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Introduction

Siegel’s theorem on integral points of affine hyperbolic curves has been one
of the corner stones in the theory of Diophantine equations. The original
proof by Siegel uses the method of Diophantine approximations. After Falt-
ings proved Mordell’s conjecture in [12] by a deep study of semi-simple l-adic
Galois representations associated to abelian varieties, a new proof was ob-
tained as a byproduct. More recently, in [24], Kim introduced a new way
of proving Siegel’s theorem for punctured projective line, which uses instead
the unipotent Galois representation associated to the étale realization of the
unipotent fundamental group of the projective line minus three points, and
comparing it with the de Rham realization. In that proof, as Kim mentions
in the introduction of [24], there is no trace of motivic objects, at least in
Voevodsky’s sense, and it works for the moment, as far as the knowledge
of author permits, only for P1 − {0, 1,∞} over Q and affine elliptic curves
with Mordell-Weil rank at most one, again over Q (see [25]). Faltings in [17]
generalizes ideas in Kim’s proof to arbitrary curves over any number field
and reduces Siegel’s theorem to a difficult problem in estimating dimensions
of some global Galois cohomology groups. The problem is that, by then
these estimations could not be done neither in case of positive genus, nor
for number fields bigger than Q. Hence the only explicit case to which Falt-
ings’ generalizations was applied was again P1 − {0, 1,∞} over Q in view of
difficulties for obtaining such estimates.

In this thesis we use motivic unipotent fundamental groupoids of uni-
rational varieties, as are constructed in [10], in order to generalize these
techniques in two direction. Firstly, concerning the case of punctured pro-
jective line, we enlarge the base number field. Namely, the first main result
of this thesis (see Theorem 4.2.1) is a ‘motivic’ proof of the fact that for any
totally real number field k of degree d ≥ 2 (or k = Q, but then put d = 2),
and for any finite set S of finite places of k, if one removes at least d + 1
S-integral points from projective line, the resulting curve has only finitely
many S-integral points. In particular if we consider the case of d = 2, and
remove three points 0, 1, and ∞, we obtain Siegel’s theorem for totally real

v



vi INTRODUCTION

quadratic number fields, and for the field Q. To do that, we employ the cat-
egories of mixed Tate motives over the base number field and localizations
of its ring of integers, to replace the above mentioned global Galois coho-
mology groups by the algebraic K-groups of the base number field. Then
using Borel’s explicit calculations, in the case of totally real number fields we
obtain good enough estimates for dimensions of these K-groups and derive
the promised finiteness result. I would like to mention that what is essential,
and probably new in this work, is bringing motivic objects and algebraic
K-theory in proving finiteness results for Diophantine equations.

The second direction deals with higher dimensions. Namely by consid-
ering the motivic fundamental groupoid of unirational varieties, comparing
its different realizations, and using a motivic version of the Lefschetz hyper-
plane section theorem, we show that integral points of a unirational variety
defined over a totally real number field with a highly enough non-abelian
fundamental group cannot be dense in the p-adic analytic topology (see The-
orem 4.4.3). Here again using motivic, in Voevodsky’s sense, fundamental
groupoid is very essential in bringing K-theory into the scene and getting
the result.

In the first chapter we introduce the notions of motivic unipotent fun-
damental group and motivic path torsors over them. Finally we state some
conditions under which these motivic objects exist. To do that we need two
main tools, namely the Tannakian formalism and the abelian categories of
mixed Tate motives over number fields and their ring of S-integers, for S
a subset of finite places of the number field. In section 1.1 we recall the
main notions and results of the Tannakian formalism which are relevant to
this work. The main references for this section are [9] and [11]. In section
1.2 we go through Voevodsky’s triangulated category of mixed motives and
the abelian category of mixed Tate motives over those fields which satisfy
the Beilinson-Soulé vanishing conjecture. Then we also recall the variant of
the abelian category of mixed Tate motives over the ring of S-integers of
number fields, introduced by Deligne and Goncharov. The main references
for this section are [1], [4], [8], [10], [26], and [29]. Finally in section 1.3 we
use the tools of the previous two sections and give a brief treatment covering
the definitions of motivic unipotent fundamental group and path torsors for
standard triples over number fields and their ring of S-integers. Here our
main reference is [10].

Having studied the existence of motivic unipotent fundamental groupoids
for some classes of varieties, we need to have a closer study of the different
realizations of these motivic objects in order to extract enough information
which is necessary for our future applications. We take that as the subject of
the second chapter in which we try to have a closer look at different realiza-
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tions of unipotent fundamental groups and path torsors of curves. In later
chapters we will use the results of this study to obtain similar information
in higher dimensional cases. In section 2.1, following Faltings [17], we study
different realizations of unipotent fundamental groups and path torsors for
any affine carve in a very general situation. Every thing in this section can
be applied as well to the projective curves, but since we will be interested
only in the affine case, we restrict ourselves to this case. Then in sections 2.2
and 2.3 we study two extra piece of decorations that one can put on the de
Rham realization, namely Hodge filtration and Frobenius action. To explain
the Frobenius action, we recall in section 2.3 the classical and the logarith-
mic versions of the crystalline sites and topoi. The main references for this
section are [2] and [23]. These extra structures are critical in comparing the
de Rham realization and the étale realization which is the subject of another
section in chapter four.

In the third chapter we develop some technical tools and constructions
which will be crucial in proving our main results. Namely in section 3.1 we fix
a profinite group Γ and a complete Hausdorff topological field K and study
the representability problem of the functor which assigns to a finitely gen-
erated algebra over K the set of finite dimensional Γ-representations which
admit a filtration with prescribed subquotients. This will be used in showing
the representability of some Galois cohomology groups with values in étale
unipotent fundamental groups. Then in section 3.2 we will consider the case
that the base field is Qp and Γ is the absolute Galois group of a local p-adic
field K. In this situation among all Qp-representations of Γ, there are the
very interesting crystalline ones. We will study the locus of these crystalline
representations among all of them. The main references for this section are
[18] and [19]. Finally in section 3.3 we put all the technical results of the
previous two sections together in order to define the period maps. These
period maps can be put together and make very important commutative di-
agrams (see Remark 3.3.2) which make the connection between a variety and
different realizations of its unipotent fundamental group. This connection
will be the key tool in proving our main results in the last chapter.

In the last chapter we integrate all the tools of the previous chapters to
prove our main results. But before that we need one more technical tool.
Namely we have to show the commutativity of the diagram appeared in
Remark 3.3.2. Note that if we forget about the comparison map, the rest
of the diagram is commutative almost by construction, but the fact that the
comparison map is compatible with the rest of the diagram is a deep result,
sometimes called non-abelian comparison theory. In section 4.1 we review
this non-abelian comparison theory and show the commutativity of our main
diagram. Using this we are finally able to prove our first main result in section
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4.2. Namely in this section we give a new proof of the fact that a sufficiently
punctured projective line over a totally real number field has finitely many
S-integral points (see Theorem 4.2.1). Note that this is a very special case
of Siegel’s theorem, but the innovation here is to use mixed Tate motives
and K-theory to give a new proof of this well known fact in Diophantine
Geometry. Then to launch for the second main result, which generalizes
the first one to higher dimensional unirational varieties, we need a motivic
version of the Lefschetz hyperplane section theorem for fundamental groups.
This is the subject of section 4.3. After that we are ready to state and prove
the second main result in section 4.4 (see Theorem 4.4.3). Roughly speaking,
this says that if the fundamental group of a unirational variety defined over
a totally real number field is highly non-abelian, then the set of S-integral
points of that variety cannot be p-adically dense. Although we are only able
to prove Theorem 4.4.3 in the stated restricted form, we expect its validity
in much more generality (see Conjecture 4.4.4). We finish this thesis by
stating some general remarks and questions concerning Theorem 4.4.3 and
Conjecture 4.4.4 in section 4.5.
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Chapter 1

Motivic Fundamental
Groupoids

The main theme of this thesis is to apply fundamental groups of varieties to
study their integral points. Let us for a moment go down to the world of
abelian invariants. Then of course the natural replacement for the fundamen-
tal group is its abelianization, namely the first (co)homology of the variety.
One thing that makes (co)homology a powerful tool in studying varieties is
that there are a couple of different (co)homology theories for varieties which
admit different kinds of decorations on them, but yet are not completely
independent from each other. Roughly speaking, various (co)homology the-
ories of varieties furnished with these different additional structures can be
compared to each other via the so called comparison isomorphisms. In the
best of the worlds, as Grothendieck has conjectured, one would expect the
existence of a motivic (co)homology theory which encompasses all these dif-
ferent (co)homology theories and the comparisons between them. Now let
us go back to the fundamental groups. The situation is similar and one has
different realizations of fundamental groups associated to varieties and com-
parison isomorphisms between them. One can ask again if there is a motivic
fundamental group which gives all these different realizations. In this chapter
we are going to address this question. We will see that for a special class of
varieties there is an affirmative answer to this question and this will be one
of the most important ingredients in obtaining our main results.

1.1 Tannakian Formalism

In this section we recall the basic notions and results of Tannakian formalism
which will be used latter on. Our main references for this theory are [9] and
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2 CHAPTER 1. MOTIVIC FUNDAMENTAL GROUPOIDS

[11]. Recall that for a category C a functor ⊗ : C× C→ C is called a tensor
functor if it satisfies the so called associativity and commutativity constraints,
which are compatible with each other. An associativity constraint for (C,⊗)
is a functorial isomorphism

ΦX,Y,Z : X ⊗ (Y ⊗ Z)
∼−→ (X ⊗ Y )⊗ Z,

such that for all objects X, Y, Z, T in C the diagram

(X ⊗ Y )⊗ (Z ⊗ T )

**UUUUUUUUUUUUUUUU

X ⊗ (Y ⊗ (Z ⊗ T ))

44iiiiiiiiiiiiiiii

��

((X ⊗ Y )⊗ Z)⊗ T

X ⊗ ((Y ⊗ Z)⊗ T ) // (X ⊗ (Y ⊗ Z))⊗ T

OO

commutes (the pentagon axiom). A commutativity constraint for (C,⊗) is a
functorial isomorphism

ΨX,Y : X ⊗ Y ∼−→ Y ⊗X,

such that for all objects X, Y in C, ΨY,X ◦ ΨX,Y = IdX⊗Y . Finally an asso-
ciativity constraint Φ and a commutativity constraint Ψ are compatible if,
for all objects X, Y, Z in C, the diagram

X ⊗ (Y ⊗ Z) //

vvmmmmmmmmmmmmm
(X ⊗ Y )⊗ Z

((QQQQQQQQQQQQQ

X ⊗ (Z ⊗ Y )

((QQQQQQQQQQQQQ
Z ⊗ (X ⊗ Y )

vvmmmmmmmmmmmmm

(X ⊗ Z)⊗ Y // (Z ⊗X)⊗ Y

commutes (the hexagon axiom). The category C together with the functor
⊗ is called a tensor category if it admits an identity object, i.e. a pair (1, e)
consisting of an object 1 in the category C and an isomorphism e : 1

∼−→ 1⊗1
such that the functor 1⊗− gives an auto-equivalence of C.

Let (C,⊗) be a tensor category and fix two objects X and Y in C. If the
contravariant functor

T 7→ HomC(T ⊗X, Y )

from C to the category of sets is representable, the representing object is
called the internal Hom object from X to Y and is denoted by Hom(X, Y ).
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Having defined the notion of internal Hom, one can define the dual X∨ of an
object X to be Hom(X, 1), if it exists. Note that by definition the identity
map from Hom(X, Y ) to itself corresponds to a morphism

evX,Y : Hom(X, Y )⊗X → Y,

which is called the evaluation morphism. The evaluation map evX,1 gives rise
to a map X ⊗ X∨ → 1, hence a map iX : X → (X∨)∨. One says that X
is a reflexive object when iX is an isomorphism. Following the same lines,
for any finite families of objects (Xi)i∈I and (Yi)i∈I one can define a natural
morphism from ⊗iHom(Xi, Yi) to Hom(⊗iXi,⊗iYi). Now we are ready for
the following:

Definition 1.1.1. (Rigid Category) A tensor category (C,⊗) is rigid if

• The internal Hom object Hom(X, Y ) exists for any pair of objects X
and Y .

• The above mentioned maps from ⊗iHom(Xi, Yi) to Hom(⊗iXi,⊗iYi)
are isomorphisms for all finite families of objects.

• Finally, all objects of C are reflexive.

Having defined the notion of a tensor category we now introduce the
notion of functors between tensor categories.

Definition 1.1.2. (Tensor Functor) Let (C,⊗) and (C′,⊗′) be tensor cate-
gories. A tensor functor from (C,⊗) to (C′,⊗′) is a pair (F, c) consisting of
a functor F : C→ C′ and a functorial isomorphism

cX,Y : F(X)⊗′ F(Y )
∼→ F(X ⊗ Y ),

which commutes with associativity and commutativity constraints and sends
the identity element of (C,⊗) to the identity element of (C′,⊗′).

Of course being restricted to tensor categories and tensor functors be-
tween them, one must also consider those equivalencies between such cate-
gories that respect tensor structures. But it can be checked that as soon as
the underlying functor of a tensor functor is an equivalence of categories there
exists a tensor inverse such that natural transformations between two possi-
ble compositions and the identity functors commute with tensor product as
well. We leave it to the reader to make a precise statement of this fact using
the evident definition of a morphism of tensor functors. The usual notation
for the set of morphisms of tensor functors between two tensor functors (F, c)
and (G, d) is Hom⊗(F,G).
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The main feature of the notion of rigidity for tensor categories is that this
notion inherits in some sense from tensor categories to the tensor functors
between them and even the natural transformations between those tensor
functors, and makes such things rigid as well. We mention some phenomena
of this kind which are important and whose proofs can be found easily in the
literature (see for example [9] or [11]).

Proposition 1.1.3. Let F be any tensor functor between two rigid tensor
categories C and C′, then F commutes with taking internal Hom objects and in
particular it commutes with taking dual. Moreover, any morphism of tensor
functors between two rigid tensor categories C and C′ is automatically an
isomorphism of functors.

If one defines an abelian (resp. additive) tensor category to be a ten-
sor category (C,⊗) whose underlying category C is abelian (resp. additive)
and tensor product is a bi-additive functor, then another consequence of the
rigidity property of rigid tensor categories is that in any abelian rigid tensor
category (C,⊗), tensor product commutes with direct and inverse limits in
each factor and hence in particular is exact in each factor.

Remark 1.1.4. Note that for an additive tensor category (C,⊗),

R := EndC(1)

is a ring which acts, via X ∼= 1⊗X, on each object X. It can be shown that
the action of R commutes with endomorphisms of X hence in particular R
is commutative. Moreover C is R-linear and ⊗ is R-bilinear. ♠

Remark 1.1.5. Let k be a field and R be a k-algebra. Then the categories
Veck of finite dimensional vector spaces over k and ModR of finitely generated
modules over R are abelian tensor categories. There is a canonical tensor
functor

ΦR : Veck → ModR,

which sends a vector space V over k to the R-module V ⊗k R. Now for
any tensor category C and any two tensor functors (F, c) and (G, d) from C

to Veck, we can use the functors ΦR for all k-algebras in order to build a
contravariant functor from k-algebras to sets out of Hom⊗(F,G). Namely
we define

Hom⊗(F,G)(R) := Hom⊗(ΦR ◦ F,ΦR ◦ G).

Finally note that for any tensor functor F from C to Veck the composition
ΦR ◦F takes values in the subcategory ProjR of finitely generated projective
R-modules, which is an additive rigid subcategory of ModR. Such a functor
will be called a fiber functor on C with values in the k-algebra R. ♥
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Finally we can state the most important result of Tannakian formalism,
namely

Theorem 1.1.6. (Main Theorem of Tannakian Formalism) Let (C,⊗) be
a rigid abelian tensor category such that k := EndC(1) is a field, and let
w : C→ Veck be an exact faithful k-linear tensor functor. Then

1. The functor Aut⊗(w) from k-algebras to sets (see Remark 1.1.5) is
representable by an affine group scheme G over k.

2. w defines an equivalence of tensor categories C and Repk(G), where
Repk(G) is the category of representations of the group scheme G over
k.

The above Theorem motivates

Definition 1.1.7. (Neutral Tannakian Category) A neutral Tannakian cat-
egory over a field k is a rigid abelian k-linear tensor category C for which
there exists an exact faithful k-linear tensor functor w : C→ Veck. Any such
functor w is said to be a fiber functor for C.

Theorem 1.1.6 says that for any neutral Tannakian category C over k
equipped with one fiber functor w, the functor Aut⊗(w) over k-algebras is
representable by an affine group scheme. The next natural question to ask
is what if we take two fiber functors and look at natural transformations
between them? Is this also representable? There is also a positive answer in
this direction whose statement needs some more notations.

Let G be an affine group scheme over the field k and let U = Spec(R) be
an affine k-scheme. A G-torsor over U (for the f.p.q.c. topology) is an affine
k-scheme T , faithfully flat over U , together with a morphism T ×U GU → T
such that

(t, g) 7→ (t, tg) : T ×U GU → T ×U T
is an isomorphism.

Now let C be a neutral Tannakian category over a field k with a fixed fiber
functor w : C→ Veck. For any fiber functor η with values in a k-algebra R,
composition defines a pairing

Hom⊗(ΦR ◦ w, η)×Aut⊗(ΦR ◦ w)→ Hom⊗(ΦR ◦ w, η),

of functors of R-algebras. By Proposition 1.1.3 we know that

Hom⊗(ΦR ◦ w, η) = Isom⊗(ΦR ◦ w, η).

Moreover one has the following important:
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Theorem 1.1.8. With all the above hypotheses and notations one has

1. Hom⊗(ΦR ◦ w, η) is representable by an affine scheme faithfully flat
over Spec(R), which is a G-torsor where Repk(G)

∼→ C.

2. The functor η 7→ Hom⊗(ΦR ◦ w, η) gives an equivalence between the
category of fiber functors on C with values in R and the category of
G-torsors over Spec(R).

Remark 1.1.9. The above line of ideas can be generalized one step further,
namely one can replace the target category Veck by the category QCohS of
quasi-coherent sheaves over a k-scheme S, but then one also has to replace
the affine group scheme over k, by an affine groupoid over S (see [9]). ♣

1.2 Mixed Tate Motives

In this section we are going to consider the category of mixed motives. The
first problem is that the existence of this category is not known yet! So we will
talk about Voevodsky’s construction which leads to a category DM(k), for
any field k of characteristic zero. DM(k) is a candidate for being the derived
category of the category of mixed motives over k (note that Voevodsky’s
construction can be applied to more general setting, namely most of the
following constructions and properties are valid over any field and all of them
over any perfect field. But since we finally apply these theories to number
fields it is harmless to assume from the very beginning that our field has
characteristic zero. This would allow us to use the resolution of singularities
on which we rely heavily later on). By general facts of homological algebra,
having a triangulated category T which is supposed to be the derived category
of an unknown abelian category A, what one needs in order to extract A from
T is the so called t-structure. Let us briefly recall the notion of a t-structure
(see [1] and [26] for more details).

Definition 1.2.1. A t-structure (T≤0,T≥0) on a triangulated category T con-
sists of strictly full subcategories T≤0 and T≥0 of T such that

• T≤0[1] ⊂ T≤0 and T≥0[−1] ⊂ T≥0.

• For X in T≤0 and Y in T≥0[−1], we have HomT(X, Y ) = 0.

• For each object X of T, there are objects A in T≤0 and B in T≥0[−1]
and a distinguished triangle

A→ X → B → A[1]
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Moreover one says that the t-structure is non-degenerate if

• The intersections ∩nT≥0[−n] and ∩nT≤0[n] consist only of the zero ob-
ject.

The heart of a t-structure as above is the full subcategory T≤0 ∩ T≥0.

A good example to have in mind is when T is the derived category of an
abelian category A. In that case the subcategory T≤0 (resp. T≥0) consist-
ing of complexes with trivial homology groups in positive (resp. negative)
degrees, form a non-degenerate t-structure on T whose heart is equivalent to
the original abelian category A.

As it has been mentioned above, there is no known t-structure on DM(k)
whose heart gives us the category of mixed motives. The existence of such
a t-structure depends on the validity of the so called Beilinson-Soulé van-
ishing conjecture, which is explained below. The important fact for us is
that this Beilinson-Soulé vanishing conjecture restricted to a certain subcat-
egory of DM(k) is valid for some fields, like number fields, and hence there
is a t-structure on that subcategory which leads to the abelian category of
mixed Tate motives over those good fields (see [26, Theorem 4.2., and Corol-
lary 4.3.]). Since our focus is on number fields and in order to avoid extra
notations in different settings we start with a brief review of Voevodsky’s con-
struction over number fields (see [29]) and the variant over ring of integers of
number fields and their localizations introduced by Deligne and Goncharov
(see [10]).

Let k be a fixed number field from now on. In [29], Voevodsky has
constructed the triangulated category DM(k) of mixed motives over k as
follows:

Let SmCor(k) be the category whose objects are smooth separated schemes
over k, and for any two objects X and Y , Hom(X, Y ) is the free abelian group
generated by closed reduced irreducible subsets Z of X×k Y , which are finite
over X and dominate a connected component of X. We denote by [X] the
object in SmCor(k) which corresponds to the smooth separated scheme X,
and by [f ] the morphism between [X] and [Y ] which corresponds to the graph
of f : X → Y . Obviously SmCor(k) is an additive category with disjoint
union as direct sum. Now the category DM(k) can be obtained from the ho-
motopy category Hb(SmCor(k)) of bounded complexes over SmCor(k) after
the following three steps:

• (Localizing with respect to ‘Homotopy Invariance’ and ‘Mayer-Vietoris’)
Let T be the thick subcategory of Hb(SmCor(k)) generated by com-
plexes

[X ×k A1]
[pr1]−−→ [X]
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for all X, and all complexes of the form

[U ∩ V ]→ [U ]⊕ [V ]→ [X]

for any Zariski open covering X = U ∪V of X (recall that a thick sub-
category of a triangulated category is a triangulated subcategory which
is closed under direct summands). Then we localize Hb(SmCor(k))
with respect to T .

• (Karoubianization) For this, we formally adjoin kernels and cokernels
of idempotent endomorphisms. This means that we consider as objects,
pairs of the form (X, p) where X is an object in the category resulted
from the previous step, and p is an endomorphism of X satisfying
p2 = p. Then morphisms between (X, p) and (Y, q) are defined to be
the set

q ◦ Hom(X, Y ) ◦ p,
where Hom(X, Y ) is the set of homomorphisms from X to Y in the
category that come from the previous step. The resulting category
in this step will be denoted by DM eff(k). For any separated smooth
scheme X over k, the object corresponding to X in DM eff(k) will be
denoted by M(X). This category can be endowed with a notion of a
tensor product in such a way that (see [29, Proposition 2.1.3])

M(X ×k Y ) ∼= M(X)⊗M(Y ).

• (Inverting Tate object) For any separated smooth scheme X over k,
the structure morphism X → Spec(k) induces a morphism from M(X)
to M(Spec(k)) and hence a distinguished triangle

M̃(X)→M(X)→M(Spec(k))→ M̃(X)[1],

where M̃(X) is called the reduced motive of X. Then we define the
Tate object

Z(1) := M̃(P1)[−2].

For any n ∈ N, the n-fold tensor product of Z(1) with itself is denoted
by Z(n), and for any object A in DM eff(k), we define

A(n) := A⊗ Z(n).

Finally the category DM(k) is obtained from DM eff(k) by invert-
ing Z(1), namely its objects are pairs (A, n), with A is an object of
DM eff(k) and n ∈ Z, and the morphisms are defined as follows

HomDM(k)((A, n), (B,m)) := lim−→
k≥−n,−m

HomDMeff(k)(A(k+n), B(k+m)).
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The last point to mention is that the tensor product of DM eff(k) can
be extended to a tensor product on DM(k) (see [29, Corollary 2.1.5]).
Moreover there are notions of internal Hom objects and dual objects
in DM(k), which all together make DM(k) into a rigid tensor trian-
gulated category (see [29, section 4.3]).

We denote by DM(k)Q the category obtained from tensorizing DM(k)
with Q, and in DM(k)Q for any n ∈ Z we denote by Q(n) the object which
corresponds to Z(n). Q(n)’s are called Tate objects. The triangulated sub-
category DMT (k)Q of DM(k)Q generated by these Tate objects is called the
triangulated category of mixed Tate motives. One can then extract from
DMT (k)Q the abelian rigid tensor category MT (k) of mixed Tate motives
over k as follows.

Writing Homj(M,N) for Hom(M,N [j]), the Beilinson-Soulé vanishing
conjecture states that Homj(Q(0),Q(i)) = 0 whenever i > 0 and j ≤ 0.
On the other hand, the groups Homj(Q(a),Q(b)), for j, a, b ∈ Z, form a
decomposition of rational K-groups of k. Since k is a number field, thanks
to Borel’s explicit computation of ranks of rational K-groups of number fields
(see [4, section 12]), one can show the validity of Beilinson-Soulé vanishing
conjecture over k. Moreover one can show the following

Hom1(Q(0),Q(n)) = K2n−1(k)⊗Z Q.

Using validity of Beilinson-Soulé vanishing conjecture for number fields, it
is possible to put a non-degenerate t-structure on the triangulated category
DMT (k)Q. The heart of this t-structure is the category MT (k) consisting
of iterated extensions of objects of the form Q(n), for n ∈ Z, which is an
abelian rigid tensor category. For any two objects A and B in MT (k), one
has a bijection

Ext1
MT (k)(A,B)

∼→ Hom1
DMT (k)Q

(A,B).

Using the above bijection and the relations between Hom1(Q(0),Q(n)) and
rational K-groups of k, one obtains the following important vanishing of
Ext1-groups in MT (k)

Ext1(Q(n),Q(m)) = 0, for all m ≤ n.

For any object M in MT (k), using the above mentioned vanishing of Ext1-
groups, one can put a unique finite increasing filtration W• on M , called
filtration by weights, which is indexed by even integers and satisfies the
following property:
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For any integer n ∈ Z

GrW−2n(M) = W−2n(M)/W−2(n+1)(M)

is a finite direct sum of copies of Q(n). Furthermore the filtration W• is
functorial, exact, and compatible with tensor product, and moreover every
morphism in MT (k) is strictly compatible with W•. For any n ∈ Z, define

wn(M) := Hom(Q(n), GrW−2n(M)),

and put all these together to obtain a fiber functor w which sends M to⊕
nwn(M). This makes MT (k) into a neutral Tannakian category over Q.

Whence one can apply the general Theorem 1.1.6 to obtain an affine group
scheme Gw, whose category of finite dimensional representations over Q is
equivalent to MT (k). The action of Gw on w(Q(1)) = Q, and the action of
Gm on the tensor functor w, which is multiplication by λn on wn, give a map

φ : Gw → Gm,

and a section
τ : Gm → Gw

for φ. Hence if we denote the kernel of φ by Uw, we obtain a semi-direct
product decomposition

Gw
∼= Gm n Uw.

Since the action of Uw respects the weight filtration, and by definition is
trivial on GrW• , one concludes that Uw is a pro-unipotent affine algebraic
group scheme. Now the functor w admits a co-action by

Ext1(Q(0),Q(1)) ∼= k∗ ⊗Z Q,

and for any subvector space Γ of k∗⊗ZQ, one can define the neutral Tannakian
category MT (k)Γ to be the full subcategory of MT (k) which contains those
objects for which this co-action factors through Γ (see [10, 1.2 and 1.4]). In
particular let S be a set of finite places in k, OS be the ring of S-integers of
k, and put Γ = O∗S ⊗Z Q. Then we denote the resulting category MT (k)Γ

by MT (OS). The analogous definitions of Gw,Γ, Uw,Γ, and the isomorphism
Gw,Γ

∼= Gm n Uw,Γ are plain. Now we have

Proposition 1.2.2. [10, Proposition 1.9] Let Γ be a subvector space of
Ext1(Q(0),Q(1)).

(i) For r ≥ 2, Ext1(Q(n),Q(n+r)) is the same in MT (k) and in MT (k)Γ.
(ii) The Yoneda Ext2’s are zero in MT (k)Γ.
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In order to study different realizations of mixed Tate motives over k we
need to define the category Rk, or simply R when k is fixed, of mixed real-
izations. Any object of R is given by the following data:

1. A graded vector space VdR over k. The increasing filtration

W−2n =
⊕
m≥n

(VdR)m

is called the weight filtration, and the decreasing filtration

F−n =
⊕
m≤n

(VdR)m

is called the Hodge filtration.

2. For any embedding σ of k into an algebraic closure C of R, a Q-vector
space Vσ equipped with an increasing filtration by weights W•, indexed
by even integers. One assumes that Vσ together with its weight filtra-
tion is functorial in C.

3. For any σ as above, a comparison isomorphism

compσ,dR : VdR ⊗k,σ C
∼→ Vσ ⊗Q C,

which respects the weight filtrations and is functorial in C. Its inverse
is denoted by compdR,σ.

4. For any prime number l and any algebraic closure k̄ of k, a Ql-vector
space Vl, equipped with an increasing filtration by weights W•, indexed
by even integers. One assumes that Vl together with its weight filtra-
tion is functorial in k̄. In particular Vl admits a continuous action by
Gal(k̄/k).

5. For any σ : k ↪→ C as in (2), and the algebraic closure k̄ of k in C, a
comparison isomorphism

compl,σ : Vσ ⊗Q Ql
∼→ Vl

which is functorial in C. The inverse is denoted by compσ,l.

6. One assumes the existence of a lattice Vσ,Z ⊂ Vσ, such that

compl,σ(Vσ,Z) ⊂ Vl

is stable under the Galois action, and is independent of σ. One assumes
moreover that GrW−2n of (1), (2), and (4) are isomorphic to a direct sum
of the corresponding realization of the Tate object Q(n).



12 CHAPTER 1. MOTIVIC FUNDAMENTAL GROUPOIDS

Note that there is an obvious notion of tensor product on R which makes
it into a Tannakian category. Then one can show that for any sub-vector
space Γ of k∗ ⊗Z Q, different realizations of Tate objects, with comparison
isomorphisms between them, can be extended to a realization functor

realΓ : MT (k)Γ → R

and the following holds.

Theorem 1.2.3. [10, 2.14 and 2.15] The above mentioned realization functor
is fully faithful, and the image is essentially stable by sub-objects, i.e. if an
object is in the image of realΓ, so are all its sub-objects.

1.3 Motivic Fundamental Groupoids

Continuing with the conventions of the previous section, assume that k is a
fixed number field. In this section our aim is to recall the notions of motivic
unipotent fundamental group and motivic path torsors over it for a unira-
tional variety over k which is introduced by Deligne and Goncharov in [10].
We fix the following notations for this section. Let X be a smooth variety
over k and let X be a smooth projectivization of X such that D := X−X is a
divisor with normal crossing and smooth irreducible components (Note that
since k is a field of characteristic zero, one can apply resolution of singularities
and assume these without loss of generality). By studying unipotent vector
bundles over X (with unipotent integrable logarithmic connection along D),
and also by studying unipotent smooth l-adic étale sheaves over X one can
construct the de Rham and the étale realizations of the unipotent fundamen-
tal group of X. The point is that the categories of these unipotent vector
bundles over X (with unipotent integrable logarithmic connections along D)
and unipotent smooth l-adic étale sheaves over X form rigid tensor cate-
gories and any rational point x ∈ X(k) leads to a fiber functor Fx. Then by
applying Theorem 1.1.6 one gets pro-unipotent affine group schemes which
are the desired realizations of the unipotent fundamental group of X. These
realizations of the unipotent fundamental group together with the Malčev
completion of the topological fundamental group of the complex variety as-
sociated to X, viewed as the Betti realization, are related to each other via
some comparison isomorphisms and putting all these together one gets an
affine pro-algebraic group scheme or equivalently a co-commutative Hopf al-
gebra over the category Rk of mixed realizations over k (see [8] or the next
chapter for more details). Let us denote this affine group scheme by πR

1 (X, x).
On the other hand, one can fix another rational point y ∈ X(k) and consider
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the tensor isomorphisms Isom⊗(Fy,Fx) as a functor of k-algebras. Now The-
orem 1.1.8 can be applied to give us different realizations of an affine scheme
which admit again comparison isomorphisms and hence give rise to an affine
scheme over Rk. As one expects from Theorem 1.1.8 this affine scheme is
a bi-torsor over affine group schemes πR

1 (X, x) and πR
1 (X, y), which is called

the path torsor from y to x and will be denoted by πR
1 (X;x, y). There are

obvious concatenation maps

πR
1 (X; y, z)× πR

1 (X;x, y)→ πR
1 (X;x, z)

which come from the composition of isomorphisms between corresponding
fiber functors. We also mention, although we do not use it in this thesis,
that Deligne has extended all these notions and constructions to the case of
points at infinity, namely when one (or both) of the base point(s) is (are)
represented by a suitable non-zero tangent vector(s) at some point(s) in the
support of the divisor D (see [8, Section 15]).

On the other hand, we have seen in the previous section that there are
realization functors realΓ from MT (k)Γ to Rk for any subvector space Γ of
k∗ ⊗Z Q. So one interesting question to ask is that if the above constructed
group schemes and path torsors over them lie in the image of realΓ or not.
Generally let us say an object or a pro-object in Rk is motivic if it lies in the
image of real. Then very important for us is

Theorem 1.3.1. ([10, Proposition 4.15]) With above notations and assump-
tions, assume moreover that X is unirational and the irreducible components
of D are absolutely irreducible. Then for any rational point x ∈ X(k) (resp.
any two rational points x, y ∈ X(k)) the pro-unipotent affine group scheme
πR

1 (X, x) (resp. the path torsor πR
1 (X;x, y)) is motivic.

Let us fix some notations concerning the above theorem for future ref-
erences. With the above hypothesis for any rational point x ∈ X(k) (resp.
any two rational points x, y ∈ X(k)) the above theorem guaranties the ex-
istence of the motivic fundamental group (resp. motivic path torsor) which
we denote by πmot

1 (X, x) (resp. πmot
1 (X;x, y)). Note that πmot

1 (X, x) (resp.
πmot

1 (X;x, y)) is a pro-unipotent affine group scheme (resp. a bi-torsor over
πmot

1 (X, x) and πmot
1 (X, y)) over the rigid tensor category MT (k) which is

unique up to isomorphism by Theorem 1.2.3 and is sent to πR
1 (X, x) (resp.

πR
1 (X;x, y)) by the realization functor real.

Since we are interested in integral points we are also interested in an inte-
gral version of the above results, which fortunately exists. Being concerned
with integral points we set up the situation over suitable rings of integers.
Let S be a fixed finite set of finite places of the number field k and denote by
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OS the ring of S-integers in k. Suppose that XOS is a proper smooth variety
over Spec(OS) and XOS is the complement of a divisor DOS with relative nor-
mal crossing and smooth surjective irreducible components over Spec(OS).
Then we denote by Xk (resp. Xk, resp. Dk) the generic fiber of XOS (resp.
XOS , resp. DOS). Note that these generic fibers satisfy the conditions that
we fixed in the beginning of this section. Then the promised integral version
of Theorem 1.3.1 is

Theorem 1.3.2. [10, Proposition 4.17] In addition to the above hypothe-
ses assume that the variety Xk is unirational and also that the irreducible
components of Dk are absolutely irreducible. Now if the two rational points
x, y ∈ Xk(k) are generic fibers of two integral points xOS , yOS ∈ XOS(OS) then
πmot

1 (X, x) and πmot
1 (X;x, y) belong to the subcategory MT (OS) of MT (k).

The above theorem motivates the following definition of a standard triple
which will be used frequently later on. In this definition we keep the above
notations unchanged.

Definition 1.3.3. A standard triple (X,X,D) over the ring OS of S-integers
in a number field k consists of the following data:

• A proper smooth variety X over Spec(OS).

• A relative normal crossing divisor D whose irreducible components are
smooth and surjective over Spec(OS), and the irreducible components
of its generic fiber Dk are absolutely irreducible.

• The complement X of D in X which is also smooth over Spec(OS) and
whose generic fiber Xk is unirational.



Chapter 2

Realizations for Curves

In previous chapter we noted that under some conditions the motivic unipo-
tent fundamental groups and path torsors over them exist. This will be very
useful for us, but yet very important is to consider the image of this motivic
objects under the realization functor real, namely to study different realiza-
tions of them and the relations between these realizations as much as we can.
As long as we only consider different realizations of the unipotent fundamen-
tal groups and path torsors over them as objects in the category of mixed
realizations, we actually can get rid of many of the restrictions that we had
to put to get the motivic ones. For example in this chapter we will see that
in a very general context one has different realizations of unipotent funda-
mental groups and path torsors of (affine) curves. We start by giving a very
concrete construction of the de Rham and étale realizations of the unipotent
fundamental groups of affine curves and also of the path torsors over them.
Very crucial feature of these realizations is that the de Rham realization ad-
mits Hodge filtration and Frobenius action, and the étale realization admits
Galois action. After giving the explicit constructions, we will discuss the
Hodge filtrations and the Frobenius action on the de Rham realization. This
additional structures will be used to compare the two realizations which will
be very important in our applications.

2.1 Geometric Construction

Let R be a commutative ring with unit, C
π−→ Spec(R) a smooth projective

curve with geometrically connected fibers, and X := C−D where D ⊂ C is a
divisor which is étale and surjective over Spec(R). We denote the projection
from X to Spec(R), which is the restriction of π : C → Spec(R) to X, by
the same symbol π. Now consider the following categories:

15
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• Let Ccoh be the category of vector bundles E on C which are iterated
extensions of trivial vector bundles. Recall that a vector bundle is called
trivial if it has the form P ⊗R OC for a finitely generated projective R-
module P . So objects of our category Ccoh are vector bundles E on C
which admit a filtration by sub-vector bundles

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En = E

with Ei/Ei−1 being trivial for 1 ≤ i ≤ n. Furthermore we denote by
Tcoh the dual of the first cohomology H1(C,OC).

• Let CdR be the category of vector bundles E on C, together with a
logarithmic connection

∇ : E→ E⊗OC ΩC/Spec(R)(D),

such that (E,∇) is an iterated extension of trivial vector bundles with
connection. In this case a vector bundle with connection is called trivial
if it is of the form (P ⊗R OC , IdP ⊗ d), where P is again a finitely
generated projective R-module, and

d : OC → ΩC/Spec(R)(D)

is the canonical differential. In analogy with the above case, we denote
by TdR the dual of the first de Rham cohomology

H1
dR(C,OC) := H1(C,OC

d−→ ΩC/Spec(R)(D)).

• For any invertible prime number l in R, one can consider the category
Cét of smooth l-adic étale sheaves S on X which are, as in above cases,
iterated extensions of trivial ones. A smooth l-adic étale sheaf of the
form π∗(G) over X, where G is a smooth l-adic étale sheaf over Spec(R),
is called trivial in this case. We use the notation Tét for the dual of the
first étale cohomology H1

ét(X,Ql).

In the sequel, when we want to refer to any of the above categories, no
matter which one, we use the subscript “ −M ”. For example CM can be
replaced by any of Ccoh, CdR, or Cét. We follow the same convention for TM ,
and so on. We call an object E in CM , unipotent of class n, if it admits a
filtration of length n by sub-objects with trivial sub-quotients, and moreover
we denote by CM,n the full subcategory of CM generated by unipotent objects
of class n. Note that by definition any object in CM is unipotent of some
class, and hence CM =

⋃
n CM,n.
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Now fixing a point x ∈ X(R) gives a functor FM : E 7→ E[x] on the
category CM , which in the coherent and de Rham cases takes values in the
category of finitely generated projective R-modules, and in the étale case
takes values in the category of finite dimensional Ql-vector spaces. This
functor depends on the choice of x, but we omit this dependence in our
notation. Following Faltings [17], we are going to show that FM is pro-
representable in the following sense:

Theorem 2.1.1. There exists a pro-object PM in the category CM , and an
element p ∈ PM [x] such that for any object E in CM and any element e ∈ E[x],
there exists a unique morphism ϕe : PM → E such that ϕe,x(p) = e. Moreover
the pair (PM , p) is unique up to a unique isomorphism.

Remark 2.1.2. Note that when the base ring R is a field, which is always the
case in our applications, the category CM admits a natural tensor product,
any object has a natural dual, and with these notions CM is an abelian rigid
tensor category. Moreover FM is a fiber functor with respect to this natural
tensor product, and makes CM into a neutral Tannakian category. Then
by the general Tannakian formalism (see section 1.1 for details) one knows
that tensor automorphisms Aut⊗(FM), as a functor from algebras over the
base field to sets, is representable by an affine group scheme (see Theorem
1.1.6), which will be called GM . But in what follows, we give an explicit
construction of these representing group schemes, and as a byproduct we
obtain finer information about them. ♦

To prove Theorem 2.1.1, we need some preliminaries. First we are go-
ing to construct the analogue objects in the categories CM,n for each n ≥ 1.
Note that if we put PM,1 to be OC (resp. (OC , d), resp. the constant sheaf
Ql) in the coherent (resp. de Rham, resp. étale) case, and take 1 as the
distinguished element in PM,1[x], then it obviously has the required universal
property of Theorem 2.1.1 in the subcategory CM,1. Moreover we know that
the appropriate zeroth cohomology of PM,1 is R (resp. R, resp. Ql) in the
coherent (resp. de Rham, resp. étale) case, since C is projective and geomet-
rically connected, and the appropriate first cohomology, by our convention,
is T⊗−1

M = T∨M . Lemma 2.1.3 and Proposition 2.1.6 are stated in the coher-
ent case, but the analogous statements, with trivial modifications, are valid
in the de Rham and étale cases, with the same proofs. The important fact
to notice is that the second cohomology groups vanish in the de Rham and
étale cases, as well as in the coherent case, since D is étale and surjective
over Spec(R). Later when studying Hodge filtrations, we will go into more
detail in the de Rham case (see section 2.2), and leave the similar étale case
to the reader.
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Lemma 2.1.3. For every n > 1, there exists an extension Pcoh,n of Pcoh,n−1

by π∗(T
⊗(n−1)
coh ) such that H0(C,P∨coh,n) = R via projection to PM,1,

H1(C,P∨coh,n) ∼= H1(C, T
⊗−(n−1)
coh ⊗R OC) ∼= T⊗−ncoh ,

via the inclusion, and there exists an element pn ∈ Pcoh,n[x] which projects
to 1 ∈ Pcoh,1[x].

Proof. The proof, as the statement itself, has recursive structure with respect
to n. So assume that Pcoh,n−1 has been constructed with desired properties.

Now since Pcoh,n is going to be an extension of Pcoh,n−1 by T
⊗(n−1)
coh ⊗R OC ,

we consider the corresponding Ext group. We have

Ext1(Pcoh,n−1, T
⊗(n−1)
coh ⊗R OC) ∼= T

⊗(n−1)
coh ⊗R Ext1(Pcoh,n−1,OC),

since T
⊗(n−1)
coh ⊗R OC is a trivial vector bundle. Furthermore

T
⊗(n−1)
coh ⊗R Ext1(Pcoh,n−1,OC) ∼= T

⊗(n−1)
coh ⊗R H1(C,P∨coh,n−1),

since Pcoh,n−1 is locally free. Now by applying the induction hypothesis for
Pcoh,n−1, we can continue the above chain of isomorphisms as follows:

T
⊗(n−1)
coh ⊗R H1(C,P∨coh,n−1) ∼= T

⊗(n−1)
coh ⊗R T⊗−(n−1)

coh ,

but the right hand side is isomorphic to HomR(T
⊗−(n−1)
coh , T

⊗−(n−1)
coh ), and

hence has an identity element. Take Pcoh,n to be the extension which cor-
responds to the identity element in the above Ext group. This gives us an
exact sequence of vector bundles over C

0→ T
⊗(n−1)
coh ⊗R OC → Pcoh,n → Pcoh,n−1 → 0.

We write the cohomology long exact sequence for the dual of the above exact
sequence, use the vanishing of H2, and apply the induction hypothesis for
Pcoh,n−1, to obtain the following six term exact sequence

0→ R
ϕ−→ H0(C,P∨coh,n)→ T

⊗−(n−1)
coh

Id−→ T
⊗−(n−1)
coh

f−→ . . .

. . .
f−→ H1(C,P∨coh,n)

ψ−→ H1(C, T̃coh
⊗−(n−1)

)→ 0,

where T̃coh stands for the trivial bundle Tcoh⊗ROC induced by Tcoh. Because
of the identity map in the middle, ϕ gives the desired isomorphism between
H0(C,P∨coh,n) and R, and ψ also gives

H1(C,P∨coh,n) ∼= H1(C, T
⊗−(n−1)
coh ⊗R OC) ∼= T

⊗−(n−1)
coh ⊗R H1(C,OC) ∼= T⊗−ncoh .



2.1. GEOMETRIC CONSTRUCTION 19

Finally take pn to be any lift of pn−1 under the surjection

Pcoh,n[x] � Pcoh,n−1[x]

to complete the proof.

Remark 2.1.4. Note that in the six term exact sequence which appeared in
the proof of the above lemma, the map

H1(C,P∨coh,n−1)
f−→ H1(C,P∨coh,n),

is the zero map since it comes after the connecting homomorphism which
was the identity map. This means that the pull back of every extension of
Pcoh,n−1 by a trivial vector bundle, via the projection

Pcoh,n � Pcoh,n−1,

is a split extension. This crucial property will be used in the proof of the
next proposition which is almost the proof of Theorem 2.1.1. Moreover note
that since Pcoh,1 is an element of Ccoh,1 and each Pcoh,n is an extension of
Pcoh,n−1 by a trivial bundle, Pcoh,n is an element of Ccoh,n. ♠

Remark 2.1.5. Another important remark about the above construction is
that we have constructed the extension

0→ T
⊗(n−1)
coh ⊗R OC → Pcoh,n → Pcoh,n−1 → 0.

But what can one say about the automorphism group Aut(Pcoh,n) of this
extension? The answer is given by the following computation

Aut(Pcoh,n) ∼= H0(C,Hom(Pcoh,n−1, T
⊗(n−1)
coh ⊗R OC)).

Factoring out the constant sheaf T
⊗(n−1)
coh ⊗R OC , the above automorphism

group becomes isomorphic to

T
⊗(n−1)
coh ⊗R H0(C,P∨coh,n−1) ∼= T

⊗(n−1)
coh .

Note in particular that the set of possible lifts pn of pn−1 is a principal
homogeneous space over Aut(Pcoh,n). ♥

Now we show that Pcoh,n has the required universal property of the The-
orem 2.1.1 in the subcategory Ccoh,n. More precisely we have
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Proposition 2.1.6. Let E ∈ Ccoh be an object of unipotent class m. Then for
any n ≥ m and any element e ∈ E[x], there exists a unique homomorphism
ϕe : Pcoh,n → E such that ϕe,x(pn) = e. In particular for any n ≥ 1 the pair
consisting of the vector bundle Pcoh,n in Ccoh,n and the element pn ∈ Pcoh,n[x]
is unique up to a unique isomorphism.

Proof. The proof goes by strong induction on m ≥ 1. For the induction
basis note that any object with unipotent class 1 is of the form P ⊗R OC

for a finitely generated projective R-module P . Since (P ⊗R OC)[x] = P
we need to show that for any n ≥ 1 and any p ∈ P there exists a unique
homomorphism ϕp : Pcoh,n → P ⊗ROC with ϕp,x(pn) = p. This can be shown
by induction on n. For n = 1 we have

HomOC (OC , P ⊗R OC) = HomR(R,P ),

and for any element p ∈ P there exists a unique homomorphism ϕp : R→ P
with ϕp(1) = p, hence we are done. For the induction step, one can use the
defining exact sequence

0→ T
⊗(n−1)
coh ⊗R OC → Pcoh,n → Pcoh,n−1 → 0,

and Remark 2.1.5.
Now suppose that the assertion of the proposition is true for any positive

integer smaller than m, and consider an object E in Ccoh of unipotent class
m. Also fix an integer n ≥ m and a fixed element e ∈ E[x]. By definition, E
can be written as an extension of a unipotent vector bundle G of class m− 1
by a trivial vector bundle, i.e. there exists a finitely generated projective
R-module P , and an object G in Ccoh of unipotent class m− 1 such that we
have a short exact sequence

0→ P ⊗R OC → E→ G→ 0.

Furthermore assume that e ∈ E[x] maps to g ∈ G[x]. By induction hypothe-
sis, there is a unique morphism ψg : Pcoh,n−1 → G, which sends pn−1 to g. Let
us show first that this ψg can be extended to a morphism from Pcoh,n to E. To
do this we pull back the above extension via ψg to obtain the commutative
diagram

0 // P ⊗R OC
//

Id
��

E′ //

f

��

Pcoh,n−1
//

ψg
��

0

0 // P ⊗R OC
// E // G // 0

We continue pulling back the extension, this time via the surjection

Pcoh,n � Pcoh,n−1.
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This gives us the commutative diagram

0 // P ⊗R OC
//

Id

��

E′′ //

h

��

Pcoh,n //

����

s
tt

0

0 // P ⊗R OC
// E′ // Pcoh,n−1

// 0

But as we have mentioned in Remark 2.1.4 the top row extension is a split
extension. Hence there exists a section

s : Pcoh,n → E′′.

The composite α := f ◦h◦ s : Pcoh,n → E is the desired extension of ψg. This
map, by construction, sends pn to a lift e′ of g in E[x]. Now the difference
e− e′ goes to zero in G[x] and hence lies in P . By the induction hypothesis
again, there exists a unique morphism β : Pcoh,n−1 → P ⊗R OC which sends
pn−1 to e−e′ ∈ P . If we compose the surjection Pcoh,n � Pcoh,n−1, β, and the
injection P ⊗R OC ↪→ E, and finally add the resulting map to α, we obtain a
map from Pcoh,n to E which sends pn to e.

To prove uniqueness, notice that the difference ϕ of two maps from Pcoh,n
to E with same images on pn, sends pn to zero. Hence by induction hypothesis
the composition of ϕ with E � G is zero. Using this, ϕ can be factored
through P ⊗R OC . Now since P ⊗R OC injects into E, image of pn in P is
zero as well, and using induction hypothesis once more, one concludes that
ϕ is zero.

Recall once more that one can mimic the arguments given above to con-
struct the universal objects PM,n in the categories CM,n with properties anal-
ogous to those of Pcoh,n. As an immediate application of this, we can finally
prove Theorem 2.1.1.

Proof. (of Theorem 2.1.1) Consider the following pro-object in CM

PM := lim←−
n

PM,n,

and consider the element p := lim←− pn ∈ PM [x]. For any object E in CM , and
any element e ∈ E[x], E belongs to CM,n for sufficiently large n. Fix such a
number n, and note that by the above lemma there exists a unique morphism
from PM,n → E which sends pn to e. Any such morphism gives a morphism
from PM to E, but by uniqueness, these morphisms are all compatible for
different n’s, and hence give rise to one morphism from PM to E which sends
p to e.
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Note that Theorem 2.1.1 is equivalent to saying that for any object E in
CM , one has

HomCM (PM ,E) ∼= E[x].

On the other hand, one can naturally define tensor products and duals of
objects in CM , which commute with FM . We are going to use these facts and
put a Hopf-algebra structure on the stalk PM [x] of PM at x. We concentrate
again in the coherent case and leave it to the reader to work out the analogous
de Rham and étale cases. Being only concerned with the coherent case, we
can and will drop the subscripts “−coh ” without causing any confusion.

For any natural number n ≥ 1, put

An := Pn[x]

which by Proposition 2.1.6 is isomorphic to End(Pn) and hence has a ring
structure. By construction, there are ring epimorphisms An � An−1, with
respect to which we can form the inverse limit

A∞ := lim←−An
∼= P[x] ∼= End(P).

A∞ has an obvious ring structure, and in order to make it into a Hopf-algebra
we must construct a map from A∞ to

A∞⊗̂A∞ ∼= lim←−
n,m

(Pn ⊗ Pm)[x].

To do this, note that by Proposition 2.1.6, for any pair of natural numbers n
and m, there exists a unique morphism Pn+m → Pn ⊗ Pm which sends pn+m

in Pn+m[x] to pn⊗pm in (Pn⊗Pm)[x]. Taking inverse limit over n and m and
fiber over x, we obtain the desired co-product which sends p∞ to p∞ ⊗ p∞.
Moreover one can consider the co-unit A∞ � A0 and show

Lemma 2.1.7. The above co-product and co-unit, make A∞ into a co-associative
co-commutative Hopf-algebra.

Proof. All the assertions are immediate consequences of appropriate unique-
ness assertions in Theorem 2.1.1.

Having constructed the co-commutative Hopf-algebra A∞, we can take
its dual A∨∞ and obtain a commutative flat Hopf-algebra, in this case over
R, and by taking the spectrum of the result, we can construct a flat group
scheme

G := Spec(A∨∞),
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in this case over R (recall that we could have done the same in the de Rham
(resp. étale) case and obtain a commutative flat Hopf-algebra and a flat
group scheme over R (resp. Ql) in that case). Moreover, for each integer
n ≥ 1, we define

Gn := G/Zn(G),

where Z• denotes the descending central series. We will see in Remark 2.1.10
that these algebraic quotients Gn of G are unipotent algebraic group schemes
and hence G is a pro-unipotent group scheme.

For any unipotent bundle E, by composing morphisms one has a natural
map

EndC(P)⊗R HomC(P,E∨)→ HomC(P,E∨).

But by Theorem 2.1.1 this is nothing other than a map

A∞ ⊗R E∨[x]→ E∨[x].

Taking the dual of this map gives the map

E[x]→ OG ⊗R E[x].

It is straightforward now to check that the above map puts a co-module
structure on E[x], and hence F : E 7→ E[x] is a tensor functor from the
category of unipotent bundles C to the category of G-representations on
finitely generated projective R-modules. Now we prove that this actually
gives an equivalence of categories, but before that we need a preliminary
proposition, namely

Proposition 2.1.8. For any unipotent bundle E in C, there are positive
integers n,m, r, s ∈ N, such that we have the following exact sequence of
unipotent bundles

Psm → Prn → E→ 0.

Proof. First of all recall that unipotent bundles, being iterated extensions of
trivial bundles, are semi-stable of slope zero. Now fix an object E in C. Since
E has finite unipotent class, by Proposition 2.1.6 there is an integer n such
that for any element e ∈ E[x], there is a morphism ϕe ∈ HomC(Pn,E) whose
stalk at x sends pn to e. Hence the resulting morphism

Φ : Pn ⊗R E[x]→ E

is surjective at x and hence is generically surjective. This implies that
Coker(Φ) is a torsion coherent module whose length is equal to the slope
of Ker(Φ) (recall that both Pn⊗R E[x] and E have slope zero). On the other



24 CHAPTER 2. REALIZATIONS FOR CURVES

hand, Ker(Φ) is a sub-vector bundle of Pn ⊗R E[x], which is a semi-stable
vector bundle with slope zero, and hence must have slope zero as well. So far
we have proved that Coker(Φ) is trivial and hence Φ is surjective. Since E[x]
is a finitely generated R-module, for suitable r ∈ N there exists a surjection

Prn � Pn ⊗R E[x],

and hence the composition gives us the exact sequence

Prn → E→ 0.

Obviously the kernel of the surjection Prn � E, being sub-vector bundle of
Prn, is again semi-stable of slope zero. Using this it is easy to show that this
kernel remains unipotent and hence by repeating the above argument we can
finish the proof.

Now we can prove

Theorem 2.1.9. With above notations and hypotheses, the tensor functor
F gives an equivalence between the category C of unipotent bundles and the
category RepR(G) of G-representations on finitely generated projective R-
modules.

Proof. Let us begin by showing that F is a fully faithful functor. For this we
must show that for any two unipotent bundles E and G in C, there is a bi-
jection between HomC(G,E) and HomG(G[x],E[x]). By applying Proposition
2.1.8 to G, we obtain an exact sequence

Psm → Prn → G→ 0

for suitable m,n, r, s ∈ N. This leads to the following diagram with exact
rows

0 // HomC(G,E) //

��

HomC(Pn,E)r //

��

HomC(Pm,E)s

��
0 // HomG(G[x],E[x]) // HomG(An,E[x])r // HomG(Am,E[x])s

This reduces our problem to showing that for any unipotent bundle E and
any sufficiently large n ∈ N, the natural map

HomC(Pn,E)→ HomG(An,E[x])

induced by F is a bijection. This is equivalent, using the language of pro-
objects, to show that for any unipotent bundle E in C the natural map

HomC(P,E)→ HomG(A∞,E[x])
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is a bijection. But this is easy to see, since both sides are canonically in
bijection with E[x], left hand side by Theorem 2.1.1 and right hand side by
noticing that any G-equivariant map from A∞ = O∨G to E[x] is completely
determined by the image of 1 ∈ A∞, which is an arbitrary element in E[x].

It remains to show that F is an essentially surjective functor. To do this
fix an arbitrary G-representation M , which is a finitely generated projective
R-module. Since for any element m ∈ M , there exists a G-equivariant map
from A∞ to M such that 1 7→ m, and also since M is finitely generated
and A∞ = ∪nAn, one deduces that for sufficiently large n, there is a natural
number r ∈ N and a G-equivariant surjection Arn � M . Repeating this
argument for the kernel of this surjection, we obtain an exact sequence

Asm
f−→ Arn →M → 0

for suitable m,n, r, s ∈ N. An and Am are images under F of Pn and Pm
respectively, and since we have shown that F is a full functor, there exists

a morphism Psm
ψ−→ Prn between unipotent bundles such that F(ψ) = f . If

we denote the cokernel of ψ by E, then it is obvious that F(E) = E[x] is
isomorphic to M , and we are done.

Remark 2.1.10. In addition to all of the above hypotheses, assume that
R is a field. Then by above theorem every representation of G on a finite
dimensional R-vector space is unipotent. In particular all algebraic quotients
Gn of G are unipotent algebraic group schemes over R, and hence G itself is
a pro-unipotent group scheme. ♣

Remark 2.1.11. Note that fibers of unipotent bundles are assumed to be
finitely generated projective R-modules, hence any exact sequence of these
fibers splits. In particular by construction one obtains a (non-canonical)
isomorphism

An ∼=
n−1∏
i=0

T⊗i.

This means that the topological algebra A∞ is non-canonically isomorphic to
the completed free tensor algebra

∏
n T
⊗n. Combining this and the previous

remark, one obtains that when R is a field of characteristic zero, G is a
pro-unipotent group scheme over R which, by Baker-Campbell-Hausdorff
formula, is isomorphic to its Lie algebra which in turn is isomorphic to the
free Lie algebra in T . ♦

We state the upshot of the above arguments, and analogue ones in the de
Rham and étale cases, in the following theorem for future references. Being
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in general setting now, we go back to our standard subscripts in different
cases.

Theorem 2.1.12. There exists a pro-unipotent group scheme GM over R
(resp. R, resp. Ql) in the coherent (resp. de Rham, resp. étale) case,
such that the category CM is equivalent to the category of representations of
GM on finitely generated projective R-modules (resp. R-modules, resp. Ql-
modules). Moreover in the coherent and de Rham cases, provided R is a field
of characteristic zero, and without any extra assumption in the étale case,
the group GM is free pro-unipotent isomorphic to its Lie algebra which is the
free Lie algebra in TM .

Remark 2.1.13. As it has been mentioned briefly in Remark 2.1.2, the group
GM in the above theorem, at least when the base ring R is a field, is the group
of tensor automorphisms of the functor FM , where FM is the functor which
takes the fiber at the fixed point x ∈ X(R). One can go further, and for any
other point y ∈ X(R), and even for base points at infinity (see [8, section
15]), define the space of homotopy classes of paths from y to x as follows. In
Tannakian formalism it can be described like this. Consider the fiber functor
associated to y, which sends an object E in CM to its fiber E[y] over y, and
consider tensor isomorphisms from this functor to FM . Then one can show
that the set of this tensor isomorphisms, as a functor from R-algebras to sets,
is representable by an affine scheme over R, which is a right torsor over GM

(see Theorem 1.1.8). This right torsor is called the path torsor from y to x.
One also can give a description of these path torsors parallel to the above

explicit construction of GM . Namely, first of all note that in order to define a
co-product on PM [x], we took the fiber at x of a morphism PM → PM ⊗PM .
Taking the fiber of the same morphism at point y, puts a co-associative, co-
commutative co-product on PM [y] as well (note that PM [y] does not have a
ring structure in general). On the other hand, PM [x] acts on PM [y]. In fact,
for any a ∈ PM [x] and any b ∈ PM [y], consider the unique endomorphism
ϕa ∈ End(PM), which exists by Theorem 2.1.1 and satisfies ϕa,x(1) = a, and
define

a.b := ϕa,y(b).

It is clear by construction that this action is compatible with co-products on
PM [x] and PM [y], and hence furnishes the affine scheme Spec(PM [y]∨) with
an action of GM . We denote the affine scheme Spec(PM [y]∨) by GM(x, y) and
call it the path torsor from y to x, referring to its torsor structure over GM .
Finally note that we could have made all these procedures in finite levels, and
defined path torsors GM,n(x, y) from y to x over GM,n for all n ≥ 1, which
are actually the push forwards of GM(x, y) via the projections GM � GM,n.
♠
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2.2 The Hodge Filtration

In this section we are going to study an important feature of the de Rham
case, namely the Hodge filtration. To start with we look more closely at the
de Rham picture. Recall that in the de Rham case, we consider the category
CdR of pairs (E,∇) consisting of a vector bundle E over the curve C with an
automatically flat connection

∇ : E→ E⊗OC ΩC/Spec(R)(D),

which is an iterated extension of trivial vector bundles with connection. In
this framework, the proper cohomology theory to work with is the algebraic
de Rham cohomology, hence we consider

H i
dR(C,E) := Hi(C,E

∇−→ E⊗OC ΩC/Spec(R)(D)).

One explicit way of computing these algebraic de Rham cohomologies is by
using Čeck cohomology. Namely, fix an open affine covering C =

⋃
i∈I Ui of

C, where I is a totally ordered index set. Now consider the following set of
n-chains,

Cn :=
⊕

i0≤···≤in

Γ

(
n⋂
s=0

Uis ,E

)
⊕

⊕
j0≤···≤jn−1

Γ

(
n−1⋂
s=0

Ujs ,E⊗OC ΩC/Spec(R)(D)

)
,

and the following differentials between them

d :=

(
d ∇
0 d

)
,

where d’s on the diagonal are the usual differentials appearing in calculating
Čech cohomologies of E and E ⊗OC ΩC/Spec(R)(D) with respect to the fixed
open affine covering. Then the algebraic de Rham cohomologies H i

dR(C,E)
are the cohomology groups of the resulting complex. Now it is very easy to
prove

Lemma 2.2.1. One has the following long exact sequence relating coherent
and algebraic de Rham cohomologies over C

. . .→ H i
dR(C,E)→ H i(C,E)

∇−→ H i(C,E⊗OC ΩC(D))→ H i+1
dR (C,E)→ . . .

Consequently we can prove the following vanishing of H2
dR which we

claimed in section 2.1.
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Lemma 2.2.2. With the same notations and hypothesis as in the beginning
of previous section about C and D, for any unipotent bundle E in CdR one
has

H2
dR(C,E) = 0.

Proof. We prove the assertion by induction on the unipotent class of E. For
induction basis, using Lemma 2.2.1 and vanishing of coherent H2 for curves,
we obtain the following exact sequence

. . .→ H1(C,OC)
∇−→ H1(C,ΩC/Spec(R)(D))→ H2

dR(C,OC)→ 0.

On the other hand, one knows that H1(C,ΩC/Spec(R)(D)) is isomorphic to
the dual of H0(C,O(−D)) by Serre’s duality theorem, which is 0 since
we assumed that D is surjective over Spec(R). Whence we obtain that
H2
dR(C,OC) = 0. Now for an arbitrary unipotent bundle E of unipotent

class n, by definition there exists a unipotent bundle G of class n − 1 such
that E is an extension of G by a trivial bundle. By the long exact sequence of
algebraic de Rham cohomologies coming from this extension, H2

dR(C,E) sits,
in an exact sequence, between H2

dR(C,G) and H2
dR of a trivial bundle, which

are both zero by induction hypothesis, and hence we are done.

This justifies more precisely the de Rham analogues of the objects and
theories we developed in section 2.1, but in this case we can go further and
enrich our theory. Namely we consider finite decreasing Hodge filtrations F •

by sub-bundles on objects of CdR, and moreover we assume that these Hodge
filtrations satisfy Griffiths’ transversality property, i.e. for each integer i
assume

∇(F i(E)) ⊂ F i−1(E)⊗OC ΩC/Spec(R)(D).

In this context, the trivial bundle is OC equipped with the trivial Hodge
filtration, i.e. F 0(OC) = OC and F 1(OC) = 0. These data induce a filtration
on the associated de Rham complex and we can consider algebraic de Rham
cohomologies of this filtration on the de Rham complex of a vector bundle E

in different degrees, namely we define

F i(E
∇−→ E⊗OC ΩC/Spec(R)(D)) := F i(E)

∇−→ F i−1(E)⊗OC ΩC/Spec(R)(D),

and
F iH∗dR(C,E) := H∗(C,F i(E

∇−→ E⊗OC ΩC/Spec(R)(D))).

Note that F iH∗dR(C,E) does not necessarily inject into the H∗dR(C,E). By a
morphism between these filtered objects we mean a filtered morphism where
a morphism f : E→ G between filtered objects is called filtered when for all i,



2.2. THE HODGE FILTRATION 29

one has f(F i(E)) ⊂ F i(G). Restricting to filtered morphisms, maps and ex-
tensions are determined by F 0 of the de Rham complex associated to the bun-
dle Hom(E,G). Namely, given two filtered objects E and G, it is obvious that
filtered homomorphisms between them are given by F 0H0

dR(C,Hom(E,G)),
and moreover one has

Proposition 2.2.3. For two filtered objects E and G, the set of isomorphism
classes of filtered extensions of G by E is in bijection with

F 0H1
dR(C,Hom(G,E)).

Proof. For any filtered extension 0 → E → T → G → 0 of G by E, fix an
open affine covering C =

⋃
i∈I Ui of C, such that for all i ∈ I one has

0 // Ei // Ti // Gi //
siuu

0 ,

where a subscript −i means restriction to Ui and si are filtered sections. This
means that restricting to Ui, one has filtered isomorphism

Ti ∼= Ei ⊕ Gi,

and hence the connection of Ti must have the following form

∇Ti =

(
∇Ei λi
0 ∇Gi

)
.

Now one can easily check that ∇Ti satisfies Griffiths’ transversality property
if and only if

λi ∈ Γ(Ui, F
−1H ⊗OC ΩC/Spec(R)(D)),

where H is the sheaf Hom(G,E). On the other hand, if we consider the
differences

eij := si |Uij −sj |Uij
where Uij := Ui ∩ Uj, we get the following collection of sections

eij ∈ Γ(Uij, F
0H).

Now it is easy, using the Čech approach to compute hyper cohomologies of
complexes, which was mentioned at the beginning of this section, to see that
the above collection of data, namely

(eij, λi) ∈
⊕
i≤j

Γ(Uij, F
0H)⊕

⊕
i

Γ(Ui, F
−1H ⊗OC ΩC/Spec(R)(D))

is equivalent to the data of an element in

H1(C,F 0H
∇−→ F−1H ⊗OC ΩC/Spec(R)(D)),

and hence we are done by definition.
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This proposition allows us to develop a similar filtered de Rham theory.
In order to understand this better, we need a closer study of the induced
filtration on the de Rham cohomology of the trivial bundle. More precisely
we need

Lemma 2.2.4. The Hodge filtration on H1
dR(C,OC) has nonzero grading

parts only in degrees 0 and 1. Moreover one has

Gr0
F (H1

dR(C,OC)) ∼= H1(C,OC),

and
F 1(H1

dR(C,OC)) ∼= H0(C,ΩC/Spec(R)(D)).

Hence the induced Hodge filtration on TdR is concentrated in degrees −1 and
0, and moreover F 0(TdR) is naturally isomorphic to Tcoh.

Proof. Simply note that the induced Hodge filtration on the de Rham com-
plex

OC → ΩC/Spec(R)(D)

is as follows. Its F 0 is the complex itself, its F 1 is 0 → ΩC/Spec(R)(D), and
its F 2 is the zero complex. Hence the nonzero graded parts appear only in
degrees 0 and 1, and obviously the 0-th graded part is just the sheaf OC in
degree 0 and the 1-st graded part is the sheaf ΩC/Spec(R)(D) in degree 1. Now
everything, except the last claim, is an immediate consequence of [6, (1.4.5)].
But the last assertion is also plain, simply because by definition we have

F 0(TdR) = F 0(H1
dR(C,OC)∨) :=

(
H1
dR(C,OC)

F 1(H1
dR(C,OC))

)∨
,

which by the previous part is isomorphic to

H1(C,OC)∨ = Tcoh.

Especially, in this case the F i’s are subobjects of the algebraic de Rham
cohomology.

Remark 2.2.5. One could prove the above lemma by employing Lemma
2.2.1 and the above mentioned proof has essentially the same spirit. ♥

Since the Hodge filtration on TdR has nonzero grading parts only in de-
grees −1 and 0, the induced Hodge filtration on T⊗ndR , and hence the one on
T⊗ndR ⊗ROC , has nonzero grading parts only in degrees {−n, . . . , 0}. It is easy
now to prove the following filtered version of Lemma 2.1.3:
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Lemma 2.2.6. There exists a unique Hodge filtration on PdR,n which makes
the following exact sequence an exact sequence of filtered vector bundles with
strictly compatible morphisms

0→ T
⊗(n−1)
dR ⊗R OC → PdR,n → PdR,n−1 → 0.

Moreover, the above exact sequence induces following isomorphisms for each
integer i

F iH0
dR(C,P∨dR,n) ∼= F iH0

dR(C,OC),

F iH1
dR(C,P∨dR,n) ∼= F iH1

dR(C, T
⊗−(n−1)
dR ⊗R OC),

and finally the element pn ∈ PdR,n[x] in Lemma 2.1.3, lies in F 0(PdR,n[x]).

Proof. Taking into account Proposition 2.2.3, the proof can be done by fol-
lowing exactly the same line of ideas as in the proof of Lemma 2.1.3. Just
notice that the class corresponding to PdR,n in

Ext1(PdR,n−1, T
⊗(n−1)
dR ⊗R OC) ∼= HomR(T

⊗−(n−1)
dR , T

⊗−(n−1)
dR ),

was the identity element which lies in F 0.

Note that, by construction, the resulting Hodge filtration on PdR,n has
nonzero grading parts only in degrees {−(n − 1), . . . , 0}. Using these and
the same ideas as in previous section, one can prove the following filtered
analogue of Proposition 2.1.6 in the de Rham case (we omit the similar
proof).

Proposition 2.2.7. For any filtered object (E,∇, F •) in CdR,n, and any el-
ement e ∈ F 0(E[x]), there exists a unique horizontal, strictly compatible ho-
momorphism ϕe : PdR,n → E such that ϕe,x(pn) = e. Moreover the pair
(PdR,n, pn) is unique up to a unique isomorphism.

We finish this section by

Remark 2.2.8. Note that, since by Lemma 2.2.4, F 0(TdR) ∼= Tcoh, one also
obtains F 0(T⊗ndR ) ∼= T⊗ncoh . Then simply by the analogy of the constructions,
one can see that these relations extend also to the following isomorphism:

F 0(PdR,n) ∼= Pcoh,n.

Furthermore, if one equips the inverse limit PdR with the induced Hodge
filtration, one obtains a Hodge filtration on the stalk PdR[x] concentrated on
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negative degrees, and dually a Hodge filtration on the affine coordinate ring
O(GdR) of the group scheme GdR concentrated in positive degrees. Now since

F 0(PdR[x]) ∼= Pcoh[x],

one dually obtains the following isomorphism

O(GdR)/F 1(O(GdR)) ∼= O(Gcoh).

This gives a closed immersion of the pro-unipotent coherent fundamental
group schemeGcoh into the pro-unipotent de Rham fundamental group scheme
GdR. ♣

2.3 Crystalline Realization and Frobenius

The aim of this section is to introduce a category Ccr which is equivalent to
the category CdR of a curve over a complete discrete valuation ring of un-
equal characteristic p and absolute ramification index e < p. The important
property of Ccr is that it only depends on the reduction modulo p of the
curve, hence admits a Frobenius action. This leads to a Frobenius action on
CdR and hence a Frobenius action on GdR and all of GdR,n’s. This Frobenius
action is the second important part of the decoration that one can put on
the (pro-)unipotent de Rham fundamental group.

In order to do that, we need to recall some parts of the crystalline and
the logarithmic crystalline theories. The main references for this section are
[2] for the first or classic part and [23] for the second or logarithmic part.
Let A be a commutative ring and I ⊂ A be an ideal. Recall that a divided
power structure on I is a collection of maps γi : I → A, for all integers i ≥ 0,
such that

1. ∀x ∈ I, γ0(x) = 1, γ1(x) = x, and γi(x) ∈ I if i ≥ 1.

2. ∀x, y ∈ I, γk(x+ y) =
∑

i+j=k γi(x)γj(y).

3. ∀λ ∈ A and ∀x ∈ I, γk(λx) = λkγk(x).

4. ∀x ∈ I, γi(x)γj(x) = (i+j)!
i!j!

γi+j(x).

5. ∀x ∈ I, γp(γq(x)) = (pq)!
p!(q!)p

γpq(x).

In this case we say that (I, γ) is a DP-ideal, (A, I, γ) is a DP-ring, and
γ is a DP-structure on I. A DP-morphism f : (A, I, γ) → (B, J, δ) is a ring
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homomorphism f : A→ B such that f(I) ⊂ J and that δn(f(x)) = f(γn(x))
for all n ∈ N and x ∈ I. One can easily check that if V is a discrete valuation
ring of unequal characteristic p and uniformizing parameter π, then the ideal
(π) admits a (unique) DP-structure if and only if vπ(p) < p. Moreover for
any m ≥ 1, this DP-structure induces a DP-structure on (π) ⊂ V/(πm) which
will be called the canonical DP-structure.

Definition 2.3.1. Let (A, I, γ) be a DP-ring, B an A-algebra, and (J, δ)
a DP-ideal in B. One says that γ and δ are compatible if γ extends to a
DP-structure γ̄ on IB ⊂ B and γ̄ = δ on IB ∩ J .

If we fix a pair (A, I) consisting of a commutative ring A and an ideal
I in A, we can consider the category of pairs over (A, I) whose objects are
pairs (B, J) where B is an A-algebra and J is an ideal in B. A morphism
from (B, J) to (B′, J ′) is just an A-algebra homomorphism from B to B′

which maps J into J ′. Moreover if (A, I) admits a DP-structure γ we can
consider the category of DP-algebras over (A, I, γ) whose objects are triples
(B, J, δ) where (B, J) is a pair over (A, I) and δ is a DP-structure on J which
is compatible with γ, and of coarse with DP-morphisms between them. Then
we have the obvious forgetful functor from the category of DP-algebras over
(A, I, γ) to the category of pairs over (A, I). The following theorem says that
this forgetful functor admits a left adjoint which is called the DP-envelope
functor and will be denoted by D. More precisely we have

Theorem 2.3.2. [2, Theorem 3.19] Let (A, I, γ) be a DP-ring and let (B, J)
be a pair over (A, I). Then there exists a B-algebra DB,γ(J) with a DP-ideal
(J̄ , θ), such that JDB,γ(J) ⊂ J̄ , θ is compatible with γ, and with the following
universal property: For any triple (C,K, δ) consisting of a B-algebra C, an
ideal K in C which contains JC, and a DP-structure δ on K compatible with
γ, there is a unique DP-morphism from (DB,γ(J), J̄ , θ) to (C,K, δ) which fits
into the following commutative diagram:

(DB,γ(J), J̄ , θ)

∃!

''
(B, J)

77ooooooooooo
// (C,K, δ)

(A, I, γ)

ggOOOOOOOOOOO

77nnnnnnnnnnnn

The following proposition will help us compute some DP-envelopes which
will appear later on.
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Proposition 2.3.3. Let (V, (π), γ) be the above mentioned canonical DP-ring
where V is a discrete valuation ring of unequal characteristic p with absolute
ramification index smaller than p, and let A be a V -algebra. Then one has

DA,γ(πA) ∼= (A, πA, γ̄),

in which γ̄ is the unique extension of γ to πA.

Proof. It suffices to prove that there always exists a (unique) extension γ̄ of
γ to πA, because then DP-envelope by definition does nothing with a pair
which already has a compatible DP-structure. Note that γ̄n(πa) = anγn(π),
∀a ∈ A defines an extension of γ to πA. It is well defined because if πa = πa′

for a, a′ ∈ A, then one has

anγn(π)− a′nγn(π) = (an − a′n)γn(π)

which is zero since (a− a′) | (an − a′n) and π | γn(π) for all n ∈ N.

Remark 2.3.4. Note that for any integer m ≥ 1 the analogue of the above
proposition is valid for the DP-ring (V/(πm), (π), γ), in which γ is the canon-
ical DP-structure again, and it can be proved in exactly the same way as the
above proposition was proved. ♦

The next step is to globalize these notions and talk about sheaves of DP-
rings, DP-ringed spaces, DP-schemes, and morphisms between them. The
exact definitions can be found in [2]. Let us just recall the global version of
the notion of DP-envelopes. Let S be a scheme, I ⊂ OS be a quasi-coherent
sheaf of ideals with a DP-structure γ, and suppose i : X → Y is a closed
immersion of S-schemes. Let J be the defining sheaf of ideals of X in OY ,
then one can show that

DX,γ(Y ) := DOY ,γ(J)

is a quasi-coherent sheaf of OY -algebras and hence we can define the DP-
envelope of X in Y to be the DP-scheme

DX,γ(Y ) := SpecY (DX,γ(Y )).

Now we have enough tools to define crystalline site and topos. From now
on, all schemes under consideration in this section will be killed by a power of
a fixed prime number p, unless otherwise specified. Let S = (S, I, γ) be a DP-
scheme, which will play the role of the base in the sequel. For any S-scheme
X to which γ extends, the crystalline site of X relative to S, Crys(X/S),
consists of the following data: Its objects are pairs (U ↪→ T, δ), where U is
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a Zariski open subset of X, U ↪→ T is a closed S-immersion defined by an
ideal sheaf J, and δ is a DP-structure on J which is compatible with γ. Such
a pair (U ↪→ T, δ) will be called an S-DP-thickening of U . A morphism

(U ↪→ T, δ)
u−→ (U ′ ↪→ T ′, δ′)

in Crys(X/S) is just a commutative square

T // T ′

U //

OO

U ′

OO

such that U → U ′ is a morphism in the Zariski site of X and T → T ′ is an
S-DP-morphism (T, J, δ)→ (T ′, J′, δ′). A covering family in Crys(X/S) is a
collection of morphisms

{ui : (Ui ↪→ Ti, δi)→ (U ↪→ T, δ)}i

such that each Ti → T is an open immersion and T = ∪iTi. We denote the
topos of sheaves on Crys(X/S) by (X/S)Crys and we call it the crystalline
topos of X relative to S.

It can be easily seen from the definition of coverings in the crystalline
site that an element in the crystalline topos (X/S)Crys is equivalent to the
data of a family of Zariski sheaves on the thickenings T , one for each object
in Crys(X/S), which are compatible in an evident way. Using this inter-
pretation, for any crystalline sheaf F in (X/S)Crys we denote the associated
Zariski sheaf on T by F(U↪→T,δ). The most important element of (X/S)Cris is
the structure sheaf OX/S which associates the Zariski sheaf OT on T to the
object (U ↪→ T, δ).

Another important notion which we need is the notion of a crystal. A
crystal of OX/S-modules is a sheaf F of OX/S-modules such that for any
morphism

u : (U ′ ↪→ T ′, δ′)→ (U ↪→ T, δ)

in Crys(X/S), the map

u∗F(U↪→T,δ) → F(U ′↪→T ′,δ′)

is an isomorphism. Note that the sheaf OX/S itself is an obvious example of
a crystal. The following theorem is the first and main step toward our goal.

Theorem 2.3.5. [2, Theorem 6.6] If X → Y is a closed immersion of S-
schemes, with Y smooth over S, the following categories are naturally equiv-
alent:
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• The category of crystals of OX/S-modules on Crys(X/S).

• The category of DX,γ(Y )-modules with an integrable, quasi-nilpotent
connection (as an OY -module) which is compatible with the canonical
connection on DX,γ(Y ).

Recall that a quasi-nilpotent connection ∇ is a connection such that af-
ter fixing an open covering Y =

⋃
i Ui of Y and systems of coordinates

{yi,1, . . . , yi,t}i for all the open subsets Ui of Y over S, there exist natural
numbers ni,1, . . . , ni,t ∈ N such that for any i, the differential operator

∇(∂/∂yi,1)ni,1 ◦ · · · ◦ ∇(∂/∂yi,t)
ni,t

kills all the sections over Ui. This notion of quasi-nilpotency can be shown
to be independent of the choices of coordinate systems for integrable connec-
tions.

If we were only interested in smooth projective cases, we already were
equipped enough to endow GdR with a Frobenius action. But since we are
mainly interested in the case of open curves we need also the logarithmic
crystalline theory. Here we just briefly recall this generalizations and refer
the reader to [23] for more precise and general treatment.

Recall that a logarithmic structure on a scheme X is a sheaf of monoids
M on the étale site Xét of X together with a multiplicative homomorphism
α : M→ OX which satisfies

α−1(O∗X)
α∼−→ O∗X .

Note that for any multiplicative homomorphism α : M→ OX , where M is a
sheaf of monoids on Xét, the push out of the diagram

α−1(O∗X) //

α

��

M

O∗X

in the category of sheaves of monoids on Xét gives rise to a logarithmic struc-
ture Ma on X which is called the associated logarithmic structure to M. Now
for any morphism of schemes f : X → Y and any logarithmic structure N on
Y , the pull back f ∗(N) is defined to be the logarithmic structure (f−1(N))a

on X.
A morphism (X,M)→ (Y,N) of schemes with logarithmic structures is a

pair (f, s) consisting of a morphism of schemes f : X → Y and a morphism
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of sheaves s : f−1(N)→M such that

f−1(N)
s //

f−1(β)
��

M

α

��
f−1(OY ) // OX

commutes.
For example let X be a regular scheme with a fixed reduced divisor D

with normal crossing, put Y = X −D, and let i : Y ↪→ X be the inclusion.
Then the monoid

M := i∗O
∗
Y ∩ OX = {g ∈ OX : g is invertible outside D}

and the natural inclusion M ↪→ OX puts a fine logarithmic structure on
X, where by a fine logarithmic structure we mean a coherent integral one.
Recall that a monoid is called integral if it satisfies the cancelation rule and a
logarithmic structure M is called integral if it is formed by a sheaf of integral
monoids. Finally a logarithmic structure M on a scheme X is said to be
coherent if it is isomorphic to the logarithmic structure associated with a
multiplicative homomorphism

PX → OX ,

where PX is the constant sheaf on Xét associated with a finitely generated
monoid P . Now fix a quadruple (S, L, I, γ) as the base, where S is a scheme
such that OS is killed by a power of a prime number p, L is a fine logarithmic
structure on S, I is a quasi-coherent sheaf of ideals on S, and γ is a DP-
structure on I. Assume that (X,M) mentioned above can be considered
as a scheme with fine logarithmic structure over (S, L) and finally suppose
that γ extends to X. Then one can define the logarithmic crystalline site
Crys(X/S)log as follows: Any object in Crys(X/S)log consists of the data

(U
i−→ T,MT , δ) where U is an étale scheme over X, (T,MT ) is a scheme with

a fine logarithmic structure over (S, L),

i : (U,M) ↪→ (T,MT )

is an exact closed immersion over (S, L), and δ is a DP-structure on the ideal
sheaf of OT which defines U , compatible with γ. In this context, an exact
closed immersion (i, s) : (X,M) → (Y,N) between two schemes with loga-
rithmic structures is a morphism of schemes with logarithmic structures such
that the underlying morphism of schemes i : X → Y is a closed immersion
and i∗(N)→M is an isomorphism.
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Morphisms in Crys(X/S)log are commutative diagrams

T // T ′

U //

i

OO

U ′

i′

OO

where U → U ′ is a morphism in the étale site of X and T → T ′ is a DP-
morphism between fine logarithmic schemes over (S, L). Coverings are usual
coverings in the étale site of X, forgetting the logarithmic structures. The
topos of sheaves over Crys(X/S)log is denoted by (X/S)logCrys and is called
the logarithmic crystalline topos of X over S. Note that the reason for
considering étale schemes over X instead of its Zariski open subsets is that
the notion of normal crossing for divisors is well behaved in the étale topology,
i.e. it is étale local.

Now, exactly as in the classical case, one can define the structure sheaf

OX/S on Crys(X/S)log to be the sheaf which assigns to an object (U
i−→

T,MT , δ) the ring of global sections Γ(T,OT ). This obviously belongs to the
logarithmic crystalline topos (X/S)logcrys of X over S.

Our next aim is to provide ourselves with the logarithmic version of the
Theorem 2.3.5. In order to do that, we need the logarithmic version of DP-
envelopes, as in Theorem 2.3.2, as well as the logarithmic version of the
notion of a crystal. The latter one can be obtained simply by the following:

Definition 2.3.6. A logarithmic crystal on Crys(X/S)log is a sheaf of OX/S-
modules F in the topos (X/S)logcrys such that for any morphism g : T ′ → T in
Crys(X/S)log, the induced map g∗(FT )→ FT ′ is an isomorphism.

The former one, namely the logarithmic version of DP-envelope, is given
by [23, Proposition 5.3]. Putting all these together one can prove the follow-
ing theorem which we state in view of its importance for us.

Theorem 2.3.7. [23, Theorem 6.2] Let (Y,N) be a scheme with fine loga-
rithmic structure which is smooth over (S, L), and let (X,M)→ (Y,N) be a
closed immersion. Denote by (D,MD) the DP-envelope of (X,M) in (Y,N).
Then the following two categories are equivalent.

• The category of crystals on Crys(X/S)log.

• The category of OD-modules with an integrable, quasi-nilpotent connec-
tion.
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Having recalled all these generalities, let us go back to the situation of
interest to us. Namely let K be a complete non-archimedean field of charac-
teristic zero, V be its ring of integers, and k be the residue field of V which is
perfect of characteristic p > 0. Moreover fix a uniformizing parameter π for
V and assume that vπ(p) < p. Let XV be a smooth curve over V which ad-
mits an open immersion into a projective smooth curve CV over V . Assume
moreover that the complement DV of XV in CV is étale and surjective over
V . Let a subscript “ −K ” (resp. “ −k ”) denote the generic (resp. special)
fiber of the object under study. Now one can apply the general machinery
of previous sections to these curves over V , K, and k. In this section we
are particularly interested in the de Rham case for XV . So we consider the
category CdR of unipotent vector bundles on CV with logarithmic connection
along DV . Then fixing a V -point x ∈ XV (V ) gives us the functor FdR, and
hence a pro-unipotent affine group scheme GdR. Our aim now is to endow
GdR with a Frobenius action. To do this, we use the above techniques to
obtain a description of GdR, which depends only on the reduction modulo π
of objects, i.e. on Xk, Ck, and Dk.

For any integer m ≥ 1 consider the DP-ring (V/(πm), (π), γ), where γ is
the canonical DP-structure. Equip the resulting DP-scheme with the trivial
logarithmic structure and take the resulting DP-scheme with the trivial fine
logarithmic structure as our base Sm := (S, L, I, γ)m. Note that OS is killed
by a power of p as we always assumed before. Now let Cm, Xm, and Dm be
respectively the pull backs of CV , XV , and DV to V/(πm), and note that the
new subscript “ −1 ” does the same as the older one “ −k ”. On the other
hand, using the normal crossing divisor Dm on the smooth curve Cm, one can
put a fine logarithmic structure on Cm and consider it as an smooth scheme
with fine logarithmic structure over Sm. Furthermore for any m ≥ 1, C1 and
its corresponding fine logarithmic structure coming from D1 is also a scheme
with fine logarithmic structure over Sm which can be embedded by a closed
immersion into Cm. Now we can apply Theorem 2.3.7 to this situation. But
note that the defining ideal sheaf of C1 in Cm is the principal ideal sheaf
πOCm , and by the evident global versions of Proposition 2.3.3 and Remark
2.3.4 we see that the DP-envelope of C1 in Cm is Cm itself. Finally it is
obvious that under the equivalence given by Theorem 2.3.7 the subcategory
of unipotent crystals, which are iterated extensions of the trivial crystal, on
Crys(C1/Sm)log is equivalent to the category of unipotent vector bundles
on Cm with logarithmic connections along Dm , which are obviously quasi-
nilpotent. Finally since by Grothendieck’s algebraicity theorem, the category
of unipotent vector bundles on CV with logarithmic connection along DV

is equivalent with the category of compatible inverse systems of unipotent
bundles on the inverse system {Cm}m with logarithmic connections along
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{Dm}m, one can put everything together and obtain the following

Theorem 2.3.8. With all the notations and assumptions made above, the
category Ccr of unipotent crystals on Crys(C1/Spec(V ))log is equivalent to the
category CdR of unipotent vector bundles on CV with logarithmic connections
along DV .

Now suppose that k contains the finite field with q = ps elements Fq, over
which C1 is defined. Consider F := Frs, where Fr is the absolute Frobenius.
Then the curve C1 admits a Frobenius action induced by F , and since all
the above constructions are functorial, F also acts on the category of unipo-
tent crystals on Crys(C1/Spec(V ))log. Now by applying Theorem 2.3.8 one
can endow the category CdR of unipotent vector bundles with logarithmic
connection on XV with a Frobenius action, which is induced by F and fur-
thermore is compatible with tensor product. Moreover, it is easy to see that
if we choose the point x ∈ XV (V ) in such a way that its reduction modulo
π, x̄ ∈ Xk(k), belongs to Xk(Fq), then the above Frobenius action on CdR,
induced by F , respects the fiber functor at the point x, and hence induces
an action on the pro-unipotent affine group scheme GdR. Let us denote this
Frobenius action on GdR by F , and write Gcr when we want to refer to the
group GdR equipped with this Frobenius action.



Chapter 3

Torsor Spaces and Period Maps

How can one study integral or rational points of a variety using its funda-
mental group? To explain our general idea in that direction, let us go down
once more to the abelianization of the fundamental group and replace it by
the Albanese variety. In general, for any projective variety V defined over
a number field, there is an Albanese map V → A from V to its Albanese
variety A which is an abelian variety defined over the field of definition of
V . More important is that the Albanese map is also defined on the same
field as V and A are, and hence maps the rational points of V to the rational
points of A. Now since studying rational points of abelian varieties is easier
than the general varieties, the naive idea is to study the rational points of
A and the Albanese map in order to obtain information about the rational
points of V . This principle was applied by Chabauty, long time ago, to at-
tack Mordell’s conjecture (see [5]), and has been considered for some time
as a powerful tool in studying rational points of projective hyperbolic curves
(when the Albanese map has the nice property of being a closed immersion).
Here we are trying to develop and use the non-abelian version of these ideas.
But first of all we need to build the non-abelian versions of the Albanese
variety and the Albanese map, the so called period maps. This is what we
are going to do in this chapter.

3.1 Representability

So far we have discussed different notions of pro-unipotent fundamental
groups. Some of them have extra structures, namely Galois action, Hodge fil-
tration, Frobenius action, and so on, and all of them, being (pro-)unipotent,
admit separated descending central series. On the other hand, we have seen
in Remark 2.1.13 that there are natural path spaces which are torsors over

41
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these fundamental groups. Since the additional structures mentioned above
can be put on the whole unipotent fundamental groupoid, these path tor-
sors can also be furnished with these extra structures. These structures on
path torsors are compatible with the corresponding structures on the funda-
mental groups and the torsor structures. Generally isomorphism classes of
torsors are classified by a suitable (not necessarily abelian) cohomology set.
As we will see latter, in order to define the period maps we need to have
some proper spaces which represent these cohomology sets. To attack this
problem, following Faltings [17, section 3], we consider the following general
situation.

Let K be a topological field of characteristic zero, which is complete
and Hausdorff. Fix a pro-finite group Γ, and finite dimensional continuous
representations L1, . . . ,Lr of Γ over K. We are interested in continuous
representations L of Γ over K, which admit a Γ-stable filtration

(0) = W0(L) ⊂ W1(L) ⊂ · · · ⊂ Wr(L) = L,

such that for each 1 ≤ i ≤ r one has

Wi(L)/Wi−1(L) ∼=Γ Li.

Consider the following unipotent group

G :=


I HomK(L2,L1) . . . HomK(Lr,L1)
0 I . . . HomK(Lr,L2)
...

...
. . .

...
0 0 . . . I


Obviously Γ acts on G in a natural fashion, namely

γ(g) := Diag(ρi(γ)).g.Diag(ρi(γ)−1),

where
ρi : Γ→ GL(Li)

is the fixed action of Γ on Li. We recall very briefly that the set Z1(Γ,G)
of continuous 1-cocycles of Γ with values in G is the set of continuous maps
c : Γ → G, γ 7→ cγ, such that cγ1γ2 = cγ1γ1(cγ2). The group G acts on
Z1(Γ,G) via the rule

(g ∗ c)γ := g−1cγγ(g).

When two 1-cocycles lie in the same orbit of this action, we say that they
differ by a coboundary. The non-abelian cohomology set H1(Γ,G) is then
defined to be the orbit space Z1(Γ,G)/G. Note that H1(Γ,G) is a pointed
set, namely we have the orbit of the trivial 1-cocycle, which will be called
the trivial class. First of all we have the following:
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Lemma 3.1.1. The isomorphism classes of representations L as above are
in bijection with the elements of the non-abelian cohomology set H1(Γ,G).

Proof. One can use the filtration W• to obtain an isomorphism

L ∼=
r⊕
i=1

Li

as K-vector spaces. Now since the action by Γ respects W•, if we choose a
basis for each Li and denote the fixed action of Γ on Li by ρi : Γ→ GL(Li),
we can write the action of γ ∈ Γ on L as the product of an element gγ of G
with Diag(ρi). Namely we have

γ 7→


ρ1(γ) ϕ2,1

γ . . . ϕr,1γ
0 ρ2(γ) . . . ϕr,2γ
...

...
. . .

...
0 0 . . . ρr(γ)


which can be factored as

I ψ2,1
γ . . . ψr,1γ

0 I . . . ψr,2γ
...

...
. . .

...
0 0 . . . I




ρ1(γ) 0 . . . 0
0 ρ2(γ) . . . 0
...

...
. . .

...
0 0 . . . ρr(γ)


where for any 1 ≤ i < j ≤ r

ϕj,iγ and ψj,iγ = ϕj,iγ ρj(γ)−1 ∈ HomK(Lj,Li).

It is an easy and straightforward computation then to check that γ 7→ gγ is
a continuous 1-cocycle, and changing the chosen bases for Li’s will change
it by a coboundary. This gives a map from the isomorphism classes of rep-
resentations like above to H1(Γ,G). The inverse map is also plain. Assume
given a continuous 1-cocyle γ 7→ cγ, one can easily compute that the map
γ 7→ cγ.Diag(ρi(γ)) gives a continuous representation of Γ on

⊕r
i=1 Li, and

if we consider the trivial filtration on this direct sum, the resulting object
has the property that if we apply the above mentioned procedure on it, we
recover the 1-cocycle c.

The above classical result is nice, but far from being enough for us. We
want to consider this non-abelian cohomology set as a functor on the category
of finitely generated K-algebras and prove its representability under some
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conditions. To set up the situation, we fix some conventions. Since K is a
topological field, every finite dimensional vector space over K has a natural
topology induced from K. On infinite dimensional vector spaces, following
Kim [24], we put the inductive limit topology induced by finite dimensional
sub-vector spaces, i.e. a subset is open if and only if its intersection with
any finite dimensional sub-vector space V is open in V . In particular all
K-algebras and all modules over them can be topologized this way. In this
topology any compact subset lies in a finite dimensional sub-vector space (see
[24, Lemma 4]), and in particular any orbit of any continuous representation
of Γ lies in a finite dimensional sub-vector space.

The functor we are interested in, associates to a finitely generated K-
algebra R, the set of all continuous representations of Γ on a free R-module
M , such that M admits a Γ-stable filtration

(0) = W0(M) ⊂ W1(M) ⊂ · · · ⊂ Wr(M) = M,

where for each 1 ≤ i ≤ r,

Wi(M)/Wi−1(M) ∼=Γ Li ⊗K R.

This, by the same argument as in Lemma 3.1.1, is the same as the functor
which associates H1(Γ,G(R)) to R, where G(R) := G ⊗K R. In order to
study this functor, we first study the functor of continuous 1-cocycles, namely
R 7→ Z1(Γ,G(R)). Fixing any finite set of elements γ1, . . . , γs ∈ Γ gives
us an evaluation map ev : Z1(Γ,G) → Gs, which sends a continuous 1-
cocycle c to the s-tuple (cγ1 , . . . , cγs) ∈ Gs. Our aim is to prove that for
sufficiently large s and suitable choice of elements γi, the evaluation map ev
gives a closed immersion of Z1(Γ,G) into Gs. For this we must assume that
H1(Γ,HomK(Lj,Li)) is finite dimensional for every i < j. In the rest of this
section we denote HomK(Lj,Li) by Hj,i for short. Now we have

Theorem 3.1.2. If for all i < j

dimK(H1(Γ, Hj,i)) <∞,

then for sufficiently large s, there are elements γ1, . . . , γs ∈ Γ such that the
above mentioned evaluation map gives a closed immersion of Z1(Γ,G) into
Gs. In particular the functor Z1(Γ,G(R)) on finitely generated K-algebras
is representable by an affine scheme.

Proof. The proof is by induction on r. For r = 2 note that

G ∼= H2,1
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is a finite dimensional vector group over K. Since H1(Γ,G) is finite dimen-
sional as well, we conclude that Z1(Γ,G) is also a finite dimensional vector
group over K. The representability assertion is clear now, but let us prove
the first claim of the theorem. The evaluation map is K-linear in this case,
and since for any non-trivial 1-cocycle c, there exists an element γ ∈ Γ such
that cγ 6= 1, we can reduce the dimension of the kernel of the evaluation
map at each step, and hence make the evaluation map injective after finitely
many steps.

Now let G1 (resp. G2, resp. G1,2) be the group obtained by removing the
first row and first column (resp. last row and last column, resp. first and last
rows and columns) of G. Note that all these groups are naturally isomorphic
to closed sub-groups of G, and on the other hand, G1 (resp. G2, resp. G1,2)
is the analogue of G if we had started with representations L2, . . . ,Lr (resp.
L1, . . . ,Lr−1, resp. L2, . . . ,Lr−1). By the induction hypothesis Z1(Γ,Gi(R))
is representable by a K-algebra Ri and can be embedded by a closed immer-
sion into Gsi (i = 1, 2). The product scheme, which corresponds to R1⊗KR2,
represents pairs of cocycles Z1(Γ,G1)×Z1(Γ,G2), and can be embedded by
a closed immersion into Gs1+s2 . Since having the same restriction on G1,2 is
a closed condition on this scheme, if we consider the functor F which sends
a K-algebra R to the set of pairs of cocycles in Z1(Γ,G1(R))×Z1(Γ,G2(R))
with same restriction on G1,2, we have shown that F is representable and is
a closed subscheme of some finite power of G. Now let H be defined by the
following exact sequence of group schemes over K

0→ Hr,1 → G→ H→ 0.

Clearly F(R) is nothing other than Z1(Γ,H(R)), which by above argument
is representable by a K-algebra S. Recall that for vector groups like Hr,1,
one can define the higher cohomology groups and obtain an exact sequence
ending with H2(Γ, Hr,1) from a short exact sequence like above. Now consider
the following commutative diagram of functors

Z1(Γ, Hr,1)
g //

��

Z1(Γ,G)
f //

��

Z1(Γ,H)

��
H1(Γ, Hr,1) // H1(Γ,G) // H1(Γ,H) // H2(Γ, Hr,1)

Our goal is to prove the representability of the functor Z1(Γ,G). For that,
we first consider the functor G which is the image of f , i.e. sends a K algebra
R to the subset of those continuous 1-cocycles in Z1(Γ,H) which are liftable
(not necessarily in a unique way!) to Z1(Γ,G). First note that since Z1(Γ,H)
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is representable by S, we have a universal 1-cocycle ξ ∈ Z1(Γ,H(S)), which
corresponds to the identity homomorphism in HomK−alg(S, S). After fixing
a basis for H2(Γ, Hr,1), the image of ξ in

H2(Γ, Hr,1 ⊗K S) ∼= H2(Γ, Hr,1)⊗K S

can be written in terms of this basis with coefficients in S. Let J be the ideal
in S generated by these coefficients, then the image ξ′ of ξ in Z1(Γ,H(S/J))
maps to zero in H2(Γ, Hr,1)⊗K S/J , whence can be lifted to Z1(Γ,G(S/J)).
Using Yoneda’s isomorphism and the universal construction of ξ′, one can
easily check that ξ′ is a universal element and show that G is representable
by the K-algebra S/J . Certainly G is a closed sub-functor of F and hence
can be embedded by a closed immersion into some power of G.

The final step of the proof is not difficult now. First note that if we
could lift ξ′ uniquely to Z1(Γ,G(S/J)), it was already clear that Z1(Γ,G)
is representable by S/J . In our case, different lifts of ξ′ form a principal
homogeneous space over the image of Z1(Γ, Hr,1) under g. This space, by
assumption is a finite dimensional vector group over K, and hence we can
fix the non-unicity of the lift exactly with the same idea as in the induction
basis.

Note that, having proved that Z1(Γ,G) is representable by an affine
scheme over K, we already proved that

H1(Γ,G) = Z1(Γ,G)/G

is an algebraic stack. But we want more, hence we put further assumptions
in order to obtain representability by a scheme. The idea is that in order to
have a nice quotient in the category of schemes, we need at least that the
group G act freely on Z1(Γ,G), and this can be achieved if we assume that
H0(Γ, Hj,i) vanishes for all i < j. This assumption in fact is sufficient for our
purpose, more precisely, we have the following

Corollary 3.1.3. Under the assumptions of Theorem 3.1.2, if one assumes
moreover that

H0(Γ, Hj,i) = 0

for all i < j, then H1(Γ,G) is representable by an affine scheme over K.

Proof. Recall that Γ acts in a natural way on Hj,i’s, and hence every γ ∈ Γ
induces a K-linear map on these K-vector spaces. Under the above van-
ishing assumption on Γ-invariants, one can choose finitely many elements
{γ1, . . . , γs′} ⊂ Γ such that for all i < j there exists no nonzero element in
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Hj,i which is fixed by all γn , 1 ≤ n ≤ s′ (note that there are finitely many
indices i and j, and all Hj,i are finite dimensional over K). That is, for every
i < j, one obtains an injection

ϑj,i : Hj,i ↪→ Hs′

j,i

which sends an element ϕj,i to the s′-tuple (γn(ϕj,i)−ϕj,i)s′n=1. On the other
hand, by Theorem 3.1.2, one can enlarge this set of elements to a bigger, but
still finite, set of elements {γ1, . . . , γs} ⊂ Γ, to obtain a closed immersion

ev : Z1(Γ,G) ↪→ Gs

at the same time. Now for any i < j fix a complementary sub-vector space
Vj,i ⊂ Hs

j,i to the image of ϑj,i, and let

Z1(Γ,G)′ ⊂ Z1(Γ,G)

be the set of 1-cocycles c such that all entries of ev(c) lie in Vj,i. Obviously
Z1(Γ,G)′ is a closed sub-functor of Z1(Γ,G), and hence is representable by an
affine scheme over K. Our aim is to show that Z1(Γ,G)′ forms a complete set
of representatives for G action on Z1(Γ,G), and obtain the representability
of Z1(Γ,G)/G.

First we show that for any 1-cocycle c ∈ Z1(Γ,G)′ and any g ∈ G, g ∗ c
lies in Z1(Γ,G)′ if and only if g = 1G. To do this assume

g =


I ϕ2,1 . . . ϕr,1

0 I . . . ϕr,2

...
...

. . .
...

0 0 . . . I

 ,

and

cγn =


I ψ2,1

γn . . . ψr,1γn
0 I . . . ψr,2γn
...

...
. . .

...
0 0 . . . I

 for all 1 ≤ n ≤ s.

By definition and a straightforward computation, one can see that for any
1 ≤ i ≤ r − 1 the (i, i+ 1)-entry of (g ∗ c)γn is

−ϕi+1,i + ψi+1,i
γn + γn(ϕi+1,i).

If both c and g ∗ c lie in Z1(Γ,G)′, we conclude that ϕi+1,i = 0 for all
1 ≤ n ≤ r− 1. Taking this into account, we can argue the same for (i, i+ 2)-
entries and so on to show that g = 1G.
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Now in order to finish the prove, we show that for any 1-cocycle c in
Z1(Γ,G) there exists an element g ∈ G, which is unique by the above argu-
ment and such that g∗c lies in Z1(Γ,G)′. Assume that for any 1 ≤ n ≤ s, cγn
has the above matrix form, and consider again the entries immediately above
the diagonal. Since Vi+1,i and ϑi+1,i(Hi+1,i) form complementary sub-spaces
of Hs

i+1,i, there are unique elements αi+1,i ∈ Vi+1,i and βi+1,i ∈ Hi+1,i such
that for all 1 ≤ n ≤ s and all 1 ≤ i ≤ r − 1 one has

ψi+1,i
γn = αi+1,i + (γn(βi+1,i)− βi+1,i).

Now if one considers the element g1 ∈ G with 1 as diagonal entries, −βi+1,i

as (i, i + 1)-entries, and 0 elsewhere, it is easy to check that the entries
immediately above diagonal in g1 ∗ c lie in Vi+1,i. Similarly we can construct
an element g2 ∈ G with nonzero entries only on the diagonal and (i, i + 2)-
entries in such a way that

(g2 ∗ g1 ∗ c)i,j ∈ Vj,i , ∀ 1 ≤ i < j ≤ i+ 2 ≤ r.

Continuing this r − 1 times and putting g = gr−1. . . . .g1, we are done.

We have shown so far some representability results, but just for the spe-
cial unipotent group G. We are interested in its closed Γ-stable sub-group
schemes as well. It is not very difficult now to extend the above results to
these subgroup schemes, but to do that, we need the following basic lemma:

Lemma 3.1.4. Let G over K be an algebraic unipotent group scheme, and
H ⊂ G be a closed sub-group scheme. Then the underlying scheme of G/H
is an affine space.

Proof. First let us show that the underlying scheme of an arbitrary algebraic
unipotent group scheme over K is an affine space. One can prove this by
considering the Lie algebra g of G, which is a finite dimensional vector space
over K, and use the general fact that exp : g → G is a group isomorphism
when we equip g with Baker-Campbell-Hausdorff multiplication rule (see [10,
Appendix]). But we give the following direct argument. Since G is unipotent,
its descending central series is finite, hence we have

(1) = Zt(G) ⊂ Zt−1(G) ⊂ · · · ⊂ Z0(G) = G,

where t is the unipotent class of G, and for each 0 ≤ i ≤ t− 1,

Zi(G)/Zi+1(G) ∼= Gni
a
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is a finite dimensional vector group over K. Now we prove the claim by
induction on t. For t = 1, there is nothing to prove. In general, we have the
following short exact sequence of groups

0→ Zt−1(G) = Gnt−1
a → G→ G/Zt−1(G)→ 0.

Whence G is a Gnt−1
a -torsor over G/Zt−1(G), which has an affine space as its

underlying scheme by induction hypothesis. Now since any affine space is
cohomologically trivial, we have

H1(G/Zt−1(G),Ga) = 0.

This says that the above short exact sequence splits and we are done. Note
that by exactly the same argument, we could prove that any unipotent torsor
over an affine space is an affine space. Now to prove the assertion of the
lemma, let N(H) denote the normalizer of H in G. Since N(H)/H is a
unipotent group, by considering the short exact sequence

0→ N(H)/H → G/H → G/N(H)→ 0,

it suffices to prove that G/N(H) is an affine space. We can continue this,
and since in a unipotent group the normalizer of a subgroup strictly contains
the subgroup, we are done after finitely many steps.

Remark 3.1.5. Note that in proving the above lemma, we used the fact that
char(K) = 0 only when we said that the sub-quotients in descending central
series are powers of Ga. So one can do the same argument for unipotent
group schemes over any perfect field if one assumes in positive characteristic
that the unipotent group scheme under study is connected and smooth over
the base field. ♠

Using this lemma, we can show that the representability of the first coho-
mology group for a unipotent group scheme is inherited by its stable closed
subgroups. More precisely,

Theorem 3.1.6. Let G be a unipotent group scheme over K, on which Γ
acts and H ⊂ G be a closed Γ-stable subgroup. If H1(Γ, G) is representable
by an affine scheme over K, then so is H1(Γ, H).

Proof. Assume first that H is a normal Γ-stable subgroup of G. Then from
the short exact sequence

0→ H → G→ G/H → 0
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of unipotent group schemes with Γ-action, one obtains the following last
terms of the exact sequence of cohomology sets

. . .→ (G/H)Γ → H1(Γ, H)
ψ−→ H1(Γ, G)

ϕ−→ H1(Γ, G/H).

We claim now that cohomology classes in H1(Γ, H) are the same as the
pairs consisting of a cohomology class ξ ∈ H1(Γ, G) plus a trivialization of
ϕ(ξ) ∈ H1(Γ, G/H), i.e. an element gH ∈ G/H such that for all γ ∈ Γ one
has

ϕ(ξ)γ = g−1γ(g)H.

To any cohomology class ζ ∈ H1(Γ, H), we associate the pair (ψ(ζ), 1GH).
For the converse correspondence, assume a pair (ξ, gH) is given such that
ξ ∈ H1(Γ, G) and for any γ ∈ Γ one has ξγH = g−1γ(g)H. By definition,
ξ = g ∗ ξ = gξγ(g−1) in H1(Γ, G). But the map

γ 7→ gξγγ(g−1)

takes values in H, and hence gives rise to a cohomology class ζ ∈ H1(Γ, H)
which we associate to the pair (ξ, gH). It is plain now to check that these
correspondences are inverse to each other, whence give the desired bijection.
On the other hand, note that given a cohomology class ξ in H1(Γ, G), the set
of trivializations of ϕ(ξ) is either empty, which is representable by the empty
scheme, or is a homogeneous space over (G/H)Γ, which is representable by
an affine K-scheme (note that the kernel of the map

(G/H)Γ → H1(Γ, H)

is a closed subgroup of (G/H)Γ and hence by Lemma 3.1.4 the homogeneous
space of trivializations of ϕ(ξ) is representable by an affine space over K).
This gives the representability of the functor H1(Γ, H).

For an arbitrary Γ-stable subgroup H, let N(H) be the normalizer of H in
G. ClearlyN(H) is Γ-stable as well and hence if we knew thatH1(Γ, N(H)) is
representable, we could apply the above argument to prove representability
of H1(Γ, H). This reduces the problem to showing the representability of
H1(Γ, N(H)). Again we use the fact that in a unipotent group, normalizer
of a proper subgroup strictly contains it to finish the proof of theorem.

Remark 3.1.7. One could prove the above theorem using the more fancy
language of topoi. Namely, continuing with the notations and hypotheses of
the above theorem, one can consider the category of sets equipped with a
continuous action by Γ, and put the canonical Grothendieck topology on it,
i.e. the one in which coverings are effective epimorphisms. Since G and H are
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group objects in this situs, one can consider G-torsors and H-torsors in the
associated topos. On the other hand, the space G/H admits a natural action
by the group G, and hence to any G-torsor T is the associated bundle T ×G
G/H with fiberG/H. Now one can reinterpret the proof of the above theorem
in this more general setting and prove that there is a bijection between H-
torsors and G-torsors together with a section of the mentioned associated
bundle. This bijection can be constructed as follows. For any H-torsor TH ,
the associated G-torsor is TG := TH×HG, and since TH is locally isomorphic
to H, the associated bundle of TG, namely

TG ×G G/H ∼= TH ×H G/H,

locally admits the section 1H × 1G.H. Finally one can check easily that
this sections can be glued together to form a global section of the associated
bundle. Conversely, let TG be a G-torsor and s be a section for TG×GG/H.
Then the corresponding H-torsor is the inverse image in TG of im(s) via the
map t 7→ t×1G.H from TG to TG×GG/H. One can conclude the claim now,
by noticing that since G/H is an affine space by Lemma 3.1.4, the space
of sections of bundles with fiber G/H is representable, and hence H-torsors
form a stack or a scheme if G-torsors do so. Let us mention again that the
proof given above is essentially the same argument in a more down to earth
language, but this proof has the advantage that one doesn’t need to deal
separately with the cases where H is normal in G or not. ♥

3.2 Crystalline Torsors

In this section we assume that Γ is the absolute Galois group of a finite
extension K of Qp (more generally one can consider a complete p-adic field
of characteristic zero with perfect residue field of characteristic p, but finite
extensions of Qp are enough for the moment), and we are going to study
finite dimensional Γ-representations over Qp. Among these representations
we want to specify the so called crystalline ones. Our aim then is to show
that crystalline torsors in H1(Γ,G) can be parametrized by an affine scheme
over K.

More precisely let k be a finite field of characteristic p, V0 := W (k) be the
ring of Witt vectors over k, and K0 be the field of fractions of V0. Then K0 is
a finite unramified extension of Qp. Clearly the Frobenius automorphism of
k extends to W (k), by functoriality, and hence to a Frobenius automorphism
Φ0 of K0 over Qp. Take K to be a totally ramified extension of K0, and
denote by V the integral closure of V0 in K. Note that we can assume all
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these without loss of generality, i.e. every finite extension of Qp has this
form. Finally let

Γ := Gal(K̄/K)

be the absolute Galois group of K. In order to study and classify finite
dimensional representations of Γ over Qp, Fontaine has introduced some rings
of periods. Among them we mention Bcr and BdR (for a brief review of
definitions of Bcr and BdR, see section 4.1). Bcr is a K0-algebra equipped
with an action by Γ, and also a Frobenius semi-linear endomorphism Φ. BdR

is a K-algebra which contains Bcr and has a decreasing Hodge-filtration F •,
with respect to which it is complete. In general the importance of these rings
of periods is that they establish connections between the rigid tensor category
RepQp(Γ) of finite dimensional Qp-representations of Γ and other categories.
For example consider the rigid tensor category FM whose objects are triples
(E,Φ, F •), consisting of a finite dimensional K0-vector space E, a Frobenius
semi-linear automorphism Φ of E, and a finite decreasing filtration F • on
E := E ⊗K0 K.

There is a common enlargement of FM and RepQp(Γ), which contains
both as full subcategories. Namely let FGM be the rigid tensor category
whose objects are triples (E,Φ, F •) which contain the same data as triples in
FM plus aK0-linear action of Γ on E. Note that this Γ-action is required to be
compatible with other structures, i.e. it is induced by a group homomorphism
from Γ to AutFM((E,Φ, F •)). The full embeddings from RepQp(Γ) and FM

into FGM are given as follows. To any finite dimensional Qp-representation
L of Γ, associate the triple consisting of L ⊗Qp K0, with induced Γ-action
as the first coordinate, IdL ⊗ Φ0 as the second, and the trivial filtration
on E = L ⊗Qp K, i.e. F 0(E) = E and F 1(E) = 0, as the third. For any
object (E,Φ, F •) in FM, associate the same triple in FGM where E has been
equipped with the trivial Γ-action.

Although Bcr has a K0-linear action by Γ, a Frobenius semi-linear au-
tomorphism, and a decreasing Hodge filtration F • on Bcr ⊗K0 K inherited
from BdR, it is not an object in FGM, simply because it is not finite dimen-
sional over K0. But it still helps us to construct important functors between
RepQp(Γ) and FM. For a finite dimensional Qp-representation L of Γ, let L̃
be its image in FGM. One can then show that

Fil(L) := (L̃⊗Bcr)
Γ

has finite dimension over K0 and hence is an object in FM. Note that L̃⊗Bcr

is an abuse of notation, since Bcr is not in any of the tensor categories we
considered, but the point is that for any object (E,Φ, F •) in FGM, we can
consider the diagonal Γ and Φ actions on E⊗K0 Bcr and the induced Hodge
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filtration on

(E⊗K0 K)⊗K (Bcr ⊗K0 K) ∼= (E⊗K0 Bcr)⊗K0 K.

Similarly for any object (E,Φ, F •) in FM, considered as an object in FGM,
one can show that

Gal((E,Φ, F •)) := (E ⊗K0 Bcr)
Φ=1 ∩ F 0(E ⊗K0 Bcr ⊗K0 K)

is a finite dimensional Qp-representation of Γ, and hence is in RepQp(Γ). One
says that a finite dimensional Γ-representation L over Qp is crystalline if

dimQp(L) = dimK0(Fil(L)),

and similarly an object (E,Φ, F •) in FM is called Bcr-admissible if

dimK0(E) = dimQp(Gal((E,Φ, F •))).

An important result of Fontaine’s theory is that the functors Fil and Gal es-
tablish an equivalence between the category of crystalline Qp-representations
of Γ and the category of Bcr-admissible objects in FM. A crystalline Qp-
representation L of Γ and a Bcr-admissible triple (E,Φ, F •) in FM are said
to be associated to each other, if they correspond to each other under this
equivalence. One can show this is the case if and only if there exists a Bcr-
isomorphism

L⊗Qp Bcr
∼=Bcr E ⊗K0 Bcr,

which respects Γ-action, Φ, and after the extension of scalars to K, the
Hodge filtration (for details and much more about these, see [18] or [19]).
There are two crucial properties which make Bcr so useful. The first one is
that BΓ

cr = K0, and the other one is the following

Theorem 3.2.1. [19, Prop. 5.5.] One has BΦ=1
cr ∩F 0(BdR) = Qp. One even

has a stronger result which says that the following sequence is exact

0→ Qp → Bcr
(Φ−1,i)−−−−→ Bcr

⊕(
BdR/F

0(BdR)
)
→ 0,

where i : Bcr ↪→ BdR � BdR/F
0(BdR) is the evident map (see for example

[18]).

We also need the notion of a (K0,Φ)-module. By a (K0,Φ)-module E, we
mean a finite dimensional K0-vector space E equipped with a Frobenius semi-
linear automorphism Φ. As an immediate corollary of the above theorem,
we have



54 CHAPTER 3. TORSOR SPACES AND PERIOD MAPS

Corollary 3.2.2. Let

0→ E1 → E → E2 → 0

be a short exact sequence of (K0,Φ)-modules, and F • a finite decreasing
filtration on E ⊗K0 K. If the triple consisting of Ei and induced filtration
from F • on Ei ⊗K0 K is Bcr-admissible for i = 1, 2, then so is the triple
consisting of E and F •.

Proof. For i = 1, 2, let Li be the associated representation to Ei equipped
with induced filtration. By Theorem 3.2.1 we have the following short exact
sequences for i = 1, 2

0→ Li → Ei ⊗K0 Bcr
(Φ−1,i)−−−−→ (Ei ⊗K0 Bcr)

⊕(
E ⊗K0 BdR

F 0(E ⊗K0 BdR)

)
→ 0.

Consider the Qp-representation L := Gal((E,Φ, F •)), i.e. L is the kernel of
the projection

E ⊗K0 Bcr
(Φ−1,i)−−−−→ (E ⊗K0 Bcr)⊕ (E ⊗K0 BdR/F

0(E ⊗K0 BdR)).

Now we have the following diagram with exact rows and columns

0

��

0

��
0 // L1

// E1 ⊗K0 Bcr
//

��

(E1 ⊗K0 BdR)/F 0(E1 ⊗K0 BdR) //

��

0

E ⊗K0 Bcr
//

��

(E ⊗K0 BdR)/F 0(E ⊗K0 BdR)

��
0 // L2

// E2 ⊗K0 Bcr
//

��

(E2 ⊗K0 BdR)/F 0(E2 ⊗K0 BdR) //

��

0

0 0

It is plain now how to apply snake lemma and see that L fits into an exact
sequence

0→ L1 → L→ L2 → 0.

Hence we have

dimQp(L) =
2∑
i=1

dimQp(Li) =
2∑
i=1

dimK0(Ei) = dimK0(E),

and we are done.
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In the previous section, we studied the space of Γ-representations L, which
are iterated extensions of fixed ones Li, and saw that under some conditions
they form an affine algebraic space over K. In this section we are going to
say some words about the crystalline points on this representing space. Of
course we must start by fixing some crystalline representations as well. Hence
suppose that we are given finitely many Bcr-admissible triples (Ei,Φi, F

•
i )

in FM with corresponding Γ-representations Li, for 1 ≤ i ≤ r. Moreover
assume we have a (K0,Φ)-module E with an increasing filtration

(0) = W0(E) ⊂ W1(E) ⊂ · · · ⊂ Wr(E) = E

such that for any 1 ≤ i ≤ r, one has

Wi(E)/Wi−1(E) ∼=(K0,Φ) Ei.

We are interested in the space of possible Hodge filtrations on E = E⊗K0 K
which induce F •i on Ei. In analogy with the previous section, consider the
following unipotent group scheme G over K0:

G :=


I HomK0(E2, E1) . . . HomK0(Er, E1)
0 I . . . HomK0(Er, E2)
...

...
. . .

...
0 0 . . . I


Note that G admits a natural Frobenius action Φ induced from Ei’s, and
moreover on G := G ⊗K0 K we have the induced Hodge filtration F • by
subgroups. Moreover, after fixing an isomorphism between E and

⊕r
i=1Ei

as K0-vector spaces, in such a way that Ws(E) =
⊕s

i=1Ei for all 1 ≤ s ≤ r,
G acts on E in the natural way, fixing the filtration W• and inducing trivial
action on GriW (E) for all i. The following lemma gives an answer to our
question about possible Hodge filtrations:

Lemma 3.2.3. Possible Hodge filtrations on E, which induce F •i on Ei for
all 1 ≤ i ≤ r, are parametrized by G/F 0(G), which by Lemma 3.1.4 is an
affine space over K.

Proof. First note that there is a trivial way of putting a Hodge filtration on
E which induces F •i on Ei. Namely, having fixed the K0-linear isomorphism

E ∼=
⊕

Ei,

one can put the sum filtration F • =
⊕

F •i on E, i.e. for any j put

F j(E) =
⊕
i

F j
i (Ei).
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Now any two filtrations on E with same dimensional graded parts can be
transformed to each other by suitable elements of GL(E), and moreover if
these two filtrations induce the given filtrations F •i on Ei for all i these
transforming elements can be chosen from the group G above. In particular
G acts transitively on all possible Hodge filtrations which induce F •i on Ei

for all i. Now the claim is an immediate consequence of the easy fact that
the stabilizer under this action of the above constructed Hodge filtration F •

is F 0(G).

Remark 3.2.4. Note that by Corollary 3.2.2, any such Hodge filtration F •

on E which induces F •i on Ei for all i, gives rise to a Bcr-admissible triple
(E,Φ, F •) in FM with an increasing filtration W• such that

GriW ((E,Φ, F •)) = (Ei,Φi, F
•
i ).

Whence the associated Galois representation L = Gal(E), also admits an
increasing filtration W• such that

GriW (L) = Li.

Now by Lemma 3.1.1, the non-abelian cohomology set H1(Gal(K/K),G)
classifies all such Galois representations. A completely similar argument
over a finitely generated Qp-algebra R, implies that for any such algebra R,
any element of (G/F 0(G))(R⊗QpK) gives an element in H1(Γ,G(R)). This
means that if we consider WK/Qp(G/F

0(G))(−), where WK/Qp denotes the
Weil restriction functor, and H1(Γ,G(−)), as two functors on the category
of finitely generated Qp-algebras, we have obtained a natural transformation
between them. Since these two functors are representable by affine schemes
over Qp, by the Yoneda’s lemma we obtain an algebraic comparison map
between these two schemes

c : WK/Qp(G/F
0(G))→ H1(Γ,G).

The points in the image of c are called crystalline points. ♣

We finish this section with following proposition which will be used latter:

Proposition 3.2.5. With the notations and hypotheses of the above remark,
assume moreover that there is no nonzero Frobenius equivariant morphism
from Ej to Ei, for any 1 ≤ i < j ≤ r. Then the above mentioned comparison
map

c : WK/Qp(G/F
0(G))→ H1(Γ,G)

is injective and identifies WK/Qp(G/F
0(G)) with a closed sub-stack (or in

the situation of Corollary 3.1.3, a closed sub-scheme) of H1(Γ,G).
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Proof. Since set of crystalline torsors is the inverse image of the trivial class
under the map

H1(Γ,G)→ H1(Γ,GBcr),

being crystalline is a closed condition on elements of H1(Γ,G), and so it
suffices to prove the injectivity assertion. Assume by contradiction that c
maps two different points inWK/Qp(G/F

0(G)) to the same point inH1(Γ,G).
This means that there are two different Hodge filtrations F • and F ′• on E,
such that they both induce F •i ’s on Ei’s and

Gal((E,Φ, F •)) ∼= Gal((E,Φ, F ′•))

as Γ-modules, where this isomorphism respects the increasing filtration W•
and induces the identity on Li’s. But we know that the category of crystalline
Γ-representations is equivalent to the category ofBcr-admissible triples, hence
there must be an isomorphism

ψ : (E,Φ, F •)
∼−→ (E,Φ, F ′•)

which respects the increasing filtration W• and induces identity on Ei’s. Any
such isomorphism ψ is an element of the unipotent group scheme G, and
being an isomorphism in the category FM, the upper diagonal entries must
be Frobenius equivariant. By our assumption there are no nonzero Frobenius
equivariant morphisms from Ej to Ei for any 1 ≤ i < j ≤ r. This implies
that ψ = Id, and hence F • is the same filtration as F ′•. This contradiction
finishes the proof of our claim.

Remark 3.2.6. Doing a little more, one can prove by same methods that
in general, i.e. without making extra assumption on Frobenius equivari-
ant homomorphisms, the kernel of the comparison map c is the image in
WK/Qp(G/F

0(G)) of Frobenius invariant points in G, and hence it identifies

WK/Qp(G/F
0(G))/GΦ

with a closed sub-stack (or in nicer situations, closed sub-scheme) ofH1(Γ,G).
But the above special case will be enough for our applications. ♦

3.3 Period Maps

Now we are going to construct different versions of period maps which in
a sense encode the variation of the information coming from different ver-
sions of path torsors over different realizations of the unipotent fundamental
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group. These period maps are going to be maps from the curve under our
study to the algebraic spaces which are constructed in previous sections and
are parametrizing spaces for the path torsors over different realizations of
unipotent fundamental group. In order to do that we fix the following nota-
tions for this section.

Let k be a fixed number field, S be a finite set of finite places of k, and OS

be the ring of S-integers of k. Fix also a smooth, projective, geometrically
connected curve C over OS, a relative divisor D in C which is étale and
surjective over Spec(OS), and consider the complement X := C − D which
is smooth over Spec(OS).

For any finite place v of k we denote by kv (resp. Ov, resp. Fv) the
completion of k at v (resp. ring of integers of kv, resp. residue field of kv).
Note that if we take A to be any of the rings k, kv, Ov, or Fv then there is a
canonical morphism

Spec(A)→ Spec(OS)

and for any scheme or morphism between schemes defined over OS, let a
subscript −A denote the pullback via this canonical morphism. Our main
interest is to prove that the Diophantine set X(OS) is finite (see Theorem
4.2.1). If X(OS) is empty then there is nothing to prove, otherwise we fix a
point x ∈ X(OS) as the base point to define the following period maps.

Starting with the de Rham period map, let v be a finite place of k out-
side S and let xkv ∈ Xkv(kv) be the point which is induced by x. Taking
xkv as the base point and using the general Tannakian formalism of sec-
tion 1.1 or the more explicit constructions of chapter 2, we can construct
the pro-unipotent group scheme GdR(Xkv , xkv) and its algebraic quotients
GdR,n(Xkv , xkv) for all n ≥ 1. More precisely, in the Tannakian point of view,
GdR(Xkv , xkv) is obtained by applying Theorem 1.1.6 to the category CdR as-
sociated to the triple (Ckv , Xkv , Dkv) equipped with the fiber functor coming
from the point xkv . Moreover, for any other point y ∈ Xkv(kv) we get path
torsors GdR(Xkv ;xkv , y) and GdR,n(Xkv ;xkv , y)’s, respectively over the group
GdR(Xkv , xkv) and its algebraic quotients GdR,n(Xkv , xkv).

Note that by results of sections 2.2 and 2.3 these group schemes and the
path torsors over them admit Hodge filtration and Frobenius action as extra
structures. Note also that these extra structures on path torsors are very
critical in the sense that they cause the non-triviality of the path torsors.
In other words, since a unipotent group scheme over a field of characteristic
zero does not admit any non-trivial torsor, without these extra structures all
the path torsors mentioned above would simply be trivial torsors and hence
pointless. So these extra structures are needed to have non-trivial path tor-
sors. But an important point for us is that even the Frobenius action alone
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is not sufficient to make these path torsors non-trivial. By this we mean
that all these de Rham path torsors admit a system of Frobenius invariant
elements compatible with the concatenation maps. More precisely the result
[3, Corollary 3.2] says that if both points xkv and y are invariant under some
power of the Frobenius map, then for any n ≥ 1 there exists a unique el-
ement in GdR,n(Xkv ;xkv , y) which is invariant under the same power of the
Frobenius map. Obviously these Frobenius invariant elements are compatible
with concatenation maps, simply because of their uniqueness. As an upshot,
if one considers Frobenius action as the only extra structure then these de
Rham path torsors GdR,n(Xkv ;xkv , y) become trivial over unipotent de Rham
fundamental groups GdR,n(Xkv , xkv) when both xkv and y are Frobenius in-
variant. Of course, by taking limit, the same statement holds for the path
torsor GdR(Xkv ;xkv , y) over the pro-unipotent group scheme GdR(Xkv , xkv).

Another way of proving the above fact is that one can prove in general
that the pull back of any Frobenius isocrystal on Xkv to the p-adic open
unit ball centered at a W (Fv)-point is constant. Very roughly the idea is
that one takes the fiber of the Frobenius isocrystal at the center of the open
unit ball, takes any section (not necessarily Frobenius equivariant) of this
fiber which gives a map (not necessarily Frobenius equivariant) from the
constant Frobenius isocrystal to the original one. Then one can check that the
conjugates of this map by higher and higher powers of Frobenius converge to
a Frobenius equivariant isomorphism from the constant Frobenius isocrystal
to the original one (see [14] for more details). Whence all these de Rham
path torsors become trivial after forgetting the Hodge filtration, i.e. if v lies
above the rational prime p, one has

OGdR,n(Xkv ;xkv ,y)
∼= OGdR,n(Xkv ,xkv ), ∀n ≥ 1,

as Frobenius modules over W (Fv)[1/p] ⊂ kv. Note that the same also holds
in the pro-unipotent case, simply by taking limit. So by identifying the
underlying Frobenius modules, if we vary the point y ∈ Xkv(kv), we get a
varying family of Hodge filtrations on OGdR and OGdR,n ’s for all n ≥ 1. In
exactly the same way that we proved Lemma 3.2.3, one sees in the algebraic
quotient case that the set of such Hodge filtrations is parametrized by the
affine space GdR,n/F

0(GdR,n). Putting all these together, for any n ≥ 1 we
obtain the following period maps

p
(n)
dR : Xkv(kv)→ GdR,n/F

0(GdR,n).

The crucial property of these de Rham period maps is that they are kv-
analytic maps whose images on the set of p-adic integral points in the open
p-adic unit ball around xkv is Zariski dense in GdR,n/F

0(GdR,n), for all n ≥ 1.
More precisely we have the following
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Theorem 3.3.1. For any n ≥ 1, the restriction of the period map p
(n)
dR to

the p-adic integral points in the p-adic open unit ball around xkv gives a rigid
kv-analytic map with Zariski dense image in GdR,n/F

0(GdR,n).

Proof. Zariski density of the image is very well explained in [17, Section 4],
so we only sketch the proof of rigid analyticity.

If one restricts the universal Frobenius crystal GdR to the p-adic open
unit ball centered at xkv , one gets a Frobenius crystal on W (Fv){{t}}. This
Frobenius crystal is constant as it is mentioned above. So if we denote the
Hodge filtration at the base point xkv by F0, the filtration at another point
y in the open p-adic unit ball is given by g(y)F0 where g is a rigid kv-
analytic map from W (Fv){{t}} to GdR/F

0(GdR). Note that the variation of
the Hodge filtration is algebraic on the original universal Frobenius crystal,
but it becomes only rigid kv-analytic after making it constant over the p-
adic open unit ball because the process of constantification involves rigid
kv-analytic transformations which are not necessarily algebraic.

There are two other versions of period maps which are important for us,
namely the local and the global étale period maps. To define the local étale
period map, we work with Xk̄v with the fixed base point xk̄v . This time, as
the name suggests, we consider the étale version of the theory developed in
section 2.1. Hence we get the pro-unipotent group scheme Gét(Xk̄v , xk̄v) with
its algebraic quotients Gét,n(Xk̄v , xk̄v), on which the absolute Galois group

Gv := Gal(kv/kv)

acts. Moreover for any other point y ∈ Xkv(kv), if we denote by y the
induced point in Xk̄v , we obtain the path torsors Gét,n(Xk̄v ;xk̄v , y) equipped
with compatible Gv-action.

Now suppose that we had started with a triple (P1
OS
, X, {p1, . . . , pd+1})

over OS. Then these unipotent groups Gét,n, by construction, admit finite
increasing filtrations with sub-quotients being isomorphic to tensor powers
of the étale realizations of the Tate objects

H1
ét(Xk̄v ,Ql) ∼= Ql(1)d.

Hence by putting Γ = Gv we can apply Lemma 3.1.1, Corollary 3.1.3, and
Theorem 3.1.6 to obtain the following local étale period maps

p
loc,(n)
ét : Xkv(kv)→ H1(Gv, Gét,n).

The global étale period map can be constructed in exactly the same way
as the local one, but this time we consider the variety Xk, and we note that
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in this situation the resulting (pro-)unipotent group schemes Gét(Xk, xk) and
Gét,n(Xk, xk)’s are equipped with an action of the global Galois group

GT := Gal(kT/k),

where kT is the maximal extension of k unramified outside T = S ∪ {v}. In
exactly the same way, when we start with the triple (P1

OS
, X, {p1, . . . , pd+1})

over OS we get the following global étale period maps

p
glob,(n)
ét : X(k)→ H1(GT , Gét,n).

All these maps and the comparison map of Remark 3.2.4 can be put
together in the following important diagram.

Remark 3.3.2. For the triple (P1
OS
, X, {p1, . . . , pd+1}) over OS and any in-

teger n ≥ 1, one has the following (commutative) diagram

(GdR,n/F
0)(kv)

((
X(OS) i //

p
glob,(n)
ét

��

Xkv(Ov)

p
(n)
dR

OOOO

p
loc,(n)
ét

��

// Wkv/Qp(GdR,n/F
0)(Qp)

css
H1(GT , Gét,n)(Qp)

res // H1(Gv, Gét,n)(Qp)

Recall that p
(n)
dR is a kv-analytic map with Zariski dense image, c is the com-

parison map which is injective and whose existence was shown by general
constructions of section 3.2, and ‘res’ is the usual restriction map between
group cohomologies induces by the inclusion

Gv ⊂ GT .

Note that the left square in the diagram is evidently commutative, but the
commutativity of the lower right triangle is a much deeper claim which will
be a consequence of Remark 4.1.2. Moreover note that, the non-abelian
cohomology sets of the second row, by general results of section 3.1, are
affine algebraic spaces over Qp, and ‘res’ is a Qp-algebraic map with respect
to these Qp-algebraic structures. ♠
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Chapter 4

Integral Points and π1

Now we are almost ready to state and prove the main results of this thesis.
I said almost because we still need two more technical tools. First of all, as
it has been mentioned in the introduction of the first chapter, one important
feature of different cohomology theories for varieties, which makes them very
powerful, is that they are not completely independent. Indeed they are ac-
tually very closely related via the so called comparison isomorphisms. More
precisely, this comparison isomorphisms say that for nice varieties, the étale
cohomology groups, as finite dimensional Galois modules, and the crystalline
cohomology groups, as finite dimensional filtered Frobenius isocrystals, will
become isomorphic over some big ring of periods. Since we are going to em-
ploy different realizations of unipotent fundamental group of varieties in our
work, we would be very happy to have the non-abelian analogues of these
comparison isomorphisms for unipotent fundamental groups. Fortunately
such isomorphisms exist and say that the coordinate ring of the unipotent
étale fundamental group, as a limit of finite dimensional Galois modules,
and the coordinate ring of the unipotent de Rham fundamental group, as
a limit of finite dimensional filtered Frobenius isocrystals, will also become
isomorphic over some period rings. The same also holds for the coordinate
rings of the étale and the de Rham path torsors which will be the topic of
section 4.1. Moreover, after being done with the case of curves, in order to
generalize things to higher dimensional varieties, we will crucially use a mo-
tivic version of the homotopic Lefschetz hyperplane section theorem, which
we will develop in section 4.3.

63
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4.1 p-adic Hodge Theory and Comparison

The reader might have noticed that one of the crucial tools for proving our
main results in the coming sections is the fundamental diagram of Remark
3.3.2 of the previous section. In that diagram, beyond the period maps which
were discussed there, there is an important comparison map

c : Wkv/Qp(GdR,n/Gcoh,n)→ H1(Gv, Gét,n),

which plays an important role in the theory. But we still miss a proof of the
fact that this map is compatible with different period maps and hence the
fundamental diagram is commutative. This is the subject of this section. In
order to do that, we need a non-abelian version of the comparison theory
between the étale and the crystalline cohomologies of smooth varieties with
good reduction over p-adic fields. Fortunately the abelian case has been
worked out in [16] (see for example [16, Theorem 9]) in such a natural way
that it can be easily generalized to the non-abelian case of our interest. We
also recall that the easier case of this theory for curves can be found in [15]
(see for example [15, Theorem 3.2]).

Let us first recall the comparison theory over a point. For that we need
Fontaine’s construction of rings of periods (see [18]). Fix a perfect field k
of characteristic p > 0, and let V0 := W (k) be its ring of Witt vectors.
Denote by K0 := V0[1/p] the field of fractions of V0, and let K/K0 be a finite
totally ramified extension (note that if k varies through all finite extensions
of Fp, we could construct all finite extensions of Qp using this procedure).
Finally let V and V̄ denote integral closures of V0 in K and K̄ respectively,
where K̄ is an algebraic closure of K. Since V̄ is the integral closure in
the algebraic closure K̄ of K, the equation xp = a is solvable in V̄ for any
element a ∈ V̄ . This implies that V̄ /pV̄ has a surjective Frobenius map.
Now we consider the inverse limit of this ring with respect to these surjective
Frobenius endomorphisms, namely

R(V ) := lim←−
Frob

(V̄ /pV̄ ) = {(x0, x1, x2, . . . ) ∈ (V̄ /pV̄ )N : ∀i∈N, xi = xpi+1}.

One can represent elements of R(V ) by infinite vectors whose entries lie in ̂̄V ,
where ̂ stands for p-adic completion. Namely, take arbitrary lifts yi ∈ V̄
of xi’s, and check easily that for any i ∈ N the limit

x′i := lim−→
n

yp
n

i+n

exists in ̂̄V and is independent of the choices of the lifts yi’s. This way, one
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can see that there is a bijection between R(V ) and the following set

{(x′0, x′1, x′2, . . . ) ∈ ( ̂̄V )N : ∀i∈N, x′i = (x′i+1)p}.

In what follows we use this latter presentation of elements of R(V ) without
writing ′’s on the entries! Note that in order to make this bijection a ring
isomorphism, the component-wise product on the above set works, but the
proper addition is more complicated (see [18, 1.2.2]). Now this ring R(V ) is a
perfect p-adically complete ring of characteristic p which admits a surjective
ring homomorphism

θ : R(V ) � V̄ /pV̄ ,

where θ((xi)i) = x0. Obviously

p = (p, p1/p, p1/p2

, . . . )

lies in the kernel of θ, and conversely if x = (xi)i belongs to Ker(θ) then
p | x0. This implies that the valuation of x0 is not less than the valuation of
p, and since xp

n

n = x0 for any n ≥ 0, the valuation of xn cannot be less that
the valuation of p1/pn . Finally since the multiplication is component-wise,
p | x, and hence Ker(θ) is the ideal generated by p. Now define

Ainf(V ) := W (R(V )),

and note that as usual for any element x ∈ R(V ), we denote by

[x] = (x, 0, 0, . . . ) ∈ Ainf(V )

its Teichmüller representative. Note also that since R(V ) is perfect, every
element in Ainf(V ) can be written in the form∑

n≥0

pn.[xn]

for xn = (xn,i)i in R(V ). Now one can extend the ring homomorphism θ to
a ring homomorphism

θ̃ : Ainf(V ) � ̂̄V ,
which sends [x] to x0, for any x = (xi)i ∈ R(V ). Evidently the element
ξ = [p] − p belongs to the kernel of θ̃, and since modulo p, θ̃ is the same

homomorphism as θ from R(V ) to ̂̄V /p ̂̄V ∼= V̄ /pV̄ , and Ainf(V ) is p-adically
complete, it is easy to check that Ker(θ̃) is generated by ξ. Consider now

Acr(V ) :=
̂

Ainf(V )[(ξn/n!)n∈N] ,
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which is the p-adic completion of the divided power hull of Ainf(V ) with
respect to Ker(θ̃). Note that Acr(V ) caries a divided power filtration, which
is induced by powers of ξ, which we denote by F •. On the other hand,
since all the constructions are functorial, the Frobenius ϕ of R(V ) extends
first to Ainf(V ) by the rule ϕ([x]) = [x]p, and then to Acr(V ). Finally since
Gal(K̄/K) acts on V̄ , again by functoriality of the constructions, it also acts
on Acr(V ). Now consider the element

1 := (1, ζp, ζp2 , . . . ) ∈ R(V ),

where ζp is a primitive p-th root of unity, and define

t := log([1]) = −
∞∑
n=1

(1− [1])n

n
= −

∞∑
n=1

(n− 1)!.(1− [1])[n],

where −[n] means the n-th divided power. Note that since 1− [1] ∈ Ker(θ̃),
and p-adic norm of (n − 1)! goes to zero when n tends to infinity, t is an
element of Acr(V ). Obviously t satisfies the identity ϕ(t) = pt, and we define

Bcr(V ) := Acr(V )[
1

pt
].

Note that Frobenius and Galois actions immediately extend to Bcr, and since
the element pt has pure degree 1 in GrF •(Acr(V )), we can endow Bcr(V ) with
a filtration induced by F •, which by abuse of notation will be denoted by
the same symbol F •. As it was mentioned in section 3.2 there are two very
important properties of Bcr(V ) which make it so useful, namely

Bcr(V )Gal(K̄/K) = K0,

and
Bcr(V )ϕ−Id ∩ F 0(Bcr(V )) = Qp.

This properties are essential in using Bcr(V ) to establish comparison functors
between finite dimensional Gal(K̄/K)-representations over Qp and filtered
Frobenius modules over K0. Recall that we say that a finite dimensional
representation V of Gal(K̄/K) over Qp is associated to a finite dimensional
filtered Frobenius module E over K0 if there is a Bcr-isomorphism

V ⊗Qp Bcr
∼= E ⊗K0 Bcr,

which respects the Galois action, the Frobenius, and the filtration. In this
case one can see evidently that

dimQp(V ) = dimK0((V ⊗Qp Bcr)
Gal(K̄/K)).
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This motivates us to define a crystalline representation to be a representation
for which the above equality between dimensions holds. On the other hand,
and in exactly the same manner, one sees that if V and E are associated to
each other, then

dimK0(E) = dimQp((E ⊗K0 Bcr)
Φ=1 ∩ F 0(E ⊗K0 Bcr ⊗K0 K)),

and hence we call a filtered Frobenius module over K0 to be Bcr-admissible
if the above equality holds for it (see section 3.2).

Finally we recall that BdR(V ) can be defined to be the filtered completion
of Bcr(V ) with respect to F •. Then BdR(V ) inherits a filtration, again F •

and a Galois action from Bcr(V ), but it does not admit a Frobenius action
anymore. Moreover it satisfies (see [18] for more details and proofs)

GrF •(BdR(V )) = ̂̄K[t, t−1],

and
B

Gal(K̄/K)
dR = K.

The next step is to extend these techniques in order to compare p-adic
étale sheaves and de Rham crystals over smooth varieties with good reduction
over p-adic fields. In this part we mainly follow Faltings ([13]) to give a brief
review of this theory. In sequel R is a smooth V -algebra of relative dimension
d. R is said to be small if it is étale over V [T±1

1 , . . . , T±1
d ].

First of all one replaces V̄ in Fontaine’s theory with R̄, which is defined
to be the normal closure of R in the maximal étale extension of R[1/p]. Now
note that the polynomial T p

2
+ pT defines an étale extension of R[1/p]. In

fact, its derivative is

p2T p
2−1 + p = p(1 + pT p

2−1)

and p lies in the unique maximal ideal of V and hence in Jacobson radical of
R as well. This implies that for any element a ∈ R̄ the equation

T p
2

+ pT = a

is solvable in R̄, hence any element in R̄ has a p2-th root modulo p, and in
particular that the Frobenius is surjective on R̄/pR̄. This allows us to define
analogue period rings for R as follows. First consider

R(R) := lim←−
Frob

(R̄/pR̄),

which obviously admits a projection

θ : R(R) � (R̄/pR̄)
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whose kernel is generated by p. Then consider

Ainf(R) := W (R(R)),

and extend θ to

θ̃ : Ainf � ̂̄R
and note again that Ker(θ̃) is generated by ξ = [p]−p. Finally we can define

Acr(R) :=
̂

Ainf(R)[(ξn/n!)n∈N] ,

and so on.
Another tool which Faltings uses to compare p-adic étale sheaves with

de Rham crystals is a universal cohomology theory H∗ for a smooth variety
X with good reduction over a p-adic field. Consider the site whose objects
consist of an open subset U ⊂ X plus a finite étale cover VK → UK over K.
A family of objects

{Vi,K → Ui,K}i∈I
in this site forms a covering of the object VK → UK , if the following hold:

• The family {Ui}i∈I forms an open covering of U.

• For any i ∈ I there is a commutative diagram like

Vi,K //

��

VK

��
Ui,K

ϕi,K // UK

where ϕi : Ui ↪→ U denotes the inclusion of Ui in U, and ϕi,K is the
base change of ϕi to K.

• Finally the family {Vi,K}i∈I forms a covering of VK .

This site gives rise to a topos T, hence a notion of cohomology which will
be denoted by H∗.

Now for any p-adic étale local system L on XK̄ and any small open affine
subset Spec(R) of X, one can associate the almost sheaf L⊗Qp Ainf(R) in T,
and prove the following isomorphism

H i
ét(XK̄ ,L)⊗Qp Ainf(V ) ∼= Hi(T,L⊗Qp Ainf(R)).
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On the other hand, given any filtered Frobenius crystal (E,∇, F •) on X,
since

θ̃ : Acr(R) � ̂̄R
is an infinitesimal thickening, one can evaluate E on the inverse image

θ̃−1(R) ⊂ Acr(R)

and tensor it with Acr(R). Let us call the result by E(Acr(R)), which is a
sheaf in T equipped with a Frobenius action and filtration. This leads to a
map between cohomologies

H i
cr(XK ,E)⊗K0 Acr(V )→ Hi(T,E(Acr(R))).

Finally we say that a p-adic étale local system L is associated to a filtered
Frobenius crystal E, if there exist functorial isomorphisms

L⊗Qp Bcr(R) ∼= E(Acr(R))⊗Acr(R) Bcr(R),

respecting the filtration, Frobenius and the Galois action, for all small open
affine subsets Spec(R) of X. Using the above maps between these cohomol-
ogy groups, one obtains a map between crystalline and étale cohomologies of
associated objects as follows

H i
cr(XK ,E)⊗K0 Bcr(V )→ Hi(T,E(Acr(R))⊗Acr(R) Bcr(R)) =

= Hi(T,L⊗Qp Bcr(R)) ∼= H i
ét(XK̄ ,L)⊗Qp Bcr(V ).

Moreover it can be shown that it induces an isomorphism

H i
cr(XK ,E)⊗K0 Bcr(V ) ∼= H i

ét(XK̄ ,L)⊗Qp Bcr(V ),

i.e. the cohomologies of associated objects in the sense of Faltings’ theory,
are associated in the sense of Fontaine’s theory. In particular one has the
following

Theorem 4.1.1. [16, Theorem 9] With above hypotheses and notations, one
has the following isomorphism

H i
ét(XK̄ ,Qp)⊗Qp Bcr(V ) ∼= H i

dR(XK ,OXK )⊗K0 Bcr(V ).

As an immediate consequence, étale and de Rham cohomologies of X are
associated in the sense of Fontaine’s theory.
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Other important fact for us is that the above isomorphisms between p-
adic étale local systems and filtered Frobenius crystals are compatible with
connecting homomorphisms. This means that if two pairs of objects are
associated to each other so are their extensions provided they have associated
classes in proper Ext1’s. Now by Theorem 4.1.1, after passing to duals,
one obtains that Gét,1 and GdR,1 are associated. Moreover, the constant p-

adic étale sheaf T̃ét

⊗n
with fiber T⊗nét is associated to the constant filtered

Frobenius crystal T̃dR
⊗n

with fiber T⊗ndR , for all n ≥ 1. Now recall that
by Lemma 2.1.3 one has Pét,n+1 (resp. PdR,n+1) is the extension of Pét,n

(resp. PdR,n) by T̃ét

⊗n
(resp. T̃dR

⊗n
) associated to the identity element in

the proper Ext1. All these imply, by induction on n, that for any n ≥ 1 the
p-adic étale sheaf Pét,n is associated in the sense of Faltings’ theory to the
filtered Frobenius crystal PdR,n. We conclude this section with

Remark 4.1.2. As it has been mentioned above, for any n ≥ 1 and any
small open affine subset Spec(R) of X one has

Pét,n ⊗Qp Bcr(R) ∼= PdR,n(Acr(R))⊗Acr(R) Bcr(R).

Now since being associated is preserved by taking pull backs, for any integral
point x ∈ X(V ), one can pull back this isomorphisms for a small open affine
Spec(R) containing x and obtain the following isomorphism

Pét,n[x]⊗Qp Bcr(V ) ∼= PdR,n[x]⊗K0 Bcr(V ).

In particular for all n ≥ 1, the coordinate rings of unipotent groups Gét,n

(resp. torsors Gét,n(x, y)) are associated to the coordinate rings of unipotent
groups GdR,n (resp. torsors GdR,n(x, y)). ♥

4.2 The One Dimensional Case

Finally, we state and prove our first main result, which is a motivic proof
of finiteness of integral points on sufficiently punctured projective line over
totally real number fields. Our general idea to prove finiteness theorems for
integral points on curves is the following: Suppose X is a given curve over
OS where OS is the ring of S integers in a number field k and S is a finite
set of finite places of k. The aim is to prove that X(OS) is finite. If X(OS)
is empty, we are done, otherwise fix any element x ∈ X(OS) as base point.
Then fixing any finite place v of k, which is not in S, and at which X has
good reduction, we can apply above theories and obtain the crucial diagram
in Remark 3.3.2. Suppose now that we can estimate the dimensions of the
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algebraic varieties that appeared in that diagram and prove in particular that
for a sufficiently large n one has

Dn < dim(GdR,n/Gcoh,n),

where Dn is defined to be

Dn := dim(Im(p
glob,(n)
ét (X(OS)))),

where in this section whenever we talk about dimension of a subset of an
algebraic variety, we mean the dimension of the Zariski closure of that sub-
set. Then it follows that the closure of the image of X(OS) in GdR,n/Gcoh,n

is not Zariski dense. Hence there exists a nonzero algebraic function on
GdR,n/Gcoh,n which vanishes on this image. Since the open p-adic unit disk
around xv ∈ Xkv , B

◦
1(xv), has Zariski dense image in GdR,n/Gcoh,n (Theorem

3.3.1), the pull back of this nonzero function gives a nonzero p-adic analytic
function on B◦1(xv), which vanishes on every integral point in B◦1(xv). But
it is well known that a nonzero p-adic analytic function on B◦1(xv) can have
only finitely many zeros over any finite extension of Qp. This says that X
has only finitely many integral points in the open p-adic unit disk around
any integral point. On the other hand, Xv can be covered by finitely many
p-adic unit disks, simply because XFv(Fv) is a finite set, and we are done.

Let us recall that Kim, in [24], applies this principle to X = P1−{0, 1,∞}
over the ring of S-integers in Q where S is any finite set of rational primes.
This proves Siegel’s theorem for X over Q. In this proof, in order to es-
timate the dimension of the related global cohomology group, Kim uses a
vanishing theorem of Soulé which says that for any natural number n ≥ 1,
H1(GT ,Qp(2n)) = 0, while H1(GT ,Qp(2n + 1)) is one dimensional. The
nonexistence of an analogue of such a vanishing theorem is the main ob-
struction to the generalization of the result to other number fields. Here,
using the so called motivic theory of previous sections, we can prove our
main result which generalizes Kim’s result, namely we have

Theorem 4.2.1. Let k/Q be a totally real number field of degree d ≥ 2, S
be any finite set of finite places of k, and OS be the ring of S integers in k.
Put

X := P1 − {p1, p2, . . . , pd+1},

where pi ∈ P1(OS) for all 1 ≤ i ≤ d + 1. Then X has at most finitely many
OS-points.

Remark 4.2.2. Note that the above result does not directly imply Siegel’s
theorem for all totally real number fields, because we must remove more and
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more points as degree of the number field grows. But if we consider the par-
ticular case of d = 2 and (p1, p2, p3) = (0, 1,∞), we obtain Siegel’s theorem
for totally real quadratic number fields which of course implies Siegel’s theo-
rem for P1−{0, 1,∞} over Q. Moreover, the following proof can be directly
applied to the case of P1 − {0, 1,∞} over Q. ♣

Proof. (of Theorem 4.2.1) First of all, note that since we consider X to be
a punctured projective line, its first étale and de Rham cohomology groups
with values in trivial sheaves are powers of étale and de Rham realizations
of the Tate object (this is the essential reason for which we must restrict
ourselves to punctured projective line. The point is that for open subcurves
of projective curves of higher genus, the first motivic cohomology group is
not mixed Tate and hence the following arguments cannot be applied). More
precisely, we have

Tét = Qp(1)d , TdR = K0(1)d,

where K0 is the maximal unramified extension of Qp in kv. Actually one
can say much more, and this is the important and main point of this work.
Namely, for any rational point x ∈ X(k), we can put the étale and the de
Rham theories discussed in this paper, together with the Malčev unipotent
completion of the topological fundamental group of X(C) as Betti realization
to obtain a pro-unipotent affine group scheme in the category Rk of mixed
realizations which has been discussed in section 1.2. Moreover for any other
rational point y ∈ X(k), this construction can be also applied to obtain an
affine scheme in the category Rk, which is a torsor over the above mentioned
Rk-group scheme (see [8, section 13] for more details). Now a very important
and crucial fact, that we are going to employ here, is Theorem 1.3.1 which
says that all these objects are motivic, at least as long as we restrict ourselves
to the punctured projective line. More precisely, for any rational point x ∈
X(k) (resp. any two rational points x, y ∈ X(k)), there is a pro-unipotent
affine group scheme (resp. a torsor over this group scheme) in the category
MT (k) whose realization is the above mentioned object in Rk. Finally since
a mixed Tate motive M ∈ MT (k) is unramified at a place v of k, i.e. M
belongs to MT (k)Γ where Γ = O∗v ⊗Z Q, if and only if its l-adic realization
is unramified at v for some prime number l distinct from characteristic of Fv
(see [10, Proposition 1.8] or Theorem 1.3.2), one can deduce that if the points
x, y under consideration are T -integral points, then the resulting motivic pro-
unipotent fundamental group and path torsor lie in the subcategory MT (OT )
of MT (k). This implies that the corresponding classes of these path torsors
are also motivic, i.e. they come from motivic cohomologies, briefly reviewed
in section 1.2, which in turn can be connected to the algebraic K-groups of
our base number field k.
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The next thing to notice is that since we are working with affine curves,
coherent cohomologies vanish in positive degrees. Hence Tcoh = 0 and for any
n ≥ 1, Gcoh,n is the trivial group. Now by construction we have following
exact sequences of unipotent group schemes

0→ kv(n)rn → GdR,n+1 → GdR,n → 0,

where rn, by Theorem 2.1.12, is the dimension of the n-th graded part of
the free Lie algebra over a d dimensional vector space. One can precisely
compute these numbers rn as

rn =
1

n

∑
m|n

µ(m)dn/m,

where µ is the Möbius function (see [28, Part I, Chapter IV, Theorem
4.2]).One obtains then that

dimkv(GdR,n+1/Gcoh,n+1) = dimkv(GdR,n+1) = r1 + r2 + · · ·+ rn.

Now in order to estimate the numbers Dn, we consider the same exact se-
quences as above for étale unipotent group schemes, which are

0→ Qp(n)rn → Gét,n+1 → Gét,n → 0,

where these rn’s are the same as before, because we are working with different
realizations of the same motivic object. Now we are interested in studying the
image of X(OS) in H1(GT ,Qp(n)) for n ≥ 1. Since the path torsors coming
from OS-points of X are motivic and they lie in the category MT (OT ), the

global étale period map p
glob,(n)
ét factors through motivic cohomology groups

H1(MT (OT ),Q(n)) whose dimension can be computed as follows. For any
n ≥ 2 we have

H1(MT (OT ),Q(n)) ∼= Ext1
MT (OT )(Q(0),Q(n)) = Ext1

MT (k)(Q(0),Q(n)),

where in the last equality we use the first part of Proposition 1.2.2. On the
other hand, since DMT (k)Q is the derived category of the abelian category
MT (k), any extension

0→ B → E → A→ 0

of A by B in MT (k), leads functorially and in a unique way to a distinguished
triangle

B → E → A→ B[1]
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in DMT (k)Q. This gives a map

Ext1
MT (k)(A,B)→ Hom1

DMT (k)Q
(A,B),

which can be shown to be a bijection. If we take this bijection into account,
we can push our calculations one step forward, and see that for all n ≥ 2

H1(MT (OT ),Q(n)) ∼= Hom1
DMT (k)Q

(Q(0),Q(n)).

But as it has been mentioned in section 1.2, the right hand side of the above
isomorphism is isomorphic to K2n−1(k) ⊗Z Q. This rational K-groups have
been explicitly computed by Borel (see [4, section 12]), and in our case, where
k is totally real of degree d, one has

dimQ(K2n−1(k)⊗Z Q) =

{
0 n > 1 is even

d n > 1 is odd

If we put
α := dim(H1(MT (OT ),Q(1))),

and all the above together, we obtain

Dn+1 ≤ α + d(r3 + r5 + · · ·+ r2b(n−1)/2c+1).

Remembering the fact that rn grows asymptotically like dn/n, it is straight-
forward to see that for any sufficiently large even integer n we have

Dn < dim(GdR,n+1/Gcoh,n+1).

Now by results of chapter 3 we have the following Qp-affine schemes and
algebraic maps between them

H1(GT , Gét,n)
res // H1(Gv, Gét,n) Wkv/Qp(GdR,n/F

0)? _coo

By taking kv-points, we obtain

H1(GT , Gét,n)(kv)
res−→ H1(Gv, Gét,n)(kv) ⊃ Wkv/Qp(GdR,n/F

0)(kv).

But by the definition of the Weil restriction, one has

Wkv/Qp(GdR,n/F
0)(kv) = (GdR,n/F

0)(kv ⊗Qp kv),

and the inclusion kv ⊂ kv ⊗Qp kv gives us a projection

Wkv/Qp(GdR,n/F
0)(kv) = (GdR,n/F

0)(kv ⊗Qp kv) � (GdR,n/F
0)(kv).
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Note that the image of integral points X(OS) in H1(Gv, Gét,n)(kv) lies in the
image of Wkv/Qp(GdR,n/F

0)(kv) under the comparison map c and hence can
be projected to (GdR,n/F

0)(kv). Now the inequality

Dn < dimkv(GdR,n+1/F
0)

for a large n implies that the image of X(OS) is not dense in (GdR,n+1/F
0)(kv)

for such a number n. On the other hand, we saw in Theorem 3.3.1 that de
Rham period maps from the open unit p-adic balls to (GdR,n+1/F

0)(kv) have
Zariski dense image. Hence the integral points X(OS) are not dense in any
open unit p-adic ball centered at any S-integral point and we are done.

4.3 Descent to Lower Dimensions

In this section we are going to briefly explain some observations which lead
to an understanding of the structure of unipotent fundamental groups of
unirational varieties in higher dimensions. The essential observation is that
using different versions of the Lefschetz hyperplane section theorem, many
questions concerning the structure of unipotent fundamental groups of vari-
eties in higher dimensions can be reduced to the one dimensional case. Let
us start with some generalities on Lefschetz hyperplane section theorem.

It is very well known in Algebraic Topology that low degree (co)homology
and homotopy groups of a CW-complex depend only on the low dimensional
skeleton of that CW-complex. For example the fundamental group of a
CW-complex is completely determined by its 2-skeleton. This is essentially
because when we attach a high dimensional cell to a CW-complex both the
cell itself and its boundary along which we glue it to the CW-complex are
trivial in low degrees and hence cannot alter (co)homology and homotopy
groups in low degrees. It is expected that if we take a generic hyperplane
section of a (quasi)-projective variety of high dimension, its (co)homology
and homotopy groups in low degrees remain unchanged. Lefschetz has made
a precise statement in this direction which is called “Lefschetz hyperplane
section theorem” or “weak Lefschetz theorem”. There are many versions of
this theorem which can be easily found in the literature, but for reader’s
convenience we recall one of them.

Let M be a d-dimensional (quasi)-projective complex manifold embedded
into some complex projective space, and let H be a generic hyperplane of
the ambient projective space. Then if we denote the hyperplane section
M ∩ H by M ′, one can attach some d-cells to M ′ in such a way that the
resulting space becomes homotopically equivalent to M . As an immediate
corollary one obtains that the map induced by inclusion from ith homology
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and homotopy groups of M ′ to those of M are isomorphisms when i < d− 1,
and are surjections when i = d − 1. Note that sometimes this corollary is
referred to as the Lefschetz hyperplane section theorem.

In this section we are going to put together different versions of Lefschetz
hyperplane section theorem, which are applicable to different realizations of
unipotent fundamental groups, and obtain in some sense a motivic Lefschetz
hyperplane section theorem which can be applied to the unipotent fundamen-
tal group of the varieties under our study, as pro-objects in the category of
mixed realizations, and hence to the motivic unipotent fundamental groups,
when they exist.

Note that the above mentioned Lefschetz hyperplane section theorem
provides us with the Betti version. Fortunately the étale version of that
theorem exists as well in the literature. In the proper case, we have the
following theorem from SGA1.

Theorem 4.3.1. [21, Lemme 2.10., Exposé X] Let X be a proper scheme
over an algebraically closed field k and g : X → Prk a morphism. Suppose
that X is irreducible and normal and dim(g(X)) ≥ 2. Consider a generic
hyperplane H in Prk and put Y := X ×Prk H. Then Y is connected and
the homomorphism π1(Y ) → π1(X) between corresponding étale fundamen-
tal groups is surjective. Moreover this morphism between étale fundamental
groups is an isomorphism if dim(g(X)) ≥ 3.

The reader may have noticed that the properness assumption in the above
theorem will be annoying for us because we are going to apply that to com-
plements of normal crossing divisors in projective varieties. Actually if we
were interested in positive characteristics we would have a serious issue since
the Lefschetz hyperplane section theorem is not valid for non-projective va-
rieties over algebraically closed fields of positive characteristics. Fortunately
the situation is much better in characteristic zero. Namely if we assume that
our base field k is an algebraically closed field of characteristic zero, since
everything we are concerned with is defined over a finitely generated subfield
of k, such a subfield can be embedded into the field of complex numbers, and
the étale fundamental group remains unchanged after all these base changes,
we can assume that our base field k is the field of complex numbers. In
this case one has the complex analytic space X(C) whose fundamental group
completely determines the étale fundamental group of X. Namely if one con-
siders the usual fundamental group of the set of complex points X(C) of X,
equipped with complex analytic topology, then its profinite completion will
be the étale fundamental group of X. Finally one can drop that annoying
properness condition in Theorem 4.3.1 dealing with complex analytic vari-
eties and prove the same result for quasi-projective varieties. More precisely



4.3. DESCENT TO LOWER DIMENSIONS 77

we have the following much more general result which we state carefully for
future references.

Theorem 4.3.2. [20, Theorem, Section 5.1., Part II.] Let X be a purely
n-dimensional nonsingular connected algebraic variety. Let π : X → PNC
be an algebraic map and let H ⊂ PNC be a linear subspace of codimension
c. Let Hδ be the δ-neighborhood of H with respect to some real analytic
Riemannian metric. Define ϕ(k) to be the dimension of the set of points
z ∈ PNC − H such that the fiber π−1(z) has dimension k (−∞ if this set
is empty). If δ is sufficiently small, then the homomorphism induced by
inclusion, πi(π

−1(Hδ)) → πi(X) is an isomorphism for all i < n̂ and is a
surjection for i = n̂, where

n̂ = n− sup
k

(2k − (n− ϕ(k)) + inf(ϕ(k), c− 1))− 1.

Furthermore, in this theorem, π is not necessarily proper, and π−1(Hδ) may
be replaced by π−1(H) if H is generic or if π is proper. The assumption that
X is algebraic may be replaced by the assumption that X is the complement
of a closed subvariety of a complex analytic variety X and the π extends to
a proper analytic map π : X → PNC .

Being done with the étale realization, we are going to prove the same
statement in the de Rham case as well. To do that once more we use the
fact that we are over a field k of characteristic zero and give the following
description of the unipotent de Rham fundamental group of the variety X
in which we are interested. Let π1 be the usual fundamental group of the
associated complex variety X(C), and consider the group ring A := k[π1].
Then the completion

Â := lim←−
n

A/In

of A with respect to the augmentation ideal I admits a co-product

∆ : Â→ Â⊗̂Â

which makes it into a completed Hopf algebra over k. Then the Lie algebra of
the primitive elements in Â is a unipotent (not necessarily finite dimensional)
Lie algebra over k which, by general Malcev̌ correspondence, is associated
to a pro-unipotent affine group scheme over k. One can show that this pro-
unipotent affine group scheme is nothing else than the de Rham fundamental
group GdR. Going carefully through these constructions one sees easily that
for a map X → Y which induces a surjection (resp. an isomorphism)

π1(X(C)) � π1(Y (C))
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on the usual fundamental groups of the associated complex varieties, the
corresponding map on the above mentioned Lie algebras, and hence the one
on the de Rham fundamental groups, is also a surjection (resp. an isomor-
phism). Putting all these together one obtains the following version of the
Lefschetz hyperplane section theorem for the mixed realizations of the unipo-
tent fundamental group.

Theorem 4.3.3. Let X be a smooth d-dimensional variety over k and let
X ↪→ PNC be a smooth projectivization of X such that D := X−X is a divisor
with normal crossing and smooth irreducible components. Consider a generic
linear (N − d + l)-dimensional subspace of the ambient projective space PNC ,
and fix a base point x ∈ X ∩ H. Then if l ≥ 1 (resp. l ≥ 2) the inclusion
X ∩H ↪→ X induces a surjection (resp. an isomorphism)

πR
1 (X ∩H, x) � πR

1 (X, x)

on the corresponding fundamental groups in the category of mixed realiza-
tions.

The final step will be the motivic version of the above theorem. So assume
that the variety X appeared in the above theorem and the hyperplane H are
such that πR

1 (X ∩H, x) and πR
1 (X, x) are both motivic (for example assume

X and X ∩ H satisfy the hypothesis of Theorem 1.3.1). Then we have the
following diagram.

πR
1 (X ∩H, x) // //

real
��

πR
1 (X, x)

real
��

πmot
1 (X ∩H, x)

φ // // πmot
1 (X, x)

Note that the existence of φ in the above diagram is guaranteed by the
fullness assertion in Theorem 1.2.3 and moreover φ must be surjective (resp.
isomorphism) when it becomes so after taking different realizations. This
finally gives us the motivic Lefschetz hyperplane section theorem, namely we
have

Theorem 4.3.4 (Motivic Lefschetz Hyperplane Section Theorem). Let D be
a normal crossing divisor with smooth irreducible components in a projective
smooth variety X over a number field k and put X = X − D. Assume
moreover that X is smooth, has dimension at least 2 (resp. at least 3), and
that πR

1 (X, x) is motivic. Fix a closed immersion X ↪→ PNC and consider
a generic linear subspace H of the ambient projective space through x. If



4.3. DESCENT TO LOWER DIMENSIONS 79

X ∩H has positive dimension (resp. dimension at least 2) and πR
1 (X ∩H, x)

is motivic as well then the map

πmot
1 (X ∩H, x)→ πmot

1 (X, x)

induced by inclusion is surjective (resp. isomorphism).

Note that the same result as above is obviously valid for the algebraic
quotients πmot

1,n ’s, for any n ≥ 1. Hence if we denote the kernel of the projec-
tion

πmot
1,n+1 � πmot

1,n

by Kn and we continue with all the assumptions under which the above
theorem holds, we get the following commutative diagram.

0 // Kn(X ∩H) //

ψ

��

πmot
1,n+1(X ∩H, x) //

����

πmot
1,n (X ∩H, x) //

����

0

0 // Kn(X) // πmot
1,n+1(X, x) // πmot

1,n (X, x) // 0

We have seen in the previous section that when X ∩H is a punctured pro-
jective line, then Kn(X ∩H) is isomorphic to some power of the Tate object
Q(n). On the other hand, Q(n) is a simple object in MT (k). So if we knew
for example that the map ψ in the above diagram is a surjection, we could
deduce that Kn(X) is also isomorphic to some power of Q(n). This fact is
easy to proof if we take the following interpretation of these Kn’s.

For any group G let us denote the descending central series of G by Z•G.
Then one has

πmot
1,n (X, x) ∼= πmot

1 (X, x)/Zn(πmot
1 (X, x)),

and hence one evidently has

Kn(X) ∼= Zn(πmot
1 (X, x))/Zn+1(πmot

1 (X, x)).

On the other hand, the epimorphisms in the statement of the Theorem 4.3.4
obviously respect the descending central series of the involving fundamental
groups and they remain surjective after being restricted to the nth lower
central subgroups Zn’s. Namely under the notations and assumptions of the
Theorem 4.3.4 for any n ≥ 1 we get surjections

Zn(πmot
1 (X ∩H, x)) � Zn(πmot

1 (X, x)),
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and hence the following diagram

Zn+1(πmot
1 (X ∩H, x)) � � //

����

Zn(πmot
1 (X ∩H, x)) // //

����

Kn(X ∩H)

ψ

��
Zn+1(πmot

1 (X, x)) � � // Zn(πmot
1 (X, x)) // // Kn(X)

Now it is obvious from the above diagram that the map ψ is surjective and
hence we get the following important corollary which will be of great use in
proving our second main result in the next section.

Corollary 4.3.5. Under the notations and hypothesis of the Theorem 4.3.4,
if one assumes moreover that (X,X,D) forms a standard triple over k, then
for any n ≥ 1 one has the following exact sequence

0→ Q(n)r
′
n → πmot

1,n+1(X, x)→ πmot
1,n (X, x)→ 0,

where r′n is the dimension of the vector group

Zn(πmot
1 (X, x))/Zn+1(πmot

1 (X, x)).

Now let k be a fixed number field, S be a finite set of finite places of k, and
OS be the ring of S-integers of k. Fix also a standard triple (X,X,D) over
OS, where X is a d-dimensional projective variety over Spec(OS). Finally fix
an embedding

i : X ↪→ PNOS
of X into an ambient projective space. Now by enlarging S to a bigger finite
set of finite places S ′ of k, one can find an (N − d + 1)-dimensional linear
subspace H ∼= PN−d+1

OS′
of PNOS′ in such a way that (X ∩ H,X ∩ H,D ∩ H)

forms a standard triple over OS′ with dimOS′
(X) = 1. Recall that if we make

a base change to k, then by Bertini’s theorem for a generic H, (X ∩H)k is
a smooth, projective, geometrically connected curve over k and irreducible
components of the divisor (D∩H)k are étale and absolutely irreducible over
k. But if we replace S by a possibly larger finite set of finite places S ′, we
can assume that X ∩H, D ∩H, and hence the complement C := X ∩H are
all defined over OS′ and irreducible components of D ∩ H are smooth and
surjective over Spec(OS′). Finally note that this enlargement of S to a bigger
finite set S ′ is harmless for us in the sense that the validity of our second
main result, namely Theorem 4.4.3, for a smaller set S is a consequence of
its validity for a larger set S ′. So from now on, we assume without loss of
generality that H, X ∩H, D ∩H, and C = X ∩H are all defined over OS
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and (X ∩H,C,D ∩H) forms a standard triple over OS, with C/Spec(OS) a
relative curve.

Our main interest is in proving that the Diophantine set X(OS) is not
locally p-adic analytically dense (see Theorem 4.4.3). If this set is not Zariski
dense then there is nothing to prove, otherwise we can choose H in such a way
that the intersection C contains an OS-point. Fix such a point x ∈ C(OS)
as the base point in the sequel.

Let us start with the de Rham period map. Let v be a finite place of
k outside S and let xkv ∈ Xkv(kv) be the point induced by x. Let CdR
be the category of unipotent vector bundles over Xkv equipped with unipo-
tent integrable logarithmic connection along Dkv . Note that here, like in
section 2.1, a unipotent object is an object which is an iterated extension
of the trivial objects. Taking the fiber at the point xkv is a fiber functor
which makes CdR a neutral Tannakian category over kv. Now by applying
the general Tannakian formalism of section 1.1, more precisely by apply-
ing Theorem 1.1.6, we get the pro-unipotent group scheme GdR(Xkv , xkv).
The algebraic quotients GdR,n(Xkv , xkv) can be defined as the quotients of
GdR(Xkv , xkv) by its descending central series. Note that here we should im-
pose the integrability condition on the connections in the definition of CdR,
while in section 2.1 it was automatic due to one dimensionality. Moreover,
for any other point y ∈ Xkv(kv) one can apply Theorem 1.1.8 to obtain path
torsors GdR(X;xkv , y) and GdR,n(X;xkv , y)’s, respectively over the groups
GdR(Xkv , xkv) and GdR,n(Xkv , xkv)’s.

Note that everything in section 2.3 can be applied to arbitrary dimensions
and hence one can endow these de Rham fundamental groups with Frobenius
action. Moreover since the de Rham fundamental group of Ckv surjects onto
the de Rham fundamental group of Xkv (see Theorem 4.3.3), the Hodge
filtration on the de Rham fundamental group of Ckv induces a Hodge filtration
on the de Rham fundamental group of Xkv . There are also compatible extra
structures on path torsors (see [8, sections 11 and 12]). Similar to the one
dimensional case, these extra structures make the path torsors non-trivial,
and here again the Frobenius action alone is not sufficient for this purpose.
More precisely, by similar arguments as in section 3.3, one can show that all
the de Rham path torsors become trivial after forgetting the Hodge filtration.
That is, if v lies above the rational prime p, one has

OGdR,n(Xkv ;xkv ,y)
∼= OGdR,n(Xkv ,xkv ), ∀ n ≥ 1,

as Frobenius modules over W (Fv)[1/p] ⊂ kv. This gives us the following de
Rham period maps

p
(n)
dR : Xkv(kv)→ GdR,n/F

0(GdR,n).
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Finally we have the analogue of the key Theorem 3.3.1, namely

Theorem 4.3.6. For any n ≥ 1, the restriction of the period map p
(n)
dR to

the p-adic integral points in the p-adic open unit ball around xkv gives a rigid
kv-analytic map with Zariski dense image in GdR,n/F

0(GdR,n).

Proof. Zariski density of the image is a consequence of the same fact in the
one dimensional case ([17, Section 4]), and commutativity of the following
diagram in which the right vertical map is surjective (see Theorem 4.3.3).

Ckv(kv)

��

p
(n)
dR // GdR,n(Ckv , xkv)(kv)

����
Xkv(kv)

p
(n)
dR // GdR,n(Xkv , xkv)(kv)

The proof of rigid analyticity goes as follows. If one restricts the universal
Frobenius crystal GdR to the p-adic open unit ball centered at xkv , one gets
a Frobenius crystal on W (Fv){{t1, . . . , td}}, where d is the dimension of the
variety X. This Frobenius crystal is constant as noted above. So if we denote
the Hodge filtration at the base point xkv by F0, the filtration at another point
y in the open p-adic unit ball is given by g(y)F0 where g is a rigid kv-analytic
map from W (Fv){{t1, . . . , td}} to GdR/F

0(GdR). Note that the variation of
the Hodge filtration is algebraic on the original universal Frobenius crystal,
but it becomes only rigid kv-analytic after making it constant over the p-
adic open unit ball because the process of constantification involves rigid
kv-analytic transformations which are not necessarily algebraic.

We skip repeating the definitions of the local and global étale period
maps due to their similarity with the definitions given in section 3.3. Finally
note that one can put these things together to obtain the higher dimensional
analogue of the commutative diagram of the Remark 3.3.2. The arguments
of section 4.1 are applicable to any dimension if one considers the following
observation. By Theorem 4.1.1, after passing to dual, one obtains that Gét,1

and GdR,1 are associated in the sense of Fontaine’s theory. On the other

hand, the constant p-adic étale sheaf Q̃p(m)⊗n with fiber Qp(m)⊗n is ob-

viously associated to the constant filtered Frobenius crystal K̃0(m)⊗n with
fiber K0(m)⊗n, for all integers m and all n ≥ 1. Now we can use Corollary
4.3.5 to see that Pét,n+1 (resp. PdR,n+1) is the extension of Pét,n (resp. PdR,n)

by Q̃p(n)⊗r
′
n (resp. K̃0(n)⊗r

′
n). One can also check that these extensions

have associated classes in proper Ext1’s (for example in cases of interest to
us this is true because both these extensions are two different realizations of
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the same extension of Corollary 4.3.5 for motivic fundamental groups). All
these imply, by induction on n, that for any n ≥ 1 the p-adic étale sheaf Pét,n

is associated in the sense of Faltings’ theory to the filtered Frobenius crystal
PdR,n. Now we get the analogue of the Remark 4.1.2 in higher dimensions
and hence the commutativity of the diagram analogue to the fundamental
diagram appeared in Remark 3.3.2.

4.4 General Case

Here we are going to prove the second main result of this thesis, which gener-
alizes the first main result to unirational varieties of arbitrary dimension. In
order to state that result we need a new notion, which we call V-property (V
for vanishing). Since this notion is very crucial in our result, let us first give
an exact definition of it. We continue with the notations and conventions
made before. So let k be a number field, S be a finite set of finite places of
k, OS be the ring of S-integers of k and so on.

Definition 4.4.1 (V-property). Let X be a variety over OS and fix a finite
place v of k which lies over a rational prime p. For a given S-integral point
x ∈ X(OS), we say that X satisfies the VS,v-property at x, if there exists a
nonzero p-adic analytic function on the p-adic open unit ball centered at xkv
which vanishes on the image of any other S-integral point of X in that ball.
We say that X satisfies VS,v-property if it satisfies VS,v-property at every
S-integral point.

Remark 4.4.2. Note that there are only finitely many p-adic unit balls in
Xkv , because they only depend on the reduction modulo p of the center. On
the other hand, when X is a curve, these balls are nothing else than p-adic
unit disks, and it is very well known that a nonzero p-adic analytic function
has only finitely many zeros over a finite extension of Qp in such a disk. As a
consequence, a curve X satisfies VS,v-property for at least one v if and only
if it has only finitely many S-integral points.

Moreover, notice that if S ⊂ S ′ are two finite sets of finite places of k,
then VS′,v′-property implies VS,v-property for any v′|v. ♦

Before stating and proving the main result, let us sketch the general
underlying idea, which is the higher dimensional analogue of the idea that
we used in section 4.2. Suppose X is a given variety over OS, where OS

is the ring of S-integers in a number field k for a finite set of finite places
S. We are interested in proving that X satisfies the VS,v-property for some
finite place v of k. Suppose that X is nice enough so that we can apply
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the theories and techniques of previous sections to it. Take a finite place
v of k outside of S in such a way that X has good reduction at v. Note
that we can choose such a v which lies over an arbitrary large rational prime
number p. Then in an analogous manner we obtain a diagram for X similar
to that in Remark 3.3.2. Suppose now that one can estimate dimensions of
the algebraic varieties appeared in that diagram and prove by any method
that for some natural number n one has

Dn < dim(GdR,n/Gcoh,n),

where Dn is defined to be

Dn := dim(Im(p
glob,(n)
ét (X(OS)))).

In this section again, like in section 4.2, by the dimension of a subset of an
algebraic variety, we mean the dimension of its Zariski closure. It follows then
that the Zariski closure of the image of X(OS) in GdR,n/F

0(GdR,n), which
has dimension at most Dn, is not Zariski dense. Hence there exists a nonzero
algebraic function on GdR,n/F

0(GdR,n) which vanishes on this image. Since
the open p-adic unit ball around xv ∈ Xkv , B

◦
1(xv), has Zariski dense image

in GdR,n/F
0(GdR,n) (Theorem 3.3.1), the pull back of this nonzero function

gives a nonzero p-adic analytic function on B◦1(xv), which vanishes on every
integral point in B◦1(xv) and we are done.

Recall that after fixing a standard triple (X,X,D) over OS, the set

{r′n = dim(Zn(πmot
1 (X, x))/Zn+1(πmot

1 (X, x))) : n ≥ 1}

is the set of natural numbers appeared in Corollary 4.3.5. Now we can state
and prove our second main result, namely we have

Theorem 4.4.3. Let k/Q be a totally real number field of degree d ≥ 2 (or
let k = Q and put d = 2), S be any finite set of finite places of k, and OS be
the ring of S-integers in k. Consider a fixed standard triple (X,X,D) over
OS such that h1,0(X) = 0. Finally assume that for any constant c ∈ N there
exists a natural number n ∈ N such that

c+ d(r′3 + r′5 + · · ·+ r′2b(n−1)/2c+1) < r′1 + r′2 + · · ·+ r′n

Then for almost all finite places v of k, X satisfies the VS,v-property.

Proof. First of all note that the technical condition h1,0(X) = 0 helps us get
rid of the zeroth part of the Hodge filtration on the de Rham (pro)-unipotent
fundamental group. By this we mean that when h1,0(X) = 0, then F 0(GdR)
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and F 0(GdR,n)’s are all zero as well and hence we can replace all the quotients
GdR/F

0(GdR) and GdR,n/F
0(GdR,n)’s, which appear as the target space of the

de Rham period maps, by the more simple spaces GdR and GdR,n’s (see [22,
Remark 1.5]).

Note also that by the last part of Remark 4.4.2 we can replace S by a
larger finite set of finite places of k without loose of generality. This allows us
to apply the results of section 4.3 and also motivic Lefschetz hyperplane sec-
tion theorem for the integral versions of the motivic unipotent fundamental
groups and path torsors over them.

Now by de Rham realization of the exact sequence in Corollary 4.3.5, for
any n ≥ 1 we have the following exact sequences of unipotent group schemes

0→ Kv(n)r
′
n → GdR,n+1 → GdR,n → 0.

One obtains then that

dimkv(GdR,n+1/F
0(GdR,n+1)) = dimkv(GdR,n+1) = r′1 + r′2 + · · ·+ r′n.

Now in order to estimate the numbers Dn, firstly we consider the étale re-
alization of the exact sequence of Corollary 4.3.5, which gives the following
exact sequence of unipotent group schemes for any n ≥ 1:

0→ Qp(n)r
′
n → Gét,n+1 → Gét,n → 0.

Note that these r′n’s are the same as the ones above that appeared in the de
Rham case, because we are working with different realizations of the same
motivic exact sequence. Now we are interested in studying the image of
X(OS) in H1(GT ,Qp(n)) for n ≥ 1. Since the path torsors coming from OS-
points of X are motivic and they lie in the category MT (OT ) (see Theorem

1.3.2), the map p
glob,(n)
ét factors through the motivic cohomology groups

H1(MT (OT ),Q(n))

whose dimension can be computed as follows. For any n ≥ 2 we have

H1(MT (OT ),Q(n)) ∼= Ext1
MT (OT )(Q(0),Q(n)) = Ext1

MT (k)(Q(0),Q(n)),

where the last equality is a consequence of the first part of Proposition 1.2.2.
On the other hand, since DMT (k)Q is the derived category of the abelian
category MT (k), any extension

0→ B → E → A→ 0
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of A by B in MT (k), leads functorially and in a unique way to a distinguished
triangle

B → E → A→ B[1]

in DMT (k)Q. This gives a map

Ext1
MT (k)(A,B)→ Hom1

DMT (k)Q
(A,B),

which can be shown to be a bijection. If we take into account this bijection,
we can push our calculations one step forward, and see that for all n ≥ 2

H1(MT (OT ),Q(n)) ∼= Hom1
DMT (k)Q

(Q(0),Q(n)).

But as we discussed in section 1.2, the right hand side of the above isomor-
phism is isomorphic to

K2n−1(k)⊗Z Q.

This rational K-groups have been explicitly computed by Borel (see [4, sec-
tion 12]), and in our case, where k is totally real of degree d, one has

dimQ(K2n−1(k)⊗Z Q) =

{
0 n > 1 is even

d n > 1 is odd

Finally note that the rank α of S-units of the number field k is equal to

α = dim(H1(GT ,Qp(1))).

By putting all these together, we obtain

Dn ≤ α + d(r′3 + r′5 + · · ·+ r′2b(n−1)/2c+1).

Now by our hypothesis on the numbers r′n’s one has

Dn < dim(GdR,n+1/F
0(GdR,n+1))

for some natural number n ∈ N. The rest of the proof is exactly the same as
the final part of the proof of the Theorem 4.2.1 and will be omitted.

We finish this section by proposing the following conjecture which seems
to be very out of reach at the moment. In some sense it is actually true
that this conjecture is very far reaching since there are serious obstacles in
generalizing the methods of this work to prove it, but all the examples that
author managed to check explicitly were supporting it. See the examples and
remarks of the following section for more discussion of this.
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Conjecture 4.4.4. Let k be a number field, S be a finite set of finite places
of k, and OS be the ring of S-integers in k. Let also X̄ be a smooth projective
variety over Spec(OS), D be a relative divisor in X̄, and put X := X̄ − D
which is smooth over Spec(OS). Finally assume that the descending central
series of the fundamental group of X(C) never stops, i.e. the corresponding
numbers r′n are positive for all n ∈ N. Then X satisfies VS,v property for
almost all finite places v of k.

4.5 Remarks and Questions

In this final section, we are going to make some general remarks concerning
Theorem 4.4.3 and Conjecture 4.4.4. This, hopefully, not only shows the
kind of situations to which we can apply Theorem 4.4.3, but also gives the
main obstructions for proving Conjecture 4.4.4. Note that in the sequel we
follow the same notations and conventions of the previous sections.

Remark 4.5.1 (Reduction to the 2-dimensional case). Fix a standard triple
(X,X,D) over OS of dimension d ≥ 3 and assume that X has been embedded
into an ambient projective space over Spec(OS). Now for a generic hyperplane
H in the ambient projective space, the hyperplane section (X,X,D)H of
(X,X,D) is a standard triple over OS′ for a finite set of finite places S ′

of k. Then a very important feature of Theorem 4.4.3 is that (X,X,D)
satisfies its hypotheses if and only if (X,X,D)H does. Simply because by
the material of section 4.3, specially by Theorem 4.3.4, when we take a generic
hyperplane section the motivic fundamental group and the first cohomology
group remain unchanged as long as the dimension of the section is not less
than 2. On the other hand, the numbers r′n which appear in Theorem 4.4.3
are invariants of the fundamental group of X. It is also clear that when
H1 remains unchanged, h1,0 does not change as well. The importance of
this observation is that it tells us that if we want to prove VS,v-property for
a standard triple of dimension d ≥ 3, in order to check the hypotheses of
Theorem 4.4.3 we can take iterated generic hyperplane sections and reduce
the problem to the case of dimension 2. This is very remarkable about
Theorem 4.4.3 that it reduces an arithmetic problem concerning a family of
varieties with arbitrary dimension to a problem which in turn can be reduced
to the case of surfaces. Hence in the following, we restrict to surfaces. ♠

Remark 4.5.2 (Divisors with not-necessarily normal crossing and smooth
irreducible components). First of all recall that traditionally the number h1,0

of a surface is called the irregularity of the surface, hence surfaces for which
h1,0 = 0 are called regular surfaces. Now let X be a proper smooth surface
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over OS, D be a divisor such that the irreducible components of its generic
fiber are absolutely irreducible, and let x be a point in X which lies in D.

Let X̃ be the blow up of X at the point x, and put

D′ := D + E

where E is the exceptional divisor of the blow up. Now X − D and X̃ −
D′ are isomorphic and hence have isomorphic fundamental groups. On the
other hand, since blowing up a surface does not change its first cohomology

(simply because the blow up X̃(C) is homeomorphic to the connected sum

X(C)#CP), X̃ remains regular if X is regular.
Now suppose that we start with a proper smooth uni-rational surface X

over OS and a divisor D in X such that the irreducible components of the
generic fiber of D are absolutely irreducible (note that we do not assume
normal crossing or smoothness of the irreducible components). Suppose that
after finitely many blow ups the irreducible components of D become smooth
and their intersections become normal. Then if we denote the resulting space

by X̃, by D′ the sum of D with all the resulting exceptional divisors, and

by X the complement X̃ −D′, we get a standard triple (X̃,X,D′) over OS

(of course the blow up of a uni-rational surface is uni-rational). Assume
we were interested in proving VS,v-property for the complement X − D for
some finite place v of k. Since X and X −D are isomorphic over Spec(OS),
VS,v-property is equivalent for them. On the other hand, since they have the
same fundamental group, the numbers r′n which appear in Theorem 4.4.3 are
also the same for them. Hence if the numbers r′n satisfy the hypotheses of

Theorem 4.4.3, we can apply Theorem 4.4.3 to the standard triple (X̃,X,D′),
conclude the VS,v-property for X and hence for the complement X −D.

The significance of this observation is that it allows us to work with com-
plements of singular divisors with not necessarily normal crossing in surfaces,
in particular in P2. This is very important for us because of the well known
fact that the fundamental group of the complement in P2 of a divisor with
normal crossing whose irreducible components have at worse nodal singular-
ities is abelian (see [7, Theorem 1]). Hence the descending central series of
the fundamental group of the complement of such divisors stops after the
first step and we cannot apply Theorem 4.4.3 to them. But now we can
remove divisors with worse intersections and singularities to get non-abelian
fundamental groups to which Theorem 4.4.3 is applicable (see the following
remark for instance). ♥

Remark 4.5.3 (Golod-Shafarevich condition). Recall that with the hypoth-
esis of Theorem 4.4.3 we have the motivic fundamental group πmot

1 (X, x)
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which is a pro-unipotent algebraic group scheme over k. Then we defined
the numerical invariants r′n’s to be the dimensions of the vector groups

Zn(πmot
1 )/Zn+1(πmot

1 ),

where Z• is the lower central series of the group. Then one important as-
sumption in Theorem 4.4.3 is that for any constant number c ∈ N,

∃n ∈ N : c+ d(r′3 + r′5 + · · ·+ r′2b(n−1)/2c+1) < r′1 + r′2 + · · ·+ r′n,

where d is the degree of the number field k over Q. In particular, if one can
show that the numbers r′n grow exponentially like r′n ∼ dn, then the above
condition is automatic for big enough even n’s. In this remark we want to dis-
cuss the Golod-Shafarevich condition which guarantees exponential growth
of r′n’s.

In general the lower central series Z• of a pro-unipotent group G satisfies⋂
n

Zn(G) = (0).

Hence for any nontrivial element g ∈ G there is a well defined degree dg
which is the unique number n such that

g ∈ Zn(G)− Zn+1(G).

Now suppose that G is finitely presented in the category of pro-unipotent
groups over a field of characteristic zero and we are given a presentation

G =< g1, . . . , gd|s1, . . . , sr >

of G. Assume moreover that all the relations si have degree not less than
m ≥ 2 (note that the condition m ≥ 2 is automatic if we start with a minimal
set of generators). Now the Poincaré series PG(t) of G is defined to be

PG(t) :=
∞∑
n=0

rank(Zn(G)/Zn+1(G))tn.

With all these notation, one can show

PG(t).(1− dt+ rtm)

1− t
≥ 1

1− t
,

where the inequality is a term wise inequality for coefficients (see [27, Lemma
3.6.]). One says that G satisfies the Golod-Shafarevich condition if 1−dt+rtm
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has a root in the open interval (0, 1). Now assume that G satisfies the Golod-
Shafarevich condition and let t0 ∈ (0, 1) be a root of 1−dt+rtm. Then by the
above inequality between power series one sees that PG(t) cannot converge
at t0. This means that the sequence {an}n of ranks of the vector groups
Zn(G)/Zn+1(G) cannot be dominated by the sequence

{b(1/t0)nc}n,

and hence an’s must grow exponentially.
Back to our original situation if one can write a presentation of πmot

1

as a pro-unipotent group, which in principle is possible, then it is easy to
check the Golod-Shafarevich condition. Then if πmot1 satisfies the Golod-
Shafarevich condition, the numerical assumption on numbers r′n would be
automatic for d < 1

t0
, where t0 is the above mentioned root in the open

interval (0, 1). It worth mentioning that it is a reasonable expectation that
the unipotent hull of the fundamental groups of the proper varieties whose
complex valued points admit a Riemannian metric with strictly negative
sectional curvatures (or when it is hyperbolic in the sense of Kobayashi),
satisfy the Golod-Shafarevich condition. ♣

Remark 4.5.4 (Main obstructions in proving Conjecture 4.4.4). As we men-
tioned before, in general the Conjecture 4.4.4 seems to be very difficult to
prove. But among all difficulties, there are two main obstacles, when one
tries to generalize the methods of this work to prove Conjecture 4.4.4. These
obstacles are results of the two main generalizations in Conjecture 4.4.4.
Namely, passing from unirational varieties to general ones, and relaxing the
totally realness of the ground number field k and growth condition on num-
bers r′n. We would like to discuss these two obstacles in this remark.

The first thing to note is that a key step in proving Theorem 4.4.3 was to
replace H1(GT , Gét,n) by algebraic K-groups of the ground number field. We

needed this to show that the dimension Dn of Im(p
glob,(n)
ét (X(OS))) becomes

strictly smaller than dim(GdR,n/F
0(GdR,n) and deduce VS,v-property from

it. At that point we crucially benefited from the fact that the fundamental
group Gét and all the path torsors over that are the étale realizations of the
pro-unipotent motivic fundamental group and motivic path torsors of our
unirational variety in the category of mixed Tate motives. This fact helped
us reduce the estimation of dimensions of the above global Galois cohomol-
ogy groups to computing the dimension of motivic cohomology groups with
values in some Tate motives, which in turn could be reduced to computing
the ranks of rational K-groups of the ground number field, and finish by
using Borel’s result. In general, when the variety under consideration is not
unirational, there are two problems. Firstly, although there are some hopes
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that the unipotent fundamental group, which has been constructed as a pro-
unipotent group scheme in the category of mixed realizations in much more
general settings, is always motivic, there is no motivic construction of it for
general varieties yet. Secondly, even if one could show that the unipotent
fundamental groups are motivic, they are certainly not mixed Tate in gen-
eral. Simply because even the first homology, which is a tiny quotient of π1,
is not in general mixed Tate and can have odd weights (look for example at
the first cohomology of projective curves of positive genus). So even in the
case that we put ourselves in the category of mixed motives, in general we
will certainly be outside the heaven of mixed Tate ones and hence computing
or estimating the dimensions of motivic cohomology groups will remain a
difficult problem.

The second obstacle that we are going to mention is about dropping
the totally realness of the number field k in Conjecture 4.4.4. Note that in
Theorem 4.4.3 we asked for the following condition.

∃n ∈ N : c+ d(r′3 + r′5 + · · ·+ r′2b(n−1)/2c+1) < r′1 + r′2 + · · ·+ r′n,

where d is the degree of the totally real number field k over Q. This helped
us show that the image of integral points of an open p-adic unit ball by
the de Rham period map is not Zariski dense in GdR,n and hence the VS,v-
property. Note that the above condition is a strong condition in some sense
since it essentially says that the numbers r′n must grow at least as fast as the
exponential sequence dn. This puts a strong constraint on the degree of the
totally real number field k to which we can apply Theorem 4.4.3. So why do
we feel that one can forget this condition and only asks for non-vanishing of
the numbers r′n and also completely get rid of the total realness of k? We
try to explain our intuition here.

First of all recall that for a general number field k of degree d over Q,
if we denote by r and s the number of real and conjugate pairs of complex
embeddings of k, then by [4, Section 12] we have

dimQ(K2n−1(k)⊗Z Q) =

{
s n > 1 is even

r + s n > 1 is odd

Hence the argument in the proof of Theorem 4.4.3 shows that in this case
one has

Dn = α + s(r′2 + r′3 + · · ·+ r′n) + r(r′3 + r′5 + · · ·+ r′2b(n−1)/2c+1).

Obviously this number cannot be expected to be smaller than

dim(GdR,n+1/F
0(GdR,n+1)) = r′1 + r′2 + · · ·+ r′n
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except when s = 0. This means that when k has complex places we cannot
show that the image of integral points by the de Rham period map is not
Zariski dense in GdR,n+1/F

0(GdR,n+1). But on the other hand, note that the
domain of definition of the comparison map c is the Weil restriction

Wkv/Qp(GdR,n/F
0(GdR,n))

whose dimension is equal to

d(r′1 + r′2 + · · ·+ r′n).

Since d = r + 2s, as long as the numbers r′n’s are positive, for large enough
n we always have

Dn < dim(Wkv/Qp(GdR,n/F
0(GdR,n)))

regardless of the number of complex places and the degree of k. This shows
that in general the image of integral points by the de Rham period map
cannot be Zariski dense in the Weil restriction of GdR,n/F

0(GdR,n). But note
that by these computations not only the numbers Dn become less than the
dimension of Wkv/Qp(GdR,n/F

0(GdR,n)) but also the difference between these
dimensions goes up to infinity as n tends to infinity. This gives the hope
that the image of integral points by the de Rham period map must become
of higher and higher co-dimension in Wkv/Qp(GdR,n/F

0(GdR,n)) for larger and
larger n. If one could have arranged to prove such high codimensionality, then
the analogous results like Theorem 4.4.3, but for not necessarily totally real
number fields, would have been a consequence. ♦



Summary

Let k be a totally real number field, S be a finite set of finite places of k,
and OS be the ring of S-integers in k. Let X be a smooth variety over OS

which admits a ‘nice’ projectivization and whose generic fiber is unirational
(see Definition 1.3.3). In this thesis we show that if the fundamental group
π1(X(C), x) of the complex points of X is sufficiently non-abelian in a sense
that is made precise, then S-integral points X(OS) of X, locally in p-adic
topology, lie in the zero locus of a non-zero p-adic analytic function for al-
most all rational prime p (see Theorem 4.2.1 and Theorem 4.4.3). This is
done by studying the motivic unipotent fundamental group of X and path
torsors over it, which are used to reduce the above assertion to an inequal-
ity between an expression involving ranks of rational K-groups of k and an
expression involving ranks of subquotients of the descending central series of
π1(X(C), x).

93



94 SUMMARY



Bibliography

[1] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux Pervers. Analyse et
topologie sur les espaces singuliers, Astérisque, vol. 100, SMF, 1982.
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