
Modeling Linearly and non-Linearly
Dependent Simulation Input Data

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

M.Sc. Feras Nassaj

aus

Aleppo, Syrien

Bonn, 2010

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Johann Ch. Strelen

2. Gutachter: Prof. Dr. Joachim K. Anlauf

Tag der Promotion: 21.07.2010

Erscheinungsjahr: 2010

2

Dedicated to the memory of my mother and father, and to my
Wife Kerstin and my son Nabil

i

Acknowledgments

I would like to acknowledge many people for their help, support and guidance
during my doctoral work. I would like first to thank my adviser, Prof. Dr. Jo-
hann Christoph Strelen, for having suggested this topic and for his guidance
and his generous time and commitment throughout this work. Throughout
my doctoral work he encouraged me to develop my research skills, contin-
ually stimulated my analytical thinking and greatly assisted me to enhance
my scientific writing. Without this, without his inspiration as a great teacher
and scientist, and without his patience and readiness to reply to my ques-
tions, this dissertation could not have been written. For everything you have
done for me, Prof. Strelen, I thank you.

I thank Prof. Dr. Joachim K. Anlauf very much for his support during
my work on the thesis and his time to evaluate my thesis and examine me.
I also thank Prof. Dr. Helmut Baltruschat and Prof. Dr. Rolf Eckmiller
very much for the time they took for my Dissertation and their readiness to
evaluate my thesis and examine me. I thank Dr. H.J. Kühn. very much for
his attendance and comments to my presentations and his valuable advice
to consider copulas in my research. His comments and advices were always
perceptive and helpful. I also thank Prof. Dr. Peter Martini for supplying
me with materials related to my research.

I would like to thank my family. My sisters and brothers were a constant
source of support and enthusiasm. I am grateful to my wife for her contin-
uous encouragement and for helping me keep my life in proper perspective
and balance.

Feras Nassaj
Bonn, July 26, 2010

ii

Contents

1 Introduction and Motivation 1
1.1 Notation . 3
1.2 Focus of the Dissertation . 4
1.3 Organization . 5

2 Basic Stochastic 6
2.1 The Basics of Probability, Statistics and Stochastic Processes . 6
2.2 The Basics of Simulation Input Modeling 9
2.3 Dependencies Among Input Data 10

3 Existing Approaches to Advanced Modeling of Simulation
Input Data 13
3.1 The TES Process . 13
3.2 Standardized Autoregressive and Autoregressive Moving Av-

erage . 15
3.3 ARTA, NORTA, and VARTA 18
3.4 The Batch Markovian Arrival Processes 20
3.5 The Copulas and the Empirical Copulas 22

4 A non-Gaussian Autoregressive Modeling Approach for Sim-
ulation Input Data 26
4.1 The Genetic Algorithm for Fitting Distributions to IID sample 27
4.2 The Model and the Fitting Procedure 29
4.3 Fitting Linear nGAR models 32
4.4 The Independence Method . 33
4.5 Goodness-of-Fit Tests . 38

4.5.1 The Mean Squared Residuals Test 38
4.5.2 The Mean Absolute Residuals Test 38
4.5.3 The Kolmogorov-Smirnov Test 38

4.6 Examples . 39
4.6.1 Fitting Linear Univariate nGAR Processes 39

iii

4.6.2 Fitting a Linear Bivariate nGAR Process 43
4.6.3 Fitting a non-Linear nGAR model 45
4.6.4 Fitting Models to Real Measurements, the Old Faithful

Geyser . 50
4.6.5 Fitting Models to Real Measurements, Packet arrivals

at Internet Server . 54

5 The Extended Yule-Walker Method 58
5.1 Non-Linear Univariate nGAR Process 59
5.2 Non-Linear Multivariate nGAR Process 60
5.3 Examples . 62

5.3.1 Example 1: Non-Linear Univariate nGAR Process . . . 62
5.3.2 Example 2: Another Non-Linear Univariate nGAR Pro-

cess . 63
5.3.3 Example 3: Multivariate Non-Linear nGAR Process . . 65

6 The Probabilistic Transition Matrix Versus the Batch Marko-
vian arrival Process 68

7 Empirical Copulas 73
7.1 Fitting an Approximate Multivariate Distribution which Uti-

lizes an Approximate Empirical Copula 77
7.1.1 Generating Random Vectors 80
7.1.2 Examples . 81
7.1.3 Where to Take Care 87

7.2 Fitting a multivariate distribution utilizing a real empirical
copula . 90
7.2.1 Continuous Piecewise Multi-Linear Empirical Copulas . 91
7.2.2 The Generation Algorithm 96
7.2.3 Examples . 102

8 Conclusions and Further Work 109

iv

List of Figures

1.1 probability mass function of packet lengths arriving at an In-
ternet server in bytes. From Klemm et al. (2002) 3

2.1 Linear (left) and non-linear (right) dependencies among X1

and X2. From Biller and Ghosh (2004) 11
2.2 Linear (left) and non-linear (right) dependencies among Z1

and Z2 . 11

3.1 The Foreground/Background Paradigm. From Jagerman and
Melamed (1992a) . 14

3.2 An example of a BMAP CTMC 22

4.1 Plots from the artificial model 42
4.2 Plots from the fitted nGAR model with Pareto F (y) 42
4.3 Plots from the fitted nGAR model with Lognormal F (y) . . . 42
4.4 Plots from the fitted nGAR model with Gamma F (y) 43
4.5 Plots from the artificial model. Correlations in sub-process A . 46
4.6 Plots from the fitted nGAR model. Correlations in sub-process

A . 46
4.7 Plots from the fitted standard distribution to sub-process A

without correlations . 46
4.8 Plots from the artificial model. Cross-correlations of sub-

process A and sub-process B 47
4.9 Plots from from the fitted nGAR model. Cross-correlations of

sub-process A and sub-process B 47
4.10 Plots from the fitted standard distribution. Cross-correlations

of sub-process A and sub-process B 48
4.11 Plots from the artificial model. 49
4.12 Plots from from the fitted non-linear nGAR model. 49
4.13 Plots from the fitted linear nGAR model. 49
4.14 Plots from the observed sample. 53

v

4.15 Plots from from the fitted IID random variable (triangular)
without correlations . 53

4.16 Plots from the fitted linear nGAR model (triangular Yi). . . . 53
4.17 Plots from the fitted linear nGAR model (Beta Yi). 54
4.18 Plots from the fitted linear nGAR model (empirical Yi). 54
4.19 Plots from the observed sample. 56
4.20 Plots from the generated nGAR model. 56

5.1 Plots from the artificial non-linear process 64
5.2 Plots from the derived non-linear nGAR process 64
5.3 Sample from the bi-variate original process 67
5.4 Sample from the fitted bi-variate non-linear nGAR process. . . 67

6.1 A DTMC representing the packet lengths of a measured trace
at an Internet server . 69

6.2 The probabilities of the transitions in figure 6.1 generated by
the real measurements (T-real) 69

6.3 The probabilities of the transitions in figure 6.1 generated by
the BMAP tool (T-BMAP) 70

7.1 Illustration of a bivariate empirical copula 75
7.2 Left: Sample in the space of real numbers R2. Right: Sample

in the [0, 1]2 space, Ud = Fd(zd), d = 1, 2. 76
7.3 The values of the density in the subspaces 79
7.4 The values of the conditional probabilities P{U2 ≤ u2|U1 =

u1} in the different subspaces for the frequency distribution Cn 79
7.5 The original sample . 82
7.6 Left: Sample from the fitted approximate distribution utilizing

a copula. Right: Sample from the fitted linear nGAR model . 82
7.7 The original sample; Dimension 1 & 2 85
7.8 Left: Sample from the approximate distribution. Right: Sam-

ple from the BMAP model; Dimension 1 & 2 85
7.9 The original sample; Dimension 1 & 3 86
7.10 Left: Sample from the approximate distribution. Right: Sam-

ple from the BMAP model; Dimension 1 & 3 86
7.11 Number of bytes against time for the original process. Time

scale 0.01 sec . 88
7.12 Number of bytes against time for a process from the approx-

imate distribution (left) and for the BMAP process (right).
Time scale 0.01 second . 88

7.13 Some columns of the copula have no entries 89

vi

7.14 An empirical marginal distribution with a jump and an ap-
proximate copula of it . 90

7.15 The generation of a random variable ud from a conditioned CDF 98
7.16 Original Sample . 105
7.17 Left: The Generated Points from method 2. Right: The Gen-

erated Points from method 3 105
7.18 Left: Original Sample. Right: The Generated Points. Dimen-

sions 1 and 2 . 107
7.19 Left: Original Sample. Right: The Generated Points. Dimen-

sions 1 and 3 . 107
7.20 Left: Original Sample. Right: The Generated Points. Dimen-

sions 2 and 4 . 108

vii

List of Tables

4.1 The contingency table . 34
4.2 The parameters of the true artificial nGAR model 41
4.3 Results summary of fitting univariate linear nGAR models to

the artificial sample . 41
4.4 The parameters of the true artificial nGAR model 44
4.5 Results of fitting bivariate nGAR model and standard distri-

butions to bivariate artificial sample 45
4.6 The parameters of the true artificial model 48
4.7 Results summary of fitting linear and non-linear nGAR models

to artificial sample . 50
4.8 Some moments of the observed sample (the old faithful geyser) 51
4.9 Results summary of fitting a standard distribution and linear

nGAR models to the observed sample 51
4.10 Results summary of fitting a standard distribution and linear

nGAR models to the observed sample with empirical distribu-
tion for the Yi . 52

4.11 The moments of the observed sample (Interarrival time of
packets at an Internet Server) 54

4.12 Results summary of fitting a standard distribution and linear
nGAR models to observed sample 55

4.13 Results summary of fitting a standard distribution and linear
nGAR models to the observed sample 57

5.1 The estimated nGAR coefficients of the non-linear nGAR pro-
cess using the extended Yule-Walker method 63

5.2 Results summary of the original and generated sample 63
5.3 The estimated nGAR coefficient of the non-linear nGAR pro-

cess using the extended Yule-Walker method 65
5.4 The estimated nGAR coefficients of the bi-variate non-linear

nGAR process using the extended Yule-Walker method 65
5.5 Results summary of the artificial and fitted processes 66

viii

6.1 The correlations between the different packets lengths (Li) . . 71
6.2 The correlations between the interarrival times of packets (Zi) 71
6.3 The correlations between the interarrival times of packets (Zi)

and the packet lengths (Li) 71
6.4 The correlations between the packet lengths (Li) and the in-

terarrival times of packets (Zi) 71
6.5 The conditional transition probabilities of the real data 72
6.6 The conditional transition probabilities of the data generated

by the BMAP tool . 72

7.1 Results summary of samples from the original artificial pro-
cess, from a fitted approximate distribution, and from a fitted
linear nGAR process . 83

7.2 Results summary of the original sample, a sample from a fitted
approximate distribution, a fitted BMAP process 87

7.3 Results summary of the original sample, of a fitted distribution
utilizing real empirical copula 104

7.4 Results summary of fitting a distribution utilizing real empir-
ical copula to IP-data . 106

ix

Abstract

Input modeling software tries to fit standard probability distributions to
data assuming that the data are independent. However, the input environ-
ment can generate correlated data. Ignoring the correlations might lead to
serious inaccuracies in the performance measures. In the past few years,
several dependence modeling packages with different properties have been
developed. In our dissertation, we explain how to fit non-Gaussian autore-
gressive models to correlated data and compare our approach with similar
dependence modeling approaches that already exist. Moreover, we extend
the Yule-Walker method so as to fit non-linear models to data samples using
this method.

We use in our dissertation also copulas for the purpose of fitting models
to data samples. Copulas are used in finance and insurance for modeling
stochastic dependency. Copulas comprehend the entire dependence struc-
ture, not only the linear correlations. In our dissertation, copulas serve the
purpose to analyze measured samples of random vectors and time series, to
estimate a multivariate distribution for them, and to generate random vectors
with this distribution.

Chapter 1

Introduction and Motivation

Real-life systems might be too complex to be evaluated analytically. In this
case, such systems must be modeled and simulated. When modeling real-
life systems, one must also model the environment surrounding them. These
models are called (simulation) input models. The most common way to spec-
ify simulation input models is to fit a standard distribution to the simulation
input data, assuming that the data are independent. This assumption might
result in input models which differ considerably from the true ones and this
might affect the results of the simulations. Some complex models which take
dependencies into account have been developed. We examine these models in
this dissertation, modify some of them, or develop new ones, for the purpose
of having more exact and/or easier to expand models.

In many already existing simulation software and packages one can fit only
standard distributions as input models. Neglecting the fact that the input
environment might produce dependent data might lead to serious inaccura-
cies in the estimated performance measures (simulation results). One system
which is well understood and analytically tractable is the single server queu-
ing system. Livny et al. (1993) has shown that when mistakenly assuming
independent interarrival times and/or service times, the performance mea-
sures, e.g. mean waiting time, of the single server queuing system will be
seriously in error.

Taking the case of independent interarrival and service times of a queuing
system, where the utilization of the service unit is 50%, as a benchmark,
Livny et al. (1993) observe that an autocorrelation in the arrival process of
-0.55 reduces the mean waiting time by 32%, while an autocorrelation of 0.25
increases the mean waiting time by 80%. The impact gets even more dramatic
with the strength of autocorrelation: an autocorrelation of 0.85 results in a
mean waiting time that is more than 200 times than the benchmark case.

A practical example of a single server queuing system is an Internet server.

1

Important statistical properties of the Internet traffic are burstiness and self-
similarity (Klemm et al., 2002). Consider for example increasing the average
number of packets in a single burst, while spacing the bursts farther. This will
keep the arrival rate of packets constant, but will increase the waiting times
for the packets considerably. Therefore, there has been some researches which
try to construct models which can catch not only the marginal distribution
of an input process, but also the correlations which lie in the process.

Early models which can catch dependencies are those called the autore-
gressive (AR) and autoregressive moving average (ARMA) models (Box and
Jenkins, 1976). These models imply normal marginal distributions. How-
ever, there are many physical situations in which the marginal of a pro-
cess is non-normal. Later on, the transform-expand-sample (TES) processes
described in Jagerman and Melamed (1992a) and Jagerman and Melamed
(1992b) were developed. The TES processes allow the modeler to match
the marginals distribution of the fitted process to those observed marginals
as well as matching the lag-1 autocorrelations. This motivated the work of
Biller and Nelson (2002) to establish what is called autoregressive to anything
(ARTA) processes. ARTA approach can theoretically generate a process that
is autocorrelated and has any standard marginal distribution. Our work in
chapter 4 is based on the ARTA processes and similar processes and is pub-
lished in the European Simulation and Modelling Conference (Nassaj and
Strelen, 2005).

The above mentioned approaches can generate processes with continuous
state space. The marginals of those processes can be fitted to standard
distributions well. In contrast to the processes with continuous state space,
there are the hybrid processes with continuous and discrete state spaces. An
example is the length of packets arriving at an Internet server. Klemm et al.
(2002) have measured the traffic of packets at an Internet server and noticed
that the lengths of such packets can be divided into three categories. Small,
medium and large packets. A small part of packet lengths lie in between these
three main lengths. Figure 1.1 shows a histogram of the packet lengths.

Such histograms fit well neither standard distributions nor one of the
above processes. Therefore, another type of processes must be fitted. Klemm
et al. (2002) have used a Batch Markovian Arrival Process (BMAP) and
fitted it to measurements (input data) which contains hybrid processes with
continuous and discrete state space. We investigate the work of Klemm et al.
(2002) in chapter 6 and present a model which has different characteristics
from the BMAP model used by Klemm et al. (2002).

Fitting an autoregressive (AR) model to a sample requires solving equa-
tions called the Yule-Walker equations. See for example Chatfield (1996),
Section 3.4.4. We investigate in chapter 5 the limitations of the AR model

2

Figure 1.1: probability mass function of packet lengths arriving at an Internet
server in bytes. From Klemm et al. (2002)

and extend the Yule-Walker equations to avoid some of these restrictions.
Finally we developed in chapter 7 techniques that are based on the empir-

ical copulas. Copulas are a useful tool for modeling dependencies which has
been recently often used for this purpose. However, there are many classes of
copulas. We explain in chapter 7 why we use only the class of empirical cop-
ulas. We have published two papers regarding this issue, Nassaj and Strelen
(2006) and Strelen and Nassaj (2007)

Before we proceed in this thesis, we would like to introduce the notation
we will use, and then to highlight the main focus of our dissertation, and
finally we will describe how this dissertation is organized.

1.1 Notation

We denote the random variables by capital letters such as X, Y and samples
from those random variables as lowercase letters such as x, y. The marginal
(cumulative) distribution function (CDF) of the random variable X is de-
noted as F (x) or F (x,p), where −∞ < x < ∞ and p is the set of pa-
rameters of the distribution function. Boldface type or underlined variables
denote column vectors; e.g., x = x = (x1, x2, ..., xn)′.

Throughout this thesis, Yt, t = 1, 2, 3, ..., will denote independent and
identically distributed (IID) random variables (perturbations), whereas Zt,

3

t = 1, 2, 3, ..., will denote stochastic processes, in which the different random
variables Zt might exhibit dependencies among themselves. The estimated
statistical quantities will be headed by a hat (ˆ). For example, if µ denotes
the expectation of a random variable X, µ̂ denotes the estimated mean found
by applying the mean function over a sample generated from the random
variable X.

The variance function will be denoted as Var() or σ2, the covariance func-
tion will be denoted as Cov(), and the correlation function will be denoted as
Cor() or ρ. The estimation of these functions will be headed by a hat (ˆ);
V̂ar, σ̂, Ĉor, ρ̂.

1.2 Focus of the Dissertation

Fitting random variables to simulation input data is a well understood and
common approach since long time, but not sufficient to model complex prob-
lems. Fitting random vectors and stochastic processes, in which the random
variables might exhibit correlations or dependencies among themselves, can
provide more detailed models which can be used to model more complex
problems. This is much more difficult, not so popular, and it is a topic of
current research. This dissertation focuses on fitting random vectors and
stochastic processes to simulation input data and how to generating random
vectors out of the fitted model.

The problem of fitting random variables to simulation input data can be
for example solved by using the maximum likelihood estimator, which calcu-
lates the best way of fitting a mathematical model to some data. However,
this approach and approaches derived from this approach, become compli-
cated when considering fitting random vectors. Therefore, other approaches
were developed to fit random vectors and stochastic processes to measure-
ments. For example there is an approach which depends on Gaussian autore-
gressive processes, see 3.3. This approach shows to work well under specified
conditions but to have disadvantages under other conditions.

Our focus in this dissertation is on methods useful for simulation input
modeling to solve problems that are not solved by the already existing ap-
proaches. In chapter 4 we introduce an approach which for example can
be used to model heavy-tailed autoregressive processes. In chapter 5 we in-
troduce an approach which can be used to model non-linear autoregressive
processes. Moreover, the world of copulas is still less explored with respect
to using this technique for simulation input modeling. In chapter 7, we ex-
plore this topic with respect to simulation input modeling and show how
this approach can be used to analyze and model many stochastic processes,

4

including heavy-tailed and non-linear ones, without to even worry about the
structure of the simulation input data and which model might fit it best.

1.3 Organization

This thesis is organized as follows: The basics of statistics and stochastic
processes are reviewed in chapter 2. A review on the related work that is
already done with respect to fitting random vectors and stochastic processes
to measurements is given in chapter 3. In Chapter 4 we introduce a new
approach to model simulation input data by non-Gaussian autoregressive
processes. In chapter 5 we extend a well known method for fitting autore-
gressive processes, the Yule-Walker method, so that it will be generalized
to include non-linear dependencies. After that in Chapter 6, we compare
the approaches introduced in chapters 4 and 5 with another approach used
for the same purpose, the Batch Markovian arrival Processes approach. In
chapter 7 we introduce the approach of empirical Copulas for the purpose of
fitting simulation input data and show how this approach is quite accurate.
Finally, chapter 8 outlines our contributions and gives directions to future
research.

5

Chapter 2

Basic Stochastic

This chapter presents the basic probabilistic concepts that we need in this
dissertation. So we present in section 2.1 and section 2.2 the basic concepts
of the stochastic processes and simulation input modeling, respectively. In
section 2.3 we make an overview of the main problem of this dissertation,
the dependencies among measured data.

2.1 The Basics of Probability, Statistics and

Stochastic Processes

The definitions presented in this section follow Law and Kelton (2000) unless
mentioned otherwise. The set of possible outcomes of an experiment is called
the sample space, and the outcomes are called the sample points or samples.
A random variable is a function that assigns a real number to each point
in the sample space. For example a random variable X might be the sum
of two simultaneously thrown dices. By a sample point (4,3) of the sample
space, the value of X is 7. The (cumulative) distribution function (CDF) of
the random variable X is defined for each real number x as:

F (x) = P (X ≤ x), for −∞ < x <∞

where P (X ≤ x) is the probability associated with the event X ≤ x. A
distribution function has the following properties:

1. 0 ≤ F (x) ≤ 1 for all x.

2. F (x) is nondecreasing.

3. lim
x→∞

F (x) = 1.

6

4. lim
x→−∞

F (x) = 0.

A random variable can be discrete, continuous, or mixed. A discrete
random variable takes on only a finite or countable number of values. The
probability that the discrete random variable X takes on the value xi is given
by

p(xi) = P (X = xi) for i = 1, 2, ...

and we must have
Σ∞i=1p(xi) = 1.

All probability statements about X can be computed from p(x), which is
called the probability mass function for the discrete random variable X.

A continuous random variable takes on an uncountably infinite number
of different values. A random variable X is said to be continuous if there
exists a nonnegative function f(x) such that for any set of real numbers B,

P (X ∈ B) =

∫
B

f(x)dx,

and ∫ ∞
−∞

f(x)dx = 1.

f(x) is called the probability density function for the continuous random
variable X.

The expected value of the random variable X is denoted by E(X) and for
continuous random variables it is defined as

E(X) =

∫ ∞
−∞

zf(z)dz, if it exists.

If the random variable is discrete then its expectation is defined as

E(X) =
∞∑

i=−∞

xip(xi), if it exists.

The variance of a random variable X is denoted by V ar(X) or σ2 and rep-
resents a measure of dispersion of the random variable about its mean. It is
defined as

V ar(X) = E(X2)− E(X)2, if it exists.

The standard deviation of the random variable X, denoted as σ(X), is the
square root of V ar(X).

7

The correlation among two random variables X1 and X2 is defined as the
covariance among X1 and X2 divided by the standard deviations of the two
random variables:

ρ(X1, X2) =
Cov(X1, X2)

σX1σX2

,

where σX1 > 0 and σX2 > 0 are the standard deviations of X1 and X2,
respectively. The covariance of two random variables X1 and X2 is defined
as

Cov(X1, X2) = E[(X1 − E(X1))(X2 − E(X2))], if it exists,

where E is the expectation.
The random variables X and Y are jointly continuous if there exists a

nonnegative function f(x, y), called the joint probability density function of
X and Y , such that for all sets of real numbers A and B

P (X ∈ A, Y ∈ B) =

∫
B

∫
A

f(x, y)dxdy.

In this case, X and Y are independent if and only if

f(x, y) = fX(x)fY (y) for all x, y,

where

fX(x) =

∫ ∞
−∞

f(x, y)dy,

and

fY (y) =

∫ ∞
−∞

f(x, y)dx,

are the (marginal) probability density functions of X and Y , respectively.
The pair (X, Y) taking values in R2 is called random vector.

A stochastic process is a collection of random variables ordered over
time, which are all defined on a common sample space. If the collection
is X1, X2, ..., then we have a discrete-time stochastic process. If the collec-
tion is {X(t), t ≥ 0}, then we have a continuous-time stochastic process. We
will deal in this thesis with discrete-time stochastic processes.

A stochastic process is said to be strong or strictly stationary if all ran-
dom variables of the process have the same distribution. In other words,
the joint distribution of the random variables of a process Xi1 , Xi2 , ..., Xin

is the same joint distribution of the random variables Xi1+j, Xi2+j, ..., Xin+j

for all i1, i2, ..., in and j. On the other hand, a weak or covariance stationary
stochastic process is a process, in which the first and second moments (the
mean and the variance) exist and do not change over time, and the covari-
ance between two observations Xi and Xi+h depends only on the lag (also

8

called the separation) h and not on the actual time values i and i + h. In
general, neither strong stationarity follows from weak stationarity, nor vice
versa (Chatfield (1996)).

As we are considering only static models, and not dynamic models whose
parameters might change with time or space, we consider here only fitting
strongly or weakly stationary stochastic processes. Otherwise, if the stochas-
tic process is not stationary, the parameters of the static model can not be
estimated.

Many sequences {xn : 0 ≤ n ≤ N} of observations, indexed by the time
at which they were taken, are suitably modeled by random processes. Such
sequences are called time-series. Time-series can be modeled by an autore-
gressive (AR) model, moving average (MA) model, autoregressive moving
average (ARMA) or other kinds of models (Chatfield (1996), section 3.4.6).

The autocorrelation between two random variables in a time-series Xt

which are lag h apart is denoted as ρX(h). The autocorrelations in a station-
ary time-series depend only on the lag h, not on the time when the random
variables are generated.

2.2 The Basics of Simulation Input Modeling

Part of the real world is the input environment. This environment is some-
times simple and can be modeled as an independent and identically dis-
tributed (IID) random variable. In this case, the distribution of the random
variable and its parameters are estimated with the help of one of several
methods like the maximum likelihood estimator. However, sometimes the
input environment of one system might be complex and a random variable
might not represent the true model accurately. In this case, a more general
stochastic process must be fitted.

Fitting an input model requires first collecting information. This infor-
mation might be measurements at a real system. An example of an input
model of a simulation model is the model of interarrival times of customers
at a station. When measurements of such interarrival times are available,
the modeler starts to search the input model which fits these measurements
best. Unfortunately, there is no straight-forward method to do this.

The measurements might have more complex structure and properties
than a sample from an IID random variable. There might be linear or non-
linear dependencies among the measurements. The measurements might be
influenced by other quantities, again linearly or non-linearly. Or they might
have been generated by a mixed (continuous-discrete) process like the process
of registering the interarrival times and the sizes of packets arriving at an

9

Internet server.
In the procedure of fitting an input model, there is need to perform one

or more statistical tests, to show whether samples from the fitted model have
similar statistical properties as the measurements or not. Some of these tests
are the least square test, the chi-square test, the Kolmogorov-Smirnov test,
and the scatter plots of the samples.

2.3 Dependencies Among Input Data

Many already existing input modeling tools assume that the input data mea-
sured at a real life system are independent. And thus they are fitted to an
IID random variable. This assumption leads to models that are easy to simu-
late, and under suitable restrictions they are analytically tractable. However,
there are many systems whose environment might produce dependent data,
such as computer networks or the Internet. For example, file transfers and
full motion video frames are known to be extremely bursty.

A bursty process might be modeled as a heavy-tailed process (Livny et al.
(1993) and Klemm et al. (2002)). This is justified because the heavy-tailed
process tends to generate ”many small” random variates against ”few big”
ones. Considering for example the process of packet arrivals at an Internet
server, the interarrival times generated from a heavy-tailed process tend to
be small except a few variates, which tend to be big. The big variate might
then represent the interarrival time between different bursts.

Dependencies might take other shapes. There might be for example linear
dependencies among a series of random variables. Moreover, dependencies
among random variables might also be non-linear. A scatter plot of linearly
and non-linearly dependent processes are shown in figure 2.1. We see in
this figure how the linearly dependent random variables X1 and X2 result
in eclipsed shape when plotting them against each other in a scatter plot.
The non-linear dependency among X1 and X2 might result in other shapes
like triangle shapes. However, both processes, the linearly dependent process
and the non-linearly dependent process, have the same (linear) correlations.

Another example of two processes, one with linear dependencies among
its random variables and the other with non-linear dependencies, is shown in
figure 2.2. The two processes have again the same linear correlations.

The most common way to model dependencies is to consider the (product-
moment) correlations. In general, if the correlations among random variables
are 0, then the linear dependencies among them are also 0. Most dependence
modeling packages consider the correlations to generate stochastic processes.
Despite its wide use, the correlations suffer several limitations. The most

10

Figure 2.1: Linear (left) and non-linear (right) dependencies among X1 and
X2. From Biller and Ghosh (2004)

.

Figure 2.2: Linear (left) and non-linear (right) dependencies among Z1 and
Z2

11

critical limitation is that it cannot capture non-linear dependency that may
exist.

Product-moment correlations are also not invariant under transformation.
They can vary with the marginal distributions of the random variables. For
example, the correlations of two normally distributed random variables can
take any value from the interval [-1, 1]. On the other hand, the attainable
interval for the correlation between two lognormally distributed random vari-
ables, which are often generated via a transformation of normals, is [.0.09,
0.67] (Biller and Ghosh (2004)).

There exist measures of linear dependence that avoid some of these limi-
tations like the fractile correlation. The fractile correlation is given by

r(Xi, Xj) = 12E[Fi(Xi)Fj(Xj)]− 3,

where Xi and Xj are random variables and Fi(Xi) and Fj(Xj) are the
marginal distribution functions of the random variables. The sample analog
of the fractile correation is called Spearman or rank correlation. Rank corre-
lations can be shown to be invariant to strictly increasing transformations of
the components. Thus, it provides a natural way to separate the estimation
of the individual marginal distributions from that of the dependence among
the variables. However, the rank correlation is less investigated than the
Pearson correlation for the purpose of modeling simulation input data.

There are still other methods that can be used to specify dependencies
between the random variables. For a brief review of these methods see Biller
and Ghosh (2004). The methods can be in general classified into two types.
Those methods which specify the complete joint distribution function of the
variables, and those which specify the joint distribution function only par-
tially, usually by specifying the marginal distribution and some dependence
structure. The later method is more practical, as the first one suffers from
the limitation that the amount of information they require to do a reasonable
job increases enormously with dimension. In this thesis, we will consider only
method which require specifying the joint distribution function only partially.

12

Chapter 3

Existing Approaches to
Advanced Modeling of
Simulation Input Data

After we have introduced the problem on which we focus in this dissertation
and given a background which is necessary to proceed in this dissertation, we
now look at some of the existing approaches for modeling simulation input
data. We look only at those which have similarities with our approaches or
which build the background for them. Section 3.1 gives an overview of the
TES process. The TES process and the AR and ARMA processes described
in section 3.2 build the background of the ARTA-like processes described in
section 3.3. Section 3.4 describes a completely different approach for a differ-
ent kind of input fitting problems, namely the approach of Batch Markovian
Arrival process (BMAP). Section 3.5 review the ideas behind the copulas and
the empirical copulas.

3.1 The TES Process

This Transfer-Expand-Sample (TES) approach tries to capture the marginal
distribution and autocorrelation function of a given data sample (e.g. a time-
series measured data). The scheme of the TES processes is an example of
the general scheme foreground/background. Such schemes generate two auto-
correlated sequences in lockstep: an auxiliary sequence Yn (the background
sequence) and the target sequence Xn (the foreground sequence) (Jagerman
and Melamed (1992a)). The background sequence is usually a stationary
process generated recursively by some transition function Yn+1 = TG(Yn, Zn),
where Zn is an IID Uniform(0,1) sequence. The transition function TG is cho-

13

Figure 3.1: The Foreground/Background Paradigm. From Jagerman and
Melamed (1992a)

sen to preserve the marginal distribution G of the initial Y0, and to generate
Yn such that they are correlated and identically distributed. The sequence
Xn is obtained from the sequence Yn via Xn = D(Yn), where D is a mapping
called distortion. Please see Fig. 3.1

A typical scheme of the TES process employs D = F−1 ◦ G, where G is
the marginal distribution of Yn, F is the marginal distribution of Xn, and
◦ denotes functional composition. Here D is a two stage mapping: the first
stage G operates on the background variate Yn and yields a Uniform(0,1)
variate, Un = G(Yn); the second stage executes the inversion method to yield
the foreground variate Xn = F−1(Un) with the required marginal distribution
F .

The acronym TES (Transform-Expand-Sample) summarizes the geomet-
ric construction of a TES process on the unit circle, where the next sample
is obtained from the previous one in three steps: first, the previous sample
is mapped to a point on the unit circle (Transform); second, the point is
mapped to an interval (Expand); and third, a value is sampled uniformly in
that interval independently of the probabilistic past (Sample).

There are two related classes of TES methods called TES+ and TES−.
TES+ realizes all values of the first autocorrelation in the range [0, 1], while
TES− cover the range [-1, 0]. The attendant TES processes U+

t and U−t are
defined over a common probability space and given recursively by

14

U+
t =

{
U+

0 t = 0,
< U+

t−1 + Vt > t = 1, 2, ...,

U−t =

{
U+
t t is even,

1− U+
t t is odd,

where the notation < . > denotes modulo-1 arithmetic, which is defined for
any real x by < x >= x − bxc, where bxc=max{integer N , n < x}, U+

0 is
a (0, 1] uniform random variable, and Vt is a sequence of IID variates where
each Vt is independent of {U+

0 , ..., U
+
t−1} and {U−0 , ..., U−t−1}.

One limitation of the TES approach is that it requires interaction with
experienced users. This is due to the extreme jumps that may appear in
the generated samples due to the modula-1 arithmetic, i.e., Ut−1 can be very
close to 1 while Ut is very close to 0. If this effect is wished to be alleviated, a
kind of transformation called the stitching transformation, parameterized by
ξ as shown in (3.1), is required. The parameter ξ is then adjusted depending
on visual judgment by the user.

Sξ(Ut) =

{
Ut/ξ 0 < Ut < ξ ,
(1− Ut)((1− ξ) ξ < Ut < 1,

(3.1)

The random variables Sξ(Ut), t = 1, 2, . . ., still have (0, 1] uniform
marginals, but no longer have extreme jumps.

Unfortunately, the stitching transformation changes the autocorrelation
structure of Sξ(Ut), and the change is not a simple function of ξ (Biller
and Ghosh (2004)). TEStool allows the user to interactively change the
autocorrelation structure ξ and the distribution of Vt, and then displays the
implied autocorrelation structure. The user changes the distribution until
the autocorrelations of the input process match the desired autocorrelations.
For this step, experience is required.

3.2 Standardized Autoregressive and Autore-

gressive Moving Average

A univariate linear Gaussian autoregressive (AR) model of order p can be
presented as

Z∗t = α1Z
∗
t−1 + α2Z

∗
t−2 + ...+ αpZ

∗
t−p + Yt, t = p+ 1, p+ 2, ...,∞,

(3.2)

15

where p is the longest lag, and the Yt are IID normal (Gaussian) random
variables with mean zero and variance σY

2. The coefficient and Yt can be
chosen such that the Z∗t have a standard normal distribution. The AR coef-
ficients αh, h = 1, 2, ..., p, uniquely determine the autocorrelations of the Z∗t ,
ρ∗Z(h). The αh are chosen such that the AR process is stationary. A constant
c which is just a shift for the mean value of Z∗t can be added to both sides
of (3.2).

We are interested not only in standard Gaussian AR process but also in
general AR processes whose marginal distribution might be more general like
Weibull or Pareto, we define an AR process as:

Zt = α1Zt−1 + α2Zt−2 + ...+ αpZt−p + Yt, t = p+ 1, p+ 2, ...,∞,
(3.3)

where the IID random variables (perturbations) Yt are not necessarily stan-
dard Gaussian. Therefore, the expected value of Zt might not be zero, and
the variance of Zt might not be equal one.

As we mentioned in section 2.1, we are interested only in strong and/or
weak stationary stochastic processes. Weak stationary stochastic processes
have the following two properties:

1. µ(i) = µ and σ(i) = σ for all i = 1, 2, ...n, and

2. Cov(Zs, Zr) is a function of (s− r) only, s, r = 0, 1, ..., n, Zs and Zr are
random variables,

where µ is the expectation function, and σ is the standard deviation function.
The first property implies that the expectation and the standard deviation

functions must be constant. The second property implies that the correlation
function depends only on the difference between the lags s and r. Both
properties apply also to strongly stationary stochastic processes, if they exist.
The stationarity of an AR process can be satisfied if the following condition
for αh, h = 1, 2, ..., p, holds:

• All roots of (1−
p∑

h=1

αhx
h = 0) lie outside the unit circle in the complex

plane.

Similar conditions are needed to guarantee the stationarity of multivariate
AR processes (Biller and Nelson, 2003).

To calculate the AR parameters, αh, h = 1, 2, ..., p, of (3.2), one can use
the Yule-Walker equations. See for example Chatfield (1996), Section 3.4.4:

ρm =
∑p

h=1 αhρm−h + σ2
Y δm,0 p = 1, 2, ..., n (3.4)

16

where m = 0...p, yielding p+ 1 equations. ρm is the autocorrelation function
of the AR process Z, σY is the standard deviation of the IID random variables
Yt, and δm,j, m, j = 0, 1, ... is the Kronecker delta function:

δm,j =

{
1 m = j ,
0 otherwise.

Because the last part of the equation is non-zero only if j = 0, the equa-
tion (3.4) is usually solved by representing it as a matrix for m > 0, thus
getting

ρ1

ρ2

...
ρn

 =

ρ0 ρ−1 ... ρ−n
ρ1 ρ0 ... ρ−n+1

...
ρn ρn−1 ... ρn−p

α1

α2

...
αn

which is used to solve for all α. For m = 0 we have ρ0 =

∑p
h=1 αhρ−h + σ2

Y ,
which allows to solve for σ2

Y . The derivation of the Yule-Walker equations in
(3.4) is simple and is as follows:

For simplicity, we assume that E[Zt] = 0. Multiplying both sides of (3.3)
by Zt−m and taking the expectation yields:

E[ZtZt−m] = E [
∑p

i=1 αi Zt−iZt−m] + E[YtZt−m],

where p is the longest lag, t = 1, 2, ..., p < t, and m = 0...p. Considering
that E[Zt]=0 yields that E[ZtZt−m] is the covariance function. The values
of the IID random variables Yt are independent of each other, and Zt−m is
independent of Yt for all m greater than zero. Furthermore,

E[

p∑
i=1

αi Zt−iZt−m] =

p∑
i=1

αiE[ZtZt−m+i] =

p∑
i=1

αiCovi−m(Zt),

This yields:

Covm(Zt) =
∑p

i=1 αiCovi−m(Zt) + E[YtZt−m],

where p is the longest lag, t = 1, 2, ...,, p < t, and m = 0...p
Dividing by σ2

Z and considering that Covm(Z)/σ2
Z = ρm, where ρ is the

autocorrelation function, and considering also that the IID random variables
Yt are independent, and Zt−m is independent of Yt for m = 1, 2, ..., p, and
therefore E[YtZt−m]= E[Yt]E[Zt−m]=0, we can write

ρm =
∑p

t=1 αtρt−m m = 1, .., p, and p is the longest lag < t, t = p+ 1, ..,∞.
(3.5)

17

For m = 0
ρ0 =

∑p
t=1 αtρt + σ2

Y . (3.6)

Equations (3.5) and (3.6) yield the Yule-Walker equations:

ρm =
∑p

i=1 αiρm−i + σ2
Y δm,0 .

If the random variables Yt in (3.2) are defined as

Yt = εt +
∑q

i=1 βiεt−i, q ∈ {1, 2, ..., t},

where εt is a standard Gaussian process with mean =0, then the process is
called an autoregressive moving average (ARMA) process. ARMA processes
can be rewritten as pure AR processes, which means that both processes are
equivalent. However, fitting ARMA processes might result sometimes in the
need to estimate less parameters than those needed to be estimated if an AR
process were fitted (Chatfield, 1996), page 47.

3.3 ARTA, NORTA, and VARTA

ARTA, NORTA, and VARTA processes have some similarities to our ap-
proach described in chapter 4, but still have different advantages and disad-
vantages. The abbreviations stands for autoregressive to anything, normal to
anything, and vector autoregressive to anything, respectively. From now on,
we will call these processes ARTA-like processes. The approaches of ARTA
and VARTA try to model the dependencies in a time-series by transforming
a Gaussian AR process to a non-Gaussian process. A sample of the latter
processes has similar statistical properties as the time-series. The NORTA
approach in turn depends on transforming Gaussian random vectors to any
non-Gaussian random vectors. The later random vectors have some desired
statistical properties (marginal distributions and correlation.) In the follow-
ing we give a brief overview on these processes.

ARTA processes use a standard Gaussian AR process, shown in (3.2), as
a base process. This base process, Z∗t , is used to generate a series of auto-
correlated uniform random variables, Ut by applying Ut = Φ(Z∗t), where Φ
is the standard normal distribution. ARTA applies then the inverse trans-
formation method, Xt = F−1

X [Ut], to generate random variables having a
specific distribution, FX . The Gaussian property of the Yt in (3.2) ensures
not only that the Zt are standard Gaussian, but also that the autocorrela-
tion coefficients of the base process, ρZ(h), determined by the AR coefficients
αh, h = 1, 2, ..., p, uniquely determine the autocorrelation coefficients of the
transformed (target) process Xt, ρX(h).

18

ARTA processes of Cario and Nelson (1996) are able to generate random
variables having a specific distribution and autocorrelation structure, which
should in turn be given explicitly. A complementary work to that is the work
done by Biller and Nelson (2002). They describe how to fit ARTA processes
to univariate time-series. This will enable the user to provide the ARTA tool
with a time-series and to get as a result a fitted ARTA process. A sample
generated from this process has similar statistical properties as the provided
time-series.

Another research in this area are the NORTA processes of Cario and
Nelson (1997). NORTA processes can be used to generate IID finite vec-
tors of random variables. The random variables within the vectors can
have arbitrary marginal distributions and correlation matrices. The idea
behind this work is to transform a standard multivariate normal vector Z =
(Z1, Z2, ..., Zd)

′ into a vector X = (X1, X2, ..., Xd)
′, where Xi = F−1

i [Φ(Zi)].
Fi, i = 1, 2, ..., d, may be different distribution functions. Moreover, Xi,
i = 1, 2, ..., d, can exhibit correlations among themselves.

A generalization of ARTA and NORTA processes are the VARTA pro-
cesses of Biller and Nelson (2003). VARTA can be fitted to multivariate
time-series by considering the AR base process as the standard Gaussian
vector AR process of order p. Similar to the case of ARTA, the autocorrela-
tion structure of the base process, determined by the AR coefficients, specifies
uniquely the target autocorrelation structure of the resulted VARTA process.

ARTA-like processes depend on a transformation of a base process into
a specific process. Let us consider for example the ARTA processes. The
autocorrelations in the base process of ARTA, ρZ(h), do not match the auto-
correlations of the ARTA process, ρX(h). However, Cario and Nelson (1996)
show that ρX(h) is a continuous non-decreasing function of ρZ(h)

ρX(h) =

∫∞
−∞

∫∞
−∞ F

−1
X [Φ(zt)]F

−1
X [Φ(zt−h)]ϑρZ(h)(zt, zt−h)dztdzt−h − µ2

σ2
,

where h = 1, 2, ... is the current base process autocorrelation lag, and ϑ is
the bivariate normal (probability) distribution function.

NORTA and VARTA depend also on transformations similar to the above
one. Current researches show that this kind of transformations has a draw-
back, that is, there are some random vectors, Xt, with feasible covariance
matrices, Cov(X), which are transformed to non-feasible base process covari-
ance matrices, Cov(Z). In other words, for some desired Cov(X) matrices, the
transformation results in non-positive definite Cov(Z) matrices. Non-positive
definite covariance matrices are invalid covariance matrices (Fishman, 1978).
Cario and Nelson (1997) calls the Cov(X) matrices, that are transformed into
non-positive definite Cov(Z) defective matrices. Please do not confuse this

19

definition with the definition of defective matrices in mathematics, which
says, that a matrix is defective if its eigenvectors are not complete.

This drawback is discussed in Ghosh and Henderson (2001), Ghosh and
Henderson (2002a), and Ghosh and Henderson (2002b) in detail for the
NORTA processes. The papers provide an example of a defective covari-
ance matrix Cov(X). They suggest a modification of the NORTA procedure
such that defective matrices can be detected, and which can generate Cov(Z)
matrices that are positive definite and ”close” to the desired ones. VARTA
processes, which are generalizations of the NORTA processes, are supposed
to have the same drawback. ARTA is not yet proved to suffer from the defec-
tive matrices problem, as the defective matrix given by Ghosh and Henderson
(2002a) and Ghosh and Henderson (2002b) is not a valid ARTA covariance
matrix. However, Biller and Ghosh (2004) assume that ARTA can also gen-
erate defective matrices, but they do not provide detailed information.

Another drawback of the above transformation shows up when trying to
fit ARTA-like processes to time-series. Let us consider ARTA for example.
Fitting an ARTA process to a time-series, which have the distribution FX
with the parameters p = (p1, p2, ...) and the autocorrelation ρX(h), requires
estimating FX along with p and ρZ(h) in parallel. In other words, the fitting
procedure assumes a distribution FX having the parameters p, and try to
estimate ρZ(h) using an optimization procedure. Having ρZ(h) estimated for
specified FX and p, the parameters p and maybe FX must be estimated using
an optimization procedure. The procedure iterates until ”convergence”. This
results generally in a relatively time consuming fitting procedure.

The procedures of Biller and Nelson (2002) and Biller and Nelson (2003)
fit ARTA and VARTA processes to time-series. The distributions considered
in these two papers are only those from the Johnson translation system John-
son (1987). This means that the current ARTA and VARTA approaches can
not generate heavy-tailed ARTA and VARTA processes. Moreover, ARTA-
like processes can not fit non-linear AR models to time-series. An example
of non-linear AR models is shown below.

Zt = α1Zt−1
p + α2Zt−2

p−1 + ...+ αpZt−p + Yt. (3.7)

3.4 The Batch Markovian Arrival Processes

The Markovian Arrival Process (MAP), introduced in Neuts (1989), is a
generalization of phase-type (PH) distributions, see Neuts (1995) or Riska
(2002). A MAP is associated with a finite absorbing Markov chain. Once
the Markov chain has entered the absorbing state and a single MAP random

20

variable is generated, the process restarts from the transient part again for
the next random variable remembering the last transient state that reached
absorption. The concept of the Markovian Arrival Process is further extended
to allow for batch absorptions in the underlying Markov chain. The resulting
process is known as the Batch Markovian Arrival Process (BMAP). See for
example Lucantoni et al. (1994).

BMAP is an analytically tractable model of choice for aggregated traffic
modeling of IP networks. The key idea of this aggregated traffic model
lies in customizing the BMAP such that different lengths of IP packets are
represented by rewards of the BMAP. In order to represent an aggregated
traffic stream utilizing the BMAP, Klemm et al. (2002) applies the parameter
estimation procedure for a BMAP with N transient states and M distinct
batch sizes. The choice of N and M is crucial for an accurate capturing
of the interarrival process and the reward process of the aggregated traffic,
respectively.

The batch Markovian arrival process (BMAP) belongs to the class of
continuous-time Markov chain (CTMC). Consider a CTMC with N+1 states,
{0, 1, 2, .., N}, where the states {1, 2, .., N} are transient states, and state 0
is the absorbing state. Based on this CTMC, the BMAP can be constructed
as follows: The CTMC evolves until an absorption in state 0 occurs. The
chain is then instantaneously restarted in one of the transient states {1, 2,
.., N}. When restarting the BMAP after absorption in a transient state
j, the probability for selecting state j is allowed to depend on state i from
which absorption has occurred. Thus, the distribution of the next arrival may
depend on the previous history. Furthermore, there may exist multiple paths
between two states i and j corresponding to different rewards, i.e., different
packet lengths.

Formally, assume the BMAP is in a transient state i for an exponentially
distributed time with rate λi. When the sojourn time has elapsed, there are
(M+ N - 1) possible cases for state transitions: With probability P (m)i,j the
BMAP enters the absorbing state 0 and an arrival of batch size m occurs.
Then, the process is instantaneously restarted in state j. Note that the
selection of state j (1 < j < N) and batch size m (1 < m < M) is uniquely
determined by P (m)i,j. On the other hand, with probability P (0)i,j the
BMAP enters another transient state j, j 6= i, without arrivals.

Figure 3.2 shows a CTMC with the number of transient states equal to
3 (N=3), and 3 different packet lengths: L1, L2, and L3 (M=3).

Klemm et al. (2002) fits a BMAP to a trace file which consists of packet
interarrival times and the corresponding packet lengths. Noticing that packet
lengths of 40 bytes, 576 bytes, and 1500 bytes dominate with an overall
percentage of 80% of all TCP packets, it was decided that a BMAP with

21

Figure 3.2: An example of a BMAP CTMC

M=3 is sufficient in order to capture the interarrival process of the considered
trace.

Klemm et al. (2002) shows that the customized BMAP is advantageous
over other methods like the Markov Modulated Poison Process (MMPP) and
the Poisson Process. For example, the mean, variance, skewness, and kurtosis
of the BMAP are in general more similar to the measured traffic than those
of the MMPP or the Poisson process. The Traffic burstiness expressed in
terms of the Hurst parameter is also better in the case of BMAP. Moreover,
the analysis of the queuing performance shows that the BMAP model shows
a similar behavior in terms of queuing performance for low traffic intensities
and that the MMPP and the Poisson Process performs worse than the BMAP
for all considered traffic intensities.

3.5 The Copulas and the Empirical Copulas

Copulas are functions that join or ”couple” multivariate distribution func-
tions to their one-dimensional marginal distribution functions. Formally
speaking, copulas are multivariate distribution functions whose one-dimensional
margins are uniform on the interval (0,1) (Nelsen, 1998). Copulas provide a
way of studying scale-free measures of dependence. A foundation of many of
the applications for the purpose of dependence modeling is Sklar’s theorem
Sklar (1959).

Theorem 3.5.1 (Sklar’s Theorem) Let H be a joint distribution function
with margins Fand G. Then there exists a copula C such that for all x, y in

22

R,
H(x, y) = C(F (x), G(y)). (3.8)

If F and G are continuous, then C is unique; otherwise C is uniquely deter-
mined on the range of F × the range of G. Conversely, if C is a copula and
F and G are distribution functions, then the function H defined by theorem
3.5.1 is a joint distribution function with margins F and G.

A proof of the above statement can be found in Nelsen (1998), section
2.3. Theorem 3.5.1 can be extended to the d-dimensional case. However, for
the purpose of simplicity, we consider often the 2-dimentional copulas.

A 2-dimentional copula C is a function which has the following properties
(Nelsen, 1998), page 8:

1. The range of C is the unit interval [0, 1].

2. C(u, 0) = 0 = C(0, v) for every u, v ∈ [0, 1].

3. C(u, 1) = u and C(1, v) = v for every u, v ∈ [0, 1].

4. C is 2-increasing. This means, for every u1, u2, v1, v2 in [0, 1] such that
u1 ≤ u2 and v1 ≤ v2,

C(u1, v1)− C(u2, v1)− C(u1, v2) + C(u2, v2) ≥ 0.

These properties can be extended to the d-dimensional case.
Copulas are being used for the purpose of dependence modeling between

random variables, for example in financial applications. The advantage of the
copula-based approach to modeling dependency is that appropriate marginal
distributions for the components of a multivariate system can be selected
freely, and then linked through a suitable copula (Aas, 2004).

There are several classes of copulas in use. Some of the common classes are
the Marshall-Olkin copulas, the elliptical copulas, and the archimedean cop-
ulas. These copulas have been studied to a specific degree and shown to have
specific properties. For example, the Marshall-Olkin copulas are asymmet-
ric and have closed form expressions, and their tail dependence coefficients
can be explicitly expressed in terms of their parameters. The Marshall-Olkin
copula possesses either independence or perfect dependency, whereas the sur-
vival Marshall-Olkin copula possesses various positive upper tail dependence
(Li, 2006). The class of elliptical distributions provides a rich source of mul-
tivariate distributions which share many of the tractable properties of the
multivariate normal distribution and enables modeling of multivariate ex-
tremes and some other forms of dependences. Elliptical copulas are simply
the copulas of elliptical distributions (Embrechts et al., 2001).

23

The class of archimedean copulas allow for a great variety of different
dependence structures. Furthermore, in contrast to elliptical copulas, all
commonly encountered archimedean copulas have closed form expressions
(Embrechts et al., 2001).

One of the main issues with copulas is to choose the copula that provides
the best fit for the data set at hand. According to Blum et al. (2002), giving
an answer to this question is essentially as difficult as estimating the joint
distribution in the first place. The choice among different copulas can be
done via goodness-of-fit tests. However, while there in the one-dimensional
case are a lot of well-known distribution-independent goodness-of-fit statis-
tics available, e.g. Kolmogorov-Smirnov and Anderson-Darling, it is more
difficult to build distribution-independent goodness-of-fit tests in the multi-
dimensional framework.

The advantage of the copulas approach over the approach of fitting a
multivariate distribution function is that the different marginal distributions
can be of different families. However, the use of copulas was put under
criticism in Mikosch (2005). Mikosch (2005) emphasizes that multivariate
distributions should be used instead of the copulas approach, as the copulas
approach leads to a biased view of stochastic dependence, and the statisti-
cal analysis and the goodness-of-fit of the multivariate approach are more
understood.

Mikosch (2005) mentions also that the class of copulas is too big to be
understood and usefull. Various copulas models (archimedean, t-, Gaussian,
elliptical, extreme value) are mostly chosen because they are mathemati-
cally convenient; the explanation for their applications is obscure. Moreover,
Mikosch (2005) mentions that copulas do not fit into the existing framework
of stochastic processes and time series analysis; they are essentially static
models and are not useful for modeling dependence through time. However,
we show in this thesis that modeling dependence through time is possible
with a kind of copulas called the empirical copulas.

Empirical copulas are another class of copulas. A common bivariate em-
pirical copula is defined as follows:

Let {(xi, yi)}ni=1 denote a sample of size n from a continuous bivariate
distribution. The empirical copula is the function Cn given by

Cn(
i

n
,
j

n
) =

number of pairs (x, y) in the sample such that x ≤ x(i) and y ≤ y(j)

n
,

where x(i) and y(j), 1 ≤ i, j ≤ n, denote the order statistics from the sample.
The empirical copulas can represent any class of copulas. However, the

(theoretical) copulas have the disadvantages mentioned above. This encour-
aged us to use the empirical copulas instead of other classes of copulas for

24

the purpose of modeling dependencies among measurements.
The reader may note that the empirical copulas are not copulas. Their

marginals are discrete. Hence they are kind of ”discrete copulas”. In chapter
7 we define a kind of empirical copulas with the properties mentioned on page
22 and the generalization to higher dimensionality. In other words, they are
real copulas. Thus we omit the restriction to the common classes of copulas
and consequently the biase mentioned.

25

Chapter 4

A non-Gaussian Autoregressive
Modeling Approach for
Simulation Input Data

Non-Gaussian autoregressive (nGAR) processes are generalization of Gaus-
sian autoregressive processes viewed briefly in section 3.2. The marginal dis-
tribution of an nGAR process can have any known distribution and not only
the (standard) Gaussian distribution. For example, if the random variables
Yt shown in (4.1) are drawn from a heavy-tailed distribution like the Pareto
distribution, then the process Zt is non-Gaussian and will also, inherently,
be heavy-tailed,

Zt = c+ α1Zt−1 + α2Zt−2 + ...+ αpZt−p + Yt. (4.1)

This process might be generalized such that the dependencies among the
Zt become non-linear. In this case, known Yule-Walker equations for solving
the AR coefficients, please see section 3.2, do not apply any more, unless this
method is extended as we describe in chapter 5. An example of a non-linear
nGAR model is

Zt = α1,1Zt−1
1 + α1,2Zt−1

2 + ...+ α2,1Zt−2
1 + α2,2Zt−2

2 + ...+ Yt. (4.2)

Combining non-Gaussian random variables Yt and non-linear dependencies
in an nGAR process results as well in a generalized nGAR process.

The nGAR models have the property that the distribution of the Zt
differs from that of the Yt. This means that the input modeler, who does
not have measurements (samples), can not generate an nGAR process which
has a specific distribution and autocorrelation structure with our method.
However, if a modeler has measurements, these measurements can be used

26

to fit an nGAR process. A sample generated from the fitted nGAR process
will have similar statistical properties as the original measurements. In the
world of simulation input modeling, it is common to have measurements
which should be fitted to a distribution or to a stochastic process.

Before we start the explanation of the procedure of fitting nGAR models
to measurements, we would like to give an overview of the genetic algorithm
which is applied in our approach of fitting nGAR models to measurements.

4.1 The Genetic Algorithm for Fitting Dis-

tributions to IID sample

We use the genetic algorithm for the purpose of estimating distribution pa-
rameters by means of minimizing an objective function, namely distances
between empirical distributions and fitted distributions. Estimating the pa-
rameters of a distribution can be done in different ways like the maximum
likelihood or moment methods. The maximum likelihood or moment meth-
ods are applied in arena input analyzer and ExpertFit. However using the
genetic algorithm for the purpose of fitting a standard distribution to IID
samples is advantageous in some cases.

Strelen (2003) shows that using the genetic algorithm for fitting distribu-
tions to IID data is useful when fitting multi-mode distributions like

F (x) = α1F1(x) + α2F2(x), ...,+αnFn(x),

where αi > 0, i = 1, .., n, α1 + ... + αn = 1 and F1, F2, ... might belong to
the same family of distributions (e.g. Weibull) but have different parameter
values, or F1, F2, ... might belong to different families of distributions, (e.g.
F1 is Weibull, F2 is Gamma, and so on.) We call this method the Genetic
Algorithm Fitting (GAF). Moreover, because we implement our algorithms
in MATLAB and the algorithms of Strelen (2003) are also implemented in
MATLAB, we could automate both algorithms together. This way, the fitting
of an nGAR process, which includes at one point fitting a distribution to
IID samples, can be accomplished in one single program and one must not
interrupt the procedure at some point. On the other hand, choosing to use
an available software like Arena input analyzer to fit a standard distribution
to IID samples mean that at one point, the procedure of fitting an nGAR
process will stop and wait for the user to intervene and use the input modeling
software to fit a distribution to independent samples produced by the fitting
procedure, and give the results back to the nGAR process fitting procedure.

The genetic algorithm (see for example Baeck et al. (1997) and Chip-
perfield et al. (1994)) is a stochastic global search method that mimics the

27

natural biological evolution. It differs from traditional search and optimiza-
tion methods, significant differences are:

• Genetic algorithms search generations of approximations in parallel,
not a single sequence

• Genetic algorithms require only the objective function, no derivatives

• Genetic algorithms use probabilistic transition rules, not deterministic
ones

• Genetic algorithms work on an encoding of the parameter set rather
than the parameter set itself

The genetic algorithm operates on a population of potential solutions (in-
dividuals) applying the principle of survival of the fittest to produce succes-
sively better approximations to a solution. Individuals are tuples of decision
variable values which are encoded as strings over the binary alphabet or other
alphabets. The individuals are approximations of the desired solution, and
their fitness measures the accuracy which is fixed by an objective function.
At each generation, a new population is created by the process of selecting
individuals according to their fitness.

The genetic algorithm uses operators borrowed from the natural genetics
like the selection, recombination, and mutation (Chipperfield et al., 1994).
The selection operator is used to select individuals for reproduction. The
recombination operator is used to exchange parts of the individuals among
themselves, and the mutation operator might change the state of one bit of
an individual randomly (assuming that individuals are binary encoded).

The genetic algorithm works as follows: The population of individuals
is initialized randomly with uniformly distributed random numbers. The
population consists of several individuals. Each individual represents a pos-
sible solution. Each individual can be assigned a fitnesses according to an
objective function. Fitter individuals have higher probability to propagate
to the next generation and higher probability to be selected to produce the
individuals of the next generation.

In our case, the individuals of a population represent the parameters of a
distribution. Each individual is a vector of the same length as the parameter
vector of the distribution, and each value in this vector represent a value
that the corresponding parameter in the parameter vector might take. The
objective function might then depend on the principle of least squares or a
similar principle and might be established as follows: Having measurements
(samples) y = (y1, y2, ..., yn), and considering a distribution F (y,p) with

28

parameters p, for each individual v which specifies the parameter values, the
objective function is the sum of the squares of the differences between the
empirical distribution function, and the distribution function at the sample
points y, where the distribution function is having the parameter values v,
divided by n. Formally, the procedure is as follows:

Having a measured sample y = (y1, y2, ..., yn), the empirical function
Fn(y), y ∈ R, a step function is defined by:

Fn(y) =
(number of elements in the sample ≤ y)

n
,

and the objective function for the genetic algorithm is

OF (v) =
n∑
i=1

(Fn(yi)− FY (yi,v))2

n
, (4.3)

where F (yi,v) is the value of the selected distribution function with the
parameters (individual) v at the point yi. The objective function OF (v)
measures how accurately the selected distribution with the selected param-
eters (individual) fits the empirical distribution. The smaller OF (v) is, the
better the distribution with these parameters (individual) fits the empirical
distribution.

4.2 The Model and the Fitting Procedure

Equations (4.1) and (4.2) are special cases of multi-variate non-Gaussian
autoregressive (nGAR) models. Another special case is the bivariate nGAR
model given below:

Z1,t = α1,1Z1,t−1 + α1,2Z2,t−1 + α1,3Z1,t−2 + ...+ α1,pZ2,t−p + Y1,t

Z2,t = α2,1Z2,t−1 + α2,2Z1,t−1 + α2,3Z2,t−2 + ...+ α2,pZ1,t−p + Y2,t

where the matrix of the autoregressive coefficients Σα =

[
α1,1 α1,2 ... α1,p

α2,1 α2,2 ... α2,p

]
are such that the stochastic process is stationary. Please see section 3.2 for
the definition of stationary stochastic (nG)AR processes. t = p + 1, ..., n,
p is the maximum lags (nGAR orders) of the sub-processes Z1,t and Z2,t

respectively. For simplicity, we assume that the maximum lag of the two
sub-processes is the same. Y1,t and Y2,t are IID random variables.

In general, an nGAR process might be d-variate, which means that at each
point of time t, there are Z1,t, Z2,t, ... Zd,t random variables. Each random

29

variable Zi,t might depend on 0,1, or more previous random variables Zi,t−j,
where i = 1, ...d, j = 1, ..., t− 1, and t = p+ 1, ..., n. Moreover, each random
variable Zi,t might depend on 0,1, or more previous random variables Zk

i,t−j
with an exponent k. For example, Zi,t might depend on Z2

i,t−1 or Zk
i,t−1. p is

the maximum lag. A more formal and precise overview of our method and
goal is described in Nassaj and Strelen (2005) and is given in the following
paragraphs:

Our goal is to fit a stationary (multivariate) nGAR model, Zt to a (multi-
variate) measured sample xt, t = p+ 1, , ..., n. The nGAR Model is specified
by:

Zt = ψ(Zt−1,Zt−2, ...,Zt−p,Σα)+Yt,

where Zt = (Z1,t, Z2,t, ..., Zd,t)
′ is a d-vector of random variables taken at

time t. Yt = (Y1,t, Y2,t, ..., Yd,t)
′ is a d-vector of independent and identically

distributed random variables observed at time t. For each i = 1, 2, ..., d, the
Yi,t, t = p + 1, ..., n, are independent and have the probability distribution
Fi(yi). Σα is a set of numerical parameters, and p is the a d-vector of the
longest lags (orders) of the different d sub-processes of the nGAR model,
and p=max(p1, p1, ...). Σα, p, and ψ are such that Zt is stationary for any
t = p + 1, ..., , n. The function ψ, the parameters Σα, and the vector of
the longest lags p, determine the dependency structure of the multivariate
stochastic process Zt.

The first elements generated by the fitted nGAR model will be non-
stationary because they will have different distributions and dependencies
than the stationary nGAR process Zt. Therefore, the first elements which
are generated by the nGAR model are considered as transient and will be
ignored.

In the case of linear nGAR models and a single lag p for all sub-processes

in the model, Σα is a p x d matrix, Σα =

α1,1 α1,2 ... α1,p

...
αd,1 αd,2 ... αd,p

 , and ψ is

simply a matrix multiplication:

Z′t = [Z′t−1,Z
′
t−2, ...,Z

′
t−p]×Σα

′, (4.4)

where t = p+ 1, ..., n, and [Zt−1,Zt−2, ...,Zt−p] are the concatenated vectors.
In the case of non-linear nGAR models, ψ is more general. An example of
non-linear nGAR models is shown in (4.2).

Fitting an nGAR model to measurements corresponds to estimating the
parameters Ω = {ψ,Σα, p, F (yi), i = 1, 2, ..., d}. Here, the function ψ is
chosen out of a finite set of given functions.

As a first step in this approach, the numerical parameters Σα are esti-
mated for one or several ψ functions, and one or several p. When ψ is linear

30

in the Zt as in (4.1), this step can be accomplished by means of the Yule-
Walker or Burg method (Priestley, 1982) or by the independence method
explained below. For non-linear functions ψ, the common Yule-Walker and
Burg methods does not apply as the dependencies are non-linear in the ran-
dom variables Zt and as the common Yule-Walker methods handles only
linear correlations. In this case, the independence method can be used. We
also show in chapter 5 that the Yule-Walker methods can be extended so
that it can catch non-linear dependencies in some special stochastic process.

In the next step of our approach, the ŷt are estimated for each (ψ, p)
pair and their corresponding estimated Σ̂α:

ŷt = zt − ψ(zt−1, zt−2, ..., zt−p, Σ̂α), (4.5)

where t = p + 1, ..., n. Next, for each i = 1, 2, ..., d, a distribution is fitted
to the estimated IID samples (perturbations) yi,t. This can be accomplished
with a tool like ExpertFit, Arena Input Analyzer, or with the GAF technique.
At the end of step 2, estimated Σ̂α and F̂ (yi) are available for (several) (ψ,
p) pair(s). This means that different estimated nGAR model parameters Ω̂
might be available.

In the next step of the procedure, the best set of the estimated model
parameters Ω̂ is chosen according to one or several statistical tests. The pro-
cedure of fitting an nGAR process in general as an algorithm is given below:

Algorithm 1. The general algorithm for fitting an nGAR model to
measurements

begin
1. Select a (ψ,p) pair that has not yet been selected
2. Estimate (Σ̂α) by means of:

a. A parametric method like the Yule-Walker or
b. The independence method.

3. Estimate ŷi,t for all i = 1, 2, ...d, t = p+ 1, ..., n

4. Fit all ŷis to standard distributions F̂i(.), i = 1, 2, ...d
5. If there remains a not yet selected parameter pair go to 1
6. Choose the (ψ,p) pair and the corresponding Σ̂α and

F̂i(.), i = 1, 2, ...d which gives the best goodness-of-fit test statistics
end

More details about the procedure is given in the following two subsections.

31

4.3 Fitting Linear nGAR models

Let us consider fitting a linear univariate nGAR model similar to that given
in (4.1), where the random variables Yt are drawn from a specific probability
distribution function. As mentioned, measurements should be available. The
known methods for estimating the AR order like the Akaike or Schwarz infor-
mation criterion do not work here, as the provided measurements are usually
not normally distributed. Instead, an order of the nGAR, p̂test, is chosen,
and a parametric method like the Yule-Walker method or Burg method is
used to estimate the nGAR coefficients α̂h, h = 1, 2, .., p̂test.

Assuming that the correlation function is declining, if p̂test is higher than
the actual order, p, the estimated α̂h will contain ”small” nGAR coefficients
for lags higher than p. In the case that the sample is highly correlated and
p̂test is smaller than p, α̂p̂test will not be small. We mean by the term ”small
AR coefficient” in linearly correlated models like those given in (4.1) any
value smaller than 3%. At the end, one can apply an independence test
on the estimated perturbations ŷi to be sure that considerably high nGAR
coefficients were not neglected. The whole procedure can be implemented as a
sequential procedure so that it checks all lags i = 1, 2, ..., k at which the value
of the nGAR coefficients are not small and finally checks the independence
of the ŷi.

We noticed during our fittings that a sample which is generated from an
IID distribution might have positive or negative nGAR coefficient values up
to 3%. However, these values of nGAR coefficients are a result of randomness
and we still can consider the variables in the sample as independent. We
follow the same principle when considering real measurements. All values of
nGAR Coefficients which might be result of randomness will be considered
small and will not be included in the fitted model.

Having nearly independent estimated samples ŷi, a distribution can be
fitted. At this point, the parameters Ω̂ of the nGAR model (4.1) are esti-
mated, a sample can be generated, and statistical goodness-of-fit tests can
be applied to compare the original measurements with the generated sample.

Fitting a bivariate or multivariate nGAR model is similar to the case of
fitting univariate model. However, in the case of multivariate nGAR model,
the order of the different sub-processes in the model might be different. This
results in the need to estimate a different orders pi for each sub-process in
the multivariate model. In subsection 4.6.2 we show an example of fitting
a bivariate nGAR model assuming that the two sub-processes in the model
have the same nGAR order (maximal correlation lag).

The algorithm of fitting a linearly correlated nGAR model is a simplified
procedure of that shown in algorithm 1, as the function ψ is always the func-

32

tion of matrix multiplication when considering linearly correlated processes.
The algorithm is given below:

Algorithm 2. Fitting a linearly correlated nGAR model to mea-
surements

begin
1. Estimate Σ̂α and the nGAR order p̂test
2. Estimate the perturbations ŷi,t, i = 1, 2, ...d, t = p+ 1, ...n

3. Fit all ŷis to standard distributions F̂i(.),
4. Perform goodness-of-fit tests

end

4.4 The Independence Method

Another way to fit an nGAR model to measurements is to use an indepen-
dence test that utilizes the Chi-square independence function. This method
is used if the above described procedure is not applicable due to non-linear
dependencies in the measurements or non-existing moments. Our indepen-
dence method is used to accomplish step 2 in Algorithm 1 in the procedure
of estimating the nGAR model parameters Ω = {ψ,Σα, p, Fi, i = 1, 2, ..., d}.

The chi-square independence test is used to determine whether there is
dependency between a row variable and column variable in a contingency
table constructed from sample data (Miket, 2006). The null hypothesis is
that the variables are independent. The alternative hypothesis is that the
variables are dependent.

The idea behind testing these types of claims is to compare actual counts
to the counts we would expect if the null hypothesis were true (if the variables
are independent). If a significant difference between the actual counts and
the expected counts exists, we would take this as evidence against the null
hypothesis.

The estimation of Σα is accomplished in a recursive procedure for each
hypothesized pair (ψ, p). This requires that the function ψ is known or a
set of possible functions ψ are assumed and implemented. In this recursive
procedure, the perturbations ŷt, t = p + 1, ..., n are estimated using (4.5)
and their independence is tested. If the perturbations are dependent, the
parameters Σ̂α must be adjusted. This results in an optimization procedure
according to an objective function of independence.

In the following, we explain in more detail how the independence of the
perturbations ŷt is postulated. Two vectors of realizations x and y can be

33

tested for independence using the chi-square independence function. The test
requires in addition to the vectors a degree of freedom ν and a significance
level (of rejection). If the test statistics calculated exceeds a value specified
in the chi-square table under the selected ν and significance level, the vectors
are said to be dependent.

The calculation of the test statistic is described for example in detail
in Lehn and Wegmann (1992) and is calculated as follows: Having the two
vectors of realizations x and y, the corresponding sample pairs (x, y)’s from
those vectors are sorted in different regions (u, v), u = 1, 2, ..., k, v = 1, 2, ..., l.
The number of (x, y) pairs in each region (u, v) is then denoted as Nuv. Nu•
denotes the number of pairs in the regions (u, v) for all v = 1, 2, ..., l. N•v
denotes the number of pairs in the regions (u, v) for all u = 1, 2, ..., k. This
results in a contingency table as shown below, where N=n is the number of
pairs in the sample.

Table 4.1: The contingency table
N11 N12 ... N1l N1•
N21 N22 ... N2l N2•
...
Nk1 Nk2 ... Nkl Nk•
N•1 N•2 ... N•l N

The number of samples in the different N•v and Nu• must guarantee to
satisfy the chi-square test conditions:

1. All expected frequencies in all regions (u, v) are greater than or equal
to 1 and,

2. No more than 20% of the expected frequencies are less than 5.

These two conditions are guaranteed to be satisfied by choosing the regions
Nij to have different widths. The Chi-square independence function (4.6) is
then applied to get a positive test statistic, Q. The smaller the test statistic
is, the more independent x and y are:

Q = n[(
k∑

u=1

l∑
v=1

Nuv
2

Nu•N•v
)− 1]. (4.6)

When fitting an univariate nGAR model Zt, during the fitting procedure,
the independence of all pairs of random variables (ŷt, ŷt−h), h = 1, 2, ..., p,
where p is the maximum lag (nGAR order), must be postulated. This means

34

that the sample vectors (ŷt, ŷt−h), for all h = 1, 2, .., p must be nearly in-
dependent. This requires applying (4.6) p times, one time for each h. The
values of all Qh, h = 1, 2, ..., p, where Qh is the chi-square-statistics for the
sample vectors (ŷt, ŷt−h), can then be averaged

Q̄ =

p∑
h=1

Qh

p
, (4.7)

and considered as the objective function value for independence. The smaller
Q̄ is, the more independence lies among the random variables (Ŷt, Ŷt−h) for
all h = 1, 2, .., p.

One can reject the hypothesis that the random variables (Ŷt, Ŷt−h) are
independent if Q̄ exceeds one value taken from the chi-square table. Alterna-
tively, one can assume more difficult conditions. For example, the maximum
Qh over all h does not exceed a value. Similar to the known chi-square method
mentioned before, the value chosen from the table depends on a significance
level and a degree of freedom. The significance level is a personal choice and
lies usually in the range [1%,5%]. The degree of freedom ν depends on the
number of spans in the contingency table by the formula: ν = (k− 1)(l− 1).

When fitting a d-variate nGAR model Zt to a d-variate sample and during
the estimation of the Σα, one must postulate the independence of a d-variate
ŷt with a target lag p. For the purpose of testing a d-variate ŷt with a target
lag p for independence, all samples ŷt must be independent of each other.
Assuming for simplicity that all sub-processes in the nGAR model Zt have
the same maximum lag p, the procedure means that for all t = p + 1, ..., n,
the pairs (ŷi,t, ŷj,t−h) are tested for independence for each h = 1, 2, ..., p,
and i, j = 1, 2, ..., d. If the maximum lag of the different sub-processes are
different, one can take p as the max(pi), 1 ≤ i ≤ d. This assumption does not
affect the accuracy of the procedure but results only in redundancy, which is
estimating autoregressive coefficients which can be practically neglected.

Lets consider the simple example of fitting the bivariate nGAR model Zt:

Z1,t = α1,1Z1,t−1 + α1,2Z1,t−2 + Y1,t

Z2,t = α2,1Z2,t−1 + α2,2Z2,t−2 + Y2,t

Here we have the maximum lag (nGAR order) p = 2, the model is bi-
variate which means that d = 2, and there is no cross correlations among
the two sub-processes Z1 and Z2. When fitting such a model to a sample
which satisfies these conditions, during the recursive procedure of estimating

35

the linear autoregressive coefficients Σα={α1,1, α1,2, α2,1, α2,2}, the modeler
will notice that there is no cross dependencies between the variables in dif-
ferent sub-processes. In other words, all chi-square statistics which represent
the cross dependencies between the random variables in different processes
will be small and will most probably satisfy the chi-square test conditions to
accept the null hypothesis. All other chi-square test statistics will be small
enough when a good estimation of the aGAR coefficients Σ̂α is reached.

In general, a multivariate nGAR model might consist of several sub-
processes. Each random variable in each sub-process i might depend on
the previous pi random variables from the same sub-process, where pi is the
order of the ith sub-process. Moreover, each random variable in each sub-
process might depend on random variables from another sub-process. This
type of dependency is called cross-dependency. The overall number of de-
pendencies and cross dependencies in such a d-variate process with order p
for all sub-processes is equal to pd2.

For example, in a tri-variate nGAR model with maximum lag p = 2,
the number of dependencies in the whole nGAR process is equal to 6, 2
dependencies in each sub-process. The number of cross-dependencies among
the sub-processes is equal to 12. The total number of dependencies is 18
which is equal to 2 ∗ 32. In an nGAR process with p = 3 and d = 3, the
number of dependencies is 9 and the number of cross-dependencies is 18. The
total number of dependencies is 27.

In a d-variate process with lag p, let Qi,j,h(Σ̂α) denote the chi-square test
statistics for the random variables (Yi,t, Yj,t−h) where i, j = 1, 2, ..., d and
h = 1, 2, ..., p, then, the objective function of independence might be defined
as:

Q(Σ̂α) =
d∑

i,j=1

p∑
h=1

Qi,j,h(Σ̂α)/pd2. (4.8)

Different Σ̂α values result in different values for Q(Σ̂α). The best Σ̂α is
calculated as:

Σ̂α,best = arg min
Σ̂α

Q(Σ̂α).

All Σ̂α values must not be predefined before beginning the fitting process.
Using a generic algorithm similar to that introduced in Strelen (2003) and
described in 4.1, one can use the best Σ̂α values to generate new Σ̂α values
which in turn can be used as input for Algorithm 3. These steps can be
repeated till the chi-square test statistics satisfy the conditions specified by
the modeler.

36

The algorithm for selecting the best Σ̂α,best using the independence method,
which in turn utilizes the genetic algorithm for the purpose of minimizing an
objective function, is as follows:

Algorithm 3

begin
while the independence test statistics Q(Σ̂α) is not smaller than a
specified value do

1. In a predefined set of Σ̂α, Select a Σ̂α that has not yet been selected

2. Estimate all yi,t, i = 1, 2, ...d, t = p+ 1, ...n, by (4.5)
3. Estimate the chi-square test statistics for all pairs of

(yi,t, yj,t−h), i, j = 0, 1, ...d, h = 1, 2, ..., p, by (4.6)

4. Apply (4.8) to get the independence test statistics Q(Σ̂α)
5. If there remains a not yet selected parameter pair go to 1
6. Choose several Σ̂α which give the best independence test
statistics calculated by (4.8)
7. Apply the best Σ̂α as input for the genetic algorithm. The

output of the genetic algorithm is a new set of Σ̂α

end
end

To this end, we could find the best Σ̂α and F̂i(.) using the independence
method. This is step 2 in Algorithm 1 of section 4.2. However, if more than
one ψ function or more than one p value are considered, Σ̂α,best and the

distributions F̂i(.), i = 1, 2, ..., d are searched for each (ψ, p) pair. ŷi are
then estimated and tested for independence for all i = 1, 2, ..., d.

The (ψ, p) pairs with their corresponding Σ̂α,best and F̂i(.) are considered

and therefore different nGAR parameters Ω̂ will be available. The parameters
Ω̂best is then chosen with the help of goodness-of-fit tests. In other words, the
original sample is tested against a sample generated from the fitted nGAR
model that have the different parameters Ω̂. The set of parameters Ω̂ which
delivers the best test statistics is chosen to be the ”optimal” one. More than
one goodness-of-fit test can also be considered. Algorithm 1 in section 4.2
summarizes the whole fitting procedure.

37

4.5 Goodness-of-Fit Tests

In this section, we overview one standard goodness-of-fit test (the Kolmogorov-
Smirnov test) and two other tests that are functions of the residuals. The
residuals are defined as:

residual = observation-generated value

4.5.1 The Mean Squared Residuals Test

The Mean Squared Residuals (MSR) test is the sum of the squares of the
residuals between points generated from the fitted model and corresponding
points from the original sample. The points are made corresponding to each
other if the generated sample and the original sample are ordered. If the
ordered original sample is denoted as s o, and the ordered generated sample
is denoted as s g, the MSR is given by equation (4.9).

MSR =
n∑
i=1

(s o(i) − s g(i))
2
/n, (4.9)

4.5.2 The Mean Absolute Residuals Test

The MAR test is the sum of the absolute residuals between points generated
from the fitted model and corresponding points in the original sample. Here
ordering must also take place. If the ordered original sample is denoted as
s o, and the ordered generated sample is denoted as s g, the MAR is given
by equation (4.10).

MAR =
n∑
i=1

∣∣(s o(i) − s g(i)
∣∣ /n, (4.10)

4.5.3 The Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test (Math-
Work (2001) and Law and Kelton (2000)) is used to determine whether two
samples have been drawn from the same distribution. For this purpose,
for each potential value x in the first sample, the Kolmogorov-Smirnov test
compares the proportion of values less than x in the first sample with the
proportion of values less than x in the second sample. The first sample would
be the generated sample from the fitted model and the second sample would

38

be the original sample. The Kolmogorov-Smirnov (KS) test function uses the
maximum difference over all xt values, t = 1 + p, ..., n, as its test statistics.
Mathematically, this can be written as:

D = max
t=1+p,...,n

∣∣∣F̃1(xt)− F̃2(xt)
∣∣∣

where F̃1 and F̃2 are the empirical distribution functions of the two samples
andD is called the test statistics. The hypothesis regarding the distributional
form is rejected if the test statistics, D, is greater than the critical value
obtained from the Kolmogorov-Smirnov test table.

4.6 Examples

In this section, we give examples that show results of our fitting proce-
dures. The examples will clarify the previously described procedures for
fitting nGAR models to data obtained by measurements or generated arti-
ficially from known models. The data used in the first three examples are
generated artificially from nGAR models with known parameters. We call
these data as the artificial sample and the models which generated these data
as the artificial models. Our goal for these the first three examples is to find
out how well the fitting procedure recovers the original parameters (Ω) of
the true artificial models. The data used in the fourth and fifth examples are
measurements on real systems.

The fitted models are tested for accuracy by comparing statistical mo-
ments like the mean, variance, and correlations, and by using statistical
goodness-of-fit tests like those overviewed in section 4.5 and by comparing
scatter plots of the samples.

4.6.1 Fitting Linear Univariate nGAR Processes

We consider an nGAR model with the following parameters Ω: The function
ψ is the matrix-multiplication shown in (4.4). Σα is a 1×2 matrix [α1, α2] =
[0.4, 0.2]. The random variables Yt are Pareto distributed F (y) = 1− (b/y)a,
b < y < +∞ , having b (scale parameter) = 1.7 and a (shape parameter) =
3.7. This specifies F (y, a, b). The resulting model is as follows:

Zt = α1Zt−1 + α2Zt−2 + Yt.

An artificial sample with 10000 sample points from the above described
nGAR model is generated. When starting to generate from the above model,
the process is not stationary and the elements in the initial phase must be

39

ignored because they are not IID. The large sample size is considered due to
the property of the Pareto distribution under the specified shape parameter
a. Pareto distributions with a shape parameter a < 2 have infinite variance,
which results in that the generated random variables are disperse along wide
range. Therefore, a relatively large sample size is needed to capture enough
information about the true process.

An nGAR model is fitted to the artificial sample as follows: A function ψ
(linear multiplication) and an nGAR order p = 3 are considered. Next, Σ̂α

= [α̂1, α̂2, α̂3] is estimated using the independence method. Noticing that α̂3

is small and that the ŷt are nearly independent even when we consider the
order p̂ = 2, we suggest that an order p̂ = 2 is suitable.

Having [α̂1, α̂2] and p̂ estimated for ψ, ŷt are built using

ŷt = zt − α̂1zt−1 − α̂2zt−2. (4.11)

Next, the distribution, F (y), and its parameters, â, b̂, that fit ŷt best are
estimated using the GAF techniques introduced in Strelen (2003) and re-
viewed shortly in section 4.4. The test statistics used to select the best fitted
distribution F (y) and its parameters a, b depend on the principle described in
4.5. We call the tests as MAR(F (y)) (mean absolute residuals), MSR(F (y))
(mean squared residuals), and KSS (Kolmogorov-Smirnov test). The three
distributions that fit ŷt best and their corresponding test statistics are shown
in table 4.3.

Having specific sets of parameters Ω̂, an nGAR sample can be generated
and compared statistically with the artificial sample. The MSR(process) test
statistic is calculated as shown in subsection 4.5.1 whereas MAR(process) is
calculated as shown in subsection 4.5.2. KSS(process) is the Kolmogorov-
Smirnov test statistics calculated as shown in subsection 4.5.3. The tests
MAR and MSR are applied two times. One time to compare a sample gener-
ated from the artificial random variables Yt with a sample generated from the
fitted random variable Ŷt. These tests are called MAR(F (y)) or MSR(F (y)).
And one time to compare a sample generated from the artificial (original)
process Zt with a sample generated from the fitted process Ẑt. Those tests
are called MAR(process) or MSR(process). The comparison of the samples
is done by building the empirical distribution functions of the two samples
to be compared and applying then the MAR and MSR functions on these
empirical distributions.

Table 4.3 summarizes the results of the fitting procedure considering the
three distributions F (y) that deliver the best (smallest) MSR(F (y)) values.
[α̂1,α̂2] are the fitted nGAR coefficients. [b̂, â] are the best fitted parameters
of the Pareto, Weibull, Lognormal, and Gamma distributions. We notice that

40

all of the test statistics tend to be smaller (better) in the case of choosing F (y)
to be the Pareto distribution. Table 4.2 shows the true nGAR parameters
again for a better comparison.

Table 4.2: The parameters of the true artificial nGAR model
[α1,α2] [0.4, 0.2]
F (y) Pareto
[b, a] [1.7, 3.7]

Table 4.3: Results summary of fitting univariate linear nGAR models to the
artificial sample

[α̂1,α̂2] [0.403, 0.193]
F (y) Pareto Weibull Lognormal Gamma

[b̂, â] [1.69, 3.76] [2.59, 6.99] [1.75, 0.43] [4.45, 1.48]
MAR (F (y)) 0.007 0.0618 0.037 0.04

MAR (process) 1.4 6.8 6.0 6.2
MSR (F (y)) 7.4565e-005 0.005 0.003 0.004

MSR (process) 35.3 325 291 294
KSS (process) 0.01 0.304 0.26 0.229
KS accepted KS accepted KS rejected KS rejected KS rejected

The scatter plots show whether a sample from the fitted nGAR models
and the artificial sample have similar patterns. Figure 4.1, figure 4.2, figure
4.3, and figure 4.4 show the scatter plots (Zt, Zt+1), (Zt, Zt+2) from the ar-
tificial sample and samples from four fitted nGAR models. We notice that
the sample from the fitted nGAR model with F (y) of Pareto have similar
patterns to the artificial sample.

Last we would like to express two more points. The first one is the com-
putational aspects of the method described above. As the nGAR coefficients
Σα are estimated using the independence method, the computational cost
for this method is relatively high. The algorithm of finding a Σ̂α that makes
the Ŷt almost independent stops only when the value of the objective func-
tion for independence given in (4.7) lies below a critical value taken from
the chi-square table, which depends as mentioned on the degree of freedom
ν and a significance level. For a ν = 25 and a significance level of 10% the
critical value lies at 16.5, and the independence method must run on av-
erage for about 30 minutes on a Pentium 4 computer with 512 MB RAM
before the objective function value reaches a value below 16.5. However, if
the objective functino value does not satisfy the termination condition after

41

Figure 4.1: Plots from the artificial model

Figure 4.2: Plots from the fitted nGAR model with Pareto F (y)

Figure 4.3: Plots from the fitted nGAR model with Lognormal F (y)

42

Figure 4.4: Plots from the fitted nGAR model with Gamma F (y)

a specified number of genetic algorithm generations, the optimization pro-
cedure can be stopped and the fitting procedure can procede with the best
parameters obtained up to this point.

The second point to express is that usually the distribution of the Yt is
not known. Therefore, one in principle must try all standard distributions
and choose the one which delivers the best goodness-of-fit statistics. Alter-
natively, one can fit an empirical distribution function. Fitting standard or
empirical distribution to samples is itself not a time consuming procedure as
the fitting can be accomplished very fast using for example the maximum
likelihood estimator (MLE) to fit a standard distribution.

4.6.2 Fitting a Linear Bivariate nGAR Process

We generate an artificial sample of size 5000 from the following linear bivari-
ate nGAR model:

At = α1At−1 + α2At−2 + α3Bt−1 + α4Bt−2 + YAt
Bt = β1Bt−1 + β2Bt−2 + β3At−1 + β4At−2 + YBt

where α=[0.20,0.15,-0.15,0.10], β=[0.20,-0.10,0.15,-0.10]. The random vari-
ables YAt are Weibull distributed with the parameters a1 = 2 (shape), and
b1 = 10 (scale). The random variables YBt are Weibull distributed with the
parameters a2 (shape) = 1 and b2 (scale) = 6. Elements in the initial phase
are ignored.

A bivariate nGAR model is fitted as follows: A function ψ (linear mul-
tiplication) and an nGAR order p = 4 are assumed. Next, Σα = [α; β] is
estimated using the Yule-Walker method. Another method like the Burg
method can also be used. De Hoon et al. (1996) notice that the Yule-Walker

43

method leads to poor parameter estimations in special cases even for a mod-
erate sample size. De Hoon et al. (1996) shows which poor conditions of
the autocovariance matrices are regarded as the cause of poor Yule-Walker
estimates. Side-effects of the poor autocovariance matrix condition are an al-
most non-stationary, pseudo-periodic behavior of the autoregressive process
and partial autocorrelation coefficients close to unity.

Having Σ̂α estimated for ψ and p, the bivariate random vectors (ŷAt , ŷBt)
′

are estimated using (4.5). Next, the distributions and the parameters that
fit ŷAt and ŷBt best are estimated. For the purpose of comparison, we fit the
artificial sample directly to standard distributions neglecting the fact that the
artificial sample is correlated. The best fitted distribution and parameters
are shown in table 4.5.

We notice from table 4.5 that an artificial sample with a small size smaller
than that used in example 1 can recover the parameters of the true model
with satisfying accuracy. This is due to the fact that YAt and YBt are not
heavy-tailed. α̂ and β̂ are the fitted nGAR coefficients (Σ̂α). The fitted

distributions to the ŷAt and ŷBt are Weibull. [â1, b̂1] and [â2, b̂2] are the fitted
parameters. MSR1 and MSR2 are the mean squared residuals between the
bivariate artificial sample and a sample generated from the fitted bivariate
processes, while (KSS1, KSS2) are the Kolmogorov-Smirnov test statistics.

The test statistics MSR and KSS are smaller (better) when we fit an
nGAR model and greater (worse) when we fit a standard distribution. This
shows that the fitted standard distribution fit the marginal distribution of
the artificial sample badly. Moreover, the standard distributions can generate
only independent data and the correlations of the artificial sample can not be
modeled. Theoretically, the nGAR coefficients α̂ and β̂ are zero. Practically,
they are a bit higher or smaller than zero.

Table 4.4: The parameters of the true artificial nGAR model

nGAR model

α [0.20, 0.15, -0.15, 0.10]

β [0.20, -0.10, 0.15, -0.10]

F (yA, a1, b1) Weibull (2.0, 10.0)

F (yB, a2, b2) Weibull (1.0, 6.0)

Figure 4.5, figure 4.6, and figure 4.7 show the plots (At, At+1) and (At, At+2)
from the artificial sample, the fitted nGAR models, and a sample from a fit-
ted independent distribution, respectively. We notice that the plots of the
fitted nGAR model is more similar to the artificial sample than those from

44

Table 4.5: Results of fitting bivariate nGAR model and standard distribu-
tions to bivariate artificial sample

nGAR Model Standard Distr.

α̂ [0.20, 0.149, -0.158, 0.098] [0, 0, 0, 0]

β̂ [0.189, -0.89, 0.139, -0.85] [0, 0, 0, 0]

F (yA, â1, b̂1) Weibull (2.02, 10.1) Gamma∗ (6.5, 2)

F (yB, â2, b̂2) Weibull (.99, 6.2) LogN∗ (2.06, 0.62)

(MSR1, MSR2) (0.02, 0.07) (0.13, 0.19)

(KSS1, KSS2) (0.015, 0.016) (0.1, 0.2)

KS1 rejected? KS2 rejected? no, no no, no

the independent distribution.
Figure 4.8, figure 4.9, and figure 4.10 show the plots (Bt, At+1) and

(Bt, At+2) from the artificial sample, the fitted nGAR models, and a sample
from a fitted independent distribution, respectively. We notice that the plots
of the fitted nGAR model is more similar to the artificial sample than those
from the independent distribution.

4.6.3 Fitting a non-Linear nGAR model

An artificial sample of size 10000 is generated from the following non-linear
nGAR model:

Zt = α1Zt−1
2 + α2Zt−2 + Yt (4.12)

where α =[0.034, 0.2]. Yt are Weibull distributed IID random variables with
the parameters [p1, p2] = [2.7, 4]. The linear correlations of the artificial
sample, ρZ(1), ρZ(2), ρZ(3), ρZ(4), ρZ(5), and ρZ(6), have the values 0.57,
0.47, 0.32, 0.25, 0.17, and 0.10, respectively.

We consider fitting linear and non-linear nGAR models to the artificial
sample. The assumed functions ψ are as follows:

ψ1(Zt+1, Zt+2, Zt+3) = α1Zt+1 + α2Zt+2 + α3Zt+3,

and
ψ2(Zt+1, Zt+2) = α1Zt+1

2 + α2Zt+2.

In both cases of ψ, the parameters Σα are first estimated. Next, the (nearly)
independent Ŷt are estimated and the distribution of the Ŷt, F (y), is deter-
mined. Table 4.7 summarizes some results of the fitting procedure.

45

Figure 4.5: Plots from the artificial model. Correlations in sub-process A

Figure 4.6: Plots from the fitted nGAR model. Correlations in sub-process
A

Figure 4.7: Plots from the fitted standard distribution to sub-process A
without correlations

46

Figure 4.8: Plots from the artificial model. Cross-correlations of sub-process
A and sub-process B

Figure 4.9: Plots from from the fitted nGAR model. Cross-correlations of
sub-process A and sub-process B

47

Figure 4.10: Plots from the fitted standard distribution. Cross-correlations
of sub-process A and sub-process B

Table 4.6: The parameters of the true artificial model

artificial model

α [0.034, 0.2]

F (y, a1, b1) Weibull (2.7, 4.0)

mean 6.165

variance 2.989

ρZ(1), ρZ(2), ρZ(3) [0.57, 0.47, 0.32]

The entries of the table are similar to those described in the previous
examples. We notice that the correlations of the linear and non-linear nGAR
models are similar to those of the artificial sample. The test statistics MSR
and KSS of the non-linear nGAR model are better than the linear one. Hence,
one would select the non-linear nGAR model as the model which fits better.
We also notice that the plots of the fitted non-linear nGAR process and the
plots of the artificial sample are alike. This is not the case considering plots
of the linear nGAR model. The plots are shown in figure 4.11, figure 4.12,
and figure 4.13.

48

Figure 4.11: Plots from the artificial model.

Figure 4.12: Plots from from the fitted non-linear nGAR model.

Figure 4.13: Plots from the fitted linear nGAR model.

49

Table 4.7: Results summary of fitting linear and non-linear nGAR models to
artificial sample

Linear nGAR Non-linear nGAR

[α̂] [0.42 , 0.20, 0.01] [0.033, 0.202]

F̂ (y, p1, p2) Weibull(1.8 , 2.7) Weibull(2.8, 3.9)

mean 6.327 6.222

variance 3.1857 2.7296

ρZ(1), ρZ(2), ρZ(3) [0.59, 0.49, 0.31] [0.55, 0.45, 0.28]

MSR 0.0365 0.0089

KSS 0.0486 0.0261

KSS rejected? yes no

4.6.4 Fitting Models to Real Measurements, the Old
Faithful Geyser

In this example, we fit standard distributions and linear nGAR models to 108
observations taken from West and Ogden (1998). The observations are the
duration (in minutes) for eruptions of the Old Faithful Geyser in Yellowstone
National Park. The observations are correlated with correlation coefficients
ρ of [-0.60, 0.57, -0.46]. Lag p = 3

For the fitting procedure, a linear function ψ and an nGAR order p =
5 are considered. The nGAR coefficients α are estimated using the Burg
method. Noticing that the nGAR coefficients of lag 4 and higher are small,
we suggest that an order p = 3 is suitable. The ŷt are fitted using Arena Input
Analyzer to the common known distributions and the best ones which fit are
the triangular and the Beta distributions. For the purpose of comparison,
the observed sample are also fitted directly to the standard distributions,
neglecting the fact that the observations are correlated.

Fitting the observations to a standard distribution or to an nGAR model
several times gives always the same results. For example the best fitting
standard distribution is always the triangular distribution and the param-
eters are always (1.34, 5, 4.1). However, when we generate a sample from
this distribution to compare it with the original sample, we get every time
(slightly) different results for the comparison. This is due to that we have a
small number of observations. A small sample size of a distribution might
not capture its statistical properties accurately.

In this case, the statistical goodness-of-fit tests might deliver (slightly)
different results after each fit. To ensure that the test statistics lie in a

50

specific interval, we run 500 fittings and build 99% confidence intervals for
the different statistics seperately. In table 4.9, which shows a summary of
the statistical results of the fittings, only the lower bounds of the confidence
interval are shown.

Table 4.8: Some moments of the observed sample (the old faithful geyser)

[ρ̂] [-0.60, 0.57, -0.46]

mean 3.45

variance 1.0904

minimum 1.6700

maximum 4.9300

Table 4.9: Results summary of fitting a standard distribution and linear
nGAR models to the observed sample

Standard distr. Linear nGAR 1 Linear nGAR 2

[ρ̂] [-.02, -.02, -.01] [-0.59 , 0.52, -0.44] [-0.59 , 0.52, -0.45]

F (y, p̂) Tri∗ (1.34, 5, 4.1) Tri (0, 4, 2.2) Beta (4, 2.62, 2.67)

ˆmean 3.47 3.51 3.43
ˆvariance .61 1.13 1.08
ˆminimum 1.598 0.89 1.019
ˆmaximum 4.85 6.50 6.23

MAR (process) 0.29 0.33 0.31

MSR (process) 0.14 0.17 0.15

KSS (process) 0.2 0.18 0.2

KS rejected? (76%) (42%) (55%)

The models shown in table 4.9 are the ones which best fit the measure-
ments. We see however that the different statistical tests give different an-
swers for the question, which model is better. The standard distribution
Tri∗ for example delivers better estimation for the mean, the MAR and
MSR statistics, and as a lower and upper bounded distribution, sampling
from a triangular distribution delivers minimum and maximum random vari-
ates which estimate precisely the real minimum and maximum. However,
the triangular distribution Tri∗ completely fails with respect to modeling
the variance and correlations. The KS test is also rejected in most of the
cases (76%).

51

The two nGAR models deliver moderate goodness-of-fit test results. On
one hand, the first nGAR model which consider the triangular distribution
as the one to fit the IID random variables Yt gives the best KS statistic and
very good estimation of the correlations. On the other hand, the second
nGAR model with the beta distribution estimates the mean, variance, and
correlations quite accurately, and it delivers relatively moderate MAR, MSR
and KSS statistics.

We also generate an nGAR process using some kind of empirical distribu-
tion for the independent random variables Yi. We see in table 4.10 that using
an empirical distribution gives better test statistics than the other models.

Table 4.10: Results summary of fitting a standard distribution and linear
nGAR models to the observed sample with empirical distribution for the Yi

Empirical distribution

[ρ̂] [-0.56, 0.52, -0.41]

F (y, p̂) empirical

ˆmean 3.46
ˆvariance 1.0374
ˆminimum 1.0482
ˆmaximum 5.40

MAR (process) 0.31

MSR (process) 0.14

KSS (process) 0.17

KS rejected? (43%)

Figures 4.14, 4.15, 4.16, 4.17, and 4.18 show the plots (Zt, Zt+1) and
(Zt, Zt+2) from the observed sample, samples from the fitted triangular ran-
dom variable, and samples from three fitted nGAR models respectively. We
notice that the correlations of the fitted nGAR models are more similar to
the correlations of the observed sample than those from the IID triangular
random variable. However, the statistical tests might not be satisfactory
for many modelers. The Kolmogorov-Smirnov test is rejected in 43% of the
times. Moreover, the scatter plots in Figure 4.14 shows regions which do not
contain any observations. The fitted processes do not produce such regions.
Such models can best be fitted to models utilizing an empirical copula to
capture the dependencies, instead of autoregressive models with linear or
non-linear dependencies among its random variables. Models utilizing em-
pirical copulas are introduced in chapter 7.

52

Figure 4.14: Plots from the observed sample.

Figure 4.15: Plots from from the fitted IID random variable (triangular)
without correlations

Figure 4.16: Plots from the fitted linear nGAR model (triangular Yi).

53

Figure 4.17: Plots from the fitted linear nGAR model (Beta Yi).

Figure 4.18: Plots from the fitted linear nGAR model (empirical Yi).

4.6.5 Fitting Models to Real Measurements, Packet
arrivals at Internet Server

In this example, we fit standard distributions and a linear nGAR model to
9000 measurements taken from of Aveiro (2006). The measurements describe
the interarrival times of packets arriving at an Internet server. The measure-
ments are correlated. The mean (in milliseconds), variance, and correlation
coefficients are given in table 4.11.

Table 4.11: The moments of the observed sample (Interarrival time of packets
at an Internet Server)

[ρ̂] [-0.156, 0.08]

mean 0.0011

variance 1.9e-06

minimum 1.0e-006

maximum 0.0185

For the fitting procedure, a linear function ψ and an nGAR order p = 3 are
considered. The nGAR coefficients α are estimated using the Burg method.

54

Next, the ŷt are estimated. Noticing that α3 is small, we suggest that an
order p = 2 is suitable. The independence of the ŷt can also be verified
using the independence method. For the purpose of comparison, the real
measurements are fitted directly to the standard distributions, neglecting
the fact that the measurements are correlated. The statistical results of the
two fittings are summarized in table 4.12.

Table 4.12: Results summary of fitting a standard distribution and linear
nGAR models to observed sample

Standard distr. Linear nGAR

[ρ̂] [0.02, -.014] [-0.16 , 0.075]

F (y, p̂) Beta∗ (0.389, 7.36767, 10) Beta (2.16, 17.7, 20)

ˆmean 1.0164 2.0297
ˆminimum 6.6888e-014 -0.8322
ˆmaximum 9.8875 12.3214
ˆvariance 2.3562 1.7943

MAR (process) 0.3225 0.9013

MSR (process) 0.2534 0.9146

KSS (process) 0.2879 0.4360

KS rejected? yes yes

α̂ are the fitted nGAR coefficients. F (y, p̂) are the fitted distributions
and parameters. The best fitted distribution to the real measurements is
Beta∗(.282, 2.61, 10), whereas the best fitted distribution to the estimated
independent data ŷt is Beta (2.16, 17.7, 20). The MAR, MSR and the KS
test statistics of the fitted standard distribution are better than those of the
nGAR model. Although the (correlations of) the nGAR model fits the real
measurements better than the standard distribution, we see that the other
statistics like the mean, variance, ans minimum differs very much from those
of the real measurements. This indicates that the nGAR approach fails in
this case to generate a process with the required statistics.

The reason behind the failure is the structure of the real sample. If we
look at the scatter plots of this sample in figure 4.19 we see that many points
lie at or near the two axes and a few far from them. An nGAR/AR models
tends to have a plot which looks like that in Fig. 4.20.

Another problem with the nGAR approach in this case is that it gen-
erates values of interarrival times which are less that 0. These values are
unacceptable values for this physical model. To avoid this problem and to

55

Figure 4.19: Plots from the observed sample.

Figure 4.20: Plots from the generated nGAR model.

56

try to enhance the fitting procedure we took the logarithm of the interar-
rival times before we perform the fitting and at the end took the exponential
function of the resulted model. In other words, we first perform the step
Zi Logged = log(Zi), where log is the logarithm function and Zi are the
measured interarrival times, then we fit Zi Logged to an nGAR model. Af-
ter that we generate a sample from the fitted nGAR model, say Zi Fitted,
and perform the step Zi Fitted = exp(Zi Fitted). At the end we perform
some goodness-of-fit tests to see how well the fitted sample Zi Fitted fit the
original sample Zi. The results of the tests are shown in table 4.13

Table 4.13: Results summary of fitting a standard distribution and linear
nGAR models to the observed sample

Linear nGAR

[ρ̂] [-0.061, 0.0079]

ˆmean 1.78
ˆminimum 5.7020e-005
ˆmaximum 209
ˆvariance 36

MAR 1.09

MSR 28.43

KSS 0.24

KS rejected? yes

We see that the results of the goodness of fit tests and other statistics are
unacceptable. The mean and variance differ from the true ones considerably,
and the test statistics are bad. This ensures us that the nGAR model is not
a suitable one for this sample and another model must be considered. An
example of another model which can be used in such cases is the empirical
copulas approach described in chapter 7.

57

Chapter 5

The Extended Yule-Walker
Method

The Yule-Walker equations were developed to estimate the autoregressive
coefficients of linear autoregressive models as described in section 3.2. We
extend this approach to be able to estimate the autoregressive coefficients of
non-linear nGAR models like that shown in (5.1).

Assume that the following d-variate non-linear nGAR model must be
fitted to a data sample:

Zi,t =
∑
i,j,k

αi,j,kZ
k
i,t−j + Yi,t, (5.1)

where i = 1, 2, ..., d, j = 1, 2, ..., p, k = k1, k2, ..., kK ∈ R, t = p+1, p+2, ...,∞,
and p is the maximum autoregressive lag. We have seen in chapter 4 that
the non-Gaussian autoregressive approach utilizing the independence method
(see section 4.4) can be used to estimate the autoregressive coefficients α and
also the distribution of the IID random variables Yt. However, the nGAR
approach utilizing the independence method is in general time-consuming.
An analytical method, if it exists, would be faster and more accurate, and
therefore preferable.

We have extended the Yule-Walker method so as to be able to analyti-
cally estimate the autoregressive coefficients for weakly stationary non-linear
nGAR processes. We describe in the following sections how we derived equa-
tions which can be solved to estimate the nGAR coefficients for several spe-
cific non-linear nGAR models.

58

5.1 Non-Linear Univariate nGAR Process

We derive formulas for the purpose of estimating the autoregressive coeffi-
cients α of the non-linear univariate nGAR process shown in (5.2):

Zt =
∑
j,k

αj,kZt−j
k + Yt, (5.2)

where j = 1, 2, ..., p, t = p+ 1, p+ 2, ...,∞, p is the maximum autoregressive
lag and k = k1, k2, ..., kK ∈ R. Assuming that this process is weakly station-
ary, that some higher moments exist and are stationary, which we specify
later, and that µZ is the mean of the random variable Zt, we can write af-
ter subtracting the mean µZ from both sides of (5.2) and multiplying with
(Zt−m − µZ), m = 1, 2, ...p:

(Zt − µZ)(Zt−m − µZ) =∑
j,k

αj,kZt−j
kZt−m − µZ

∑
j,k

αj,kZt−j
k − µZ(Zt−m − µZ) + Yt(Zt−m − µZ).

Taking the expectation results in:

Cov(Zt, Zt−m) =∑
j,k

αj,kE[Zt−jkZt−m]−µZ
∑
j,k

αj,kE[Zt−jk]−µZE[Zt−m−µZ] +E[Yt(Zt−m−µZ)].

However, the term E[Yt(Zt−m−µZ)] is zero, because Yt and Zt−m are indepen-
dent for m = 1, 2, ...p and therefore E[(Yt)(Zt−m−µZ)] = E[Yt]E[Zt−m−µZ].
But E[Zt−m − µZ] is zero as E[Zt−m] = E[Zt] = µZ . Moreover, the term
µZE[Zt−m − µZ] is also zero as E[Zt−m − µZ] is zero. Thus, the equation
above can be rewritten as:

Cov(Zt, Zt−m) =
∑
j,k

αj,kE[Zt−j
kZt−m]− µZ

∑
j,k

αj,kE[Zt−j
k]. (5.3)

This means that (5.3) results in p linear equations for the unknown au-
toregressive coefficients αj,k. Some of the αj,k may be zero, depending on the
model. Hence the number of unknowns αj,k is less or equal to pK. When
this number is greater than p, we need additional equations. They can be
obtained as follows: multiply (5.2) with Zk′

t−m, where 0 < m ≤ p, and k′ > 1,
and take the expectations. The linear equations can be solved if the moments
of the process Zt, E[Zt], E[Zt

k], ..., and the covariances exist and are known.
Those can be estimated from the available sample and the covariances.

We show now in detail how the above procedure can be applied on the
following specific nGAR model to derive the extended Yule-Walker equations:

Zt = α1Zt−1
2 + α2Zt−2 + Yt. (5.4)

For m=1 (see equation 5.3) this yields

59

Cov(Zt, Zt−1) = α1E[Z3] + α2E[Zt−2Zt−1]− α1µZE[Z2]− α2µZ
2.

or

Cov(Zt, Zt−1) = α1(E[Z3]− µZE[Z2]) + α2(E[Zt−2Zt−1]− µZ2). (5.5)

Considering equation (5.4) again, for m = 2:

Cov(Zt, Zt−2) = α1(E[Zt−1
2Zt−2]− µZE[Z2]) + α2(E[Z2]− µ2

Z). (5.6)

The system of two equations (5.5) and (5.6) with two variables of au-
toregressive coefficients α1 and α2 can now be solved as all other terms in
equations (5.5) and (5.6) are constants that can be estimated from the avail-
able sample directly.

Similar steps can be followed to estimate the coefficients of other nGAR
processes like

Zt = α1Zt−1
2 + Yt,

to get the equation

α1 = Cov(Zt, Zt−1)/(E[Z3]− E[Z2]µZ).

5.2 Non-Linear Multivariate nGAR Process

We derive formulas for the purpose of estimating the autoregressive coeffi-
cients α of the non-linear multivariate nGAR process shown in (5.7):

Zi,t =
∑
i,j,k

αi,j,kZi,t−j
k + Yi,t, (5.7)

where i = 1, 2, ..., d, d is the number of different random variables Zt at
each point of time t, j = 1, 2, ..., p, t = p + 1, p + 2, ...,∞, p is the lag,
and k = k1, k2, ..kK ∈ R. Assuming that this multivariate process is weakly
stationary, that all needed moments exist and are stationary, and that µZi is
the mean of the random variable Zi,t over all t, we can write after subtracting
the mean µZi from both sides of (5.7) and multiplying with (Zi,t−m − µZi)
for all i = 1, 2, ..., d and m = 1, 2, ...p:

(Zi,t − µZi)(Zi,t−m − µZi) =∑
i,j,k

αi,j,kZi,t−j
kZi,t−m − µZi

∑
i,j,k

αi,j,kZi,t−j
k − µZi(Zi,t−m − µZi) + Yi,t(Zi,t−m − µZi).

Taking the expectation results in:

60

Cov(Zi,t, Zi,t−m) =
∑
i,j,k

αi,j,kE[Zi,t−jkZi,t−m]− µZi
∑
i,j,k

αi,j,kE[Zi,t−jk]−

µZE[Zi,t−m − µZi] + E[(Yi,t)(Zi,t−m − µZi)].

However, the term E[(Yi,t)(Zi,t−m − µZi)] is zero, because Yi,t and Zi,t−m are
independent and therefore E[(Yi,t)(Zi,t−m − µZi)] = E[Yi,t]E[Zi,t−m − µZi].
But E[Zi,t−m − µZi] is zero as E[Zi,t−m] = E[Zi,t] = µZi . Moreover, the term
µZiE[Zi,t−m− µZi] is also zero as E[Zi,t−m− µZi] is zero. Thus, the equation
above can be rewritten as:

Cov(Zi,t, Zi,t−m) =
∑
i,j,k

αi,j,kE[Zi,t−j
kZi,t−m]− µZi

∑
i,j,k

αi,j,kE[Zi,t−j
k]. (5.8)

Equation (5.8) is a system of pd linear equations for the unknown autore-
gressive coefficients αi,j,k. Here, the number of unknown αi,j,k is less or equal
to pdK. Additional equations can be obtained by multiplying (5.7) with
Zk′
i,t−m The linear equations can be solved if the moments of the process Zi,t,

E[Zi,t], E[Zi,t
k], ..., and the covariances, are known. Those can be estimated

from the available sample. Similarly, cross-dependencies can be considered.
We show now this. The above procedure can be applied on the following

specific nGAR model to derive the extended Yule-Walker equations:

Z1,t = α1,1Z2,t−1
2 + Y1,t, t = 1, 2, ... (5.9)

Z2,t = α2,1Z1,t−1
2 + Y2,t, t = 1, 2, ... (5.10)

Assuming that the random variables in equations (5.9) and (5.10) are
weakly stationary, that all needed moments exist and are stationary, and
that µZ1 symbolizes the mean of the first random variable, Z1,t, and that µZ2

symbolizes the mean of the second random variable, Z2,t, one can write

Z1,t − µZ1 = α1,1Z2,t−1
2 − µZ1 + Y1,t, t = 1, 2, ... (5.11)

Z2,t − µZ2 = α2,1Z1,t−1
2 − µZ2 + Y1,t, t = 1, 2, ... (5.12)

Multiplying (5.11) with (Z2,t−1 − µZ2) results in

(Z1,t − µZ1)(Z2,t−1 − µZ2) =
α1,1Z2,t−1

3 − µZ1(Z2,t−1 − µZ2)− Y1,t(Z2,t−1 − µZ2)− α1,1µZ2Z
2
2,t−1.

Talking the expectation

Cov(Z1,t, Z2,t−1) =
α1,1E[Z2,t−1

3]−µZ1(E[Z2,t−1]−µZ2)−E[Y1,t(Z2,t−1−µZ2)]−α1,1µZ2E[Z2
2,t−1],

61

where Cov is the cross covariance function between the two different random
variables Z1,t and Z2,t−1.

Considering the property of the expectation operator for weak stationary
processes, the property of the expectation operator for independent random
variables, and rearranging the above equation, results in

Cov(Z1,t, Z2,t−1) = α1,1E[Z2,t−1
3]− α1,1µZ2E[Z2,t

2].
and

α1,1 = Cov(Z1,t, Z2,t−1)/(E[Z2,t−1
3]− µZ2E[Z2,t

2]).

Multiplying (5.12) with (Z1,t−1 − µZ1) and performing similar operations
to the above ones we get

α2,1 = Cov(Z2,t, Z1,t−1)/(E[Z1,t−1
3]− µZ1E[Z1

2]).

By solving these two equations with estimated moments we get the needed
values of the autoregressive coefficients α1,1 and α2,1.

5.3 Examples

5.3.1 Example 1: Non-Linear Univariate nGAR Pro-
cess

The extended Yule-Walker method is used to estimate the autoregressive
coefficients of a non-linear process in the random variable which is generated
artificially. The artificial process is the following:

Zt = α1Zt−1
2 + α2Zt−2 + Yt + shift, t = 1, 2, ... (5.13)

where α1 = 0.03, α2 = 0.1 and Yt are Weibull distributed IID random vari-
ables with the parameters p1 = 6 (shape parameter) and p2 = 2 (scale
parameter). shift is a constant equal to 1.5.

The estimated nGAR coefficients fluctuate because of the stochastic be-
havior of the artificial process. To ensure that the estimated results are valid,
we generate 100 samples from (5.13), each with length of 500, and build confi-
dence intervals for the estimated nGAR coefficients α1 and α2 with confidence
level of 95%. The confidence intervals of the estimated nGAR coefficients are
shown in table 5.1.

We use the process with the estimated parameters to generate a sample
and we compare this sample with the artificial sample in table 5.2.

62

Table 5.1: The estimated nGAR coefficients of the non-linear nGAR process
using the extended Yule-Walker method

Confidence Interval Confidence Level

[α̂1] [0.0288, 0.0305] 95%

[α̂2] [0.0937, 0.1060] 95%

The statistical moments of the artificial sample and sample generated
from the fitted process are very close. The statistical goodness-of-fit tests
deliver also good results. We also plot samples of the original and estimated
process and we can see from the plots how the correlations, resulting from
the non-linear ones, are similar in both samples.

Table 5.2: Results summary of the original and generated sample

Artificial process Fitted process

[ρ̂] [0.48, 0.25, 0.1328, 0.0693] [0.5, 0.26, 0.15, 0.076]

F (y, p̂1, p̂2) Weibull (2.7, 4) Weibull (2.66, 3.99)

µ̂ 4.8267 4.8201
ˆminimum 0.8670 0.5109
ˆmaximum 10.4322 12.4811

V̂ar 2.6994 2.7455

MAR (process) - 0.0446

MSR (process) - 0.0055

KSS (process) - 0.0212

KS rejected? - no

5.3.2 Example 2: Another Non-Linear Univariate nGAR
Process

The extended Yule-Walker method is used to estimate the autoregressive
coefficients of a non-linear process in the random variable which is generated
artificially. The artificial process is the following:

Zt = αZt−1
2 + Yt, t = 1, 2, ... (5.14)

where α1 = .05, and Yt are Weibull distributed IID random variables with
the parameters p1 = 2.7 (shape paramter) and p2 = 4 (scale paramter).

63

Figure 5.1: Plots from the artificial non-linear process

Figure 5.2: Plots from the derived non-linear nGAR process

64

The estimated nGAR coefficients fluctuate because of the stochastic be-
havior of the artificial process. To ensure that the estimated results are valid,
we generate 100 samples from (5.14), each with length of 500, and build con-
fidence intervals for the estimated nGAR coefficient α̂ with confidence level of
95%. The confidence intervals of the estimated nGAR coefficients are shown
in table 5.3.

Table 5.3: The estimated nGAR coefficient of the non-linear nGAR process
using the extended Yule-Walker method

Confidence Interval Confidence Level

[α̂] [0.0497, 0.0512] 95%

5.3.3 Example 3: Multivariate Non-Linear nGAR Pro-
cess

The extended Yule-Walker method is used to estimate the autoregressive
coefficients of a multivariate non-linear process which is generated artificially.
The artificial process is the following:

A(t) = αB2
t−1 + Y1,t, t = 1, 2, ... (5.15)

B(t) = βA2
t−1 + Y2,t, t = 1, 2, ... (5.16)

where α = 0.04, β = 0.03, Y1,t are gamma distributed IID random variables
with the parameters p1 = 5 (shape parameter), p2 = 0.7 (scale parameter),
and Y2,t are exponentially distributed IID random variables with the param-
eter µ = 2 (scale parameter).

We generate 100 samples from (5.15) and (5.16), each with length of 500,
and build confidence intervals for the estimated nGAR coefficients α̂ and
β̂ with confidence level of 95%. The confidence intervals of the estimated
nGAR coefficients are shown in table 5.4.

Table 5.4: The estimated nGAR coefficients of the bi-variate non-linear
nGAR process using the extended Yule-Walker method

Confidence Interval Confidence Level

[α̂] [0.0393, 0.0403] 95%

[β̂] [0.0290, 0.0305] 95%

We use the above fitted process to generate a bi-variate sample and we
compare this sample with the artificial one in table 5.5.

65

The statistical moments of the artificial sample and the sample generated
from the fitted process are very close. The statistical goodness-of-fit tests
deliver also good results. We also plot the samples and we can see from the
plots how the correlations are similar in both of them.

Table 5.5: Results summary of the artificial and fitted processes

Artificial process Fitted process

[ρ̂(At, Bt−1), ρ̂(Bt, At−1)] [0.27, 0.44] [0.25, 0.38]

FY (p̂) [gamma(2.7, 4), exp(2)] [gamma(2.72, 3.89), exp(2.02)]

ˆmean [3.89, 2.55] [3.8308, 2.4844]
ˆminimum [0.57, 0.06] [0.5674 , 0.0735]
ˆmaximum [19.08, 19.87] [13.9406, 15.3687]
ˆvariance [3.21, 4.42] [2.8690, 3.8569]

MAR - [0.0628, 0.0745]

LSS - [0.0278, 0.0384]

KSS - [0.0228, 0.0165]

KS rejected? - [no, no]

ρ̂ is the cross correlations among the two sub processes A and B.

66

Figure 5.3: Sample from the bi-variate original process

Figure 5.4: Sample from the fitted bi-variate non-linear nGAR process.

67

Chapter 6

The Probabilistic Transition
Matrix Versus the Batch
Markovian arrival Process

The Batch Markovian Arrival Process (BMAP) approach, overviewed in sec-
tion 3.4 has several advantages when applied to model the Internet traffic,
which are described thoroughly in Klemm et al. (2002) and Klemm et al.
(2003), therefore, we will concentrate here on the drawbacks of using this
approach.

As described in Klemm et al. (2002) and Klemm et al. (2003), the BMAP
can generate only a prespecified number of packet lengths. Therefore, one
must observe heuristically how many packet lengths is best. In other words,
for the example described in Klemm et al. (2002) and Klemm et al. (2003),
the result that the software delivers will be worse when one uses 2 or 4 packet
lengths instead of 3 packet lengths used actually. Taking into consideration
that one BMAP fitting procedure takes relatively long time (for this special
case 1 hour), one sees that trying several possibilities of packets lengths is
relatively time consuming.

The tool which utilizes the BMAP to model IP traffic is called by Klemm
et al. (2002) IP2BMAP. We call the approach or the tool as the BMAP ap-
proach or the BMAP tool for simplicity. To have more information about this
tool, we analyze the results by running it and compare the sample generated
by the tool with the real one. For this purpose, we consider a 3 state Dis-
crete Time Markov Chain (DTMC), each state represents a different packet
length. Like the BMAP, we divide the packet lengths into small (S), medium
(M), and big (B). Please see figure 6.1. A packet is small if it is smaller than
94 Byte, and medium if it is between 94 and 575 Byte, and big if it is bigger
than 575 Byte.

68

The transition probabilities between the different states can be estimated
using a simple counting procedure running on the real data. If one counts
how many small (S) packets come after medium (M) packets and how many
big packets come after big packets and so on, one can get absolute and
conditional probabilities that the transitions take. The conditional transition
matrix which results from this counting procedure is shown in figure 6.2. For
example, T-S→S has the value 0.7185. This means that provided the current
packet is small, the probability that the next packet is also small is 0.7185.

Figure 6.1: A DTMC representing the packet lengths of a measured trace at
an Internet server

T-S→S T-S→M T-S→B
T-M→S T-M→M T-M→B
T-B→S T-B→M T-B→B

=
0.7185 0.2625 0.0189
0.3823 0.6103 0.0074
0.4712 0.1976 0.3312

Figure 6.2: The probabilities of the transitions in figure 6.1 generated by the
real measurements (T-real)

To analyze the data generated by the BMAP tool, we calculate the tran-
sition probabilities between the different states of the BMAP model to get
the transition matrix shown in figure 6.3.

69

T-S→S T-S→M T-S→B
T-M→S T-M→M T-M→B
T-B→S T-B→M T-B→B

=
0.7160 0.2667 0.0173
0.3835 0.5908 0.0257
0.5082 0.4706 0.0212

Figure 6.3: The probabilities of the transitions in figure 6.1 generated by the
BMAP tool (T-BMAP)

The transition matrix of the real data (T-real) and the transition matrix
generated from the BMAP model (T-BMAP) are shown in figure 6.2 and
figure 6.3, respectively. Please notice the big difference in the transition
probability T-B→B between the real data and the data generated by the
BMAP tool. The true transition probability T-B→B=0.33, while the BMAP
transition probability T-B→B=0.02.

The difference between the transition probability of the BMAP process
and the real process means that the number of ”big” packets coming after
each other differs between the BMAP process and the real one. This might
affect the performance measurements. The processing time of a set of mes-
sage with length M at one period and then processing a set of messages with
length B at the next period might be grater than the time if the packets with
different lengths are mixed.

We have built a simple model depending on the DTMC in figure 6.1. We
call this model the probability model. The model starts at one state and
transits to the next one depending on the transition probabilities in T-real.
The resulting transition matrix of packet lengths (T-pro) is similar to T-
real. However, one must also take the interarrival times into consideration.
Therefore, we store at each transition not only the packet length but also
the corresponding interarrival time. This way, one gets different traces of
interarrival times, each corresponds to a specific transition. Each trace can
then be fitted to a standard or empirical distribution which in turn can be
used when generating this process again.

Below we compare the linear correlations between the packet lengths, and
the linear correlations between the interarrival times for the real data, for
the data generated by the BMAP tool, and for the data generated by the
probability model. We also compare the linear cross correlations between the
packet lengths and the interarrival times. The packet lengths are noted as
Li, and the interarrival times are noted as Zi.

Apart from the inaccuratly estimated T-B→M by the BMAP tool, we
see in the tables that the BMAP tool can estimate the (cross) correlations
for the different lags accurately. The probability model can not catch the
second correlation lag without being modified.

70

Table 6.1: The correlations between the different packets lengths (Li)

ρ(Li, Li−1) ρ(Li, Li−2) ρ (Li, Li−3)

Real data 0.3049 0.0657 0.0174

Data from the BMAP model 0.2396 0.0682 0.0191

Data from the probability model 0.3089 0.0937 0.0294

Table 6.2: The correlations between the interarrival times of packets (Zi)

ρ(Zi, Zi−1) ρ (Zi, Zi−2) ρ (Zi, Zi−3)

Real data 0.0413 0.0080 0.0178

Data from the BMAP model 0.0732 0.0138 0.0002

Data from the probability model 0.0090 -0.0004 -0.0007

Table 6.3: The correlations between the interarrival times of packets (Zi)
and the packet lengths (Li)

ρ (Zi, Li) ρ (Zi, Li−1) ρ (Zi, Li−2)

Real data -0.1592 -0.0445 -0.0148

Data from the BMAP model -0.1478 -0.0338 -0.0069

Data from the probability model -0.1507 -0.0380 -0.0106

Table 6.4: The correlations between the packet lengths (Li) and the interar-
rival times of packets (Zi)

ρ (Li, Zi) ρ (Li, Zi−1) ρ (Li, Zi−2)

Real data -0.1592 -0.1062 0.0428

Data from the BMAP model -0.1478 -0.1669 -0.0389

Data from the probability model -0.1507 -0.0497 -0.0174

71

The inaccuracy in the estimated transition probability T-B→M of the
BMAP tool does not disappear even when changing the number of packet
lengths (4 instead of 3) and the number of states in the BMAP. To try to
understand this problem, we run the BMAP tool for another dataset taken
from of Aveiro (2006). The results of the analysis is interesting. The problem
with the probability transitions vanishes. The real probability transitions and
that generated by the BMAP tool are given in tables 6.5 and 6.6 respectively.

Table 6.5: The conditional transition probabilities of the real data
T-S→S=0.5576 T-S→M1=0.0717 T-S→M2=0.0515 T-S→B=0.3193

T-M1→S=0.4786 T-M1→M1=0.1029 T-M1→M2=0.0586 T-M1→B=0.3600
T-M2→S=0.6328 T-M2→M1=0.0631 T-M2→M2=0.0478 T-M2→B=0.2564
T-B→S=0.6179 T-B→M1=0.0605 T-B→M2=0.0429 T-B→B=0.2786

Table 6.6: The conditional transition probabilities of the data generated by
the BMAP tool

T-S→S=0.5698 T-S→M1=0.0766 T-S→M2=0.0490 T-S→B=0.3047
T-M1→S=0.5525 T-M1→M1=0.0831 T-M1→M2=0.0470 T-M1→B=0.3175
T-M2→S=0.6085 T-M2→M1=0.0747 T-M2→M2=0.0454 T-M2→B=0.2714
T-B→S=0.5750 T-B→M1=0.0788 T-B→M2=0.0520 T-B→B=0.2942

To be able to use the BMAP tool for the other datasets we had to change
some parameters in the tool, which made the run time for BMAP tool to do
the analysis and generate the needed BMAP model much longer. Moreover,
the run times needed to analyse the first dataset is longer than mentioned in
the documentations of the BMAP tool.

We believe that the BMAP tool tends to generate transition probabilities
from all nodes to one node which are of the same order (Similar). In 6.2 we
see how the transition probabilities of the real data are extremely different
from each other (T-B→B is 44 times bigger than T-M→B).

The inaccuracy of some of the estimated transition probabilities of the
BMAP tool might make this tool less useful for some datasets. For example,
those datasets which have extreme different transition probabilities from the
different nodes to one node. In addition to this drawback that the BMAP
software suffers from, we could not get the BMAP software to converge for the
specific example provided with the tool. We could use only a non-converged
result.

72

Chapter 7

Empirical Copulas

The pitfalls of the theoretical classes of copulas described in Mikosch (2005)
and which we present briefly in section 3.5 encouraged us to use the class of
the empirical copulas. Our work is published in Nassaj and Strelen (2006)
and in Strelen and Nassaj (2007). The empirical copulas can capture any type
of dependencies: Linear and non-linear dependencies, tail dependencies, and
others. Copulas encompass the entire dependence structure of multivariate
distributions, and not only the correlations. In this chapter, we describe the
procedure of fitting a multivariate model which utilizes a kind of empirical
copula to dependent random vectors or time series and how to generate such
random vectors or time series out of the fitted model.

We introduce two new approaches for the purpose of modeling and gen-
erating dependent random vectors or time series. The two approaches use
two kinds of empirical copulas. We call the first kind of empirical copulas as
the approximate empirical copula. The second kind is called the piecewise
multi-linear empirical copula.

Similar to the procedure to fit a model which utilizes a theoretical class of
copulas, the procedure of fitting a model which utilizes an empirical copula
follows two steps: The marginal distributions can be modeled as empirical
or fitted standard distributions, and the empirical copula is estimated sepa-
rately as a frequency distribution. For this, one does not need any knowledge
about the type of dependencies lying among the data at hand. The fitted
marginal distributions together with the fitted empirical copula comprise a
fitted multivariate distribution A, from which random vectors can be gener-
ated.

The Empirical Copula and the Approximate Empirical
Copula

73

We overview first the definition of some kind of bivariate empirical copula
from the literature. A higher dimensional empirical copula can be defined
similar to the bivariate one in a straight-forward manner.

Let {(xk, yk)}nk=1 denote a sample of size n from a continuous bivariate
distribution. The empirical copula is given by the frequency function Cn,

Cn(
i

n
,
j

n
) =

number of pairs (x, y) in the sample such that x ≤ x(i) and y ≤ y(j)

n
,

where x(i) and y(j), i, j = 1, 2, ..., n, denote the order statistics from the
sample (Nelsen, 1998), for example x(1) is the smallest xk and y(n) is the
biggest yk.

The definition above indicates that the bivariate empirical copula is a
mapping function from a bi-dimensional space T to a uni-dimensional space
of the real values. This mapping requires a search procedure to assign to each
point of interest in the T space a real value in the range [0,1]. The bivariate
empirical copula can be stored in a data structure M . So if the sample size
is n, the matrix is of size n2, see figure 7.1

In figure 7.1 we see the points (i
n
, j
n
), i, j = 1, 2, ..., n, and n = 10 , as a

grid of points. The value of the empirical copula at some grid points is for
example: C10(1

10 ,
1
10) = 0. C10(1

10 ,
6
10)=C10(2

10 ,
4
10) = 0.1, C10(2

10 ,
6
10) = 0.2, C10(3

10 ,
1
10)

= 0.1 and C10(5
10 ,

5
10) = 0.2 . The total number of grid points is 102 = 100.

According to the definition of the empirical copulas, if the sample size
is n, and the sample is D-dimensional, one needs a data structure of size
nD, say M . If n and/or D are not small, M will be very or too big to be
handled by a personal computer. This problem can be solved by defining
an approximate empirical copula; instead of defining a data structure M of
size nD for the empirical copula, one might combine adjacent points and thus
define a data structure of size kD for an approximate empirical copula, where
k < n.

Alternatively, one can store only the non-zero elements in the matrix. An
approach which stores only the none zero elements and combines adjacent
points is followed in section 7.2.

In an approximate empirical copula, each axis [0,1] of the D-spaces is di-
vided into a specified number Kj of sub-intervals. For simplicity, we consider
Kj=K for all j = 1, 2, ...D, unless otherwise mentioned. This approximate
empirical copula results in that the final fitted distribution is also only an ap-
proximation. However, we show that this approximation is very good. More
details is in section 7.1. From now on, we call the approximate empirical
copula as the approximate copula.

74

Figure 7.1: Illustration of a bivariate empirical copula

75

An illustration of a bivariate approximate copula can be given with the
help of figure 7.2.

Figure 7.2: Left: Sample in the space of real numbers R2. Right: Sample in
the [0, 1]2 space, Ud = Fd(zd), d = 1, 2.

In figure 7.2 we see a sample of a bivariate stochastic process Z, where Z
consists of two components, Z1 and Z2. The random variables Z1 and Z2 are
linearly dependent. In figure 7.2 we see also the sample after being trans-
formed into the space [0, 1]2. The components U1 and U2 of the transformed
process U still exhibit a positive linear dependency as the original stochastic
process does.

We have divided each of the [0,1] spaces, K, to 10 sub-spaces. This results
in 100 different squares/grid points (points where the approximate copula is
to be evaluated). Different squares might contain different number of points.
In other words, there are different densities of points in the different squares.

Considering the grid points (10
100 ,

10
100), (10

100 ,
20
100), ... ,(100

100 ,
100
100). One can count

the number of data points that lie left and below each of these grid points.
The resulting frequency function defines the approximate copula. The ap-
proximate copula is similar to the empirical copula. However, it is not defined
over all points (i

n ,
j
n), but only over some points. The approximate copula is

Cn,k(
l

k
,
m

k
) =

number of pairs (x, y) in the sample such that F1(x) ≤ l
k and F2(y) ≤ m

k

n
,

(7.1)
where l, m =0, 1, 2, ..., k. F1(x) is some marginal distribution function of
the considered sample, e.g. empirical. F2(y) is the same but in the other

76

dimension.
This approximate empirical copula is not a true copula because the marginal

distributions of the approximate copula are not uniform on [0,1], in general.
In section 7.2, we define a new kind of empirical copulas and prove that it
satisfies the conditions of a true copula.

Instead of calculating the approximate empirical copula, which is a dis-
crete distribution function, we can calculate the approximate empirical cop-
ula density. The value of the approximate density function for one subspace
depends on the number of sample points lying in the corresponding subspace.
The exact value of the approximate copula density in those subspaces is the
number of sample points lying in the subspace divided by (n * volume), where
n is the total number of the sample points and volume is the area of each sub-
space. Each volume (area of a subspace) in figure 7.2 equals 0.1 ∗ 0.1 = 0.01.

The approximate empirical copula density is given by

cn(l,m) =
number of points in subspace(l,m)

n ∗ volume
(7.2)

where l,m = 1, ..., k. Actually, this density is not used. Instead, we use in
the approximate technique the distribution function (7.1) together with the
marginal distributions. This and the complete procedure of fitting multivari-
ate distributions which utilizes approximate empirical copulas is described
in the next section. In section 7.2 we set some conditions on the empiri-
cal copulas so that they become real copulas, and explain the theory and
the practice, how they can be used for modeling and generating dependent
samples.

7.1 Fitting an Approximate Multivariate Dis-

tribution which Utilizes an Approximate

Empirical Copula

In this section, we illustrate how an approximate multivariate distribution,
which consists of an approximate copula and fitted marginal distributions,
can be fitted to measured multivariate dependent data. The procedure con-
sists in general of the following steps:

1. The marginal distributions, Fd(Zd), d = 1, ..., D, where D is the dimen-
sion of the measured data sample, are built from the observed sample
points, z. Fd(Zd) can be empirical distribution functions of some kind,
or fitted standard distributions like Exponential, Weibull, etc. We

77

noticed during our experiments that empirical distribution functions
deliver often better results than the standard distribution functions in
term of better results of statistical goodness-of-fit test. This happens
when continuous or discrete standard distributions only badly fit the
data.

2. Each vector of the multi-dimensional observed sample zi, i = 1, ..., D,
where D is the dimension of the sample, is transformed into points ui of
the unit D-space [0, 1]D by means of a marginal distribution function.
For example, the uni-dimensional vector z = (3, 4, 7, 5) in R is mapped
to u = [1

4
, 2

4
, 1, 3

4
] in [0,1] according to the position of each point of z in

the ordered vector (3, 4, 5, 7).

This step can be exemplified for a bi-dimensional sample as follows:
Consider the bi-dimensional sample z, where z1 = (0.10, 0.11, 0.20, 0.09)
and z2 = (3, 4, 7, 5). First, the vectors z1 and z2 are mapped separately
to points in [0, 1]. The vector z1 is mapped to the vector u1 = [2

4
, 3

4
, 1, 1

4
]

and the vector z2 is mapped to the vector u2 = [1
4
, 2

4
, 1, 3

4
]. This results

in the bi-dimensional sample u = [(2
4
, 1

4
), (3

4
, 2

4
), (1, 1), (1

4
, 3

4
)].

3. The approximate copula density is estimated by a simple counting pro-
cedure. The copula density of the previous example is shown in figure
7.3. A sample of the bi-dimensional sample is also plotted for clarifying.

4. From the approximate copula density, the conditional probability P{U2 ≤
u2|U1 = u1} is calculated. For the previous example, the conditional
probabilities are as shown in figure 7.4.

The empirical copula density shown in figure 7.3 is actually a true copula
as the marginal distributions of it are all uniform.

In the following, we give the procedure of fitting an approximate multi-
variate distribution which utilizes the approximate copula more formally.

1. Approximations Fd(z), d = 1, ..., D, of the unknown marginal distribu-
tion functions are built from the given sample. This can be empirical
distribution functions of some kind, or fitted standard distributions like
exponential, Weibull etc. For this, the sequences zd,1, zd,2, ..., zd,n, d =
1, ..., D, are ordered: zd,(1), zd,(2), ... where i < j implies zd,(i) ≤ zd,(j).
For zd,(i) where zd,(i−1) < zd,(i) = zd,(i+1) = ... = zd,(i+m−1) < zd,(i+m),
Fd(zd,(i)) = m/n holds, Fd,i for short (here, zd,(0) = 0 and zd,(i,n+1) =∞;
these values are not used for estimation). For z ∈ (zd,(i), zd,(i+1)),
Fd(z) = Fd,i, but we will not use this.

Alternatively, Fd(z), d = 1, ..., D, are fitted to standard distributions.

78

Figure 7.3: The values of the density in the subspaces

Figure 7.4: The values of the conditional probabilities P{U2 ≤ u2|U1 = u1}
in the different subspaces for the frequency distribution Cn

79

2. The observed sample points zi, i = 1, ..., n, are transformed into points
ui of the unit D-cube [0, 1]D by means of the marginal distribution func-
tions. This means, ui = (u1,i, ..., uD,i) ∈ [0, 1]D where ud,i = Fd,i, d =
1, ..., D, i = 1, ..., n, are the transformed points.

3. The copula, more specific the density of the ui, is estimated. To this
end, the D-cube is partitioned into sub-cubes. In each sub-cube, the
density of the copula is estimated from the number of points ui in the
sub-cube, divided by n and the volume of the sub-cube. This gives
Sj = S1,j1 × ... × SD,jD , j ∈ K = {1, ..., K1} × ... × {1, ..., KD}, are
the sub-cubes of [0, 1]D where Sd,j = [(j − 1)δd, jδd), j = 1, ..., Kd − 1,
Sd,Kd = [(Kd − 1)δd, Kdδd], and δd = 1/Kd, d = 1, ..., D.

This partition Sj, j ∈ K, induces a partition Tj = T1,j1×...×TD,jD , j ∈ K,
in the original space Z of the observed random vectors zi by means of ui ∈
Sj ⇔ zi ∈ Tj ⇔ ∀d = 1, ..., D : zd,i ∈ Td,jd . This induced partition is unique
only if the marginal distribution functions Fd(z) are strictly increasing.

The approximate density of the copula is constant in each sub-cube
Sj, j ∈ K. With the number Nj of points uj in the sub-cubes Sj and
Hj = Nj/n, the density has the value Hj/(δ1 · ... · δD). Hj, j ∈ K, is a
frequency distribution for tuples j.

The reader may note that these approximations are not really a copula:
The marginal distributions are only approximately uniform. However, the
empirical copulas, and thus their derivatives, the frequency copulas, converge
to true copulas. See van den Goorbergh et al. (2005).

This copula, together with the pseudo-inverses of the marginal distribu-
tions, defines the approximate distribution A.

The computational cost for the method is O(n log n+nK1 ·...·KD). In our
examples, calculated with MATLAB on a 1GHz PC, the computing times
were seconds or a few minutes.

7.1.1 Generating Random Vectors

Using the fitted approximate distribution A, dependent uniform random vec-
tors u′ ∈ [0, 1]D can be generated. From this, random vectors z′ are obtained
by means of the pseudo-inverses

F−1
d (u) =

{
inf{z|Fd(z) ≥ u} u > 0
sup{z|Fd(z) = 0} u = 0

of the estimated marginal distribution functions or the inverses of fitted stan-
dard distributions.

80

In the following we indicate how bi-dimensional random vectors z′ are
generated form the fitted approximate distribution A. The generalization to
higher dimensions is straightforward.

1. First a sub-cube SI is selected: Its index I is generated randomly from
the frequency distribution of points ui in the sub-cubes.

2. One of these points, û = (û1, ..., ûD), is selected according to its prob-
ability from the sub-cube SI.

3. ẑd = F−1
d (ûd), d = 1, ..., D, are the elements of the generated random

vector ẑ.

7.1.2 Examples

In the numerical examples, correctness and accuracy are verified via goodness-
of-fit tests, scatter diagrams, and comparison of some statistical moments like
the mean, the variance, and linear correlations. For this purpose, the sta-
tistical moments and the diagrams are calculated for the original sample z,
and the sample generated from the fitted approximate distribution A, z′.
We also compare our results with results got from other already existing
methods, when necessary.

Example 1: An Artificial Stochastic Process

We consider a sliding window over an artificially generated stochastic process.
Z1,i = Ai, Z2,i = Ai+1, i = 1, ..., n, where Ai+1, i = ...,−1, 0, 1, 2, ..., is the

stationary stochastic process defined by Ai+1 = 0.5
(

1−4(Ai−0.5)2
)

+0.5Xi,

where the Xi are independent and uniformly distributed over [0, 1].
We consider a sample of the stochastic process of size n = 4000. The

number of sub-intervals in each of the two dimensions are chosen to be
K1 = K2 = 40. The scatter diagrams of the original sample and the sample
generated from the fitted approximate distribution shown in figure 7.5 indi-
cate that there are regions where no points can exist, and that these regions
are observed by the generated process with good accuracy.

For comparison, the artificially generated sample can be fitted to a stochas-
tic process from the autoregressive type. We fit the sample to a linear nGAR
process with lag equal to 1. Taking a sample of the fitted nGAR process, we
see obviously that there are many points which lie in the impossible region
as seen in figure 7.6.

We may hint to that the extended Yule-Walker method explained in chap-
ter 5 can be also used for the purpose of estimating the parameters of the

81

Figure 7.5: The original sample

Figure 7.6: Left: Sample from the fitted approximate distribution utilizing
a copula. Right: Sample from the fitted linear nGAR model

82

non-linear model. However, in this case, the model must be known in ad-
vance. If one has no idea about the model, the method of the empirical
copula is suitable.

In addition to comparing the scatter plots of the original and the gener-
ated samples, we also compare in table 7.1 some statistical moments.

Table 7.1: Results summary of samples from the original artificial process,
from a fitted approximate distribution, and from a fitted linear nGAR process

Original Appr. Distr. Linear nGAR

[Cov] [-0.4488, 0.1505] [-0.4652 , 0.1476] [-0.4465 , 0.1750]

mean 0.6427 0.6436 0.6429

variance 0.0348 0.0340 0.0348

minimum 0.0327 0.0599 -0.1370

maximum 0.9989 0.9989 1.1334

MAR - 0.0021 0.0080

LSS - 8.65e-006 2.06e-004

KSS - 0.0078 0.0235

As seen in Table 7.1, the fitted approximate distribution utilizing an
approximate copula, and the fitted linear nGAR process, deliver good ap-
proximation of the statistical moments of the mean, the variance and the
covariance, and small test statistics MAR, LSS, and KSS. The statistics
MAR, LSS, and KSS are the mean absolute distance, the least-square, and
the Kolmogorov-Smirnov test statistics (see section 4.5). Nevertheless, the
fitted approximate distribution which utilizes the approximate empirical cop-
ula delivers better results and could capture the non-linear dependencies as
seen in figure 7.6. We also see a problem in capturing the minimum and max-
imum value when fitting a linear nGAR process to the artificially generated
data.

Example 2

We consider observed data by Klemm et al. (2002) at an Internet server.
The data consists of interarrival times (Ai) and packet lengths (Bi). The
original sample size is 150 000 bivariate samples. We consider only part of
this sample for analysis (4 000).

Considering that current interarrival time depends on the previous in-
terarrival time and the previous packet length, and considering that current
packet length depends on the previous packet length and interarrival time,

83

we get the stochastic process: Z1,i = Ai, Z2,i = Bi, Z3,i = Ai+1, Z4,i =
Bi+1, i = 1, ..., n.

Having a sample size of n = 4000 and number of sub-intervals of K1 =
K2 = K3 = K4 = 40, we fit an approximate distribution which utilizes an
approximate copula.

Some components of the original four-dimensional stochastic process
Zi = [Z1,i, Z2,i, Z3,i, Z4,i]

′ are plotted in scatter diagrams. We plot dimension
1 (interarrival times at time i) against dimension 2 (packet length at time i)
as seen in figures 7.7 and we plot dimension 1 (interarrival times at time i)
against dimension 3 (interarrival times at time i+1) as seen in figure 7.9.

We compare these plots with plots from a sample generated from the fitted
approximate distribution and a sample generated from the BMAP model in
figure 7.8 and in figure 7.10. For the given dimensions, the plots indicate good
fitting of the sample generated from the approximate distribution. The plots
of the sample generated from the fitted BMAP model indicate less accuracy
than the sample from the approximate distribution. Plots from the other
dimensions are similar to the presented ones and will not be shown here.

We have to mention here that we used in this example a fitted BMAP
model that did not converge after a specific large number of iterations (100).
This decision is due to the fact that the BMAP fitting procedure does not
converge in most of the cases. Convergence of the BMAP procedure depends
beside other conditions on the initial conditions which are taken randomly.
However, even using a BMAP model which converged to the desired one
does not give much more similar plots to the original ones. The differences
in the plots are due to the nature of the BMAP process and not due to the
non-convergence.

In table 7.2 we compare some statistical moments of the original sample,
a sample generated from the fitted approximate distribution which utilizes a
fitted approximate copula, and a sample generated from the BMAP model of
Klemm et al. (2002). The statistics MAR, LSS, and KSS are the mean abso-
lute distance, the least-square, and the Kolmogorov-Smirnov test statistics
described in section 4.5.

We see from table 7.2 that the sample from the fitted approximate dis-
tribution fits better the original sample than the sample generated from the
BMAP model. However, the ”common” distribution might be more interest-
ing. A statistical test that can indicate how well the fitted process and the
original process are close is the number of bytes arriving at the server per
time unit. For this purpose we plot the number of bytes against time for the
time scales 0.1 seconds, as also done in Klemm et al. (2002). The plots from
the sample generated from approximate distribution is more similar to the
original one than that of the BMAP sample. This is easy to see in figures

84

Figure 7.7: The original sample; Dimension 1 & 2

Figure 7.8: Left: Sample from the approximate distribution. Right: Sample
from the BMAP model; Dimension 1 & 2

85

Figure 7.9: The original sample; Dimension 1 & 3

Figure 7.10: Left: Sample from the approximate distribution. Right: Sample
from the BMAP model; Dimension 1 & 3

86

Table 7.2: Results summary of the original sample, a sample from a fitted
approximate distribution, a fitted BMAP process

Original Appr. Distr. BMAP

[Correlation] [0.0884, 0.2388] [0.0791, 0.2432] [0.05671, 0.2297]

[mean] [0.0108, 311] [0.0109 306] [0.0111 , 322]

[variance] [2.0e-4, 1.128e5] [1.98e-4, 1.125e5] [2.928e-4 , 0.81709e5]

[minimum] [6.40e-5, 40] [6.50e-5, 40] [0 , 94]

[maximum] [0.1123, 1500] [0.1123, 1500] [0.1695, 1465]

[MAR] - [1.2826-04, 3.981] [20.2e-04, 63.43]

[LSS] - [1.5549-7, 1067] [1.08256e-05, 17972]

[KSS] - [0.011, 0.005] [0.205 , 0.50]

7.11 and 7.12.

7.1.3 Where to Take Care

Difficulties might occur if one or more marginal distributions of the stochastic
process of interest is discrete. Considering a bi-dimensional copula, a problem
that might occur is that one or more columns of the approximate empirical
copula contain(s) no sample points as shown in figure 7.13.

This problem appears in the following cases:

1. The number of sub-intervals chosen for the approximate copula is big-
ger than the number of available sample points. In this case, zero points
will lie in one or more columns as shown in the left part of figure 7.13.

2. Choosing a kind of marginal distributions that maps real values to the
space [0, 1] depending on the value of the sample points and not on the
position of the sample points in the sample ordered statistics. This is
illustrated in the following example.

Consider the bi-dimensional vector (Xi, Yi), i = 1, 2, 3, 4. Let (x1, y1)=(0.1,
1), (x2, y2)=(0.3, 4), (x3, y3)=(0.7, 4), and (x4, y4)=(0.9, 4). To fit
an approximate distribution to this sample, all x and y must be first
mapped separately to points in [0, 1] by means of marginal distribu-
tions.

Choosing a marginal distribution that maps random variates with similar
values to the same point in the [0, 1] space means that the above points

87

Figure 7.11: Number of bytes against time for the original process. Time
scale 0.01 sec

Figure 7.12: Number of bytes against time for a process from the approximate
distribution (left) and for the BMAP process (right). Time scale 0.01 second

88

Figure 7.13: Some columns of the copula have no entries

will be the following points in the space [0,1]: u= [(0.1, 0.25), (0.3, 1),
(0.7, 1), (0.9, 1)], as the xi = [0.1, 0.3, 0.7, 0.9] are mapped to the vector
u1,i = [0.1, 0.3, 0.7, 0.9] and the yi = [1, 4, 4, 4] are mapped to the vector
u2,i = [1/4, 1, 1, 1]. Here we assume that the range of the real values of
vector yi is [0,4]. The cumulative distribution function of U2,i has a jump at
i = 4 and is shown in figure 7.14

We see also in figure 7.14 the approximate copula resulting of the process.
We notice a column in which no sample points lie.

Such an approximate copula which contains empty columns cause a prob-
lem when using them to generate random vectors. As described in section
7.1.1, generating a two dimensional sample requires first generating a uniform
random number u1 and secondly, depending on the conditional probabilities
resulting from the approximate copula, generating u2, provided U1 = u1.
However, if u1 lies in column 2 or 3, no u2 can be generated, as all probabil-
ities to choose one of the sub-intervals equals to zero. We call this problem
as the problem of the deadend.

A solution of this problem lies first in choosing no more sub-intervals than
the number of the available sample points. Moreover, instead of choosing
marginal distributions that depend on the values of the sample points when
mapping to the [0,1] space, distributions which depend on the position of the
sample points in the sample ordered statistics of the samples are used.

Using such a procedure for the example mentioned above will result in
the following process whose marginal distributions are in the [0,1] space:
u = [(1

4
, 1

4
), (2

4
, 2

4
), (3

4
, 3

4
), (1, 1)], as the the xi=[0.10, 0.3, 0.7, 0.9] are mapped

to the vector u1,i = [1
4
, 2

4
, 3

4
, 1] and the yi=[1, 4, 4, 4] are mapped to the

89

Figure 7.14: An empirical marginal distribution with a jump and an approx-
imate copula of it

vector u2,i = [1
4
, 2

4
, 3

4
, 1].

We mentioned that different kinds of marginal distributions can be used.
This is possible because a marginal distribution and its inverse will be used
in the same procedure. In other words, if the sample is Z if the marginal
distribution is F1, one will use at one point F1(Z) and at a later point of the
procedure F−1

1 (F1(Z)) which results in Z always, whatever of which kind of
marginal distributions F1 is.

The second problem that might occur is that the generated points for
time series end in a cycle of points which recur again and again. Some other
points do not occur even once. This problem occurs with some probability if
the sample is very small, in bigger samples this probability becomes smaller
and smaller. We observed these problems only when very small samples were
used for the distribution A, ten points or so.

7.2 Fitting a multivariate distribution utiliz-

ing a real empirical copula

We explain in this section how to efficiently fit a multivariate distribution
which utilizes a real empirical copula to a given D-dimensional sample of
size n, and how to generate random vectors out of the fitted multivariate
distribution.

We explain first how to estimate multivariate distribution functions, which

90

consist of marginal (empirical) distribution functions in the form of step func-
tions, and a real empirical copula, to the sample. Then we give an efficient
algorithm for the generation of D-variate samples out of the fitted multivari-
ate distribution. For the purpose of fitting a real empirical copula, an integer
K which controls the accuracy and the space and time complexities, must
be defined. The space and time complexities are increasing with K.

In this section, after we describe basic facts about copulas, we present ex-
amples implemented in MATLAB program. The examples indicate accurate
statistical properties of our new technique.

Once we have the multivariate distribution function estimated, multi-
variate random vectors can be generated. In the following subsections, we
investigate in more detail the ideas behind fitting a multivariate distribution
function utilizing the empirical copulas to data, and how to generate random
vectors from the fitted distribution function.

7.2.1 Continuous Piecewise Multi-Linear Empirical Cop-
ulas

We consider continuous empirical copulas C(u), u = (u1, ..., uD), which are
linear in each variable ud, d = 1, 2, ..., D, if the other variables ue, e =
1, 2, ...D, e 6= d, are fixed. This linearity holds in each subspace of the unit
D-space [0, 1]D, which means that the density c(u) of the copula is constant
in each of these subspaces. However, the slopes in general are different in
different subspaces. Therefore, we call these empirical copulas as continuous
piecewise multi-linear.

In this section, we point out how a multivariate distribution which con-
sists of a copula and empirical distribution functions can be estimated from
a given sample, and we prove that the estimated continuous empirical cop-
ulas meet the requirements of real (empirical) copulas. Then we present an
algorithm for computing the continuous empirical copulas and their condi-
tional distribution functions needed for the later generation of the desired
random vectors. Moreover, we consider time and space complexity of the
used algorithm.

The subspaces are defined with the partitions S1, ..., SK of the interval

[0, 1], S1 = [0, δ] where δ = 1/K and K is a positive integer, Sj =
(

(j −

1)δ, jδ
]
, j = 2, ..., K. The D-dimensional subspaces are Sj = Sj1 × ... ×

SjD , j = (j1, ..., jD) ∈ K = {1, ..., K}D.
We consider a sample zi = (z1,i, ..., zD,i), i = 1, ..., n, where n is the

sample size and D is the dimension of the sample. We assume that the

91

different sample vectors zi are independent and identically distributed (IID)
for different i. For the definition of the copula, we use in each dimension
d = 1, ..., D the order statistics zd,(i), i = 1, ..., n, of the elements of dimension
d. Hence zd,(i) ≤ zd,(i+1), i = 1, 2, ...n − 1. Let Id : {1 : n} → {1 : n} denote
the function which maps the old place l of zd,l in the sample to the new place
Id(l) = i in the order statistics zd,(i), i = 1, ..., n.

With this mapping, we define ud,l = Id(l)/n, l = 1, ..., n, d = 1, ..., D,
and ul = (u1,l, ..., uD,l), l = 1, ..., n. ul are image points of the sample points
zl in the unit D-space [0, 1]D.

Now we explain that the values ud,l are closely related to the empirical
distribution function of the zd,l. We use a specific kind of empirical distri-
bution functions, namely step functions, one in each dimension d = 1, ..., D.
The empirical distribution functions are defined with the order statistics as
follows:

Fd(z) =

0 z < zd,(1)

i/n zd,(i) ≤ z < zd,(i+1), i = 1, ..., n− 1
1 z ≥ zd,(n)

(7.3)

If in the order statistics there is zd,(i) = zd,(i+1), then there is no z for which
Fd(z) = i/n which means that i/n is not in the range of Fd. In other words,
if all sample values zd,l, l = 1, ..., n, are different, then Fd(zd,l) = ud,l holds. If
some sample values are not unique, then Fd(zd,l) = ud,l holds only for values
zd,l which occur only once, and for just one of the equal values zd,l1 = zd,l2 =
.... Namely for multiple values zd,l1 , zd,l2 , ..., zd,lx , x is the number of all zd,l
which equal one value, the value of the distribution function at all the points
zd,li , for all i = 1, 2, ..., x, is Fd(zd,li) = max{ud,l1 , ud,l2 , ..., ud,lx}.

Let Nj denote the number of points in Sj, j ∈ K. Then we define the
density c(u) ≡ cD(u) of the copula as

c(u) = fj, j ∈ K,

where we use the notation fj = Nj/n/δ
D. For ud ∈ Sj \{0}, j = dudKe holds,

and for ud = 0, j = 1. Hence, with the up-operator ↑: [0, 1] → {1, ..., K},
↑ u = max{1, duKe}, we can write

c(u) = f↑u1,...,↑uD , u ∈ [0, 1]D. (7.4)

Let c(u) ≡ cD(u) denote the density of the copula, and cd(u), d =
1, ..., D − 1, the marginal densities. Then we can write

c1(u1) =

∫ 1

u2=0

...

∫ 1

uD=0

c(u)du2...duD,

92

c2(u1, u2) =

∫ 1

u3=0

...

∫ 1

uD=0

c(u)du3...duD,

...

cd(u1, ..., ud) =

∫ 1

ud+1=0

...

∫ 1

uD=0

c(u)dud+1...duD. (7.5)

From the conditional probability we know that P (B|A) = P (A∩B)
P (A)

, where
P is the probability and A and B are events. Then we have the copula
conditional distribution function as

Cd(ud|u1, ..., ud−1) =

∫ ud
u=0

cd(u1, ..., ud−1, u)du

cd−1(u1, ..., ud−1)
, d = 2, ..., D. (7.6)

where cd−1(u1, ..., ud−1) > 0. Please note that Cd is a conditional distribution
function.

Now we are ready to prove that the marginal copula densities can be
expressed from (7.5) as

cd(u1, ..., ud) = δD−df
(d)
↑u1,...,↑ud , d = 1, ..., D − 1, (7.7)

where

f
(d)
j1,...,jd

=
K×...×K∑

(jd+1,...,jD)=(1,...,1)

fj,

(j1, ..., jd) ∈ {1, ..., K}d,

and the conditional distribution functions can be expressed from (7.6) as

C2(u2|u1) = δD−1

↓u2∑
j2=1

f
(2)
↑u1,j2

+ (u2− ↓ u2δ)δ
D−2f

(2)
↑u1,↑u2

,

Cd(ud|u1, ..., ud−1) =
δ
∑↓ud

jd=1 f
(d)
↑u1,...,↑ud−1,jd

+ (ud− ↓ udδ)f (d)
↑u1,...,↑ud

δf
(d−1)
↑u1,...,↑ud−1

,

d = 3, ..., D, (7.8)

↓ u =↑ u− 1, for positive denominators.

93

From the definition of the marginal densities we can write

cD−1(u1, ..., uD−1) =

∫ 1

u=0

cD(u1, ..., uD−1, u) du, ud ∈ [0, 1], d = 1, ..., D − 1

=

∫ δ

u=0

cD(u1, ..., uD−1, u) du+

∫ 2δ

u=δ

cD(u1, ..., uD−1, u) du

+ ... +

∫ Kδ

u=(K−1)δ

cD(u1, ..., uD−1, u) du

=
K∑
j=1

∫ jδ

u=(j−1)δ

cD(u1, ..., uD−1, u) du

=
K∑
j=1

∫ jδ

u=(j−1)δ

f↑u1,...,↑uD−1,j du

=
K∑
j=1

f↑u1,...,↑uD−1,j δ

= δ
K∑
j=1

f↑u1,...,↑uD−1,j

This means that the marginal density cD(u1, ..., uD−1) is constant for all
ud ∈ Sj, d = 1, ...D − 1. And accordingly we can write for all d = 1, ...D:

cd−1(u1, ..., ud−1)=δ
∑K

jd=1δ
∑K

jd+1=1...δ
∑K

jD=1 f↑u1,...,↑ud−1,jd,...,jD which gives

equation (7.7).
Now we derive the formula for the conditional copula distribution func-

tion. We know from the probability theory that

C2(u2|u1) =

∫ u2

u=0
c2(u1, u)du

c1(u1)

where u1, u2 ∈ [0, 1] and u1 is fixed. We notice that the denominator =1,
because C is a copula. Hence

C2(u2|u1) =

∫ δ

u=0

c2(u1, u)du+...+

∫ ↓u2δ

u=(↓u2−1)δ

c2(u1, u)du+

∫ u2

u=↓u2δ

c2(u1, u)du.

As c2 is constant in the integrals we can write

94

C2(u2|u1) =

↓u2∑
j2=1

∫ j2δ

u=(j2−1)δ

δD−2f
(2)
↑u1,j2

du+

∫ u2

u=↓u2δ

δD−2f
(2)
↑u1,↑u2

du

C2(u2|u1) =

↓u2∑
j2=1

δD−2f
(2)
↑u1,j2

δ + δD−2f
(2)
↑u1,↑u2

(u2− ↓ u2δ)

this gives the first part of equation 7.8.
The second part of formel (7.8) can be derived in a similar manner, with

the difference that the denominator is generally not equal to 1. So that

Cd(ud|u1, ..., ud−1) =
1

denom

∫ ud

u=0

cd(u1, ..., ud−1, u)du

=
1

denom

↓ud∑
jd=1

∫ jdδ

u=(jd−1)δ

δD−df
(d)
↑u1,...,↑ud−1,jd du+

1

denom

∫ ud

u=(ud)δ

δD−df
(d)
↑u1,...,↑ud du

=
1

denom

↓ud∑
jd=1

δD−df
(d)
↑u1,...,↑ud−1,jd

δ+
1

denom
δD−df

(d)
↑u1,...,↑ud(ud− ↓ udδ), d = 3, ..., D

where denom = cd−1(u1, ...ud−1)=δ
D−(d−1)f

(d−1)
↑u1,...,↑ud−1

which gives the second

part of formula (7.8).
Now we are prepared to prove

Theorem 7.2.1 If the sample size n and K are such that K divides n, C(u)
is a copula.

Proof It suffices to prove that c(u) is a density in the D-space [0, 1]D, and
that c1(u) is the uniform density over [0, 1].

From (7.4), we conclude c(u) ≥ 0. Integrating the c(u) over the D-space,
one obtains δD

∑
j∈K fj = δDn/n/δD = 1. Hence c(u) is a density.

From the definition of Id(l), one can conclude that for fixed d ∈ {1, ..., D},
Id(l) for all l = 1, ..., n assumes all values i = 1, ..., n, each value once. Hence,
the ud,l for all l = 1, ..., n assume all values 1/n, ..., (n − 1)/n, 1, each value
once. Hence, in each subspace Sj1× [0, 1]D−1 are n/K image points ul. From

(7.7) we find f
(1)
j1

= n/K/n/δD = 1/δD−1 and c1(u1) = 1. c1(u) is the uniform
density over [0, 1]. This concludes the proof.

95

Algorithm 1 below can be applied to calculate the arrays f (d) which we
use for the calculation of the conditional distribution functions of the copula.

Algorithm 1

1. Calculate the empirical marginal distribution functions of the sample with
(7.3) and the image points ui of the sample points zi, i = 1, ..., n.

2. Set all elements of the arrays f (d) to 0.

3.
for i := 1 to n do

for d := 1 to D do
jd :=↑ ud,i;

end
for d := 2 to D do

f
(d)
j1,...,jd

plus 1/n/δD;
end

end

Each of the D empirical distributions need O(n log n) steps for sorting n
numbers, so this is done in O(Dn log n) time.

For the space complexity, we remark that the arrays can be expected to
be sparse. The biggest one, f (D), has KD elements, most of which will be
zero if KD � n. Therefore we propose to store the big arrays f (d) in a sparse
manner where elements with value zero are not stored. Hence, if KD is not
small, the needed storage is of order O(Dn) since at most (D − 1)n times
an array element changes its value from zero to nonzero. So we conclude the
space complexity O(Dn).

But, when an array is stored in a sparse manner, the index values must
be stored together with each array element, and each time when an element
is accessed, its index values are read. This results in a space complexity of
O(D2n) and time complexity of O(D2n log n). Now we can state

Theorem 7.2.2 Algorithm 1 has the time complexity O(D2n log n), and the
data structures have the space complexity O(D2n).

7.2.2 The Generation Algorithm

Once we have the multivariate distribution function estimated, multivariate
random vectors can be generated in two steps:

96

1. Generate a random D-vector with the empirical copula.

2. Transform its elements with the inverses of the marginal distribution
functions of the sample. For this we propose three different alternatives:

a) The estimated empirical distribution functions of the components in
form of a step function. Here one can obtain only values which occur
in the sample. This can be sensible for integer random variables, in
particular.

b) Some kind of linear interpolation. Here one can obtain values which
lie between zero and the largest value of the sample, or something
similar.

c) Fitted standard distributions if feasible, where feasible means: The
empirical distribution function of the sample is similar to a standard
distribution function, and this standard distribution function can be
inverted in a sufficiently simple manner.

In step 1, a random number u1 is generated from the uniform distri-
bution on the interval (0, 1]. The zero values are excluded to make the
implementation of the quasi-inverse of distribution functions easier. Then
ud, d = 2, ..., D, are generated with the conditional distribution functions by
(7.8).

Step 1 of the generation can be accomplished as follows:
u is a uniform random variable on [0,1]. With this random variable a

uniform random variable ud must be generated, where u1, u2, ..., ud−1 are all
previously generated.

For the generation we use the following transformation method:

1. search for j such that Cd(jδ|u1, ..., ud−1) ≤ u ≤ Cd((j+1)δ|u1, ..., ud−1).

2. calculate ud from u = Cd(ud|u1, ..., ud−1).

In case of d = 2 we can write: u = δD−1
∑↓u2

j2=1 f
(2)
↑u1,j2

− (u2− ↓
u2δ)δ

D−2f
(2)
↑u1,↑u2

which gives the piecewise linear copula.

In case of general d we can write:

u =
δ
∑↓ud

jd=1 f
(d)
↑u1,↑u2,,...,↑ud−1,jd

− (ud− ↓ udδ)f (d)
↑u1,↑u2,...↑ud

δf
(d−1)
↑u1,↑u2,...↑ud−1

which gives the piecewise linear copula.

97

Figure 7.15: The generation of a random variable ud from a conditioned CDF

To this end, for each d = 2, ..., D, a random number u is generated from
the distribution U(0, 1], and u = Cd(ud|u1, ..., ud−1) is solved for ud.

For the ud we obtain the following formulas:

u2 =↓ u2δ +
u− δD−1

∑↓u2

j2=1 f
(2)
↑u1,j2

δD−2f
(2)
↑u1,↑u2

(7.9)

where ↓ u2 is the smallest integer in {0, ..., K − 1} for which

uKD−1 ≤
↓u2+1∑
j2=1

f
(2)
↑u1,j2

(7.10)

holds. For d = 3, ..., D, the formula is

ud =↓ udδ + δ
uf

(d−1)
↑u1,...,↑ud−1

−
∑↓ud

jd=1 f
(d)
↑u1,...,↑ud−1,jd

f
(d)
↑u1,...,↑ud

(7.11)

where ↓ ud is the smallest integer in {0, ..., K − 1} for which

uf
(d−1)
↑u1,...,↑ud−1

≤
↓ud+1∑
jd=1

f
(d)
↑u1,...,↑ud−1,jd

(7.12)

98

holds.
If the random vector u(gen) is generated with these formulas, the calcula-

tion of the sums in (7.9) and (7.11) consist in O(DK) steps for calculating the
sum with sparse storage organization; the same holds for the search of ↓ ud
with (7.10) and (7.12), for each dimension d. Hence this needs computing
time of order O(D2K).

This can be reduced to O(D2 logK) as follows, which is worthwile for
large K. For example, if K=1000, the number of steps is about 10D in-
stead of 500D, in average. In a setup phase of the generation algorithm, the
cumulative sums

s
(d)
j1,...,jd

=

jd∑
j=1

f
(d)
j1,...,jd−1,j

, (7.13)

(j1, ..., jd−1) ∈ {1, ..., K}d−1, (7.14)

jd = 0, ..., K, d = 2, ..., D, (7.15)

are calculated. In the formulas, the sums are replaced by a single element of
the array s, and the ↓ ud are determined with binary search. So we found

Theorem 7.2.3 A random vector u(gen) can be generated in O(D2 logK)
time.

It must be remarked that the price for the logarithmic time complexity
is a high space need for the s array. But in the next subsection we propose
a tailored data structure for storing the f - and s-arrays which realizes the
favourable space complexity O(D2n) and provides fast access.

Now we discuss the transformation of a random vector u(gen) into a ran-
dom vector z(gen) with the original distribution as defined by the sample.

For the transformation, the elements of u(gen) are transformed with the
inverses of the marginal distribution functions of the sample. We propose
three different approaches:

1. Using the estimated empirical distribution functions (7.3). Here one
can obtain only values which occur in the sample. This can be sensible for
integer random variables, in particular.

2. Using a linear interpolation. The flat steps of the step distribution
function are replaced by straight lines above them with positive slope. Here
one can obtain values which lie between zero and the largest value of the
sample - different highest and lowest values can be defined similarly.

3. Using fitted standard distributions if feasible, where feasible means:
The empirical marginal distribution (7.3) of the sample is similar to a stan-
dard distribution function, and this standard distribution function can be
inverted in a sufficiently simple manner.

99

Method 1. The elements of z(gen) are defined by

z
(gen)
d,l = zd,(i), l = 1, ..., n, d = 1, ..., D, (7.16)

where i = max{1, dud,lne}.
Method 2. The elements of z(gen) are defined by

z
(gen)
d,l ={

ud,lnzd,(1) i = 0
zd,(i) + (ud,ln− i)(zd,(i+1) − zd,(i)) i > 0

where i = max{1, dud,lne} − 1,

l = 1, ..., n, d = 1, ..., D. (7.17)

Method 3. For a fixed d ∈ {1, ..., D}, the sample zd,1, ..., zd,D is fitted
to a suitable standard distribution with invertible distribution function, say
F (standard), and the random variates are transformed as follows:

z
(gen)
d,l = F (standard)−1(ud,l), l = 1, ..., n. (7.18)

A Taylored Data Structure

When arrays or even sparse matrices are used for storing the array elements
f

(d)
j1,...,jd

and their cumulative sums s
(d)
j1,...,jd

, the applicability of our method
is restricted with respect to the precision number K and the dimension D
of the random vectors. Something like K ≤ 1000 and D ≤ 3, or K ≤ 30
and D ≤ 6 must be observed with full arrays, and with sparse matrices in
MATLAB, K ≤ 1000 and D ≤ 6, or K ≤ 30 and D ≤ 12. Therefore we
devised a hash-based data structure which realizes the more favourable space
and time complexity and therefore makes bigger K and D possible.

We tried our program with K = 4000 and D = 4, with K = 1000 and
D = 40, and with K = 100 and D = 100, for example. Moreover, the
algorithm became much faster. For big values K, we observed 30...300 times
shorter CPU times for the setup phase and 24...90 times faster generation of
random vectors, compared with a MATLAB program which relies on sparse
matrices.

We only sketch the basic ideas of the data structure which includes many
details and is quite tricky. In a first phase, the f (d)-values are included one
after the other into a hash table. The hash address depends on d and on the
index tuple (j1, ..., jd−1).

In a second phase, the data structure is reorganized to allocate sequen-
tially the cumulative sums s

(d)
j1,...,jd

for given (j1, ..., jd−1). This allows for

100

binary search as will be seen in the sequel. After that, the array elements
f

(d)
j1,...,jd

and s
(d)
j1,...,jd

are accessed as follows.
1. Given d and (j1, ..., jd), an entry is searched in the hash table. If none

is found, the f (d)-element or the s(d)-element is 0. Otherwise, in the entry
are two pointers, begin(d, j1, ..., jd−1) and end(d, j1, ..., jd−1) which point to

triples (jd, f
(d)
j1,...,jd

, s
(d)
j1,...,jd

) in a list.
2. In the list, between the pointers, all positive f -values for the given d

and (j1, ..., jd−1) are stored. The triples are sorted according to increasing jd
which includes increasing cumulative sums s

(d)
j1,...,jd

. If there is no triple for

the given jd-value, the array element f
(d)
j1,...,jd

is 0.
When the triples are searched linearly between the pointers, the access

time is O(K) plus the access time to find the pointers in the hash table which
is O(D). With binary search, the access time is only O(logK) +O(D).

Due to the sparsity which is often high-grade, there are generally only a
couple of f

(d)
j1,...,jd

> 0, given d and (j1, ..., jd−1). Therefore quite often binary
searching the triples is not better, but sequential search is faster. Therefore
we use sequential search in the MATLAB program Strelen (2007).

Time Series

The technique for random vectors can be applied for time series as follows:
Consider a stationary time series ti, i = 1, ..., n+m− 1, of D′-dimensional
random vectors, ti = (t1,i,, tD′,i). A moving window with m vectors
ti−m+1, ti−m+2, ..., ti is taken as sample vectors zi = (ti−m+1,1, ..., ti−m+1,D′ ,
ti−m+2,1, ..., ti−m+2,D′ , ti,1, ..., ti,D′), i = 1, ..., n, hence D = mD′ is the dimen-
sionality of the random vectors zi. With this sample, the marginal distri-
butions and the copula are estimated as described in subsection 7.2.1. The
reader may realize that there are only D′ different marginal distributions.

The idea of this is as follows. The dependency between all ti may be
defined completely between two succeeding vectors, for example ti = αti−1 +
(1− α)xi, where 0 < α < 1, and the xi are independent random vectors. In
fact, ti and ti+δ are dependent for 1 ≤ δ, but this dependency is completely
considered with window width m = 2. But the dependency between the ti
may not be defined completely between two succeeding vectors, for example
ti = αti−1 +βti−2 +(1−α−β)xi where 0 < α, β, α+β < 1. Here the window
width m must be greater than 2 in order to cover the complete dependency.

Remark. There is one exception from this. Namely when the accuracy
K and the sample size n are equal, the complete dependency is considered
automatically even with window width m = 2. The reason is as follows.
When the random vectors t

(gen)
i are generated under these circumstances,

101

the subspaces appear in the same order as in the original given sample.
The generation of a time series t

(gen)
i , i = 1, 2, ..., is different. In each

generation step i, only the last D′ elements are newly generated, and not the
whole vector z

(gen)
i . The first (m− 1)D′ elements for the new z

(gen)
i are taken

from z
(gen)
i−1 instead, namely its last (m− 1)D′ elements.

The same holds for the u
(gen)
i -vectors. The last D elements of the gener-

ated z
(gen)
i series are the desired generated time series t

(gen)
i , i = 1, 2,

The first vector z
(gen)
1 must be initialized somehow, since no older random

vector is available. For this purpose, the whole vector can be generated. Gen-
erally, there is a transient phase in the beginning, therefore, some generated
vectors should be skipped.

It must be remarked that for this generation method of time series, two
subtle problems must be solved:

1. All parts tj of the vectors zi must have the same empirical marginal
distributions.

2. For each zi = (ti, ..., ti+m−1), there must be another vectors zj with
(ti+1, ..., ti+m−1) in the lower places, like zj = (ti, ...), zj = (..., ti, ...).

Both postulations are not immediately true and must be forced explicitly.
If they are not fulfilled, the generation algorithm may run into dead ends. In
our MATLAB program Strelen (2007), these problems are solved. The im-
plementation of the same empirical marginal distributions is not difficult. In
the program, we omit the second problem as follows: In zi = (ti, ..., ti+m−1),
i = 1, ..., n, each vector tj with n ≤ j is replaced with tj−n.

7.2.3 Examples

We present numerical examples where we apply our technique which utilizes
empirical real copulas. In all but the second example, random vectors zi are

102

generated as samples with known distributions and dependence structure.
We call these samples as artificial samples. In the second example we consider
measured IP traffic as data-sample.

We determined the empirical marginal distributions and the copula with
the methods described in subsection 7.2.1 and after the multivariate distri-
bution is fitted, we generate random vectors z

(gen)
i as described in subsection

7.2.2. We verify the accuracy by comparing the statistical properties of the
original sample and the generated sample, and visually, with scatter diagrams
which again compare the original sample and the generated one. Scatter di-
agrams show clearly if there are regions in the D-dimensional space in which
no original sample points are present, and if the same holds for the gener-
ated sample. Moreover, they give some visual impression of the frequency
distribution of sample points and generated points.

Statistics and diagrams were calculated for both, the original sample zi
and the sample z

(gen)
i generated with the new technique. The statistics are

means, coefficients of variation, correlations of the zd,i, the latter between
zd,i and zd′,i, d 6= d′, and correspondingly of the generated random vectors
ui. Moreover, we calculate the MAR, LSS and KSS statistics described in
section 4.5.

We calculated the relative differences of means of the original and gen-
erated samples, the relative differences of the coefficients of variation of the
original and generated samples, and relative differences of the correlations of
the original and generated samples. We give the maximum of the absolute
values of these differences, the maximum statistics difference.

Each generation of random vectors was repeated independently six times.
We present the interval of the observed maximum statistics differences. In
many examples, we found that the generated random vectors seem to have
very similar statistical properties, compared to the samples. The examples
were calculated with the MATLAB program Strelen (2007). The program
can be adapted easily to different samples.

Example 1

We consider a multivariate distribution with dimension D = 2. The random
variables of the distribution Z1,i have a Weibull(3,1) distribution, and the
random variables Z2,i are correlated according to the formula Z2,i = Z1,i(1 +
Yi), i = 1, ..., n. All Z1,i and Yi are independent random variables. The Yi
are U(0, 1)-distributed.

We consider a sample size is n = 4000, and accuracy of K = 1000.
After fitting a multivariate distribution utilizing an empirical copula, random
variables u

(gen)
i -vectors can be generated by equations (7.9) and (7.10).

103

As inverse transformation we apply method 2 of subsection 7.2.2 with
the formula (7.17) and method 3 with the formula (7.18). We generate z(gen)

using these two methods: Method 2: the interpolated empirical distribu-
tion function, and method 3 with the distribution Weibull(3.06, 0.983) for
dimension 1 and Weibull (2.65, 1.48) for dimension 2.

For 4000 generated random vectors, the maximum statistics difference
when considering method 2 is 0.003 ± 0.002. Where as the maximum statis-
tics difference when considering method 3 is 0.022 ± 0.003. We get obviously
better results when using method 2. The detailed statistical properties of the
two fittings is shown in table 7.3

Table 7.3: Results summary of the original sample, of a fitted distribution
utilizing real empirical copula

Original multivariate Distr. 1 multivariate Distr. 2

correlation coef 0.872 0.868 0.878

mean 0.889 0.898 0.887

Variation coeff. 0.367 0.358 0.348

minimum 0.0581 0.0723 0.078

maximum 2.16 2.13 2.024

MAR - 0.01 0.019

LSS - 0.0001 0.0005

KSS - 0.018 0.027

KS rejected? - No yes

The scatter diagrams of the sample and the generated points, figures
7.16 and 7.17, are similar for both inverse transformation methods. They
indicate that there are obviously regions where no points can be, and that
these regions are observed by the generated points quite accurate.

Example 2: Measured IP-Data

We consider data from Klemm et al. (2002). The sample vectors are z1,i =
ai, z2,i = bi, z3,i = ai+1, z4,i = bi+1, i = 1, ..., n − 1, and z1,n = an, z2,n =
bn, z3,n = a1, z4,n = b1, i = 1, ..., n − 1, where ai and bi are observed
inter-arrival times and packet sizes, respectively.

The values of z3,n and z4,n are a little strange; this setting is according to
the remark 2 at the end of subsection time series.

Sample size n = 4000. The u
(gen)
i -vectors where generated with formulas

(7.9) - (7.12). As inverse transformation we apply method 1 with the formula

104

Figure 7.16: Original Sample

Figure 7.17: Left: The Generated Points from method 2. Right: The Gen-
erated Points from method 3

105

(7.16), the empirical distribution function, for the integer-valued packet sizes,
and method 2 with the formula (7.17), the interpolated empirical distribution
function, for the interarrival times.

For the accuracy K = 1000, random vectors were generated with maxi-
mum statistics difference 0.028 ± 0.016. The results summary of the fitting
algorithm is shown in table 7.4.

Table 7.4: Results summary of fitting a distribution utilizing real empirical
copula to IP-data

Original multivariate Distr. 1

corr. coef. [-0.12, 0.09, -0.18, 0.25] [-0.09, 0.077, -0.16, 0.24]

mean [0.0114, 312.2828] [0.0116 310.76]

variation coeff. [1.3494, 1.0523] [1.3791, 1.0715]

minimum [0.0001, 40] [0.0001, 40]

maximum [0.1, 1500] [0.1, 1500]

MAR - [0.0003, 6.304]

LSS - [0.0000, 680.716]

KSS - [0.0130, 0.0115]

KS rejected? - No

The correlation coefficients (corr. coef.) pointed in table 7.4 are those
between the random variables (z1,i, z2,i), (z1,i, z3,i), (z2,i, z3,i), and (z2,i, z4,i),
respectively.

The scatter diagrams, figures 7.18, 7.19, and 7.20, show a very irregular
dependency structure. The comparison of the sample and the generated
points indicate here also good accuracy.

Example 3

We consider the stochastic process whereA1 and all Yk are U(0, 1)-distributed,
Ak+1 = 0.5(1−4(Ak−0.5)2)+0.5Yk, k = 2, ..., n0+n, and the sample vectors
are Z1,i = Ai+n0, Z2,i = Ai+n0+1, i = 1, ..., n − 1, and Z1,n = An+n0, Z2,n =
Z1,1. The first random variables A1, A2, ... are not stationary; this is why
we skip n0 > 0 realizations, actually n0 = 100. We hope that the stochastic
process is then nearly stationary. Here, the dimension is D = 2.

Sample size is n = 4000. For the accuracy K = 1000, 64000 random
vectors were generated in 5.1 seconds CPU time with maximum statistics
differences 0.0024 ± 0.0012. For the accuracy K = 4000, 64000 random

106

Figure 7.18: Left: Original Sample. Right: The Generated Points. Dimen-
sions 1 and 2

Figure 7.19: Left: Original Sample. Right: The Generated Points. Dimen-
sions 1 and 3

107

Figure 7.20: Left: Original Sample. Right: The Generated Points. Dimen-
sions 2 and 4

vectors were generated in 7.8 seconds CPU time with maximum statistics
differences 0.0002 ± 0.00002, which is very accurate.

Example 4

Here we consider random vectors with high dimensions D, namely D =
5, D = 40, and D = 100. Z1,i = Y1,i, Zd,i = Zdd/2e,i(1 − Zdd/2e,i) + Yd,i, d =
2, ..., D, i = 1, ..., n, and the Yd,i are independent and U(0, 1)-distributed.

With sample size n = 4000, dimension D = 5, and accuracy K = 4000,
64000 random vectors were generated in 29 seconds CPU time with maximum
statistics differences of 0.007 ± 0.002. With sample size n = 1000, dimension
D = 40, and accuracy K = 1000, 16000 random vectors were generated in 74
seconds CPU time with maximum statistics differences 0.028 ± 0.004. With
sample size n = 1000, dimension D = 100, and accuracy K = 100, 16000
random vectors were generated in 210 seconds CPU time with maximum
statistics differences 0.031 ± 0.0035.

108

Chapter 8

Conclusions and Further Work

Input modeling for simulation is a topic of current research. Especially when
talking about modeling dependencies. Many input models used in profes-
sional modeling software can not model dependencies. Nevertheless, there
are input modeling approaches that can capture dependencies lying among
the data. Each of these approaches has its strong and weak points.

The relatively early approach of autoregressive to anything (ARTA) of
Cario and Nelson (1996) is thought in principle for the generation of stochas-
tic processes, provided that modeler knows which linear correlation and dis-
tribution must the output process have. This approach is extended to gener-
ate vector stochastic processes and called vector autoregressive to anything
(VARTA) described in Biller and Nelson (2003). The NORTA principle is
again used to generate vectors of random variables. The vectors are indepen-
dent, but the random variables lying in each vector are linearly correlated.
This approach is called the normal to anything (NORTA) (Cario and Nelson
(1997)).

For the purpose of simulation input modeling, the modeler has often only
a sample that must be fitted to a stochastic process. The ARTA approach
has been modified so that an ARTA process can be fitted to such a sample.
However, there is no technique for the VARTA or NORTA processes to given
samples. Moreover, these approaches can model only linear dependencies,
and they still need to be extended to consider heavy-tailed processes.

Another modern approach depends on the batch markovian arrival pro-
cesses (BMAP) and the software utilizing this approach and developed by
Klemm et al. (2002) is called IP2BMAP, because it fits a BMAP process
to IP data. This approach shows high accuracy in capturing the most sig-
nificant statistical moments of IP data. However, the approach is thought
only for this purpose and therefore can not be used for example for the pur-
pose of modeling tri-dimensional random vectors. Other weak points of this

109

approach are described in chapter 6.
We describe in the thesis three main approaches, that try to avoid most

of the disadvantages of the previous approaches. So we develop the non-
Gaussian autoregressive (nGAR) approach in chapter 4 for generally dis-
tributed marginal distributions, we extend Yule-Walker method so that non-
linear correlations can be modeled in chapter 5, and we develop an approach
that depends on the empirical copulas in chapter 7 which considers the com-
plete dependence structure.

The nGAR approach is a flexible approach. It can make use of already
existing approaches like the MLE, it can model non-linearly dependent data,
and can generate heavy tailed processes. The approach depends on capturing
the dependencies among the data and their distribution separately. We show
in chapter 4 how this approach works very well for some examples. However,
the approach can model only autoregressive data. We show in an example
that this approach is not appropriate if the data can not be modeled as an
autoregressive process.

The analytic approach of the extended Yule-Walker method described in
chapter 5. This approach, like the nGAR approach, can be used only for fit-
ting autoregressive models. Moreover, the nGAR approach and the approach
of the extended Yule-Walker method depends on having assumptions about
the kind of dependency, when non-linearity is assumed. In other words, the
type of model must be known.

The nGAR approach and the approach of the extended Yule-Walker
method are used to estimate the parameters of this known or assumed model,
or they can be used to check which type of models fits the available data bet-
ter. For example, this approach can answer the question, when non-linear
dependencies are suggested: which parameters must have a first degree poly-
nomial, so that it fits the data best. Or they can answer the question: does
a first or second degree polynomial fits the data better?

If absolutely no idea about the model to be fitted is available, the ap-
proach which depends on copulas and which is described in chapter 7 can be
used. In this approach, the dependencies among the data can be captured
by means of the empirical copulas. Capturing the dependencies using other
classes of theoretical copulas is also possible, but again leads to the restric-
tion of assuming a specific type of models that can model the dependencies.
The empirical copulas can capture any type of dependencies without having
any idea about them.

In a future work, modifying the nGAR approach so that the process fitted
satisfies special conditions can be done. For example, the variates generated
from a fitted nGAR model might be all positive or negative.

The extended Yule-Walker method might be applied for other types of

110

models than those mentioned in this thesis. However, non-linear models that
are common or useful in the real life are not known. There has been up
to now less research about non-linear models that might be interesting for
simulation input modeling.

The method which utilizes copulas has proved to be powerful. Copulas
are common in finance and insurance. They should be useful for simulation
as well.

111

Bibliography

Aas, K.: Modelling the dependence structure of financial assets: A survey of
four copulas. by Norwegian Computing Center, Oslo, Norway (2004).

Baeck, T.; Fogel, D.; Z., M.: Handbook of evolutionary computation. Bristol,
New York: Oxford University Press (1997).

Biller, B.; Ghosh, S.: Dependence modeling for stochastic simulation. In:
Winter Simulation Conference, pages 153–161 (2004).

Biller, B.; Nelson, B. L.: Advanced input modeling: Parameter estimation for
arta processes. In: Winter Simulation Conference, pages 255–262 (2002).

Biller, B.; Nelson, B. L.: Modeling and generating multivariate time-series
input processes using a vector autoregressive technique. ACM Transactions
on Modeling and Computer Simulation, 13, 3, (2003), 211–237.

Blum, P.; Dias, A.; Embrechts, P.: The art of dependence modelling: the
latest advances in correlation analysis (2002).

Box, G. E. P.; Jenkins, G. M.: Time Series Analysis, Forecasting and Con-
trol . Holden-Day, Inc. (1976).

Cario, M. C.; Nelson, B. L.: Autoregressive to anything—time-series input
processes for simulation. Operations Research Letters , 19, 2, (1996), 51–58.

Cario, M. C.; Nelson, B. L.: Modeling and generating random vectors with
arbitrary marginal distributions and correlation matrix. Department of
Industrial Engineering and Management Sciences (1997).

Chatfield, C.: The Analysis of Time Series: An Introduction, 5th Edition.
Chapman and Hall, New York (1996).

Chipperfield, A.; Fleming, P.; Pohlheim, H.; Fonseca, C.: Genetic algo-
rithm toolbox user’s guide. ACSE Research Report No. 512, University of
Sheffield (1994).

112

De Hoon, M. J. L.; Van der Hagen, T. H. J. J.; Schoonewelle, H.; Dam,
H. V.: Why yule-walker should not be used for autoregressive modelling.
Annals of Nuclear Energy , 23, 15, (1996), 1219–1228.

Embrechts, P.; Lindskog, F.; McNeil, A.: Modelling dependence with copulas
and applications to risk management. Report: Department of Mathemat-
ics, ETHZ, Zrich (2001).

Fishman, G. S.: Principles of Discrete Event Simulation. John Wiley and
Sons, Inc. (1978).

Ghosh, S.; Henderson, S. G.: Chessboard distributions. In: Winter Simula-
tion Conference, pages 385–393 (2001).

Ghosh, S.; Henderson, S. G.: Chessboard distributions and random vectors
with specified marginals and covariance matrix. Operations Research Let-
ters , 50, 5, (2002a), 820–834.

Ghosh, S.; Henderson, S. G.: Properties of the norta method in higher di-
mensions. In: Winter Simulation Conference, pages 263–269 (2002b).

Jagerman, D.; Melamed, B.: The transition and autocorrelation structure
of tes processes; part i: General theory. Stochastic Models , 8, 2, (1992a),
193–219.

Jagerman, D.; Melamed, B.: The transition and autocorrelation structure
of tes processes; part ii: Special cases. Stochastic Models , 8, 3, (1992b),
499–527.

Johnson, M. E.: Multivariate Statistical Simulation. John Wiley and Sons,
Inc., New York, NY, USA (1987).

Klemm, A.; Lindemann, C.; Lohmann, M.: Traffic modeling of ip networks
using the batch markovian arrival process. In: Computer Performance
Evaluation / TOOLS , pages 92–110 (2002).

Klemm, A.; Lindemann, C.; Lohmann, M.: Modeling ip traffic using the
batch markovian arrival process. Performance Evaluation, 54, 2, (2003),
149–173.

Law, A. M.; Kelton, D. W.: Simulation Modeling and Analysis, 3rd edition.
New York: McGraw-Hill (2000).

Lehn, J.; Wegmann, H.: Einfuehrung in die Statistik . Teubner, B.G. Teubner
Stuttgart (1992).

113

Li, H.: Tail dependence comparison of survival marshall-olkin copulas. Tech-
nical report: Department of Mathematics and Department of Statistics
Washington State University (2006).

Livny, M.; Melamed, B.; Tsiolis, A. K.: The impact of autocorrelation on
queuing systems. Management Science, 39, 3, (1993), 322–339.

Lucantoni, D. M.; Gagan, L. C.; Whitt, W.: The transient bmap/g/1 queue.
Stochastic Models , 10, 1, (1994), 145–182.

MathWork, T.: Matlab help. The Language of Technical Computing. Release
12.1 (2001).

Miket, M. J.: Chi-square procedures. Lecture notes: the Prac-
tice of Statistics, Chapter 11. At the department of Mathemat-
ics and Statistics, University of Saskatchewan. http://math.usask.ca/˜
miket/Sullivan PP/Chapter 11/sec11 3.ppt (2006).

Mikosch, T.: Copulas: Tales and facts. Technical Report: Laboratory of Ac-
tuarial Mathematics, University of Copenhagen. Will appear in the journal
Extremes (2005).

Nassaj, F.; Strelen, J. C.: Dependence input modeling with the help of non-
Gaussian AR models and genetic algorithms. In: Modelling and Simulation
2005, Proceedings of the European Simulation and Modelling Conference,
pages 146–153, Eurosis-ETI, Porto (2005).

Nassaj, F.; Strelen, J. C.: Generating simulation input data with approxi-
mate copulas. In: Modelling and Simulation 2006, Proceedings of the Eu-
ropean Simulation and Modelling Conference, pages 88–93, Eurosis-ETI,
Toulouse (2006).

Nelsen, R. B.: An Introduction to Copulas . Springer Verlag (1998).

Neuts, M. F.: Structured Stochastic Matrices of M/G/1 Type and Their
Applications . Marcel Dekker, New York (1989).

Neuts, M. F.: Matrix-Geometric Solutions in Stochastic Models . Courier
Dover Publications (1995).

of Aveiro, U.: Trace of ip packets, captured at the internet access of university
of aveiro. http://www.av.it.pt/nmc/traces/UAcapture19.zip (2006).

Priestley, M. B.: Spectral analysis and time series. Academic Press, London.
(1982).

114

Riska, A.: Aggregate matrix-analytic techniques and their applications.
A dissertation presented at the computer science department, college of
William & Mary (2002).

Sklar, A.: Fonctions de rpartition n dimensions et leures marges. de l’Institut
de Statistique de L’Universit de Paris , 8, (1959), 229–231.

Strelen, J. C.: The genetic algorithm is useful to fitting input probability
distributions for simulation models. In: Business and Industry Symposium
- ASTC , pages 8–13 (2003).

Strelen, J. C.: Generating random vectors with copulas - MATLAB program
pwlCopula D with hashing (2007).

Strelen, J. C.; Nassaj, F.: Analysis and generation of random vectors with
copulas. In: Winter Simulation Conference (2007).

van den Goorbergh, R. W.; Genest, C.; Werker, B. J.: Bivariate option pric-
ing using dynamic copula models. Insurance: Mathematics and Economics ,
37, 1, (2005), 101–114.

West, R. W.; Ogden, R. T.: The duration for eruptions
of the old faithful geyser in yellowstone national park.
http://www.amstat.org/publications/jse/v6n3/west.html (1998).

115

