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Chapter 1

Introduction

One of the most challenging and fascinating applications of discrete mathematics is chip
design. The development of modern processors and application specific integrated circuits
(ASICs) is unimaginable without the use of advanced mathematics. Here, various hard
problems have to be addressed on huge instances.

Modern computer chips consist of millions of modules (circuits) representing logical func-
tions and memory elements, which have to be connected by wires in the later design process.
A key task in chip design is placement, in which positions of the modules have to be
determined in a given chip area. The placement has a direct impact on the total length of
wires needed to interconnect them, and consequently on the performance of the chip — the
signal transition times and the power consumption.

In the past, meeting timing constraints was not difficult and wiring was almost always
achievable. But the technological advancement, competition and the growing complexity
of the chips now make the design process a compound, interlaced, and time-consuming
procedure. In this process, many interdependent optimization goals and tight constraints
must be addressed. For these reasons, the requirements for placement have been subject
to many modifications, as placement tools became an essential ingredient in integrated
design flows at many stages and scenarios. Placement faces different object types and it is
desirable to translate particular timing and wiring constraints into placement. At the same
time, the increasing and often iterative use of placement makes the overall turnaround time
highly sensitive to the runtime of the placement.

For all these reasons, powerful, flexible and fast placement algorithms are of particular
interest more than ever.

In this thesis we address precisely these aspects of placement. As the placement problem is
intractable in theory, we follow the classical approach and divide placement into the global
phase, which is responsible for the computation of rough cell positions, and the legalization
part. The major part of this work deals with global placement. We present several novel
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8 CHAPTER 1. INTRODUCTION

algorithms and generalized data structures, which are combined to a new version of the
global placement part of BonnPlace (Brenner, Struzyna and Vygen [2008]). The new
version is able to deal with generalized placement constraints, namely movebounds.

This thesis is organized as follows: in Chapter 2 we first introduce a formal description
of the placement problem, and discuss briefly the most important optimization goals and
classical constraints. After the summary of the major complexity results on the placement
problem, we motivate global placement, the main subject of thesis.

Chapter 3 shows an overview of the major approaches to the global placement problem. We
also present essential parts of the old version of BonnPlace, which serves as a starting
point for our work.

The concept of movebounds is motivated and introduced in the beginning of Chapter 4. We
use overlapping movebounds, which can be inclusive or exclusive. Our concept generalizes
the specification of Si2 [2009] as both types can be interpreted as soft or hard constraints.
We show that using a decomposition of the chip area into homogeneous (w.r.t. movebounds)
regions can efficiently be used in a top-down partitioning scheme: given n circuits, m
movebounds and r regions, we show that in O(n + m2r) time one can check whether a
fractional partitioning with movebounds exists. We also prove that an optimal (almost inte-
gral) partitioning for some modular cost function can be found in O

(
r2n(log(n) + r log(r)

)
time. We discuss interactions between density and movebound constraints, and extend
BonnPlace to handle hundreds of movebounds and millions of circuits efficiently.

In Chapter 5, we present a novel core routine, the flow-based partitioning algorithm for
global placement. This new scheme is a combination of a global MinCostFlow network
model for computing directions and a local, highly scalable, connectivity-aware sequence
of partitioning steps for flow realization. Despite its global view, the number of nodes
and edges in the new model is only linear in r and does not depend on the number of
cells. Even on large instances, the MinCostFlow computation needs seconds. We use
the optimal flow to obtain directions for cell movement. The movement is performed by a
sequence of local quadratic netlength minimization and partitioning steps. We show that the
realization can be parallelized efficiently maintaing repeatability. The new approach resolves
several major problems of classical partitioning-based placement: it provides a global view,
guarantees a feasible (fractional) partitioning for any initial solution, and reduces the risk of
density violations. Our routine can be applied in incremental placements and allows density
unaware optimization (timing, wirelength) during global placement. It is also a key step in
the extension of the method by Brenner and Rohe [2002], to a combined movement, circuit
inflation and density adjustment approach for congestion-driven placement, presented at
the end of the chapter.

Chapter 6 deals with generalized data structures in placement. We show how given groups
of modules (clusters) can efficiently be handled in global placement, using a hierarchical
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clustering and induced netlists. We extend the clique and star net models to handle clustered
nets efficiently. We then discuss several implementation aspects of other components of
the new BonnPlace, and pay particular attention to the parallelization of several major
routines in Section 6.3.

In Chapter 7 we focus on finding groups of modules for placement (clustering). After a brief
summary of the existing methods, we propose a novel approach which follows the idea of
combining global connectivity information from a novel and fast random walk model and
a bottom-up clustering scheme. We show how hitting times of random walks from large
hypergraphs can be retrieved quickly and in a memory efficient way by a parallel algorithm.

Chapter 8 provides the experiments on a large testbed of recent real-world chips and
benchmarks. We compare our tool to the old version of BonnPlace as well as to a
modern industrial placer on the real-world chips. Without any algorithmic changes, the new
implementation yields a two times faster version of BonnPlace, despite its generalized
data structures. Significant improvements can then be obtained using the new flow-based
partitioning.
Compared to the old BonnPlace the netlength improves by more than 8%, in several
cases by more than 10%, in one case even 28%. Our new tool is more than 5.4 times faster
than the previous version of BonnPlace. Results comparable to those produced by the
old version of BonnPlace can even be obtained 8.7 times faster.
The new flow-based partitioning is shown to deal much more accurately with the new
movebound constraints: comparing to the recursive approach, we obtain more than 10%
shorter netlength on average for instances with inclusive movebounds. On instances with
exclusive movebounds, the improvement is even 13.7% on average. Compared to the
industrial tool we obtain similar results but are more than 5.5 times faster on instances
without movebounds. With movebounds, the gap is more than 32% in favor of our approach,
and we are to 9-20 times faster than the industrial tool.
The presented global placement tool performs well not only on real-world instances. On
the recent benchmarks, we produce highly competitive results in terms of wirelength and
obtain the currently best results on the latest benchmark set (Nam et al. [2006]).
Finally, we present the first results of our new clustering, which significantly outperforms
BestChoice in terms of netlength in a reasonable runtime. Although our implementation is
in a preliminary version, we achieve improvements of more than 6.6% in terms of netlength
over BestChoice. Using the random walk clustering allows us to reduce the number of
circuits by a factor of 10 and still obtain slightly shorter netlengths than the placements on
unclustered netlists.

This work would not have been possible without the support of many people.

I would like to express my gratitude to my supervisors, Prof. Dr. Bernhard Korte and Prof.
Dr. Jens Vygen, for their guidance, and the outstanding working conditions at the Research
Institute for Discrete Mathematics at the University of Bonn. The institute under their
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lead became a distinctive place of research and development and the productive spirit was
a huge motivation for my work.

I am very thankful to all members of the placement team: to Dr. Ulrich Brenner, Prof. Dr.
Stefan Hougardy, Jan Schneider for the friendly, constructive atmosphere in the team and
the many objective discussions over the years. Many thanks go to Levin Keller, Christoph
Lauff, Alexander Renelt and Ulrike Suhl for the implementation effort they have spent in
the new version of BonnPlace.
I am also thankful to Christoph Bartoschek, Jun.-Prof. Dr. Stephan Held, Christina Schulz,
Dr. Christian Szegedy, Dr. Jürgen Werber for the cooperation in timing, to Karsten Muuss
for answering many questions on data structures and methodology as well as to Dr. Dirk
Müller for sharing his experience in congestion estimation. Special thanks go to Christoph
and Dirk for their responses to my questions and the discussions on programming and
parallelization.

I am grateful to Ulrich and Jan for backing me during the last months towards the end of
completion of this thesis and the repeated proofreading. Stefan Hougardy’s, Brian’s, Dirk’s
and Uta’s proofreading, remarks and valuable comments have also been a huge help.

My biggest thanks go to my family, my wonderful wife Uta and the lovely boys Patrick
and Erik for their love, their permanent support and their infinite patience with me when
leaving so early and coming home so late over the last months.



Chapter 2

Preliminaries

In this chapter we introduce the basic notation and conventions. We also provide a description
of placement in Very Large Scale Integration (VLSI). We then briefly discuss optimization
goals and constraints in placement and focus in particular on density. Finally, a relaxation of
the placement problem is motivated and introduced, leading to the key problem considered
in this thesis, global placement.

2.1 Basic Definitions

Within this work, we denote by R the set of real numbers, by N the set of natural numbers
including 0 and by Z the set of integers. For the non-negative subset of reals we write R+

and R>0 := R+ \ {0}.

When we consider the n-dimensional vector space Rn, we interpret its elements as column
vectors. For a ∈ Rn aT is then the corresponding row vector. For a real matrix A = (aij)

n
i,j=1,

we write AT for its transpose A = (aji)
n
ij=1. For an n-dimensional vector b, let diag(b) be

the diagonal matrix with entries aii = bi, i = 1, . . . , n. We write 〈·, ·〉 for the standard
scalar product 〈·, ·〉 : Rn × Rn → R. Sometimes we identify for two vectors a, b ∈ Rn the
1× 1 matrix aT b with 〈a, b〉. For a vector a = (ai)

n
i=1 ∈ Rn, |a| := ||a||1 :=

∑n
i=1 |ai| is the

L1-norm, ||a|| := ||a||2 :=
√
〈a, a〉 the Euclidean (L2−)norm and ||a||∞ := maxi |ai| the

maximum-norm of a.

For a finite set X let P(X) be the power set of X, and |X| the cardinality of X.

An undirected graph G is a triple G = (V (G), E(G), φG), where V (G) and E(G) are finite sets
of vertices (nodes) and arcs (edges) respectively and φG : E(G)→ {{v, w} ⊂ V (G)|v 6= w}.
A directed graph (digraph) is a triple G = (V (G), E(G), φG), with finite sets V (G), E(G)
and φG : E(G) → (V (G) × V (G)) \ {(v, v)|v ∈ V (G)}, so we do exclude loops but allow
parallel arcs. To abbreviate the notation we will sometimes define φG implicitly by specifying
the arc set only. A graph without parallel arcs is called simple.

11
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In an undirected graph G the set δG(v) := {e ∈ E(G)|v ∈ φG(e)} denotes the set of incident
edges of some vertex v ∈ V (G). The cardinality |δG(v)| of this set is called the degree of v.
In directed graphs we distinguish the sets δ−G(v) := {e ∈ E(G)|∃w ∈ V (G) with (w, v) =
φG(e)} and δ+

G(v) := {e ∈ E(G)|∃w ∈ V (G) with (v, w) = φG(e)}, where the first set
represents the edges entering some node v ∈ V (G) and the second set contains edges
leaving v. The numbers |δ−G(v)|, |δ+

G(v)| are called the in-degree and out-degree of v ∈ V (G)
respectively.

Let G be a digraph. A path P of length k in G is a graph with V (P ) = {v0, . . . , vk} ⊂ V (G)
and E(P ) = {e1, . . . , ek} ⊂ E(G) such that vi 6= vj for 0 ≤ i < j ≤ k and φG(ei) = (vi−1, vi)
for i = 1, . . . , k. A cycle C of length k is a graph with V (C) = {v0, . . . , vk} ⊂ E(G) and
E(C) = {e0, . . . , ek} such that vi 6= vj for 1 ≤ i < j ≤ k and φG(ei) = (vi−1, vi) for
i = 1, . . . , k and v0 = vk.

Analogously, a hypergraph is a triple H = (V (H), E(H), φH) where φH : E(H) → {X ⊂
V (H) : |X| ≥ 2}.

A network is a quadruple (G, u, b, cost), where G is a directed graph, u : E(G)→ R≥0∪{∞}
is a capacity function, cost : E(G) → R is a cost function and b : V (G) → R is a map
with

∑
v∈V (G) b(v) = 0. The b-values state the amount of supply if b(v) > 0, or demand if

b(v) < 0. Supply nodes are called sources and the demand nodes sinks. We call a node
v ∈ V (G) with b(v) = 0 a transit node.

Given a network (G, u, b, cost), we call a function f : E(G) → R≥0 a flow if f is dom-
inated by the capacity function, i.e. f(e) ≤ u(e) for each e ∈ E(G) and the flow con-
servation rule holds at any vertex: b(v) =

∑
e∈δ+(v) fe −

∑
e∈δ−(v) fe. For a given net-

work, the problem of finding a flow which minimizes the flow costs
∑

e∈E(G) cost(e)f(e)
is called a MinCostFlow Problem. We allow instances of a MinCostFlow prob-
lem to provide less supply than demand. This can be easily adapted to the definition
above by extending a network (G, u, b, cost) to (G′, u′, b′, cost′) where V (G′) := V (G) + s,
E(G′) := E(G) ∪ {(s, v)|v ∈ V (G)}, b′(s) := −

∑
v∈V (G) b(v) and b′(v) = b(v) ∀v ∈ V (G),

cost′(e) ≡ 0 ∀e ∈ E(G′) \ E(G) and cost′(e) = cost(e) ∀e ∈ E(G).

Given an instance (G, u, b, cost) of the MinCostFlow problem and a flow f , the flow-
carrying subgraph of G is the graph Gf = (V (G), {e ∈ E(G)|f(e) > 0}).

When considering geometric shapes, they will all consist of unions of rectangles. We fix the
standard orthonormal basis of R2 and assume all rectangles in the plane to be axis-parallel

w.r.t. this basis. For two subsets A,B ⊂ R2 we write A∩̇B :=

◦︷ ︸︸ ︷
(A ∩B) for the interior of

the intersection. We say A,B do not overlap if A∩̇B = ∅.

Finally, we write P and NP for the complexity classes of decision problems decidable in
polynomial and non-deterministic-polynomial time respectively.
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2.2 The Placement Problem

In this section we introduce the main problem of this work, namely the VLSI placement
problem. We start with a couple of formal definitions.

Definition 2.2.1 A netlist is a quadruple (C,N , P, γ) for which C and P are finite disjoint
sets. The elements of C are cells (placeable objects, circuits, gates) and the elements of P
are pins (connection points, terminals). The map γ : P → C∪̇{�} describes the pin-cell
function, for which a pin p with γ(p) = � is called a preplaced pin (port). N is a partition
of P (a family of disjoint, nonempty subsets whose union is P ). The elements of N are
called nets (connections). We may assume |N | ≥ 2 for each N ∈ N .

We should mention that γ induces an equivalence relation on {p ∈ P |γ(p) ∈ C} where
p ∼= q :⇐⇒ γ(p) = γ(q). Identifying each equivalence class {p|γ(p) = c} with a cell allows
us to interpret a netlist as a hypergraph (C ∪{p ∈ P |γ(p) = �},N /γ). Beyond the abstract
connectivity information, we are in fact dealing with real physical objects. To this end we
introduce:

Definition 2.2.2 Each cell c ∈ C provides two numbers xsize(c), ysize(c) encoding its rect-
angular shape A(c). For a given point in the plane (x(c), y(c)) ∈ R2, we write

Ax,y(c) := [x(c)− xsize(c)/2, x(c) + xsize(c)/2]× [y(c)− ysize(c)/2, y(c) + ysize(c)/2]

for the embedding of the shape A(c) at the location (x(c), y(c)) into the plane.

Definition 2.2.3 We write xsize(�),ysize(�) for the width and height of the chip area, and
set A := [0, xsize(�)] × [0, ysize(�)]. In addition, we are given a finite set of rectangular
blockages B =

⋃k
i=0Bi, where for each blockage Bi ⊂ A, i = 0, . . . , k. We assume that no

pair of blockages overlaps.

These are the major physical shapes involved in placement: the rectangular chip area A,
the shapes of each placeable object c ∈ C, and finally a set of rectangular blockages. The
last of these can model preplaced objects, non-rectangular chip areas, and forbidden areas
provided by real physical objects or representing constraints. We are now able to define the
main issue:

Definition 2.2.4 A placement is a pair of maps x, y : C → R+. A placement is called legal
if the following conditions hold:

i. Ax,y(c) ⊂ A for all c ∈ C

ii. Ax,y(c)∩̇Ax,y(d) = ∅ for all c, d ∈ C, c 6= d

ii. Ax,y(c)∩̇B = ∅ for all c ∈ C, B ∈ B.

We sometimes write (x, y)(c) := (x(c), y(c)) and (x, y) : C → A.
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A placement is hence an embedding of the cells in the chip area. A placement is legal if the
cells are entirely contained within the chip area and none of them intersects any other cell
or blockage more than at the boundary.
We have stated what a legal placement is, but we have not said anything about its quality.
To measure the quality of the placement, discussed later, we need the following:

Definition 2.2.5 The maps xoffs, yoffs : P → R are called offsets, with xoffs(p) := yoffs(p) = 0
for any p ∈ P with γ(p) = �. For any p ∈ P with γ(p) = �, we are given in addition
a fix coordinate (x̃(p), ỹ(p)) ∈ A. Given a placement (x, y) : C → A, we identify the pin
coordinates (x(p), y(p)) with:

(x(p), y(p)) :=

{
(x̃(p), ỹ(p)) if γ(p) = �,

(x(γ(p)) + xoffs(p), y(γ(p)) + yoffs(p)) else.

Pin offsets describe the relative position of a pin p w.r.t. the cell, if γ(p) ∈ C. If the pin
does not belong to any placeable object, the offsets are defined to be 0. Then the given
fixed position of the pin (x̃(p), ỹ(p)) is taken as its location.

Definition 2.2.6 A net model is a function L evaluating a net for a given embedding of
its pins: if we identify pins with points in the plane, the net model is:

L : {N ⊂ R2|2 ≤ |N | <∞} → R+.

The net weights are given by a function ω : N → R+.

We are now able to formalize the:

General Placement Problem

Instance: A netlist (C,N , P, γ), chip area A, blockages B, pin offsets
xoffs, yoffs : P → R, preplaced pin positions (x̃, ỹ) : {p ∈ P |γ(p) = �} → R2,
cell sizes xsize, ysize : C → R+ and net weights ω : N → R+.

Task: Find a legal placement (x, y) : C → A which minimizes
∑

N∈N ω(N)L(N).

For a netweight we will sometimes distinguish the x– and the y–part. This is possible
because pins will be connected by series of axis parallel line segments. Evaluating the
weighted netlength means to scale the horizontal coordinates of a net weighted with
ω(N) = (ωx(N), ωy(N)) ∈ R2

+ by ωx(N) and the vertical ones by ωy(N). Different weights
during placement are needed to model different numbers of routing resources, distinct
electrical properties of horizontal and vertical wires or for improved modeling of artificial
connections when placing large blocks.
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We have formulated an abstract optimization goal for theGeneral Placement Problem.
Now, we are going to specify which issues stand behind this formulation.

First of all, a placement of cells into the chip area does not make the chip work yet: the
pins of a net have to be connected by physical electrical connections, the wires, during the
routing phase. Routing is usually performed by Steiner trees typically using several planes.
Parts of a net located on different planes are connected by vias. Placement has to make sure
that the subsequent routing is not only feasible — an unroutable chip is of course useless —
but also that the routing problem does not become too hard for the routing tool, to avoid
runtime or quality problems (e.g. detours, large number of vias). The routing becomes
increasingly harder in areas with high routing density (congestion). During routing, the
router has to connect a net using some prescribed wire type of this net, usually providing
the physical widths and minimum distance rules to other wires. For this reason, to lower
the routing density, we have to shorten the connection lengths. We refer to Müller [2009]
and Alpert, Mehta and Sapatnekar [2009] for a more detailed description of routing.

Beyond routing, modern chips have to satisfy tough timing and power requirements. Timing
subsumes the requirements of electrical signals to appear within certain time slots at certain
points to guarantee a proper computation of some logical function. Here, the latest signal
arrival times do count. The signals can be slowed down almost everywhere by introducing
additional cells (buffers). Signal transition time increases with the distance to be traversed:
long distances result in longer resistances as well as capacities, and both contribute to the
signal transmission time (delay). Even in chips which are not problematic in terms of timing,
the capacity induced by the wirelength has a significant impact on the power consumption.
Longer connections need more power as longer capacities have to be charged. The increasing
use of chips in mobile devices makes this issue extremely important. A detailed description
of timing optimization in VLSI design can be found in Held [2009].

Manufacturing costs cannot be neglected either. Apart from the costs resulting from
development and the physical design process itself, the other issues which show up once the
design process has terminated are significant. The chips are manufactured on wafers, on
which more than hundred chips are packed. Smaller chip sizes allow to be packed more chips
onto a single wafer and the production costs to be reduced. The other important aspect
is the yield, i.e. the amount of chips which work without causing errors. The number of
vias and the distance between wires play a key role here. Vias are fragile connections and a
certain percentage of them often cannot be manufactured properly leading to unconnected
parts of wires. If wires are packed too densely, this again increases the probability of some
dust particle causing an electrical defect on the wire, making the chip useless (see Müller
[2006] and references therein). Both effects come hand-in-hand with increasing wiring
density.

All these reasons — routability, timing and manufacturing costs — lead to the objective
function during placement, namely minimizing the wirelength. For the sake of modeling
priorities among the nets, it is common to provide weights and to optimize the weighted
netlength during the placement.
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2.2.1 Net Models

Once we have decided to minimize the netlength as objective of placement, the question
arises as to how the netlength should be measured in the General Placement Problem.
Routing will be performed by rectilinear Steiner trees in most cases, so their aggregated
weighted length comes into consideration as a possible net model. As modern routing tools
are indeed able to connect most of the pins by a minimal Steiner tree (see Müller [2009]), it
seems to be a good choice. Despite their theoretical complexity (the problem is NP-hard,
see Garey, Graham and Johnson [1977]), Steiner trees can be computed quickly for most
nets (Warme, Winter and Zachariasen [2000]). However, another major problem occurs
in stability. The placement, and in the consequence also the pin embedding in the plane,
have a severe impact on the Steiner tree topology. A slightly different embedding of the
pins can yield a completely different Steiner tree. It is therefore hard to minimize such an
instable function. Instead, it is very common to consider the bounding box (half perimeter
wirelength) as an optimization goal.

BB(N) := max{x(p)|p ∈ N} −min{x(p)|p ∈ N}+ max{y(p)|p ∈ N} −min{y(p)|p ∈ N}.
(2.1)

The reasons for this are diverse. The major argument comes from the fact that this model
turns out to be a good approximation to the Steiner tree model, even beyond 2- and
3- terminal nets, for which it is exact. The second reason is the stability: the model is
continuous, which makes the optimization easier. Finally, computing BB(N) has linear
complexity.
This is perhaps the most important and most widely spread objective for VLSI placement,
also considered in the international benchmarks Nam et al. [2005], Nam et al. [2006]. The
General Placement Problem with BB(N) as net model is often called the Standard
Placement Problem.

If one chooses the net model topology before the placement, and asks for the best possible
representation of the Steiner tree by a net model, Brenner and Vygen [2001] show that
Clique:

CL(N) :=
1

|N | − 1

∑
p,q∈N

(
|x(p)− x(q)|+ |y(p)− y(q)|

)
(2.2)

is the model of choice, which can be computed in O(|N | log(|N |)) time by sorting.
When timing comes into play, the dependence between signal delay and netlength is no
longer a linear one. The popular simplified RC-delay (see Elmore [1948], Rao [1995])
imposes a mixed quadratic-linear dependence for simple line segments. For larger nets, this
mixed quadratic-linear delay depends furthermore on the Steiner tree topology and the
problem of computing delay optimal placements becomes non-convex. For this reason it is
hardly solvable in reasonable time, except for special cases, as examined by Bock [2010].
Nevertheless, we should keep in mind non-linear net models. We return to them later in
Chapter 3.
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2.2.2 Placement and Density

Netlength, however, cannot be considered as the only objective for placement beyond
legality. Placement usually cannot pack cells with arbitrary density for several reasons.
Paradoxically, several issues motivating the shortest possible wirelength mentioned above
prevent us from packing the placeable objects too closely. During placement, we do not have
a precise idea about the realization of the net with a wire by later routing. Too many pins in
an area may lead to unroutable instances. Timing, considered indirectly during placement,
may require additional buffers or another cell implementation providing different electrical
properties (gate sizing) to strengthen the electrical signals necessary to traverse larger dis-
tances. In regions with dense routing, coupling may slow down signal transition times further.

In addition, the fact that placement is used in different design stages requires the placement
tool to reserve some free space for later cell insertions, either for the purpose of timing
optimization on the present netlist as mentioned, or for later netlist manipulations due to
methodology in the design process like clock tree construction, (for a detailed description
see Maßberg [2009]) or netlist manipulations by logic changes for timing purpose (see e.g.
Ossenberg-Engels [2010], Xiang et al. [2010]) as well as late netlist changes and engineering
changing orders, (ECOs).

Density constraints impose conditions limiting the area occupied by cells in some area.
Given a placement, a point on the chip is occupied by a discrete number of cells, and even
a legal placement has a local occupancy of 0% or 100% (of course except sets of measure
zero the boundaries where up four cells can meet). It is hence natural not to focus on
particular points but to consider density and occupancy in terms of measure theory as
“almost everywhere” conditions. Density constraints are thus imposed by some measurable
function with values between 0 and 100% on the chip area.

Now the question arises as to how to detect if a placement is respecting the density
constraints. Here, several canonical requirements immediately show up: the density violation
should be a translation- and rotation- invariant measure. Rotating the chip or shifting the
placement and the density constraints by a constant should yield the same values. Another
natural postulate is monotonicity: if for a given placement the density constraints are
tightened, the resulting density measure should increase. The same should happen if more
cells are added to a design, while density constraints are kept the same. Furthermore, the
measure should apply to non-legal placements too. In particular, we would like to measure,
for a given placement, how far it is from being legal, i.e. what is the legalization effort for
this placement. Let us formalize the basic issues first.

Definition 2.2.7 For a given placement x′, y′ : C → R we define the area consumption
using a characteristic function for each cell:

χc(x, y) :=

{
1 iff (x, y) ∈ A(x′,y′)(c)

0 else.
(2.3)
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The occupancy function is then

u(x, y) :=
∑
c∈C

χc(x, y). (2.4)

So, the occupancy is a step function with integral values which provides the number of cells
covering a point in the plane. Density constraints should control the local occupancy for
a point in the plane. Moreover, it is reasonable to require that the overall occupancy can
met density requirements within some bounded area. Let us assume that this can be done
within the compact rectangle A ⊂ R2.

Definition 2.2.8 A density constraint function is a measurable map D : R2 → [0, 1]. For a
given set of cells C with some placement in the chip area A and the induced occupancy
function u we require: ∫

A
D(x, y)dxdy ≥

∫
A
u(x, y)dxdy (2.5)

In other words, beyond an elementary measurability, we require that no more than one cell
occupies a point in the plane and that we are able to place the cells in A without causing
density violations. We may assume D(x, y) = 0 for (x, y) 6∈ A and for our purpose it is also
sufficient to assume that D is an elementary step function.
One option to measure density violation satisfying which satisfies the monotonicity, transla-
tion and rotation invariance would be to treat cells as arbitrary granular particles, and to
measure the movement which is required to satisfy the density conditions.

This is a classical continuous mass transportation problem, of which the earliest formulations
date from the late 18th century by Monge [1781]. A slightly different form was also considered
by Kantorovich [1960] and since then by many others. For details and a historical overview
see Villani [2009] and the references therein.
For balanced cases, where

∫
A u =

∫
AD, the formulation by Gangbo and McCann [1995] asks

for the of optimal transport, i.e. for a map T : R2 → R2 which minimizes the functional:

$u,D(S) :=

∫
A
||(x, y)− S(x, y)||2u(x, y)dxdy, (2.6)

over all maps with the mass-preserving property, i.e. for all measurable set X ⊂ A:∫
X
D =

∫
S−1(X)

u. Gangbo and McCann [1995] show the existence and uniqueness of T for
the balanced case, even for the more general, strictly convex cost functions. The density
violation can then be defined as the costs of optimal transport $u,D := infS $u,D(S). To
treat the unbalanced case, one can introduce dummy cells of total volume

∫
AD −

∫
A u, for

which the movement costs are constantly zero to any point in the plane. However, one has
to accept the loss of uniqueness of the transport map.
It remains an open question, how exact values of$u,D can be computed, even for the balanced
case, but at least an approximation scheme using a sequence of discrete transportation
problems can be used to obtain bounds for $u,D, and applies to both, the balanced and
unbalanced instances.
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In practice, however, it is often sufficient to restrict the density evaluation to average values
on much coarser grids, as we will see in Chapter 3.

Finally to unify the notation, analogously to (2.3) we set for a blockage B ∈ B:

χB(x, y) :=

{
1 iff (x, y) ∈ B
0 else,

(2.7)

and χB(x, y) :=
∑

B∈B χB(x, y).

2.2.3 Other Constraints

The General Placement Problem simplifies the placement problem in several ways.
We have identified pin locations with points in the plane, but in reality, pins have shapes.
The pin areas are usually small enough to be modeled as points using the center of the
bounding box of its shapes without causing significant errors.
Second, in practice the cell locations have to obey grid alignments and cannot be chosen
arbitrarily. That means we are given a set of grids (cell tables) and an assignment for each
cell to some grid. The grids appear in two different flavors. Most placeable objects, the
standard cells, are indeed rectangular and even share a common ysize. The grid they have to
snap into is very fine in comparison to the chip area and even to most of the cell widths.
This grid comes from the power supply structure of the cells, yielding cell rows.
Usually the placement does not only compute positions, but also orientations of the cells.

Definition 2.2.9 An orientation is a map

% : C →

{
(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 −1
−1 0

)
}

(2.8)

For a cell c with assigned orientation %(c), the pin offsets (xoffs(p), yoffs(p)) transform to
%(c)(xoffs(p), yoffs(p)) for each p ∈ P with γ(p) = c.

For a given technology, usually either the first four orientations are allowed if cell rows are
parallel to the x-axis, or the last four for cell columns. In addition, the orientations within a
row are then restricted to be either the first and the third, or the second and the fourth to
support the power structure. Depending on the technology, the roles of x and y can swap.
This does not impose any restrictions, as any placement can be then done on a 90◦ rotated
instance and the result can be rotated back again.
Beyond the standard cells, whose number may be in the millions, there are usually no more
than a few thousand, larger cells— the macros— which might be assigned to coarser grids.
Macros do sometimes come with non-rectangular shapes and some of them are allowed to
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be mirrored on the x− or y-axis or both. Macro placement rules may also involve binary
relations between macros, forcing them to be placed with certain maximal or minimal
distances. A recent topic consists of the placement of cell groups with very tight relative
maximal distance bounds, which basically allow one relative ordering within the group with
fixed relative offsets. These cell groups, the hard clusters, are also interpreted as macros.
However, the issues involved in finding a legal macro placement do not play a key role in
this thesis, but one should keep them at the back of one’s mind.
Finally, another type of constraints, called movebounds, may force cells to be placed in
certain areas of the chip. We refer to Chapter 4 for a detailed discussion.

2.3 Complexity Issues in Placement

From the computational complexity point of view, placement contains several hard sub-
problems. It is easy to see that deciding if an instance of the General Placement
Problem exists is hard: it contains the well known Partition problem (Karp [1972]).
Even if one allows several relaxations in which, e.g. the chip area is scaled to be α times
larger than the sum of cell areas, the problem is NP-complete (see Schneider [2009]).
In practice, finding a legal placement for standard cells is usually easy, even greedy methods
would work in most cases. The widths and the heights of most objects are tiny in comparison
to the placement area and packing does not state a real matter here. But even if one restricts
the General Placement Problem instance to consist of cells being squares with unit
height and width and finding a legal placement really becomes a trivial problem, the
optimization goal makes the problem NP-hard.
Already the very special case, in which A is a single row and each net has two pins,
contains the classical NP-hard Linear Arrangement Problem (see Garey and Johnson
[1979]). Queyranne [1986] proved that no constant factor approximation algorithm for the
Quadratic Assignment Problem exists, unless P = NP.
There is hardly any good news concerning approximation algorithms for placement, even in
special cases. Again, restricting the placement to unit squares and nets consisting of two pins
admits an O(

√
log(|C|))-approximation algorithm, as claimed by Charikar, Makarychev

and Makarychev [2007]. Grid alignment constraints also suffice for NP-completeness, even if
an optimal placement is known (see Schneider [2009]). For a given placement, the choice of
optimal orientation states another NP-hard task, as proved by Cheng, Yao and Hu [1991].
All statements on complexity above hold for netlists with |N | = 2 for each net N . In practice,
larger nets are frequent. Additionally in these cases the NP-hardness of the Steiner-Tree
problem comes into play. Vygen [2008] showed that it is indeed hard to place a single
cell optimally when it has three pins. Beyond simple netlength evaluation, routability
constraints often do impose another class of hard problems, as a limited number of space
is available for interconnections. This involves e.g. Balanced-MinCut (see Garey and
Johnson [1979]) and Edge-Disjoint-Paths (see e.g. Korte and Vygen [2008]).
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2.4 Global Placement

In the previous section we have seen that placement contains multiple NP-hard problems,
even under several simplifications. This fact limits the hope for an efficient algorithm
properly addressing netlength minimization, grid constraints and packing at the same time.
In addition, in modern chips the number of nets, cells and pins can be in the millions which
tightens the efficiency issue once more.
Placement is used in several stages of the design process, often iteratively during timing
optimization (see e.g. Held [2009] for an integrated timing-driven placement approach). A
legal placement is often not necessary for early optimization, good estimates suffice at this
stage. Legal placement is mandatory for routing, concluding the design automation process.
Since the chip data is frequently updated and changed, several design cycles are often
needed. The placement runtime has a large impact on the overall turn-around-time. Fast
placement algorithms are thus indispensable.
For all these reasons, it is common to relax the placement problem. For standard cells, the
most popular strategy is to distinguish the global placement and legalization. Other issues
are the macro (large block) placement, in which large blocks are placed and Local (Detailed)
Placement, in which manipulations of legal placements are performed.

During global placement, one drops the hard disjointness constraint, but tries to reduce
overlaps among cells and between cells and blockages while focusing on netlength mini-
mization. The cell size is tiny compared to the placeable area, so packing issues do not
arise in principle and are left for the legalization and macro placement. Legalization is
then responsible for addressing grid constraints, correct orientation, and disjointness. It is
difficult to specify a proper output of global placement since the meaning varies and is often
adapted to the needs of the particular legalization tool. Indisputable is the requirement that
global placement should reduce overlaps and density violation. The following legalization
step should be possible by applying local operations only. Although an example of how this
could be measured in theory is given in Section 2.2.2, in practical approaches the notion of
density and its violation varies too. Some placement tools combine netlength and rough
measures of density violation into one objective, others focus on netlength minimization
while trying to maintain density bounds by construction. These reasons make different
global placements sometimes hard to compare and leave room for interpretation if the
netlength of a placement is shorter but the density is more violated or vice versa. An easy
way to incorporate netlength and density violation was proposed by Nam et al. [2006]
during a placement contest for legal placements. We will return to this issue when we discuss
different placement approaches in Chapter 3.
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Figure 2.1: Fragment of a chip: global placement outcome (left) and legalized placement
(right)



Chapter 3

Global Placement Algorithms

In the previous chapter we described the VLSI placement problem and motivated its
relaxation, global placement. There are many different approaches for global placement. In
this chapter we present and summarize the properties of global placement algorithms. For
a more detailed description of several techniques in global placement we refer to Chang,
Jiang and Chen [2009]. We start with older approaches, then focus on analytical placement
with its netlength minimization and overlap reduction techniques and finally we commit
ourselves to the details of a state-of-the-art analytic and partitioning based placement tool,
BonnPlace.

3.1 Non-analytic Approaches

Several early approaches to the placement problem were modeled in the context of Simulated
Annealing, in which an arbitrary objective function can be optimized, given an oracle which
provides some solution. During optimization, one accepts improvements and a some inferior
intermediate solutions. In order to guarantee convergence, the probability that some inferior
solution is accepted is becoming smaller and smaller and the overall algorithm converges
against a local optimum. An example of such an algorithm is TimberWolf (Sechen and
Sangiovanni-Vincentelli [1986]). For others we refer to the book of Wong, Leong and Liu
[1988] and the references therein. The Simulated Annealing placers, although theoretically
able to find an optimal placement under some assumptions, are usually too slow to obtain
good placements. Except for some applications in floor-planning, this technique can be
considered obsolete for large scale designs.

Another important class of VLSI placement algorithms consists of so-called MinCut placers.
In this approach, used for example in placement tools like CAPO (Roy et al. [2005]) and
the early version of NTUPlace (Chen et al. [2005]), the netlist is considered as a hypergraph
and partitioned together with the chip area. The resulting parts are then assigned to parts
of the chip and this process is repeated recursively, until the windows are small enough.
Despite the fact that the balanced MinCut problem is another NP-hard task (Garey and

23



24 CHAPTER 3. GLOBAL PLACEMENT ALGORITHMS

Johnson [1979]) and that the fast heuristics proposed by Fiduccia and Mattheyses [1982]
and Ababei et al. [2002] do not provide any quality guarantee, the placements produced by
these tools are often reasonable. Unfortunately, another significant problem occurs. The
MinCut placers are unstable: slightly different input often leads to completely different
placements. This makes the industrial use of them difficult in an iterative process. After
all, the MinCut techniques play an important role in routability and congestion driven
placement as well as in grouping cells, the clustering, even if they do not seem to be suitable
as core placement routines.
Beyond classical MinCut placers, we mention Dragon (Wang, Yang and Sarrafzadeh [2000]),
FengShui (Khatkhate, et al. [2004] as well as Agnihotri, Ono and Madden [2005]) are hybrid
approaches combining MinCut and Simulated Annealing algorithms.
MinCut approaches do not address netlength minimization directly, which can lead to
inferior placements when focusing on cuts only. Simulated Annealing accepts any kind of
objective, in particular netlength, but cannot be applied with reasonable results and runtime,
except for tiny instances. In order to optimize netlength on large scale, another strategy is
needed. This motivates another large class of placement tools, namely the analytic ones.

3.2 Analytic Netlength Minimization

Netlength minimization as an objective has been discussed in Section 2.2. Then, in Section
2.2.1, we introduced the linear net models which are considered as optimization goals for
placement. Linear net models, although reflecting most of the later routing distances, lead
to various problems in placement. The first reason is the optimization issue as piecewise
linear functions are not differentiable. Despite the fact that placement minimizing linear
bounding-box netlength can be considered as the dual of a MinCostFlow problem and
computed exactly, it is difficult to compute global optima in acceptable time if the number
of variables is in the millions.
The second reason comes from the fact that placements optimizing linear netlength (with-
out any disjointness constraints) are not unique in general. Those computed by such a
MinCostFlow approach tend to be crowded in some particular corner solution and do
show significant overlaps. It is then not evident how to resolve them without introducing
too much arbitrariness. Such an effect does not show up for strictly convex net models.
There are different methods for coping with the drawbacks above, but all use a non-linear
approach to approximate the linear netlength and are unified in the analytic placement
concept.

3.2.1 Non-linear Non-quadratic Net Models

Due to the difficulty of direct minimization of linear objective functions, several authors
propose to approximate the linear bounding box model with smooth functions. The place-
ment tools mPL6 (Chan et al. [2006], Cong and Luo [2008]), Vaastu (Agnihotri and Madden
[2007]), NTUPlace3 (Chen et al. [2008]) as well as APlace (Kahng and Wang [2006]) use
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the so-called log-sum-exp model:

LSEx(N) := α log
(∑
p∈N

exp(x(p)/α)
)

+ α log
(∑
p∈N

exp(−x(p)/α)
)

(3.1)

and LSE(N) := LSEx(N) + LSEy(N). It is easy to see that LSE(N) converges against
BB(N) when α tends to 0.
Other approaches propose to approximate the bounding box model with Lp norms:

LPx(N) :=
∑
p,q∈N

(
(x(p)− x(q))p + α

)1/p
, (3.2)

and LP (N) := LPx(N)+LPy(P ). In the context of VLSI placement, this was first proposed

by Alpert et al. [1997] for p = 2. Again, LP (N)
1/α,p→∞→ BB(N). When comparing (3.1) to

the LP model, the first leads to better results, as reported by Kahng and Wang [2006].
Li and Koh [2007] propose to approximate the bounding box model by recursively applying
the CHKS function for approximation of the two-variable max function:

CHKS(z1, z2) =

√
(z1 − z2)2 + α2 + z1 + z2

2
(3.3)

with a smoothing parameter α. Now, for a vector z = (z1, . . . , zn)T ∈ Rn define recursively
fi,i(z) := zi for i = 1, . . . , n, fi,i+1(z) := CHKS(zi, zi+1), i = 1, . . . , n and finally fi,j(z) :=
CHKS(fi,k(z), fk+i,j(z)) for 1 ≤ i < j ≤ n with 1 < j − i and k = b i+j

2
c.

This leads to an approximation of max(z) with f1,n(z) and, using the fact that max(−z) =
−min(z), BB(N) can be computed this way. The comparison of the CHKS model to (3.1)
shows comparable results in both wirelength and runtime, as reported by Li and Koh [2007].
Non-linear and non-quadratic net models are in general more difficult to compute than
quadratic ones. Iterative methods for computation are usually too slow to be performed on
the entire netlist. To cope with this issue, almost all tools using the LSE model make use
of the multilevel approach, in which cells are grouped and a cell group is considered as one
placeable object. One proceeds from coarse to fine cell groups and from coarse to fine grids.

3.2.2 Quadratic Net Models

Quadratic placement is probably one of the oldest approaches, already considered by Hall
[1970], even before Intel built its first 4004 microprocessor and design automation was not an
issue yet. One of the first quadratic placement algorithms in VLSI design was presented by
Tsay, Kuh and Hsu [1988], see also Brenner and Vygen [2009] for more historical references.
There are different quadratic net models. We start with the quadratic clique and the
equivalent star model:

Definition 3.2.1

CL2(N) :=
1

|N | − 1

∑
p,q∈N

(
(x(p)− x(q))2 + (y(p)− y(q))2

)
, (3.4)
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ST2(N) := inf
(x′,y′)∈R2

∑
p∈N

(
(x(p)− x′)2 + (y(p)− y′)2

)
. (3.5)

It should be noted that for the quadratic star the infimum is indeed attained with
(x′, y′) satisfying |N |x′ =

∑
p∈N x(p) and |N |y′ =

∑
p∈N y(p). It is well known that

CL2(N) = 2|N |
|N |−1

ST2(N), so in particular both can be computed in linear time. Both
net models are used by several placement tools, e.g. BonnPlace (Vygen [1997] and Bren-
ner, Struzyna and Vygen [2008]), FastPlace (Viswanathan and Chu [2005], Viswanathan,
Pan and Chu [2007]), hATP (Nam et al. [2006]), RQL (Viswanathan et al. [2007]), Q-Place
(Lua et al. [2007]), DPlace (Luo and Pan [2008]), FDP (Vorwerk, Kennings and Vannelli
[2004]), mFAR (Hu, Zeng and Marek-Sadowska [2005]) and UPlace (Yao et al. [2005]), using
partially different weighting heuristics. BonnPlace, for example, discounts larger nets
with more than 4 terminals with an additional factor of 2/

√
|N | as suggested by Brenner

[2000] due to empirical results.

For an improved approximation of the linear net model by the quadratic one, Gordian-L
(Sigl, Doll and Johannes [1991]) use the following iterative net model: in iteration k = 2, . . .
one optimizes essentially:

GordianL(k)
x (N) :=

1

|N | − 1

∑
p,q∈N

(
xk(p)− xk(q)

)2

|xk−1(p)− xk−1(q)|
(3.6)

where the initial distances come from the quadratic minimum and GordianL(k)(N) :=

GordianL
(k)
x (N)+GordianL

(k)
y (N). Indeed, it can be proved that limk→∞GordianL

(k)(N) =
CL(N) (see Struzyna [2004]). Recall that linear clique was the model of choice for a-priori
topologies, so in the limit one can obtain the best achievable result. But after all, one
cannot expect more than linear convergence of this method, so in general this approximation
method will be too slow.
Another recent proposal was made by Spindler, Schlichtmann and Johannes [2008] in
Kraftwerk2: The authors suggest to compute a quadratically optimal placement, sort the
pins in each net w.r.t. horizontal and vertical coordinates separately. Then, given this
relative order, they cancel the pure internal connections. The resulting horizontal part of
the net model can then be written as:

B2B(N) :=
∑
p,q∈N

ωx,pq(x(p)− x(q))2 (3.7)

where ωx,pq is defined as:

ωx,pq :=


2

(|N |−1)
(
x′(p)−x′(q)

) iff p or q is not an internal pin (w.r.t. sorting in x-coord.)

0 else,
(3.8)
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and x′(p) is the initial location of the pin p directly before minimizing (3.7).
The quadratic net models are popular for several reasons. The simplicity of computation
is obvious: minimizing the sum of quadratic netlengths means to find a minimum of the
quadratic program (QP):

min
x,y

(
xTAx− xT b+ yTA′y − yT b′

)
(3.9)

for appropriate constant matrices A,A′ and vectors b, b′. Without any side constraints one
has even A = A′. For strictly convex problems this is nothing other than solving the linear
systems

Ax = b and A′y = b′. (3.10)

So these systems can be solved independently for the x– and y–coordinate by separability
of the quadratic net models.
The matrices A,A′ are diagonally dominant, positive semidefinite and symmetric. We focus
on the horizontal part. Assume that each net has already been replaced by a clique or star
and the weights have been adjusted. Then we have nets with exactly 2 pins only and if we
treat star nodes as cells we can write:

A = (ac,d)
n
c,d=1 =

{∑
{p,q}∈N :γ(p)=c,γ(q)6=d

ω(N)
|N |−1

if c = d,∑
{p,q}∈N :γ(p)=c,γ(q)=d −

ω(N)
|N |−1

if c 6= d.
(3.11)

The dimension of the matrix n is the sum of the number of cells and the number of nets
modeled by the star model. As on typical VLSI netlists, the number of nets is in the same
order as the number of cells, the matrix is sparse. The right-hand side vector b = (bc)

n
c=1

basically reflects the weighted offsets differences between the corresponding pins.
Connections {p, q} ∈ N to some preplaced pin q (i.e. γ(q) = �) contribute to the diagonal
entry of γ(p) only. If in each connected component there is a connection to a preplaced pin,
then the matrix A is positive definite, and there is a unique solution.
Sparsity, symmetry and the fact that A is positive definite make the linear system solvable
by fast iterative methods, e.g. the already classical preconditioned conjugate gradient
method with Incomplete Cholesky Decomposition as preconditioning technique (see for
example the textbook by Stoer and Bulirsch [2002] for details).
A different reason for quadratic netlength minimization is the impact on timing. As initially
mentioned, the signal delay is a mixed linear-quadratic function in wirelength. Although
the delay is not a pure quadratic function, long nets are subject to later buffering. The
buffering step has a linearization effect on its own, and quadratic netlength minimization
places the buffer chains optimally – in equidistant steps.
Stability is another relevant issue: slightly modified netlists (e.g. through slightly different
weights) lead to similar placements as shown by Vygen [2007]. Such small weight deviations
often occur due to the non-deterministic behavior of timing engines, which consequently
compute slightly different arrival times and weights. Stability is extremely important for
industrial use. During the design process, placement is used several times on a single netlist,
and even the netlist is subject to modifications. It is mandatory that local changes have a
local impact on the result and do not change the overall placement.
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3.3 Density and Overlap Reduction

The minimization of netlength without any side constraints usually leads to highly over-
lapping placements. There are various strategies that incorporate overlap reduction and
compliance with the density targets. We now present the most important ones, but first we
start by considering the density measures in global placement.
Almost all global placement algorithms use a uniform grid to discretize the capacity and
density functions in order to efficiently compute these values. The only exception is the
warping approach proposed by Xiu and Rutenbar [2007], who do not address density
constraints at all and focus on legal placements only.

Such a coarse approach provides several benefits. On the one hand, for efficiency and numer-
ical purposes it is usually necessary to stop overlap reduction before all overlaps are removed
and continue with legalization at this stage. On the other hand, if one needs some space
to be left for routability or future cell insertion reasons, it is often enough to provide the
space in a certain neighborhood of particular cells. The precise location is not that important.

Thus, to unify the notation we provide the discrete version of capacity, target density and
free area w.r.t.some grid Γ in the plane:

Definition 3.3.1 Given A and a grid Γ = Γ(αx,αy) := {(iαx, jαy)|i, j ∈ Z}, αx, αy ∈ R>0,
a window (bin) w in Γ is a non-empty half-open rectangle of the form

w := A ∩ [iαx, (i+ 1)αx)× [jαy, (j + 1)αy) for some i, j ∈ Z.

For two integers s, t ∈ N, an s× t-window W in Γ is a rectangle W = A∩ [iαx, (i+ s)αx)×
[jαy, (j + t)αy) for some i, j ∈ Z with W ⊂ A. For a collection {w1, . . . , wk} of windows, a
coarse window covering w1, · · · , wk is some s× t-window W with W ⊇ wi for i = 1, . . . , k.
Given two grids Γ and Γ′, we say Γ′ is a refinement of Γ if Γ ⊂ Γ′.
For a (fine or coarse) window w we denote by area(w) the product of w’s edge lengths.
For a set of disjoint blockages B, the blocked area in w is the amount of blocked space
in w: blocked area(w) :=

∑
B∈B area(B ∩ w) and the free area in w is free area :=

area(w)−blocked area(w). A window w with free area(w) = 0 is called blocked and unblocked
otherwise.
The capacity in a window is then

capa(w) :=

∫
w

(1− χB(x, y))D(x, y)dxdy (3.12)

and finally the target density in an unblocked window w is defined as:

D(w) :=
capa(w)

free area(w)
. (3.13)

For a blocked window w we set D(w) := −∞.
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The definitions of capa,D and free area extend to finite sets of rectangles in A in a natural
way. From now on, we assume each grid to be uniform and for a fixed grid, introducing
density constraints means to require that the total amount of cells in a window w divided
by the free area in a window does not exceed D(w). We have to stress that the meaning
of cells in a window varies. While some tools do consider a cell c to be in a window w if
A(x,y)(c)∩w 6= ∅, others evaluate a point-wise assignment, where a cell can only be assigned
to exactly one window. We now discuss the different approaches in detail.

3.3.1 Penalty Methods

When we discretize the density constraints and consider average values, then netlength
minimization with density constraints can be modeled as a constrained optimization problem.
Density is again evaluated window-wise and if we recall the occupancy definition from (2.4)
the problem is then:

min
∑
N∈N

ω(N)L(N) (3.14)

s.t.
∫
w

u(x′, y′)dx′dy′ ≤ capa(w) for each window w. (3.15)

The condition (3.15) can explicitly be expressed as a function in cell coordinates, as
u(x′, y′) = u(x,y)(x

′, y′) for a placement x, y : C → R:

Ξw(x, y) :=

∫
w

u(x′, y′)dx′dy′ ≤ capa(w) for each window w, (3.16)

but this function is not differentiable. Again, to cope with this fact, smoothing is applied.
There are different methods for obtaining a smoothed version Ξ̃w of Ξw: Chan et al. [2006]
propose to solve the differential equation ∆ũ(x′, y′)−αũ(x′, y′) = −u(x′, y′) with smoothing
parameter α, assuming constant ũ at the boundary. Then the occupancy function u is
replaced by ũ and Ξ̃w(x, y) :=

∫
w
ũ(x′, y′)dx′dy′. Aplace (Kahng and Wang [2006]) and

NTUPlace3 (Chen et al. [2008]) use quadratic splines for direct approximation of Ξw.
The smoothed Ξ̃ is not a simple quadratic function. It is not astonishing that this method
is applied in the context of the non-quadratic LSE net model: the common formulation of
Aplace, NTUPlace3, and mPL6 is then to iteratively solve the unconstrained problem

min
∑
N∈N

LSE(N) + λ
∑
w

(
Ξ̃w − capa(w))2. (3.17)

3.3.2 Artificial Nets and Anchors

Merging density constraints into a quadratic placement framework should not disturb the
positive properties of the unconstrained quadratic approach. One possibility to achieve
placements with lower density violations is to “pull out” some cells out of crowded areas
towards empty ones using artificial nets with artificial pins (anchors). There are different
methods for computing anchor pin locations and weights for these artificial nets.
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Force-Directed Approaches

The initial idea of force directed placement is due to Eisenmann and Johannes [1998], who
proposed interpreting placement in the context of electrostatic particle distribution. The
density then corresponds to the electrostatic charge density. The cell usage at some point
can be considered as an electric potential which is exposed to forces in an electric field.
Assuming the existence of such a conservative, non-constant potential Φ leads to Poisson’s
equation in which the derivative of the force f = ∇Φ is proportional to the difference
between usage and capacity:

4Φ(x, y) = ∇f = −α
(
u(x, y)− capa(x, y)

)
(3.18)

with some constant α ∈ R+. The solution of this differential equation cannot only be
guaranteed but is indeed unique and turns out to be the function

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

(
u(x′, y′)− capa(x′, y′)

) (x, y)T − (x′, y′)T

||(x, y)− (x′, y′)T ||2
dx′dy′. (3.19)

Now, let us return to placement and restrict ourselves to horizontal coordinates. Then, for
a given placement x, the task is to find a new placement which moves towards the less
dense areas according to f . In terms of quadratic placement, this essentially means starting
with a quadratically optimal placement x(0) satisfying Ax(0) = b, then computing forces
according to (3.19) and manipulating the right hand side to Ax = b+ c where the difference
∆c of c is proportional to the computed force. The process is iterated until there are no
significant density violations.

The initial approach of Eisenmann and Johannes has been subject to several improvements
through the years, addressing both the runtime and the placement quality. Modern force-
directed placers use many different methods which do not fit into the electrostatic model
anymore. Instead of manipulating only the right hand side of the linear system, additional
anchors and artificial nets are defined. Given a solution x(0) of Ax = b, new anchor locations
x′ are determined by the current cell locations x(0) and the forces: x′ = x(0) +f . The weights
of the connections are given by ω, which is usually controlled by a parameter and decreasing
in the course of the placement. This leads to the linear system:

Ax− b+ diag(ω)(x− x′) = 0 (3.20)

which is the same as (
A+ diag(ω)

)
x = b+ diag(ω)x′ (3.21)

and can indeed be seen as adding preplaced pins and nets to the system. The solution
minimizes the quadratic netlength and the length of artificial nets between cells and the
anchors determined by the forces. This idea was the nucleus of a vast number of different
placement tools: FDP (Vorwerk, Kennings and Vannelli [2004]), mFAR (Hu, Zeng and
Marek-Sadowska [2005]), FastPlace (Viswanathan and Chu [2005], Viswanathan, Pan and
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Chu [2007]), RQL (Viswanathan et al. [2007]) and Kraftwerk2 (Spindler, Schlichtmann and
Johannes [2008]) follow this idea. The force computation starts again from the new solution
obtained by (3.21) and can be applied iteratively. This corresponds to the discretization of
a continuous repulsion process looking for cell distribution equilibria.
Kraftwerk2, instead of an accumulation of repulsion forces as suggested by the initial
model, uses hold forces preventing a solution of (3.21) from collapsing back to x(0), the
force computation as proposed by Spindler, Schlichtmann and Johannes [2008] is not a
cumulative process any more.
The runtime issue is addressed in FastPlace: Viswanathan and Chu [2005] accelerate the
convergence process by the so-called cell shifting, in which cells are iteratively assigned to
windows in such a way that the windows’ capacity bounds are not violated. This is done in
an alternating way, row- and column-wise. After the cell shifting anchor points on the chip
boundary and artificial nets are defined to prevent collapsing to the initial solution. This is
iterated on finer grids.

The authors of FDP (Vorwerk, Kennings and Vannelli [2004]) and RQL (Viswanathan
et al. [2007]) control the forces computed by (3.19) in two different ways. FDP combines
the repulsive force with an additional artificial net and an anchor connected to the cell’s
desired location (in terms of bounding box netlength) in order to minimize linear netlength.
Following Vorwerk, Kennings and Vannelli [2004], this strategy helps to cope with one
general problem in force directed approaches: the cell order is determined by the initial
solution even if relative order changes would serve the minimization of linear wirelength.
Such nets make order changes possible and directly help to minimize linear wirelength.
The authors of RQL (Viswanathan et al. [2007]) choose a brute-force heuristic and reset
a certain amount of entries in the force vector f which exceed a certain threshold. They
observed that the force amplitude is extremely high for a small amount of cells and leads
to large movement and inferior results.
By this method, the overlap elimination is performed in a slightly softer manner, where
the cells whose repulsive force have been canceled are moved indirectly as they follow their
neighbors. The latter strategy helps to cope with another problematic issue in force directed
placement, namely the fact that these approaches tend to distribute the cells uniformly,
even if a high target density is allowed and several areas of the chip do not have to be used.

Another way is chosen by the authors of Uplace (Yao et al. [2005]), who, instead of
evaluating conditions of type (3.15), observe that discrete cosine transformation can be
used to express density balance differences in terms of frequencies. After discretization, the
quadratic differences between (discrete) frequencies can be evaluated and in this formulation
low frequencies correspond to globally unbalanced densities, while the high frequencies
correspond to local deviations only. So going for equilibrated density balance means to
look for placements yielding high frequencies, which translates to minimizing the sum of
quadratic differences between the entries in the (discrete) frequency matrix. Then forces
are added which correspond to the linearized approximation of the quadratic frequency
differences.
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Diffusion

The diffusion approach in VLSI placement was initially proposed by Ren et al. [2005] for the
concept of incremental legalization. The idea is based on the diffusion process in which cells
are treated as gas particles and tend to move from high density areas to parts of the chip
with low density. The diffusion process describes the concentration (density) of particles
over time and behaves conformally to Fick’s laws with diffusion parameter α,

∂dx,y(t)

∂t
= α∇2dx,y(t), (3.22)

in which the density difference over time at some point in the plane is proportional to the
derivative of the slope of d in this point. The diffusion process comes to an end at the
chip’s boundary, thus ∇dx,y(t) = 0. The solution of this equation can be seen as assigning
velocities to the cells which then move with high speed from areas with significant slope
differences and slowly in areas with almost uniform density. The authors of DPlace, Luo
and Pan [2008], apply this idea to global placement. The iterative velocity computation and
direct cell shifting via (3.22) is problematic for efficiency reasons and in particular in the
presence of blockages. The authors of DPlace hence use the solution of (3.22) to compute
artificial nets and anchors and continue as in force directed methods.

Cell–window Matching

A combination of discrete optimization and artificial nets and anchors is proposed in Vaastu
(Agnihotri and Madden [2007]). The authors solve a bipartite matching problem between
clustered cell groups and windows. In order to obtain a matching formulation, cells are
clustered to similar cluster sizes which on their side correspond to window capacities.
As assignment costs, the approximated wirelength gain is chosen. To this end, for each
clustered cell group C and each window w the wirelength based on the present location of
C is evaluated first. Then, the movement of C to w’s center is simulated (all other cells
remain at their position) and the wirelength after this simulated step is evaluated. The
difference is used for assignment costs between C and w. A matching is then computed
using the SuccessiveShortestPath method, restricting the solution space to flows whose
assignment radius is bounded by some constant for efficiency reasons.
Then, the computed MinCostFlow solution is not used for cell assignment directly, but
transformed to artificial nets between cells and the destination windows, computed by the
MinCostFlow. The entire process is applied iteratively, increasing the attractors’ weights
and decreasing the clusters’ sizes until each cluster contains a small number of cells. To
check the possible infeasibility due to radius constraints, MaxFlow algorithms are used
for quick feasibility checks and the search radius is increased wherever necessary.

3.3.3 Partitioning

Partitioning follows in principle a very simple idea: instead of indirectly penalizing density
violations or iteratively reducing overlaps by anchors and artificial nets, make sure that
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by construction there are not more cells than capacity in a window by a strict assignment
of cells to windows. There are different techniques of partitioning and unlike the MinCut
approaches, where recursion can be done without any side effects, in analytic placement
one has to make sure that after the partitioning the following optimization steps do not
collapse to the initial solution.
Partitioning-based analytic placement algorithms interchangeably apply netlength mini-
mization and partitioning, proceeding in a sequence of grids A = Γ0, . . . ,Γk. In the early
partitioning-based quadratic placers such as PROUD (Tsay, Kuh and Hsu [1988]) and
GORDIAN (Kleinhans et al. [1991]) iterative bisection was used to recursively partition
cells from a window into two subwindows. Beyond MinCut methods for bisection, one can
also minimize the deviation costs from the present placement to a solution respecting the
partitioning. The latter can easily be computed in linear time using a median search and is
motivated by the idea that a placement which minimizes quadratic netlength should be
disturbed as little as possible to enforce legality.
Then, in order to prevent the solution from collapsing back to the original one, Tsay, Kuh and
Hsu [1988] proposed local projection methods, in which, when computing the quadratically
optimal placement in column i, the cells in neighboring windows were temporarily projected
on the i-th column’s boundary. This guarantees that, while minimizing netlength in column
i, the other cells are considered to be fixed, and none of the cells in the i-th column leaves
it. Kleinhans et al. [1991] in their work instead proposed to impose linear constraints,
restricting the center of gravity of cells in a window to the window’s center. Quadratic
netlength minimization with linear constraints can efficiently be computed if the number of
constraints is small and each cell is considered in at most one such constraint per dimension
(i.e. one per horizontal and one per vertical part). Using variable elimination, unconstrained
solution methods can be applied. However, both approaches have significant drawbacks – the
temporary projection optimizes quadratic netlength locally which is not the real objective.
The center of gravity assignments can hardly deal with uneven density targets.
The partitioning approach proposed by Vygen [1997] introduced two major aspects. The
first one was a linear-time algorithm, Quadrisecton, for simultaneous cell assignment to
four windows minimizing the L1 movement. The second was the terminal propagation:
a net traversing grid coordinates (cut-lines) is split up into two nets with artificial pins
at cut-lines resulting from reciprocal projection. Assume we have a net N = {p, q} and
partitioning has decided that

x(p) ≤ xΓ ≤ x′Γ ≤ x(q), (3.23)

where xΓ, x
′
Γ are some (possibly equal) horizontal grid coordinates (imposing vertical cut-

lines). Then, N is replaced by Np and Nq where Np connects p to a new artificial pin at xΓ

and Nq connects q to another new artificial pin at x′Γ. This preserves (3.23) in the following
quadratic optimization step. Quadrisection with terminal propagation has been the core
routine of BonnPlace for years and was also implemented in hATP Nam et al. [2006].
Brenner [2005] proposed in his dissertation the Multisection algorithm, in which an assign-
ment of n cells to a constant number of windows can be computed in O(n log(n)) time
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minimizing arbitrary cost functions. In fact, Multisection does not rely on any geometric
structures unlike Quadrisection, so rectangular windows are no longer necessary and the
handling of movebounds is possible. Of course, unless P 6= NP all these methods, Bi–,
Quadri– and Multisection, can only compute an optimal fractional assignment. Given m
target windows, the solution can be transformed to an integral one with the same costs for
all but m− 1 cells. We now present the major routines of BonnPlace in detail.

3.4 BonnPlace

In this section we present the major routines of BonnPlace. This placement tool also
fits in the concept of partitioning-based quadratic placement algorithms, in which starting
from a quadratically optimal placement, the cells are partitioned from coarser to finer grids,
A = Γ0, . . . ,Γk. The initial grid is imposed by the chip area, the vertical step size of the
finest grid corresponds to cell row steps (i.e. to the height of standard cells). The horizontal
one depends on the widths of standard cells and is chosen in such a way that the horizontal
grid step of Γk about three times wider than most standard cells.

BonnPlace then proceeds in levels: in level i = 1, . . . , k the cells are assigned to windows
induced by Γi−1. Then Partitioning(C,Γi−1,Γi) computes an assignment of all cells C
to the next finer grid Γi, followed by quadratic netlength minimization QP(Γi), in which
terminal propagation on Γi’s boundaries for i = 1, . . . , k is applied.

For the purpose of quadratic netlength minimization, BonnPlace uses a hybrid clique/star
net model. Nets are in general modeled by a clique, in particular when they are split by
terminal propagation. Fixed pins at grid’s boundaries and split nets do not increase the
number of entries in the matrix, thus the corresponding off-diagonal entry vanishes and is
replaced by incremented diagonal entries. For large net parts within a window, a clique
is replaced by an equivalent star. With this idea, not only the horizontal and the vertical
linear programs can be solved independently: given a grid Γi, i = 1, . . . , k the quadratic
program for the cells in each row and each column of the Γi can be computed independently
from any other row and column, in particular parallel algorithms apply. For details see
Struzyna [2004] and Brenner and Struzyna [2005].

Now we turn to partitioning, which is a movement minimization approach in BonnPlace:
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Partitioning Problem
Instance: A set of cells C, a set W of windows, dist : C ×W → R+,
Task: Find an assignment ρ : C → W , such that the capacities are satisfied:∑

c∈C:ρ(w)

size(c) ≤ capa(w) ∀w ∈ W (3.24)

and ∑
c∈C

dist(c, ρ(c)) (3.25)

is minimized.

For each cell c ∈ C its (one-dimensional) area size(c) ∈ R is considered.
Brenner [2005]’s Multisection algorithm can compute an optimal solution to the Par-
titioning Problem in O

(
nm2(log(n) +m log(m))

)
-time, in which at most m− 1 cells

are assigned fractionally. As the total area of the fractionally assigned cells is usually very
small w.r.t. the window capacities, the rounding does not cause significant errors (see also
Vygen [2005]). The runime bound, however, suggests that the number of windows involved
in one partitioning step should not be too big.

Remark 3.4.1 (Uniform Density Adjustment) As the total capacity of target win-
dows may be insufficient (e.g. for rounding reasons from earlier partitioning steps), the capac-
ity in these windows is adjusted uniformly. Let x denote the total capacity of W . Then the
capacity of each unblocked window inW is scaled by a factor of 1+max{0,

(∑
c∈CW size(c)−

x
)
/x}.. Blocked windows, i.e. windows with x = 0 are not considered for density adjustment.

The movement based approach for partitioning in combination with terminal propagation
causes another problem: cells assigned to some window sometimes have all their neighbors
on one side, the right one say. Then the quadratic netlength minimization places them
all at one coordinate. Movement based partitioning starting from such a placement would
cause arbitrary decisions. To this end, linear constraints on the cells in the window are
imposed: a ConstraintQP(Γi) is computed, prescribing the center-of-gravity (COG) of the
cells. As COG there are various heuristics: one can choose the center of the window as
proposed in Kleinhans et al. [1991], but to avoid unnecessary movement in instances which
do not require uniform distribution, one should not move the new COG too far away. In
BonnPlace, if the cells are crowded too closely in one corner, the new COG is essentially
moved towards the center-of-gravity of the free area in the window in such a way that the
rectangle centered at the new COG with edge lengths corresponding to twice the distance
between the new COG and the crowded corner scaled with average cell density in the
window can accommodate all its cells (without paying attention to particular blockages).
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3.4.1 Recursive Partitioning

In the recursive partitioning of level i = 1, . . . , k one computes ConstraintQP(Γi−1), prescrib-
ing new COGs to cells. Then for each window W induced by Γi−1, aMultisection instance
is created with all cells in CW and the window setW := {w window induced by Γi|w ⊂ W}
(i.e. to the subwindows of W induced by Γi).

3.4.2 Repartitioning

Cell assignments via Multisection do not consider connectivity explicitly, a revision of
such decisions is hence sometimes desirable. For this purpose BonnPlace applies the
repartitioning scheme. Given a partition of cells in Γi, repartitioning considers coarse s× t
windows consisting of s subsequent horizontal and t subsequent vertical windows induced
by Γi. Usually s, t ∈ {2, 3}.
For each such coarse window W , LocalQP(CW ,W ) and LocalConstraintQP(CW ,W ) are
computed, in which all cells outside of W are considered as fixed objects. Then a Multi-
section step is applied with all s× t-windows forming W as targets and again a LocalQP
is computed with terminal propagation to preserve the latest partitioning decision. If the
resulting bounding box netlength has improved, the new partitioning is accepted, otherwise
one rejects it and restores the original solution.
One loop of repartitioning that visits all s × t-windows is called an iteration. Another
iteration is started if the previous one improved the netlength by a certain percentage. In
case of recursive partitioning another iteration is started when this gain exceeds 1%, and
the number of iterations is bounded by 5 for runtime reasons.

3.4.3 Iterative Partitioning

Iterative partitioning in level i = 1, . . . , k assigns cells to Γi according to the cells’ locations,
without paying attention to capacity bounds. Then one considers coarse windows W which
consist of 2×2-windows induced by Γi as in repartitioning. A global heap is created, storing
all such coarse windows W with the lexicographic key (a, b, c) consisting of three values
sorted by increasing key values. Assume W =

⋃4
i=1wi, then W ’s key consists of:

a := max{1,
∑

C∈CW size(c)/capa(W )} (the average overload in W , but at least 1),

b := −max{
∑

C∈Cwi
size(c)/capa(wi)|i = 1, . . . , 4} (the negative maximum overload in the

fine windows of W )

c := distance between COG(Cw) and the center of W where w is the window attaining the
maximum overload among w1, . . . , w4.

Once the heap is filled, the algorithm picks the coarse window at the top of the heap, which
has some violation in its finer windows but provides capacity to reduce these and the cells
of the violated subwindow are close to the center. In this window W a repartitioning is
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computed and the solution is accepted if the maximum overload among the finer windows in
W decreased. The keys are updated and one repeats these steps until no overloads persist.

3.4.4 Macro Placement and Legalization

Subsequent grid refinement leads to situations in which large cells become relatively big
w.r.t. the window they are assigned to. These large cells cannot be moved within a small
window. To this end, MacroPlacement fixes the large cells during the global placement
loop in a legal position as soon as the cell’s edge lengths exceed a certain percentage of the
window’s height and width. For each window BonnPlace tries to place large cells in its
window in a greedy manner first. If some cells cannot be placed in their windows, another
try is started to place them legally in the chip area, dropping the window constraints. The
shapes of the fixed cells become blockages.
When the finest grid is reached, cells are assigned to windows which correspond to parts
of cell rows and all non-standard cells are fixed. Finally, the standard-cell legalization as
proposed by Brenner and Vygen [2004] is called.

3.4.5 Congestion-Driven Placement

In congestion-driven placement, the placement tool tries to avoid routability problems
during and after the placement. In BonnPlace the idea of Brenner and Rohe [2002] finds
application. To this end, the simple partitioning for levels 3-7 is replaced by a usual iterative
partitioning, then a quick and rough routing is computed and in congested areas the cells
are inflated, i.e. their area demand is artificially increased (but not their physical shapes).
This step makes a partitioning possibly infeasible, so another iterative partitioning is used
to reduce density violations.

3.4.6 Parallelization

In BonnPlace several subroutines are able to run in parallel mode. A simple implementa-
tion allows the use of up to 4 processors. The parallelization is based on the shared-memory
model using the pthread-library (see Buttlar, Farell and Nichols [1996]). Three time con-
suming routines are parallelized in BonnPlace: the global QP, repartitioning and iterative
partitioning. The global QP works on a queue model, where each grid row/column corre-
sponds to one job and is put into the queue. Then a set of parallel workers picks a job,
computes the quadratic program, saves the locations to the cells and continues as long
as the queue is not empty. Repartitioning and iterative partitioning are subject to static
geometric partitioning: the chip area is divided into four quadrants, say 0, 1, 2, 3 and first
the diagonally opposed quadrants 0, 2 are processed in parallel, then synchronized, followed
by parallel processing of the diagonally opposed quadrants 1, 3. We will present an improved
implementation in Chapter 6.
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3.4.7 Overall Algorithm

The overall structure of BonnPlace is summarized in Algorithm 1. The grid refinement
Γi → Γi+1, i = 1, . . . , k usually doubles the number of cut lines in either direction, which
yields 4 subwindows in Γi+1 for each window induced by Γi. However, as the vertical
cuts impose a much finer structure than the horizontal ones, for the latest levels each
window is split by a 2× 3 grid. Depending on the chip size, the number of levels is usually
between 7 and 11. As Partitioning either the recursive partitioning is applied or iterative
partitioning. In the first case, repartitioning is used with up to 5 iterations, in the second
with up to two.

Algorithm 1: BonnPlace
Input(A placement instance)1

Output(A placement)2

AdjustCapa (C,A)3

Let Γ0, . . . ,Γk be the subsequent grid refinements.4

QP (Γ0)5

for i = 1, . . . , k do6

MacroPlacement (Γi−1)7

Partitioning (C,Γi−1,Γi)8

QP (Γi)9

Repartitioning10

Legalization11



Chapter 4

Movebounds

In the past, controlling placement basically meant manipulating the netlist or introducing
blockages or density constraints. The latter applied to all placeable objects at the same time.
Although a rough concept of position constraints for a subset of cells, the movebounds, has
appeared in different chip design methodologies and applications (Bednar et al. [2002], Osler
[2004], Hu et al. [2004], Xiong et al. [2006]) and is even part of the OpenAccess Si2 [2009]
standard, there has not been any systematic work published on this until now. In this chapter
we are first going to briefly motivate such constraints, specify the concept of movebounds
and discuss their properties. Later, we will focus on the interaction between movebounds
and density constraints in placement and present a partitioning based placement algorithm
which respects movebounds.

4.1 Motivation

The task of VLSI placement is to find positions and orientations for cells in the chip area
in such a way that the cells do not overlap. Density as well as blockage constraints are
considered and the final result respects timing and routability constraints. Beyond explicit
netlist manipulations, the different possibilities of influencing the global placement with
a-priori constraints traditionally consist of blockages and density constraints.
Another issue, namely different grid specifications, plays a special role here, as there
is usually one grid for the entire design, reflecting the power-supply of the standard-
cell library and possibly a small number of slightly coarser sub-grids for subsets of cells
(gatearrays, special latches) reflecting particular routability issues. These grids are typically
uniformly distributed all over the entire chip area and their granularity is usually too fine
to be considered as a global placement constraint. The grid constraints enter into play
either during legalization and detailed placement phases for small objects or during the
MacroPlacement subroutine for a small amount of large cells.
So, from global placement point of view there have been only blockage and density constraints
which could be used for driving the placement. Now the question arises as to how blockages
and density constraints can be applied to a subset of cells: the issue of movebounds emerges.

39
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Applications of such constraints in VLSI-Placement are diverse. First of all, the designer
is able to influence the placement outcome towards a particular solution, which might be
necessary for timing or routability issues as reported e.g. by Salz [2009], Osler [2004], or to
control clock domains Nam and Villarubia [2009].
At the same time, placement is often used in very early design stages, where parts of the
netlist will be subject to major logical and physical reviews. If the designer is aware of
such future changes, but they are not yet part of the instance, it is frequently desirable to
reserve space and restrict the solution space. This strategy allows the available netlist to be
optimized early without pretending as if this was already the final data.
Beyond the opportunities for designers in taking control of the placement manually, there
are different major applications of movebounds without manual interaction: the movebounds
are indeed method of choice, wherever placement of certain cells is bounded by electrical
constraints (e.g. IO-cells with maximum resistance bounds impose such requirements).
Third, the increasing number of hierarchical architectures opens a new vast field for move-
bound applications: Hu et al. [2004] use movebounds for the simultaneous placement of
different power-levels, the voltage islands on a single design. Bednar et al. [2002] discuss the
trade-offs between flat and hierarchical placement and use movebounds as a methodology in
between. The movebounds allow the detailed internal view of hierarchical subunits (SoCs,
RLMs), but maintain the overall hierarchical process at the same time. This concept is also
known as glass box or transparent placement.

4.2 Movebounds and their Properties

We want to distinguish between two types of movebounds: the first type should simply
enforce the associated cells to be placed within the defined area without having any influence
on non-associated. The second type should in addition state a blockage to the non-associated
cells. Movebound constraints are considered either as hard constraints which have to be
satisfied or as soft ones. The latter can be relaxed by the placement tool. We formalize the
definition first:

Definition 4.2.1 (Movebounds) A movebound M is a triple (A(M), η(M), ξ(M)) where
A(M) is a set of axis-parallel, non-empty rectangles, η(M) ∈ {hard, soft} states whether
the movebound is a hard or soft constraint and finally ξ(M) ∈ {incl, excl} encodes whether
the movebound area is accessible for non-associated cells (inclusive) or states a blockage for
other cells (exclusive).

This definition extends and specifies the concept of a movebound (called cluster) in the
OpenAccess standard Si2 [2009], in which only the combinations inclusive hard, exclusive
(here exclusive means hard for the associated cells and soft for the remaining) and suggested
(which basically correspond to inclusive soft movebounds in our case) are provided. Unlike
the definition in Si2 [2009], we distinguish exclusive movebounds to be a hard condition
for the associated cells and blocked area for the others. The exclusive soft movebounds
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are considered to be soft for the associated cells and soft for the non-associated ones. An
exclusive movebound in terms of Si2 [2009] can be modeled by a combination of an inclusive
hard movebound for the member cells and an exclusive soft movebound with the same
area without cells. Although any exclusive hard movebound condition with area A can be
modeled as an inclusive hard movebound for the non-associated cells with complementary
area AC , the OpenAccess standard does not cover the case of exclusive hard movebounds
in combination with soft movebounds.

To abbreviate the notation, for a given set of movebounds M we will write Mexcl for the
subset of exclusive, Mincl inclusive, Mhard hard and Msoft soft movebounds and Mexclhard

(Mexclsoft . . . ) for exclusive hard and so on.

Now, let us omit soft movebounds for the time being; we will focus on them later. Hard move-
bounds are treated as hard constraints during the placement, which requires a restriction
of the legality notion. Formally:

Definition 4.2.2 (Legal placement with movebounds) Given a set of cells C, a set
of hard movebounds M and a cell-movebound assignment µ : C →M, we call a placement
(x, y) : C → R2 legal w.r.t. movebounds if:

A(x,y)(c) ⊂
⋃

A(µ(c)) ∀c ∈ C (4.1)

and
∀c ∈ C,∀M ∈Mexclhard\{µ(c)} ⇒ A(x,y)(c)∩̇

⋃
A(M) = ∅. (4.2)

When considering hard movebounds, it is indeed sufficient if each cell is assigned to exactly
one movebound. It should be noted that for a given set of movebounds M, cells which
are not assigned to any movebound can be assigned to a new hard movebound with area
A \

⋃
M∈Mexclhard A(M).

Cell – movebound assignments, in which cells are potentially assigned to several hard
movebounds can be replaced by assignments in which a cell is mapped to one movebound
with an area corresponding to the intersection of the original movebound areas. If a cell,
say c ∈ C, is assigned to some soft and some hard movebounds, such a replacement will be
trivial, if the non-soft movebound area of c does not intersect any hard movebound area
of c. Here, the hard movebounds dominate and the soft movebound conditions have to be
dropped. It is not so straightforward in cases where soft and hard movebound areas of some
cell intersect. All soft movebound areas which do not intersect the hard movebounds can
again be dropped, but it is not clear how to model soft movebound violations within the
hard movebound area. In practice, however, it is not a real issue as such nested movebound
conditions between soft and hard movebounds can also be modeled by artificial nets. We
will thus restrict ourselves to cases in which a cell is assigned to precisely one movebound.
We also write CM := {c ∈ C|µ(c) = M}. We can also expect for each exclusive hard
movebound, say M , A(M)∩̇A(N) = ∅, for all N ∈ M, N 6= M : the area A(M) is not
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accessible for any other movebounds’ cells anyway and such situations can be scanned
directly at the input. With the latest requirement we obtain directly:

Corollary 4.2.3 Let M be a set of movebounds and µ : C → M a cell-movebound
function. If each exclusive hard movebound does not intersect any other movebound’s area,
then a legal placement of C is legal with respect to movebounds if and only if:

∀c ∈ C : A(x,y)(c) ⊂
⋃

A(µ(c)). (4.3)

�

4.3 Partitioning-Based Placement with Movebounds

Rectanglular movebounds are linear constraints and could be respected by placement
algorithms which minimize bounding-box netlengths. In particular, in combination with a
branch-and-bound approach, even an optimal placement respecting such movebounds could
be found in theory by an exponential-time algorithm.
Such an approach however is not even applicable to instances with few tens of placeable
objects, not to mention modern ASICs with millions of cells. In addition, it is mandatory to
respect densities for practical purposes. Both reasons demonstrate that we need a different
strategy here. We also drop the convexity requirement to the movebound areas and allow
arbitrary shapes consisting of unions of axis-parallel rectangles.

Placement with Movebounds

Instance: A placement instance (C,N , P, γ,A,B,M, µ,D) with movebounds.
Task: Find a legal placement which is legal w.r.t. movebounds with minimum
bounding-box netlength of N .

Of course the placement problem reduces to the problem with hard movebounds by specifying
µ(c) = A for each cell c ∈ C. The placement with movebounds is thus at least as hard as
the placement without them. Again, we will relax the problem for global placement purpose
similarly to the approach without movebounds and treat each cell as shapeless object. We
can ask for the necessary conditions for a feasible solution. As movebound areas can overlap,
the cells of each movebound have to share the common parts. It is hence not enough to ask
if all cells’ sizes fit into the chip area, but we have to check the capacity condition for each
subset of movebounds:

Remark 4.3.1 Fix a placement instance with movebounds consisting of C,M, µ as above.
Then if the instance is feasible, we have ∀M′ ⊂M :∑

c∈C:µ(c)∈M′
size(c) ≤ capa

( ⋃
M∈M′

A(M)
)
. (4.4)
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Figure 4.1: Three movebounds: an exclusive hard N , and two inclusive M ,L which overlap
(left). The resulting three maximal regions (right).

As it seems very inconvenient to evaluate the area and its capacity for subsets, we introduce
the concept of:

Definition 4.3.2 (Regions) Given a set of movebounds M, a region r is a set of axis-
parallel rectangles with the following properties:

i. The interior of each pairwise intersection of rectangles of r is empty

ii. ∀M ∈M : r∩̇A(M) 6= ∅ ⇒ r ⊆ A(M).

We say a movebound M covers a region r whenever r ⊆ A(M).

From now on we will consider partitions of the chip area into disjoint (in terms of ∩̇) regions.

The regions reflect a decomposition of the chip into homogeneous areas in a certain way.
For each region r, each point in r (possibly except for the boundary) lies in the same
movebounds. Even if we ask for the minimal number of regions which are needed to partition
a set of movebounds M, we can obtain 2|M| of them in the worst case as any movebound’s
area can intersect any other. Better bounds for the number of regions can be obtained by
considering the number of rectangles: if the movebound constraints consist of l rectangles,
there exist a decomposition into regions using O(l2) rectangles, which is polynomial in l.
In practice, one usually has for a set R of regions |R| = O(|M|). It is thus reasonable not to
try all intersections when computing regions. To this end one can exploit the property that,
if the area of a movebound subset, say M′, does not intersect any other movebound’s area,
say that of N ∈ M \M′, then the intersection of the areas of M′ and any other subset
M′′ containing N will also be empty. Thus, the computational effort of computing the
regions can indeed be limited to the number of intersections and geometrical complement
operations and the number of intersections of movebounds.

The regions now allow a very nice combinatorial formulation of the necessary feasibility
condition:



44 CHAPTER 4. MOVEBOUNDS

Lemma 4.3.3 Consider C,M, µ as above and let R be a decomposition of the areas of
M into regions. Define the graph

G =
(
{s, t}∪̇C∪̇R, {(s, c)|c ∈ C} ∪ {(c, r)|r ⊂ A(µ(c))} ∪ {(r, t)|r ∈ R}

)
and the MaxFlow-Instance (G, u, s, t) with u((s, c)) = size(c)∀c ∈ C, u((r, t)) = capa(r)
for all r ∈ R and u ≡ ∞ elsewhere. Then the maximum flow in (G, u, s, t) has the value
value(f) =

∑
c∈C size(c) if and only if (4.4) holds.

Proof: Assume (4.4) holds and the maximum flow value is value(f) <
∑

c∈C size(c). By
the Max-Flow-Min-Cut Theorem, there is an s− t cut of total capacity value(f). Let C ′
denote the set of cell nodes and R′ the region nodes separated by the cut from t. Let
M′ := {µ(c)|c ∈ C ′}. We claim thatM′ is a set of movebounds violating (4.4). First observe,
that for M in M′ all regions covered by M are in R′: otherwise there were an edge with
infinite capacity in the cut. Thus,∑

c∈C′
size(c) +

∑
c∈C\C′

size(c) > value(f) ≥
∑
r′∈R′

u((r′, t)) +
∑
c∈C\C′

size(c)

= capa
( ⋃
M∈M′

A(M)
)

+
∑
c∈C\C′

size(c),
(4.5)

so the condition is violated for M′. To see the converse, assume value(f) =
∑

c∈C size(c).
For any M′ ∈M we have:

capa
( ⋃
M∈M′

A(M)
)

=
∑

r covered by M∈M′
capa(r) ≥

∑
e=(r,t)∈E(G):r covered byM∈M′

fe

=
∑

e=(c,r)∈E(G):r covered by M∈M′
fe ≥

∑
c∈C:µ(c)∈M′

size(c).
(4.6)

�
For complexity purposes it is sufficient here to contract all cell nodes which belong to the
same movebound and compute the MaxFlow on the contracted graph:

Corollary 4.3.4 Consider C,M, µ,R as above. Then the condition 4.3.1 can be checked
in O(|C|+ |M|2|R|) time.

Proof: Scanning of C is required to construct the nodes C/M. We have |M| ≤ |R| and
obtain the bound by the algorithm of Gusfield, Martel, and Fernández-Baca [1987] for
bipartite graphs. �

4.3.1 Partitioning with Movebounds

Recall the structure of top-down iterative partitioning in global placement’s recursive
partitioning (Section 3.4.1). At any stage we are given a window W with a set of cells CW
assigned to W with

∑
c∈Cw size(c) ≤ capa(W ). Now, given a refinement {w1, . . . , wk} of W ,
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we ask for a partitioning ρ : Cw → {w1, . . . , wk} respecting the capacities in each of the
subwindows wi, i = 1, . . . , k. When introducing movebounds, we have to make sure that
each subwindow does not only contain at most a certain amount of cell area, but the right
amount. Similarly to Remark 4.3.1 we define for a set of windows W :

Definition 4.3.5 Fix a set C of cells, a set M of movebounds, a cell-movebound function
µ : C →M and a set of windows W . A partitioning ρ : C → W with movebounds is called
legal if ∀w ∈ W ,∀M′ ⊆M :∑

c∈C:ρ(c)=w and µ(c)∈M′
size(c) ≤ capa

(
w ∩

⋃
M∈M′

A(M)
)
. (4.7)

Basically, this can be achieved using a decomposition of each window w ∈ W into a set
of regions Rw and solving a Multisection problem. The density constraints in global
placement (cf. Section 3.3) now translate to capacities for regions. By decomposition, we
have

∑
r∈Rw

capa(r) = capa(w) for each window w ∈ W , i.e. the total capacity per window
remains the same when using regions.

Algorithm 2: PartitioningWithMovebounds1(C,W ,M, µ)

for w ∈ W do1

Rw :=ComputeRegions (w,M)2

for c ∈ C do3

for r ∈
⋃
w∈W Rw do4

if µ(c) covers r then5

cost((c, r)) := dist(c, r);6

else7

cost((c, r)) :=∞;8

ρ′:=Multisection (C,
⋃
w∈W Rw, cost)9

for c ∈ C do10

ρ(c) := w iff ρ′(c) ∈ Rw11

return ρ.12

Lemma 4.3.6 Assume the partitioning instance (C,M, µ,W) with movebounds is feasible.
Then Algorithm 2 computes a legal fractional partitioning with minimum total assignment
costs in time O

(
k2|C|(log(C) + k log(k))

)
with k =

∑
w∈W Rw.

Proof: As the instance is feasible, there exists an assignment with finite cost which by
correctness of Multisection will be found. For each window w ∈ W the MaxFlow-
condition of Lemma 4.3.3 induced by Cw := {c ∈ C|ρ(c) = w} and Rw implies the legality
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of the partitioning ρ. The runtime follows directly from the worst-case number of regions
and Multisection’s runtime (Brenner [2005]). �

Lemma 4.3.6 reveals the problematic issue here: the complexity of such a partitioning
depends exceedingly on the number of regions in the instance, which in the worst case
can be of the order O(|W|2|M|) in theory. Fortunately, in VLSI instances the number of
movebounds is very small compared to the number of cells, usually up to a few tens and
even on chips with flattened hierarchy the total amount of movebounds did not exceed
205 in the largest cases. On the other hand, usually only few of them, if any, intersect in
practical cases, so we observe a small number of regions in a window.

For the special case of overlap-free movebounds, the runtime of Algorithm 2 is thus
polynomial in |M|, namely O

(
(|M||W|)2 · |C| ·

(
log(C) +

(
|M||W|

)
log(|M||W|)

))
. But

even in these cases the number of regions may reach into the hundreds, which states a
significant computational challenge to the Multisection algorithm, both in terms of
memory consumption and runtime. Multisection was initially designed to handle small
(say 4 or 9) right-hand-side nodes and may be inefficient on larger instances. We are indeed
interested in a partitioning of cells to windows, only using the regions to choose the right
amount of cells for assignment. So in practice we can accelerate the partitioning by two
different methods.
The first one is motivated by the fact that an exclusive hard movebound can be treated
independently during Partitioning – it is a blockage for other cells and other areas are
blocked for movebound cells.
The second idea is based on the observation that movebound areas are frequently contained
in one region r ∈ Rw of a window w ∈ W. Assume M is such a movebound (and M
is an inclusive hard movebound ). This makes no partitioning decision necessary for the
movebound cells CM , since all of them can be assigned to r and hence ρ(c) ≡ w ∀c ∈ CM .
In order to reduce the number of options for the remaining cells, consider maximal regions
and observe that if r is covered by more than one movebound, its area is included in⋂
N∈M′ A(N), for some maximal movebound subset M′ ⊂M with M ∈M′. In this case,

as each region is uniform in terms of its covering movebounds, there exists a unique region
r′ ∈ Rw, with:

r′ =
⋂

N∈M′
A(N) \ A(M). (4.8)

Observe that except by M , r′ and r are covered by the same movebounds. Thus, we can
merge the region r to the area of r′ by setting A(r′) := A(r′) ∪ A(r) and adjusting the
capacity of r′ to:

capa(r ∪ r′) := capa(r) + capa(r′)−
∑
c∈CM

size(c), (4.9)

which is nothing other than the remaining capacity for the remaining cells of M′. We refer
to the procedure as the MergeRegions step. Formally, r′ is no longer a region in this
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instance, but this situation is similar to that of inclusive hard movebounds without cells.
Such movebounds can be dropped. Putting both facts together yields a modified Algorithm
3. For this algorithm, in fact, no improvement in the worst-case behavior can be guaranteed
in general, but it significantly reduces the Multisection runtime in practice.

Lemma 4.3.7 Assume the partitioning instance (C,M, µ,W) with movebounds is feasible.
Then Algorithm 3 computes a legal partitioning with movebounds and finite assignment
costs.

Proof: Follows directly from the remarks above. �

Partitioning based placements which work recursively base on the fact that once a partition-
ing decision has been taken, the subsequent partitioning decisions can be made independently
(of course dropping integrality requirements). When dealing with movebounds, we are able
to exploit the same idea:

Lemma 4.3.8 (Partitioning Invariance with Movebounds) Let a set C of cells, a
set M of movebounds, a cell-movebound function µ : C → M and a set of windows
W = {Wi|i ∈ I} be given, where for each Wi ∈ W there is a set of subwindows {wij |j ∈ Ji}
of Wi. If there is a legal partitioning ρ : C → W , there also exists a legal partitioning into
subwindows {wij |j ∈ Ji} of Wi for each i ∈ I.

Proof: : For i ∈ I, j ∈ Ji and each window wij in Wi, consider the set of regions Rij in
wij . Then

⋃
j∈Ji
Rij is a set of regions in Wi with precisely the same capacities. Thus, an

infeasible partitioning instance for {wij |j ∈ Ji} would already contradict the legality of the
partitioning to windows in W , by Remark 4.3.1. �

In conclusion it should be mentioned that Multisection, in fact, computes a fractional
solution first and then rounds the result. The fractional solution can be modified to an
integral one for all but |R| − 1 cells while maintaining the costs. The number of regions
will be higher than the number of windows during partitioning, and although Algorithm 3
reduces the number of regions treated in Multisection simultaneously and thus reduces
the number of rounding effects in practice, we emphasize the necessity of proper density
handling. We will see in Section 5.4 how to cope with density violations resulting from
roundings.

4.3.2 Movebounds and Density Constraints

Movebounds and density constraints may contradict each other. The density is translated
into capacity as shown in Section 3.3. Density constraints can make a partitioning step with
movebounds infeasible, even if the partitioning without movebounds can be solved. In order
to obtain a unified strategy, we will consider hard movebound constraints to be stricter
than density targets. The soft movebounds on their side should state a weaker condition
than density.
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Algorithm 3: PartitioningWithMovebounds2(C,W ,M, µ)

Set R=Q =M′ := ∅.1

for w ∈ W do2

R := R∪ComputeRegions (w,M)3

Set ϑ :M→ P(R) to ϑ(M) := {r ∈ R| M covers r}.4

for M ∈M do5

if ϑ(M) = {r} and r ∈ Rw then6

//Direct Assignment:7

ρ(c) := w ∀c ∈ CM8

Q := Q∪ {r}9

R := R \ {r}10

M′ :=M′ ∪ {M}11

else12

if M ∈Mexclhard then13

//Exclusive Hard:14

ρ′:=Multisection (CM , ϑ(M), distL1)15

ρ(c) := w iff ρ(c) ∈ ϑ(M) ∩Rw, ∀c ∈ CM16

R := R \ ϑ(M)17

M′ :=M′ ∪ {M}18

MergeRegions (R,Q)19

for M ∈M \M′ do20

for c ∈ CM do21

for r ∈ R do22

if r ∈ ϑ(M) then23

cost((c, r)) := dist(c, r);24

else25

cost((c, r)) :=∞;26

ρ′:=Multisection (CM\M′ ,R, cost)27

for M ∈M \M′ do28

for c ∈ CM do29

ρ(c) := w iff ρ′(c) ∈ Rw30

return ρ.31
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Although density constraints are considered not to impose hard restrictions in BonnPlace,
they cannot be neglected in case of movebound constraints or trivially subordinated to
them. Density adjustments are used for two purposes in BonnPlace. The first one is
needed to cover infeasible inputs to the placement tool, the second is to deal with density
violation caused by the placement engine itself. The latter can happen due to rounding
effects, fixing some macros during global placement or during congestion avoidance.
Without movebounds, recall that the simple uniform density adjust from Remark 3.4.1
was applied to increase density by a certain percentage in each window. It should be
noted that this strategy, although feasible if applied for each subset of movebounds in
a partitioning instance, may cause serious problems. Depending on the order, this could
lead to a dramatically larger increase of violated density conditions than necessary. It is
important to mention that not only the amount of density violation has to be penalized,
but increasing density in regions with high target density should be made more expensive
than in regions which provide a large amount of white space.
For the purpose of increasing capacity of the right hand side of (4.4), instead of a simple
greedy approach we propose a MinCostFlow model with non-linear convex costs. We
apply a classical strategy for handling non-linear costs by piecewise linear interpolation as
proposed by Ahuja, Batra and Gupta [1984]. To this end we introduce the following graph
with parallel arcs:

G =
(
{CM |M ∈M} ∪R ∪ {t}, {(CM , r)|M covers r}

⋃
r∈R

Er
)

(4.10)

with Er := {e0
r, e

1
r, . . . , e

d
r} and each eir = (r, t), i = 0, . . . , d, r ∈ R. We set b(CM) :=∑

c∈CM size(c) for each M ∈ M, b(t) := −
∑

c∈C size(c) and b(r) = 0 ∀r ∈ R. All (CM , r)
edges have costs zero and are uncapacitated. For the others, we introduce the following
costs and capacities:

capa(e0
r) := capa(r), cost(e0

r) := 0 (4.11)

capa(edr) :=∞, cost(edr) :=∞. (4.12)

For a region r ∈ R, its potentially remaining capacity amount of free area(r)−capa(r) will be
distributed among the arcs eir, . . . , e

d−1
r in chunks of step(d, r) := 1

d

(
free area(r)− capa(r)

)
:

capa(eir) := step(d, r) i = 1, . . . , d− 1. (4.13)

The costs for using these arcs increase with the growing density violation and should also
reflect the initial region density: it should be cheaper to provide 10% more density in a
region with target density of 30% than in one with target density of 50%. For these reason,
we set the costs of arc eir, i = 1, . . . , d as the discretized monotone increasing values of

the function pr : x → max{0,
√

1−capa(r)/free area(r)+x

1−x }, where x corresponds to the density
thresholds in the interval [ capa(r)

free area(r)
, 1). Thus:

cost(eir) := pr

(capa(r) + istep(d, r)

free area(r)

)
− pr

( capa(r)

free area(r)

)
for i = 1, . . . , d− 1.
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Figure 4.2: The density violation penalties p for initial densities of 30%, 70% and 90% in
red, green and orange, respectively.

In this model, an additional price has to be paid for each higher density threshold until
the highest possible density of 100% is reached. The prices increase with the amount of
additional density required and are scaled with the square root of the safety margin, the
distance to density values corresponding to 100%.
Once a MinCostFlow f of the above instance is computed, we set for each region r ∈ R:

capa′(r) := max
{ ∑
e∈δ+

G(r)

fe, capa(r)
}

(4.14)

It is straightforward to see:

Lemma 4.3.9 The necessary condition of Remark 4.3.1 is satisfied with capa′(r) ≤
free area(r) ∀r ∈ R if and only if the optimal solution of the above MinCostFlow
instance has finite costs. �

We call this procedure balanced density increase and we make use of it globally to be
able to deal with infeasible inputs as well as in a local manner, each time we need a
partitioning decision. The latter is needed to cope with possible density violations caused
by the placement itself.
The procedure AdjustCapacityMB checks for a given window W , whether all cells in this
window belong to the same movebound. If this is the case, density is increased uniformly
for all regions in W covered by this movebound, otherwise the balanced density increase is
performed in W .

4.3.3 Soft Movebounds

Thusfar, we have considered only hard movebound conditions, and we now focus on the soft
ones. Here, we will restrict ourselves to the cases where a cell has at most one movebound
and the penalty function is monotone in the distance to the movebound area. In addition,
as mentioned, soft movebounds should be interpreted as weaker constraints than densities.
For each cell c associated to some inclusive and rectangular soft movebound M , one can
introduce two nets connecting the movebound’s lower left corner to the cell’s lower left
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corner, and the movebound’s upper right corner to the cell’s upper right corner. For other
cost penalty functions based on the distance from a cell to its soft movebound’s area, a
piecewise linearization can be applied, resulting in two nets with two pins each per support
point. This functionality is however covered by artificial nets.
In partitioning-based placement, one could alternatively model soft movebound violations
with penalties during Partitioning, where an assignment to a region which is not covered
by a movebound also depends on the distance between the region and the movebound. On
the other hand, soft movebounds impose constraints rather than being part of the objective
function and should be respected, if possible.
The third approach, in our opinion the preferable one, is to treat soft movebounds as
hard ones during global placement. We will, however, use increased costs in partitioning to
penalize exclusive soft area access for non-associated cells.
Depending on the convention that soft movebounds are subordinated to density constraints,
the latter proposal would treat soft movebounds analogously to hard ones as long as density
constraints are feasible. If some soft movebound is not feasible with a specified density,
instead of a density increase for the movebound, an area adjustment for this movebound
will be applied.
To this end, a similar MinCostFlow instance as (4.10) is created and solved, using
maximal regions (i.e. regions which are computed on the coarsest grid), but the result only
is used for the soft movebounds’ area adjustment. If any non-zero-cost edge is used by
the MinCostFlow incident to some region r covered by some inclusive soft movebound,
instead of increasing the density in A(r), we use this information to scale the rectangles
of {a1(r), · · · , ak(r)} = A(r). Let capa′(r) be the capacity for the region r required by the
MinCostFlow, and capa(r) the original target capacity. Then the area of each rectangle
ai(r) with i = 1, . . . , k becomes scaled by the factor

capa′(r) · area(BBox(A(r)))

capa(r) · area(A(r))
,

which results in larger rectangles a′i(r) for i = 1, . . . , k. The ratio between the area of the
bounding box of A(r) and the area of A(r) covers the particular cases of non-rectangular
movebounds. Finally, the new area of the region r is set to be

A′(r) :=
k⋃
i=1

a′i(r), (4.15)

thus, the scaled area A′(r) is represented by rectangles without overlaps. We refer to this
step as AdjustAreaSoftMB, and it is performed once globally. After this step, as local
blockages and density constraint variations have been considered in an approximate way, a
density increase for all movebound areas is postponed.

4.3.4 Quadratic Programs

The quadratic netlength minimization is not innately movebound aware, but in a placement
algorithm the impact of movebounds should be communicated to the quadratic netlength
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minimization algorithm. To this end we propose the following solution: whenever a cell
is situated outside of its movebound bounding box in before a QP, we add an artificial
connection between the present cell’s location and the projection of this location on the
bounding box of that movebound. Another, more time consuming option, would be to
perform terminal propagation at the movebound’s bounding box boundary.

4.3.5 Congestion-Driven Placement

In congestion driven placement cells become artificially larger (inflation) to control routing
congestion. This means that after cell inflation the capacity condition may get violated
for different movebounds. In particular, the resulting density conditions may even exceed
the available free area. In this case, a MinCostFlow approach can also be applied to
uniformly reduce the cell inflations until the target densities are below 100%. We omit
details here as an improved uniform model will be presented in Section 5.4.

4.3.6 Legalization

Cells are treated as shapeless objects during global placement. This is no longer the case
when a final position for the cells has to be found. Similarly to BonnPlace without
movebounds (Algorithm 1), we distinguish two different contexts here.
In the first case, the macro legalization, we are given a small number of cells with possible
non-rectangular shapes. These cells are assigned to some grid window and consume their
area within that particular window. As we have to make sure that each cell is placed entirely
within its movebound, we proceed movebound-wise in each window and ask for a feasible
placement cell by cell, restricting the possible locations to those within the movebound. As
some cells cannot be fixed in a legal location during this greedy procedure, we give them
another try within their movebound, but without the side constraint to remain within the
window. There is however no guarantee for this heuristic to succeed.

In the second case we have possibly millions of cells and we can rely on the work of the
global placement algorithm which has respected movebounds so far. A major difference
from the previous steps is that we entirely drop the soft movebound conditions at this stage.
During legalization with overlapping movebounds, we will proceed region-wise, beginning
with maximal regions for the entire chip (i.e. we forget the assignment to present windows).
However, if the regions are subivided into to many non-connected areas, we subdivide
them to avoid large movement over non-connected parts of the chip. Global Placement
has decided on the cells’ locations while being aware of densities. In legalization we will,
based on the global placement locations, compute a global partitioning of the cells to the
regions. For a region r, during legalization the area outside A(r) is temporarily considered
as blocked. The cells are then legalized region by region, using the legalization algorithm
Brenner and Vygen [2004]. There is of course no guarantee of success in such a procedure.
In all regions in which legalization failed, the target density is decreased and we start from
scratch by reassigning cells to regions and legalizing the modified ones. In practice, one
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backup step is sufficient to legalize even challenging designs and this heuristic works fine
even for very high target densities.

Algorithm 4: BonnPlace: Recursive Partitioning With Movebounds
Input(A placement instance with movebounds)1

Output(A placement with movebounds)2

AdjustAreaSoftMB3

AdjustCapaMB (C,A)4

Let Γ0, . . . ,Γk be the subsequent grid refinements.5

QP (Γ0)6

C0 = C7

for i = 1; i < k; + + i do8

MacroPlacement (Γi−1)9

ConstraintQP (Γi−1)10

for each window W in Γi−1 do11

Let W be the set of subwindows of W in Γi12

AdjustCapaMB (CW ,W )13

PartitioningWithMoveBounds2 (CW ,W ,M, µ)14

QP (Γi)15

Repartitioning16

R = ComputeRegions(A,M)17

ρ:=Multisection (C,R, distL1)18

Set Cr := {c ∈ C|ρ(c) = r}, ∀r ∈ R19

for r ∈ R do20

Legalization (Cr, A(r));21
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Figure 4.3: The chip Felix with 3 movebounds, cells colored w.r.t. the movebounds. On the
left a placement without movebounds, on the right a placement respecting movebounds

Figure 4.4: The chip Erhard with 43 movebounds, cells colored w.r.t. the movebounds. On
the left a placement without movebounds, on the right a placement respecting movebounds



Chapter 5

New Global Partitioning Algorithm

Partitioning-based placement withMultisection has proved its effectiveness, especially on
large designs and in the presence of movebounds. However, a simple top-down partitioning
scheme causes several problems. In this chapter we first discuss the essential problematic
issues of subsequent partitioning and present a novel partitioning scheme unifying the
advantages of the global view of the entire problem with excellent scalability and performance
due to local realization steps.
The main ingredient of the new algorithm is a new MinCostFlow model, where the
supply is provided by the cell groups and the demand by windows’ free space. Although
MinCostFlow approaches have been used in different contexts of VLSI placement, all
of these methods suffer either from the algorithmic complexity of the MinCostFlow
problem itself, where the fastest known algorithms are too slow for many interesting cases if
the number of nodes is in the millions, or from the poor flow realization afterward, or both.
Even the fast Multisection algorithm is limited to a small number of regions in practice.
Our method provides an inherent model to support movebound constraints and its compu-
tational complexity is very moderate: the MinCostFlow instance itself does not depend
on the number of cells, allowing extremely fast computations, especially on challenging
designs. The realization, which takes connectivity into account, is then performed using a
set of highly parallelizable local optimization steps.
We will show that this method also significantly improves the classic subsequent partitioning
method in terms of runtime and wirelength. In this chapter we first motivate the idea,
define the underlying MinCostFlow model, then focus on realization. Finally, we present
extensions to this algorithm, concluding with a brief summary of its properties.

5.1 Motivation

In partitioning based placement, as implemented in the previous version of BonnPlace,
the chip area is subsequently divided into smaller windows and the cells in some window
are then assigned to its parts, where the assignment costs depend on the cells’ locations.
Such a strategy, however, has multiple disadvantages. First, it is extremely sensitive to

55
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slightly modified positions and often causes unnecessary movements. The overall strategy
would be deficient, if revisions of the decisions could not be made (repartitioning). However,
repartitioning is very time consuming and can take hours for a single level on large designs.

Partitioning decisions are currently made without explicit connectivity information. Even if
additional connectivity information is provided indirectly (e.g. in form of ConstraintQP
with center-of-gravity constraints), partitioning and induced movement over large distances
is problematic if the design has large blockages. In this case, the cells are forced towards
free area through ConstraintQP, and are often moved across large blockages. As the
following partitioning decision is only based on locations, cell groups risk being torn into
parts and these parts being forced to stay on opposite blockage sides, leading to inferior
placements.
Attempts to cope with the problem by considering more and finer windows during the
partitioning step (partitioning with look-ahead) and setting the costs of moving a cell to a
window to be the distance from the cell to the next free location of the window did not yield
the desired improvements as reported by Brenner [2005]. One reason for this is the fact that
in principle partitioning cannot be performed independently and that the movement costs
do not necessarily correlate with placement quality as the placement problem more closely
resembles a quadratic assignment problem than a simple one. Higher movement costs are
better if the cell groups will not be torn into pieces, hence it would be probably better to
bring connectivity into this model together with movement.

Third, the old partitioning based placement uses the invariant that, once a feasible (regard-
less of rounding) partitioning decision in a window has been taken, subsequent partitioning
decisions are also feasible. This is no longer true if the cell sizes increase during placement
(e.g. during inflation from congestion driven placement) or the capacity of the windows
decreases (e.g. after fixation of some macro blocks whose area may block some of the window
capacity the macro was not assigned to before having been fixed). Such effects were freely
ignored in the past by simply providing additional capacities, even if they exceeded 100%
of a window’s free area. It was then left to the designer to rerun the placement with fixed
macros or increased cell sizes or to accept higher running time and modest results during
legalization. In case of instances with movebounds, these problems state a serious challenge
as the effects do not affect the entire design only but each single hard movebound. So they
should not be neglected any more.

To face the first two points, Brenner [2005] proposed the concept of iterative partitioning (see
Section 3.4.3). This algorithm helps to reduce the runtime by saving several repartitioning
steps in general, but there is no guarantee on the number of iterations, a hard runtime bound
depending on the number of windows was set. In addition, the implemented version is not
parallelizable very well because the access to the global heap structure which decides over
the priority of the windows causes concurrency problems. Both sometimes lead to higher
runtimes than the extended use of repartitioning would need. A geometric partitioning of
the chip and independent application of iterative partitioning on each of the parts with
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safety margins does not necessarily help if overloads appear in one quarter of the chip,
causing high CPU idle times.
Beyond the runtime problems, the profoundly bigger issue is that a feasible partitioning
is not guaranteed (even without hard runtime bounds) and is indeed often not achieved
in practice. But even the subsequent partitioning with many repartitioning steps offers
many opportunities to round the Multisection result, and the rounding errors can sum up
to significant violations. (see Fig. 5.1).
Additionally, the current implementation of the iterative partitioning does not take local
densities into account which may differ considerably from the overall density target.

Apart from this, a placement with movebounds cannot be solved by this concept with a
single capacity key at all. A partitioning step with movebounds has to decide not only
about the amount of cell area which has to leave a window but also about the kind of area
which has to move. This decision cannot be taken if only local information is available (see
Fig. 5.2).
All the described problems lead to the question of how intensive repartitioning can be
avoided, providing at the same time a fast, reliable, density and movebound respecting
method of partitioning.

5.2 Flow-based Global Partitioning

Analogously to the concept of recursive partitioning with movebounds (see Section 4.3) for
a set of cells C with movebounds M and a set of windows W induced by some regular grid
Γ, we ask for a feasible partitioning ρ : C → W (cf. Definition 4.3.5).
The new partitioning method also starts with a potentially illegal partitioning: the cells in
C first remain in their positions and are then assigned to windows W according to their
locations. Then the directions in which cell groups are moved are computed a priori via a
MinCostFlow algorithm. Finally, once the directions are computed, the realization is
done by a sequence of local repartitioning steps which allow connectivity and movement to
be taken into account at the same time. We first present the underlying network:

5.2.1 Computing Cirections

The Nodes

In our algorithm there are three types of nodes: cell groups, transit nodes and region nodes.
For each window w ∈ W we consider several node sets. For the set Cw of cells in w, we
cluster the members of Cw with respect to their movebounds and obtain a partition:

Cw :=
⋃̇

M∈M
CMw.

For each such set we obtain a node CMw (we omit empty sets).
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old recursive partitioning old iterative partitioning

Figure 5.1: Density problems in old BonnPlace: The pictures show relative capacities of
cells in windows where the overall target density was 88%. On the left from top to bottom,
relative densities in windows of levels 4, 5 and 6 are shown, where the partitioning was
done by recursive partitioning with up to 5 repartitioning steps. On the right from top to
bottom, the relative densities are shown for the same levels, but where iterative partitioning
was applied instead.
Already in level 4, there are windows with density violations of about 10% in the case of
iterative partitioning. The problems drastically increase in level 6 for both runs, exceeding
some capacities by more than 30%.
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Figure 5.2: Iterative partitioning fails on instances with movebounds: Consider an instance
with two coarse windows (blue), each subdivided into four finer windows (black). Let there
be a hard movebound (green). Assume that each finer window can accommodate at most one
of the cell groups (colored dots). Although a feasible partitioning into the coarse windows
is given (left), the iterative partitioning step would have chosen the center window first
(right), in which a feasible partitioning is not possible.

For each movebound M ∈M and each window w ∈ W , let ZMw be a set of transit nodes
located in the north, south, east and west center of the window border:

ZMw := {zNMw, z
S
Mw, z

E
Mw, z

W
Mw}

We write ZM :=
⋃
w∈W ZMw and Z :=

⋃
M∈MZM .

In fact, we will see below (cf. Remark 5.2.3) that we do not need nodes for each movebound
and each window: we will be able to skip, all sets ZMw. if w does not intersect A(M)
bounding box. To simplify the consideration we do it tacitly from now on. Finally, we add
a node for each region r ∈ Rw.
Note that cell group and transit nodes belong to a unique movebound, but regions may be
covered by multiple movebounds.

The Inner Edges

The first arc group consists of inner-window edges. The cell group nodes are sources, the
regions sinks. Transit nodes allow through traffic. We thus obtain four different arc sets per
window and per movebound.
For internal window transit, we want to allow traffic in either direction, and hence connect
pairs of transit nodes of the same movebound by a pair of oppositely oriented edges:

Ezz
Mw := {(zxMw, z

y
Mw)|x, y ∈ {N,W, S,E}, x 6= y}. (5.1)

In order to connect cell group nodes to their local transit nodes, we define

ECz
Mw := {(CMw, z

x
Mw)|x ∈ {N,W, S,E}}. (5.2)

We connect, moreover, each cell group node CMw to a region node r ∈ Rw wherever M
covers r:

ECr
Mw := {(CMw, r)|r ∈ Rw,M covers r}. (5.3)
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zNM1 zEM1

zSM1zWM1

CM
1

zNM1 zEM1

zSM1zWM1

CM
1

Figure 5.3: Example in window 1: A cell cluster node CM1 of movebound M , the four transit
nodes and region nodes for this window. In addition, the inner-window transit arcs Ezz

M1 for
window 1 and movebound M are depicted (left). On the right the arcs ECz

M1 connecting a
cell cluster node CM1 to the transit nodes in ZM1 of this movebound are depicted.

Similarly, each transit node zxMw is connected to a region node r ∈ Rw wherever M covers
r:

Ezr
Mw := {(zxMw, r)|r ∈ Rw, x ∈ {N,W, S,E},M covers r}. (5.4)

An example for the inner windows edges and nodes for one movebound and window with
three regions is shown in Figures 5.3 and 5.4.

The External Edges

For two neighboring windows v, w ∈ W and a movebound M we connect the corresponding
modules (if both exist) by connections between their matching neighboring transit nodes:

Eext
v,w,M :=



{(zSMv, z
N
Mw), (zNMw, z

S
Mv)} if w is lower neighbor of v

{(zNMv, z
S
Mw), (zSMw, z

N
Mv)} if v is lower neighbor of w

{(zWMv, z
E
Mw), (zEMw, z

W
Mv)} if v is right neighbor of w

{(zEMv, z
W
Mw), (zWMw, z

E
Mv)} if w is right neighbor of v

∅ otherwise.

See also Figure 5.5.
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zNM1 zEM1

zSM1zWM1

CM
1

zNM1 zEM1

zSM1zWM1

CM
1

Figure 5.4: Completing the example in window 1. A cell cluster node CM1 of movebound
M , the four transit nodes and region nodes for this window. The edges Ezr

M1 connecting the
transit nodes of movebound M to region nodes covering the movebound M are shown left.
Finally, the arcs ECr

M1 connecting a cell cluster node CM1 to the region nodes covering the
movebound M are given (right).
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zNM1

zEM1

zSM1

zWM1

zNM2

zEM2

zSM2

zWM2

zNM3

zEM3

zSM3

zWM3

zNM4

zEM4

zSM4

zWM4

. . .

. . .

...
...

CM1 CM2

CM3 CM4

Figure 5.5: Example containing external edges: Subgraphs of different windows for the
movebound M connected by edges between transit nodes. Region nodes are omitted here.
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The costs and b-values

The overall cost structure in the MinCostFlow instance is based on two components:
the movement cost to penalize cell movement and the soft movebound violation penalties.
Here, as cells are hidden within cell group nodes, we must work with an approximation to
express what the movement cost between cells and regions/transit nodes is.
We propose an embedding of the nodes in the plane, where cell group nodes get the position
of the center of gravity (COG) of the members and the transit nodes, as mentioned, are set
to the centers of the north, west, south and east cutline. The region nodes get the positions
of the center of gravity of their free areas.

With this embedding, we can express movement costs as distances in the plane. The traffic
between different windows can be done almost for free, thus we set for each external edge e
with e = (zxMv, z

y
Mw) ∈ Eext

v,w,M for some windows v, w ∈ W and M ∈M

cost(e) := ε for some small constant ε > 0. (5.5)

The movement is not completely for free to prevent cycles. The movement across the
remaining arcs correlates to the covered distance, thus
for e = (CMw, r) ∈ ECr

Mw we set

cost(e) := dist(COG(CMw),COG(r)),

for e = (CMw, z) ∈ ECz
Mw we set

cost(e) := dist(COG(CMw), z) + ε,

for e = (z, r) ∈ Ezr
Mw we set

cost(e) := dist(z,COG(r)),

and finally for e = (zxMw, z
y
Mw) ∈ Ezz

Mw, representing the traffic within one window, we set

cost(e) := dist(zxMw, z
y
Mw).

Note here that cost((z, r)) > 0 for each z ∈ Z and each r ∈ R, as regions with empty
interior do not show up.
At last, we address the b-values for this network which come in a very natural manner: we
have some supply (cell groups and their sizes) which has to be distributed to regions. Thus
we define:

b(CMw) :=
∑

c∈CMw

size(c) ∀M ∈M, ∀w ∈ W ,

b(r) = −capa(r) ∀w ∈ W , ∀r ∈ Rw.

All transit vertices are pure transit nodes, hence b(v) ≡ 0 elsewhere. The reader should
note that there are no capacity constraints on edges in this graph at all.
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Soft movebounds

Again, we consider soft movebounds as hard ones for the movebound cells with possibly
enlarged area as described in Section 4.3.3. For an exclusive soft movebound N however we
want to allow other cells to enter N ’s area, but penalize such assignments. For this purpose
we add a penalty constant to all edges entering a region covered by N and leaving some
non-N transit or cell group node.

MinCostFlow instance

Merging all nodes and edges yields the uncapacitated MinCostFlow instance

G = (V (G), E(G), b, cost) (5.6)

V (G) :=
⋃
w∈W

( ⋃
M∈M

(
CMw ∪ ZMw

)
∪Rw

)
E(G) :=

⋃
w∈W

( ⋃
M∈M

ECz
Mw ∪ Ezz

Mw ∪ ECr
Mw ∪ Ezr

Mw

)
∪
⋃

v,w∈W

⋃
M∈M

Eext
v,w,M .

(5.7)

In the following we will switch the interpretation between regions and region nodes as well
as between cell groups and cell group nodes in G.

5.2.2 Properties of the MinCostFlow Instance

Let W be a set of windows and M a set of movebounds. As movebounds are allowed to
overlap or the movebound shapes can be non-path connected, in worst case the instance
consists of |M| · |W| subgraphs

GMw :=
(
CMw ∪ ZMw ∪Rw, E

Cz
Mw ∪ Ezz

Mw ∪ Ezr
Mw ∪ ECr

Mw

)
∀M ∈M,∀w ∈ W , (5.8)

connected by additional O(|M| · |W|) external edges. In practical applications however, we
do observe that the number of edges in the entire graph is linear in the number of nodes
(see also Table 8.2), and the number of nodes is determined by the number of regions in
the early levels and by the number of windows in the late ones. The number of cells does
not contribute to the complexity. Assuming |E(G)| = O(|V (G|)) we get:

Lemma 5.2.1 The MinCostFlow problem is solvable in O(|V (G)|2 log2(|V (G)|)) time.

Proof: Direct application of the algorithm of Orlin [1993]. �

Although the above MinCostFlow instance has local structure, we do not lose any
feasibility properties:

Proposition 5.2.2 The partitioning instance is feasible (cf. Def. 4.3.5) if and only if the
MinCostFlow instance (G, capa, cost, b) is feasible.
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Proof: To see the equivalence observe that each cell c ∈ C is contained in some cell group
Cµ(c)w and for each region r covered by µ(c) there is an uncapacitated path, say P , starting
with Cµ(c)w and ending with r. In addition, for each movebound M ∈ M, the total supply
is exactly the total size of associated cells:∑

w∈W

b(CMw) =
∑

c∈C:µ(c)=M

size(c).

Define the MaxFlow instance:(
{s, t}∪̇{CMw|M ∈M, w ∈ W} ∪R,
{(s, C)} ∪ {e = (C, r)|∃P = (C, .., r)} ∪ {(r, t)|r ∈ R}, u

) (5.9)

with C = CMw for some w ∈ W ,M ∈ M and capacities u defined as u(s, C) := b(C) for
each cell group node C, u(r, t) := capa(r) for each region r, and u ≡ ∞ elsewhere. Now the
MaxFlow instance from Lemma 4.3.3 is equivalent to the instance (5.9). �

It is almost straight-forward to see that it is no restriction to have transit nodes only in
windows which intersect the bounding box of their hard movebound area, if all the cells of
this movebound are located within these windows.

Remark 5.2.3 If for any movebound M ∈ M, some solution of the MinCostFlow
uses a node in some window which does not intersect A(M)′s bounding box, then the
solution is not optimal. If some flow would leave A(M)’s bounding box, it would enter A(M)
somewhere again. Replacing such a path with another path inside A(M)’s bounding box is
strictly cheaper. However, the restriction to the windows which intersect the movebound
itself is not sufficient as non-path connected areas could appear.

Fix a min-cost flow f in (G, capa, cost, b). We are now going to examine some properties of
the flow-carrying subgraph Gf of G.

Lemma 5.2.4 The flow-carrying subgraph Gf of G is acyclic, thus Gf has a topological
order.

Proof: This is almost obvious: all costs are non-negative. Any cycle could only appear
under participation of some internal edge (zxMw, z

y
Mw) for some w ∈ W and M ∈M. But

cost((zxMw, z
y
Mw)) = dist(zxMw, z

y
Mw) > 0. This fact would contradict the optimality of f . �

Another interesting observation is that, although external path lengths can be of length√
|W|, the interior ones are short:

Lemma 5.2.5 The maximum length of a flow-carrying sub-path within a window is one.

Proof: Assume there is a path of length two in a window w ∈ W. The possible paths
within a window are C − z − r, C − z − z′, z − z′ − r or a z − z′ − z′′, where C is some cell



66 CHAPTER 5. NEW GLOBAL PARTITIONING ALGORITHM

group node, z, z′, z′′ some transit nodes and r some region node in w. Consider the first
case of an C − z − r path. Then by the triangle-inequality:

cost((C, r)) = dist((COG(C),COG(r)) ≤ dist(COG(C), z) + dist(z,COG(r))

< cost((C, z)) + cost((z, r))
(5.10)

By a similar argument, the other three cases can be omitted. �

It follows also directly:

Corollary 5.2.6 Let e = (zxMv, z
y
Mw) be an external flow-carrying edge. Then e is the only

flow-carrying edge entering zyMw.

Proof: By Lemma 5.2.5 and Lemma 5.2.4 there is no interior flow-carrying edge entering
zyMw. As zyMw has exactly one external neighbor, the connecting edge is the only one which
carries flow. �

5.2.3 Realization

Definition 5.2.7 The realization of the flow at some external edge e = (zxMv, z
y
Mw) means

to choose a set C of cells with total size fe which belong to movebound M out of v, assign
them to a node in w associated to movebound M and remove e from Gf .

Of course we have to proceed in topological order to make sure that for each external
flow-carrying edge e = (zxMv, z

y
Mw) there are enough cells of movebound M in window v to

be pushed towards w. Now, consider some oracle which realizes external flow-carrying edges
one by one. The next statement tells us that it is indeed sufficient to stop if flow on all
external edges has been realized.

Theorem 5.2.8 Given a solution of the MinCostFlow instance (5.6), proceed realizing
external edges in topological order and delete the external edges after realization. When
there is no external flow-carrying edge, the partitioning is feasible.

Proof: For a given window w ∈ W and each subset of movebounds M′ ⊆ M we
have to check the condition (4.7). Fix w and M′. Let Cold

Mw := {c ∈ Cw|µ(c) ∈ M}
be the set of all cells with movebound M in w before any external edges incident to
nodes in w are realized, and let Cnew

Mw := {c ∈ Cw|µ(c) = M} be such a set of cells af-
ter that. Set E−M := {e ∈ δ−(

⋃
x∈{N,W,S,E}ZxMw)|e has been realized}, and E+

M := {e ∈
δ+(
⋃
x∈{N,W,S,E}ZxMw)|e has been realized}.

Note that: ∑
c∈CnewMw

size(c) =
∑
c∈ColdMw

size(c) +
∑
e∈E−M

f(e)−
∑
e∈E+

M

f(e) (5.11)

and ∑
c∈ColdMw

size(c) = b(CMw). (5.12)
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Now,∑
M∈M′

∑
c∈CnewMw

size(c) =
∑
M∈M′

(∑
e∈E−M

fe +
∑
c∈ColdMw

size(c)−
∑
e∈E+

M

fe

)
=
∑
M∈M′

( ∑
z∈ZMw

∑
e=(x,z):x 6∈ZMw

fe +
∑
c∈ColdMw

size(c)−
∑

z∈ZMw

∑
e=(z,y):y 6∈ZMw

fe

)
=
∑
M∈M′

( ∑
z∈ZMw

[ ∑
y∈ZMw

f(z,y) +
∑
r∈Rw

f(z,r)

]
+
∑
c∈ColdMw

size(c)−
∑

z∈ZMw

∑
e=(z,y):y 6∈ZMw

fe

)
=
∑
M∈M′

( ∑
z∈ZMw

[ ∑
y∈ZMw

f(z,y) +
∑
r∈Rw

f(z,r)

]
+
∑

e∈ECr
Mw

fe +
∑

e∈ECz
Mw

fe −
∑

z∈ZMw

∑
y 6∈ZMw

f(z,y)

)
=
∑
M∈M′

( ∑
z∈ZMw

∑
r∈Rw

f(z,r) +
∑

e∈ECr
Mw

fe

+
∑

z∈ZMw

∑
y∈ZMw

f(z,y) +
∑

e∈ECz
Mw

fe −
∑

z∈ZMw

∑
y 6∈ZMw

f(z,y)

)
=
∑
M∈M′

( ∑
z∈ZMw

∑
r∈Rw

f(z,r) +
∑

e∈ECr
Mw

fe

)
≤

∑
r∈Rw:r covered byM∈M′

capa(r).

(5.13)

�
Theorem 5.2.8 suggests that during realization we can indeed focus solely on external flow
edges only. These arcs state just a fraction of all flow-carrying edges. Moreover, Lemma
5.2.5 says that operations within a window can be performed without flow graph scanning,
by considering direct neighbors, i.e. paths of length 1.

From now on, consider flow-carrying arcs in Gf only. Additionally, let us ignore rounding
effects for the time being and treat all cells as arbitrarily granular objects. During realization
we will proceed edgewise in topological order and delete realized edges from the flow-carrying
graph Gf .

Until now, we have computed the directions, the amount and the movebound, towards which
the overloads will be pushed. Now we have to decide which cells will be moved. This decision
requires partitioning decisions, except for the very simple case where e = (zxMv, z

y
Mw) has

to be realized and zxMv is the only node in window v with non-zero in-flow. Here, simply
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all cells in v with movebound M have to leave v towards w. In the general case, instead
of performing simple Multisection among cells currently stored in v and nodes in the
window v’s boundary, two novel ideas come into play:
First, we will not only consider the cells in v for this Multisection purpose, but all cells
in a coarser window, say W ⊂ W, which covers v and some of its neighbors. Second, the
partitioning decision will not be performed with movement costs as they are, but a local
QP/ConstraintQP will be computed for the cells in W to obtain more connectivity
information.
Both ideas provide another significant difference to the old partitioning realization method:
previously, the decision for cell assignment was based on movement from the cells’ location
to the regions only and was taken for each coarse window independently. Now, the presented
procedure has a kind of built-in repartitioning: every time a partitioning decision has to be
taken, it considers local connectivity and inertia’s of the cells.
It is important to see that, if the partitioning comes with movebounds or if the coarse
realization window W covering a window w ∈ W consists of more than two windows, we
may be forced to perform partitioning decisions several times in w. This might happen,
because in these cases the graph obtained from Gf by contraction of all nodes at the same
windows is not acyclic, although Gf is. In this case we will allow the reassignment of each
cell within the window w each time we perform some realization step within some coarser
window including w.

Let us fade out integrality requirements in partitioning for a while and focus on fractional
realizations.

In order to postpone partitioning decisions which can’t be taken yet, we need a buffering
mechanism for capacity. To this end introduce the function ζ : Z ∪R → R+, indicating the
flow excess at each node x ∈ Z ∪R at some realization stage.

ζ(x) :=
∑

e∈δ−Gf
(x),e realized

fe −
∑

e∈δ+
Gf

(x),e realized

fe x ∈ Z ∪R (5.14)

Note that, due to the topological order, the amount ζ(x) for each x ∈ Z ∪ R will not
decrease until the last flow-carrying edge entering x is realized. As each cell group node
does not have any predecessors, we can initially set

ζ(x) =
∑

e∈δ−Gf
(x):e=(CMv ,x)

fe, ∀x ∈ Z ∪R (5.15)

and remove all flow-carrying edges which start at some cell group node. We refer to this step
as PushInitialFlow. We are now able to present the realization algorithm (Algorithm 5).

During realization, we will maintain the invariant that for each window w ∈ W and for
each subset of movebounds M′ ⊆M the total area of cells in w with movebounds in M′
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Algorithm 5: FlowBasedPartitioning (C,W ,R,M, µ)

ProjectCellsToMovebounds (C,M, µ)1

ρ := AssignCellsToWins (C,W)2

Gf := ComputeAndSolveMinCostFlow (C,W ,R,M)3

ζ := PushInitialFlow (Gf )4

for e = (zxMv, z
y
Mv) ∈ Eext(Gf ) in topological order do5

Choose W ⊆ W with W ⊇ {v, w}6

ρ|W :=RealizeEdge(Gf , ζ,W, e)7

Procedure RealizeEdge(Gf , ζ,W, e)

Let VW be the set of nodes in V (Gf ) which belong to the windows in W .1

PushFlow(Gf , e, ζ)2

LocalQP({c ∈ C|ρ(c) ∈ W},W)3

LocalCenterOfGravityQP({c ∈ C|ρ(c) ∈ W},W)4

Q := ∅5

for zMv ∈ VW ∩ Z do6

interpret zMv as region with:7

capacity ζ(zMv), A(zMv):= window of node x with e = (zMv, x) and movebound set8

{M}.
Q := Q∪ {zMv}9

ρ|W := Multisection ({c ∈ C|ρ(c) ∈ W}, {x ∈ Q ∪RW |ζ(x) > 0})10

Procedure PushFlow(Gf , e, ζ)

Assume e = (x, y).1

Set Erealize := δ−Gf (x) ∪ {e} ∪ δ
+
Gf

(y)2

for e′ = (a, b) ∈ Erealize in topological order do3

ζ(a) := ζ(a)− fe′4

ζ(b) := ζ(b) + fe′5

if e′ ∈ δ−(r), r ∈ R, e′ last edge entering r then6

ζ(r) := max{ζ(r), capa(r)}7

E(Gf ) := E(Gf )− e′8
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does not exceed the total capacity provided by the buffer function ζ for transit nodes and
regions covered by movebounds in M′. This can be seen as “a feasible partitioning” in
terms of Definition 4.3.5, where additional region capacities are provided by ζ at transit
nodes.

Proposition 5.2.9 (Realization invariant) Before and after calling RealizeEdge, we
have for each w ∈ W and each M′ ⊆M :∑

c∈Cw:µ(c)∈M′
size(c) ≤

∑
r∈Rw: r covered by M′

ζ(r) +
∑
M∈M′

∑
x∈{N,E,S,W}

ζ(zxMw). (5.16)

In particular, the (fractional)Multisection in w involving the regions obtained from transit
nodes zxMw, x ∈ {N,W, S,E}, w ∈ W and M ∈ M′ is always feasible and RealizeEdge
works correctly.

Proof: By induction on |Eext(Gf)|. Initially, (5.16) holds by (5.15). Assume (5.16) holds
after having realized n− 1 edges. Now consider the n-th edge, say e = (zxMv, z

y
Mw). W.l.o.g.

we may assume that the realization of e is done in W = {v, w}. Now, by induction hypoth-
esis we have (5.16) for any movebound subsetM′

v in the window v and for any movebound
subsetM′

w in the window w. Thus, it also holds for any subset of the unionM′ ⊂M′
v∪M′

w.
Recall that this is precisely the feasibility condition (4.7) for the partitioning with move-
bounds if ζ represents the capacity of the right hand side. By (5.14), PushFlow swaps
the total amount of fe capacity units from transit nodes with movebound M in window w
to transit nodes and regions in window w. The total amount does not decrease and is only
increased for regions in w. Multisection in RealizeEdge hence sees at least the same
total capacity for each movebound subset as before, and is hence feasible by the induction
hypothesis and (4.7). In addition, as fe units of capacity were moved from window v to w,
so by correctness of Multisection, (5.16) holds for v and w after partitioning. �

Beyond the issue of capacity, the question remains: how can (temporary) regions be made
out of transit nodes. Each transit node zMw ∈ ZMw is associated with a movebound, say M ,
and we have to enforce that only cells with movebound M enter zMw for transit purposes.
Thus, {M} is the set of movebounds covered by zMw. More problematic is the question
of the region’s area. Leaving a transit node’s window means to enter the transit node’s
neighboring window without having any information what happens then. On the other hand,
when an inner-window transit node is used for flow buffering, then the cell assignment to
this region should reflect the cost of remaining in the present window. Both cases motivate
choosing the window of the outgoing neighbor as the area for zMw:

A(zMw) := u with u is the window of a node in Γ+
Gf

(zwM). (5.17)

Note that, by construction, all neighbors of zMw in Γ+
Gf

(zwM) belong to the same window,
(5.17) is thus well-defined.
As long as there are non-realized arcs entering region nodes, we have to reserve a certain
amount of capacity for the cells realized later. However, if the last arc is being realized, we
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zEL2 zWL3
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Figure 5.6: Example: Realizing the flow on 3 windows {1, 2, 3} with 2 movebounds M ,L.
There are two external flow-carrying edges, namely (zWM2, z

E
M1) of movebound M and

(zEL2, z
E
L3) of movebound L.

allow the use of the entire capacity of the region, not only the one computed by Gf , and
leave the decision to the Multisection algorithm, of whether the capacity will be used or
not (cf. PushFlow ll. 6–7).
Finally, one aspect has to be addressed: the assignment costs for multisection cannot reflect
the simple linear distance any more because linear cost could encourage cells to overtake
others during that assignment. To prevent relative order changes, a superlinear tie breaker
is necessary.
An example of the realization in a small instance is shown in Figures 5.6–5.7. In this
example, there are 3 windows and 2 movebounds (Fig. 5.6).

Rounding issues

Until now, we have neglected the fact that flow realization cannot be done exactly due
to rounding effects of Multisection. Now rounding can have negative effects if transit
nodes are affected. First, the flow may have drained away, in which case we may not
have enough cells to realize in one window. In this case, PushFlow can push no more
than α = min{f(z,·), ζ(z)} out of z. As the idea behind FlowBasedPartitioning is to
minimize movement, stopping earlier than previously intended even has a positive effect.
On the other hand, by rounding, cells may also remain in some transit node, possibly in a
window which is blocked or does not intersect its movebound. Here, we have to make sure
that there is no remaining capacity at any transit node which cannot be pushed further.
To this end, each time the last edge e = (zxMv, y) leaving zxMv is realized, we check if all
ζ(zxMv) flow has been pushed. There are two different cases: if e is an external edge, we
know that y is the only successor of zxMv, and so the entire amount of ζ(zxMv) is pushed
towards y. Otherwise, e is an internal edge in v and current realization takes place in v.
Then we enforce ζ(zxMv) ≡ 0 and let the balanced density increase (cf. Section 4.3.2) to
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Figure 5.7: Example: The flow-carrying subgraph after PushInitialFlow (left). Initial
values of the buffer function ζ (right).
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Figure 5.8: Example: The flow-carrying subgraph when realizing the edge (zEL2, z
W
L3) in the

coarse window W = {2, 3}. Values of the buffer function ζ on the right after pushing flow
along (zEL2, z

W
L3) in red and after pushing flow along (zWL3, r3) in orange. These capacities are

used within Multisection in RealzeEdge in W .
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Figure 5.9: Example: The flow-carrying subgraph when realizing the edge (zWM2, z
E
M1) in the

coarse window W ′ = {1, 2}. Values of the buffer function ζ on the right after pushing flow
along (zWM2, z

E
M1) in red and after pushing flow along (zEM1, r1) in orange. These capacities

are used within Multisection in RealzeEdge in W ′.

decide which nodes will absorb the missing capacity within the window v.

Scheduling

Let us recall the structure of Gf and for each window w ∈ W contract all nodes which
belong to the same window w to one single node. We allow parallel edges in the contracted
graph. We obtain a grid graph G = (W , E1 ∪ · · · ∪ Em), where m = |M| and, by abuse of
notation, Ei := Eext

M /W is the set of external edges which belong to movebound M obtained
by contraction. Lemma 5.2.4 tells us that each of the edge subsets Ei, i = 1, . . . ,m has a
topological order. Now, realization is performed on coarser windows. In this context this
corresponds to xy subgraphs of G, where an xy subgraph of G is an induced subgraph of
G consisting of x subsequent horizontal and y subsequent vertical nodes. We can ask for
the shortest possible schedule, i.e. for a number t ∈ N and a collection F1, . . . , Ft of xy
subgraphs and a mapping s :

⋃m
i=1Ei → {1, . . . , t} with:

• ∀e ∈
⋃m
i=1Ei : e ∈ E(Fs(e)) (realize each edge)

• ∀j ∈ {1, . . . ,m},∀e, f ∈ Ei: if there is a directed path in Ei visiting e, f in this order,
then s(e) ≤ s(f) (topological order).

This scheduling problem is not known to be solvable in polynomial time, even in this simple
form of constant realization times per edge. Apart from the theoretical complexity, in
practice, the use of multiple CPUs and the uncertain a-priori realization times make this
problem more complicated. Additionally, we observe in our instances that the path lengths
in Gf are in general very short, often involving one single external edge. Thus, most parts
of the realization do not rely on predecessors and can be treated almost independently
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window by window. To cope with some longer paths, we propose to compute distances
from each node v ∈ V (Gf ) to some sink in Gf . We start the topological ordering with the
longest path segments first (with respect to this distance). This is reasonable because in
our realization the window in which some external flow edge e can be realized does not
only cover the windows of nodes of e itself, but also takes neighbors into account, blocking
the neighboring windows for realization steps. Such a policy reduces the risk of remaining
paths, which cannot be processed in parallel.
As in repartitioning (see Section 6.3.1) we perform the parallelized realization in phases,
using Π processors simultaneously, where a phase is one iteration of the second internal
while loop (ll. 15–17) in procedure ScheduleRealization. To ensure determinism, we
work again with a-priori stored safe locations for cells not owned by a particular thread and
update location between phases. For a flow-carrying edge e = (zxMv, z

y
Mw) in E(Gf) with

some movebound M , a coarse window W is chosen with W ⊇ {v, w}.

Procedure ScheduleRealization(Gf ,W , ζ,Π)

E := Eext(Gf )1

while E 6= ∅ do2

Set Q := ∅3

Set E ′ := ∅4

for w ∈ W do5

Set block(w):=false6

while e ∈ E do7

if e does not have predecessors in E then8

if exists coarse window W consisting of unblocked windows in W covering e9

then
Choose such a W10

Set Q := Q ∪ {(e,W )}11

Set E ′ := E ′ ∪ {e}12

for w ∈ W do13

Set block(w):= true14

StoreSafeLocations15

for π = 1, . . . ,Π in parallel do16

while Q 6= ∅ do17

Q := Q\{(W, e)}18

ρ|W :=RealizeEdge (Gf , ζ,W, e) //(using safe location)19

E := E\E ′20

Lemma 5.2.10 Given two coarse window-edge pairs (W, e) and (W ′, e′) as chosen by
Procedure ScheduleRealization in lines 7–8, then e and e′ can be realized in W and
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Algorithm 9: ParallelFlowBasedPartitioning (C,W ,R,M, µ,Π)

ProjctCellsToMovebounds (C,M, µ)1

ρ := AssignCellsToWins (C,W)2

Gf := ComputeAndSolveMinCostFlow (C,W ,R,M)3

ζ:= PushInitialFlow (Gf )4

ρ:= ScheduleRealization (Gf ,W , ζ,Π)5

W ′ respectively, in either order.

Proof: Note that there is no predecessor for e and e′. In particular there is neither a
directed e− e′ path nor a directed e′− e path. Moreover W ∩W ′ = ∅, so no local operation
in one coarse window affects the other one. �

Putting it all together yields the major result:

Theorem 5.2.11 Fix a set of cells C, moveboundsM, µ : C →M and a grid Γ. LetW be
the set of windows induced by Γ. Then FlowBasedPartitioning (Algorithm 5) works
correctly, i.e. it computes a feasible (fractional) partitioning ρ : C → W with movebounds
if one exists.

Proof: By Proposition 5.2.2 the MinCostFlow instance is feasible if and only if the
partitioning instance is feasible. Each cell is assigned to its movebound’s bounding box, so
the restriction to the movebound bounding boxes as in Remark 5.2.3 does maintain the
feasibility. An optimal solution of theMinCostFlow is then computed. PushInitialFlow
initializes temporary buffer regions as in (5.15) and guarantees the realization invariant
(Prop. 5.2.9) at the beginning. Lemma 5.2.4 ensures that Gf is cycle-free and can be
processed in topological order. Then, after the realization of some edge, the correctness of
RealizeEdge is guaranteed again by Proposition 5.2.9. The algorithm terminates when
there is no flow-carrying external edge in Gf , which concludes the proof by Theorem 5.2.8.
�

Corollary 5.2.12 ParallelFlowBasedPartitioning works correctly.

Proof: Immediately from Theorem 5.2.11 and Lemma 5.2.10. �

5.2.4 Refinement of the Model

Cell Cluster Refinement

Instead of providing one cell group node per movebound and window, we propose to refine
the cell groups geometrically in order to obtain an improved image of the cell distribution
in each window. To this end we subdivide each window into a set of smaller subwindows
and group cells which are located in the same subwindow and have the same movebound.
The nodes CMw with edge sets ECz

Mw and ECr
Mw are then replaced by corresponding bipartite
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Figure 5.10: Example: three external flow-carrying edges with their realization windows.

graphs for each window and movebound wherever necessary. The subwindows serve to
define cell group nodes only. After these have been defined, the subwindows are dropped.
Our implementation uses uniform 5× 5 to 2× 2 subwindows, depending on the number
of original windows for efficiency reasons. The smaller the number of windows, the finer
subdivision.

Costs over Blockages

Movement over large blockages should be penalized, and cells should be encouraged to take
a detour over free space instead of jumping over large obstacles. Long connections over
placement blockages cannot be buffered properly, and pose the risk of timing problems.
For this purpose, the costs for internal edges between transit nodes in which no accessible
region exists are penalized by a constant factor. These penalties apply to blocked windows
which are obstacles to all cells as well as to windows which do not contain any accessible
region for some particular movebound.

Realization and Window Sizes

We have not specified the size of the coarse window W , in which an external flow-carrying
edge e = (zxMv, z

y
Mw) will be realized. There is of course a trade-off between the local view of

the minimal realization size W = {v, w}, which does not affect any other fine window, and
the global view of W =W . In our tests the best results were in general obtained by a 3× 2
realization window for the vertical case (i.e. x, y ∈ {N,S}) and 2 × 3 for the horizontal
case. In both cases we leave a “margin” of 1× 2 (resp. 2× 1) window in W on either side
of {v, w} when realizing e. If such a two-sided margin is not possible, because the edge is
near to the chip boundary, we choose the one-sided one (cf. Fig. 5.10).

Realizing More External Edges

In practice, we very often observe that once an edge e and a realization window W of e
are chosen, there are other realizable edges in W . We use this opportunity and realize all
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realizable edges in W at the same time.

5.3 Extensions

Once we have an algorithm which guarantees a global feasible partitioning solution at
any stage of the placement, we can drop the partitioning invariant from the recursive
partitioning.

5.3.1 Level Skipping

The first, perhaps simplest idea is that of dropping some level, say k, and proceeding from
k−1 directly to k+1. This makes sense in particular, where the global partitioning decisions
are bad and do not reflect the chip’s floorplan. This is the case especially for chips with
large degrees of freedom and relatively large blocked areas in the center, which leave some
free space at the boundary.
In addition, the initial levels of placement were hardly parallelizable and pretty time
consuming. This can also be resolved by skipping the most time consuming parts of the
placement. In our experiments, we see that dropping levels 1 and 2, i.e continuing with
level 3 (with its 8× 8 grid in general) after the initial QP is not even harmless, but it has a
positive effect for most test cases, especially if the later partitioning revisions are limited,
as it is the case for 2× 2 repartitioning.

5.3.2 Greedy Re-allocations

Another option is to allow different density-unaware algorithms to come into play and to
resolve the density afterward through FlowBasedPartitioning. Here we have tested a
simple greedy heuristic in which we allow each cell to be put into its favorite location, e.g.
w.r.t. the linear netlength. Other methods, for instance incorporating timing optimization,
are also possible: one can think of an algorithm which focuses on critical paths, places them
optimally, distributes inertias to the timing critical cells and continues realization.

5.3.3 Densities

The new global partitioning method provides a self-correcting method for density violation.
As in any level, the capacities and cell sizes per window are recomputed, and the algorithm
tends to even all density overloads up, even those caused by rounding. This is one of
the major advantages of this approach. Density safety margins, which are required by
the recursive and iterative partitioning algorithms as used in old BonnPlace’s global
placement, are no longer needed. The entire capacity can thus already be revealed to the
placement algorithm in the early levels, leaving more space for global optimization. But
this is not the only advantage: density violations which appear locally now have the chance
to be resolved at a global stage. This allows it to cope with increased cell sizes as well as



78 CHAPTER 5. NEW GLOBAL PARTITIONING ALGORITHM

areas blocked during global placement. Density snapshots from levels 2–7 after flow-based
partitioning are shown in Figure 5.11.

5.4 Simultaneous Inflation and Movement Model

In congestion-driven placement, given a partitioning, routability is evaluated and in con-
gested areas the cells are placed loosely to leave more space for routing. One option to
achieve such a placement is to increase cell sizes artificially (inflation) and perform another
partitioning as proposed by Brenner and Rohe [2002] (cf. also Section 3.4.5). However, the
cell positions are not conclusively defined in early and intermediate placement levels, and
in coarse grids the routability estimation may also be inaccurate, so in many cases the
congestion problems cannot be detected at an early stage. On the other hand, for congestion
problems detected late, it might be too late to get them resolved by a local partitioning
method like iterative partitioning. In instances with movebounds the problem becomes even
harder, as iterative partitioning cannot be applied. The recursive partitioning algorithm,
which is used instead, has an even more restricted line of action. But this is not the only
problem. Beyond congestion avoidance, one has to make sure that the partitioning instances
do not become infeasible by cell inflation — the inflated cell size may exceed the total free
area.

Flow-based partitioning can easily be applied to resolve late congestion problems: due
to its global view, the excess of cell size can be shifted globally respecting movebounds.
There is no restriction to local partitioning steps. Cell inflation is an auxiliary method to
reduce real cell density in a window but it is also suitable to address local routing problems
(pin access). Another option to address pin density would be to decrease regions’ target
densities in congested areas. Congestion-driven placement should be applied with care. On
easily routable designs the application of the congestion avoidance methods would lead
to unnecessary movement and netlength increase. Additional capacity should be provided
in the neighborhood of congested areas if possible. To this end, simultaneous control of
inflation, movement and density is desirable.
For a cell c ∈ C let infl(c) ∈ R+ denote the additional amount of area for the cell c by
inflation. When referring to size(c) for c ∈ C, we assume that size(c) is the area demand of
cell c including inflation.
Recall the MinCostFlow instance G = (V (G), E(G), b, cost) used in FlowBasedParti-
tioning as in Section 5.2.1. We define a new capacitated MinCostFlow instance:

G′ = (V (G′), E(G′), b′, cost′, capa′) (5.18)

by introducing a new node t, and series of parallel edges between region nodes and the
node t:

V (G′) := V (G)∪̇{t} (5.19)

E(G′) := E(G)
⋃̇

r∈R
Er, (5.20)
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Figure 5.11: Density maps in the new partitioning algorithm in level 2 (top left) to 7 (lower
right corner). Unlike old partitioning methods (cf. Fig. 5.1), the new partitioning method
repects the overall density target of 88% even during late levels.
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where for r ∈ R, Er is a collection of parallel, capacitated edges between the region node r
and t (as in Section 4.3.2) reflecting the monotonic increasing costs for density adjustments in
region r. Set b′(r) := 0 for all original region nodes r ∈ V (G′)∩R, set b′(t) :=

∑
c∈C −size(c)

and b′ ≡ b for v ∈ V (G)\R. We set cost′(e) := cost(e) for all e ∈ E(G), and for parallel arcs
e ∈ Er, r ∈ R we set the costs as in Section 4.3.2, multiplied by a constant corresponding to
the average window diameter. With this construction, movement cost can be appropriately
merged into the concept of balanced density increase for regions. One sees immediately:

Lemma 5.4.1 The MinCostFlow instance (G′ = (V (G′), E(G′), b′, cost′, capa′) has a
solution with finite costs if and only if the partitioning instance is feasible.

Proof: Direct combination of Proposition 5.2.2 and Lemma 4.3.9. �

Following the same procedure as in Section 4.3.2, the capacity in regions is increased and
we are almost done. However, cell inflation could have destroyed feasibility. To recover a
feasible solution, the inflated cell sizes have to satisfy the flow condition as in Lemma 4.3.3.
This can be achieved by reducing the inflation values, but again, one has to act with care
to maintain the desired congestion reduction effect.
The common movement-density increase in the MinCostFlow instance G′ as in (5.18)
can serve as a starting point. We propose to treat the inflation excess as capacity which will
be absorbed by new artificial regions. Thus, we first extend G′ to a new MinCostFlow
instance G′′ by adding new region nodes, one per movebound:

V (G′′) := V (G)∪̇{rM |M ∈M} (5.21)

Then, for a movebound M ∈M, the new region node rM is connected by new edges to all
cell cluster nodes on one side and by new sequences of parallel edges EM to the sink t on
the other side:

E(G′′) := E(G)∪̇
⋃

M∈M

{(CMw, rM)|w ∈ W}∪̇
⋃

M∈M

EM , (5.22)

We maintain all costs and capacities for all arcs of E(G′) in E(G′′) and all b′′ values for
all vertices V (G′) in V (G′′). For the newly introduced edges we set capa((CMw, rM )) :=∞
and cost′′((CMw, rM)) := 0 for all M ∈ M, w ∈ W, and we set b′′(rM) := 0 for the new
regions for each M ∈M.
We treat rM as buffers for inflation excess, whose violation is expensive. In the consequence,
in a simillar manner as in Section 4.3.2, rM is a region with target density 0 and free area
corresponding to

∑
c∈CM infl(c) accessible for cells in CM . The costs of edges in EM are

chosen as in Section 4.3.2 for the parallel arcs connecting regions and the sink node. We
scale these costs with much higher constant values, in order to allow a certain cell movement
across the chip first before starting to decrease inflation values. This leads to:

Corollary 5.4.2 The MinCostFlow instance G′′ = (V (G′′), E(G′′), b′′, cost′′, capa′′) for
any inflation values has a solution with finite costs if and only if the partitioning instance
is feasible.
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Proof: Immediately from Lemma 5.4.1 using the fact that for any movebound the total
inflation values of cells in CM can be absorbed by flow through rM . �

Remark 5.4.3 Assume the partitioning instance is feasible. Given a solution f of the
MinCostFlow instance from Corollary 5.4.2, then for each movebound M ∈ M′ the
inflation values of cells in CM are reduced uniformly by the factor of εM , where

εM :=

∑
c∈CM infl(c)−

∑
e∈δ−

G′′ (rM ) fe∑
c∈CM infl(c)

. (5.23)

This means that for each cell c ∈ C, the inflation value infl(c) := εµ(c)infl(c)

We summarize construction of G′′, the MinCostFlow computation with the following
(potential) inflation reduction as in Remark 5.4.3 as the flow-based density and inflation
adjustment.

The partitioning method in congestion-driven placement consists — as in Section 3.4.5
— of a flow-based partitioning step, followed by rough congestion estimation. Then cells
are inflated in congested areas, a flow-based density and inflation adjustment is done and
finally another flow-based partitioning step is performed.

5.5 Discussion and Outlook

The presented global partitioning algorithm unifies the advantages of partitioning-based
placement schemes. High efficiency with formidable parallelization opportunities is combined
with robust density control. Moreover, improved movebound handling is provided using the
global view of the entire placement instance. The cells are not moved to distant windows if
this is not necessary as in iterative partitioning.
Furthermore, wherever movement is needed, connectivity is considered in a much more
precise way than during recursive partitioning. By the choice of coarse realization window
(cf. Fig. 5.10) for a horizontal (vertical) flow-carrying edge, the cells in the windows below
and above (left and right) contribute to improved connectivity information and priority
choice for partitioning.
Another advantage is the prescribed amount of capacity which has to be shifted along an
edge: this leads to an improved usage of ConstraintQP. Prescribing center of gravity to
cells prior to partitioning may have the negative effect that some cells are moved too far
away by ConstraintQP, and by movement minimization they are assigned to distant
windows, even if a feasible partitioning could be done in proximate ones. When prescribing
capacities, it is the relative positions which count and not the absolute ones.
The realization is currently performed via Multisection. However, the algorithm is in
principle generic — it requires some oracle which shifts a prescribed amount of cells from
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one window to another. Especially in congested regions or in cases where a shift over
blockages has to be performed, it is also possible to apply some MinCut–approach.
In our implementation, we use an equidistant grid for the window computation, which is
not mandatory: the grid lines could be refined and adjusted to the movebound/blockage
structure in order to enable a further refinement of the a-priori movement costs.
The flow-based global partitioning offers a method that allows us to start with any given
placement, in particular it is interesting for incremental global placement approaches.
Finally, our current implementation computes one single MinCostFlow and realizes the
solution until all external flow-carrying edges vanish. An iterative process which computes a
MinCostFlow, realizes some of the edges, and restarts withMinCostFlow computation
based on the recently computed positions is also possible.



Chapter 6

Data Structures and Implementation

In this chapter we first focus on netlist and clustering data structures and their efficient
handling during global placement. Then, we present other implementation details addressing
aspects of industrial use. Later we show how efficient parallelization of core routines in
BonnPlace is implemented.

6.1 Generalized Netlists and Clustering

6.1.1 Motivation

Recall the definition of a netlist (C,N , P, γ). The essential placement task is to find a
position for each cell c ∈ C. A cell represents standard circuits (gates) acting for some logical
functions (ANDs, ORs), memory elements (latches) and non-standard circuits, such as gate-
arrays or larger memory blocks (DRAMs, SRAMs). The complexity of chips increased and
design costs play an important role, so one uses hierarchical units (RLMs, SoCs, IP-cores)
which are (if one forgets the hierarchical structures) another class of placeable objects. But
logic and memory cells are not the only circuits a placement has to deal with: DECAPs
and ENDCAPs address particular electric constraints without having any influence on the
logical function.
For mixed-size designs, Adya and Markov [2002] proposed to subdivide large blocks into
small fragments connected by highly weighted nets in order to obtain objects of similar size.
To these modified instances, global placement is applied, then the original block structure
is recovered, the large blocks are fixed in legal positions and one starts another iteration of
the placement. Hence, the fragments of a circuit can also be seen as a cell.
Apart from circuits and their fragments, groups of circuits (clusters) are of particular
interest for multiple reasons and purposes. Electrical properties impose tight resistance
and capacitance bounds between pass-gates and latches. In recent technologies local clock
buffers (LCBs) have been decomposed into several circuits (atoms) with extremely tight
resistance bounds on connecting nets. In both cases the bounds force the cells to be placed
in proximity to each other. Another reason is power consumption, which restricts DECAPs

83
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to the vicinity of some large block to prevent power drops. Routability is another reason:
latch groups are often merged to blocks to make routing easier; the same applies to buses,
in which several parallel nets connect groups of cells leaving basically no room for relative
position changes. Spare-logic groups and error-correction code (ECC) are other object
classes which should be placed together.
Design rules are not the only reasons for the application of cell clusters in placement.
Clusters reduce the instance sizes and may serve to accelerate any placement algorithm. For
quadratic placers another reason is also important: clustering provides some linearization
effects which help to minimize linear netlength for the price of the quadratic one. Finally,
for partitioning-based placements clustering may help to prevent cell groups from being
torn into pieces and assigned to distant regions.

Beyond cells, nets are also not homogeneous connections. Nets, which are responsible for
signal transmission among cells, are one kind of connection. But nets can also represent
artificial connections to preplaced locations on the chip (see Section 3.3.2) for cell spreading,
for movebound attractors (see Section 4.3.4) as well as for modeling fixations. A fixation is
a weighted virtual net connected to some position on the chip modeling a certain affinity
of the cell to this location. Fixations are important for incremental placements. Infinite
weight means that the cell is fixed at this location.
Virtual connections can also be used between movable objects, for example to stress the
timing criticality of a particular 2-pin connection in a larger net, or to attract DECAPs
to macros or latch groups to the driving LCB. Finally, they are also used for mixed size
placement to connect circuit fragments.

6.1.2 Clustering

Here we make the concept of clustering and clustering data structures more precise. When
dealing with groups of cells it is reasonable to allow the general hierarchical approach:
clusters should be able to contain other clusters. This is motivated by two different issues.
First, hierarchical clusterings are indeed used in placement and seem natural where for
example pass-gates and latches as well as different LCB atoms can be seen as the finest
clustering hierarchy. These clusters can then be grouped together for power-consumption or
timing reasons.
In VLSI placement, clustering is used in two different ways. The persistent clustering, in
which the netlist is clustered once and the modified netlist is presented to the placement
tool (see e.g. Hu and Marek-Sadowska [2003] as well as Yan, Chu and Mak [2010]) and the
non-persistent one, where clustering is modified within the placement run (Wang, Yang
and Sarrafzadeh [2000], Karypis et al. [1999] and Nam et al. [2006]).
The hierarchical approach allows the semi-persistent use of clusterings which seems natural
for bottom-up clustering techniques in combination with top-down window refinement (see
also Nam et al. [2006]). In the top-down partitioning scheme, the cell clusters are resolved
only if they are too big relative to the window sizes. To avoid long re-clustering runtimes,
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we maintain the option to resolve the hierarchy wherever necessary but to keep several
other clustering decisions at the same time. Of course, the hierarchical cluster handling
allows the use of a single hierarchy level, the flat clustering. For all these reasons we decide
in favor of the general hierarchical clustering. Formally:

Definition 6.1.1 (Clustering) For a set of cells C, a clustering is a branching K =
(V (K), E(K)) with a bijection κ : C → {v ∈ V (K)|δ+(v) = ∅}. A node v ∈ V (K) is called a
cluster. For a cell c ∈ C, the corresponding node κ(c) ∈ V (K) is called the leaf cluster of
c. A node r ∈ V (K) with δ−(r) = ∅ is called a root cluster. Note that, by the branching
property of K, each cluster has a unique associated root cluster, namely the root of its
arborescence. We postulate |δ+(v)| > 1 for each non-leaf v ∈ V (K), i.e. we forbid clusters
which do not create new hierarchies.

Clustering can thus be seen as a special laminar decomposition of the underlying cell set:
the roots are the top-level clusters and the cells can be seen as leaves. During placement,
the cells in a common cluster are hidden by the cluster and should be moved together,
hence a root determines the positions of all the cells in its arborescence.
One can treat the roots as particular cells, but should keep in mind that this approach
can cause several problems. First, the relative positions of the cells within a cluster are in
general not known a-priori, raising another problem with cluster shapes and relative pin
positions. Furthermore, hiding the cells in a cluster also hides essential properties of the
cluster members, in particular movebounds and possible orientations.
We propose two different cluster types, the hard and soft clusters. A hard cluster is a
collection of cells with fixed relative positions and orientations. Thus, if a position of any
member is determined, all other members are placed with the prescribed orientation and
relative positions. In particular, the relative pin offsets, the width and the height of the
clusters are fixed and there is no need for hierarchical clustering of hard clusters. Hard
clusters will be treated as macro cells in the following.
In global placement, the cells are treated as shapeless objects and we do not pay attention
to grids. Hence we will also treat soft clusters as shapeless objects demanding some capacity.
In top-down partitioning based placement, cells are fixed as soon as the edge width exceeds
a certain percentage of the window edge. Therefore, we will store the maximal width and
height of the member cells, partially revealing the shape structure of the cluster. On the
other hand, movebound constraints must be entirely revealed to the global placement. We
require all leaves in a cluster to have the same movebound.

Definition 6.1.2 Let C be a set of cells, K = (V (K), E(K)) a clustering with κ : C →
{v ∈ V (K)|δ+(v) = ∅}. For a root r ∈ V (K) let λ(r) be the set of leaves in the arborescence
of r. For each root r ∈ V (K) we define a new root cluster cell cr with:

size(cr) :=
∑

c∈κ−1(λ(r))

size(c),

sizex(cr) := max
c∈κ−1(λ(r))

sizex(c), sizey(cr) := max
c∈κ−1(λ(r))

sizey(c).



86 CHAPTER 6. DATA STRUCTURES AND IMPLEMENTATION

By the remark above, the movebound µ(cr) is the same for all its members, thus µ(cr) :=
µ(c), c ∈ κ−1(λ(r)). Let CK be the set of all root cell clusters.
We define the map κ : C → CK with κ(c) := cr where r is the root of κ(c) ∈ V (K). For each
cell c ∈ C, κ(c) is then the root cell cluster of c.

6.1.3 Clustered Netlist

Clustering yields new placeable objects, the root cluster cells. Now we focus on pins and
nets. If there were only 2-terminal nets in a netlist, then nets connecting two leaves in
the same arborescence would be hidden, and the others would simply be attached to the
corresponding roots. In general nets, the situation becomes more complicated, as parts of a
net can be hidden by a cluster. To this end we extend the net and pin definitions:

Definition 6.1.3 Fix a netlist (C,N , P, γ) and a clustering K = (V (K), E(K)), κ : C →
{v ∈ V (K)|δ+(v) = ∅}. The clustering decomposes each net N ∈ N into a family of disjoint
subsets:

N = N1∪̇ . . . ∪̇Nl (6.1)

whereNi = {p ∈ N |γ(p) ∈ C and κ(γ(p)) are in the same arborescence} orNi = {p|γ(p) =
�} for i = 1, . . . , l. For a pin p ∈ Ni ⊆ N the multiplicity of p in N is the number
%(p) := |Ni|.
Then for a pin p ∈ P the clustered pin pK of p is a pair pK := (π(p), %(p)) with π(p) = Ni.
For a net N the clustered net NK := {pK1 , . . . , pKl } with pKi = (Ni, |Ni|) is a set of clustered
pins obtained from clustering pins in N .
Canonically, we set PK to be the set of all clustered pins and define γK : PK → CK by

γ(pK) :=

{
κ(γ(p)) if γ(p) ∈ C,
� else.

(6.2)

The clustered netlist of (C,N , P, γ) is the quadruple (CK,NK, PK, γK).

Note that the map p 7→ pK is in general not injective: %(p) pins in N end up in a single
clustered pin pK. Because of the uncertainty of the final position of the cells within the
cluster, we put all clustered pins of real clusters to the root cell cluster’s center:

Definition 6.1.4 Given a netlist, a clustering and the induced clustered netlist, for a pin
p ∈ P we define the offsets for its clustered pin pK

(
xoffs(p

K), yoffs(p
K)
)

:=

{(
xoffs(p), yoffs(p)

)
if γ(p) ∈ C and κ(γ(p)) is root in K,

(0, 0) else.
(6.3)

Proposition 6.1.5 For a netlist (C,N , P, γ) and a clustering (K,κ), the clustered netlist
can be constructed in O(|P |+ |C|) time.
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Proof: By Def. 6.1.1, |V (K)| = O(|C|) and we can store for each c ∈ C the root of c in K
first. Then, for each net N ∈ N and for each p ∈ N , we ask for the root of γ(p), which
can now be queried in constant time. For each net N , the clustered net NK can thus be
constructed in O(|N |) time. As |P | =

∑
N∈N |N | we are done. �

We now define the analogous quadratic net models for the clustered nets.

Definition 6.1.6 Let NK = {pK1 , . . . , pKl } be a clustered net with clustered pins pKi =

(πi, %(pi)), i = 1, 2, . . . , l. Set n =
∑l

i=1 %(pi). Then we define

CL′2,x(N
K) :=

1

n− 1

l∑
i=1

l∑
j=i

%(pi)%(pj)
(
x(pKi )− x(pKj )

)2
, (6.4)

and

ST ′2,x(N
K) :=

l∑
i=1

%(pi)
(
x(pKi )− 1

n

l∑
j=1

%(pj)x(pKj )
)2

, (6.5)

and set CL′2(NK) := CL′2,x(N
K)+CL′2,y(N

K) as well as ST ′2(NK) := ST ′2,x(N
K)+ST ′2,y(N

K).
For l = 1 we set CL′2(NK) = ST ′2(NK) := 0.

Theorem 6.1.7 Given a netlist (C,N , P, γ) and a clustering (K,κ), for a net N ∈ N
let NK = {pK1 , . . . , pKl }, l > 1 be the clustered net of N . Let N = N1∪̇, . . . , ∪̇Nl be a
decomposition of N w.r.t. the clustering, i.e. pKi = (Ni, |Ni|) for i = 1, . . . , l. Now, for each
i = 1, . . . , l set the pin positions in Ni to x(pKi ). Then:

CL2(N)|∀i∀p∈Ni:x(p)=x(pKi ) = CL′2(NK) (6.6)

ST2(N)|∀i∀p∈Ni:x(p)=x(pKi ) = ST ′2(NK). (6.7)

In particular, clustering the pin locations of the unclustered net model is the same as
applying the clustered net model to the clustered pins.

Proof: We focus again on the horizontal part only. Assume l > 1.

CL2,x(N)|∀i∀p∈Ni:x(p)=x(pKi ) =
1

|N | − 1

l∑
i=1

∑
p∈Ni

l∑
j=i

∑
q∈Nj

(x(pKi )− x(pKj ))2

=
1

|N | − 1

l∑
i=1

l∑
j=i

|Ni||Nj|(x(pKi )− x(pKj ))2 =
1∑l

m=1 |Nm| − 1

l∑
i=1

l∑
j=i

|Ni||Nj|(x(pKi )− x(pKj ))2

=
1∑l

m=1 %(pm)− 1

l∑
i=1

l∑
j=i

%(pi)%(pj)(x(pKi )− x(pKj ))2 = CL′2,x(N
K).

(6.8)
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For the star model observe that 1
|N |
∑l

i=1

∑
p∈Ni

x(pKi ) = 1Pl
i=m %(pm)

∑l
i=1 %(pi)x(pKi ). Then,

ST2,x(N)|∀i∀p∈Ni:x(p)=x(pKi ) =
1

|N | − 1

l∑
i=1

∑
p∈Ni

(
x(pKi )− 1

|N |

l∑
j=1

%(pj)x(pKj )
)2

=
1∑l

m=1 %(pm)− 1

l∑
i=1

%(pi)
(
x(pKi )− 1

|N |

l∑
j=1

%(pj)x(pKj )
)2

= ST ′2,x(N
K).

(6.9)

The cases for l = 1 are trivial. �

Corollary 6.1.8 For a netlist (C,N , P, γ) and a trivial clustering K = (C, ∅) with κ = id,
we have for each net N and its trivial clustered version NK the equalities: CL2(N) =
CL′2(NK) and ST2(N) = ST ′2(NK).

Proof: Immediately from Theorem 6.1.7, with pKi = ({pi}, 1), i = 1, . . . , |N |. �

Hence, the clustered net models reflect the behavior of the unclustered ones. Their essential
advantage is the runtime for computation:

Corollary 6.1.9 For a clustered netNK = {pK1 , . . . , pKl } with clustered pins pKi = (pi, %(pi)),
i = 1, . . . , l we have:

2
l∑

i=1

%(pi)ST
′
2(NK) =

( l∑
i=1

%(pi)− 1
)
CL′2(NK). (6.10)

In particular, both net models can be computed in O(l) time.

Proof: Follows immediately using the equivalence of the unclustered net models and
Theorem 6.1.7. �

Clustering may have merged all pins of an initial net in a single cluster. In this case the
clustered net would consist of a single pin and provide no additional connectivity informa-
tion. Thus, we omit such nets during clustered netlist construction. On the other hand,
other nets may now connect the same groups of cluster cells even if they do not connect
the same cells. It would be reasonable to merge them into one net with accordingly ad-
justed weights, but beyond the 2-terminal case it is not possible in general (see Lauff [2010]).

One should note that for a netlist (C,N , P, γ) and a clustering (K,κ), the induced clustered
netlist (CK,NK, PK, γK) can again be seen as a starting point for further clustering.

Definition 6.1.10 (Hierarchically clustered netlist) For a netlist (C,N , P, γ) and a
clustering (K,κ) of C, let (CK,NK, PK, γK) be the clustered netlist induced by (K,κ). Let
(K′,κ′) be a clustering of CK.
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Then CK′ is the canonically defined set of clustered cells of CK. For a net N ∈ N ,
consider the clustered pins pK1 , . . . , p

K
l ∈ PK, with pKi = (π(pi), %(pi)) for i = 1, . . . , l,

whose cells have been merged to one arborescence in K′. Define the clustered pin pK
′

:=
(
⋃l
i=1 π(pi),

∑l
i=1 %(pi)). For a pin pK ∈ PK and its corresponding clustered (w.r.t. K′)

pin pK
′
, define γK(pK

′
) to be the root cell cluster of κ′(γK(pK)) if κ′(γK(pK)) is a root in

K′, and γK
′
(pK

′
) := � else. For a net NK ∈ NK let NK

′
be the set of clustered pins pK

′

corresponding to pins in NK and PK
′
:=
⋃
NK

′
.

Corollary 6.1.11 Fix a netlist (C,N , P, γ), a clustering (K,κ) of C, and the induced
clustered netlist (CK,NK, PK, γK). For a clustering (K′,κ′) of CK, the induced clustered
netlist (CK′ ,NK′ , PK′ , γK′) can be computed in O(|CK|+ |PK|) time.

Proof: Combining the Definition 6.1.10 with Proposition 6.1.5. �

For hierarchical clusterings, we obtain the result:

Theorem 6.1.12 Given a netlist (C,N , P, γ), a clustering (K,κ) of C, and an induced
clustered netlist (CK,NK, PK, γK). For a clustering (K′,κ′) of CK let (CK′ ,NK′ , PK′ , γK′)
be the induced clustered netlist. Let K′′ be the branching K′ in which every leaf has been
replaced by the corresponding arborescence in K and (CK′′ ,NK′′ , PK′′ , γK′′) the clustered
netlist of (C,N , P, γ) induced by (K′′,κ). Then there is a one-to-one correspondence between
the netlist (CK′′ ,NK′′ , PK′′ , γK′′) and (CK′ ,NK′ , PK′ , γK′).

Proof: For root cell clusters r, r′, r′′ in V (K), V (K′) and V (K′′), respectively let λ(r),λ(r′)
and λ(r′′) denote the corresponding set of leaves in V (K), V (K′) and V (K′′). The number
of roots in K′ and K′′ is the same. For a root cluster cell cr′ ∈ CK

′
with root r′ ∈ V (K′), we

have:

size(cr′) =
∑

cr∈λ′(r′)

size(cr) =
∑

r∈λ′(r′)

∑
c∈κ−1(λ(r))

size(c) =
∑

c∈κ−1(λ′′(r′′))

size(c) = size(cr′′)

(6.11)
for some root cell cluster cr′′ in CK′′ . In the same way xsize and ysize can be deduced. Thus,
CK′ and CK′′ are equivalent. For p ∈ P with γ(p) = �, we have for the corresponding pins
pK
′

= pK = ({p}, 1) = pK
′′

and γK
′
(pK

′
) = � = γK

′′
(pK

′′
), so consider pins with cells. A pin

pK
′ ∈ PK′ is obtained from clustering of pK1 , . . . , p

K
m with pKi = (π(pi), %(pi)) for i = 1, . . . ,m.

For pKi let Ni ⊂ N be the set of pins merged to pKi . Then Ni := %(pi), i = 1, . . . ,m. By
branching composition, for the root r′ ∈ V (K′) of κ′(γK′(pK′)), the set of pins in P merged
to the common root r′ is thus the same as the set of pins merged to r′′, where r′′ ∈ V (K′′)
is the root of the arborescence in K′′ in which the leaves of r′ have been replaced by the
corresponding arborescences in K. Thus,

pK
′
=
( m⋃
i=1

π(pi),
m∑
i=1

%(pi)
)

=
( m⋃
i=1

Ni,
m∑
i=1

|Ni|
)

= pK
′′
. (6.12)

Collecting the pins net-wise from each net N ∈ N leads by the same argument to the
equality NK

′
= NK

′′
, and in the following PK

′
= PK

′′
. For p ∈ P , let pK ∈ PK be the
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corresponding clustered pin w.r.t. (K,κ). Let r′ be the root of κ′(γK′(pK′)) and cr′ the
corresponding root cluster cell in CK′ . Again, by the construction of the branching, κ(γ(p))
is merged to the root r′′ ∈ V (K), which corresponds to r′. Using (6.11) we have γK

′′
(p) = cr′′ ,

and this concludes the proof. �

This property applies to several hierarchy levels:

Corollary 6.1.13 Given a collection of hierarchical netlists (CKi
,NKi

, PK
i
, γK

i
), i =

1, . . . , h, where (CKi+1
,NKi+1

, PK
i+1
, γK

i+1
), i = 1, . . . , h − 1, was induced by a cluster-

ing (Ki+1,κi+1) of CKi
and (CK1

,NK1
, PK

1
, γK

1
) is the unclustered netlist. Let (K,κK1

) be
the clustering of CK1

obtained by replacing all leaves in Kh−1 by the roots of Kh−2, then
all new leaves by the roots in Kh−2, and so on. Then there is a one-to-one correspondence
between (CKh

,NKh
, PK

h
, γK

h
) and (CK,NK, PK, γK).

Proof: By induction, applying Theorem 6.1.12. �

Corollaries 6.1.11 and 6.1.13 show that for constructing new clustered netlists one has
to consider only one hierarchy level and not the finest netlist. This fact is interesting for
speeding up the (clustered) netlist construction, when hierarchical clusterings are modified,
for example when some large clusters are resolved and the netlist has to be reconstructed.

6.2 Implementation

Separating data structures from algorithms is self-evident. There are different implementa-
tions of placement netlist data — see e.g. Xi (Muuss [1996]), LEFDEF, OA (Si2 [2009]) or
the bookshelf data format proposed by Caldwell, Kahng and Markov [1990], the latter also
used for the ISPD benchmarks (see Nam et al. [2005] and Nam et al. [2006]). For the easy
portability, the programs should be designed to be able to migrate different data structures
into algorithms quickly.
Apart from different external data representations, placement also has to deal with hetero-
geneous objects internally, as mentioned in Section 6.1.1. The different cell types (circuits,
fragments, clusters), for example, have many different properties but only few of them
actually play a role in placement. Moreover, the global placement is basically interested in
the location, the orientation, the sizes, and the pins.
Therefore it is reasonable to hide implementation behind homogeneous interfaces, as already
done for the formal netlist definitions in Chapter 2.

The new BonnPlace global placement algorithm has been implemented in C++, which
innately offers the concept of virtualisation. Virtual classes help to cope with both the
internal heterogeneous objects and the external data representations. Although virtual
function calls have a certain runtime overhead (see e.g. Driesen and Hölzle [1996]), we
choose the virtualisation method to handle different object types which occur simultaneously
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during placement because of the clarity of the interfaces and easy extendability of the
models.

6.2.1 Netlist and Clustering

The base components of the netlist, according to the Definition 2.2.1, consist of a cell,
a pin and a net class. These classes define the interfaces and are purely virtual. The
implementations and instantiation of circuits, hard clusters, physical pins as well as signal
nets base on Xi (Muuss [1996]) — the corresponding classes act as wrappers. Other objects,
such as root cluster cells, the induced clustered pins as well as user-defined anchors and
nets are implemented independently and store their data explicitly.
Unlike Xi and LEFDEF, in BonnPlace there is no explicit mechanism for storing common
data for different instances of the same circuit or pin (CktDef, DEFs and PinDef ). This
might be beneficial, especially for pins, as soon as pin areas play a role in placement.
But for cells, several parts of the common data for different instances of the same DEF,
such as bounding-box sizes and area demand, are subject to manipulation and require
instance-dependent storage anyway. From a placement point of view, other common data
should be and are indeed grouped: pointers to movebounds, cell tables and physical shape
information (for non-standard cells). All cells and net implementations store pointers to
their pins in arrays for caching reasons.
The clustering fully supports laminar hierarchies as described in Section 6.1.2. For imple-
mentation details we refer to Lauff [2010].
Netlists can be manipulated within BonnPlace. The bounding boxes of cells can be
expanded and cell fixations can be defined. Singular pins or nets can be ignored during
placement. Net weights can be set for x- and y-parts independently and artificial nets can
be defined. The latter allow a combined approach of clustering and anchors. Several cells
are connected by highly weighted artificial nets and hidden in a common cluster. Then,
when the cluster is resolved, the artificial nets keep the cluster members together.

6.2.2 Domain

The cells of the netlist have to be placed into the rectangular chip area, subject to density,
movebound and blockage constraints. Movebound areas can consist of sets of rectangles
and movebound areas are allowed to overlap. Density constraints are provided in the form
of area with a density target in this area. It is reasonable to provide a common density
target and store the deviations for performance reasons: in many cases the density target
function is constant.
All this information is area-dependent, and typical queries during placement ask for the
capacity or movebounds in a given rectangle. Usually there are up to a few millions of
blockages and up to hundreds of movebound areas. To enable fast queries, we use QuadTree
structures (see e.g. Samet [1984]) to store rectangles. We combine all these data to the
common abstract class, the domain. In our implementation, it would also be possible to
provide several different domains on a single chip and perform placements independently for
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a given netlist partition on each of them. This approach might be interesting for incremental
placement.

6.2.3 Grid, Windows and Regions

The implementation of the netlist and the domain is in principle independent from the
partitioning-based approach of BonnPlace. We focus on the partitioning-specific data
structures now. Recall the overall structure of BonnPlace from Section 3.4 and the
partitioning-based movebound placement algorithm from Section 4.3.
The sequence of the refined grids Γ0, . . . ,Γk is currently determined by recursive, mainly
equidistant, cuts. During level i = 1, . . . , k one considers the set of windows induced by
Γi−1. Each window has to store the associated cells. A level ends with a feasible partitioning
to windows induced by the grid Γi. Given i = 1, . . . , k we refer to Γi−1 as the coarse grid
and to Γi as the fine grid. In level i + 1, Γi then becomes the coarse grid. In real-world
instances, the finest grids induce up to several millions of windows. A coarse window does
not store any particular data except a unique key to identify its coordinates, and an array
containing associated cells.
Fine windows are destinations for cell partitioning. For this purpose, fine windows store
the set of their regions, and the regions on their part provide all information relevant
for partitioning: the capacity, the area and the density information. Blocked windows are
useless, thus in BonnPlace, we store regions for unblocked windows only. The regions are
chosen to be maximal w.r.t the movebounds and the windows. In particular, in instances
without movebounds there is one region per fine unblocked window.
During level i = 1, . . . , k, after macro placement has been performed w.r.t. Γi−1, possibly
blocking some areas, the domain does not change until the macro placement of level i+1. For
these reasons, we compute and store the regions for the entire level after MacroPlacement.
In addition, the center-of-gravity of the free area in the windows will also remain unchanged
for this level and is thus also cached. Of course the partitioning to the fine windows can
change. But then, only the cached values at the regions have to be adjusted without domain
queries. This is particularly important for repartitioning, where millions of such queries can
be saved during late levels compared to the old BonnPlace.

6.2.4 QP

The quadratic programs are time and memory consuming parts in BonnPlace. On the
largest instances, the dimension of the involved matrices easily exceeds 10 million and
the number of entries in the matrix would reach over to 200 million if one applied the
clique model to large nets. Thus we use the hybrid clique-star model as proposed by
Brenner and Struzyna [2005]. In the old BonnPlace the star net model was applied to
nets with eight and more terminals, where smaller choices led to runtime loss. Our new
implementation allows to lower the threshold to nets with five and more terminals without
runtime degradation. In theory, however, the dimension of the Krylov space increases and
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Figure 6.1: Nonzero entries of the original matrix A (green) and the reordered ones (red). As
A is symmetric, the upper half is depicted for the original and the lower for the reordered
one.

the conjugate-gradient (CG) algorithm could need more iterations (see Stoer and Bulirsch
[2002]).
For clustered netlists, of course, the clustered net models from Definition 6.1.6 and the
induced clustered hybrid net model are used.
During the CG algorithm, when solving the system Ax = b the most time consuming
operation is the matrix-vector multiplication Ap for some vector p. In our case, A is sparse
and stored in the compressed-row-storage (CRS) format. In theory, the complexity of Ap
depends on the number of non-zero entries of A, but in practice, small bandwidths reduce
the risk of cache misses and accelerate the process. For bandwidth reduction, a popular
method is to interpret the matrix as the adjacency matrix of an undirected graph, and to
relabel the columns and rows w.r.t. the distance in the graph (Cuthill and McKee [1969]).
The minimum bandwidth corresponds to the graph diameter. In our case, we are given
a graph initially, so permutation can be done before matrix construction. Because of the
low number of iterations of the CG algorithm in our case, we perform an approximated
diameter search by applying BFS twice. This method is only beneficial for large QPs in
early levels and saves up to 10% of the CG runtime in those cases. Figure 6.1 shows an
example of an original and a reordered matrix.

6.2.5 Clustering

BonnPlace is able to handle external hierarchical clusterings. As clusters, either a set
of cells with relative offsets is provided, which yields a hard cluster cell, or the cell group
does not have offsets and it is interpreted as soft cluster. Hard clusters or cells are leaves
in the clustering. For soft clusters, beside the set of clustered cells, a resolve inertia is
specified which defines the ratio of the cluster and window size for resolving clusters. A
resolve inertia of 70% means that the cluster will be resolved as soon as the corresponding
root cluster cells attain 70% of the window size. However, clusters can be resolved earlier, if
they contain wide or high cells to make such circuits visible to the macro placement. In
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hierarchical clusters, the parent node’s resolve inertia is set to the minimum of its inertia
and the minimum of the inertias of its children. The default value is 5%.
After external clustering, BonnPlace clusters spare logic groups. Finally, internal cluster-
ings are also used, see Chapter 7.

6.2.6 Partitioning

The ParallelFlowBasedPartitioning algorithm presented in Chapter 5 is used as
the new global partitioning routine. For MinCostFlow computation we use a Network-
Simplex implementation. By default, from level 8 on we use the old recursive partitioning
because the grids become large, and the graph construction as well as the MinCostFlow
computation begin to be expensive, especially for tiny and mid-size designs. Moreover,
tests have shown that no significant netlength improvement is obtained when using the
flow-based partitioning in late levels.

6.2.7 MacroPlacement

Large blocks are fixed in a legal position during macro placement when the cell’s width or
height becomes too big for a given window and a reasonable movement is not possible. To
this end, legalization data structures are required and one has to make MacroPlacement
aware of clustering.
For this purpose, we have implemented legalization data structures for every cell with
determined shapes (circuits, fragments, hard cluster cells), generalizing the simple circuit
row concept. Legalization data consists of a distinguished point, the anchor, and a set
of grids with orientations. A cell is placed legally if it does not overlap any other cell or
blockage and the anchor is one of the grid points and the cell orientation equals the grid
orientation.
This model allows us to handle standard circuit rows, gate array circuit rows and special
cell tables. It could also handle different grids in different areas of the chip, with application
to voltage islands or flat placement of originally hierarchical netlists. For clusters, recall
that clusters store the xsize and ysize values but do not provide shapes in general. Thus,
before macro placement, the clustering hierarchy is resolved until all clusters’ xsize and ysize

values are smaller than the maximum movable cell sizes for this window. This reveals all
macros and hard cluster cells that are important at this point. Macros and hard cluster
cells are currently fixed in a greedy manner, as in the old BonnPlace.

6.2.8 Congestion-Driven Placement

In congestion driven placement, fast global routing is used to estimate routability. Pin
density plays an essential role, which for performance reasons could also be determined
from the clustered netlist using the pin multiplicities and cluster sizes. On the other hand,
routing within a window can only be determined if the precise pin-net mapping is known.
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In our opinion, it is reasonable to reveal the fine netlist to the routing estimation but use
this to update the clustered cell sizes. When clusters are resolved, we distribute the parent
node’s inflation value to its children proportionally to the children’s pin densities.

6.2.9 Legalization and Local Placement

We use the legalization algorithm of Brenner and Vygen [2004] to legalize the outcome
of global placement with the modification to movebounds as proposed in Section 4.3.6.
In addition, we use a simple local placement heuristic which allows us to exchange cells
and move cells to a free area if it improves the netlength and does not increase density
violations.

6.3 Parallelization

The improvement of processor frequencies has practically stalled during the last decade,
while the number of cores per processor and the number of processors per system is
still increasing. Parallelization is thus a formidable opportunity for performance gain, in
particular for partitioning based placement, where data partition arises in natural manner.

Parallelization on UNIX and Linux systems can be achieved by creating new processes
using the fork command. The decisive disadvantage of this method is the fact that for
each fork call, a complete memory copy of the caller process is done. This can lead to
exorbitant memory demand on VLSI instances. On instances with movebounds, as in Table
8.16, the industrial used the fork command and would have needed more than 220 GB
(with four processors only). For this reason, shared-memory parallelization is the method
of choice and we use pthreads (see Buttlar, Farell and Nichols [1996]) for this purpose.
BonnPlace is compiled on different platforms, used on different systems, and interacts
with several other tools. Hence, processor specific parallelization (see Intel TBB [2010]) or
recent multithreading libraries as summarized by Hoffmann and Lienhart [2008] are not an
option yet.

Beyond performance aspects, another issue is important for practical use, namely the
determinism or at least the repeatability. Without entering into formal descriptions, for us
the determinism postulates the same output on the same data, even on different machines
(of the same type) and without paying attention to the number of processors used. The
weaker repeatability requirement asks for the same outcome given the same input on the
same machine type with the same number of processors. For software engineering purpose
it would in fact be enough to be able to reproduce a run, possibly using some information
from the previous run.
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6.3.1 Common vs. Specific Data

The objects manipulated by placement are the cells. Cell movement induces pin movement,
density and window assignment. A single cell coordinate cannot be manipulated by several
processors simultaneously, but we allow the x coordinate to be manipulated independently
from the y coordinate. New cell locations are based on the locations of other cells. In a
multithreading environment, this was basically the reason for the undesired non-repeatable
behavior of the old BonnPlace. To avoid such situations, we store additionally safe
coordinates (xsafe, ysafe) ∈ R2 for each cell, and two thread indices (one for the vertical and
one for the horizontal thread). Before a parallel code fragment begins, safe coordinates are
stored. Then, cells are partitioned to threads and each thread stores indices to its cells.
Threads have exclusive write access for their own cell coordinates. For a cell c ∈ C, reading
a cell’s horizontal coordinate by a thread π means to ask if the cell’s horizontal thread
index equals π and to return x(c) if the answer is “yes” and xsafe(c) else.
The memory overhead per cell is thus constant and independent from the number of threads
used, in contrast to the old version of BonnPlace where an array of indices was stored
per thread.
Another issue deals with the memory management itself. Major algorithmic blocks are
called in parallel using threads. Each thread comes with its own memory management and
uses a memory heap for its own allocations. The common netlist, domain and grid data is
stored using a thread-safe memory manager to allow simultaneous memory allocation and
releases. Currently, the system’s malloc and free routines are used for this purpose.

6.3.2 Job Queues

For parallelization of core routines in BonnPlace, we hence need a partition of C to
threads. We use the given cell-window partitioning of cells C induced by the grid Γi for
some level i = 1, . . . , k.
With the hybrid net model, the global QPs (both the constrained and unconstrained ones)
can be computed independently for each row (column), where a row (column) is a collection
of windows induced by Γ with common y- (x-) coordinates, by terminal propagation, as
already proposed by Brenner and Struzyna [2005]. For recursive partitioning, the partitioning
decision in window W induced by Γi to its subwindows induced by Γi+1 does not depend
on other windows either.

Algorithm 10: RunJobsInParallel(F,J ,Π)

for π = 1, . . . ,Π do1

StartThread (F,J , π)2

for π = 1, . . . ,Π do3

Wait (π)4
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Procedure StartThread(F,J , π)
while J 6= ∅ do1

Choose J ⊂ J2

Set J := J \ J3

for j ∈ J do4

F(j, π)5

A schematic example is provided in Algorithm 10, where the input consists of a set of
jobs J , a function F working on each job, and a number of processors Π. The algorithm
instantiates Π threads, and in each thread, as long as there is some job to be done, a subset
of jobs is chosen and F is performed on each of them. The critical section (lines 2 and
3) in Procedure StartThread is protected by a mutex to avoid race conditions. As other
threads may wait for the mutex, this critical section has to be efficient. For this reason we
basically store only pointers in J and implement J as an array. In recursive partitioning,
for example, the job queue J consists of coarse windows. F is then responsible for j ∈ J
to pick all cells from window W with index j of Γi, all regions in the subwindows of W
induced by Γi+1 and perform a partitioning step. The partitioning is stored directly to the
fine subwindows, which are indeed disjoint for different threads, but may trigger memory
allocations as the cell arrays might have been expanded. The latter is the reason for the
thread-safe memory manager for common data.
The repartitioning is more complicated. In level i, let us assign a pair of indices (α, β) to
each window w induced by the level’s fine grid Γi, where α (β) is the column (row) index
of w in Γi. For fixed a, b ∈ N, repartitioning then considers all coarse a× b windows in Γi.
We propose performing repartitioning in phases (p, q), p = 1, . . . , a − 1, q = 1, . . . , b − 1,
where a phase consists of all coarse a× b windows whose lower-left window with indices
(α, β) satisfies p = α mod a and q = β mod b. Safe locations are updated after each phase.

Lemma 6.3.1 Let Γi and the fine window indices, a, b ∈ N be as above. Then two different
coarse a× b windows from one phase do not have a fine window in common.

Proof: For two different coarse a× b windows W,W ′. let (α, β) and (α′, β′) be the indices
of their lower left fine windows. W.l.o.g., assume α < α′. Assume the phase considers
horizontal windows with indices satisfying p = α mod a for some p = 1, . . . , (a− 1). But
then, as α and α′ are both from the same phase, we have la+ p = α < α′ = l′a+ p for some
l, l′ ∈ N, l < l′. This means that the rightmost fine window in W has index la+ p+ (a− 1)
and la+ (a− 1) + p < (l + 1)a+ p ≤ l′a+ p = α′ and is indeed smaller than any index of
leftmost windows in W ′. Similarly for vertical differences. �.

Using Lemma 6.3.1 we are able to perform repartitioning in parallel in each phase:
Although there is no guarantee for deterministic behavior due to compiler optimization
in the presence of floating-point arithmetic, we do observe deterministic behavior of the
parallelized routines, even on different AMD and Intel machines running with different
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Algorithm 12: ParallelRepartitioning(a, b,Γ,Π)

StoreSafeLocations1

Let W be the set of windows induced by Γ2

for p = 1, . . . , a− 1 do3

for q = 1, . . . , b− 1 do4

J := CollectWindows (p, q,W)5

for π = 1, . . . ,Π do6

StartThread (Repartitioning,π,J )7

for π = 1, . . . ,Π do8

Wait (π)9

StoreSafeLocations10

RunJobsInParallel (QP(Γ),J ,Π)11

Linux operating systems. One can ask if working with stored locations in place of the real
and permanently updated ones has any impact on the netlength. Tests have shown that
the degradation was less than 0.2% on average, making this approach well worth it.

6.3.3 A-priori Job Assignment

Another option for parallelization is to partition the set of cells a priori and assign each
chunk to a thread. This method is preferable in cases where the execution times are relatively
small and the cost for job queue maintenance is not justified. This is the case for flip code
optimization FlipOpt, in which an orientation is chosen greedily for each cell in order to
minimize the wirelength. This is also the case for greedy re-allocations (see Section 5.3.2).
For repeatability reasons safe locations are used as above for non-thread cells. In order to
maintain determinism, the job-thread assignment could be made independently from the
number of threads used.
Of course, any other time consuming routines such as the computation of netlength,
center-of-gravities, etc. can also be parallelized.

6.3.4 Speed-ups

Here, we present speed-up charts for the major routines inBonnPlace on different machines
and different levels, exemplarily for the chip Erhard with movebounds. The Figures 6.2, 6.3
and 6.4 provide the speedup factors over the sequential run for the realization in flow-based
partitioning (cf. Section 5.2.3), the global QP and repartitioning respectively. On the x-axis
the level numbers are shown and the y-axis shows the speedup. Different colors represent
different numbers of cores.
In all these tests one can see that, initially, the low number of jobs for the coarse grids
results in low speedups. For the intermediate and late levels, the speed-ups become much
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Figure 6.2: Speed-up of flow-based partitioning realization on Intel Xeon X5365 (2× Quad
Core) (left) and AMD Opteron 8222 (8× Dual Core) (right), using 2, 4, 8 and 16 cores
simultaneously.

better but finally in the latest levels the memory access dominates the computational effort
and the speed-ups get worse. Differences between different machine types are remarkable.
For the global QPs the speedup exceeds 5 with 8 cores on the Intel machine, on the AMD
the speedups attain even 7 with 8 and almost 10 with 16 cores. All jobs during global
QP are pretty memory consuming, so from a certain point on, memory access becomes a
bottleneck.
Another fact is also interesting: for jobs which contain lots of queries to the common
memory, the AMD’s non-uniform-memory-architecture (NUMA) pays off, as cache can
be shared among processors. The repartitioning speedups on Intel attain the factor 7,
whereas on the AMD machine the speedups attain as much as 32.2 (!) in level 8 using 16
cores. During repartitioning, access to cells outside the window are frequent for QP matrix
constructions and netlist evaluations. But these cells can be processed by another processor
at the same time, and large parts of the data can be found in the caches, making slow
off-cache memory access unnecessary. The speedups often exceed the number of processors
used, as shown in Figure 6.4. Such tendencies already show up on AMD in flow-based
partitioning (cf. Fig. 6.2), where the speedups are several times higher than the number of
cores. In repartitioning, the probability is higher that proximate windows are processed at
the same time and memory queries can be satisfied by the data stored in cache.
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Figure 6.3: Speed-up of global QP on Intel Xeon X5365 (2× Quad Core) (left) and AMD
Opteron 8222 (8× Dual Core) (right), using 2, 4, 8 and 16 cores simultaneously.
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Figure 6.4: Speed-up of repartitioning on Intel Xeon X5365 (2× Quad Core) (left) and
AMD Opteron 8222 (8× Dual Core) (right), using 2, 4, 8 and 16 cores simultaneously.



Chapter 7

Random Walk based Clustering

Clustering, which appears in different contexts and for various purposes, subsumes an
entire class of combinatorial optimization problems, which ask, colloquially spoken, for
groups of similar nodes in (hyper-)graphs or metric spaces. In VLSI placement, clusterings
have been used for almost two decades to reduce the instance sizes and to compensate
placement inaccuracies. In this chapter we summarize the recent developments in clustering
within VLSI placement first. We then commit ourselves to random walks in VLSI placement
and show how global random walk information from large hypergraphs can efficiently be
retrieved. Finally, we use the random walk information for bottom-up clustering.

7.1 Clustering in VLSI Placement

An instance of the classical clustering problems consists of a finite set X, a distance function
d : X ×X → R and integers k, l. One problem asks for a partition of X into disjoint sets
X1, . . . , Xk, such that for 1 ≤ i ≤ k, all pairs x, y ∈ Xi have d(x, y) ≤ l. This problem is
NP-complete (see Garey and Johnson [1979]). But this is not the only bad news. Let f
denote a function which, for a given (X, d), returns a clustering of X. Kleinberg [2002]
showed that if one postulates relatively natural properties at f , such as richness (i.e. by
manipulation of d, every clustering is possible), scale invariance (multiplying d by a constant
leads to the same clustering) and consistency (decreasing distances within and increasing
distances outside clusters does not coarsen any clusters), then we find that f does not in
fact exist.
Beyond these theoretical results, clusterings in VLSI placement, unlike in other domains such
as pattern recognition, structure detection in networks, and general information retrieval do
not end in themselves but are used to improve the placement performance — the runtime
and the quality of result. To this end, classical formulations of clustering and clustering
quality measures are of subordinated importance — the evaluation has to be done in terms
of the netlength and runtime of the placement. Clusters are desirable which are formed
out of highly connected parts of the netlist. At the same time, the computational effort for
clustering is limited.

101
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As initially mentioned in Section 6.1.2, the use of clustering is common in VLSI placement.
Basically, two concepts can be distinguished here. The first one is the top-down clustering,
which can also be seen as a particular graph partitioning problem: initially all cells form
one big cluster and the clusters are subsequently divided into smaller ones. Such approaches
are used, for example, in Dragon (Wang, Yang and Sarrafzadeh [2000]) and FengShui5
(Agnihotri, Ono and Madden [2005]).
For top-down clustering, traditional Min-Cut approaches as proposed by Fiduccia and
Mattheyses [1982], multilevel-bisection (see Metis [1998]) and spectral methods (see Hall
[1970], Kucar and Vannelli [2006]) are used. The advantage of top-down clusterings is the
global view, and the major drawbacks of these methods are the long runtimes and that this
concept does not seem to match well with top-down partitioning analytic placement schemes.
Large clusters would have been resolved immediately to allow reasonable movement within
the windows, so a deep hierarchy was necessary and most of this hierarchy structure would
have been dropped.
Therefore, the other class of clusterings, the bottom-up methods, are well established in
placement. In bottom-up clusterings, each cell initially forms a cluster which grow during
clustering. Many different algorithms follow this idea: various edge, hyperedge and clique
coarsenings based on matchings or single arc contraction (see Alpert, Huang and Kahng
[1997] for Heavy-Edge-Matching, Karypis and Kumar [1999] for Edge-Coarsening, Li and
Behjat [2006] for NetCluster, Tsota, Koh and Balakrishnan [2009] for NetCluster combined
with a MinCut heuristics, and Karypis and Kumar [2000] for the FirstChoice-algorithm).
Outside of the placement context, Osipov and Sanders [2010] present a single-edge coarsen-
ing approach using fast data-structures which allow multilevel clustering with contraction
of a single edge at one level.

The choice of clustering partners in the algorithms above was made either randomly or
using maximal matchings. Other authors propose to use some rank function and a heap
structure in an iterative process. Such an approach is used in the FineGranularity clustering
(see Hu, Zeng and Marek-Sadowska [2005]) and Edge-Separability (Cong and Lim [2004]).
The heap stores edges with appropriate weights. Nam et al. [2006] and Yan, Chu and Mak
[2010] propose storing a cluster in the heap together with its “best” neighbor. The last
three papers are worth having a closer look at.
Most of the bottom-up clustering algorithms only have a local view and thus rank pairs
of clusters by their direct connections, with and without size consideration. Cong and
Lim [2004], however, try to incorporate more global information into the model. To this
end, they use the approximated edge separability values, which for an edge provide the
approximated minimum cut value separating the edge’s end nodes. It would be too time
consuming to compute exact minimum cut values, so the authors use a fast heuristics, which
yields lower bounds. The obtained values are transformed into edge ranks by division of the
approximated separability values by the minimum of the node degrees incident to the edge.

The BestChoice algorithm (Nam et al. [2006]) has successfully been promoted in the
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VLSI placement community for the last four years. Despite its simplicity, the results
obtained by the tool were for the first time predominantly better than the results without
clustering (see also Table 8.20). In this algorithm, a heap is maintained containing a triple(
C, bestneighbor(C), rank(C, bestneighbor)

)
, where C is a cluster (initially each cell forms

a cluster) and for two clusters C,C ′ the value

rank(C,C ′) :=
1

size(C) + size(C ′)

∑
N∈N : C,C′∈N

ω(N)

|N |
(7.1)

acts as heap key (by abuse of notation C ∈ N means that there exist a cell c in the cluster
C and a pin p with γ(p) = c and p ∈ N). A major ingredient in BestChoice is the idea of
lazy update: most of the clustering operations do not increase the key values, so clustered
nodes are only labeled as “changed” and the rank computation is reduced to the necessary
one. This helps to accelerate the clustering process. The clustering halts when the number
of clusters reaches the prescribed percentage of original cells.
In a recent publication by Yan, Chu and Mak [2010] the authors directly address netlength
minimization within clustering. In their method, a cluster is called safe if its members
can move to the same location without netlength degradation. Then, a criterion for pairs
of cells is presented, which basically evaluates the mutual (local) movement of two cells
towards each other. If such a local movement does not make the netlength worse in any
placement, it is safe to cluster the pair. As it is intractable to enumerate all placement, the
authors significantly break down the number of enumerations to a small number. Finally,
the enumerated netlength gradients are combined with cluster sizes to a rank function and
a heap is used, similarly to the BestChoice approach.

Currently, almost all leading-edge placements tools use the BestChoice algorithm: RQL
(Viswanathan et al. [2007]), APlace (Kahng and Wang [2006]), mPL6 (Chan et al. [2006]),
FastPlace3 (Viswanathan, Pan and Chu [2007]). NTUPlace3 (Chen et al. [2005]) uses
FirstChoice. CAPO (Roy et al. [2005]) and FengShui5 (Agnihotri, Ono and Madden [2005])
make use of heavy-edge matching, and finally Vaastu (Agnihotri and Madden [2007]) uses
a geometric approach, in which cells are clustered if they belong to the same grid window.
In BonnPlace we have also implemented the BestChoice and the NetCluster algorithms,
the comparison of which unambiguously showed better results with BestChoice. On the
other hand, BestChoice did not achieve the results reported by Nam et al. [2006] with
BonnPlace: only low clustering ratios lead to similar netlengths (see also Tables 8.6 and
8.20). A clustering ratio of α = 5 already led to inferior results of 2% on average. For a more
detailed description and more results, we refer to Lauff [2010], who also shows examples
where BestChoice does not detect natural clusters, even in simple cases.

7.2 Random Walks

Consider a connected, weighted, undirected graph G = (V,E, ω). A random walk within G is
a discrete-time stochastic process, in which at some node v ∈ V the random walker decides
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with probability ω({v,w})P
u∈Γ(v) ω({v,u}) to proceed towards w ∈ V . When considering random walks,

two functions are of particular interest for us:

Definition 7.2.1 Fix G = (V,E, ω). The expected number of steps which are needed by a
random walker starting at v ∈ V to reach a node t ∈ V is called the hitting time from v
to t and denoted by h(v|t). The commute time between two nodes v, w ∈ V is denoted by
commute(v, w) := h(w|v) + h(v|w).

Random walks appear in different contexts in VLSI design. Vygen [2007] has shown that
the quadratic placement itself can be interpreted as a random walk. Strong links between
random walks and networks are established via the effective resistance. We summarize
the most important properties in the following. For simplicity, assume V (G) = {1, . . . , n}
and G is a connected graph and we are given weights ω : E(G)→ R+. For the weighted
adjacency matrix A(G) of the graph G, let D(G) := diag(d1, . . . , dn) be the diagonal matrix
with di :=

∑
j:{i,j}∈E(G) ω({i, j}), storing the weights of arcs incident to node i, i = 1, . . . , n.

The Laplacian L(G) is the symmetric matrix L(G) := D(G)− A(G). It is well known that
L(G) is positive semidefinite and has rank n− 1. The vector 1 := (1, . . . , 1)T ∈ Rn is an
eigenvector with eigenvalue 0. Now, let ei ∈ Rn define the i-th unit vector. The effective
resistance between two nodes i, j ∈ V (G) is defined as:

reff(i, j) := (ei − ej)TL+(G)(ei − ej) (7.2)

where L+(G) is the Moore-Penrose-pseudo-inverse of L(G) (A Moore-Penrose-pseudo-
inverse A+ for a real matrix A is the unique matrix which satisfies: AA+A = A+, A+AA+ =
A, (AA+)T = AA+ and (A+A)T = A+A. For more details we refer to Barnett [1990]). For
L+(G) there exists even an explicit formula (Rao and Mitra [1972]), and L+(G) acts as
the inverse linear operator on the image of L(G). Observe that 〈(ei − ej),1〉 = 0 for all
i, j ∈ V (G), thus reff is well defined for each pair of nodes.
The results of Klein and Randic [1993] show that reff is a distance function on graphs
and, even if the graph theoretical distance is the same between nodes, the nodes with low
effective resistances are connected by more short paths (see Doyle and Snell [1984], Yen
et al. [2005]). The fact that effective resistances and commute times are proportional (see
Chandra et al. [1989]) is another reason for capturing connectivity within the graph by
random walks. For more details on relations between random walks and networks, we refer
to the surveys by Lovász [1993] and Doyle and Snell [1984].
Spielman and Srivastava [2008] show in their work that arcs with high effective resistances are
indeed responsible for essentials of the Laplacian as the quadratic form. Let qL(G) : Rn → R
be the quadratic form qL(G)(x) 7→ xTL(G)x. For a Laplacian L(G) they prove the existence
of a Laplacian L̃(G) such that, for all x ∈ Rn, the quadratic form qL̃(G) induced by L̃(G) is
an ε-approximation of the quadratic form induced by L(G):

(1− ε)qL(G) ≤ qL̃(G) ≤ (1 + ε)qL(G) ∀x ∈ Rn (7.3)

and L̃(G) contains O(n log nε−2) arcs, with ε > 0. In this approach, arcs are sampled with
probability proportional to their weights and the effective resistance between the edge’s
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endpoints. Thus, the higher the weights and the commute times, the higher the probability
of appearing in L̃(G). Conversely, omitting arcs with low product of weight and effective
resistance differences (which actually means to cluster the incident nodes) does not change
the quadratic form significantly.

7.3 Clustering with Random Walks

7.3.1 Previous Approaches

In VLSI placement, there were two approaches used random walks for clustering in the
past. Cong, Hagen and Kahng [1991], and Hagen and Kahng [1992] explicitly simulated a
random walk. After simulation, Cong, Hagen and Kahng [1991] compute maximal cycles in
this walk for each node. Two nodes v, w are clustered if both appear in the same maximal
cycle. As extension, Hagen and Kahng [1992] relax the clustering condition and compute
the sameness of a pair of nodes, which reflects the number of common maximal cycles in
which the nodes appear. Both methods, however seem intractable for memory and runtime
reasons, not to mention the determinism.
In other domains, there are several publications on clustering with random walks. Harel
and Koren [2001] use a deterministic approach in which the transition probability matrix
(which can directly be obtained from L(G) by normalization) and its powers are used to
determine similarities in the graph. These numbers are then used to re-weight edges and
the authors claim that the similarity numbers tend to separate natural clusters. Fouss et al.
[2007] use, among other methods, hitting and commute times for similarity computations in
data bases. The authors use explicitly the formula (7.2) and by combination of projection
methods with Cholelsky sparsification, the non-sparse structure of L+(G) can be by-passed
and columns of L+(G) computed on demand.
Random walks based on commute times are also used for community searches in social
networks (Firat, Chatterjee and Yilmaz [2007]), in image recognition Yen et al. [2005], and
based on hitting times in Chen, Liu and Tang [2008] for small directed-graph benchmarks.
Now we return back to the hitting times. For a matrix A = (aij)

n
i,j=1, let A\ij denote

the matrix obtained from A by deleting the i-th row and the j-th column. The decisive
advantage of the hitting times, as is well known, is their easy computation:

Proposition 7.3.1 Given a weighted, connected graph G = (V,E, ω) with V = {1, . . . , n}
and t ∈ V , consider the n− 1 dimensional linear system with L = L(G):

(L\tt)x = b, (7.4)

where the vector b ∈ Rn−1 is defined by the diagonal entries of L\tt:

b := (l11, . . . , lt−1,t−1, lt+1,t+1, . . . , lnn)T .

Then, the hitting times h(j|t), j = {1, . . . , n} are h(j|t) = xj for j = 1, . . . , t−1, h(j+1|t) =
xj for j = t, . . . , n and h(t|t) := 0. In particular, L\tt is symmetric, diagonally dominant,
positive definite and sparse, if L(G) is.
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Proof: Observe that for j ∈ {1, . . . , t−1, t+1 . . . , n} the hitting times satisfy the recursion:

h(j|t) = 1 +
∑
{k,j}∈E

ω({k, j})h(k|t)∑
{l,j}∈E ω({l, j})

, (7.5)

for each node j = 1 . . . , t− 1, t+ 1, . . . , n with h(t|t) := 0. Multiplying by the denominators
yields the result. �

Of course several targets can be chosen simultaneously and each target reduces the matrix
dimension by 1. The additional targets appear as additional diagonal and right-hand side
entries in the system (7.4). In the following we consider single targets only.

7.3.2 Hitting Times in Hypergraphs

Existing random walk computations were made on graphs. In the netlist, we are given
a hypergraph, and the trivial approach would be to represent hyper edges by weighted
cliques (cf. (2.2)). Large hyper edges, however, would lead to quadratically many entries.
Fortunately, we can use the star model again:

Theorem 7.3.2 Given a weighted, connected, hypergraph H = (V,N , ω) with V =
{1, . . . , n} and a node t ∈ {1, . . . , n} as hitting time target, let G be the graph obtained
from H by replacing each N ∈ N with a clique model. Then, the hitting times in G can be
computed by solving a sparse linear system.

Proof: Let N ∈ N be a hyperedge. We show that we can replace the clique representation
of N by a star, which will consequently lead to the sparse representation of N and of G.
We may assume N = {1, . . . , l} for some l = 2, . . . , n.
Let L be the Laplacian of G, and L′ the Laplacian of the graph G, where N was modeled
by a star. We may assume that the star s = sN node of N has index 0. Canceling the t-th
row in both, leads to the linear systems

(L\tt)x− b = 0 (7.6)

and

(L′\tt)

(
xs
x

)
− b′ = 0 (7.7)

with b corresponding to the diagonal of L\tt and b′ to the diagonal of L′\tt. Now consider
the i-th rows i = 1, . . . , n, i 6= t of (7.6) and (7.7). Combining the i-th rows and canceling
the common terms (all elements induced by hyper edges in N except N) one obtains:

l∑
j=1

−ω(N)

l − 1
xj +

ω(N)l

l − 1
xi − ω(N) =

−ω(N)l

l − 1
xs +

ω(N)l

l − 1
xi −

ω(N)l

l − 1
, (7.8)
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which solving for xs yields:

xs =
−1 +

∑l
j=1 xj

l
. (7.9)

Now, replacing xs in (7.7) shows: b′0 = −ω(N)l
l−1

. Hence, the (possibly) dense system (7.6) can
be replaced by the equivalent sparse system (7.7) by induction on |N |. �

Thus, we can indeed compute hitting times by considering even large hyper edges.

7.3.3 Hitting Times and Bottom-up Clustering

Ideally, we would have directly used the commute time distances or hitting times between
pairs of cells in our bottom-up clustering to measure similarities. But storing pairs of all
(or at least connected) objects is too expensive, not to mention the computation runtime.
On-the-fly methods for commute time computation, as proposed by Fouss et al. [2007],
seem also too slow for this purpose. An option, at least for small instances, would be the
approach presented by Spielman and Srivastava [2008] where an approximated commute
time computation is based on a random projection to much lower spaces.

The idea behind our approach is a pretty pessimistic one: if we cannot find out which cells
should be clustered, we shall at least prevent wrong clustering decisions. In the previous
section, we have seen that commute times can serve as a similarity measure. For the
pessimistic approach, the symmetry of commute times is not mandatory – for performance
reasons we can restrict ourselves to the hitting times, using different targets.
For a pair of cells c, c′, if there are differences between the hitting times h(c|t) and h(c′|t)
to the same target t, the cells c, c′ are clearly in different stronger connected groups
and should not be merged into one cluster. Assuming that we have computed τ random
walks in the netlist hypergraph to targets t1, . . . , tτ , then we store the vector h(c) :=
(h(c|t1), . . . , h(c|tτ ))T ∈ Rτ for each cell c ∈ C. The new rank function for clusters C,C ′

(see also (7.1)) is then:

rankRW (C,C ′) :=
1

||h(C)− h(C ′)||∞ + ε
· 1

size(C) + size(C ′)

∑
N∈N : C,C′∈N

ω(N)

|N |
(7.10)

with h({c}) := h(c) for initial clusters and h(C ∪ C ′) := size(C)h(C)+size(C′)h(C′)
size(C)+size(C′)

for merged
objects, and some ε > 0 to prevent division by 0.
This rank function discourages clustering of objects which differ in hitting time values to
some target. Then, the high-level description of our clustering algorithm with random walks
is presented in Algorithm 13. In this approach, τ targets are chosen, then τ hitting time
numbers are computed for each cell c ∈ C and stored in vectors h(c). Finally the BestChoice
algorithm is used with the new rank function (7.10) with cluster ratio parameter α ∈ R+.
We did not specify how the targets are computed and how many of them are used. This
will be done in the next section.
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Algorithm 13: RandomWalkBottomUpClustering(C,N , P, γ, α, τ)

Compute τ targets {t1, . . . , tτ}1

for i = 1, . . . , τ do2

Compute h·|i : C → R+3

BestChoice (C, rankRW , α)4

7.4 Fast Random Walk Model

Computing hitting times on the entire netlist is expensive for each particular target, and
for memory reasons not too many targets can be considered simultaneously either. For
performance reasons we propose considering a modified problem, presented below.
Fix a weighted, connected graph G = (V,E, ω) with V = {1, . . . , n} and recall Proposition
7.3.1. To choose a node t ∈ V in the graph as target and to compute hitting times from
other nodes to t is to delete t’s row and column from L(G). Now, instead of computing
h(v|t) for v ∈ V \ {t}, we propose to compute hitting times in a different graph.
To this end define Gt := (V t, Et, ωt) with V t := V ∪̇{0}, Et := E∪̇{t, 0}, ωt(e) := ω(e) for
all e ∈ E, and ωt({0, t}) = c for some c ∈ R>0. Now consider hitting times h(v|0) for nodes
in v ∈ V t instead of h(v|t) in V . As we are interested in hitting time differences in V , nodes
which have different hitting times in G to t will also have different hitting times in Gt to 0,
as {0, t} is the only arc connecting 0 to other nodes.
This model has several advantages. The first one is the fact that for two different targets
the Laplacians and the right-hand side vectors from Proposition 7.3.1 are almost the same
and are based on the Laplacian L(G) of G:

Proposition 7.4.1 Let G = (V,E, ω) be a weighed, connected graph with V = {1, . . . , n}
and t ∈ V (G), and L the Laplacian of G. Let Gt be the graph as above and Lt its Laplacian.
Then the hitting times h(·|0) in Gt can be obtained from the solution x ∈ Rn of the system:

Lt\00x = b (7.11)

with h(0|0) := 0 and h(v|0) := xv for v ∈ V (G) and

Lt\00 = L+ diag(0, . . . , 0,
↓t
c , 0, . . . , 0) (7.12)

b = (l11, . . . , lnn)T + cet (7.13)

where et is the t-th unit vector in Rn.

Proof: Immediate from Proposition 7.3.1 by constructing the Laplacian Lt of Gt and
deleting the 0-th row and column. �

In particular, when dealing with different targets T ⊂ V the matrices Lt for t ∈ T do not
have to be generated separately for different targets in the netlist. This fact also allows
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memory efficient use of the conjugate gradient method in parallel. Instead of storing |T |
matrices Lt, t ∈ T in memory, one can do better:

Corollary 7.4.2 Given G = (V,E, ω) as above and a set T ⊂ V of targets, let m be the
number of non-zero entries in L(G). Then computing |T | hitting time vectors in Gt, t ∈ T
in parallel requires the simultaneous storage for at most 6|T ||V (G)|+ 2m+O(T ) entries.

Proof: The matrix can be stored in the classical compressed-row-storage format, which
requires |T |+ 2m entries. The conjugate gradient can be implemented using 5 vectors of
size |V | per target and a small constant amount of numbers (Stoer and Bulirsch [2002]).
As the matrices L(Gt)\00 for t ∈ T can be expressed by a shared matrix L(G) for different
targets by Proposition 7.4.1, we are done. �
Beyond memory-efficient parallelization and the construction of a single matrix from the
netlist, two other issues are essential for fast hitting time computations in Gt by iterative
methods: the initial solution and the precision. For both, the lower bounds for hitting times
to different targets can be explicitly deduced from Gt, which turn out to be graph invariants
of G. These lower bounds help to estimate the initial solution much more accurately, and
also contribute to the stopping criterion of the conjugate gradient method.

Theorem 7.4.3 Let G = (V,E, ω) be a graph as above and V = {1, . . . , n}. For t ∈ V
Let Gt = (V t, Et, ωt) be the modification of G as above. Let h(·|0) : V t :→ R be the hitting
time from any node of Gt to 0 with h(0|0) := 0. Then h(t|0) =

c+2
P

e∈E ω(e)

c
. In particular,

the hitting time of the neighbor t of 0 to 0 does not depend on t.

Proof: Consider the Laplacian L = L(G) and Lt := L(Gt)\00 as above. Let (lij)
n
i,j=1 = L

and (ltij)
n
i,j=1 = Lt. Observe that lttt = ltt + c and ltjk = ljk for 1 ≤ j, k ≤ n, k, j 6= t. The

claim is equivalent to h(t|0) = trace(L)+c
c

. The hitting time from t ∈ V to 0 in Gt is the
t-th entry of the solution x of the system in Proposition 7.4.1, which by regularity of Lt

translates by Cramer’s rule to:

xt =
det(lt·1, . . . , l

t
·t−1, b, l

t
·t+1, . . . , l

t
·n)

det(Lt)
(7.14)

with b = (l11, . . . , lnn)T + cet.
Now,

det(Lt) =
n∑
k=1

(−1)k+tltkt det(Lt\kt) =
n∑
k=1

(−1)k+tltkt det(L\kt)

=
n∑
k=1

(−1)k+tlkt det(L\kt) + (−1)2tc det(L\tt) = det(L) + c det(L\tt)

=c det(L\tt).

(7.15)

The last equation follows by the singularity of L. Now, consider the denominator of (7.14).
The determinant is invariant under simple row operations, so we can add to the t-th row ltt·
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of Lt any other row of Lt and obtain lt
′
t· . The original row ltt· has the form:

ltt· = (−ωt,1,−ωt,2, . . . ,−ωt,t−1, ltt + c,−ωt,t+1, . . . , ωtn). (7.16)

Therefore,

lt
′

t· = (−ωt,1 −
n∑

k=2,k 6=t

ωtk + l11, . . . ,−ωt,t−1 −
n∑

k=1,k 6=t−1,i

ωtk + lt−1,t−1,

ltt + c+
n∑

k=1,k 6=t

lkk,

−ωt,t+1 −
n∑

k=1,k 6=t,t+1

ωtk + lt+1,t+1, . . . ,−ωt,n −
n−1∑

k=1,k 6=t

ωtn + lnn)

(7.17)

As L is a Laplacian, all entries except the t-th cancel to 0, and we obtain:

lt
′

t· = (0, . . . , 0,
n∑
k=1

lkk + c, 0 . . . , 0)

Now, returning to (7.14), we expand the determinant of det(lt·1, . . . , l
t
·t−1, b, l

t
·t+1, . . . , l

t
·n) by

the t-th row.

det(lt·1, . . . , l
t
·t−1,b, l

t
·t+1, . . . , l

t
·n) =

t∑
k=1

(−1)k+tlttk det(Lt\tk)

=
i∑

k=1

(−1)k+ilttk det(L\tk) =
i∑

k=1

(−1)k+ilt
′

tk det(L\tk)

= (
n∑
k=1

lkk + c) det(L\tt) = (trace(L) + c) det(L\tt).

(7.18)

Combining (7.18) with (7.15) yields the desired result. �

The Theorem 7.4.3 is of particular interest for numerical reasons, as it provides lower bounds
for the solution of (7.11). A proper estimation of the solution is necessary to provide good
convergence of the conjugate gradient method. Moreover, in our instances we observe that
the ratio between the highest hitting time and the lowest h(t|0) differs by a small constant
β, usually with β ≤ 10. This issue has two further advantages. The first is the fact that
if all hitting times to different targets t are in the range [h(t, 0), βh(t, 0)], then the rank
function is not dominated by a particular target choice, and different targets have similar
weights. The second issue allows a proper choice of the stopping criterion for the iterative
conjugate gradient method, which halts if the differences between two solutions did not
change too much.
It remains an open question, whether any non-trivial bound for the maximum hitting time
in Gt can be deduced from theory.
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7.5 Target Choices

Let us return to the netlist view of the random walk model presented above. In this context,
the nets are modeled by cliques and stars in order to obtain a graph G out of the netlist
hypergraph as in Theorem 7.3.2. The modified graph Gt has a natural interpretation in
terms of the netlist: it can be seen as deleting all preplaced pins, attaching a new virtual
preplaced pin by a two terminal net with weight c. The Laplacian L of G corresponds to
the QP matrix A without any side-constraints from (3.9), where all diagonal entries have
been reset to the negative sum of the off-diagonal values. With this method, we can indeed
simulate connectivity of cells to preplaced pins, artificial or not.

In the context of placement, for a fixed target t, to ask for the hitting times h(c|0) in Gt

means to ask for the expected number of steps a random walk starting in c (of the netlist
modified by deletion of all preplaced pins and attachment of a pin at t) requires to reach
the preplaced pin attached to t.

For this reason, we will indeed delete all preplaced pins in the netlist (C,N , P, γ), as
connections to preplaced objects can be simulated by the method above: other preplaced
pins would cover the differences, at least partially. In order to obtain more information,
targets should not be chosen in proximity to each other.

Given a distance function dist : C × C → R+, one asks for a set T ⊂ C which maximizes
the minimum pairwise distances among elements in T . Let τ be the desired number of
targets. The target choice is thus the classical τ-Dispersion Problem, which is known
to be NP-hard (Tamir [1991]). For this reason we use a fast greedy method, which picks
initially some cell c0 in C and sets T0 := {c0}. Once a set Ti of i targets is computed, choose
ci+1 ∈ C with

ci+1 = arg maxc∈C min
c0,...,ci

{dist(c0, c), . . . , dist(ci, 0)}, (7.19)

until i = τ . The set of targets is then T := Tn \ {c0}. As a distance function, we have tested
the simple (unweighted) hypergraph distance in (C,N , P, γ) and the distances resulting
from already computed hitting times, the latter for the price of sequential instead of parallel
computation of random walks. Another method would be to consider geometric information
in the form of preplaced pins in distant chip areas. For a detailed analysis we refer to Lauff
[2010].

For performance reasons we compute the targets a-priori, using the breadth-first search
method in the netlist. As we delete all preplaced pins from the netlist for random walk
computation, the netlist can split into several connected components. Usually, there are
one or two of them with a larger number of cells, the others consisting of a couple of cells
each. Consequently, target choices and random walk computations are limited to the larger
components only, which contain at least 1% of the cells. The number of targets is limited
to 16 per connected component, which seems to be a reasonable trade-off between runtime
and quality.
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7.6 Geometric Information and the Overall Algorithm

Deletion of preplaced pins from the netlist (C,N , P, γ) results in the loss of the geometric
information from placement in the clustering. To compensate for this, we propose to compute
the global QP (3.9) on the initial netlist and treat the (scaled) differences between vertical
and horizontal coordinates between the cells similarly to the hitting time differences. Let
(C,N ′, P ′, γ′) denote the netlist with deleted preplaced pins. One has to prevent clusterings
between cells of different movebounds.
For a cell c in some large connected component of (C,N ′, P ′, γ′), we store its hitting time
values to different targets in the vector h(c). For a cell in some small connected component,
for which no hitting time computation is performed, we set h(c) := 1 ∈ Rτ . To prevent
division by 0 for similar or equal values of h, we use a small ε > 0.

rankRW ′(C,C ′) :=


−∞ if µ(C) 6= µ(C ′) or

C,C ′ in different components of (C,N ′, P ′, γ′)
1

||h(C)−h(C′)||∞+ε
· 1
size(C)+size(C′)

∑
N∈N : C,C′∈N

ω(N)
|N | else .

(7.20)
The overall clustering algorithm then translates to:

Algorithm 14: RandomWalkClustering(C,N , P, γ,Γ0, α, τ,Π)

QP (Γ0)1

(C,N ′, P ′, γ′) := DeletePreplacedPins (C,N , P, γ)2

Let C1, . . . , Cm be the large connected components of (C,N ′, P ′, γ′)3

for i = 1, . . . ,m do4

T := ComputeTargets (Ci,N ′, P ′, γ′, τ)5

J := ∅6

L :=Laplacian obtained from (Ci,N ′, P ′, γ′) using clique/star7

for t ∈ T do8

J = J ∪ {(Ci, L, t)}9

RunJobsInParallel (ComputeHittingTimes,J ,Π)10

BestChoice (C, α, rankRW ′)11

In Algorithm 14 one proceeds as follows: first, global QPs are computed on the netlist
(C,N , P, γ) to determine the locations of the cells. Then, the preplaced pins are removed
from (C,N , P, γ), which yields a modified netlist (C,N ′, P ′, γ′). As (C,N ′, P ′, γ′) can break
down into several connected components, the large components are identified, and targets
T are computed using (7.19) in each of them. In each connected component, the hitting
times to targets in T are computed in parallel. For parallel computation, we use the shared
Laplacian (see Theorem 7.4.3), obtained from the sparse graph model of the hypergraph
induced by (Ci,N ′, P ′, γ′) (see Theorem 7.3.2).
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Figure 7.1: Hitting times to different targets on the chip Julia. Cells are colored w.r.t. the
hitting times for targets 1-6. The range starts from blue (low hitting times) to red (high
hitting times), revealing the netlist structure.
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Figure 7.1 shows an example of six different random walks computed to targets based
on (7.19) using the unweighted hypergraph distance in (C,N , P, γ) of the chip Julia. The
movable cells are colored according to their hitting time distances to the targets, and the
gray objects are preplaced. The locations of the cells were obtained independently from the
random walk computations by another placement run of BonnPlace. Blue color means
low hitting times, red high hitting times. This picture shows several “sharp edges” in the
netlist, identifying natural clusters. Cells which have different colors in any of the images
should not be clustered. It should be noted that similar colors do not necessarily mean
natural clusters.

7.7 Implementation

There exists a first implementation of the presented random walk-based bottom up clustering
in BonnPlace. The target computation was implemented on the basis of the BFS algorithm.
Once the targets are computed, a job queue is initialized, storing all the targets. The
computation is performed in parallel mode, using the shared Laplacian among the different
threads. In our preliminary implementation, the sparse Cholesky preconditioner is computed
for each thread separately. It is not straightforward, how to compute a good shared
preconditioner for all the threads, as the shared Laplacian is a singular matrix and the
Cholesky decomposition requires a full rank operator. An easy method how to share
the preconditioner among matrices would be to consider a perturbation of the Laplacian
Lε = L+ diag(ε, . . . , ε) with some small ε > 0. To approximate the effect of the artificial
{t, 0} connections, t ∈ T , one can modify some entries in the thread-specific preconditioners
for each thread. In our tests, for the shared sparse Cholesky decomposition Lε ≈ PP T , the
increased diagonal value ptt := ptt +

√
c (where c is the weight of the connection {t, 0}) of

P lead to 5%− 15% of more iterations than a specific preconditioner. It is thus quite an
option to save memory.
Moreover, the preliminary implementation of the bottom-up method uses a hard bound for
the maximal distance between nodes from the initial QP. If two cells are too far away w.r.t.
the initial QP, the clustering of them is forbidden (i.e. rankRW ′ = −∞).

7.8 Discussion and Outlook

We will see in Section 8.8 that one can do much better than BestChoice using random-walk
clustering.
Hitting time differences seem to identify “natural” cluster bounds in placement and guide a
bottom-up clustering into the right direction, at least for the small and mid-sized designs.
For the larger test cases, the information resulting from the small number of random walks
is apparently insufficient to achieve results with the same quality as the unclustered runs.
For runtime reasons, one will not be able to increase the number of global hitting time
computations to the hundreds and thousands. But here, a divide-and-conquer approach
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is possible: One can use the global hitting times from a small number of targets on the
entire netlist to identify global cuts, and use the global cuts in the subsequent hitting time
computations.
Moreover, the presented target choice and implementation are preliminary. For the target
choice, weights should be incorporated into the model, and one could also think of the usage
of the cuts identified by the global hitting time differences to be taken into account for
target choice. Finally, the implemented method uses a very simple combination of geometric
information and hitting times, with singular hitting times targets. In order to obtain more
floorplan information into this model, the target choice itself could be expanded to consider
more preplaced pins and connectivity to them.
The hitting time computation is done with the same preconditioner as the global QP.
BonnPlace has been using the incomplete Cholesky decomposition (see e.g. Stoer and
Bulirsch [2002]) as preconditioner. Without random walk computation, there are only two
global QPs (namely those in level 0) which share the same matrix and spending more time
on preconditioner computation was not justified. The more global linear systems of this size
are computed, the more time one could spend for an improved preconditioning technique.
Another issue seems also interesting when using hitting times and random walk information
for clustering. The cluster ratio, usually part of the input, does play an inferior role in
placement. One is rather interested in better results than in the exact ratios and hitting
times can well be used for this purpose.
In total, we believe that random walk information is well able to identify structures in large
netlists and to improve the placement. The presented method allows us to retrieve global
random walk information efficiently, in both runtime and memory, taking advantage of the
increasing use of multi-core systems. This global information can then be used to obtain
more knowledge about the local structures of the netlist.
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Chapter 8

Experimental Results

In this chapter we present several experiments for particular subroutines and the overall
results of our tool. We first have a closer look at the flow-based partitioning and its
extensions. Then, we compare our placement tool to the old version of BonnPlace and a
state-of-the-art industrial force-directed placement engine, using a large testbed of modern
ASICs and RLMs in recent technologies. Later, we provide the results of our tool on the
latest placement benchmarks, and conclude by presenting the first results of the random
walk based clustering.

8.1 The Testbed Environment

Our test instances consist of a set of recent chips from industry. The smallest design is a 32
nm RLM with 50 thousand cells, the largest is a 9.3 million cells ASIC. In our testbed we
have also used, thanks to the University of Texas at Austin, the large Trips design (Trips
[2006]). The chips of the testbed are shown in Table 8.1, summarizing the instance in the
form of the number of movable cells, nets and pins, the physical chip area, the cell density∑

c∈C size(c)/free area(A), and the number of levels used for global placement. In addition
to the industrial instances, we ran our tool on the latest placement benchmarks, presented
at ISPD 2005 (Nam et al. [2005]) and ISPD 2006 (Nam et al. [2006]).
In the comparisons, we will make use of the geometric mean to obtain average values of
improvements and degradations. To compare total runtimes, we will consider the ratio of
the sums of underlying runtimes.

8.2 Flow-based Partitioning

In this section we present the experiments of the extensions of flow-based partitioning in
detail.

117
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The testbed
chip technology |C| |N | |P | xsize(�) ysize(�) non preplaced num

(mm) cell density levels
Dagmar 32 nm 50 534 55 788 204 979 0.38 0.50 36.9% 8
Elisa 90 nm 67 723 68 267 238 801 1.38 1.11 65.5% 8
Lucius 65 nm 77 679 78 400 266 759 2.30 1.70 47.1% 9
Felix 130 nm 84 966 87 733 270 519 2.11 1.44 74.3% 8
Paula 45 nm 129 026 127 556 469 492 1.11 0.95 67.4% 9
Rabe 130 nm 175 646 178 172 650 114 4.57 4.19 52.2% 9
Julia 130 nm 190 554 190 832 690 940 4.13 4.20 49.2% 9
Max 90 nm 328 789 330 998 1 157 377 4.85 4.85 55.1% 10
Roger 90 nm 456 700 469 489 1 609 933 6.30 6.30 48.3% 10
Ashraf 65 nm 866 777 852 782 2 889 162 6.06 6.06 35.8% 10
Patrick 45 nm 1 052 709 1 178 154 3 889 726 2.22 3.46 51.6% 10
Erhard 130 nm 2 578 246 2 618 187 8 682 845 13.81 13.88 38.6% 10
Arijan 65 nm 3 753 151 3 798 307 12 253 633 14.76 14.76 32.6% 11
Philipp 90 nm 3 945 833 3 943 770 13 129 567 14.83 14.76 51.3% 11
Tomoku 65 nm 5 296 120 5 248 201 18 655 371 14.80 15.60 44.2% 11
Trips 130 nm 5 747 007 5 990 756 21 161 241 18.31 18.38 54.4% 11
Valentin 90 nm 5 838 457 5 870 943 20 775 172 13.96 13.96 45.6% 11
Andre 65 nm 6 794 323 6 948 237 24 221 307 15.60 14.80 27.0% 11
Ludwig 65 nm 7 500 446 7 589 386 25 751 156 14.80 15.60 41.6% 11
Leyla 65 nm 8 472 478 8 546 713 30 336 029 18.80 18.80 33.3% 11
Erik 65 nm 9 316 938 9 271 613 32 275 635 16.40 16.40 45.7% 11

Table 8.1: The testbed for our experiments.

8.2.1 MinCostFlow Computation

The MinCostFlow instances presented in 5.2.1 have, despite the large number of move-
bounds and grid windows, a relatively small number of edges. The number of edges is about
4 times the number of nodes in the instance. Table 8.2 shows two exemplary chips with
movebounds, which induce indeed the largest instances in our testbed. In this table we
provide the number of nodes (|V |) and edges (|E|), the edge-node ratio |E|/|V |, as well as
the number of windows |W| and regions |R| of the corresponding instance for the different
levels. We also show the runtimes of the NetworkSimplex routine used to solve the
MinCostFlow and the runtimes for realization. The runs were made on Intel XEON
with 3.3 GHz and 64 GB. We see in this table that the time needed to create and solve the
MinCostFlow instance, even for the two largest instances Ashraf and Erhard is negligible
for levels 1-7. From level 8 on, the runtimes increase and in the final levels the largest
flow-based partitioning instance in our testbed, Erhard, can be solved within 6 minutes.
However, one should note that these runtimes basically do not depend on the number of
cells: this would be too much, in particular for small instances. As we do not observe any
improvement in terms of netlength during the last levels with the flow-based partitioning,
we use the recursive method from level 8 on, by default.

8.2.2 Realization

The realization during the flow-based partitioning is done with windows of size 2× 3 and
3× 2. Smaller realization windows (1× 2, 2× 1) lead to worse results with a degradation of
about 1% on average and save just 2% of the overall placement runtime. Larger windows
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Ashraf (206 movebounds)
Level |V | |E| |E|/|V | |W| |R| MinCostFlow runtime

flow computaton realization
3 2 761 17 198 6.2 16 246 0:00:00 0:00:16
4 6 453 31 810 4.9 64 367 0:00:00 0:09:18
5 15 828 69 237 4.4 256 616 0:00:00 0:00:38
6 38 429 151 993 4.0 1 024 1 368 0:00:00 0:00:10
7 119 414 437 991 3.7 4 096 3 598 0:00:01 0:00:01
8 663 252 2 368 934 3.6 98 304 481 075 0:00:04 0:00:01
9 3 641 561 12 858 495 3.5 556 416 231 000 0:00:30 0:00:14

10 7 973 618 28 181 428 3.5 1 216 194 477 571 0:01:46 0:00:09

Erhard (43 movebounds)
Level |V | |E| |E|/|V | |W| |R| MinCostFlow runtime

flow computaton realization
3 2 783 15 243 5.5 16 94 0:00:00 0:00:26
4 7 773 38 366 4.9 64 206 0:00:00 0:00:11
5 22 184 102 538 4.6 256 520 0:00:00 0:00:06
6 55 346 238 084 4.3 1 536 2 118 0:00:00 0:00:06
7 165 414 668 414 4.0 9 216 9 464 0:00:01 0:00:04
8 930 027 3 685 136 4.0 55 296 45 643 0:00:08 0:00:07
9 5 198 211 20 365 870 3.9 331 776 239 885 0:01:20 0:00:11

10 13 004 080 50 960 038 3.9 1 414 080 931 157 0:05:53 0:00:28

Table 8.2: Flow-based partitioning: instance sizes of the underlyingMinCostFlow instance
graph G = (V,E) in comparison to the number of windows |W| and regions |R|. The
runtimes reflect the time for construction and solving the MinCostFlow using the
NetworkSimplex algorithm and its realization. The runs were made on Intel XEON
with 3.3 GHz and 64 GB.

do not improve the results, but make the placement slower.
In the last column of Table 8.2, wall clock realization runtimes are provided, observed on
clustered netlists with a cluster ratio of 5 and target density of 97%. The overall runtimes
are very low, except for Ashraf in level 4. Here, a single Multisection instance dominated
the realization and took more than 9 minutes.

8.2.3 Level Skipping

Table 8.3 summarizes the effects of level skipping, as proposed in Section 5.3.1. We present
the results with 2× 2 and 3× 3 repartitioning. The default run is the scenario with levels
1 and 2 skipped and using 3× 3 repartitioning. We compare global placement wall clock
runtimes and the final, legalized netlengths. To avoid all density issues we set the target
density to 97% and use BestChice clustering with cluster ratio 5. Comparing this scenario
to the runs with levels 1 and 2 with 3×3 repartitioning, we see that skipping the levels does
even slightly improve the netlengths on average. The differences are bigger when comparing
the 2× 2 repartitioning runs. Skipping levels has a much higher impact here. In particular
for the chips Julia, Rabe, and Roger the flow-based partitioning responds better to the
floorplan of the chips which all contain large blockages. The level skipping yields about 4%
improvement for Julia and Roger and almost 14% for Rabe over the run without skipinng
and 2× 2 repartitioning.
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new BonnPlace with flow-based partitioning
Chip 2x2 repartitioning 3x3 repartitioning

skipped level 1,2 skipped level 1,2
BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss

Elisa 2.92 0:00:36 2.89 0:00:24 2.87 0:01:01 2.82 0:00:39
103.5% 92.3% 102.5% 61.5% 101.5% 156.4% 100.0% 100.0 %

Lucius 3.77 0:00:54 3.7 0:00:33 3.78 0:01:14 3.87 0:00:50
97.5% 108.0% 95.7% 66.0% 97.8% 148.0% 100.0% 100.0 %

Felix 7.42 0:00:30 7.41 0:00:20 7.36 0:00:44 7.31 0:00:35
101.6% 85.7% 101.4% 57.1% 100.7% 125.7% 100.0% 100.0 %

Rabe 15.09 0:01:48 13.33 0:01:08 12.69 0:03:22 12.73 0:02:11
118.6% 82.4% 104.7% 51.9% 99.7% 154.2% 100.0% 100.0 %

Julia 11.54 0:02:20 11.14 0:01:32 11.00 0:04:40 10.93 0:03:27
105.6% 67.6% 101.9% 44.4% 100.6% 135.3% 100.0% 100.0 %

Max 20.72 0:04:14 20.7 0:02:44 20.26 0:05:53 19.93 0:03:54
103.9% 108.5% 103.8% 70.1% 101.6% 150.9% 100.0% 100.0 %

Roger 30.04 0:05:18 28.85 0:03:33 29.03 0:09:40 28.53 0:06:10
105.3% 85.9% 101.1% 57.6% 101.7% 156.8% 100.0% 100.0 %

Ashraf 61.89 0:06:41 62.46 0:05:02 60.34 0:09:23 60.57 0:09:35
102.2% 69.7% 103.1% 52.5% 99.6% 97.9% 100.0% 100.0 %

Patrick 45.23 0:10:39 45.42 0:08:20 44.71 0:19:49 45.09 0:10:44
100.3% 99.2% 100.7% 77.6% 99.2% 184.6% 100.0% 100.0 %

Erhard 421.55 0:31:10 417.11 0:20:49 410.61 0:53:13 406.78 0:38:28
103.6% 81.0% 102.5% 54.1% 100.9% 138.3% 100.0% 100.0 %

Arijan 515.36 0:55:16 509.06 0:37:19 495.42 1:49:00 491.66 1:19:28
104.8% 69.5% 103.5% 47.0% 100.8% 137.2% 100.0% 100.0 %

Philipp 380.24 0:58:02 379.08 0:42:51 364.17 1:34:02 363.38 1:11:34
104.6% 81.1% 104.3% 59.9% 100.2% 131.4% 100.0% 100.0 %

Tomoku 368.17 0:54:25 375.24 0:38:29 363.85 1:24:07 362.28 1:21:24
101.6% 66.9% 103.6% 47.3% 100.4% 103.3% 100.0% 100.0 %

Ludwig 631.61 1:29:32 628.67 1:08:54 613.51 2:53:15 610.34 1:58:43
103.5% 75.4% 103.0% 58.0% 100.5% 145.9% 100.0% 100.0 %

Leyla 779.22 0:53:07 781.41 0:50:59 740.47 1:21:56 738.55 0:56:06
105.5% 94.7% 105.8% 90.9% 100.3% 146.0% 100.0% 100.0 %

Average 104.1% 102.5% 100.4% 100.0%
Total 6:14:32 4:42:57 10:51:19 8:03:48

77.4% 58.5% 134.6% 100.0%

Table 8.3: Flow-based global partitioning with and without skipping of levels 1 and 2.
Runtimes are the wall clock runtimes of global placement, BBox is the netlength after
legalization. The runs were performed on Intel XEON with 3.3 GHz and 64 GB in parallel
mode with up to 8 CPUs

The runtime differences are also remarkable. In both repartitioning scenarios the gain of
skipping levels 1 and 2 is about one third of runtime against an otherwise identical run
without level skipping. This option allows us to use 3× 3 repartitioning as a default feature.
As an option, the fast mode with 2× 2 repartitioning with and without level skipping can
be used. Skipping more and later levels leads to degradations.

From now on, all reported results use the default settings with level skipping and 3 × 3
repartitioning, unless otherwise noted.
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Chip 2x2 repartitioning 3x3 repartitioning
without + greedy without + greedy

re-allocation re-allocation re-allocation re-allocation
BBox(m)

Elisa 2.89 2.92 2.79 2.83
102.0% 103.3% 98.7% 100.0%

Lucius 3.81 3.67 3.86 3.82
99.8% 96.0% 101.1% 100.0%

Felix 7.55 7.57 7.46 7.27
103.8% 104.1% 102.7% 100.0%

Rabe 13.07 13.09 12.87 12.78
102.3% 102.4% 100.7% 100.0%

Julia 11.60 11.24 11.24 10.75
107.8% 104.5% 104.6% 100.0%

Max 21.35 20.97 19.77 19.14
111.5% 109.6% 103.3% 100.0%

Roger 30.00 29.71 29.63 28.53
105.2% 104.1% 103.8% 100.0%

Ashraf 64.05 61.97 61.67 60.22
106.4% 102.9% 102.4% 100.0%

Patrick 45.85 45.5 46.18 45.24
101.4% 100.6% 102.1% 100.0%

Erhard 416.40 418.3 411.98 407.79
102.1% 102.6% 101.0% 100.0%

Arijan 513.14 517.07 493.02 489.46
104.8% 105.6% 100.7% 100.0%

Philipp 375.77 377.38 365.15 364.06
103.2% 103.7% 100.3% 100.0%

Tomoku 377.90 375.47 365.21 362.34
104.3% 103.6% 100.8% 100.0%

Ludwig 634.66 633.23 615.18 612.01
103.7% 103.5% 100.5% 100.0%

Leyla 753.03 755.16 720.25 718.17
104.9% 105.1% 100.3% 100.0%

Average 104.2% 103.4% 101.5% 100.0%

Table 8.4: Legalized bounding box netlength for runs with flow-based global partitioning with
and without greedy re-allocation of cells. Runtime of greedy re-allocation was neglectable
(≈ 1%).

8.2.4 Greedy Re-allocation

Greedy re-allocation was introduced in Section 5.3.2. Table 8.4 shows the results of the
greedy re-allocation for 2×2 and 3×3 repartitioning with high density and using BestChoice
with cluster ratio 5. The additional runtimes for this routine are extremely small: unlike
greedy re-allocations (postopt) in detailed placement, this method neither needs to pay
attention to blockages nor to shapes. The netlength just has to be evaluated and updated.
In total, this method yields another 0.8-1.5% of netlength improvement on average, and in
several cases the improvement exceeds 3%. We use this method in each level, before the
flow-based partitioning is applied. The implementation is done in parallel, using a-priori
job assignment of a chunk of cells to the threads (cf. Section 6.3.3).
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8.3 New vs. Old BonnPlace

The new version of BonnPlace replaced the old version as the default global placement
engine. We provide the comparisons to the old BonnPlace in different scenarios in this
section.

8.3.1 Recursive Partitioning

In this section we compare the implementations of the old and new version of BonnPlace.
Despite its generalized data structures, the repeatability, and virtual classes, the new
BonnPlace data structures and algorithms work efficiently. Table 8.5 summarizes the
results and shows bounding box netlengths after legalization (BBox) and wall clock runtimes
of global placement runs.
Both tools used up to 4 CPUs simulaneously. The target density was set to 70%. The old and
new implementations share only the same core conjugate gradient solver and multisection
algorithm, but differ in the implementation of all other routines.

When comparing the same partitioning algorithms, the new version is faster by more than
2.3 times on average. The comparison to the standard version of old BonnPlace using
iterative partitioning shows that even recursive partitioning in the new BonnPlace is
more than 2 times as fast. Non-determinism, different data orderings and the less-restrictive
handling of density constraints in iterative partitioning lead to slightly different results. It
should be noted that the additional speedup is obtained with the same number of CPUs.

8.3.2 Flow-based Partitioning

In our experiments with the flow-based partitioning above, we see that the results with 3×3
repartitioning are better in most cases, as already observed by Brenner [2005]. However, in
the old implementation of BonnPlace, 3× 3 repartitioning was restricted to “high” effort
placement runs due to its high runtime. With the new implementation of BonnPlace,
3×3 repartitioning becomes affordable and is thus used as default. For low effort placement,
we maintain the option of 2× 2 repartitioning.
In the new version, beyond the flow-based partitioning, possibly clustered netlists and 3× 3
repartitioning, we use the local placement method (see Section 6.2.9), which yields about
0.5%-1% of netlength improvement. This method is also used by default and is contained
in the results, unless otherwise noted.
Again, we first want to avoid density effects and compute placements with a 97% target
density. The results are summarized in Table 8.6. The leftmost columns show the old version
of BonnPlace with iterative and recursive partitioning respectively, with standard settings.
The other 5 columns show the result of the new version of BonnPlace with flow-based
partitioning and clustering, using BestChoice and different clustering ratios. Except for
Felix, where the old version is slightly better, the new BonnPlace produces much shorter
netlengths for all test cases. Without clustering and with moderate cluster ratios (α ≤ 5),
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BonnPlace
old new

recursive iterative recursive
Chip BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ssR
Lucius 4.54 0:04:06 4.56 0:02:58 4.35 0:01:18

104.3% 316.7% 104.8% 245.4% 100.0% 100.0%
Elisa 3.54 0:02:09 3.47 0:01:22 3.50 0:00:46

101.1% 279.4% 99.1% 205.9% 100.0% 100.0%
Felix 7.71 0:01:51 7.59 0:01:26 7.71 0:00:41

100.0% 269.5% 98.5% 269.4% 100.0% 100.0%
Rabe 16.12 0:06:30 15.82 0:06:54 15.79 0:02:43

102.1% 239.1% 100.2% 314.3% 100.0% 100.0%
Julia 13.31 0:08:54 13.48 0:07:19 13.21 0:03:39

100.7% 243.6% 102.0% 239.0% 100.0% 100.0%
Max 23.81 0:17:03 22.03 0:18:35 23.31 0:05:32

102.1% 308.4% 94.5% 385.7% 100.0% 100.0%
Roger 30.63 0:27:54 30.26 0:28:42 31.18 0:09:14

98.2% 302.2% 97.0% 360.2% 100.0% 100.0%
Patrick 53.14 0:40:27 51.65 0:43:57 52.90 0:19:57

100.5% 202.7% 97.7% 251.9% 100.0% 100.0%
Ashraf 68.33 0:33:16 67.32 0:28:58 68.61 0:13:10

99.6% 252.6% 98.1% 333.8% 100.0% 100.0%
Erhard 463.27 2:40:30 459.28 1:26:28 463.10 0:49:18

100.0% 325.6% 99.2% 201.5% 100.0% 100.0%
Arijan 552.65 4:13:27 550.12 3:14:04 557.81 1:52:16

99.1% 225.8% 98.6% 251.9% 100.0% 100.0%
Tomoku 384.56 4:27:45 378.87 3:27:49 385.91 1:57:22

99.6% 228.1% 98.2% 238.6% 100.0% 100.0%
Trips 663.69 6:49:16 658.87 5:05:11 672.38 2:35:51

98.7% 262.6% 98.0% 226.7% 100.0% 100.0%
Andre 508.40 7:10:27 500.36 6:00:28 514.13 3:09:52

98.9% 226.7% 97.3% 246.9% 100.0% 100.0%
Ludwig 651.06 6:19:01 654.67 6:10:23 644.37 2:33:50

101.0% 246.4% 101.6% 343.8% 100.0% 100.0%
Leyla 767.23 8:54:31 772.52 6:54:23 761.28 3:35:32

100.8% 248.0% 101.5% 268.9% 100.0% 100.0%
Erik 620.95 8:04:21 611.09 8:46:26 615.22 4:09:31

100.9% 194.1% 99.3% 276.1% 100.0% 100.0%

Avg. 100.4% 99.2% 100.0%
Total 51:01:28 43:25:22 21:40:32

235.4% 200.3% 100.0%

Table 8.5: Comparison of new and old BonnPlace’s global placement. BBox is the
bounding box netlength in meters of the legal placement, the runtimes reflect the wall clock
runtimes of global placement. All runs were performed on Intel XEON with 2.7 GHz and
64 GB and used up to 4 CPUs simultaneously with standard parameters.
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the mid-size designs with large blockages on the chip area dominate the image again: on
Julia, Rabe, and Roger, the relative improvement is the highest one, but also on Trips
the netlength can be improved by about 10%. The scenario of α = 20 is also interesting:
even with this extreme clustering ratio, the results are comparable to the old placement,
however with some significant degradations for the largest test cases. The runtimes are also
convincing, even in this artificial scenario of high densities. Moderate clusterings allow a
speedup of 2.5–3.8 over the old BonnPlace with an average improvement of 8.4%–6.4%.
The scenario above was made with high density targets. In real-word instances, usually
much lower densities and even equal distribution are used. To this end, we performed more
comparisons to address these issues. As there is no guarantee on the density compliance of
the old iterative partitioning, we test the new placement against the recursive partitioning
method of the old version of BonnPlace. In the old version of BonnPlace, the same
scenario was used for placement with movebounds. For these tests, target densities were
computed by the formula:

Dtarget :=

∑
c∈C size(c)

free area(A)
+ 1% · number of levels. (8.1)

Recursive partitioning accumulates rounding decisions, so we run our tool with and without
an additional 2% target density to compensate for such effects. The evaluation is presented
in Table 8.7 for the 2× 2 repartitioning and in Table 8.8 for the 3× 3 case. The runs were
made on an Intel XEON with 3.3 GHz and 64 GB machine, which provides better speedups
in parallel processing than the older Intel computers and used the BestChoice algorithm
with cluster ratio 5. In addition, lower densities mean more cell movement, which leads
to higher repartitioning effort and longer runtimes. The results show legalized netlength
without local placement.
In the first setup (Table 8.7), the fast mode, the new BonnPlace achieves similar results
to the old version, but is 8.7 times faster. On several of the larger designs, the speedup even
exceeds a factor of 10. Results in the new standard mode, the second case, are shown in
Table 8.8. Here, the results are significantly better while the speedup over the old version
of BonnPlace still sums up to a factor of 5.4.
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8.4 New BonnPlace with Movebounds: Recursive vs.
Flow-based

In this section we compare the flow-based partitioning and the recursive partitioning
method (Algorithm 4) on instances with movebounds using the new BonnPlace. As soft
movebounds are interpreted as hard ones (with possibly enlarged area) we restrict ourselves
to runs with hard movebounds.
The test suite for movebounds contains 11 instances with various numbers of constraints.
Several instances have been created from flattening existing hierarchies, where for each
flattened RLM, its area became a movebound and the cells within the flattened RLM were
associated to this movebound. Others were defined by experienced designers for different
purposes. The test suite is summarized in Table 8.9. All these tests were performed on an
Intel XEON with 3.0 GHz and 64 GB in parallel mode and used up to 8 CPUs.
To fade-out any density issues, we again set the target density to 97%. The results on
instances with movebounds are presented in Table 8.10 for the inclusive hard movebounds
and in Table 8.11 for the exclusive hard ones. The recursive partitioning used 2 × 2
repartitioning, and the new flow-based partitioning used 3× 3 by default.
In the case of inclusive hard movebounds, the new flow-based partitioning shows a remarkable
netlength improvement of more than 10% on average. On Ashraf, Valentin and Trips the
improvements exceed even 10%, on Erik 20% and on Rabe more than 25%.
The price for this is a runtime loss of about one third, which can easily be compensated by
the moderate application of clustering, as shown in the rightmost column. With this strategy,
the overall gain over the recursive partitioning can almost be kept, but clustering with
BestChoice provides and additional speedup of 1.7 over a standard recursive partitioning
setup.
A similar situation shows up in the case of exclusive movebounds. Again, dominated by the
results on Rabe with an improvement of more than 25%, flow-based partitioning performs
better in terms of netlength by more than 13%. The runtime loss is again moderate and
can be fully compensated by clustering. In total, on exclusive hard movebound instances,
the new default algorithm is twice as fast as the old one and produces placements with
netlengths improved by 11.4% on average.

Finally, we show that the legalization routine by Brenner and Vygen [2004] has a significant
part in total placement runtime. In the past, legalization runtime contributed with usually
less than 5% to the total placement runtime. This is no longer the case in the presence of
movebounds. Table 8.12 shows the runtimes on instances with movebounds. Legalization
becomes a relatively expensive routine in the new version of BonnPlace and takes almost
50% of total placement runtime. On Ashraf and Andre it is even the dominating algorithm
with 72% and 58% of total placement runtime respectively.
Table 8.13 shows the runtimes on instances with exclusive hard movebounds. Here, legaliza-
tion contributes more than 30% to the total placement runtime. This number is smaller
compared to the inclusive hard case because Multisection is not needed to assign cells
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BonnPlace
old recursive new fast

chip target density 2x2 repartitioning 2x2 repartitioning
+2% target density

BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss
Elisa 3.71 0:01:47 3.95 0:00:21 3.68 0:00:20

63.46% 100.0% 1.0 106.4% 5.1 99.3% 5.4
Lucius 6.46 0:03:29 5.81 0:00:34 5.42 0:00:33

55.10% 100.0% 1.0 89.9% 6.1 83.9% 6.3
Felix 7.87 0:01:43 8 0:00:18 7.98 0:00:16

82.29% 100.0% 1.0 101.6% 5.7 101.4% 6.4
Rabe 17.13 0:05:49 17.51 0:00:55 16.26 0:00:47

61.24% 100.0% 1.0 102.2% 6.3 94.9% 7.4
Julia 18.32 0:07:08 15.89 0:00:52 16.16 0:00:48

58.26% 100.0% 1.0 86.7% 8.2 88.2% 8.9
Max 23.81 0:11:07 23.59 0:01:18 22.32 0:01:13

65.05% 100.0% 1.0 99.1% 8.6 93.7% 9.1
Roger 32.45 0:16:51 33.11 0:01:51 32.45 0:01:51

58.33% 100.0% 1.0 102.0% 9.1 100.0% 9.1
Ashraf 79.86 0:24:12 81.56 0:02:32 78.57 0:02:31

45.77% 100.0% 1.0 102.1% 9.6 98.4% 9.6
Patrick 54.56 0:31:37 59.00 0:09:00 58.53 0:08:20

61.56% 100.0% 1.0 108.1% 3.5 107.3% 3.8
Erhard 537.64 1:22:41 579.14 0:08:28 575.81 0:08:20

48.63% 100.0% 1.0 107.7% 9.8 107.1% 9.9
Arijan 640.22 2:06:18 658.82 0:14:21 640.96 0:14:57

43.58% 100.0% 1.0 102.9% 8.8 100.1% 8.4
Philipp 422.96 2:10:46 435.98 0:15:49 437.26 0:15:06

62.32% 100.0% 1.0 103.1% 8.3 103.4% 8.7
Tomoku 490.28 2:45:23 476.14 0:21:30 466.05 0:21:55

45.24% 100.0% 1.0 97.1% 7.7 95.1% 7.5
Valentin 869.51 4:17:31 864.02 0:25:30 836.42 0:26:09

65.37% 100.0% 1.0 99.4% 10.1 96.2% 9.8
Trips 702.46 3:47:06 760.6 0:21:53 744.12 0:22:04

56.56% 100.0% 1.0 108.3% 10.4 105.9% 10.3
Andre 691.52 4:50:57 667.52 0:29:08 653.27 0:28:13

37.99% 100.0% 1.0 96.5% 10.0 94.5% 10.3
Ludwig 758.79 3:47:31 736.42 0:26:47 750.44 0:26:04

52.57% 100.0% 1.0 97.1% 8.5 98.9% 8.7
Leyla 925.70 5:33:21 971.86 0:38:31 957.01 0:39:00

44.31% 100.0% 1.0 105.0% 8.7 103.4% 8.5
Erik 734.02 4:56:50 810.62 0:37:00 721.04 0:38:33

56.67% 100.0% 1.0 110.4% 8.0 98.2% 7.7

Average 100.0% 101.2% 98.2%
Total 37:22:07 4:16:38 4:17:00

1.0 8.7 8.7

Table 8.7: Old BonnPlace with recursive partitioning compared to new FlowBased-
Partitioning. In magenta the speedups over old recursive are provided. Runtimes are
global placement wall-clock runtimes, BBox shows the legalized netlength. Runs were made
on Intel XEON with 3.3 GHz and 64 GB.
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BonnPlace
old recursive new standard

chip target density 2x2 repartitioning 3x3 repartitioning
+2% target density

BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss
Elisa 3.71 0:01:47 3.57 0:00:27 3.28 0:00:25

63.46% 100.0% 1.0 96.2% 4.0 88.5% 4.3
Lucius 6.46 0:03:29 5.25 0:00:29 5.21 0:00:30

55.10% 100.0% 1.0 81.2% 7.2 80.6% 7.0
Felix 7.87 0:01:43 7.78 0:00:21 7.68 0:00:22

82.29% 100.0% 1.0 98.8% 4.9 97.5% 4.7
Rabe 17.13 0:05:49 16.39 0:01:01 15.83 0:01:01

61.24% 100.0% 1.0 95.7% 5.7 92.4% 5.7
Julia 18.32 0:07:08 14.81 0:01:23 13.42 0:01:21

58.26% 100.0% 1.0 80.8% 5.2 73.3% 5.3
Max 23.81 0:11:07 21.08 0:01:50 21.13 0:01:56

65.05% 100.0% 1.0 88.5% 6.1 88.7% 5.8
Roger 32.45 0:16:51 30.42 0:03:48 29.90 0:03:48

58.33% 100.0% 1.0 93.7% 4.4 92.1% 4.4
Ashraf 79.86 0:24:12 79.17 0:05:01 75.63 0:04:54

45.77% 100.0% 1.0 99.1% 4.8 94.7% 4.9
Patrick 54.56 0:31:37 54.89 0:05:38 53.65 0:05:43

61.56% 100.0% 1.0 100.6% 5.6 98.3% 5.5
Erhard 537.64 1:22:41 546.80 0:14:10 536.58 0:14:28

48.63% 100.0% 1.0 101.7% 5.8 99.8% 5.7
Arijan 640.22 2:06:18 633.18 0:25:02 607.82 0:25:08

43.58% 100.0% 1.0 98.9% 5.0 94.9% 5.0
Philipp 422.96 2:10:46 411.68 0:26:18 406.82 0:27:25

62.32% 100.0% 1.0 97.3% 5.0 96.2% 4.8
Tomoku 490.28 2:45:23 451.79 0:37:53 438.88 0:37:03

45.24% 100.0% 1.0 92.1% 4.4 89.5% 4.5
Valentin 869.51 4:17:31 823.60 0:43:45 799.24 0:42:26

65.37% 100.0% 1.0 94.7% 5.9 91.9% 6.1
Trips 702.46 3:47:06 694.85 0:37:51 689.23 0:39:35

56.56% 100.0% 1.0 98.9% 6.0 98.1% 5.7
Andre 691.52 4:50:57 624.58 0:48:53 605.86 0:49:04

37.99% 100.0% 1.0 90.3% 6.0 87.6% 5.9
Ludwig 758.79 3:47:31 722.51 0:38:52 706.13 0:41:57

52.57% 100.0% 1.0 95.2% 5.9 93.1% 5.4
Leyla 925.70 5:33:21 921.73 0:57:48 900.72 0:58:12

44.31% 100.0% 1.0 99.6% 5.8 97.3% 5.7
Erik 734.02 4:56:50 692.19 1:07:28 680.23 0:57:15

56.67% 100.0% 1.0 94.3% 4.4 92.7% 5.2

Average 100.0% 94.4% 91.7%
Total 37:22:07 6:57:58 6:52:33

1.0 5.4 5.4

Table 8.8: Old BonnPlace with recursive partitioning compared to new FlowBased-
Partitioning. In magenta the speedups over old recursive are provided. Runtimes are
global placement wall-clock runtimes, BBox shows the legalized netlength. Runs were made
on Intel XEON with 3.3 GHz and 64 GB.
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Chip |M| |C| % cells with max cell density remarks
movebounds in a movebound

Lucius 1 77 679 88.3% 52%
Felix 3 84 966 63.0% 70%
Rabe 2 175 646 4.3% 67%
Ashraf 206 866 777 22.0% 92% flattened hierarchy
Erhard 43 2 578 246 97.8% 74%
Philipp 2 3 945 833 16.3% 50% non-rectangular
Tomoku 85 5 296 120 1.2% 74% overlapping, flattened hierarchy
Trips 114 5 747 007 99.4% 81% overlapping
Andre 43 6 794 323 3.8% 73% flattened hierarchy
Ludwig 33 7 500 446 2.7% 70% overlapping, flattened hierarchy
Erik 39 9 316 938 84.6% 85% flattened hierarchy

Table 8.9: Summary of instances with movebounds.

Inclusive Hard Movebound Tests
new BonnPlace

chip Partitining Method:
recursive flow-based

2× 2 repartitioning 3× 3 repartitioning
BestChoice α = 5

BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss
Lucius 3.95 0:00:46 3.71 0:01:42 3.66 0:00:50

100.0% 1.0 94.0% 0.5 92.9% 0.9
Felix 8.14 0:00:30 7.54 0:01:06 7.54 0:00:43

100.0% 1.0 92.6% 0.5 92.6% 0.7
Rabe 16.95 0:02:02 12.59 0:03:56 12.44 0:01:20

100.0% 1.0 74.3% 0.5 73.4% 1.5
Ashraf 69.27 0:12:05 59.71 0:19:41 61.59 0:09:32

100.0% 1.0 86.2% 0.6 88.9% 1.3
Erhard 509.74 0:36:31 480.01 0:52:17 499.31 0:24:52

100.0% 1.0 94.2% 1.0 98.0% 1.5
Philipp 384.39 1:33:56 345.63 2:16:17 355.32 0:46:47

100.0% 1.0 89.9% 0.7 92.4% 2.0
Tomoku 382.55 1:22:13 360.56 2:15:23 367.00 0:47:44

100.0% 1.0 94.3% 0.6 95.9% 1.7
Trips 688.24 2:11:16 619.40 3:04:19 611.58 1:14:51

100.0% 1.0 90.0% 0.7 88.9% 1.8
Andre 504.81 2:14:03 467.38 3:28:28 462.23 1:35:41

100.0% 1.0 92.6% 0.6 91.6% 1.4
Ludwig 642.28 2:05:23 613.23 1:59:50 624.09 1:12:23

100.0% 1.0 95.5% 1.0 97.2% 1.7
Erik 720.54 2:56:28 582.17 3:45:54 598.15 1:30:24

100.0% 1.0 80.8% 0.8 83.0% 2.0

Average 100.0% 89.2% 90.2%
Total 13:15:15 18:08:54 07:45:08

1.0 0.7 1.7

Table 8.10: Comparison between different partitioning methods in new BonnPlace on
instances with inclusive hard movebounds and 97% target density. The runtimes are global
placement wall clock runtimes, the legalized bounding box netlength is provided.
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Exclusive Hard Movebound Tests
new BonnPlace

chip Partitining Method:
recursive flow-based

2× 2 repartitioning 3× 3 repartitioning
BestChoice α = 5

BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss
Rabe 17.26 0:03:02 12.83 0:03:03 12.85 0:01:18

100.0% 1.0 74.3% 1.0 74.5% 2.3
Ashraf 71.54 0:08:43 61.73 0:13:25 64.44 0:06:13

100.0% 1.0 86.3% 0.7 90.1% 1.6
Erhard 534.42 0:47:12 505.69 0:58:37 518.64 0:20:03

100.0% 1.0 94.6% 0.8 97.0% 2.3
Andre 516.40 2:21:58 484.39 3:04:24 494.04 1:11:54

100.0% 1.0 93.8% 0.8 95.7% 2.0
Erik 713.52 2:52:34 600.04 3:19:13 624.82 1:24:00

100.0% 1.0 84.1% 0.9 87.6% 2.1

Average 100.0% 86.3% 88.6%
Total 6:14:28 7:38:41 3:03:28

1.0 0.8 2.0

Table 8.11: Comparison between different partitioning methods in new BonnPlace on
instances with exclusive hard movebounds and 97% target density. The runtimes are global
placement wall clock runtimes, the legalized bounding box netlength is provided.

to legalization regions and the backup strategy for legalization with lower densities does
not apply.
However, further runtime improvement for the overall placement is possible by accelerating
the legalization part, for example by processing regions in parallel.

8.5 Comparison to an Industrial Tool

We tested the outcome of our tool also against the results produced by a state-of-the-art
industrial placer. The implementation of the industrial tool follows Viswanathan et al.
[2007]. There have been huge differences in terms of density, so once again, to avoid density
effects we only compare placements with 97% target density. In our tests, to obtain a
better comparison, both the industrial tool as well as our placer used BestChoice clustering
with a cluster ratio of α = 5 (Alpert et al. [2005]). BonnPlace runs in default settings
and use the local placement. The results are presented in Table 8.14 on instances without
movebounds.

In total, the tools produce comparable results on average in terms of netlength, but
BonnPlace is 5.5 times faster. When considering particular results, however, the deviations
of both tools are remarkable. On the small test cases Lucius and Elisa, the netlengths
computed by the industrial tool are more than 9.2% and 9.8% shorter. On the small chip
Dagmar and the large test cases Arijan and Valentin, BonnPlace performs significantly
better, with an improvement of 16.8%, 10.8% and 9.1% respectively.
The results with movebounds produced by our tool significantly outperform the industrial
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New BonnPlace: Inclusive Hard Movebound Tests

Chip Runtime (hh:mm:ss) Relative legalization runtime
Global Detailed Total 50.7 %

Lucius 0:00:50 0:00:52 0:01:42 24.4 %
Felix 0:00:43 0:00:14 0:00:57 32.2 %
Rabe 0:01:20 0:00:38 0:01:58 72.1 %
Ashraf 0:09:32 0:24:40 0:34:12 36.5 %
Erhard 0:24:52 0:14:19 0:39:11 23.5 %
Philipp 0:46:47 0:14:23 1:01:11 48.2 %
Tomoku 0:47:44 0:44:29 1:32:12 49.4 %
Trips 1:14:51 1:13:08 2:27:59 49.3 %
Andre 1:35:41 1:33:09 3:08:50 58.3 %
Ludwig 1:12:23 1:41:08 2:53:31 48.6 %
Erik 1:30:24 1:25:26 2:55:50 49.3 %

Total 7:45:08 7:32:26 15:17:34 49.3 %

Table 8.12: Runtime distributions on runs with new BonnPlace with inclusive hard
movebounds. Runs were made on an Intel XEON with 3.0 GHz and 64 GB using up to 8
CPUs. Runtimes are wall clock runtimes.

New BonnPlace: Exclusive Hard Movebound Tests

Chip Runtime (hh:mm:ss) Relative legalization runtime
Global Detailed Total

Rabe 0:01:18 0:00:23 0:01:41 22.8 %
Ashraf 0:06:13 0:09:04 0:15:17 59.3 %
Erhard 0:20:03 0:09:58 0:30:01 33.2 %
Andre 1:11:54 0:27:21 1:39:15 27.6 %
Erik 1:33:48 0:36:43 2:00:43 30.4 %

Total 3:03:28 1:23:29 4:26:57 31.3%

Table 8.13: Runtime distributions on runs with new BonnPlace with exclusive hard
movebounds. Runs were made on an Intel XEON with 3.0 GHz and 64 GB using up to 8
CPUs. Runtimes are wall clock runtimes.
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tool, as shown in Tables 8.15 and 8.16. For tests with inclusive hard movebounds, the
placement produced by BonnPlace is 32% shorter, and the tool is 9.5 times faster. For
the exclusive movebounds, the gap is 32.9% in favor of BonnPlace and our tool is more
than 20 times faster. The reliability of BonnPlace is also convincing: while the industrial
tool failed twice completely (in case of Philipp and Ashraf) on instances with inclusive
hard movebounds and produced several violations on Tomoku, Andre and Erik (361, 62
and 4655 respectively). The placements produced by BonnPlace were legal in each of the
tests. On instances with exclusive hard movebounds the industrial tool produced illegal
outcomes on Andre and Erik showing 463 and 5630 violations, respectively.

8.6 Benchmarks

Apart from industrial instances, we have also tested our tool on the latest international
benchmarks, as proposed in ISPD 20005 (Nam et al. [2005]) and ISPD 2006 (Nam et al.
[2006]) and compared the results to several of the placers presented in Chapter 3. We cite
the results of other placers from the papers of Spindler, Schlichtmann and Johannes [2008]
and Agnihotri and Madden [2007].

On ISPD 2005 benchmarks (see Table 8.17), where only bounding box netlength is evaluated,
we run BonnPlace in high-effort mode with BestChoice cluster ratio 2 and applied local
placement. BonnPlace is the fourth best out of twelve. Only NTU3 (Chen et al. [2008]),
Aplace2 (Kahng and Wang [2006]) and RQL (Viswanathan et al. [2007]) produce shorter
netlengths.

In the ISPD 2006 benchmarks (Nam et al. [2006]), a combined score function is evaluated.
In this score function, bounding box netlength is measured. Then, density violations are
counted, where the density is measured by a sliding window of 10× 10 standard-cell heights.
The relative scaled number of density violations is then added to the objective. Finally,
runtime is evaluated and set in relation to the median of all placement runtimes: the runtime
penalty (bonus) x is computed by the formula x = 0.04 log2(

tool cpu
cpu median over all tools), which

roughly increases the netlength/density score by 4% if the tool is twice as slow as the
median. On the other hand, the netlength/density score can be decreased by 4% if the
placement is twice as fast as the median of others. The runtime penalties are bounded by
±10%. For details we refer to Nam et al. [2006].
To obtain comparable runtimes, we also used an Opteron 852 machine. We applied
BestChoice clustering with a ratio of α = 2 and allowed parallel processing with 8 CPUs. In
Table 8.18 we show detailed results of our tool and of the leading tool on this benchmark
set, Kraftwerk2 (Spindler, Schlichtmann and Johannes [2008]).
All these test cases, except newblue1, only consist of standard cells. In the case of newblue1,
which contains one large block and several macros, we ran macro placement to place the
largest block (Phase 1 of MacroPlacement in Brenner [2005]), fixed the largest instance
and then ran global placement with legalization with floating large blocks. An explicit
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chip industrial tool new BonnPlace
BBox(m) hh:mm:ss Box(m) hh:mm:ss

Dagmar 0.95 0:02:13 0.80 0:00:40
100.0% 1.0 83.2% 3.3

Elisa 2.60 0:02:35 2.86 0:00:36
100.0% 1.0 109.8% 4.4

Lucius 3.42 0:03:30 3.73 0:01:48
100.0% 1.0 109.2% 1.9

Felix 8.17 0:03:05 7.68 0:00:36
100.0% 1.0 94.0% 5.2

Paula 3.14 0:06:30 3.21 0:01:41
100.0% 1.0 102.3% 3.9

Rabe 12.42 0:08:09 12.36 0:01:44
100.0% 1.0 99.6% 4.7

Julia 10.65 0:08:39 10.84 0:02:15
100.0% 1.0 101.8% 3.9

Max 17.22 0:18:00 17.99 0:06:25
100.0% 1.0 104.5% 2.8

Roger 27.42 0:22:21 27.74 0:10:37
100.0% 1.0 101.2% 2.1

Ashraf 61.05 0:49:03 61.53 0:09:54
100.0% 1.0 100.8% 5.0

Patrick 43.84 1:00:13 44.64 0:12:24
100.0% 1.0 101.8% 4.9

Erhard 463.76 2:24:24 413.64 0:32:45
100.0% 1.0 89.2% 4.4

Arijan 485.04 3:30:35 484.29 0:59:36
100.0% 1.0 99.8% 3.5

Philipp 358.91 4:22:42 342.37 0:54:52
100.0% 1.0 95.4% 4.8

Tomoku 356.44 7:51:32 354.37 1:10:10
100.0% 1.0 99.4% 6.7

Trips 616.05 6:31:12 589.69 1:25:13
100.0% 1.0 95.7% 4.6

Valentin 671.49 8:15:01 610.40 1:36:21
100.0% 1.0 90.9% 5.1

Andre 437.01 9:16:52 448.74 1:38:04
100.0% 1.0 102.7% 5.7

Ludwig 598.40 9:19:11 603.38 1:30:30
100.0% 1.0 100.8% 6.2

Leyla 711.90 13:43:02 718.22 2:09:18
100.0% 1.0 100.9% 6.4

Erik 559.34 13:25:50 547.43 2:07:02
100.0% 1.0 97.9% 6.3

Average 100.0% 99.3%
Total 81:44:09 14:52:29

1.0 5.5

Table 8.14: Comparison of the industrial tool to the new BonnPlace. Total wall clock
runtimes and final bounding box netlengths are provided. The runs were made on Intel
XEON with 3.0 GHz and 64 GB in parallel mode with 97% target density and standard
settings.
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Inclusive Hard Movebounds
chip industrial tool new BonnPlace

BBox(m) hh:mm:ss Box(m) hh:mm:ss
Lucius 4.55 00:03:30 3.66 00:01:42

100.0% 1.0 80.5% 2.1
Felix 9.03 00:05:38 7.54 00:00:57

100.0% 1.0 83.5% 5.9
Rabe 16.68 00:10:22 12.44 00:01:58

100.0% 1.0 74.6% 5.3
Erhard 549.62 04:49:16 499.31 00:39:11

100.0% 1.0 90.8% 7.4
Tomoku *737.34 13:20:44 367 01:32:13

100.0% 1.0 49.8% 8.7
Trips 703.88 11:37:42 611.58 02:27:59

100.0% 1.0 86.9% 4.7
Andre *1023.65 37:36:58 462.23 03:08:50

100.0% 1.0 45.2% 12.0
Ludwig 1207.63 26:22:04 624.09 02:53:31

100.0% 1.0 51.7% 9.1
Erik *879.12 36:44:33 598.15 02:55:50

100.0% 1.0 68.0% 12.5
Average 100.0% 68.0%
Total 130:50:47 13:42:11

1.0 9.5

Table 8.15: Comparison of the industrial tool to the new BonnPlace. Total wall-clock
runtimes and final bounding box netlengths are provided. The runs were made on Intel
XEON with 3.0 GHz and 64 GB in parallel mode with 97% target density and standard
settings. Instances marked with (*) contain violations, see Section 8.4.

Exclusive Hard Movebounds
chip industrial tool new BonnPlace

BBox(m) hh:mm:ss Box(m) hh:mm:ss
Rabe 16.73 00:11:18 12.85 00:01:41

100.0% 1.0 76.8% 6.7
Ashraf 93.21 02:09:14 64.44 00:15:17

100.0% 1.0 69.1% 8.5
Erhard 633.64 04:25:35 518.64 00:30:01

100.0% 1.0 81.9% 8.8
Andre *1144.21 47:08:58 494.04 01:41:37

100.0% 1.0 43.2% 27.8
Erik *864.74 **43:20:47 624.82 02:10:34

100.0% 1.0 72.3% 19.9
Average 100.0% 67.1%
Total 97:15:52 04:39:10

1.0 20.9

Table 8.16: Comparison of the industrial tool to the new BonnPlace. Total wall-clock
runtimes and final bounding box netlengths are provided. The runs were made on Intel
XEON with 3.0 GHz and 64 GB in parallel mode with 97% target density and standard
settings. Instances marked with (*) contain violations, see Section 8.4. (**) The run was
made in sequential mode, as the parallel one faild as it required more than 220 GB memory.
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macro placement was too time consuming. To all other test cases, standard BonnPlace
was applied. When considering netlength and density violation only, BonnPlace is slightly
better than Kraftwerk, which produces better results on newblue1 and newblue4. Our
tool performs better on the larger instances, such as adaptec5 and newblue5-7. Both tools,
Kraftwerk2 and BonnPlace, are fast and obtain their rankings by a significant speedup
over the other tools and reach or exceed the maximal runtime bonuses in several cases.
Without bounds, BonnPlace’s real runtime bonuses would be -11.1% (newblue1), -10.5%
(newblue4) and -11.0% (newblue5).
The results on these benchmarks produced by other placement tools are summarized in
Table 8.19, showing that BonnPlace is currently the best placement tool in this objective.
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8.7 Clustering

By default, we use the BestChoice algorithm for clustering, as long as the random walk
based clustering is in the preliminary stage. Table 8.20 shows the comparison between
different clustering ratios of BestChoice with BonnPlace in standard settings, with a
target density of 70%. Unlike the results on the placement proposed by Nam et al. [2006],
clustering reduces netlengths in BonnPlace only with small clustering ratios. A clustering
ratio of α = 5 already leads to inferior results. On the other hand, we can confirm the
achievable speedups with our tool.

8.8 Random Walk Clustering

Table 8.21 summarizes the runtimes of parallel hitting time computations in relation to the
global placement runtimes (including hitting time computation and clustering) with cluster
ratio α = 10. The parallel random walk computation to 16 targets takes about 1 minute per
million cells for large designs on average (on an Intel XEON with 3.3 GHz and 64 GB). For
the small and mid-size designs, the cache allows faster random walk computation on the
one hand, on the other hand the clustering has a lower impact on total runtime in global
placement. Consequently, for small and mid-size designs, the random walk computation
takes less than 5% of the global placement runtime, for the largest designs the ratio varies
between 8.7% and 13.9%, which is still acceptable. The parallel computations with 8 CPUs
yield speedups of 5 and better, when computing 16 targets. After the hitting times have
been computed, a modified BestChoice algorithm is used for bottom-up clustering. The
rank function (7.20) used here leads to situations, where for a cell c and its best neighbor
c′, the rankRW ′ = −∞. In this case, c, c′ are not clustered and the clustering stops before
reaching the desired cluster ratio. The combination of global random walk information
in form of hitting times and bottom-up clustering shows very promising results. Despite
the simple target choice and the preliminary implementation, the presented algorithm
significantly outperforms BestChoice in terms of netlength (see Tab. 8.22). In all cases,
BonnPlace with random walk clustering produces significantly better results than with
BestChoice in all cases. The gap to BestChoice is 6.5% in favor of our routine on average,
maximal deviation even exceeded 12%. Interesting is also the comparison to the unclustered
runs: on average, the random walk clustering improves the placement netlength by 1.5%,
where the major improvement was obtained on the small and mid-size designs, where the
improvement exceeded even 10% in several cases. For the large designs, it seems that the
random walk information helps already to prevent several bad clustering decisions, but it
is insufficient to obtain an overall netlength improvement. When considering the overall
placement runtimes, one can see that placement with BestChoice achieves a speedup of 3.5
on average, comparing to the unclustered run. Random walk clustering is 2.1 times faster
than the unclustered run.
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BonnPlace (target density 70%)
no clustering Clustering using the BestChoice algorithm (Alpert et al. [2005]) with cluster ratio α

α = 2 α = 5 α = 10 α = 20
chip Netl Runtime Netl Runtime Netl Runtime Netl Runtime Netl Runtime
Elisa 3.45 0:01:01 3.35 0:00:40 3.39 0:00:28 3.34 0:00:24 3.34 0:00:21

100.0% 1.0 97.2% 1.5 98.3% 2.2 96.8% 2.5 96.9% 2.9
Lucius 3.97 0:01:24 4.07 0:00:55 4.05 0:00:41 4.22 0:00:33 4.26 0:00:31

100.0% 1.0 102.5% 1.5 102.2% 2.0 106.4% 2.5 107.4% 2.7
Felix 7.92 0:00:54 7.93 0:00:36 8.25 0:00:30 8.21 0:00:27 8.37 0:00:27

100.0% 1.0 100.1% 1.5 104.1% 1.8 103.6% 2.0 105.6% 2.0
Rabe 14.47 0:03:14 14.08 0:01:53 14.29 0:01:21 14.34 0:01:02 14.55 0:00:58

100.0% 1.0 97.3% 1.7 98.7% 2.4 99.1% 3.1 100.6% 3.3
Julia 13.36 0:03:56 12.77 0:02:27 13.06 0:01:43 13.28 0:01:12 13.95 0:01:02

100.0% 1.0 95.6% 1.6 97.7% 2.3 99.4% 3.3 104.4% 3.8
Max 22.64 0:06:16 21.69 0:03:57 22.42 0:02:44 21.82 0:02:13 22.25 0:02:02

100.0% 1.0 95.8% 1.6 99.0% 2.3 96.4% 2.8 98.3% 3.1
Roger 31.76 0:10:40 31.55 0:06:13 31.18 0:04:15 32.33 0:03:09 32.38 0:02:46

100.0% 1.0 99.3% 1.7 98.2% 2.5 101.8% 3.4 102.0% 3.9
Ashraf 67.5 0:13:07 66.48 0:09:06 70.89 0:05:36 76.16 0:04:35 80.66 0:04:16

100.0% 1.0 98.5% 1.4 105.0% 2.3 112.8% 2.9 119.5% 3.1
Patrick 50.13 0:23:01 50.18 0:13:21 51.35 0:08:33 54.72 0:06:40 55.58 0:05:27

100.0% 1.0 100.1% 1.7 102.4% 2.7 109.2% 3.5 110.9% 4.2
Erhard 438.93 1:19:43 443.96 0:43:22 462.91 0:24:23 489.88 0:18:20 516.2 0:15:14

100.0% 1.0 101.1% 1.8 105.5% 3.3 111.6% 4.3 117.6% 5.2
Arijan 520.85 2:15:49 511.51 1:18:58 528.88 0:45:24 565.58 0:34:59 596.85 0:27:34

100.0% 1.0 98.2% 1.7 101.5% 3.0 108.6% 3.9 114.6% 4.9
Philipp 382.22 2:23:38 381.41 1:22:40 384.8 0:44:52 398.81 0:32:43 428.24 0:27:48

100.0% 1.0 99.8% 1.7 100.7% 3.2 104.3% 4.4 112.0% 5.2
Tomoku 364.96 2:14:34 367.75 1:28:08 381.3 0:54:58 412.45 0:44:22 456.13 0:38:31

100.0% 1.0 100.8% 1.5 104.5% 2.4 113.0% 3.0 125.0% 3.5
Valentin 730.04 3:46:22 731.23 2:09:31 757.39 1:17:10 780.51 0:59:52 821.52 0:50:11

100.0% 1.0 100.2% 1.7 103.7% 2.9 106.9% 3.8 112.5% 4.5
Trips 640.05 3:10:28 643.04 1:41:00 667.65 1:03:45 677.33 0:50:31 703.9 0:43:36

100.0% 1.0 100.5% 1.9 104.3% 3.0 105.8% 3.8 110.0% 4.4
Andre 479.84 3:22:19 476.28 2:04:17 491.3 1:16:23 523.28 0:56:58 581.53 0:53:48

100.0% 1.0 99.3% 1.6 102.4% 2.6 109.1% 3.6 121.2% 3.8
Ludwig 636.58 2:02:37 630.02 1:28:03 646.86 0:59:13 696.3 0:49:55 782.27 0:45:16

100.0% 1.0 99.0% 1.4 101.6% 2.1 109.4% 2.5 122.9% 2.7
Leyla 730.73 3:56:32 732.26 2:30:08 767.33 1:31:15 830.19 1:19:07 915.49 1:08:30

100.0% 1.0 100.2% 1.6 105.0% 2.6 113.6% 3.0 125.3% 3.5
Erik 590.23 4:32:18 594.02 2:43:10 616.05 1:37:17 656.88 1:13:38 736.8 1:05:38

100.0% 1.0 100.6% 1.7 104.4% 2.8 111.3% 3.7 124.8% 4.1

100.0% 99.3% 102.0% 106.1% 111.8%
30:07:53 18:08:25 11:00:31 08:40:40 07:33:56

1.0 1.6 2.7 3.5 4.0

Table 8.20: Results of BonnPlace with and without BestChoice for different cluster ratios
with target density of 70%. Runtimes are global placement wall clock runtimes, the legalized
bounding box netlength is shown. The runs were performed on Intel XEON with 3.0 GHz
and 64 GB and used up to 8 CPUs simultaneously.
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BonnPlace random walk clustering
Hitting time computation runtimes (16 targets)

chip num cells Runtime hh:mm:ss
hitting time global placement ratio

Dagmar 50 534 0:00:00 0:00:21 0.00%
Elisa 67 723 0:00:00 0:00:23 0.00%
Lucius 77 679 0:00:01 0:00:31 3.23%
Felix 84 966 0:00:01 0:00:28 3.57%
Paula 129 026 0:00:02 0:00:54 3.70%
Rabe 175 646 0:00:03 0:01:02 4.84%
Julia 190 554 0:00:03 0:01:04 4.69%
Max 328 789 0:00:05 0:02:01 4.13%
Roger 456 700 0:00:13 0:03:20 6.50%
Ashraf 866 777 0:00:43 0:05:26 13.19%
Patrick 1 052 709 0:00:47 0:07:13 10.85%
Erhard 2 578 246 0:01:57 0:16:16 11.99%
Arijan 3 753 151 0:03:50 0:27:37 13.88%
Philipp 3 945 833 0:03:44 0:29:23 12.71%
Tomoku 5 296 120 0:05:25 0:43:36 12.42%
Trips 5 747 007 0:04:43 0:42:12 11.18%
Valentin 5 838 457 0:04:07 0:47:08 8.73%
Andre 6 794 323 0:07:09 0:57:20 12.47%
Ludwig 7 500 446 0:07:22 0:57:29 12.82%

Table 8.21: Hitting time computations (wall clock runtimes) in relation to the global
placement runtime of the following run in default settings and target density of 70%.
Clustering α = 10 on Intel XEON with 3.3 GHz and 64 GB, using 8 CPUs

8.9 Summary and Outlook

The presented algorithm is a significant improvement of the old BonnPlace global
placement. On both the real-world instances from industry and international benchmarks,
we were able to improve our placement in terms of netlength and runtime. Several designs
saw improvements of 10% and beyond in terms of netlength. At the same time, the new
implementation, despite its generalized data structures, is extremely fast: more than 5 times
faster than the old version of BonnPlace.
Another significant issue is placement with movebounds. Here, our modified recursive
partitioning already produces reasonable placements. With the new flow-based approach,
we can improve our results again by about 10% on average for both the inclusive and the
exclusive hard movebounds.

BonnPlace also shows its efficiency in direct comparison to the industrial tool, where
we are able to close the netlength gap on instances without movebounds, and accelerate
our tool to be more than 5.5 times faster w.r.t the industrial placer. With movebounds,
the results are unambiguously clear: BonnPlace’s placements are more than 30% shorter
on average and BonnPlace is 9.5 times faster with inclusive movebounds and almost 21
times faster with exclusive movebounds.

The international benchmarks show that BonnPlace is competitive in terms of netlength,
but not the best tool if netlength is the only objective. On the other hand, when combining
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BonnPlace
chip no clustering BestChoice α = 10 RandomWalk α = 10

BBox(m) hh:mm:ss BBox(m) hh:mm:ss BBox(m) hh:mm:ss
ratio vs no cluster ratio vs no cluster ratio vs BestChoice achieved α

Dagmar 0.92 00:00:48 0.91 0:00:22 0.9 0:00:39 6.6
100.0% 1.0 98.9% 2.2 97.7% 1.2 98.8% 0.56

Elisa 3.45 0:01:01 3.34 0:00:24 3.03 0:00:40
100.0% 1.0 96.8% 2.5 87.9% 1.5 90.8% 0.60

Lucius 3.97 0:01:24 4.22 0:00:33 4.07 0:00:56
100.0% 1.0 106.4% 2.5 102.7% 1.5 96.5% 0.59

Felix 7.92 0:00:54 8.21 0:00:27 7.85 0:00:48
100.0% 1.0 103.6% 2.0 99.1% 1.1 95.6% 0.56

Paula 3.77 0:02:03 3.87 0:00:49 3.86 0:01:28
100.0% 1.0 102.8% 2.5 102.4% 1.4 99.6% 0.56

Rabe 14.47 0:03:14 14.34 0:01:02 13.78 0:01:45
100.0% 1.0 99.1% 3.1 95.2% 1.8 96.1% 0.59

Julia 13.36 0:03:56 13.28 0:01:12 12.1 0:01:58
100.0% 1.0 99.4% 3.3 90.6% 2.0 91.1% 0.61

Max 22.64 0:06:16 21.82 0:02:13 20.13 0:03:37
100.0% 1.0 96.4% 2.8 88.9% 1.7 92.3% 0.61

Roger 31.76 0:10:40 32.33 0:03:09 28.66 0:04:50
100.0% 1.0 101.8% 3.4 90.2% 2.2 88.7% 0.65

Ashraf 67.5 0:13:07 76.16 0:04:35 66.89 0:09:39
100.0% 1.0 112.8% 2.9 99.1% 1.4 87.8% 0.47

Patrick 50.13 0:23:01 54.72 0:06:40 52.6 0:13:52 7.0
100.0% 1.0 109.2% 3.5 104.9% 1.7 96.1% 0.48

Erhard 438.93 1:19:43 489.88 0:18:20 445.68 0:28:37
100.0% 1.0 111.6% 4.3 101.5% 2.8 91.0% 0.64

Arijan 520.85 2:15:49 565.58 0:34:59 516.7 0:51:04
100.0% 1.0 108.6% 3.9 99.2% 2.7 91.4% 0.69

Philipp 382.22 2:23:38 398.81 0:32:43 385.08 0:52:48 8.0
100.0% 1.0 104.3% 4.4 100.7% 2.7 96.6% 0.62

Tomoku 364.96 2:14:34 412.45 0:44:22 397.93 1:18:16 7.8
100.0% 1.0 113.0% 3.0 109.0% 1.7 96.5% 0.57

Valentin 730.04 03:46:22 780.51 0:59:52 747.46 1:34:02
100.0% 1.0 106.9% 3.8 102.4% 2.4 95.8% 0.64

Trips 640.05 03:10:28 677.33 0:50:31 634.57 1:21:10
100.0% 1.0 105.8% 3.8 99.1% 2.3 93.7% 0.62

Andre 479.84 03:22:19 523.28 0:56:58 489.43 1:37:47 9.4
100.0% 1.0 109.1% 3.6 102.0% 2.1 93.5% 0.58

Ludwig 636.58 2:02:37 696.3 0:49:55 664.51 1:48:08 5.4
100.0% 1.0 109.4% 2.5 104.4% 1.1 95.4% 0.46

Average 105.4% 98.5% 93.4%

Total 21:41:54 6:09:06 10:32:04
3.5 2.1

Table 8.22: Different clustering algorithms in BonnPlace compared to the run without
clustering. The legalized netlength and the global placement wall clock runtimes (incl.
clustering) are shown. The clustering stopped in several cases before the clustering ratio
was achieved, as there were neighbors with rank=−∞ only. The runs were made on Intel
XEON with 3.0 GHz and 64 GB in standard settings.
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netlength with density and runtime, BonnPlace indeed shows the best results on ISPD
2006 benchmarks, even with cautious clusterings.

As clustering method, we applied the BestChoice algorithm in most cases, which is shown
to be inferior to our new, even preliminary, random walk based clustering scheme. The
new random walk based clustering outperforms BestChoice by 6.6% on average, but in
several cases the differences were more than 10%. On large instances, where clustering
is desirable for performance reasons, the information from the small number of different
hitting time computations seems to be insufficient. We believe that improving clustering
can again increase the quality and decrease the runtime of BonnPlace.

The presented results are based on the replacement of the global placement by the new
routines. For legalization, we used the algorithm by Brenner and Vygen [2004]. In the
old version of BonnPlace, legalization runtime did not play a crucial role, but by the
acceleration of global placement the relative runtime of legalization comes to the fore,
especially in combination with movebounds (cf. Tables 8.12 and 8.13). In several runs,
legalization takes more than 50% of the entire placement run. The total placement runtime
of our tool can again be reduced by speeding up the legalization, which could for example
use multithreaded algorithms in a similar framework as presented in this thesis.
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1653–1658.

Garey, M.R., Graham, R.L., and Johnson, D.S. [1977]: The complexity of computing Steiner
minimal trees. SIAM Journal of Applied Mathematics 32 (1977), 835–859.

Garey, M.R. and Johnson, D.S. [1979], Computers and Intractability; A Guide to the Theory
of NP-Completeness. (1979), W.H. Freeman & Co., New York, NY, USA.

Gusfield, D., Martel, C. and Fernández-Baca, C. [1987]: Fast algorithms for bipartite network
flow. SIAM Journal on Computing 16 (2) (1987) 237–251.

Hagen, L. and Kahng, A.B. [1992]: A new approach to effective circuit clustering. In
Proceedings of the International Conference on Computer-Aided Design, (1992), 422–427.

Hall, K.M. [1970]: An r-Dimensional Quadratic Placement Algorithm, Management Science,
17 (3), Theory Series (1970), 219–229

Harel, D. and Koren, Y. [2001]: On Clustering Using Random Walks. In Proceedings of
the 21st Conference on Foundations of Software Technology and Theoretical Computer
Science 2245, (2001), 18–41.

Held, S. [2009]: Timing Closure in Chip Design. Ph.D. thesis, University of Bonn (2008).

Hoffmann, S., Lienhart, R. [2008]: Eine Einführung in die parallele Programmierung mit
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Summary

Placement is one of the key steps in chip design. The major contributions of this thesis
deal with global placement, a common relaxation of the placement problem. Here, we look
for rough positions of the circuits, minimizing weighted wirelength. Beyond this classical
objective, several other placement aspects of particular interest are addressed in this thesis:
explicit position constraints in placement (movebounds) to address timing and routability as
well as heterogeneous placeable objects and connection types. We put a particular emphasis
on the runtime of global placement as it significantly contributes to the overall turnaround
time.
Based on the idea of subsequent quadratic netlength minimization and top-down parti-
tioning as in BonnPlace (Brenner, Struzyna and Vygen [2008]), we present several new
algorithms, generalized data structures, and a completely new implementation.

The generalized concept of movebound constraints on subsets of circuits — formalized in
Chapter 4 — allows inclusive and exclusive movebounds. Both restrict the positions of
associated circuits to their area. Exclusive movebounds additionally serve as blockages
to the non-associated circuits. Movebound areas may overlap. Using a decomposition
of the chip area into homogeneous parts with respect to movebounds, the regions, we
show that in O(n + rm2) time (with n circuits, m movebounds and r regions) one can
decide whether a fractional partitioning with movebounds exists. We prove that an optimal
(with respect to some modular cost function) fractional partitioning can be obtained in
O
(
r2n
(
log(n) + r log(r)

))
time. Making use of this result, we generalize the top-down

partitioning scheme of BonnPlace’s global placement and extend the legalization al-
gorithm of Brenner and Vygen [2004] to handle movebounds efficiently. Interactions of
movebounds and density constraints are addressed and a modified algorithm for partitioning
with movebounds is presented, which significantly improves the partitioning performance in
practice.

In Chapter 5 we present a novel flow-based partitioning algorithm for global placement,
which combines a new MinCostFlow model for computing directions with extremely
fast and highly parallelizable local realization steps. Unlike the iterative and recursive
approaches in the previous top-down partitionings, our algorithm provides a global view of
the problem. The size of the MinCostFlow instance does not depend on the number of
circuits and, despite its global view, is only linear in the number of regions. Therefore, an
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optimal solution can be computed in O
(
r2 log2(r)

)
time. This approach is hence applicable

to huge designs, as even on these instances the flow computation can be done within a few
seconds.
Our new flow-based partitioning can also address density targets much more accurately
and lowers the risk of density violations.
Another significant advantage of this algorithm is the fact that it can be applied to any initial
placement. We prove that flow-based partitioning guarantees a feasible (fractional) partition-
ing solution (if one exists), even with movebounds and starting from placements with high
density violations. Using this new partitioning routine, we can extend the congestion-driven
placement approach of Brenner and Rohe [2002] to optimize movement, density adjustment
and circuit size inflation even in the presence of movebounds. As a feasible fractional
partitioning is guaranteed at any stage, flow-based partitioning can be used for incremental
placement, and also creates the opportunity of applying local, density unaware optimization
steps (such as buffering) within global placement.
We propose to realize the optimal flow by a sequence of combined local quadratic netlength
minimization and local partitioning steps. Our realization scheme can be performed ex-
tremely quickly and efficiently parallelized.

In Chapter 6 we generalize the placement data structures and their implementation. Our new
global placement can handle circuits, clusters, and fragments of circuits as well as different
connection and attraction types. We also show how a clustering hierarchy can efficiently
be handled in global placement. The classical net models clique and star are generalized
to clustered netlists. We discuss several other implementation aspects and present a new
parallelization scheme. The proposed shared-memory parallelization framework allows us to
efficiently use dozens of processors for several core routines of BonnPlace and guarantees
repeatability. Despite the new generalized data structures, our new implementation makes
the new version of BonnPlace twice as fast as the previous one, even without using the
new algorithmic contributions.

In Chapter 7 we focus on clustering in global placement. We use a random walk approach
to compute global connectivity information. We show how hitting times of random walks in
hypergraphs can be obtained from solving a sparse linear equation system. We present a
method to compute hitting times to several targets simultaneously in parallel by using a
single shared and sparse matrix. They are then used in a bottom-up clustering scheme in
order to avoid wrong clustering decisions. Our approach, though still in a preliminary state,
significantly outperforms the popular BestChoice algorithm (Nam et al. [2006]). It leads
to much shorter netlengths (by more than 10% in several cases and 6.6% on average) in a
reasonable runtime. Even clusterings reducing the number of circuits by a factor of 10 lead
to better netlengths than placing unclustered netlists.

Chapter 8 concludes this work by providing several experimental results on a large testbed
of real-world chips and benchmarks. Comparing our new global placement to the old version
of BonnPlace, we observe significant improvements in terms of netlength. Our new



BonnPlace produces 8.4% shorter netlength on average. In several cases, we are able
to improve the netlength by more than 10%, in one case even by more than 28%. These
improvements are mostly due to the new flow-based partitioning. The new BonnPlace is
more than 5.4 times faster. In standard settings our new global placement takes less than
one hour for every chip in our testbed, even for an ASIC with 9.3 million circuits. In the
fast mode, comparable results to the old version of BonnPlace can be obtained more
than 8.7 times faster.
We also compared our new BonnPlace to a state-of-the-art industrial placer. Without
movebounds, our tool produces similar results but is more than 5.5 times faster. On instances
with movebounds, our placements have more than 32% shorter netlength. Moreover, our
running time is better by a factor of more than 9 with inclusive and almost 21 with exclusive
movebounds.
Our tool also shows competitive results in terms of netlength on recent benchmarks. On
the latest ISPD 2006 benchmarks (Nam et al. [2006]), the new version of BonnPlace
currently produces the best results among all placement tools.




