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Abstract

This thesis is devoted to the classification issue of traces on classical pseudo-
differential operators with fixed non positive order on closed manifolds of dimen-
sion n > 1. We describe the space of homogeneous functions on a symplectic
cone in terms of Poisson brackets of appropriate homogeneous functions, and
we use it to find a representation of a pseudo-differential operator as a sum of
commutators. We compute the cohomology groups of certain spaces of classical
symbols on the n–dimensional Euclidean space with constant coefficients, and
we show that any closed linear form on the space of symbols of fixed order can
be written either in terms of a leading symbol linear form and the noncom-
mutative residue, or in terms of a leading symbol linear form and the cut-off
regularized integral. On the operator level, we infer that any trace on the alge-
bra of classical pseudo-differential operators of order a ∈ Z can be written either
as a linear combination of a generalized leading symbol trace and the residual
trace when −n+ 1 ≤ 2a ≤ 0, or as a linear combination of a generalized leading
symbol trace and any linear map that extends the L2–trace when 2a ≤ −n ≤ a.
In contrast, for odd class pseudo-differential operators in odd dimensions, any
trace can be written as a linear combination of a generalized leading symbol
trace and the canonical trace. We derive from these results the classification
of determinants on the Fréchet Lie group associated to the algebras of classical
pseudo-differential operators with non positive integer order.
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Introduction

This thesis addresses the classification issue of traces on certain classes of clas-
sical pseudo-differential operators on closed manifolds of dimension n > 1.
The classification was already known for the whole algebra of classical pseudo-
differential operators as well as for specific classes such as smoothing operators,
non-integer order operators and odd class operators in odd dimensions. Also the
case of zero order operators was studied in view of a classification of multiplica-
tive determinants. Interestingly, the above mentioned classes fall into two types,
those with traces that vanish on trace-class operators, namely the residual trace
and the leading symbol trace, and those equipped with the canonical trace that
extends the L2–trace. This twofold picture extends to classes of operators with
fixed non positive order considered here. The residual trace and a generalized
leading symbol trace arise when considering operators of integer order a with
−n + 1 ≤ 2a ≤ 0, whereas the canonical trace arises when restricting to non-
integer order, or to odd class operators in odd dimensions.

On the one hand, the noncommutative residue, which falls into the first class
of traces, was introduced about 1978 by Adler and Manin in the one-dimensional
case; they showed that it defines a trace functional on the algebra generated by
one dimensional symbols whose elements are formal Laurent series with a par-
ticular composition law. Seven years later Guillemin ([14]) and Wodzicki ([44])
independently extended this definition to all dimensions. This residue yields the
only trace (up to a constant) on the whole algebra of classical pseudo-differential
operators ([7], [10], [25], [44]), and it has many striking properties, among which
its locality, that is very much related with the fact that it vanishes on smoothing
operators.
On the other hand, the canonical trace which falls into the second class of traces,
was introduced by Kontsevich and Vishik ([23]); they showed that this is actu-
ally a trace (even more unique: see [30]) on certain subsets of operators with
vanishing residue. In contrast to the noncommutative residue, it is highly non
local due to the fact that it extends the L2–trace.

Fixing the order of the operator as we do throughout this thesis, introduces many
technical difficulties, which do not allow a naive and direct implementation of
proofs carried out in the case of operators of any order, and one often needs a
refined version of previously known results. For the classification of traces it is
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natural to ask for a representation of a pseudo-differential operator as a sum of
commutators of elements in the algebra one considers. Starting from a general-
ization of a result by Guillemin about the representation of Poisson brackets of
homogeneous functions on a symplectic cone ([14]), we generalize and improve
a result by Lesch ([25]) concerning the representation of a pseudo-differential
operator as a sum of commutators. With this result at hand, in order to classify
traces on algebras of classical pseudo-differential operators of fixed non positive
order, it remained to solve the issue about the existence of a non-trivial exten-
sion of the L2–trace to a trace functional on the class of operators we consider.

All known traces on algebras of pseudo-differential operators are built us-
ing linear forms on symbols which satisfy Stokes’ property, i.e., they vanish on
partial derivatives of symbols ([35]). Two notable examples are the noncommu-
tative residue, which gives rise to the trace which carries the same name, and
the cut-off regularized integral which yields the canonical trace. It is therefore
natural to investigate the cohomology groups of spaces of classical symbols on
the n–dimensional Euclidean space with constant coefficients, and to look at
the dual of those cohomology groups. We compute these cohomology groups,
and show that the top cohomology group of certain spaces of symbols is one-
dimensional. This implies that in the case of fixed real order a, any closed linear
form on the space can be written either in terms of a leading symbol linear form
and the noncommutative residue in the case when a ∈ Z, a ≥ −n + 1, or in
terms of a leading symbol linear form and the cut-off regularized integral in the
case when a /∈ Z ∩ [−n+ 1,+∞).

An important consequence of the uniqueness of the noncommutative residue
as a linear form which satisfies Stokes’ property in the whole space of classical
symbols, is that any smoothing symbol is a finite sum of derivatives of symbols;
we indeed prove a refined version of this in the case when a ∈ Z, a ≥ −n+1. On
the operator level, we infer that on the algebra of classical pseudo-differential
operators of order a ∈ Z, when −n + 1 ≤ 2a ≤ 0 there is no a non trivial
extension of the L2–trace, and when 2a ≤ −n ≤ a any linear map that extends
the L2–trace is a trace; from this we infer that any trace on this algebra can be
written either as a linear combination of a generalized leading symbol trace and
the residual trace in the first case, generalizing the result of [28] and [45], or
as a linear combination of a generalized leading symbol trace and such a linear
map in the second case. In contrast, for odd class pseudo-differential operators
in odd dimensions, any trace can be written as a linear combination of a gener-
alized leading symbol trace and the canonical trace.

Finally, we derive from these results the classification of determinants on the
Fréchet Lie group associated to those algebras of classical pseudo-differential op-
erators, and we show that any of those determinants can be written either in
terms of a generalized leading symbol determinant and the Wodzicki multiplica-
tive determinant, or in terms of a generalized leading symbol determinant and
the canonical determinant, generalizing the result of [28].
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All these results are organized around five chapters. In the first chapter
we study the Poisson bracket representation of homogeneous functions on a
symplectic cone, first by using an appropriate differential operator and then by
using homogeneous differential forms. We are interested in the case when the
symplectic cone is given by the cotangent space of a closed manifold of dimen-
sion greater than 1 without the zero section with its standard symplectic form.
In Chapter 2 we use integration along the fiber to prove an analogue of the
Poincaré Lemma for cohomology with compact support, and we describe the
cohomology groups of the space of classical symbols on Rn with constant coeffi-
cients. Using the top cohomology group of some spaces of classical symbols on
Rn with constant coefficients, in Chapter 3 we classify the closed linear forms
on those spaces of symbols in terms of a leading symbol linear form, the cut-off
regularized integral and the noncommutative residue on symbols.

In Chapter 4 we give a representation of a classical pseudo-differential oper-
ator as a sum of commutators. The main fact to give a complete classification of
traces on algebras of classical pseudo-differential operators of non positive order
is the no existence of a non-trivial extension of the usual trace to the algebra.
In Chapter 5, we prove that there does not exist such a non-trivial extension to
operators of integer order a when 2a is greater than minus the dimension of the
manifold, by using the classification of closed linear forms on the space of sym-
bols and by writing a smoothing operator as a sum of commutators of elements
in the algebra; then, we consider the case of traces on operators acting on sec-
tions of vector bundles over the manifold. In the last part of the chapter we give
the classification of multiplicative determinants on the Fréchet Lie group asso-
ciated to the algebra of non positive integer order classical pseudo-differential
operators.
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Chapter 1

Poisson Bracket
Representation of
Homogeneous Functions

In this chapter we study the representation of a homogeneous function in terms
of Poisson brackets. In the first section we recall some basic definitions and
identities related to homogeneous functions on a symplectic cone. In the sec-
ond section we recall the definition of the symplectic residue and in the third
section we equip the space of homogeneous functions with a pre-Hilbert space
structure. In the fourth section we describe the space of homogeneous functions
by constructing an operator whose image is either a linear space generated by
Poisson brackets or the kernel of the symplectic residue (see Theorem 1.4.1);
this construction does not work in the case of Poisson brackets of homogeneous
functions of degree zero, but in the last section, we present another proof of that
description including this case, using homogeneous differential forms and the ho-
mogeneous cohomology of a symplectic cone (see Proposition 1.5.2 – Proposition
1.5.4).

1.1 Homogeneous functions on a symplectic cone

The goal of this section is to provide all the identities needed to define the
Poisson bracket of two homogeneous functions and its properties. We will prove
some identities of symplectic and differential geometry using references [8] and
[32].
Let Y be a symplectic manifold of dimension 2n, and let ω be the corresponding
closed, nondegenerate 2-form on Y , so that ωn is a volume form on Y . For
every f ∈ C∞(Y ) there exists a unique Hamiltonian vector field Xf such that
ιXf

ω = −df . The Poisson bracket of two functions f, g ∈ C∞(Y ) is defined by

{f, g} := ω(Xf , Xg).
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Thus
{f, g} = LXf

(g) = ιXf
dg = dg(Xf ) = Xf [g]

and {f, ·} is a derivation (see [4]). Here LXf
(g) is the Lie derivative of g with

respect to the Hamiltonian vector field Xf , ιXf
represents the inner product by

Xf , and we use the Cartan identity LXf
(g) = dιXf

(g) + ιXf
dg.

For any pair of vector fields X1, X2: [X1, X2] = LX1X2 and we have the identity
ι[X1,X2] = [LX1 , ιX2 ]. So, if X1 and X2 are Hamiltonian, then [X1, X2] is also
Hamiltonian with Hamiltonian function ω(X1, X2) (see Def. 18.5 in [8]):

ι[X1,X2]ω = LX1ιX2ω − ιX2LX1ω

= dιX1ιX2ω + ιX1dιX2ω − ιX2dιX1ω − ιX2ιX1dω

= dω(X2, X1)
= −dω(X1, X2)
= ιXω(X1,X2)ω,

hence
X{f,g} = Xω(Xf ,Xg) = [Xf , Xg], (1.1)

and (C∞(Y ), {, }) is a Poisson algebra (see [4], [8]).

Since ιXf
(ω) = −df , by induction we prove the following identity:

∀m ∈ N, ιXf
(ωm) = −mdf ∧ ωm−1. (1.2)

Indeed, using the formula ιXf
(α ∧ β) = ιXf

(α) ∧ β + (−1)|α|α ∧ ιXf
(β), we see

that if ιXf
(ωm) = −mdf ∧ ωm−1, then

ιXf
(ωm+1) = ιXf

(ω ∧ ωm)
= ιXf

(ω) ∧ ωm + ω ∧ ιXf
(ωm)

= ιXf
(ω) ∧ ωm −mω ∧ df ∧ ωm−1

= −(m+ 1) df ∧ ωm.

Proposition 1.1.1 (1.2 in [44]). The Poisson bracket of any pair of functions
f, g ∈ C∞(Y ) satisfies:

{f, g}ωn = ndf ∧ dg ∧ ωn−1 = d(g ιXf
ωn). (1.3)

Proof. Since ωn+1 = 0, Equation (1.2) implies that

0 = ιXf
ιXg

ωn+1

= −(n+ 1)ιXf
(dg ∧ ωn)

= −(n+ 1)
(
ιXf

(dg) ∧ ωn − dg ∧ ιXf
(ωn)

)
= −(n+ 1)

(
ιXf

(dg) ∧ ωn + ndg ∧ df ∧ ωn−1
)

= (n+ 1)
(
ndf ∧ dg ∧ ωn−1 − {f, g}ωn

)
.
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On the other hand, since d(ιXf
ω) = 0 and dω = 0,

d(g ιXf
ωn) = dg ∧ ιXf

ωn + g d(ιXf
ωn) = −ndg ∧ df ∧ ωn−1 = ndf ∧ dg ∧ ωn−1.

Let B be a connected smooth manifold of dimension 2n− 1 > 1.

Definition 1.1.1 ([14]). A cone over B is a principal bundle π : Y → B with
structure group the multiplicative group R+ = (0,+∞). Let ρt : Y → Y be the
map of Y onto itself associated with t ∈ R+, so that π(ρt(y)) = π(y), for all
y ∈ Y, t ∈ R+. We say that the cone is smooth if all the above data are smooth.
If Y has a symplectic structure with symplectic form ω, Y is a symplectic cone
if for all t ∈ R+: ρt∗(ω) = t ω, where

ρt
∗(ω)(X1, X2)(y) = ω(ρt∗X1, ρt∗X2)(ρt(y)), (1.4)

for any y ∈ Y and for any vector fields X1, X2.

Example 1.1.1. The space Y = Rn × (Rn \ 0) = {(x, ξ) : x ∈ Rn, ξ ∈ (Rn)∗}
is a symplectic cone over S2n−1 with symplectic form ω =

∑n
i=1 dxi ∧ dξi and

ρt(x, ξ) = (t1/2x, t1/2ξ).

Example 1.1.2. Let M be a smooth manifold. The cotangent bundle without
the zero section, Y = T ∗M \M , is a symplectic cone over the cosphere bundle
S∗M with its standard symplectic form and ρt(x, ξ) = (x, tξ).

Definition 1.1.2. Let Y be a symplectic cone of dimension 2n and assume
that Y is connected. Let φs = ρes , and let X be the vector field generating the
one-parameter group {φs} (see [32]), i.e. for all y ∈ Y ,

φ0 = idY ,
d(φs)
ds

∣∣∣∣
y

= X|φs(y) .

The map ρt preserves X : let y ∈ Y and h ∈ C∞(Y ), then

(ρt)∗(Xy)(h) = Xy(h ◦ ρt)

=
d(ρes)
ds

∣∣∣∣
ρe−s (y)

(h ◦ ρt)

=
d(ρes)
ds

∣∣∣∣
ρt(ρe−s (y))

(h)

=
d(ρes)
ds

∣∣∣∣
ρe−s (ρt(y))

(h)

= X|ρt(y) (h).
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By definition of the Lie derivative with respect to X ,

LXω = lim
s→0

φ∗sω − ω
s

= lim
s→0

esω − ω
s

= ω.

It follows by induction that for all m ∈ N,

LX (ωm) = mωm. (1.5)

Indeed, using the formula LX(α ∧ β) = LX(α) ∧ β + α ∧ LX(β) (see [32]), we
get

LX (ωm+1) = LX (ω ∧ ωm) = LX (ω) ∧ ωm + ω ∧ LX (ωm) = (m+ 1)ωm+1.

The vector field X is not Hamiltonian: if X were a Hamiltonian vector field
corresponding to some h ∈ C∞(Y ), it would imply that

ω = LXω = d(ιXω) = −d2h = 0,

which is a contradiction.

By definition, X is a vertical vector field (see [5]) since for any h ∈ C∞(B),

X [π∗h] = X [h ◦ π] = 0.

Let α be the one-form
α := ιXω. (1.6)

By Cartan’s identity, since dω = 0, we have

dα = d(ιXω) = LXω = ω. (1.7)

Since ρt∗(ω) = tω and ρt preserves X we get from (1.4) and (1.6)

ρt
∗(α) = t α. (1.8)

Consider the (2n− 1)–form on Y defined by

µ := α ∧ ωn−1. (1.9)

From (1.8) we have

ρt
∗(µ) = ρt

∗(α ∧ ωn−1) = ρt
∗(α) ∧ ρt∗(ωn−1) = t α ∧ tn−1ωn−1 = tnµ. (1.10)

By (1.6), µ is horizontal (see [5]) with respect to the fibration π : Y → B:

ιXµ = ιX (α ∧ ωn−1) = ιX (α) ∧ ωn−1 + ιXω ∧ (ιXωn−1) = 0. (1.11)

Equation (1.7) implies that µ also satisfies

dµ = d(α ∧ ωn−1) = d(α) ∧ ωn−1 − α ∧ d(ωn−1) = ωn. (1.12)
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Since ω is a 2-form, ιXω2 = ιXω∧ω+ω∧ ιXω = 2 ιXω∧ω, and if we assume
that ιXωm = mιXω ∧ ωm−1, then

ιXω
m+1 = ιXω ∧ ωm + ω ∧ ιXωm = (m+ 1) ιXω ∧ ωm.

Hence, we have proved by induction

∀m ∈ N, ιXω
m = mιXω ∧ ωm−1. (1.13)

In particular, if m = n,
ιXω

n = nµ, (1.14)

then (1.11) and (1.12) imply that

LXµ = nµ. (1.15)

Definition 1.1.3. A function f ∈ C∞(Y ) is homogeneous of degree a ∈ R if
ρ∗t (f)(y) = taf(y) for all y ∈ Y, t ∈ R+. Let Pa be the space of smooth functions
on Y which are homogeneous of degree a. We will use Euler’s identity:

f ∈ Pa ⇒ LX f = ιXdf = X [f ] = af, (1.16)

which can be proved using the definition of the Lie derivative of a function with
respect to X : for any y ∈ Y

LX f(y) = lim
s→0

φ∗sf(y)− f(y)
s

= lim
s→0

easf(y)− f(y)
s

= af(y).

If f ∈ Pa, then ρ∗t (df) = d(ρ∗t f) = d(taf) = tadf . For t > 0, applying ρ∗t to both
sides of identity (1.3), yields that {f, g} lies in Pa+b−1, for all f ∈ Pa, g ∈ Pb.
Let {Pa,Pb} be the linear subspace of Pa+b−1 spanned by all functions of the
form {f, g} with f ∈ Pa, g ∈ Pb.
Lemma 1.1.1. If f ∈ Pa, then d(fιXωn) = (n+ a)fωn.

Proof. Let f ∈ Pa. From (1.5) and (1.16) we get

d(fιXωn) = df ∧ ιX (ωn) + nfωn

= ιX (df) ∧ ωn + nfωn

= (n+ a)fωn.

Lemma 1.1.2 (1.7 in [44]). If g ∈ Pl, [X , Xg] = (l − 1)Xg.

Proof. For any pair of vector fields X1, X2: ι[X1,X2] = [LX1 , ιX2 ] so we have

ι[X ,Xg]ω = [LX , ιXg
]ω

= LX (ιXgω)− ιXg (LXω)
= LX (−dg)− ιXgω

= −l dg + dg

= −d((l − 1)g)
= ι(l−1)Xg

ω;

and since ω is non-degenerate we reach the conclusion.
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If {ψt} denotes the one-parameter group corresponding to Xg, for all y ∈ Y ,
ψ0 = idY ,
d(ψt)
dt

∣∣∣∣
y

= Xg|ψt(y) .

Every diffeomorphism ψt is a symplectomorphism, i.e. it preserves the symplec-
tic form ω: for any t ∈ R+, ψ∗t ω = ω; the reason is that ψ∗0ω = ω and

d

dt

∣∣∣∣
t=0

ψ∗t ω = LXg
ω = dιXg

ω + ιXg
dω = −d2g = 0. (1.17)

Remark 1.1.1. From Lemma 1.1.2 above and Prop. 2.18 in [32] we see that when
l = 1 the groups of diffeomorphisms {ψt} and {φs} are mutually commutative.

Lemma 1.1.3 (1.11 in [44]). If f ∈ Pl, g ∈ Pm, then

{f, g}µ = d(gιXf
µ)− (l +m− 1 + n) g df ∧ ωn−1.

Proof. By the previous identities and some properties of the Lie derivative, we
have

{f, g}µ (1.14)
=

1
n
{f, g} ιXωn

(1.3)
=

1
n
ιXd(g ιXf

ωn)

=
1
n
LX (g ιXf

ωn)− 1
n
d(g ιX ιXf

ωn)

(1.2),(1.13)
= d(g ιXf

µ)− LX (g df ∧ ωn−1)

= d(g ιXf
µ)− g df ∧ LX (ωn−1)− LX (g df) ∧ ωn−1

(1.5)
= d(g ιXf

µ)− (n− 1) g df ∧ ωn−1 − LX (g df) ∧ ωn−1

(1.16)
= d(g ιXf

µ)− (n− 1) g df ∧ ωn−1 − (m+ l) g df ∧ ωn−1

= d(g ιXf
µ)− (l +m− 1 + n) g df ∧ ωn−1.

Remark 1.1.2. Fix a domain U ⊆ Rn and let (x1, . . . , xn, ξ1, . . . , ξn) be the
corresponding coordinates in the cotangent space T ∗U = U × Rn. For the
symplectic cone T ∗U \ U → S∗U we explicitly have (see 2.1 in [44])

ω =
n∑
i=1

dξi ∧ dxi, X =
n∑
i=1

ξi
∂

∂ξi
, α =

n∑
i=1

ξi dxi,

ωn = (−1)
n(n−1)

2 n!dξ1 ∧ · · · ∧ dξn ∧ dx1 ∧ · · · ∧ dxn = (−1)
n(n−1)

2 n! dξ dx,

µ = (−1)
n(n−1)

2 (n− 1)!

(
n∑
i=1

(−1)i−1ξidξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn

)
∧ dx

=: µ(ξ) ∧ dx,

where µ(ξ) is a volume form on the sphere Sn−1.
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We will fix once and for all, a function p ∈ P1 such that p is everywhere positive.
By Euler’s identity this implies that dp 6= 0 everywhere: for y ∈ Y ,

p(y) = LX p(y) = dp(X )(y).

Therefore 1 is a regular value for p, and if Z = {y ∈ Y : p(y) = 1} = p−1(1),
by the Preimage Theorem (see [16]), Z is a submanifold of Y of dimension
2n− 1. Moreover, π �Z : Z → B is a diffeomorphism, since Z is identified with
the quotient space Y/R+, and this space is identified with the base space B
(because the fibers of the bundle Y are diffeomorphic to R+).

Proposition 1.1.2 (Sect. 4 in [16]). Let Z be the preimage of a regular value
y ∈ Y under the smooth map p : Y → R. Then the kernel of the derivative
dpz : TzY → TyR at any point z ∈ Z is precisely the tangent space to Z, TzZ.

Proof. Since p is constant on Z, dpz is zero on TzZ. But dpz : TzY → TyR is
surjective, so the dimension of the kernel of dpz must be

dim(TzY )− dim(TyR) = dim(Y )− dim(R) = dim(Z).

Thus TzZ is a subspace of the kernel that has the same dimension as the com-
plete kernel, hence ker(dpz) = TzZ.

The previous proposition leads us to consider, for all z ∈ Z, the short exact
sequence

0→ TzZ → TzY
dpz→ T1R→ 0.

Let z be any point in Z. Then,

1. α(X ) = 0, since α := ιXω.

2. dp(Xp) = −ιXp
ιXp

ω = 0, then Xp ∈ ker(dp), and hence Xp|z ∈ TzZ.

3. α(Xp) = ω(X , Xp) = X [p] = p 6= 0, then α(Xp)|z = 1.

4. dp(X ) = X [p] = p 6= 0, then dp(X )|z = 1.

Hence for every point z ∈ Z, by item 4 and Proposition 1.1.2, X|z /∈ TzZ and
since

dim(TzY )− dim(TzZ) = 1, (1.18)

we have the following decomposition:

TzY = TzZ ⊕ C · X |z . (1.19)

In general, for any point y ∈ Y we have

TyY = ker(dpy)⊕ C · X |y . (1.20)
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1.2 The symplectic residue

In this section we recall the definition and the properties of the symplectic
residue of a homogeneous function of degree −n defined on a symplectic cone
of dimension 2n, following [14].

Let Y π→ B be a symplectic cone, and we will assume that B is closed unless
we indicate something else. Let f be a homogeneous function of degree −n on
Y , and consider the (2n− 1)–form fµ, where µ is the (2n− 1)–form defined in
(1.9). The form fµ satisfies the following

1. It is closed: by (1.12), (1.13), (1.16) and since ιX (df) ∧ ωn = df ∧ ιXωn,

d(fµ) = df ∧ µ+ f dµ =
1
n
df ∧ ιXωn + f ωn

=
1
n
ιX (df) ∧ ωn + f ωn = −f ωn + f ωn = 0. (1.21)

2. It is horizontal: by (1.11),

ιX (fµ) = fιXµ = 0.

3. It is invariant under the action of R+: by (1.10),

ρt
∗(fµ) = ρt

∗(f)ρt∗(µ) = t−nf tnµ = fµ. (1.22)

So there exists a unique (2n− 1)–form µf on B such that

fµ = π∗µf . (1.23)

In fact, given a point x ∈ B, take y ∈ Y such that π(y) = x; because of the
invariance of fµ it does not depend on the choice of the point y, so we can
choose y ∈ Z. Since fµ is horizontal, by (1.19) we can also choose a basis
V1, . . . , V2n−1 of TyZ, and define the form µf by

µf |x(π∗V1, . . . , π∗V2n−1) = f(y)µ|y(V1, . . . , V2n−1).

If f is non-vanishing then by (1.23), µf is also non-vanishing, so we will orient B
by requiring the form µf to be positively oriented when f is everywhere positive.

Definition 1.2.1 ([14]). Let f be a homogeneous function of degree −n on Y .
We define the symplectic residue of f to be the integral

res(f) :=
∫
B

µf . (1.24)

Since π �Z : Z → B is a diffeomorphism, we can orient B such that the degree
of π is 1 and by the Degree Formula (see [16])∫

B

µf =
∫
Z

(fµ) �Z .

The symplectic residue has the following properties (see Prop. 6.1 in [14]):
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Proposition 1.2.1. 1. The map res is linear and continuous (as a distribu-
tion) on the space P−n.

2. Let Φ : Y → Y be a symplectomorphism commuting with the action of
R+. Then for f ∈ P−n, res(Φ∗f) = res(f).

3. If g ∈ Pl, f ∈ Pm and l +m = −n+ 1, then res({f, g}) = 0.

Proof. 1. If f, g ∈ P−n, and c ∈ C,

π∗µf+c g = (f + c g)µ = fµ+ c g µ = π∗µf + c π∗µg,

so the linearity holds as a consequence of this and the linearity of the
integral over B. If {fk} is a sequence of functions in P−n such that
fk → 0 as k → ∞ uniformly in the C∞–topology of Y , then res(fk) → 0
as k →∞.

2. If Φ : Y → Y is a diffeomorphism which commutes with the action of
R+, then there exists a diffeomorphism of the base Ψ : B → B, such that
π ◦ Φ = Ψ ◦ π: For x ∈ B, let x̂ ∈ Y be such that π(x̂) = x, define
Ψ(x) := π(Φ(x̂)). Ψ is well-defined: another element in the fiber of x is of
the form ρt(x̂) for some t ∈ R+, so

π(Φ(ρt(x̂))) = π(ρt(Φ(x̂))) = π(Φ(x̂)) = Ψ(x).

If f ∈ P−n, then, since Φ commutes with the action of R+, for any t ∈ R+,
ρ∗t (Φ

∗f) = Φ∗(ρ∗t f) = t−n(Φ∗f), so Φ∗f ∈ P−n.
Φ preserves X : For h ∈ C∞(Y ) and for any y ∈ Y ,

(Φ)∗(Xy)(h) = Xy(h ◦ Φ)

=
d(ρes)
ds

∣∣∣∣
ρe−s (y)

(h ◦ Φ)

=
d(ρes)
ds

∣∣∣∣
Φ(ρe−s (y))

(h)

=
d(ρes)
ds

∣∣∣∣
ρe−s (Φ(y))

(h)

= X|Φ(y) (h).

From this, and since Φ∗ω = ω, we get Φ∗µ = µ. Therefore, the equality
πΦ = Ψπ implies that

π∗Ψ∗µf = Φ∗π∗µf = Φ∗(fµ) = Φ∗(f)µ = π∗µΦ∗f

and hence Ψ∗µf = µΦ∗f .
Hence, since Ψ is a diffeomorphism on B and its degree is equal to 1 (that
is the degree of Φ since Φ is a symplectomorphism), we use again the
Degree Formula to conclude

res(f) =
∫
B

µf =
∫
B

Ψ∗µf =
∫
B

µΦ∗f = res(Φ∗f).
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3. First consider the case l = 1 and m = −n. If {Φt} is the one-parameter
group of symplectomorphisms generated by the Hamiltonian vector field
Xg, by Remark 1.1.1 every Φt commutes with the action of R+, and
therefore by the previous item, res(Φ∗t f) = res(f). So by continuity of res,
we differentiate and evaluate at zero to get:

0 =
d

dt

∣∣∣∣
t=0

res(f) =
d

dt

∣∣∣∣
t=0

res(Φ∗t f)

= res
(
d

dt

∣∣∣∣
t=0

Φ∗t f
)

= res(LXg (f))
= − res({f, g}).

The general case follows from Lemma 1.1.3:

res({f, g}) =
∫
B

µ{f,g} =
∫
Z

{f, g}µ

=
∫
Z

(
d(g ιXf

µ)− (l +m− 1 + n) g df ∧ ωn−1
)
.

Hence by Stokes’ Theorem, res({f, g}) = 0 when l +m = −n+ 1.

1.3 L2–structure on Ps
Let us now introduce a pre-Hilbert space structure on Ps. Following the notation
of Section 1.1, since B and Z are diffeomorphic, we will consider the symplectic
cone π : Y → Z; we will also assume that Y is connected and Z is compact. We
construct the following maps:

1. The restriction mapping, i.e. the map:

Rs : Ps → C∞(Z)
f 7→ Rs(f) = f �Z .

2. The extension mapping, i.e. the map:

Ts : C∞(Z)→ Ps

g 7→ Ts(g) such that ∀y ∈ Y, Ts(g)(y) := g
(
ρ 1

p(y)
(y)
)

(p(y))s.

These maps provide an identification

Ps ∼= C∞(Z), (1.25)

since Rs ◦ Ts = idC∞(Z) and Ts ◦Rs = idPs
.
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Let ν be the restriction of µ to Z. Then ν is a volume form on Z: let z ∈ Z;
since TzZ is of dimension 2n−1, if V1, . . . , V2n−1 form a basis of TzZ, by (1.19),
X , V1, . . . , V2n−1 form a basis of TzY , and hence

νz(V1, . . . , V2n−1) = ωnz (X , V1, . . . , V2n−1)

does not vanish since ωn is a volume form on Y . Hence, ν defines an L2−structure
on C∞(Z): for f, g ∈ C∞(Z)

〈f, g〉Z :=
∫
Z

f̄ · g ν,

where f̄ denotes the complex conjugate of the function f : Z → C. The associ-
ated norm is

‖f‖ = (〈f, f〉Z)1/2
,

and by completion we obtain a Hilbert space L2(Z). By means of (1.25), we
have an L2−structure on Ps with the following inner product: for f, g ∈ Ps we
define

〈f, g〉s := 〈Rs(f), Rs(g)〉Z =
∫
Z

f �Z · g �Z ν =
∫
Z

(
f̄ · g

)
�Z ν,

and the associated norm is

‖f‖s := ‖Rs(f)‖.

1.4 A differential operator on Ps
In this section we study the representation of a homogeneous function on a
symplectic cone in terms of Poisson brackets, by using a generalization of Sect.
6 of [14] (see also Sect. 2 of [25]) in which the case when l = 1 is investigated.
We consider homogeneous functions on a symplectic cone Y → B, and as before,
we assume that Y is connected and B is compact. In the following result we
study the case l 6= 0; the case l = 0 will be treated separately right after the
proof of this theorem.

Theorem 1.4.1. Let l,m be real numbers with l 6= 0.

1. If l +m− 1 6= −n, then {Pl,Pm} = Pl+m−1.

2. If l + m − 1 = −n, then {Pl,Pm} = ker(res) ⊆ P−n and {Pl,Pm} is of
codimension 1 on P−n.

Proof. We will prove the theorem in several steps:

1. Definition of the operators Dq.
Given q ∈ Pl, let Xq be the Hamiltonian vector field associated with
q. Let Dq : Pm → Pl+m−1 be the operator “differentiation by Xq”:
Dq(h) = LXq

(h) = {q, h}.
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By (1.20), every vector field on Y can be expressed as a linear combina-
tion of some vector field in ker(dp) and X . In particular, the vector Xq

decomposes uniquely as a sum

Xq = Wq + q̃X , (1.26)

where Wq is a vector field on Y such that Wq[p] = 0 and q̃ ∈ C∞(Y ).

From (1.26) and using (1.16) we get Xq[p] = Wq[p]+q̃X [p] = p q̃, therefore

q̃ = p−1Xq[p] = p−1{q, p} ∈ Pl−1. (1.27)

By (1.16), if f ∈ Pm, X [f ] = mf and hence,

Xq[f ] = Wq[f ] + q̃X [f ]
Dq(f) = Wq[f ] +m q̃f.

2. Construction of the transpose of Dq.
First of all, by Prop. 6.5.17 in [1], since ν is a volume form on Z, for any
h ∈ C∞(Z) and for any vector field X on Z we have the identity

d(ιX(hν)) = X[h]ν + hDiv(X)ν, (1.28)

where Div(X) represents the divergence of X. Let f ∈ Pm, g ∈ Pl+m−1.
Taking h = f · g and X = Wq, we have

〈Dqf, g〉l+m−1 = 〈Rl+m−1(Dqf), Rl+m−1(g)〉Z =
∫
Z

(
Dqf · g

)
�Z ν

=
∫
Z

(
(Wq[f ] +m q̃ f) · g

)
�Z ν

=
∫
Z

(
Wq[f ] · g

)
�Z ν +

∫
Z

(
m q̃ f · g

)
�Z ν

=
∫
Z

(
Wq[f ] · g

)
�Z ν +

∫
Z

(
f ·m q̃ g

)
�Z ν

(1.28)
= −

∫
Z

(
f ·Wq[g]

)
�Z ν −

∫
Z

(
f · gDiv(Wq)

)
�Z ν +

∫
Z

(
f ·m q̃ g

)
�Z ν

= −
∫
Z

(
f · (Wq[g] + (Div(Wq))g −m q̃ g)

)
�Z ν

= 〈Tm(f �Z), Tm((−Wq −Div(Wq) +m q̃)(g) �Z)〉m = 〈f,Dt
q(g)〉m.

Hence the transpose of Dq is the operator Dt
q : Pl+m−1 → Pm given by

Dt
q(g) = Tm((−Wq −Div(Wq) +m q̃)(g) �Z) . (1.29)

So we must compute Div(Wq). We will show that

Div(Wq) = (−n+ 1− l) q̃. (1.30)
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By Equation (1.21) d(p−nµ) = 0, and hence by (1.12)

0 = d(p−nµ) = d(p−n) ∧ µ+ p−ndµ = −n p−n−1dp ∧ µ+ p−nωn

and on Z, we get
wn = ndp ∧ ν. (1.31)

By definition LWq
ν = Div(Wq)ν (see Def. 6.5.16 in [1]). Therefore, in

view of the fact that Wq[p] = 0, we get from (1.31)

LWqω
n = LWq (ndp ∧ ν)

= nd(LWq (p)) ∧ ν + ndp ∧ LWq (ν)
= ndp ∧Div(Wq)ν
= Div(Wq)ωn. (1.32)

For any function h ∈ C∞(Y ) and any vector field W on Y , we have
Div(hW ) = hDiv(W ) +W [h] (see Prop. 6.5.17 in [1]); therefore,

LWq
ωn

(1.26)
= LXq

ωn − L(eqX )ω
n

(1.17)
= −Div(q̃X )ωn

= −X [q̃]ωn − q̃LXωn
(1.15),(1.16)

= (1− l − n) q̃ ωn.

Hence, by (1.32) on Z we have Div(Wq) = (1− l − n) q̃.

Going back to (1.29) we get for the transpose of Dq, for g ∈ Pl+m−1

Dt
q(g) = Tm((−Wq −Div(Wq) +m q̃)(g) �Z)

= Tm((−Wq − (1− l − n) q̃ +m q̃)(g) �Z)

= p2−2l (−Dq + (l +m− 1) q̃ − (1− l − n) q̃ +m q̃) (g),

Dt
q = −p2−2l (Dq − (2m+ 2l + n− 2) q̃) . (1.33)

Now, since {q, prg} = pr({q, g}+ r p−1{q, p} g), if r = −(2m+ 2l+n− 2),
by (1.27), Equation (1.33) implies that

Dt
q(g) = −p2−2l (Dq(g) + r q̃ g)

= −p2−2l
(
{q, g}+ r p−1{q, p} g

)
= −p2−2lp−r{q, prg}
= −p2m+n{q, prg}. (1.34)

3. Construction of the operator ∆l+m−1.
Choose a system of functions g1, . . . , gN in Pl whose differentials span the
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cotangent space at every point of Y . By non-degeneracy of ω, this implies
that the Hamiltonian vector fields Xgi

generate the tangent space TyY at
every point y of Y . We denote by Di the operator Dgi

.
Consider the linear operator

∆l+m−1 =
N∑
i=1

DiD
t
i . (1.35)

The theorem is an immediate consequence of the following lemma

Lemma 1.4.1. When l + m − 1 6= −n, ∆l+m−1 : Pl+m−1 → Pl+m−1 is
bijective, and when l +m− 1 = −n, Image(∆l+m−1) = ker(res).

Proof. Clearly, ∆l+m−1 is a self-adjoint operator on Pl+m−1. To compute
the leading symbol (see [43]) of ∆l+m−1, take y ∈ Y, ξ ∈ T ∗y Y , and choose
f ∈ Pl+m−1 such that f(y) = 0 and dfy = ξ, then

σDi(ξ) = Dify = {gi, f}y = (df)y(Xgi) = ξ(Xgi),

which implies that ∆l+m−1 has leading symbol σD2
i
(ξ) = |ξ(Xgi)|2.

Therefore ∆l+m−1 is elliptic and following Thm. 5.5 of Chap. III in [24],
we can conclude that Image(∆l+m−1) is closed and hence

Pl+m−1 = ker(∆l+m−1)⊕ Image(∆l+m−1). (1.36)

Let us compute ker(∆l+m−1): for all f ∈ Pl+m−1,

〈∆l+m−1f, f〉l+m−1 =
N∑
i=1

〈DiD
t
if, f〉l+m−1 =

N∑
i=1

‖ Dt
if ‖2m,

so f ∈ ker(∆l+m−1) if and only if f ∈ ker(Dt
i) for all i.

In view of (1.34), for all i = 1, . . . , N , f ∈ ker(Dt
i) if and only if on Y we

have
Xgi

[prf ] = {gi, prf} = 0. (1.37)

Since the Xgi
’s span the tangent space to Y at every point and Y is con-

nected, prf must be a constant, prf = c ⇒ f = c p−r.

Remember that f ∈ Pl+m−1 and that −r = l+m− 1⇒ l+m− 1 = −n.
Hence

• If l +m− 1 6= −n, the constant c must be 0 and by (1.36), ∆l+m−1

is bijective, i.e. Image(∆l+m−1) = Pl+m−1, and from

Image(∆l+m−1) ⊆ {Pl,Pm} ⊆ Pl+m−1,

we get
Image(∆l+m−1) = {Pl,Pm} = Pl+m−1. (1.38)
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• If l + m − 1 = −n, f = c p−n; in this case, the space generated by
p−n coincides with ker(Dt

i) for all i = 1, . . . , N , i.e. ker(∆l+m−1) has
dimension 1.
If f = p−n then for all g ∈ P−n, the L2−inner product of f and g is

〈f, g〉−n =
∫
Z

g µ =
∫
B

µg = res(g).

By Proposition 1.2.1, we have

Image(∆l+m−1) ⊆ {Pl,Pm} ⊆ ker(res), (1.39)

so, with the short exact sequence

0→ ker(res)→ P−n → C→ 0,

where the first map is the inclusion and the second map is res, the
space ker(res) has codimension 1 on P−n, and therefore

Image(∆l+m−1) = ker(res). (1.40)

When l+m− 1 = −n, the theorem follows from (1.39) and (1.40), other-
wise, it follows from (1.38).

The differential operator in degree zero

Let us consider the construction of the operator ∆l+m−1, when l = 0:

In the proof of Theorem 1.4.1, we needed a system of functions g1, . . . , gN in
Pl whose differentials span the cotangent space at every point of Y . In the case
l = 0 it is not possible to choose such a system: the dimension of a set gener-
ated by differentials of homogeneous functions of degree zero is at most 2n− 1,
because they will not generate the part in the cotangent space corresponding to
the fiber variable1. Instead, in the proof of Proposition 1.5.4 below, we choose
a system of functions g1, . . . , gN in P0

∼= C∞(Z), whose differentials span the
cotangent space of Z at every point, i.e. for all z ∈ Z, span1≤i≤N{dgi|z} = T ∗z Z.

For any integer m ≤ 0, we denote by Di the operator {gi, ·} from Pm to
Pm−1. If r = −2m − n + 2 = −2(m − 1) − n, by (1.34) the transpose Dt

i

corresponds to the operator −p2m+n{gi, pr·}. Define the linear operator

∆m−1 : Pm−1 → Pm−1

f 7→ ∆m−1(f) :=
N∑
i=1

DiD
t
i(f).

1I thank Prof. Jean-Marie Lescure for pointing this out to me.
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We are going to compute ker(∆m−1), i.e. the functions f ∈ Pm−1 such that
∆m−1(f) = 0:

∆m−1(f) = 0⇔ Dt
i(f) = 0 ∀i = 1, . . . , N

⇔ {gi, prf} = 0 ∀i = 1, . . . , N
⇔ ω(Xgi

, Xprf ) = 0 ∀i = 1, . . . , N
⇔ dgi(Xprf ) = 0 ∀i = 1, . . . , N.

Since the differentials of g1, . . . , gN span the cotangent space of Z at every
point z, Xprf |z does not belong to TzZ. Moreover, since gi ∈ P0, ∀i = 1, . . . , N ,
by (1.16) we also have

dgi(X ) = X [gi] = 0.

Therefore, by (1.20) we can pick a function h ∈ C∞(Y ) such that

Xprf = hX .

Let A := {g ∈ C∞(Y ) : ∃h ∈ C∞(Y ) : Xg = hX}. Then

ker(∆m−1) = p−r (A ∩ P−m+1−n) . (1.41)

Proposition 1.4.1. Let a be a real number a ≤ 0.

1. If a 6= 0, then A ∩ Pa = {0}.

2. For g ∈ P0 and f ∈ A ∩ Pa, {f, g} = 0.

3. If n = 1, then {P0,P0} = 0.

Proof. 1. If f ∈ Pa, then X [f ] = af , and if f ∈ A, there exists a function
h ∈ C∞(Y ) such that Xf = hX . Then

af = X [f ] = α(Xf ) = −ω(X , Xf ) = −ω(X , hX ) = −hω(X ,X ) = 0,

and since a 6= 0, we conclude that f = 0.

2. If f ∈ A, there exists a function h ∈ C∞(Y ) such that Xf = hX , then by
(1.16), for any g ∈ P0 we have

{f, g} = Xf [g] = hX [g] = h · 0 = 0.

In particular, {f, g} = 0 whenever g ∈ P0 and f ∈ A∩P0; when f ∈ A∩Pa
and a 6= 0 the statement follows immediately from the first part of the
proposition.

3. By Equation (1.3) with n = 1, {f, g}ω = df ∧ dg, so if f, g ∈ P0 we have
{f, g} = 0.

Lemma 1.4.2. If n ≥ 2, there exists a system of functions gi ∈ P0, 1 ≤ i ≤ N ,
such that for some i 6= j, {gi, gj} ∈ P−1.
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Proof. We prove this locally: consider that the manifold structure on the sym-
plectic cone Y is described by coordinate charts (U , x1, . . . , xn, ξ1, . . . , ξn) and
the corresponding symplectic form is the 2–form ω =

∑n
i=1 dxi ∧ dξi. For

i = 1, . . . , n, define functions gi(x, ξ) := xi, and gn+i(x, ξ) := ξi|ξ|−1, which are
homogeneous of degree 0 on Y . Then for i, j = 1, . . . , n,

{gi, gj} = 0 = {gn+i, gn+j},

but
{gi, gn+i} = |ξ|−1 − ξ2

i |ξ|−3,

which is not identically zero when n ≥ 2.

Definition 1.4.1 (See e.g. [20]). LetM be a smooth manifold of dimension n. A
linear partial differential operator P on C∞(M) is called hypoelliptic if for every
distribution u on M , the condition Pu ∈ C∞(M) implies that u ∈ C∞(M).

Theorem 1.4.2 (Thm. 1.1 in [18]). If X1, . . . , Xr denote first order homoge-
neous differential operators in an open set Ω ⊂ Rn with smooth coefficients,
such that among the operators

Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], . . . , [Xj1 , [Xj2 , [Xj3 , . . . , Xjk ]]], . . .

where ji = 1, . . . , r, there exist n which are linearly independent at any given

point in Ω, then the operator
r∑
i=1

X2
i is hypoelliptic.

This theorem also holds when considering the composition of Xi with its
adjoint X∗i Xi instead of X2

i , as we can see in [20] (see also [12], [17]). In our case,
the second order differential operator ∆m−1 is constructed from N first order
homogeneous differential operators X1, . . . , XN , which generate a subspace of
TY of dimension 2n−1. These operators correspond to homogeneous functions
g1, . . . , gN of degree zero.
By Lemma 1.4.2, there exist i, j such that the function {gi, gj} is homogeneous
of degree −1, in which case the differentials of the functions gi, {gi, gj} generate
the cotangent space of Y at every point. Hence, by non-degeneracy of ω and
by (1.1), the vector fields Xgi

, X{gi,gj} = [Xgi
, Xgj

] generate the tangent space
of Y at every point and hence they satisfy the hypothesis in Theorem 1.4.2. So
∆m−1 is a hypoelliptic operator.

Remark 1.4.1. For any m 6= 0, the space {P0,Pm} coincides with the space
{Pm,P0}, so when n > 1 and m− 1 = −n, by Theorem 1.4.1,

{P0,P−n+1} = ker(res).

Therefore, the remaining case is when n > 1 andm = 0, but then−m+1−n 6= 0,
so by Equation (1.41) and Proposition 1.4.1, we get

ker(∆−1) = {0}. (1.42)
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By construction of the operator ∆−1 : P−1 → P−1, we have

Image(∆−1) ⊆ {P0,P0} ⊆ P−1. (1.43)

Remark 1.4.2. We do not know if it is possible to use the fact that ∆−1 is
hypoelliptic, to argue as in (1.36) and say that

P−1 = ker(∆−1)⊕ Image(∆−1), (1.44)

hence, by (1.42),
P−1 = Image(∆−1), (1.45)

in which case by (1.43) we could conclude that

P−1 = {P0,P0}. (1.46)

An explicit description of ∆ in degree 0

Let M be a closed manifold of dimension n > 1. If the manifold structure on
M is described by coordinate charts (U , x1, . . . , xn) with xi : U → R, then at
any x ∈ U the differentials (dxi)x form a basis of T ∗xM . Namely if ξ ∈ T ∗xM ,
then ξ =

∑n
i=1 ξi(dxi)x for some real coefficients ξ1, . . . , ξn (see [8]). The chart

(T ∗U , x1, . . . , xn, ξ1, . . . , ξn) is a coordinate chart for T ∗M , and the coordinates
(x1, . . . , xn, ξ1, . . . , ξn) are the cotangent coordinates associated to (x1, . . . , xn)
on U . The 2–form ω =

∑n
i=1 dxi ∧ dξi is the canonical symplectic form and we

have the symplectic cone T ∗M \M → S∗M (see Example 1.1.2).

The function p(x, ξ) := |ξ| is a homogeneous function on Y := T ∗M \M of
degree 1, everywhere positive. For i = 1, . . . , n, define functions gi(x, ξ) := xi,
and gn+i(x, ξ) := ξi|ξ|−1, which are homogeneous of degree 0 on Y . They
satisfy:

dgi = dxi and dgn+i = |ξ|−1

−∑
k 6=i

ξkξi|ξ|−2dξk + (1− ξ2
i |ξ|−2)dξi

 .

The Hamiltonian vector field corresponding to a function g is

Xg =
n∑
i=1

(
∂g

∂xi

∂

∂ξi
− ∂g

∂ξi

∂

∂xi

)
.

Therefore, for i = 1, . . . , n,

Xgi
=

∂

∂ξi
and Xgn+i

= −|ξ|−1

−∑
k 6=i

ξkξi|ξ|−2 ∂

∂xk
+ (1− ξ2

i |ξ|−2)
∂

∂xi

.

By (1.34), the operators Dt
i : Pm−1 → Pm are given by

Dt
i(h) = −|ξ|2m+n{gi, |ξ|−2m−n+2h} for h ∈ Pm−1.
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Therefore, for i = 1, . . . , n,

Dt
i(h) = −|ξ|2m+n∂ξi(|ξ|−2m−n+2h)

= (2m+ n− 2)ξih− |ξ|2∂ξi
h;

DiD
t
i(h) = ∂ξi

((2m+ n− 2)ξih− |ξ|2∂ξi
h)

= (2m+ n− 2)h+ (2m+ n− 4)ξi∂ξi
h− |ξ|2∂2

ξi
h; (1.47)

Dt
n+i(h)

= |ξ|2m+n−1

−∑
k 6=i

ξkξi|ξ|−2∂xk
(|ξ|−2m−n+2h) + (1− ξ2

i |ξ|−2)∂xi
(|ξ|−2m−n+2h)


= |ξ|

−∑
k 6=i

ξkξi|ξ|−2∂xk
h+ (1− ξ2

i |ξ|−2)∂xi
h

 ;

Dn+iD
t
n+i(h)

= −|ξ|−1

−∑
k 6=i

ξkξi|ξ|−2∂xk
(Dt

n+i(h)) + (1− ξ2
i |ξ|−2)∂xi(D

t
n+i(h))


=
∑
j 6=i

ξjξi|ξ|−2

−∑
k 6=i

ξkξi|ξ|−2∂xj∂xk
h+ (1− ξ2

i |ξ|−2)∂xj∂xih


− (1− ξ2

i |ξ|−2)

−∑
k 6=i

ξkξi|ξ|−2∂xi∂xk
h+ (1− ξ2

i |ξ|−2)∂2
xi
h

 . (1.48)

Adding up the terms in (1.47) and (1.48) we obtain

∆(h) = n(2m+ n− 2)h+ (2m+ n− 4)(m− 1)h− |ξ|2∆ξh

− (A1, . . . , An) Hessx(h)(A1, . . . , An)t

= (2m2 + n2 + 3mn− 3n− 6m+ 4)h− |ξ|2∆ξh

− (A1, . . . , An) Hessx(h)(A1, . . . , An)t,

where we have used the following:

• since h is homogeneous of degree m− 1, by (1.16) we have

n∑
i=1

ξi∂ξih = (m− 1)h.
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• ∆ξh =
n∑
i=1

∂2
ξi
h.

• (A1, . . . , An) = (1, . . . , 1)− |ξ|−2


ξ1 ξ1 · · · ξ1
ξ2 ξ2 · · · ξ2
. . . . . .
ξnξn· · · ξn

 · (ξ1, . . . , ξn)t.

• Hessx(h) denotes the Hessian matrix in x of h:

Hessx =


∂2
x1

∂x1∂x2 · · · ∂x1∂xn

∂x2∂x1 ∂2
x2
· · · ∂x2∂xn

. . . . . . . . . . . . . . .
∂xn

∂x1∂xn
∂x2 · · · ∂2

xn

 .

In the case when m = 0, the operator reads

∆(h) = (n2 − 3n+ 4)h− |ξ|2∆ξh− (A1, . . . , An) Hessx(h)(A1, . . . , An)t,

but we cannot see from this that the operator ∆ is hypoelliptic and then use it
to conclude (1.46). In Proposition 1.5.4 below, we present the proof of (1.46)
by using a different argument.

1.5 Homogeneous differential forms

In this section we study homogeneous differential forms on the symplectic cone
π : Y → Z, in order to give a more explicit representation of a homogeneous
function in terms of Poisson brackets, adding the case l = 0 to Theorem 1.4.1.

Let us consider the set Ωk,a(Y ) of a–homogeneous k–differential forms on
Y , that is η ∈ Ωk,a(Y ) if and only if for all t ∈ R+,

ρ∗t η = taη,

where ρ∗t η is defined as in (1.4). The usual exterior derivation maps

d : Ωk,a(Y )→ Ωk+1,a(Y ),

and (Ωk,a(Y ), d) is a subcomplex of the usual de Rham complex (Ωk(Y ), d).
We can compute the cohomology of this complex:

Hk,a(Y ) =
ker(d : Ωk,a(Y )→ Ωk+1,a(Y ))

Image(d : Ωk−1,a(Y )→ Ωk,a(Y ))
.

Proposition 1.5.1. The homogeneous cohomology groups of the symplectic
cone π : Y → Z are given by:

Hk,a(Y ) ∼=

{
Hk(Z)⊕Hk−1(Z), if a = 0,
0, if a 6= 0.

In particular, H2n,0(Y ) ∼= C.
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Proof. By (1.25), locally any a–homogeneous k–differential form ω ∈ Ωk,a(Y )
can be expressed as

ω = paπ∗(ω1) + pa−1 dp ∧ π∗(ω2), (1.49)

for some ω1 ∈ Ωk(Z), ω2 ∈ Ωk−1(Z), and therefore

dω = paπ∗(dω1) + pa−1 dp ∧ (−π∗(dω2 − aω1)). (1.50)

If dω = 0 then
dω1 = 0 and dω2 = aω1.

If a 6= 0, ω1 = 1
adω2 and hence

ω =
1
a
paπ∗(dω2) + pa−1dp ∧ π∗(ω2) = d

(
1
a
paπ∗(ω2)

)
.

Since 1
ap
aπ∗(ω2) ∈ Ωk−1,a(Y ), we conclude that if a 6= 0, then Hk,a(Y ) = 0.

If a = 0 we have ω = π∗(ω1) + p−1 dp ∧ π∗(ω2) ∈ Ωk,0(Y ), and by (1.50),
dω = 0 implies that dω1 = 0 and dω2 = 0, so [ω1] ∈ Hk(Z), [ω2] ∈ Hk−1(Z). If
τ = π∗(τ1) + p−1 dp ∧ π∗(τ2) ∈ Ωk−1,0(Y ) is such that ω = dτ , then ω1 = dτ1
and ω2 = dτ2. This gives rise to a map

Hk,0(Y )→ Hk(Z)⊕Hk−1(Z)
[ω] 7→ [ω1]⊕ [ω2],

which is an isomorphism. Indeed, if ω1 = dα1, ω2 = dα2, then

ω = π∗(dα1) + p−1dp ∧ π∗(dα2) = d
(
π∗(α1)− p−1dp ∧ π∗(α2)

)
.

In particular, H2n,0(Y ) ∼= H2n−1(Z), and since Z is an oriented (2n − 1)–
dimensional manifold, we have H2n−1(Z) ∼= C where the isomorphism is given
by integration over Z.

By definition of a symplectic cone (Definition 1.1.1), the symplectic form
ω ∈ Ω2,1(Y ) is a 1–homogeneous 2–form on Y , and ωn ∈ Ω2n,n(Y ) is a volume
form on Y . By (1.6), α = ιXω ∈ Ω1,1(Y ) satisfies ω = dα.

Proposition 1.5.2. For any m ∈ R and any l 6= 0, such that l +m− 1 6= −n,
{Pl,Pm} = Pl+m−1.

Proof. Let f ∈ Pl+m−1. The differential form fωn ∈ Ω2n,n+l+m−1(Y ) is closed
and by Proposition 1.5.1 it is exact; indeed, by Lemma 1.1.1, the differential
form fιXω

n ∈ Ω2n−1,n+l+m−1(Y ) satisfies

d(fιXωn) = (n+ l +m− 1)fωn. (1.51)

From (1.14)
ιXω

n = nα ∧ ωn−1, (1.52)
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and by (1.7)
ωn−1 = d(α ∧ ωn−2). (1.53)

Choose a system of functions g1, . . . , gN in Pl such that at every point y of
Y , their differentials dg1|y, . . . , dgN |y are linearly independent and span the
cotangent space T ∗y Y . Since the linear form fα belongs to Ω1,l+m(Y ), there
exist functions f1, . . . , fN ∈ C∞(Y ) such that

fα =
N∑
i=1

fi dgi. (1.54)

For all i = 1, . . . , N , fi ∈ Pm: from the homogeneity of fα and gi, for all t ∈ R+,
it follows that

ρ∗t (fα) = tl+mfα = tl
N∑
i=1

ρ∗t (fi) dgi.

From this,
N∑
i=1

(ρ∗t (fi)− tmfi) dgi = 0

and from the linear independence of dg1, . . . , dgN at every point of Y we have
ρ∗t (fi) = tmfi, so fi ∈ Pm for all i = 1, . . . , N . Moreover,

f ωn
(1.51)

=
1

n+ l +m− 1
d(fιX (ωn))

(1.52)
=

n

n+ l +m− 1
d(fα ∧ ωn−1)

=
n

n+ l +m− 1
d(d(fα) ∧ α ∧ ωn−2)

=
n

n+ l +m− 1
d(fα) ∧ d(α ∧ ωn−2)

(1.53)
=

n

n+ l +m− 1
d(fα) ∧ ωn−1

=
n

n+ l +m− 1
d

(
N∑
i=1

fi dgi

)
∧ ωn−1

=
n

n+ l +m− 1

N∑
i=1

dfi ∧ dgi ∧ ωn−1

(1.3)
=

1
n+ l +m− 1

N∑
i=1

{fi, gi}ωn.

Therefore

f =
−1

n+ l +m− 1

N∑
i=1

{gi, fi} ∈ {Pl,Pm}.
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Proposition 1.5.3. For any l,m ∈ R such that l +m− 1 = −n,
{Pl,Pm} = ker(res).

Proof. By Proposition 1.2.1 we already have the inclusion {Pl,Pm} ⊆ ker(res).
Let f ∈ ker(res) ⊂ P−n. Then by (1.21) and (1.22), fµ ∈ Ω2n−1,0(Y ), and
[(fµ) �Z ] ∈ H2n−1(Z) ∼= C. By Definition 1.2.1,

res(f) =
∫
Z

(fµ) �Z ,

so that res(f) = 0 if and only if [(fµ) �Z ] = 0 in H2n−1(Z). Then, there exists
β ∈ Ω2n−2(Z) such that (fµ) �Z= dβ.

The condition l + m − 1 = −n implies that either l 6= 0 or m 6= 0, so we can
assume that l 6= 0. Choose a system of functions g1, . . . , gN in Pl such that
at every point y of Y , their differentials dg1|y, . . . , dgN |y span the cotangent
space T ∗y Y , and such that the differential forms ιXg1

µ, . . . , ιXgN
µ are linearly

independent and span the space Ω2n−2T ∗Y at every point. Then there exist
functions f1, . . . .fN ∈ C∞(Z) such that

π∗(β) =
N∑
i=1

π∗(fi)ιXgi
µ. (1.55)

For all t ∈ R+, by (1.22) we have ρ∗t (fµ) = fµ and

ρ∗t (ιXgi
µ) = tl+n−1ιXgi

µ = t−mιXgi
µ.

Hence, from (1.55), the linear independence of ιXg1
µ, . . . , ιXgN

µ implies that
ρ∗t (π

∗(fi)) = tmπ∗(fi), so π∗(fi) ∈ Pm for all i = 1, . . . , N . Moreover, by
Lemma 1.1.3 we get

fµ = d(π∗(β)) =
N∑
i=1

d(π∗(fi)ιXgi
µ) =

N∑
i=1

{gi, π∗(fi)}µ, (1.56)

since µ �Z is a volume form on Z, this implies that

f =
N∑
i=1

{gi, π∗(fi)} ∈ {Pl,Pm},

so we have
ker(res) ⊆ {Pl,Pm}.

Now we present a proof of (1.46) by using homogeneous differential forms:
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Proposition 1.5.4. {P0,P0} = P−1.

Proof. The proof is very similar to the one of Proposition 1.5.2. However,
since we cannot choose a system of homogeneous functions of degree zero whose
differentials generate the cotangent space of Y at every point (see paragraph
after the proof of Theorem 1.4.1), we choose a system of functions g1, . . . , gN
in P0 whose differentials d(R0(g1)), . . . , d(R0(gN )) are linearly independent and
span the cotangent space at every point of Z. From (1.25), for any g ∈ P0 we
have that g = π∗(R0(g)). Let f ∈ P−1; the differential form fα ∈ Ω1,0(Y ) and
fα = π∗((fα) �Z). Therefore, there exist f0

1 , . . . , f
0
N ∈ C∞(Z) such that

(fα) �Z=
N∑
i=1

f0
i d(R0(gi)), (1.57)

which implies that

fα =
N∑
i=1

π∗(f0
i ) dgi.

As before, we can prove that the functions π∗(f0
i ) belong to P0. Moreover,

f ωn =
1

n− 1
d(fιX (ωn))

=
n

n− 1
d(fα) ∧ ωn−1

=
n

n− 1
d

(
N∑
i=1

π∗(f0
i ) dgi

)
∧ ωn−1

=
1

n− 1

N∑
i=1

{π∗(f0
i ), gi}ωn.

We conclude that

f =
1

n− 1

N∑
i=1

{π∗(f0
i ), gi} ∈ {P0,P0}.

Thus, we have another proof of Theorem 1.4.1 including the case l = 0. We
see that the method described in this section gives us an explicit expression of
a homogeneous function in terms of Poisson brackets.
To conclude, for any real numbers l,m,

{Pl,Pm} =

{
Pl+m−1, if l +m 6= −n+ 1,
ker(res), if l +m = −n+ 1.

(1.58)



Chapter 2

Cohomology Groups of the
Space of Symbols

We are interested in the classification of closed linear forms on certain spaces of
classical symbols; this classification comes from the dual of the top cohomology
groups of those spaces. For that reason, we want to compute the cohomology
groups of some spaces of classical symbols on Rn. An analogue of the Poincaré
Lemma in the classical case of cohomology with compact support ([6]) can be
used to compute the cohomology groups for smoothing symbols as it is usually
done for smooth functions with compact support, via the usual integration map
on Rn. For more general classes of symbols, we still use an analogue of the
Poincaré Lemma, but substituting to the ordinary integration map, an inte-
gration map along the fiber as described in the first part of this chapter. We
investigate examples related directly with classical symbols, where the linear
map that gives us integration along the fiber will produce either the noncom-
mutative residue or the cut-off regularized integral. At the end of the chapter we
use a Mayer-Vietoris sequence argument to conclude the computation of those
cohomology groups (see Theorem 2.4.1). This chapter is based on Section 7 of
[26].

2.1 Integration along the fiber

In this section we introduce a map, called integration along the fiber, which will
allow us to compute the cohomology groups of spaces of classical symbols.
Let M be a connected compact manifold of dimension n− 1 > 0 and let

C(R+ ×M) ⊆ C∞(R+ ×M),

be a set of smooth functions, closed under partial derivatives and such that if
r ∈ R+ denotes the radial coordinate,

∀f ∈ C(R+ ×M), ∃ r0 > 0 : f(r, ·) = 0, ∀r ≤ r0. (2.1)

29
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We will also assume that the set C(R+ ×M) satisfies the following:

Assumption 2.1.1. There exists a map,

J : C(R+ ×M)→ C∞(M),

such that

1. J is linear in the sense that for all a, b ∈ C, whenever f, g and af + b g
belong to C(R+ ×M) we have

J (af + b g) = aJ (f) + bJ (g).

2. J ◦ ∂r = 0.

3. If f ∈ C(R+×M) is such that J (f) = 0, then for any r ∈ R+ the function
(r, ·) 7→ F (r, ·) :=

∫ r
0
f(t, ·) dt belongs to C(R+ ×M).

4. J commutes with partial derivatives on M .

5. J is non-trivial, so there exists e ∈ C(R+×M) such that e(r, ·) is constant
on M , and such that J (e) = 1.

Consider the projection map

p : R+ ×M →M

(r, η) 7→ η.

In the following we denote by Ωk(C(A)), the set of k–differential forms on A with
coefficients in C(A). Every k–differential form ω ∈ Ωk(C(R+ ×M)) is locally a
sum of differential forms:

ω = f1(r, η)p∗τ1 + f2(r, η)p∗τ2 ∧ dr,

with fi ∈ C(R+ ×M), τ1 ∈ Ωk(M), τ2 ∈ Ωk−1(M).

Consider local coordinates (η1, . . . , ηn−1) on M . The differential operator

dR+×M : Ωk(C(R+ ×M))→ Ωk+1(C(R+ ×M))

is defined as follows:

1. If f ∈ Ω0(C(R+ ×M)) = C(R+ ×M), then

dR+×M (f) = ∂rf dr + dM (f) := ∂rf dr +
n−1∑
i=1

∂ηi
f dηi ∈ Ω1(C(R+ ×M)).

2. If ω = f1p
∗τ1 + f2p

∗τ2 ∧ dr ∈ Ωk(C(R+ ×M)), then

dR+×M (ω) = ∂rf1 dr∧p∗τ1+dM (f1p
∗τ1)+dM (f2p

∗τ2)∧ dr ∈ Ωk+1(C(R+×M)).
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The operator dR+×M satisfies d2
R+×M = 0, and we can see that the complex

{Ωk(C(R+ × M)), dR+×M} is a subcomplex of the usual de Rham complex
{Ωk(R+ ×M), dR+×M}.

Consider the set of closed k–forms on R+×M with coefficients in C(R+×M)

Zk(C(R+ ×M)) = ker
(
dR+×M : Ωk(C(R+ ×M))→ Ωk+1(C(R+ ×M))

)
,

and the set of exact k–forms on R+ ×M with coefficients in C(R+ ×M)

Bk(C(R+ ×M)) = Image
(
dR+×M : Ωk−1(C(R+ ×M))→ Ωk(C(R+ ×M))

)
.

The k–th cohomology group of the complex {Ωk(C(R+×M)), dR+×M} is given
by the quotient space

Hk(C(R+ ×M)) := Zk(C(R+ ×M))/Bk(C(R+ ×M)).

Inspired in [6], we define the following map, called integration along the fiber

p∗ : Ωk(C(R+ ×M))→ Ωk−1(M)
ω = f1p

∗τ1 + f2p
∗τ2 ∧ dr 7→ J (f2)τ2.

Remark 2.1.1. Items (3) and (5) in Assumption 2.1.1 will imply, respectively,
the injectivity and the surjectivity of the map p∗ in cohomology.

Lemma 2.1.1. dM ◦ p∗ = p∗ ◦ dR+×M .

Proof. For ω = f1p
∗τ1 + f2p

∗τ2 ∧ dr ∈ Ωk(C(R+ ×M)) we have (we write in
parentheses the number corresponding to the item in Assumption 2.1.1 that we
use):

p∗(dR+×M (ω)) = p∗ (∂r(f1)dr ∧ p∗τ1 + dM (f1) ∧ p∗τ1 + f1p
∗(dM (τ1))

+ dM (f2) ∧ p∗τ2 ∧ dr + f2p
∗(dM (τ2)) ∧ dr)

= (−1)kJ (∂r(f1))τ1 +
n−1∑
i=1

J (∂ηi
(f2))dηi ∧ τ2 + J (f2)dM (τ2)

(2),(4)
=

n−1∑
i=1

∂ηi
(J (f2))dηi ∧ τ2 + J (f2)dM (τ2)

= dM (J (f2)) ∧ τ2 + J (f2)dM (τ2)
= dM (J (f2)τ2)
= dM (p∗(ω)).
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By Assumption 2.1.1 (5), there exists e ∈ C(R+ ×M), constant on M , and
such that J (e) = 1. We define the map

e∗ : Ωk−1(M)→ Ωk(C(R+ ×M))
τ 7→ e p∗τ ∧ dr.

Lemma 2.1.2. dR+×M ◦ e∗ = e∗ ◦ dM .

Proof. Let τ ∈ Ωk−1(M). Then

dR+×M (e∗(τ)) = dR+×M (e p∗τ ∧ dr)
= dM (e p∗τ) ∧ dr
= e p∗(dMτ) ∧ dr
= e∗(dM (τ)).

Lemma 2.1.3. p∗ ◦ e∗ = 1 on Ωk−1(M).

Proof. Let τ ∈ Ωk−1(M). Then

p∗(e∗(τ)) = p∗(e p∗τ ∧ dr) = J (e)τ = τ.

Lemma 2.1.4. e∗ ◦ p∗ = 1 on Hk(C(R+ ×M)).

Proof. Let ω = f1p
∗τ1 + f2p

∗τ2 ∧ dr ∈ Ωk(C(R+ ×M)). The form

ω − e∗(p∗(ω)) = f1p
∗τ1 + f2p

∗τ2 ∧ dr − e p∗(J (f2)τ2) ∧ dr (2.2)

satisfies
p∗(ω − e∗(p∗(ω))) = J (f2)τ2 − J (e)J (f2)τ2 = 0.

Since J (f2 − e p∗(J (f2))) = 0, by Assumption 2.1.1 (3) we have∫ r

0

(
f2(t, η)− e(t, η)p∗(J (f2))(t, η)

)
dt ∈ C(R+ ×M).

We define an operator K : Ωk(C(R+×M))→ Ωk−1(C(R+×M)) in the following

way: let A(r, η) :=
∫ r

0

e(t, η) dt. For ω = f1p
∗τ1 +f2p

∗τ2∧ dr ∈ Ωk(C(R+×M))

we set

K(ω) :=
(∫ r

0

f2(t, η) dt−A(r, η)p∗ (J (f2)) (r, η)
)
p∗τ2 (2.3)

=
(∫ r

0

(
f2(t, η)− e(t, η)p∗(J (f2))(t, η)

)
dt

)
p∗τ2. (2.4)
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Thus we have

dK(ω) = d

((∫ r

0

f2(t, η) dt−A(r, η)p∗ (J (f2)) (r, η)
)
p∗τ2

)
=
(
f2(r, η) dr + dM

(∫ r

0

f2(t, η) dt
)
− e dr p∗ (J (f2)) (r, η)

− dM (A(r, η)p∗ (J (f2)) (r, η))
)
p∗τ2

+
(∫ r

0

(
f2(t, η)− e(t, η)p∗(J (f2))(t, η)

)
dt

)
p∗(dMτ2)

=
(
f2(r, η) dr + dM

(∫ r

0

f2(t, η) dt
)
− e dr p∗ (J (f2)) (r, η)

−A(r, η)p∗ (dM (J (f2))) (r, η)
)
p∗τ2

+
(∫ r

0

(
f2(t, η)− e(t, η)p∗(J (f2))(t, η)

)
dt

)
p∗(dMτ2).

Kd(ω) = (−1)k
(∫ r

0

∂tf1(t, η) dt−A(r, η)p∗ (J (∂rf1)) (r, η)
)
p∗τ1

+

(
n−1∑
i=1

∫ r

0

∂ηi
f2(t, η) dt−

n−1∑
i=1

A(r, η)p∗ (J (∂ηi
f2)) (r, η)

)
dηi ∧ p∗τ2

+
(∫ r

0

f2(t, η) dt−A(r, η)p∗ (J (f2)) (r, η)
)
p∗(dMτ2)

(2),(2.1)
= (−1)kf1(r, η)p∗τ1 +

(∫ r

0

(
f2(t, η)− e(t, η)p∗(J (f2))(t, η)

)
dt

)
p∗(dMτ2)

+

(
n−1∑
i=1

∫ r

0

∂ηi
f2(t, η) dt−

n−1∑
i=1

A(r, η)p∗ (J (∂ηi
f2)) (r, η)

)
dηi ∧ p∗τ2

(4)
= (−1)kf1(r, η)p∗τ1 +

(∫ r

0

(
f2(t, η)− e(t, η)p∗(J (f2))(t, η)

)
dt

)
p∗(dMτ2)

+ dM

(∫ r

0

f2(t, η) dt
)
−A(r, η)p∗ (dM (J (f2))) (r, η)p∗τ2.

Therefore,

(Kd− dK)(ω) = (−1)k
(
f1(r, η)p∗τ1 + f2(r, η)p∗τ2 ∧ dr − e p∗(J (f2)τ2) ∧ dr

)
,

and by (2.2) we get 1− e∗ ◦ p∗ = (−1)k(Kd− dK) on Ωk(C(R+ ×M)).

Proposition 2.1.1. For all k ≥ 1, Hk(C(R+ ×M)) ∼= Hk−1(M).

Proof. By the previous lemmas, the map p∗ : Ωk(C(R+×M))→ Ωk−1(M) yields
the isomorphism and e∗ : Ωk−1(M)→ Ωk(C(R+×M)) yields the corresponding
inverse.
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Corollary 2.1.1. Hk(C(R+ × Sn−1)) ∼=

{
C, if k = 1, n,
0, otherwise.

Proof. For k ≥ 1, this follows from previous proposition and the cohomology
groups of the (n−1)–dimensional sphere. By (2.1), we also have that the zero–th
cohomology group H0(C(R+ × Sn−1)) vanishes.

Consider the polar coordinate diffeomorphism

q : Rn \ 0→ R+ × Sn−1

ξ 7→
(
|ξ|, ξ
|ξ|

)
. (2.5)

Then, if we set
C(Rn \ 0) := q∗(C(R+ × Sn−1)), (2.6)

q∗ induces the following isomorphism in cohomology:

Hk(C(Rn \ 0)) ∼= Hk(C(R+ × Sn−1)). (2.7)

2.2 Examples

In this section we give examples of sets related directly with classical symbols
on Rn, which satisfy Assumption 2.1.1, i.e. they admit a map that produces an
integration along the fiber. This map is related to the usual integral on Rn, the
cut-off regularized integral or the noncommutative residue, as we explain later
in Chapter 3.

2.2.1 The usual integral

Let C(R+ × Sn−1) be the set of smooth functions σ ∈ C∞(R+ × Sn−1) that
satisfy the following conditions

1. As r →∞, for all s,m ∈ N, |∂srσ(r, ·)| = O((1 + r)−m−s).

2. If σ ∈ C(R+ × Sn−1), then there exists r0 > 0 such that σ(r, ·) = 0 for all
r ≤ r0.

The set C(R+ × Sn−1) satisfies Assumption 2.1.1: for η ∈ Sn−1 consider the
map

J (σ)(η) :=
∫ ∞

0

σ(r, η) dr. (2.8)

1. The usual integral on R+, J , is linear in the set C(R+ × Sn−1).

2. We want to show that J ◦ ∂r = 0. Let σ ∈ C(R+ × Sn−1); then,∫ ∞
0

∂rσ(r, η) dr = lim
R→∞

σ(R, η)− lim
r→0+

σ(r, η) = 0. (2.9)
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3. Let f ∈ C(R+×Sn−1) be such that J (f) = 0, i.e. if F (r, ·) :=
∫ r

0
f(t, ·) dt,

then
lim

r→+∞
F (r, ·) = 0.

For s = 0 we can use L’Hôpital’s rule, and for s ≥ 1 we can use that
∂srF = ∂s−1

r f to show that for any m ∈ N, as r →∞

|∂srF (r, ·)| = O((1 + r)−m−s),

so F ∈ C(R+ × Sn−1).

4. For all i = 1, . . . , n− 1, ∂ηi
◦ J = J ◦ ∂ηi

.
By the properties of σ one can interchange ∂ηi with

∫
and for all η ∈ Sn−1

we get

∂ηi
(J (σ))(η) = ∂ηi

(∫
R+
σ(r, η)dr

)
=
∫

R+
∂ηi

(σ)(r, η)dr = J (∂ηi
(σ))(η).

(2.10)

5. Let e ∈ C∞(R+ × Sn−1) be any smooth function with compact support
on R+, constant on Sn−1 and with total integral 1 on R+. The function
e belongs to C(R+ × Sn−1) and

∫∞
0
e(r, η) dr = 1.

2.2.2 Towards the residue map and the cut-off integral

In view of the examples to come, we introduce the following notations:

Let ψ ∈ C∞(R+ × Sn−1) be a smooth cut-off function which vanishes in a
neighborhood of r = 0 and is identically one for r ≥ 1. For any a ∈ R and for
all j ≥ 0, let σa−j ∈ C∞(R+ × Sn−1) be a smooth function such that for all
(r, η) ∈ R+ × Sn−1,

σa−j(r, η) = ra−jσa−j(1, η).

For all N ∈ N, let g<−N ∈ C∞(R+ × Sn−1) be a smooth function that satisfies
the following:

∃ r0 > 0, such that g<−N (r, ·) = 0, ∀r ≤ r0, and (2.11)

∃m < −N : as r →∞,∀ s ∈ N, |∂sr(g<−N (r, ·))| = O((1 + r)m−s). (2.12)

For any a ∈ R, let us define Ca(R+ × Sn−1) as the set of smooth functions
σ ∈ C∞(R+ × Sn−1) such that for all N ∈ N, there exist kN , ψ, σa−j , g<−N as
above, such that

σ =
kN∑
j=0

ψ σa−j + g<−N . (2.13)

We assume that l is the smallest integer such that a − l < 0, i.e. l = bac + 1.
Setting

π<−1(σ)(r, η) :=
kN∑

j=l+1

ψ(r, η)σa−j(r, η) + g<−N (r, η),
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then π<−1(σ) satisfies (2.11) and (2.12) with −1 instead of −N . Therefore
(2.13) reads

σ =
l∑

j=0

ψ σa−j + π<−1(σ). (2.14)

The set Ca(R+×Sn−1) is closed under partial derivatives and satisfies (2.1).
In particular, for any σ ∈ Ca(R+ × Sn−1), the partial derivative with respect
to r, ∂r(σ) belongs to Ca−1(R+ × Sn−1) ⊂ Ca(R+ × Sn−1), and from (2.14) it
reads

∂rσ =
l∑

j=0

ψ ∂r(σa−j) +
l∑

j=0

∂r(ψ)σa−j + ∂r(π<−1(σ))

=
l∑

j=0

(a− j)ψ σa−jr−1 +
l∑

j=0

∂r(ψ)σa−j + ∂r(π<−1(σ)). (2.15)

Remark 2.2.1. Since ∂r(ψ) has compact support in the open interval (0, 1), the
expression with this term satisfies (2.12) for all m ∈ N.

For any σ ∈ Ca(R+ × Sn−1) and for all r ∈ R+, the integral
∫ r

0
σ(t, ·) dt

belongs to Ca+1(R+ × Sn−1). Using integration by parts and the fact that

if a− j 6= −1 then ra−j = ∂r

(
ra−j+1

a− j + 1

)
, r−1 = ∂r(ln(r)),

from (2.13) we get for any r ∈ R+

∫ r

0

σ =
l+1∑
j=0

∫ r

0

ψ σa−j +
∫ r

0

π<−2(σ)

=
l+1∑
j=0

σa−j(1, ·)
(∫ r

0

ψ(t, η) ta−j dt
)

+
∫ r

0

π<−2(σ)

=
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

(
ψ ra−j+1 −

∫ r

0

∂t(ψ) ta−j+1 dt

)

+ σ−1(1, ·)
(
ψ ln(r)−

∫ r

0

∂t(ψ) ln(t) dt
)

+
∫ r

0

π<−2(σ). (2.16)

We also define the following sets

(a) C∞(R+ × Sn−1) :=
〈⋃

a∈R Ca(R+ × Sn−1)
〉
, the linear space spanned by

all the spaces Ca(R+ × Sn−1).

(b) C−∞(R+ × Sn−1) :=
⋂
a∈R Ca(R+ × Sn−1).
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Any k–differential form ω ∈ Ωk(Ca(R+×Sn−1)) is locally a sum of differential
forms:

ω = f p∗τ1 + g p∗τ2 ∧ dr,

where f ∈ Ca(R+ × Sn−1), g ∈ Ca−1(R+ × Sn−1) ⊂ Ca(R+ × Sn−1), and
the differential forms τ1 ∈ Ωk(Sn−1) and τ2 ∈ Ωk−1(Sn−1). In particular,
for any element f ∈ Ca−k(R+ × Sn−1) we have f rk ∈ Ca(R+ × Sn−1), and
f rk−1 ∈ Ca−1(R+×Sn−1), so we want to study the following sets of differential
forms:

Ωk(Ca(R+ × Sn−1)) = {f rkp∗τ1 + g rk−1p∗τ2 ∧ dr : f, g ∈ Ca−k(R+ × Sn−1),

τ1 ∈ Ωk(Sn−1), τ2 ∈ Ωk−1(Sn−1)}. (2.17)

Remark 2.2.2. We can verify that Proposition 2.1.1 and Corollary 2.1.1 also
hold for these sets of differential forms.
Note that the map p∗ : Ωk(Ca(R+ × Sn−1))→ Ωk−1(Sn−1) acting on the form
ω = f rkp∗τ1 + g rk−1p∗τ2 ∧ dr is given by p∗(ω) = J (g rk−1)τ2.

The sets of 0–th and top degree differential forms are given by:

• Ω0(Ca(R+ × Sn−1)) = Ca(R+ × Sn−1).

• Ωn(Ca(R+×Sn−1)) = {f rn−1p∗(dvolSn−1)∧ dr : f ∈ Ca−n(R+×Sn−1)}.

If ω = f rkp∗τ1 + g rk−1p∗τ2 ∧ dr ∈ Ωk(Ca(R+ × Sn−1)), then if dS denotes the
differential on Sn−1,

dR+×Sn−1(ω) = dS(f rkp∗τ1) + (−1)k∂r(f rk)p∗τ1 ∧ dr + dS(g rk−1p∗τ2) ∧ dr,

belongs to Ωk+1(Ca(R+ × Sn−1)), so we see that the exterior derivative maps

dR+×Sn−1 : Ωk(Ca(R+ × Sn−1))→ Ωk+1(Ca(R+ × Sn−1)).

Thus, in the following we consider the complexes {Ωk(C(R+×Sn−1)), dR+×Sn−1},
where C(R+ × Sn−1) is either Ca(R+ × Sn−1) for any a ∈ R, C−∞(R+ × Sn−1),
C∞(R+ × Sn−1),

⋃
a∈Z Ca(R+ × Sn−1) or

〈⋃
a/∈Z∩[−1,+∞) Ca(R+ × Sn−1)

〉
.

Remark 2.2.3. By Remark 2.2.2, in the space Ωk(Ca(R+ × Sn−1)) we compute
the map J in elements of Ca−1(R+ × Sn−1). Therefore, condition (3) in As-
sumption 2.1.1 reads: If f ∈ Ca−1(R+×M) is such that J (f) = 0, then for any
r ∈ R+,

∫ r
0
f(t, ·) dt belongs to Ca(R+ ×M).

Corollary 2.2.1. Hk(C−∞(R+ × Sn−1)) ∼=

{
C, if k = 1, n,
0, otherwise.

Proof. The space C−∞(R+ × Sn−1) coincides with the space C(R+ × Sn−1)
defined in Subsection 2.2.1. Then, the linear map J =

∫
R+ satisfies Assumption

2.1.1, and the statement follows by Corollary 2.1.1.
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Towards the cut-off regularized integral

For the next example, let us define the map J as follows: for any a ∈ R, for
any σ ∈ Ca(R+ × Sn−1), we consider the finite part of (2.16) when r → +∞:

J (σ)(·) := cf(σ)(·) := fp
R→∞

∫ R

0

σ(r, ·)dr

=
∫

R+

π<−2(σ)−
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

∂r(ψ)ra−j+1 − σ−1(1, ·)∂r(ψ) ln(r)

 dr.

(2.18)

Let us assume that a /∈ Z ∩ [−1,+∞); then σ−1 ≡ 0 and

cf(σ)(·) =
∫

R+

π<−2(σ)(r, ·)−
l+1∑
j=0

σa−j(1, ·)
a− j + 1

∂r(ψ)ra−j+1

 dr. (2.19)

The map J satisfies Assumption 2.1.1:

1. The linearity of J follows from the vector space structure of the spaces
Ca(R+ × Sn−1) and the definition of J .

2. J ◦ ∂r = 0: By condition (2.11) on the functions in Ca(R+ × Sn−1),∫ R

0

∂rσ(r, η) dr = σ(R, η) and since

lim
R→∞

π<−1(σ)(R, η) = 0,

we obtain from (2.14)

fp
R→∞

∫ R

0

∂rσ(r, η) dr = fp
R→∞

σ(R, η)

= fp
R→∞

 l∑
j=0

ψ(R, η)σa−j(R, η)


= σ0(1, η), (2.20)

which vanishes whenever a /∈ Z ∩ [−1,+∞).

Remark 2.2.4. Even more, whenever a /∈ Z or a < 0, the set Ca(R+×Sn−1)
does not admit functions that are constant in r for r ≥ 1, and hence, for
any σ ∈ Ca(R+ × Sn−1) we have

cf(∂rσ)(η) = fp
r→∞

σ(r, η) = σ0(1, η) = 0.
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Remark 2.2.5. From this computation we can also infer that for all
k = 1, . . . , n, and for any σ ∈ Ca−k(R+ × Sn−1),

cf(∂r(σrk−1))(·) = σ−k+1(1, ·). (2.21)

3. Let σ ∈ Ca(R+ × Sn−1) be as in (2.13) with J (σ) = 0, i.e. cf(σ) ≡ 0.
Since a /∈ Z ∩ [−1,+∞), from (2.16) we get∫ r

0

σ =
l+1∑
j=0

σa−j(1, ·)
a− j + 1

(
ψ ra−j+1 −

∫ r

0

∂t(ψ) ta−j+1 dt

)
+
∫ r

0

π<−2(σ)

=
l+1∑
j=0

σa−j(1, ·)
a− j + 1

ψra−j+1 +
∫ r

0

π<−2(σ)−
l+1∑
j=0

σa−j(1, ·)
a− j + 1

∂t(ψ)ta−j+1

 dt.

For s = 0 we can use L’Hôpital’s rule, and for s ≥ 1 we can use that for
some p < −2, ∂sr(π<−2(σ)) = O((1 + r)p−s), to show that as r → ∞, by
Remark 2.2.1, there exists m < −1 such that

∂sr

∫ r

0

π<−2(σ)−
l+1∑
j=0

σa−j(1, ·)
a− j + 1

∂t(ψ) ta−j+1

 dt

 = O((1 + r)m−s).

(2.22)
Therefore

∫ r
0
σ ∈ Ca+1(R+ × Sn−1).

4. For all i = 1, . . . , n− 1, ∂ηi ◦ J = J ◦ ∂ηi .
By the properties of σ we can interchange ∂ηi

with
∫

and we get

∂ηi
(J (σ))(η) = ∂ηi

(cf(σ(r, η)))

= ∂ηi

∫
R+

π<−2(σ)−
l+1∑
j=0

σa−j(1, η)
a− j + 1

∂r(ψ(r, η))ra−j+1

 dr


=
∫

R+

∂ηi
π<−2(σ)− ∂ηi

 l+1∑
j=0

σa−j(1, η)
a− j + 1

∂r(ψ(r, η))ra−j+1

 dr

= cf(∂ηi
(σ)(r, η)).

5. If e ∈ C∞(R+ × Sn−1) is any smooth function with compact support
on R+, constant on Sn−1 and with total integral 1 on R+, then all the
derivatives of e are of orderO((1+r)−m) for allm ∈ N. Hence, the function
e belongs to Ca(R+ × Sn−1) for all a /∈ Z ∩ [−1,+∞), and J (e) = 1.

Corollary 2.2.2. If the space C(R+ × Sn−1) is either Ca(R+ × Sn−1) where
a /∈ Z ∩ [−1,+∞), or

〈⋃
a/∈Z∩[−1,+∞) Ca(R+ × Sn−1)

〉
, then

Hk(C(R+ × Sn−1)) ∼=

{
C, if k = 1, n,
0, otherwise.

(2.23)
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Proof. The set C(R+ × Sn−1) satisfies Assumption 2.1.1 with the linear map
J = cf, and the statement follows by Corollary 2.1.1.

Remark 2.2.6. The isomorphism in (2.23) when k = n is produced by integra-
tion over Sn−1 composed with integration along the fiber. If µ(η) denotes a
volume form on Sn−1 as in Remark 1.1.2, then to the n–form σrn−1µ(η) ∧ dr
it corresponds the complex number∫

Sn−1

(
cf(σ(r, η)rn−1)

)
µ(η),

which corresponds to the cut-off regularized integral of a symbol with constant
coefficients (see Subsection 3.1.2).

Towards the noncommutative residue

For the next example, let us define the map J as follows: for any a ∈ R, for
any σ ∈ Ca(R+ × Sn−1), for all η ∈ Sn−1,

J (σ)(η) := rs(σ)(η) := σ−1(1, η). (2.24)

From this we can infer that for all k = 1, . . . , n, and for any σ ∈ Ca−k(R+×Sn−1)

rs(σrk−1) = σ−k(1, ·). (2.25)

The map J satisfies Assumption 2.1.1:

1. The linearity of J follows from

(σ + τ)−1 = σ−1 + τ−1, ∀σ, τ ∈ Ca(R+ × Sn−1).

2. J ◦ ∂r = 0: for any σ ∈ Ca(R+ × Sn−1), the coefficient of r−1 in (2.15)
vanishes, so rs(∂rσ) = 0.

3. Let σ ∈ Ca(R+ × Sn−1) be as in (2.13) with J (σ) = 0, i.e. σ−1 ≡ 0; in
particular, this holds whenever a /∈ Z ∩ [−1,+∞). Then, from (2.16) we
get∫ r

0

σ =
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

(
ψra−j+1 −

∫ r

0

∂t(ψ)ta−j+1 dt

)
+
∫ r

0

π<−2(σ)

=
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

ψra−j+1

+
∫ r

0

π<−2(σ)−
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

∂t(ψ)ta−j+1

 dt. (2.26)
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Using Remark 2.2.1, the expression in parentheses in the integral is of order
less than −2. Since the function ∂tψ has compact support, all the terms∫ r

0
∂t(ψ)ta−j+1 dt satisfy (2.11) and (2.12). On the other hand, if r0 > 0

is such that π<−2(σ)(r, ·) = 0 for all r ≤ r0, then
∫ r

0
π<−2(σ)(t, ·) dt = 0

for all r ≤ r0, satisfying (2.11).
Now, from (2.18)

cf(σ)(·) =
∫

R+

π<−2(σ)−
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

∂r(ψ)ra−j+1

 dr. (2.27)

Since supp(∂tψ) ⊂ (0, 1), when r ≥ 1 Equation (2.26) becomes∫ r

0

σ =
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

ra−j+1

+
∫ r

0

π<−2(σ)−
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

∫
R+
∂r(ψ)ra−j+1 dr

=
k+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

ra−j+1 + cf(σ)−
∫ ∞
r

π<−2(σ). (2.28)

From the properties of π<−2(σ), namely, (2.11) and (2.12) with −2 instead
of −N , we find that for r sufficiently large, the integral

∫∞
r
π<−2(σ) is of

order less than −1 up to a constant. So we can conclude that if the set
Ca+1(R+×Sn−1) admits functions which are constant in r for r ≥ 1 (which
is the case when a ∈ Z ∩ [−1,+∞)), the term

∫ r

0

π<−2(σ)−
l+1∑
j=0

a−j 6=−1

σa−j(1, ·)
a− j + 1

∂t(ψ)ta−j+1 dt

 (2.29)

is of order −1 up to a constant, and therefore from (2.28) we conclude
that whenever a ∈ Z ∩ [−1,+∞), for any σ ∈ Ca(R+ × Sn−1) such that
rs(σ) = 0,

∫ r
0
σ ∈ Ca+1(R+ × Sn−1).

4. For all i = 1, . . . , n− 1, ∂ηi
◦ J = J ◦ ∂ηi

.

J (∂ηiσ)(η) = (∂ηiσ)−1(1, η) = ∂ηi(σ−1)(1, η) = ∂ηi(J (σ))(η).

5. Let ψ ∈ C∞(R+) be any smooth cut-off function which vanishes in a
neighborhood of r = 0 and is identically one for r ≥ 1. Let us consider
the function e(r, η) = ψ(r)r−1 ∈ Ca(R+×Sn−1) for all a ∈ Z∩ [−1,+∞).
Then e is constant on Sn−1 and J (e) = 1.
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Corollary 2.2.3. If the space C(R+ × Sn−1) is either Ca(R+ × Sn−1) where
a ∈ Z ∩ [−1,+∞), C∞(R+ × Sn−1) or

⋃
a∈Z
Ca(R+ × Sn−1), then

Hk(C(R+ × Sn−1)) ∼=

{
C, if k = 1, n,
0, otherwise.

(2.30)

Proof. The sets Ca+1(R+×Sn−1) where a ∈ Z∩ [−1,+∞), C∞(R+×Sn−1) and⋃
a∈Z
Ca(R+ × Sn−1) admit functions which are constant in r for r ≥ 1, so they

satisfy Assumption 2.1.1 with the linear map J = rs, and the statement follows
by Corollary 2.1.1.

Remark 2.2.7. The isomorphism in (2.30) when k = n is produced by integra-
tion over Sn−1 composed with integration along the fiber. If µ(η) denotes a
volume form on Sn−1 as in Remark 1.1.2, then to the n–form σrn−1µ(η) ∧ dr
it corresponds the complex number∫

Sn−1
σ−n(1, η)µ(η),

which corresponds to the noncommutative residue of a symbol with constant
coefficients (see Subsection 3.1.1).

2.3 Classes of symbols

Let us recall the definition of symbols on an open subset of Rn following [20]
and [39]. We assume that the dimension n is such that n > 1, unless we indicate
something else.

Definition 2.3.1. Let U ⊆ Rn be an open set and let a ∈ R. We say that
σ(x, ξ) is a symbol of order ord(σ) = a on U , and we write σ ∈ Sa(U), if:

(a) σ(x, ξ) is smooth in (x, ξ) ∈ U × Rn.

(b) For every compact set K ⊂ U and for all (α, β) ∈ Nn × Nn there are
constants Cα,β such that

|∂αx ∂
β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)a−|β|, ∀(x, ξ) ∈ K × Rn. (2.31)

Remark 2.3.1. Sa(U) is a Fréchet space with semi-norms given by the smallest
constants which can be used in (2.31) (see Sect. 18.1 in [20]).

The symbol σ is smoothing if σ ∈ S−∞(U) :=
⋂
a∈R S

a(U). Thus, moding
out by smoothing symbols, given σj ∈ Smj (U) where mj → −∞ as j → ∞,
we write σ ∼

∑∞
j=0 σj if for every N ∈ N there is an integer KN such that

σ−
∑KN

j=0 σj ∈ S−N (U) and we say that
∑∞
j=0 σj is an asymptotic expansion of

the symbol σ.
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The symbol σ ∈ Sa(U) is called a classical symbol of order a if for any
N ∈ N, there is an integer KN and there are functions σa−j , ψ such that

σ(x, ξ)−
KN∑
j=0

ψ(ξ)σa−j(x, ξ) ∈ S−N (U), ∀(x, ξ) ∈ U × Rn, (2.32)

where σa−j is positively homogeneous in ξ ∈ Rn \ 0 of degree a − j, i.e. for all
t > 0, σa−j(x, tξ) = ta−jσa−j(x, ξ), and ψ is a smooth cut-off function on Rn
such that ψ(ξ) = 0 for all |ξ| ≤ 1

4 , ψ(ξ) = 1 for all |ξ| ≥ 1
2 . In short we write

σ(x, ξ) ∼
∞∑
j=0

ψ(ξ)σa−j(x, ξ). (2.33)

We can compare this definition with the one given in Subsection 2.2.2 of a clas-
sical symbol in polar coordinates. We denote by CSa(U) the set of classical
symbols of order a on U . Given σ(x, ξ) ∈ CSa(U) with asymptotic expansion
as in (2.33), we call σa the leading symbol of σ.
By CSacc(Rn) we denote the set of classical symbols of order a with constant
coefficients, i.e. its elements do not depend on x but on ξ ∈ T ∗xU ∼= Rn.
By CSacomp(U) we denote the set of symbols of order a with x–compact support
on U .
If σ ∈ CSa(U), τ ∈ CSb(U) and a − b /∈ Z, then σ + τ is not a classical sym-
bol anymore, but we can consider the whole space of classical symbols on U ,
CS(U) :=

〈⋃
a∈R CS

a(U)
〉
, as the linear space generated by CSa(U) for all

a ∈ R.
The space of symbols with non integer order or with order less than −n:〈⋃

a/∈Z∩[−n,+∞) CS
a(U)

〉
.

The space of symbols of order less than −n: CS<−n(U) :=
⋃
a<−n CS

a(U).

The set CSa(U,W ) ∼= CSa(U)⊗ End(W ) of symbols of order a on an open
subset U of Rn with values in a Euclidean space W (with norm ‖ · ‖) can
be equipped with a Fréchet structure. The following semi-norms labelled by
multiindices α, β and integers j ≥ 0, N , give rise to a Fréchet topology on
CSa(U,W ):

sup
x∈K,ξ∈Rn

(1 + |ξ|)−a+|β|
∥∥∥∂αx ∂βξ σ(x, ξ)

∥∥∥ , (2.34)

sup
x∈K,ξ∈Rn

(1 + |ξ|)−a+N+|β|

∥∥∥∥∥∥∂αx ∂βξ
σ(x, ξ)−

N−1∑
j=0

σa−j(x, ξ)

∥∥∥∥∥∥ , (2.35)

sup
x∈K,|ξ|=1

∥∥∥∂αx ∂βξ σa−j(x, ξ)∥∥∥ . (2.36)

where K is a compact set in U . In this topology
(
C∞(U)⊗̂CSacc(Rn)

)
⊗End(W )

is dense in CSa(U,W ) (see [35]), where ⊗̂ denotes the completion of the tensor
product in this topology (see Chap. 43 in [42]).
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2.4 A Mayer-Vietoris sequence

In this section we consider a Mayer-Vietoris sequence argument following [6],
to give a description of the cohomology groups of spaces of classical symbols
on Rn with constant coefficients. Let us consider the two open subsets of Rn,
U := B(0, 1) the open unit ball, and V := Rn \ 0. Then Rn = U ∪ V and
U ∩ V = B(0, 1) \ 0.

Here we use the notation of Section 2.1 and Subsection 2.2.2. Any function
in C(Rn \ 0), defined in (2.6), can be considered as a function on Rn vanishing
at zero, and any function in C∞c (U), the set of smooth functions with compact
support in U , can be considered as a function on Rn vanishing outside U .

By C(Rn) we denote the subset of CScc(Rn) that corresponds to C(Rn \ 0) ac-
cording to the behavior of its elements outside any neighborhood of 0 and (2.6).
Hence, if C(R+×Sn−1) is either Ca(R+×Sn−1) with a ∈ R, C−∞(R+×Sn−1),
C∞(R+×Sn−1),

⋃
a∈Z Ca(R+×Sn−1) or

〈⋃
a/∈Z∩[−1,+∞) Ca(R+ × Sn−1)

〉
, then

C(Rn) is respectively either CSacc(Rn) with a ∈ R, CS−∞cc (Rn), CScc(Rn),⋃
a∈Z CS

a
cc(Rn) or

〈⋃
a/∈Z∩[−1,+∞) CS

a
cc(Rn)

〉
.

If we consider the space Rn with coordinates (ξ1, . . . , ξn), any of the sets C(Rn)
satisfies CS−∞cc (Rn) ⊆ C(Rn) ⊆ CScc(Rn) and is stable under partial deriva-
tives, i.e. for all i = 1, . . . , n,

σ ∈ C(Rn)⇒ ∂ξi
σ ∈ C(Rn). (2.37)

For the cases when C(Rn) is either CS−∞cc (Rn), CScc(Rn),
⋃
a∈Z CS

a
cc(Rn) or〈⋃

a/∈Z∩[−1,+∞) CS
a
cc(Rn)

〉
, any k–differential form ω on Rn with coefficients in

C(Rn) can be written as

ω =
∑
I

σI dξI ∈ Ωk(Rn, C(Rn)),

where σI ∈ C(Rn), I = {i1, . . . , ik} ⊆ {1, . . . , n} and dξI = dξi1 ∧ · · · ∧ dξik . We
have the differential operator

d : Ωk(Rn, C(Rn))→ Ωk+1(Rn, C(Rn))

defined as follows:

1. If σ ∈ Ω0(Rn, C(Rn)) = C(Rn), then dσ =
n∑
i=1

∂ξi
σ dξi ∈ Ω1(Rn, C(Rn)).

2. If ω =
∑
I

σI dξI ∈ Ωk(Rn, C(Rn)), then dω =
∑
I

dσI dξI ∈ Ωk+1(Rn, C(Rn)).

The operator d satisfies d2 = 0, and the complex {Ωk(Rn, C(Rn)), d} is a sub-
complex of the usual de Rham complex {Ωk(Rn), d}. Consider the set of closed
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k–forms on Rn with coefficients in C(Rn)

Zk(Rn, C(Rn)) = ker(d : Ωk(Rn, C(Rn))→ Ωk+1(Rn, C(Rn))),

and the set of exact k–forms on Rn with coefficients in C(Rn)

Bk(Rn, C(Rn)) = Image(d : Ωk−1(Rn, C(Rn))→ Ωk(Rn, C(Rn))).

The k–th cohomology of the complex {Ωk(Rn, C(Rn)), d} is given by

Hk(Rn, C(Rn)) := Zk(Rn, C(Rn))/Bk(Rn, C(Rn)).

Now, for the case C(Rn) = CSacc(Rn),

σ ∈ CSacc(Rn)⇒ ∂ξi
σ ∈ CSa−1

cc (Rn) ⊂ CSacc(Rn).

Moreover, like the sets of differential forms in (2.17), for any 0 ≤ k ≤ n

Ωk(Rn, CSacc(Rn)) = span
|I|=k

{
σI(ξ) dξI : σI ∈ CSa−kcc (Rn)

}
, (2.38)

and the set of exact k–differential forms is given by

Bk(Rn, CSacc(Rn)) = span
|J|=k−1

{
n∑
i=1

∂ξi(σJ) dξi ∧ dξJ : σJ ∈ CSa−k+1
cc (Rn)

}
.

(2.39)
As in Equation (2.7), we have the complex

Ωk(Rn \ 0, C(Rn \ 0)) = q∗(Ωk(C(R+ × Sn−1))).

Hence, Ω∗(Rn \ 0, C(Rn \ 0)) is the subcomplex of Ω∗(Rn, C(Rn)) consisting of
differential forms whose coefficients vanish in a neighborhood of 0. By Ω∗c(U) we
denote the subcomplex of Ω∗(Rn, C(Rn)) consisting of differential forms whose
coefficients have compact support in U .

If we have the inclusion A → B, we denote by jA,B : Ωk(A) → Ωk(B) the
map such that for all ω ∈ Ωk(A), jA,B(ω) ∈ Ωk(B) is the form which vanishes
outside A and coincides with ω in A.
In view of the inclusions

U ∩ V ⇒ U
⊔
V → Rn,

we use a Mayer-Vietoris sequence argument ([6]). Indeed we have the following
maps

Ωkc (U ∩ V ) F→ Ωkc (U)⊕ Ωk(V, C(V ))
ω 7→ jU∩V,U (ω)⊕ jU∩V,V (ω); (2.40)

Ωkc (U)⊕ Ωk(V, C(V )) G→ Ωk(Rn, C(Rn))
τ ⊕ η 7→ jU,Rn(τ)− jV,Rn(η). (2.41)
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Lemma 2.4.1. For all k = 0, . . . , n, the sequence

0→ Ωkc (U ∩ V ) F→ Ωkc (U)⊕ Ωk(V, C(V )) G→ Ωk(Rn, C(Rn))→ 0 (2.42)

is exact.

Proof. By definition of the maps jU∩V,U , jU∩V,V , the map F is injective:

ker(F ) = {ω ∈ Ωkc (U ∩ V ) : jU∩V,U (ω) = 0 = jU∩V,V (ω)} = {0}.

Now, the null space of G is given by

ker(G) = {τ ⊕ η ∈ Ωkc (U)⊕ Ωk(V, C(V )) : jU,Rn(τ) = jV,Rn(η)},

so τ = η on U ∩ V , and jU,Rn(τ) = 0 = jV,Rn(η) on (U ∩ V )c. Hence, this set
coincides with the image of F .
In order to verify that G is surjective we consider a partition of unity {ρU , ρV }
subordinate to the open cover {U, V }. Let ω ∈ Ωk(Rn, C(Rn)). Since

supp(ρUω) ⊆ supp(ρU ) ⊆ U,

we get ρUω ∈ Ωkc (U). By definition of C(Rn) and since ρV ≡ 1 outside U we
have ρV ω ∈ Ωk(V, C(V )). Then

G(ρUω ⊕ (−ρV ω)) = jU,Rn(ρUω) + jV,Rn(ρV ω)
= ρUω + ρV ω

= ω.

As a consequence, like in ordinary compact support cohomology (see [6]),
the sequence in (2.42) gives rise to a long exact sequence in cohomology:

H0
c (U ∩ V ) ↪→ H0

c (U)⊕H0(V, C(V ))→ H0(Rn, C(Rn))→ H1
c (U ∩ V )→ · · ·

· · · → Hk−1(Rn, C(Rn))→ Hk
c (U ∩ V )→ Hk

c (U)⊕Hk(V, C(V ))→
→ Hk(Rn, C(Rn))→ Hk+1

c (U ∩ V )→ · · · → Hn−1(Rn, C(Rn))→
→ Hn

c (U ∩ V )→ Hn
c (U)⊕Hn(V, C(V ))→ Hn(Rn, C(Rn))→ 0.

The cohomology groups of Ω∗c(U) and Ω∗c(U ∩ V ) are given by

Hk
c (U) ∼=

{
C, if k = n,

0, otherwise,
Hk
c (U ∩ V ) ∼=

{
C, if k = 1, n,
0, otherwise.
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For our examples, by Equations (2.7), (2.23), (2.30) and Corollary 2.2.1, we
have

Hk(V, C(V )) ∼=

{
C, if k = 1, n,
0, otherwise.

From the long exact sequence in cohomology we infer that:

For n > 2:

1. For all k = 2, . . . , n− 2, Hk(Rn, C(Rn)) ∼= 0.

2. From

0⊕ 0→ H0(Rn, C(Rn))→ C→ 0⊕ C→ H1(Rn, C(Rn))→ 0,

we get
H0(Rn, C(Rn)) ∼= H1(Rn, C(Rn)). (2.43)

3. From

0⊕ 0→ Hn−1(Rn, C(Rn))→ C f→ C⊕ C→ Hn(Rn, C(Rn))→ 0,

we get
dim(Hn−1(Rn, C(Rn))) ≤ 1 and

dim(Hn(Rn, C(Rn))) = dim(Hn−1(Rn, C(Rn))) + 1. (2.44)

For n = 2:

0⊕ 0→ H0(R2, C(R2))→ C→ 0⊕C→ H1(R2, C(R2))→ C f→ C⊕C→ H2(R2, C(R2))→ 0,

hence
dim(H2(R2, C(R2))) ≤ 2 and

dim(H2(R2, C(R2))) = dim(H1(R2, C(R2)))− dim(H0(R2, C(R2))) + 1. (2.45)

For any n ≥ 2 we distinguish the following cases:

(I) C(Rn) is either CSacc(Rn) with a ∈ Z∩[0,+∞), CScc(Rn) or
⋃
a∈Z

CSacc(Rn),

this set contains the constant functions and therefore

H0(Rn, C(Rn)) ∼= C.

(II) C(Rn) is either CSacc(Rn) with a /∈ Z ∩ [0,+∞), CS−∞cc (Rn) or〈⋃
a/∈Z∩[−1,+∞) CS

a
cc(Rn)

〉
, this set does not contain the constant func-

tions and therefore
H0(Rn, C(Rn)) ∼= 0.
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On the other hand, the linear map f : C→ C⊕ C, which comes from the map
F defined in (2.40) is always injective, hence

Hn(Rn, C(Rn)) ∼= C. (2.46)

Therefore, for n > 2 by (2.44) we have Hn−1(Rn, C(Rn)) ∼= 0.
By (2.43) we also obtain

(I) H1(Rn, C(Rn)) ∼= C.

(II) H1(Rn, C(Rn)) ∼= 0.

For n = 2 by (2.45) we obtain

(I) H0(R2, C(R2)) ∼= H1(R2, C(R2)) ∼= H2(R2, C(R2)) ∼= C.

(II) H0(R2, C(R2)) ∼= H1(R2, C(R2)) ∼= 0 and H2(R2, C(R2)) ∼= C.

Therefore, we have proved the following:

Theorem 2.4.1. For n ≥ 2 the cohomology groups of Rn with coefficients in a
space of classical symbols with constant coefficients are given by:

(I) If C(Rn) is either CSacc(Rn) with a ∈ Z ∩ [0,+∞), CScc(Rn) or⋃
a∈Z

CSacc(Rn):

Hk(Rn, C(Rn)) ∼=

{
0, if k = 2, . . . , n− 1,
C, if k = 0, 1, n.

(II) If C(Rn) is either CSacc(Rn) with a /∈ Z ∩ [0,+∞), CS−∞cc (Rn) or〈⋃
a/∈Z∩[−1,+∞) CS

a
cc(Rn)

〉
:

Hk(Rn, C(Rn)) ∼=

{
0, if k = 0, . . . , n− 1,
C, if k = n.



Chapter 3

Closed Linear Forms on
Symbols

In this chapter we classify closed linear forms on certain subsets of the space of
symbols by using results of Chapter 2 relative to the top cohomology group of the
corresponding space. In the first section we recall the definition and properties
of the noncommutative residue and the cut-off regularized integral, as closed
linear forms in certain spaces of symbols. In the second section we classify closed
linear forms on spaces of symbols with constant coefficients (see Corollary 3.2.1,
Corollary 3.2.2, Corollary 3.2.3 and Theorem 3.2.1). In the third section, we
use this description to classify closed linear forms on the corresponding subsets
of the whole space of symbols on a connected subset of Rn, in terms of a leading
symbol linear form, the noncommutative residue and the cut-off regularized
integral (see Corollary 3.3.1). In the last section, we classify closed linear forms
on the space of odd class symbols on Rn in odd dimensions (see Corollary 3.4.1).
We also assume that n ≥ 2.

3.1 Closed linear forms

In this section we give the definition of a closed linear form in a space of symbols
and its relation with the dual of the top cohomology group of the space.

We consider the space Rn with coordinates (ξ1, . . . , ξn). Let An be a set
CS−∞cc (Rn) ⊆ An ⊆ CScc(Rn) which is stable under partial derivatives as in
(2.37). We say that a functional λ : An → C is

1. Linear if for any a, b ∈ C, whenever σ, τ and a σ + b τ belong to An we
have

λ(a σ + b τ) = a λ(σ) + b λ(τ).

2. Closed, equivalently, it satisfies Stokes’ property on An, if λ vanishes on

49
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partial derivatives of elements of An:

∀σ ∈ An, ∀i = 1, . . . , n : λ ◦ ∂ξi
(σ) = 0. (3.1)

Remark 3.1.1. For an open subset U ⊆ Rn, if CS−∞(U) ⊆ Bn ⊆ CS(U), we
say that Bn is stable under partial derivatives, if for all i = 1, . . . , n,

σ ∈ Bn ⇒ ∂xiσ, ∂ξiσ ∈ Bn,

and a functional λ : Bn → C is closed on Bn, if λ vanishes on partial derivatives
of elements of Bn:

∀σ ∈ Bn,∀i = 1, . . . , n : λ ◦ ∂xi
(σ) = 0 and λ ◦ ∂ξi

(σ) = 0. (3.2)

As in (2.38), in the case when the space C(Rn) defined in Section 2.4 is
C(Rn) = CSacc(Rn), the coefficients of the corresponding sets of n–differential
forms belong to the space An = CSa−ncc (Rn). By (2.38), the set of n–differential
forms on Rn with coefficients in An is given by

Ωn(Rn, CSacc(Rn)) =

 ∑
|I|<∞

σI(ξ) dξ1 ∧ · · · ∧ dξn : σI ∈ CSa−ncc (Rn)

 . (3.3)

By (2.39), the set of exact n–differential forms on Rn with coefficients in An:

Bn(Rn, CSacc(Rn)) =

{
n∑
i=1

∂ξiσ(ξ) dξ1 ∧ · · · ∧ dξn : σ ∈ CSa−n+1
cc (Rn)

}
.

(3.4)
Thus, the corresponding n–th cohomology group is given by

Hn(Rn, CSacc(Rn)) := Ωn(Rn, CSacc(Rn))/Bn(Rn, CSacc(Rn)).

Remark 3.1.2. With the notation of Chapter 2, if q represents the polar coor-
dinate diffeomorphism of (2.5),

σ ∈ CSacc(Rn) ⇒ q∗(σ �Rn\0)rn−1 ∈ Ca+n−1(R+ × Sn−1).

Hence closed linear forms on CSacc(Rn) come from the top cohomology group
Hn(Rn, CSa+n

cc (Rn)), and they are related to linear forms on Ca+n−1(R+×Sn−1)
which satisfy Assumption 2.1.1. Therefore the condition given for the choice of
the map J in view of the order of the symbols in Corollary 2.2.2 and Corollary
2.2.3 amounts to choosing a /∈ Z∩ [−n,+∞) for J = cf, and a ∈ Z∩ [−n,+∞)
for J = rs.

In the case when C(Rn) is either CS−∞cc (Rn), CScc(Rn),
⋃
a∈Z CS

a
cc(Rn) or〈⋃

a/∈Z∩[−n,+∞) CS
a
cc(Rn)

〉
, the coefficients of the corresponding sets of differ-

ential forms belong to the space An := C(Rn). The set of n–differential forms
on Rn with coefficients in An:

Ωn(Rn, C(Rn)) :=

 ∑
|I|<∞

σI(ξ) dξ1 ∧ · · · ∧ dξn : σI ∈ An

 ,
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as well as the set of exact n–differential forms on Rn with coefficients in An:

Bn(Rn, C(Rn)) =

{
n∑
i=1

∂ξi
σ(ξ) dξ1 ∧ · · · ∧ dξn : σ ∈ An

}
.

Thus, the corresponding n–th cohomology group is given by

Hn(Rn, C(Rn)) := Ωn(Rn, C(Rn))/Bn(Rn, C(Rn)).

With this notation of the sets C(Rn) and An, we prove the following lemma,
which explains the use of the term “closed”in (3.1):

Lemma 3.1.1 (See Lemma 1 in [35]). If λ : An → C is a closed linear functional
on An, then it induces a well-defined linear form λ̃ : Hn(Rn, C(Rn)) → C.
Moreover, any linear form λ̃ : Hn(Rn, C(Rn))→ C induces a closed linear form
λ : An → C.

Proof. Any functional λ : An → C induces a linear form λ̃ : Hn(Rn, C(Rn))→ C
in the following way: If ω ∈ Hn(Rn, C(Rn)) is represented by the top degree
differential form σ(ξ) dξ1 ∧ · · · ∧ dξn ∈ Ωn(Rn, C(Rn)), then one can define

λ̃(ω) := λ(σ).

Similarly, any linear form λ̃ : Hn(Rn, C(Rn)) → C induces a linear functional
λ : An → C as follows: If σ ∈ An, consider the cohomology class of the top
degree differential form ω = σ(ξ) dξ1 ∧ · · · ∧ dξn ∈ Ωn(Rn, C(Rn)), and define

λ(σ) := λ̃([ω]).

For any σ ∈ An and for all i = 1, . . . , n

d(σ dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn) = (−1)i∂ξi
σ dξ1 ∧ · · · ∧ dξn

=⇒ λ̃([d(σ dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn)]) = (−1)iλ(∂ξiσ).

Then λ is closed on An if and only if λ̃ is well defined on Hn(Rn, C(Rn)).

3.1.1 The noncommutative residue

Let U be an open subset of Rn. In Definition 1.2.1 we defined the symplectic
residue of homogeneous functions of degree −n, then for a symbol σ ∈ CS(U)
with asymptotic expansion σ ∼

∑∞
j=0 σa−j the noncommutative residue of σ is

the symplectic residue of its homogeneous component of order −n:

res(σ) := res(σ−n).

Consider the symplectic cone T ∗U \ U → S∗U as in Remark 1.1.2, so if µ(ξ) is
a volume form on S∗xU , the noncommutative residue of σ is (see [44]):

res(σ) =
∫
U

∫
S∗xU

σ−n(x, ξ)µ(ξ) ∧ dx. (3.5)

Clearly, res(σ) = 0 whenever ord(σ) /∈ Z ∩ [−n,+∞).
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Proposition 3.1.1. For any σ ∈ CS(U), for all i = 1, . . . , n, res(∂xiσ) = 0
and res(∂ξi

σ) = 0.

Proof. See Sect. 1 in [10], Lemma 2.6 in [25] and Sect. 1.3 in [35].

Remark 3.1.3. If σ ∈ CScc(Rn), its noncommutative residue reads

res(σ) =
∫
Sn−1

σ−n(ξ)µ(ξ).

Using the notation of (2.24) we have the following:

Lemma 3.1.2. For all σ ∈ CScc(Rn), res(σ) =
∫
Sn−1 rs(q∗(σ �Rn\0)rn−1)(η)µ(η).

Proof. Using polar coordinates, by (2.25) and Remark 2.2.7 we have

res(σ) =
∫
Sn−1

σ−n(η)µ(η)

=
∫
Sn−1

rs(q∗(σ �Rn\0)rn−1)(η)µ(η).

3.1.2 The cut-off regularized integral

Let kn ∈ N be the smallest integer such that a− kn < −n+ 1, i.e. kn = bac+n.
As in (2.32), a symbol σ is classical of order a (σ ∈ CSacc(Rn)) if there exist
a cut-off function ψ which vanishes in a neighborhood of 0 and is identically
1 outside the unit ball, and functions σa−j positively homogeneous of degree
a− j, such that

σ =
kn∑
j=0

ψσa−j + πψ<−n(σ). (3.6)

For any R > 0, B(0, R) denotes the ball of radius R centered at 0 in Rn. The
map R 7→

∫
B(0,R)

σ has an asymptotic expansion as R→∞ of the form

∫
B(0,R)

σ ∼
R→∞

α0(σ) +
kn∑
j=0

a−j 6=−n

σa−jR
a−j+n + res(σ) logR, (3.7)

Definition 3.1.1 ((5.9) in [25], Sect. 1.4 in [35]). The cut-off regularized integral
(or Hadamard partie finie) of σ is the constant term α0(σ) in (3.7), given by

−
∫

Rn

σ(ξ)dξ := fp
R→∞

∫
B(0,R)

σ =

=
∫

Rn

πψ<−n(σ) +
kn∑
j=0

∫
B(0,1)

ψσa−j −
kn∑
j=0

a−j 6=−n

1
a− j + n

∫
S(0,1)

σa−j . (3.8)
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Lemma 3.1.3. The cut-off integral −
∫

Rnσ does not depend on the choice of the
cut-off function in the asymptotic expansion of σ.

Proof. Let us consider ψ, χ smooth cut-off functions, which vanish in a neigh-
borhood of ξ = 0 and which are 1 for |ξ| ≥ 1. The support of the difference
ψ−χ is a compact set contained in B(0, 1). If we consider the difference of the
terms in the right hand side of (3.8) with the cut-off functions ψ and χ we get
the expression

∫
Rn

(πψ<−n(σ)− πχ<−n(σ)) +
kn∑
j=0

∫
B(0,1)

(ψ − χ)σa−j . (3.9)

By (3.6),

πψ<−n(σ)− πχ<−n(σ) = −
kn∑
j=0

(ψ − χ)σa−j ,

and since the support of ψ − χ is contained in B(0, 1), the expression in (3.9)
vanishes.

Let us recall the following equivalent version of Stokes’ theorem on Rieman-
nian manifolds:

Lemma 3.1.4 (Cor. 8.2.10 in [1]). Let M be a Riemannian manifold, such that
M and ∂M carry correspond uniquely determined volume forms µM and µ∂M .
If X is a smooth vector field with compact support on M , and if ~n is the unit
outer normal vector field on ∂M , then∫

M

Div(X)µM =
∫
∂M

〈X,~n〉µ∂M .

We use this to describe the action of the cut-off regularized integral on partial
derivatives. The following lemma is a particular case of Lemma 5.5 in [27]; we
denote by µS(0,R)(ξ) a volume form on S(0, R):

Proposition 3.1.2. Let σ =
∑kn

j=0 ψ σa−j + πψ<−n(σ) ∈ CSacc(Rn) be as in
(3.6). Then, for all i = 1, . . . , n

−
∫

Rn

∂ξi
σ(ξ)dξ =

∫
S(0,1)

σ−n+1(ξ) ξi µS(0,1)(ξ).

Proof. We apply Lemma 3.1.4 to M = B(0, R) := {ξ ∈ Rn : |ξ| ≤ R} for some
positive number R, with boundary S(0, R) = {ξ ∈ Rn : |ξ| = R}, and to the
vector field X = σei, where (e1, . . . , en) is the canonical orthonormal basis of
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Rn. This yields, for ~n =
ξ

|ξ|
:

∫
B(0,R)

∂ξi
σ(ξ) dξ =

∫
S(0,R)

σ(ξ) 〈ei, ~n〉µS(0,R)(ξ)

=
∫
S(0,R)

σ(ξ)
ξi
|ξ|

µS(0,R)(ξ)

=
∫
S(0,1)

σ(Rη) ηiRn−1µS(0,1)(η)

=
kn∑
j=0

∫
S(0,1)

ψ(Rη)σa−j(Rη) ηiRn−1µS(0,1)(η)

+
∫
S(0,1)

πψ<−n(σ)(Rη) ηiRn−1µS(0,1)(η)

=
kn∑
j=0

∫
S(0,1)

ψ(Rη)σa−j(η) ηiRa−j+n−1µS(0,1)(η)

+Rn−1

∫
S(0,1)

πψ<−n(σ)(Rη) ηi µS(0,1)(η).

We reach the statement from

lim
R→∞

Rn−1

∫
S(0,1)

πψ<−n(σ)(Rη) ηi µS(0,1)(η) = 0,

and

fp
R→∞

∫
S(0,1)

ψ(Rη)σa−j(η) ηiRa−j+n−1µS(0,1)(η) =

=

{
0, if a− j + n− 1 6= 0,∫
S(0,1)

σa−j(η) ηi µS(0,1)(η), if a− j + n− 1 = 0.

Corollary 3.1.1. If a /∈ Z ∩ [−n + 1,+∞), the cut-off regularized integral is
closed on CSacc(Rn).

Proof. It follows from Proposition 3.1.2, since in this case, given σ ∈ CSacc(Rn),
the homogeneous component σ−n+1 vanishes. Compare with (2.21)

Using the notation of (2.19) we have the following, where µ(η) is a volume
form on Sn−1:

Lemma 3.1.5. For any σ ∈
〈⋃

a/∈Z∩[−n,+∞) CS
a
cc(Rn)

〉
, the cut-off regularized

integral of σ satisfies −
∫

Rnσ(ξ)dξ =
∫
Sn−1 cf(q∗(σ �Rn\0)rn−1)(η)µ(η).
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Proof. Using polar coordinates, by Remark 2.2.6 we have

−
∫

Rn

σ(ξ)dξ = fp
R→∞

∫
B(0,R)

σ(ξ)dξ

=
∫
Sn−1

cf(q∗(σ �Rn\0)rn−1)(η)µ(η).

Remark 3.1.4. Given an open subset U ⊆ Rn, the cut-off regularized integral of
a symbol σ ∈ CS(U) is given by∫

U

−
∫

Rn

σ(x, ξ)dξ dx.

Proposition 3.1.3 (Prop. 5.2 in [25]). Let σ ∈ CS(Rn) be a symbol with asymp-
totic expansion as in (3.6) and let C ∈ GL(n,R). We have the transformation
rule (we omit the integration on U and the variable x)

−
∫

Rn

σ(Cξ)dξ = |det(C)|−1

(
−
∫

Rn

σ(ξ)dξ −
∫
Sn−1

σ−n(ξ) log(C−1ξ) dξ
)
.

(3.10)

Remark 3.1.5. This proposition implies that in
〈⋃

a/∈Z∩[−n,+∞) CS
a(U)

〉
, the

cut-off regularized integral may be used to define a global density on a manifold.

3.2 Closed linear forms on classes of symbols
with constant coefficients

In this section we classify closed linear forms on classes of symbols with constant
coefficients on Rn in terms of a leading symbol linear form, the noncommutative
residue and the cut-off regularized integral.

First of all, consider the case when C(Rn) is either CS−∞cc (Rn), CScc(Rn),⋃
a∈Z CS

a
cc(Rn) or

〈⋃
a/∈Z∩[−n,+∞) CS

a
cc(Rn)

〉
(the coefficients of the correspond-

ing sets of differential forms belong to the space An := C(Rn)). The top coho-
mology group of C(Rn) is one-dimensional. Consider the functional I : An → C
that induces the isomorphism Hn(Rn, C(Rn)) ∼= C in (2.46), as in Lemma 3.1.1.

Results in [30], [35] provide conditions under which one can express a classical
symbol as a sum of derivatives, however, this result is up to smoothing symbols
(see Proposition 3.4.2 below). Using the fact that the top cohomology group
is one-dimensional, we can express a complete classical symbol with constant
coefficients as a sum of derivatives under an appropriate condition:
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Lemma 3.2.1. Let σ ∈ An, and suppose that I(σ) = 0. Then there exist

symbols τi ∈ An, such that σ =
n∑
i=1

∂ξi
τi.

Proof. Let σ(ξ) dξ1 ∧ · · · ∧ dξn ∈ Ωn(Rn, C(Rn)). If I(σ) = 0, by Lemma 3.1.1,
the isomorphism Ĩ : Hn(Rn, C(Rn)) → C satisfies Ĩ([σ(ξ) dξ1 ∧ · · · ∧ dξn]) = 0,
which implies that σ(ξ) dξ1 ∧ · · · ∧ dξn ∈ Bn(Rn, C(Rn)), so there exist symbols

τi ∈ An such that σ(ξ) =
n∑
i=1

∂ξiτi(ξ).

Proposition 3.2.1. Any closed linear form on An is a multiple of I.

Proof. Consider a function e ∈ An such that I(e) = 1. Then any symbol σ ∈ An
can be expressed as a linear combination of a symbol on which I vanishes and
the term I(σ) e:

σ = (σ − I(σ) e) + I(σ) e.

Hence, by Lemma 3.2.1 there exist functions τi ∈ An such that

σ =
n∑
i=1

∂ξi
τi + I(σ) e. (3.11)

Let λ : An → C be a closed linear form on An. Applying λ to both sides of
(3.11), we get

λ(σ) = I(σ)λ(e). (3.12)

In the following we provide examples of sets An which admit a unique (up
to a constant) closed linear functional λ, as a consequence of (2.46).

Corollary 3.2.1. If An = CS−∞cc (Rn) then for any σ ∈ An,

I(σ) =
∫

Rn

σ(ξ)dξ.

Thus, any closed linear form λ on An is proportional to the usual integral on
Rn, that is, there exists a constant c ∈ C such that for all σ ∈ CS−∞cc (Rn),
λ(σ) = c

∫
Rn σ.

Proof. The linear form
∫

Rn is closed on An: if σ ∈ An, then for all i = 1, . . . , n,
by the decreasing condition of the functions in An and by Fubini’s theorem,
with the notation dξ := dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn, we have∫

Rn

∂ξiσ(ξ) dξ1 ∧ · · · ∧ dξi ∧ · · · ∧ dξn =

= (−1)i−1

∫
Rn−1

(∫
R
∂ξi
σ(ξ) dξi

)
dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn

= (−1)i−1

∫
Rn−1

(
lim
R→∞

σ(ξ1, . . . , R, . . . , ξn)− lim
r→−∞

σ(ξ1, . . . , r, . . . , ξn)
)
dξ

= 0.
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We conclude the statement from Proposition 3.2.1, where the symbol e can be
any smooth function on Rn with compact support and

∫
Rn e = 1.

Corollary 3.2.2. If An =

〈 ⋃
a/∈Z∩[−n,+∞)

CSacc(Rn)

〉
for any σ ∈ An,

I(σ) = −
∫

Rn

σ(ξ)dξ.

Thus, any closed linear form on An is proportional to the cut-off regularized
integral on Rn.

Proof. By Corollary 3.1.1, the cut-off regularized integral is a closed linear form
on An. We conclude the statement from Proposition 3.2.1, where the symbol e
can be any smooth function on Rn with compact support and

∫
Rn e = 1. Notice

that in this case An ⊆ ker(res). If we restrict to CS−∞cc (Rn) the constant in
Corollary 3.2.1 is c = 1.

Corollary 3.2.3. If An ∈
{
CScc(Rn),

⋃
a∈Z

CSacc(Rn)
}

, for any σ ∈ An,

I(σ) = res(σ).

Thus, any closed linear form on An is proportional to the noncommutative
residue.

Proof. By Proposition 3.1.1 and Remark 3.1.3, the noncommutative residue is
a closed linear form on An. We conclude the statement from Proposition 3.2.1,
where the symbol e can be e(ξ) = 1

Vol(Sn−1)ψ(ξ)|ξ|−n, for any cut-off function
ψ which vanishes in a small neighborhood of |ξ| = 0 and is 1 outside the unit
ball. If we restrict to CS−∞cc (Rn) the constant in Corollary 3.2.1 is c = 0.

Let us now fix a real number a. The leading symbol map on Sn−1:

La : CSacc(Rn)→ C∞(Sn−1)

σ ∼
∞∑
j=0

ψ σa−j 7→ σa �Sn−1 ,

leads us to consider a linear form, which we call a leading symbol linear form in
the following way: If ρ is any linear functional on Sn−1, then

ρ ◦ La : CSacc(Rn)→ C
σ 7→ ρ(σa �Sn−1),

is a linear form on CSacc(Rn) since the leading symbol map is linear, and it is
closed since for any σ ∈ CSacc(Rn), for all i = 1, . . . , n, ∂ξiσ is of order a−1 and
hence La(∂ξi

σ) = 0.
In (2.46) we found that the top cohomology group of CSa+n

cc (Rn) is one dimen-
sional. Consider the functional I : CSacc(Rn) → C constructed as in Lemma
3.1.1, that induces the isomorphism Hn(Rn, CSa+n

cc (Rn)) ∼= C. Then we get:
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Theorem 3.2.1. Any closed linear form on CSacc(Rn) can be written either as
a linear combination of a leading symbol linear form and the cut-off regularized
integral when a /∈ Z ∩ [−n + 1,+∞), or as a linear combination of a leading
symbol linear form and the noncommutative residue when a ∈ Z∩ [−n+1,+∞).

Proof. From (3.4) and Lemma 3.2.1, for any σ ∈ CSacc(Rn) such that I(σ) = 0,

there exist symbols τi ∈ CSa+1
cc (Rn) such that σ =

n∑
i=1

∂ξiτi.

For any σ ∼
∑∞
j=0 ψ σa−j ∈ CSacc(Rn) we have

σ − ψσa ∈ CSa−1
cc (Rn).

If as in Proposition 3.2.1, the symbol e ∈ CSacc(Rn) is such that I(e) = 1, then

σ − ψσa = (σ − ψσa − I(σ − ψσa) e) + I(σ − ψσa) e.

Hence, there exist symbols τi ∈ CSacc(Rn) such that

σ − ψσa =
n∑
i=1

∂ξi
τi + I(σ − ψσa) e. (3.13)

Let λ : CSacc(Rn)→ C be a closed linear form on CSacc(Rn). Applying λ to both
sides of (3.13) we get

λ(σ − ψσa) = I(σ − ψσa)λ(e), (3.14)

which implies that

λ(σ) = λ(ψσa)− I(ψσa)λ(e) + I(σ)λ(e). (3.15)

Then there exists a linear functional ρ on Sn−1 and a constant c ∈ C such that

λ(σ) = ρ(La(σ)) + c I(σ). (3.16)

1. If a /∈ Z ∩ [−n + 1,+∞), I is the map in Corollary 3.2.2; the symbol
e ∈ CSacc(Rn) can be any smooth function on Rn with compact support
and

∫
Rn e = 1. Thus, any closed linear form on CSacc(Rn) is a linear

combination of a leading symbol linear form and the cut-off regularized
integral.

2. If a ∈ Z ∩ [−n + 1,+∞), I is the map in Corollary 3.2.3; for any cut-off
function ψ which vanishes in a small neighborhood of |ξ| = 0 and is 1
outside the unit ball, the symbol e(ξ) = 1

Vol(Sn−1)ψ(ξ)|ξ|−n ∈ CSacc(Rn).
Thus, any closed linear form on CSacc(Rn) is a linear combination of a
leading symbol linear form and the noncommutative residue.
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Proposition 3.2.2. If a ∈ Z ∩ [−n + 1,+∞), any smoothing symbol can be
written as a sum of derivatives of elements in CSacc(Rn).

Proof. If a ∈ Z ∩ [−n,+∞), the functional res : CSacc(Rn) → C induces the
isomorphism Hn(Rn, CSa+n

cc (Rn)) ∼= C. Since the noncommutative residue
vanishes on smoothing symbols, from Equation (3.4) and Lemma 3.2.1, for
any symbol σ ∈ CS−∞cc (Rn), there exist symbols τi ∈ CSa+1

cc (Rn) such that

σ =
n∑
i=1

∂ξi
τi.

3.3 Closed linear forms on classes of symbols on
Rn

In this section we study closed linear forms on some subsets of the space
CScomp(U) (see Section 2.3) of classical symbols with x–compact support on
a subset U ⊆ Rn, using the classification of closed linear forms on the corre-
sponding subsets of CScc(Rn).

Let U be a connected subset of Rn with n ≥ 2. Then, by the Poincaré
Lemma (see [6]), the top cohomology group with compact support of U is one–
dimensional, Hn

c (U) ∼= C and the isomorphism is given by integration over U :

C∞c (U)→ C

f 7→
∫
U

f(x) dx,

where dx denotes a volume form on Rn. So any closed linear form on C∞c (U)
is proportional to the integral over U .

Let D(U) be a subset of CScomp(U) stable under partial derivatives ∂xk
, ∂ξk

,
k = 1, . . . , n, as in Remark 3.1.1, and under multiplication by functions in
C∞c (U). Any element in D(U) can be considered as a function on T ∗U = U×Rn.
We define

S(U) := {τ ∈ CScc(Rn) : f ⊗ τ ∈ D(U) ∀f ∈ C∞c (U)}.

The set S(U) is stable under partial differentiation ∂ξk
, as in (3.1).

For the rest of this section we assume that S(U), D(U) correspond to one
of the following examples, here λ : S(U)→ C is a closed linear functional as in
Section 3.2.

Example 3.3.1. 1. D(U) = CScomp(U), S(U) = CScc(Rn), λ = res.

2. D(U) = CS−∞comp(U), S(U) = CS−∞cc (Rn), λ =
∫

Rn .
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3. D(U) =
〈⋃

a/∈Z∩[−n,+∞) CS
a
comp(U)

〉
, S(U) =

〈⋃
a/∈Z∩[−n,+∞) CS

a
cc(Rn)

〉
,

λ = −
∫

Rn .

4. If a /∈ Z ∩ [−n + 1,+∞) and D(U) = CSacomp(U), S(U) = CSacc(Rn),
λ = ρ ◦ La + c−

∫
Rn .

5. If a ∈ Z ∩ [−n + 1,+∞) and D(U) = CSacomp(U), S(U) = CSacc(Rn),
λ = ρ ◦ La + c res.

Let us assume that U is compact. The space C∞c (U) has a Fréchet space
structure (see e.g. Sect. 10 in [42]), and in the previous examples the space
C∞c (U)⊗̂S(U) is dense in D(U) for the Fréchet topology of symbols of con-
stant order defined in Section 2.3. From the density of C∞c (U)⊗̂CSacc(Rn) in
CSacomp(U) we infer that for any σ ∈ CSacomp(U), for all N ∈ N there exists
KN ∈ N, such that for all i = 1, . . . ,KN , there exist fi ∈ C∞c (U), τi ∈ CSacc(Rn)
which in the Fréchet topology of CSacc(Rn) satisfy

KN∑
i=1

fi ⊗ τi −→
N→∞

σ, (3.17)

this means that for all α, β ∈ Nn,

KN∑
i=1

∂αx fi ⊗ ∂
β
ξ τi −→N→∞

∂αx ∂
β
ξ σ. (3.18)

From this density it is also possible to define a linear form on CSacomp(U) by
defining it on the tensor product space C∞c (U)⊗CSacc(Rn) and then extending
it by continuity.

Proposition 3.3.1. Let λ : S(U) → C be a closed linear functional on S(U).
The linear form

Λ : C∞c (U)⊗ S(U)→ C

f ⊗ τ 7→
(∫

U

f

)
· λ(τ),

defines a closed linear form on D(U).

Proof. We have to prove that for any f ⊗ τ ∈ C∞c (U)⊗ S(U) and for all
k = 1, . . . , n, Λ(∂xk

(f ⊗ τ)) = 0 and Λ(∂ξk
(f ⊗ τ)) = 0. Indeed,

Λ(∂xk
(f ⊗ τ)) =

(∫
U

∂xk
f

)
· λ(τ)

= 0 · λ(τ)
= 0,
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and similarly

Λ(∂ξk
(f ⊗ τ)) =

(∫
U

f

)
· λ(∂ξk

τ)

=
(∫

U

f

)
· 0

= 0.

Proposition 3.3.2. Let Λ : D(U) → C be a continuous closed linear form on
D(U). Then, there exists a closed linear form λ : S(U)→ C such that

Λ(σ) =
(∫

U

⊗̂λ
)

(σ) :=
∫
U

λ(σ(x, ·))dx.

Proof. For fixed f ∈ C∞c (U), we define the linear form

Λf : S(U)→ C
τ 7→ Λ(f ⊗ τ).

Since Λ is closed, for all k = 1, . . . , n,

Λf (∂ξk
τ) = Λ(f ⊗ ∂ξk

τ) = Λ(∂ξk
(f ⊗ τ)) = 0.

Thus Λf satisfies Stokes’ property so that there is a constant bf such that

Λf = bfλ,

where λ is the closed linear form corresponding to S(U) as in Example 3.3.1.
Similarly, for fixed τ ∈ S(U), we can define the linear form

Λτ : C∞c (U)→ C
f 7→ Λ(f ⊗ τ).

Since Λ is closed, for all k = 1, . . . , n,

Λτ (∂xk
f) = Λ((∂xk

f)⊗ τ) = Λ(∂xk
(f ⊗ τ)) = 0.

Thus Λτ satisfies Stokes’ property so that there is a constant cτ such that

Λτ = cτ

∫
U

.

Since the map
(f, τ) 7→ Λ(f ⊗ τ)

is bilinear, by Prop. 50.7 in [42], it follows that there exists a constant C such
that

Λ(f ⊗ τ) = C

(∫
U

f

)
· λ(τ).
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From the continuity of Λ combined with the density of C∞c (U)⊗̂S(U) in D(U)
we can infer that for any σ ∈ D(U),

Λ(σ) = C

∫
U

λ(σ(x, ·))dx.

Let us conclude the classification of closed linear forms on D(U) for the sets
D(U) in Example 3.3.1:

Corollary 3.3.1. Any closed linear form on D(U) is a multiple of the map
indicated below in each of the following cases. Let σ ∈ D(U) be a symbol with
x–compact support on U and with asymptotic expansion σ ∼

∑∞
j=0 ψσa−j.

1. D(U) = CScomp(U), Λ(σ) = res(σ) =
∫
U

∫
S∗xU

σ−n(x, ξ)µ(ξ) ∧ dx.

2. D(U) = CS−∞comp(U), Λ(σ) =
∫
U

∫
Rn σ(x, ξ)dξ dx.

3. D(U) =
〈⋃

a/∈Z∩[−n,+∞) CS
a
comp(U)

〉
, Λ(σ) =

∫
U
−
∫

Rnσ(x, ξ)dξ dx.

4. If a /∈ Z ∩ [−n+ 1,+∞) and D(U) = CSacomp(U),
Λ(σ) = ρ ◦ La(σ) + c

∫
U
−
∫

Rnσ(x, ξ)dξ dx.

5. If a ∈ Z ∩ [−n+ 1,+∞) and D(U) = CSacomp(U),
Λ(σ) = ρ ◦ La(σ) + c res(σ).

3.4 Closed linear forms on odd-class symbols

Let U be an open subset of Rn. The space of odd-class symbols CS(odd)(U) is
the set of symbols σ ∈ CS(U) of integer order and with asymptotic expansion

as in (2.33), σ ∼
∞∑
j=0

ψ σa−j such that additionally, for all j ≥ 0, (see Sect. 4 in

[23], [30] and Sect. 1 in [35]):

σa−j(x,−ξ) = (−1)a−jσa−j(x, ξ), ∀ ξ : |ξ| ≥ 1. (3.19)

Lemma 3.4.1. CS(odd)(U) is closed under partial derivatives.

Proof. Let σ ∼
∑∞
j=0 ψ σa−j ∈ CS(odd)(U) be an odd-class symbol of order a,

where

σa−j(x, tξ) = ta−jσa−j(x, ξ), ∀ t > 0,

σa−j(x,−ξ) = (−1)a−jσa−j(x, ξ).

Hence, since ∂xiψ = 0 and ∂ξiψ has compact support, ∂xi(σ) ∼
∑∞
j=0 ψ ∂xi(σa−j)

is a symbol of order a, ∂ξi
(σ) ∼

∑∞
j=0 ψ ∂ξi

(σa−j) is a symbol of order a − 1;
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for all j ≥ 0,

∂xi(σa−j)(x, tξ) = ta−j∂xi(σa−j)(x, ξ), ∀t > 0,

∂xi
(σa−j)(x,−ξ) = (−1)a−j∂xi

(σa−j)(x, ξ),

∂ξi
(σa−j)(x, tξ) = ta−j−1∂ξi

(σa−j)(x, ξ), ∀t > 0,

∂ξi
(σa−j)(x,−ξ) = (−1)a−j−1∂ξi

(σa−j)(x, ξ).

Let us denote by CS(odd),a(U) the set of odd-class symbols of order a ∈ Z on
U .

Lemma 3.4.2. In odd dimensions, the noncommutative residue of any odd-class
symbol vanishes.

Proof. Let σ ∈ CS(odd),a(U) be with asymptotic expansion σ ∼
∑∞
j=0 ψ σa−j as

in (2.33). Since n is odd, we have σ−n(x,−ξ) = (−1)nσ−n(x, ξ) = −σ−n(x, ξ).
Therefore, by (3.5) we obtain

res(σ) =
∫
U

∫
S∗xU

σ−n(x, ξ)µ(ξ) ∧ dx

= −
∫
U

∫
S∗xU

σ−n(x,−ξ)µ(ξ) ∧ dx

= −
∫
U

∫
S∗xU

σ−n(x, ξ)µ(ξ) ∧ dx

= − res(σ).

Therefore res(σ) = 0.

Proposition 3.4.1. In odd dimensions, the cut-off regularized integral is closed
on CS(odd)(U).

Proof. See Cor. 2 in [35].

Proposition 3.4.2. Let n ∈ Z be odd. For any σ ∈ CS(odd),a(U), there exist
τi in CS(odd),a+1(U) such that

σ ∼
n∑
i=1

∂ξi
τi. (3.20)

Proof. (See Lemma 1.3 in [10], and [30]). For a cut-off function ψ as in Section
2.3 consider

σ ∼
∞∑
j=0

ψ σa−j ,

with σa−j a positively homogeneous function of degree a− j in ξ which satisfies
(3.19).
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• If a− j 6= −n, consider the homogeneous function τi,a−j+1 := ξiσa−j(x,ξ)
a−j+n .

By Euler’s identity we have

n∑
i=1

∂ξi
(τi,a−j+1)(x, ξ) = σa−j(x, ξ).

From the definition it is immediate to see that the τi,a−j+1 satisfy (3.19):

τi,a−j+1(x, tξ) = ta−j+1τi,a−j+1(x, ξ), ∀t > 0,

τi,a−j+1(x,−ξ) = (−1)a−j+1τi,a−j+1(x, ξ).

• Let a − j = −n. In polar coordinates (r, ω) ∈ R+ × Sn−1, the Laplacian
in ξ reads

∆ = −
n∑
i=1

∂2
ξi

= −r1−n∂r(rn−1∂r)− r−2∆Sn−1 .

Therefore, for any function f ∈ C∞(Sn−1),

∆(f(ω)r2−n) = r−n∆Sn−1f(ω).

Since n is odd and σ ∈ CS(odd),a(U), by Lemma 3.4.2, res(σ) = 0. There-
fore σ−n(x, ·) �Sn−1 is orthogonal to the constants which form the kernel
ker(∆Sn−1). Hence there exists a unique function h(x, ·) ∈ C∞(Sn−1),
orthogonal to the constants, such that ∆Sn−1(h(x, ·)) = σ−n(x, ·) �Sn−1 .
The function h(x, ·) is an odd function on Sn−1: h(x,−ξ) = −h(x, ξ).

We choose a smooth function χ on R which vanishes for small r and is
equal to 1 for r ≥ 1/2. For r = |ξ|, we set

b−n(x, ξ) := χ(|ξ|)|ξ|2−nh
(
x,

ξ

|ξ|

)
.

The function b−n is smooth on U × Rn and is homogeneous of degree
−n+ 2 in ξ for |ξ| ≥ 1. As σ−n(x, ξ) vanishes for x outside a compact set,
so does b−n(x, ξ). In particular, b−n is a symbol of order 2− n on U . Let
us define τi,−n+1 := −∂ξib−n. Since h is odd so is b−n and therefore,

τi,−n+1(x,−ξ) = −(∂ξib−n)(x,−ξ)
= −∂ξib−n(x, ξ)

= (−1)−n+1τi,−n+1(x, ξ).

Moreover, we have for |ξ| ≥ 1

∆b−n = ∆(r2−nh(x, ·)) = r−nσ−n(x, ·) �Sn−1= σ−n.
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Let τi ∼
∞∑
j=0

ψ τi,a−j+1, then since ∂ξiψ has compact support, the difference

σ −
n∑
i=1

∂ξi
τi is smoothing and

σ ∼
n∑
i=1

∞∑
j=0

ψ ∂ξi
τi,a−j+1 ∼

n∑
i=1

∂ξi
τi.

Corollary 3.4.1. In odd dimensions, the cut-off regularized integral induces an
isomorphism

Hn(Rn, CS(odd)
cc (Rn)) ∼= C.

Therefore, any closed linear form on CS
(odd)
cc (Rn) is proportional to the cut-off

regularized integral.

Proof. By Lemma 3.4.1 and Proposition 3.4.1, −
∫

Rn yields a well defined function

−̃
∫

Rn

: Hn(Rn, CS(odd)
cc (Rn))→ C.

Since the cut-off regularized integral coincides with usual integration when re-
stricting to smoothing symbols, we can take any smooth function with compact
support in Rn and with total integral 1 to prove that the map −̃

∫
Rn is surjective.

To prove that this map is injective, let σ ∈ CS(odd)
cc (Rn) be such that −

∫
Rnσ = 0.

By Lemma 3.4.2, res(σ) = 0 and therefore by Proposition 3.4.2, there exist
τi ∈ CS(odd)

cc (Rn) and s ∈ CS−∞cc (Rn) such that

σ =
n∑
i=1

∂ξiτi + s. (3.21)

Then, by Proposition 3.4.1 we have the following

0 = −
∫

Rn

σ =
n∑
i=1

−
∫

Rn

∂ξiτi +−
∫

Rn

s = 0 +
∫

Rn

s =
∫

Rn

s.

Hence, by Corollary 3.2.1, there exist smoothing symbols si ∈ CS−∞cc (Rn) such
that

s =
n∑
i=1

∂ξi
si. (3.22)

Equations (3.21) and (3.22) imply that σ =
∑n
i=1 ∂ξi

(τi + si). The rest of the
statement follows from Proposition 3.2.1.

As a consequence of this, as in Section 3.3 we conclude that if U is a compact
subset of Rn, any closed linear form on CS(odd)(U) is a multiple of the cut-
off regularized integral; and if we fix the order a, any closed linear form on
CS(odd),a(U) is a linear combination of a leading symbol closed linear form and
the cut-off regularized integral.
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Chapter 4

Commutators and Traces

Our main interest is the classification of traces on algebras of the form Cla(M)
with a ≤ 0. Since traces vanish on commutators, we devote this chapter to the
study of the representation of a pseudo-differential operator as a sum of commu-
tators. For this, we use the results of Chapter 1 relative to the representation of
a homogeneous function in terms of Poisson brackets of homogeneous functions
of appropriate degree and the fact that the leading symbol of a commutator of
pseudo-differential operators is, up to a constant, the Poisson bracket of the cor-
responding leading symbols. This enables us to extend and refine in the context
of operators with order bounded from above, known results by Lesch [25] (see
our Theorem 4.3.1) on the one hand, and by Ponge [37] (see our Proposition
4.4.1) on the other hand, concerning the representation of a pseudo-differential
operator as a sum of commutators. Throughout the chapter we denote by M
a closed connected smooth manifold of dimension n > 1, unless we indicate
something else.

4.1 Classical pseudo-differential operators

Let us recall the definition and some properties of classical pseudo-differential
operators on a manifold M following [20] and [39]. We use the notation of
Section 2.3 for spaces of symbols on an open subset U ⊆ Rn.

Definition 4.1.1. For a symbol σ ∈ Sa(U), the canonical operator P := Op(σ)
associated to σ is defined by:

P (f)(x) =
1

(2π)n

∫
U×Rn

ei(x−y)·ξσ(x, ξ)f(y)dξdy

as a linear operator mapping the space of smooth functions with compact sup-
port on U , C∞c (U), to C∞(U), and P is called a pseudo-differential operator
(ψDO) of order ord(P ) = a. If σ ∈ CSa(U), P is a classical pseudo-differential
operator of order a over U and we write P ∈ Cla(U); if σ ∈ S−∞(U), P is a
smoothing operator over U and we write P ∈ Cl−∞(U).
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The ψDO P can also be expressed as an integral operator ([39]), namely:

P (f)(x) =
∫
U

K(x, y)f(y)dy,

where
K(x, y) :=

1
(2π)n

∫
Rn

ei(x−y)·ξσ(x, ξ)dξ,

is the Schwartz kernel of P , which is a continuous function on U ×U whenever
a < −n, and which can be interpreted as a distribution whenever a ≥ −n (see
[9], [41]). By Clacomp(U) we denote the space of classical ψDOs of order a on U
whose Schwartz kernel has compact support on U × U .

Using the representation in local charts, one defines classical pseudo-differential
operators on manifolds which can be generalized to operators acting on sections
of a vector bundle over a manifold (see [20], [39]): Let M be a smooth n–
dimensional manifold. A linear operator A : C∞c (M) → C∞(M) is a pseudo-
differential operator of order a on M if for every U local coordinate chart of
M , with diffeomorphism ϕ : U → V , from U to an open set V ⊆ Rn, the
operator ϕ#A : C∞c (V )→ C∞(V ) defined by the following diagram is a pseudo-
differential operator of order a on V :

C∞c (V ) −−−−→ C∞(V )yϕ∗ yϕ∗
C∞c (U) −−−−→ C∞(U)

(4.1)

in the lower row we have the operator rU ◦ A ◦ iU : C∞c (U) → C∞(U), where
iU : C∞c (U) → C∞c (M) is the natural embedding, and rU : C∞(M) → C∞(U)
is the natural restriction.

Let E and F be smooth vector bundles over M of rank k and l respectively.
By Def. 18.1.32 in [20], a classical ψDO of order a from sections of E to sections
of F is a continuous linear map A : C∞c (M,E)→ C∞(M,F ) such that for every
open set U ⊆M where E and F are trivialized by

φE : E �U→ ϕ(U)× Ck, φF : F �U→ ϕ(U)× Cl,

there is an l × k matrix of ψDOs Aij ∈ Cla(ϕ(U)) such that

(φF ((Ag) �U ))i =
∑
j

Aij(φE (g))j , g ∈ C∞c (U,E).

We then write A ∈ Cla(M,E,F ), and A ∈ Cla(M,E) in the case when E = F .

We now equip these infinite dimensional sets of operators by using the
Fréchet topology on constant order symbols defined in Section 2.3. For any
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closed manifold M and for any a ∈ R, the linear space Cla(M,E) of classical
ψDOs of order a can be equipped with a Fréchet topology. The Fréchet structure
on CSa(U,W ) induces one on Cla(M,E). Indeed, let (Ui, ϕi)i∈I be an atlas on
M for some finite set I, with local trivializations φi : E �Ui

∼=→ ϕi(Ui)×W com-
patible with the charts, a partition of unity (χi)i∈I subordinate to the chosen
atlas and smooth functions (χ̃i)i∈I on M such that supp(χ̃i) ⊂ Ui and χ̃i = 1
near the support of χi. We write an operator A ∈ Cla(M,E) as follows:

A =
∑

i∈I0⊆I

Ai +R(A),

where Ai := χi ·
(
φ−1
i ◦Op(σi) ◦ φi

)
· χ̃i ∈ Cla(M,E) are ψDOs with compactly

supported symbols in CSa(ϕi(Ui),W ) and R(A) ∈ Cl−∞(M,E).
The Fréchet topology on Cla(M,E) is provided by the countable family of semi-
norms built from:

1. A countable family of semi-norms given by the supremum norm of the ker-
nel of R(A) and its derivatives on a countable family of compact subsets.

2. The countable family of semi-norms on Op(σi) induced by the ones on the
symbols σi described in Equations (2.34)–(2.36).

Let us recall a result about the existence of a symbol for a given sequence
of symbols of decreasing order:

Proposition 4.1.1 (Prop. 1.8 in [13]). Let U be an open subset of Rn and let
σa−j ∈ Sa−j(U) for all j ∈ N. Then there exists σ ∈ Sa(U), unique modulo
(i.e. up to some element in) S−∞(U), such that σ −

∑
0≤j<k

σa−j ∈ Sa−k(U) for

all k ∈ N.

Remark 4.1.1. As a consequence of this proposition we find, e.g. in Sect. 18.1 of
[20], that if Aj ∈ Clmj (U), and mj ↓ −∞, there exists A ∈ Clm0(U) such that
for all k ∈ N,

A−
∑
j<k

Aj ∈ Clmk(U).

Let us recall a fact about splittings of short exact sequences in certain graded
algebras that we will use in the case of classical ψDOs of integer oder.

Proposition 4.1.2. Consider a graded algebra {Ak}k∈Z. Suppose that for each
fixed k, the sequence

0→ Ak−1 → Ak → Ak/Ak−1 → 0

splits. Then, for all j < k there is a canonical way to construct splittings of the
sequences

0→ Aj → Ak → Ak/Aj → 0.
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Proof. Let qk : Ak/Ak−1 → Ak be a splitting of the sequence

0→ Ak−1 → Ak
pk→ Ak/Ak−1 → 0, (4.2)

i.e. pk ◦ qk = idAk/Ak−1 , or equivalently,

Ak = ker(pk)⊕ Image(qk)
∼= Ak−1 ⊕ qk(pk(Ak)).

Now, since Ak−1
∼= Ak−2 ⊕ qk−1(pk−1(Ak−1)), we have

Ak ∼= Ak−2 ⊕ qk−1(pk−1(Ak−1))⊕ qk(pk(Ak)). (4.3)

The sequence (4.2), produces the following split exact sequence:

0→ Ak−1/Ak−2 → Ak/Ak−2 → Ak/Ak−1 → 0. (4.4)

From this, we consider the exact sequence

0→ Ak−2 → Ak
πk→ Ak/Ak−2 → 0,

where for ξ ∈ Ak, ξ − qk(pk(ξ)) ∈ Ak−1

πk(ξ) = pk−1(ξ − qk(pk(ξ))) + pk(ξ).

For ξ ∈ Ak, by (4.3) we can define a map

θk : Ak/Ak−2 → Ak
by θk(πk(ξ)) := qk−1(pk−1(ξ − qk(pk(ξ)))) + qk(pk(ξ)). Then

πk ◦ θk ◦ πk = πk,

i.e. θk is a well defined right inverse of the projection πk.
The proposition follows by induction on k − j for all j < k with the sequence

0→ Aj → Ak → Ak/Aj → 0.

4.2 Known traces on pseudo-differential opera-
tors

Let M be a closed connected manifold of dimension n > 1, and let A ⊆ Cl(M)
be a subset of the whole algebra of ψDOs on M . A trace on A is a map

τ : A → C,

linear in the sense that for all a, b ∈ C, whenever A, B and aA+ bB belong to
A we have

τ(aA+ bB) = a τ(A) + b τ(B),

and such that for any A,B ∈ A, whenever AB,BA ∈ A it satisfies

τ([A,B]) = 0, or equivalently, τ(AB) = τ(BA).
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4.2.1 The L2–trace

A pseudo-differential operator A of order ord(A) < −n is a trace-class operator.
The L2–trace or usual trace is the functional

TrL2 : Cl<−n(M)→ C

A 7→ TrL2(A) :=
∫
M

KA(x, x) dx, (4.5)

where KA is the Schwartz kernel of the operator A. If σ(A) is the symbol of A,
we can also write

TrL2(A) =
1

(2π)n

∫
T∗M

σ(A); (4.6)

the last integral is defined using a finite covering of M , a partition of unity
subordinate to it and the local representation of the symbol, but this definition
is independent of such choices. This trace is continuous for the Fréchet topology
on the space of ψDOs of constant order less than −n.
This is the unique trace on the algebra of smoothing operators Cl−∞(M), since
we have the exact sequence (see [15])

0→ [Cl−∞(M), Cl−∞(M)]→ Cl−∞(M)
TrL2−→ C→ 0.

Equivalently we can say the following

Theorem 4.2.1 (Thm. A.1 in [15]). If R is a smoothing operator then, for
any pseudo-differential idempotent of rank 1, J , there exist smoothing operators
S1, . . . , SN , T1, . . . , TN , such that

R = TrL2(R)J +
N∑
j=1

[Sj , Tj ].

Therefore, any smoothing operator with vanishing L2–trace is a sum of commu-
tators in the space [Cl−∞(M), Cl−∞(M)].

Lemma 4.2.1. Given a real number a with 2a < −n, let α : Cla(M) → C be
any linear functional such that α �Cl<−n(M)= TrL2 . Then α is a trace.

Proof. If Lp denotes the class of operators A such that TrL2(|A|p) < ∞, then

for any T ∈ Lp, S ∈ Lq such that
1
p

+
1
q

= 1, we have TrL2([T, S]) = 0 (see e.g.

Cor. 3.8 in [40]). Let T, S ∈ Cla(M). Since 2a < −n, the operators T, S belong
to L2, and since ord([T, S]) ≤ 2a− 1 < −n− 1, we get

α([T, S]) = TrL2([T, S]) = 0.

Proposition 4.2.1 (See e.g. [25] and Prop. 4.4 in [26]). The trace TrL2 does
not extend to a trace functional neither on the whole algebra Cl(M), nor on the
algebra Cl0(M).
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Remark 4.2.1. We postpone one proof of this proposition to Subsection 5.2.1,
where we study traces defined on operators acting on sections of vector bundles
over the manifold. In Corollary 5.1.1 we refine this result to the algebra Cla(M)
when a ∈ Z is such that 2a ∈ [−n+ 1, 0].

4.2.2 The Wodzicki residue

Considering the symplectic cone T ∗M \ M → S∗M , in Subsection 3.1.1 we
gave the definition of the noncommutative residue at the level of symbols. The
Wodzicki residue (also known as the noncommutative residue or the residual
trace) of an operator A ∈ Cl(M) is defined from the noncommutative residue
of the symbol of A (see [44]):

Res(A) :=
1

(2π)n
res(σ(A)) =

1
(2π)n

∫
M

∫
S∗xM

σ−n(A)(x, ξ)µ(ξ) ∧ dx,

where µ(ξ) is a volume form on S∗xM . This is the unique trace on the whole
algebra of pseudo-differential operators Cl(M) as we can see in [7], [10], [25],
[44]. By definition, this trace vanishes on trace-class ψDOs, non-integer order
ψDOs and differential operators. The continuity of the residual trace for the
Fréchet topology on the space of constant order ψDOs, follows from the fact that
it is defined in terms of a finite number of homogeneous parts of the symbols of
the operators.

4.2.3 The canonical trace

By Corollary 3.1.1 and Proposition 3.1.3, the cut-off regularized integral (see
Subsection 3.1.2) is closed and covariant on CSacc(Rn) for all a /∈ Z∩ [−n,+∞).
As we said in Remark 3.1.5, this allows us to construct the canonical trace on
the space

〈⋃
a/∈Z∩[−n,+∞) Cl

a(M)
〉

.

Proposition 4.2.1 shows that there is no a non-trivial trace on Cl(M) which
extends the L2–trace. However, the L2–trace does extend to non-integer order
operators. Indeed, Kontsevich and Vishik ([23]) constructed a functional, the
canonical trace

TR :

〈 ⋃
a/∈Z∩[−n,+∞)

Cla(M)

〉
→ C

A 7→ TR(A) :=
1

(2π)n

∫
M

dx −
∫
T∗xM

σ(A)(x, ξ)dξ,

where the right hand side is interpreted in the same way as (4.6).

If A ∈ Cla(M), B ∈ Clb(M) and if a, b /∈ Z, then ord(AB) = a + b may be an
integer, so the linear space

〈⋃
a/∈Z∩[−n,+∞) Cl

a(M)
〉

is not an algebra. In spite
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of this, the canonical trace has the following properties (see [23] and Sect. 5 in
[25]):

1. For any A,B ∈
〈⋃

a/∈Z∩[−n,+∞) Cl
a(M)

〉
and for any c ∈ C, such that

ord(cA+B) /∈ Z ∩ [−n,+∞), TR(cA+B) = cTR(A) + TR(B).

2. For any A ∈ Cl(M) such that ord(A) < −n, TR(A) = TrL2(A).

For any elliptic ψDO P ∈ Cl1(M) with positive leading symbol, the canonical
trace satisfies (see (5.2) in [25])

TR(A) = LIM
t→0+

TrL2(Ae−tP ),

where LIM
t→0+

f(t) denotes the constant term in f(t) when t→ 0+.

Lemma 4.2.2. If A,B ∈ Cl(M) are such that ord(A)+ord(B) /∈ Z∩[−n,+∞),
then TR(AB) = TR(BA).

Proof. (see Sect. 4 in [25]) Let P ∈ Cl1(M) be an elliptic ψDO whose leading
symbol is positive and let A ∈ Cla(M), B ∈ Clb(M). We put

∇0
P (B) := B, ∇j+1

P B := [P,∇jPB],

and by induction, for all j ∈ N we have

∇jPB ∈ Cl
b(M).

Then, for N large enough we have the formula

e−tPB =
N−1∑
j=0

(−t)j

j!
(∇jPB)e−tP +RN (t),

where TrL2

(
(RN (t)∗RN (t))1/2

)
= O(t) as t→ 0; therefore

Ae−tPB = ABe−tP +
N−1∑
j=1

(−t)j

j!
A(∇jPB)e−tP +R′N (t).

Thus

TrL2([A,B]e−tP ) = −
N−1∑
j=1

(−t)j

j!
TrL2(A(∇jPB)e−tP ) +O(t), t→ 0.

Since

TrL2(A(∇jPB)e−tP ) ∼
t→0+

∞∑
k=0

(ck + dk log t)tk−(a+b)−n +
∞∑
k=0

ekt
k,
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and

TR([A,B]) = LIM
t→0+

TrL2([A,B]e−tP )

= −LIM
t→0+

∞∑
j=1

(−t)j

j!
TrL2(A(∇jPB)e−tP ), (4.7)

we obtain

TR([A,B]) = 0 whenever a+ b /∈ {−n+ 1,−n+ 2,−n+ 3, . . .}.

In the case that a+ b = −n, the canonical trace is not well-defined on AB.

From the proof of previous lemma we can improve Lemma 4.2.1 in the fol-
lowing way:

Lemma 4.2.3. Given a real number a with 2a− 1 < −n, let α : Cla(M)→ C
be any linear functional such that α �Cl<−n(M)= TrL2 . Then α is a trace.

Proof. Let A,B ∈ Cla(M). Then [A,B] ∈ Cl2a−1(M) ⊂ Cl<−n(M), so [A,B]
is a trace-class operator and TR([A,B]) = TrL2([A,B]). As in the proof of
Lemma 4.2.2, from (4.7) we get

α([A,B]) = TrL2([A,B]) = −LIM
t→0+

∞∑
j=1

(−t)j

j!
TrL2(A(∇jPB)e−tP ) = 0. (4.8)

Remark 4.2.2. From the previous result we conclude that the functional

TrP : Cla(M)→ C
A 7→ TrP (A) := LIM

t→0+
TrL2(Ae−tP ),

defines a trace on Cla(M) when 2a ≤ −n ≤ a, since TrP �Cl<−n(M)= TrL2 . If
we consider another elliptic ψDO Q ∈ Cl1(M) with positive leading symbol,
then (see Prop. 2.2 in [23])

TrP (A)− TrQ(A) = res(A(logQ− logP )).

From this we can deduce that TrP is independent of P whenever A has order
ord(A) /∈ Z ∩ [−n,+∞).

The uniqueness of the canonical trace on its domain is proved in [30] and
[35]. The canonical trace is continuous for the Fréchet topology on the space of
ψDOs of constant order where is well defined.
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4.2.4 Leading symbol traces

In [36] the authors describe some traces on certain spaces of ψDOs in order
to construct characteristic classes of infinite dimensional vector bundles over a
closed manifold, these are the leading symbol traces, defined for a ≤ 0 by using
the leading symbol map:

tra : Cla(M)→ C∞(S∗M)
A 7→ σa(A) �S∗M ,

where σa(A) denotes the leading symbol of the operator A, whose symbol be-
longs to CSa(U) for any local chart U of M .

Lemma 4.2.4 (Lemma 3.1 in [36]). The map tra is linear and for any distri-
bution Λ ∈ D′(S∗M), the map trΛ

a : Cla(M)→ R given by trΛ
a (A) = Λ(tra(A))

is a trace.

Proof. Taking the a−th component of the symbol is a linear application. If
a = 0, since the leading symbol is multiplicative, we get

σa(AB) = σa(A)σa(B) = σa(B)σa(A) = σa(BA). (4.9)

When a < 0, for A,B ∈ Cla(M), the products AB and BA lie in Cl2a(M), so
we have

σa(AB) = 0 = σa(BA).

Remark 4.2.3. If a < 0, for r ∈ [2a, a), trr(A) := σr(A) defines also a trace on
Cla(M), as trr(AB) trivially vanishes for r > 2a, and the proof of the lemma
covers the case r = 2a. In this case if Λ(φ) =

∫
S∗M

φ(x, ξ), these traces are
defined only after a choice of coordinates and a partition of unity on M , since
integrals of non-leading symbols depend on such choices.

Leading symbol traces are continuous for the Fréchet topology on the space
of constant order ψDOs, since they are defined in terms of a finite number of
homogeneous parts of the symbols of the operators.

4.3 Pseudo-differential operators in terms of com-
mutators

In Example 1.1.2 we saw that the cotangent bundle of M without the zero sec-
tion Y := T ∗M \M , is a symplectic cone over the cosphere bundle S∗M , and
we can consider that the symbol of a classical ψDO on M has an asymptotic
expansion whose components are homogeneous functions on Y . In this section
we use the representation of a homogeneous function in terms of Poisson brack-
ets given in (1.58) in order to write a ψDO as a sum of commutators.
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By means of the local representation of the symbol of an operator and the
symplectic form, we can see that the leading symbol of the product of two ψDOs
is the product of the corresponding leading symbols as in (4.9), and that the
leading symbol of a commutator is proportional to the Poisson bracket of the
leading symbols of the corresponding operators (see e.g. Sect. 1.5 in [2]). This
leads to the following theorem, inspired by the proof carried out in [25] in the
case Cl(M), we actually improve Prop. 4.7 in [25] for the case Cl(M), in which
the case when m = 1 is investigated.

Theorem 4.3.1. Let Q ∈ Cl−n(M) be an operator with Res(Q) = 1. For
any real numbers m, s there exist P1, . . . , PN ∈ Clm(M), such that for any
A ∈ Cls(M) there exist Q1, . . . , QN ∈ Cls−m+1(M) and R ∈ Cl−∞(M) such
that

A =
N∑
i=1

[Pi, Qi] + Res(A)Q+R. (4.10)

Proof. We choose P1, . . . , PN ∈ Clm(M) such that either the differentials of
their leading symbols span the cotangent bundle of Y at every point if m 6= 0,
or such that the differentials of their leading symbols restricted to Z span the
cotangent bundle of Z at every point if m = 0. We consider the leading symbol
σs(A) ∈ Ps(Y ) of A. If s 6= −n, then by the first part of (1.58), there exist
Q

(1)
1 , . . . , Q

(1)
N ∈ Cls−m+1(M) such that

A−
N∑
i=1

[Pi, Q
(1)
i ] ∈ Cls−1(M).

If s − 1 6= −n, we iterate the procedure: by the first part of (1.58) there
exist B(1)

1 , . . . , B
(1)
N ∈ Cl(s−1)−m+1(M) such that, if Q(2)

i := Q
(1)
i + B

(1)
i for all

i = 1, . . . , N , then

A−
N∑
i=1

[Pi, Q
(2)
i ] ∈ Cls−2(M).

• If s /∈ {l ∈ Z : l ≥ −n}, then by induction we find operators
Q

(l)
i ∈ Cls−m+1(M) such that

A(l) := A−
N∑
i=1

[Pi, Q
(l)
i ] ∈ Cls−l(M). (4.11)

• If s ∈ {l ∈ Z : l ≥ −n}, then (4.11) holds for l ≤ s + n. After that, since
Res([Pi, Q

(l)
i ]) = 0 for all i = 1, . . . , N and A(s+n) ∈ Cl−n(M), we have

Res
(
A(s+n) − Res(A)Q

)
= 0. (4.12)
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By the second part of (1.58) there existB(s+n)
1 , . . . , B

(s+n)
N ∈ Cl−n−m+1(M)

such that

A(s+n) − Res(A)Q−
N∑
i=1

[Pi, B
(s+n)
i ] ∈ Cl−n−1(M).

Using the first part of (1.58) once again, and by induction we find opera-
tors Q(l)

i ∈ Cls−m+1(M) such that

A(l) := A−
N∑
i=1

[Pi, Q
(l)
i ]− Res(A)Q ∈ Cls−l(M). (4.13)

Now the operators Q(l)
i are constructed as: Q(l)

i =
l−1∑
j=0

B
(j)
i where B(0)

i := Q
(1)
i

and for all j ∈ N, B(j)
i ∈ Cls−j−m+1(M), so by Remark 4.1.1, we can choose

Qi ∈ Cls−m+1(M) with Qi − Q(l)
i ∈ Cls−m+1−l(M) for all l ∈ N. Then we

reach the conclusion.

Remark 4.3.1. Consider an algebra Cla(M) with a ≤ 0. In order to apply
Theorem 4.3.1 to express any element in the algebra as a sum of commutators
of operators in this space, we need that the conditions

s ≤ a, m ≤ a, s−m+ 1 ≤ a

be fulfilled, which only holds when s ≤ 2a − 1. The composition of operators
on the space Cl(M) is given by a product on classical symbols (see [20]), and
therefore, the space Cla(M) is an algebra only when a is an integer and a ≤ 0.
Remark 4.3.2. A particular case of Proposition 4.1.2 is the graded algebra
{Ak}k∈Z,k≤0 with Ak := Clk(M). In this case, the quotient map pk represents
the leading symbol map, so by (1.25), the quotient Ak/Ak−1 can be identified
with Pk(Y ) ∼= C∞(S∗M), the set of homogeneous functions on Y of degree k.
Given an operator in Clk(M), its leading symbol is a well-defined function in
Pk(Y ), and the splitting qk can be constructed after introducing a Riemannian
metric on M , e.g. as in Thm. 3.19 in Chapt. III of [24]. Therefore, given a non
positive integer number a, we can consider the projection map πa:

0→ Cl2a−1(M)→ Cla(M) πa→ Cla(M)/Cl2a−1(M)→ 0, (4.14)

with corresponding splitting θa : Cla(M)/Cl2a−1(M) → Cla(M) constructed
as in Proposition 4.1.2.

For any A ∈ Cla(M), A − θa(πa(A)) ∈ Cl2a−1(M) and by Theorem 4.3.1,
given an operator Q ∈ Cl−n(M) with Res(Q) = 1, there exist operators
P1, . . . , PN , Q1, . . . , QN ∈ Cla(M) and R ∈ Cl−∞(M) such that

A− θa(πa(A)) =
N∑
i=1

[Pi, Qi] + Res(A− θa(πa(A)))Q+R. (4.15)
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4.4 Smoothing operators as sums of commuta-
tors

Theorem 4.2.1 states that if R ∈ Cl−∞(M) is a smoothing operator then, for
any J pseudo-differential idempotent of rank 1, there exist smoothing operators
S1, . . . , SN ′ , T1, . . . , TN ′ , such that

R = TrL2(R)J +
N ′∑
j=1

[Sj , Tj ]. (4.16)

From the Schwartz kernel representation of an operator, it is possible to go fur-
ther and prove that if b ∈ Z ∩ [−n+ 1,+∞), then any smoothing operator can
be written as a sum of commutators of [Cl0(M), Clb(M)].

In Sect. 4 of [37] there is a proof of the representation of a smoothing ψDO
as a sum of commutators. Here we present a similar proof, but unlike the proof
in loc. cit., we base our proof in the following lemma:

Lemma 4.4.1. Let g ∈ C∞(Rn) be a smooth function on Rn and for all
j = 1, . . . , n, let Qj be the operator defined by the kernel

(x, y) 7→ KQj
(x, y) :=

xj − yj
|x− y|2

g(x).

Then Qj is a classical pseudo-differential operator on Rn of order −n+ 1.

Proof. Consider the function

f(y) :=
yj
|y|2

= ∂yj
(log |y|),

that belongs to C∞(Rn \ 0) and is positively homogeneous of degree −1. Since
f is locally integrable in Rn \ 0, it defines a distribution homogeneous of degree
−1 (see Def. 3.2.2 in [19]). Then by Thms. 7.1.18 and 7.1.16 in [19], its Fourier
transform f̂ is a homogeneous distribution of degree −n + 1 in Rn which is
smooth in Rn \ 0.
For all u ∈ C∞c (Rn), we understand the following integral as a distribution:

Qju(x) =
∫

Rn

KQj (x, y)u(y)dy

=
∫

Rn

g(x)f(x− y)u(y)dy

= g(x)
∫

Rn

f(x− y)u(y)dy

= g(x)(f ∗ u)(x),

where f ∗u denotes the convolution product between f and u. Therefore, Qj is a
linear operator from C∞c (Rn) to C∞(Rn). Let ψ be a cut-off function which is 0
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for |ξ| ≤ 1
4 and which is 1 for |ξ| ≥ 1

2 . Then Qj is a pseudo-differential operator
with symbol g(x)ψ(ξ)f̂(ξ), and since this function is positively homogeneous of
degree −n+1 outside a neighborhood of 0, Qj is a classical ψDO of order −n+1
as we claimed.

In the following, for all j = 1, . . . , n, Op(xj) denotes the operator multipli-
cation by xj (see Definition 4.1.1).

Lemma 4.4.2 (See Lemma 4.1 in [37]). Any smoothing operator R ∈ Cl−∞(Rn)
can be written as a finite sum of commutators

R =
n∑
j=1

[Op(xj), Bj ]

with Bj ∈ Cl−n+1(Rn).

Proof. A smoothing operator R has smooth kernel KR(x, y), and therefore,
KR(x, y) − KR(x, x) is smooth and vanishes on the diagonal. It follows that
there are smooth functions K1, . . . ,Kn such that (see Thm. 1.1.9 in [19])

KR(x, y) = KR(x, x) +
n∑
j=1

(xj − yj)Kj(x, y).

Let Q be the operator defined by the kernel

KQ(x, y) = KR(x, x),

and let Rj be the smoothing operators defined by the kernels Kj(x, y), then

R = Q+
n∑
j=1

[Op(xj), Rj ].

Set Hj(x, y) :=
yj
|y|2

KR(x, x) and let Qj be the operator with kernel

(x, y) 7→ Hj(x, x− y).

By Lemma 4.4.1, Qj is a classical pseudo-differential operator of order −n+ 1.
Since

n∑
j=1

(xj − yj)Hj(x, x− y) =
n∑
j=1

(xj − yj)2

|x− y|2
KR(x, x)

= KR(x, x)
= KQ(x, y),

it follows that

Q =
n∑
j=1

[Op(xj), Qj ].

Since the operators Rj are smoothing and Qj are of order −n+ 1, the result of
the lemma follows with Bj := Rj +Qj ∈ Cl−n+1(Rn).
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Proposition 4.4.1 (See Prop. 4.2 in [37]). Let b ∈ Z ∩ [−n + 1,+∞). Any
R ∈ Cl−∞(M) belongs to [Cl0(M), Clb(M)].

Proof. Let U ⊆ Rn be an open set and let R ∈ Cl−∞comp(U) be a smoothing
operator with compactly supported Schwartz kernel KR ∈ C∞c (U × U). Let
ψ ∈ C∞c (U) be such that ψ(x)ψ(y) = 1 near the support of the kernel of R,
then ψRψ = R; in fact, for any u ∈ C∞c (U) we have

ψRψu(x) = ψ(x)
∫
U

KR(x, y)ψ(y)u(y)dy

=
∫
U

KR(x, y)ψ(x)ψ(y)u(y)dy

=
∫
U

KR(x, y)u(y)dy

= Ru(x).

By Lemma 4.4.2 there exist Pi ∈ Clb(U) such that R =
∑n
i=1[Op(xi), Pi]. Let

χ ∈ C∞c (U) be such that χ = 1 near supp(ψ). Then we have

ψ[Op(xi), Pi]ψ = Op(xi)χψPiψ − ψPiψOp(xi)χ = [Op(xi)χ, ψPiψ],

so we get

R =
n∑
i=1

[Op(xiχ), ψPiψ], (4.17)

where Op(xiχ) denotes the multiplication by the function xiχ ∈ C∞c (U), and
the operator ψPiψ belongs to Clbcomp(U).
Now let (ϕj) ⊂ C∞(M) be a partition of unity subordinate to an open covering
(Uj) of M by local coordinate charts. For each index j let ψj ∈ C∞c (Uj) be such
that ψj = 1 near supp(ϕj). Then for any R ∈ Cl−∞(M) we have

R =
N∑
j=1

ϕjRψj +
N∑
j=1

ϕjR(1− ψj). (4.18)

For each index j the operator ϕjRψj belongs to Cl−∞comp(Uj), so by the previous
argument it can be written as a sum of commutators of the form (4.17). More-
over, the operator S :=

∑N
j=1 ϕjR(1−ψj) is smoothing and has Schwartz kernel

that vanishes on the diagonal, so its L2–trace vanishes and by Theorem 4.2.1
it can be written as a sum of commutators in [Cl−∞(M), Cl−∞(M)]. Hence R
belongs to the space [Cl0(M), Clb(M)].



Chapter 5

Classification of Traces and
Associated Determinants

In this chapter we use the representation of a pseudo-differential operator as a
sum of commutators given in Chapter 4, to classify the traces on algebras of non
positive order classical pseudo-differential operators on a closed manifold M of
dimension n > 1 (Theorem 5.1.1 and Corollary 5.1.2). From this we deduce a
classification of traces on operators acting on sections of a vector bundle over the
manifold. We also show that any trace on the algebra of odd-class operators of
non positive even order in odd dimensions is a linear combination of a generalized
leading symbol trace and the canonical trace (Theorem 5.1.2). The classification
of traces on algebras of non positive order classical pseudo-differential operators
induces a related classification of multiplicative determinants on the Fréchet-Lie
group of invertible operators corresponding to those algebras, that we describe
at the end of the chapter (Proposition 5.3.3). Along the chapter, M denotes a
closed smooth manifold of dimension n > 1.

5.1 Traces on Cla(M) for a ≤ 0

In [28] (see also [45]), there is a homological proof of the classification of the
traces on the algebra Cl0(M), which shows that any trace on this algebra can
be written as a linear combination of a leading symbol trace and the residual
trace. We address the issue of the classification of traces on Cla(M) for a neg-
ative integer a. In Proposition 5.1.1 we prove the key fact that allows us to
conclude that the L2–trace does not extend to a trace functional on Cla(M)
for an integer a such that 2a ∈ [−n + 1, 0]. We show that traces on Cla(M)
can be written either as a linear combination of a generalized leading symbol
trace and the residual trace, or as a linear combination of a generalized leading
symbol trace and a linear extension of the L2–trace, depending on the value of a.

81
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5.1.1 No non-trivial extension of the L2–trace to Cla(M)

As was shown in Subsection 4.2.1, there is a unique trace on the algebra of
smoothing operators: the L2–trace TrL2 . Hence, for any a ≤ 0, the restriction
Λ �Cl−∞(M) of any trace Λ : Cla(M)→ C, is proportional to TrL2 , i.e.

∃ c ∈ C : Λ(R) = c TrL2(R), ∀R ∈ Cl−∞(M). (5.1)

We now address the following problem: for which values of a ≤ 0, does c vanish?.

Certainly this is not the case for a < −n, since an operator of order a < −n
is trace-class, or for a /∈ Z, since the canonical trace satisfies (5.1) with c = 1.
Using the results in Chapter 2, we prove that c vanishes when a ∈ Z is such
that 2a ∈ [−n+ 1, 0].

Lemma 5.1.1. For any a ∈ R there exists an inclusion map

[Cl0(M), Cl2a(M)] ↪→ [Cla(M), Cla(M)],

meaning that any commutator in [Cl0(M), Cl2a(M)] can be written as a sum of
commutators in [Cla(M), Cla(M)].

Proof. Let A ∈ Cl0(M), B ∈ Cl2a(M). Consider a Laplacian operator ∆
and the second order elliptic operator (1 + ∆). For any a ∈ R, (1 + ∆)a/2

and (1 + ∆)−a/2 are operators of order a and −a, respectively, and therefore
A(1 + ∆)a/2, (1 + ∆)a/2A, (1 + ∆)a/2, B(1 + ∆)−a/2, (1 + ∆)−a/2B,
AB(1 + ∆)−a/2, (1 + ∆)−a/2BA are operators in Cla(M). Moreover,

[A(1 + ∆)a/2, (1 + ∆)−a/2B] = AB − (1 + ∆)−a/2BA(1 + ∆)a/2, (5.2)

[(1 + ∆)a/2A,B(1 + ∆)−a/2] = (1 + ∆)a/2AB(1 + ∆)−a/2 −BA, (5.3)

[AB(1 + ∆)−a/2, (1 + ∆)a/2] = AB − (1 + ∆)a/2AB(1 + ∆)−a/2, (5.4)

[(1 + ∆)−a/2BA, (1 + ∆)a/2] = (1 + ∆)−a/2BA(1 + ∆)a/2 −BA. (5.5)

Adding up the expressions in (5.2), (5.3), (5.4) and (5.5) yields twice the commu-
tator [A,B], so that the resulting expression belongs to the space of commutators
[Cla(M), Cla(M)].

We will need the following (we use the notation of Definition 4.1.1):

Lemma 5.1.2 (Thm. 18.1.6 in [20]). For any σ ∈ CS(Rn) and for all
k = 1, . . . , n,

Op(∂ξk
σ) = −i[Op(xk),Op(σ)], (5.6)

where as before, Op(xk) denotes the operator multiplication by xk.
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Proof. For any f ∈ S(Rn) and for any x ∈ Rn we have

Op(∂ξk
σ)(f)(x) =

∫
Rn

eix·ξ∂ξk
σ(x, ξ)f̂(ξ)dξ

=
∫

Rn

∂ξk

(
eix·ξσ(x, ξ)f̂(ξ)

)
dξ −

∫
Rn

σ(x, ξ)∂ξk

(
eix·ξ f̂(ξ)

)
dξ

= A(x)− i
∫

Rn

σ(x, ξ)eix·ξ
(
xkf̂(ξ)dξ − x̂kf(ξ)

)
dξ

= A(x)− ixk Op(σ)(f)(x) + iOp(σ)(xkf)(x)
= A(x)− iOp(xk) Op(σ)(f)(x) + iOp(σ) Op(xk)(f)(x)
= A(x)− i[Op(xk),Op(σ)](f)(x).

The term
A(x) :=

∫
Rn

∂ξk

(
eix·ξσ(x, ξ)f̂(ξ)

)
dξ

vanishes for all x ∈ Rn: if we denote by dξ := dξ1 ∧ . . . ∧ d̂ξk ∧ . . . ∧ dξn, then

|A(x)| ≤
∫

Rn−1

∣∣∣∣∫
R
∂ξk

(
eix·ξσ(x, ξ)f̂(ξ)

)
dξk

∣∣∣∣ dξ
=
∫

Rn−1

(
lim
R→∞

∣∣∣∣σ(x, ξ)f̂(ξ)
∣∣∣
ξk=R

∣∣∣∣− lim
R→∞

∣∣∣∣σ(x, ξ)f̂(ξ)
∣∣∣
ξk=−R

∣∣∣∣) dξ
= 0,

since f̂ lies in S(Rn). Then for all k = 1, . . . , n, Op(∂ξk
σ) = −i[Op(xk),Op(σ)].

In the following we use the notation of Section 2.3 and Section 4.1.
Remember that by CSacomp(U) we denote the set of classical symbols of order
a on U with x–compact support, and Clacomp(U) denotes the space of classical
ψDOs of order a on U whose Schwartz kernel has compact support on U × U .

Proposition 5.1.1. Let a ∈ Z be such that 2a ∈ [−n + 1, 0]. For any trace Λ
on Cla(M) the constant c in (5.1) vanishes.

Proof. Let (U, x1, . . . , xn) be a local coordinate chart of M . For any symbol
σ ∈ CSacomp(U), the canonical operator Op(σ) associated to σ is a linear op-
erator that maps the space C∞c (U) to C∞c (U). However, we cannot say that
Op(σ) ∈ Clacomp(U), since its Schwartz kernel has x–compact support but not
necessarily y–compact support.
Remark 5.1.1. Any operator in Clacomp(U) can be extended by zero to an oper-
ator in Cla(M) (the new operator vanishes outside U), and we have the natural
inclusion Clacomp(U) ⊂ Cla(M).
Let τ ∈ CS−∞cc (Rn) be a smoothing symbol such that

∫
Rn τ(ξ)dξ 6= 0. By

Proposition 3.2.2 there exist τ1, . . . , τn ∈ CS2a
cc (Rn) such that

τ =
n∑
k=1

∂ξk
τk. (5.7)
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Remark 5.1.2. Since the symbol τ has non-vanishing integral, one at least of
the symbols τk does not lie in CS−∞cc (Rn).
Choose a smooth function f ∈ C∞c (U) with compact support on U such that∫
U
f(x)dx 6= 0. Then σ := f ⊗ τ ∈ CS−∞comp(U), defined by σ(x, ξ) := f(x)τ(ξ),

is a smoothing symbol with x–compact support on U , and

σ = f ⊗ τ = f ⊗
n∑
k=1

∂ξk
τk =

n∑
k=1

∂ξk
(f ⊗ τk)

is such that ∫
U×Rn

σ(x, ξ)dξ dx 6= 0. (5.8)

By Lemma 5.1.2,

Op(σ) =
n∑
k=1

Op(∂ξk
(f ⊗ τk)) = −i

n∑
k=1

[Op(xk),Op(f ⊗ τk)]. (5.9)

Let ψ ∈ C∞c (U) be a function such that ψ = 1 near the support of f ; then
ψf = f on U . Moreover, for all k = 1, . . . , n,

[Op(xk),Op(f ⊗ τk)] Op(ψ) = [Op(xk),Op(f ⊗ τk) Op(ψ)]
= [Op(xk),Op(ψf ⊗ τk) Op(ψ)]
= [Op(xk),Op(ψ) Op(f ⊗ τk) Op(ψ)]
= Op(xk) Op(ψ) Op(f ⊗ τk) Op(ψ)−Op(ψ) Op(f ⊗ τk) Op(ψ) Op(xk)
= Op(xk) Op(ψ) Op(f ⊗ τk) Op(ψ)−Op(f ⊗ τk) Op(ψ) Op(xk) Op(ψ)

+ Op(f ⊗ τk) Op(ψ) Op(xk) Op(ψ)−Op(ψ) Op(f ⊗ τk) Op(ψ) Op(xk)
= [Op(xk) Op(ψ),Op(f ⊗ τk) Op(ψ)] +Ak

= [Op(ψxk),Op(f ⊗ τk) Op(ψ)] +Ak, (5.10)

where we use that the operator Op(xk) commutes with the operator multipli-
cation by ψ, Op(ψ), and where the operator Ak is defined by

Ak := Op(f ⊗ τk) Op(ψ) Op(xk) Op(ψ)−Op(ψ) Op(f ⊗ τk) Op(ψ) Op(xk)
= Op(f ⊗ τk) Op(ψ) Op(xk)(Op(ψ)− 1). (5.11)

Remark. If σ ∈ CSacomp(U) the Schwartz kernel of the operator Op(σ) Op(ψ) is
given by

KOp(σ) Op(ψ)(x, y) = KOp(σ)(x, y)ψ(y);

so it has compact support on U ×U and hence Op(σ) Op(ψ) lies in Clacomp(U).

Since f ⊗ τk ∈ CS2a
comp(U), the operator Op(f ⊗ τk) Op(ψ) lies in Cl2acomp(U);

similarly, ψxk ∈ CS0
comp(U) and the operator multiplication by ψxk: Op(ψxk)

lies in Cl0comp(U).
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Let Λ be a trace on Cla(M). By Lemma 5.1.1, Λ vanishes on [Cl0(M), Cl2a(M)],
and by Remark 5.1.1, Λ vanishes on [Cl0comp(U), Cl2acomp(U)]. In particular, for
all k = 1, . . . , n,

Λ([Op(ψxk),Op(f ⊗ τk) Op(ψ)]) = 0.

Now, since ψ = 1 near the support of f , by (5.11) the operator Ak is smoothing
and its Schwartz kernel vanishes on the diagonal. Hence, by (4.5) its L2–trace
vanishes and by Theorem 4.2.1 Ak can be written as a sum of commutators in
[Cl−∞(M), Cl−∞(M)], and therefore, for all k = 1, . . . , n, Λ(Ak) = 0.

Thus, for Op(σ) Op(ψ) ∈ Cl−∞comp(U), from (5.9) and (5.10) we conclude that,

Λ(Op(σ) Op(ψ)) = −i
n∑
k=1

Λ([Op(xk),Op(f ⊗ τk)] Op(ψ))

= −i
n∑
k=1

(Λ([Op(ψxk),Op(f ⊗ τk) Op(ψ)]) + Λ(Ak))

= 0. (5.12)

On the other hand, by (4.6) and (5.1),

Λ(Op(σ) Op(ψ)) = c TrL2(Op(σ) Op(ψ)) = c

∫
U×Rn

σ(x, ξ)dξ dx. (5.13)

Therefore, by (5.12) we obtain

c TrL2(Op(σ) Op(ψ)) = Λ(Op(σ) Op(ψ)) = 0,

which, by (5.8) implies that c = 0.

Remark 5.1.3. As a consequence of this proposition, by (5.1) whenever a ∈ Z is
such that 2a ∈ [−n+1, 0], any trace on Cla(M) vanishes on smoothing operators
on M .

Corollary 5.1.1. If a ∈ Z is such that 2a ∈ [−n+ 1, 0], the trace TrL2 does not
extend to a trace functional on the algebra Cla(M).

5.1.2 Generalized leading symbol traces

In Subsection 4.2.4 we studied the leading symbol traces defined on an algebra of
operators Cla(M) for a ≤ 0; in this section we consider a more general definition
which actually coincides with a leading symbol trace for a = 0. As in Section
4.3, for a non positive integer order a we consider the projection map πa:

0→ Cl2a−1(M)→ Cla(M) πa→ Cla(M)/Cl2a−1(M)→ 0. (5.14)

Lemma 5.1.3. Any continuous linear map λ on Cla(M)/Cl2a−1(M) defines a
trace on Cla(M) by λ ◦ πa called generalized leading symbol trace.
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Proof. If A,B ∈ Cla(M), their commutator [A,B] belongs to Cl2a−1(M), and
since λ ◦ πa vanishes on Cl2a−1(M), this is a trace on Cla(M).

By Proposition 4.1.2 and Remark 4.3.2, λ is a map on

Cla(M)/Cl2a−1(M) ∼= Pa(Y )⊕ . . .⊕ P2a(Y ). (5.15)

By (1.25) it follows that Pk(Y ) ∼= C∞(S∗M) for any k = a, a− 1, . . . , 2a.

For A ∈ Cla(M), λ(πa(A)) depends on σa(A), . . . , σ2a(A), where σa−i(A) rep-
resents the homogeneous component of degree a− i in the asymptotic expansion
of the symbol of A. Since λ◦πa is linear in A, it is a linear combination of linear
maps λa−i on S∗M , in the terms σa−i(A), hence it reads,

λ(πa(A)) =
|a|∑
i=0

λa−i(σa−i(A)).

Generalized leading symbol traces are continuous for the Fréchet topology on
the space of constant order ψDOs, since they are defined in terms of a finite
number of homogeneous parts of the symbols of the operators.

5.1.3 Classification of traces on Cla(M)

Now we can give the classification of traces on the algebra of operators Cla(M)
for a non positive integer a, using the representation of a classical ψDO given
in Section 4.3. We choose a linear functional T̃ra : Cla(M)→ C as follows:

T̃ra =

{
trace on Cla(M) that extends TrL2 , if it exists,
0, if such an extension does not exist.

Theorem 5.1.1. Let a ∈ Z be such that a ≤ 0 and let τ be a trace on Cla(M).
There exist constants c1, c2 ∈ C and a linear map λ on Cla(M)/Cl2a−1(M)
such that τ can be expressed in the form

τ = λ ◦ πa + c1 Res + c2 T̃ra. (5.16)

Proof. For any A ∈ Cla(M), Equation (4.15) reads

A− θa(πa(A)) =
N∑
i=1

[Pi, Qi] + Res(A− θa(πa(A)))Q+R, (5.17)

where Pi, Qi ∈ Cla(M), Q ∈ Cl−n(M) has Res(Q) = 1 and R ∈ Cl−∞(M).
Applying T̃ra to both sides of (5.17), for all i = 1, . . . , N , T̃ra([Pi, Qi]) = 0 and
hence

T̃ra(A− θa(πa(A)))−Res(A− θa(πa(A)))T̃ra(Q) = T̃ra(R) = TrL2(R). (5.18)
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Therefore, by Theorem 4.2.1 and (5.18), for any pseudo-differential idempotent
of rank 1, J , there exist smoothing operators S1, . . . , SN ′ , T1, . . . , TN ′ , such that
(5.17) becomes

A− θa(πa(A)) =
N∑
i=1

[Pi, Qi] + Res(A− θa(πa(A)))Q+ TrL2(R)J +
N ′∑
j=1

[Sj , Tj ],

(5.19)
where TrL2(R) = T̃ra(A− θa(πa(A)))− Res(A− θa(πa(A)))T̃ra(Q).
Applying τ to both sides of (5.19) we have

τ(A) = τ(θa(πa(A))) + Res(A− θa(πa(A)))τ(Q) + TrL2(R)τ(J)

= τ(θa(πa(A)))− Res(θa(πa(A)))τ(Q)− T̃ra(θa(πa(A)))τ(J)

+ Res(θa(πa(A)))T̃ra(Q)τ(J) + Res(A)
(
τ(Q)− T̃ra(Q)τ(J)

)
+ T̃ra(A)τ(J).

If c1 := τ(Q) − T̃ra(Q)τ(J), and c2 := τ(J), denoting by λ the linear map on
Cla(M)/Cl2a−1(M):

λ := τ ◦ θa − c1 Res ◦θa − c2T̃ra ◦ θa, (5.20)

we obtain
τ(A) = λ(πa(A)) + c1 Res(A) + c2T̃ra(A). (5.21)

Remark 5.1.4. Notice that we can fix the operators P1, . . . , PN , Q and J from
the beginning. The constants c1 and c2 depend on the choice of Q and J . A
priori λ depends on the choice of splitting θa, however, if we choose another
splitting θ′, the difference between the expressions in (5.21) for θa and for θ′a
yields

λ(πa(A)) = λ′(πa(A)),

so the expression in (5.16) is independent of the choice of splitting θa.

Remark 5.1.5. If the trace τ is continuous for the Fréchet topology of Cla(M),
we can choose T̃ra continuous for the same topology so that λ ◦ πa is also
continuous as the linear combination in (5.20).

Corollary 5.1.2. Let a ∈ Z be such that a ≤ 0 and let τ : Cla(M) → C be a
trace. Then

1. If −n + 1 ≤ 2a ≤ 0, τ is a linear combination of a generalized leading
symbol trace and the residual trace.

2. If a < −n, τ is a linear combination of a generalized leading symbol trace
and the L2–trace.
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3. If 2a ≤ −n ≤ a, τ is a linear combination of a generalized leading symbol
trace and a linear extension of the L2–trace.

Proof. 1. If −n + 1 ≤ 2a ≤ 0, we can use Proposition 5.1.1 or Proposition
4.4.1 to show that T̃ra ≡ 0. Note that Proposition 4.2.1 yields this result
for a = 0. Therefore, there exists a constant c ∈ C such that (5.16) reads

τ = λ ◦ πa + cRes .

For a = 0, this confirms the corresponding result in [28] (see also [45]).

2. If a < −n, the residual trace vanishes on Cla(M) and T̃ra = TrL2 . There-
fore, there exists a constant c ∈ C such that (5.16) reads

τ = λ ◦ πa + cTrL2 .

3. If 2a ≤ −n ≤ a, we consider Cl2a−1(M) as a linear subspace of Cla(M).
Let {pj}j∈N be a countable family of semi-norms on Cla(M). Since TrL2

is a linear form on Cl2a−1(M), continuous for the Fréchet topology of
Cl2a−1(M), TrL2 is also continuous for the Fréchet topology of Cla(M)
(see Section 4.1, or [13]), that is, for any A ∈ Cl2a−1(M), for all j ∈ N,

|TrL2(A)| ≤ pj(A).

By the Hahn-Banach Theorem (see e.g. Thm. 18.1 in [42]), there exists a
linear form α on Cla(M), extending TrL2 , i.e. such that

∀A ∈ Cl2a−1(M), α(A) = TrL2(A), and furthermore, |α(A)| ≤ pj(A).

Lemma 4.2.3 states that T̃ra is any such a linear form α. Therefore, there
exists a constant c ∈ C such that (5.16) reads

τ = λ ◦ πa + c α.

Remark 5.1.6. If 2a ≤ −n ≤ a, Res is a non-trivial trace on Cla(M); for
any A ∈ Cla(M), Res(A − θa(πa(A))) = 0, but Res(A) is not necessarily 0.
Considering τ = Res in the previous corollary, we get c = Res(J) = 0, and
Res = (Res ◦ θa) ◦ πa.

5.1.4 Classification of traces on Cl(odd),a(M)

Associated to the odd-class symbols defined in Section 3.4, we consider the set
Cl(odd)(M) of odd-class operators on the manifold M . The canonical trace de-
fined in Subsection 4.2.3 is the unique trace on Cl(odd)(M) when the dimension
of the manifold is odd (see [30], [35]). In this section we assume that the dimen-
sion n is odd, and we prove that any trace on the algebra of odd-class operators
of negative even order is a linear combination of a generalized leading symbol
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trace and the canonical trace.

The following lemma implies that Cl(odd)(M) is an algebra (see Sect. 4 in
[23]):

Lemma 5.1.4. Let A ∈ Cl(odd),a(M) and B ∈ Cl(odd),b(M), a, b ∈ Z. Then
AB ∈ Cl(odd),a+b(M). If besides B is an invertible elliptic operator, then
B−1 ∈ Cl(odd),−b(M) and AB−1 ∈ Cl(odd),a−b(M).

We also have Lemma 5.1.1 in the case of odd-class operators:

Lemma 5.1.5. If a ∈ Z is even, then there exists an inclusion map

[Cl(odd),0(M), Cl(odd),2a(M)] ↪→ [Cl(odd),a(M), Cl(odd),a(M)],

meaning that any commutator in [Cl(odd),0(M), Cl(odd),2a(M)] can be written
as a sum of commutators in [Cl(odd),a(M), Cl(odd),a(M)].

Proof. Differential operators are examples of odd-class operators, then Lemma
5.1.4 implies that integer powers of an invertible Laplacian operator (as the one
used in the proof of Lemma 5.1.1) are odd-class operators. Hence we proceed
as in the proof of Lemma 5.1.1.

As in Chapter 4, for a non positive integer a we consider the projection map πa:

Cl(odd),a(M) πa→ Cl(odd),a(M)/Cl(odd),2a−1(M), (5.22)

with corresponding splitting θa : Cl(odd),a(M)/Cl(odd),2a−1(M)→ Cl(odd),a(M),
and hence for any A ∈ Cl(odd),a(M), A− θa(πa(A)) ∈ Cl(odd),2a−1(M).

We would like to classify traces on Cl(odd),a(M) as we did in the previous
section for the algebra Cla(M); however we cannot apply Theorem 4.3.1 directly
to the operator A − θa(πa(A)) as in the proof of Theorem 5.1.1, since we do
not know if (1.58) holds in the set of odd functions, but we still can conclude a
classification of traces on Cl(odd),a(M) for a ∈ Z even and such that a ≤ 0.

Theorem 5.1.2. If a ∈ Z is even and a ≤ 0, any trace on Cl(odd),a(M) can
be written as a linear combination of a generalized leading symbol trace and the
canonical trace.

Proof. Let A ∈ Cl(odd),a(M). Locally, for a chart U of M , the symbol of
A−θa(πa(A)) belongs to CS(odd),2a−1(U), then by Proposition 3.4.2 there exist
τi in CS(odd),2a(U) such that

σ(A− θa(πa(A))) ∼
n∑
i=1

∂ξi
τi.

By Lemma 5.1.2, on U we get

A− θa(πa(A)) ∼
n∑
i=1

[Op(xi),Op(τi)],
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where [Op(xi),Op(τi)] ∈ [Cl(odd),0(U), Cl(odd),2a(U)]. Using a partition of unity
subordinate to an open cover of M and multiplying by appropriate cut-off func-
tions as in the proof of Proposition 4.4.1 and Proposition 5.1.1, one proves the
existence of operators Bi ∈ Cl(odd),0(M), Ci ∈ Cl(odd),2a(M), and of a smooth-
ing operator R such that

A− θa(πa(A)) =
n∑
i=1

[Bi, Ci] +R. (5.23)

By Lemma 5.1.5, there exist operators D1, . . . , DN , E1, . . . , EN ∈ Cl(odd),a(M),
such that

A− θa(πa(A)) =
N∑
k=1

[Dk, Ek] +R. (5.24)

Applying TR to both sides of (5.24) yields

TR(A− θa(πa(A))) =
N∑
k=1

TR([Dk, Ek]) + TR(R) = TrL2(R). (5.25)

Hence, as in the proof of Theorem 5.1.1, for any J pseudo-differential idempotent
of rank 1, there exist smoothing operators S1, . . . , SN ′ , T1, . . . , TN ′ , such that
(5.24) becomes

A− θa(πa(A)) =
N∑
k=1

[Dk, Ek] + TR(A− θa(πa(A)))J +
N ′∑
j=1

[Sj , Tj ]. (5.26)

Let τ : Cl(odd),a(M) → C be a trace on Cl(odd),a(M). If we apply τ to both
sides of (5.26) we get

τ(A) = τ(θa(πa(A))) + TR(A− θa(πa(A)))τ(J) (5.27)
= τ(θa(πa(A)))− TR(θa(πa(A)))τ(J) + TR(A)τ(J). (5.28)

So, as in the proof of Theorem 5.1.1, we conclude that τ is a linear combination
of a generalized leading symbol trace and the canonical trace.

5.2 Traces on operators acting on sections of
vector bundles

An operator acting on sections of a vector bundle over a closed manifold M of
dimension n > 1, can be seen as a matrix of operators on the manifold. In this
section we study traces defined on matrices with coefficients in an algebra A over
C. When the algebra is unital, we obtain a characterization of any trace on that
space of matrices; however, when the algebra is non-unital we cannot conclude a
similar result. We apply this to the case of pseudo-differential operators acting
on sections of a vector bundle, first in the case that the vector bundle is trivial
and then in the general case.
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5.2.1 Trivial vector bundles

Given a closed manifold M , any classical ψDO of order a acting on the sections
of a trivial vector bundle M × CN over M , can be seen as an N × N matrix
whose entries are classical ψDOs of order a on M (see Section 4.1). To give
a classification of the traces on those operators, we study a more general case
of traces on the space MN (A) of N × N matrices, whose entries belong to an
algebra A over C.

Consider the space MN (C) of N × N matrices with coefficients in C. For
all i, j = 1, . . . , N , we denote by Eij the elementary matrix in MN (C) with 1
in the (i, j)–position and 0 everywhere else. The matrices Eij form a basis of
MN (C) and we have

1. Eii − Ejj = [Eij , Eji].

2. If i 6= j then Eij = [Eij , Ejj ].

Let us denote by tr the unique trace on the algebra MN (C) such that for all
i = 1, . . . , N , tr(Eii) = 1.

Let A be an algebra over C. We will use the following isomorphism that
gives an identification of MN (A) with A⊗MN (C):

φ : MN (A)→ A⊗MN (C)

A := (Aij)i,j 7→ φ(A) :=
N∑

i,j=1

Aij ⊗ Eij ,

Definition 5.2.1. A trace on MN (A) is a linear map ϕ : MN (A) → C such
that for any X,Y ∈MN (A) it satisfies

ϕ([X,Y ]) = 0.

Lemma 5.2.1. Let A be a unital algebra and let ϕ : A ⊗MN (C) → C be a
bilinear map. The following are equivalent

1. For all x, y ∈ A, P,Q ∈MN (C), ϕ([x⊗ P, y ⊗Q]) = 0.

2. For all x, y ∈ A, P,Q ∈MN (C), ϕ([x, y]⊗ P ) = 0 and ϕ(x⊗ [P,Q]) = 0.

Remark 5.2.1. This implies that when the algebra A is unital, any bilinear map
on A⊗MN (C) that satisfies the second condition, yields a trace on MN (A).

Proof. It is enough to express the elements on which ϕ vanishes in the first item
in terms of the elements on which ϕ vanishes in the second item and vice versa.
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1 .⇒ 2 . Any element of the form [x, y] ⊗ P or x ⊗ [P,Q] can be written as com-
mutators [a⊗A, b⊗B] for some a, b ∈ A, and A,B ∈MN (C):
Since MN (C) is a unital algebra with unit 1N , we have

[x, y]⊗ P = xy ⊗ P − yx⊗ P
= xy ⊗ P1N − yx⊗ 1NP
= (x⊗ P )(y ⊗ 1N )− (y ⊗ 1N )(x⊗ P )
= [x⊗ P, y ⊗ 1N ]. (5.29)

Note that for this we do not need A to be unital.
Similarly, if A is a unital algebra with unit 1A, we have

x⊗ [P,Q] = x⊗ PQ− x⊗QP
= x1A ⊗ PQ− 1Ax⊗QP
= (x⊗ P )(1A ⊗Q)− (1A ⊗Q)(x⊗ P )
= [x⊗ P, 1A ⊗Q]. (5.30)

2 .⇒ 1 . Any commutator [x⊗ P, y ⊗Q] ∈ A ⊗MN (C) can be written as a linear
combination of elements of the form [a, b]⊗A and a⊗ [A,B] for a, b ∈ A,
and A,B ∈MN (C): If P = (Pij)i,j , Q = (Qij)i,j ∈MN (C)

[x⊗ P, y ⊗Q] = (x⊗ P )(y ⊗Q)− (y ⊗Q)(x⊗ P )
= xy ⊗ PQ− yx⊗QP

=
N∑

i,k=1

PikQki(xy ⊗ Eii) +
N∑

i,j,k=1
i 6=j

PikQkj(xy ⊗ [Eij , Ejj ])

−
N∑

i,k=1

QikPki(yx⊗ Eii)−
N∑

i,j,k=1
i6=j

QikPkj(yx⊗ [Eij , Ejj ])

=
N∑

i,k=1

PikQki([x, y]⊗ Eii) +
N∑

i,j,k=1
i 6=j

PikQkj(xy ⊗ [Eij , Ejj ])

−
N∑

i,j,k=1
i 6=j

QikPkj(yx⊗ [Eij , Ejj ]).

For any f ∈ A∗, g ∈ (MN (C))∗, consider the linear map f ⊗ g ∈ (A⊗MN (C))∗

defined by

A⊗MN (C)→ C
x⊗ P 7→ (f ⊗ g)(x⊗ P ) := f(x)g(P ).
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Lemma 5.2.2. Given any trace τ on A, the linear map ϕ := (τ ⊗ tr) ◦ φ is a
trace on MN (A).

Proof. The linearity of ϕ holds from its definition and the linearity of τ and tr.
If A = (Aij)i,j , B = (Bij)i,j ∈MN (A), then their commutator
C = [A,B] = (Cij)i,j ∈MN (A) is given by the following:

Cij =
N∑
k=1

(AikBkj −BikAkj), ∀ i, j = 1, . . . , N

and it satisfies
N∑
i=1

Cii =
N∑
i=1

N∑
k=1

[Aik, Bki].

Then

φ([A,B]) =
N∑

i,j=1

Cij ⊗ Eij

=
N∑
i=1

N∑
k=1

[Aik, Bki]⊗ Eii +
N∑

i,j=1
i 6=j

Cij ⊗ [Eij , Ejj ].

For any A,B ∈MN (A) we have

ϕ([A,B]) = (τ ⊗ tr) ◦ φ([A,B])

=
N∑
i=1

N∑
k=1

τ([Aik, Bki]) tr(Eii) +
N∑

i,j=1
i 6=j

τ(Cij) tr([Eij , Ejj ])

= 0.

Let us consider the case when A is unital.

Lemma 5.2.3. Given any trace ϕ on A⊗MN (C), there exists a trace τ on A
such that ϕ = τ ⊗ tr.

Proof. Let ϕ : A ⊗MN (C) → C be a trace on A ⊗MN (C). Let us define the
linear maps

ϕij : A → C
x 7→ ϕij(x) := ϕ(x⊗ Eij).

These linear maps satisfy the following properties:
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1. For all i, j = 1, . . . , N , ϕij is a trace on A:
By (5.29), for any x, y in A we have

ϕij([x, y]) = ϕ([x, y]⊗ Eij) = 0.

Remember that for this we do not use the assumption that A is unital.

2. For all i, j = 1, . . . , N , if i 6= j then ϕij = 0:
By (5.30), for any element x in A we have

ϕij(x) = ϕ(x⊗ Eij) = ϕ(x⊗ [Eij , Ejj ]) = 0.

3. For all i, j = 1, . . . , N , ϕii = ϕjj :
By (5.30), for any element x in A we have

ϕii(x)− ϕjj(x) = ϕ(x⊗ Eii)− ϕ(x⊗ Ejj)
= ϕ(x⊗ (Eii − Ejj))
= ϕ(x⊗ [Eij , Eji])
= 0.

Using the last relation we can denote by τ the common linear map ϕii for all
i = 1, . . . , N . Then

ϕ

 N∑
i,j=1

Aij ⊗ Eij

 =
N∑

i,j=1

ϕij (Aij)

=
N∑
i=1

ϕii (Aii)

=
N∑
i=1

τ (Aii)

= (τ ⊗ tr)

 N∑
i,j=1

Aij ⊗ Eij

 .

Remark 5.2.2. If A = Cl(M) or A =
⋃
a∈Z Cl

a(M), then A is unital and any
trace on MN (A) ∼= Cl(M,M ×CN ) or MN (A) ∼=

⋃
a∈Z Cl

a(M,M ×CN ) resp.,
reads (Res⊗ tr) ◦ φ, and if A = Cl0(M), then A is also unital and with the
notation of Corollary 5.1.2, any trace on MN (A) reads ((λ◦π0 + cRes)⊗ tr)◦φ.

Using Lemma 5.2.2, we can write the proof of Proposition 4.2.1 for the unital
algebra A = Cl(M) or for the unital algebra A = Cl0(M) as in [26]:

Proposition 4.2.1. The trace TrL2 does not have a continuation as a trace
functional on the whole algebra Cl(M).
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Proof. Assume τ is a trace on Cl(M) such that for any P ∈ Cla(M), if a < −n,
then τ(P ) = TrL2(P ). We may choose N big enough and an elliptic oper-
ator A ∈ Cl(M,M × CN ) of non-vanishing Fredholm index (In dimensions
greater than 2, the index of any scalar elliptic ψDO vanishes ([9], [33]), however
this assumption is valid considering N big enough and A an elliptic ψDO on
Cl(M,M × CN )). Let B ∈ Cl(M,M × CN ) be a parametrix of A. Then the
L2–trace on Cl−∞(M,M × CN ) reads

Tr(M×CN )
L2 = (TrL2 ⊗ tr) ◦ φ.

Hence (see Thm. 18.1.24 in [20])

I −BA, I −AB ∈ Cl−∞(M,M × CN ),

and we get the contradiction (see Prop. 19.1.14 in [20])

0 6= ind(A)

= Tr(M×CN )
L2 (I −BA)− Tr(M×CN )

L2 (I −AB)
= (TrL2 ⊗ tr) ◦ φ(I −BA)− (TrL2 ⊗ tr) ◦ φ(I −AB)
= (τ ⊗ tr) ◦ φ(I −BA)− (τ ⊗ tr) ◦ φ(I −AB)
= (τ ⊗ tr) ◦ φ([A,B])
= 0.

In the case when A is non-unital, we can consider its unitization (see e.g.
[3]) Ã ∼= A⊕ C, with the product

(a, λ) · (b, µ) = (ab+ λb+ µa, λµ),

and with unit element (0, 1). We denote by inc the inclusion

inc : A → Ã
a 7→ (a, 0).

One can apply Lemma 5.2.3 to Ã to obtain:
Given any trace ϕ on Ã ⊗MN (C), there exists a trace τ on Ã such that

ϕ = τ ⊗ tr .

In particular, given any A,B ∈ A, P,Q ∈MN (C)

ϕ ◦ (inc⊗idMN (C))([A⊗ P,B ⊗Q]) = ϕ([inc(A)⊗ P, inc(B)⊗Q]) = 0,

so ϕ ◦ (inc⊗idMN (C)) is a trace on A⊗MN (C).
Similarly,

τ ◦ inc([A,B]) = τ([inc(A), inc(B)]) = 0,
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so τ ◦ inc is a trace on A, and it is such that

ϕ ◦ (inc⊗idMN (C)) = (τ ◦ inc)⊗ tr .

However, we do not know if Lemma 5.2.3 holds in the case that A is a non-unital
algebra, for example A = Cla(M) with a ∈ Z, a < 0.

5.2.2 General vector bundles

In this section we give a classification of the traces on classical ψDOs acting on
the sections of a vector bundle E over M , by using the results of the previous
section and the fact that the space of sections Γ(E) of any vector bundle E over
M is isomorphic to the image of some power of the space of smooth functions
on M , C∞(M), by an idempotent.

We start following the argument given in Lemma 3 of [28]. Let E be any
vector bundle over M . There is a positive integer N , such that E is a direct
summand of M × CN ; let e ∈ MN (C∞(M)) be a smooth projection onto E.
There exists an idempotent ε ∈ EndC∞(M)(C∞(M)N ) so that the C∞(M)–
module of sections of E satisfies

Γ(E) ∼= ε(C∞(M)N ).

Since the endomorphism algebra EndC∞(M)(C∞(M)N ) can be identified with
the matrix algebra MN (C∞(M)), the matrix e ∈ MN (C∞(M)) is such that
e = e2 and

Γ(E) ∼= e(C∞(M)N )

as right C∞(M)–modules (see Prop. 2.9 and Prop. 2.22 in [11]). Let k be the
rank of E, then E has a constant pointwise trace equal to k:

∀x ∈M, tr(e(x)) =
N∑
i=1

eii(x) = k ∈ N∗.

In the following, we take A a unital algebra on Cl(M) and denote by
A(M,E) the corresponding subset of operators in Cl(M,E).
Let K : Γ(E) → e(C∞(M)N ) be a C∞(M)–module isomorphism and let us
denote also by e the 0th–order operator in A(M,M×CN ) that is multiplication
by the matrix e. Consider the following maps:

Φ : A(M,E)→ A(M,M × CN ) Ψ : A(M,M × CN )→ A(M,E)

T 7→ eKTK−1e; S 7→ K−1eSeK.

Observe that for all T ∈ A(M,E), Ψ◦Φ(T ) = T and for all S ∈ A(M,M×CN ),
Φ ◦Ψ(S) = eSe, which implies that we have an isomorphism:

A(M,E)→ eA(M,M × CN ) e

K−1eSeK 7→ eSe.
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We can also prove that

MN (A) = MN (A) eMN (A),

where the left hand side denotes the subset of MN (A) consisting of finite sums:∑
iXieYi, where Xi, Yi are arbitrary elements in MN (A). In fact, it is sufficient

to check that the identity matrix IN belongs to MN (A) eMN (A). As before,
for all i, j = 1, . . . , N , we denote by Eij the elementary matrix in MN (C) with
1 in the (i, j)–position and 0 everywhere else. We have

N∑
i,j=1

Eij eEji =
N∑
i=1

eii · IN = k · IN .

From the isomorphism A(M,M ×CN ) ∼= MN (A), we can conclude that the
algebras A(M,E) and A(M,M×CN ) are Morita equivalent and therefore there
are natural isomorphisms between their Hochschild homology groups (see Sect.
1.2 in [29]). Since the space of traces on A(M,E) is isomorphic to the dual of
its zeroth Hochschild homology group, it implies that there is an isomorphism
between the space of traces of the algebra A(M,E) with the space of traces of
the algebra A(M,M × CN ).

Lemma 5.2.4. Given a trace τ on A, the map

τE : A(M,E)→ C
T 7→ τE(T ) := (τ ⊗ tr) ◦ φ(eKTK−1e)

is a trace on A(M,E).

Proof. If T ∈ A(M,E), the operator KTK−1e takes values in e(C∞(M)N ) and
since e2 = e, KTK−1e = eKTK−1e. As already observed in Lemma 5.2.2, if τ is
any trace on A, the linear map (τ⊗tr)◦φ is a trace on MN (A) ∼= A(M,M×CN ).
Therefore by Lemma 5.2.2, for any T1, T2 ∈ A(M,E)

τE(T1T2) = (τ ⊗ tr) ◦ φ(eKT1T2K
−1e)

= (τ ⊗ tr) ◦ φ(eKT1K
−1KT2K

−1e)

= (τ ⊗ tr) ◦ φ(eKT1K
−1eKT2K

−1e)

= (τ ⊗ tr) ◦ φ((eKT1K
−1e)(eKT2K

−1e))

= (τ ⊗ tr) ◦ φ((eKT2K
−1e)(eKT1K

−1e))

= (τ ⊗ tr) ◦ φ(eKT2K
−1eKT1K

−1e)

= (τ ⊗ tr) ◦ φ(eKT2T1K
−1e)

= τE(T2T1).

Thus, if trE denotes the trace on E, the following are traces on A(M,E) (as
in Section 4.2):
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1. The Wodzicki residue: For A ∈
{
Cl(M,E),

⋃
a∈Z Cl

a(M,E)
}

,

Res(A) =
1

(2π)n

∫
M

∫
S∗xM

trEx(σ−n(A)(x, ξ))µ(ξ) ∧ dx.

2. The leading symbol trace: For A ∈ Cl0(M,E), λ(trE(π0(A))).

Therefore when A is a unital algebra, the traces given in Remark 5.2.2 define
in this way the only traces on A(M,E).

5.3 Classification of determinants on the group
(Id + Cla(M))∗

In [28] the authors give a description of the determinants on the space of in-
vertible operators (Id+Cl0(M))∗, namely, every determinant on this space can
be written in a unique way in terms of the residue determinant and a leading
symbol determinant. In this section we consider the case a < 0, and we use the
classification of traces on the Fréchet-Lie algebra Cla(M) given in Subsection
5.1.3 to describe the determinants in the Fréchet-Lie group (Id+ Cla(M))∗.

Definition 5.3.1. Let G be a Fréchet-Lie group and G̃ its subgroup of elements
pathwise connected to the identity 1. A determinant map or multiplicative map
on G is a group morphism Det : G̃ → C, that is

∀ g, h ∈ G̃, Det(g · h) = Det(g) Det(h).

Proposition 5.3.1 (Cor. 5.12 in [21], and [22]). If a < 0, the space of invertible
operators

G := (Id+ Cla(M))∗ = ({1 +A : A ∈ Cla(M)})∗

is a Fréchet-Lie group with Fréchet-Lie algebra Cla(M), which admits an expo-
nential mapping from Cla(M) to (Id+ Cla(M))∗.

Explicitly this exponential mapping is given by:

Exp : Cla(M)→ G̃

A 7→ Exp(A) =
∞∑
k=0

1
k!
Ak.

This map restricts to a diffeomorphism from some neighborhood of the identity
in Cla(M) to a neighborhood of the identity in G̃. The inverse is given by

Log : G̃ → Cla(M)

1 +A 7→ Log(1 +A) =
∞∑
k=1

(−1)k+1

k
Ak.
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Remark 5.3.1. Prop. 3 in [28] shows that Proposition 5.3.1 also holds in the
case a = 0.

Definition 5.3.2. If T is a continuous trace on Cla(M) and exp denotes the
exponential function on C, we define a map

Det : Exp(Cla(M))→ C∗

1 +A 7→ Det(1 +A) := exp(T (Log(1 +A))).

Proposition 5.3.2. The map Det is multiplicative.

Proof. Consider two elements g1, g2 ∈ Exp(Cla(M)). By the Campbell-Hausdorff
formula on Exp(Cla(M)) (see [34]), we have

Det(g1 · g2) = exp(T (Log(g1 · g2)))

= exp

(
T

(
Log(g1) + Log(g2) +

∞∑
k=1

C(k)(Log(g1),Log(g2))

))
= exp (T (Log(g1)) + T (Log(g2)))
= exp (T (Log(g1))) exp (T (Log(g2)))
= Det(g1) Det(g2).

Here we have used that T (C(k)(Log(g1),Log(g2))) = 0 for all k since T is a trace
and C(k)(Log(g1),Log(g2)) are commutators on Log(g1),Log(g2) ∈ Cla(M).

In Corollary 5.1.2, we gave an explicit description of the traces on the algebra
Cla(M), and in Section 4.2 (see also Remark 5.1.5), we noticed that those traces
are indeed continuous for the Fréchet topology of Cla(M). So together with
Proposition 5.3.2, we have an explicit description of the determinant maps on
the Fréchet-Lie group (Id+ Cla(M))∗, namely:

Proposition 5.3.3. Let a ∈ Z be such that a ≤ 0. Determinant maps on
(Id + Cla(M))∗ are given by a two parameter family: for c1, c2 ∈ C, and for
any linear map λ : Cla(M)/Cl2a−1(M)→ C,

1. If −n+ 1 ≤ 2a ≤ 0,

Detc1,c2(·) = exp
(
c1λ ◦ πa(Log(·)) + c2 Res(Log(·))

)
.

2. If a < −n,

Detc1,c2(·) = exp
(
c1λ ◦ πa(Log(·)) + c2 TrL2(Log(·))

)
.

3. If 2a − 1 < −n ≤ a, for a continuous linear extension α of TrL2 as in
Corollary 5.1.2,

Detc1,c2(·) = exp
(
c1λ ◦ πa(Log(·)) + c2α(Log(·))

)
.
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These determinants differ from the ones sometimes used by physicists for
operators of the type 1 + Schatten class operator ([31], [40]) which in contrast
to these are not multiplicative but do extend the ordinary determinant for de-
terminant class operators.

Here are some relevant specific cases

• Det1,0(·) = exp
(
λ ◦ πa(Log(·))

)
are related to the leading symbol deter-

minants (see [36] for the case a = 0).

• If a ∈ Z and 2a ∈ [−n+ 1, 0], Det0,1(·) = exp
(

Res(Log(·))
)

is the Wodz-
icki multiplicative determinant (also called the exotic logarithmic deter-
minant) (see [44]).

• If a < −n, Det0,1(·) = exp
(

TrL2(Log(·))
)

is the Fredholm determinant
(see Lemma 2.1 in [38]).

• If 2a ≤ −n, Detc1,c2(·) = exp
(
c1λ ◦ πa(Log(·)) + c2α(Log(·))

)
is an ex-

tension of the Fredholm determinant (see [38], [40]).
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