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Abstract 

Malaria is a dreadful disease affecting 300 million people and killing 1-1.5 million people 

every year. Malaria is caused by a protozoan parasite, belonging to the genus Plasmodium. 

There are several species of Plasmodium infecting cattle, birds, and humans. The four species 

P.falciparum, P.vivax, P.malariae and P.ovale are in particular considered important, as these 

species infect humans. One of the main causes for the comeback of malaria is that the most 

widely used drug against malaria, chloroquine, has been rendered useless by drug resistance 

in much of the world. New antimalarial drugs are presently available but the potential 

emergence of resistance, the difficulty to synthesize these drugs at a large-scale and their cost 

make it of utmost importance to keep searching for new drugs. 

Despite continuous efforts of the international community to reduce the impact of malaria on 

developing countries, no significant progress has been made in the recent years and the 

discovery of new drugs is more than ever needed. Out of the many proteins involved in the 

metabolic activities of the Plasmodium parasite, some are promising targets to carry out 

rational drug discovery.  

In silico drug design, especially vHTS is a widely and well-accepted technology in lead 

identification and lead optimization. This approach, therefore builds upon the progress made 

in computational chemistry to achieve more accurate in silico docking and in information 

technology to design and operate large-scale Grid infrastructures. One potential limitation of 

structure-based methods, such as molecular docking and molecular dynamics is that; both are 

computational intensive tasks. Recent years have witnessed the emergence of Grids, which 

are highly distributed computing infrastructures particularly well fitted for embarrassingly 

parallel computations such as docking and molecular dynamics. 

The current thesis is a part of WISDOM project, which stands for Wide In silico Docking on 

Malaria. This thesis describes the rational drug discovery activity at large-scale, especially 

molecular docking and molecular dynamics on computational Grids in finding hits against 

four different targets (PfPlasmepsin, PfGST, PfDHFR, PvDHFR (wild type and mutant 

forms) implicated in malaria.  

The first attempt at using Grids for large-scale virtual screening (combination of molecular 

docking and molecular dynamics) focused on plasmepsins and ended up in the identification 

of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin 

inhibitors. The combination of docking and molecular dynamics simulations, followed by 

rescoring using sophisticated scoring functions resulted in the identification of 26 novel sub-
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micromolar inhibitors. The inhibitors are further clustered into five different scaffolds. While 

two scaffolds, diphenyl urea, and thiourea analogues are already known as plasmepsin 

inhibitors, albeit the compounds identified here are different from the existing ones, with the 

new class of potential inhibitors, the guanidino group of compounds, we have established a 

new class of chemical entities with inhibitory activity against Plasmodium falciparum 

plasmepsins.   

Following the success achieved on plasmepsin, a second drug finding effort was performed, 

focussed on one well known target, dihydrofolate reductase (DHFR), and on a new promising 

one, glutathione-S-transferase. Modeling results are very promising and based on these in 

silico results, in vitro tests are in progress.  

Thus, with the work presented here, we not only demonstrate the relevance of computational 

grids in drug discovery, but also identify several promising small molecules (success achieved 

on P. falciparum plasmepsins). With the use of the EGEE infrastructure for the virtual 

screening campaign against the malaria-causing parasite P. falciparum, we have demonstrated 

that resource sharing on an e-Science infrastructure such as EGEE provides a new model for 

doing collaborative research to fight diseases of the poor. 

Through WISDOM project, we propose a Grid-enabled virtual screening approach, to produce 

focus compound libraries for other biological targets relevant to fight the infectious diseases 

of the developing world. 
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1 Chapter1. Introduction 

Diseases affecting the poor are widely ignored by the pharmaceutical industry. They are 

known as neglected diseases. These diseases are often caused by parasites, worms and 

bacteria. The parasitic and bacterial infections include three soil-transmitted helminth 

infections (ascariasis, hookworm infection, and trichuriasis), lymphatic filariasis, 

onchocerciasis, dracunculiasis, schistosomiasis, Chagas disease, human African 

trypanosomiasis, leishmaniasis, Buruli ulcer, leprosy, trachoma, treponematoses, 

leptospirosis, strongyloidiasis, foodborne trematodiases, neurocysticercosis, scabies and 

infectious parasitic diseases including diseases such as Malaria, Dengue fever, Kalaazar, 

Toxoplosmosis. Table 1 describes some of the neglected diseases and their respective 

causative organisms [1, 2].  

Disease Organism Scope Therapy needs 

Malaria Plasmodium spp. 500 million 

infections annually 

Novel drugs and Circumventing drug 

resistance 

Leishmaniasis Leishmania spp 2 million infections 
annually 

Safe, orally bioavailable drugs, 
especially for the visceral form of the 

disease 

Trypanosomiasis 
(sleeping sickness, 
Chagas disease) 

 

T. brucei (sleeping 

sickness) 
T. cruzi (Chagas 

disease) 

HAT: 300,000 cases 

annually 
Chagas: 16 million 

existing infections 

Safe, orally bioavailable drugs, 

especially for the chronic phases of 

disease 

Schistosomiasis Schistosoma spp. >200 million 

existing infections 

Backup drug should resistance arise to 

praziquantel 

Giardiasis/amebiasi
s Giardia lamblia; 

 

Entamoeba 
histolytica 

 

Millions of cases of 

diarrhea annually 

Well-tolerated drugs 

Ascariasis Ascaris lumbricoides 807 Millions Access to essential medicines 

Leprosy Mycobacterium 

leprae 
0.4 millions Access to essential medicines 

Hookworm 

infection 
Ancylostoma 

duodenale 

576 millions Access to essential medicines and 

high efficacy  

Lymphatic 

filariasis 
Wuchereria 

bancrofti, 
120 millions Access to essential medicines 

Trachoma Chlamydia 
trachomatis 

84 millions Access to essential medicines and 

needs public health interventions 

Table 1: Demonstrates the spread of neglected diseases, adapted from [1, 2] 
The Table illustrates some of the most worst tropical diseases of the world, organism responsible for 

the disease, scope of the disease and therapy needs. 
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Status on drug discovery related against neglected diseases 

More than $100 billion is spent per year on health research and drug development by 

pharmaceutical industries and other sources, but less than 10 percent is spent on 90 percent of 

the world's health problems affecting the poor of Africa, Asia, and Latin America. There is an 

urgent need to correct the fatal imbalance of the current drug development model, which is 

currently accepting a death toll of 14 million people from infectious diseases each year. At 

present, the majority of medicines are being developed by rich nations whose inhabitants can 

afford expensive and often complicated drug therapies that are either too costly or too 

complicated or both for nations struggling against poverty and disease epidemics [3]. 

 As most patients with such diseases live in developing countries and are too poor to pay for 

expensive drugs, the pharmaceutical industry has traditionally ignored these diseases. Over 

the past decade, however, the public sector, by creating favorable marketing conditions, has 

persuaded industry to enter into public private partnerships to tackle neglected diseases such 

as malaria, HIV, and tuberculosis. This industry invests almost exclusively in developing 

drugs that are likely to be marketable and profitable drugs for conditions such as pain, cancer, 

heart disease, and baldness. Figure 1 and 2 illustrates the current state-of-the-art on diseases. 

Public policies, such as tax incentives and patent protection are geared towards this market 

driven private investment. As a result, out of 1393 new drugs marketed between 1975 and 

1999, only 16 were for neglected diseases, yet these diseases accounted for over 10% of the 

global disease burden (Figure 1). In contrast, over two thirds of new drugs were "me too 

drugs" (modified versions of existing drugs), which do little or nothing to change the disease 

burden [4, 5]. The current thesis details about malaria in particular and describes the in silico 

drug discovery activities against potential malarial targets. 

 

 

Figure 1: Number of drugs developed against neglected diseases over the years [4, 5] 

This Figure gives the current state-of-the-art of drugs developed until 1999. It clearly demonstrates 

that very few drugs were developed for neglected diseases. 

 

Drugs against 
all diseases

Drugs against 
neglected 
diseases
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Figure 2 : Schematic representation of state-of-art-the of neglected diseases. 
The Figure demonstrates that diseases have been segmented into neglected diseases and chronic 

diseases based on the diseases affected to people of developed nations and poor nations. It illustrates 

that neglected diseases are not handled well because of lack of pharmaceutical interest, and further 
because people living in these countries are poor to pay expensive treatments. 

1.1 Malaria 

Malaria is an infectious disease caused by the parasite called Plasmodium and is a serious 

problem for human health, especially to the so-called ―Third World.‖ There are four identified 

species of this parasite causing human malaria, namely, Plasmodium vivax, P. falciparum, P. 

ovale and P. malariae. The female anopheles mosquito transmits plasmodium species. It is a 

disease that can be treated in just 48 hours, yet it can cause fatal complications if the diagnosis 

and treatment are delayed. More than 2400 million people, over 40% of the world's 

population are affected by this disease in more than 100 countries in the tropics from South 

America to the Indian peninsula [6]. The tropics provide ideal breeding and living conditions 

for the anopheles mosquito, and hence this distribution. According to WHO, there were an 
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estimated 247 million malaria cases among 3.3 billion people at risk in 2006, causing nearly a 

million deaths, mostly of children under 5 years. 109 countries were endemic for malaria in 

2008, 45 of them within the WHO African region [7]. The geographical distribution of 

malaria, according to center for disease control in 2006 is shown in Figure 3. Every year 300 

million to 500 million people suffer from this disease (90% of them in sub-Saharan Africa, 

two thirds of the remaining cases occur in six countries like India, Brazil, Sri Lanka, Vietnam, 

Colombia and Solomon Islands). WHO forecasts a 16% growth in malaria cases annually. 

About 1.5 million to 3 million people die of malaria every year (85% of these occur in 

Africa), accounting for about 45% of all fatalities in the world [8]. One child dies of malaria 

in Africa every 20 sec., and there is one malarial death every 12 sec somewhere in the world. 

Malaria kills in 1 year what AIDS killed in 15 years. In 15 years, if 5 million have died of 

AIDS, 50 million have died of malaria [9, 10]. 

 

 

Figure 3 Spread of malaria all over the world by 2006 [8] 

The Figure clearly illustrates that malaria is widely spread in Asia, Africa and to some countries in 

South America (Developing and underdeveloped countries). Courtesy: Center for Disease Control. 
Source: Wikipedia commons.  

 

1.1.1 Complex life cycle of malaria 

The first step for developing novel drugs against any disease is, understanding the disease.  

This section gives insight into the life cycle of malaria and its associated complexity. 
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Plasmodium complete life cycle involves both human (host) and female anopheles mosquito 

(insect vector). Figure 4 demonstrates the complete life cycle of plasmodium [11]. 

 

 

Figure 4: Complete life cycle of malaria causing Plasmodium species.  

The Figure illustrates three different cycles that occur in human and mosquito. Different cycles are 

termed as A, B, C and numbers illustrates the various parasitic stages.  
Courtesy: Center for Disease Control and preventions. Source: Wikipedia commons 

 

As shown in the Figure 4, the life cycle of plasmodium is divided into three cycles, 

A. Exo-erythrocytic cycle  

B. Erythrocytic cycle  

C. Sporogonic cycle 

In each phase, plasmodium occurs in different forms and stages. These various stages of 

plasmodium help in the diagnosis of the disease and as well as in treating the disease. There 

are several drugs available in the market that can counteract a particular stage or several 

stages of the Plasmodium. Table 2 illustrates the currently available drugs inhibiting explicit 

stages and/or part of a cycle of Plasmodium life cycle. 

  



                                                                                                              Chapter 1. Introduction 

 

6 

 

Drug Class Drugs Stages of Plasmodium 

8- Amino Quinolines Primaquine, Tafenoquine Hypnozoites, Gametocytes 

4- Amino Quinolines Chloroquine, Amidoquine Intra-erythrocytic stages, 

Gametocytes 

Quinoline-alcohols Quinine, Mefloquine Erythrocytic stages 

Aryl-alcohols Halofrantine, Pyronaridine Erythrocytic stages 

Antifolates Proguanil, Pyrimethamine, 

Sulfadoxine, Dapsone 

Erythrocytic stages 

Artemesinins Dihydroartemesinin, Artesunate, 

Artemether, Arteether, 

Gametocytes 

Antibiotics Tetracyclin, Doxycycline, Intra-erythrocytic stages 

Table 2: Illustrates examples of currently available different classes of anti malarial drugs that are 

active against various stages of the plasmodium.  

 

A. Exo-erythrocytic cycle 

 In the Figure 4, the cycle A represents the exo-erythrocytic cycle. The exo-

erythrocytic cycle is defined as the process occurring outside the erythrocytes (Exo= 

Outside and erythrocytes= red blood cells) in human. When a female anopheles 

mosquito carrying sporozoites feeds on the human, during this meal, the sporozoits are 

injected into the blood stream and later enters the liver and invades liver cells. Inside 

the hepatocytes the sporozoite develops into the trophozoite, where it undergoes 

several divisions and forming several schizonts. The schizont encapsulates membrane 

around itself and forms several merozoites. Some malaria parasite species remain 

dormant for extended periods in the liver, causing relapses weeks or months later [12, 

8]. 

Erythrocytic cycle 

 In the Figure 4, the cycle B represents the erythrocytic cycle. The erythrocytic cycle 

takes place inside the human red blood cells. The merozoites invade erythrocytes and 

undergo a trophic period in which the parasite enlarges. The early trophozoite is often 

referred to as 'ring form' because of its morphology. Trophozoite enlargement is 

accompanied by an active metabolism including the ingestion of host cytoplasm and 

the proteolysis of hemoglobin into amino acids. Plasmepsin, the target protein of the 

current study is an aspartic protease initiates the hemoglobin degradation. More details 

about hemoglobin degradation and the role plasmepsin family of proteins are given in 

chapter 4. Some of the merozoite-infected blood cells leave the cycle of asexual 
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multiplication. Instead of replicating, the merozoites in these cells develop into sexual 

forms of the parasite, called male and female gametocytes, which circulate in the 

bloodstream [13, 10, 8].  

 

Sporogonic cycle 

 In the Figure 4, the cycle C represents the Exo-erythrocytic cycle. When a mosquito 

bites an infected human, it ingests the gametocytes. In the mosquito gut, the infected 

human blood cells burst, releasing the gametocytes, which develop further into mature 

sex cells called gametes. Male and female gametes fuse to form diploid (cells 

containing full set of chromosomes) zygotes, which develop into actively moving 

ookinetes that burrow into the mosquito midgut wall and form oocysts. 

 Growth and division of each oocyst produces thousands of active haploid forms called 

sporozoites. After 8-15 days (depending upon the plasmodium species), the oocyst 

bursts, releasing sporozoites into the body cavity of the mosquito, from which they 

travel to and invade the mosquito salivary glands. The cycle of human infection re-

starts when the mosquito takes a blood meal, injecting the sporozoites from its salivary 

glands into the human blood stream [13, 10, 8]. 

1.1.2 Current drugs 

There are several antimalarial drugs presently available. In most cases, antimalarial drugs are 

targeted against the asexual erythrocytic stage of the parasite. The parasite degrades 

hemoglobin in its acidic food vacuole, producing free heme able to react with molecular 

oxygen and thus to generate reactive oxygen species as toxic by-products. A major pathway 

of detoxification of heme moieties is polymerization as malaria pigment [14, 15]. The 

majority of antimalarial drugs act by disturbing the polymerization (and/or the detoxification 

by any other way) of heme, thus killing the parasite with its own metabolic waste. 

 The most widely used are quinine and its derivatives and antifolate combination drugs. The 

main classes of active schizontocides are 4-aminoquinolines, aryl-alcohols including 

quinoline-alcohols and antifolate compounds which inhibit the synthesis of parasitic 

pyrimidines. The newest class of antimalarials is based on the natural endoperoxide 

artemisinin and its hemisynthetic derivatives and synthetic analogs. Some antibiotics are also 

used, generally in association with quinoline-alcohols [16, 17]. Few compounds are active 

against gametocytes and also against the intra-hepatic stages of the parasite [18]. 
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Artemisinin compounds 

A number of sesquiterpine lactone compounds have been synthesized from the plant 

Artemisia annua (artesunate, artemether, arteether) [18]. These compounds are used for 

treatment of severe malaria; furthermore, these compounds have shown very rapid parasite 

clearance times and faster fever resolution than that occurs with quinine. In some areas of 

South-East Asia, combinations of artemisinins and mefloquine offer the only reliable 

treatment for even uncomplicated malaria, due to the development and prevalence of 

multidrug resistant P. falciparum malaria [19, 20]. Combination therapy (an artemisinin 

compound given in combination with another antimalarial, typically a long half-life drug like 

mefloquine) has reportedly been responsible for inhibiting intensification of drug resistance 

and for decreased malaria transmission levels in South-East Asia [19, 21]. 

 

Challenges 

Despite the availability of effective antimalarial drugs, which are capable of inhibiting various 

stages of the parasite, treatment of malaria is still with many challenges and limitations. Major 

challenges include:  

a. Lack of epidemiological data and exact numbers of people dying due to illness in 

endemic countries.  

b. Poor mosquito control, due to resistance of anopheles mosquito to the insecticides 

such as DDT. 

c. Poor diagnosis 

d. Unavailability of vaccination.  

e. Delivering the drugs to the patients in need of the drugs. 

f. Effective combination therapies that are frontline treatments are too expensive to be 

paid by the patients. 

g. No new drugs in the past years, and resistance to existing malarial drugs. 

h. Resistance to existing malarial drugs.  

Drug resistance is principal challenge in tackling malaria; hence, it is further discussed in 

detail. 
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Drug resistance 

According to Bruce-Chwatt LJ [22, 23], antimalarial drug resistance has been defined as the 

―ability of a parasite strain to survive and/or multiply despite the administration and 

absorption of a drug given in doses equal to or higher than those usually recommended but 

within tolerance of the subject‖. This definition was later modified to specify that the drug in 

question must ―gain access to the parasite or the infected red blood cell for the duration of the 

time necessary for its normal action‖ [23]. 

Drug resistance has emerged towards all classes of antimalarials except for the artimisinins 

[24]. There is a threat of even resistance to artimisinin derivatives, as it has been already 

observed in the murine  P. yoelii parasite [25]. Resistance of P. falciparum to chloroquine, the 

cheapest and the most commonly used drug is spreading in almost all the endemic countries. 

Resistance to the combination of sulfadoxine-pyrimethamine, which was already present in 

South America and in South-East Asia, is now emerging in East Africa also [10]. 

 

 

Figure 5 Geographical distribution of resistance to existing drugs of malaria [10] 

This Figure illustrates that drug resistance is emerged for most of the existing anti-malarial and even 

combination therapies. 

 

The molecular mechanisms behind the resistance depend on the chemical class of the 

compound and its mechanism of action. According to Peter B. Bloland [10], generally 

resistance appears to occur through spontaneous mutations that confer reduced sensitivity to a 

given drug or class of drugs. For some drugs, only a single point mutation is required to 

confer resistance, while for other drugs, multiple mutations appear to be required. When the 

mutations are not deleterious to the existence or reproduction of the parasite, drugs will 

eliminate the susceptible parasites while resistant parasites stay alive. Single malaria isolates 
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have been found to be made up of heterogeneous populations of parasites that can have 

widely varying drug response characteristics, from highly resistant to completely sensitive 

[26]. Similarly, within a geographical area, malaria infections demonstrate a range of drug 

susceptibility. Over time, resistance will be established in the population and can be very 

stable; persisting long after specific drug pressure is removed. Geographical distribution of 

resistance to existing drugs worldwide is displayed in Figure 5. 

Resistance to any new therapeutic agents is expected. Strategies to lengthen the drug lifetime 

are combination drug therapy and use of old drugs, wherever they are still effective [27]. 

Current International efforts in combating the disease 

Most of the international efforts to counter malaria and other neglected diseases are 

philanthropic and public-private partnerships (PPP) [2, 28, 29]. PPP is a comprehensive 

framework, which aims at providing preventive chemotherapy packages, and further aims at 

developing, testing, and distributing a new generation tools to control these neglected diseases 

[1]. Generally, the private sector includes pharmaceutical companies, where they look for 

profit and the non-profit sector includes charities, foundations, and philanthropic institutions 

groups. The public sector includes international organizations, development and aid agencies, 

governments, and academia. Mefloquine, a potent antimalarial drug was discovered by 

WRAIR (US Walter Reed Army Institute of Research) [30] and was later developed by TDR 

(Tropical Disease Research) and the pharmaceutical industry. This collaborative effort 

between TDR [31] and WRAIR is a typical example of success achieved by PPP [4]. There 

were various examples of such collaborative efforts during 1990’s for antimalarial drug 

development. However, due to limited return on investment, there has been constant 

withdrawal of pharmaceutical industries from developing drugs against malaria. Due to this, 

the gap widened between the discovery stage and development process and thus halted the 

discovery of new chemical entities (NCE). To address this problem, there were some 

agreements between the public and private partners based on their coincidence of priorities of 

private and public sectors and thus both the public and private sectors contribute funds to 

develop a specific product. The collaboration between TDR, the Japanese government, and 

the Japanese pharmaceutical industry is one example of such partnerships [4]. World Health 

Organization (WHO) [10], Drugs for Neglected Diseases initiative DNDi [32], TDR [31], 

Malaria Vaccine Initiative (Grant of the Bill and Melinda Gates Foundation) [33], Medicines 

for Malaria Venture (MMV) [34], Roll Back Malaria initiative which was announced by 

WHO [35], Wellcome Trust [36], Sandler Family Supporting Foundation [2], St. Jude 
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Research Foundation [37] are some of the public organizations that are leading most of the 

efforts related to antimalarial drug development [2, 38].  

Of the above mentioned, MMV is particularly interesting, because it is malaria based non-

profit initiative and accounts for most of current antimalarial drug development projects. 

Another similar organization is the ―Global Alliance for Tuberculosis‖. It aims at 

development of drugs against tuberculosis. The aim of MMV is to convert the drug candidates 

into registered entities based on a social venture capital model funded by PPP. They rely on 

business-drug-development model, and derive short term funding requirements from the 

Melinda Gates foundation. Overall, MMV manages a portfolio of 21 projects that are at 

different stages of drug research and development process. Interestingly these projects target 

not a particular target or particular family of proteins but they target various enzymes and 

proteins belonging to various pathways that are essential for parasite survival. In 2008, MMV 

along with its industrial partnerships such as Glaxo SmithKline and Novartis enabled two 

molecules (Artemesinin Combination Treatments) to enter phase-I clinical trials and are for 

the first time tested in humans, besides that MMV enhanced four other chemical entities to 

enter into pre-clinical studies. MMV hopes to register its first drug in 2010 [38]. 

The Global Fund to Fight AIDS Tuberculosis and Malaria (GFTAM) is another active 

organization, which was established in January 2002 as an independent financing body to 

attract, manage, and disburse funds to AIDS, Tuberculosis, and Malaria [39].  

1.1.3 Motivation 

Despite continuous efforts of the international community to reduce the impact of malaria on 

poor and developing countries, there is steadily rise in the number of malarial infections and 

no significant progress in finding new drugs has been made in the recent years. Adding to the 

worse, currently available antimalarial drugs are losing effectiveness due to the emergence 

and spread of resistant parasite strains. In order to regain control over the disease, new drugs 

and treatments are urgently needed. Drug discovery efforts in this direction are most likely to 

be successful if they target a novel mechanism of action. Such approaches will lead to anti-

malarial medicines that are functionally and structurally different from the existing drugs and 

therefore will have the potential to overcome existing resistances. As malaria is a disease of 

poor and developing countries, cost effective technologies have to be used to find the novel 

and potential entities. DNDi identified three potential gaps in the research and development of 

new drug development for malaria and other neglected diseases.  

1. Discovery of novel targets and novel lead compounds. (Driven by public sector) 
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2. Clinical trials on validated drugs. (Has to be driven by pharmaceutical Industries) 

3. Registration issues, lack of production, high prices (unaffordable by poor people) 

It is very important to recognize and understand that parasitic drug discovery differs from 

chronic drug discovery process (preventable diseases such as diabetes, cancer, cardiovascular 

diseases, respiratory diseases etc are termed as chronic diseases [8]), not in terms of drug 

development process, but in terms of investment. Altruistic approaches and philanthropic 

institutions are needed to correct this fatal imbalance. WISDOM, which stands for ―Wide In 

silico Docking on Malaria‖ is one such initiative that has been started as an altruistic approach 

to deal with malaria. The main goals and strategies employed in WISDOM project are 

described below. 

 

Goals of the WISDOM project 

The main objective of the WISDOM project is to establish a collaborative framework between 

bio-informaticians, biochemists, pharmaceutical chemists, biologists, and Grid experts in 

order to produce and make selected lists of potential inhibitors against malaria and other 

neglected diseases. The main goals of WISDOM project are: 

a. Biological goal: Identify inhibitors against malaria and other neglected diseases to be 

tested in the experimental laboratories  

b. Grid goal: To develop a fault-tolerant WISDOM production environment that is 

capable of deploying molecular docking and molecular dynamics application or any 

other biomedical application efficiently on a Grid infrastructure.  

This thesis mainly deals with the biological goals of the WISDOM project. The biological 

goals are dependent on the Grid goal, because, to achieve the biological goal a sustainable 

Grid infrastructure should be available. The Grid goal, which is the development of the 

WISDOM Grid production environment, is achieved in collaboration with our partners in the 

WISDOM collaboration. 

 

Strategies employed in WISDOM project 

Discovering hits with the potential to become usable drugs is a critical first step to ensure a 

sustainable global pipeline for discovery of innovative antimalarial products. While the 

establishment of public-private partnerships has helped to stimulate product R&D for some 

neglected diseases, increased emphasis needs to be placed on the high-risk early discovery 

phase. Hence, in the WISDOM project and in the current thesis, the focus is on discovery of 
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new chemical leads; to achieve this, cost effective, reliable and robust in silico drug discovery 

methods are utilized. Figure 6 illustrates the rationale behind each strategy utilized in 

WISDOM project. 

 

 

Figure 6: Strategies employed in WISDOM project. 

This Figure demonstrates the motivation, problems, and techniques employed in WISDOM project (on 

the left hand side). The reason why these techniques are used is described on the right hand side. 

 

Drug discovery and in silico technologies 

Hit identification is the first and foremost step in the drug discovery process [40]. Two 

different methods are widely used in the pharmaceutical industry for finding hits are high 

throughput screening and virtual screening [41]. In high throughput screening (HTS), the 

chemical compounds are synthesized, and physically screened against protein based or cell 

based assays. This process is commonly used in all major pharmaceutical industries. 

However, the cost in synthesis of each compound, in vitro testing and low hit rate are posing 

huge problems for pharmaceutical industries. Current efforts within the industry are directed 

to reduce the timeline and costs. Besides that, HTS campaigns to identify compounds causing 

a desired phenotype or entire pathways, many of these drugs are failing in clinical 

development either because of poor pharmacokinetic characteristics or to intolerable side 

effects, which may reflect insufficient specificity of the compounds [42]. At present, hundreds 

of thousands to millions of molecules have to be tested within a short period for finding novel 

hits, therefore, highly effective screening methods are necessary for today's researchers.  

In view of the above problems in finding new drugs by HTS; cost effective, reliable in silico 

screening procedures are in practice. Especially in silico methods fit nicely when dealing with 

Major problem: 

Malaria

Affecting & killing millions of people, 

neglected by pharmaceutical industries

Multiple target

Proteins

Presence of validated and

sound crystal data

HTS Very expensive

vHTS
Screening millions of compounds is 

computationally intensive

vHTS on Grid Rapid, cost effective and reliable
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diseases such as malaria mainly due to their cost effective character. Hence, in silico methods 

such as virtual screening and molecular dynamics methods are used in the current thesis. A 

detailed description of the entire drug discovery process is given in Chapter 2. 

 

Virtual Screening by molecular docking 

Virtual screening provides a complementary or alternative solution to HTS in hit 

identification [43]. Such screening comprises innovative computational techniques designed 

to turn raw data into valuable chemical information and this chemical information into drugs. 

The definition of pharmacophores, pharmacophore searches, docking and scoring are 

currently well established in in silico drug design, giving new dimensions to this approach 

[44]. When structural information of the target protein is available, structure based methods 

are widely utilized. When physically compared to classical high throughput screening of 

chemical compounds, in silico screening is much faster and yields 10-100 fold higher hit rates 

at reduced cost [45]. Some of the more recent successful examples in rational drug design are 

the design of nonpeptide cyclic ureas for HIV protease, discovery of inhibitors for 

thymidylate synthase and inhibitors for acetylcholinesterase (AChE) [46, 47, 48]. 

 

Molecular dynamics methods 

Due to the robust nature of docking algorithms, they in general ignore important parameters 

like protein flexibility and electrostatic solvation effects. This gap is filled with the more 

sophisticated molecular dynamics methods, which are based on force field calculations. 

Docking combined with molecular dynamics methods have been shown to be successful in 

several cases [49]. More detailed information on the drug discovery processes and the role of 

in silico methods are provided in detail in chapter 2. 

 

Grid enabled molecular docking and molecular dynamics 

The downside to vHTS is that screening millions of chemical compounds and rescoring the 

best hits by molecular dynamics is computationally intensive. The approach has a high 

computing and storage demand, therefore, it is termed as computational data challenge. 

Screening and further simulating each compound, depending on structural complexity, can 

take from one to a few minutes on a standard PC, which means screening a database with 

millions of chemical compounds can take years of computation time. Hence, modern concept 

of distributed computing termed as Grid computing is utilized. Computational Grid 
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infrastructures are the best attempt to solving this problem thus far [50]. Computational Grids 

are a part of e-Science infrastructure that provides access to geographically distributed 

compute resources around the world. These resources range from personal computers to 

clusters of computers/super computer that belongs to several organizations. Generally, these 

compute resources are connected by using Internet protocols. Detailed description of Grid 

computing is given in chapter 3. The combination of these techniques (vHTS, molecular 

dynamics and Grid computing) can definitely decrease the financial cost implications of 

rational drug design strategies. Several docking applications have already been run on Grids 

and, proved to be successful. Some of the success stories in in silico drug design on 

computational Grids are the small pox research Grid [51], Anthrax research project [52] and 

Cancer project [53, 54]. The Grid technologies employed in the current thesis are described in 

detail in chapter 3. 

 

Aims of the current thesis 

This thesis is a part of the WISDOM project which aims at employing low cost in silico 

methods in combination with modern information technologies such as Grid computing for 

the identification of potential new cures for malaria. More precisely, this thesis mainly aims at 

predicting easily synthesizable small molecules against several targets implicated in malaria. 

Besides that, the specific objectives of this thesis are:  

a. To demonstrate how modern technologies such as Grid computing are utilized to 

accelerate the overall drug discovery process and deployment complex workflows on 

computational Grids. 

b. To demonstrate how virtual screening by molecular docking is carried out on Grid to 

identify novel inhibitors against several targets of malaria. 

c. To demonstrate how the combination of molecular docking and molecular dynamics 

simulations enabled hit identification.  

 

1.2 Thesis outline 

After giving the current state of the art on the neglected diseases and introduction to malaria 

biology in this chapter, the further chapters in this thesis are organized as follows: 

 Chapter 2 introduces the state of the art in molecular modeling techniques, with the special 

focus on the structure based drug discovery methods. It also gives an overview of the various 
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algorithms and models that are used in in silico drug discovery with a particular spotlight on 

algorithms and scoring functions employed in this work 

The role of molecular dynamics simulations in in silico drug discovery and descriptions of the 

general molecular dynamics simulations techniques are given in detail. The theory behind the 

molecular mechanics, molecular dynamics simulations and free energy calculations and the 

role of solvent are described in detail.  

Chapter 3 introduces Grid computing and further describes the need of Grid computing in the 

life science area. Significance of computational Grids in the biomedical sciences research 

arena is described in detail with a special focus on Grids related to the drug discovery process. 

Finally, chapter 3 focuses on the role of computational Grids in the thesis. Further, the EGEE 

Grid infrastructure and the WISDOM production environment, which is designed with a 

special purpose to deploy the docking and molecular dynamics simulations, are described.  

Chapter 4 focuses on the set up of molecular docking experiment in detail. This chapter 

explicitly describes the virtual screening effort against plasmepsin (part I of WISDOM 

project), with a special focus on the protein target involved, chemical compound database 

selection, validation, experimental setup, strategies in results analysis, docking results. 

Chapter 5 focuses on the rescoring of the compounds selected from the molecular docking 

and in vitro results of the best 30 compounds selected. This chapter exclusively describes the 

impact of rescoring the docking conformations by MM-PBSA and MM-GBSA scoring 

functions. Finally, the modeling aspects of the final hits are described in detail. To confirm 

the identified hits as inhibitors against plasmepsin; inhibitory assays were performed by a 

laboratory in the WISDOM consortium, the methods used in this experiment and the results 

are described in detail.  

Chapter 6 focuses on the docking experiment in which four different targets of malaria are 

screened against 4.3 million compounds from the ZINC database (Part II of the WISDOM 

project). The screening techniques employed were similar to the one described in chapter 4. 

The docking experiment outlined in this chapter follows a new multi-target approach. 

Chapter7 summarizes the achievements and novelty of this thesis. This chapter also discusses 

the use and significance of current work in the area of academic drug discovery research and 

the role of collaborative research to deal with malaria. Finally, it provides conclusions and an 

outlook from the perspectives of the achievements in this work. 
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2 Chapter 2. State of the art on rational drug design  

Computational methods are increasingly in practice in the drug discovery process and are very 

useful in hit and lead identification and further in lead optimization. This chapter introduces 

the general drug discovery process employed in biopharmaceutical companies with a special 

spotlight on rational drug discovery methods such as virtual screening by molecular docking 

and molecular dynamics methods.  

This chapter is organized as follows: firstly, in section 2.1 the general drug discovery process 

is described with special focus on hit identification by high throughput screening and virtual 

screening. In section 2.2 virtual screening is discussed with focus on molecular docking. 

Advantages and disadvantages of various docking algorithms and scoring functions are 

described in detail. The state of the art on molecular dynamics methods with focus on 

minimization and free energy calculations is detailed in section 2.4. Finally, the use and 

significance of combining molecular docking and molecular dynamics in the identification of 

novel hits is described.  

2.1 Drug discovery 

Identifying or discovering novel drugs is defined as drug discovery (DD). DD whether driven 

by computational methods or experimental methods is a complex, challenging and 

multidisciplinary effort. Several phases of the drug design include discovery phase, 

optimization phase, clinical trial phase, registration, and approval by regulatory authorities 

(Figure 7). Besides its complexity, drug discovery is an extremely time consuming and 

expensive endeavor, it is estimated that the time and cost to bring a new drug to the market 

vary from 7-12 years and ~$800 million - $1billion respectively [55, 56, 57]. Figure 7 

describes the different steps of drug discovery process and its associated costs. Though as 

shown in Figure 7, drug discovery is not linear workflow, it is a rather an iterative process. 

The aim of the process depicted in Figure 7 is to demonstrate the costs and time associated in 

identifying new chemical entities and further developing them into drug candidate molecules 

[49].  

Discovery phase is the initial phase of the drug discovery process, which includes 

identification of disease, selection & validation of target and hit & lead identification. After 

target identification and validation, screening of chemical compounds is performed to identify 

the hits and leads. In the next steps, these hits and leads are further optimized in the process 
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called lead optimization. The optimized leads enter into clinical trials phases. Finally, the drug 

has to be registered and approved by FDA or related organizations in other countries before 

entering the market [55].  

Screening is the one of the first and foremost steps, careful and smart screening will lead to 

the identification of valuable hits, which later can be transformed into leads and drugs [40]. In 

pharmaceutical industries, generally two main screening techniques are employed: 

experimental screening also termed as high throughput screening (HTS) and virtual screening 

or in silico screening [41].  

 

 

Figure 7: Classical drug discovery (DD) process employed in the pharmaceutical industries. 

The Figure illustrates several stages of DD process along with the approximate duration of time (on 

the left hand side) and percentage of total expenses involved in each stage (on the right hand side). 
Also demonstrates the total time and expense involved bringing a drug into market. 



                                                                   Chapter 2. State of the art on rational drug discovery 

 

19 

 

High throughput screening (HTS) 

HTS is currently the central technique employed in larger pharmaceutical companies for 

finding the hits and leads. Screening of chemical compounds physically/experimentally 

against target protein is termed as HTS. Sophisticated, modern ultra fast robotic methods, 

which are capable of screening thousands of chemical compounds are currently available and 

are generally practiced in almost all the pharmaceutical industries [42]. 

In the initial steps of HTS, bioassays are to be setup, chemical compounds have to be 

synthesized (or can be purchased from chemical vendors), then screening and subsequent data 

analysis is performed. In the final steps, chemical compounds with high potency are identified 

and structure and mechanism of action are determined. However, determination of mechanism 

of action is still a question by HTS [42]. Though it is currently the main stream of screening 

chemical compounds in pharmaceutical industries and biotech companies, HTS is not without 

limitations. Some of the major constraints of HTS are: 

 Cost in synthesis of each compound, in vitro testing, waste disposal, and low hit rate. 

 False positives and unspecific binding of the tested compounds. 

 Low solubility and non-specific reactions with the protein material, which results in 

surface adhesion or protein precipitation.  

 From the knowledge point of view, HTS could not answer the question, why and how 

the detected hit acts upon the target. 

Current efforts within the pharmaceutical industry are directed to reduce the time line and 

costs [58]. One alternative or complementary approach to HTS is, screening compounds by 

using rational drug discovery methods such as virtual high throughput screening [57]. Figure 

8 illustrates the gain in hit rate using in silico screening over traditional HTS.  

 

Figure 8: Illustrates the increase in hit rate by using rational methods over random HTS. 
The Figure illustrates that using rational drug discovery methods will increase the hit rate when 

compared to random high throughput screening approach. 
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Why computer aided drug discovery 

Besides the significant costs and time associated in bringing a new drug to the market, some 

of the major reasons for the pharmaceutical industries to look for alternative or 

complementary methods to experimental screening are [40]  

a. Late stage attrition of chemical compounds in drug development and beyond [40]. 

Which in general is five of the 40,000 compounds tested in animals reach human 

testing and only one out of five reaching the clinical trials is finally approved [56]. 

b. Tremendous increase in chemical space and target proteins/receptors, this increases 

the demands put on the HTS and this in turn will call for new lead identification 

strategies (rational approaches) to curb costs and efficacy.  

c. Advances in computing technologies on software and hardware enabled reliable 

computational methods 

 

Computer aided drug discovery 

According to Hugo Kubinyi [59], most of the drugs in the past were discovered by 

coincidence or trial and error method, or in other words, serendipity played an important role 

in finding new drugs. Current trend in drug discovery is shifted from discovery to design [59], 

which means, understanding the biochemistry of the disease, pathways, identifying disease 

causative proteins and then designing compounds that are capable of modulating the role of 

these proteins has become common practice in biopharmaceutical industries. Both 

experimental and computational methods play significant roles in the drug discovery and 

development and most of the times run complementing each other [41]. Rational drug 

discovery or computer aided drug discovery (CADD) is defined as a process by which drugs 

are designed/discovered by using computational methods. The main aim of the CADD is to 

bring the best chemical entities to experimental testing by reducing costs and late stage 

attrition. CADD involve [56]:  

1. Computer based and information extraction methods to make more efficient drug 

discovery and development process 

2. Build up chemical and biological information databases about ligands and 

targets/proteins to identify and optimize novel drugs 

3. Devise in silico filters to calculate drug likeness or pharmacokinetic properties for the 

chemical compounds prior to screening to enable early detection the compounds 
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which are more likely to fail in clinical stages and further to enhance detection of 

promising entities. 

There are various computational techniques, which are capable of affecting at various stages 

of the drug discovery process [44]. It is estimated that, computational methods could save up 

to 2-3 years of time and $300 million [57]. The two major disciplines of CADD, which can 

manipulate modern day drug discovery process and capable of accelerating drug discovery 

are, bioinformatics and cheminformatics. Figure 9 illustrates the impact of different rational 

methods in terms of time and cost on the drug discovery process. In general, 

 Bioinformatics techniques hold a lot of prospective in target identification (generally 

proteins/enzymes), target validation, understanding the protein, evolution and 

pylogeny and protein modeling [43]. 

 Cheminformatics techniques hold lot of prospective in storage, management and 

maintenance of information related to chemical compounds and related properties, and 

importantly in the identification of novel bioactive compounds (hits and leads (NCE)) 

and further in lead optimization. Besides that, cheminformatics methods are 

extensively utilized in in silico ADME prediction and related issues that help in 

reduction of the late stage failure of compounds [44]. 

 

 

Figure 9: Illustrates the impact of rational approaches at various stages of the drug discovery process 

in terms of costs and time [60]. 

This Figure illustrates that a total of ~30% of the total costs and 15% of time can be saved by utilizing 

rational approaches. 
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In context to the current thesis, cheminformatics methods, especially techniques related to hit 

& lead identification and lead optimization are further discussed. 

2.2 Virtual screening 

 In silico screening of chemical compound databases for the identification of novel 

chemotypes is termed as Virtual Screening (VS). VS is generally performed on commercial, 

public or private 2-dimensional or 3-dimensional chemical structure databases. Virtual 

screening is employed to reduce the number of compounds to be tested in experimental 

laboratories, thereby allows for focusing on more reliable entities for lead discovery and 

optimization [61, 62, 63, 64]. The costs associated to the virtual screening of chemical 

compounds are significantly lower when compared to screening of compounds in 

experimental laboratories. Virtual screening methods are mainly driven by the availability of 

the existing knowledge. Depending on already existing knowledge on the drug targets and 

potential drugs, these methods fall in mainly in these two categories (see Figure 10) [65, 66, 

67]:  

i. Structure based virtual screening or structure based drug discovery (SBVS or 

SBDD) 

ii. Ligand based virtual screening (LBVS) 

In the absence of receptor structural information and when one or more bioactive compounds 

available ligand based virtual screening are generally utilized. Different LBVS methods 

include: 

a. Similarity search:  Similarity searching is performed, when a single bioactive 

compound is available. The basic principle behind similarity searching is similar 

compounds have similar bioactivities.  

b. Pharmacophore based virtual screening: When one or several bioactive compounds are 

available, pharmacophore based virtual screening is performed. The principle behind 

the pharmacophore is a set of chemical features and their arrangement in 3-

Dimensional space is responsible for the bioactivity of the compound. By utilizing the 

these chemical features of already known bioactive compounds, a pharmacophore 

model is built, which later is used to screen against database of unknown compounds 

for finding chemical compounds with similar chemical features. 

Similarity search methods, pharmacophore based methods [68] and ligand based virtual 

screening in general are reviewed in [69]. 
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Figure 10: Schematic representation of virtual screening methods [70].  

The Figure illustrates the existence of various in silico screening methods, further it demonstrates the 
usage of these methods depending on the available data. 

 

In the presence of structural information of the target protein, receptor based or structure 

based methods are widely used method to screen the compounds. Depending upon the 

availability of structural information, the screening can be performed by either using X-ray 

crystal models or NMR models or homology models. In context to the current thesis, SBVS 

methods are described in detail.  

 

Structure based drug discovery 

Structure based drug discovery methods (SBDD) are widely used in both pharmaceutical 

industry and academic institutes for finding novel chemotypes [58, 48]. SBDD uses 

knowledge of the target protein’s structure to select candidate compounds with which it is 

likely to interact. Drug targets are usually most important molecules concerned in an explicit 

metabolic or cell signaling pathway that is known, or believed, to be related to particular 
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disease state. Drug targets are most often proteins and enzymes in these pathways [71]. SBDD 

methods rely on the known 3D geometrical shape or structure of proteins for finding novel 

compounds. X-ray crystallography or nuclear magnetic resonance (NMR) techniques are 

typically employed to solve and obtain 3D structures of proteins/receptors. The capability of 

X-ray and NMR methods to resolve the structure of proteins to a resolution of a few 

Angstroms (about 500,000 times smaller than the diameter of a human hair) enabled 

researchers to precisely examine the interactions between atoms in protein targets and atoms 

in potential drug compounds that bind to the proteins. This ability to work at high resolution 

with both proteins and drug compounds makes SBDD one of the most powerful methods in 

drug design [71]. There are several examples for the successful application of SBDD 

methods, some of the recent successful examples in rational drug design are the design of 

nonpeptide cyclic ureas for HIV protease, the discovery of inhibitors for thymidylate synthase 

and inhibitors for acetylcholinesterase (AChE) [46, 47, 48]. 

 
Factors influencing the growth of SBDD 
 

The major factors influencing the impact of SBDD methods are [72]: 

• Advances in molecular biology, proteomics techniques: recombinant 

expression makes the isolation of large amounts of proteins much easier than 

before. 

• Advances in X-ray crystallography and NMR techniques: Determination of 

the3-D crystal structures of proteins and receptors were made possible 

• Advances in combinatorial chemistry and cheminformatics: Lead to 

tremendous increase in the chemical space and their availability in 2D/3D 

electronic databases. 

• Online web services such as Brookhaven database [www.pdb.org]: Hosting of 

and providing structural information on thousands of disease related 

proteins/receptors enabling better understanding of protein-ligand interactions. 

• Grid computing: Lead to perform data intensive scientific tasks easier than 

before. Further, it enabled sharing of terra bytes of scientific data between the 

research organizations. 

• Availability of efficient and reliable molecular modeling, computational 

chemistry and result analysis tools. 

• Finally, the availability of free resources such as ready to dock chemical 

compounds, web services, open source docking tools.  
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The general workflow  

The prerequisite to set up a virtual screening experiment is knowledge on the target, against 

which the screening has to be performed, and on the chemical compound libraries. Most of 

the information related to the targets is available in the literature, whether it is digital or paper 

based. A typical virtual screening workflow involves the following steps and is illustrated in 

Figure 11 

Step 1 Selection: Selection of the target, the chemical compound database, and the docking 

software. 

Step 2 Preparation of the target:  If the selected target is an X-ray crystal structure with a 

bound ligand, then it requires preparing the binding site of the protein by taking ~6–8 °A from 

the co-crystallized ligand, taking care the significant amino acids for the activity are included 

in the binding site. Information on the significant amino acids can be obtained either from the 

literature or from the Brookhaven protein database. However, both target and compound have 

to be prepared according to the needs of the software. 

Step 3 Preparation of the compound library: After selecting the chemical compound 

database, one has to filter and remove undesired compounds. Lipinski’s ―rule of five‖ is one 

of the frequently used filters applied before the virtual screening campaign is started. 

Step 3 Screening: Depending upon the number of compounds to be screened, one has to 

check for the availability of resources. If thousands of compounds are to be screened, 

distributed computing or Grid computing are utilized. 

Step 4 Result analyses: Results are analyzed usually based on the docking score (free energy 

of the complex) and binding mode of the compound inside the binding site. Access to data 

analysis and visualization software is required at this point.  

Step 5: Rescoring: Best scoring compounds are rescored by using sophisticated scoring 

functions. 

Step 6 Selection: Visualization of interesting protein-ligand complexes, and final selection of 

compounds for experimental testing. 
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Figure 11: General receptor-based virtual screening procedure.  
The Figure demonstrates the hierarchical virtual screening workflow starting from the chemical 

database preparation and receptor preparation to identification of novel compounds. 
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Goals of receptor based drug design 

In the field of structure based drug discovery there are three major goals that theoretical 

biologists seek to achieve [73].  

1. Accurately predict the conformation and orientation of both the protein and ligand in 

complex.  

2. Rank order a database of chemical compounds against a particular target protein.  

3. When only protein target knowledge is available, the goal is to discover or design 

novel chemical compounds, which are capable of inhibiting the target protein. 

However, all the goals mentioned above are inter-linked to each other. Predicted binding 

energies or score of series of compounds cannot be achieved without predicting their binding 

orientations. Practical applications of these methods include finding novel compounds either 

by screening a database of compounds or de novo design of novel compounds by utilizing the 

features of protein active site. Additional applications include improving the binding of 

existing inhibitors (lead optimization) [73]. Receptor based methods such as molecular 

docking and molecular dynamics simulations are described below. 

2.3 Molecular docking 

The methodology of protein-ligand docking is inherited from earlier work in small molecule 

conformational sampling and macromolecular energy calculations [74]. Calculating the 

accurate protein-ligand interactions is the key principle behind structure based drug discovery 

[75]. Predicting ligand conformation within the active site of a protein/receptor is termed as 

molecular docking. In general, there are two key components of molecular docking [70]: 

a. Accurate pose prediction or binding conformation of the ligand inside the binding site 

of the target protein.  

b. Accurate binding free energy prediction, which later is used to rank order the docking 

poses. 

The docking algorithm usually carries out the first part of the docking (predicting binding 

conformation) and the scoring function associated with the docking program carries out 

the second part that is binding free energy calculations. 

Pose prediction: Docking algorithm usually perform pose predictions. Identifying 

molecular features, which are responsible for molecular recognition or pose prediction are 

very complex and often difficult to understand and even more so, when simulated on a 

computer [76].  



                                                                   Chapter 2. State of the art on rational drug discovery 

 

28 

 

The challenges and difficulties in the protein-ligand docking are mainly due to the 

involvement of many degrees of freedom 

o Translational and rotational (in relation to each other) involves six degrees of 

freedom 

o Conformational degrees of freedom (Protein and ligand) 

The challenge of various docking algorithms lies in sampling these translational, rotational 

and conformational degrees of freedom accurately and further finding the ligand conformation 

which best matches the receptor conformation. Furthermore, the sampling has to be quick 

enough to allow evaluating number of compounds in a given a docking experiment [76]. 

Activity prediction: After the pose prediction by the docking algorithm, the immediate step 

in the docking process is activity prediction, which is also termed as scoring. Docking score is 

achieved by the scoring functions associated with the particular docking software. Scoring 

functions are designed to calculate the biological activity by estimating the interactions 

between the compound and protein target. During the early stages of the docking experiments, 

scoring was performed based the simple shape and electrostatic complementarities. However, 

currently, the docking conformers are often treated with sophisticated scoring methods that 

include the Van der Waals interactions, electrostatic interactions, solvation effects and 

entropic effects [77]. Detailed descriptions about different algorithms and scoring functions 

are given further this chapter. 

2.3.1 Search methods and docking algorithms 

Depending on the flexibility of protein and ligand, docking algorithms can be divided in 3 

types:  

 Rigid docking: Protein and ligand are considered to be rigid 

 Semi-flexible docking: protein is fixed and ligand is flexible 

 Flexible docking: Both protein and ligand are flexible 

Based on the principle of conformation generation, the search methods are categorized into 

 Stochastic  

 Systematic  

 Deterministic  
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Systematic search methods 

Systematic methods attempt to investigate all the degrees of freedom (Both rotational and 

translational), but this may lead to combinatorial explosion. Hence, systematic methods utilize 

fragmentation/construction algorithms. Incremental construction algorithm [78] is the most 

commonly used systematic search method. Incremental construction of ligands in the active 

site of the receptor/protein can be accomplished in different ways; firstly, docking various 

ligand fragments in the active site of the protein and in the next steps, these fragments are 

linked covalently. This method is popular as de novo ligand strategy [76]. Alternatively, in 

another method, the docked ligands are initially fragmented into several fragments, the rigid 

fragments are considered as core fragments and the flexible parts of the ligands as side chains. 

In the next step, the rigid fragments are docked first and the side chains are later added to the 

rigid fragments incrementally in the binding site of the protein.  

The basis for core fragment placement varies from one docking tool to another. It may depend 

upon the steric complementarity, as in the DOCK software or geometry based as in the FlexX 

software [78]. One of the major advances in the protein-ligand docking is the development of 

DOCK algorithm by Kuntz and co-workers, [79, 80, 81, 82] which is based on an ―Anchor 

and build method‖. In the DOCK program, the rigid fragment is placed based on the steric 

complementarity and the side chains are added to the rigid fragment one bond at a time in a 

systematic fashion exploring each bond’s conformational space [83]. To reduce the 

complexity of the problem, a pruning algorithm is used to remove the unfavorable 

conformations early on. FlexX [78, 84], SurflexX [85] are some of the other are widely 

applied docking programs, which are based on incremental construction algorithm. FlexX 

docking software is used extensively in the current thesis and is described in detail in chapter 

4. There are several other algorithms which are in common to incremental construction 

algorithm but differ in the way rigid fragments are docked or the way flexible parts are added, 

for example, the Hammerhead algorithm [86, 87]. 

Stochastic methods 

Stochastic search methods are also termed as random search methods. Stochastic search 

methods involve random changes to the position and as well as torsion angles for the ligand or 

pool of ligands to generate different conformations. The two most popular stochastic methods 

are genetic algorithm (GA) and Monte Carlo algorithm (MC) [88, 89, 90]. The Monte Carlo 

method is capable of generating ensembles of conformations statistically consistent at room 

temperature. While generating the pool of random conformations, with each iteration of the 
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process, either the internal conformation of the ligand (by rotating around a bond) is changed 

or the entire ligand is subjected to the rotation or translation within the active site of the 

protein. An energy function evaluates the newly formed conformation and accepts the 

conformation only if the energy is lower than the one derived from the previous step or if, it is 

higher, is within the range defined by Boltzmann factor [87]. LigandFit [91], a popular 

docking program from Accelry’s, is based on the Monte Carlo algorithm. GA starts with a 

population of random ligand conformations with random orientations and at random 

translations. In genetic algorithm (GA), each chromosome in a population encodes for one 

ligand conformation along with its orientation in its binding site of the protein. Then, in the 

next step, a scoring function evaluates the fitness of each individual in a population and less 

fit individuals are being killed (or not passed on to the next generation). Pairs of survived 

individuals are mated leading to children with new chromosomes derived from the parents by 

mutations and recombination. (Chromosome in this context refers to position, orientation, and 

conformation of the ligand). GA differs from the Monte Carlo methods by performing a 

number of runs and selecting the structures with highest scores. GOLD [92], AutoDock [93] 

and DARWIN [94] are the some of the few docking programs, which rely on genetic 

algorithms.  

Deterministic methods 

Deterministic methods are also termed as simulation methods include molecular mechanics 

and molecular dynamics methods. Unlike the systematic and stochastic methods, 

deterministic method address the issue of both ligand and protein flexibility. By the definition 

itself, in the deterministic search, the initial state determines the change that can be made to 

generate the next state, which generally has to be energetically preferred as compared with the 

initial state. One of the major limitation of simulation methods is the trapping up of the ligand 

conformations in local minima (local minima corresponds to conformation with higher energy 

than the low energy stable conformation) on the energy surface rather than stable low energy 

global minima, this is because deterministic methods cannot cross the high-energy barriers 

within feasible simulation time [76]. Longer simulation time can be one solution, but cannot 

be adapted to virtual screening of thousands of ligands. One strategy to overcome the local 

minima problem is by starting the molecular dynamics simulation by using different ligand 

positions. In distinction to molecular dynamics simulations, molecular mechanics methods 

often reach local minima only and are not used as standalone methods, but rather complement 

other methods, for example in the Monte Carlo method within the DOCK program [87]. Some 
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simulation methods that could be useful for VLS have been developed to overcome the 

energy barriers more rapidly, for example using simulated annealing molecular dynamics 

implemented in SDOCKER program [95]. 

In context to virtual screening, molecular mechanics and molecular dynamics are mostly 

recommended at the final steps of the hierarchical virtual screening process on the preselected 

smaller library of the compounds derived from docking experiments (Figure 11). Workflows 

starting with an initial screening of compounds by robust docking algorithms, followed by 

sophisticated simulation methods are widely recognized, and proposed by several authors [96, 

97]. 

2.3.2 Scoring functions 

One of the two important components of molecular docking is scoring. While docking aims at 

reproducing binding conformation close to the X-ray crystal structure, the aim of scoring is to 

quantifying the free energy associated with protein and ligand in the formation of the protein-

ligand interactions. Most of the docking software are associated with scoring functions, which 

enable computing free energy associated with protein-ligand interactions (docking score). The 

docking score is used to rank the chemical compounds in virtual screening campaign. Wide 

ranges of scoring functions are available to calculate the binding between the protein and 

virtual ligand. These methods range from estimating the binding by simple shape and 

electrostatic complementarities to the estimation of free energy of protein and ligand complex 

in aqueous solutions. Only few of them are capable of addressing the thermodynamic process 

(described further in this chapter) involved in the binding process. However, methods based 

on thermodynamic parameters require extensive simulating time, and consequently significant 

CPU time, therefore, these methods are restricted to smaller set of compounds, making it 

impractical to use them in large-scale virtual screening experiments. Currently three main 

types of existing scoring functions are applied: Force field-based, empirical scoring functions 

and knowledge based scoring functions [98]. A short description on each scoring function is 

given below. Detailed information about the scoring functions is reviewed in [42, 76]. 

Force field based scoring functions relies on the molecular mechanics methods. Force field-

based methods calculate both the protein-ligand interaction energy and ligand internal energy 

and later sums both the energies. Different force field functions are based on different force 

field parameter sets. For example, AutoDock relies on the Amber force field and G-Score 

relies on the Tripos force field [98].  
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The Van der Waals and electrostatic energy terms describe both the internal energy of the 

ligand and the interactions between the protein and ligand. The van der Waals energy term is 

described by the Leonard Jones potential and often can be varied depending upon the desired 

hardness of the potential. Electrostatic terms are described by the Coulombic formula with a 

distance dependent dielectric constant for charge separation. Advantages of force field based 

scoring functions include accounting of solvent and disadvantages include over estimation of 

binding affinity [98] and arbitrarily choosing of non bonded cutoff terms [76].  

Knowledge based scoring functions: Atom pair interaction potentials also known as 

potential of mean force (PMF). Atom pair interaction potentials are usually derived from 

structural information stored in databases (ChemBridge structural database and protein data 

bank) of protein-ligand complexes. It relies on the assumption that repeated occurrence of 

close intermolecular interactions between certain types of functional groups or atom types are 

energetically favorable than the randomly occurring interactions, thus contribute 

complementarily to the binding affinity. The robust nature of this scoring function makes it 

usable in virtual screening experiments. Knowledge based scoring function rely on existing 

intermolecular interaction databases, one major limitation of this method is the limited 

availability of such structural information in the intermolecular interaction databases. Dscore 

[99] and PMF scoring functions rely on knowledge based scoring functions [100]. 

Empirical Scoring functions: The score in empirical scoring function is derived from 

individual energy contributions of each component involved in intermolecular interactions. 

Empirical scoring functions are easier to apply and subjected to less computational error. For 

example, the Kuntz ID, in his early work emphasized on the molecular shape, because shape 

complementarity is certainly essential for a ligand to be placed in the binding site and can be 

easily and accurately computed. However, in his later work he added chemical information, 

molecular mechanical energies, and empirical hydrophobicities to make the scoring function 

more accurate [79, 81]. Boehm HJ developed an empirical scoring function that takes into 

account hydrogen bonding, ionic interactions, lipophilic contact surface and number of 

rotatable bonds [101, 42]. Due to its robust nature, empirical scoring functions are widely 

used in virtual screening experiments along with knowledge base scoring functions. One of 

the major limitations of empirical scoring function is that it works very well with rigid 

ligands, but the results are not satisfying with flexible ligands. This is because most of the 

empirical scoring functions ignore the internal energy of the ligand. FlexX (docking tool) and 

Ludi (de novo design tool) [101] rely on empirical scoring function.  
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Given the significance of structure based drug discovery, especially protein-ligand docking, 

currently there are several docking software available [98]. These tools are developed either 

by commercial bioinformatics companies or by research institutes. Table 3 illustrates the 

some of the major docking tools utilized in pharmaceutical industries and academic research 

institutes.  

 

Docking Tool Algorithm/Method Scoring 

function 

Flexibility 

FlexX 

www.biosolveit.de 

Incremental construction / SS Boehm 

empirical 

scoring function 

Protein: No 

Ligand: Yes 

FlexX-Pharm 

www.biosolveit.de 

Incremental construction / SS Boehm 

empirical 

scoring function 

Protein: No 

Ligand: Yes  

AutoDock 

http://AutoDock.scripps.edu 

Simulated Annealing and 

Genetic algorithm / StS 

Force field 

based empirical 

scoring 

Protein: No 

Ligand: Yes 

Dock 

http://dock.compbio.ucsf.edu 

Incremental construction/ SS Force field 

based scoring 

Protein: No 

Ligand: Yes 

ICM  

 http://www.molsoft.com/ 

Simulated Annealing / StS Force field 

based scoring 

Protein: No 

Ligand: Yes 

GOLD  

http://www.ccdc.cam.ac.uk/ 

Genetic algorithm / StS Empirical 

knowledge 

based scoring 

Protein: Partial 

Ligand: Yes 

Surflex-Dock  

http://www.optive.com/ 

Incremental construction / SS Empirical 

Hammerhead 

scoring  

Protein: No 

Ligand: Yes 

Glide 

http://www.schrodinger.com 

Simulated annealing & 

Incremental search / SS & 

StS 

Empirical 

knowledge 

based scoring 

Protein: Yes 

Ligand: Yes 

Table 3: Illustrates widely used docking tools. 

This Table demonstrates the existence of several docking tools. The algorithms and scoring functions 

used by these docking software are given exclusively. In the last column on the right hand side, 
information on the ability of the software to consider protein and ligand flexibility is provided. 

 SS = Systematic search, deterministic search = DS, Stochastic search =StS 

http://www.biosolveit.de/
http://www.biosolveit.de/
http://autodock.scripps.edu/
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Limitations and Challenges 

Although various algorithms and scoring functions exist to solve the docking problem, SBDD 

is not without limitations. Some of the major limitations of structure based drug discovery are 

[49, 66, 76, 98]: (listed according to the priority) 

1. Protein flexibility: Even when the structure of the target molecule is known, the 

ability to design a molecule that binds to inhibit or activate the target remains a major 

challenge. Although the fundamental goals of virtual screening methods are to identify 

those molecules with the proper complement of shape, hydrogen bonding, and 

electrostatic and hydrophobic interactions for the target receptor, the complexity of the 

problem is far greater in reality. For example, the ligand and the receptor may exist in 

a different set of conformations when in free solution, which is different from the 

conformation when the ligand is bound to a protein [61]. 

2. Role of solvent and scoring functions: Proteins and ligands are usually surrounded 

by solvent; typically water molecules. The entropy of the unassociated ligand and 

receptor is generally higher than that of the complexes, and favorable interactions with 

water are lost on binding [98, 61]. These energetic costs of the association must be 

offset by the gain of favorable intermolecular protein–ligand interactions. The 

magnitude of the energetic costs and gains is typically much larger than their 

difference, and, therefore, potency is extremely difficult to predict. Even though 

several methods have been developed to predict the strength of molecular association 

events accurately by accounting entropic and solvation effects [102, 103], these 

methods are costly in terms of computational time. Thus, make them inappropriate to 

use in screening of large compound databases. 

3. Increase in the Biological and Chemical data: Advances in genomics research area 

led to the rise in X-ray resolved structures and made them accessible through online 

web services, such as protein databank (www.pdb.org). The possible chemical space is 

currently estimated to be in the range of 10
60

 chemical compounds [104]. Although 

this astronomical number is not synthetically possible; advances in combinatorial 

chemistry lead the way to synthesize millions of chemical compounds in timely 

manner [72]. Both the rise in biological data and chemical data is normally considered 

as positive aspects for virtual screening, but the real challenge is, it requires huge 

computing resources to screen these compounds against several of targets proteins.  
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4. Data analysis tools: Data analyses methods are of great importance especially in view 

of the very large data generated, because of large-scale approaches such as virtual 

screening. However, unavailability of customized docking databases that enable 

storing and sorting millions of records is a significant limitation for large-scale 

experiments.  

The challenge in developing practical virtual screening methods is to develop an algorithm 

that is fast enough to rapidly evaluate potentially millions of compounds while maintaining 

sufficient accuracy to successfully identify a subset of compounds that is significantly 

enriched in hits [63, 64, 76]. Several groups have attempted to utilize various scoring 

functions to address the errors arising from single scoring functions; this process is termed as 

consensus scoring [105, 106, 107, 108, 109]. Though, better hit rate and success was achieved 

by using consensus scoring [107, 110, 111], the issues: protein flexibility, role of the solvent 

in mediating protein-ligand interactions and accurate prediction of binding free energy still 

remain unsolved by the docking methods currently available. 

2.4 Molecular dynamics 

It is widely accepted opinion [49] that docking results need to be post-processed with more 

accurate modeling tools before biological tests are undertaken. Molecular dynamics (MD) 

simulations has great potential at this stage:  

A. Firstly, it enables a flexible treatment of the ligand/target complexes at room 

temperature for a given simulation time, and therefore is able to refine ligand 

orientations by finding more stable complexes. (Achieved by Minimization 

techniques).  

B. Secondly, it partially solves conformation and orientation search deficiencies that 

might arise from docking. (Achieved by Molecular dynamics simulations). 

C. Thirdly, it allows the re-ranking of molecules based on accurate scoring functions. 

(Achieved by Free energy calculations). 

 

A. Minimization 

Flexible treatment of protein and ligand can be performed by a method known as 

minimization. Minimization is a process by which the molecular structure is brought to the 

minimum energy conformation. Minimization involves iteratively adjusting atomic 

coordinates until the forces acting on all the atoms in the system become zero or close to zero. 
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Minimization generally takes the molecule to the local minimum, nearest to the starting 

conformation.  

The energy of the molecule is a useful property to study the behavior of the molecules. 

Provided sufficient parameters such as how long the bond is, how strong the bond is, 

molecular mechanics models can be used to approximate the energy of the molecules. 

However, one should be aware of the fact that minimization does not find lowest energy 

conformation rather they find unstrained molecular conformation [112]. Minimization of the 

protein, ligand or protein-ligand complex can be achieved by molecular mechanics and 

quantum mechanics methods. Accurate energy calculations can be achieved by using 

molecular orbital theory based quantum mechanical methods. However, they in general are 

slow and require significant computing resources, thus make them unsuitable for large-scale 

virtual screening experiments.  

Energy surface 

Changes in the energy of the molecule can be considered as changes on a multidimensional 

surface called energy surface. The stationary points on the energy surface are particularly 

interesting, where the first derivative of the energy is zero with respect to internal or Cartesian 

co-ordinates. At stationary point, the forces acting on all atoms are zero. Minimum points are 

one type of stationary points that corresponds to relatively stable structures.  

In molecular modeling, the minimum points on the energy surface are interesting; because 

minimum energy arrangements of the atoms correspond to the stable state of the molecule and 

any movement away from a minimum gives a conformation with higher energy and thus 

makes it relatively less stable conformation than the previous conformation. 

There may be very large number of minima (minimum points) on the energy surface. The 

minimum with very lowest energy is termed as global minima. The highest point on the 

pathway between the two minima is of special interest and is known as the saddle point. Both 

minima and saddle points are stationary points on the energy surface, where the first 

derivative of the energy function is zero with respect to all the co-ordinates [112].  

Minimization algorithms are used to identify the geometries of the molecules that correspond 

to the minimum points on potential energy surface. Based on the potential energy calculation 

on the energy surface, minimization algorithms are classified into two groups: derivative 

method and non-derivative method. The most commonly used methods in molecular 

modeling of drugs are derivative methods: steepest descent and conjugate gradient methods. 
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Minimization by Molecular mechanics 

Empirical methods such as molecular mechanics ignore the electronic motions and calculate 

the energy only based on the nuclear positions only. This makes molecular mechanics 

methods suitable for calculation of system with large number of atoms (for example systems 

such as Protein-Ligand complexes). Though molecular mechanics is an empirical method, in 

some cases, it provides as accurate solutions as similar to quantum mechanical calculations in 

relatively less time. However, molecular mechanics fails to provide the properties that depend 

on the electronic distribution of the molecule [44].  

Molecular mechanics calculations or force field calculations are based upon a simple model of 

the interactions within a system with contributions from processes such as bond stretching, 

opening, and closing of bond angles and rotation around the single bonds. Force field is 

defined as a mathematical function that describes the potential energy of the system. The main 

components of force field are covalently bonded terms and non-covalently bonded terms. 

Covalently bonded terms are bond lengths, bond angles, and dihedral angles. Non-covalent 

bonded terms are the van der Waals terms and electrostatic terms [112]. The complete 

function typically resembles the following equation: 

 

EMM = ∑ Ebond + Eangle + Etorsion + Evdw + Eelectrostatic 

 

This summation, when given in explicit form, represents a force field evaluating the potential 

energy as a function of the geometry. The most commonly used force fields are AMBER 

[113], Charmm [114] and Gromacs force fields [115]. Amber force field is utilized 

exclusively in the current project and is described in detail in chapter 5.  

Application of molecular mechanics methods: 

Energy minimization is widely used in molecular modeling and is an integral part of 

techniques such as conformational search procedures. Energy minimization may be used prior 

to molecular docking, molecular dynamics simulations, and the Monte Carlo simulation in 

order to relieve any unfavorable interactions in initial conformation of the system.  

 

B. Molecular dynamics 

Molecular dynamics simulations (MD) are widely applied and are an accepted computational 

technique for studying biological macromolecules. Molecular dynamics simulations are 

extensively used in understanding protein folding, refining docked conformations, calculating 
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accurate free energies and entropies. Besides the use of MD simulations in rationalizing the 

experimentally derived properties at molecular level, one of the major applications of MD 

simulations is the refinement of the experimentally derived X-ray crystal and NMR structures. 

The relationship between molecular dynamics techniques and experimental techniques is 

longstanding, with theoretical methods (MD) help in understanding and analyzing the 

experimental data. In turn, experimental methods help in validation and improvement of 

computational methods [116, 117]. 

Theory 

Biological molecules are studied at microscopic and atomic level by using molecular 

dynamics simulations. Molecular dynamics method describes and calculates the time 

dependent behavior of biological systems. The simulation begins by giving each atom in the 

molecule some kinetic energy. This makes the molecule to move around, and it is possible to 

calculate, how the molecule moves by solving the Newtonian equations of motion. In 

molecular dynamics, integrating Newton’s laws of motion generate successive configurations 

of the system. The result is a trajectory that specifies how the positions and velocities of the 

particles in the system vary with time [112]. The trajectory is achieved by solving the 

differential equation embodied in the Newton’s second law of motion (F=ma)  

d
2
xi/dt

2
 = Fxi/mi 

In context to the current thesis, molecular dynamics simulations are extensively utilized to 

solve three problems, firstly, to remove the conformational and orientation deficiencies that 

are raised from docking methods, secondly, to address the issue of protein flexibility and 

finally, to calculate accurate binding free energies between protein and ligand. 

 

C. Free energy calculations in protein-ligand interactions: Thermodynamic cycle 

The stable structures of a small molecule correspond to minimum points on the 

multidimensional energy surface, with alternative conformations populated according to their 

free energies. The free energy of a particular conformation is equal to the solvated free energy 

at the minimum with the small correction of configurational entropy about the minimum point 

(stable structure) [118]. The Anfinsens renaturation experiments [119], showed that this basic 

principle of statistical physics also applies to protein [120]. Thus, although there are specific 

proteins that become trapped in the local minima, because of the barriers to folding or 

covalent bonding, most of the proteins fold to the conformation of minimum free energy 

[120]. The same argument should apply to reversibly binding ligands, therefore, it seems 
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reasonable to assume that small molecule ligands adapt the binding mode of the lowest free 

energy within the binding site of the protein. This very reasonable assumption is the ultimate 

basis for the use of energy in the molecular docking experiments.  

Ligand binding to the protein is often achieved by the non-bonded interaction such as 

hydrogen bonding, hydrophobic or lipophilic or aromatic contacts. Typically, these 

parameters are enough when predicting biological activity.  

If reliable/accurate binding free energy of a protein-ligand complex is to be achieved, then 

complex thermodynamics aspects have to be taken into account. Binding free energy or Gibbs 

free energy is a result of both entropic and enthalpic contributions. Usually, protein and ligand 

(when exist as single entities) are surrounded by solvent, typically water molecules. When 

these proteins and ligands are in solvent, they frequently make interactions with the 

surrounding water molecules. These interactions between the protein/ligand with the solvent 

are rearranged, when the ligand binds to the protein (desolvation). The energetic parameters 

determining these interactions have to be considered, but most importantly, the breaking or 

formation of any new interactions will be related to the changes of ordering parameters of the 

entire system. The ordering parameters are termed as entropic terms. Hence, when 

equilibrium conditions are considered (Complex = protein + Ligand, in solvent), in addition to 

the hydrogen bonding, hydrophobic, steric, internal strain, factors such as desolvation and 

entropic contributions (both rotational and traslational) are important and have to be into 

account. More detailed thermodynamics parameters determining protein-ligand binding is 

given in [42] 

 

Free energy calculations in virtual screening 

In context to virtual screening by molecular docking, techniques that are capable of correctly 

predicting the ligand conformation in the active site of the protein, and accurately ranking the 

final ligand conformer are necessary. In general, free energy calculations in virtual screening 

by docking have two major challenges. Firstly, it should be able to effectively discriminate 

the best conformation from the pool of conformations of the same system (because docking 

produces many docking poses for the same ligand), and secondly, it should correctly predict 

the relative stability of different complexes (because in virtual screening, many ligands are 

screened). While insight in the relative stability of different complexes is sufficient in the 

initial screening experiments, but estimation of absolute free energy is essential in the later 

stages of docking, particularly in lead refinement, where only a few selected complexes are 
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considered. Different molecular dynamics based calculations can be carried out on the docked 

complexes to estimate the correct binding free energies as well as accurate ranking [121, 122, 

123, 124].  

Thermodynamic integration and free energy perturbation methods are the most stringent 

methods available for calculating the binding free energies. However, the requirement of 

exhaustive sampling to reach convergence and the computational expensive nature of these 

methods makes them unsuitable for large-scale virtual screening purposes [125, 126].  

Molecular dynamics based calculations such as Molecular Mechanics- Poisson Bolzmann 

surface area calculations (MM-PBSA) [127] and Linear Interaction Energy (LIE) calculations 

[128, 129, 130, 131] provide relatively good binding free energies in reasonable time and at 

moderate cost. This enables these techniques suitable for virtual screening experiments. The 

MM-PBSA method is exclusively utilized in the current thesis, and is described in detail in 

chapter 5.  

2.5 Combination of docking and molecular dynamics methods 

The need to combine docking and molecular dynamics methods stems from the underlying 

weakness and strengths of both the methods. While strengths of molecular docking include, 

robust screening of chemical compounds and fast conformational sampling, weaknesses 

include ignorance of solvent parameters and protein flexibility. In contrast to docking, 

molecular dynamics methods strengths include, protein flexibility and inclusion of solvent 

parameters and the weakness include longer simulations times and significant CPU resources 

[49]. Hence, by combining these two techniques, by using molecular docking to initially 

screen a database of compounds robustly and then treat the few selected complexes by 

molecular dynamics methods to include protein flexibility and calculation of accurate free 

energies is a valid approach and has a great potential to find new lead compounds. 

Success stories by combining docking and molecular dynamics methods 

The two step protocol, molecular docking for initial screening and in the next step applying 

molecular dynamics simulations on the selected protein-ligand complexes appears to be a 

practical approach to address the structure based virtual screening problem. Some of the 

successful examples [49], where molecular dynamics simulations were utilized to optimize 

docking conformations, are: rationalizing the inhibitor specificity of CDK2 [132], 

discrimination of stable and unstable human acetylcholinesterase ligand conformations [133], 

discovery of novel inhibitors against ALR2 [134], and the generation of robust QSAR model 

from the final structures of steroid complexes [135]. Other studies include the origins of the 
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enantioselectivity of an antibody catalyzed Diels-Alder reaction [136], interaction modes of 

nimesulide and prostaglandin-endoperoxide synthase-2, [137] and optimization of the 

manually docked structures of several glucocorticoids within a model of the glucocorticoid 

receptor [135]. 

  

2.6 Summary 

In silico drug discovery activities gained remarkable significance in the past few years and are 

becoming inseparable from the experimental drug discovery activities. The role of rational 

methods either in accelerating or in enhancing drug development is immense, especially in 

terms of cost and time. This chapter summarizes state of the art on rational drug discovery 

methods currently employed in pharmaceutical industries and academic research area. Both, 

ligand-based and structure-based drug discovery methods are extensively used in identifying 

hits. Structure-based drug discovery methods work well, when structural information of 

receptor is available, particularly, when the receptor structure is available with a co-

crystallized ligand/substrate. 

Docking is the method of first choice for rapid in silico screening of large ligand databases for 

drug research, since it is based on a rational physical model and very fast. However, there is 

very often a compromise between speed and accuracy of the results (in terms of the actual 

binding mode as well as the calculated affinity values) concerning the best scoring docking 

solutions. Most probably, among the many number of possible conformations that a ligand 

may adopt within the binding site of the receptor, a quite good one will be generated indeed, 

but not necessarily ranked among the first few predictions due to the approximate nature of 

the scoring function.  

Even though qualitative or quantitative consensus scoring addresses the problem of false 

positives and false negatives to a little extent, addressing solvation parameters and protein 

flexibility are still major issues by the docking methods. Thus, it seems reasonable to subject 

the docking predictions to force field calculations, which provide more detailed energy and 

charge models, and thus, allows us to focus only on the most reasonable predictions. Once the 

stage of force field calculations is set, further structure optimization becomes feasible for the 

ligand, as well as for the receptor. Finally, the free energy between ligand and receptor is 

computed.  

This chapter highlights the need of combining docking with molecular dynamics and potential 

advantages of this combination. The current thesis proposes a hierarchical workflow, which 
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starts with robust screening of chemical compounds by molecular docking and post process 

the selected complexes by means of complex molecular dynamics based simulations that 

enable protein flexibility and accurate free energy calculations. However, screening large 

databases by molecular docking and further optimizing the protein-ligand complexes by 

molecular dynamics is computationally expensive, thus requires significant computational 

resources. To overcome this problem, computational Grids are utilized and are described 

more in detail in chapter 3.  
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3 Chapter 3. Deployment of molecular docking and molecular dynamics 

on EGEE Grid infrastructure 

This chapter introduces the modern concept of distributed computing termed as Grid 

computing. The main aim of this chapter is to introduce Grid computing, and to discuss its 

impact and significance in modern day drug discovery process. Later in this chapter, in 

context of the WISDOM project, the deployment of molecular docking and molecular 

dynamics applications on EGEE Grid infrastructure is discussed
1
. 

3.1 Introduction 

Several definitions of Grid  

Ian Foster and Carl Kesselman, pioneers of the Grid, proposed a definition in 1998: ―A 

computational Grid is a hardware and software infrastructure that provides dependable, 

consistent, pervasive, and inexpensive access to high-end computational capabilities‖ [50].  

In 2000, with Steve Tuecke, they added to the original statement; Grid computing is 

concerned ―with coordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organizations‖ [138]. Then in 2002, Ian Foster modified his definition 

again, arguing: the Grid is ―a system that coordinates resources that are not subject to 

centralized control, uses standard, open, general purpose protocols and interfaces, delivers 

non-trivial qualities of service‖ [139]. The computing Grid name comes from the well-known 

analogy with an electrical power Grid [140]. The computing power would be delivered just 

like electricity from an outlet, without knowing where the power came from or its complexity 

and reliability. An obvious similarity between computational and electrical Grids is that both 

aggregate heterogeneous power sources (thermal, hydro, or nuclear power and workstations, 

clusters or supercomputers) [140] 

3.1.1 Concept of e-Science 

e-Science (Enhanced-Science) term is described as the large-scale, distributed and 

collaborative science that is enabled by the advances in the Internet technology. Currently, 

scientific research is more and more carried out by communities of researchers that span 

disciplines, laboratories, organizations and national boundaries. The main goals of e-Science 

                                                
1 This chapter is based on Kasam V, Salzemann et al. Large-scale Deployment of Molecular Docking 

Application on Computational Grid infrastructures for Combating Malaria. ccGrid, pp. 691-700,  Seventh IEEE 

International Symposium on Cluster Computing and the Grid (CCGrid '07),  2007 
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are to support these interdisciplinary research collaborations – including those cross-

institutional boundaries. Information and computing technologies play a vital role to carry out 

such interdisciplinary, large-scale collaborative science. Though World Wide Web provides 

us the information on the web pages wherever on the Internet, mere accessing of web content 

in most cases is not enough for performing effective scientific research. A more sophisticated 

and secured infrastructure is needed to enable e-Science, which allows the scientists to access 

not only the content on the web but also the underlying machinery such as computing 

resources and/or directly the databases that are storing the information. 

Computational Grids are a part of e-Science infrastructure that provides computer resources to 

carryout various types of research. Grids are supposed to handle several types of applications 

and data in a secured and reliable way, in this sense they are ideal workbenches for e-Science.  

3.1.2 Computational Grid 

Computational Grids are built by the gathering and sharing of geographically distributed 

computing resources, typically but not necessarily clusters of computers [50]. The main 

motivation behind the development of a computational Grid is to use the freely available and 

unused computing resources, either belonging to an organization or personal computers for 

scientific research. The general concept of Grid is building a unique fault-tolerant system 

whose resources are accessible by several users (organized in virtual organizations, VO (the 

concept of VO is explained in detail further in this chapter)) all at once, in a transparent way. 

Computational Grids gather as many resources as possible, so that at one point, the Grid itself 

is enough to satisfy the user’s needs in terms of computing power, storage space, and further 

guarantee the security and confidentiality of data through secured authentication, 

authorization and replication. In the ideal Grid infrastructure, the physical locations of 

resources do not matter anymore as the applications and data have logical references to these 

redundant distributed locations. This differs from the Internet where the user has to choose to 

which machine he wants to connect and which information he wants to retrieve out of the 

tremendous amount of data available [141].  In this context, single points of failure do not 

exist anymore, and no part of the Grid is truly critical enough to threaten the availability and 

reliability of resources. Of course, these features can be achieved through several layers of 

software and services termed as middleware.  
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3.1.2.1 Grid architecture 

Basic Grid architecture consists of four layers: Application layer, Middleware layer, Resource 

layer and Network layer. The Grid architecture demonstrated in Figure 12 is just a general 

model. 

 

 

Figure 12: General Grid architecture [142] 

The Figure demonstrates that there are there are four layers in Grid computing in general, Top layer 
constitutes Application layer, followed by middleware later and finally the resource layer and network 

layer connecting resources.  

 

The application layer of the Grid describes different types of the applications that can be 

deployed on the Grids, the applications range from science, engineering, simulations, particle 

physics etc, and portals. These applications are usually developed using Grid-enabled 

programming environment and interfaces, and the services provided by the user-level 

middleware. The resource layer consists of the main computing resources (CPU), these 

resources are geographically distributed across various organizations and mainly controlled 

by the local resource managers. Network layer is the one that connects these geographically 
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distributed resources (using Internet protocols). The layer between the resource and 

applications (the user) is termed as middleware. Grid middleware usually can be divided into 

two layers: user-level middleware and the core middle ware. . The core middleware layer 

offers services to abstract the complexity and the heterogeneity of the resource level. The 

user-level middleware layer provides higher-level abstractions and services. Grid middleware 

is usually infrastructure specific. It takes care of the distribution of the jobs, security issues, 

and status checking of the jobs on the Grid. In summary, Grid middleware is the key 

technology of the Grid computing. In context to the current thesis, EGEE infrastructure is 

utilized, which rely on gLite middleware. More details about the gLite middleware, its 

components, protocols, and services are provided later in this chapter. 

3.1.2.2 Grid security and Virtual organizations 

Security is an important aspect that concerns Grid. As resources in the Grid are provided and 

accessed by geographically distributed organizations and individuals. The deployment of 

applications such as drug discovery application where data security and integrity are most 

important, concerns Grid Computing. For example in a drug discovery application, the 

molecule data within chemical databases and experimentation results are often sensitive, and 

need to be protected. Effective protection of intellectual properties and sensitive information 

requires, for instance, authentication of users from different institutions, mechanisms for 

management of user accounts and privileges and support for resource owners to implement 

and enforce access control policies [143].  

The Grid users are typically organized in virtual organizations. According to Ian Foster [138], 

a virtual organisation (VO) is defined as "an infrastructure that enables flexible, secure, 

coordinated resource sharing among dynamic collections of individuals, institutions and 

resources‖. A VO is a Grid-wide identification and authorization unit representing a 

community of users sharing Grid resources. The main aim of members in a VO is sharing 

data, software and computational capabilities securely between the users of the organization. 

For instance, the biomedical virtual organization, which provide computational resources to 

perform biomedical research at large-scale). The resources in the virtual organization can be 

accessed only by the authorized users, and prevents the unauthorized users from accessing the 

Grid resources and computational capabilities.  

To be able to join a virtual organization, and access the Grid, users must own a personal 

certificate, issued by a recognized certification authority. There is a consortium, EUGridPMA 

[144], which gathers all the recognized authorities. One should ask his certification authority 
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for a certificate, and then register into a virtual organization. Once registered, the owner of a 

certificate, the user can access to the Grid through the user interface, then the user has access 

to a set of commands and APIs to interact with the Grid [145, 146, 143]. 

Though virtual organizations provide an overall security in restricting unregistered users from 

accessing the Grid resources; secured access to resources even within all the members of VO 

is needed.  

In the Grid community, X.509 security specifications are usually implemented to handle 

security issues like authenticating users and servers by promising secure communication over 

the networks. Grid certificates based on the X.509 (Public/Private key) standards are used for 

the users and services (i.e. hosts) due to the mutual authentication process imposed by the 

Grid Security Infrastructure (GSI) [147]. These certificates are issued, and signed by trusted 

certificate authorities (CA). Authentication is typically done only once per connection 

between a client and a server. 

3.1.3 Classification of Grids 

Based on the hardware resource, Grids can be categorized into mainly two types: Desktop 

Grid and Cluster Grid. The sharing of personal computers that are connected by the Internet 

forms desktop Grids (inspired from peer-to-peer). As various PC users voluntarily donate the 

computing resources in the Desktop Grid, they are also termed as volunteer Grids. Some 

famous examples of volunteer Grid projects are Africa@home [148] and Seti@home [149]. 

On the other hand, Cluster Grids are formed by sharing of dedicated computing resources that 

are distributed across several organizations in the world. The EGEE grid infrastructure [150] 

is a well-known example that falls in the cluster Grid category.  

A. Desktop Grids or Volunteer Grids 

Low CPU usage in the desktop PCs’ around the world has been reported in the last decade 

[151, 152, 153, 154]. Many of these cheap PCs’ are connected to the Internet. As a result, 

several initiatives were planned to take benefit of this available computing power. A desktop 

Grid [155] is defined here as the sharing of idle desktop workstations or PCs, cycles to solve 

scientific problems. When the computing resources are freely available from the public 

through the Internet, the desktop grid is called a volunteer grid [156, 157]. SETI@home 

initiative [149] is the well-known example in volunteer computing, which utilizes BOINC 

platform [158] ((Berkeley Open Infrastructure for Network Computing). Millions of 

participants processed a database of large pulsar signals in a search for extraterrestrial 

intelligence. A central server to PCs distributes radio data signals through the Internet, where 
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a screensaver program to assess the presence of a non-random signal that runs while the 

computer would otherwise be idle analyzes them. The notion of virtual organizations [50] and 

virtual enterprises [159] emerged from this success. The understanding that 10,000 desktop 

PCs with an average performance of 500 megaflops and appropriate software are equivalent 

to a 5 teraflops supercomputer developed a computational economy for sharing and 

aggregating resources to solve problems [154]. Consequently, there are many different 

desktop grid initiatives in life science [154].   

Desktop Grids are highly used by different projects, but they are mainly used for 

computationally intensive projects. In contrast to desktop Grids, cluster Grids offers a larger 

variety of services. 

B. Cluster Grids 

A cluster is a set of computing units physically gathered in the same place and coordinated to 

improve computer capacity and storage. Clusters can have different sizes and can be 

composed of heterogeneous hardware. Two of the advantages of this approach are the 

scalability and the cost: a cluster can grow simply by adding new cheap PCs to it [143].   

A cluster grid [160] is defined here as the sharing of geographically distributed clusters to 

solve problems. They allow selection and aggregation of distributed resources, such as 

instruments across multiple organizations. This enables exploration of large problems with 

huge data sets, but also small but daily needs. High-level services for complex applications 

can also be built on cluster grid [161]. They can be the infrastructure for data and knowledge 

grids, supporting collaborations and expertise. A cluster grid may interconnect hundreds of 

clusters supporting each day thousands of jobs.  Examples of such Grids are EGEE [150], 

EELA [162], EUChinaGrid [163]. The European project, EGEE is the largest production 

cluster grid in the world and is adapted for computing power and data intensive applications.  

 

Computational Grids can be classified in many ways. The more classical categorization of 

Grids is based on the application development or services provided by Grid. Based on this, 

Grids are classified into:  

A. Knowledge Grids 

Knowledge Grid is defined as setting that connects data and information in a transparent way 

and provides knowledge to the end users. Knowledge can be defined as the sum of all types of 

data and information within the scope of interest and is composed of relevant databases, 

information sources, document/knowledge bases, metadata, and a knowledge map. These 
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Grids are concerned with the way that knowledge is acquired, used, retrieved, published, and 

maintained to assist users in achieving their particular goals and objectives. In context to 

pharmaceutical research, knowledge Grid should support virtual laboratories (e.g. myGrid 

[164], Virtual lab [165, 161]).   

B. Data Grids 

Establishing secure access to distributed datasets and their management is the main aim of 

these Grids. To provide a scalable storage and access to the data sets, they may be replicated, 

catalogued, and even different datasets stored in different locations to create an illusion of 

mass storage [139]. The processing of datasets is carried out using computational Grid 

services and such a combination is commonly called data Grids. Sample applications that 

need such services are management, sharing, and processing of large datasets in high-energy 

physics experiments and accessing distributed chemical databases for drug design.  

C. Computing Grids 

Computing Grids are also termed as production Grids. They provide the resources to perform 

computationally intensive tasks in a transparent way by using automated job submission and 

distributed facility. Examples of computing Grids are EGEE [150], NASA IPG [166], the 

World Wide Grid [167], and the NSF TeraGrid [168]. The range of applications includes 

high-energy physics, particle physics, chemical engineering, and biomedical applications such 

as, homology modeling, molecular docking and molecular dynamics simulations.  

3.1.4 Service oriented architecture and web services 

Accessibility of the applications is an important issue in Grid computing. A need has emerged 

for communities to have standards and a standards-based architecture that would facilitate 

better interoperability among various grid middleware systems and Grid-enabled applications 

[169]. The Open Grid Services Architecture (OGSA) [170, 171] based on Web services 

Resource Framework [172] aims at unifying web and grid service frameworks. A Web service 

is a software system designed to allow inter-computer interaction over a network. Web 

services allow grid developers to take advantage of standard message formats and 

communications mechanisms for communicating between heterogeneous components and 

architectures. Recent developments in the Grid computing include wrapping the applications 

in Web service, this enable the user to conveniently access the applications on Grid from 

anywhere, if connected to the Internet [142]. The initial idea behind Web services is to enable 

the World Wide Web to become more and more the support for real applications and a mean 

for communication between them. The Web services specifications recommended by the 



 Chapter 3. Deployment of molecular docking and molecular dynamics on EGEE Grid infrastructure 

 

50 

 

World Wide Web Consortium (W3C) propose a set of standards and protocols allowing 

interaction between distant machines over a network. These interactions are made possible 

through the use of standardized interfaces and protocols, which describes basically what  are 

the available operations in a service, what are the messages exchanged (requests and 

responses), and where the service is physically located on the network and through which 

support. This interface is written in WSDL (Web Service Description Language) [173]. The 

WSDL specification itself leverages XML standards such as Simple Object Access Protocol 

(SOAP) for message exchange and XML Schemas for complex data structures.  

The main advantages of Web services are [174]: 

 They offer great interoperability (mainly because of standardised specifications). 

 They enable the communication of processes and transfers of data independently of 

the programming language of the underlying applications. Therefore, by extension, 

virtually almost any piece of software can be exposed as a Web service. 

 They can be considered as firewall-friendly, because they are based on standard 

Internet protocols.  

The main weaknesses of Web services are: 

 They are not adapted for transferring huge quantities of data. 

 The performance can be worse with respect to other Remote Procedure Call (RPC) 

based communication methods due to the overhead of sending XML messages 

Beside the above mentioned advantages, one prominent use of Web services in context to 

Grid is ―virtualizing access to scientific applications‖, which in other words mean simplifying 

the Grid usage by introducing the Web service between the user and Grid. This hides the 

complexity of the Grid (middleware, resources such as computers or super computers) and 

further provides an abstract interface to a given scientific application to be deployed on the 

Grid. Given the significance of Web services usage in Grid computing, the paradigm is 

currently shifting from infrastructure development to the development of Grid services, 

protocols and interoperability. This paradigm shift ensures that services are no longer 

restricted to particular Grid middleware and therefore, support multi-system, multi-language 

open architectures. Web services technologies have become standard for accessing 

applications on the Grid. Web services are usually used to build service-oriented architectures 

(SOA), as they are language and platform independent, and further enable access via 

multitude of interfaces. More details about the interoperability and service-oriented 

architectures are given in [175]. Some of the well-known Web service based life science 
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applications on Grid are NPS@ [176, 177], which provide bioinformatics services such as 

protein sequence analysis, The DockingServer [178], which provides commercial virtual 

screening services, CHARMMing (CHARMM INterface and Graphics) [179], which provides 

molecular dynamics simulation services. More details about the web service based life 

applications can be found in our recent review [142].  

3.1.4.1 Workflow technology 

Workflow technology is another feature adopted by Grid community [142]. Diverse types of 

available resources such as databases, software applications, computing resources, services 

(Web service or Grid service) are integrated in a generic mechanism termed as ―workflow 

technology‖. These workflow systems make possible the information exchange within 

different fields of life sciences, such as molecular biology, clinical chemistry, and 

computational life sciences. The entire idea behind workflow technology is to enable the 

researchers to develop their own protocols for scientific analysis by incorporating and 

accessing diverse distributed tools and data resources running on different hardware 

platforms, including web services and Grid computing [142]. Several applications of 

workflow technologies include drug discovery, genomics, large-scale gene expression 

analysis, proteomics, and system biology. The main advantage of using workflow technology 

is, it allows the life science researchers to perform the integration of different algorithms and 

tools without requiring any programming skills [180].   

There are many workflow systems currently available; these include both commercial and 

open source systems. Scitegic Pipeline Pilot from Accelry’s [181] and the InforSense platform 

[182] are the main commercial workflow system providers in the area of life sciences. Both of 

them support wide of operations related to cheminformatics, bioinformatics, and 

computational chemistry and further provides links to external databases and applications. 

Other workflow systems include KNIME [183] and TAVERNA [184]. While KNIME is 

freely available for non-profit organizations and for-profit for commercial organizations, 

TAVERNA, which is a part of 
My

Grid project [164] provides complete open source services. 

TAVERNA [184] is closely integrated with Grid systems i.e., Condor [185] and its extensible 

architecture help easy integration of third party software tools. 

So far, this chapter has introduced the concept of e-Science and Grid computing. In context to 

the Grid computing, the general Grid architecture, organization of the resources in the Grid 

i.e., virtual organizations, and Grid security were discussed. Relatively modern concepts in 

Grid computing: Web services and workflow systems, and their significance were also 



 Chapter 3. Deployment of molecular docking and molecular dynamics on EGEE Grid infrastructure 

 

52 

 

discussed in detail. In context to the current thesis, the following sections briefly discuss the 

importance of Grid computing in life science research with a special focus on Grids in virtual 

screening of chemical compounds. 

3.2 Computational Grids in life sciences 

Pharmaceutical industries have traditionally encouraged and adopted new technologies to 

enhance and accelerate the drug discovery process. Example of such adoption is, inclusion of 

rational drug discovery methods. The impact of rational methods, especially, structure based 

drug discovery (SBDD) methods, such as molecular docking and molecular dynamics on the 

drug discovery process is already demonstrated in chapter 2. SBDD can influence the process 

of new drug finding by reducing costs and time, but SBDD as a standalone technique cannot 

fetch new drugs into market. Drug discovery is synergy of several disciplines of biology, 

chemistry, molecular modelling, computational chemistry and computer science. In most 

pharmaceutical R&D environments, there is large amount of data and information generated 

by these various fields of science in search of drugs. For a drug discovery process to be 

successful, these data has to stored, properly managed, shared and analyzed.  The main 

requirement at this stage is an IT infrastructure, which can manage tools that in turn can 

respond quickly to changing needs and, more importantly, enable rather than hamper the 

ability to innovate. Grid infrastructures have a lot of potential at this stage; they have the 

ability to manage, store, share and process huge volumes of data.   

3.2.1 Biomedical applications on computational Grids 

Biomedical applications that are utilizing distributed computing and Grid computing belong 

to relatively new area of research that was unveiled in the past 10 years, and are currently 

fully evolving. Table 4 gives an overview on current and recent biomedical projects using 

computational Grids. Example projects for each step in the drug discovery process (from 

discovery phase to Clinical trials) where Grid computing played a significant role are 

described in [142].  Even though computational Grids are capable of executing many types of 

life science applications, top area where computational Grids can in fact deliver value for 

research and development of new drugs in the pharmaceutical industry and academic research 

is, drug discovery. Computational Grids affect various stages of discovery process. These 

applications range from target identification to lead identification and validation, and clinical 

data management and sharing. In context to the current thesis, only lead identification with a 

special focus on Grid-enabled virtual screening is discussed.  
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Project Title Website Keywords 

@neurIST http://www.aneurist.org Integrated biomedical informatics; individualized patient risk 

assessment 

BIG GRID http://www.nikhef.nl/Grid/BIG the Dutch e-Science Grid 

BioSapiens http://www.biosapiens.info/ Integrated Genome Annotation 

BRIDGE http://www.bridge-Grid.eu/ Drug design scenario: virtual screening by several molecular 

docking tools 

caBIG https://cabig.nci.nih.gov/ The cancer Biomedical Informatics Grid (caBIG) connects 

individuals and institutions to enable the sharing of data and 

tools for worldwide cancer research. 

CancerGrid (UK) http://www.cancerGrid.org Anti-cancer drug design 

Cardioworkbench http://www.cardioworkbench.eu/ Drug Design for Cardiovascular Diseases: Integration of in 

silico and in Vitro Analyses 

D2OL http://www.d2ol.com/ The Drug Design and Optimization Lab (D2OL)™ works to 

discover drug candidates against Anthrax, Smallpox, Ebola, 
SARS and other potentially devastating infectious diseases. 

DataMiningGrid http://www.dataminingGrid.org/ Data mining applications on standards compliant Grid 

service infrastructures; Grid-assisted re-engineering of gene 

regulatory networks and analysis of proteins using 

computational simulations 

DEISA http://www.deisa.eu/ Bio-molecular simulations, molecular docking 

EMBRACE http://www.embraceGrid.info Integration of major databases and software tools in 

bioinformatics 

EUMed-Grid http://www.eumedGrid.org/ Empowering eScience across the Mediterranean, several 

bioinformatic tools 

EuroGrid http://www.euroGrid.org/ Bio Grid: Biomolecular simulations, structural analysis 

GEMSS http://www.it.neclab.eu/gemss/ Grid enabled medical simulation services 

GridLab http://www.Gridlab.org Data management and visualization 

OpenMolGRID http://www.openmolGrid.org/ Speed up drug-design, ADME filtering, QSAR 

SIMDAT  http://www.simdat.org Pharma activity with data integration; distributed workflow 
tasks 

ViroLab http://www.virolab.org/ Individualized HIV treatment optimization; molecular 

dynamics 

World Community 

Grid 

http://www.worldcommunity 

Grid.org/ 

public computing Grid, runs FIGHTAIDS@HOME and 

Discovering Dengue Drugs – Together. 

Table 4: List of recent and current biomedical applications utilizing computational Grids.  
These displayed Grid projects are in relevance to Biomedicine, especially drug discovery applications. 

 

http://www.aneurist.org/
http://www.nikhef.nl/Grid/BIG
http://www.cancergrid.org/
http://www.embracegrid.info/
http://www.gridlab.org/
http://www.simdat.org/
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Lead Identification  

The significance of in silico compound screening is already discussed in chapter 2. Large 

database of chemical compounds are routinely screened in pharmaceutical industry for finding 

novel chemotypes. Screening millions of chemical compounds in the computer brings along a 

high storage complexity, which means a computational data challenge on its own. Screening 

each compound, depending on structural complexity, can take from a few minutes to hours on 

a standard PC, which means screening all compounds in a large virtual compound library, can 

take years of computation time on a single machine. This problem can be addressed by 

distributing the workloads on a large computational Grid of thousands of computers, thus, 

reducing the time to screen the large virtual compound libraries to days. Figure 13 illustrates 

the need of using Grid computing while performing large-scale virtual screening experiment. 

Some recent successful examples of virtual screening on Grids are Screensaver Lifesaver 

project [54], FIGHTAIDS@HOME [148], and Discovering Dengue Drugs –together [186].  

 

Figure 13 : Grid enabled virtual screening. 

The Figure demonstrates that there are currently 1000 protein crystal structures and millions of 
chemical compounds available in databases. This enables virtual screening (docking and molecular 

dynamics), but screening all these compounds on machine is theoretically not feasible. Computational 

Grids provide an opportunity to deal with such CPU intensive applications. 
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Screensaver Lifesaver project [54] is one the first and most successful drug discovery 

application, where they used large-scale virtual screening approach to find novel inhibitors 

against several targets implicated mainly in cancer, and in anthrax and smallpox diseases. 

This project was inspired by SETI@HOME [149] (Search for Extraterrestrial Intelligence, 

described in Section 3.1.3). They used computing power donated by several volunteers all 

around the world (volunteer Grid computing), and screened 3.5 billion chemical compounds 

using cheminformatics tools THINK and LigandFit. Up to 10% of the predicted compounds 

were experimentally active in one specific case [187].  

FIGHTAIDS@HOME [148], which used volunteer Grids and Discovering Dengue Drugs –

together [186], which used cluster Grids are the some of the other Grid projects, which used 

structure-based drug discovery approaches to find inhibitors against AIDS and Dengue fever 

respectively. 

Enterprise Grid 

The usage of Computational Grids is not restricted to academic institutions or governmental 

organizations, they are successfully used in pharmaceutical industries; such a Grid is termed 

as enterprise Grid. This type of Grid is achieved by mutualisation of computing resources in 

an organization. Many pharmaceutical companies, such as Bristol-Myers Squibb and 

Novartis, are using idle time of thousands of desktop computers. They acquire teraflops of 

cheap computing power for their drug discovery research through enterprise Grid technology. 

Example of such Grid is, computational Grid at Novartis Pharmaceuticals [188] that aims at 

finding novel anti-cancer agents [189]. United devices technology [53] is utilized to link 

2,700 company PCs (Pentium 4 processor platform) to form a high performance-computing 

infrastructure. This type of Grid is accomplished by using the untapped processors when the 

workers in the company left their computers unused and/or when they are in meetings or left 

to home after end of the working day. Enterprise Grid computing technology significantly 

reduces the necessity to buy new computers. Novartis considerably enhanced their computing 

power by using enterprise Grid technology without adding any new computers to the existing 

ones, and performed a high-throughput docking experiment on 400,000 chemical compounds 

against human CK2 by using docking software, DOCK [190]. One very potent inhibitor that 

was ever reported before was discovered after post-processing the docking results. 

Computational Grid at Novartis described here is a typical example of Grid-enabled virtual 

screening application in pharmaceutical industry [189].  
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In summary, computational Grids are increasingly used in both academic and industrial 

settings to accelerate the drug discovery process that too at a reduced cost. 

3.3 WISDOM – Wide In silico Docking on Malaria 

In context to the current thesis, WISDOM project is described with a special focus on how 

molecular docking and molecular dynamics applications were deployed on EGEE Grid 

infrastructure. The following sections from now on will describe the EGEE Grid 

infrastructure, WISDOM production environment, the deployment of large-scale docking 

against four different target proteins implicated in malaria, and finally the deployment of 

molecular dynamics simulations against multiple target proteins implicated in malaria. The 

biological and molecular modeling aspects of WISDOM project are discussed in chapter 4, 5 

and chapter 6.  

3.3.1 EGEE 

EGEE is a production Grid project that aims at building a Grid infrastructure for e-Science 

[150]. It was initiated by the needs of CERN [191] to process data coming from the largest 

machine in the world, the Large Hadron Collider (LHC) [192]. The project also developed its 

own middleware, gLite [193] that offers services to build a Grid. EGEE is a large Grid 

infrastructure built up from dedicated resources around the world, institutes, computing 

centers, laboratories etc. The resources range from simple desktop computers to clusters of 

computers. Currently EGEE is now the biggest Grid infrastructure in the world with more 

than 41000 CPUs and more than 10 Petabytes of storage. There are many services to keep the 

access transparent for the user (job submission and monitoring management, data 

management, information system etc.). The Grid is available to scientists 24 hours-a-day, 7 

days a week; its use is thus flexible and the experiments can be easily reproduced [145, 194, 

143]. The huge number of available resources on EGEE allows too many users to work 

together and to manage medium to large deployments; what would be impossible otherwise 

[145, 194, 143]. 

Services  

Several protocols and services have been developed for gLite, a lightweight middleware for 

Grid Computing. The security mechanisms used by gLite are based on Grid Security 

Infrastructure (GSI). All users are identified by certificates, and Grid map files created in 

conjunction with the information registered on the VOMS servers [195] (Virtual Organization 

Membership Service), provide the authorization part, gLite is a middleware specifically 
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developed for (Scientific) Linux (until 2007). Thus it is currently rather time consuming to 

deploy it under a different operating system but porting efforts to other operating systems are 

under way. The Grid system interoperates with the underlying batch queues. Main services 

and elements of the EGEE middleware are listed below: 

Resource Broker:  The resource broker is the main service for research selection and job 

submission. It handles jobs from their submissions by users to the retrieval of the results. It is 

also a scheduler, doing match making to send the job to the right resources and monitoring the 

job as it executes on the worker node. It allows for running applications on remote computing 

resources. 

Computing Element: These services handle job execution and provide information on job 

characteristics and status. They actually host the batch server, all the worker nodes behind 

being the batch clients. 

Storage Element: It is a service that allows virtualizing many types of storage; single or array 

disks, tapes servers, etc. Secure and reliable file transfers are mainly performed with GridFTP.  

Single Catalogue or LFC (LCG File Catalogue): This central service registers files, 

replicas, and logical names. It has a unique catalogue to manage replicas and files. In the 

Grid, a Grid Unique Identifier (GUID) identifies each file, which is a unique identifier that 

links to a unique logical file name. One GUID can have several replicas, stored all over the 

Grid. Each replica is identified by a unique physical name. The catalogue supports VOMS 

and GSI for authentication and authorization. 

Information System: The information system keeps track of both user related as well as Grid 

application specific metadata to discover resources and information about the resources. 

Grid security and accounting: Authentication, authorization and auditing (AAA) is 

supported by gLite using the Grid Security Infrastructure (GSI (Public/Private keys)). 

User Interface: This is the entry point of the Grid for the users. It is a set of command-line 

tools, GUIs, APIs to allow access to the main services of the Grid: Workload Management 

System and Data Management. User interface does the following operations:  

a. Get information on the available resources 

b. Submit a job and/or cancel a job 

c. Get the status of the submitted jobs 

d. Retrieve job results 

e. Get information about the job (its submission and its execution) 
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f. Store files on the storage elements and replicate them, copy or delete files from the 

Grid. 

 

Grid Infrastructures utilized in WISDOM project 

Along with the EGEE Grid, the molecular docking and molecular dynamics deployments 

were achieved on several Grid infrastructures: AuverGrid [196], EELA [162], EUChinaGrid 

[163] and EUMedGrid [197]. All these infrastructures are actually using the same 

middleware, gLite. EGEE is the main infrastructure offering the largest resources; they are all 

interconnected with EGEE, in the sense that all of these Grids share some of their resources 

with EGEE. In the case of AuverGrid, it is even more evident as all the resources available 

through the AuverGrid Virtual Organization (VO) are also shared with several EGEE VOs.  

 

3.3.2 WISDOM production environment for molecular docking and Molecular 

Dynamics 

A large-scale deployment requires the development of an environment for job submission and 

output data collection. A number of issues need to be addressed to achieve significant 

acceleration from the Grid deployment. Grid performances are affected by the amount of data 

moved around at job submission. Therefore, the files providing the 3D structure of targets and 

compounds should preferably be stored on Grid storage elements in preparation for the large-

scale deployment. The rate at which jobs are submitted to the Grid resource brokers must be 

carefully monitored in order to avoid their overload. The job submission scheme must take 

into account, this present limitation of the EGEE brokering system [143, 145]. 

Grid submission process introduces significant delays for instance at the level of resource 

brokering. The jobs submitted to the Grid computing nodes must be sufficiently long in order 

to reduce the impact of this middleware overhead. 

Specific issues related to WISDOM deployment  

A molecular docking and molecular dynamics job requires input files (target protein and 

chemical compound file), molecular docking/molecular dynamics software (Amber), and 

executable script to perform the desired experiment. A number of issues need to be addressed 

to achieve significant acceleration from the Grid deployment. Previous experience within our 

group with LCG middleware indicated potential bottlenecks [143]: 

- Reduction of input output operations: The amount of data moved around at job 

submission affects the Grid performances. Thus, input-output operations play important 
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role in Grid, hence, all the input required for either docking or molecular dynamics stored 

once on the storage element of the Grid and are retrieved when ever required.  

- Over load on Resource broker: As the resource broker is the key element in distributing 

the jobs, care should be taken to avoid over loading. Over loading of resource broker may 

lead failure of all jobs passing through a particular resource broker.  

- Long jobs: Grid submission process introduces significant delays for instance at the level 

of resource brokering. The jobs submitted to the Grid computing nodes must be 

sufficiently long in order to reduce the impact of this middleware overhead. 

- Use of licensed software requires designing a strategy to distribute licenses on the Grid. 

Description of the WISDOM production environment 

WISDOM environment has been used two times in previous large-scale experiments, 

WISDOM-I [145] (against the plasmepsin family of proteins) in summer 2005 and a second 

deployment against avian flu in the spring 2006 [146]. Nicolas Jacq and Jean Salzemann at 

IN2P3-CNRS, France, developed the WISDOM production environment. Since its first 

deployment, the WISDOM environment keeps evolving in order to make it more users 

friendly, and easier to use by non-Grid experts. Jean Salzemann and I together performed the 

molecular docking deployment, which is described in the following sections 

The main objective was also to improve the fault-tolerance of the system, in implementing, 

for instance, a persistent environment, that can be stopped and restarted at any time without 

risk of losing significant information. This proved to be also very useful as it enables the 

whole maintenance of the scripts and code, and improve the interactivity with the user. The 

user can also manage jobs finely, for instance force the cancellation and resubmission of a 

scheduled job. Along with this, we tried to minimize the cost of the environment in terms of 

disk space and CPU consumption for the user interface. Most of the job files are now 

generated dynamically: this allows the user as well to modify on the fly the configuration of 

the resource brokers and the jobs requirements. Through this, the user is sure that the next 

submissions will consider these modifications. Figure 14 demonstrates the overall architecture 

of the environment.  

The user is interacting with the system through the two main scripts (widom_submit and 

WISDOM_status) deployed on the User Interface. These scripts will automatically take care 

of job files generation, submission, status follow-up and eventually resubmission. The jobs 

are submitted directly to the Grid Workload Management System (WMS), and are executed 

on the Grid computing elements and worker nodes (CEs and WNs). As soon as it is running, a 
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job transfers all the files stored on the Storage Elements (SEs) via the Data Management 

System of the Grid (DMS) with the GridFTP protocol. During the job lifetime the status is 

retrieved from the user interface, and statistics are generated and collected to a remote server, 

which hosts a relational database and outputs these statistics through a web site. Once the job 

is finished, the outputs are stored back on the Grid Storage Elements via the Data 

Management System and the useful docking results are inserted directly from the Grid to a 

relational database where they can later be more easily queried and analyzed. 

 

 

Figure 14: Schema of the WISDOM production environment utilized in WISDOM-II project. 

3.3.3 Large-scale docking by using WISDOM environment 

The deployment was performed on the previously listed infrastructures, and involved at least 

one manager to oversee the process on each of them. The three groups of targets (GST, 

Plasmodium vivax and falciparum DHFR) were docked against the entire ZINC database (4. 3 

millions of compounds). The chemical compound database was split into 2,422 chunks of 

1,800 compounds each. This is, because we wanted to have an approximated processing time 

ranging from 20 to 30 hours for each job (one docking process takes from 40s to 1min). The 
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compound subsets have been stored on the involved Grid infrastructures. They were basically 

copied on a storage element (SE), and registered on the Grid data management system 

(DMS), and were also replicated on several locations whenever possible to improve fault-

tolerance. We defined a WISDOM instance as, a target protein docked against the whole 

ZINC database, with a given parameter set. The Table 5 shows the various instances deployed 

on the different infrastructures.  

A total number of 32 instances were deployed, corresponding to an overall workload of 

77,504 jobs, and up to 140,000,000 docking operations. Of the total 32 instances, 29 were 

docked on EGEE, and 3 were run on AuverGrid, EELA and EuChinaGrid respectively.  

As shown is Figure 14, the environment included a FlexLm server that provide the floating 

licenses for the FlexX commercial software. The FlexX software binaries were stored like all 

the inputs on the Grid storage elements (SE), and were installed on the fly on each worker 

node (WN) at the beginning of the job. 

As the average duration of a job was around 20-30 hours, we submitted one instance per day, 

with a delay of 30 seconds between each submission. As one instance was submitted in about 

20-30 hours, the submission process was quite continuous during the first month of 

deployment. The jobs were submitted to 15 Resource Brokers (the components of the 

Workload Management System) in a round-robin order. At the end of a job, the results were 

stored on the Grid storage elements, and directly into a relational database. 

Distribution of the jobs 

The repartition of the jobs on the different Grid federations is shown in Figure 15. It is 

showing also the contribution by the AuverGrid, EUChinaGrid and EELA infrastructures. 

Each of these three infrastructures ran one single instance which corresponds to 3% of the 

total 32 instances. The job repartition is quite similar to the previous deployments, but here 

the United Kingdom and Ireland federation (UKI) played an even bigger part. For instance, 

one of the British sites offered for quite a long period of time more than 1,000 free CPUs, 

which is half of the average used CPUs. Such a number of free resources available explain 

the repartition of the jobs. It is indeed a good view of the repartition of available resources 

during the deployment. 
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Target structures Number of instances deployed 

GST (A chain) 4 on EGEE 

GST (B chain) 4 on EGEE 

2BL9 (P. vivax wild type DHFR) 3 on EGEE, 1 on EELA 

2BLC (P. vivax double mutant DHFR) 3 on EGEE, 1 on AuverGrid 

Dm_vivax (P. vivax DHFR 2BLC minimized) 4 on EGEE 

Wt_vivax (P. vivax   DHFR 2BL9 minimized) 4 on EGEE 

1J3K  (P. falciparum  Quadruple  mutant 

DHFR) 

4 on EGEE 

1J3I (P. falciparum Wild type DHFR) 3 on EGEE, 1 on EuChinaGrid 

Table 5: Instances deployed on the different infrastructures during the WISDOM-II data challenge 
One instance corresponds to one protein structure under one parameter condition and 4.3 million 

compounds. 

 

 

 

 

Figure 15: Distribution of jobs on the different Grid federations. 
This repartition graph reveals the number of Grid infrastructures, and the countries involved in the 

large-scale screening (WISDOM-II). UKI federation contributed resources significantly, i.e., 38% of 

the total computing resources. 
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3.3.3.1 Results 

The overall statistics of the deployment are shown in Table 6. The number of jobs mentioned 

in the first row of the Table 6, in fact corresponds to the number jobs that gave desired results. 

However, in reality, more jobs were actually submitted on the Grid, many of them were 

aborted and never really run on the Grid. When a job was done on the Grid, the WISDOM 

production environment checked the status file specifying the final result of the job: a job can 

be ―Done‖ in the point of view of the worker node, without having produced the wanted 

results (docking results).  In this specific case, the status of the job, which was stored on the 

Grid, was labelled as failed, and therefore, the environment has to resubmit the job again. 

 

Number of Jobs 77,504 

Total Number of completed dockings  156, 407,400 

Estimated duration on 1 CPU 413 years 

Duration of the experience 76 days 

Average throughput 78,400 dockings/hour 

Maximum number of loaded licences (concurrent running jobs) 5,000 

Number of used computing elements 98 

Average duration of a job 41 hours 

Average crunching factor 1,986 

Volume of output results 1,738 TB 

Estimated distribution efficiency 39% 

Estimated Grid success rate 49% 

Estimated success rate after output checking 37% 

Table 6: Overall statistics of the large-scale docking deployment (WISDOM-II). 

 

In some cases, the environment failed at retrieving the status from the Grid, and thus 

considered implicitly the job has failed, even if the job has succeeded. It explains why some 

jobs ran several times, and why the final completed docking number is bigger than the useful 

desired dockings.  

The average docking throughput is consistent with the crunching factor, which represents the 

average number of CPUs used simultaneously all along the data challenge. If we consider 

80,000 dockings per hour for 2,000 CPUs (the crunching factor), it means 40 dockings for one 

CPU per hour, which is consistent with the empiric observation of one docking process lasting 
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approximately 1 minute on a 3.06 MHz Intel Xeon processor. In fact, this is a little less than 

the estimation, because the actual duration of a single docking process on the Grid is a bit 

longer than the observed empiric duration (because of the overhead generated by the Grid). In 

the same logic, we can say that the instantaneous throughput peak would be obtained, when 

the max number of CPUs was used (i.e., 5,000), giving a throughput of approximately 

200,000 dockings per hour.  

The estimated Grid success rate is defined as the ratio between successful Grid jobs to that of 

the total of submitted jobs. The success rate after output checking will consider just the jobs 

that succeeded in producing the desired results, that’s why this score is lower. One can notice 

that these values are very small, but there are several explanations for this. In reality, at the 

beginning of the data challenge, the observed Grid success rate was about 80 to 90%, but it 

decreased constantly because of ―non-performing‖ sites and the resource broker (RB) failures, 

mainly due to overload. Sometimes the available disk space was decreasing on some 

resources brokers, up to a point where some of the job data could not reach the computing 

element. In other cases, the sites were simply producing a lot of aborted job for an 

undetermined reason. The resource brokers failed again to balance the jobs, reasonably on the 

Computing Elements, and some of them ended up with more than 500 jobs in queue. At this 

point, the site administrator had no other choice, than kill all these jobs, producing in a single 

row more than 500 aborted jobs. Essentially, because of the automatic resubmission, this 

information should not be considered as way to evaluate the efficiency of the Grid, because 

the automatic resubmission guaranteed a successful job, and the aborted jobs are not staying 

on the Grid for long time consuming useful resources, simply because the majority of them 

were aborted before running. Moreover, if on an extreme, we decided to send all the jobs on a 

single working computing element, we could have achieved a 100% Grid success rate, but we 

would never have achieved a crunching factor of almost 2,000. So one must keep in mind that 

the Grid is a very dynamic system, and errors can occur at the last minute. Moreover, we ran 

these deployments during a transition period between several middleware components: the 

LCG was moving to gLite, and the ldap Virtual Organization system was moving to VOMS 

Virtual Organization system, with VOMS proxy extensions that expire after 24 hours, which 

could as well lead to a premature abortion of the jobs.  

Issues related to docking deployment 

As pointed out in the previous section, the scheduling efficiency of the Grid is still a major 

issue. The resource broker is still the main bottleneck, and even if used at high number (>15), 
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it is always a source of trouble. Moreover, things get worse as load is increasing on the Grid. 

The « sink-hole » effects can result in sites overloading in a very short amount of time, and if 

not taken care immediately can lead to an impressive overhead caused by the long lasting 

waiting state of the jobs. One another reason was, that sometimes unreliable and incomplete 

information was provided by the information system, which does not publish the available 

slots and VO limitations, which would be mandatory to perform an efficient scheduling. 

Indeed, some sites may have several free CPUs announced, but if the maximum number of 

slots available is reached already, then the jobs submitted to this site will be queued. This 

deployment also shows that, it is not possible to do a naive blacklisting of the failing 

resources, for the simple fact that virtually all the Grid resources have produced aborted jobs. 

Another issue was the ability to store and treat the data in a relational database. The machine 

hosting the database must have good performances; else, the number of queries coming from 

the Grid may overload the database management system significantly. In this deployment, we 

used a MySQL database, and planned to put all the produced results in the same table, but 

finally, we had to split this database in several ones (one per target), because the MySQL 

system did not scale and would not have been able to withstand the total number of records. 

The same comment goes with the storing of the jobs status. At one point, the throughput of 

arriving status collected was such, that the script that was supposed to treat them was 

generating CPU overloads on the machine, which lead to serious slowdowns. 

All these elements clearly demonstrate that, even if the Grid can show very good result in 

comparison to simple architectures, it is still missing robustness and reliability. Nevertheless, 

performance wise, it can be improved. 

3.3.4 Molecular dynamics on Grid 

AuverGrid 

Molecular dynamics deployments were achieved on AuverGrid [196], a French national Grid 

infrastructure. AuverGrid offers a computing power of more than 850 CPUs as well as 85TB 

disk space for data storage. The technology deployed on AuverGrid uses the gLite 

middleware, and is fully compatible with EGEE. 

Deployment procedure 

Unlike the deployment of molecular docking, which was performed on millions of 

compounds, as described in previous sections, molecular dynamics (MD) simulations were 

performed on the top scoring few thousands compounds that were resulting from these 

docking experiments. One of the main reasons to perform MD on limited number compounds 
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was that MD simulations require much heavier computing time than docking. The MD 

procedure described here takes ~20 mins to simulate one compound (on a 3.06 Intel Xeon 

processor).  

Four computing elements and two storage elements were used for the deployment of 

molecular dynamics simulation tools. After the simulations were finished, the result files were 

stored back on the storage element, and replicated twice on other locations for the backup. 

The molecular dynamics deployment was acheived in four steps: 

a. Storage 

The necessary files and executables for molecular dynamics deployment were pre-compiled 

Amber9 executables, protein structures, chemical compounds and the workflow script. In 

order to reduce the input-output operations, all the required input files and Amber executables 

were stored on the storage element (SE) of the Grid.  

b. Testing 

Test runs were performed before the large-scale deployment of Amber on Grid. This is done, 

in order to check, if there were any errors arising from the workflow script, and further to 

check the hardware influence on the ultimate results. However, when tested on small dataset 

(~100 compounds) on local machine and the Grid, the results were identical, thus, proved no 

hardware influence on the results.  

c. Execution Procedure 

The same deployment procedure and the production environment employed in docking were 

utilized here. Approximately 100 CPU were used (Clermont-ferrand computing element), 

during the execution process. As Grid generates overhead of several minutes, consequently, 

one should submit long enough jobs to neglect the effect of such an overhead. For this reason, 

it was decided to submit jobs lasting for approximately 20 hours (similar to docking jobs). 

The first deployments were performed against 5000 best scoring docking poses of plasmepsin 

target. Jobs lasting ~20 hours were submitted, corresponding to 50 compounds in each subset 

(100 subsets were generated from 5000 compounds). Each subset with 50 compounds has 

been submitted on one worker node along with the Amber executables, target structures, 

chemical compound subsets, and the workflow script. After the simulations are finished, the 

final results: mmpbsa scores, and the three variations of protein-ligand complexes (initial 

docked complex, minimized complex and complex after molecular dynamics and re-

minimization) are stored back on the storage element. In the similar way, 15000 docking 
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poses of wild type Dihydrofolate reductase (wtDHFR), and 5000 docking conformations of 

Glutathione-S-transferase were deployed on the AuverGrid infrastructure.  

d. Status 

Job status on the Grid are frequently checked by using checkit.sh (a bash script, part of the  

WISDOM production environment), finally if the job is successful it gives a message "ok 

success"  

3.3.4.1 Results 

The total estimated CPU time, if the same simulations were to perform on one machine was 

expected to be 347 days. By using AuverGrid infrastructure, the simulation time was 

significantly brought down to 25 days. In total, 3 storage elements, 4 resource brokers, 

average 90 worker nodes were used in parallel for the deployment of 25,000 docking poses 

(5000 plasmepsin compounds, 15000 wild type DHFR compounds and 5000 GST 

compounds). Over all Grid statistics in the deployment of molecular dynamics simulations 

against 25000 compounds are displayed in Table 7.  

 

Number of Jobs 500 

Total Number of compounds simulated 25000 

Estimated duration on 1 CPU 347 days 

Duration of the experience 25 days 

Maximum number concurrent running jobs 90 

Number of used computing elements 1 

Average duration of a job 20 hours 

Table 7: Statistics of molecular dynamics simulations on Grid. 
This Table demonstrates the significant gain in CPU time by using Grid computing. It demonstrates 

that if the experiment were performed on a single machine, it would have taken 347 days, which on 

Grid was done in 25 days. 

 

Issues in molecular dynamics jobs submission 

Amber is also commercial software with an integrated academic license designed in way that, 

it can be used on the cluster at an organization or research institute. In a normal installation, 

the Amber software is restricted to use on the local cluster at an institute. However, after 

negotiations, the University of California (the owner of the Amber software) allowed us to use 

of the software through the Grid on the clusters of the collaborative institutes, which possess 

the license rights. This, however, restricted us to deploy molecular dynamics simulations to 

only few computing elements. 
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Another observation was that due to unknown reasons, out of the 5000 compounds submitted 

against plasmepsin, ~100 compounds did not give the desired results (the MM-PBSA scores 

and MM-GBSA scores). Perhaps, this may be due to failure of resource broker while 

scheduling the jobs. The failed jobs were identified, and re-submitted again by black-listing 

the resource brokers, which were failing repeatedly.   

3.4 Summary 

In this chapter, the concept of e-Science and Grid computing is described in detail. Though 

computational Grids can be classified in different ways, depending upon the services offered 

by the Grid, hardware type and, underlying Grid technologies, this chapter provides two 

different types of classification with several example Grid projects; mostly in context to life 

science applications. This chapter also describes modern concepts such as Web services and 

Workflow systems. 

Further, this chapter describes the deployment of large-scale molecular docking and 

molecular dynamics simulations on four different targets implicated in malaria. Several Grid 

infrastructures were used to achieve these deployments. However, resources from the EGEE 

Grid infrastructure was used extensively, this is because EGEE is one of the largest open 

source resource providers for performing research on neglected diseases. Other infrastructures 

that were utilized in the deployment of docking and molecular dynamics include EELA, 

EUChinaGrid and EUMedGrid and AuverGrid. 

In context to molecular docking, the ZINC database, which consists of 4.3 million chemical 

compounds was screened against four different malarial target proteins under various receptor 

and docking software conditions. Screening of 4.3 millions compounds was achieved in 76 

days on the Grid, which on a single machine would have taken 413 years. We have achieved 

an average docking throughput of 78,400 dockings. During the large-scale deployment, 

several issues were identified and several lessons were learnt. On the Grid side, the major 

issue identified was, repeated failure of resource brokers while scheduling the jobs. This led 

to overloading of the sites and further led to killing of jobs by the site manager.  

At the end of the data challenge (Virtual screening at large-scale), the ultimate results have to 

be analyzed by biologists or chemists or bio-chemists, who sometimes possess no or little 

knowledge on Grid computing. One the other hand, handling the huge amount of data as flat 

files and analyzing them by using scripting languages or by any other means is quite 

challenging (especially, when the data analyzers are biologists). To overcome these issues, 

and to ease the result analysis of virtual screening data, MySQL databases are used.  
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Using the same WISDOM production environment that was used for docking deployment, 

molecular dynamics simulations were performed. In less than 25 days, MD simulations were 

performed on 25,000 best docking conformations, which on single CPU would have taken 

347 days. Similar issues that were identified during docking deployment (resource broker 

failure) were also observed in molecular dynamics simulations deployment. To the best of our 

knowledge, this is the first time a molecular dynamics application is deployed on the Grid in 

embarrassingly parallel way.  

Though several potential issues were identified during the deployment, computational Grids 

reduced the overall time required for screening and simulating thousands of chemical 

compounds. In summary, we can conclude from this chapter that, the computational Grids are 

a part of e-Science paradigm that opens new means to perform biomedical research and make 

possible to perform large-scale experiments such as molecular docking and molecular 

dynamics simulations easily.  
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4 Chapter 4. Discovery of plasmepsin inhibitors by large-scale virtual 

screening 

This chapter reports the complete set up of a large-scale virtual screening against plasmepsin 

by molecular docking application with a special focus on modeling and evaluation aspects. 

This chapter is organized as follows: 

Firstly, section 4.1 describes the role of haemoglobin degradation in plasmodium survival and 

the role of plasmepsins in the metabolism of haemoglobin as well as its suitability as a drug 

target in the current thesis. As the structural features, crystallographic information and active 

site information of the target protein plays a significant role before and after the virtual 

screening, it is given in section 4.1. In section 4.2 and 4.3, the material utilized for the 

screening, the overall architecture, algorithm, scoring function of FlexX and AutoDock 

software and the chemical compound database, the Chembridge database are discussed in 

detail. In section 4.4, the experimental setup is demonstrated, with the focus on requirements 

for different parameter settings on the side of the target and on the side of the docking 

software. In section 4.5, the need for storing different types of results for each docking and 

novel strategies in analyzing the results are explained. Later in section 4.5, the results, and the 

modeling aspects of the top scoring compounds are discussed. Finally, in section 4.6, the 

summary of this chapter along with potential issues and probable solutions is given.
2
 

4.1 Haemoglobin degradation 

Hemoglobin degradation is an essential process of the exo-erythrocytic cycle of Plasmodium, 

and is the key pathways in plasmodium survival. For this reason, most of the antimalarial 

drugs are aimed at disrupting the hemoglobin degradation pathway [198]. The Plasmodium 

parasite metabolizes most of the host cell hemoglobin inside the erythrocyte, during different 

intra-erythrocyte stages: ring stage, trophozoite stage and schizont stage. The metabolic 

activity varies between the various stages and is more pronounced during the trophozoite 

stage [198]. The hemoglobin degradation takes place in a specialized organelle called food 

vacuole. The majority of hemoglobin from the erythrocyte cytosol, is targeted to the 

Plasmodium food vacuole through a cytostomal system. Once in the food vacuole, when 

hemoglobin experiences an acidic pH of 5 to 5.5, proteolysis of hemoglobin occurs in a 

                                                
This chapter is based on Kasam, V., et al, Design of Plasmepsin Inhibitors: A Virtual High Throughput 

Screening Approach On The EGEE Grid,  J. Chem. Inf. Model. 2007, 47, 1818-1828. 
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seemingly ordered pathway. This results in the generation of small peptide fragments of 

hemoglobin [199, 200]. These peptides are transported out of the food vacuole to the cytosol, 

where they undergo further degradation to yield individual amino acids. There are two 

unwanted byproducts of hemoglobin degradation. First by product is heme, which is highly 

reactive and toxic to the cell. Detoxification is achieved by sequestration of heme in the form 

of polymers called hemozoin. This process of heme polymerization is unique to Plasmodium, 

and for this reason, inhibition of this process has been a major area of investigation. There are 

several proteases involved in heme metabolism, but the present work focuses on plasmepsin 

family of proteins. The role of plasmepsins in heme metabolism is described in following 

sections. 

4.1.1 Plasmepsins 

Plasmepsins (Plm) are involved in the hemoglobin degradation inside the food vacuole during 

the erythrocytic phase of the life cycle. There are ten different isoforms of this protein species, 

and ten genes are encoding them in Plasmodium falciparum (Plm I, II, III, IV, V, VI, VII, IX, 

X and HAP). Other human Plasmodium species contain lesser number of plasmepsin isoforms 

than that of Plasmodium falciparum [201]. Expression of Plm I, II, IV, V, IX, X and HAP 

occurs during the erythrocytic cycle, and expression of Plm VI, VII, VIII, occurs in exo-

erythrocytic cycle [202]. 

 

Mode of action 

The complete hemoglobin degradation inside the food vacuole of the Plasmodium is 

illustrated in Figure 16. The two homologous plasmepsins, I and II, are responsible for the 

initial attack on the hemoglobin alpha chain between the residues Phe33 and Leu34, in the 

hinge region [203]. This region is highly conserved and responsible for the stability of the 

hemoglobin tetramer. Upon cleavage, heme (ferrous +2) is released, which is toxic to the 

parasite.It is further oxidized to hematin (ferric +3), but even after oxidization, hematin is 

toxic to parasite. Finally, the hematin is polymerized to hemozoin (the so-called malarial 

pigment). The globulin part of the hemoglobin is further metabolized by carboxypeptidases to 

amino acids. The parasite relies, and feeds on these amino acids for its survival. Both 

plasmepsin I and II are capable of making an initial cleavage in the hemoglobin, and other 

plasmepsin isoforms make several other cleavages after the initial attack [204]. 
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Figure 16: Pictorial representation of hemoglobin degradation [204].  

The Figure demonstrates that the hemoglobin degradation starts with plasmepsin members of the 
family. Plasmepsin degrades hemoglobin into heme (indicated on the left hand side) and small 

peptides. Further heme is oxidized into hematin and hemazoin. The small peptides are further 

metabolized by other proteases and aminopeptidases to amino acids (indicated on right hand side). 

 

Homology and selectivity 

Target selectivity is the major barrier for the identification and development of novel 

inhibitors, especially when the drug development involves pathogenic system [205]. 

Selectivity (selection of the target protein involved in the disease over its nearest human 

(desired) protein) is the one of the key aspect to be considered before setting up a drug 

discovery campaign. Hence, plasmepsin sequence similarity is checked at two levels; firstly, 

similarity is checked between different isoforms of plasmepsin family, and secondly to its 

nearest human aspartic protease, cathepsin D. High levels of sequence homology are observed 

between the different plasmepsin subtypes, Plm I, II, IV, and HAP, which lie in the cluster of 

the same gene. The sequence similarity at the binding site region of Plm II to that of Plm I, 

IV, and HAP are 84%, 68%, and 39% respectively. This observation enable newly found 

inhibitors effective on family of proteins rather than single subtype.  

The selectivity of a drug between the parasite and the closely related human aspartic proteases 

is one of the important considerations for the development of new compounds against 

plasmepsins. The closest human aspartic protease, cathepsin D has fortunately only 35% 
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overall sequence similarity to Plm II [206, 207]. The low sequence similarity of plasmepsin 

over the human cathepsin D suggests that the newly found inhibitor will be effective only on 

the pathogen system without affecting human system. In contrast, if the sequence homology 

between the plasmepsin and cathepsin D (or any other human protein) were high, the main 

concerns would have been toxicity and reduced concentrations of the drug reaching the target 

protein of the pathogen system. 

4.1.2 Structural information of plasmepsins 

Twelve different X-ray structures of Plm II are presently available in the Brookhaven protein 

database (www.pdb.org). The current study is preceded with four structures, three of them are 

monomers (1LEE, 1LF2, 1LF3), and one protein is a dimer (1LS5, which presumably is a 

crystallographic artifact since the biologically active form is a monomer). All the proteins are 

co-crystallized with different types of inhibitors (peptidic and non-peptidic inhibitors). 

 

Target 

ID 

Crystallization 

method 

Resolution 

Å 

Ligand Nature of the 

ligand 

Number of 

Monomers 

1LEE X-Ray 1.9 R36 Non-Peptidic 1 

1LF2 X-Ray 1.8 R37 Non-Peptidic 1 

1LF3 X-Ray 2.7 EH5 Non-Peptidic 1 

1LS5 X-Ray 2.8 IHN48 Peptidic 2 

Table 8: Represents the crystallographic features of plasmepsin targets utilized in the current thesis. 

 

Active site description of 1LEE and 1LF2 

Each crystal represents one monomer per asymmetric unit. Both inhibitors have a Phe-Leu 

core and incorporate tetrahedral transition state mimetic, hydroxypropylamine. The inhibitor 

R36 (1LEE) possesses a 2,6-dimethylphenyloxyacetyl group at the P2 position and 3- 

aminobenzamide at the P2' position, while R37 (1LF2), posess the same P2 group but 4-

aminobenzamide in the P2' position. Figure 17 illustrates the R36 (1LEE ligand) and R37 

(1LF2 ligand) in the active sites of their respective proteins. These complexes reveal key 

conserved hydrogen bonds between the inhibitor and the binding-cavity residues, notably with 

the flap residues Val78 and Ser79, the catalytic dyad Asp34 and Asp214 and the residues 

Ser218 and Gly36 that are in proximity to the catalytic dyad. The structures also show 

unexpected conformational variability of the binding cavity of plasmepsin II, and may reflect 
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the mode of binding of the hemoglobin alpha-chain for cleavage. This confirms that the target 

structures are flexible at their binding site regions [208]. 

The structures of the R36 (1LEE) and R37 (1LF2) complexes are virtually identical except for 

the difference in the position of the amino groups in the P2' inhibitors (Highlighted in circles 

in Figure 17). The RMS deviation after superimposing the main-chain atoms of the two 

models is 0.201 Å. (This value corresponds to all the atoms in the proteins including ligands). 

There is a negligible difference in the inhibition-constant values of both R36 (1LEE) and R37 

(1LF2) against PLM II, with inhibition-constant values of 18 nM for R36 (1LEE) and 30 nM 

rs370 (1LF2) [208]. As the resolutions for 1LF3 2.7Å and 1LS5 2.8Å are sub optimal, the 

structural details are not discussed in detail. 

 

 

Figure 17: Ligand plots of target structures 1LEE (left) and 1LF2 (right).  
The ligands are represented in ball and stick model in CPK colour. Hydrogen bonding between the 

ligand and the active site residues are indicated in green colour dotted lines and hydrophobic 

environment is indicated in crecent shape. The difference between the two ligands are highlighted in 
red circles. The plots are obtained from www.pdb.org. 

 

The ligand plots of the target structures 1LEE and 1LF2 (pdb id) are shown in Figure 17, 

these plots are obtained from Brookhaven protein database (www.pdb.org). It is clear from 

Figure 17, that, in both the structures the inhibitors R36 and R37 (O14 atom of the inhibitor) 

form hydrogen bonds with catalytic residues (ASP34 and ASP214) of the protein. The 

interactions to the catalytic dyad are highly conserved throughout the plasmepsin family. In 

addition to the hydrogen bonding, other key interactions and hydrophobic environment 

around the ligand are clearly illustrated in Figure 17. These plots not only give an idea on the 

http://www.pdb.org/
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binding mode of the ligand, but also help in defining the active site, while preparing the target 

structures for the docking experiments. In the Figure 17, hydrogen bonds are indicated in 

green dotted lines, hydrophobic environment is represented in red color semi circles. The 

ligands (R36 and R37) are shown in ball and sticks form. The catalytic residues ASP34, 

ASP214, and flap residues Val78 and Gly36 are also shown in ball and sticks style. 

 

Plasmepsin as drug target 

For a protein to be considered as a validated target for protein based virtual screening, it has 

to meet the following criteria 

a. It has to play a key role in the survival of the organism 

b. Availability of sound crystallographic data.  

Based on the discussions from the above sections, it is clear that plasmepsin plays a key role 

in the Plasmodium survival and posses of good quality X-ray crystal data. This makes 

members of plasmepsin family, ideal targets in anti-malaria therapy, and in rational drug 

design. 

 

Target preparation 

A good structure (X-ray model, which is crystallized at low resolution, typically <2Å), and 

careful target preparation greatly affects the results obtained in the virtual screening process. 

The 3D co-ordinates of all the proteins used in the present study are obtained from the 

Brookhaven protein database. (www.pdb.org).  

In the first step, in order to transfer and compare binding modes between different receptor 

structures, all the water molecules and co-crystallized ligands are removed. In the next step, 

all the plasmepsin structures are superimposed on 1LEE (PDB ID). 1LEE serves as a 

reference template. Figure 18 illustrates the superimposition of all the five-plasmepsin 

structures. The active site comprises all atoms within 6.5Å of the co-crystallized ligands as 

well as residues of known relevance (see ligand plots). The charges of the ionizable groups 

are chosen to be consistent with acidic conditions (pH 5). Hemoglobin degradation by 

plasmepsin takes place inside the acidic food vacuole, where the pH conditions are acidic pH 

(pH 5); to be consistent with biological environment, the acidic pH conditions are chosen. The 

side chains of lysine and arginine residues are protonated, as well as the side chain of histidine 

is protonated (for comparability reasons, since AutoDock regards all histidine residues as 

protonated). The carboxylic groups of glutamic acid and aspartic acid are deprotonated. 
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Figure 18: Screen shot of five plasmepsin structures superimposed. 

Variations exist in the loop regions and are highlighted in yellow color. The co-crystallized ligands are 

are represented as balls and sticks in Red color. The picture has been generated using Rasmol. 

 

4.2 Compound database selection 

Compound libraries used in the virtual screening experiments should be filtered first, to 

remove unsuitable compounds that would not reach and pass the clinical trials due to 

undesired and toxic properties. Usually, compounds are filtered based on their chemical 

descriptors. Additionally, similarity searching methods or pharmacophore based screening 

methods or other ligand-based methods are often used, to increase hit rate or to reduce size of 

compound database, prior to molecular docking. However, there is a possibility that the 

filtering methods such as similarity searching and pharmacophore-searching methods could 

eliminate the possible lead compounds before molecular docking.  

Furthermore, good binding affinity data for a series of ligands with similar mode of action (or 

mode of binding) is required to build a good pharmacophore model and that in most cases, 



                          Chapter 4. Discovery of plasmepsin inhibitors by large-scale virtual screening 

77 

 

such high quality data are missing. On the other hand, similarity searches are ―searching 

under light‖ and in essence, they are mining approaches in ―known territory.‖  

As a compromise between the removals of unwanted compounds, and not losing any lead 

compounds prior to screening, a very popular method to evaluate the drug likeness of a 

candidate structure is the so-called Lipinski ―Rule-of-five‖, is utilized in the current thesis. 

The Compound library used was obtained from the ZINC database [209, 210]. The ZINC 

database is a collection of 3.3 million chemical compounds (in 2005) from different vendors. 

The ZINC library was chosen because, it is an open source database, the structures have 

already been filtered according to the Lipinski rules and the data are available in different file 

formats (Sybyl mol2 format, sdf and smiles). Therefore, basically, ZINC provides virtual 

compounds ready for virtual screening. One million compounds were downloaded from the 

ZINC database, which includes 500,000 compounds from ChemBridge (vendor) [211] and, 

500,000 additional drugs like compounds from various other vendors.  

As AutoDock requires the pdbqs file format, all the compounds were first converted into 

pdbqt format using ADT tools. For, FlexX there was no such formatting was required. The 

Figure 19 displays the range of descriptor values of the chemical compound database. It is 

extremely important to note that all the compounds are in accordance with the ―Lipinski rule 

of five‖. 
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Figure 19: Illustrates descriptor values of Chembridge chemical compound database. 

Along with the descriptors suggested in ―Lipinski rule of five‖, several other important descriptor 

values were calculated and are illustrated. All most all the compounds display compounds possess 
acceptable descriptor value.  
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4.3 Docking software 

Hit identification can be improved by enabling the virtual screening process by utilizing 

several docking tools [98]. Hence, for the virtual screening, two different docking software 

are used: FlexX 2.0 [78, 84] and AutoDock 3.05 [93, 212]. 

 

Docking and Scoring in AutoDock 

There are three different types of algorithms in AutoDock [93, 212]: simulated annealing, 

Lamarkian genetic algorithm and genetic algorithm. In the current thesis, the genetic 

algorithm (GA) with local search is used. 

General steps in the genetic Algorithm 

a. Start with a random population (50-200). 

b. Perform Crossover (Sex, two parents -> 2 children) and Mutation (one individual 

gives 1 mutant child). 

c. Compute fitness of each individual. 

d. Proportional selection and Elitism. 

e. New Generation begins if total energy evaluations maximum generations are not 

reached. 

AutoDock parameter sets used in the current thesis are: 

1. GALS (Genetic Algorithm Local Search with Solis-Wets (SW))  

2. GALS (Genetic Algorithm Local Search with pseudo Solis-Wets (pSW)) 

 

Docking and Scoring in FlexX 

 FlexX is an extremely fast, robust and highly configurable computer program for 

predicting protein-ligand interactions. Standard parameter settings are used except for two 

cases (―Place particles‖ [213] and ―Maximum overlap volume‖ [84]). These two parameters 

were subject to deliberate variation with FlexX are given in Table 9.  

Parameter sets Place particles Maximum overlap volume 

Parameter set 1 Yes 2.5 

Parameter set 2 Yes 5 

Parameter set 3 No 2.5 

Parameter set 3 No 5 

Table 9: The parameter sets used during the FlexX data challenge.  

Place particles and Max overlap volume are the two variations used in FlexX software. 



                          Chapter 4. Discovery of plasmepsin inhibitors by large-scale virtual screening 

80 

 

Place particles 

This is a special feature of FlexX, where the place particle algorithm places virtual water by 

itself. If it equals 1 (during the FlexX run), FlexX places spherical objects, called particles, 

into the suitable positions of the active site. Particles can then mediate interactions between 

the ligand and the protein. The main application is the modeling of discrete water molecules 

located between the protein and the ligand. If it equals to 0, FlexX does not add any water 

molecules by itself [213]. 

 

Maximum overlap volume 

This is a clash test between the protein and ligand atoms. The condition for a clash is that a 

protein and a ligand atom exhibit an overlapping volume greater than the maximum allowed 

value. Hydrogen atoms not considered in the overlap tests. An easy way to switch off the 

overlap test is to set this parameter to a very high value.  

The default value set in FlexX software is 2.5 Å (Reasonable range: 0.0-100.0 Å). 

 

Algorithm 

 FlexX uses an incremental construction algorithm [78] and Boehm’s empirical scoring 

function [101, 42]. During the incremental construction, rigid portions of the ligand are docked 

first, followed by the flexible portions. The incremental construction algorithm samples the 

conformational space of the ligand and uses a hierarchical system for placing the flexible 

pieces of the ligand. The anchor portion of the ligand, or the base is selected first (called base 

selection), and is placed in such a way that the interactions between the fragment and the 

protein are maximized (called base placement). Many alternatives for the placement of the 

flexible portions of the ligand, starting with those nearest the base, are considered and only 

those with favorable energies are considered for sequential rounds during which additional 

flexible portions are added. 

 

Scoring Function 

The scoring in FlexX is based on the empirical Boehm scoring function [101, 42]. Both the 

hydrophobic and hydrogen bonding contribute to the final score of a particular protein-ligand 

interaction. However, the hydrogen bonding (hydrogen acceptor and donor) are weighted 

higher than interactions resulting from hydrophobic interactions, this is one reason, why 

ligands that are capable of making more hydrogen bonds scores better than ligands making 
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hydrophobic interactions. More details about the FlexX algorithm and scoring function are 

provided in [78, 214]. 

 

Interaction types 

The common interaction types possible between the protein and ligand, and their 

corresponding energy contribution in FlexX are given in Table 10. From the Table 10, it is 

evident that the energy contribution from hydrogen bonding (4.7kJ/mol) is significantly 

higher than the energy contribution of hydrophobic interactions (0.7 kJ/mol). This is one 

reason why ligands with more hydrogen bonds (either acceptor or donor) obtain good scores 

and further rank higher [214]. Interaction types are in the following order level 3>level 

2>level 1. 

 

Interaction types 

 

Interaction 

distance 

(A) 

ΔG neutral 

kJ/mol 

ΔG ionic 

kJ/mol 

Level 

H-acceptor/ H-donor 1.9 4.7 8.3 3 

Metal acceptor/ metal 2 4.7 8.3 3 

Aromatic ring atom, 

methyl, amide/aromatic 

ring center 

4.5 0.7 - 2 

Aliphatic and aromatic 

carbon atoms, Sulfur 

4.5 - - 1 

Table 10: Interaction types of FlexX and their corresponding energy contributions. 

The values in the Table are adapted from [214]. 

 

4.4 Virtual docking process 

4.4.1 Re-docking, cross docking and docking under different parameter sets 

Direct docking and re-docking experiments are performed between the target structures and 

their respective co-crystallized ligands on different parameter sets for FlexX. Re-docking can 

be defined as the removal of the co-crystallized ligand (inhibitor or substrate), and then using 

a specific parameter set, dock this compound back into the active site of its target protein. Re-

docking is done, to validate the program’s ability to dock novel compounds into the active site 

of the protein. These experiments serve as positive controls before the large-scale docking is 

done, furthermore, it aids in defining the active site and other simulation conditions. 

Validation of the docking pose is done by comparing the interaction information between the 

re-docking pose to the ligand plot information obtained from the Brookhaven protein database 
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PDB. The lower the RMSD value, and the more similar the docking poses to the co-

crystallized ligand, the better are the re-docking results. Ligand plots illustrate the binding 

mode of the co-crystallized ligand within the active site of the receptor, and further describe 

the atom-to-atom interaction between the co-crystallized ligand and its respective receptor. 

Ligand plots of 1LEE and 1LF2 are illustrated in Figure 17. 

 

Re-docking 

Despite of the large ligand size (>15 ligand components and >12 rotatable bonds), the RMSD 

values in re-docking experiments for 1LEE and 1LF2 were convincing, about 2.5Å for the top 

ranking solutions. The scores and RMSD values of the re-docking are shown in Table 11. 

Figure 21 illustrates the binding mode of the ligand (R36) in re-docking experiment with 

target protein 1LEE. The RMSD values for 1LF3 and 1LS5 are marginal and >3Å in all the 

parameter sets, see Table 11. This may be due to the suboptimal resolution of the X-ray 

crystal structure, very large ligand size, numerous ligand components (co-crystalized ligand of 

1LF3 has about 24 fragments) and consequently high number of rotatable bonds. In the re-

docking experiment for llf3, we observed a rotation of a ligand (flip), while maintaining the 

essential contacts to the catalytic dyad, this may be due to particular crystallization conditions 

have such an influence, thus the calculated position is not necessarily wrong. The resulting 

binding modes for 1LEE and 1LF2 were well in concordance with the crystal structure. The 

binding mode
 
of the best ranked solution displayed good interactions with catalytic residues 

of the targets (Asp214, Asp34) and also with other residues of relevance. This comparison 

revealed that the ligand in the protein structures 1LEE and 1LF2 has found all the significant 

interactions responsible for the activity of the protein. From parameter set 1, it became also 

clear that direct docking (targets without any crystal water) performed well both in terms of 

scoring and RMS deviations. From interaction information, it was observed that protein 

structure 1LEE without any crystal water molecules formed hydrogen bonds with both the 

catalytic residues Asp214 and Asp34, as well as with flap residues Val78 and Ser218. 

Surprisingly, the protein structure 1LEE with crystal water molecules, all ligands failed to 

form interactions with the key residues. 
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Target Ligand Total 

Score  

RMS-

Value 

Total 

Score  

RMS-

Value 

Total 

Score  

RMS- 

Value 

Total 

Score  

RMS-

Value 

1 2 3 4 

1LEE 1LEE (R36) -21.128 2.34 -15.348 9.66 -28.075 9.82 -25.914 2.09 

1LEE_h2 1LEE (R36) -20.079 8.51 -14.806 9.51 -25.959 2.09 -25.959 2.09 

1LEE_h3 1LEE (R36) -26.197 9.80 -19.664 8.92 -26.431 9.81 -26.039 2.09 

1LF2 1LF2 (R37) -24.319 4.93 -23.401 3.26 -22.134 9.86 -24.672 9.37 

1LF2_h 1LF2 (R37) -19.563 10.03 -27.984 4.81 -22.962 2.77 -24.672 9.37 

1LF3 1LF3 (E58) -20.928 8.97 -19.461 13.78 -13.941 7.60 -16.921 12.46 

1LS5_a 1LS5 

pepstatin A 

-23.219 10.87 -22.35 11.72 -27.677 3.22 -33.698 3.13 

1LS5_b 1LS5 

pepstatin A 

-23.105 10.52 -20.708 12.20 -30.313 4.92 -24.86 11.71 

Table 11: Illustrates docking scores and RMSD values for the best ranking solutions under four 

different parameter sets. 

The Table displays RMSD values in direct docking and re-docking experiments obtained for four 
different parameter sets with FlexX. 1, 2, 3, 4 corresponds to parameter set 1, 2, 3, 4 respectively. 

Units for Total score and RMS value are kJ/mol and Angstroms respectively. 

 

  

 

Figure 20: Illustrates the RMSD values in re-docking experiments under different parameters. 

The RMSD values are displayed on the Y-axis, and on the X-axis are the protein structures. The 
protein structure 1lee and 1lf2 were considered in several structural forms based on the inclusion of 

water molecules.  
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Effect of docking under parameter sets 

Selection of the parameters is often challenging and parameters can be set only after 

preliminary testing on a particular dataset. Since every target has a unique response to the 

docking software parameters set, there is no generic solution to agree on a particular 

parameter sets. The success of the docking methods significantly depends on the parameter 

sets under which docking is performed. Initial optimization experiments were performed, to 

arrive at a parameter set which gave best results on known inhibitors, and in re-docking 

experiments for a particular target. Figure 21 and 22 and represents the results of re-docking 

of R36 ligand into its protein structure 1lEE. Table 12 lists hydrogen bonding of R36 with 

conserved residues and RMSD values under different parameter sets.  There is no significant 

difference in docking score between the different parameter sets is noticed. This is due the 

fact that, the anchor fragment selected during the FlexX docking is always the same, hence 

similar scores are observed. But, different parameter sets produced different binding modes in 

the re-docking experiment. The RMSD value varied significantly (see first row of Table 11 

and first histogram of Figure 20). Visualization of  binding poses revealed that there is 

noteworthy variation in the binding poses in all the parameter sets. Especially, large variations 

were observed with parameter set 3 and 4 (See Figure 22). In parameter set 3, while 

maintaining hydrogen bonding to essential amino acids of the protein, the binding mode of the 

docking pose was completely flipped, this is one of the reason why the RMS deviation was 

high (>9) in parameter set 3. Figure 22 displays the re-docking pose in parameter set 3, the 

part of the ligand flipped is highlighted in circles. In paramter set 4, the docking pose is not 

flipped as in parameter set 3, but large deviations are observed at P2 position of the ligand 

(see Figure 22, variations at P2 positions are highlighted in circle). As large variations on the 

docking poses were noticed, we decided to perform large-scale virtual screening on all the 

parameter sets.  
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Figure 21: Re-docking of ligand (R36) into target structure 1LEE in parameter set 1 (top) and 

parameter set 2 (bottom).  

The docking pose is represented in CPK color while the co-crystallized pose of R36 before docking is 

shown in white color. Interactions to the key residues are indicated in red circles on the text file (left 
hand side). Figure is generated by using FlexV. 
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Figure 22: Re-docking of ligand (R36) into target structure 1LEE in parameter set 3 (top ) and 

parameter set 4 (bottom). 

The docking pose is represented in CPK colors while the co-crystallized pose of R36 before docking is 
shown in white color. Interactions to the key residues are indicated in red circles on the text file (left 

hand side). Deviations are highlighted in circles on the image (right hand side). Figure is generated by 

using FlexV.  
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 ASP 

214 

ASP 

 34 

Val  

78 

Gly  

36 

Binding  

 mode 

Param 1 0  1 1 1 Good 

Param 2 0  1 1 1  OK 

Param 3 1 1 1 1 Twisted  

Param 4 1  1 1 1 OK 

Table 12: Displays interaction information with significant amino acids for 1LEE and its co-
crystallized ligand (R36) under different parameter sets. Significant amino acids are displayed along 

with the comment on the binding mode observed. 

 

Deployment strategy 

Several test runs were launched before the deployment docking jobs on the EGEE Grid. The 

major purpose of performing test runs is to cover technical as well as modeling aspects: the 

system credibility in terms of modeling, performance, setting and tuning of parameters, 

analyzing software parameter influence on docking results are checked. 

As the X-ray resolution of target structures 1LEE (1.8 Å) and 1LF2 (1.9 Å) were well suited 

for our purposes, major test runs were performed on 1LEE and 1LF2. Test runs were 

performed with a combination of known compounds, (Walter Reed compounds [215] found to 

have micro molar inhibitions in vitro), randomly chosen 20,000 ZINC compounds, 400 ZINC 

compounds and most importantly on the FlexX 200 standard benchmark dataset [214].  

 

Final Deployment 

Based on the results from direct docking, re-docking, cross-docking and test runs, different 

parameters were prepared for both targets and docking software. Finally, large-scale 

computations have been performed on 8 receptor scenarios for FlexX and 10 receptor 

scenarios for AutoDock. One million compounds were screened against each receptor 

scenario on the EGEE Grid infrastructure. The data challenge witnessed 42 million docking 

experiments on more than 1,700 computers distributed in Europe and Asia. The details about 

Grid implementation and deployment of the docking jobs are out of scope of this thesis and 

can be found in [145, 146].  
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4.5 Results and Discussion 

The AutoDock docking tool was applied in parallel to FlexX for the screening, but the final 

results of AutoDock were not convincing. This is due to some errors that occurred during the 

parameterisation of the AutoDock software parameters. Most of compounds docked by using 

AutoDock have high internal free energies; this is because of the autotors tool. Autotors is a 

part of AutoDock program and is used for the preparation of the compounds, especially while 

assigning torsions at the rotatable bonds.  

 

Figure 23: Score distribution plots of the AutoDock and FlexX in histogram representation. 

AutoDock scores (upper) and FlexX scores (lower). 
It is clear from the plots that there is normal distribution of scores observed with FlexX software, 

whereas with AutoDock, the score distribution is quite abnormal and even some compounds scored in 

positive value. 

 

Figure 23 displays a histogram plot, number of compounds (X-axis) against docking score (Y-

axis, for the same parameter set. While, the FlexX scores are almost following a normal 

distribution, the AutoDock scores are distorted. The majority of ligands achieved a negative 

score, similarly distributed like the FlexX scores, but there are some ligands achieving 

unusually high scores with AutoDock. 
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Further analysis showed that these high energies stem from the internal stress term of the 

ligands, which AutoDock incorporates in its final docking score. The intermolecular energy 

was quite sensible. A deeper look at the structure of some of these ligands revealed that their 

pdbq files were not generated correctly by autotors. (Autotors is an executable of AutoDock 

suite, which converts mol2 file format to pdbq, script used for converting mol2 to pdbq is 

provided in Appendix). Since AutoDock uses the Van der Waals potential to model the 

internal ligand energies, this resulted in clashes and very high van der Waals values. 

 

Summary of the output  

As the results of AutoDock were not convincing, the subsequent analysis focused solely on 

the results obtained using FlexX. The outputs of the docking results in FlexX are log files. 

The log files are converted into CSV file format (comma-separated files). These CSV files in 

turn serve as input for VS explorer, a java based prototype software for analyzing virtual and 

high throughput screening results, developed at Fraunhofer-SCAI (www.scai.fraunhofer.de). 

Three different forms of results are saved and analyzed from each docking assay:  

i. Docking scores of the ten best solutions after clustering.  

ii. Interaction information between protein and ligands of the ten best solutions. 

iii.  Binding modes of the ten best solutions.  

Moreover, ranking process is the integral part of the docking software. FlexX have a post 

processing optimization of the docking solution and clustering. Clustering in FlexX is based 

on RMSD, angle and distance deviation. Default values of FlexX are used as clustering 

cutoffs. The overall filtering process we employed is shown in Figure 24.  

 

Clustering and match information  

Usually, result analysis concentrates on the best ranking solution only or on the best 5 

solutions based on docking score. However, when exhaustive analysis is done for all 

predictions there is a smoothening of score observed from the best solution to the next best 

solution in many cases. Moreover, the binding modes are very often nearly the same. To 

address this problem, result analysis of the ten best solutions after clustering is done: this 

allows screening diverse binding modes and identifying compounds with interactions to key 

residues of the protein even if the score is not optimal.  
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Strategies in result analysis 

The aim of the result analysis is to reduce the number of false positives and finally 

identifying a few hundred promising compounds that can be tested in experimental 

laboratories. Results are analyzed at three levels (Figure 24 illustrates the overall filtering 

process): 

1. By docking score  

2. FlexX has a unique ability to compute the atom-to-atom interaction between the protein 

and the ligand. This information is exploited, and further used in analyzing results 

(match-information). 

3. Manual visualization of binding modes inside the active site of the protein. 

 

 

 

Figure 24:  Representation of overall filtering process employed in WISDOM-I. 
The process starts with 500,000 compounds and at different stages various filters applied as indicated 

in the figure to reduce the false positives and finally to identify the best possible hits which are more 

likely to be leads. 
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4.5.1 Top scoring compounds  

As evident from the re-docking experiments, the target 1LEE without any inclusion of crystal 

water performed well both in terms of RMS deviations and docking scores, so we restricted 

the final result analysis to target structure 1LEE i.e., without any crystal water molecules. 

Figure 25 represents the top two compounds based on the score from parameter set 1. 

Visualization of the docking solutions shows that, although some compounds possess high 

scores they are quite far away from the center of the binding pocket. As we are looking for 

competitive inhibitors, the ideal compounds will be the ones, which are well within the 

binding pocket. Consequently, compounds, which are remote from the binding pocket, are 

rejected. An example of a top scoring compound with poor binding mode is represented in 

Figure 25. 

Special attention has been given to all individual complexes for the top 1,000 compounds 

from all the four-parameter sets. Similar to the results obtained from parameter set 1, some of 

the top scoring compounds from various other parameter sets also failed to form the expected 

interactions to key residues of the protein, and further the binding mode of the docking poses 

inside the active site of 1LEE was not convincing. Therefore, we employed several filters for 

the final selection of the compounds (Figure 24 represents the filtering criteria employed). 

After undergoing the filtering procedure represented in Figure 24, finally, 100 chemical 

compounds have been selected for re-ranking by molecular dynamics.  

The 100 compound list contains 

 20 compounds of Guanidino scaffold  

 20 compounds of Thiourea core scaffold 

 20 compounds of Urea core scaffold 

 30 compounds with diverse scaffold 

 10 low scoring compounds (for control studies) 
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Figure 25: Representation of the top scoring compounds in parameter set 1.  
Top scoring compounds with poor binding mode and good binding modes inside the active site of the 

protein (pdb id: 1LEE) are indicated with arrows. 
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Guanidino analogue 

 

Figure 26: Representation of one of the top scoring guanidino analogue. 
The docking score (kJ/Mol) with FlexX is indicated below the compound. The compound exibits ideal 

binding mode and interactions to key residues. The interactions between the compounds and the key 

amino acids of the protein are highlighted in blue circle. 
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A. Thiourea anlogue 

 

B. diphenyl urea analogue 

 

 

Figure 27: (A) Top scoring thiourea analogue. (B) Top scoring diphenyl urea analogue. 

The binding modes inside the activesite and interaction information are shown. Highlighted in green 

circle are compounds interactions to one of the catalytic residue (ASP 34) of the target protein. Figure 
generated by using FlexV. Interactions are indicated in dotted lines 
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Repeated identification of diphenyl urea analogues in the top 1000 compounds by docking 

score, which incidentally happens to be known inhibitors against plamsepsin [215] (Walter 

Reed compounds) suggests that the approach is valid and sensible.
 
Figure 27 (B) represents a 

diphenyl urea analogue inside the active site and the interactions to key residues of the target 

are highlighted in a circle. A close inspection revealed that this compound displays a similar 

binding mode as co-crystallized ligand (R36) and forms the required interactions to key 

residues of plasmepsin. 

The other group of compounds gathers thiourea analogues (Figure 27(A)). There is always a 

consensus in placing the core group (thiourea) with the sulphur atom positioning itself 

towards the flap residue Val78, and the two nitrogen atoms making interactions to the 

catalytic Asp214 or Asp34 or both. This observation is well in concordance with the binding 

modes of the Walter Reed compounds and binding modes of the co-crystallized ligands. 

The most significant observation from the current study is the identification of the guanidino 

analogues. These compounds are very promising as they obeyed all the filtering criteria 

employed in finding the hits. Figure 26 represents the guanidino analogues with their 

respective docking scores in kJ/Mol. The binding mode of a guanidino derivative is shown in 

the active site of protein 1LEE. The interactions to key residues are highlighted in circles. 

Similar to the binding modes of thiourea compounds, there was a consensus observed in the 

binding modes of guanidino compounds: the deprotonated nitrogen atom positioning itself 

towards the flap residue Val78 and the adjacent nitrogen atoms making interactions to 

catalytic residues Asp214 and/or Asp34 (Figure 26). 

Guanidino analogues are likely to be a novel class of compounds, as they have not yet 

reported as inhibitors for plasmepsins. Additionally, chemically diverse compounds have also 

been identified as hits, including thiazole analogues. 

Eighteen different chemical descriptors are calculated for all the finally selected 100 

compounds to reduce the late stage attrition rates. However, all the compounds possess 

acceptable chemical descriptor values. Figure 28 displays the top hundred compounds and 

their chemical descriptors. Table 13 displays the docking score and chemical descriptor values 

of all the hundred compounds. 
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Results of top 100 compounds and their descriptor values 

 

 
Figure 28: Top hundred compounds and their chemical descriptor values. 

Very important chemical descriptors such as LogP, molecular weight (top), H-bond donor, H-bond acceptor 

(bottom) are plotted. These plots demonstrate that all the compounds possess acceptable chemical descriptor 

values.  

 
 

Table 13: Displays best 100 compounds that were selected against plasmepsin from the large-scale virtual 

screening of 500,000 compounds.  

This Table displays docking scores and  important chemical descriptor values for these  compounds 

 

Molecule 

No. 

WISDOM 

ID Score Mass H-Acc H-Don LogP 

1 280991 -38.763 373.305 4 5 4.05 

2 380406 -38.103 429.449 5 3 4.65 

3 378548 -39.747 441.506 5 2 4.65 

4 193748 -38.285 434.896 6 2 6 

5 242452 -40.407 454.887 10 3 5.09 

6 313614 -38.034 388.46 4 4 4.95 

7 312057 -38.412 382.41 6 4 3.64 

8 384677 -39.681 489.974 7 3 5.89 

9 310954 -38.2 487.756 9 3 4.58 

10 243118 -37.174 403.498 5 3 5.55 

11 382373 -37.633 439.51 4 3 4.86 

12 385534 -37.723 471.507 7 2 5.21 

13 372757 -37.082 468.324 5 3 5.39 

14 373697 -40.574 466.898 9 2 5.83 
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15 373762 -37.302 453.942 7 3 5.35 

16 242449 -38.131 446.48 8 2 5.12 

17 492970 -39.791 435.54 6 3 5.06 

18 475515 -39.502 464.495 10 3 4.79 

19 404128 -37.418 470.544 6 2 5.76 

20 326015 -38.106 420.442 9 3 4.57 

21 329771 -37.112 375.445 5 4 4.55 

22 386759 -39.937 443.479 8 3 5.5 

23 430276 -37.045 382.364 6 4 5.24 

24 313546 -36.875 353.329 6 3 2.65 

25 109865 -37.293 303.743 5 3 3.44 

26 416361 -36.661 398.239 8 3 4.12 

27 120595 -36.37 333.726 7 3 2.65 

28 437779 -36.029 415.613 5 3 3.96 

29 89351 -36.869 269.299 4 4 2.13 

30 178145 -36.123 325.15 7 3 1.52 

31 170421 -35.821 300.27 7 3 0.82 

32 178319 -36.553 313.351 5 3 3.13 

33 170305 -36.106 315.299 7 3 1.9 

34 73901 -40.888 293.318 6 3 1.29 

35 81354 -37.093 290.705 6 3 1.66 

36 315095 -43.098 472.923 8 3 4.92 

37 462971 -45.625 568.631 12 4 4.87 

38 52923 -44.035 349.41 5 5 4.11 

39 261841 -43.119 440.477 6 5 4.6 

40 300822 -41.736 434.468 9 4 3.24 

41 305608 -41.596 464.451 10 4 1.65 

42 392786 -40.486 365.194 6 5 4.38 

43 316830 -38.111 412.849 9 4 3.32 

44 396606 -37.822 392.455 8 4 3.76 

45 17970 -37.727 286.313 7 5 -0.29 

46 261841 -43.119 440.477 6 5 4.6 

47 491148 -38.111 412.849 9 4 3.32 

48 49805 -39.53 326.287 8 4 2.89 

49 30030 -18.408 306.385 2 2 3.8 

50 495606 -35.979 328.389 7 3 2.91 

51 306328 -35.293 470.5 8 4 3.68 

52 301748 -35.33 393.53 4 5 5.78 

53 141813 -35.918 349.41 6 6 3.5 

54 135119 -35.781 299.28 5 4 3.08 

55 497564 -35.585 297.289 4 4 2.73 

56 128986 -34.506 248.261 4 5 1.53 

57 175272 -45.827 341.361 7 4 -0.38 

58 462971 -45.625 568.631 12 4 4.87 
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59 281783 -36.953 398.437 5 3 3.91 

60 175272 -45.827 341.361 7 4 -0.38 

61 462971 -45.625 568.631 12 4 4.87 

62 281783 -36.953 398.437 5 3 3.91 

63 313358 -42.483 444.53 5 4 4.66 

64 475829 -39.296 439.489 11 3 1.11 

65 426087 -38.169 378.787 9 3 3.55 

66 412044 -37.943 380.374 8 3 3.22 

67 208216 -37.773 400.405 6 2 4.2 

68 479589 -37.665 543.678 8 1 6.93 

69 316673 -41.031 409.483 7 6 3.78 

70 378421 -43.771 493.553 7 3 5.7 

71 229724 -36.073 555.624 10 3 2.54 

72 252811 -38.984 484.507 10 6 2.18 

73 358887 -36.85 379.437 3 4 4.44 

74 313357 -41.931 443.522 6 3 4.66 

75 497987 -40.011 414.435 9 5 0.66 

76 262376 -30.361 380.251 7 3 3.64 

77 260587 -33.101 463.511 6 3 5.11 

78 300002 -31.182 434.342 7 3 4.9 

79 259529 -34.998 511.529 11 2 1.98 

80 253632 -30.398 434.489 5 3 3.93 

81 253622 -35.441 365.343 9 4 1.85 

82 107022 -33.179 306.339 5 4 3.78 

83 92393 -34.368 320.708 8 3 3.45 

84 223835 -32.364 417.288 8 4 1.23 

85 92712 -32.682 304.253 8 3 3.07 

86 202102 -33.614 358.802 6 4 4.69 

87 141291 -31.029 316.289 8 3 2.68 

88 290905 -34.233 369.399 8 3 1.84 

89 295687 -32.286 361.369 7 3 1.96 

90 67405 -34.471 342.313 10 3 0.07 

91 193711 -36.11 425.484 4 3 5.04 

92 245953 -35.249 566.395 11 3 5.11 

93 295689 -29.729 422.478 8 3 4.19 

94 66304 -8.628 243.344 2 0 2.68 

95 89585 -6.027 250.405 2 0 -1.09 

96 420105 -10.749 390.271 5 1 2.34 

97 345897 -12.398 383.462 8 0 3.69 

98 207090 -14.147 490.978 8 2 4.34 

99 437455 1.168 198.368 0 0 -1.14 

100 456497 -2.665 570.758 0 1 6.61 
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4.6 Summary 

This chapter describes the complete setup, and large-scale virtual screening effort for finding 

novel compounds active against Plasmodium falciparum plasmepsins. The screening of 

compounds was performed on the EGEE Grid infrastructure (Grid details given elsewhere 

[146, 145]). The screening effort presented in this chapter is a part of WISDOM project, and 

is one example for the successful utilization of the e-Science paradigm in the area of 

computational life sciences. Making use of the world’s largest scientific compute 

infrastructure, the EGEE Grid, we have realized a large virtual screening project aiming at the 

identification of new, potential candidate molecules against the plasmepsin family of aspartic 

proteases encoded by Plasmodium falciparum, the malaria causing protozoan parasite. 

Besides the demonstration that a global e-Science production infrastructure such as EGEE, 

with the identification of new family of potential inhibitors, the guanidino group of 

compounds, we have established a new class of chemical entities with inhibitory activity 

against Plasmodium falciparum plasmepsins. A strong support for their putative activity is 

that most of the so far known antimalarial drugs likewise contain basic groups. The virtual 

screening approach taken by us could be subject to criticism as alternative strategies such as 

pharmacophore or similarity searches do exist. However, the fact that we were able to point to 

a new class of potential inhibitors after using a selection of publicly available ―virtual‖ 

compounds (the ZINC database of compounds) and the fact that we could identify candidate 

inhibitors that fall into the already well-established inhibitor classes of thiourea and diphenyl 

urea analogues speak for the route we have taken.  

Several potential issues were identified during the large-scale docking experiment both on the 

technical side and on modeling side. On the technical side, handling massive docking data as 

flat files was a huge challenge. This is one of the reasons, why result analyses were not 

performed on all the variations of protein and parameter sets. A customized docking database 

(such as docking database (DDB) from BioSolveIT Gmbh) would be an ideal choice for 

storing and analyzing the results.  

On the modeling side, due to the robust nature of the docking algorithm and scoring function, 

significant parameters such as protein flexibility and solvent parameters were ignored. This 

may be one of the reasons, why several compounds were having huge van der Waals clashes 

with the receptor atoms. Other issues include the orientation of peptide bond in docking 

conformations of thiourea and urea compounds. Peptide bond usually adopts planar 

orientations (180°) but in some cases, FlexX assigned 90°, which completely changed the 
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hydrogen-bonding pattern of the compounds. To overcome the modeling issues, specifically 

the protein flexibility, solvent parameters and orientation deficiencies; molecular dynamics 

simulations were performed and is discussed in detail in chapter 5. 
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5 Chapter 5. Discovery of novel plasmepsin inhibitors by refining and 

rescoring through molecular dynamics 

This chapter reports the significance of performing molecular dynamics and rescoring against 

the best hits resulting from docking experiment. The 5000 best-scoring conformations 

selected from the plasmepsin virtual screening described in chapter 4 were subjected to 

molecular dynamics simulations. The Amber software was used for molecular dynamics 

simulations; further rescoring was done applying MM-PBSA and MM-GBSA methods. 

Finally, this chapter reports the identification of novel small molecules and experimental 

results of the 30 novel compounds identified against plasmepsin II.
3
  

5.1 Introduction 

The significance of molecular dynamics simulations and rescoring the docking conformations 

by using sophisticated scoring functions are already discussed in chapter 2. Indeed compared 

to docking, molecular dynamics address the electrostatic solvation parameters, protein 

flexibility and additional degree of freedom. Consequently, it requires much higher time and 

computing power than docking, hence molecular dynamics can only be applied to a restricted 

number of compounds, usually the best hits coming out of the docking step. Therefore, 

molecular dynamics simulations appear to be very promising in improving the structure-based 

virtual screening process by addressing issues that were ignored by docking methods. 

 Molecular Dynamics (MD) analysis significantly changes the scoring of the best compounds, 

and it is therefore very important to apply it to a significant fraction of compounds, i.e., as 

many compounds as possible. Therefore, computational Grids appear very promising to 

improve the virtual screening process by increasing the number of compounds that will be 

processed by using molecular dynamics. The molecular dynamics deployment on the Grid is 

already described in chapter 3.  

 In context to the current thesis, extension of the docking application i.e., further re-scoring of 

plasmepsin docking conformations is needed, thus a refinement of the docking poses by 

molecular dynamics simulations has been implemented; the application of this extension of 

the workflow is described in the present chapter.  

                                                
This chapter is based on G. Degliesposti, Kasam. V et al .Design and Discovery of Plasmepsin II Inhibitors 

Using an Automated Workflow on Large-Scale Grids. ChemMedChem, 2009, july;4(7):1164-73. 
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In molecular dynamics simulations, the automated relaying of output to the particular next 

stage and the management of the data emerging during the progress of calculations is 

complex, and is the main challenge. This is due to the nature of the software and the following 

procedure of file conversion, energy minimization, molecular dynamics simulations, and 

analysis of results. This dynamic behavior together with the sequential nature of 

interdependent jobs to be performed in a stepwise parallel fashion is the major problem in 

such a workflow.  

To overcome these problems, handling several steps in sequential order without losing any 

significant information, Prof. Giulio Rastelli has proposed an automated workflow using the 

Amber software [216]. This procedure is suitable and highly configured for virtual screening 

purposes. Therefore, it is adapted and utilized to optimize the docking conformations that 

were resulted from the high throughput virtual screening experiments (described in chapter 4).  

5.2 Rescoring by Amber software 

Amber9 

The latest version of the Amber software, Amber9 is used. The Amber9 is the suite of 

different tools which collectively carry out molecular dynamic simulations. The simulations 

by the Amber program can be divided into three phases, and each of these phases is 

performed by different executables of the Amber suite. Encoding these steps in separate 

programs has some important advantages. Firstly, it allows individual pieces to be up graded 

or replaced with minimal impact on other parts of the program suite. 

Secondly, it allows different programs to be written with different coding practices. For 

example, LEAP is written in C using X-window libraries, ptraj and antechamber are text-

based C codes, mm-pbsa is implemented in Perl, and the main simulation programs are coded 

in Fortran.  

Thirdly, this separation often eases porting to new computing platforms: only the principal 

simulation codes (sander and pmemd) need to be coded for parallel operation or need to know 

about optimized (perhaps vendor-supplied) libraries. The general procedure employed by the 

Amber9 software is demonstrated in Figure 29. 

A. Preparatory phase  

B. Stimulatory phase  

C. Analysis phase  

D. Rescoring 
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A. Preparatory Phase 

Antechamber 

Antechamber is designed to be used with ―General Amber Force Field‖ (GAFF). This force 

field is specifically designed to cover most of the parameters for chemical compounds and is 

compatible with traditional Amber force fields in such a way that both can be mixed during a 

simulation. Antechamber is used to assign atom types to molecules, and calculate a set of 

point charges. It can perform many file conversions and can also assign atomic charges and 

atom types. The output of antechamber is a ―prepi file‖ which later serves as input for Leap 

program. 

Antechamber solve the following problems: 

1) Automatically identify bond and atom types 

2) Judge atomic equivalence 

3) Generate residue topology files 

4) Find missing force field parameters and supply reasonable suggestions 

Leap 

Leap summarizes several small steps necessary to convert either the original input 

(protein.pdb and ligand.mol2) or output from a previous step (protein.pdb and ligand.mol2) 

into the sander-compatible input files: system.top and system.crd.  

Since proteins are composed modularly of 20 different amino acids, tleap assigns atom types 

and partial charges automatically according to templates. Thus, protein.pdb-files can be read 

in immediately. For other organic molecules (ligands, cofactors), which are not included in 

the library of known templates, from the mol2-files the necessary atom types and partial 

charges have to be derived previously, thus, a hidden sequence of tools applies. Within the 

latter, essentially, antechamber produces a ligand.prep file. For assigning partial charges you 

can choose between two different charge methods: 

a. Gasteiger charges: fast method. 

b. AM1/BCC charges: slow, but robust method. Computes conformation dependent 

partial charges by semiempirical calculations using the program divcon).  

In the current thesis, AM1/BCC charges are utilized. 
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B. Simulatory Phase 

Sander 

The acronym stands for Simulated Annealing with NMR-Derived Energy Restraints. The 

main program of Amber is sander. It carries out energy minimization, molecular dynamics 

and NMR refinements. It step performs force field calculations which are apt to modify the 

coordinates of the system (previously assembled by the tleap-step or a previous sander step). 

The immediate output of the Sander-step is the restart-file; its format however is not 

compatible to common viewing programs or e.g. FlexX or even Tleap. Thus, it has to be 

transformed into the handier output format (pdb) by another program called ambpdb. 

 

C. Analysis  Phase 

Ptraj 

Ptraj is a program to process and analyze sets of 3-D coordinates read in from a series of input 

coordinate files. It reads prmtop format in the Amber software. For each coordinate set read 

in, a sequence of events is performed (in a order specified) on each of the configuration (set of 

coordinates) read in. After processing all the configurations, a trajectory file and other 

supplementary data can be optionally written out. To use this program it is necessary to have 

a. Parameter/topology file 

b. List of input coordinate files 

c. Optionally specify an output file 

d. To specify a series of actions to be performed on each coordinate set read in 

 

D. Rescoring by MM-PBSA and MM-GBSA  

MM-PBSA calculations are performed with the executables integrated in the Amber9 

software. It estimates energies and entropies from the snapshots contained within trajectory 

files (Created during the molecular dynamic simulations by Sander program). The 

calculations are organized and spawned by a Perl script; it collects statistics and formats the 

output in tabular form. The analysis is primarily based on continuum solvation models. 
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Figure 29 : General workflow of an Amber application. 

Different phases of simulation and their associated toolsa nd their respective output file formats, are 
displayed. The Figure demonstates that output at one tool serves as an input for the next tool.  

 

Theoretical back ground of MM-PBSA and MM-GBSA 

The MM/PBSA method [217, 218] was introduced by Srinivasan et al [219]. This method 

proposes a post processing method to evaluate binding free energies in solution. It combines 

molecular mechanics energies with continuum solvent approaches to estimate binding free 

energies. The structures are usually collected from the molecular dynamics simulations or 

Monte Carlo methods. More detailed theoretical aspects of MM-PBSA and MM-GBSA can 

be found in [187, 188, 189]. The total binding free energy of the system can be calculated 

with the equation: 

 

Where, ΔEMM is the molecular mechanics contribution expressed as the sum of the internal, 

electrostatics and van der Waals contributions to binding in dielectric constant, 

ΔGsolv is the solvation free energy contribution to binding expressed as the sum of polar and 

nonpolar solvation free energies (ΔGsolv = ΔGpolar solv + ΔGnon-polar solv respectively); 

ΔGsolvation, the solvation free energy, is calculated in two parts, the electrostatic component 

Gpolar using a Poisson–Boltzmann approach, and a non-polar part using the solvent-

accessible surface area (SASA) model. 

PB GB SASALCPO

Δ Gbinding = Δ EMM + Δ G solvent -T Δ Ssolute

ΔEMM = interaction energy + van der Waals + Electrostatics
ΔG solvent = ΔG solv polar + ΔGsolv non-polar
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TΔSsolute is the contribution of solute entropy to binding and can be calculated by normal 

mode analysis [220]. 

The entropy change can be omitted, if only the relative binding energies of a series of 

structurally similar compounds are required, but if the absolute energy is important, or if the 

compounds are notably different, then its contribution to the final free energy cannot be 

ignored. A study by Kuhn et al [96], suggests that the MM-PBSA function could be used as a 

post-docking filter during the virtual screening of compounds, as their use of a single relaxed 

structure provided better results than usual averaging over MD simulation snapshots. 

 

Ligand database and preparation 

The prerequisite for refining and rescoring of compounds by molecular dynamics is; the 

compound, against which the simulation is performed, should be well inside the binding site 

of the receptor. For this reason, the docking conformations of best 5000 compounds against 

plamepsin (chapter 4) were taken as input. The docking scores of plasmepsin compounds 

when plotted against the number of compounds revealed that there is a significant rise in the 

score of the first 5000 compounds and from there on the docking scores were stable. Hence, 

the top scoring 5000 docking conformations were selected for molecular dynamics 

simulations. 

Preparation of the mol2 database 

AM1-BCC atomic charges were calculated for each compound, and sybyl atom types were 

assigned. A new mol2 file was written, and used for subsequent refinement. The protonation 

state of ligands was left unchanged. The Antechamber program of the Amber software 

performed the preparation of ligand database.  

 

Preparation of plasmepsin II structure 

Starting from the crystal structure of plasmepsin (pdb id: 1LEE), the structure was prepared 

for molecular dynamics simulation that is compatible with the Amber software. All the 

protonation states of the amino acids were assigned to a state consistent with pH 5, because 

plasmepsins are expressed in the acidic food vacuole (acidic pH conditions prevail). Aspartic 

and Glutamic acids were treated as deprotonated except otherwise noted. Lysine and Arginine 

residues were protonated. Histidines were treated as neutral, except for His164, tautomeric 

forms were assigned based on favourable hydrogen bonding with nearby residues. Evidence 

in the literature [221, 207, 222] point out that a few residues should be given special attention; 
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based on the literature, Asp34 and Asp303 were considered as neutral (COOH), and His164 

was considered protonated. Asp34 is of special relevance, as it is one of the two aspartic acids 

in the catalytic dyad. Likewise, HIV protease, which shares many similarities with 

plasmepsins, are known to have one of the two Asp residues (sometimes both) protonated 

when inhibitors bind. It is anticipated that having a neutral Asp34 residue instead of a 

carboxylate would change the hydrogen bonding pattern of ligands in such important region 

of the active site.  

The structure as described above was fully minimized with the sander program of Amber9, 

200ps MD were performed on the hydrogens (all-atom model) and keeping the heavy atoms 

of the protein fixed, and then the structure was re-minimized. All simulations were performed 

at distance dependant dielectric constant =4r. 

5.3 Rescoring Procedure 

The rescoring procedure utilized here is developed by Prof. Giulio Rasteli and is based on the 

BEAR approach [216]. It is an automated procedure
 
for the refinement and rescoring of 

virtual screening results. The procedure starts with an already prepared a pdb file of 

plasmepsin and docked conformations of the best 5000 compounds in mol2 file format. The 

procedure takes one ligand at a time, performs all the necessary steps required for one 

complete simulation, and takes the next ligand given in the input multi-mol file. In the first 

step, the procedure merges the co-ordinates of the docked conformation with the protein to 

create the complex. Then, antechamber is used to create a topology file of the ligand in which 

atoms are described with GAFF atom types and AM1-BCC charges. To make the procedure 

faster, atomic charges of the ligand are not computed during the procedure but read from the 

original mol2 file. This choice has the additional advantage that ligand charge calculations 

can be done once, and used for any target protein. Atomic partial charges of compounds in a 

database are calculated prior to the simulations by using antechamber. There is a possibility 

that Antechamber misses some force field parameters. The missing GAFF force-field 

parameters for the ligand are automatically assigned by parmcheck executable, and Amber 

topologies of ligand, receptor, and complex are created with leap (Amber 9).  

Minimization, molecular dynamics and final re-minimization of the complexes are performed 

with distance-dependent dielectric constant 4, using the sander program. For each of these 

steps, the procedure is highly ―flexible‖ in that it enables the user to set ad-hoc refinement 

options (for example, which residues are allowed to move during MD, the cutoff for non-
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bonded interactions, the number of cycles of minimization etc), depending on the application. 

After refinement of the complex, a pdb file is generated, and the final coordinates of the 

ligand, receptor and complex are updated, and used for binding free energy evaluation with 

Amber MM-PBSA and MM-GBSA. The free energy results (GMM, Gsolv and G’bind) are 

written to a file, and the next compound in the database is analyzed.  

The molecular dynamics simulation parameters used in the current study are minimization on 

the whole protein with distance-dependent dielectric constant =4r, with 2000 steps and a 

cutoff of 12A°. Molecular dynamics simulation is performed on the ligand alone at 300 K for 

100 ps, with SHAKE turned on for bonds involving hydrogen, allowing a time-step of 2.0 fs.  

5.4 Results 

After rescoring the 5000 best docking results by molecular dynamics with Amber and MM-

PBSA and MM-GBSA, the next step is to select the best compounds to test in the 

experimental laboratories. The output of the molecular dynamics simulation and rescoring 

are:  

a. protein-ligand (P-L) complex after molecular dynamics step 

b.  P-L complex after MD and re-minimization step  

c. A text file containing MM-PBSA and MM-GBSA scores.  

A two-step criterion is employed for the final selection of the compounds. In the first step, 

selection of compounds is done based on the MM-PBSA and MM-GBSA scores. 

The starting point of the analysis step is sorting the list of compounds according to MM-

PBSA and MM-GBSA. Two independent lists of compounds were prepared, this is because 

both MM-PBSA and MM-GBSA are reliable in scoring. The reason, why one can rely on 

MM-GBSA and MM-PBSA is, due to the enrichment obtained on the known actives. Figure 

30 and 31 demonstrate the retrieval of all the three known actives in the top 10 rank list, by 

both scoring functions. The MM-PBSA and MM-PBSA scores of the known actives are 

highlighted in Figure 30 and Figure 31. In the next step, top scoring 90 compounds from each 

list were analyzed manually. Each complex is visualized manually in 3D using the UCSF 

Chimera software. Visualization step is done, in order to find whether the compounds are 

making interactions to key residues of the protein and further to check the binding mode the 

compound. Figure 32 illustrates how visualization is performed.  

The major criteria for selection are, the ligand making interactions to the two catalytic 

residues: ASH 34 and ASP214. Secondly, the interaction with other key amino acids: VAL78, 
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SER79, SER218, PHE294, TYR192. The selection of key residues is based on the ligand plot 

information of the plasmepsin crystal structure. Figure 32 demonstrates the comparison of 

refined compounds to that of the co-crystallized ligand of 1LEE, R360.  

The parameters used with Chimera are, intra model hydrogen bonds with relax constraints by 

2.5 Angstrom and 20.0 degrees. The complexes without any interaction to one of the two 

amino acids of catalytic dyad (ASH34 and ASP214) are rejected and the complexes with at 

least one main interaction to amino acids of catalytic dyad were considered. In total 30 out of 

180 compounds were selected and ordered from the vendor Chembridge (10 mg).  

The final 30 compounds are listed in Table 14 along wih their MM-PBSA, MM-GBSA scores 

and the IC50 values. The compounds were identified as N-alkoxyamidine derivatives 

(Compounds 1-7 in the list), Guanidine derivatives (8-15), Amide derivatives (16-23), Urea 

and thiourea derivatives (24-29), Others (30). 

 

 

Figure 30: MM-PBSA scoring against plasmepsin docking conformations.  

This Figure demonstrates the retrieval of known ligands (R360, R370, Pepstatin) in the top ten ranks 

according to MM-PBSA scoring function. 
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Figure 31: MM-GBSA scoring against plasmepsin docking conformations. 
This Figure demonstrates the retrieval of known ligands (R360, R370, Pepstatin) in the top ten ranks 

according to MM-GBSA scoring function. 

 

 

 

Figure 32: Analysis procedure employed for final selection of compounds. 

The Figure on the left hand side demonstrate the chemical compound (compound after docking and 
refining by molecular dynamics simulations) making interactions to ASP34 and ASP214 (catalytic 

dyad), and these interactions are compared to the ligand plot information of 1LEE with co-crystallized 

ligand, R36, obtained from www.pdb.org (Right hand side). Only those compounds, which are similar 
R36 pose, are only considered for final testing. 

http://www.pdb.org/
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S.No. Molecule MMPBSA 

score 

Kcal/Mol 

MMGBSA 

score 

Kcal/Mol 

IC50 values 

nM 

1  

N
O

NH
N

O N

H2N

 

-31.8 -54.2 305.1±1.5 

2 

N
O

NH
N

O N

H2N

Cl

Cl

 

-34.3 -63.3 5.5±2.0 

3 

N
O

NH
N

O N

H2N

 

-31.5 -54.8 6.4±0.7 

4 

N
O

NH2N

O N

H2N

 

-31.3 -46.3 42.6±1.5 

5 

N
O

NH2

O

OCH3

NO2

 

-35.8 -54.2 236.4±0.7 
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6 

N
O

NH2

O

NO2

 

-32.9 -55.4 145.2±2.4 

7 

N
O

NH2

O

H3CO

H3CO

O

Cl

 

-32.5 -61.1 4.3±0.6 

8 

N
H

N

O

N
H

N
H

N O

O

O

 

-29.0 -66.4 62.1±0.6 

9 

N
H

N

O

N
H

N
H

N O

O

O

OCH3

 

-22.2 -59.4 118.1±1.9 

10 

N
H

N

O

N
H

N
H

N O

 

-25.0 -61.5 8.8±0.8 

11 

N

N

N
H

N O

NH

O  

-27.3 -57.9 n.i. 

12 

N

N

N
H

N O

NH

O  

-41.3 -61.5 237.4±1.5 
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13 

N

N

N
H

NH

N
H

N
H

S

 

-21.5 -57.6 1087.6±0.7 

14 

N
H

N

N N

N

O

H
N

Cl

Cl

 

-34.1 -66.9 9.5±1.1 

15 

N
H

S

N N
H

N

O

O
H
N

Cl

 

-30.8 -54.3 96.1±0.2 

16 

N
H

O

NH

O

NO2

 

-31.6 -57.6 30.0±1.8 

17 

N
H

O

NH

O
N

SO2CH3

O

O

 

-33.6 -58.0 n.i. 

18 

N
H

O

NH

O

O

 

-31.7 -49.7 187.1±3.1 

19 O

N
H NHN

O

OCH3

O

NO2

 

-23.8 -56.9 n.i. 
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20 O

N
HHN

Cl

N

 

-30.0 -50.0 189.0±1.4 

21 

H
N

O

S N
H

NC

O

N
H OCH3Cl

OCH3  

-32.3 -55.2 57.3±0.4 

22 

O O

N

S

NH

O

HN

O

O

O

 

-20.2 -55.5 n.i. 

23 

N
N

N
H
N S

N
H

O

OCH3

 

-32.7 -51.6 87.5±0.1 

24 

N
H

O

N
H

S

O2N

O  

-30.9 -46.7 4.4±0.8 

25 

N
H

O

N
H

SNO2

N
N

N

 

-20.4 -57.8 122.9±1.1 

26 

N
H

O

N
H

SNO2

N
N

N

 

-29.0 -55.2 146.4±1.0 

27 

N
H

O

N
H

S H
N

S

Cl

O OCH3

 

-32.5 -50.8 201.1±1.3 

28 Cl

N
H

N
H

O

HN

O

H
N Cl

 

-27.5 -56.2 7.6±1.1 
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29 

N
N
H

N
H

SNHBr

 

-31.6 -47.4 1831.3±1.9 

30 

O

O

O

N
H HN

SO2

NO2

 

-32.8 -55.9 38.9±2.4 

I 
RS367 -42.6 -66.7 18 

II 
RS370 -43.9 -67.6 30 

III 
Pep.A -40.7 -68.4 4.3±0.9 

Table 14: Final selection of compounds identified as plasmepsin inhibitors 

Compounds 1-7 are N-alkoxyamidine derivatives, Compounds 8-15 are Guanidine derivatives, 

Compounds 16-23 are Amide derivatives, Compounds 24-29 are Urea and thiourea derivatives, 
Compound 30 is other compound. The IC50 values for RS367 and RS370 were taken from [208]. 

 

Diversity analysis 

Diversity analysis was performed on the final 30 selected compounds to demonstrate that 

these compounds were diverse and contains several scaffolds (scaffold hopping). Lead 

hopping or scaffold hopping is defined as a technique that replaces the core part of the 

bioactive compound whilst retaining the bioactivity and the interactions made by the 

molecular fragments of the parent compound. The potential application of lead hopping are: 

overcoming the patent and IP issues (replacing the patented core scaffold with new core 

scaffold) and development of backup of series of compounds, i.e., even if one of the scaffold 

fails in the drug development, there is a possibility of replacement by other scaffold.  

Fingerprints for all compounds were created by using FP: BIT MACCS, and then used 

Tanimoto coefficient (TC) as a similarity metric (TC) for calculating the diversity [223]. At 

similarity cut-off of Tanimoto coefficient 0.7, the 30 compounds were classified into different 

clusters, which indicates the final 30 compounds are diverse and dissimilar. Prior to the 

diversity test, 30 compounds were clustered into four classes manually. Through diversity 

test, it is proven that, even inside each cluster, the compounds are diverse, and thus are likely 

to enable lead hopping. Except for one cluster where four compounds are similar (big red box 

shown in Figure 33). The similarity is shown from green to red in the in Figure 33. With 

green stands for absolute dissimilar and red stands for absolute similar compounds. 

The Tanimoto coefficient (similarity = the number of bits set in both molecules divided by the 

number of bits set in either molecule) is a validated and most commonly used similarity 

coefficient in chemical informatics while calculating diversity of the chemical compound 
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database. It ranges from values 0 to 1, while value ―1‖ corresponds to completely similar 

compound and ―0‖ completely dissimilar).  

 

Figure 33: Diversity analysis of best 30 compounds against plasmepsin. 

FP: BIT MACCS fingerprints and Tanimoto coefficient (TC) were used to calculate the diversity 
among the final 30 compounds selected. At similarity cut-off of TC 0.7, the 30 compounds were 

classified into different clusters. The similarity is shown from green to red. With green stands for 

absolute dissimilar and red stands for absolute similar compounds. 

5.4.1 Experimental results 

The experimental biochemistry assay results reported here are completely performed by Prof. 

Doman Kim and his colleagues, at Chonnam National University, South Korea. I include 

these results to illustrate that the in silico approach described in my thesis finally lead to 

biochemically active inhibitors. 

Expression and preparation of recombinant plasmepsin: The gene of plasmepsin II [224, 

225] was provided by MR4/American Type Culture Collection (USA) and expressed as 

inclusion bodies in Escherichia coli BL21(DE3)pLysS harboring PMII-pET3d. Expression and 
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purification of recombinant plasmepsin II protein was conducted according to the method 

described by Hill et al [226]. with minor modification.  Bacteria were grown by shaking in 1 

litre of LBAMP at 37 °C and the recombinant protein was induced by the addition of 400 μM 

isopropyl-β-D-thiogalactopyranoside (Biobasic, Korea). After the incubation with vigorous 

shaking at 16 °C for 18 h. E. coli were centrifuged and resuspended in lysis buffer (25 ml of 

50 mM Tris-Hcl, 25 mM NaCl, pH 8.0) with 50 µl of β-mercaptoethanol (BME). The 

suspension was sonicated on ice to lyse the bacteria and centrifuged. The pellet containing 

inclusion bodies was washed in 25 ml of lysis buffer with 50 µl of BME, centrifuged, washed 

again with 0.1 M Tris pH 10 with 50 µl of BME and re-centrifuged. The pellet was re-

suspended in 10 ml of 8 M urea in 100 mM Tris pH 8.0, 1 mM glycine, 1 mM EDTA and 

sonicated, after which 35 µl of BME were added. The suspension was stored at 4 °C 

overnight, and centrifuged at 23,000 x g for 30 min at 4°C. The supernatant was diluted 1:10 

(v/v) in water and stirred overnight to allow refolding of recombinant protein. The refolded 

proteins were purified on a 50 ml Q-Sepharose Fast Flow (GE Healthcare, USA) equilibrated 

in 100 mM Tris-HCl (pH 8.5). After extensive washing, the recombinant protein was eluted 

with linear gradient of 0 - 1 M NaCl in the same buffer. The fraction containing the 

recombinant protein was concentrated and dialyzed in 10 mM Tris-HCl (pH 8.5), 5 mM NaCl, 

20 mM BME. The purified protein was stored at -20 °C before using it for any assay.   

FRET Substrate degradation inhibition assay: The substrate used for biological assay is a 

synthetic peptide (DABCYL-Glu-Arg-Nle-Phe-Leu-Ser-Phe-Pro-EDANS; Bachem, USA) 

designed to mimic the hemoglobin cleavage site. The substrate is conjugated with the 

fluorescent donor EDANS and the quencher DABCYL [227].The final volume of assay 

mixture is 50 μl. 5 μl of recombinant plasmepsin II (15 ng/μl) were acidified in 35 μl of assay 

buffer (100 mM sodium acetate, pH 4.5, 10% glycerol and 0.01% Tween 20). Inhibitors were 

dissolved in DMSO, serially diluted to the working concentrations (ranging from 1 nM to 10 

μM) and 5 μl aliquots were added to the acidified enzyme. The final DMSO concentration in 

assay mixture was 1%. The enzyme and inhibitor mixture were incubated for 30 min at 37 °C 

and finally, incubated for 10 min at 37 °C with 5 μl of FRET substrate 50 μM, after that the 

fluorescence intensity (excitation 405 nm, emission 510 nm) was measured using a 

fluorescence plate reader SoftMax Pro 5 (Molecular Devices, USA). 
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Figure 34: IC50 plots of five finally selected compounds and a control. 

IC50 plots of: a) pepstatin A, b) compound 7, c) compound 10, d) compound 16, e) compound 24, and 
f) compound 11. Error bars represent standard deviations of the results from three independent 

experiments. 

 

Biological testing 

The 30 compounds in Table 14 are commercially available, and were purchased from 

ChemBridge at a purity grade higher than 95%. The compounds were tested against 

recombinant P. falciparum plasmepsin II using a well documented inhibition assay based on 

FRET substrate degradation [225, 227]. The known plasmepsin II inhibitor Pepstatin A was 

chosen as positive control [199]. A sample containing the assay mixture with 1% DMSO and 

without inhibitor was used as negative control. The IC50 values of the thirty compounds and 



         Chapter 5. Discovery of novel plasmepsin inhibitors by refining and rescoring through molecular dynamics 

 

119 

 

Pepstatin A are reported in Table 14. The Table 14 also reports IC50 data of RS367 and 

RS370 taken from the literature [208]. Remarkably, 26 compounds were identified as active 

inhibitors with IC50 values ranging from 4.3 nM (compound 7) to 1.8 µM (Compound 29), 

while four compounds  (11, 17, 19, 22) were inactive. Interestingly, seven compounds (2, 3, 7, 

10, 14, 24, 28) showed IC50 values similar to Pepstatin A (IC50 of 4.3 nM). Figure 34 reports 

the IC50 plots for Pepstatin A (Figure 34A), four of the most active compounds (7, 10, 16 and 

24) taken as representatives of each chemical class here investigated (Figure 34B-E), and the 

inactive compound 11 (Figure 34F).  

Chemical compounds: All the thirty tested compounds were commercially available and 

provided by ChemBridge. Even though, the purity grade of the supplier certificated 

compounds higher than 95%, CNH combustion analysis was performed to evaluate their 

purity. Rossella Gallesi, University of Modena has kindly performed the combustion analysis. 

All the 30 compounds showed purity higher than 95%.  

5.5  Summary 

The application of refinement and rescoring procedure for post-docking analysis and selection 

of molecules for biological testing, led to the selection of 30 compounds with favorable 

predicted binding free energies and interaction with key plasmepsin residues, belonging to 

four different chemical classes. The impact of molecular dynamics simulations followed by 

MM-PBSA and MM-GBSA is quite significant, while selecting the compounds for 

experimental testing. The in vitro assay revealed that 26 of the 30 compounds selected were 

able to inhibit plasmepsin II with IC50 values in the range of 4 nM to 2 mM. These results are 

very encouraging and suggest that the overall approach (docking as first step followed by 

molecular dynamics simulations and rescoring by MM-PBSA and MM-GBSA) used to select 

the candidate molecules can be used to discover new plasmepsin inhibitors. Six out of the 26 

compounds exhibited better activity than very-well known protease inhibitor, pepstatin A. 

Notably, among the chemical classes discovered in this study, only urea compounds have 

been previously reported to be plasmepsin II inhibitors (so-called ―Walter Reed‖ 

compounds).The remaining classes effectively provide novel and interesting opportunities for 

developing compounds with potential antimalarial activity. These compounds are currently 

under evaluation for their inhibitory activity on parasite growth and for their potential toxicity 

on human cells. In addition, further studies will be undertaken to investigate the SAR of these 

new inhibitors. 
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6 Chapter 6: Large-scale Virtual screening on multiple targets of malaria 

Currently existing antimalarial drugs are targeting single target. However, due to the 

complexity of the Plasmodium life cycle and drug resistance more targets and more metabolic 

pathways have to be targeted to counteract the disease. In other words, for the effective 

treatment of the disease, it is necessary to identify drugs that have novel mechanism of action 

and are further able to target multiple targets at the same time. Moreover, it will be a benefit, 

if the newly identified drugs target different stages of plasmodium life cycle or target 

proteins/enzymes involved in different metabolic pathways. This multi-target approach will 

definitely overcome drug resistance, which is a major problem haunting antimalarial drug 

discovery. 

Followed by the success achieved on the virtual screening plasmepsin, (WISDOM-I reported 

in chapter 4) both on the computation and biological sides, several scientific groups around 

the world proposed targets, which led to the second assault on malaria, i.e., WISDOM-II. The 

WISDOM-II project deals with several targets implicated in malaria (mostly X-ray crystal 

structures). Targets from different classes of proteins are tested; reductases such as malarial 

dihydrofolate reductase (DHFR) and transferases such as glutathione-S-transferase (GST), see 

Table 15. Hence, in the current chapter: WISDOM-II
4
, proteins that are involved in different 

metabolic activities of the parasite are selected.  

As different species of Plasmodium cause malaria to humans, proteins not only from 

Plasmodium falciparum, but also from the Plasmodium vivax are embattled. The extension of 

the work to target P. vivax is, due to its resurgence and casualties caused [228]. From Table 

15, it is clear that targets are chosen as such to identify novel inhibitors for different proteins 

implicated in malarial life cycle with the idea in mind to interfere with resistance.  

This chapter reports the large-scale virtual screening effort on the multiple targets, with focus 

on the improvements to the existing workflow described in chapter 4, such as novel 

procedures and strategies for storage, post-processing, analysis of the docking results, and 

finally selecting a representative set of potential inhibitors for further in vitro and in vivo 

testing. The main goal of the WISDOM-II project is to identify broad range of inhibitors that 

are active against multiple independent targets implicated in malaria. 

 

                                                
4 This chapter is based on Kasam V et al., WISDOM-II: Screening against multiple targets implicated in malaria 

using computational Grid infrastructures. Malaria Journal, 2009, 8:88. 
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Target Activity Structure PDB id Resolution   

Å 

Cocrystallized 

Ligand 

Co-

factor 

PfGST Detoxification Dimer 1Q4J 2.2 GTX NO 

Pf DHFR (wild 

type) 

DNA 

synthesis 

Polymer 1J3I 2.33 

 

WR99210 NADPH 

Pf DHFR 

(Quadruple 

mutant) 

DNA 

synthesis 

Polymer 1J3K 2.10 

 

WR99210 NADPH 

PvDHFR  

(wild type) 

DNA 

synthesis 

Polymer 2BL9 1.90 

 

Pyrimethamine NADPH 

PvDHFR (Double 

mutant) 

DNA 

synthesis 

Polymer 2BLC 2.25 

 

Des- 

chloropyrimetha

mine 

NADPH 

Table 15: Structual features of potential targets identified for the WISDOM-II project. 

 

6.1 Target structures 

6.1.1 Glutathione-S-transferase.  

The P. falciparum glutathione S-transferase enzyme belongs to a super family of 

multifunctional, dimeric, phase II detoxification enzymes that can bind various xenobiotic, 

electrophilic substrates. Parasites as well as other rapidly dividing cells are highly dependent 

on a functional antioxidant defense system. For most parasites the sources of reactive oxygen 

species is mainly their high metabolic rate as well as oxidative stress imposed by the host's 

immune system. Additionally, the P. falciparum parasite performs haemoglobin degradation - 

a source of oxidative stress and free radicals [229]. The antioxidant defense system of P. 

falciparum is therefore a pathogenicity mechanism; an ensemble of antioxidants like 

glutathione as well as antioxidant enzymes mediates it [229]. 

The primary function of GST lies in the protection of cellular macromolecules. GST 

deactivates harmful chemicals via the nucleophilic addition of the thiol (SH) group from 

glutathione (GSH), to the hydrophilic moiety of the toxic agent, thus rendering the 

electrophilic compounds harmless and enabling the removal of the substance. Because of the 

inactivation of potentially hazardous substances, GST activity is beneficial to an organism's 

health and survival [230, 231]. In chloroquine-resistant parasites, GST activity is directly 

related to drug pressure [232, 233]. 

Inhibition of GST will impair the general detoxification processes and, because the enzyme 

has peroxidase activity, reduce the antioxidant capacity of the parasite [234]. 
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PfGST (EC 2.5.1.18) is a multi-functional protein consisting of two monomers. In accordance 

with other GST enzymes each monomer of PfGST contains an N-terminal α/β domain and C-

terminal α-helical domain. The active site is defined by two binding sites: the G site, which 

binds GSH, and the more flexible H site, which can bind various other substrates. 

Hydrophobic effects predominantly hold the monomers together, but four salt bridges and 

four hydrogen-bonded pairs of residues also contribute to the dimerization [235, 236]. The G 

site is relatively rigid and not greatly affected by inhibitor binding, with the exception of the 

C-terminal tail and the loop connecting the α-4 and α-5 helices. This region is very specific 

for its natural substrate (GSH). The recognition and binding occur via a network of polar 

interactions between PfGST and GSH. 

The hydrophobic binding pocket (H site) is considerably more variable than the G site, due to 

the nature of second substrates. The substrate specificity of different isozymes in the GST 

super family can be attributed to the variation of amino acids present in the H site 

consequently leading to different interactions a ligand can form with amino acids in the H site 

of the enzymes [237].  

PfGST also possesses a short μ-loop. In contrast to other μ-class GST enzymes, PfGST has 

only five residues after α-8, which is too short to form a wall or α-helix. This feature is 

lacking in PfGST, resulting in a more solvent-accessible H site. The result is that the H site is 

less shielded from solvents [237, 238].
 

6.1.2 Plasmodium vivax and Plasmodium falciparum DHFR. 

 Plasmodium vivax is becoming resistant to chloroquine and other antifolates, such as 

pyrimethamine [239, 240, 241]. The target enzyme of pyrimethamine is dihydrofolate 

reductase (DHFR). It was demonstrated that the resistance to pyrimethamine is caused by a 

point mutation [242]. Interestingly, the crystal structure of DHFR enzyme from P. vivax was 

published by Kongsaeree et al in 2005 [243], where they indicated that the principal 

difference between DHFR wild type and mutant, implicated in the antifolate resistance, is a 

structural change in the chain of Asn108, and this steric conflict is not present in P. 

falciparum.   

Antifolates, such as pyrimethamine and cycloguanil, are the most exploited class of anti-

malarials. To date, the most widely used antifolate is a combination of pyrimethamine, a 

dihydrofolate reductase (DHFR) inhibitor, and sulphadoxine, a dihydropteroate synthase 

(DHPS) inhibitor.  DHFR and DHPS are two enzymes that belong to the folate biosynthetic 

pathway [19]. Although their synergistic action results in enhanced activity, drug resistance 



                                      Chapter 6. Large-scale virtual screening on multiple targets of malaria 

 

123 

 

seriously compromises their efficacy. As a major advance towards the understanding of drug 

resistance in malaria, it has been demonstrated that drug resistance is due to single and 

multiple mutations of various amino acids in the DHFR and DHPS active sites in P. vivax as 

well as P. falciparum [244, 245]. The analysis of the gene encoding P. falciparum DHFR from 

resistant parasites suggested that antifolate resistance arises from point mutations in the 

DHFR domain, mainly at positions 16, 51, 59, 108, and 164. It has been demonstrated that 

parasites with mutations at 16 and 108 have developed resistance to cycloguanil, with a 

thousand-fold drop in the binding affinity (Ki) compared with the wild type, whereas the Ki of 

pyrimethamine is almost unaffected. On the contrary, there is cross-resistance between the 

drugs when multiple mutations at position 51, 59, 108 and 164 occur. 

Combined homology modeling and molecular dynamics simulation studies proposed how 

pyrimethamine, cycloguanil and WR99210 (a third-generation antifolate) bind to wild type 

and resistant mutant P. falciparum and P. vivax DHFRs [246, 247]. Crystal structure 

determination of the malarial DHFRs in complex with antifolates have confirmed and 

strengthened the proposed binding modes [248, 247]. 

 

6.2 Virtual docking procedure 

The different steps of the virtual docking procedure will be described in the following section.  

6.2.1 Target preparation 

Glutathione-S-transferase (GST) 

 The X-ray crystal structure of GST utilized is 1Q4J [33]. 1Q4J is a homo-dimer with two 

chains: A and B. In the first step, all the crystal water molecules were removed from the 

protein. The active site is defined as 8Ǻ around the co-crystallized ligand: GTX. All the 

residues that are significant for activity of the protein and binding of the ligand are included in 

the active site. Re-docking with GTX ligand is performed for further optimization of the 

target parameters as well as software parameters. 

 

Plasmodium vivax DHFR (PvDHFR) and Plasmodium falciparum DHFR (PfDHFR).    

The protein structures used in this investigation are the crystal structures of wild-type P. 

falciparum DHFR (PDB code 1J3I), and of its N51I+C59R+S108N+I164L highly resistant 

mutant (PDB code 1J3K), both in complex with NADPH and the potent inhibitor WR99210. 

The structures of wild type P. vivax DHFR (PDB code 2BL9) and of its S58R+S117N 

resistant mutant are (PDB code 2BLC) in complex with pyrimethamine and des-chloro 
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pyrimethamine, respectively [243, 247]. The structures were cut at residue Asn231, which 

corresponds to the DHFR domain of the bifunctional DHFR-TS structure. Of the dimer, unit 

B was chosen because of its less missing residues. Met1 was built as in unit A, and the 

position of missing residues from Asp87 to Asn90 was modeled using Modeller software 

[249]. At this purpose, the enzyme sequence with the four missing residues was aligned with 

the complete sequence, and ten models were generated with the Modeller software using 1J3I 

as template. The best model according to Prosa II was saved, and the coordinates of the four 

missing residues were inserted back in the original crystal structure. For the quadruple mutant 

of P. falciparum DHFR, the missing segment from residue 81 to 97 was taken from the wild 

type structure. P. vivax DHFR was prepared using the same methodology. Residues E24 and 

K48, which have truncated side chains in the original crystal structures, were assigned based 

on standard Amber topologies of amino acids. Residues from 84 to 105 missing in the double 

mutant structure were taken from the wild type structure. 

All water molecules in the crystal structure were removed except for two conserved waters 

embedded into the protein (corresponding to W1249 and W1250 in the original 1J3I crystal 

structure) and close to the important residue D54. Hydrogens were added to the structures 

using the internal coordinates of the AMBER all-atom database. All Lys and Arg residues 

were positively charged and Glu and Asp residues negatively charged. All calculations were 

performed with AMBER9 and the ff03 force field [250]. The parameters of the cofactor 

NADPH were taken from previous simulations [250, 248].  

The structures prepared as described above were refined with energy minimization, 

employing a distance-dependent dielectric constant e=4r and a cutoff of 12Å for non-bonded 

interactions. Firstly, 500 steps of conjugate gradient energy minimization were performed on 

the hydrogen atoms only, followed by 5,000 steps of minimization on the entire structure. 

Then, in order to refine the position of the hydrogen atoms added with Amber, 50ps 

molecular dynamics at 300°K was performed on the hydrogens by adding strong restraints on 

the heavy atoms. Finally, 5000 steps of minimization were performed without restraints. All 

minimizations were performed on the protein structures with the corresponding antifolates 

bound in the active site (WR99210 or Pyr). For the antifolates, partial atomic charges on 

atoms were calculated with the AM1-BCC
 
method [251] implemented in the antechAmber 

module of Amber9. Atom types and missing force-field parameters of the ligands were 

assigned based on the General Amber force-field (gaff) [252].  
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The target structures, P. falciparum and P. vivax DHFR were proposed by Prof. Guilio 

Rastelli, University of Modena, Italy. The initial preparation of the target and analysis of the 

final results were also performed by Prof. Guilio Rastelli group.  

6.2.2 Setting up the platform before large-scale virtual screening 

Docking was performed on ZINC database, which is collection of 4.3 million ready to dock 

chemical compounds. The docking software utilized is FlexX. FlexX [209, 78] and ZINC 

database are already discussed in chapter 4. The parameter sets that were utilized in these 

experiments are identical to those described in chapter 4 (Maximum overlap volume and 

Place particles). 

 

Re-docking 

The results of the re-docking experiments are displayed in Table 16. Results are analyzed at 

three levels: the RMSD (root mean square deviation) between the docking pose and the co-

crystallized ligand, the docking score and the interaction information between protein and 

ligand. The docking poses of the co-crystallized ligands generated by FlexX are manually 

visualized, and compared to their respective ligand plots. Two aspects were considered; the 

binding mode of the docking pose should be similar to ligand plot and should make 

interactions to the key residues of the receptor as described in ligand plots (www.pdb.org). 

Table 16 displays the docking score and RMSD of the best docking conformation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.pdb.org/
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Target Ligand Total 

Score  

RMS-

Value 

Total 

Score  

RMS-

Value 

Total 

Score  

RMS- 

Value 

Total 

Score  

RMS-

Value 

1 2 3 4 

1Q4J_a GTX -24.33 3.68 -20.99 7.53 -20.15 6.94 -25.93 7.11 

1Q4J_b GTX -19.93 6.45 -18.33 11.83 -18.33 11.78 -25.07 6.28 

2BLC CP7 -13.47 4.88 -14.09 4.78 -12.53 4.45 -14.43 4.78 

2BL9 CP6 -13.657 4.71 -12.50 6.17 -13.65 4.71 -12.50 6.17 

Target Ligand Total 

Score  

RMS-

Value 

Total 

Score  

RMS-

Value 

Total 

Score  

RMS- 

Value 

Total 

Score  

RMS-

Value 

5 6 7 8 

1J3K WR9 -24.33 3.68 -23.91 1.81 -23.75 2.21 -26.41 3.14 

1J3I WR9 -30.75 2.49 -21.98 1.41 -20.83 2.69 -25.69 1.76 

Table 16: Re-docking results of different targets in different parameter sets of FlexX 

 

For target PfGST (1Q4J: PDB ID), parameter set 1 performed better compared to other 

parameter sets. However 3.68 Å is still a big deviation (ideal RMSD should be <2Å), but the 

binding mode the co-crystallized ligand adopted was quite convincing, as the docking pose 

was making interactions to the key residue. Besides that, the docking pose made interactions 

to the key residues responsible for the activity of the protein. In case of P. vivax DHFR 

(2BLC and 2BL9), the docking of the co-crystallized ligand did not perform well. The RMSD 

deviations were high (>4Å) and the binding modes were not convincing. This is due to 

clashes between the protein and ligand atom surfaces. For PfDHFR, re-docking was 

performed against protein structures before and after minimization by Amber software. 

Docking software parameters were tuned accordingly. For PfDHFR, we increased the 

maximum allowed overlap between the protein and ligand atom to diminish the van der Waals 

clashes. Re-docking against minimized structures with the same parameter sets gave best 

results. All the parameter sets reproduced the actual binding mode of the ligand, further made 

interactions to key amino acids and RMS deviation were less than 2 Å. Re-docking results of 

PfDHFR minimized structures are displayed in Table 16. Besides docking the co-crystallized 

ligand, well-known inhibitors against PfDHFR are docked. Table 17 and 18 displays the 

results of cycloguanil and pyrimethamine, WR9 under different docking parameter sets. 

Parameter 8 (maximum allowed overlap volume between protein and ligand surface:100Å
3
) 
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gave the best results in terms of docking score, docking conformation and interactions to key 

amino acids.  

 

 Best Score 

(kJ/mol) 

RMSD for 

best 

solution  

(Å) 

Rank for 

Best 

RMSD 

solution 

Score for 

best RMSD 

Solution 

Best 

RMSD 

(Å) 

QM_WR9_10 -23.22 3.37 106 -9.85 0.76 

QM_WR9_20 -23.91 1.81 158 -9.85 0.76 

QM_WR9_30 -23.75 2.21 97 -12.57 0.75 

QM_WR9_100 -26.41 3.14 40 -18.06 1.14 

QM_CYC_10 -23.25 1.46 525 -12.40 0.92 

QM_CYC_20 -23.25 1.46 525 -12.40 0.92 

QM_CYC_30 -23.25 1.46 146 -20.39 0.97 

QM_CYC_100 -23.25 1.46 699 -15.08 1.01 

QM_PYR_10 -23.68 1.21 8 -21.80 0.69 

QM_PYR_20 -23.68 1.21 8 -21.80 0.69 

QM_PYR_30 -23.60 1.26 16 -22.08 0.74 

QM_PYR_100 -21.95 1.51 20 -20.31 0.97 

Table 17: Re-docking results against quadrupule mutant DHFR.  
QM= Quadruple mutant, WT = Wild type; RMSD is in Angstroms; Score is the free energy in kJ/mol 

 

The results displayed in Table 17 correspond to the quadruple mutant results (1J3I: PDB ID) 

and Table 18 corresponds to the wild type results (1J3K: PDB ID). Figure 35 and 36 display 

the re-docking pose of WR9 against minimized structure of the Pf DHFR (1J3K) and 

PfDHFR (1J3I), respectively, on the right hand side of the Figure 35 and 36, we can see the 

docking pose (CPK color) and reference co-ordinates in red color (IJ3K) and violet color 

(1J3I). On the left hand side protein-ligand interactions are displayed. Highlighted are the 

interactions responsible for the activity of the protein (parameter sets 5, 6, 7, 8 correspond to 

maximum allowed overlap volume 10, 20, 30, 100 Å3 respectively). 
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 Best Score 

(kJ/mol) 

RMSD for 

best 

solution 

(Å) 

Rank for 

Best 

RMSD 

solution 

Score for 

best RMSD 

Solution 

Best 

RMSD 

(Å) 

WT_WR9_10 -30.75 2.49 57 -21.98 0.91 

WT_WR9_20 -21.98 1.41 46 -13.78 0.91 

WT_WR9_30 -20.83 2.69 2 -19.67 0.99 

WT_WR9_100 -25.69 1.76 4 -22.47 0.83 

WT_CYC_10 -24.36 1.43 622 -19.60 0.89 

WT_CYC_20 -24.47 1.46 720 -19.88 0.95 

WT_CYC_30 -24.47 1.46 7 -22.16 0.95 

WT_CYC_100 -24.70 1.49 11 -31.49 0.97 

WT_PYR_10 -29.72 1.25 6 -28.02 0.46 

WT_PYR_20 -29.73 1.26 2 -27.70 0.53 

WT_PYR_30 -29.73 1.26 2 -27.70 0.53 

Table 18: Illustrates re-docking results against wild type DHFR. 

QM= Quadruple mutant, WT = Wild type; RMSD is in Angstroms; Score is the free energy in kJ/mol 

 

 

 

Figure 35: Illustrates the re-docking of WR9 ligand against 1J3K in parameter 8 

 



                                      Chapter 6. Large-scale virtual screening on multiple targets of malaria 

 

129 

 

 

Figure 36:  Illustrates the re-docking of WR9 ligand against 1J3I in parameter 8 

On the left hand side of both the figures, Interaction information between ligand atom and target 
protein are displayed. On the right hand side redocked pose (CPK color) and reference coordinates 

(Red color) are displayed 

 

Virtual screening on the EGEE Grid infrastructure   

After setting up the docking platform, virtual screening was performed on 4.3 million 

compounds against the targets specified in Table 15. Screening 4.3 million compounds on 

multiple target structures is done on EGEE and its related Grid infrastructures (AuverGrid, 

EELA, EUChinaGrid and EUMedGrid). Deployment of docking jobs and WISDOM 

production environment is already discussed in chapter 3.  

6.2.3 Database schema to store the results 

The outputs of the docking results in FlexX are log files. All the results are stored and 

analysed by using MySQL databases. Three different forms of results are saved and analysed 

from each docking assay:  

i. Docking scores of the ten best solutions after clustering  

ii. Interaction information between protein and ligands of the ten best solutions,  

iii. Binding modes of the ten best solutions.  

 

During the first deployments (WISDOM-I-chapter 4) the results were stored on the Grid 

storage elements using the Grid data management, this format made the analysis of the results 

particularly difficult. Since, docking and scoring results often need to be extracted, parsed, 

and analyzed by biologists, user-friendly data retrieval systems are needed.  
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Hence, it was decided to store the docking results in a relational database. The relevant 

information (docking score and interaction information) were parsed directly into a relational 

database, and the user (biologist) can use SQL queries to find and retrieve relevant 

information. 

The database is designed around the docking table (Figure 37). The total docking score in 

FlexX is the result of six different individual energy contributions. Along with the total score, 

these six individual energy contributions are also stored. The insertion of records was 

performed directly at the end of the docking jobs on the Grid. The raw result files (Docking 

results in log files) are also stored and replicated on the Grid storage elements for the backup.  

A simple perl script, using perl DBI library, parses the result files, builds the useful 

information, and further insert the data from the Grid to a remote MySQL server.  

The real interest of such a solution is that the useful data are immediately available for query 

and analysis during the process. The usage of relational database along with SQL eases the 

selection of the best compounds, as they can be selected accordingly to any attribute of the 

database tables. As almost all programming languages offer the ability to access database 

management systems through APIs, it will also ease the interoperability with web servers, for 

instance, if one wants to be able to monitor and view the data on a web interface. 

 

Figure 37: A view of the result database schema used to store and analyze docking results in 

WISDOM-II.  
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6.2.4 Strategies adopted for analysing the results 

During WISDOM-I project, described in chapter 4, the compounds with best docking scores 

were visualized manually. Interestingly it was observed that, some of the top scoring 

compounds were making interactions to the key residues, but the binding modes of the 

compounds were not optimal and not comparable with the ligand plots of co-crystallized 

ligands, one of the reason may be due to the rigid nature of the receptor  

Consequently, as described in chapter 5, the result analysis took place by first extracting the 

compounds based on docking scores and then by rescoring the best docked ligands with more 

sophisticated scoring functions. Such workflow, called BEAR (Binding Estimation After 

Refinement) [216] significantly improved the overall procedure and resulted in the 

identification of plasmepsin inhibitors (WISDOM-I).  

Hence, the same workflow: Initial selection of compounds by docking score and further 

rescoring by BEAR procedure is utilized in WISDOM-II. The best 5,000 scoring 

conformation (against GST) are extracted and subjected them to molecular dynamics 

simulations and MM-PBSA and MM-GBSA calculations [219, 217]. After rescoring by 

molecular dynamics methods, the compounds are further manually visualized by using 

Chimera software [253] and other structural visualizing software. Figure 38 illustrates the 

complete filtering process employed in the WISDOM-II project. 
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Figure 38: Overall filtering process employed in WISDOM-II project. 
Demonstrates overall filtering process employed in WISDOM-II project. The first three steps in the 

workflow (Docking, Molecular dynamics and rescoring by MMPBSA, MM-GBSA) are performed on 

Computational Grids and the visualizations by chimera software are performed manually on the local 
machine of the user. 

 

6.3 Results and Discussion 

Docking results 

Docking results of PfGST are represented in Table 19. Six amino acids were considered 

responsible for the activity of the target PfGST: Tyr9, Gln58, Val59, Ser72, Gln71 and Lys15. 

Chemical compounds interacting with these amino acids were of significance and hence 

computed. All the ten top scoring compounds displayed in Table19 made interactions to these 

key amino acids. A binary scoring mode was adopted for the residue reactions in Table 19, 

column 3: ―0‖ represents false (no interaction with the specified amino acid) and ―1‖ 

represents true (either a hydrogen bond or a hydrophobic interaction, was made). From Table 

19, it is clear that all the top scoring compounds are making interactions with at least one of 

the key amino acids. These observations are later compared to the standard protein ligand 
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interaction information obtained from ligand plots (www.pdb.org). This particular method not 

only allowed us to select compounds based on scoring but also based on interaction 

information (hydrophobic and hydrophilic interactions), which is very significant from the 

structural point of view for the identification of hits.  

 

Compound FlexX score Interaction to Key AA’ 

ZINC03989574 -50.586 10111 

ZINC03989578 -49.698 11101 

ZINC04847284 -49.698 11101 

ZINC03930012 -48.396 10000 

ZINC04522767 -47.633 11100 

ZINC05808725 -47.006 01011 

ZINC04068384 -46.956 01011 

ZINC03948265 -46.286 11100 

ZINC02748596 -46.117 11111 

ZINC02102883 -46.016 01011 

Table 19: Represents top compounds by docking against PfGST with interactions to key amino acids. 
The Table illustrates the ZINC ids of the top scoring compounds and their docking scores. In the last 

column, ―1‖ represents a presence of an interaction to key amino acid and ―0‖ represents, no 

interaction to key amino acids. It was observed that almost all the top scoring compounds made at 

least one interaction. 

6.3.1 Diversity analysis of top scoring compounds for PfGST and PfDHFR 

To give wide overview on the results obtained by docking, diversity analysis against the 

PfGST best scoring 5,000 compounds and PfDHFR best scoring 15,000 compounds was 

performed by using the MOE software [254]. Fingerprints of all the compounds were created 

by using FP: BIT MACCS and then used Tanimoto coefficient (TC) for calculating the 

diversity among the compounds [223]. At similarity cut-off of Tanimoto coefficient 0.7, out 

of 5,000 compounds of PfGST; 3,394 dissimilar clusters were identified by this method, 

which further indicates that the best 5,000 compounds diverse and dissimilar. Diversity 

analysis is performed to demonstrate the best compounds by docking score are sufficiently 

diverse for the further analysis, and for the identification of novel scaffolds. Pair wise 

frequency (Y-axis) and Tanimoto coefficient value (X-axis) are plotted, and displayed in 

Figure 39. The values of mean, median, 1
st
 quartile, 3

rd
 quartile of the histogram are 0.44, 

0.43, 0.37, 0.50 respectively. The 1
st
 quartile and 3

rd
 quartile values signify that 25% of the 
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compounds possess TC values of 0.37 and 75% of the compounds possess TC values of 0.5. 

For PfDHFR diversity analysis is performed against 15,000 top scoring compounds. Pair wise 

frequency (Y-axis) and Tanimoto coefficient value (TC) (X-axis) are plotted and displayed in 

Figure 40. The values of mean, median, 1
st
 quartile, 3

rd
 quartile of the histogram are 0.42, 

0.40, 0.34, 0.48 respectively. The 1
st
 quartile and 3

rd
 quartile values signify that 25% of the 

compounds possess TC values of 0.34 and 75% of the compounds possess TC values of 0.48. 

These observations and figures indicate that the top scoring compounds are diverse and have 

potential to find novel compounds. The frequency on the Y-axis represents pair wise 

similarity of each compound against all the compounds in the database (5,000 X 5,000 times 

for PfGST). 

 

 

Figure 39: Diversity analysis of the top scoring 5000 compounds against PfGST 

.  
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Figure 40: Diversity analysis of the top scoring 15000 compounds against PfDHFR 

Demonstrates diversity analysis of the top scoring 15000 compounds against PfDHFR. The red line on 

the histogram is placed at TC value 0.7 and large bars on the left hand side before the red line 
indicates, the compound dataset is diverse. 

 

Modeling aspects of final hits against PfGST 

To understand the interactions between PfGST and final hits, the ligand plots for each 

complex (PfGST and the compound) were generated and visualized manually. Protein ligand 

interactions are studied in three dimensions and for clarity in displaying they are depicted as 

2D interaction diagrams. These interactions presented here are generated using the ligand plot 

module of MOE software. It is evident from Figure 41 that inhibitors are located in the center 

of the active site, and are stabilized by hydrogen bonding interactions. The hydrogen bonding 

information along with their distances is listed in Table 20. Figure 41 displays the binding 

modes of the five best compounds in the active site of the PfGST_a chain. To allow the 

comparison of binding mode of the compounds and co-crystallized ligand, ligand plot and 

interactions information is generated for GTX (Cocrystallized ligand of PfGST). It is obvious 

from Table 20 and Figure 41 that the compounds listed here possess comparable binding 

poses and patterns. Especially compounds ZINC03533756, ZINC03830430, ZINC03580546, 

ZINC02305869 generated interaction patterns very similar to the one observed with GTX; 

making hydrogen bonding to Val59 and Ser72 with backbone as well as with side chains of 

the amino acids. 
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Figure 41: PfGST-compound hydrogen bonding interaction 
Interaction informations are displayed for the best compounds which have comparable hydrogen 

bonding pattern like that of co-crystallized ligand, a.GTX. 
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Ligand Name Ligand—Protein Protein Residue Type of interaction Distance Ǻ 

GTX 1. N--O & O—N 

2. O—OG & O—N 

3. N—O 

1. Val59 

2. SER72 

3. LYS117 

1. H-don & H-acc 

2. H-acc & H-acc 

3. H-don 

1: 2.85 & 2.81 

2: 2.51 & 2.87 

3: 2.81 

ZINC012010752 1. N—OE & O—NE 

2. O—OG 

3. O—NE 

1. GLN71 

2. SER72 

3. GLN56 

1. H-don & H-acc 

2. H-acc 

3. H-acc 

1: 1.93 & 3.02 

2: 2.78  

3: 3.02 

ZINC01788367 1. O—N & O—OG 1. SER72 1. H-acc & H-acc 1: 3.02 & 2.89 

ZINC02305869 1. O—NZ & O—NZ 

2. O--NE  

3. O—N & O—OG 

1. LYS15  

2.GLN71 

3. SER72 

1. H-acc & H-acc 

2. H-acc 

3. H-acc & H-acc 

1. 2.97 & 2.93  

2: 2.99 

3: 2.89 & 2.83 

ZINC02449312 1. O—OG 1. SER72 1. H-acc  1: 2.89 

ZINC03533756 1. N--O & O—N 

2. O—OG & O—N 

1. Val59 

2. SER72 

1. H-don & H-acc 

2. H-acc & H-acc 

1: 2.11 & 3.05 

2: 3.04 & 2.92 

ZINC03580546 1. N—OD 

2. O--NE 

3. O—OG 

1. ASP105 (B) 

2. GLN58 

3. SER72 

1. H-don 

2. H-acc 

3. H-acc 

1: 2.30 

2: 3.11 

3: 2.99 

ZINC03830430 1. O—N 

2. O—N 

1. Val59 

2. SER72 

1. H-acc 

2. H-acc 

1: 2.91 

2: 2.92 

ZINC05225308 1. O—NZ & O—NZ 

2. O--NE  

3. O—N & O—OG 

1. LYS15  

2.GLN71 

3. SER72 

1. H-acc & H-acc 

2. H-acc 

3. H-acc & H-acc 

1: 2.95 & 3.28  

2: 2.92 

3: 3.30 & 2.92 

ZINC02453649 1. O—NE 

2. O—N & O—OG 

1. GLN56 

2. SER72 

 

1. H-acc 

2. H-acc &. H-acc 

1: 2.93  

2: 2.92 & 2.82 

Table 20: PfGST interactions against best compounds are displayed. 

Especially displays H-bond interactions. In the table, column 2 represents the ligand atom to protein 
atom interaction, column 3 represents the protein residue against which the compound made the 

interaction, column 4 represents the type of interaction, column 5 represents the distance at with the H-

Bond is formed. 

6.4 Summary  

The first large-scale docking experiment described in chapter 4 focused on virtual screening 

against single family of proteins, plasmepsins. However due to complexity of the plasmodium 

life cycle and drug resistance, multi-target approach is necessary. Hence, in the current 

chapter, multiple independent targets implicated in malaria, which has different mechanisms 

of actions are targeted. This chapter describes the collaborative effort taken up to tackle 

malaria. Various scientific groups all around the world (France, Italy, Venezuela, and South 

Africa) propose the target proteins screened in this chapter. The research groups that proposed 
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the targets proteins, further shared their knowledge and expertise on the target. The in silico 

screening effort described in this chapter focused on: one new target, glutathione-S-

transferase, and two previously well known: dihydrofolate reductase from Plasmodium 

falciparum and Plasmodium vivax.  

 In view of this collaborative effort, it is worth mentioning that, terra bytes of scientific data is 

shared efficiently and securely on EGEE Grid. This illustrates that, besides the use of the 

computational Grids for producing large amount of scientific data, Grids form a platform for 

the convenient global exchange of the chemical data produced.  

Gained from the experience of WISDOM-I (Chapter 4), several enhancements to the 

workflow have been made on both the technical and the modeling side. On the technical side, 

one major bottleneck in large-scale screening experiments was the handling of large data 

output of these experiments. During the WISDOM-I project, the large-scale data output was 

analyzed by scripting languages (perl and shell); this was labor intensive and further 

significantly delayed the result analysis. As shown, in this chapter, we addressed this problem 

by parsing the results into a MySQL database. Important information such as the docking 

score, as well as atom-to-atom interaction between the protein and ligand are stored. The 

interaction information plays a vital role in selecting the hits, since it takes the compound 

counterpart, the protein, into consideration as well.  

On the modeling side, diversity analysis (using fingerprints and Tanimoto Coefficient) was 

performed on the best scoring compounds. This revealed that the compounds are quite diverse 

and sensible for further analysis to find novel compounds. Further, the best scoring 

compounds were subjected to molecular dynamics simulations and rescoring by MM-

PBSA/GBSA. Several promising compounds were identified against PfGST and PfDHFR. 

The research group that proposed the target protein will carry on the final development of 

drug candidates. For example, further development of inhibitors against PfGST and 

Pf/PvDHFR will be undertaken by University of Pretoria, South Africa and University of 

Modena, Italy respectively. The drug itself would go into the public domain, for generic 

manufacturers to produce. This would achieve the goal of getting new medicines to those who 

need them at the lowest possible price.  

Future works aims at two things: an extension of the virtual screening pipeline by additional 

analysis methods and an even tighter integration of in silico prediction of candidate molecules 

and experimental validation of the compounds.  
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7 Chapter 7. Conclusions and Outlook  

The e-Science paradigm is based on the observation that an increasing number of scientific 

problem solving approaches require large computational efforts. One of the key features of e-

Science is that it supports scientific work through mediating collaboration between individual 

researchers in virtual organizations and that it enables large-scale experimentation through the 

sharing of resources. The current thesis, which is a part of WISDOM project, is one example 

for the successful utilization of this paradigm in the area of computational life sciences. 

Making use of the world’s largest scientific compute infrastructure, the EGEE grid, we have 

realized a large virtual screening project aiming at the identification of new, potential 

candidate molecules against multiple targets encoded by Plasmodium falciparum, the malaria 

causing protozoan parasite. Besides the demonstration that a global e-Science production 

infrastructure such as EGEE enables a new dimension of in silico experimentation in the area 

of computational life sciences, we were aiming at identifying real new candidate inhibitor 

molecules that could be proposed for further drug development.  

Problem of malaria 

Malaria together with many other tropical and protozoan diseases is one of the most neglected 

diseases by the developed countries as well as by the pharmaceutical industries. DNDi 

identifies new drug discovery and development is the potential gap in the treatment of 

malaria. As the malaria is affected to people living in poor countries, due to lack of drug 

research and development facilities in these countries, they continue to suffer; consequently, 

every day number of people being affected is increasing. Due to very high costs associated 

with the drug discovery process, as well as due to late stage attrition rates, novel and cost 

effective strategies are absolutely needed for combating the neglected diseases, especially 

malaria.  

Grid-enabled virtual screening 

In silico screening of chemical compounds against a particular target is termed as Virtual 

Screening (VS). The costs associated to the virtual screening of chemical compounds are 

significantly reduced when compared to screening of compounds in experimental laboratory. 

Beside the costs, virtual screening is fast and reliable. However, it is computationally 

intensive: docking and simulating a single compound within the active site of a given receptor 

requires about ~25 minutes on a single processor. With the development of combinatorial 
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chemistry technology, millions of different chemical compounds are now available in 

electronic databases. To screen all these compounds and store the results is a real data 

challenge. To address this problem computational grid infrastructures are used.  

The current thesis describes the drug finding effort by using in silico drug discovery 

techniques on computational Grid. 

 Deployment of complex workflows (docking and molecular dynamics) on 

computational Grid. 

 Grid-enabled virtual screening by molecular docking against plasmepsin family of 

proteins. 

 Grid-enabled molecular dynamics simulations for rescoring of docking conformations. 

 Large-scale collaborative drug discovery effort for finding hits against multiple targets 

implicated in malaria (Multi-target approach). 

7.1 Discussion of research results 

Docking and molecular dynamics were employed for hit and lead finding, as a part of World-

wide In silico Docking On Malaria (WISDOM) project. WISDOM is one of the first 

biomedical applications on computational Grids, which used virtual screening by molecular 

docking and molecular dynamics to find novel drugs against malaria and other neglected 

diseases.  

Virtual screening against plasmepsin family of proteins 

As a first attempt, the first WISDOM project (WISDOM-I described in chapter 4), one 

million chemical compounds obtained from the ChemBridge database, a subset of ZINC,
 
were 

screened against five targets of the plasmepsin family by using FlexX and AutoDock docking 

software. 41 million dockings were recorded in 45 days, which is equivalent to 80 CPU years 

(Grids aspects of WISDOM-I are not a part of this thesis). On the biological side three novel 

chemotypes against plasmepsin, an aspartic protease were discovered and validated in 

experimental laboratories. With the new family of potential inhibitors, the guanidino group of 

compounds, we have established a new class of chemical entities with inhibitory activity 

against P. falciparum plasmepsins. A strong support for their putative activity is that most of 

the so far known antimalarial drugs likewise contain basic groups and the fact that we identify 

candidate inhibitors that fall into the already well-established inhibitor classes of thiourea and 

diphenyl urea analogues speak for the route we have taken. Several potential issues were 

identified during the large-scale docking experiment, both on the technical side and on 

modelling side. On the technical side, handling massive docking data (virtual screening 
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results) as flat files was a huge challenge. A customized docking database such as docking 

database (DDB) from BioSolveIT Gmbh would be an ideal choice for storing and analyzing 

the results. On the modeling side, due to the robust nature of the docking algorithm and 

scoring function, significant parameters such as protein flexibility and solvent parameters 

were ignored. This may be one of the reasons, why several compounds were having huge van 

der Waals clashes with the receptor atoms. 

Combination of molecular docking and molecular dynamics simulations 

To overcome the modelling issues, molecular dynamics simulations were performed on the 

best-docked conformations resulting from WISDOM (Described in Chapter 5). Molecular 

dynamics addresses electrostatic solvation parameters, protein flexibility and additional 

degrees of freedom for both protein and ligand. Consequently, it requires more CPU time 

compared to docking. Hence, molecular dynamics is applied to a restricted number of 

compounds, usually the best hits coming out of the docking step of the WISDOM project. 

Again, computational Grids appear very promising to improve the virtual screening process 

by rescoring using molecular dynamics simulations. Binding free energy calculations were 

performed utilizing widely used scoring functions: MM-PBSA and MM-GBSA methods of 

the AMBER9 software. Molecular dynamic simulations were performed initially on 5000 

docked conformations of plasmepsin. The compounds were simulated in 7 days which 

otherwise would have taken 70 days on a single CPU (Described in Chapter 3). The first 

attempt at using Grids for large-scale virtual screening (combination of molecular docking 

and molecular dynamics) against plasmepsin ended up in the identification of previously 

unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. The 

combination of docking and molecular dynamics simulations, followed by rescoring using 

sophisticated scoring functions resulted in the identification of 26 novel sub-micromolar 

inhibitors. The inhibitors are further clustered into five different scaffolds. While two 

scaffolds, diphenyl urea and thiourea analogues are already known as plasmepsin inhibitors, 

albeit the compounds identified here are different from the existing ones, with the new class 

of potential inhibitors, the guanidino group of compounds, we have established a new class of 

chemical entities with inhibitory activity against P. falciparum plasmepsins.  

Collaborative effort to tackle malaria 

The success of WISDOM-I led to a succeeding project against malaria: WISDOM-II 

(Described in Chapter 6). Collaborations were established with research groups from 

Germany, France, Italy, South Africa, Venezuela and South Korea to select targets and to 
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perform in vitro tests after VS. This time, the focus is to address malaria with a ―multi drug 

therapy‖. Therefore, multiple targets from multiple species of Plasmodium (P. falciparum and 

P. vivax) were examined. One new target: Glutathione-S-transferase and two previously well-

known proteins: dihydrofolate reductase from P. falciparum and P. vivax were tested. 

Approximately 4.3 million chemical compounds obtained from the ZINC database were 

docked against crystal structures of above mentioned targets. To overcome the large-scale 

data analysis problem, all docking results are stored in a MySQL database and on a central 

storage element of the Grid, enabling all research groups in the collaboration to access the 

data. Molecular dynamic simulations were performed on 5000 and 15,000 best-docked 

conformations of PfGST and PfDHFR, respectively. Twenty thousand compounds were 

simulated in 18 days which otherwise would have taken 277 days on a single CPU. The 

modelling results against PfGST and PfDHFR and PvDHFR are quite promising and the 

research groups, which proposed these target proteins, are further developing the leads into 

drugs.  

This thesis is not only an example where biomedical applications such as molecular docking 

and molecular dynamics workflows were deployed successfully. It moreover demonstrated 

how computational Grids could be utilized for producing, storing and sharing terra bytes of 

scientific data across different research organizations located in different parts of the world 

with the common goal of finding drugs against malaria.  

As described in the chapter 1, the main goals of this thesis are to discover novel small 

molecules against malaria and to demonstrate the significance of computational Grids in 

biomedical applications; both the goals have been successfully achieved. On the 

computational side, molecular docking and molecular dynamics applications were deployed 

on computational Grids and, on the biological side, novel inhibitors against plasmepsin, an 

aspartic protease, were identified.  

7.2 Outlook 

In this thesis, the potential impact of Grid infrastructures for in silico drug discovery is 

demonstrated. The effort described here focused on four malaria biological targets, 

Pfplasmepsin, PvDHFR, PfDHFR and GST, but at much reduced cost, the same strategy can 

be applied to produce focused compound libraries for any other malaria targets. Through this 

thesis, the intention is to draw the attention of the research communities working on these 

neglected diseases to the opportunity offered by this Grid-enabled virtual screening approach 
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for producing short lists of particularly promising molecules, which can be tested in vitro at a 

reduced cost. 

One major bottleneck in large-scale screening experiments is the handling of large data output 

of these experiments. As shown chapter 6, this problem is addressed by parsing the results 

into a MySQL database, the results stored are: the docking scores, as well as atom-to-atom 

interaction between the protein and ligand. The interaction information plays a vital role in 

selecting the hits, since it takes the compound counterpart, the protein, into consideration as 

well.  

As an extension of the in silico pipeline for virtual screening, data handling and data analysis 

methods have to be improved significantly. The storage of docking results in the database was 

just a first step; in the future it is expected to be able to learn from in silico experiments by 

analysing entire series of docking experiments. Techniques supporting the judicious selection 

of chemical compounds from the large-scale screening data will need to be improved.  

New features of drug-like molecules such as their potential toxicity will have to be addressed 

by an extension of the in silico screening through predictive toxicology systems. On the long 

run, it is likely to extend the in silico drug discovery workflow by models for predictive 

ADME. The rather proprietary nature of the drug discovery process in the pharmaceutical 

industry resulted in limited availability of models in this field, but initiatives such as the 

European Innovative Medicine Initiative (IMI) might help to foster broader uptake of 

computational models for predictive ADME (and toxicity) by altruistic research initiatives, 

such as WISDOM. 

The current thesis may serve as a template for finding hits cost effectively by utilizing the in 

silico methods against multiple targets at the same time. The WISDOM collaboration is also 

keen to receive requests for docking other malarial targets according to the procedure 

described in this thesis.  
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Appendix 

 

Appendix I: Python script converting sybyl mol2 format to pdbq format 

from os import listdir, system 

import os.path 

inp_pdb_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/mol2" 

out_pdb_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/lig_pdbq/" 

pdb_list = listdir(inp_pdb_dir) 

for pdb in pdb_list: 

pdbq = ".pdbq" 

filename = os.path.splitext(pdb)[0]+pdbq 

cmd = "/home/bio/groupshare/software/dist305/bin/i86Linux2/autotors A 

+7.5 h m c r %s %s" %(os.path.join(inp_pdb_dir,pdb), os.path.join(out_pdb_dir,filename)) 

print " >>", cmd 

system(cmd) 

 

Appendix II: Python script converting protein pdb format to pdbq format 

from os import listdir 

# change these filenames 

inp_pdb_dir = "/home/kasam/Desktop/AutoDock_today/pdb/" 

out_pdb_dir = "/home/kasam/Desktop/AutoDock_today/pro_pdbq/" 

#looking for all files in the directory 

pdb_list = listdir(inp_pdb_dir) 

# doing all the adt stuff 

for pdb in pdb_list: 

self.readMolecule('%s%s' %( inp_pdb_dir, pdb), log=0) 

self.add_hGC("%s" %(pdb[:4]), 

polarOnly=1, renumber=1, method='noBondOrder', 

log=0) 

self.addKollmanCharges("%s" %(pdb[:4]), 

log=0) 

self.writePDBQ("%s" %(pdb[:4]), 

sort=0, log=0, filename='%s%sq' %(out_pdb_dir, 

pdb), pdbRec=(''ATOM', t,r)ansformed=0, bondOrigin=()) 

self.deleteMol("%s" %(pdb[:4]), 

log=0) 

 

Appendix III: Python script converting protein pdbq format to pdbqs format 

from os import listdir, system 
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import os.path 

inp_pdb_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/pro_pdbq" 

out_pdb_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/pdbqs/" 

pdb_list = listdir(inp_pdb_dir) 

for pdb in pdb_list: 

cmd = "/home/bio/groupshare/software/dist305/bin/i86Linux2/addsol %s %ss" % 

(os.path.join(inp_pdb_dir,pdb), os.path.join(out_pdb_dir,pdb)) 

print " >>", cmd 

system(cmd) 

 

Appendix IV: Python script creating Grid parameter file (gpf) 

from os import listdir, system 

import os.path 

lig_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/lig_pdbq" 

macro_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/pdbqs" 

lig_list = listdir(lig_dir) 

for lig in lig_list: 

lig = os.path.splitext(lig)[0] 

cmd = "/home/bio/groupshare/software/dist305/share/mkgpf3 %s %s.pdbq %s % 

s.pdbqs" %(lig_dir, lig, macro_dir, lig) 

print " >>", cmd 

system(cmd) 

 

Appendix V: Python script creating docking parameter file (dpf) 

from os import listdir, system 

import os.path 

lig_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/lig_pdbq" 

macro_dir = "/home/kasam/Desktop/plasmepsin_AutoDock/pdbqs" 

lig_list = listdir(lig_dir) 

for lig in lig_list: 

lig = os.path.splitext(lig)[0] 

cmd = "/home/bio/groupshare/software/dist305/share/mkdpf3_kasam %s %s.pdbq %s 

%s.pdbqs" %(lig_dir, lig, macro_dir, lig) 

print " >>", cmd 

system(cmd) 

 

Appendix VI: Genetic algorithm settings used in AutoDock DC 

"ga_pop_size 50 # number of individuals in population\n" . 

"ga_num_evals 250000 # maximum number of energy evaluations\n" . 

"ga_num_generations 27000# maximum number of generations\n" . 
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"ga_elitism 1 # num. of top individuals that automatically survive\n" . 

"ga_mutation_rate 0.02 # rate of gene mutation\n" . 

"ga_crossover_rate 0.80 # rate of crossover\n" . 

"ga_window_size 10 # num. of generations for picking worst individual\n" . 

"ga_cauchy_alpha 0 # ~mean of Cauchy distribution for gene mutation\n" . 

"ga_cauchy_beta 1 # ~variance of Cauchy distribution for gene mutation\n" . 

"set_ga # set the above parameters for GA or LGA\n\n";LS 

parameters 

$outtext # Local Search (Solis and Wets) Parameters (for LS alone 

and for LGA). 

"sw_max_its 300 # number of iterations of Solis and Wets local search. 

"sw_max_succ 4 # number of consecutive successes before changing rho . 

"sw_max_fail 4 # number of consecutive failures before changing rho. 

"sw_rho 1.0 # size of local search space to sample" . 

"sw_lb_rho 0.01 # lower bound on rho. 

"ls_search_freq 0.06 # probability of performing local search on an individual . 

"set_psw1 # set the above pseudoSolis 

and Wets parameters. 

 

Appendix VII : Parameter settings for minimizing water molecules for AutoDock 

minimization prot fix; 11.4.: OK 

&cntrl 

imin=1, 

ncyc=300,maxcyc=300, 

ntx=1, irest=0, 

ntpr=10, cut=20, 

ntb = 0, 

ntr=1, restraint_wt=999.0, restraintmask="(!@H=)", 

&end 

eof 

$AMBERHOME/exe/sander O –I sandermin o 

$target\_out_min p 

$target.top c 

$target.crd r 

$target\_min.crd ref 

$target.crd 

rm sandermin 

#$AMBERHOME/exe/ambpdb p 

$target.top < $target\_min.crd > $target\_min.pdb 
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Appendix VIII: Flexx batch script used for large-scale docking 

# LOAD PARAMETERS 

set LIGAND $(LIGAND_CMD) 

set RECEPTOR $(RECEPTOR_CMD) 

set PDB $(PDB_CMD)  

set SITE $(SITE_CMD) 

set PREDICT $(PREDICT_CMD) 

set SURFACE $(SURF_CMD) 

 

# SCENARIO PARAMETERS will overwrite defaults from config.dat 

set verbosity  1 

set place_particles 1 

 

# read a single protein 

SELINP $(protein) in proteins.txt $(protein_nr) 

SELINP $(ligand) in ligands.txt $(ligand_nr) 

 

# read protein 

receptor                        # change into receptor menu 

  read $(protein)               # read protein 

  trihash all                   # init datastructure 

end                             # leave receptor menu 

 

# read 15 test ligands of kasam 

FOR_EACH $(nr) FROMTO 1 14 

 

  ligand 

    read kasam $(nr) 

  end 

 

  docking                       # change into docking menu 

    selbas a                    # automatic selection of base frag 

    placebas 3                  # place base frag (triangle alg.) 

    complex all                 # build up complex 

    cluster % % % 

    seloutp $(protein)_$(ligand)_$(lig_start)_sol a y   # redirect output to file  

    listsol 10                                          # one line info / top rank 

    seloutp $(protein)_$(ligand)_$(lig_start)_mat a y 

    listmat 10                                          #lists scores of best 10 sol 

    seloutp screen                                      # redirect output to file screen 

  end 

 

  ligand 

    write $(protein)_$(ligand)_$(lig_start) y y 1-10 n  # merge them 
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  end 

 

END_FOR 

 

# read the real molecules 

FOR_EACH $(nr) FROMTO $(lig_start) $(lig_end)  

 

  ligand 

    read $(ligand) $(nr) 

  end 

 

  docking                       # change into docking menu 

    selbas a                    # automatic selection of base frag 

    placebas 3                  # place base frag (triangle alg.) 

    complex all                 # build up complex 

    cluster % % % 

    seloutp $(protein)_$(ligand)_$(lig_start)_sol a y   # redirect output to file  

    listsol 10                                          # one line info / top rank 

    seloutp $(protein)_$(ligand)_$(lig_start)_mat a y 

    listmat 10                                          #lists scores of best 10 sol 

    seloutp screen                                      # redirect output to file screen 

  end 

  ligand 

    write $(protein)_$(ligand)_$(lig_start) y y 1-10 n  # merge them 

  end 

END_FOR 

 

Appendix IX: List of all the software used in the current project. 

 

Docking software: FlexX 2.0, FlexX-Pharm, FlexV (www.biosolveit.de) AutoDock 3.05, ADT 

(www.scripps.edu), Amber9      

Others: Chimera, Rasmol, Babel,  PDBkabsch, PDBtransform, Corina,  Jcsearch, mdraw, ISIS draw, MOE, 

Tripos, VS explorer 

Computational Grid infrastructure: EGEE 

Scripts: Bash shell scripting, Python7 and Perl. 

 

Appendix IX: WISDOM production environment for deploying docking and molecular dynamics 

applications 

WISDOM production environment can be downloaded from: 

https://sourceforge.net/projects/WISDOM-pe 

 

Appendix X: Analysis of wild type PfDHFR results after molecular dynamics simulations 

http://www.biosolveit.de/
http://www.scripps.edu/
https://sourceforge.net/projects/wisdom-pe
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