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Zusammenfassung

Diese Arbeit befasst sich mit Dünngitterverfahren zur Lösung von höherdimensionalen
Problemen. Sie zeigt drei neue Aspekte von Dünnen Gittern auf: Erweiterungen der
elementaren Werkzeuge zur Arbeit mit Dünnen Gittern, eine Analyse von sowohl inhä-
renten Einschränkungen als auch Vorteilen von Dünnen Gittern speziell für die Anwen-
dung zur Dichteapproximation (Fokker–Planck–Gleichung) sowie einen neuen Ansatz zur
dimensions- und ortsadaptiven Darstellung von Funktionen effektiv niedriger Dimension.
Der erste Beitrag beinhaltet die erste (dem Autor bekannte) Fehlerschranke für in-

homogene Randbedingungen bei Dünngitterapproximation und eine erweiterte Opera-
tionsbibliothek zur Durchführung von Addition, Multiplikation und Hintereinanderaus-
führung von Dünngitterdarstellungen sowie einen adaptiven Kollokationsansatz für ap-
proximative Integraltransformationen mit beliebigen Kernen. Die Analyse verwendet
Konditionszahlen für den Datenfehler und verallgemeinert damit die speziellen Elemen-
tarabschätzungen aus [Gri98] und [MgF07]. Ferner wird erstmals auch der Konsistenzfeh-
ler bei derartigen Operationen berücksichtigt sowie eine adaptive Methode zur Kontrolle
desselben vorgeschlagen, die insbesondere zuvor vorhandene Schwachstellen behebt und
die Methode verlässlich macht.
Der zweite Beitrag ist eine Untersuchung von dimensionsabhängigen Kosten/Nutzen-

Koeffizienten, wie sie bei der Lösung von Fokker–Planck–Gleichungen und der damit ver-
bundenen Approximation von Wahrscheinlichkeitsdichten auftreten. Es werden sowohl
theoretische Schranken als auch A-posteriori-Fehlermessungen anhand einer repräsenta-
tiven Fallstudie für lineare Fokker–Planck–Gleichungen und der Normalverteilung auf Rd

vorgestellt und die auftretenden dimensionsabhängigen Koeffizienten bei Interpolation
und Bestapproximation (sowohl L2 als auch beim Lösen der Gleichung mittels Galerkin-
Verfahren) untersucht. Dabei stehen reguläre Dünne Gitter, adaptive Dünne Gitter und
die speziell für die Energienorm optimierten Dünnen Gitter im Vordergrund (letzteres
ähnlich wie die Energieabschätzungen in [Gri06]). Insbesondere werden Schlussfolgerun-
gen auf inhärente Einschränkungen aber auch auf Vorteile gegenüber klassischen Voll-
gitterverfahren diskutiert.
Der dritte Beitrag dieser Arbeit ist der erste Ansatz für dimensionsadaptive Verfeine-

rung, der insbesondere für Approximationsprobleme konzipiert wurde. Der Ansatz be-
hebt bekannte Schwierigkeiten mit frühzeitiger Terminierung, wie sie bei bisherigen An-
sätzen zur Verallgemeinerung der erfolgreichen Dimensionsadaptivität aus dem Bereich
Dünngitterquadratur zu beobachten waren (vgl. [Gar04]). Das Verfahren erlaubt eine
systematische Reduktion der Freiheitsgrade für Funktionen, die effektiv nur von weni-
gen (Teilmengen von) Koordinaten abhängen. Der Ansatz kombiniert die erfolgreiche
ortsadaptive Dünngittertechnik aus dem Bereich der Approximation mit der ebenfalls
erfolgreichen dimensionsadaptiven Verfeinerung aus dem Bereich der Dünngitterqua-
dratur [GG03, Hol08]. Die Abhängigkeit von unterschiedlichen (Teilmengen von) Ko-
ordinaten wird mittels gewichteter Räume unter Zuhilfenahme der ANOVA-Zerlegung
durchgeführt [NW08]. Die Arbeit stellt neue a priori optimierte Dünngitterräume vor,
die optimale Approximation für Funktionenräume mit gewichteten gemischten zweiten
Ableitungen und bekannten Gewichten erlauben. Die Konstruktion liefert die bekannten
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regulären Dünnen Gitter mit gewichtsabhängigen Leveln für jede Teilmenge von Koor-
dinaten (ANOVA Komponenten) im Unterschied zu bekannten Dünngitterkonstruktio-
nen aus [Kna00] (der Ansatz verläuft ähnlich wie die gewichteten Quadraturräume in
[Hol08]). Für unbekannte Gewichte wird eine neue a-posteriori dimensionsadaptive Me-
thode vorgestellt, die im Unterschied zu bekannten Verfahren aus [GG03, Gar04] explizit
ANOVA Komponenten ermittelt und berücksichtigt und so höhere Verlässlichkeit beim
Einsatz für Approximationsanwendungen erzielt. Neben reiner dimensionsadaptiver Ap-
proximation erlaubt das Verfahren auch erstmals gekoppelte orts- und dimensionsadap-
tive Verfeinerung. Die Arbeit stellt die Methodik dar und verifiziert die Verlässlichkeit
anhand dimensionsadaptiver Interpolation und dimensionsadaptiver Lösung partieller
Differentialgleichungen.
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1 Introduction

This thesis is about sparse grids and their application to higher dimensional approxima-
tion problems. The study is motivated by numerous applications in which the dimen-
sion is beyond three, for example physical processes depending on stochastic parame-
ters (partial differential equations with stochastic right–hand–side, domain or variables
[Har10, HSS08]) which are solved in twice the space dimension, or stochastic approaches
to simulate dynamics described by the Fokker–Planck–Equation. Here, d entities change
with time, depending on both deterministic dynamics (like ordinary differential equa-
tions) and stochastic fluctuations. Example applications are found in rheology for the
simulation of non–Newtonian fluids by means of bead–spring models (see the textbooks
[Ött96, BAH87] or [DLO07] for an approach related to sparse grids), in mechanics where
coupled objects are excited by environmental load [WB00], and computational finance
(Black Scholes Equation and its variants, compare the textbook of [Gla04]). The aris-
ing equations are usually handled by means of sampling methods of (Quasi) Monte
Carlo type: many realizations followed by averaging [Ött96, BAH87]. Alternatively,
the dynamics of the underlying probability density (which solves the parabolic Fokker–
Planck–Equation) can be simulated by means of high order methods. However, classical
methods to determine the density suffer from the so–called “curse of dimensionality”,
a term coined by [Bel61] for exponential cost increase with growing dimension d: with
N1d degrees of freedom in one direction, full grid methods require N = O(Nd

1d) degrees
of freedom in d dimensions and achieve an accuracy of O(N−r1d ) = O(N−r/d) where r
depends on smoothness and the polynomial degree of ansatz functions.
Sparse grids have been proposed by [Zen91] as a tool to reduce the curse of dimen-

sionality: provided the solution has bounded mixed derivatives up to order r, sparse
grids allow N = O(N1d(logN1d)d−1) cost to achieve an accuracy of O(N−r1d (logN1d)d−1).
Sparse grid methods for solving approximation problems, especially partial differential
equations, have been elaborated in [Bal94, Bun98] and following works; they have been
applied to problems of higher dimensionality in computational finance (see, for example
[Rei04, Mer05], also [Hol08] and its references for quadrature formulations), machine
learning [Gar04, PPB10] and other fields, see [BG04] for an overview. The reported
dimensionality ranges from d = 3 to d = 8, i.e. it is beyond the limitations of classical
methods.
This thesis contributes three new aspects of sparse grids:

1. extensions to the elementary sparse grid tools,

2. a study on inherent limitations and benefits of sparse grid approximation methods
applied to density approximation,

1



1 Introduction

3. a new approach of space- and dimension adaptive sparse grids suitable for functions
of low effective dimension.

The first aspect includes the first (known to the author) sparse grid interpolation error
bound for non–homogeneous boundary conditions and generalized theory on operations
like addition, multiplication, concatenation and integral transformation involving sparse
grid functions. The analysis of sparse grid operations not only generalizes known data
error bounds from [Gri98] and [MgF07], it also discusses – for the first time – the
involved consistency error and proposes and verifies adaptive algorithms to control it.
Furthermore, the thesis presents an adaptive collocation method to compute arbitrary
integral transformations

∫
K(x, y)f(y) dy similar to the approaches analyzed in [Kna00];

it is based on adaptive sparse grids.
The second new aspect, the analysis of sparse grids for density approximation and its

implications for the Fokker–Planck–Equation, is realized by means of a representative
case study using the normal distribution on Rd, which solves linear Fokker–Planck–
Equations. The emphasis is especially on d–dependent order coefficients and the log
terms arising for interpolation and best approximation for isotropic and anisotropic
densities with respect to L2- and Galerkin projection for the involved Fokker–Planck–
Equations. The order coefficients are obtained by both, theoretical error bounds and
a posteriori error measurements for standard sparse grids, adaptive sparse grids and
energy optimal sparse grids (similar to the analysis of energy order coefficients in [Gri06]).
The inherent limitations arising due to d–dependent order coefficients are quantified as
well as the superiority of sparse grids over alternative full grid methods.
The third new aspect presented in this thesis is a new dimension adaptive approx-

imation approach which employs a different type of function space to achieve higher
dimensions: weighted spaces of inherently low dimension. Here, functions have nomi-
nally high dimension, but have an inherent “effective dimension” which is much smaller.
Weighted spaces or the related finite order weights have been discussed as main cause for
the success of sparse grid quadrature methods [GG03] and Quasi–Monte–Carlo methods
[PT95] for quadrature applications in computational finance, see [SWW04, NW08] and
the references therein. The notion of effective dimension is based on the decomposi-
tion of functions into their ANOVA components, i.e. an additive superposition model
where each summand depends on a subset of input coordinates. Decay of these com-
ponents leads to weighted spaces or finite order weights for which non–exponential cost
complexities can be expected [NW08].
The contribution of this thesis is a new dimension adaptive approximation framework.

Besides a way to compute approximate ANOVA decompositions more efficiently than
known integral–based approaches, a new adaptive approach to find and use optimal
index sets for effectively low dimensional functions is elaborated. For spaces weighted
with respect to second mixed derivatives in their ANOVA decomposition and explic-
itly known weights, a new a priori optimized sparse grid scheme is presented. Unlike
other sparse grid construction schemes as in [Kna00], it yields regular sparse grids of
individual, weight–dependent levels for each subset of the input coordinates (similar to
the quadrature weighted sparse grid in [Hol08]). Furthermore, a posteriori optimized
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spaces for the case of unknown weights are presented, realized with a new dimension
adaptive algorithm which, in comparison to known approaches for integration [GG03]
or machine learning [Gar04], explicitly computes and employs the ANOVA structure.
The algorithm removes the early termination restriction from [Gar04] and yields reliable
dimension adaptive resolution. Besides pure dimension adaptivity, it also supports cou-
pled space– and dimension adaptive refinement in case one or more ANOVA components
have local singularities. The algorithm is verified for numerical examples of dimension
adaptive interpolation and partial differential equations.
The thesis is structured into three chapters which present the main results: Chapter 2

summarizes sparse grid techniques from the literature and elaborates the new error
bounds and the sparse grid function algebra. Chapter 3 is dedicated to the second
contribution of this thesis, the study on sparse grids for density approximation. It also
provides a separate case study on axis parallel structure which constitutes a bridge to
the dimension adaptive technique. The dimension adaptive approaches, the associated
ANOVA framework and its verification is subject of Chapter 4.
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2 A Sparse Grid Approximation Algebra
The present chapter introduces sparse grids. It defines and explains the structure and
summarizes approximation properties and the underlying arguments. Besides a survey
over existing results, we will also see how to deal with non–homogeneous boundary
values, which has not been elaborated so far. We will also elaborate new approximation
tools to combine given sparse grid functions by means of pointwise operations, function
concatenation or integral transforms. The approach extends known results and handles
data errors and, for the first time, consistency errors. The chapter also summarizes
common algorithms and data structures.

2.1 Sparse Grid Approximation
Our first step is to define sparse grid structures and to provide an overview from ele-
mentary approximation properties up to error estimates.

2.1.1 The Common Multiscale Grid Structure
We begin with a definition of one–dimensional multiscale grid decompositions, based on
grids with multiple resolutions. We continue with the aspect of function approximation
and basis functions living on these grids in Section 2.1.2.

Point Set Definitions

Sparse grids are defined on bounded product domains where we assume, without loss
of generality, that Ω = [0, 1]d. Thus, we deal with one–dimensional grids discretizing
the unit interval [0, 1]. Furthermore, we restrict ourselves to dyadic meshes, hl := 2−l.
Then, the grid on level l ≥ 0 is defined by the set of points

xl,i := ihl = i2−l (2.1)

where the index i ∈ {0, . . . , 2l} is called the space index at level l. We will identify
grid points by multi-indices (l, i), even though this is not a unique representation since
xl+1,2i = xl,i (grids are nested).
Space indices include the two boundary points i = 0 and i = 2l. However, the

distinction between inner points and boundary points plays are key role since we will
define sparse grids on the boundary recursively as inner sparse grid points on a boundary
manifold.
For fixed level l, the set of all inner grid points on the interval [0, 1] is defined by

Vl := {(l, i) | i = 1, . . . , 2l − 1}. (2.2)
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2 A Sparse Grid Approximation Algebra

Space Indices i for l = 1, 2, 3, 4

W1
1

W2
1 3

W3
1 3 5 7

W4
1 3 5 7 9 11 13 15

V4

Figure 2.1: Hierarchical complementsW1,W2,W3,W4 and the one scale grid V4 together
with the respective space indices.

Due to V0 = ∅, we assume l > 0 when we are dealing with inner points. We write

x ∈̄ Vl (2.3)

if there are indices (l, i) ∈ Vl such that xl,i = x. The nesting of grids in the sense of (2.3),
Vl⊂̄Vl+1, leads to hierarchical complements

Wl := {(l, i) ∈ Vl |xl,i¯6∈Vl−1}. (2.4)

Due to the nesting rule xl+1,2i = xl,i, we have xl+1,2i ¯6∈Wl whereas odd space indices are
new contributions of level l:

Wl = {(l, i) | i = 1, 3, 5, . . . , 2l − 1, i odd}. (2.5)

Applying this decomposition until l = 1, we can express any xl,i ∈ Vl uniquely using a
multi index (l̃, ĩ) in

G1
l :=

l⋃
k=1

Wk. (2.6)

The grid G1
l describes the same points as Vl in a hierarchically structured way which we

call multi scale grid decomposition. This is illustrated in Figure 2.1: the complements
W1, W2, W3 and W4 are shown together with the one scale grid V4. In our example, the
multi scale grid decomposition consists of the multi indices

(1, 1), (2, 1), (2, 3), (3, 1), (3, 3), (3, 5), (3, 7), (4, 1), . . . , (4, 15) (2.7)

which make up a binary tree with root (1, 1) and left child (l + 1, 2i − 1) and right
(l + 1, 2i+ 1) for l ≥ 1.
The tree structure implies hierarchical relations like ancestor and descendant: any

point (k, j) on the direct, unique path from (l, i) to the tree’s root (1, 1) is called an
ancestor whereas the subtree of (l, i) contains all descendants of (l, i) (see Figure 2.2).

6



2.1 Sparse Grid Approximation

Inner point hierarchy

Figure 2.2: Ancestors ( ) and descendants ( ) of a point ( ) in the grid G1
4.

For dimensions d ≥ 2, the multi scale grid decomposition can be formulated compo-
nentwise, since we are given the product domain Ω = [0, 1]d. Instead of one single level,
we are now given one level lm for each component, m = 1, . . . , d. The definition of a
scalar quantity “maximum level” will be discussed later. We define the one scale grid
for a level index l = (l1, . . . , ld) component–wise using

Vl := {(l, i) | (lm, im) ∈ Vlm} (2.8)

where we restrict ourselves to inner points, im = 1, . . . , 2lm − 1. Coordinates are given
by xl,i = (xl1,i1 , . . . , xld,id)T . A multi scale grid decomposition follows using the tensor
product approach as component–wise formulation,

Wl := {(l, i) |xl,i¯6∈Vl−em for m = 1, . . . , d}, (2.9)

where em is the mth unit vector. Note that due to our restriction to inner grid points,
lm = 0 implies Vl = ∅. As before, Wl contains only odd space indices and is thus
characterized by

Wl = {(l, i) | i ∈ Il} (2.10)

with Il := {1 ≤
.

i ≤
.

2l−1, im odd}. The relation ‘≤
.
’ means componentwise comparison.

For any fixed multi level l, we can now describe the one scale grid Vl as composition of
hierarchical complement grids. Thus, there is a one–to–one mapping from Vl to

Gdl :=
l1⋃

k1=1
· · ·

ld⋃
kd=1

Wk1,...,kd . (2.11)

This is illustrated in Figure 2.3 for two dimensions: the left picture contains all Vl for
l1, l2 = 1, 2, 3 whereas the right picture shows all corresponding Wl. The gray compo-
nents on the right yield the same grid points as the gray one on the left, V3,2.
Up to now, we have just treated cartesian grids with different mesh widths in differ-

ent directions by introducing a hierarchical multi index description. We call splittings
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2 A Sparse Grid Approximation Algebra

l1 = 1 l1 = 2 l1 = 3

l2 = 1

l2 = 2

l2 = 3

Vl1,l2 Wl1,l2

l1 = 1 l1 = 2 l1 = 3

Figure 2.3: Multi scale grid decomposition in two dimensions for the anisotropic one
scale grid V3,2. The marked components on the right are the decomposition
of V3,2.

like (2.11) where all Wk for km = 1, . . . , lm are employed a full or uniform grid of multi-
level l. The full grid for l = (n, . . . , n) will be referred to as the full grid of level n,
n ∈ N,

Ḡdn := Gdn,...,n =
⋃

1≤|l|∞≤n
Wl =:

⋃
l∈Ln∞

Wl (2.12)

where |l|∞ := max{l1, . . . , ld}.
As soon as we attach anisotropic basis functions of mesh width 2−lm to every grid point,

“higher” levels will carry less information than “lower” levels. The rigorous derivation
in Section 2.1.2 shows that functions with bounded second mixed derivatives are best
represented by a different choice of levels, namely using |l|1 :=

∑
lm. The associated

grid
Gdn :=

⋃
1≤|l−1|1+1≤n

Wl =:
⋃

l∈Ln1

Wl (2.13)

with 1 := (1, . . . , 1) is called the sparse grid or regular sparse grid of level n. A multi
level l with lm > 0 for every m belongs to level

n(l) := |l− 1|1 + 1 = |l|1 − d+ 1, (2.14)

normalized such that n(1, . . . , 1) = 1.
An example is shown in Figure 2.4 for n = 3 in two dimensions. The structure consists

of all points with 1 ≤ n(l) ≤ n. Compared with Figure 2.3, only components of the upper
left simplex are chosen for Gdn. However, we can still work with the one–dimensional
binary tree structure along every grid line. This is also shown in Figure 2.4: binary trees
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2.1 Sparse Grid Approximation

0 1
4

1
2

3
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1
4

1
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3
4

1

Figure 2.4: Sparse grid points of level n = 3 in two dimensions.

for x and y indicate the hierarchical relations. Taking all directions at once, we can
define ancestors and descendants for the d–dimensional case component–wise: we define

(l, i) >
H

(k, j) :⇔ (lm, im) is ancestor of (km, jm) for all m,

(l, i) ≤
H

(k, j) :⇔ ∀m holds:

(lm, im) = (km, jm) or (lm, im) is descendand of (km, jm),
(l, i) Q (k, j) :⇔ (l, i) >

H
(k, j) or (l, i) ≤

H
(k, j).

It should be stressed that these relations merely describe the hierarchy of points, it is
no complete ordering.

Boundary Points

Up to now, our grids have no points on the boundary ∂[0, 1]d. We define them recursively
in this section. Let G̃d be a grid as we used it for inner points (either the sparse grid Gdn
or the full grid Ḡdn). For a point (l, i), let (̄lm, īm) be the multi index without the mth
component of (l, i). Then, grids with boundary points are defined recursively by

G̃
d := G̃d ∪

d⋃
m=1

{
(l, i) | lm = 0, im = 0, (̄lm, īm) ∈ G̃d−1}

∪
{
(l, i) | lm = 0, im = 1, (̄lm, īm) ∈ G̃d−1} (2.15)

with the initial condition
G̃

1 := G̃1 ∪ {(0, 0), (0, 1)}. (2.16)

For one dimension, this adds only the two points x0,0 = 0 and x0,1 = 1 as we would
have expected. In two dimensions, every boundary contains just a one–dimensional grid

9



2 A Sparse Grid Approximation Algebra

0→ x1 → 1

0
→
x

2
→

1

0→ x1 → 1

0→
x 2
→

1
0
→
x

3
→

1

Figure 2.5: Sparse grids with boundary points in two dimensions (left, level n = 3) and
three dimensions (right, level n = 4). For display reasons, three–dimensional
points with l1 > 2 have not been displayed and the mark colors depend on l1.

(which is the same for both, sparse and full grids). However, for three dimensions, the
boundary structure depends strongly on the type of G̃d! If G̃d is a sparse grid, Gd will
contain sparse grids of dimension d−1 on the boundary. If G̃d is a full grid, the boundary
will also contain full grids.
Sparse grids with boundary points in two dimensions are shown in Figure 2.5 (left):

the boundary appears as one–dimensional, classical grid (with hierarchical point descrip-
tions). The attached binary trees have been extended for level l = 0. However, the two
points on level l = 0 have no clear hierarchical relationship, they are treated as special
case with the artificial tree root (0, 0). A sparse grid with boundary points in dimension
d = 3 is shown in Figure 2.5 (right), also together with binary trees indicating the hi-
erarchical structure. Points with l1 > 2 have been removed from the image to improve
readability.
The recursive definition of boundary points yields the same boundary resolution (mesh

width) as for inner points. In the full grid case, this could have been accomplished using
the simple selection rule 0 ≤ |l|∞ ≤ n whereas the sparse grid selection criterion cannot
be generalized that easily: something like 0 ≤ |l|1 ≤ n (or including the shifts of (2.14))
would yield different results. Instead, we define the sparse grid level of one particular
multi level l (which may now have lm = 0 for some m) using

K(l) := |{m | lm = 0}|, (2.17)

n(l) :=
∑

m=1,...,d
lm 6=0

(lm − 1) + 1 = |l|1 −
(
d−K(l)

)
+ 1, (2.18)

10



2.1 Sparse Grid Approximation

with the special case

n(0) := 0. (2.19)

For inner points, we recover (2.14). For boundary points, we recover (2.14) on the lower
dimensional boundary manifold, i.e. if we strip all directions K(l). With this notation,
the recursive definition (2.15) of a sparse grid with boundary points is equivalent to

Gdn =
⋃

0≤n(l)≤n
Wl =:

⋃
l∈L̄n1

Wl (2.20)

with L̄n1 := {l ∈ Nd
0 | 0 ≤ n(l) ≤ n}. Occasionally, we also use an additional hierarchy to

distinguish between the two boundary points (0, 0) and (0, 1) by introducing the artificial
level −1 with x−1,0 = x0,0. Thus, level −1 denotes the left boundary and level 0 the
right boundary. The equivalent boundary index set for the −1, 0, 1, 2, . . . hierarchy is
given by

L̄n1 :=
{

l ∈ (N ∪ {−1, 0})d | l ∈ {−1, 0}d or
∑

m=1,...,d
lm>0

(lm − 1) + 1 ≤ n
}

(2.21)

where the set {−1, 0}d corresponds to (2.19) and the sum to (2.18).

The Grid Complexity

The complexity of full grids is simply |Ḡdn| = (2n − 1)d for inner grid points and |Ḡdn| =
(2n + 1)d including the boundary. Thus, the cost complexity grows exponentially in
the number of unknowns required for one coordinate direction. Since approximation
quality is usually of the form hα, the cost/gain ratio degenerates exponentially with d,
an observation which is usually referred to as the curse of dimensionality.
The complexity of sparse grids is summarized in the following lemma.

Lemma 2.1.1 (Complexity of inner sparse grids). The complexity of a regular sparse
grid without boundary points is

|Gdn| = (−1)d + 2n
d−1∑
i=0

(
n+ d− 1

i

)
(−2)d−1−i = 2n

( nd−1

(d− 1)!
+O(nd−2)

)
(2.22)

where the O(·) notation covers terms of lower order in n and hides d–dimensional coef-
ficients. Algorithms to compute |Gdn| should use the recurrence formula

|Gdn| =
n−1∑
k=0

2k|Gd−1
n−i |; |G

1
n| = 2n − 1 (2.23)

which can be evaluated iteratively in time O(dn2) and helper arrays of total size 2n.

Proof. Both proofs can be found in [BG04].

11
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Figure 2.6: The number of grid points for inner sparse grids Gdn and including boundary
points, Gdn, for different dimensions, plotted against the level.

Lemma 2.1.2 (Complexity of boundary sparse grids). The complexity of a regular
sparse grid with boundary points can be bounded by

|Gdn| ≤ 3d|Gdn| = 3d
(
2n nd−1

(d− 1)!
+O(nd−2)

)
(2.24)

and can be evaluated iteratively using the recurrence formula

|Gdn| = 3 · |Gd−1
n |+

n−1∑
k=1

2k|Gd−1
n−i |; |G

1
n| = 2n + 1 (2.25)

in time O(dn2) and helper arrays of total size 2n.

Proof. It holds

|Gdn| =
d∑
j=0

(
d

j

)
2d−j |Gjn| ≤ |Gdn|

d∑
j=0

(
d

d− j

)
2d−j = |Gdn|

d∑
k=0

(
d

k

)
2k = |Gdn|(1 + 2)d

since there are precisely
(d
j

)
boundary manifolds of dimensionality j, and each has (d−j)

directions in which it can be positioned either at xk = 0 or xk = 1. The last equalities
follow using the symmetry

(n
k

)
=
( n
n−k

)
and (1 + x)d =

∑d
k=0

(d
k

)
xk. This shows (2.24).

The proof for recurrence formula (2.25) can be found in [BG04].

A comparison of full- and sparse grid complexities reveals the potential: sparse grid
points have O(2nnd−1) degrees of freedom in fixed dimension d whereas full grids re-
quire O(2nd) degrees of freedom. Interestingly, sparse grids turn out to have almost the

12



2.1 Sparse Grid Approximation

same accuracy if mix smoothness is given as we will see in Section 2.1.2. Note that
boundary sparse grids require a factor of about 3d more grid points compared with inner
sparse grids which is depicted in Figure 2.6 for dimensions d ∈ {1, 3, 5, 7, 9, 11, 13, 15}
and levels n = 1, . . . , 20.

2.1.2 Basic Properties of Sparse Grid Spaces
We are now in a position to attach multi scale bases to our sparse grid constructions. As
already motivated, many different choices are possible, and we will encounter some of
them in this thesis. Our analysis of approximation properties is focussed on one partic-
ular class of bases: the hierarchical piecewise linear spline bases. The simplest piecewise
linear spline basis will serve as representative basis for which we present error bounds
explicitly, other linear spline bases span (almost) the same spaces and inherit the same
properties (for example the prewavelet basis studied in this thesis). We follow our tensor
product approach of the last section and define d–dimensional bases as tensor product of
one–dimensional ones. In this way, we define regular sparse grids, energy optimal sparse
grids and adaptive sparse grids (see also [Gar04] and [Kna00]) for generalized variants.

Notation and Function Spaces

One of the most important aspects of sparse grids are smoothness assumptions: the
presence of a sufficient order of mix smoothness allows the compression effect. We
formalize mix smoothness of second order with respect to Lq by means of the spaces

Xq,2 := {f : [0, 1]d → R |Dαf ∈ Lq[0, 1]d for |α|∞ ≤ 2} (2.26)

and

Xq,2
0 := {f ∈ Xq,2 | f|∂[0,1]d = 0}. (2.27)

Here,

Dαf := ∂|α|1∏d
m=1 ∂x

αm
m

f (2.28)

is the derivative taken αm times in direction m for each m = 1, . . . , d. Furthermore, we
introduce the seminorms

|f |α,∞ := ‖Dα‖L∞ , |f |α,2 := ‖Dα‖L2 . (2.29)

Our discussion will focus on approximation properties with respect to the L∞, L2 and
the energy norm

‖f‖E :=
( ∫
[0,1]d

d∑
j=1

(∂f(x)
∂xj

)2 dx
)1/2

(2.30)

which is equivalent to the H1 norm in H1
0 (but only a seminorm on H1). The term

energy norm is related to the finite element framework where ‖·‖E indeed indicates the
energy norm.

13



2 A Sparse Grid Approximation Algebra

The Hierarchical Hat Basis

When we refer to the hierarchical hat basis, we think of dilations and translations of the
one–dimensional hat function

φ(x) :=
{

1− |x|, if x ∈ [−1, 1]
0, otherwise.

(2.31)

For mesh width hl = 2−l, we define the hat basis function φl,i to be

φl,i(x) := φ
(x− ihl

hl

)
(2.32)

such that φl,i is a piecewise linear spline given by the line segments between φl,i(xl,i −
hl) = 0, φl,i(xl,i) = 1 and φl,i(xl,i + hl) = 0. The one scale spline basis {φl,i | 0 ≤ i ≤ 2l}
can be used to approximate functions with bounded second derivative up to O(h2

l )
where the basis coefficients are just nodal values. For our approximation properties,
we use a multi-level splitting of mesh widths hk, k = 0, 1, 2, . . . , l which spans the
same space. Furthermore, it turns out to be of crucial importance to treat boundary
conditions separately, just as we did for the derivation of our sparse grid point sets
in the preceding section: we derive optimized approximation spaces for the case of
homogeneous boundary conditions and apply these results recursively on each lower
dimensional boundary manifold to realize non-homogeneous boundary conditions. The
resulting point set structure has already been discussed and resembles this strategy.
With this motivation in mind, we analyze approximation properties for the hierarchical

hat basis in d dimensions and the case of functions vanishing on ∂[0, 1]d. Consequently,
the one–scale spline basis does not need the boundary elements φl,0 and φl,2l and we get
the discrete space

Vl := span
{
φl,i | 1 ≤ i ≤ 2l − 1

}
(2.33)

where we use the same notation for the function space Vl and the point set (2.2) con-
taining the underlying basis points. In addition to this nodal basis representation, we
introduce the hierarchical basis for one dimension using increments Wl defined by

Vl = Vl−1 ⊕Wl (2.34)

which implies

Wl = span {φl,i ∈ Vl |φl,i 6∈ Vl−1} = span
{
φl,i | 1 ≤ i ≤ 2l − 1, i odd

}
. (2.35)

The resulting splitting is illustrated in Figure 2.7. Note that the supports of all basis
functions φl,i for i odd are mutually disjoint. The resulting one–dimensional splitting

Vl =
l⊕

k=1
Wk (2.36)
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2.1 Sparse Grid Approximation

Figure 2.7: The one–dimensional multi-level hat basis (black hats) made up from levels
k = 1, 2, 3, 4 and the associated one–scale basis (gray hats) on level l = 4.

is generalized to the d–dimensional case by means of a tensor product approach: we
define the d–dimensional hierarchical basis by multi-levels l = (l1, . . . , ld) and multi-
indices i = (i1, . . . , id) using

φl,i(x) :=
d∏

m=1
φlm,im(xm). (2.37)

As immediate consequence, the one–scale basis {φl,i |1 ≤
.

i ≤
.

2l − 1} constitutes the
nodal basis for

Vl =
d⊗

m=1
Vlm = span

{
φl,i |1 ≤

.
i ≤
.

2l − 1
}
. (2.38)

Due to the tensor product, the multiscale splitting becomes

Vl =
⊕

1≤
.
k≤
.
l
Wk (2.39)

where the comparison ‘≤
.
’ is to be understood component–wise as before. As for the

one–dimensional cases, the increment spaces are characterized by basis function with
odd space indices,

Wl = span
{
φl,i |1 ≤

.
i ≤
.

2l − 1, im odd
}
. (2.40)

The increment spaces allow level wise refinements of the mesh width. In particular, the
limit

V :=
∞∑
l1=1
· · ·

∞∑
ld=1

W(l1,...,ld) =
⊕
l∈Nd

Wl (2.41)
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2 A Sparse Grid Approximation Algebra

exists and yields – up to completion with respect to the H1 norm – the underlying
Sobolev space H1

0 , i.e. V̄ = H1
0 , compare [BG04]. As our grid point sets of Section 2.1.1

already indicate, we deal with different finite dimensional subsets of V chosen by partic-
ular sets of multi-levels l. Important choices are the full (or uniform) grid of level n ∈ N,

Ḡdn :=
⊕

l∈Ln∞

Wl =
⊕

1≤|l|∞≤n
Wl (2.42)

and the regular sparse grid of level n ∈ N,

Gdn :=
⊕
l∈Ln1

Wl =
⊕

1≤|l−1|1+1≤n
Wl. (2.43)

The complexity of these spaces has already been discusses in Section 2.1.1, so we are
interested in their approximation properties. To this end, we consider the interpolation
problem of a function f ∈ Xq,2

0 , i.e. a function whose second mixed derivatives are
bounded, D2f ∈ Lq, and which satisfies the vanishing boundary conditions. Since
Xq,2

0 ⊂ H1
0 =

⊕
l∈NdWl, we can decompose f uniquely using

f =
∑

l
fl, fl =

∑
i∈I(l)

fl,iφl,i(x) ∈Wl, (2.44)

with the index set Il := {1 ≤
.

i ≤
.

2l−1, im odd} (compare (2.10)). Assuming the

finite dimensional space is defined by Lh ⊂ Nd (which might be either Ln∞ or Ln1 ), the
interpolant fh can be expanded in our finite dimensional basis as

fh =
∑

l∈Lh
fhl , fhl =

∑
i∈I(l)

fhl,iφl,i(x) ∈Wl. (2.45)

We estimate the error between f and fh in several steps where we follow [Gri06] and
[BG04]. The first step is an analysis of the procedure to obtain coefficients fhl,i from nodal
values f(xl,i). It turns out that, in fact, fhl = fl due to the nature of the hierarchical hat
basis incrementsWl. Thus, we focus on estimations of f−fh =

∑
l6∈Lh fl, i.e. parts which

are not part of the interpolant. This, in turn, involves estimates on ‖φl,i‖ and |fl,i| and
combinatorial arguments to count the missing (l, i). As soon as we have bounds for the
case of homogeneous boundary conditions, we generalize them to the non-homogeneous
case by applying them to each boundary manifold recursively, an approach which is
elaborated for the first time in this thesis.

The Transformation From Nodal Values to the Hierarchical Hat Basis

Since basis functions of Wl have mutually disjoint supports and since the Wl are incre-
ments which do not contain coarse grid points, a hierarchical hat basis coefficient fl,i
can be computed as difference

fl,i = f(xl,i)− IVl	Wl [f ](xl,i) (2.46)
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2.1 Sparse Grid Approximation

Computing f2,1

f(x2,1 − h2)

0 1

f(x2,1 + h2)

f(x2,1)

IV2	W2 [f ](x2,1)

f2,1

Figure 2.8: Computation of hierarchical hat basis coefficients by means of interpolation.

where IVl	Wl [f ] is f , interpolated on all grid points of Vl except for the contributions of
Wl. This is illustrated in Figure 2.8: the figure shows how f2,1 can be computed in a
one–dimensional interpolation problem. The interpolated value IV2	W2 [f ](xl,i) uses only
levels less than 2; it is the same as IVl−1 [f ] for this one–dimensional example. Note that

IV2	W2 [f ](x2,1) = 1
2
(
f(x2,1 − h2) + f(x2,1 + h2)

)
= 1

2
(
f(x0,0) + f(x1,1)

)
. (2.47)

Thus, we only need to compute the mean of adjacent nodal values. The mapping from
nodal values to f2,1 thus involves a stencil

f2,1 =
[
−1

2 1 −1
2

]
·
[
f(x2,1 − h2) f(x2,1) f(x2,1 + h2)

]
, (2.48)

an observation which holds for any one–dimensional coefficient fl,i together with the
boundary conditions f(xl,1 − hl) = 0 and f(xl,2l−1 + hl) = 0. For d > 1, the same
reasoning applies as well, we only need to work with a tensor product stencil of the 3d
points f(xl,j), jm ∈ {im − 1, im, im + 1},

fl,i =
( d∏
m=1

[
−1

2 1 −1
2

]
xlm,im ,lm

)
· f =: Ixl,i,lf. (2.49)

We need fl,i for every hierarchical coefficient, i.e. points for ij odd. A key observation
is the following: the adjacent nodal values are actually grid points on lower levels; no
information of higher levels enters at this point (this is different for other bases). This
can be seen for i = 2q + 1 from xl,i − hl = 2−l(i − 1) = xl−1,q and xl,i + hl = xl−1,q+1
which are both on lower levels (including the vanishing boundary). As a consequence,
higher levels can be added without changing lower order components. We conclude

f − fh =
∑

l
fl −

∑
l∈Lh

fhl =
∑

l
fl −

∑
l∈Lh

fl =
∑

l6∈Lh
fl, (2.50)
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2 A Sparse Grid Approximation Algebra

a property which we exploit for the following error estimates. More information about
the basis transformation (including boundary and implementational aspects) can be
found in Appendix A.2.2.

Preparations for Error Estimation

The representation of hierarchical basis coefficients fl,i as d–dimensional stencil (2.49)
leads to an integral representation of fl,i as follows.

Lemma 2.1.3. For any coefficient fl,i of a basis representation for f =
∑

(l,i) fl,iφl,i

with vanishing boundaries, f ∈ Xq,2
0 , the following relation holds:

fl,i =
d∏

m=1
(−2−(lm+1))

∫
[0,1]d

φl,i ·D2f(x) dx. (2.51)

Proof. Following [Gri06], we write ψlm,im(xm) := −2−(lm+1)φlm,im(xm). Furthermore,
we start with the simplest case d = 1 from which the proof follows using tensor product
arguments. Partial integration provides, together with ψl,i(xl,i ± hl) = 0,

∫
ψl,i ·

∂2

∂x2 f(x) dx =
xl,i+hl∫
xl,i−hl

ψl,i(x)
∂2

∂x2 f(x) dx

= −
xl,i+hl∫
xl,i−hl

∂

∂x
ψl,i(x) ·

∂

∂x
f(x) dx =

xl,i∫
xl,i−hl

1
2
∂

∂x
f(x) dx −

xl,i+hl∫
xl,i

1
2
∂

∂x
f(x) dx

= 1
2

(
f(xl,i)− f(xl,i − hl)

)
− 1

2

(
f(xl,i + hl)− f(xl,i)

)
= Ixl,i,lf.

The d–dimensional case follows since φl,i and D2 are both of product type.

We have thus expressed our hierarchical coefficients by means of the second mixed
derivative of the approximated function f . In the following, we summarize bounds on
the hierarchical coefficients, the basis functions φl,i and finally error bounds for functions
with truncated basis expansion.

Lemma 2.1.4. Any inner basis function φl,i of the hierarchical hat basis yields the norm
values

‖φl,i‖∞ = 1, (2.52)

‖φl,i‖p =
( 2
p+ 1

)d/p
· 2−|l|1/p, p ≥ 1, (2.53)

‖φl,i‖E =
√

2
(2
3

)(d−1)/2
· 2−|l|1/2 ·

( d∑
m=1

22lm
)1/2

. (2.54)
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2.1 Sparse Grid Approximation

Proof. All equalities result from straightforward calculations based on the definition of
φl,i. We refer to [BG99] for details.

The integral representation (2.51) of fl,i combined with Lemma 2.1.4 allows the fol-
lowing bounds on |fl,i|.

Lemma 2.1.5. Let f ∈ Xq,2
0 be given in its hierarchical representation f =

∑
(l,i) fl,iφl,i.

Then, the following estimates on |fl,i| hold:

|fl,i| ≤ 2−d · 2−2|l|1 · |f |2,∞ (2.55)

|fl,i| ≤ 2−d ·
(2
3

)d/2
2−3/2·|l|1 · |f| suppφl,i |2,2 (2.56)

where suppφl,i denotes the support of φl,i.

Proof. Following [BG04], we apply the Hölder inequality to (2.51) to get

|fl,i| =
∣∣∣ d∏
m=1

(−2−(lm+1))
∣∣∣ · ∣∣∣ ∫

[0,1]d

φl,i(x) ·D2f(x) dx
∣∣∣

= 2−|l|1 · 2−d ·
∣∣∣ ∫
[0,1]d

φl,i(x) ·D2f(x) dx
∣∣∣

≤ 2−|l|1 · 2−d · ‖φl,i‖1 · |f| suppφl,i |2,∞ ≤ 2−d · 2−2|l|1 · |f |2,∞.

The second bound follows by the Cauchy Schwartz inequality and the definition of
|f |2,2 := ‖D2f‖L2 :

|fl,i| ≤ 2−|l|1 · 2−d · ‖φl,i‖2 |f| suppφl,i |2,2 = 2−d
(2
3

)d/2
2−3/2·|l|1 |f| suppφl,i |2,2

where we use Lemma 2.1.4 with p = 2.

Since a function f ∈ Xq,2
0 can be represented by contributions of increment spaces

f =
∑

l fl, we combine results of the last set of lemma to get bounds on single fl.

Lemma 2.1.6. Let f ∈ Xq,2
0 be given in its hierarchical hat basis representation of the

form f =
∑

l fl with fl ∈Wl. Then, the contribution of fl can be bounded as follows:

‖fl‖∞ ≤ 2−d2−2|l|1 |f |2,∞, (2.57)
‖fl‖2 ≤ 3−d2−2|l|1 |f |2,2, (2.58)

‖fl‖E ≤
1

2 · 12(d−1)/2 2−2|l|1
( d∑
m=1

22lm
)1/2
|f |2,∞, (2.59)

‖fl‖E ≤
√

3 · 3−d2−2|l|1
( d∑
m=1

22lm
)1/2
|f |2,2. (2.60)
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Proof. Following the reasoning in [BG04], we find

‖fl‖∞ = ‖
∑

i
fl,iφl,i‖∞ = max

i
|fl,i| ‖φl,i‖∞ (2.61)

since the supports of all φl,i are mutually disjoint. Thus, we find the first inequality as
consequence of Lemma 2.1.4 and Lemma 2.1.5. The mutually disjoint supports of φl,i
allow a similar simplification for the L2 estimate,

‖fl‖22 =
∑

i
|fl,i|2‖φl,i‖22 ≤

1
6d

2−3|l|1 ·
(2
3

)d
2−|l|1 ·

∑
i
|f| suppφl,i |

2
2,2 = 9−d2−4|l|1 · |f |22,2,

again by means of Lemma (2.1.4) and Lemma (2.1.5). The same reasoning yields the two
bounds on ‖fl‖E , again with

∑
i|f| suppφl,i |

2
2,2 = |f |22,2 and with

∑
i|f |2,∞ ≤ 2|l|12−d|f |2,∞,

respectively.

2.1.3 Interpolation Error Bounds for Full and Sparse Grids

Having seen how each single component fl contributes to the (infinite) expansion f =∑
l∈Nd fl for a function with vanishing boundary conditions and mix regularity, f ∈ Xq,2

0 ,
we are now interested in the error made by truncating the expansion to fh =

∑
l∈Lh fl.

We are mainly interested in the finite subspaces for full grids, Ln∞ = {1 ≤ |l|∞ ≤ n},
and regular sparse grids, Ln1 = {1 ≤ |l|1 − d + 1 ≤ n}. A key observation here is that
truncation of a given expansion of f to a finite subset is actually the same as interpolation
in this finite subspace due to the definition of hierarchical coefficients, (2.50).

Lemma 2.1.7 (Interpolation error of full grids). For any function with bounded sec-
ond mixed derivatives and homogeneous boundary conditions, f ∈ Xq,2

0 , the following
estimates for the interpolation error f − fn,∞, fn,∞ ∈ Ḡdn, hold:

‖f − fn,∞‖∞ ≤
d

6d
2−2n |f |2,∞ = O(h2

n), (2.62)

‖f − fn,∞‖2 ≤
d

9d
2−2n |f |2,2 = O(h2

n), (2.63)

‖f − fn,∞‖E ≤
d3/2

2 · 3(d−1)/2 · 6d−1 · 2
−n |f |2,∞ = O(hn), (2.64)

‖f − fn,∞‖E ≤
d3/2

√
3 · 9d−1 · 2

−n |f |2,2 = O(hn). (2.65)

Proof. We have the decompositions f =
∑

l∈Nd fl, fl ∈ Wl and fn,∞ =
∑

1≤|l|∞≤n f
n
l ,

fnl ∈ Wl, respectively. Furthermore, we know fnl = fl for the hierarchical hat basis.
Thus, we have for any norm ‖·‖

‖f − fn,∞‖ = ‖
∑
l 6∈Ln∞

fl‖ = ‖
∑
|l|∞>n

fl‖ ≤
∑
|l|∞>n

‖fl‖. (2.66)

20



2.1 Sparse Grid Approximation

We conclude

‖f − fn,∞‖∞ ≤ 2−d|f |2,∞ ·
∑
|l|∞>n

2−2|l|1 , (2.67)

‖f − fn,∞‖2 ≤ 3−d|f |2,2 ·
∑
|l|∞>n

2−2|l|1 , (2.68)

‖f − fn,∞‖E ≤
1

2 · 12(d−1)/2 |f |2,∞
∑
|l|∞>n

2−2|l|1
( d∑
j=1

22lj
)1/2

, (2.69)

‖f − fn,∞‖E ≤
√

3 · 3−d|f |2,2
∑
|l|∞>n

2−2|l|1
( d∑
j=1

22lj
)1/2

. (2.70)

We focus on the level dependent sums and get using geometric series arguments [BG04]∑
|l|∞>n

2−2|l|1 =
∑

l
4−|l|1 −

∑
|l|∞≤n

4−|l|1 = 3−d −
(∑
l1≤n

4−l1
)d

= 3−d −
(
3−1(1− 4−n)

)d = 3−d
(
1− (1− 4−n)d

)
≤ 3−d

(
1− (1− d4−n)

)
= 3−d · d · 4−n (2.71)

and

∑
|l|∞>n

2−2|l|1
( d∑
j=1

22lj
)1/2
≤
√
d
∑
|l|∞>n

2−2|l|1 max
j

2lj ≤ d3/2 ·
∑

|l|∞=l1>n
2−2|l|12l1

= d
3/2 ·

∑
l1>n

2−l1
( l1∑
lj=1

4−lj
)d−1

≤ d3/2 1
3d−1 2−n. (2.72)

Plugging (2.71) into (2.67) and (2.68) and the second result (2.72) into the two energy
estimate (2.69) and (2.70) completes the proof.

The interpolation error estimate for sparse grid spaces follows with similar arguments,
but the reminder term associated with |l|1 > n+d−1 involves complicated binomial co-
efficients. We summarize a combinatorial intermediate result from [BG04] which bounds
the associated coefficients. To this end, let

A(d, n) :=
d−1∑
k=0

(
n+ d− 1

k

)
= nd−1

(d− 1)!
+O(nd−2) (2.73)

where the O(·) notation hides d dependent coefficients of the lower order components
of n.

Lemma 2.1.8. It holds for arbitrary s ∈ N

∑
|l|1>n+d−1

2−s|l|1 = 2−sn · 2−s·d
∞∑
i=0

2−si
(
n+ i+ d− 1

d− 1

)
≤ 2−sn · 2−sd · 2 · A(d, n).
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2 A Sparse Grid Approximation Algebra

Proof. The proof involves elementary combinatorial and analytical arguments, we refer
the interested reader to [BG04, Lemma 3.7].

Lemma 2.1.9 (Interpolation error bounds for regular sparse grids). The sparse grid
interpolant fn,1 of a function f ∈ Xq,2

0 exhibits the following errors:

‖f − fn,1‖∞ ≤
2
8d
· |f |2,∞ · 2−2nA(d, n) = O(h2

nn
d−1), (2.74)

‖f − fn,1‖2 ≤
2

12d
· |f |2,2 · 2−2nA(d, n) = O(h2

nn
d−1), (2.75)

‖f − fn,1‖E ≤
d|f |2,∞

2 · 3(d−1)/2 · 4d−1 2−n = O(hn), (2.76)

‖f − fn,1‖E ≤
d|f |2,2√
3 · 6d−1 2−n = O(hn). (2.77)

Proof. It holds

‖f − fn,1‖∞ ≤
∑

|l|>n+d−1
‖fl‖∞ ≤

|f |2,∞
2d

·
∑

|l|1>n+d−1
2−2|l|1 ≤ 2|f |2,∞

8d
2−2nA(d, n)

where we used Lemma 2.1.8 with s = 2. The L2 norm estimate can be obtained analo-
gously. The energy norm error can be obtained as for the full grid case with the special
term

∑
|l|>n+d−1

2−2|l|1
( d∑
j=1

22lj
)1/2

=
∞∑

i=n+d
4−i ·

∑
|l|1=i

( d∑
j=1

4lj
)1/2
≤

∞∑
i=n+d

d2−i (2.78)

since
∑
|l|1=i

(∑d
j=1 4lj

)1/2
≤ d2i which can be proved by complete induction with respect

to d (compare [BG04]).

A direct comparison of full- and sparse grids reveals the qualitative improvement with
respect to the cost/gain ratio: full grids requires O(2nd) points and yield an approxima-
tion order of O(2−2n) with respect to L2 and L∞. Thus, the cost grows exponentially
with d while its benefit stays of the same order – a severe form of the “curse of di-
mensionality”. Sparse grids require O(2nnd−1) degrees of freedom and provide almost
the same approximation order, namely O(2−2nnd−1) for L2 and L∞, so the exponential
dependency of d is reduced significantly. Note that sparse grids have been derived to
be optimal with respect to this cost/benefit ratio approach when the approximant is
in Xq,2

0 , see [BG04] for details. Improvements are only possible for approximation in
other norms. A variant of sparse grids which is optimal with respect to the energy norm
and which exhibits even better cost/benefit ratios with respect to d has been proposed
in [Bun98]. We summarize its definition and properties here.

Definition 2.1.1 (Energy Sparse Grids). The finite dimensional subspace splitting

Gd,En :=
⊕

l∈LnE

Wl (2.79)

22



2.1 Sparse Grid Approximation

with n ∈ N and

LnE := {l ∈ Nd | |l|1 −
1
5

ld
(∑
j

4lj
)
≤ n+ d− 1− 1

5
ld(4n + 4d− 4)} (2.80)

is called the energy sparse grid of level n in dimension d.

Lemma 2.1.10. The grid for Gd,En has

|Gd,En | ≤ 2nd
2
(1− 2−2/3)−d ≤ 2nd

2
ed = O(2n) (2.81)

degrees of freedom.

Proof. See [Gri06].

Lemma 2.1.11. The energy norm of the interpolation error for f ∈ Xq,2
0 in the energy

sparse grid Gd,En is bounded by

‖f − fn,E‖E ≤
d|f |2,∞

3(d−1)/2 · 4d−1 ·
(1
2

+
(5
2
)d−1)2−n = O(hn) (2.82)

‖f − fn,E‖E ≤
2d|f |2,2√
3 · 6d−1 ·

(1
2

+
(5
2
)d−1)2−n = O(hn). (2.83)

Furthermore, it exhibits the optimal cost/gain ratio with respect to the energy norm and
approximation of functions f ∈ Xq,2

0 .

The error bound for energy optimal sparse grids is thus the same as the one for regular
sparse grids, up to a factor 2(1/2 + (5/2)d−1) (compare (2.82) with (2.76) and (2.83) with
(2.77)).

Proof. The proof can be found in [BG04] or [Gri06]; the optimality follows from the
construction method of Gd,En , compare [BG04].

2.1.4 Error Bounds for Non-Homogeneous Boundary Conditions
We finally derive error bounds for the case of non–homogeneous boundary conditions.
These bounds are obtained using a dimension–recursive approach: a d–dimensional func-
tion is decomposed into separate components defined on left and right boundaries and
inner parts of [0, 1]d. On a boundary, function components are effectively of lower dimen-
sion. Furthermore, the decomposition is built such that each term of the decomposition
has vanishing boundary conditions in all directions in which it varies. In two dimen-
sions, we find a component which varies in (x1, x2), so it vanishes for x1 ∈ {0, 1} or
for x2 ∈ {0, 1}. A two–dimensional function also has one–dimensional components: one
placed on x2 = 0 which varies only in x1 (and vanishes for x1 ∈ {0, 1}), one for x2 = 1
which also varies only in x1 and, analogously, components with x1 fixed to either x1 = 0
or x1 = 1. The details of this decomposition, the required smoothness assumptions and
the resulting error estimate have – to the knowledge of the author – not been published
before and follow ideas motivated in [Gri06].
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2 A Sparse Grid Approximation Algebra

The Hierarchical Basis on the Boundary

As a first step, we define the hierarchical basis on the boundary. Two choices are possible,
namely to extend the inner hierarchical basis by the two one–dimensional nodal basis
functions φ0,0(x) = 1 − x and φ0,1(x) = x on level l = 0 or using the hierarchical
approach with φ0,0(x) = 1 and φ0,1(x) = x. The nodal boundary basis is useful for partial
differential equations where one likes to discard boundary values whenever possible. The
hierarchical boundary approach is useful to estimate errors and to perform dimension
adaptive refinement as in Chapter 4. Our following discussion is based on the hierarchical
approach, so we defer the modifications arising for the nodal approach to Appendix A.2.2.
To define the hierarchical boundary basis, we introduce a further, artificial level l = −1

to emphasise the hierarchical structure. The only basis function on level l = −1 is the
constant, φ−1,0(x) := 1 which we attach to the left boundary point x = 0. Note that
x−1,0 = 0 · 21 = 0 and also x0,0 = 0 · 20 = 0 provide valid multi-level descriptions
of this coordinate. The next level in our hierarchy is defined by φ0,1(x) := x which
is attached to the right boundary; it is the only basis function on level 0. All basis
functions on level l ≥ 1 remain unchanged. The hierarchical coefficients of an expansion
f =

∑∞
l=−1

∑
i∈I(l) fl,iφl,i (if it exists) are determined by f−1,0 = f(0), and fl,i = f(xl,i)−

IVl	Wl
[f ](xl,i) for l ≥ 0 as before. Now, the interpolation operator IVl	Wl

[f ] = IVl−1 [f ]
incorporates the two boundary levels −1 and 0 as well. For example, we find f0,1 =
f(x0,1) − IV−1 [f ](x0,1) = f(1) − f−1,0. As before, the basis coefficients depend only on
lower levels and we have with W−1 := span {φ−1,0} and W0 := span {φ0,1} the splitting

Vl = span
{
φl,i | 0 ≤ i ≤ 2l

}
=

l⊕
k=−1

Wl. (2.84)

The d–dimensional case follows using the tensor product construction as before and we
find

V :=
⊕

l∈(N∪{−1,0})d
Wl = H1 (2.85)

up to completion. Thus, any function in V can be uniquely represented by f =∑
l∈(N∪{−1,0})d fl, fl ∈Wl where f−1,...,−1 is just the constant f(0, . . . , 0).

A Dimension–Wise Three–Term–Boundary Decomposition

The key idea for the treatment of boundary conditions is now to look at the three cases
l = −1, l = 0 and l > 0 in each component. From our multi-level representation, we
conclude the following statement.

Lemma 2.1.12. Let W̃ (1) :=
⊕

l>0Wl with Wl = span {φl,i | i ∈ I(l)} be the one–
dimensional subspaces spanned only by inner basis functions. Then, H1[0, 1] = V̄ (1)

with
V (1) = 1⊕ lin⊕ W̃ (1) (2.86)

where 1 = span {1} = span {φ−1,0} and lin = span {x} = span {φ0,1}.
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2.1 Sparse Grid Approximation

Furthermore, H1[0, 1]d = V̄ where V can be written as

V =
d⊗

m=1
(1m ⊕ linm ⊕ W̃m) =

⊕
l∈{−1,0,∗}d

W l (2.87)

with decomposition terms

W l :=
⊗

l(−1):={j | lj=−1}

1j ⊗
⊗

l(0):={j | lj=0}

linj ⊗
⊗

l(∗):={j | lj=∗}
W̃j . (2.88)

Here, the subscript j in 1j and linj merely indicates the respective coordinate direction.

Proof. The one–dimensional splitting follows immediately from the basis representation
and the d–dimensional variant is its tensor product version consisting of all 3d possible
combinations.

Definition 2.1.2. Let f ∈ V (d)
h be given in hierarchical basis representation

fh =
∑
l̃∈L

∑
i∈I(l)

fl̃,iφl̃,i =
∑
l̃∈L

fl̃. (2.89)

Furthermore, let l ∈ {−1, 0, ∗}d be a description as we used it before (−1 means constant
part, 0 means linear part and ∗ means varying part).
Then, we define the subset of hierarchical coefficients based on the split description

l ∈ {−1, 0, ∗}d by associating ∗ with l > 0, −1 with l = −1 and 0 with l = 0. We define

f̄l(x) :=
∑

(l̃1,...,l̃d)∈L
lj=−1⇒l̃j=−1
lj=0⇒l̃j=0
lj=∗⇒l̃j>0

∑
i∈I(̃l)

fl̃,iφl̃,i(x) (2.90)

=
∏
j∈l(0)

xj ·
∑

(l̃1,...,l̃d)∈L
lj=−1⇒l̃j=−1
lj=0⇒l̃j=0
lj=∗⇒l̃j>0

∑
i∈I(̃l)

fl̃,i
∏
j∈l(∗)

φl̃j ,ij (xj) (2.91)

=:
∏
j∈l(0)

xj · fl,∗(xl(∗)). (2.92)

Thus, one f̄l can contain many fl̃ of (2.89) since lj = ∗ includes all l̃j > 0. The f̄l is
a coarse–graining; there are only 3d possible choices of the {−1, 0, ∗}d.

Lemma 2.1.13. Any function f ∈ V ⊆ H1[0, 1]d can be split uniquely into

f(x) =
∑

l∈{−1,0,∗}d
f̄l(x), f̄l ∈W l (2.93)
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Figure 2.9: Illustration of splitting (2.88) into boundary and inner componentsWl1,l2 for
d = 2 in nodal positioning, i.e. sorted by x1 / x2, (left) and in hierarchical
positioning, i.e sorted by l1 / l2 (right).

such that each element consists of inner and linear contributions

f̄l(x) = fl,∗(xl(∗)) ·
∏
j∈l(0)

xj . (2.94)

Here, the uniquely determined fl,∗ is a |l(∗)| dimensional function satisfying the homoge-
neous boundary condition xj ∈ {0, 1} ⇒ fl,∗(xl(∗)) = 0 for any j ∈ l(∗). Thus, f̄l does not
depend on xj for j ∈ l(−1) and it is linear in directions j ∈ l(0) whereas the dynamics in
the remaining directions is governed by fl,∗ : [0, 1]|l(∗)| → R. Note that |l(∗)| = 0 implies
that fl,∗ is a constant, compare (2.91).

Proof. The splitting follows from Lemma 2.1.12 and the boundary conditions follow since

⊗
j∈l(∗)

W̃j = span

 ∏
j∈l(∗)

φlj ,ij | lj > 0, ij ∈ Ij(lj)

 (2.95)

where every single basis function satisfies xj ∈ {0, 1} ⇒ φlj ,ij (xj) = 0 for any j ∈ l(∗).

The splitting is illustrated in Figure 2.9 for the case d = 2: a total of 3d = 9 different
components W l are shown, once sorted by their coordinates x1 and x2 in Figure 2.9
(left) and once sorted by their levels li according to −1 < 0 < ∗ in Figure 2.9 (right).
The component W ∗,∗ contains only two–dimensional inner contributions while W ∗,−1
and W ∗,0 contain one–dimensional contributions with varying x1 direction and fixed
x2 direction (fixed in the sense that associated functions are either constant or linear
with respect to x2). Similarly, W−1,∗ and W 0,∗ are constant and linear with respect to
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2.1 Sparse Grid Approximation

x1, respectively, and vary in direction x2. Finally, there are four corner contributions
consisting only of constant and linear contributions in every direction.

Excursion Our three–term boundary splitting is closely related to the
ANOVA decomposition used in statistics (for statistical applications, see
[ES81]). The ANOVA decomposition and its relation to multi-level basis
systems, and, in particular, the hierarchical hat basis is investigated in Sec-
tion 4.1.3 where we consider dimension adaptive approximation approaches,
but we will briefly discuss its relevance at this point.

The ANOVA decomposition is based on a one–dimensional two–term split-
ting V (1) = 1 ⊕ W̃ into constant and rest, defined by a projector Pf :=∫
f(x) dµ(x) and its complementary projector (I − P )f . Similarly to our

approach, the d–dimensional ANOVA decomposition follows using a tensor
product construction which is shown explicitly in Section 4.1.1. The special
projector P 0f :=

∫
f(x)δ(x) dx = f(0) yields the anchor ANOVA decom-

position and is closely related to our hierarchical basis: it holds P 0φl,i =
φl,i(0) = 0 for any l 6= −1. Consequently, P 0f = f−1,0φ−1,0 and (I −P 0)f =∑
l≥0
∑
i∈I(l) fl,iφl,i. In other words, the hierarchical basis is the anchor

ANOVA decomposition. However, the rest term W̃ does not care about
the right boundary.
There is also an equivalent formulation of our three–term splitting in terms

of ANOVA projectors: Let V (1) be our one–dimensional function space and
define

P : V → 1, Pf := f(0) (2.96)

and
P̃ : V → lin, P̃ f := f(1) · x. (2.97)

Then, V (1) = 1⊕ (lin ⊕ W̃ ) given by 1 = P (V (1)), lin ⊕ W̃ = (I − P )(V (1))
yields a splitting into left boundary (the constant) and rest lin ⊕ W̃ . Fur-
thermore, the identity I = P̃ + (I − P̃ ) applied to lin ⊕ W̃ yields the single
terms lin = P̃ (lin⊕ W̃ ) and W̃ = (I − P̃ )(lin⊕ W̃ ). Formulating both steps
together, we obtain the identity

I = P + (P̃ + (I − P̃ ))(I − P ) (2.98)

which induces the one–dimensional splitting

V (1) = 1⊕ lin⊕ W̃ , (2.99)

or, equivalently, a unique splitting

f = f−1︸︷︷︸
∈1

+ f̄︸︷︷︸
=(I−P )f∈lin⊕W̃

and f̄ = cfx+ f̃︸︷︷︸
=(I−P̃ )f̄∈W̃

. (2.100)
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2 A Sparse Grid Approximation Algebra

Note that f̃ satisfies homogeneous boundary conditions f̃(0) = f̃(1) = 0.
This can be seen using the projector properties P 2 = P and P̃ 2 = P̃ by

f̃(0) = P f̃ = P [(I − P̃ )f̄ ] = P (I − P )f − PP̃ (I − P )f (2.101)
= 0− (P [xf(1)]− P [xf(0)]) = 0 and (2.102)

xf̃(1) = P̃ f̃ = P̃ [(I − P̃ )f̄ ] = P̃ f̄ − P̃ 2f̄ ≡ 0⇒ f̃(1) = 0. (2.103)

Considering Pφl,i = φl,i(0) = 0 for any l > −1 and P̃ φl,i = φl,i(1) · x ≡
0 for l > 0, we can compare the splitting with the one induced by the
hierarchical hat basis. It holds with the ANOVA identity (2.98) and with
f =

∑∞
l=−1

∑
i∈I(l) fl,iφl,i

f = Pf + P̃ [(I − P )f ] + (I − P̃ )[(I − P )f ] (2.104)
= f(0) +

(
f(1)− f(0)

)
· x+

(
f(x)− f(0)− [

(
f(1)− f(0)

)
· x]
)

(2.105)

= f−1,0φ−1,0 + f0,1φ0,1 +
∑
l>0

∑
i∈I(l)

fl,iφl,i (2.106)

by definition of the fl,i. So, the two splitting are, indeed, the same for
f ∈ V (1). A tensor product approach will produce an ANOVA–like three
term splitting identical to (2.88), adapted to the ANOVA notation which
is usually based on index sets u ⊆ {1, . . . , d}. Again, the tensor-product
equivalent for W̃ will exhibit homogeneous boundary conditions.

In other words: we have a three–term unique decomposition of ANOVA
type with 3d terms, once formulated in terms of ANOVA projectors (constant,
linear and rest) and once in terms of multi-level basis functions (by levels
l = −1, l = 0 and l = ∗).

Let us note the following prerequisite in order to estimate interpolation errors in
lower–dimensional boundary manifolds.

Lemma 2.1.14. Let p, q ⊂ {1, . . . , d} be disjoint sets of directions which cover {1, . . . , d},
i.e. p∪q = {1, . . . , d}, p∩q = ∅. Let g(x) = gp(xp) ·gq(xq) be a continuous (block) tensor
product function defined on [0, 1]d. Then, it holds

‖g‖L2[0,1]d = ‖gp‖L2[0,1]|p| · ‖gq‖L2[0,1]|q| (2.107)

and
‖g‖L∞[0,1]d = ‖gp‖L∞[0,1]|p| · ‖gq‖L∞[0,1]|q| . (2.108)

Proof. We find immediately

‖gpgq‖2L2 =
∫
g2
p(xp) · g2

q (xq) dx

=
∫
g2
p(xp) dxp

∫
g2
q (xq) dxq

= ‖gp‖2L2[0,1]|p| · ‖gq‖
2
L2[0,1]|q| .

Let us assume, the equation for L∞ does not hold and ‖g‖L∞[0,1]d > 0.
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2.1 Sparse Grid Approximation

Case ‘>’ Since [0, 1]d is compact and g continuous, we could find x̄p and x̄q such that

‖g‖L∞[0,1]d = |gp(x̄p)gq(x̄q)| > sup{|gp(xp)|} · sup{|gq(xq)|} > 0

⇒ 1 > sup{|gp(xp)|}
|gp(x̄p)|︸ ︷︷ ︸
≥1

· sup{|gq(xq)|}
|gq(x̄q)|︸ ︷︷ ︸
≥1

≥ 1

⇒ 1 > 1,

so we have to conclude the opposite.

Case ‘<’ We would have for every x̄p and x̄q that

|gp(x̄p)gq(x̄q)| < sup{|gp(xp)|} · sup{|gq(xq)|}

⇒ |gp(x̄p)|
sup{|gp(xp)|}︸ ︷︷ ︸

≤1

· |gq(x̄q)|
sup{|gq(xq)|}︸ ︷︷ ︸

≤1

< 1

which is not true for x̄p := argmax{|gp(x)|} and x̄q := argmax{|gq(x)|} although
(x̄p, x̄q) ∈ [0, 1]d due to the continuity.

Thus, we have to conclude the validity of our lemma.

Note that such a statement does not hold for the energy norm for which one finds the
different relation

‖g‖2E = ‖gp‖2L2[0,1]|p| · ‖gq‖
2
E[0,1]|q| + ‖gq‖

2
L2[0,1]|q| · ‖gp‖

2
E[0,1]|q| . (2.109)

We employ Lemma 2.1.14 to reduce the dimension for each term in our boundary splitting
as follows.

Lemma 2.1.15. Let f ∈ V (d) with boundary splitting f =
∑

l∈{−1,0,∗}d f̄l, f̄l ∈ W l

according to (2.93). Let fh ∈ V (d)
h be the interpolant on some finite dimensional subset.

Then, we have for p ∈ {2,∞}

‖f̄l − f̄hl ‖Lp[0,1]d = c|l
(0)|
p · ‖fl,∗ − fhl,∗‖Lp[0,1]|l(∗)| (2.110)

with constants cp := ‖x1‖Lp[0,1], i.e. c∞ := 1 and c2 := 3−1/2.

Proof. It holds per definition of f̄l and with the help of Lemma 2.1.14

‖f̄l − f̄hl ‖Lp[0,1]d = ‖
∏

j∈l(−1)

1 ·
∏
j∈l(0)

xj · (fl,∗ − fhl,∗)‖Lp[0,1]d

= ‖
∏

j∈l(−1)

1‖
Lp[0,1]|l(−1)| · ‖

∏
j∈l(0)

xj‖Lp[0,1]|l(0)| · ‖fl,∗ − fhl,∗‖Lp[0,1]|l(∗)|

= c|l
(0)|
p · ‖fl,∗ − fhl,∗‖Lp[0,1]|l(∗)| .
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Our aim is now to estimate the error in the varying terms only. Thus, we have to
make sure that each component of our boundary splitting is represented by a at least the
left and right boundary point. The conditions on grid points are satisfied for our regular
sparse grid point set Gdn. To allow for more general decompositions, we summarize the
precise conditions in the following

Definition 2.1.3 (Hanging node conditions). A finite dimensional subspace L ⊂ (N ∪
{−1, 0})d discretizing the three-term boundary decomposition (2.93) is said to fulfill the
hanging node condition if the following conditions are met:

1. l ∈ L⇒ {k | − 1 ≤
.

k ≤
.

l} ⊂ L, i.e. ancestors of any existing point are included in
all directions, up to the boundaries,

2. f̄l 6= 0 implies that the single level k with kj = −1 for j ∈ l(−1), kj = 0 for j ∈ l(0)
and kj = 1 for j ∈ l(∗) exists in L, k ∈ L.

In other words: the hanging node condition is met if every non–vanishing boundary
component is represented by at least level 1 and hierarchical ancestors exist for every
point. This implies that components with |l(∗)| = 0 have no error.
Combining the previous results, we finally arrive at

Lemma 2.1.16 (Sparse grid errors for boundary case). Let f ∈ Xq,2 be given such that

|||f |||2,p := max
l∈{−1,0,∗}d
|l(∗)|>0

{|fl,∗|2,p} <∞ (2.111)

for p ∈ {2,∞} and f =
∑

l∈{−1,0,∗}d f̄l its unique boundary splitting according to (2.93).
Let fh be its hierarchical basis interpolant on a regular sparse grid (including boundaries),

fh =
∑

l∈L̄n1

∑
i∈I(l)

fl,iφl,i =
∑

l∈{−1,0,∗}d
f̄hl (2.112)

with regular sparse grid index set L̄n1 , formulated in −1, 0, 1, . . . hierarchy notation ac-
cording to (2.21).
Then, the interpolation error can be estimated for p ∈ {2,∞} by

‖f − fh‖ ≤
∑

l∈{−1,0,∗}d
|l(∗)|>0

c|l
(0)|
p · Cp,|l(∗)| · 2

−2n · |fl,∗|2,p ·A(|l(∗)|, n) (2.113)

< Cp · 2−2n · |||f |||2,p ·A(d, n) (2.114)
= O(2−2nnd−1) (2.115)

where Cp := (3d − 2d) · maxj=1,...,dCp,j. The single constant cp from Lemma 2.1.15 is
c∞ = 1 and c2 = 3−1/2; The constant Cp,j from inner interpolation error bounds are
given by C∞,j := 2 ·8−d and C2,j := 2 ·12−d (see Lemma 2.1.9). Thus, C∞ = (3d−2d)/4
and C2 = (3d − 2d)/6.
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The approach to measure smoothness as in (2.111) and errors on sub-components is
related to the variation of Hardy and Krause [Owe03]: it computes derivatives along
boundary slices and sums them together.

Proof. Due to the hanging node conditions 2.1.3, we find the boundary special case
|l(∗)| = 0⇒ (fl,∗ − fhl,∗) = 0. Together with the previous set of lemma, we find

‖f − fh‖Lp[0,1]d = ‖
∑

l∈{−1,0,∗}d
(f̄l − f̄hl )‖Lp[0,1]d ≤

∑
l∈{−1,0,∗}d

‖f̄l − f̄hl ‖Lp[0,1]d

=
∑

l∈{−1,0,∗}d
c|l

(0)|
p · ‖fl,∗ − fhl,∗‖Lp[0,1]|l∗|

≤
∑

l∈{−1,0,∗}d
|l(∗)|>0

c|l
(0)|
p · Cp,|l(∗)| · 2

−2n · |fl,∗|2,p ·A(|l(∗)|, n)

< max
j=0,...,d−1

cjp︸ ︷︷ ︸
=c0p=1

· max
j=1,...,d

Cp,j · 2−2n ·max{|fl,∗|2,p} ·A(d, n) ·
∑

l∈{−1,0,∗}d
|l(∗)|>0

1

︸ ︷︷ ︸
=3d−2d

= Cp · 2−2n|||f |||2,pA(d, n).

2.2 Commonly used Algorithms and Complexities
In this section, we summarize algorithms which are used in different contexts in this
thesis, along with their cost complexities.

2.2.1 Adaptive Interpolation and Approximation

We consider an adaptive refinement algorithm which is suitable to resolve local irreg-
ularities in the context of function approximation (interpolation or partial differential
equations or the-like). Space adaptive procedures for sparse grids are known since the
first works on sparse grids, see [Bun92, Gri98] and the references therein. The idea is to
employ the hierarchical coefficients as indicators of high local variation. Since a (locally)
smooth function exhibits exponentially decaying hierarchical coefficients according to
Lemma 2.1.5, we can simply drop small coefficients in smooth regions. The remaining
leaf node governs the introduced error due to a geometric series argument. Coefficients
with large value should be refined by inserting their sons in all directions, resulting in
2 · d new points. Since hanging nodes are not admissible, we need to insert every new
node along with all its hierarchical ancestors into the grid.
The error indicator identifies large local variation by means of the weighted coefficient
|fl,i| · ‖φl,i‖, where |fl,i| measures the second mixed derivative of f according to (2.51)
and ‖φl,i‖ weights the indicator for the norm of interest, compare Lemma 2.1.4.
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2 A Sparse Grid Approximation Algebra

Logically, an adaptive sparse grid is then defined via the grid compression

f ε =
∑

(l,i)∈Gε
f

fl,iφl,i with Gεf := {(l, i) | |fl,i| · ‖φl,i‖ ≥ ε} (2.116)

combined with the set of all required ancestors to avoid hanging nodes. In practice,
we resort usually to additive grid refinement, i.e. we start on a coarse level, compute
the local error indicators and refine all points with large indicator. Provided the error
indicator works correctly, the approach will yield comparable results at less cost. Note
that the hat basis coefficients of an interpolation problem do not change by inserting new
nodes whereas other bases (for example the prewavelets studied later) have coefficients
depending on all nodal values and need to be recomputed after every refinement.
Since hierarchical coefficients are related to second derivatives, every coefficient whose

basis point is a reflection point of the function will vanish. This early termination
problem is a known weakness of the indicator; it can be circumvented by investigating
the node’s children as well. Look–ahead strategies of this kind require to compute the
approximant at child nodes even if the node as such is “irrelevant” according to the
error indicator. One will typically discard such information if it turns out to be of minor
importance, so look–ahead strategies are of the form

• refine all points,

• compute all values,

• compress the result,

• iterate until convergence.

Note that all discussed methods apply to inner- and boundary grid points. A bound-
ary grid point belongs to a lower dimensional part of the function as elaborated in
Lemma 2.1.13, but it works as expected (see also [PPB10] for a special space adaptive
refinement which eliminates boundary points for data mining applications).
The parameter ε can be either an absolute number ε(abs) or a relative threshold of the

form ε = ‖f‖ · ε(rel). If the value ‖f‖ is not known analytically, one might use ‖f (i)‖, the
norm of the actual approximant, instead.
The overall space adaptive algorithm is summarized in Algorithm 1. It is parameter-

ized with a “set values” interface which should compute the (missing) values fl,i somehow.
It supports a look–ahead parameter q and both, additive refinement and compression
(using a boolean bCompress). A look–ahead of q > 0 implies bCompress=true. If the
set values routine works incrementally, with O(1) operations for every newly inserted
point, the overall runtime complexity is bounded by the final grid size, O(|G|). For in-
terpolation, hierarchical basis coefficients can be computed either incrementally in time
O(3d) per point using the stencil (2.49) or, together with all basis coefficients, in time
O(d|G|) using the fast transformation. Computing all coefficients once involves mean
cost per unknown of O(d) for the non–incremental routine in comparison to O(3d) for the
incremental version. In the general case, the set values routine will need to (re)compute
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Algorithm 1 Space adaptive refinement
Input: Initial Grid G(0)

Input: Target threshold ε = ε(abs) or ε = ε(rel)

Input: A “set values” algorithm (for example, incremental interpolation, complete in-
terpolation or a PDE)

Input: refinement parameters: a look–ahead–depth q ≥ 0 and a boolean bCompress
such that q > 0⇒ bCompress = true.

Output: a grid G and the approximated function f on G
1: i := 0
2: repeat
3: G(i,0) := G(i)

4: for m = 1 to q do
5: G(i,m) := Insert all 2 · d child nodes of existing nodes into G(i,m−1)

6: end for
7: f (i) := set values on G(i,q)

8: if bCompress then
9: G(i+1) := compress G(i,q) based on f (i) // Details in Algorithm 26

10: else
11: G(i+1) := refine G(i,q) based on f (i) // Details in Algorithm 25
12: end if
13: i := i+ 1
14: until G(i) \G(i−1) = ∅
15: return G := G(i) and f := f (i)

16: See Appendix A.4 for algorithmic details.

f (i) for every point in G(i). The overall runtime can thus become larger than |G| which
is analyzed in

Lemma 2.2.1 (Runtime Complexity of Algorithm 1). Algorithm 1, used with look–
ahead parameter q = 0 and a set values routine which recomputes all values in linear
time O(d|G|), has the following runtime complexity with respect to the final grid size |G|
and k iterations.

1. If bCompress = true, the runtime complexity is O(G(0)).

2. If bCompress = false, the runtime depends crucially on the number of points in-
serted in every iteration. We provide it for the following cases:
a) If |G(i)| ≤ O(2i0+i(i0 + i)d−1) (a regular sparse grid of level i0 + i), the overall

runtime is in O(|G|).
b) If |G(i)| ≤ γ · |G(i−1)| with γ > 1, the complexity is also bounded by O(|G|).
c) If |G(i)| ≤ |G(i−1)|+γ, γ ∈ N, the complexity is bounded by O(k|G|+(k−k2)).

Proof. The compression case is clear, we show the additive refinement cases. The first
two employ geometric series arguments:
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a)
Runtime = O(

k∑
i=0
|G(i)|) = O(

k∑
i=0

2i0+i(i0 + i)d−1)

= O((i0 + k)d−12i0(2k+1 − 1)) = O(2 · 2i0+k(i0 + k)d−1) = O(|G(k)|)3

b) We find |G(i)| = γi|G(0)| and thus

Runtime = O(|G(0)|
k∑
i=0

γi) = O(γ|G| − |G
(0)|

γ − 1
) = O(|G|)3 (2.117)

c) We find |G(i)| = |G(0)|+ iγ and thus

Runtime = O(k|G(0)|+
k∑
i=0

i · γ) = O
(
k(|G(0)|+ γk + γ

2
− γk

2
)
)

= O(k|G(k)|+ γ/2(k − k2))3

Since we can expect k to grow like the sparse grid level, the case c) can be interpreted
to need a further logarithmic runtime factor for the grid computation.
We are now in a position to create adaptive representations of functions and to com-

pute the hierarchical coefficients by means of the linear–time transformations. Further-
more, we can compute all nodal values at basis points simultaneously in linear time by
means of the inverse transformation1.
We turn to a discussion of the task to evaluate a sparse grid function at an arbitrary

point x ∈ [0, 1]d. Its runtime complexity is subject of

Lemma 2.2.2 (Cost of Arbitrary Point Evaluation). Let fh ∈ V h be a d–dimensional
sparse grid function on a grid with sparse grid level n (n may denote the largest used
level for an adaptive grid). Let fh be represented in the hierarchical hat basis.
Then, the point evaluation at x ∈ [0, 1]d, fh(x), can be computed in time O(nd).

Furthermore, a first order extrapolation at x 6∈ [0, 1]d, defined by

fh(x) = fh(x′) +
d∑
j=1

∂

∂xj
fh(x′) · (xj − x′j), (2.118)

x′j =


xj , xj ∈ [0, 1],
0, xj < 0,
1, xj > 1,

(2.119)

is possible in time O(nd) as well. Here, ∂
∂xj

fh(x′) is either a forward or a backward
difference stencil (depending on the position of x′ relative to [0, 1]d).

1See Appendix A.2 for implementational details.
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Proof. First, we deal with the case of homogeneous boundary conditions. In this case,

fh(x) =
∑

|l|1≤n+d−1

∑
i∈Wl

fl,iφl,i(x) (2.120)

where {φl,i} is the hierarchical hat basis. Since the supports of all φl,i for fixed l are
mutually disjoint, there is at most one index (l, i) such that φl,i(x) 6= 0 for every level.
In general, we have to assume that there is also at least one such index. Thus, we count∑
|l|1≤n+d−1 1 many evaluations φl,i(x). Furthermore, the operation φl,i(x) involves O(d)

cost (including cost to determine i for given l). The total cost |W d
n | is thus

|W d
n | = d ·

∑
d≤|l|1≤n+d−1

1 = d ·
n+d−1∑
j=d

∑
|l|1=j

1 = d ·
n+d−1∑
j=d

(
j − 1
d− 1

)
= d ·

n−1∑
j=0

(
j + d− 1
d− 1

)

= d ·
(
d+ n− 1

d

)
= d · 1

d!
(d+ n− 1) · · · · · (d+ n− d)︸ ︷︷ ︸
d+n−1−(d+n−d−1)=d factors

= 1
(d− 1)!

nd +O(nd−1),

where we employed the same reasoning as for the cost of sparse grids, compare [BG04].
The forward or backward derivative of φl,i can be computed as well using an additional

factor d. Summing each intermediate result yields fh(x).
The case of inhomogeneous boundary conditions follows using a similar argumentation

as for Lemma 2.1.2: by recursion into lower dimensional boundary manifolds which have
the same level n. As for Lemma 2.1.2, we find the loose upper bound

|W d
n| =

d∑
j=0

(
d

j

)
2d−j |W j

n| ≤ |W d
n | ·

d∑
j=0

(
d

j

)
2d−j = 3d · |W d

n | = O(nd) (2.121)

for the total cost |W d
n|.

Algorithmically, there are two ways to compute fh(x), depending on the type of
grid. If every subspace Wl contains all possible basis points, we can simply iterate
through all level indices l and determine the single, uniquely identified space index i(l)
for which x ∈ suppφl,i by table lookup in time O(d). If we are working with a space
adaptive grid, we can start in the tree’s root, visit all points hierarchically as described
in Appendix A.1.1 and prune subtrees as soon as x 6∈ suppφl,i. Since grids have no
hanging nodes and the hierarchical hat basis is nested, this approach yields the correct
result.

2.2.2 Fast Algorithms: the Unidirectional Principle

In this thesis, we employ different linear operations on sparse grid functions u like hi-
erarchical transformations, the application of mass matrices or stiffness matrices in the
context of partial differential equations. An important property of these linear opera-
tions is a tensor product representation A = A1 · · ·Ad.
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This section summarizes briefly how tensor product type linear operations can be
realized in linear time even though a sparse grid is no full tensor product. The idea is to
rely on one–dimensional matrix decompositions and a recursive combination rule for the
d–dimensional case which is compatible with the sparse grid tree structure. The method
goes back to [Bal94] and has been elaborated in [Bun98] and [Ach03], with modifications
for special matrices in [Feu05]. We summarize the key properties and their runtime
requirements.
A linear operator with tensor product structure can be characterized by its matrix

A = A1 · · ·Ad ∈ RN×N where N = |u| is the grid size and Ai ∈ RN×N operates on
all grid lines in direction i (but has no interaction between different grid lines). An
example is the mass matrix with separable entries M(l,i),(k,j) =

∫
φl,i(x)φk,j(x) dx =∏∫

φlm,im(xm)φkm,jm(xm) dxm. On a full grid, the application of A to a grid function
u can be realized using successive matrix–vector products Aiv from outer to inner, i.e.
by Au = (A1 · · · (Ad−2(Ad−1(Adu))) · · · ). Intermediate results between successive steps
can be stored on full grid unknowns, making the matrix decomposition compatible with
the grid structure. The operation Ai as such can be formulated in a line–wise fashion
by means of one–dimensional operations (standard tensor product approach).
For sparse grids, the storage of intermediate results is more involved. Balder proposed

a splitting of the one–directional matrices Ai and a particular recombination formula
to compute Au which allows to store intermediate results on sparse grids in [Bal94].
The idea is to employ the hierarchy in every direction, together with the condition that
every node has all its ancestors in the grid: first, consider a one–dimensional level–wise
ordering for the degrees of freedom (i.e. lexicographically in (l, i)). Thus, a matrix entry
a(l,i),(l+1,2i+1) is above the diagonal since (l, i) has smaller index than its son (l+1, 2i+1).
Then, split the one–dimensional matrix A1d into an upper triangular partB1d and a lower
triangular part T 1d such that A1d = T 1d+B1d. Since (B1dv)k,j =

∑
(l,i)>(k,j)B

1d
(k,j),(l,i)vl,i

contains only interactions which are deeper than (k, j) in the tree, B1d is called “bottom–
up” algorithm ([Bun98]). Similarly, (T 1dv)k,j =

∑
(l,i)≤(k,j) T

1d
(k,j),(l,i)vl,i handles only

interactions from the top of the tree and is thus called “top–down” algorithm. Now
apply the same idea to every grid line in direction i, yielding a splitting Ai = Ti +Bi.
The algorithm presented in [Bal94] decomposes A into

A =
d∏

m=1
Am =

d−1∏
m=1

Am ·Bd + Td ·
d−1∏
m=1

Am. (2.122)

Since
∏d−1
m=1Am has the same structure, the decomposition can be applied recursively –

and the particular sequence of applications (first recursion, then top–down Td, and first
bottom–up Bd, then recursion) ensures compatibility with the d–dimensional sparse grid
structure for storage of intermediate results. The overall algorithm is called Unidirec-
tional Principle [Bun98] and has been described for the general case in [Ach03] and
[Feu05], see also its derivation in [Bal94].
The Unidirectional Principle can be applied to linear tensor product operators on

sparse grids, it relies on commutation of the sequence in which the Am are applied
and fast top–down and bottom–up splittings. This covers Galerkin discretizations with
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either constant coefficients or variable coefficients of product type, compare [Ach03].
Furthermore, the hierarchical transformations can be seen as special case of (2.122): the
transformation from nodal values to the hierarchical hat basis, for example, has B1d = 0
and is thus given by

∏d
m=1 Tm (compare Appendix A.2.2).

The Unidirectional Principle is a matrix–vector–product algorithm: it allows to com-
pute Au in linear time O(c(d)·N) even though A has much more non–vanishing elements
than O(N) due to finger structure. In the general case c(d) = 2d+1 many one–directional
matrix–vector–products are necessary, i.e. time O(2d+1N), and each recursion step needs
one copy, resulting in O(dN) memory (see [Feu05]).
For special cases, the runtime- and memory requirements can be reduced drastically.

Such a case is given by the hierarchical transformations which usually require either a
top–down or a bottom–up step (compare Appendix A.2), thereby avoiding the recursion
of (2.122). They need O(dN) time and O(N) memory. Another important case is posed
by partial differential equations and orthogonal ansatz spaces: a product differential op-
erator D(α)u which operates only on O(1) directions has O(d) directions for the identity.
In terms of a Galerkin discretization, it can be discretized by O(d) one–directional mass
matrices and O(1) other one–directional operations. Using an L2 (semi–) orthogonal
basis yields Mi = Ti with Bi = 0 and thus also considerable savings in (2.122). For ex-
ample, the Laplace operator with diffusion terms Am and mass matrix terms Mm yields
the matrix–vector–product

Ru :=
d∑

m=1

(m−1∏
k=1

MkAm

d∏
k=m+1

Mk

)
u (2.123)

=
d∑

m=1
Am

∏
k 6=m

Mku (2.124)

=
d∑

m=1
AmM

−1
m v (2.125)

with v :=
∏d
m=1Mmu. Here, (2.123) requires time O(d2N) and memory O(N) by

means of (2.122), where the largest number of matrix vector multiplications for a single
summand is 2 · d. The variant (2.124) has the minimum number of multiplications since
it avoids recursions by using Am as last operator: it needs just (d+1) multiplications for
each summand. Finally, (2.125) needs just d+2 ·d = 3d multiplications for the complete
product Ru if a fast inverse mass matrix product is available, resulting in optimal time
O(dN) for one matrix–vector–product. This is possible for the prewavelet basis (M−1

m

requires to solve a pentadiagonal linear system on each level, which is possible in time
O(N)). See [Feu05] for details about these cases. Thus, mass–dominated operators result
in optimal time and memory for matrix–vector–products by means of the Unidirectional
Principle if (semi–) orthogonal basis functions are used.
The only ingredients besides the combination formula (2.122) is a fast O(N) imple-

mentation for each of the one–dimensional top–down and bottom–up algorithms. A
few of these algorithms are summarized in Appendix A.3, see also [Ach03] for a generic
derivation of these operations.
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2.2.3 Data Structures for Adaptive Sparse Grids

One can say that sparse grids trade beneficial cost–gain ratio versus complicated al-
gorithms and advanced data structures. In this section, we summarize essential data
structures used to realize sparse grid approximation. The proposed structures rely on
unique hashing, i.e. unique mappings from high dimensional points (l, i) to scalar, unique
integer numbers. Instead of storing d–dimensional coordinates, we store only integers.
For adaptive sparse grids, these unique integers are stored in hashmaps whereas regular
sparse grids can be stored in arrays. We will see that such an approach is fast, requires
few memory, and belongs to the most flexible data structures (supporting all required
algorithms).
We also provide a survey over other data structures and show how to trade memory

usage versus access speed or algorithmic flexibility, including approaches taken in the
literature.

Algorithmic Requirements on Data Structures

The key to perform linear time sparse grid algorithms like interpolation (i.e. hierarchi-
cal transformations), partial differential equations (which boil down to matrix–vector–
products) and evaluation of L2– or energy norms is to apply one–dimensional algorithms
on each grid line in a particular direction, see Section 2.2.2 for details. Thus, any data
structure needs to support line traversals in any direction, where the one–dimensional
operations during line traversals simply require access to the two sons of every given
point, and the father of a point (compare the algorithms listed in Appendix A.1).
Besides line traversals, we also need adaptive refinement, i.e. the possibility to insert

new nodes (and their ancestors).
Furthermore, to allow operations involving different grids (like interpolation or restric-

tion from one grid on another), or to realize the arbitrary point evaluation discussed in
Lemma 2.2.2, we also need to access arbitrary points (l, i) ∈ G, i.e. without relation to
line traversals and occasionally even without reference to a father of (l, i).
Fulfilling all of these requirements is a demanding task which is probably only possible

using fast associative container structures which map an arbitrary (l, i) to the respective
coefficient ul,i (or, in practice, to an index into the respective coefficient vector). There
are, however, exceptions where a specialized data structure is used even though it per-
forms poorly at one or more of the mentioned requirements, in favor of other advantages.
These specific advantages and disadvantages are subject of the following section before
we present a fast associative container structure.

A Survey over Specialized Structures

Sparse grids are kind of d–dimensional binary trees, with one–dimensional binary tree
structure in every single direction (but unlike k–d–trees known in computer science, they
are fully d–dimensional at each point). Consequently, one can store pointers for every
sparse grid point: 2 · d pointers to access child nodes in every direction and another d
pointers to the fathers. Boundary points need special handling: they can be stored by
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using (lm, im) = (0, 0) as point without father, with left (!) son (lm, im) = (0, 1) and
right son (lm, im) = (1, 1). Then, (lm, im) = (0, 1) has (lm, im) = (1, 1) as left son, but
no right son and (lm, im) = (1, 1) has (lm, im) = (0, 1) as its father2. Once such a data
structure is built, it supports fast line traversals and fast arbitrary point evaluations,
even in the fully adaptive case. In fact, the task to perform a huge sequence of arbitrary
point evaluations f(ξi) is probably fastest using such a pointer structure3. However,
constructing or changing a pointer structure is quite involved: it can be realized by
means of a second data structure which supports more flexible, direct point access to
determine the required pointer targets (see also [Ach03] and the references therein).
A possible application for these d–trees is function compression with fast decompres-

sion: once the compression (and construction) step is ready, one can perform fast point
evaluations at arbitrary positions x ∈ [0, 1]d (local decompression). The storage cost per
node is O(d) (more precisely: 3 · d pointers and the stored value) and any grid traversal
is possible in time O(N), i.e. O(1) per node.
A different approach to implement the d–dimensional binary tree structure is used

in [Ach03, Bal94, Bun98] and [Nie98]: the idea is to use a conventional (one–dimensional)
binary tree for direction x1, which stores a (d − 1) dimensional sparse grid structure
recursively. Only the last direction actually contains scalar values. Such a structure has
compact storage O(1) per node, and each point can be visited in O(1) operations per
node – but only in the specific storage sequence; line traversals are not directly possible
in all directions. Thus, algorithms which work on lines need to be redesigned in order to
work with slices, compare [Ach03]. For wavelets of larger support than one mesh width
(like our prewavelets), this involves even more than just two slices per point. Thus,
the recursive structure considerably complicates the algorithms, not talking about the
additional slice memory.
A further structure of different type has been used in [Kos01] and (among others)

in [Feu05]: one can store every grid line in each coordinate direction explicitly. Thus, the
complete structure is stored d times, once for every direction (in fact, coefficient vectors
are stored exactly once, only indices into coefficient arrays are replicated). Since each
single line container needs the associated multi indices as well, the memory requirements
here is O(d2N), or, if the grid has regular sparse grid structure, O(dN) by means of
memory sharing. On the other side, each line traversal is possible in optimal time O(N),
independent of d. Building or changing such a structure involves copy operations which
are possible in time O(d2N) if one uses hash based structures for the direct access to
arbitrary (l, i), see the discussion in [Feu05].
Finally there are data structures which rely on associative containers to map (l, i)

directly to its associated coefficient ul,i (or an index into the respective vector). The
idea is to formulate all algorithms in terms of multi indices (l, i) and to query required
coefficient values via the associative container. Thus, such a structure supports all
operations which can be formulated by means of multi indices. An example for such a

2This particular structure has been implemented and works with the algorithms of Appendix A.1.
3Note that cache alignment is best if coefficients fl,i are stored in a similar sequence as the point
evaluation routine visits them.
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container are hash maps, which employ a hash function q(l, i) 7→ {0, . . . ,m} to map multi
indices to one of m so–called buckets. Such structures are used in [Bun96] and [Sch99].
Hash maps are not necessarily injective, so collisions need to be resolved. One possibility
is that every multi index with the same hash value is stored into a list and access to (l, i)
involves to compare (l, i) with all candidates of same hash value. With a reasonable hash
function and resize strategies, hash maps yield a mean access time of O(d): the hash
function q(l, i) typically involves 2 · d arithmetic steps and so does each comparison to
resolve conflicts. The mean number of conflicts is O(1) due to resize strategies, resulting
in O(d) for one lookup. In order to resolve conflicts, each multi index needs to be stored
explicitly, resulting in memory usage of O(dN) for the complete structure. Thus, such a
hash based approach directly yields both, O(dN) memory and O(dN) time for any grid
traversal.
Note that dimension adaptive grids as discussed in Chapter 4 have potential to reduce

memory usage: we will see that highly dimension adaptive grids yield indices where most
multi index components have the same value (lm, im) = (0, 0) (Chapter 4 actually uses
the special notation (−1, 0) for the same point). If only components (lm, im) with m ∈
u(l) := {m | (lm, im) 6= (0, 0)} are actually stored, memory usage becomes O(maxl|u(l)| ·
N) ≤ O(dN). Such a technique is used for dimension adaptive integration in [Nah05].
We will come back to dimension adaptive data structures at the end of this section.
Hash based data structures and similar associative containers allow the greatest flexi-

bility4. The next section shows that it can be realized with optimal memory complexity
O(N) as well – with the help of unique hashing techniques.

Data Structures based on Unique Hashing

We turn to a versatile data structure which supports all operations on sparse grids with
optimal memory usage and access time O(d). The idea is to employ hash functions which
provide a unique hash for every (l, i). More precisely, we search a map r(l, i)→ N0 such
that (l, i) can be identified uniquely with its hash r(l, i) and the hash can be computed
in time O(d), without reference to any particular grid. Consequently, we do not need
to store (l, i) in a hash map anymore – it is sufficient to store its unique hash r(l, i),
which reduces the task of resolving conflicts to a comparison of integer numbers. The
memory usage is thus O(N), independent of d and we have a good hash function for
every dimension5. Furthermore, we can refine such a structure, since the hashes are
independent of the old grid. A refinement means to insert further integer hashes into
the associative container.
The unique hashing procedure is summarized from [Feu05]. Its realization provides

the following features:

4They allow to visit every grid line by means of abstract tree operations which are listed in Ap-
pendix A.1.

5It should be stressed that storing the values r(l, i) in a hash map still results in conflicts. This is
because a hash map has a finite bucket size m (number of storage places) and it will place r(l, i) into
the bucket r(l, i) mod m. The use of unique hashes reduces the memory usage and simplifies collision
detection and memory allocation.
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1. It can be computed in time O(d).

2. It provides a unique mapping from (l, i) to a scalar number.

3. It is independent of any grid by assigning scalar numbers in a levelwise fashion,

n(l) < n(k)⇒ r(l, ·) < r(k, ·) (2.126)

with n(l) =
∑
lm − d+ 1.

4. For regular sparse grids, the mapping is in fact bĳective between

r(l, i) : Gdn ↔ {0, 1, 2, . . . , |Gdn|}. (2.127)

5. The mapping has been split into a separate map for inner points and one for
boundary points.

6. The runtime requirements for such a data structure is O(dN) to visit all points
with memory usage O(N).

Feature 4) yields a particularly efficient associative container for regular sparse grids:
instead of a hash map, a simple array A is sufficient. Then, A[r(l, i)] = ul,i due to
the one–to–one mapping and the memory usage is exactly one real coefficient per grid
point (without overhead). Property 5 is technically unnecessary, but it allows to discard
boundary nodes completely which is important for our experiments in Chapter 3.
We start with an index map rI(l, i) which is only defined for inner nodes of a sparse

grid,

Gdn =
⋃

1≤n(l)≤n
Wl, Wl := {i = (i1, . . . , id) | im ∈ {1, 3, 5, . . . , 2lm − 1}}. (2.128)

According to the derivation in [Feu05], we find the unique hash

rI(l, i) := P<n(l) + 2n(l)−1 · rn(l)(l) + rl(i) (2.129)

where P<n := |Gdn−1| counts all points of a regular sparse grid of level (n− 1), 2n(l)−1 =
|Wl| is the number of different space indices,

rn(l)(l) :=
d∑

m=2
Pnm(l)−1,d−(m−1), nm(l) := n(l)−

∑
k<m

(lk − 1) (2.130)

defines an index of l inside of {k |n(k) = n(l)} (by means of parameterized simplex
enumeration, compare [Feu05]) and

rl(i) :=
d∑
j=1
b ij

2
c
∏
k<j

2lk−1 (2.131)
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defines an index of i inside of Wl. The value

Pn,d := |{l ∈ Nd
>0 |n(l) ≤ n}| (2.132)

is the number of integer vectors in a simplex defined by n(l) ≤ n. It can be computed
once by means of the recurrence formula

Pn,d =
n∑

m=1
Pm,d−1, Pn,1 = n (2.133)

which can be shown by complete induction with respect to d. The precomputation step
includes the computation of all values |Gmk |, P k,m for k = 0, . . . , n and m = 1, . . . , d in
time O(dn2) and memory O(dn) where n is the highest required level6. The complete
algorithm to compute rI(l, i) is summarized in Algorithm 2, together with the setup
phase in Algorithm 3.

Algorithm 2 Computation of the unique hash rI(l, i) for inner sparse grid points ac-
cording to (2.129).
Input: (l, i) belonging to an inner grid point (i.e. lm ≥ 1, im odd)
Output: rI(l, i) ∈ N0 in time O(d)
1: rn(l)(l) := 0
2: rl(i) := 0
3: n := 1
4: d̂ := 0
5: for m = d; m ≥ 2; m = m− 1 do
6: d̂ := d̂+ 1
7: n := n+ lm − 1
8: rn(l)(l) := rn(l)(l) + Pn−1,d̂

9: rl(i) := im div 2 + 2lm−1 · rl(i) // Telescope sum
10: end for
11: rl(i) := i1 div 2 + 2l1−1 · rl(i)
12: n := n+ l1 − 1
13: rI(l, i) := |Gdn−1|+ 2n−1 · rn(l)(l) + rl(i)

The unique hashes rI(l, i) are shown in Figure 2.10 (left) for a regular sparse grid of
level n = 4 in dimension d = 2. We see that it works in a level wise ordering: the first
index is associated to the point (1, . . . , 1|1, . . . , 1), the following indices make up n(l) = 2
and so on.
Note that rn(l)(l) can be used as well to create a unique hash for level indices only:

simply eliminate everything which depends on the space index i and replace the final
|Gdn−1| by Pn−1,d. A variant of such a unique hashing is used at the end of this section
to create a dimension adaptive data structure. We summarize the unique hash for level
indices of the form l = (l1, . . . , ld) and lm = lmin, lmin + 1, lmin + 2, . . . ∈ lmin + N0 for
smallest level lmin ∈ Z in Algorithm 4. The unique level index hashes r̃(l) are illustrated

6See (2.23) for how to compute |Gmk |.
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Algorithm 3 Setup phase to precompute values for Algorithm 2
Input: n, d
Output: one array for P k,m and one for |Gmk |, m = 1, . . . , d, k = 0, . . . , n.
1: for k = 0, . . . , n do
2: set P k,1 := k, and |G1

k| := 2k − 1 // Gd0 is never used
3: end for
4: for m = 2, . . . , d and k = 0, . . . , n do

5: compute P k,m :=
k∑
q=1

P q,m−1 and |Gmk | =
k−1∑
q=0

2q|Gm−1
k−q | // compare (2.23)

6: end for
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Figure 2.10: Unique hashes rI(l, i) for points of a regular sparse grid (left) and level only
unique hashes for 1 ≤ |l|1 − d+ 1 ≤ 4 (right).

Algorithm 4 Unique hashing for level indices only
Input: lowest allowed level lmin ∈ Z
Input: Level index l = (l1, . . . , ld), lm ∈ lmin + N0
Output: unique hash r̃(l) such that r̃(lmin, . . . , lmin) = 0
1: r̃(l) := 0
2: n := 1
3: d̂ := 0
4: for m = d; m ≥ 1; m = m− 1 do
5: d̂ := d̂+ 1
6: n := n+ lm − lmin
7: r̃(l) := r̃(l) + Pn−1,d̂

8: end for
9: return r̃(l) // Pn−1,d = number of points up to n− 1 plays role of |Gdn−1|
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2 A Sparse Grid Approximation Algebra

in Figure 2.10 (right) for 1 ≤ |l|1−d+1 ≤ 4, determined with Algorithm 4 and lmin = 1.
The unique hash rB(l, i) for boundary nodes (l, i), i.e. points for which lm = 0 for at

least one direction, is considerably more involved: it should work in a level wise fashion,
and it should be independent of any given grid. Consequently, it relies on the recursive
definition of sparse grids on the boundary, enumerates each boundary segment separately
(and separately for each level) and uses the already determined inner hash rI(l, i) inside
of boundary manifolds. Such a unique hash has been derived thoroughly in [Feu05]; we
simply summarize how to use it with a brief description how each occurring term can be
interpreted. The key here is that most quantities can be precomputed and the remaining
values are computable in an O(d) ‘for’ loop.
Let K(l) := |{j | lj = 0}| denote the number of zeros in l. Remind that n(l) =
|l|1−

(
d−K(l)

)
+1 for a boundary level (compare (2.18)), with the special case n(0) = 0.

Furthermore, let P<n := |Gdn−1| − |Gdn−1| denote the number of regular sparse grid
boundary points of lesser level than n and Idn := |Gdn| − |Gdn−1| the number of regular
sparse grid inner points on level n (only). Let BIN(l) := (b1, . . . , bd) ∈ {0, 1}d denote
the zero/non–zero bit pattern of l, bm := δ0,lm . Let P (d, k, n) be the number of regular
sparse grid boundary points of fixed level n(l) = n and number of zero components
K(l) = k (we will find its value later). Let

Rl(i) :=
∑

m=1,...,d
lm=0

im
∏

k=1,...,m
lk=0

2 (2.134)

denote a unique hash of the space index i for directions lm = 0. In order to define
a sequence for the set of same zero count K, {k ∈ Nd

0 |K(k) = K}, we use a map
rK : {0, 1}d → N0 which maps BIN(l) to a unique hash. This map will be defined below.
Finally, let (̄l, ī) denote only those components of (l, i) for which lm 6= 0.

Theorem 2.2.1 (Unique hash rB(l, i)). Let (l, i) be a regular sparse grid point on the
boundary, i.e. lm = 0 for at least one m ∈ {1, . . . , d} and lm = 0 ⇒ im ∈ {0, 1},
lm > 0⇒ im odd. Then, rB(l, i) defined by

rB(l, i) := P<n(l) +
d−1∑

k=K(l)+1
P (d, k, n(l))

+ (2K(l) · rK(BIN(l)) +Rl(i)) · Id−K(l)
n + rI (̄l, ī), (2.135)

together with the special case

rB((0, . . . , 0), i) :=
d∑

m=1
im

∏
k<m

2, (2.136)

defines a unique hash among all such boundary points. The unique hash is actually an
indexing of all boundary points of a regular sparse grid in a level wise ordering.

Proof. The proof follows constructively from the derivation in [Feu05].
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To actually compute (2.135), we need formulas for P (d, k, n) and rK(BIN(l)). Fortu-
nately, the quantities P<n(l) +

∑d−1
k=K(l)+1 P (d, k, n(l)), Id−K(l)

n and rK can be precom-
puted for fast access such that only the simple loops for Rl(i) and rI (̄l, ī) need to be
computed to evaluate rB(l, i).

Lemma 2.2.3. It holds

P (d, k, n) = Id−kn · 2k · ( max
z∈{0,1}d
|z|1=k

rK(z) + 1). (2.137)

Proof. See [Feu05].

Algorithm 5 Pre-compute rK(z) and max|z|1=k rK(z)+1 for all z ∈ {0, 1}d in an array
A[·] of size 2d. Then, rK(BIN(l)) = A[zl] with zl =

∑d−1
i=0 bi+12i and bi = 0 for li = 0

and bi = 1 for li 6= 0.
Input: d ≤ word length of the computer (typically 32 or 64)
Output: array A[·] of size 2d such that A[zl] = rK(BIN(l))
Output: array C[·] of size d+ 1 such that maxz,|z|1=k rK(z) + 1 = C[d− k].
1: resize(A, 2d)
2: resize(C, d+ 1) // C[k] = the so far largest index for numbers z with k zeros
3: for all k = 0, . . . , d do
4: C[k] := 0
5: end for
6: for j := 0; j < 2d; j := j + 1 do
7: n := count zeros in binary representation of the integer j
8: A[j] := C[n]
9: C[n] := C[n] + 1

10: end for

Algorithm 5 yields a possible implementation to pre-compute rK(BIN(l)), compare
[Feu05]. Once the setup step is complete, it holds rK(BIN(l)) = A[zl] where zl =∑d−1
i=0 δ0,li+12i is an integer number determined from BIN(l); it is used as index into

the precomputed array A[·]. Note that Algorithm 5 also yields the required quantity
max|z|1=k rK(z) + 1 as a side product: the maximum is stored in the output array at
C[d− k]. Consequently, we can pre-compute the quantities

B[ñ][K] := P<ñ +
d−1∑
k=K

P (d, k, ñ), ñ = 1, . . . , n; K = 1, . . . , d, (2.138)

and
I[m][ñ] := Imn = |Gmn | − |Gmn−1|, m = 1, . . . , d; ñ = 1, . . . , n (2.139)

in arrays of size d · n using Lemma 2.2.3 and again the recurrence formulas (2.23) and
(2.25) to evaluate P<ñ = |Gdñ−1| − |Gdñ−1| and I[m][ñ]. The complete unique hash can
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Algorithm 6 Computation of the unique hash rB(l, i) for boundary points
Input: a boundary sparse grid point (l, i), i.e. lm = 0 for at least one direction
Input: precomputed values of Algorithm 5, B[·][·] and I[·][·]
Output: the unique hash rB(l, i) ∈ N0
1: if l = (0, . . . , 0) then
2: rB(l, i) := 0
3: for m = d, m ≥ 1, m := m− 1 do
4: rB(l, i) := im + 2 · rB(l, i)
5: end for
6: return rB(l, i)
7: end if
8: Rl(i) := 0; zl := 0; rl(i) := 0; rn(l)(l) := 0; K := 0; d̂ := 0
9: n := 1
10: for m := d; m ≥ 1; m := m− 1 do
11: if lm = 0 then
12: Rl(i) := im + 2 ·Rl(i)
13: zl := zl + 2d−i // in bit shifts: zl|= (1<<(d-i))
14: K := K + 1
15: else
16: d̂ := d̂+ 1
17: n := n+ lm − 1
18: rn(l)(l) := rn(l)(l) + Pn−1,d̂

19: rl(i) := im div 2 + 2lm−1 · rl(i)
20: end if
21: end for
22: rn(l)(l) := rn(l)(l)− Pn−1,d̂ // we added one too much, compare Algorithm 2
23: rI (̄l, ī) := 2n−1 · rn(l)(l) + rl(i)
24: rB(l, i) := B[n][K] + (2KA[zl] +Rl(i)) · I[d−K][n] + rI (̄l, ī)
25: return rB(l, i)

then be computed by means of Algorithm 6. The resulting unique hashes are shown in
Figure 2.11 for boundary points of a regular sparse grid of level n = 4 in dimension two.
The first four points are the corners, followed by level 1 near x = 0.5 and y = 0.5, then
level 2 and so on.
The pre computation step of Algorithm 5 requires timeO(max(d2d, d·n2)) and memory
O(max(2d, d ·n)) for one fixed dimension d. For dimensions of about d ≈ 15 and realistic
levels, this makes just a few kilobytes (say, 100kb). Note that the 2d occurring in the
memory pre-allocation poses no serious restriction as long as the data structure is used
for d–dimensional (adaptive) approximation since there are 2d corner points anyway.
Consequently, the pre-allocated memory per grid point is negligible.
Taking the unique hashes for inner- and boundary points together, we thus have a

complete memory representation for sparse grids which is optimal for regular sparse
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Figure 2.11: Unique hashes generated by the index map rB(l, i), applied to points of a
regular sparse grid in dimension d = 2 and level n = 4.

grids with respect to memory usage. It is highly flexible and has good access times.

Dimension Adaptive Data Structures

So far, the proposed unique hashing data structures yield highly flexible, compactly
stored tools with good O(d) access times for fully d–dimensional approximation prob-
lems. However, the dimension adaptive setting developed in Chapter 4 has a further
requirement: dimension adaptive methods need even more sparsity than a standard
(space adaptive) sparse grid. We will see in Chapter 4 that dimension adaptivity relies
on multi index representations (l, i) where most directions are fixed to (lm, im) = (0, 0).
This particular point is associated with the constant basis function. If a function has low
effective dimension (compare Section 4.1.2), the constant directions play a key role7. A
dimension adaptive grid can have a huge nominal dimension, but most index components
will have lm = −1.
In such a scenario, the unique hashing approach as we used it so far is inappropriate:

the memory usage of 2d required for rB(l, i) is the most obvious reason, but a more
subtle problem is the approach to index all points of a regular sparse grid: the required
range of numbers will exceed the available integer range of standard computers if the
nominal dimension is huge, even though most of these indices will never be used.
A possible alternative which keeps the advantages of unique hashing is to introduce

separate hashes for level- and space indices and to work with a tuple (r̃(l), rl(i)) ∈ N2
0.

An access to a grid point (l, i) requires two lookups: one to find data associated with
7Note that Chapter 4 identifies the constant using the artificial level index lm = −1 (which is equivalent
to (lm, im) = (0, 0)).
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level l (using the first unique hash r̃(l)) and then, inside of the identified structure,
the coefficient rl(i) which is a trivial generalization of (2.131)8. A possible unique hash
r̃(l) for level indices has already been discussed in Algorithm 4: it is unique among all
integer multi indices (l1, . . . , ld) ∈ lmin + Nd

0 where lmin = −1 in our case. It relies on
a simplex enumeration. Now, the unique hashing procedure (r̃(l), rl(i)) is suitable for
larger dimensions since the simplex enumeration grows less fast. Nevertheless, there are
still O(nd) integer points in the simplex defined by 1 ≤ |l|1−d+1 ≤ n, compare the proof
of Lemma 2.2.2. If we have at most 2q integers available, we find nd < 2q ⇔ d < q/ log2 n.
For example q = 64 and n = 10 allows d < 20. Thus, the unweighted unique hash has
its limitations when it comes to dimension adaptivity, but it allows simple memory
allocation and fast hashing.
Possible alternatives are to use non–unique hashing. Then, hash map collisions are

resolved with the help of sparse vector representations of l, i.e. without explicitly storing
the lm = −1 components, compare [Nah05]. Here, r̃(l) mod m can serve as a possible
non–unique hash function. The implementation used so far relies on unique hashing.
Thus, dimension adaptive grids can be managed either by unique hashing with access

time O(d) per node and total memory usage O(N) or by means of non–unique hashing
which has access time O(d) per node and total memory usage O(deffN) where deff =
maxl|{m | lm 6= −1}| is the highest used effective dimension.

2.3 Approximative Algebraic Operations

2.3.1 Motivation and Overview

We turn to a study of common operations like ‘+’, ‘−, ‘×’, ‘/’ and the functional
operations f1(f2(x)) and

∫
K(x, y) f(y) dy applied to discretized functions f1, f2, K, and

f . Our aim here is to provide a toolbox to be used in linear and nonlinear sparse grid
approximation applications. For example, consider integro partial differential equations
of the form

ut − Lu+
∫
K(x, y;u) f(y;u) dy = r (2.140)

which contain an (elliptic) partial differential operator Lu and a u–dependent integral
transformation. One possible solution is an explicit approach for the integro term which
requires to deal with discretized kernels K(x, y;u) and integrands f(y;u). The differ-
ential parts can then be solved by means of sparse grid methods, and the integro term
needs to be computed by means of an approximate integral transformation (which will
also handle the pointwise multiplication K · f). A different field of potential interest is
to solve nonlinear approximation problems of the form

(f̄1, f̄2) := argmin
f1∈V1,f2∈V2

‖F (x)− f1(f2(x))‖ (2.141)

8Now, the special level index lm = −1 allows one possible point im = 0 whereas the level index lm = 0
allows the only possible point im = 1.
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for given spaces V1 and V2 and given F . Here, finite dimensional spaces Vi lead to
approximative function concatenation f1(f2(x)) and the nonlinear optimization can work
by means of coefficient vectors.
We discuss how to perform pointwise operations f1(x)�f2(x), � ∈ {+,−,×, /},

f1(f2(x)) and
∫
K(x, y) f(y) dy if the involved functions are living on sparse grid spaces.

The focus of our consideration is how such operations can be applied with a beneficial
cost–gain ratio where the cost measure is the time and memory needed to compute and
represent the result. The gain measure indicates how inaccuracies of operands or the
inexact methods influence the result.
Our analysis complements and refines results presented in [Gri98] for the elementary

operations {+,−,×, /} and the concatenation presented in [MgF07] and contains new
insight especially into the consistency error and methods to compute the integral trans-
formation.

2.3.2 Approximative Pointwise Operations
In the following, let f1, f2 ∈ V be given functions defined on a rectangular domain
Ω =

⊗
[ai, bi]. Let � be an elementary pointwise operation of two arguments, and

f3(x) = f1(x)�f2(x) (2.142)

the result.
Furthermore, let fh1 and fh2 be (adaptive) approximations in sparse grid subspaces

V h
1 ⊂ V , V h

2 ⊂ V , respectively. Since sparse grids are always defined on the unit cube
[0, 1]d, fh1 and fh2 are defined by means of a linear coordinate transformation κ : [0, 1]d →
Ω using fhi = f̃hi ◦ κ−1 where f̃hi is defined on [0, 1]d.
Before we actually study approximations of f3 based on fh1 and fh2 , we introduce

preliminary conventions and present common results.

Definition 2.3.1 (Pointwise Data Error). Given functions f1 ∈ V1, f2 ∈ V2, a binary
map M = M(·, ·) : V1 × V2 → V3 and approximations fh1 ≈ f1, fh2 ≈ f2, the entity

M
(
f1, f2

)
(x)−M

(
fh1 , f

h
2
)
(x) (2.143)

or its norm is called the (pointwise) data error at an (arbitrary) point x.

Definition 2.3.2 (Consistency Error). Let f1 ∈ V1 and f2 ∈ V2 be given functions and
M : V1 × V2 → V3 a binary map with an approximation M̃ ≈M .
Then, the entity

M
(
f1, f2

)
− M̃

(
f1, f2

)
(2.144)

is called the consistency error of M̃ .

We are now interested in obtaining an approximation for f3 = f1�f2 by means of
fh1 and fh2 . A simple approach is feasible for every operation on discrete functions: use
the exact operation ‘�’, applied to the basis expansion of fh1 and fh2 . Its properties are
summarized in
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Lemma 2.3.1. The abstract operation fh,∗3 (x) := fh1 (x)�fh2 (x) which simply employs
the arbitrary point evaluation routine fhi (x) requires O(nd1 + nd2) arithmetic operations
for every evaluation of fh,∗3 . Here n1 and n2 are the sparse grid levels of f1 and f2,
respectively.
The pointwise error depends only on the data error

|f1(x)�f2(x)− fh1 (x)�fh2 (x)|, (2.145)

provided the point evaluation algorithm is numerically stable.

Proof. The cost complexities follow immediately from Lemma 2.2.2 and since there is
no consistency error, we only have to deal with input (data) errors.

Note that fh,∗3 (x) = fh1 (x)�fh2 (x) as such is an abstract construction which is not
directly related to a (sparse) grid, it may not even be possible to find a finite basis
expansion for fh,∗3 at all. Nevertheless, it might be beneficial to use fh,∗3 , especially if fh1
and fh2 both require few degrees of freedom and allow fast point evaluations.
The alternative is to discretize the result fh,∗3 on a properly chosen grid. Since ‘�’

operates pointwise on function values, a discretization of fh,∗3 can rely on adaptive re-
interpolation

fh3 := fh1�hf
h
2 := I[fh,∗3 ] = I[fh1�fh2 ] (2.146)

where I[·] denotes the sparse grid interpolation operator on a properly chosen grid. Such
a grid G3 will depend on the grids of fh1 and fh2 . A good starting point is the grid union
of both. Before we come back to the choice of G3, we state Lemma 2.3.2:

Algorithm 7 Re-interpolation of a pointwise operation �
Input: Pointwise binary map �
Input: Grids G1, G2, G3 discretizing V
Input: Functions fh1 on G1 and fh2 on G2
Output: fh3 = IG3 [fh1�fh2 ]
1: f̃1 := InterpolateOrRestrict( fh1 on G3) // O(|G1|+ |G3|)
2: f̃2 := InterpolateOrRestrict( fh2 on G3) // O(|G2|+ |G3|)
3: transform f̃1 to nodal values // O(|G3|)
4: transform f̃2 to nodal values // O(|G3|)
5: compute fh3 (x) = f̃1(x)�f̃2(x) for each x ∈ G3 // O(|G3| · |�|)
6: transform fh3 to the hierarchical basis // O(|G3|)
7: return fh3

Lemma 2.3.2 (Cost And Error of a General Interpolated Pointwise Operation). Let
f1, f2 ∈ V be given functions and fh1 ∈ V h

1 ⊂ V , fh2 ∈ V h
2 ⊂ V be approximations of

f1 and f2, respectively. The underlying grids G1 and G2 may be chosen adaptively and
can be different. Furthermore, let ‘�’ be a binary pointwise operation and fh3 given as
interpolant fh3 := I[fh1�fh2 ] = fh1�hf

h
2 on a (fixed) grid G3.
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Then, fh3 can be computed in time O(|G3|(1 + |�|) + |G1| + |G2|) and its pointwise
error is characterized by both, a data error and a consistency error

|f1(x)�f2(x)− fh1 (x)�hfh2 (x)|
≤ |f1(x)�f2(x)− fh1 (x)�fh2 (x)|+ |fh1 (x)�fh2 (x)− fh1 (x)�hfh2 (x)|. (2.147)

Here, |�| denotes the cost for one evaluation.

Proof. The cost complexity is proven constructively using Algorithm 7. The error re-
mark is straight-forward. The InterpolateOrRestrict step of Algorithm 7 simply assigns
hierarchical values of 0 to any new grid point (interpolation) or discards coefficients
which exists in G1 but not in G3 (restrict).

The result grid G3 should be chosen such that the consistency error is of the same
order as the data error (which cannot be avoided anyway). The approach in [Gri98]
is presented for � ∈ {+,−,×, /} and suggests using the grid union G1 ∪ G2 followed
by a final grid compression. Unfortunately, the grid union without further refinement
might yield a consistency error which is several orders of magnitude larger than the data
data error. An example of such an effect is f1(x, y) = x2, f2(x, y) = y2 and � = ×.
Figure 2.12 (top left) and Figure 2.12 (top right) show fh1 and fh2 , respectively. The
data errors are both 9.5 · 10−7, computed using the relative L∞ norm and an adaptive
threshold ε(rel) = 1 · 10−6. Figure 2.12 (bottom left) shows the result fh3 approximated
on the grid union. Since f1 and f2 are inherently one–dimensional, the grid union is
just a superposition of one–dimensional grids. However, it should be a two–dimension
grid built by a (sparse) tensor product. Consequently, the consistency error is 4 · 10−3.
Figure 2.12 (bottom right) shows the corrected result obtained by the approach described
in the following (Algorithm 8), its accuracy is of order 1 · 10−6.

Algorithm 8 Adaptive Resolution of �
Input: Pointwise binary map �
Input: Functions fh1 , fh2 on grids G1, G2, respectively
Input: Refinement target value ε = ε(abs) or ε = ε(rel)

Output: Grid G3 and fh3 = IG3 [fh1�fh2 ]
1: G(0)

3 := G1 ∪G2 // O(|G(0)
3 |)

2: (fh3 , G3) := adaptTo(fh1�fh2 ) using the standard refine Algorithm 1 with the special
“set values” routine of Algorithm 7 and G(0)

3 as initial grid.
// O(|G(i)

3 | · (1 + |�|) for loop iteration i in Lemma 2.2.1
3: return G3 and fh3

In order to balance consistency and data error, we propose to use the following ap-
proach: logically, we compute fh3 (and its grid G3) by resolving fh1�fh2 adaptively. This
adaptive interpolation procedure is exactly the same as the one which might have been
applied to compute fh1 and fh2 in the first place – but since fh1�fh2 already exhibits a
data error, the refinement should stop as soon as this accuracy is achieved. In order
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Figure 2.12: Computation of fh1 (x, y)× fh2 (x, y) once by means of the simple grid union
(bottom left) and once by means of Algorithm 8 (bottom right); all ex-
periments use ε(rel) = 1 · 10−6. Grid points are colored according to their
absolute value.

to avoid the costly point evaluation routine, the fast re–interpolation of � according to
Algorithm 7 should be a component of the adaptive refinement. The overall procedure
is summarized in Algorithm 8, which expects the target accuracy as input argument and
employs the re–interpolation in each step. Note that Algorithm 8 exhibits the same cost
complexity as the generic adaption algorithm analyzed in Lemma 2.2.1. For sufficiently
smooth f1�f2, it is linear in the final grid size |G3| using a geometric series argument.
The input value ε is yet to be determined. A reliable choice for ε is to make it small

enough such that the consistency error is less than the data error. An efficient choice is
one where both errors are balanced. We summarize results about the data error in the
following.

The Data Error For Standard Operations

We start with a well–known definition to characterize error amplification.

Definition 2.3.3 (Condition of a function). Let F : Rd → R be sufficiently smooth.
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Then, the vector

κabs(x) :=
(∣∣∣∣∂F∂xi (x)

∣∣∣∣)i=1,...,d (2.148)

is called the absolute condition of F , whereas for F(x) 6= 0 and x 6= 0,

κrel(x) :=
(∣∣∣∣∂F∂xi (x) · xi

F(x)

∣∣∣∣)i=1,...,d (2.149)

denotes the relative condition of F at x.

The condition expresses the amplification of either an absolute input error by means
of

F(x+ δx) = F(x) +
d∑
i=1

F
∂xi

(x) · δxi + R(x)︸ ︷︷ ︸
‖·‖=O(‖δx‖2)

(2.150)

or a relative input error δx/xi for xi 6= 0 and F(x) 6= 0,

F(x+ δx)−F(x)
F(x)

=
d∑
i=1

( F
∂xi

(x) · xi
F(x)

)
· δxi
xi

+ R̃(x)︸ ︷︷ ︸
‖·‖=O(‖δxi‖2)

. (2.151)

Condition numbers of the order O(1) are generally well–behaved while large numbers
indicate huge error amplification. We find immediately the condition numbers for ele-
mentary operations.

Lemma 2.3.3 (Condition of elementary operations). The following condition numbers
characterize the pointwise data error for elementary operations:

F(a, b) = a+ b, κabs ≡ (1, 1)T , κrel =
( |a|
|a+ b|

,
|b|
|a+ b|

)T ; (2.152)

F(a, b) = a · b, κabs = (|b|, |a|)T , κrel = (1, 1)T ; (2.153)

F(a, b) = a/b, κabs = ( 1
|b|
,
|a|
|b2|

)T , κrel = (1, 1)T . (2.154)

Usually, the amplification of relative errors is more important since a method should
work on all scales. Here the case a+ b for a ≈ −b is the worst case of cancellation with
huge relative errors whereas the multiplication and division is generally well–behaved.
Note that the absolute error for multiplication can become very large for large arguments
and the division is absolutely bad for either large |a| or small |b|. The absolute error for
a sum of two numbers as such is well–behaved (cancellation becomes a problem if the
sum is just an intermediate result or if relative errors are required).
Lemma 2.3.3 allows a characterization for pointwise function operations {+,−,×, /}

immediately. For the sake of completeness, we write the associated data errors explicitly.
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Lemma 2.3.4 (The Data Error Of Elementary Pointwise Function Operations). Let
f1, f2 ∈ V be given functions and fh1 ∈ V h

1 ⊂ V , fh2 ∈ V h
2 ⊂ V be approximations on f1,

f2, respectively. Let ε1(x) and ε2(x) denote the absolute pointwise errors

ε1(x) := |f1(x)− fh1 (x)| ≤ ε̃1, (2.155)
ε2(x) := |f2(x)− fh2 (x)| ≤ ε̃2 (2.156)

and ε(rel)
i (x) := εi(x)/|fi(x)| ≤ ε̃

(rel)
i for i = 1, 2 the associated pointwise relative errors.

Let � ∈ {+,−,×, /}.
Then, we find the data errors

|(f1(x) + f2(x))− (fh1 (x) + fh2 (x))| ≤ ε1(x) + ε2(x) (2.157)
≤ ε̃1 + ε̃2, (2.158)

|(f1(x) + f2(x))− (fh1 (x) + fh2 (x))|
|f1(x) + f2(x)|

≤ |f1(x)|
|f1(x) + f2(x)|

ε̃
(rel)
1 + |f2(x)|

|f1(x) + f2(x)|
ε̃
(rel)
2 ,

(2.159)
|f1(x) · f2(x)− fh1 (x) · fh2 (x)| ≤ |f2(x)| · ε1(x) + |f1(x)| · ε2(x) +O(ε̃21 + ε̃22)

(2.160)
≤ |f2(x)| · ε̃1 + |f1(x)| · ε̃2 +O(ε̃21 + ε̃22), (2.161)

|f1(x) · f2(x)− fh1 (x) · fh2 (x)|
|f1(x) · f2(x)|

≤ ε̃(rel)
1 + ε̃

(rel)
2 +O(ε̃21 + ε̃22), (2.162)

|f1(x)/f2(x)− fh1 (x)/fh2 (x)| ≤ 1
|f2(x)|

ε̃1 + |f1(x)|
|f2(x)2|

ε̃2 +O(ε̃21 + ε̃22), (2.163)

|f1(x)/f2(x)− fh1 (x)/fh2 (x)|
|f1(x)/f2(x)|

≤ ε̃(rel)
1 + ε̃

(rel)
2 +O(ε̃21 + ε̃22). (2.164)

Proof. The proof follows immediately by Lemma 2.3.3, together with (2.150) and (2.151)
applied to f1(x) and f2(x). Note that here, x is considered to be exact, so we have
a ≡ f1(x) and b ≡ f2(x).
Note that addition and subtraction do no depend on higher order error terms since

the derivatives vanish. All other data errors are precise up to first order in the input
errors.

Note that we recover the results for absolute data errors as they have been shown
in [Gri98], with slight modifications for the multiplication: the bound in [Gri98] uses
max(|fi(x)|, |fhi (x)|) where we use |fi(x)|. Our results extend those of [Gri98] in the
sense that the operation’s condition is a simple yet general formulation of the data
error, which can be applied to other types of pointwise operations as well.

Choosing the Refinement Parameter For The Consistency Error

Given the information how input errors of fh1 and fh2 are amplified by �, we can now
configure the adaptive refinement parameter ε of our adaptive re-interpolation Algo-
rithm 8. Generally, a well–conditioned operation � allows to refine up to the input error
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max{ε̃1, ε̃2}. Thus, the adaptive multiplication routine can employ the same relative
thresholds ε(rel) as have been used for the approximation of the fhi . The situation for
sums or differences is even simpler:

Lemma 2.3.5. Let � ∈ {+,−}. Then, the consistency error is zero if the grid G3 =
G1 ∪G2 is chosen for the re-interpolation of fh1 (x)�fh2 (x).

Proof. Since fhi (x) =
∑

(l,i)∈Gi f
(i)
l,i φl,i(x), we find

fh1 (x)�fh2 (x) =
∑

(l,i)∈G1∪G2

(f (1)
l,i �f

(2)
l,i )φl,i(x) = IG1∪G2 [fh1�fh2 ](x) (2.165)

due to the linearity of the interpolation operator. Here, we assume that missing values
are zero.

Thus, for sums and differences, we only need to perform the grid union, no adaptive
threshold is necessary (we do not even need to switch basis representations). It may be
beneficial to compress the result if single coefficients become small afterwards.

2.3.3 Approximative Function Concatenation
We will now study the function concatenation operation ‘◦’. If we regard it as func-
tional, it maps ◦ : Vouter × ~Vinner → V using fouter ◦ ~finner 7→ fresult = fouter(~finner(·))
where the inner function space ~Vinner can be vector valued, ~finner ∈ ~Vinner, ~finner =
(finner,1, . . . , finner,m) : Ω → Rm, and Vouter contains functions Vouter 3 fouter : Rm → R
or fouter : Ωouter → R. Finally, V is a function space with functions V 3 fresult : Ω→ R.
We assume a rectangular domain for the inner functions, Ω = [a1, b1]× · · · × [ad, bd].
Given sparse grid approximations for all involved functions, fhouter and ~fhinner, we are

interested in a representation for fhouter ◦ ~fhinner(x). The domains must be compatible.
More precisely, we assume that ~finner is continuous, so it takes its maximum and mini-
mum values on its domain Ω. Furthermore, we assume that fouter has been discretized
on a (sub–) domain Ωh

outer ⊂ Ωouter such that img ~finner ⊆ Ωh
outer in order to avoid extrap-

olation for the outer discrete function. In particular, Ωh
outer will be a rectangular tensor

product domain since sparse grids are always defined on cubes. It should be chosen as
axis–parallel bounding rectangle for img ~finner, i.e.

fhouter :
m⊗
j=1

[Aj , Bj ]→ R (2.166)

where Aj = min(img finner,j) and Bj = max(img finner,j) for j = 1, . . . ,m.
As for the case of pointwise operations, we have to deal with consistency errors and

data errors. A consistency error occurs if we represent the result on a grid, fhresult =
IG3 [fouter ◦ ~finner] =: fouter ◦h ~finner, and the data error is caused by the amplification of
input errors.
Note that an abstract representation of the form fh,∗result := fhouter

(~fhinner(x)) which
employs the point evaluation routine of Lemma 2.2.2 for every access might save a lot
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of time compared to a grid representation due to its non–linearity. This is possible if
outer and inner functions have different dimensionality and can be represented with
few degrees of freedom. An example is the Gaussian, represented as concatenation
of fouter(x) = exp(−x) and ~finner(~x) = ~xT~x. The outer function is one–dimensional
and all inner components are superpositions of one–dimensional functions (and are thus
effectively one–dimensional). However, the composition exp(−xTx) is effectively high
dimensional and requires considerably more degrees of freedom if represented on a grid
(which is analyzed in more detail in Chapter 3.2.1). We will see the example of a
Gaussian later in this section.
An abstract representation fh,∗result has no consistency error. Its data error is subject of

Lemma 2.3.6 (Data Error For Concatenation). Let F : V × Rd → R, F(f, x) := f(x)
be the point evaluation functional and V ⊂ C2. Let fh ∈ V h be an approximation on f
with (pointwise) error fh = f − εf which is evaluated at the inexact point xh = x− εx.
Then, the absolute input error (εf (·), εx) propagates according to

F(f, x)−F(fh, xh) ≈ 1 · εf (xh) + f ′(x)εx, (2.167)

and the relative input errors ε(rel)
f (·) = εf (·)/|f(·)|, ε(rel)

x := εx/‖x‖ for f(x) 6= 0, x 6= 0
are amplified according to

F(f, x)−F(fh, xh)
|F(f, x)|

≈ 1 · ε(rel)
f (xh) + ‖x‖ · f

′(x)
|f(x)|

· ε(rel)
x . (2.168)

Both equations are precise up to first order in ‖εx‖.

Proof. We find

F(f, x)−F(fh, xh) = F(f, x)−F(f, xh) + F(f, xh)−F(fh, xh)
= f(x)− f(xh) + f(xh)− fh(xh)
≈ f ′(x)εx + 1 · εf (xh)

using f(xh) = f(x) − f ′(x)εx + R(x) with rest term R(x) of order O(‖εx‖2) due to the
smoothness assumptions. The relative error follows using division by |f(x)|.

Thus, we find κ̃abs(f, x) := (‖f ′(x)‖, 1) and κ̃rel = (‖ ‖x‖f(x)f
′(x)‖, 1) as generalized

condition values for the evaluation9. The result yields the data error of fouter ◦ ~finner(x)
using F(fhouter, ~fhinner(x)). The parameter x of the inner function is exact and is not of
interest for the data error.
Our result complements the data error presented in [MgF07] in which higher order

error terms are handled as well. The upper bound derived in [MgF07] appears to involve
themixed first derivative of the outer function, ∂d

∂x1···∂xd f , instead of f ′, compare [MgF07].

9Note that the Gâteau derivative of F in direction of f is, indeed, the identity.
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In summary, the data error is characterized by the amplification of the inner error
which is of magnitude ‖f ′outer‖. The error of the outer function as such enters only with
factor 1; it will not be amplified.
In case we need a (finite) expansion of fhouter ◦ ~fhinner, we introduce a consistency error.

We propose to approximate fhouter◦ ~fhinner using a re–interpolation similar to the pointwise
function maps discussed in Section 2.3.2. Thus, we determine a grid Gresult and an in-
terpolant fhresult := IGresult [fhouter ◦ ~fhinner]. A naive approach to compute Gresult and fhresult
is to form the abstract composition fh,∗result and apply the adaptive interpolation proce-
dure of Algorithm 1 using the point evaluation routine of Lemma 2.2.2. But since each
evaluation fhresult(x) requires a nodal value ~fhinner(x), it is more cost–effective to compute
all these nodal values by means of the fast basis transformation (compare [MgF07]).
The complete procedure is shown in Algorithm 9. It is logically the same as our generic
refinement Algorithm 1; it only employs an optimized point evaluation. Thus, the al-
gorithm makes use of the fast transformation for the inner function(s), but it requires
the arbitrary point evaluation routine for the outer function. Note that we assumed
compatible domains, so no extrapolation for the outer function is necessary.

Algorithm 9 Adaptive Resolution of fhouter ◦ ~fhinner
Input: ~fhinner = (finner,j)j=1,...,m on grids Ginner,j
Input: fhouter
Input: Refinement target value ε = ε(abs) or ε = ε(rel)

Output: Grid Gresult and fhresult = IGresult [fhouter ◦ ~fhinner]
1: G(0)

result :=
⋃m
j=1Ginner,j // O(|~Ginner|)

2: i = 0
3: repeat
4: fhresult := Interpolate fh,∗result on G

(i)
result using Algorithm 10

// O(m|G(i)
result|nmouter)

5: G
(i+1)
result := refine G(i)

result based on fhresult up to ε // O(|G(i+1)
result|

6: i := i+ 1
7: until G

(i)
result \G

(i−1)
result = ∅

8: Gresult := G
(i)
result

// lines 2 – 8 ≡ refinement Algorithm 1 with special “set values”
9: return Gresult and fhresult

The consistency error depends on the smoothness of fouter ◦ ~finner, we can essentially
apply sparse grid interpolation error bounds provided it exhibits bounded second mixed
derivatives.
Let us see the approximate function concatenation in action. Our first example is the

already mentioned Gaussian: we use fouter(x) := exp(−x) and ~finner(~x) = ~xT~x. The
adaptive representations of fouter and ~finner are shown in Figure 2.13 (top left and top
right) together with their optimal grids. Since ~finner is inherently one–dimensional, its
grid uses only coefficients of level l = −1 for the hierarchical hat basis with constant
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Algorithm 10 Subroutine of Algorithm 9: Interpolate fhresult on given grid Gresult
Input: Gresult assuming Ginner,j ⊂ Gresult
Output: fhresult = IGresult [fhouter ◦ ~fhinner]
1: Interpolate all finner,j onto Gresult // O(m|Gresult|)
2: change results to nodal values nl,i,j := finner,j(xl,i) // O(m|Gresult|)
3: compute

(fhresult)l,i := fhouter(nl,i,1, . . . , nl,i,m) (2.169)

for all (l, i) ∈ Gresult // O(m|Gresult| · nmouter)
4: change fhresult to hierarchical basis // O(|Gresult|)
5: return fhresult

0 5 10
0

0.5

1

x

fhouter, error 3.5 · 10−4

−2 0 2 −2
0

20

5

10

x
y

~finner,h, error 3.1 · 10−5

−2 0 2 −2
0

20

1

x
y
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Figure 2.13: An example of fhouter ◦ ~fhinner with cheap input functions and expensive out-
put, in particular fouter(x) = exp(−x) and ~finner(x, y) = x2 + y2.

on the left boundary; the non–vanishing coefficients are also shown10. The result of
Algorithm 9 is shown in Figure 2.13 (right); it requires more degrees of freedom than
the low dimensional input grids.

A second example (with vector valued inner function) is shown in Figure 2.14: we
use the outer function fouter(x, y) = x2 + y2 and the inner function ~finner(x, y) =
(x2, exp(−4x) sin y)T defined on [0, 1] × [0, 2π]. We enabled grid sharing for compo-
nents of ~finner which explains why the respective grids displayed in Figure 2.14 are the
same. Again, the result requires more degrees of freedom.

10Actually, we determined the result using the space– and dimension adaptive routine of Section 4.3,
Algorithm 12.
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Figure 2.14: An example of fhouter ◦ ~fhinner for vector valued inner function and the com-
ponents fouter(x, y) = x2 + y2, ~finner,0(x, y) = x2 and ~finner,1(x, y) =
exp(−4x) sin y, computed on shared grids for the inner function.

2.3.4 Approximate Integral Transformation

We study a further operation on approximate function representations, namely the in-
tegral transformation map

g(x) = F
(
K, f

)
(x) =

∫
Ωy

K(x, y) · f(y) dy (2.170)

for a kernel function K : Ωx × Ωy → R defined on a rectangular product domain and
a function f : Ωy → R. The main idea is again to employ adaptive sparse grids to get
a compressed representation of both, K(·, ·) and f(·) and to combine these inputs to
compute the integral transformation. For theory on optimized sparse grid spaces for
integral transformations, we refer to [Kna00]. Our emphasize here is the algorithmic
realization of an adaptive collocation scheme based on sparse grid error indicators.
The motivation to compute an approximate integral transformation is to employ the

beneficial sparse grid complexity. Let us assume for the moment that the kernel can
be approximated with cost complexity |GK | = O(2nKn2d−1

K ) in dimension 2d = |x| +
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|y|. This would be the case for smooth kernels, discretized on a regular sparse grid in
dimension 2d with level nK . Furthermore, let us assume that f can be discretized on a
regular sparse grid of the same level, but on dimension d. Thus, f has cost complexity
N := |Gf | = O(2nKnd−1

K ). Since the approximate integral transformation has a runtime
complexity of O(|GK |), we can then expect to apply the integral transformation for a
quite general kernel in time O(|GK |) = O(2nKn2d−1

K ) = O(N · (logN)2d−1) if we neglect
the small lognK term. In particular, the special case d = 1 allows an approximate
general integral transformation in time O(N logN). This is to be compared with a
full grid approach for which we find a complexity of O(N2) for any dimension using
the same assumptions. Note that adaptive sparse grids have potential to allow similar
log–complexities even for irregular, perhaps singular kernels.
We propose to use an approach as described in Algorithm 11: the first step is to

represent fh(y) as |x| + |y| dimensional function. In the hierarchical hat basis with
constant on level −1, this does not introduce further grid points. Then, we employ the
pointwise approximate multiplication method of Algorithm 8 and integrate the result
exactly on slices along the y direction. Note that the formula for G(x) in line 4 of

Algorithm 11 Approximate Integral Transformation
Input: fh : Ωy → R, Ωy ⊂ R|y| a tensor product interval,
Input: Kh : Ωx × Ωy → R, Ωx ⊂ R|x| a tensor product interval,
Input: Refinement target value ε = ε(abs) or ε = ε(rel)

Output: Approximation gh(·) on g(x) =
∫
Ωy K

h(x, y) · fh(y) dy
1: compute F (x, y) := fh(y) using a trivial basis extension to dimension |x|+ |y|.
2: compute grid GR and R(x, y) := IεGR [K · F ] =

∑
(l,i)∈GR rl,iφl,i(x, y) using the adap-

tive pointwise multiplication Algorithm 8
(with obvious transformations to the unit cube for φl,i)

3: compute
glx,ix :=

∑
{(ly ,iy) | (lxly ,ixiy)∈GR}

rl,i

∫
Ωy

φly ,iy(y) dy (2.171)

for every possible value (lx, ix) ∈ G(x)
R with the x slice

G
(x)
R := {(lx, ix) | ∃(ly, iy) : (lxly, ixiy) ∈ GR}. (2.172)

The operation can be performed during one traversal through GR (visit every point,
integrate and multiply, then add the result to the correct output point).

4: define G(x̃) :=
∑

(lx,ix)∈G(x)
R

glx,ixφlx,ix(x̃)
5: compress G(·) with ε and return the result
Runtime: The runtime requirements are dominated by the computation of IεGR [K ·F ].

All other operations are linear inGR. One can expect |GR| = O(|GK |) for non–trivial
kernels, see in–text argumentation.

Algorithm 11 can be found by reordering summands of
∫
Ωy R(x, y) dy; the representation
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Figure 2.15: An example of
∫
K(x, y)f(y) dy for a non–smooth input function, f =

χ[−1/2,1/2] and a Gaussian convolution kernel.

is exact. Finally G(x) is represented in the same basis as R(·, ·). The method introduces
a consistency error for the re–interpolated multiplication. The data error depends on
the multiplication whereas the final integration as linear operation is well conditioned
(its condition number depends mainly on the domain size |Ωy|).
The approximate integral transformation relies on compressed representations of the

input functions K(·, ·) and f(·). Since any relevant kernel will depend on both, x and y,
we can expect its grid to be a relative good starting point for the interpolated product
R(x, y) = K(x, y) · F (x, y). In other words, we can expect that |GR| ≈ O(|GK |). The
runtime complexity is dominated by the product grid |GR|: multiplication, integration
and the final compression are all of complexity O(|GR|) and thus of complexity O(|GK |).
We apply the algorithm to some examples. Our first example uses the singular func-

tion f(x) = χ[−1/2,1/2](x) and the smooth convolution kernel K(x, y) = k(x − y) with
k(x) = N (0, 1/10)(x) where N (µ, σ) is the density of a normal distribution, N (µ, σ)(x) =

1√
2πd
√
|det(σ)|

· exp(−1
2(x − µ)Tσ−1(x − µ)) in one dimension. The approximations fh

and Kh together with the result are shown in Figure 2.15. The argument f is resolved
up to a maximum level of 20 and ε = 10−3, the same for K(·, ·). The input grid for f is
highly adapted; the grid for K is a sparse grid with few points away from the diagonal.
The result is again a smooth function.
Another example uses the same function f , together with k = χ[−1/2,1/2]. The result is

the hat function up to ε. It is displayed in Figure 2.16. Here, the diagonal singularity
of K(x, y) requires a lot of points; it has been computed up to a prescribed maximum
level. The resulting hat function is precise up to ε and requires a lot of points despite
the compression.
A further example uses the (arbitrary) singular kernel

K(x, y) = cosx cos y ·
{
− log(x− y) y < x
√
y − x y ≥ x,

(2.173)

evaluated at [0, π] and the function f as before, this time evaluated at [0, π] as well. It is
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Figure 2.16: An example of
∫
K(x, y)f(y) dy with box function f and box convolution

kernel k.
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Figure 2.17: An example of
∫
K(x, y)f(y) dy with the box function f = χ[−1/2,1/2] and

K(x, y) = cosx cos y ·
{
− log(x− y) y < x
√
y − x y ≥ x

.

shown in Figure 2.17. The kernel exhibits a jump and a square root singularity near the
diagonal and is resolved up to a prescribed maximum level. The transformed function
is continuous, however.
This completes our chapter about sparse grid basics. We will now apply sparse grids

to high dimensional problems, first on density approximation and in Chapter 4 on gen-
eralized dimension adaptive grids.
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3 Sparse Grids and Moderate Dimensional
Approximation – Two Case Studies

3.1 Overview and Motivation

In this chapter, we study the performance of sparse grid methods using two case studies.
Our first case study is to analyze the approximation of unimodal probability density
functions in high dimensions, a task motivated by the Fokker–Planck–Equation. This
second order diffusion equation describes the time–dependent behavior of a probability
density function for stochastic processes, i.e. it is a transport equation for (coupled)
particles subjected to fluctuating forces on a very small time scale. This fluctuation is
modelled as “random noise”. Applications range from kinetic models for non–Newtonian
fluids like polymeric solutions [DLO07, Kne08] over engineering systems subjected to
environmental load (wind, water etc.) [WB00] up to models for financial engineering,
see [Hol08] and the references therein. These stochastic methods can be simulated by
means of sampling methods of Monte–Carlo type or by approximation of the probability
density function (see the textbook of Öttinger, [Ött96]). Our case study analyzes sparse
grid approximation properties of the normal distribution which is probably the most
important probability density in this area: white noise is defined to be Gaussian, so
the normal distribution solves the Fokker–Planck–Equation for the case of linear trans-
port coefficients and white noise forces when the particle’s initial position and velocity
is known (Ornstein–Uhlenbeck process, we come back to this specific Fokker–Planck–
Equation in Section 3.2.5). If the transport term vanishes, this resembles the well–known
diffusion equation with Dirac delta as initial value. A linear approximation method which
can solve these prototypic equations can probably represent other unimodal densities as
well. Conversely, an efficient approximation of the Gaussian is a necessary condition:
if its approximation requires exponential cost with respect to d, other densities will be
even more involved. Furthermore, the Gaussian constitutes a common initial value for
Fokker–Planck–Equations which needs to be resolved properly. Our aim for the case
study is to analyze the approximation properties with respect to the convergence rate
and the dimension–dependent factors. Since we know from Lemma 2.1.9 that the con-
vergence rate is independent of the dimension up to log terms, it remains to analyze
dimension–dependent factors. These, however, will depend exponentially on d due to
the tensor product structure (in domain, approximant, log terms and ansatz space), so
we can only hope that these coefficients do not grow exponentially. The result of our
analysis in both theory and practice is that the factors grow like about 10d: we need
effectively 10 times more degrees of freedom to get the same relative accuracy in one
dimension larger. While this is still substantially better than full grid methods, it clearly
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restricts the feasible dimension; even d = 5 might already be quite involved.
Results for the first case study are related to the area of Information Based Complex-

ity: this relatively young branch studies the minimum number of operations required
for any algorithm to compute an approximate solution up to prescribed error ε. In-
formation Based Complexity always states results for problem classes, not particular
problem instances (the worst element of a complete function space), involving in partic-
ular dimension–dependent coefficients and convergence rates. We survey related topics
of IBC and their relation to our case study in Section 3.2.4.
Our second case study is to approximate functions with more structure: we analyze

functions whose dynamics is essentially oriented along the axes. Sparse grids are specif-
ically strong for such kind of structure and we present results of adaptive sparse grids
applied to functions with jumps along axis parallel manifolds. As long as the dynamics
are essentially parallel to the axes, the complexity of our anisotropic ansatz spaces allows
considerable savings compared to isotropic (even adaptive) methods.

3.2 Case Study: Density Approximation and the Normal
Distribution

Our case study on approximation of the density of the normal distribution consists of
two parts: the first is to collect all dimension–dependent factors (domain transformation,
method coefficients, relative errors and regularity norms) and instantiate the interpola-
tion error bounds. The second step is to compute interpolation errors a posteriori using
numerical experiments, allowing us to formulate both, limitations and gains of sparse
grids for density approximation.
To simplify the notation in this section, we use the term “normal distribution” to refer

to the probability density function of the normal distribution.

3.2.1 Interpolation Error Estimates

Our goal in this section is to get qualitative results about the dimension dependent
coefficients for the special case of parameter dependent normal distributions which are
defined on Rd. To this end, we use a domain truncation followed by a linear coordinate
transformation to the unit cube and track the resulting dimension dependent coeffi-
cients. Due to the bounded integral, every probability density on Rd has some decay for
‖x‖ → ∞ which justifies to use a bounding rectangle of proper size (measured in the
norm of interest). So, choosing a rectangular domain Ω ⊂ Rd and setting up a linear
transformation allows to use sparse grids. Since the density function decays rapidly
towards the boundary, we impose vanishing boundary conditions on the boundary and
thereby reduce the grid complexity considerably (a sparse grid with boundary nodes has
about a factor of 3d more points than a sparse grid without boundary points, compare
Lemma 2.1.2). Of course, one might also think about nonlinear mappings from Rd to the
unit cube [0, 1]d, perhaps chosen to match the function which should be approximated.
We will discuss such efforts in Section 3.2.3.
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3.2 Case Study: Density Approximation and the Normal Distribution

We restrict ourselves to normal distributions with diagonal covariance matrix, i.e.
to a tensor product of one–dimensional normal distributions f(x) := N (µ,Σ)(x) with
Σ = diag(σ1, . . . , σd) and

N (µ,Σ)(x) = 1
√

2πd
√
|det(Σ)|

· exp(−1
2
(x− µ)TΣ−1(x− µ)) (3.1)

=
d∏
i=1
N (µi, σi)(xi) =:

d∏
i=1

fi(xi) (3.2)

with fi := N (µi, σi) = 1√
2πσi

exp(−1/2(x − µi)2/σi). Since the variance σ is essentially
the width of N (µ, σ), the truncated domain size will depend on σ whereas its position
will depend on µ. We express the truncated domain using multiples of the standard
deviations √σi,

Ω :=
d⊗
i=1

[µi − ki
√
σi, µi + ki

√
σi] (3.3)

and introduce truncation parameters ki > 0. These parameters control the truncation
error. It turns out that a single parameter ki ≡ k is enough to get a balanced truncation
error.
Since the shift µ will be eliminated by the transformation to the unit cube, we assume

µ = 0 without loss of generality. With the same argument, we use the symmetrically
shifted unit cube [−1/2, 1/2]d instead of [0, 1]d to simplify the notation. This leads to the
linear transformation

φ : [−1/2, 1/2]d → Ω =
d⊗
i=1

[−k
√
σi, k
√
σi], (3.4)

φi(xi) = 2k
√
σixi (3.5)

and we get the transformed tensor product factors

fi ◦ φi(xi) = 1√
2πσi

exp(−2k2x2
i ). (3.6)

We are now in a position to insert f ◦ φ into interpolation error bounds known for
functions on the unit cube, keeping in mind that we seek for approximations on Rd. We
start by introducing the following notation for intermediate steps:

Our goal is to approximate f : Rd → R.

1. We truncate Rd to Ω and introduce

f cutΩ (x) := f(x) · χΩ(x) =
{
f(x) x ∈ Ω,
0 otherwise.

(3.7)

2. We transform to the unit cube using φ : [−1/2, 1/2]d → Ω and denote the transformed
function by

f[−1/2,1/2]d := f ◦ φ : [−1/2, 1/2]d → R. (3.8)
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3. Our approximation is performed on the unit cube, using the superscript ‘h’,

fh[−1/2,1/2]d := I[f[−1/2,1/2]d ], (3.9)

where I[·] denotes the (sparse grid) interpolation operator. As already motivated,
we use vanishing boundary conditions on ∂[−1/2, 1/2]d to reduce the grid complexity.
This step yields a jump of one mesh width near the boundary.

4. We transform back and get

fhΩ := fh[−1/2,1/2]d ◦ φ
−1 : Ω→ R (3.10)

and complete the definition to Rd using zeros,

fh(x) :=
{
fhΩ(x) x ∈ Ω,
0 otherwise.

(3.11)

5. Finally, we estimate the error
‖f − fh‖ (3.12)

for the L2 norm ‖·‖L2[Rd] and the L∞ norm ‖·‖L∞[Rd]. Furthermore, we provide
estimates on the energy norm restricted to the truncated domain,

‖g‖A[Ω] :=
( d∑
i=1
‖ ∂g
∂xi
‖2L2[Ω]

)1/2
. (3.13)

Measuring the energy norm requires attention due to the jump of one mesh width
near the boundary: in the limit of vanishing mesh width, the error becomes un-
bounded. Consequently, convergence rates only hold up to a certain h, then the
jump dominates.

The norm evaluation on Ω involves the inverse transformation φ−1 and yields dimen-
sion dependent coefficients

‖g ◦ φ−1‖2L2[Ω] =
d∏
i=1

(2k
√
σi)‖g‖2L2[−1/2,1/2]d , (3.14)

‖g ◦ φ−1‖L∞[Ω] = ‖g‖L∞[−1/2,1/2]d , (3.15)

‖g ◦ φ−1‖2A[Ω] =
d∑
i=1
‖ ∂
∂xi

(g ◦ φ−1)‖2L2[Ω] (3.16)

=
d∑
i=1

(∏
j 6=i 2k

√
σj

2k√σi

)
‖ ∂
∂xi

g‖2L2[−1/2,1/2]d (3.17)

≤ (2k
√
σ)d−1 · (2k√σ)−1‖g‖2A[−1/2,1/2]d (3.18)

where we define σ := min{σi} and σ := max{σi}.
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The norm evaluation on Rd finally requires to measure the domain truncation error.
It holds with the notation fh(x) = χΩ(x)fhΩ(x) for the L2 norm

‖f − fh‖2L2[Rd] =
∫
Rd

(f2 − 2ffh + (fh)2) dx (3.19)

=
∫
Rd

f2 dx −
∫
Rd

2ffh dx +
∫
Rd

(fh)2 dx (3.20)

=
∫
Rd

f2 dx −
∫
Ω

f2 dx +
∫
Ω

f2 dx −
∫
Ω

2ffh dx +
∫
Ω

(fh)2 dx (3.21)

=
∫
Rd

f2 dx −
∫
Ω

f2 dx +
∫
Ω

(f − fhΩ)2 dx. (3.22)

Note that all involved integrals exist. The case fh = f cutΩ yields the squared L2 trunca-
tion error which simplifies to

‖f − f cutΩ ‖2L2[Rd] =
∫
Rd

f2 dx −
∫
Ω

f2 dx =
d∏
i=1

(2
√
πσi)−1(1− erf(k)d) (3.23)

where erf(k) = 2/π
∫ k
0 e
−t2 dt denotes the error function [AS65, Chapter 7]. Division by

‖f‖L2[Rd] yields the relative L2 truncation error

‖f − f cutΩ ‖L2[Rd]
‖f‖L2[Rd]

=
√

1− erf(k)d, (3.24)

using

‖f‖L2[Rd] =
d∏
i=1

(2−1/2(πσi)−1/4). (3.25)

We also note the function norms on Rd for

‖f‖L∞[Rd] =
d∏
i=1

(2πσi)−1/2, (3.26)

‖ ∂
∂xi

f‖2L2[Rd] = (4
√
πσ

3/2
i )−1∏

j 6=i
(2√πσj)−1 (3.27)

and thus

‖f‖A[Rd] =
( d∑
i=1

(4
√
πσ

3/2
i )−1∏

j 6=i
(2√πσj)−1)1/2 (3.28)

which can be bounded by
√
d2−1σ−1/2(2

√
πσ)−(d−1)/2 ≤ ‖f‖A[Rd] ≤

√
d2−1σ−1/2(2√πσ)−(d−1)/2. (3.29)

The domain truncation error measured in the energy norm can be obtained similarly1
1Note that the undefined gradient poses no problems since it occurs only on a set of measure 0.
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to (3.19) to (3.22) as long as no numerical error is involved, i.e. as long as fh = f cutΩ . A
numerical error leads to a jump of one mesh width which is unbounded in the limit of
vanishing mesh width. The domain truncation error can be expressed by

‖f − f cutΩ ‖2A[Rd] = ‖f‖2A[Rd] − ‖f‖
2
A[Ω]; (3.30)

its dependence on the cut radius k is shown in Figure 3.1 (right) and is discussed at the
end of this section.
For the L∞ error on Rd, we get

‖f − fh‖L∞[Rd] = max{‖f − f cutΩ ‖L∞[Rd], ‖f − fhΩ‖L∞[Ω]}. (3.31)

We will now plug the regularity norm of f ◦ φ into the interpolation error bounds of
Lemma 2.1.9. To compute |f ◦ φ|2,2, we need to integrate exp(−x2) over the compact
domain Ω – which cannot be simplified analytically. For reasons of simplicity, we com-
pute the L2 regularity norm on Rd, neglecting the domain truncation (but using the
transformation φ). This yields for fi ◦ φi(xi) = (2πσi)−1/2 exp(−2k2x2

i ) the regularity
norms

|f ◦ φ|2,2 = ‖ ∂2d

∂2
x1 · · · ∂2

xd

(f ◦ φ)‖L2[−1/2,1/2]d ≤ ‖
∂2d

∂2
x1 · · · ∂2

xd

(f ◦ φ)‖L2[Rd] (3.32)

=
d∏
i=1

√
3k3/2

√
σiπ1/4 ≤

(√3k3/2
√
σπ1/4

)d
, (3.33)

|f ◦ φ|2,∞ = ‖ ∂2d

∂2
x1 · · · ∂2

xd

(f ◦ φ)‖L∞[−1/2,1/2]d (3.34)

=
d∏
i=1

4k2
√

2πσi
≤
( 4k2
√

2πσ
)d
. (3.35)

Interpolation error bounds on regular sparse grids

The interpolation error of our normal distribution f on regular sparse grids, measured
using the transformation rules (3.14) – (3.18) and the transformed regularity semi norms
|f ◦ φ|2,2 and/or |f ◦ φ|2,∞ can be simplified to

‖f − fhΩ‖A[Ω] ≤
√

(2k
√
σ)d−1/(2k√σ) ‖f ◦ φ− fh[−1/2,1/2]d‖A[−1/2,1/2]d (3.36)

≤
√

(2k
√
σ)d−1/(2k√σ) d|f ◦ φ|2,∞

2 · 3(d−1)/2 · 4d−1 2−n (3.37)

= 2−n
(
k5/2σ1/4σ−1/2(3π)−1/2)dk−1(σσ)−1/4√3 · d (3.38)

⇒
‖f − fhΩ‖A[Ω]
‖f‖A[Rd]

≤ 2−n
(√

2/3 · k5/2(σ/σ)1/2π−1/4)d · √6d · k−1σ−1/4π−1/4. (3.39)

The quotient of largest and smallest variance, σ/σ ≥ 1, occurs since we estimate the
transformation coefficient and the regularity norm from above but ‖f‖A[Rd] from below.
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Experiments suggest that the relative error is actually independent of σi at all, as we will
also see for L2 and L∞ below. Let us stress again that we do not really have vanishing
boundary conditions – instead, the jump over one mesh width near the boundary will
yield an unbounded energy error for h → 0. We expect these estimates to hold as long
as the mesh width is not too fine.
In a similar way, we get error bounds for the regular sparse grid interpolant using L2

and L∞ norms, although we will have the log term A(d, n) shown in (2.73). It holds

‖f − fhΩ‖L∞[Ω] = ‖f ◦ φ− fh[−1/2,1/2]d‖L∞[−1/2,1/2]d (3.40)

≤ 2−2n2A(d, n)
(k2

2
)d d∏

i=1
(2πσi)−1/2 (3.41)

for the L∞ norm; its relative error is thus

‖f − fhΩ‖L∞[Ω]
‖f‖L∞[Rd]

≤ 2−2nA(d, n) · 2 ·
(k2

2
)d
. (3.42)

Similarly, we find the L2 error bound

‖f − fhΩ‖L2[Ω] =

√√√√ d∏
i=1

(2k
√
σi)‖f ◦ φ− fh[−1/2,1/2]d‖L2[−1/2,1/2]d (3.43)

≤ 2−2n · 2 ·A(d, n) · (2−16−1/2π−1/4k2)d
d∏
i=1

σ
−1/4
i (3.44)

and its relative counterpart

‖f − fhΩ‖L2[Ω]
‖f‖L2[Rd]

≤ 2−2n · 2 ·A(d, n)(2−13−1/2k2)d. (3.45)

We see that L2 and L∞ relative discretization and truncation errors are both independent
of µi and σi, although they depend on the cut radius parameter k. We have effectively
eliminated σi by coupling it to the domain size.
However, it becomes clear that each involved upper bound grows exponentially with d

unless the only remaining parameter k is very small. But since k denotes multiples
of the standard deviation √σi in each direction, there is an intuitive measure on its
magnitude: for dimension d = 1, k = 1 discards 31.7% of the probability mass (i.e.
truncation error in L1 norm), k = 2 discards 4.5% of its mass. For larger dimensions,
the losses in probability mass become more serious: d = 7 and k = 1 looses already
93%, d = 7 and k = 2 looses 28%. Values of k ∈ [3, 5] yield truncation errors roughly
between 10−3 and 10−6 in both L1 and relative L2 norm – but these values already lead
to exponential growth in the interpolation bounds. Fortunately, the cut error does not
depend too strongly on the dimension as can be seen in Figure 3.1 (left) for the L1 cut
error (probability mass), Figure 3.1 (middle) for the relative L2 cut error and Figure 3.1
(right) for the relative energy cut error if we silently ignore the jump on the boundary.
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Figure 3.1: Relative truncation errors in L1, L2 and energy norm (from left to right).
The energy norm computation neglects the jump on the boundary.

Bounds For Energy Optimized Spaces

So far, we have discretized the function on Ω by means of classical sparse grids which
are optimal with respect to L2 and L∞ among all functions with bounded second mixed
derivatives as discussed in Section 2.1.3. We will now analyze the energy norm optimal
variant of sparse grids, i.e. the space VE of Definition 2.1.1. As before, we assume
vanishing boundary conditions and neglect the energy norm truncation error outside
of Ω.
The energy norm error for energy optimal sparse grids is bounded by 2 · (1

2 + (5
2)d−1)

times the energy norm estimate(s) of Lemma 2.1.9 for classical sparse grids, compare
Lemma 2.1.11. Consequently, we get

‖f − fhΩ‖A[Ω] ≤
√

(2k
√
σ)d−1/(2k√σ) d · |f ◦ φ|2,2

2 · 3(d−1)/2 · 4d−1 2−n · 2
(1
2

+
(5
2
)d−1) (3.46)

≤ 2−n
(
2−5/2k2σ−1/2σ1/4π−1/4)d(5 · 2d + 4 · 5d

)
(3.47)

· 5−1√3 · d · k−1 · (σσ)−1/4. (3.48)

The relative error in Ω is bounded by

‖f − fhΩ‖A[Ω]
‖f‖A[Rd]

≤ 2−n
(
2−2k2(σ/σ)1/2

)d(5 · 2d + 4 · 5d
)
· 5−1 ·

√
6d · k−1(σπ)−1/4. (3.49)

Thus, the energy sparse grid error bound grows exponentially in d, similar to classical
sparse grids. The cost complexity for energy sparse grids is

N := |VE | ≤ 2nd
2
(
1− 2−2/3)−d (3.50)

for large n, compare Lemma 2.1.10. Similarly to the approach in [Gri06], we can express
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the error ε in terms of the cost N in form of the ε complexity, which yields

ε(N) ≤ N−1(2−1/2(4− 2 · 21/3)−1k2 σ−1/2 σ1/4 π−1/4)d(5 · 2d + 4 · 5d
)

· 10−1 ·
√

3 · d2 · k−1 · (σσ)−1/4. (3.51)

The relative ε complexity is thus

ε(N)
‖f‖A[Rd]

≤ N−1((4− 2 · 21/3)−1k2(σ/σ)1/2
)d(5 · 2d + 4 · 5d

)
·
√

3/2 · 5−1d3/2k−1σ−1/4π−1/4

≈ N−1(0.68k2(σ/σ)1/2
)d(5 · 2d + 4 · 5d

)
· Poly(d, k, σ, σ). (3.52)

The alternative energy error bound involving |f ◦ φ|2,∞ (compare (2.82) and (2.83))
yields the slightly different bounds

ε(N) ≤ N−1(3−1/2(2− 21/3)−1k5/2 σ−1/2 σ1/4 π1/2)d(5 · 2d + 4 · 5d
)

· 10−1 ·
√

3 · d2 · k−1 · (σσ)−1/4 (3.53)

and

ε(N)
‖f‖A[Rd]

≤ N−1((3
2
(2− 21/3))−1k5/2π−1/4(σ/σ)1/2

)d(5 · 2d + 4 · 5d
)

· 5−1 · (3/2)1/2d3/2k−1σ−1/4π−1/4

≈ N−1(0.68k5/2(σ/σ)1/2
)d(5 · 2d + 4 · 5d

)
Poly(d, k, σ, σ) (3.54)

where Poly(d, k, σ, σ) depends only polynomially on its arguments. Thus, the overall ε
complexity grows when applied to the normal distribution on Ω, even though the method
coefficients as such (i.e. without transformation and not including the regularity norm)
decrease exponentially (compare [Gri06]).
We summarize the interpolation error bounds as follows. The first thing to note is that

relative L∞ and L2 errors can be bounded independently of the position and the variance.
The reason for this parameter invariance is the domain size: a large variance requires a
large domain whereas a small variance needs a small domain to get the same truncation
error. The results for the energy norm are the same for the isotropic Gaussian (the same
variance for every direction). Our upper bounds allow an exponential increase in the
energy norm error which contains the coefficient

(
σ
σ

)d ≥ 1. Moreover, we see exponential
growth in each of the analyzed coefficients, there are no cut radii of interest for which
exponential growth can be avoided.
In short: theory suggests that the relative error approximation of Gaussians with

sparse grids still requires exponential effort (although “only” in the order coefficients,
i.e. of the form Cd with C > 1). This holds also for the energy norm ε complexity, so
we do not expect considerable improvements for the ε complexity of L2 optimal sparse
grids (whose cost complexity is more difficult to analyze due to the log terms).
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3.2.2 Error Estimation Using Numerical Experiments
We will now measure interpolation errors to complement the upper bounds from theory,
especially for the cost/error relation which is hard to analyze for L2 optimal sparse
grids. We can restrict the study to the standard normal distribution with variance 1
and mean 0 since relative errors are parameter independent as we have seen above.
We show error measurements for the error on Rd, especially for the relative L2 norm

‖f − fh‖L2[Rd]
‖f‖L2[Rd]

=
(‖f − f cutΩ ‖2L2[Rd]

‖f‖2
L2[Rd]

+
‖f − fhΩ‖2L2[Ω]
‖f‖2

L2[Rd]

)1/2
. (3.55)

Note that

‖f − fh‖L∞[Rd]
‖f‖L∞[Rd]

= max
{‖f − f cutΩ ‖L∞[Rd]

‖f‖L∞[Rd]
,
‖f − fhΩ‖L∞[Ω]
‖f‖L∞[Rd]

}
(3.56)

requires too much computational effort for reliable measurements. We will also consider
the relative energy norm discretization error, i.e. the error on Ω only,

‖f − fhΩ‖A[Ω]
‖f‖A[Rd]

, (3.57)

in regimes where the jump on ∂Ω will not be seen.
Since the relative truncation error depends only on k if we hold d fixed, and the relative

discretization error depends on the discretization level n and k, an optimal setting will
balance discretization- and truncation errors using n = n(k(ε, d), ε, d) and k = k(ε, d) for
a fixed, prescribed relative accuracy ε. This can be realized using several possibilities:

1. An a priori functional relation for n and k, relying on theoretical error bounds,

2. A sub–optimal choice which chooses a fixed, upper bound for k which is large
enough such that the truncation error drops below ε, combined with a choice
n = n(d, ε) which does not really consider k,

3. A posteriori grid optimization which determines n (or, more generally, the degrees
of freedom) in dependence of the target error ε and k(d, ε),

4. A posteriori adaptive optimization which chooses both, the degrees of freedom and
k automatically.

The choice 1.) is the most specialized one as it requires the most knowledge about the
function f (at least upper bounds for discretization and truncation error); its generaliza-
tion to other functions is thus involved. Choice 2.) requires insight about the cut error,
i.e. insight into the decay properties of f , and yields sub–optimal (but maybe still accept-
able) results since n is chosen using some rule–of–thumb. Choice 3.) also requires some
insight into the truncation error but optimizes the discretization error (at the cost of
more programming effort a refinement loop like Algorithm 1, compare page 33) whereas
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choice 4.) requires almost no knowledge at the cost of (probably) one further refinement
loop to optimize k (and thus, the domain Ω).
We believe that choices 2.) and 3.) have the highest practical value: our initial mo-

tivation was to approximate solutions of the Fokker Planck Equation which provides
knowledge about the initial value’s decay properties and (hopefully) a good guess for an
upper bound of the domain size Ω. Then, choices 2.) and 3.) can be used to distribute
the degrees of freedom (or the level n) “properly” on Ω to reduce unnecessary work.
Note that adaptive refinement in 3.) has the purpose to balance discretization and cut
errors, i.e. to improve the pre-asymptotics only. Its asymptotic convergence rate will be
the same. Here, the Fokker Planck Equation also introduces the parameter time, i.e. the
degrees of freedom should be chosen differently for different times in such a context.
We are going to analyze choices 1.), 2.) and 3.) for our model density where we believe

that choices 2.) and 3.) have model character and allow qualitative generalizations to
other unimodal types of densities as well.

Description of the Methods

Clearly, our choice 2.) is the most simple to realize: we fix the domain of interest
somehow (by choosing k) and compute the sparse grid interpolant on a regular sparse
grid of level n. The choice of k yields fixed coefficients in the error bounds, so the
expected convergence rate is clear from theory (although the choice may be sub–optimal
with respect to the dimension dependent coefficients).
The evaluation of error norms requires some effort: one possible solution is to inter-

polate the reference solution on a “very fine” grid and compute the exact error against
this approximation – but such an attempt might affect the order coefficients which we
are going to analyze, especially for higher dimensions where it might not be feasible to
compute the fine resolution. For this reason, we employ a different method: for the L2
discretization error, we use the identity

‖f ◦ φ− fh[−1/2,1/2]d‖
2
L2[−1/2,1/2]d = ‖f ◦ φ‖2L2[−1/2,1/2]d

− 2(f ◦ φ, fh[−1/2,1/2]d) + ‖fh[−1/2,1/2]d‖
2
L2[−1/2,1/2]d (3.58)

and compute each single summand separately: the first summand is known analytically
and the last one is f̄TMf̄ where f̄ is the coefficient vector of fh[−1/2,1/2]d and M the mass
matrix. This matrix vector product can be computed in linear time, without additional
error, see Section 2.2.2. The L2 inner product (f ◦ φ, fh[−1/2,1/2]d) can be computed to
very high precision as sums of one–dimensional integrals since both parts are (sums
of) tensor product functions. Thus, we only need to compute one–dimensional integrals
of fi ◦ φi against piecewise linear spline functions which can even be computed up to
machine precision. However, every numerical realization of formula (3.58) will suffer
from cancellation because we subtract numbers of similar magnitude. In other words:
we will loose relative precision, especially as the error f ◦φ−fh[−1/2,1/2]d becomes small. We
argue that we only need about three significant digits: the difference between 1.23 ·10−6

and 1.234 · 10−6 is negligible for post-processing. However, the absolute precision (the
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exponent) is important. This is exactly what (3.58) allows – until the error drops below,
say 10−7. This is perfectly acceptable for low order splines.
Note that the same idea can be applied to energy norm computations as well, with

the same features and the same restrictions.
However, the computations of ‖·‖L∞ cannot be realized without spending a lot of point

evaluations; either on a (sparse) grid or using random samples. In either case, only huge
numbers of point evaluations yield precise error measurements. For this reason, we
restrict ourselves to the L2 and energy norms.
The balancing approach 1.) can be realized using our interpolation– and truncation

error bounds: we fix the desired accuracy ε, compute the cut radius k using the truncation
formula (3.24),

ε =
‖f − f cuth ‖L2[Rd]
‖f‖L2[Rd]

=
√

1− erf(k)d (3.59)

and insert the resulting k = k(ε, d) into the interpolation error bounds. For L2, this can
be simplified to

ε :=
‖f − fhΩ‖L2[Ω]
‖f‖L2[Rd]

≤̃ 2−2n(k2/2)d (3.60)

where the ‘≤̃’ indicates that we neglected the log term nd−1 to simplify the approach.
Then, we compute n = n(k(ε, d), ε, d) which yields

n(k(ε, d), ε, d) ≈
⌊
−1

2
log2

(
ε

(k(ε, d)2/2)2

)⌋
(3.61)

where we have chosen the (optimistic) choice of the next lower level number.
The adaptive balancing method 3.) has been realized by means of prewavelet adap-

tivity: every wavelet coefficient, weighted with its relative L2 norm of the basis function
is used as error indicator. Coefficients which exceed a prescribed limit are refined. This
yields a subset of regular sparse grids. The approach can be carried out as refinement
loop of the form refine, recompute wavelet coefficients, estimate again and iterate until
no new points have been inserted, compare Algorithm 1 on page 33. Note that a pos-
teriori wavelet compression instead of additive refinement yields more information as
the interpolant created on the resulting grid, since information of fine mesh widths is
still contained in remaining basis coefficients. A fair comparison of interpolation errors
requires to use only the interpolant on an (probably optimally chosen) grid, not more.

Numerical Estimation of Dimension Dependence

Figure 3.2 shows the resulting relation between degrees of freedom and the associated
interpolation error of our model problem for dimensions d = 1 (red), d = 2 (blue), d = 3
(black) up to d = 7. For each dimension, we see the results for fixed domain parameter
k = 4.9 with the circle marker, results for the a priori coupling of k and d according
to (3.61) with the square markers and a posteriori grid optimization combined with fixed
k = 4.9 drawn with triangle markers. As expected, the unbalanced case is sub–optimal
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Figure 3.2: Measurement of relative L2 errors on regular sparse grids with fixed k, regular
sparse grids with coupled k and n according to (3.61) and adaptive sparse
grids starting from fixed k. Same dimension yields the same color. Same
method yields the same plot marker. The line for ε = 1 · 10−3 is analyzed in
Figure 3.3.
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Figure 3.3: Degrees of freedom to achieve a fixed relative precision of ε = 1 · 10−3 com-
puted from Figure 3.2 (left) and their semilogarithmic slopes for increasing d
(right).

and yields inferior results compared to the other methods. Nevertheless, the slopes2 have
the expected order for fixed k. We also see that a posteriori grid optimization yields the
predicted slopes since the function is smooth and we only attempt to compensate for the
domain truncation. The a priori coupling of n and k finally yields higher accuracy for less
degrees of freedom compared to the unbalanced case, and its cost/gain ratio is somewhat
between the adaptive and the unbalanced case. Note that it becomes worse for larger
dimensions which has to be accounted for the log term. Further post processing reveals
that for d ≤ 5, the quotient between discretization and truncation error is between 1 and
2 whereas for d = 7, the truncation error is a factor of seven larger than the discretization
error. This indicates that we spent about one or two levels too much here.
But despite the improved balancing, the results in Figure 3.2 exhibit the same qualita-

tive behavior as indicated by our theoretical error bounds: the cost/gain ratio becomes
worse for increasing dimension. If we hold the error fixed at a prescribed ε and collect
the degrees of freedom required for such an error as intersections of our plot lines with
a line parallel to the x axis passing through ε, we get Figure 3.3. Here we choose the
fixed relative L2 error ε = 10−3.
The lines in Figure 3.3 are almost parallel with slope 0.9 ≤ m ≤ 1 in the semilog-

arithmic plot. The figure uses a logarithmic base of 10, which we emphasize in the
following slope computations using the “x base 10” notation. Thus, to get a relative L2
interpolation error of ε = 10−3 for our model problem of an isotropic Gaussian, we need
N(d; ε) = 10m·d · C degrees of freedom. From Figure 3.3 (right), we find experimental
slopes of approximately m ≈ 1 base 10, with tendency to become slightly smaller for
increasing d for all three methods. Thus, we need 10 times more degrees of freedom for

2The electronic version of this document supports to drag-and-drop into the figure to compute slopes.
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Figure 3.4: Best approximation of a normal distribution N (0, 1) obtained with respect
to L2 inner products (left) and energy norm (right). Both measure the L2
error, rely on adaptive refinement, and use the domain [−4.9, 4.9]d.

the same problem posed in one dimension larger for fixed ε = 10−3.
Speaking in terms of sparse grid levels n instead of degrees of freedom N , the experi-

ments always use sparse grid level n = 1 as first data point (i.e. 100 degrees of freedom),
followed by level step sizes of 1. Thus, the fixed error line requires about n = 6 for d = 1,
n = 8 for d = 2, and n = 10 for d = 3 which can be found by counting data points in
Figure 3.2.
Note that the rule of thumb “cost factor 10 for increasing d” does not degenerate

exponentially for smaller ε since only the logarithmic terms in our error estimates depend
exponentially on d. If we omit the logarithmic terms to a theoretical justification for
our rule of thumb, we have N = 2n+c1·d degrees of freedom with a cost constant c1
(including logs, it would have been O(2nnd−12C·d) with a different constant C) and an
error ε = 2−2n+c2·d with error constant c2 (again, this would be of order O(2−2nnd−12C·d)
with logs). Thus, we can eliminate n to get the rule of thumb N = ε−1/22(c1+c2/2)·d where
we got experimentally 2(c1+c2/2)·d ≈ 10d. Thus, the dependence of ε does not degenerate
exponentially with d and we find that about 10 times more degrees of freedom are
necessary to increase the dimension by 1 and maintain the same relative L2 error.
For the sake of completeness, we document the effect also for best approximation: Fig-

ure 3.4 (left) shows similar results obtained by adaptive L2 best approximation. They
exhibit the same fan–like structure indicating exponentially growing order coefficients.
Figure 3.4 (right) shows the results obtained by means of energy norm best approxima-
tion (a Galerkin method using techniques of [Feu05]) which is related to solvers for PDEs.
It exhibits similar exponential growth like interpolation and L2 best approximation with
respect to its coefficients.
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Figure 3.5: Degrees of freedom to achieve a fixed relative precision of ε = 8 · 10−3 com-
puted from Figure 3.2 and for a full grid method (left) and the associated
semilogarithmic slopes (right).

We summarize that sparse grid approximation of the normal distribution is still sub-
dued by the “curse of dimension” which manifests itself in the complexity coefficients.
This raises the question in how far sparse grids are superior to classical full grids. We

complement our study with a short experiment with full grids, carried out with brute
force up to 109 degrees of freedom in dimension d = 5: we compute the degrees of
freedom of a full grid method required to get a relative L2 error of ε and compare the
resulting curve with the one for sparse grids (and the same ε). Before we discuss the
experiment, we summarize well known results about their cost/gain relation. For our
dyadic mesh width h = 2−n, we have N = 2n·d degrees of freedom which achieve an
accuracy of the form ε = 2−2n+c2·d, again with a generic error constant c2, measured
in the relative L2 norm as before (neglecting non–exponential d dependent factors and
collecting any occurring exponential coefficient in c2). Elimination of n yields the full
grid ε complexity

N = ε−d/221/2c2·d2 . (3.62)

Note that we do not have the mix regularity norm here, only the H2 norm enters the
regularity, so c2 can be expected to be less than the one of sparse grids. The ε−d/2 term
is a severe exponential degeneration of ε with d as opposed to sparse grids. Let us turn
to the experimental results when we set a fixed relative error ε = 8 · 10−3: we compute
the required degrees of freedom to achieve this relative error for our three sparse grid
variants and classical full grids (without truncation error balancing). The result is shown
in Figure 3.5. The slope of the sparse grid curves is again in the range 0.8 ≤ m ≤ 1 base
10 for all our variants whereas the full grid complexity grows linearly with slope 2 base
10. The linear growth indicates c2 = 0 (or at least very small) in (3.62). Thus, we need
about 100 times more degrees of freedom for one more dimension (100 is the number
of points to achieve accuracy 8 · 10−3 in one dimension). This is to be compared with
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10 times more degrees of freedom for any of the sparse grid variants. Due to the ε−d/2
term, this relation becomes worse with smaller ε. In this respect, sparse grids reduce
the effects of the curse of dimension and increase the number of dimensions for which
computer experiments become feasible when we consider functions like the Gaussian.
So far, we have only considered L2 (or L∞) optimal sparse grids. We will now show

that energy norm optimized sparse grids exhibit almost the same factor m ≈ 1 base 10 of
exponential growth as their L2 optimal relatives. As already mentioned, the energy error
on Rd for our simple truncation method is unbounded due to the jump on ∂Ω. Since
this could be fixed by a simple smoothing, we neglect this effect and measure errors in
regimes which are barely affected: we compute the energy norm error on Ω,

ε =
‖f − fhΩ‖A[Ω]
‖f‖A[Rd]

, (3.63)

and neglect the truncation error. This is not too serious since our previous experiments
revealed that a priori balancing of truncation and discretization error does not reduce
the slopes which we are going to measure. Of course, the energy norm will become
unbounded for n → ∞ as well: we have a jump of width h = 2−n near the boundary
since we assume f = 0 on ∂Ω. This will dominate the error if n becomes large enough.
Our experiments will be useful only up to a certain resolution.
We compare energy optimized grids without balance of truncation– and discretization

error and adaptively refined energy optimal grids (i.e. choice 2.) and 3.) of our balancing
methods). Since the adaptive approach will attempt to resolve the jump near the bound-
ary for high target accuracies, we limit the highest allowed resolution for the adaptive
approach. As soon as the adaptivity starts resolving the jump, we abort the experiment.
Results of this approach are shown in Figure 3.6: we see the degrees of freedom

plotted against the relative energy error on Ω for both methods. The first thing to note
is the jump which becomes visible at a certain resolution. Furthermore, we find that
adaptive and regular methods for fixed dimension yield almost parallel lines, where the
adaptive approach requires less degrees of freedom. The convergence rate with respect
to n is, indeed, 1 for dimension d = 1, but asymptotics start considerably later for higher
dimensions: for d = 2, we observe a convergence rate of about 0.9 instead of 1 and the
case d = 3 has about 0.8. The theoretical rate 1 is valid for very large levels n only.
Despite the lesser rate of convergence, the picture has the same quality as Figure 3.2

for L2 optimal sparse grids: we still observe the fan structure indicating exponentially d–
dependent coefficients. This becomes more evident if we compute the degrees of freedom
required to achieve a fixed error, which is depicted in Figure 3.7: both methods yield
parallel lines when computing the degrees of freedom required for a fixed relative energy
error ε = 5 · 10−2. The effect is slightly lower for the adaptive approach whereas the
slope is m ≈ 0.9 base 10, i.e. we need 100.9 times more degrees of freedom to get the
same accuracy for one dimension larger.
We conclude so far that the standard normal distribution leads to order coefficients

which grow exponentially. The effect occurs for interpolation and bestapproximation
and for L2- and energy norms. It also affects sparse grid spaces which are optimized for
the energy norm.
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Figure 3.6: Measurement of relative energy errors with energy optimal sparse grids. The
jump near the boundary has been avoided by providing a maximum level.

Confirming the Parameter Independence – Decaying Variances

We complement our experiments on the standard normal distribution with experiments
on normal distributions with decaying variances of the form σi = 2−i. Figure 3.8 displays
the results of three experiments: the first (red) replicates results of the last section
which uses a fixed variance σ = 1 and Ω = [−4.9, 4.9]d. The different dimensions
are identified by different markers. The second experiment is displayed in blue and
uses decaying variances σi = 2−i and, at the same time, decreasing domain size with
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Figure 3.7: Degrees of freedom to achieve a fixed relative energy error of ε computed
from Figure 3.6. The error is evaluated on Ω, more precisely using ‖f −
fhΩ‖A[Ω]/‖f‖A[Rd].

Ω =
⊗

[−4.9√σi, 4.9
√
σi]. The plot marks identify the dimension and are the same as for

the first (red) experiment. The third experiment is displayed in green and uses decaying
variances σi = 2−i but fixed domain Ω = [−4.9, 4.9]d. All three experiments use adaptive
grid refinement to optimize the degrees of freedom (thus, they have non–linearly graded
grids). On the x axis, we show the (resulting) grid size as degrees of freedom, plotted
against the relative L2 error measured on Rd. We see that the first two experiments yield
exactly the same cost/gain ratio as predicted by theory; the anisotropy is compensated
by the domain size (the “window” onto the function). Furthermore, the third experiment
is considerable more expensive with increasing dimension d. This is due to the fact that
we are resolving a narrow peak relative to the fixed domain size. The additional degrees
of freedom are required to cover the domain until finally the peak is resolved. Note,
however, that the convergence plots exhibit the same slopes as for the first experiments.
In summary, we confirm the independence of the variance σi for the case where σ

is coupled to the domain size and relative errors are of interest. Furthermore, we see
that adaptive grid refinement for a poor choice of the simulation domain yields the same
slopes with respect to the mesh width h, but it cannot compensate for the increase of
dimension dependent coefficients induced by the large domain.

3.2.3 Generalizations

Our approach in the previous sections was to cover the relevant parts of Rd by coupling
the width (variance) of the probability distribution to the truncated domain size, followed
by a linear coordinate transformation. The combination yields parameter independence
for relative error interpolation and results in order coefficients which grow exponentially
with the dimension d. Furthermore, our adaptive approach provides non–linearly graded
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Figure 3.8: Adaptive grid refinement for the isotropic Gaussian on [−4.9, 4.9]d (red), the
anisotropic Gaussian with σi = 2−i on

⊗
[−4.9√σi, 4.9

√
σi] (blue) and the

same anisotropic Gaussian on [−4.9, 4.9]d (green).

grids to improve the distribution of degrees of freedom in the resulting simulation domain.
The following section studies the application of more general transformations.

A Priori nonlinear Grid Grading

We investigate an a priori transformation which yields graded grids based on knowledge
about the approximant. It is known that the inverse cumulative normal distribution is
a good candidate for graded grids when normal distributions are involved, see [Hol08]
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Figure 3.9: The inverse cumulative normal distribution and the resulting grid grading
(left) and the transformed normal distribution (right)

and the references therein. Consequently, we consider the transformation

φ : [0, 1]d → Rd (3.64)

such that φ−1 : Rd → [0, 1]d is the cumulative normal distribution for variance 1, i.e.

φ−1(x) = 1√
2π

x∫
−∞

e−t
2/2 dt. (3.65)

The parameters of the inverse cumulative normal distribution φ are chosen such that φ
and our approximant fit together (using expected value µi = 0 and variance σi = 1 for
i = 1, . . . , d). Algorithms to evaluate the inverse cumulative normal distribution can
be found in [Mor95b] whereas algorithms for the cumulative normal distribution are
described in [Mor95a]. The effect of the inverse cumulative normal distribution is to use
almost all of [0, 1]d for the area of Rd in which almost all of the relevant features of f are
situated whereas the tails of f will be mapped to a small boundary slice of [0, 1]d. This
is illustrated in Figure 3.9 (left): we see that φ(0 + ε) ≈ −4 and φ(1 − ε) ≈ +4 where
for one dimension, almost all of the probability mass of f can be found. The grid points
are sampled uniformly on the x axis of Figure 3.9 (left) which produces the graded grid
shown on the y axis. Figure 3.9 (right) shows the resulting transformed Gaussian f ◦ φ
which is no longer strongly peaked but appears more like a parable.
We still need some sort of domain truncation since φ(0) = −∞ and φ(1) = ∞.

Motivated by our results of preceding sections, we choose Ω = [−4, 4]d ⊂ Rd and the
transformed domain Ω̃ = [0 + ε, 1 − ε]d ⊂ [0, 1]d such that φi(ε) = −4 and φi(1 − ε) =
+4. We then transform Ω̃ linearly to the unit cube and introduce vanishing boundary
conditions of Dirichlet type as in the preceding sections. To avoid complicated integral
transformations for norm evaluation, we restrict ourselves to error evaluation in the
L∞ norm on Rd only, using a fine grid for the error estimation (three times uniformly
refined).
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Figure 3.10: Interpolation results for the inverse cumulative normal distribution using
the truncated domain Ωcut = φ−1([−4, 4]d) = [0+ε, 1−ε]d.

Figure 3.10 (left) shows interpolation results for the described experiment: we have
degrees of freedom versus the relative L∞ error

‖f − fhΩ‖L∞[Ω]
‖f‖L∞[Rd]

=
‖f ◦ φ− fh[0,1]d‖L∞[0,1]d

‖f‖L∞[Rd]
(3.66)

for dimensions d = 1, . . . , 6, this time using regular sparse grids to concentrate on the
non–linear grid grading induced by φ. Besides the saturation effects originating in the
boundary truncation, we see that data points with the same index among different
dimensions are almost at the same y value. Data points represent sparse grid levels
n = 1, 2, 3, . . . , so we get approximately the same error for every dimension if we keep n
fixed. This is also depicted in Figure 3.10 (right) which shows the same results plotted
against the level n instead of the degrees of freedom. Here, the effect is more obvious:
the error does no longer depend on d as a result of our transformation. The increase of
degrees of freedom has to be accounted for the log term in the sparse grid complexity
only. This, in turn, grows sub–exponentially with respect to d (for fixed level n) as
can be seen in Table 3.1: the table shows the required degrees of freedom to achieve
a relative L∞ accuracy of 10−3 for d = 1, . . . , 6, together with the respective semiloga-
rithmic slopes. We see that these slopes decrease with d. This can be explained by the
leading term of the cost complexity of sparse grids which is of the order 2nnd−1/(d−1)!.
The faculty (d − 1)! grows faster than cd for any c and large dimension d, and we are
effectively keeping n constant. Thus, the transformation reduces the overall complexity
considerably. However, we have to pay for the singular nature near the end points: the
slopes of Figure 3.10 (left) only indicate first order convergence for d = 1 and even lower
rates for d > 1. Thus, we loose effectively one order with respect to the mesh width.
This loss is caused by large errors in the tails of the distribution.
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Table 3.1: The degrees of freedom in Figure 3.10 (left) required for fixed relative L∞
error of 10−3.

d Dof for L∞ = 10−3 log10–grad

1 323 –
2 2,708 0.92
3 11,847 0.64
4 39,035 0.52
5 107,106 0.44
6 257,936 0.38
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Figure 3.11: Results for the nonlinear domain transformation and different variances
(left) and the related sparse grid complexity for fixed level n (right).

So far, our nonlinear transformation has been chosen to fit perfectly to our approxi-
mant; we have effectively plugged information about the solution into our transforma-
tion. This leads to the question what happens if the transformation is applied although
it does not fit perfectly. To investigate in the parameter dependence, we analyze the
performance of the same transformation applied to normal distributions with variances
σ ∈ {0.5, 1, 1.0125, 1.025, 1.05, 1.1} and common expected value µ = 0. To this end, we
choose again a simulation domain which is coupled to σ, namely Ω = [−4

√
σ,+4

√
σ]d in

order to maintain a small cut error. However, the transformation still assumes σ = 1.
The results exhibit the same qualitative behavior: the error depends only on the

sparse grid discretization level n and, additionally, on σ – but it is independent of the
dimension d. They also show the reduction of the convergence rate with respect to n pre-
asymptotics. The only parameter which influences the outcome of this experiment is σ
which is depicted in Figure 3.11 (left). The picture shows the required degrees of freedom
to achieve a relative L∞ error of 10−3 for the different normal distributions, plotted for
d = 1, . . . , 6. We see that the lines grow, but they grow sub–exponentially since their
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slopes become smaller with increasing d. This is, again, only an effect of the sparse
grid complexity (its log term). Furthermore, larger variances σ require more degrees
of freedom which results in a vertical offset. The observation that only the degrees of
freedom depend on d whereas the error depends on n and σ motivates a visualization of
the degrees of freedom for fixed level n and varying d. Such a visualization has exactly
the same form as discussed for our experiments and is shown in Figure 3.11 (right): we
see the sub–exponential growth with d for level n = 7, 8, . . . , 14.
We conclude that the cumulative normal distribution yields an a priori grid grading

which concentrates near the mean value of the Gaussian, neglecting the tails. The low
resolution near the tails reduces the overall convergence rate by approximately one order.
The benefit is that its error becomes independent of the dimension, even if parameters
do not fit perfectly. The cost complexity for fixed error depends on the low convergence
rate and on the sparse grid cost complexity, which grows with d in its log term. Note
that these sparse grid points carry significant information: the transformed function
is still high dimensional (in fact, the highest order ANOVA term, compare Chapter 4,
dominates the representation). The transformation relies on Gaussian decay in the tails
and appears to be valuable if such decay is given.

On Non-Linear Problem Formulations

The observation that linear approximation tools like our sparse grid method exhibit ex-
ponential growth when it comes to resolution of high dimensional densities raises the
questions if non–linear approaches can improve the situation. We discuss several ap-
proaches to combine sparse grid methods and non–linear methods and their application
to density approximation (which is often formulated by means of the Fokker–Planck–
Equation or a similar model).
One idea is to enrich the basis by something which is close to the solution and resolve

the rest by means of a linear method, for example sparse grids. In our case, we could
try to use a Gaussian basis function with properly chosen mean and variances, com-
bined with either a multiplicative splitting Gaussian times rest or an additive splitting
Gaussian plus rest. Then, the “rest” term can be approximated by means of sparse grids
(compare the related spectral methods with multiplicative Gaussian splitting discussed
in [MST05]). The additive approach becomes approximation of a difference of Gaus-
sians unless the difference between the Gaussian basis function and the solution can
be neglected completely. A difference of Gaussians is more complicated than a single
Gaussian, so a sparse grid method will have at least the same (exponential) cost as for
a single Gaussian.
A multiplicative approach of the form Gaussian times rest also yields a rest which is

governed by the term exp(−xTx) if we assume the simplest case of a Gaussian solution,
approximated by Gaussian times rest. However, the rest of type exp(−xTx) lives on a
smaller scale and is thus of a different quality as our density approximation framework:
consider the quotient of two Gaussians with almost the same variance in one dimension,
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(2πσ)−1/2 exp(−x2

2σ )
(2πσ(1 + ε))−1/2 exp(− x2

2σ(1+ε))
= exp(−1

2
x2

σ
ε + 1

) ·
√

1 + ε. (3.67)

Consequently, the quotient is of Gaussian type, but its variance is considerably larger –
and the relative error is measured against the target function, not the quotient. Thus, it
is almost constant on the scale of interest. Furthermore, the quotient of two Gaussians
with almost the same mean is dominated by

exp(−x2

2 )
exp(− (x+ε)2

2 )
= exp(xε) exp(ε2/2) ≈ C · (1 + εx) (3.68)

for small ε, i.e. it is nearly linear if ε is small enough. On the other hand, the division by
a rapidly decaying function has a bad absolute condition number and requires attention
when applied together with boundary truncation schemes. Nevertheless, a multiplicative
splitting which already contains essential parts of the solution might prove to be cheaper
than a direct method. We come back to such a splitting in Section 4.4 where we consider
nonlinear dimensionwise decompositions of product type, f =

∏
gi times rest.

The key questions for any particular application are then: is the solution close (enough)
to a Gaussian yet distant enough to require the “rest” term? And: can we find the
Gaussian part? These questions need to be answered before applying specialized methods
and are already part of our outlook.
Another promising non–linear approach is to approximate the log density instead of

the density if it is always positive: for a Gaussian, the log density is a superposition
of at most two–dimensional functions (see also the adaptive sparse grid illustration in
Figure 2.13 on page 58). It might even allow dimension adaptive procedures which are
subject of Chapter 4.
The price to transform a Fokker–Planck–Equation to a log density formulation is a

non–linear term on the one hand and a complicated boundary condition on the other
hand. We discuss why especially the boundary conditions make such an approach inef-
fective. Often, one uses the density normalization

∫
R p(x) dx = 1 and the implied decay

lim‖x‖→∞ p(x) = 0 to truncate the density to a sufficiently large domain. Providing
function values on the boundary has several effects: first, vanishing boundary conditions
are not compatible with log density approximation. Second, one cannot just “truncate”
the boundary value of the logarithm: e−10 might be small relative to O(1), but −10 is
significant. Even more, boundary values already carry 100% of the information if the
function is actually a superposition of low dimensional contributions. For example, the
function f(x, y) = −x2 − y2 can be represented with the cost of two one–dimensional
grids as in Figure 2.13 on page 58. The required degrees of freedom can be fixed by
inspecting boundary values, see also the excursion about Dirichlet conditions and di-
mension adaptive partial differential equations on page 147. Consequently, a log density
formulation can result in a very simple structured solution (as for the Gaussian), but it
moves the difficulty into the boundary conditions and the differential operator. In fact,
the PDE solution might be zero if all information can be deduced from the boundary. In

87



3 Sparse Grids and Moderate Dimensional Approximation – Two Case Studies

the general case, the lack of precise boundary conditions for full space problems makes
log density models inattractive.

3.2.4 Related Topics in the Area of Information Based Complexity
A more general discussion of d–dependent order coefficients is subject of the area Infor-
mation Based Complexity (IBC). There, one studies the worst–case error of a problem
over a complete class of functions. If the minimum cost complexity, measured in terms of
either function evaluations or application of linear operations, for the worst–case error
is not exponential, the problem class is said to be tractable. If the cost grows either
exponentially in terms of constant to the d or in terms of the accuracy, ε−d, the problem
is said to be intractable, see [NW08].
In this section, we summarize results of IBC related to our case study. To this end,

we provide a brief survey over results presented in [NW08] and [TW99].
The tractability of a problem class relies on the following ingredients: a criterion to

describe non–exponential cost complexity, the definition of a unit ball (i.e. the norm),
a choice which types of algorithms are allowed (like point evaluation etc.) and the
definition of an error ε measured over the complete problem class for one fixed algorithm.
The non–exponential growth criteria for the cost complexity can be formalized by a

non–decreasing function T (ε−1, d) which is not exponential, i.e.

lim
x+y→∞

log T (x, y)
x+ y

= 0. (3.69)

If the cost N(ε, d) required for an error ε in dimension d is bounded by (a polynomial
of) T , N(ε, d) ≤ T (ε−1, d), the problem class is tractable. Here T (x, y) = xy yields
polynomial tractability which is equivalent to N(ε, d) ≤ Cε−pdq for all ε < 1 and all
d. For T (x, y) = exp

(
(1 + log x)(1 + log y)

)
, the notion of tractability allows also super

polynomial growth of N(ε, d) and is called weak tractability, compare [NW08].
The IBC literature commonly analyzes the worst case absolute error over the problem

class X for a particular algorithm AN taking N pieces of information,

εwor(AN ) := sup
f∈X,‖f‖≤1

|||A(f)−AN (f)|||, (3.70)

where A(f) is the correct result and ||| · ||| a proper norm of to compare the result. The
minimum cost complexity is then

N(ε, d) = min{N | there exists AN with εwor(AN ) ≤ ε}. (3.71)

Other error measurements over the problem class use averaged errors or probabilistically
selected sub–parts of the problem class. The relative error is only of limited use when
its worst case is considered over a complete function class: the best bound which can
be obtained is a worst case relative error of 100%. This problem occurs since relative
errors are not limited to unit balls, so there can always be functions in the function
class for which a fixed algorithm AN assumes it is the constant zero (based on N bits
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of information). Thus, the worst case formulation over a complete function class is not
applicable here, compare [NW08, Example 10].
Concerning the worst case error, several examples of problem classes with exponential

cost complexity have been identified in the literature. An important example is classical
approximation in Sobolev spaces of order r which yields a cost complexity of order
Θ(c(d)ε−d/r) for any algorithm. Such a complexity grows faster than any polynomial and
is thus polynomially intractable, no matter which coefficient c(d) enters the complexity.
If the coefficient c(d) decreases exponentially with d, the problem may become weakly
tractable, compare [NW08, p. 11]. Another example of limited smoothness is the space
of Lipschitz functions characterized by

‖f‖ = max
(

sup
x∈[0,1]d

|f(x)|, sup
x,y∈[0,1]d

|f(x)− f(y)|
‖x− y‖∞

)
<∞ (3.72)

which is also intractable, i.e. there are elements requiring exponential cost for any al-
gorithm. Surprisingly, the space of infinitely differentiable functions C∞ is also poly-
nomially intractable despite spectral convergence order if the unit ball with respect to
either the L2 norm or a norm involving L2 and any higher order derivative is considered.
If derivatives are considered, it is even weakly intractable as well, whereas it is weakly
tractable with respect to the L2 norm, compare [NW08, Example 4].
Note that all these intractability results tell nothing about a particular element of the

underlying function spaces, they state an existence result about at least one bad element.
Only positive tractability results allow guaranteed cost complexities for all elements.
The space Xq,2 with functions of bounded mixed derivatives is tractable with respect

to ε as we have seen constructively in Lemma 2.1.16, see also [TW99, p. 38]. The
log–terms are considered together with the involved dimension–dependent coefficients.
However, for our case of the Gaussian and the sparse grid method, the coefficients grow
exponentially with d, which is clearly not optimal.
There is one class of problems for which tractability with respect to both, ε and d can

be shown: the class of weighted spaces in which functions are additive superpositions of
inherently low dimensional components, see [NW08]. We will develop suitable algorithms
for such a setting, together with appropriate sparse grid methods in Chapter 4 of this
thesis. Such a framework allows polynomial cost complexity and can be dealt with
efficiently.

3.2.5 Application in Moderate Dimensions: a Fokker–Planck–Example
Finally, we apply our results on sparse grid approximation to an example of practical
relevance: the Fokker–Planck–Equation. The example will show both, features and lim-
itations of sparse grids, in a scenario which fulfills the required smoothness assumptions.
We choose the example simple enough to get an analytic reference yet at the same time
relevant enough to allow conclusions about real–life examples of similar quality, and we
discuss such applications.
We choose a linear Fokker–Planck–Example with deterministic initial value as exam-

ple: the Ornstein–Uhlenbeck–Process. Thus, we simulate the dynamics of a stochastic
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process which is completely described by its conditional probability density function
p(x, t |x0, t0), i.e. the probability of finding Xt ∈ I, provided we started with Xt0 = x0,
is given by

P (Xt ∈ I |Xt0 = x0) =
∫
I

p(x, t |x0, t0) dx. (3.73)

In general, the (non–linear) dynamics of a stochastic processXt ∈ Rd which is undergoing
white noise excitation can be described by a stochastic differential equation of the form3

dXt = A(Xt, t)dt+B(Xt, t)dWt, X0 = x0, (3.74)

with deterministic coefficient functions A(·, ·) ∈ Rd and B(·, ·) ∈ Rd×d′ , d′–dimensional
white noise modeled by a Wiener processWt ∈ Rd′ , d′ ≤ d and a (possibly random) initial
value x0 ∈ Rd. The associated probability density function p(x, t) := p(x, t |x0, t0) fulfills
the Fokker–Planck–Equation

∂p

∂t
(x, t) = −∇x · (A(x, t)p(x, t)) + 1

2
(∇x∇Tx ) : (D(x, t)p(x, t)), x ∈ Rd (3.75)

p(x, 0) = p0(x),
∫
p0(x) dx = 1, p0(x) ≥ 0 (3.76)

where D(x, t) := B(x, t)B(x, t)T and K : J =
∑d
i,j=1Ki,jJi,j for two matrices K,J ∈

Rd×d is the euclidean inner product applied to the vector of matrix entries. Application
of the chain rule yields the div – grad formulation

∂p

∂t
− 1

2
div(D gradp) +

d∑
i=1

Ai − 1
2

d∑
j=1

∂Dij

∂xj

 ∂p

∂xj

+

 d∑
i=1

∂Ai
∂xi
− 1

2

d∑
i,j=1

∂2Dij

∂xi∂xj

 p = 0, x ∈ Rd (3.77)

with initial value

p(x, 0) = p0(x),
∫
p0(x) dx = 1, p0(x) ≥ 0. (3.78)

The Fokker–Planck–Equation is always linear with respect to p, yet it is called non–
linear if the associated stochastic differential equation (3.74) depends non–linearly on
Xt. More precisely, (3.77) is called linear (in narrow sense) if A(x, t) = α(t) + A(t)x
and B(x, t) = B(t), D(x, t) = B(t)B(t)T . It is called non–linear for other choices of
A and B.
The special case of a linear Fokker–Planck–Equation is closely related to our study

on normal distributions: provided the initial value p0(x) is either a Gaussian or a delta
peak, (3.74) can be solved analytically and p(x, t) = N (µ(t),Σ(t)) is a (time–dependent)

3Read it like ordinary differential equations dXt
dt

= A(Xt, t) + B(Xt, t) dWtdt with irregular, white noise
force ξt = dWt

dt
.
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normal distribution, see [Ött96, (3.55)-(3.58)]. The quantities µ(t) and Σ(t) can be
evaluated by means of ordinary integrals [Ött96, (3.57) and (3.58)]. Linear Fokker–
Planck–Equations constitute one of the few cases where analytical solutions are known
(compare [Ött96]). Typically, linear stochastic equations are the simplest models which
are then generalized to non–linear variants.
One application example are equations of motion of movable objects which are coupled

by springs, where the movement is caused by random force fields (offshore installations
subjected to environmental forces), see [WB00] and the references therein. Here, the
number of objects determines the dimension d. The simplest case of linear oscilla-
tions has a delta peak as initial value (since the start position is known) and a linear
Fokker–Planck–Equation governing the dynamics, see [WB00]. Another example are
non–Newtonian fluids: polymeric substances in a solution can be modeled using bead–
chain–models, see [Ött96, BAH87]. The number of chains N defines the model resolution
and the dimension d grows linearly like 3(N − 1); the coupled equations of motion can
be described by a Fokker–Planck–Equation. The simplest model are Hookean Spring
forces, yielding a linear Fokker–Planck–Equation and thus Gaussians as solution. Note
that for lower dimensional noise, d′ < d, (3.77) becomes degenerate parabolic, see also
[SST08] on operators with non–degenerate characteristic form. We believe that an ap-
proximation tool like our sparse grid approach can be tested and verified for such linear
models which motivates a linear model problem here.
We choose the linear Fokker–Planck–Equation associated with the Ornstein–Uhlen-

beck–Process, given by

A(x, t) = −θ · x− µ · (1, . . . , 1)T ∈ Rd, (3.79)
B(x, t) = σ · diag(1, . . . , 1) ∈ Rd×d (3.80)

and real parameters µ = 0.9, σ = 0.6 and θ = 1. The reference solution for p0(x) =
δ(x− x0) is p(x, t) = N (µ(t),Σ(t)) with

µ(t) = e−θt(x0 − µ1) + µ · 1, Σ(t) = σ2

2θ
(1− e−2θt) · I. (3.81)

Instead of the complicated delta function δ(x − x0), we choose p0(x) = N (µ(t0),Σ(t0))
with x0 = (2, . . . , 2)T ∈ Rd and t0 = 0.05. A normal distribution as approximation to
a delta initial value is also used in [WB00]. In our case, we have simply advanced the
initial time to t0 > 0 to keep the reference solution.
The discretization of a Fokker–Planck–Equation (3.77) with parameters (3.79) requires

to handle the initial value, the unbounded domain Rd, the time discretization and the
space discretization. We employ the standard time discretization by means of the λ
scheme [QSS01]

Lu(t+1) + 1
δt
u(t+1) = ( 1

δt
− (1− λ)L)u(t) (3.82)

which corresponds to the second order accurate Crank–Nicolson method for λ = 1/2 (note
that the right–hand–side vanishes, so the term (1 − λ)f (t) + λf (t+1) is not necessary).
Since the Crank–Nicolson method does not damp oscillations, we choose λ = 1/2 + 1/100
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3 Sparse Grids and Moderate Dimensional Approximation – Two Case Studies

which will be slightly less than second order accurate in time but provides an L–stable
solver.
The space discretization is realized similar to our interpolation results in the preceding

sections: we use a domain which is sufficiently large to capture the dynamics of p(x, t) for
t ∈ [0.05, 1] and truncate p(x, t) to 0 on its boundary (making points on the boundary
superfluous). In our case, we choose Ω = [−1, 4]d. The initial value is interpolated
on a sparse grid. The elliptic equation (3.82) arising for every time step is discretized
by means of a sparse grid Galerkin scheme. The details of the Galerkin scheme are
described in [Feu05] for the particular case of the prewavelet basis, the ideas especially
for fast algorithms go back to [Bun98] and [Bal94] (see Section 2.2.2 for an overview).
Diagonal scaling yields optimal preconditioning for the Helmholtz problem [GO95] and
we observed good iteration numbers for our case of linear coefficients as well (see also
the L2 orthonormal wavelet approach with optimal preconditioning taken in [DSS09]).
Some of the matrix–vector–product algorithms are listed in Appendix A.3 as well.
The actual simulation is carried out for three different space discretizations:

1. The first space discretization uses regular sparse grids of level n for every single
time step, combined with a time step of δt = 2−n.

2. The second approach relies on levelwise adaptive refinement as follows: for given
target precision ε, the initial value is resolved using the adaptive interpolation of
Algorithm 1, see page 33. However, a grid refinement means to increase the regular
sparse grid level by one. Then, we compute time steps with the actual regular
sparse grid. At the end of each time step, we apply a levelwise grid compression:
if all local error indicators for the finest level(s) result in small contributions, we
reduce the regular sparse grid level accordingly. The time step size remains fixed
for every experiment, since the method is second order accurate, it has been chosen
as δt :=

√
ε where ε is the space adaptive target threshold (which corresponds to

the desired target precision). During time steps, no refinement loop is performed.
This approach thus constitutes levelwise compression (coarser regular sparse grids
with time).

3. The third method uses fully space adaptive grids: the initial value is interpolated
adaptively according to Algorithm 1 up to ε, then a refinement loop is applied for
every single time step. The refinement loop inserts new nodes, it does not throw
nodes away. At the end of each time step, we compress the grid in the following
way: every node which is considered to be relevant (up to ε) and all of its 2·d direct
child nodes remain in the grid. This avoids oscillation of grids between successive
time steps. As for the level wise approach 2), the time step size is fixed to δt :=

√
ε

where ε is the space adaptive target threshold.

In all three cases, δt is independent of t. The results of this approach are shown in
Figure 3.12: blue lines indicate the regular sparse grid experiment 1), green lines the
levelwise compression approach 2) and red lines the space adaptive refinement 3). We
plot the relative L2 error, measured at end time t = 1, against the sum of all degrees of
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Figure 3.12: Convergence properties of regular sparse grids, levelwise adaptive sparse
grids and space adaptive sparse grids for the solution of the parabolic prob-
lem (3.79).

freedom, NT×Ω =
∑K−1
i=0 Nti , where K is the number of time steps (K ≈ (1− 0.05)/δt)

and Nti the number of grid points at the end of time step i. Figure 3.12 contains results
for space dimensions d = 1, 2, . . . , 5, identified by markers. As expected, the regular
sparse grid approach (blue) has the greatest offset since it wastes degrees of freedom
in the tails of the distribution and since it keeps the level fixed. For d = 1, we find a
convergence rate of 1.0, d = 2 has 0.9 and d = 3 has 1.1. Since the time discretization
is of second order, this is what we expected: the space discretization has second order
(and logs) and we use δt = h; the number of time steps is thus K = O(1/δt) = O(2n),
resulting in cost NT×Ω = O(2n · 2nnd−1) and error O(δ2t + 2−2nnd−1) = O(2−2nnd−1),
yielding a convergence rate of about 1 (up to logarithmic bounds).
The levelwise compression reduces the ε complexity since it uses less degrees of freedom

for the same accuracy. However, its convergence rate is slightly below 1: it is around

93



3 Sparse Grids and Moderate Dimensional Approximation – Two Case Studies

0.9. Further experiments revealed that this is due to inaccurate balancing of δt and the
space discretization: δt is too small. This is caused by differences between the finally
achieved accuracy and the adaptive target threshold ε: for low accuracies, there is about
a factor of 10 between them whereas higher accuracies thus have a relative L2 error
which is between 30 and 50 times larger than ε. Since δt =

√
ε, the convergence rate

of the time discretization becomes sub-optimal4, a correction is possible by using step
size control for the time discretization (which is beyond the scope of our example here).
Levelwise grid compression based only on local error estimators might insert a complete
level even if few points have large local errors (which can be seen for at the end).
The levelwise compression as such is easy to manage and allows efficient data structures;
it is also considerably cheaper than the regular sparse grid method. It allows to reach
dimension 4 or 5.
Finally, the fully space adaptive approach is most efficient in terms of degrees of

freedom: it has the smallest total grid size and about the same convergence rate as the
levelwise approach (the rate 0.9 instead of 1 is due to the same balancing issues between
ε and δt as discussed above). Even though the adaptive approach has linear cost, it
requires to solve every time step multiple times and involves more complicated data
structures – leading to considerably higher runtime requirements per node as opposed
to the other methods. Furthermore, prewavelet adaptivity requires additional transport
nodes which carry no information, see the discussion Appendix A.4.1 for details. Space
adaptive refinement saves one or two orders of magnitude with respect to degrees of
freedom (not including transport nodes) compared to the levelwise approach for the
cases d = 4 (compare and ) and d = 5 (compare and ), and much more
compared to the non–adaptive regular sparse grids (compare with and with

).
In summary, our experiment shows that sparse grids can be used to approximate

moderately dimensional problems, in our case up to five space dimensions and one time
dimension. The domain truncation, combined with adaptive sparse grids, allows to han-
dle full space diffusion problems. Together with our results of the preceding sections,
dimensions around d = 5 (+1 for time) pose a natural limit of standard sparse grid ap-
proaches, i.e. when applied to inherently high dimensional functions like the Gaussian.
The limit is caused by the task to capture the complete probability mass, which leads to
exponentially growing dimension dependent complexity coefficients due to the domain
size and the involved regularity norms. Qualitative improvements, i.e. approaches be-
yond d = 5, can only be expected if the approximant has more structure. Such structure
is analysed in the following sections.

3.3 Case Study: Functions with Axis Parallel Structure

This case study employs a totally different type of structure than mix smoothness in
order to obtain efficient high dimensional function approximations: it relies on axis

4The electronic version of this document provides this additional information by clicking onto data
points in Figure 3.12.
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3.3 Case Study: Functions with Axis Parallel Structure

parallel features of functions. Sparse grids resolve functions easily along the axis and
neglect “diagonal” basis coefficients based on mix smoothness. It a function essentially
consists of axis parallel contributions, we can obtain compression effects beyond the
convergence rates of mix smoothness based sparse grids.
We start with a simple function depending only on one direction and increase the dif-

ficulty successively. In order to avoid diffusive effects (and thus diagonal contributions),
we restrict the study to functions with sharp jumps in axis parallel directions. Clearly,
the error order will be low (it will be something like h1/2 with respect to the L2 norm)
– but the cost might be very low with respect to growing d. Thus, the result can have
a favorable ε–complexity (cost/gain ratio). We study the potential and the limitations
imposed by axis parallel structure.

3.3.1 Jump along a Hyperplane
We study the function

f(x1, . . . , xd) =
{

0 x1 < 0.51
1 x1 ≥ 0.51

(3.83)

on [0, 1]d using adaptive sparse grid interpolation, see Figure 3.13 (left). Since its dy-
namics depends only on x1, we expect no dependency on d at all – although the jump
is along a manifold of dimension (d− 1). To employ such structure, we use sparse grids
whose root is anchored at (0, . . . , 0) instead of (1/2, . . . , 1/2) combined with the hierar-
chical hat basis having the constant as coarsest level. In other words: we employ the
space- and dimension-adaptive approach discussed in Section 4.3. We choose the L2
error indicator for refinement and measure L2 errors. The local refinement is done using
a look–ahead of q = 3 in Algorithm 1 (see page 33) and the error is finally measured on
a four times refined grid.
Results are shown in Figure 3.13 (right) as semi–logarithmic plot of grid size (degrees

of freedom) versus relative L2 error. We choose a logarithm base 2 for the error. The plot
contains results for d = 1, 2, . . . , 7. We see that each yields the same curve as the one–
dimensional case. Furthermore, we see a convergence rate of 1/2 in the semilogarithmic
plot, indicating an approximation order of exponential type,

ε(N) = O(2−1/2N ). (3.84)

The rate is independent of d at all due to the anisotropic basis expansion which employs
the constant as coarsest level. The result forN = 38, produced on a finest level of n = 36,
is shown in Figure 3.13 (left): it contains only grid points on the line x2 = 0. The markers
are colored according to their logarithmic magnitude. Actually, the expansion uses only
a couple of different basis coefficients which are either 0 or of the same magnitude,
compare the color bar of Figure 3.13.

3.3.2 Sparse Grids, Jumps, and Overshooting
It should be noted that interpolation of jumps by means of sparse grids, even using
adaptive sparse grids, leads to overshooting (or undershooting) effects unless the jump
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Figure 3.13: The jump function (left) and its convergence plot with adaptive sparse grids
(right).

is (locally) resolved by a full grid. In other words: the interpolant near the jump is much
larger or much small than the start- or end points of the jump. This section explains
briefly why sparse grid structures imply overshoots, even if there are just local sparse
grid structures and even if one uses piecewise constant basis functions: there will always
be overshooting effects, on every scale. The only way to avoid overshooting is local full
grid structure combined with either piecewise constant or piecewise linear splines.
These overshooting effects typically fall between visualization mesh width and are

thus not easily seen (only in the error estimations). They occur also in the experiments
below, namely for the hyper cube, the diagonal jump and the arc. Since overshoots are
of the width of one mesh width and we measure L2 errors of fine adaptive resolutions, we
achieve convergence. The reason why (local) sparse grid structure yields overshoots is
the hierarchical approach and the lack of smoothness on every scale, combined with the
fact that adaptive refinement always reproduces local sparse grid structure (it inserts
2 · d sons, not 3d neighbors).
We consider a small example, which illustrates the key behavior on a coarse scale. We

use a two–dimensional full grid of level 1 (3×3 points) and assign just one non–vanishing
nodal value nl,i = δ(0,0|0,0),(l,i). A sparse grid contains fewer grid points in direction of
the diagonal. Consequently, we have to remove the middle point to simulate sparse
grid structure. The resulting interpolant and its hierarchical basis coefficients are shown
in Figure 3.14 (left) for a full grid and in Figure 3.14 (right) for the sparse grid: the
hierarchical coefficient at x = (1/2, 1/2) turns out to be important; it is u(1,1|1,1) = 1

4 and
the error is thus 25%. Such a situation is the common case for jumps through sparse
grids: patterns like these occur on all mesh widths somewhere along the jump (the
adaptive refinement always reproduces it). The point is that anisotropic basis functions
with large support (in our example the ones with coefficient −1/2) are used to interpolate
the missing value by means of differences and sums. But since there is no decay of basis
coefficients, the interpolated value has a large error – which is reproduced on all scales
in a self–similar way by the adaptivity.
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Figure 3.14: Illustration of multilevel interpolation schemes causing overshooting in
sparse grids (right) but not in full grids (left).

Note that piecewise constant bases (which are typically used due to their stability in
full grid schemes) are even worse in sparse grids: the same test repeated for piecewise
constant bases lead to errors of 100%. Experiments with jumps along the diagonal
(see below) for piecewise constant bases easily yields overshoots of 200% or more since
the complete jump might be added multiple times in the multilevel differencing scheme.
Adaptive sparse grid refinement only moves the effect to a vanishingly small mesh width.

3.3.3 Jump along a Hypercube

Our next experiment is to use jumps on the boundary of a cube, f(x) = χ[0.21,0.81]d(x),
using the same method as for Section 3.3.1.
Figure 3.15 (top left) shows the result obtained with N = 1993 grid points (placed

only inside of the unit cube, not on the boundary) with finest mesh width 2−34 (level
n = 34). The grid is a product of the one–dimensional result of Figure 3.13, and it
has comparable approximation properties. The approximation properties are no longer
exponential, but they are still better than algebraic. This is depicted in Figure 3.15 (top
right) where the degrees of freedom are plotted against the relative L2 error in a double
logarithmic scale. It is better than algebraic. Figure 3.15 (bottom left) shows the error
plotted against the finest level n in a semi logarithmic plot, which indicates an error
of ε(n) = 2−1/2n. Figure 3.15 (bottom right) shows the finest level n plotted versus the
degrees of freedom which reveals N(n, d) = nk(d) with a d–dependent exponent k(d) ≥ 1.
Estimating slopes of Figure 3.15 (bottom right) yields k(1) ≈ 1, k(2) ≈ 2.4, k(3) ≈ 3.6
and k(4) ≈ 5. It looks like linear growth of k(d), perhaps k(d) ≈ d + 1. Thus, we find
poly–logarithmic cost N(n, d) = O(nd+1) and accuracy ε(n, d) = 2−1/2n and so

ε(N) = O(2−1/2N
1/(d+1)). (3.85)
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Figure 3.15: The box function and its adaptive grid (top left), its error plotted versus
degrees of freedom (top right), its error plotted against the finest level n
(bottom left) and its cost plotted against level n (bottom right).

3.3.4 Diagonal Structure and Sparse Grids
Having seen that axis parallel structure allows to improve the convergence rate qualita-
tively, we study the limitations arising by diagonal structure. We consider a jump along
the diagonal unit vector v = 1/

√
d(1, . . . , 1)T ∈ Rd given by

f(x) = fn(xT v), fn : R→ R, fn(d) =
{

0 x < 0.6
1 x ≥ 0.6.

(3.86)

We compute the adaptive sparse grid interpolant as before. The resulting function for
ε = 3.2·10−3 and its adaptive grid in shown in Figure 3.16 (left), together with the relative
L2 error plotted versus degrees of freedom in a double logarithmic scale in Figure 3.16
(right). The interpolant exhibits overshooting effects along the jump as discussed in
Section 3.3.2; it is strongly refined along the diagonal and has only the ancestors in axis
parallel directions. The convergence plot shows algebraic rates which are about 0.4 for
the two–dimensional case, 0.2 for the case d = 3 and about 0.1 for the case d = 4.
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Figure 3.16: Jump along the diagonal (left) and its convergence plot with adaptive sparse
grids (right)
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Figure 3.17: Smooth diagonal structure allows (just) sparse grid rates.

Jumps across the diagonal require locally full grid structure, and the adaptive re-
finement generates it – although it also inserts fine local sparse grid structure (which
produces the overshooting effect).
It should be stressed that diagonal structure is not necessarily bad – the sparse grid

compression based on mix smoothness works as expected. This is demonstrated in
Figure 3.17 for the smooth problem

f(x) = exp(−‖x
T vv − x‖2

s
), s = 1

100
, v = 1√

d
(1, . . . , 1)T . (3.87)

Figure 3.17 (left) shows the approximated function and Figure 3.17 (right) the resulting
convergence results obtained for adaptive sparse grids (blue) and for regular sparse grids
(red). Here, common markers indicate the same dimension. We see that the adaptive
convergence rates are the same as the ones for regular sparse grids as expected for a
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Figure 3.18: Adaptive interpolation of an arc and its convergence plot.

smooth problem. While the convergence rates are as expected, the concentration of
information allows to reduce the overall degrees of freedom if one uses adaptivity.

3.3.5 Jump along an Arc

Finally, we consider the adaptive resolution of an arc. An arc has parts which are
parallel to the axis, but it also has parts crossing the diagonals. The diagonals have
less special structure, they need to be approximated using the methods described in
Section 2.1.3. The question is thus, whether an approximation of an arc can benefit
from locally axis–parallel parts or if the diagonal parts dominate.
We consider an arc in two dimensions and a part of a sphere for d = 3. More precisely,

we use the characteristic function of a ball,

f(x) := χ{x | ‖x−c‖≤1}(x), (3.88)

where c := (1, . . . , 1)T and ‖·‖ = ‖·‖2 is the euclidean norm.
Approximation results are shown in Figure 3.18: on the left, we see the approximated

function on [0, 1]2, together with its adaptive grid and Figure 3.18 (right) shows the
convergence properties for d = 2 and d = 3. The grid is highly adapted near the edge,
and coarse everywhere else. We only see the hanging nodes, i.e. ancestors of fine levels.
Furthermore, we see how axis–parallel structure reduces the amount of grid points near
x1 > 0.8 and near x2 > 0.8. Note that again, the basis coefficients are either of orderO(1)
or they vanish. In fact, there are just five different values, |fl,i| ∈ {1, 3/4, 1/2, 1/4, 0} for the
two–dimensional case. The convergence plot is a line, indicating an algebraic convergence
rate. The slopes for d = 2 approaches 1/2 whereas the slope for d = 3 approaches 1/5.
Note that the same experiment repeated for d = 4 yields almost no measurable error
reduction for a similar amount of grid points. We conclude that diagonal parts dominate
the complexity.
Further experiments with rapidly decaying refinement weights or other unit balls (for

example ‖·‖6) yielded the same quality and the same rates.
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3.4 Summary on Moderate Dimensional Problems

The result of our second case study can be summarized as follows: if the approximant
varies at least locally along the diagonal, only the smoothness based representation re-
sults (of Section 2.1.3) hold. However, if the approximant exhibits only axis–parallel
dynamics, few anisotropic basis functions cover a lot of the function and adaptive refine-
ment can increase the effectiveness significantly.

3.4 Summary: Benefits and Limitations of Sparse Grids for
Moderate Dimensional Problems

Our first case study on approximation of density functions defined on Rd has two re-
sults: the first is the formulation and quantitative analysis of inherent limitations of
sparse grids and the second is their superiority over full grid methods which allows
sparse grids to reach space dimensions d = 5 or d = 6. The limitation arises in form of
exponentially growing order coefficients, analysed representatively for the Gaussian as
unimodal, smooth density function. It occurs for every mean (position) and covariance
(width) of the Gaussian due to the necessity to increase the simulation domain together
with the covariance. It is closely related to relative errors (in our case L2- and energy
errors, but it also arises for L∞ approximation), but may be reduced by absolute errors
or rescaled norms. Further experiments indicated that the results can be generalized
to piecewise constant bases and hierarchical polynomial sparse grid bases of higher or-
der [Ach03, Bun98] which have higher convergence rates and higher order coefficients
[Bun98] (see also Appendix A.2 for these bases). We conclude that sparse grids, applied
to density approximation problems (for example the Fokker–Planck–Equation) are in-
herently limited to moderate dimensions of, say, up to d = 6. Their advantage is to go
beyond limitations of alternative full grid based spline methods.
Our second case study is a first step towards different function spaces: axis parallel

structure can, to some extend, reduce cost for d–dimensional problems. As soon as
diagonal parts contribute to the function, this advantage is lost. The results motivate a
systematic approach on axis parallel structure and constitutes a transition to dimension
adaptive approximation, an approach which is subject of the following chapter.
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4 Low Effective Dimensionality – A
Dimension Adaptive Method

We have seen in Chapter 3 that approximation of functions is not a simple task if the
dimension d grows: linear approximation tools suffer from exponential growth either
in terms of a coefficient raised to the d as in the sparse grid case or even in terms of
one–dimensional costs raised to the d for full grid methods. This leads to the question
whether there are function spaces for which qualitative improvements can be expected.
In this chapter, we study function spaces which have more structure: they combine

smoothness assumptions with inherently low dimensional structure. Here, low dimen-
sional structure is formalized in an axis parallel manner to refine our results of Section 3.3
on axis parallel functions: we study linear decompositions of a d–dimensional function
into its contributions from different groups of directions. The motivation behind such
an approach is that the relevant parts of the function can be captured by few varying
directions although such a structure might not be obvious.
The result is closely related to the already mentioned weighted spaces known from

integration and Information Based Complexity – if sets of directions are of decaying
importance according to specific real weights, the cost for an approximation up to pre-
scribed error does not grow exponentially in the nominal dimension d. Spaces weighted
with respect to the L2 inner product have been studied in [NW08, Example 6], together
with conditions on the weights to ensure non–exponential cost complexities. A simi-
lar approach based on Sobolev regularity, formulated by means of reproducing kernel
Hilbert spaces, has been studied in [Gri06, section 1.3.3], see also the references cited
therein. A further approach for the case of weights for mixed first derivatives has been
elaborated in [Hol08, section 4.2] for the particular application of integration: for given
weights, optimal sparse grid quadrature algorithms are derived and analyzed.
We study spaces with weighted second mixed derivatives. If the weights are known in

advance, we apply a similar procedure as [Hol08] in order to derive new optimal sparse
grid spaces based on a priori estimates in Section 4.2. If functions are known to live in
a weighted space, but the weights are not known, Section 4.3 develops new a posteriori,
dimension adaptive refinement routines for the approximation problem. The method
may also be applied if sets of directions are weighted and the function is only partially
smooth. In such a case, the method of Section 4.3 can rely on space and dimension
adaptive refinement.
Before we come to weighted spaces, we discuss the underlying dimension decomposition

framework of ANOVA type to formalize what we mean by different sets of directions.
We also elaborate the relation between the ANOVA decomposition and our multi-level
basis expansions to derive fast discretized ANOVA decompositions in Section 4.1.3.
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4.1 From ANOVA Decompositions to Sparse Grids

We consider a decomposition of a high dimensional function f into a superposition of
lower dimensional components of the form

f(x1, . . . , xd) = f0 +
∑
j1

fj1(xj1) +
∑
j1<j2

fj1,j2(xj1 , xj2)

+
∑

j1<j2<j3

fj1,j2,j3(xj1 , xj2 , xj3) + · · ·+ f1,...,d(x1, . . . , xd). (4.1)

The first component f0 is a constant, followed by one–dimensional contributions fji ,
two–dimensional ones and so on until finally a fully d–dimensional component f1,...,d is
added. Decompositions of this type go back to [Hoe48] and are well known in statistics
under the name analysis of variance (ANOVA), see [ES81].
Dimension decompositions are successful for high dimensional integration applications.

The success of Quasi-Monte-Carlo integration methods applied to problems of computa-
tional finance and the low effective dimension of such integrands is discussed in [SW98].
Generally, integration for functions with either decaying or vanishing high order terms
in (4.1) is possible in polynomial time and thus tractable, see also [NW08, Example
6]. Furthermore, sparse grid quadrature methods have been proposed in [GG03] and
successfully applied to problems of computational finance [Hol08].
We will see that substantial improvements of the approximation problem are also

possible for functions of decaying (or vanishing) high dimensional ANOVA components.
Furthermore, we develop efficient approximation methods to identify and employ such a
structure and discuss necessary modifications compared to quadrature methods [GG03].

4.1.1 ANOVA–like Decompositions

The decomposition (4.1) is a finite expansion into
∑d
i=0

(d
i

)
= 2d summands which we

study in detail, following [Gri06].
The key idea is to work in an axis parallel manner: we select particular subsets of

directions in a superposition model. We denote a d–dimensional tensor product function
space by V (d) and work with functions f : [0, 1]d → R. Let µ be a product measure with
unit mass,

dµ(x) =
d∏
j=1

dµj(x),
1∫

0

dµj(x) = 1. (4.2)

We start with the one–dimensional case where the decomposition consists only of con-
stants and one–dimensional contributions,

V (1) = 1⊕W (1). (4.3)

Here, 1 = span {1} denotes the one–dimensional space of constant functions and W (1)

denotes the complement space of 1 in V (1). We define the splitting by the projection
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4.1 From ANOVA Decompositions to Sparse Grids

P : V (1) → 1,

Pf(x) =
1∫

0

f(x) dµ(x) (4.4)

and its complementary projector (I − P ) : V (1) → W (1). A first example for such a
projector is the conventional Lebesgue measure dµ(x) = dx which leads to the integral
average f0 = Pf(x) =

∫ 1
0 f(x) dx and f1(x) = (I − P )f(x) = f(x)−

∫ 1
0 f(x) dx. In this

case, W (1) = (I − P )(V (1)) is the orthogonal complement of 1 in V (1) with respect to
the inner product (f, g) =

∫ 1
0 f(x) g(x) dx since per construction (f1, 1) = 0.

Another example is the Dirac measure located at a point a ∈ [0, 1], i.e. dµ(x) =
δ(x− a) dx, which results in a simple evaluation of f at a,

f0 = Pf(x) =
1∫

0

f(x)δ(x− a) dx = f(a), (4.5)

and the complement
f1 = (I − P )f(x) = f(x)− f(a). (4.6)

The approach is the same as we already used it for non-homogeneous boundary condi-
tions of classical sparse grids in Section 2.1.4: there, we employed the anchor a = 0 and
the Dirac measure to get a boundary splitting.
Note that due to the unit mass of dµ(x), both P and (I − P ) are indeed projections:

it holds P (Pf(x)) =
∫ ∫

f(x) dµ(x) dµ(x) = Pf(x) · 1 and (I −P )2f = (I −P )f as well.
In fact, one can define splittings just by means of projectors, it is not necessary to rely
on integration as in (4.2), compare [KSWW09].
Now, we consider the d–dimensional case: The one–dimensional splitting introduces

a natural decomposition of the d–dimensional function space V (d) by a tensor product
construction

V (d) =
d⊗
i=1

(1j ⊕Wj) (4.7)

= 11 ⊗ · · · ⊗ 1d (4.8)

⊕
d⊕

j1=1
11 ⊗ · · · ⊗Wj1 ⊗ · · · ⊗ 1d (4.9)

⊕
⊕
j1<j2

11 ⊗ · · · ⊗Wj1 ⊗ · · · ⊗Wj2 ⊗ · · · ⊗ 1d (4.10)

⊕ · · · (4.11)
⊕W1 ⊗ · · · ⊗Wd. (4.12)

Here, we use the subscript j in 1j and Wj merely to indicate the respective coordinate
direction for explanatory reasons. This yields a decomposition of f ∈ V (d) of the desired
type,

f(x1, . . . , xd) = f0 +
∑
j1

fj1(xj1) + · · · =
∑

u⊆{1,...,d}
fu(xu), (4.13)
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4 Low Effective Dimensionality – A Dimension Adaptive Method

where xu denotes the variables xi for i ∈ u. If we denote the subspace with all factors
Wj , j ∈ u and 1k, k ∈ {1, . . . , d} \ u by Wu, we find

V (d) =
⊕

u⊆{1,...,d}
Wu (4.14)

and fu ∈Wu. Due to the power set construction, we have
∑d
i=0

(d
i

)
= 2d many terms in

the expansion. The decomposition is unique for a fixed choice of the one–dimensional
projector P : V (1) → 1. Associated is the identity

I(d) =
d⊗
j=1

(Pj + (Ij − Pj)) (4.15)

=
∑

u⊆{1,...,d}

( ∏
k∈{1,...,d}\u

Pk)
)
·
(∏
j∈u

(Ij − Pj)
)

(4.16)

=:
∑

u⊆{1,...,d}
Pu (4.17)

where Pj and (Ij−Pj) are the one–directional projection operators for the jth coordinate
direction, compare (4.4). Note that the literature uses different notations for Pu: in our
notation, we have fu = Puf , following [Gri06]. There is an alternative notation which
uses

∏
j∈u Pj instead, see for example [Hol08] or [KSWW09].

The lowest order term P∅ =
∏d
j=1 Pj yields the integral of f (measured with dµ(x))

whereas Pu for u 6= ∅ eliminates only directions j ∈ {1, . . . , d}\u and varies in directions
j ∈ u. The single terms fu of the decomposition can be computed by successive applica-
tion of projections and subtraction of low order terms, more precisely, by the recursion

fu(xu) =
( ∏
j∈{1,...,d}\u

Pjf
)
(xu)−

∑
v⊂u

fv(xv), (4.18)

compare [Gri06]. They are unique and it holds Pjfu = 0 for j ∈ u, compare [KSWW09].
A non-recursive formula for fu has been presented in [KSWW09]:

fu(xu) =
∑
v⊆u

(−1)|u|−|v|
( ∏
j∈{1,...,d}\v

Pjf
)
(xv). (4.19)

The decomposition for the Lebesgue measure dµ(x) = dx resembles the well known
ANOVA decomposition used in statistics, see [ES81, Wah90], and the references therein.
The simpler Dirac measure dµ(x) = δ(x− a) dx anchored at a point a ∈ [0, 1]d is called
anchor ANOVA decomposition [SWW04], [DSWW04] or cut HDMR [RA99]. For an
overview of more generalization, we refer to [Gri06].

4.1.2 Axis Parallel Structure and Low Effective Dimension
ANOVA type decompositions are possible for every function for which the required
integrals are defined – it is actually just an intelligent differencing scheme to subtract
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4.1 From ANOVA Decompositions to Sparse Grids

lower order components. However, the decomposition is only useful if components of
higher dimensionality can be neglected or treated with reduced cost complexity. For
functions for which (4.1) decays rapidly with |u|, considerable savings can be expected
since only superpositions of low dimensional functions govern the essential features. If a
function has finite order weights, i.e. fu ≡ 0 for |u| > ds, the case becomes even simpler.
We use this superposition approach1 to define the effective dimensionality: a function

is said to be effectively low dimensional (of dimension ds),

a) if it is of finite order ds, i.e. fu ≡ 0 for |u| > ds, or

b) when we find ‖f −
∑
|u|≤ds fu‖ ≤ ε for a particular choice of ε and ‖·‖.

One common choice for the Lebesgue ANOVA is to use the L2 norm. Then, the orthog-
onality (fu, fv) = 0 for u 6= v yields

‖f −
∑
|u|≤ds

fu‖2 = ‖f‖2 − 2(f,
∑
|u|≤ds

fu) + ‖
∑
|u|≤ds

fu‖2 (4.20)

=
∑

u⊆{1,...,d}
‖fu‖2 − 2

∑
|u|≤ds

‖fu‖2 +
∑
|u|≤ds

‖fu‖2 (4.21)

=
∑
|u|>ds

‖fu‖2 ≤ ε2. (4.22)

In statistics, ‖g‖2 is the variance of g which motivates the name “Analysis of Variance”
(ANOVA). A common choice is ε2 := 0.01‖f‖2, i.e. one percent of the total variance,
compare [Hol08].
Since our dimension decompositions are defined on subsets of axes (directions), the

notion of effective dimension is inherently axis parallel. The hope is to find problem
formulations in which either finite order weights with ds � d or at least some sort of
decay with |u| can be achieved and exploited.

4.1.3 Sparse Grids as Discretized ANOVA Decomposition
Computing terms of an ANOVA decomposition by means of either the recursive for-
mula (4.18) or the iterative variant (4.19) is a time consuming task involving a lot of
partial integrations. It is particularly expensive if more than just one evaluation point x
is desired – the complete operation has to be done for each point x separately.
In this thesis, we propose to apply an approximation based approach which relies on

particular basis representations. Choosing the correct basis means choosing the correct
projector – and thus an ANOVA decomposition. It also works the other way round:
given a particular ANOVA decomposition, defined by its projectors, we can create a
suitable basis which discretizes the decomposition in a natural way. Finally, a given
basis expansion automatically yields discretized ANOVA components. The existence of
a relation between sparse grids and dimension decompositions is known and motivated

1See also [Hol08] for and the references therein for truncation based approaches to define effective
dimensionality.
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the development of dimension adaptive tools: [Heg03] motivated a sparse grid approach
as dimension decomposition which works “similar” to ANOVA decompositions. He pro-
posed an adaptive work flow which has been applied to high dimensional integration
[GG03]. Later, [Gar04] applied the mechanism to machine learning, based on the hi-
erarchical hat basis with constant on level −1 which we will find to be a discretization
of the anchor ANOVA. The contribution in this chapter is to formulate the ANOVA
decomposition by means of basis properties which are determined by projectors. Thus,
we find a constructive approach to compute, analyze and visualize ANOVA components
in an effective way, which improves the common evaluation methods (4.18) and (4.19).
In comparison to approaches in [GG03, Gar04], the new method presented here allows
space– and dimension adaptivity. It has a direct relation to ANOVA decompositions.
To this end, we consider a finite dimensional subspace V (d)

h ⊂ V (d) of a tensor prod-
uct space V (d) for which we study basis expansions. We start with a one–dimensional
splitting of V (1)

h into constant and rest as before,

V
(1)
h = 1⊕W (1)

h , (4.23)

where W (1)
h is spanned by a properly chosen basis,

V
(1)
h = span {1} ⊕ span {φ1, . . . , φn} . (4.24)

The key idea is to choose the basis φ1, . . . , φn such that P (φi) = 0. Thus, any one–
dimensional function fh ∈ V

(1)
h represented as linear combination of {1, φ1, . . . , φn},

fh = a0 +
n∑
i=1

aiφi, (4.25)

fulfills Pfh = a0 +
∑
aiPφi = a0 ∈ span {1} and

(I − P )fh = fh − a0 ∈W (1)
h . (4.26)

For reasons of convenience, we define φ0 := 1 and write V (1)
h = span {φ0, . . . , φn}.

The d–dimensional case follows using the same tensor product approach as in (4.12),

V
(d)
h =

d⊗
j=1

(1j ⊕Wh,j) =
d⊗
j=1

(span {1} ⊕ span {φ1, . . . , φn}). (4.27)

This leads to the d–dimensional tensor product basis for V (d)
h ,

φi1,...,id(x) =
d∏
j=1

φij (xj), (4.28)

which fulfills φ0,...,0 = 1. The same reasoning as before now leads to

fhu = Puf
h ∈W h

u (4.29)
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fh∅

fh{2}

fh{1}

fh{1,2}

x1 constant x1 varying

x2 constant

x2 varying

Figure 4.1: Illustration of a two–dimensional ANOVA decomposition.

where
Pu =

( ∏
j∈{1,...,d}\u

Pj
)
·
(∏
j∈u

(Ij − Pj)
)

(4.30)

and W h
u is the associated tensor product consisting of constants in directions j ∈

{1, . . . , d}\u and varying terms in directions j ∈ u. Due to the one–dimensional compati-
bility between basis and projector, we get d–dimensional approximations (more precisely,
|u|–dimensional ones) fhu ≈ fu which converge for n→∞.
Before we actually choose basis sets matching the classical ANOVA decomposition

or the anchor ANOVA, we note how to obtain fhu from a given representation fh. We
assume we have a basis expansion

fh =
∑

i1,...,id≥0
ai1,...,idφi1,...,id . (4.31)

We define the ANOVA component for a multi index (i1, . . . , id) to be

u(i1, . . . , id) := {j | ij 6= 0}, (4.32)

i.e. u(i1, . . . , id) contains only those directions for which the one–dimensional basis func-
tion φij is not the constant. Since we have a basis, it follows that

fhu =
∑

i1,...,id≥0
ij 6=0 for j∈u

ai1,...,id
∏
k∈u

φik . (4.33)

As consequence of (4.33), we only need to compute a basis expansion (for example by
interpolation) and get the decomposition and all its components fhu for free. We illustrate
such a splitting using boxes as in Figure 4.1: the 2d components are visualized using the
constant and rest power set.
We will now present basis sets which are suitable to compute the classical ANOVA

decomposition and the anchor ANOVA decomposition with anchor a = (0, . . . , 0).
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Figure 4.2: Prewavelet basis functions for selected multi-indices in the set (l, i) ∈
{(−1, 0), (0, 0) (1, 1) (2, 1) (2, 3) (3, 3)} (from top left to bottom right).

The Prewavelet Basis as Natural Discretization of The ANOVA Decomposition

The classical ANOVA decomposition is characterized by the Lebesgue measure dµ(x) =
dx and thus the one–dimensional projector Pf =

∫ 1
0 f(x) dx. Consequently, we need

a basis set {φ1, . . . , φn} for which Pφi = 0 for 1 ≤ i ≤ n, i.e. with vanishing zeroth
moment

∫ 1
0 φi dx = 0. The complete basis for V (1)

h is then given by 1, φ1, φ2, . . . which
constitutes a hierarchical decomposition with “coarsest scale” φ0 = 1. Vanishing mo-
ments are common for wavelet bases: any wavelet basis expansion allows discretized
Lebesgue ANOVA representations. The most simple wavelet is the piecewise constant
Haar wavelet [Haa10] (see Appendix A.2.4 for an implementation) which is first order
accurate. Here, we employ the second order piecewise linear Neumann prewavelet basis
{ψl,i} presented in [GO95]. As a hierarchical basis, it is defined on different levels l, so
we switch the indexing to level and space indices of the form j ≡ (l, i). The constant
gets the level index l = −1 and space index 0, i.e. ψ−1,0 := 1. Any level index l ≥ 0
makes up the non–constant part W (1)

h . The Neumann prewavelet basis is illustrated in
Figure 4.2: the first basis function is the constant, the function on level l = 0 is linear (it
gets space index 1 such that x0,1 = 1 is the right boundary), level l = 1 is a hat function
and starting with l = 2, we get spline functions made up using multiple adjacent hat
functions. Besides the required orthogonality property

∫ 1
0 ψl,iψ−1,0 dx =

∫ 1
0 ψl,i dx = 0

for (l, i) 6= (−1, 0), the prewavelet basis also fulfills
∫ 1
0 ψl,iψk,j dx = 0 for l 6= k. As a

hierarchical basis, it allows a sparse grid construction for the d–dimensional case which
reduces the required degrees of freedom considerably compared to the full tensor prod-
uct i1, . . . , id = 0, . . . , n provided f has bounded second mixed derivatives. Furthermore,
there exist fast O(N) algorithms to transform nodal values f(xl,i) to a prewavelet rep-
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Figure 4.3: One–dimensional example of the discretized ANOVA decomposition by
means of the prewavelet basis.
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Figure 4.4: The function f(x, y) = 10 + x2 + 4ey + 0.3xy and its discretized ANOVA
decomposition.

resentation and backwards. These algorithms are presented in detail in Appendix A.2.3,
together with a rigorous definition and implementational details.
A one–dimensional example for the decomposition is shown in Figure 4.3: the left

picture shows the graph of f(x) = x2 and the right its two ANOVA components f∅ and
f{1}. The constant is

∫
x2 dx = 1/3, represented by the single basis coefficient a−1,0.

Figure 4.4 (left) shows the graph of f(x, y) = 10 + x2 + 4ey + 0.3xy and its ANOVA
components f∅, f{1}, f{2} (middle) and f{1,2} (right). We see that the main contributions
come from f{2} and f{1}; the highest order component is small. Note that it is not equal
to 0.3xy due to the difference construction involved.
A further example of high practical relevance is the density of a normal distribution,

shown in Figure 4.5 (left), along with its components (middle and right). The normal
distribution requires the highest order term for any reasonable accuracy. In fact, the
“mean effective dimension” of the normal distribution grows linearly with the nominal
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Figure 4.5: The normal distribution N (µ, σ) with µ = (1/2, 1/2) and σ = diag(0.04, 0.04)
and its discretized (Lebesgue) ANOVA decomposition.
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Figure 4.6: The mean effective dimension D(d, σ), (4.34), for different normal distribu-
tions.

dimension. Here, we refer to the variance–based definition of mean effective dimension
according to [Owe03]: For any tensor product function g(x) =

∏d
j=1 gj(xj), the mean

effective dimension is

D =
∑d
j=1 γ

2
j /(γ2

j + µ2
j )

1−
∏d
j=1 µ

2
j/(γ2

j + µ2
j )
, µj =

1∫
0

gj(x) dx, γ2
j =

1∫
0

(gj(x)− µj)2 dx, (4.34)

compare [Owe03]. Figure 4.6 shows the mean effective dimension D = D(d, σ) for
densities of normal distributions N (1/2, σ) and σ = 1/100 · 2i, i = 0,−1,−2,−3,−4. We
see that the effective dimension D(d, σ) grows linearly with the nominal dimension. This
property yields a further intuition why the approximation of Gaussians is difficult.
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Figure 4.7: One–dimensional example of the discretized anchor ANOVA decomposition
by means of the hierarchical hat basis.

Two Basis Systems For The Anchor ANOVA

We study the case of a discretized anchor ANOVA with anchor a = 0, i.e. we deal with
the one–dimensional projector Pf(x) =

∫ 1
0 f(x)δ(x) dx = f(0). A basis for the splitting

V
(1)
h = 1⊕W (1)

h = span {1, φ1, . . . , φn} needs to fulfill Pφi = 0. This property is fulfilled
by the hierarchical hat basis with constant on the left boundary. We have already seen
the corresponding decomposition in Section 2.1.4 where we investigated sparse grid error
estimates for the case of non–homogeneous boundary conditions; it is actually the same
as the anchor ANOVA decomposition. Consequently, we only need to compute the basis
representation for the hierarchical hat basis in order to get anchor ANOVA components.
This is illustrated in Figure 4.7 for f(x) = x2 and in Figure 4.8 for f(x, y) = 10 +

x2 + 4ey + 0.3xy. Note the differences between the classical ANOVA decomposition of
the same functions (illustrated in Figure 4.3 and Figure 4.4, respectively).
A further, straight–forward and readily implementable example which is compatible

with the anchor ANOVA decomposition is a spline basis of the form {φ0, φ1, . . . , φN},

V h
i = span

{ }
︸ ︷︷ ︸

constant

⊕ span
{ }

︸ ︷︷ ︸
non-constant

(4.35)

which fulfills Pφi = φi(0) = 0 for i > 0. A one–dimensional basis expansion fh =∑N
i=0 aiφi is given by a0 = f(0) and ai = f(xi) − f(0), i > 0. The tensor product

approach discussed in Section 4.1.3 yields the full grid discretization

fh =
∑

0≤i1,...,id≤N
ai1,...,idφi1,...,id (4.36)

which can be computed by applying the one–dimensional formulas for ai successively
along the different coordinate directions. The discretized anchor ANOVA terms can be
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Figure 4.8: The function f(x, y) = 10 + x2 + 4ey + 0.3xy and its discretized anchor
ANOVA decomposition.

read off using
fhu =

∑
0≤i1,...,id≤N
ij 6=0 for j∈u

ai1,...,id
∏
k∈u

φik . (4.37)

This approach is equivalent to classical full grids for every component fu, with total
complexity (N +1)d and accuracy ‖f −fh‖a = O(N−2) for a ∈ {2,∞} if f has bounded
second derivatives (we studied the case of mixed derivatives in Lemma 2.1.7). However, if
we know in advance that fu = 0 for |u| > ds, we can eliminate the associated coefficients
and do the same job, i.e. we compute

fh =
∑

0≤i1,...,id≤N
|{ij 6=0}|<ds

ai1,...,idφi1,...,id . (4.38)

In this case, the complexity is reduced to exponential growth in ds,(
d

ds

)
(N + 1)ds ≤

(d · e
ds

)ds(N + 1)ds . (4.39)

Note that (4.38) allows the same computation of ai as before, we only need to check
whether components are needed. The constant times rest splitting allows this simple
sort of algorithm.
A similar full grid approach could be implemented for the Neumann prewavelet which

discretizes the classical ANOVA decomposition (although its transformation is more
involved, see Appendix A.2.3).

4.2 Weighted Spaces and A Priori Optimized Sparse Grids
In the following sections, we consider methods to exploit functions in which higher
dimensional terms of the dimension decomposition are either small or vanish completely.
If such structure is known in advance, specialized approximation methods can be derived
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a priori, provided additional knowledge about the smoothness of the ANOVA terms is
known. This section presents new results about sparse grid spaces for functions in which
the terms of our dimension decomposition can be weighted with real weights and have
bounded second mixed derivatives. We start with the case where all weights are known
in advance. Section 4.3 will then deal with a posteriori grid adaptation, i.e. with the case
when weighted structure is to be expected without explicit knowledge of the weights.
Our approach is based on the ideas presented in Section 4.1.3: the discretized method

should represent the splitting into constant and rest, V (1) = 1⊕W (1), which is character-
ized by a one–dimensional projector P : V (1) → 1. Any tensor product basis built using
one–dimensional basis functions {1, φ1, . . . , φN} of V (1) with Pφi = 0 will automatically
yield a compatible, discretized ANOVA decomposition, see Section 4.1.3 for details.
While ANOVA decompositions are based on sets of directions, we now need to dis-

cretize each set of directions. We have already seen how to discretize the anchor ANOVA
decomposition if its components have bounded second derivatives in Section 4.1.3.
If the functions satisfy mix smoothness, we can employ sparse grid structure. This

is particularly interesting if dimension adaptive procedures are necessary to find the
effective dimension, for example a parameter like ds, automatically. Furthermore, the
exponential growth of the form Nd can be reduced by sparse grids, thereby allowing
higher (effective) dimensions. We will discuss sparse grid based approximation spaces in
the following sections.

4.2.1 Weighted Mix Spaces

We will now formalize weighted spaces suitable for sparse grid approximation. In com-
parison to the literature cited at the beginning of Chapter 4, our approach is based
on weighted second mixed derivatives which govern the approximation properties. The
approach is similar to the construction presented in [Hol08, section 4.2] where optimized
sparse grid methods for the problem of integration in weighted spaces have been derived.
Let Γ := {γu |u ⊆ {1, . . . , d}} be a non–empty set of real weights, γu ≥ 0. Then, we

define the space of functions with weighted dimension decomposition

HΓ
a := {f ∈ Xq,2[0, 1]d | |||f |||a <∞} (4.40)

for either a =∞ or a = 2 with the seminorm

|||f |||a :=
∑

u⊆{1,...,d}
γu 6=0

1
γu
|fu|2,a. (4.41)

Here, f =
∑
u⊆{1,...,d} fu is a dimension decomposition with uniquely determined terms

fu. The special case γu = 0 is allowed: in this case, we require |fu|2,a = 0 (i.e. we use
the notation 0/0 = 0). For reasons of simplicity, we also assume fu ≡ 0 for γu = 0. The
seminorm

|fu|2,a := ‖D2
ufu‖a (4.42)
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is the norm of the second mixed derivatives of fu in the set of direction u,

D2
ufu =

∏
j∈u

∂2

∂x2
j

fu. (4.43)

Since per construction, ∂
∂xj

fu = 0 for j 6∈ u, we will occasionally treat fu as function
fu : [0, 1]|u| → R. Note that

|fu|2,a = γu
(
|||f |||a −

∑
v 6=u

1
γu
|fv|2,a

)
≤ γu|||f |||a, (4.44)

so γu weights the part of |fu|2,a relative to |||f |||a.

4.2.2 Sparse Grids with Optimized Cost/Gain Ratio
Unweighted sparse grid spaces can be derived as result of an optimization process which
balances local cost and local benefit, see [BG04] or [Bun98]. Such an optimization takes
place on inner grid points, i.e. in the highest dimensional component of an ANOVA
decomposition. The optimization procedure, especially its reduction to local information,
can be applied to each term of a dimension decomposition as well if the constant plus rest
splitting is respected. Our approach will use this idea: we apply the local optimization
procedure to each decomposition term separately and re–use results known for classical
sparse grids. The coupling between separated optimizations can be achieved using a
single reference value. The following steps are thus the definition of local cost–benefit
ratios on each decomposition term followed by the definition of a reference value which
couples the local ratios in order to optimize the overall cost. We will then analyze the
global cost and error.
We make use of the special notation l = −1 for the constant basis function as we did

before, so the one–dimensional hierarchy starts with l = −1 for the constant, followed
by l = 0 for the linear basis function and the remaining ones with l > 0 as for the
unweighted case. This is to maintain consistency with the notation for inner nodes. In
terms of basis functions, we have thus φ−1,0 := 1 as the only basis function on level
l = −1 which is attached to the left boundary and φ0,1 := x for level l = 0, attached to
the right boundary. Since the constant plays a special role, we exclude it from the often
important sum of all level indices and write for l = (l1, . . . , ld)

|l|∗1 :=
d∑
j=1
lj 6=−1

lj . (4.45)

To identify the ANOVA term fu which contains a given level index l, we write

u(l) := {j | lj is a non–constant part ⇔ lj 6= −1}. (4.46)

Thus, an element fl defined by a multilevel basis representation

f =
∑

l∈(N∪{−1,0})d
fl =:

∑
l∈Ld

fl (4.47)
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as in (2.85) is uniquely associated with the ANOVA component fu(l). Furthermore, fu
can be represented by a specific subset of the fl,

fu =
∑
l∈Ld
u(l)=u

fl. (4.48)

Note that each fl in f =
∑

l fl is formally defined in d dimensions, so fu is also formally
defined on [0, 1]d. But since all directions j 6∈ u are constant, we can regard it as
|u|–dimensional function and write

fu =
∑

l∈L|u|
fu,l. (4.49)

We present the optimization for the hierarchical hat basis which discretizes the anchor
ANOVA decomposition. Since the hat basis fulfills φl,i(0) = 0 for every basis function
except for the constant φ−1,0 = 1, and furthermore φl,i(1) = 0 for all but the constant and
the linear, we have almost homogeneous boundary conditions. Thus, we start with the
case of homogeneous boundary conditions and come back to non–homogeneous boundary
conditions later. To this end, we assume the coefficient for the linear basis function, f0,1,
vanishes and the associated basis function at l = 0 will not be considered in the following
reasoning.
We are now in a position to apply estimates for |u|–dimensional functions with vanish-

ing boundary conditions. We have already studied this case thoroughly in Section 2.1.2
for the hierarchical hat basis, so we will only summarize the relevant properties here. It
holds by means of Lemma 2.1.6 that

‖fu,l‖L2 ≤ 3−|u| · 2−2|l|∗1 · |fu|2,2 (4.50)

and
‖fu,l‖L∞ ≤ 2−|u| · 2−2|l|∗1 · |fu|2,∞ (4.51)

for level components of a fixed ANOVA component fu. Due to the weighting property
|fu|2,a ≤ γu|||f |||a for a = 2 and a = ∞, we can deal with both cases simultaneously
using constants c(∞) := −1 and c(2) := − ld 3 and

‖fu,l‖La ≤ 2−2|l|∗1+c(a)·|u|+ld γu · |||f |||a. (4.52)

Furthermore, we find

‖fu,l‖E ≤
(
2 · 12(|u|−1)/2)−1 · 2−2|l|∗1 ·

(∑
j∈u

22lj)1/2 · γu|||f |||∞ (4.53)

= 2−2|l|∗1+c(E)·|u|+c̃(E)+ld γu ·
(∑
j∈u

22lj)1/2 · |||f |||∞ (4.54)

with c(E) := −1/2 ld 3− 1 and c̃(E) := 1/2 ld 3.
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On the other hand, we know the cost of one complete level l which is the number of
different basis functions,

C(l) := |Wl| =
d∏
j=1
lj>0

2lj−1 =
d∏
j=1
lj 6=−1

2lj−1 = 2|l|∗1−|u(l)| (4.55)

where the second equality employs that lj = 0 is not possible. The special case for the
linear basis function on level l = 0 is discussed later. The local cost can also be written
as

C(l) = 2n(l)−1 (4.56)

where we use n(l) := |l|∗1 − |u(l)| + 1 to denote the scalar level of a multi-index with
respect to its ANOVA component u(l) with the special case n(−1, . . . ,−1) := 0 (in
consistency with (2.18)).
For example, the level l = (1, . . . , 1) belongs to the highest order component u(l) =
{1, . . . , d} and has n(l) = 1. A level like l = (−1, 1, . . . , 1) belongs to u(l) = {2, . . . , d}
and also has scalar level n(l) = 1, but in its ANOVA component u(l).
Given a set of level indices, we can use the local contributions ‖fu,l‖ and associated

costs C(l) to compute the global cost and accuracy for f . Before actually doing so,
we choose the set of levels a priorily as optimal choice with respect to our weights and
the mix smoothness. To this end, we search for an optimal approximation space V (opt),
defined by a set of level indices, which has the smallest possible error for prescribed work
count w. The space V (opt) is chosen as result of the optimization procedure

max
f∈Xq,2

0 :‖f‖=1
‖f − fV (opt)‖︸ ︷︷ ︸

worst case in V (opt)

= min
U⊂V (d):|U |=w

max
f∈Xq,2

0 :‖f‖=1
‖f − fU‖︸ ︷︷ ︸

worst case in U

(4.57)

which uses the (relative) optimum over all functions with bounded second mixed deriva-
tives and homogeneous boundary conditions, f ∈ Xq,2

0 . Note that it is not the optimum
for one particular function, but for all elements in that space. Reformulating the op-
timization problem in terms of local cost and local benefits B(l) reveals a surprisingly
simple algorithm to compute the optimal solution, see [BG04]: the global solution can
be obtained using local cost–benefit ratios B(l)/C(l) which are below a reference value
depending on the prescribed work count. For details of this reasoning, we refer the
interested reader to [BG04]. We will turn our attention to the local cost–benefit ratios
and a reference value suitable for our weighted dimension decomposition. In a sparse
grid decomposition fh =

∑
l fl =

∑
l fu(l),l, the local benefit of a level index l depends

crucially on fu(l),l. Consequently, we define the local benefit as upper bound on ‖fu(l),l‖2.
We obtain

B(a)(l) := 2−4|l|∗1+2c(a)·|u(l)|+2 ld γu(l) · |||f |||2a (4.58)

for the L∞ norm (a =∞) and the L2 norm (a = 2) and furthermore

B(E)(l) := 2−4|l|∗1+2c(E)·|u(l)|+2c̃(E)+2 ld γu(l) ·
( ∑
j∈u(l)

22lj) · |||f |||2∞ (4.59)
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for the energy norm.
The actual optimization of cost versus benefit can now be done by considering the

cost–benefit ratio

cbr(a)(l) := B(a)(l)
C(l)

(4.60)

for every local contribution l, compare [BG04]. The global optimization procedure pre-
sented in [BG04] yields an optimal subspace if all level indices l fulfilling

cbr(a)(l) ≥ ω (4.61)

for a reference cost–benefit ratio ω are taken into account. The value ω is yet to be
determined. Note that due to our reasoning above, the entity cbr(a)(l) depends solely
on one ANOVA component, namely on fu(l). The reference value will now balance
the different terms, thus, it combines the isolated local entities to a global criterion
and relates different ANOVA components to each other. The reference value ω should
somehow depend on the prescribed work count motivated at the beginning of this section.
We follow the reasoning in [BG04] and use a specific scalar level n to fix the reference
value. While [BG04] uses the sparse grid level n and ω := cbr(a)(̄l) with one specific level
index l̄ belonging to the finest resolution in such a sparse grid, n(l) = n, we will here
use a specific level index l̄ which belongs to the finest resolution used for the ANOVA
component with largest weight. More precisely, let

ū := argmax
u⊆{1,...,d}

u6=∅

{γu} (4.62)

be the ANOVA component with largest weight. If the maximum is not unique, one of
the matching components of largest dimensionality should be chosen. Then, we define l̄
using

l̄i :=


−1 i 6∈ ū,
n i = min(ū),
1 else

(4.63)

where n ∈ N is a given parameter indicating the total work count (a scalar level). Note
that l̄ is associated with a |ū|–dimensional grid and we have |̄l|∗1 = n+ |ū| − 1 and thus
n(̄l) = n. We define the reference value ω as

ω := cbr(a)(̄l) (4.64)

and obtain thus the optimal sparse grid for the weighted anchor ANOVA decomposition
by using all level indices l fulfilling

cbr(a)(l) ≥ cbr(a)(̄l). (4.65)

The result is stated in
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Lemma 4.2.1 (A priori optimized sparse grids for weighted mix spaces). Let Γ := {γu ≥
0 |u ⊆ {1, . . . , d}} be a non–empty set of weights and f ∈ HΓ

a for either L∞ (a =∞) or
L2 (a = 2) where HΓ

a is based on the anchor ANOVA decomposition f =
∑
fu of f with

γu = 0 ⇒ fu ≡ 0. Furthermore, let ū = argmaxu⊆{1,...,d},u6=∅{γu} with the special cases
discussed for (4.62).
Then, the sparse grid space

V n,Γ,a := {fh =
∑

l∈Ln(a)

fl} =
⊕

l∈Ln(a)

Wl (4.66)

spanned by the hierarchical hat basis has optimal cost–benefit ratio with respect to ap-
proximation in the ‖·‖a norm, a ∈ {∞, 2, E}, if Ln(a) is chosen as

Ln(∞) := {l | |l|∗1 + 1
5
|u(l)| − 2

5
ld γu(l) ≤ n+ 11

5
|ū| − 1− 2

5
ld γū}, (4.67)

Ln(2) := {l | |l|∗1 + 1
5

ld 9
2
|u(l)| − 2

5
ld γu(l)

≤ n+ |ū| · (1 + 1
5

ld 9
2
)− 1− 2

5
ld γū}, (4.68)

Ln(E) := {l | |l|∗1 −
1
5

ld
( ∑
j∈u(l)

4lj
)
− 2

5
ld γu(l) + 1

5
ld 6 · |u(l)|

≤ n− 1
5

ld(4n + 4|ū| − 4)− 2
5

ld γū + (1 + 1
5

ld 6) · |ū| − 1}. (4.69)

Proof. The sub spaces selection criteria follow from cbr(a)(l) ≥ cbr(a)(̄l) as elaborated
below, the global optimality from the reasoning in [BG04].
For a =∞ and a = 2, we find

cbr(a)(l) := B(a)(l)
C(l)

= 2−5|l|∗1+|u(l)|·(1+2c(a))+2 ld γu(l) · |||f |||2a (4.70)

and consequently

cbr(a)(̄l) = 2−5n+5+|ū|·(−4+2c(a))+2 ld γū |||f |||2a. (4.71)

The criterion cbr(a)(l) ≥ cbr(a)(̄l) simplifies to

|l|∗1 + |u(l)| · (−1
5
− 2

5
c(a))− 2

5
γu(l) ≤ n− 1 + |ū|(1− 1

5
− 2

5
c(a))− 2

5
γū. (4.72)

For a =∞ and c(∞) = −1, the left hand side contains the summand |u(l)| · 1/5 whereas
the right hand side becomes |ū|·11/5. For a = 2 and c(2) = − ld 3, we find |u(l)|·1/5·ld(9/2)
and |ū| · (1 + 1/5 · ld(9/2)), respectively.
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The energy norm ratio is

cbr(E)(l) = 2−5|l|∗1+|u(l)|·(1+2c(E))+2c̃(E)+2 ld γu(l) ·
( ∑
j∈u(l)

22lj) · |||f |||2∞ (4.73)

with reference quantity

cbr(E)(̄l) = 2−5n+|ū|·(−4+2c(E))+5+2c̃(E)+2 ld γū+ld(4n+4|ū|−4) · |||f |||2∞. (4.74)

Thus, we find the criterion

|l|∗1 + |u(l)| · (−1
5
− 2

5
c(E))− 2

5
ld γu(l) −

1
5

ld
( ∑
j∈u(l)

22lj) ≤
n+ |ū| · (1− 1

5
− 2

5
c(E))− 1− 2

5
ld γū −

1
5

ld(4n + 4|ū| − 4) (4.75)

with c(E) = −1/2 ld 3− 1 and thus −1/5− 2/5 c(E) = 1/5 ld 6.

Besides the criteria for the subspace splittings, we also find explicit criteria for every
ANOVA component:

Lemma 4.2.2. Under the assumptions of Lemma 4.2.1, a given hierarchical hat ba-
sis representation fh =

∑
l∈Ln(a)

fl directly yields a discretized anchor ANOVA fh =∑
u⊆{1,...,d} f

h
u by using a subset of Ln(a) to compute the single components as follows:

fhu =
∑

l∈Ln(a)
u(l)=u

fl. (4.76)

For a ∈ {∞, 2}, this is equivalent to

fhu =
∑

u(l)=u
|l|∗1≤n(a)(n,γ,u,ū)+|u|−1

fl (4.77)

with the scalar, weighted levels

n(∞)(n, γ, u, ū) := n+ b11
5
(|ū| − |u|) + 2

5
ld γu
γū
c ∈ Z, (4.78)

n(2)(n, γ, u, ū) := n+ b(1 + 1
5

ld 9
2
)(|ū| − |u|) + 2

5
ld γu
γū
c ∈ Z. (4.79)

For the energy optimized components, we find

fhu =
∑

u(l)=u
|l|∗1−

1
5 ld
(∑

j∈u(l) 4lj
)
≤n(E)(n,γ,u,ū)+|u|−1− 1

5 ld(4n+4|u|−4)

fl (4.80)

with

n(E)(n, γ, u, ū) := n+b2
5

ld γu
γū

+ 1
5
(6+ld 3)(|ū|−|u|)+ 1

5
ld
(4n + 4|u| − 4
4n + 4|ū| − 4

)
c ∈ Z. (4.81)
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Proof. The hierarchical hat basis is a discretized anchor ANOVA decomposition due to
the argumentation in Section 4.1.3.
Concerning the formulas, we find from Lemma 4.2.1 for fixed u (independent of l) and

a ∈ {2,∞} that

|l|∗1 ≤ n− 1 + |u| − |u|+ |ū|(1− 1
5
− 2

5
c(a))− |u|(−1

5
− 2

5
c(a)) + 2

5
(ld γu − ld γū)

(4.82)

= n− 1 + |u|+ (|ū| − |u|)(1− 1
5
− 2

5
c(a)) + 2

5
ld γu
γū
. (4.83)

Since |l|∗1 ∈ N0, we can apply gauss brackets and find the assertion using the constants
c(a) as in the proof for Lemma 4.2.1.
The proof for energy grids works by introducing the additional summands ±|u| and
±1

5 ld(4n + 4|u| − 4).

The theorem yields a grid consisting of regular sparse grids for every ANOVA compo-
nent where each component has its separate level. This can be seen by substituting |u|
by d and n(a)(n, γ, u, ū) by n: the substitution in (4.77) yields the classical sparse grid
selection criteria |l| ≤ n+ d− 1 and the substitution in (4.80) yields the corresponding
selection criteria for energy optimal grids, compare definition 2.1.1 on page 22. The level
n(a)(n, γ, u, ū) depends on the component’s dimension and its weight, but it is still an
integer like the well–known sparse grid level n.
Note that the sparse grid optimization procedure of [BG04] follows from Lemma 4.2.1

as special case, namely for γ1,...,d = 1 and γu = 0 for |u| < d: in this case, boundary
components |u| < d are skipped and the reference level l̄ is the same as in [BG04], namely
l̄ = (n, 1, . . . , 1). The weights disappear and the |ū| and |u| terms cancel each other.
Note furthermore, that a component with γu = 0 will not receive any points since

ld γu = −∞.
Lemma 4.2.1 does not assume normalized weights. If we introduce γ̃u := γu/γū, we

find 0 ≤ γ̃u ≤ 1 and γ̃ū = 1. Thus, the normalized weights γ̃u allow simplifications of
the notation.
Note that a practical realization of Lemma 4.2.1 will also need some sort of hanging

node condition: for every level l on component u(l), its hierarchical ancestors on lower
dimensional ANOVA components v ⊂ u(l) should be inserted as well.

Non Homogeneous Boundary Conditions

So far, we have studied the case of an anchor ANOVA in which every component fu
exhibits homogeneous boundary conditions of the type j ∈ u, xj ∈ {0, 1} ⇒ fu(x) = 0.
We will now discuss the relevant techniques to generalize our results to non–homogeneous
boundary conditions. This involves a strategy to select boundary levels and care when
it comes to global error analysis.
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The selection of boundary levels could be done by means of the local cost–benefit opti-
mization as before, but there is a simpler approach: since any non–vanishing component
will, in general, need at least level 1, the boundary level 0 is inserted anyway to fulfill
hanging node conditions. Thus, we exclude level 0 from the subspace selection explicitly
and insert it if and only if it is required due to hanging node conditions (a descendant
is inserted).
To allow error analysis, we proceed as in our derivation of sparse grids in Section 2.1.4:

we introduce a boundary splitting and operate on each boundary separately. Our task
here is actually just a special case of the results derived in Section 2.1.4 since we have
already dealt with the left boundary by means of the ANOVA decomposition.
The idea is as follows: the anchor ANOVA decomposition can be formulated in terms

of the hierarchical basis. A component fu fulfills Pjfu = 0 for every j ∈ u where Pj is the
associated ANOVA projector. In terms of the hierarchical basis, this means we have no
contributions of φl,i for lj = −1, j ∈ u. The idea of Section 2.1.4 is to introduce a three–
term–splitting into left boundary (constant), right boundary (linear) and rest such that
the one–dimensional space is split uniquely into 1⊕ lin⊕W̃ by corresponding projectors.
Since fu does not have contributions from the constant, we will split it only into right
boundary and rest. Since the rest terms satisfy homogeneous boundary conditions with
respect to the varying directions, we can then apply all theorems separately to the rest
terms.
In detail, let fu =

∑
l∈{−1,0,∗}|u| f̄u,l be the unique three–term–decomposition of fu

according to Definition 2.1.2. As discussed, the constant contributions vanish since fu
is an ANOVA component compatible to the three–term–decomposition. Thus, fu =∑

l∈{0,∗}|u| f̄u,l. We extend the definition of |fu|2,a accordingly to

|fu|2,a := max
l∈{0,∗}|u|
|l(∗)|>0

|fu,l(∗) |2,a (4.84)

to measure mix smoothness on lower dimensional boundary manifolds as well, compare
with the seminorm of Lemma 2.1.16. Remember from (2.88) that l(∗) = {j | lj = ∗},
so D2

l(∗) applies only in directions belonging to the varying parts. Then, we build the
weighted mix spaces as before, but with the new seminorm. Note that weights apply to
|fu|2,a as before, not to the underlying boundary decomposition.
Finally, we apply Lemma 2.1.16 to find

Lemma 4.2.3 (Single component error with non–homogeneous boundaries). Let fu be
the anchor ANOVA component for u of f , f ∈ HΓ

a . Let fhu be a regular sparse grid
interpolant of fu on level n ∈ N and assume that2either f̄u,0 = 0 or f̄u,0 − f̄hu,0 = 0.

2This is true if the linear basis function on level 0 = (0, . . . , 0) is inserted as hanging node. The
weighted space selection is based on second derivatives, so linear functions need extra subspace
selection handling. But usually, level 1 is necessary anyway, and level 0 as hanging node has no error.
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Then, the error can be estimated by

‖fu − fhu ‖a ≤
∑

l∈{0,∗}|u|
|l(∗)|>0

c|l
(0)|
a · Ca,|l(∗)| · 2

−2n · |fu,l(∗) |2,a ·A(|l(∗)|, n) (4.85)

< 2|u| · max
j=0,...,|u|−1

cja · max
j=1,...,|u|

Ca,j︸ ︷︷ ︸
=:Ca(|u|)

·2−2n · |fu|2,a ·A(|u|, n) (4.86)

= O(2−2nn|u|−1). (4.87)

The constants ca and Ca,j are as in Lemma 2.1.16, i.e. c∞ = 1, c2 = 3−1/2 (norm
of the linear basis functions in one dimension) and C∞,j = 2 · 8−j, C2,j = 2 · 12−j
(dimension dependent coefficients of inner sparse grid errors in dimension j). Thus, we
have C∞(m) = 2m/4 and C2(m) = 2m/6.
Note that the constants could be improved, compare Lemma 2.1.16.

Proof. The proof follows directly from Lemma 2.1.16 since we can regard fu as |u|–
dimensional function. Furthermore, |fu|2,a as defined in (4.84) is compatible with the
requirements of Lemma 2.1.16. However, instead of 3|u|− 2|u|, the number of summands
here is ∑

l∈{0,∗}|u|
|l(∗)|>0

1 = 2|u| − 1 < 2|u|. (4.88)

Global Cost And Error

We are now in a position to analyze global cost and accuracy for our weighted sparse
grid V n,Γ,a.

Lemma 4.2.4 (Global Cost). The number of basis functions, i.e. the cost of V n,Γ,a for
a ∈ {2,∞}, is bounded by

|Gn,Γ,a| ≤
∑

u⊆{1,...,d}
(−2)|u| + 2n · 2|ū|·C

(a)
n ·

∑
u⊆{1,...,d}

2|u|·(1−C
(a)
n )·

·
(γu
γū

)2/5 |u|−1∑
i=0

(
n(a)(n, γ, u, ū)− |u|+ 1

i

)
· 2|u|−i−1; (4.89)

|Gn,Γ,a| = O
(
2n

∑
u⊆{1,...,d}

(γu
γū

)2/5(n(a)(n, γ, u, ū))|u|−1
)
. (4.90)

Here, C(∞)
n := 11/5 and C(2)

n := (1 + 1/5 ld 9/2) are constants such that

n(a)(n, γ, u, ū) = n+ bC(a)
n (|ū| − |u|) + 2

5
ld γu
γū
c. (4.91)

124



4.2 Weighted Spaces and A Priori Optimized Sparse Grids

Proof. It holds
|Gn,Γ,a| = 1 +

∑
u⊆{1,...,d}
|u|>0

|G|u|,right
n(a)(n,γ,u,|u|)| (4.92)

since for each non–empty u, we have a regular sparse grid Gd,rightn of dimension |u| and
level n(a)(n, γ, u, |u|) with boundary points on right boundaries, but no boundary points
on the left. The left boundary points make up the constant term and are part of lower
dimensional contributions until finally, the term for u = ∅ contains just one grid point
on (0, . . . , 0).
The cost for one sparse grid which contains boundary points on the right, but none of

them on the left, can be estimated similarly as in Lemma 2.1.2 where we dealt with all
boundaries. We find, with the same reasoning as in Lemma 2.1.2,

|Gd,rightn | =
d∑
j=0

(
d

j

)
|Gdj | < |Gdn|

d∑
j=0

(
d

j

)
= 2d|Gdn|. (4.93)

Furthermore, we know from (2.22) that

|Gdn| = (−1)d + 2n
d−1∑
i=0

(
n+ d− 1

i

)
(−2)d−1−i = 2n nd−1

(d− 1)!
+O(nd−2). (4.94)

By substituting both inequalities into (4.92) and using bxc ≤ x, we obtain

|Gn,Γ,a| ≤ 1 +
(∑
|u|>0

(−2)|u|
)

+ 2n2C
(a)
n |ū|·

·
(∑
|u|>0

2|u|·(1−C
(a)
n ) ·

(γu
γū

)2/5 · |u|−1∑
i=0

(
n(a)(·) + |u| − 1

i

)
(−2)|u|+1−i

)
(4.95)

which fulfills the n asymptotics

|Gn,Γ,a| = O
(
2n
∑
u

(γu
γū

)2/5(
n(a)(n, γ, u, ū)

)|u|−1) (4.96)

for fixed d as stated.

Lemma 4.2.5 (Global Error). Let V n,Γ,a be the weighted sparse grid space defined in
Lemma 4.2.1 and HΓ

a with support for boundary seminorms as in (4.84) (i.e. plug (4.84)
into the definition of |||f |||a, (4.41)). Let f ∈ HΓ

a be a function with bounded second
mixed derivatives in each anchor ANOVA component.
Then, it holds for the interpolant fh ∈ V n,Γ,a of f that

‖f − fh‖La ≤ 4 · 2−2n · 2−2C(a)
n |ū| · |||f |||a ·

∑
u⊆{1,...,d}

Ca(|u|)22C(a)
n |u|·

· γu ·
(γu
γū

)−4/5 ·A(|u|, n(a)(n, γ, u, |u|)) (4.97)
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where C(∞)
n = 11/5, C(2)

n = (1 + 1/5 ld 9/2) are coefficients arising in n(a) and C∞(m) =
2m/4, C2(m) = 2m/6 are the coefficients of boundary and inner regular sparse grid error
estimates (see Lemma 4.2.3).
If we are only interested in the n–asymptotics, the error is of the order

‖f − fh‖La = O
(
2−2n ∑

u⊆{1,...,d}
γu
(γu
γū

)−4/5 · (n+ 2/5 ld γu
γū

)|u|−1). (4.98)

Proof. We have

‖f − fh‖La = ‖
∑

u⊆{1,...,d}
(fu − fhu )‖La ≤

∑
u

‖fu − fhu ‖La . (4.99)

Furthermore, by Lemma 4.2.3 and the relation for na of Lemma 4.2.4, we find

‖fu − fhu ‖a ≤ Ca(|u|) · 2−2n(a)(n,γ,u,ū) · |fu|2,a ·A(|u|, n(a)(n, γ, u, ū))

≤ Ca(|u|) · 2
−2(n+bC(a)

n ·(|ū|−|u|)+2/5 ld γu
γū
c) · γu |||f |||a ·A(|u|, n(a)(·))

≤ 4 · Ca(|u|) · 2−2n · 2−2C(a)
n ·(|ū|−|u|) · γu

(γu
γū

)−4/5 · |||f |||a ·A(|u|, n(a)(·))

where we employed 2−2bxc ≤ 4 · 2−2x. Inserting the expression completes the proof.

4.2.3 Examples of Weighted Sparse Grid Spaces

Figure 4.9 shows a classical sparse grid for dimension d = 3 up to n = 8, i.e. the case
γ1,2,3 = 1 and γu = 0 for |u| < 3. It shows level components l1, l2 and l3 and the
subspaces Wl which make up the sparse grid. Here, levels with common scalar level n(l)
have the same color. Note that subspaces for li = −1 and li = 0 are inserted up to the
same level as for inner points.
Figure 4.10 (left) shows the weighted sparse grid Gn,Γ,∞ for n = 8 and Γ = {γ2 =

8, γ3 = 16, γ1,2 = 1, γ1,3 = 0.3, γ2,3 = 0.001}. It consists of all one– and two–dimensional
components, but the highest order term has no degrees of freedom since γ1,2,3 = 0. Note
that the component for u = {1} is present up to the same resolution as the adjacent
higher dimensional terms {1, 2} and {1, 3} due to the hanging node definition 2.1.3.
Figure 4.10 (right) shows the weighted sparse grid Gn,Γ,∞ for Γ = {γ1 = 0.2, γ2 =
1, γ1,2 = 0.01, γ2,3 = 0.1, γ1,2,3 = 0.001}. It contains few levels of the highest order term
as well.

Product Weights

A special case of weighted spaces are those with product weights. We assume we are
given non–negative parameters β ≥ 0 and αi ≥ 0, i = 1, . . . , d, and weights of the form

γu =
∏
j∈u

γj , γj := 2−5/2(αj+β). (4.100)
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Figure 4.9: The subspace decomposition for a regular sparse grid including boundaries
in three dimensions.
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Figure 4.10: The subspace decompositions for two weighted sparse grids with respect to
L∞ using n = 8.
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Figure 4.11: The sparse grid subspace decompositions for product weights once with
linear exponent (left) and once with double–exponential decay (right) up to
maximum weighted level n = 14.

Thus, the weights allow anisotropic parameters αi and isotropic parameters β. The
choice of prefactors in the exponent allows simplifications for our subspace selection
criteria. For example, the criterion for L∞ simplifies from

|l|∗1 + 1
5
|u(l)| − 2

5
ld γu(l) ≤ n+ 11

5
|ū| − 1− 2

5
ld γū (4.101)

to
|l|∗1 + |u(l)|(1

5
+ β) +

∑
j∈u(l)

αj ≤ n+ 1
5

+ min
j
αj + β (4.102)

since ū = argmax{j},1≤j≤d γ{j}.
Figure 4.11 (left) shows systematic decay relying on αj = 2j and β = −2 for maximum

level n = 14. Even faster decay is shown in Figure 4.11 (right) where double exponential
order is established by αj = 23/2(j−1) and β = 0, i.e.

γj = 2−5/2(23/2(j−1)). (4.103)

Here, the highest order component f1,2,3 has no points for n = 14; there are about 10
levels less for increasing directions.

Energy Norm Optimized Weighted Grids

We conclude our example section with an example of energy norm optimized weighted
grids according to Lemma 4.2.1. Figure 4.12 (left) shows the unweighted case of a three–
dimensional energy optimized sparse grid. The subspace splitting has higher resolution
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Figure 4.12: Energy optimal, unweighted sparse grid (left) and weighted energy optimal
grid (right) for weights Γ = {γ1,2 = 1, γ1,3 = 0.3, γ2,3 = 0.001}, each on
level n = 14.

near the axes and coarse resolution in the diagonals. For even larger levels, the diago-
nals are of considerably less importance than the axis, which eliminates the asymptotic
log term nd−1 known for regular sparse grids. Figure 4.12 (right) shows the weighted
subspace splitting Gn,Γ,E with n = 14, Γ = {γ1,2 = 1, γ1,3 = 0.3, γ2,3 = 0.001}. It is a
superposition of two–dimensional structures of different relative importance. Each one
in turn exhibits the energy optimal subspace pattern with axis parallel dominance.

4.2.4 Summary of A Priori Grid Optimization

Our approach allows to generalize the method to derive spaces with optimal cost/benefit
ratio introduced in [BG04] for regular sparse grids to the case of functions whose ANOVA
terms are weighted in a known way. The derivation as such holds for the anchor ANOVA
decomposition for which we provide boundary error estimates based on the closely re-
lated hierarchical hat basis. Note that we expect similar results for other types of
ANOVA decompositions as well. For example, the classical ANOVA decomposition for
the Lebesgue measure can be discretized in a natural way using the Neumann prewavelet
as discussed in Section 4.1.3. This, in turn, is also a piecewise linear spline basis which
spans the same space as the hat basis for the unweighted case. Therefore, it exhibits the
same approximation properties.
The a priori grid optimization, together with the correct choice of basis functions,

allows to work with ANOVA decompositions and their components in a cost–effective
way. From an algorithmic point of view, one only needs to determine the required set
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of levels and apply the hierarchical transformations to compute a discretized ANOVA
decomposition (see Section 4.1.3). The required set of levels consists of all levels up
to some maximum value n(a)(n, γ, u, ū) which depends mainly on the prescribed work
count n, the weights and the ANOVA component index u. It can be built successively
by starting with a coarse level n(l) = 1, inserting further level components until finally
the criterion stops the procedure.

4.3 A Posteriori Adaptive Sparse Grids in Weighted Spaces

Having seen how sparse grid spaces can be constructed based on a priori knowledge, we
will now address the topic of a posteriori dimension adaptive grid refinement. Thus, we
assume a different relative importance between different (sets of) directions. Adaptive
refinement methods are quite common for irregular domains or to resolve singularities
and we have already seen examples of this sort of adaptivity for adaptive interpolation
or approximation in Section 2.2.1. What we intend here has a different quality: our
goal is to reduce cost for coupled additive interactions among the input variables, not to
compensate missing smoothness. Based on approaches taken in the literature, we build a
new, improved dimension adaptive tool which is explicitly based on ANOVA techniques.
The basics of the approach go back to an adaptive interpolation method presented by
[Heg03]. The method has been elaborated and applied to problems of high dimensional
integration in [GG03] and for machine learning in [Gar04]. The key idea is to work with
complete subspaces Wl for multi-indices l, just as we did for our a priori optimization: if
(elements of) a subspaces Wl contribute a great part to the target quantity, all its basis
functions are inserted into the finite basis. Such a sort of block–adaptivity is described by
the term dimension–adaptive: only the directions contributing to Wl (thus, all lj > −1)
are relevant, up to levels lj . The term space adaptivity may include the same, but the
emphasize of space adaptivity is the ability to employ only parts of Wl if needed.
Dimension adaptive refinement will usually start with a coarse resolution in space and

few directions. Then, some sort of error estimation (or indication) chooses important
subspaces iteratively. Here, the error estimation can involve information of complete
subspaces, not just single grid points. The methods described for integration in [GG03],
approximation in [Heg03] and function reconstruction in [Gar04] typically allow full
grid methods applied to single subspaces which are finally combined by specific additive
recombination rules.
In the following we analyze the common dimension adaptive procedure. We formulate

error indicators and discuss the refinement strategy. Furthermore, we propose a new
variant based on new admissibility (“hanging node”) conditions in order to improve the
reliability of the approach in the context of dimension adaptive approximation. We
present examples of adaptive function interpolation and dimension adaptive solution of
partial differential equations. Furthermore, we compare approaches based on the anchor
ANOVA with those for the classical ANOVA decomposition.
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4.3.1 ANOVA–based Dimension Adaptive Refinement
Any adaptive refinement procedure, be it space adaptive or dimension adaptive, needs a
criterion to decide whether the global accuracy is acceptable (a termination condition),
a method to decide where to refine the index set (local error estimator or -indicator)
and strategies how to refine the index set in the neighborhood of high local errors.
The particular case of dimension adaptivity also needs a description how relations be-
tween different dimensions shall be formalized (the type of dimension decomposition)
and specialized data structures and adopted formal admissibility criteria. While the
admissibility of a space adaptive grid is usually merely a technical condition to avoid
hanging nodes, dimension adaptive grid structures require admissibility conditions to
control the interaction between different sets of directions. Can we insert a new set of
directions although its lower dimensional “adjacent” neighbors do not contribute to the
representation? The answer has impact beyond merely technical issues and is part of
our consideration.
To realize a dimension adaptive approximation tool, we propose to use the space adap-

tive error indication of Section 2.2.1 combined with a discretized ANOVA decomposition
as in Section 4.1.3 and an admissibility criterion. Choosing the hierarchical hat basis with
constant on level −1 immediately discretizes the anchor ANOVA decomposition with an-
chor a = 0 whereas the Neumann prewavelet basis yields the integral based (Lebesgue)
ANOVA, see Section 4.1.3 for details. The error indicators of Section 2.2.1 use weighted
basis coefficients |fl,i|‖φl,i‖ to identify regions of large local variation. Since every multi-
index (l, i) is uniquely associated with its ANOVA component u(l) = {j | lj 6= −1}, we
can easily implement (space) adaptive refinement inside of single ANOVA components:
simply refine a node with large error indicator by inserting its sons belonging to the
same ANOVA component (i.e. sons in directions j ∈ u(l) ⇔ lj 6= −1). Complementing
such an approach with an admissibility criterion which controls the interrelation between
ANOVA components thus yields a space– and dimension adaptive refinement procedure.
One refinement step consists of the parts:

1. Determine the set of indices Icheck which should be considered for refinement ac-
cording to the local error indicator. In our case, this is

Icheck = {(l, i) ∈ G
∣∣ |fl,i|‖φl,i‖ ≥ ε, at least one of the 2d sons of (l, i) is not in G}

(4.104)
with obvious modifications for relative errors or look–ahead strategies as in Sec-
tion 2.2.1.

2. For every element (l, i) ∈ Icheck and every direction m = 1, . . . , d, check whether
the insertion of the two sons in direction m, (lm + 1, 2im ± 1), is admissible. If so,
insert them.

3. Update the approximant f on the new grid (to recompute error indicators).

Steps (1.) – (3.) are iterated until the termination condition is satisfied. Possible termi-
nation conditions are of wavelet compression type (no further point has been inserted)
as in [Gri98] or some indication involving a global error estimate ([GG03, Gar04]).
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Note that the dimension adaptive method employed in [GG03] and [Gar04] uses a
slightly different approach for (1.): they compute error indicators for whole subspaces
Wl and the set of refinement candidates Icheck is the refineable subspace with largest
error indicator (and all its associated basis functions). Choosing just the largest contri-
bution yields a depth–first search through the hierarchical search space: the largest error
is considered first, refined, then possibly refined again and so on. Our approach (4.104)
yields a breadth–first search since it refines a complete region of large local errors simul-
taneously. Provided we follow the wavelet–compression approach which inserts all local
contributions of magnitude larger than ε, the outcome of both ways is the same – only
the number of loop iterations varies. We choose the breadth–first–search strategy here
since the update–step (3.) may need to recompute every value fl,i after a refinement,
including already existing grid points. For example, this is necessary for the Lebesgue
ANOVA or for the solution of a PDE. In such a case, the reduced number of iterations of
the breadth–first–search approach appears to be more adequate (note that both, [GG03]
and [Gar04] have incremental update rules for step (3.)).
Thus, we are left with a choice of admissibility condition (2.). The admissibility crite-

rion for pure space adaptive sparse grid refinement is simple: we insert every candidate
along with all its hierarchical ancestors (typically one per direction followed by a recur-
sion). The grid is thus made admissible.
The dimension adaptive procedures in [GG03] and [Gar04] are characterized by a dif-

ferent condition to reduce the number of candidates: any new node must be inserted
after all its ancestors have been inserted into the index set. Even more: a new node
is inserted only if all its backward neighbors (direct fathers) have already been checked
to be relevant and exist in the index set (formulated by means of an active index set).
This strict checking policy ensures a systematic additive grid. It has the advantage that
higher order components are not directly inserted as for the simple space adaptive policy.
However, it turns out to be too restrictive: for the approximation problem, any nonzero
function with vanishing low order ANOVA components will cause the procedure to ter-
minate with an error of 100%. For example, using the anchor ANOVA decomposition
and its corresponding hierarchical hat basis to resolve f(x, y) = x2 · y2 adaptively will
fail, no matter which initial level is chosen. This is because

f = f∅︸︷︷︸
=0

+ f{1}︸︷︷︸
=0

+ f{2}︸︷︷︸
=0

+f{1,2} (4.105)

has vanishing low order terms. The failure is immediately clear if the coarsest level just
contains the constant since in such a case, the error indicator fails in step (1.). But the
failure occurs even if we start on a larger level. This is illustrated in Figure 4.13. The
first picture shows the initial grid. In this case, we choose an initial resolution of n0 = 5
and insert all subspaces of a regular sparse grid n(l) ≤ 5 using n(l) as in (2.18) (note
that the boundary indices −1, 0 also have level 5 in their respective lower dimensional
manifold). The refinement correctly inserts points in the upper right half, but the tails
with l2 > 5 and l1 > 5 are not admissible since f−1,−1 = f−1,l2 = fl1,−1 = 0 for every
l1, l2 (indicated by color in Figure 4.13). However, the correct grid would include these
tails as well.
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Figure 4.13: The subspace sequence generated by the strict checking heuristics applied
to f(x, y) = x2 ·y2 starting with a regular sparse grid on level 5. Here, in-
dicates a vanishing contribution fl ≡ 0 whereas indicates a non–vanishing
contribution fl 6≡ 0.

This effect is not caused by the error indication since subspaces of higher level have
been identified to be relevant. It is caused by the fact that subspaces of high levels
cannot be refined since their ancestors on lowest ANOVA order are irrelevant. Thus,
we need to improve the procedure in order to get a dimension adaptive approach for
approximation problems.
We propose a new refinement variant to improve the early termination issue. It should

be somewhere between the strict checking policy and the no–check policy used by pure
space adaptivity. Our idea is that insertion of child nodes should always be admissible
provided the child and the father are in the same ANOVA component. As long as this
is the case, any required ancestors on lower levels should be inserted to avoid hang-
ing nodes, just as for the no–check policy (this includes ancestors on lower dimensional
ANOVA components). Thus, inside of an ANOVA component, the new strategy yields
the same result as the pure space adaptive condition: if the error in an ANOVA com-
ponent is large, refine the grid associated to this particular component. But we propose
to complement it with an even more restrictive approach when it comes to the inser-
tion of children belonging to higher dimensional ANOVA components: such children are
never admissible. The advantage is immediately clear: once at least one point exists for
an ANOVA component, it will be refined according to the well–known space adaptive
procedures. Furthermore, the strategy maintains an existing compact low order repre-
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Figure 4.14: Dimension adaptive refinement with the new ANOVA based admissibility
criterion for f(x, y) = x2 + y2 (top row) and f(x, y) = x2 · y2 (bottom
row). Here, indicates a vanishing contribution fl ≡ 0 whereas indicates
a non–vanishing contribution fl 6≡ 0.

sentation without inserting as much points as the purely space adaptive condition. This
is illustrated in Figure 4.14 (top) and Figure 4.14 (bottom): the top pictures show the
subspace refinement procedure for a sum of two one–dimensional functions. The cost
is essentially two times the cost for the one–dimensional contributions. The bottom
pictures show the same function as in Figure 4.13, f(x, y) = x2 · y2, this time started
on level n0 = 0. It refines as it ought to since the low order components are inserted
by the admissibility criterion. Note that the initial grid uses n0 = 0 (consisting of four
subspaces, each with one basis function) in both cases. This is a typical property of
the new heuristics: it requires an initial guess, an upper bound, on the largest allowed
size for sets of directions, |u|, combined (as usual) with an initial level for each of these
subsets. We propose to provide the initial grid at level n0 up to ANOVA components of
some prescribed dimension q ≤ d. The first refinement step should then compress the
grid, i.e. it should use the local error indicators to decide which of the initial components
are non–zero. This boolean check is possible on a coarse resolution; its purpose is just
to check for fu ≡ 0 or fu 6≡ 0. It is visible on Figure 4.14 as well: the compress step
for Figure 4.14 (top) removes the subspace l = (0, 0) belonging to f{1,2} and the addi-
tive refinement continues afterwards. The choice q = d allows fully automatic selection
of admissible ANOVA components (using the initial resolution n0). Note that n0 = 0
requires already 2q points, n0 = 1 requires 3q points. The case n0 > 1 with q = d is
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4.3 A Posteriori Adaptive Sparse Grids in Weighted Spaces

just a normal sparse grid with boundary points and q < d yields a set union of
(d
q

)
many

sparse grids of dimensionality q.
Note that the initial compression step at level n0 can only be avoided by a priori

knowledge about the admissible ANOVA components. Even knowledge of the exact low
order ANOVA terms does not indicate whether higher orders vanish or not. We need at
least level 0 to get information regarding higher order terms. For example, if we know
f∅ in a splitting f(x) = f∅+f{1}(x) into constant and rest, we know nothing about f{1};
we need at least some sort of gradient to decide whether it is constant or not. But the
gradient is related to hierarchical coefficients at level 0 (the linear basis function)! If we
investigate also level 1, we get information about second derivatives due to Lemma 2.1.5.
This motivates why a fully automatic approach (without a priori indication) needs at
least level n0 = 0 to decide whether higher order components vanish.

Algorithm 12 Dimension (and space–) adaptive Approximation
Input: Initial Grid G(0) containing a priori guesses about required ANOVA components

of initial (coarse) resolution
Input: Adaptive threshold ε = ε(abs) or ε = ε(rel)

Input: A “set values” algorithm (can be interpolation or a PDE)
Output: a grid G and the approximated function f on G
1: i = 0
2: f (0) :=set values on G(0)

3: G(1) :=compress G(0) based on local error indicators of f (0)

4: i := i+ 1
5: repeat
6: f (i) :=set values on G(i)

7: G(i+1) := refine G(i) based on local error indicators of f (i):
Insert child nodes if and only if their father had a large error contribution and
they are in the same ANOVA component of their father

8: i := i+ 1
9: until G

(i)
result \G

(i−1)
result = ∅

10: return G := G(i) and f := f (i)

We summarize the resulting dimension adaptive (or even space– and dimension adap-
tive) procedure in Algorithm 12. On input, we expect an initial grid G0, the target
threshold ε and a “set values” algorithm (for interpolation, this is just a hierarchical
transformation to the desired basis). So far, the input is the same as for the space
adaptive Algorithm 1 on page 33, with the following specialities: first, the grid’s anchor
should be the point associated with the lowest order ANOVA component, the constant.
Here, the grid’s anchor refers to the point where all adaptive algorithms start (see Ap-
pendix A.1 for details). The grid’s anchor and all its ancestors constitute the minimal
grid size in order to fulfill hanging node conditions. Note that pure space refinement
(Algorithm 1) usually employs the middle point (l, i) = (1, . . . , 1|1, . . . , 1) as anchor since
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4 Low Effective Dimensionality – A Dimension Adaptive Method

such a structure allows to discard all boundary nodes in favor of inner nodes3. For di-
mension adaptive refinement, the root node (anchor) is necessarily the node associated
with the constant: (l, i) = (−1, . . . ,−1|0, . . . , 0). The minimal grid size is thus 1 (the
constant) since there is no ancestor to insert. A further speciality of the input data is
that the “set values” algorithms needs to provide a particular basis. The basis fixes the
type of ANOVA decomposition as elaborated in Section 4.1.3, for example the hat basis
with constant on level −1 as discretized anchor ANOVA or the Neumann prewavelet as
discretized Lebesgue ANOVA.
The initial step of Algorithm 12 is to determine all non–vanishing ANOVA components

fu 6≡ 0. The compression as such is nothing special, it can be realized as Algorithm 26
in Appendix A.4. However, it has impact on the outcome: only the remaining ANOVA
components will be considered for adaptive refinement, all discarded once remain dis-
carded during Algorithm 12. Consequently, G0 should be chosen carefully, for example
as a regular, d–dimensional sparse grid of small, but not too small, level (say, n0 = 2)
unless a priori knowledge allows to reduce the initial (effective) dimension.
The remaining refinement loop is almost the same as for pure space adaptivity (com-

pare Algorithm 1). The only difference is the insertion of child nodes: once a node has
been found to have large local contribution |fl,i|‖φl,i‖ ≥ ε, we insert all 2 · |u(l)| child
nodes (2 per direction j ∈ u(l)) which belong to the same ANOVA component u(l).
This decision is algorithmically simple: we insert child nodes in direction j if and only
if lj 6= −1. This ensures that we keep the ANOVA structure determined in line 3. Note
that insertion of child nodes involves insertion of all ancestors (recursively) in order to
maintain the grid structural assumptions (to maintain a tree). Details on the single step
of line 7 can be found in Algorithm 25 in Appendix A.4.
The algorithm may be modified with look–ahead strategies as discussed for Algo-

rithm 1 in a straight–forward way. After all, it constitutes not much more than a clas-
sical sparse grid space adaptive procedure applied to preselected ANOVA components
and a method to select these components automatically, combined with an admissibility
criterion based on ANOVA theory. The last iteration could be improved by adding a
final compression step: the error indicator stops refinement when it finds only irrelevant
points. These points could be removed.

4.3.2 Coupled Space– and Dimension Adaptive Refinement
As already hinted, Algorithm 12 supports both, space– and dimension adaptive refine-
ment although our focus is on the peculiarities of dimension adaptive refinement so far.
Now, suppose we have a locally unsmooth function as input for Algorithm 12. Suppose
further that the “set values” algorithm supports adaptivity. Then, the initial grid com-
pression can be applied just as for a for space adaptive grid – only the tree’s root needs
to be respected. Since the outcome of the grid compression in line 3 is used as boolean
decision “fu ≡ 0” or “fu 6≡ 0” anyway, the space adaptivity does not hurt here. Further-
more, since we choose the same local error indicator as for space adaptive refinement,

3Without boundary nodes, the minimal grid size is thus 1. With boundary nodes, the minimal grid
size is 3d.
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Figure 4.15: Space– and dimension adaptive resolution of f(x1, x2) = 9+x2
1 +
√
x2 − 0.6

and the resulting grid (left), together with its anchor ANOVA components
f{1} and f{2} and the respective parts of the grid (right). The component
f{1,2} vanishes.

|fl,i|‖φl,i‖ ≥ ε, we can also safely perform space adaptive refinement in line 7 – as long as
we respect the fixed ANOVA structure and insert child nodes only in existing ANOVA
components.

The distinction whether we allow space adaptivity or use just dimension adaptive
procedures is now merely a technical issue: space adaptive refinement requires a different
data structure than the simpler dimension adaptivity. Consequently, space adaptive
refinement allows effective representations of irregular functions, but it is slightly slower
when applied to a smooth function. Purely dimension adaptive data structures allow
fast representation of smooth functions of low effective dimension, but are inefficient for
irregular functions of low effective dimension. A purely dimension adaptive approach
will insert the complete subspace Wl once at least one large contribution (l, i) ∈ Wl
has been identified. Variations of this strategy which include the cost |Wl| have been
discussed in [GG03]. Here, we realize pure dimension adaptive refinement by insertion
of complete subspaces if at least one element of a subspace is relevant according to local
error estimation.

An example of space– and dimension adaptive refinement is shown in Figure 4.15,
which contains the graph of f(x, y) = 9 + x2 +

√
y − 0.6 and its adaptive grid (left)

determined with ‖·‖ = ‖·‖L2 , ε = 10−3 and the hierarchical hat basis. We see that
only grid points on the axes are used. Consequently, (l1, l2) > (−1,−1) ⇒ fl1,l2 = 0 ⇒
f{1,2} ≡ 0. The two one–dimensional components fh{1} and f

h
{2} are shown in Figure 4.15

(right), together with their grid points. They resemble f{1} = x2 and f{2} =
√
y − 0.6,

respectively. We see that fh{1} has been discretized by means of regular grids whereas
f{2} has an adaptive grid as expected. Note that these grids are nothing but the grid
slices x2 = 0 (for f{1}) and x1 = 0 (for f{2}) of Figure 4.15 (left).
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4.4 On Non–Linearly Weighted Axis Parallel Approaches
We discuss generalizations of ANOVA decompositions where a function takes the role
of the constant. Instead of a one–dimensional splitting into constant and rest, 1 ⊕W ,
as for the standard ANOVA construction (4.3), we consider splittings V = span g ⊕W
where g(x) : [0, 1]→ R characterizes important features of V . The idea is to incorporate
knowledge about the target function f into account and apply the same tensor product
construction as in Section 4.1.1: if we know that f can be approximated by a rank–1
representation, f(x) ≈

∏d
j=1 gj(xj), (compare [MB05]), we can use the gj(xj) to derive

a generalized ANOVA which consists of
∏
gj as lowest order term (“constant”) and rest

terms, defined by subsets of {1, . . . , d} as before.
A decomposition of this type is applied successfully in [GH10] for applications of

computational chemistry: if
∏
gj already covers most of f and the rest terms have low

effective dimension, the method allows to reduce the cost considerably, comparable to
the classic ANOVA.
We sketch such a non–linear product ANOVA decomposition in the following. As in

Section 4.1.1, we define a decomposition by means of one–dimensional projectors and
a tensor product. Given a set of non–vanishing weighting functions gj : [0, 1] → R,
j = 1, . . . , d, a possible set of projectors is given by the orthogonal approach

P
(1)
j f(x) := (f, gj)

(gj , gj)
· gj(x) (4.106)

for an inner product (·, ·). Due to the normalization, we find the projector property

P
(1)
j [P (1)

j f ] =

( (f,gj)
(gj ,gj)gj , gj

)
(gj , gj)

gj(x) = P
(1)
j f (4.107)

and the associated rest projector (I − P
(1)
j )f to define V = span gj ⊕ Wj . Another

possible projector can be obtained by means of integration,

P
(1)
j f :=

∫
f(x) dµj(x) · gj(x)∫

gj dµj(x)
. (4.108)

In general, any projector of type Pjf(x) = gj(x)P ∗j f where P ∗j is a linear projector which
maps to a constant is feasible, provided it satisfies the normalization property P ∗j [gj ] = 1
and we get a one–dimensional splitting.
Since projectors of this sort operate only on one direction, they can be combined by

means of the tensor product identity (4.15), resulting in

I(d) =
∑

u⊆{1,...,d}
Pu (4.109)

with Pu =
(∏

k∈{1,...,d}\u Pk
)
·
(∏

j∈u(Ij −Pj)
)
. Consequently, any function can be repre-

sented by f(x) =
∑
u fu(x) with

fu(x) =
∑
v⊆u

(−1)|u|−|v|
( ∏
j∈{1,...,d}\v

Pjf(x)
)
, (4.110)
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Figure 4.16: The factorized decomposition (4.112) applied to a Gaussian with µ = (0, 0)T

and σ =
[

1 0.3
0.3 1

]
where gj = N (0, 1). The top row shows

∑
|u|=i fu for

i = 0 (left), i = 1 (middle) and i = 2 (right); the bottom row shows∑
|u|=i f

∗
u (i.e. without g(x)).

where fu now depends on all components of x, not just xu, compare (4.19). Provided
the weights do not vanish at x, we can factorize fu using

fu(x) = g(x) ·
∑
v⊆u

(−1)|u|−|v| 1
g(v)(x)

·
( ∏
j∈{1,...,d}\v

P ∗j f
)
(x) =: g(x) · f∗u(x) (4.111)

and we find
f = g ·

∑
u⊆{1,...,d}

f∗u . (4.112)

Thus, the splitting is useful if
∑
u f
∗
u decays rapidly with |u|.

Consequently, any function with dominating rank–1 representation
∏
gj and low di-

mensional rest terms f∗u allows effective representations, even if the classical ANOVA is
high dimensional. The rank–1 representation needs to be determined either from a priori
knowledge or by means of a non–linear optimization (see [MB05]).
Note that the Gaussian with diagonal covariance studied in Section 3.2 yields f∗u ≡ 0

for |u| > 0 and f∗∅ = 1 since it resembles its rank–1 approximation.

139



4 Low Effective Dimensionality – A Dimension Adaptive Method

Table 4.1: Decomposition errors of (4.112) for the case d = 2 (left) and d = 3 (right).
The case d = 2 corresponds to the experiment of Figure 4.16 whereas the case
d = 3 uses the three–dimensional Gaussian (4.114).

|u|≤∗ L2/r L∞/r

0 0.98 0.99
1 0.77 0.78
2 0 0

|u|≤∗ L2/r L∞/r

0 1 1
1 0.96 0.97
2 0.71 0.71
3 0 0

Decompositions of type (4.112) exist as long as the projector can be applied and the
gj do not vanish. However, it may require the highest order term f∗{1,...,d}. For example,
a Gaussian with non–diagonal covariance requires f∗{1,...,d}: the diagonal parts make up
the rank–1 representation and the non–diagonal entries are represented by f∗{1,...,d}. This
can be seen in Figure 4.16 for the case d = 2 and the Gaussian N (µ, σ) with µ = (0, 0)T

and σ =
[

1 0.3
0.3 1

]
: the top row shows

∑
|u|=i fu(x) for i = 0, 1, 2 whereas the bottom

row shows the factorial representation
∑
|u|=i f

∗
u . The components have been computed

by a brute force implementation of (4.111). Clearly, the highest order term for i = 2
dominates the representation. This is quantified in Table 4.1 which shows the low order
error ‖f − f (i)‖ for

f (i) :=
∑
|u|≤i

fu, i = 0, 1, 2, . . . , d. (4.113)

Besides the two–dimensional case, it also contains results for d = 3, this time with

σ =

 1 0.3 0.5
0.3 1 0
0.5 0 1

 . (4.114)

For both, d = 2 and d = 3, the error4 is of order O(1) for i < d.
We conclude that even the rank–1 nonlinear ANOVA leads to expensive approxima-

tions of the Gaussian, and probably for more difficult density functions as well.

4.5 Numerical Experiments in High Dimensions

We will now verify the new dimension adaptive approximation tool on a couple of model
problems with inherently low–dimensional structure. We cover the case of dimension
adaptive interpolation procedures and dimension adaptive solution of partial differential
equations.

4The error has been computed on a grid, without measuring the interpolation error.

140



4.5 Numerical Experiments in High Dimensions

4.5.1 Remarks on Error Estimation and Pointwise Operations
We use the same error estimation routines as in Section 3.2.2, that means either evalu-
ation on a sufficiently finer grid or using the absolute precision tensor product quadra-
ture (3.58) if possible. Both methods provide reasonable accuracy for L2 (or energy
norm) evaluations.
Note that evaluation of L∞ errors should be done on high dimensional grids or not at

all: the basis points of dimension adaptive grids are usually unsuitable to approximate
pointwise operations. For example, f(x, y) = x+ y can be represented exactly using the
two–point dimension adaptive set of levels {(0,−1|0, 0), (−1, 0|0, 0)} which constitutes
level 0 of the two ANOVA components u = {1} (since l1 6= −1 for the first point) and
u = {2} (since l2 6= −1 for the second point). However, we find

max{|f(1, 0)|, |f(0, 1)|} = 1 6= ‖f‖L∞ = |f(1, 1)| = 2. (4.115)

Any pointwise operation might need high–dimensional grids and may not benefit from
dimension adaptive compression. This should be kept in mind when working with di-
mension adaptive representations together with L∞ norms or the function algebra of
Section 2.3. Consequently, we prefer the L2 norm for error estimation.

4.5.2 Dimension Adaptive Interpolation
We start with examples of functions for which higher order ANOVA components vanish,
i.e. |u| > q ⇒ fu ≡ 0. Our model problem is a superposition of tensor products involving
up to q factors,

f(x) =
∑

u⊆{1,...,d}
|u|=q

∏
j∈u

g(xj), (4.116)

using the single univariate function g(x) = B(α, β)−1xα−1(1 − x)β−1 with α = 2 and
β = 5.
What we expect is a method which is comparable to a smooth q–dimensional one with

respect to its accuracy and the cost of O
((d
q

)
·Nq) where Nq is the cost for one smooth

q–dimensional problem.
The dimension adaptive procedure starts without a priori knowledge by inserting all

points on level n0 = 1, compresses these 3d points as described in Algorithm 12 and
continues with the identified non–vanishing ANOVA components. It employs relative
thresholds ε = ε(rel) · ‖f (i)

h ‖L2 during each refinement step and computes ‖f (i)
h ‖L2 on the

ith grid5. We use a purely dimension adaptive approach by inserting full subspacesWl to
resolve large local errors until finally all local errors larger than the prescribed threshold
have been found. The final degrees of freedom N are considered as cost measure and the
relative L2 error as gain measure. Note that the runtime complexity is O(3d +N) for a
smooth problem since the refinement loop of Algorithm 12 applies first its compression of

5Note that L2 norm evaluations in the semi–orthogonal Neumann prewavelet basis is considerably
faster than for the hat basis. We switched basis representations for this task, similarly for L2 error
measurement.
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Figure 4.17: Dimension adaptive interpolation results for additive superposition mod-
els (4.116) of order q = 1, 2, 5 and the respective cost increase factors for a
fixed error of ε̄ (right column).
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Figure 4.18: Dimension adaptive interpolation of the weighted superposition (4.118) for
dimensions d = 1, 2, . . . , 10 and the associated weights for the case d = 5
(ordered by magnitude). See Figure 4.19 for dimension adaptive index sets.

n0 = 1 and the rest is like a geometric series, compare Lemma 2.2.1. Our first examples
use the anchor ANOVA decomposition, i.e. the hierarchical hat basis.
Results for a superposition of order q = 1 are shown in Figure 4.17 (top), for order

q = 2 in Figure 4.17 (middle) and for q = 5 in Figure 4.17 (bottom). We see the final
degrees of freedom plotted versus the relative L2 error, for dimensions d = q, . . . , 10
on the left. The results for d > q exhibit the same slope as the one for d = q, at
slightly larger cost. A further analysis confirms that the magnitude of the slopes is as
expected. The tables in Figure 4.17 (right column) indicate the cost growth for fixed
relative error. It contains the x coordinates of intersection points (N ε̄

d, ε̄) between a line
passing through ε̄ which is parallel to the x axis. We choose ε̄ = 10−4 for q = 1, 2 and
ε̄ = 10−2 for q = 5. Furthermore, it shows the value

(d
q

)
and the postprocessed value

N ε̄
d/N

ε̄
q which indicates the d–dependent cost increase for fixed ε̄. We see that indeed,

N ε̄
d/N

ε̄
q = O(

(d
q

)
). Since some grid points can be shared, it is slightly more effective

than an isolated superposition model with respect to its degrees of freedom. Thus, we
find a method which can automatically exploit additive superposition structure in a
cost–optimal way.
Our next experiment is to employ dimension adaptive interpolation of a function with

rapidly decaying ANOVA components, i.e. a function for which ‖fu‖ approaches zero.
Again, we employ the discretized anchor ANOVA decomposition (the hierarchical hat
basis). We choose the univariate Cauchy distribution

g(x) := 1
γπ

(
1 +

(x− x0
γ

)2)−1
(4.117)

with γ = 1/2 and x0 = 0.8 and real weights wi = 2 · 2−23/2(i−1) to create a weighted
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Figure 4.19: Dimension adaptive index sets for the experiment of Figure 4.18 in dimen-
sions d = 2, d = 3. Each level n(l) has the same color.

superposition

f(x) =
∑

u⊆{1,...,d}

∏
j∈u

wjg(xj). (4.118)

The dimension adaptive interpolation result is presented in Figure 4.18: it contains error
estimations for d = 1, 2, . . . , 10 together with the weights

∏
j∈uwj ordered by magnitude.

The associated dimension adaptive index sets are shown in Figure 4.19 for d = 2 and
d = 3. Note the significant decay seen in the sparse grid levels (indicating by color) for
the different directions.

A Comparison of Anchor- and Integral Based Decompositions

Having seen that the dimension adaptive procedure works well for an anchored dimension
decomposition, we will now investigate the classical (Lebesgue) ANOVA decomposition.
To this end, we repeat the same procedure for the Neumann prewavelet basis which
constitutes a discretized Lebesgue ANOVA decomposition. The prewavelet experiments
corresponding to Figure 4.17 and Figure 4.18 yielded almost identical results as for the
hat basis: the plot lines where almost on top of each other (and are thus not shown
here). Note that both, hat basis and prewavelet basis, span the same spaces if the index
sets are the same and there is no space adaptivity (there are also fast invertible basis
transformations, see Appendix A.2). Consequently, a function representable with terms
up to a finite order q < d with respect to the anchor ANOVA will also need at most
the same order q for the Lebesgue ANOVA (see also [KSWW09] for this minimality
property). Yet, there are differences in the magnitude of ANOVA components which is
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anchor ANOVA
(|G| = 36,353)

|u|
∑
‖fu‖2

L2
‖f‖2

L2
|Gu|

0 0 1
1 0 512
2 0.082 35,840

3–8 0 0

Lebesgue ANOVA
(|G| = 40,449)

|u|
∑
‖fu‖2

L2
‖f‖2

L2
|Gu|

0 0.698 1
1 0.285 1,024
2 0.017 39,424

3–8 0 0

Table 4.2: Squared L2 norms (“variances”) of different ANOVA components applied to
the interpolation problem of Figure 4.17 with q = 2, d = 8 and relative L2
error of 1.8 · 10−3, once for the hat basis (left) and once for the prewavelets
(right).

presented in Table 4.2: we collect the value

1
‖fh‖2L2

∑
u⊆{1,...,d}
|u|=k

‖fhu ‖2L2 , k = 0, 1, . . . , d (4.119)

to quantify the magnitude of components with dimension k (relative to the overall
squared L2 norm). The components belong to the experiment of Figure 4.17 with finite
superposition dimension q = 2, nominal dimension d = 8 and relative L2 error 1.8 ·10−3.
They are computed once for the hat basis and once for the prewavelets. The hat basis
result has slightly less degrees of freedom here which is due to the different error indi-
cators. As already noted, both use only components up to order q – but the anchored
decomposition (hat basis) concentrates all of its information in the high–dimensional
components whereas the Lebesgue decomposition (prewavelets) concentrates most of its
information in low–dimensional components.
Note that we have ‖fh‖2L2

=
∑
u,v⊆{1,...,d}(fhu , fhv ) =

∑
u⊆{1,...,d}‖fhu ‖2L2

for the pre-
wavelet basis due to the orthogonality (fhu , fhv ) = 0 for u 6= v. Thus, the sum of all
component norms yields the overall L2 norm. This decomposition of the squared L2
norm is the origin of the term ANOVA (analysis of variance) since the variance of a
function is just the integral of its square.
Coming back to Table 4.2, we find that the prewavelet decomposition has 70% of its

variance in the lowest order term for this particular example, 29% in the linear terms
for |u| = 1 and just 1% in its two–dimensional terms. The hat basis variant does not
allow percentages, but we see that its lower order terms vanish for this example.
We present the same postprocessing for the decaying weights experiment of Figure 4.18

in Table 4.3: again we observe the compression effect of prewavelets which tends to huge
parts of the total variance in low order components in comparison to the anchored
approach.
We conclude that the Lebesgue ANOVA compresses its information in the lower order

components whereas the Anchor ANOVA tends to large high order components. Speak-
ing in terms of the related bases, the prewavelets yield better compression and may be
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anchor ANOVA
(|G| = 392)

|u|
∑
‖fu‖2

L2
‖f‖2

L2
|Gu|

0 0.133 1
1 0.268 208
2 0.002 183

3–8 0 0

Lebesgue ANOVA
(|G| = 392)

|u|
∑
‖fu‖2

L2
‖f‖2

L2
|Gu|

0 0.916 1
1 0.084 208
2 1·10−4 183

3–8 0 0

Table 4.3: Squared L2 norms (“variances”) of different ANOVA components of the
weighted experiment of Figure 4.18 with d = 8 and relative L2 error of
2.92 · 10−4, once for the hat basis (left) and once for the prewavelets (right).

better when it comes to finding a minimal grid. For the case of pure dimension adaptive
refinement, both bases span the same space and there exist fast transformations between
them (see Appendix A.2). Even for space- and dimension adaptive grids, the spaces are
close to each other, although prewavelets need temporary transport nodes to be inserted
to perform adaptive algorithms (compare Appendix A.2). The differences are that the
anchor ANOVA (hat basis) is simple to implement and to handle, but especially L2
best approximation or energy projection (PDEs) are expensive due to large condition
numbers and runtime of 2dN for the matrix vector products (compare Section 2.2.2).
The prewavelets are more involved, yet they allow fast best approximation due to small
condition numbers and runtime O(dN) (or O(d2N)) for matrix multiplications and they
have better error estimators, compare [GO95]. In practice, the performance of adaptive
grid refinement is often comparable (if not the same) with respect to degrees of freedom
versus accuracy. Even if prewavelets result in less degrees of freedom, the hat basis often
has the same performance with respect to grid size versus error (since the hat basis does
not need temporary transport nodes). Thus, both are useful tools for dimension (and
space-) adaptive approximation, with differences with respect to runtime requirements
and implementational complexity.

4.5.3 A Dimension Adaptive PDE Solver

We will now apply our dimension adaptive refinement strategy to the solution of partial
differential equations. The refinement loop of Algorithm 12 remains unchanged, only
the abstract “set values” interface needs to be exchanged. The aim of this section is to
point out relevant aspects of such an application and to demonstrate its feasibility.
A solver for PDEs needs to solve a (potentially large) linear system for which a good

preconditioner and appropriate methods for matrix assemblation or -multiplication com-
bined with a properly assembled right-hand-side are necessary. We use a Galerkin for-
mulation together with fast matrix multiplication routines, an approach which is built
on top of the results presented in [Feu05]. Fast matrix multiplication routines for sparse
grids rely on the unidirectional principle developed in [Bal94] and elaborated in [Bun98]
(see also [Ach03] and [Feu05] for detailed information). This principle employs tensor

146



4.5 Numerical Experiments in High Dimensions

product structure and a dimension–recursive splitting into upper- and lower triangu-
lar, one–directional matrices. The scheme requires only an implementation of one–
dimensional algorithms, just as for the basis transformations. The runtime complexity
of the resulting matrix–vector product routine is linear with respect to the grid size,
together with a dimension–dependent runtime factor c(d) which is at least c(d) = Ω(d)
but usually just bounded by c(d) = O(2d). The upper bound can only be avoided if
the stiffness matrix has low dimensional product–type variable coefficients and the ba-
sis provides some sort of L2 orthogonality such that the mass matrix becomes (block–)
diagonal as elaborated in [Feu05]. A complete discussion of these algorithms is beyond
the scope of this thesis and can be found in [Feu05] (see also Appendix A.3 for some
commonly required Algorithms).
We suppose we are given the Neumann model problem

−∆f = h on [0, 1]d, (4.120)
∂

∂n
f = g on ∂[0, 1]d, (4.121)

f(0, . . . , 0) = f0 ∈ R (4.122)

with given right–hand–side h and Neumann condition g. The Dirichlet corner fixes the
remaining degree of freedom of the Neumann problem.

Excursion It should be noted that boundary conditions of Dirichlet type
on ∂[0, 1]d are only useful for functions with non–vanishing highest order
component, f{1,...,d}(x1, . . . , xd) 6= 0. In other words: dimension adaptive
procedures are unsuitable for pure Dirichlet conditions. If the highest order
term vanishes, the Dirichlet condition already contains 100% of the solution.
This statement follows from the three–term boundary splitting stated in
Lemma 2.1.13: we can decompose the solution uniquely into boundary terms
and one inner term, which can be written as f = fI + fB where fB is
determined by the boundary Dirichlet conditions and fI |Γ ≡ 0. Now if,
f{1,...,d} ≡ 0, we can conclude that the highest order term for any ANOVA
decomposition vanishes, including the three–term splitting of Lemma 2.1.13
and thus fI ≡ 0. As a consequence, a pure Dirichlet problem does not
possibly allow successful dimension adaptive approaches.

By greens formula, we find the weak form of (4.120),∫
∇f · ∇v dx =

∫
h · v dx +

∮
∂[0,1]d

g · v ds (4.123)

f(0, . . . , 0) = f0 (4.124)

which we discretize on a sparse grid space with either hierarchical hat basis (and con-
stant on level −1) or the Neumann prewavelet as before. The Dirichlet corner can be
discretized by fixing the single basis coefficient f−1,...,−1 := f0. We have to treat each
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basis coefficient (including those on the boundary) as unknowns, so the diffusion matrix
is of different shape as for the Dirichlet problem. A representation in the Neumann pre-
wavelet yields mesh–width independent condition numbers by a simple diagonal scaling,
compare [GO95]. Furthermore, the Neumann prewavelet is semiorthogonal with respect
to the L2 inner product in the sense that (φl,i, φk,j)L2 = 0 for l 6= k, l, k = −1, 0, 1, . . . .
As remarked above, this allows to compute the complete matrix–vector product in time
O(d2N), or, by employing the inverse mass matrix, in time O(dN), see [Feu05] for
details. The memory requirements are O(N).
In general, the right–hand–side can be approximated by interpolating h and g on

appropriate grids and computing the inner– and boundary integrals exactly in time
O(dN) as proposed in [Bun98], see also [Feu05]. This sparse grid interpolation scheme
constitutes a quadrature method. In case the right–hand–side has product structure as
in our model below, one may employ one–dimensional quadrature routines to integrate
against the product type test functions. A key aspect for the more general interpolation
approach is to employ dimension adaptive grids as well. Fortunately, the case of constant
coefficients allows to employ the same dimension adaptive grid as for the solution: the
derivative ∂

∂xi
fu(xu) of an ANOVA component u ⊆ {1, . . . , d} can be represented on the

same grid as fu. We verify immediately that i 6∈ u ⇒ ∂
∂xi
fu(xu) ≡ 0. If fu is linear in

direction i, ∂
∂xi
fu becomes independent of xi (it is in a lower ANOVA component and

thus in the grid). In all other cases, it remains in the same ANOVA component, perhaps
requiring a larger level. Thus, the right–hand–side of a linear differential equation with
constant coefficients can be interpolated on the same ANOVA pattern as the solution.
In case of variable coefficients which depend on j ∈ v, one might need to use further
ANOVA components u ∪ v. Thus, the right–hand–side can be assembled using the
interpolant of either h or g, where the latter case is only evaluated on the boundary.
The dimension adaptive procedure is applied according to Algorithm 12: we initialise

a grid of level 1 (without incorporating prior knowledge about the effective dimension),
solve the PDE on these 3d points and compress the result. The remaining ANOVA
components are considered to be the relevant ones, so refinement will be applied if and
only if child nodes belong to the same ANOVA component as their father.
To demonstrate the usefulness of the method, we consider the following model problem:

Let q = 4 be a fixed, finite superposition dimension and

g(x;x0, γ) := 1
πγ

(
1 +

(x− x0
γ

)2)−1
(4.125)

a one–dimensional function on [0, 1] with x0 = 0.8, γ = 1/2 as in Section 4.5.2. Then, we
compute the right–hand side and boundary conditions such that

f(x) =
∑

u⊆{1,...,d}
|u|=q

∏
j∈u

g(xj) (4.126)

solves the partial differential equation (4.120).
The result is shown in Figure 4.20 for d = 4, 5, 6, 7, 8, 9: the respective convergence

rates appear to be the same or become even better with larger d. Furthermore, the
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Figure 4.20: Dimension adaptive results for the partial differential equation (4.120) with
solution (4.126) solved in dimensions d = 4, . . . , 9. The solution is a super-
position of four–dimensional functions. The line for shows the error of
the case d = 4 and the degrees of freedom N =

(9
4
)
N(4) as indicator for the

expected cost growth of the combinatorial problem.

increase of degrees of freedom required for a fixed error appears to grow slower than the
expected combinatorial factor

(d
4
)
which can be seen using the help line (

(d
4
)
·N(4), err(4)).

This help line is displayed for d = 9, it takes a multiple of the four–dimensional cost,
N(4), and places the marks at the error err(4) of the four–dimensional case. It is way
beyond the curve for d = 9. The experiment has been computed using the hierarchical
hat basis with basis transforms to apply the preconditioner. Furthermore, we employed
the tensor product structure of the right–hand–side using specialized one–dimensional
tensor product quadrature formulas.
We conclude that our dimension adaptive procedure of Algorithm 12, combined with

the Neumann prewavelet or a different (semi) orthogonal basis, allows to treat partial
differential equations as well as the interpolation problem (or even better).
Concerning the overall cost complexity, we find that since an effectively low dimen-

sional solution involves only (sums of) low dimensional Laplacians, we can expect a poly-
nomial growth of the condition number with respect to the nominal dimension d. Fur-
thermore, we discussed fast algorithms to perform the matrix–vector products provided
variable coefficients are at most of low–dimensional product type. For a smooth solution,
the overall cost complexity can be expected to be O(c(q)3d+ c(q)poly(d) ·N) since then,
the number of refinement iterations becomes a geometric series (see Lemma 2.2.1) and
each iteration involves matrix–vector products of complexity O(poly(d)N) during an it-
erative solution of the linear system. The coefficient c(q) indicates the dependence on the
effective dimension, it can be exponential in q (since the condition number will grow ex-
ponentially in q, see [GO95], unless one uses L2 orthogonal wavelets, compare [DSS09]).
Note that the choice of basis is crucial for the dimension dependent runtime factors. For
the hierarchical hat basis, one may need basis transformations to/from the prewavelet
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basis in order to reduce the mass matrix multiplication cost.

4.6 Summary of the Dimension Adaptive Method
This chapter elaborates the connection between ANOVA decompositions formulated by
means of projectors on the one hand and a multi-level representation on the other hand.
We find that both are equivalent formulations, provided the basis is chosen consistently
with the projector. Furthermore, the multi-level form allows to employ sparse grids
as natural discretized ANOVA decompositions provided the components have bounded
second mixed derivatives. We find that the hierarchical hat basis actually is the anchor
ANOVA decomposition with anchor a = 0 and the Neumann prewavelet is the Lebesgue
ANOVA. We discussed algorithms to compute all ANOVA components simultaneously
and more effectively than integration based approaches. Our analysis algorithms yield
the variance analysis for free by computing squared L2 norms of the approximant in
linear time.
For functions with low order ANOVA structure, we derived and analyzed algorithms

to employ such structure either automatically using the proposed dimension adaptive
approximation algorithm or by means of the weighted sparse grid space introduced in
Section 4.2. Our approaches are generalizations of methods known for integration [Hol08,
GG03] or machine learning [Gar04]. Besides the detection of low–dimensional structure,
our formulation also allows simultaneous detection of local irregularities; it connects
the well–known sparse grid space adaptivity with dimension decompositions, for the
first time formulated precisely within the ANOVA framework. The ANOVA framework
allows to improve the reliability and gains more insight into the dimension adaptive
procedure.
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This thesis presents three new aspects of sparse grids: extensions to the sparse grid
toolbox, an analysis on inherent limitations of sparse grids along with advantages over
conventional methods, and a new dimension approach to approximate functions with
axis parallel superposition structure.
The first contribution contains the first (to the knowledge of the author) analysis of

sparse grid error bounds for non–homogeneous boundary conditions and an extended
sparse grid function algebra supporting addition, multiplication, concatenation, and an
a posteriori adaptive collocation approach to approximate kernel transformations with
arbitrary kernels. The analysis is generalized to data errors by means of condition
numbers rather than elementary estimates compared to [Gri98, MgF07] and respects, for
the first time, also the consistency error arising for such operations. We also propose an
adaptive method which improves old weaknesses arising due to unbalanced consistency-
and data errors to complete the sparse grid algebra.
The second contribution is our investigation in dimension–dependent order coefficients

for the relevant application of probability density approximation (with the Fokker–
Planck–Equation in mind): our a priori bounds and a posteriori error measurements
document exponential increase of the d–dependent order coefficients for the represen-
tative Gaussian density. Thus, density approximation with respect to relative L2, L∞,
or energy norm on Rd is inherently limited to dimensions d = 5 or maybe d = 6. Our
reasoning on the normal distribution identifies the necessity to capture the complete
density mass on Rd as main cause for the limitations: the domain to be covered with
grid points grows or shrinks with the density’s width (variance) and the relative error
effectively rescales the resulting normalized density to a reference density (the standard
Gaussian). Nevertheless, the sparse grid complexity grows mainly in their order coeffi-
cients (if we consider the log terms as d–dependent coefficients for the moment) whereas
alternative full grid methods of similar degree suffer from exponential growth in their
degrees of freedom. In our examples, a comparison of degrees of freedom between d and
d+ 1 for fixed ε ≈ 10−3 revealed a factor of 10 for sparse grids compared to a factor of
100 for full grids. Consequently, sparse grids increase the feasible dimension from about
d = 3 to d = 5 or perhaps d = 6. The “curse of dimensionality” is thus lessened in so
far as almost twice as many dimensions become computationally feasible.
The third contribution of this thesis is the first dimension adaptive approach which

is especially designed for use in approximation problems. It solves early termination
issues of previous approaches to generalize dimension adaptive methods known from
quadrature to approximation problems (compare [Gar04]). The new approach allows for
a systematic reduction of degrees of freedom if functions effectively depend only on few
(subsets of) directions. The approach combines the successful space adaptive sparse grid
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techniques known for approximation problems with ideas known for dimension adaptive
quadrature [GG03, Hol08] and machine learning [Gar04]. To this end, our approach
is – for the first time – directly based on a given ANOVA decomposition (like anchor
ANOVA or Lebesgue ANOVA) by using the following two–step algorithm: identifying
the minimum set of ANOVA components using grid compression of a coarse grid, and
then resolving these ANOVA components adaptively. As such, it also provides (for
the first time) space adaptive refinement inside of ANOVA components and thus yields
dimension- and space adaptive resolution of such input functions. The approach allows
for compact representations for functions in weighted spaces or functions with finite order
weights [SWW04, NW08], i.e. if a function f(x1, . . . , xd) is actually a superposition of
few relevant lower dimensional contributions depending on subsets of the {x1, . . . , xd}
(if it is of “low effective dimension”). The superposition is formulated by means of the
ANOVA decomposition and uses a power set construction of the directions {x1, . . . , xd},
making it inherently dependent on the choice of axes. This thesis proposes a priori
optimized sparse grid spaces which are optimal for spaces weighted with respect to second
mixed derivatives among their ANOVA components. Thus, if the weights are known in
advance, functions from such spaces can be discretized by means of a superposition
of lower–dimensional regular sparse grids with known weight–dependent levels. If the
weights are unknown, we propose a new dimension adaptive algorithm to find the optimal
decomposition for a given function automatically. For functions where relevant ANOVA
components are all low dimensional but which have local singularities, we propose a new
dimension– and space adaptive algorithm.
In summary, we find that sparse grid methods are inherently limited if the approxi-

mant depends equally on all its variables (like our example of the full–space Gaussian).
However, they extend limitations of classical full grid methods from d = 3 to about
d = 6. Higher dimensional problems are possible if the function exhibits more structure:
for functions with axis parallel structure in form of decaying ANOVA decompositions, we
show constructively by means of a new dimension adaptive tool that higher dimensions
become feasible where the cost is determined by the effective dimension and the number
of relevant ANOVA components.

Outlook on Further Investigations

The remaining open question is: can we reformulate high dimensional problems like the
Fokker–Planck–Equations such that they become computationally feasible with respect
to d? In our case, the nonlinearly graded grids of Section 3.2.3 which fit perfectly to
the model density reduce the dependence of d to a certain extent (at the expense of
losing approximation orders near the probability tails) and might be appropriate if the
solution is simple enough to be almost Gaussian yet difficult enough to require numerical
methods. Besides such a specialized approach, an outlook to improve the complexity
at least quantitatively might be to formulate the ansatz space directly on Rd, allowing
potentially more control over the degrees of freedom compared to our box truncation
and grid adaptation process (see also [GH10] for full space sparse grid methods).
Qualitative improvements, i.e. sub–exponential complexity might be possible if the
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problem at hand can be reformulated as low order ANOVA model as in Chapter 4, i.e.
using axis–parallel superposition structure. For the density approximation however, the
natural representation of a “constant” is the Dirac delta instead of a constant function,
so a (possibly nonlinear) transformation appears to be necessary. We provide a discus-
sion of limitations and potential of log density formulations, nonlinearly enriched ansatz
spaces and nonlinearly weighted ANOVA decompositions in Section 3.2.3 and Section 4.4,
respectively. It might be helpful to employ a general pairwise weight decomposition sim-
ilar to the Cluster Expansion [LS96], i.e. ANOVA–type decompositions where the role
of the constant is played by

∏
i<j gij(xi, xj) for some nonlinear pair–coupling gij(·, ·)

and remaining components which consist of single component interactions (as discussed
in Section 4.4) and pairwise interactions, yet it is difficult to formulate such decompo-
sitions in the general case (beyond the Gaussian approach of [LS96]). In the general
case, candidates for transformations to axis parallel structure are also linear coordinate
transformations like rotations, followed by dimension adaptive ANOVA approaches in
transformed coordinates (at the time of this writing, such an approach is subject of the
thesis [Oet10]).
It might even prove to be useful to consider ANOVA structure in nonlinear mani-

folds, perhaps using manifold detection techniques as we presented them in [FG09] or
[Hul09], see also the references cited therein for the related unsupervised learning tech-
niques. Such approaches need to be derived for specific applications at hand, provided
the problem has some sort of intrinsic effective dimension which is lower than its nominal
dimension.
Besides the need for further research with respect to applications and problem for-

mulations, technical improvements concerning prewavelet adaptivity and data transport
should be considered as discussed in Appendix A.4.1.
Thus, sparse grid methods provide higher dimensional dynamics if they are comple-

mented with properly chosen analytical tools to reveal low intrinsic dimensionality.

153



5 Conclusion and Outlook

154



A Technical Reference

A.1 Recursive Grid Traversal Routines

A.1.1 Visiting Every Grid Point in Linewise Ordering

Sparse grid data structures need methods to visit every grid point, often in a well–
defined sequence (compare Section 2.2.3). Usually, every algorithm can be decomposed
using the Unidirectional Principle (Section 2.2.2) into a sequence of one–dimensional
algorithms operating on lines. The requirement is to provide access to lines, for any
direction. Inside of each line, sparse grids are just binary trees (with special handling
for the two boundary nodes).
Linewise traversal operations usually accumulate information. For example, a pre–

order traversal (top–down) works recursively and communicates stack data from the
boundary down to the finest levels, see Algorithm 13. Similarly, a post–order traversal
(bottom–up) traversal communicates stack data from bottom to top (starting usually
with values of 0 in the leafs), see Algorithm 14. Another important sequence is a breadth–
first–search (levelwise) tree traversal which is based on queues, see Algorithm 15. They
accumulate levelwise information (for example in arrays). Occasionally, one needs in–
order traversals as well (which report from left to right or from right to left).

Algorithm 13 Pre–order tree traversal on one line in direction m (Top–Down)
Input: A point (l, i) such that (lm, im) is the tree’s root
1: compute operation on boundary (lm, im) := (0, 0) and (lm, im) := (0, 1)
2: fill StackData
3: invoke pre–order((l, i),m, StackData) for (lm, im) = (1, 1)

pre–order((l, i),m, StackData):
Input: StackData from father
1: compute operation for (l, i)
2: fill StackDataLeft and StackDataRight
3: invoke pre–order(left child of (l, i),m, StackDataLeft)
4: invoke pre–order(right child of (l, i),m, StackDataRight)

The task to visit every line in direction m of an adaptive sparse grid can be split into
two separate tasks. The first is memory access, for example to find ul,i for a given (l, i).
The second is to generate a sequence of (l, i) such that the traversal task is logically
complete. If the data structure supports access to all d fathers of a given node (l, i) and
all 2d sons of (l, i) as well, memory access to any ul,i can be granted by a hierarchically
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Algorithm 14 Post–order tree traversal on one line in direction m (Bottom–Up)
Input: A point (l, i) such that (lm, im) is the tree’s root
1: invoke StackData := post–order((l, i),m) for (lm, im) = (1, 1)
2: finish operation on boundary, based on StackData

post–order((l, i),m)
Output: StackData for father
1: StackDataLeft := post–order(left child of (l, i),m)
2: StackDataRight:= post–order(right child of (l, i),m)
3: compute operation for (l, i), based on StackDataLeft and StackDataRight
4: fill StackData for father

Algorithm 15 Breadth–First–Search traversal on one line in direction m (Levelwise)
Input: A point (l, i) such that (lm, im) is the tree’s root
1: process operation on boundary
2: queue := (1, 1) if (lm, im) = (1, 1) exists
3: while queue 6= ∅ do
4: (lm, im) := pop first of queue
5: apply operation on (l, i)
6: enqueue left son of (l, i),m to queue
7: enqueue right son of (l, i),m to queue
8: end while

working sequence generator. We will focus on such sequence generators, i.e. to report
every multi-index (l, i) exactly once, in a prescribed sequence.

Algorithm 16 Line Traversal on each line in direction m
Input: The grid’s d–dimensional root (l, i)
Input: A direction 0 ≤ m < d (0–based to simplify implementations.)
Input: A one–dimensional tree traversal algorithm Am (like Algorithm 13)
1: Define a (d− 1) dimensional slice by holding (lm, im) fixed
2: if (l, i) = (1, . . . , 1|1, . . . 1) then
3: Visit all points on the (d− 1) dimensional slice using Algorithm 17.
4: For each reported point (k, j): invoke Am in direction m
5: else if (l, i) = (0, . . . , 0|0, . . . 0) then
6: Visit all points on the (d− 1) dimensional slice using Algorithm 18.
7: For each reported point (k, j): invoke Am in direction m
8: end if

Access to lines can be reduced to the problem of visiting every point on a slice: if
we want to access all lines in direction m, fix (lm, im) to the tree’s root in direction m
and report all grid points on the slice defined by the fixed (lm, im). Per construction,
the tree’s root exists in every direction and on every line as part of the hanging nodes
conditions; it is the middle point (lm, im) = (1, 1) for space adaptive grids and the left
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boundary (lm, im) = (−1, 0) (or, equivalently, (0, 0)) for dimension adaptive grids. A
slice is nothing but a sparse grid of lower dimensionality. Consequently, we get access to
every line once we solve the problem of visiting every point on a d–dimensional (adaptive)
sparse grid: visit every point on the root slice and start line traversals in direction m.
This is summarized in Algorithm 16.
The adaptive case will necessarily employ the multi-level hierarchy. Since sparse grids

are recursively defined in both, dimension and one–dimensional tree structure, the algo-
rithm will contain two nested recursions1.
If the tree’s root is in the middle (standard for a space adaptive grid), (l, i) =

(1, . . . , 1|1, . . . , 1), Algorithm 17 provides a possible implementation to visit every grid
point once and only once (compare [Bal94]). Its runtime is linear in the number of
points visited. Note that the indexing of Algorithm 17 starts at 0 to allow a simpler
implementation. The algorithm does not need any boundary points, it is possible to
eliminate all boundary operations and work only in the inner domain. Such a feature is
particularly important for partial differential equations or other applications where the
expensive boundary nodes are not desired. The resulting grid point sequence is shown
in Figure A.1 (left) for a two–dimensional grid.
If the tree’s root is at the left boundary (0, . . . , 0|0, . . . , 0) as for a dimension adaptive

grid, Algorithm 18 describes how to perform the traversal. It relies on the boundary,
but it does not need any other point than (0, . . . , 0|0, . . . , 0). The resulting grid point
sequence is shown in Figure A.1 (right).

A.2 Basis Bestiary – Hierarchical Transformations

If we are given a (sparse, full or adaptive) grid G with elements of the form (l, i) ∈ G,
we are interested in fast transformations from nodal values u(xl,i) to hierarchical basis
coefficients ul,i and from basis coefficients to nodal values. We will present fast algorithms
to compute these transformations for a couple of basis sets in the following sections.
All of these transformations make use of the tensor product structure and the unidirec-

tional principle discussed in Section 2.2.2: they are formulated for the one–dimensional
case only and the d–dimensional case is performed by applying one–dimensional rou-
tines on grid lines. Furthermore, most transformation matrices can be decomposed into
upper or lower triangular matrices, so only one pass in each direction is necessary and
the recursion of the unidirectional principle becomes as simple as possible.

A.2.1 The Multilevel Piecewise Linear Generating System

The multi-level generating system is required as intermediate step for transformations
or hierarchical algorithms. It spans the same space as the hierarchical linear basis, but it
contains even and odd space indices on each level. This is illustrated in Figure A.2: the

1The case of regular sparse grids allows simplifications since only level indices l need to be generated.
Only one recursion and a simple loop to iterate through all relevant i are necessary.
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Algorithm 17 Visit every point of an adaptive sparse grid, anchored at the middle.
Start: reportBoundaryAndInner((l, i), d− 1) with (l, i) = (1, . . . , 1|1, . . . , 1).
reportBoundaryAndInner((l, i),m):
Input: Actual direction −1 ≤ m < d // Using (l, i) = (l0, . . . , ld−1|i0, . . . , id−1)
Input: Actual point (l, i) with (lr, ir) = (1, 1) for 0 ≤ r ≤ m
1: if (l, i) belongs to grid then
2: report (l, i) and its value ul,i
3: for r = 0 to m do
4: (k, j) := (l, i) with (kr, jr) = (0, 0)
5: reportBoundaryAndInner((k, j), r − 1) // outer recursion: d
6: (k, j) := (l, i) with (kr, jr) = (0, 1)
7: reportBoundaryAndInner((k, j), r − 1)
8: (k, j) := (l, i) with (kr, jr) = (lr + 1, 2ir − 1)
9: depthFirstSearchInnerInclBoundary((k, j), r) // inner recursion: tree

10: (k, j) := (l, i) with (kr, jr) = (lr + 1, 2ir + 1)
11: depthFirstSearchInnerInclBoundary((k, j), r)
12: end for
13: end if
depthFirstSearchInnerInclBoundary((l, i),m):
Input: Actual direction 0 ≤ m < d
Input: Actual point (l, i) with (lr, ir) = (1, 1) for 0 ≤ r < m
1: if (l, i) belongs to grid then
2: report (l, i) and its value ul,i
3: for r = 0 to m do
4: if r < m then
5: (k, j) := (l, i) with (kr, jr) = (0, 0)
6: reportBoundaryAndInner((k, j), r − 1) // outer recursion: d
7: (k, j) := (l, i) with (kr, jr) = (0, 1)
8: reportBoundaryAndInner((k, j), r − 1)
9: end if

10: (k, j) := (l, i) with (kr, jr) = (lr + 1, 2ir − 1)
11: depthFirstSearchInnerInclBoundary((k, j), r) // inner recursion: tree
12: (k, j) := (l, i) with (kr, jr) = (lr + 1, 2ir + 1)
13: depthFirstSearchInnerInclBoundary((k, j), r)
14: end for
15: end if
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Algorithm 18 Visit every point of a dimension (– and space) adaptive sparse grid which
is anchored at the left boundary.
Start: reportBoundaryAndInner((l, i), d− 1) with (l, i) = (0, . . . , 0|0, . . . , 0).
reportBoundaryAndInner((l, i),m):
Input: Actual direction −1 ≤ m < d // Using (l, i) = (l0, . . . , ld−1|i0, . . . , id−1)
Input: Actual point (l, i) with (lr, ir) = (0, 0) for 0 ≤ r ≤ m
1: if (l, i) belongs to grid then
2: report (l, i) and its value ul,i
3: for r = 0 to m do
4: (k, j) := (l, i) with (kr, jr) = (0, 1)
5: reportBoundaryAndInner((k, j), r − 1) // outer recursion: d
6: depthFirstSearchInnerInclBoundary((l, i), r) // inner recursion: tree
7: end for
8: end if

depthFirstSearchInnerInclBoundary((l, i),m):
Input: Actual direction 0 ≤ m < d
Input: Actual point (l, i) with (lr, ir) = (0, 0) for 0 ≤ r < m
1: if (l, i) belongs to grid then
2: report (l, i) and its value ul,i
3: for r = 0; r < m; r = r + 1 do
4: (k, j) := (l, i) with (kr, jr) = (0, 1)
5: reportBoundaryAndInner((k, j), r − 1) // outer recursion: d
6: (k, j) := (l, i) with (kr, jr) = (1, 1)
7: depthFirstSearchInnerInclBoundary((k, j), r)
8: end for
9: (k, j) := (l, i) with (km, jm) = (lr + 1, 2ir − 1)

10: depthFirstSearchInnerInclBoundary((k, j),m)
11: (k, j) := (l, i) with (km, jm) = (lr + 1, 2ir + 1)
12: depthFirstSearchInnerInclBoundary((k, j),m)
13: end if

basis functions are displayed in black whereas the additional elements of the generating
system are shown in gray.
The transformation from generating system to hierarchical basis employs the two–

scale relation for generating system functions (even i), φl,i = −1
2φl,i−1+φl−1,i/2− 1

2φl,i+1.
Given a one–dimensional representation in the generating system u =

∑
(l,i) ũl,iφl,i, the

transformation to the hat basis can be described as recursive procedure using temporary
stack values

tl,i := ũl,i + tl+1,2i (A.1)

by

ul,i = tl,i −
1
2
tl,i+1 −

1
2
tl,i−1 = ũl,i + tl+1,2i −

1
2
ũl,i±1 −

1
2
tl+1,2(i±1). (A.2)
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Figure A.1: Grid points in the visited sequence for sparse grids anchored at (0.5, . . . , 0.5)
by means of Algorithm 17 (left) and those anchored at (0, . . . , 0) by means
Algorithm 18 (right) for a two–dimensional sparse grid of level n = 2. The
x axis is direction m = 0 and the y axis direction m = 1.

Figure A.2: The one–dimensional linear hierarchical basis and its generating system on
four levels (black: basis function elements, gray: generating system).

The values tl,i are defined for every generating system node and can be accumulated
during a grid traversal.
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A.2.2 The Linear Hierarchical Basis
The transformation from nodal values nl,i = u(xl,i) to basis coefficients ul,i of the hi-
erarchical hat basis can be realized in linear time during d traversals through the grid.
Since each hierarchical coefficient can be represented as product stencil (2.49) and the
information flow is from top to bottom, we apply pre–order tree traversals along each
line in direction m = 1, followed by the same operation along each line in direction
m = 2 and so on. Thus, it suffices to provide the one–dimensional transformation only.
We assume

u : [0, 1]→ R. (A.3)
We start to deal with the highest hierarchical level, the boundary l = 0 and we mention
two different linear hierarchical bases which differ only in the two boundary points:

The hierarchical boundary basis uses a constant function attached to the left boundary,

φ0,0 = 1, (A.4)
often denoted by the equivalent index (−1, 0), and a linear function attached to
the right boundary,

φ0,1 = x. (A.5)
Thus, the coefficient u0,0 is actual a nodal value,

u0,0 = u(x0,0), (A.6)

while the right boundary coefficient is a hierarchical surplus. It has the value

u0,1 = u(x0,1)− u0,0. (A.7)

The nodal boundary basis simply uses the nodal basis for the boundary,

φ0,0 = x and φ0,1 = 1− x. (A.8)

Consequently, the associated basis coefficients are just nodal values,

u0,0 = u(x0,0) and u0,1 = u(x0,1). (A.9)

We continue with the inner points l ≥ 1. Due to the disjoint supports of the basis
functions on one level, a coefficient ul,i is the difference

ul,i = u(xl,i)− IGl−1u(xl,i) (A.10)

where Gl−1 := {(k, j) ∈ G | k ≤ l − 1} denotes the parts in G which are hierarchically
higher than (l, i). But IGl−1u is piecewise linear on suppφl,i and it interpolates u on
Gl−1, so it is nothing but the mean of the two end point values of φl,i:

ul,i = u(xl,i)−
1
2

(
u(xl,i−1) + u(xl,i+1)

)
. (A.11)

The relation can be computed efficiently on adaptive sparse grids during the pre–order
traversal Algorithm 13 if StackData is chosen as left and right nodal value. It is shown
in Algorithm 19.
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Algorithm 19 Hierarchical Transformation hat ul,i ↔ nl,i nodal values in direction m,
to be used as operation inside of pre–order (Algorithm 13).
Operation on boundary:
1: compute the target value from either (A.6) and (A.7) or from (A.9)
2: StackData.left := nk,j where (k, j) = (l, i) and (km, jm) = (0, 0)
3: StackData.right := nk,j where (k, j) = (l, i) and (km, jm) = (0, 1)

Operation on inner nodes:
Input: StackData from father
Output: StackDataLeft and StackDataRight
1: t := 1/2(StackData.left + StackData.right)
2: if transform to nodal values nl,i then
3: nl,i := ul,i + t
4: else
5: ul,i := nl,i − t
6: end if
7: StackDataLeft := [StackData.left, nl,i]
8: StackDataRight := [nl,i, StackData.left]

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

1

x
y

A Prewavelet basis function

Figure A.3: The prewavelet ψ3,4|5,7 = ψ3,5 · ψ4,7.

A.2.3 The Prewavelet Bases

We use two different prewavelet bases: the Dirichlet prewavelet basis which vanishes on
the boundary, ψl,i(0) = ψl,i(1) = 0 for l > 0, and the Neumann basis which yields good
condition numbers for the Neumann case and discretizes the Lebesgue ANOVA. Each
of them consists of linear combinations of hat functions, which makes it considerably
simpler to perform the transformation from prewavelets to the hierarchical hat basis
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(and backwards) than to the nodal basis. Since fast algorithms between hierarchical hat
basis and nodal basis are known [GO95], we follow this approach.
Let φl,i for l ≥ 0, i = 0, . . . , 2l+1 denote elements of the hat generating system. Then,

each of our prewavelet basis functions is defined to be a linear combination of the φl,i.
Denoting the Dirichlet prewavelet basis functions by ψDl,i we get the relations

ψD0,0 = φ0,0 (A.12)
ψD0,1 = φ0,1 (A.13)
ψD1,1 = φ1,1 (A.14)

ψDl,1 = 9
10
φl,1 −

6
10
φl,2 + 1

10
φl,3 (A.15)

ψDl,2l−1 = 1
10
φl,2l−3 −

6
10
φl,2l−2 + 9

10
φl,2l−1 (A.16)

ψDl,i = 1
10
φl,i−2 −

6
10
φl,i−1 + φl,i −

6
10
φl,i+1 + 1

10
φl,i+2 (A.17)

and for the Neumann prewavelets ψNl,i

ψN0,0 = φ0,0 + φ0,1 ≡ 1 (A.18)
ψN0,1 = −φ0,0 + φ0,1 (A.19)
ψN1,1 = −φ1,0 + φ1,1 − φ1,2 (A.20)

ψNl,1 = −12
10
φl,0 + 11

10
φl,1 −

6
10
φl,2 + 1

10
φl,3 (A.21)

ψNl,2l−1 = 1
10
φl,2l−3 −

6
10
φl,2l−2 + 11

10
φl,2l−1 −

12
10
φl,2l (A.22)

ψNl,i = ψDl,i. (A.23)

Some Neumann prewavelet functions are shown in Figure 4.2 on page 110, see also
Figure A.3.

Transformation From Prewavelet To Hat Basis

The basic idea for the transformation to the hat basis is: we provide the transformations
from prewavelets to hat generating system, {ψD,Nl,i } → {φl,i} and from there to the
hierarchical hat basis. The backwards transformation follows by inversion.
The first step of the transformation, from prewavelet to hat generating system follows

immediately from (A.12) – (A.23): simply apply the prewavelet masks and distribute
basis coefficients onto the adjacent generating system nodes with the prewavelet mask
as weights. Afterwards, we need to eliminate the generating system using rule (A.2).
The actual realization has to be done carefully since the overlapping basis functions

and the boundary modifications yields many case distinctions. However, we can formu-
late the problem using general prewavelet masks as follows. We drop the superscripts D
and N and work only with prewavelet masks in the following. Thus, ψl,i is a prewavelet
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basis function defined by real coefficients al,ij , j = −2,−1, 0, 1, 2 and

ψl,i = al,i−2φl,i−2 + al,i−1
−1 φl,i−1 + al,i0 φl,i + al,i+1

1 φl,i+1 + al,i2 φl,i+2. (A.24)

For reasons of simplicity, we assume al,ij = 0 whenever (l, i + j) does not belong to the
generating system. Furthermore, u =

∑
(l,i) ul,iψl,i is a given function in prewavelet basis

representation. We search for u =
∑
ûl,iφl,i, the representation in the hierarchical linear

basis. As already motivated, a representation in the generating system E can be written
down using the prewavelet mask as u =

∑
(l,i)∈E ũl,iφl,i where (l, i) ∈ E now takes both,

even and odd space indices. We get for odd i

ũl,i = al,i0 ul,i + al,i±2
±2 ul,i±2 (A.25)

and for even i

ũl,i = al,i+1
−1 ul,i+1 + al,i−1

1 ul,i−1. (A.26)

The generating system transformation rule (A.2) yields hat basis coefficients ûl,i for
odd i,

ûl,i = ũl,i −
1
2
ũl,i±1 + tl+1,2i −

1
2
tl+1,2(i±1) (A.27)

with temporary values tl,i := ũl,i + tl+1,2i. Inserting our expressions yields

ûl,i = al,i0 ul,i + al,i±2
±2 ul,i±2 −

1
2
(al,i+2
−1 ul,i+2 + al,i1 ul,i)

− 1
2
(al,i−1ul,i + al,i−2

1 ul,i−2) + tl+1,2i −
1
2
tl+1,2(i±1), (A.28)

⇒ ûl,i = (al,i0 −
1
2
al,i1 −

1
2
al,i−1)ul,i + (al,i+2

2 − 1
2
al,i+2
−1 )ul,i+2+

(al,i−2
−2 − 1

2
al,i−2

1 )ul,i−2 + tl+1,2i −
1
2
tl+1,2(i±1). (A.29)

Now, we have expressed the hat basis coefficient ûl,i by means of three prewavelet coef-
ficients, ul,i and ul,i±2, on the same level l and several contributions from higher levels,
the tl+1,2·∗. The factor 2 indicates that we need only temporary values of even space
index, i.e. only contributions tl,i = ũl,i + tl+1,2i together with (A.26).
A possible implementation of (A.26) is to perform a loop from largest level down to

lowest level. For each level, the values tl+1,∗ of the previous (larger) level need to be
accessed and the linear combinations (A.29) need to be performed. This involves several
case distinctions near the boundary and for small levels. Furthermore, the temporary
values tl,∗ need to be computed for the next iteration. Technically, one can apply a
breadth–first–search along each line with Algorithm 15 and store the points in the order
of appearance (which uses level wise ordering). Then, one applies loops backwards
through the structure, handling temporary arrays on the way.
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The implementation needs special cases when it comes to the generating system on
level l = 0, i.e. for the boundaries. It holds

ũ0,0 = a0,0
0 u0,0 + a0,1

−1u0,1, (A.30)
ũ0,1 = a0,1

0 u0,1 + a0,0
1 u0,0 (A.31)

as before. However, the Dirichlet prewavelet has a0 = 1 and a±1 = 0 on level 0, so the
resulting values are just nodal values; nothing special has to be done. The Neumann
prewavelet with ψN0,0 ≡ 1 can be implemented with

û0,0 = ũ0,0 + t1,0, (A.32)
û0,1 = ũ0,1 + t1,2 − t1,0, (A.33)

and (A.30) and (A.31).

Transformation From Hat Basis To Prewavelets

The inverse prewavelet transformation is more involved: we cannot simply reorder (A.29)
to get an expression for ul,i. Instead, we need to resolve all couplings between the ul,i on
one level l. Since always three adjacent ul,i are coupled by (A.29), we can formulate this
as a tri–diagonal linear equation system Aul = fl where ul is a vector of all prewavelet
coefficients on level l and the right hand side fl is defined by

fl,i := ûl,i − tl+1,2i +
1
2
tl+1,2(i−1) + 1

2
tl+1,2(i+1). (A.34)

Algorithmically, this can be carried out during one level wise grid traversal from highest
level down to lowest level: for every level, the right–hand–side fl needs to be assembled
and the linear equation system needs to be solved for ul,i. Then, the temporary values tl,i
need to be computed for the next iteration. Since solving a tridiagonal system is possible
in linear time (compare [PFTV92]), the complete transformation can be performed in
linear time with respect to the grid size.
We are now ready to switch between nodal values and prewavelet coefficients in one

dimension by applying the different transformations successively. The d–dimensional
case can be implemented using a loop over the dimension: 2d grid traversals are sufficient
to perform the transformations. We want to stress however, that the transformations
do not commutate arbitrarily: one should apply all d hat from/to nodal transformations
separated from the d prewavelet from/to hat transformations (the direct transformation
nodal from/to prewavelets needs the Unidirectional Principle with total runtimeO(2dN),
compare Section 2.2.2).

Remarks About The Adaptive Case

While adaptive grid compression based on prewavelet coefficients produces good results,
there is one major complication for the hierarchical transformations: the spaces spanned
by the hierarchical hat basis and the prewavelets are no longer the same. Thus, it
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might still be possible to compute nodal values at grid points, but there is no 1 : 1
transformation between the two basis sets. One possibility is to introduce intermediate
nodes into the grid: for every grid point (l, i), introduce (l, i+j) for j ∈ {−4,−2,+2,+4}
unless the point exists already or does not belong to the basis and set their hierarchical
coefficients to 0. Then, apply the transformations to existing points only. This allows
to compute nodal values at every grid point out of prewavelet coefficients. However, the
backwards transformation from nodal basis (or hat basis) to prewavelet coefficients is
different from what one would expect: it does not yield the same as if one would apply
it to a regular grid followed by a grid compression: the prewavelet compression contains
information of finer mesh widths as well.
This approach with intermediate nodes has been suggested in [Feu05] as extension

for the Unidirectional Principle to implement matrix-vector-products on adaptive index
sets with prewavelets. However, the approach might still introduce an error as pointed
out by Andreas Zeiser (private communication): it only yields an approximate matrix-
vector-product for adaptive index sets. The issue of intermediate nodes is discussed in
Section A.4.1.

A.2.4 The Haar Wavelet

The Haar wavelet basis is one of the most simple wavelets. It is a piecewise constant
wavelet and defined as linear combination of adjacent piecewise constant scaling func-
tions φl,i. We denote the Haar basis functions by ψl,i and the scaling functions by φl,i,

φl,i(x) =


0 x < xl,i,

1 x ∈ [xl,i, xl,i+1)
0 x ≥ xl,i+1.

(A.35)

Note that every function vanishes on the right boundary point, φl,i(1) = 0 and there
is no usable scaling function attached to the right boundary (in other words: the right
boundary does not belong to the basis points of our piecewise constant bases and is
ignored throughout this section).
The Haar basis functions are then defined by

ψl,i := −φl,i + φl,i−1 = −2φl,i + φl−1, i−1
2
, (A.36)

ψ0,0 := φ0,0 ≡ 1. (A.37)

It constitutes an L2 orthogonal wavelet for which classical wavelet transformations ex-
ist, see [Haa10] and [Chu92]. However, it can also be formulated efficiently in terms of
the sparse grid Unidirectional Principle as follows: we decompose the transformation
into one transformation from Haar wavelet to a simple multiscale piecewise constant
basis (bottom–up) and one transformation from multiscale constant to nodal values
(top–down). We provide these two algorithms and their inverse transformations sep-
arately to get optimal runtime O(dN) in the Unidirectional Principle for sparse grids
(Section 2.2.2).
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The transformation Haar Basis to Constant Multilevel

To eliminate the redundancies of the generating system, we employ the relation

φl,i = φl−1,i/2 − φl,i+1 (i even). (A.38)

Taking (A.36) and (A.38) together provides the necessary ingredients for the transfor-
mation to the multi-level piecewise constant basis. Assuming we are given u =

∑
ul,iψl,i

in the Haar basis, we are searching for a representation u =
∑
ūl,iφl,i in the multi-level

piecewise constant basis.
We define local stack variables tl,i := tl+1,2i−1 + ul,i where the first contribution is the

+φl−1,i/2 of (A.38) whereas the second term is the +φl−1,(i−1)/2 summand from (A.36).
This allows to formulate

ūl,i = −2ul,i + tl,2i+1 − tl,2i−1 (A.39)

where the −2 comes from the Haar wavelet and the −tl,i−1 from the generating system
elimination. The weight −2 must be changed to +1 for the left boundary (0, 0).
The final procedure is summarized in Algorithm 20.

Algorithm 20 Hierarchical Transformation Haar Basis ul,i ↔ ūl,i multilevel piecewise
constant in direction m, to be used as operation inside of bottom–up (Algorithm 14).
Operation on boundary:
Input: StackData from (1, 1)
1: (k, j) := (l, i), (km, jm) := (0, 0)
2: uk,j := ūk,j + StackData or, for backwards transformation, ūk,j := uk,j + StackData

3: (k, j) := (l, i), (km, jm) := (0, 1), uk,j := ūk,j := 0 // unused.
Operation on inner nodes (l, i):
Input: StackDataLeft and StackDataRight
Output: StackData for father
1: if transform Haar to piecewise constant, ul,i → ūl,i then
2: ūl,i := −2ul,i + StackDataRight− StackDataLeft
3: StackData := StackDataLeft + ul,i
4: else // inverse ūl,i → ul,i
5: ul,i := 1

2(−ūl,i + StackDataLeft− StackDataRight)
6: StackData := 1

2(StackDataLeft + ūl,i + StackDataRight)
7: end if

The backwards transformation from Constant Multilevel to Haar Basis

Now, we suppose we are given a representation in the piecewise constant multi-level
basis, u =

∑
ūl,iφl,i, and search for a representation in the Haar basis, u =

∑
ul,iψl,i.
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Reordering (A.36) for odd i yields

φl,i = −1
2
ψl,i +

1
2
φl−1, i−1

2
(A.40)

whereas the equation for even i is

φl,i = φl−1,i/2 − φl,i+1 = φl−1,i/2 + 1
2
(ψl,i+1 − φl−1,i/2) = 1

2
φl−1,i/2 + 1

2
ψl,i+1. (A.41)

The idea is perform a bottom-up traversal and apply these equations until every φl,i has
been expressed by the correct ψl,i, until we finally arrive at φ00 = ψ00 = 1. Formulating
this as recursive procedure, we get with temporary stack variables for even i,

tl,i := 1
2
ūl,i+1 + 1

2
tl+1,2i +

1
2
tl+1,2i+1 (A.42)

and for odd i,
tl,i := tl+1,2i, (A.43)

an expression for the desired Haar basis coefficients:

ul,i = −1
2
ūl,i +

1
2
tl+1,2(i−1) −

1
2
tl+1,2i. (A.44)

The origin of the diagonal weight −1
2 ūl,i is quite clear while the other two terms handle

the 1
2φl−1, i−1

2
part communicated from the direct sons. Remember that each of them

has to be expressed as linear combination of ψkj by applying the simplification rules as
often as necessary. For (l, i) = (0, 0), we get u0,0 = ū0,0 + t1,1.
The final procedure is summarized in Algorithm 20.

The Transformation between Nodal Values and Multilevel Constant Basis

We continue to provide transformations from nodal values nl,i = u(xl,i) on all grid points,
(l, i) ∈ G, to a piecewise constant multi-level basis representation, u =

∑
ūl,iφl,i. As for

the piecewise hat multi-level basis, every basis coefficient ul,i is the difference between
the nodal value u(xl,i) and the (piecewise constant) interpolated value on previous levels,

ūl,i = u(xl,i)− IGl−1u(xl,i) (A.45)

where Gl−1 := {(k, j) ∈ G | k ≤ l − 1} denotes the parts in G which are hierarchi-
cally higher than (l, i). Since in this case, IGl−1u is piecewise constant on suppφl,i =
[xl,i−1, xl,i+1) and it interpolates u on Gl−1, we only need the nodal value xl,i−1 to
formulate

ūl,i = u(xl,i)− u(xl,i−1). (A.46)

The required nodal value can be transported from father to sons during a grid traversal
from top (l = 0) to bottom. To this end, we introduce temporary stack variables

tl,i :=
{
nl,i if (l, i) belongs to the basis (i.e. l = 0, i = 0 or i odd),
tl−1,i/2 if (l, i) is a generating system node

(A.47)
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and write
ūl,i = u(xl,i)− tl−1,i/2. (A.48)

Consequently, the inverse transformation from piecewise constant multi-level to nodal
values is

u(xl,i) = nl,i = ūl,i + tl−1,i/2. (A.49)
Both transformations can be carried out during a top–down traversal through the binary
grid structure, where at every step, one value tl,i is communicated from father to son
(similarly to the hat basis transformation, compare Algorithm 19).
Please keep in mind that this transformation does not yield the nodal value u(x0,1) =

u(1). If required, the right boundary point needs to be extrapolated. Unfortunately,
this extrapolation step might become more involved for higher dimensions.
Finally, a transformation from nodal values to the Haar wavelet is a composition of a

transformation from nodal to piecewise constant multi-level (top–down), and from there
to the Haar basis (bottom–up). For the multi–dimensional case, this can be carried out
during 2d separate grid traversals, two for every direction. However, the order of the
operation matters: at first, all directions have to be transformed to piecewise constant
multi-level and afterwards, all directions have to be transformed to the Haar basis. Sim-
ilar statements hold for the backwards transformations. This speciality is due to the fact
the top–down and bottom–up correspond to decompositions of the complete transforma-
tion matrix into upper triangular and lower triangular matrices – and the Unidirectional
principle states that O(2d) grid traversals are necessary to allow data transport and
commutation between the upper– and lower triangular parts. Our approach needs only
O(dN) time.

A.2.5 Higher Order Hierarchical Polynomial Bases
While piecewise constant and piecewise linear basis functions require only few degrees
of freedom (grid points), higher order (spline) polynomials have to be defined using
additional information. One major advantage of piecewise constant and piecewise linear
hierarchical basis sets is the property of nested supports: information is local and the
operations can be performed in linear time with respect to the degrees of freedom. The
hierarchical polynomial bases proposed by Bungartz [Bun98] have both, high order and
local support. The additional degrees of freedom to define higher order polynomials are
extracted from the hierarchy.

Basis Function Definition

We will summarize the definition of hierarchical polynomial bases according to [Ach03]
and the hierarchical transformations by following [Bun98].
The idea for the definition of a polynomial basis function φ

(p)
l,i of degree p ≥ 2 is to

get a set of p+ 1 points P (p)
l,i := {xl,ik , k = 0, . . . , p}, chosen from xl,i and its hierarchical

ancestors on lower levels, such that

φ
(p)
l,i (xl,i) = 1 and φ(p)

l,i (xl,ik ) = 0 for xl,ik 6= xl,i. (A.50)
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x0,0 x0,1x1,1x2,1x3,1 x4,3

x5,7

Figure A.4: The defining points P (6)
l,i , shown as ‘ ’, which are used to create the hierar-

chical polynomial basis function φ(6)
5,7.

These (p + 1) conditions uniquely define a polynomial of degree p. To get compact
supports, the basis function is truncated to zero outside of

Jl,i := [xl,i−1, xl,i+1]. (A.51)

Before we go into details, we note several aspects. At first, it is not possible to provide
arbitrary degrees at every grid point. For example the point l = 1, i = 1 has two further
points on lower levels, namely (0, 0) and (0, 1). Thus, at most a polynomial of degree
p = 2 can be found for (1, 1). We will see later that a polynomial of degree p requires
l ≥ p− 1. Furthermore, the truncation to 0 outside of Jl,i is certainly not differentiable.
The basis proposed in [Bun98] is, indeed, locally of degree (up to) p and only continuous
at grid points.
The defining set of points P (p)

l,i = {xl,ik } consists of xl,i, its two direct neighbors xl,i−1
and xl,i+1, and the direct neighbors of each of the (p − 2) following ancestors. Each
ancestor has two direct neighbors, but, one of them is already contained in P (p)

l,i due to
the larger levels. This is illustrated in Figure A.4: the basis polynomial of degree p = 6,
φ

(6)
5,7 requires the points

P
(6)
5,7 := {x0,0, x3,1, x4,3, x5,7, x2,1, x1,1, x0,1} (A.52)

= {x5,0, x5,4, x5,6, x5,7, x5,8, x5,16, x5,32}. (A.53)

Besides xl,i and its two neighbors, there is always one point per ancestor. To get a total
of p + 1 points, p − 2 ancestors need to be visited. This limits the polynomial degree,
based on the level l. Since l = 0 does not contribute further points (the points on level
l = 0 are neighbors of (1, 1)), there are exactly l − 1 ancestors for every point (l, i).
Thus, for fixed l, we have p− 2 ≤ l− 1⇒ p ≤ l+ 1. It is possible to collect these points
iteratively using Algorithm 21.
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Algorithm 21 Compute the set of required points P (p)
l,i for given polynomial degree p

and point (l, i).
Require: Degree p ≥ 2
Require: A point (l, i) with l ≥ p− 1
1: P (p) = {xl,i, xl,i−1, xl,i+1}
2: while

∣∣∣P (p)
∣∣∣ < p+ 1 do

3: (l̄, ī) := (l, i)
4: set (l, i) to its father
5: if (l̄, ī) is a left son then // ⇔ ī/2 is even (or we have (0, 0))
6: P (p) := P (p) ∪ {xl,i+1} // We came from left, take right neighbor
7: else
8: P (p) := P (p) ∪ {xl,i−1} // We came from right, take left neighbor
9: end if

10: end while
11: return P (p)

The polynomial basis function φl,i is then defined by

φl,i(x) :=


∏

xk∈P
(p)
l,i

xk 6=xl,i

(x− xk)
(xl,i − xk)

x ∈ [xl,i−1, xl,i+1],

0 else,

(A.54)

compare [Ach03]. The basis functions are uniformly bounded over all (l, i) and do not
suffer from oscillations which occur typically for high order polynomial interpolation
since the support restriction uses only the “tame” part of the polynomial, see [Bun98]
for details.

Hierarchical Transformations For Hierarchical Polynomial Bases

As for all other hierarchical basis constructions, the coefficients for hierarchical basis
polynomials of degree p are the difference between nodal values and the interpolated
value of the ancestors,

u
(p)
l,i = u(xl,i)− IGl−1(xl,i). (A.55)

The interpolated value up to and including level (l − 1) is now a piecewise polynomial
spline which interpolates u at Gl−1. Here enters the restriction of polynomial degrees
discussed in the previous section: it holds p ≤ l + 1 in general and thus, IGl−1 has at
most polynomial degree p̃ = l. We conclude that

u
(p)
l,i = u

(p̃)
l,i = u

(l)
l,i for p > l. (A.56)

For example, the quadratic coefficient on level l = 1, (1, 1) is identical to the linear
coefficient,

u
(2)
1,1 = u

(1)
1,1. (A.57)
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The key observation to actually compute the coefficients is a result due to [Bun98]: the
hierarchical coefficients of order p at one point can be computed out of two coefficients
of order (p − 1). By iteration, this allows to compute order p hierarchical coefficients
based on linear hierarchical coefficients on different levels. We denote the hierarchical
coefficient for polynomial bases of order p by u(p)

l,i . Then it holds [Bun98, Theorem 4.3]
for l ≥ p ≥ 2 that

u
(p)
l,i = u

(p−1)
l,i − α(p)

l,i · u
(p−1)
F(l,i). (A.58)

Here, F(l, i) denotes the multi-index of the father of (l, i). Furthermore, α(p)
l,i is a weight

which depends on the set P (p)
l,i and one further hierarchical ancestor, but not on the basis

coefficients. For the case l < p, a combination of (A.56) and (A.58) allows to compute
the transformation and the special case p = 1 is just the linear hierarchical basis.
The weight is given by

α
(p)
l,i :=

xF(l,i) − xl,i
xp+1 − xF(l,i)

·
∏

xk∈P
(p)
l,i
\{xl,i, xF(l,i)}

xl,i − xk
xF(l,i) − xk

(A.59)

where the additional point xp+1 can be obtained by Algorithm 21 as well: the algorithm
needs one further loop iteration to yield xp+1. It should be noted that α(p)

l,i can be
computed with integer arithmetics if we write all involved coordinates xk ∈ P

(p)
l,i , k =

0, . . . , p and xp+1 as xk = jk2−l for adequately chosen space indices jk. This has already
been suggested in (A.53) where we provided all elements of P (6)

5,7 on level l = 5. If
furthermore xl,i = m2−l and xF(l,i) = n2−l, the weight (A.59) simplifies to

α
(p)
l,i = n−m

jp+1 − n

p∏
k=0

k 6∈{n,m}

m− jk
n− jk

; (A.60)

only the final division needs to be done in floating point arithmetics. The simplest case
is given for p = 2, the piecewise quadratic hierarchical basis: the basis functions are
defined by xl,i and xl,i±1 and the additional point xp+1 is nothing but xF(l,i). There are
just two possible configurations: either (l, i) is a left son or it is a right son and all jk
are known a priori. In both cases, (A.60) simplifies to α(p)

l,i ≡
1
4 for every (l, i), l ≥ 2.

Starting with p = 3, the weight depends on (l, i).
Now that we have computed the weights α(p)

l,i , the transformation rules (A.56) and
(A.58) can be computed during one top–down traversal through the data structure. The
transformation from nodal values nl,i to hierarchical polynomial coefficients u(p)

l,i consists
of the following steps: for every visited node, check if coefficients of degree p are possible
and use p̃ = l instead if p > l according to (A.56). Then, compute all hierarchical
coefficients u(j)

l,i for j = 1, 2, . . . , p̃ where u(1)
l,i is the linear hierarchical coefficient defined

by
u

(1)
l,i = nl,i −

1
2

(
nl,i−1 + nl,i+1

)
, (A.61)
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see also (A.11). Higher degrees p̃ > 1 follow by iterating (A.58) using the weights (A.60).
This is summarized in Algorithm (22), together with the required values from the father
and the communication of values to the direct ancestors.

To get boundary conditions right, the basis needs to be complemented with two fur-
ther linear basis functions as done for the hat basis in Section A.2.2. The boundary
modifications impose no changes on Algorithm 22 since it holds p̃ = 1 on level l = 1 so
only linear hierarchical coefficients are involved anyway. Note that Algorithm 22 can be
formulated by means of the generic pre–order Algorithm 13 with StackData containing
all required input values.

Algorithm 22 Recursive top–down procedure to compute hierarchical polynomial basis
coefficients of order (up to) p, u(p)

l,i out of nodal values nl,i or backwards.
Require: (l, i), the current index
Require: a reference to the current grid value ũl,i
Require: From father: nodal values nl,i−1 and nl,i+1

Require: From father: u(j)
F(l,i) for j = 1, . . . , p̃− 1 (with p̃ := min{p, l}).

1: if transform to hierarchical coefficients then
2: nl,i := ũl,i

3: u
(1)
l,i := nl,i − 1

2(nl,i−1 + nl,i+1)
4: for j = 2 to p̃ do
5: u

(j)
l,i := u

(j−1)
l,i − α(j)

l,i · u
(j−1)
F(l,i)

6: end for
7: set output value ũl,i := u

(p̃)
l,i

8: else
9: u

(p̃)
l,i := ũl,i

10: for j = p̃ to 2 do
11: u

(j−1)
l,i := u

(j)
l,i + α

(j)
l,i · u

(j−1)
F(l,i)

12: end for
13: nl,i := u

(1)
l,i + 1

2(nl,i−1 + nl,i+1)
14: set output value ũl,i := nl,i
15: end if
16: Recurse into left son (l + 1, 2i− 1) with

nl+1,2i−2 := nl,i−1, nl+1,2i := nl,i and u
(j)
l,i , j = 1, . . . , p̃.

17: Recurse into right son (l + 1, 2i+ 1) with
nl+1,2i := nl,i, nl+1,2i+2 := nl,i+1 and u(j)

l,i , j = 1, . . . , p̃.

Note that the weight α(p)
l,i can be precomputed by Algorithm 21 according to (A.59) and

(A.60) by collecting one more point.
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A.3 One–Dimensional Matrix Vector Products Algorithms

A.3.1 The Mass Matrix for the Hierarchical Hat Basis

Computation of the mass matrix for the hierarchical hat basis on sparse grids requires the
Unidirectional Principle and its splitting into top–down and bottom–up parts. The re-
quired one–dimensional algorithms are summarized in Algorithm 24 (top–down) and Al-
gorithm 23 (bottom–up) as matrix–vector–products. The algorithms are due to [Bal94].

Algorithm 23 One–dimensional matrix vector product bottom–up accumulation of
v = Bu for the mass matrix in hierarchical hat basis representation. The algorithm
needs to be invoked during the post–order Algorithm 14.
Part I: inner nodes:
Input: inner node (l, i) and ul,i
Input: Stack data of left son Sl = [Sl.left, Sl.right]
Input: Stack data of right son Sr = [Sr.left, Sr.right]
Output: Stack data to be stored for (l, i), S
1: vl,i := −(Sl.right + Sr.left)
2: m := 1

2 · (hl · ul,i + vl,i)
3: S.left := Sl.left−m
4: S.right := Sr.right−m
5: return S

Part II: boundary nodes:
Input: boundary (l, i) and ul,i
Input: Stack data of point (1, 1) S = [S.left, S.right]
1: if φ0,0 = x and φ0,1 = 1− x then
2: v0,0 := −S.left
3: v0,1 := −S.right
4: else // φ0,0 = 1 and φ0,1 = x
5: v0,0 := −(S.left + S.right) + 1

2u0,1
6: v0,1 := −S.right
7: end if

A.3.2 The Mass Matrix for the Prewavelet Basis

Due to the semi–orthogonality of the prewavelet basis with respect to the L2 inner
product, (ψl,i, ψk,j) = 0 for l 6= k and l, k > 0, only a handful of non–vanishing matrix
entries need to be computed. We write m(l,i),(k,j) for an entry.
The matrix entries for the Dirichlet prewavelets are summarized in the following list.
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Algorithm 24 One–dimensional matrix vector product top–down accumulation of v =
Tu for the mass matrix in hierarchical hat basis representation. The algorithm needs to
be invoked during a pre–order Algorithm 13.
Part I: inner nodes:
Input: inner node (l, i) and ul,i
Input: Stack data of father, S = [S.left S.right]
Output: Stack data to be communicated to left son (Sl) and right son (Sr)
1: n := 1

2(S.left + S.right)
2: vl,i := 2

3 · hl · ul,i + hl · n
3: t := ul,i + n // nodal value on its father
4: Sl.left := S.left
5: Sl.right := t
6: Sr.left := t
7: Sr.right := S.right

Part II: boundary nodes:
Input: boundary (l, i) and ul,i
Output: Stack data to be stored for (1, 1), S = [S.left, S.right]
1: S.left = u0,0
2: if φ0,0 = x and φ0,1 = 1− x then
3: v0,0 := 1

3 · u0,0 + 1
6 · u0,1

4: v0,1 := 1
3 · u0,1 + 1

6 · u0,0
5: S.left = u0,0 and S.right = u0,1
6: else // φ0,0 = 1 and φ0,1 = x
7: v0,0 := u0,0
8: v0,1 := 1

3 · u0,1 + 1
2 · u0,0

9: S.left = u0,0 and S.right = u0,0 + u0,1
10: end if

Note that it has non–vanishing terms between level 0 and l > 0:

m(0,0),(0,0) = 1
3
, m(0,0),(0,1) = 1

6
,

m(1,1),(1,1) = 1
3
, m(1,1),(0,i) = 1

4
,

m(2,1),(2,1) = m(2,3),(2,3) = 44
75
h2, m(2,1),(2,3) = 1

25
,

m(2,1),(0,i) = 4
10
h2, m(l,1),(l,1) = 44

75
hl,

m(l,1),(l,3) = 11
75
hl, m(l,1),(l,5) = − 1

75
hl,

m(l,1),(0,0) = 4
10
hl, m(l,i),(l,i) = 18

25
hl,

m(l,i),(l,i±2) = 2
15
hl, m(l,i),(l,i±4) = − 1

75
hl,
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and m(l,2l−1),∗ is symmetrically to m(l,1),∗. The remaining entries also follow due to
symmetry.
Similarly, we collect the matrix entries for the Neumann prewavelet, which is also

orthogonal between level 0 and l > 0. The non–vanishing entries are, up to symmetry,

m(0,0),(0,0) = 1, m(0,0),(0,1) = 1
3
,

m(1,1),(1,1) = 1
3
, m(2,1),(2,1) = m(2,3),(2,3) = 16

75
,

m(2,1),(2,3) = 2
75
, m(l,1),(l,1) = 64

75
hl,

m(l,1),(l,3) = 3
25
hl, m(l,1),(l,5) = − 1

75
hl,

m(l,i),(l,i) = 18
25
hl, m(l,i),(l,i±2) = 2

15
hl,

m(l,i),(l,i±4) = − 1
75
hl, m(l,2l−1),∗ = symmetrically to m(l,1),∗.

A.3.3 More on One–Dimensional Matrix–Vector–Products

Besides the already mentioned algorithms, there are general attempts to compute matrix
multiplications with stiffness matrices for constant coefficients (i.e. second order and
convective terms). For the hat basis, the second order terms (Laplacian) are trivial since
the hat basis is orthogonal with respect to the corresponding one–dimensional inner
product and results simply in a diagonal scaling (compare [Bal94]). Implementations for
second order terms and convective terms for constant coefficients have been elaborated
in [Feu05]. Implementations for (separable) variable coefficients have been presented
in [Ach03], as well as other constant coefficient implementations with small basis support.
The implementation for separable variable coefficients in this thesis is based on the hat
basis: the matrix is assembled for the one–scale nodal basis and the hierarchical hat basis
multiplication is realized by means of multi grid prolongations and restrictions, separated
into top–down and bottom–up according to the discussion in Section 2.2.2. Since the
one–scale basis also includes the generating system of Section A.2.1, the approach also
eliminates generating system nodes. The resulting runtime for both, top–down and
bottom–up is O(N) as is common for multigrid methods (note that the final matrix
has finger structure with more than O(N) non–vanishing matrix elements, so a direct
assemblation leads to sub–optimal runtime requirements). Details about multi grid
prolongations and restrictions are beyond the scope of this thesis, we refer the reader to
standard text books.

A.4 Adaptive Refinement: Algorithmic Details

Algorithm 25 provides details about one adaptive refinement step for reference, and
Algorithm 26 provides details about one grid compression step.
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Algorithm 25 A single grid refinement step
Input: Grid G
Input: Target threshold ε = ε(abs) or ε = ε(rel) and function norm ‖·‖
Input: A discrete function f ∈ span {φl,i | (l, i) ∈ G}
Input: A boolean bDimAdaptive to support dimension adaptive refinement (see Algo-

rithm 12)
Note that dimension adaptive grids use level components lm = −1, 0, 1, 2, . . . .

Output: The refined grid Grefine and the refined function f refine
1: In case of ε = ε(rel), compute ‖f‖ and use ε := ε(rel) · ‖f‖
2: Grefine := G
3: for (l, i) ∈ G do
4: if |fl,i| · ‖φl,i‖ ≥ ε then
5: for m = 1 to d do
6: if bDimAdaptive=false or lm 6= −1 then
7: (k, j) := (l, i), (km, jm) := (lm + 1, 2im − 1).
8: Insert (k, j) and all its ancestors into Grefine.
9: (k, j) := (l, i), (km, jm) := (lm + 1, 2im + 1).

10: Insert (k, j) and all its ancestors into Grefine.
11: end if
12: end for
13: end if
14: end for
15: f refine := f together with fl,i := 0 for new nodes (l, i) ∈ Grefine \G
16: return Grefine and f refine

A.4.1 Remarks on Prewavelet Adaptivity

In principle, the prewavelet bases (see Section A.2.3) allow the same sort of adaptive
refinement as for the hat basis. They even provide better error indicators due to their
stability, [GO95]. However, the Unidirectional Principle of Section 2.2.2 which allows
fast matrix-vector-product algorithms relies on small supports to provide storage of
intermediate results on sparse grid points. It was suggested in [Feu05] that additional,
intermediate transport nodes could be inserted on neighbor nodes to improve the data
transport, i.e. to insert up to 4 · d neighbor nodes (lm, im± 2) and (lm, im± 4) and their
ancestors for every grid point (l, i) and every direction m. The resulting grid is thus still
adaptive, but it will contain nodes which are not degrees of freedom, increasing the grid
size from O(N) to about O(dN). This improves storage of intermediate nodes between
successive stages of the Unidirectional Principle, compare [Feu05].
However, the approach might still introduce an error as pointed out by Andreas Zeiser

(private communication): it only yields an approximate matrix-vector-product for adap-
tive index sets. Neighbors along the diagonals also need to be inserted to ensure a correct
storage of intermediate results. The grid size will never exceed the regular sparse grid
size, but the additional blow–up constant now grows exponentially with d.
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Algorithm 26 A single grid compression step
Input: Grid G
Input: Target threshold ε = ε(abs) or ε = ε(rel) and function norm ‖·‖
Input: A discrete function f ∈ span {φl,i | (l, i) ∈ G}
Output: The compressed grid Gcmpr and the compressed function f cmpr

1: In case of ε = ε(rel), compute ‖f‖ and use ε := ε(rel) · ‖f‖
2: Compute G̃cmpr := {(l, i) ∈ G | |fl,i| · ‖φl,i‖ ≥ ε}

and Gcmpr := G̃cmpr ∪Ancestors(G̃cmpr) as follows:
3: for m := 1 to d do
4: allocate bNodeStays(l, i)=false values for each grid point.
5: for each grid line in direction m (Algorithm 16) do
6: Perform Bottom–Up Traversal on the line (Algorithm 14)
7: for each point (l, i) on the line do
8: bNodeStays(l, i) :=bNodeStays(l, i) or one of the two child node stays

or |fl,i| · ‖φl,i‖ ≥ ε.
9: // For standard grids with root

node (1, . . . , 1|1, . . . , 1), boundary nodes (lm, im) ∈ {(0, 0), (0, 1)} are
considered to be both, child nodes and ancestors of (lm, im) = (1, 1).
If one of the three nodes stays, all three have to stay.

10: end for
11: end for
12: end for
13: Gcmpr := {(l, i) ∈ G | bNodeStays(l, i) = true}
14: prune f to obtain f cmpr (possibly reordering coefficient vectors)
15: return Gcmpr and f cmpr

Fortunately, the transport issue appears to be better as feared: the adaptive prewavelet
experiments in this thesis have been computed by means of the 4d–intermediate–node
approach presented in [Feu05], and the resulting errors have been computed using the
method of Section 3.2.2, i.e. using

‖u− uh‖2L2 = ‖u‖2L2 − 2〈u, uh〉+ ‖uh‖2L2 .︸ ︷︷ ︸
=ūT

h
Mūh

(A.62)

The error measurements yielded exactly the same values, no matter if ūThMūh was com-
puted on a regular sparse grid (which has no transport problem) or the adaptive grid
with intermediate nodes according to the technique of [Feu05]. As a consequence, all
error measurements are unaffected by this issue. Furthermore, one can expect that solu-
tions are also unaffected, thereby allowing to use the cheaper linear cost factor d instead
of an exponential one in this thesis.
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