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1 INTRODUCTION 

1.1 General Introduction 

A drug profile is continuously refined and qualified with progressive understanding of its 

pharmacokinetics (PK) and pharmacodynamics (PD). Traditionally, understanding of PK [PD] 

behaviour has been based on fitting a mathematical model to data obtained from highly 

selected individuals. The obtained model should then give the opportunity to predict the 

extent and time course of the exposure [related to a pharmacological effect and adverse 

events] and to optimise therapeutic outcomes (Rowland and Tozer 1989; Derendorf et al. 

2000; Gieschke and Steimer 2000). In fact, PK and PD are complex processes in nature with a 

high degree of variability due to the impact of a myriad of interactions that arise from 

differences in the pathophysiologic, demographic and/or genotypic characteristics between 

individuals, or over time within a given individual (Rowland and Tozer 1989). Unfortunately, 

such variability can potentially affect all PK and PD parameters estimates. The precise 

assessment of such variability is hampered by estimates of uncertainty (Bois 2001), which 

are basically due to a lack of knowledge on the variability stemming from various sources, 

including model simplifications or misspecifications (Nestorov 2001; Gueorguieva et al. 

2005). 

Pharmacokinetic and pharmacokinetic evaluations can be performed by modelling data 

either from each subject (“individual approach”) or from a group of individuals together 

(“population approach”). The individual approach requires intensive individual sampling to 

draw reliable conclusions; however, in many cases (and for ethical and/or clinical reasons), 

only limited samples are possible. For instance, the frequent withdrawal of blood samples 

may  not be a feasible basis for PK/ PD investigations in the case of HIV-infected (Roos et al. 

2008), anaemic (Vincent et al. 2006) or paediatric (Cole et al. 2006) populations. 

Furthermore, individual subjects provide insufficient information due to the fact that not all 

aspects are exhibited by all subjects or that the model specifications are simply not 

appropriate. For instance, it is common in pharmacokinetics that a one-compartment model 

can frequently fit plasma concentration data of a particular drug from some individuals, but 

a two-compartment model is needed to fit data from other individuals in the same study 

(Schoemaker and Cohen 1996; Bonate 2006). Considerable interindividual variability in 

plasma concentration levels (and consequently the therapeutic outcome) of many drugs like 
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antidepressants and anticoagulants has been recently explained by genetic and demographic 

factors (Lessard et al. 1999; Ma et al. 2004; Stehle et al. 2008). These examples show that 

the individual approach can mask an important PK characteristic that may have serious 

outcomes, especially if these drugs are of narrow therapeutic index or potentially interact 

with other drugs (Lessard et al. 1999; Hughes et al. 2004; Hung et al. 2005). 

 

It has been recognized that the most effective tool to deal with these problems is the 

application of the population approach. The data provided by different subjects can be 

integrated (Schoemaker and Cohen 1996) and the subjects’ characteristics can be co-

analyzed to obtain adequate parameter estimates. Because of its ability to partly disentangle 

the uncertainty from the variability, the population approach can produce a general model 

of sensible parameter estimates, which differ randomly between individuals (Bois 2001). The 

obtained model should then enable description of the data for each and all individuals 

adequately (Sheiner and Ludden 1992; Ette et al. 2004). Extensive contextualization of the 

methodology and the applications of this approach in drug development are available 

(Gieschke and Steimer 2000; Ette, E.I. and Williams, P.J. 2007; Grasela et al. 2007). 

 

For the current study, I shall provide a relevant framework of this approach and potential 

examples of its applications before embarking on modelling the drug probes of interest; 

fluorescein, clarithromycin, dextromethorphan and phenprocoumon. Although the context 

presented here will be illustrated with pharmacokinetics in most cases, the general 

principles are applicable to pharmacodynamics as well, unless stated otherwise. 
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1.2 Aim of the Thesis 

The overall aim of the thesis was to quantify selected pharmacokinetic and/or 

pharmacodynamic characteristics of specific probe drugs utilizing the advantages of the 

population analysis approach. By accounting for the between-subject variability in the 

population approach, the final developed model is expected to carry great advantages 

compared to standard non-compartmental analysis. Simulation of final models outcomes in 

addition to prior information about respective drugs pharmacology were used to build a 

confidence about the utility of the presented models.  

 

The specific aims are to: 

- Compare the ocular pharmacokinetics of a lyophilisate formulation in relation to eye 

drops and to develop an empiric ocular population pharmacokinetic model describing 

concentrations in the cornea and anterior chamber adequately. Fluorescein sodium 

was selected as a probe drug because it is safe and extensively used as a diagnostic 

substance in ophthalmology and because local concentrations can be determined 

non-invasively by flurophotometry. 

- Quantitatively describe the nonlinearity in the pharmacokinetics of clarithromycin in 

the presence of its active metabolite, 14(R)-hydroxy-clarithromycin and to better 

understand the time course of inhibition via population pharmacokinetic modelling. 

These data are important for a better understanding of the underlying processes and 

for the assessment of dose adjustments of clarithromycin and co-administered 

CYP3A4 substrates. 

- Assess the activity of individual CYP2D6 alleles with regard to the clearance of 

dextromethorphan to dextrorphan. These data are needed for a better prediction of 

CYP2D6 activity from genotypes for respective dose adjustments of CYP2D6 

substrates. 

- Develop a general population PK/PD model for phenprocoumon that combines 

demographic and genetic covariates to explain the variability of the entire dose-

exposure-response relationship. This information is a prerequisite for prediction of 

the individual optimal phenprocoumon dosing based on mechanistic rather than 

empirical considerations.  
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1.3 Overview of Population Approaches 

 

1.3.1 Definitions 

According to the definition of the US Food and Drug Administration (FDA), Population 

pharmacokinetics (PopPK) is “the study of the sources and correlates of variability in drug 

concentrations among individuals who are the target patient population receiving clinically 

relevant doses of a drug of interest”. Certain patient demographical, pathophysiological, and 

therapeutic features, such as body weight, age, excretory and metabolic functions, and the 

presence of other therapies, can regularly alter dose–concentration relationships (FDA 

1999). However, there is currently no definition for population pharmacodynamics (PopPD) 

provided by the FDA. PopPD aims to interpret and describe the sources and correlates of 

variability in therapeutic outcome, in a quantitative fashion and in a target population 

receiving clinically relevant doses (Ette, E.I.  and Williams, P.J. 2007). The Population Model 

is an elaborate statistical model which deals with identifying and quantifying the types, 

degrees and causes of differences within and between individuals, often depending on 

sparse pharmacokinetic/pharmacodynamic data (Williams and Ette 2007). The 

comprehensive field of drug evaluations that involves the development or estimation of 

pharmacokinetics, pharmacodynamics, linking pharmacodynamic–outcomes and disease 

progression models, is called pharmacometrics (Ette, E.I. and Williams, P.J. 2007). 

In the arena of pharmacometrics, simulation is defined as the generation of data using 

certain types of mathematical and probabilistic models describing the behaviour of the 

system under study. It provides convincing objective evidence of the merits of a proposed 

study design and analysis (FDA 1999). 
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1.3.2 Theory of Population Approach   
 

Within the framework of population nonlinear mixed effects models, and if the data come 

from j=1, …, N individuals, then the observed response of interest, e.g., plasma 

concentration, in an individual can be described as 

                                                                  Yij= f(j, x) + εij 

 

where the dependent variable Yij for i = 1, . . . , nj is the response of interest (e.g. drug 

concentrations) of the jth subject. The symbol f stands for a function that predicts the 

response in the jth subject (e.g., one or several exponentials), which is a function of known 

quantities, x (time of observation, drug dose) and parameters,  (drug clearance, volume of 

distribution, rate constant). The quantities in x are known, because they are either measured 

or controlled, and therefore, are called “fixed effects”. The parameters in the i vector are 

called “fixed effect parameters” because they quantify the influence of the fixed effects on 

the dependent variable. The individual j is assumed to arise from some multivariate 

probability. The last part of the previous equation, εij is the residual error of the model, i.e., 

the ith measurement of the difference between the observed and the predicted response in 

the jth subject. It is assumed to come from probability distributions with a mean of zero and 

the same (usually unknown) variance. If the distribution of εij is assumed to be normal, with 

zero mean and uniform variance, then the maximum likelihood estimation reduces to 

ordinary least squares estimation. Although the function j will differ between individuals, it 

is realistic to assume that the set of model structural parameters is qualitatively the same for 

all individuals and that the parameters vary quantitatively among individuals. 

Mathematically this can be written as 

                                                               j =g (θ, zj) + ηj 

 

where g is a known function that describes the expected value of j as a function of 

individual specific covariates zj, such as weight, age etc., and the vector of population 

parameters θ. The symbol ηj represents the random variation of the individual parameter 

vectors around the population prediction. The ηj is usually assumed to be independent 

across individuals (i.e., ηj, ηl are independent for j ≠ l) and follow a lognormal distribution 

with a median of 1 and a constant coefficient of variation. It does not follow that each θ 

must have a corresponding η. Because this model describes the influence of both fixed and 
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random effects, it is called a “mixed effect model” (Sheiner and Beal 1980; Ette and Williams 

2004; Bonate 2006). 

 

1.3.3 Software 

Many software programs have been widely used in PopPK and PopPD such as NONMEM 

(Beal and Sheiner 1980), ADAPT (D’Argenio and Schumitzky 2008), and MONOLIX (Lavielle 

and Mentre 2007). These programs differ in the number of assumptions made regarding the 

statistical distribution of the estimated parameters (Aarons 1999; Bauer et al. 2007). They 

take either a parametric approach with strong assumptions (typically of a Gaussian 

distribution (Beal and Sheiner 1980; Lindstrom and Bates 1990) or Bayesian approach (Lunn 

et al. 2002)), a semiparametric view with relaxed assumption (Verotta et al. 1989; Wang, Y et 

al. 2008) or a nonparametric (no assumption) approach (Mallet et al. 1988; Jelliffe et al. 

2000). During modelling, the program uses a minimization routine to fine-tune an initial set 

of model parameter estimates specified by the user. This process repeats through several 

iterations until the model has reached convergence. 

1.3.4 Types of Models 

Population models are commonly classified into descriptive and predictive models according 

to their functions or to mechanistic and empirical models according to their principle. 

Unlike predictive models, descriptive models are derived from certain data and cannot be 

extrapolated. For instance, the linear concentration-effect relationship may not be 

extrapolated beyond the range of observed concentrations but the Emax-type models can be 

used. The danger of extrapolating the descriptive model in this case could be a high 

incidence of side effects due to greater exposure of the drug (Gobburu 2004; Bonate 2006). 

Likewise, mechanistic models allow direct and/or indirect linkage to physiological processes, 

whereas empiric models do not allow such relation. Mechanistic models, such as 

physiological-based pharmacokinetic models are based on physical and physiological 

principles and should have as many features of the system incorporated into the model as 

the data allow (Thakur 1991; Bonate 2006).  

Actually, most known population models are said to be hybrid models, i.e., mechanistic in 

areas where the physiology and pharmacology of the system are understood and empirical 

in places that are still black boxes. 
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1.3.5 Model Development and Evaluation Strategies 

The process of model development usually begins with appropriate identification of the 

model structure based on physiological and mathematical bases that serve its usefulness 

(Ette et al. 2003; Bonate 2006). To identify the model appropriately, prior information 

regarding the model parameters and the influencing covariates are very helpful to specify 

and optimize the model structure (Maitre et al. 1991). Data visualization usually guides and 

determines the model building strategy, and hence directly influences the efficacy with 

which the final model is derived. Other means that guide model development should include 

objective function minimization and inclusion of random parameters and covariates (Ette 

and Ludden 1995; Jonsson et al. 2007). 

Modelling both PK and PD data can be done either sequentially or simultaneously. In the 

sequential modelling, the PD is conditioned on the PK estimates. In the simultaneous model, 

the parameters are considered to be jointly distributed and the flow of information is 

bidirectional (Williams et al. 2001; Zhang et al. 2003a; Zhang et al. 2003b). Both approaches 

appear to provide similar results (Davidian and Giltinan 1993; Zhang et al. 2003a).  

In many cases, a link model between PK and PD data provides the essential integrated step 

to arrive at an enlightened understanding of the dose-exposure-response relationship. This 

link can be described directly or indirectly by many models, e.g., mechanistic or empirical 

models (Williams et al. 2001; Williams and Ette 2007). 

Once the model is developed, it should be evaluated for its reliability, potential 

misspecifications and for its stability (Ette et al. 2003; Bonate 2006). Reliability of a final 

model can be checked via the assessment of the uncertainty of the parameters and random 

effects (Ette et al. 1998; Williams et al. 2007). Mis-specifications and systematic error can be 

identified through goodness-of-fit plots, which include plots of predicted values, residuals 

and the possible impact of individuals’ covariates. These plots provide helpful information 

about whether the model addresses all relevant aspects of data or whether part(s) of the 

model need(s) further attention (Logan 2003; Williams et al. 2007). In addition, visual 

predictive check plots and simulated graphics are also helpful to ensure adequate model 

performance (Post et al. 2008). Indeed, simulation has recently gained recognition as a 

useful tool for providing more informed and scientifically sound decision-making regarding 

the developed model and its logical implications (FDA 1999; Holford 2006; Williams and Ette 

2007) and any future changes in the drug profile towards new dosing schedules (Hamberg et 
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al. 2007; Nomura et al. 2008). The final model stability can be assessed by its resistance to 

data change (Ette 1997; Williams et al. 2007) or by omitting a portion of the data and 

comparing the result of the reduced data set with those of the full data set (Zandvliet et al. 

2005). 

1.3.6 Properties of the Final Model 

The final model should at least be useful as “the true or right” model is unknown. For a 

population model to be useful, it should represent the interaction between the drug and the 

biological system. Since general effects in a clinical data set can be blurred by other sources 

of variation or by random effects, a useful model should provide a summary of the data in 

terms of the fixed effects and the nature and magnitude of the random effects. It should 

mimic the complexity of biological processes. A gross complex model is, in general, difficult 

to solve numerically, difficult to interpret and may falsely convey confidence in the study 

findings. On the other hand, a very simple model can lead to loss of information about the 

biological system. In these circumstances, balanced assumptions are needed for the model 

to be descriptive and the biological system or process to be predictive (Haefner 1996; Kimko 

and Duffull 2003; Bonate 2006). Thus, a useful model should also be simple, transparent, 

applicable, informative, descriptive, predictive, retrodictive and valid (Bonate 2006; Ette, E.I. 

and Williams, P.J. 2007).  

 

 

1.4 Potential Examples of Modelling Pharmacokinetic-
Pharmacodynamic Processes 

Serious clinical consequences can be caused by variability, which in most cases can lead to 

unexpected or unusual characteristics in drug profiles. These features cannot be quantified 

by simple tools of analysis and thus extensive work is required. To come up with a useful 

model based on plausible concepts, it is essential to describe this variability at the level of 

the underlying processes.  

1.4.1 Absorption 

Drug absorption after oral administration is a highly variable process and an extremely 

complex phenomenon that depends upon the interaction between three types of variables; 
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(i) drug-specific variables, such as the physicochemical properties of the drug and its dosage 

form, etc, (ii) patient-specific variables, such as the (patho)physiology of the gastrointestinal 

tract, first pass effect, genetics, diet and concomitant drugs etc and (iii) population variables, 

such as the distribution of (patho)physiological factors (Petricoulo et al. 2007). 

When efficacy and/or safety are related to maximum drug concentration, it may be 

important to describe the absorption phase accurately (Kleinbloesem et al. 1987; Bagli et al. 

1996; Bagli et al. 1999). The occurrence of cardiotoxicity of fluoroquinolones, for instance, 

was related to their maximum concentration in plasma (Rubinstein and Camm 2002). The 

difficulty in dose adjustment of ophthalmic preparations may lead to potential ocular 

damage or systemic toxicity (Noecker et al. 2004; Fraunfelder 2006).  

More often, drug plasma concentration profiles are irregular shortly after oral 

administration and cannot be interpreted easily with conventional models based on first- or 

zero-order absorption kinetics and lag time (Zhou 2003). In such cases, more complex 

models are needed, such as those based on Weibull function (Zhou 2003; Rousseau et al. 

2004), inverse Gaussian input (Csajka et al. 2005; Wang, J et al. 2008), saturable time-

constraint absorption model (Piotrovskij et al. 1994) or those based on the Erlang (Rousseau 

et al. 2004) or Gamma (Debord et al. 2001) distribution. Actually, absorption kinetics are 

best described by a physiologically-based modelling approach, which should take into 

account the fairly complex interaction between the drug and the (patho)physiological 

environment of the gastrointestinal tract (Agoram et al. 2001; Van de Waterbeemd et al. 

2004; Willmann et al. 2004). However, development of such a model necessitates a large 

amount of data (Cai et al. 2006), which is seldom available in humans.  

It is common in clinical studies that few samples are taken during the absorption phase 

making absorption kinetics difficult to be characterized with precision. In this case, the 

absorption rate constant is needed to be fixed to a value based upon prior knowledge from 

the literature (Bonate 2006) or a constant rate infusion is defined up to the first sample 

(Csajka et al. 2002). It should be noted that fixing absorption parameters could lead to 

biased estimates of disposition and elimination parameters (Booth and Gobburu 2003; 

Carlsson et al. 2005). Furthermore, inappropriate estimation of absorption parameter(s) may 

arise due to a high correlation or co-linearity with other model parameters (Suverkrup 1985; 

Wang and Reuning 1992; Wade et al. 1993). Other issues concerning absorption modelling 

are that both rate and extent of absorption can vary over the duration of a study (Csajka et 
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al. 2002; Higaki et al. 2008) and also absorption profiles in healthy subjects may be not 

appropriate for patient populations.  

 

1.4.2 Distribution 

In general, interindividual variability in volume of distribution is less than that in other 

pharmacokinetic parameters (Breimer 1983). Most of the observed interindividual variability 

in drug distribution stems from differences in body size and composition, genetics, and/or 

alteration in protein binding due to pathophysiological changes or comedication (Banh et al. 

2002; De Paepe et al. 2002; Sutherland 2005).  

Part of this variability can be explained by one or more of subjects’ covariates, such as body 

weight, age, gender, etc., (Holford, N H 2002; Conil et al. 2007). Actually, modelling 

variability in distribution may involve the application of physiological-based pharmacokinetic 

models, especially where tissue binding is the main issue to be addressed (as in the case for 

toxicokinetics (Bjorkman et al. 2001)). However, the application of these models remains 

limited, in part due to information deficit and uncertainty regarding model parameters 

(Fisher et al. 1998; Brightman et al. 2006; Levitt and Schoemaker 2006).  

 

1.4.3 Clearance 

The most clinically useful parameter in drug therapy is clearance, because it reflects all the 

mechanisms of elimination and it is the only parameter that directly relates dose to the 

systemic drug exposure (AUC). Drug clearance is highly variable between individuals, hence 

its characterization provides the opportunity to optimize therapeutic regimens and to 

suggest dosage adjustments in specific conditions. This involves the recognition of different 

routes of elimination and situations in which drug clearance is commonly altered, such as 

hepatic or renal dysfunction.  

1.4.3.1 Variability in renal clearance 

For renally excreted drugs, gross changes in glomerular filtration or urine flow and/or pH will 

have a substantial effect on total clearance (Chiou 1986; Bonnacker et al. 1989) and may 

lead to either toxic effects or ineffective treatment (Rougier et al. 2003). Unlike plasma, 

which has a narrow pH range of 7.3 to 7.5, urine pH ranges from 4.5 to 8.5 and can influence 

drug re-absorption (Florence, A.T. and Attwood, D. 2006). Indeed, urine pH has been shown 
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to be a major determinant for the excretion of basic drugs like memantine [pKa=10.27] 

(Freudenthaler et al. 1998), flecainide [pKa = 9.3] (Hertrampf et al. 1991) and 

methoxyphenamine [pKa = 10.45] (Roy et al. 1987).  

Recently, high inter-individual variability in renal clearance of ampicillin, famotidine, 

cephalexin, and metformin was partly explained by genetic variations in renal transporter 

expression (Yin et al. 2006; Wang, Z J et al. 2008). 

1.4.3.2 Variability in hepatic clearance 

Drug metabolism mainly takes place in the liver and to a lesser degree in other tissues such 

as the small intestine, kidneys and lungs (Krishna and Klotz 1994; Fisher et al. 2001; Ding and 

Kaminsky 2003). Metabolizing enzymes are expressed with identical function and structure, 

but their abundance and activity varies from site to site (Lin and Lu 2001). This is recognized 

as an important source of PK and PD variability (McGilveray 2005; Garrido et al. 2006; Lehr 

et al. 2008). For example, there is a 20-fold difference in the abundance and activity of CYP 

enzymes in the liver compared to the small intestine (Thummel et al. 1996; Paine et al. 

1997). Interindividual differences in protein levels within this group of oxidizing enzymes are 

approximately 5-fold for CYP2C and CYP3A4, 12-fold for CYP2E1, 20-fold for CYP1A2, and 

>50-fold for CYP2A6, CYP2B6, and CYP2D6 (Lin 2006).  

Although most metabolizing enzymes are polymorphic, the major polymorphisms that have 

clinical implications are those related to the oxidation of drugs by CYP2D6, CYP2C9 and 

CYP2C19 (Sachse et al. 1997; Kirchheiner et al. 2004c; Ufer et al. 2004a; Henningsson et al. 

2005; Sconce et al. 2005; Yukawa and Mamiya 2006; Gaedigk et al. 2008; Hirt et al. 2008), 

acetylation by N-acetyltransferase type 2 (Kinzig-Schippers et al. 2005; Luck et al. 2009), and 

S-methylation by thiopurine methyltransferase (Cuffari et al. 2004; Chrzanowska et al. 2006; 

Bosch 2008). Individuals who inherit an impaired ability to catalyze one or more of these 

enzymatic reactions may be at an increased risk of concentration-related adverse effects and 

toxicity upon administration of standard doses. The natural interpretation of this is that 

these subpopulations represent individuals who do or do not have particular signals for gene 

activity and so would be expected to exhibit differential drug disposition (Hamberg et al. 

2007; Kaila et al. 2007). 

Multiple distributions are required to describe such variability in order to account for each 

apparently distinct subpopulation (i.e., extensive or poor metabolizers). Based on such 

mixed distributions, this strategy will end up with a hierarchical or “mixture” model, with 



INTRODUCTION 

 

12 

 

highly accurate parameter estimates (Grasmader et al. 2004; Kaila et al. 2007). Mixture 

models assume that one or more subpopulations of individuals can exist rather than 

assuming that the entire population is best described by unimodal distributions for random 

effects (Frame et al. 2003; Kaila et al. 2007; Lemenuel-Diot et al. 2007). A complete and 

useful mixture population model should describe each of the sub-populations through sub-

models that can be entirely different or share some features, including parameter values 

(Frame et al. 2003; Hamberg et al. 2007; Kaila et al. 2007). Mathematically, a model could be 

difficult to solve if the distribution is blended from more than one sub-population 

(Lemenuel-Diot et al. 2007) and misclassification could appear here, which is related to the 

overlapping region between each two adjacent distributions (Kaila et al. 2007). 

 

1.4.4 Metabolites  

It is well demonstrated that modelling only the parent drug data may not reveal the 

metabolic pathway properly and in most cases leads to an inappropriate description of the 

metabolic pathway (Cosson et al. 2007; Lindauer et al. 2008). This is because of missing 

information in the metabolite data set, such as the rate and extent of metabolism or the 

impact of covariates on the overall metabolic clearance (Kerbusch et al. 2003; Hamberg et al. 

2007; Hirt et al. 2008). Modelling metabolites can also lead to refinement of the underlying 

mechanism of interactions (Hassan et al. 1999; Huitema et al. 2001; de Jonge et al. 2005; 

Quinney et al. 2008), improvement of the overall pharmacodynamic profile of the drug 

(Garrido et al. 2006; Herd et al. 2007) and increase applicability of the model (Cosson et al. 

2007; Lindauer et al. 2008).  

In reality, evaluating metabolite data is challenging, especially if the metabolite was not 

administered separately. This is because metabolite parameters depend heavily on parent 

data and many are unidentifiable. For example, if the volume of distribution of a metabolite 

is unknown a priori, then all the model parameters are globally unidentifiable and only the 

relative rate of systemic drug conversion to metabolite can be determined (Evans et al. 

2001; van der Marel et al. 2003). In this case, the model should be simplified and fixing 

parameters to prior knowledge is necessary (Black et al. 2003; Cosson et al. 2007; Levi et al. 

2007). If the link between the drug and its metabolite is not correctly specified, then the fit 

to the drug will suffer and the key correlations could be lost for the reasons mentioned 

above. If this is the case, then sequential fitting would seem a sensible alternative. Further 
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information about this linkage could also be obtained by deconvolution (Karol and Goodrich 

1988; Weiss 1998).  

Different models have been proposed to provide quantitative insight into factors 

determining the concentration-time curve of a metabolite following intravenous and/or oral 

administration of the precursor drug (Weiss 1988; Taft et al. 1997; Evans et al. 2001; 

Kerbusch et al. 2003). The number of metabolites for which parameters can be estimated is 

not limited (Evans et al. 2001; de Jonge et al. 2005). 

1.4.5 Modelling Drug Response 

Clinicians have long been aware that patients may require very different doses of a drug to 

produce the same clinical response (Irwin 1964; Marchant 1981; Bagli et al. 1999; 

Kirchheiner et al. 2005). However, only since the advent of molecular biology has the 

contribution of genetics to drug response variability come into focus and explained some of 

the reasons behind this variability (Tucker 2000; Stehle et al. 2008). It is well known that 

genetic polymorphisms can cause variability in drug response as a result of varied drug 

metabolism (Scordo and Spina 2002; Lee 2007; Mega et al. 2009) and transporter (Bosch 

2008; Choi and Song 2008; Pacanowski et al. 2008) and receptor activity (Muszkat 2007; 

Mahesh Kumar et al. 2008; Rosskopf and Michel 2008; Werner et al. 2008). These 

parameters can also be modulated by many other demographic, pathophysiologic, 

environmental and/or subjective factors (Furst 1988; Lu 1998; Tucker 2000; El Desoky et al. 

2006). The net worth of genetic knowledge increases significantly when it is integrated into 

PK and/or PD models. This has been proved to be one of the pivotal factors explaining large 

portion of interindividual variability (Schalekamp et al. 2007; Limdi et al. 2008; Stehle et al. 

2008).  

The clinical profiles of oral anticoagulants such as warfarin, acenocoumarol and 

phenprocoumon share the features of narrow therapeutic index and wide interindividual 

variability in exposure, which attenuate the dose-response relationship (Ansell 2003; Ufer 

2005a; D'Andrea et al. 2008; Stehle et al. 2008). Variability in the extent of anticoagulation 

depends on not only CYP2C9 polymorphisms but also on polymorphisms associated with the 

vitamin K epoxide-reductase-complex (VKORC1). This suggests that genetics-based dose 

individualization will meet the general objective of optimizing safety and efficacy (Limdi et al. 

2008; Qazim et al. 2008; Spreafico et al. 2008; Stehle et al. 2008). Taking the warfarin 

example, the development of a predictive dosage algorithm incorporating genetic factors 
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showed that 54% of the variance in warfarin dose could be explained by a combination of 

genetic (CYP2C9 and VKORC), clinical and demographic factors. Use of this algorithm 

resulted in more than a 50% decrease in the risk of adverse drug reactions (Hamberg et al. 

2007; Gage et al. 2008). Further refinement of this model could lead to effective 

improvement in the use of warfarin as additional CYP4F2 variants have been recently 

reported to impact upon warfarin dose (Caldwell et al. 2008). These examples show how 

genetics have shed light on interindividual variability in response to drugs. They also 

represent cases in which gene penetrance and frequency are relatively high. For these 

reasons, identification, evaluation and management of drug response variability is a 

therapeutic premise. Finally, biomarkers such as the prothrombin time or the international 

normalized ratio (INR), blood glucose and protein adducts are also of significant value when 

they are related to a clinical response(Danhof et al. 2005). 
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1.5 Characteristics of Probe Drugs 
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1.5.1 Chemical Structures 
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Figure 1: Chemical structures of probe drugs  
 

 

 

 

 



INTRODUCTION 

 

17 

 

1.5.2 Bioavailability of Fluorescein for Ocular Administration 
 

Fluorescein, usually as fluorescein sodium, is used extensively as a diagnostic tool in 

ophthalmology. For example, it is used to help diagnose corneal ulcers and infections, to 

examine the circulation through ocular tissues (Manivannan et al. 2005), to evaluate tear 

turnover (Mochizuki et al. 2009), and to measure the corneal permeability and transport of 

the blood-ocular barriers (Cunha-Vaz and Maurice 1967; Nelson 1995). 

When a drug solution is instilled onto the cornea, it subjects to three processes: (1) corneal 

absorption into the eye, systemic absorption via conjunctiva and sclera, and a large volume 

is cleared out of the eye with the tears, of which a part is lost and a part is absorbed 

systemically (Ahmed and Patton 1985; Mitra 2003; Lee et al. 2004; Urtti 2006). As a result, 

drug absorption after topical instillation of a drug into the eye is incomplete. Indeed, not 

more than 5% of a dose instilled by eye drops enters the eye via the cornea (Schoenwald 

1990; Chastain 2003). 

Normally, the conjunctival fornix contains about 7–9 μL of tears with a physiological tear 

flow of about 1 μL/min (Mishima et al. 1966). Conventional ophthalmic bottles dispense 

drops of about 30-50 μL (Davies 2000; Chastain 2003). The maximum volume that can be 

contained in the conjunctival fornix without overflow is about 30 μL (Mishima et al. 1966). 

However, only about 10–15 μL remains in the pre-corneal area, and the rest is spilled out 

immediately from the lids at the time of drug application (Mishima et al. 1966; Fraunfelder 

and Meyer 1987). Beyond the rapid loss of the additional volume, instillation of eye drops 

also stimulates lacrimation and increases the turnover rate by 25–30% (Macdonald and 

Maurice 1991). This reaction further decreases the contact time between the drug and the 

cornea. Finally, most eye-drop solutions contain preservatives that may cause local irritation 

or even toxic endothelial degeneration with long-term therapy (Noecker 2001; Pisella et al. 

2002; Jaenen et al. 2007). Irritation increases blinking, which eliminates about 2 μl per blink 

(of the physiological 7–9 μl) out through the puncta into the nasolacrimal duct (Maurice and 

Mishima 1984). For these reasons, 80% or more of the instilled drug is lost in the first 15–30 

s via conjunctiva and lacrimal drainage and does not enter the eye (Patton and Francoeur 

1978; Fraunfelder and Meyer 1987; Ahmed 2003; Chastain 2003). Generally, drainage limits 

the drug/pre-corneal contact time to about 5 min (Chastain 2003; Macha et al. 2003). This 

drainage mechanism causes the drug to be systemically absorbed by the nasal mucosa or by 
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the gastrointestinal tract (Lee and Robinson 1986; Chang and Lee 1987; Lang 1995). For 

instance, ocular bioavailability of timolol is about 11% (Urtti et al. 1990), while the rest is 

systemically absorbed, and a reduction of more than 60% of timolol systemic absorption was 

achieved after nasolacrimal occlusion in humans (Zimmerman et al. 1984). In rabbits, ocular 

versus systemic bioavailability was reported to be about 2.5 vs. 46% for levobunolol (Tang-

Liu et al. 1987) and 9 vs. 74% for flurbiprofen (Tang-Liu et al. 1984), which implies that most 

of the drug dose is unavailable for efficacy. Topical instillation of more drops does not 

significantly improve the ocular bioavailability (Chrai et al. 1974; Patton and Francoeur 1978) 

but may increase systemic side effects of the drug, even to critical levels for some drugs such 

as beta blockers (Diamond 1997; Taniguchi and Kitazawa 1997; Hayreh et al. 1999). 

To overcome eye-drop limitations, different drug delivery systems have been developed 

such as liposomes (Lee et al. 1985; Hathout et al. 2007), exoplants (Pontes de Carvalho et al. 

2006), collagen shields (Reidy et al. 1990; Taravella et al. 1999), ocular inserts (Hornof et al. 

2003), mucoadhesives (Davies et al. 1992) and lyophilisate (Diestelhorst et al. 1999; 

Suverkrup et al. 1999). These systems differ from each other in safety, possibility of dose 

adjustment and targeting, pre-corneal residence time, patient compliance, simplicity of use, 

and cost. Advantages and disadvantages of most delivery systems have been reported 

elsewhere (Mitra 2003). Lyophilisates (Figure 2) have recently been suggested to be a 

favorable formulation for delivering a drug into the eye (Diestelhorst et al. 1999; Dinslage et 

al. 2002; Lux et al. 2003; Steinfeld et al. 2004). 

 

 

Figure 2: Application of ophthalmic lyophilisate (Lux et al. 2003) 
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The ophthalmic lyophilisate carrier system (OLCS) is prepared from a drop of a hydrophilic 

polymer solution, in which a drug is dissolved or dispersed and freeze-dried on the tip of a 

soft hydrophobic carrier strip. The drug is administered to the conjunctival fornix by wiping 

the lyophilisate over the lower eyelid. Upon contact with tear film and/or conjunctiva, the 

lyophilisate rapidly rehydrates and dissolves to release the incorporated substance 

(Diestelhorst et al. 1999). It is not washed out by immediate copious tear secretion 

(Suverkrup et al. 2004). Since the corneal contact time is increased and pre-corneal losses 

are reduced (Lux et al. 2003), ocular bioavailability of the active ingredient should be 

enhanced. Lyophilisate water content is less than 5% and thus too low for microbial growth 

or hydrolytic degradation of constituents. Therefore, neither preservatives nor buffer salts 

are required to ensure stability (Suverkrup et al. 2004). Clinical data from ophthalmic 

applications of this dosage form with fluorescein (Dinslage et al. 2002; Lux et al. 2003; 

Steinfeld et al. 2004), mitomycin C (Schraermeyer et al. 1999), and pilocarpine (Suverkrup et 

al. 1999) indicated a reduction of topical and systemic side effects, less discomfort, and more 

pronounced therapeutic effects compared to eye drops. 

 

 

1.5.3 Clarithromycin and Autoinhibition of Metabolism 
 

Clarithromycin is a broad spectrum macrolide antibiotic and widely used for the treatment 

of upper and lower respiratory tract and other infections (Fernandes et al. 1986; Sturgill and 

Rapp 1992; Langtry and Brogden 1997). Clarithromycin interacts with many drugs on the 

level of intestinal and hepatic metabolizing enzymes CYP3A (Gorski et al. 1998; Rodvold 

1999). This may change efficacy and tolerability of other co-administered CYP3A substrates. 

Clarithromycin is rapidly and nearly completely absorbed from the gastrointestinal tract 

(Ishii et al. 1998). Due to notable first pass metabolism, approximately 50% to 55% of an oral 

dose is bioavailable as clarithromycin in the systemic circulation (Chu et al. 1992a; Fraschini 

et al. 1993; Gorski et al. 1998). The free fraction of clarithromycin in plasma is about 0.3 in 

healthy volunteers (Chu, S Y et al. 1993; Traunmuller et al. 2007). Clarithromycin is widely 

distributed throughout the body with an apparent volume of distribution range from 126 to 

306 litres (Chu, S et al. 1993; Rodvold 1999; Traunmuller et al. 2007). Approximately 22% of 

an oral dose is recovered as parent compound, 18% in the urine and 4% in the faeces (Davey 
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1991). The elimination half-life (t1/2) of clarithromycin is dose- and time-dependent, and 

ranges from 2.7 to 4.8 hours (Ferrero et al. 1990b; Chu et al. 1992b; Chu, S et al. 1993; 

Traunmuller et al. 2007). In healthy subjects, the average total body clearance ranges from 

29 to 58 L/h and renal clearance from 6.7 to 12.8 L/h, depending on the amount and number 

of doses administered (Chu, S et al. 1993; Rodvold 1999). After single and multiple (7 doses) 

administration of 500 mg clarithromycin tablets, the apparent total body clearance was 

reported to decrease from 42.1 to 18.7 L/h (Chu, S et al. 1993; Traunmuller et al. 2007). As 

renal clearance does not change under these conditions, the nonlinearity is attributed to 

non-renal elimination mediated by cytochrome P450 metabolism (Chu, S et al. 1993). 

Clarithromycin is extensively metabolized into at least eight metabolites via three metabolic 

pathways; i.e. hydroxylation at the 14-position, N-demethylation and hydrolysis of the 

cladinose sugar. Secondary biotransformation was also evident (Ferrero et al. 1990b; Davey 

1991; Yamamoto et al. 2004). Metabolic pathways of primary biotransformation are given 

below in Figure 3. 

Clarithromycin hydroxylation at position 14 is stereospecific yielding the 14-hydroxy-(R)-

epimer as the main metabolite, which accounts for 20% of the parent drug metabolism 

(Ferrero et al. 1990b; Davey 1991; Langtry and Brogden 1997). Indeed, this metabolite 

contributes significantly to the overall antimicrobial effect of clarithromycin (Martin et al. 

2001; Yamamoto et al. 2004). Formation of this  main metabolite, is predominantly 

mediated by CYP3A4 (Rodrigues et al. 1997; Bruce et al. 2001; Suzuki et al. 2003; Yamamoto 

et al. 2004) and was suggested to be capacity-limited, which may in part account for the 

nonlinearity observed in clarithromycin pharmacokinetics (Chu, S et al. 1993). 

Clarithromycin is also a potent inhibitor of intestinal and hepatic CYP3A4 activity (Gorski et 

al. 1998; Pinto et al. 2005b) in a dose-dependent manner (Ushiama et al. 2002). It has been 

classified as a mechanism-based inhibitor (Zhou et al. 2005). Based on in vitro models, 

clarithromycin was predicted to cause a reduction in the steady-state concentration of liver 

CYP3A4 to approximately 39% of initial level (Mayhew et al. 2000). The mechanism of this 

auto-inhibition was reported to be reversible (Hung et al. 2005; Pinto et al. 2005b), 

irreversible (Gorski et al. 1998; Bruce et al. 2001; Pinto et al. 2005a) and suicide inhibition 

mediated by formation of a metabolic intermediate complex (Mayhew et al. 2000).  
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Figure 3: Primary metabolic pathways of clarithromycin in man (Ferrero et al. 1990a) 

 

 

For clarithromycin the ratio of the area under free plasma concentration-time curve to the 

minimum inhibitory concentration (fAUC/MIC) is considered as the most predictive PK/PD 

index (Craig et al. 2002; Tessier et al. 2002) and used to link the pharmacokinetic parameters 

to the most important antimicrobial pharmacodynamic parameter, i.e. minimum inhibitory 

concentration (MIC). Based on animal infection models, a derived target value of fAUC0-24 

plasma /MIC was assumed to be 35 h for clarithromycin (Craig et al. 2002; Tessier et al. 2002). 
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Actually, the adult dosage regimen of clarithromycin 500mg twice daily achieves an average 

area under the concentration-time curve of free drug fAUC0-24 of about 5.85 ±1.79 

mg•h/litre in plasma (Traunmuller et al. 2007), which may provide sufficient efficacy as long 

as the MIC value does not exceed 0.25 to 1.0 µg/mL (Rodvold 1999). However, this dosing 

regimen may be ineffective in the treatment of infections caused by pathogens with a drug 

MIC higher than 1µg/mL in plasma, or higher than 0.125 µg/mL in tissues where fAUC is 

lower, suggesting the need of administration of a higher dose (Noreddin et al. 2002; 

Traunmuller et al. 2007). Because of the nonlinear kinetics, it is difficult to predict fAUC 

changes achieved by higher doses.  

 

 

 

 

 

1.5.4 The Use of Dextromethorphan as a CYP2D Phenotyping Drug 
 

Dextromethorphan is an antitussive drug which is widely used to relieve non-productive 

cough associated with acute upper respiratory tract infection (Parvez et al. 1996; Lee et al. 

2000). Its pharmacokinetics is characterised by a rapid absorption from the gastrointestinal 

tract (ka= 2.6 +/- 0.9 h-1) after oral administration and a large volume of distribution ranging 

from 1220 to 16491 Litres (Kazis et al. 1996; Moghadamnia et al. 2003). The apparent total 

clearance of dextromethorphan ranges from 75 L/hr to 4167 L/h (Kazis et al. 1996; Borges et 

al. 2005). Dextromethorphan undergoes rapid and extensive first-pass metabolism. Primary 

metabolic steps include formation of dextrorphan mainly by CYP2D6 and of 3-

methoxymorphinan by CYP3A (Barnhart 1980; Jacqz-Aigrain et al. 1993; Moghadamnia et al. 

2003). Both dextrorphan and 3-methoxymorphinan are further metabolized to 3-

hydroxymorphinan by CYP3A4 and CYP2D6, respectively (Jacqz-Aigrain et al. 1993). A 

schematic description of dextromethorphan elimination pathways is given in Figure 4.  
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Figure 4: Elimination pathways of dextromethorphan (Yu, A and Haining, R L 2001)  

 

 

The dominating metabolic pathway in the majority of the population is the conversion of 

dextromethorphan to dextrorphan by CYP2D6 (Kupfer et al. 1984; Yeh et al. 2003; Pope et 

al. 2004), contributing to more than 80% to the formation of dextrorphan (Schmider et al. 

1997; Yu, A and Haining, R 2001; Moghadamnia et al. 2003). The selectivity of dextrorphan 

formation via CYP2D6, in addition to its favourable safety and availability, has made 

dextromethorphan a probe of choice for CYP2D6 phenotyping (Frank et al. 2007; Fuhr et al. 

2007).  

It is well known that CYP2D6 is a highly polymorphic enzyme. Today, more than 83 allelic 

variants have been described (Zhou et al. 2009). Because the overall disposition of 

dextromethorphan is highly dependent upon CYP2D6 activity (Nielsen et al. 1990; Zhang et 
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al. 1992; Sachse et al. 1997), these polymorphisms contribute to a wide interindividual 

variation in its plasma levels (Labbe et al. 2000; Pope et al. 2004) and response (Sachse et al. 

1997; Abdul Manap et al. 1999; Labbe et al. 2000; Tucker 2000; Moghadamnia et al. 2003). 

For other CYP2D6 substrates such as antidepressants and antipsychotic drugs such variability 

can lead to failure of treatment in carriers of haplotypes coding for a very high CYP2D6 

activity or may expose individuals with low activity haplotypes to a high risk of toxicity (poor 

metabolizers) (Seeringer and Kirchheiner 2008; Laika et al. 2009). For some opioids such as 

dihydrocodeine, codeine and tramadol, where the active metabolite is formed by CYP2D6, 

vice versa failure is associated with low activity and toxicity with high activity genotypes 

(Kirchheiner et al. 2007; Kirchheiner et al. 2008).  

Because it is important to identify individuals at risk for therapeutic failure or adverse effects 

caused by aberrant CYP2D6 activity, different proposals have been made to establish simple 

useful systems for the prediction of CYP2D6 phenotype as a prerequisite to personalize 

therapy with CYP2D6 substrates based on genotype information (Kirchheiner et al. 2001). 

These systems suffer from potential pitfalls depending on the correctness of underlying 

assumptions which may compromise prediction accuracy. The classical procedure divided 

populations, usually based on the urinary metabolic ratio of dextrorphan over 

dextromethorphan and an arbitrary “cut-off” value, into poor and extensive metabolizers 

(Mahgoub et al. 1977; Eichelbaum et al. 1979), with poor metabolizers representing 

individuals carrying two non-functional CYP2D6 alleles. However, it is difficult to predict 

phenotype correctly of individuals who are heterozygous for an active CYP2D6 allele, as 

these individuals are characterized by a large variability in CYP2D6 phenotype (Bock et al. 

1994). To account for heterozygosity and gene duplications, intermediate and ultra-rapid 

metabolizers subgroups have subsequently been introduced into the classification creating a 

polymodal distribution (Sachse et al. 1997; Kirchheiner et al. 2001; Heller et al. 2006; 

Rebsamen et al. 2008). Further refinement was required to account for decreased activity of 

the CYP2D6*10 allele frequently occurring in Asians (Yue et al. 1998; Mihara et al. 1999). In 

addition, a semi-quantitative scoring system defining categories for CYP2D6 alleles have 

been developed (Kirchheiner et al. 2004a; Steimer et al. 2004). This system defined a 

CYP2D6 genotype score as the sum of the gene dose for both alleles, with 1 for fully 

functional alleles, 0.5 for reduced activity functional alleles, and zero for non-functional 

alleles (Steimer et al. 2004). Although these classifications have improved phenotype 
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predictions (Sachse et al. 1997), considerable variability within heterozygous groups has still 

been reported (Raimundo et al. 2000; Kirchheiner et al. 2001) and substantial overlap 

between intermediate and extensive metabolizer distributions has been observed (Gaedigk 

et al. 2008). 

In the most recent scoring system, the so-called activity score system defined CYP2D6 

genotype as the sum of presumed values assigned to individual alleles (Gaedigk et al. 2008). 

The phenotype scores were derived from urinary ratios of dextromethorphan. It assigned a 

value of 1, 0.5, and 0 for fully functional, reduced, and non-functional alleles Table 1. 

 
    Table 1: The activity score model (Gaedigk et al. 2008) 

Value assigned to allele Observed CYP2D6 alleles 

0 *3, *4, *4xN, *5, *6, *7, *16, *36, *40, *42, *56B 

0.5 *9, *10, *17, *29, *41, *45, *46 

1 *1, *2, *35, *43, *45xN 

2 *1xN, *2xN, *35xN 

 

 

Obviously, the score activity system assumes identical metabolic activity for different alleles 

of in each group. This is, however, valid for defective CYP2D6 alleles such as *4 and *3, but 

the assumption for fully functional alleles, for example *1 and *2 alleles, to have identical 

activity is questionable. An in vitro study of rCYP2D6 enzyme supports this classification for 

some CYP2D6 probe drugs such as metoprolol and debrisoquine, but not for 

dextromethorphan, where the intrinsic clearance value of CYP2D6*2 was half that of 

CYP2D6*1 for dextromethorphan O-demethylation (Bapiro et al. 2002). These observations 

warrant further assessment of individual activity of each allele directly from plasma 

concentration time profile of CYP2D6 probes. 

 

1.5.5 Understanding Variability in Phenprocoumon Response 
 

Phenprocoumon is a coumarin derivative oral anticoagulant drug used for the prevention 

and treatment of arterial and venous thromboembolic disorders (Bourgain and Wright 

1955). The maintenance dose ranges from 0.75 to 9 mg per day (Trenk et al. 1987). 

Phenprocoumon exerts its effect by inhibition of vitamin K epoxide reductase (VKOR), which 
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converts vitamin K from non-reduced to reduced form, leading to a decrease in prothrombin 

level (Hirsh et al. 1998). Its large interindividual pharmacokinetic variability and narrow 

therapeutic index render a close monitoring necessary (Schalekamp et al. 2007; Stehle et al. 

2008). 

Phenprocoumon is rapidly absorbed from the gastrointestinal tract with an absorption rate 

constant of 2.5 h-1 (Haustein and Huller 1994) and nearly complete bioavailability (Alberio 

2003). It has a volume of distribution of 10 - 14.4 L (Haustein and Huller 1994; Masche et al. 

1999). More than 99% of the drug is bound to plasma proteins (>99%) (Trenk et al. 1987; de 

Vries and Volker 1990) with a serum free fraction of about 0.51 ± 0.20 % (Russmann et al. 

2001). A long elimination half-life of about 5 days has been reported for phenprocoumon 

with a mean total apparent clearance of about 0.040-0.063 L/h (Kitteringham et al. 1984; 

Russmann et al. 2001; Kirchheiner et al. 2004c). About 40 % of the administered dose is 

excreted unchanged (Toon et al. 1985) and may be eliminated with the faeces (de Vries et al. 

1988). The remainder of 60 % undergoes hepatic hydroxylation and conjugation (Toon et al. 

1985). A schematic representation of phenprocoumon metabolicimination pathways is given 

below in Figure 5.   

The 4'-, 6-, 7-, and 8-hydroxy metabolites are the major metabolites formed mainly by 

CYP2C9 (He et al. 1999; Ufer et al. 2004c; Kammerer et al. 2005), however CYP3A4 and 

CYP2C8 may be involved to a less degree (Ufer 2005a). In comparison with other structurally 

and pharmacologically related drugs, warfarin or acenocoumarol, phenprocoumon 

metabolism is substantially less dependent on CYP2C9 activity (Kammerer et al. 2005; Ufer 

2005a), most probably due to higher contribution of other CYP enzymes (Freedman and 

Olatidoye 1994; Ufer et al. 2004c) and the involvement of bile and urine excretion pathways 

(de Vries et al. 1988; Edelbroek et al. 1990). 
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Figure 5: Metabolic  clearance pathways of phenprocoumon (Stehle et al. 2008) 

 

Previous studies have attributed a major part of interindividual differences in the 

pharmacokinetics of phenprocoumon to the genetic polymorphism of CYP2C9. A higher 

metabolic capacity was obtained for homozygous carriers of CYP2C9*1/*1 than CYP2C9 

*2/*3 or CYP2C9 *3/*3 genotype (Kirchheiner et al. 2004c; Schalekamp et al. 2004; Ufer 

2005b). In a study of 284 patients during a follow-up period of 6 months, carriers of CYP2C9 

*2 or *3 genotypes had an increased risk of phenprocoumon overanticoagulation compared 

with homozygous CYP2C9*1/*1 subjects (Schalekamp et al. 2004). Compared with 

homozygous carriers of CYP2C9*1, patients homozygous for CYP2C9*3 were estimated to 

need a 1.5-fold reduction in the mean dose phenprocoumon to achieve the same INR (Stehle 

et al. 2008). 
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On the other hand, polymorphism of the vitamin K epoxide reductase complex (VKORC1) 

was identified as an important factor to explain a major fraction in the variability between 

individuals in their response to warfarin (Wadelius et al. 2009), acenocoumarol (Schalekamp 

et al. 2006; Teichert et al. 2009), and phenprocoumon (Schalekamp et al. 2007; Werner et al. 

2009). The increased risk of bleeding called for dose reduction in carriers of at least one T 

allele compared to those carrying CC homozygous (Reitsma et al. 2005; Schalekamp et al. 

2007). Homozygous presence of the VKORC1 variant C1173T (*2) allele was related to 1.9-

fold lower empirical doses compared with the wild-type for phenprocoumon (Stehle et al. 

2008). Furthermore, the differences in phenprocoumon dose requirements between 

patients with different CYP2C9 genotypes are modified by the VKORC1 genotype 

(Schalekamp et al. 2007), and being a carrier of a combination of CYP2C9*3/*3 and VKORC1 

TT variants is associated with over-anticoagulation status. About 7.2% of the variability in 

phenprocoumon dose requirement was reported to be explained by the CYP2C9 genotype, 

while up to 28.7% of the variability was explained by the VKORC1 genotype. A combination 

of both genes in interaction with patient’s age and sex explained up to 54.7% of variability in 

the mean dose requirement of phenprocoumon (Schalekamp et al. 2007).  

Published studies drew their conclusions from pharmacokinetic studies in healthy 

populations or from direct determination of the effect of genetic variants on 

phenprocoumon dose requirements. Concentrations of phenprocoumon and its metabolites 

have not yet been measured for a better understanding of the genetic impact on dose-

response relationships in patients. Indeed, this information is a prerequisite for prediction of 

the individual optimal phenprocoumon dose based on mechanistic rather than empirical 

considerations. While this has already been implemented for warfarin (Klein et al. 2009), a 

similar approach may be helpful also for phenprocoumon despite its lower dependence on 

CYP2C9 because its long elimination half-live of 106 - 150 hours (Kitteringham et al. 1984; 

Russmann et al. 2001) delays the effect of any dose adjustments. 
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2.1 Fluorescein Data 

2.1.1 Clinical Studies and Ethical Conduct 
 

Forty-four healthy volunteers were enrolled in three open-label, randomized, clinical studies 

that had been approved by the Ethics Committee of the University of Cologne. All 

participants gave their written informed consent. In studies 1, 2, and 3, sodium fluorescein 

0.17% was applied to 10 (age range: 24–27 years), 22 (age range: 22–45 years), and 12 (age 

range: 23–33 years) subjects at the same doses as conventional, preservative-free 40-μL eye 

drops (Fluoreszein 0.17% SE Thilo, Alcon, Germany) to one eye and as a fluorescein-

containing lyophilisate to the fellow eye. 

To prepare the lyophilisate, 170 mg sodium fluorescein was dissolved in 10 mL of a 1% 

hypromellose solution, filtered through a 0.22-μm cellulose ester membrane and deposited 

in aliquots of 40 μl on sterilized poly(tetrafluoroethylene) carrier strips by pipetting. The 

strips were frozen and lyophilized under aseptic conditions either in a water vapor 

permeable container in a conventional laboratory freeze-dryer (Christ alpha 2–4, Osterode, 

Germany) or they were snap-frozen by evacuation and freeze-dried directly in a small glass 

chamber; thereafter, they were packed aseptically in sterilized test tubes. The resulting 

lyophilisate was hemispherical in shape with a radius of approximately 2.3 mm. The method 

has been described in detail (Dinslage et al. 2002; Lux et al. 2003; Steinfeld et al. 2004; 

Suverkrup et al. 2004). 

Lyophilized fluorescein was deposited on the lower conjunctival fornix by stripping the 

lyophilisate off the carrier in a wiping motion. The fluorescein dose was 68 μg in studies 1 

and 3, administered as a single eye drop (40 μL) or as lyophilisate. In study 2, a triple dose 

(204 μg) of fluorescein was given as a single lyophilisate application to one eye or as three 

conventional eye drops containing 68 μg in 40 μL each to the fellow eye, applied at 15-min 

intervals (0, 15 and 30 min) to avoid extensive immediate loss of the dose due to overflow. 

The rationale for the 204-mg dose in study 2 was to examine whether a three-fold higher 

single dose could be delivered into the eye when administered as a lyophilisate.  

2.1.2 Measurements and Variables 
 

Fluorescein concentrations in the cornea and anterior chamber were measured non-

invasively by fluorophotometry (Fluorotron Master II, Ocumetrics, Palo Alto, CA, USA). 
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Measurement times were as follows: study 1, prior to the first dose and every 2 min up to 30 

min after dosing; study 2, prior to the first dose and 15, 30, 45, 60, 120, 180, 240, 300, 360, 

420 min after dosing; study 3, prior to the first dose and 15, 30, 45, 60, 120, 180 min after 

dosing.  

 

 

2.2 Clarithromycin Data 

2.2.1 Clinical Studies and Ethical Conduct 
 

A total of twelve healthy Caucasian volunteers (7 men and 5 women; 19 – 40 years; 47.3 – 

85.2 kg body weight; 157-182 cm body height) were enrolled into a single centre, open, 

randomized steady-state clinical study, which had been approved by the Ethics Committee 

of the Ministry of Health Clinic Hospital of the Republic of Moldavia, Chisinau, Republic of 

Moldavia. The study was conducted according to the revised version of the Declaration of 

Helsinki. All participants gave their written informed consent. Volunteers were non-smokers 

or ex-smokers between the age of 19 and 41 (mean and SD 28 ± 8) years, their weight was 

between 45.1 and 86.1 kg (66.5 ± 11.8 kg), body height ranged between 150.0 to 186.0 cm 

(168.4 ± 9.7 cm). Participants were judged to be healthy as based on medical history, vital 

signs, complete physical examination, neurological assessment, and 12-lead 

electrocardiogram, clinical chemistry, hematology, urinalysis, and virological tests.  

Each subject took an oral dose of 500 mg clarithromycin every 12 h for four consecutive days 

(a total of seven doses, each single dose was 500 mg per 10 mL of clarithromycin suspension 

equivalent to 500 mg clarithromycin, Klacid, Abbott B.V., Hoofddorp, Netherlands). Subjects 

took the drug in the fasting state with 240 mL low-carbonated calcium-poor mineral water. 

After each administration the subjects lay in bed for at least 3 hours. Consumption of alcohol 

was prohibited starting at 2 days, beverages or foods containing methylxanthines starting at 

2 days, and grapefruit products starting at 7 days predose, respectively. From approximately 

8 hours before until approximately 4 hour after each morning dose and from approximately 

2.5 hours before until approximately 3 hours after each evening dose no food was allowed. 

Identical low fat food was given on all study days. No fluid intake from 1 hour before until 2 

hours postdose (with exception of the fluid for study drug administration) was allowed. 

Thereafter, 120 mL of low-carbonated calcium-poor mineral water (room temperature) was 
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given every hour until 11 hours after morning administration. No extensive fluid intakes 

(>120 mL/hour) were allowed during nights.  

 

2.2.2  Measurements and Variables 
 

Blood samples were collected for quantification of clarithromycin and its 14(R)-hydroxyl 

metabolite immediately before administration and 0.33, 0.67, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 

5.5, 6, 8, and 12 h after the first, third and seventh dose. Additionally, one sample each was 

taken immediately prior to the fifth and sixth dose. Plasma samples were analyzed by a 

validated LC-MS/MS assay at the institute of Biomedical and Pharmaceutical Research, 

Nürnberg-Heroldsberg.  

Briefly, plasma samples (0.1 mL) were precipitated by addition of 200 µL of acetonitrile 

containing the internal standard. After thorough mixing, the samples were centrifuged for 5 

minutes at 3,280 g at approximately +4 °C, and the supernatant was diluted (1:1) with 

buffer. 15 µL of each sample were chromatographed on a reversed-phase column (Waters 

Symmetry C-8), eluted with an isocratic solvent system consisting of ammonium acetate 

buffer and acetonitrile (65/35,v/v, pH 4) and monitored by LC-MS/MS with a single reaction 

monitoring (SRM) method as follows: Precursor  product ion for clarithromycin m/z 749  

m/z 158, m/z 765  m/z 158 for 14(R)-hydroxy-clarithromycin and m/z 838  m/z 679 for 

internal standard, all analyses were in positive mode. Under these conditions clarithromycin, 

14(R)-hydroxy-clarithromycin and the internal standard were eluted after approximately 1.8, 

0.8 and 2.0 minutes, respectively. The MacQuan software (version 1.6, PE Sciex, Thornhill, 

Ontario, Canada, 1991 - 1998) was used for evaluation of chromatograms.  

Plasma samples were measured against a plasma calibration row prepared by adding the 

defined amounts of standard solution to drug-free human plasma. Spiked quality controls 

(SQC) were prepared for determination of interassay variation by the addition of defined 

amounts of the stock solution or the spiked control of higher concentration to defined 

amounts of tested drug-free human plasma. There was no interference observed in plasma, 

for clarithromycin, 14(R)-hydroxy-clarithromycin or the internal standard. Weighted linear 

regression (1/ concentration2) was performed for calibration. Linearity of the calibration 

curve could be shown in human plasma between 0.00992 µg/mL and 3.98 µg/mL for 
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clarithromycin and between 0.0101 and 4.04 µg/mL for 14(R)-hydroxy-clarithromycin. Lower 

limits of quantification were identical with the lowest calibration levels.  

The inter-day precision and the analytical recovery of the spiked quality control standards of 

clarithromycin in human plasma ranged from 3.0 to 4.4 % and were 99.9 % (3.07 µg/mL), 

100.4 % (1.02 µg/mL), 100.3 % (0.0941 µg/mL) and 100.9 % (0.0267 µg/mL), respectively. 

The inter-day precision and the analytical recovery of the spiked quality control standards of 

14(R)-hydroxy-clarithromycin in human plasma ranged from 6.3 to 6.8 % and were 100.1 % 

(3.04 µg/mL), 97.2 % (1.01 µg/mL), 95.5 % (0.0930 µg/mL) and 96.8 % (0.0264 µg/mL), 

respectively. 

 

 

2.3 Dextromethorphan Data 

2.3.1 Clinical Studies and Ethical Conduct 
 

Data from a total of fifty healthy Caucasian male volunteers from 3 cocktail interaction 

studies were available for this evaluation; 16 in study A, 11 in study B, and 11 in study C 

(Klaassen et al. 2008; Tomalik-Scharte et al. 2009). Briefly, all studies were approved by the 

ethics committee of the Medical Faculty of the University of Cologne, Germany, and were 

conducted according to the revised version of the Declaration of Helsinki and corresponding 

European and international guidelines. All participants gave their written informed consent. 

The data evaluated in this study is from the reference period where each subject received a 

single oral dose of 30 mg dextromethorphan hydrobromide (one capsule of Hustenstiller-

ratiopharm, ratiopharm, Ulm, Germany). Data from two subjects carrying rare CYP2D6 

alleles were excluded from this evaluation (see below) and therefore 36 male subjects (18 – 

49 years; 60 – 101 kg body weight; 171 – 195 cm body height) were enrolled in this 

evaluation. 

 

2.3.2 Measurements and Variables 
 

Blood samples were collected for quantification of dextromethorphan and dextrorphan as 

follows:  
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Study (A) immediately before administration and 0.17, 0.5, 0.75, 1.0, 1.33, 2.0, 3.15, 4.25, 

5.25, 6.0, 8.0, 10.0, 11.95, 14.0, 24.0 h after dosing;  

Study (B) immediately before administration and 0.17, 0.33, 0.50, 1.0, 1.33, 1.67, 2.0, 2.5, 

3.25, 3.95, 4.5, 5.25, 7.00, 10.00, 12.0, 16.0, 24.0 h after dosing;  

Study (C) immediately before administration and 0.17, 0.33, 0.50, 0.75, 1.00, 1.33, 1.67, 2.0, 

2.5, 3.25, 3.95, 4.13, 4.25, 4.5, 4.75, 5.0, 5.5, 6.5, 8.0, 10.0, 12.0 h after dosing. 

 

For quantification of dextromethorphan and dextrorphan in urine, urine samples were 

collected periodically and the volume and pH-value of each period were measured. The 

urine sampling schedules were:  

Study (A) immediately before administration and 0-2, 2-4, 4-6, 6-8, 8-12, 12-16 und 16-24 h 

after dosing;  

Study (B) immediately before administration and, 0-6 und 6-12 h after dosing;  

Study (C) immediately before administration and, 0-2, 2-4, 4-6, 6-8, 8-12 h after dosing.  

 

Plasma and urine samples were analyzed at the Institute of Pharmacology, University of 

Cologne, according to a previously published validated LC-MS/MS method (Wyen et al. 

2008). The lower limits of quantification were 0.103ng/mL for dextromethorphan and 

0.101ng/mL for dextrorphan. Precision ranged from 3.2 to 7.8% for dextromethorphan, and 

from 4.7 to 9.2% for dextrorphan, while accuracy was 101.8–102.9%, and 97.4–99.5% for 

dextromethorphan and dextrorphan, respectively. 

 

Genotyping Assays: All polymerase chain reaction amplifications were carried out in 50 μl 

reaction mixtures containing 100 ng of genomic DNA, 1x buffer, 2.3 mM MgCl2, 0.5 μM of 

each primer, 0.8 mM of dNTPs, and 2.5 U HotStarTaq DNA Polymerase (Qiagen). After 

purification, polymerase chain reaction products were sequenced using the BigDye 

Terminator Cycle Sequencing Ready Reaction Kit v2.0 (Applied Biosystems, Foster City, CA). 

Sequencing analysis was performed on a Genetic Analyzer 3100 capillary sequencer (Applied 

Biosystems) and pairwise sequence alignments were done with GenBank sequence 

NM_000927 using MT Navigator PPC and Edit View software (Applied Biosystems). 
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2.4 Phenprocoumon Data 

2.4.1 Clinical Studies and Ethical Conduct 
 

A total of 278 Caucasian patients (173 male/105 female; mean age 68.6± 11 (range: 26 -90) 

years; mean body weight 81± 15 (range: 46 – 132) kg; mean body mass index 27.9± 4.6 (range: 

16.7 – 45.6) kg/m2) were enrolled in a multi-centre steady-state, clinical study that had been 

approved by the Ethics Committee of the University of Tübingen, University of Cologne and 

University of Mannheim. The study was conducted in accordance with the Declaration of 

Helsinki and the relevant European and international guidelines after obtaining written 

informed consent from all participants. All subjects were on stable dosing regimen 

(mean±SD: 13.62± 5.75 (range: 3.75 - 37.50) mg/week)  of phenprocoumon (Marcumar®, Roche, 

Grenzach-Wyhlen, Germany; or Falithrom®, Hexal, Holzkirchen, Germany) for at least four 

weeks before inclusion date to ensure steady state achievement. Some minor modifications 

of the phenprocoumon dose during the last four weeks were present in many individuals. 

Information on phenprocoumon past dosage schedules and aim of the therapy was gathered 

from patients’ anticoagulation documentations. Furthermore, information was documented 

regarding the presence of co-medication and other diseases, previous occurrence of 

bleeding in the last 30 days (if any), consumption of caffeine, alcohol, and cigarettes. 

 

2.4.2 Measurements and Variables 
 

A single blood sample was collected just before the next phenprocoumon (PPC) dose from 

each patient. An aliquot for genetic analysis was frozen immediately at-20 °C. The aliquot for 

quantification of PPC concentrations was centrifuged (1992 x g, 15 min, 4 °C) and the 

obtained plasma samples were kept under -20 °C prior to LC-MS/MS analyses at the Institute 

of Pharmacology, University of Cologne. 

Phenprocoumon was purchased from HoffmannLa Roche, Grenzach-Wyhlen, Germany. The 

metabolites 4´-, 6-, and 7-OH phenprocoumon were synthesized in the Department of 

Chemistry, University of Konstanz, Germany. The internal standard warfarin was obtained 

from Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany. Ammonium acetate ( 97%) and 

acetic acid (100%) were purchased from Carl Roth GmbH & Co, Karlsruhe, Germany. 

Acetonitrile was purchased from Merck KGaA, Darmstadt, Germany. All solvents used for LC-

MS/MS were of chromatographic grade. 
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The liquid chromatography–tandem mass spectrometry system consisted of an Agilent 1200 

LC Binary SL Pump (Agilent, Waldbronn, Germany), fitted with a tempered tray (5°C) of a CTC 

PAL Autosampler and an Agilent 1200 TCC SL column oven (30°C), coupled to a triple 

quadrupole mass spectrometer (API 5000 with QJetTM Ion Guide, Applied Biosystems, Foster 

City, CA) with an electrospray ionization source with positive polarity (ESI+). N2 was used as 

sheath, auxiliary and as collision gas. The system was operated in the multiple reaction 

monitoring (MRM) mode. Analyst software (version 1.4.2, Applied Biosystems) was applied 

to control the instrument operation as well as the data acquisition and analysis. After 

thawing, 400 μl of acetonitrile (100%) and 20 μl of 1000 ng/ml warfarin (internal standard) 

was added to 200 μl plasma. Thereafter, the sample was vortex mixed and centrifugated at 

14,000 x g for 10 min). Then, the supernatant was transferred into an LC-MS-vials and 40 μl 

were injected into the liquid chromatography-tandem mass spectrometry system. The 

parent and its metabolites were not analyzed enantiospecifically and thus measured 

concentrations represent the sum of both enantiomers. For chromatographic separation, an 

Aquasil C18 column (100 × 3 mm, 5 μm, Thermo Electron, Runcorn, UK) was used at a 

constant flow rate of 0.5 ml/min. The mobile phases were 10 mM ammonium acetate (pH 

3,5) in 0.1% acetic acid (A), and 100% acetonitrile (B). The gradient of B was as follows: 10% 

(0–0.5 min), 10% (0.5–1 min), 50% (1–6 min), 50% (6–6.5 min) and 10% (6.5-7 min).  

Calibration curves were developed by spiking 100 L blank plasma with 100 µL of 

phenprocoumon and its metabolites using six different concentrations in the range of 200-

12500 ng/ml phenprocoumon and 10-625 ng/ml (hydroxy metabolites), respectively. The 

following parent/product ions were monitored: phenprocoumon M+H+
 m/z 281  203, 4`-

hydroxyphenprocoumon M+H+
 m/z 297  204, 6-hydroxyphenprocoumon M+H+

 m/z 

297  220, 7-hydroxyphenprocoumon M+H+
 m/z 297  220, and warfarin M+H+

 m/z 

309  163. Phenprocoumon, 4`-hydroxy-, 7-hydroxy-phenprocoumon and warfarin were 

eluted at 3.45, 2.35 2.61, and 3.18 min, respectively. The metabolite 6-OH PPC could not be 

measured because it failed to meet stability criteria. Quantification of analytes was carried 

out using peak area ratios of the analyte and internal standard. The lower limits of 

quantification were 200 ng/mL for phenprocoumon, and 10 ng/mL for the 4`- and 7-hydroxy 

metabolites. The method was fully validated according to international guidelines. Precision 

ranged from 2 to 13% for phenprocoumon, and from 2 to 15% for 4`- and 7-OH PPC, while 

accuracy was 1 to 15%, and 1 to 20% for phenprocoumon and 4`-and 7-OH PPC, respectively.  
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The value of International Normalized Ratio (INR) of prothrombin time was determined by 

the respective routine methods of the Institute for Clinical Chemistry of the University 

Hospital of Cologne and the Clinical Chemistry Laboratory in Tübingen and Mannheim, and 

further external laboratories. 

Genotyping Assays: Genotyping was done after isolation of genomic DNA from whole blood 

samples by the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). CYP2C9 genotyping 

was carried out for CYP2C9 *1, * 2, and *3 alleles through specific hybridization probes using 

real-time polymerase chain reactions. Determination was done by the LightCycler-CYP2C9 

Mutation Detection Kit (Roche Diagnostics GmbH, Mannheim, Germany) using a LightCycler 

Instrument (Roche Diagnostics GmbH, Mannheim, Germany). 

The genotyping of the VKORC1 gene was carried out by direct sequencing of exons 1, 2 and 3 

and their introns 1 and 2 and parts of the 5’- and 3’-untranslated regions. Appropriate 

primers for primary PCR were selected. After PCR the products were purified by vacuum 

filtration (MANU 3050, Millipore, Molsheim, France). Afterwards sequencing PCRs were 

carried out with the BigDye Terminator Cycle Sequencing Kit v1.1 (Applied Biosystems, 

Darmstadt, Germany) and appropriate oligonucleotides. After purification of the sequencing 

products using Sephadex G50 (Sigma Aldrich, Taufkirchen, Germany) the samples were 

analysed on a Genetic Analyzer Prism 3100 (Applied Biosystems, Darmstadt, Germany). 

 

 

2.5 Data Analysis 

2.5.1 Software 
 

The noncompartmental evaluation was performed with the WinNonlin software (version 

5.0.1, Professional Edition, Pharsight, Mountain View, CA, USA). Maximum drug 

concentration (Cmax) and time of maximum concentration (tmax) were taken from the raw 

data, and the area under the curve from time 0 to the last sampling time tAUC0  was 

calculated using the loglinear trapezoidal rule. 

For the purpose of developing population models, all compartmental PK/PD analyses and 

simulations were performed using the software NONMEM version V, or VI (NONMEM 

software version 1.1, NONMEM Project Group, University of California at San Francisco, 
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1998). The first-order conditional estimation algorithm (FOCE INTER), assuming interaction 

between the residual error and the interindividual error, was used in all cases. Disposition 

kinetics of the developed models was parametrized in terms of the apparent clearance and 

apparent volume of distributions. 

The software S-Plus (S-Plus version 8.0, Insightful Corporation, Seattle, WA, USA) was used 

for model diagnostic purposes and for exploration of possible covariate relationships 

(Mandema et al. 1992).  

 

2.5.2 Model Justifications 
 

Model derivation and justification was guided through the following criteria whatever 

applicable: 

- A difference in the objective function value (ΔOFV) generated via NONMEM was used 

to carry out comparisons between any two models. A ΔOFV of 3.84 (approximate χ2-

distribution) for an additional parameter was used for determining statistical 

significance (P < 0.05) of the difference between two models. 

- Visual inspection of goodness-of-fit plots including individual and population 

predictions, residual plots, individual curve fitting. 

- Physiological plausibility and statistical precision of parameter estimates and 

variability estimates.  

- The 95% confidence intervals for the parameter estimates should not include zero or 

unity. Confidence intervals were estimated for each population parameter as θp ± SE 

× Z, where θp is the estimate population parameter, SE is its associated standard 

error, and Z is the interval coefficient for a standard normal distribution (Z=1.96 for a 

95% confidence interval). 

- The final model performance was also justified by simulating concentration time 

profiles for 1000 subjects having different key parameters like different alleles or 

variants. 

- The predictive performance was evaluated by visual predictive checks to assess, 

whether a model described the central tendency and variability of the observations 

adequately. The median, 5th and 95th percentiles of the concentration time curves 

were calculated by validated Perl scripts (Bulitta et al. 2007) (Active Perl, version 

5.10.0; ActiveState, Vancouver, Canada).  
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2.5.3 Covariate Analyses 
 

Multiple activities were performed to identify the kind of relationship between available 

covariates and individual pharmacokinetic parameter can produce the best description of 

the data. These relationships were first explored by visual inspection of plots of individual 

parameters versus covariates. Formal testing was then performed by inclusion of covariates, 

one by one, in the NONMEM model. A significance level of p ≤ 0.05 was used in the forward 

inclusion steps to generate the full model. This model was then reduced by eliminating 

covariate-parameter relationships, one by one, and only those covariate effects that were 

significant at the p ≤0.001 level were retained in the final model (Mandema et al. 1992). 

 

2.5.4 Statistical Models 
 

The interindividual variability was modelled with an exponential error model for all 

pharmacokinetic parameters, with stepwise cumulative inclusion of respective error terms 

according to the equation: 

θj = θp · exp (ηθj) 

where θj is the estimate for a pharmacokinetic parameter in the jth individual as predicted 

by the regression model, θp is the population mean of the pharmacokinetic parameter, and 

ηθj represents the random variable with zero mean and variance ω2 that distinguishes the jth 

individual pharmacokinetic parameter from the population mean value predicted by the 

regression model.  

 

The intraindividual variability (Residual variability) was quantified by teasing out different 

models including: 

- Additive model: Cij = Cpij + ε1,ij 

- Proportional model: Cij = Cpij + ε1,ij ∙ Cpij 

- Exponential model: Cij = Cpij · exp (ε1,ij) 

- Combined model: Cij = Cpij + ε1,ij ∙ Cpij +  ε2,ij 

where Cij is the observed concentration in individual i at time j, Cpij is the model 

predicted concentrations in individual i at time j, and ε(x),ij describes the independent, 

identically distributed statistical errors with mean 0 and variance σ2. 
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2.5.5 Fluorescein Data Analysis 
 

Raw data from the original studies have been published previously (Dinslage et al. 2002; Lux 

et al. 2003; Steinfeld et al. 2004), but no pharmacokinetic methods have been applied to 

these data. For all pharmacokinetic calculations, baseline correction of the original data was 

done to account for autofluorescence of ocular tissues by subtracting the observed 

fluorescence prior to administration from the values after administration. 

A nonparametric evaluation of ocular pharmacokinetics parameters was performed with 

WinNonlin to obtain maximum fluorescein concentrations (Cmax) in the cornea and anterior 

chamber, and the area under the time-concentration curve tAUC0 . It was not possible to 

calculate the extrapolated area under the curve to infinity or the elimination rate constants 

for many subjects for both formulations due to the scatter of data around the corrected 

baseline and the fact that none of the studies covered the entire concentration vs. time 

profile of fluorescein. Point estimates of the ratios of lyophilisate over eye drops for tAUC0  

and Cmax including the respective 90% confidence intervals were calculated using standard 

bioavailability methods after log-transformation of the data.  

Population model building procedures: Compartmental population pharmacokinetic 

parameters of fluorescein were estimated using NONMEM V. The ocular pharmacokinetic 

model of fluorescein was developed in two consecutive steps; the first step was to find a 

model for the eye-drop formulation only, and in the second step this was applied to estimate 

differences in pharmacokinetic parameters due to formulation effects. The model was 

parameterized in terms of clearances and distribution volumes using the PREDPP subroutine 

ADVAN 5 supplied in NONMEM. Covariate (e.g., sex, age, and body weight) data sets were 

not complete for all subjects and therefore they were not considered for the sake of model 

development; they are, however, not expected to have a major impact on ocular 

pharmacokinetics. 

In the first step used to evaluate the eye-drop data, the absorption rate constant was fixed 

at a high value (i.e., 1,000/h). This assumption was made because the data indicated 

immediate drug absorption and did not support the estimation of an absorption process. 

The bioavailable fraction was assumed to be unity for this formulation. Initially an attempt 

was made to fit all fluorescein concentrations, for all subjects, in the cornea and anterior 

chamber to a previously described two-compartment open model (Coakes and Brubaker 
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1979; Mishima 1981). Because no adequate fit could be achieved with this model, a three-

compartment model was chosen. In the second step, where lyophilisate data were to be 

evaluated, the apparent intercompartmental clearances, apparent volumes of distribution, 

and the apparent total clearances were fixed to the estimates obtained for the eye-drop 

data set, allowing only the relative bioavailability fraction and the absorption rate constant 

for the lyophilisate preparation to be estimated. This procedure is justified because these 

parameters are principally related to the physicochemical properties of fluorescein itself and 

not to the formulation. 

Statistical model: Interindividual variability was modelled with an exponential error model. 

Residual variability was expressed using two separate error terms for the cornea and the 

anterior chamber. Each residual model was modelled using an additive model, a 

proportional model, or a combination of both. 

 

 

2.5.6 Clarithromycin Data Analysis 

A noncompartmental evaluation of clarithromycin pharmacokinetics was performed with 

WinNonlin to obtain maximum drug concentrations (Cmax) in plasma, the Cmax time (tmax), 

apparent clearance and volumes of distributions parameters and the area under the time-

concentration curve 

0AUC . 

Population model building procedures: A total of 624 samples of clarithromycin and 624 

samples of its 14-(R) hydroxyl metabolite from 12 subjects were co-modelled using 

NONMEM V. The model was specified as a set of differential equations using the ADVAN6 

subroutine. 

A one-compartment open model with first-order absorption with or without a lag time was 

tested to describe clarithromycin plasma concentration profiles after the first dose with first-

order elimination. A compartment for the hydroxyl metabolite was included. Absorption 

behaviour could not be described properly by first-order absorption; therefore a single 

phase Weibull function (Zhou et al.) was tested. This function was coded as: 

 

WB = 1- exp (-(kw*Tw)
λ
) 
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where, kw is the absorption rate constant, Tw is the time after the previous dose and λ is the  

shape parameter (Petricoul O 2007). This model appropriately described the absorption 

phase while using more complicated input models was not successful. 

The distribution kinetics of the parent and metabolite was assumed to follow linear 

pharmacokinetics. This model was selected as a base structural model. Clarithromycin 

clearance was modelled with linear and/or nonlinear kinetics including a Michaelis-Menten 

model. Elimination of the metabolite was assumed to follow linear pharmacokinetics. 

Individual body weights were related to a standard weight, i.e. 70 kg, and used as covariate 

for apparent volumes of distribution and total clearances parameters of clarithromycin and 

its metabolite as: 

)70/(

)70/( 75.0

kgBWVV

kgBWCLCL

i

i









 
where CLi  and Vi  stand for individual apparent total clearance and distribution volume 

respectively, BW is the individual body weight expressed in kg; 


CL  and 


V represent  mean 

clearance and mean volume of distribution, respectively, of typical subjects weighing 70 kg 

(Anderson et al. 1997). 

Statistical model: An exponential-variability model was included to describe between 

subject variability for all pharmacokinetic parameters, with stepwise cumulative inclusion of 

respective error terms.  

Two separate residual variability terms were included in the model: one for clarithromycin 

and the second for its hydroxyl metabolite. Each residual model was modelled using an 

additive model, a proportional model, or a combination of both. 

 

Simulation: Based on the final parameter estimates of the selected population model, 

simulations were performed using NONMEM V to predict the concentration profiles for 

multiple doses of 250, 500, 750, or 1000 mg twice daily. The simulation was done for periods 

sufficient for achieving theoretical steady-state. For these doses, areas under the plasma 

curves of the free drug form (fAUC0-24), the fAUC0-24 / MIC ratio and the probability of 

attainment the pharmacodynamic target fAUC0-24 / MIC > 35 h (Craig et al. 2002; Tessier et 

al. 2002) across various MIC values were calculated in steady-state, assuming no significant 

change in protein binding (Peters and Clissold 1992; Traunmuller et al. 2007).  
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2.5.7 Dextromethorphan Data Analysis 
 

Among the participants of the study, there were two subjects carrying one *9 allele each and 

one carrier of a *10 s allele. Data from these three subjects were excluded from the 

evaluation as the low allele frequencies preclude estimation of population parameters. 

Noncompartmental evaluations were performed using WinNonlin to derive model-

independent pharmacokinetic parameters of dextromethorphan and dextrorphan in plasma.  

Population model building procedures: All observed plasma and urine concentrations of 

dextromethorphan and dextrorphan from 47 volunteers were analysed simultaneously using 

NONMEM version VI. Models were specified in sets of differential equations using the 

ADVAN6 subroutine. 

As a starting point, a four-compartment open model was tested to describe the whole data. 

Each compartment represents each site of measurement (i.e., two compartments each 

[plasma and urine] for dextromethorphan data and two compartments for dextrorphan 

data). The absorption process was assumed to follow first-order input kinetics. A first-order 

absorption rate constant with and without a lag time was explored. Disposition processes for 

both substances were assumed to follow linear kinetics. For the purpose of semimechanistic 

modeling, dextromethorphan was assumed to being converted totally to dextrorphan. This 

metabolic clearance was described as follows: 

 

CLm = CLb + CLCYP2D6 

 

where CLm is the total apparent clearance of dextromethorphan describing the 

biotransformation of dextromethorphan to dextrorphan, CLb  is the basic value for 

dextromethorphan metabolic clearance that is not subject to CYP2D6 allelic activity, CLCYP2D6 

is the metabolic clearance due to CYP2D6 activity and was specified as follows: 

CLCYP2D6 = n*1 * CL*1 + n*2 * CL*2 + n*42 * CL*41 

 

where n*x and CL*x, are the number of alleles observed and metabolic clearance values 

attributable to the respective allele. This model was selected as a basic structural model for 

further model building activities.  
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The activity of *4, *3 and *6 alleles was set to zero as they are inactivating mutations (Marez 

et al. 1997). Clearance of dextromethorphan in individuals who are homozygous for these 

alleles was assumed to reflect the non-CYP2D6 mediated clearance. Hence, the study 

evaluated the activity of 2D6*1, 2D6*2 and 2D6*41 alleles, which have recognized as true 

variants influencing dextromethorphan metabolism activity in vivo (Marez et al. 1997; 

Sachse et al. 1997; Cai et al. 2007; Sistonen et al. 2007). In addition to CYP2D6 

polymorphisms, age, urine pH, and weight as covariates were considered during model 

building for their impact on pharmacokinetic parameters. An  allometric model was used for 

weight, while exponential and combined models were used to centre the age effect to the 

mean or the median age values (Holford, N 2002). 

Statistical model: An exponential interindividual variability model was included for all model 

parameters forward and backward step by step interchangeably. Four residual-error models 

were added, one for each data type (i.e., a separate residual-error model for plasma parent 

data, another for plasma metabolite data etc.). Each residual model was modelled using an 

additive model, a proportional model, or a combination of both. 

 
 
 

2.5.8 Phenprocoumon Data Analysis 

Data analysis was performed using the nonlinear mixed-effect software in NONMEM version 

VI using the PRED routine and the first-order conditional estimation method with 

interactions. Covariates were tested and forward included in the model in a stepwise 

manner starting with the covariate that resulted in the greatest reduction in the OFV. This 

procedure was repeated until no significant drop was obtained in the objective function 

value.  

The CYP2C9 [VKORC1] polymorphisms, age, weight, and sex were considered during PK [PD] 

model building. In a sequential manner, final parameter estimates obtained from the 

pharmacokinetic model were used for pharmacodynamic model building. This approach has 

been shown to be computationally faster and can provide less biased PD estimates than the 

simultaneous analysis approach (Zhang et al. 2003a; Zhang et al. 2003b). 

Pharmacokinetic model building procedures: All plasma concentrations of phenprocoumon 

and its 4'- and 7-hydroxy metabolites were analyzed simultaneously. Previous 

pharmacokinetic analysis of phenprocoumon in plasma after oral administration reported 
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the adequacy of an open one-compartment model (Masche et al. 1999). Thus, a three-

compartment open model, one compartment for phenprocoumon concentrations and the 

other two compartments for 4'- and 7-hydroxy metabolite concentrations, was assumed to 

describe the whole data. Because only one sample was observed per subject, absorption 

process could not be evaluated. Furthermore, these observations were obtained at one 

sampling time at steady state and that was the same for everyone, therefore a meaningful 

apparent volume of distribution could not be obtained. Hence, the model was developed to 

describe the steady state concentration independent of volume of distribution of the parent 

and its metabolites. The input process was modelled as a constant infusion (dose/dosage 

interval) and just assumes all concentrations are at steady state. The model was 

parameterized in terms of clearance. 

Pharmacodynamc Model building procedures: The calculated individual predictions of the 

parent from the final pharmacokinetic model were used to develop the pharmacodynamic 

model. A simple linear model was considered to describe the variability in INR values in this 

population. The VKORC1 polymorphisms, sex, body weight, age, and mass body index were 

evaluated as covariates on the parameters reflecting the patient´s sensitivity to 

phenprocoumon.  

Statistical model: Exponential interindividual variability terms were assumed and evaluated 

for PK and PD model parameters during model development processes. Because the model 

cannot separate the residual variability from interindividual variability based on one 

observation per subject (Ette et al. 1995), residual variability terms had to be fixed to small 

values. For the PK-model, three additive error terms were used to describe the residual 

variability for the parent and metabolites data and their values were fixed to the lower limits 

of the assay quantification. For the PD model, an additive residual error for INR was used 

and fixed to a priori information of 0.0325 (Hamberg et al. 2007). Plausibility of these fixed 

values was tested by replacing it with higher and lower values.  

 

Simulation: Two simulations were executed with use of NONMEM to visualize the model 

performance using the final PK parameter estimates. The first simulation was run to simulate 

steady state plasma concentration profiles of the parent drug for male subjects having 70 kg 

body weight and being 45 years old but with different CYP2C9 features. The second 
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simulation was performed to show the effect of VKORC1 variants in determining the INR at 

steady state.  

 

Finally and based on final model estimates, and assuming a target INR of 2.5 is clinically 

desirable, the required maintenance dose of phenprocoumon was calculated for 45 years 

old male subjects with 70 kg body weight, possessing different combinations of CYP2C9 and 

VKORC1 polymorphisms. 
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3 RESULTS 
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3.1 Fluorescein 

All subjects were included in a noncompartmental and in a compartmental ocular 

pharmacokinetic analysis of fluorescein from eye drops and lyophilisate forms. The raw data 

are scattered, which can be attributed to methodological limitations of ocular 

fluorophotometry. Plots of fluorescein concentrations in the cornea and in the anterior 

chamber after baseline correction for both formulations are given in Figure 6.  
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Figure 6: Florescein concentrations (ng/mL) in the cornea and anterior chamber (raw data) 

 

These plots show that the original data are quite scattered. Despite this limitation, the 

noncompartmental pharmacokinetic parameters clearly show a higher extent of ocular 
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bioavailability of fluorescein from lyophilisate relative to the eye-drop formulation. Values of 

tAUC0  and Cmax for both formulations and their ratios are given in Table 2.  

 

Table 2: Non-compartmental pharmacokinetics of fluorescein following administration of 

lyophilisate and eye drops 

 Study Dose 
(µg) 

No. of 
subjects 

Drops 
(mean  ± SD) a 

Lyophilisate 
(mean  ± SD) a 

Ratio  
(90% CI) 

Cornea    AUC0
t 

(hr/ml/ng) 

 1 68 10 48  ±  2.77 538  ±  2.11 11.3  (5.7 – 22.0) 

 2 204 22 90  ±  2.22 566  ±  3.78 6.3  (3.9 – 10.2) 

 3 68 12 9  ±  3.10 133  ±  3.04 14.6  (8.7 – 24.7) 

    Cmax 
(ng/mL) 

 1 68 10 601  ±  2.67 3514  ±  1.92 5.9 (2.9 – 11.8) 

 2 204 22 77  ±  3.23 968  ±  6.02 12.5 (6.6 – 23.8) 

 3 68 12 12  ±  3.04 243  ±  6.24 19.9 (10.2 – 38.9) 

Anterior 
chamber 

   AUC0
t 

(hr/ml/ng) 

 1 68 10 1.3  ±  2.84 11  ±  2.12 8.9 (4.9 – 16.4) 

 2 204 22 14  ±  1.98 66  ±  2.46 4.7 (3.10– 7.0) 

 3 68 12 3.0  ±  2.19 22  ±  1.70 6.9 (4.2– 11.23) 

    Cmax 
(ng/mL) 

 1 68 10 13  ±  2.17 80  ±  1.91 6.3 (3.3 – 12.1) 

 2 204 22 2.2  ±  3.20 30  ±  3.94 13.7 (8.0– 23.4) 

 3 68 12 4.1  ±  2.06 18  ±  2.59 4.3  (1.3 –14.1) 
a
 Data given as geometric mean ± standard deviation 

Sampling schedules were as follows: study 1: 0–30 min (15 observations); study 2: 0–420 min (10 

observations) study 3: 0–180 min (6 observations). AUC0
t
:  area under the concentration time curve up 

to the last observation time, Cmax: maximum observed concentration, ratio point estimate for ratio of 

lyophilisate over eye drops, CI confidence interval, and a Geometric standard deviation. 

 

Population kinetics indicated the superiority of the three-compartment model compared 

with two-compartment model based on individual and population predictions. This 

superiority was also confirmed by a marked drop in the objective function (∆ OFV= 2106). 

Blue print of the final model is given in Figure 7. 
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Figure 7: Blueprint of the final fluorescein population pharmacokinetic model. 

 A three-compartment model used to describe the transfer of fluorescein into and from the cornea and 

anterior chamber after topical administration of the drug as eye drops and lyophilisate. ka is the 

absorption rate constant, V1, V2, and V3 are the apparent volumes of distribution of fluorescein in the 

first, second and third compartments, respectively. Q1, Q2, and Q3 are the intercompartmental 

clearances and kel is the elimination rate constant. 

 

 

This model was described by the following parameters: ka is the apparent absorption rate 

constant, V1 is the apparent volume of distribution in the cornea, Q1 is the apparent 

intercompartmental clearance between cornea and anterior chamber, V2 is the apparent 

volume of distribution in the anterior chamber, CLtot is the apparent total clearance, Q2 is the 

intercompartmental clearance between anterior chamber and the third compartment, V3 is 

the apparent volume of distribution in the third compartment, and Q3 is the 

intercompartmental clearance between the third compartment and the cornea. Elimination 
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Fluorescein was assumed to be eliminated from the anterior chamber compartment with 

first order elimination rate constant, kel. 

 

 Visualisation of the population data shows that this empirical model could adequately 

describe fluorescein data in the cornea and anterior chamber (Figure 8a and 8b). Examples 

of typical individual predictions are given in Figure 9. Diagnostic plots of the final model for 

both formulations are given in Figure 10 and 11. These plots of the observed concentrations 

vs. the population-predicted concentrations show the reasonable distribution of original 

data around the line of unity. Final model specifications are given in Figure 12. The effect of 

the formulation type on the absorption rate could not be assessed because there were not 

enough data points early after administration of fluorescein, but it was possible to estimate 

an apparent absorption rate following administration of the lyophilisate. The relative 

systemic bioavailability of fluorecsein from lyophilisate was estimated to be about 3.7-fold 

higher (95% CI 2.9 – 4.5) than following administration of the eye drops. It should be noted 

that this estimate is based on ocular concentration vs. time profiles only, i.e., systemic 

availability via the ocular route was estimated; this does not take into account fluorescein 

lost by lacrimation and reaching the systemic circulation via conjunctival, nasal, or 

gastrointestinal routes. Population pharmacokinetic parameter estimates of fluorescein of 

the final models as well as the 95% confidence intervals are summarized in Table 3.  
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Figure 8a: Fluorescein concentrations in the cornea with the population model (solid lines).  
The eye drops in study #2 were administered at three different 68 µg doses given 15 min apart  
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Figure 8b: Fluorescein concentrations in the anterior chamber with the population 

model. 
The solid line is the population model. The eye drops in study #2 were administered at three different 

68 µg doses given 15 min apart.
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Figure 9: Individual predictions of fluorescein level in the cornea and anterior chamber in three 

subjects  
Open and closed cilcles represent raw data for eye drop and lyophilisate formulation, respectively 

Solid lines represent individual prediction model 
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Figure 10: Goodness-of-fit plots of the final model for the eye drop formulation. 

Plots show unity and zero lines in the right and left panels respectively. 
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Figure 11: Goodness-of-fit plots of the final model for the lyophilisate formulation  

Plots show unity and zero lines in the right and left panels respectively. 
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Table 3:  Ocular population pharmacokinetics of fluorescein 

a
 =Immediate absorption and a relative bioavailability of 1 were assumed for eye drops,

  

*
= relative standard errors of the estimated variance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Unit 
Point 

estimate 
95%CI 

Absorption rate constant (ka) for lyophilisatea 1/hr 16.7 12.3 – 21.1 

Apparent volumes of distribution of fluorescein 
in the first compartments V1 

L 24.6 3.6 – 45.6 

Intercompartmental clearance Q1 L/hr 0.25 0.08 – 0.42 

Apparent volumes of distribution of fluorescein 
in the second compartments V2 

L 10.3 9.1 – 12.8 

Apparent total clearance CL L/hr 4.34 2.49 – 6.19 

Intercompartmental clearance Q2 L/hr 0.20 0.05 – 0.34 

Apparent volumes of distribution of fluorescein 
in the third compartments V3 

L 3.42 1.99- 4.85 

Intercompartmental clearance Q3 L/hr 0.54 0.20 - 0.87 

Relative bioavailability for lyophilisate (F)  3.7 2.9 – 4.5 

Interindividual variability in (Q1)  1.10 26.7 %* 

Interindividual variability in (CL)  0.34 8.6 %* 

Residual variability in cornea (CV %)  56.2 9.2% * 

Residual variability in anterior chamber (CV %)  52.0 5.7% * 
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Figure 12: Relevant NONMEM code of the final fluorescein model  
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3.2 Clarithromycin 

Data derived pharmacokinetic parameters estimated by non-compartmental analysis for 

clarithromycin and its hydroxymetabolite are given in Table 4. 

 

Table 4:  Noncompartmental pharmacokinetic parameters of clarithromycin and its 14(R)-

hydroxy metabolite 

 
Parameter 

 
1st dose 3rd dose 

7th dose 
(Steady state) 

C
la

ri
th

ro
m

yc
in

 

Cmax 
(µg/mL) 

2.49  ± 0.76 
(1.60 – 4.02) 

3.08 ± 0.82 
(1.77 – 4.80) 

3.57  ± 0.72 
(2.39 – 4.67) 

tmax 

(h) 
3.54 ± 0.99 

(1.50 – 5.00) 
3.54 ± 0.86 

(2.50 – 4.50) 
3.92 ± 0.87 

(2.00 – 5.50) 

AUC12h 
(h ·µg/mL) 

15.4 ± 5.1 
(9.4 – 29.7) 

21.8 ± 6.06 
(13.3 – 37.1) 

27.4 ± 6.76 
18.3 – 39.6 

t1/2 

(h) 
3.58 ± 0.71 

(2.83 – 5.47) 
4.26  ±  0.82 
(3.24 – 5.18) 

4.65 ± 1.04 
(3.34 – 7.75) 

kel 
(1/h) 

0.199 ± 0.033 
(0.127 – 0.245) 

0.168  ±  0.030 
(0.119 – 0.214) 

0.158 ± 0.032 
(0.109 – 0.207) 

Cav 
(µg/mL) 

NA NA 
2.29  ±  0.563 
(1.52 – 3.30) 

14
-O

H
-C

la
ri

th
ro

m
yc

in
 

Cmax 

(µg/mL) 
0.961 ± 0.254 
(0.545 – 1.32) 

1.11 ± 0.241 
(0.741 – 1.53) 

1.09 ± 0.225 
(0.721 – 1.57) 

tmax 

(h) 
4.33 ± 1.29 

(2.00 – 6.00) 
3.96 ± 1.03 

(2.50 – 5.50) 
4.71 ± 0.88 

(2.50 – 6.00) 

AUC12h 
(h ·µg/mL) 

7.19 ± 1.77 
(4.89 – 11.4) 

9.92 ± 2.45 
(6.95 – 14.1) 

10 ± 2.00 
(7 – 14.4) 

t ½ 
(h) 

38.07 ± 9.56 
(20.09 – 57.32) 

9.13  ±  2.96 
(5.67 – 14.81) 

8.89 ± 2.69 
(4.61 – 15.56) 

kel 
(1/h) 

0.105 ± 0.027 
(0.054 – 0.162) 

0.083  ±  0.026 
(0.047 – 0.122) 

0.084  ±  0.022 
(0.056 – 0.127) 

Cav 
(µg/mL) 

NA NA 
0.838  ±  0.166 
(0.584 – 1.20) 

Clarithromycin was administered as repeated oral doses of 500mg b.i.d.;  tmax is the time of maximum 
concentration (Cmax); t1/2 is the elimination half life; kel is the elimination rate constant; AUC12h is the 

area under the plasma concentration-time curve up to 12 hours; Cav is the average concentration at 

steady state; NA: not applicable. 

 

 

The absorption profiles of clarithromycin were best described by a Weibull absorption model 

that resulted in a marked improvement in the objective function value OFV (ΔOFV, - 86) 

compared with a first order absorption model. A plot of four individual plasma 

concentrations of clarithromycin versus time after the first dose is shown in Figure 13. This 
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figure shows how the Weibull model best described the absorption phase in comparison 

with a standard first-order absorption model. 

 

 
Figure 13: Visualisation of different absorption models of clarithromycin.  
Clarithromycin plasma concentration-time profiles for four individuals (upper figures) and population 
mean, N=12 (lower figure) after the first dose assuming linear elimination pathway. 
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Based on the multiple dose regimen of 500 mg, the apparent total drug clearance of 

clarithromycin (CLp) was found to decrease with time in a nonlinear fashion as shown by 

non-compartmental methods (Bulitta et al. 2003). As expected, a linear two-compartment 

model could not describe this nonlinearity. Addition of a nonlinear elimination pathway with 

Michaelis-Menten kinetics improved model fitting considerably (ΔOFV, - 252), however the 

overall nonlinearity was still not properly explained as this model was not able to capture 

maximum plasma concentrations of clarithromycin (Figure 14).  

 

 

Figure 14: Michaelis-Menten Model of clarithromycin.  

Clarithromycin fitting is on the left pane and its metabolite on the right with unity line. 
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Finally, the inhibitory effect of clarithromycin on its apparent total clearance was modelled 

“mechanistically” by addition of a hypothetical inhibition compartment. The concentration 

of the parent drug was used to derive the extent of (reversible) inhibition in this 

compartment. Here, the total apparent clearance of clarithromycin (CLp) was split into two 

components. The first component was inhibited by the hypothetical clarithromycin 

concentration in the inhibition compartment (Cinhibt), whereas the second component was 

not affected by Cinhibt. The fraction of CLp that was not inhibited by Cinhibt was described as 

FCLp and its estimate allowed to range from zero (i.e. 100% inhibition) to unity (i.e. no 

clearance inhibition) (Plock et al. 2007). A transfer rate constant between parent and 

inhibition compartments ( ik ) in addition to the concentration in this compartment yielding 

50% inhibition of clarithromycin clearance (IC50) was included to explain the inhibition of 

clearance over time. This model is blueprinted in Figure 15 and its code specification is given 

in Figure 16. Inclusion of the inhibition compartment side by side to the drug model 

adequately described the nonlinear time-dependent auto-inhibition pharmacokinetics of 

clarithromycin. This model led to a significant improvement in the objective function 

compared to the Michaelis-Menten elimination model (ΔOFV, - 752).   

In the final model and for the available data, four between-subject variability terms were 

identified. In addition, residual additive error models resulted in the best model convergence 

compared with proportional and or combined error models. Pharmacokinetic parameter 

estimates of the final model are shown in Table 5. Standard goodness-of-fit plots of the final 

model of clarithromycin and its 14-(R) hydroxy metabolite are given in Figure 17. These plots 

suggested that the selected autoinhibition model adequately described both the plasma 

concentration time profiles of clarithromycin and its 14-(R) hydroxy metabolite 

simultaneously. The superiority of the inhibition model (final model) in comparison with the 

Michaelis-Menten model is given for three subjects in Figure 18. The visual predictive check 

of clarithromycin and its major metabolite indicated that the final model could predict the 

observations including the maximum plasma concentrations (Figure 19). The simulated 90% 

prediction interval closely reflected the observed plasma concentrations of clarithromycin 

and 14-(R) hydroxy clarithromycin.  

Concentrations of clarithromycin in the theoretical inhibition compartment as well as the 

extent of time course inhibition are shown in Figure 20. The plot suggested that inhibition 
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started rapidly and that the 500 mg b.i.d dose inhibited enzyme activity by approximately 

50% to 70 % of initial values during steady state.  

Based on the pharmacokinetic parameter estimates of the final model, the simulated 

medians for four dose levels, i.e., 250, 500, 750 and 1000 mg twice daily (Figure 21) 

suggested that the extent of auto-inhibition and the emerging changes in pharmacokinetics 

with time is much more pronounced for the higher doses. While for the 500 mg b.i.d 

standard dose no further increase of exposure occurs after the 2nd day of treatment, for a 

1000 mg b.i.d dose reaching steady state it is expected to take several days. AUC values at 

steady state for the 1000 mg b.i.d dose would exceed those for the 500 mg b.i.d dose by 3.6-

fold (Table 6). For the parent drug at steady state, the probability of achieving the target for 

pathogens having MIC value of 0.5 mg/L is 0 %, 43 %, 94 % and 100 % for the 250, 500, 750 

and 1000 mg doses, respectively (Table 6 and Figure 22).  
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WB= [ 1 – exp (– (kw · Tw) λ) ] h-1 

INH= FCLp + (1–FCLp) · (1 – Cinhibt / (IC50 – Cinhibt)) 

dAabs / dt = – WB ·Aabs 

dCp / dt = (WB · Aabs – Cp · CLp · INH)/Vp 

dCinhibt / dt = ki · Cp – ki · Cinhibt  

dCmet / dt = (Cp · CLp · INH – Cmet · CLmet)/Vmet 

 
Figure 15: Blueprint and differential equations of the final model 

 
WB is the Weibull absorption function from the gastrointestinal tract, Aabs is the amount of drug in the 

absorption compartment, kw is the absorption rate constant, Tw is the time after the previous dose and 

λ is the shape parameter of the Weibull function. Vp, Vmet, Cp and Cmet are the apparent volumes of 

distribution and plasma concentrations of clarithromycin and its hydroxy metabolite respectively; ki is 

the transfer rate constant between parent and inhibition compartments. Clarithromycin clearance 

(CLp) is inhibited based on the concentration in the inhibition compartment Cinhibt; and IC50 is the 

concentration in the inhibition compartment yielding 50% of maximum clearance inhibition of 

clarithromycin. INH is the overall inhibition parameter, FCLp is the fraction of the clearance not 

subject to inhibition and Cinhibt is the concentration of the clarithromycin effective in the inhibition 

compartment. CLmet is the apparent total clearance of 14(R)-hydroxy clarithromycin. 
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Figure 16: Relevant NONMEM code of the final clarithromycin model  
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Figure 17: Goodness-of-fit plots for the final model of clarithromycin. 

 Plots include unity and zero lines for clarithromycin (left) and its hydroxyl metabolite (right) 
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Figure 18: Individual predictions of clarithromycin in 3 subjects. 

KIC-model= inhibition-compartment model (final model),  

MMK-model =Michaelis-Menten model
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Figure 19: Visual predictive check of clarithromycin model. 

Circles correspond to the actual plasma concentrations of clarithromycin (upper panel) and its 
metabolite (lower panel). Lines represent 5%, median and 95% percentiles 
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Figure 20: Inhibition compartment profiles. 
Upper panel: simulated clarithromycin concentration in the inhibition compartment for the 500 mg bid 

dose. 

Lower panel: autoinhibition of clarithromycin (%INH) INH is 100% if there is no inhibition, whereas 

maximal potential inhibition at high clarithromycin concentrations in the effect compartment would 
yield a value of 10% representing the non-inhibitable fraction of apparent clarithromycin clearance. 
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Figure 21: Simulated median plasma concentrations of clarithromycin.  

 

 

 

 
Figure 22: Probability of target attainment of free clarithromycin. 
Probability of free clarithromycin to achieve a target (i.e. fAUC24h / MIC >35 h) at steady state for 

various MIC values upon b.i.d. administration of the respective clarithromycin doses 
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Table 5: Population pharmacokinetic estimates of clarithromycin (500 mg b.i.d.) and its 14(R)-hydroxy metabolite 

 
Model Parameter Unit 

Point 
estimate 

95% CI 

Pharmacokinetic 
parameters 

Weibull absorption rate constant (kw) hr-1 0.56 0.42 – 0.69 

Weibull shape parameter (λ)  2.23 1.67 – 2.77 

Apparent volume of distribution of clarithromycin (Vp) L 172 145 – 198 

Apparent total clearance of clarithromycin (CLp) L/hr 60 40 – 80 

Non-inhibited fraction of clarithromycin clearance (FCLp)  0.10 0.02 – 0.17 

Transfer ate constant into and from inhibition compartment (ki) hr-1 2.01 0.09 – 3.93 

Concentration in the inhibition compartment yielding 50% inhibition of 
maximum clearance (IC50) 

µg/mL 0.77 0.23 – 1.28 

Apparent total clearance of 14-OH-clarithromycin (CLmet) L/hr 50.2 42.3 – 58.1 

Apparent volume of distribution of 14-OH-clarithromycin (Vmet ) L 34 12 – 56 

Between subject 
variability* 

 

Between subject variability in  kw  45.3* 7.93%& 

Between subject variability in Vp  25.3* 2.83%& 

Between subject variability in CLp  17.4* 1.15%& 

Between subject variability in CLmet  27.9* 2.11%& 

Residual 
variability 

Additive  error of clarithromycin µg/mL 0.12 2.40%& 

Additive  error of 14-OH-clarithromycin µg/mL 0.01 0.18%& 

* Coefficient of variation (%); 
&

: These percentages are relative standard errors of the estimated variance. 
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Table 6: Simulation of main PK/PD parameters of clarithromycin and 14-(R) hydroxyclarithomycin after multiple ascending doses using the 

population model estimates. 

Values were calculated on a basis of twice daily oral dosing and represent median and 90% nonparametric prediction intervals. fAUCinitial 0-24 h and 

fAUCss, 24h are the areas under the free concentration-time curves over 24h on the first day and in steady-state. The fAUC was calculated by correcting the 

total AUC for the free fraction (f) which is 0.3 assuming non-significant change in protein binding (Peters and Clissold 1992; Traunmuller et al. 2007).  

na: not applicable.  
a
 assuming that a (fAUC ss, 24 h plasma) /MIC ratio target of at least 35 h is desirable in humans for pathogens eradication (Tessier et al. 2002)

 

Dose (mg) 
fAUCinitial 0-24 h 

90% PI 
(µg •h /mL) 

fAUC ss, 24 h 
90% PI 

(µg •h /mL) 

Probability of target attainment (%) on steady state at different MIC 
values a 

0.03 
mg/L 

0.06 
mg/L 

0.125 
mg/L 

0.25 
mg/L 

0.5 
mg/L 

1 
mg/L 

2 
mg/L 

4 
mg/L 

cl
ar

it
h

ro
m

yc
in

 

250 4.64 
(1.06 – 9.20) 

5.1 
(1.19 – 10.18) 

100 99 56 3 0 0 0 0 

500 11.11 
(5.10 – 20.0) 

15.10 
(6.9 – 31.9) 

100 100 100 91 43 3 0 0 

750 19.74 
(10.9 – 34.7) 

33.4 
(17.4 – 62) 

100 100 100 100 92 49 2 0 

1000 28.71 
(18.2 – 51.2) 

54.3 
(30.4 – 95.0) 

100 100 100 100 100 83 24 0 

14
-O

H
-

cl
ar

it
h

ro
m

yc
in

 

250 2.83 
(1.16 – 5.07) 

3.17 
(1.29 – 5.57) 

na 

500 5.0 
(2.45 – 8.39) 

6.29 
(3.29 – 10.25) 

na 

750 6.81 
(3.75 – 11.14) 

9.42 
(5.34 – 15.10) 

na 

1000 8.29 
(4.46 – 13.63) 

12.48 
(7.24 – 19.19) 

na 
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3.3 Dextromethorphan 

A total number of 1346 concentrations (537 plasma samples, 136 urine samples of 

dextromethorphan and a similar number of observations for dextrorphan) from 36 healthy 

Caucasian men obtained after oral administration of a 30 mg dextromethorphan-HBr dose 

were analysed in this study. The CYP2D6 genetic characteristics of these volunteers are given 

in Table 7.  

Table 7: CYP2D6 Genotypes of 36 individuals participated in dextromethorphan study. 

CYP2D6 variants Study A Study B Study C Total 

O
b

se
rv

e
d

 a
lle

le
s 

*1 13 11 5 29 

*1x2 1 1 0 2 

*2 5 0 11 16 

*2x2 1 1 0 2 

*3 0 1 0 1 

*4 9 2 3 14 

*4x2 0 0 1 1 

*6 0 0 0 0 

*41 1 4 2 7 

*41x2 0 0 0 0 

O
b

se
rv

ed
 g

en
o

ty
p

es
 

*1/*1 2 3 1 6 

*1/*2 2 0 2 4 

*1/*4 6 1 0 7 

*1/*41 1 3 1 5 

*4/*4 1 0 0 1 

*2/*4 1 0 3 4 

*2/*41 0 0 1 1 

*6/*41 0 0 0 0 

*4/*41 0 1 0 1 

*1x2/*2 1 0 0 1 

*1/*1x2 0 1 0 1 

*2/*2x2 1 0 0 1 

*2x2/*3 0 1 0 1 

*2/*2 0 0 2 2 

*2/*4x2 0 0 1 1 

 

In general, there were large interindividual differences in the time-concentration profiles of 

the whole data, with the highest variability in case of dextromethorphan. Dextromethorphan 

initial plasma concentrations decreased rapidly in many but not all individuals (within the 
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first 5 hours after dosing) indicating the known variability in drug clearance. Dextrorphan 

plasma concentrations appeared in many individuals earlier than the parent supporting the 

importance of first-pass metabolism (Figure 23).  

 

 
 
Figure 23: Actual dextromethorphan and dextrorphan observations in plasma and urine. 
Uper panel: plasma concentrations over time of dextromethorphan (filled circles) and dextrorphan 

(unfilled circles). Lower panel: cumulative amount in urine over time of dextromethorphan (filled 

circles) and dextrorphan (unfilled circles) 

 

 

The values obtained from non-compartmental analysis for the area under the concentration-

time curve (AUC), maximal observed plasma concentrations (Cmax), the corresponding times 

(tmax), and the elimination rate constant for dextromethorphan and dextrorphan are 

summarized in plasma are given in Table 8. 
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Table 8: Non-compartmental pharmacokinetics of dextromethoephan and dextrorphan in 

plasma  

Parameters Study arm 

Study A Study B Study C 

D
ex

tr
o

m
et

h
o

rp
h

an
 

tlag (hr) 0.41  ± 0.33 
( 0.0 – 1.33) 

0.41 ± 0.28 
( 0.0 – 1.0) 

0.41 ± 0.11 
( 0 – 0.5) 

tmax 
(hr) 

1.95 ± 0.94 
(0.50 - 3.25) 

1.97  ± 0.68 
(1.33 – 3.25) 

2.67 ± 0.88 
(0.75- 3.95) 

Cmax 
(µg/L) 

2.36 ± 5.52 
( 0.18- 22.2) 

1.92 ± 4.35 
(0.16 – 14.24) 

2.69 ± 2.75 
(0.22-8.33) 

AUCt 
(µg/L/hr) 

30  ±  95 
(0.12 – 373) 

21 ± 56 
(0.26 -181) 

15.44 ± 17.59 
(0.47- 55.78) 

AUCinf  
(µg/L/hr) 

94.7  ±  342 
(0.35- 1330) 

30.88 ± 83.53 
(0.72- 268.36) 

23.50 ± 25.95 
(1.26 – 85.07) 

Vz/F 
(L) 

60117 ± 52521 
(1338-190070) 

76463 ± 53823 
(2180-177310) 

23887 ± 25782 
(3425-93001) 

CL/F 
(L/hr) 

13251 ± 21297 
(23 - 84795) 

12555 ± 12220 
(112-41619) 

4306 ± 6965 
(353- 23813) 

kel  
(1/hr) 

0.159  ± 0.103 
(0.017-0.446) 

0.146  ± 0.082 
(0.051-0.309) 

0.143 ± 0.045 
(0.102-0.256) 

t1/2   
(hr) 

7.84 ± 9.73 
( 1.55 - 41.11) 

6.45 ± 3.84 
(2.25 – 13.52) 

5.16 ± 1.20 
( 2.71- 6.78) 

D
ex

tr
o

rp
h

an
 

tlag  
(h) 

0.19 ± 0.18 
( 0.0 - 0.5) 

0.33 ± 0.11 
(0.17 -  0.50) 

0.29 ± 0.11 
(0.17 -0.50) 

tmax 
(hr) 

1.58  ± 0.88 
( 0.75 – 3.25) 

1.47 ± 0.69 
(0.75 -3.25) 

1.73  ± 0.85 
( 0.5 -3.25) 

Cmax 
(µg/L) 

5.33 ± 2.45 
( 0.42- 9.8) 

4.70 ± 1.99 
(1.46 – 8.86) 

6.37  ± 2.92 
(2.65 - 11.44) 

AUCt 
(µg/L/hr) 

22.4  ± 6.56 
(5.18 - 34.4) 

16.58  ± 6.45 
(8.60 – 31.03) 

22.94 ± 12.67 
( 5.06- 48.9) 

AUCinf  
(µg/L/hr) 

23.86  ± 6.56 
(7.65- 35.54) 

17.58  ± 6.68 
( 9.25- 32) 

25.34 ± 13.95 
( 5.68- 54.24) 

Vz/F 
(L) 

12087 ± 16032 
( 4164- 68793) 

10221 ± 5017 
(4443 - 17989) 

7777 ± 5143 
( 2263-21002) 

CL/F 
(L/hr) 

1422 ± 738 
(844- 3922) 

1929  ± 705 
( 938 - 3244) 

1690 ± 1320 
( 553- 5286) 

kel  
(1/hr) 

0.163   ± 0.063 
(  0.057-  0.28) 

0.206  ± 0.055 
( 0.078-0.272) 

0.214  ± 0.032 
(0.165-0.254) 

t1/2   
(hr) 

5.02 ± 2.48 
( 2.47- 12.16) 

5.60  ± 3.25 
( 3.14-14.29) 

3.31  ± 0.53 
(2.73 –  4.21) 

Dextromethorphan was administered as a single oral dose of 30 mg. The last plasma samples were 

obtained at 24 hr in study A, and B, and 12 hr in study C (see method section). tmax is the time of 

maximum concentration (Cmax); t1/2is the elimination half life; kel is the elimination rate constant, AUCt 

and AUCinf are the area under the plasma concentration-time curve up to last observation and infinity; 

Vz/F is the apparent volume of distribution, and CL/F is the apparent total clearance. 
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Modelling all data with the basic structure 4-compartment model (see Methods section) was 

not sufficient to describe the data, with misspecifications especially for parent 

concentrations in plasma. Addition of a peripheral compartment for dextromethorphan was 

associated with a significant drop in the objective function value (ΔOFV = -114). Based on 

individual and population predictions, this model was still unable to account for the early 

appearance of dextrorphan in plasma. Therefore, other models (Piotrovskij 1997; 

Moghadamnia et al. 2003; Levi et al. 2007) that take the first pass metabolism into account 

were tested. These models were stepwise simplified or extended for modelling the available 

data. A hypothetical metabolism compartment was added, which was assumed to be in 

rapid equilibrium with the central compartment of the parent drug, with all metabolic steps 

taking place in this compartment. After administration of the drug, it was assumed that the 

drug goes from the absorption site to the metabolism compartment before reaching the 

plasma. The model specifications are given in appendix A. This model was associated with a 

profound drop in the objective function value (ΔOFV = -324). Inclusion of a lag-time 

parameter led also to further significant drop in the objective function (ΔOFV = - 45). 

Disposition kinetics revealed that dextromethorphan is widely distributed and rapidly 

metabolized to dextrorphan. As expected, CYP2D6 genotype had a major impact on the 

metabolic clearance (ΔOFV = - 532). About 55% of the interindividual variability (CV %) in 

dextromethorphan metabolic clearance, CL23, was explained by addition of 2D6 genotypes. 

Inclusion of urine pH values as a covariate on renal clearance of dextromethorphan led to 

significant drop in objective function value (Δ OFV= -105). The best form of this relationship 

was that included in the final model and is described by the following empirical equation: 

s

r
pH

TVCLCL













7.5
 

where, CLr is the individual value of renal clearance, TVCL is the population value of renal 

clearance, the value 5.7 represent a published mean of urine pH in humans (Florence, A T 

and Attwood, D 2006), pH is the measured individual urine pH at each collection period, and 

θs is the shape parameter which explains the change in renal clearance in terms of change in 

urine pH on renal. Using the non-ionized fraction of dextromethorphan calculated according 

the Henderson-Hasselbalch equation as a covariate was not superior to this equation. 

Including an effect of urine pH on renal clearance of dextrorphan did neither improve model 

fitting nor led to a decrease in the OFV value. 



RESULTS 

 

79 

 

The model identified age as a recognizable covariate contributing to interindividual 

variability in apparent volume of distribution of dextrorphan (Δ OFV = -21.9) and the 

clearance of dextrorphan to other species, CL30, (Δ OFV = -5.8). This covariate was modelled 

according to the relationship: 

θPV = θPV ∙ EXP (θAGE  ∙ (AGE – 27) 

θPV is the population value of the model parameter, θTV is the typical value in an individual 

with age of 27 years (the median age in this study). θAGE is the fractional change in θPV per 

year different from 27 years of age. None of other apparent volumes of distribution, 

clearance, or intercompartmental clearance parameters has been found to be influenced by 

age in this study. Neither subject’s body weight nor body height was found as significant 

covariates on model disposition parameters. 

Plasma data were best fitted if a combination of an additive and proportional error terms 

were used, while urine data were best fitted with proportional error terms. The blueprint of 

the final model is shown in Figure 24 and its specifications are given in Figure 25. The 

descriptive equations used are explained in Figure 26.  

The final pharmacokinetic parameter estimates with the corresponding 95% confidence 

intervals are shown in Table 9. The apparent metabolic clearance (CL23) estimate ranged 

from 10 to 10030 L/h in this population. In view of a hepatic blood flow of approximately 

1.35 L/min in healthy young volunteers (Yzet et al. 2008) it implies largely extrahepatic 

metabolism. This is in accordance with the large apparent volume of distribution. The 

fraction of this clearance attributable to the presence of the *1 allele was on an average of 

2.5-fold greater than that mediated by allele*2, whereas the *41 allele showed the lowest 

activity: the point estimates per each *1 allele is 5010 L/h versus 2020 L/h per the *2 allele 

and 85 L/h per the *41 allele. 

Diagnostic plots of the final model are given in Figure 27 for plasma data and in Figure 28 for 

urine data showing the model adequacy. The simulated 5th, 50th and 95th percentiles from 

the simulated data, based on the final model estimates, are shown in Figure 29. Examples of 

individual fitting are shown in Figure 30. Simulated time courses of plasma concentrations 

and cumulative amounts excreted in urine for different genotypes with homozygosity for 

individual alleles are given in Figure 31. The expected values for the metabolic ratio of these 

genotype for standard CYP2D6 phenotypic metrics (i.,e., at 3h in plasma and 0-8h in urine) 

are given in Table 10. 
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Figure 24: Blueprint of the final population pharmacokinetic model of dextrometorphan. 
 

A semi-mechanistic population model was uses to describe dextromethorphan (DEX) and dextrorphan 

(DOR) in plasma and urine after administration of single oral doses of 30 mg dextromethorphan 

hydrobromide. The absorption phase is described with a rate constant (ka) and lag time (tlag). Cz  is the 
concentration of dextromethorphan in the hypothetical metabolizing enzyme compartment 

(METENZ), which is in rapid equilibration with that in plasma. Q1 is the intercompartmental clearance 

between central compartment of DEX and METENZ. Cp and Cu are plasma and urine concentration of 
DEX or DOR in the corresponding compartment. CL23 is the apparent systemic metabolic clearance of 

DEX to DOR, which is the sum of CYP2D6-mediated clearance (CLCYP2D6) and non-CYP2D6 

mediated clearance (CLb). Q2 is the intercompartmental clearance between central and peripheral 

compartments of dextromethorphan, CL24 is the renal clearance of DEX under the influence of urine 
pH (UpH), CL35 represents DOR renal clearance, and CL30 is the clearance of DOR to other species. 
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Figure 25: Relevant NONMEM code of the final dextromethorphan model  
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Figure 26: Dextromethorphan model differential equations 
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Figure 27: Goodness-of-fit plots for plasma concentrations of dextromethorphan (left) and 

dextrorphan (right) 
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Figure 28: Goodness-of-fit plots for amounts excreted in urine of dextromethorphan (left) and 

dextrorphan (right) 
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Figure 29: Visual predictive check plots of dextromethorphan population model. 
Actual data (filled black circles=dextromethorphan data, unfilled circles= dextrorphan) are almost 

equally dispersed on the both side of simulated median (50
th

 percentile). Plasma observations are 

shown on the upper panel. 
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Figure 30: Examples of individual fitting of dextromethorphan (left) and dextrorphan (right) 

concentrations in plasma (circles = observations, line=individual predictions) 
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Figure 31: Simulated typical time courses in plasma and urine for individuals with different 

CYP2D6 genotypes 
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Table 9a: Population pharmacokinetic estimates of dextromethorphan and dextrorphan 

Model parameter§ Point 

estimate 

Standard 

error 

B
as

ic
 P

h
ar

m
ac

o
ki

n
et

ic
 P

ar
am

et
er

s 

Absorption rate constant , ka 
  0.25 0.23 – 0.27 

Lag time  0.31 0.30 – 0.32 

Apparent volume of distribution of dextromethorphan in 

central compartment   Vc,,dex 
648 493 - 803 

Intercompartmental clearance Q1 560 295 - 825 

Apparent volume of distribution of dextromethorphan in 

peripheral compartment  Vp, dex 
1560 1092 - 2028 

Intercompartmental clearance Q2 173 129 - 217 

Apparent renal clearance of dextromethorphan CL24 6.52 4.84 – 8.20 

Urine pH effect on dextromethorphan renal clearance in a 

man with a standard pH value of 5.7 
3.93 2.74 – 5.12 

Metabolic 

clearance 

CL23 

BCL23  10.1 6.38 – 13.82 

Allele *1 5010 3579 – 6441 

Allele *2 2020 624 - 3416 

Allele *41  85.0 63.8 – 106.2 

Apparent volume of distribution of dextrorphan Vm, dor 419 237 - 601 

Age effect  on  Vm, dor (% change/ year)** 0.042 0.016 – 0.068 

Apparent renal clearance of  dextrorphan CL35 45.5 34.1 – 56.9 

Apparent clearance of dextrorphan to other species  CL30 1260 1061 - 1460 

Age effect  on  CL30 (% change/ year)** 0.029 0.003 – 0.055 

B
et

w
ee

n
 s

u
b

je
ct

s 

va
ri

ab
ili

ty
 (

B
SV

) 

BSV_ka (%CV) 20.1 1.3* 

BSV_CL24 (%CV) 69.5 12.5* 

BSV_ CL23 (%CV) 73.8 13.6* 

BSV_CL35 (%CV) 73.8 10.6* 

BSV_CL30 (%CV) 44.3 5.18* 

R
es

id
u

al
 v

ar
ia

b
ili

ty
  

P
la

sm
a 

DEX 
Proportional error (CV %) 30.6 1.61* 

Additive error (ng/mL) 0.004 0.122* 

DOR 
Proportional error (CV %) 32.6 1.06* 

Additive error (ng/mL) 0.006 0.18* 

U
ri

n
e 

DEX Proportional error (CV %) 56.2 3.82* 

DOR Proportional error (CV %) 44.8 2.95* 

§
see Figure 24 for individual parameters; *= percentage of relative standard error 

** centered around 27 years 
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Table 10:  Expected [dextrorphan/ dextromethorphan] metabolic ratios in plasma and urine for 

different genotype* 

Genotype *1/*1 *2/*2 *41/*41 *4/*4 

Plasma metabolic ratio (3h) 8.6 3.61 0.20 0.011 

Urinary metabolic ratio (0-8 h) 68.2 26.6 1.26 0.07 

*27 years old male having urine pH of 5.7 
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3.4 Phenprocoumon 

Relative frequency of CYP2C9 alleles was CYP2C9*1, 79.3 %; CYP2C9*2, 13.5 %; and 

CYP2C9*3, 7.2 %). Details of CYP2C9 and VKORC1 alleles are presented below in Table 11. 

The weekly phenprocoumon dose ranged from 3.75 to 37.5 mg. There were large 

interindividual differences in plasma concentrations especially for the parent substance. 

Mean trough plasma concentration ± SD (range) of phenprocoumon, 4`-OH phenprocoumon and 

7-OH phenprocoumon were 2744 ± 1057 (256 – 6510), 56.1 ± 27.3 (11.5 – 137), and 63.8 ± 31.9 (6.8 

– 163) ng/mL, respectively. Measured INR values ranged from 1.10 to 5 (mean±SD: 2.54±0.57). 

Table 11:  Observed CYP2C9 and VKORC1 genotypes of 278 patients participated in 

phenprocoumon study. 

Characteristics Value 

C
Y

P
2

C
9

  

ge
n

o
ty

p
e

s 

*1/*1 172 

*1/*2 61 

*1/*3 36 

*2/*2 5 

*2/*3 4 

*3/*3 0 

V
K

O
R

C
1 

 g
en

o
ty

p
es

 

 

1173C > T 

CC 97 

CT 130 

TT 51 

 

36G > A 

GG 271 

GA 7 

AA 0 

 

85G > A 

GG 277 

GA 1 

AA 0 

 

106G > T 

(Asp36Tyr) 

GG 276 

GT 2 

TT 0 

 

129C > T 

CC 275 

CT 3 

TT 0 

 

358C > T 

CC 275 

CT 3 

TT 0 
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Categorization of doses and INR measurements for the different combination of CYP2C9 and 

VKORC1 polymorphisms in this population are given in Table 12. 

 
Table 12:  Empirically administered phenprocoumon dose and measured INR values of 

participants for each CYP2C9 and VKORC1 polymorphisms group. 

 CYP2C9 
*1/*1 

CYP2C9 
*1/*2 

CYP2C9 
*1/*3 

CYP2C9 
*2/*2 

CYP2C9 
*2/*3 

V
K

O
R

C
1

 C
C

 Dose 
(mg /week) 

17.89  ±  5.47 
(7.5 – 28.5) 

14.83  ± 6.97 
(6 – 37.5) 

14.08  ± 3.80 
(7.5 – 21) 

15 NA 

INR 2.48  ±  0.51 
(1.4 – 3.71) 

2.23  ±  0.50 
(1.1 – 3.0) 

2.77  ±  0.55 
(2.0 – 3.62) 

1.7 NA 

n 61 22 13 1 NA 

V
K

O
R

C
1

 C
T

 Dose 
(mg /week) 

14.50  ±  5.42 
(4.5 - 36) 

12.88  ± 4.23 
(5.25 – 22.5) 

10.78  ± 2.97 
(5.25 – 19.5) 

9.58  ±  0.80 
(9 – 10.5) 

9.0  ± 5.41 
(4.5 – 15) 

INR 2.60  ±  0.63 
(1.58 – 5.0) 

2.63  ±  0.66 
(1.2 – 3.8) 

2.59  ±  0.50 
(1.47 – 3.8) 

2.90  ±  0.26 
(2.6 – 3.1) 

2.51  ± 0.41 
(2.07 – 2.89) 

n 78 26 20 3 3 

V
K

O
R

C
1

 T
T

 Dose 
(mg /week) 

9.47  ±  5.41 
(3.75 – 15.0) 

6.84  ±  2.89 
(3.75 – 10.5) 

8.00  ±  2.27 
(6.0 – 9.0) 

6.00 5.25 

INR 2.55  ±  0.41 
(1.5 – 3.6) 

2.62  ±  0.56 
(1.7 – 3.48) 

2.66  ±  0.52 
(2.42 – 2.9) 

NA 1.50 

n 33 13 3 1 1 

Data given as mean ± SD (range); n= number of patients in each group 

 
 
Empirical dose requirements: 
There was no obvious effect of CYP2C9 and/or VKORC1 genotype on the INR reached, with 

mean values for the individual groups randomly distributed in the 2.23-2.90 range (Table 

12). In contrast, the effect of CYP2C9 polymorphism in this population is reflected by a 

higher dose requirement for CYP *1/*1 carriers compared to carriers of mutant alleles. The 

difference is approximately 1.25-fold relative to heterozygote carriers of one mutant allele 

and 1.5-fold compare to *2/*2 individuals. VKORC1 CC carriers required a 2-fold higher dose 

than TT carriers, with heterozygous individuals in between.  

 
PK model: 
All plasma concentrations of the parent and its metabolites were evaluated simultaneously. 

A three compartment model was found appropriate to describe the data of the parent at its 

4´- and 7-hydroxy metabolites.  
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The total apparent clearance of phenprocoumon (CLt) was defined as the sum of metabolic 

clearance mediated by CYP2C9 enzyme (CLCYP2C9) and other pathways (CLN2C9) as follows: 

                             

CLt = CLCYP2C9 + CLN2C9 

where CLCYP2C9 was coded as:  

CLCYP2C9 = n*1 · CL*1+ n*2 · CL*2 + n*3 · CL*3 

 

The CL*1, CL*2 and CL*3  stand for the activity of each *1, *2 and 3 individual allele, and n*1, 

n*2,·and n*3 for the number of these alleles, respectively. 

The formation clearance of PPC to 4-hydroxy (CL4'-OH) and 7-hydroxy (CL7-OH) metabolites 

were assumed to be mediated by CYP2C9 as 

 

CL4'-OH = f4'-OH · CLCYP2C9 

CL7-OH  = f7-OH · CLCYP2C9 

 

where f4'-OH and f7-OH are the fraction of total CLCYP2C9 resulting in 4'-OH and 7-OH metabolites 

formation. To maintain the mass balance, the clearance of phenprocoumon to non-*4’- and 

7-]-hydroxymetabolites, CLother, was modelled according to the following equations: 

 

CLother = CLt – (CL4'-OH + CL7-OH) 

 

Identified covariates contributing significantly to the interindividual variability and model 

fitting were CYP2C9 variants, age, and body weight. Inclusion of patients alleles in the model 

led to marked drop in the objective function value compared with a model without CYP2C9 

information (∆OFV= - 38). An age dependent decrease of clearance modeled via an apparent 

proportional decrease function was associated with significant drop in the OFV (∆OFV= - 35). 

Centering the age model to a 50 years old patient or to the data median (70 years old) did 

not improve the model (∆OFV= - 0.3). Body mass index did not result in model improvement 

(∆OFV= - 0), while inclusion of body weight led to additional drop in the objective function 

value (∆OFV= - 28). Finally, inclusion of sex as a covariate led to significant drop in objective 

function (∆OFV= -5), but the 95% confidence interval included unity. Therefore, the impact 

of this covariate was excluded in the final model.  

Inclusion of individual habits, alcohol, coffee, tea, and cola drinking did not lead to a 

significant drop in the objective function. Accordingly, the final PK model included individual 
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CYP2C9 alleles, age, and total body weight as important covariates on the total clearance of 

phenprocoumon. They were best described according to the following relationship: 
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An interindividual variability term was quantified on the total apparent clearance of 

phenprocoumon. A blueprint of the assumed PK population model is given in Figure 32. The 

control stream of the final PK model is given in Figure 33. 

The model identified notable differences in the metabolic activity between CYP2C9 alleles. 

The estimated metabolic activity value were about 12.3, 6.5, and 2.9 mL/h for *1, *2, and *3 

alleles (per allele), respectively. The resulting pronounced differences for the respective 

genotypes however were dampened by a clearance fraction not mediated by CYP2C9 of 15.1 

mL/h. A summary of population pharmacokinetic parameters estimates of the final model is 

shown in Table 13. The Goodness-of-fit plots of the pharmacokinetic model are given in 

Figure 34.  
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Figure 32: Blueprint of the final population PK-PD model of phenprocoumon (PPC) and its 4'- 

and 7-hydroxy metabolites.  

 
Drug input was modelled as a constant infusion of administered dose per week, CLT is the total 

clearance of PPC, CLN2C9 is the non-CYP2C9 mediated clearance of PPC, CLCYP2C9 is the CYP2C9-

mediated clearance of PPC, f4'-OH and f7-OH are the respective fractions of CLCYP2C9 resulting in 4'-OH 

and 7-OH metabolites formation, CLCYP2C9,other is the CYP2C9-mediated clearance of PPC not 

resulting in formation of 4´-OH or 7-OH metabolites, INR is the international normalized ratio, SCC, 

SCT, and  STT  control the rate increase in PPC response according to vitamin K epoxy reductase 

complex 1 (VKORC1) variants.  
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The NONMEM code used for phenprocoumon pharmacokinetic model 

 

 

 
 
 
 
 
Figure 33: Relevant NONMEM code of the final phenprocoumon PK-model 
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Figure 34: Goodness-of-fit plots for the final pharmacokinetic model of phenprocoumon 

Phenprocoumon (filled circles), 4'-hydroxy phenprocoumon (open circles) and 7-hydroxy 

phenprocoumon (triangles) 
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Table 13: Population pharmacodynamic parameter estimates of phenprocoumon (PPC) 

Parameters 
Point 

estimates 
95% CI 

Clearance of PPC (CLCYP2C9) 

per individual CYP2C9 allele 

CYP 2C9 *1 (mL/h) 12.3 7.62 – 16.98 

CYP 2C9 *2 (mL/h) 6.53 3.20 – 9.86 

CYP 2C9 *3 (mL/h) 2.85 0.10 – 5.61 

CLNon-2C9; clearance of PPC by non-CYP2C9 pathway (mL/h) 15.1 7.24 – 22.96 

Between subject variability in the apparent PPC total CL (% CV) 30 9.7* 

f4'-OH; fraction of CLCYP2C9 responsible for 4'-OH-PPC formation 0.15 0.09 – 0.21 

Apparent clearance of 4´-OH-PPC  (mL/h) 144 114 - 174 

f7-OH; proportion of total CYP2C9 mediated clearance 
responsible for 7-OH-PPC formation 

0.49 0.45 – 0.53 

Exponential decline rate of total PPC clearance after 50 years 
(ml/hr/year) 

5.48 3.59 – 7.37 

Apparent clearance of 7-OH-PPC  (mL/h) 543 436 - 650 

Additive residual error for PPC concentrations (µg/mL) 0.1 fixed n.a 

Additive residual error for 4'-OH-PPC concentrations (ng/mL) 8 fixed n.a 

Additive residual error for 7-OH-PPC concentrations (ng/mL) 8 fixed n.a 

n.a.= not applicable. 
*= percentage of standard error  

 
 
 
 
 
PD model:  

The following linear model was assumed to predict INR:   

INR=E0+CPPC · SF 

where E0 is the basal level corresponding to the dose=0. This parameter was assumed to be one in 

these evaluations, CPPC is the predicted concentration of phenprocoumon at steady state, and SF 

(sensitivity factor) is a parameter governing the patient´s sensitivity to phenprocoumon. The 

variability in VKORC1 gene was assumed to be the major determinant factor of pharmacodynamics 

variability of phenprocoumon (Reitsma et al. 2005; Schalekamp et al. 2007; Stehle et al. 2008). The 

VKORC1 polymorphisms were coded as  
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The contribution of VKORC1 genotypes was identified as an important covariate. Subdividing 

the population into three groups CC, CT and TT was associated with a profound drop in the 

objective function value (∆OFV= - 106). Inclusion of other covariates did not improve the 

model fitting and none of them led to a significant decrease in the objective function. 

Accordingly, the final PD model includes only VKORC1 variants as covariates (Figure 32). The 

control stream of the final PD model is given in Figure 35. The goodness-of-fit plots of the 

pharmacodynamic model are given in Figure 36.  

 
 
 

 

 
 

Figure 35: Relevant NONMEM code of the final phenprocoumon PD-model 
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Figure 36: Goodness-of-fit plots for the final pharmacodynamic model of phenprocoumon 

Population predictions of INR represented as filled circles (base model) and open circles (final model) 

without and with VKORC1 polymorphisms, respectively. 

 

 

Summary of population pharmacodynamic parameters estimates from the final model are 

shown in Table 14. From this table, the highest values of the sensitivity factor (SF) was 

observed for the VKORC1 TT variant, while the wild type CC shows lower sensitivity. Based 

on these estimates, the trough phenprocoumon plasma concentrations required to reach a 

target INR value of 2.5 for individuals with CC, CT and TT variants of VKORC1 is 3.57, 2.5, and 

1.82 µg/mL, respectively. 
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Table 14: Population pharmacodynamic parameter estimates of phenprocoumon 

Parameters Point estimates 95%CI 

Basal INR value (E0) 1 Fixed n.a. 

SF  VKORC1 CC genotype 0.42 0.38 – 0.46 

SF  for VKORC1 CT genotype 0.60 0.55 – 0.64 

SF  for VKORC1 TT genotype 0.83 0.74 – 0.91 

Interindividual variability in SF (CV %) 39.6 12.2* 

Residual (additive) error for INR 0.033 Fixed n.a. 

E0 is the basal INR level corresponding to dose=0, SF is a parameter governing the patient´s sensitivity 

to phenprocoumon, n.a.=not applicable. 

*= percentage of standard error  

 

 

 

Simulation of phanprocoumon PK/PD profiles: 

Simulation of Based of steady state phenprocoumon plasma concentration profiles displays 

different scenarios according to CYP2C9 genotypes (Figure 37).  

 
Figure 37: Simulated mean phenprocoumon plasma concentrations for the different CYP2C9 

genotypes based on final model parameters. 

 (dose=2 mg/day, age=45 years, total body weight =70 kg). A volume of distribution of 12 L and 
absorption rate constant of 2 h

-1
 were assumed (Kitteringham et al. 1984; Kitteringham et al. 1985; 

Haustein and Huller 1994; Masche et al. 1999).  
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The simulation results for the effect of VKORC1 polymorphisms on determining the INR level, 

for the wild-type 2C9 *1/*1 genotype, is given in Figure 38. 

 
Figure 38: Simulated INR levels for different VKORC1 variants in individuals carrying 

CYP2C9 *1/*1 genotype.  

Simulated plasma concentration for CYP2C9*1/*1 carriers given in Figure 38 were used to drive INR 

prediction in PD-model.  

 

 

Maintenance dose calculations: 

Based on final PK/PD parameter estimates, the maintenance daily dose for phenprocoumon 

required to achieve a steady state INR of 2.5 in 18 different genetic combinations of CYP2C9 

and VKORC1 polymorphism are given in Table 15.  

 

Table 15: Predicted daily dose (mg) to achieve a steady state INR value of 2.5 in typical 

individuals having different combination of CYP2C9 and VKORC1 genotypes* 

Genotypes 
CYP2C9 

*1/*1 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3 

V
K

O
R

C
1

 CC 3.61 3.08 2.75 2.56 2.22 1.89 

CT 2.52 2.16 1.92 1.79 1.56 1.32 

TT 1.84 1.57 1.40 1.30 1.13 0.96 

*assuming a typical individual of 45 years old and 70 kg body weight  
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General algorithm to calculate the maintenance daily doses of phenprocoumon: 

The daily maintenance doses (Table 15) were calculated according to the following 

equations: 

 

tav CLCFDose 
 

Where Dose is the required dose, F is the bioavailable fraction of drug (this evaluation 

assumed 100% bioavailability i.e., F=1), avC is the average plasma concentration at steady 

state required to achieve a presumed target INR, and tCL is the total drug clearance. Based 

on VKORC1 variant avC  can be determined according to the following equation 

VKORC1geneTTfor

VKORC1geneCTfor

VKORC1geneCCfor

)/0.42E-(INR

)/0.42E-(INR

)/0.42E-(INR

C

0

0

0

av











 

0E
 
is the basic INR level in the absence of drug ( 0E  was assumed to be one in this 

evaluations). The total clearance of phenprocoumon (CLt) can be determined by the derived 

total clearance equation 
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Where n*1, n*2, and n*3 are the number of *1,*2,*3 alleles in individual CYP2C9 genotypes.  
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4.1 Fluorescein 

An ocular population model has been presented that adequately describes fluorescein 

pharmacokinetics in the anterior eye segment and estimates ocular and resulting systemic 

bioavailability of fluorescein from a lyophilisate relative to an eye-drop formulation in 

humans. These results confirm the original results (Dinslage et al. 2002; Lux et al. 2003; 

Steinfeld et al. 2004) of rapid release of the drug from lyophilisate and the higher 

bioavailability achieved from this formulation and provides a quantitative estimate for the 

difference. 

Fluorescein sodium is a water-soluble ophthalmologic diagnostic substance with a negligible 

binding affinity to any vital tissue, which accounts for its low toxicity. It is freely and widely 

distributed into ocular structures by diffusion; however, active transport is needed to reach 

the retina (Maurice 1967). After topical instillation of fluorescein as a solution, like any other 

aqueous preparation, the drug is rapidly washed out by tear secretion depending on the 

degree of lacrimation. The massive pre-corneal loss of fluorescein significantly limits its 

ocular bioavailability and presents unique challenges for achieving high concentration in the 

internal structures of the eye (Maurice 1967; Adler et al. 1971; Mishima 1981; Linden and 

Alm 1997). 

 

Different efforts have been made to enhance fluorescein bioavailability from conventional 

eye drops, all of which are based on prolonging the contact time on the ocular surface by 

way of increasing vehicle viscosity or topical instillation of large volume. Increasing vehicle 

viscosity in conventional eye drops may enhance fluorescein retention and decrease 

fluorescein loss via lacrimation (Adler et al. 1971; Ludwig et al. 1992; Linden and Alm 1997), 

but increasing viscosity is clinically limited by the corresponding increase in irritation and 

blurred vision that occur with some gel forming agents resulting in lacrimation and a higher 

blink frequency (Ludwig et al. 1992). Actually, the observed increase in the pre-corneal tear 

film retention was found to be mainly due to an increase in the tear reservoir volume of the 

delivery vehicle and not to be viscosity dependent (Benedetto et al. 1975). On the other 

hand, administration of five consecutive 10-μL fluorescein drops at only 1-min intervals 

resulted only in twofold higher concentration in the cornea and anterior chamber for 8 h 

(Linden and Alm 1997). In contrast, noncompartmental results show that the lyophilisate 
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significantly increased ocular fluorescein concentrations and the ocular bioavailability at 

least fivefold without the need to increase the dose. The probable mechanism is that the 

freeze-dried lyophilisate formulation resides for a longer period in the lower conjunctival 

fornix, resulting in higher tear film saturation before being washed out by tear secretion 

(Dinslage et al. 2002; Lux et al. 2003). 

 

NONMEM evaluation shows a rapid absorption phase for the lyophilisate formulation. The 

absorption rate constant (ka) was estimated at 16.7 h−1 (95% CI 12.3–21.1), which 

corresponds to an absorption half-life of about 2.5 min (calculated as t1/2 =ln2/ka). The 

absorption process is slower and longer than that after administration of eye drops, where 

absorption appeared to be completed at the time of the first measurement in study 1, i.e., 

after not more than 2 min. The shortness of the absorption phase from eye drops could be 

ascribed to the rapid loss of the drug from the conjunctival fornix. The prolonged absorption 

observed with the lyophilisate confirms the assumption of a longer pre-corneal/formulation 

contact time as the reason for effective absorption of fluorescein from lyophilisate (Dinslage 

et al. 2002). Furthermore, lyophilisate probably decreases its pre-corneal loss by reducing 

tear turnover because of its preservative-free properties. 

As soon as the fluorescein enters the cornea, it is rapidly distributed, mainly into the anterior 

chamber and then to other ocular tissues and the blood stream (Maurice 1967; McLaren et 

al. 1993). Alternatively, part of the absorbed fraction of the dose may be eliminated by the 

tears after which it enters the gastrointestinal tract via the nasolacrimal ducts and is 

reabsorbed into the circulation. The compartmental model indicates that the systemic 

bioavailability of fluorescein from lyophilisates via the ocular route is approximately four 

times that from eye drops. This can be attributed to the improvement in the absorption 

profile of fluorescein from lyophilisate. The advantage of compartmental analysis using 

NONMEM over noncompartmental analysis is that the noncompartmental analysis directly 

compares the ocular concentrations for both formulations, while the compartmental 

analysis also compares the systemic bioavailability of fluorescein via the ocular route from 

both formulations and is also able to jointly evaluate different data sets. In this study, the 

systemic fluorescein concentration in plasma was not measured, thus, the systemic 

bioavailability of fluorescein originating from intestinal absorption of the dose fraction lost 



DISCUSSION 

 

106 

 

by lacrimation can not be judged, but probably this would be higher for the eye-drop 

formulation. 

 

4.2 Clarithromycin 

This study proposes a population pharmacokinetic model in which the nonlinearity in 

clarithromycin pharmacokinetic profile was quantitatively described in term of an inhibitable 

fraction of the total clearance. This was modelled by addition of an inhibition compartment 

to the model, where the change of clarithromycin clearance over time in the drug 

compartment is dependent on the concentration in the inhibition compartment. This study 

supports the idea of explaining the auto-inhibition effect of a drug on its metabolizing 

enzyme by inclusion of the inhibition compartment side by side to the drug compartment. 

This model was successively used to describe the inhibitory effect of linezolid on its own 

metabolizing enzyme and the nonlinear increase in the extent of bioavailability, which leads 

to the appearance of the side effects with time (Plock et al. 2007). The new features of the 

presented clarithromycin model were the incorporation of a Weibull function input, the 

allometric scaling approach for the covariate “body weight” on clearance and volumes of 

distributions, the ability to describe parent and metabolite plasma concentration profiles, as 

well as the auto-inhibition process of the parent elimination over time. 

A single Weibull function successfully described the absorption process of clarithromycin. 

The adequacy of the Weibull function emerges in its ability to reflect the change in the 

absorption process from linearity with time, most probably as a consequence of intestinal 

CYP inactivation. Thus, an adequate empirical description of the absorption phase greatly 

contributed to the successful modelling of the non-linear elimination.  

In the final model, distribution of clarithromycin throughout the body was assumed to follow 

linear kinetics and a one-compartment model was sufficient. This is in accordance with a 

previous study (Chu, S et al. 1993) and with data on tissue pharmacokinetics obtained by 

microdialysis showing that elimination rather than distribution processes govern the 

concentration vs. time profiles (Traunmuller et al. 2007). The observed peak concentrations 

shown in individual predictions versus observations plot for clarithromycin (see 

clarithromycin result Figure 17) were slightly higher than the fitted concentrations. This 

might have been caused by the presence of a second disposition compartment. Attempts to 
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estimate a model with two disposition compartments for clarithromycin however were 

unsuccessful. 

The active metabolite 14-(R) hydroxyclarithromycin may be formed in part in the 

enterocytes as a result of first pass metabolism. This process could not be modelled 

separately here because the metabolite was not administered separately neither were 

clarithromycin i.v. data available in this study. Thus, the final model assumption was that all 

clarithromycin molecules are converted to the metabolite. Modelling additional elimination 

pathways was not possible because neither metabolite formation fraction was known nor 

the metabolite was administrated intravenously. This assumption should not affect the 

quality of the model fits or its predictive performance. Modelling the elimination process of 

the hydroxyl metabolite with a saturable kinetic model did not improve the model fitting, 

however circumstantial evidence for nonlinearity has been reported (Ferrero et al. 1990b; 

Chu, S et al. 1993) as this metabolite undergoes further biotransformation (Ferrero et al. 

1990b; Yamamoto et al. 2004). 

For the final model, apparent volume of distribution of clarithromycin was 172 litres (95%CI 

145–198), which is in agreement with the previously reported range 126-306 litres (Chu, S et 

al. 1993; Traunmuller et al. 2007). The apparent total clearance of clarithromycin was 60 L/h 

and it could be inhibited to 10% of its original value (Table 5). This point estimate of oral 

clearance is the basic clearance value and decreases over time with the subsequent doses 

until steady state is achieved. Hence, it should not be compared directly with the previously 

reported range for apparent total clearances at steady state 19-105 L/h with similar 

regimens (Chu, S et al. 1993; Gorski et al. 1998; Traunmuller et al. 2007). This decrease in the 

clarithromycin clearance reflects the increasing inhibition of the metabolizing enzyme CYP3A 

during long-term clarithromycin intake, which is important to optimize dosage regimens of 

co-administered CYP3A substrates. However, while more complex inhibition models are 

probably required if other compounds that modify CYP3A4 activities or expression are 

present, the model may still be considered as long as no specific data for these substrates 

are available. Furthermore, an approximate 60 % decrease in CYP3A activity was observed 

for 500 mg clarithromycin b.i.d at the steady state (see clarithromycin results Figure 20, 

lower panel). Therefore, concentrations of co-administered CYP3A-substrates may be more 

than doubled which may reach clinical relevance (Fuhr 2008). For higher doses, a further 

pronounced decrease of CYP3A activity is to be expected. 
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The application of the fAUC/MIC concept for the current study assumes that the model 

adequately describes the pharmacokinetics of clarithromycin including its metabolism and 

that clarithromycin mediates the main part of the antimicrobial activity while the metabolite 

makes only a minor contribution. The appropriateness of the former assumption was 

confirmed via visual predictive checks. Given that the AUC of clarithromycin is approximately 

3-times as high as for its metabolite, the latter assumption seems reasonable (Jones et al. 

1990; Martin et al. 2001). The calculated fAUC24, plasma values at steady state after different 

doses indicated that the normal adult dose of 500 mg b.i.d is sufficient to produce effective 

antibacterial activity (fAUC/MIC >35 h (Traunmuller et al. 2007)) as long as the desired MIC 

of the pathogens is approximately 0.25 mg/L or lower (see clarithromycin results Table 6) 

with a probability for target attainment of 91% (see clarithromycin results Figure 22). The 

presented model suggests that increasing the dose two-fold from 500 mg b.i.d. to 1000 mg 

b.i.d. would increase steady state exposure of clarithromycin by almost 4-fold, suggesting 

that infections with pathogens with MIC values of up to 1 mg/L could be treated successfully. 

However, further clinical studies are required to support this conclusion. 

Because of both a rapid elimination and a rapid exchange with tissues including the 

inhibition compartment defined here, in subjects without hepatic and/or renal failure no 

further increase of exposure upon chronic administration of the 500 mg standard dose is 

expected after the 2nd day of treatment (see clarithromycin results Figure 21). Accordingly, 

both therapeutic action and inhibitory effects on co-administered drugs should have reached 

its maximum on the 2nd day. This provides some re-assurance that no late augmentation of 

any drug interactions would occur, although depending on the co-administered drug it may 

take longer than 2 days to subsequently reach its new steady-state. Also, the hope for 

subsequently increasing concentrations to support continuation of an unsuccessful 

antimicrobial therapy beyond a few days of treatment seems not justified for the 500 mg 

dose. In contrast, it may take several days until steady state is reached with the 1000 mg 

b.i.d dose, thus changes in the extent of inhibition and in the bacterial susceptibility e.g. due 

to emergence of resistance need to be taken into account during this period. The theoretical 

benefit of the high increase in plasma concentrations with increasing the dose to obtain 

better clinical outcomes remains to be assessed in clinical trials. Because it will take some 

time for the auto-inhibition of clearance to result in notably higher AUCs and the clinical 
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success probably depends on antimicrobial exposure during the first day(s) of therapy, the 

clinical benefit of the auto-inhibition might be less pronounced than predicted by the 

steady-state AUCs. For the same reasons, it might be reasonable considering a 

clarithromycin loading dose. 

Thus, the developed semi-mechanistic population PK model has the advantage of the ability 

to describe both the concentration-time course of clarithromycin concentrations and of the 

inhibitory action on CYP3A, and especially the change of its clearance over time. The model 

does not incorporate “all” underlying mechanisms, such as clarithromycin first pass 

metabolism and a separate time course for inhibition of intestinal and hepatic CYP3A 

enzymes. However, the model was still useful for the assessment of a possible dose 

adjustment, as well as for the purpose of further pharmacokinetic/pharmacodynamic 

considerations and model development activities.  

 

 

 

4.3 Dextromethorphan 

The main objective of this study was to quantify the metabolic activity of attributable to 

individual CYP2D6 alleles using dextromethorphan as a probe drug. 

Based on the final model estimates, the activity of the *1 allele is about two-fold higher than 

*2 allele. This result supports pervious in vitro results obtained for the substrate 

dextromethorphan where the same ratio was found (Bapiro et al. 2002). Furthermore, this 

study shows that the metabolic clearance of *41 allele is markedly less than that of the 

CYP2D6 *1 allele. While it is well-known that the activity for the *41 allele is lower than that 

for *1 and *2 alleles, this is the first quantitative estimate for the respective in vivo activity. 

The mean CYP2D6 mediated clearance CLCYP2D6 is about 15030 L/h in subjects who carry the 

CYP2D6 *1/*1x2 genotype, whereas it is about 170 L/h in subjects who carry two 

CYP2D6*41/*41 alleles, and obviously zero in the subpopulation carrying two dysfunctional 

alleles such as CYP2D6 *4/*4 genotype. This wide range of reflects the interindividual 

difference in the metabolic activity of CYP2D6 enzyme. 

The obtained results that *1 allele is related to an about 2-fold higher activity than the *2 

alleles is in contradiction to the assumption of equal activity as was made for the activity 
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score (Gaedigk et al. 2008) and semi-quantitative scoring (Steimer et al. 2004) systems. 

Similarly, in the previous systems (Steimer et al. 2004; Gaedigk et al. 2008) the presumed 

value for *41 allele was about half of the wild-type *1 allele, which is in contrast with the 

estimated difference in this study (~ 60 fold). Dextromethorphan pharmacokinetics for these 

different scenarios were simulated based on final parameter estimates (see 

dextromethorphan results Figure 31). The new results warrant further evaluation for other 

CYP2D6 substrates since previous studies suggested that the allelic activity of CYP2D6 

issubstrate dependent (Kirchheiner et al. 2004b; Shen et al. 2007; Kusama et al. 2009).   

 

The final model is able to describe the pharmacokinetic profiles of dextromethorphan and its 

major metabolite adequately. In this model, inclusion of the hypothetical metabolism 

compartment was able to explain the appearance of dextrorphan in plasma before 

dextromethorphan. The presented model shares some features with previously reported 

models that have been successfully applied to describe first-pass metabolism (Moghadamnia 

et al. 2003; Levi et al. 2007). The specific features in the presented model for 

dextromethorphan are that, (i) activity of active alleles of CYP2D6 were estimated 

separately, (ii) urinary data of both parent and metabolite were included in the model and 

simultaneously evaluated with plasma data; (iii) it can be extended to estimate the activity 

of other additional alleles such as *9, *10, and *17 alleles. These features increase 

applicability of the model. Clinical implications of these features remain to be ascertained. 

The presented results are in line with published data assuming a two-compartment model 

for dextromethorphan (Moghadamnia et al. 2003; Duedahl et al. 2005) and one-

compartment models for dextrorphan (Moghadamnia et al. 2003). The absorption rate 

constant estimate is about 0.25 h-1, which is in the range of previously reported values of 2.6 

h-1 (Moghadamnia et al. 2003) and 0.1 h-1 (Silvasti et al. 1987). The lag time was estimated to 

be 0.31 h, which is also within the range of previous studies with 0.8 h (Moghadamnia et al. 

2003) and 0.087 h (Duedahl et al. 2005). The model estimates for the apparent central and 

peripheral volumes of distribution of dextromethorphan in this study are smaller 648 L and 

1560 L compared with the previous ones 961 L and 1951 L (Moghadamnia et al. 2003). The 

volume of distribution of dextrorphan with 419 L is smaller than the previously reported 

value 650 L (Albers et al. 1995) and 3776 L (Moghadamnia et al. 2003), but higher than other 

reported value 109 L (Demirbas et al. 1998). The significant role of urine pH as a covariate to 
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explaining the variability of dextromethorphan between individuals is in agreement with a 

previous study, where urinary pH led to about 20-fold variation in the urinary metabolic ratio 

(Labbe et al. 2000). Taken together, these comparisons suggest that the developed model is 

valid.  

The goodness-of-fit plots (see dextromethorphan results Figure 27) show a possible 

overestimation of some dextromethorphan and dextrorphan concentrations due to model 

misspecification which is a semimechanistic rather than a fully mechanistic model. This may 

be explained by the existence of other sources of variability that could not be taken in to 

account in the final model. Possible sources could be the interindividual variability in 

CYP3A4/5, incomplete description of the first pass metabolism like the formation of 

methoxymorphinan from dextromethorphan, the lack of modeling the metabolic fate of 

dextrorphan, the possible contribution of glucuronidation, and inter-study variability. The 

interaction between the final model and the study design can be seen from the simulated 

predictive check plots (see dextromethorphan results Figure 29). The noticed overestimation 

may be also explained in part by the fact that many samples as in the terminal phase of 

plasma dextrorphan profiles had concentrations below the lower limit of quantification. 

However, generally these inadequately fitted concentrations form only a negligible fraction 

of the whole data set.  

 

4.4 Phenprocoumon 

In the present study, phenprocoumon PK and PD parameters were estimated by a semi-

mechanistic model in patient population and found that exposure depends on the metabolic 

activity of CYP2C9 variants, individuals´ age, and weight, while the response depends on 

VKORCI variants. The parameter estimates which were obtained also taking metabolite 

concentrations into account enable a genotype-based dose adjustment. 

 

The mean apparent total clearance of phenprocoumon in this population was 0.037 L/h and 

ranged from 0.012 to 0.077 L/h depending on the CYP2C9 polymorphisms, age, and weight. 

Previous studies showed an apparent clearance of 0.04-0.06 L/h (Kitteringham et al. 1984; 

Russmann et al. 2001; Kirchheiner et al. 2004c), which is in agreement with this evaluation. 

The estimated fraction of CYP2C9-mediated clearances leading to 7-OH-PPC formation (49%) 
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was more than 3-fold compared with that resulting in 4´-OH-PPC formation (14%). This is in 

agreement with previous findings that demonstrated the higher affinity of CYP2C9 to form 

the 7-hydroxy metabolite (Ufer et al. 2004c). The model underestimates the higher 

concentrations of metabolites (see phenprocoumon results Figure 35). This is most probably 

caused by model mis-specifications since the formation of these metabolites, mainly the 4´-

OH metabolite, is also mediated by other CYP enzymes (Ufer et al. 2004b; Ufer et al. 2004c; 

Kammerer et al. 2005). However, based on the available data, modelling such additional 

pathway was unsuccessful. 

 

The proposed linear PD model is quite simple and approximates the biological process of 

increasing INR values after phenprocoumon treatment. Its performance at the observed 

concentrations in this study is reasonably well. The limited INR range did not enable to use a 

more complex model, which therefore cannot be extrapolated to higher concentrations. This 

type of pharmacodynamic models has also been applied to describe warfarin concentration-

effect relationship (Sheiner 1969; Holford 1986). In the absence of drug, the model mimics 

normal INR value through the assumed basic value of unity (Harrington et al. 2008).  

 

In previous clinical pharmacokinetic studies on phenprocoumon, a higher metabolic capacity 

for the CYP2C9*1 allele compared with the *3 allele after single doses in healthy population 

was reported (Kirchheiner et al. 2004c). In the present study, the activity of *2 and *3 

variants of CYP2C9 was found to be 47% and 77% lower than that of *1 allele (see 

phenprocoumon results Table 13). The apparent total clearance in carriers of CYP2C9*1/*1 

genotypes was clearly higher than that in CYP2C9*3 homozygous individuals (0.042 L/h vs. 

0.022 L/h). In general, these results are in concordance with previous phenprocoumon 

studies that have reported the important role of CYP2C9 genotypes (Hummers-Pradier et al. 

2003; Schalekamp et al. 2004; Qazim et al. 2008; Stehle et al. 2008; Werner et al. 2009). The 

slightly more pronounced differences in clearance estimates (2-fold) compared to reported 

differences in empirical doses (1.5-fold) suggests that doctors are reluctant to prescribe 

required doses at the extremes of the dose range. A simulation of the impact of different 

CYP2C9 genotypes on steady state phenprocoumon concentrations is shown in Figure 40 

(see phenprocoumon results). This figure also shows the longer time elapsed until 
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phenprocoumon reaches its steady state in *3/*3 carriers compared with wild type *1/*1 

genotype carriers. 

 

Among tested covariates, VKORC1 polymorphisms variation was the only covariate that 

showed an impact on the pharmacodynamic model by modifying the sensitivity to 

phenprocoumon concentration reflecting different level of INR (see phenprocoumon results 

Table 14). These scenarios can be clearly observed in Figure 41 (see phenprocoumon 

results). The estimated difference in the INR for VKORC1 polymorphism suggests a significant 

increase in the anticoagulation sensitivity in VKORC1 TT carriers, indicated by notable higher 

estimates of the sensitivity factor compared with wild-type CC carriers (0.83 vs. 0.42). 

Correspondingly, the concentrations required to achieve an INR value of 2.5 for carriers of 

the VKORC1 TT variant was calculated to be 2-fold smaller compared with a homozygous 

VKORC1 CC carrier (1.82 vs. 3.57 µg/ml). The magnitude of these differences is very similar 

to empirical dose differences reported for patients under phenprocoumon therapy 

(Schalekamp et al. 2007; Stehle et al. 2008; Werner et al. 2009).  

 

It has been demonstrated that carriers of a combination of a low activity CYP2C9 variant and 

a high sensitivity VKORC1 polymorphism need more accurate dose adjustment to avoid 

increased risk of severe over-anticoagulation (Ufer 2005b; Schalekamp et al. 2007; Stehle et 

al. 2008). While the present study was not aimed to study the risk of bleeding, the 

consistency of results across studies suggests that INR is an appropriate surrogate parameter 

also for the comparison between genotypes. The required daily dose needed to maintain an 

INR value of 2.5 at steady state for subjects with 2C9*1/*1 - VKORC1 CC genotypes was 

calculated to be approximately 2-fold higher than that required for 2C9*3/*3 - VKORC1 CC 

genotype carrier and 4-fold higher than that required for 2C9*3/*3 - VKORC1 TT carrier (see 

phenprocoumon results Table 14). The magnitude of differences supports that prospective 

dose adjustments based on both CYP2C9 and VKORC1 genotypes may be beneficial for 

patient under phenprocoumon therapy (Hummers-Pradier et al. 2003; Schalekamp et al. 

2004; Qazim et al. 2008; Stehle et al. 2008; Werner et al. 2009).  

 

The additional information such as the severity of the patient’s disease, liver and renal 

functions, CYP3A5 genotypes, CYP3A phenotypes, plasma concentration of further hydroxyl 
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metabolites, enantioselective concentrations of phenprocoumon and its metabolites were 

not available.  

The presented study has several limitations; the sampling was limited to a single observation 

per patient, data were obtained from a heterogeneous population and the small 

(therapeutic) range in observed INR values did not allow for assessment of a full PD model. 

The structure of the presented semi-mechanistic PK model is not only a way to evaluate the 

role of CYP polymorphisms but it makes use of all available information with the following 

additional features beyond mere estimation of PK parameters: (i) it provides a tool to 

evaluate the individual clearance attributable to each allele involved in the total metabolic 

clearance; (ii) it increases the model applicability to incorporate other metabolic pathways; 

(iii) it may be used to predict drug profiles of genotypes not observed in this population 

(such as CYP2C9 *3/*3); and (iv) it may provide a dosage scheme for transition from one 

drug to another (e.g. warfarin to phenprocoumon).  

Due to sampling limitation to one sample of parent drug and its metabolites as well as the 

residual error of INR per subject, it was not possible to estimate residual errors of these 

vectors. Fixing these error terms to values like assay limits or prior information gave a 

chance to assess the interindividual variability and influencing covariates on the PK and PD 

parameter estimates, however these estimates may be biased with respect to the point 

estimates. Changing the fixed values within a factor of ten up and down the limits of 

quantifications was associated with different point estimates of model parameters. Higher 

and lower residual error values led to significant deterioration in both accuracy and precision 

of the model, however varying the error around assay limitations resulted in greater 

precision of parameter estimates. The deterioration effect of very high residual error values 

has been observed in previous study on animals (Ette et al. 1995). The number of individuals 

under the study (278 patients) was large enough to ensure precise parameter estimates. 

Because metabolite data were evaluated simultaneously with parent concentration, bias in 

model estimates is expected to be reduced. Since the “true” parameter estimates are 

unknown, neither the precision of estimates nor the degree of bias relative to true values 

could be quantified. The PK model was more sensitive than the PD model to initial estimates 

as the former contains more parameters to be estimated compared with PD model, but data 

would allow a prospective dose adjustment for phenpprocoumon, with subsequent check of 

INR. 
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5.1 Fluorescein 

The fluorescein study demonstrated that the bioavailability of fluorescein is superior when 

given as lyophilisate in comparison to eye drops in the anterior eye segment. A less 

pronounced increase in systemic bioavailability was seen via the ocular route, which is 

probably the result of a lower early loss of fluorescein for ocular absorption from the 

lyophilisate formulation. Depending on the physicochemical properties of a drug, this may 

be essential for achieving effective drug concentrations in the eye for a sufficient period of 

time. These advantages of the lyophilisate formulation over conventional eye drops suggest 

that lyophilisate is the formulation of choice to fulfill such needs in ophthalmology. Studies 

with other drugs, including direct quantification of ocular and systemic concentrations, are 

needed to assess whether this is general property of ocular lyophilisate preparations. 

 

 

5.2 Clarithromycin 

The clarithromycin study identified and quantified a time-dependent decrease of 

clarithromycin clearance in a non-linear fashion, which was completed on the 2nd day of 

treatment for the 500 mg bid doses. Reaching steady state was predicted to take several 

days for a 1000 mg bid dose. A semi-mechanistic population pharmacokinetic model for 

clarithromycin and its 14-(R) hydroxy metabolite was developed, which provides an 

adequate description of the time course of clearance inhibition within the used regimen. The 

seemingly atypical absorption process could be the result of saturable / inhibited first pass 

metabolism and may contribute to the overall nonlinear profiles of clarithromycin. The 

presented model serves as a useful tool to predict clarithromycin plasma concentrations and 

provides a rationale to improve its safety with regard to drug-drug interactions and its 

efficacy based on PK/PD consideration. The applicability of the model in the presence of 

additional CYP3A ligands (inhibitors or substrates) and the potential clinical benefit of the 

pronounced increase in plasma concentrations with increasing the clarithromycin dose 

remain to be assessed in further clinical trials. 
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5.3 Dextromethorphan 

Dextromethorphan data evaluation ended up with a final population model that adequately 

described dextromethorphan and dextrorphan pharmacokinetics in healthy Caucasian men. 

The results confirmed that individual CYP2D6 genotype and to a lesser degree urine pH 

contribute to the variability in pharmacokinetic profiles of dextromethorphan. The estimated 

quantitative differences in the metabolic capacity of individual CYP2D6 alleles, including *1, 

*2 and *41, suggest that existing scoring systems to predict CYP2D6 activity from CYP2D6 

genotype need to be refined. Whether the observed activity differences between functional 

alleles for dextromethorphan as a substrate are the same for other substrates remains to be 

assessed (Fuhr 2009). 

 

 

5.4 Phenprocoumon 

The phenprocoumon study presented a semi-mechanistic model that provided quantitative 

estimates for the impact of subject genotype, i.e. CYP2C9 and VKORC1 polymorphisms and 

of other covariates of phenprocoumon PK/PD profiles. An algorithm was derived from the 

results in order to predict individual weekly doses required to achieve a given INR. While this 

procedure makes use of existing knowledge, it would be desirable to study its clinical utility 

in prospective clinical trials.  
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6 SUMMARY 
 

The major message from these analyses is that modelling pharmacokinetics and 

pharmacodynamics, based on previous knowledge and by utilizing the benefits of readily 

available techniques, are best interpreted in term of how much they change our view 

regarding these complex processes rather than expecting them to tell us what we should 

end up believing. 

 

The ophthalmic lyophilisate formulation has been known for its safety, tolerability, and 

ability to achieve higher concentrations of a drug in the internal tissue of the eye compared 

with the conventional eye drop. Based on this prior information, population 

pharmacokinetic modelling was executed and quantified an improvement in the absorption 

phase. These outcomes will generate novel concept to improve ocular drug delivery 

straightforward with patient care improvement. 

 

Modelling clarithromycin auto-inhibition started from the previous knowledge that 

clarithromycin decreases its own clearance with repeated dosing. A significant quantitative 

description of the size of inhibition boosts the faith in it to something approaching clinical 

impacts in efficacy of the administered doses, drug interaction and/or dose adjustment.  

The final model provides parameters for dose adjustment depending on patient body weight 

and MICs required for susceptible pathogen eradication. Combining available information 

about the MIC of a pathogen with the model parameter estimates provided a useful means 

to develop ideas toward optimization of therapy.  

 

The dextromethorphan study aimed to provide a clear picture of the metabolic activity of 

individual CYP2D6 alleles frequently observed in a healthy Caucasian population. Evaluations 

were based on prior knowledge of highly variable metabolism of CYP2D6 substrates, that is 

heavily dependent on CYP2D6 genotype, and the problem that phenotypic prediction is still 

pawned by the variability of metabolic activity of different alleles. Once the impact of 

individual alleles is quantitatively and significantly estimated, confidence in this approach is 

improved. These observations call for further evaluation of ethnic, substrate and disease 

impact, but for now it can be stated that these information are “highly” clinical relevant and 

significant towards therapeutic optimization. 
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The phenprocoumon study aimed to identify genetic and demographic covariates for dose-

exposure response in a Caucasian population. Applications of previous knowledge of the role 

of evaluated covariates, led to confidence in the differential impact of both CYP2C9 

polymorphisms on the exposure profiles and the contribution of VKORC1 polymorphisms to 

the overall phenprocoumon response. In addition to these findings, the differential activity 

of CYP2C9 alleles provided understanding of the importance of individualised drug dosing 

(based on genetic and demographic information) to phenprocoumon PK-PD profiles. This is 

not only of clinical importance in order to avoid overanticoagulation or therapy failure, but it 

will also decrease therapy expenses. 
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