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Zusammenfassung

Diese Dissertation befasst sich mit der Anwendung und der Analyse des Mumford-Shah-Modells
im Kontext der Bildverarbeitung.

Zunächst wird das Mumford-Shah-Modell selbst in verschiedenen Varianten vorgestellt.
Bei dieser Art von Modellen wird eine gegebene Funktion stückweise glatt oder stückweise
konstant approximiert, wobei eine besondere Schwierigkeit dabei die Behandlung der Menge der
Diskontinuitäten darstellt. Insbesondere für die Numerik sind dazu weitere Modelle notwendig,
wobei die grundlegenden Modelle, auf die wir uns in dieser Arbeit stützen, ebenfalls hier
erläutert werden. Der Hauptteil der Arbeit befasst sich mit den folgenden vier Verfahren.

Gleichzeitige Kantenerkennung und Registrierung zweier Bilder. Die Registrierung
basiert dabei auf den erkannten Kanten. Die Kantenerkennung wiederum wird, basierend auf
dem Mumford-Shah-Modell, mit dem Ambrosio-Tortorelli-Modell durchgeführt, welches die
Menge der Diskontinuitäten durch ein Phasenfeld approximiert. Die Registrierung durch unser
Modell ist vollständig symmetrisch in dem Sinne, dass das Modell die gleiche Registrierung
liefert, wenn die Rollen der beiden zu registrierenden Bilder vertauscht werden.

3D CT-CT Registrierung mit symmetrischem Kantenmatching: Initialer Mismatch, berechnete
Segmentierung (zur Verdeutlichung mit einer Schnittebene) und gefundene Kanten (von links
nach rechts).

Erkennung von Körnern aus atomar aufgelösten Bildern von Metallen oder Me-
tall-Legierungen. Hierbei handelt es sich um ein Bildverarbeitungsproblem aus den Materi-
alwissenschaften, wobei solche Bilder experimentell durch Transmissionselektronenmikroskopie

Erkennung von Körnern aus Simulations-
bildern: Eingangsbild (links) und berechnete
Segmentierung (rechts).

oder durch numerische Simulationen erhalten wer-
den können. Als Körner bezeichnet man Material-
regionen, in denen die Orientierung des Atom-
gitters von der Umgebung abweicht. Basierend
auf einem Mumford-Shah-artigen Funktional wer-
den die Korngrenzen als Sprungmenge aufgefasst,
an der die Orientierung des Atomgitters springt.
Neben den Korngrenzen erlaubt das Modell noch
die Extraktion einer globalen elastischen Deforma-
tion des Atomgitters. Numerisch wird die Sprung-
menge hier dem Chan-Vese-Modell folgend mit
einer Niveaumengenfunktion modelliert.



vi

Simultane Bewegungsschätzung und Restauration von Bewegungsunschärfe. Zu-
nächst entwickeln wir ein neues Bewegungsunschärfe-Modell, das die Bewegungsunschärfe auch
am Rand eines sich bewegenden Objektes korrekt darstellt. Basierend darauf entwickeln wir
ein Variationsmodel, das gleichzeitige Bewegungsschätzung und Restauration von Bewegungs-
unschärfe aus aufeinanderfolgenden Einzelbildern einer Videosequenz erlaubt. Hierbei wird
angenommen, dass die Videosequenz ein Objekt zeigt, das sich vor einem statischen Hintergrund
bewegt. Die Segmentierung in Objekt und Hintergrund wird durch einen Mumford-Shah-artigen
Teil in dem Variationsmodel ermöglicht.

Restauration von Bewegungsunschärfe: Eingangsbilder (links) und restaurierte Bilder (rechts).

Konvexifizierung des binären Mumford-Shah-Segmentierungsproblems. Nachdem
sich die übrigen Themen mit der Anwendung von Mumford-Shah-artigen Modellen zur Lösung
spezieller Problemstellungen befasst haben, wird das Mumford-Shah-Funktional selbst einge-
hender studiert. Inspiriert durch die Methode von Nikolova-Esedoḡlu-Chan entwickeln wir einen
Ansatz, der es erlaubt, globale Minimierer des binären Mumford-Shah-Segmentierungsproblems
durch das Lösen eines konvexen, unrestringierten Minimierungsproblems zu finden. Anschließend
stellen wir eine in Entwicklung befindliche Anwendung des Verfahrens zur globalen Optimierung
vor, nämlich die Segmentierung von Flussfeldern in stückweise affine Regionen.

Global optimale Segmentierung: Zu segmentierendes Bild, Lösung des zugehörigen konvexen
Problems und binäre Segmentierung (von links nach rechts).
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Basic terminology and notation

Hd−1 d− 1 dimensional Hausdorff measure
χA characteristic function of the set A
|Du| (Ω) total variation of u in Ω
Per(Σ,Ω) perimeter of the set Σ ⊂ Rd in Ω, i. e. Per(Σ,Ω) = |DχΣ| (Ω)
Per(Σ) simplified notation of Per(Σ,Ω)
|Σ| volume of the set Σ
{φ > a} a-super level set of φ, i. e. {x ∈ Ω : φ(x) > a}
{φ < a} a-sub level set of φ, i. e. {x ∈ Ω : φ(x) < a}
{φ = a} a-level set of φ, i. e. {x ∈ Ω : φ(x) = a}
H Heaviside function, defined as H(z) = 1 for z > 0 and 0 elsewhere

〈E′[x], y〉 first variation of E at x in direction y, i. e. d
dε (E[x+ εy]) |ε=0

A∆B symmetric difference of two sets A and B, i. e. (A \B) ∪ (B \A)
x · y scalar product of two vectors x and y
|x| Euclidean norm of a vector x, i. e.

√
x · x

A : B scalar product of two matrices A and B interpreted as vectors, i. e. tr(ATB)

‖A‖ Frobenius norm of a matrix A, i. e.
√
A : A

[a, b] interval from a to b, including a and b
[a, b) interval from a to b, including a but excluding b
δij Kronecker delta, defined as δij = 1 for i = j and 0 for i 6= j
ei i-th canonical basis vector of Rd, i. e. ei = (δij)

d
j=1

11 identity matrix, i. e. 11 = (δij)ij
id identity mapping, i. e. id(x) = x
1 one-vector, i. e. 1 = (1, . . . , 1)T

Dψ Jacobian matrix, i. e. (Dψ)ij = ∂jψi

Conventions

• Unless otherwise stated, Ω denotes an open subset of Rd.

• Elements of Rd are interpreted as column vectors.





1 Introduction

1.1 The Mumford–Shah model

THE nowadays well-known and widely used Mumford–Shah model, first proposed in the
literature in 1989 [100], will be the starting point of all models we present here. In this

model, a given image is approximated by a cartoon (u,K), consisting of a piecewise smooth
image u with sharp edges on K, the discontinuity set in the image domain. This model has been
extensively studied for numerous applications, e. g. segmentation, image denoising or shape
modeling, cf. [99, 45, 46, 70] and the references therein.

For an image, i. e. a function u0 : Ω → R on an image domain Ω ⊂ Rd and nonnegative
constants α, β and ν, the Mumford–Shah functional EMS is given by

EMS[u,K] =
α

2

∫
Ω

(u− u0)2 dx +
β

2

∫
Ω\K
|∇u|2 dx +νHd−1(K). (1.1)

The first term, often called fidelity term, measures how well the piecewise smooth image u
approximates the input image u0. The second term acts as a kind of “edge-preserving smoother”
in the sense that it penalizes large gradients of u in the homogeneous regions while not smoothing
the image in the edge set K. The last term Hd−1 denotes the (d− 1) dimensional Hausdorff
measure and is used to control the length of the edge set. In particular it ensures that K is
at most (d− 1) dimensional. Existence of pairs (u,K) minimizing (1.1) under mild conditions
can be shown using SBV , the space of special functions of bounded variation [5, Theorem 7.15
+ Theorem 7.22]. The key to the existence theory is a reformulation of the problem proposed
by De Giorgi, Carriero, and Leaci [56] that only depends on u ∈ SBV (Ω). Here, the measure
theoretic discontinuity set of u takes the role of K.

A variant of this model is the piecewise constant Mumford–Shah model. Here, we are looking
for a piecewise constant image u (instead of a piecewise smooth one) to approximate the
input image u0. Let Su denote the jump set of u, then the piecewise constant Mumford–Shah
functional EMS,pwc is defined as

EMS,pwc[u] =
α

2

∫
Ω

(u− u0)2 dx +νHd−1 (Su) (1.2)

and to be minimized over the set of piecewise constant functions. Figure 1.1 shows how a noisy
image is denoised with this model. Note that the functionals EMS and EMS,pwc coincide in the
following sense: For any piecewise constant function u, it holds that EMS,pwc[u] = EMS[u, Su].

In this work, we give a glimpse at the flexibility offered by the Mumford–Shah model as
we introduce several models based on it, each tackling a very different application. Chapter 2
presents a model for simultaneous edge detection of two images and joint estimation of a
consistent pair of dense, nonlinear deformations (one in each direction) to match the two
images based on the detected edges. Hereby, the edge detection is done in the spirit of the
piecewise smooth Mumford–Shah model using the Ambrosio–Tortorelli approximation (cf.
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u0 (u, Su)

Figure 1.1: A noisy input image (left) and the corresponding minimizer of the piecewise constant
Mumford–Shah model (right).

Section 1.2.1) to handle the discontinuity set. The treatment of the two input images in this
model is fully symmetric, i. e. the same matching is attained if the roles of the input images
are swapped. Unlike many of the current asymmetric matching methods in the literature, this
symmetric handling allows to establish one-to-one correspondences between the edge features
of the two input images. The numerical implementation uses Finite Elements for the spatial
discretization in combination with an expectation-maximization (EM) type algorithm involving
a step size controlled, regularized gradient descent to update the deformations. Furthermore,
the minimization algorithm uses a cascadic approach in a “coarse to fine” manner to avoid
local minima. The influence of the various parameters of the symmetric matching model is
investigated in a parameter study on a T1 and T2 magnetic resonance image (MRI) data pair.
Finally, the performance of the proposed algorithm is illustrated on four different applications:
intersubject monomodal registration, retinal image registration, matching a neurosurgical
photograph with its projected volume data and motion estimation for frame interpolation.

Afterwards, in Chapter 3, we turn to a segmentation problem arising in materials science:
Modern image acquisition techniques in materials science allow to resolve images at atomic
scale and thus also to resolve so-called grains. Grains are material regions with different
atomic lattice orientation which in addition are frequently elastically stressed compared to the
reference configuration of the atomic lattice one would observe in the ideal case. Likewise, new
microscopic simulation tools allow to study the dynamics of such grain structures. Single atoms
are resolved experimentally as well as in simulation results on the data microscale, whereas lattice
orientation and elastic deformation describe corresponding physical structures mesoscopically.
A quantitative study of experimental images and simulation results and the comparison of
simulation and experiment requires the robust and reliable extraction of mesoscopic properties
from the microscopic image data, making this a two-scale problem. Based on a Mumford–Shah
type functional, grain boundaries are described as free discontinuity sets at which the orientation
parameter for the lattice jumps. The lattice structure itself is encoded by an indicator function
depending on a local lattice orientation and an elastic displacement. This indicator function is
built upon the fact that atoms are described by dots in the input images and upon the spatial
relation of these dots to adjacent atomic dots. One global elastic displacement function, as
well as a lattice orientation for each grain are considered as unknowns implicitly described
by the image microstructure. To handle the deformation extraction, the Mumford–Shah type
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functional is supplemented with an elastic energy for the deformation acting as a prior and a
constraint on the deformation that separates the lattice orientation from the deformation. In
addition to grain boundaries, the proposed approach incorporates interfaces between solid and
liquid material regions. The resulting Mumford–Shah functional is approximated by a level set
active contour model following the approach by Chan and Vese (cf. Section 1.2.2). Similar to
Chapter 2, the numerical implementation is based on a Finite Element discretization in space
and uses an EM type algorithm involving a step size controlled, regularized gradient descent.
Finally, the results shown in this chapter illustrate that the proposed algorithm works equally
well on simulated (phase field crystal simulations) and experimental data (transmission electron
microscopy images).

In Chapter 4, we turn to the problem of motion estimation and restoration of objects in
a video sequence affected by motion blur. This kind of blur results from fast movement of
objects in combination with the aperture time of the camera used for the recording. Due to
the motion blur, the direct velocity estimation from such videos is inaccurate. On the other
hand, an accurate estimation of the velocity of the moving objects is crucial for restoration of
motion-blurred video. In other words, restoration needs accurate motion estimation and vice
versa, and a joint handling of restoration and motion estimation is called for. To address this,
we first derive a novel model of the blurring process that is accurate also close to the boundary
of the moving object, a key property missing in existing blurring models in the literature. Based
on the blurring model, we propose a variational framework acting on consecutive video frames
for joint object detection, deblurring and velocity estimation. Here, the video is assumed to
consist of a moving object and a static background, and the automatic distinction between the
moving object and the background is handled by a Mumford–Shah type aspect of the proposed
model. The importance of this joint estimation and its superior performance when compared to
the independent estimation of motion and restoration is outlined by experimental results both
on simulated and real video data.

After developing several models based on the Mumford–Shah functional to solve specific
image processing tasks in the previous chapters, Chapter 5 approaches the Mumford–Shah
functional itself and provides a way to obtain global minimizers of the two-phase Mumford–Shah
segmentation model, despite the fact that this is a non-convex optimization problem. Inspired
by the work of Nikolova, Esedoḡlu and Chan (cf. Section 1.2.4) and similar to their approach,
this is accomplished by deriving a convex minimization problem whose minimizers can be
directly converted to minimizers of the initial non-convex problem by thresholding. The key
difference to the Nikolova–Esedoḡlu–Chan (NEC) model is that the model we propose here does
not need to impose any constraint in the convex formulation, neither explicitly nor implicitly
by an additional, artificial penalty term in the convex objective functional. The unconstrained
approach is related to recent results by Chambolle derived in the context of total variation
minimization. Due to the simplicity of the resulting convex optimization problem, even a
straightforward gradient descent allows for a reliable computation of the global minimizer.
Moreover, the two-phase model can be combined with the multiphase idea of Vese and Chan
(cf. Section 1.2.3) and is extended to multiphase segmentation, though the convexity is lost
when moving to multiphase segmentation. Numerically, we apply the proposed approach to the
classical piecewise constant Mumford–Shah problem and show results for two, four and eight
phase segmentation. Furthermore, we compare the numerical binary segmentation quality of
the proposed method with the one of the NEC model.
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1.2 Handling the discontinuity set

One of the key challenges when it comes to effectively using the Mumford–Shah model in
numerical applications is the proper treatment of the discontinuity set K. In this work, we
mainly use two different approaches: Diffuse interface representations (cf. Section 1.2.1) and
sharp interface representations (cf. Section 1.2.2). Each of these representations has its own
benefits and shortcomings, and it depends on the application which one is more appropriate.

1.2.1 The Ambrosio–Tortorelli model

The basic idea behind the Ambrosio–Tortorelli (AT) approximation [4] is to replace the
discontinuity set K by a scalar-valued function, here denoted by v. This so-called phase field
function is essentially determined by two properties: First, it shall approximate (1− χK), the
characteristic function of the complement of K, i. e. v(x) ≈ 0 for x ∈ K and v(x) ≈ 1 otherwise.
Second, it is supposed to be smooth (in the H1 sense). Unlike the approach by Chan and Vese
[46] (cf. Section 1.2.2), the discontinuity set is only approximated here in a diffuse manner.
Therefore, this approach is referred to as diffuse interface model.

The entire approximation functional designed to fulfill these goals is defined as follows:

EεAT[u, v] =
α

2

∫
Ω

(u− u0)2 dx +
β

2

∫
Ω
v2 |∇u|2 dx +

ν

2

∫
Ω
ε |∇v|2 +

1

4ε
(v − 1)2 dx . (1.3)

The three terms the energy consists of approximate the corresponding terms of the Mumford–
Shah functional (1.1). The first term is the same as the first one of EMS. The second term,
working as an “edge-preserving smoother” like the second term of EMS, couples zero-regions of
v with regions where the gradient of u is large. The last term approximates Hd−1(K), i. e. the
edge length of K. Due to the second term and the second part of the third term (a so-called
single well potential) the following “coupling” between u and v is energetically preferable:

v(x) ≈

{
0 where |∇u| � 0,

1 where |∇u| ≈ 0.
(1.4)

The additional parameter ε, not used in EMS, controls the “width” of the diffusive edge set,
cf. Figure 1.2. In particular, the transition profile of the phase field at an edge is characterized
by the following Lemma (cf. [40]):

1.2.1 Lemma. vε : [0,∞)→ R, x 7→ 1− exp
(
− x

2ε

)
minimizes∫ ∞

0
ε
∣∣v′∣∣2 +

1

4ε
(v − 1)2 dx

under the boundary conditions v(0) = 0 and lim
x→∞

v(x) = 1.

Proof. The corresponding Euler–Lagrange equation is

−2εv′′ +
1

2ε
(v − 1) = 0 in (0,∞).

vε(0) = 0 and lim
x→∞

vε(x) = 1 obviously hold. Furthermore, because of

v′′ε (x) = − 1

4ε2
exp

(
− x

2ε

)
,
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Figure 1.2: Structure of phase fields: Input image u0 (left), phase field function plotted across
an edge (middle) and phase field function v corresponding to u0 scaled to gray
values.

u0 u v

Figure 1.3: Results of Ambrosio–Tortorelli segmentation on the well-known Lena image.

vε apparently solves the Euler–Lagrange equation. Combined with the fact that the value of
the functional evaluated at vε is finite and the convexity of the functional, we can conclude
that vε is a minimizer.

The performance of the Ambrosio–Tortorelli model is illustrated on the well-known Lena
image [1, image 4.2.04] in Figure 1.3. The connection between the Ambrosio–Tortorelli model
and the Mumford–Shah model can be specified as follows: The sequence of functionals EεAT

Γ−converges to EMS, i. e.

Γ−lim
ε→0

EεAT = EMS.

To establish this result, v2 in the second term of EεAT[u, v] has to be replaced by v2 + kε, where
kε is a positive parameter fulfilling limε↓0 kε/ε = 0. This change ensures the coercivity of EεAT

in H1(Ω)×H1(Ω). For a detailed discussion including a rigorous proof, we refer to [4, 28].

1.2.2 The Chan–Vese model

For an image u0, the well-known piecewise constant Mumford–Shah functional for two-phase
segmentation is given by

EMS-2,pwc[Σ, c1, c2] =

∫
Σ

(u0 − c1)2 dx +

∫
Ω\Σ

(u0 − c2)2 dx +ν Per(Σ). (1.5)
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Here, Per(Σ) is a simplified notation of Per(Σ,Ω) and denotes the perimeter of the set Σ ⊂ Rd
in Ω, cf. [5, Definition 3.35]. It is obtained directly from (1.1): Set α = 2 and restrict u to be
piecewise constant and only allowed to take two different values, i. e. u = c1χΣ + c2χΩ\Σ. Then
∂Σ is the jump set of u, thus we have K = ∂Σ and ∇u = 0 in Ω \K, hence the second term of
(1.1) vanishes. Furthermore, the first term of (1.1) coincides with the sum of the first two terms
of (1.5) and (under mild regularity assumptions) the third term of both equations is equal.

Replacing (u0 − c1)2 and (u0 − c2)2 by general indicator functions f1, f2 ∈ L1(Ω) such that
f1, f2 ≥ 0 a. e., we get the prototype Mumford–Shah energy

EMS-2[Σ] :=

∫
Σ
f1 dx +

∫
Ω\Σ

f2 dx +ν Per(Σ). (1.6)

To obtain (local) minimizers of EMS-2, Chan and Vese [46] proposed to parametrize the
unknown set Σ by a function, i. e. the unknown set Σ is represented by the zero super level
set {φ > 0} := {x ∈ Ω : φ(x) > 0} of a so-called level set function φ : Ω→ R, building upon
the level set methods of Osher and Sethian [105]. In other words, we have Σ = {φ > 0} and
in particular ∂Σ = {φ = 0}. Hence, the model exactly localizes the discontinuity set and is
referred to as sharp interface model.

The domain splitting into Σ and its complement in the different energy terms then can easily
be expressed in terms of φ via the Heaviside function

H : R→ {0, 1}, s 7→

{
1 s > 0

0 else
, (1.7)

because χΣ = H(φ) and χΩ\Σ = (1 − H(φ)). For u ∈ BV (Ω), let |Du| (Ω) denote the total
variation of u in Ω. Then, by [5, Proposition 3.6], we have

|Du| (Ω) = sup

{∫
Ω
udivp dx : p ∈ C1

0 (Ω)d,max
x∈Ω
|p(x)| ≤ 1

}
=: sup
|p|≤1

∫
Ω
udivp dx (1.8)

and the perimeter of the unknown set can be rewritten as the total variation of H ◦ φ:

1.2.2 Lemma. If φ : Ω→ R is such that {φ > 0} has finite perimeter, it holds that

|D(H ◦ φ)| (Ω) = Per({φ > 0},Ω).

Proof Any u ∈ BV (Ω) fulfills

|Du| (Ω) =

∫ ∞
−∞

∣∣Dχ{u>s}(Ω)
∣∣ ds =

∫ ∞
−∞

Per({u > s},Ω) ds . (1.9)

The first equality holds because of [5, Theorem 3.40], the second one because of [5, Theorem
3.36]. Since {φ > 0} has finite perimeter, we have H ◦ φ ∈ BV (Ω). Therefore, we get

|D(H ◦ φ)| (Ω) =

∫ ∞
−∞

Per({H ◦ φ > s},Ω) ds =

∫ 1

0
Per({H ◦ φ > s},Ω) ds

= Per({H ◦ φ > 0},Ω) = Per({φ > 0},Ω).

The first equality uses (1.9), for the second equality we used that

{H ◦ φ > s} =

{
Ω s < 0

∅ s > 1
,
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while the third one holds because of {H ◦ φ > s} = {H ◦ φ > 0} for s ∈ (0, 1). Finally, in the
last equality we used that {H ◦ φ > 0} = {φ > 0}.

Collecting what we observed so far leads to the following Chan–Vese energy

ECV[φ] :=

∫
Ω
H(φ)f1 + (1−H(φ))f2 dx +ν |D(H ◦ φ)| (Ω). (1.10)

It is a reformulation of EMS-2 in the sense that EMS-2[{φ > 0}] = ECV[φ].
To numerically minimize this energy we want to use a gradient flow and therefore have to

derive ECV. Since H is not continuous, we replace it by a smeared out Heaviside function. As
in [46] we use

Hδ(s) :=
1

2
+

1

π
arctan

(s
δ

)
, (1.11)

for a scale parameter δ > 0 that controls the strength of the regularization. While the specific
choice is not important, it is important to use a function whose derivative does not have
compact support, because the desired guidance of the initial zero contour to the actual targeted
segmentation boundary relies on this property (cf. [46]). Furthermore, we will make use of the
fact that H ′δ(s) > 0 for all s ∈ R when calculating the variation of the regularized perimeter
term (see below). Also note that

H ′δ(s) =
δ

π(δ2 + s2)

converges to H ′ in the sense of distributions for δ → 0.
Note that this kind of regularization of the Heaviside function can be interpreted as phase

field type approach. Here, the transition profile between interior and exterior of the unknown
set is explicitly modeled by the regularization instead of being implicitly encoded in the energy
functional (cf. (5.2)).

Additionally, the length term of (1.10) needs to be regularized. First, we note that

|D(Hδ ◦ φ)| (Ω) =

∫
Ω
|∇(Hδ ◦ φ)| dx

holds for φ ∈ H1(Ω). Since the absolute value |·| is not differentiable in 0, we regularize it by
|z|% =

√
z2 + %2. In total, we get the regularized energy

Eδ,%CV[φ] :=

∫
Ω
Hδ(φ)f1 + (1−Hδ(φ))f2 + ν|∇(Hδ ◦ φ)|% dx . (1.12)

Unless otherwise noted, % = 0.1 is used in the numerics.
While this approach is widely used and suitable for a number of problems (cf. Chapters 3

and 4), one drawback of the energy (1.12) is its non-convexity in φ. In Chapter 5, we turn to
this problem and present an alternative approach to find (even global) minimizers of (1.6) by
solving a strictly convex, unconstrained optimization problem.

The only term of (1.12), whose derivative needs special treatment, is the length term. Thus
we look into this first: Let

L[φ] :=

∫
Ω
|∇(Hδ ◦ φ)|% dx .
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Using ∇(Hδ ◦ φ) = H ′δ(φ)∇φ, H ′δ(φ) > 0 and

d

dz
|z|% =

z

|z|%

we get the variation (with test function ϑ ∈ C∞0 (Ω))

〈
L′[φ], ϑ

〉
=

∫
Ω

∇φ
|∇φ|%

·
(
H ′′δ (φ)∇φϑ+H ′δ(φ)∇ϑ

)
dx

=

∫
Ω
∇(H ′δ(φ)ϑ) · ∇φ

|∇φ|%
dx

= −
∫

Ω
H ′δ(φ)ϑ div

(
∇φ
|∇φ|%

)
dx .

(1.13)

Note that we have carefully rewritten the variation using integration by parts to get rid of the
second derivative of Hδ. The advantage of this particular reformulation will become apparent
in (1.14) and (1.15).

With (1.13) we easily derive the variation of Eδ,%CV:

〈
∂φE

δ,%
CV[φ], ϑ

〉
=

∫
Ω
H ′δ(φ)f1ϑ dx −

∫
Ω
H ′δ(φ)f2ϑ dx −ν

∫
Ω
H ′δ(φ)ϑ div

(
∇φ
|∇φ|%

)
dx

= −
∫

Ω
H ′δ(φ)

[
(f2 − f1) + ν div

(
∇φ
|∇φ|%

)]
ϑ dx .

(1.14)

By definition, the weak formulation of the L2-gradient flow for Eδ,%CV (cf. Section 6.2) is

∀
ϑ∈C∞0 (Ω)

∫
Ω
∂tφϑ dx = −

〈
∂φE

δ,%
CV[φ], ϑ

〉
.

Hence, by (1.14) and the fundamental lemma of the calculus of variations the strong formulation
of the L2-gradient flow is

∂tφ = H ′δ(φ)

[
(f2 − f1) + ν div

(
∇φ
|∇φ|%

)]
. (1.15)

Division by H ′δ(φ) yields

∂tφ

H ′δ(φ)
= (f2 − f1) + ν div

(
∇φ
|∇φ|%

)
and with integration by parts we get the weak formulation of the gradient flow (1.15)

∀
ϑ∈C∞0 (Ω)

∫
Ω

∂tφ

H ′δ(φ)
ϑ dx =

∫
Ω

(f2 − f1)ϑ dx −ν
∫

Ω
∇ϑ · ∇φ

|∇φ|%
dx . (1.16)
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1.2.3 The Vese–Chan model for multiphase segmentation

In [125], Vese and Chan proposed an extension of their binary segmentation model to multiphase
segmentation. The basic idea is to use additional level set functions to encode additional segments
while encoding as many segments per level set function as possible: Given n level set functions
φ1, . . . , φn, one can encode 2n segments by considering all possible sign combinations of the
level set functions. Precisely, the segments are

Σk :=
{
x : (−1)kiφi > 0, i = 1, . . . , n

}
for k = (k1, . . . , kn) ∈ {0, 1}n.

Furthermore, we assume that the segmentation is based on a scalar value and an indicator
function f : Ω × R → R. Then, for each segment Σk we also look for a ck ∈ R, and the
multiphase Vese–Chan energy for multiple segments is defined as follows:

EVC[(φi)i, (ck)k] =
∑
k

∫
Ω

∏
i

H((−1)kiφi)f(x, ck) dx︸ ︷︷ ︸
=:EVC,fid[(φi)i,(ck)k]

+ν
∑
i

|D(H ◦ φi)| (Ω).

Upon closer inspection, the fidelity term EVC,fid is a reformulation of the corresponding term
form the piecewise constant Mumford–Shah functional (1.2): By construction of Σk, we have∏

i

H((−1)kiφi(x)) = χΣk
(x) for x ∈ Ω.

Hence, defining c =
∑

k ckχΣk
and noting that Σk ∩ Σl = ∅ for k 6= l, we have

EVC,fid[(φi)i, (ck)k] =
∑
k

∫
Σk

f(x, ck) dx =

∫
Ω
f(x, c) dx .

Note that for the latter equality we need to assume that the 0-level sets {φi = 0} are Lebesgue
null sets. In this case, EVC,fid coincides with the first term of (1.2), if we choose the indicator
function accordingly, i. e. f(x, c) := (u0(x)− c)2 for an image u0. Here, the scalar quantity ck
plays the role of the average gray value in Σk.

For the same choice of f and n = 1, we deduce from H(−s) = 1−H(s) for s 6= 0 that (as
long as {φ1 = 0} is a Lebesgue null sets) the Vese–Chan energy coincides with the Chan–Vese
reformulation of the piecewise constant Mumford–Shah functional for two-phase segmentation
(1.5).

Let us point out one important drawback of this approach: For n ≥ 2, EVC is not an exact
reformulation of the corresponding Mumford–Shah model, because the perimeter of the segments
Σk is not measured uniformly. To demonstrate this problem we exemplarily consider the case
n = 2: Then, we have following four segments

Σ(0,0) = {φ1 > 0} ∩ {φ2 > 0},
Σ(1,0) = {φ1 < 0} ∩ {φ2 > 0},
Σ(0,1) = {φ1 > 0} ∩ {φ2 < 0},
Σ(1,1) = {φ1 < 0} ∩ {φ2 < 0}.

Now,
∑

i |D(H ◦ φi)| (Ω) measures the boundary between Σ(0,0) and Σ(1,0) once because φ1

changes its sign in this region while φ2 does not, whereas it measures the boundary between
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Σ(0,0) and Σ(1,1) twice because both φ1 and φ2 change their sign here. This nonuniform perimeter
measurement is an undesired side effect of the Vese–Chan model that does not happen in the
original Mumford–Shah model. Nevertheless, we use the Vese–Chan model because this effect
is of no consequence for the applications considered in this work.

Applying the same regularization used for (1.12), we get the regularized Vese–Chan energy

Eδ,%VC[(φi)i, (ck)k] =
∑
k

∫
Ω

∏
i

Hδ((−1)kiφi)f(x, ck) dx +ν
∑
i

∫
Ω
|∇(Hδ ◦ φi)|% dx . (1.17)

Noting that

Hδ(−s) = 1−Hδ(s) and H ′δ(s) = H ′δ(−s),

the variations of the regularized energy are obtained straightforwardly:〈
∂φjE

δ,%
VC[(φi)i, (ck)k], ϑ

〉
=
∑
k

∫
Ω

(−1)kjH ′δ((−1)kjφj)
∏
i 6=j

Hδ((−1)kiφi)f(x, ck)ϑ dx

+

∫
Ω
∇(H ′δ(φj)ϑ) · ∇φj

|∇φj |%
dx ,

=
∑
k

∫
Ω

(−1)kjH ′δ(φj)
∏
i 6=j

Hδ((−1)kiφi)f(x, ck)ϑ dx

+

∫
Ω
∇(H ′δ(φj)ϑ) · ∇φj

|∇φj |%
dx ,

∂clE
δ,%
VC[(φi)i, (ck)k] =

∫
Ω

∏
i

Hδ((−1)liφi)∂cf(x, cl) dx .

Though the regularization of the Heaviside function makes this approach phase field like,
the Vese–Chan model is still conceptually different from the Ambrosio–Tortorelli model (cf.
Section 1.2.1), even if the indicator function is chosen to resemble the fidelity term of the AT
model, i. e. f(x, c) := (u0(x)− c)2. The main difference here is that the AT model only separates
the domain Ω into edges and smooth regions, while the VC model further separates the smooth
part of the domain into distinct segments.

1.2.4 The Nikolova–Esedoḡlu–Chan model

Using a formal calculation (assuming ∇φ 6= 0 a. e.) analogously to (1.15), one obtains the
L2-gradient flow of the regularized Chan–Vese functional without regularization of the absolute
value (i. e. % = 0):

∂tφ = H ′δ(φ)

[
(f2 − f1) + ν div

(
∇φ
|∇φ|

)]
.

The starting point of Nikolova et al. [102] is the observation that, due to H ′δ(φ) > 0, this
gradient flow and

∂tφ =

[
(f2 − f1) + ν div

(
∇φ
|∇φ|

)]
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have the same stationary points. Obviously the latter is the L2-gradient flow of the energy

ENEC[φ] =

∫
Ω

(f1 − f2)φ dx +ν |Dφ| (Ω),

serving as motivation to study the properties of this energy.
Note that this energy can be considered as a reformulation of EMS-2 from sets to binary

images, i. e. images only taking values of 0 or 1. Consider u ∈ BV (Ω, {0, 1}). Then, u = χ{u=1}
and, using [5, Theorem 3.36], one gets |Du| (Ω) = Per({u = 1},Ω). Therefore,

EMS-2[{u = 1}] =

∫
Ω
uf1 + (1− u)f2 dx +ν |Du| (Ω)

= ENEC[u] +

∫
Ω
f2 dx .

Hence, EMS-2 and ENEC are the same up to a constant if we interpret sets as binary images.
In general, f1− f2 takes positive and negative values, therefore ENEC is not bounded (neither

from below nor from above). In other words, it does not necessarily have a minimizer. However,
this is easily fixed by restricting the minimization to 0 ≤ φ(x) ≤ 1 for all x ∈ Ω. Based on this,
the following theorem holds:

1.2.3 Theorem. For given indicator functions f1, f2 ∈ L1(Ω) such that f1, f2 ≥ 0 a. e., let

u := argmin
0≤ũ≤1

∫
Ω

(f1 − f2)ũdx +ν |Dũ| (Ω) = argmin
0≤ũ≤1

ENEC[ũ]

and Σc := {u > c}. Then Σc is a minimizer of the binary Mumford–Shah energy (1.6) for a. e.
c ∈ [0, 1].

Proof This theorem has been proven by Nikolova et al. in [102]. Nevertheless, we show their
proof here, reformulated to fit into our context, since we will reuse some of its ideas later on.

Using (1.9) and 0 ≤ u ≤ 1 a. e., we deduce

|Du| (Ω) =

∫ ∞
−∞

Per({u > c},Ω) dc =

∫ 1

0
Per(Σc) dc .

Further, we get∫
Ω
f1(x)u(x) dx =

∫
Ω
f1(x)

∫ 1

0
χ[0,u(x)](c) dc dx =

∫ 1

0

∫
Ω
f1(x)χ[0,u(x)](c) dx dc

=

∫ 1

0

∫
Ω
f1(x)χΣc(x) dx dc =

∫ 1

0

∫
Σc

f1(x) dx dc .

Similarly,∫
Ω
f2(x)u(x) dx =

∫ 1

0

∫
Σc

f2(x) dx dc =

∫ 1

0

∫
Ω
f2(x) dx dc−

∫ 1

0

∫
Ω\Σc

f2(x) dx dc

=

∫
Ω
f2(x) dx︸ ︷︷ ︸
=:C

−
∫ 1

0

∫
Ω\Σc

f2(x) dx dc,
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where C is a constant independent of u. This leads to

ENEC[u] =

∫ 1

0

[∫
Σc

f1(x) dx +

∫
Ω\Σc

f2(x) dx +ν Per(Σc)

]
dc−C

=

∫ 1

0
EMS-2[Σc] dc−C.

Let Σ∗ ⊂ Ω be a minimizer of EMS-2. The existence of such minimizers using convergence in
measure (the distance of two sets being the Lebesgue measure of their symmetric difference)
follows from standard arguments: The perimeter is lower semicontinuous (cf. [5]) and the lower
semicontinuity of the integral terms follows from Fatou’s lemma using f1, f2 ∈ L1(Ω) to get an
integrable lower bound.

Let M := {c ∈ [0, 1] : EMS-2[Σc] > EMS-2[Σ∗]} and assume µ(M) > 0. This gives

ENEC[χΣ∗ ] =

∫ 1

0
EMS-2[Σ∗] dc−C <

∫ 1

0
EMS-2[Σc] dc−C = ENEC[u].

This is a contradiction to the fact that u minimizes ENEC. Therefore µ(M) = 0 holds and the
proposition is proven.
Theorem 1.2.3 is the be-all and end-all of the Nikolova–Esedoḡlu–Chan model because of the
connection it establishes between ENEC and EMS-2: By minimizing the convex energy ENEC

under a convex constraint, followed by simple thresholding, one obtains a global minimizer of
the binary Mumford–Shah energy (1.6).

To solve the constrained optimization problem Nikolova et al. introduce an exact penalty to
transform the constrained optimization problem into an unconstrained one:

1.2.4 Proposition. Let s ∈ L∞(Ω). Then

min
0≤u≤1

∫
Ω
s(x)u(x) dx +ν |Du| (Ω)

and

min
u

∫
Ω
s(x)u(x) + αp(u(x)) dx +ν |Du| (Ω),

where p(s) = max{0, 2
∣∣s− 1

2

∣∣ − 1}, have the same set of minimizer, provided that α >
1
2 ‖p‖L∞(Ω).

Proof See [102, Claim 1].

1.3 Publications and collaborations

A number of publications emerged during the development of this work, listed at the end of
this section. Most of the publications are covered here, but some of them are beyond the scope
of this thesis. These are anisotropic total variation methods for right-angled corner preserving
cartoon extraction of aerial images [BBD+06] and image guided motion inpainting [BKGR09]
as well as a shape median based on symmetric area differences that uses a Mumford–Shah type
variational formulation to handle the median shape as a free discontinuity set.
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Moreover, let us point out that several of the methods presented in this work are the result of
close collaborations. In particular, the one-to-one edge matching approach (cf. Chapter 2) and
the motion deblurring model (cf. Chapter 4) should be mentioned here. The one-to-one edge
matching approach was developed with Jingfeng Han and Joachim Hornegger from the Institute
of Pattern Recognition, University of Erlangen-Nuremberg. Here, Jingfeng Han focussed on the
implementation of the functionals and variations, and the numerical evaluation of the method,
while I concentrated on the mathematical modeling and the implementation of a general, step
size controlled gradient flow framework. The one-to-one edge matching model is also discussed
in the thesis of Jingfeng Han [72]. Furthermore, the underlying idea to symmetrize the model
of Droske et al. was brought up by Jingfeng Han.

The motion deblurring model was devised in cooperation with Leah Bar and Guillermo Sapiro
from the Department of Electrical and Computer Engineering, University of Minnesota. Here,
Leah Bar took care of the numerical implementation and the experiments, while I concentrated
on the modeling aspects, in particular the development of an accurate motion blur model and
numerically usable representations of the variations of the functional.

Publications

[BBD+06] Benjamin Berkels, Martin Burger, Marc Droske, Oliver Nemitz, and Martin Rumpf.
Cartoon extraction based on anisotropic image classification. In Vision, Modeling,
and Visualization Proceedings, pages 293–300, 2006.

[BBRS07] Leah Bar, Benjamin Berkels, Martin Rumpf, and Guillermo Sapiro. A variational
framework for simultaneous motion estimation and restoration of motion-blurred
video. In Eleventh IEEE International Conference on Computer Vision (ICCV
2007), 2007.

[Ber09] Benjamin Berkels. An unconstrained multiphase thresholding approach for image
segmentation. In Proceedings of the Second International Conference on Scale Space
Methods and Variational Methods in Computer Vision (SSVM 2009), volume 5567
of Lecture Notes in Computer Science, pages 26–37. Springer, 2009.

[BKGR09] Benjamin Berkels, Claudia Kondermann, Christoph Garbe, and Martin Rumpf.
Reconstructing optical flow fields by motion inpainting. In Seventh International
Workshop on Energy Minimization Methods in Computer Vision and Pattern Recog-
nition (EMMCVPR 2009), volume 5681 of Lecture Notes in Computer Science,
pages 388–400. Springer, 2009.

[BLR08] Benjamin Berkels, Gina Linkmann, and Martin Rumpf. A shape median based on
symmetric area differences. In Oliver Deussen, Daniel Keim, and Dietmar Saupe,
editors, Vision, Modeling, and Visualization Proceedings, pages 399–407, 2008.

[BLR10] Benjamin Berkels, Gina Linkmann, and Martin Rumpf. An SL(2) invariant shape
median. Journal of Mathematical Imaging and Vision, 37(2):85–97, June 2010.

[BRRV07] Benjamin Berkels, Andreas Rätz, Martin Rumpf, and Axel Voigt. Identification of
grain boundary contours at atomic scale. In Proceedings of the First International
Conference on Scale Space Methods and Variational Methods in Computer Vision
(SSVM 2007), volume 4485 of Lecture Notes in Computer Science, pages 765–776.
Springer, 2007.
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[BRRV08] Benjamin Berkels, Andreas Rätz, Martin Rumpf, and Axel Voigt. Extracting grain
boundaries and macroscopic deformations from images on atomic scale. Journal of
Scientific Computing, 35(1):1–23, 2008.

[HBD+07] Jingfeng Han, Benjamin Berkels, Marc Droske, Joachim Hornegger, Martin Rumpf,
Carlo Schaller, Jasmin Scorzin, and Horst Urbach. Mumford-Shah model for one-
to-one edge matching. IEEE Transactions on Image Processing, 16(11):2720–2732,
2007.

[HBR+06] Jingfeng Han, Benjamin Berkels, Martin Rumpf, Joachim Hornegger, Marc Droske,
Michael Fried, Jasmin Scorzin, and Carlo Schaller. A variational framework for
joint image registration, denoising and edge detection. In Bildverarbeitung für die
Medizin 2006, pages 246–250. Springer, March 2006.



2 A Mumford–Shah model
for one-to-one edge matching

LET gR, gT : Ω→ R be a reference and a template image respectively. The task of finding
a deformation φ : Ω→ Ω such that gT ◦ φ corresponds to gR is called image registration or

matching, and φ is called the deformation from gT to gR. The easiest registration problem is
monomodal image registration. Here, the aforementioned correspondence means gT ◦ φ = gR.
In many applications, for example if the images were acquired using different modalities, e. g.
X-ray computed tomography (CT) and positron emission tomography (PET), one has to look
for a more general correspondence, cf. Figure 2.1.

gR gT gR/gT gR/gT ◦ φ

Figure 2.1: Multimodal matching example of a PET image (gR) and a CT image (gT). Here,
the deformation φ was obtained using the one-to-one edge matching approach we
present in this chapter. Due to the joint handling of the edge detection and the
edge-based matching, the proposed method is able to perform the matching even
though the PET image does not have any discernable edges.

In [58], Droske et al. proposed to use the Mumford–Shah model in the context of image
registration. The main idea of this approach is to simultaneously segment two images with a
shared edge set. It is modeled by the functional

E[uR, uT,KT, φ] =

∫
Ω

(uT − gT)2 dx +µ

∫
Ω\KT

|∇uT|2 dx +νHd−1(KT) + Ereg[φ]

+

∫
Ω

(uR − gR)2 dx +µ

∫
Ω\φ−1(KT)

|∇uR|2 dx ,

where uR and uT are piecewise smooth functions, i. e. cartoon approximations of gR and gT,
and KT ⊂ Ω acts as the edge set of uT and φ−1(KT) as the edge set of uR. Because of
χφ−1(KT) = χKT

◦ φ, we have∫
Ω\φ−1(KT)

|∇uR|2 dx =

∫
Ω

(1− (χKT
◦ φ)) |∇uR|2 dx =

∫
Ω

(χΩ\KT
◦ φ) |∇uR|2 dx .
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Figure 2.2: Schematic view of the non-symmetric Mumford–Shah model for edge matching. gR

and gT denote reference and template image. uR and uT are the piecewise smooth
approximations of gR and gT respectively. K is the combined discontinuity set of
both images. φ represents the deformation matching uT to uR.

Therefore, this model makes the edges of gT ◦φ correspond to the edges of gR, hence the smooth
deformation φ establishes a mapping between the edge features of the input images. Here,
the modified Mumford–Shah model simultaneously handles edge segmentation and non-rigid
registration, two highly interdependent tasks. The main benefit and motivation to use such
kind of joint models is that any knowledge on the solution of one task can be used to improve
the solution of the other task. This benefit of joint approaches in the context of segmentation
and registration has already been exploited by Yezzi, Zöllei and Kapur [81]: They use an
active contour model, similar to the one proposed by Chan and Vese [46] (cf. Section 1.2.2), to
simultaneously segment and register multiple images, by evolving a single contour as well as
affine deformations of this contour to the edge features of each of the images.

In tasks where gR and gT have roughly the same (albeit deformed) edges, a major drawback
of the above Mumford–Shah based matching is its asymmetric nature with respect to edge
features and the spatial mapping between them. Figure 2.2 depicts the underlying scheme of
the model. The similarity measure is not symmetric because a single discontinuity set K is
used to represent two edge sets, the edges of the restored template image uT and the edges
of the restored deformed reference image uR ◦ φ−1. Furthermore, as illustrated in Figure 2.2,
the deformation φ between the two images is only defined in one direction, from gT to gR. As
pointed out in [108], an asymmetric similarity measure and a single directional deformation are
not enough to ensure the consistency of the method, i. e., if it is used to compute the deformation
φ from gT to gR and then the roles of gT and gR are switched to compute the deformation ψ
from gR to gT with the same method, the obtained deformations are not necessarily inverse to
each other.

To resolve the asymmetric nature we propose a symmetric edge matching model [74, 73, 72]
again based on the Mumford–Shah model. Figure 2.3 depicts the underlying scheme of this
symmetric model. The symmetric model uses two separate discontinuity sets, denoted by KR

and KT in Figure 2.3, that explicitly represent the edge sets of uR and uT respectively. To
account for the correspondence ambiguity, we pick up the idea of consistent registration by
Christensen and Johnson [48, 80]: The deformations in both directions are simultaneously
estimated while a penalty term constrains each deformation to be the inverse of the other one.
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Figure 2.3: Schematic view of the symmetric Mumford–Shah model for one-to-one edge matching.
gR and gT denote reference and template image. uR and uT are the piecewise smooth
approximations of gR and gT respectively. KR and KT are the discontinuity sets of
uR and uT respectively. φ represents the transformation from uT to uR, ψ represents
the transformation from uR to uT.

Hereby, both edge sets KR and KT have equal influence on the edge matching and switching
the roles of gT and gR just switches the roles of φ and ψ. In this sense, the proposed symmetric
matching approach determines one-to-one correspondences between the edge features of the two
input images. Therefore, it is suitable for a broad range of applications where the correspondence
of the same structure in different images needs to be determined (e. g. non-rigid registration for
atlas construction [110, 94], biological images [119, 6] or motion estimation [101]).

Before we start to develop the functionals for the symmetric model, one should note that
it is difficult to minimize the original Mumford–Shah functional (1.1) because of its explicit
handling of the discontinuity set K. Various approximations have been proposed during the last
two decades. For the registration model we focus on the phase field based Ambrosio–Tortorelli
approximation with elliptic functionals [4] (cf. Section 1.2.1). Another very important approach
was proposed by Chan and Vese [46] (cf. Section 1.2.2) and plays an important role in the other
chapters of this work. For a comparison of these two methods in the context of edge-based
image registration we refer to [61]. A different way to extend the registration model proposed
by Droske et al. [58] is to match the regular morphology in addition to the singular morphology,
i. e. the edges, cf. [60].

This chapter is organized as follows: In Section 2.1, we introduce our one-to-one edge matching
model by constructing the necessary functionals and the corresponding variational formulation.
Afterwards, the minimization algorithm and the numerical implementation are discussed in
Section 2.2. Finally, in Section 2.3, we study the influence of the parameters on the algorithm
and show experimental results for various applications.

2.1 One-to-one edge matching

As already mentioned in the beginning of this chapter, image registration is the following task:
Given a reference and a template image denoted by gR and gT respectively, find a suitable
deformation φ such that the deformed template image gT ◦φ becomes as similar to the reference
image gR as possible, cf. [98]. The key point here is to choose a way to measure this similarity
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(or dissimilarity) that is appropriate for the class of registration problems that one wants to
solve. There is a multitude of different similarity measures, usually involving the gray values gR

and gT directly or certain features such as edges derived from the gray values.

Building on the Mumford–Shah based registration model by Droske et al. [58], we consider
an edge-based matching method. First, the method needs to extract the edge features from
the gray values of the images and simply employs the Mumford–Shah model to tackle this
task. In practice, the discontinuity sets that encode the edges are approximated by phase field
functions, cf. Section 1.2.1. Since we need to extract the edges of both images, this involves
four unknowns {uR, uT, vR, vT}, one pair (uR, vR) for gR and one pair (uT, vT) for gT. Second,
the method needs to do the actual registration by using the aforementioned edges. We denote
the deformation from gT to gR by φ and the deformation from gR to gT by ψ. Basically, the
model from [58] is used twice to obtain both of these deformations, i. e. φ and ψ are supposed
to match the two feature representations (uT, vT) and (uR, vR) to uR and uT respectively, but
some special precautions need to be taken instead of handling the deformations more or less
independently. Otherwise, we may end up with a ψ that considerably differs from the inverse of
φ. In order to overcome such correspondence ambiguities, we follow the method of consistent
registration [48] and jointly estimate the deformations in both directions. This involves using a
consistency energy term ensuring that the deformations are approximately inverse to each other.
Finally, the full model is supposed to do both, the edge extraction and the edge registration,
simultaneously making use of the fact that both tasks are highly interdependent.

For reasons of practicability, we allow φ and ψ to map from Ω to Rd instead of restricting
their range to Ω. This is accompanied by an extension of all unknowns from Ω to Rd by zero,
e. g. vT(φ(x)) = 0 if φ(x) 6∈ Ω.

2.1.1 Construction of the energy

To encode the aforementioned desired properties of the six unknowns {uR, uT, vR, vT, φ, ψ} we
construct an energy such that the unknowns can be obtained by minimizing a joint energy
functional ESYM. This functional consists of different terms responsible for the different desired
properties and is of the following structure:

ESYM = EED + µEMA + λEREG + κECON. (2.1)

µ, λ and κ are nonnegative constant parameters that allow to control the contributions of the
associated functionals. In the following, we give a detailed definition of these functionals.

Edge-detection functional

As already pointed out, the edge detection is based on EεAT, the Ambrosio–Tortorelli functional
defined in equation (1.3). To express the dependence of EεAT on the input image u0, we write
Eε,u0

AT instead of just EεAT. This notation allows us to define the edge-detection functional as
follows:

EED[uR, vR, uT, vT] := Eε,gR
AT [uR, vR] + Eε,gT

AT [uT, vT]. (2.2)

Either of the two EεAT instances uses the mechanisms of the Ambrosio–Tortorelli approximation
to obtain the feature representation (uR, vR) or (uT, vT) of the input image gR or gT respectively,
such that the piecewise smooth function uR or uT couples with the corresponding phase field
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function vR or vT as described by equation (1.4). Roughly speaking, EED handles the detecting
of the edge features of both images and establishes the relationship between the phase field
function vR or vT and the corresponding piecewise smooth function uR or uT.

Note that the segmented edge features of the two images, (uR, vR) and (uT, vT), are totally
independent of each other in EED, i. e. changing either gR or gT has no influence on (uT, vT) or
(uR, vR) respectively.

Matching functional

EMA is responsible for matching the edge features of the two images. It is defined picking up
the ideas of [58]:

EMA[uR, vR, uT, vT, φ, ψ] := CMA[uR, vT, φ] + CMA[uT, vR, ψ]

:=
1

2

∫
Ω

(vT ◦ φ)2 |∇uR|2 dx +
1

2

∫
Ω

(vR ◦ ψ)2 |∇uT|2 dx .
(2.3)

It favors deformations φ and ψ which couple the feature representations (uR, vR) and (uT, vT)
such that vT ◦ φ ≈ 0 where |∇uR| � 0 and vR ◦ ψ ≈ 0 where |∇uT| � 0. Combined with the
phase field length terms for vR and vT from EED, the following coupling is induced (similar to
equation (1.4)):

vT ◦ φ ≈

{
0 where |∇uR| � 0,

1 where |∇uR| ≈ 0.

vR ◦ ψ ≈

{
0 where |∇uT| � 0,

1 where |∇uT| ≈ 0.

By construction, the matching functional treats segmentation and registration in a joint manner:
The registration is taken care of since the functional acts as a similarity measure based on the
correspondence of the edge features of the images to each other. Instead of the naive approach
to directly match the phase fields (vR ↔ vT) and the smooth functions (uR ↔ uT) to each
other, EMA aims at bringing the gradient of each of the smoothed images in correspondence to
the phase field of the respective other image (vR ↔ ∇uT, vT ↔ ∇uR). This frees the functional
from relying on a direct relationship between the gray values of the images and enables the
method to handle certain kinds of multimodal registration problems. Furthermore, the coupling
of the edge features segmented from one image to the other image introduced by EMA gives
the functional a direct influence on the segmentation.

Note that this functional does not guarantee any local correspondence of edge features:
Without any further constraints on the transformations φ and ψ, EMA allows φ, for instance,
to couple all edges of uR to a single point where vT vanishes.

Deformation regularization functional

To establish a local edge feature correspondence we introduce a spatial regularization for both
transformations:

EREG[φ, ψ] := CREG[φ] + CREG[ψ]

:=
1

2

∫
Ω
‖D(φ− id)‖2 dx +

1

2

∫
Ω
‖D(ψ − id)‖2 dx .

(2.4)
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Here, id : Ω→ Rd, x 7→ x denotes the identity mapping and ‖A‖ denotes the Frobenius norm on
matrices. Therefore, φ− id, ψ− id are the displacement fields corresponding to the deformations
φ and ψ. Establishing a local edge feature correspondence is not the only task of EREG. It is
also supposed to prevent deformations with singularities like cracks, foldings, or other undesired
properties. For the sake of simplicity, we confine in this work to a simple regularizer in form of
the sum of the norm of the Jacobian of both displacement fields (cf. [9] for further information
on this kind of regularizations).

Various more sophisticated regularizers that can be used in the context of non-rigid registration
have been proposed in the literature, e. g. linear elastic [32, 49] and viscous fluid [31, 49]
regularizations. Both make use of the corresponding continuous mechanical models [71]. Another
alternative is the nonlinear hyperelastic, polyconvex regularization used in [59]. It separately
cares about length, area and volume deformation and especially penalizes volume shrinkage. A
major advantage of this approach is that it already ensures a homeomorphism property of the
regularized deformation [59, 15, 16].

Deformation consistency functional

With the energy functionals defined so far, there is almost no coupling between φ and ψ. With
respect to EED and EREG, the two transformations are completely independent of each other.
Only EMA imposes an implicit correlation via the matching of the two image and phase field
pairs, i. e. (uR, vT ◦ φ) ↔ (uT, vR ◦ ψ). The missing explicit relationship between φ and ψ is
encoded in the consistency functional ECON:

ECON := CCON[φ, ψ] + CCON[ψ, φ]

:=
1

2

∫
Ω
|φ ◦ ψ(x)− x|2 dx +

1

2

∫
Ω
|ψ ◦ φ(x)− x|2 dx .

(2.5)

Unlike EREG, ECON is a classical penalty term: Ideally each deformation should be the inverse
of the respective deformation in the other direction, i. e. the deformations should fulfill φ = ψ−1

and ψ = φ−1. This can be expressed as the pointwise property φ ◦ ψ(x) = x = ψ ◦ φ(x) for
all x ∈ Ω. Instead of explicitly enforcing this property, ECON penalizes deviations from it,
introducing a soft constraint controlled by the penalty parameter κ in (2.1). Therefore, this
penalty functional implicitly encourages a bijective edge feature correspondence.

2.1.2 Variational formulation

To find a minimizer of the entire energy ESYM we look for a zero crossing of its variation with
respect to all the unknowns {uR, uT, vR, vT, φ, ψ}. The definition of the entire functional ESYM

as well as its components EED, EMA, EREG and ECON is completely symmetric with respect to
the two groups of unknowns, each corresponding to one of the input images: {uR, vR, φ} and
{uT, vT, ψ}. Thus, we can confine to discussing the variations with respect to {uR, vR, φ}. The
variations with respect the other group are then obtained analogously.

For an arbitrary scalar test function ϑ ∈ C∞0 (Ω), we get

〈∂uRESYM, ϑ〉 = 〈∂uREAT, ϑ〉+ 〈∂uREMA, ϑ〉

=

∫
Ω
α(uR − gR)ϑ+ βv2

R∇uR · ∇ϑ+ µ(vT ◦ φ)2∇uR · ∇ϑ dx ,
(2.6)
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〈∂vRESYM, ϑ〉 = 〈∂vREAT, ϑ〉+ 〈∂vREMA, ϑ〉

=

∫
Ω
β |∇uR|2 vRϑ +

ν

4ε
(vR − 1)ϑ + νε∇vR · ∇ϑ dx

+

∫
Ω
µ |∇uT|2 (vR ◦ ψ)(ϑ ◦ ψ) dx .

In view of the Finite Element method we are going to use for the spatial discretization (cf.
Section 2.2), the above formulation of the variation with respect to vR is not optimal. The
deformed test function ϑ ◦ ψ in the integrand of the last term alters the support of the test
function, nullifying some of the advantages of the FE method. The following lemma allows us
to get rid of the need to treat deformed test functions:

2.1.1 Lemma (Transformation rule for zero extensions). Let f, g ∈ L2(Ω) and ψ : Ω→ ψ(Ω)
be a C1-diffeomorphism. Extend (f ◦ψ−1)

∣∣detDψ−1
∣∣ : ψ(Ω)→ R and g : Ω→ R to Rd by zero,

i. e. (f ◦ ψ−1)(x)
∣∣detDψ−1(x)

∣∣ = 0 for x 6∈ ψ(Ω) and g(x) = 0 for x 6∈ Ω. Then

∫
Ω
f(x) (g ◦ ψ)(x) dx =

∫
Ω

(f ◦ ψ−1)(x) g(x)
∣∣detDψ−1(x)

∣∣dx .

Proof. Denote (f ◦ ψ−1)
∣∣detDψ−1

∣∣ by h. Using the standard transformation rule, one obtains

∫
Ω
f(x) (g ◦ ψ)(x) dx =

∫
ψ(Ω)

(f ◦ ψ−1)(x) g(x)
∣∣detDψ−1(x)

∣∣ dx =

∫
ψ(Ω)

hg dx

=

∫
ψ(Ω)∩Ω

hg dx +

∫
ψ(Ω)∩(Rd\Ω)

hg dx︸ ︷︷ ︸
=0 (g≡0 in Rd\Ω)

=

∫
ψ(Ω)∩Ω

hg dx

=

∫
ψ(Ω)∩Ω

hg dx +

∫
(Rd\ψ(Ω))∩Ω

hg dx︸ ︷︷ ︸
=0 (h≡0 in Rd\ψ(Ω)

=

∫
Ω
hg dx .

Using the zero extension of vR to Rd and Lemma 2.1.1, we get

〈∂vRESYM, ϑ〉 =

∫
Ω
β |∇uR|2 vRϑ +

ν

4ε
(vR − 1)ϑ + νε∇vR · ∇ϑ dx

+

∫
Ω
µ
∣∣∇uT ◦ ψ−1

∣∣2 vRϑ
∣∣detDψ−1

∣∣ dx .

(2.7)

Here, Lemma 2.1.1 also gives a meaning to the integrand of the last term where ψ−1 is not
defined, i. e. in (Rd \ ψ(Ω)) ∩ Ω.

For an arbitrary vector-valued test function ζ ∈ C∞0 (Ω,Rd), using Lemma 2.1.1 and

(ψ ◦ φ− id)T ((Dψ) ◦ φ)ζ = ((Dψ) ◦ φ)T (ψ ◦ φ− id) · ζ,
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we get

〈∂φESYM, ζ〉 = 〈∂φEMA, ζ〉+ 〈∂φEREG, ζ〉+ 〈∂φECON, ζ〉

=

∫
Ω
µ |∇uR|2 (vT ◦ φ)((∇vT) ◦ φ) · ζ + λD(φ− id) : Dζ dx

+

∫
Ω
κ
∣∣detDψ−1

∣∣ (φ− ψ−1) · ζ dx

+

∫
Ω
κ((Dψ) ◦ φ)T (ψ ◦ φ− id) · ζ dx .

(2.8)

Here, A : B = tr(ATB) for A,B ∈ Rd×d.

2.2 Minimization algorithm

To deal with the high complexity of the minimization problem (six unknown functions, two of
them vector-valued) the unknowns are estimated in an expectation-maximization (EM) like
manner, also known as alternating minimization. For a general energy E depending on m
unknown functions f1, . . . , fm and a given estimate of the unknown functions, one step of the
generic EM procedure replaces fi by argminf E[f1, . . . , fi−1, f, fi+1, . . . , fm] for 1, . . . ,m.

This approach not only reduces the computational complexity, but also allows us to take
advantage of the fact that the variations with respect to the images and the phase fields are
linear in the corresponding unknown.

2.2.1 Solution of the linear part

Noting that ∂uRESYM and ∂vRESYM are linear in uR and vR respectively (cf. equations (2.6)
and (2.7)), after spatial discretization their zero-crossings can simply be calculated by solving
the corresponding systems of linear equations. Following the FE method (cf. Section 6.1) all
continuous functions are replaced by their FE approximations, e. g. gR and uR by GR(x) =∑n

i=1GR
i
Λi(x) and UR(x) =

∑n
i=1 UR

i
Λi(x). Finding a zero crossing of (2.6) in the FE space

is equivalent to solving

α

n∑
i=1

UR
i
∫

Ω
Λi(x)Λj(x) dx

+ β

n∑
i=1

UR
i
∫

Ω
V 2

R(x)∇Λi(x) · ∇Λj(x) dx

+ µ

n∑
i=1

UR
i
∫

Ω
(VT ◦ Φ)2(x)∇Λi(x) · ∇Λj(x) dx

= α

n∑
i=1

GR
i
∫

Ω
Λi(x)Λj(x) dx for all 1 ≤ j ≤ n.

(2.9)

Using the definitions of generalized mass (6.1) and stiffness matrices (6.2), equation (2.9) is
equivalent to(

αM + βL
[
V 2

R

]
+ µL

[
(VT ◦ Φ)2

])
UR = αMGR. (2.10)
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Similarly, (2.7) leads to(
µM

[∣∣∇UT ◦Ψ−1
∣∣2 ∣∣detDΨ−1

∣∣]+ βM
[
|∇UR|2

]
+
ν

4ε
M + νεL

)
VR =

ν

4ε
M 1 . (2.11)

Here 1 denotes the one-vector, i. e. (1, . . . , 1)T . Analogously, one obtains the linear systems for
UT and VT(

αM + βL
[
V 2

T

]
+ µL

[
(VR ◦Ψ)2

])
UT = αMGT. (2.12)(

µM
[∣∣∇UR ◦ Φ−1

∣∣2 ∣∣detDΦ−1
∣∣]+ βM

[
|∇UT|2

]
+
ν

4ε
M + νεL

)
VT =

ν

4ε
M 1 . (2.13)

In the implementation, the linear systems (2.10) to (2.13) are solved with a conjugate gradient
method using SSOR preconditioning.

2.2.2 Solution of the nonlinear part

Unlike ∂uRESYM and ∂vRESYM, ∂φESYM is not linear (cf. (2.8)). Thus we cannot find a zero-
crossing of (2.8) by just solving a linear system. Instead, we employ the following explicit
gradient flow scheme (cf. Section 6.2) to approximate the zero-crossing iteratively:

Φk+1 = Φk − τk · gradgσΦ ESYM[Φk]. (2.14)

Here, gradgσΦ ESYM[Φk] denotes the gradient of ESYM with respect to the deformation Φ and a
metric gσ, i. e. it is characterized by fulfilling

gσ

(
gradgσΦ ESYM[Φk], ζ

)
= 〈∂φESYM, ζ〉 for all ζ ∈ C∞0 (Ω,Rd),

and τk is a step size yet to be determined.
We choose the metric, inspired by the Sobolev active contour approach [120], to be a scaled

version of the H1 metric, i. e.

gσ(Φ1,Φ2) = (Φ1,Φ2)L2 +
σ2

2
(DΦ1, DΦ2)L2 .

σ represents a filter width of the corresponding time discrete and implicit heat equation filter
kernel. In Section 6.2 we give further explanations on the influence of the metric and the
regularizing effects of gσ. Still we want to emphasize here that the choice of the metric does
not alter the energy landscape itself in any way, but solely the descent path towards the set of
minimizers.

The actual computation of gradgσΦ ESYM[Φk] in our implementation is done in two steps:

• Compute the discrete variation, given by

∂ΦESYM[Φk] =
(〈
∂ΦESYM[Φk],Λiej

〉)
1≤i≤n,1≤j≤d

∈ Rnd.

• A straightforward calculation shows that the representation of gσ in FE-terms is

gσ(Φ1,Φ2) =
(
Mbl + σ2

2 Lbl

)
Φ1 · Φ2, (2.15)
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therfore

gradgσΦ ESYM[Φk] =
(
Mbl + σ2

2 Lbl

)−1
∂ΦESYM[Φk]

holds. Here, Mbl and Lbl denote d×d block matrices with the standard mass and stiffness
matrices, respectively, on the diagonal block positions and zero matrices on the remaining
block positions. For all results presented in this chapter, we use σ =

√
10h, where h denotes

the mesh resolution, cf. Section 6.1. The solution of the linear system is approximated by
a single V -cycle of a multigrid solver [29, 130]. We do not need the exact solution, but
only the regularizing effect of the inverse of the metric representation. Thus one V -cycle
is sufficient.

We employ the Armijo rule [25] to determine the step size of the gradient flow and give a
detailed description of this approach in Section 6.3. The parameters are chosen as σ = 1

4 and
β = 1

2 .

The natural way to handle the deformations indicated by the EM procedure is to update
each deformation individually and particularly to determine the step size for each deformation
separately, i. e. estimating τΦ for Φ and then estimating τΨ for Ψ after updating Φ. However, if
Φ and Ψ are treated sequentially, the consistency energy (2.5) significantly limits τΦ and τΨ,
because large individual step sizes result in a significant enlargement of the consistency energy.
Fortunately, this shortcoming can easily be avoided: Instead of treating Φ and Ψ separately, we
treat both combined as a single unknown in our EM procedure. Hence we use the gradient flow
scheme[

Φk+1

Ψk+1

]
=

[
Φk

Ψk

]
− τk

[
gradgσΦ E[Φk,Ψk]
gradgσΨ E[Φk,Ψk]

]
(2.16)

to update the transformations. Since Φ and Ψ are updated simultaneously, the consistency
energy does not necessarily forbid large step sizes.

Compared to a classical gradient descent with fixed step size, the regularized gradient flow
with adaptive step size control performs significantly better. The step size control noticeably
reduces the amount of necessary descent steps and at least experimentally ensures convergence.
In the experiments in this chapter, we use five gradient flow steps to update the deformations
in each iteration of the EM procedure.

2.2.3 Cascadic descent approach

One drawback of our joint energy functional ESYM, typical for non-rigid registration functionals,
is that it has many local minimizers. Furthermore, the whole EM procedure and the gradient
flow used to update the transformations both are attracted to the “nearest” local minimizer. In
order to avoid being dragged into undesirable local minima, we employ a spatially cascadic
scheme. In a nutshell, we start by calculating a minimizer with the EM procedure on a very
coarse spatial resolution, prolongate the minimizer to a finer resolution and then repeat the
minimizing and prolongation steps till we reach the resolution of the input data. The coarser
the resolution, the fewer local structures prevail in the input data. Hence, the cascadic scheme
segments and matches global structures before local ones.

To conveniently handle the prolongation and restriction needed for the cascadic scheme, we
use a special case of meshes to discretize the image domain Ω := [0, 1]d described in Section 6.1.
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Figure 2.4: 2D nested mesh hierarchy on a uniform rectangular mesh: All nodes of the coarse
mesh C1 are also nodes of the fine mesh C2.

The uniform rectangular mesh is chosen such that it has 2m + 1 equidistant nodes along each
axis, hence n := (2m + 1)d nodes in total. The mesh is denoted by Cm and m is called the level
of the mesh. By construction, these meshes are nested in each other in an ascending manner,
i. e. Nm−1 ⊂ Nm where Nm denotes the set of nodes of Cm, cf. Figure 2.4. Although such a
nested mesh hierarchy is not natural for finite difference methods, where commonly discrete
images with 2m pixels or voxels along each axis are used, it is the commonly used, canonical
hierarchy in the Finite Element context. Due to the nestedness of the meshes, the prolongation
from one level to the next higher level can be done in a simple and straightforward manner: To
prolongate a discrete function from level m− 1 to m we just need to determine its value on the
nodes Nm. This is done by evaluating the function on these nodes. Based on the construction
of our FE spaces, this means that the function values on the nodes Nm ∩Nm−1 = Nm−1 are
directly transferred and the values on the nodes Nm \ Nm−1 are determined by multi-linear
interpolation from the values on the neighboring nodes in Nm−1.

The prolongation from level m − 1 to m is a linear mapping and can be represented by a
matrix P . Before we can start the minimization on the coarsest desired grid level, we have to
restrict the input data, which is given on the finest grid level, to the coarsest one. For this we
use the restriction from level m to level m− 1 given by the matrix P T after normalizing the
rows of P T to have a row sum of one and successively apply the restriction to get the input
data on all necessary levels.

The last thing we need to take into account for the cascadic procedure is the dependency of
the parameters on the mesh level. Fortunately, all but one of the parameters are independent
of the level and therefore do not need to be adapted throughout the cascadic algorithm. The
only exception is ε, the “width” of the diffusive edge sets, as it is naturally linked to the mesh
resolution h. To properly resolve the smooth transition from “edge” to “no edge” in the phase
fields, ε needs to be chosen of the order of h, i. e. ε = ch for c > 0 arbitrary but fixed. In
other words, on level m the algorithm automatically sets ε to chm, where hm denotes the mesh
resolution of the mesh corresponding to level m.

Combined with the EM procedure, this leads to Algorithm 2.1, the complete registration algo-
rithm. Numerically, the energy ESYM and its variations as well as the matrices are approximated
using a Gauss quadrature scheme of order 3 (cf. Section 6.1).
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Algorithm 2.1: Complete registration procedure
given starting level m0 and ending level m1;
given images GR = Gm1

R and GT = Gm1
T ;

given number of iterations on each level k1;
for m = m1 − 1 to m0 do

initialize [GmR , G
m
T ] by restricting [Gm+1

R , Gm+1
T ];

end
initialize [Um0

R , V m0
R , Um0

T , V m0
T ] with 0;

initialize [Φm0 ,Ψm0 ] with id;
for m = m0 to m1 do

for k = 1 to k1 do
update UmR by solving (2.10);
update V m

R by solving (2.11);
update UmT by solving (2.12);
update V m

T by solving (2.13);
update [Φm,Ψm] with 5 gradient flow steps using (2.16);

end
if m 6= m1 then

initialize [Um+1
R , V m+1

R , Um+1
T , V m+1

T ,Φm+1,Ψm+1]
by prolongating [UmR , V

m
R , UmT , V

m
T ,Φm, Ψm];

end

end

2.3 Numerical results

To investigate the performance of the proposed one-to-one edge matching algorithm, we
performed various numerical experiments. We start with a study on the influence of the various
parameters involved in the model using T1- and T2-MRI volumes of the same patient as input
data. Afterwards, we use the method for 3D intersubject monomodal registrations, useful
to establish anatomical correspondences between different individuals. We continue with the
registration of retinal images and then apply the method to match 2D photographs arising in
neurosurgery to the corresponding projections of 3D MRI volume data. Finally, we show that
the method is not limited to medical data and can also go beyond the scope of classical image
matching by using it for video frame interpolation.

To be able to apply the cascadic approach to any kind of given input data, we need to
make sure that the data complies with the restrictions introduced by the mesh hierarchy, cf.
Section 2.2.3. A simple resampling of the input data to the finest mesh of the hierarchy is
sufficient for this, potentially preceded by cropping in case the input data does not have the
same amount of pixels or voxels in each coordinate direction. For our experiments, the cropping
was only necessary in the frame interpolation example. The resampling is done by multi-linear
interpolation, i. e. bilinear for 2D data and trilinear for 3D data. This kind of interpolation is
the canonical approach implied by our Finite Element framework (cf. Section 6.1) and gives
sufficient accuracy. Note that the method does neither depend on the concrete choice of the
resampling approach nor on the concrete construction of the cascadic framework.
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Figure 2.5: Influence of the parameters β, µ and λ on the phase fields.

2.3.1 Parameter study for 3D data

The basis of our parameter study is a pair of 3D MRI data sets, both acquired from the
same person and with the same MRI scanner but with different scan parameters (T1/T2).
Due to this acquisition setup, the original T1-MRI and T2-MRI volumes are already almost
perfectly matched to each other. In order to show the effect of the registration process, the
T2-MRI volume is deformed by an artificial elastic deformation. The original T1 volume is
used as reference image gR, the artificially deformed T2 volume is used as template image gT.
Both input volumes are of size 512× 512× 101 and were resampled (keeping the aspect ratio
and using extension by zero) to 1293 voxels to apply the cascadic scheme. Each experiment
used 10 EM-iterations on the 1293 mesh. The runtime per experiment was about two hours
on a standard PC with Intel Pentium 4 2.26 GHz processor and 2.0 GB RAM and using a
non-optimized implementation. The necessary computational time is expected to decrease
significantly if the employed general purpose implementation is optimized for the particular
model. Even though the parameter influence is only studied for T1-/T2-MRI edge matching
here, the effects of the parameter ratios seen in these experiments are also valid for the edge
matching of other image modalities.

Figure 2.5 illustrates how the parameters β, µ and λ balance edge detection against edge
matching. The parameters not mentioned in the figure are fixed at α = 2550, ν = 0.1, κ = 100,
ε = 0.5h. The images shown are details of a single slice of the volume data. Since we only want
to investigate the influence of the parameters, it is sufficient to confine to these details. In
experiments A1-A3, the overwhelmingly large regularization parameter λ essentially disables the
matching part of the approach and hence allows only edge detections. These three experiments
show that the ratio between β and µ controls whether a phase field represents the edges of its
“own” image, the edges of its counterpart or a mixture of both. In experiment A1, where β is
much larger than µ, EED has more influence than EMA. Thus the resulting phase fields mainly
resemble their “own” edges. The opposite case is depicted in experiment A2. Here, β is much
smaller than µ and hence the phase fields prefer to resemble the edges of their counterparts,
i. e. vR shows the edges of gT while vT shows the edges of gR.

Proper edge detection is a necessity to achieve good edge-based matching. Therefore, the
parameters β and µ need to be set in such a way that the resulting phase fields vT and vR clearly
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resemble the edges of both images, as shown in experiment A3. In the case of the T1-/T2-MRI
data considered here, experiment A3 shows that it is reasonable to use equal values for β
and µ. However, this ratio needs to be customized to the specific application considered. For
example if the intensity patterns of the input images are vastly different, like in Section 2.3.4,
the parameters β and µ have to be chosen differently. Finally, experiment A4 enables edge
matching in addition to edge detection due to the smaller value of the regularization parameter
λ. Compared to experiment A3, each phase field resembles the edges of both images, but the
edge matching merges the edges in the phase fields.

We performed further experiments to study the effects of the parameters λ and κ, cf. [73].
Unsurprisingly, a certain level of regularization induced by λ is necessary and sufficient to
obtain topology-preserving deformations in practice. Furthermore, κ may not be chosen too
small in order to attain adequate consistency between φ and ψ. In conclusion, it seems to
be safe to roughly fix five of the parameters in most 2D and 3D applications, i. e. choosing
λ = 10, κ = 100, α = 2550, ν = 0.1 ∼ 1, ε = 0.5h usually achieves good matching results.

2.3.2 Intersubject monomodal registration

The following two experiments show the performance of the proposed method for intersubject
monomodal registration: We apply our method to a pair of MRI data sets (MRI-to-MRI) and
a pair of CT data sets (CT-to-CT). Both of the MRI data sets picture a healthy brain, each
of a different subject. The CT data sets show the heads of two other subjects, one healthy
and the other one abnormal. All data sets were acquired by the same MRI and CT scanners
respectively and with the same scanning parameters. Furthermore, the MRI data sets were
preprocessed using MRIcro (http://www.sph.sc.edu/comd/rorden/mricro.html) to extract
the brain from the scan of the head.

To apply the cascadic scheme, all input data sets were resampled (keeping the aspect ratio
and using extension by zero) to 2573 voxels from originally 512× 512× 58 and 512× 512× 61
(CT) and 256 × 256 × 160 and 256 × 256 × 170 (MRI) respectively. Both experiments used
10 EM-iterations each on the levels 333, 653, 1293 and 2573 with the following parameter
settings: α = 2550, β = 1, ν = 0.1, µ = 1, λ = 10, κ = 100, ε = 0.5h. Respective runtime (on
the same machine specified in the parameter study) for each level was approximately 1 minute,
10 minutes, 90 minutes and 5 hours.

The matching results are visualized by an “interlace-stripe” pattern, showing two data sets
in an alternating manner within a single volume. Such a stipe view of two data sets A and B
is denoted by A‖B. Therefore, recalling the notation from the previous sections, GR‖GT and
GT‖GR show the interlace-stripe volumes of the original data sets GR and GT, while GR‖GT ◦Φ
and GT‖GR ◦Ψ show the interlace-stripe volumes of a matched data pair, i. e. one input data
set with the corresponding deformed data set.

From visual inspection, the proposed algorithm successfully registers MRI-to-MRI and CT-
to-CT volume data sets of different subjects in both directions. Figure 2.6 shows that the
prominent edges such as the brain’s outer contour, the hemispheric gap and the ventricular
system are precisely aligned in the MRI-to-MRI matching experiment. The same holds true for
the CT-to-CT experiment: The prominent edges such as the bones and the outer contour of
the head are properly aligned, cf. Figures 2.8 and 2.10. The edges that were taken into account
for the registration by the algorithm are depicted by Figures 2.7 and 2.9.



2.3 Numerical results 29

GR‖GT GR‖GT ◦ Φ

GT‖GR GT‖GR ◦Ψ

Figure 2.6: Intersubject MRI-to-MRI registration using one-to-one edge matching: Volume
rendering of the 3D data sets with a cut plane to illustrate the quality of the
registration by the alignment of important structures, here, outer brain contour,
hemispheric gap and ventricular system.

VR (front) VR (side) VT (front) VT (side)

Figure 2.7: Volume rendering of the final phase fields from the intersubject MRI-to-MRI
registration (cf. Figure 2.6) in a front and a side view. The window function was
chosen to display regions were the phase fields are zero, e. g. detected edges, as
transparent white.
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GR‖GT GR‖GT ◦ Φ GT‖GR GT‖GR ◦Ψ

Figure 2.8: Intersubject CT-to-CT registration using one-to-one edge matching: Volume render-
ing of the 3D data sets with a cut plane to illustrate the quality of the registration
by the alignment of important structures, here, outer head contour and bones.

VR VT

Figure 2.9: Volume rendering of the final phase fields from the intersubject CT-to-CT registra-
tion (cf. Figure 2.8). The window function was chosen to display regions were the
phase fields are zero, e. g. detected edges, as transparent white.

GR‖GT GR‖GT ◦ Φ GT‖GR GT‖GR ◦Ψ

Figure 2.10: Alignment of the skulls in intersubject CT-to-CT registration: Volume rendering
of the 3D data sets with a cut plane and a bone window function.
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Figure 2.11: Multimodal retinal images of one subject: photograph (left), depth image (middle)
and reflectance image (right). All images are courtesy of Rüdiger Bock (Chair of
Pattern Recognition, Erlangen-Nürnberg University).

2.3.3 Retinal images

The reliability of glaucoma diagnosis can be increased significantly by a concurrent representation
of the optic nerve header and the neuroretinal rim in various retinal image modalities. Several
modalities of retinal images are used in this context: reflection-free photographs with electronic
flash illumination, and depth as well as reflectance retinal images acquired by a scanning-laser-
tomograph. Figure 2.11 depicts one retinal image of each kind, all acquired from the same
patient. Due to the acquisition setup of a scanning-laser-tomograph, the depth and reflectance
images are normally already almost perfectly matched to each other right after acquisition. Thus
the task is the matching of reflectance and depth images with corresponding photographs, i. e.
a multimodal registration problem. We do not consider monomodal retinal image registration
here and refer to [35, 36] for this. Recently, an affine transformation model combined with
an extended mutual information similarity [88] were applied to the multimodal registration
problem we just introduced. However, as shown in the first column of Figure 2.12, this method
cannot recover the minor deviations in the vessels and neuroretinal rims due to the limitations
imposed by the employed affine transformation model. We employ the proposed method in this
experiment as a post-registration step to compensate for the small, nonlinear deviations that
are not captured by [88].

The original images are preprocessed as follows: The green channel of the photograph is
extracted and used as input for the affine pre-registration of the photograph to the reflectance
and depth images using the automatic tool described in [88]. The necessary software for the
pre-registration was kindly provided by Rüdiger Bock (Chair of Pattern Recognition, Erlangen-
Nürnberg University). After the pre-registration step, all pre-registered images are resampled to
2572 to comply with the cascadic strategy. The algorithm was run using 10 EM-iterations each
on the levels 652, 1292 and 2572 with the following parameter settings: α = 2550, β = 1, ν = 0.1,
µ = 0.5, λ = 10, κ = 100, ε = 0.5h. The full runtime was less than three minutes. Figure 2.12
depicts the results of this experiment and shows that most of the minor deviations in the vessels
are found and corrected. Note that the affine pre-registration used here to compensate for the
large initial mismatch also helped our method to avoid getting stuck in a local minimum.



32 2 A Mumford–Shah model for one-to-one edge matching

GT‖GR GT‖GR ◦Ψ GR‖GT ◦ Φ

Figure 2.12: Post-registration of multimodal retinal images using one-to-one edge matching:
The photograph is registered with the depth image (top) and the reflectance image
(bottom). The result of the affine pre-registration [88] (first column) is used as
input for our algorithm. The circles highlight the regions where the initial nonlinear
deviations not captured by [88] are most noticeable.

2.3.4 Photographs of neurosurgery

In neocortical epilepsy surgery, the lesion causing the epileptic seizures of a patient may be
located next to, or even partly within, functionally very relevant, so-called eloquent, cortical
brain regions. For instance, the motor cortex (involved in the control of voluntary motor
functions) is such an eloquent region. A safe neurosurgical planning requires the appearance
of the exposed cortex to be mapped to the underlying functionality by the physician. The
treatment usually requires two surgeries: The first surgery enables an electrophysiological
examination of the underlying brain functionalities by placing an electrode array on the surface
of the brain and taking photographs of the exposed cortex with and without the electrode array.
After the first surgery, the cortex regions on the photographs are manually colored according to
their functionality that is revealed by the electrode contacts. Additionally a 3D MRI scan, also
containing information about the underlying lesion and healthy tissue, is acquired before the
first surgery. In the second surgery, the pre-operative 3D MRI scan and the map of the brain
functionalities on the photograph are used together to facilitate the surgical removal of the
lesion without harming functionally relevant areas. At the moment, the fusion of the information
from the 3D MRI scan with the photographs requires a manual affine registration and region of
interest selection by a neocortical expert. In particular, the manual registration requires the
expert to find the appropriate 2D projection of the 3D MRI data set to the cortex region shown
on the photographs. However, the photograph and the MRI projection cannot be accurately
aligned by just an affine transformation due to the so-called brain shift that is affecting the
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GR GT GR preprocessed GT preprocessed

Figure 2.13: Matching a neurosurgery photograph with its MRI projection using one-to-one
edge matching: Original images and the corresponding preprocessed versions that
are fed to our algorithm.

photograph but not the MRI scan. Brain shift is the tissue deformation that occurs during
neurosurgical procedures, for instance, due to loss of cerebrospinal fluid and cortical swelling. In
this experiment, we make use of the proposed method to refine the manual registration between
a 2D digital photograph of the cortex and the projection of the corresponding pre-operative 3D
MRI scan. Regarding the details of the equipment used to acquire the photographs and the
MRI scan, we refer to [73].

Figure 2.13 shows the input images used in this experiment, obtained using manual affine
registration by a physician. GR denotes the digital photograph and shows the exposed left
hemisphere from an intraoperative viewpoint. In particular, the gyri and sulci as well as the
overlying vessels are clearly visible. GT denotes the 2D projection of the MRI data set and
displays the left-sided view of the rendered MRI volume in the corresponding parts. Comparing
GR and GT, one notices that the photograph clearly displays surface vessels and a reflectance
flash, whereas these features are not present in the MRI projection image. Thus the registration
should base the matching on the gyri and sulci, present in both images. In order to ease
the corresponding edge detection that needs to be done by our algorithm, both images were
preprocessed by appropriate GIMP filter chains for edge enhancement, see “GR preprocessed”
and “GT preprocessed” respectively in Figure 2.13. In particular, the filter chain for GR involves
successive erosion and dilation to remove very small vessels from the photograph.

To apply the cascadic scheme, both input images were resampled (keeping the aspect ratio
and using extension by zero) to 20492 pixels. The algorithm was run using 10 EM-iterations
each on all levels from 92 to 20492 with the following parameter settings: α = 2550, β = 100,
ν = 0.1, µ = 0.1, λ = 10, κ = 100, ε = 0.5h. Note that the values of the parameters β and µ
differ considerably from the values used in the other examples. This stems from the largely
different image modalities of the photograph and the corresponding MRI projection. β and
µ are chosen such that both phase fields VT and VR clearly represent the edge features of the
cortex. Thus each phase field has similar influence on the registration. Figure 2.14 shows the
results of this experiment by depicting interlace-stripe views of the unregistered and registered
images. The registered views show that the proposed method considerably refines the initial
manual affine matching done by the physician. Particularly the gyri and sulci are accurately
aligned to each other by our method.

To compare the quality of our method to a well established method, we have implemented a
mutual information based registration algorithm within the same Finite Element framework
(including the step sized controlled, regularized, cascadic descent). Note that Viola and Wells
[127] pioneered the use of mutual information in the context of image registration. Overall,



34 2 A Mumford–Shah model for one-to-one edge matching

GR‖GT GR‖GT ◦ Φ

GT‖GR GT‖GR ◦Ψ

Figure 2.14: Matching a neurosurgery photograph with its MRI projection using one-to-one
edge matching: Interlace-stripe views before and after the registration to illustrate
the quality of the registration by the alignment of important structures, here, gyri
and sulci.

Figure 2.15: Comparison of one-to-one edge matching (top row) and mutual information based
matching (bottom row) in the same Finite Element framework.
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the results obtained by the proposed method are mostly comparable to mutual information,
especially when dealing with coarse structures. However, as shown by the zoom views depicted
in Figure 2.15, the alignment achieved by the edge-matching method is better than the one
obtained by the mutual information based registration in case the input data sets contain a
large number of lower dimensional structures.

2.3.5 Motion estimation based video frame interpolation

Temporal interpolation of video frames in order to either increase the frame rate or to restore
corrupted frames requires the estimation of a motion field. This motion field can be seen as a
transformation and encodes how a point moves from one frame to another. Given a motion field
between two frames, intermediate frames can be obtained by interpolation of the pixels along
the path given by the motion field. For a review of frame interpolation techniques, we refer
to [87, 82]. Here, we confine to giving a proof of concept showing that our proposed matching
method can be used for this kind of application. Later, in Chapter 4, we will return to the
problem of motion estimation and combine it with the restoration of motion-blurred objects
from video sequences.

In this experiment, the goal is to interpolate frame 58 of the “Susie sequence” from frames
57 and 59, cf. Figure 2.16. To apply the cascadic scheme, the original frames are cropped to
2572 pixels. We denote the cropped frames 57, 58 and 59 by F57, F58 and F59 respectively.
F57 is used as template image GT, F59 is used as reference image GR. Hence Φ denotes the
transformation from F57 to F59, Ψ denotes the one from F59 to F57. The algorithm was run
using 10 EM-iterations with the following parameter settings: α = 2550, β = 1, ν = 0.1, µ = 1,

Frame 57 Frame 58 Frame 59

no motion estimation one-to-one edge matching block matching

Figure 2.16: Video frame interpolation of the “Susie” sequence using one-to-one edge matching
compared to simple averaging and a standard block matching algorithm.
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λ = 10, κ = 100, ε = 0.5h. After the registration of F57 and F59, F58 is interpolated using the
average of the frame predictions indicated by Φ and Ψ, i. e.

F58(x) =
1

2

(
F57

(
1

2
(Φ(x)− x) + x

)
+ F59

(
1

2
(Ψ(x)− x) + x

))
.

Note that Φ(x)− x is the displacement of the transformation Φ, hence 1
2(Φ(x)− x) + x halves

the displacement done by Φ, the same holds for Ψ. Figure 2.16 compares the interpolation
obtained by our algorithm with simple averaging (no frame interpolation) and a standard block
matching algorithm, so-called adaptive rood pattern search [101], using blocks of size 16× 16
and a horizontal and vertical search range of [−16, 16]. In the results shown in Figure 2.16,
the adaptive rood pattern search leads to unpleasant block artifacts, whereas the interpolated
frame obtained by the one-to-one edge matching approach is visually convincing and without
apparent artifacts.



3 Grain boundaries and macroscopic
deformations on atomic scale

THE goal of this chapter is to present a method to extract certain mesoscopic quantities from
microscopic image data in materials science. This task is of practical relevance because the

image data acquired in this context often lives on the microscale (e. g. the underlying atomic
structure), whereas the material properties (electrical, optical, mechanical, etc.) one is looking
for are determined by mesoscopic properties.

In particular, the actual material properties are usually determined on a mesoscopic length
scale. There, non-equilibrium structures exist which form and evolve during material processing.
For example, local variations of the inter-atomic distance can be understood as material
deformation on the mesoscale. Another example is the yield strength of a polycrystal that varies
with the inverse square of the average grain size. Here, grains are material regions with different
lattice orientation which are typically not in equilibrium. In additional they are frequently
observed in an elastically deformed state. Experimental tools such as TEM (transmission
electron microscopy) [84] nowadays allow measurements down to an atomic resolution (cf.
Figure 3.1). A reliable extraction of elastic deformations and grains (characterized by their
boundaries) from these TEM images is essential for an efficient material characterization.
Likewise, recent numerical simulation tools have been developed for physical models of grain

Figure 3.1: In a TEM image (left), light dots render atoms from a single atom layer of aluminum
(exemplary shown by a Σ11(113)/[1̄00] grain boundary [84], courtesy of Geoffrey
H. Campbell, Lawrence Livermore National Laboratory). The second TEM image
(middle) illustrates that on a mesoscale elastic displacements are implicitly encoded
in a spatially varying inter atom distance (courtesy of Nick Schryvers, Antwerp
University). The last image (right) is a time step from a numerical PFC simulation
showing a similar atomic layer as the first image. In both images (left and right),
one can observe that grain boundaries are characterized by jumps in the lattice
orientation.
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formation and grain dynamics on the atomic scale. Concerning such simulations, we refer to
numerical results obtained from a phase field crystal (PFC) model [64] derived from the density
function theory of freezing [118]. Its methodology describes the evolution of the atomic density
of a system according to dissipative dynamics driven by free energy minimization. The resulting
highly nonlinear partial differential equation of sixth order can be solved applying a finite
element discretization and a semi-implicit time discretization [14]. As an example, Figure 3.2
shows several time steps of a PFC simulation, depicting the simulated nucleation and growth of
grains. Such simulations in particular will allow a validation of the physical models based on
the comparison of mesoscopic properties such as the propagation speed of grain boundaries.
Note that the formation of grains from an undercooled melt happens on a much faster time
scale than their subsequent growing and coalescence, whereas the evolution of grain boundaries
at later stages of the process is of particular interest. Figure 3.1 shows two experimental (TEM)
and one numerically simulated (PFC) image at atomic scale side by side and outlines the similar
structure of both image types.

Figure 3.2: Nucleation of grains in a phase field crystal simulation.

As mesoscopic material properties can be deduced from observations of microstructures,
their robust and reliable extraction via image processing methodology is expected to provide
physical insight in the underlying materials. Here, we are treating the reliable extraction of
grain boundaries [22] and elastic grain lattice deformations [23], as well as the detection of the
interfaces between the liquid and the solid phase of a material. For this, we apply a variational
approach based on the description of the interfaces by level sets. Furthermore, we generalize
the variational approach for the extraction of an elastic deformation and a full coupling of
orientation and deformation classification. We demonstrate the applicability of our approach
by experiments on phase field crystal simulation results and and also on experimental TEM
images.

The chapter is organized as follows: We begin with a review of related work in Section 3.1.
Then, in Section 3.2, we discuss the case of how to extract the orientation and the elastic
deformation from a single grain. Afterwards, the segmentation of grain boundaries in the
non-deformed case is discussed in Section 3.3. In both sections, we first introduce a variational
problem involving sharp interfaces on the microscale (describing atomic dot patterns) and on the
macroscale (representing grain boundaries), then discuss a suitable smooth approximation, and
derive a minimization algorithm based on a regularized gradient descent (cf. Section 6.2). The
particular case of a liquid phase beside the solid phase is treated in Section 3.4. Combining the
different approaches in Section 3.5, we derive a joint approach for the simultaneous extraction
of grain domains classified by local lattice orientations and the computation of an underlying
elastic deformation. Finally, we give a short outlook in Section 3.6.
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3.1 Related work

To the best of our knowledge, our method [22, 23] differs significantly from other variational
approaches in the literature. This is due to fact that our focus is not to develop a general purpose
texture classification and segmentation tool but a model tailored to the specific application in
materials science.

In general, texture segmentation can be regarded as a two-scale problem, where the microscale
is represented by the local structure of the texture and the macroscale by the geometric structure
of interfaces between regions with different texture. In the materials science problem we are
focussing on, we have strong a priori knowledge on the local structure of the texture on
the microscale and incorporate this directly into the variational approach on the macroscale.
Thus, at the cost of general applicability, our scale separation is more direct than in other
approaches based on a local, direction-sensitive frequency analysis. Currently, the postprocessing
for experimental images and the pattern analysis used in the literature is mostly based on local,
discrete Fourier filtering [114].

As one of the basic problems in image processing, general image classification, i. e. assigning
a label to each point in the image domain, has been studied extensively in the last decades.
Classification can be based on geometric and on texture information. Many models have been
developed either based on region growing [124, 106, 38], on statistical approaches [24, 26, 89, 93]
or in particular recently on variational approaches [12, 11, 53, 97, 126].

Bridging the gap between texture classification and the Mumford–Shah approach [100] to
image segmentation and denoising, the boundaries of the classified regions can be considered
as free discontinuity sets of classification parameters. As already discussed in Section 1.2.2,
a robust and efficient approximation of the Mumford–Shah functional has been presented by
Chan and Vese [46] for piecewise constant image segmentation in two phases and extended to
multiphase segmentation in [125]. There, the decomposition of the image domain is implicitly
described by a single or by multiple level set functions (for a review on level sets we refer to
[104, 115]). In [111], their approach has been further generalized for the texture segmentation
using a directional sensitive frequency analysis based on Gabor filtering. Texture classification
based on the energy represented by selected wavelet coefficients is investigated in [10]. Inspired
by the work of Meyer [97] on cartoon and texture decomposition, the classification of geometric
and texture information has been investigated further in [12]. There, a logic classification
framework from [111] has been considered to combine texture classification and geometry
segmentation. A combination of level set segmentation and filter response statistics has been
considered for texture segmentation in [76]. For a variational texture segmentation approach in
image sequences based on level sets, we refer to [57].

3.2 Macroscopic elastic deformations from deformed lattices

First, let us introduce some basic notation. As input data, we always consider a real-valued
image of a single atom layer resolved at atomic scale. In our applications, this image either is an
intensity map acquired experimentally by transmission electron microscopy or originates from
a phase field crystal simulation (in this case the image is the PFC function). For both sources,
single atoms are represented by blurry, dot-like structures in this image. Let us denote this
intensity or phase field crystal function by u : Ω→ R, where Ω ⊂ R2 is the image domain or
the computational domain of the PFC simulation, respectively. In this work, we always assume
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Figure 3.3: Schematic view of a typical grain boundary in a TEM image alongside the rotated
reference cells corresponding to the two grains in the TEM image.

Ω to be a bounded domain (i. e. an open and connected set) with Lipschitz boundary. From
a practical point of view, this is no restriction as it is always fulfilled by the input data. We
further introduce the local atomic lattice orientation as a piecewise constant function α : Ω→ R.
Grains are characterized by a homogeneous lattice orientation, thus each region of constant
lattice orientation characterizes a grain and α corresponds to a decomposition of the domain Ω
into grains. Conversely, the grain boundaries form the jump set of the orientation function α.
Additionally, we assume a global deformation ψ : Ω→ R2 acting on all grains and reflecting
the physical response for instance due to an external loading.

At first, let us suppose that there is no liquid phase and focus on a single grain.

3.2.1 Local identification of lattice parameters

As already stated, grains are characterized by a homogeneous lattice orientation, but before we
can employ this fact, we need a precise characterization of the underlying atomic lattice and
the lattice orientation in particular. For our approach, we assume that the underlying atomic
lattice is a so-called Bravais lattice [8], i. e. the lattice looks the same when viewed centered at
any atom position. Thus the lattice is uniquely characterized by the local neighborhood of a
single atom in this lattice. Consider a reference frame with an atom at the origin and let m
denote the number of direct neighbors of an atom in the lattice. Then, there exist positions
q1, . . . , qm ∈ R2 such that the m neighboring atoms of the atom at the origin are placed at
these positions. Now consider a grain whose lattice is rotated by an angle α compared to the
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reference configuration we just introduced. Then, if there is an atom at position x ∈ R2, the
neighboring atoms are located at the positions x + M(α)qi, cf. Figure 3.3. Here, M(α) is a
rotation by α, i. e.

M(α) :=

(
cosα − sinα
sinα cosα

)
.

The fact that atoms are represented by blurry, dot-like structures in the input image u, can be
formalized as follows: The higher the image intensity at any position, the likelier the presence
of an atom at this position. Thus there exists a suitable threshold θ for the identification of
atom dots and we consider the indicator function

χ{u>θ}(x) =

{
1 u(x) > θ

0 else.
(3.1)

The threshold θ has to be chosen in accordance with the input image and our algorithm will
require the user to supply the threshold along with the input image. Without loss of generality,
we can assume θ > 0 (in case it is not, replace u by u− θ + 1 and θ by 1). Hence, for a given
lattice orientation α and a point x with χ{u>θ}(x) = 1, we assume an atom to be present at
position x and thus expect atoms to be located at x+M(α)qi for i = 1, . . . ,m as well, which in
turn translates to χ{u>θ}(x+M(α)qi) = 1 for i = 1, . . . ,m. Let r denote the average radius of
a single atom dot and define the maximal lattice spacing d := maxi=1,...,m |qi| . Based on these
considerations, we construct the following indicator function f :

f [α](x) =
d2

r2
χ{u>θ}(x)Υ

((
χ{u>θ}(x+M(α)qi)

)
i=1,...,m

)
(3.2)

Here, Υ : [0, 1]m → R is a function with a unique global minimum at 1 = (1, . . . , 1) and

Υ(1) = 0. The scaling d2

r2 is used for normalization purposes and ensures a uniform upper bound
of order 1 for the integral of f over the domain of the grain. In particular, the upper bound is
independent of d and r.

Two natural choices for Υ are for instance

Υ(χ1, . . . , χm) :=
1

m

m∑
i=1

(1− χi) , or (3.3)

Υ(χ1, . . . , χm) := 1−
m∏
i=1

χi . (3.4)

In the course of our numerical experiments, (3.3) turned out to be better suited than (3.4),
probably due to the fact that (3.3) is smoother than (3.4) in the following sense: Consider
χ ∈ {0, 1}m \ {1} and let n denote the number of components of χ that are equal to zero. For
(3.4) we have Υ(χ) = 0, whereas for (3.3) it holds that Υ(χ) = n

m . In other words, as long as
one atom is missing, (3.4) imposes a penalty that is independent of the number of missing
atoms, while the penalty imposed by (3.3) is proportional to the number of missing atoms.

Finally, if the grain is deformed by an elastic deformation ψ and there is an atom at ψ(x), we
observe atoms at positions ψ(x+M(α)qi). Analogously to (3.2), we can construct an indicator
function f that takes the deformation ψ into account in addition to the lattice orientation α:

f [α,ψ](x) =
d2

r2
χ{u>θ}(ψ(x))Υ

((
χ{u>θ}(ψ(x+M(α)qi))

)
i=1,...,m

)
(3.5)
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If ψ is the identical deformation id, i. e. id(y) = y for all y, the two indicators agree, i. e.
f [α](x) = f [α, id](x).

By construction, we have f [α,ψ](x) = 0 if x is inside a grain with perfect lattice structure,
orientation α, deformed by ψ and the distance of x to the grain boundary in the undeformed
state is at least d.

While our approach is applicable to any Bravais lattice, for the sake of simplicity we confine
to the case of a hexagonal packing. Henceforth, each atom has six direct neighbors at equal
distances and we obtain

qi := d
(

cos
(
i
π

3

)
, sin

(
i
π

3

))
i = 1, . . . , 6 ,

where d > 0 denotes the distance between two atoms.

3.2.2 Lattice deformation and lattice orientation on a single grain

At first, we assume our input image u to show a single grain with an unknown orientation α
and affected by an unknown deformation ψ and our proclaimed task is to estimate α and ψ
from the given image u. In line with the previous approaches in this work, we want to use a
variational approach and thus phrase the estimation as a minimization problem on the class of
deformations ψ and constant orientation angles α. The corresponding objective functional will
consist of a fidelity term that measures how well a given pair of α and ψ fits to the actually
observed configuration u and a regularizing prior that encodes assumptions on the deformation
ψ. Unlike ψ, α does not depend on the location, but just a scalar constant. Thus, there is no
need for any regularization of α.

Our indicator function f defined in (3.5) already lays the foundation of the fidelity term,
i. e. this term is given by the integral over the indicator function and hence depends on both
unknowns, α and ψ:

Efid[α,ψ] =

∫
Ω
f [α,ψ](x) dx (3.6)

When closely examining the integrand f in combination with the integration domain Ω, one
notices that the integral requires ψ to be evaluated outside of Ω (for x close enough to the
boundary of Ω). Furthermore, due to the definition of χ{u>θ} (3.1), the integral requires the
evaluation of u on the range of ψ. The latter can easily be overcome by extending u from Ω to
Rd by zero, e. g. u(x) = 0 for x 6∈ Ω. To treat the former, note that evaluating the integral for
all α requires the evaluation of ψ on the set

D := D[Ω] :=
{
x ∈ R2 : dist(x,Ω) < d

}
.

Thus, we can remedy this by looking for ψ in the class of mappings from D to R2 instead of
assuming ψ just to be defined on Ω. To account for this extension, the yet to be determined
regularity term has to ensure the smoothness of the deformation ψ on D. Because of the
discontinuities of our integrand (originating from the concatenation of a characteristic function
with the deformation ψ), classical results based on the direct method in the calculus of
variations [54] to ensure the existence of minimizers cannot be applied to Efid. One possibility
to guarantee the existence of minimizing deformations is to use a suitable nonlinear elastic
regularization energy for ψ, cf. [15, 16]. However, to simplify matters we confine here to
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a quadratic regularization term on the Jacobian of ψ that results in a linearized elastic
regularization in the Euler–Lagrange equations.

Close inspection of the model we introduced so far reveals that there are effectively two
deformations involved. Obviously, there is the physical deformation ψ, but alongside of it, the
orientation of the lattice also is a deformation (albeit restricted to a special class of deformations,
namely rotations). Without putting any restrictions on ψ, it could contain a global rotational
component conflicting with estimation of the lattice orientation given by α. Fortunately in our
case the axiom of frame indifference applies, because we model a physically stressed material.
Therefore, we are actually only interested in the non-rotational part of the physical deformation
and can chose the class of deformations we consider for ψ accordingly. Thus, we assume ψ to
have no angular momentum, i. e.∫

D
ψ2(x)x1 − ψ1(x)x2 dx = 0. (3.7)

With this constraint we get a proper decoupling of a global rotation M(α) describing the lattice
orientation and the elastic deformation ψ that (because of the constraint) has a vanishing
global, linearized rotational component. Alternatively we have taken into account a constraint
on the mean value of the skew symmetric part of Dψ,∫

D
Dψ(x)− (Dψ)T (x) dx = 0. (3.8)

This constraint rules out infinitesimal rotations and in particular turned out to be favorable for
the numerical implementation.

Now that we have settled in which class of deformations we want to search for ψ, we have to
chose a regularizing energy term suited for this class. Hence, taking into account a linearized
deformation model we consider the symmetric part of the Jacobian of the displacement ψ − id,
i. e.

1

2

(
D(ψ − id) +D(ψ − id)T

)
=

1

2

(
Dψ +DψT − 2 11

)
,

where 11 denotes the identity matrix, and define the elastic regularization term

Eelast[ψ] =
1

2

∫
D

∥∥Dψ(x) +Dψ(x)T − 2 11
∥∥2

dx . (3.9)

Here, ‖A‖ :=
√
A : A denotes the Frobenius norm, where A : B = tr(ATB).

Note, using the displacement u = ψ− id corresponding to the deformation ψ and the so-called
infinitesimal strain tensor ε(u) = 1

2

(
Du +DuT

)
, we have

Eelast[ψ] = 2

∫
D
ε(u) : ε(u) dx .

Therefore, Eelast is a special case of the general elastic energy

1

2

∫
D
Cε(u) : ε(u) dx , (3.10)

where C is a suitable fourth-order tensor. With the choice of C, the underlying properties of
the material can be modeled. For the sake of simplicity, we confine to the isotropic elastic
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regularization term Eelast here. This corresponds to an isotropic linearly elastic material with
stiffness (Young’s modulus) 4 and no bulging (Poisson’s ratio 0), i. e. Cijkl = 2 (δikδjl + δilδjk).

Finally, combining the fidelity and the regularization term for the single grain case

Esingle[α,ψ] = Efid[α,ψ] + µEelast[ψ] , (3.11)

where µ > 0 denotes a weighting parameter for the regularization, and ask for a minimizer (α,ψ)
of Esingle over all rotation angles α ∈ R and deformations with vanishing angular momentum,
i. e.

ψ ∈
{
ψ̃ ∈ H1,2(D,R2) :

∫
D
ψ̃2(x)x1 − ψ̃1(x)x2 dx = 0

}
.

As usual, H1,2(D,R2) denotes the Sobolev space of vector-valued L2-functions on D whose
weak first derivatives are in L2. Note, that Eelast is translation invariant, i. e.

Eelast[ψ] = Eelast[ψ + c] for any c ∈ R2.

Thus, one should expect minimizers only up to a translation. However, because of the special
structure of Efid, the translation can be expected to be unique up to a multiple of the lattice
spacing in each lattice direction.

3.2.3 Euler–Lagrange equations for the single grain case

Now that we formulated the variational problem for the single grain case, we can derive the
corresponding Euler–Lagrange equations. At first, we derive the variations of the fidelity term,
which is a little less straightforward to handle than the regularity term. Using the Heaviside
function (cf. (1.7)), we can conveniently rewrite the characteristic function χ{u>θ} (3.1) of a
super level set {u > θ}, i. e.

χ{u>θ}(x) = H (u(x)− θ)

and obtain the following formulation of the indicator function f (cf. (3.5) and (3.3)):

f [α,ψ](x) =
d2

mr2
H(u(ψ(x))− θ)

m∑
i=1

(1− (H(u(ψ(x+M(α)qi))− θ))) . (3.12)

Using

d

dε

(∫
Ω
H(u((ψ + εζ)(x))− θ) dx

) ∣∣∣∣
ε=0

=

∫
{u◦ψ=θ}

∇u(ψ(x)) · ζ(x)

we get the variation of Efid with respect to the deformation in a test direction ζ

〈∂ψEfid[α,ψ], ζ〉

=
d2

mr2

∫
{u◦ψ=θ}

∇u(ψ(x)) · ζ(x)
m∑
i=1

(1−H(u(ψ(x+M(α)qi))− θ))dH1

− d2

mr2

m∑
i=1

∫
{u◦ψ(·+M(α)qi))=θ}

H(u(ψ(x))− θ)∇u(ψ(x+M(α)qi)) · ζ(x+M(α)qi) dH1.
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The second row can be simplified by an integral substitution (y = x+M(α)qi), leading to

〈∂ψEfid[α,ψ], ζ〉 =
d2

mr2

∫
{u◦ψ=θ}

∇u(ψ(x)) · ζ(x)
m∑
i=1

(1−H(u(ψ(x+M(α)qi))− θ))dH1

− d2

mr2

m∑
i=1

∫
{u◦ψ=θ}

H(u(ψ(x−M(α)qi))− θ)∇u(ψ(x)) · ζ(x) dH1

=
d2

mr2

∫
{u◦ψ=θ}

∇u(ψ(x)) · ζ(x)

m∑
i=1

(
1−H(u(ψ(x+M(α)qi))− θ)

−H(u(ψ(x−M(α)qi))− θ)
)

dH1.

In a straightforward manner one obtains the variation of Eelast

〈∂ψEelast[ψ], ζ〉 =

∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
:
(
Dζ(x) +Dζ(x)T

)
dx

= 2

∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
: Dζ(x) dx ,

where we used the symmetry relation AT : B = A : BT .
To get from the weak formulation of the variations to the strong Euler–Lagrange equations,

we take the usual route: Integration by parts yields

〈∂ψEelast[ψ], ζ〉 = − 2

∫
D

div
(
Dψ(x) +Dψ(x)T − 2 11

)
· ζ(x) dx

+ 2

∫
∂D

(
Dψ(x) +Dψ(x)T − 2 11

)
ν(x) · ζ(x) dx ,

where ν denotes the outer normal to ∂D. Combined with

div
(
Dψ(x) +Dψ(x)T − 2 11

)
= div

(
Dψ(x) +Dψ(x)T

)
=

(
2∑
i=1

∂i (∂iψj + ∂jψi)

)
j

= ∆ψ +∇ divψ

we end up with

〈∂ψEelast[ψ], ζ〉 = − 2

∫
D

(∆ψ(x) +∇ divψ(x)) · ζ(x) dx

+ 2

∫
∂D

(
Dψ(x) +Dψ(x)T − 2 11

)
ν(x) · ζ(x) dx .

At first, we only consider test functions ζ that vanish on the boundary of the atomic dots, i. e.
{u ◦ ψ = θ}, because in that case 〈∂ψEfid[α,ψ], ζ〉 vanishes. For reasons of simplification, we
also assume {u ◦ ψ = θ} and ∂D to be disjoint. Due to the fact that u = 0 in D \ Ω and θ > 0,
this is not an unreasonable assumption for a minimizing deformation.

If we do not impose the constraint (3.7), using the fundamental lemma of the calculus of
variations we can deduce from the necessary condition of a minimizer, i. e. 〈∂ψEsingle[α,ψ], ζ〉 = 0,
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the following system of partial differential equations

−2µ(∆ψ +∇ divψ) = 0 on D \ {u ◦ ψ = θ},
(DψT +Dψ − 2 11) · ν = 0 on ∂D.

If the vanishing angular momentum constraint (3.7) is imposed, the natural Neumann boundary
conditions still hold, but the first equation is different. To handle the constraint, we use the
theory of Lagrange multipliers [131] and define the Lagrangian function

L[α,ψ, λ] := Esingle[α,ψ] + λ

∫
D
ψ2(x)x1 − ψ1(x)x2 dx

that encodes the constraint. Its first variation with respect to ψ is

〈∂ψL[α,ψ, λ], ζ〉 = 〈∂ψEsingle[α,ψ], ζ〉+ λ

∫
D
ζ2(x)x1 − ζ1(x)x2 dx

= 〈∂ψEsingle[α,ψ], ζ〉+ λ

∫
D

(
0 −1
1 0

)
x · ζ dx ,

and it yields the following optimality condition (including a Lagrange multiplier λ ∈ R to
handle the constraint), well-known from linearized elasticity:

−2µ(∆ψ(x) +∇ divψ(x)) = λ

(
0 −1
1 0

)
x for x ∈ D \ {u ◦ ψ = θ}

Now that we derived the equations for ψ everywhere but in {u ◦ ψ = θ}, we turn to this by
considering test functions whose support intersects {u ◦ ψ = θ}. Since {u ◦ ψ = θ} separates
D into two disjoint parts, i. e. {u ◦ ψ > θ} and {u ◦ ψ < θ}, we can split the integral in
〈∂ψEelast[ψ], ζ〉 into two integrals. Separate integration by parts then leads to the jump term
2
[
(DψT +Dψ − 2 11)ν

]
(x) for x ∈ {u ◦ ψ = θ}, where ν(x) denotes the outer normal to

{u ◦ ψ = θ} at x and

[ξ] (x) := lim
ε→0

ξ(x+ εν(x))− ξ(x+ εν(x))

denotes the jump of a function ξ at position x. Thus, combining this with what we know about
〈∂ψEfid[α,ψ], ζ〉, for x in {u ◦ ψ = θ} we end up with the following jump condition:

[
(DψT (x) +Dψ(x)− 2 11)ν(x)

]
=

d2

2mµr2
∇u(ψ(x))

m∑
i=1

(
H(u(ψ(x+M(α)qi))− θ)− 1

+H(u(ψ(x−M(α)qi))− θ)
)
.

Using the same integral substitution we already applied when calculating 〈∂ψEfid[α,ψ], ζ〉, i. e.
y = x+M(α)qi, we obtain the variation with respect to the scalar quantity α:

∂αEfid[α,ψ]

= − d2

mr2

m∑
i=1

∫
{u◦ψ=θ}

H(u(ψ(x−M(α)qi))− θ)∇u(ψ(x)) ·
(
Dψ(x)M ′(α)qi

)
dH1

= − d2

mr2

m∑
i=1

M ′(α)qi ·
∫

{u◦ψ=θ}

H(u(ψ(x−M(α)qi))− θ)Dψ(x)T∇u(ψ(x)) dH1

(3.13)
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where

M ′(α) =

(
− sinα − cosα
cosα − sinα

)
=

(
0 −1
1 0

)
M(α) .

Finally, collecting everything we derived so far leads to the Euler–Lagrange equations subsumed
as follows:

3.2.1 Proposition (Euler–Lagrange equations in the single grain case). Suppose the input
image u to be sufficiently smooth and (α,ψ) to be a minimizer of (3.11) under the vanishing
angular momentum constraint (3.7). Furthermore, assume the minimizing deformation ψ to be
sufficiently smooth as well, the interface {u ◦ ψ = θ} to be a set of piecewise smooth curves and
assume {u ◦ ψ = θ} and ∂D not to intersect.

Then, there exists a Lagrange multiplier λ ∈ R such that the deformation ψ solves the system
of partial differential equations

−2µ(∆ψ(x) +∇ divψ(x)) = λ

(
0 −1
1 0

)
x for x ∈ D \ {u ◦ ψ = θ},

the jump condition for the elastic stresses

[
(DψT +Dψ − 2 11) · ν

]
=

d2

2mµr2
(∇u) ◦ ψ

m∑
i=1

(
H(u ◦ ψ(·+M(α)qi)− θ)− 1

+H(u ◦ ψ(· −M(α)qi)− θ)
)

on {u ◦ ψ = θ},

and the natural boundary conditions

(DψT +Dψ − 2 11) · ν = 0 on ∂D.

Here, ν denotes the outer normal to {u ◦ ψ = θ} and ∂D respectively. Finally, the grain angle
α fulfills

0 =
m∑
i=1

(
0 −1
1 0

)
M(α)qi ·

∫
{u◦ψ=θ}

H(u(ψ(x−M(α)qi))− θ)Dψ(x)T∇u(ψ(x)) dH1.

3.2.4 Regularization and numerical approximation

The Euler–Lagrange equations above show that the discontinuous integrant of the fidelity
energy (3.6) leads to concentration on the interfaces {u ◦ ψ = θ}. To get a robust minimization
algorithm and an effective numerical approximation, we avoid any explicit handling of the level
line interfaces by a suitable regularization of the discontinuous aspect of the fidelity functional.
We replace the discontinuous Heaviside function H used in the indicator function (3.12) by the
smeared out approximation Hε(s) = 1

2 + 1
π arctan

(
s
ε

)
defined in (1.11) that was already used in

the regularized Mumford–Shah model proposed by Chan and Vese (discussed in Section 1.2.2).
Here, ε > 0 controls the strength of the regularization. Thus, we get the regularized indicator
function

fε[α,ψ](x) =
d2

mr2
Hε(u(ψ(x))− θ)

m∑
i=1

(1− (Hε(u(ψ(x+M(α)qi))− θ))) (3.14)
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which in turn leads to the regularized fidelity energy

Eεfid[α,ψ] =

∫
Ω
fε[α,ψ](x) dx

and the total regularized energy

Eεsingle[α,ψ] = Eεfid[α,ψ] + µEelast[ψ].

In the numerics, we choose the regularization scale parameter to equal the mesh resolution h (cf.
Section 6.1), i. e. ε = h. Thus ε represents the data resolution on the microscale of the atomic
dot pattern.

Analogously to the calculation of 〈∂ψEfid[α,ψ], ζ〉 in Section 3.2.3, we compute the variation
of the regularized energy with respect to the deformation using the integral substitution
y = x+M(α)qi and the zero property of u outside Ω. This leads to〈

∂ψE
ε
single[α,ψ], ζ

〉
= 2µ

∫
D

(
Dψ(x) +Dψ(x)T − 2 11

)
: Dζ(x) dx

+
d2

mr2

∫
Ω

[
H ′ε(u(ψ(x))− θ)∇u(ψ(x)) · ζ(x)

m∑
i=1

(
1−Hε(u(ψ(x+M(α)qi))− θ)

−Hε(u(ψ(x−M(α)qi))− θ)
)]

dx .

The variation of the regularized energy with respect to the lattice orientation α is

∂αE
ε
single[α,ψ] =

∫
Ω
∂αfε[α,ψ](x) dx ,

where the integrand is the straightforward α-derivative of the regularized indicator function fε

∂αfε[α,ψ](x) = − d2

mr2

m∑
i=1

(
∇u(ψ(x+M(α)qi)) · (Dψ(x+M(α)qi)M

′(α)qi)

Hε(u(ψ(x))− θ)H ′ε(u(ψ(x+M(α)qi))− θ)
)
.

(3.15)

We minimize the energy Eεsingle alternatingly with respect to the deformation ψ and the scalar
orientation variable α, i. e. each minimization step consists of a minimization step in ψ followed
by a minimization step in α, analogous to the generic EM procedure discussed in Section 2.1.2.
The actual minimization steps with respect to the individual unknowns are performed using
gradient flow techniques (cf. Section 6.2). The descent in α is done with a standard gradient
descent, while the descent in ψ uses a regularized gradient descent with the regularizing metric
(6.5)

gσ(ζ1, ζ2) =

∫
D
ζ1(x) · ζ2(x) +

σ2

2
Dζ1(x) : Dζ2(x) dx (3.16)

on variations ζ1, ζ2 of the deformation. As discussed in Section 6.2, σ represents the filter width
of the time discrete and implicit heat equation filter kernel corresponding to the inverse of
the metric which is denoted by A−1

σ . In both cases, we use the Armijo rule [25] separately to
determine the step size used in the descents (cf. Section 6.3).
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Handling the constraint on the deformation

The constraint on the deformation is integrated in the gradient descent as follows: In each
iteration, we first perform a regularized gradient descent step for ψ without respecting the
constraint. Then we project the new estimate for ψ back onto the space of deformations that
fulfill the constraint. Because the constraint (3.8) turned out to be favorable for the numerical
implementation compared to (3.7), we confine to describing the back projection with respect
to (3.8). Furthermore, all results involving deformations shown in this chapter were obtained
using (3.8). The projection itself is established by the following lemma:

3.2.2 Lemma. Let ψ ∈ H1(D,R2) and

S[ψ] :=
1

2|D|

∫
D
Dψ(x)− (Dψ)T (x) dx ∈ R2×2.

Then ψ − S[ψ](· − xΩ) : D → R2, x 7→ ψ(x)− S[ψ]x− S[ψ]xΩ fulfills the constraint (3.8). Here,
xΩ denotes the center of mass of Ω, i. e.

xΩ =
1

|Ω|

∫
Ω

dx .

Proof∫
D
D(ψ − S[ψ](· − xΩ))(x)− (D(ψ − S[ψ](· − xΩ)))T (x) dx

=

∫
D
Dψ(x)− S[ψ]− (Dψ)T (x) + S[ψ]T dx

=

∫
D
Dψ(x)− (Dψ)T (x) dx −|D|(S[ψ]− S[ψ]T ) = 0,

because

S[ψ]− S[ψ]T = 2S[ψ] =
1

|D|

∫
D
Dψ(x)− (Dψ)T (x) dx .

Note that, instead of subtracting S[ψ](· − xΩ) from ψ to achieve the back projection, we could
subtract S[ψ](·) + b for any b ∈ R2 instead. We settled for b = −S[ψ]xΩ because this way the
value of ψ at the center of mass xΩ is unchanged under the projection.

Spatial discretization and multiscale algorithm

The spatial discretization is carried out with bilinear Finite Elements on a uniform rectangular
mesh as described in Section 6.1, i. e. each pixel of our input image u corresponds to a node of
the Finite Element mesh. The non-convexity of Eεfid in ψ combined with the high number of
unknown values for ψ (two for each pixel of the input image as ψ is allowed to freely deform any
node of our FE mesh) leads to a high number of local minimizers of Eεfid with respect to ψ. To
account for this, we apply a multiscale minimization strategy to find the minimizing deformation.
Unlike the cascadic approach we employed for the registration problem in Section 2.2.3), the
strategy used here is not based on a coarse to fine mesh hierarchy, but on the scale parameter
σ inherent in the regularizing metric (3.16) utilized in the regularized gradient descent for ψ.
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Recall that applying A−1
σ is equivalent to convolving each scalar component of the target with

the Gaussian kernel of filter width σ (cf. Section 6.2). Hence, the bigger σ, the more features are
removed from the descent direction ∂ψE

ε
single[α

k, ψk] by the application of A−1
σ (starting with

the smallest features for a small value of σ). Thus, we start the algorithm with σ = 1, i. e. the
filter width is equal to the size of the computational domain, and perform the descent until the
energy decay per gradient descent step falls below a user selectable threshold ι > 0. Whenever
the threshold is hit, σ is halved and the minimization procedure is continued until a relaxation
of the energy is achieved (using a tolerance parameter ς) for a filter width of less than the mesh
resolution h, i. e. the spatial resolution of a single image pixel. Moreover, recalling (2.15), the

Finite Element representation of Aσ is Mbl + σ2

2 Lbl.

Let us again point out that the regularization induced by A−1
σ does not affect the energy

landscape in any way, but solely the descent path towards minima. Therefore, this kind of
regularization is conceptually different from the relaxation of the energy itself induced by the
smoothing of the Heaviside function controlled by the parameter ε.

Finally, Algorithm 3.1 is the full algorithm (in pseudocode notation for the FE case).
Numerically, the energy Eεsingle and its variations as well as the matrices are approximated
using a Gauss quadrature scheme of order 3 (cf. Section 6.1).

Algorithm 3.1: Minimization of Eεsingle

given input image u;
initialize: Ψ0 = id;
initialize: α0 = 0;
initialize: σ = 1;
initialize: k = 0;
repeat

dΨ = [Mbl + σ2

2 Lbl]
−1∂ΨE

ε
single[α

k,Ψk];

Ψ̃k+1 = Ψk −ArmijoStepSize[Eεsingle,Ψ
k, dΨ]dΨ;

if (Eεsingle[α
k,Ψk]− Eεsingle[α

k, Ψ̃k+1] ≤ ι) ∧ (σ ≥ h) then
σ ← σ

2 ;
end

Ψk+1 = Ψ̃k+1 − S(· − xΩ);
dα = ∂αE

ε
single[α

k,Ψk+1];
αk+1 = αk −ArmijoStepSize[Eεsingle, α

k, dα]dα;
k ← k + 1;

until (|Ψk+1 −Ψk| , |αk+1 − αk| ≤ ς) ∧ (σ < h) ;

Results for the single grain case

To demonstrate the performance of the proposed method, we applied the method to artificial test
data and experimental images (Figures 3.5, 3.6 and 3.7). In these applications, the resolution
of the input images (and thus the computational domain) ranges from 129× 129 to 513× 513.
Hence, the corresponding grid spacing ranges from h = 0.0078125 to h = 0.001953125. The
size (in grid cells) of the transition layer for typical input data is illustrated by Figure 3.4. For
the artificial test cases the lattice spacing is known by construction (d = 0.072552), in case of
the experimental images it obviously depends on the concrete type of image and is manually
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Figure 3.4: Close-ups of typical input images, PFC (left) and TEM (right), illustrating the
resolution of the underlying grid.

estimated based on a small image sample in advance. Furthermore, for all applications we used
r = d, ε = h and θ = 0.5 (except for the image used in the third column of Figure 3.6 and
the second and third row of Figure 3.7, there it was necessary to use the smaller threshold
θ = 0.41). Due to the vastly different underlying deformations in the artificial test cases and
the experimental data, the elastic energy weighting varies from µ = 0.1 (test data) to µ = 1.0
(experimental data). In the second row in Figure 3.6, an even stronger elastic regularization
turned out to be appropriate (µ = 10.0).

As first test, we applied a simplified version of the algorithm on artificial test data. The
simplification consists of fixing the orientation parameter α = 0 and ignoring the constraint on
the deformation (the corresponding parts in the algorithm, i. e. the α update and the constraint
back projection steps, are skipped). With this simplification, the deformation ψ is supposed
to recover not only the non-rotational part of the deformation from the reference frame to
the given input image, but the full deformation. Results using this simplification are shown in
Figures 3.5 and 3.6. Figure 3.5 shows the recovery of different types of deformations for artificial
test cases (each of the test cases was generated by applying a deformation to a perfect reference
frame), while Figure 3.6 depicts the deformation obtained for experimental data. Subsequently,
results of the full algorithm (simultaneous detection of α and ψ with the back projection, cf.
Lemma 3.2.2, to fulfill the constraint) are shown in Figure 3.7. Finally, the energy decay in a
particular application of the minimization algorithm is depicted in Figure 3.8.

3.3 Segmenting grain boundaries

As stated earlier, grains are identified by a homogeneous lattice orientation. Combined with
the characterization of the underlying atomic lattice derived in Section 3.2.1, this knowledge
serves as basis for the Mumford–Shah type model for the segmentation of grain boundaries
that we introduce next. For this first segmentation model we assume that there is no elastic
deformation on the lattice, whereas the combined grain segmentation and elastic deformation
retrieval will be tackled later in Section 3.5. Thereby, the computation of lattice deformation
and orientation and the grain segmentation is combined in a joint approach.

3.3.1 A Mumford Shah type model for grain segmentation

As hinted by Figure 3.1, the images we are working with partition the image domain Ω into a
number of disjoint grains. Let m denote the number of grains. Then this means that there exists
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Figure 3.5: Recovery of ψ with the simplified algorithm (α = 0 fixed, no constraint for ψ)
using artificially deformed lattices as input data. Each of the input images u (top
row) reflects a different deformation type: global rotation, global shear and non-
homogeneous and nonlinear deformation (from left to right). Furthermore, the
deformed images u◦ψ−1 (middle row) and deformations ψ (bottom row) are shown.
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Figure 3.6: Recovery of ψ with the simplified algorithm (α = 0 fixed, no constraint for ψ)
from experimental data. The input images u (top row) show single atom layers of
different metals/metal alloys: GaN, Al and NiTi (from left to right). Furthermore, the
deformed images u ◦ψ−1 (middle row) and deformations ψ (bottom row) are shown.
The TEM image in the first column is courtesy of David M. Tricker (Department of
Materials Science and Metallurgy, University of Cambridge), the TEM image in the
second column is courtesy of Geoffrey H. Campbell (Lawrence Livermore National
Laboratory), the image in the third column is courtesy of Nick Schryvers (Antwerp
University)
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Figure 3.7: Recovery of α and ψ with the Eεsingle minimization algorithm from a test image
deformed by a nonlinear deformation (top) and experimental images (middle and
bottom). The input images u, the deformed and rotated images u ◦M(−α) ◦ ψ−1,
the deformed images u ◦ ψ−1 and the computed deformations ψ are depicted (from
left to right). The recovered angles are α = 0.119545 (top row), α = −0.152956
(middle row) and α = −0.159562 (bottom row).
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Figure 3.8: Decay of the energy in the simplified algorithm (α = 0 fixed, no constraint for ψ)
corresponding to the computation of the first column of Figure 3.5. The crosses
mark the steps in which the scale parameter σ was automatically refined.

a so-called partition of Ω, i. e. a set of open sets Ω1, . . . ,Ωm with finite perimeter such that
Ωj ∩ Ωk = ∅ for j 6= k and

⋃m
j=1 Ωj = Ω. Each of the sets is supposed to represent a distinct

grain and hence characterized by a homogeneous lattice orientation. Henceforth, let αj ∈ R
denote the lattice orientation corresponding to the grain Ωj and define

α =
m∑
j=1

αjχΩj .

By construction, α is a piecewise constant function that maps a position in the image domain to
the lattice orientation corresponding to the grain in the given region of Ω. Note that α vanishes
on

Γ[(Ωj)
m
j=1] =

⋃
j,k=1,...,m

j 6=k

(Ωj ∩ Ωk ∩ Ω) ⊂ Ω,

the set of interfaces between the grains. Treating the grain domains Ωj and the corresponding
lattice orientations αj as unknowns, we define the grain segmentation functional Egrain in the
spirit of the Mumford–Shah model:

Egrain[(αj ,Ωj)
m
j=1] =

m∑
j=1

(∫
Ωj

f [αj ](x) dx +
ν

2
Per(Ωj)

)
. (3.17)

Due to the construction of the lattice indicator function f [αj ] (3.2), we can expect a minimizer of
this energy to be a reliable identification of the grains and the corresponding lattice orientations
from our input image.

Under mild regularity assumptions on the boundaries of the sets Ωj , it holds that

m∑
j=1

Per(Ωj) =
m∑
j=1

Per(Ωj ,Ω) = 2H1(Γ[(Ωj)
m
j=1])
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and

m∑
j=1

∫
Ωj

f [αj ](x) =

∫
Ω
f [α](x).

The latter is obtained from the definition of α and the fact that Γ[(Ωj)
m
j=1] is a Lebesgue null

set. Furthermore, denoting the jump set of α by Sα, we have Sα = Γ[(Ωj)
m
j=1] and hence

Egrain[(αj ,Ωj)
m
j=1] =

∫
Ω
f [α](x) + νH1(Sα).

This shows the close similarity of the functional Egrain to the piecewise constant Mumford–Shah
functional (1.2). The only discernible difference is that the lattice indicator function f [αj ]
replaces the squared difference to the input image in (1.2) as the segmentation criterion.

At first, let us the consider the binary segmentation case, multiphase segmentation will be
discussed in Section 3.3.3. In the binary case, i. e. m = 2, there are only two different lattice
orientations α1 and α2 and the corresponding grain domains Ω1 and Ω2. Note that neither of
the domains needs to be connected. Because of the partition property constraint of Ω1 and Ω2,
we know that Ω2 = Ω \Ω1 and henceforth denote Ω1 by Σ. Taking into account that Σ is open,
that ∂Σ ∩ Ω is a Lebesgue null set and Ω \ Σ = (Ω \ Σ) ∪ (∂Σ ∩ Ω), we have

2∑
j=1

∫
Ωj

f [αj ](x) dx =

∫
Σ
f [α1](x) dx +

∫
Ω\Σ

f [α2](x) dx

and

2∑
j=1

Per(Ωj) = Per(Σ,Ω) + Per(Ω \ Σ,Ω) = Per(Σ,Ω) + Per(Σ) = 2 Per(Σ).

For the latter, we additionally used [5, Proposition 3.38 (c)+(d)] and∣∣Ω ∩ (Σ∆Σ)
∣∣ = |Ω ∩ ∂Σ| = 0.

Here, ∆ denotes the symmetric difference of two sets, i. e. A∆B = (A\B)∪(B\A). Summarizing
what we collected above leads to

Egrain[(αj ,Ωj)
2
j=1] =

∫
Σ
f [α1](x) dx +

∫
Ω\Σ

f [α2](x) dx +ν Per(Σ).

Hence, we can equivalently formulate the grain segmentation problem in the two-phase case as
a problem on the lattice orientations α1 and α2 and the set Σ using the energy

Egrain-2[α1, α2,Σ] =

∫
Σ
f [α1](x) dx +

∫
Ω\Σ

f [α2](x) dx +ν Per(Σ). (3.18)

3.3.2 Binary grain segmentation

The two-phase functional Egrain-2 introduced above is a representative of the prototype Mumford–
Shah energy (1.6) and we can apply the Chan–Vese approach discussed in Section 1.2.2. Thus,
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we represent Σ by the zero super level set of level set function φ, i. e. Σ = {φ > 0}. Analogously
to the derivation of (1.10), we obtain the level set formulation of Egrain-2

Egrain,CV[α1, α2, φ] :=

∫
Ω
H(φ)f [α1] + (1−H(φ))f [α2] dx +ν |D(H ◦ φ)| (Ω) (3.19)

depending on the level set function φ and the two grain orientations α1 and α2.
Instead of the Chan–Vese model, we could also use a globally optimal binary segmentation

method like the unconstrained thresholding technique we introduce in Chapter 5. Due to the
relatively simple topological structure of the grains in the TEM images and the PFC simulation
data considered here, it is not necessary to use such a sophisticated method, though.

Now, following our derivation of (1.12) (using the regularized Heaviside function Hδ (1.11)
for a scale parameter δ > 0 and the regularization of the absolute value) together with the
regularization of the indicator function fε[α,ψ] (3.14) from Section 3.2.4, we obtain a regularized
Chan–Vese type energy for binary grain segmentation

Eδ,ε,%grain,CV[α1, α2, φ] =

∫
Ω
Hδ(φ)fε[α1] + (1−Hδ(φ))fε[α2] + ν |∇Hδ(φ)|% dx . (3.20)

Similar to the minimization strategy for Eεsingle discussed in Section 3.2.4, the minimization of

Eδ,ε,%grain,CV is done in an alternating manner with respect to the level set function φ and the two
orientation values α1 and α2. The minimization with respect to any one of the unknowns is again
based on a gradient descent, because, unlike the original Chan–Vese gray value segmentation
energy, our energy is not quadratic in the segmentation parameters α1 and α2 and thus
minimization over these parameters is already a non-linear problem.

As basic prerequisite for a gradient descent, we need to compute the variations of the energy.
Using (1.13) to handle the perimeter length term, we obtain the variation of the energy with
respect to the level set function φ:〈

∂φE
δ,ε,%
grain,CV[α1, α2, φ], ϑ

〉
=

∫
Ω
H ′δ(φ)ϑ(fε[α1]− fε[α2]) + ν

∫
Ω

∇φ
|∇φ|%

· ∇(H ′δ(φ)ϑ) dx .

Note that this variation reflects the sensitivity with respect to modifications of the implicit
description of the grain interface {φ = 0}. Furthermore, the variations of the energy with
respect to the grain orientations are

∂α1E
δ,ε,%
grain,CV[α1, α2, φ] =

∫
Ω
Hδ(φ)∂αfε[α1] dx ,

∂α2E
δ,ε,%
grain,CV[α1, α2, φ] =

∫
Ω

(1−Hδ(φ))∂αfε[α2] dx ,

where the α-derivative of the regularized indicator function fε is given by (3.15).

In analogy to (1.16), the weak formulation of the L2-gradient flow for Eδ,ε,%grain,CV is

∀
ϑ∈C∞0 (Ω)

∫
Ω

∂tφ

H ′δ(φ)
ϑ dx =

∫
Ω

(fε[α2]− fε[α1])ϑ dx −ν
∫

Ω
∇ϑ · ∇φ

|∇φ|%
dx . (3.21)

Note that the right hand side of the equation is equal to −〈∂φF [α1, α2, φ], ϑ〉, where

F [α1, α2, φ] =

∫
Ω

(fε[α1]− fε[α2])φ dx +ν |∇φ|% dx .
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As in Section 3.2.4 for the deformation ψ, the spatial discretization of the level set function φ
is done with bilinear Finite Elements on a uniform rectangular mesh. Henceforth, the Finite
Element approximation of φ is denoted by Φ, whereas Λ1, . . . ,Λn are a basis of the underlying
Finite Element space V (using the notation from Section 6.1). This leads to the spatially discrete
version of (3.21):

∀
j∈{1,...,n}

∫
Ω

∂tΦ

H ′δ(Φ)
Λj dx = −〈∂ΦF [α1, α2,Φ],Λj〉 .

Applying an explicit time discretization (i. e. the Euler forward method) with step size τ , we get

∀
j∈{1,...,n}

∫
Ω

Φk+1

H ′δ(Φ
k)

Λj dx =

∫
Ω

Φk

H ′δ(Φ
k)

Λj dx −τ
〈
∂ΦF [α1, α2,Φ

k],Λj

〉
.

Using

∂ΦF [α1, α2,Φ] = (〈∂ΦF [α1, α2,Φ],Λi〉)i
we obtain the following matrix-vector formulation:

M [(H ′δ(Φ
k))−1]Φ

k+1
= M [(H ′δ(Φ

k))−1]Φ
k − τ∂ΦF [α1, α2,Φ

k]

⇔ Φ
k+1

= Φ
k − τM [(H ′δ(Φ

k))−1]−1∂ΦF [α1, α2,Φ
k]

To numerically calculate M [(H ′δ(Φ
k))−1], instead of the Gauss quadrature scheme, we use the

so-called method of lumped masses (cf. [121, Section 15]). Here, essentially the mass of each
row is lumped into the corresponding diagonal entry. More precisely, the weight (H ′δ(Φ

k))−1 is
approximated by a piecewise constant function using its value at the center of the elements, and
the product of the basis functions ΛiΛj is approximated by a piecewise multi-linear function
using nodal interpolation. This approximation of ΛiΛj vanishes for i 6= j and thus the weighted
lumped mass matrix is diagonal and its inverse can be calculated easily.

Due to the non-convexity of the energy with respect to Φ and in analogy to (3.16), we also
want to use a regularized descent for Φ. Noting that the Finite Element representation of (6.3)

is M + σ2

2 L, we apply the inverse to the descent direction and end of with the following update
formula for Φ

Φ
k+1

= Φ
k − τ [M + σ2

2 L]−1[M(H ′δ(Φ
k))−1]−1∂ΦF [α1, α2,Φ

k].

This regularization is combined with the same kind of multiscale minimization strategy we
already employed for the deformation in Algorithm 3.1, steered by the scale parameter σ:
Due to the regularizing properties of [M + σ2

2 L]−1, for relatively big values of σ only coarse
scale adjustments of φ are allowed, whereas for successively smaller values of σ (i. e. finer
scales) more and more details of the grain boundary structures can be resolved by φ. Let us
point out that the expected spatial accuracy of the grain boundaries is limited by the lattice
spacing d. The reason for this is that the atom neighborhood structure our lattice indicator
function is build upon is possibly violated for those atoms that are directly at a grain boundary.
Nevertheless, we expect sub-lattice accuracy in regions of smooth grain boundaries due to
the symmetric treatment of the lattice indicator function in both grains and the overlapping
pattern consistency measurement encoded in the fidelity term of the energy.

Finally, Algorithm 3.2 is the full algorithm (in pseudocode notation for the FE case). Numeri-

cally, the energy Eδ,ε,%grain,CV and its variations as well as the matrices (except for M [(H ′δ(Φ
k))−1])

are approximated using a Gauss quadrature scheme of order 3 (cf. Section 6.1). M [(H ′δ(Φ
k))−1]

is approximated using mass lumping as described above.



3.3 Segmenting grain boundaries 59

Algorithm 3.2: Minimization of Eδ,ε,%grain,CV

given input image u;
initialize: Φ0;
initialize: α0

1 = 0, α0
2 = π

4 ;
initialize: σ = 1;
initialize: k = 0;
repeat

dΦ = [M + σ2

2 L]−1[M(H ′δ(Φ
k))−1]−1∂ΦF [αk1, α

k
2,Φ

k];

Φk+1 = Φk −ArmijoStepSize[Eδ,ε,%grain,CV,Φ
k, dΦ]dΦ;

if (Eδ,ε,%grain,CV[αk1, α
k
2,Φ

k]− Eδ,ε,%grain,CV[αk1, α
k
2,Φ

k+1] ≤ ι) ∧ (σ ≥ h) then
σ ← σ

2 ;
end

(dαi)i=1,2 = (∂αiE
δ,ε,%
grain,CV[αk1, α

k
2,Φ

k+1])i=1,2;

τα = ArmijoStepSize[Eδ,ε,%grain,CV, (α
k
1, α

k
2), (dα1 , dα2)];

(αk+1

1 , αk+1

2 ) = (αk1, α
k
2)− τα(dα1 , dα2);

k ← k + 1;
until (|Φk+1 − Φk| , |(αk+1

1 , αk+1

2 )− (αk1, α
k
2)| ≤ ς) ∧ (σ < h) ;

Results for the two grain case

To evaluate the segmentation quality of the proposed method, we applied the method to
artificial test data (Figure 3.9), PFC simulation data (Figure 3.10) and experimental images
(Figure 3.11). The resolution of the input images (and thus the computational domain) in
these applications ranges from 129× 129 to 513× 513. Hence, the corresponding grid spacing
ranges from h = 0.0078125 to h = 0.001953125. As in the previous section, the lattice spacing
for the artificial test cases is known by construction (d = 0.072552), whereas in case of the
PFC simulation image and the experimental images it is manually estimated based on a small
image sample in advance. The other parameters are chosen as follows for all applications in
this section: r = d, θ = 0.5, ε = δ = 0.01, ν = 0.05.

We start the evaluation of the proposed binary grain segmentation algorithm on artificial test
data. The test data was created by dividing the image domain in two regions, separated by a
sine wave of a certain amplitude, and then filling each region with a homogeneous dot pattern.
In one region the dot pattern is given by the reference lattice configuration, in the other region
the dot pattern is rotated by a fixed angle. The segmentation results for two such test images
with different boundary amplitude are shown in Figure 3.9. The grain boundary is recovered
almost perfectly, only at the amplitude peak of the boundary in the second example, the
boundary estimation is off by one atom. This is in line with the fact that the expected spatial
accuracy of the grain boundaries is limited by the lattice spacing d due to the construction
of our lattice indicator function as mentioned earlier. Subsequently, Figure 3.10 shows the
results of our algorithm when applied to PFC simulation data. Finally, Figure 3.11 shows
results on experimental images acquired by transmission electron microscopy. In contrast to the
previous input images used for the segmentation, the TEM images are affected by noise and
natural fluctuations in the shape of the atom dots as well as the lattice spacing. Nevertheless,
the proposed method accurately detects the grain boundaries demonstrating the robustness
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Figure 3.9: Binary grain segmentation of artificial data: Input images overlayed with the grain
boundary initialization fed into the algorithm (first and third picture) and the
computed grain boundaries (second and fourth picture).

Figure 3.10: Binary grain segmentation of PFC simulation data: Input image overlayed with
the grain boundary initialization (left) and the computed grain boundary (right).

Figure 3.11: Binary grain segmentation of TEM images: Input images overlayed with the grain
boundary initialization fed into the algorithm (first and third picture) and the
computed grain boundaries (second and fourth picture). The TEM image in the
first picture pair is courtesy of Geoffrey H. Campbell, Lawrence Livermore National
Laboratory (compare Figure 3.1), the image used in the second picture pair is
courtesy of David M. Tricker (Department of Materials Science and Metallurgy,
University of Cambridge) showing a Σ19 grain boundary in aluminum.
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Figure 3.12: Decay of the energy in the binary grain segmentation algorithm corresponding
to the computation of the third/fourth row of figure 3.11. The crosses mark the
steps in which the scale parameter σ was automatically refined as outlined in
Algorithm 3.2. Furthermore, redistancing of φ is done every five iterations, which
slightly increases the energy in the corresponding steps.

of our approach with respect to these kind of natural effects inherent to experimental image
acquisition. Furthermore, the second picture pair shows that the method is capable of detecting
effects on an intermediate scale like the oscillating boundary pattern in this input image. In
addition, Figure 3.12 exemplarily depicts the energy decay for a specific application of the
binary segmentation algorithm.

3.3.3 Multiphase binary grain segmentation

The multiphase extension of the Chan–Vese model developed by Vese and Chan [125] we
discussed in Section 1.2.3 can be applied to our grain segmentation model in a straightforward
manner and allows us to extend our model to cover the segmentation of more than two
grain orientations. Doing so leads us to the following regularized energy for multiphase grain
segmentation (cf. (1.17))

Eδ,ε,%grain,VC[(φi)i, (αk)k] =
∑
k

∫
Ω

∏
i

Hδ((−1)kiφi)fε[αk] dx +ν
∑
i

∫
Ω
|∇(Hδ ◦ φi)|% dx .

The minimization of this energy is done like in Algorithm 3.2. The only exception is that the
alternating minimization strategy is extended to cover n level set functions instead of only
one, and 2n lattice orientation instead of 2. For this purpose the vector (αk)k is treated as one
vectorial unknown, whereas each of the level set functions is treated separately.

Figures 3.13 and 3.14 show the performance of the multiphase segmentation model on PFC
simulation data [14]. In Figure 3.13, we used two level set functions for the segmentation,
allowing for a total of four segments. Since the input data only consists of three different grains,
the algorithm only uses three of the four available segments. In particular this shows that the
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Figure 3.13: Multiphase grain segmentation of PFC simulation data with two level set functions:
Original PFC input image (left), input image colored according to the initialization
of the segmentation (middle) and the computed segmentation (right).

Figure 3.14: Multiphase grain segmentation of PFC simulation data with three level set func-
tions: Original PFC input image (left), input image colored according to the
initialization of the segmentation (middle) and the computed segmentation (right).

algorithm is not forced to use all available segments and thus can be used on input data where
the number of grains is not a power of two. Subsequently, Figure 3.14 shows a segmentation
result obtained with three level set function. Here, all eight available segments are used.

3.4 Detecting a liquid-solid interface

Apart from grain boundaries, there is another type of interface that is of interest in our
applications: The interface between the liquid and the solid phase. This kind of interface
in particular appears in phase field crystal simulation data of homogeneous nucleation (cf.
Figure 3.2). In this section, we will first introduce a Mumford–Shah type model that can
handle the segmentation of these two phases. Afterwards, this model is combined with the
grain segmentation model to simultaneously handle the detecting of grains boundaries and a
liquid-solid interface.

At first we need to derive a way to locally distinguish between the solid and the liquid phase
in our input data. For this, we note that the solid state is characterized by the presence of
prominent atoms, whereas prominent atom dots are absent in the liquid state. Recalling that
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atoms are characterized by high values of u, i. e. if u(x) > θ2 for a suitable, user selectable
threshold θ2, it is reasonable to assume that there is an atom at position x. Conversely, regions
between atoms are characterized by particularly low values of u, i. e. if u(x) < θ1 for another
suitable, user selectable threshold θ1, x can be assumed to be in a solid region between two
atoms. On the other hand, there are neither very high nor low values of u in the liquid state,
i. e. if x belongs to the liquid part of the domain, we can suppose u(x) ∈ [θ1, θ2]. Unfortunately
the converse does not hold, because u attains values between θ1 and θ2 in solid regions that
are in between an atom and a hole. Fortunately, there still is a distinction between such a
solid transition region and the liquid phase: The norm of the gradient of u exceeds a certain
threshold θ3 in these transition regions of the solid phase because u has to change from a high
value (atom) to a low value (hole) which is not the case in the liquid state.

Therefore, we define the indicator function

q(x) := 1− χ{u>θ1}(x)χ{u<θ2}(x)χ{|∇u|<θ3}(x)

=

{
0 for u ∈ (θ1, θ2) ∧ |∇u| < θ3,

1 else.

and can assume x to be in the liquid phase if q(x) = 0 and to be in the solid phase if q(x) = 1.
Thus, setting f1 = q and f2 = (1− q) in the prototype Mumford–Shah energy (1.6), we obtain
a Mumford–Shah type energy for the domain splitting into a liquid phase ΩL and a solid phase
Ω \ ΩL

Ephase[ΩL] =

∫
ΩL

q(x) dx +

∫
Ω\ΩL

(1− q(x)) dx +νL Per(ΩL). (3.22)

Structurally, this energy is very similar to the binary grain segmentation energy (3.18), there
is one important difference though: Unlike the grain case, where there is an unknown lattice
orientation corresponding to each grain, there are no additional scalar unknowns associated
to the two phases. Thus the energy only has to be minimized with respect to the unknown
domain ΩL. This not only simplifies the minimization algorithm (alternating minimization is
not necessary), but also frees us of the need to regularize the indicator function q. Following
the approach by Chan and Vese as done in Section 3.3.2, we obtain the regularized Chan–Vese
type liquid–solid interface detection energy

Eδ,%phase,CV[φ] =

∫
Ω
Hδ(φ)q + (1−Hδ(φ))(1− q) + ν |∇Hδ(φ)|% dx .

This energy can be minimized using Algorithm 3.2, except that the part handling the update
of the scalar values is skipped. Figure 3.15 shows a result of this method applied to test data
using the thresholds θ1 = 0.3, θ2 = 0.5 and θ3 = 1.

3.4.1 Simultaneously detecting grain boundaries and a liquid-solid interface

Now that we have constructed a functional for the grain segmentation (3.17) and a functional
for the liquid-solid separation (3.22), we can combine these functionals to derive a joint model
that simultaneously detects the liquid phase ΩL and finds a partition Ω1, . . . ,Ωm of the solid
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Figure 3.15: Liquid–solid interface detection of artificial test data: Input image overlayed with
the interface initialization fed into the algorithm (left) and the computed interface
(right).

phase Ω \ ΩL into m grains. The joint energy is given by the following weighted sum of both
energies:

Ep+g,MS[ΩL, (αj ,Ωj)
m
j=1] = µEphase[ΩL] + Egrain[(αj ,Ωj)

m
j=1]

= µ

∫
ΩL

q(x) dx +µ

∫
Ω\ΩL

(1− q(x)) dx +νL Per(ΩL)

+
m∑
j=1

(∫
Ωj

f [αj ](x) dx +
νG
2

Per(Ωj)

)
.

(3.23)

Note that the perimeter weighting parameter in the grain energy is called νG instead of ν as
in (3.17). This allows to easily distinguish between the weighting parameters corresponding to
the grain and the liquid-solid part. The newly introduced weighting parameter µ is used to
ensure that the primal decomposition done by the variational formulation is the liquid-solid
separating. Thus we will use a relatively large value of µ in the numerical experiments.

In the binary grain case, i. e. m = 2, following the derivation of (3.18), the energy simplifies
to

Ep+g,MS-2[ΩL, α1, α2,Σ] = µ

∫
ΩL

q(x) dx +µ

∫
Ω\ΩL

1− q(x) dx +νL Per(ΩL)

+

∫
Σ
f [α1](x) dx +

∫
(Ω\ΩL)\Σ

f [α2](x) dx +νG Per(Σ)

and the Ω \ ΩL-partition property of Ω1, . . . ,Ωm simplifies to the constraint Σ ⊂ Ω \ ΩL.

3.4.2 Numerical approximation

The numerical handling of the combined grain boundary detecting and liquid-solid phase
separation poses a few additional problems compared to the separate handling of these tasks.
Since the additional problems of the joint model already occur in case of only two grains, we
confine to discussing this case here, but this case can be generalized to handle more than two
grains following the multiphase grain model discussed in Section 3.3.3.

The basic approach follows the line of the separate models, i. e. the unknown sets are
represented by level set functions. φL is the representation of the liquid phase, i. e. ΩL = {φL >
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Figure 3.16: Joint liquid-solid separation and grain boundary detection on artificial test data
(first picture pair) and on PFC simulation data (second picture pair): Input images
overlayed with the initial grain boundary in red and liquid-solid interface in blue
(first and third picture) and the computed grain boundary and liquid-solid interface
(second and fourth picture).

0}, whereas φG will be used to represent the set Σ handling the grain segmentation. To simplify
the formulation we do not handle the constraint Σ ⊂ Ω \ ΩL explicitly by defining φG only on
{φL ≤ 0} = Ω \ ΩL. Instead we use a level set function φG defined on Ω and employ the fact
that {φL ≤ 0} already models the solid phase. Thus we have

Σ = {φL ≤ 0} ∩ {φG > 0} and (Ω \ ΩL) \ Σ = {φL ≤ 0} ∩ {φG ≤ 0}.

Using this and following Chan–Vese approach from Section 3.3.2 we obtain the regularized
Chan–Vese type energy for combined liquid–solid interface and grain boundary detection

Eδ,ε,%p+g,CV[φL, α1, α2, φG] =

∫
Ω
µ[Hδ(φL)q + (1−Hδ(φL))(1− q)] + 2νL |∇Hδ(φL)|%

+ (1−Hδ(φL))Hδ(φG)fε[α1]

+ (1−Hδ(φL)) (1−Hδ(φG))fε[α2]

+ νG(1− βHδ(φL)) |∇Hδ(φG)|% dx .

Here we introduced a new parameter β that allows us to control the regularity of the interface
{φL > 0} ∩ {φG = 0}. In case β = 1, this interface is not controlled by the energy at all
which corresponds to the behavior of Ep+g,MS-2, but also introduces numerical problems. For
0 ≤ β < 1 the interface handling differs from the one of the original energy, because the energy
sees the length of {φL > 0} ∩ {φG = 0}, scaled by (1 − β)νG. Therefore, in case 0 ≤ β < 1,
the method extends the grain boundaries through the liquid domain to the boundary of Ω by
shortest paths. In our experiments, this simplification did not introduce noticeable artifacts in
the numerically obtained results.

The energy derived in this section is minimized like in Algorithm 3.2. The only extension
necessary is that the alternating minimization strategy is extended to cover φL in addition
to φG and (α1, α2). Figure 3.16 shows results of the combined liquid-solid interface and grain
boundary identification on an artificial test data set and on PFC simulation data. In both
applications, the following parameters were used β = 0, µ = 10, νL = νG = 0.05, r = d,
θ = 0.5, θ1 = 0.3, θ2 = 0.5, ε = δ = 0.01. The lattice spacing d was determined like in the
previous sections. Apart from d, only the gradient threshold θ3 needed to be adapted for the
particular application: We used θ3 = 1 for the artificial test data and θ3 = 20 for the PFC data,
respectively.
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3.5 Joint deformation and grain geometry extraction

As final model in this chapter, we consider a joint model that combines the grain segmentation
model from Section 3.3 with the elastic deformation extraction model from Section 3.2. Thus, we
are looking for a partition of Ω into grains Ω1, . . . ,Ωm and the corresponding lattice orientations
α1, . . . , αm together with a global elastic deformation ψ affecting the lattice spacing in the
grains. As basis we a variational formulation use the grain segmentation energy (3.17) but endow
it with the local lattice indicator function (3.5) that incorporates a deformation instead of the
simpler indicator function (3.2) used in (3.17). Combining this with the elastic regularization
term (3.9) and the constraint (3.8) on the mean value of the skew symmetric part of Dψ, we
obtain the following Mumford–Shah type functional:

Ejoint,MS[(αj ,Ωj)
m
j=1, ψ] =

m∑
j=1

(∫
Ωj

f [αj , ψ] dx +
ν

2
Per(Ωj)

)
+ µEelast[ψ].

In the two grain case, following the arguments from Section 3.3.1, the energy simplifies to

Ejoint,MS-2[α1, α2,Σ, ψ] =

∫
Σ
f [α1, ψ] dx +

∫
Ω\Σ

f [α2, ψ] dx +ν Per(Σ) + µEelast[ψ].

For the sake of simplicity, we confine to numerically investigating the joint model for the case
of two grains. The multiphase generalization can be done as described in Section 3.3.3.

Combining the regularization and numerical approximation for the deformation extraction
from Section 3.2.4 and the binary grain segmentation from Section 3.3.2, we derive a joint
Chan–Vese type model using the following regularized energy functional

Eδ,ε,%joint,CV[α1, α2, φ, ψ] =

∫
Ω
Hδ(φ)fε[α1, ψ] + (1−Hδ(φ))fε[α2, ψ] + ν |∇Hδ(φ)|% dx

+ µEelast[ψ].

that has to be minimized respecting the constraint (3.8) on the skew symmetric part of Dψ.
As before ψ and φ are discretized using finite elements. The minimization strategy we use for

the joint model is a natural combination of Algorithms 3.1 and 3.2. The complete algorithm in
pseudocode notation for the FE case is shown in Algorithm 3.3, where

F [α1, α2, φ, ψ] =

∫
Ω

(fε[α1, ψ]− fε[α2, ψ])φ dx +ν |∇φ|% dx .

The same quadrature is utilized here in the numerical implementation that was already used
for the Algorithms 3.1 and 3.2.

Finally, two results of the joint grain segmentation and deformation extraction approach are
depicted in Figure 3.17.

3.6 Outlook

While the grain segmentation of still images could be done manually instead of by using an
automatic segmentation method like the one we proposed here, this task already becomes very
tedious once an image shows a relatively large number of grains (cf. Figure 3.14). At the latest
when analyzing time dependent input data, a large number of images has to be segmented,
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Algorithm 3.3: Minimization of Eδ,ε,%joint,CV

given input image u;
initialize: Φ0;
initialize: Ψ0 = id;
initialize: α0

1 = 0, α0
2 = π

4 ;
initialize: σ = 1;
initialize: k = 0;
repeat

dΦ = [M + σ2

2 L]−1[M(H ′δ(Φ
k))−1]−1∂ΦF [αk1, α

k
2,Φ

k,Ψk];

Φk+1 = Φk −ArmijoStepSize[Eδ,ε,%joint,CV,Φ
k, dΦ]dΦ;

dΨ = [Mbl + σ2

2 Lbl]
−1∂ΨE

δ,ε,%
joint,CV[αk1, α

k
2,Φ

k+1,Ψk];

Ψ̃k+1 = Ψk −ArmijoStepSize[Eδ,ε,%joint,CV,Ψ
k, dΨ]dΨ;

if (Eδ,ε,%joint,CV[αk1, α
k
2,Φ

k,Ψk]− Eδ,ε,%joint,CV[αk1, α
k
2,Φ

k+1, Ψ̃k+1] ≤ ι) ∧ (σ ≥ h) then
σ ← σ

2 ;
end

Ψk+1 = Ψ̃k+1 − S(· − xΩ);

(dαi)i=1,2 = (∂αiE
δ,ε,%
joint,CV[αk1, α

k
2,Φ

k+1,Ψk+1])i=1,2;

τα = ArmijoStepSize[Eδ,ε,%joint,CV, (α
k
1, α

k
2), (dα1 , dα2)];

(αk+1

1 , αk+1

2 ) = (αk1, α
k
2)− τα(dα1 , dα2);

k ← k + 1;
until (|Φk+1 − Φk| , |Ψk+1 −Ψk| , |(αk+1

1 , αk+1

2 )− (αk1, α
k
2)| ≤ ς) ∧ (σ < h) ;

making a manual segmentation infeasible. Such time dependent data arises for example when
validating physical models with experimental data. In this case, the evolution of the grain
boundaries over time is of particular importance and thus is is necessary to have an automatic
method that offers a robust and accurate way to extract interface velocities. An extension of
our model to time dependent input data could be developed to fulfill these requirements.

So far, the atomic lattice type (number and relative position of neighboring atoms) and its
scale (maximal lattice spacing d) are prescribed in our model and hence have to be supplied by
the user alongside the input data. If this should prove to limit the usability of our method in
the field, one could generalize the variational approach to include the lattice type and scale as
unknown parameters in addition to the local lattice orientation.

Furthermore, the isotropic elastic regularization term for the deformation (3.9), while conve-
nient to handle, does not reflect the inherent anisotropic nature of the material induced by the
underlying lattice. Thus, an anisotropic regularization term modeling the material properties
could be developed to replace the current regularization and to increase the accuracy of the
extracted deformation. This can be achieved by choosing a tensor C(α) in (3.10) such that it
reflects the anisotropic material properties and takes into account the lattice orientation.
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Figure 3.17: Joint grain segmentation and deformation extraction on an artificial test image (top
row) and on a TEM image (bottom row), both artificially deformed: Input image u
overlayed with the grain boundary initialization (left), input image deformed with
the extracted deformation u ◦ ψ−1 overlayed with the computed grain boundary
(middle) and extracted deformation ψ (right).



4 Joint motion estimation and
restoration of motion-blurred video

THE computation of the velocity of moving objects in a given image sequence, shortly called
motion estimation, is a well-known image processing problem and has been studied exten-

sively in the past. One particularly popular approach to motion estimation is the computation
of the optical flow. An abundance of methods has been developed to determine this flow, cf.
[78, 129, 33], to name just a few. One commonly known fact is that the clearer the given image
sequence is, the more reliable the motion can be estimated. While certain robustness has been
addressed in motion estimation, e. g., under varying illumination [83], and contrast [37], a rough
survey of the state-of-the-art literature in the subject reveals that the considered videos are
quite sharp and in general of sufficiently high quality. In particular, blurred video is very rarely
considered in motion estimation techniques.

Here, we investigate how to handle one typical kind of real world blur affecting video sequences:
Considering video footage from a standard video camera, it is quite noticeable that relatively
fast moving objects appear blurred (cf. Figure 4.1). This effect is called motion blur, and it is
caused by the way a camera takes pictures, i. e. roughly integrating information in time over
the aperture time of the camera. The longer the aperture is open, or the faster the motion, the
blurrier moving objects appear (cf. Section 4.2 for a detailed explanation of motion blur).

To improve the accuracy of the motion estimation on a video suffering from motion blur, it
would be helpful to remove the motion blur first. On the other hand, if the actual motion is
known, the motion blur can be removed by “deconvolution,” since the motion gives the velocity
of the objects and therefore the exact kernel needed for deconvolution. Realizing that these two
problems are intertwined suggests to develop a method to tackle both problems simultaneously.

Thus we introduce a variational method for joint motion estimation, moving object detection,
and motion blur deconvolution from multiple frames [19]. The proposed framework combines a
Mumford–Shah type approach to handle the segmentation of the moving object from the scene
background with an explicit modeling of the motion-blur process and image regularization terms.
The input to the variational formulation are two consecutive frames showing a moving object

Figure 4.1: Three consecutive frames from a blurred video recorded with an off-the-shelf video
camera: The car is moving quickly enough to be affected by motion blur.
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Figure 4.2: From two real blurred frames (left), we automatically and simultaneously estimate
the motion region, the motion vector, and the image intensity of the foreground
(middle). Based on this and the background intensity the unblurred frames are
reconstructed (right).

in front of a static background, while the output are the corresponding reconstructed frames,
the segmented moving object, and the actual motion velocity (cf. Figure 4.2). As illustrated in
Section 4.5, the joint handling of all unknowns significantly outperforms techniques where each
unknown is handled individually.

This chapter is organized as follows: After briefly reviewing related literature in Section 4.1,
we develop a motion blur model which is consistent at motion singularities in Section 4.2
and derive our joint variational framework in Section 4.3. Section 4.4 is devoted to a detailed
description of the energy minimization algorithm. Then, in Section 4.5, results of the joint
approach are discussed. Finally, Section 4.6 gives a short outlook.

4.1 Review of related work

The literature on motion estimation is abundant, thus we concentrate only on works addressing
blurred video. Similarly, there exist numerous methods to remove motion blur using a single
frame, and these often introduce strong assumptions on the scene and/or blur [69]. As an
example, let us mention the recent contribution on blind motion deblurring using image statistics
presented in [91], where the author explains, as clear from the results, that while the image often
well recovered, the actual motion and region of movement are often quite non-accurate. Another
recent approach to motion deblurring [79] uses blending with the background but assumes the
shift-invariant case, where shift-invariant means that the motion blur kernel does not depend
on the spatial position. Furthermore, [18] tackles piecewise shift-variant deblurring, including a
segmentation of the blurred regions. Of more interest to our approach are techniques that use
multiple frames, and these (some of them hardware-based) are only very few, as summarized in
[69]. More on the close connection between our work and [69] will be presented below.

Sequential motion estimation and then deblurring has been reported in [90] (see also [107]),
while not addressing a truly joint estimation. The idea of developing joint methods for intertwined
problems has become quite popular and successful recently, for example blind deconvolution
and denoising [75], segmentation of moving objects in front of a still background and the
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computation of the motion velocities [86], segmentation and registration using geodesic active
contours [81, 122], anisotropic classification and cartoon extraction [21], optical flow computation
and video denoising [103], and edge detection and matching as discussed in Chapter 2.

Motion deblurring can also be obtained using the so-called super-resolution framework, see
[117] and references therein. The basic idea behind these approaches, which often assume that
the blurring kernel is provided, is to obtain a higher resolution image from a collection of
low-resolution frames. In addition, these techniques often assume that the whole frame suffers
from motion blur (or attack this with robust norms), and do not explicitly separate the moving
object from the background or estimate the motion velocity.

The pioneering work by Favaro and Soatto, [69], is the closest to ours, not only because
of the use of multiple frames but also because of the joint estimation. In a separate paper
[68], they also address the problem of simultaneously inferring the depth map, radiance and
motion from motion blurred and defocused images via anisotropic diffusion. Thus, these works
address the same challenges as we do here, which is the joint estimation of motion and scene
deblurring from multiple frames. Some differences are that the authors of [69] approximate
the motion blur with a Gaussian, rather than the more accurate rectangular filter we use,
described in Section 4.2. This model leads them to an anisotropic diffusion flow, and inverting
it is ill-posed. The model in [69] is designed to handle only very little blur (motion), while
the proposed method, as illustrated by the examples below, can handle large velocities and
blurs. We also model the crucial blending of the foreground and background, which happens
in reality and significantly effects the blur as well as the reconstruction near the boundary of
the moving object (see examples in Figures 4.5, 4.8, and 4.10). Finally, we note that while the
proposed formulation could deal with multiple moving objects, here we provide examples with
only one, whereas [69] develop their work for multiple moving objects— although they present
no examples of this capability with real video data.

4.2 Modeling the blurring process

Let f : [−T , T ]× Ω, (t, x) 7→ R denote a continuous sequence of scene intensities over a time
interval [−T , T ] and on a spatial image domain Ω. The scene is observed and recorded by a
video camera resulting in a video sequence, i. e. a set of images gi : Ω → R associated with
times ti, for i = 1, . . . ,m.

The recorded images are integrated measurements of the light intensity emitted from the
scene over the aperture time interval of the camera. The following time integral realistically
approximates the mechanical shutters of film cameras and the electronic readout of modern
CCD video recorders:

gi(x) =
1

τ

∫ ti+
1
2
τ

ti− 1
2
τ
f(s, x) ds . (4.1)

Here, τ denotes the aperture time of the camera. To derive our motion blur model, let us
get started by considering the the simplest possible case: The sequence f shows a single
object moving at constant velocity v ∈ R2 with no visible background, i. e. f(x− sv) = f(s, x).
Furthermore, we assume f to be given on R2, e. g. by extension by zero. Under these assumptions,
we can transform the integration in time to an integration in space and obtain for the recorded
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images

gi(x) =
1

τ

∫ ti+
1
2
τ

ti− 1
2
τ
f(x− sv) ds =

1

τ

∫ 1
2
τ

− 1
2
τ
f(x− tiv − sv) ds .

We are going to reformulate this as a convolution, so we can employ existing deconvolution
techniques, e. g. [17]. If v = 0, there is no motion blur at all, thus we henceforth assume
v 6= 0. Let x̃ ∈ Rd be arbitrary but fixed, define the curve c(s) = sv, Γv = c([− τ

2 ,
τ
2 ]) and

Γ∞v = c ((−∞,∞)). Then, we get |ċ| = |v| and

1

τ

∫ τ
2

− τ
2

f(x̃− sv) ds =
1

τ |v|

∫ τ
2

− τ
2

f(x̃− c(s)) |ċ|ds =
1

τ |v|

∫
Γv

f(x̃− y) dS (y)

=
1

τ |v|

∫
Γ∞v

f(x̃− y)H(τ |v| − 2 |y|) dS (y).

(4.2)

Here, H denotes the Heaviside function (cf. (1.7)) and we used

y ∈ Γv ⇔ y ∈ Γ∞v ∧ τ |v| − 2 |y| ≥ 0.

Let v⊥ denote v rotated by 90 degrees, i. e. v⊥ = (−v2, v1) for v = (v1, v2), and define

φ : R2 → R, y 7→ y · v⊥|v| . Then it holds that |∇φ| =
∣∣v⊥∣∣ / |v| = 1 and the zero-level set of φ

coincides with Γ∞v , i. e. {φ = 0} = Γ∞v . Let δ0 denote the usual 1D Dirac delta distribution and
δ0(φ) the pullback of δ0 by φ (cf. [77, Theorem 6.1.2]). Then, by [77, Theorem 6.1.5] it holds
that ∫

{φ=0}
h(y) dS (y) =

∫
{φ=0}

h(y)

|∇φ(y)|
dS (y) =

∫
R2

h(y)δ0(φ(y)) dy

for any function h : Rd → R. Therefore,

1

τ |v|

∫
Γ∞v

f(x̃− y)H(τ |v| − 2 |y|) dS (y)

=
1

τ |v|

∫
Rd
f(x̃− y)H(τ |v| − 2 |y|)δ0(φ(y)) dy =

∫
Rd
f(x̃− y)kv(y) dy ,

where we define

kv(y) =
1

τ |v|
δ0

(
y · v

⊥

|v|

)
H(τ |v| − 2 |y|). (4.3)

Note that, by construction, kv is a one dimensional filter kernel with filter width τ |v| in the
direction of the motion trajectory Γ∞v . Combined with (4.2), this leads to

1

τ

∫ τ
2

− τ
2

f(x̃− sv) ds = (f ∗ kv)(x̃). (4.4)

Thus,

gi(x) = (f ∗ kv)(x− tiv). (4.5)
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Based on this motion blur model, the following, straightforward variational approach suggests
itself to handle the deblurring in the basic setup where everything is moving

E[f ] =
n∑
i=1

∫
Ω

((f ∗ kv)(x− tiv)− gi(x))2 dx +µ

∫
Ω
|∇f(x)|p, (4.6)

where p ≥ 1. For p = 1, this model is known as TV restoration (cf. [107, 75]) and we give a
sample result in Figure 4.3.

Figure 4.3: Most basic motion deblurring: Original image f (left), an artificial input image
generated by (4.5) (middle) and reconstruction obtained by minimizing the energy
given in (4.6) (right).

Now that we know how to handle motion blur in the simplest case, let us move to the case
we want to tackle with our model, a somewhat more complicated situation. Henceforth, we
consider an object moving with speed v ∈ R2 in front of a static background fbg : Ω→ R. The
object at time 0 is represented by an intensity function fobj : Ωobj → R defined on an object
domain Ωobj ⊂ Ω. Based on these assumptions, the actual scene intensity function is given by

f(t, x) = fobj(x− tv)χobj(x− vt) + fbg(x)(1− χobj(x− vt)), (4.7)

where χobj : R2 → R denotes the characteristic function of Ωobj. Note that fobj needs to be
extended to R2 in order to evaluate f , but since fobj is only evaluated multiplied by χobj, its
values outside Ωobj are irrelevant. At a point x close to the boundary of the object, the integration
in time (4.1) of this scene intensity decomposes into a spatial integration of object intensities
along the motion path for the sub-interval of the aperture interval where the object covers the
background at position x, and a retrieval of the background intensity for the remaining opening
time of the lens.

The usual approaches do not carefully model the observed intensities as the moving object
occludes and uncovers the background, but just ignore the distinction close to the object
boundary: Inside the object, the blur is applied to the scene function f , while the background
remains untouched apart from the object, i. e.

g(x) =

{
(f(t, ·) ∗ kv) x ∈ Ωobj

fbg else
(4.8)

(cf. the combination of equation (14) and equation (3) in [69]). Figure 4.4 shows a comparison
between the (too) simple blur model (4.8) and the actually observed motion blur on a circular
object, textured with back and white stripes, moving in horizontal direction in front of a
similarly textured static background. While this comparison is already enough to question the
validity of (4.8), Figure 4.5 clearly outlines the importance of a proper handling of the motion
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Figure 4.4: Comparison between the wrong motion blur model (4.8) which ignores the motion
discontinuity at the boundary (left) and our realistic model (4.9) which carefully
models the motion blur also in the vicinity of the boundary (right).

Figure 4.5: Given two frames with realistic motion blur (left), computational deblurring results
based on the wrong motion blur model built into Gi (middle), and on our consistent
model (right) are depicted.

discontinuity in the considered motion blur model. The proper blur handling is particularly
important for the reliable recovery of boundaries of moving objects from recorded video frames
gi and subsequently for the proper restoration of image frames.

Now, inserting (4.7) in (4.1) and then using (4.4), we immediately deduce the correct formula
for the theoretically observed motion blur at time ti

Gi[Ωobj, v, fobj, fbg](x) := ((fobjχobj) ∗ kv)(x− tiv)

+ fbg(x)(1− (χobj ∗ kv)(x− tiv)),
(4.9)

for given object domain Ωobj, motion velocity v, and object and background intensity functions
fobj and fbg respectively. Given the more precise motion blur model proposed here, we now
proceed to derive a variational formulation to simultaneously estimate all parameters in this
equation based on two consecutive frames.

4.3 A Mumford–Shah model

Given two frames g1 and g2 of a video sequence (showing a moving object in front of a
static background) with motion blur recorded at times t1 and t2, respectively, we construct
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a variational model to extract from these frames the object domain Ωobj, the object image
intensity fobj, and the velocity v of the object. Here, we assume the background intensity
fbg to be known, as it can be relatively easily extracted from the video sequence in advance,
e. g. by averaging pixels with stable values over a sequence of frames. The final formulation
generalizes easily to include the estimation of the background intensity, though. Furthermore,
the formulation can be extended to handle any number (≥ 2) of input frames. However, two
frames are sufficient to obtain reasonable reconstruction results, hence we confine to two input
frames. Having already pointed out the importance of a joint handling of the aforementioned
degrees of freedom, of course we aim at formulating a joint energy to estimate them. At its
core, the model is based upon the accurate motion blur model we developed in Section 4.2.
Thus the energy includes the following fidelity term that measures the distance of the motion
blurred frames Gi predicted by our forward model to the actually observed camera frames gi in
a least square sense, i. e.

F [Ωobj, v, fobj] :=

2∑
i=1

∫
Ω

(Gi[Ωobj, v, fobj, fbg]− gi)2 dx .

Obviously minimizing only this term is ill-posed, as the deconvolution therein by itself already
is ill-posed (the motion blur increases the smoothness of any input image). Thus the need for
additional regularity terms arises and our choice of the regularizers takes into account the
following observations:

• Given v and fobj, the problem of identifying the object Ωobj is a task a piecewise constant
Mumford–Shah model is well suited to handle, in particular since the unknown contour is
significantly smeared out due to the motion blur. F [·, v, fobj] serves as the fidelity term,
while we add the length of the boundary contour Per(Ωobj) as the corresponding prior
from the piecewise constant Mumford–Shah model, cf. (1.6).

• Given v and Ωobj, estimating fobj by minimizing F [Ωobj, v, ·] is an almost classical deblurring
problem for fobj. Thus we can accompany the fidelity term by a typical deconvolution
prior. Since fobj is likely to have edges in motion blurred videos (cf. Figure 4.2, 4.8, and
4.10), the total variation functional |Dfobj| (Ω) [109] comes to mind. This functional has
already been successfully applied to deconvolution problems (cf. [128, 47]), hence we
chose it as prior for the deconvolution. Because the TV functional is considered on Ω
and not only on Ωobj, it also guarantees a suitable extension of fobj onto the whole space.
Furthermore, because the prior does not depend on Ωobj, it does not adversely affect the
estimation of Ωobj.

• Finally, given Ωobj and fobj, the estimation of the velocity v is primarily an optical flow
problem. Since the velocity is assumed to be constant inside the object, i. e. v is just a
vector, not a vector-valued function, no regularizing prior is necessary for v. The transport
of the object intensity fobj from time t1 to t2 described in F [·, ·, fobj] provides us with
information on v. In the case of limited intensity modulations on the moving object, i. e.
if fobj has little to no textural information, it is the comparison of the expected transition
profile χobj ∗ kv, encoded in Gi, with the observed profile in gi that will act as a guidance
for the estimation of v.
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Thus we obtain the energy

EOD[Ωobj, v, fobj] =
2∑
i=1

∫
Ω

(Gi[Ωobj, v, fobj, fbg]− gi)2 dx

+ µ |Dfobj| (Ω) + ν Per(Ωobj),

(4.10)

and ask for a minimizer with respect to the unknowns Ωobj, v, and fobj. Once a minimizer is
known, we can retrieve the deblurred images f(t1, ·) and f(t2, ·) simply by applying (4.7).

4.4 The minimization algorithm

To find minimizers of the energy (4.10), we follow the approach proposed by Chan and Vese
[46] to handle the unknown object domain Ωobj, i. e. it is represented by the zero super level set
{φ > 0} of a level set function as discussed in Section 1.2.2. Analogously to Section 1.2.2, we
replace χobj by Hδ(φ) and thus get a regularized Gδi , representing the expected motion blur at
time ti:

Gδi [φ, v, fobj, fbg](x) = ((fobjHδ(φ)) ∗ kv)(x− τiv)

+ fbg(x)(1− (Hδ(φ) ∗ kv)(x− τiv)) .
(4.11)

Finally, following our derivation of (1.12), we obtain an approximate global energy consisting
of the fidelity term Fδ and the regularizing prior J δ,%

Eδ,%OD[φ, v, fobj] = Fδ[φ, v, fobj] + J δ,%[φ, fobj]

:=
2∑
i=1

∫
Ω

(
Gδi [φ, v, fobj, fbg]− gi

)2
dx

+

∫
Ω
µ |∇fobj|% + ν |∇Hδ(φ)|% dx .

(4.12)

This expression depends on the motion vector v ∈ R2 and two scalar, unknown functions,
namely the level set description φ of the object domain Ωobj and the object intensity fobj.

Before we can start discussing our gradient flow based minimization algorithm, we first need
to derive the variations of Eδ,%OD with respect to the unknowns φ, v and fobj. To shorten notation,
we introduce the residual term

ri(x) := 2
[
Gδi [φ, v, fobj, fbg](x)− gi(x)

]
.

First, we consider the derivative with respect to v1 and v2, the two components of the velocity
vector v. Using (4.11) and

∂a(F (a, a)) = ∇F (a, a) · (1, 1) = ∂1F (a, a) + ∂2F (a, a),

we get

∂vjG
δ
i [φ, v, fobj, fbg](x)

= ∂vj [((fobjHδ(φ)) ∗ kv)(x− τiv)]− fbg(x)∂vj [(Hδ(φ) ∗ kv)(x− τiv)]

=
{
∂vj [(fobjHδ(φ)) ∗ kv]

}
(x− τiv)− τi

{
∂xj [(fobjHδ(φ)) ∗ kv]

}
(x− τiv)

− fbg(x)
({
∂vj [Hδ(φ) ∗ kv]

}
(x− τiv)− τi

{
∂xj [Hδ(φ) ∗ kv]

}
(x− τiv)

) (4.13)
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Now, instead of directly deriving kv with respect to v, we take a different approach here,
summarized in the following lemma:

4.4.1 Lemma. For f : R2 → R (sufficiently smooth) and the motion blur kernel kv (4.3), it
holds that{

∂vj [f ∗ kv]
}

(x) = (∂xjf ∗ hv)(x),

where

hv(y) = −y · v
|v|2

kv(y).

Proof Let

Mvf(x) :=
1

T

∫ τ
2

− τ
2

f(x− sv) ds .

From (4.4) we know Mvf(x) = (f ∗ kv)(x) and thus

{
∂vj [f ∗ kv]

}
(x) = ∂vj (Mvf(x)) = ∂vj

(
1

τ

∫ τ
2

− τ
2

f(x− sv) ds

)

= −1

τ

∫ τ
2

− τ
2

s∂xjf(x− sv) ds =: Nv∂xjf(x),

because of

∂vj (f(x− sv)) = ∇f(x− sv) · ∂vj (x1 − sv1, x2 − sv2) = ∇f(x− sv) · (−sδ1j ,−sδ2j)

= −s∂xjf(x− sv).

With the same curve c and Γv used in Section 4.2 (c(s) = sv), we get

Nv∂xjf(x) = −1

τ

∫ τ
2

− τ
2

s∂xjf(x− sv) ds = − 1

τ |v|

∫ τ
2

− τ
2

c(s) · v
|v|2

∂xjf(x− c(s)) |ċ|ds

= − 1

τ |v|3

∫
Γv

y · v∂xjf(x− y) dS (y).

Analogously to (4.4), we deduce

Nv∂xjf(x) = (∂xjf ∗ hv)(x),

where

hv(y) = − y · v
τ |v|3

δ0

(
y · v

⊥

|v|

)
H(τ |v| − 2 |y|) = −y · v

|v|2
kv(y),

concluding the proof of the lemma.
Using the just established lemma and (4.13), it holds that

∂vjG
δ
i [φ, v, fobj, fbg](x)

=
[
∂xj (fobjHδ(φ)) ∗ hv

]
(x− τiv)− τi

{
∂xj [(fobjHδ(φ)) ∗ kv]

}
(x− τiv)

− fbg(x)
([
∂xjHδ(φ) ∗ hv

]
(x− τiv)− τi

{
∂xj [Hδ(φ) ∗ kv]

}
(x− τiv)

)
=
[
∂xj (fobjHδ(φ)) ∗ (hv − τikv)

]
(x− τiv)

− fbg(x)
[
∂xjHδ(φ) ∗ (hv − τikv)

]
(x− τiv)
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and we finally get the derivative of Fδ with respect to vj :

∂vjFδ[φ, v, fobj] =
2∑
i=1

∫
Ω

[[
∂xj (fobjHδ(φ)) ∗ (hv − τikv)

]
(x− τiv)

− fbg(x)
[
∂xjHδ(φ) ∗ (hv − τikv)

]
(x− τiv)

]
ri(x) dx .

Let us remark that by using Lemma 4.4.1 we do not need to regularize the block filter function
kv to be able to calculate the variation of Fδ with respect to v. At the same time, this approach
leads to significantly more stable numerical results compared to differentiating a regularized
version of kv directly.

The first variations of the prior functional J δ,% follow directly from (1.13)

〈
∂fobj
J δ,%[φ, fobj], ϑ

〉
= −µ

∫
Ω

div

(
∇fobj

|∇fobj|%

)
ϑ dx ,

〈
∂φJ δ,%[φ, fobj], ψ

〉
= −ν

∫
Ω

div

(
∇φ
|∇φ|%

)
H ′δ(φ)ψ dx .

Making use of the chain rule and the linearity of the convolution, the first variations of the
fidelity functional Fδ are

〈
∂fobj
Fδ[φ, v, fobj], ϑ

〉
=

2∑
i=1

∫
Ω
ri(x)((ϑHδ(φ)) ∗ kv)(x− τiv) dx ,

〈
∂φFδ[φ, v, fobj], ψ

〉
=

2∑
i=1

∫
Ω
ri(x)

[
((fobjH

′
δ(φ)ψ) ∗ kv)(x− τiv)

− fbg(x)((H ′δ(φ)ψ) ∗ kv)(x− τiv)

]
dx .

Looking closely at the formulation of the variations of Fδ, one notes that the test functions
appearing are convolved with the kernel kv. We need to take care of this first, before we can
move from here to the strong formulation of the variations. The tool we need is supplied by the
next lemma:

4.4.2 Lemma (Convolution by parts). Given f, g, h : Rd → R (integrable) and a, b ∈ Rd, it
holds that∫

Ω
f(x+ a)(g ∗ h)(x+ b) dx =

∫
Ω

(fa,+ ∗ hb,−)(y)g(y) dy , (4.14)

where qb,±(x) := q(±x+ b). For the special case a = b = 0 and g−(x) := g(−x), we have∫
Ω
f(x)(g ∗ h)(x) dx =

∫
Ω

(f ∗ g−)(y)h(y) dy .
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Proof The statement is proven by using the definition of the convolution and the following
calculation:∫

Ω
f(x+ a)(g ∗ h)(x+ b) dx =

∫
Ω
f(x+ a)

(∫
Ω
g(x+ b− y)h(y) dy

)
dx

=

∫
Ω

(∫
Ω
f(x+ a)g(x+ b− y) dx

)
h(y) dy

=

∫
Ω

(∫
Ω
fa,+(x)gb,−(y − x) dx

)
h(y) dy

=

∫
Ω

(fa,+ ∗ gb,−)(y)h(y) dy .

With the aforementioned lemma, we remove the convolution from the test functions and end
up with

〈
∂fobj
Fδ[φ, v, fobj], ϑ

〉
=

2∑
i=1

∫
Ω

(ri ∗ k−τiv,−v )(x)(ϑHδ(φ))(x) dx ,

〈
∂φFδ[φ, v, fobj], ψ

〉
=

2∑
i=1

∫
Ω

(ri ∗ k−τiv,−v )(x)(fobjH
′
δ(φ)ψ)(x)

− ((rifbg) ∗ k−τiv,−v )(x)(H ′δ(φ)ψ)(x) dx .

Spatial discretization

Now, we take into account discrete intensities for a given video frame resolution of n×m pixels.
We combine this with a finite difference approximation of the energy and denote by Φ and
Fobj the vectors containing the nodal values Φk and (Fobj)k, respectively, at the nodes xk for
k = 1, . . . , nm, i. e. Φ, Fobj ∈ Rnm.

Using the already established continuous first variations of the fidelity functional Fδ and
the prior functional J δ,%, choosing test functions concentrated at nodes and evaluated for the
spatially discretized energy and denoting the spatially discrete blurring residual by

Ri(x) := 2
[
Gδi [Φ, v, Fobj, Fbg](x)− gi(x)

]
,

we finally obtain

∂(Fobj)kF
δ[Φ, v, Fobj] =

2∑
i=1

(Ri ∗ k−τiv,−v )(xk)Hδ(Φ(xk)),

∂ΦkF
δ[Φ, v, Fobj] =

2∑
i=1

(Ri ∗ k(−τiv),−
v )(xk)(FobjH

′
δ(Φ))(xk)

− ((RiFbg) ∗ k(−τiv),−
v )(xk)H

′
δ(Φ(xk)),

∂(Fobj)kJ
δ,%[Φ, Fobj] =− µdiv

(
∇Fobj(xk)

|∇Fobj(xk)|%

)
,
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∂ΦkJ
δ,%[Φ, Fobj] =− νH ′δ(Φ(xk)) div

(
∇Φ(xk)

|∇Φ(xk)|%

)
,

∂vjFδ[Φ, v, Fobj] =
2∑
i=1

∫
Ω

[[
∂xj (FobjHδ(Φ)) ∗ (hv − τikv)

]
(x− τiv)

− fbg(x)
[
∂xjHδ(Φ) ∗ (hv − τikv)

]
(x− τiv)

]
ri(x) dx .

These form the entries of the Euclidean gradients gradΦE
δ,%
OD, gradv E

δ,%
OD, and gradFobj

Eδ,%OD

required for the gradient descent algorithm. To numerically evaluate the derivatives appearing
above, we use standard difference quotients. For the integral, we use a standard quadrature
rule.

In what follows, we will outline an energy relaxation method in this already spatially discrete
setting based on an operator splitting with step size control (cf. Section 6.3) and a regularized
gradient descent (cf. Section 6.2) with respect to the level set function.

Initialization

At first, given an initial contour (usually a sufficiently large circle that contains part of the
object and part of the background), we select and fix (in a very rough approximation step) Fobj

as the intensity values of one of the images g1 and g2. Then, we relax the functional

Eδ,%MC[Φ, v] =

2∑
i=1

∫
Ω

(G̃δi [Φ, v, Fobj, Fbg]− gi)2 + ν

∫
Ω
|∇Hδ(Φ)|% dx ,

where G̃δi is obtained from Gδi by skipping the motion blur convolution, i. e.

G̃δi [Φ, v, Fobj, Fbg](x) = (FobjHδ(Φ))(x− τiv) + Fbg(x)(1−Hδ(Φ)(x− τiv)).

This initializing step can be regarded as a “motion competition approach” (as in the level
set formulation of [52]), and we obtain an initial contour Φ0 and an initial estimate v0 for
the motion velocity. Note that in this sense, our model can be seen as an extension of the
motion competition approach. Then, fixing Φ0 and v0, a standard deblurring based on (4.4)
is performed on g1 and g2 to obtain an initial estimate for F 0

obj. In total, this gives us initial
estimates for all unknowns, i. e. Φ0, v0 and F 0

obj.

Gradient descent

In initial numerical experiments with the proposed model, we experienced a significantly
different roughness (difference of gradient directions) of the energy landscape with respect to
the different unknowns Φ, v, and Fobj. Hence, an operator splitting strategy which separates
these directions and incorporates different time steps for all of them suggests itself to account
for these observations. Thus, in any subsequent descent step we pick up the newly computed
quantities from the same iteration in a Gauss-Seidel like manner. The descent in the level set
description Φ of the object domain Ωobj requires special treatment, while a standard gradient
descent can be used to update v and Fobj. As step size control for the gradient descents, we
employ the Armijo rule (cf. 6.3), evaluated separately for all three components.

A point-wise evaluation of the variation with respect to Φ possibly shows non-smoothness
and concentration of the gradient, cf. Figure 4.6. Hence, we incorporate a regularized gradient
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Figure 4.6: Color coded pointwise gradi-
ent gradΦE

δ,%
OD for one iteration from Fig-

ure 4.8.
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Figure 4.7: Plot of the energy decay in the
descent algorithm for the experiment from
Figure 4.8.

descent in the level set function inspired by the Sobolev active contour approach [120]. As
outlined in Section 6.2, this approach turns out to result to a Gaussian filtering of the descent
direction with a filter Gσ (cf. (6.4)). In the applications of this chapter, we use σ = 0.005 as
filter width. Let us again emphasize that the resulting regularized descent does not affect the
energy landscape itself, but solely the descent path towards the set of minimizers. Figure 4.7
shows a plot of the energy decay for the application in Figure 4.8.

We stop the descent algorithm once the changes in all three unknown vectors computed in
the last time step and measured in the Euclidean norm are smaller than a given tolerance
parameter ς. For the experiments presented here, we used ς = 0.01. Finally, we have the
following algorithm (in pseudocode notation):

Algorithm 4.1: Minimization of Eδ,%OD

given input frames g1 and g2;
initialize Φ0, v0 by “motion competition” (using g1 or g2 as Fobj);
initialize F 0

obj by standard deconvolution based on Φ0, v0;
initialize k with 0;
repeat

dΦ = gradΦE
δ,%
OD[Φk, vk, F k

obj] ∗Gσ;

Φk+1 = Φk −ArmijoStepSize[Eδ,%OD,Φ
k, dΦ]dΦ;

dv = gradv E
δ,%
OD[Φk+1, vk, F k

obj];

vk+1 = vk −ArmijoStepSize[Eδ,%OD, v
k, dv]dv;

dF = gradFobj
Eδ,%OD[Φk+1, vk+1, F k

obj];

F k+1
obj = F kobj −ArmijoStepSize[Eδ,%OD, F

k
obj, d

F ]dF ;
k ← k + 1;

until (|Φk+1 − Φk| , |vk+1 − vk| ,
∣∣F k+1

obj − F k
obj

∣∣ ≤ ς) ;

4.5 Results

In this section, we investigate the performance of the proposed model based on results obtained
for different applications. Figures 4.8 and 4.10 show numerical results for two different artificial
test cases. In both, we see the proper identification of the moving object, estimation of the
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Figure 4.8: Results on an artificial image sequence showing the input images g1 and g2 (left), the
recovered object intensity fobj (middle bottom), the initial (red) and the computed
(blue) boundary contour of the object (middle top), as well as the recovered frames
f1 and f2 (right).

Figure 4.9: Intermediate results from the run of our algorithm on Figure 4.8 showing the object
contour for three iterations from the motion competition initialization phase (top
row) and three follow–up iterations from the full joint model (bottom row).
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Figure 4.10: Results on another artificial image sequence showing the input images g1 and g2

(top), the recovered object intensity fobj (middle left), an intermediate (red) and
the final computed (blue) boundary contour of the object (middle right), as well
as the recovered frames f1 and f2 (bottom).

motion velocity and deblurring of the object intensity. Although the setting in Figure 4.8 is
artificial, it still is challenging and suitable to demonstrate the advantage of joint estimation
of all unknowns. In this figure, a moving square (velocity vector v = (6, 7)) textured with an
image of Einstein (fobj) is considered in front of a static background textured with the Lena
image (fbg). The independently computed velocity (i. e. obtained using motion competition)
from the blurred frames leads to an inaccurate estimate of v = (5.78, 6.80) and of the moving
object, which in turn results in a non-satisfactory restoration of the blurred frames (first image
in the second row of Figure 4.9, see also Figure 4.11). With the proposed joint technique, on the
other hand, the estimated velocity is v = (5.98, 7.009) and both frames (last row of Figure 4.8)
and the moving region (blue curve in the middle row of Figure 4.8) are accurately recovered.
In Figure 4.10 we consider another artificial but more realistic example. Here, the object is
an airplane moving with velocity vector v = (10, 0). With the proposed method, we obtain
v = (9.47,−0.007) as estimated velocity of the plane and successfully remove the blur from it.
Especially note that the letters on the vertical stabilizer of the plane become clearly readable
because of the deblurring, whereas they are not readable at all in the blurred input frames.

In Figure 4.11, it becomes apparent that the joint approach for all three unknowns (motion
velocity v, object intensity fobj and the object domain Ωobj) is crucial for a proper reconstruction
of blurred video frames. In this figure, our joint approach is compared with a two step method
which first tries to identify Ωobj and v based on a motion competition algorithm [52], followed
by a deblurring in a second step using the results from the first step to demonstrate the
interdependence of the unknowns. The two step method is used in two flavors, once the
deblurring is done with the non-consistent motion blur model (4.8) and once with the consistent
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inaccurate blur, non-joint accurate blur, non-joint accurate blur, fully joint

Figure 4.11: A comparison of our joint method (right) with a non-joint method (middle) and a
non-joint method that uses the non-consistent motion blur model (4.8) instead of
the consistent one (4.9). The non-joint methods estimate the object contour and
its velocity in advance with pure motion competition.

one (4.9). Thus, the results shown in this figure also outline the importance of the consistent
motion blur model for a proper reconstruction in the vicinity of motion singularities.

Finally, we applied our model to a real word video sequence exhibiting motion blur and
recorded with a hand-held, off-the-shelf video camera. The recorded sequence shows a small toy
car moving in front of a puzzle (static background), cf. Figure 4.1. We have chosen a textured
object moving in front of a textured background to demonstrate the interplay between the
deblurring steered by the fidelity functional Fδ and the reconstruction of sharp edges due to the
total variation built into the prior J δ,%. The input data and the results for this application are
shown in Figure 4.2, whereas Figure 4.12 displays a zoom onto the moving object, demonstrating
the interplay of the deblurring and the edge reconstruction.

Figure 4.12: A zoom in of the moving car from Figure 4.2 for one of the original blurred frames
(left) and of the corresponding restored frame (right) computed by our proposed
model.
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4.6 Outlook

Although the presented framework is generic, we particularly addressed single moving objects
and static background. Handling multiple objects can be simply done by having multiple
unknown regions Ωobj,k in the general formulation we introduced (cf. the approach by Vese and
Chan [125] for the segmentation in more than two regions, described in Section 1.2.3). More
elegantly, and thereby also permitting dynamic background, one could consider formulations
that replace the assumption (4.7) by something along the lines of

f(t, ·)χ(·) = f(t+ τ, ·)χ(· − τv).

This constraint means that the function moves with the object and eliminates the need for
having independent unknowns fobj and fbg.





5 Binary image segmentation
by unconstrained thresholding

AFTER extensively using the Mumford–Shah functional in the preceding chapters to tackle
concrete image processing problems, we approach the binary segmentation functional (1.6)

itself and show how to efficiently find its minimizers in this chapter. So far we simply relied on
the Chan–Vese model (cf. Section 1.2.2) to do the minimization process and even though it
is suitable for the tasks handled in the previous chapters, it is not completely unproblematic
and leaves room for fundamental improvements. The most striking issue of the Chan–Vese
functional is the fact that it has local, non-global minima due to its non-convexity. This is
not only a theoretical problem, since the commonly used numerical minimization techniques
(like the gradient flow approach we used so far) can get stuck in local minima that differ
considerably from a global minimum, hence possibly producing useless results. While the
multiscale approach (build on the scale parameter of the regularizing metric in the gradient flow
scheme) we introduced in Section 3.2.4 allows to avoid most of the problems associated to local
minima, it still does not guarantee to find a global minimizer. Therefore, the goal of this chapter
is to introduce a method to obtain a global minimizer of the Mumford–Shah functional for
two-phase segmentation (1.6). Like the Nikolova–Esedoḡlu–Chan model (cf. Section 1.2.4), our
model is based on a convex reformulation of the original problem. Unlike their model, ours does
not need to impose any constraint in the convex formulation, neither explicitly nor implicitly
by an additional, artificial penalty term [20]. Moreover, we extend our model to multiphase
segmentation by the ideas of Vese and Chan (cf. Section 1.2.3) in a canonical way, albeit losing
the global optimality property.

5.1 Related work

The problem of minimizing the Mumford–Shah segmentation functional has been extensively
studied in the last decade leading to a wide range of existing methods, each with its own
shortcomings. One of the first numerical feasible methods to obtain (local) minimizers of the
functional was proposed by Chan and Vese [46], already discussed in Section 1.2.2 and used in
Chapters 3 and 4.

Shen [116] developed a Γ-convergence formulation along with a simple implementation by the
iterated integration of a linear Poisson equation. The unknown set is represented in a diffuse
way by a phase field.

In [65], Esedoḡlu and Tsai tackle the minimization problem based on the threshold dynamics
of Merriman, Bence and Osher [96] for evolving an interface by its mean curvature. Here the
minimization is achieved by alternating solving a linear parabolic partial differential equation
and simple thresholding.

Alvino and Yezzi [3] approximate Mumford–Shah segmentation using reduced image bases.
According to them, the majority of the robustness of Mumford–Shah segmentation can be
obtained without allowing each pixel to vary independently. Their approximative model has
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comparable performance to Mumford–Shah segmentations where each pixel is allowed to vary
freely.

El-Zehiry et al. [63] take a fully discrete approach: Picking up the ideas of Chan and Vese,
they present a discrete graph-representable level set energy function and minimize it using
graph cuts. This allows to find global minimizers of the discrete graph representation.

A way to obtain global minimizers was introduced by Nikolova, Esedoḡlu and Chan [102] (cf.
Section 1.2.4). This method is closely related to the method we propose in this chapter, the
key difference is that the Nikolova–Esedoḡlu–Chan model requires a constraint in the convex
minimization while the model we propose here does not involve any constraint in the convex
formulation [20].

On the other hand there are methods to solve a certain class of minimal surface problems
by unconstrained convex optimization, cf. the work of Chambolle and Darbon [41, 44]. The
two-phase Mumford–Shah functional belongs to this class, yet due to the best of our knowledge
nobody else seems to have tapped the potential offered by these general insights for Mumford–
Shah based image segmentation so far.

5.2 Constrained global two-phase minimization

Like in Section 1.2.2, we again consider the prototype Mumford–Shah energy (1.6), i. e.

EMS-2[Σ] :=

∫
Σ
f1 dx +

∫
Ω\Σ

f2 dx +ν Per(Σ),

for given indicator functions f1, f2 ∈ L1(Ω) such that f1, f2 ≥ 0 a. e. in Ω.

5.2.1 Remark. Because of

EMS-2[Σ] =

∫
Σ

(f1 − f2) dx +ν Per(Σ)︸ ︷︷ ︸
=:ÊMS-2[Σ]

+

∫
Ω
f2 dx ,

EMS-2 and ÊMS-2 share the same minimizers.

5.2.2 Remark. For h(x) := e−|x|
2

, we have

EMS-2[Σ] =

∫
Σ
f1 dx +

∫
Ω\Σ

f2 dx +ν Per(Σ) +

∫
Ω
hdx −

∫
Ω
hdx

=

∫
Σ

(f1 + h) dx +

∫
Ω\Σ

(f2 + h) dx +ν Per(Σ)−
∫

Ω
hdx︸ ︷︷ ︸

=C<∞

,

i. e. replacing f1 and f2 by f1 + h and f2 + h does not affect the minimizers of EMS-2. This,
combined with f1, f2 ≥ 0 a. e., implies that we can assume f1, f2 > 0 a. e. in Ω without loss of
generality.

Now, let us pick up the work of Nikolova et al. [102] we started to discuss in Section 1.2.4.
At first, we remedy the last bit of “uncertainty” left in Theorem 1.2.3 by showing that it holds
not only for almost every, but for every c ∈ [0, 1):

5.2.3 Proposition. Theorem 1.2.3 holds for all c ∈ [0, 1).
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Proof. The proof of the statement’s extension to all c ∈ [0, 1) is inspired by the proof of [2,
Lemma 4 (iii)]: Let u be a minimizer of ENEC under the constraint 0 ≤ u ≤ 1 and denote its
super level sets by Σc. Choose an arbitrary but fixed ĉ ∈ [0, 1). Because of Theorem 1.2.3, the
statement holds for a. e. c ∈ [0, 1], so by Remark 5.2.1, there exists a sequence (cn) ∈ [0, 1]N

with cn ↓ ĉ such that

Σcn ∈ argmin
Σ⊂Ω

ÊMS-2[Σ].

Since the super level sets of a function are contained in each other, we have

χΣcn = χ⋃n
k=1 Σck

→ χΣ∪ pointwise a. e.,

where Σ∪ :=
⋃∞
n=1 Σcn . Setting g := f1 − f2 and using Lebesgue’s dominated convergence

theorem, we obtain∫
Σ∪
g dx =

∫
Ω
gχΣ∪ dx = lim

n→∞

∫
Ω
gχΣcn dx = lim

n→∞

∫
Σcn

g dx .

Here we used
∣∣gχΣcn

∣∣ ≤ |g| ≤ |f1|+ |f2| to provide the integrable upper bound. For each n and
Σ ⊂ Ω, due to the minimizing property of Σcn , we have∫

Σcn

g dx +ν Per(Σcn) ≤
∫

Σ
g dx +ν Per(Σ).

Using the continuity argument from above and the lower semicontinuity of the perimiter (cf. [5]),
we get∫

Σ∪
g dx +ν Per(Σ∪) ≤

∫
Σ
g dx +ν Per(Σ),

i. e. Σ∪ is a minimizer of EMS-2. Combining this with

Σc = {x ∈ Ω : u(x) > c} =
∞⋃
n=1

{x ∈ Ω : u(x) > cn} =
∞⋃
n=1

Σcn (5.1)

concludes the proof.

5.2.4 Remark. For any function u that fulfills the constraint, obviously {u > 1} = ∅. Therefore
we cannot expect Theorem 1.2.3 to hold for c = 1.

As already mentioned in Section 1.2.4, Nikolova et al. showed that the constraint of their
model can be handled by an exact penalty term (cf. Proposition 1.2.4).

While this result already gives a method to find global minimizers of EMS-2 by solving a convex,
unconstrained minimization problem, there is still room for improvement. Most numerical
minimizations methods rely on the gradient of the functional, but the proposed penalty term
is not differentiable, making a regularization necessary. But any smooth regularization of the
penalty term will stop the minimizers of the convex, constrained functional from coinciding
with those of the convex functional with penalty term. The stronger the regularization, the
more the minimizers deviate.

Furthermore, the regularization imposes numerical difficulties. If an explicit gradient descent
is used for the minimization (as proposed in [102]), a suitable step size control is needed to ensure
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convergence. The step sizes allowed by such methods, e. g. the Armijo rule (cf. Section 6.3),
typically correspond to the size of the region in which the linearization of the functional properly
approximates the functional. Due to the nature of the penalty term p, the linearization at 0 and
1 of a regularized version of it only approximates the regularization properly in a region that is
of the size of the regularization parameter. So, as soon as the current iterate of the gradient
descent takes values near 0 or 1, the step size control only allows step sizes of the order of the
regularization parameter, which, as mentioned above, cannot be chosen too big.

Instead of using a penalty term one could of course also approach the constrained convex
optimization problem directly. This is done for example by Bresson et al. [30]. Their approach
does not need a penalty term and gives an efficient algorithm to minimize ENEC, but has to
introduce an additional unknown v and a regularization parameter θ and needs to minimize for u
and v alternatingly. Furthermore, the key idea to apply Chambolle’s TV minimization algorithm
[42] can also be directly applied to our model to obtain a simpler and faster minimization
algorithm (cf. Section 5.3.1): There is no need to introduce v, θ and the alternating minimization.
Therefore it is worth to investigate whether it is possible to simplify the problem by getting rid
of the constraint altogether.

5.3 Unconstrained global two-phase minimization

Another alternative to the Chan–Vese model is a phase field approach [65, 116] with a typical
double well term (in contrast to the single well term of the Ambrosio–Tortorelli model, cf.
Section 1.2.1):

EεPH[u] :=

∫
Ω
u2f1 + (1− u)2f2 + ν

(
1

ε
u2(1− u)2 + ε |∇u|2

)
dx . (5.2)

A minimizer uε of this energy is a diffuse representation of the segmentation, i. e. {uε ≈ 0} and
{uε ≈ 1} represent the two segments respectively with a smooth transition in between. EεPH[u]
is known to Γ-converge to EMS-2 [116], but unfortunately not convex and does not permit jumps
in u for ε > 0.

Knowing both ENEC and EεPH, the question arises whether it is possible to combine the
advantages of both models while eliminating some of the disadvantages. Heuristically looking
at both energies served as motivation to investigate the following energy:

EUC[u] :=

∫
Ω
u2f1 + (1− u)2f2 dx +ν |Du| (Ω). (5.3)

This energy is convex because it does not involve the non-convex double well term of EεPH, and
can be minimized without imposing constraints because it does not have the indicator term
from ENEC that is not bounded from below. Furthermore, it permits jumps in u.

5.3.1 Remark. Given a function u, obviously we have

EUC[min{max{0, u}, 1}] ≤ EUC[u].

Therefore, a minimizer umin fulfills 0 ≤ umin ≤ 1.

While the proposed functional has some nice obvious properties, it is not obvious whether
there is a relation between its minimizer and minimizers of EMS-2. Before we tackle this question,
let us remark a link between ENEC and EUC:
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5.3.2 Remark. There is a direct relationship between ENEC and EUC: Using

u2f1 + (1− u)2f2 − (uf1 + (1− u)f2)

= u2f1 + f2 − 2uf2 + u2f2 − uf1 − f2 + uf2

= u2(f1 + f2)− u(f1 + f2)

= (u2 − u+ 1
4)(f1 + f2)− 1

4(f1 + f2)

= (u− 1
2)2(f1 + f2)− 1

4(f1 + f2),

we get

u2f1 + (1− u)2f2 = (uf1 + (1− u)f2) + (u− 1
2)2(f1 + f2)− 1

4(f1 + f2)

= (f1 − f2)u+ (u− 1
2)2(f1 + f2)− 1

4(f1 + f2) + f2.

Therefore

EUC[u] =

∫
Ω
u2f1 + (1− u)2f2 dx +ν |Du| (Ω)

=

∫
Ω

(f1 − f2)u+ (u− 1
2)2(f1 + f2)− 1

4(f1 + f2) + f2 dx +ν |Du| (Ω)

= ENEC[u] +

∫
Ω

(f1 + f2)(u− 1
2)2 dx +C,

where

C =

∫
Ω
f2 − 1

4(f1 + f2) dx .

In other words, EUC essentially equals ENEC plus an additional quadratic penalty energy. The
constant C is clearly irrelevant for the minimizers.

To investigate the relation between the minimizers of EUC and minimizers of EMS-2 we can
make use of the theory derived in the context of the connection between minimal surface
problems and total variation minimization.

The following general statement has been made by Chambolle [43], Chambolle and Darbon
[44], in the continuous setting, its discrete counterpart is well-known.

5.3.3 Theorem. Let Ψ : Ω× R → R, (x, s) 7→ Ψ(x, s) such that Ψ(x, ·) is C1 and uniformly
convex for all x ∈ Ω and

u := argmin
ũ

∫
Ω

Ψ(x, ũ(x)) dx +ν |Dũ| (Ω).

Then Σc := {u > c} for all c ∈ R is a minimizer of∫
Σ
∂sΨ(x, c) dx +ν Per(Σ).

Note that this general statement cannot be directly applied to the model of Nikolova et al.
discussed in Section 1.2.4 because the integrand is neither uniformly (not even strictly) convex
nor does the general statement incorporate the constraint.

As remarked in [44], the proof for a more specific statement given in [41] still applies to
Theorem 5.3.3.
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5.3.4 Theorem. If u is a minimizer of (5.3), then Σ := {u > 1
2} minimizes

EMS-2[Σ] =

∫
Σ
f1 dx +

∫
Ω\Σ

f2 dx +ν Per(Σ).

Proof. Let Ψ(x, s) := s2f1(x) + (1− s)2f2(x). Obviously Ψ(x, ·) is C2 for all x ∈ Ω and we have

∂sΨ(x, s) = 2sf1(x) + 2(s− 1)f2(x)

and

∂2
sΨ(x, s) = 2(f1(x) + f2(x)).

From Remark 5.2.2, we know that f1, f2 > 0 a. e., therefore Ψ(x, ·) is uniformly convex for a. e.
x ∈ Ω. Now just apply Theorem 5.3.3, noting ∂sΨ(x, 1

2) = f1(x)− f2(x) and Remark 5.2.1.

In this sense, our theorem is a corollary of Theorem 5.3.3. Nevertheless, we will give an
alternative proof for our theorem here that more clearly outlines the link of our model to the
one of Nikolova et al..

Before we start with the proof, we first establish a maximum principle for the binary
Mumford–Shah functional that we will need for the proof.

5.3.5 Proposition. Let g1, g2 ∈ L1(Ω) with g1 > g2 a. e. in Ω and

Σi ∈ argmin
Σ̃

Egi [Σ̃] for i = 1, 2, where Egi [Σ] =

∫
Σ
gi(x) dx +ν Per(Σ).

Then |Σ1 \ Σ2| = 0, i. e. Σ1 ⊂ Σ2 up to a negligible set.

Proof. The statement was already made in [39, Lemma 3.2], for its proof we closely follow the
proof of [2, Lemma 4 (i)]: Since Σi is a minimizer of Egi , we have∫

Σ1

g1(x) dx +ν Per(Σ1) ≤
∫

Σ1∩Σ2

g1(x) dx +ν Per(Σ1 ∩ Σ2),∫
Σ2

g2(x) dx +ν Per(Σ2) ≤
∫

Σ1∪Σ2

g2(x) dx +ν Per(Σ1 ∪ Σ2).

Adding both inequalities gives∫
Σ1

g1(x) dx +ν Per(Σ1) +

∫
Σ2

g2(x) dx +ν Per(Σ2)

≤
∫

Σ1∩Σ2

g1(x) dx +ν Per(Σ1 ∩ Σ2) +

∫
Σ1∪Σ2

g2(x) dx +ν Per(Σ1 ∪ Σ2).

Noting that for all sets A,B ⊂ Rn with finite perimeter (cf. [5, Proposition 3.38 (d)])

Per(A ∪B) + Per(A ∩B) ≤ Per(A) + Per(B)

holds, we obtain∫
Σ1

g1(x) dx +

∫
Σ2

g2(x) dx ≤
∫

Σ1∩Σ2

g1(x) dx +

∫
Σ1∪Σ2

g2(x) dx

⇒
∫

Σ1

g1(x) dx −
∫

Σ1∩Σ2

g1(x) dx ≤
∫

Σ1∪Σ2

g2(x) dx −
∫

Σ2

g2(x) dx

⇒
∫

Σ1\Σ2

g1(x) dx ≤
∫

Σ1\Σ2

g2(x) dx .

Because of g1 > g2 a. e., we can conclude |Σ1 \ Σ2| = 0.
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5.3.6 Theorem. For given indicator functions f1, f2 ∈ L1(Ω) such that f1, f2 ≥ 0 a. e., let

u := argmin
ũ

∫
Ω
ũ2f1 + (1− ũ)2f2 dx +ν |Dũ| (Ω) = argmin

ũ
EUC[ũ]

and Σc := {u > c}. Then Σc is a minimizer of the Mumford–Shah energy

EMS-2[Σ, c] := 2

{∫
Σ

(cf1(x)− (1− c)f2(x)) dx

}
+ ν Per(Σ)

for a. e. c ∈ [0, 1].

Proof. Let u ∈ BV (Ω) with 0 ≤ u ≤ 1 a. e. and denote its super level sets by Σc. Then, for any
0 ≤ c ≤ 1 and a. e. x ∈ Ω, we have

u2(x) > c⇔ u(x) >
√
c⇔ x ∈ Σ√c

and

(1− u(x))2 ≥ c⇔ u(x) ≤ 1−
√
c⇔ x ∈ (Ω \ Σ1−

√
c).

Hence, it holds that

χ[0,u2(x))(c) = χΣ√c(x) and χ[0,(1−u(x))2](c) = χΩ\Σ1−
√
c
(x).

Using this we obtain∫
Ω
f1(x)u2(x) dx =

∫
Ω
f1(x)

∫ 1

0
χ[0,u2(x))(c) dc dx =

∫ 1

0

∫
Ω
f1(x)χ[0,u2(x))(c) dx dc

=

∫ 1

0

∫
Σ√c

f1(x) dx dc
φ(c)=

√
c

=

∫ 1

0
2φ(c)φ′(c)

∫
Σφ(c)

f1(x) dx dc

=

∫ 1

0
2c

∫
Σc

f1(x) dx dc

and ∫
Ω
f2(x)(1− u(x))2 dx =

∫ 1

0

∫
Ω\Σ1−

√
c

f2(x) dx dc

=

∫ 1

0
2(φ(c)− 1)φ′(c)

∫
Ω\Σφ(c)

f2(x) dx dc
(
where φ(c) := 1−

√
c
)

=

∫ 0

1
2(c− 1)

∫
Ω\Σc

f2(x) dx dc =

∫ 1

0
2(1− c)

∫
Ω\Σc

f2(x) dx dc

=

∫ 1

0
2(1− c)

∫
Ω
f2(x) dx dc−

∫ 1

0
2(1− c)

∫
Σc

f2(x) dx dc

= C −
∫ 1

0
2(1− c)

∫
Σc

f2(x) dx dc,
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where C is a constant that does not depend on u. Combined with (1.9), this leads to

EUC[u] =

∫ 1

0

[
2

{∫
Σc

(cf1(x)− (1− c)f2(x)) dx

}
+ ν Per(Σc)

]
dc +C

=

∫ 1

0
EMS-2[Σc, c] dc +C.

EUC is convex and bounded from below, therefore a minimizer umin exists and by Remark 5.3.1
0 ≤ umin ≤ 1 holds. From Remark 5.2.2 and the assumption f1, f2 ≥ 0 a. e., we know that we
can assume f1, f2 > 0 a. e. in Ω without loss of generality. From

gc(x) := 2 (cf1(x)− (1− c)f2(x)) = 2c(f1(x) + f2(x))− 2f2(x)

and f1, f2 > 0 a. e., we get

gc1 = 2c1(f1 + f2)− 2f2 > 2c2(f1 + f2)− 2f2 = gc2 a. e. for c1 > c2. (5.4)

For c ∈ [0, 1] let

Ac ∈ argmin
Σ⊂Ω

EMS-2[Σ, c]. (5.5)

Note that we already discussed the existence of such minimizers in the proof of Theorem 1.2.3.
Using (5.4), Proposition 5.3.5 shows that

Ac1 ⊂ Ac2 up to a negligible set for c1 > c2.

Therefore, û(x) := sup {c̃ : x ∈ Ac̃} defines a function û such that

{û > c} = Ac up to a negligible set for all c ∈ [0, 1].

From ∫ ∞
−∞

Per({û > c}) dc =

∫ 1

0
Per({û > c}) dc =

∫ 1

0
Per(Ac) dc ≤ 1

ν

∫ 1

0
EMS-2[Ac, c] dc

≤ 1

ν

∫ 1

0
EMS-2[{umin > c}, c] dc =

1

ν
(EUC[umin]− C) <∞

we can deduce û ∈ BV (Ω) with the coarea formula (cf. [67, Section 5.5, Theorem 1 (iii)]).

Finally, û allows to deduce that Σc[umin] is a minimizer of EMS-2[·, c] for a. e. c ∈ [0, 1].
Otherwise EUC[û] < EUC[umin] would hold because of (5.5) and

EUC[û] =

∫ 1

0
EMS-2[Ac, c] dc +C,

a contradiction to the fact that umin minimizes EUC.

To extend Theorem 5.3.6 to all c ∈ [0, 1], we need another preparatory lemma:
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5.3.7 Lemma. Given

Acn ∈ argmin
Σ⊂Ω

EMS-2[Σ, cn],

where (cn) ∈ [0, 1]N with cn ↓ c ∈ [0, 1]. Then

A∪ :=
∞⋃
n=1

Acn ∈ argmin
Σ⊂Ω

EMS-2[Σ, c].

If cn ↑ c ∈ [0, 1], then A∩ :=
⋂∞
n=1Acn is a minimizer of EMS-2[·, c].

Proof. This lemma is a modification of [2, Lemma 4 (iii)] and can be proven by a similar line
of reasoning. Furthermore, the proof is similar to the proof of Proposition 5.2.3. The main
difference to that proof is that there a sequence of sets that are all minimizers of the same
energy is used, while we have here a sequence of sets where each set minimizes a slightly different
energy.

For k < n, we have cn < ck. Combined with (5.4) and Proposition 5.3.5, this leads to

Ack ⊂ Acn up to a negligible set for k < n.

Therefore, χAcn = χ⋃n
k=1 Ack

a. e. and thus χAcn → χA∪ pointwise a. e.. Using this and the fact
that gcn → gc pointwise a. e. and we get∫

A∪
gc dx =

∫
Ω
gcχA∪ dx = lim

n→∞

∫
Ω
gcnχAcn dx = lim

n→∞

∫
Acn

gcn dx

and ∫
Σ
gc dx = lim

n→∞

∫
Σ
gcn dx

by Lebesgue’s dominated convergence theorem. Here, we used∣∣gcnχAcn ∣∣ ≤ |gcn | ≤ 2cn |f1|+ 2(1− cn) |f2| ≤ 2 (|f1|+ |f2|)

to provide the integrable upper bound for both limits. For each n and Σ ⊂ Ω, due to the
minimizing property of Acn , we have∫

Acn

gcn dx +ν Per(Acn) ≤
∫

Σ
gcn dx +ν Per(Σ).

Using the continuity arguments from above and the lower semicontinuity of the perimiter, we
get ∫

A∪
gc dx +ν Per(A∪) ≤

∫
Σ
gc dx +ν Per(Σ),

i. e. A∪ is a minimizer of EMS-2[·, c]. The second statement can be deduced analogously.

5.3.8 Proposition. Theorem 5.3.6 holds not only for a. e. c, but for all c ∈ [0, 1].
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Proof. Because Σ1 = ∅ (up to a negligible set) and g1 = 2f1 ≥ 0 a. e., the statement is true for
c = 1. Now let c ∈ [0, 1). Because of Theorem 5.3.6 there exists a sequence (cn) ∈ [0, 1]N with
cn ↓ c such that

Σcn ∈ argmin
Σ⊂Ω

EMS-2[Σ, cn].

From Lemma 5.3.7 we know that
⋃

Σcn is a minimizer of EMS-2[·, c]. Combined with (5.1), this
concludes the proof.

The preceding proposition (or Theorem 5.3.4) finally tells us how to find a global minimizer
of EMS-2[·] given in (1.6): Minimize the convex energy (5.3) and threshold the minimizer to 1

2 .
In case of the piecewise constant Mumford–Shah functional for two-phase segmentation, we
obtain a global minimizer of the Mumford–Shah energy (1.5) with respect to Σ for fixed gray
values c1, c2. We do not necessarily find a global minimizer with respect to Σ, c1 and c2.

Another link between ENEC and EεPH is the so-called piecewise constant level set method
[92] for two-phase segmentation that constrains the level set function to only take two distinct
values. If this constraint is approximated with a penalty energy, the method equals the phase
field approach. If the constraint is relaxed to a certain boundedness constraint, the method
equals [102]. In both cases the fidelity term has to be altered accordingly, making use of the
fact that this term is the same in ENEC and EεPH if u only takes the values 0 and 1.

Since (5.3) is similar to the Rudin–Osher–Fatemi (ROF) energy [109], there is a wide variety
of established minimization schemes to choose from, ranging from a straightforward gradient
descent scheme with a differentiable approximation of the BV term over primal thresholding
methods [55] to sophisticated methods based on the dual formulation of the BV norm, e. g.
[42, 44]. In Section 5.3.1 we show how to use the minimization scheme from [42] in our context.

With Ψ(x, s) = 1
2 (s− (f2(x)− f1(x)))2, another immediate consequence of Theorem 5.3.3 is

that the zero superlevelset of a minimizer of the ROF energy

EROF[u] :=

∫
Ω

1

2
(u− (f2 − f1))2 dx +ν |Du| (Ω) (5.6)

is a global minimizer of ÊMS-2 and therefore by Remark 5.2.1 also of EMS-2. This is another way
to obtain a global minimizer of EMS-2 by unconstrained convex optimization, but compared
to (5.3) this method has a few shortcomings, cf. Sections 5.3.2 and 5.3.3. Furthermore, the
boundedness mentioned in Remark 5.3.1 does not hold for minimizers of the ROF energy.
Perhaps this is one of the reasons why, to the best of our knowledge, nobody seems to have
used the classical ROF function for Mumford–Shah based image segmentation so far.

5.3.1 Minimization using a dual formulation

Due to the similarity of our energy to the Rudin–Osher–Fatemi energy, we can adapt Chambolle’s
algorithm for total variation minimization [42] to find minimizers of our energy. The basic idea
of the algorithm is to derive a dual formulation of the minimization problem that is easier to
solve numerically than the initial minimization problem. This dual formulation is summarized
in the following proposition:

5.3.9 Proposition. A minimizer of (5.3) is given by

u =
2f2 − ν divp

2(f1 + f2)
(5.7)
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where p is a solution of

∇
(
ν divp− 2f2

2(f1 + f2)

)
−
∣∣∣∣∇(ν divp− 2f2

2(f1 + f2)

)∣∣∣∣ p = 0. (5.8)

Proof. The statement is structurally the same as [30, Proposition 1], allowing us to employ the
same proof technique. Using the dual formulation of the total variation (1.8), we get

min
u
EUC[u] = min

u
sup
|p|≤1

(∫
Ω
u2f1 + (1− u)2f2 + νudivp dx

)
.

Using [62, Chapter IV, Proposition 2.3], a result from minimax theory, we may interchange the
optimization with respect to u and p. Hence, the minimization of EUC is equivalent to

sup
|p|≤1

inf
u

(∫
Ω
u2f1 + (1− u)2f2 + νudivpdx

)
.

The inner minimization problem with respect to u is a pointwise problem and can be solved
explicitly. The corresponding optimality condition (zero crossing of the integrand’s derivative
with respect to u) is

0 = 2uf1 + 2(u− 1)f2 + ν divp = 2u(f1 + f2)− 2f2 + ν divp

Solving for u gives (5.7). Because the second derivative of the integrand is 2(f1 + f2), which
is bigger than zero a. e. according to Remark 5.2.2, the obtained u is a minimizer. Hence, the
infimum exists, i. e. “inf” turns to “min”, and we can directly solve the minimization with
respect to u by inserting the minimizer given by (5.7):

min
u

(∫
Ω
u2f1 + (1− u)2f2 + νudivp dx

)
=

∫
Ω

(
2f2 − ν divp

2(f1 + f2)

)2

f1 +

(
1− 2f2 − ν divp

2(f1 + f2)

)2

f2 + ν
2f2 − ν divp

2(f1 + f2)
divp dx

=

∫
Ω

(
2f2 − ν divp

2(f1 + f2)

)2

f1 +

(
2f1 + ν divp

2(f1 + f2)

)2

f2 + ν
2f2 − ν divp

2(f1 + f2)
divp dx

=

∫
Ω

4f2
2 − 4f2ν divp+ ν2( divp)2

4(f1 + f2)2
f1 +

4f2
1 + 4f1ν divp+ ν2( divp)2

4(f1 + f2)2
f2

+ ν
2f2 − ν divp

2(f1 + f2)
divp dx

=

∫
Ω

4f1f
2
2 + 4f2

1 f2

4(f1 + f2)2
+
f1ν

2( divp)2 + f2ν
2( divp)2

4(f1 + f2)2
+ ν

2f2 − ν divp

2(f1 + f2)
divp dx

=

∫
Ω

f1f2(f2 + f1)

(f1 + f2)2
+

(f1 + f2)ν2( divp)2

4(f1 + f2)2
+ ν

f2 divp

(f1 + f2)
− ν2( divp)2

2(f1 + f2)
dx

=

∫
Ω

f1f2

(f1 + f2)
− ν2( divp)2

4(f1 + f2)
+ ν

f2 divp

(f1 + f2)
dx =: F [p]

For any ζ ∈ C∞0 (Ω,Rd), we get〈
F ′[p], ζ

〉
=

∫
Ω
−2ν2 divp divζ

4(f1 + f2)
+
νf2 divζ

(f1 + f2)
dx =

∫
Ω

−ν2 divp+ 2νf2

2(f1 + f2)
divζ dx

=

∫
Ω
∇
(
ν2 divp− 2νf2

2(f1 + f2)

)
ζ dx
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Then, by the general Kuhn-Tucker theorem for Banach spaces [95, Theorem 3.2], the optimality
conditions for p under the pointwise constraint 1

2 |p|
2 ≤ 1

2 (equivalent to |p| ≤ 1) are

∇
(
ν2 divp− 2νf2

2(f1 + f2)

)
− λp = 0 (5.9)

λ ≥ 0 (5.10)

λ(|p|2 − 1) = 0 (5.11)

for a Lagrange multiplier λ : Ω→ R. Using an approach employed in [42] for a similar problem
in the discrete setting, the Lagrange multiplier can be determined and subsequently eliminated:
For the points where the constraint is active, i. e. |p|2 = 1, scalar multiplying (5.9) by

∇
(
ν2 divp− 2νf2

2(f1 + f2)

)
+ λp

shows that∣∣∣∣∇(ν2 divp− 2νf2

2(f1 + f2)

)∣∣∣∣2 − |λp|2 = 0.

Because of (5.10) and |p|2 = 1, we have |λp| = |λ| |p| = λ. This allows us to determine λ:

λ =

∣∣∣∣∇(ν2 divp− 2νf2

2(f1 + f2)

)∣∣∣∣ (5.12)

Using the complementarity condition (5.11), we see that λ = 0 for the points where the
constraint is inactive, i. e. where |p|2 < 1. Hence, using (5.9), at these points

∇
(
ν2 divp− 2νf2

2(f1 + f2)

)
= 0

holds. Thus, (5.12) also holds for the points where the constraint is inactive and we have
determined the multiplier for all points. Now we can substitute λ in (5.9), and the optimality
condition (without any multiplier left) for p is

∇
(
ν2 divp− 2νf2

2(f1 + f2)

)
−
∣∣∣∣∇(ν2 divp− 2νf2

2(f1 + f2)

)∣∣∣∣ p = 0.

Scaling this by the positive constant 1/ν, we arrive at (5.8), concluding the proof.

5.3.10 Remark. Following [42], (5.8) can be solved numerically by a semi implicit gradient
descent scheme

pn+1 − pn

τ
= ∇

(
divpn − 2

ν f2

2(f1 + f2)

)
−

∣∣∣∣∣∇
(

divpn − 2
ν f2

2(f1 + f2)

)∣∣∣∣∣ pn+1

⇒ pn+1 =

(
pn + τ∇

(
divpn − 2

ν f2

2(f1 + f2)

))/(
1 + τ

∣∣∣∣∣∇
(

divpn − 2
ν f2

2(f1 + f2)

)∣∣∣∣∣
)
.

Using the finite difference discretization from [42], first tests confirm the observation on the
step size made in [42]: For practical purposes τ = 1

4h
2 seems to be the optimal step size.
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5.3.2 Multiphase segmentation

Our functional can be extended to multiphase segmentation by applying the Vese–Chan approach
to transform the binary segmentation functional into a multiphase one [125] (cf. Section 1.2.3).
Because the general strategy to handle 2n segments is already discussed in Section 1.2.3, we
confine to discuss segmentation in 4 phases here. Already knowing the Vese–Chan approach,
this is sufficient to see how to handle 2n segments. Let f1, f2, f3, f4 ∈ L1(Ω) such that fi ≥ 0
a. e., then the multiphase functional is given by

EUC[u1, u2] :=

∫
Ω
u2

1u
2
2f1 + (1− u1)2u2

2f2

+ u2
1(1− u2)2f3 + (1− u1)2(1− u2)2f4 dx (5.13)

+ ν (|Du1| (Ω) + |Du2| (Ω)) .

If we fix u2, the reduced functional EUC[·, u2] is the same as the two-phase functional (5.3)
with the indicator functions f̃1 = u2

2f1 + (1 − u2)2f3 and f̃2 = u2
2f2 + (1 − u2)2f4. As in the

two-phase case, we can assume fi > 0 a. e. without loss of generality and because either u2
2 > 0

or (1− u2)2 > 0 holds, we have f̃1, f̃2 > 0. Therefore, all statements proven for the two-phase
functional can be applied to EUC[·, u2], i. e. we can compute the global minimum (for fixed u2).
The same applies for fixed u1, so as an optimization strategy, we propose to minimize with
respect to u1 and u2 alternatingly (cf. the generic EM procedure from Section 2.2).

Even though it is easy to extend (5.3) to multiphase segmentation, the same does not apply
to the ROF energy (5.6). There is no apparent extension in the sense of [125] to formulate the
multiphase segmentation in a single functional.

5.3.3 Indicator parameters

In typical segmentation tasks, the indicator functions depend on unknown parameters, e. g. the
gray values for each segment in case of the piecewise constant Mumford–Shah model. For the
sake of simplicity, we discuss the latter model in its two-phase formulation here, i. e.

fi(x) := (u0(x)− ci)2 for i = 1, 2,

but this discussion applies to other indicator functions and multiphase segmentation as well.
During the minimization we not only have to minimize (5.3) with respect to u, but also with

respect to c1 and c2 as well. This is typically done in an alternating fashion, but there are two
apparent possibilities to update the gray values: Minimize (5.3) with respect to c1 and c2 or do
so for the energy in the set formulation (1.5). The two possible updating formulae for c1 arising
are

c1 =

∫
Ω
u2u0 dx

/∫
Ω
u2 dx or c1 =

∫
{u> 1

2
}
u0 dx

/∫
{u> 1

2
}

dx .

The two possibilities only coincide if u is binary. The first formula not only averages u0 in
{u > 1

2}, instead it takes into account the values of u0 everywhere, but weights the values
according to u2. To a certain degree this is similar to the effect of the regularization of the
Heaviside function in the model of Chan and Vese. From our experiments, this reduces the
chance of getting stuck in local minima that can still occur when minimizing over u and the
indicator parameters. Particulary in the case of multiphase segmentation it turned out to
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Figure 5.1: Segmentation of an artificial noisy structure (ν = 2 · 10−3, top row) and the well-
known Matlab cameraman image (ν = 4 · 10−3, bottom row): Input image u0 (left),
segmentation function u and 0.5-superlevelset of u colored with the average gray
values c1, c2 obtained by our model (middle) and by using ENEC (right). The
slight difference of the gray values is attributed to the employed update formula, cf.
Section 5.3.3.

be beneficial: Using the second formula when segmenting the image shown in the top row of
Figure 5.2 only three segments were identified by the algorithm, while all four segments were
found with the first formula. The respective update formulae for c2 are

c2 =

∫
Ω

(1− u)2u0 dx

/∫
Ω

(1− u)2 dx or c2 =

∫
Ω\{u> 1

2
}
u0 dx

/∫
Ω\{u> 1

2
}

dx .

Due to the different way f1 and f2 are used in the ROF energy (5.6), it is not quadratic in c1

and c2. So this functional does not give a natural formula to update the gray values.

5.4 Numerical examples

In this section, we show the practical usability of the proposed model by applying it to
the classical piecewise constant Mumford–Shah functional (1.5). For the sake of simplicity
we do not use the dual formulation based minimization algorithm from Section 5.3.1 as
minimization technique but an explicit gradient flow scheme (cf. Section 6.2) with the Armijo
rule (cf. Section 6.3) as step size control combined with a spatial discretization by bilinear
Finite Elements on a regular quadrilateral grid (cf. Section 6.1). The absolute value used to
approximate the total variation is regularized as discussed in Section 1.2.2, i. e. |z|% =

√
z2 + %2

(in all examples presented here, % = 0.1 is used). The gray values c1 and c2 are initialized with
0 and 1 respectively and updated occasionally during the gradient flow.

By choosing this minimization strategy instead of the dual algorithm, we could reuse most of
the multiphase segmentation code already written for Chapter 3. If runtime is important, the
dual algorithm should be used instead of the approach we used in this section.

Figure 5.1 shows results of our method and of the one proposed by Nikolova et al. [102] on
one artificial image and one digital photo. In both examples, the minimizer u from our model
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is far from being binary, but this is nothing to be expected from the theory we presented here.
The 0.5-superlevelset gives an accurate segmentation that is not influenced by the presence of
heavy noise (top row) and works on non-binary input images (bottom row). The minimizers
u of the Nikolova et al. model look very different, but the segmentation obtained from the
0.5-superlevelsets is almost identical.

Upon closer inspection, the minimizer u of our model from the top row of Figure 5.1 looks
very much like as obtained by minimizing the Rudin–Osher–Fatemi energy [109] with u0 as
input image. This is not surprising due to the following observation: If u0 is binary, i. e. u0 = χA
for a set A ⊂ Ω and c1 = 1, c2 = 0 we have f1 = (χA − 1)2 = χΩ\A and f2 = (χA − 0)2 = χA
and therefore

EUC[u] =

∫
Ω
u2χΩ\A + (1− u)2χA dx +ν |Du| (Ω)

=

∫
Ω
u2χΩ\A + χA − 2uχA + u2χA dx +ν |Du| (Ω)

=

∫
Ω

(u− χA)2 dx +ν |Du| (Ω),

i. e. EUC equals the Rudin–Osher–Fatemi energy in this special case. This is not the case if u0

is non-binary which can be seen from the bottom row of Figure 5.1.
Figure 5.2 shows four-phase segmentation results. Those indicate the tendency of the seg-

mentation functions to become binary for small values of ν.
Finally, Figure 5.3 illustrates the behavior of the method for different numbers of segments

and Figure 5.4 shows three iterates of the eight-phase segmentation.

Figure 5.2: four-phase segmentation of an artificial noisy image (top row) and a MRI image
(bottom row) (ν = 6 · 10−4): Input image u0 (left), segmentation functions u1 and
u2 (middle), segmentation colored with the average gray values c1, ..., c4 (right).
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Figure 5.3: Segmentation of a digital photo (ν = 2 · 10−5). Input image u0 (left), segmentation
in four (middle) and eight (right) segments colored with the average gray values of
the segments. Original image c© bigmama / PIXELIO.

Figure 5.4: Intermediate results of the segmentation in eight segments shown in Figure 5.3 after
50 (left), 250 (middle) and 700 (right) gradient descent steps.

5.5 Outlook

Judging from the results shown in Chapters 3 and 4, one may get the impression that the
Chan–Vese model is always sufficient to obtain suitable minimizers of the Mumford–Shah
functional and that the extra machinery we build in this chapter to obtain global minimizers
(instead of only local ones) for binary segmentation problems is not necessary. However, a quick
look at the literature shows that global minimization techniques are getting more and more
popular in particular in the context of binary segmentation, e. g. [85, 123].

In the following, we introduce a segmentation problem, where the Chan–Vese model often
does not find usable minimizers. In particular, this problem motivated us to start researching
on alternatives to Chan–Vese and eventually lead to the unconstrained global two-phase
minimization approach presented in this chapter.

5.5.1 Flowfield segmentation

There is a wide range of methods for the visualization of vector fields, each of them with distinct
assets and drawbacks. To give a glimpse at the range existing methods already cover, Figure 5.5
shows the same vector field visualized by three different methods.

Here, we are searching for a way to identify a number of regions that characterize a given
vector field. When those regions are known, they can be used to enhance the visualization.
Following the models discussed in the preceding chapters, we are going to construct a variational
model to segment vector fields. A segmentation into piecewise constant parts is obviously not
sufficient though, because vector fields commonly contain structures that cannot be described
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Figure 5.5: Three largely different ways to visualize a 2D vector field: Angle and lengths of the
vectors encoded as color and brightness respectively (left), classical sparse arrow
plot (middle) and a visualization using anisotropic diffusion and a color coding of
the vector lenght [34] (right).

Figure 5.6: An artificial vector field, consisting of four affine regions, drawn as simple arrow
plot (left) and as arrow plot colored according to its segments.

properly with a small number of constant segments. On the other hand, many of the common
local structures encoded in vector fields (laminar flows, sheer flows, sources, sinks, vortices) can
be approximated reasonably well with affine functions. Henceforth, we aim for a segmentation
into affine regions (cf. Figure 5.6). For the sake of convenience, we only formalize the binary case
here. The extension to multiphase segmentation is done exactly as described in Sections 1.2.3
and 5.3.2).

Given a vector field v : Ω → Rd, the piecewise constant Mumford–Shah functional for
two-phase segmentation (1.5) can be extended to handle the segmentation into piecewise affine
regions by simply replacing the indicator functions. This leads to the following functional:

Eflow,MS[Σ, (Ai, bi)i] =

∫
Σ
|v(x)−A1x− b1|2 dx +

∫
Ω\Σ
|v(x)−A2x− b2|2 dx +ν Per(Σ).

Here, A1, A2 ∈ Rd×d and b1, b2 ∈ Rd are the unknown affine parameters that replace the average
gray values from (1.5).
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Recalling (5.3), the corresponding unconstrained convex functional is

Eflow,UC[u, (Ai, bi)i] =

∫
Ω
u2 |v(x)−A1x− b1|2 + (1− u)2 |v(x)−A2x− b2|2 dx

+ ν |Du| (Ω).

The optimization with respect to u has already been discussed in Chapter 5. Hence, we confine
to study the optimization with respect to the affine parameters. The variation with respect to
A1 and b1 respectively are

∂A1Eflow,UC[u, (Ai, bi)i] = 2

∫
Ω

u2(A1x+ b1 − v(x))⊗ x dx ,

∂b1Eflow,UC[u, (Ai, bi)i] = 2

∫
Ω

u2(A1x+ b1 − v(x)) dx .

Here we used that for A = (Alm)lm ∈ Rd×d and b = (bk)k ∈ Rd the following is fulfilled:

∂Alm(Ax) = ∂Alm

((∑
j
Aijxj

)d
i=1

)
=

((∑
j
δilδjmxj

)d
i=1

)
=
(

(δilxm)di=1

)
= xmel,

and

∂Alm
[
(v(x)−Ax− b)2

]
= 2 (v(x)−Ax− b) · (−xmel) = 2(Ax+ b− v(x))lxm

= (2 (Ax+ b− v(x))⊗ x)lm ,

∂bk
[
(v(x)−Ax− b)2

]
= 2 (v(x)−Ax− b) · (−ek) = 2(Ax+ b− v(x))k.

To calculate the optimal affine parameters A1 and b1 for a given segmentation u, we have to
solve for zero crossings of the corresponding variations:

The variation with respect to A1 leads to

0 =
1

2
∂Alm1

Eflow,UC[u, (Ai, bi)i]

=
∑
j

Alj1

∫
Ω
u(x)2xjxm dx︸ ︷︷ ︸

=:Hmj

+bl1

∫
Ω
u(x)2xm dx︸ ︷︷ ︸

=:Hm

−
∫

Ω
u(x)2vl(x)xm dx︸ ︷︷ ︸

=:Vml

.

Therefore, A1 and b1 have to solve

0 =
∑
j

Alj1 Hmj + bl1Hm − Vml for m, l = 1, . . . , d. (5.14)

Furthermore, the variation with respect to b1 leads to

0 =
1

2
∂bk1

Eflow,UC[u, (Ai, bi)i]

=
∑
j

Akj1

∫
Ω
u(x)2xj dx︸ ︷︷ ︸

=Hj

+bk1

∫
Ω
u(x)2 dx︸ ︷︷ ︸
=:H

−
∫

Ω
u(x)2vk(x) dx︸ ︷︷ ︸

=:Vk

.
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Hence, in addition to (5.14), A1 and b1 have to solve

0 =
∑
j

Akj1 Hj + bkH − Vk for k = 1, . . . , d. (5.15)

(5.14) and (5.15) show that d linear equation systems of size (d+ 1)× (d+ 1) have to be solved
to find the optimal affine parameters A1 and b1.

For d = 2, these two linear equation systems are:H1 H2 H
H11 H12 H1

H21 H22 H2

A11
1

A12
1

b11

 =

 V1

V11

V21


and H1 H2 H

H11 H12 H1

H21 H22 H2

A21
1

A22
1

b21

 =

 V2

V12

V22

 .

The optimal affine parameters A2 and b2 can be calculated analogously.

5.5.2 Preliminary numerical results

Using the discretization and the minimization approach described in Section 5.4 combined with
the linear equation systems to update the affine parameters (cf. (5.14) and (5.15)), we segment
several vector fields in this section. At first, we compare the performance of the segmentation
method using the Chan–Vese model (cf. Section 1.2.2) and the unconstrained convex model
(cf. Section 5.3), both extended to multiphase segmentation with the Vese–Chan approach (cf.
Section 1.2.3), in Figure 5.7. Here, the results obtained by the Chan–Vese model are clearly
limited by the initial segmentation, whereas the unconstrained convex approach does not seem
to be bound by the initialization.

Figure 5.8 shows the segmentation and approximation quality of the unconstrained convex
model on another vector field. The segmentation behaves as expected: The more segments
the model is allowed to use, the smaller the approximation error is. Unfortunately, an affine
segmentation does not seem to be enough to structure this particular vector field into segments
that are easy to interpret. More sophisticated segmentation criteria need to be developed to
handle the visualization of this kind of vector fields.

Finally, Figure 5.9 shows a 3D segmentation result of the unconstrained convex model. The
3D segments are difficult to interpret, but the inflow or outflow region that generated the flow
shown by the vector field are clearly visible.
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initialization Chan–Vese unconstrained convex

Figure 5.7: Comparison of the Chan–Vese model and the unconstrained convex model (extended
to multiphase segmentation following Vese–Chan) on the vector field from Figure 5.5.
From top to bottom, segmentation in two, four and eight segments is shown.
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segments error

Figure 5.8: Segmentation of a vector field (top row) in two, four and eight segments. The left
column shows the segments, while the right column shows the pointwise error, i. e.
the absolute difference of the piecewise affine approximation to the original vector
field. From top to bottom, the full L2-error is 1.82 · 10−4, 1.06 · 10−4, and 8.39 · 10−5,
respectively.

Figure 5.9: Segmentation of a 3D vector field in eight segments: Input vector field visualized
by anisotropic diffusion (top row) and the 0.5-level set of the three segmentation
functions (bottom row).
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5.5.3 Future work

As we have seen in Figure 5.8, a simple piecewise affine segmentation is not sufficient to
segment some vector fields in such a way that the segments can be used to ease the vector
field visualization. A possibility to overcome these difficulties could be to incorporate prior
knowledge about the vector fields we want to segment. For example, this can be done by adding
a penalty term that encodes the prior knowledge. As very simple penalty, we could consider
the penalty function

F [A] =

d∑
i=2

i−1∑
j=1

(
Aij +Aji

)2
.

Using the notation above, the variation of the aforementioned penalty function is

∂AlmF [A] = 2(1− δlm)(Alm +Aml).

If we now add F [A1] to our objective functional Eflow,UC, the segment corresponding to A1 and
b1 is penalized by our penalty function.

As the penalty term is quadratic in A1, we can still update the affine parameters by solving
linear equation system. In concrete terms, (5.14) changes to

0 =
∑
j

Alj1 Hmj + bl1Hm − Vml + (1− δlm)(Alm +Aml) for m, l = 1, . . . , d.

The affine parameters are more interdependent with the penalty term, though, and we end up
with one linear equation system of size d(d+ 1)× d(d+ 1) instead of d linear equation systems
of size (d+ 1)× (d+ 1) as before.



6 Appendix

6.1 Multi-linear Finite Elements

In this section, we recall the multi-linear Finite Element (FE) method, used for the spatial
discretization of most of the models presented in this work, and introduce the necessary notation.
For a detailed introduction, we refer to [27].

The computational domain Ω ⊂ [0, 1]d is covered by a uniform rectangular mesh C such that
the elements of the mesh are squares in 2D and cubes in 3D. h denotes the mesh resolution, i. e.
the maximal edge length among all edges of all elements of the mesh. We consider all images as
sets of pixels (2D) / voxels (3D), where each pixel / voxel corresponds to a grid node of C. Let
N = {x1, . . . , xn} denote the nodes of C. The FE basis function of node xi is defined as the
continuous, piecewise multi-linear (mutli-linear on every element of the grid) function uniquely
determined by the nodality property, i. e.

Λi(xj) = δij :=

{
1 i = j

0 i 6= j.

Obviously these functions are linearly independent and therefore form a basis of their linear
span. The FE-space V for the mesh C is defined as the linear span of the Λi, i. e.

V := span(Λ1, . . . ,Λn).

The FE-space of vector-valued functions is Vd, the canonical basis of this space, is

Λ1e1, . . . ,Λne1, . . . ,Λ1ed, . . . ,Λned,

where ei = (δij)
d
j=1 is the i-th canonical basis vector of Rd. Note that in the FE spaces V and

Vd, an element is uniquely determined by its values on the nodes N . Thus in our FE context
scalar and vector-valued functions, e. g. u and ψ, are approximated by their values at the mesh
nodes, i. e.

u ≈ U :=
n∑
i=1

u(xi)Λi(x) and ψ =

 ψ1
...
ψd

 ≈ Ψ :=


∑n

i=1 ψ1(xi)Λi(x)
...∑n

i=1 ψd(xi)Λi(x)

 .
The FE approximation of a function can also be represented by the vector of the function
values on the nodes, e. g. U := (U(xi), . . . , U(xn))T and Ψ := (Ψ1, . . . ,Ψd)

T where Ψj =
(Ψj(x1), . . . ,Ψj(xn))T . To discern the three different objects directly from the notation, we
denote continuous functions by lowercase letters (e. g. u or ψ), their FE representation by
uppercase letters (e. g. U or Ψ) and their vector representation by “over-lined” uppercase letters
(e. g. U or Ψ).
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Finally, let us introduce generalized mass and stiffness matrices, which are an important
ingredient of the FE method: Given a function f : Ω→ R, the generalized mass matrix M [f ]
and stiffness matrix L[f ] are defined as follows:

M [f ] =

(∫
Ω
f(x)Λi(x)Λj(x) dx

)
i,j

(6.1)

L[f ] =

(∫
Ω
f(x)∇Λi(x) · ∇Λj(x) dx

)
i,j

(6.2)

Both matrices are of size n× n and both are sparse, i. e. most of their entries are zero. Due to
the special choice of our FE space V (piecewise multi-linear functions on a rectangular mesh)
an entry of such a matrix is non-zero if and only if the nodes xi and xj are either adjacent
in the mesh C or equal, i. e. i = j. To compute the integrals in these non-zero entries, we use
a numerical Gauss quadrature scheme of order 3 (cf. [112]). The usual mass matrix M and
stiffness matrix L are obviously just special cases of the generalized ones, i. e. M := M [1] and
L := L[1].

6.2 Minimization by gradient flows

Gradient flows are a well-known and commonly used tool to find (local) minimizers of a given
functional. While gradient flows are certainly not the definite answer to energy minimization,
there are two main reasons making them very appealing. First, they do not put any special
requirements on the objective functional (apart from mild regularity assumptions that can
be fulfilled by regularization) and thus can be applied to almost any minimization problem.
Second, they can be applied in a straightforward manner as they only need the variation of
the objective functional. Due to these properties, we use gradient flows to solve most of the
minimization problems we encounter in this work.

As small motivation, we consider the finite dimensional case to outline how a gradient flow
works. Consider F ∈ C1(Rn,R) and recall that gradF (X) = (∂X1F (X), . . . , ∂XnF (X)) by
construction locally always points in the direction of steepest ascent, thus − gradF (X) is
the direction of steepest descent. An obvious strategy to find a minimizer is to start at any
position X0 ∈ Rn and continuously move into the direction of steepest descent, described by
the following ordinary differential equation:

d

dt
X(t) = − gradF (X(t)),

X(0) = X0.

This method is called gradient descent. For any solution X : [0, T ] → Rn of this ODE for a
finite time T > 0, it holds that

F (X0) ≥ F (X(T )),
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which follows from

F (X(T ))− F (X0) = (F ◦X)(T )− (F ◦X)(0) =

∫ T

0
(F ◦X)′(t)dt

=

∫ T

0
gradF (X(t)) · d

dt
X(t)dt = −

∫ T

0
gradF (X(t)) · gradF (X(t))dt

= −
∫ T

0
|gradF (X(t))|22 dt ≤ 0.

Since we assumed gradF to be continuous, under the additional assumption gradF (X0) 6= 0,
the inequality even holds strictly, i. e.

F (X0) > F (X(T )).

Hence, given any non-critical point, the ODE leads us to a point at which F is strictly lower
than what we started with. If X0 is a critical point though, the solution of the ODE is the
constant curve X(t) = X0 and we cannot minimize F any further with the gradient descent.

Now we consider the more interesting infinite dimensional case: Let H be a real-valued
function space and E : H → R a functional on H. Furthermore, let g : H × H → R be a
scalar product considered as a metric on H such that H is complete with respect to the norm
induced by g, i. e. (H, g) is a Hilbert space. The gradient of E with respect to the metric g is
characterized by the condition

gradg E[x] = v ∈ H :⇔ ∀
w∈H

g(v, w) =
〈
E′[x], w

〉
.

For any initial position x0 ∈ H, the gradient flow for E in H with respect to g is given by the
following ODE

∂tx(t) = − gradg E[x(t)],

x(0) = x0.

With the definition of the gradient, this means

∀
w∈H

g (∂tx(t), w) = −
〈
E′[x(t)], w

〉
.

By the Riesz representation theorem [13, Theorem 12.5], there is a bijective representation
A : H → H′ of g, i. e. it holds that

∀
x,y∈H

g(x, y) = 〈Ax, y〉 .

Therefore,

∀
w∈H

〈A∂tx(t), w〉 = g (∂tx(t), w) = −
〈
E′[x], w

〉
⇔ A∂tx = −E′[x]

⇔ ∂tx = −A−1E′[x]

This reformulation of the gradient flow ODE outlines the effect the metric imposes on the
evolution. By construction the gradient flow evolves from the starting point x0 to the “nearest”
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local minimum and that is where the metric comes into play: The notion of a distance on our
space H is inherently dependent on the metric g we use to measure lengths and thus the choice
of the metric influences which minimum the flow is attracted to. If we know that the solution
sought fulfills certain properties, we can use a metric that favors these properties.

For example, if we want to select the smoothest minimizer from the set of nearby local
minima, it is suitable to chose g (inspired by the Sobolev active contour approach [120]) to be
a scaled version of the H1 metric (and chose H accordingly, e. g. H = H1(Ω)), i. e.

gσ(ϑ1, ϑ2) =

∫
Ω
ϑ1ϑ2 +

σ2

2
∇ϑ1 · ∇ϑ2 dx (6.3)

for variations ϑ1, ϑ2 ∈ H. In this case, applying A−1 is equivalent to doing one time step of the
heat equation discretized in time using the backward Euler scheme and step size σ2

2 . By [66,

Section 2.3, Theorem 1], (continuously) solving the heat equation for time σ2

2 in turn is the
same as convolving with Gσ, the Gaussian kernel of filter width σ, i. e.

Gσ(x) =
1(√

2πσ
)d exp

(
− |x|2

2σ2

)
. (6.4)

The analogon of this metric for vector-valued problems (i. e. in case H = H1(Ω,Rn)) is

gσ(ζ1, ζ2) =

∫
Ω
ζ1(x) · ζ2(x) +

σ2

2
Dζ1(x) : Dζ2(x) dx (6.5)

for variations ζ1, ζ2 ∈ H1(Ω,Rn). With this metric, applying A−1 is equivalent to one implicit

heat equation time step with step size σ2

2 on each scalar component.
Because of the regularizing properties of the inverse of the representation of gσ combined with

the time discretization, this approach is closely related to iterative Tikhonov regularization,
which is known to lead to smooth paths from the initial deformations towards the set of
minimizers, cf. [113, 51, 50]. In case the inverse of the metric A−1 has a smoothing effect, the
gradient flow is sometimes also referred as regularized gradient descent. Note that the choice
of the metric does not alter the energy landscape itself in any way, but solely the descent
path towards the set of minimizers. With an explicit time discretization (i. e. forward Euler) of
∂tx = −A−1E′[x] for a step size τ , we end up with the following explicit gradient flow scheme

xk+1 = xk − τA−1E′[x]

that is used as basis for most minimization algorithms used in this work.

6.3 Step size control

The following simple example shows that the step size in an explicit gradient flow scheme
cannot be chosen freely: Consider E : R→ R, x 7→ x2. The corresponding explicit gradient flow
scheme for an initial value x0 is

xk+1 = xk − τ gradE(xk) = xk − 2τxk.

Choosing τ = 1, one obtains xk+1 = −xk, leading to

xk = (−1)kx0.
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Figure 6.1: Obviously the slope ratio is not necessarily bigger or equal to one, but there exists
a τ > 0 such that the ratio exceeds an arbitrary but fixed σ ∈ (0, 1).

Therefore, for any initial value x0 6= 0, the sequence (xk) does not not converge to the minimizer
x = 0, it does not even converge at all. The objective function E cannot be held responsible for
this failure, as it fulfills all important properties one can hope for: It is smooth, even analytic,
and strictly convex. Hence it is necessary to carefully choose the step size.

Given an objective functional E : X → R, an estimate of the minimizer x ∈ X and a descent
direction d ∈ X towards the minimizer, consider

f : R→ R, t 7→ E[x+ td].

Finding the optimal step size for the current gradient flow step is equivalent to minimizing
the one-dimensional function f . We chose a proven approach to take care this one-dimensional
optimization problem, the so-called Armijo rule [7, 25]. The idea is to find τ > 0 such that
slope ratio of the secant through (0, f(0)) and (τ, f(τ)) to the tangent of the graph of f in
(0, f(0)) fulfills

secant slope

tangent slope
≥ σ,

cf. Figure 6.1. The ratio condition is called Successive Reduction Rule (SRR) and ensures that
a specified percentage of the decay predicted by the tangent slope is realized by the selected
step size. Here, σ ∈ (0, 1) denotes a parameter that selects the desired percentage. The tangent
slope is given by

f ′(0) =
〈
E′[x], d

〉
and does not vanish as long as 0 is no minimizer of f . The secant slope is

f(τ)− f(0)

τ
=
E[x+ τd]− E[x]

τ
.

Thus the ratio is fulfilled if

σ ≤ f(τ)− f(0)

τf ′(0)
=
E[x+ τd]− E[x]

τ 〈E′[x], d〉
. (6.6)
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If f is sufficiently smooth, according to Taylor’s theorem it holds that

f(t) = f(0) + tf ′(0) +O(t2)

and we get

f(t)− f(0)

tf ′(0)
=
f(0) + tf ′(0) +O(t2)− f(0)

tf ′(0)
= 1 +O(t).

Therefore, for each σ < 1, there exists a t0 > 0, such that for all 0 < τ < t0 it holds that

f(τ)− f(0)

τf ′(0)
≥ σ.

At least for smooth f , this ensures the existence of τ with the ratio property we are looking for.
For β ∈ (0, 1), the so-called Armijo rule with widening determines the smallest m ∈ Z, such
that

f(βm)− f(0)

βmf ′(0)
≥ σ.

In other words, βm is the biggest possible step size (in the set {βn|n ∈ Z}) that fulfills (6.6).
The following algorithm is used to determine τ :

Algorithm 6.1: Armijo rule with widening

% Initialize τ from the last gradient flow step;
τ = τold (or τ = 1);
% Find the largest τ fulfilling SSR;
if SSR succeeds then

repeat
τ ← τ/β;

until SSR fails ;
τ ← βτ ;

else
repeat

τ ← βτ ;
until SSR succeeds ;

end
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[62] Ivar Ekeland and Roger Téman. Convex analysis and variational problems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[63] N. El-Zehiry, S. Xu, P. Sahoo, and A. Elmaghraby. Graph cut optimization for the
Mumford-Shah model. In Visualization, Imaging, and Image Processing - 2007, 2007.

[64] K. R. Elder and M. Grant. Modeling elastic and plastic deformations in nonequilibrium
processing using phase field crystals. Physical Review E, 70(5):051605–1–051605–18,
November 2004.

[65] Selim Esedoḡlu and Yen-Hsi Richard Tsai. Threshold dynamics for the piecewise constant
Mumford-Shah functional. Journal of Computational Physics, 211(1):367–384, January
2006.

[66] L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

[67] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

[68] Paolo Favaro, Martin Burger, and Stefano Soatto. Scene and motion reconstruction from
defocused and motion-blurred images via anisotropic diffusion. In Proceedings of the 8th
European Conference on Computer Vision (ECCV 2004), volume 3021 of Lecture Notes
in Computer Science, pages 257–269. Springer, 2004.

[69] Paolo Favaro and Stefano Soatto. A variational approach to scene reconstruction and
image segmentation from motion-blur cues. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’04), volume 1, pages 631–637, 2004.

[70] J. Michael Fried. Multichannel image segmentation using adaptive finite elements.
Computing and Visualization in Science, 12(3):125–135, March 2009.

[71] M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, 1981.

[72] Jingfeng Han. One-to-one Edge Based Registration and Segmentation Based Validations
in Hybrid Imaging. PhD thesis, Friedrich-Alexander-Universität Erlangen, 2009.

[73] Jingfeng Han, Benjamin Berkels, Marc Droske, Joachim Hornegger, Martin Rumpf, Carlo
Schaller, Jasmin Scorzin, and Horst Urbach. Mumford-Shah model for one-to-one edge
matching. IEEE Transactions on Image Processing, 16(11):2720–2732, 2007.



122 Bibliography

[74] Jingfeng Han, Benjamin Berkels, Martin Rumpf, Joachim Hornegger, Marc Droske,
Michael Fried, Jasmin Scorzin, and Carlo Schaller. A variational framework for joint
image registration, denoising and edge detection. In Bildverarbeitung für die Medizin
2006, pages 246–250. Springer, March 2006.

[75] L. He, A. Marquina, and S. J. Osher. Blind deconvolution using TV regularization and
Bregman iteration. International Journal of Imaging Systems and Technology, 15(1):74–83,
2005.
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[102] Mila Nikolova, Selim Esedoḡlu, and Tony F. Chan. Algorithms for finding global minimizers
of image segmentation and denoising models. SIAM Journal on Applied Mathematics,
66(5):1632–1648, 2006.

[103] T. Nir, R. Kimmel, and A. Bruckstein. Variational approach for joint optic-flow computa-
tion and video restoration. Technical report, Department of Computer Science, Technion
- Israel Institute of Technology, Technion City, Haifa 32000, Israel, 2005.

[104] S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer,
New York, 2002.

[105] Stanley Osher and James A. Sethian. Fronts propagating with curvature dependent speed:
Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics,
79(1):12–49, 1988.

[106] Nikos Paragios and Rachid Deriche. Geodesic active regions and level set methods for
motion estimation and tracking. Computer Vision and Image Understanding, 97(3):259–
282, 2005.

[107] A. Rav-Acha and S. Peleg. Restoration of multiple images with motion blur in differentdi-
rections. In Proceedings of the fifth IEEE Workshop on Applications of Computer Vision,
pages 22–28, 2000.
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