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 Zusammenfassung 

 

In dieser Arbeit wurden 199 Sommergerstenlandsorten und vier Kultursommergersten aus zehn 

unterschiedlichen Regionen Äthiopiens mit morphologischen und molekularen Markern (SSR) 

untersucht. Die Feldversuche zur Erhebung der morphologischen Marker fand im „Holetta und 

Bekoji Agriculture research center“ in Äthiopien  statt, die genetischen Untersuchungen wurden 

im Labor des INRES-Pflanzenzüchtung der Universität Bonn durchgeführt. Neben der 

Abschätzung der morphologischen und genetischen Varianz der Gerstenakzessionen hinsichtlich 

ihrer regionalen Herkunft und Höhenlage, die Einteilung der Gerstenakzessionen in homologe 

Cluster, Bestimmung von genetisch hoch variablen Merkmalen, Abschätzung der Variation 

innerhalb der Populationen war auch die Identifizierung von Merkmalen mit hohem 

Selektionsdruck Ziel der vorliegenden Arbeit.Die Abschätzung der genetischen Varianz der 

Regionen und Höhenlagen deutet auf eine hohe genetische Varianz zwischen den Akzessionen 

bezüglich der untersuchten Merkmale hin, die hohe morphologische Varianz weist auf  das 

Potential der Regionen und Höhenlagen über 2000m über NN zur Verbesserung und Erhaltung 

der Gerstenakzessionen hin. Basierend auf morphologischen Merkmalen ist die Clustereinteilung 

der Akzessionen unabhängig ihrer geographischen Herkunftsregion. Durch die 

Hauptkoordinatenanalyse können die Akzessionen anhand der Merkmale Ährenschieben, Tage 

bis zur Abreife, Wuchshöhe und Ährenlänge gruppiert werden. Die molekulare Varianzanalyse 

der SSR-Marker verdeutlicht eine höhere Variation innerhalb der Regionen, Höhenlagen und 

Akzessionen als zwischen den Regionen, Höhenlagen und Akzessionen.Die durchgeführte 

Analyse zur Bestimmung der Variation zwischen den Regionen und Höhenlagen resultiert in 

mittlere Variation zwischen den Regionen und nicht signifikanten Unterschieden zwischen den 

Höhenlagen, welches auf eine hohe Migrationsrate der selbstbefruchtenden Arten hindeutet. Die 

molekulare genetische Varianz wurde mit der Varianz qualitativer Merkmale zur Bestimmung 

der Selektionsrichtung, gerichtet oder ungerichtet, verglichen. Daraus resultiert die Erkenntnis, 

dass die Glucangehalt nicht dem Selektionsdruck durch Landwirte unterliegen.Die Ergebnisse 

aus der vorliegenden Arbeit machen deutlich, dass die genetischen Ressourcen der Gerste in 

Äthiopien hoch divers sind. Allerdings wirkt eine starke Migrationsrate zwischen den Regionen 

und Höhenlagen der lokalen Merkmalsanpassung von Akzessionen durch Selektion  entgege. 
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Abstract  

 

Morphological and simple sequence repeats (SSR) were used to analyze a total of 199 landraces 

collected from 10 administrative regions of Ethiopia and four released cultivars of barley. For the 

morphological data; experiments were conducted in Holetta and Bekoji agricultural research 

centers of Ethiopia, and the genetic analysis using molecular marker (SSR) were conducted in 

laboratory of INRES, University of Bonn. The objectives of this study were (1) to assess the 

extent of morphological and molecular variation in barley accessions in respect to regions and 

altitude of collection, (2) to cluster the accessions into relatively homogenous groups and to 

identify the major traits contributing to the overall diversity of the germplasm, (3) to estimate the 

population differentiation and (4) finally to identify traits which undergo selection pressure. 

Genetic variance estimates of regions and altitudes indicated a wide variation among accessions 

depending on the traits involved. Presence of high morphological variation within regions and 

altitudes above 2000 meter above sea level (m.a.s.l) indicated the potential of each region and 

higher altitudes in contributing towards barley improvement and conservation activities. 

Clustering of accessions was not dependant on geographic regions whereas the well adapted 

traits like days to heading, days to maturity, plant height and awn length, played a role in 

differentiating accessions collected from different regions and altitude classes into principal 

components. Molecular variance analysis from SSR data resulted in a high variation within 

region, altitude and accessions as compared to the variation among region, altitude and 

accessions variation. The Analysis conducted to determine the differentiation among regions and 

altitude classes resulted in a medium differentiation among regions accompanied by a high gene 

flow. While there was no significant genetic differentiation among altitude classes and high gene 

flow was estimated. To test if the quantitative traits were under directional or homogenizing 

selection molecular marker genetic differentiation was compared with qualitative trait 

differentiation which resulted in glucan content as traits which was not undergoing selection 

pressure of farmers. From this study it can be concluded that high genetic variability exists in the 

barley germplasm of Ethiopia. However, a high gene flow among altitudes and regions 

counteracts the gene frequency for local adaption of traits created by selection. 
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1. Introduction 

 

Barley (Hordeum vulgare L. subsp. vulgare) is one of the earliest domesticated crop plants 

(Zohary and Hopf 1993). The genus Hordeum comprises over 32 species, including diploid and 

polyploidy, perennial and annual types, which are spread throughout the world (Von Bothmer et 

al. 1995). In terms of area and production worldwide, barley is the fourth most important cereal 

after wheat, rice and maize. Barley is adapted to a broad range of agro-ecological environments 

and it is tolerant to soil salinity, drought and frost to a considerable level. The crop successfully 

grows in the arid climates of the Sahara, the Tibetan plateaus, the highlands of the Himalayas, 

and the Andean countries, the tropical plains of India and the mountains of Ethiopia. 

 

Ethiopia is a center of origin and diversity for many cultivated crops and their wild relatives. The 

country is located near the Equator, but due to high altitudes it experiences a temperate climate, 

specially at altitudes of more than 2000 meters above sea level. In addition, soil variation, 

ecological diversity, substantial temperature and rainfall variations, and diverse social and 

cultural conditions are some of the possible explanations for the existence of large genetic 

variation of crop varieties in the country. Plant genetic diversity is a useful character in plants 

that can be transmitted genetically from parents to offspring. The sources of tremendous 

variation in plants support all other forms of life on land. Plant genetic diversity covers a wide 

range, at both the evolutionary and ecological level. Ecologically the variation ranges from the 

natural ecosystems and traditional low-input agriculture to modern, intensive production 

systems. At the crop evolutionary level it covers a wide range of diversity from wild ancestors to 

modern cultivars. The resulting diversity in plants has been the basis for providing food and 

satisfying other human needs for millennia and it continues to do so for the development of plant 

characters required to adapt barley to the increasingly and rapidly changing environmental 

situations and socio-economic conditions. Since Ethiopia is characterized by a wide range of 

agro-climatic conditions and barley is one the major cereals grown in wide agro-ecology of the 

country with its economic and social importance so identification of regions with high allelic 

variation and important traits from farmers‟ point of view is vital aspect for in situ conservation 

as well for improvement of barley. 
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Objectives of the study 

In general currently dynamic in-situ conservation of cultivated plants is being actively discussed 

as an essential conservation strategy. A dynamic on farm conservation is being implemented in 

Ethiopia and other countries and barley is one of the crops in focus. Identification of better 

agronomic characteristics, disease resistance, earliness, good quality and higher biological yield  

are necessary for barley improvement program. The availability of such important traits depends 

on the identification of areas with high genetic diversity concentration of different valuable 

morphological traits. The identification of these sites has paramount importance for the 

collection mission and appropriate in-situ conservation. So this study aimed to choose sites for 

in-situ conservation which depends on high diversity estimates based on SSRs and knowledge 

of adaptive traits linked to certain ecological conditions and agricultural practices of farmers. In 

addition proper knowledge of the nature and extent of genetic variation was crucial since 

successful conservation and utilization of germplasm depends on the prior assessment of 

variation within and among populations. Comparing of quantitative traits statistics (QST) and 

neutral traits statistics (FST) is crucial to identify traits which were important from farmers point 

of view and undergoes selection pressure. Therefore, the specific objectives of this study were: 

- to assess the extent of genetic diversity in barley accessions in respect to regions and 

altitude of  collection 

- to classify the accessions into relatively homogeneous groups 

- to identify the major traits contributing to the overall diversity of the germplasm 

- to estimate population differentiation  

- to identify traits important from farmers point of view and detect sites of high allelic 

diversity for germplasm collection and in situ conservation 
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2. Literature Review 

 

2.1 Origin and Domestication of Barley (Hordeum vulgare L.) 

Domestication of wheat and barley probably took place prior to 7000 B.C. in the region of the 

Near East known as „Fertile Crescent‟. The Fertile Crescent includes parts of Jordan, Lebanon, 

Palestine, Syria, Southeastern Turkey, Iraq and Western Iran. The wild progenitor of cultivated 

barley (Hordeum vulgare subsp. spontaneum) is still widely distributed along the Fertile 

Crescent, particularly in the driest areas (Harlan and Zohary 1966). Archeological evidence 

indicated that emmer and einkorn wheat led to the foundation of the old world agriculture 

(Zohary and Hopf 1993). The domestication of barley is assumed to have taken place from two-

rowed wild barley Hordeum vulgare L. subsp. spontaneum in the Near East (Harlan and Zohary 

1966). However, evidences suggesting alternative ways of barley domestication have been 

reported (Tanno et al. 2002; Molina-Cano et al. 2005). The controversies surrounding the origin 

of cultivated barley in the last centuries can be summarized: (1) the six-rowed barley originated 

repeatedly at different times and in different regions, through independent mutations of Vrs1 

allele (two-rowed spike)  (Komatsuda et al. 2007); (2) Tibet is unlikely to be a center of origin 

for cultivated barley  (Yang et al. 2008); (3) the numerous other forms are either direct 

descendents of one or other ancestral forms H. agriocrithon or H. spontaneum, or derived from 

hybridization between the two ancestral forms (Li et al. 2004).  

 

With the development and advancement of molecular markers in recent years, more precise 

information on origin and domestication history of barley is emerging. Badr et al. (2000) 

demonstrated a monophyletic nature of barley origin based on allele frequency at 400 

polymorphic AFLP loci studied in a world collection of wild and cultivated barley and showed 

that the Israel-Jordan area in the southern part of the Fertile Crescent has the highest probability 

of being the geographical area within which wild barley was domesticated. The hypothesis of 

monophyletic origin of barley is further supported by Li et al. (2004), who analyzed the 
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rDNA polymorphism in wild barley accessions derived from Tibet and other parts of the world. 

However, Molina-Cano et al. (1999) suggested barley domestication could have taken place 

outside the Fertile Crescent, particularly in Morocco. This proposition however, was not 

substantiated by the RAPD analyses of wild and cultivated barley samples derived from the 

western Mediterranean basin including Morocco (Blattner and Mendez 2001) and the authors 

concluded in favor of a monophyletic origin of barley. In contrast to this, (Tanno et al. 2002) 

based on DNA sequence analysis at a marker closely linked to the vrs1 locus (row-type gene), 

and more recently, (Molina-Cano et al. 2005) with chloroplast SSRs analysis, have shown strong 

evidences that cultivated barley may have multiple origins. The later authors proposed Ethiopia 

and the western Mediterranean as possible centers of barley origin. It is now generally accepted 

that H. spontaneum is the progenitor of cultivated barley, however, it is not clear whether 

cultivated barley is of monophyletic origin or the domestication events happened in other parts of 

the word besides the Fertile Crescent.  

 

2.2 Barley genome  

The DNA content of Hordeum species ranges from 6.85 to 10.67 pg in diploids (2n=14) and up 

to 29.85 pg in hexaploid species (2n=42) (Jakob et al. 2004). The cultivated barley is a self-

pollinating diploid species (2n=2x=14) with a genome size of approximately 5.3 x 10
9
 bp 

equivalent to 5.5 pg DNA of a haploid nucleus (Bennett and Smith 1976). The barley genome 

consists of a complex mixture of unique and repeated nucleotide sequences, and approximately 

10 to 20 % are tandem arranged repeated sequences while 50 to 60 % are repeated sequences 

interspersed among one another or among unique nucleotide sequences (Rimpau et al. 1980). 

The interspersed copia-like retrotransposon BARE-1 comprises almost 7 % of the barley genome 

(Manninen and Schulman 1993). The genome of barley has seven pairs of distinct chromosomes 

and chromosome 2H is considered the longest, followed in length by 5H, 3H, 7H, 4H, 6H and 

1H (Pedersen et al. 1995) which differ in their sizes measured at mitotic metaphase. Comparative 

mapping has revealed that barley chromosomes 1, 2, 3, 4, 5, 6, and 7 are homeologous to wheat 

chromosomes 7H, 2H, 3H, 4H, 1H, 6H, and 5H, respectively. It has been recommended that 

barley chromosomes be designated according to their homeologous relationships with 

chromosomes of other Triticeae species (Linde-Laursen 1997). 
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2.3 Barley cultivation and use 

 

2.3.1 Global Distribution 

The largest area under barley cultivation is in Europe (ca. 27.3 million hectares) and Asia (ca. 

12.16 million hectares). The barley area in other parts of the world is significantly lower than in 

these two continents, e.g., North and South America account for about 6.64 million hectares, 

Africa 4.87 million hectares and Oceania about 4.46 million hectares. About 41.5 % of the world 

barley production is contributed by the top five barley producing countries that are Russia, 

Ukraine, Canada, Turkey and Spain respectively (FAOSTAT 2007).  

 

Barley grains are used as human food, to feed farm animals and for malt production, which in 

turn is used to make beer, whisky or other processed food products. In Japan, barley grains are 

used for special preparations, e.g., barley tea, shochu, miso and as a rice extender (Kays et al. 

2005). In the Western world barley is becoming less important as a human food, and it is mainly 

used to feed farm animals or for malt production. On the other hand, in the highlands of Tibet, 

Nepal and Ethiopia, in the Andean countries, and also in some areas of North Africa, China and 

Russia, barley is still an important human food. Because of its low demand as a human food and 

its lower yield potential compared to other cereals like wheat and maize, the barley area in the 

major barley producing countries is decreasing. However, barley is a high value crop in large 

parts of arid and drought inflicted regions (Fertile Crescent region), the Tibetan plateau and the 

Himalayas, the marginal areas of many developing countries, and Ireland, Scotland and the 

Nordic region of Europe (Denmark, Finland, Norway and Finland), where the agricultural 

activities are restricted by a very short vegetation period (Ortiz et al. 2002). Diets containing 

barley are effective in lowering blood cholesterol in hypercholesterolemic people with a higher 

risk of cardiovascular diseases (Behall et al. 2004; Ripple et al. 2009). More recently, whole 

grain barley and barley containing products have been allowed to claim that they reduce the risk 

of coronary heart diseases by the US Food and Drug Administration (FDA, http://www.fda.gov). 

The nutritional and clinical importance of barley foods and public consciousness regarding 

quality of daily diet, i.e., cereal diversification, may have a positive impact on the demand of 

barley as a human food in the future. 
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β-Glucans occur in the bran of grasses (Gramineae) such as barley, oats, rye and wheat, 

generally in amounts of about 7%, 5%, 2% and less than 1%, respectively. The main use of β-

glucans is in texturizing as fat substitutes. They are recognized as having important positive 

health benefits centered around their benefits in coronary heart disease, cholesterol lowering and 

reducing the glycemic response. Such health benefits are linked to its high viscosity although it 

may be that some of these effects are due to appetite suppression. High molecular weight β-

glucans are viscous due to labile cooperative associations whereas lower molecular weight β-

glucans can form soft gels as the chains are easier to rearrange to maximize linkages. Barley β-

glucan is highly viscous and pseudoplastic, both properties decreasing with increasing 

temperature (Burkus and Temelli 2005). These properties cause difficulty in the brewing 

industry, negatively affecting fermentation and filtration. 

 

2.3.2 Distribution and Importance of Barley in Ethiopia 

Ethiopia, with its diverse agro-ecological and climatic features, is well known for being one of 

the 12 Vavilovian Centers of Diversity (Harlan 1969; Vavilov 1951). The altitudinal variation, 

which ranges from 110m below sea level in areas of Kobar Sink to 4,620 m.a.s.l.  at Ras Dashen 

(IPGRI 1996), temperature and rainfall differences coupled with edaphic factors creates a wide 

range of ecological conditions in the country. This complex topography and environmental 

heterogeneity provide sustainable environment for a wide range of life forms. As a result, 

Ethiopia is considered as one of the richest genetic resources centers in the world. Crop plants 

such as Coffee and ‟Tef‟ are known to originate in Ethiopia (Harlan 1971). Landraces of several 

major crops such as barley, wheat, sorghum, field pea, faba bean and wild relatives of some of 

the world‟s important food crops are abundant in Ethiopia. 

 

Barley (Hordeum vulgare L.) is one of the oldest cultivated crops and has been grown in 

Ethiopia for at least 5000 years (Harlan 1969) and it is cultivated in all regions of the country. 

The most important barley producing regions are Shewa, Arsi, Gojam, Gonder, Welo, 

Bale and Tigray where more than 85% of the country‟s total production comes from (CSA 

2005). Barley is produced twice a year i.e., during the main season, Meher (August-December), 

and the short rainy season, Belg (March-July). Belg barley is important in Welo, Bale and North 

http://www.lsbu.ac.uk/water/hyhealth.html
http://www.lsbu.ac.uk/water/hyrhe.html#pseud


LITERATURE REVIEW 

 

 

9 

 

Shewa (Yirga et al. 1998). Barley can be cultivated at altitudes between 1500 and 3500m, but is 

predominantly grown between altitudes of 2000m and 3000m (Lakew et al. 1996). This wide 

distribution demonstrates the wide ecological amplitude throughout the country (Asfaw 1988; 

Asfaw 1989; Lakew et al. 1996). 

 

In Ethiopia barley growing areas gradually diminish due to the expansion of wheat and rye 

cultivation in some regions. Currently the crop is pushed to marginal areas (to very high altitudes 

where frost prevails) and threatened by genetic erosion (IBC 2007). Therefore, rare morphotypes 

are declining in frequency of occurrence through time. Some morphotypes, which were reported 

by Orlov 1929s to occur in abundance in a given region or locality were either never encountered 

or found only in a rare admixture (Asfaw 1988). 

 

Early efforts in studying the agro-morphological variability of Ethiopian barley indicated wide 

morphological variation. Ward (1962) showed that the Ethiopian barley posses a large diversity 

of forms, and he regarded Ethiopia as center of concentration for deficiens, irregular and short 

rachilla types. Asfaw  (1988) also recognized a total of 64 botanical forms. Variation of disease 

resistance in Ethiopian barley was reported by different authors (Fukuyama and Takeda 1992; 

Jorgensen 1992; Qualset 1975). Genes related with high lysine (Munck et al. 1970), malting and 

brewing quality (Lance and Nilan 1980) were reported for Ethiopian barley. Demissie and 

Bjørnstad (1996) found morphological diversity for different traits in relation with regions, 

altitudes and agro-ecological zones for a total of 51 barley populations.  

 

Barley is grown primarily for local food and beverage consumption. For small scale highland 

farmers, barley is the predominant subsistence crop (Asfaw 2000). The mode of consumption 

and overall barley utilization was studied by Asfaw and Bothmer (1990). According to this 

report in Ethiopia the highest level of barley consumption is in highland areas where it is widely 

cultivated. It is further shown that consumption begins at milky stage of grain maturation when 

youngsters remove the awns from the green unripe spikes, crush them between the palms and 

blow away the fragments of the rachis and glumes, and consumes the tasty raw green grains in 

the field in limited quantities. Such unripe spikes many also be green roasted over fire. 
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Similarly a sheaf of ripe barley can be roasted in the fire, crushed between the palms and the 

grains eaten as a supplementary or snacks. As for the type of total food preparations, it is shown 

that different kinds of bread, dough balls, porridge, soup and gruel are made in every household 

from any barley type, but there are preferred types for different food categories. Concerning 

drinks the study showed that many alcoholic and non-alcoholic local beverages are brewed in the 

household from barley grains for daily consumption or for holidays and celebrations. The barley 

straw is used in the construction of traditional huts and grain stores either as thatching or as a 

mud plaster.  A barley residue is used as fodder mainly for cattle and equines. The small grain 

that fail to fill up and those crushed in the process of threshing mix with the chaff are kept for 

chicken feed. Some barley types are purposely cultivated for their special use (e.g. naked barley 

for roasted grain) while many other are more of multipurpose (Asfaw 2000) 

 

2.4 Genetic Diversity 

Genetic diversity is one of the three pillars of biodiversity, diversity within species, between 

species and of ecosystems (CBD, Article 2), which was defined at the Rio de Janeiro Earth 

Summit as the variability among living organisms from all sources including, interalia, marine 

and other aquatic ecosystems and the ecological complexes of which they are part. 

Crop genetic diversity can be viewed at different geographical scales or levels of analysis. 

Variation manifests itself both among the crops and varieties grown by individual farmers and at

 a community level (Almekinders and Struik 2000). Today it is a common phenomenon to 

encounter both farmers‟ varieties and improved varieties in rural parts of developing countries. 

The relationship between variety names and genetic variation is not well defined (Benin et al. 

2003). Within crops, “variety” is simply understood as crop population recognized by farmers. 

Farmers‟ varieties are defined as varieties that have been grown and selected by farmers for 

many years and modern varieties are varieties that meet International Union for the Protection of 

New Varieties of Plants (UPOV) definition. UPOV‟s definition of improved varieties states that 

the varieties should be of distinct, uniform and stable as well as “rusticated” or “creolized” types 

that are the product of deliberate or natural mixing of the two (Bellon and Risopoulos 2001). 

Usually “name” given by farmers have agro-morphological characters that farmers use to 

distinguish among them and that are an expression of their genetic diversity. 
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Centre of origin is defined as the primary centre of in situ diversity for a given crop and 

continued gene flow between crops and their wild relatives can occur. Centre of diversity is 

defined as geographical area where a wide genetic diversity is found for particular crops and 

related species (FAO 1996). This definition is, however, difficult to rely on. In some cases, 

different species of the same crop might have been domesticated in different places, for example 

yams were domesticated in West Africa, Southeast Asia and in tropical America (Harlan 1976). 

Furthermore, since evolution outside the centers of origin has resulted in different genetic 

constitution of the materials, it can be argued that these materials originate from the farms where 

they were further shaped and maintained. With present sophisticated methods of looking at 

genetic diversity, such as isozyme and molecular analysis, it has become clear that most genetic 

diversity in a crop is not necessarily found in its centre of origin.  

 

It is generally accepted that Ethiopia is an important domestication and genetic diversification 

centers of crop species and their wild relatives (Hancock 2004; Purseglove 2004; Vavilov 1951). 

Local cultivars/farmers‟ varieties of several major crops, e.g. durum wheat, bread wheat, barley, 

sorghum, field pea, faba bean, chick pea, cowpea, linseed, castor bean and wild relatives 

of some of the world‟s important crops are abundant in Ethiopia. In Ethiopia the main cereal 

staples include durum wheat, bread wheat, barley, tef, finger millet, maize and sorghum grown in 

varying proportions according to soils, altitude and the prevailing climatic and market conditions 

during planting seasons. The continued interaction of cultivated crop plants with their wild 

relatives under diverse ecological, social, and economic conditions has made the country one of 

the most heterogeneous areas of the world in terms of genetic diversity of farmers‟ varieties. For 

instance, crops that were originally domesticated outside of the East African highlands exhibit 

extreme secondary diversification in Ethiopia (Harlan 1969; Vavilov 1951). Vavilov (1951) and 

Harlan (1969) regarded Ethiopia as a centre of origin of many cultivated species such as 

Eragrostis tef, Guizotia abyssinica, Rhamnus prinoides, Hygenia abyssinica, Ensete 

ventricosum, Catha edulis and Coffea arabica. According to Harlan sorghum, finger millet, 

okra, castor bean, and sesame could be of Ethiopian origin. Numerous useful genetic variations 

of global significance have evolved at the local farm and farming community in the country. 

These diverse genetic resources are used and managed in various ways by communities. 
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2.5 Population structure 

Population structure occurs when dispersal rates between local populations are sufficiently low 

to allow genetic differentiation (Slatkin 1987). Thus population structure is intimately linked 

with gene flow. Population structuring can occur due to the effects of distance, geographic 

barriers to dispersal or due to mate preferences or behavioral specialization. A central theme of 

molecular ecology is the detection of population structure for the purposes of defining 

conservation units and for assessment of evolutionary potential.  Statistics employed to detect 

gene flow or structure typically assume neutrality and are based upon a theoretical model of 

population dispersal. Population structure is typically measured using (Wright 1951) fixation 

index, FST and its analogues, to determine if there is a significant difference in the variance of 

haplotype frequencies between two populations. The FST statistic measures the difference in 

similarity (either as heterozygosity or probability of identity-by descent) of two alleles 

(haplotypes) drawn from the same population compared to the two alleles drawn at random from 

the total population and is standardized to a range of 0-1. The greater the diversity - the lower the 

FST. This problem is discussed (Hedrick 1999) but in general this leads to FST statistics being 

considered to indicate only if gene flow is “high”, “moderate” or “low” and not as an absolute 

solution. In similar assumption, Spitze (1993) and Prout and Barker (1993) introduced QST, a 

quantitative genetic analog of WRIGHT's FST. In principle, the average QST of a neutral additive 

quantitative trait is expected to be equal to the mean value of FST for neutral genetic loci 

(Whitlock 2008). FST can be readily measured on commonly available genetic markers, and QST 

can be measured as well with an appropriate breeding design in a common-garden setting. 

As a result, QST promises to be an index of the effect of selection on the quantitative trait. If QST 

is higher than FST, then this is taken as evidence of spatially divergent selection on the trait. If 

QST is much smaller than FST, then this has been taken as evidence of spatially uniform 

stabilizing selection, which makes the trait diverge less than expected by chance. 



LITERATURE REVIEW 

 

 

13 

 

2.6 Genetic resources conservation strategies 

 

2.6.1 Ex situ conservation 

Ex situ conservation of plant genetic resources is mainly based in gene banks. It aims to conserve 

as much as possible of existing genetic diversity of cultivated species with their infra-specific 

taxa and wild species of potential use outside agro-ecosystems (Alvarez et al. 2005). Ex situ 

conservation, strategy is limited in that there could be loss of genes or materials in case of failing 

infrastructure and low level of knowledge regarding optimum storage conditions and seed 

biology. Furthermore, an important characteristic of gene banks is that they „freeze‟ the 

evolution of the stored genetic materials. It arrests the most complex interaction of genetically 

diverse farmers‟ varieties with the associated pests, diseases, climatic factors and wild and 

weedy relatives. It also fails to retain traditional knowledge associated with landraces, which can 

be instrumental in the management of genetic resources. The Institute of Biodiversity 

Conservation (IBC) in Ethiopia is actively implementing conservation of crop species, largely in 

ex situ gene banks. So far the Institute holds about 61,000 accessions of plant genetic resources 

of which 90 % consist of germplasm of field crops (IBC 2001). However, not all farmers‟ 

varieties from all regions and wild relatives of these crop species, which are also of socio-

economic value as gene donors to crop species (Hoyt 1988; Cooper et al. 2001), are sufficiently 

collected and conserved. 

 

2.6.2 In situ conservation 

In situ conservation is an ecosystem and habitat-based conservation strategy, which allows the 

maintenance of organisms in their natural habitat. Maintaining genetic variation in situ as a 

complementary strategy to conservation in gene banks has re-emerged as a scientific question in 

recent years (Brush 2000). For cultivated crops, conservation of genetic resources in situ refers to 

the continued cultivation and management by farmers of crop populations in the open, 

genetically dynamic systems where the crop has evolved (see on-farm conservation below). 

Under this system, crops co-evolve with diseases, pests, and weeds by developing mechanisms 

of co-existence through time. The diversity of crops maintained on farms has both inter-specific 

and infra-specific components. Inter-specific diversity is the diversity among crop species, while



LITERATURE REVIEW 

 

 

14 

 

 infra-specific diversity is the repertoire of varieties of a crop that farmers grow simultaneously 

(Bellon 1996). For conservation of wild relatives of crop species, in situ method is given priority 

and community seed conservation practice on-farm has been taken as a tool for agro biodiversity 

rural development projects in many countries around the world. However, in situ conservation is 

facing challenge from the expanding human population with irreversible influence on native 

environment. In Ethiopia the Institute of Biodiversity Conservation is mandated to conserve 

biodiversity in general and has established various in situ sites (field gene banks) for 

conservation of coffee and other horticultural crop genetic resources in particular (IBC 2001). 

Understanding the population management processes involved to ensure inter-specific and infra-

specific components of genetic conservation in situ and the attempt to develop practical 

techniques to achieve this goal is useful for plant conservationists. For cultivated plant species, 

this concept is being used in on-farm seed conservation practices. 

 

2.6.3 On-farm conservation 

On-farm conservation involves farmers‟ continued cultivation and management of a diverse set 

of crop populations and accompanied taxa in the agro-ecosystem where the crop evolved, or in

secondary centers of diversity. In situ conservation of genetic resources can also specifically 

target the conservation of local varieties or landraces (Alvarez et al. 2005). In this case, the farm 

or agro-ecosystem is considered the habitat where the genetic diversity developed or originated. 

Conservation at farm level allows continuing farmer selection, interaction with environment and 

gene exchange with wild species so that evolution of the landraces may continue. On-farm 

conservation practices by farmers, therefore, influence evolutionary forces acting on crop plant 

populations. Farmers‟ criteria in seed selection and the goals of selection, choices among 

varieties, and spatial arrangement of planting in ways that encourage hybridization between 

varieties that are associated with on-farm activities maintain continuous evolutionary genetics of 

crop plants in traditional agro-ecosystems (Alvarez et al. 2005). By default, this conservation 

practice still exists in marginal areas of most developing countries. 
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Ethiopia is one of the world‟s richest regions of crop diversity and its genetic resources are of 

considerable value both within and outside Africa. Among numerous examples are the yellow 

dwarf virus (BYDV) resistance gene found in Ethiopian barley, on which California‟s US $160 

million annual barley crop depends (Tolba and Rummel-Bulska 1998), as well as the high lysine 

gene in sorghum. Much of this diversity is still in the hands of the farmers, despite the depletion 

of some. The recognition of the situation has served as a basis for the inception of on-farm 

farmers' varieties maintenance and enhancement strategy, in the year 1989 through the project 

entitled “A dynamic Farmer Based Approach to the Conservation of Ethiopia‟s Plant Genetic 

Resources” funded by the Global Environmental Facility (GEF). With this project it was possible 

to establish 12 on-farm conservation sites and community gene banks to link farming 

communities and their varieties with the existing formal genetic resource conservation 

undertaken by the IBC in six agro-ecological regions (IBC 2001). A consortium of Canadian 

NGO's headed by the Unitarian Service Committee of Canada (USC/C) also supported on-farm 

conservation of farmers‟ varieties in drought-prone areas of Ethiopia. However, such projects 

seem to lose their long-term sustainability because of lack of connection to the socio-cultural 

basis of on-farm conservation in project implementation sites. Generally, on-farm conservation 

program encourages smallholder farmers in selected areas to continue growing landraces of 

several staple crops, which are in danger of being displaced by high yielding varieties. 

Nevertheless, intensification and mechanization of agriculture accompanied with the fast 

changing land use system have affected the success of in situ conservation. As the result in 

today‟s conservation and practical development of crop genetic resource ex situ and in situ 

conservation strategies are used complementarily. 

 

2.6.4 Ex situ and in situ/on-farm as complementary conservation strategy 

Dynamic (in situ) and static (ex situ) conservation strategies have a complementary function in 

genetic resource management and utilization (Worede 1997). Many gene banks were created to 

provide the material to breeders and other potential users. Nowadays, the need to ensure the 

availability of genetic material with information for future generation is gaining importance. 

Therefore, ex situ conservation could play a buffering role and could be a back up against some 

unpredictable evolution (Berthaud 1997) and could also be involved in the availability and use of 
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germplasm for the improvement of a variety of crops. For sustainable genetic resource 

development, part of ex situ conservation should be envisaged as connected with dynamic, in 

situ/on-farm conservation. In some cases, short or medium term established ex situ conservation 

might serve restoration of crop varieties on-farm beyond its role to maintain valuable genes for 

future use. 

 

In situ conservation is particularly useful for conserving semi-wild species or wild relatives of 

crop species. It is particularly relevant for habitats where crops and their wild relatives occur 

together, and which are under such pressure that the wild relatives might disappear. In situ 

conservation could help preserve and maintain knowledge, innovation and practices of 

indigenous and local communities embodying traditional lifestyles relevant for conservation and 

sustainable use of crop genetic resources (Kebebew 1997). The combination of these dynamic 

and static conservation strategies, therefore, maintains evolution of materials 

conserved and associated traditional knowledge. Local plant development with integration of 

plant breeding and seed system is the basis for such conservation strategies maintaining, 

stimulating, and enhancing the dynamics of the community management of plant genetic 

resources.

 

2.7 DNA Markers in Plant Breeding 

Plant Breeding is a dynamic area of applied science. It relies on genetic variation and uses 

selection to gradually improve plants for traits and characteristics that are of interest for the 

grower and the consumer. Practical breeding of many economic important crops is performed by 

commercial companies that strive in a fierce competition for the favor of agricultural producers 

and consumers (Zuurbier 1994).  These improvements were partly realized through an efficient 

use of existing variability, present within the available material. Another important way of 

improvement is the introduction of new genetic material (e.g. genes for disease resistance) from 

other sources, such as gene bank accessions and related plant species. Although current breeding

practices have been very successful in producing a continuous range of improved varieties, 

recent developments in the field of biotechnology and molecular biology can be employed to 

enhance plant breeding efforts and to speed up the creation of cultivars. Also, new ways and 
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methods that allow an easier introduction of genetic material from related and unrelated plant 

species, without the drawbacks that are normally associated with the introduction of “wild 

genes” through conventional methods, become feasible. Biochemical and Molecular techniques 

have shortened the duration of breeding programs from years to months, weeks, or eliminated the 

need for them all together. The use of molecular markers in conventional breeding techniques 

has also improved the accuracy of crosses and allowed breeders to produce strains with 

combined traits that were impossible before the advent of DNA technology (Stuber et al. 1999). 

 

Breeding is simply defined as the selective mating of individuals of a population to isolate or 

combine desired morphological, physiological or genetic traits such as appearance, yield, and 

disease resistance. This is performed with the assistance of identifiable traits. When a detectable 

mutant is identified within a population, the gene causing the mutation was placed on a genetic 

map through a series of crosses that would establish its recombination frequency relative to other 

genes that had previously discovered and mapped. If the mutant gene was in close proximity to 

the gene for a desired trait, the mutant gene or “marker” was said to be linked to it because the 

marker and the gene tend to co-segregate. In a breeding cross, this mutant gene could be used to

detect whether or not a breeding cross had been successful in transferring the desired trait. If the 

mutant gene is observed being expressed in the progeny, it is most likely that the progeny also 

has the desired trait due to its link to the mutant gene. This is the phenomenon of co-inheritance 

and the selection of these mutant genes for the tracking of desired traits is called indirect 

selection. 

 

2.7.1 Morphological Markers 

Morphological markers generally correspond to the qualitative traits that can be scored visually.   

They have been found in nature or as the result of mutagenesis experiments. There are several 

undesirable factors that are associated with morphological markers. The first is the high 

dependency on environmental factors. Often the conditions that a plant is grown in can influence 

the expression of these markers and lead to false determination (Chawla 2004). Second, these 

mutant traits often have undesirable features such as dwarfism or albinism. And lastly, 

performing breeding experiments with these markers is time consuming, labour intensive and the 
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large populations of plants required need large plots of land and/or greenhouse space in which to 

be grown (Stuber  et al. 1999). 

2.7.2 Biochemical Markers 

Biochemical markers are proteins produced by gene expression. Isozymes, the different 

molecular forms of the same enzyme that catalyze the same reaction, are proteins. They are the 

products of the various alleles of one or several genes (Chawla 2004). Isozymes are used as 

biochemical markers in plant breeding and are common enzymes expressed in the cells of plants. 

The enzymes are extracted, and run on denaturing electrophoresis gels. The denaturing 

component in the gels (usually SDS) unravels the secondary and tertiary structure of the enzymes 

and they are then separated on the basis of net charge and mass. The sequence of nucleotides of 

the DNA is converted to a sequence of amino acids of polypeptides by the process of 

transcription and translation (Reiner and Hans 2007). Polymorphic differences occur on the 

amino acid level allowing singular peptide polymorphism to be detected and utilized as a 

polymorphic biochemical marker. Biochemical markers are superior to morphological markers in 

that they are generally independent of environmental growth conditions. The only problem with 

isozymes in marker assisted selection is that most cultivars (commercial breeds of plants) are 

genetically very similar and isozymes do not produce a great amount of polymorphism and 

polymorphism in the protein primary structure may still cause an alteration in protein function or 

expression. 

 

2.7.3 Molecular Markers 

The discovery of restriction enzymes (Smith and Wilcox 1970) and the polymerase chain 

reaction (PCR) (Mullis and Faloona 1987) have created the opportunity to visualize the 

composition of organisms at the DNA level, and obtain a so-called genetic fingerprint (Kearsey 

and Pooni 1996). The visualization is routinely performed by the separation, on a gel, of DNA-

fragments that result from a selective digestion with enzymes or fragments that result from a 

selective amplification using PCR. DNA-fragments that result in different gel patterns between 

samples or individuals are called polymorphic markers. The visible differences on the gel result 

from differences at the DNA level. Not all types of markers are the same, the information content 
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depends on the method that was used to obtain the marker data and the population in which the 

markers were „scored‟. For instance, it is not always possible to distinguish genome fragments 

that are present in homozygous condition from heterozygous fragments. In a heterogeneous 

population like an F2, co-dominant markers like RFLPs (Botstein et al. 1980) and co-dominantly 

scored AFLPs (Vos et al. 1995) yield more information than dominant markers like RAPDs 

(Welsh and McClelland 1990) and dominantly scored AFLPs. Advanced tools for the retrieval of 

marker data and the subsequent analysis have been developed and allow a quick and reliable 

analysis in most plant species. These developments have opened up a new era for genetics and 

selection (Moreau 1998). 

 

Molecular markers are based on naturally occurring polymorphisms in DNA sequences (i.e.: 

base pair deletions, substitutions, additions or patterns). There are various methods to detect and 

amplify these polymorphisms so that they can be used for breeding analysis. Molecular markers 

are superior to other forms of marker assisted selection because they are relatively simple to 

detect, abundant throughout the genome even in highly bred cultivars, completely independent of 

environmental conditions and can be detected at virtually any stage of plant development. 

Molecular markers can be used for several different applications including: germplasm 

characterization, genetic diagnostics, characterization of transformants, study of genome 

organization and phylogenic analysis.  

 

Different kinds of molecular markers exist, such as RFLPs, RAPDs, AFLPs, SSRs and SNPs. 

They may differ in a variety of ways - such as their technical requirements; the amount of time, 

money and labour needed; the number of genetic markers that can be detected throughout the 

genome; and the amount of genetic variation found at each marker in a given population (Table 

1). The information provided by the markers for the breeder will vary depending 

on the type of marker system used. Each one has its advantages and disadvantages and, in the 

future, other systems are also likely to be developed (Korzun  2003).  

 

http://www.fao.org/biotech/spec-term-n.asp?id_glo=3830&id_lang=TERMS_E
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A brief overview of the major marker systems as follows: 

 

Restriction Fragment Length Polymorphisms 

Restriction Fragment Length Polymorphisms (RFLPs) are markers detected by treating DNA 

with restriction enzymes (enzymes that cut DNA at a specific sequence) (Botstein et al. 1980). 

For example, the EcoR1 restriction enzyme cuts DNA whenever the 

base sequence GAATTC is found. Differences in the lengths of DNA fragments will then be 

seen if, for example, the DNA of one individual contains that sequence at a specific part of the 

genome (e.g. tip of chromosome 3) whereas another individual has the sequence GAATTT 

(Which is not cut by EcoR1). RFLPs were the first molecular markers to be widely used. Their 

use is, however, time-consuming and expensive and simpler marker systems have subsequently 

been developed.  

 

Table 1: Comparison of marker systems  

Feature  RFLPs  RAPDs  AFLPs  SSRs  SNPs 

Amount of DNA required (μg)  10 0.02 0.5-1.0  0.05 0.05 

Quality of DNA required  high  high  moderate  moderate  high  

PCR-based  no  yes  yes  yes  yes  

Number of polymorphic loci 

analyzed per analysis  

1.0-3.0  1.5-50  20-100  1.0-3.0  1 

Ease of use  not easy  easy  easy  easy  easy  

Amenable to automation  low  moderate  moderate  high  high  

Reproducibility  high  unreliable  high  high  high  

Development cost  low  low  moderate  high  high  

Cost per analysis  high  low  moderate  low  low  

  

Random Amplified Polymorphic DNA 

Random Amplified Polymorphic DNA (RAPD) markers were first described in 1990 (Williams 

et al. 1990). They are detected using the polymerase chain reaction (PCR), a widespread 

molecular biology procedure allowing the production of multiple copies (amplification) of 

specific DNA sequences. The analysis for RAPD markers is quick and simple, although results 

are sensitive to laboratory conditions. 

http://www.fao.org/biotech/spec-term-n.asp?id_glo=4387&id_lang=TERMS_E
http://www.fao.org/biotech/spec-term-n.asp?id_glo=3830&id_lang=TERMS_E
http://www.fao.org/biotech/spec-term-n.asp?id_glo=3002&id_lang=TERMS_E
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Amplified Fragment Length Polymorphism 

PCR-based method of generating molecular markers was described by (Vos et al. 1995), giving 

rise to Amplified Fragment Length Polymorphism (AFLP) markers. With this technique, DNA 

treated with restriction enzymes is amplified with PCR. It allows selective amplification of 

restriction fragments giving rise to large numbers of useful markers which can be located on the 

genome relatively quickly and reliably.  

 

Simple Sequence Repeats  

Simple Sequence Repeats (SSRs) also known as microsatellites are simple DNA sequences (e.g. 

AC), usually 2 or 3 bases long, repeated a variable number of times in tandem. They are easy to 

detect with PCR and a typical microsatellite marker has more variants than those from other 

marker systems. Initial identification of SSR is time-consuming. Simple sequence repeat markers 

have emerged as very attractive tools for genetic studies (Saghai-Maroof et al. 1994; Liu et al. 

1996), because they are PCR-based, relatively inexpensive, primarily co-dominant, reproducible 

across mapping populations, and multi-allelic. They are generally recognized as neutral, so that 

they do not influence the expression of a linked gene. However, SSR markers in barley are also 

derived from EST sequences and are thus embedded in coding sequences where mutations are 

likely to have an effect on gene function, e.g. by shifting the open reading frame. It has been 

found that mutations in SSR repeat number cause quantitative variation in transcriptional activity 

and biological function of human and mammalian genes (Kashi et al. 1997). Data from SSR 

markers are primarily used as single loci (if they are unlinked), but may also be employed for 

haplotyping (if they are physically linked). Moreover, it must be highlighted that SSR convey an 

extra amount of information, compared to other classes of markers, thanks to the underlying 

stepwise mutational model (Slatkin 1995). SSR markers were first used in genetic analysis of 

humans (Tauz 1989) and later in plant studies (Morgante and Olivieri 1993). The variability at 

SSR marker loci is due to the differences in the number of repeat units, e.g. di-, tri- or

 tetranucleotide repeats. In barley there are currently over 1045 SSRs have been mapped (Saghai-

Maroof et al. 1994; Liu et al. 1996; Pillen et al. 2000; Ramsay et al. 2000; Li et al. 2003; Thiel et 

al. 2003; Marcel et al. 2007; Rostoks et al. 2007; Varshney et al. 2006; Varshney et al. 2007). In 

the majority of the studies mentioned above, the SSR markers were developed after screening 

http://www.fao.org/biotech/spec-term-n.asp?id_glo=4387&id_lang=TERMS_E
http://www.fao.org/biotech/spec-term-n.asp?id_glo=3830&id_lang=TERMS_E
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small insert or microsatellite enriched genomic libraries for SSR motifs. In recent years, 

however, because of the availability of large expressed sequence tag (EST) datasets for a number 

of plant species and the development of several bioinformatics tools, it has been possible to 

identify and develop SSR markers from ESTs (Pillen et al. 2000; Thiel et al. 2003; Ramsay et al. 

2004; Varshney et al. 2006). The SSR markers derived from ESTs are commonly known as 

„„EST-SSRs‟‟. The development of such markers, in contrast to the earlier genomic SSRs, is 

easier, faster and cheaper (Varshney et al. 2005). 

 

Single Nucleotide Polymorphisms 

Single Nucleotide Polymorphisms (SNPs) (Gupta et al. 2001; Marcel et al. 2007) i.e. single base 

changes in DNA sequence, have become an increasingly important class of molecular marker. 

The potential number of SNP markers is very high, meaning that it should be possible to find 

them in all parts of the genome, and micro-array procedures have been developed for 

automatically scoring hundreds of SNP loci simultaneously at a low cost per sample.  

 

 

http://www.fao.org/biotech/spec-term-n.asp?id_glo=4387&id_lang=TERMS_E
http://www.fao.org/biotech/spec-term-n.asp?id_glo=3830&id_lang=TERMS_E
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3. Materials and Methods 

 

The present study was aimed to analyze the presence of diversity among Ethiopian barley 

landraces using morphological and molecular marker SSRs. Area of origin and altitude of 

collection were the basis for studying. The detail information on the structure of data and the 

methods used will be presented below.  

 

3.1 Morphological Study 

 

3.1.1 Experimental Materials 

Barely germplasm for this study were provided by Institute of Biodiversity Conservation 

(Ethiopia) with their passport data (Appendix 1). The accessions were originally collected from 

10 regions of Ethiopia, which covers an altitudinal range from 1740 to 3430 m.a.s.l. and 

collected from year 1983 to 2005. A total of 199 barley (Hordeum vulgare L.) accessions and 

four released cultivars (Shege, Ardu 12-60B, HB-42 and HB-1307), which were commonly used 

and adapted to the experimental sites, were used for the study (Table 2). Accessions (130 

accessions) which have longitudes and latitudes were plotted on Ethiopian map (Fig.1).  

 

Table 2:  Regions in Ethiopia, number of accessions and altitude ranges used for collecting 

     barley germplasm in present study  

  Altitude classes    

 

Regions 

Class I 

<2000 

 Class II 

2001-2500 

 Class III 

2501-3000 

 Class IV 

>3000 

Total 

Arsi  - 5 8 2 15 

Bale 3 20 3  - 26 

Gamo Gofa 2 6 16 1 25 

Gojam 1 5 4 1 11 

Gonder  - 9 8 1 18 

Harerge 3 16 3  - 22 

Shewa 1 5 7 6 19 

Sidamo 7 18 2  - 27 

Tigray 4 8 4  - 16 

Welo  - 3 9 8 20 

Total 21 95 64 19 199 
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Fig. 1: Geographical distribution of 130 barley accessions (○) and location of experimental   

sites (♦) (Map adapted from (Tamene 2005)) 

 

Accessions were originally collected from regions Arsi, Bale, Gamo Gofa, Gojam, Gonder, 

Harerge, Shewa, Sidamo, Tigray and Welo. The original samples were collected from farmers‟ 

fields, by use of random sampling technique (Hawkes 1976). 

3.1.2 Experimental Sites 

The accessions were tested at Holetta and Bekoji Agricultural Research Centers, Ethiopia, in 

main cropping season of 2006. Holetta Agricultural Research Center (9 degree 3'N and 38 degree 

30'E) is located 39 km west of Addis Ababa. It is one of the research centers known for highland 

crops and located at an altitude of 2400 m.a.s.l. with annual average rainfall of 1055 m
2
 most 

falling between March and October with peaks in July and August. The temperature ranges from 

22
0
C to 6

0
C with the soil type classified as Eutric Nitisol with a pH of 4.92. 
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Bekoji (7 degrees 32'N and 39 degrees 15'E) research site located in Arsi region of Ethiopia. The 

station soil is classified as Eutric Nitosol, exhibiting a clay content of approximately 48.5% 

(Tanner et al. 1993) and is relatively deficient in Phosphorus with pH of 5.3. The site receives an 

annual average rainfall of 1020 m
2
 which occurs from June-October growing season. The station 

is situated at an altitude of 2780 m.a.s.l. with an annual average temperature ranges from 8
0
C to 

20
0
C. 

 

 

Fig. 2: Climate data of the experimental sites at Holetta and Bekoji (minimum and 

maximum temperature as well as monthly rainfall) 
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The trial was conducted in augmented design with four blocks and four cultivars, which were 

placed after each 7 accessions. Each accession was grown in a single row with 2.5 m length and 

0.4m width between rows.  

 

3.1.3 Agronomic data collected 

 

Data were recorded for nine quantitative characters using barley Descriptors (IPGRI 1994).  

1. Days to Heading (DH): the number of days from planting up to heading. 

2. Days to Maturity (DM): the number of days from planting up to physiological maturity. 

3. Thousand Seed weight (TSW): weight of 1000 seeds randomly taken from each plot in 

gram. 

4. Flag Leaf Length (FLL): the length of the flag leaf from its bottom to tip in cm. 

5. Awn Length (AL): distance from the tip of the spike to the end of the awn 

6. Spike Length (SL): distance from the base of the spike to the tip of the highest                                    

spikelet (excluding own) in cm.  

7. Number of Seeds per Spike (NSS): the actual count of the number of spikelet  

of the mother spike  

8. Plant Height (PLH): the distance between the ground level to the tip of the terminal 

spikelet in cm of the mother plant 

9. Number of Fertile Tiller per Plant (NFTP): the actual count of the fertile numbers of 

tillers (spike bearing) per plant 

For each accession, 10 individual plants were used to record data except for days to heading, 

days to maturity, thousand seed weight and biomass, in which data were recorded on plot basis.  

10. Beta Glucan (BG): 199 barley samples were milled and incubated at 33
0
C for 3days. 10 

ml enzyme solution (9.9 ml of bidest water and 0.1 ml α-amylase) were added on 50mg 

of milled barley samples. Vortexed samples incubated in 100
0
c in water bath for 1hour. 

The samples were cooled in cold water and 0.75 M of H2SO4 were added and vortexed. 

Again the samples incubated in 100
0
C in water bath for 16 minutes sharply. The samples 

again cooled in cold water (10°C) and centrifuged 3000 rpm for 10 minutes. Finally the 

supernatant pored to new labeled tube. Beta glucan measured using the tecator β-glucan 

5700 analyzer. 
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3.2 Molecular study 

3.2.1 DNA extraction 

DNA from 199 barley accessions representing plot and 197 barley lines representing accessions 

were isolated according to Cetyl trimethylammonium bromide (CTAB) protocol (Saghai-Maroof 

et al. 1984). For plot data one single spike representing one accession was used for DNA 

extraction and analysis were conducted based on this data. While two accessions from each 

regions represented by 10 spikes were used to determine the variation exists within accessions.  

 

Fresh leaves were harvested from two weeks old barley seedlings grown on peteridish. From 

each sample four plants were used to handle the possible existed variation. The leaves were 

stored in -80
0
c freezer until DNA extraction. Approximately 100 mg leaves were transferred in 

to 96 deep well plates. One tungsten bead was added in each well and freezed in liquid nitrogen. 

Freezed samples homogenized in tissuelyser at 20 Hz for 1 minute followed by centrifugation at 

3000 rpm for 2 minutes. In each well 200 µl extraction buffer added and shaked gently without 

flipping. The samples incubated at 60
0
C for 60 minutes followed by cooling at 4

0
C for 15 

minutes. Subsequently 200 µl chloroform/isoamyl alcohol (24:1) was added under the hood and 

centrifuged with 3000 rpm for 30 minutes. Again 150 µl of extraction buffer added and 

centrifuged 30 minutes with 3000 rpm. Then 100 µl of the supernatant transferred into sterile 96 

deep well plates, which contained 200 µl cold isopropanol. The precipitated DNA then collected 

by centrifugation for 30 minutes with 3000 rpm. The supernatant drained off immediately and 

then pellets washed with 100 µl 70% cold ethanol. Finally the DNA pellet was incubated at 60
0
C 

for 45 minutes and resolved in 100 µl of bidest water. 

 

Buffers and solutions 

Buffers and solutions used for extraction of DNA will be presented in detail. 

CTAB buffer for 96 samples 

Soribitol buffer       15.75 ml 

Lysis buffer            15.75 ml 

5% laurylsarcosine   6 ml 

Na bisulphate         300 mg 
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Sorbitol buffer, pH 7.5 

Sorbitol                          350 mM 

Tris                                100 mM 

EDTA                            5 mM 

H2O (high purity)           ad 2 L 

Adjust to pH 7.5 with HCl and store at 4°C 

Lauryl sarcosine 5% 

Lauryl sarcosine               170.42 mM 

H2O (high purity)             ad 500 ml 

Keep at room temperature 

Nucleic lysis buffer 

Tris                               200 mM 

EDTA                           50 mM 

NaCl2                           2 M 

CTAB                           2 % 

H2O (high purity)         ad 5 L 

Keep at room temperature 

Tris-borate-EDTA-buffer (5x TBE), pH 8.3 

Tris                                 450 mM 

Boric acid                        450 mM 

EDTA                             10 mM 

H2O (high purity)           ad 5 L 

Adjust to pH 8.3 with NaOH at room temperature 

Chloroform/isoamyl alcohol 24:1 

24 volumes chloroform and 1 volume isoamyl alcohol were mixed. 

The DNA was run on a 2.5 % agarose gel to check its quality and to quantify the amount of 

DNA by ethidium bromide after electrophoresis. Nanodrop spectrophotometer was also run to 

check the concentration of DNA. 
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3.2.2 SSR analysis 

A total of 15 SSR markers selected with an even coverage of the barley chromosomes (Table 3). 

 

Table 3: List of SSR markers used for genotyping barley samples 

Locus Chrom. Position 

(cM) 

Repeat Theor. Size References 

GBM1042 1HS  46.0 (AAC)5 296 Thiel et al. 2003 

Bmag0579 1HL 132.8 (AC)6(AG)15 126 Ramsay et al. 2000 

Bmag0211 1H 59.8 (CT)16 174 Pillen et al. 2000 

HVM36 2HS 31.0 (GA)13 114 Liu et al. 1996 

GMS003 2H 66.1 (GT)15 144 Struss and Plieske 1996 

HVM54 2HL 122.4 (GA)14 159 Liu et al. 1996 

EBmac0541 3HL 137.2 (AC)9 106 Ramsay et al. 2000 

HVLTPPB 3H 20.5 (AC)10 216 Pillen et al. 2000 

HVM67 4HL 120.5 (GA)11 116 Liu et al. 1996 

Bmag0337 5H 45.0 (AG)22 145 Ramsay et al. 2000 

Bmag0222 5H 144.9 (AC)9(AG)17 179 Ramsay et al. 2000 

Bmac0316 6HS 7.2 (AC)19 135 Ramsay et al. 2000 

Bmac0040 6HL 113.2 (AC)20 236 Ramsay et al. 2000 

Bmag0007 7H 22.2 (AG)16(AC)16 185 Ramsay et al. 2000 

Bmag0135 7HL 147.5 (AG)10GG(AG)12 161 Ramsay et al. 2000 

 

 

3.2.3 Polymerase Chain Reaction (PCR) 

PCR amplification was performed on 15 μl final volume reactions containing 5μl template DNA 

(10ng/μl), including 0.5 μl Taq polymerase (5units/μl, Promega), 1.5 μl of 10 × PCR buffer, 0.75 

μl of 25 mM MgCl2, 0.75 μl of dNTP, 0.075 μl of the forward and reverse oligonucleotide 

primers (10 μM) and 0.5 μl of the M13 universal forward primer (1pmol/μl). Each forward 

oligonucleotide primer was tailed by adding the M13 universal forward primer sequence at the 5‟ 

end. The M13 primer was labeled with either IRD700 or IRD800 at the 5‟end for visualization. 

The samples of PCR amplification were stored at -20°C before loading.  
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The amplification profile started with 10 cycles of denaturing at 94 °C for 1 min, annealing at 

64- 55 °C (touch-down PCR) for 1 min and extension for 1 min at 72 °C followed by 30 cycles 

of 1 min at 94 °C, 1 min at 55 °C and 1 min at 72 °C with a final extension step at 72 °C for 5 

min. 

3.2.4 Licor analysis 

The LI-COR DNA Sequencer 4200 was used as an automated DNA detection device. The  

Li-COR system employs infrared fluorescence to detect DNA. During the PCR reaction, the 

DNA polymerase incorporates an infrared dye (IRD)-labelled primer into the PCR fragments. 

The IRD labelled fragments separate according to size on an acrylamide gel. A solid-state diode 

excites the infrared dye on DNA fragments as they pass the detector window. A focusing 

fluorescence microscope containing a solid-state silicon avalanche photodiode scans back and 

forth across the width of the gel collecting data in real time. The raw image data are series of 

bands displayed autoradiogram-like on the computer screen. 

IRD800 is a heptamethine cyanine dye absorbing and fluorescing in the near infrared region 

of the spectrum. The absorption maximum at 795 nm is well-matched to the 785 nm laser of the 

DNA sequencer. The extremely high absorptivity and good quantum efficiency of the dye 

provide excellent sensitivity (LI-COR 1999). 

IRD700 is a pentamethine carbocyanine dye fluorescing in the near infrared region of the 

spectrum. The absorption maximum (685 nm) is just outside the visible region and matches the 

685 nm laser of DNA sequencer. While the absorptivity of IRD700 is slightly less than that of 

IRD800, the higher fluorescence efficiency compensates for the absorption difference (LI-COR 

1999). 

 

3.2.5 Genotyping score 

For each SSR marker and each sample, fragment sizes were visualized by the e-seq software and 

genotype scoring was carried out manually 1 as presence and 0 as absence of bands. Genotype 

data was archived in Excel tables for further analysis.  
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3.3 Statistical analyses

 

Since the barley accessions used for the study was several in number (199 accessions) and less 

amount of seeds for running complete block design, field experiment was conducted with an 

augmented design consisting of four blocks without replications. In addition to the accessions, 

four improved cultivars (checks) were also included which were replicated in each block for 

estimation of error variance.  So all Statistical analyses for morphological data were conducted 

using SAS software (SAS 2004). Data were analyzed by restricted maximum likelihood (REML) 

to fit a mixed model with checks and experimental sites as a fixed effect and unreplicated 

accessions as random effect (Little et al. 1996; Comadran 2008). The REML model produced 

best linear unbiased predictors (BLUPs), which can handle unbalanced data while accounting for 

differences in the amount of data available for each accessions  (Etten et al. 2008; Bernardo 

2002), for the data of each accessions in both sites to be used in subsequent analyses. PROC 

MIXED was conducted to estimate genotypic as well as residual variance component. 

 

MIXED used to fit model of the form  

 

Yijk = μ + Li + Sj + Ak + Li*Ak + eijk 

 

Where Yijk is response variable; μ is general mean; Li is the fixed effect of i
th

 location; Sj is the 

fixed effect of j
th

 standard checks; Ak is the random effect of k
th

 accession; Li*Ak is the random 

interaction effect of i
th

 location with j
th

 accession and eijk is random errors. 

 

Heritability (h
2
) for accessions was calculated following (Comstock & Moll, 1963) from 

components of variance. 

 

h
2
= δg

2
/ (δg

2
+ (δg*l

2
/2) + δe

2
)

Where δg
2
 is genetic variance of accessions; δg*l

2
 genetic variance of accessions by location 

interactions and δe
2
 error variance. 
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Before undertaking multivariate analysis, in which two or more variables analyzed at a time, the 

data were standardized to mean of zero and a variance of one to avoid differences in scales used 

for recording data (Sneath and Sokal 1973). PROC Princomp was employed to group the 

variables into subsets that are relatively independent from each other as well as for reducing the 

dimensionality of the structure. To examine the validity of the origin based groupings of the 

accessions PROC Discrim were utilized.  Using PROC Cluster 199 accessions and 10 regions of 

origin were clustered into respective classes. Values of the Cubic Clustering Criterion (CCC), 

pseudo F statistic (PSF) and Hotelling‟s pseudo T
2
 statistic were considered for defining 

optimum cluster numbers (SAS 2004). The measure of dissimilarity was Euclidean distance and 

the accessions were clustered using WARD method.  Principal Components for regions was 

plotted along the first three axes to graphically display relationships among regions.  

 

Genotypic data were exposed for different analysis using different software. To refer to the 

informativeness of microsatellites, Polymorphic Information Content (PIC) was employed based 

on the following formula: 

𝑃𝐼𝐶 = 1 −   𝑃𝑖2
𝑛

𝑖=1

  

 

Where Pi is the frequency of the i
th

 alleles and n is the number of alleles and this value referred 

as heterozygosity and gene diversity (Weir 1990; Anderson et al. 1993). The binary data 

generated by SSR analysis was used to calculate polymorphism percentage by dividing amplified 

polymorphic band by total number of bands observed. To examine the relative proportion of 

variation among and within regions, altitude and accessions Analysis of Molecular Variance 

(AMOVA) were computed using ARLEQUIN ver. 3.11 (Excoffier et al. 2005). Population 

differentiation was used the F statistics which measures how much of the total heterozygosity 

(HT) is explained by within population heterozygosity (HS): 

 

FST = (HT-HS)/HT 

 

Gene flow among populations was estimated with Nm, the number of migrants per generation 

between pairs of populations. Nm was estimated from the formula Nm = 1/(4FST) - 1/4 (Slatkin 
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1993). The Nm values were grouped into three categories: high (Nm≥1), intermediate (0.250-

0.99) and low (0.00-0.249) (Slatkin 1981, 1985; Caccone 1985; Waples 1987). The genotypic 

data were arranged in appropriate format using convert (Glaubitz 2005) before analyzed in 

AMOVA. Among 199 accessions used for the study only 130 accessions which have full data of 

longitudes and latitudes used to find Universal Transverse Mercator (UTM) which further 

involved to calculate geographic distance using Euclidean distance. To see the correlation 

between geographic distance and dice similarity matrix was conducted using XLSTAT (Agresti 

1990; Saporta 1991) and the significance of the P value was calculated based on 10000 

permutation. PAST (Hammer at al. 2001) version 1.95 software were employed to construct 

neighbor joining tree for population pair wise FST.  

Just as FST gives a standardized measure of the genetic differentiation among populations for a 

genetic locus, QST measures the amount of genetic variance among populations relative to the 

total genetic variance (Spitze 1993): 

 

QST=Vb/(Vb+Vw) 

 

Where Vb and Vw are the variance between population and within population respectively. 

Comparison of QST and FST estimates of population differentiation was made using the overall 

loci estimates of SSR markers as a null hypothesis to test quantitative differentiation divergences 

(Yang et al. 1996). The 95% confidence interval (CI) for FST and QST estimated 

by bootstrapping accessions and loci 1000 times using the program R package (http://www.r-

project.org). QST was considered to be statistically different from FST when 95% confidence 

intervals of QST did not overlap 95% confidence intervals of FST (Sahli et al. 2008).  

 

The software STRUCTURE ver 2.3.1 (Pritchard et al. 2000) was used to analyze the genetic 

structure of the population and to perform an assignment test on the studied individuals. This 

program implements a model-based Bayesian clustering method for inferring population 

structure using genotype data of markers. Here it was also applied to assign individuals to each 

subpopulation or cluster. Analyses were performed using the admixture model with correlated 

marker allele frequencies (Falush et al. 2003) in cases of subtle population structure. When alpha 

is close to zero, most individuals are essentially from one population or another, while alpha > 1 
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means that most individuals are admixed (Falush et al. 2003). To choose the appropriate number 

of inferred clusters 20 independent job was performed with K=2 to K=20. All computations used 

a burn-in period of 50 000 and 10000 Markov Chain Monte Carlo (MCMC) iterations for data 

collection. 

Similarity matrix used for clustering was estimated using Dice coefficient equation:  

 

Gij=2a/ (2a+b+c) 

 

Where „a‟ refers to alleles shared between two accessions and „b‟ and „c‟ to alleles present either 

in accession i or accession j respectively (Dice 1945).  

The degree of genetic relationship among the studied barley accessions as revealed by Dice‟s 

similarity coefficient was represented through cluster analysis using the algorism of Unweighted 

Pair Group Method with Arithmetic Average (UPGMA). The degree of association between the 

similarity estimates based on SSR and Euclidean distance; and SSR and geographic distance was 

done by Mantel test (Mantel 1967) using MXCOMP in NTSYS-pc (Rohlf 1998) thereby to 

determine the significance level of correlation coefficient between the matrices. The analysis was 

conducted with the null hypothesis which stated that there is no correlation between both 

variables. The analysis was performed with 5000 permutations to estimate a significance level.

The goodness of fit of the clustering compared to the basic data matrix was also tested by 

computing co-phenetic correlation using software NTSYS-pc program (Rohlf 1998). 

Additionally principal coordinate analysis (PCoA) was carried out based on the pairwise genetic 

similarity matrix using software XLSTAT (Agresti 1990; Saporta 1991). 
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4. Results  

 

4.1 Phenotypic variation 

To determine the variation existing among and within accessions collected from different regions 

of origin and different altitudes, different statistical analyses was conducted and the results are 

presented thereafter. 

 

4.1.1 Analysis of Variance 

Results obtained from analysis of variance indicate significant differences between accessions 

for all traits (Table 4). The same result was obtained for all traits in testing location, except for 

flag leaf length, while no genetic-location interaction was observed for plant height. All traits 

showed medium (0.1-0.3) to high heritability (>0.3) with low border values for flag leaf length 

(0.12) and number of fertile tiller per plant (0.12). Days to heading (0.83), days to maturity 

(0.73), number of seeds per spike (0.77) and thousand seed weight (0.67) were traits which 

showed highest heritability.  

 

Table 4: Results of variance components and heritability with standard error for 199 

barley accessions 

Source of variation δg
2
 δg*l

2
 δe

2
 Heritability  

DH 33.46** 0.62* 6.59 0.83±3.76 

DM 21.97* 1.53* 7.54 0.73±2.71 

TSW 25.37** 4.11** 10.6 0.67±3.38 

FLL 0.19* 0.14* 1.29 0.12±0.11 

AL 0.16** 0.0035 0.29 0.36±0.03 

SL 0.53** 0.01 0.31 0.62±0.07 

NSS 59.22* 0.21 17.42 0.77±6.93 

PH 14.53** 0 19.89 0.42±2.63 

NFTP 0.06* 0.01 0.42 0.12±0.03 

Where: *, ** significant at P=0.05 level and P=0.01 respectively, δg
2
,
 
δg*l

2
, δe

2
, genetic, genotype by location 

interaction and error variance respectively; DH=Days to Head, DM=Days to Maturity, TSW=Thousand Seed 

Weight, FLL=Flag Leaf Length, AL=Awn Length, SL=Spike Length, NSS=Number of Seeds per Spike, PH=Plant 

Height, NFTP=Number of Fertile Tiller per Plant 
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4.1.1.1 Regional Variation 

Though analysis of variance indicated statistically no significant variation between regions 

(Table 5) for all traits, high variation for each region was observed, which indicated wide 

differences for each character within region. Except Harerge all regions showed high variation 

for days to heading and maturity where as none of the regions showed significant variation for 

number of fertile tiller per plant except Shewa. Accessions collected from all regions revealed 

statistically significant variation for number of seeds per spike. Sidamo showed significant 

variation for all traits except flag leaf length and number of fertile tiller followed by Shewa, 

which showed significant variation for all traits except plant height indicating wide variation 

within these regions. Gojam showed significant variation for days to heading, days to maturity 

and number of seeds per spike while Harerge showed no variation for all traits except for flag 

leaf length and number of seeds per spike (Table 6). 

  

Table 5: Mean, minimum and maximum values of selected traits of accession with the 

significance test for regions and altitude classes 

Traits Minimum Maximum Mean  Regions Altitude classes 

DH   63.06 100.13   81.5 NS ** 

DM 118.34 144.53 181.4
 
 NS ** 

TSW   28.39   58.21   41.66
 
 NS * 

FLL   15.16   21.38   18.48
 
 NS NS 

AL     9.46   12.89   11.33
 
 NS * 

SL    4.63   10.49     8.07
 
 NS NS 

NSS  21.32   64.29   40.48
 
 NS * 

PH  99.43 135.18 120.51
 
 NS ** 

NFTP   2.63     5.75     3.99
 
 NS NS 

Where: *, **, NS:  significant at P=0.05 P=0.01 level and Non significant at P>0.05respectively; DH=Days to Head, 

DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, AL=Awn Length, SL=Spike Length, 

NSS=Number of Seeds per Spike, PH=Plant Height, NFTP=Number of Fertile Tiller per Plant 

 

Region based heritability analysis showed wide variation for each region depending on the traits. 

Shewa, Sidamo, Gonder and Bale showed medium to high heritability for all traits and flag leaf 

with lowest heritability as compared to other traits (Table 7). Medium to high heritability was 
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estimated for days to heading, days to maturity, thousand seed weight, and number of seeds per 

spike and plant height while other traits have no heritability estimates in one region or more. 

 

4.1.1.2 Altitudinal variation  

Analysis based on different altitude classes (Table 5) showed significant variation among 

altitudes classes for all traits except flag leaf length, spike length and number of fertile tiller 

plant. High genetic variation observed within each altitude classes based on the traits involved 

(Table 6). Statistically high significant variation was observed between all altitude classes for 

days to heading, thousand seed weight, awn length, spike length and number of seeds per spike. 

Altitude class II and III showed statistically significant variation for all traits. While altitude 

class I and IV  showed no significant variation for flag leaf length, number of fertile tiller per 

plant and in addition statistically no significant variation observed for accessions collected from 

altitude class IV for days to maturity.  

 

In contrast to regions all altitude classes have heritability estimates ranged from low to high. 

While altitude class II and III showed from medium to high heritability for all traits but lowest 

heritability observed for number of fertile tiller per plant in altitude class II. Altitude classes I 

and IV showed relatively low heritability as compared to altitude class II and III depending on 

the traits. As compared to altitude class IV, altitude class I showed less heritability estimates 

which is associated with less genetic variation for these altitude classes (Table 7). 

To see if longitudes and latitudes have any association with heading and maturity date, 

correlation analysis was conducted but the results showed there was no correlation between 

longitudes, latitudes and other morphological traits (Table 8). 
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Table 6: Genetic variance estimates for 10 regions and altitude classes based on nine quantitative traits 

Region DH DM TSW FLL AL SL NSS PH NFTP 

Arsi   47.51* 58.92* 26.40* 1.02* 0.59* 0.73* 76.98*   1.22 0.24 

Bale     8.32**   7.71**   4.17 0.11 0.05 0.31** 28.16**   3.82 0.15 

Gamo    19.79**   9.01* 52.69** 0.00 0.14* 0.18** 84.74**   1.32 0.09 

Gojam   63.84* 24.45* 18.91 0.00 0.04 0.26 55.62* 23.87 0.00 

Gonder 120.04** 57.44* 13.04 1.73* 0.11 0.16 50.67* 37.84* 0.26 

Harerge     2.07   0.33   1.96 0.68* 0.00 0.05 11.94*   1.12 0.00 

Shewa   13.27*   8.80** 43.66* 0.61* 0.25* 0.94** 91.44** 14.45 0.48* 

Sidamo   18.08** 18.47** 51.02** 0.14 0.60** 2.04** 76.96** 47.49** 0.14 

Tigray   11.88*   4.75*   9.92* 0.00 0.09* 0.06 54.75**   3.93 0.00 

Welo   20.58** 12.98* 22.28** 0.18 0.21* 0.29* 26.77*   3.53 0.00 

Altitude Class I   14.33**   9.34** 25.29** 0.17 0.18* 0.59* 49.47** 10.73* 0.04 

Altitude Class II   31.21** 22.27** 16.23** 0.46** 0.24** 0.63** 50.85** 17.38** 0.10* 

Altitude Class III   47.22** 29.89** 38.01** 0.48* 0.17** 0.43** 77.54** 15.09** 0.20** 

Altitude Class IV   29.17** 11.99 33.13** 0.11 0.17* 0.55** 51.77** 15.09* 0.08 

Where: *, ** significant at P=0.05 level and P= 0. 01 respectively; DH=Days to Head, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf 

Length, AL=Awn Length, SL=Spike Length, NSS=Number of Seeds per Spike, PH=Plant Height, NFTP=Number of Fertile Tiller per Plant; Altitude Class I= < 

2000m, Altitude Class II=2001-2500m, Altitude Class III=2501-3000m, Altitude Class IV= >3000m 
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Table 7: Heritability estimates with standard error for 10 regions and 4 altitude classes 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Where: DH=Days to Head, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, AL=Awn Length, SL=Spike Length, NSS=Number of 

Seeds per Spike, PH=Plant Height, NFTP=Number of Fertile Tiller per Plant; Altitude Class I= < 2000m, Altitude Class II=2001-2500m, Altitude Class III=2501-

3000m, Altitude Class IV= >3000m 

Regions DH DM TSW FLL AL SL NSS PH NFTP 

Arsi 0.92±20.82 0.87±27.56 0.87±12.14 0.52±0.63 0.73±0.29 0 0.88±35.68 0.12±4.98 0.49±0.16 

Bale 0.81±2.87 0.77±2.79 0.35±3.89 0.15±0.19 0.16±0.07 0.56±0.13 0.78±10.7 0.42±2.87 0.29±0.11 

Gamo 

Gofa 

0.92±6.48 0.69±4.03 0.90±17.95 0 0.41±0.08 0 0.86±30.35 0.10±5.35 0.30±0.07 

Gojam 0.96±35.26 0.92±13.94 0.64±16.21 0 0.20±0.07 0.54±0.21 0.95±30.96 0.62±21.46 0 

Gonder 0.96±45.37 0.85±24.76 0.43±12.36 0.56±0.91 0.41±0.07 0.27±0.16 0.83±22.45 0.78±17.78 0.38±0.18 

Harerge 0.45±1.48 0.22±0.48 0.17±4.51 0.41±0.41 0 0.13±0.09 0.57±7.13 0.13±3.48 0 

Shewa 0.69±7.07 0.44±7.98 0.85±18.81 0.44±0.39 0.67±0.11 0.81±0.38 0.92±6.07 0.46±12.48 0.57±0.24 

Sidamo 0.84±6.15 0.85±6.0 0.86±17.16 0.15±0.25 0.57±0.25 0.85±0.65 0.87±25.69 0.90±15.18 0.37±0.08 

Tigray 0.79±5.72 0.61±3.03 0.69±5.68 0 0.51±0.05 0.23±0.07 0.97±22.04 0.37±4.59 0 

Welo 0.85±8.24 0.75±5.90 0.88±8.49 0.18±0.3 0.43±0.13 0.58±0.14 0.68±13.82 0.24±5.92 0 

Altitude 

Class I 

0.81±5.49 0.76±3.78 0.88±8.96 0.17±0.28 0.43±0.09 0.58±0.26 0.85±18.41 0.66±5.27 0.13±0.09 

Altitude 

Class II 

0.93±4.83 0.89±3.60 0.62±4.02 0.40±0.15 0.49±0.06 0.73±0.11 0.86±8.58 0.70±3.71 0.25±0.04 

Altitude 

Class III 

0.93±8.98 0.85±6.19 0.87±7.74 0.34±0.21 0.46±0.05 0.61±0.10 0.88±15.73 0.54±2.28 0.41±0.06 

Altitude 

Class IV 

0.86±11.30 0.47±9.14 0.88±12.48 0.14±0.23 0.51±0.08 0.78±0.21 0.84±20.51 0.60±6.89 0.25±0.07 
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Table 8: Correlation between longitude, latitude and morphological traits 

 DH DM TSW FLL ANL SL SPS PLH FTP Longitude Latitude 

DH 1           

            

DM 0.919 1          

 <.0001           

TSW 0.400 0.428 1         

 <.0001 <.0001          

FLL 0.247 0.192 -0.056 1        

 0.005 0.029 0.532         

ANL 0.243 0.285 0.481 -0.110 1       

 0.006 0.001 <.0001 0.214        

SL -0.037 -0.057 0.414 0.147 0.246 1      

 0.674 0.522 <.0001 0.096 0.005       

SPS 0.441 0.407 -0.337 0.282 0.047 -0.365 1     

 <.0001 <.0001 <.0001 0.001 0.596 <.0001      

PLH 0.405 0.352 0.544 0.161 0.336 0.367 0.023 1    

 <.0001 <.0001 <.0001 0.068 <.0001 <.0001 0.793     

FTP -0.212 -0.209 0.313 -0.205 0.032 0.366 -0.606 0.140 1   

 0.016 0.018 0.000 0.020 0.723 <.0001 <.0001 0.113    

Longitude -0.002 -0.001 -0.038 0.081 -0.088 -0.137 0.056 -0.103 -0.002 1  

 0.980 0.993 0.668 0.363 0.324 0.122 0.530 0.245 0.986   

Latitude 0.042 0.054 0.086 -0.042 0.097 0.103 -0.162 -0.002 0.109 -0.037 1 

 0.640 0.541 0.333 0.637 0.277 0.247 0.066 0.986 0.217 0.677  

Where: DH=Days to Head, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, AL=Awn Length, SL=Spike Length, NSS=Number of 

Seeds per Spike, PH=Plant Height, NFTP=Number of Fertile Tiller per Plant 
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4.1.2 Principal Component analysis  

The first three principal components, with eigenvalues greater than unity, explained 72.85% 

of the total variation among accessions for the 9 quantitative traits (Table 9).  The relative 

magnitude of eigenvectors from the first principal component (31.47 %) indicated that 

thousand seed weight and plant height followed by awn length and spike length was the 

most important contributing traits. From the second principal component, which contributed 

28.23% of the total variation, the most predominant characters were seeds per spike, days to 

heading and days to maturity, which were opposite and almost equal with fertile tiller per 

plant, indicated negative correlation. Third principal component explained 13.15% of total 

variation with high loadings from flag length and spike length.  

 

Table 9: Eigenvectors and eigenvalues of the first three principal components of nine 

quantitative traits of 199 barley accessions from Ethiopia 

 

Characters 

Eigen vectors 

  PC1   PC2   PC3 

DH   0.31   0.47  -0.18 

DM   0.31   0.46  -0.22 

TSW   0.51  -0.10  -0.21 

FLL   0.10   0.22   0.76 

AL   0.38  -0.02  -0.16 

SL   0.36  -0.27   0.43 

NSS  -0.13   0.52   0.14 

PH   0.46  -0.04   0.23 

NFTP   0.18  -0.40  -0.12 

Eigen value   2.83   2.54   1.18 

% of total variance  31.47 28.23 13.15 

% cumulative  variance  31.47 59.70 72.85 

Where: DH=Days to Head, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, 

AL=Awn Length, SL=Spike Length, NSS=Number of Seeds per Spike, PH=Plant Height, NFTP=Number of 

Fertile Tiller per Plant 

 

 

4.1.2.1 Principal Component analysis for region 

Principal component analysis was employed to assess the regional diversity pattern of barley 

accessions using the respective regional means for the 9 quantitative traits assessed. 
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Considering an eigenvalue greater than one, the total variance among regions was explained 

on the basis of three eigenvalues (Table 10). It extracted 86.26% of the total regional  

 

Table 10: Eigenvectors and eigenvalues of the first three and two principal components 

of regions of origin of accessions and altitude classes, respectively 

   Regions  Altitude  classes  

Traits   PC1   PC2   PC3   PC1   PC2 

      DH   0.08   0.54  -0.21   0.35   0.23 

DM   0.10   0.56  -0.12   0.35   0.29 

TSW   0.51   0.03  -0.02   0.36  -0.17 

FLL  -0.22   0.31  -0.51  -0.02   0.80 

ANL   0.10   0.19   0.69   0.37   0.04 

SL   0.48   0.14   0.11   0.35  -0.25 

SPS  -0.43   0.28   0.22   0.36   0.23 

PLH   0.11   0.38   0.27   0.34  -0.28 

FTP   0.48  -0.11  -0.26  -0.35   0.04 

Eigenvalue   3.71   2.71   1.34   7.19   1.52 

% of total variance  41.26 30.07 14.93 79.99 16.93 

%cumulative  

variance  

41.26 71.33 86.26 79.99 96.92 

Where: DH=Days to Heading, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, 

AL=Awn Length, SL=Spike Length, NSS=Number of Seeds per Spike, PH=Plant Height, NFTP=Number of 

Fertile Tiller per Plant 

 

variation. Thousand seed weight, spike length and fertile tiller per plant were the highest 

contributors for the first principal component which explain 41.26% of total variation while 

seeds per spike and flag leaf length had negative correlation with other traits. Similarly,  

30.07% of the variation, which was accounted by the second principal component,  

explained by days to maturity and days to heading followed by flag leaf length. The third 

principal component explained 14.93% of the variation with high loadings through awn 

length, followed by plant height and seeds per spike while highest negative loadings from 

flag leaf length observed. The three dimensional plot of the first three principal components 

of regions was shown in Fig. 2. 
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Further using the mean of 9 quantitative traits evaluated in the study, principal component 

analyses were performed to examine the variation among the accessions within each region 

of origin. In the analysis most of the variation was explained with the first three eigenvalues, 

which are greater than one, for all the regions (Table 11). Based on PCA analysis for  

 

 
 

Fig. 3: 3D diagram showing the relationships among 10 regions based on the first three 

principal components 

    

regions Gojam (85.15%), Gonder (82.17), Sidamo (81.27) and Shewa (83.64%) were the 

regions which showed high variation with the first three eigenvalues. Whereas Harerge 

(66.11%) was the region with the smallest cumulative variance as compared with other 

regions.  

 

Days to heading and days to maturity were the two traits which have high loadings on the 

first principal component of all regions except in Gamo, Shewa and Sidamo (Table 12). 

Gojam

Gamo Gofa

Harerge

Tigray

Arsi

Welo
Gonder

Bale

Shewa

Sidamo

Prin 1 (41.26%)

Prin 2 (30.07%)

Prin 3 (14.93%)
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Whereas thousand seed weight, spike length and plant height were the important traits in 

Gamo, Shewa and Sidamo. For Harerge, the regions with the lowest cumulative variance, 

days to heading and days to maturity were the traits with the highest loadings as compared 

with the other traits for the first principal component. 

 

Table 11: The first three eigenvalues and cumulative variance of barley accessions for 

10 Regions and four altitude classes 

Regions Eigenvalues % Cumulative  variance 

Arsi  3.83 2.04 1.33 80.12 

Bale 3.52 2.30 1.08 76.66 

Gamo Gofa 3.61 2.07 1.11 75.47 

Gojam 4.44 1.70 1.38 83.64 

Gonder 3.55 2.64 1.17 81.79 

Harerge 2.94 1.85 1.15 66.11 

Shewa 3.38 2.31 1.72 82.39 

Sidamo 4.05 2.24 1.12 82.39 

Tigray 4.15 1.86 1.20 80.28 

Welo 3.42 2.09 1.33 76.19 

Altitude class I 4.05 2.28 1.08 82.28 

Altitude class II 2.79 2.77 1.08 73.84 

Altitude class III 2.93 2.25 1.29 71.96 

Altitude class IV 3.14 2.45 1.17 75.16 

Where: DH=Days to Heading, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, 

AL=Awn Length, SL=Spike Length, NSS=Number of Seeds per Spike, PH=Plant Height, NFTP=Number of 

Fertile Tiller per Plant; Altitude Class I= < 2000m, Altitude Class II=2001-2500m, Altitude Class III=2501-

3000m, Altitude Class IV= >3000m 

 

 

4.1.2.2 Principal component analysis for altitude classes 

Considering altitude classes for analysis of principal component resulted in two eigenvalues 

which were greater than one and it explained 96.92% of the total variation (Table 10). All 

traits except flag leaf length and fertile tiller per plant had high loadings for the first 

principal component which contributed 79.99% of variation.  Flag leaf length was the one 

with the highest lodgings for the second principal component (15.24%) followed by days to
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heading and days to maturity and seeds per spike. The negative value of spike length, 

plant height and thousand seed weight showed their negative association with other traits.

Principal component analysis based on altitude classes showed three eigenvalues could explain 

most of the variation depending on the altitudes classes. The highest cumulative variation 

(82.28%) was observed for altitude class I (Table 11).  

 

 

Whereas the other three altitude classes showed nearly equal variation with the lowest for 

altitude class III (71.96%).The loadings of each traits on the first principal component for 

altitude classes showed on Table 10. Thousand seed weight, awn length, fertile tiller per plant 

and spike length were the traits with high loadings on the first principal component of altitude 

class I and II except awn length in altitude class II. Days to heading and days to maturity with 

negative loadings observed in altitude class I and II while the highest negative value was for 

number of seeds per spike which indicated their negative association with the rest of the traits 

except flag leaf length in altitude class II. Thousand seed weight, plant height, awn length and 

fertile tiller per plant were traits with high loadings on first principal component of altitude class 

III where as for altitude class IV days to heading, days to maturity, thousand seed weight and 

plant height were the traits with high loadings. For altitude classes all traits except flag leaf 

length and fertile tiller per plant could differentiate among the classes.  

 

 

To observe the general pattern for variation of traits, both regions and altitude classes combined 

together and analysed for principal components. In general the three principal components 

contributed 80.35% of the total variation with 51.08%, 18.08% and 11.19% respectively. The 

relationship between traits and regions and altitude classes were presented on the two 

dimensional graph (Fig 4). 
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Table 12: Eigenvectors and eigenvalues of the first principal component of region of origin and altitude classes 

 

Where: DH=Days to Heading, DM=Days to Maturity, TSW=Thousand Seed Weight, FLL=Flag Leaf Length, AL=Awn Length, SL=Spike Length, NSS=Number of 

Seeds per Spike, PH=Plant Height, NFTP=Number of Fertile Tiller per Plant; Altitude class I= < 2000m, Altitude class II=2001-2500m, Altitude class III=2501-3000m, 

Altitude class IV= >3000m 

 

 

 

 

Traits Arsi Bale Gamo 

Gofa  

Gojam  Gonder  Harerge  Shewa  Sidamo  Tigray  Welo Altitude 

class I 

Altitude 

class II 

Altitude 

class III 

Altitude 

class IV 

DH   0.48   0.44  0.14  0.42  0.49 0.51 -0.09 -0.08  0.46  0.49 -0.20 -0.22  0.28  0.46 

DM   0.47   0.43  0.14  0.38  0.48 0.53 -0.02 -0.05  0.43  0.50 -0.15 -0.20  0.25  0.50 

TSW   0.30   0.41  0.47  0.26  0.18 0.30  0.46  0.44  0.08  0.47  0.41  0.37  0.53  0.45 

FLL  -0.09   0.21 -0.09  0.34  0.41 0.05 -0.05  0.10 -0.27  0.08  0.19 -0.06 -0.13  0.03 

ANL   0.35   0.33  0.33  0.10  0.14 0.24  0.25  0.34  0.14  0.27  0.35  0.19  0.37  0.19 

SL  -0.28   0.26  0.34  0.18  0.23 0.00  0.48  0.46 -0.30  0.01  0.40  0.50  0.23  0.11 

SPS   0.43   0.26 -0.44  0.38  0.42 0.32 -0.43 -0.40  0.37 -0.19 -0.45 -0.49 -0.27  0.06 

PLH   0.03   0.41  0.46  0.42  0.25 -0.07  0.45  0.42  0.34  0.39  0.29  0.31  0.43  0.47 

FTP -0.24   0.07  0.33 -0.36 -0.16 -0.45  0.33  0.35 -0.41  0.13  0.40  0.39  0.34 -0.23 

Eigen 

value 

 3.83   3.52  3.61  4.44 3.55 2.94  3.38  4.05  4.15  3.42  4.05  2.79  2.93  3.14 

% of total 

variance  

42.64 39.08 40.13 49.39 39.48 32.63 37.6 45.03 46.17 38.08 44.97 31.02 32.61 34.92 
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Fig. 4: Diagram showing the pattern among 10 regions and four altitude classes combined 

together based on the first two principal components 

 

4.1.3 Cluster analysis 

Hierarchical cluster analysis was used to examine the aggregation patterns of 199 barley 

accessions. All the accessions in the study grouped into 7 clusters (Table 13). The number of 

accessions per cluster varied from 55 accessions in cluster II to 11 accessions in cluster V. In 

Cluster I 55% and 44% of accessions from Gojam and Tigray clustered and all of them matured 

relatively earlier with short plant height and small seed size since the majority of the accessions 

were from altitude class II. While cluster II included accessions from all regions with the highest 

percentage from Harerge (55%) and Bale (42%), the regions which contributed highest 

percentage of accessions collected from altitude class II and 85% of the accessions matured less 
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than the average maturity day with tall plant height, flag leaf length and spike length . Early 

matured accessions with small seeds and short plant height clustered under cluster III in which 

Bale contributed the highest percentage (23%) followed by Gamo Gofa (20%). Cluster IV were 

the only cluster in which less number of regions contributed and among these Sidamo shared the 

highest percentage (26%). Most of the accessions included in Cluster IV were matured less than 

the average day and had the biggest seed size associated with small number of seeds per spike 

and long spike length and its is the only cluster without out accessions from altitude class IV. 

Cluster V consisted of smallest number of accessions as compared to other clusters and these 

accessions were small seeded with shortest plant height, short spike and awn length with most 

accessions with high number of seeds per spike. Each of cluster VI and VII were consisted of 

13% of the total accessions in the study where cluster VI contained accessions which matured 

relatively late with small seeds, longer flag leaf length and high number of seeds per spike with 

medium sized plant height. While all accessions grouped in the last cluster matured late in which 

65% of accessions originated from altitude class III with bigger seed size and longer plant height 

accompanied by longest awn length.   
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Table 13: Distribution of 199 barley accessions over 7 clusters by 10 regions and 4 altitude 

classes 

Regions Clusters Accessions 

I II III IV V VI VII 

Arsi 4 1 1 1 3 3 5 15 

Bale 5 11 6 1 3 1 2 26 

Gamo Gofa 2 7 5 4 1 3 3 25 

Gojam 6 2 - - - 2 1 11 

Gonder 5 4 - - - 5 4 18 

Harerge 2 12 4 - 1 3 - 22 

Shewa 3 5 - - 4 3 4 19 

Sidamo 2 4 5 7 5 2 2 27 

Tigray 7 4 2 - - 1 2 16 

Welo 4 5 5 - - 3 3 20 

total 40 55 28 13 11 26 26 199 

Altitude class         

I  

II 

III 

IV 

6 4 6 1 3 - 1 21 

24 

7 

3 

29 

20 

2 

13 

5 

4 

7 

5 

- 

4 

1 

3 

13 

9 

4 

5 

17 

3 

95 

64 

19 

Where: Altitude Class I= < 2000m, Altitude Class II=2001-2500m, Altitude Class III=2501-3000m, Altitude Class 

IV= >3000m 

 

 

Further clustering analysis for regions resulted in 5 clusters based on the variation of the 10 

quantitative traits (Fig 5).  Cluster I included Arsi, Shewa and Gonder, regions in which late 

matured with taller plant height accessions were observed. While cluster II contained regions 

with accessions of medium sized seeds with taller plant height, which were Bale, Gamo Gofa, 

Sidamo and Welo. Harerge, region from which medium plant height with medium sized spike 

length accessions with high number of seeds per spike of smallest seed size observed, grouped 

under cluster III. Gojam which exhibited the tallest accessions with bigger seed size and small 

number of seeds per spike was grouped into Cluster IV. Cluster V, encompassed earlier matured 

accessions from Tigray with shortest plant height and smallest number of seeds per spike.
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Fig. 5: Dendrogram showing the relationships among 10 regions  

 

 

4.1.4 Discriminant analysis 

 

Discriminant analysis using the regions of origin of the accessions as a grouping variable 

revealed that only 32 accessions out of 199 (16.02%) were classified in their respective regions. 

The percentage of accessions correctly classified varies with regions (Table 14). Tigray (56.25%) 

and Gojam (36.6%) were the only two regions with relatively high number of accessions in their 

respective regions, while most of the accessions from the rest of regions were scattered all over 
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the regions. Among these Sidamo (3.7%), Welo (5.0%) and Bale (7.7%) were the regions with 

smallest percentage of accessions in their respective region of origin whereas none of the 

accessions from Shewa grouped in same region of origin.29.63% of accessions from Sidamo and 

23.08% of accessions from Bale grouped under Gojam. With the same pattern 24.0% of 

accessions from Gamo grouped under Welo. Except Sidamo accessions collected from Shewa 

grouped under all regions with the highest percentage (26.3%) under Harerge which is the 

proximity region geographically. Despite the highest percentage of accessions grouped in same 

region of origin, accessions from Tigray grouped under all regions except Sidamo and Welo. 

 

 

Table 14: Summary of discriminant analysis for barley accessions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Genotypic diversity   

Genetic diversity analysis based on 15 SSR markers detected a  total of 58 alleles for 199 

accessions collected from 10 regions of Ethiopia ranging from 2 (GBM1042 and HVM36) to 7 

(Bmac0040) and 6 (Bmag0007) (Table 15) with an average value of 3.86 alleles per locus. The 

average polymorphic information content (PIC) was ranging from 0.03 (EBmac0541) to 0.79 

(Bmag0007). As compared to EBmac0541 (0.03), Bmag0222 (0.62) showed high PIC, also 

suggested as gene diversity (Anderson et al. 1993), while both markers amplified equal number 

of alleles. This low PIC of EBmac0541 (0.03) was related with the presence of rare alleles which 

reduce the frequency. The highest numbers of alleles were detected for chromosome 1H, 6H and 

7H which were equal in number, 11. 

Regions Original number of accessions Regions 

  1 2 3 4 5 6 7 8 9 10 % 

Arsi 15 2 0 5 3 0 3 0 0 2 0 13.30 

Bale 26 2 2 3 6 3 2 2 1 4 1   7.70 

Gamo Gofa 25 1 4 3 1 2 1 1 0 6 6 12.00 

Gojam 11 0 0 0 4 1 1 0 1 4 0 36.60 

Gonder 18 1 3 2 3 3 0 2 0 3 1 16.70 

Harerge 22 3 4 2 1 2 7 0 0 2 1 31.82 

Shewa 19 2 1 1 3 1 5 0 0 3 3   0.00 

Sidamo 27 0 2 2 8 1 7 2 1 3 1   3.70 

Tigray 16 1 1 1 1 1 1 1 0 9 0 56.25 

Welo 20 2 1 3 1 1 3 1 0 7 1   5.00 
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Table 15: Molecular diversity of the 15 SSR loci 

  Allelic richness   

Locus Chromosome Per locus  Per chromosome PIC 

GBM1042 1H 2 11 0.15 

Bmag0579 1H 4 0.17 

Bmag0211 1H 5 0.70 

HVM36 2H 2 9 0.27 

GMS003 2H 4 0.49 

HVM54 2H 3 0.42 

EBmac0541 3H 3 8 0.03 

HVLTPPB 3H 5 0.52 

HVM67 4H 3 3 0.29 

Bmag0337 5H 4 7 0.28 

Bmag0222 5H 3 0.62 

Bmac0316 6H 4 11 0.37 

Bmac0040 6H 7 0.66 

Bmag0135 7H 5 11 0.57 

Bmag0007 7H 6 0.79 

Total   58    

Average   3.86  0.43 

Where: PIC=Polymorphic Information Content  
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Table 16:  Diversity of 15 SSR markers across 10 regions 

Locus Arsi Bale Gamo Gojam Gonder Harerge Shewa Sidamo Tigray Welo Total  

Band/  

 locus 

Polymorphic 

band 

Polymo

rphism

% 

GBM1042 1 1 2 2 2 2 2 2 2 1 17 14 82 

Bmag0579 3 2 2 1 2 2 1 2 1 3 19 16 84 

Bmag0211 4 4 4 4 4 4 4 4 2 4 38 38 100 

GMS003 4 4 3 3 4 4 2 3 2 3 32 32 100 

HVM36 1 2 2 2 2 2 2 2 2 2 19 18 95 

HVM54 3 2 3 2 2 3 3 2 3 3 26 26 100 

EBmac0541 2 1 1 1 1 1 2 1 1 2 13 6 46 

HVLTPPB 3 3 2 2 3 2 3 3 3 2 26 26 100 

HVM67 3 2 2 2 3 3 3 2 2 2 24 24 100 

Bmag0337 3 3 2 2 2 2 2 2 2 1 21 20 95 

Bmag0222 3 3 3 3 3 2 3 3 3 3 29 29 100 

Bmac0040 6 4 5 4 4 4 4 6 3 5 45 45 100 

Bmac0316 4 4 3 2 2 3 4 4 2 3 31 31 100 

Bmag0135 2 4 3 3 4 4 3 4 3 4 34 34 100 

Bmag0007 5 5 5 5 4 5 5 5 4 5 48 48 100 

Total alleles 47 44 42 38 42 43 43 45 35 43 422 407 100 

Mean 3.10 2.80 2.73 2.40 2.73 2.80 2.80 2.93 2.20 2.73    

SD 1.60 1.47 1.28 1.35 1.16 1.27 1.21 1.49 1.08 1.49    

Where: SD=Standard Deviation
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Genetic diversity between barley landraces for each geographic region was assed using 15 SSR 

markers. As the data of SSR markers summarized in Table 16 showed a total of 422 bands were 

observed among which 407 were polymorphic and 10 of the analyzed markers showed 100% 

polymorphic percentage while Ebmac0541 showed the least polymorphic percentage (46%). 

Among the 10 regions analyzed only Arsi, Shewa and Welo were polymorphic for loci 

Ebmac0541. As compared to other regions Tigray showed lowest band (35) over all loci while 

Arsi with the highest number of bands (47). 

 

 

4.2 Genetic diversity and population differentiation  
 

 

 4.2.1 Regional Diversity and genetic differentiation 

 

A hierarchical AMOVA was performed to examine hierarchical population structure based on 

regions and altitude of collection setting regions and altitude classes as population. The AMOVA 

result obtained setting regions as population showed that among regions variation accounted for 

7.82% while the most variation ascribed to within regions (91.95%) (Table 17).  

Mean while the degree of population differentiation was measured with fixation index FST and 

can be presumed that a value lying in the range 0 to 0.05 indicates little genetic differentiation, 

0.05 to 0.15 indicates moderate differentiation, 0.15 to 0.25 a large degree of differentiation and 

values above 0.25 very great differentiation (Wright 1978; Hartl and Clark 1997). The overall 

population differentiation among regions were significantly different from zero (P<0.0001) with 

FST value of 0.08 which indicated medium differentiation. Contribution of seed dispersal to 

overall gene flow can be estimated by comparing levels of interpopulational differentiation (i.e., 

FST or GST). So gene flow (Nm=2.95) was estimated for regions from population differentiation 

(Table 18). 
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Table 17: Analysis of molecular variance for regions and altitude of collection 

Source of Variation DF Sum of squares Variance component Percent of  

variation (%) 

Among regions 9 111.68 0.24 7.82 

Within regions 390 1107.72 2.84 92.18 

Total 399 1219.40 3.09 100 

FST=0.07819 (P<0.0001) 

Nm=2.947 

    

Among altitude classes 3 18.08 0.03 1.10 

Within altitude classes 396 1215.55 3.07 98.90 

Total 399 1233.63 3.10 100 

FST=0.011(P<0.5384) 

Nm=22.477 

    

Where: DF=Degree of Freedom, Nm=Gene Flow 

 

 

Level of geographic differentiations was determined by estimating pairwise FST among regions 

(Table 18).  The lowest and non significant population differentiation was observed among Arsi 

and Bale (FST=0.028), Arsi and Harerge (FST=0.040), Gamo Gofa and Gonder (FST=0.037), 

Gamo Gofa and Shewa (0.016) and Gojam and Harerge (0.023) which indicated these regions 

were more similar. While Tigray were strongly differentiated from Arsi (FST=0.188), Bale 

(FST=0.132), Gamo (FST=0.143), Harerge (FST=0.136), Shewa (0.128), Gonder (FST=0.097) and 

Sidamo (FST=0.078) which showed from medium to high fixation index and region specific 

fixation index also showed relatively high FST estimates for Tigray (Table 18). Tigray and Welo 

were the two regions which were significantly differentiated from the rest of the regions while 

Sidamo were significantly differentiated from all regions except Gojam. From region specific 

FST estimates it was observed that Welo and Arsi was the region with relatively low FST. Bale 

was significantly differentiated from all regions except Arsi and Gojam.  
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Table 18: Pairwise FST among regions (below diagonal) and significance test level (above 

diagonal) 

  Arsi Bale Gamo Gonder Gojam Harerge Shewa Sidamo Tigray Welo FST^ 

Arsi  - * *** - - - *** *** * 0.076 

Bale 0.028  *** *** - *** ** *** *** *** 0.077 

Gamo 0.070 0.074  - * - - *** *** ** 0.079 

Gonder 0.095 0.073 0.037  - *** - *** *** *** 0.078 

Gojam 0.075 0.059 0.079 0.052  - - - * * 0.079 

Harerge 0.040 0.058 0.050 0.069 0.023  - *** *** *** 0.077 

Shewa 0.055 0.071 0.016 0.045 0.050 0.042  ** *** * 0.080 

Sidamo 0.105 0.087 0.093 0.069 0.055 0.099 0.063  *** *** 0.078 

Tigray 0.188 0.132 0.143 0.097 0.092 0.136 0.128 0.078  *** 0.082 

Welo 0.059 0.078 0.078 0.078 0.086 0.071 0.058 0.109 0.162  0.076 

Significance levels: - P> 0.05,*0.01<P<0.05, **0.001<P<0.01, ***P<0.001, ^ population specific fixation indices 

 

Finally pairwise population FST estimate (Table 18) was used to construct Neighbor Joining tree 

(Fig. 6) to see the relationship between regions. The tree showed that Tigray was highly 

differentiated from all other regions where as Arsi and Bale was less differentiated. 
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Fig. 6: Neighbor-Joining Tree based on pairwise FST values, showing phylogenetic 

relationship among regions 

 

Locus by locus analysis of variance for regions showed loci which were effective in 

differentiating population. Loci HVLTPPB (0.145), HVM36 (0.138), Bmag0337 (0.13) 

Bmag0135 (108) and Bmag0211 (0.105) have showed high fixation index and could differentiate 

among population (P<0.0001) (Table 18). While Bmac0316 (0.024) and EBmac0541 (0.026), 
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GBM1042 (0.032), Bmag0222 (0.040) HVM54 (0.048), Bmag0579 (0.053) were not able to 

differentiate among population and not significantly different from zero (P<0.05). 

 

 

Table 19:  Locus by locus analysis of variance for regions of origin using 15 loci  

   Among regions Within regions Fixation indices 

Locus SSD DF Va % 

variation 

SSD DF Vb % 

variation 

FST P-value 

GBM1042 1.232 9 0.002 3.200 23.078 390 0.059 96.800 0.032 0.3297 

Bmag0579 2.286 9 0.004 5.252 30.944 390 0.079 94.748 0.053 0.1021 

Bmag0211 16.115 9 0.037 10.492 123.475 390 0.317 89.509 0.105 0.0001 

GMS003 10.625 9 0.024 9.709 87.264 388 0.225 90.291 0.097 0.0008 

HVM36 7.984 9 0.019 13.768 47.126 390 0.121 86.232 0.138 0.0006 

HVM54 5.377 9 0.010 4.807 77.513 390 0.199 95.193 0.048 0.1378 

EBmac0541 0.269 9 0.000 2.589 5.661 390 0.015 97.411 0.026 0.3661 

HVLTPPB 15.710 9 0.038 14.500 88.000 390 0.226 85.500 0.145 0.0001 

HVM67 4.679 9 0.010 6.362 54.811 390 0.141 93.638 0.064 0.0504 

Bmag0337 7.705 9 0.018 12.951 48.325 390 0.124 87.049 0.130 0.0009 

Bmag0222 7.018 9 0.012 3.961 114.318 382 0.299 96.039 0.040 0.2132 

Bmac0040 9.029 9 0.018 5.440 117.697 376 0.313 94.560 0.054 0.0323 

Bmac0316 3.185 9 0.004 2.376 69.815 386 0.181 97.624 0.024 0.5122 

Bmag0135 13.050 9 0.031 10.822 96.473 376 0.257 89.178 0.108 0.0001 

Bmag0007 10.414 9 0.021 5.191 139.638 370 0.377 94.809 0.052 0.0344 

Where: SSD: Standard deviation, DF: degree of Freedom, Va: variance among regions, Vb: variance within regions 

 

4.2.2 Altitudinal diversity and genetic differentiation 

 

Allelic polymorphism based on 15 SSRs markers for altitude classes were summarized in Table 

19. Polymorphism percentage showed 100% for all loci except for locus EBmac0541 which was 

monomorphic for altitude class I unlike in regions where 40% of the locus was monomorphic. 

Total number of bands over all loci was higher and equal for altitude class II (55) and III (55) as 

compared to the extreme altitude class I and altitude class IV showed less number of bands 45 

and 49 respectively. 
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Table 20: Diversity of 15 SSR markers along altitude classes 

Locus Class I Class II Class III Class IV Total bands/  

 locus 

Polymorphic  

band 

Polymorphism 

(%) 

GBM1042 2 2 2 2 8 8 100 

Bmag0579 2 2 4 2 10 10 100 

Bmag0211 4 5 5 5 19 19 100 

GMS003 3 4 4 4 15 15 100 

HVM36 2 2 2 2 8 8 100 

HVM54 3 3 3 3 12 12 100 

EBmac0541 1 3 2 2 8 7 87.5 

HVLTPPB 3 4 4 3 14 14 100 

HVM67 2 3 3 3 11 11 100 

Bmag0337 2 3 3 3 11 11 100 

Bmag0222 3 4 3 3 13 13 100 

Bmac0040 6 7 7 5 25 25 100 

Bmac0316 3 4 4 3 14 14 100 

Bmag0135 4 4 4 4 16 16 100 

Bmag0007 5 5 5 5 20 20 100 

Total bands 45 55 55 49 204 203 99.5 

Mean 2.933 3.667 3.667 3.267       

SD 1.438 1.345 1.345 1.1       

Where: SD=Standard Deviation; Altitude Class I= < 2000m, Altitude Class II=2001-2500m, Altitude Class 

III=2501-3000m, Altitude Class IV= >3000m 

 

For estimation of population differentiation along altitude classes hierarchical AMOVA was 

conducted.  According to the result obtained for altitude classes 98.90% of the total variation 

attributed to within altitude class while only 1.10% among altitude class. The population 

differentiation considering altitude class as population resulted in low and non significant 

(P>0.05) fixation index (FST=0.011) (Table 17). As compared with regions for altitude classes 

high gene flow (Nm=22.48) was estimated.  

Locus by locus analysis of variance also showed none of the loci were significantly different 

from zero and failed to differentiate among population (Table 21). 



RESULTS 

 

 

60 

 

Table 21: Locus by locus analysis of variance for altitude classes 

   Among altitude classes  Within altitude classes Fixation indices 

Locus SSD DF Va variation SSD DF Vb Variation FST P-value 

           GBM1042 0.418 3 0.001 1.496 23.892 396 0.060 98.504 0.015 0.33267 

Bmag0579 0.256 3 0.000 -0.080 36.274 396 0.092 100.080 -0.001 0.76149 

Bmag0211 3.678 3 0.010 2.892 135.982 396 0.343 97.108 0.029 0.07535 

GMS003 1.444 3 0.003 1.112 96.696 394 0.245 98.888 0.011 0.42663 

HVM36 0.339 3 0.000 -0.213 54.771 396 0.138 100.213 -0.002 0.75743 

HVM54 1.220 3 0.002 1.087 82.670 396 0.209 98.913 0.011 0.41782 

EBmac0541 0.069 3 0.000 0.194 7.801 396 0.020 99.806 0.002 0.70426 

HVLTPPB 0.637 3 -0.001 -0.218 103.443 396 0.261 100.218 -0.002 0.80218 

HVM67 1.508 3 0.004 2.562 60.902 396 0.154 97.438 0.026 0.16139 

Bmag0337 0.657 3 0.001 0.608 56.733 396 0.143 99.392 0.006 0.53624 

Bmag0222 2.504 3 0.006 2.000 119.149 388 0.307 98.000 0.020 0.2302 

Bmac0040 1.343 3 0.001 0.442 125.709 384 0.327 99.558 0.004 0.75604 

Bmac0316 0.873 3 0.001 0.638 73.713 392 0.188 99.362 0.006 0.59881 

Bmag0135 1.838 3 0.004 1.393 107.686 382 0.282 98.607 0.014 0.36931 

Bmag0007 2.102 3 0.004 0.940 148.150 376 0.394 99.060 0.009 0.57584 

Where: SSD: Standard Deviation, DF: Degree of Freedom, Va: Variance among regions, Vb: Variance within 

regions 

 

As on table 22 indicated pairwise FST for altitude classes showed no significant population 

differentiation and the differentiation increases with increase in altitude. The closer the altitude 

classes the lower the population differentiation observed. 
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Table 22: Pairwise FST among altitude classes (below diagonal) and significance test level 

(above diagonal) 

  Altitude classes  

I II III IV FST^ 

I   -  -  - 0.01187 

II  0.00057   -  - 0.01108 

III 0.0195 0.0114   - 0.01082 

IV 0.03059 0.01361 0.0064  0.01070 

Where: Significance levels: - P>0.05,*0.01<P<0.05,**0.001<P<0.01,***P<0.001,^ Population specific fixation 

indices; Altitude Class I= < 2000m, Altitude Class II=2001-2500m, Altitude Class III=2501-3000m, Altitude Class 

IV= >3000m 

 

 

4.2.3 Diversity of accessions 

To estimate variation exists between and within accessions, two accessions from each region 

with 10 spikes from each accession were analyzed using 15 polymorphic SSR markers but 

analysis was conducted only for 13 polymorphic markers since two of the markers were 

monomorphic they were not included for this analysis. As the result indicated in Table 23 high 

variation observed within accession (65.65%) as compared to among accessions (34.35%). Very 

great differentiation among accessions (FST=0.34) was observed which were significantly 

different from zero (P<0.0001) and gene flow indicated that 0.48 immigrants per generation.  

 

Table 23: Analysis of variance for accessions based on 13 polymorphic SSR markers 

Source of Variation DF Sum of 

Squares 

Variance 

component 

Percent of variation (%) 

Among accession 19 339.49 0.83 34.35 

Within accessions 374 590.97 1.58 65.65 

Total 393 930.45 2.41 100 

FST=0.34(P<0.0001)     

Nm=0.48     

 Where: Nm=Gene Flow
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4.2.4 Population differentiation for quantitative traits (QST) 

 

 

4.2.4.1 Regional differentiation 

 

Population differentiation for quantitative traits was conducted using the variance between 

regions and within regions with similar pattern to FST analysis. QST was calculated for days to 

heading, days to maturity, thousand seed weight and glucan content, traits which had high 

variance among population as compared to within regions. Population QST values ranged from 

0.013 (days to heading) to thousand seed weight (0.054) with an average QST estimate of 0.030 

(Table 24). To determine if observed levels of quantitative trait differentiation were significantly 

different from neutral traits, bootstrap with 1000 samples were used. Judging from 95% 

bootstrap confidence intervals all QST estimates were significantly different from neutral 

expectation (FST=0.074, 95% CI 0.055-0.095) while glucan (QST=0.027, 95% CI 0.013-0.063) 

was not significantly different from FST. Even though the QST value was smaller than average 

FST, days to heading, days to maturity and thousand seed were significantly different from FST 

estimates. Over all mean quantitative traits estimates (QST=0.030, 95% CI 0.017-0.047) were 

significantly different from neutral trait estimates (FST=0.074, 95% CI 0.055-0.095). 
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Table 24:  Quantitative traits (QST) and SSR Markers (FST) differentiation of regions and 

altitude classes 

 Regions  Altitude classes 

Traits QST           95% CI  QST 95% CI 

  Lower Upper   Lower Upper 

DH 0.013* 0.007 0.050 DH 0.037*** 0.016 0.095 

DM 0.028** 0.019 0.091 DM 0.075*** 0.030 0.161 

TSW 0.054** 0.034 0.123 TSW 0.119*** 0.057 0.162 

Glucan 0.027** 0.013 0.063 Glucan 0.065** 0.000 0.115 

Average QST  0.030* 0.017 0.047 ANL 0.019** 0.000 0.155 

FST 0.074 0.055 0.095 FLL 0.424*** 0.088 0.385 

    FTP 0.201** 0.000 0.279 

    Average QST  0.135*** 0.058 0.241 

    FST 0.011 0.007 0.015 

*↓ QST was significantly smaller than FST at P=0.05, ** QST was not significantly different from FST at P=0.05, 

***↑QST was significantly larger than FST at P=0.05; DH=Days to Heading, DM=Days to Maturity, TSW=Thousand 

Seed Weight, FLL=Flag Leaf Length, AL=Awn Length, NFTP=Number of Fertile Tiller per Plant, BG=Beta 

Glucan 

 

4.2.4.2 Altitudinal differentiation 

Quantitative trait differentiation based on altitude class showed wide divergence as compared to 

neutral traits estimate FST.  For altitude classes most of the quantitative traits showed wide 

divergence with small value for awn length (0.019), days to heading (0.37) and days to maturity 

(0.075) (Table 24) as compared to regional differentiation. Since the confidence interval of FST 

overlap with the confidence interval of glucan (QST=0.065, 95% CI 0.-0.115), awn length 

(QST=0.019, 95% CI 0.0-0.155) and fertile tiller per plant (QST=0.201, 95% CI 0.0-0.279), there 

was no significant difference between QST of each trait and FST estimates based on 15 SSR loci. 

But overall quantitative trait (QST=0.135, 95% CI 0.058-0.241) estimate were high and 

significantly different from neutral trait estimate (FST=0.011, 95% CI 0.007-0.015). 
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4.2.5 Clustering 

On the basis of allele frequencies genotypes were assigned to populations in STRUCTURE

analyses, assuming that populations were admixed and allele frequencies were correlated as a 

consequence of shared ancestry and/or migration. Bayesian clustering based on model with 

admixture assumes each individual have inherited some proportion of its ancestry from each of K 

populations (Pritchard et al 2000). As defined by (Evanno et al.2005) analysis to determine 

number of K clusters using STRUCTURE were resulted in K=10 (Fig 7).  

 
 

Fig. 7: Diagram showing the number of inferred K clusters based on Likelihood plot from 

STRUCTURE analysis  

A graphic representation of the estimated membership coefficients to the K=2 and K=10 clusters 

for each individual obtained running structure was shown in Fig 8 and it showed no distinct 

structure among populations and revealed admixture of populations. Each accessions in the 

graph was represented by a single vertical line broken into K colored segments, with lengths 

proportional to each of the K inferred clusters. Each color represents the proportion of 

membership of each accession, represented by a vertical line, to the 10 clusters. From K=2 graph 

it was possible to observe that Tigray was the region which was less admixture as compared to 
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others while Arsi and Bale showed the opposite and this analysis supported the result obtained 

from Neighbor Joining tree. 

 

 
 

 

 

 

 

Fig. 8: Model based ancestry of accessions with cluster numbers K=2 and K=10, Horizontal 

numbers correspond to the population numbers (Code for Population (regions)  given in 

Appendix 1), membership coefficients (Q) are depicted vertically for each  individual 
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Table 25:  Proportion of membership of analyzed 199 barley accessions in each of the 10 

clusters (K=10) 

  Inferred clusters 

Region 1 2 3 4 5 6 7 8 9 10 

Arsi 0.043 0.112 0.103 0.130 0.165 0.032 0.106 0.023 0.056 0.23 

Bale 0.036 0.088 0.079 0.196 0.214 0.078 0.064 0.045 0.102 0.096 

Gamo Gofa 0.145 0.086 0.200 0.125 0.148 0.029 0.062 0.113 0.064 0.028 

Gojam 0.042 0.186 0.082 0.119 0.107 0.128 0.175 0.077 0.068 0.017 

Gonder 0.124 0.051 0.041 0.053 0.117 0.149 0.144 0.18 0.109 0.032 

Harerge 0.111 0.15 0.131 0.178 0.076 0.076 0.135 0.05 0.054 0.039 

Shewa 0.064 0.074 0.239 0.114 0.152 0.076 0.088 0.057 0.115 0.021 

Sidamo 0.041 0.051 0.066 0.064 0.103 0.094 0.119 0.188 0.17 0.104 

Tigray 0.034 0.034 0.040 0.071 0.051 0.211 0.194 0.305 0.038 0.021 

Welo 0.263 0.054 0.08 0.026 0.092 0.047 0.08 0.049 0.11 0.199 

 

Table 25 demonstrated the proportion of membership of accessions from each region in each of 

the 10 clusters. As compared to other regions Tigray was the most differentiated region, with 

30.5% of the accessions assigned to a single cluster 8 followed by Welo in which 26.3% of the 

accessions grouped in first cluster. While accessions from Arsi and Gonder were highly 

differentiated and showed high admixture among clusters.  

 

The clustering pattern based on Dice similarity coefficient of the SSR data showed a degree of 

„chaining „ (Romesburg 1990) as the clusters tended to become progressively larger as the 

similarity coefficient increased (Fig 9). As a result, it was not possible to find a set of clusters 

with roughly equal numbers accessions. Cutting the denderogram with a similarity coefficient of 

0.54 resulted in 10 clusters (Table 26) in which the first cluster consisted 79% of the accessions. 

The rest 42 accessions grouped into nine clusters and cluster II contained the highest number of 

10 accessions while cluster VII contained single accession collected from Arsi of altitude class 

III. Five pairs of accessions were genetically similar with similarity coefficient of one. The first 

accession pair which showed 100% genetic similarity was accession number 238847 from Arsi 
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and accession number 236139 from Gamo Gofa; the second pair was accessions number 215362 

from Arsi and accession number 238839 from Bale; the third pair was accession number 225986 

from Gonder and accession number 241120 from Harerge; the fourth accession number was 

217107 from Sidamo and accession number 224988 from Bale; and finally accession number 

217059 from Gojam and accession number 237856 Bale. Region based distribution of accessions 

showed all accessions collected from Shewa grouped under cluster I followed by Gamo Gofa and 

Tigray  where all the accessions grouped in two clusters only. While accessions from Sidamo 

appeared in six of the total clusters. Arsi and Welo formed Cluster XI and X each with two 

accessions collected from altitude class IV and III respectively. All the 10 accessions in cluster II 

were late matured accessions and collected from altitude class II, III and IV in contrast to six 

accessions from cluster III which were collected from altitude I and II and matured relatively 

early. 

 

Table 26: Distribution of accessions by cluster for regions and altitude classes based on 

SSR markers 

Regions Cluster 

 I  II III  IV  V  VI  VII VIII  XI  X Total 

            
Arsi 11     1     1   2   15 

Bale 20   3 1 1 1         26 

Gamo Gofa  21 4                 25 

Gojam 9   1   1           11 

Gonder 14       1 2   1     18 

Harerge 17 1 2         2     22 

Shewa 19                   19 

Sidamo 22 1 1 1   1   1     27 

Tigray 12       2           16 

Welo 12 4   2          2 20 

Total 157 10 7 5 5 6 1 4 2 2 199 

Altitude Classes            

I  19   1 1             21 

II 76 4 6 2 2 3   2     95 

III 49 4   1 3 3 1 1   2 64 

IV 13 2   1       1 2   19 

Where: Altitude Class I= < 2000m, Altitude Class II=2001-2500m, Altitude Class III=2501-3000m, Altitude Class 

IV= >3000m
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Fig. 9: Unweighted Pair Group Method with Arithmetic Average (UPGMA) dendrogram of 199 barley accession based on SSR data. 

The dendrogram was constructed from the Dice’s similarity coefficients matrix.
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To affirm the genetic relationships among 199 barley accessions revealed by cluster analysis, 

principal coordinate analysis (Fig 9) was generated. The first and second axis explained 3.84% 

and 3.37% of total variation respectively. Accessions which grouped in other clusters appeared 

scattered on the outer part while accessions from cluster I appeared aggregated in the center. 

These results corresponded with the cluster analysis obtained through UPGMA.  

 

 
 

Fig. 10: Plot of first two principal coordinate axes for 199 barley accessions revealed by 

using the Dice’s similarity coefficients based on the SSR data 

 

The result obtained from correlation analysis between genetic similarity values and 

morphological distances showed a non-significant and weak correlation (r=0.027, P=0.13) so the 

null hypothesis which stated as there is no correlation between genetic similarity values and 

morphological distance was accepted. 
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The measure of goodness-of fit analyses suggest that UPGMA was not a greatly distorted 

representation of the similarity matrix, with cophentic r =-0.63. To see if genetic similarity 

distance varied with geographic distance a mantel correlation analysis between geographic 

distance and dice similarity matrix conducted and the result showed weak and non significant 

correlation value (r=-0.016, P=0.22) which indicated the presence of negligible association.  

The negative r value for mantel test result when correlation for distance matrix and similarity 

matrix are employed (Johnson et al. 2002). 
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5. Discussion  

 

In this study 199 Ethiopian barley accessions collected from 10 different regions of Ethiopia 

from different altitude ranges were used to analyze the diversity. Morphological data from field 

experiments were run for multivariate analysis and SSR markers were also used to generate 

valuable information on the traits, on the regions and altitudes. The results obtained will be 

discussed below briefly and in detail.    

5.1 Phenotypic diversity 
 

5.1.1 Regional diversity 

 

Current study detected high morphological variation for regions and different altitude ranges 

based on quantitative characters, which suggested that the structure of morphological variation in 

Ethiopian barley landraces strongly influenced by environmental factors so that the degree of 

variation of characters differ with regions and altitudes from where the accessions collected. 

Phenotypic diversity in Ethiopia barley was also reported by different authors (Negassa 1985; 

Asfaw 1988; Cross 1994; Engels 1994; Kebebew et al. 2001). 

  

Since heritability is the degree to which a trait is genetically determined as the ratio of the total 

genetic variation to the phenotypic, the heritability estimates of region varied depending on the 

variation of traits involved. Arsi, Bale, Shewa and Sidamo are main contributors for barley 

production and showed high heritability estimates for all traits unlike other regions. The lowest 

heritability for all traits except plant height and spike length and absence of estimates for flag 

leaf length in Harerge could associate with the moisture stress and drought prone nature of the 

region which resulted in weak competence of   barley as compared to lowland crops like 

sorghum, millet and sweet potato in the region. The relationship between low heritability and 

low input or stressed environment reported in different studies (Ud-Din et al. 1992; Bertin and 

Gallais 2000; Sinebo et al. 2002; Brancourt-Hulmel et al. 2005; Eid Manal 2009). It was possible 

to speculate that not the stress directly resulted in low heritability but the very different stress 

condition and the reaction of plants. 
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The same assumption was drawn for Moroccan barley in which limited-irrigated conditions 

resulted in lower heritability estimates for the majority of characters compared with those 

observed in well-irrigated conditions (El Madidi et al. 2005). 

 

Generally the heritability pattern showed high estimate for the traits, which are important from 

farmer‟s point of view in regions suitable for agricultural production and diversified culture. 

Since the administrative regions are political sub divisions and not based on ecological aspects 

there was no significant variation among them. Engels (1994), Negassa (1985) and Ayana and 

Bekele (1999) reported the same result where no significant variation was observed among 

different administrative regions for barley and sorghum respectively. Kebebew et al. (2001) 

reported the absence of significant difference between Bale and North Shewa for genetic 

diversity in barley landraces.  The same result was revealed by Tadesse and Bekele (2003) for 

grass pea collected from different regions of Ethiopia. The presence of ample genetic diversity 

within each region could be because of the nature of selections forces operating in similar 

manner across geographic regions which resulted in no differences between regions. Less genetic 

variation in Harerge and Tigray could be related with warm and dry weather conditions which 

increase high environmental influence and increases the frequency of specific phenotypes 

adapted to the prevailing climatic and edaphic conditions (Jaradat et al. 2004). Regions with high 

levels of stress factors (e.g. drought, frost) tend to exhibit more homogenous genotypes and less 

degree of variations (Demissie and Bjørnstad 1996) which could be because of selection of the 

genotypes which adapt to particular environment.  

 

5.1.2 Altitudinal diversity 

High level of diversity in respect to different altitude classes in Ethiopian barley landraces and 

high broad sense heritability indicated presence of substantial variation in the germplasm and 

possibility of selection response in these traits. Generally high heritability values was observed 

for all studied traits except number of tiller per plant and flag leaf length, which showed relative 

ease with which selection can be made based on phenotype. The same result was reported for 

low heritability of fertile tiller per plant in barley (Chand et al. 2008) and high heritability for 

days to heading (Esparza Martínez and Foster 1998). 
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High genetic variation was observed in an altitude class II and III, which included the major 

barley growing areas in the country. Similar result was reported by Demisse and Bjørnstad 

(1996) and Engles (1994), where they found high variation concentration in areas between 2000-

3000 and 2400 and 3000 m.a.s.l. respectively. Kebebew et al. (2001) also reported the reduction 

of diversity at altitude beyond 2600 m.a.s.l for barley landraces. Positive and significant 

association between diversity index and altitude as well low temperature reported by Abay et al. 

(2009). This high variation attributed to mixed farming system, which is typically found in areas 

of higher elevation usually above 2000 m.a.s.l. (Tanto et al. 2009) also reported the reduction of 

area of cultivation for barley as altitude decreased which indicated that barley is cool climate 

crop. Crop production under this farming system is diverse for food and as a source of cash 

income. It is highly varied being influenced by diversified agro-climates, and diverse social and 

cultural nature of the people (IPGR 1996).  

 

To see if there was association between morphological traits, especially heading and maturity 

date, and longitudes and latitudes correlation analysis was conducted. But the result showed no 

correlation between any of the traits and geographic coordinates. 

 

5.1.3 Principal component 

Generally the principal component analysis confirmed diversity since the entire variation cannot 

be explained in terms of few PCs. This, in turn indicated the involvement of a number of traits in 

contributing towards the overall observed diversity. In line with the present findings, Demissie 

and Bjørnstad (1996) also employed principal component analysis for detecting variation in 49 

barley populations in which the first four PCs contributed 63% of total variation. Similarly in 

highland maize accessions of Ethiopia 71.8% of total variation was accounted by first four PCs

 (Beyene et al. 2005). The well adapted traits like days to heading, days to maturity, plant height 

and awn length, played a role in differentiating accessions collected from different regions and 

altitude class in to principal components.   

 

5.1.4 Clustering and discriminant analysis 

Grouping accessions into morphologically similar cluster of different groups is useful for 

selecting parents for crossing. Clustering of accessions based on the agronomic traits under study 
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revealed no distinct regional grouping patterns in which accessions from same or adjacent 

regions appeared in different clusters. Same result was reported by (Assefa et al. 2003) for tef 

germpalsm. In general accessions which matured earlier and tended to have smaller 

seed size, short plant height and short spike length clustered together where as large seeded and 

taller accessions which matured relatively late clustered together. As compared with accessions 

of other regions, Arsi, Bale, Gamo Gofa and Sidamo appeared in all clusters, suggesting that 

accessions from these region was relatively variable than those regions which appeared rarely.  

 

Based on discriminant analysis around 83.98% of studied accessions are misclassified from their 

respective regions. This finding may be explained by long distance seed exchange, continuous 

seed introduction and gene flow between agro ecologies. This result agreed with the hypothesis 

made by Holcomb et al. (1977) and Pecetti and Damania (1996) that the higher the diversity of 

the group, the higher the probability of misclassification and vice versa. Same result was 

reported by Ayana and Bekele (1999) where lack of strong regional differentiation observed by 

the cluster and discriminant analysis could be partly ascribed to gene flow between regions 

(Teshome et al. 1997; Doggett 1988). This indicated that clustering pattern of accessions did not 

follow their geographic origin and more emphasis should has to be given to population from 

different agro ecology than to geographic origins alone as source of diversity (Alemayehu and 

Becker 2002). 

5.2. Genotypic diversity 

Genetic diversity estimated based on allelic richness as a total number of detected alleles per 

locus and gene diversity also called PIC, showed the existence of high variation. According to 

(Hildebrand et al. 1994) 47% of the markers used in this study were moderately (0.44-0.7) to 

highly (above 0.7) informative. Among the markers Bmac0040 was the richest in terms of alleles 

and same result was reported by (Malysheva-Otto et al. 2006; Malysheva-Otto 2007). Bmag0007 

(0.79) and Bmag0211 (0.70) were the highly informative SSRs markers for this study 

(Hildebrand et al. 1992). 
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5.2.1. Genetic population differentiation 

The population of most, if not all, species show some levels of genetic structuring, which may be 

due to a variety of exclusive agents. Environmental barriers, historical processes and life 

histories (e.g. mating system) may all, to some extent, shape the genetic structure of populations 

(Donnelly and Townson 2000; Gerlach and  Musolf 2000).  

 

5.2.1.1 Genetic diversity and differentiation among regions 

In cultivated crop species, geographical distribution patterns reflect both the specific selection 

pressures prevailing in a particular environment as well as history of selection and production 

(Hawtin et al. 1997). Hence in diversity study, the inclusion of genotypes collected from 

different geographic areas has been adopted as a strategy to capture all sort of allelic diversity of 

a particular crop plant. 

 

AMOVA was conducted for regions with the assumption of existence of high variation between 

regions as compared to within regions. But in contrast the result showed high variation within 

regions. The result obtained from analysis of phenotypic data also showed same trend with no 

significant difference between regions while statistically significant difference observed within 

regions (Abebe et al. 2010).  Similarly fairly low contribution of regions to total variation as 

compared to within region was reported for barley of Ethiopia based on isozyme analysis 

(Demissie and Bjørnstad 1997) and in same pattern for barley collected from Tunisia 95% of 

total variation resided withinregion (Ould Med Mahmouda and Hamzaa 2009). Birmeta et al. 

(2004) reported high genetic diversity within population than among population for enset (Ensete 

ventricosum) collected from Southern part of Ethiopia, using RAPD markers. (Geleta et al. 2007) 

revealed high variation within region for niger (Guizotia abyssinica) landraces collected from 

different parts of Ethiopia based on AFLP analysis. Partitioning of genetic 

variation by AMOVA showed very low variability among regions of collection for Ethiopian 

yam (Dioscorea spp.) as compared to within regions (Tamiru et al. 2007). 

 

Fixation indices, which describe the level of heterozygosity in a population, showed medium 

genetic differentiation among populations accompanied with high gene flow of two migrants per 
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generation. According to (Wright 1931) no random differentation among populations could be 

expected if the average number of migrants (gene flow) per generation, (Nm) exceeds 1; where N 

is the effective population size and m is the fraction of immgration. For barley High variation 

among farmers‟ varieties was observed as compared to variation within farmers‟ varieties among 

farmers field (van Leur and Gebre 2003) which indicated high gene flow between farmers fields.  

Accordingly, the medium FST value reflects adaptation to strong environments or high level of 

genetic drift maintained by restricted gene flow among populations. Generally high 

differentiation within population resulted in less gene flow among population and low fixation 

index. Wright (1951) found an inverse relationship between Nm and population differentiation, 

FST.  Pairwise population differentiation showed Tigray and Welo were the two regions which 

were significantly differentiated from the rest of the regions but in the later case the value of 

differentiation was smaller. Results from Neighbor Joining tree confirmed that Tigray was the 

highly differentiated region while Arsi and Bale, geographically closer regions, were the less 

differentiated. STRUCUTRE analysis at K=2 also showed the same result for Tigray and Welo 

as differentiated and fewer admixtures. Meanwhile the discriminant analysis from phenotypic 

data also showed that 56.25% of accessions collected from Tigray grouped in its respective 

region, which indicated low gene flow and relatively differentiated population. 

With same fashion Sidamo and Bale differentiated significantly from all regions except Gojam 

and Arsi too in later case, in which 29.62% and 23.08% of accessions from Sidamo and Bale 

classified under Gojam with discriminant analysis of phenotypic data. This result indicated that 

regions which share high percentage of accessions were not different from each other. 

Determining the level of variation within, and among, barley populations is an essential step 

towards conserving genetic resources and developing future strategies for plant improvement  

(Abay et al. 2009). 

As locus by locus analysis of variance showed 60% of the markers were significantly different 

from zero and were able to differentiate among populations. According to Beaumont (2005) loci 

that are subject to strong balancing selection should have a lower level of genetic differentiation 

and the significant result also indicated the presence of selection. 
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5.2.1.2 Genetic diversity and differentiation among altitude classes 

With similar pattern as regions, partitioning of total genetic variation was conducted for altitude 

classes and resulted in high genetic variation within altitude classes. The same result was 

reported for niger (Guizotia abyssinica) of Ethiopia based on altitudes as adaption zone (Geleta 

et al. 2007). As altitudes within a region cover a wide range (Table 2) there was no population 

differentiation observed among altitude classes which could be associated with the ease of 

movement along altitude class within regions and there were possibilities to cover all altitude 

classes with short distance accompanied by high gene flow as compared to regions. High seed 

exchange among farmers and using seed from sources of own preference have different reasons 

for the later case mainly depends on the quality and price of the seed (Almekinders and 

Louwaars 1999). Furthermore, the need to get a new variety, inability to save seed, the need to 

replace farmers‟ own diseased or „degenerated‟ seed, unfavourable seed production conditions, 

inability to produce a variety, inability to store quality seed for long period, the need to specialize 

own production for market are reasons why farmers use seed from other sources. Such reasons as 

quality and price of seed seem to affect farmer‟s sources of seed preference and seed flow within 

farmers in a community (Hunduma 2006). Farmers in Ethiopia claimed travelling as far as 20 km 

to buy seed locally. In one incident the farmer had sourced seed of the new variety from a 

distance of over 100 km through family acquaintances (Bishaw 2004).  There were no significant 

differences between populations in relation to the extent and altitude of cultivation was observed 

for niger (Guizotia abyssinica) landraces of Ethiopia (Geleta et al. 2007). High allelic variation 

observed in altitude class II and III which holds same with the morphological analysis in which 

high and significant variation for all studied traits were observed. As barley is highland crop, the 

presence of less allelic variation in altitude class I could be related with high temperature and 

less cultivation of barley in low altitudes. Tanto et al. (2009) reported the reduction of area of 

cultivation for barley as altitude decreased. The same result was reported by Demissie and 

Bjørnstad (1997) for the presence of less polymorphism in altitudes less than 2000 m.a.s.l and 

above 3500 m.a.s.l where as high polymorphism observed in altitudes 2001-3000 for isozyme 

analysis of Ethiopian barley. 
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5.2.2 Genetic diversity of accessions 

Analysis of genetic relationships in crops species is an important component of crop 

improvement. It helps to analyze genetic variability of cultivars, select parental materials for 

hybridization for making new genetic recombination select inbred parents or tester for 

maximizing heterotic response and identify materials that should be maintained to preserve 

maximum genetic diversity in germplasm.  

 

Diversity among accessions and within accessions showed the potential of genetic variation 

within accessions which is a source material for barley improving purpose. The exploitation of 

within accession variation through pure line selection has proven to provide superior germplasm 

for disease resistance and yield characteristics (Lakew et al. 1997; Semeane et al. 1998).  Exotic 

cultivars out yield local landraces under good management practices, but local landraces usually 

out yield the exotic material under the low input conditions which predominate among peasant 

farms. For such conditions, native germplasm should be exploited to improve productivity 

(Lakew et al. 1997). In addition the presence of genetic diversity among local germplasm and 

use as source of breeding materials was reported for barley and other crops (Lakew et al. 1997; 

Semeane et al. 1998; Adugna 2008; Marame et al. 2009). 

 

In general the diversity observed within accessions indicated that it is possible to accommodate 

large proportion of variation with collection of small number of samples. So it is possible to 

suggest that during sampling concentrating on the accessions is more worth, time saver and 

costly effective than to give more attention to regions. However because of some traits which are 

region specific still regions are important depending on target traits of selection. Regions like 

Harerge where drought prevails heading and maturity date was important from farmers‟ point of 

view to select for early matured landraces to produce some grains while for Shewa and Sidamo 

thousand seed weight plays major role since farmers need barley for market and no problem of 

moisture stress for barley growing areas. 
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5.2.3 Quantitative vs genetic population differentiation  

Theory suggests that heterogeneous distribution of genetic variation within populations and 

among populations is due to mutation, genetic drift, due to finite population size, and 

heterogeneous natural selection, whereas gene flow and homogenous directional selection tend to 

produce genetic homogeneity (Slatkin 1987; Chan and Arcese 2003). On broad scale, the factors 

affecting diversity at the ecological level also affects or shape genetic differentiation at the 

molecular level (Tilman 1999). Comparing patterns of population genetic differentiation at 

quantitative traits (QST) and molecular markers (FST) permits inferences about the relative role of 

selection in population divergence, by contrasting the degree of adaptive change with that of 

differentiation due to solely to drift (Spitze 1993; Zhan et al. 2005). There are three possible 

outcomes from comparison of molecular FST and quantitative QST differentiation. If molecular 

differentiation in neutral molecular markers among populations FST is of the same magnitude as 

that for QST or significantly more than QST, then the hypothesis that among population variance 

in quantitative traits is due to random drift cannot be rejected, or uniform selection maybe 

involved as a cause for the reduced differentiation. The third case where QST is greater than 

FST, suggests a prominent role for natural selection in accounting for patterns of quantitative 

traits differentiation among populations. With the same pattern in this study three patterns of  

population differentiation were observed. The result obtained showed the importance of the 

among population variance in determining quantitative differentiation. From morphological data 

it was possible to detect little or no significant difference among population. Since among 

regions variance was small for many of the traits only days to heading, days to maturity thousand 

seed weight and glucan content had QST values. However from the QST values of regions it was 

observed that only heading date was significantly smaller and different from FST which showed 

that uniform selection among regions while days to maturity, thousand seed weight and glucan 

content displayed no significant difference between QST and FST, indicating that the effects of 

drift and selection are indistinguishable, probably of same magnitude (Chan and Arcese 2003; 

Luttikhuizen et al. 2003). Overall mean QST for regions showed homogenized selection which 

resulted in no or small variation among regions. 

 

In contrast to regions high QST was observed in altitude classes with low FST, it probably means 

that selective pressure was heterogeneous with high gene flow and it inhibited local adaptation. 
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Lenormand (2002) and Hendry and Taylor (2005) reported negative correlation between the 

magnitude of adaptive traits and gene flow in stickleback. Gene flow into a population can 

counteract gene frequency changes because of selection, imposing a limit on local adaptation 

(Lenormand 2002). The stronger the local adaptation, the more QST differs from FST and the 

weaker the association (Latta and McKay 2002). 

 

Generally the contrast between population differentiation estimated from quantitative traits (QST) 

and molecular markers (FST) was used to detect whether selection was acting on the traits under 

study and it was also possible to identify traits which were under pressure of selection

from farmers point view. Glucan content was the only trait which was not under selection 

pressure in respect to regions and altitude classes. 

 

5.2.4 Hierarchal clustering 

Since the populations were not strongly differentiated the cluster pattern was not clear enough 

and there were no distinct groups. This is due to the fact that a large portion of the variation was 

found among accessions within region of origin and within the altitude classes, which confirms 

that differentiation of the barley accessions on the basis of region of origin and altitude was 

weak. With the same pattern the absence of coherent grouping, which matched regional, 

altitudinal or agro ecological zones, was observed for barley landraces collected from Ethiopia.  

Demissie et al. (1998); Ould Med Mahmouda and Hamzaa (2009) reported lack of geographical 

differentiation which failed to indicate clear pattern of division among barley accessions based 

on geographic origin. These results may reflect the impact of seed exchange between farmers 

which is likely to limit highlighting favorable alleles due to local adaptation.

Instead of molecular markers, genetic variation in populations can be investigated by assessing 

quantitative variation that is under polygenetic control where many loci and the environmental 

effects on those loci contribute to the quantitative variation in the traits being investigated. Yet 

analyzing patterns of genetic variation from molecular markers has become increasingly popular 

as molecular techniques become more cost effective and less invasive. Unfortunately evidence 

for concordance in these two measures of genetic diversity is ambiguous with a number of 
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studies suggesting it is poor (Reed and Frankham 2001; McKay and Latta 2002). The present 

study resulted in weak correlation between morphological and SSR markers which is suggested 

that the molecular markers may not necessarily track quantitative genetic variation due to non-

additive effects, differential selection, different mutation rates, environmental effects on 

quantitative variation, and the influence of genetic variation on gene regulation (Lynch et al. 

1999; Reed and  Frankham 2001). Meta analysis indicated absence of correlation between 

molecular markers and quantitative traits for many studies (Reed and Frankham 2001). With the 

same trend weak correlation observed among genetic similarity and geographic distance which 

indicated the genetic distances between populations were independent of the 

corresponding geographical distances (George et al. 2009). It was possible to suggest that there 

was no isolation by distance because of the presence of high gene flow among 

population which was not dependent of the distance. Isolation by distance is observed in natural 

plant species where the likelihood of gene flow is inversely related to distance (Pusadeea et al. 

2009). 

The cophentic correlation indicated that the goodness of fit of the cluster analysis to genetic 

distance estimates is not good, as described in Rohlf  (Rohlf 2000) However, it does not mean 

that clustering is not possible, but only indicates that some distortion might have occurred  

(Mohammadi and Prasanna 2003). 
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6. Summary and conclusions 

 

Ethiopia as a region with wide altitudinal range, substantial temperature, and rainfall differences 

with diverse edaphic conditions create a wide range of agro-ecological conditions and 

microenvironments. For this study results obtained from analysis of morphological traits and 

SSR analysis will be summarized as follows. 

 

In general there was no significant variation observed among regions while results obtained from 

analysis of regions of origin and different altitude class showed wide variation within regions of 

high altitude, humid and cooler temperature. So morphological traits which are under direct 

influence of both human and natural selections are strongly associated with altitude. From this 

finding it was suggested that to exploit the available genetic variation potential in barley 

landraces one should concentrate with an altitude range of 2001-3000.The concentration of some 

morphological traits at high or low altitudes and in different sites could result from farmer‟s 

selection activity based on their selection criteria to the prevailing climatic and edaphic 

conditions. And traits which are adapted well like days to heading, days to maturity, plant height 

and awn length, played a role in differentiating accessions collected from different regions and 

altitude class in to principal components. Results obtained from clustering of accessions into 

distinct group showed no consistent pattern and accessions did not follow their geographic origin 

and more emphasis should has to be given to population from different agro ecology than to 

geographic origins alone as source of diversity. 

 

Although genetic differentiation was not great both on regional and altitudinal bases, regional 

differentiation was greater than differentiation on the basis of altitudes. However, applying 

discriminative analysis to quantitative morphological and agronomic data, it is found that altitude 

was more discriminative than regions of origin. 

 

The presence of high gene flow among altitudes as compared to regions of origin inhibited the 

adaptation of traits   by counteracting the gene frequency created by selection and there was 

diversified selection against altitudes. Glucan was traits which were not under selection pressure 

of farmers. 
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Generally because of environmental factors on the observed morphological variation future 

germplasm collection should consider to explore wide geographical and climatic differences 

within the country. Results of the present study can help to define the strategies for further 

collection. In general in-situ and ex-situ conservation strategies shall be implemented to 

complement each other for sustainable conservation and utilization of crop genetic resources. No 

single method is adequate for assessing genetic variation in germplasm collections because 

different methods sample genetic variation at different levels and differ in their power of genetic 

resolution as well as the quality of information content. 

 

The size of this study limits the conclusions that can be drawn, but the patterns of variation 

described here can be a basis for studies with a higher number of markers. The conservation of 

such locally common variation is important, since it may represent genotypes adapted to specific 

environments. The patterns of variation described in this study may be useful for researchers 

designing larger studies of barley germplasm. 
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7. Appendix 

  

Appendix 1: List of 199 barley accessions collected from 10 regions of Ethiopia with detail 

passport data 

Region code* 

Accession 

No. Region Latitude Longitude Altitude Collection year 

1 213538 Arsi 07° 27' N 39° 15' E 2980 1985 

1 215362 Arsi     2540 1985 

1 216989 Arsi 07° 29' N 39° 11' E 2600 1986 

1 232217 Arsi 08° 30' N 39° 39' E 2220 1989 

1 237006 Arsi 07° 19' N 39° 16' E 2810 1988 

1 229990 Arsi 07° 38' N 39° 19' E 3120 1989 

1 217112 Arsi 07° 29' N 39° 15' E 2920 1986 

1 218944 Arsi 07° 55' N 39°  08' E 2260 1986 

1 224979 Arsi     2510 1988 

1 238847 Arsi     2500 1997 

1 217008 Arsi 08° 07' N 39° 35' E 2690 1986 

1 223959 Arsi 07° 33' N 39° 22' E 3150 1988 

1 237002 Arsi 07° 19' N 39° 16' E 2350 1988 

1 229992 Arsi 07° 35' N 39° 32' E 2400 1989 

1 213707 Arsi 07° 06' N 38° 44' E 2640 1985 

2 237845 Bale     2440 1995 

2 230591 Bale 07° 00' N 39° 23' E 2400 1989 

2 237849 Bale     1960 1995 

2 243187 Bale 07° 00' N 40° 23' E 2150 2004 

2 217065 Bale 07° 23' N 39° 32' E 2650 1986 

2 238776 Bale     2420 1997 

2 217081 Bale 07° 07' N 40° 02' E 2450 1986 

2 238807 Bale     2300 1997 

2 237854 Bale     2420 1995 
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2 230640 Bale 07° 12' N 39° 57' E 2240 1989 

2 215369 Bale     2390 1985 

2 215378 Bale     2150 1985 

2 217082 Bale 07° 06' N 40° 44' E 2470 1986 

2 212826 Bale 07° 22' N 40° 12' E 2390 1985 

2 243185 Bale 07° 01' N 40° 23' E 1990 2004 

2 224984 Bale     2410 1988 

2 237850 Bale     2070 1995 

2 243178 Bale 07° 01' N 40° 19' E 2200 2004 

2 238787 Bale     2580 1997 

2 237851 Bale     2080 1995 

2 224988 Bale     2150 1988 

2 237847 Bale     1810 1995 

2 237856 Bale     2450 1995 

2 238839 Bale     2420 1997 

2 230653 Bale 07° 07' N 39° 53' E 2610 1989 

2 237846 Bale     2330 1995 

3 216990 Gamo Gofa 06° 16' N 37° 35' E 2960 1986 

3 236133 Gamo Gofa     2990 1994 

3 241685 Gamo Gofa 06° 01' N 37° 29' E 2160 2002 

3 233038 Gamo Gofa 06° 05' N 37° 15' E 2380 1990 

3 241684 Gamo Gofa 06° 21' N 37° 30' E 2200 2002 

3 216999 Gamo Gofa 06° 17' N 37° 35' E 3030 1986 

3 236128 Gamo Gofa     2560 1994 

3 217004 Gamo Gofa 06° 32' N 37° 45' E 2830 1986 

3 236131 Gamo Gofa     2990 1994 

3 204807 Gamo Gofa 06° 14' N 37° 34' E 2590 1983 

3 236141 Gamo Gofa     2830 1994 

3 236132 Gamo Gofa     2990 1994 

3 233028 Gamo Gofa 05° 55' N 37° 20' E 2050 1990 

3 236129 Gamo Gofa     2540 1994 

3 236137 Gamo Gofa     2960 1994 
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3 236140 Gamo Gofa     1950 1994 

3 217051 Gamo Gofa 06° 17' N 37° 28' E 2900 1986 

3 212967 Gamo Gofa 36° 51' N 06° 18' E 2350 1985 

3 236134 Gamo Gofa     2990 1994 

3 217054 Gamo Gofa 06° 21' N 37° 36' E 2700 1986 

3 233023 Gamo Gofa 06° 15' N 37° 33' E 2800 1990 

3 217058 Gamo Gofa     2350 1986 

3 236130 Gamo Gofa     2650 1994 

3 236139 Gamo Gofa     1950 1994 

3 216992 Gamo Gofa 06° 16' N 37° 35' E 2960 1986 

4 238378 Gojam 10° 20' N 37° 09' E 2530 1996 

4 219770 Gojam 11° 33' N 37° 16' E 2450 1986 

4 225997 Gojam 11° 32' N 37° 22' E 2000 1988 

4 216978 Gojam 11° 04' N 37° 51' E 2345 1986 

4 225266 Gojam 10° 16' N 37° 26' E 2260 1988 

4 225265 Gojam 10° 16' N 37° 26' E 2260 1988 

4 217059 Gojam 10° 15' N 37° 50' E 2550 1986 

4 216975 Gojam 10° 50' N 37° 36' E 3090 1986 

4 216009 Gojam 10° 16' N 37° 26' E 2260 1986 

4 216957 Gojam 10° 58' N 37° 13' E 2880 1986 

4 213708 Gojam 10° 58' N 37° 13' E 2780 1985 

5 243284 Gonder 11° 48' N 38° 12' E 2990 2004 

5 243308 Gonder 11° 35' N 38° 03' E 2358 2004 

5 204788 Gonder 11° 36' E 38° 34' E 2350 1983 

5 225994 Gonder 12° 32' N 37° 16' E 2010 1988 

5 235888 Gonder 13° 20' N 37° 38' E 2800 1993 

5 216966 Gonder 11° 49' N 38° 08' E 2810 1986 

5 235883 Gonder 12° 30' N 37° 46' E 2900 1993 

5 217019 Gonder 11° 44' E 38° 25' E 3000 1986 

5 206303 Gonder     2500 1983 

5 225986 Gonder 11° 36' N 38° 11' E 2890 1988 
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5 235885 Gonder 13° 38' N 37° 44' E 2260 1993 

5 225991 Gonder 11° 25' N 37° 58' E 2385 1988 

5 235886 Gonder 13° 19' N 37° 38' E 2940 1993 

5 217010 Gonder 12° 38' N 37° 06' E 2090 1986 

5 235880 Gonder 12° 28' N 37° 38' E 2280 1993 

5 214240 Gonder     3009 1985 

5 216959 Gonder 11° 50' N 38° 00' E 2730 1986 

5 219744 Gonder 11° 35' N 37° 28' E 2400 1986 

6 241678 Harerge 08° 54' N 40° 46' E 2350 2002 

6 208675 Harerge 09° 14' N 41° 50' E 2600 1983 

6 230499 Harerge 09° 24' N 42° 17' E 2250 1989 

6 219101 Harerge 09° 20' N 40° 54' E 2090 1986 

6 216778 Harerge 09° 37' N 42° 24' E 2330 1986 

6 230506 Harerge 09° 29' N 42° 15' E 2530 1989 

6 216787 Harerge 09° 15' N 41° 46' E 2510 1986 

6 232351 Harerge 09° 37' N 42° 24' E 2380 1989 

6 241677 Harerge 08° 50' N 40° 47' E 1990 2002 

6 241682 Harerge 09° 06' N 41° 54' E 2440 2002 

6 241683 Harerge 09° 06' N 41° 54' E 2220 2002 

6 223301 Harerge 08° 41' N 40° 19' E 2030 1987 

6 216810 Harerge 09° 21' N 41° 26' E 2430 1986 

6 241681 Harerge 06° 21' N 41° 54' E 2230 2002 

6 241680 Harerge 08° 54' N 40° 46' E 2340 2002 

6 241679 Harerge 08° 54' N 40° 46' E 2350 2002 

6 241121 Harerge 09° 59' N 40° 51' E 2080 2002 

6 204787 Harerge 09° 24' N 41° 35' E 2200 1983 

6 241120 Harerge 09° 02' N 40° 54' E 2200 2002 

6 241676 Harerge 08° 50' N 40° 47' E 1990 2002 

6 231455 Harerge     1900 1990 

6 208676 Harerge 09° 12' N 41° 45' E 2420 1983 
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7 224954 Shewa 09° 50' N 39° 45' E 2830 1988 

7 236119 Shewa     2200 1994 

7 235528 Shewa 08° 07' N 38° 11' E 3250 1993 

7 212507 Shewa 10° 03' N 39° 35 ' E 3130 1985 

7 204643 Shewa     3120 1983 

7 237812 Shewa     2120 1995 

7 237546 Shewa     1740 1995 

7 236118 Shewa     2190 1994 

7 208904 Shewa 09° 00' N 37° 30' E 2450 1984 

7 235550 Shewa 08° 02' N 38° 02' E 2910 1993 

7 235531 Shewa 08° 07' N 38° 12' E 3200 1993 

7 208911 Shewa 09° 12' N 37 °12' E 2900 1984 

7 213522 Shewa 07° 21' N 37° 47' E 2600 1985 

7 216934 Shewa 09° 06' N 38° 12' E 2900 1986 

7 216923 Shewa 09° 07' N 38° 36' E 2730 1986 

7 224912 Shewa 09° 19' N 39° 31' E 3280 1988 

7 236116 Shewa     2240 1994 

7 236801 Shewa 39° 51' N 39° 44' E 3200 1995 

7 204642 Shewa     2950 1983 

8 219321 Sidamo 05° 19' N 39° 35' E 2520 1986 

8 225179 Sidamo 06° 57' N 37° 51' E 2100 1988 

8 236104 Sidamo     2200 1994 

8 236145 Sidamo     2200 1994 

8 236103 Sidamo     2170 1994 

8 233053 Sidamo 06° 18' N 38° 14' E 1850 1990 

8 233052 Sidamo 06° 18' N 38° 14' E 1850 1990 

8 236149 Sidamo     2420 1994 

8 219304 Sidamo 06° 20' N 38° 16' E 1930 1986 

8 236101 Sidamo     2190 1994 

8 236151 Sidamo     2200 1994 

8 217107 Sidamo 06° 50' N 37° 41' E 1880 1986 
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8 219330 Sidamo 07° 00' N 37° 44' E 1950 1986 

8 219324 Sidamo     2020 1986 

8 236113 Sidamo     1910 1994 

8 225184 Sidamo 06° 57' N 37° 51' E 2100 1988 

8 225181 Sidamo 06 °57' N 37° 51' E 2100 1988 

8 236105 Sidamo     2200 1994 

8 236106 Sidamo     1980 1994 

8 236102 Sidamo     2150 1994 

8 236107 Sidamo     2200 1994 

8 217101 Sidamo 06° 55' N 37° 49' E 2100 1986 

8 219305 Sidamo 06° 03' N 38° 11' E 2220 1986 

8 236154 Sidamo     2200 1994 

8 236146 Sidamo     2110 1994 

8 227765 Sidamo     2400 1988 

8 219306 Sidamo 05° 41' N 38° 13' E 2940 1986 

9 234344 Tigray 14° 08' N 38° 33' E 2200 1991 

9 219915 Tigray 14° 10' N 38° 55' E 2600 1986 

9 238357 Tigray 14° 30' N 39° 50' E 2920 1996 

9 242092 Tigray 13° 00' N 39° 32' E 2950 2002 

9 238373 Tigray 13° 52' N 39° 43' E 2130 1996 

9 219935 Tigray 14° 05' N 38° 14' E 1940 1986 

9 235298 Tigray 13° 24' N 39° 23' E 2000 1992 

9 235293 Tigray 13° 27' N 31° 26' E 2060 1992 

9 234341 Tigray 14° 07' N 38° 51' E 2100 1991 

9 234343 Tigray 14° 08' N 38° 30' E 2180 1991 

9 234347 Tigray 14° 08' N 38° 34' E 2100 1991 

9 206342 Tigray     2198 1983 

9 238353 Tigray 13° 04' N 38° 04' E 1970 1996 

9 221712 Tigray 13° 31' N 39° 28' E 1990 1986 

9 235294 Tigray 13° 26' N 39° 25' E 2060 1992 

9 238355 Tigray 14° 30' N 39° 50' E 2910 1996 
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10 215212 Welo 10° 54' N 39° 31' E 2950 1985 

10 236249 Welo     2650 1994 

10 236231 Welo     3340 1994 

10 217127 Welo     2860 1986 

10 236228 Welo     3430 1994 

10 236226 Welo     3180 1994 

10 204805 Welo 11° 20' N 39° 46' E 2350 1983 

10 215699 Welo 11° 22' N 39° 51' E 2240 1985 

10 224948 Welo 11° 48' N 39° 22' E 2860 1988 

10 236225 Welo     3200 1994 

10 217145 Welo     2960 1986 

10 236236 Welo     3150 1994 

10 204819 Welo 10° 54' N 39° 21' E 2650 1983 

10 215695 Welo 11° 20' N 39° 47' E 2540 1985 

10 217128 Welo     3050 1986 

10 236238 Welo     3360 1994 

10 236253 Welo     2410 1994 

10 224921 Welo 10° 57' N 39° 33' E 2920 1988 

10 217138 Welo     3080 1986 

10 215210 Welo 11° 00' N 39° 33' E 2900 1985 

 

*Codes used for the regions on the diagram derived from STRUCTURE 

 

 


