de Souza e Silva 2007: 557). Despite these 

negative issues related to fortified enclaves, Sabatini and his colleagues (2001; 2007) 

assert that these developments can also bring high-quality services and commerce to the 

poor areas where they are located. According to them (Sabatini et al., 2001: 9), “poor 

groups that end up near these projects benefit not only in objective terms (employment, 

services, urban facilities), but in subjective terms as well (like the sense of belonging to 

a place that is prospering)”. These benefits relate to a decrease in the scale of 

segregation2.  

                                                 
2 Here, the term ‘scale’ refers to the level of detail in the analysis, and not to its cartographic meaning.  
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From another perspective, Villaça (1998) stresses a tendency related to large-scale 

patterns of segregation. According to him, despite the spread of gated neighborhoods 

and favelas, which establish smaller distances among different social groups, it is 

important to observe the macrosegregation of city. Macrosegregation is the “process in 

which different social classes tend to concentrate in different general regions or groups 

of neighborhoods of the metropolis” (Villaça 1998: 142). Villaça observed that the self-

segregation of middle and high classes has increased and usually follows a certain 

direction of territorial expansion starting from the city’s center. This trend resembles the 

classical sector model proposed by Hoyt (1939), since it creates a cone-shaped wealthy 

axis that concentrates most high-income families. This axis, however, is not necessarily 

homogeneous. In fact, it is commonly characterized by a degree of social diversity, 

including the presence of some low-income families (Sabatini 2006). Even so, for the 

wealthy residents of this area, the need for circulating through other parts of the city and 

the possibilities of confronting other realities are reduced (Villaça 1998). 

Besides the large-scale segregation patterns promoted by wealthy families, the 

cities keep attracting poor families that locate in large peripheral settlements. Therefore, 

despite the more active presence of the state in these areas, the city still decays, socially 

and physically, towards its outskirts, except in the ‘wealthy cone’ area (Sabatini 2006). 

By comparing the traditional center-periphery pattern and the recent trends of 

segregation (see Figure 2.4), it can be seen that segregation in Brazilian cities has 

become more complex and is ruled by antagonistic forces that deal with different scales. 

This has operational consequences and indicates the importance of considering the issue 

of spatial scale when studying segregation. For example, due to the social diversity of 

high-income neighborhoods (wealthy axis), an analysis based on smaller scales would 

lead to the conclusion that these places are less segregated, when, in fact, they can be 

highly segregated at larger scales. On the other hand, the presence of a wealthy gated 

community in a poor region of the city decreases the large-scale segregation of the area, 

even though gated communities are very homogeneous and present a high degree of 

segregation at smaller scales.  
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Figure 2.4 Patterns of segregation in Brazilian cities. 
 

 

2.3 Impacts of segregation 

While studying the impacts of segregation on community development, it is important 

to recognize that segregation is not a problem, but a phenomenon that can produce 

distinct outcomes depending on specific contexts (Sabatini 2006). Nevertheless, the 

acute spatial concentration of disadvantages, such as poverty, has consistently led to 

several negative consequences for the life of urban inhabitants and the ability of cities to 

contribute to social and economic development (Katzman and Retamoso 2006; 

Préteceille 2003; Rodríguez 2001; Sabatini et al. 2001; Torres et al. 2003). For this 

reason, the issue of segregation has received increasing attention in policy and academic 

debates of many developing countries.  

Considering the reality of Brazilian cities, Torres et al. (2006) assert that 

segregation is not a mere ‘sociological curiosity’, but is associated with important 

repercussions for the economic and social opportunities of individuals and families 

living in the most segregated areas. Reinforcing this point, many authors have pointed 

out features of Brazilian segregation dynamics that contribute to increase and/or 

perpetuate poverty (Hughes 2004; Marques and Torres 2004; Ribeiro and Santos Junior 

2003; Torres 2004; Torres and Marques 2001; Torres et al. 2006).  

Because low-income families can only afford to live in depreciated areas of 

the city, a common a priori characteristic of Brazilian neighborhoods with a high 

concentration of poverty is the poor quality of built and natural environment and the 

higher exposure to natural disasters and diseases (Torres 2004). Moreover, the irregular 

status of dwellings located in segregated neighborhoods and/or the lack of a political 
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voice of their inhabitants often restrain the access to public policies and investments that 

could contribute to the improvement of these areas (Torres 2004; Torres et al. 2006). As 

a result, segregation affects the access by poor families to schools, health services, and 

public utilities in general (Rodríguez 2001; Sabatini 2006; Torres 2004). Regarding the 

reality of São Paulo, Torres and Marques (2001) conducted spatial and quantitative 

analyses that empirically showed how extremely segregated areas, which they call 

hiperperiferias, overlap the worst socio-economic indicators with flooding events and 

land sliding risks, heavily polluted environment, and inefficient social services. 

For the poor families living in segregated peripheries, accessibility-related 

problems are also a daily reality, e.g., longer commuting distances to work and school. 

Also, unlike in middle- and upper-class neighborhoods, the concentration of low-

income consumers is not likely to sustain strong local business and services that could 

contribute to the creation of local employment opportunities and decrease the need of 

time-consuming trips within the city.  

Besides impacts concerning territorial and accessibility issues, the lack of 

positive relations among different social groups can increase prejudice and 

neighborhood stigmatization, keep disadvantaged people away from participation at a 

societal level, and reduce their opportunities for jobs and skill upgrading (Atkinson 

2005; Briggs 2005; Katzman and Retamoso 2006; Torres 2004). In Brazil, several 

studies have focused on the prejudice against inhabitants of segregated neighborhoods, 

especially favelas, and how segregation limits their prospects for upward mobility. Naiff 

and Naiff (2005) analyzed, by means of interviews, the perception of middle-class 

citizens towards favela residents in Rio de Janeiro. Their study revealed an increasing 

sense of denial, distrust and stigmatization against the favela residents, who are often 

seen as responsible for the high criminality rates in the city. Complementing these 

findings, Rocha and Araújo (2008) and Cecchetto and Monteiro (2006) present 

testimonies from young favela dwellers that describe how the location of their 

residences decreases their chances of getting a job, and report that providing false 

address information to potential employers is often a strategy adopted to avoid 

discrimination.  

The spatial concentration of disadvantages can also promote problems that 

emerge from the absence of social capital (Cole and Goodchild 2001). Social capital is a 
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set of informal values and norms that are shared among people and allow cooperation 

between them (Fukayama 1995). Contemporary scientific discourses commonly assert 

that the lack of social capital between different social groups, also known as ‘bridging 

social capital’ (Putnam 1995), hinders disadvantaged groups to acquire support 

networks that could assist their upward mobility.  

Another effect attributed to the absence of bridging social capital is the lack of 

positive role models. For a disadvantaged family, interaction with people who are in 

steady employment and who give importance to education may result in the former 

acquiring a set of mainstream values from the latter. These values may raise new 

patterns of behavior, aspirations, and motivations that contribute, for instance, to better 

performance in school and attendance to colleges, or to improved motivation for finding 

work (Tunstall and Fenton 2006). Rosenbaum et al. (1998) assert that such interaction 

can also reduce crime rates, arguing that illegal behavior is less commonly disapproved 

of in areas of deep poverty concentration. Many negative impacts attributed to the 

absence of bridging social capital can be found in Brazilian cities, where the isolation of 

poverty has been consistently associated with lower performance in school, higher 

incidence of teenage pregnancy, as well as higher rates of unemployment and violence 

(Bichir et al. 2004; Hughes 2004; Torres et al. 2005). In São Paulo, for instance, the life 

expectation of the residents of Guainases, a highly segregated and violent 

neighborhood, has been reported as being 12 years lower than that of individuals living 

in wealthy neighborhoods (Hughes 2004).  

When analyzing the impacts of segregation, it is also relevant to take the 

different dimensions and scales of segregation into consideration. Sabatini (2006) 

asserts that the spatial concentration of a social group (dimension evenness/clustering) 

may have a positive side. For example, it can help to preserve the cultural identities of 

an ethnic group, or promote social and political empowerment of the urban poor. The 

social homogeneity (dimension isolation/exposure), however, tends to promote 

problems like those mentioned above (Sabatini 2006). Such problems are accentuated 

when the isolation of the poor occurs in broader scales of segregation, e.g., in large and 

homogeneous peripheries (Rodríguez 2001; Sabatini et al. 2001; Sabatini et al. 2005).  

Finally, it is important to mention that segregation concerns impacts that affect 

not only poor families, but also other inhabitants of the city. For example, segregation 
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contributes to an increase in violence, which, in the case of Brazil and many other Latin 

American countries, promoted the development of a culture of fear and the self-

segregation of wealthy families, who perceive the contact with poor individuals as 

increasingly threatening. This resulted in the spread of fortified enclaves for middle and 

upper classes, which fragment the city and promote the decline of its public spaces  

(Caldeira 2000; Pessoa de Souza e Silva 2007). By hindering the contact between social 

classes, fortified enclaves also become a key element of a spiral process where the 

increase in segregation fostered by these developments lead to higher rates of violence, 

which increase the culture of fear and, consequently, stimulate the further proliferation 

of fortified enclaves.  

In summary, the severe segregation in Brazilian cities imposes innumerous 

negative impacts to the daily life of the urban population, contributes to the perpetuation 

of poverty, and impairs the cities’ capacity to promote economic and social 

development. Therefore, reducing the current levels of urban segregation is critically 

important for the Brazilian society as a whole.  

 

2.4 Promoting and countering urban segregation 

The negative impacts ascribed to the concentration of deprivation are unlikely to be 

resolved without policies that effectively address the causes of segregation. It is 

impossible to assign the emergence of segregation to a single cause. Researchers have 

identified different and complementary mechanisms that influence how distinct social 

groups interact and occupy urban spaces. Nevertheless, it is important to keep in mind 

that this is not a unidirectional process. Instead, it is characterized by constant feedback 

loops, where the so-called causal mechanisms of segregation can also be affected by 

segregation in the long term.  

Considering existing studies, it is possible to identify approaches focusing on 

four different sets of causal mechanisms of segregation: personal preferences, labor 

market, land and real estate markets, and the controlling power of the State3. The first 

approach concentrates on personal preferences: social segregation can increase because 

people prefer to live among neighbors similar to themselves. This voluntary segregation 

                                                 
3 The last three factors (labor market, land market, and controlling power of the state) are mentioned in 

Torres et al. (2003). 
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can be considered as comprehensible instead of socially condemnable. It often results 

from the families’ attempt to reinforce their social identities through shared values and 

to improve their quality of life (Marcuse 2005; Sabatini 2006). This social practice is 

particularly common among advantaged families, who usually prefer to live in areas of 

concentrated wealth and keep themselves apart from urban problems related to poverty 

(Caldeira 2000; Pessoa de Souza e Silva 2007; UN-Habitat 2001b). Studies on 

segregation modeling have a strong tradition of considering personal preferences to 

understand the emergence of the phenomenon (Sakoda 1971; Schelling 1971).  

The second approach considers the inequalities of the labor market and its 

socio-economic impacts as being responsible for segregation and the precarious life 

conditions of part of the urban population (Katzman and Retamoso 2006; Kowarick 

1979; Lago 2000; Morris 1995; Ribeiro 2001; Turok and Edge 1999; Webster 1999). 

Jargowsky (1997), for instance, asserts that the growth of the US economy brought 

positive impacts in areas of poverty concentration. Nevertheless, in a Latin America 

context, Sabatini (2006) advocates that the population impoverishment due to economic 

crises may promote a backward progression in the segregation process, and mention the 

case of São Paulo during the 1980’s as an example.  

The third approach focuses on the dynamics of land and real estate markets. It 

stresses how real estate agents stimulate a competition for land and housing that 

reinforces the self-segregation of higher income groups and the exclusion of 

disadvantaged families (Abramo 2001).  In Brazil, the speculative nature of urban land 

markets tends to increase segregation, e.g., when neighborhoods begin to attract wealthy 

residents and owners decide to raise land prices based on the expected land use for this 

area. In general, land valuation seems to be an important motivation behind the 

voluntary segregation of affluent families. It is interesting to notice, however, that the 

relation between land value and segregation is self-reinforcing: the increase in land 

prices promoted by the voluntary segregation is a factor that limits the access of poor 

families to serviced land, which consequently contributes to the overall segregation of 

the city and to further gaps between land prices of different neighborhoods (Sabatini 

2000,2006).  

From another land-market perspective, private settlers who conduct illegal 

land subdivisions in cheap areas located in the outskirts of the city, the so-called 
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periferias, also influence segregation by increasing poverty concentration (Smolka 

2005). Nevertheless, the maximization of the profits of real estate agents is not always 

associated with an increase in segregation. An example is the case of many high-income 

neighborhoods that have been densified through high-rise constructions for families 

with lower income. These projects increase the profits of real estate investors and, at the 

same time, contribute to a social diversification of wealthy neighborhoods. Another 

example is the spread of gated neighborhoods for upper classes in areas occupied by the 

poor, which does not necessarily decrease segregation, but contributes to a reduction in 

its scale (Sabatini 2006). 

The state can play an active role in mitigating segregation impacts related to 

the labor market and to the land and real estate market. Nevertheless, its ability to 

influence people’s personal preferences is much more limited and unnecessary, since 

voluntary segregation is not essentially negative (Sabatini 2006). The approach that 

focuses on the labor market to explain the emergence of segregation calls for structural 

macroeconomic policies, such as fiscal and monetary policies, as well as investments in 

public education and health care. Regarding the land and real estate market, the state 

can settle initiatives to regulate its dynamics, like for example, policies to diversify land 

uses and promote developments for upper classes in areas occupied by disadvantaged 

families. In addition, the state can control land speculation and regularize illegal 

settlements. 

Measures to diversify land uses and promote developments for upper classes in 

poor neighborhoods represent an effort to regulate the market towards a decrease in the 

scale of segregation. This stimulus can occur through public investments in 

infrastructure, changes in the norms of land use, tax exemption measures, and 

concessions (Sabatini 2006). Such initiatives are more effective if complemented by 

policies that contain land speculation by capturing capital gains and controlling urban 

sprawl (Sabatini 2006). The Brazilian Statute of the City (Rolnik and Saule Jr. 2001) 

issued in 2001 offers a set of instruments that can help local policy makers in this 

direction. For instance, to restrain the speculative retention of land, the statute 

establishes that vacant or underutilized lands located in areas with good infrastructure 

are subject to taxes that are progressive over time. These lands are also subject to 

compulsory building and subdivision, according to the local master plan (Rolnik and 
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Saule Jr. 2001). These instruments control excessive urban sprawl, which promotes the 

large-scale segregation of the poor and increases the need for investments to expand 

infrastructure networks (Rolnik and Saule Jr. 2001). The statute also recognizes legal 

instruments that enable municipalities to promote a comprehensive regularization of 

illegal settlements in private and public areas. These instruments include the regulation 

of the constitutional rights to usucaption (adverse possession) and the concession of the 

real right to use (a sort of leaseholding) (Fernandes 2006,2007). Combined with land 

speculation control measures, these initiatives can contribute to democratize the 

conditions of access to urban land and housing (Fernandes 2006,2007; Rolnik and Saule 

Jr. 2001). However, some cases of irregularity demand the removal of poor families to 

more adequate areas, either to protect them from natural disasters or to guarantee 

environmental standards (Sabatini 2006). The Brazilian Provisional, introduced in 2001, 

settles conditions for the municipal authorities to conduct this sort of action (Fernandes 

2006).  

This discussion demonstrates the importance of governmental institutions in 

regulating mechanisms that promote segregation. Governmental laissez-faire 

approaches that ignore such mechanisms are in fact contributing to the perpetuation of 

urban segregation. In addition, governmental regulations or interventions can also 

aggravate the problem. For these reasons, some researchers indicate the controlling 

power of the state as another cause of segregation. According to this approach, the state 

can intensify segregation through its permissiveness, urban legislation, or investments 

(Rolnik 1997). For example, the widespread practice of exclusionary zoning to separate 

different activities and groups has played a key role in excluding disadvantaged families 

from privileged areas of the city (Ihlanfeldt 2004). Zoning codes define standards of 

land occupation that often rely less on technical aspects and more on the practices and 

logic of market investments. An example is the requirement for minimum lot sizes, 

which cannot be afforded by poorer families and exclude them from certain 

neighborhoods (Rolnik 1997). 

Other state interventions that promote segregation concern the unequal 

distribution of urban investment (Marques and Bichir 2002; Préteceille 2003; Smolka 

1992; Sugai 2002). For instance, punctual investments that increase the land value of a 

neighborhood can drive low-income families away from this area. Policies aimed at 
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controlling segregation should consider democratizing the distribution of investments, 

including the access to infrastructure and urban facilities (Torres 2004). The Brazilian 

Statute of the City recognizes several mechanisms to ensure the democratic 

participation of citizens and other stakeholders in planning and managing the city. 

These mechanisms include: participatory budget practices, public hearings, 

consultations, creation of councils, environmental and neighborhood impact studies, and 

popular initiatives for the proposal of urban laws (Fernandes 2007). These measures 

help to undermine the public investments biased toward wealthy areas (Sabatini 2006), 

and some of them have already been carried out in Brazilian cities, e.g., participatory 

budget practices in Porto Alegre and Belo Horizonte (Wood and Murray 2007).  

Social housing projects focusing on maximizing dwelling offers are another 

state intervention that can promote segregation. These projects are usually 

homogeneous settlements located on cheap land at the outskirts of the city, far from the 

supply of equipments, services and opportunities (Luco and Rodríguez 2003; Sabatini 

2006; Smith 2002; Torres 2004; van Kempen 1994). Such social housing projects, 

which are very common in Brazilian cities, reinforce the trend to displace poor families 

from the best locations, increase the scale of segregation, and therefore worsen its 

negative effects.  

In the United States and some European countries, these traditional public 

housing strategies that had resulted in large areas of poverty concentration were 

recognized as a mistake. Therefore, minimizing urban segregation - or at least its scale - 

became a target explicitly expressed in many policy debates (Cole and Goodchild 2001; 

Smith 2002). To integrate different social groups, three strategies are currently the most 

intensely followed in these developed countries: dispersal of poverty, regeneration of 

troubled neighborhoods, and regulation for new developments.  

Strategies for promoting integration through the spatial dispersion of poverty 

focus on moving low-income households out of distressed areas into middle-class 

neighborhoods. Some housing programs in the Unites States adopt this strategy, like the 

Moving to Opportunity and the HOPE VI (Housing Opportunities for People 

Everywhere). The program Moving to Opportunity gives housing vouchers to low-

income families for renting private dwellings in neighborhoods with a poverty rate of 

less than 10% (Smith 2002). The program HOPE VI adopts additional strategies for 
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dispersing poverty, such as replacing distressed and high-density public housing with 

fewer affordable residential units in middle-class neighborhoods (Popkin et al. 2004). 

The high costs of these initiatives, however, represent an obstacle to its adoption in 

developing countries. Besides, the strategy is more appropriate for cities where the poor 

are a minority (Sabatini 2006), which is not the case in developing countries. 

Considering a Latin American context, Sabatini (2006) asserts that dispersing wealthy 

families seems a more effective way to promote positive changes in segregation 

patterns.  

The second strategy commonly adopted in developed countries focuses on 

regenerating problematic public housing. This implies measures to improve local 

services and social programs, oppose delinquencies and territorial stigmas, demolish 

high-density constructions, build high-quality houses, and encourage middle-class 

households to move into these areas. This strategy has been also adopted in developing 

countries: a good example is the Favela-Bairro project in Rio de Janeiro, which 

integrates existing favelas into the fabric of the city by upgrading their infrastructure 

and services (Soares and Soares 2005). 

The third strategy involves regulating new developments by requiring mixed 

occupancy as a condition for approval or funding. This requirement is often expressed 

as percentages of affordable land or built area within the new residential developments 

(Sabatini 2006). The Section 106 of the UK’s Town and Country Planning Act 1990, for 

instance, allows local authorities to negotiate with developers for some affordable units 

in new developments in exchange for planning permission (Claydon and Smith 1997).  

There are several divergences about the impact of policies aimed at 

minimizing segregation. Some studies conducted in developed countries identify many 

accomplishments and characterize these policies as successful (Feins and Shroder 2005; 

Turbov and Piper 2005). On the other hand, other studies focus on the failure of these 

policies and the need for restructuring them (Clampet-Lundquist 2004; Silverman et al. 

2005; Smets and den Uyl 2008). Such divergences reinforce the importance of 

constantly monitoring and adjusting policies in order to get the expected results. Most 

importantly, the design of these policies must consider the particularities of cities, which 

differ in segregation patterns, population composition, levels of deprivation, culture, 

structure of housing markets, and many other features that demand specific approaches. 
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2.5 Measuring urban segregation 

Given the increasing importance of urban segregation in policy and scientific debates, 

several researchers have proposed indices to measure the different dimensions of the 

phenomenon (Bell 1954; Duncan and Duncan 1955; Feitosa et al. 2007; Jargowsky 

1996; Morgan 1975; Reardon and O'Sullivan 2004; Sakoda 1981; Wong 1993). The 

first generation of segregation indices was proposed during the 1950’s in the United 

States and focused on measuring segregation between two population groups (black and 

white). The dissimilarity index D (Duncan and Duncan 1955) and the exposure/isolation 

index (Bell 1954) are the most distinguished measures of this period.  

In the 1970’s, segregation studies started to focus on multigroup issues, 

including the segregation among social classes or among White, Blacks and Hispanics. 

To meet these needs, a second generation of segregation indices was developed by 

generalizing versions of existing two-group measures (Jargowsky 1996; Morgan 1975; 

Reardon and Firebaugh 2002; Sakoda 1981). However, these measures are insensitive to 

the spatial arrangement of population among areal units. This shortcoming leads to what 

White (1983) identified as the checkerboard problem. Given two checkerboards, the 

first with an alternation of black-and-white squares, and the second with all the black 

squares located on one side of the board, the results of non-spatial segregation indices 

indicate a maximum segregation degree for both arrangements. The non-spatial indices 

are not able to show the second arrangement as more segregated than the first (Figure 

2.5). 

 

 

 
Figure 2.5 The checkerboard problem (White 1983). 
 

To overcome the checkerboard problem, several researchers proposed spatial 

measures of segregation (Feitosa et al. 2007; Jakubs 1981; Morgan 1983b; Morrill 
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1991; Reardon and O'Sullivan 2004; White 1983; Wong 1993,1998). This study adopts 

two spatial indices proposed by Feitosa et al. (2007) to measure different dimensions 

and scales of segregation. The first, named generalized spatial dissimilarity index, 

captures the dimension evenness/clustering (section 2.11). The second, called spatial 

isolation index, captures the dimension exposure/isolation (section 2.11). Global and 

local versions of these measures are used in a complementary manner to depict 

segregation patterns. While global indices summarize the segregation degree of the 

entire city, local indices show segregation as a spatially variant phenomenon that can be 

displayed in maps.  

The indices adopted in this study rely on the idea that an urban area comprises 

different localities, which are places where people live and exchange experiences with 

their neighbors. The intensity of these exchanges varies according to the distance among 

population groups, given a suitable definition of distance. The population characteristics 

of a locality are expressed by its local population intensity, which is calculated by using 

a kernel estimator. A kernel estimator is a function that estimates the intensity of an 

attribute in different points of the study area (Silverman 1986).  

To calculate the local population intensity of a locality j, a kernel estimator is 

placed on the centroid of areal unit j and estimates a weighted average of population 

data. The weights are given by the choice of a distance decay function (e.g., Gaussian) 

and a bandwidth parameter (Figure 2.6). This procedure allows researchers to specify 

functions that formalize a hypothesis about how population groups interact across 

spatial features. The specification of different bandwidths, for instance, enables analyses 

in multiple scales: the indices are able to start from the most detailed data and 

generalize them for analyzing segregation in broader scales.  

 

 

Figure 2.6 Gaussian kernel estimator (Feitosa et al. 2007). 
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The local population intensity is a geographically weighted population average that 

considers the distance between groups. Formally, the local population intensity of a 

locality j (
jL
 ) is calculated as (Feitosa et al. 2007):  
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Where:  Nj is the total population in areal unit j; J is the total number of areal units in 

the study area; and k is the kernel estimator which estimates the influence of 

each areal unit on the locality j.  

 

The local population intensity of group m in the locality j (
jmL
 ) is calculated by 

replacing the total population in areal unit j (Nj) with the population of group m in areal 

unit j (Njm) in equation (2.1):  
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2.5.1 Measuring the spatial dimension evenness/clustering 

The global version of the generalized spatial dissimilarity index ( )(mD


) measures the 

average difference of the population composition of the localities from the population 

composition of the city as a whole. The formula of )(mD


 is:  
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In equation (2.3), N is the total population of the city; Nj is the total population 

in areal unit j; 
m  is the proportion of group m in the city; 

jm is the local proportion of 



Urban segregation: definitions, trends, and measures 

 32

group m in locality j; J is the total number of areal units in the study area; and M is the 

total number of population groups. In equation (2.4), 
jmL
  is the local population intensity 

of group m in locality j; and 
jL
  is the local population intensity of locality j.  

The index )(mD


 measures the proportion of people who would have to move 

from their localities to achieve an even population distribution. It varies from 0 to 1, 

where 0 stands for the minimum degree of evenness and 1 for the maximum degree. 

Despite these established meanings, it is still hard to interpret the values obtained within 

this [0,1] interval: does a )(mD


 value equal to 0.6 reveal a situation of severe 

segregation or not? This is not a trivial question, since the values of segregation 

measures are sensitive to the scale of the data: indices computed for smaller areal units 

tend to present higher values than indices computed for larger areal units (Feitosa et al. 

2007). This is called the grid problem (White 1983) and it is inherent to all segregation 

measures.  

In the case of spatial segregation measures, as the ones presented in this 

section, the scale variability is also related to the bandwidth used in the computation of 

the measures. An index computed with a small bandwidth will have higher values than 

another that is computed with a large bandwidth. Because of that, it is unfeasible to 

establish fixed thresholds that assert whether the index results indicate a severe 

segregation level or not. Instead, the interpretation of global indices of segregation is 

more useful when relational, for example, focused on the comparison of values obtained 

for an urban area in different points in time. Based on that, it is possible to draw 

conclusions about segregation trends along the years.  

The local version of the generalized spatial dissimilarity index ( )( md j

 ) is 

obtained by decomposing the index )(mD


. It shows how much each locality contributes 

to the global )(mD


 measure of the city (Feitosa et al. 2007). The local index )( md j

  can 

be displayed as a map and used to identify critical areas. The formula of )( md j

 is: 
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Where: the equation parameters are the same as in equation (2.3).  
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2.5.2 Measuring the spatial dimension exposure/isolation 

The global version of the spatial isolation index (
mQ
 ) measures the average proportion 

of group m in the localities of each member of the same group (Feitosa et al. 2007):  
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Where:  Njm is the population of group m in areal unit j; Nm is the population of group m 

in the study region, 
jmL
  is the local population intensity of group m in locality 

j, and 
jL
  is the local population intensity of locality j.  

 

The isolation index varies from 0 (minimum isolation) to 1 (maximum 

isolation). The results of the index  
mQ
  depend on the overall composition of the city. 

For example, if the proportion of the group m increases in the city, the index 
mQ
  tends to 

become higher.  

The local version of the spatial isolation index (
mq
 ) can also be obtained by 

decomposing 
mQ
  (Feitosa et al. 2007):  
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Where: the equation parameters are the same as in equation (2.6).  

 

In general, measures of segregation are useful tools for describing the 

phenomenon in its multiple scales and dimensions. By computing these measures to 

different dates, it is possible to analyze several aspects of segregation: Is the global 

segregation of a city increasing or decreasing? Is this trend applied to both dimensions 

of segregation? What is happening at smaller/larger scales? Where are the most critical 

areas of poverty isolation?  

Measures of segregation, in particular the local ones, can be also used to 

explore the relationship between the segregation of social groups and other urban 
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indicators. For example, local indices of segregation estimated at different scales and 

compared with violence rates can reveal whether poor families isolated at broader scales 

are more vulnerable to violent events than those who are segregated at smaller scales or 

not segregated. Such experiments can contribute to the debate about different patterns of 

segregation and their impacts.    

Nevertheless, despite the value of these measures, they represent only static 

snapshots of segregation at a certain moment. They are unable to help researchers to 

understand the underlying dynamics of the phenomenon or how different contextual 

mechanisms (such as those described in section 2.4) can lead to the emergence of 

specific patterns of segregation. The next chapter introduces a set of concepts and 

methods related to the theory of complexity that contribute to overcome this limitation.  
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3 URBAN SEGREGATION AS A COMPLEX SYSTEM: CONCEPTS 

AND METHODS 

 

3.1 The complex nature of urban segregation 

Urban segregation is an explicit spatial phenomenon that emerges from the interaction 

between many individuals and displays markedly different global patterns depending on 

specific socioeconomic contexts. A better understanding of segregation is challenged by 

the fact that it exhibits many of the characteristic hallmarks of a so-called complex 

system. According to Batty and Torrens, a complex system is an “entity, coherent in 

some recognizable way but whose elements, interactions, and dynamics generate 

structures and admit surprise and novelty that cannot be defined a priori” (Batty and 

Torrens 2005: 745). The idea that “the whole is more than the sum of the parts” (Simon 

1996: 231) is crucial to understand complex systems, and it is what differentiates them 

from those that are merely complicated.  

A complicated system consists of many elements that are independent of each 

other. For this reason, with a reductionist thinking, scientists can understand 

complicated systems by reducing them to their atomic elements and then studying these 

elements in isolation (Holland 1998; Miller and Page 2007). When the dependence 

among the atomic elements starts to play a role, the system shifts from complicated to 

complex, and the same reductionist approach fails to provide insights about it (Levy 

1992; Miller and Page 2007). In a complex system, many heterogeneous and 

autonomous elements interact at the micro-level and give rise to the global properties of 

the system. These properties, which are called emergent (Holland 1998), then feedback 

into the system’s micro-level (Figure 3.1).  

The idea of emergence also applies to urban segregation, since its macro-

structure emerges from the interaction between many individuals (households) at a 

micro-level, who are constantly making choices about their residential location. As a 

complex system, segregation cannot be simply understood through the investigation of 

its ‘micro-elements’ alone like, for instance, through studies about individual reasons 

for residential mobility (Clark and Onaka 1983; Knapp et al. 2001; South and Deane 

1993). It is also difficult to understand segregation through studies situated at the other 

extreme, i.e., studies that focus only on the ‘macro-structure’, like those that emphasize 
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the measurement of segregation patterns resulting from the spatial arrangement of social 

groups (Feitosa et al. 2007; Morrill 1991; Reardon and O'Sullivan 2004; White 1983 ; 

Wong 1993; 1998 ).   

 

Figure 3.1 The principle of emergence, a hallmark of complexity (Adapted from 
Psycology Wiki 2009).  

 

These contrasting approaches dealing with the micro- and macro-dimensions 

of segregation are actually complementary. It is important to recognize factors that 

influence the residential mobility of different types of households (micro-level), as well 

as to have tools that are able to describe and quantify patterns of segregation (macro-

level). Nevertheless, these conventional approaches based on reduction or aggregation 

fail to provide insights about the ‘macro-micro’ relations that underlie the dynamics of 

segregation. In this direction, the science of complex systems and its ability to explore 

what is ‘in-between’ the usual scientific boundaries (Miller and Page 2007) becomes 

particularly pertinent for the challenge of conciliating processes that operate at local 

scales with those at larger scales (Torrens 2000). 

In addition to emergent properties, many other system characteristics 

belonging to the lexicon of the complex systems science are useful to explain urban 

segregation, including non-linearity, adaptation, self-organization, and path dependence. 

Segregation results from non-linear interactions between many independent households 

that are able to generate unexpected and counter-intuitive global patterns (Schelling 

1971). The changes in the system are induced by the residential decisions of 
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heterogeneous households, which can differ regarding several attributes (e.g., 

knowledge, needs, income, race, etc.).  These decisions are context dependent and 

constantly adapting to the current circumstances. They are also not necessarily brilliant 

(Miller and Page 2007), since households have limited knowledge and capacity to 

process information, i.e., their decisions result from their bounded rationality (Benenson 

and Torrens 2004).  

There are many context-related mechanisms that can influence the households’ 

decisions about moving into a specific location: land market, personal preferences, labor 

market, and public policies and investments (section 2.4). All these factors are dynamic 

and not only influence, but can also be influenced by the households’ choices. For 

example, while the households’ residential choices are constantly constrained by the 

land market, the spatial distribution of households resulting from these choices 

consolidates neighborhoods with certain reputations and characteristics that affect the 

land market dynamics (feedback mechanism). The different levels of interactions in the 

system are also self-organized, being able to produce recognizable patterns without any 

centralized authority deliberately managing or controlling (Holland 1998). In addition, 

segregation is also characterized by path dependence, since earlier states and choices 

are able to affect future possibilities. Finally, the dynamics of segregation have a strong 

spatial component: Households are constantly evaluating their local environment and 

their decisions are not only influenced by their location, but are also about their future 

location.  

 

3.2 Social simulation as a tool for exploring the ‘in-between’ 

Social scientists have traditionally relied on research methods that consist either of 

mathematical and equation-based models or verbal descriptions based on historical and 

ethnographic observation (Hanneman et al. 1995). Verbal descriptions offer a high 

flexibility regarding the type of problems that can be analyzed. Nevertheless, this 

method is often vague, inconsistent and difficult to verify. Apparently coherent and 

logical arguments may, in fact, contain critical flaws (Holland 1998; Miller and Page 

2007). Studies relying on this type of approach are the most commonly found in the 

Brazilian literature about segregation (Caldeira 2000,2005; Schiffer 2001; Villaça 

1998,2001).  
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At the other extreme, mathematical or equation-based models rely on precise and 

general statements about a system. They provide new insights through the interpretation 

of quantities such as equilibrium, maxima and minima, and partial derivatives of 

dependent variables with respect to independent variables (Hanneman et al. 1995). This 

rigor and generality of mathematical analytical models (often used deductively) 

represent attributes that are desirable in science, although they also impose constraints 

on the study of systems that are dynamic, spatial, non-equilibrated, heterogeneous and 

comprising individuals with bounded rationality. Traditional economic models often 

focus on situations involving very few of infinitely many rational agents that have 

access to all available information, and process this efficiently towards optimization 

(Miller and Page 2007). The work of Yizhaq, Portnov, and Meron (2004) exemplifies 

the application of this type of modeling to describe segregation. Another common 

quantitative approach relies on statistical methods to filter out the noise and extract the 

regular part of the agents’ behavior, which are often used inductively. It is the case of 

discrete choice models (Ben-Akiva and Lerman 1987), which decompose the agents’ 

utility of choosing a residential location into a random part (the noise) and a 

deterministic part (the regular). Nevertheless, this emphasis on the average behavior 

may be incomplete, or in some cases, even misleading (Miller and Page 2007). 

While verbal descriptions offer flexibility, mathematical models offer the 

rigor. However, to deal with an ‘in-between’ field such as a complex system, it is 

necessary to rely on models that are able to bridge the gap between both these attributes. 

Computer-based simulation represents a promising alternative in this direction. It is 

more flexible than mathematical models, and more rigorous than verbal descriptions 

(Hanneman et al. 1995). Over the past decade, computer-based simulations have 

become much more widely accepted among social scientists. They are able to deal with 

complex system issues that cannot be ‘solved’ through mathematical equations. At the 

same time, computer-based simulations demand much higher precision than verbal 

descriptions, since they force modelers to specify computer programs in a complete and 

exact manner (Gilbert 2008). These simulations allow researchers to explore a variety of 

new questions through a sort of ‘laboratory’ on their desktop: Simulations can be 

started, stopped, examined, modified and restarted to test new hypotheses (Holland 

1998).   
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According to Gilbert and Troitzsch (1999), the logic of simulation as a method consists 

of building an abstract representation from a target system based on certain 

assumptions. This model is then converted into a computer program, which can be 

executed and generates simulated data. The obtained results should be compared with 

data collected from the target system to check whether the model generates outputs 

which are similar to those produced in the real world (Figure 3.2). This process of 

developing a simulation model demands a strategy ‘in-between’ deductive and inductive 

approaches. Like deduction, one starts with a set of assumptions, but then relies on 

experiments to generate data that can be analyzed inductively. For this reason, 

simulation has been known as a third way of doing science (Axelrod 2003).  

 

 

Figure 3.2 The logic of simulation as a method. Diagram designed by Drogoul et al. 
according to their interpretation of Gilbert’s and Troitzsch’s proposition 
(Drogoul et al. 2003). 

 

During the last half-century, three approaches have gained special attention in 

the field of social simulation: system dynamics, microsimulation, and agent-based 

models (Gilbert and Troitzsch 1999). Originally developed in the 1950’s by Jay W. 

Forrester, system dynamics is a macro-level approach that relies on systems of 

difference and differential equations (Gilbert and Troitzsch 1999). It is structured in 

terms of temporal cause-and-effect relationships, and focuses on feedback linkages 

among the components of the target system (Roberts 1983). System dynamics has been 

useful for exploring the non-linearity of some complex systems over time, since it relies 
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on elements like feedbacks, stocks, and flows. However, this approach deals with 

aggregates rather than with atomic elements, which restricts the possibility to model 

heterogeneity and more complex recursive reasoning processes (Gilbert 2008).      

While system dynamics simulates the behavior of an aggregate agent, 

microsimulation focuses on simulating the development of a population of individual 

agents over time. This approach, which started to be developed in the social sciences 

during the 1970’s, uses data on large samples of individual units (e.g., households, 

vehicles, or firms), along with rules to simulate the evolution of the sample individuals 

(Gilbert and Troitzsch 1999; Gilbert 2008). Despite the focus on the individual as the 

unit of analysis, microsimulation kept the emphasis on higher levels of aggregation 

forecasting (e.g., national unemployment rate), without pretending to explain (Gilbert 

and Troitzsch 1999). Other disadvantages that disqualify the use of microsimulation to 

study segregation include its inability to model interactions between elements and the 

lack of spatial references (Gilbert and Troitzsch 1999; Gilbert 2008).  

The third approach, known as agent-based model (ABM), addresses the 

shortcomings of the previous techniques by enabling the representation of individual 

decision-making units interacting with each other and their environment. These 

decision-making units, called agents, are autonomous and possibly heterogeneous 

(Gilbert 2008). Agents are presumed to be interacting according to a specific set of rules 

that can be changed through adaptation and learning (Gilbert 2008). The explicit 

simulation of such interaction process, which occurs at the micro-level, allows 

researchers to explore the emergence of macro-structures from bottom-up in a very 

natural way (Gilbert and Troitzsch 1999; Miller and Page 2007). For this reason, agent-

based models represent a promising approach to understand complex social systems, 

including urban segregation.   

Schelling’s model of racial segregation (Schelling 1971) is a classical example 

illustrating an agent-based simulation and its ability to provide further insights about 

complex systems.  He distributed white and black agents on a lattice and considered that 

these agents had a degree of tolerance in relation to the other racial group: They were 

satisfied with a mixed neighborhood, as long as the number of neighbors with the same 

color was sufficiently high. It would be reasonable to think that if agents do not insist on 

living with the same race, no segregation pattern will emerge. However, Schelling 
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demonstrated the unexpected fact that patterns of intense racial segregation appear 

under these conditions. This is an example of how agent-based models can contribute to 

understanding the emergence of counter-intuitive global structures from local individual 

interactions.  

 

3.2.1 Purposes of social simulation 

Earlier approaches to simulation have commonly been used with the purpose of 

obtaining accurate and quantitative predictions of a real-world system. Such purpose 

relies on a positivist view of the role of simulation models. It believes in a fully 

observable law governing systems that can be reproduced in a model and extrapolated 

to predict the future (Wu 2002). Nevertheless, with the advances of complexity and the 

chaos theory, this view has been often criticized or considered too difficult to achieve 

(Batty and Torrens 2005; Macy and Willer 2002; Wu 2002).  

The chaos theory is frequently mentioned to explain why the precise prediction 

of the future state of a system can be so difficult (Holland 1998). It advocates that small 

and local change can lead to major transformations in the system’s evolution. Therefore, 

the prediction of a chaotic system depends on the perfect knowledge of the initial 

conditions and all the values of all the relevant variables, which is usually impossible to 

obtain. This idea is summarized by the well-known ‘butterfly effect’ example, where the 

flapping of a butterfly’s wing can eventually cause worldwide changes in the weather 

(Holland 1998). Complex systems are considered to be at the edge of chaos and order: 

not so active, but also not static. Therefore, the key to improve the knowledge about 

them is to determine mechanisms that provide some structure to the system, as well as 

the minors that can be ignored (Holland 1998; Miller and Page 2007). Prediction, in this 

case, depends on the required level of detail.  

From the recognition of challenges imposed by the complexity of real-world 

systems, researchers have become increasingly interested in predictions that are not 

necessarily quantitative. According to Troitzsch, prediction can have at least three 

meanings, each responding to one of these three different questions about the behavior 

of the target system (Troitzsch 1997, as quoted in Troitzsch, 2009: 1.1):  

1. “Which kinds of behavior can be expected under arbitrarily given parameter 

combinations and initial conditions?” 
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2. “Which kind of behavior will a given target system (whose parameters and 

previous states may or may not have been precisely measured) display in the 

near future?” 

3. “Which state will the target system reach in the near future, again given 

parameters and previous states which may or may not have been precisely 

measured?” 

 

The traditional view of prediction, which focuses on quantitative results, 

answers the question (3), and it is the goal of models that seek to reproduce the 

dynamics of the target system as exactly as possible. This approach demands the use of 

models that Gilbert (2008) call ‘facsimile’. Their parameters are usually calibrated to 

precisely replicate a known situation (present or past), and the models are then used to 

predict the future or what could happen if something were changed (Batty 2005; Gilbert 

2008). Nevertheless, when the system’s trajectory reacts in a chaotic manner, i.e., highly 

sensitive to initial conditions and parameters, quantitative prediction of future states are 

likely to be impossible to achieve (Troitzsch 1998).    

Conscious of this limitation, most simulations developed in the social sciences 

concern qualitative predictions, which are able to answer the questions (1) and (2). This 

sort of simulation is mainly focused on identifying global patterns that can emerge when 

certain local rules are applied or some specifics laws are considered (Troitzsch 2004). 

Despite their use of quantitative procedures, facsimile models can be used for 

qualitative predictions, especially when studying phenomena like segregation. A model 

that includes segregation measures, for instance, is likely to face difficulties in 

producing outcomes that can be rigorously compared with the measurements from real-

world data. It is not reasonable to expect that the local segregation index computed for a 

‘cell’ (section 2.5) achieves the same value when computed for the simulated and real 

data. Indeed, this is also not important. The most important thing is to observe the trends 

of segregation in different scales and dimensions along time, and how they change once 

the modeler explores different parameters and conditions.   

In addition to facsimile models, models that Gilbert (2008) designate as 

abstract and middle-range can also be used to achieve qualitative predictions. Abstract 

models are those without any intention to simulate a specific empirical reality, and 
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therefore are based on ‘artificial societies’. Even so, abstract multi-agent models should 

be able to demonstrate the emergence of expected macro-level patterns from the 

interaction of agents that follow plausible rules (Gilbert 2008). The Epstein and Axtell’s 

Sugarscape model is a classical example of an abstract model (Epstein and Axtell 1996).  

Like abstract models, middle-range models are general and not applicable to a 

specific observation, but they do focus on a particular empirical phenomenon (Gilbert 

2008). The aim of this type of model is to extract some conclusions about a target 

system that can be widely applied, including specific results that we can expect under 

certain circumstances. For example, Schelling’s model of racial segregation reveals that 

we can expect to find segregation patterns even if households do not mind having others 

from different races in their neighborhood (Schelling 1971). Besides this model, others 

have been developed to simulate segregation dynamics in a general manner, including 

many variations of Schelling’s model (Bruch and Mare 2006; Laurie and Jaggi 2003; 

O'Sullivan et al. 2003; Zhang 2004), and the SimSeg model (Fosset and Senft 2004).  

Finally, it is still important to consider simulations for other exploratory 

purposes that do not lead to any type of prediction. For example, simulations can be 

useful to provide a rigorous demonstration that something is possible, illustrate a certain 

dynamic for educational purposes, or simply suggest new ideas about a complex 

situation (Holland 1998).  

 

3.3 Agent-based models: basic concepts 

Agent-based models (ABM) have been increasingly recognized as a useful approach for 

studying complex social systems in general and urban segregation in particular 

(Benenson et al. 2002; Bruch and Mare 2006; Crooks 2008; Schelling 1971). Briefly, an 

ABM consists of multiple agents interacting within an environment. From this succinct 

definition, it is possible to extract the most basic components of an ABM, i.e., agents, 

interactions, and environment, whose concepts are introduced in the following.  

 

3.3.1 Agents 

In an ABM framework for social simulation, agents are computer programs used to 

represent social actors, e.g., individuals, households, or institutions (Gilbert 2008). With 

the increasing popularity of this sort of simulation, many discussions have arisen around 

the definitions of agent, and how they differentiate from computer programs in general. 
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After examining many of the existing definitions, Franklin and Graesser (1997: 27) 

proposed the following one: “An autonomous agent is a system situated within and a 

part of an environment that senses that environment and acts on it, over time, in pursuit 

of its own agenda and so as to effect what it senses in the future”. 

Although the properties of agents differ according to specific applications, 

Franklin and Graesser’s definition emphasizes agent’s features that have been 

conventionally identified as important: autonomy, social ability, reactivity, and 

proactivity (Wooldridge and Jennings 1995). First, agents are autonomous; they are a 

separate locus of control, fully responsible for their actions and in charge of 

accomplishing their role (Wooldridge and Jennings 1995). Although centralized 

authorities may exist as environmental constraints, there is no global or external flux of 

control dictating the agent’s actions. This ‘self-organization’ of autonomous agents is 

what promotes the emergence of global patterns from the bottom-up (Macy and Willer 

2002). Second, agents have social ability and are able to interact with each other. Third, 

agents are reactive and capable of responding to stimuli coming from their environment. 

In addition, agents are proactive, which means that they exhibit goal-directed behavior 

by taking their own initiative (Wooldridge and Jennings 1995; Zambonelli et al. 2001).  

Concerning the problem of conceptualizing and designing agents, Gilbert 

(2008) advocates another set of properties that he considers more helpful to have in 

mind during this process: perception, performance, memory, and policy (Gilbert 2008: 

21-22). Agents are able to perceive the characteristics and dynamics of their 

environment, including the presence of other agents in the surroundings. Agents are also 

capable of performing a set of behaviors, which often includes motion (they can move 

within the environment), communication (they send and receive messages), and/or 

action (they can change the environment). Agents should have a memory and be able to 

record their past perceptions and performances. Finally, agents have a policy, i.e., “a set 

of rules, heuristics, or strategies” that establishes what they will do next, or even how 

they learn and adapt (Gilbert 2008: 22).  

Considering the example of a segregation model, agents represent households 

and should be implemented in a way that allows them to recognize the attributes of 

different neighborhoods, including the agents living there (perception), store and 

retrieve all the neighborhood’s perceptions (memory), compare them, evaluate whether 
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it would be better to live in a neighborhood different to their current one (policy), and 

finally, move if they consider appropriate (performance).   

 

3.3.2 Environment 

Environment defines the space in which agents operate, serving as a support to their 

actions. The meaning and role of an environment depends on the system that is being 

modeled. In some situations, it may be neutral, with minimal or no effect on the agents 

or, in analogy to the real world, the environment may have an active role in providing 

the context for agents to perform their actions, to acquire information about the problem 

they have to solve, and to communicate with each other (Gilbert 2008; Weyns et al. 

2005). In the latter case, the environment can be specified as an independent piece of 

software that encapsulates its own roles in the ABM, including particular characteristics 

and dynamics that directly influence the agent’s behavior and the emergence of complex 

structures (Gilbert 2008; Weyns et al. 2005). It can be implemented as agents, but in a 

simplified manner: The environment has its own attributes and set of rules for changing 

its state, but it does not need to achieve goals or perform elaborated actions such as 

moving and send messages (Gilbert 2008; Weyns et al. 2005).  

Focusing on the relation agent-environment, Russell and Norvig (2003) 

advocates that agents perceive the environment through sensors, and act upon it through 

effectors. The properties of environments may vary significantly, and can be classified 

as the following (Russel and Norvig 2003: 46):  

1. Accessible versus inaccessible: reveals whether the agents can access complete 

and accurate information about environment’s state, or not.  

2. Deterministic versus non-deterministic: reveals whether the next state of the 

environment is entirely determined by its current state and the actions 

performed by agents, or not. 

3. Episodic versus non-episodic: reveals whether the agent’s decisions within an 

‘episode’ do not influence its decisions in the next episode, or the opposite.  

4. Static versus dynamic: reveals whether the environment only changes when 

agents act, or not.  

5. Discrete versus continuous: reveals whether the number of states and actions 

in the environment are limited, or not. 
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Depending on the system that is being modeled, the environment can be more 

appropriately represented as a geographical space, an analogy to space, or a network 

(Gilbert and Troitzsch 1999; Gilbert 2008). Environments as geographical spaces are 

particularly suitable for problems where absolute distances matter, such as segregation. 

For other problems, however, it may be convenient to model the space as an analogy to 

some features other then  geography, e.g., “knowledge space” (Gilbert 2008). There is 

still another sort of application where the most important is the relationships between 

agents (e.g., trades) and the environment can be represented as a network of links and 

nodes (Gilbert 2008; Tesfatsion 2003). 

In most ABM, the environments represent a geographical space where agents 

are located and, in many cases, able to move around (Gilbert and Troitzsch 1999; 

Gilbert 2008). In a model of segregation, for instance, this type of representation can 

provide a geographical reference that allows agents to have a notion of proximity and 

identify other agents in their vicinity. In addition, it provides information about other 

urban features that are also relevant to the households’ decisions on residential 

locations, e.g., land price, dwellings availability, and quality of infra-structure.  

The features of such spatially explicit environments can be abstractly 

simulated or directly portrayed from real landscapes. The inclusion of detailed 

representations of the real word is facilitated by integrating geographical information 

systems (GIS) into the model (Castle and Crooks 2006; Crooks 2006; Gilbert 2008; 

Parker 2005). A GIS is a computational system that is designed to assemble, store, 

update, analyze, and display geographically referenced data (Worboys and Duckham 

2004). It can contain multiple layers with different features and attributes about the real 

world, e.g., roads, buildings, and land use.  

Once the integration between GIS and ABM is established, the modeled 

environment may rely on detailed geographical data from a GIS, and possibly also write 

the output of its simulated dynamic into a format readable by GIS (Parker 2005). 

Although environments in ABM have been often represented as a two-dimensional grid, 

ABM integration with GIS has allowed the use of the so-called vector GIS, i.e., the use 

of polygons for representing the environment. For example, polygons could be used to 

represent a variety of land-parcel shapes and sizes in an urban environment (Crooks 

2006). The use of polygons to represent the environment introduces new operational 
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challenges to the model, which can be related, for instance, with the definition of 

neighborhoods or the agent’s capability to detect environmental features. Nevertheless, 

these challenges can also create opportunities, e.g., the ability to include topological 

relations such as adjacency or intersection (Crooks 2006).  

 
3.3.3 Interactions 

Interactions represent the main feature that distinguishes ABM from other simulation 

approaches, like microsimulation and system dynamics. The agents’ potential to locally 

interact with each other and their environment is the key to the simulation of the 

emergent properties of complex systems (Axelrod 2003; Holland 1998). For this reason, 

all ABM include some sort of interaction that involves transmission of knowledge or 

materials that can affect the behavior of the recipients (Gilbert 2004). The nature and 

sophistication level of these interactions may vary substantially depending on the roles 

assumed by the agents in a simulated system. In some cases, agents interact by simply 

perceiving the presence of their pairs in the surroundings, while other situations demand 

interactions based on the development and use of complicated communication means 

(Gilbert 2008; Zambonelli et al. 2001). In general, ABM can present direct agent-agent 

interactions, indirect agent-agent interactions, and agent-environment interactions. 

Interactions between agents (agent-agent) usually have an ontological 

correspondence to social relations that take place in the real world (Gilbert 2004). As in 

the real world, these interactions can be direct or indirect.  Agents can directly interact 

with each other by giving and receiving resources (e.g., money or food), or by 

exchanging information through messages. In the latter case, the communication 

between agents can demand the specification of a ‘language’ (Gilbert and Troitzsch; 

Gilbert 2008). In these situations, the agent’s interaction can go beyond the clear and 

direct agent-to-agent message exchange and include some ambiguity in the 

communication. This ambiguity allows, for instance, the simulation of agents 

misunderstanding received messages and transmitting them in a different manner. Such 

problem has been particularly explored in studies dealing with the evolution of language 

(Gilbert 2008; Smith et al. 2003; Steels 1997).  Agents can indirectly interact with 

others by observing them, copying their behavior, or even avoiding them (Gilbert 2008).  

In a segregation model, for instance, households can have indirect interactions by 
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detecting the status of households that live in a specific neighborhood, or by trying to 

imitate the residential standards of households with similar or higher status.  

In general, agent-agent interactions can also be defined as cooperative or 

competitive. They are cooperative when agents exchange knowledge to coordinate 

activities, improve their collective performance, and accomplish their goals as a team 

(Jennings et al. 1998; Zambonelli et al. 2001). On the other hand, competitive 

interactions occur when agents are self-interested and try to maximize their individual 

benefit, often at the expense of others (Jennings et al. 1998; Zambonelli et al. 2001). 

Interactions between agents in a segregation model occur on competitive bases, since 

the macro-patterns of segregation can be seen as the outcome of a continuous contest for 

the most convenient residential locations in the city (Feitosa et al. 2008; Villaça 1998).  

Interactions between agents and their environment also play a vital role in 

multi-agent models. As Russell and Norvig (2003) state, agents are constantly being 

influenced by the environment through their sensors and are influencing it through their 

effectors. These agent-environment interactions are often used to mediate indirect 

interactions between agents, since agents are able to detect the impacts of another 

agent’s action on their shared environment and act in response to it (Gilbert 2008; Le 

2005). This can be illustrated with another example pertinent to the dynamics of 

segregation: Poor households can decide to move to another location as a response to 

the increase in prices promoted by the presence of many new affluent households in 

their neighborhood. 

Agents’ interactions involving the environment are typically local, with agents 

having only a limited sphere of influence through which they can sense and alter the 

environment (Jennings and Wooldridge 2000). Nevertheless, this is not necessarily true 

for all applications. For instance, an agent that interacts with the environment by 

changing its residential location can have a higher propensity to move to a closer 

neighborhood, but it should also be able to evaluate the possibility of living in further 

places. In real life, people can acquire some knowledge about many neighborhoods that 

are not necessarily close to their own. This knowledge can be gained through their 

personal contacts, media, or simply circulating in the city.  
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3.4 Agent architectures 

An agent architecture can be defined as a “structural model of the components that 

constitute an agent as well as the interconnections of these components together with a 

computational model that implements the basic capabilities of the agent” (Lind 2001: 

184). There are many different approaches of agent architectures. Each of them has its 

own merits depending on the tasks that agents have to perform and how they should 

interact with other agents and the environment. In essence, they represent distinct 

approaches to design how agents perceive other agents and their environment 

(perception), store and retrieve these perceptions (memory), evaluate the circumstances 

and decide what to do (policy), and finally perform the action considered the most 

appropriate and viable (performance).  

Russell and Norvig (2003) propose the following classification of agent 

architectures: simple reflex, model-based reflex, goal-based, utility-based and learning 

agents. Simple and model-based reflex agents simply act as a response to a stimulus and 

do not have a reasoning model. Their functioning relies on production-rule systems, 

which basically consist of a set of rules about behavior, called productions (Luger 2005; 

Nilsson 1998; Russel and Norvig 2003). These rules present a conditional (IF) and 

action component (THEN), i.e., if the current situation matches the condition 

established by a certain rule then the agent performs the action related to the same rule. 

A production system also contains a working memory, which is a database that stores 

the agent’s current state, and a rule interpreter. The rule interpreter is a program that 

selects the productions that should be executed (Gilbert 2008; Klahr et al. 1987). The 

difference between simple and model-based reflex agent types consists in how agents 

define and interpret the current situation. While simple reflex agents define the current 

situation only by their perceptions at the moment, model-based agents define it also by 

an internal state stored in the agent memory. This internal state contains a representation 

of the environment, a ‘world view’ model, which estimates how the environment 

evolves and how the agent’s actions can affect it. Due to this mechanism, agents have 

knowledge about the part of their environment that they cannot currently perceive.  

Goal-based agents have goal information describing desirable situations. 

Unlike reflex agents, who react immediately to stimuli, goal-based agents have a 

symbolic reasoning model. They are able to take future events into consideration and 
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‘plan’ a sequence of actions to reach their goal. For that, condition-action rules are 

replaced by a goal-seeking framework. Artificial intelligence techniques involving 

search and planning provide solutions to finding the action sequences of goal-based 

agents (Luger 2005; Nilsson 1998; Poole et al. 1998; Russel and Norvig 2003).  

Utility-based agents are similar to goal-based agents, but the goals are not so 

clear and only differentiate ‘desirable’ from ‘non-desirable’ states. This type of agents 

has a utility function that weights the importance of different goals, and provides a 

‘performance measure’ that allows the comparison of different states. It is a function 

that maps a state to a measure that quantifies the associated degree of the agent’s 

happiness (Russel and Norvig 2003). Unlike goal-based agents, utility-based agents do 

not choose an action that achieves a goal, but an action that increases their utility or 

happiness. In case of conflicting goals, e.g., high quality and low price, the utility 

function determines the suitable trade-off (Russel and Norvig 2003).  

Learning agents represent the most sophisticated type of agent. They act 

independently, learning and adapting to changing circumstances. Learning agents are 

able to analyze themselves in terms of behavior, error and success. Based on their past 

critical analyses, they are able to learn which perceptions of the environment are 

desirable, and how to behave in order to improve their future performance. An 

advantage of learning agents is their capacity to operate in unknown environments and 

become more competent with time (Russel and Norvig 2003). Different techniques can 

be used to design learning agents, including genetic algorithms (Gilbert and Troitzsch 

1999; Holland 1975; Mitchell 1996) and neural networks (Bar-Yam 1997; Gilbert and 

Troitzsch 1999; Gilbert 2008).  

Simple and model-based reflex agents can be categorized as reactive, i.e., they 

choose their actions immediately by following rules that address a specific situation 

(Wooldridge and Jennings 1995). This type of agent does not use complex symbolic 

reasoning and is only sufficient for limited environments, where the possible situations 

can be covered by the production rules. On the other hand, goal-based, utility-based, 

and learning agents are called deliberative, since they have a central reasoning system 

that constitutes their ‘intelligence’ and are able to carry out intentional plans to 

accomplish their goals (Ginsberg 1989; Wooldridge and Jennings 1995). It is also 

possible to design hybrid agents, which use reactive and deliberative approaches to 
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obtain the best properties of each. Hybrid agents can respond quickly to simple and 

well-known situations, and also have the ability to make plans and evaluate unforeseen 

situations during their decision-making process (Wooldridge and Jennings 1995). For 

instance, an agent’s behavior can be guided by simple rules while selecting a subset of 

alternatives from the all the possible ones and then rely on utility functions to choose 

the most appropriate from this subset. 

 

3.5 Methodological protocol for developing ABM simulations 

The increasing use of ABM for studying complex problems has established some 

pragmatic steps, or a sort of ‘protocol’, for developing an agent-based simulation 

(Dooley 2002; Gilbert and Troitzsch 1999; Gilbert 2004,2008; Le 2005; Richiardi et al. 

2006). This protocol relies on the basic ideas of the ‘logic of simulation as a method’ 

(Gilbert and Troitzsch 1999) and commonly consists of the following steps: (1) problem 

analysis and objective formulation, (2) conceptual modeling, (3) theoretical 

specification, (4) programming, (5) verification, (6) validation, (7) analyses of simulated 

results, and (8) documentation of scientific findings. These methodological steps served 

as basis for the simulation model in this study and are presented in the following. 

However, it is important to emphasize that these steps are introduced in a idealized 

consecutive order, while in practice most of them are iterative and may take place 

sequentially or in parallel (Gilbert 2008). 

 

3.5.1 Problem analysis and objective formulation 

Like in any research process, modelers should start by analyzing the problem of interest 

and specifying a question that represents the objective of the research. This main 

question should be able to generate some specific objectives or research questions, 

where the level of detail can be associated with the main elements of the model (Gilbert 

2004).  Usually, this stage involves observations and a review of existent theories about 

the target system, which helps the modeler to articulate his/her beliefs about the actual 

system’s behavior, identify factors that seem to be relevant to the problem, and specify 

the assumptions on which the model will be developed (Gilbert 2004; Troitzsch 2004).  
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3.5.2 Conceptual modelling and theoretical specification 

After establishing the research objectives and assumptions that will guide the model-

building process, the specifics of the model should start to be conceptualized. Since any 

model is a simplified representation of the real world, it is necessary to determine the 

level of detail that will be considered and, therefore, the type of model that is going to 

be built (abstract, middle-range, or facsimile). Based on that, this is the moment to 

define how this real-world system, with its actors, relations, and environment, will be 

translated into abstract components of a computational model.  

The conceptual model provides a general view of agents, environment, 

interactions and, if pertinent, external factors that may influence the modeled system. 

Real-world actors, e.g., people and institutions, will be represented as agents with a set 

of attributes. These attributes can be dynamic and represent the state of agents, or can 

simply consist of static properties that differentiate one agent from the others (Gilbert 

2004). Key aspects about the environment that will support the agents’ actions also need 

to be defined, including what they represent (e.g., geographical space or networks), their 

relevance in the model, and whether they will be modeled as another type of agent with 

its own attributes and dynamics or not. The conceptual model includes also the linkages 

between different agents and the environment, and may contain external factors, e.g., 

public policies, which influence the modeled system although their dynamics are not 

being simulated. 

After the definition of the conceptual model, it is time to conduct the 

theoretical specification of its components. The theoretical specification consists of 

building the model’s architecture, including details about the modules that comprise the 

whole system, the linkages, and algorithms (Le 2005; Le et al. 2008). A very important 

part of this stage is the definition of an approach for designing the agents, i.e., the 

agent’s architecture. There are many types of agent’s architectures, and their suitability 

varies according to the goals of the simulations (section 3.4). The theoretical 

specification provides the guidelines for the model implementation and, in case of 

empirically-based models, also guides the data collection and the methods for empirical 

estimation of the simulation parameters (e.g., statistical models, descriptive statistics, 

and spatial analyses). For models based on empirical data, the theoretical specification, 

data collection and parameterization are conducted in a very iterative manner. For 
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instance, the lack of certain types of data may demand changes in the parameterization 

and theoretical specification. Another example is the case when the empirical 

parameterization reveals unexpected aspects that are relevant for the behavior of the 

target system, and motivates a review of the theoretical specification. 

 

3.5.3 Programming 

Once the model has been specified, these specifications are converted into an executable 

computer program. The program can be written from scratch, with an object-oriented 

programming language, although it is usually easier to use one of the available ABM 

simulation platforms (Gilbert 2008). In general, these platforms provide simulation 

frameworks that benefit the development of agent-based applications in many aspects. 

One clear benefit provided by any ABM platform is the fact that they relieve researchers 

from programming the parts of simulation that are not content-specific, e.g., basic 

algorithms and graphic libraries (Gilbert and Bankes 2002; Tobias and Hofman 2004). 

In addition, they improve the reliability and efficiency of the simulations, since many 

parts of the program have been developed by professional developers (Tobias and 

Hofman 2004).   

There are different types of platforms to support ABM simulations. Some are 

libraries of standardized routines that researchers can include in their simulation 

programs, while others are complete modeling environments with their own 

programming language. Commonly used ABM platforms include NetLogo (Wilensky 

1999), Repast (North 2006), MASON (Luke et al. 2005) and Swarm (Minar et al. 1996). 

There is no ‘ideal’ platform, and the choice of one of them should consider the user’s 

expertise in programming, the purposes of the study, and the expected complexity of the 

model (Gilbert 2008). Many researchers have provided reviews of and comparisons 

between some platforms, including Gilbert and Bankes (2002), Serenko and Detlor 

(2002), Tobias and Hofman (2004), Castle and Crooks (2006), Railsback et al. (2006), 

and Gilbert (2008). 

This research adopted NetLogo, a multi-agent programming language and 

modeling environment developed at the Center for Connected Learning and Computer-

Based Modeling (CLL). As a multi-agent programming language, NetLogo supports 

agents called turtles that are able to move on a grid of patches. Turtles and patches can 
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interact with each other and perform multiple tasks concurrently (Tisue and Wilensky 

2004). Thus, NetLogo is suitable for simulating complex phenomena evolving over 

time, allowing modelers to give instructions to many independent agents and explore 

the emergence of global patterns from the local interactions between these agents and 

their environment. 

NetLogo provides an entry-level programming interface that reduces 

programming efforts, but it is still powerful enough for sophisticated modeling and 

allows experienced programmers to add their own Java extensions (Railsback et al. 

2006; Sklar 2007). In addition, NetLogo provides a built-in graphical interface, an 

extensive and comprehensive documentation, and has an active user community that 

answers user’s questions very efficiently (Gilbert 2008; Railsback et al. 2006). As a 

result, NetLogo currently stands out as the most popular agent-based modeling 

environment, being used across a wide range of disciplines and educational levels 

(Gilbert 2008; Sklar 2007). 

 

3.5.4 Verification 

The process of developing an operational simulation model includes its verification, 

which consists of checking if the program executes exactly what is stated in its 

theoretical specification. The verification or ‘debugging’ is particularly difficult to 

execute in simulations of complex systems, since the outcomes can be unexpected and it 

is often unclear whether they emerged from the agents’ features and interactions, or 

from some unknown bug (Gilbert and Terna 1999). In addition, simulations are often 

stochastic, with a random component that simulates the effects of uncertainty, and 

repeated runs can generate different outcomes (Gilbert and Troitzsch 1999).  

There are many techniques and good practices that assist the reduction of bugs 

(Gilbert 2008; Schut 2007), including: (a) writing elegant codes, (b) recording many 

intermediate outputs and checking the simulation step by step (e.g., comparing them 

with calculations done in a spreadsheet), (c) testing the model with parameter values 

from known scenarios, and (d) testing the model with extreme parameters to see 

whether outputs are reasonable. Additional verification techniques can be found in 

Gilbert (2008), Schut (2007), and Wooldridge (1997). The use of platforms like 

NetLogo is also useful during the verification process, as these offer run-time testing 
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and debugging environment. In addition, NetLogo’s simple programming language can 

be more easily reviewed.  Nevertheless, it is always important to keep in mind that no 

simulation is totally free of bugs (Gilbert 2008) and, therefore, verification is a time-

consuming stage that must be always carefully conducted.  

 

3.5.5 Validation and analyses of results 

After checking whether the simulation program is working according to its 

specification, it is important to validate the model. Validation is the process of ensuring 

whether the simulation output is a suitable representation of the real target system 

(Gilbert and Troitzsch 1999; Gilbert 2008). There are many challenges involving the 

validation of social systems, a fact that often encourages criticisms of using multi-agent 

models in social sciences. An important challenge is related to the difficulties in 

acquiring suitable data for systematic validation (Troitzsch 2004). In addition, different 

types of simulation models can be developed for many purposes (section 3.2.1), 

including quantitative and qualitative predictions, and this implies different criteria for 

validation (Gilbert 2008).   

Abstract models, for instance, should be seen as part of the process of theory 

development and thus, their validation needs to consider whether: (a) the model 

produces expected and interpretable macro-patterns, (b) the agent’s behavioral rules that 

generates these macro-patterns are plausible, and (c) the model is able to generate 

further theories (Gilbert 2008). For other models, which also focus on qualitative 

prediction but are more closely related to a specific social phenomenon, the validation 

should consider whether the dynamics of the model are similar to the ones observed in 

the real world (Gilbert 2008). This is the case of middle-range models and facsimile 

models for qualitative prediction, where comparisons of real and simulated outputs can 

rely on ‘statistical signatures’ (Gilbert 2008; Moss 2008) or methods of pattern 

recognition (Bishop 1995; Yilmaz 2006). Finally, there are facsimile models for 

quantitative prediction, which use validation techniques to assure that the model 

reproduces the state of a particular target system as exactly as possible (Gilbert 2008).  

According to Gilbert (2008), models can be validated in terms of the fit 

between a theory and the corresponding model for that theory, and in terms of the fit 

between the simulated outputs and the real target system that the model aims to 
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simulate. The first type of validation can be conducted through sensitivity analysis, 

while the latter type demands comparisons of the model with empirical data (Gilbert 

2008).  

Sensitivity analysis is a careful investigation of how the simulated outputs vary 

when one or more of the model’s factors are modified. The term factor refers to a 

parameter, input variable, or module of a simulation model (Kleijnen 1995,1999). 

Different factor settings can correspond to different assumptions about the relationship 

between these factors and the target system. Considering Schelling’s model of 

segregation (1971), for instance, a sensitivity analysis can be conducted to investigate 

how changes in the households’ preferences affect global patterns of segregation.  

Sensitivity analysis requires many simulation runs, with factors changing from 

run to run. Since models often have many factors, sensitivity analysis including all 

conceivable combinations of factors would demand an enormous number of runs 

(Gilbert 2008).  For this reason, a central problem of sensitivity analysis is how to select 

a sub-set of factor combinations from all the possible ones. Possible approaches for that 

include the use of prior knowledge to restrict the range of factors, and different 

techniques for sampling the factors’ space (Gilbert 2008).  

For those models that are expected to match real-world states, comparisons 

with empirical data are necessary. These comparisons can analyze the agreement 

between reality and the model’s outputs in qualitative or quantitative terms, depending 

on the type of model and purpose of the simulation. Thomsen et al. (1999) propose a 

trajectory of successive validation levels for simulation models based on empirical data 

and which purpose is to be used prescriptively. The lowest level of this trajectory uses 

exploratory techniques for validations, including sensitivity analysis, and techniques for 

checking how well the simulation system can capture and simulate important features of 

the target system. The highest level concerns the validation of reasoning, representation 

and usefulness. It verifies how the simulation works in replicating, predicting, and 

changing the performance of a real system (Thomsen et al. 1999). Four types of 

experiments comprise this part of the validation trajectory proposed by Thomsen and his 

colleagues: retrospective, gedanken, natural history, and prospective experiments with 

interventions.  
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Retrospective experiments aim to replicate past states of the target system based on 

retrospective data (Thomsen et al. 1999). They calibrate the model by fine-tuning its 

parameters in a way that reproduces a state of the system that is known (past or present). 

To increase the confidence in the model, one can compare the simulation outputs with 

data about a different known state of the system that was not used in the model’s 

calibration (Fagiolo et al. 2006). In this case, the quality of the model’s outputs is 

assessed through qualitative or quantitative comparison of simulated results with 

empirical data. For qualitative comparisons the experiment can rely, for instance, on 

distribution plots of certain attributes of the agent’s population. Considering the case of 

segregation simulations, plots and maps of segregation indices can be prepared for both 

simulated and empirical data, and be visually compared. For quantitative comparisons, a 

mathematical statistics approach can be used for validation. During this process, it is 

important to keep in mind that data deriving from simulations are time series, and 

therefore, autocorrelated. Thus, statistical procedures for time-series data should be 

considered. Many authors have presented specific techniques for comparing 

distributions and time-series data, including Law and Kelton (2000) and Kleijnen 

(1999).  

Based on the retrospective validation, gedanken experiments can be conducted 

to answer ‘what-if’ questions. Specific parameter combinations and conditions are set to 

simulate hypothetical scenarios (what-if), and the outputs are compared with the results 

expected from theories and/or expert opinions. As in the retrospective experiments, the 

comparison of results can be quantitative or qualitative, although the latter is much more 

likely in this case, since theories and expert opinions are often expressed in terms of 

trends instead of precise values. 

Both retrospective and gedanken experiments demonstrate the representational 

validity of the model, i.e., its ability to simulate salient features of a target system. In 

addition, they can provide insights about the cause-and-effect relationship between 

different parameter combinations and the macro-behavior of the system (Thomsen et al. 

1999). The remaining types of experiments suggested by Thomsen and his colleagues, 

i.e., natural history and prospective experiments, test the suitability of the model for 

supporting decision making. Therefore, while retrospective and gedanken experiments 

are related to past or present states of the target system, the focus of natural history and 
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prospective experiments switches to future states. Natural-history experiments simulate 

the future state of a system by keeping the model’s factors as they are expected to be in 

the next years. Prospective intervention experiments attempt to predict alternative 

futures, i.e., how alternative policies and interventions could influence future states of 

the target system.  

The four experiments described above still reflect a very traditional view of 

modeling, which attempts to get the present right and then conduct further simulations 

to predict the future. Thus, this procedure should be considered with reservations when 

simulating complex systems. Given the challenges imposed by this type of system to 

reach quantitative predictions, it is important to keep in mind that simulation 

experiments should be less focused on accurate forecasting, and more oriented towards 

understanding and structuring debate (Batty and Torrens 2005). The results of 

simulation runs are more useful when considered in terms of how the different factors of 

the model (parameters, variables, and module structure) are related, and how they 

contribute to changes in the behavior of the target system. Such results, usually 

presented as graphs and statistics, should return to the initial research questions and 

theories considered for the work. By improving the understanding about the target 

system, analysis of the simulation results can often provide insights about the 

implications of current and alternative polices. 
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4 MASUS: A MULTI-AGENT SIMULATOR FOR URBAN 

SEGREGATION 

 

Studies focusing on urban segregation have been challenged by the complex features of 

the phenomenon, which include emergence, self-organization, and non-linearity 

(Chapter 3). Regarding this problem, this chapter introduces the framework of a multi-

agent simulator for urban segregation, called MASUS, which represents the complexity 

of segregation dynamics and supports further understanding and debate on issues related 

to the phenomenon. The chapter is subdivided in four main sections. The first presents 

an overview of the methodological steps for developing the operational MASUS. The 

second introduces one of these modeling steps, the MASUS conceptual framework. 

Based on this framework, the third section presents specifications of the MASUS 

architecture, including its modules and algorithms. Finally, the forth section focuses on 

the model’s implementation level by introducing the MASUS simulation protocol. 

 

4.1 Overview of methodological steps 

Based on the methodological protocol for MAS simulations (section 3.5), the process 

for developing the operational MASUS comprises 10 steps (Figure 4.1):  

1. Problem analysis and objective formulation (Chapter 1), which follows the 

theoretical background presented in Chapter 2 and 3. 

2. Conceptual model framework (section 4.2), which relies on the theoretical and 

methodological background presented in Chapter 2 and 3. 

3. Theoretical specification (section 4.3). 

4. Data collection (Chapter 5), which was conducted in the city of São José dos 

Campos to serve as basis for the empirical parameterization and simulation 

experiments using the MASUS model. The data include information about 

household composition and mobility behavior, as well as characteristics of the 

different neighborhoods in the city. Since the data availability influences the 

feasibility of the theoretical specification, steps 3 and 4 took place in a very 

iterative manner.  

5. Empirical parameterization (Chapter 5), which comprises statistical models 

that describe the residential mobility of households (agent interaction) and 
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dynamics of the urban landscape (environment), including urban sprawl and 

land market. Since the empirical parameterization often reveals new aspects 

about the dynamic of the target system, e.g., the relevance of certain 

environmental characteristics on the behavior of households, it may motivate a 

review on the theoretical specification of the model. 

 

1. Problem analysis and 
research questions

2. Conceptual model framework

3. Theoretical specification 4. Data collection

5. Empirical parameterization

6. Programming in NetLogo

7. Verification

10. Analyses of simulated results

Documentation of 
scientific findings

Next version of 
MASUS

Are the empirical results consistent 
with the theoretical specification ?  

Is the program executing what is 
stated in the theoretical specification ?  

8. Simulation 
experiments

9. Validation

Are the simulation outputs appropriate 
to represent the real target system?  

Y

NN

N

N

N

Y

Y

 

Figure 4.1 Methodological steps for developing the operational MASUS. 
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6. Programming in NetLogo (section 6.1), which converts the theoretical 

specification into an executable MASUS model using the platform NetLogo 

(Wilensky 1999).  

7. Verification, which occurs iteratively with step 6 and consists of checking 

whether the program really executes what is theoretically specified. 

8. Simulation experiments (section 6.2), which uses real data to set the initial 

conditions, and the results from the empirical parameterization are adopted as 

the basis to set the parameter values. 

9. Validation (section 6.2), which is performed through experiments that aim at 

checking whether the simulated outputs are a good representation of the real 

target system. The validation may include comparisons with empirical data 

and sensitivity analysis (section 3.5.5). It is not a deterministic process, 

especially when dealing with complex systems, but it is an important step for 

defining the confidence level that one should place in the simulation outputs. 

10. Analyses of simulated results (section 6.2).    

 

4.2 Conceptual MASUS framework for modeling urban segregation 

By nature, urban segregation is an emergent system. Its macro-structure arises from the 

residential choices of many households at the micro-level. For this reason, 

understanding the factors that influence the residential mobility of households is a key 

issue in any segregation model that considers the complex nature of the phenomenon. 

The study of residential mobility has a long tradition. Economists, sociologists, 

geographers, and psychologists have investigated several decision factors that 

potentially contribute to the locational behavior of households. These decision factors 

can be generally classified in four main types:  

1. Household attributes, such as size, number of children, income, tenure status 

(renter or owner), as well as the householder’s age, gender, education, and 

work status. These factors are related to demographic events that influence the 

households’ mobility, like leaving the parental housing, getting married, 

changing jobs or income, divorce, having children, death of a partner, etc. 

Cohort is also a factor that influences these demographic events, since 

attitudes towards marriage, career, and parenthood may change within a 
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generation (Dieleman 2001; Ettema et al. 2005; Magnusson 2006; Mulder and 

Hooimeijer 1999).  

2. Environment attributes, which include attributes related to different aspects 

and scales:  

2.1. Land and housing attributes, such as price (including taxes), size, type, tenure 

of dwelling (Clark and Davies Withers 1999; Magnusson 2006; Mulder and 

Hooimeijer 1999).  

2.2. Housing supply and density, which are attributes related to the demand for 

housing, land-use dynamics, and planning restrictions (Strassmann 2001). 

These attributes will adjust to reconcile consumer tastes with the existing 

housing stock at each point of time (McFadden 1977).  

2.3. Physical accessibility, which is important to determine the travel costs. It 

includes the transport network, as well as the housing location with respect to 

workplaces, commerce, and services (Clark and Davies Withers 1999; 

Dieleman 2001).  

2.4. Environment quality, which includes the availability of infrastructure, public 

services, green areas, etc. (Borgers and Timmermans 1993). 

3. Neighborhood population composition. In societies with a strong stratified 

structure, residential mobility is influenced by attributes that go beyond 

physical environment characteristics (Phe and Wakely 2000), e.g., the status 

attached to a place with a ‘desirable’ social composition of neighbors.  

4. External factors, which include demographic and economic changes, policies 

at different levels of governance, wealth level and distribution, and tenure 

structure (Dieleman 2001).  

 

The conceptual framework used as the basis for specifying the MASUS model 

includes the aforementioned aspects of residential mobility in three distinct components 

(Figure 4.2):  

1. Urban population system, which considers the household attributes and 

neighborhood population composition.   

2. Urban landscape system, which includes the environment attributes.  
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3. Experimental factors, which considers external factors. These factors are not 

simulated in the MASUS model, but their features can be considered and 

modified by the user during simulation experiments. 

 

 

Figure 4.2 The conceptual MASUS framework. 
 

4.2.1 Urban population system 

The urban population system is the targeted system of the MASUS model. It represents 

self-organized processes at both micro- and macro-levels. In general, the micro-level of 

a system regards heterogeneous elements interacting with each other and their 

environment. These interactions give rise to global properties at the macro-level of the 

system, which then feedback to its micro-level. Given the purpose of the MASUS 

model, the micro- and macro-levels of the urban population system focus on aspects 

considered relevant for the emergence of a specific global property of this system: the 

segregation by income.   

Based on the above, the heterogeneous elements of the micro-level of the 

urban population system are the residents of the city, represented by household agents. 

The household agents have their specific state and autonomy based on their decision-

making sub-model. The macro-level of the system represents the urban population in its 

totality, which is self-organized and has emerged from the activities of household agents 

over space and time. The urban population is characterized by non-spatial and spatial 



MASUS: a multi-agent simulator for urban segregation 

 64

components. The non-spatial component corresponds to the entire aggregation of 

household attributes, e.g., the income and education levels of the population as a whole. 

The spatial component corresponds to the residential location of households belonging 

to different social groups, i.e., the segregation patterns of the city. The measurement of 

these segregation patterns corresponds to the output of the MASUS model.  

By guiding the households’ residential mobility, the decision-making sub-

model of household agents represents the main ‘engine’ of the system. Once a 

household agent decides to act, i.e., to move to another residential location, it is 

contributing to a change in the spatial arrangement of social groups in the city and, 

therefore, to dynamics of segregation (macro-level of urban population system). In 

addition, the households’ decisions also influence certain features of the urban 

landscape system, like land value and residential offers.  

The decision-making sub-model of household agents includes a mechanism 

that considers, directly or indirectly, the decision factors mentioned in section 4.2: 

household attributes, environment attributes, neighborhood population composition, and 

external factors. The locational behavior of a household agent depends on its state, 

which comprises the household attributes and perceptions about the current and 

alternative residential locations (Figure 4.2). These perceptions regard the environment 

attributes and neighborhood population composition of these locations: The first is 

related to the urban landscape system, while the latter is related to the urban population 

system itself (macro-level feedback to the micro-level). This means that households’ 

decisions not only influence the urban landscape and the macro-level of the urban 

population system, but they are also influenced by these factors. The external factors are 

categorized in the MASUS framework as experimental factors that are able to influence 

the urban population or the urban landscape system and, therefore, also affect 

households’ decisions in an indirect manner.   

 

4.2.2 Urban landscape system 

The urban landscape system represents the environment where household agents are 

situated and act. It also provides a spatially explicit context for their decisions about 

whether to move or not. Given the relevance of the urban landscape for the households’ 
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decisions, it is conceptualized as a grid of patches or cells, which are simplified agents 

with their own state and transitional dynamics.  

The landscape-patch state is described by a list of spatial variables that are 

relevant for the households’ residential choice, e.g., land value, quality of infrastructure, 

accessibility, and dwelling offers. The dynamics of landscape attributes occur in parallel 

with the residential mobility of households. In addition, the set of rules and sub-models 

driving these dynamics is diversified and must follow a multiple time-scale approach. 

For instance, the number of dwellings offered in a landscape patch changes according to 

different processes: (a) a deterministic rule that is applied continuously as households 

move in or out, and (b) a stochastic sub-model that is applied at the end of each 

simulation cycle, which simulates the increase in the total number of dwellings due to 

new developments or the decrease due to the expansion of non-residential land uses. 

There are also landscape dynamics that operate in a larger time scale, such as 

accessibility to roads. For simplification purposes, attributes that follow in this category 

are considered static in the MASUS model or have its features updated by the user 

during the simulation.      

 

4.2.3 Experimental factors 

The experimental factors represent exogenous parameters and input data that can be 

modified by the user to test theories or policy approaches regarding segregation. Studies 

focusing on the causes of segregation have emphasized the role of different and 

complementary mechanisms, including personal preferences, labor market, land and real 

estate markets, and the controlling power of the state (section 2.4).  

The personal preferences are represented as the experimental factor household 

preferences (Figure 4.2). Their influence on urban segregation can be explored through 

changes in the parameters of the decision-making sub-model of household agents. For 

example, the effect of the households’ preferences for living in neighborhoods with a 

high proportion of families belonging to the same social group can be explored by 

changing the weight of this variable in their decision-making mechanism.    

The experimental factor socio-demographic aspects can indirectly represent 

the effects of the labor market by allowing experiments with different population 

income levels (average and distribution). This type of experiment can be conducted to 
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test hypotheses relating income inequality and segregation patterns, an issue that causes 

controversy in scientific debates about segregation (Sabatini 2006). Socio-demographic 

aspects resulting from general population dynamics, e.g., growth (including migration 

and natural growth) and aging, are also considered in the model.  

Experiments involving the dynamics of land and real estate markets and the 

controlling power of the state can be conducted through the factor urban policies. The 

expected results of a variety of regulations for land and real estate markets can be 

considered in the model to simulate their impacts on the segregation patterns of the city. 

It is possible to include the results of policies to stimulate the diversification of land 

uses, control land speculation, regularize clandestine settlements, provide equal access 

to basic infrastructure, and stimulate the construction of developments for middle and 

upper classes in poor neighborhoods. Social-mix policies that have been adopted in 

developed countries for mitigating segregation can also be explored, e.g., policies 

focusing on the spatial dispersion of poverty or the requirement of mixed occupancy as 

a prerequisite for approving new developments.  

 

4.3 Theoretical specification of MASUS architecture 

Based on the MASUS conceptual framework, this section provides the specification of 

the model’s architecture by representing its elements, internal structure, and 

interrelations.  For each component of the conceptual framework, one module is 

specified in detail:  

1. The URBAN-POPULATION module represents the conceptual system of 

urban population (target system). 

2. The URBAN-LANDSCAPE module represents the conceptual system of 

urban landscape (environment). 

3. EXPERIMENTAL-FACTOR module represents external factors that may 

influence urban segregation.      

 

4.3.1 URBAN-POPULATION module 

The URBAN-POPULATION module is the most important module of the MASUS 

framework. As the name suggests, it represents the system of urban population and its 

dynamics.  The module is organized in three interrelated levels: household agent 
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(HouseholdAgent), household social group (HouseholdGroup), and population 

(Population) (Figure 4.3).  

 

 
 
Figure 4.3 Architecture of the URBAN-POPULATION module.  
 

Structure of the household agent (HouseholdAgent) 

The household agent (named HouseholdAgent) represents one or more persons living in 

a residence. It is the minimal unit of the system of urban population, since household 

members are not represented. The HouseholdAgent structure can be formally expressed 

as:  

 

HouseholdAgent = {Hprofile, Hperception, H-TRANSITION, DECISION}           (4.1) 

 

Where: Hprofile is the agent profile; Hperception is the agent’s perception about some 

residential locations in the city, including its own; H-TRANSITION is the 

household transition sub-model that guides some of the dynamics inherent to 

the agent’s profile (e.g., aging of the head of household); and DECISION is 

the decision-making sub-model that rules the behavior of the household 
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regarding its residential mobility. The components Hprofile and Hperception 

constitute the state of the household agent, while the H-TRANSITION and 

DECISION are internal models of the household agent.  

 

Agent profile (Hprofile) 

The agent profile (Hprofile) includes household variables that are relevant to their 

locational behavior. The relevance of these variables varies according to the empirical 

context that is being considered and, therefore, their selection should take into 

consideration the results of statistical analysis about residential mobility in the study 

area. In the current specification of MASUS, the Hprofile is expressed as follows:  

 

Hprofile = { Hid, Hinc, Hedu, Hage, Hgroup, Hsize, Hkids, Htenure, Hlocation }               (4.2) 

 

Where:  Hid is the identification code; Hinc, Hedu, and Hage are head of household’s 

variables that indicate income, education, and age, respectively; Hgroup is the 

identification of the household’s social group, which is defined by the income 

(Hinc); Hsize is the household’s size; and Hkids is a binary variable to indicate the 

presence of children; Htenure is the tenure status (renter or owner); and the 

variable Hlocation indicates the place where the household is located. 

 

With the exception of Hid, all the variables of the agent profile are dynamic. 

The dynamics of the variables Hinc, Hedu, Hage, Hgroup, Hsize, Hkids, and Htenure are ruled by 

the household transition sub-model (H-TRANSITION) and the population transition 

sub-model (P-TRANSITION). The sub-model DECISION drives the household’s 

residential mobility and, therefore, the dynamics of their residential location (Hlocation) 

and tenure status (Htenure).  

 

Household transition sub-model (H-TRANSITION)  

The household transition sub-model (H-TRANSITION) is an internal model of the 

household agent that represents natural dynamics of its profile, such as aging of the 

head of household. It consists of a set of rule-based functions:  
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                  H-TRANSITION = { FH-age , FH-inc+, FH-inc-, FH-kids, FH-dissolve }              (4.3) 

 

Where:  FH-age, FH-inc+, FH-inc-, and FH-kids are functions performing dynamics of the 

household’s variables Hage, Hinc, and Hkids. Indirectly, these functions can also 

change the values of the variables Hgroup (by changing the variable Hinc,) and 

Hsize (by changing the variable Hkids). FH-dissolve is a function that ‘dissolves’ the 

household agent and allows to represent, for instance, households moving to 

another city.   

 

The function FH-age adds 1 year to the age of the household head after each 

time step. It is represented as follows:  
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The functions FH-inc+ and FH-inc- simulate social mobility by adding a 

probability of increasing or decreasing the household’s income, which is measured in 

minimum wages. They are expressed as:      
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Where:  q is a random number distributed evenly over [0,1]. inc and inc  are values 

within [0,1] representing the chance for a head of household to have its income 

increased/decreased by 1 minimum wage. Depending on the new value of Hinc, 

the household’s social group (Hgroup) may also change.  

 

The function FH- kids simulates changes in the household variable ‘presence of 

kids’ (Hkids). Households with 2 or more people, young head of household, and no 

children have a chance kids  to change their Hkids status. On the other hand, households 
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with children and a senior head of household have a chance kids to change their Hkids 

status, as these children are probably getting older and leaving the parental housing. The 

function FH- kids is formally expressed as:  
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Where:  q is a random number distributed evenly over [0,1]; m is the limit age for a 

head of household to be considered ‘young’; n is the minimal age for a head of 

household to be considered ‘senior’;  kids  and kids  are values within [0,1] 

representing the chance of a household of having its Hkids status modified to 1 

and 0, respectively. Once this modification occurs, the household size (Hsize) 

automatically changes. 

 

The function FH-dissolve ‘dissolves’ household agents that changed their 

characteristics due to demographic events that are not simulated by MASUS (e.g, 

divorce, death of a member, moving out of the city, etc.). To represent these cases, 

household agents have a chance 
dissolve  of being dissolved, and new agents are created 

by the population transition sub-model (P-TRANSITION). The FH-dissolve is formally 

expressed as: 
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Where: {Agent} is a set containing one household agent; q is a random number 

distributed evenly over [0,1]; 
dissolve  is a value within [0,1] representing the 

chance of a household agent of being dissolved. The value 
dissolve  can be 

multiplied by a factor α to increase/decrease the dissolution probability of 

certain groups of households. Households headed by older people, for 

example, have a higher chance of being subjected to structural changes, since 
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their heads are more likely to be replaced or, in the case of small households, 

to move to another place like a nursing home or a relative’s house. 

 

Decision-making sub-model (DECISION)  

The decision-making sub-model (DECISION) is an internal mechanism of the 

HouseholdAgent that guides the agent’s decision and action regarding its residential 

location. In this sub-model, the household chooses between alternatives like:  

1. Stay in current location;  

2. Move within the same neighborhood; 

3. Move to a neighborhood that is similar to the original one, e.g., from one poor 

irregular settlement to another (n locations are randomly selected); 

4. Move to a different type of neighborhood, e.g., from a socially diverse 

neighborhood to a gated settlement with a high concentration of affluent 

households (m locations are randomly selected).  

 

Residential locations are represented as landscape patches of 100 m × 100 m, 

while neighborhoods are represented as sets of landscape patches corresponding to 

census tracts. Neighborhoods are classified in four different types: (1) neighborhood 

with a high concentration of affluent households, (2) socially diverse neighborhood, (3) 

neighborhood with a high concentration of low-income households, and (4) a 

neighborhood type that is similar to (3), but covers clandestine settlements, like favelas 

and irregular periferias (section 2.2). More details about the classification of different 

types of neighborhoods are presented in section 5.2.2.  

The household agent’s decision-making sub-model executes the following 

main steps (see Figure 4.4): (1) select a set of residential alternatives, (2) compute the 

household’s perception of residential alternatives (Hperception), (3) compute the 

household’s probability to choose each alternative, (4) choose a residential alternative, 

(5) perform action (move or stay), and (6) update agent profile and urban landscape. 
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Figure 4.4 Main steps of the household agent’s decision-making sub-model 
(DECISION).  

 

In the first step, select a set of residential alternatives, the household agent 

chooses locations from a valid set, which excludes places without available dwellings. 

Because the model assumes that agents can evaluate the possibility of living in any 

neighborhood of the city, the selection imposes no restriction regarding the distance 

between the alternative and the household’s current location. This modeling decision 

takes into consideration the fact that real households can acquire knowledge about many 

neighborhoods – including some in further locations - through their social contacts or 

other information source (e.g., newspapers). Given a set of valid locations, the 

household agent h living in the location a neighborhood type µ (Lneigh= µ) selects a 

choice set that consists of (a) location a (not move), (b) location b within the same 

neighborhood, (c) n randomly selected locations in neighborhoods with Lneigh= µ (same 

type of neighborhood), and (d) m randomly selected locations in neighborhoods with 

Lneigh≠ µ (other type of neighborhood).  
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The second step, compute the household’s perception of residential alternatives 

(Hperception), consists of obtaining the household’s utility for each selected residential 

alternative j (Vh(j)). The function Vh(j) is a nested logit utility function that considers the 

household’s attributes (Hprofile), the environment attributes of alternative j (Lstate), and the 

neighborhood population composition of alternative j (Pseg). The utility function and its 

reference parameters are obtained from the estimation of a 3-level nested logit model 

(Greene 2000), which jointly models household’s mobility choice (first level: stay or 

move), neighborhood type choice (second level), and residential location choice (third 

level). More details about this nested logit model are provided in Chapter 5. Assuming 

that there is a structural difference in the way that households from different social 

groups evaluate residential locations, the utility function and its parameters are group 

specific and, therefore, provided by the level household social group 

(HouseholdGroup).  

After obtaining the utilities for all the selected alternatives (Hperception), it is 

possible to perform the third step, which consists of computing the household’s 

probability to choose each alternative (see Chapter 5). The fourth step of the household 

agent’s decision-making sub-model is to choose a residential alternative. For that, the 

sub-model generates a random number between 0 and 1, and compares it to the 

cumulative probabilities of each residential alternative. The chosen alternative is the one 

that has the cumulative probability interval which contains the random number (see 

Figure 4.4).  After that, the household agent performs the action that corresponds to the 

chosen alternative, i.e., changes or keeps the household location (Hlocation).  

Finally, in case the performed action involves moving to a new location, the 

last step of the DECISION sub-model is to update the agent profile and urban 

landscape state of its previous and new residential locations (patches). Once a 

household moves, it changes its location (Hlocation). The household may also change its 

tenure status (Htenure), considering that this type of change is usually related to 

residential mobility. The household location (Hlocation) corresponds to the identification 

of the patch where the household lives, and changes automatically as the agent move to 

a new location. The dynamics in the household’s tenure status are guided by the rule-

based function FH-tenure, which is only applied if 
location

t
location

t HH 1 . According to this 

function, renters have a probability 
owner  of moving to an owned dwelling (renters 
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becoming owners), and owners have a probability 
renter  of moving to a rented dwelling. 

The FH-tenure is formally expressed as:  
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Where:  q is a random number evenly distributed over [0,1], 
renter  and 

owner  are values 

within [0,1] representing the chance that a household becomes a renter or 

owner, respectively.  

 

A household that moves modifies not only its profile and the spatial 

arrangement of the population, both part of the system of human population, but also the 

dwelling offers in its previous and new residential locations (Loffers), which is an 

attribute of landscape patches (system of urban landscape). The function FL-offers 

simulates this change by adding 1 dwelling offer to the previous location and 

subtracting 1 dwelling offer to the new location. Formally, the FL-offers is expressed as: 
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Where:  Loffers is the number of offers in the landscape patch, Lid is the identification of 

the landscape patch, and Hlocation is the identification of the landscape patch 

where the household is located.  

 

Structure of the household social group (HouseholdGroup) 

The household social group (named HouseholdGroup) is a collection of household 

agents that belong to the same social group and adopt the same criteria to evaluate their 

residential alternatives. In the current MASUS version, social groups are defined by the 

income of the head of household. The formal expression of the HouseholdGroup is:  
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HouseholdGroup = {Gid, h
GV (j)}                                          (4.11) 

 

Where: Gid is the group identification that matches with the Hgroup stored in the 

household profile. h
GV (j) is the nested logit utility function for residential 

alternatives that represents the household group criteria for evaluating 

residential alternatives. The specification and estimated parameters of the 

nested logit utility function for each household social group are presented in 

Chapter 5.  

 

Structure of the population (Population) 

The Population class is the collection of all household agents and represents the macro-

level of the system of urban population. It is formally expressed as:  

 

Population = {Psoc, P-TRANSITION, Pseg}                                (4.12) 

 

Where: Psoc is the socio-demographic state of the population, including its size and the 

total population composition in terms of the variables that comprise the 

household’s profile. P-TRANSITION is the population transition sub-model 

responsible for keeping the socio-demographic state of the population 

according to expected levels provided by the user. Pseg is the segregation state 

of the population, which represents the spatial arrangement of household social 

groups. Psoc and Pseg are the non-spatial and spatial component of the 

population state, respectively.  

 

Socio-demographic state of the population (Psoc) 

The socio-demographic state of the population (Psoc) corresponds to the non-spatial 

characteristics of the population as a whole. It consists of the procedure Fpop-stat, which 

computes and plots basic statistics of the population evolving over time, including: (a) 

total number of households, (b) total number of households belonging to each social 

group, (c) average of monthly income, and (d) income distribution (Gini index and 

Lorenz curve).  
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Population transition sub-model (P-TRANSITION) 

Since demographic prediction is not among the purposes of the MASUS model, the size 

and the socio-demographic composition of the population regarding the variables that 

comprise the household’s profile (income, education, size, age, children, and tenure 

status) follow annual control values that are provided by the user. The population 

transition sub-model (P-TRANSITION) is responsible for creating households with 

profiles that meet the expected (user-specified) socio-demographic composition of the 

population as a whole. The P-TRANSITION consists of a set of procedures:  

 

P-TRANSITION = {Fcreate, FP-inc, FP-edu, FP-size, FP-age, FP-kids, FP-tenure}         (4.13) 

 

Where:  Fcreate, FP-inc, FP-edu, FP-size, FP-age, FP-kids, FP-tenure are functions controlling the 

total characteristics of the population in relation to size, income, education, 

household size, head of household age, presence of children, and tenure status.  

 

The Fcreate is a procedure that creates agents in order to achieve the number of 

households expected in the next year (t+1Ptotal ), which is equivalent to:  

 
t+1Ptotal =

 tPtotal + (tPtotal * αgrowth)                                            (4.14) 

 

Where: Ptotal is the total population, and αgrowth is the user-defined annual growth rate. 

The procedure Fcreate creates (t+1Ptotal - 
tPtotal) new household agents and locates 

them in a set M. These household agents belonging to the set M have their 

Hprofile defined by the functions FP-inc, FP-edu, FP-size, FP-age, FP-kids, FP-tenure, and 

choose their location according to their internal decision-making sub-model 

(DECISION).  

 

Since there is no information about the previous residential location of the new 

households, their DECISION sub-model does not include the residential options ‘stay in 

the current location’, ‘move within the same neighborhood’, or ‘move to a similar 

neighborhood’. Instead, n alternatives are randomly chosen in the city and evaluated 
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under the same conditions, i.e., following the group-specific criteria that match the 

group identification (Hgroup) of the new household agent.     

The FP-inc is a procedure that controls the income composition of the population as a 

whole. First, it computes the total population of each income group i (t+1Pinc(i)) 

according to user-defined group proportions (τinc(i)), and then stipulates the number of 

households that should be added to the group i (Pnew-inc(i)):  

 
t+1Pinc(i)=

 t+1Ptotal * τinc(i)                                                   (4.15) 

 

 Pnew-inc(i) =  t+1Pinc(i) - 
tPinc(i)                                                                      (4.16) 

 

Afterwards, the totals Pnew-inc(i)  are used to generate the Hinc of the household 

agents located in the set M. For instance, if the total Pnew-inc(i)  computed for the income 

group ‘10 to 20 minimum wages’ is equal to n, it means a Hinc between 10 and 20 

minimum wages will be addressed to n households selected from the set M. In case the 

value Pnew-inc(i) is higher than the number of households in set M, the sub-model will 

meet the total expected for the income group i by changing the Hinc of households that 

are already located in the city and belong to a similar income group. In case the value 

Pnew-inc(i) is negative, the sub-model selects |Pnew-inc(i)| households belonging to the 

income group i and changes their Hinc to values within the income interval of other 

groups. Since the household’s social group (Hgroup) is defined by the income, this 

variable is updated as soon as a new Hinc is attributed to the agent.  

Following the same logic of the FP-inc, the P-TRANSITION sub-model 

executes other procedures to control the population composition in relation to the 

variables education of the head of household (FP-edu ), household size (FP-size ), age of 

the head of household (FP-age ), presence of children (FP-kids ), and tenure status  

(FP-tenure ). All these procedures rely on annual distributions (or proportions) provided 

by the user. Because descriptive statistics based on empirical data demonstrated that the 

distribution of variables like education and household size varies according to income 

groups (e.g., low-income households usually have a lower education level and larger 

number of members), the user can provide differentiated proportion values for these 

variables per income group.  
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Segregation state of the population (Pseg) 

The segregation state of the population (Pseg) comprises segregation indices that are 

used to evaluate and analyze the simulation experiments. In Chapter 2, the importance 

of analyzing different dimensions and scales of segregation was enphasized. 

Considering that, the segregation state of the population is formally expressed as:  

 

Pseg = {     bwmmbwmm qQmdmDqQmdmD


,),(),(,,),(),( }              (4.17) 

 

Where: )(mD


 and )(md


 are the global and local version of the generalized spatial 

dissimilarity index, respectively, which measure the segregation dimension 

evenness/clustering (see Chapter 2); 
mQ
  and 

mq
  are the global and local 

version of the spatial isolation index, respectively, which measures the 

segregation dimension exposure/isolation; and bw=ψ and bw=χ  are the 

bandwidths of the moving windows used to compute the segregation indices in 

different scales.  

 

The global indices )(mD


  and 
mQ
  are displayed as values between 0 and 1, 

which summarize the segregation degree of the whole city. The local indices )(md


 and 

mq
   show how the different localities contribute to the global indices, and they can be 

presented as segregation maps (see section 2.5). 

 

4.3.2 URBAN-LANDSCAPE module 

The URBAN-LANDSCAPE module represents the urban landscape system 

(environment) and its dynamics (Figure 4.5). It plays an important role in the MASUS 

framework, since household agents are not only situated within the landscape, but also 

make decisions about it (where to live), based on the landscape’s characteristics and 

their personal profiles. 

The URBAN-LANDSCAPE module is organized in two interrelated levels: 

entire landscape (EntireLandscape), and landscape patch (LandscapePatch). The 

EntireLandscape represents the macro-level of the urban landscape system. It plays a 

limited role in the model, since the agent’s decisions do not consider this landscape 
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level. This is because agents can only access information about some landscape portions 

(patches). Nevertheless, the state of the entire landscape (ELstate) provides information 

for the computation of global variables (ELglobal) that are necessary for simulating the 

dynamics of some attributes of the landscape patches.  

 

         

Figure 4.5 Architecture of the URBAN-LANDSCAPE module.  
 

Structure of the landscape patch (LandscapePatch) 

The LandscapePatch represents the micro-level of the urban landscape system. It is a 

portion of the environment measuring 100 m by 100 m, which corresponds to the 

minimal unit of the urban landscape system. Its structure can be formally expressed as:  

 

LandscapePatch = {Lstate, U-SPRAWL, D-OFFER, L-VALUE, INFRA}         (4.18) 

 

Where: Lstate is the landscape-patch state; U-SPRAWL, D-OFFER, L-VALUE, and 

INFRA are sub-models for urban sprawl, dwelling offers, land value, and 

infrastructure, respectively.  
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Landscape-patch state (Lstate) 

The landscape-patch state includes environment variables that are relevant, directly or 

indirectly, to the locational behavior of households. For this reason, the selection of 

these variables depends on the results of statistical analysis about residential mobility in 

the study area. In the current specification of MASUS, the Lstate is formally expressed as:  

 

Lstate = { Lphysical, Laccess, Lzoning, Lmarket, LU-SPRAWL, LD-OFFER, LL-VALUE, LINFRA}      (4.19) 

 

Where:  Lphysical is a set of variables related to physical aspects of the landscape patch; 

Laccess is a set of variables related to the accessibility of the patch; Lzoning is a set 

of variables related to the zoning legislation; and Lmarket is a set of variables 

related to the real-estate market. LU-SPRAWL, LD-OFFER, LL-VALUE, and LINFRA are 

sets of variables that are exclusively relevant to the sub-models U-SPRAWL, 

D-OFFER, L-VALUE, and INFRA, respectively.  

 

The set Lphysical consists of the binary variable urban use (Lurban : 1=urban and 

0=not urban), terrain slope (Lslope), infrastructure (Linfra), and type of neighborhood 

(Lneigh). The dynamics of the variables Lurban and Linfra are ruled by the sub-models U-

SPRAWL and INFRA, respectively. The variable set Lphysical is formally expressed as:  

 

Lphysical = { Lurban, Lslope , Linfra, Lneigh }                                    (4.20) 

 

The set Laccess consists of the variables distance to the Central Business District 

(Ld-CBD) and distance to roads (Ld-roads):  

 

Laccess = { Ld-CBD, Ld-roads }                                           (4.21) 

 

The set Lzoning consists of the variable floor area ratio (LFAR), which is the limit 

imposed for the ratio between the total floor area of buildings and the size of the land, 

and the binary variables zone of residential use (Lres), zone of mixed use (Lmixed), central 

zone (Lcentral), zone of industrial transition (Lind-tran), zone of social interest (Lsocial, e.g., 

social housing projects), zone of non-residential use (Lnon-res). The variable zone of non-
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residential use includes areas that are either protected, for industrial use only, or for 

aero activities. The variable set Lzoning is formally represented as:  

 

Lzoning = { LFAR, Lres, Lmixed, Lcentral, Lind-tran, Lsocial, Lnon-res }                 (4.22) 

 

The set Lmarket consists of the variables land value (Lvalue), total number of 

dwellings (Ldwe) and dwelling offers (Ldwe-offer). The dynamics of these variables are 

guided by the sub-models L-VALUE and D-OFFER, respectively. The variable set 

Lmarket  is formally expressed as:  

 

Lmarket = { Lvalue, Ldwe, Ldwe-offer }                                        (4.23) 

 

Urban sprawl sub-model (U-SPRAWL) 

The U-SPRAWL sub-model simulates the expansion of the city’s urbanized areas. It 

comprises two phases: (1) the transition phase (‘how many?’), which quantifies the 

sprawl that is expected to occur during the period 1 tt , i.e., how many patches will 

convert their use from non-urban to urban, and (2) the allocation phase (‘where?’), 

which indicates the location of the new urban patches.  

The transition phase relies on the Markov chain to assess the total number of 

patches converting their use from non urban to urban during the time interval 1 tt . 

The Markov chain is a mathematical model for describing a certain type of process that 

moves in a sequence of steps through a set of states (Lambin 1994). The central 

mechanism of a Markov chain is a probability Pij, which refers to the transition from a 

state i to a state j in a given time interval (Brown, 1970). For the U-SPRAWL model, 

the state of the system is defined by the number of patches that are urbanized/not-

urbanized. The Markov model can be expressed, in matrix notation, as (Baker, 1989):  

 

Π(t+1) = P 
n . Π(t)                                                    (4.24) 

 

Where:  Π(t) is a column vector, with k elements, representing the fraction of land area 

in each of the s states at time t. For the U-SPRAWL model, the Π(t) has two 

elements, one is the number of urban patches, and the other is the number of 

non-urban patches at time t. Π(t+1) is a column vector showing the fraction of 

occupation of s states at time t+1, P is a matrix whose elements are global 
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transition probabilities Pij, accounting for the probability of a certain patch to 

change from state i to j during the time interval 1 tt , and n is the number 

of time steps between t and t+1. For example, if n corresponds to one year, 

then n would be 10 if the addition in time corresponds to 10 years. 

 

The global transition probabilities Pij can be statistically estimated from a 

sample of transitions occurring during a certain time interval. Given aij indicating 

transitions between pairs of states over a time interval, the transition probabilities Pij are 

estimated as: 

 

 ijijij aaP /                                                          (4.25) 

In the particular case of the U-SPRAWL sub-model, it is necessary to compute 

the global transition probability 
UNUP  , which accounts for the probability of a patch to 

change from ‘non-urban’ (NU) to ‘urban’ (U). The global transition probability 
UNUP   

is stored as a global variable of the EntireLandscape (ELglobal). Following the Markov 

model equation (4.24), 
UNUP   is used to compute the total number of new urban patches 

during the period 1 tt  (
newurbanT  ). 

newurbanT   is also stored as a global variable of the 

EntireLandscape and retrieved later during the allocation phase.  

Once the number of new urban patches is known (
newurbanT   = ‘how many?’), 

the allocation phase is responsible for indicating which non-urban patches convert their 

use to urban during the period 1 tt  (‘where?’) and, therefore, for updating the 

landscape patch variable ‘urban use’ (Lurban). The allocation phase relies on binary 

logistic regression to compute the local transition probability of a non-urban patch 

becoming urban (
UNUp  ). Binary logistic regression is a type of regression analysis 

where the dependent variable is a dummy variable (e.g., 1=urban and 0=not urban). The 

statistical model for logistic regression is (Moore and McCabe 2003):  

 

nn XX
p

p  







 1101

log                                            (4.26) 

 

Where:  p is the probability that the event Y occurs (e.g., convert the land use to urban), 

X is the explanatory variable, and β is the logistic model parameter.  
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The local transition probability of a non-urban patch becoming urban (
UNUp  ) can be 

estimated as follows:    

 

)exp(1
1

110 nn
UNU XXp                                          (4.27) 

 

Where:  the explanatory variables X represent one of the variable sets of the landscape-

patch state (LU-SPRAWL), and β represents parameters estimated from empirical 

data (see Chapter 5).  

 

The U-SPRAWL sub-model computes 
UNUp   for all non-urban patches 

(Lurban=0).  Afterwards, it ranks these patches according to their  
UNUp    in a 

decreasing order. Following this rank, the rule-based procedure 
UNUF   is executed for 

each non-urban patch until the total number of new urban patches reaches the value 

newurbanT   (computed in the transitional phase). The 
UNUF   is formally expressed as:  
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Where: q is a random number evenly distributed over [0,1]. 

 

Dwelling offers sub-model (D-OFFER) 

The D-OFFER sub-model simulates the dynamics of the landscape-patch variables total 

number of dwellings (Ldwe) and dwelling offers (Ldwe-offer). It simulates the gain of 

dwellings in some areas of the city promoted by new residential developments, and the 

loss of dwellings in other parts of the city due to the progression of non-residential uses 

in certain neighborhoods. Like the U-SPRAWL model, it also comprises a transition 

phase and an allocation phase. The transition phase (‘how many?’) quantifies the  
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overall gain and loss of dwelling offers during the period 1 tt , while the allocation 

phase (‘where?’) indicates which patches gained and lost dwellings during the same 

period.  

The transition phase determines the total number of dwellings in the city 

(Tdwe), the total dwelling loss due to the progress of non-residential use (Tdwe-loss), and 

the total number of new dwellings (Tdwe-gain). These values are stored as global control 

variables of the EntireLandscape (ELglobal), and retrieved later during the allocation 

phase. The total number of dwellings in the city (Tdwe) is formally expressed as:  

 

Tdwe = Tdwe-occup + (Tdwe-occup *  τstock),                                       (4.29) 

 

Where:  Tdwe-occup  is the total number of occupied dwellings in the city (Tdwe-occup ), 

which is also equal to the total number of households;  (Tdwe-occup *  τstock) 

represents the housing stock of the city, which is equivalent to a proportion 

τstock  of the occupied dwellings. 

 

The total dwelling loss due to the progress of non-residential use (Tdwe-loss) 

during the period 1 tt  is equal to a proportion τloss of the total number of dwellings 

(Tdwe ):  

 

Tdwe-loss = t+1Tdwe *  τloss,                                                   (4.30) 

 

The total number of new dwellings (Tdwe-gain) during the period 1 tt  is 

equal to the difference between the number of dwellings in t+1 and t (t+1Tdwe - 
tTdwe ), 

plus the dwelling loss in the period 1 tt  (Tdwe-loss):   

 

Tdwe-gain =( t+1Tdwe - 
tTdwe) + Tdwe-loss                                                (4.31) 

 

The allocation phase is responsible for indicating where the gain and loss of 

dwellings will take place and for updating the landscape-patch variables total number of 

dwellings (Ldwe)  and dwelling offers (Ldwe-offer). It allocates the total number of dwelling 

offers based on two linear regression models (Neter et al. 1996): one that estimates the 
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patches’ loss of dwellings due to the expansion of non-residential uses (e.g., expansion 

of commercial use in residential areas), and another that estimates the patches’ gain of 

dwellings due to new investments in residential developments. For each urban patch, the 

D-OFFER sub-model computes local transition loss (Yloss) and local transition gain 

(Ygain) of dwellings:  

 

nnloss XXY   110                                       (4.32) 

 

nngain XXY   110                                       (4.33) 

 

Where:  the explanatory variables X represent one of the variable sets of the landscape-

patch state (LD-OFFERS), and β represents parameters estimated from empirical 

data (see section 5.3.2).  

 

The total dwelling gain and loss occurring in the urban patches must meet the 

value of the global control variables Tdwe-loss and Tdwe-gain. Considering this, the local 

transitions Yloss and Ygain are normalized by the factors θloss and θgain, respectively. These 

factors are computed as follows:  
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Where:  Tdwe-loss is the total dwelling loss and Tdwe-gain is the total number of new 

dwellings in the city during the period 1 tt .  Yloss(j) and Ygain(j) represent 

the local transition loss and gain of the landscape patch j, respectively.  

 

The new values for the landscape-patch variables total number of dwellings 

(Ldwe) and dwelling offers (Ldwe-offer) are computed as follows:  
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   losslossgaingaindwe
t

dwe
t YYLL  **1                             (4.36) 

 

popdweofferdwe LLL                                               (4.37) 

 

Where: Lpop is the total number of households living on the landscape patch. 

 

Infrastructure sub-model (INFRA) 

The INFRA sub-model simulates the dynamics of the landscape-patch variable 

infrastructure (Linfra). In the current version of MASUS, the variable Linfra is a composed 

index that ranges from 0 to 1, and represents the provision of water, sewage, and 

garbage collection. The sub-model assumes that these services always improve and will 

eventually be provided to all the inhabitants of the city. Based on that, the sub-model 

relies on a linear regression model where the dependent variable represents the 

improvement in infrastructure (Yinfra) during the period 1 tt .  For each urban patch, 

the L-VALUE sub-model computes the Yinfra as follows: 

 

Yinfra nn XX   110
                                               (4.38) 

 

Where:  the explanatory variables X belong to the variable set LL-VALUE of the landscape-

patch state, and β represents parameters estimated from empirical data (see 

section 5.3.3).  

 

The landscape variable Linfra is updated after each annual cycle as follows:  

 
t+1Linfra = tLinfra + Yinfra                                                    (4.39) 

 

Land value sub-model (L-VALUE) 

The L-VALUE sub-model simulates the dynamics of the landscape-patch variable land 

value (Lvalue). For each urban patch, the L-VALUE sub-model computes the land value 

based on the results of the linear regression model previously estimated from empirical 

data:  
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nnvalue XXL   110
                                               (4.40) 

 

Where:  the explanatory variables X represent those contained in the variable set LL-

VALUE of the landscape-patch state, and β represents parameters estimated from 

empirical data (see section 5.3.4).  

 

4.3.3 EXPERIMENTAL-FACTOR module 

The EXPERIMENTAL-FACTOR module consists of specification templates that can 

be set to test theories and policy approaches on segregation. These specifications can 

affect the system behavior through four pathways:  

1. Changing global variables of the population transition sub-model (P-

TRANSITION) that affect the social composition of the population and, 

therefore, the profile of households; 

2. Changing parameters that drive the behavior of household agents in the 

decision-making sub-model (DECISION); 

3. Changing the structure of the decision-making sub-model (DECISION); 

4. Changing the state of the urban landscape. 

 

The specification templates regard three different experimental factors: socio-

demographic aspects, household preferences, and urban policies. In the current 

MASUS version, the specification templates for the experimental factor socio-

demographic aspects allow exploring the relation between income inequality, seen as a 

product of the labor market, and segregation. The user can choose to execute alternative 

scenarios with low, original, and high inequality levels. These different inequality 

scenarios were developed by changing the global variables that control the income 

composition of the population in the P-TRANSITION sub-model.  

The templates for the experimental factor household preferences focus on 

exploring how the preferences of affluent households for having neighbors similar to 

themselves can influence segregation dynamics. Different scenarios can be simulated by 

changing the parameter βneigh that establishes the relevance of the neighborhood income 

composition to the DECISION sub-model of affluent households. To implement this 
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change, the parameter βneigh is multiplied by θneigh., a factor that ranges from 0 to 3. The 

MASUS interface allows users to select a value for θneigh, which implies the following:   

1. If θneigh = 0, affluent households do not consider the income composition of 

neighborhoods when selecting their residential locations; 

2. If  θneigh = 1, the preference of affluent households for having neighbors similar 

to themselves is equal to the original one (estimated from empirical data);  

3. If  θneigh = 3, the preference of affluent households for having neighbors similar 

to themselves is three times higher than the original one. 

 

The experimental factor urban policies provides specification templates for the 

following policies:  

1. Regularization of irregular settlements: To test the effect of this policy on 

segregation patterns, the EXPERIMENTAL-FACTOR module provides a 

template where clandestine settlements are converted to regular. This is 

possible by changing the landscape-patch variable type of neighborhood 

(Lneigh).  

2. Universalization of infrastructure: To test this policy, the EXPERIMENTAL-

FACTOR module provides a template where the value of the landscape-patch 

variable infrastructure (Linfra) is maximal for all urbanized patches.  

3. Poverty dispersion: This template tests the effect of policies that provide 

housing vouchers to move low-income households from distressed areas to 

middle-class neighborhoods. For that, the EXPERIMENTAL-FACTOR 

module changes the decision-making sub-model of the n households who 

received the benefit. These households can only move to neighborhoods with a 

low concentration of poverty. 

4. Wealth dispersion:  This template tests the effect of policies that intervene on 

the real estate market by providing incentives for constructing developments 

for middle and upper classes in poor neighborhoods. This template selects 

non-occupied areas close to poor neighborhoods and changes the variable type 

of neighborhood (Lneigh) of these patches to a type that is attractive to affluent 

households.   
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4.4 MASUS simulation protocol 

At the implementation level, the simulation protocol performed by MASUS consists of 

the following steps (Figure 4.6):  

1. Set up the initial state of the system. 

2. Start the main time loop (annual cycle):  

2.1. Execute the decision-making sub-model (DECISION) for all households. 

2.2. Calculate segregation indices and other population statistics.  

2.3. Report simulated outputs (statistics, maps and graphs). 

2.4. Update population and landscape state for the next cycle. 

2.5. Update year (t+1year = tyear + 1) and repeat the annual cycle.  

 
The step set up the initial state of the system imports GIS data that represents 

the population and landscape state of the study area in the beginning of the simulation 

(t0). In addition, it sets up parameters according to the user-defined scenario, and 

executes sub-models that simulate the changes occurring during the period 100  tt . 

These sub-models are the household transition (H-TRANSITION), population transition 

(P-TRANSITION), urban-sprawl (U-SPRAWL), and dwelling-offers (D-OFFER).  

After setting up the initial state of the system, it is possible to start the annual 

cycle, which is the main time loop of the simulation. The first procedure of the annual 

cycle is to execute the decision-making sub-model (DECISION), which is responsible 

for the household’s decision about moving to another residential location. The 

DECISION sub-model is executed for all households, including the new ones created by 

the sub-model P-TRANSITION for the period 1 tt .  
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Figure 4.6 Flow chart showing the main steps of the MASUS simulation process.  
 

The next procedures of the annual cycle are to calculate and report 

segregation indices and other population statistics. The MASUS program computes and 

reports the global and local segregation indices (section 2.5). The global indices of 

segregation are reported and plotted in graphs, while the local indices are shown as 

maps. Other reported and plotted population data include the total number of 

households, the number of households belonging to each social group, the Gini index, 

and the Lorenz curve. 

After reporting the simulation outputs, the simulation program updates the 

population and landscape state for the next cycle. This step includes executing sub-

models belonging to the URBAN-POPULATION module (H-TRANSITION and P-

TRANSITION) and to the URBAN-LANDSCAPE module (U-SPRAWL, D-OFFER, 

INFRA, L-VALUE). Finally, the program updates the year and repeats the annual cycle. 
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5 EMPIRICAL PARAMETERIZATION OF THE MASUS MODEL: 

URBAN DYNAMICS IN SÃO JOSÉ DOS CAMPOS, BRAZIL 

 

Recent developments in agent-based modeling (ABM) have demonstrated an increasing 

interest in combining social simulation models with empirical methods (Janssen and 

Ostrom 2006). According to Janssen and Ostrom (2006), three main reasons underlie 

this interest for empirically based ABM. The first is related to the existence of a large 

number of theoretical models, which makes it feasible to use ABM as a method for 

gaining new scientific insights. The second is the larger availability of relevant data. 

Finally, the third reason is that the increasing use of laboratory experiments in social 

sciences has challenged some of the simple models of human interactions in social-

dilemma situations and emphasized the relevance of empirically based models (Janssen 

and Ostrom 2006). 

The dissemination of empirically based ABM motivates the debate about one 

of the main challenges of contemporary social sciences, which is the development of 

models that are generalizable but still applicable in specific cases (Janssen and Ostrom 

2006). As an empirically based model, MASUS provides different degrees of 

generalization in each of its specification levels. The MASUS conceptual framework 

(section 4.2) is the most generalizable level. It provides a general view of agents, 

environment, and interactions that give rise to different patterns of segregation. This 

overview is not context specific and also not exclusive for the simulation of income 

segregation. It can serve as basis for simulating other types of segregation, like racial or 

ethnic.  

The MASUS theoretical specification (section 4.3) describes the model’s 

architecture, including its modules, linkages and algorithms. For the most part, this 

theoretical specification is still general enough to be applicable to different types of 

segregation in different contexts. Nevertheless, it cannot achieve the same level of 

generality as the conceptual framework, since some specifics that are necessary for the 

MASUS implementation (e.g., variables and parameters) depend on data collection and 

empirical parameterization.  

The MASUS model was first implemented for São José dos Campos, a 

medium-sized city located in the State of São Paulo, Brazil. Based on the data of this 
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city, the aim of this point of the study is to provide empirical parameters for the sub-

models of MASUS. This chapter comprises three main sections. The first section 

provides a brief description of the study area. Due to the nature of this work, this 

description emphasizes aspects related to the socioeconomic development of São José 

dos Campos and its implications for the segregation patterns of the city in the past years. 

The next section focuses on the residential choice behavior of the households in São 

José dos Campos. It provides the parameterization of the most important MASUS sub-

model, i.e., the decision-making (DECISION) sub-model. The parameters of this sub-

model indicate the effect of household and neighborhood characteristics on the 

residential choice of households belonging to different social groups. The final section 

focuses on the empirical parameterization of the urban landscape system. It presents the 

estimation of parameters for the sub-models that simulate dynamics of urban sprawl (U-

SPRAWL), dwelling offers (D-OFFERS), infrastructure quality (INFRA), and land 

value (L-VALUE).  

 

5.1 Study area: São José dos Campos, Brazil 

São José dos Campos is a Brazilian municipality located in the State of São Paulo, 

between the metropolitan areas of São Paulo (91 km away) and Rio de Janeiro (334 

km). The municipality has an estimated population of 609,229 (IBGE 2008) and a total 

area of 1,100 km2. The site selected for the first implementation of the MASUS model 

corresponds, according to the macro zoning plan for São José dos Campos (PMSJC 

2003), to the municipality’s urbanized areas and areas for urban expansion (Figure 5.1).  

São José dos Campos has a strong industrial sector, serving as host to most of 

the Brazilian aerospace sector and many other industries, such as automotive, defense, 

pharmaceutical, telecommunications, and petrochemical. In 2006, the city had the 22nd 

highest GDP in Brazil, and a per-capita GDP of R$ 25,419, while the country’s average 

was R$ 12,688 (IBGE 2007). Despite these positive economic indicators, São José dos 

Campos is far from becoming a city that promotes the social inclusion of its inhabitants. 

Instead, the city has presented increasing rates of inequality. In 1991, the poorest 20% 

of households earned 3.4% of the total income, while the wealthiest 20% held 58.3%. In 

2000, this disparity increased: The poorest 20% of the households earned 2.5% of the 

total income, while the wealthiest 20% earned 61.6%. The Gini index, which measures 
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income inequality, also reflects this increasing disparity: Its value was equal to 0.55 in 

1991 and became 0.59 in 2000.  

 

 

Figure 5.1 Location of the study area. Adapted from Feitosa (2005). 
 

The dynamics of segregation patterns in São José dos Campos follow the 

trends that have been generally described in the literature about urban segregation in 

Brazilian cities (see section 2.2.1). During the 1950´s and 1960´s, there was a strong 

industrialization process in São José dos Campos, which attracted a large number of 

qualified and non-qualified workers from other Brazilian regions. The city presented 

high annual population growth rates in these decades: 5.6% during the 1950´s and 6.7% 

during the 1960´s, while the average annual rate in Brazil was 3.2% and 2.8%, 

respectively. This population growth generated an accentuated expansion of the city, 

which was characterized by the expansion of the central and traditional nucleus, and the 

configuration of peripheral and distant settlements, the so-called periferias. The 

segregation pattern known as ‘center-periphery’ prevailed at this time: Families 

belonging to higher strata occupied the center of the city and the adjacent areas in the 

west, while lower strata families occupied peripheral areas. Such pattern was reinforced 

São Paulo State
Study 
Area

City of São José 
dos Campos 
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by public investments, which were mainly concentrated on the central areas, while the 

poor periferias were characterized by precarious or inexistent infrastructure and 

services. 

The population growth of São José dos Campos continued to intensify during 

the 1970´s and beginning of the 1980´s, when the city developed a strong aerospace and 

military sector to address the demands of the dictatorship established in the country. The 

city attracted a great number of non-qualified workers, who occupied illegal settlements 

in the periferias and slums (favelas) in central areas. Encouraged by exclusionary 

zoning policies and laws regulating the establishment of gated communities, medium 

and higher classes continued their expansion to the western region of the city.  

After 1985, the decline of the military industry and the commercial openness 

of Brazil promoted a serious economic crisis in São José dos Campos. For this reason, 

population growth rates began to seriously decline. The economic recovery of the city 

only started to occur in the middle of the 1990´s. The economic changes during the 

period of crisis modified the segregation pattern of income groups in the city. This 

pattern became more complex and ruled by forces that deal with different scales of 

segregation. Considering a broader scale of segregation, medium- and high-income 

groups expanded from the center towards the western part of the city, while low-income 

families continued to establish large homogeneous settlements in the periphery. On the 

other hand, the proliferation of favelas and gated neighborhoods in wealthy and poor 

regions of the city is related to a decrease in the scale of segregation. Quantitative 

studies about São José dos Campos segregation patterns during the period 1991-2000 

have demonstrated an increase in income segregation considering local and broader 

scales. This increase had been strongly promoted by the isolation of high-income 

families (Feitosa 2005; Feitosa et al. 2007).  

 

5.2 Residential choice behavior of households 

Urban segregation is a macro structure that emerges from the residential choice 

behavior of many households at the micro level. Representing this behavior is, 

therefore, a first condition for the simulation of segregation. In the MASUS framework, 

this task is performed by the DECISION sub-model (see section 4.3.1): Based on a 

discrete choice approach, the sub-model guides the households’ decisions about whether 
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to move to another residential location or not. This section presents the specification and 

estimation of discrete choice models used as input for the DECISION sub-model of the 

first operational MASUS model. The purpose of these discrete choice models is to 

assess how household and neighborhood characteristics influence the residential choices 

of households belonging to different income groups.  

 

5.2.1 Analytical framework 

The discrete choice approach adopted in this study is able to jointly model a 

household’s mobility choice, neighborhood type choice, and specific neighborhood 

location choice. This is done by way of a nested multinomial logit model (Ben-Akiva 

1973; Greene 2000; Train 2003). Like the multinomial logit model (MNL), the nested 

multinomial logit model (NMNL) is based on the micro-economic random utility 

theory, which states that individuals make their choices among options to maximize 

their utility, subject to constraints such as lack of knowledge and information 

(McFadden 1973). The NMNL, however, arose from an attempt to overcome constraints 

imposed by the MNL. The latter approach requires the independence of irrelevant 

alternatives (IIA) assumption, i.e., the unobserved utility of alternatives must be 

uncorrelated. The NMNL is a generalization of MNL that allows for a particular pattern 

of correlation in unobserved utility (Greene 2000; Train 2003). By clustering the related 

alternatives into subgroups, the IIA assumption is preserved within the subgroup but 

relaxed between them. The DECISION sub-model adopts a nested logit approach 

because it is likely that the expected utilities associated with the unobserved effect of its 

choice set are correlated.  

The nested logit framework for the DECISION sub-model is organized in 

three levels (Figure 5.2). The first level (i) concerns the household decision about 

moving or staying and focuses on how personal attributes such as age and tenure status 

can influence the mobility rate of different income groups. The second level (j) focuses 

particularly on the neighborhood type choice. Having decided to move, the household 

can choose between:  

1. moving within its current neighborhood, which is a decision that represents 

only an adjustment of household needs and does not promote change in the 

segregation patterns;  
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2. moving to the same type of neighborhood, e.g., from a poor irregular 

settlement to another one, which is a sort of residential choice that can be 

related to new trends of segregation patterns, but does not contribute towards 

the change of neighborhood profiles; 

3. moving to a different type of neighborhood, which concerns residential choices 

that are able to promote a significant change in the spatial distribution of 

different income groups in the city (for details about the neighborhood types 

see section 5.2.2). 

 

The third level concerns the neighborhood location choice (k), and 

complements the second level by including particular neighborhood characteristics that 

may influence the household choice for a certain location. Neighborhoods are randomly 

sampled, since estimation of discrete choice models has been shown to yield consistent 

estimates of the parameters, though with some loss of efficiency (Ben-Akiva and 

Lerman 1987). 

 

 

 
Figure 5.2 Nesting structure of the NMNL. 

 

Considering that jikX ,| , ijY |  and iZ  refer to the vectors of explanatory 

variables specific to the categories (k|i,j), (j|i) and (i), respectively, the probability of 

choosing a particular branch k in limb j, trunk i is (Greene 2000): 
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The conditional probability Pr(k|i,j) and Pr(j|i) in equation (5.1) are the 

functions of the forms: 
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Where:  
ijI |
is the inclusive value for category (j|i) and 

ij |  is the dissimilarity parameter 

(or inclusive value parameter).  

 

The 
ijI |
 transfers information from the neighborhood location choice model 

(third level) to the neighborhood type choice model (second level). Formally, 
ijI |
 is the 

log of the denominator of the conditional probability Pr(k|i,j):  
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The dissimilarity parameter 
ij |  provides a summary measure of the degree of 

similarity of the alternatives within the nest j, while the term 
ijij I ||  represents the 

expected utility that the decision maker receives from the choice among the alternatives 

in nest j.    

The probability of choosing i, Pr(i) is: 
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Generally, the dissimilarity parameter   can differ over nests, reflecting 

different correlations among unobserved factors within each nest, but its value must lie 

within a particular range for the model to be consistent with utility-maximizing behavior 

(McFadden 1977). If 1 , there is no correlation among the unobserved components of 

utility for alternatives within a nest, and the choice probabilities become standard logit 

probabilities; if 10   , the model is consistent with utility maximization for all 

possible values of the explanatory variables; if 1 , the model is only consistent for 

some range of explanatory variables (Börsch-Supan 1990; Herriges and Kling 1996); 

and if 0 , the model is inconsistent with utility maximization by implying that 

improving the attribute of an alternative can decrease its probability of being chosen. In 

case of degenerate nests, i.e., nests with only one alternative, the dissimilarity parameter 

can be constrained to 1. In our model, it is the case of the first-level nest ‘stay’, and the 

second-level nest ‘move within the same neighborhood’.  

We use the full information maximum likelihood (FIML) method to maximize 

the following log likelihood function:  

 

 
n

iPijPjikPL )(ln)|(ln),|(lnln                                (5.7) 

 

5.2.2 Neighborhood types in São José dos Campos 

To define and characterize the neighborhood types considered in the second level of the 

nested logit framework (Figure 5.2) for São José dos Campos, three maps of segregation 

were considered:  
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1. Local dissimilarity index map. This map shows how the proportions of income 

groups in each locality differ, on average, from the households’ income 

composition of the whole city. For example, if the proportion of income 

groups in a tract and its surroundings is equal to the proportion of these groups 

in the city, the local dissimilarity of this tract is equal to zero.  

2. Local isolation index map for high-income households. This map depicts the 

potential contact between the members of this social group. A very populated 

tract with a high proportion of affluent households living in it and its 

surroundings will present a very high index. The high-income group includes 

the households whose family heads have an income higher than 20 minimum 

wages4.  

3. Local isolation index map for low-income households, which is similar to the 

previous one, but computed for poor households (family head income inferior 

than 2 minimum wages).  

 

These maps were developed by Feitosa et al. (2007) based on local segregation 

measures computed for the Census 2000 data on household income (see section 2.5). 

The segregation indices presented in these three maps cover different 

dimensions of segregation (see section 2.1.1). While the local dissimilarity index refers 

to the balance of the distribution of social groups (dimension evenness/clustering), the 

local isolation index refers to the chance of having members from the same group living 

side by side (dimension exposure/isolation). Based on these maps and on information 

about irregular settlements, four main types of neighborhoods were defined (Table 5.1 

and Figure 5.3):  

1. Type A: Areas with high indices of dissimilarity and isolation of affluent 

households. It corresponds to neighborhoods with high land values and 

housing quality, good infrastructure and services, as well as many gated and 

guarded settlements and apartment complexes.  

2. Type B: Areas with low indices of dissimilarity and isolation with groups. It is 

the most socially diverse type of neighborhood. These neighborhoods are well 

                                                 
4 Minimum wage is the lowest level of work compensation secured by law. The Brazilian minimum wage 
was R$ 151 per month (U$ 85) in 2000, and R$ 465 per month (U$ 232) in 2009. 
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served with infrastructure, and often concentrate many services and 

commercial activities. 

3. Type C: Areas with high indices of dissimilarity and isolation of poor 

households. Despite the poverty concentration of these neighborhoods, they 

are regular and have basic infrastructure. They include social housing projects.  

4. Type D: Irregular settlements like periferias and favelas, with high indices of 

dissimilarity and isolation of poor households. Since these settlements are not 

part of the ‘legal city’, their residents do not pay taxes and the areas do not 

receive public investments.  

 

 

Local Dissimilarity        
 
 

 

Isolation of Poor Households 

 
Isolation of Affluent Households 

 
 

(-)  (+) 

 

Figure 5.3 Neighborhood types in São José dos Campos. 

 

Neighborhood Types 

  Type A  
  Type B 
  Type C 
  Type D 

           Not classified 
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Table 5.1 Average values of variables considered for the classification of 
neighborhood types  

 

Variables 
Neighborhood Types 

A B C D 

Dissimilarity index (average)1 8.4 2.3 4.3 4.2 

Isolation index for affluent households 
(average)1 

42.9 2.2 0.3 10.3 

Isolation index for poor households 
(average)1 

0.3 1.8 6.1 4.2 

Settlement legal condition regular regular regular irregular
1 Because the magnitude of local segregation indices is very small, the values presented in this table were 
multiplied by 104. 

 

5.2.3 Selection of explanatory variables and hypothesis 

The selection of neighborhood and household variables relied on the hypothesis about 

determinants of household mobility and neighborhood choice. Because in this study it is 

assumed that households with different income levels have distinct residential choice 

behaviors, the variable ‘income of household head’ was used to stratify the model 

estimation based on three income intervals: up to 4 minimum wages, from 4 to 10 

minimum wages, and more than 10 minimum wages.  

In order to conduct the empirical tests, the variables originated from the 

working hypotheses were matched to the appropriate level of the nested structure. These 

variables include alternative-specific constants (C), household-specific variables (H), 

neighborhood-specific variables (N), and interactions between household- and 

neighborhood-specific variables (HN) (Tables 5.2, 5.3, and 5.4).  

For the first level of the NMNL, which concerns the choice of moving or not, 

the hypotheses focus on household characteristics that may influence mobility behavior. 

Three hypotheses were developed and tested (Table 5.2): 

 

Hypothesis 1 

Mobility decreases as the age of the household head increases. The life cycle of families 

has been one of the most extensively used concepts to explain residential mobility 

(Davies and Pickles 1985; Ford and Smith 1990; Graham and Isaac 2002; Rossi 1955; 

Speare 1970). Households go through different stages of a life cycle, and while in these 
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stages, they show different tendencies to change their residential location. Many 

demographic events that motivate a change of residence occur when people are 

younger, such as leaving their parents house, marriage, childbirth and job change 

(Barbon 2004; Chang et al. 2003; Clark and Onaka 1983; Huang and Clark 2002; Kan 

1999; Sabagh et al. 1969). To test this hypothesis, we included the variable age of 

household head ( ageH ) in the NMNL model, and its estimated coefficient is expected to 

have a negative sign (decreased mobility). 

 

Hypothesis 2 

 Renters have higher mobility rates than owner-occupiers. This assumption is also 

consistent with the literature on residential mobility (e.g., Speare, 1970) and was tested 

in the NMNL model through a dummy variable representing the households that live in 

a rented dwelling (
renterH ). The estimated coefficient of this variable is expected to have 

a positive sign (increased mobility).  

 

Hypothesis 3 

 Renters with limited financial resources are more vulnerable to housing insecurity and 

more likely to present higher mobility rates due to their inability to pay rents and bills, 

or due to the irregular status of their residences. We interacted the variable 
renterH  with 

the income of the household head (
incomerenterH *

) in order to empirically test if the 

mobility of renters decreases when their income increases. The estimated coefficient of 

the resulting variable is expected to have a negative sign (decreased mobility).  

 

Table 5.2 Explanatory variables for the first level of the NMNL: Mobility decision 
 

Variable 
 

Description 
Hypothesis/ 

Expected 
effect 

 
Source 

ageH  Age of household head ageH    1 / (-) UPHD 
survey 

renterH  Household tenure status (1 if household 
lives in a rented dwelling, 0 if otherwise) 

2 / (+) UPHD 
survey 

incomerenterH *
 

renterH  interacted with the income of the 

household head 
incomeH   

3 / (-) UPHD 
survey 
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While the first level of the NMNL concerns household attributes, the second and third 

levels focus on how households assess the characteristics of potential residential 

locations. However, the second level considers the impact of these characteristics in 

terms of the household’s neighborhood type choice, and the third level concerns their 

impact on the neighborhood choice in general, regardless of the second-level 

alternatives (move within the same or to the same type or to another type of 

neighborhood). The coefficients of the residential location variables were first estimated 

for the second-level alternatives. In case the coefficients of a variable were not 

significantly distinguishable among these alternatives, the variable was then considered 

in the third-level of the model as generic, i.e., with a common coefficient for all choice 

alternatives (Table 5.3 and 5.4). 

This study considers general and income-group-specific hypotheses regarding 

aspects that contribute to the attractiveness of neighborhoods. The neighborhood-related 

hypotheses tested for all income groups are:  

 

Hypothesis 4  

Families face costs for moving and are, therefore, after controlling for other 

characteristics, more likely to stay in their current residence than to move. Thus, the 

estimated coefficients for the alternative-specific constants move within the same 

neighborhood, move to the same type of neighborhood and move to another type of 

neighborhood (
1moveC ,

2moveC , and 
3moveC  ) are expected to have a negative effect on the 

household’s utility.  

 

Hypothesis 5 

Once households are considering moving to a different neighborhood, they prefer to 

choose a place that is closer to the original one in order to keep their social bonds. As 

people gain familiarity with an area, they are more likely to develop friendships and to 

appreciate the local facilities and services (Abramo 2002; Speare 1974). Therefore, 

familiarity usually increases the attractiveness of a place. This assumption was tested 

through the inclusion of the variable distance to the original place of residence (
distN ) 

in the model. The estimated coefficient for this variable is expected to have a negative 

sign.  
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Hypothesis 6  

Households generally choose to spend a smaller portion of their income on housing 

(Waddell et al. 2007). Studies conducted in São Paulo support this hypothesis by 

showing that most families (42%) spend up to 25% of their income in housing, while 

37% spend between 25% and 40% of their income (Barbon 2004).  To test this 

hypothesis, the average land price of the neighborhood divided by the income of the 

household head (
incpriceHN /

) was included in the model. This variable represents the 

housing affordability for the household, and its estimated coefficient is expected to have 

a negative sign.  

 

Table 5.3 Explanatory variables for the second and third level of the NMNL: 
Neighborhood type choice and specific neighborhood choice for all 
income groups 

Variable Description Hypothesis/ 
Expected effect 

Source 

1moveC

2moveC  

3moveC  

Alternative-specific constant for 
‘moving within the same 
neighborhood’ (

1moveC ), ‘moving to the 

same type of neighborhood’ (
2moveC ), 

and ‘moving to another type of 
neighborhood’ (

3moveC ): 1 if alternative 

is true, 0 if otherwise 

4 / (-) UPHD survey 
+ 

neighborhood 
type map  

distN  Distance between the original place of 
residence and the neighborhood 
alternative. 

5 / (-) GIS-based 
calculation 

incpriceHN /
 Average land price of the 

neighborhood (
priceN ) divided by the 

income of the household head (
incH ).  

6 / (-) UPHD survey 
+ property 

advertisements 

offersN  Total number of real estate offers in 
the neighborhood. 

7 / (+) property 
advertisements 

CBDN  Distance between the neighborhood 
alternative and the Central Business 
District (CBD) 

8 / (-) GIS-based 
calculation 
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Hypothesis 7  

New investments in housing and land development provide a higher availability of 

dwellings in certain area of the city, which attract new residents and consolidate 

residential expansion vectors. To consider the impact of housing availability, the 

variable number of real estate offers (
offersN ) was included in the NMNL model.  

 

Hypothesis 8 

Accessibility increases the attractiveness of neighborhoods, since areas with higher 

accessibility tend to concentrate services, commercial activities and jobs (Waddell 

1996). We tested the impact of accessibility on residential location choice by including 

the variable distance to the Central Business District (CBD) (
CBDN ) in the model. Using 

this variable as a proxy of accessibility implies a monocentric city assumption, which 

has been overcame in most metropolises and medium-sized cities, including São José 

dos Campos, where alternative employment centers have emerged in the last years. 

However, the CBD remains the most accessible area of the city, positively correlated 

with the density of businesses and availability of public transportation. An exploratory 

analysis based on São José dos Campos’ empirical data about the number of 

commercial establishments and bus frequency revealed that these variables have a 

negative and nonlinear correlation with the distance to the CBD (R2 equivalent to 0.41 

and 0.54, respectively).  

While the hypotheses 4 to 8 were generalized for all income groups, the 

following set of hypotheses focuses on differentiating the residential choice behavior of 

each group:  

 

Hypothesis 9  

Households tend to choose places with a higher proportion of neighbors belonging to 

their own income group. To test this hypothesis, variables representing the proportion of 

income groups in the neighborhoods (
lowerN , 

mediumN , and 
higherN ) were included in the 

model of the respective group. The estimated coefficients for these variables are 

expected to have a positive sign.  
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Hypothesis 10 

Once moving to another neighborhood, poorer families have a higher probability of 

moving to neighborhoods type C or D. Nevertheless, household characteristics such as 

education and family size can impact the probability of moving to more or less 

segregated areas. For instance, poor families with a better educated household head 

have a higher chance to move to less segregated neighborhoods (type B), and a smaller 

chance to move to irregular neighborhoods (type D). Regarding the family size, we 

assume that poor families with a large number of members have higher chances to move 

to irregular neighborhoods (type D). To test this hypothesis, dummies of neighborhood 

types were interacted with household attributes and included in the model 

(
eduH * BN ,

eduH * DN , and 
sizeH * DN ).  

 

Hypothesis 11 

Middle-class families are more likely to choose type B neighborhoods, although the 

probability of these families moving to a poorer neighborhood increases if the area 

provides good infrastructure and services. The interaction between the variable 

representing infrastructure and the dummy variable for neighborhood type C (Ninfra* CN ) 

allows testing this hypothesis.   

 

Hypothesis 12  

Families with higher income are more likely to choose type A and B neighborhoods. 

The probability of choosing type A neighborhood, however, increases if the family has 

children. Studies on residential location choice have shown that households with 

children are more attracted to peaceful and safe neighborhoods that provide spaces for 

children to play (Gayda 1998). These are the main appeals of gated neighborhoods, 

which is the dominant kind of development in type A neighborhoods.  We include the 

variable AkidsHN ,  ( AN *Hkids) to test if type A neighborhoods significantly increase the 

utility of families with children.  
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Table 5.4 Group-specific explanatory variables for the second- and third-level of 
the NMNL: Neighborhood type choice and specific neighborhood 
choice 

Variable Description Hypothesis/ 
Expected 

effect 

Source 

lowerN  Proportion of families in the 
neighborhood with lower income (head 
of household income up to 4 minimum 
wages) 

9 / 
low-income 
group: (+) 

Census  
2000 

mediumN  Proportion of families in the 
neighborhood with medium income 
(head of household income between 4  
and 10 minimum wages) 

9 / 
middle-
income 
group.: (+) 

Census  
2000 

higherN  Proportion of families in the 
neighborhood with higher income (head 
of household income superior to 10 
minimum wages) 

9 / 
high-income 
group.: (+) 

Census  
2000 

AN , BN ,  

CN , DN  

Type A, B, C, and D neighborhoods, 
respectively (1 if true, 0 if otherwise) 

10-12 / 
(various) 

neighborhood 
type map 

eduH * BN  Years of education of the household head 

eduH interacted with the dummy variables 

BN   

10 / 
low-income 
group:(+) 

 

UPHD  
survey 

eduH * DN  Years of education of the household head 

eduH  interacted with the dummy variable 

DN   

10 / 
low-income 
group: (-) 

UPHD  
survey 

sizeH * DN  Household size 
sizeH  interacted with the 

dummy variable DN   

10 / 
low-income 
group: (+) 

UPHD  
survey 

raN inf
*

CN  Neighborhood infrastructure index 
raN inf

 

(multiplication of the proportion of water 
supply, sewage, and waste disposal) 
interacted with the dummy variable 

CN  

11 / 
middle-
income 
group: (+) 

Census  
2000 

AkidsHN ,
 Presence of kids in the household 

interacted with the dummy variable AN  
12 / 
high-income 
group: (+) 

UPHD  
survey 
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5.2.4 Data sources 

To investigate the determinants of household mobility and neighborhood choice, this 

work relies on household-level data from the ‘Survey for Urban Planning 

Instrumentation and Evaluation of the Housing Deficit in São José dos Campos’ 

(UPHD). This survey was conducted in 2003 by the Population Studies Center of the 

University of Campinas (NEPO/UNICAMP) and the Municipal Government of São 

José dos Campos (PMSJC). The 7,910 respondents of the UPHD survey were selected 

from a total of 141,814 households distributed in 24 socio-economic regions, which 

corresponds to approximately 5% of the population. For each respondent, the survey 

provides retrospective residential mobility history as well as detailed information about 

demographic, socio-economic, and housing characteristics.   

The UPHD survey was used in this study to analyze the residential mobility 

history of households during the 12 months that preceded the interviews. The survey 

provides information about the households’ residential choice, including the name of 

their previous and current neighborhood. Based on this data, it was possible to define 

the dependent variable of the NMNL model. The UPHD data also provide information 

about household characteristics that may affect residential mobility behavior 

(household-specific variables), such as age ( ageH ), income (
incomeH ), education (

eduH ), 

tenure status (
renterH ), family size (

sizeH ), and presence of children (
kidsH ).  

The neighborhood-specific variables were extracted from different sources: 

1. The Brazilian Census 2000, which provided the proportion of income groups 

(
lowerN ,

mediumN , and 
higherN ) and infrastructure data (Ninfra). 

2. The map of neighborhood types (Figure 5.3), which provided the dummy 

variables for the neighborhood types A, B, C, and D ( AN , BN , 
CN , and DN ).  

3. GIS-based calculations, which provided the variables distance to CBD (
CBDN ) 

and distance between the original and alternative neighborhood (
distN ). All 

distances are provided in meters.  

4. Property advertisements collected from local newspapers printed from March 

2002 to February 2003, which provided the variables land price (
priceN ) and 

real estate offers (
offersN ). The data collection was conducted at the Municipal 

Archive of the City of São José dos Campos.  
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5.2.5 Results and discussion 

Nested logit models were estimated using the nlogit command of STATA, Version 10, 

which uses a parameterization that is consistent with random utility maximization 

(RUM). To estimate the NMNL models proposed in this study, it is necessary to include 

the attributes of neighborhoods that are within a household’s choice set. This is 

straightforward for the alternatives that involve neighborhoods that are known, like the 

one chosen by the household or the one where the household was living before 

(alternatives ‘not move’ or ‘move within the same neighborhood’). However, it is also 

necessary to include the attributes of those alternative neighborhoods that were not 

chosen but, given the large number of neighborhoods in a city, it is not possible to 

consider all of them. The problem of estimating individual choice models when the 

number of alternatives is impractically large has been discussed in the literature for 

household mobility choice (Ben-Akiva and Lerman 1987), and it has been proved that it 

is possible to estimate a model on a subset of alternatives without inducing 

inconsistency. Hence, for representing the third-level neighborhood alternatives within 

the second-level nests ‘move to the same type of neighborhood’ and ‘move to another 

type of neighborhood’, 10 neighborhoods addressing each nest condition were randomly 

selected. 

The NMNL were estimated for households with lower, middle, and high 

income (Table 5.5, 5.6, and 5.7, respectively). The coefficients of all NMNL levels were 

estimated with respect to the choice ‘stay’, and the model was fitted with the constraint 

that the inclusive value parameter for degenerated branches is equal to 1.  
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Table 5.5 NMNL estimations for lower-income households (N observations = 
63228, N cases = 2874, choice ‘stay’ as the base case) 

Level Choice Variable Coef. Std. err. 
 
1st 

 
Move 

Age of the household head (
ageH ) -0.043 *** 0.005 

Renter (
renterH ) 3.080 *** 0.269 

Renter * household income  (
incomerenterH *

) -1.2(10-3) *** 4.2(10-4) 

 
 
 
 
 
 
 
 
 
 
 
 
2nd 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Move within  
the same 
neighborhood 
 
 

 
Constant (

1moveC ) 
 
-1.592 ** 

 
0.799 

Real estate offers (
offersN ) -2.8(10-3) 1.7(10-3) 

Distance to CBD (
CBDN ) 1.1(10-5) 3.7(10-5) 

Prop. of lower-income families  (
lowerN ) -0.647 0.908 

 
 
 
 
Move to the 
same type of 
neighborhood 
 
 
 
 

Constant (
2moveC ) -3.810 *** 1.377 

Real estate offers (
offersN ) 1.9(10-3) *** 6.9(10-4) 

Distance to CBD (
CBDN ) 6.7(10-5) ** 3.1(10-5) 

Prop. of lower-income families (
lowerN ) 0.953 * 0.570 

Type C neighborhood (
CN ) 0.991 0.686 

Type D neighborhood ( DN )   0.582 1.37 

Education status * Type B (
eduH * BN ) 0.073  0.056 

Education status * Type D (
eduH * DN ) -0.051 0.109 

Household size * Type D (
sizeH * DN ) 0.040 0.175 

 
 
 
 
Move to 
another 
type of 
neighborhood 

Constant (
3moveC ) - 6.163 *** 2.202 

Real estate offers (
offersN ) 3.0(10-3) *** 1.1(10-4) 

Distance to CBD (
CBDN ) 10.3(10-5) ** 4.6(10-5) 

Prop. of lower-income families (
lowerN ) 1.520 * 0.907 

Type C neighborhood (
CN ) 2.379 ** 1.085 

Type D neighborhood ( DN )   2.254 * 1.278 

Education status * Type B (
eduH * BN ) 0.195 ** 0.087 

Education status * Type D (
eduH * DN ) -0.057 0.049 

Household size * Type D (
sizeH * DN ) 0.065 0.075 

 
3rd 

 
Generic 
variables 

Land price/ income (
incpriceHN /

 ) -1.9(10-3) 2.4(10-3) 

Distance from original residence (
distN ) -1.3(10-4) *** 5.1(10-5) 

 
 
Dissimilarity Parameters 

move  (first level) 0.658 * 0.28 

2move  (second level) 0.449 ** 0.179 

3move  (second level) 0.791 * 0.319 

Likelihood-ratio test for IIA ( 1 ) :   χ2 = 13.93 ***   
Wald test:   χ2 = 440.94 ***    
Likelihood-ratio index (McFadden’s R2) = 0.231   

 
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 
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Likelihood-ratio tests for the independence of irrelevant alternatives (IIA), 

recommended by Greene (2000), suggest that the nesting is appropriated for the models. 

To perform this test, the model is fitted with and without the restriction that the 

inclusive parameters of the non-degenerated branches are equal to one. A chi-squared 

test statistic is computed by taking twice the difference in the log likelihood functions 

with the degree of freedom equal to number of restrictions imposed. The test statistic of 

the models estimated for lower-, middle-, and higher-income households are 51.19, 

30.90, and 12.03, respectively, and the critical values for a one-tailed 1% test is 1.35. 

Hence, we reject the null hypothesis that the inclusive parameters of the non-

degenerated branches are equal to one.   

The values of the inclusive parameters need to lie within the interval (0,1) in 

order to be considered consistent with utility-maximizing behavior for all possible 

values of the explanatory variables (Börsch-Supan 1990; Herriges and Kling 1996; 

McFadden 1977).  A two-tailed test at a 95% confidence level suggests that this 

parameter estimate is significantly different from 1 and 0, which indicates a degree of 

similarity among unobserved factors within each non-degenerated nest. Both tests 

indicate that, for this dataset, the specified nested logit models are adequate to 

characterize household mobility and neighborhood choice.  

The goodness of fit for the models was assessed through the Wald's chi-

squared statistic and the likelihood-ratio index (or McFadden’s pseudo R2). The Wald 

tests show that the empirical NMNL is highly significant (p<0.001) in explaining 

household mobility and neighborhood choice of all income groups. The likelihood-ratio 

indices of the nested logit models estimated for households with lower, middle, and 

higher income are, respectively, 0.231, 0.225, and 0.206. These likelihood-ratio indices 

indicate the gain in the likelihood function due to the independent variables, i.e., how 

well the estimated model performs compared with a model in which all the parameters 

are zero. The ‘percentage of correctly predicted choices’ was not considered to evaluate 

the goodness-of-fit of the models. This statistic is based on the idea that the best 

prediction for each case is the alternative with the highest probability, which, according 

to Train (2003 : 73), is a notion ‘opposed to the meaning of probabilities and the 

purpose of specifying choice probabilities’. In models like the ones presented in this 

section, where the predicted probability of ‘staying’ is the highest for all cases, we 
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would assume that the alternatives associated with ‘moving’ would never be chosen 

when, in fact, there is a probability that it may occur.    

 

 

Table 5.6 NMNL estimations for middle-income households (N observations = 
47432, N cases = 2156, choice ‘stay’ as the base case) 

Level Choice Variable Coef. Std. err. 
 
1st 

 
Move 

Age of the household head (
ageH ) -0.046 *** 0.007 

Renter (
renterH ) 2.243 *** 0.466 

Renter * household income (
incomerenterH *

) 4.5(10-5) 2.9(10-4) 

 
 
 
 
 
 
 
2nd 

 
Move within  
The same 
neighborhood 

 
Constant (

1moveC ) 
 
-2.123 *** 

 
0.524 

Real estate offers (
offersN ) 4.5(10-4) 4.9(10-4) 

 
 
Move to the 
same type of 
neighborhood 

Constant (
2moveC ) -2.631 *** 0.765 

Real estate offers (
offersN ) 1.9(10-3) *** 7.1(10-4) 

Type B neighborhood ( BN ) 0.515 0.447 

Type C neighborhood (
CN ) 0.446 0.610 

Infrastructure * Type C (
raN inf

*
CN ) 0.191 0.454 

 
Move to 
another  
type of 
neighborhood 

Constant (
3moveC ) -2.451 *** 0.676 

Real estate offers (
offersN ) 1.9(10-3) *** 7.5(10-4) 

Type B neighborhood ( BN ) 0.308 0.261 

Type C neighborhood (
CN ) -0.432 0.743 

Infrastructure * Type C (
raN inf

*
CN ) 0.567 0.798 

 
 
3rd 

 
 
Generic 
variables 

Land price/ income (
incpriceHN /

 ) -0.004 0.011 

Distance from original residence (
distN ) -11.1(10-5)*** 4.2(10-5) 

Distance to CBD (
CBDN ) 

Prop. of middle-income families (
middleN ) 

1.9(10-5) 
 
1.435 * 

1.8(10-5) 
0.740 

 
Dissimilarity Parameters 

move  (first level) 0.752 0.284 

2move  (second level) 0.292 0.113 

3move  (second level) 0.453 0.196 

Likelihood-ratio test for IIA ( 1 ) :   χ2 = 20.41 ***   
Wald test:   χ2 = 262.54 ***    
Likelihood-ratio index (McFadden’s R2) = 0.225   
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels.
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Table 5.7 NMNL estimations for high-income households (N observations = 
25278, N cases = 1149, choice ‘stay’ as the base case) 

Level Choice Variable Coef. Std. err. 
 
1st 

 
Move 

Age of the household head ( ageH ) -0.040*** 0.011 

Renter (
renterH ) 2.542*** 0.425 

Renter * household income (
incomerenterH *

) -9.4(10-5) -7.5(10-5) 

 
 
 
 
 
 
 
2nd 

Move within  
the same 
neighborhood 

 
Constant (

1moveC ) 
 
-2.532 *** 

 
0.693 

 
Move to the 
same type of 
neighborhood 

Constant (
2moveC ) -2.464 *** 0.855 

Type A neighborhood ( AN ) 0.477 0.661 

Type B neighborhood ( BN ) 0.062 0.495 

Kids * Type A (
AkidsHN ,

) -0.368 0.636 

Move to another  
type of 
neighborhood 

Constant (
3moveC ) -3.457 *** 1.053 

Type A neighborhood ( AN ) -0.256 0.732 

Type B neighborhood ( BN ) 1.760 *** 0.709 

Kids * Type A (
AkidsHN ,

) 1.49 ** 0.784 

 
 
 
3rd 

 
 
 
Generic  
variables 

Land price/ income (
incpriceHN /

 ) -0.084 0.053 

Real estate offers (
offersN ) 1.4(10-3) *** 5.1(10-4) 

Distance from original neighborhood (
distN ) -4.9(10-5) ** 2.5(10-5) 

Distance to CBD (
CBDN ) 2.3(10-5) 2.9(10-5) 

Prop. of high-income families (
higherN ) 0.960 ** 0.503 

 
Dissimilarity Parameters 

move  (first level) 0.666 0.290 

2move  (second level) 0.384 0.139 

3move  (second level) 0.552 0.213 

Likelihood-ratio test for IIA ( 1 ) :   χ2 = 11.0 ***   
Wald test:   χ2 = 104.67 ***    
Likelihood-ratio index (McFadden’s R2) = 0.206   
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 

 

The NMNL estimations confirmed all the first-level hypotheses, which regard 

the households’ choice of moving or staying. The coefficients estimated for the 

variables age and tenure status of the household head ( ageH  and 
renterH ) are highly 

significant for the mobility decisions of all income groups. The sign of the coefficient 

for variable ageH  indicates that an increase in age of the household head is associated 

with a lower probability to move. This result is consistent with the Hypothesis 1 

(section 5.2.3), which states that demographic events that motivate a change of 

residence affect younger heads of household more often. On the other hand, the 

estimated coefficient for the variable 
renterH  indicating that the tenure status ‘renter’ 
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increases the households’ probability of moving to another residence, which is a result 

that corroborates Hypothesis 2.  

The variable interacting the tenure status renter with the household income 

(
incomerenterH *

) was significant for poor households. This result confirms Hypothesis 3 by 

showing that as the income of poor renters increases, all other variables being constant, 

their mobility rate decreases. This is an indication that renters with lower income are 

more vulnerable to constant changes in residence due to their economic constraints. As 

expected, as soon as the analysis shifts the focus towards renters belonging to a higher-

income level, the coefficients estimated for the variable 
incomerenterH *

 are not significant. 

Regarding the second level of the NMNL, which focuses on the neighborhood 

type choice, the coefficient of all alternative-specific constants (
1moveC ,

2moveC , and 
3moveC ) 

were negative and highly significant. The negative effect of these constants corroborates 

Hypothesis 4 by showing that, over the course of a year, households are more likely to 

stay in their current residence than to move. These results also provide new insights: 

They suggest that, for the groups with lower and higher income, the alternative ‘moving 

to another type of neighborhood’ provides a higher decrease in utility than the other 

moving alternatives. In other words, the poorest and the richest households are those 

with a higher resistance to move to another type of neighborhood.   

In accordance with Hypothesis 5, the estimated coefficients for the variable 

distN  suggest that the disutility of moving is intensified when the distance from the 

original place of residence increases. The coefficients of 
distN  are negative and 

significant at a 99% confidence level for lower-income households and at 95% for the 

other income groups. Since previous estimations of model showed that 
distN  coefficients 

did not vary amongst the second-level alternatives, 
distN  was considered as a generic 

variable, and its coefficients were jointly estimated at the third level of the model. 

The impact of the land and real estate market on households’ residential decisions, 

which is the focus of hypotheses 6 and 7, was tested through the variables average land 

price in the neighborhood divided by the head of household income  

(
incpriceHN /

), and the number of market offers in the neighborhood (
offersN ). The 

NMNL models did not support Hypothesis 6, which was tested through the variable 

incpriceHN /
 and states that households prefer to spend a smaller portion of their income 
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on housing. The coefficients estimated for variable 
offersN  corroborate Hypothesis 7, 

which states that new housing developments increase the attractiveness of 

neighborhoods. In the model for middle- and lower-income families, the 
offersN  

coefficients are positive and significant for the alternatives ‘move to the same type of 

neighborhood’ and ‘move to another type of neighborhood’. In the model for high-

income households, the variable 
offersN  could be included as generic (no difference 

amongst second-level alternatives), and its estimated coefficients are also positive and 

significant at a 99% confidence level. 

The estimated coefficients for the variable distance to CBD (
CBDN ) do not 

corroborate the hypotheses that households tend to choose the most accessible 

neighborhoods (Hypothesis 8). Similar results have been obtained by other researchers, 

such as Molin and Timmermans (2003), who advocate that accessibility can be 

considered less important than other neighborhood attributes in the case when people 

are able to afford flexible means of transportation. In the case of poor households, 

however, the estimated coefficients reveal that the variable 
CBDN  has a positive and 

significant effect on the residential choice of those families who move to another 

neighborhood. This suggests that recent moves of poor families have pushed them 

further from the center of the city. In the case of these families, it is likely that they have 

chosen to face increasing commuting time in exchange for lower housing prices and the 

possibility of ownership. 

The hypothesis that households tend to choose places with a higher proportion 

of the neighborhood belonging to their own income group was confirmed by the NMNL 

models estimated for low- and high-income households. In the model for low-income 

households, the variable proportion of low-income neighbors (
lowerN ) is significant for 

the alternatives ‘move to the same type of neighborhood’ and ‘move to another type of 

neighborhood’. This suggests that poor households who decided to move to a new 

neighborhood have chosen places with a higher concentration of poverty. In the model 

for high-income households, the estimated coefficients for the variable proportion of 

high-income neighbors (
higherN ) did not diverge amongst the second-level alternatives 

and, therefore, 
higherN  was included as generic variable in the final NMNL model.   
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The dummy variables for neighborhood types were included in the model in order to 

test the hypotheses 10, 11, and 12, which deal with neighborhood types that aremore 

likely to be chosen by different income groups ( AN  and BN  for high income, BN  and 
CN  

for middle income, 
CN  and DN  for low income). However, due to multicolinearity 

constraints, these variables were only included for the two second-level alternatives that 

include moving to a new neighborhood. The model estimated for poor households 

suggests that, when moving to another type of neighborhood, families are more likely to 

choose type C and D neighborhoods. This idea is supported by the coefficients of the 

variables 
CN  and DN , which are significant and positive when estimated for this second-

level alternative.  

Nevertheless, the coefficients of the variable 
eduH * BN  indicate that poor 

households increase their chances to move to less segregated neighborhoods (type B) if 

their head has a higher education level. This suggests that higher levels of education can 

decrease the vulnerability of poor families with respect to problems associated with the 

concentration of poverty, like violence and discrimination. However, the hypotheses 

relating education and size of poor families to the chance of moving to irregular 

neighborhoods (type D) were not confirmed by the NMNL model. The model also did 

not corroborate the hypothesis regarding the likelihood of middle-class families to move 

to type B and C neighborhoods (Hypothesis 11).  

In the case of high-income households, the coefficients estimated for the 

variables type B ( BN ) and type A interacted with presence of children (
AkidsHN ,

) suggest 

that these households are more likely to move to another type of neighborhood if the 

new neighborhood is classified as type B and, in case they have children, as type A. The 

latter result corroborates the hypothesis that affluent households with children are more 

likely to choose gated neighborhoods or condominiums in order to guarantee the 

family’s safety.  
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5.3 Urban landscape dynamics 

As observed above, the residential choice behavior of households is influenced by many 

aspects related to the urban landscape. Therefore, it is necessary to consider the 

dynamics of this system when simulating urban segregation. In the MASUS model, the 

main dynamics of the urban landscape system are driven by four sub-models: urban 

sprawl (U-SPRAWL), dwelling offers (D-OFFERS), infrastructure quality (INFRA), 

and land value (L-VALUE). The parameterization of these sub-models based on São 

José dos Campos data is presented in the following.  

 

5.3.1 Urban sprawl 

Urban sprawl is the spreading of urban developments over undeveloped land at the 

fringe of a city (Gillham and MacLean 2002). In the MASUS framework, urban sprawl 

represents the appearance of new residential areas that can be considered by the 

households during their decision-making process. The sub-model U-SPRAWL, which 

simulates the urban sprawl dynamics, consists of two phases (section 4.3.2): the 

transitional phase, responsible for quantifying the total sprawl that is expected to occur 

in the period 1 tt , and the allocation phase, which indicates the location of this 

sprawl.  

 

Transitional phase 

The U-SPRAWL sub-model uses Markov chain to compute the annual global transition 

probability UNUP  , which accounts for the probability of a landscape patch to change 

from ‘non urban’ (NU)  to ‘urban’ (U) (see section 4.3.2). For estimating the UNUP  , 

this study used two thematic maps of the urban areas in São José dos Campos of 1990 

and 2000 (Figure 5.4). These maps were generated by Feitosa (2005) from satellite 

images LANDSAT-5/TM (INPE 1990) and LANDSAT-7/TM (INPE 2000). 
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Figure 5.4 Urbanized areas in São José dos Campos in 1990 and 2000 (Feitosa, 
2005). 

 

In order to obtain parameters that are compatible with the data used in the 

MASUS simulations, the vector-GIS data corresponding to the urban areas in São José 

dos Campos in 1990 and 2000 were loaded into NetLogo 4.0.4 (Wilensky 1999). For 

that, a surface of landscape patches (100 m x 100 m) corresponding to the study area 

was defined in NetLogo (world), and the properties of the GIS data features (urban or 

non-urban) were imported as binary landscape patch variables urban 1990 and urban 

2000. Additional vector-GIS data containing areas that should be excluded from the 

analysis (parks, industrial and institutional areas, protected areas, rivers, etc.) were also 

incorporated into NetLogo. From the resulting ‘NetLogo world’, it was possible to 

perform queries about the transition of landscape-patch states during the period 1990-

2000. The results of these queries were used for computing global transition 

probabilities for land-use change (Table 5.8). 

 

Table 5.8 Matrix of global transition probabilities for São José dos Campos, 1990-
2000 (N = 26,168 patches) 

Land Use Non-Urban (NU) Urban (U) 

Non-Urban (NU) 0.9120 (18,053 patches) 0.0872 (1,725 patches) 

Urban (U) 0 (0 patches) 1 (6,390 patches) 
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The global transition probability for non-urban to urban (Table 5.8) covers the time 

period of 10 years, while each simulation cycle executed in MASUS represents the 

period of 1 year. For this reason, it was necessary to decompose the original transitional 

probability by using the principal components method in order to obtain the annual 

global transition probability ( UNUP  ). This procedure was conducted according to 

Equation 5.8  (Bell and Hinojosa 1977):  

 

P n = H  V n H -1   ,                                                       (5.8) 

 

Where:  P is the matrix of global transition probabilities, H is the eigenvector matrix,   

H -1  is the transposed eingenvector matrix, V is the eigenvalue matrix, and n is 

the number of steps.  

 

The global transition probability UNUP   estimated from São José dos Campos 

data is equal to 9.05(10-3). In the U-SPRAWL sub-model, this value accounts for the 

annual probability of a non-urban landscape patch changing the value of its binary 

variable ‘urban use’ ( urbanL ) to 1. The UNUP   is provided by the user while setting the 

initial state of the simulation. Once the U-SPRAWL sub-model is executed, which 

occurs at the end of each simulation cycle (section 4.4), the UNUP   is multiplied by the 

total number of non-urban patches at time t, and the resulting value is equivalent to the 

total number of non-urban patches that will change the status to urban during the period 

1 tt  ( urbannewT  ). The urbannewT   is stored as a global variable of the 

EntireLandscape and retrieved in the following phase of the U-SPRAWL sub-model, 

when the new urban cells are allocated. 

 

Allocation phase 

The allocation phase is responsible for indicating which non-urban patches convert their 

use to urban during the period 1 tt . It relies on a binary logistic regression to 

compute the local transition probability of a non-urban patch becoming urban ( UNUp  ). 

For estimating the binary logistic regression of the U-SPRAWL allocation phase, the 

dependent variable is transition to urban (1) or not (0) (Ltransition). Since data about 
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urban areas in São José dos Campos had been already loaded into NetLogo, the 

dependent variable Ltransition was computed for each landscape patch that was not urban 

in 1990, based on the information about its state transition during the period 1990-2000. 

The variable Ltransition is equal to 1 in case the non-urban patch became urban during 

1990-2000, and is equal to 0 otherwise.  

Based on the hypothesis that the transition from non-urban to urban is more 

likely to occur for patches located close to urbanized areas and with a better 

accessibility, the variables distance to closest urban patch (
urbandL  ), number of urban 

patches within a 700 m radius (
urbanneighL 

), number of households living within a 700 m 

radius (
popneighL 

), distance to roads (
roadsdL  ) and distance to CBD (

CBDdL  ) were 

included in the model (Table 5.9). For each non-urban patch, the variables 
urbandL  and 

urbanneighL 
 were computed in NetLogo considering the location of the patches that were 

urbanized in 1990. To compute the variable 
popneighL 

, it was necessary to import 

household micro-data obtained from the Census 1991 into NetLogo  (see section 6.2.1). 

The accessibility-related variables, 
roadsdL   and 

CBDdL  , were obtained from GIS-based 

calculations and then loaded into NetLogo as landscape-patch variables. To calculate 

the distance to roads (
roadsdL  ), a road map provided by the municipal government of São 

José dos Campos (PMSJC 2003) was used.  

The variable 
slopeL  was selected based on the hypothesis that terrain slope can 

represent an environmental constraint that inhibits urban occupation. The terrain slope 

was obtained from GIS-based calculations on a topographic map (scale 1:20000) 

provided by the municipal government of São José dos Campos (PMSJC 2003). 

Afterwards, the data were loaded into NetLogo as a landscape-patch variable. Other 

environmental constraints that can also inhibit urban occupation are represented by the 

zoning variables as protected 1 and protected 2 (
1protL  and 

2protL ). The difference 

between the both types of protected zones is the degree of restriction on residential 

occupation. According to the zoning legislation, areas assigned as protected 1 cannot be 

occupied, while the areas protected 2 can have a limited occupation.  
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Table 5.9 Explanatory variables for the U-SPRAWL binary logistic regression 

Variable Description Expected 
effect 

Source 

urbandL   Distance to the closest urban patch (-) NetLogo-based 
calculations 

urbanneighL 
 Number of urban patches within a 700 

m radius 
(+) NetLogo-based 

calculations 

popneighL 
 Number of households living within a 

700 m radius 
(+) Census data + 

NetLogo-based 
calculations 

roadsdL   Distance to main roads (-) GIS-based 
calculations 

CBDdL   Distance to Central Business District 
(CBD) 

(-) GIS-based 
calculations 

slopeL  Terrain slope (-) GIS-based 
calculations 

1protL  Zoning: protected area 1 (no residential 
occupation) 

(-) Zoning map 

2protL  Zoning: protected area 2 (allows limited 
residential occupation) 

(-) Zoning map 

resL  Zoning: residential area (+) Zoning map 

mixedL  Zoning: mixed area (+) Zoning map 

indL  Zoning: predominantly industrial area (+) Zoning map 

socialL  Zoning: area of social interest (+) Zoning map 

vacantL  Zoning: vacant urban land (+) Zoning map 
 

Additional zoning variables were also included in the binary logistic model: 

the variable 
resL represents zones that are exclusive for residential use; 

mixedL  represents 

mixed zones where residential, commercial and institutional uses are allowed;  
indL  

represents zones that are mainly industrial, although other uses are also allowed; 
socialL  

are areas of social interest, i.e., areas selected for social housing projects; and 
vacantL  are 

areas of vacant urban land. These variables should have a positive effect on the 

transition of non-urban patches to urban because they represent zones that expect some 

degree of residential occupation (Table 5.10). All the zoning variables were extracted 
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from the map of São José dos Campos’ Zoning Law 3721/1990 (PMSJC 1990) and 

incorporated into NetLogo.  

 

Table 5.10 Estimated parameters for binary logistic model (N = 19,778) 
Variable Coef. Std. err. 
Distance to the closest urban patch (

urbandL  ) -1.3(10-3)*** 1.0(10-4) 

Number of urban patches within a 700 m radius  
(

urbanneighL 
) 

5.8(10-2) *** 0.01 

Number of households living within a 700 m radius  
(

popneighL 
) 

1.4(10-3) *** 2.1(10-4) 

Distance to main roads (
roadsdL  ) -1.1(10-4) 0.9(10-4) 

Distance to CBD (
CBDdL  ) 1.5(10-4) *** 2.4(10-5) 

Terrain slope (
slopeL ) 5.6(10-4)  3.9(10-4) 

Zoning: protected area 1 – no residential occupation  

(
1protL ) 

2.41*** 0.19 

Zoning: protected area 2 - allows limited residential 
occupation (

2protL ) 
4.27*** 0.34 

Zoning: residential area (
resL ) 4.63*** 0.25 

Zoning: mixed area (
mixedL ) 3.06*** 0.17 

Zoning: predominant industrial area (
indL ) 8.09*** 1.02 

Zoning: area of social interest (
socialL ) 3.90*** 0.18 

Zoning: vacant urban land (
vacantL ) 1.21*** 0.19 

Constant -5.56*** 0.24 
Chi-square test:   χ2 = 4597.84 ***  
Cox & Snell R2 = 0.207 
Nagelkerke R2 = 0.465 

  

Percent of correct predictions 
Predicted Ltransition = 0 Ltransition = 1 Overall 

(N=19,778) 
% Correct 90.9 68.1 89 

% Incorrect 9.1 31.9 11 
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 

 

The goodness-of-fit for the model was assessed through the chi-square test, the 

Cox&Snell pseudo-R2, the Nagelkerke pseudo-R2, and the percent of correct prediction 

(Table 5.10). The chi-square test for fit resulted in a highly significant chi-square 

statistics (p<0.001), which rejects the null hypothesis that the model coefficients as a 

group are equal to zero. The Cox&Snell R2 reflects the improvement of the full model 

over the intercept model, and it is equal to 0.207. Because its maximum value is less 
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than 1, the Nagelkerke R2 adjusts it so that the range of possible values extends to 1. The 

Nagelkerke R2 for the model is equal to 0.465. The overall percent of correct predictions 

is equal to 89%. 

With the exception of the variables 
slopeL  and 

roadsdL  , all the explanatory 

variables were highly significant. The signs on the parameter estimates for 
urbandL  , 

urbanneighL 
, 

popneighL 
, 

resL , 
mixedL , 

indL , 
socialL , and 

vacantL  support the hypotheses outlined 

earlier. On the other hand, the parameter estimates for distance to CBD (
CBDdL  ), 

protected area 1 (
1protL ), and protected area 2 (

2protL ) revealed unexpected findings.  

The sign on the estimated coefficient for 
CBDdL   opposes the original idea that non-urban 

patches close to the CBD are more likely to become urban. This finding is an indication 

that local policy makers in São José dos Campos have not established an effective 

policy to control the speculative retention of land in areas with infrastructure. This leads 

to unnecessary urban sprawl, which increases the need for investments in the expansion 

of infrastructure networks and promotes large-scale segregation of the poor.    

The positive signs on the parameter estimated for 
1protL  and 

2protL  contradict 

the hypothesis that these protected areas are less likely to become urban. This indicates 

a deficiency in the state control over these areas during the period 1990-2000. In the 

case of 
2protL , this finding is particularly important, since these areas were not supposed 

to have any type of human occupation. 

In the U-SPRAWL sub-model, the binary logistic regression specified and 

estimated in this section is used for computing the local transition probability of a non-

urban patch becoming urban (
UNUp  ). These non-urban patches are then sorted by 

UNUp   in decreasing order. Following this rank, a random number evenly distributed 

over [0,1] is generated for each patch and compared to its 
UNUp  . In case the random 

number is smaller than 
UNUp  , the state of the non-urban patch is converted to urban. 

The U-SPRAWL sub-model repeats this procedure until the total number of new urban 

patches reaches the value established in the transitional phase (
urbannewT  ).  
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5.3.2 Dwelling offers 

The housing stock plays an important role in the household residential dynamics, since 

it may discourage or motivate their choice for a certain neighborhood. In the MASUS 

framework, the dwelling offers (D-OFFER) sub-model is responsible for simulating the 

dynamics of the housing stock in a city (section 4.3.2). Like the urban sprawl sub-

model, the D-OFFER has two phases: the transitional phase, which quantifies the 

overall gain and loss of dwelling offers during the period 1 tt , and the allocation 

phase, which indicates the patches that gained and lost dwellings during the same 

period.  

 

Transitional phase 

The transitional phase computes three global variables related to the housing stock 

dynamics in the period 1 tt : total number of dwellings in t+1 (
dwe

t T1 ), total 

number of dwelling loss during 1 tt  (
lossdweT  ), and total number of new dwellings 

during 1 tt  (
gaindweT 

). To obtain 
dwe

t T1 , it is necessary to compute the housing 

stock of the city, which is equivalent to the proportion 
stock  of the occupied dwellings 

in t+1 (equation (4.29)). In the D-OFFER sub-model, the housing stock was considered 

as equivalent to 8% of the occupied dwellings in the city (
stock  = 0.08). This estimation 

was provided by the Association of Construction Companies in Vale do Paraíba 

(ACONVAP), based on real estate market surveys conducted by the association. 

Although in reality this number varies along the years, the current version of MASUS 

considers it as constant.  

The total number of dwelling loss during 1 tt  (
lossdweT  ) is equal to a 

proportion 
loss  of the total number of dwellings in the city (equation (4.30)). Since there 

is no available data about the loss of residential dwellings due to the expansion of non-

residential uses, this value was estimated from the 1991 and 2000 census data. For that, 

the population in the census tract was considered as a proxy of the housing stock in that 

area. The census tracts that presented a decrease in population during the period 1991-

2000, which are those located close to downtown, were selected. The total household 

loss in these areas was considered as a proxy of the total loss of residential dwellings 

during the period. Decomposing it to an annual rate, 0.6% of the total dwellings are 
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converted to non-residential uses (e.g., offices and shops) over the period of an year 

(
loss =0.006).  

Finally, after obtaining 
dwe

t T1  and 
lossdweT  , the number of new dwellings to be 

created during 1 tt  (
gaindweT 

)  can be computed according to the equation (4.31). 

 

Allocation phase 

The allocation phase indicates where the gain and loss of dwellings will take place and, 

based on that, updates the landscape-patch variables total number of dwellings (
dweL ) 

and dwelling offers (
offerdweL 

). This process relies on two linear regression models: One 

that predicts the loss of dwellings in landscape patches (Yloss), and another that predicts 

the gain of dwellings (Ygain) (Table 5.11). For estimating these models, the annual 

average decrease in residents living in the landscape patch during the period 1991-2000 

was considered as a proxy of Yloss, while the annual average increase in residents living 

in the patch was considered as a proxy of Ygain. The variables Yloss and Ygain were 

computed in NetLogo, after importing the household micro-data obtained from the 

censuses 1991 and 2000 into a NetLogo world (see section 6.2.1).  

Regarding the model that estimates the loss of dwellings (Yloss), the landscape-

patch variables number of households (
popL ), distance from CBD (

CBDdL  ), and land 

value (
valueL ) are considered in the model based on the hypothesis that the expansion of 

commercial use into residential neighborhoods usually happens in areas that are densely 

populated, close to downtown, and with high land values. Because the landscape 

patches have the same size, the 
popL  is equivalent to population density.  

In addition, the expansion of other land uses into residential areas should only 

happen in areas where non-residential uses are allowed. Thus, the zoning variables 

representing areas adequate for commercial, service, and industrial uses are included in 

the model ( popCZL * , popMZL *1 , popMZL *2 , popITZL * , and popPIZL * ). These variables were 

interacted with popL , assuming that dwelling losses only occur where there is a 

residential occupation.  
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Table 5.11 Descriptive statistics and sources of dependent and explanatory variables 
for the linear regression models for estimating the loss of dwellings 
(model 1) and gain of dwellings (model 2) in landscape patches (Yloss)  , 
N = 6,247. 

Variable Description Min Max. Mean Std. 
dev. 

Model/ 
Expected 
effect 

Source 

 Yloss Loss of dwellings 
dependent variable of 
model 1  

0 18 0.324 0.8 1 

dependent 

Census data + 
NetLogo-based 
calculations 

 Ygain Gain of dwellings 
dependent variable of 
model 2 

0 39 0.789 2.7 2 

dependent 

Census data + 
NetLogo-based 
calculations 

CBDdL    Distance from CBD (m) 0 13596 5299 3030 1 (-) 

2 (+) 

GIS-based 
calculations 

roadsdL    Distance from main 
roads (m) 

0 1487 141.2 176.9 2 (-) GIS-based 
calculations 

valueL  Land value (minimum 
wages/m2) 

0.03 3.602 1.015 0.626 1 (+) 

2 (-) 

Property 
advertisements 

popL  Number of households 
(population density) 

1 280 16.91 14.74 1 (+) 

2 (-) 

Census data + 
NetLogo-based 
calculations 

FARL  Floor Area Ratio (FAR) 0.02 4.00 2.49 0.74 2 (+) Zoning map 

FARpopL /
 

popL divided by the 

FAR 

0.25 3050 8.62 50.25 1 (+) Zoning map + 
NetLogo-based 
calculations 

popCZL *
 Central zone multiplied 

by 
popL  

0 62 0.372
7 

3.09 1 (+) Zoning map + 
NetLogo-based 
calculations 

popMZL *1
 Mixed zone 1 (FAR = 

1.3) multiplied by 
popL  

0 81 0.398
3 

3.40 1 (+) Zoning map + 
NetLogo-based 
calculations 

popMZL *2
 Mixed zone 2 (FAR = 

3) multiplied by 
popL  

0 164 2.41 8.44 1 (+) Zoning map + 
NetLogo-based 
calculations 

popITZL *
 Industrial transition 

zone multiplied by 

popL  

0 52 0.06 1.35 1 (+) Zoning map + 
NetLogo-based 
calculations 

popPIZL *
 Predominant industrial 

zone multiplied by 

popL  

0 171 0.28 2.94 1 (+) Zoning map + 
NetLogo-based 
calculations 

 

Areas that, according to the zoning legislation, reach an occupation level near 

the saturation point are also more likely to lose residential dwellings due to the 

expansion of other uses. For this reason, the variable 
FARpopL /

 is considered in the model. 

This variable divides 
popL  by the Floor Area Ratio (FAR) specified for the area. The 
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FAR is a zoning instrument for controlling the density and size of buildings. Each 

zoning district has an FAR control which, when multiplied by the lot area of the zoning 

lot, produces the maximum amount of floor area allowable in a building on the zoning 

lot. Landscape patches with high values for  
FARpopL /

 are closer to the saturation point 

established by the zoning legislation than those with low 
FARpopL /

. 

The F-statistic test indicates that the linear regression model is able to explain 

significantly the variation of the loss of dwellings (p < 0.001) (Table 5.12). The R2 of 

0.53 means that 53% of the observed variance of dwelling loss is explained by the 

model.  

 

Table 5.12 Results of the linear regression model for estimating the loss of dwellings 
in landscape patches (Yloss), N=6247. 

Variable Unstandardized 
coefficient 

Std. 
error 

(Constant) -0.234*** 0.019 
Distance from CBD (

CBDdL  ) -3(10-7) 0.000 

Land value (
valueL )      0.005       0.004

Number of households (
popL ) 0.030*** 0.001 

popL  divided by FAR (
FARpopL /

) 0.001** 0.000 

Central zone multiplied by 
popL  (

popCZL *
) 0.020*** 0.003 

Mixed zone 1 (FAR=1.3) multiplied by 
popL  0.012*** 0.002 

Mixed zone 2 (FAR=3) multiplied by 
popL  0.005** 0.001 

Industrial transition zone multiplied by 
popL  (

popITZL *
) 0.027*** 0.006 

Predominant industrial zone multiplied by 
popL  (

popPIZL *
) 0.058*** 0.003 

F-statistic test: F = 729.89 ***  
R2 = 0.532 
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 

 

Explanatory variables that have significant effects on dwelling loss are 
popL  

(+),
FARpopL /

(+), 
popCZL *

 (+), 
popMZL *1

 (+), 
popMZL *2

 (+), 
popITZL *

 (+), 
popPIZL *

(+). The 

directions in which these variables operate (all positive) support the hypotheses related 

to the importance of population density, zoning variables, and the interaction between 

both for the loss of dwellings, since they are able to encourage the expansion of non-

residential land uses. 
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Regarding the linear regression model that estimates the gain in dwellings (Ygain), the 

explanatory variables 
popL  , 

valueL  and 
CBDL  were included in the model based on the 

hypothesis that urban patches with low occupancy, low land prices, and distant from 

CBD are more likely to attract new investments in residential developments (Table 

5.13). In addition, the model includes the variable distance to main roads (
roadsdL  ), 

based on the hypothesis that real estate developers prefer to invest in areas that can be 

easily accessed by roads. The floor area ratio (FAR) defined by the zoning legislation is 

also likely to influence the attractiveness of urban patches for real estate developers. 

Areas with high FAR can accommodate more residences, especially in those areas 

where the occupancy has not reached a saturated level. To test this hypothesis, the 

variables FARL  and 
FARpopL /

 were considered in the model.  

 

Table 5.13 Results of the linear regression model for estimating the gain of 
dwellings in landscape patches (Ygain), N=6,247. 

Variable Unstandardized 
coefficient 

Std. 
error 

(Constant) 0.212*** 0.076 
Distance from CBD (

CBDdL  ) 6.4(10-5) *** 0.000 

Distance from main roads (
roadsdL  ) -0.001*** 0.000 

Land value (
valueL ) 0.008 0.006 

Number of households (
popL ) -0.046*** 0.001 

Floor area ratio - FAR ( FARL ) 0.261*** 0.024 

popL  divided by FAR (
FARpopL /

) 0.001 0.001 

F-statistic test: F = 647.52 ***  
R2 = 0.483 
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 

 

The F-statistic presents a significant value (p < 0.001) and shows that the 

model is capable of explaining the increase in residential units. The R2 of 0.48 indicates 

that 48% of the observed variance in the gain in dwellings can be explained by the 

model.  

Explanatory variables that have significant effects on the dwelling gain are 

CBDdL   (+),
roadsdL  (-), 

popL  (-), and FARL  (+). All the significant variables presented the 

expected effect on the model, confirming the hypothesis that an increase in residential 

units tends to occur in areas that are distant from downtown and less densely populated 
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(more availability of land), close to roads (better accessibility), and with higher floor 

area ratio (permission for higher building density). 

The D-OFFER sub-model adopts the results from both linear regression models (Table 

5.12 and 5.13) to estimate the Yloss and Ygain of each urban patch during a simulation 

cycle. Since the sum of dwelling loss and gain has to meet the global values computed 

in the transitional phase (
lossdweT   and 

gaindweT 
, respectively), the local transitions Yloss 

and Ygain are normalized by a factor (equations (4.34) and (4.35)). Then, new values for 

the landscape-patch variables total number of dwellings (
dweL ) and dwelling offers 

(
offerdweL 

) are computed according to the equations (4.36) and (4.37). 

 

5.3.3 Infrastructure 

The infrastructure sub-model (INFRA) simulates the dynamics of the landscape-patch 

variable infrastructure (Linfra), which is a composed index that ranges from 0 to 1, and 

represents the provision of water, sewage, and garbage collection. This sub-model relies 

on a linear regression equation that explains the annual improvement in Linfra (Yinfra) 

(Table 5.14 and 5.15). To obtain the dependent variable Yinfra, the difference between 

the infrastructure quality (Linfra) in 1991 and 2000 was calculated in NetLogo and 

divided by 9, which is the number of years covered during the period 1991-2000. 

Based on the hypothesis that patches with better accessibility are more likely 

to achieve higher infrastructure quality, the variables distance from CBD (
CBDdL  ) and 

distance from main roads (
roadsdL  ) were included in the model as explanatory variables 

and are expected to have a negative effect. Considering that the municipal government 

is constantly expanding the provision of water, sewage, and garbage collection, the 

magnitude of the infrastructure improvement (Yinfra) tends to be higher in those areas 

that had very little or no infrastructure. For this reason, the infrastructure quality index 

(Linfra) was considered in the model and it is expected to have a negative effect on Yinfra. 

Public investments also tend to be prioritized in the most densely populated 

areas. To capture this aspect, the variable number of households ( popL ) was included in 

the model and is expected to have a positive effect. Finally, because public investments 

in infrastructure exclude settlements that do not belong to the ‘legal city’, the binary 
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variable irregular settlement ( DL ) was also considered and is expected to have a 

negative effect.  

     

Table 5.14 Descriptive statistics and sources of dependent and explanatory variables 
for the linear regression model for estimating annual improvement in the 
infrastructure of landscape patches (Yinfra), N = 6,781. 

Variable Description Min Max. Mean Std. 
dev. 

Expected 
effect 

Source 

 Yinfra Annual 
improvement in 
the infrastructure  

0 0.111 0.011 0.018 Dependent 
variable 

 

Census data  

popL  Number of 
households 
(population 
density) 

1 280 16.87 14.32 (+) 

 

Census data + 
NetLogo-
based 
calculations 

CBDdL    Distance from 
CBD (m) 

0 13730 5489 3149 (-) GIS-based 
calculations 

roadsdL   Distance from 
main roads (m) 

0 1341 142.9 175.65 (-) GIS-based 
calculations 

t-1Linfra Infrastructure 
quality index in 
the previous year 

0 1 0.848 0.262 (-) Census data 

DL  Irregular 
settlements  

(type D) 

   Binary variable: 

      0 (6276 patches – 92.6%) 

      1 (505 patches – 7.4%) 

(-) Neighborhood 
type map 

 

The F-statistic test indicates that the model is able to explain significantly the 

annual improvement in the infrastructure index (p<0.001) (Table 5.15). The R2 of 0.841 

means that 84.1 % of the variation in Yinfra  is explained by the model. This indicates a 

very good fit of the model to the observed data. All explanatory variables presented 

significant effects on the improvement in the infrastructure index. The direction in 

which these variables operate support the hypotheses presented in the above.  

The INFRA sub-model adopts the results of the regression model (Table 5.15) 

to compute the Yinfra of each urban patch. Based on this value, the landscape patch 

variable is updated after each annual cycle (t+1Linfra= tLinfra+ Yinfra). 
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Table 5.15 Results of the linear regression model for estimating annual improvement 
in the infrastructure of landscape patches (Yinfra), N = 6781. 

Variable Unstandardized 
coefficient 

Std. 
error 

(Constant) 0.078*** 0.001 
Distance from CBD (

CBDdL  ) -7.7(10-8) ** 0.000 

Distance from main roads (
roadsdL  ) -8.6(10-6) *** 0.000

Number of households (
popL ) 2.01(10-5) *** 0.001 

Infrastructure quality index - previous year (
ra

t L inf
1 ) -0.077 *** 0.000 

Irregular settlements - type D ( DL ) -0.017 *** 0.000 

F-statistic test: F = 7162 ***  
R2 = 0.841 
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 

 

 

5.3.4 Land value 

The land value sub-model (L-VALUE) is responsible for updating the landscape 

variable land value (Lvalue) after each annual cycle. For each urban patch, this sub-model 

calculates the land value based on a linear regression model (Table 5.16 and 5.17). The 

dependent variable Lvalue of the regression model represents the land value of the 

landscape patch (minimum wages/m2) in the year 2000. Because there is a relation 

between the income of resident families and land value, the variables proportion of low-

income households (
2uppropL 
) and proportion of high-income households (

20morepropL 
) 

were included in the model as explanatory variables (Table 5.16). In addition, this 

relation is likely to be influenced by the land-use restrictions in the neighborhood. To 

test this hypothesis, the variables 
2uppropL 
 and 

20morepropL 
 were interacted with the binary 

variables residential zone and mixed zone, and generated the following explanatory 

variables: residential zone interacted with the proportion of low-income households 

(LZR-up2), residential zone interacted with the proportion of high-income households 

(LZR-more20), mixed zone interacted with the proportion of low-income households (LZM-

up2), and mixed zone interacted with high-income households (LZM-more20).  
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Table 5.16 Descriptive statistics and sources of dependent and explanatory variables 
for the linear regression model for estimating the land value of landscape 
patches (Lvalue), N = 8181. 

Continuous Variables 

Variable Description Min Max. Mean Std. 
dev. 

Expected 
effect 

Source 

 Lvalue Land value 
(minimum wages/m2)  

0.03 2.60 1.01 0.63 Dependent 
variable 

 

Property 
advertisements 
2000 

2uppropL 
 Proportion of low-

income households 
(up to 2 minimum 
wages) 

0 1 0.275 0.173 (-) Census 2000  

20morepropL 
 Proportion of high-

income households 
(more than 20 
minimum wages) 

0 1 0.104 0.189 (+) Census 2000  

CBDdL    Distance from CBD 
(m) 

0 13730 5908 3200 (-) GIS-based 
calculations 

roadsdL   Distance from main 
roads (m) 

0 1414 160 192 (-) GIS-based 
calculations 

Linfra Infrastructure quality 
index 

0.14 1 0.9 0.18 (-) Census 2000 

LZR-up2 Residential zone * 
proportion of low-
income households 

0 0.48 0.0078 0.033 (-) Zoning map +  

Census 2000 

LZR-more20 Residential zone * 
proportion of high-
income households 

0 0.9 0.0499 0.121 (+) Zoning map +  

Census 2000 

LZM-up2 Mixed zone * 
proportion of low-
income households 

0 0.83 0.185 0.17 (-) Zoning map +  

Census 2000 

LZM-more20 Mixed zone * 
proportion of high-
income households 

0 0.9 0.05 0.12 (+) Zoning map +  

Census 2000 

Binary Variables 

Variable Description 0 1 Expected 
effect 

Source 

DL  Irregular settlement 
(type D) 

7124 patches 
(87.1%) 

1057 patches 
(12.9%) 

(-) Neighborhood 
type map 

enclosedL  Enclosed settlement 7641 patches 
(93.4%)  

540 patches 
(6.6%) 

(+) Field 
observation 

ZCL  Central Zone 8066 patches 
(98.6%) 

115 patches 
(1.4%) 

(+) Zoning map 
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The F-statistic test indicates that the regression model is able to explain significantly the 

change in land price (p<0.001) (Table 5.17). Quantitatively, the R2 shows that the model 

is able to explain 81.4 % of the variation in land prices, which indicates a good fit of the 

model to the observed data. All explanatory variables presented highly significant 

effects on the improvement in the infrastructure index. The direction in which these 

variables operate supports the hypotheses presented above. Nevertheless, the interaction 

between the proportion of low-/high-income families and zoning variables revealed 

interesting outputs. As expected, low-income households have a negative impact on 

land prices while high-income households have a positive impact. The model revealed, 

however, that these impacts are more substantial in mixed areas than in exclusively 

residential neighborhoods. This may happen because the land-use flexibility of mixed 

zones increases the ability of developers and real estate agents to stimulate competition 

for the best locations, and, therefore, increase prices.  

Other neighborhood aspects that are expected to influence land prices and 

were included in the model are related to the type of settlement where the patches are 

located, their accessibility, and provision of infrastructure. Patches located in the 

Central Business District of the city ( ZCL ) or in enclosed settlements for high and 

middle classes ( ENCLOSEDL ) are expected to present high land values. On the other hand, 

irregular settlements ( DL ) are expected to present lower land values. Patches with poor 

accessibility, i.e., long distance from the CBD ( CBDdL  ) or long distance from the main 

roads (
roadsdL  ), and with low infrastructure quality (Linfra) are also expected to have low 

prices.  
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Table 5.17 Results of the linear regression model for estimating annual improvement 
the land value of landscape patches (Lvalue), N = 6781. 

Variable Unstandardized 
coefficient 

Std. error 

(Constant) 1.398*** 0.031 
Proportion of low-income households ( 2uppropL  ) -0.669*** 0.031 

Proportion of high-income households (
20morepropL 

) 1.047*** 0.032 

Distance from CBD (
CBDdL  ) -5.5(10-5)*** 0.000 

Distance from main roads (
roadsdL  ) -6.2 (10-5) *** 0.000 

Infrastructure quality index (Linfra) 0.099 *** 0.029 

Residential zone * proportion of low-income 
households (LZR-up2) 

0.408 *** 0.100 

Residential zone * proportion of high-income 
households (LZR-more20) 

0.039  *** 0.040 

Mixed zone * proportion of low-income households 
(LZM-up2) 

-0.293 *** 0.027 

Mixed zone * proportion of high-income households 
(LZM-more20) 

0.432 *** 0.037 

Irregular settlements - type D ( DL ) -0.475 *** 0.016 

Enclosed settlement (
enclosedL ) 0.178 *** 0.017 

Central Zone (
ZCL ) 0.411 *** 0.027 

F-statistic test: F = 2747 ***  
R2 = 0.814 
***, **, and * indicate statistical significance at the 99%, 95%, and 90% levels. 
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6 OPERATIONAL MASUS MODEL AND SIMULATION 

EXPERIMENTS 

 

Given the MASUS theoretical framework (Chapter 4) and the empirical parameters 

(Chapter 5), this chapter presents an operational MASUS model with a range of 

functions for testing theories and policies on segregation. The chapter is organized in 

two main sections. The first section introduces the MASUS computer program, 

including a brief description of its procedures and graphic-user interface, and the second 

illustrates the potential of the model through three sets of experiments on segregation in 

São José dos Campos. The first set of experiments aims at validating the model. It 

compares simulated data that replicates a past segregation state of the city with 

empirical data, and checks whether the model provides an accurate representation of the 

segregation patterns in São José dos Campos. The aim of the second set of experiments 

is to demonstrate how MASUS can be used to explore theoretical issues of segregation. 

Finally, the third set of experiments shows the model’s ability to provide insights about 

the impact of anti-segregation policies.  

 

6.1 Implementation of an operational MASUS model 

The first operational MASUS model was implemented in NetLogo 4.0.4, a cross-

platform multi-agent programmable modeling environment (Wilensky 1999). The 

program includes the following main sub-programs/procedures (in order of execution):  

1. Initialization (complex procedure1): It includes routines to import datasets and 

to set initial global parameters. The routine to import datasets 

(ImportDatasets) uses the NetLogo’s GIS extension 1.0 to load vector and 

raster GIS data into NetLogo. Household data are loaded and assigned to 

mobile agents (household agents), while data related to the urban environment 

are assigned to a grid of stationary agents (urban landscape patches). The 

routine to set initial global parameters (SetInitialParameters) includes lists of 

empirically defined parameters that are relevant to the sub-models responsible 

for creating new households (population transition sub-model, see section 

4.3.1) and assigning new urban patches (urban sprawl sub-model, see section 

                                                 
1 As in Le (2005), a complex procedure here means that it contains one or more procedures.  
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4.3.2). Considering the large amount of data usually required by empirically 

based urban simulations, Initialization is a time-consuming procedure, which 

imports a large number of external files. To simplify this process, the current 

operational MASUS offers an optional procedure, where the user can simply 

import ‘world-files’ that represent the state of the study area at a specific point 

in time (ImportCity). These files were created through the NetLogo’s primitive 

‘export-world’, which writes the values of all variables/parameters of the 

system to a single external file (worksheet format). 

2. HouseholdChoice (complex procedure): It performs the households’ 

residential choice according to the specifications of the decision-making sub-

model (section 4.3.1). It is the most time-consuming procedure of the MASUS 

simulation protocol, since it computes the probability of each household to 

choose among different residential alternatives. 

3. ComputeSegregation: It calculates global and local segregation indices 

(section 2.5) for different neighborhood scales.  

4. DrawGraphs: It draws graphs of different population indicators.  

5. HouseholdTransition: It updates changes in the household profile by following 

the specifications of the household transition sub-model (section 4.3.1). 

6. PopulationTransition: It creates new households with profiles that meet the 

expected socio-demographic composition of the population as a whole. It 

follows the specifications of the population transition sub-model (section 

4.3.1). 

7. UrbanSprawl (complex procedure): It performs the transition from non-urban 

areas (patches) to urban according to the specifications of the urban sprawl 

sub-model (section 4.3.2). 

8. DwellingOffers (complex procedure): It updates the number of dwellings in 

each urban patch according to the specifications of the dwelling offers sub-

model (section 4.3.2). 

9. Infrastructure: It updates the level of infrastructure quality of each urban patch 

according to the specifications of the infrastructure sub-model (section 4.3.2). 

10. LandValue: It updates the land value of each urban patch according to the 

specification of the land value sub-model (section 4.3.2).  
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The process of developing the operational MASUS also included its verification, i.e., 

checking whether the program executes what is stated in the theoretical specification. 

The verification of the MASUS model was performed for each sub-program/procedure 

as well as for the simulation program as a whole. During the verification process, 

intermediate outputs were constantly recorded and checked step-by-step, often through 

comparisons with calculations done in a spreadsheet. The verification also included tests 

for improving the program code to achieve better performance. 

 

6.1.1 Inputs and outputs 

Inputs 

Inputs for simulations with MASUS include spatial data and parameters. Spatial data for 

initializing the MASUS simulation can be distinguished as: vector GIS data (points, 

lines, and polygons), in shapefile format (.shp); and raster GIS data (grids), in ascii 

format (.asc). Input data about the urban environment can be provided as raster or vector 

polygons, while household data is provided as vector points. 

The second type of input, the parameters, can be distinguished as modeler's 

input parameters and user's input parameters (Le 2005; Le et al. 2008). Modeler's input 

parameters are those that are not exposed to users. They can represent global control 

parameters or coefficients obtained from empirical analyses (like the coefficients 

presented in Chapter 5). User's input parameters are inputs that can be set to test theories 

and policy approaches on segregation. They can be easily modified at the graphic-user 

interface. 

 

Outputs 

During a simulation, the MASUS model provides different types of outputs: population 

statistics, segregation indices, graphs, maps, and simulated worlds. The population 

statistics include the total number of households, the number of households belonging to 

each income group, and the Gini index (an income-inequality measure). The segregation 

indices include global and local measures (section 2.5). The MASUS program adopts 

two different scales for calculating these segregation indices. The first considers that the 

neighborhood of a household comprises the area within a 700 m radius of the 
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household’s residence (local scale), and the second considers a 2000 m radius (large 

scale). 

Population statistics and global segregation indices are reported and plotted as 

graphs. The graphs provide an overview of the change in statistics and indices along the 

years and can be exported as worksheet format files for further analysis. Another graph 

presented by the MASUS program is the Lorenz curve, which complements the 

information provided by the Gini index. The MASUS model uses algorithms from the 

Wealthy Distribution model of Wilensky (1998) for reporting the Gini index and 

plotting the Lorenz curve.  

The local segregation indices are shown as maps, which can be displayed 

through command buttons, and allow users to visually identify the most/least segregated 

areas and how these areas changed over time. Another type of output produced by the 

MASUS program is the simulated world, a worksheet file containing all the information 

about the simulated system. The program records a simulated world after each annual 

cycle, allowing users to retrieve this information at any time.  

 

6.1.2 Graphic user interface 

The graphic user interface (GUI) of the MASUS model for the city of São José dos 

Campos is presented in Figure 6.1. Element (1) represents command buttons for 

initializing and starting the simulation:  

 The ‘Initialization’ button executes the procedures to import GIS data from 

São José dos Campos (year 1991).  

 The ‘Import City 1991’ button imports the NetLogo world representing São 

José dos Campos in the year 1991 (faster than the initialization procedure). 

 The ‘Import City 2000’ button imports the NetLogo world representing São 

José dos Campos in the year 2000.  

 The ‘Start Simulation’ button executes the procedures corresponding to the 

simulation annual cycle. These procedures are repeatedly executed until the 

user clicks the button again to stop the action.  

 

Element (2) is a graphic window that displays segregation maps or the location 

of households in the city. In the example, the graphic window is showing the location of 
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low-, middle-, and high-income households (colors red, yellow, and blue, respectively) 

and the limits of the study area (in black). Using the mouse, the user can right-click on 

landscape patches and agents, and inspect the value of variables that comprise their 

states. To display segregation maps (e.g., Figure 6.2), the user should press the 

command buttons indicated as (11).  

Element (3) represents the input parameters chosen by the user to test theories 

and policy approaches on segregation. These input parameters focus on experimental 

factors that address demographic aspects, personal preferences or urban policies:  

 Income inequality (demographic aspect): The input parameter is provided 

through a chooser, where the user can select scenarios for the period 1991-

2000 with original, increasing or decreasing income inequality levels, or 

scenarios for the period 2000-2010 with constant, increasing or decreasing 

inequality levels.  

 High-income preferences (personal preferences): The input parameter is 

provided through a numeric slider, where the user can choose the value of 

neigh , which is a factor that establishes the relevance of the neighborhood 

income composition to the decision making of affluent households. If 
neigh  is 

equal to 0, affluent households do not consider the income of their neighbors 

when selecting their residential locations; if 
neigh  is equal to 0, the preference 

level of affluent households for having neighbors similar to themselves is 

equal to the original level (calibrated from empirical data); if 
neigh  is equal to 

3, the affluent households’ preference for having neighbors with similar 

income is three times higher than the original level.  

 Dispersion of wealthy families (urban policy): The input parameter is provided 

through a chooser that allows users to select a scenario where non-occupied 

areas close to poor neighborhoods are converted to residential developments 

for middle and upper classes.  

 Dispersion of poor families (urban policy): The input parameters are provided 

through a switch (on/off) and an input box, which allow users to test policies 

that distribute housing vouchers for moving low-income households out from 

distressed areas. Once the switch is turned on, the program executes a 
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procedure that selects n poor households from areas with high levels of 

poverty isolation for receiving housing vouchers. The number of households 

who received the benefit per year is provided by the user through the input 

box. The selected households can only move to neighborhoods that present 

low levels of poverty isolation.  

 Regularization of informal settlements (urban policy): The input parameter is 

provided through a switch (on/off). Once the switch is turned on, the program 

executes a procedure that converts the clandestine settlements to regular. This 

measure has implications for the provision of infrastructure and land value of 

these settlements.  

 Universalization of infrastructure (urban policy): The input parameter is 

provided through a switch (on/off). Once the switch is turned on, the program 

executes a procedure that changes, for all urban patches, the value of the patch 

variable ‘infrastructure quality’ (Lneigh) to 1 (maximal value).  
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Figure 6.1 The MASUS graphic user interface. 
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The elements (4) to (8) provide population statistics during the simulation run in the 

form of graphs and monitors. Element (4) is a graph that presents the total number of 

households and the number of households belonging to each income group along the 

years. Element (5) is a histogram showing the number of households belonging to each 

income group. This histogram provides an overview of the income composition of the 

population. Element (6) represents monitors showing the total number of households, 

the number of households belonging to each income group, and the Gini index of the 

current year. Element (7) is a graph that illustrates the evolution of the Gini index 

through the years, and element (8) is a graph representing the Lorenz curve in the 

current year.  

The elements (9) to (11) allow users to monitor global and local indices of 

segregation computed for different scales of neighborhoods (700 m and 2000 m). 

Element (9) represents graphs that show the evolution of global segregation indices 

through the years in two different scales. Element (10) is a set of monitors that provide 

the values of global segregation indices for the current year. Element (11) represents a 

set of command buttons for displaying local segregation indices of the current year in 

the graphic window (as segregation maps). 

Finally, element (12) is an output area that informs the users about the status of 

the simulation run, i.e., which sub-model/procedure is being executed. During the 

execution of the decision-making sub-model, the output area also shows the 

identification number of households that are evaluating their residential alternatives, and 

whether they decided to move to another location or not.  

 

6.2 Simulation experiments I: Comparing simulated outputs with empirical 

data  

The first simulation experiment validates the MASUS model regarding the fit between 

simulated and real data. It tests whether the model provides an accurate representation 

of the segregation dynamics in São José dos Campos. The initial state of this simulation 

experiment replicates the characteristics of the city in 1991. Nine annual cycles were 

executed and the simulation results were compared with real data from the year 2000. 

Details about the inputs and outputs of the simulation are presented in the following 

paragraphs.  
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6.2.1 Initial state of the simulation 

 

Spatial data 

To reproduce relevant characteristics of São José dos Campos in 1991, GIS data from 

different sources were imported into NetLogo (Table 6.1) and assigned to MASUS 

entities (household agents or urban landscape-patches).  

 

Table 6.1 Spatial data of São José dos Campos imported into NetLogo. 
 MASUS entity Description GIS file format Source 
1 Household agent Household 

locations and 
attributes 

Vector point 
(shapefile) 

Census 1991,  
universal microdata 
(IBGE 1991a) 

2 Urban landscape 
patch 

Urban/non-urban 
areas 

Vector polygon 
(shapefile) 

Satellite image 
LANDSAT-5/ TM 
(INPE 1990) 

3 Urban landscape 
patch 

Zoning law Vector polygon 
(shapefile) 

Zoning Law 
3721/1990 (PMSJC 
1990) 

4 Urban landscape 
patch 

Neighborhood 
types 

Vector polygon 
(shapefile) 

Neighborhood type 
map  
(section 5.2.2) 

5 Urban landscape 
patch 

Infrastructure 
quality 

Vector polygon 
(shapefile) 

Census 1991 
(IBGE 1991b) 

6 Urban landscape 
patch 

Land value per m2 Vector polygon 
(shapefile) 

Property 
advertisements 

7 Urban landscape 
patch 

Distance to Central 
Business District 
(CBD) 

Raster  
(ascii grid) 

GIS-based 
calculation 

8 Urban landscape 
patch 

Distance to roads Raster  
(ascii grid) 

Road map (PMSJC 
2003)  + GIS-based 
calculation 

9 Urban landscape 
patch 

Terrain slope Raster  
(ascii grid) 

Topographic map 
(PMSJC 2003) + 
GIS-based 
calculation 

 

The household microdata from the Census 1991 (no. 1 in Table 6.1) were 

originally provided as text files (.txt) containing information about the population of 

São José dos Campos and the respective dwellings, including the identification number 

of the census tracts where these are located. The text files were processed to create a 

single file containing the following information about the 106,591 households living in 
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the study area in 1991: household identification number, household location (census 

tract), head of household (HoH) income, HoH education, HoH age, household size, 

presence of children, and tenure status. To convert this information into spatially 

explicit vector points, two GIS files (shapefile format) were used as auxiliary data: one 

representing census tracts in 1991 (IBGE 1991b), and the other representing the urban 

areas in 1991 (no. 2 in Table 6.1). Each line of the resulting text file, which contains the 

data concerning one household, was converted into a vector point located within the 

occupied area (urban) of the census tract to which the respective household belongs. 

Then, these vector point data were imported into NetLogo and assigned to household 

agents. 

With the exception of data nos. 1 and 6, all the imported spatial data shown in 

Table 6.1 are presented in Chapter 5. The data about urban/non-urban areas (no. 2) is 

described in section 5.3.1 and used for the empirical parameterization of the urban 

sprawl sub-model (U-SPRAWL). The vector data containing the zones delimited 

according to the São José dos Campos’ Zoning Law 3721/1990 (no. 3 in Table 6.1) is 

mentioned in sections 5.3.1, 5.3.3, and 5.3.4, since it was considered in the empirical 

parameterization of the U-SPRAWL sub-model, the dwelling-offers sub-model (D-

OFFER), and the land-value sub-model (L-VALUE).  

The definition and characterization of neighborhood types in São José dos 

Campos (no. 4 in Table 6.1) are described in section 5.2.2, and were used in the 

parameterization of the decision-making sub-model (DECISION), as well as in the sub-

models infrastructure (INFRA) and L-VALUE. The infrastructure quality (no. 5 in 

Table 6.1) is a composed index obtained from the Census 1991 (IBGE 1991b) for each 

census tract. This data were also used in the empirical parameterization of the INFRA 

and L-VALUE sub-models.  

The average land value per m2 of neighborhoods in São José dos Campos (no. 

6 in Table 6.1) was obtained from property advertisements collected from local 

newspapers (Vale Paraibano) dated January to December 1991. This data collection was 

conducted at the Municipal Archive of the City of São José dos Campos. The spatial 

data regarding the distance to CBD, distance to roads, and terrain slope (nos. 7 to 9 in 

Table 6.1) were provided as raster files. They were produced based on GIS calculations 
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using base maps (shapefile format) provided by the Municipal Government of São José 

dos Campos (PMSJC 2003).  

 

Parameters 

The modeler’s input parameters of the first operational MASUS model for the city of 

São José dos Campos (Table 6.2) include coefficients of the statistical models presented 

in Chapter 5, as well as global control parameters obtained from different sources, 

including exploratory analysis of census data.  

 

Table 6.2 Modeler’s input parameters of the first operational MASUS model for 
the city of São José dos Campos . 

 MASUS  
Sub-model 

Description Source 

1 Decision-
making 

Coefficients of nested logit models that jointly 
model the household’s mobility, 
neighborhood type choice, and specific 
neighborhood location choice 

Statistical models 
(section 5.2.5) 

2 Population 
transition 

Population growth rate Census data 1991  
and 2000 

3 Population 
transition  

Global controls regarding the population 
(household) composition in terms of income, 
head of household’s age, tenure status, 
presence of kids, family size per income 
group, and head of household’s education per 
income group 

Census data 1991  
and 2000  
(global controls for 
years in-between the 
period 1991-2000 are 
interpolated) 

5 Urban sprawl 
(transitional 
phase) 

Global transition probability of converting the 
land use from non-urban to urban (

UNUP  ). 
LANDSAT Images + 
Markov chain  
(section 5.3.1) 

6 Urban sprawl 
(allocation 
phase) 

Coefficients of a binary logistic regression 
that estimates the local transitional probability 
of converting a non-urban patch to urban 
(

UNUp  ) 

Statistical model  
(section 5.3.1) 

7 Dwelling 
offers 
(transitional 
phase) 

Global control for the housing stock (
stock ) ACONVAP  real 

estate market survey 
(section 5.3.2) 

8 Dwelling 
offers 
(transitional 
phase) 

Global control for the loss of residential 
dwellings due to the expansion of non-
residential uses (

loss ) 

Census data 1991  
and 2000 
(section 5.3.2) 

9 Infrastructure Coefficients estimated for a linear regression 
model for the annual improvement in 
infrastructure 

Statistical model 
(section 5.3.3) 

10 Land value Coefficients estimated for a linear regression 
model for land value 

Statistical model 
(section 5.3.4) 
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The user’s input parameters (Table 6.3) are presented on the MASUS’ graphic-user 

interface as experimental factors, and can be modified by the user to test segregation 

theories and policy strategies. The intent of this first simulation experiment, however, 

was not to test theories and policies, but to reproduce the segregation dynamics of São 

José dos Campos during the period 1991-2000 (baseline scenario).  

 

Table 6.3 User’s input parameters for baseline scenario 

no. Experimental factor Description  
1 Income inequality  

Factor: demographic 
aspects 

Chooser: Inequality scenario = ‘original 1991-2000’ 
(scenario where the simulated income 
composition of the population is equal to the real 
one) 

2 High-income preferences 
Factor: personal 
preferences 

Slider: 
neigh  = 1  

(preference of affluent households for having 
neighbors similar to themselves is equal to the 
one calibrated from empirical data) 

3 Dispersion of wealthy 
families  
Factor: urban policies 

 
Chooser: Wealthy dispersion = ‘none’ 

4 Dispersion of poor 
families 
 Factor: urban policies 

Switch: Poverty dispersion? = ‘off’ 
Input box: # benefits = deactivated (0) 

5 Regularization of informal 
settlements  
Factor: urban policies 

 
Switch: Regularization? = ‘off’ 

6 Universalization of 
infrastructure 
Factor: urban policies 

 
Switch: Infrastructure for all? = ‘off’ 

 

6.2.2 Results 

After setting the initial state of the experiment, nine simulation annual cycles were 

executed in order to reproduce the segregation dynamics of São José dos Campos 

during the period 1991-2000. The simulated results were compared with real data from 

the year 2000. A calibration consisting of small changes in the input parameters of the 

decision-making sub-model (no. 1 in Table 6.2), originally obtained from the estimation 

of nested logit models (section 5.2.5), improved the fit between the simulated and real 

data.  

Table 6.4 presents the results of global segregation indices computed for the 

initial state (year 1991), simulated data (year 2000, after calibration), and real data (year 
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2000). The indices were computed for different scales of segregation: (a) local scale, 

where the household’s neighborhood comprises the area within a 700 m radius of its 

residence (no. 1 to 4 in Table 6.4), and (b) large scale, where this radius is equal to 2000 

m (no. 5 to 8 in Table 6.4). The indices computed for a large segregation scale always 

present lower magnitude. This is because the population composition of larger 

neighborhoods tends to be more diverse and similar to the overall population 

composition of the city. To assist the interpretation of global indices, Figure 6.2 

provides the population composition (income groups) of São José dos Campos for the 

years 1991 and 2000.  

 

Population Composition 1991 Population Composition 2000 

  
mw: minimum wages  

Figure 6.2 Population composition (income groups) in São José dos Campos.  
 

The local segregation indices computed for local and large scales are presented 

as maps (Figure 6.3 and 6.4), with darker colors representing higher levels of 

segregation. Five replications of the experiment were performed and, despite the 

stochastic nature of the model, all produced the same results. 

In general, simulated patterns of segregation demonstrate a good agreement 

with the observed pattern over time. Both show how the global dissimilarity index 

)(mD


 slightly increased during the period 1991-2000 considering different scales 

(Table 6.4). The )(mD


 index compares the population composition of the whole city 

(Figure 6.2) with that of the neighborhoods, measuring the proportion of people who 

would have to move from their neighborhoods to achieve an even population 

distribution. The index varies from 0 to 1, where 0 stands for the minimum degree of 

54% 

31% 

15%

51%

30% 

19% 
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segregation, i.e., the case when the population composition of all neighborhoods is 

equal to the population composition of the city.  

 

Table 6.4 Validation experiment: global indices of segregation, computed for local 
(radius = 700 m) and large (radius = 2000 m) scales.  

No. Global Segregation Index Initial State 
(Year 1991) 

Simulated 
(Year 2000) 

Real Data 
(Year 2000) 

1 Spatial dissimilarity index  
)(mD


(700 m) 

.26 .28 .28 

2 Spatial isolation of low-income 
households 

lowQ
  (700 m) 

.6 .58 .58 

3 Spatial isolation of medium-
income households 

mediumQ
   

(700 m) 

.33 .32 .32 

4 Spatial isolation of high-income 
households highQ


 (700 m) 

.33 .36 .38 

5 Spatial dissimilarity index  
)(mD


(2000 m) 

.19 .21 .22 

6 Spatial isolation of low-income 
households 

lowQ
  (2000 m) 

.57 .56 .56 

7 Spatial isolation of medium-
income households 

mediumQ
   

(2000 m) 

.32 .31 .31 

8 Spatial isolation of high-income 
households highQ


 (2000 m) 

.26 .31 .32 

 

 

The local segregation indices computed for local and large scales are presented 

as maps (Figure 6.3 and 6.4), with darker colors representing higher levels of 

segregation. Five replications of the experiment were performed and, despite the 

stochastic nature of the model, all produced the same results. 

In general, simulated patterns of segregation demonstrate a good agreement 

with the observed pattern over time. Both show how the global dissimilarity index 

)(mD


 slightly increased during the period 1991-2000 considering different scales 

(Table 6.4). The )(mD


 index compares the population composition of the whole city 

(Figure 6.2) with that of the neighborhoods, measuring the proportion of people who 

would have to move from their neighborhoods to achieve an even population 

distribution. The index varies from 0 to 1, where 0 stands for the minimum degree of 
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segregation, i.e., the case when the population composition of all neighborhoods is 

equal to the population composition of the city.  

Considering a local scale (no. 1 in Table 6.4), the )(mD


 index during the 

period 1991-2000 increased from .26 to .28. The )(mD


 computed for a larger scale (no. 

5 in Table 6.4) also increased during the period (from .19 to .21/.22). The maps of the 

local version of the dissimilarity index (Figure 6.3 and 6.4) provide further information 

about this change, showing where it happened. The maps that consider a local scale of 

segregation (Figure 6.3) show details of these changes, while the maps considering a 

larger scale of segregation are more suitable for the observation of global trends (Figure 

6.4) 

The segregation maps suggest that the increase in dissimilarity occurred 

especially in areas close to the center, towards the western region, and in the southern 

region (Figure 6.3 and 6.4 (a-c)). The isolation maps complement this information by 

showing that the higher dissimilarity in central areas is caused by the isolation of 

affluent households (Figure 6.3 and 6.4 (g-i)), while the higher dissimilarity in the south 

is due to the isolation of poor households (Figure 6.3 and 6.4 (d-f)).  

The interpretation of global indices of isolation demands caution, since the 

proportions of social groups in the city influence their values. During the period 1991-

2000, the proportion of low-income households (up to 4 minimum wages) decreased 

from .54 to .51 (Figure 6.2). Meanwhile, their spatial isolation computed for a local 

scale decreased from .6 to .58 (no. 2 in Table 6.4). This means that, on average, 58% of 

the neighbors of a low-income household belong to the same income group. This value 

is higher than the overall percentage of this group in the city (51%). According to the 

maps, the decrease in isolation occurred mainly in areas closed to the center, keeping a 

high (or higher) isolation of poverty in the outskirts of the city (Figure 6.3 and 6.4 (d-

f)).  
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Spatial Dissimilarity Index (radius 700 m) 

(a) Initial State 1991 (b) Simulated 2000 (c) Real data 2000  

   

Spatial Isolation of Low-Income Households (radius=700 m) 

(d) Initial State 1991 (e) Simulated 2000  (f) Real data 2000 

   

Spatial Isolation of High-Income Households (radius=700 m) 

(g) Initial State 1991 (h) Simulated 2000   (i) Real data 2000  

   

Figure 6.3 Validation experiment: local indices of segregation (local scale, radius 
700 m). 

In the case of the isolation of high-income households, the global indices 

calculated for real and simulated data presented the same trend but different values. The 

proportion of high-income households (more than 10 minimum wages) increased from 

.15 to .19 (Figure 6.2), while their isolation computed for a local scale increased from 

.33 to .38 according to the real data, and to .36 according to the simulated data (no. 4 in 

Table 6.4). It is interesting to observe that the difference between the group proportion 

in the city and the isolation index is much higher for affluent households (.19 vs. 
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
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
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.38/.36) than for low-income households (.51 vs. .58). This suggests that affluent 

households have a higher inclination to live isolated from other social groups. The maps 

of local isolation computed for simulated and real data (Figure 6.3 and 6.4 (g-i)) show 

that the isolation of high-income households increased in areas close to the center 

towards the western region, configuring a ‘wealthy axis’ in the city.  

Spatial Dissimilarity Index (radius=2000 m) 

(a) Initial State 1991 (b) Simulated 2000 (c) Real data 2000  

   

Spatial Isolation of Low-Income Households (radius=2000 m) 

(d) Initial State 1991 (e) Simulated 2000  (f) Real data 2000 

   

Spatial Isolation of High-Income Households (radius=2000 m) 

(g) Initial State 1991 (h) Simulated 2000   (i) Real data 2000  

   

 
Figure 6.4 Validation experiment: local indices of segregation (large scale, radius 

2000 m). 
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6.3 Simulation experiments II: Testing theoretical issues of segregation  

This section presents simulation experiments that demonstrate the potential of the 

MASUS model to explore and test theoretical issues about urban segregation. 

Researchers have pointed out four different and complementary causal mechanisms of 

segregation: labor market, personal preferences, land and real-estate market, and the 

state (details in section 2.4). The experiments presented in this section focus on aspects 

regarding two of these mechanisms: income inequality, seen as a product of the labor 

market, and the neighborhood preferences of high-income families, seen as a sort of 

personal preference. Experiments concerning the remaining factors (land market and the 

state) are presented in section 6.4. 

 

6.3.1 Impact of income inequality on segregation 

This experiment explores the impact of different levels of income inequality on 

segregation patterns. In the United States, many theoretical and empirical studies 

advocate that income inequality promotes urban segregation (Mayer 2001; Reardon and 

Bischoff 2008; Watson 2006; Wheeler and La Jeunesse 2007). In Latin America, 

however, this issue has caused controversy. While the causal relationship between 

inequality and segregation underlies the discourse of some researchers (Kowarick 1979; 

Lago 2000; Maricato 1979b), others advocate that this is not necessarily true. Sabatini 

(2004) criticizes the argument that inequality is reflected in urban segregation, which he 

labeled as ‘mirror effect hypothesis’. According to the author, inequality and urban 

segregation are closely related phenomena, though one is not a simple reflection of the 

other. As an example, he mentions the economic crises in Latin America during the 

1980’s, which increased social inequalities but, at the same time, promoted a higher 

proximity among different income groups in some cities (Sabatini 2004,2006).  

The purpose of the experiment in the present study is to provide further 

insights into this debate. For this, the baseline simulation run described in the previous 

section is compared with two alternative scenarios for the period 1991-2000: one where 

inequality increases during the simulation and another where inequality decreases. All 

the other specifications were kept as in the baseline scenario (section 6.2.1). These 

experiments were repeated for the period 2000-2010, where the inequality level 

considered for the baseline scenario is constant. The inequality level is one of the 
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experimental factors presented on the MASUS interface (no. 3 in Figure 6.1), where the 

user can choose templates with different settings for the global variables that control the 

income composition of the population (population transition sub-model).  

 

Results: 1991-2000 

Graphs with the global segregation indices obtained from the three simulation runs 

covering the period 1991-2000 were developed (Figure 6.5). The graphs showing the 

inequality levels and dissimilarity indices along this period (Figure 6.5 (a-b)) support 

the hypothesis that inequality promotes segregation: Once inequality increases, the 

dissimilarity between the income composition of the whole city and the income 

composition of neighborhoods ( )(mD


) also increases, and vice-versa. The maps of local 

dissimilarity for the three scenarios (Figure 6.6 (a-c)) indicate where segregation would 

decrease or increase in each case.  

The global isolation of low-income households (
lowQ
 ) also varied 

proportionally to the inequality levels (Figure 6.5 (c-d)). The isolation maps (Figure 6.6 

(d-f)) complements this information by showing that in case of higher inequality the 

concentration of poverty would increase mainly in the outskirts of the city. It is 

important to mention, however, that the increase in low-income isolation was expected 

in the case of higher inequality, since these indices follow the progression of the 

proportion of low-income households in the city. This is a natural trend of the index: 

once the proportion of group m increases in the city, the global isolation index of group 

m also tends to become higher.  

The expected trend of the index is, however, challenged by the graphs showing 

the isolation of high-income households highQ


 and the proportion of this group in the 

city (Figure 6.5 (e-f)). For this reason, the results presented in these graphs are the most 

revealing ones. The low-inequality scenario presents higher proportions of affluent 

households when compared to the other scenarios, but still displays the lowest levels of 

isolation. This unexpected result represents an additional indication of the causal 

relation between income inequality and segregation. 
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(a) Inequality (Gini index) (b) Spatial dissimilarity index )(mD


 

  

(c) Proportion of low-income group (d) Spatial isolation of low-income group 
lowQ
  

  

(e) Proportion of high-income group (f) Spatial isolation of high-income group 

highQ


 

  

 Scenarios:             Original (baseline)                 Low inequality                    High inequality 

 
Figure 6.5 Progression of population statistics and global segregation indices (radius 

700 m) for three simulation scenarios 1991-2000: original, decreasing, 
and increasing income-inequality levels. 
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Spatial Dissimilarity Index – Year 2000 (radius = 700 m) 

(a) Original (b) Low inequality (c) High inequality  

   

Spatial Isolation of Low-Income Households – Year 2000 (radius = 700 m) 

(d) Original (e) Low inequality (f) High inequality 

 
  

Spatial Isolation of High-Income Households – Year 2000 (radius = 700 m) 

(g) Original (h) Low inequality (i) High inequality 

   

 
Figure 6.6 Local indices of segregation (local scale, radius 700 m) for three 

simulation scenarios for the year 2000: original, decreasing, and 
increasing income inequality levels. 

 

Results: 2000-2010 

The simulation experiment was repeated for the period 2000-2010. In this case, the 

baseline scenario presents constant inequality levels. This characteristic differs from the 

original baseline scenario 1991-2000, where the Gini index increased from .55 to .59. 

The purpose of this experiment was to observe whether simulations conducted from the 
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year 2000, an initial condition that differs from 1991, support the insights obtained from 

the previous experiment or not.   

The results observed from the graphs of global segregation indices computed 

for simulation scenarios 2000-2010 (Figure 6.7) are similar to the ones obtained for the 

period 1991-2000 (Figure 6.5). The global index of dissimilarity increases when the 

Gini index increases, and vice-versa. However, it is interesting to note that when 

inequality is kept constant (baseline scenario) the dissimilarity index continues to 

increase. This outcome indicates that besides inequality there are other factors 

promoting segregation in the baseline scenario (e.g., household preferences). 

As in the inequality experiment for the period 1991-2000, the isolation indices 

of high-income households also demonstrate the causal relation between income 

inequality and segregation. The scenarios considering increasing inequality and 

decreasing inequality present equal levels of high-income isolation in 2010 ( highQ


 = 

0.38). For both scenarios, this means that on average 38% of the neighbors of a high-

income household belong to the same income group. This number, compared to the 

overall percentage of high-income households in each scenario, reveals that the isolation 

of affluent households is more significant in the high-inequality scenario, where the 

overall percentage of high-income households is 15%, than in the low-inequality 

scenario, where this percentage is 20%. 

The dissimilarity maps for the year 2010 (Figure 6.8 (a-c)) show two hotspots at 

the central and western region of the city. These areas correspond to areas of intense 

isolation of high-income households (Figure 6.8 (g-i)) and demonstrate that for the three 

scenarios the segregation measured by the dissimilarity index is mainly enhanced by 

affluent households. This pattern differs from the one observed for the year 2000 

(Figure 6.6 (a-c)), where areas characterized by the concentration of poor households 

also represent hotspots in the dissimilarity maps. 

In general, the segregation maps resulting from the three inequality scenarios for 

the period 2000-2010 show increasing distances between social groups with contrasting 

income levels. Compared to the 2000 maps, the isolation maps of low-income 

households for the year 2010 (Figure 6.8 (d-f)) show that the isolation of this group 

tends to become much more peripheral and distant from high-income households, 

especially in the scenarios of constant and high-inequality. In the scenario of high-
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inequality, the isolation of poor households increases considerably in clandestine 

settlements located in the eastern and northern part of the city.  

 

(a) Inequality (Gini index) (b) Spatial dissimilarity index )(mD


 

  

(c) Proportion of low-income group (d) Spatial isolation of low-income group 
lowQ
  

  

(e) Proportion of high-income group (f)  Spatial isolation of high-income group highQ


 

  

Scenarios:          Constant (baseline)                     Low inequality                    High inequality 

 
Figure 6.7 Progression of population statistics and global segregation indices (radius 

700 m) for three simulation scenarios 2000-2010: constant, decreasing, 
and increasing income inequality levels. 

 

The isolation maps of high-income households resulting from the three 

simulation runs (Figure 6.8 (g-i)) present very similar spatial patters, with affluent 
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households strengthening their self-segregation in a wealthy axis, which extends from 

the center towards the west of the city. In comparison to the simulated outputs for the 

year 2000, these maps show a stronger presence of high-income households in the 

western region, which is an area with a high concentration of gated neighborhoods. 

 

Spatial Dissimilarity Index – Year 2010 (radius = 700 m) 

(a) Constant (b) Low inequality (c) High inequality  

   
 

Spatial Isolation of Low-Income Households – Year 2010 (radius = 700 m) 

(d) Constant (e) Low inequality (f) High inequality 

    

Spatial Isolation of High-Income Households – Year 2010 (radius = 700 m) 

(g) Constant (h) Low inequality (i) High inequality 

    
 
Figure 6.8 Local indices of segregation (local scale, radius 700 m) for three 

simulated scenarios for the year 2010: constant, decreasing, and 
increasing income inequality levels. 
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6.3.2 Impact of affluent households’ residential preferences on segregation 

Because people tend to prefer to live among neighbors similar to themselves, personal 

preferences have been commonly pointed out as being one mechanism that can increase 

segregation. It promotes the so-called ‘self segregation', which is more common among 

affluent families, and results from the families’ attempt to improve their quality of life 

and strengthen their social identities through shared values (Marcuse 2005). In Brazil, 

where cities are often perceived as dangerous and unmanageable, gated neighborhoods 

are one of the most explicit materialization of this process of self-segregation (Caldeira 

2000).  

Focusing on this issue, the experiment presented in this section explores how 

the neighborhood preferences of high-income families can influence segregation 

patterns. It compares the baseline scenario 1991-2000 (section 6.2) with alternatives 

scenarios with different user input parameter values for the high-income preference 

factor 
neigh  (Table 6.5). The factor 

neigh  determines the relevance of the neighborhood 

income composition to the residential choice of affluent families.  

Global segregation indices were computed along the four simulation scenarios 

(Table 6.5, Figure 6.9). The simulations runs cover the period 1991-2000, and the 

segregation indices were computed for neighborhoods defined by a radius of 700 m and 

2000 m.  The graphs showing the isolation of high-income households highQ


 (Figure 6.9 

(e-f)) demonstrate that there is a linear relation between these indices and the parameter 

neigh . For example, considering the highQ


 for the year 2000, for every 1 unit increase in 

neigh , there is a corresponding .05 unit increase in the highQ


 computed with a 

neighborhood radius of 700 m, and a .03 unit increase in highQ


 computed with a radius 

of 2000 m. The maps displaying the local version of the isolation index of high-income 

households 
highq
  (Figure 6.10 (g-i)) show that this change in isolation spatially occurs in 

the center and western region of the city.  
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Table 6.5 Simulation scenarios of the high-income preferences experiment: values 
selected for the input parameter 

neigh   

Scenario Value 
neigh  Description  

(1) 
Baseline 

neigh  = 1 Preference of affluent households for having neighbors 
similar to themselves is equal to the one calibrated from 
empirical data. 

(2) 
neigh  = 0 Affluent households do not consider the income 

composition of neighborhoods when selecting their 
residential location. 

(3) 
neigh  = 2 Preference of affluent households for having neighbors 

similar to themselves is two times higher than the one 
considered in the baseline scenario.  

(4) 
neigh  = 3 Preference of affluent households for having neighbors 

similar to themselves is three times higher than the one 
considered in the baseline scenario. 

 

This relation between 
neigh  and the isolation index highQ


 seems to directly 

influence the segregation dimension evenness/clustering, which is measured by the 

dissimilarity index )(mD


. The index )(mD


 increases with an increase in 
neigh  (Figure 

6.9 (a-b)) and, according to the maps of the local version of the index (Figure 6.10), 

such variation follows the spatial trends presented by the local isolation of high-income 

households 
highq
 . 

The influence of the parameter 
neigh  on the isolation index of low-income 

households 
lowQ
  is also linear, but not substantial. Considering the 

lowQ
  for the year 

2000 and neighborhood radius of 700 m, for every 1 unit increase in 
neigh , there is a 

corresponding increase of only .01 unit in 
lowQ
 . Even in the case where affluent 

households do not care about the income composition of neighborhoods when selecting 

their residential location (
neigh = 0), the isolation index of low-income households is 

very high (
lowQ
  = .57), showing that this situation did not promote the integration 

between affluent and poor families, but that between affluent and middle-income 

households. This indicates that, independent of the affluent households’ preferences 

regarding the income composition of neighborhoods, they still choose areas that the 

poorest households cannot afford (e.g., areas with higher quality/prices).  
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(a) Spatial dissimilarity index - 700 m (b) Spatial dissimilarity index - 2000 m 

  

(c) Spatial isolation of low-income group 
- 700 m 

(d) Spatial isolation of low-income group 
- 2000 m 

  

(e) Spatial Isolation of high-income 
group - 700 m 

(f)  Spatial isolation of high-income group 
- 2000 m 

  

Scenarios:               (1) 
neigh  = 1, baseline                 (2) 

neigh  = 0 

                                (3) 
neigh  = 2                                (4) 

neigh  = 3                                     

 
Figure 6.9 Progression of global segregation indices (radius 700 m and radius  

2000 m) for four simulation runs 1991-2000 executed for the experiment 
with high-income households’ preferences. 
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Spatial Dissimilarity Index – Year 2000 (radius = 700 m) 

(a) Baseline (
neigh  = 1) (b) 

neigh  = 0 (c) 
neigh  = 3 

   

Spatial Isolation of Low-Income Households – Year 2000 (radius = 700 m) 

(d) Baseline (
neigh  = 1) (e) 

neigh  = 0 (f) 
neigh  = 3 

   

Spatial Isolation of High-Income Households – Year 2000 (radius = 700 m) 

(g) Baseline (
neigh  = 1) (h) 

neigh  = 0 (i) 
neigh  = 3 

   
 

Figure 6.10 Local indices of segregation (local scale, radius 700 m) for the year 2000 
resulting from three simulated runs for the experiment on high-income 
households’ preferences: 

neigh  = 1  (baseline), 
neigh  = 0 , and 

neigh  = 3. 
 

6.4 Simulation experiments III: Testing urban policies  

In the United States and some European countries, the residential mix of advantaged 

and disadvantaged groups represents a target explicitly expressed in many scientific and 

policy discourses (Andersson 2008; Smith 2002). In practice, these countries have 

adopted different policy strategies to promote social mix, including the dispersal of 

)(mD


=.25 )(mD


=.33

Q


=.57 Q


=.60 

Q


=.31 Q


=.46 

)(mD


=.28 

Q


=.58 

Q


=.36 



Operational MASUS model and simulation experiments 

 164

poverty, regulation of land-market dynamics, and regeneration of troubled 

neighborhoods. The aim of the simulation experiments presented in this section is to 

provide new insights about the impact that different urban policies can have on 

segregation. Two different social-mix policy approaches are tested: one based on the 

dispersion of poverty, and the other on the dispersion of wealth. The first promotes 

integration by moving poor households out of problematic neighborhoods, while the 

second stimulates the construction of residential developments for middle and upper 

classes in poor regions of the city. In addition, a third experiment tests the impact of 

regularizing clandestine settlements and promoting an equitable distribution of 

infrastructure in the city.  

 

6.4.1 Impact of a social-mix policy based on poverty dispersion 

The experiment presented in this section tests how an anti-segregation policy based on 

the dispersal of poverty could impact the segregation dynamics of a Latin American city 

like São José dos Campos. Policies for promoting integration through the spatial 

dispersion of poverty focus on moving poor households out of distressed areas into 

middle-class neighborhoods. For this, low-income households receive housing vouchers 

that are used to rent private dwellings in neighborhoods with a low poverty rate.  

To test the effect of a social-mix policy based on the distribution of housing 

vouchers, we compare the simulation run that replicates the original segregation 

dynamics of São José dos Campos during the period 1991-2000 (section 6.2) with two 

alternative scenarios. These scenarios simulate the implementation of a housing 

program that distributes n housing vouchers for poor families in 1991, and increases the 

number of benefits each year (Figure 6.11). The first alternative scenario distributes 

vouchers to 0.3% of the poor households in the year 1991 (200 vouchers) and 

progressively increases this percentage until the year 2000, when 2.3% of the poor 

households in the city are assisted by the housing program (1700 vouchers). The second 

alternative scenario increases the investments in the program: it distributes vouchers to 

0.9% of the poor households in the year 1991 (500 vouchers) and gradually extends the 

program to 5.8% of the poor households in the year 2000 (4200 vouchers). The housing 

vouchers are distributed to poor families that are randomly selected from neighborhoods 

with a high isolation of poverty ( )()( poorpoorpoor QsdQmeanQ


 ) and are used for renting 
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dwellings in neighborhoods where the isolation of poor families is below the average 

( )( poorpoor QmeanQ


 ). 

 

     

Figure 6.11 Scenarios of the experiment on poverty dispersion: number of housing 
vouchers distributed during the period 1991-2000.  

 

Figure 6.12 shows the evolution of the global dissimilarity index and isolation 

indices during the period 1991-2000 for the three simulated scenarios: baseline (no 

housing voucher), alternative 1 (200 to 1700 vouchers), and alternative 2 (500 to 4200 

vouchers). The dissimilarity index in the year 2000, which in the baseline scenario is 

equal to .28, changed to .27 in the alternative scenario 2. This means that the 

distribution of housing vouchers to 2.3% of the poor households in the city caused a 

decrease of 3.5% in the dissimilarity index. In the alternative scenario 3, the distribution 

of vouchers to 5.8% of the poor households decreased the dissimilarity index by 10.7% 

(from .28 to .25).  

The spatial isolation index of high-income families also decreased 

significantly as the investment in the housing program increased. Comparing the 

baseline scenario with the alternative scenario 1, the distribution of housing vouchers to 

2.3% of the poor households decreased the isolation of high-income households by 

5.7% (from .36 to .35). Regarding the alternative scenario 2, the distribution of housing 

vouchers to 5.8% of the poor households caused a decrease of 8.3% in the isolation of 

high-income households (from .36 to .33).  

 

 

 

Scenarios 1991-2000:  

No voucher (baseline) 

200 to 1700 vouchers 

500 to 4200 vouchers 



Operational MASUS model and simulation experiments 

 166

(a) Spatial dissimilarity index -700 m (b) Spatial dissimilarity index – 2000 m 

  

(c) Spatial isolation of low-income group 
- 700 m 

(d) Spatial isolation of low-income group 
– 2000 m 

  

(e) Spatial isolation of high-income group 
- 700 m 

(f)  Spatial isolation of high-income 
group – 2000 m 

  

Scenarios:              No voucher (baseline)      

                                 200 to 1700 vouchers                         500 to 4200 vouchers 

 
Figure 6.12 Progression of global segregation indices 1991-2000 (radius 700 m and 

radius 2000 m) for three scenarios 1991-2000 on poverty dispersion. 
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Spatial Dissimilarity Index – Year 2000 (radius = 700 m) 

(a) Baseline (no voucher) (b) 200 to 1700 vouchers (c) 500 to 4200 vouchers 

   

Spatial Isolation of Low-Income Households – Year 2000 (radius = 700 m) 

(d) Baseline (no voucher) (e) 200 to 1700 vouchers (f) 500 to 4200 vouchers 

   

Spatial Isolation of High-Income Households – Year 2000 (radius = 700 m) 

(g) Baseline (no voucher) (h) 200 to 1700 vouchers (i) 500 to 4200 vouchers 

   

 
Figure 6.13 Local indices of segregation (local scale, radius 700 m) for three 

simulation scenarios for the year 2000: (1) baseline scenario, (2) 200 to 
1700 vouchers, and (3) 500 to 4200 vouchers.  

 

Despite these positive trends, the housing program did not lead to a substantial 

improvement in the overall isolation level of low-income households, which is the 

segregation dimension that causes the most harmful impacts on the lives of 

disadvantaged families. Comparing the baseline scenario with the alternative scenario 1, 

the distribution of housing vouchers to 2.3% of the poor households decreased the 

isolation of low-income households by only 1.7% (from .58 to .57). Comparing the 
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baseline scenario with the alternative scenario 2, the distribution of housing vouchers to 

5.8% of the poor households caused a decrease of 3.4% in the isolation of low-income 

households (from .58 to .56). This means that on average 58% of the neighbors of a 

poor family belong to the same income group in the baseline scenario for 2000. This 

percentage decreased only to 56% in the alternative scenario 2, where 4200 housing 

vouchers were distributed. These values demonstrate the limitation of this type of 

housing policy in cities where poor families represent a large share of the population. 

The maps of segregation support this idea (Figure 6.13), since no substantial difference 

can be observed between the maps produced for the different scenarios.  

The experiment on poverty dispersion was also extended for the period 2000-

2010, but instead of testing the impact of increasing investments on housing vouchers, 

the simulation runs covering this period kept the investment constant (Figure 6.14). In 

this case, the baseline scenario 2000-2010 (section 6.3.1) is compared with two 

alternative scenarios where 1700 and 4200 vouchers are distributed. The results show 

that this continued investment only slows down the increase in segregation, being 

unable to modify the segregation trends in comparison with the baseline scenario 

(Figure 6.15). 

     

Figure 6.14 Scenarios of the experiment on poverty dispersion: number of housing 
vouchers distributed during the period 2000-2010.  

 

In order to produce a substantial change in the overall isolation level of poor 

families, social-mix policies based on the distribution of housing vouchers would 

demand a massive and continuous investment. Because such investment is not realistic 

for cities in developing countries, different social-mix strategies should be explored. For 

these cities, the dispersion of affluent families may represent a more effective way to 

Scenarios 2000-2019:  

(1) No voucher (baseline)

(2) 1700 vouchers 

(3) 4200 vouchers 
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promote positive changes in segregation patterns (Sabatini 2006). Experiments focusing 

on this alternative will be presented in the next section.  

 

(a) Spatial dissimilarity index -700 m (b) Spatial dissimilarity index – 2000 m 

  

(c) Spatial isolation of low-income 
group - 700 m 

(d) Spatial isolation of low-income 
group – 2000 m 

(e) Spatial isolation of high-income 
group -700 m 

(f)  Spatial isolation of high-income 
group – 2000 m 

Scenarios:             (1) No voucher (baseline)      

                                 (2) 1700 vouchers                               (3) 4200 vouchers 

 
Figure 6.15 Progression of global segregation indices (radius 700 m and radius  

2000 m) for three scenarios 2000-2010 on poverty dispersion. 
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6.4.2 Impact of a social-mix policy based on wealth dispersion 

While the operation of real-estate markets is often pointed out as being an important 

causal mechanism of segregation, some development processes taking place in certain 

Latin-American cities provide indications that these markets can also promote a 

decrease in segregation, or a decrease in its scale. These processes include (Sabatini 

2006):  

1. The dispersion of condominiums for middle- and high-income families around 

the urban periphery, many in areas already populated by the poor. This process 

can promote a decrease in the scale of segregation.  

2. The densification of wealthy neighborhoods, through vertical residential 

buildings for families of lower than average income in the area. These projects 

allow developers to significantly profit, and their indirect impact is to reduce 

urban segregation.  

 

The experiment presented in this section considers the effective 

implementation of urban polices that aim at stimulating the first of these processes, i.e., 

the construction of residential developments for middle and upper classes in poor 

regions of the city. This can occur through tax exemption measures, concessions, 

changes in the norms of land use, and public investment in infrastructure and security 

(Sabatini 2006). The purpose of the experiment was to check if such initiative based on 

the dispersion of wealthy families would produce positive impacts on the segregation 

patterns of the city.  

To conduct the experiment, undeveloped areas located in poor regions of the 

city were identified from orthophotos taken in 2000, scale 1:30000 and spatial 

resolution of 0.6m (PMSJC 2003). These areas were digitalized, imported into NetLogo, 

and classified as ‘type A’ neighborhoods (see section 5.2.2), i.e., settlements designed 

for residential occupation by middle and upper classes, with good housing quality, 

infrastructure, and services. A simulation run considering these new type A 

neighborhoods was executed for the period 1991-2010, and the results compared with 

the baseline scenarios 1991-2000 (section 6.2) and 2000-2010 (section 6.3.1). The 

graphs comparing the global segregation indices of these different ‘what-if’ scenarios 

through the years are presented in Figure 6.17. 
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Figure 6.16 Location of new areas designated for middle and upper classes.     
 

In general, it can be observed that the policy approach based on wealth 

dispersion produces long-term outcomes. The consolidation of the new areas designated 

for upper classes may take some years, and therefore their positive impacts on the 

global segregation indices become more substantial with time. This is an advantage in 

comparison with the poverty dispersion policy tested in the previous experiment, which 

demands a continued public investment for housing vouchers. As soon as this 

investment ceases, its positive impact on segregation cannot be sustained.  

The global segregation indices presented in Figure 6.17 indicate that the 

dispersion of wealthy families tends to be more effective at decreasing large-scale 

segregation. For example, the dissimilarity index for 2010 computed for a local scale 

(700 m) decreases 19% when the policy based on wealth dispersion is adopted, less than 

the decrease of 36% that is observed when the same index is computed for a large scale 

(2000 m). The same occurs for the other indices: the isolation of poor households in 

2010 decreases only 1.7% at the local scale, but 5.3% at the large scale, while the 

isolation of affluent households in 2010 decreases 17% at the local and 28% at the large 

scale. This outcome is another advantage in comparison with the policy based on 

poverty dispersion, which is more effective for decreasing local-scale segregation. 

Segregation at larger scales, specially the concentration of disadvantages, is considered 

more damaging than segregation at local scales (Sabatini et al. 2001).  

 

 

 

 

Urban areas in 1991 

Undeveloped areas designated 
for middle and upper classes 
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(a) Spatial dissimilarity index -700 m (b) Spatial dissimilarity index – 2000 m 

  

(c) Spatial isolation of low-income group 
-700 m 

(d) Spatial isolation of low-income 
group – 2000 m 

  

(e) Spatial isolation of high-income 
group - 700 m 

(f)  Spatial isolation of high-income 
group – 2000 m 

  

Scenarios:      (1) Baseline         (2) Dispersion of settlements for middle and upper   
classes  

 
Figure 6.17 Progression of global segregation indices 1991-2010 (radius 700 m and 

radius 2000 m) for the scenarios of wealth dispersion 
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Spatial Dissimilarity Index – Year 2010 (radius = 2000 m) 

        (a) Baseline          (b) Wealth dispersion 

   

Spatial Isolation of Low-Income Households – Year 2010 (radius = 2000 m) 

         (c) Baseline          (d) Wealth dispersion 

   

Spatial Isolation of High-Income Households – Year 2010 (radius = 2000 m) 

         (e) Baseline         (f) Wealth dispersion 

   
 
Figure 6.18 Local indices of segregation (large scale, radius 2000 m) for two 

simulation scenarios for the year 2010: (1) baseline scenario, and  
(2) wealth dispersion. 

 

The segregation maps for the year 2010 show that the simulation of the policy 

on wealth dispersion was also able to modify spatial patterns of segregation in the city 

in a positive manner (Figure 6.18):   

1. The local dissimilarity indices computed for a large scale became smoother 

and spread through the city (Figure 6.18 (b)).  
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2. The isolation of poor households became less remarkable in the outskirts of 

the city, particularly in the clandestine settlements located in the northern and 

eastern regions of the city. There was also a stronger presence of poor 

households in central areas of the city, where better quality of infrastructure 

and higher levels of accessibility can be found (Figure 6.18 (d)).  

3. The isolation pattern of affluent households, which was observed in the 

baseline scenario as an axis starting from the central area of the city towards 

the western region, became spatially diffuse throughout the city (Figure 6.18 

(e-f)). The trend presented in the alternative scenario is positive, since wealthy 

residents are then more likely to circulate through different parts of the city 

and increase their contact with distinct social groups and realities (Villaça 

1998). In addition, poor families that end up near residential projects for upper 

classes often benefit in terms of employment, quality of services, and urban 

facilities (Sabatini 2006; Sabatini et al. 2001).  

 

6.4.3 Impact of regularizing informal settlements and providing an equitable 

distribution of infrastructure 

This final experiment tests whether urban policies that aim at improving the life 

conditions of the urban poor can influence the segregation patterns of the city. To 

conduct this test, the baseline simulation 1991-2000 (section 6.2) was compared with an 

alternative simulation started from a different initial state. This alternative initial state 

differs from the original in two aspects: 

1.  The informal settlements (‘type D’ neighborhoods) were regularized, i.e., 

reclassified as ‘type C’ neighborhoods.  

2. The value of the landscape-patch variable infrastructure (Linfra), which is a 

composed index that represents the provision of water, sewage, and garbage 

collection, was set to 1 (maximum value) for all urban patches. 
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(a) Spatial dissimilarity index -700 m (b) Spatial dissimilarity index – 2000 m 

  

(c) Spatial isolation of low-income 
group - 700 m 

(d) Spatial isolation of low-income group 
– 2000 m 

  

(e) Spatial isolation of high-income 
group -700 m 

(f)  Spatial isolation of high-income 
group – 2000 m 

  

Scenarios:        (1) Baseline              (2) Regularization of informal settlements and 
equitable distribution of infrastructure  

 
Figure 6.19 Progression of global segregation indices 1991-2000 (radius 700 m and 

radius 2000 m) for the scenario testing the regularization of informal 
settlements and equitable distribution of infrastructure 

 

Figure 6.19 shows the global dissimilarity index and isolation indices during 

the period 1991-2000 computed for the baseline and the alternative scenario where 

informal settlements are regularized and the infrastructure is equally distributed. In 

general, the outcomes indicate that these investments had no significant impact on the 

spatial patterns of segregation in the city of São José dos Campos. However, it is 



Operational MASUS model and simulation experiments 

 176

important to mention that the experiment does not invalidate the merit of such policies. 

Despite their apparent inefficiency to improve the segregation levels, these policies 

provide innumerous benefits for the quality of the life of poor families and, in some 

cases, even contribute towards their upward social mobility. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Conclusions 

 177

7 CONCLUSIONS 

 

Urban segregation has been a persistent and pervasive feature of cities. Its consequences 

are harmful to disadvantaged families and impose barriers regarding the achievement of 

social inclusion in urban areas. To overcome these negative impacts, it is necessary to 

implement policies founded upon a better understanding of segregation and the 

influence of different contextual mechanisms on its dynamics. However, studies on 

segregation face the challenge of dealing with a phenomenon that displays many of the 

characteristic hallmarks of a complex system. Segregation is a coherent and 

recognizable macro-structure, but emerges from local interactions able to produce 

unexpected and counterintuitive outcomes that cannot be defined a priori.  

Following the complex systems theory mindset, this study presents an 

empirically based simulation model named MASUS, Multi-Agent Simulator of Urban 

Segregation, which enables researchers to explore the impact of different mechanisms 

on the emergence of segregation patterns. An agent-based simulation approach was 

chosen for the development of MASUS due to its suitability for addressing the 

methodological challenges of understanding a complex system like segregation.  

MASUS provides a virtual laboratory for testing theoretical issues and policy 

approaches concerning segregation. It represents urban households as individual units 

(household agents) that interact with each other and their environment in order to decide 

whether or not to move to a different residential location. Within this framework, urban 

segregation arises as an outcome of all these complex interactions. The conceptual 

MASUS model includes the relevant aspects for simulating segregation in two distinct 

systems: the urban population system and the urban landscape system. The urban 

population system is the target system of the MASUS model. It is comprised of micro- 

and macro-levels: Household agents are considered at the micro-level, while the macro-

level represents the urban population in its totality, including the residential location of 

households with different income levels, i.e., the segregation pattern of the city. The 

urban landscape system is the environment where household agents are located and 

provides a dynamic context for their decisions about whether to move or not. 

Experimental factors addressing both these systems can be modified to perform 

experiments aiming at exploring relevant questions about segregation.  
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Based on the components of the conceptual model, three modules were theoretically 

specified for the operational MASUS. In its essence, the urban-population module 

characterizes, at the micro-level, the household agent and the decision-making 

mechanism that rules the agent’s residential location choice. At the macro-level, this 

module defines a population transition sub-model that keeps the socio-demographic 

composition of the population according to user-defined proportions. The urban-

landscape module defines landscape patches, which are individual parts of the 

environment, and sub-models that simulate the dynamics of landscape-patche attributes 

that are relevant, directly or indirectly, to the locational behavior of household agents 

(e.g., land price and infrastructure). Finally, the experimental-factor module consists of 

specification templates regarding causal mechanisms of segregation that can be set to 

test theoretical issues and the impact of policies on the segregation patterns of an urban 

area.  

As an empirically based simulation model, MASUS provides different levels 

of generalization in each of its specification levels. The conceptual framework is highly 

generalizable and can be applicable to distinct types of segregation in different contexts. 

The theoretical specification, however, cannot achieve the same level of generalization, 

since some specifics necessary for the MASUS implementation depend on the 

availability of data and empirical parameterization.  

The MASUS model was first implemented for São José dos Campos, a 

medium-sized Brazilian city. Based on the data of this city, the model was 

parameterized and calibrated. Census data and a survey including the residential 

mobility history of 7,910 households were used to parameterize the decision-making 

sub-model guiding the behavior of household agents. This sub-model, which is the most 

important sub-model of the urban-population module, adopts an approach based on 

utility maximization using nested multinomial logit functions. The nested framework 

adopted in the specification of these functions is organized in three levels. The first 

level concerns the household decision about moving or staying, and focuses on how 

personal attributes such as age and tenure status can influence the mobility rate of 

different income groups. The second and third levels focus on how households assess 

the characteristics of potential residential locations. The second level considers the 

impact of these characteristics in terms of households’ neighborhood type choices, 
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while the third level concerns their general impact on the location choice, regardless of 

the neighborhood type. 

To estimate the parameters of the urban-landscape sub-models, we used data 

from two distinct dates (1991 and 2000), which were obtained from different sources, 

including satellite images, census data, and official maps. The urban-sprawl sub-model 

relies on the Markov chain to compute the total number of patches converting from non-

urban to urban, and binary logistic regression to estimate the probability of a non-urban 

patch becoming urban and to allocate the new urban patches. The dwelling offers sub-

model updates the number of dwellings of a patch based on two linear regression 

models: One that estimates the patches’ loss of dwellings due to the expansion of non-

residential uses (e.g., expansion of commercial use in residential areas), and another that 

estimates the gain due to new investments in residential developments. The land-value 

sub-model is based on a hedonic price model to estimate a patch’s land value, while the 

infrastructure sub-model relies on linear regression models to estimate the infrastructure 

quality of each patch.   

Given the proposed theoretical framework and the parameters estimated from 

empirical data, the operational MASUS model was implemented in NetLogo 4.0.4, a 

multi-agent programmable modeling environment. This thesis presents the MASUS 

computer program, including details of its main sub-programs, inputs, outputs, and 

graphic user interface. The potential of the model is demonstrated through three 

different sets of simulation experiments concerning segregation in São José dos 

Campos: the first validates the model, the second tests theories about segregation, and 

the third explores the impact of anti-segregation policies.  

The first set of experiments provides a retrospective validation of the MASUS 

model by simulating the segregation dynamics of São José dos Campos during the 

period 1991-2000. The initial state of the experiment replicates the characteristics of the 

city in 1991. Nine annual cycles were executed and the simulated outputs were 

compared with real data from the year 2000. In general, simulated and real data reveal 

the same trends, a result that demonstrates that the model is able to accurately represent 

the segregation dynamics of the study area. 

The second set of experiments aims at demonstrating the potential of the 

MASUS model to explore and test theoretical issues about urban segregation. These 



Conclusions 

 180

experiments explore the impact of two mechanisms on segregation: income inequality 

(as a product of the labour market) and personal preferences. To test the impact of 

income inequality on segregation, scenarios considering different income distributions 

were simulated and compared. The results, sometimes unexpected, show how 

decreasing levels of income inequality promote the spatial integration of different social 

groups in the city.  

Following this experiment, new tests were conducted to explore how the 

neighborhood preferences of high-income families could affect segregation patterns. 

The simulated outputs indicate a linear and positive relation between indices measuring 

different dimensions of segregation and the preference of affluent families for neighbors 

with similar income levels. This relation, however, is not substantial when considering 

the isolation index of poor residents. The results reveal, for instance, that the high levels 

of poverty isolation were maintained even in a scenario where affluent households did 

not take into account the income composition of neighborhoods when selecting their 

residential location. This level of poverty isolation probably persists because affluent 

families, independent of the preference regarding their neighbors, still choose to live in 

high-quality areas that the poorest families cannot afford.  

Finally, the third set of experiments provides new insights about the impact of 

different urban policies on segregation. One experiment tests whether the regularization 

of clandestine settlements and equitable distribution of infrastructure would affect the 

segregation trends in the city. Despite the importance of these measures in improving 

the life conditions of the urban poor, the simulated outputs indicate that they had no 

significant impact on the segregation patterns.   

In addition to this test focusing on a general urban policy, two specific social-

mix policy approaches were explored: based on poverty dispersion and on wealth 

dispersion. The policy promoting poverty dispersion moves poor households out of 

distressed areas by distributing housing vouchers to be used for renting private 

dwellings in neighborhoods with a low poverty rate. The other policy, based on the 

dispersion of wealth, focuses on providing incentives for the construction of residential 

areas for middle and upper classes in poor regions of the city.  

A comparison between the scenarios simulating these two policies reveals that 

poverty dispersion is the least effective strategy to promote positive changes in the 



Conclusions 

 181

segregation of developing cities. In these cities, where a substantial part of the 

population has a low income level, policies based on the dispersion of the poor require 

very high investments that tend to be unfeasible and, once the investments cease, their 

positive impacts on segregation are not sustained. On the other hand, the policy based 

on wealth dispersion was able to produce substantial and long-term improvements in the 

segregation patterns of the city. These improvements became more visible with time, as 

the consolidation of the residential developments for middle and upper classes started to 

began to become effective. The simulation experiments also revealed that, unlike in the 

poverty dispersion policy approach, the dispersion of wealth is more efficient in 

decreasing large-scale segregation, which is considered to have a more damaging 

impact on the lives of poor citizens than local-scale segregation. 

 

7.1  Limitations and recommendations 

MASUS is a scientific tool able to produce simulation scenarios that contribute to a 

better understanding of segregation and the impact of different mechanisms on its 

dynamics. Nevertheless, as with any other tool that simulates a complex system, 

MASUS outputs must be interpreted with caution. They do not represent quantitative 

and accurate forecasting of segregation patterns, nor do they provide a deterministic 

answer regarding the best policy approaches. Instead, these simulation outputs should 

be considered in terms of how the different factors of the model are related and 

contribute to a change in segregation dynamics. During this process, it is still important 

to keep in mind that no model can explicitly represent all the factors that are relevant for 

the residential location choice of households. Only after such observations and 

deliberations is possible to obtain insights that contribute towards structuring debates on 

open theoretical questions about segregation or the development of better informed anti-

segregation policies.   

Regarding the decision-making sub-model that guides the behavior of 

households, which represents the main ‘engine’ of the MASUS model, some 

conclusions can be drawn. In the current version of MASUS, this sub-model relies on 

nested multinomial logit (NMNL) functions, which jointly model a household’s 

mobility choice, neighborhood type choice, and specific neighborhood location choice. 

This joint modeling approach has the advantage of assuming, for instance, that the 
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household’s mobility decision (move or stay) is influenced by the characteristics of the 

residential alternatives available on the market. Nevertheless, an important drawback of 

the use of NMNL is the fact that these statistical models essentially provide a static 

representation of the agents` reasoning. Therefore, the model outcomes are not likely to 

be robust once the agents’ behavior changes. To address this issue, further research 

should explore the development of adaptive and learning agents (Gilbert 2008; Holland 

and Miller 1991; Maes 1994).   

Additional shortcomings of the decision-making sub-model that should be 

considered in an improved version of MASUS include:  

1. The sub-model does not take into consideration the past decisions of 

households, i.e., households have no memory when deciding whether to stay 

in their current residence or move to a new neighborhood. More empirical 

research should be done about the impact of these past decisions on the 

locational behavior of households and a new version of the decision-making 

sub-model able to support these new findings should be developed.  

2. The sub-model ignores the influence of the neighbors’ behavior on the 

decision process of a household. By considering this spatial component, it 

could be possible to capture factors or events associated with a specific 

neighborhood that were not explicitly represented in the model but 

nevertheless influence the mobility of households living in this area. An 

alternative to overcome this drawback is to explore the use of spatial discrete 

choice models (Flemming 2004) to represent the residential choice behavior of 

households.  

3. For simulating the segregation dynamics of São José dos Campos, a city where 

the number of households varied from 107,045 to 142,541 during the period 

1991-2000, the decision sub-model presented high computational costs. This 

can become a crucial limitation for adapting the model to mega cities, e.g., the 

metropolis of São Paulo, which has more than 19 million inhabitants. 

Therefore, it is necessary to look for alternative modeling strategies able to 

address this shortcoming, e.g., the use of an agent-based simulation platform 

that prioritizes the execution speed, such as MASON or Repast (Railsback et 

al. 2006). 
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The sub-models simulating the dynamics of the urban environment also deserve further 

consideration. The dynamics of residential land markets, in particular, are crucial for the 

establishment of segregation patterns, and the simulation of these dynamics poses 

additional challenges that are not addressed in the current version of the MASUS 

model. In this version, the land-price sub-model relies exclusively on inductive models 

of price expectation formation based on local neighborhoods and spatial externalities, 

ignoring the role of competitive bidding in this process. To improve the simulation of 

land markets, the sub-model should be more closely linked to urban economics by 

combining the inductive models already used in the first version of MASUS with 

deductive models of bid and ask price formation, as suggested by Parker and Filatova 

(2008).   

The measurement of segregation, which is crucial for monitoring the 

simulation outcomes, represents an open issue that should also be reviewed. The current 

version of MASUS adopts the spatial indices of dissimilarity and isolation suggested by 

Feitosa (2007). These indices have the advantage of presenting not only global versions 

that summarize the segregation degree of the whole city, but also local versions that 

assume the spatial variance of segregation through the study area. However, these 

measures are more adequate to categorical variables (e.g., race), being unable to take the 

original distribution of continuous variables into account. This fact represents a 

limitation for the use of these indices in this work, since income is a continuous variable 

and collapsing it into a limited number of income groups certainly causes a loss of 

information. There are a number of global segregation measures appropriate for 

continuous variables (Jargowsky and Kim 2005; Reardon et al. 2006). The rank-order 

information theory index, proposed by Reardon et al. (2006), is a particularly interesting 

measure that relies on information about the rank ordering of incomes among 

households and could be explored in further versions of the MASUS model.  

Nevertheless, further research is needed to develop local segregation measures for 

continuous variables, which depict segregation as a spatially variant phenomenon and 

can be displayed as maps. 

The MASUS model is built on a framework that can be adapted to different 

urban realities. For that, it is necessary first to identify essential factors influencing the 

residential mobility of households in the study area, a task that can be done through 



Conclusions 

 184

literature review and/or exploratory analysis of empirical data. Based on these initial 

findings, the adaptation of the MASUS model to a new urban context will consist of:  

1. Reviewing the sub-models’ structures, which may involve the inclusion of 

different variables, the specification of new functions, or even the 

development of new sub-models responsible for simulating environmental 

aspects that are not explicitly represented in the current version of the model;  

2. Performing a new parameterization and calibration based on empirical data of 

the study area;  

3. Idealizing and conducting experiments that meet the objectives of the study 

and the specificities of the study area.  

 

Finally, there is a wide range of experiments that can still be explored in 

MASUS. It is possible, for instance, to investigate how segregation can be affected by 

policies that diversify land uses or control land speculation. Nevertheless, further 

improvement in the usability of the MASUS and in the design of experiments still 

depends on feedbacks obtained from potential users and stakeholders. Several 

techniques based on principles of participatory research have been suggested to keep 

users closely involved in the model development, testing and use, including techniques 

such as rapid iterative development and user workshops (Ramanath and Gilbert 2004).  
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