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Introduction

Let Db(X) denote the bounded derived category of coherent sheaves on a variety
X. This category is obtained by adding morphisms to the homotopic category
of bounded complexes of coherent sheaves on X, in order to ensure that any
morphism that induces an isomorphism in cohomology (i.e. quasi-isomorphism)
becomes an isomorphism.

Let α be an element in the cohomological Brauer group of X, i.e. α ∈
Br′(X) := H2(X,O∗X)tors and αijk ∈ Γ(Ui ∩ Uj ∩ Uk,O∗X) be a 2-cocycle on
an open covering {Ui}i∈I of X, that satisfy the boundary conditions and whose
image in H2(X,O∗X) is α. An α-twisted sheaf is a collection

({Fi}i∈I , {ϕij}i,j∈I)

of sheaves Fi on Ui, and isomorphisms ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj satisfying the
following conditions:

(i) ϕii = id,

(ii) ϕij = ϕ−1
ji ,

(iii) ϕjk ◦ ϕij ◦ ϕki = αijk. id.

Similarly to the definition of Db(X), we define Db(X,α) to be the bounded
derived category of α-twisted coherent sheaves on X obtained by adding mor-
phisms to the homotopic category of bounded complexes of α-twisted coherent
sheaves on X in order to ensure that any morphism that induces an isomor-
phism in cohomology becomes an isomorphism.

In [31], Mukai realized the importance of Fourier–Mukai transforms when he
proved that the Poincaré bundle over the product of an abelian variety with its
dual, A× Â, defines an equivalence of categories between the derived categories
of coherent sheaves on A and Â.

More generally, it has been observed that the universal sheaf on the product of
a variety and a fine moduli space on this variety leads to an interesting interplay
between the two derived categories. Sometimes the variety and its moduli space
are found to even have equivalent derived categories.
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This can be extended to coarse moduli spaces, as has been observed by Căldăraru.
More precisely, letX/C be a smooth projective variety and letMs denote a mod-
uli space of stable sheaves (with respect to a given polarization and with fixed
Hilbert polynomial). Then one can find an étale or an analytic covering {Ui}
of Ms with a local universal sheaf Fi over X ×C Ui together with isomorphisms
ϕij : Fi|Ui∩Uj

→ Fj |Ui∩Uj
which makes (Fi, ϕij) an π∗Msα-twisted sheaf for

α ∈ Br′(Ms). Thus, the obstruction to get a universal bundle is given by an
element in H2(Ms,O∗Ms), which motivates the study of α-twisted sheaves. The
twisted universal sheaf can be used to compare the untwisted derived category
Db(X) with the twisted category Db(Ms, α). This motivates to study, more gen-
erally, Fourier-Mukai transforms between arbitrary twisted derived categories.

Bridgeland in his thesis, showed a classification of surfaces under derived cate-
gories. Analogously, we show in Chapter 1 that some of his and other well known
results extend naturally to the derived category of twisted sheaves. First, we
show that the following result proven by Kawamata in the untwisted case also
holds in the derived category of twisted coherent sheaves. This theorem plays
an important role in the classification of varieties under derived categories of
coherent sheaves and derived categories of twisted coherent sheaves.

Theorem (Kawamata). Let X be a smooth projective surface containing a
(−1)-curve and Y a smooth projective variety and let ΦP : Db(X,α)→ Db(Y, β)
be an equivalence. Then one of the following holds

(i) X ∼= Y .

(ii) X is a relatively minimal elliptic rational surface.

In the case of surfaces of general type, i.e. of Kodaira dimension 2, we get
the following result:

Proposition. Let X be a surface of general type and Y a smooth projective
variety. If Db(X,α) ∼= Db(Y, β), then X ∼= Y .

In the case of surfaces of Kodaira dimension 1, we get the following general-
ization of a result obtained by Bridgeland for the derived category of coherent
sheaves, where we denote by M(v) the moduli space of stable sheaves E on Y
with Mukai vector v(E) = (rk(E), c1(E), c1(E)2/2− c2(E) + rk(E)) = v.

Proposition. Let π : Y → C be a relatively minimal elliptic surface with
kod(Y ) = 1 and let Φ : Db(X,α)→ Db(Y ) be an equivalence. Then there exists
a Mukai vector v = (0, rf, d) such that gcd(r, d) = 1 and X ∼= M(v).

For surfaces of Kodaira dimension kod(X) = −∞, the cohomological Brauer
group Br′(X) is trivial. Thus, the derived category of twisted coherent sheaves
does not provide anything new in this case.

In Chapter 2, we study the injectivity of the induced morphism π∗ : Br′(Y )→
Br′(X) given by the K3 cover π : X → Y of an Enriques surface Y . In order to
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do that, we use the Hochschild–Serre spectral sequence and we find an explicit
projective bundle (if possible) that represents a nontrivial class of the Brauer
group of the K3 surface X such that this projective bundle descends on the En-
riques surface to a projective bundle that does not come from a vector bundle
(i.e. it can not be written as P(E) for some rank 2 vector bundle E on Y ).

Besides, by using the results of this chapter we also describe the moduli
space of marked Enriques surfaces. Some of the results in this chapter were
also obtained independently by Beauville who also pointed out a mistake in an
earlier version. I will say more about his results in Chapter 2.

For K3 surfaces of Picard number 11 covering Enriques surfaces, Ohashi,
([36], Prop. 3.5), proved that the Néron–Severi lattice is either

(1) U(2)⊕ E8(2)⊕ 〈−2N〉, where N ≥ 2, or

(2) U ⊕ E8(2)⊕ 〈−4M〉, where M ≥ 1.

For the first possibility we show that the morphism π∗ : Br′(Y ) → Br′(X) is
injective if and only if N is an even number. Unfortunately, we could not settle
the second case.

In the last chapter we study derived equivalences of K3 surfaces of Picard num-
ber 11 that cover Enriques surfaces and derived equivalences of supersingular
surfaces. For example, in the first case, we provide an example of a twisted
K3 surface that covers an Enriques surface with no twisted FM partners, i.e. if
(Z,α) is a FM partner such that Z covers an Enriques surface, then Z ∼= X and
α = 1. In the second case, we recall that Sertöz found explicit conditions on
the entries of the intersection matrix of the transcendental lattice of a supersin-
gular K3 surface ensuring that the K3 surface covers an Enriques surface. We
study some of these cases and impose some additional conditions on the entries
of two intersection matrices (of the transcendental lattices) of two supersingu-
lar surfaces related by an equivalence of categories Φ : Db(X,α)→ Db(Z) with
ord(α) ≤ 2 and we show that this implies an isomorphism of the two K3 surfaces
X and Z.
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Chapter 1

General Results

1.1 Brauer groups

Let X be a smooth projective variety. We define the cohomological Brauer
group of X to be the torsion part of the cohomology group H2(X,O∗X) in the
analytic topology (or, in H2

et(X,O∗X) for the étale topology). We denote it
by Br′(X). Căldăraru gave in [8] the following characterization for the Brauer
group Br′(X):

Lemma 1.1.1. Let X be a smooth projective variety. Then there exists the
following exact sequence:

0→ Pic(X)⊗Q/Z→ H2(X,Q/Z)→ Br′(X)→ 0.

Example 1.1.2. Let X be a smooth projective curve. The long exact sequence
obtained from the short exponential exact sequence yields

H2(X,OX)→ H2(X,O∗X)→ H3(X,Z).

Hence the cohomological Brauer group Br′(X) is trivial because H2(X,OX) =
H3(X,Z) = 0.

For any positive integer n, consider the short exact sequence

0→ O∗X → GL(n)→ PGL(n)→ 0.

The long exact sequence associated to this short exact sequence yields

H1(X,O∗X)→ H1(X,GL(n))→ H1(X,PGL(n)) δn→ H2(X,O∗X).

An element in H1(X,PGL(n)) corresponds to a projective bundle Z → X,
which is Z = P(E) for some vector bundle E of rank n if and only if δn([Z]) =
0. Moreover, it is well known (cf. [15] Prop. 1.4) that im(δn) consists of

5
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torsion elements, i.e. im(δn) ⊆ Br′(X), because from the long exact sequences
associated to the following short exact sequences

0→ Z/nZ→ SL(n)→ PGL(n)→ 0

and
0→ O∗X → GL(n)→ PGL(n)→ 0

one concludes that the map δn factors through H2
et(X,Z/nZ), which is killed

by n.

Definition 1.1.3. The subgroup Br(X) :=
⋃
n∈N im(δn) ⊆ Br′(X) is the Brauer

group of X.

Grothendieck conjectured that the inclusion Br(X) ↪→ Br′(X) is an isomor-
phism for all smooth quasi-projective varieties. He showed the conjecture in
the case when X is an arbitrary algebraic curve or a smooth projective surface
(cf. [15]). It is also known for abelian varieties (cf. [19]), for normal separated
algebraic surfaces (cf. [39]), for smooth toric varieties (cf. [9]). Gabber proved
the conjecture for separated unions of two affine varieties (cf. [13]), and also
for schemes with an ample invertible sheaf. An alternative proof for the last is
due to De Jong who uses techniques of twisted sheaves. Now, we describe the
Brauer group in a different way. Let R be a commutative ring.

Definition 1.1.4. An Azumaya algebra A is an R-algebra which is a finitely
generated projective R-module and such that the natural homomorphism

A⊗R A◦ −→ EndR(A)
a⊗ a′ 7−→ (x 7→ axa′)

is an isomorphism, where A◦ denotes the opposite algebra, i.e. the algebra with
the multiplication reversed.

The sheafification of A, which is a sheaf of algebras A on Spec(R), is called
the sheaf of Azumaya algebras. A sheaf of algebras A on a scheme X is a
sheaf of Azumaya algebras if it is a sheaf of Azumaya algebras over each open
subset Spec(R) for some commutative ring R in an open affine cover of X. We
say that two sheaves of Azumaya algebras A and A′ on X are Morita equivalent
if there exist two vector bundles E and E′ on X such that

End(E)⊗A ∼= End(E′)⊗A′.

Remark 1.1.5. Let X be a complex variety and let Projr(X) denote the set of
isomorphism classes of holomorphic fibre bundles with fibre Pr. The composition
law on Proj(X) :=

⋃
r∈N Projr(X) is given by ⊗ and if we define the equivalence

relation on Proj(X) by

P ∼ Q if and only if P ⊗ P(E) ∼= Q⊗ P(F ), with E,F vector bundles,

we can also define the Brauer group as the quotient Br(X) = Proj(X)/ ∼. We
also call the projective bundles in Proj(X) to be Brauer–Severi varieties.
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1.2 Twisted derived categories

Definition 1.2.1. A twisted variety (X,α) consists of a variety X together
with a Brauer class α ∈ Br′(X).

If (X,α) is a twisted variety, α ∈ Br′(X) can be represented as a C̆ech
2-cocycle on an open analytic cover {Ui}i∈I of X by sections

αijk ∈ Γ(Ui ∩ Uj ∩ Uk,O∗X).

We say that F is an α-twisted quasi-coherent (coherent) sheaf if this consists
of a pair (Fi, {ϕij}i,j∈I) where Fi is a quasi-coherent (coherent) sheaf on Ui and

ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj

is an isomorphism satisfying the following conditions (i.e. the α-twisted cocycle
conditions):

(i) ϕii = id,

(ii) ϕij = ϕ−1
ji ,

(iii) ϕjk ◦ ϕij ◦ ϕki = αijk. id.

If for every i ∈ I, Fi is only a sheaf of OX -modules on Ui, we say that F is an
α-twisted sheaf and we denote by Mod(X,α) the abelian category of α-twisted
sheaves.

Lemma 1.2.2 ([8], Lemma 2.1.1). Mod(X,α) has enough injectives for all
α ∈ H2(X,O∗X).

Definition 1.2.3. The category of the α-twisted quasi-coherent (respectively
α-twisted coherent) sheaves on X will be denoted by QCoh(X,α) (respectively
Coh(X,α)).

Remark 1.2.4. If X is a smooth projective variety (defined over an arbitrary
field) and α ∈ H2

et(X,O∗X), the abelian category Coh(X,α) contains a locally
free α-twisted coherent sheaf.

Now, we recall the definition of the derived category of twisted sheaves on a
variety X. Let (X,α) be a twisted variety and let C(X,α) denote the abelian
category whose objects are complexes of sheaves in Coh(X,α)

E• := (... d
i−2

−→ E i−1 d
i−1

−→ E i di

−→ E i+1 di+1

−→ ...)

and morphisms are given by morphisms of complexes:

...
di−2
1−−−−→ E i−1 di−1

1−−−−→ E i di
1−−−−→ E i+1 di+1

1−−−−→ ...yfi−1

yfi

yfi+1

...
di−2
2−−−−→ F i−1 di−1

2−−−−→ F i di
2−−−−→ F i+1 di+1

2−−−−→ ...
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i.e. for any i ∈ Z, f i ◦ di−1
1 = di−1

2 ◦ f i−1.

We define the i-th cohomology sheaf of a complex E• to be

Hi(E•) :=
ker(di)

im(di−1)
.

This induces for a morphism of complexes f• : E• → F• a morphism of twisted
sheaves

Hi(f•) : Hi(E•)→ Hi(F•).

The homotopy category, Kom(X,α), is the category whose objects are com-
plexes of C(X,α) and morphisms are

MorKom(X,α)(E•,F•) := MorC(X,α)(E•,F•)/ ∼

where f• ∼ g• if there exists morphisms {δi : E i → F i−1}i∈Z such that

f i − gi = δi+1 ◦ diE + di−1
F ◦ δi

and we say in this case that f• and g• are homotopically equivalent. By
localizing Kom(X,α) with respect to the class Qis whose elements are the quasi-
isomorphisms (i.e. morphisms of complexes f• such that, for any i, Hi(f•) is
an isomorphism) we obtain the derived category of twisted coherent sheaves
D(X,α). There exists a functor

Q(X,α) : C(X,α)→ D(X,α)

such that

(i) Q(X,α)(quasi-isom)=isom,

(ii) for any category T and a functor F : C(X,α) → T such that F (quasi-
isom)=isom, there exists a functor R : D(X,α) → T such that F =
R ◦Q(X,α).

The subcategory of D(X,α) whose objects are complexes with finitely many
sheaves different from 0 will be called the bounded derived category of α-twisted
coherent sheaves on X and denoted by Db(X,α).

Example 1.2.5. Let (X,α) be a twisted variety. For any closed point x ∈ X,
the skyscraper sheaf Ox is in Db(X,α).

1.3 Derived functors

Let (X,α) and (Y, β) be twisted varieties. Suppose that a functor

F : Coh(X,α)→ Coh(Y, β)
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is left exact (i.e. it preserves the exactness of short exact sequences in Coh(X,α)
on the left hand side). We define the right derived functor of F if it exists to
be the functor

RF : Db(X,α)→ Db(Y, β)

which is uniquely determined (up to a unique isomorphism) by the properties:

(i) RF is exact (as a functor between triangulated categories),

(ii) there exists a morphism Q(Y,β) ◦Kom(F )→ RF ◦Q(X,α), where Kom(F )
is the functor Kom(F ) : Kom(X,α)→ Kom(Y, β) that extends F ,

(iii) if G : Db(X,α) → Db(Y, β) is an exact functor. Then any morphism
of functors Q(Y,β) ◦ Kom(F ) → G ◦ Q(X,α) factorizes over a morphism
RF → G.

Similarly, we can define the left derived functor LG : Db(X,α)→ Db(Y, β) of
a right exact functor G : Coh(X,α)→ Coh(Y, β).

Proposition 1.3.1 ([8], Theorem 2.2.6). Assume that X and Y are smooth
schemes or analytic spaces of finite dimension. Suppose moreover that f : X →
Y is a proper morphism. If α, α′ ∈ Br(X) and β ∈ Br(Y ), then the following
functors are defined:

RHom• : Db(X,α)×Db(X,α′)→ Db(X,α−1.α′),

−
L
⊗ − : Db(X,α)×Db(X,α′)→ Db(X,α.α′),

Lf∗ : Db(Y, β)→ Db(X, f∗β),

Rf∗ : Db(X, f∗β)→ Db(Y, β)

Furthermore, if X is a scheme or a compact complex analytic space, then

RHom• : Db(X,α)op ×Db(X,α)→ Db(Ab)

is also defined where Ab is the abelian category of abelian groups.

We proceed to name a few properties from ([8], Sect. 2.3). If (X,α), (Y, β), (Z, γ)
are twisted varieties and f : X → Y , g : Y → Z are proper morphisms. Then
there exists the following (natural) isomorphisms of functors:

• R(g∗ ◦ f∗) ∼= Rg∗ ◦Rf∗ as functors from D(X, f∗(g∗(γ))) to D(Z, γ),

• L(f∗ ◦ g∗) ∼= Lf∗ ◦ Lg∗ as functors from D−(Z, γ) to D−(X, f∗g∗γ),

• RHom•(F ,G) ∼= RΓ(X,RHom•(F ,G)), F ,G ∈ Db(X,α),

• Rf∗RHom•(F ,G) ∼= RHom•(Rf∗(F), Rf∗(G)), for F ∈ D−(X, f∗α) and
G ∈ D−(X, f∗α′),
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• (Projection Formula) Rf∗(F)
L
⊗ G ∼= Rf∗(F

L
⊗ Lf∗(G)), for any F ∈

D−(X, f∗α) and G ∈ D−(Y, β),

• RHom•(Lf∗(F),G) ∼= RHom•(F , Rf∗(G)), for F ∈ D−(Y, β) and G ∈
D−(Y, f∗β′),

• Lf∗(F
L
⊗ G) ∼= Lf∗(F)

L
⊗ Lf∗(G), for any F ∈ D−(X,α) and G ∈

D−(X,α′),

• F
L
⊗ G ∼= G

L
⊗ F and F

L
⊗ (G

L
⊗ H) ∼= (F

L
⊗ G)

L
⊗ H, for any F ∈

D−(X,α), G ∈ D−(X,α′) and H ∈ D−(X,α′′),

• RHom•(F ,G)
L
⊗ H ∼= RHom•(F ,G

L
⊗ H), for any F ∈ D−(X,α), G ∈

D+(X,α′) and H ∈ D(X,α′′),

• RHom•(F , RHom•(G,H)) ∼= RHom•(F
L
⊗ G,H), for F ∈ D−(X,α),G ∈

D−(X,α′) and H ∈ D+(X,α′′),

• RHom•(F ,G
L
⊗ H) ∼= RHom•(F

L
⊗ H∨,G), for F ∈ D−(X,α′) and G ∈

D+(X,α′) and for a bounded α-complex H where H∨ := RHom(H,OX).

And, finally we recall the Flat Base Change Theorem for the derived cate-
gory of twisted sheaves, i.e if u : Y ′ → Y is a flat morphism in the following
commutative diagram

X ×Y Y ′
v−−−−→ Xyg yf

Y ′
u−−−−→ Y,

then there exists a functorial isomorphism

u∗Rf∗(F) ∼= Rg∗v
∗(F),

for any F ∈ D(X, f∗β).

Theorem 1.3.2 ([8], Theorem 2.4.1). Let f : X → Y be a proper smooth
morphism of relative dimension n between smooth schemes or between smooth
analytic spaces, and let α ∈ Br(Y ). Define f ! : Db(Y, α)→ Db(X, f∗α) by

f !(−) = Lf∗(−)⊗OX
ωX/Y [n]

where ωX/Y = ∧nΩX/Y and ΩX/Y is the locally free (cf. [18], III. 10.0.2) sheaf
of relative differentials. Then for any G• ∈ Db(Y, α) there is a natural homo-
morphism

Rf∗f
!G• → G•,



11

which induces a natural homomorphism

Rf∗RHom•(F •, f !G•)→ RHom•(Rf∗F •, G•)

for every F • ∈ Db(X, f∗α), which is an isomorphism.

Corollary 1.3.3. Under the conditions of the previous theorem, f ! is a right
adjoint to Rf∗ as functors between Db(X, f∗α) and Db(Y, α).

1.4 Spectral sequences

Theorem 1.4.1 ([28], App. C). Let A,B be abelian categories, and let F :
A → B be an additive, left exact functor. Assume that A has enough injectives,
so that the derived functor

RF : D+(A)→ D+(B)

exists. Let X• be a complex in D+(A). Then there exists a spectral sequence
Ei,jk such that

Ei,j2 = RiF (Hj(X•))⇒ Hi+j(RF (X•))

We recall some spectral sequences defined in the derived category Db(X) on
a smooth variety X (cf. [21], Ch. II and III).

Ep,q2 = Extp(F•,Hq(E•))⇒ Extp+q(F•, E•). (1.1)

Ep,q2 = Extp(H−q(F•), E•)⇒ Extp+q(F•, E•). (1.2)

Ep,q2 = T or−p(Hq(F•), E•)⇒ T or−(p+q)(F•, E•). (1.3)

for any E•,F• in Db(X).

We see now some applications of this spectral sequences in twisted derived cat-
egories. Let (X,α) be a smooth variety and P ∈ Db(X,α). We use the spectral
sequence (1.2) to show that the support of the object P remains the same under
taking its dual. Take a locally free α−1-twisted sheaf L on X and consider the
spectral sequence:

Extp(H−q(P ⊗ L),OX)⇒ Extp+q(P ⊗ L,OX) = Hp+q(P∨ ⊗ L∨).

Hence

supp(P∨⊗L∨) =
⋃

supp(Hi(P∨⊗L∨)) ⊆
⋃

supp(Hi(P⊗L)) = supp(P⊗L).

Since L is a locally free α−1-twisted sheaf,

supp(P∨) = supp(P∨ ⊗ L∨) ⊆ supp(P ⊗ L) = supp(P)
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and from (P∨)∨ ∼= P, we get the other inclusion. Thus

supp(P) = supp(P∨).

Let A be a k-linear category. A Serre functor is a k-linear equivalence S :
A → A such that for any two objects A,B ∈ A there exists an isomorphism

ηA,B : Hom(A,B) ∼−→ Hom(B,S(A))∨

of k-vector spaces which is functorial in A and B.

Example 1.4.2. Let X be a smooth projective variety. The functor

S : Db(X)→ Db(X)
E 7→ E ⊗ ωX [dim(X)]

where ωX is the dualizing sheaf of X, is a Serre functor.

Example 1.4.3. If (X,α) is a twisted smooth projective variety, the functor

S(X,α) : Db(X,α)→ Db(X,α)
E 7→ E ⊗ ωX [dim(X)],

is a Serre functor. Indeed, if F ,G ∈ Db(X,α),

HomDb(X,α)(F , S(X,α)G) = HomDb(x,α)(F ,G ⊗ ωX [dim(X)])
∼= HomDb(X)(G∨ ⊗F , ωX [dim(X)])
∼= HomDb(X)(ωX [dim(X)], S(G∨ ⊗F))∨

∼= HomDb(X)(ωX [dim(X)],G∨ ⊗F ⊗ ωX [dim(X)])∨

∼= HomDb(X,α)(G,F)∨

because G∨ ⊗F ∈ Db(X) and by the previous example, S is a Serre functor.

Definition 1.4.4. A collection of objects Ω in the category Db(X,α) is a span-
ning class of (or spans) Db(X,α) if for all G ∈ Db(X,α) the following equivalent
conditions hold:

(i) If Hom(F,G[i]) = 0 for all F ∈ Ω and all i ∈ Z then G ∼= 0.

(ii) If Hom(G[i], F ) = 0 for all F ∈ Ω and all i ∈ Z then G ∼= 0.

The equivalence in the last definition follows immediately by using the Serre
functor S(X,α). The proof of the following proposition is identical as in the
untwisted case (cf. [21], Prop. 3.16).

Proposition 1.4.5. Let (X,α) be a twisted smooth projective variety. The
objects of the form k(x) with x ∈ X a closed point span the derived category
Db(X,α).
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Proof. We show that for a given E• ∈ Db(X,α) there exists a point x ∈ X and
an integer n such that Hom(E•, k(x)[n]) 6= 0. Consider the spectral sequence

Ep,q2 := Hom(H−q(E• ⊗ L), k(x)[p])⇒ Hom(E• ⊗ L, k(x)[p+ q]),

where L is a locally free α−1-twisted sheaf. Let m be the maximal integer
with Hm(E• ⊗ L) 6= 0. This implies that the differentials with source E0,−m

2

are trivial. On the other hand, from the triviality of the negative Ext-groups
between coherent sheaves we obtain the triviality of all the differentials with
target E0,−m

r . Thus, E0,−m
∞ = E0,−m

2 . Hence if x ∈ supp(E• ⊗ L) = supp(E•),
then E0,−m

∞ = E0,−m
2 = Hom(Hm(E• ⊗ L), k(x)) 6= 0 and hence

Hom(E•, k(x)⊕n[−m]) = Hom(E•, k(x)⊗L∨[−m]) = Hom(E•⊗L, k(x)[−m]) 6= 0,

where n := rk(L). Thus Hom(E•, k(x)) 6= 0.

Lemma 1.4.6. Let π : S → T be a morphism of schemes, and for each point
t ∈ T , let it : St → S denote the inclusion of the fibre π−1(t) in S. Let E be an
object of Db(S, α) such that for all t ∈ T , Li∗t (E) is a twisted sheaf on St. Then
E is a twisted sheaf on S, flat over T . (See [21], Lemma 3.31)

Proof. Let t ∈ T and consider the spectral sequence

Ep,q2 = L−pi
∗
t (Hq(E))⇒ L−(p+q)i

∗
t (E).

Since Li∗t (E) is a twisted sheaf, the right-hand side is zero unless p + q = 0.
Take q0 the largest q such that Hq(E) 6= 0, then since E0,q0

2 does not vanish in
the spectral sequence we get q0 = 0. We get also the same if we replace E by
E ⊗ F where F is a locally free α−1-twisted sheaf. Hence since E−1,0

2 survives
in the spectral sequence then the sheaf H0(E ⊗ F ) is a flat sheaf over T . From
the flatness we also deduce that Ep,02 are trivial for p < 0. Then E ⊗ F is a
sheaf and flat over T . Hence E is also a sheaf. If E = (Ei, ϕij) then Ei is flat
because the term E−1,0

2 vanishes for the spectral sequence applied to the sheaf
Ei. Hence E is flat over T .

The last lemma has a useful application. Suppose ΦP : Db(X,α)→ Db(Y, β)
is a FM equivalence (See Def. 1.6.5) such that for all x ∈ X there exists f(x) ∈ Y
with ΦP(k(x)) = k(f(x)). Hence

P|{x}×Y ∼= k(f(x)) (1.4)

for all x ∈ X and then by the previous lemma P is a twisted sheaf (which is
X-flat). By taking local sections of P we define a morphism X → Y and by
the isomorphism 1.4, we get that this induces f on closed points. We call this
morphism again f . By following the same argument given in ([21], Cor. 5.23),
we obtain

ΦP(−) = (L⊗ (−)) ◦ f∗ (1.5)

where L is a line bundle and that f is an isomorphism because ΦP is an equiv-
alence.
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1.5 Moduli spaces of sheaves

In this section we recall basic facts about moduli spaces of sheaves and Mukai’s
theory of fine moduli spaces of sheaves on K3 surfaces. A good reference con-
cerning moduli spaces is [22].

1.5.1 Basic facts about moduli spaces

Let X be a projective scheme. If O(1) is an ample line bundle and E is a
coherent sheaf on X, then the Hilbert polynomial of E is defined by

P (E ,m) := χ(E ⊗ O(m)).

We recall that the dimension of a coherent sheaf E on a projective scheme
X is the dimension of the support of E , and we denoted it by dim(E). We
say that a coherent sheaf E is pure of dimension d if for every subsheaf F ,
d = dim(E) = dim(F). It is well known that the Hilbert polynomial can be
written as

P (E ,m) =
dim(E)∑
i=0

αi(E)
mi

i!

where αi(E) is an integer, for any i ∈ {0, ...,dim(E)}. We define the rank of a
coherent sheaf E of dimension d = dimX to be the number

rk(E) :=
αd(E)
αd(OX)

.

The reduced Hilbert polynomial of a coherent sheaf E of dimension d is defined
by

p(E ,m) :=
P (E ,m)
αd(E)

.

We consider the natural order on the ring Q[x] of polynomials with rational
coefficients given by: if f and g are polynomials, we write f ≤ g if f(m) ≤ g(m),
for m� 0 and f < g if f(m) < g(m), for m� 0. Under this order we introduce
the concept of stability.

Definition 1.5.1. A coherent sheaf E of dimension d is semistable if it is pure,
and for any subsheaf F ⊂ E, p(F) ≤ p(E). We say that the sheaf E is stable if
the strict inequality holds.

We proceed now to introduce the moduli functor. Let (X,OX(1)) be a
polarized projective scheme and P be a fixed polynomial in Q[x]. We define the
category (Sch /k)op as the opposite category of the category of schemes over a
field k and Sets the category of sets. Take the functor

M′ : (Sch /k)op → Sets

such that for any k-scheme S,M′(S) is the set of isomorphism classes of coherent
sheaves on X × S so that
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(1) they have Hilbert polynomial P ,

(2) they are semistable on the fibres of X × S → S,

(3) they are flat over S with respect to the projection p : X × S → S,

and if f : S′ → S is morphism in (Sch /k),M′(f) is defined to be the map

M′(f) :M′(S)→M′(S′) (1.6)
F 7→ [f∗XF ] (1.7)

where fX := idX ×f . For any line bundle L on S and family F ∈ M′(S), the
family F ⊗ p∗L is also a family inM′(S) with fibres

(F ⊗ p∗L)s = Fs ⊗k(s) L(s) ∼= Fs
for any s ∈ S and p : X × S → S the projection. Thus, we can define an
equivalence relation by

F ∼ G for F ,G ∈ M′(S) if and only if F ∼= G ⊗ p∗L for some L ∈ Pic(S).

Now, we define the quotient functor by

M =M′/ ∼ .

Definition 1.5.2. A functor F : (Sch /k)op → Sets is representable if there
exists a scheme M and a natural isomorphism of functors F ∼= Hom(−,M).
We say that a scheme M corepresents the functor F if there exists a mor-
phism of functors ψ : F → Hom(−,M) such that for every morphism ϕ : F →
Hom(−, N) uniquely factorizes over a morphism α : Hom(−,M)→ Hom(−, N)
induced by a morphism of schemes M → N .

Definition 1.5.3. (i) A scheme M is called a (coarse) moduli space of
semistable sheaves if it corepresents the functor M,

(ii) If the functor M is representable by a scheme M , we say that M is the
fine moduli space associated to M.

Analogously, one defines the moduli functor of semistable sheaves for a family
X → S.

Proposition 1.5.4 ([8], Prop. 3.3.2). Let X/S be a flat, projective morphism,
and let O(1) be a relatively ample sheaf on X/S. For a polynomial P , consider
the relative moduli space Ms/S of stable sheaves with Hilbert polynomial P on
the fibres of X/S. Then there exists a covering {Ui} of Ms (by analytic open
sets in the analytic setting, and by étale open sets in the algebraic setting) such
that on each X ×S Ui there exists a local universal sheaf Ui. Furthermore, there
exists an α ∈ H2(Ms,O∗Ms) (that only depends on X/S, O(1) and P ) and
isomorphisms ϕij : Ui|Ui∩Uj

→ Uj |Ui∩Uj
that make ({Ui, {ϕij}}) into a α-sheaf

called the universal α-sheaf.

Definition 1.5.5. The element α ∈ H2(Ms,O∗Ms) described above is called the
obstruction to the existence of a universal sheaf on X×SM , and is denoted
by Obs(X/S, P ).
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1.5.2 Moduli spaces on K3 surfaces

The results presented in this section are due to Mukai (cf. [32]). Let X be a K3
surface. The weight two Hodge structure of H∗(X,Z) is defined by

H̃2,0(X) := H2,0(X),

H̃0,2(X) := H0,2(X),

H̃1,1(X) := H0(X,C)⊕H1,1(X)⊕H4(X,C).

If E is a locally free sheaf onX with rank r := rk(E), first Chern class c1 := c1(E)
and second Chern class c2 := c2(E), the Mukai vector is defined by

v(E) := ch(E).
√
tdX = (r, c1, c21/2− c2 + r)

and the Euler characteristic of a pair (E ,F) of coherent sheaves by

χ(E ,F) :=
∑
i

(−1)i dim Exti(E ,F).

If (.) is the cup product, we define the Mukai pairing on H∗(X,Z) to be the
bilinear form

〈α, β〉 := −(α1.β3) + (α2.β2)− (α3.β1),

for any element α = (α1, α2, α3) and β = (β1, β2, β3) in H∗(X,Z).

Proposition 1.5.6. Let E and F be two locally free sheaves on a K3 surface.
Then χ(E ,F) = −〈v(E), v(F )〉.

Definition 1.5.7. Let X be a K3 surface and let v = (r, h, s) ∈ H̃(X,Z) be a
fixed Mukai vector.

(i) We denote by M(v) the moduli space of semistable sheaves E on X such
that rk(E) = r, c1(E) = h and c1(E)2/2− c2(E) + rk(E) = s.

(ii) We denote by M(v)s the subscheme corresponding to stable sheaves.

Definition 1.5.8. We say that a Mukai vector v on an K3 surface X is isotropic
if 〈v, v〉 = 0.

Theorem 1.5.9. Let X be a K3 surface with an ample line bundle H and let
v = (r, h, s) be a primitive, isotropic Mukai vector such that gcd(r, h.H, s) = 1.
Then M(v)s is a fine moduli space of sheaves which are stable sheaves with
respect to H. Furthermore M(v)s is a K3 surface.

Let v = (r, h, s) be an isotropic Mukai vector and assume M(v) = M(v)s

non-empty, i.e. M(v)s is smooth and irreducible. Let E be a quasi-universal
family on X ×M(v) and p, q the natural projections

X ×M(v)
p−−−−→ M(v).yq

X
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The sheaf E induces a morphism fE : H̃(M(v),Q)→ H̃(X,Q) defined by

c 7−→ q∗(v(E).p∗(c)).

Theorem 1.5.10 ([32], Theorem 4.9.). Let X be a K3 surface and let v =
(r, h, s) be an isotropic Mukai vector. Assume that M(v) = M(v)s is non-empty
and that M(v) is fine. Let E be a universal family on X×M(v). Then fE induces
a Hodge isometry of the Mukai lattices H̃(X,Z) and H̃(M(v),Z).

We can see that f−1
E induces a morphism

ϕQ : (v⊥ ⊗Q)/Qv → H2(M(v),Q). (1.8)

Theorem 1.5.11 ([32], Theorem 1.5.). Let X be a K3 surface and v =
(r, h, s) an isotropic Mukai vector such that M(v) = M(v)s is non-empty and
M(v) is fine. Let E be a universal family on X ×M(v) and ϕQ as in (1.8).
Then

(i) ϕQ does not depend on the choice of the universal family E,

(ii) ϕQ is an isomorphism of Hodge structures compatible with the pairing

(iii) ϕQ is defined over Z, i.e. ϕQ : v⊥/Zv → H2(M(v),Z) is an isometry.

1.6 Ample (antiample) canonical bundle

For the rest of the chapter we consider all the varieties to be smooth and pro-
jective.

Definition 1.6.1. An object P ∈ Db(X,α) is called a point of codimension d if

(i) S(X,α)(P ) ∼= P [d], (where S(X,α) is the Serre functor).

(ii) Hom(P, P [i]) = 0 for i < 0.

(iii) The object P is simple, i.e. k := Hom(P, P ).

We follow the untwisted proofs of the next two lemmas in order to get a
twisted version of them (cf. [21], Lemma 4.5 and Prop. 4.6, and the original
proof in [3]).

Lemma 1.6.2. Let F• ∈ Db(X,α) be a simple complex concentrated in dimen-
sion 0 such that Hom(F•,F•[i]) = 0 for i < 0. Then F• ∼= k(x)[m] for some
closed point x ∈ X and integer m.

Lemma 1.6.3. Let X be a smooth projective variety of dimension n. If ωX is
ample or antiample, then the point like objects in Db(X,α) are the objects P
isomorphic to k(x)[m], where x ∈ X is a closed point and m ∈ Z.
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Proof. It can be easily seen that the objects of the form k(x)[m] are point like
objects in Db(X,α). Now, we show that all point like objects are of this form.
Take P ∈ Db(X,α) a point like object. By (i) in Definition 1.6.1

Hi(P ⊗ ωX [n− d]) ∼= Hi(P ).

Thus
Hi+n−d(P ⊗ ωX) ∼= Hi(P ),

i.e.
Hi+n−d(P )⊗ ωX ∼= Hi(P ). (1.9)

If n > d, then we take the maximal integer i between all the indices of the
non-vanishing cohomologies Hi. This yields to a contradiction by using (1.9).
On the other hand, if n < d, we take i to be minimal, and (1.9) also yields to a
contradiction. Thus, n = d and hence

Hi(P )⊗ ωX ∼= Hi(P ) (1.10)

Now, we show that this isomorphism implies that Hi(P ) is supported in dimen-
sion 0. Recall that the Hilbert polynomial

PF (k) = χ(F ⊗ ωkX)

has degree
deg(PF ) = dim(suppF)

when ωX (or ω∨X) is ample and F is any coherent sheaf. Let E ∈ Coh(X,α−1)
be a locally free α−1-twisted sheaf and denote by F i := Hi(P)⊗ E . Hence

F i ⊗ ωX ∼= F i (1.11)

and F i is a coherent sheaf on X. If n = dim(supp(F i)) > 0, we deduce from the
isomorphism (1.11) that for all k, PFi(k) is a fixed number, i.e. the polynomial
PFi is a constant polynomial, a contradiction. Then F i is supported in dimen-
sion 0, and since E is locally free, Hi(P ) has also support of dimension 0. Thus,
P is a complex concentrated in dimension 0 and by Lemma 1.6.2, P ∼= k(x)[m]
for some closed point x and integer m.

Definition 1.6.4. Let D be a triangulated category with a Serre functor S. An
object L ∈ D is invertible if for any point like object P ∈ D there exists nP ∈ Z
such that

Hom(L,P [i]) =

{
k(P ), if i = nP

0, otherwise.

Definition 1.6.5. Let (X,α) and (Y, β) be two twisted varieties. A functor
F : Db(X,α)→ Db(Y, β) is of Fourier–Mukai type (or a Fourier–Mukai functor)
if there exists P ∈ Db(X×Y, α−1 �β) and an isomorphism of functors F ∼= ΦP ,
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where we denote by p : X ×Y → Y and q : X ×Y → X the natural projections,
ΦP : Db(X,α)→ Db(Y, β) is the exact functor defined by

ΦP := Rp∗(P
L
⊗ q∗(−)).

If the Fourier–Mukai functor is an equivalence we will call it a Fourier–Mukai
transform.

From now, we will often write a functor and its derived functor in the same
way.

In the category of twisted coherent sheaves Canonaco and Stellari proved in
[6] that every equivalence can be seen as a Fourier–Mukai transform. In fact,
they showed the following more general statement:

Theorem 1.6.6. Let (X,α) and (Y, β) be twisted varieties and let F : Db(X,α)→
Db(Y, β) be an exact functor such that, for any F ,G ∈ Coh(X,α),

HomDb(Y,β)(F (F), F (G)[j]) = 0 if j < 0.

Then there exist P ∈ Db(X × Y, α−1 � β) and an isomorphism of functors
F ∼= ΦP . Moreover, P is uniquely determined up to isomorphism.

By this theorem, we focus only on Fourier–Mukai transforms. If we take any
exact functor

ΦP : Db(X,α)→ Db(Y, β),

then by an application of the Grothendieck–Verdier duality (cf. Theorem 1.3.2)
as was given by Mukai (a good exposition by Orlov is found in [37]) we can
prove that the functor ΦP has a left and a right adjoint functor with kernels

PL := P∨ ⊗ p∗ωY [dim(Y )]

and
PR := P∨ ⊗ q∗ωX [dim(X)]

respectively. In particular, if ΦP is an equivalence, these adjoints must be
quasi-inverses to ΦP . However, from the uniqueness of the kernel of a twisted
Fourier–Mukai transform we conclude that PL is isomorphic to PR and then

P∨ ∼= P∨ ⊗ (p∗ωY ⊗ q∗ω∨X [dim(X)− dim(Y )]).

This isomorphism implies: dim(X) = dim(Y ).
Remark 1.6.7. If ΦP : Db(X,α)→ Db(Y, β) is an equivalence, the isomorphism
PL ∼= PR and projection formula imply that for any point x ∈ X,

ΦP(k(x)) = p∗(P ⊗ q∗k(x))
= p∗(P ⊗ q∗k(x)⊗ q∗ωX)
= p∗(P ⊗ p∗ωY ⊗ q∗k(x))
= ωY ⊗ p∗(P ⊗ q∗k(x))
= ωY ⊗ ΦP(k(x)).
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Let X,Y and Z be three smooth varieties. Define the projections πXZ , πXY
and πY Z from X × Y × Z to X × Z, X × Y and Y × Z respectively. Let
P ∈ Db(X×Y, q∗(α)−1.p∗(β)) and Q ∈ Db(Y ×Z, u∗(β)−1.t∗(γ)) where q, p and
u, t are the natural projections:

X × Y p−−−−→ Y,

q

y
X

Y × Z t−−−−→ Z.

u

y
Y

We define the object

R := πXZ∗(π∗XY P ⊗ π∗Y ZQ),

and let us show that this element is in Db(X ×Z, s∗(α)−1.r∗(γ)) where r and s
denote the projections from X×Z to Z and X respectively. Let πX , πY and πZ
denote the projections from X × Y ×Z to X,Y and Z respectively. The object
π∗XY (P)⊗ π∗Y Z(Q) is in

Db(X × Y × Z, π∗XY (q∗(α)−1.p∗(β)).π∗Y Z(u∗(β)−1.t∗(γ)))
∼= Db(X × Y × Z, π∗X(α)−1.π∗Y (β).π∗Y (β)−1.π∗Z(γ))
∼= Db(X × Y × Z, π∗X(α)−1.π∗Z(γ))
∼= Db(X × Y × Z, π∗XZ(s∗(α)−1).π∗XZ(r∗(γ)))
∼= Db(X × Y × Z, π∗XZ(s∗(α)−1.r∗(γ))).

Hence

R = πXZ∗(π∗XY (P)⊗ π∗Y Z(Q)) ∈ Db(X × Z, s∗(α)−1.r∗(γ)).

We note that the following twisted version of a result of Mukai holds by just
following his proof.

Proposition 1.6.8 (Mukai, [31]). The composition of two Fourier–Mukai
transforms

Db(X,α) ΦP−→ Db(Y, β)
ΦQ−→ Db(Z, γ)

is isomorphic to the Fourier–Mukai transform

ΦR : Db(X,α)→ Db(Z, γ).

We follow only a part of the proof given in ([21], Prop. 4.11) of the untwisted
version of the next proposition originally proved by Bondal and Orlov in [3].

Proposition 1.6.9. Let X be a smooth projective variety with ample (or an-
tiample) canonical bundle. If there exists an exact equivalence F : Db(X,α) ∼→
Db(Y, β) with Y a smooth projective variety, then there exists an isomorphism
f : X ∼→ Y with f∗(β) = α.
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Proof. First, note that from the definition of point like objects there exists a
bijection between the set of point like objects in Db(X,α) and the point like
objects in Db(Y, β). Since we have

{points like objects in Db(X,α)} = {k(x)[m]|x ∈ X closed and m ∈ Z}

and

{k(y)[m] | y ∈ Y closed and m ∈ Z} ↪→ {point like objects in Db(Y, β)}

we conclude that F (k(x)[n]) is a point like object but we still do not know
whether it is of the form k(y)[m] for some closed point y ∈ Y and m ∈ Z.

Claim Every point like object in Db(Y, β) is of the form k(y)[m] for some closed
point y ∈ Y and m ∈ Z.

Proof. Suppose not and let P be a point like object not isomorphic to any
k(y)[m]. We know that for every y ∈ Y there exists xy ∈ X and my ∈ Z such
that

F (k(xy)[my]) = k(y).

From the bijection between point like objects in Db(X,α) and in Db(Y, β), we
find xP ∈ X,mP ∈ Z such that xP 6= xy for all y ∈ Y and

F (k(xP )[mP ]) = P.

Then,

Hom(k(y)[n], P ) = Hom(F (k(xy)[my])[n], F (k(xP )[mP ]))
= Hom(k(xy)[my + n], k(xP )[mP ])
= Hom(k(xy), k(xP )[mP −my − n])
= 0

for all y. Hence, since by Prop. 1.4.5 the set

{k(y)[n] | y ∈ Y closed, n ∈ Z}

span the category Db(Y, β), we conclude P = 0.

Thus, for every x ∈ X there exists yx ∈ Y and mx ∈ Z such that F (k(x)) =
k(yx)[mx]. Besides, for every x ∈ X there exists Vx a neighborhood of x such
that for every z ∈ Vx, F (k(z)) = k(yz)[mx] and we can conclude that mx = mz

for all z ∈ X. Therefore we can assume that F (k(x)) = k(yx) for all x in
X and so F defines a bijection f : X → Y by x 7→ yx. Since F ∼= ΦP , we
have P|{x}×Y ∼= k(yx) and from this we can assume that f is a morphism (cf.
commentary after Lemma 1.4.6). Since F is an equivalence, we conclude that
f is injective. The surjectivity of the map was shown above. By using F−1 we
also show that f−1 is a morphism. On the other hand, P is a sheaf supported on
the graph of f and the second projection gives an isomorphism supp(P) ∼= Y .
Then if we consider P as a sheaf over its support, we can consider it as a twisted
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sheaf over Y . Besides, we also know that it is a twisted sheaf of constant fibre
dimension 1, i.e. an untwisted line bundle L over Y . Then F ∼= L⊗ f∗(−) (up
to shift). Therefore, f is an isomorphism with f∗(β) = α.

Let (X,α) be a twisted variety and let F be an α-twisted coherent sheaf.
We proceed to define the exterior algebra

∧
F . By definition F = (Fi, ϕij)i,j∈I

where Fi is a coherent sheaf on an element Ui of an open covering {Ui}i∈I of
X and

ϕij : Fi|Ui∩Uj
→ Fj |Ui∩Uj

are morphisms that satisfies the α-twisted cocycle conditions. We define the
exterior algebras as usual for any coherent sheaf Fi and we need only to check
that the resulting transition maps satisfies the cocycle conditions. But this
follows inmediately and it shows that for any r ∈ N,

∧r F is a αr-twisted sheaf.
In particular, if F is a locally free α-twisted sheaf of rank r, the maximal exterior
power of F ,

∧r F , is a line bundle called the determinant bundle of F and we
denote it by det(F). Now, we follow the proofs of the untwisted version of the
following three lemmas and the corresponding corollary to get a twisted version
of them (cf. [21]).

Lemma 1.6.10. Let Z be a normal variety and F ∈ Coh(Z,α). If L1 and L2

are two line bundles with F ⊗L1
∼= F ⊗L2, then Lr1 ∼= Lr2 where r is the generic

rank of F .

Proof. By definition F = (Fi, ϕij)i,j∈I , where Fi is coherent sheaf on an open
set Ui of an open covering {Ui}i∈I of X. Let f = {fi}i∈I be the isomorphism
f : F ⊗ L1

∼= F ⊗ L2 given in the statement, i.e.

fi : Fi ⊗ L1
∼= Fi ⊗ L2

is an isomorphism for every i ∈ I such that the following diagram commutes

-

6 6

-

(Fj ⊗ L1)|Ui∩Uj

(Fi ⊗ L1)|Ui∩Uj

(Fj ⊗ L2)|Ui∩Uj

(Fi ⊗ L2)|Ui∩Uj

ϕ2
ijϕ1

ij

fj |Ui∩Uj

fi|Ui∩Uj

where ϕkij are defined by ϕij ⊗ id, k = 1, 2. First, let us suppose that F is a
locally free α-twisted sheaf of rank r. The last diagram induces the following
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commutative diagram

-

6 6

-

(det(Fj)⊗ Lr1)|Ui∩Uj

(det(Fi)⊗ Lr1)|Ui∩Uj

(det(Fj)⊗ Lr2)|Ui∩Uj

(det(Fi)⊗ Lr2)|Ui∩Uj

ϕ̃2
ijϕ̃1

ij

f̃j

f̃i

Hence det(F)⊗ Lr1 ∼= det(F)⊗ Lr2 and so Lr1 ∼= Lr2.

In general, let F be an α-twisted coherent sheaf. Dividing by the torsion part,
we can assume that F is torsion free. Since Z is normal, F is a locally free
α-twisted sheaf on an open set U with codim(Z − U) ≥ 2. Therefore by the
argument given above we have that Lr1|U ∼= Lr2|U . Then it defines a trivializ-
ing section s ∈ H0(U,Lr1 ⊗ L−r2 ) which can be extended to another trivializing
section s̃ ∈ H0(Z,Lr1 ⊗ L−r2 ) and it defines an isomorphism Lr1

∼= Lr2.

Lemma 1.6.11. If ΦP : Db(X,α) → Db(Y, β) is an equivalence, then the pro-
jection q : supp(P) � X is surjective.

Proof. Let L be a locally free q∗(α).p∗(β)−1-twisted sheaf. Suppose that q is not
surjective, i.e. there exists a point x ∈ X \ q(supp(P)). Consider the spectral
sequence

Ep,q2 = T or−p(Hq(P ⊗ L), q∗k(x))⇒ T or−(p+q)(P ⊗ L, q∗k(x)).

Since Hq(P ⊗ L) is a (untwisted) coherent sheaf, T or−p(P ⊗ L, q∗k(x)) = 0
because Hq(P ⊗ L) and q∗k(x) have disjoint support. Hence from the spectral
sequence P⊗q∗k(x) is trivial. This implies that ΦP(k(x)) ∼= 0. This contradicts
the fact that ΦP is an equivalence.

Remark 1.6.12. Since the support of a complex does not change when we take
tensor product with a line bundle, one has

supp(P) = supp(P∨) = supp(PR) = supp(PL).

Thus, we also deduce from the equivalence that p : supp(P ) � Y is surjective.
Hence, there exist two irreducible components Z1 ⊂ supp(Hi(P)) and Z2 ⊂
supp(Hj(P)) that project onto X and Y respectively. Note that the components
could be different.

Lemma 1.6.13. Let ΦP : Db(X,α) → Db(Y, β) be an equivalence and let Z ⊆
supp(P) be a closed irreducible subvariety with normalization ν : Z̃ → Z. Then
there exists an integer r > 0 such that

π∗Xω
r
X
∼= π∗Y ω

r
Y

where πX := q ◦ ν and πY := p ◦ ν.
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Proof. Let Z ⊆ supp(P) be a closed irreducible subvariety and let ν : Z̃ → Z
be its normalization. Then there exists an integer i such that Z ⊆ supp(Hi)
where Hi := Hi(P) is the i-th cohomology of P. We will apply Lemma 1.6.10
to the coherent sheaf ν∗Hi on Z̃. Since ΦP is an equivalence,

P ⊗ q∗ωX ∼= P ⊗ p∗ωY ,

and by taking cohomology on both sides yields

Hi ⊗ q∗ωX ∼= Hi ⊗ p∗ωY

and by taking the pullback of ν we get

ν∗(Hi)⊗ π∗XωX ∼= ν∗(Hi)⊗ π∗Y ωY .

Thus we can conclude that there exists r > 0 such that π∗Xω
r
X
∼= π∗Y ω

r
Y .

Corollary 1.6.14. Let ΦP : Db(X,α) → Db(Y, β) be an equivalence and let
Z ⊂ supp(P) be a closed subvariety such that ωX (or ω∨X) restricted to the
image of q : Z → X is ample. Then p : Z → Y is a finite morphism.

Proof. Suppose that p : Z → Y is not finite, i.e. there exists an irreducible curve
i : C ↪→ Z such that p ◦ i : C → Y is constant. Thus, i∗p∗ωY is a numerically
trivial line bundle on C. By Lemma 1.6.13, i∗q∗ωX is also numerically trivial.
On the other hand, ωX (or ω∨X) is ample on q(Z) and so on q(i(C)) because q ◦ i
is non-trivial.

The following result is the twisted version of a result of Orlov (cf. [37]). We
follow the proof given in ([21], Prop. 6.1).

Theorem 1.6.15. Let X and Y be two projective varieties with α ∈ Br′(X)
and β ∈ Br′(Y ). Any equivalence of categories F : Db(X,α) ∼→ Db(Y, β) implies
an isomorphism of the canonical rings R(X) ∼= R(Y ).

Proof. Let d be the diagonal morphism d : X ↪→ X × X. Then d∗OX can be
regarded as a α � α−1-twisted sheaf. Denote O∆ := d∗OX , which viewed as a
Fourier–Mukai kernel induces the identity id : Db(X,α)→ Db(X,α).

The equivalence F is given by a Fourier–Mukai transform

ΦP : Db(X,α)→ Db(Y, β)

with P ∈ Db(X × Y, α−1 � β). Then the Fourier–Mukai transform

ΦQ : Db(X,α−1)→ Db(Y, β−1)

with

Q := P∨ ⊗ q∗ωX [n] ∼= P∨ ⊗ p∗ωY [n] ∈ Db(Y ×X,β−1 � α)
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is also an equivalence. Indeed, since the composition

Db(X,α) ΦP−→ Db(Y, β)
ΦQ−→ Db(X,α)

is isomorphic to the identity, and the kernel of this composition is given by
R = π13∗(π∗12P ⊗ π∗23Q), one has R ∼= O∆ ∈ Db(X ×X,α−1 �α). Consider the
automorphism τ12 : X ×X → X ×X that interchanges the two factors,

O∆
∼= τ∗12O∆

∼= τ∗12R ∼= π13∗τ
∗
13(π

∗
12P ⊗ π∗23Q) ∼= π13∗(π∗12Q⊗ π∗23P).

Thus the composition of

Db(X,α−1)
ΦQ−→ Db(Y, β−1) ΦP−→ Db(X,α−1)

is isomorphic to the identity.

In the same way we can prove that

Db(Y, β−1) ΦP−→ Db(X,α−1)
ΦQ−→ Db(X,β−1)

is isomorphic to the identity.

Moreover P � Q ∈ Db((X × X) × (Y × Y ), α−1 � α � β � β−1) defines the
Fourier–Mukai equivalence

ΦP�Q : Db(X ×X,α−1 � α) −→ Db(Y × Y, β−1 � β)

Now, we show that this equivalence implies an isomorphism between the canon-
ical rings. Since d∗(ωmX ) can be considered as an element in Db(X×X,α−1 �α),
by defining S := ΦP�Q(d∗ωmX ) we have that

ΦS : Db(Y, β)→ Db(Y, β)

is an equivalence that can be obtained as the composition

Db(Y, β)
ΦQ−→ Db(X,α)

Φd∗ωm
X−→ Db(X,α) ΦP−→ Db(Y, β).

That is,
ΦS ∼= ΦP ◦ Φd∗ωm

X
◦ ΦQ.

Note that Φd∗ωm
X

= Sm(X,α)[−mn] where S(X,α) denotes the Serre functor defined
on the category Db(X,α). From the fact that equivalences commutes with Serre
functor, we conclude that

ΦS ∼= Sm(Y,β)[−mn].

Then, the uniqueness of the kernel of a Fourier–Mukai transform yields

S ∼= d∗ω
m
Y ,
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i.e. ΦQ�P(d∗ωmX ) ∼= d∗(ωmY ). Thus

H0(X,ωmX ) = HomDb(X×X,α�α−1)(d∗OX , d∗ωmX )
∼= HomDb(Y×Y,β�β−1)(d∗OY , d∗ωmY )

= H0(Y, ωmY ).

Since the algebra structure is given by composition of Ext’s just by using

ExtiDb(X×X,α−1�α)(d∗OX , d∗(ω
k
X)) ∼= ExtiDb(X×X,α−1�α)(d∗ω

m
X , d∗(ω

m+k
X )).

Hence R(X) ∼= R(Y ).

The following result in the untwisted case is due to Kawamata (cf. [25]) but
copying his proof yields a proof in the twisted case.

Theorem 1.6.16 (Kawamata). Let X and Y be smooth projective varieties
and let ΦP : Db(X,α) −→ Db(Y, β) be an equivalence such that the canonical
bundle ωX is big or anti-big (i.e. ω∨X is big). Then there exists a birational
morphism f : X 99K Y with f∗(β) = α where it is defined.

Proof. Assume ωX is big, i.e. there exists m > 0 such that ωmX ≡lin H+D with
H ample and D effective. Let Z be an irreducible component of supp(P) that
surjects onto X. Let us show that

πY : Z̃\π−1
X (D)→ Y

is quasifinite where πX := q ◦ ν, πY := p ◦ ν and ν : Z̃ → Z is the normalization
map. Suppose that our map πY is not quasifinite, i.e. there exists an irreducible
curve C * π−1

X (D) such that πY (C) is a point. Thus (π∗Y (KY ).C) = 0. On the
other hand,

m(π∗XKX .C) = (π∗XH.C) + (π∗XD.C).

Then,

(π∗XKX .C) ≥ 1
m

(π∗XH.C) > 0 (1.12)

because H is ample. By Lemma 1.6.13 there exists an integer r such that

(π∗XrKX .C) = (π∗Y rKY .C).

Thus, by inequality (1.12), (π∗Y rKY .C) > 0. This contradicts the fact

(π∗Y (KY ).C) = 0.

Therefore, the morphism q : Z → Y is generically finite which implies dim(Z) ≤
dim(Y ). Since Z dominates X, dim(Z) ≥ dim(X). Thus, from the equality
dim(X) = dim(Y ) we get

dim(X) = dim(Z) = dim(Y ).
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Now, we show for x ∈ X and y ∈ Y generic that both Z ∩ (X × {y}) and
Z ∩ ({x} × Y ) consist of just one point. For x ∈ X generic, the intersection
Z ∩ ({x} × Y ) is a finite set of reduced points {y1, ..., ym} and disjoint from
any other irreducible component of

⋃
supp(Hi(P)). Then, locally around yi

the image ΦP(k(x)) has support in yi. Thus, Hom(ΦP(k(x)),ΦP(k(x))) is m-
dimensional and hence by faithfulness of the functor ΦP , we deduce that m = 1.
If y is generic, we use a similar argument by using ΦPR

instead of ΦP itself.
The only thing we need to check is that Z is also a component of supp(P∨), but
this follows from the equality (see section 1.4)

supp(P) = supp(P∨).

Since Z ∩ (X × {y}), Z ∩ ({x} × Y ) consist of only one reduced point, it
defines a birational morphism f : X → Y with f∗(β) = α because the sheaf P
is a line bundle considered as a sheaf over the intersection between Z and the
open set where f is defined (since for general x in X there exists y in Y with
Φ(k(x)) = P|{x}×Y = k(y)).

Remark 1.6.17. If X and Y are two smooth projective varieties with a birational
correspondence

Z
πY−−−−→ Y

πX

y
X

where Z is a normal smooth variety. If π∗Xω
r
X
∼= π∗Y ω

r
Y , then π∗XωX ∼= π∗Y ωY .

Remark 1.6.18. Let X and Y be two K-equivalent surfaces, i.e. there exists a
birational correspondence

Z
πY−−−−→ Y

πX

y
X

such that π∗XωX ∼= π∗Y ωY . Then X ∼= Y .

1.7 Classification of surfaces under twisted de-
rived categories.

In this section we show that a theorem of Kawamata remains true when we
consider twisted derived categories.

Definition 1.7.1. If L is a line bundle on a projective scheme X, we define
the numerical Kodaira dimension ν(X,L) to be the maximal integer m such
that there exists a proper morphism φ : W → X with W of dimension m and
([φ∗(L)]m.W ) 6= 0. In particular, if L = ωX , we denote ν(X) := ν(X,ωX).
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Lemma 1.7.2 ([21], Lemma 6.26). Let π : Z → X be a projective morphism
of proper schemes and L ∈ Pic(X).

(i) If L is a nef line bundle on X then π∗(L) is nef.

(ii) If π is surjective, then L is nef if and only if π∗(L) is nef.

Lemma 1.7.3 ([21], Lemma 6.28). Let π : Z → X be a projetive morphism
of projective schemes and L ∈ Pic(X).

(i) Then ν(X,L) ≥ ν(Z, π∗L).

(ii) If π : Z → X is surjective, then ν(X,L) = ν(Z, π∗L).

Proposition 1.7.4 ([21], Prop. 6.17). Let X and Y be smooth projective
varieties and let ΦP : Db(X,α) → Db(Y, β) be an equivalence. Then ν(X) =
ν(Y ).

Proof. Since ΦP is an equivalence, there exists a component Z of supp(P) such
that p : Z → Y is surjective. If ν : Z̃ → Z is the normalization, then by Lemma
1.6.13, there exists an integer m such that π∗Xω

r
X
∼= π∗Y ω

r
Y where πX = q ◦ ν

and πY = p ◦ ν. Hence

ν(Z̃, π∗Xω
r
X) = ν(Z̃, π∗Y ω

r
Y )

and then

ν(X,ωX) ≥ ν(Z̃, π∗XωX) = ν(Z̃, π∗Xω
r
X) = ν(Z̃, π∗Y ω

r
Y ) = ν(Y, ωY ).

The other inequality holds by considering ΦPR
instead of ΦP .

Definition 1.7.5. A rational surface is a surface that is birationally equivalent
to P2.

Definition 1.7.6. A ruled surface, is a smooth projective surface X, together
with a surjective morphism π : X → C to a nonsingular curve C, such that the
fibre Xy is isomorphic to P1 for every point y ∈ C.

Theorem 1.7.7 (Castelnuovo). A surface is rational if and only if the irregu-
larity and second geometric genus are trivial, i.e. h1(X,OX) = h0(X,ω2

X) = 0.

Definition 1.7.8. A smooth surface X is an elliptic surface if there exists a
curve C and a morphism π : X → C whose general fibre is an elliptic curve.

The proof of the following result is identical to the proof of its untwisted
version given in ([21], Prop. 6.18), which was originally proved by Kawamata
in [25].

Theorem 1.7.9 (Kawamata). Let X be a smooth projective surface contain-
ing a (−1)-curve and Y a smooth projective variety and let ΦP : Db(X,α) →
Db(Y, β) be an equivalence. Then one of the following holds
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(i) X ∼= Y .

(ii) X is a relatively minimal elliptic rational surface.

Proof. Let Z be a component of Γ := supp(P) that dominates X.

Case 1 dim(Z) = 2

Since dim(Z) = 2, the map q : Z → X is generically finite. It can be seen
as in the proof of Theorem 1.6.16 that q is a birational morphism. We show
that Z dominates Y . For a general point x in X the birationality of q implies
that ΦP(k(x)) is concentrated in only one point, say y. Thus, by Lemma 1.6.2

Φ(k(x)) = k(y)[m]

for some integer m. Then there exists an open dense subset U ⊆ X such that
U ∼= ZU = ΓU . If we suppose that p is not dominant, there exist distinct x1, x2

in U with p(x1) = p(x2) =: y (because dim(Z) = 2 and if p is not dominant
then p(Z) is of dimension at most 1). Since ΦP(k(x1)) and ΦP(k(x2)) are
concentrated in the single point y, we find a non-trivial morphism

Hm1(Φ(k(x1)))→ Hm2(Φ(k(x2)))

where m1 and m2 are the maximal and the minimal integers where the co-
homologies for Φ(k(x1)) and Φ(k(x2)) are nonzero. This morphism defines a
non-trivial morphism

Φ(k(x1))[m1]→ Φ(k(x2))[m2].

This contradicts the fact that

Extj(k(x1), k(x2)) = 0 for all j.

Hence, the morphism p : Z → Y is dominant and thus it is a birational map
which defines a K-equivalence X

q←− Z
p−→ Y . This implies that the surfaces

X and Y are isomorphic.

Case 2 Any irreducible component Z ⊂ Γ that dominates X or Y has di-
mension at least three.

Since X is not minimal, there exists a (−1)-curve E(∼= P1) in X. Denote
ΓE := Γ×X E. Since the canonical bundle ωX over E is an antiample line bun-
dle (ωX |E ∼= O(−1)), by Corollary 1.6.14 the projection pE : ΓE → Y is a finite
morphism. Hence dim(ΓE) = 2 (the dimension of the fibres of qE : ΓE → X are
at least one dimensional). Then, as we did in the first case we can show that the
morphism pE : ΓE → Y is dominant. If ν : Z̃E → ZE is the normalization of a
component ZE of ΓE , then by Lemma 1.6.13, there exists an integer r such that
ν∗q∗Eω

r
X
∼= ν∗p∗Eω

r
Y where pE and qE are considered defined on the component

ZE . Thus,
ν∗q∗EωX ≡num ν∗p∗EωY . (1.13)
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Since ω∨X is ample on E, ω∨Y is nef (because qE ◦ ν is surjective and Lemma
1.7.2). By Lemma 1.7.3 and (1.13)

ν(Y, ω∨Y ) = ν(Z̃E , ν∗p∗E(ω∨Y )) = ν(Z̃E , ν∗q∗Eω
∨
X) = 1.

Since ω∨Y is nef, ω∨X is nef because q : Γ → X is a surjective (cf. Lemma 1.7.2)
morphism and (1.13). Since ΦP is an equivalence, ν(X,ω∨X) = ν(Y, ω∨Y ) = 1.
Let us see that kod(X) = −∞. Suppose that H0(X,ωkX) 6= 0 for some k > 0.
Let 0 6= s be a section in H0(X,ωkX). Then Z(s) is either empty or a curve.
The first case can not happen because ν(X,ω−kX ) = 1 and neither the second
because otherwise Z(s) intersects non-trivially with an ample divisor and this
contradicts that ω∨X is nef. This shows that kod(X) = −∞.

By the classification of surfaces we know that the minimal model for X is ei-
ther a rational or a ruled surface over a curve of genus ≥ 1. If the minimal
model of X is a ruled surface, then it satisfies c21 = 8(1 − g). Then g = 1
because ω∨X is nef and since c21 decreases under blow-ups, X is a minimal ruled
surface over an elliptic curve (again because ω∨X is nef). This contradicts our
assumption that X contains a (−1)-curve. Thus X is a rational surface. By
Theorem 1.6.15, h0(X,ω2

X) = h0(Y, ω2
Y ) and h1(X,OX) = h1(X,OY ). Hence,

from the Castelnuovo criterion (cf. Theorem 1.7.7), Y is a rational surface.
Since Y is a rational surface, we can pick a smooth rational curve E′ in Y
such that ω∨Y is ample on it. By the same discusion as before, we obtain a
finite dominating morphism Γ′E → X. Since the pullbacks of ωX and ωY are
numerically equivalent, the restriction of ωX to D := q(F ) where F is a fibre
of p : Γ′E → X is numerically trivial. By the Hodge index theorem, either
c21(X) < 0 or c1(X) = 0 because D moves in a family (because from F.ωY = 0
we conclude that D.ωX = 0). The first contradicts the fact that ω∨X is nef and
the second the fact that H0(X,ωkX) = 0 for any k (because kod(X) = −∞ and
the fact that ωX ≡ 0 implies ωk ∼= OX for some k). Thus D2 = 0 and this
defines the desired covering of X by elliptic curves.

1.7.1 Surfaces with kod=−∞,2

We also have the following twisted version of a proposition due to Bridgeland
and Maciocia. The proof is identical to ([21], Prop. 12.16)

Proposition 1.7.10. Let X be a surface of general type and Y a smooth pro-
jective variety. If Db(X,α) ∼= Db(Y, β), then X ∼= Y .

Proof. Since X is of general type, Y is also of general type by Theorem 1.6.15.
Moreover, by Theorem 1.6.16, X and Y are birational. If X is not minimal,
by Theorem 1.7.9, X ∼= Y . Thus we can assume that X and Y are minimal
surfaces. Since the minimal model of a surface of general type is unique, the
birational morphism between X and Y yields an isomorphism X ∼= Y .
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Let X be a rational surface. Thus, Hi(X,OX) = 0 for any i > 0. From the
exponential short exact sequence we obtain the isomorphism

Br′(X) ∼= H3(X,Z).

Since the cohomological Brauer group is a birational invariant,

Br′(X) ∼= Br′(P2) = H3(P2,Z) = 0.

Now, let π : X → C be a ruled surface. Consider the Leray spectral sequence
associated to π:

Ep,q2 = Hp(C,Rqπ∗O∗X)⇒ Hp+q(X,O∗X).

Since Hq(P1,OP1) = 0 for q ≥ 1, we obtain

Rqπ∗OX = 0, for q ≥ 1. (1.14)

The exponential sequence 0→ Z→ OX → O∗X → 0 yields a long exact sequence

...→ Rqπ∗OX → Rqπ∗O∗X → Rq+1π∗Z→ Rq+1π∗OX → ...

so that by equation (1.14),

Rqπ∗O∗X ∼= Rq+1π∗Z, for any q ≥ 1. (1.15)

Clearly Rqπ∗O∗X = 0 for q ≥ 2 and R0π∗O∗X = O∗C . On the other hand,
the sheaf R2π∗Z is a local system of coefficients with stalk Z and the complex
structure of the morphism π gives a canonical generator for each stalk on this
local system. Thus R2π∗Z is trivial, i.e. R2π∗Z = Z. Hence by the isomorphism
(1.15)

R1π∗O∗X = Z. (1.16)

The Leray spectral sequence yields a long exact sequence

H0(C,R1π∗O∗X)→ H2(C,O∗C)→ H2(X,O∗X)→ H1(C,R1π∗O∗X). (1.17)

By equation 1.16, H1(C,R1π∗O∗X) = H1(C,Z) = Z2g(C). Since X is smooth,
H2(X,O∗X) is a torsion group. Thus the last map in the sequence (1.17) is
trivial and since H2(C,O∗C) = 0, we obtain Br′(X) = H2(X,O∗X) = 0 (if X is
not smooth we also obtain that Br′(X) = H2(X,O∗X)tors = 0). Therefore, we
have shown the following proposition:

Proposition 1.7.11. If X is a smooth projective surface of kod(X) = −∞,
then Br′(X) = 0.

Proposition 1.7.12. Let X be a smooth projective surface containing a (−1)-
curve and Y a smooth projective variety. If Br′(X) 6= 0 and Φ : Db(X,α) →
Db(Y, β) is an equivalence. Then X ∼= Y .

Proof. By Theorem 1.7.9, either X ∼= Y or X is a rational surface that is
elliptically fibred. Thus, if X is rational, Proposition 1.7.11 implies Br′(X) = 0,
a contradiction.
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1.7.2 Surfaces with kod = 1

Definition 1.7.13. A vector bundle F on a curve C is decomposable if it is
isomorphic to a direct sum F1 ⊕F2 of two non-zero vector bundles. Otherwise,
we say that F is indecomposable.

Lemma 1.7.14 ([38], Cor 14.8). Let F be an indecomposable vector bundle
of rank r and degree d on an elliptic curve E. The following conditions are
equivalent.

(i) F is stable;

(ii) F is simple;

(iii) d and r are relatively prime.

Theorem 1.7.15 ([12], Prop. I. 3.24). Let X be a minimal projective surface
of Kodaira dimension 1. Then there is a unique curve C and a unique morphism
π : X → C making X an elliptic surface.

Definition 1.7.16. Let π : X → C be an elliptic surface and c ∈ C. The fibre
π−1(c) is called a multiple fibre if there is a divisor D on X with π−1(c) = mD
for some integer m > 1.

Let π : X → C be a relatively minimal elliptic surface with kod(X) = 1.
The cohomology class of the fibre Fx := π−1(x) is denoted by f ∈ H2(X,Z).
Note that Fx is a smooth elliptic curve for generic x ∈ C. The canonical bundle
formula (cf. [1], V.12) states that

ωX ∼= π∗L ⊗O(
∑

(mi − 1)Fi) (1.18)

where L ∈ Pic(C) and Fi are the multiple fibres. Hence c1(X) = λf (in
H2(X,Q)) for some λ 6= 0 (because kod(X) = 1). We also define the moduli
space MH(v) similarly as for K3 surfaces to be the moduli space of semi-stable
(with respect to H) sheaves E with v(E) = v.

Remark 1.7.17. Suppose v = (0, rf, d) and E a stable sheaf of rank r and degree
d. By definition one has χ(E) = d by the Hirzebruch–Riemann–Roch formula
and f.c1(X) = 0. On the other hand, if [E] ∈ MH(v) corresponds to a stable
sheaf E, supp(E) is connected, so that supp(E) ⊆ Fx for some fibre Fx because
v(E) = (0, rf, d) (if supp(E) has an horizontal component it would intersect
non-trivially the fibre class f).

Definition 1.7.18. Let π : X → C be an elliptic surface with kod(X) = 1 and
let λX/C denote the smallest positive number such that there exists a divisor σ
on X with σ.f = λX/C . We also denote it sometimes by only λX (recall that
from Theorem 1.7.15 there is only one C and morphism making X an elliptic
fibration).



33

Theorem 1.7.19 ([8], Theorem 3.2.1). The functor F = ΦP : Db(X,α) →
Db(Y ) is fully faithful, if and only if, for each x ∈ X,

HomDb(Y )(F (k(x)), F (k(x))) = C,

and for each pair of points x1, x2 ∈ X, and each integer i,

ExtiDb(Y )(F (k(x1)), F (k(x2))) = 0

unless x1 = x2 and 0 ≤ i ≤ dimX. Assuming the above conditions satisfied, F
is an equivalence if and only if, for every point x ∈ X,

F (k(x))
L
⊗ ωY ∼= F (k(x)).

Căldăraru proved in [8] a version of the following proposition in the case of
K3 surfaces. In that case the proof followed inmediately from the last theorem
because of the triviality of the canonical bundle for K3 surfaces. This is not the
case for properly elliptic surfaces.

Proposition 1.7.20. Let X be a properly elliptic surface, i.e. kod(X) = 1 that
is relatively minimal, and let v = (0, rf, d) be a Mukai vector with gcd(r, d) = 1.
Let M be a connected component of the moduli space of stable sheaves with
Mukai vector v and let α = Obs(X, v) (see Definition 1.5.5). Then we have

Db(X) ∼= Db(M,α−1).

Proof. The π∗Mα-universal sheaf E on X ×M defines a functor

ΦE : Db(M,α−1)→ Db(X).

Let [F ] ∈M be a point corresponding to a stable sheaf F onX and Mukai vector
v = (0, rf, d). Then, by definition of the universal sheaf, ΦE(k([F ])) = F .
We check the conditions of Theorem 1.7.19. Let [F ] and [G] be two distinct
points in M corresponding to two nonisomorphic stable sheaves F and G on X
respectively. Since F is a stable sheaf,

Hom(ΦE(k([F ])),ΦE(k([F ]))) = Hom(F ,F) = C.

If i < 0 or i > 2, trivially Exti(ΦEk([F ]),ΦEk([G])) = 0. Since F and G are
stables,

Hom(ΦE(k([F ])),ΦE(k([G]))) = Hom(F ,G) = 0.

By Serre duality,
Ext2(F ,G) = Hom(G,F ⊗ ωX)∨. (1.19)

Let us show that F ∼= F ⊗ωX . If F is supported on a non-singular fibre, by the
canonical bundle formula (cf. (1.18)), the restriction of ωX to the non-singular
fibre is trivial. Hence F ∼= F⊗ωX . Since the dimension of Hom(E[F ], E[F ]⊗ωX)
is upper semi-continuous on M (cf. [14], III. 7.7.8), for all [F ] ∈ M there is a
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non-zero morphism E[F ] → E[F ] ⊗ ωX (i.e. F → F ⊗ ωX is non-zero). Since
rk(F) = rk(F ⊗ ωX) and

c1(F).f = c1(F).f + c1(X).f = c1(F ⊗ ωX).f

and both sheaves F and F ⊗ ωX are stable, we obtain an isomorphism

F ∼= F ⊗ ωX

for all F stable. Thus, by isomorphism 1.19

Ext2(ΦE(k([F ])), ΦE(k([G]))) = Ext2(F ,G) = Hom(G,F ⊗ ωX)∨ = Hom(G,F)∨ = 0

for any two points [F ] 6= [G] in M (corresponding to two stable sheaves on X).
Since

χ(F ,G) = −〈v(F), v(G)〉 = −〈v, v〉 = 0,

we obtain Ext1(F ,G) = 0. Thus, since we have verified all the conditions of
Theorem 1.7.19, ΦE is an equivalence of categories.

The following result is a generalization of a result of Bridgeland and Maciocia
(cf. [5]). We follow the proof given in [21] with some little modifications.

Proposition 1.7.21. Let π : Y → C be a relatively minimal elliptic surface
with kod(Y ) = 1 and let Φ : Db(X,α) → Db(Y ) be an equivalence. Then there
exists a Mukai vector v = (0, rf, d) such that gcd(r, d) = 1 and X ∼= M(v).

Proof. If either X or Y is not minimal, then they are isomorphic (see Theorem
1.7.9) and we pick v = (0, f, 1). Hence, we may assume that X and Y are
minimal surfaces. For any closed point x in X, E := Φ(k(x)) satisfies

E ⊗ ωY ∼= E,

because of Remark 1.6.7. Since Hom(k(x), k(x)) = Hom(E,E), E is simple and
thus supp(E) is connected. Since E ∼= E ⊗ ωY , supp(E) ⊂ Fy for some fibre
Fy ⊂ Y because kod(Y ) = 1 and the isomorphism (1.18). For general x, we
may assume that Fy is a smooth fibre. Thus, since supp(E) is connected, either
supp(E) = Fy or supp(E) consists of only a closed point in Fy.

Claim We can assume that E is a shifted sheaf, i.e. Hi(E) = 0 for all but
one i ∈ Z.

Proof. Consider the spectral sequence

Ep,q2 =
⊕
i

Extp(Hi(E),Hi+q(E))⇒ Extp+q(E,E).

Since Y is a surface, Ep,q2 are trivial for p /∈ [0, 2] In particular⊕
i

Ext1(Hi(E),Hi(E)) ⊂ Ext1(E,E). (1.20)
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Since E is supported on a smooth elliptic curve Fx, all its cohomologies are.
This means that if Hi(E) 6= 0, Ext1(Hi(E),Hi(E)) 6= 0 (because
Ext1Fx

(Hi(E),Hi(E)) ↪→ Ext1Y (Hi(E),Hi(E))). Moreover, since Hi(E) is sup-
ported on a smooth elliptic curve, χ(Hi(E),Hi(E)) = −〈v(Hi(E)), v(Hi(E))〉 =
0 and Hi(E) = Hi(E)⊗ωX (cf. the proof of Proposition 1.7.20). Thus, by Serre
duality dim Ext1Y (Hi(E),Hi(E)) is even (≥ 2) for any Hi(E) 6= 0. Hence by
(1.20), 2n ≤ dim Ext1Y (E,E) = 2, where n is the number of non-trivial coho-
mologies Hi. Thus, E is a shifted sheaf.

By composing the original equivalence with a shift, we can assume that E
is a sheaf. If E is concentrated in one point y, from Φ(k(x)) = k(y) we get that
X and Y are birational. Hence they are isomorphic because they are minimal
surfaces (the minimal model for surfaces of Kodaira dimension 1 is unique).
Thus, we can assume that E is a vector bundle on Fy. Since E is simple, by
Lemma 1.7.14, E is stable (with respect to some polarization H) and
(rk(E),deg(E)) = 1. Set v = (0, rf, d) where r := rk(E), d := deg(E). Then
v is isotropic, i.e. 〈v, v〉 = 0. Hence the moduli space M = MH(v) of stable
sheaves with Mukai vector v is 2-dimensional.

By Proposition 1.7.20, for γ = Obs(Y, v), the π∗Mγ-universal sheaf yields an
equivalence

ΦE : Db(M,γ−1)→ Db(Y ).

Thus, the composition

Ψ := Φ−1
E ◦ Φ : Db(X,α)→ Db(M,γ−1).

satisfies Ψ(k(x)) = k(e) where e ∈M is the point that corresponds to E. Hence,
M is birational to X. Since X is minimal and kod(X) = 1, M ∼= X. Moreover
Ψ defines an isomorphism f : X → M such that Ψ|U ∼= L ⊗ f∗(−)|U , hence
f∗γ−1 = α (the restriction morphism Br′(X)→ Br′(U) is injective).

Corollary 1.7.22. Let X and Y be relatively minimal elliptic surfaces with
kod(X) = kod(Y ) = 1 and let Φ : Db(X,α) → Db(Y ) be an equivalence. Then
one of the following holds

(1) X ∼= Y and α = 1 in Br′(X),

(2) There exists a Mukai vector v = (0, rf, d) such that gcd(r, d) = 1 and an
isomorphism f : X ∼= M(v) with f∗(γ−1) = α, where γ = Obs(Y, v).

Remark 1.7.23. In general, the moduli space M(v) obtained in the previous
Proposition is coarse.

Corollary 1.7.24. Let X and Y be relatively minimal elliptic surfaces with
kod(X) = kod(Y ) = 1 and let Φ : Db(X,α)→ Db(Y ) be an equivalence. If Y is
elliptically fibred with a section, then α = 1 in Br(X).
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Proof. By the last corollary there exists a Mukai vector v = (0, rf, d) such that
gcd(r, d) = 1 and an isomorphism f : X ∼= M(v) with f∗(γ−1) = α, where
γ = Obs(Y, v). Since λY = 1, there exists H such that gcd(d, r(f.H)) = 1 with
H ample. Thus M(v) is a fine moduli space, i.e. γ = 1 in Br′(Y ) and hence
α = 1 in Br′(X).

The previous corollary provides a very interesting application. First we
introduce the notion of the Tate–Shafarevich group. For an elliptic surface
π : X → C with a section σ and integral fibres, we define the Tate–Shafarevich
group by

Sh(X) := H1(C,X#)

where X# is the sheaf of abelian groups on C such that

X#(U) = the group of sections ofXU → U

and the natural group structure on X# is the one given by the section σ : C →
X. This group is in 1-1 correspondence with the set of elliptic fibrations Y → C
whose Jacobian is π : X → C (Note that we are in the analytic or étale setup).

Notation 1. Let π : X → C be an elliptic surface with a section. For any
α ∈ Sh(X), let πα : Xα → C denote the elliptic fibration corresponding to the
element α.

Let π : X → C be an elliptic fibration with a section and integral fibres
and let πα : Xα → C be an elliptic fibration in Sh(X). We proceed to define a
morphism Tα : Sh(X)→ Br′(Xα). First, for a given α ∈ Sh(X) we can define a
homomorphism

Tα : H1(C,X#)→ H1(C,Pic(Xα/C)) (1.21)

by considering the long exact sequence obtained from the exact sequence

0 −→ X# −→ Pic(Xα/C)
degα−→ Z −→ 0

where Pic(Xα/C) is the relative Picard sheaf of πα (note that the relative Picard
functor for an elliptic fibration with integral fibres is representable. If the elliptic
fibration allows non-integral fibres the functor is non-representable, but it has a
maximal representable quotient (cf. [10])) and degα is the map that sends any
L ∈ Pic(π−1

α (U))/π∗α Pic(U) to its degree along a smooth fibre. From the Leray
spectral sequence associated to πα : Xα → C and O∗Xα

, we get the following
exact sequence

Br′(C)→ Br′(Xα)→ H1(C,Pic(Xα/C))→ H3(C,O∗C),

where all cohomologies are taken either in the analytic topology or in the étale
topology (note that R1πα,∗O∗Xα

= Pic(Xα/C)). Hence, since H3(C,O∗C) =
H2(C,O∗C) = 0,

H1(C,Pic(Xα/C)) ∼= Br′(Xα). (1.22)
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Since Sh(X) = H1(C,X#), from 1.21 and 1.22 we get the morphism

Tα : Sh(X)→ Br′(Xα).

In particular, for the elliptic fibration π : X → C we get the exact sequence

0 −→ Sh(X) T0−→ Br′(X) −→ H1(C,Z).

Thus T0 is an isomorphism because Br′(X) is a torsion group and H1(C,Z) is
torsion free.

Theorem 1.7.25 (Donagi–Pantev, [11]). Let π : X → C be an elliptic
fibration with a section. Fix a positive integer m and let α, β ∈ Sh(X) be
two elements such that α is m-divisible and β is m-torsion. Then there is an
equivalence

Φ : Db(Xα, Tα(β)) ∼= Db(Xβ , Tβ(α)−1).

Remark 1.7.26. Let X be a relatively elliptic surface with a section and α ∈
Sh(X). Due to Theorem 1.7.25, there exists an equivalence

Db(Xα) = Db(Xα, Tα(0)) ∼= Db(X,T0(α)−1).

Since T0 is an isomorphism, we denote the element α and T0(α) by the same
letter α when there is no confusion. For example, if α is of order 2 we get an
equivalence Db(Xα) ∼= Db(X,α−1) ∼= Db(X,α).

Proposition 1.7.27. Let X be a relatively minimal elliptic surface with a sec-
tion and kod(X) = 1. If Y ∈ Sh(X) and Φ : Db(X)→ Db(Y ) is an equivalence.
Then X ∼= Y as elliptic surfaces.

Proof. Since Y ∈ Sh(X), there exists α ∈ Sh(X) such that Xα
∼= Y . By

Theorem 1.7.25

Db(X,T0(α)−1) ∼= Db(Xα) ∼= Db(Y ) ∼= Db(X)

and by Corollary 1.7.24, T0(α)−1 = 1 in Br′(X). Thus X and Y are isomorphic
as elliptic surfaces.
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Chapter 2

Enriques Surfaces

Let Y be an Enriques surface and π : X → Y its K3 cover with the fixed
point free involution τ compatible with π. Since the cohomological Brauer
group Br′(Y ) is Z/2Z, it is natural to ask about the triviality of the morphism
π∗ : Br′(Y ) → Br′(X). Indeed, we show that π∗ is trivial if and only if there
exists a holomorphic line bundle L on X such that τ∗L⊗L ∼= OX and there is
no holomorphic line bundle M with L = τ∗M⊗M∨ satisfying NX/Y (L) = 0.
As as consequence, we show that for any Enriques surface whose K3 cover has
Picard number 10, the homomorphism π∗ is injective.

2.1 Basic facts about Enriques surfaces

We briefly recall some fundamental facts about Enriques and K3 surfaces and
lattice theory.

Definition 2.1.1. A K3 surface is a compact complex surface X with trivial
canonical bundle, i.e. ωX ∼= OX , and H1(X,OX) = 0.

Definition 2.1.2. An Enriques surface is a compact complex surface X with
ω2
X
∼= OX , ωX 6= OX and H1(X,OX) = 0.

Example 2.1.3. Let X be a smooth complete intersection surface in Pn, n ≥ 3
of n − 2 hypersurfaces of degrees d1, ..., dn−2. Then X is a K3 surface if and
only if

∑n−2
i=1 di = n+ 1, because by adjunction formula the dualizing sheaf ωX

of X is OX(
∑n−2
i=1 di − n− 1).

Example 2.1.4 (Kummer surfaces). Let A be an abelian surface and ι : A→ A
the automorphism given by ι(a) = −a for any a ∈ A. The quotient Y := A/〈ι〉
has 16 singular points. Let π : Ã → A be the blow-up of A along those 16
points. Thus, there exists a unique automorphism ι̃ such that ι̃ ◦ π = π ◦ ι̃.
Then ι̃2 = id, so we can consider the quotient

Km(A) := Ã/〈ι̃〉.

39
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This is called the Kummer surface associated to the abelian surface A and is
also an example of a K3 surface

A lattice is a free abelian group L of finite rank with a non-degenerate sym-
metric bilinear form b : L × L → Z. A lattice (L, b) is even if, for all x ∈ L,
b(x, x) ∈ 2Z, and it is odd if there exists x ∈ L such that b(x, x) /∈ 2Z. Given
{e1, ..., erkL} a basis for L, the determinant of the matrix associated to the bi-
linear form (b(e1, ej)) is determined uniquely independent of the choice of the
basis. This number disc(L) := det(b(ei, ej)) is called the discriminant of L.

The lattice (L, b) is unimodular if disc(L) = ±1 while it is non-degenerate
if disc(L) 6= 0. Moreover, a lattice (L, b) is positive definite if b(x, x) > 0, for
any x ∈ L \ {0} and negative definite if b(x, x) < 0, for any x ∈ L \ {0}.
Example 2.1.5. (i) The hyperbolic plane U is the free abelian group Z ⊕ Z

with the quadratic form represented by the matrix(
0 1
1 0

)
,

with respect to the standard basis. This is an even, unimodular and
indefinite lattice.

(ii) The root-lattice E8 is the free abelian group Z8 endowed with the quadratic
form represented by the matrix

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


with respect to the standard basis. This is an even, unimodular and
negative definite lattice.

We recall that the dual lattice of a lattice L is defined by

L∨ := HomZ(L,Z) ∼= {l ∈ L⊗Q | b(l, p) ∈ Z, for any p ∈ L}.

The quotient of the natural inclusion L ↪→ L∨

AL := L∨/L

is called the discriminant group of L. The order of AL is |discL| (cf. [1],
Lemma 2.1) and is denoted by l(AL). The bilinear form b of L induces a
symmetric bilinear form bL : Al ×AL → Q/Z and hence a quadratic form

qL : AL → Q/Z.
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The second cohomoloy of a K3 surface H2(X,Z) endowed with the cup-
product is an even unimodular lattice of rank 22 and signature (3,19). Thus,

H2(X,Z) ∼= E⊕2
8 ⊕ U⊕3

where E8, U are the root and hyperbolic lattices respectively.

Theorem 2.1.6 (Global Torelli). Two K3 surfaces X and Y are isomorphic
if and only if there exists a Hodge isometry ϕ : H2(X,Z) ∼→ H2(Y,Z). If ϕ
maps at least one Kähler class on X to a Kähler class on Y , then there exists
an isomorphism f : X ∼→ Y with f∗ = ϕ.

Let Y be a smooth Enriques surface, π : X → Y its K3 cover and τ : X → X
the corresponding fixed point free involution such that X/τ ∼= Y . Thus we
obtain the following lemma

Lemma 2.1.7. 0→ 〈ωY 〉 → Pic(Y )→ Pic(X)τ → 0 is an exact sequence.

Proof. Let L be a sheaf with π∗(L) = OX . Then L⊗ (OY ⊕ωY ) = π∗(π∗(L)) =
π∗(OX) = OY ⊕ ωY . Therefore L is either OY or ωY . On the other hand, if
λτ :M→ τ∗(M) is an isomorphism for some line bundle M ∈ Pic(X). Then,
sinceM is simple (because it is a line bundle) τ∗λτ ◦ λτ = c. id for some c ∈ C.
Thus, we can replace λτ by 1√

c
λτ to obtain a linearization onM (see Definition

2.2.2 below). Hence, there exists a line bundle L on Y such that π∗L =M.

Lemma 2.1.8. (1) If X is a K3 surface, then H1(X,Z) = H2(X,Z)tors = 0
(see [1], Prop. 3.3 )

(2) If Y is an Enriques surface, then H1(Y,Z) = H2(Y,Z)tors = Z/2Z

Lemma 2.1.9. If Y is an Enriques surface, then Br′(Y ) = H3(Y,Z) = Z/2Z.

Proof. By Serre duality and Lemma 2.1.8 (2), it follows 0 = b1(Y ) = b3(Y ) and
H3(Y,Z)tors = H2(Y,Z)tors = Z/2Z (see [1], page 15). Since pg(Y ) = 0, the
exponential sequence induces the following exact sequence

0→ H2(Y,O∗Y )→ H3(Y,Z)→ H3(Y,OX)

Then, from the vanishing of H3(Y,OX), we conclude the isomorphism Br′(Y ) =
H3(Y,Z) and from the vanishing b3(Y ) = 0, we deduce H3(Y,Z) = Z/2Z.

2.2 The kernel of π∗ : Br′(Y )→ Br′(X)

First of all, I want to remark that the Lemmas 2.2.4 and 2.2.6 were indepen-
dently obtained by Beauville in [2]. He also let me knew a little mistake that I
have made in a previous version of Lemma 2.2.6.

Now, we will study the kernel of the map π∗ : Br′(Y ) → Br′(X) induced by
the universal cover, π : X → Y , of the Enriques surface Y. In a particular case
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we will be able to describe the non trivial element of Br′(Y ) as a Brauer–Severi
variety over Y . For the basic facts about group cohomology we refer to [43]. In
order to describe ker(π∗), we use the Hochschild–Serre spectral sequence (see
[29], Th. 14.9)

Ep,q2 := Hp(Z/2Z,Hq(X,O∗X))⇒ Hp+q(Y,O∗Y ). (2.1)

and the following theorem (cf. [43], Thm 6.2.2). First, we recall that for a
cyclic group G of order m with a generator τ , the norm in ZG is the element
N = 1 + τ + ...+ τm−1.

Theorem 2.2.1. If A is a G-module with G a cyclic group generated by τ , then

Hn(G,A) =


AG, if n = 0
{a ∈ A : Na = 0}/(τ − 1)A, if n is odd
AG/NA, otherwise

The last theorem can be used to compute En,02 for all n. First, since the
action of 〈τ〉 = Z/2Z on C∗ = H0(X,O∗X) is trivial, one has

En,02 = Hn(Z/2Z,C∗) = 0 (2.2)

for all even integers n 6= 0. On the other hand, if n is an odd integer and
a ∈ C∗ with N(a) = 1, it follows from the definition of the norm map that
1 = aτ(a) = a2. Thus

En,02 = Hn(Z/2Z,C∗) = Z/2Z. (2.3)

Since E2,0
2 = 0, also E2,0

∞ = 0 and the following exact sequence follows

0→ E1,1
∞ → H2(Y,O∗Y )→ H2(X,O∗X)τ . (2.4)

Let us recall first a few facts about linearization for finite group actions. Let
Z be a smooth projective variety with an action by a finite group G. Let
σ : G × Z → Z be the action on Z, µ : G ×G → G be the multiplication map
of G and p2 : G× Z → Z, p23 : G×G× Z → G× Z be the projections.

Definition 2.2.2. A G-linearization of a coherent sheaf F is an isomorphism
λ : σ∗F→̃p∗2F of OG×Z-modules that satisfies the cocycle condition (µ×idZ)∗λ =
p∗23λ ◦ (σ × idG)∗λ.

In the particular case that G is a finite group, the last definition can be
reformulated as: A G-linearization of F is given by isomorphisms λg : F→̃g∗F
for all g ∈ G satisfying λ1 = idF and λgh = h∗λg ◦ λh. If (F, λ) and (F ′, λ′) are
two G-linearised sheaves, then Hom(F, F ′) becomes a G-representation defined
by the right action g.f = (λ′g)

−1 ◦ g∗f ◦ λg for f : F → F ′.



43

Example 2.2.3. There is a canonical G-linearization of OZ given by λg = 1 for
all g ∈ G. However, every group homomorphism χ : G → C∗ gives rise to a
different linearization and two different homomorphisms G → C∗ endow OZ
with different G-linearizations.

Let Y be an Enriques surface and π : X → Y its universal cover map. We
proceed to define the relative norm map NX/Y . Let Ui be an open covering of Y
such that Ûi := π−1(Ui) consists of two copies of Ui. Take f = (f0, f1) ∈ O∗(Ûi)
and define the sheaf relative norm map by f0f1. Thus, the relative norm
map induced in the Picard groups can be defined as follows. Take a 1-cocycle
{ϕ̂i = (ϕi0, ϕ

i
1)}i over X that represents a line bundle L, and define our desired

morphism by NX/Y ({(ϕi0, ϕi1)}i) = {ϕi0.ϕi1}i. This is also the cocycle defining
the line bundle det(π∗(L)). Hence, we obtain NX/Y (−) = det(π∗(−)).

Lemma 2.2.4. The kernel of π∗ : Br′(Y )→ Br′(X) is

(kerNX/Y )/((1− τ) Pic(X)).

Proof. First, we recall that the kernel of the map π∗ : Br′(Y ) → Br′(X) is
E1,1
∞ . We take an open covering {Ui} of Y such that Ûi := π−1(Ui) consists

of two copies of Ui. We consider the following commutative diagram given
by differentials of Cech cohomology and group cohomology differentials in the
vertical and horizontal arrows respectively.

6 6

-

-

66

- -

⊕
Γ(Ûi ∩ Ûj)

⊕
Γ(Ûi ∩ Ûj)

⊕
Γ(Ûi ∩ Ûj ∩ Ûk)

⊕
Γ(Ûi ∩ Ûj ∩ Ûk)

⊕
Γ(Ûi)

⊕
Γ(Ûi)

⊕
Γ(Ûi)

1+τ

d1 d1

d0 d0

1+τ

1+τ 1-τ

If we define the filtration F p of the above double complex to be the subcomplex
where the entries in the first p− 1 vertical columns are zero, then we can define
the maps dp,q2 : Ep,q2 → Ep+2,q−1

2 for the E2 terms in the usual way. Let (f ′ij)i,j
be an element in ker(d1,1

2 ). Since (f ′ij)i,j ∈ E
1,1
2 , fij := (1 + τ)f ′ij = fi − fj (i.e.

(fij)i,j is the cocycle corresponding to OX) and since d1,1
2 (f ′ij) = 1, (1−τ)fi = 1,

i.e. τfi = fi. Thus, τ defines the trivial character χ : G → C∗. This implies
that (fi)i has a descend data over Y which gives us the cocycle that represents
the trivial sheaf OY . On the other hand if (1− τ)fi = −1 then τfi = −fi and
this defines a nontrivial character which corresponds to another linearization of
OX . Hence in this case OX descends to KY .
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Definition 2.2.5. Let X be a surface and P a P1-bundle on X. We say that
P comes from a vector bundle if there exists a vector bundle E on X such that
P ∼= P(E).

Lemma 2.2.6. Let Y be an Enriques surface and π : X → Y its universal
cover map. Let L be a line bundle satisfying τ∗L ⊗ L = OX , NX/Y (L) = 0,
and such that [L] is nontrivial in E1,1

2 = H1(Z/2Z,Pic(X)). Then P(O ⊕ L)
descends to a projective bundle that does not come from a vector bundle.

Proof. Let L ∈ Pic(X) be a line bundle with NX/Y (L) = 0 representing a
nontrivial element in

E1,1
2 = H1(Z/2Z,Pic(X))

=
{L ∈ Pic(X) : τ∗L⊗ L = OX}
{τ∗M ⊗M∨ : M ∈ Pic(X)}

.

We proceed to give a G-linearization on P(OX ⊕ L):

λτ : P(τ∗(OX ⊕ L)) −→ P(OX ⊕ L).

Since NX/Y (L) = 0 we can find a G-linearised isomorphism i : L⊗τ∗L→̃OX
where we consider OX endowed with the canonical G-linearization. We define
λτ as the composition of morphisms

P(OX ⊕ L)→ P(τ∗L ⊕ (L ⊗ τ∗L))→ P(τ∗L ⊕OX)→ P(OX ⊕ τ∗L)

[a : b] 7→ [aτ∗b : bτ∗b] 7→ [aτ∗b : i(bτ∗b)] 7→ [i(bτ∗b) : aτ∗b]

where a and b are sections of OX and L respectively. Note that P(OX ⊕ τ∗L) =
P(τ∗OX ⊕ τ∗L) because we consider the canonical linearization on OX , i.e.
τ∗OX = OX . Since i is a G-linearised isomorphism, it commutes with τ and
from this we can check that λ2

τ = id as follows:

λ2
τ ([a : b]) = λτ ([i(bτ∗b) : aτ∗b])

= [i((aτ∗b)τ∗(aτ∗b)) : i(bτ∗b)τ∗(aτ∗b)]
= [aτ∗a.i(bτ∗b) : i(bτ∗b)τ∗(aτ∗b)]
= [aτ∗a : τ∗(aτ∗b)]
= [aτ∗a : bτ∗a]
= [a : b]

Hence, the projective bundle P(OX ⊕ L) descends to a projective bundle P
over Y . Now, we show that P does not come from a vector bundle on Y . Sup-
pose P = P(E) for some vector bundle E over Y and so P(π∗(E)) = P(OX⊕L).
Thus, it follows that π∗(E) = M ⊗ (OX ⊕L), for some M ∈ Pic(X). By taking
determinants on both sides of this isomorphism we get det(π∗(E)) = M⊗2 ⊗L.
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In particular, this implies that M is not invariant. Indeed, if M is an in-
variant line bundle, L = det(π∗(E)) ⊗ (M∨)⊗2 is an invariant bundle. Hence
L ∼= OX because τ∗L ⊗ L = OX , a contradiction. Since M⊗2 ⊗ L is invariant
and τ∗L ⊗ L = OX , one has

M⊗2 ⊗ L = τ∗(M⊗2 ⊗ L) = τ∗M⊗2 ⊗ L∨

and so, τ∗M⊗2 = M⊗2 ⊗ L⊗2. Hence, from the torsion freeness of Pic(X) we
obtain τ∗M = M ⊗L, i.e., L = τ∗M ⊗M∨, but this contradicts the assumption
that L defines a non trivial element in E1,1

2 .

Lemma 2.2.7. Let π : X → Y be the universal cover of an Enriques surface Y
with ρ(X) = 10 , then π∗ : Br′(Y )→ Br′(X) is a nontrivial homomorphism.

Proof. We show that ρ(X) = 10, implies Pic(X)τ = Pic(X), i.e. all the line
bundles on X are invariant. Since ρ(X) = 10, Pic(X)τ ⊆ Pic(X) is a sublattice
of finite index. Thus, if L is a line bundle, there exists a positive integer r with
L⊗r ∈ Pic(X)τ , i.e.

τ∗L⊗r = L⊗r.

Hence
(τ∗L ⊗ L∨)⊗r = OX ,

Since Pic(X) is torsion free, we obtain

τ∗L ⊗ L∨ = OX .

i.e. L is an invariant line bundle. Thus, the group H1(Z/2Z,Pic(X)) vanishes
and the lemma follows by using the exact sequence (2.4).

Example 2.2.8. In this example we show the existence of a K3 surface X with
ρ(X) = 10 that covers an Enriques surface. First, we find a K3 surface with
Picard number 10. Let us define Λ := E8 ⊕ E8 ⊕ U ⊕ U ⊕ U and an involution
ρ of L by

ρ : Λ→ Λ, (e1, e2, h1, h2, h3) 7→ (e2, e1,−h1, h3, h2).

Note that this involution is the universal action (cf. [1], Ch. VIII, Lemma
19.1), i.e. whenever π : X → Y is the universal covering of an Enriques surface
Y with τ : X → X the covering involution, then there exists an isometry
φ : H2(X,Z)→ Λ such that φ ◦ τ∗ = ρ ◦ φ. The ρ-invariant sublattice of Λ is

Λ+ = {x ∈ Λ | ρ(x) = x} = {(e, e, 0, h, h) | e ∈ E8, h ∈ U},

which is isometric to E8(2)⊕ U(2), where the isometry is given as follows

ρ+ : Λ+ → E8(2)⊕ U(2), (e, e, 0, h, h) 7→ (e, h)

Hence, E8(2)⊕U(2) ↪→ E⊕2
8 ⊕U⊕3 is a primitive embedding. Since this lattice

has Picard number 10 and signature (1,9), by ([30], Cor. 2.9) we can find an
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algebraic K3 surface X with NS(X) = E8(2) ⊕ U(2). Now, we show that X
has a fixed point free involution. The isometry ρ+ also yields an isomorphism

(Λ+)∨/Λ+ ∼= (Z/2Z)10.

It means that Λ+ is a 2-elementary lattice with l(AΛ+) = 10. This gives us an
involution

τ∗ : H2(X,Z)→ H2(X,Z)

which is the identity on Λ+ and acts like multiplication by (−1) on TX =
(Λ+)⊥ = (NS(X))⊥ where the orthogonal complement is taken in H2(X,Z).
Since τ∗ is the identity on Λ+ (=NS(X) through the isometry ρ+), it is effective
and so it maps a Kähler class to a Kähler class. By the global Torelli theorem
for K3 surfaces, there exists a unique involution τ : X → X which induces τ∗ on
H2(X,Z). Then it follows from ([34], Thm. 4.2.2) that the set of fixed points
Xτ is empty. It means that the involution τ is fixed point free, hence X/τ is an
Enriques surface.

2.3 The Brauer group Brtop(Y )

For any smooth projective variety X we can define the cohomogical topological
Brauer group as Br′top(X) := H2(X, C∗X). If Y is an Enriques surface then
since H3(X,Z) = 0, we get that the homomorphism π∗ : Br′top(Y )→ Br′(X) is
trivial. In this section we will study the Brauer group Brtop(Y ) which is defined
later and we will give a topological view of the results obtained in Section 2.2.
First we recall the following well known Theorem:

Theorem 2.3.1 (Schwarzenberger, [40]). Let X be a projective surface. A
topological complex vector bundle admits a holomorphic structure if and only if
its first Chern class belongs to the Neron–Severi group of the surface.

Lemma 2.3.2. Let Y be an Enriques surface. Then every topological vector
bundle on Y has a holomorphic structure.

Proof. Let E be a CX–bundle on Y . Since Y is an Enriques surface then
NS(Y ) ∼= H2(Y,Z). Hence c1(E) ∈ NS(Y ) and by Theorem 2.3.1, E has a
holomorphic structure.

Lemma 2.3.3. On any K3 surface, every topological projective bundle comes
from a topological vector bundle.

Proof. Let X be a K3 surface. Since Hi(X, CX) = 0 for all i > 0, then by the
long exact sequence obtained from the exponential exact sequence

0→ Z→ CX → C∗X → 0

we get H2(X, C∗X) ∼= H3(X,Z). Hence H2(X, C∗X) = 0, because X is a K3
surface. Now from the exact sequence

0→ C∗X → GLn(CX)→ PGLn(CX)→ 0 (2.5)



47

we get
H1(X,GLn(CX))→ H1(X,PGLn(CX))→ 0,

and the statement follows.

Lemma 2.3.4. If Y is an Enriques surface, then the inclusion OY ⊂ CY induces
a surjective map

H1(Y, PGL2(OY )) � H2(Y, C∗Y )

Proof. From the exponential exact sequence

0→ Z→ CY → C∗Y → 0

and Lemma 2.1.9 we get

H2(Y, C∗Y ) ∼= H3(Y,Z) ∼= H2(Y,O∗Y ) = Z/2Z. (2.6)

From (2.5) we get a surjective morphism

f : H1(Y, PGL2(OY )) � H2(YO∗Y )

and an isomorphism H2(Y,O∗Y ) ∼= H2(Y, C∗), and these define a surjective mor-
phism H2(Y, PGL2(CY )) � H2(Y, C∗Y ).

We define the topological Brauer group of X by

Brtop(X) := BS(X)/ ∼

where BS(X)={isomorphism classes of topological Brauer–Severi varieties over
X} and [P] ∼ [Q] if and only if there exists topological vector bundles E and
F of positive rank such that P ⊗ P(E) ∼= Q⊗ P(F ). If Y is an Enriques surface
then Brtop(Y ) = Br′top(Y ) = Z/2Z because of (2.6).

Now, we introduce the following spectral sequence

Ep,q2,Z := Hp(Z/2Z,Hq(X,Z))⇒ Hp+q(Y,Z) (2.7)

associated to the covering map π : X → Y of an Enriques surface Y and we
compute some of its terms. Since X is a K3 surface, the vanishing H1(X,Z) =
H3(X,Z) = 0 implies

En,12,Z = En,32,Z = 0 (2.8)

for all integers n. Now, we compute the terms En,02,Z for all integers n. First, we
note that the action of Z/2Z is trivial on Z. Since the term E0,0

2,Z corresponds to
the invariant elements of Z under the action of Z/2Z we obtain that E0,0

2,Z = Z.
Now, let us compute the terms En,02,Z for odd n. Since the action is trivial, we
deduce that

0 = N(m) = τ∗(m) +m = 2m.
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Then it follows that m = 0 and hence by Theorem 2.2.1 that En,02,Z = 0. On the
other hand, if n is an even number we can see that En,02,Z = Z/2Z. Summarizing,
we have proved that

En,02,Z =


Z, if n = 0
0, if n is odd
Z/2Z, if n is even, n 6= 0.

(2.9)

From (2.8) and (2.9) we deduce

E0,3
∞,Z = E2,1

∞,Z = E3,0
∞,Z = 0

and this implies
E1,2
∞,Z = Z/2Z. (2.10)

The homomorphism c1 : Pic(X) → H2(X,Z) induces a homomorphism C :
E1,1

2 → E1,2
2,Z which can be easily described by using Theorem 2.2.1 as

C :
{L ∈ Pic(X)|τ∗L⊗ L ∼= OX}
{τ∗M ⊗M∨|M ∈ Pic(X)}

→ {` ∈ H
2(X,Z)|τ∗`+ ` = 0}

{τ∗m−m|m ∈ H2(X,Z)}
, (2.11)

sending [L] to [c1(L)]. The following lemma was also independently proved by
Beauville in [2].

Lemma 2.3.5. The homomorphism C is injective.

Proof. Let [L] be the class of a line bundle L such that τ∗L⊗L = OX . Suppose
that C(L) = 0. Thus, there exists a topological line bundle M such that L =
M∨ ⊗ τ∗M and so

−c1(M) + c1(τ∗M) = c1(M∨ ⊗ τ∗M) = c1(L) ∈ NS(X). (2.12)

On the other hand, since the topological rank 2 vector bundle τ∗M ⊕M has a
linearization (i.e. the trivial linearization), there exists a topological vector bun-
dle E on Y such that π∗E = τ∗M ⊕M . By Lemma 2.3.2, E has a holomorphic
structure and induces one on τ∗M ⊕M . Thus, by Theorem 2.3.1,

c1(τ∗M ⊕M) ∈ NS(X). (2.13)

Therefore, by equations 2.12 and 2.13, 2c1(τ∗M) = (c1(τ∗M) − c1(M)) +
c1(τ∗M ⊗M) ∈ NS(X). Since X is a K3 surface, c1 : Pic(X) ↪→ H2(X,Z)
is injective and so

H2(X,Z)
NS(X)

↪→ H2(X,OX).

Thus c1(τ∗M) ∈ NS(X) because 2c1(τ∗M) ∈ NS(X) and H2(X,OX) is torsion
free, and so we conclude [L] = 0 in E1,1

2 .
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In Example 2.2.8 we have introduced the involution ρ on the K3 lattice
Λ := (E8)⊕2⊕U⊕3 and also defined the invariant lattice Λ+. We define similarly
the ρ-anti-invariant sublattice of Λ by

Λ− := {` ∈ Λ | ρ(`) = −`}.

Given ` = (x, y, z1, z2, z3) ∈ Λ, we get ρ(`) = −` if and only if

` = (x,−x, z1, z2,−z2).

Let m = (m1,m2, n1, n2, n3) ∈ Λ, then

ρ(m)−m = (m2 −m1,−(m2 −m1),−2n1, n3 − n2,−(n3 − n2)).

It yields that
` = (x,−x, z, y,−y) ∈ Λ−

can be written as ρ(m) −m for some m ∈ Λ if and only if z = −2n for some
n ∈ U .

Let Y be an Enriques surface and π : X → Y its universal covering map.
Consider the spectral sequence E1,2

2,Z associated to this (see (2.7)). Let ` ∈
H2(X,Z) such that τ∗` = −`. Thus, 2` = ` − τ∗`, i.e. [2`] = 0 in E1,2

2,Z =
H1(Z/2Z,H2(X,Z)). Therefore, any element in E1,2

2,Z = H1(Z/2Z,H2(X,Z)) is
2-torsion.

By definition, E1,2
3,Z = ker(d1,2

2 : E1,2
2,Z → E3,1

2,Z). Thus

E1,2
3,Z = E1,2

2,Z

because E3,1
2,Z = H3(Z/2Z,H1(X,Z)) = 0. Since

Z/2Z = E1,2
∞,Z = ker(d1,2

3 : E1,2
3,Z → E4,0

3,Z),

we have only the following two options:

(1) E1,2
2,Z = Z/2Z× Z/2Z and d1,2

3 6= 0,

(2) E1,2
2,Z = Z/2Z and d1,2

3 = 0.

Now, we show that (2) can not occur.

Lemma 2.3.6. Let Y be an Enriques surface and π : X → Y its universal
covering map. Then the map d1,2

3 6= 0 of the spectral sequence Ep,q2,Z associated
to the morphism π : X → Y .

Proof. First, we compute the term E0,4
∞,Z. Since

E1,3
∞,Z = E3,1

∞,Z = 0,
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E4,0
2,Z = Z/2Z and E2,2

2,Z is a torsion group, one finds

E0,4
∞,Z = Z.

Suppose that d1,2
3 = 0. Since X is a K3 surface

E0,3
2,Z = H0(Z/2Z,H3(X,Z)) = 0 (2.14)

E2,1
2,Z = H2(Z/2Z,H1(X,Z)) = 0. (2.15)

By definition of the terms of the spectral sequence

E4,0
3,Z =

E4,0
2,Z

im(d2,1
2 : E2,1

2,Z → E4,0
2,Z)

and by equation (2.15), E4,0
3,Z = E4,0

2,Z. Since d1,2
3 = 0,

E4,0
4,Z =

E4,0
3,Z

im(d1,2
3 : E1,2

3,Z → E4,0
3,Z)

= E4,0
3,Z,

and finally by equation (2.14)

E4,0
∞,Z = E4,0

5,Z =
E4,0

4,Z

im(d0,3
4 : E0,3

4,Z → E4,0
4,Z)

= E4,0
4,Z.

Hence we conclude E4,0
∞,Z = E4,0

2,Z = Z/2Z, a contradiction.

2.4 The family of marked Enriques surfaces

Let M be the (fine) moduli space of marked Enriques surfaces and let f : Y →M
be the universal family of Enriques surfaces parametrized by M with an f -ample
line bundle H. Consider the following commutative diagram

X g−−−−→ M

π

y ∥∥∥
Y f−−−−→ M

where X is a family of K3 surfaces such that for all t ∈M, πt : Xt → Yt is the
covering map. Denote by τt : Xt → Xt the covering involution.

Remark 2.4.1. Let M be the moduli space of unmarked Enriques surfaces and
let f : Y →M be a local universal family (i.e. Kuranishi family). Thus, for any
small neighbourhood V (contractible) around a point 0 ∈ M corresponding to
an Enriques surface Y0 we may form the restriction covering g|V : X|V → V
and give an isometry φ0 : H2(X0,Z) → Λ with φ0 ◦ τ∗0 = ρ ◦ φ0 (where ρ
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is the involution defined in Example 2.2.8). This can be extended to a unique
marking φ : R2(g|V )∗Z ∼= Λ and φt◦τ∗t = ρ◦φt holds for any t ∈ V because V is
contractible. Since the following arguments are local, we may assume that there
exists a universal involution τ : X → X and we can show a similar statement
for the moduli space M instead of M.

Let τ : X → X be a universal involution and a marking φ : R2g∗Z ∼= Λ
such that for all t ∈ M the restricted morphisms φt : H2(Xt,Z) ∼= Λ satisfies
φt ◦ τ∗t = ρ ◦ φt. Pick ` ∈ Λ with ρ(`) = −`, i.e. ` = (x,−x, z, y,−y) for some
(x, y, z) ∈ E8 ⊕ U ⊕ U such that z 6= 2n for all n ∈ U . This is equivalent to say
that ` can not be written as ρ(m) −m for some m ∈ Λ. In other words for all
t ∈ M, τ∗t (φ−1(`)) = −φ−1(`) and φ−1(`) can not be written as τ∗t m −m for
some m ∈ H2(Xt,Z).

Let M` ⊂M be defined by

M` := {t ∈ M|∃pt ∈ NS(Xt) ∃m ∈ H2(Xt, Z), pt − φ−1
t (`) = τ∗m − m, d1,2

3,Z([φ−1
t (`)]) = 0}.

Thus, for every t ∈ M` there exists Lt ∈ Pic(Xt) with c1(Lt) = pt and so
[Lt] ∈ E1,1

2 is a nontrivial class. Hence by Lemma 2.2.6, P(OXt ⊕ Lt) descends
to a projective bundle Pt that does not come from a vector bundle on Yt, i.e. the
class of Pt is the nontrivial class of Br′(Yt). In particular π∗t : Br′(Yt)→ Br′(Xt)
is trivial. Define I to be the set

I := {` ∈ Λ | ρ(`) = −`∀m ∈ Λ, ` 6= ρ(m)−m}

We claim that
⋃
`∈I M` parametrizes all the Enriques surfaces Y with trivial

morphism π∗ : Br′(Y ) → Br′(X). Let Y be an Enriques surface such that the
morphism π∗ : Br′(Y )→ Br′(X) is trivial. Take [Y ] =: t ∈M the corresponding
point in the moduli space M. Since π∗ : Br′(Y ) → Br′(X) is trivial, E1,1

∞ =
Z/2Z and by Lemma 2.2.4, there exists a line bundle (holomorphic) Lt such that
d1,1
2 ([Lt]) = 0. This shows that d1,2

3,Z(Lt) = 0 and so t ∈M` where ` = φt(c1(Lt)).
For every t ∈M\

⋃
`∈I M` there is a topological line bundle Lt such that P(OXt

⊕
Lt) (this represents a nontrivial class in Brtop(Xt)) descends to the nontrivial
class of Brtop(Yt) (a similar proof holds for it as in the holomorphic case).
However there also exists a holomorphic projective bundle Pt that represents the
nontrivial class of Br(Yt)(= Brtop(Yt)). When we consider the projective bundle
as a topological bundle, this also represents the nontrivial class of Brtop(Yt).
Hence π∗Pt is a holomorphic projective bundle and represents the nontrivial
class [π∗Pt] = [P(OXt⊕Lt)] (the holomorphic projective bundle Pt is considered
as a topological bundle) class of Brtop(Xt). Thus, M\

⋃
`∈I M` parametrizes all

the Enriques surfaces Y with π∗ : Br′(Y )→ Br′(X) nontrivial.
The results described so far were obtained independently. Only at this point

Beauville’s article appeared on the arxiv. He was able to deal with the differ-
ential d1,2

3,Z more effectively and proved:

Proposition 2.4.2 ([2], Cor. 5.6 and its proof). Let λ = (α, α′, β) ∈
H2(X,Z) such that α, α′ ∈ E8 ⊕ U and β ∈ U and ε the class of e + f in
U2 := U/2U where {e, f} is the basis of the hyperbolic lattice U . Then the
following conditions are equivalent:
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(i) π∗λ = 0 and λ /∈ (1− τ∗)(H2(X,Z));

(ii) τ∗λ = −λ and λ2 ≡ 2(mod. 4).

(iii) the class β̄ = ε and α′ = −α.

Corollary 2.4.3. π : Br′(Y ) → Br′(X) is trivial if and only if there exists a
line bundle L on X with τ∗L = L∨ and c1(L)2 ≡ 2 (mod4)

We will say more about Beauville’s work in Section 2.6. Now, we quickly
recall a kind of divisors in the period domain Ω of E8(2)⊕U(2)-polarized marked
K3 surfaces. If we fix the unique primitive embedding of E8(2) ⊕ U(2) in the
K3 lattice Λ, then Ω is by definition

Ω := {[ω] ∈ P((E8(2)⊕ U(2))⊥C ) |ω2 = 0, ωω̄ > 0}

Let S ⊂ Λ be a primitive sublattice of rank 11 containing the lattice E8(2) ⊕
U(2). Then the subset

Ω(S) := {[ω] ∈ P(S⊥C ) |ω2 = 0, ωω̄ > 0}

is called the Heegner divisor of type S in Ω.

Proposition 2.4.4 ([36], Prop. 3.1). If X corresponds to a very general
point of Ω(S), i.e. in the complement of a union of countably many proper
closed analytic subset of Ω(S), then we have NS(X) = S.

Remark 2.4.5. Ohashi proved in ([36], Thm. 3.4) that for a lattice S = U(2)⊕
E8(2)⊕〈−2N〉 with N ≡ 0(mod 4), there exists a K3 surfaceX with an Enriques
quotient and such that NS(X) = S.

Example 2.4.6. Now, we will show the existence of a K3 surface X covering an
Enriques surface Y with ρ(X) = 11 and E1,1

2 = 0 which from (2.4) implies that
π∗ : Br′(Y )→ Br′(X) is injective. Let α ∈ Λ, defined by

α = (
∑
i odd

aiei,−
∑
i odd

aiei, 0, f1 − f2,−f1 + f2),

where ai are integers. This is a primitive element, α = β − ρ(β) where

β = (a1e1 + a3e3,−a5e5 − a7e7, 0, f1, f2)

and
α2 = −4

∑
i odd

a2
i = −4m.

Thus, E8(2) ⊕ U(2) ⊕ αZ ↪→ E⊕2
8 ⊕ U⊕3 is a primitive embedding (note that

E8(2)⊕ U(2) diagonally embedds in E⊕2
8 ⊕ U⊕3). Note that by the Lagrange’s

four-square theorem ([24], Prop. 17.7.1), m can take any positive integer value.
By Proposition 2.4.4 and Remark 2.4.5, there exists a K3 surface X with an
Enriques quotient Y and such that

NS(X) = E8(2)⊕ U(2)⊕ αZ
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and by ([1], Lemma 19.1) there exists an isometry φ : H2(X,Z)→ Λ such that
φ ◦ τ∗ = ρ ◦ φ. Now, we take a line bundle L with c1(L) = φ−1(α). Then,

α = −ρ(α)

= −ρ(φ(φ−1(α)))

= −φ(τ∗(φ−1(α)))
= −φ(τ∗(c1(L)))
= −φ(c1(τ∗L))
= φ(c1(τ∗L∨)).

Then, from the injectivity of φ, it follows that

c1(τ∗L ⊗ L) = 0,

and since X is a K3 surface we deduce

τ∗L ⊗ L = OX ,

i.e. [L] ∈ E1,1
2 . Now, since α = β − ρ(β) and E1,1

2 ⊆ E1,2
2,Z (Lemma 2.3.5), then

[L] = 0 in E1,1
2 .

Now, we show that for any line bundleM such that τ∗M⊗M = OX , there
exists an integer n such thatM = L⊗n. By construction of the above primitive
embedding, we have that the action of τ∗ on E8(2)⊕U(2) is the identity. Thus,
ifM is a line bundle, it can be written asM = L⊗n⊗F for some invariant line
bundle F . Hence

OX = τ∗M⊗M = τ∗L⊗n ⊗ τ∗F ⊗ L⊗n ⊗F = F⊗2.

Hence F = OX because Pic(X) is torsion free and thus M = L⊗n. Thus, we
have showed that E1,1

2 = 0.

Remark 2.4.7. We have given until here only examples of K3 surfacesX covering
Enriques surfaces Y such that π∗ : Br′(Y )→ Br′(X) is injective. We will show
in the next chapter that this is not the case for any K3 surface that has an
Enriques quotient.

Example 2.4.8. Let E1, E2 be elliptic curves over k (a field of characteristic
0) which are not isogeneous over k̄ and such that their points of order 2 are
defined over k. For i = 1, 2, let Di be a principal homogeneous space of Ei
whose class in H1(Gal(k̄/k), Ei) has order 2. The antipodal involution P 7→ −P
defines an involution on D1 and on D2, and defines a Kummer surface X by
considering the minimal desingularization of the quotient of D1 × D2 by the
simultaneous antipodal involution. Since X is a Kummer surface, it covers an
Enriques surface Y . Harari and Skorobogatov were able to prove that for this
example the morphism π∗ : Br′(Ȳ ) → Br′(X̄) is injective (See Cor 2.8, [16])
where X̄ and Ȳ are the surfaces over k̄ obtained from X and Y respectively by
extending the ground field from k to k̄. We also know from Corollary 4.4 in [30]
that ρ(X̄) ≥ 17 because X is a Kummer surface.
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2.5 More about the morphism Br′(Y )→ Br′(X)

Let π : X → Y be the universal covering map of an Enriques surface Y and let
τ be the fixed point free involution of X associated to π. We proceed to study
how τ acts on H2(X,O∗X) and on H3(X,O∗X).

Lemma 2.5.1. Let X be a K3 surface with a fixed point free involution τ . The
involution τ acts on H2(X,O∗X) as τ∗α = α−1.

Proof. The involution τ acts on H2(X,OX) as − id. Indeed, since H2(X,OX)
is one dimensional then the action τ on this is ± id. If θ is a 2-form and τ∗θ = θ,
the form descends to a 2-form on Y := X/τ . This is a contradiction because for
any Enriques surface h0,2(Y ) = 0. From the exponential sequence we get

H2(X,OX) -- H2(X,O∗X)

?

H2(X,OX) -- H2(X,O∗X)

?
-id τ∗

Hence for every α ∈ H2(X,O∗X), τ∗α = α−1.

Lemma 2.5.2. Let X be a K3 surface. Any element in the Brauer group Br′(X)
is 2-divisible.

Proof. From the exact sequence

0→ Z/2Z→ O∗X → O∗X → 0

we get
0→ Br′(X)2 → Br′(X)→ Br′(X)→ 0

because H3(X,Z/2Z) = 0.

Notation 2. Let ρ := ρ(X) denote the Picard number of a surface X.

Remark 2.5.3. Let X be a K3 surface with an involution τ that has no fixed
points. For any invariant line bundle L under τ , there is a line bundle M
on the Enriques surface Y := X/τ such that π∗M = L. This is no longer
true for Brauer classes. Indeed, by Lemma 2.5.1, the invariant elements of
Br′(X) under τ consist of all the 2-torsion elements of Br′(X). Since X is a K3
surface, Br′(X)2 ∼= (Z/2Z)22−ρ. Hence, since ρ ≤ 20, there exists an element
α ∈ Br′(X) such τ∗α = α which is not in the image im(π∗ : Br′(Y )→ Br′(X)).
In conclusion, you may have picked α that happens to be in the image, but since
22− ρ ≥ 2, there is always another one.

Now, let us compute some elements of the spectral sequence Ep,q2 introduced
in (2.1), associated to the universal covering map π : X → Y of an Enriques
surface Y . First, we know from the exponential sequence that

H3(Y,O∗Y ) ∼= H4(Y,Z) = Z. (2.16)
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Remark 2.5.4. By Theorem 2.2.1,

E2,1
2 = H2(Z/2Z,Pic(X)) =

{L ∈ Pic(X) | τ∗L⊗ L∨ = OX}
{τ∗M ⊗M |M ∈ Pic(X)}

and

E1,2
2 = H1(Z/2Z,H2(X,O∗X)) =

{α ∈ H2(X,O∗X) | τ∗(α).α = 1}
{τ∗(β).β−1 |β ∈ H2(X,O∗X)}

.

By Lemmas 2.5.1 and 2.5.2, E1,2
2 = 0. Now, if L ∈ Pic(X) with τ∗L ⊗ L∨ =

OX . Then [L⊗2] = [τ∗(L) ⊗ L], i.e. [L] is a 2-torsion element in E2,1
2 =

H2(Z/2Z,Pic(X)).

Thus E1,2
2 = 0, E3,0

2 = Z/2Z (cf. equation 2.3) and E2,1
2 is a torsion group

(by the last remark). In conclusion, we get from the equation 2.16 which says
that E3 = Z, that

E0,3
∞ = Z, (2.17)

E1,2
∞ = E2,1

∞ = E3,0
∞ = 0. (2.18)

The action τ on H3(X,O∗X) = H4(X,Z) = Z is ± id. If τ∗ = − id, then
E0,3

2 = H0(Z/2Z,H3(X,O∗X)) = H3(X,O∗X)τ = 0, but this contradicts the fact
E0,3
∞ = Z. Thus, we have shown the following lemma. (Note that this lemma

trivially follows only from the fact that H3(X,O∗X) = H4(X,Z) = Z and the
action on the last cohohomogy group is id, but the computations above are
needed).

Lemma 2.5.5. Let X be a K3 surface with a fixed point free involution τ . Then
the action of τ on H3(X,O∗X) is trivial.

Remark 2.5.6. Let L be a line bundle such that τ∗L ⊗ L = OX . Thus, L⊗2 =
L⊗ (τ∗L)∨, i.e. [L]⊗ [L] = [L⊗2] = 0 in E1,1

2 = H1(Z/2Z,Pic(X)). Since

E0,2
2 = H0(Z/2Z,H2(X,O∗X)) = H2(X,O∗X)τ ,

by Lemma 2.5.1, E0,2
2 = Br′(X)2. Indeed, if α ∈ Br′(X) with τ∗α = α, then by

Lemma 2.5.1, α = τ∗α = α−1, i.e. α is a 2-torsion element of Br′(X). On the
other hand, if α ∈ Br′(X)2, then by Lemma 2.5.1, α = α−1 = τ∗α. Finally, by
Remark 2.5.3, E0,2

2 = Br′(X)2 = (Z/2Z)22−ρ.

Since any element in E1,1
2 is a 2-torsion element, we have only the following

four cases:

(1) E1,1
2 = 0 or

(2) E1,1
2 = Z/2Z, d1,1

2 = id, i.e. E1,1
∞ = 0 or

(3) E1,1
2 = Z/2Z, d1,1

2 = 0, i.e. E1,1
∞ = Z/2Z or

(4) E1,1
2 = Z/2Z× Z/2Z, d1,1

2 6= 0, i.e. 0→ Z/2Z→ E1,1
2

d1,1
2→ E3,0

2 → 0.
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Lemma 2.5.7. Let Y be an Enriques surface, π : X → Y the universal cov-
ering map of Y and τ the fixed point free involution given by π. If E1,1

2 =
H1(Z/2Z,Pic(X)) = 0, then E2,1

2 = H2(Z/2Z,Pic(X)) = (Z/2Z)20−ρ.

Proof. Since E1,1
2 = 0,

E3,0
3 =

E3,0
2

im(d1,1
2 : E1,1

2 → E3,0
2 )

= E3,0
2 = Z/2Z

and by (2.18)

0 = E3,0
∞ = E3,0

4 =
E3,0

3

im(d0,2
3 : E0,2

3 → E3,0
3 )

.

Thus d0,2
3 is surjective. Since E1,1

2 = 0,

Z/2Z = E0,2
∞ = E0,2

4 = ker(d0,2
3 : E0,2

3 → E3,0
3 ), (2.19)

and since E3,0
3 = E3,0

2 = Z/2Z and all elements in E0,2
2 are 2-torsion,

E0,2
3 = Z/2Z× Z/2Z. (2.20)

By equation (2.18)

0 = E2,1
∞ =

E2,1
2

im(d0,2
2 : E0,2

2 → E2,1
2 )

,

and thus the morphism d0,2
2 : E0,2

2 → E2,1
2 is surjective. Hence, by (2.19) and

the fact that any element in E0,2
2 is a 2-torsion element (cf. Remark 2.5.6)

E0,2
2 = E0,2

3 × E2,1
2 .

From E0,2
2 = (Z/2Z)22−ρ (cf. Remark 2.5.6) and (2.20), E2,1

2 = (Z/2Z)20−ρ.

Lemma 2.5.8. Let Y be an Enriques surface, π : X → Y the universal cov-
ering map of Y and τ the fixed point free involution given by π. If E1,1

2 =
H1(Z/2Z,Pic(X)) = Z/2Z and E1,1

∞ = 0. Then E2,1
2 = H2(Z/2Z,Pic(X)) =

(Z/2Z)21−ρ.

Proof. Since E1,1
2 6= 0 and E1,1

∞ = 0, im(d1,1
2 ) = E3,0

2 = Z/2Z (cf. equation 2.3).
Thus

E3,0
3 =

E3,0
2

im(d1,1
2 : E1,1

2 → E3,0
2 )

= 0. (2.21)

By Remark 2.5.4, any element in E2,1
2 is 2-torsion. Then there is an integer m

such that E2,1
2 = (Z/2Z)m. By equation 2.18

0 = E2,1
∞ =

E2,1
2

im(d0,2
2 : E0,2

2 → E2,1
2 )
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and thus im(d0,2
2 ) = (Z/2Z)m. Hence

ker(d0,2
2 ) = (Z/2Z)22−ρ−m

because E0,2
2 = (Z/2Z)22−ρ. Since E0,2

∞ = Z/2Z,

Z/2Z = E0,2
∞ = E0,2

4 = ker(d0,2
3 : ker(d0,2

2 )→ E3,0
3 )

and from equation 2.21

Z/2Z = ker(d0,2
2 ) = (Z/2Z)22−ρ−m

and so m = 21− ρ.

Lemma 2.5.9. Let X be a K3 surface that covers an Enriques surface Y and
such that its spectral sequence satisfies E1,1

2 = H1(Z/2Z,Pic(X)) = Z/2Z and
E1,1
∞ = Z/2Z. Then E2,1

2 = H2(Z/2Z,Pic(X)) = (Z/2Z)21−ρ.

Proof. By assumptions d1,1
2 is trivial and so

E3,0
3 =

E3,0
2

im(d1,1
2 : E1,1

2 → E3,0
2 )

= E3,0
2 = Z/2Z

and by definition

E3,0
4 =

E3,0
3

im(d0,2
3 : E0,2

3 → E3,0
3 )

. (2.22)

On the other hand,

0 = E0,2
∞ = ker(d0,2

3 : E0,2
3 → E3,0

3 )

because E1,1
∞ = Z/2Z. Hence d0,2

3 : E0,2
3 → E3,0

3 = Z/2Z is injective and this
and (2.22) imply the following equivalence

(1) E0,2
3 = Z/2Z if and only if E3,0

∞ = E3,0
4 = 0.

By (2.18), E3,0
∞ = 0. Thus, the equivalence (1) implies E0,2

3 = Z/2Z. Since by
Remark 2.5.4, any element in E2,1

2 is a 2-torsion element, there exists an integer
m such that E2,1

2 = (Z/2Z)m. By (2.18)

0 = E2,1
∞ =

E2,1
2

im(d0,2
2 : E0,2

2 → E2,1
2 )

,

and thus
im(d0,2

2 : E0,2
2 → E2,1

2 ) = (Z/2Z)m,

i.e. the map d0,2
2 is surjective. Since E0,2

2 = (Z/2Z)22−ρ (cf. Remark 2.5.6),
E0,2

3 = ker(d0,2
2 ) it yields from the surjectivity of d0,2

2 that

E0,2
3 = (Z/2Z)22−ρ−m.

Thus, m = 21− ρ because E0,2
3 = Z/2Z. Hence

E2,1
2 = (Z/2Z)21−ρ.
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Lemma 2.5.10. Let Y be an Enriques surface and π : X → Y the universal
covering map of Y such that E1,1

2 = H1(Z/2Z,Pic(X)) = (Z/2Z)2. Then E2,1
2 =

H2(Z/2Z,Pic(X)) = (Z/2Z)22−ρ. Moreover ρ(X) ≥ 12.

Proof. Since E1,1
2 = (Z/2Z)2 and E3,0

2 = Z/2Z, the map d1,1
2 6= 0. Hence

E1,1
∞ = E1,1

3 = ker(d1,1
2 ) is nontrivial, and thus it must be Z/2Z. By definition

E3,0
3 =

E3,0
2

im(d1,1
2 : E1,1

2 → E3,0
2 )

= 0 (2.23)

and by (2.18)

E2,1
∞ = E2,1

3 =
E2,1

2

im(d0,2
2 : E0,2

2 → E2,1
2 )

= 0. (2.24)

Since E1,1
∞ = Z/2Z, then

0 = E0,2
∞ = E0,2

4 = ker(d0,2
3 : E0,2

3 → E3,0
3 ).

Thus, by equation 2.23, E0,2
3 = 0. By definition

E0,2
3 = ker(d0,2

2 : E0,2
2 → E2,1

2 )

and then d0,2
2 : E0,2

2 → E2,1
2 is injective. Hence by (2.24),

E2,1
2 = E0,2

2 .

Since
E0,2

2 = Br′(X)2 = (Z/2Z)22−ρ,

one finds
E2,1

2 = (Z/2Z)22−ρ.

Since E2,1
2 is a quotient of Pic(X)τ and thus of Pic(Y ) = Z10×Z/2Z, one finds

22− ρ ≤ 10 (note that Z/2Z ⊂ Pic(Y ) goes to zero in E2,1
2 ). Thus ρ ≥ 12

In conclusion, by Lemmas 2.5.7, 2.5.8, 2.5.9, 2.5.10 and the statement before
Lemma 2.5.7, we obtain that we only have the following four cases:

(1) E1,1
2 = 0, E2,1

2 = (Z/2Z)20−ρ or

(2) E1,1
2 = Z/2Z, E1,1

∞ = 0, E2,1
2 = (Z/2Z)21−ρ or

(3) E1,1
2 = Z/2Z, E1,1

∞ = Z/2Z, E2,1
2 = (Z/2Z)21−ρ or

(4) E1,1
2 = (Z/2Z)2, E1,1

∞ = Z/2Z, E2,1
2 = (Z/2Z)22−ρ.

Note that in the cases (2) and (3) we have that ρ ≥ 11.

Proposition 2.5.11. Let X be a K3 surface with a fixed point free involution
τ and Picard number ρ such that H2(Z/2Z,Pic(X)) = (Z/2Z)22−ρ. Then the
morphism π∗ : Br′(Y )→ Br′(X) is trivial, where Y := X/〈τ〉.
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Proof. Since E2,1
2 = (Z/2Z)22−ρ, we are in case (4). Hence E1,1

∞ = Z/2Z. By
(2.4), the morphism π : Br′(Y )→ Br′(X) is trivial.

Proposition 2.5.12. Let X be a K3 surface with a fixed point free involution
τ and Picard number ρ such that H2(Z/2Z,Pic(X)) = (Z/2Z)20−ρ. Then the
morphism π∗ : Br′(Y )→ Br′(X) is nontrivial, where Y := X/〈τ〉.

Proof. Since E2,1
2 = (Z/2Z)20−ρ, we are in case (1). Hence E1,1

∞ = 0. By (2.4),
the morphism π∗ : Br′(Y )→ Br′(X) is injective.

Let Y be an Enriques surface and π : X → Y its universal covering map.
We know that if X is as in the first case above, then ρ(X) ≥ 10, and if X is
one of the cases (2) or (3), then ρ(X) ≥ 11 and if X is as in the case (4), then
ρ(X) ≥ 12. Thus, if ρ(X) = 10, the K3 surface X satisfies the conditions of
the first case and we obtain E1,1

2 = 0. Hence, by equation 2.4, the morphism
π∗ : Br′(Y ) → Br′(X) is injective. This is another proof for the same result
obtained before in Lemma 2.2.7.

Proposition 2.5.13. Let X be a K3 cover of an Enriques surface Y such
that ρ(X) = 11 and NS(X) = U(2) ⊕ E8(2) ⊕ 〈−2N〉, where N ≥ 2. Then
π∗ : Br′(Y )→ Br′(X) is injective if and only if N is an even number.

Proof. Note that NS(X) = U(2)⊕E8(2)⊕〈−2N〉 = π∗NS(Y )⊕〈−2N〉 (because
as in Example 2.2.8, Λ+ ∼= U(2) ⊕ E8(2) and this is diagonally embedded in
the K3 lattice), i.e. τ∗ acts trivially on U(2) ⊕ E8(2). Now, we show that τ
acts as − id on 〈−2N〉. Let L ∈ NS(X) denote the generator of 〈−2N〉, i.e.
c21(L) = −2N . Thus,

τ∗L = I ⊗ L⊗k (2.25)

for some integer k and invariant line bundle I and since τ is an involution:

L = τ∗τ∗L = τ∗I ⊗ τ∗L⊗k

= I ⊗ τ∗L⊗k

= I ⊗ (I ⊗ L⊗k)⊗k

= I⊗(k+1) ⊗ L⊗k
2
.

Hence
L⊗(k2−1) ⊗ I⊗(k+1) = OX (2.26)

and we find that L⊗(k2−1) is an invariant line bundle. Thus,

OX = L⊗(−k2+1) ⊗ τ∗L⊗(k2−1) = (L∨ ⊗ τ∗L)⊗(k2−1)

and if k 6= 1,−1, then OX = L∨⊗ τ∗L (because Pic(X) is a free torsion group),
i.e. L is an invariant line bundle which contradicts our assumption about L. If
k = 1, then from (2.26) we get I = OX and then by (2.25), L is an invariant
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bundle which contradicts our assumption on L. Thus k = −1 and from (2.26),
I = OX and from (2.25) we obtain τ∗L⊗L = OX , i.e. τ acts as − id in 〈−2N〉.

Now, we show that if M is a line bundle such that τ∗M ⊗M = OX , then
M = L⊗m for some integer m. Indeed, if M = L⊗m⊗F where F is an invariant
line bundle, then

OX = τ∗M ⊗M = τ∗L⊗m ⊗ τ∗F ⊗ L⊗m ⊗ F = F⊗2.

Hence F = OX because Pic(X) is torsion free and thus M = L⊗m.

Suppose that N is an even number and that π∗ : Br′(Y ) → Br′(X) is triv-
ial. By Corollary 2.4.3 there exists a line bundle M = L⊗m for some integer m
such that c1(M)2 ≡ 2(mod 4). Thus −2m2N ≡ 2(mod 4), which implies that
m2N is an odd number and thus N is an odd number, a contradiction. On the
other hand, let us suppose that π∗ : Br′(Y )→ Br′(X) is injective. By Corollary
2.4.3, c21(L) 6≡ 2(mod 4). Hence, (1 − N) 6≡ 0(mod 2) and thus N is an even
number.

2.6 Overview of the paper of Beauville

In this section we will coment briefly the paper [2] of Beauville. Let Y be an
Enriques surface over C. We denote by kY the image of KY in H2(Y,Z/2Z)
and by bY the nonzero element of Br′(Y ).

Proposition 2.6.1 (Prop. 3.5, [2]). (1) The kernel of π∗ : H2(Y,Z/2Z)→
H2(X,Z/2Z) is {0, kY }.

(ii) The Gysin map π∗ : H2(X,Z)→ H2(Y,Z) is surjective.

Beauville also introduced the spectral sequence 2.1 as we did in this chapter
and proved the following proposition.

Proposition 2.6.2 (Prop. 4.1, [2]). Let π : X → Y be an étale, cyclic
covering of smooth projective varieties over an algebraically closed field k. Let σ
be a generator of the Galois group G of π, and let Nm : Pic(X)→ Pic(Y ) be the
norm homomorphism. Then the kernel of π∗ : Br′(Y ) → Br′(X) is canonically
isomorphic to KerNm /(1− σ∗)(Pic(X)).

This Proposition yields to the following corollary similar to our Lemma 2.2.6.

Corollary 2.6.3 (Cor. 4.3, [2]). Assume k = C, and H1(X,OX) = H2(Y,OY ) =
0. Then the following conditions are equivalent

(i) The map π∗ : Br′(Y )→ Br′(X) is not injective;

(ii) there exists L ∈ Pic(X) whose class λ = c1(L) in H2(X,Z) satisfies π∗λ =
0 and λ /∈ (1− σ∗)(H2(X,Z)).
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It is worth to mention that the difference between this result and ours is
that in the Lemma 2.2.6 we found explicitily the Brauer–Severi variety on X
that corresponds to the pullback of the nontrivial element bY .

Let E be the lattice E8 ⊕ U and let H2(Y,Z)tf be the quotient of H2(Y,Z)
by its torsion subgroup {0, kY }. We have isomorphisms

H2(Y,Z)tf ∼= E, H2(X,Z) ∼= E ⊕ E ⊕ U

such that π∗ : H2(Y,Z)tf → H2(X,Z) is identified with the diagonal embedding
δ : E ↪→ E ⊕ E and σ∗ with the involution ρ introduced in Example 2.2.8.

For any lattice M , its scalar product induces a product M2 ⊗ M2 → Z/2Z
where M2 := M/2M . Moreover, if M is even, there exists a quadratic form
q : M2 → Z/2Z defined by q(m) = 1

2m̃
2, where m̃ ∈ M is any lift of m ∈ M2.

Let ε denote the unique element with q(ε) = 1, i.e. the class of e + f where
{e, f} is a hyperbolic basis of U . Hence, Beauville showed:

Proposition 2.6.4 (Prop. 5.3, [2]). The image of π∗ : H2(Y,Z/2Z) →
H2(X,Z/2Z) is δ(E2)⊕ (Z/2Z)ε.

Corollary 2.6.5 (Cor. 5.5, [2]). The kernel of π∗ : U2 → {0, kY } is {0, ε}.

From this result Beauville obtained the Proposition 2.4.2, which is very use-
ful to describe the moduli space of marked Enriques surfaces. I want to remark
that since I was not aware about a mistake that I had made in the proof of
Lemma 2.2.6, the moduli space that I have explained in Section 2.4. in a previ-
ous version was still not well described.

For λ ∈ Λ−, Beauville associated the hypersurface Hλ of Ω defined by λ.ω = 0
where Ω ⊂ P(Λ−C ) is the domain defined by the equations

ω.ω = 0, ω.ω̄ > 0, ω.λ 6= 0 for all λ ∈ Λ− with λ2 = −2.

Proposition 2.6.6 (Prop. 6.2, [2]). We have π∗bY = 0 if and only if the
period map ℘(Y, ϕ) belongs to one of the hypersurfaces Hλ for some vector λ ∈
Λ− with λ2 ∼= 2(mod. 4)

Finally, Beauville completed the picture by proving the following lemma.

Lemma 2.6.7 (Lem. 6.3, [2]). Let λ be a primitive element of Λ−.

(i) The hypersurface Hλ is non-empty if and only if λ2 < −2.

(ii) If µ is another primitive element of Λ− with Hµ = Hλ 6= ∅, then µ = ±λ.
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Chapter 3

Quotient Varieties

In this note we will show that some statements proved by Bridgeland in [4] hold
also in the twisted case.

3.1 Quotient varieties

It is well known that if G is a finite cyclic group that acts freely on a smooth
projective variety X̃ then the quotient X = X̃/G is also a smooth projective
variety. As an example of this we can consider X to be an Enriques surface,
and then there is a K3 surface X̃ and a fixed point free involution, τ , on X̃ such
that X = X̃/τ . Now we recall the following proposition (Prop. 3.2 [4])

Proposition 3.1.1. Let X be a smooth projective variety whose canonical bun-
dle has finite order n. Then there is a smooth projective variety X̃ with trivial
canonical bundle and an unbranched cover πX : X̃ → X of degree n, such that

πX,∗OX̃ ∼=
n−1⊕
i=0

ωiX

Furthermore, X̃ is uniquely determined up to isomorphism and there is a free
action of the cyclic group G = Z/nZ on X̃ such that πX : X̃ → X = X̃/G is
the quotient morphism.

Definition 3.1.2. Let X be a smooth projective variety with canonical bundle
of order n. The unique smooth projective variety X̃ of Proposition 3.1.1 together
with the quotient morphism πX : X̃ → X is called the canonical cover of X.

We assume that all varieties are smooth varieties with canonical bundle of
finite order and we also assume that for any smooth variety X, the Picard group
of its canonical cover, Pic(X̃), is torsion free. Note that Enriques surfaces X
satisfy this condition. In this section we fix two twisted varieties (X,α) and
(Y, β) and their respective canonical covers πX : X̃ → X and πY : Ỹ → Y .
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Definition 3.1.3. A functor Φ̃ : Db(Ỹ , π∗Y β)→ Db(X̃, π∗Xα) is called equivari-
ant if there is an automorphism µ : G→ G, and an isomorphism of functors

g∗ ◦ Φ̃ ∼= Φ̃ ◦ µ(g)∗

for each g ∈ G.

Definition 3.1.4. A lift of a FM transform Φ : Db(Y, β) → Db(X,α) is a FM
transform Φ̃ : Db(Ỹ , π∗Y β)→ Db(X̃, π∗Xα) such that the following diagrams

-

? ?

-

6 6

-

-Db(Ỹ , π∗Y β) Db(X̃, π∗Xα)

Db(X, α)Db(Y, β)

Φ̃

Φ

πX∗πY ∗

Db(X̃, π∗Xα)

π∗
Y π∗

X

Φ

Φ̃

Db(X, α)

Db(Ỹ , π∗Y β)

Db(Y, β)

commute.

Let us suppose that the canonical bundle of the variety X has order n, i.e.,
X is the quotient of X̃ by a free action of G = Z/nZ on X̃. Let g be a generator
of G and α̃ := π∗Xα. We take this cocycle to be defined over an g−invariant
covering, i.e., defined over a covering π−1Ui where Ui covers X and π−1(Ui)
consists of n copies of Ui. Let G-Coh(X̃, α̃) be the category of G-linearized α̃-
twisted sheaves on X̃ and Sp-Coh(X,α) be the category of α-twisted coherent
sheaves E such that E ⊗ ωX ∼= E. The following lemma follows from the
untwisted version

Remark 3.1.5. If G is a cyclic group, a twisted sheaf F ∈ G-Coh(X̃, α̃) if and
only if g∗F ∼= F , where g ∈ G is a generator.

Lemma 3.1.6. Let F be an element in Coh(X̃, π∗α). Then there is an element
E ∈ Coh(X,α) such that π∗E = F if and only if there is an isomorphism
g∗F ∼= F .

Proof. Clearly, if F = π∗E, then g∗F = F . On the other hand, let us suppose
that g∗F ∼= F . Let F = (Fi, ϕij) be an element in G-Coh(X̃, π∗α). Since the
open covering {Ui} of X that defines α satisfies that π−1(Ui) consists of n := |G|
copies of Ui, the coherent sheaf Fi on π−1(Ui) descends to a coherent sheaf Ei
defined on Ui. Since {ϕij} is g-invariant (on disjoint copies of Ui) it descends
to maps ψij : Ei|Ui∩Uj → Ej |Ui∩Uj which defines (Ei, ψij) as an element in
Coh(X,α).

Remark 3.1.7. Suppose that E ∈ Coh(X,α) and F ∈ Coh(X̃, π∗α) such that
π∗F = E. Thus, by projection formula

E ⊗ ωX ∼= π∗(F ⊗ π∗(ωX)) = π∗F = E.
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Thus, it induces on E the structure of a module over π∗(OX̃). Unfortunately,
this does not imply that there exists a π∗α-twisted coherent sheaf F such that
π∗F = E. Indeed, suppose α has order 2 and π∗ : Br′(X) → Br′(X̃) injective.
Let E be a locally free α-twisted sheaf of rank 2 on X (this exists by Theorem
3.13 in [7]). Thus, if there exists a locally free π∗α-twisted sheaf F such that
π∗F = E, then F is a line bundle and hence π∗α is trivial, a contradiction.

Lemma 3.1.8 (Cor. 5.3, [6]). Let X be an Enriques surface. If Φ : Coh(X,α)→
Coh(Y, β) is an equivalence, then there exists an isomorphism f : X ∼→ Y , such
that f∗β = α.

Corollary 3.1.9. Let X be an Enriques surface. If Φ : Coh(X,α)→ Coh(X,β)
is an equivalence, then [α] = [β] ∈ Br′(X).

Remark 3.1.10. By Lemma 4.6 in ([17], Ch.I), any complex E• in Db(X,α) has
an injective resolution I•.

Definition 3.1.11. A G-object of Db(X̃, π∗Xα) is an object Ẽ together with an
isomorphism λh : Ẽ → h∗(Ẽ) in Db(X̃, π∗Xα) for each h ∈ G such that for any
pair g, h ∈ G,

λhg = g∗(λh) ◦ λg.

Proposition 3.1.12. Let Ẽ be a G-object of Db(X̃, π∗α). Then there is an
object E of Db(X,α) such that π∗E ∼= Ẽ.

Proof. The proof is completely analogous of the untwisted version of the propo-
sition proved in ([4], Prop. 3.1).

Notation 3. Given πX : X̃ → X the canonical cover of a variety and α ∈ Br′(X)
we denote by α̃ := π∗X(α) ∈ Br′(X̃) if there is no confusion.

Lemma 3.1.13. Let Φ : Db(X,α) → Db(X,α) and Φ̃ : Db(X̃, α̃) → Db(X̃, α̃)
be FM transforms, such that Φ̃ lifts Φ.

(a) If Φ ∼= idDb(X,α), then Φ̃ ∼= g∗ for some g ∈ G with g∗α̃ = α̃.

(b) If Φ̃ ∼= idDb(X̃,α̃), then Φ is an equivalence and Φ(−) = (ω⊗dX ⊗ −) for
some integer d.

Proof. To prove (a), let us take a point x̃ ∈ X̃ and x := πX(x̃). Then for
E := Φ̃(Ox̃) we have πX,∗(E) = Ox. Indeed, since Φ̃ lifts Φ ∼= idDb(X,α) we get

πX,∗(E) = Φ(πX,∗(Ox̃)) = Ox.

Hence E = Of(x̃) for some point f(x̃) ∈ π−1
X (x), and thus Φ̃ defines a morphism

f : X̃ → X̃ such that
Φ̃(−) ∼= f∗(L⊗−)

for some line bundle L ∈ Pic(X̃). Besides, since f(x̃) ∈ π−1
X (x), f = g ∈ G.

Take an arbitrary α-twisted locally free sheaf F . Since g−1
∗ ◦ Φ̃ also lifts the

identity, we have
(g−1
∗ ◦ Φ̃)(π∗XF ) = π∗XF
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and so
L⊗ π∗XF ∼= π∗XF.

Hence Lr ⊗ det(π∗XF ) = det(π∗XF ), where r := rk(F ). Thus L⊗r ∼= OX̃ and
then L ∼= OX̃ because Pic(X̃) is torsion free by our general assumption.

To prove (b), take points x in X and x̃ in X̃ such that πX(x̃) = x. Since Φ̃
lifts Φ, one has

πX,∗(Φ̃(Ox̃)) = Φ(πX,∗(Ox̃))
πX,∗(Ox̃) = Φ(Ox)
Ox = Φ(Ox).

Thus Φ is an equivalence of the form (L⊗−) for some line bundle L on X. As
Φ̃ lifts Φ, we get Φ̃(π∗X(E)) = π∗X(Φ(E)) for any locally free α-twisted sheaf E.
Since Φ̃ = idX̃ ,

π∗X(E) = π∗X(L)⊗ π∗XE.

Hence π∗XOX̃ = π∗XL
⊗r where r := rk(E) and so π∗XL = OX̃ because Pic(X̃)

has no torsion. Now, we use projection formula to compute L in terms of the
canonical bundle

L⊗ (
n−1⊕
i=0

ω⊗iX ) = L⊗ πX,∗(π∗XOX) = πX,∗(π∗XL) =
n−1⊕
i=0

ω⊗iX

Hence L is some power of ωX .

In the following lemma we explain one way to find liftings and the proof
is exactly the same as in [4], which uses projection formula and base change
theorem for twisted sheaves.

Lemma 3.1.14. Let P̃ and P be objects of Db(Ỹ × X̃, β̃−1 � α̃) and Db(Y ×
X,β−1 � α) respectively, such that

(πY × idX)∗(P) ∼= (idỸ ×πX)∗(P̃) (3.1)

Then Φ̃ = ΦP̃
Ỹ→X̃ is a lift of Φ = ΦPY→X .

Remark 3.1.15. The object (πY ×idX)∗(P) is in Db(Ỹ ×X, (πY ×idX)∗(β−1�α))
and since

((πY × idX)∗(p∗Y β
−1 ⊗ p∗Xα))(ỹ, x) = (p∗Y β

−1)(y, x)⊗ (p∗Xα)(y, x)

= β−1(y)⊗ α(x)

= (π∗Y β
−1)(ỹ)⊗ α(x)

= (p∗
Ỹ

(π∗Y β
−1)⊗ p∗Xα)(ỹ, x)

= (β̃−1 � α)(ỹ, x)

then (πY × idX)∗(P) ∈ Db(Ỹ ×X, β̃−1 � α).
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Therefore by following Theorem 4.5 in [4], we obtain the following theorem.

Theorem 3.1.16. Let X and Y be smooth projective varieties with canonical
bundles of order n, and πX : X̃ → X, πY : Ỹ → Y their canonical covers. Let
ΦP be a FM transform

ΦP : Db(Y, β)→ Db(X,α)

such that there exists P̃ ∈ Db(Ỹ × X̃, β̃−1.α̃) that satisfies (πY × idX)∗(P) ∼=
(idỸ ×πX)∗(P̃ ). Then ΦP lifts to an equivariant FM transform

Φ̃ : Db(Ỹ , π∗Y β)→ Db(X̃, π∗Xα).

Conversely, any equivariant FM transform Φ̃ : Db(Ỹ , π∗Y β) → Db(X̃, π∗Xα) is
the lift of a FM transform Φ : Db(Y, β)→ Db(X,α).

3.2 Derived categories of Enriques surfaces

In this section we use X and Y to represent smooth Enriques surfaces. In
particular, Br′et(X) = Br′an(X)tors = Br′an(X) = Z/2Z and we simply write
Br′(X) for any of the Brauer groups.

Definition 3.2.1. An Enriques surface is called special, if it carries an elliptic
pencil together with a 2-section which is a (−2)-curve.

If X is a special Enriques surface, the K3 covering X̃ admits an elliptic
fibration with two sections. Let Sh(X̃) be the Tate–Shafarevich group consisting
of all algebraic elliptic fibrations whose Jacobian is X̃ (see page 35). Shafarevich
defined an identification between the Tate–Shafarevich group of X̃ and the étale
cohomological Brauer group H2(X̃,Gm) (see page 36) i.e, Sh(X̃) = Br′(X̃).

Notation 4. Let π : X → P1 be an algebraic elliptic fibration with a section. To
any α ∈ Br′(X), let πα : Xα → P1 denote the corresponding genus one fibration
in Shet(X) (see page 31).

In this chapter, if we consider a Fourier–Mukai transform ΦP : Db(X,α)→
Db(Y, β) between Enriques surfaces X and Y , we suppose that this has a lifting
to their K3 covers.

We recall some facts about K3 surfaces. Let X be a K3 surface. Since H2(X,Z)
is unimodular, H1(X,Z) is torsion free and Lemma 1.1.1,

Br′(X) ∼= T (X)∨ ⊗Q/Z ∼= Hom(T (X),Q/Z).

Thus, an n-torsion element α ∈ Br′(X) is identified with a surjective morphism
α : T (X)→ Z/nZ and we define the non-primitive sublattice of T (X):

T (X,α) := kerα
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Definition 3.2.2. Let X be a K3 surface with a B-field B ∈ H2(X,Q). Let
H̃(X,B,Z) denote the weight-two Hodge structure on H∗(X,Z) with

H̃2,0(X,B) := exp(B)(H2,0(X))

and H̃1,1(X,B) its orthogonal complement with respect to the Mukai pairing.

Theorem 3.2.3 (Cor. 7.8, [23]). Let (X,α) and (Y, β) be twisted K3 surfaces.
Choose B ∈ H2(X,Q) and B′ ∈ H2(X ′,Q) such that α = αB and α′ = αB′ . If

Φ : Db(X,α)→ Db(X ′, α′)

is an equivalence, then there exists a naturally defined Hodge isometry

ΦB,B
′

∗ : H̃(X,B,Z)→ H̃(X ′, B′,Z)

The same statement also holds for abelian surfaces. This theorem implies
the following corollary

Corollary 3.2.4 (Cor. 3.1.10, [42]). Let (X,α) be a twisted K3 surface and
(Y, β) be a twisted variety. If there exists an equivalence Φ : Db(X,α) →
Db(Y, β), then Y is a K3 surface.

Theorem 3.2.5 (Mukai). Suppose that X1 and X2 are two K3 surfaces with
ρ(Xi) ≥ 12. Then up to a sign any Hodge isometry T (X1) ∼= T (X2) is induced
by an isomorphism X1

∼= X2.

Lemma 3.2.6. Let (X,α) be an Enriques surface and (Y, β) a twisted variety.
If there exists an equivalence Φ : Db(X,α) → Db(Y, β) then Y is an Enriques
surface.

Proof. Due to Theorem 3.1.16 (and our general), Φ extends to an equivalence
Φ̃ : Db(X̃, α̃) → Db(Ỹ , β̃). From the last corollary, Ỹ is a K3 surface and thus
Y is an Enriques surface.

Remark 3.2.7. In the particular case that X of the last lemma is a special
Enriques surface we get another proof for it. We comment quickly here. From
the equivalence Φ, we get that ωY is also of order 2 and that kod(Y ) = 0 (by
Theorem 1.6.15). Then either Y is a bielliptic surface or an Enriques surface.
Suppose that Y is a bielliptic surface. Hence its canonical cover Ỹ is an abelian
surface given as a quotient of a product of two elliptic curves by a finite group or
a K3 surface. Since the equivalence Φ extends to an equivalence Φ̃ : Db(X̃, α̃)→
Db(Ỹ , β̃), we get by Theorem 1.7.25 an equivalence Ψ : Db(X̃α̃) → Db(Ỹβ̃).
Hence Ỹβ̃ is a K3 surface and so Ỹ also is. Therefore Y is an Enriques surface.

Lemma 3.2.8. Let X and Y be special Enriques surfaces and suppose that
either ρ(X̃) ≥ 12 or ρ(Ỹ ) ≥ 12. Then any equivalence Φ : Db(X,α)→ Db(Y, β)
implies an isomorphism X̃α̃

∼= Ỹβ̃.
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Proof. The equivalence Φ can be lifted to an equivalence Φ̃ : Db(X̃, α̃) →
Db(Ỹ , β̃) and this implies an equivalence Ψ : Db(X̃α̃) → Db(Ỹβ̃) by Theorem
1.7.25. Suppose that ρ(X̃) ≥ 12. Since Db(X̃, α̃) ∼= Db(X̃α), we get an isometry
T (X̃α) ∼= T (X̃, α̃) ⊆ T (X̃). Since rk(T (X)) = rk(T (X,α)), also ρ(X̃α̃) ≥ 12.
From the equivalence Ψ we get ρ(Ỹβ) = ρ(X̃α) ≥ 12. Hence the equivalence Ψ
implies an isomorphism X̃α̃

∼= Ỹβ̃ by Theorem 3.2.5.

Remark 3.2.9. Let X, Y be Enriques surfaces and Φ : Db(X,α)→ Db(Y, β) an
equivalence. Consider Φ̃ : Db(X̃, α̃) → Db(Ỹ , β̃) a lifting of Φ. It induces an
isometry TΦ̃ : T (X̃, α̃) ∼= T (Ỹ , β̃). On the other hand we have the standard
formula on lattices

|disc(T (X̃, α̃))| = ord(α̃)2.|disc(T (X̃))|,

and
|disc(T (Ỹ , β̃))| = ord(β̃)2.|disc(T (Ỹ ))|.

Hence it follows that if ord(α̃) 6= ord(β̃) then X � Y .

Lemma 3.2.10. Let X be an Enriques surface such that ρ(X̃) = 10. If Φ :
Db(X,α)→ Db(X) is an equivalence then α = 1 in Br′(X).

Proof. The equivalence Φ lifts to an equivalence Φ̃ : Db(X̃, α̃) → Db(X̃). This
induces an isometry T (X̃, α̃) ∼= T (X̃), and then α̃ = 1. Since ρ(X̃) = 10, the
morphism π∗ : Br′(X)→ Br′(X̃) is injective by Lemma 2.2.7. Hence α = 1.

Lemma 3.2.11. Let X,Y be Enriques surfaces. If π : X̃ → X is the universal
covering map and ρ(X̃) = 10 and Φ : Db(X,α) → Db(Y, β) is an equivalence.
Then α is trivial in Br′(X) if and only if β is trivial in Br′(Y ).

Proof. Since ρ(X̃) = 10, then ρ(Ỹ ) = 10. Hence both of them have Picard
lattice E8(2)⊕ U(2). Suppose π∗(α) = 1 in Br′(X̃). The equivalence Φ lifts to
an equivalence Φ̃ : Db(X̃, α̃)→ Db(Ỹ , β̃). Thus, if π∗(β) is nontrivial in Br′(Ỹ ),

disc(T (X̃)) = disc(T (Ỹ , β̃)) = 4 disc(T (Ỹ )). (3.2)

But, since NS(X̃) = NS(Ỹ ) = E8(2) ⊕ U(2), disc(T (X̃)) = disc(T (Ỹ )). Thus
by equation (3.2), disc(T (X̃)) = 0, a contradiction.

3.3 K3 cover of Picard number 11

The following lemma can be obtained by following the argument in (Prop. 7.3,
[23]). However we will give the proof.

Lemma 3.3.1. Let (X,α = αB) be a twisted K3 surface with ρ(X) ≥ 11 and
such that X is elliptically fibred with a section. Then there exists a K3 surface
Z and a Fourier–Mukai equivalence Φ : Db(Z)→ Db(X,αB).
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Proof. Since T (X,B) ⊂ T (X) is a sublattice, Theorem 1.12.4 in [33] (see Re-
mark 3.3.2) yields a primitive embedding T (X,B) ↪→ Λ. By the surjectivity of
the period map, there is a K3 surface Z and a Hodge isometry T (Z) ∼= T (X,B).
This induces an embedding i : T (Z) ↪→ T (X) such that it is the kernel of
α : T (X) → Z/nZ, where n is the order of α in Br′(X). Let ` ∈ T (X) with
α(`) = 1 and t ∈ T (Z) the element such that i(t) = n.`. By ([32], Prop.
6.6), there exists a compact, smooth, two-dimensional moduli space M of stable
sheaves on Z such that φ : T (Z) → T (M) maps t to an element divisible by n
and such that (1/n)φ(t) generates the quotient Coker(φ) = Z/nZ. Căldăraru
showed that the Brauer class defined by Coker(φ) ∼= Z/nZ is the obstruction
for the existence of a universal sheaf. Moreover he showed the existence of a
FM equivalence ΦP : Db(Z) ∼= Db(M,β−1) defined by the the 1 � β−1-twisted
universal sheaf. There is an isomorphism ψ : T (X) ∼= T (M) that sends (1/n)i(t)
to (1/n)φ(t) and yields the following commutative diagram

0 −−−−→ T (Z) i−−−−→ T (X) α−−−−→ Z/nZ −−−−→ 0∥∥∥ yψ ∥∥∥
0 −−−−→ T (Z) −−−−→ T (M)

β−1

−−−−→ Z/nZ −−−−→ 0

(3.3)

Since T (X) ∼= T (M), there exists an isomorphism f : M ∼= X such that
f∗|T (X) = ±ψ, because the Néron–Severi group of every elliptic fibred K3 sur-
face with a section contains the hyperbolic lattice. Besides from the commuta-
tivity of the diagram we get f∗α = β−1 and this gives the equivalence

Db(Z) Φ→ Db(M,β−1)
f∗→ Db(X,α)

Remark 3.3.2. Let us recall the result of Nikulin ([33], Thm. 1.12.4) used in
the last lemma: Every even lattice T of signature (t+, t−) admits a primitive
embedding into some even unimodular lattice Γ of signature (l+, l−) if l+−l− ≡ 0
(mod 8), t+ ≤ l+, t− ≤ l− and

t+ + t− ≤
1
2
(l+ + l−).

If we take (l+, l−) = (3, 19) then Γ = E⊕2
8 ⊕ U⊕3 and the conditions are imme-

diately satisfied for T = T (X,B).

The following proposition is due to Hisanori Ohashi ([36], Thm. 3.5).

Proposition 3.3.3. Let X be a K3 surface with Picard number 11 covering an
Enriques surface. Then the Néron–Severi lattice of X is one of the followings

(1) U(2)⊕ E8(2)⊕ 〈−2N〉, where N ≥ 2,

(2) U ⊕ E8(2)⊕ 〈−4M〉 where M ≥ 1.
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Notation 5. A K3 surfaceX with Picard number 11 covering an Enriques surface
is said to be of type T1 if the Néron-Severi lattice of X is NS(X) = U(2) ⊕
E8(2)⊕ 〈−2N〉, where N ≥ 2 and the K3 surface is said to be of type T2 if the
Néron–Severi lattice of X is NS(X) = U ⊕ E8(2)⊕ 〈−4M〉 where M ≥ 1.

Remark 3.3.4. If X is a K3 surface with NS(X) = U(2)⊕E8(2)⊕〈−2N〉, then
we can assume that the involution acts as −1 on 〈−2N〉.

Note that Proposition 3.3.3 implies that T (X) is one of the following

(1) T (X) = U(2) ⊕ E8(2) ⊕ 〈2N〉, NS(X) = U(2) ⊕ E8(2) ⊕ 〈−2N〉, where
N ≥ 2;

(2) T (X) = U ⊕E8(2)⊕ 〈4M〉, NS(X) = U ⊕E8(2)⊕ 〈−4M〉, where M ≥ 1.

Lemma 3.3.5. Let X,Y be K3 surfaces covering Enriques surfaces with Picard
number ρ(X) = ρ(Y ) = 11 and Φ : Db(X,α) → Db(Y, β) an equivalence with
ord(α) = ord(β) in their respective Brauer groups. Then one of the following
holds

(1) T (X) ∼= T (Y ) as lattices,

(2) T (X) = U(2)⊕ E8(2)⊕ 〈2N〉 and T (Y ) = U ⊕ E8(2)⊕ 〈8N〉, N ≥ 2,

(3) T (X) = U ⊕ E8(2)⊕ 〈8N〉 and T (Y ) = U(2)⊕ E8(2)⊕ 〈2N〉, N ≥ 2.

Proof. By Proposition 3.3.3, one of the following holds

(1) T (X) = U ⊕ E8(2)⊕ 〈4M〉, T (Y ) = U ⊕ E8(2)⊕ 〈4N〉, M,N ≥ 1,

(2) T (X) = U(2)⊕E8(2)⊕〈2M〉 and T (Y ) = U(2)⊕E8(2)⊕〈2N〉, M,N ≥ 2,

(3) T (X) = U(2) ⊕ E8(2) ⊕ 〈2N〉 and T (Y ) = U ⊕ E8(2) ⊕ 〈4M〉, N ≥ 2,
M ≥ 1,

(4) T (X) = U ⊕E8(2)⊕ 〈4M〉, T (Y ) = U(2)⊕E8(2)⊕ 〈2N〉, M ≥ 1, N ≥ 2.

Since E8 is unimodular and negative definite,

disc(U(2)⊕ E8(2)⊕ 〈2m〉) = 211m,

disc(U ⊕ E8(2)⊕ 〈4m〉) = 210m.

Since Φ is an equivalence, there exists a Hodge isometry T (X,α) ∼= T (Y, β) and
this implies that discT (X) = discT (Y ) (by Remark 3.2.9). Thus, if either (1)
or (2) holds, we have M = N , i.e, T (X) ∼= T (Y ) as lattices. On the other hand,
if (3) holds, one has

211N = discT (X) = discT (Y ) = 210M,

i.e. M = 2N . Similarly if (4) holds, we also get that M = 2N .
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Corollary 3.3.6. Let X be a K3 surface that covers an Enriques surface. If
T (X) = U ⊕ E8(2) ⊕ 〈4M〉 such that either M 6≡ 0 mod 2 or M = 2 and Φ :
Db(X,α)→ Db(Y, β) is an equivalence of categories such that ord(α) = ord(β).
Then T (X) ∼= T (Y ) as lattices.

Proof. Suppose that T (Y ) = U(2) ⊕ E8(2) ⊕ 〈2N〉, for some N ≥ 2. Thus, by
the last lemma M = 2N . This contradicts the assumption M 6≡ 0 mod 2.

Corollary 3.3.7. Let X, Y be K3 surfaces that cover Enriques surfaces and
let Φ : Db(X,α) → Db(Y ) be an equivalence with α of order n. If T (Y ) =
U ⊕ E8(2)⊕ 〈4M〉, M ≥ 1. Then M ≡ 0 mod n2.

Proof. It follows from the equivalence Φ that there is an isometry

T (X,α) ∼= T (Y ) = U ⊕ E8(2)⊕ 〈4M〉

for some M ≥ 1. Suppose that α is non-trivial. Since X covers an Enriques
surface, one of the following holds

(1) T (X) = U ⊕ E8(2)⊕ 〈4N〉, N ≥ 1,

(2) T (X) = U(2)⊕ E8(2)⊕ 〈2N〉, N ≥ 2.

If we are in the second case,

210M = discT (X,α) = ord(α)2 discT (X) = ord(α)2211N.

Hence M ≡ 0 mod n2. On the other hand, in the first case we get

210M = discT (X,α) = ord(α)2 discT (X) = ord(α)2210N

and also M ≡ 0 mod n2.

Remark 3.3.8. Let X be a K3 surface such that hyperbolic plane U ↪→ NS(X).
Kondo proved in [27] that if the orthogonal of U in NS(X) is a negative definite
even lattice, there exists an elliptic fibration for X with a section. In particu-
lar, if the K3 surface X covers an Enriques surface and ρ(X) = 11 such that
NS(X) = U ⊕ E8(2) ⊕ 〈−4M〉, M ≥ 1 (See Example 2.1.5). Then X has an
elliptic fibration with a section.

Lemma 3.3.9. Let X be an Enriques surface. Let Φ : Db(X,α)→ Db(Y, β) be
an equivalence such that T (Ỹ ) = U ⊕E8(2)⊕ 〈4M〉, 2 - M and π∗Y β = 1. Then
X̃ ∼= Ỹ

Proof. Since ord(π∗Y α) is either 1 or 2, then by Corollary 3.3.7, π∗Xα = 1 in
Br(X̃). Thus, there exists an equivalence Φ̃ : Db(X̃) → Db(Ỹ ). Since Ỹ is
elliptically fibred with a section (by Remark 3.3.8), the number of Fourier–
Mukai partners of Ỹ is 1 (by Cor. 2.7 in [20]), i.e. X̃ ∼= Ỹ .

Let us recall a proposition proved by Ohashi in [36] under the notation
2N = 2epe11 ...p

el

l and 4M = 2epe11 ...p
el

l in Proposition 3.3.3.
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Proposition 3.3.10 (Ohashi). The number of Enriques quotient for a K3
surface X, i.e. {Y |Y Enriques surface, ∃X � Y }/ ', does not exceed the
number

B0 :=



2l−1 if X is of type T1 and e = 1
(25 + 1).2l+4 if X is of type T1 and e = 2
2l+10 if X is of type T1 and e ≥ 3
1 if X is of type T2 and e = 2, l = 0
2l−1 if X is of type T2 and e = 2, l > 0
22l+5 if X is of type T2 and e ≥ 3

Proposition 3.3.11. Let X and Y be Enriques surfaces such that the K3 cov-
ering Ỹ of Y has transcendental lattice T (Ỹ ) = U(2)⊕E8(2)⊕ 〈4M〉 and such
that M 6≡ 0(mod 4). If Φ : Db(X,α) → Db(Y ) is an equivalence. Then one of
the following holds

(1) T (X̃) = U ⊕ E8(2)⊕ 〈4M〉;

(2) X ∼= Y .

Proof. The equivalence Φ induces a Hodge isometry T (X̃, α̃) ∼= T (Ỹ ). If π∗X(α) =
1 in Br′(X̃), then T (X̃) ∼= T (Ỹ ). By Proposition 2.5.13, α = 1 in Br′(X).
Hence X ∼= Y (by Prop. 6.1. in [5]). Suppose that π∗X(α) has order 2. Since
T (X̃, α̃) ∼= T (Ỹ ), one of the following holds

(1) T (X̃) = U(2)⊕ E8(2)⊕ 〈M〉 and M ≡ 0(mod 2);

(2) T (X̃) = U ⊕ E8(2)⊕ 〈4M〉.

Since M 6≡ 0(mod 4), by Proposition 2.5.13, the first one option above does not
hold, i.e. T (X̃) = U ⊕ E8(2)⊕ 〈4M〉.

Example 3.3.12. Ohashi gave an explicit example in [35] of a K3 surface with
only one Enriques quotient. Let us recall it here. Let (x0 : x1, y0 : y1) be the
homogeneous coordinate of P1 × P1 and i : P1 × P1 → P1 × P1 the involution
defined by i(x0 : x1, y0 : y1) = (x1 : x0, y1 : y0). Consider the linear system L
consisting of divisors D of bidegree (4, 4) such that:

(a) the bihomogeneous equation of D is invariant under i,

(b) D has multiplicities at least 2 at both (0 : 1, 1 : 0) and (1 : 0, 0 : 1).

The linear system L is given by the divisors of bidegree (4, 4):

a0x
2
0x

2
1y

2
0y

2
1 + a1(x2

0x
3
1y

2
0y

2
1 + x3

0x1y
2
0y

2
1) + a2(x4

1y
2
0y

2
1 + x4

0y
2
0y

2
1) + a3(x3

0x1y0y
3
1 +

x0x
3
1y

3
0y1) + a4(x2

0x
2
1y0y

3
1 +x2

0x
2
1y

3
0y1) + a5(x0x

3
1y0y

3
1 +x3

0x1y
3
0y1) + a6(x4

1y0y
3
1 +

x4
0y

3
0y1) + a7(x2

0x
2
1y

4
1 + x2

0x
2
1y

4
0) + a8(x0x

3
1y

4
1 + x3

0x1y
4
0) + a9(x4

1y
4
1 + x4

0y
4
0).

The general member of L has exactly two ordinary nodes at (0 : 1, 1 : 0)
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and (1 : 0, 0 : 1) as singularities and does not contain the four fixed points
(1 : ±1, 1 : ±1). The double covering X̂ of P1 × P1 along D is a K3 surface
with two nodes and one of the liftings of i, say τ , is a free involution of X̂.
Thus Ŷ = X̂/τ defines a family of Enriques surfaces with one node. Denote
by X and Y the minimal desingularizations of X̂ and Ŷ respectively. The K3
surface is such that Pic(X) ∼= U ⊕ E8(2) ⊕ 〈−4〉 and only covers one Enriques
surface. We sketch this fact now. First, we note that if X and X ′ are iso-
morphic as quasi-polarized varieties (a quasi polarization is a nef line bundle),
then the isomorphism is induced by an element φ ∈ Aut(P3) that preserves
the defining quadratic equation of P1 × P1 ⊂ P3 and takes D to D′ (i.e. φ
stabilizes L). It can be showed that the stabilizer is G = 〈i, σ〉 ∼= (Z/2Z)2,
where σ : (x0 : x1, y0 : y1) 7→ (y0 : y1, x0 : x1). Then the family has dimension
10− (2− 1) = 9, and then a general member X has Picard number 11. Hence,
either Pic(X) = U(2)⊕E8(2)⊕〈−2N〉, N ≥ 2 or Pic(X) = U⊕E8(2)⊕〈−4M〉,
M ≥ 1. Let M (resp. K) be the invariant (resp. antinvariant) part of
the action of τ on Pic(X) and let E1, E2 the two (−2)-curves on X arising
from two nodes on X̂. Since the involution τ interchanges E1 and E2, then
E1 + E2 ∈ M and E1 − E2 ∈ K. Thus, K ∼= 〈−4〉. Since OX(E1) is a line
bundle, [Pic(X) : M ⊕K] = 2. This implies that Pic(X) = U ⊕ E8(2)⊕ 〈−4〉.

Now, let us see that this K3 surface (X, 1) has only one FM–partner. Let
(Y, α) be a K3 surface such that Φ : Db(Y, α) → Db(X) is an equivalence. By
Corollary 3.3.7, α = 1 in Br′(Y ). Hence we obtain an untwisted equivalence
Φ : Db(Y ) → Db(X) and then Y ∼= X because X is elliptically fibred with a
section by Remark 3.3.8, i.e. we have the following proposition.

Proposition 3.3.13. Let (X, 1) be as in the example. If (Y, α) is a twisted
FM–partner of (X, 1) such that Y covers an Enriques surface, then Y ∼= X and
α = 1 in Br′(Y ).

Corollary 3.3.14. Let (Y, 1) be the twisted Enriques surface given in the ex-
ample and (X,α) a twisted variety. If Φ : Db(X,α)→ Db(Y ) is an equivalence,
then X ∼= Y .

Proof. Since Φ is an equivalence, there exists an equivalence Φ̃ : Db(X̃, α̃) →
Db(Ỹ ). By Proposition 3.3.13, α̃ = 1 and X̃ ∼= Ỹ . Since the number of Enriques
quotients of Ỹ is 1 (Proposition 3.3.10), X ∼= Y .

Lemma 3.3.15. Let X and Y be Enriques surfaces. Suppose ρ(Ỹ ) ≥ 12 or
that Ỹ is elliptically fibred with a section and Φ : Db(X,α) → Db(Y ) is an
equivalence. Then X̃ ∼= Ỹ if and only if π∗Xα = 0.

Proof. Assume π∗Xα = 0. The equivalence Φ lifts to an equivalence

Φ̃ : Db(X̃, π∗Xα) ∼= Db(Ỹ ).

Hence there is an equivalence Ψ : Db(X̃) ∼= Db(Ỹ ) and so Ỹ ∼= X̃ because either
ρ(Ỹ ) ≥ 12 (and Theorem 3.2.5) or Ỹ is elliptically fibred with a section (and
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Cor. 2.7 in [20]). On the other hand, if f : Ỹ → X̃ is an isomorphism, we get an
equivalence Ψ := Φ̃◦f∗ : Db(Ỹ , f∗π∗Xα)→ Db(Ỹ ) where Φ̃ is the lift of Φ and f∗
is the equivalence induced by the isomorphism f . Hence from the equivalence
Ψ, we get by Remark 3.2.9 f∗π∗Xα = 0 in Br′(Ỹ ) and then π∗Xα = 0.

3.4 Supersingular K3 surfaces

Let X be a supersingular K3 surface, i.e. X is a K3 surface with Picard number
ρ(X) = 20. Thus, the transcendental lattice of X given by its intersection
matrix is (

2a c
c 2b

)
(3.4)

with respect to some basis {e1, e2}, where a, b > 0 and 4ab−c2 > 0. Keum gave
a criterion to know when a K3 surface covers an Enriques surface, which later
was improved by Ohashi in ([35], Theorem 1.2) where he proved:

Theorem 3.4.1 (Ohashi). Let X be an algebraic K3 surface. Then the fol-
lowing are equivalent

(1) X admits a fixed-point-free involution.

(2) There exists a primitive embedding of T (X) into Λ− = U ⊕ U(2) ⊕
E8(2)such that the orthogonal complement of T (X) in Λ− contains no
vectors of self-intersection −2.

By using this criterion, Sertöz found in [41] explicit conditions to know when
a supersingular K3 surface covers an Enriques surface in terms of the entries of
the intersection matrix of its transcendental lattice.

Theorem 3.4.2. If X is a supersingular K3 surface with transcendental lattice
given as in (3.4), then X covers an Enriques surface if and only if one of the
following conditions holds:

(1) a, b, and c are even.

(2) c is odd and ab is even.

(3) c is even, a or b is odd. The form ax2 + cxy + by2does not represent 1.

(4) c is even, a or b is odd. The form ax2 + cxy + by2represents 1, and
4ab− c2 6= 4, 8, 16.

Let X be a K3 surface with its transcendental T (X) generated by e1, e2 and
its corresponding matrix given by(

(e1.e1) (e1.e2)
(e1.e2) (e2.e2)

)
such that e21 > 0, e22 > 0. We show that there are only three cases of sublattices
of degree 2 for the lattice T (X). Before going on, we write (x, y) ∈ T (X) to
denote xe1 + ye2 and x, y ∈ Z. The possible sublattices of index two are
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(1) T1 :=
⋃
n∈Z{(x, y) ∈ T (X)|y = −x+ 2n},

(2) T2 :=
⋃
n∈Z{(x, y) ∈ T (X)|2y = −x+ 2n}, (2Z× Z ↪→ Z× Z),

(3) T3 :=
⋃
n∈Z{(x, y) ∈ T (X)|y = −2x+ 2n}, (Z× 2Z ↪→ Z× Z).

Let us see now that all the sublattices of degree 2 of T (X) are the described
above. All the points of the form 2ne1 + 2me2 belong to all the sublattices of
degree 2. Now if there is a point in the sublattice T of the form (2k+1)e1+2ne2
in the lattice, then the element (1, 0) also is in the lattice T , and so T consist
of all the elements of the form ne1 + (2m)e2. Hence T = T3.

If there is an element of the form 2me1 + (2k + 1)e2 in the sublattice, the
element (0, 1) is also in the lattice, and then the sublattice consists of all the
points of the form 2ne1 +me2 for all integers m,n. Hence T = T2.

Finally, the last possibility is that there is an element (2k1 + 1)e1 + (2k2 + 1)e2
in the sublattice. Thus the element (1, 1) is in the sublattice, and this gives the
lattice T1 that consists of all the points in⋃

k∈Z
{me1 + ne2 ∈ T (X)|n+m = 2k,m, n ∈ Z}.

Now, we will find the set of generators for all the lattices. We treat first with
the lattice T3. Suppose that {(a, 2b), (c, 2d)} is a basis for the lattice T3. Since
(1, 0) ∈ T3, there exist integers m,n such that

ma+ nc = 1, (3.5)

2mb+ 2nd = 0.

Thus

m =
−d

bc− ad
, n =

b

bc− ad
.

Since (0, 2) ∈ T3, there exists integers s, t such that

sa+ tc = 0, (3.6)

2sb+ 2td = 2. (3.7)

Notation 6. Let k, l ∈ Z. We define gcd(k, l) to be the greater commun divisor
between k and l in the case that both k and l are nonzero and k + l in other
case.

From the equation (3.5), gcd(a, c) = 1. Hence from the equations (3.6) and
(3.7), s = ±c, t = ∓a. Then, bc− ad = ±1. And so, m = ∓d, n = ±b.

Thus, we have showed that {(a, 2b), (c, 2d)} is a basis for T3 if and only
if bc − ad = ±1. Similarly, {(2a, b), (2c, d)} is a basis for T2 if and only if
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ad − bc = ±1. Now, suppose that {(a, b), (c, d)} is a basis for the lattice T1.
Since (1, 1) ∈ T1, there exists integers m,n such that

ma+ nc = 1,

mb+ nd = 1. (3.8)

Thus,

m =
d− c
ad− bc

, n =
a− b
ad− bc

.

Since (2, 0) ∈ T1, there exists integers s, t such that

sa+ tc = 2, (3.9)

sb+ td = 0. (3.10)

By equation (3.8), gcd(b, d) = 1. Thus by equation (3.10), s = ±`d, t = ∓`b for
some integer ` > 0. Hence `(ad − bc) = ±2 and so ` = 1 or ` = 2. If ` = 2,
then without loss of generality ad is even and bc is odd (because ad− bc = ±1).
Thus, since (a, b), (c, d) are in T1 and b, c are odd numbers, we conclude that a
and d are also odd numbers, a contradiction. Thus ad− bc = ±2 and

m =
d− c
±2

, n =
a− b
±2

.

This implies that both d and c are either odd or even and that both a and b are
either odd or even.

Thus we have showed that {(a, b), (c, d)} is a basis for T1 if and only if gcd(a, c) =
gcd(b, d) = 1, ad− bc = ±2 and both of a, b are either odd or even and both of
c, d are either odd or even (Note that we have explained only one direction of
the implication but the other is completely clear). Summarizing, we have the
following result:

Lemma 3.4.3. Let X be a K3 surface with transcendental lattice T (X) and
basis {e1, e2}. Let S ⊂ T (X) be a sublattice of index 2. Then

(1) If S is of type T1, {ae1 + be2, ce1 + de2} is a basis of S if and only if
gcd(a, c) = gcd(b, d) = 1, ad− bc = ±2 and 2|(a− b), 2|(c− d).

(2) If S is of type T2, {2ae1 + be2, 2ce1 + de2} is a basis of S if and only if
ad− bc = ±1,

(3) If S is of type T3, {ae1 + 2be2, ce1 + 2de2} is a basis of S is and only if
ad− bc = ±1.

Proposition 3.4.4. Let X and Y be K3 covers of Enriques surfaces such that
the intersection matrices of T (X) and T (Y ) are given by(

2m k
k 2n

)
,

(
2s r
r 2t

)
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respectively and such that s, t,m, n are positive numbers, k, r are even numbers
and 2|(s −m), 2|(t − n) and 4 - s, 4 - t and one and only one of s, t is an odd
number. Let Φ : Db(X,α) → Db(Y ) be an equivalence such that ord(α) ≤ 2.
Then α = 1 in Br′(X) and X ∼= Y .

Proof. Let {e1, e2} and {f1, f2} be basis of T (X) and T (Y ) respectively such
that e21 = 2m, e22 = 2n, (e1.e2) = k and f2

1 = 2s, f2
2 = 2t, (f1.f2) = r. From

the eqivalence Φ we get an isometry TΦ : T (X,α) → T (Y ). If α is non-trivial,
T (X,α) is a sublattice of index 2 in T (X). Suppose T (X,α) is of type T1. Let
a, b, c, d be integers such that

T−1(f1) = ae1 + be2,

T−1(f2) = ce1 + de2.

Thus,

(T−1(f1).T−1(f1)) = a2e21 + b2e22 + 2ab(e1.e2)

= 2ma2 + 2nb2 + 2abk
= 2s,

and

(T−1(f2).T−1(f2)) = c2e21 + d2e22 + 2cd(e1.e2)

= 2mc2 + 2nd2 + 2cdk
= 2t.

Since 2|(s−m) and 2|(t− n), s is even if and only if m is even and t is even if
and only if t is even. Since T (X,α) is of type T1, by Lemma 3.4.3(1) we obtain
that 2|(a − b), 2|(c − d) and gcd(a, c) = gcd(b, d) = 1, i.e. we have that either
a, b, c, d are all odd integers or a, b are even and c, d are odd or a, b are odd and
c, d are even.

Case 1 s,m are even numbers and t, n are odd numbers.

If a, b, c, d are odd numbers, ma2 + nb2 + abk(= s) is an odd number. This
contradicts our assumption that s is an even number. Now, if a, b are even
numbers and c, d are odd numbers, ma2 +nb2 +abk(= s) is an even number and
4|s, a contradiction. Finally, if a, b are odd numbers and c, d are even numbers,
mc2 +nd2 + cdk(= t) is an even number. This contradicts our assumption that
t is an odd number.

Case 2 s,m are odd numbers and t, n are even numbers.

If a, b, c, d are odd numbers, mc2 + nd2 + cdk(= t) is an odd number. This
contradicts our assumption that t is even number. Now, if a, b are even num-
bers and c, d are odd numbers, mc2 + nd2 + cdk(= t) is an odd number. This
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contradicts our assumption that t is an even number. Finally, if a, b are odd
numbers and c, d are even numbers, mc2 + nd2 + cdk(= t) is an even number
and 4|t. A contradiction.

Now, let us suppose that the sublattice T (X,α) is of type T3. Let a, b, c, d
be integers such that

T−1(f1) = ae1 + 2be2,

T−1(f2) = ce1 + 2de2.

Then

(T−1(f1).T−1(f1)) = a2e21 + 4b2e22 + 4ab(e1.e2)

= 2ma2 + 8nb2 + 4abk
= 2s,

and

(T−1(f2).T−1(f2)) = c2e21 + 4d2e22 + 4cd(e1.e2)

= 2mc2 + 8nd2 + 4cdk
= 2t,

If a is even, 4|s and if c is even, 4|t. In both cases we get a a contradiction.
Thus, we can assume that a, c are odd numbers. If m is an odd (even) number,
ma2+4nb2+2abk(= s) andmc2+4nd2+2cdk(= t) are odd (even) numbers. This
contradicts our assumption that one and only one of s and t is an odd number.
Finally, if T (X,α) is a sublattice of type T2, we get also a contradiction by
following a similar argument as in the case that T (X,α) was of type T3.

Proposition 3.4.5. Let X and Y be K3 covers of Enriques surfaces such that
the intersection matrixes of T (X) and T (Y ) are given by(

2m k
k 2n

)
,

(
2s r
r 2t

)
respectively and such that s, t,m, n are positive numbers, k, r are odd numbers
and 2|(s −m), 2|(t − n) and 4 - s, 4 - t and one and only one of s, t is an odd
number. Let Φ : Db(X,α) → Db(Y ) be an equivalence such that ord(α) ≤ 2.
Then α = 1 in Br′(X) and X ∼= Y .

Proof. Let {e1, e2} and {f1, f2} be basis of T (X) and T (Y ) respectively such
that e21 = 2m, e22 = 2n, (e1.e2) = k and f2

1 = 2s, f2
2 = 2t, (f1.f2) = r. From

the eqivalence Φ we get an isometry TΦ : T (X,α) → T (Y ). If α is non-trivial,
T (X,α) is a sublattice of index 2 in T (X). Suppose T (X,α) is of type T1. Let
a, b, c, d be integers such that

T−1(f1) = ae1 + be2,
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T−1(f2) = ce1 + de2.

Thus,

(T−1(f1).T−1(f1)) = a2e21 + b2e22 + 2ab(e1.e2)

= 2ma2 + 2nb2 + 2abk
= 2s,

and

(T−1(f2).T−1(f2)) = c2e21 + d2e22 + 2cd(e1.e2)

= 2mc2 + 2nd2 + 2cdk
= 2t.

Since 2|(s−m) and 2|(t− n), s is even if and only if m is even and t is even if
and only if n is even. Since T (X,α) is of type T1, by Lemma 3.4.3(1) we obtain
that 2|(a − b), 2|(c − d) and gcd(a, c) = gcd(b, d) = 1, i.e. we have that either
a, b, c, d are all odd integers or a, b are even and c, d are odd or a, b are odd and
c, d are even.

Case 1 s,m are even and t, n are odd.

If a, b, c, d are odd numbers, mc2 + nd2 + cdk(= t) is an even number. This
contradicts our assumption that t is odd. If a, b are even and c, d are odd
numbers, mc2 + nd2 + cdk(= t) is an even number. This contradicts our as-
sumption that t is an odd number. If a, b are odd and c, d are even numbers,
mc2 + nd2 + cdk(= t) is an even number. This contradicts our assumption that
t is odd.

Case 2 s,m are odd numbers and t, n are even numbers.

If a, b, c, d are odd numbers, ma2 + nb2 + bak(= s) is an even number. This
contradicts our assumption that s is an odd number. If a, b are even numbers
and c, d are odd numbers, ma2 + nb2 + bak(= s) is an even number. This con-
tradicts our assumption that s is an odd number. If a, b are odd numbers and
c, d are even numbers, ma2 + nb2 + bak(= s) is an even number. This also
contradicts our assumption that s is an odd number.
Now, we suppose that the sublattice T (X,α) is of type T3. Let a, b, c, d be
integers such that

T−1(f1) = ae1 + 2be2,

T−1(f2) = ce1 + 2de2.

Then

(T−1(f1).T−1(f1)) = a2e21 + 4b2e22 + 4ab(e1.e2)

= 2ma2 + 8nb2 + 4abk
= 2s,
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and

(T−1(f2).T−1(f2)) = c2e21 + 4d2e22 + 4cd(e1.e2)

= 2mc2 + 8nd2 + 4cdk
= 2t.

If s,m are even and t, n are odd numbers, mc2 + 4nd2 + 2cdk(= t) is an even
number. This contradicts our assumption that t is an odd number. Now, we
suppose that s,m are odd and t, n are even numbers. Sincema2+4nb2+2abk = s
and mc2+4nd2+2cdk = t, a is odd and c is even. Hence 4|t, a contradiction.

Lemma 3.4.6. Let X and Y be K3 covers of Enriques surfaces such that the
intersection matrixes of T (X) and T (Y ) are given by(

2m 0
0 2n

)
,

(
2s r
r 2t

)
such that r > 0, 4 - r, 2|(s −m) and 2|(t − n). If Φ : Db(X,α) → Db(Y ) and
ord(α) ≤ 2 and one and only one of s, t is an odd number. Then α = 1 in
Br′(X) and X ∼= Y .

Proof. Let {e1, e2} and {f1, f2} be basis of T (X) and T (Y ) respectively such
that e21 = 2m, e22 = 2n, (e1.e2) = 0 and f2

1 = 2s, f2
2 = 2t, (f1.f2) = r. From

the equivalence Φ we get an isometry TΦ : T (X,α)→ T (Y ). If α is non-trivial,
T (X,α) is a sublattice of index 2 in T (X). Suppose T (X,α) is of type T1. Let
a, b, c, d be integers such that

T−1(f1) = ae1 + be2,

T−1(f2) = ce1 + de2.

Thus,

(T−1(f1).T−1(f1)) = a2e21 + b2e22 + 2ab(e1, e2)

= 2ma2 + 2nb2 + 2abk
= 2s,

and

(T−1(f2).T−1(f2)) = c2e21 + d2e22 + 2cd(e1, e2)

= 2mc2 + 2nd2 + 2cdk
= 2t.

Case 1 s,m are even and t, n are odd numbers.

Since ma2 + nb2 = s, b is an even number. Hence by 3.4.3(1), a, b are even
and c, d are odd numbers. Since r > 0 and

r = (T−1(f1).T−1(f2)) = ace21 + bde22 = 2mac+ 2nbd,
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then 4|r, a contradiction.

Case 2 s,m are odd and t, n are even numbers.

Since mc2 + nd2 = t, c is an even number. Thus, by 3.4.3(1), d is also an
even number. Hence, 4|r, a contradiction.

Now, we suppose that the lattice T (X,α) is of type T3 and we define the integers
a, b, c, d as we did in the last proposition when we considered the lattice T3. If
m is an even number, 4|r because 2acm+ 8bdn = r, a contradiction. Thus m is
an odd number, and so s is odd and t, n are even numbers, because 2|(m − s)
and the assumption on s, t. Since mc2 +4nd2 = t, c is an even number and then
4|r because 2acm+ 8bdn = r.

Lemma 3.4.7. Let X and Y be K3 covers of Enriques surfaces such that the
intersection matrixes of T (X) and T (Y ) are given by(

2m 0
0 2n

)
,

(
2s r
r 2s

)
If Φ : Db(X,α) → Db(Y ) and ord(α) = 2. Then either s = m + n or s =
4n,m = 3n or n = 3m, s = 4m or m = s = 4n or n = s = 4m.

Proof. Let {e1, e2} and {f1.f2} be basis of T (X) and T (Y ) respectively such
that e21 = 2m, e22 = 2n, (e1.e2) = 0 and f2

1 = 2s, f2
2 = 2s, (f1.f2) = r. From the

eqivalence Φ we get an isometry TΦ : T (X,α) → T (Y ). Since α is non-trivial,
T (X,α) is a sublattice of index 2 in T (X). Suppose T (X,α) is of type T1. Let
a, b, c, d be integers such that

T−1
Φ (f1) = ae1 + be2,

T−1
Φ (f2) = ce1 + de2.

Thus,

2s = (T−1
Φ (f1).T−1

Φ (f1))

= a2e21 + b2e22 + 2ab(e1.e2)

= 2ma2 + 2nb2,

and

2s = (T−1
Φ (f2).T−1

Φ (f2))

= c2e21 + d2e22 + 2cd(e1.e2)

= 2mc2 + 2nd2.

Case 1 abcd = 0.
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Suppose a = 0. By Lemma 3.4.3(1), ad− bc = ±2, 2|(a− b) and gcd(a, c) = 1.
Thus, b = ±2 and c = ±1 because gcd(a, c) = 1. By replacing this values above,
we obtain 8n = 2s = 2m+ 2nd2 and since m > 0, n > 0, then d = ±1 (because
2n(4−d2) = 2m implies d ∈ (−2, 2) and by Lemma 3.4.3(1), gcd(b, d) = 1 which
implies that d 6= 0 because b = ±2). Hence m = 3n, s = 4n. Similarly, if any of
b, c, d is 0, then either m = 3n, s = 4n or n = 3m, s = 4m.

Case 2 abcd 6= 0.

Let us first study the case a = ±c. By Lemma 3.4.3(1), gcd(a, c) = 1 and
ad − bc = ±2. Thus, |a| = |c| = 1. By replacing these values in the equa-
tions above we get m + nb2 = s = m + nd2 and so n(b2 − d2) = 0. Thus
b = ±d and from ad − bc = ±2 we obtain |a| = |b| = |c| = |d| = 1. Hence
s = ma2 + nb2 = m + n. Now, we show that if |a| > |c|, then b2 > d2. If
exactly three elements in {a, b, c, d} have the same sign, from ad − bc = ±2
we obtain that |a| = |b| = |c| = |d| = 1. This case was already studied and
we obtained s = m + n. Thus, we may assume for the terms in {a, b, c, d}
that either all of them are positive or all of them are negative or only two
of them are positive. We may assume that all a, b, c, d are positive because if
a < 0, d < 0, then (−a)(−d)− bc = ±2, or if a < 0, b < 0, (−a)d− (−b)c = ±2
(the other cases are similar). Without loss of generality, a > c. If b < d,
ad ≥ (c + 1)(b + 1) = bc + b + c + 1 and so ad − bc ≥ b + c + 1 ≥ 3, a
contradiction. Hence b ≥ d and we have proved our statement. Now, since
a2m + b2n = s = c2m + d2n, then (a2 − c2)m + (b2 − d2)n = 0 which is a
contradiction because m > 0, n > 0, a > b, b ≥ d.

Now, we suppose that the sublattice T (X,α) is of type T3. Let a, b, c, d be
integers such that

T−1
Φ (f1) = ae1 + 2be2,

T−1
Φ (f2) = ce1 + 2de2.

Hence

2s = (T−1
Φ (f1).T−1

Φ (f1))

= a2e21 + 4b2e22 + 2ab(e1, e2)

= 2ma2 + 8nb2,

and

2s = (T−1
Φ (f2).T−1

Φ (f2))

= c2e21 + 4d2e22 + 4cd(e1, e2)

= 2mc2 + 8nd2.

Thus,
ma2 + 4nb2 = s = mc2 + 4nd2 (3.11)
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and by Lemma 3.4.3(2), ad− bc = ±1.

Case ad = 0 or bc = 0.

Assume ad = 0. Since ad− bc = ±1, then b = ±1, c = ±1. If d 6= 0 (a = 0), we
obtain from equation (3.11) that m + 4n(d2 − 1) = 0. This is a contradiction
because m,n > 0 and d 6= 0. On the other hand, if a 6= 0 (d = 0), we obtain
m(a2 − 1) + 4nb2 = 0. This is also a contradiction because m,n > 0 and a 6= 0.
Thus a = d = 0 and we obtain from equation (3.11) that 4n = s = m. Similarly,
we also get a contradiction if bc = 0 and one of b, c is nonzero. If b = c = 0 we
get m = s = 4n.

Now, we may assume abcd 6= 0. Let us see that a 6= ±c. Otherwise, if a = ±c,
then c(±d − b) = ad − bc = ±1 and so ±d − b = ±1 (the signs are not nec-
essarily in the respective order). By equation (3.11), 4n(d2 − b2) = 0, a con-
tradiction. Similarly, we can also check that c 6= ±d. As in Case 2, we can
suppose that all a, b, c, d are positive and we may assume that a > c to prove
b ≥ d (the stament is similar as in Case 2). Let us suppose b < d. Hence,
ad ≥ (c + 1)(b + 1) = cb + c + b + 1 and so ad − bc ≥ c + b + 1 ≥ 3, a con-
tradiction. This shows that if a, b, c, d are all nonzero and |a| > |c| > 0, then
|b| > |d| (similarly if |c| > |a| > 0, then |d| > |b| > 0). But, in this case we get
a contradiction because m(a2 − c2) + 4n(b2 − d2) = 0, m > 0 and n > 0.

Now, since T (X,α) ∼= T (Y ), then discT (X,α) = discT (Y ) and since [T (X) :
T (X,α)] = 2, 4 discT (X) = discT (X,α).

Caso 1 s = m+ n

16mn = 4discT (X) = discT (X,α)
= discT (Y )

= 4s2 − r2

= 4(m+ n)2 − r2.

Hence, 0 = 4(m+n)2−16mn−r2 = 4(m−n)2−r2 = (2(m−n)−r)(2(m−n)+r)
and then r = ±2(m− n).

Case 2 s = 4n,m = 3n or s = 4m, n = 3m.
If s = 4n,m = 3n, 48n2 = 4 discT (X) = discT (X,α) = discT (Y ) = 64n2 − r2.
Thus r = ±4n. On the other hand, if n = 3m, s = 4m, then r = ±4m.

Case 3 m = s = 4n or n = s = 4m.
If m = s = 4n, 64n2 = 4 discT (X) = discT (X,α) = discT (Y ) = 64n2 − r2.
Thus r = 0. On the other hand, if n = s = 4m we also obtain r = 0.

Example 3.4.8. Let (Y, 1), (X,α) be K3 covers of Enriques surfaces, such that
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ord(α) = 2 and such that their transcendental lattices are defined by the corre-
sponding matrices (

4k 0
0 4k

)
,

(
2a c
c 2b

)
,

where k is odd. We show in this example that if there exists an equivalence of
categories Φ : Db(X,α) ∼→ Db(Y ), then c is even, a or b is odd and the form
ax2 + cxy + by2 does not represent 1.

From the equivalence Φ, we get an isometry T (X,α) ∼= T (Y ), and this
implies that 4(4ab − c2) = disc(T (X,α)) = disc(T (Y )) = 16k2. Thus, c is an
even number and by Theorem 3.4.2, one of the following holds

(i) a, b, c are even,

(ii) c is even, a or b is odd and the form ax2 + cxy+ by2 does not represent 1,

(iii) c is even, a or b is odd, the form ax2+cxy+by2 represents 1 and 4ab−c2 6=
4, 8, 16.

Assume that (i) holds, i.e. a = 2a1, b = 2b1, c = 2c1 for some integers a1, b1, c1.
Thus,

k2 = 4a1b1 − c21
and then c1 is odd. Hence k = 2p+ 1 and c1 = 2q + 1 for some integers p, q, so

4a1b1 = k2 + c21

= (2p+ 1)2 + (2q + 1)2

= 4(p2 + p+ q2 + q) + 2,

which is a contradiction. Now, assume that (iii) holds and hence there exists a
basis {u, v} such that the matrix associated to the transcendental lattice with
respect to this basis is (see [41], pág. 5):(

2 0
0 2( 4ab−c2

4 )

)
and by Lemma 3.4.7, one of the following holds

(1) s := 2k = ±2(1 + 1
4 (4ab− c2)), r = ±2(1− 1

4 (4ab− c2)) = 0;

(2) s := 2k = 4n, 1 = 3
4 (4ab− c2), 4ab− c2 = 0;

(3) s := 2k = 4, 1
4 (4ab− c2) = 3, 4m = 0;

(4) 1 = s := 2k = 4ab− c2, r = 0;

(5) 1
4 (4ab− c2) = s := 2k = 4, r = 0.

We can check that all cases lead to contradictions and this shows our statement.
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Lemma 3.4.9. Let X and Y be K3 covering of Enriques surfaces with their
transcendental lattices given by(

2s r
r 2t

)
,

(
2a c
c 2b

)
respectively. If Φ : Db(Y, β)→ Db(X) is an equivalence and r is an odd number.
Then c is an odd number and ab is even.

Proof. Let us suppose that c is an even number. From the equivalence Φ we
obtain an isometry TΦ : T (Y, β) ∼= T (X). If {f1, f2} ⊆ 〈e1, e2〉 is a basis for
T (Y, β) where {e1, e2} is a basis of T (Y ) such that

e21 = 2a, e22 = 2b, (e1.e2) = c,

and
TΦ(f1)2 = 2s, T 2

Φ(f2) = 2t, (TΦ(f1).TΦ(f2)) = r.

Since f1 = le1 + me2, f2 = ne1 + ke2 then (f1.f2) is an even number because
e21, e

2
2 and c are even numbers. On the other hand, (f1.f2) = (TΦ(f1).TΦ(f2)) = r

which is an odd number. A contradiction.

3.5 Kummer surfaces

Proposition 3.5.1 (Morrison, Cor. 4.4, [30]). Let X be an algebraic K3
surface.

(1) If ρ(X) = 19 or 20, then X is a Kummer surface if and only if there is
an even lattice T ′ with T (X) ∼= T ′(2).

(2) If ρ(X) = 18, then X is a Kummer surface if and only if there is an even
lattice T ′ with T (X) ∼= U(2)⊕ T ′(2).

(3) If ρ(X) = 17, then X is a Kummer surface if and only if there is an even
lattice T ′ with T (X) ∼= U(2)2 ⊕ T ′(2).

(4) If ρ(X) < 17, then X is not a Kummer surface.

Corollary 3.5.2. Let X be an algebraic Kummer surface.

(1) If ρ(X) = 20, then |disc Pic(X)| ≥ 12.

(2) If ρ(X) = 19, then |disc Pic(X)| ≥ 16.

(3) If ρ(X) = 18, then |disc Pic(X)| ≥ 16.

(4) If ρ(X) = 17, then |disc Pic(X)| ≥ 64.

Lemma 3.5.3. Let X and Y be K3 covering of Enriques surfaces such that
ρ(X) = ρ(Y ) = 20, β ∈ Br(Y ) of order 2 and let Φ : Db(X) → Db(Y, β) be an
equivalence. If Y is a Kummer surface, then X is also a Kummer surface.
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Proof. Since Y is a Kummer surface, its transcendental lattice is defined by the
matrix (

4a 2c
2c 4b

)
,

i.e. T (Y ) is generated by {e1, e2} such that e21 = 4a, e22 = 4b, (e1.e2) = 2c. From
the equivalence Φ, we get an isometry TΦ : T (Y, β) ∼= T (X). If {f1, f2} generates
T (Y, β), then there exist integers m,n, k, l such that f1 = me1 + ne2, f2 =
ke1 + le2. Thus, 4|f2

1 , 4|f2
2 , 2|(f1.f2). Hence the lattice T ′ defined by the matrix(

(f1.f1)/2 (f1.f2)/2
(f1.f2)/2 (f2.f2)/2

)
is an even lattice such that T ′(2) = T (Y, β). Hence, T (X) ∼= T ′(2) and this
shows that X is a Kummer surface.

Proposition 3.5.4 ([26], Prop. 2.5). Let S be a Kummer surface Km(E×E′)
of the product of non-isogeneous elliptic curves E and E′. Then there exists an
elliptic fibration on S whose Jacobian surface is not a Kummer surface.

Remark 3.5.5. If S = Km(E × E′) is the Kummer surface of the product
of non-isogeneous elliptic curves E and E′, the transcendental lattice T (S) =
U(2)⊕ U(2), Pic(S) = D8 ⊕D8 ⊕ U . Thus ρ(S) = 18 and disc(Pic(S)) = 16.

Lemma 3.5.6. There exist K3 surfaces X,Y and an equivalence of categories
Φ : Db(X)→ Db(Y, α) such that only X is a Kummer surface and ord(α) = 2.

Proof. Let X be the Kummer surface Km(E × E′) of the product of non-
isogenous elliptic curves E and E′. By Proposition 3.5.4, there exists an el-
liptic fibration on X whose Jacobian surface is not a Kummer surface and
disc(Pic(J(X))) = 4 (this is also obtained in the proof of Prop. 2.5., [26]). Thus,
there exists a element α ∈ Br(J(X)) and an equivalence Φ : Db(J(X), α) ∼=
Db(X). Since 16 = disc(PicX) = discT (X), one has ord(α) = 2, because
16 = discT (X) = discT (J(X), α) = ord(α)2 discT (J(X)).

Proposition 3.5.7. Let X be an algebraic Kummer surface, Y an algebraic
surface and Φ : Db(X,α)→ Db(Y ) an equivalence. Suppose

(1) ρ(Y ) = 20 and disc Pic(Y ) < 48, or

(2) ρ(Y ) = 19 and disc Pic(Y ) < 64,

Then α = 1 in Br(X). Moreover X ∼= Y .

Proof. Suppose α nontrivial. From the equivalence Φ, we get an isometry
T (X,α) ∼= T (Y ). Thus,

ord(α)2 disc(Pic(X)) = ord(α)2 disc(T (X)) = disc(T (X,α)) = disc(Pic(Y ))

and so disc(Pic(X)) < 12 or disc(Pic(X)) < 16 in the first (ρ(Y ) = 20) and
second case (ρ(Y ) = 19), respectively. Hence X is not a Kummer surface by
Corollary 3.5.2, a contradiction.
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Example 3.5.8. Let X be a K3 an surface of type Barth-Peters (This was in-
troduced in [36]). Thus, NS(X) = U(2) ⊕ E⊕2

8 and the number of Enriques
quotients is at most 1. (This was claimed by Ohashi in [36], page 200). Suppose
Φ : Db(X) ∼→ Db(Y, α) is an equivalence with Y an algebraic K3 surface. Since
discNS(X) = 4, then ord(α) ≤ 2. If ord(α) = 2, disc(T (Y )) = ±1, i.e. T (Y ) is
unimodular. Thus NS(Y ) = U ⊕ E8 ⊕ E8 (Lemma 4.1, [27]).
Example 3.5.9. Let X be the Kummer surface Km(Eτ3 × Eτ3) with period
τ3 = 3-th rooth of unity, so disc(Pic(X)) = 12. Suppose Φ : Db(X) ∼→ Db(Y, α)
is an equivalence where Y is an elliptic K3 surface. From the equivalence we
obtain that ord(α) ≤ 2. If ord(α) = 2, then disc(T (Y )) = 3 and then Y is a
Jacobian fibration (it has a section). On the other hand X ∼= Y , and so Y is
also a Jacobian fibration.
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Abstract

In this thesis we study Fourier–Mukai transforms between derived categories of
twisted sheaves. We show that some well known results about the classification
of surfaces under derived categories extend to the derived category of twisted
sheaves. In particular, we study the relationship between the derived category
of twisted sheaves Db(Y, α) for an Enriques surface Y and the derived category
of twisted sheaves Db(X,π∗α) where π∗ : Br′(Y ) → Br′(X) is the induced
homomorphism obtained from the K3 cover of Y : π : X → Y . We also study
the injectivity of the morphism π∗ : Br′(Y )→ Br′(X).


