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Zusammenfassung

Zusammenfassung

Das mechanosensorische Seitenliniensystem der Fische antwortet auf Wasserbewegungen und

Druckgradienten, die von biotischen Faktoren wie z.B. Beutetieren, Fressfeinden, Artgenossen

oder abiotischen Faktoren hervorgerufen werden. Theoretische und elektrophysiologische Arbeiten

zeigen, dass die von einer vibrierenden Kugel verursachten Reizmuster entlang des Kanalsystems

der Seitenlinie Informationen über die Position und Vibrationsrichtung der Kugel enthalten. Diese

Reizmuster werden von primären Seitenlinienafferenzen abgebildet. Unklar ist bislang, ob und wie

diese Informationen entlang der aufsteigenden Bahn der Seitenlinie weiter verarbeitet werden.

In der Medulla, dem ersten Kern in der aufsteigenden Seitenlinienbahn, wurde keine Representa-

tion der Position und/oder Vibrationsrichtung einer stationären vibrierenden Kugel gefunden. Die

vorliegende Arbeit untersucht, ob Seitenlinienneurone im zweiten Kern der aufsteigenden Seiten-

linienbahn, dem Torus semicircularis, die Position und/oder Vibrationsrichtung einer stationären

vibrierenden Kugel abbilden. Dazu wurde eine vibrierende Kugel (Dipol, Durchmesser 10 mm,

Frequenz 50 Hz, Dauer 500 ms) an verschiedenen Positionen entlang eines Fisches positioniert. Die

Vibrationsrichtung der Kugel betrug 0° (parallel zur Längsachse des Fisches), 45°, 90° (im rechten

Winkel zur Längsachse und zur dorso-ventralen Achse des Fisches) oder 135°. Die maximale

Amplitude der Kugelbewegung lag zwischen 124 und 237 µm. Die minimalen Abstände zwischen

Fisch und Kugeloberfläche betrugen 5, 10, 15, 20, 30 oder 40 mm.

Insgesamt wurde 98 unimodale torale Seitenlinienneurone abgeleitet. Für 16 Neurone konnte das

komplette, bis zu vier Stunden dauernde Reizprotokoll durchgeführt werden. Dieser Studie liegen

deshalb nur diese 16 Neurone zu Grunde. Die Ableitorte von 12 Neuronen konnten nachgewiesen

werden, sie lagen im ventrolateralen Kern des Torus semicircularis. Dieses Gebiet erhält auss-

chließlich Eingang von der Seitenlinie.

Die Spontanaktivität von 14 der untersuchten Neurone lag bei ≤ 0,44 Hz (Mittelwert±SD 0,44±0,45

Hz, Median 0,32 Hz, Bereich 0,01–1,40 Hz). Zwei Neurone wiesen durchschnittliche Spontanraten

von 12,37 Hz bzw. 51,72 Hz auf. Die Antworten eines Neurons waren phasisch, neun Neurone
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Zusammenfassung

antworteten phasisch-tonisch und sechs Neurone tonisch. Sofern eine Antwort erfolgte, antworteten

15 Neurone bei allen Kugelpositionen mit einer Erhöhung der Spikerate. Ein Neuron antwortete je

nach Kugelposition mit einer Erhöhung oder einer Abnahme der Entladungsrate.

Im Hinblick auf Antwortrate und Phasenkopplung war kein torales Neuron raumsensitiv. Bei einigen

Neuronen reichte aber eine Positionsänderung der Kugel von 5 mm aus, um eine signifikante Verän-

derung der evozierten Antwortrate, des Phasenwinkels der Antwort und/oder der Phasenkopplung

hervor zu rufen. Ähnliche Effekte konnten bei einigen Neuronen auch durch Veränderung der

Vibrationsrichtung der Kugel ausgelöst werden.

Drei Neurone zeigten bei mehreren nebeneinander liegenden Positionen der Kugel eine signifikante

Phasenkopplung. Während zwei Neurone nur auf eine Hälfte jeder Sinuswelle antworteten, reagierte

ein Neuron auf beide Hälften jeder Sinuswelle mit Exzitation.

Die räumlichen Erregungsmuster von drei Neuronen waren unabhängig von der Vibrationsrichtung

der Kugel. Die räumlichen Erregungsmuster von vier Neuronen änderten sich je nach Vibrationsrich-

tung der Kugel und waren relativ zueinander verschoben. Mit zunehmendem Vibrationswinkel der

Kugel relativ zum Fisch verlagerte sich das Maximum der räumlichen Erregungsmuster in Richtung

rostral. Die räumlichen Erregungsmuster der restlichen neun Neurone zeigten keine systematischen

Veränderungen auf unterschiedliche Vibrationsrichtungen der Kugel.

Im Rahmen dieser Arbeit wurden keine toralen Seitenlinienneurone gefunden, die für sich genom-

men die Position und/oder die Vibrationsrichtung einer stationären vibrierenden Kugel abbilden.

Daher postuliere ich, dass Seitenlinieninformationen zu Position und Vibrationsrichtung einer sta-

tionären vibrierenden Kugel mittels eines Ratencodes verarbeitet werden. Wenn es raumsensensitive

Neurone gibt, welche die Position und Vibrationsrichtung einer Kugel abbilden, können sie möglicher-

weise im optischen Tectum (der nächsten Stufe der Verarbeitung von Seitenlinieninformation in

der aufsteigenden Seitenlinienbahn) gefunden werden, wo etwa beim afrikanischen Krallenfrosch

Xenopus laevis oder dem Axolotl Ambystoma mexicanum schon neuronale Karten der Seitenlinie

nachgewiesen wurden.
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Summary

Summary

The mechanosensory lateral line system of fish responds to water motions and pressure gradients

caused by biotic factors (e.g. prey, predators or conspecifics) or abiotic factors. Theoretical and

neurophysiological data show that a stationary vibrating sphere creates a spatial stimulus pattern

along the lateral line. This spatial stimulus pattern contains information about the stimulus, i.e.

sphere position and sphere vibration direction, and is represented in primary lateral line afferents.

Up to now it is not clear how the excitation patterns of primary lateral line afferents are processed

along the ascending lateral line pathway.

In the medulla, the first nucleus of the ascending lateral line pathway, no representation of the position

and/or vibration direction of a stationary vibrating sphere was found. The present study examines if

lateral line units in the second nucleus of the ascending lateral line pathway, the torus semicircularis,

encode the position and/or vibration direction of a stationary vibrating sphere. To do so, a stationary

vibrating sphere (dipole, diameter 10 mm, frequency 50 Hz, duration 500 ms) was positioned at

different positions along the rostro-caudal axis of a fish. Sphere vibration directions were 0° (parallel

to the long axis of the fish), 45°, 90° (perpendicular to the long axis and the dorso-ventral axis of the

fish) and 135°. The maximum peak-to-peak sphere displacement was 124–237 µm. The minimum

distances between the fish and the surface of the sphere were 5, 10, 15, 20, 30 or 40 mm.

A total of 98 unimodal toral lateral line units were recorded. 16 of these units could be examined

with the complete stimulation protocol, that lasted up to four hours. This study examines only the

responses of these 16 units. The recording sites of 12 out of these 16 units were verified, they were

located in the ventrolateral nucleus of the Torus semicircularis, which is known to receive only lateral

line input.

The ongoing activity of 14 units was ≤ 0,44 Hz (mean±SD 0,44±0,45 Hz, median 0,32 Hz, range

0,01–1,40 Hz). Two units had mean ongoing activities of 12,37 Hz and 51,72 Hz. The responses of

one unit were phasic, nine units responded phasic-tonic and six units showed tonic responses. 15

units responded with an increase in evoked neural activity at all sphere positions. One unit showed

XII



Summary

an increase in evoked neural activity or a decrease in evoked neural activity inhibition, depending on

the sphere position.

None of the examined toral lateral line units was space sensitive in terms of evoked spike rates or

phase locking. In some units a small change (5 mm) in sphere position led to a significant change of

the evoked frequency, the phase angle of the response and/or the phase-locking. Similar effects

were observed for changes in the direction of sphere vibration.

Three units showed siginficant phase-locking at multiple side by side sphere positions. Two of these

units responded to only one half of a full wave cycle. One unit, however, responded to both halfs of a

full wave cycle.

Spatial excitation patterns of three units were independent from sphere vibration direction. The

spatial excitation patterns of four units were sytematically and continuously displaced towards the

snout of the fish with increasing sphere vibration angles. The spatial excitation patterns of nine units

showed no systematic changes to changes of sphere vibration direction.

In this study no toral lateral line units were found that single-handedly encode the position and/or

vibration direction of a stationary vibrating sphere. I therefore assume that lateral line information on

the position and vibration direction of a stationary vibrating sphere is encoded in a population code.

If space sensitive lateral line units exist, that encode sphere position and vibration direction, they

can possibly be found in the optic tectum (the next level of processing of lateral line information in

the ascending lateral line pathway), where computed lateral line maps have been proven in other

animals with a lateral line.
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Introduction

1 Introduction

1.1 The mechanosensory lateral line

The commonly known senses of vision, olfaction, taste, hearing and touch are, along with thermore-

ception, nociception, proprioception and the sense of balance, widespread in the animal kingdom

(for review, see Martin and Jessell 1996). In addition, other senses have developed, such as the

mechanosensory lateral line (Dijkgraaf 1952; for review, see Bleckmann 1994), magnetoreception

(Lohmann 2000; Wiltschko and Wiltschko 2005), electroreception (von der Emde 1990; Manger and

Pettigrew 1995; for review, see Bullock 1982) and infrared vision (Ebert et al. 2006; Schmitz et al.

2007).

The mechanosensory lateral line is evident in approximately 30,000 extant fish species and many

aquatic amphibians (for reviews, see Bleckmann 1994; Nelson 2006). It is capable of detecting

minute water motions, that are elicited by prey, predators, conspecifics or abiotic factors like wind or

gravity (for reviews, see Bleckmann 1993, 1994). Lateral line information plays an important role

in different behaviours (for reviews, see Bleckmann 1993, 1994) like for example prey detection

and capture (Hoekstra and Janssen 1985; Montgomery and Hamilton 1997; Coombs et al. 2001;

Pohlmann et al. 2001, 2004), predator (Kaus 1986; for review, see Blaxter and Fuiman 1989) and

obstacle avoidance (for review, see Hassan 1989), spatial mapping (van Campenhausen et al. 1981;

Teyke 1989; Burt de Perera 2004), shoaling (Partridge and Pitcher 1980), entrainment (Liao 2006,

2007) and rheotaxis (Montgomery et al. 1997; Montgomery and Baker 1997; Baker and Montgomery

1999).

Most hydrodynamic stimuli have a dipole component (for review, see Bleckmann 1994). Due to

the physical properties of dipole water motions most hydrodynamic stimuli decrease rapidly with

distance (Kalmijn 1988; for review, see Bleckmann 1994). Therefore the mechanosensory lateral

line is limited to a distance of at most a few body lengths (Kalmijn 1989). Consequently the lateral

line system is often referred to as „distant touch“ (Dijkgraaf 1952).
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1.2 Periphery of the mechanosensory lateral line

The smallest functional unit of the lateral line system is the neuromast (for review, see Münz 1989). A

single neuromast consists of a gelatinous cupula (Nortcutt 1989) with a circular or elliptical base and

sensory hair cells (Flock and Wersäll 1962; Flock and Duvall 1965; Schmitz et al. 2008; for review,

see Coombs et al. 1988)(Fig. 1A). The hair cells are separated by supporting cells and differentiated

from the surrounding tissue by mantle cells (for review, see Münz 1989). The macula, i.e. the area

covered by sensory cells, consists of up to 10,000 hair cells in a single neuromast (for review, see

Denton and Gray 1989). In goldfish 14–32 hair cells occur in each neuromast (Schmitz et al. 2008).

Each neuromast features two equally large groups of antagonistically oriented hair cells, that bear

apical ciliary hair bundles. Hair bundles extend into the cupula and are composed of up to 150

stereovilli, that grow longer from one edge of the bundle to the other and a single true 9+2 kinocilium

at the tall edge of the hair bundle (Flock and Duvall 1965; Flock 1971). Within a single neuromast

hair cells are aligned nearly parallel to each other with respect to their longitudinal axis, i.e. the long

axis of the sensory epithelium (Schmitz et al. 2008)(Fig. 1B). Single hair cells are innervated by

afferent and efferent nerve fibres ( Münz 1979; Puzdrowski 1989). While primary lateral line afferents

relay information into the central nervous system (CNS), the efferent pathway can probably actively

reduce the sensitivity of neuromasts, e.g. to compensate for self-produced hydrodynamic stimuli that

occur during active swimming movements (for review, see Bleckmann 1994).

There are two types of neuromasts that differ in terms of morphology and response properties.

Superficial neuromasts (SN) are situated in the epidermis with their cupulae protruding into the water

surrounding the fish (for review, see Münz 1989). They occur in lines or clusters across the whole

epidermis, but are absent on the scales on the ventral side of the trunk, on the lips and on all fins

except the tail fin (Puzdrowski 1989; Bensouilah and Denizot 1991; Schmitz et al. 2008). Canal

neuromasts (CN) are located in subepidermal fluid filled canals with their cupulae looming into the

canal fluid that is usually connected with the outside medium by means of pore-like openings (for

review, see Münz 1989). In general a CN is positioned between two adjacent pores (for review, see

Münz 1989)(Fig. 1C). In most fish species CN are organised in a supraorbital canal above the eye,

2



Introduction

Fig. 1A, B, C. A Schematic drawing of a longitudinal section through a SN. Characteristic properties of a neuromast
are the gelatinous cupula and the hair cells, each with an apical hair bundle consisting of one kinocilium and numerous
stereovilli. Ciliary bundles with the same orientation are drawn in the same color. The size of neuromasts differs
considerably between species and among neuromast types (see text). Note that only four exemplary hair cells each
with four stereovilli are shown. The dotted line marks the section plane of Fig. 1B. B Schematic drawing of a horizontal
section through the SN depicted in Fig. 1A. Only cupula, stereovilli, kinocilia and epidermis are shown. Hair cells occur
in pairs whose ciliary bundles have a common axis of best sensitivity but antagonistic directional orientation. Note that
only four exemplary hair cells each with nine stereovilli are shown. K = Kinocilium, S = Stereovilli. The dotted line marks
the section plane of Fig. 1A C Schematic drawing of a longitudinal section through a canal neuromast. The pressure
difference between two adjacent pores leads to flow in the canal and thus to a stimulation of the canal neuromast.
Modified and redrawn, with kind permission, from W. E. Bemis.

an infraorbital canal below the eye, a mandibular canal on the lower jaw and a trunk lateral line canal

(Nortcutt 1989; for review, see Bleckmann 2008)(Fig. 4).

The adequate stimulus for both types of neuromasts is a shearing or gliding movement of the cupula

(Flock 1971; van Netten and Kroese 1987) that results in shearing of the ciliary bundles of the hair

cells in the stimulated neuromast. The hair cells are physiologically polarized to respond maximally

to a shearing of the ciliary bundles along their axis of alignment (Flock and Wersäll 1962). Shearing

of the ciliary bundle towards the kinocilium leads to a depolarization, while shearing in the opposite

direction leads to a hyperpolarization of the hair cell (for reviews, see Hudspeth 1983; Kroese and

van Netten 1989). This morphological feature leads to a directional sensitivity of the hair cell and

therefore consequently to a directional sensitivity of the neuromast (Flock and Duvall 1965). The

main orientation of the sensory epithelium in SN located on the trunk and the tail fin is rostro-caudal.

The axes of best sensitivity on the head are variable, while the orientation of SN on the turnk

3
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lateral line scales is mainly rostro-caudal or dorso-ventral. The alignment of hair cells in CN differs

depending on their loaction. Cephalic CN occur in all orientations while CN of the trunk lateral line

are primarily oriented in the rostro-caudal axis (Schmitz et al. 2008). Depending on the species

the lateral line consists of hundreds or even thousands of neuromasts. Goldfish possess 120–160

CN and about 2,000 SN per body side (Puzdrowski 1989; Schmitz et al. 2008)(Fig. 2). SN have

diameters from 20–100 µm, while CN can be much larger with diameters ranging from 100 to more

than 700 µm (for review, see Münz 1989). If stimulated with sinusoidal stimuli, SN respond largely in

proportion to the net velocity between the fish and the surrounding water. CN, on the other hand,

detect pressure gradients between adjacent canal pores, i.e. the net acceleration of water outside

the canal (Kalmijn 1989).

Fig. 2. Spatial distribution of lateral line canal pores (circles) and superficial neuromasts (dots) in the goldfish, Carassius
auratus. Canal neuromasts are not visible due to their subcutaneous location. The drawing was gratefully provided by
A. Schmitz.

Total number, spatial distribution, location, shape, size and orientation of neuromasts as well as

the ratio of SN to CN can differ substantially among species (e.g. Münz 1979; Schmitz et al. 2008;

van Trump and McHenry 2008; for reviews, see Coombs et al. 1988; Denton and Gray 1988;

Schellart and Wubbels 1998). These morphological variations may be adaptations to environmental

circumstances. Fish that are slow swimmers or live in stillwater tend to have many SN. Fish that

are fast swimmers or inhabit turbulent waters possess few SN but a well developed canal system

(Schellart and Wubbels 1998; for review, see Bleckmann 1994). The non-predatory goldfish lives

in still or slow moving waters and has thousands of SN. However, the predatory trouts, who live in
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turbulent running water, have only about 40 SN (Engelmann et al. 2002). Xiphister atropurpureus,

who lives in the turbulent waters of the surge in shorelines, does not possess a single SN but has a

highly branched and zigzag shaped canal system (Bleckmann and Münz 1990).

1.3 Afferent lateral line pathways

Lateral line information originating from cephalic neuromasts is routed into the CNS via the anterior

lateral line nerve (ALLN), while information from the trunk is relayed via the posterior lateral line

nerve (PLLN)(McCormick 1982; Northcutt 1997; for review, see Northcutt 1989). Some species

feature a middle lateral line nerve (MLLN), that innvervates SN and CN caudal to the eye (for review,

see Bleckmann 1994). Primary lateral line afferents terminate predominantly in the ipsilateral medial

octavolateralis nucleus (MON) in the medulla (e.g. Puzdrowski 1989; Bleckmann et al. 1991). The

majority of second order cells in the MON projects to the contralateral torus semicircularis (TS) and

optic tectum (OT)(for review, see Wullimann 1998; Bleckmann and Zelick 2009). The TS consists of

two nuclei, the nucleus centralis that receives input from the inner ear and the nucleus ventrolateralis

that receives input from the lateral line (Knudsen 1977; Schellart et al. 1987; McCormick and

Hernandez 1996; for review, see McCormick 1989). The TS is located in the midbrain, ventral to

the optic tectum (McCormick and Hernandez 1996; Rupp et al. 1996; for review, see McCormick

et al. 1989)(Fig. 3). Fibres originating in the TS terminate in the nucleus praeeminentialis and are

relayed to the telencephalon via the nucleus praeglomerulosus in the diencephalon (for review, see

Wullimann 1998).

Fig. 3. Line drawing of the dorsal surface of a brain removed from a goldfish that had a body length of 124 mm. The
brain was fixed in 4 % paraformaldehyde (see appendix A) for five days. The torus semicircularis is located in the caudal
part of the midbrain, ventral to the dorsal surface of the optic tectum (McCormick and Hernandez 1996; Rupp et al.
1996; for review, see McCormick et al. 1989), are marked by the stippled lines. OB = Olfactory bulb, C = Cerebellum,
MO = Medulla oblongata, T = Telencephalon, TS = Torus semicircularis, VL = Vagal lobe
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Findings suggest that SN and CN are innervated by different primary lateral line afferents (Münz

1985). Thus at least two parallel ascending lateral line pathways exist. One pathway, innervating

exclusively SN, holds information on the velocity of the water surrounding the fishs body. The other

pathway relays information from the CN about the pressure gradient pattern across the surface of

the fish (for review, see Bleckmann 2008).

1.4 Hydrodynamic stimulation

A stimulus that was often used by lateral line researchers in still water experiments is a stationary

or slowly moving sphere that vibrates sinusoidally under water (e.g. Harris and van Bergeijk 1962;

Sand 1981; Münz 1985; Coombs and Janssen 1990; Coombs and Montgomery 1992; Montgomery

and Coombs 1992; Wubbels 1992; Coombs et al. 1996; Coombs et al. 1998; Mogdans and Kröther

2001; Engelmann et al. 2002; Kröther et al. 2002; Engelmann and Bleckmann 2004; Künzel 2009;

for review, see Bleckmann and Bullock 1989). A submerged vibrating sphere generates defined

water motions and a defined pressure gradient pattern on the body surface of an experimental animal

(e.g. Coombs et al. 1996).

For a sphere with a given diameter and peak-to-peak displacement amplitude the shape of the

pressure gradient pattern depends on the location of the sphere (azimuth, elevation and distance

between fish and sphere) and its vibration direction relative to the fish (e.g. Sand 1981; Kalmijn 1988;

Coombs et al. 1996; Coombs and Conley 1997a, 1997b; Coombs et al. 2000, 2002; Ćurčić-Blake

and van Netten 2006; Goulet et al. 2008; Coombs and Patton 2009). The rostro-caudal position of a

sphere is determined by the pressure gradient maximum (e.g. Coombs et al. 1996)(cf. Fig. 28). The

stimulus distance, i.e. the distance between fish and sphere, relates directly to the zero crossings

of the pressure gradients. For a sphere vibrating parallel to the rostro-caudal axis of the fish, the

stimulus distance relates directly to the positions of the zero crossings of the pressure gradients. With

all other parameters being equal, the distance between these two points increases with increasing

distance between fish and sphere (e.g. Coombs et al. 1996). Lastly, the orientation of the sphere

relative to the fish, i.e. sphere vibration direction, is reflected in the spatial pattern of the pressure

gradient. A sphere vibrating parallel to the rostro-caudal axis of the fish results in a tri-phasic pattern,
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whereas a sphere vibrating perpendicular to the fish evokes a bi-phasic pattern (e.g. Sand 1981;

Kalmijn 1989; Coombs et al. 1996; Coombs and Patton 2009)(cf. Fig. 28).

Electrophysiological experiments have shown that pressure gradient patterns of a stationary vibrating

sphere are unambiguously encoded in the spatial excitation patterns of primary lateral line afferents

(Sand 1981; Coombs et al. 1996; Goulet et al. 2008)(Fig. 28). Hence the information contained in

peripheral excitation patterns can theoretically be relayed to and used by central lateral line units

to unequivocally compute the location and the vibration direction of a stationary or slowly moving

vibrating sphere. In fish, up to now, no units that code the location and vibration direction of a sphere

have been found in the MON (e.g. Mogdans and Kröther 2001) or TS (e.g. Wojtenek et al. 1998;

Plachta et al. 1999; Engelmann and Bleckmann 2004). However, the aforementioned researchers

did not systematically look for space sensitive units, but rather focused on other aspects of lateral

line information processing. Lately, in the first systematic search for space sensitive lateral line units,

Künzel (2009) did not find MON units that were highly sensitive to sphere position and/or sphere

vibration direction. It is therefore not even known if or how the information of peripheral excitation

patterns is used by the CNS to compute the location of a stimulus source or its vibration direction.

However, the following indications make it likely that central lateral line units of fish could extract

information out of the peripheral pressure gradient patterns in order to localize a vibrating sphere

and detect the sphere vibration direction.

The lateral line system of amphibians is more simple than the lateral line system of fish since it only

consists of SN which have a smaller response range (e.g. 0.1–40 Hz in Xenopus laevis; for review,

see Elepfandt 1996). Nevertheless Claas and Münz (1996) showed that Xenopus laevis uses lateral

line information to extract information on both, the direction and the distance to a water surface

wave source. Lateral line units that are tuned to the direction of an impinging water surface wave

were discovered in electrophysiological experiments (Xenopus laevis: Zittlau et al. 1986; Behrend

et al. 2006; Ambystoma mexicanum: Bartels et al. 1990). Zittlau et al. (1986) and Bartels et al.

(1990) found that midbrain lateral line units of Xenopus laevis and Ambystoma mexicanum form

computational maps, while Behrend et al. (2006) could neither prove nor exclude the existence of a

map due to a limited data set. Claas et al. (1989) showed, that tectal lateral line units of Xenopus
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laevies only respond to a surface wave stimulus if the distance between the stimulus source and

the animal was 6 cm. These results suggest that in these amphibians the distance of a concentric

water surface wave source can be derived from the direction and/or the curvature of a surface wave

stimulus. In fish, the distance of a stationary vibrating sphere is encoded in the distance between

the zero crossings of the pressure gradients along the lateral line canal (see above). In addition, it

has to be kept in mind that the physical properties of midwater waves and surface water waves differ

fundamentally (Kalmijn 1988; for review, see Bleckmann 1994).

Furthermore, the distance to a visual or acoustic stimulus is represented in computational maps in

the CNS (for review, see Bleckmann 1994). In the auditory and visual system of vertebrates, the

location of a stimulus source is encoded by the activity of central neurons that are highly sensitive

to stimulation at a specific spatial location (e.g. Knudsen 1982). For example, the peripheral hair

cells in the ear of the barn owl receive acoustic stimuli and relay their information to space sensitive

midbrain neurons. These units fire only if a sound is presented at a particular location (Knudsen and

Konishi 1978).

The midbrain TS of fish contains at least a crude topographical organisation of electrosensory (e.g.

Knudsen 1977), auditory (e.g. Schellart et al. 1987; Wubbels et al. 1995; Wubbels and Schellart

1998) and lateral line information (e.g. stimulus = stationary vibrating sphere: Bleckmann et al. 1987,

1989; stimulus = sphere passed alongside the fish: Plachta et al. 2003).

Taking into account that no space sensitive units were found in the first lateral line nucleus, the MON,

a promising locus for the search of space sensitive lateral line units (azimuth and distance) is the

TS. In addition, the vibration direction of a stimulus could also be encoded in the TS. Admittedly,

medullary and midbrain lateral line units in Ancistrus and Apteronotus showed no coding of object

distance, as an increasing stimulus distance always led to an decreasing rate of evoked action

potentials (for review, see Bleckmann 1994).

In order to systematically search for space sensitive units I determined the spatial excitation patterns

(SEPs, also often referred to as receptive fields) of lateral line units recorded in the midbrain TS of

goldfish. To do so the lateral line system was stimulated with a sphere that was placed at various
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locations and distances alongside the fish. In addition, the sphere vibrated at various angles with

respect to the body surface of the fish. Space sensitive units would - irrespective of the attenuation

of dipole induced water mations (Kalmijn 1988) - show a maximum response (in terms of action

potential frequency or phase locking) at a certain sphere distance. A central lateral line unit that is

sensitive to stimulation with a certain sphere vibration direction would exhibit a maximum response if

it is stimulated with a sphere vibrating at a certain angle relative to the fish.

A possible encoding of the elevation of a stimulus by midbrain lateral line units was not examined in

this study since the dorso-ventral position of the sphere was not altered during an experiment. In

this study goldfish (Carassius auratus, Superclass: Osteichthyes (bony fish), Class: Actinopterygii

(ray-finned fishes), Order: Cypriniformes, Family: Cyprinidae) were used as experimental animals.
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2 Materials & Methods

2.1 Experimental animals

Data were collected from 132 goldfish (Carassius auratus) ranging from 8.1–12.8 cm in standard

body length and 14–33 g in weight. Only the common variety of the goldfish (for reviews, see

Piechocki 1990; Sterba 1990) was used, because multiple specimen of other varieties, e.g. those

with a deeply forked and long tail fin („Comet“) or multiple colors with black dots („Shubunkin“)

showed obvious mutations of the central nervous system (CNS), like a malformed or missing OT.

Animals were acquired from german retailers, kept in 300 l communal tanks (water temperature

16–19 °C, light-dark cycle 10:14 hours, substrate layer 5 cm coarse gravel, aquatic plants), and fed

standard fish food (Pond Vario, JBO GmbH & Co. KG, Neuhofen, Germany).

2.2 Preparation

Fish were initially anesthetised by immersion in MS-222 (1:10,000 in tap water, Sigma Aldrich, Seelze,

Germany) for 2–5 minutes or ice water (4 °C) for 15–30 minutes, until movements of operculi stopped

for a minimum of 10 s. Animals were immobilised with injections of 50 µl Pancuroniumbromide

(1:20 in physiological salt solution (see appendix A), Pancuronium Organon®, Organon, Oss, The

Netherlands) into the back muscles right of the dorsal fin. Occasionally, a second injection was

necessary to fully tranquilise a fish. For preparation animals were fixed on a surgical setup made of

Styrodur®. During preparation and experiment fish were artificially respirated with tap water (flow

rate 80–100 ml/min) by means of a water loop. It consisted of a submerged pump (Tauchpumpe Typ

03, Conrad Electronic, Hirschau, Germany) placed in a bucket full of tap water and an overflow in

the surgial setup or the experimental tank, respectively, that piped superfluous water back into the

bucket. To prevent drying of the skin during preparation, fish were continuously rinsed with fresh

water. To minimise mechanical stress during handling, fish were invariably handled with forceps

and only taken hold of on the first ray of the dorsal fin. The skin on the dorsal surface of the skull

was infused with the local anesthetic lidocaine hydrochloride (Xylocain®, AstaZeneca GmbH, Wedel,

Germany). After the drug took effect (10–15 min), an area of skin (approximately 8 × 8 mm), dorsal

to the right OT, was scraped off with a scalpel. A hole (about 6 × 6 mm) was made into the cranial
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bone with a dental drill (rose-head bur in FBS 240/S, Proxxon GmbH, Niersbach, Germany). Fluids

and adipose tissue were removed to expose the right OT and the very rostral part of the C (cf.

Fig. 12). Preparations were performed under a binocular (Leica M655, Leica Microsystems GmbH,

Wetzlar, Germany).

The dorsal surface of each brain was photographed and positions of electrode penetrations were

plotted on the respective photograph. Positions of electrode penetrations that resulted in a successful

recording of a midbrain lateral line unit were normalised to an OT with a width of 1,000 µm. The

rostro-caudal and dorso-ventral borders of the OT were used as landmarks.

Physiological salt solution was applied into the cranial cavity. Occasionally occurring bleedings

were stopped by placing gelatine foam (Gelastypt®, Ferrosan, Soeborg, Denmark) in the cavity for a

few minutes. To prevent water from entering the cranial cavity, a plastic cylinder (∅ 12 mm, height

17–24 mm) was glued (Vetbond™, 3M Animal Care Products, St. Paul, MN, USA) to the dried skin

around the opening in the skull. Leaks were sealed with cotton wool and glue. After sufficient leak

tightness of the cylinder was obtained, fish were transferred to the experimental tank (50 × 50 × 22

cm, water level 21.5 cm), that rested on a vibration isolated table (Micro-g©, TMC, Peabody, MA,

USA) and was filled with tap water (16–23 °C).

2.3 Experimental setup

The snout of the fish was put over a stainless steel pipe (Fig. 4) that delivered respiratory water.

Fig. 4. Side view of an immobilised, fixed and artificially respirated fish. Black stipples indictate the pores of the trunk
lateral line canal. 1 = respiratory pipe (flow rate 80–100 ml/min), 2 = screws clamping the skull to the pipe, 3 = plastic
cylinder to prevent water from entering the cranial cavity, 4 = rigid steel wire, 5 = sphere, 6 = twine, attached to the rear
wall of the tank.
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The skull was clamped in a stable position with two screws. Animals were completely submerged in

the experimental tank, leaving only the top of the plastic cylinder above the water surface. In addition,

a piece of twine was tied through the locally anesthetised base of the tail fin and affixed to the rear

wall of the fish tank by means of modelling clay. The fish was aligned in such a way that the distance

between the sphere and the left side of the fish remained approximately constant for different sphere

positions (Fig. 5). The position of the fish was left unaltered during the entire experiment.

Fig. 5. Top view of an immobilised, fixed and artificially respirated fish. The sphere is positioned at various locations
along the dashed line. The minimum distance between the surface of the sphere and the surface of the fish was 5 mm in
this case.

To examine a possible influence of the respiratory water flow on evoked neural activity the flow of

respiratory water through the gills of a fish was visualised in two ways. Either black ink or hollow

glass spheres (mean particle ∅ 50 µm, PSP-50, Dantec Dynamics, Skovlunde, Denmark), with the

same density as water and therefore floating in it, were added to the respiratory water. While the

dispersion of the ink dyed water in the clear water of the experimental tank could be observed with

the naked eye, the glass spheres needed to be illuminated with a sheet of laser light (laser diode,

wavelength 650 µm, output power 50 mW) in a darkened surrounding. The laser sheet was either

aligned parallel to the water surface, virtually dissecting the fish at the level of the lateral line, or

parallel to the rostro-caudal axis of the fish. Flow visualisation was recorded with a high speed

camera (HighSpeedStar 4, LaVision, Göttingen, Germany) at a resolution of 1,024 × 1,024 pixels
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at 10 frames/s. Examples of flow visualisation with hollow glass spheres and ink, respectively, are

depicted in Fig. 6.

Fig. 6A, B, C. Visualisation of respiratory water flow through the gills of a goldfish. Side view (A) and top view (B) of
particles illuminated by a laser sheet. Images were black-white inverted. Locations of high particle density were manually
coloured in red after the recording. Note that a horizontal extent of the caudal water current was not visible in terms
of particle movement. C Side view of the flow of ink dyed water through the gills of the same experimental animal as
depicted in A and B. Note that the water flow close to the base of the anal fin shown in A is not visible. Evenly spaced
vertical lines result from a defect in the CCD chip of the digital camera.

2.4 Stimulation

2.4.1 Stimulus generation

Fish were stimulated with water motions generated by a stationary, sinusoidally vibrating, chemically

inert plastic sphere (∅ 10 mm). Stimuli (50 Hz, 500 ms duration, 100 ms rise and fall time, starting

phase 0°, cf. Fig. 11) were software generated on a PC (Spike 2 v5.16, Cambridge Electronic

Design (CED), Cambridge, UK), DA converted (Power 1401, CED), monitored on an oscilloscope

(DL 1300A, Yokogawa, Tokyo, Japan), amplified (KAF-1010, Kenwood, Heusenstamm, Germany)

and passed to a permanent magnet electrodynamic minishaker (Model V101, Ling Dynamic Systems

(LDS), Royston, GA, USA). A plastic rod to which the sphere was attached by means of a rigid

stainless steel wire (length 100 mm, ∅ 1.58 mm) was mounted perpendicular to the minishakers

diaphragm to generate sinusoidal oscillations in the horizontal plane. The minishaker was attached

to a custom-made rail system (machine shop, Institute of Zoology, University of Bonn) that allowed

to alter the distance between fish and sphere and the position of the sphere along the rostro-caudal

axis of the fish, respectively. The stimulus setup rested on a free-standing platform, to prevent the
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direct transmission of vibrations from the minishaker to the experimental animal. For a block diagram

of the stimulus generation setup, see Fig. 7.

Fig. 7. Block diagram of components of stimulus generation setup. Boxes show the names of the components, brackets
contain model name and manufacturer.

Since the majority of second order projections from the MON terminates in the contralateral TS (for

review, see Bleckmann 2008), hydrodynamic stimulation leads to an excitation of the contralateral

TS. Therefore, the sphere was positioned on the left side of the fish during all experiments, while

recordings were exclusively made from the right hemisphere of the midbrain. At the beginning of

an experiment, the sphere was positioned in the middle of the rostro-caudal axis (or long axis) and

at the level of the trunk lateral line canal (Fig. 4). The dorso-ventral position of the sphere was not

changed during the entire experiment. The initial distance between fish and sphere was 10 mm. All

denoted distances between fish and sphere relate to the distance between the surface of the fish

and the surface of the sphere. In addition to changing the sphere position, the minishaker could

be turned in steps of 45°, leaving the position of the sphere unaltered but resulting in a change of

the sphere vibration direction of 45°. Initial sphere vibration direction was 0°, i.e. sphere vibration

direction was parallel to the long axis of the fish.

2.4.2 Search stimulus

Units responding to water motions were found by simultaneously advancing the electrode through the

OT into the TS in steps of 3 µm and presenting search stimuli. For this purpose, water motions were

14



Materials & Methods

generated by a stationary vibrating sphere (peak-to-peak displacement of 237 µm) and a pipette that

was moved alongside the rostro-caudal axis on the left side of the fish at a distance of 5–15 mm to

the surface of the fish.

2.4.3 Characterisation of unit modality

The TS of fish receives not only lateral line input but also visual, accoustic and somatosensory

information (and electrosensory input in certain species)(Knudsen 1977; Nederstigt and Schellart

1986; Schellart et al. 1987; McCormick and Hernandez 1996; for review, see McCormick et al.

1989). The OT is located dorsal to the TS and receives and processes visual information (Meek and

Schellart 1978). It was therefore critical to assure that the units responding to the search stimuli

did exclusively react to lateral line stimuli and not to auditory, vestibular or optic stimuli. Units that

responded to shouting and/or handclapping were assumed to receive auditory input. Units that

responded to changes in illumination were supposed to receive visual input. Units that were sensitive

to tapping on the edge of the experimental tank with the thin end of a pasteur pipette or to stomping

with a feet on the ground were assumed to receive vestibular (vibratory) input. Units that received

acoustic, visual or vestibular input were not further investigated. Similarly, units that did not respond

to acoustic, vibratory or optic stimuli but answered if the non-vibrating sphere was moved along the

rostro-caudal axis of the fish were also not further examined. Only units that responded exclusively

to the stationary vibrating sphere were defined as unimodal lateral line units and examined in this

study.

2.4.4 Stimulus protocol

For unimodal lateral line units the position at which the sphere elicited the strongest response was

determined. At this position, the dynamic range of the units was curtailed by altering the peak-to-peak

displacement of the vibrating sphere. Used peak-to-peak displacements were 124, 160, 176, 220 or

237 µm. The stimulus amplitude that lay approximately in the middle of the unit’s dynamic range was

used throughout the entire experiment. The small differences between the stimuli with peak-to-peak

displacements of 160 and 176 µm and 220 and 237 µm, respectively, resulted from the usage of two

different minishakers. One minishaker broke during the early stages of data aquisition for this study
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and the initially used displacements of 160 and 220 µm were not exactly reproducable with the new

minishaker.

Fish were stimulated with eight successive single stimuli (50 Hz, 500 ms duration, 100 ms rise and fall

time, cf. Fig. 11, offset 3s, inter stimulus interval 5s, total time 47s) at each sphere position, starting at

the initial sphere position (cf. Fig. 4). After recording the unit’s responses to the stimulus, the sphere

was relocated along the rostro-caudal axis of the fish in steps of 5 mm (10 mm during the stimulation

of one fish). This was repeated until the vibrating sphere elicited no changes in ongoing activity

at a minimum of two consecutive sphere positions both in the anterior and the posterior direction,

meaning the stimulus protocol for a given sphere vibration direction was completed. Thereafter, the

axis of sphere vibration was altered and the aforementioned stimulus protocol was repeated for the

sphere vibration directions of 45°, 90° (sphere vibrating perpendicular to the rostro-caudal axis of the

fish) and 135° (cf. Fig. 8). If the stimulus protocol could be presented for all four vibration directions,

the distance between sphere and fish was increased in steps of 5 or 10 mm. The minimum distances

between the fish and the surface of the sphere were 5, 10, 15, 20, 30 or 40 mm. For each distance,

the units responses were again mapped for the sphere vibration directions of 0°, 45°, 90° and 135°.

Measurements were continued until a unit was lost. Recordings for a certain distance between fish

and sphere were only analysed if the stimulus protocol was completed for all four sphere vibration

directions.

Fig. 8. Schematic drawing of a vibrating sphere with corresponding isobars and water flow. Isobars are depicted for the
plane that bisects the source along its axis of oscillation. At 0° the sphere vibrated parallel to the rostro-caudal axis of
the fish. At 90° the sphere vibrated perpendicular to the rostro-caudal and the dorso-ventral axis of the fish. Modified
and redrawn after Coombs et al. (1996).
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2.4.5 Stimulus calibration

Peak-to-peak sphere displacements were calibrated in the absence of a fish with a capacitive

displacement transducer (4810, LOT-Oriel GmbH & Co. KG, Darmstadt, Germany), that measures

displacements between the stationary sensor and a reference object (brass disc, ∅ 6 mm, thickness

0.12 mm). Since the transducer can not be operated under water, the displacement of the sphere

could only be measured indirectly. Therefore the disc was attached to the steel wire, approximately

15 mm above the centre of the sphere, while the sphere vibrated under water. Results are depicted

in Fig. 9. Due to noise the sphere permanently vibrated with a peak-to-peak displacement of up to 3

µm.

Fig. 9 A, B. Results of stimulus calibration. A Software generated voltage fed into the minishaker. B–F Outputs of
the displacement transducer for the peak-to-peak displacement amplitudes of the sphere indicated on the right. The
fluctuations of the baselines in B before the onset of the stimulus result from noise that causes the sphere to vibrate
permanently with a peak-to-peak displacement of up to 3 µm. The fluctuations after the end of the software generated
voltage fed into the minishaker result from post-oscillations of the sphere.
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2.5 Recording

During recording the physiological status of the animal was evaluated by monitoring the blood

flow through the blood vessels on top of the OT. Extracellular responses of single midbrain lateral

line units were recorded with metal-filled glass micropipettes (Dowben and Rose 1953), that were

fabricated by pulling single barrel borosilicate glass without filament (GB150-8P, Science Products,

Hofheim, outer ∅ 1.5 mm, inner ∅ 0.86 mm) on a horizontal puller (P-80, Sutter Instrument Company,

USA). Tips were broken off to a diameter of 1–2 µm. Micropipettes were filled with an indium-alloy

(LMA-117, Small Parts Inc., Miramar, CA, USA). Micropipette tips were electrolytically plated with

gold (0.2 % Hydrogen Tetrachloroaurate Trihydrate (AuHCl4 · 3 H2O, Carl Roth GmbH + Co. KG,

Karlsruhe) in distilled water) and platinum (4 % Hexachloroplatinic acid hydrate (Cl6H2Pt · x H2O,

Sigma-Aldrich, Seelze)) for 2–5 s each, resulting in a spherical or clubbed swelling (∅ 2–8 µm) on

top of the electrode tip. Electrodes had an impedance of 0.8–1.1 MΩ determined with an ohmmeter

(Ωmega-Tip-Z, World Precision Instruments Inc., Sarasota, USA) with a resolution of 10 kΩ and an

accuracy of ± 20 %. A chlorinated silver wire (∅ 0.8 mm) was used as a reference electrode. Its

tip was placed in the cranial cavity, about 3–5 mm away from the recording electrode. For a block

diagram of the recording setup, see Fig. 10.

Initially, the recording electrode was positioned with its tip on top of the rostro-lateral part of the OT,

dorsal to the TS (cf. Fig. 12) under visual control through binoculars. While search stimuli were

presented, the electrode was advanced vertically into the midbrain in steps of 3 µm with a microdrive

(accuracy 0.1 nm; IW-800 and Controller 8200, Exfo, Mississauga, Ontario, Canada). The depth of

the electrode tip relative to the surface of the midbrain was monitored on the microdrive display. Unit

responses were differentially amplified thousandfold (DAM80, World Precision Instruments, Sarasota,

FL, USA), band-pass filtered (DAM80, 300–3,000 Hz) and monitored on an oscilloscope (DL 1300A,

Yokogawa) and an audio monitor. Data were A/D converted (Power 1401, Spike 2, sampling rate

30 KHz, time resolution 16.7 µs) and stored on a PC for offline analysis.
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Fig. 10. Block diagram of components of recording setup. Boxes show the names of the components, brackets contain
model name and manufacturer.

2.6 Data analysis

Only the responses of single units were analysed. To parameters were used to determine single

units from multi units. Inter spike interval histograms (ISIH) were plotted, in which the time intervals

between successive spikes were sorted into bins (width 1 ms). If no spikes were present in the first

two bins, i.e. no spike occured within at least 2 ms after one another, and the amplitudes of action

potentials did not differ by more than 150% of the noise, the recorded unit was defined as a single

unit.

2.6.1 Data reduction

Data were analysed offline with Spike 2 software controlled by a custom-made script. A threshold

was used to create transient transistor level (TTL) pulses (Fig. 11).

For every sphere position and vibration angle five values were calculated. Mean frequency of ongoing

activity was computed from the number of TTL pulses during the inter stimulus time intervals. Mean

evoked activity was calculated from the total number of TTL pulses during all eight stimuli presented

at each sphere position.
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Fig. 11. Example of data reduction. Response of a midbrain lateral line unit (middle trace) to a vibrating sphere stimulus
(voltage input to minishaker, top trace). T marks the threshold used to compute the TTL pulses (bottom trace).

The phase angles of spike times were determined with respect to each cycle, i.e. each full sine wave,

of the 50 Hz stimulus. The average phase angle of spike times was computed along with the strength

of phase-locking by means of the synchronisation coefficient R (vector strength, after Goldberg and

Brown, 1969). A synchronisation coefficient of 1 indicates that all spikes occured at the same phase

angle. The Rayleigh statistic Z (Z = R * 2N, with N being the total number of spikes; Batschelet,

1981) was used as a measure of the statistic significance of the strength of phase-locking. Z-values

> 4.6 indicate a probability of < 0.01 that action potentials were randomly distributed over a full sine

wave. The mean Z-value, averaged over all full sine waves of a stimulus and all stimulus iterations,

was calculated for every sphere position. The mean frequencies of ongoing and evoked activity were,

as well as the average phase angles and average Z-values, plotted as function of sphere position for

all examined sphere vibration angles and stimulus distances.
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Plots based on evoked discharge rate were named spatial excitation patterns (SEPs). For each SEP

its half maximum width (HMW; Weisstein EW 1998) was determined. A HMW was calculated from

the width of a SEP at 50 % of the SEP’s maximum evoked neural activity after subtraction of the

mean ongoing activity. In addition to the HMWs, the widths of the SEPs were also determined for

30 % and 70 % of the maximum evoked neural activity of the SEP after subtraction of the mean

ongoing activity. HMWs and the positions of the peaks of neural activity were normalised with respect

to a 10 cm long fish. For each unit the maximum distance between its peaks of neural activity of

SEPs of sphere vibration directions of 0°, 45°, 90° and 135° was calculated for a stimulus distance

of 10 mm.

2.6.2 Response patterns of evoked neural activity

Response patterns were determined by initially plotting a unit’s strongest answer (action potential

frequency) for the sphere distance 10 mm in form of a peri-stimulus time histogram (PSTH, bin

width 20 ms). Ongoing activity and its standard deviation were calculated from the number of events

in each bin. For each unit the treshold was defined as the units mean ongoing activity plus two

times the standard deviation. Bins during the stimulus (duration 500 ms) with values at or above

this treshold were counted and divided by 25, i.e. the total number of bins during a single stimulus.

The result was defined as response pattern coefficient (RPC). The response properties of units with

a RPC < 0.4 were classified as phasic, a RPC ≥ 0.4 but < 0.9 was rated phasic-tonic, and units

showing an RPC ≥ 0.9 were categorised as tonic.

2.6.3 Phase histograms

For units that showed average Z-values > 4.6 phase histograms (bin width 10°) were computed and

plotted as function of sphere position.

2.7 Histology

At the end of each successful experiment the location of the electrode tip inside the brain was

marked with an electrolytic lesion by successively passing DC currents of both polarities through

the electrode for 15 s each. The electrode was removed 30–45 minutes after the lesion. Fish were
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decapitated and the opening in the skull was widened. Heads were fixed in 4 % paraformaldehyde

(see appendix A) for a minimum of six days. Brains were removed, postfixed for at least three days

in paraformaldehyde, embedded in paraffin and cut in 15 µm sections in a transverse plane parallel

to the electrode penetration. Sections were stained with cresyl violet (see appendix A), that stains

the Nissl bodies, and analysed microscopically. Locus and extent of lesions were identified by a dark

stained area and, in some cases, damaged tissue. The approximate locus of a possible lesion was

curtailed by the recording depth of the respective unit. The locating of a lesion was facilitated by

tissue damage resulting from electrode penetrations that led to the recording of the respective unit.

Digital images of verified lesions were stored. Since brains shrunk considerably during histological

processing (Simmons and Swanson 2009), the recording depths (relative to the surface of the OT)

displayed on the microdrive during experiments differed from the positions of the lesions relative to

the surface of the OT in the brain sections. Only the recording depths read from the microdrive were

used in this study.
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3 Results
For this study 98 single unimodal lateral line units were recorded from 78 goldfish. Out of these 98

units a total of 16 units could be recorded for a minimum of one hour, so that at least one SEP could

be mapped for each of the four tested directions of sphere vibration. Thus the results of this study

are based on 16 unimodal lateral line units that were recorded from 16 goldfish, that ranged from

9.5–12 cm in standard body length and 18–31 g in weight. Recording depths ranged from 971–2,088

µm, relative to the dorsal surface of the OT. For a tabular overview of all units see appendix B.

3.1 Anatomy

The positions of electrode penetrations of 14 out of 16 units are plotted in Fig. 12. Positions of

penetrations of unit 15 and 16 were not determined.

Fig. 12. Dorsal view of the surface of the optic tectum and a part of the cerebellum after removal of a fraction of the
cranial bone and adipose tissue. The torus semicircularis lies ventral to the dorsal surface of the OT (McCormick and
Hernandez 1996; Rupp et al. 1996; for review, see McCormick et al. 1989). C = Cerebellum, OT = Optic tectum.
Dots indicate electrode penetrations that led to a successful recording of a unimodal midbrain lateral line unit. Black
dots indicate penetrations where recording sites could be verified by a lesion. White dots represent penetrations with
unverified recording sites. Positions of electrode penetrations of units 15 and 16 could not be determined.

12 of 16 lesions were located in the nucleus ventrolateralis of the TS (Fig. 13, Fig. 14). Lesions were

roundish (∅ 25–170 µm) or longish (20 × 130–120 × 340 µm).
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Fig. 13, A–F. Electrolytic lesions in the midbrain of goldfish for verification of the recording sites of units 1–6. Paraffin-
sectioned (15 µm) cresyl-violet stained transverse hemisections and horizontally mirrored line drawings. Lesions are
marked with white arrows in the photos of the brain sections and in red in the line drawings. Sectioning artefacts are
marked with small black arrows. Locations where a section is partially folded or overlapping are marked with a white star
(unit 3 and 5). CC = Corpus cerebelli, LL = Lateral lemniscus, OT = Optic tectum, TL = Torus longitudinalis, TS = Torus
semicircularis, VC = Valvula cerebelli.
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Fig. 14, A–F. Electrolytic lesions in the midbrain of goldfish for verification of the recording sites of units 8, 10–14.
Lesions for units 7, 9, 15 and 16 could not be recovered. Paraffin-sectioned (15 µm) cresyl-violet stained transverse
hemisections and horizontally mirrored line drawings. Lesions are marked with white arrows in the photos of the brain
sections and in red in the line drawings. Sectioning artefacts are marked with small black arrows. A part of an electrode
track is framed by four white asterisks (unit 12). CC = Corpus cerebelli, LL = Lateral lemniscus, OT = Optic tectum, TL =
Torus longitudinalis, TS = Torus semicircularis, VC = Valvula cerebelli.

25



Results

3.2 Electrophysiology

3.2.1 Ongoing activity

All 16 units showed ongoing activity (mean±SD 4.36±12,57 Hz, median 0.36 Hz, range 0.01–

51.72 Hz). 14 of 16 units exhibited average ongoing activities of ≤ 0.44 Hz (mean±SD 0.44±0.45

Hz, median 0.32 Hz, range 0.01–1.40 Hz). Unit 12 and unit 3 had average ongoing activities of 12.37

Hz and 51.72 Hz, respectively.

3.2.2 Response patterns of evoked neural activity

All units responded to the vibrating sphere stimulus with an increase in discharge rate (Fig. 15).

Response patterns were invariable throughout all positions of a given unit. Unit 12 constituted an

exception, as it generally responded to the stimulus with excitation (increase in neural activity relative

to the ongoing activity), but showed inhibition (decrease in neural activity relative to the ongoing

activity) as a response to stimulation at distinct positions (Fig. 17D). Unit 3 showed a decrease in

average ongoing activity during the falling ramp of the stimulus (Fig. 15C). Repsonses of one unit

were phasic, nine units showed phasic-tonic responses and six units responded in a tonic fashion

(Fig. 15).

3.2.3 Spatial excitation patterns

112 spatial excitation patterns (SEPs) were plotted, each based on the units responses to stimulation

at 42–177 sphere positions. SEPs of ten units were based on a single distance between fish and

sphere, while SEPs of six units were mapped for at least two different sphere distances.

SEPs had one (e.g. Figs. 16G3; 17G3), two (e.g. Figs. 16E3; 17H1), or more peaks of increased

neural activity (e.g. Figs. 16F3). While 15 of 16 units responded to stimulation with excitation

only, unit 12 was an exception. It responded with excitation at most sphere positions, but showed

inhibition to stimulation at some sphere positions (e.g. Fig. 17D). The variability of the SEPs for

different sphere vibration directions recorded from a given unit ranged from low (e.g. Fig. 17C) to

high (e.g. Fig. 17D). In all units evoked discharge rates at a given rostro-caudal position generally
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Fig. 15, A–P. Response patterns of units 1–16. Top rows hold raster plots of the spike times of responses to eight
successive stimuli. Bottom rows show PSTHs (bin width 20 ms) and the calculated response pattern type (phasic,
phasic-tonic or tonic). Time of stimulation is marked in grey.

decreased with increasing stimulus distance. For a given unit and direction of sphere vibration, SEPs

for different stimulus distances were therefore similar in shape but differed in spike rate (eg. Figs.

16A4, E3; 17C2, D1, G4). Exceptions were SEPs for different stimulus distances that were largely

coextensive (e.g. Figs. 16E4; 17G2) or SEPs where the excitation pattern for the greater stimulus

distance exceeded the pattern for the smaller distance in terms of average evoked activity at certain

positions (e.g. Figs. 17G1, D2). The rostro-caudal positions of the maxima of the SEPs were located

in the snout region (e.g. Figs. 17D4, E4) the central region (e.g. Figs. 16E3; 17G3) or around the

base of the tail fin (e.g. Figs. 16F1, G4).
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Fig. 16, A–H. SEPs and ongoing activity of midbrain lateral line units 1–8. Ongoing activity (dashed line) and activity
evoked by a stationary vibrating sphere (solid line) are plotted as function of sphere position and axis of sphere vibration.
The distance between fish and sphere was 10, 20, 30 or 40 mm and is colour-coded (see legend). Axis of sphere
vibration was 0° (parallel to the fish), 45°, 90° (perpendicular to the fish) or 135°. The peak-to-peak sphere displacement
is given in the top right of each row. Fish size and position are to scale. Please note that the y-axis in C starts at 40 Hz
and that the x-axis in D has a maximum of 12 cm, while all other x-axes have a range of 10 cm.
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Fig. 17, A–H. SEPs and ongoing activity of midbrain lateral line units 9–16. Ongoing activity (dashed line) and activity
evoked by a stationary vibrating sphere (solid line) are plotted as function of sphere position and axis of sphere vibration.
The distance between fish and sphere was 10, 20, 30 or 40 mm and is colour-coded (see legend). Axis of sphere
vibration was 0° (parallel to the fish), 45°, 90° (perpendicular to the fish) or 135°. The peak-to-peak sphere displacement
is given in the top right of each row. Fish size and position are to scale.
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HMWs covered 14.9±9.0 % (mean±SD; range 1.7–43 %) of the rostro-caudal axis of a 10 cm long

fish (Figs. 18; 19; 20; 21). The dimensions of the HMWs that were continous, i.e. consisted of only

one part, ranged from narrow (1.7 %, 4.0 % and 5.1 %; Figs. 21A 135°; 18A 90°; 19C 45°) to broad

(31.3 %, 42.2 % and 42.5 %; Figs. 21C 90°; 20D 90°; 19B 90°).

Based on the analysis of HMWs and the peaks of neural activity, units were divided into three groups.

The SEPs for sphere vibration directions of 0°, 45°, 90° and 135° were aligned centrally among one

another in units 2, 7 and 11 (Figs. 18B; 19C; 20C 30 % max). The positions of the peaks of evoked

neural activity in the respective units differed by a maximum of 8.5 mm for a stimulus distance of 10

mm. The SEPs of units 3, 12, 15 and 16 were sytematically and continuously displaced towards the

snout of the fish with increasing sphere vibration angles (Figs. 18C 30 % max; 20D; 21C, D). The

peaks of neural activity were also displaced for at least three of the four sphere vibration directions.

The SEPs of the remaining nine units did not show any regularities. The positions of their peaks

differed by 13.1–16.7 mm (units 4, 8, 10, 13 and 14)(Figs. 18D; 19D; 20B; 21A, B) and by 29.7–42.1

mm (units 1, 6 and 9)(Figs. 18A; 19B; 20A), respectively.

30



Results

Fig. 18, A–D. Widths of SEPs of units 1–4 for tresholds of 30 %, 50 % (half-maximum width) and 70 % of maximum
action potential frequency for different sphere vibration directions. Widths were normalised for a 10 cm long fish. Vertical
black bars indicate the positions of the peaks of the SEPs. Stippled horizontal lines indicate positions where neural
activity did not exceed the threshold of 30 %, 50 % or 70 % of the maximum action potential frequency.
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Fig. 19, A–D. Widths of SEPs of units 5–8 for tresholds of 30 %, 50 % (half-maximum width) and 70 % of maximum
action potential frequency for different sphere vibration directions. Widths were normalised for a 10 cm long fish. Vertical
black bars indicate the positions of the peaks of the SEPs. Stippled horizontal lines indicate positions where neural
activity did not exceed the threshold of 30 %, 50 % or 70 % of the maximum action potential frequency.
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Fig. 20, A–D. Widths of SEPs of units 9–12 for tresholds of 30 %, 50 % (half-maximum width) and 70 % of maximum
action potential frequency for different sphere vibration directions. Widths were normalised for a 10 cm long fish. Vertical
black bars indicate the positions of the peaks of the SEPs. Stippled horizontal lines indicate positions where neural
activity did not exceed the threshold of 30 %, 50 % or 70 % of the maximum action potential frequency.
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Fig. 21, A–D. Widths of SEPs of units 13–16 for tresholds of 30 %, 50 % (half-maximum width) and 70 % of maximum
action potential frequency for different sphere vibration directions. Widths were normalised for a 10 cm long fish. Vertical
black bars indicate the positions of the peaks of the SEPs. Stippled horizontal lines indicate positions where neural
activity did not exceed the threshold of 30 %, 50 % or 70 % of the maximum action potential frequency.
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3.2.4 Phase locking

With the exception of unit 9 all toral lateral line units exhibited significant phase-locking (average

Z-values > 4.6) at least at one sphere position (Figs. 24; 25). However, for a stimulus distance of 10

mm only three units (3, 4 and 15) showed significant Z-values for at least six side by side positions

of the sphere. Unit 3 had an average Z-value of 82.18 (synchronisation coefficient R was 0.51 ±

0.22 (mean±SD)), unit 4 showed an average Z-value of 6.79 (0.35 ± 0.30 (mean±SD)) and unit 15

had an average Z-value of 12.80 (0.27 ± 0.20 (mean±SD)).

Figure 22 exemplifies phase locked responses of unit 3. Phase histograms revealed that units 3 and

4 phase locked to only one half of a full wave cycle, while unit 15 phase locked to both halfs of a

full wave cycle (Fig. 23). For phase histograms of all recorded positions of units 3, 4 and 15, see

Appendix C.

Fig. 22 Phase locked responses of unit 3 (position 1 cm, sphere vibration direction 90°, middle trace) to a vibrating
sphere stimulus (voltage input to minishaker, top trace). T marks the threshold used to compute the TTL pulses (bottom
trace). The left figure shows the units responses to a full stimulus, the figure on the right shows a magnification of 1.5
full wave cycles. Note that the unit at first responds to the stimulus with bursts of three spikes and thereafter mainly
shows two spikes in close succession. The average phase angle for this unit is 229.28°, the average Z-value 264.57.
The corresponding phase histogram is depicted in Fig. 23A24.
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While certain sphere positions did not lead to a response in the phase histograms of the stimulated

unit (e.g. Fig. 23A1; B11–B13), effects of sphere position and sphere vibration direction on the shape

of phase histograms were clearly visible in most of the phase histograms of units 3 and 15 (Fig. 23).

Moving the sphere alongside the fish from rostral to caudal or vice versa with a given sphere vibration

direction often led to a phase shift. The distance between the sphere positions where a phase

shift was evident differed considerably from about 10 mm (e.g. Fig. 23A6–A8) to about 30 mm

(e.g. Fig. B2–B10). In some cases a phase shift could also be observed if the sphere position was

kept constant but the sphere vibration direction was changed. For example, in one unit, the phase

angle shifted from 115.45° to 255.97° if the sphere vibration direction was changed from 0° to 45°

(Fig. 23A6; A16).

In unit 3 and 15, the position where the sphere evoked a characteristic phase histogram shifted

rostrally if the sphere vibration angle was increased. For example, for a sphere vibration direction of

0° a response to the second half of a full wave cycle was evident at position A8 (Fig. 23A8). If the

position of the sphere was left unaltered but the sphere vibration direction was changed to 45°, the

same type of response occured 15 mm more rostral (Fig. 23A15). For the sphere vibration angles 90°

and 135° the positions where the sphere caused responses to the second half of a full wave cycle

were again shifted towards the head of the fish by 5 and 10 mm, respectively (Fig. 23A23; A32). In

unit 15, the position where the unit phase locked to the first half of a full wave cycle also depended

on sphere vibration direction. For the sphere vibration direction 0°, the position where the sphere

evoked a response only to the first half of a full wave cycle of the stimulus lay 63 mm caudal to the

tip of the snout of the fish (Fig. 23B6). For sphere vibration angles of 45°, 90° and 135°, the positions

where the vibrating sphere stimulus resulted in characteristic histograms lay more rostrally, that is 53,

48 and 43 mm caudal to the tip of the snout (Fig. 23B14; B23 and B32).
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3.2.5 Plots of average phase angles and average Z-values

The plots of average phase angles and average Z-values of 15 out of 16 units consisted of phase

angles that were significant (i.e. Z-value > 4.6) only at single or few sphere positions (Figs. 24A,

B, D–H; 25A–F; H). Plots of the two other units are based upon phase angles that are significant

for the majority (>50 %) of sphere positions. Unit 3 exhibited significant phase-locking for the vast

majority (93 %) of positions for a sphere distance of 10 mm. Especially the positions in the centre of

the plots showed highly significant phase-coupling, while the most rostral and caudal positions had

lower average Z-values (Fig. 24C). In addition, the shape of the plots of average phase angles of

this unit is similar to the shape of the plots of average phase angles of primary lateral line afferents

(cf. Fig. 28D). 45 of 80 (56 %) sphere positions of unit 15 showed significant Z-values for a stimulus

distance of 10 mm (Fig. 25G). The sphere vibration direction had no systematic or predictable effect

on the occurence or strength of phase-coupling.

Plots of average phase angles and average Z-values of units of which several stimulus distances

were examined showed variable characteristics. Plots for a given sphere vibration direction but

different stimulus distances of unit 1 and 5 showed strong similarities, but had no consecutive

positions where the average Z-values exceeded 4.6 (Fig. 24A, E). The plots for distances of 10

and 15 mm in unit 15 were quite similar to one another, at least in the centers of the plots while its

borders showed fluctuations (Fig. 25G). While average Z-values for a stimulus distance of 10 mm

were significant for the centers of the plots for all sphere vibration directions, for a distance of 15 mm

only positions of the plots for 0° were significant (Fig. 25G). Plots for stimulus distances of 5 and 10

mm in unit 10 were nearly coextensive with significant average Z-values (Fig. 25B).
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Fig. 24, A–H. Plots of average phase angles and average Z-values of midbrain lateral line units 1–8. Average phase
angle (solid line) and average Z-value (dashed line) are plotted as function of sphere position and axis of sphere vibration.
The distance between fish and sphere was 10, 20, 30 or 40 mm and is colour-coded (see legend). Axis of sphere
vibration was 0° (parallel to the fish), 45°, 90° (perpendicular to the fish) or 135°. The peak-to-peak sphere displacement
is given in the top right of each row. Fish size and position are to scale. Please note that the x-axis in D has a maximum
of 12 cm, while all other x-axes have a range of 10 cm.
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Fig. 25, A–H. Plots of average phase angles and average Z-values of midbrain lateral line units 9–16. Average phase
angle (solid line) and Z-value (dashed line) are plotted as function of sphere position and axis of sphere vibration. The
distance between fish and sphere was 10, 20, 30 or 40 mm and is colour-coded (see legend). Axis of sphere vibration
was 0° (parallel to the fish), 45°, 90° (perpendicular to the fish) or 135°. The peak-to-peak sphere displacement is given
in the top right of each row. Fish size and position are to scale.
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3.2.6 Topography

A topographic relationship between the the rostro-caudal positions of SEPs and the positions of

electrode penetrations on the surface of the OT (cf. Fig. 12) was not evident (Fig. 26). In addition,

the rostro-caudal positions of SEPs did not relate to the recording depths (Fig. 27).

Fig. 26, A, B. Rostro-caudal position of HMWs (sphere distance 10 mm) plotted relative to the medio-lateral (A) and the
rostro-caudal (B) positions of electrode penetrations (cf. Fig. 12). For each unit, HMWs are shown for sphere vibration
directions of 0°, 45°, 90° and 135° (from top to bottom), respectively. HMWs were normalised to a 10 cm long fish.
Vertical black bars indicate the positions of the peaks of the SEPs. Stippled horizontal lines indicate positions where
neural activity of a given unit failed to exceed the threshold of 50 % of the maximum action potential frequency. 41
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Fig. 27 Rostro-caudal positions of HMWs (sphere distance 10 mm) plotted against recording depths. For each unit,
HMWs are shown for sphere vibration directions of 0°, 45°, 90° and 135° (from top to bottom), respectively. HMWs were
normalised to a 10 cm long fish. Vertical black bars indicate the positions of the peaks of the SEPs. Stippled horizontal
lines indicate positions where neural activity of a given unit failed to exceed the threshold of 50 % of the maximum action
potential frequency.
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4 Discussion

4.1 Aims of research

According to theoretical studies, fish should be able to detect the location of a vibrating sphere and

to sense the direction of sphere vibration. This information may be encoded by toral lateral line units.

To test this hypothesis, fish were stimulated with a vibrating sphere that was presented at various

rostro-caudal positions and distances relative to the fish. In addition, the direction of sphere vibration

was varied. Response parameters that were analysed included the ongoing and evoked activity,

phase angles, Z-values and the shapes and positions of SEPs.

4.2 Anatomy

The position of the electrode tip was verified for 12 recording sites by lesions, all of which were

located in the nucleus ventrolateralis of the TS. This part of the TS receives unimodal lateral line

input (McCormick and Hernandez 1996; for review, see McCormick 1989). Four lesions could not be

recovered. The dorsal position of the lesions of unit 1, 2 and 5 does not necessarily indicate that

these lesions were not located in the nucleus ventrolateralis of the TS. If one analyses the positions

of lesions in the TS, it has to be kept in mind that the nucles ventrolateralis of the TS is located

ventrolateral to the nucleus centralis in more rostral parts of the midbrain but is located medial to the

nucleus centralis in more caudal parts of the midbrain (McCormick and Hernandez 1996). All units

in this thesis were recorded in the caudal half of the midbrain. Hence, dorsal lesions in the TS can,

even more if the lesion is located dorso-lateral in the TS, be located in the target brain area – the

nucleus ventrolateralis of the TS – of this study.

The longish shape of some lesions possibly results from the fact that the injected DC current flew

through fluid that accumulated around the electrode trip inside the electrode penetration canal. Such

a lesion would presumably not have a roundish but rather a longish shape. Longish lesions were

distinguishable from e.g. blood vessels, fluid filled electrode penetration canals and other strucutures

that might have been stained by cresyl violet under high magnification, basically by the fact that the

tissue around a lesion was usually damaged, while the tissue around blood vessels and bleedings
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was unaltered. In addition, the boundaries between a blood vessel or a bleeding and the surrounding

tissue was quite sharp. In contrast, the boundaries of lesions were diffuse. Artefacts resulting from a

notched microtome blade used during the sectioning of the brain can be distinguished from electrode

tracks quite well, as the latter usually extend over a majority or even the whole extent of a section.

The recording depths of the twelve units that were verified by lesions varied between 971 and 2,088

µm. The recording depths of the other four units, that were not verified by lesions, were 971 µm,

1.184 µm, 1.242 µm and 1.260 µm. All these recording depths are in accordance with other studies

of goldfish. Plachta et al. (2003) and Engelmann and Bleckmann (2004) recorded from toral lateral

line units. They recorded units in depths that varied between 700–2,500 µm and 755–1,611 µm,

respectively. The recording electrode entered the brain in different angles, as neither the dorso-vental

axis of the fish nor the electrode was perfectly oriented parallel to each other. Hence the recording

site was not necessarily located exactly ventral to the position of the penetration on the surface of

the OT. However, there are indications that units 7 and 9 were recorded roughly in the same region

as the other 12 unimodal toral lateral line units. Namely, the positions of the electrode penetrations

on the surface of the OT of units 7 and 9, of which no lesions were recovered, were located amidst

the penetrations of the 12 units which were recorded in the ventrolateral nucleus of the TS. All 16

units, including units 15 and 16 of which neither lesions nor positions of penetrations on the OT

were recovered or determined, were characterised in terms of unit modality and turned out to react

to none of the applied stimuli except lateral line stimuli. Taking the recording depths, the positions

of electrode penetrations on the OT and the physiological criteria into account, it is likely that all

16 units were recorded in the nucleus ventrolateralis of the TS. However, one can not rule out that

all 16 units recorded received lateral line input exclusively, especially against the background that

multisensory integration occurs in the TS (for review, see Bleckmann 1994).

4.3 Electrophysiology

The minimal displacement treshold of primary lateral line afferents is about 0.02 µm peak-to-peak

water displacement at 100 Hz (for review, see Bleckmann and Zelick 2009). In contrast, the

majority of central lateral line units responds only to stimuli with amplitudes that are at least two
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orders of magnitude above the amplitudes reported for primary lateral line afferents (for review, see

Bleckmann 2008). Thus researchers who recorded from primary lateral line afferents, medullary,

midbrain or diencephalic lateral line units used stimuli that varied considerably with respect to sphere

displacement amplitude, sphere distance, sphere vibration frequency and stimulus duration. While

many studies used goldfish as experimental animals, other species like mottled sculpins (Cottus

bairdi), catfish (Ancistrus spec.), trouts (Salmo gairdneri; Oncorhynchus mykiss) or thornback

guitarfish (Platyrhinoidis triseriata) were also used. Furthermore, in different studies multiple types

of toral lateral line units were recorded. Engelmann and Bleckmann (2004) and Plachta et al. (2003)

recorded from all unimodal lateral line units that they encountered, while the present study is only

based on units that responded to a stationary vibrating sphere but not to a sphere that moved

alongside the fish. This has to be kept in mind when the present study is compared with other lateral

line studies.

4.3.1 Ongoing activity

Ongoing activity typically decreases along the ascending lateral line pathway. Hence the ongoing

activity of central lateral line units is usually lower than the ongoing activity of primary lateral line

afferents and medullary lateral line units (for review, see Bleckmann 1994). Primary lateral line

afferents exhibit high ongoing activities. Mogdans and Bleckmann (1998, 1999) found mean ongoing

activities of 1.4–63 Hz (median 21.5 Hz) and 0–85.5 Hz (median 38.7 Hz)), respectively. Coombs et

al. (1998) reported ongoing activities of 0.4–35.4 Hz (17.4±8.8 Hz (mean±SD)). Chagnaud et al.

(2007) found mean ongoing activities of 30.8±20.9 Hz (mean±SD; median 28.5 Hz). Similar rates

were found in other fish species. For the mottled sculpin, Cottus bairdi, Coombs and Janssen (1990)

reported ongoing rates of 30–40 Hz and Montgomery and Coombs (1998) found ongoing activities

of 35 ± 6.1 Hz (mean±SD).

In the medulla, i.e. in the first relay station in the ascending lateral line pathway, ongoing activity is

much lower. Mogdans et al. (1997) measured mean ongoing activities of 0–16 Hz (mean 1.1 Hz).

Coombs et al. (1998) found mean ongoing rates of 0–20 Hz (17.4±8.8 (mean±SD)). Künzel (2009)

measured mean ongoing activities of 13.8±11.0 (mean±SD; median 11.9 Hz).
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In the present study, 14 out of 16 units had ongoing rates of 0.01–1.40 Hz (mean±SD 0.44±0.45 Hz,

median 0.32 Hz). The two remaining units had average ongoing activities of 12.37 Hz (unit 12) and

51.72 Hz (unit 3), respectively. The median of all 16 units was 0.36 Hz. Unlike primary afferent lateral

line units, that respond predictable to stimulation (cf. Fig. 28), all toral lateral line units exhibited firing

patterns that did not predictably relate to stimuluation. Wojtenek et al. (1998) recorded 27 single

unimodal toral lateral line units with a median ongoing activity of 0.16 Hz. 96% (n = 26) of these

units had an ongoing activity of ≤1.3 Hz, one unit had an ongoing activity of 3.9 spikes/s. Plachta

et al. (1999) found 54 single unimodal toral lateral line units whose ongoing activity was ≤1 Hz.

Engelmann and Bleckmann (2004) recorded 33 single unimodal toral lateral line units and found a

mean ongoing activity of 0.51±0.93 Hz. Therefore the ongoing activities observed in this study are

in agreement with the data from Wojtenek et al. (1998), Plachta et al. (1999) and Engelmann and

Bleckmann (2004). The only exceptions are units 3 and 12, that showed higher ongoing frequencies

than those reported in literature. Despite the high ongoing activities, the response properties of the

two units were similar to the response properties of the other 14 units. The average ongoing activity

of unit 3 (51.72 Hz) is reminiscent of the rates reported for primary lateral line afferents (Mogdans

and Bleckmann 1998; Coombs et al. 1998; Chagnaud et al. 2007). However, there is no explanation

for the high ongoing activity of unit 3, since no direct projections of primary lateral line afferents into

the TS are known. The average ongoing activity of units 12 (12.37 Hz) and is similar to the ongoing

activity of medullary lateral line units (Mogdans et al. 1997; Coombs et al. 1998; Künzel 2009).

Since the TS receives direct input from the medulla (Wullimann 1998; Bleckmann 2008) it may be

possible that unit 12 is a secondary lateral line unit that ascended from the medulla into the TS and

therefore shows ongoing activity that is typical for medullary units.

4.3.2 Response patterns of evoked neural activity

Responses of midbrain units were either phasic (n = 1), phasic-tonic (n = 9) or tonic (n = 6). 15

out of 16 units responded to sinusoidal water motions with one of the above response patterns,

regardless of sphere position. Unit 12 was an exception as it responded with inhibition or excitation,

depending on the position of the sphere. This type of response pattern can also been found in the

MON (Mogdans and Kröther 2001; Künzel 2009).
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Most midbrain and forebrain lateral line units show a phasic response to longlasting sinusoidal hydro-

dynamic stimuli (for review, see Bleckmann 1994). Engelmann and Bleckmann (2004) characterised

unimodal toral lateral line units in terms of their response characteristics. They classified 13 units (76

%) as phasic and two units (12 %) as tonic. The authors also described two toral lateral line units

(12 %) whose responses depended on the location of the stimulus. A rostral stimulation site led to

an inhibition of neural activity whereas a more caudal stimulation site caused an excitation. These

responses are similar to the responses of unit 12 recorded in this study. Engelmann and Bleckmann

did not provide parameters for the quantification of the response types. Hence a comparison between

the results of this study and the results of Engelmann and Bleckmann (2004) is difficult. While

the results of Engelmann and Bleckmann (2004) show a phasic response to longlasting sinusoidal

hydrodynamic stimuli, the results of this study are not. This maybe due to different stimulus param-

eters. Engelmann and Bleckmann (2004) determined the response patterns with stimuli that had

a duration of 1,000 ms, whereas I used stimuli with a duration of 500 ms. In addition, Engelmann

and Bleckmann (2004) used maximum sphere displacement amplitudes of 1,000 µm and sphere

distance was 6–8 mm. The maximum sphere displacement used in the present study was 237 µm

with a distance of 10 mm between fish and sphere.

4.3.3 Spatial excitation patterns

For stimulation of primary lateral line afferents with a stationary vibrating sphere only excitatory SEPs

are reported (Coombs et al 1996). The shape of SEPs of primary lateral line afferents depends on

the orientation of the neuromast(s) the primary lateral line afferent innervates (Coombs et al. 1996).

Sand (review, 1981) was the first to show that the spatial excitation patterns (SEPs) of primary lateral

line afferents predictably depend on the direction of sphere vibration. Denton and Gray (1983), Gray

(1984) and Gray and Best (1989) stated that the source location can be encoded by the excitation

patterns of primary lateral line afferents. Ćurčić-Blake and van Netten (2006) showed that the SEPs

of primary lateral line afferents for different directions of sphere vibration are also predictable from the

pressure gradient patterns (cf. Fig. 28. The dependencies of sphere distance and sphere vibration

direction on pressure gradient patterns was also described (Coombs and Patton 2009).
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Coombs et al. (1996) modeled excitation patterns for the lateral line trunk canal based on pressure

gradient patterns that were calculated from flow field equations for a dipole source (Kalmijn 1988;

for review, see Morse 1948). Their model is based on the assumption that a single neuromast is

located between every two pores of the lateral line trunk canal and that each neuromasts inside the

lateral line trunk canal responds in proportion to the outside pressure gradient. By combining their

model with electrophysiological recordings Coombs et al. (1996) proofed that the shape of SEPs

of primary lateral line afferents is linked to the pressure gradient pattern that contains information

about the position, distance and vibration angle of a sphere and that SEPs of evoked activity and

plots of Z-values are largely coextensive. Scholze (unpublished) examined the effects of sphere

position and sphere vibration direction on the shape of SEPs of primary lateral line afferents. He

reproduced the results of Coombs et al. (1996) and, in addition, showed how sphere vibration

direction alters the shape of the SEPs for four different sphere vibration directions (Fig. 28). As

expected, SEPs of primary lateral line afferents depend on the pressure gradients. The shape of

rectified pressure gradient curves is highly similar to curves of the SEPs (Fig. 28A, C). In addition, the

plots of calculated and electrophysiologically obtained phase angle plots and Z-values, respectively,

are coextensive (Fig. 28B, D).

Medullary lateral line units exhibit four types of SEPs (Mogdans and Kröther 2001). One type is

similar to the SEPs of primary lateral line afferents (cf. Fig. 28C). Other SEPs of medullary lateral

line units feature one excitatory and one inhibitory area. SEPs with several alternating areas of

excitation and inhibition also occur in medullary lateral line units. The last type of medullary lateral

line units has SEPs that show only excitation or inhibition. Künzel (2009) found only three types of

medullary lateral line SEPs: SEPs were either excitatory, inhibitory or both. Coombs et al. (1998)

suggested that primary-like medullary SEPs may result from lateral inhibition. Circuit diagrams for

medullary lateral line units are not yet available.

SEPs of toral lateral line units were reported by Plachta et al. (1999) and by Engelmann and

Bleckmann (2004). Plachta et al. (1999) examined the SEPs of 19 units and found two types of

SEPs. SEPs were either narrow, showing one or two peaks, or had multiple peaks and therefore

usually covered large parts of the fish surface. Engelmann and Bleckmann (2004) recorded SEPs
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Fig. 28 A–D. A Pressure (black) and pressure gradients (red) of a stationary vibrating sphere positioned at different
locations along a modelled lateral line canal. The distance between the sphere and the lateral line canal was kept
constant. From left to right: Sphere vibration direction is 0° (parallel to the rostro-caudal-axis of the fish), 45°, 90°
(perpendicular to the rostro-caudal-axis of the fish) and 135° (cf. Fig. 8). Zero crossings indicate points of phase reversal.
B Phase angle (blue) calculated from the zero-crossings of the pressure gradients depicted in A. Predicted neural activity
(green), derived from the shape of the pressure gradients shown in A. Negative pressure gradients were rectified. C
SEPs of ongoing activity (black) and evoked activity (red), both constructed from the responses of a primary lateral line
afferent to stimulation with a stationary vibrating sphere at positions that were 5 mm apart from one another. Note that
the SEPs based on evoked activity (red) show strong similarities with the neural activity (green curve in B) predicted
from the pressure gradient curves. D Phase angles (blue) and Z-values (green) based on the same PLLN unit as in C.
Phase-locking is strong with Z-values up to more than 250. Note that the measured phase angles (blue) are largely
in accordance with the calculated phase angles (blue curve in B). The plots of the measured Z-values (green) show
strong similarities to the predicted (green curve in B) and measured (red curve in C) neural activity. The data were kindly
provided by B. Scholze.

of seven units and distinguished three types. SEPs were either small, discharge rates were not

raised above ongoing activity over a width of more than 4 cm. Broad SEPs covered the whole length

of the fish. A third type of SEPs had areas of inhibition or excitation, depending on the position

49



Discussion

of the vibrating sphere (Bleckmann and Engelmann 2004). These distinctions are not based on a

quantitative analysis.

In this thesis even more types of SEPs were obtained. The SEPs of unit 5, 15 and 16 (Figs. 16E; 17G,

H) were primary like (cf. Fig. 28C). The SEP of unit 12 (Fig. 17D) showed inhibitory and excitatory

areas and therefore was similar to one of the SEPs reported by Engelmann and Bleckmann (2004).

Some medullary lateral line units also showed this type of SEP (Mogdans and Kröther 2001; Künzel

2009). This and the high ongoing activity of unit 12 makes it likely, that I recorded the responses of

a medullary lateral line unit that projected to the TS. The shape of a SEP of a toral lateral line unit

probably depends on the type of medullary units which converge on this unit and/or on the excitatory

or inhibitory input of higher brain centres. Unfortunately, physiologically and/or anatomically verified

circuit diagrams for the lateral line part of the TS do not yet exist.

According to the criteria of Engelmann and Bleckmann (2004), unit 7 (Fig. 16G4) and unit 16

(Fig. 17H3) had small (width ≤ 4 cm) SEPs, provided the direction of sphere vibration was 135°

and 90°, respectively. Units with purely excitatory SEPs that covered the whole length of the fish

were not found. The large SEPs reported by Engelmann and Bleckmann (2004) may in part be

due to the high stimulus amplitude (1,000 µm versus 237 µm used in this study). In the study of

Engelmann and Bleckmann (2004) sphere distance was only 6–8 mm. Therefore, the differences

between the effective stimulus amplitudes were even larger. Unit 7 had the narrowest SEP of all

units, provided sphere vibration direction was 135° (Fig. 16G4). In rostro-caudal direction, the SEP

of this unit covered about 30 mm (fish body length was 117 mm). Assuming that the size of this SEP

is independent of stimulus amplitude, this unit can encode the rostro-caudal position of an object

with a precision of about 30 mm. This precision is not very high, therefore even this unit shows only

a weak (with respect to the rostro-caudal axis of the fish) spatial tuning.

In former studies of toral lateral line units (Plachta et al. 1999; Engelmann and Bleckmann 2004)

very few SEPs were plotted. Hence, no comparison between the rostro-caudal positions of SEPs

obtained during this study and the former studies is attempted.
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In nine out of 16 toral units a systematic change in sphere distance and/or sphere vibration direction

did not lead to a systematic change in the location of the SEP. The SEPs of units 3, 12, 15 and 16

were shifted depending on the sphere vibration direction. In units 2, 7 and 11 the positions of the

SEP did not depend on sphere vibration direction. This could be the neuronal basis that allows fish

to determine the rostro-caudal position of a stationary vibrating sphere regardless of its vibration

direction.

No toral lateral line units were encountered that unequivocally encoded the distance or position of

a stationary vibrating sphere in terms of evoked neural activity. Such a unit would - irrespective of

stimulus amplitude - show maximum excitation at a certain sphere distance or position. Furthermore,

no unit sharply encoded the sphere vibration direction by changes in evoked neural activity.

4.3.4 Phase locking

Primary lateral line afferents strongly phase-lock to a vibrating sphere stimulus (e.g. Coombs et

al 1996; Scholze, unpublished), up to a 1:1 phase locking of the response at lower frequencies

(for review, see Bleckmann 1994). The percentage of central lateral line units that phase-lock to

sinusoidal water motions decreases along the neuraxis, i.e. from medulla to telencephalon (for

reviews, see Bleckmann 1994, 2008). In addition, the strength of phase-locking also decreases (for

reviews, see Bleckmann 1994, 2008).

In the first relay station of lateral line information processing, the MON, phase-locking is already

weaker than in primary lateral line afferents but is still present (Z-value mean±SD 25.4±24.0,

median 17.4, range 1.0–99.2, Künzel 2009; range 4.2–525.7, Mogdans and Kröther 2001). However,

the strength of phase-locking may depend on the response type. For instance, Mogdans and

Kröther (2001) and Künzel (2009) found that the majority of excitatory MON units phase locked. In

contrast, units that responded to a vibrating sphere stimulus with a decrease in neural activity, did

not phase-lock. This is due to the reduced number or the complete absence of spikes.

According to other studies (Plachta et al. 1999; for reviews, see Bleckmann 1994, 2008) toral lateral

line units show no or at most a weak phase-locking. For example, Plachta et al. (1999) found that 9
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out of 53 toral lateral line units (17 %) phase-locked with Z-values >4.6. In studies done by Plachta

et al. (2003) and Engelmann and Bleckmann (2004) phase-locking of toral lateral line units was not

examined. The reported low phase-locking of toral lateral line units (Plachta et al. 1999) is not in line

with the present study, in which 15 out of 16 units showed significant phase-locking at least at single

sphere positions. This may result from the fact that Plachta et al. (1999) calculated the Z-values

only for single sphere positions of a receptive field. A calculation of average phase angles for all

sphere positions of a receptive field would possibly have shown that an examined toral unit shows

significant average Z-values if stimulated at certain sphere positions.

Only unit 3 showed strong phase locking at nearly all sphere positions (average Z-value mean±SD

82.18±70.78, median 66.36, range 0.12–264.57), i.e. Z-values were similar to the Z-values of

primary lateral line afferents (mean±SD 130.58±89.29, median 130.58, range 0.18–291.57, Scholze

unpublished). In addition, the phase plots of this unit are reminiscent of the phase plots of primary

lateral line afferents. This could indicate that I recorded the responses of a primary lateral line

afferent that projected to the TS. In contrast, the SEPs of unit 3 show no similarities with the SEPs of

primary lateral line afferents (cf. Fig. 28D). However, this is an unlikely, as no direct projections of

primary lateral line afferents into the TS are reported. Another explanation could be that I recorded

from a medullary lateral line unit that projected into the TS. Furthermore, with average Z-values

of 4.2–525.7 only Mogdans and Kröther (2001) reported medullary units that maintained the high

Z-values of primary lateral line afferents, while Künzel (2009) found maximum Z-values of medullary

units that ranged from 1.0–99.2. The average Z-values of unit 12 (range 0.01–12.18) lie in the lower

range of Z-values reported for medullary lateral line units (Mogdans and Kröther 2001; Künzel 2009).

Hence, unit 12 is possibly a secondary lateral line unit that ascended from the medulla into the TS.

This assumption is supported by the average ongoing activity of unit 12, that is similar to the ongoing

activity of medullary lateral line units (see above). Nearly all other units show maximum average

Z-values that are reminiscent of the average Z-values of medullary lateral line units. However, most

units reach these values only at single sphere positions. Only unit 4 (range 0.00–57.10) and unit 15

(range 0.01–49.61) lie in the range of Z-values reported for medullary lateral line units (Mogdans and

Kröther 2001; Künzel 2009) and exhibit respective average Z-values at multiple positions. However,

there are no further indications that these units are secondary medullary lateral line units.
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Lateral line hair cells are directionally sensitive (Flock and Wersäll 1962). A single lateral line afferent

innervates only hair cells which are aligned in the same direction. Therefore, primary lateral line

afferents are directionally sensitive and respond only to one half of a full sinusoidal wave cycle (for

review, see Bleckmann 1994). Most medullary and midbrain lateral line units also respond only to

one half of a full sinusoidal wave cycle (for review, see Bleckmann 1994). This indicates that cells of

this type receive only input from one of the two antagonistically oriented hair cell populations. In the

present study, however, one unit responded to both halfs of a full wave cycle, i.e. this unit received

input from antagonistically oriented hair cell populations. To my knowledge, such a unit has never

been reported before.

In some cases, both, sphere position and sphere vibration direction strongly influenced the phase

histograms. Phase changes can partially be explained by the flow field of a vibrating sphere (Fig. 29).

If a sphere is positioned opposite to a neuromast and vibrates perpendicular to the most sensitive

axis of the neuromast (Fig. 29A2), the water movements at the left and the right side of the neuromast

are quite similar. Consequentially, the neuromast will not respond since it is exposed to very low

pressure gradients. However, if the sphere is moved to either side of the neuromast, the neuromast

will be exposed to a strong pressure gradient and consequently will show an excitatory response

(Fig. 29A1, A3). If, on the other hand, the sphere position is kept constant, a change in sphere

vibration direction may also cause strong phase shifts. For example, a change in sphere vibration

direction from 45° to 135° may cause a phase shift of 180°. Again, this can be explained by the

altered flow field (Fig. 29B2, B4).

The effect of sphere distance on phase histograms could only be examined in one of the phase

locking units (unit 15), since SEPs for unit 3 and 4 were only acquired for a single sphere distance.

Sphere distance had, besides decreased neural activity, if at all, only low influence on phase

histograms (Appendix C).

Some of the midbrain lateral line units featured some of the response properties of primary lateral

line afferents or medullary lateral line units. However, only unit 12 shows all the response properties

(ongoing activity, phase-locking, SEP with inhibitory and excitatory areas) that are reported for

medullary lateral line units. The responses of all other toral lateral line units exhibited only some of
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Fig. 29, A–B. Effects of sphere positions (A) and sphere vibration directions (B) on the shape of phase histograms.
In each case the top row shows goldfish with a supersized neuromast (green). Middle rows depict a sphere with
iso-pressure contours (dashed lines) and flow lines (solid lines with arrows) around a dipole source. Iso-pressure
contours are shown for the plane that bisects the source along its axis of oscillation, indicated by the large arrowheads.
The bottom rows show the phase histogram for the respective sphere position. Note that the flow direction of water
particles depends on the direction of sphere displacement. A Stimulus distance and sphere vibration direction were
kept constant. The position of the sphere was changed in steps of 5 mm along the rostro-caudal axis of the fish. A
change in the rostro-caudal position of the sphere by only 10 mm (sphere vibration direction of 90°) led to a phase shift
of about 180° in the neuronal response. B The position of the sphere was unaltered but the sphere vibration direction
was changed in steps of 45°. Note that a change in sphere vibration direction from 45° to 135° also caused a 180° phase
shift . Note that the unit hardly responded if sphere vibration direction was 90°.
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the response properties of peripheral or medullary lateral line units. For example, unit 3 showed high

ongoing activity, strong phase-locking and rapid phase changes if the sphere position was altered

(Fig. 24C). In addition, the shape of the phase angle plots of unit 3 are similar to the phase angle

plots of primary lateral line afferents (cf. Fig. 28D). However, unlike in primary lateral line afferents,

high sphere displacements were needed to elicit a neuronal response and the SEPs were different

from the SEPs of primary lateral line afferents (cf. Fig. 28C).

In summary, no toral lateral line units were found that unequivocally and sharply encoded the

distance, position or sphere vibration direction of a stationary vibrating sphere by changes in phase

angles and/or Z-values.

4.4 Topography

In catfish, the rostro-caudal position of the recording site corresponds to the rostro-caudal position

of the receptive field of toral lateral line units (Knudsen 1977). Receptive fields of lateral line

units recorded in the dorso-medial nucles of the mesencephalic nuclear complex of Platyrhinoidis

triseriata are also somatotopically organised. Rostral receptive fields are represented in rostral

parts of the nucleus while caudal receptive fields are mapped in more caudal parts (Bleckmann

et al. 1987). Plachta et al. (2003) examined toral lateral line units that responded exclusively to a

sphere passing the fish laterally. They found that rostral sphere positions are mapped in rostral and

caudal sphere positions are mapped in caudal parts of the TS. In the present study, no topographical

relationship between the rostro-caudal positions of SEPs and the rostro-caudal positions of electrode

penetrations was found. In addition, no relationship between the rostro-caudal position of a SEP

and the medio-lateral position of the recording site was observed. Furthermore, I did not find a

relationship between the rostro-caudal position of a SEP and recording depth. There are at least

three explanations for this: In goldfish, toral lateral line units that respond exclusively to a stationary

vibrating sphere are not topographically organised. If there is a map, it could be distorted or folded.

In this case, I probably failed to uncover a toral map. Last, but not least, a topographic map could be

concealed by the small sample size of this study.
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4.5 Limitations of this study and suggested methodical

improvements

In lateral line studies fish are immobilised and artificially respirated with fresh water by inserting a

tube in their snout. Thus, the water flow which constantly leaves the gills, may interfere with any kind

of hydrodynamic stimulus applied. Hence, one can not rule out, that the responses obtained in the

present study were altered by artificial respiration.

In nature, fish will rarely (if ever) be confronted with a dipole stimulus that has a constant amplitude

and/or frequency (for reviews, see Bleckmann 1994, 2008). Hence, it may well be that many central

lateral line units are not optimised for the detection of single frequency, constant amplitude water

motions (for review, see Bleckmann 1994). However, this study, like several other studies (e.g.

Bleckmann et al. 1987, Engelmann and Bleckmann 2004), clearly shows, that there are central

(toral) lateral line units that respond very well to sinusoidal water motions albeit the amplitudes

necessary to drive central units were quite high. Nevertheless, in future studies, more natural stimuli

(e.g. water jets, vortices or frequency and amplitude modulated dipole stimuli) should be used.

To learn more about the spatial resolution of toral lateral line units and their ability to encode the

direction of sphere vibration, researchers should alter sphere position and sphere vibration direction

in smaller steps. This especially should be done at positions where a change in sphere position

and/or sphere vibration direction leads to marked responses. Intracellular recordings combined

with tracing studies would hopefully allow to uncover the circuit diagrams which process lateral line

information.

4.6 Conclusion

Based on this study, a single toral lateral line unit neither encodes the position of an object by spike

rate nor by phase angle. However, if the responses (spike rates and phase angles) of several toral lat-

eral line units are taken into account, the position and vibration direction of a stationary sphere most

likely can be determined. I therefore suggest that the lateral line system uses a population code to do

so, possibly as proposed for the electrosensory system in the model of Fujita et al. (2005). Whether

spatially tuned lateral line units do exist in other brain areas needs to be shown.
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Appendix A

Physiological salt solution

Physiological salt solution for fresh water fish (Oakley B, Schafer R 1978).

Dissolve in 700 ml distilled water:

NaCl 5.902 g

KCl 0.261 g

NaHCO3 2.1 g

Na2HPO4 0.179 g

Tris-Buffer (C4H11NO3) 0.121 g

MgSO4 0.296 g

Fill up with distilled water to 750 ml, set pH to 7.2. Add 0.277 g dehydrated CaCl2, fill up with

distilled water to 1,000 ml and set pH to 7.2.

Phosphate buffer

For 1,000 ml phosphate buffer dissolve in 1,000 ml distilled water:

KH2PO4 2.72 g

Na2HPO4· 2 H2O 14.24 g

Paraformaldehyde solution, 4 %

Dissolve 40 g Paraformaldehyde in 1,000 ml phosphate buffer.

Paraffine embedding

Wash brain in phosphate buffer (3 x 30 min).
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Dehydration of brain:

70 % ethanole 30 minutes

80 % ethanole 30 minutes

85 % ethanole 30 minutes

90 % ethanole 30 minutes

96 % ethanole 30 minutes

96 % ethanole 15 minutes

Isopropanole 30 minutes

Isopropanole/paraffine (1:1) 60 minutes at 60° C

Let isopropanole evaporate approx. 8 hours at 60° C

Transfer brain to fresh paraffine 3 x 15 min

Cresyl violet staining of paraffine sections

Cresyl violet solution, 0.4 %, pH 3.5

Dissolve in 937 ml distilled water:

Cresyl violet 5 g

100% CH3COOH 5.71 ml

0.1 M NaOH 57.1 ml

Stir at 50° until cresyl violet is solved.

Acetate buffer, pH 5.4, 0.1 M

Stock solution A - Sodium acetate, 0.1 M:

Dissolve 8.2 g CH3COONa in 1,000 ml distilled water.

Stock solution B - Acetic acid, 0.1 M:
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Dissolve 5.8 ml 100% CH3COOH in 1,000 ml distilled water.

Mix 1,710 ml of stock solution A with 290 ml of stock solution B for 2 l of acetate buffer.

Cresyl violet staining

Xylene 2 x 15 minutes

100 % ethanole 2 minutes

90 % ethanole 2 minutes

70 % ethanole 2 minutes

50 % ethanole 2 minutes

30 % ethanole 2 minutes

Distilled water 5 minutes

Cresyl violet solution 2 minutes

Acetate buffer 10 minutes

Acetate buffer 10 minutes

70 % ethanole, 1 drop of 100 % CH3COOH 5 minutes

90 % ethanole 5 minutes

100 % ethanole 5 minutes

Isopropanole 5 minutes

Xylene 15 minutes

Mount with Roti®- Histokitt (Carl Roth GmbH + Co. KG, Karlsruhe).
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Unit Fish

length

[cm]

Recording

depth [µm]

Sphere

displ.

[µm]

Recorded

sphere

positions

Mean OA

[Hz]

SD of OA

[Hz]

Median

of OA

[Hz]

Range of

OA [Hz]

Response

pattern

Lesion

recovered

1 10.1 1,267 160 42 0.80 0.69 1.14 0.16–3.05 tonic yes

2 12 1,650 226 80 0.97 0.39 0.94 0.30–2.30 phasic-tonic yes

3 10.6 2,088 226 96 51.72 2.75 51.64 45.15–59.00 phasic-tonic yes

4 10 1,187 226 100 1.40 1.02 1.14 0.12–4.37 tonic yes

5 10.5 1,503 175 144 0.01 0.02 0 0–0.09 phasic-tonic yes

6 12 1,195 124 84 0.29 0.17 0.26 0–0.74 phasic-tonic yes

7 11.7 971 124 61 0.05 0.11 0.06 0–0.44 phasic-tonic no

8 11.5 1,536 237 82 0.09 0.08 0.05 0–0.56 phasic-tonic yes

9 9.5 1,184 175 61 0.56 0.19 0.55 0–1,16 phasic-tonic no

10 10.5 1,540 237 162 0.01 0.02 0 0–0.02 phasic yes

11 10.2 1,590 237 177 0.03 0.03 0.02 0–0.16 phasic-tonic yes

12 10.2 1,541 237 162 12.37 3.90 11.75 5.44–20.85 phasic-tonic yes

13 12 1,379 237 76 0.51 0.23 0.49 0.16–1.30 tonic yes

14 11.2 1,718 237 70 0.37 0.16 0.35 0.12–0.86 tonic yes

15 11.2 1,242 237 159 0.22 0.15 0.19 0.02–1.14 tonic no

16 11.1 1,260 175 73 0.34 0.28 0.30 0.02–1.72 tonic no

Tab. 1. Overview of fish body lengths, recording depths, peak-to-peak sphere displacements, number of recorded sphere positions, average ongoing
activities, standard deviations (SD) of ongoing activities, mean ongoing activities, ranges of ongoing activities, types of response patterns and
recovered lesions of all recorded units.
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Unit Mean R SD R Median R Mininum R Maximum R Mean Z SD Z Median Z Minimum Z Maximum Z

1 0.21 0.12 0.20 0.02 0.54 2.06 3.58 1.72 0.03 18.42

2 0.34 0.28 0.26 0.03 1.00 2.25 2.46 1.47 0.02 12.48

3 0.51 0.22 0.52 0.02 0.79 82.18 70.78 66.36 0.12 264.57

4 0.35 0.30 0.23 0.00 1.00 6.79 12.25 1.76 0.00 57.10

5 0.27 0.34 0.13 0.00 1.00 1.27 2.26 0.35 0.00 12.64

6 0.32 0.26 0.27 0.00 1.00 2.57 2.96 1.15 0.00 14.82

7 0.42 0.33 0.34 0.00 1.00 2.52 3.72 1.00 0.00 13.40

8 0.51 0.30 0.45 0.04 1.00 1.47 1.60 1.00 0.00 8.16

9 0.28 0.21 0.21 0.00 0.98 1.23 1.02 0.95 0.00 4.39

10 0.76 0.22 0.79 0.25 1.00 2.93 3.91 1.62 0.00 16.52

11 0.35 0.16 0.33 0.08 0.85 3.39 2.98 2.47 0.00 19.71

12 0.11 0.07 0.09 0.02 0.34 2.12 2.22 1.43 0.01 12.18

13 0.32 0.24 0.24 0.06 1.00 1.67 1.41 1.31 0.00 7.62

14 0.34 0.38 0.20 0.00 1.00 1.43 1.51 1.04 0.00 7.19

15 0.27 0.20 0.24 0.01 0.88 12.80 13.72 6.81 0.10 49.61

16 0.44 0.37 0.30 0.05 1.00 1.83 2.30 1.00 0.00 10.23

Tab. 2. Overview of the means, standard deviations (SDs), medians, minima and maxima of the synchronisation coefficient R and the Z-values of all
recorded units.
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