7~ <
-

& o Z\
A |
£

d

Composite Finite Elements for
Trabecular Bone Microstructures

ey

By

| €RD | GO

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch—Naturwissenschaftlichen Fakultat
der Rheinischen Friedrich-Wilhelms—Universitat Bonn

vorgelegt von Lars Ole Schwen
aus Disseldorf

Bonn, Juli 2010



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat
der Rheinischen Friedrich-Wilhelms—Universitit Bonn
am Institut fiir Numerische Simulation

Diese Dissertation ist auf dem Hochschulschriftenserver der Universitits- und Landes-
bibliothek Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

Erscheinungsjahr: 2010

1. Gutachter: Prof. Dr. Martin Rumpf
2. Gutachter: Prof. Dr. Alexey Chernov

Tag der Promotion: o7. Oktober 2010


http://hss.ulb.uni-bonn.de/diss_online

To my aunt Helga (1947 — 2006)

This document was typeset using pdfIAIEX, the KOMA-Script scrbook document class,
Palladio/Mathpazo and Classico fonts, and (among many others) the microtype package.






Cooperations and Previous Publications

This thesis was written as part of a joint research project with Prof. Dr. Hans-
Joachim Wilke and Dipl.-Ing. Uwe Wolfram (Institute of Orthopaedic Research and
Biomechanics, University of Ulm), Prof. Dr. Tobias Preusser (Fraunhofer MEVIS,
Bremen), and Prof. Dr. Stefan Sauter (Institute of Mathematics, University of Zurich).

Parts of this thesis have been published or submitted for publication in the following
journal and proceedings articles:

Florian Liehr, Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole
Schwen, Composite finite elements for 3D image based computing, Computing and
Visualization in Science 12 (2009), no. 4, pp. 171-188, reference [217]

Tobias Preusser, Martin Rumpf, and Lars Ole Schwen, Finite element simulation
of bone microstructures, Proceedings of the 14th Workshop on the Finite Element
Method in Biomedical Engineering, Biomechanics and Related Fields, University
of Ulm, July 2007, pp. 52-66, reference [282]

Lars Ole Schwen, Uwe Wolfram, Hans-Joachim Wilke, and Martin Rumpf,
Determining effective elasticity parameters of microstructured materials, Proceedings
of the 15th Workshop on the Finite Element Method in Biomedical Engineering,
Biomechanics and Related Fields, University of Ulm, July 2008, pp. 41-62,
reference [311]

Uwe Wolfram, Lars Ole Schwen, Ulrich Simon, Martin Rumpf, and Hans-
Joachim Wilke, Statistical osteoporosis models using composite finite elements: A pa-
rameter study, Journal of Biomechanics 42 (2009), no. 13, pp. 2205-2209, refer-

ence [379]

Lars Ole Schwen, Tobias Preusser, and Martin Rumpf, Composite finite elements
for 3D elasticity with discontinuous coefficients, Proceedings of the 16th Workshop
on the Finite Element Method in Biomedical Engineering, Biomechanics and
Related Fields, University of Ulm, 2009, accepted, reference [310]

Tobias Preusser, Martin Rumpf, Stefan Sauter, and Lars Ole Schwen, 3D composite
finite elements for elliptic boundary value problems with discontinuous coefficients,
2010, submitted to SIAM Journal on Scientific Computing, reference [281]

Martin Rumpf, Lars Ole Schwen, Hans-Joachim Wilke, and Uwe Wolfram,
Numerical homogenization of trabecular bone specimens using composite finite elements,
1st Conference on Multiphysics Simulation — Advanced Methods for Industrial
Engineering, Fraunhofer, 2010, reference [296]

Most C++ code developed for this dissertation has been published as part of
the QuocMesh software library by AG Rumpf, Institute for Numerical Simulation,
University of Bonn.

AMS Subject Classifications (MSC2010)
65D05, 65M55, 65M60, 65N30, 65N55, 74B05, 74Q05, 74505, 8oM10, 80M40, 92C10

iii



Summary

In many medical and technical applications, numerical simulations need to be per-
formed for objects with interfaces of geometrically complex shape. We focus on the
biomechanical problem of elasticity simulations for trabecular bone microstructures.
The goal of this dissertation is to develop and implement an efficient simulation tool
for finite element (FE) simulations on such structures, so-called composite FE. We will
deal with both the case of material/void interfaces (‘complicated domains’) and the
case of interfaces between different materials (‘discontinuous coefficients’).

For an aluminum foam embedded in polymethylmethacrylate subject to heating and cooling at the top
and bottom, respectively, heat diffusion is simulated and the temperature is visualized.

Shearing simulation for a cylindrical specimen Compression simulation for a cuboid specimen of
of porcine trabecular bone. Zooms to one corner  porcine trabecular bone embedded in polymethyl-
of the specimen are shown on the right. All methacrylate. Color in both cases encodes the
deformations are scaled for better visualization. von Mises stress at the interface.

Construction of Composite FE. In classical FE simulations, geometric complexity is
encoded in tetrahedral and typically unstructured meshes. Composite FE, in contrast,
encode geometric complexity in specialized basis functions on a uniform mesh of
hexahedral structure. Other than alternative approaches (such as e.g. fictitious
domain methods, GFEM, immersed interface methods, partition of unity methods,
unfitted meshes, and XFEM), the composite FE are tailored to geometry descriptions
by 3D voxel image data and use the corresponding voxel grid as computational mesh,
without introducing additional degrees of freedom, and thus making use of efficient
data structures for uniformly structured meshes.

The composite FE method for complicated domains goes back to Hackbusch and
Sauter [Numer. Math. 75 (1997), 447-472; Arch. Math. (Brno) 34 (1998), 105-117] and
restricts standard affine FE basis functions on the uniformly structured tetrahedral
grid (obtained by subdivision of each cube in six tetrahedra) to an approximation of

iv



the interior. This can be implemented as a composition of standard FE basis functions
on a local auxiliary and purely virtual grid by which we approximate the interface.
In case of discontinuous coefficients, the same local auxiliary composition approach
is used. Composition weights are obtained by solving local interpolation problems
for which coupling conditions across the interface need to be determined. These
depend both on the local interface geometry and on the (scalar or tensor-valued)
material coefficients on both sides of the interface. We consider heat diffusion as
a scalar model problem and linear elasticity as a vector-valued model problem to
develop and implement the composite FE. Uniform cubic meshes contain a natural
hierarchy of coarsened grids, which allows us to implement a multigrid solver for
the case of complicated domains.

Near an interface (red line) which is not
resolved by the regular computational grid,
composite FE basis functions are
constructed in such a way that they can
approximate functions satisfying a
coupling condition (depending on the
coefficients) across the interface.

Homogenization. Besides simulations of single loading cases, we also apply the
composite FE method to the problem of determining effective material properties,
e.g. for multiscale simulations. For periodic microstructures, this is achieved by
solving corrector problems on the fundamental cells using affine-periodic boundary
conditions corresponding to uniaxial compression and shearing. For statistically
periodic trabecular structures, representative fundamental cells can be identified
but do not permit the periodic approach. Instead, macroscopic displacements are
imposed using the same set as before of affine-periodic Dirichlet boundary conditions
on all faces. The stress response of the material is subsequently computed only on
an interior subdomain to prevent artificial stiffening near the boundary. We finally
check for orthotropy of the macroscopic elasticity tensor and identify its axes.

young human  osteoporotic human porcine bovine
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For specimens of vertebral trabecular bone of bipeds and quadrupeds, effective elasticity tensors are
visualized (where elongation indicates directional compressive stiffness). The human tensors are scaled
by 4 relative to the animal tensors.
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constant-1 function 1(x) =1

thermal diffusivity tensor (p.13)

set of simplices adjacent to virtual node z (p. 34)

(local) matrices for construction of CFE weights (pp. 43 and 48)
mass-specific heat capacity (p.13)

characteristic function of a set M (p. 36)

space of real-valued, k times continuously differentiable functions

space of R*>-valued, k times continuously differentiable functions
elasticity tensor (p.14)

space dimension, typically 2 or 3

set of virtual nodes constrained by a regular node r (p. 34)

‘descendants’ in multigrid coarsening (p. 90)

Kronecker symbol (p. 17)

i unit vector

Young’s modulus (p. 16); FE elasticity block matrix (p. 60)

strain (p. 14)

grid/mesh: G" regular cubic grid (p. 28), G¥ regular tetrahedral mesh (p. 28),
G2 virtual (tetrahedral) mesh (p-30)

curved interface (p. 28)

(piecewise) planar interface (p.29)

halfspaces (subdomains for a planar interface; p. 19)

Sobolev space (p. 14)

identity function Id(x) = x or identity matrix

index set for a node set N: 7" (p.28), 7 A (p. 30); interpolation operators
global index (p. 28, 98)

(local) matrices arising in coupling conditions across an interface (p. 22, 23)
FE stiffness matrix (p. 58)

tirst Lamé-Navier number (p. 16); thermal conductivity (p. 13)

generic domain for model problems (p. 13)

computation domain for cell problems, A*f evaluation domain (p. 64)

FE (block) mass matrix (p. 58)

second Lamé-Navier number (p. 16)

normal direction (p. 19)

node sets: NU = V™ (p.28), N4, NVt (p. 30), N'°°F (p. 34)

Poisson’s ratio (p. 16)

subdomains (material/void or different coefficients; p. 28)

piecewise tetrahedral approximation of Q)4 p.29)

fundamental cell of exactly or statistically periodic microstructure (p. 64)
set of regular nodes constraining a virtual node z (p. 34)

~(z), P®(z)  constraint sets (p.34)

‘parents’ in multigrid coarsening (p.9o)



multigrid prolongation (p. 88)
local interpolation (p. 41, 47)
continuous level set function (p. 28)
piecewise affine approximation of ¢ (p.29)
FE basis function: 2 virtual (p. 34), ™ CFE basis function (p. 34)
CFE basis function for vector-valued problems Y}F (p. 35)
periodic restriction, o1 periodic extension (p.78)
heat flux (p. 14)
s regular nodes in N'U (p. 28)
multigrid restriction (p. 88)
density (p. 13)
sy  unreliability measure (p. 103)
tangential direction (p. 19)
‘siblings” in MG context (p. 90)
periodic collapsion (p.78)
stress (p. 14)
signature of a cube (element) (p. 29)
tangential direction (p. 19); time variable
simplex (triangle, tetrahedron)
continuous scalar or vector-valued function in the PDE (temperature, displace-
ment, ...), U(x) discretization of u, U value vector
Vi(m,n) multigrid V cycles (p. 88)
Vleaal[T 2 1] space of locally admissible functions (p. 41)
Wz,r;T simplex-wise CFE construction weight, scalar case (p. 42)
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tv,, CFE construction weight from virtual node z to regular node r (p. 34, 43)
e, MG coarsening weight from fine node f to coarse node ¢ (p.90)

wz,r].;’f simplex-wise CFE construction weight, elasticity case (p. 47)

20, construction weight in the vector-valued case (p. 48)

x space variable

z,y  virtual nodes z = 75 on the edge between r and s (page 30, 34)

pq  straight line through two points p and ¢

[p,q] line segment between two points p and ¢, edge between two nodes
[¢]  SIunit of a physical quantity; tensors in Voigt’s notation (p. 15)

[g]ly jump of a function g across an interface 7y (p. 19)

~» ‘is discretized to’

U union of disjoint sets

# cardinality of a finite set

|A|l Frobenius norm (p. 15) of a matrix A

a;b;  Einstein summation convention: summation over indices appearing twice
(a,b) scalar product of two vectors a,b € R"

A: B = AjBjj scalar product of two matrices A, B € R"*"

f=a] {x[f(x)=a}
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1 Introduction

EGINNING WITH an overview of simulation applications in which one deals with
B geometrically complicated interfaces in Section 1.1, we motivate which tasks can
benefit from efficient simulation tools. We are particular interested in biomechanical
applications involving osteoporosis and summarize this background in Section 1.2.
Related numerical approaches are discussed in a literature review in Section 1.3, the
background of Composite Finite Elements (CFE) can be found in Section 1.4. Sec-
tion 1.5 deals with image acquisition and postprocessing techniques relevant for us.
Multigrid solvers are briefly reviewed in Section 1.6. Finally, Section 1.7 gives an
introduction to homogenization.

1.1 Simulations with Geometrically Complicated Interfaces

Numerical simulations of physical processes are performed in many fields and
often require the numerical solution of partial differential equations (PDE). Often,
simulation methods are validated experimentally in non-complex test scenarios,
and they are subsequently used to gain deeper insight into physical or biological
phenomena occurring in presence of more complicated geometric situations (such
as microscales) that are difficult to observe experimentally in vitro or even in vivo.
In particular for medical applications, in vivo experiments are not applicable but
simulations provide surgeons and radiologists with therapy parameters for treatment
planning. As computational power has significantly increased over the last decades,
while costs have significantly decreased, such in silico experiments have become
more and more popular.

In many applications, these simulations involve objects of geometrically compli-
cated shape (object-void interfaces) or geometrically complicated interfaces between
materials with different material parameters representing internal object structures.
This translates to PDEs being solved on geometrically complicated domains or with
discontinuous coefficients across geometrically complicated interfaces. Examples
include (but are not limited to) medical and technical applications such as:

* heat conduction in chip design [129]

* heat conduction (and other physical effects) in cold chain management for
transport of food [363, 353] or medicine [111]

* electric potentials in the chest or the brain [182, 391] as the forward [314, 145, 67]
and inverse problems of electrocardiography [146, 224] involving a bioelectric
source and surface potentials
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¢ distribution of heat in radio frequency ablation techniques [200, 272] and the
thermo-regulation by blood perfusion (capillary blood flow) [94] to determine
therapy parameters in treatment planning and for optimization of the antennae
in medical equipment design

¢ elastic behavior of composite materials, e. g. dental posts in endodontics [274]
¢ brain-shift [377] occurring in neurosurgery

e computation of elastic stresses in the femur [138] and trabecular bone mi-
crostructures [138] to estimates the risk of fractures

¢ effects of vertebroplasty on macroscopic elasticity properties of trabecular
microstructures [198]

1.2 Biomechanics of Bone Microstructures

A particular focus in this thesis will be on trabecular microstructures found in
vertebral bodies. We refer to [190] for an overview on the biomechanics of trabecular
bone and to [134] for more general trabecular solids. Raising life expectancy and
frequent occurrence of osteoporosis has caused this material to be of particular focus
in biomechanics.

Osteoporosis [232, 255] is a widely spread disease [287] characterized by a loss
of bone mass (which induces a loss of stiffness and structural integrity, see Fig-
ure 1.1) [189, 231] and the occurrence of non-traumatic fractures (fractures occurring
from trauma less than or equal to a fall from standing height) [131]. For elderly
Caucasian women, 90 % of all fractures can be attributed to osteoporosis [242]. Verte-
bral fractures in older women lead to an increased age-adjusted mortality rate [186].
[124] estimate the direct costs from about 3.79 million osteoporotic fractures in 2000
to 31.7 G€. These costs are estimated [187] to rise to 76.7 G€ in the year 2050. The
total cost per fracture in Australia (in the early 1990s) is about 10 k$A (including
medical, diagnostic, hospital, drug, and community costs) [287].

Figure 1.1. Photos of specimens of the spongious interior of human vertebral bodies (left:
non-osteoporotic T11, middle: osteoporotic T10 vertebra) and a photo of an aluminum foam

(right)



1.2 Biomechanics of Bone Microstructures

T1-Ti2

Figure 1.2. The left sketch shows a human spine consisting of 7 cervical (C1 — Cy), 12 thoracic
(T1 - T12) and 5 lumbar (L1 - L5) vertebrae (adapted from [308, p. 78/79]). For comparison,
a sketch of a feline skeleton is shown (right, adapted from [308, p. 19], not the same scale).
Even though the structure of the spines is rather similar, the different anatomy of bipeds
and quadrupeds leads to an entirely different loading by gravity and movement.

Medical imaging currently cannot resolve the trabecular microstructure of bones
in vivo, so the diagnosis of osteoporosis is not possible at microscale. Bone mineral
density (BMD) or bone mineral content (BMC) are usually assessed using quantitative
computed tomography (QCT), peripheral QCT (pQCT), or dual X-ray absorptiometry
(DXA) [21]. Usefulness of these techniques has been studied in ex vivo studies where
direct measurements are available [219, 218, 112]. Other studies [227, 268, 228, 197,
359] conclude mechanical properties directly from image data. Connections between
geometric and mechanical anisotropy were examined using measures such as star
volume distribution, star length distribution, volume orientation [159, 89, 265, 323,
191] and morphometric analysis [133, 165].

Treatment techniques for vertebral fractures include fixation devices [292], inter-
body fusion cages [192, 370], and vertebroplasty and kyphoplasty [130, 79, 206] for
vertebral fractures or special implant types for osteoporotic and normal trabecular
bone [125, 76]. In vertebroplasty, polymethylmethacrylate (PMMA) is injected into a
vertebral body in which typically the trabecular microstructure is no longer intact.
This is an application we have in mind for elasticity with discontinuous material prop-
erties. Moreover, polymerization of PMMA is an exothermic process, also motivating
heat diffusion simulations with discontinuous coefficients.
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Due to the limited availability of human bones, many biomechanical experiments
are performed using animal bones such as bovine, canine, ovine or porcine ones.
Different studies [373, 374, 371, 8] have investigated to which extent these are compa-
rable concerning biomechanical properties, despite the obvious anatomical differences
between bipeds and quadrupeds, see Figure 1.2. The craniocaudal axis (skull to tail in
quadrupeds or skull to feet in bipeds) coincides roughly with the direction of gravity
in bipeds, but not in quadrupeds.

Numerous studies have dealt with macroscopic mechanic properties of trabecular
bone performing mechanical experiments with bone specimens [238, 98, 22, 249,
372, 337], to name a few. Micromechanic stiffness properties of trabecular bone
have been examined at trabecular level using microindentation [381] and at sub-
trabecular laminar level using nanoindentation [291]. Finite element (FE) methods are
frequently used to simulate the behavior of trabecular bone specimens [118, 253, 345,
346, 136, 250, 78, 382] and larger biological functional units [322, 358, 193, 365, 386,
343, 259, 215, 175, 6, 278, 277, 342, 42, 51], where the two lists of references are by no
means meant to give a complete overview. These studies have different aims and in
parts compare numerical results to mechanical ones. [202] discusses how sensitive
elastic moduli resulting from FE simulations are with respect to typical error-prone
parameters.

1.3 Review of Related Simulation Methods

Since about 1950, FE methods have been developed in engineering and in mathematics.
They have become a very popular tool for simulation and the numerical treatment
of elliptic and parabolic differential equations. This is due to FE being based on
variational formulations of boundary and initial value problems and thus their
flexibility with respect to geometry and irregularities in solutions. [264] gives a
historical overview on the development of FE methods.

Standard Finite Elements. Standard FE methods are capable of dealing with geo-
metric complexities by using geometrically complex and generally unstructured
meshes of primitives, most frequently simplices (triangles in 2D, tetrahedra in 3D).
The geometry of objects and interfaces can be described explicitly, for example if the
object is constructed by computer-aided design (CAD), or implicitly if the object has
been scanned in some imaging process, see Section 1.5. Meshing, the task of generat-
ing an appropriate mesh, is rather well understood in 2D where many methods make
use of Voronoi diagrams® and Delaunay triangulations® [48, 23, 319, 316]. 3D meshing

"Named after the Russian mathematician I'eopruit ®eonocresuu Boponoii (Georgy Feodosevich
Voronoi, sometimes spelled Voronoi) x April 28, 1868 in Zhuravki, + November 20, 1908 in
Zhuravki [262].

2Named after the Russian mathematician Gopuc Hukomaesuu enone (Boris Nikolaevich Delone),
* March 15, 1890 in St. Petersburg, + July 17, 1980 in Moscow, who used the French transliteration
Delaunay in early publications [262].



1.3 Review of Related Simulation Methods

has been worked on for many years but still is a nontrivial problem [137, 317] which
may require substantial user interaction. We refer to [47, 49, 334] for overviews
on methods for mesh generation and still challenging problems and to [318] for
an overview of mesh quality measures. Different methods for 3D meshing are de-
scribed e. g. in [30, 18, 245, 283, 81, 195, 11], mesh quality and mesh improvement is
e. g. discussed in [246, 77, 100, 347].

The main disadvantage of unstructured FE meshes is that (unlike for uniform,
e. g. hexahedral meshes) explicit storage of the location of grid points and the con-
nectivity structure is necessary and that there are no canonical coarse versions of
the mesh. If the geometry description is given by image data, the voxels immedi-
ately define a uniform hexahedral grid. Binary voxel segmentation of complicated
domains, see e. g. [253, 147, 342, 250, 337, 382, 78], suffers from a non-smooth object
representation. Subsequent mesh smoothing [52] can remedy this at the possible cost
of distorting elements.

Adaptive Methods. A popular strategy with standard FE is to iterate solving a
problem on a certain coarse mesh and refining the mesh where a higher resolu-
tion is necessary [113, 158]. Typically a posteriori error estimators are used for
this purpose [43, 70, 132, 289]. Adaptive quadrilateral or hexahedral refinement
strategies [280] permit using efficient data structures such as quadtrees and oc-
trees [122, 300] and avoid unstructured meshes.

Alternative Approaches. Various methods that try to avoid the problems related
to meshing have been developed. A general idea is to treat the geometric complexity
by adapting finite difference stencils or finite element basis functions. The classical
example is the Shortley-Weller approximation [320]. A general term for methods
that avoid meshing altogether is meshless or meshfree methods, we refer to [104, 45, 207,
127] for overviews on these. The following list of different methods for geometric
complexities is meant to give an overview on existing methods but is not claimed to
be an exhaustive list of publications in this field.

Immersed Interface Methods (1IM) were developed starting in the 1990s and are based
on the idea of using Cartesian grids? and finite differences with stencils adapted near
the interface. The IIM for discontinuous coefficients (and possibly singular sources on
the interface) can be found in [50, 205] in 1D/2D. [209] is a summary of IIM, they are
extended to 3D in [210], and an efficient solver is presented in [211].

The IIM was combined with level set methods [266] in [313]. A multigrid solver
for the IIM is introduced in [3, 4]. IM combined with a finite volume method using
‘capacity functions’ for partially filled cells is presented in [69, 68]. An application
to nonlinear 1D problems is shown in [368] and the method is modified to the

3Named after the French philosopher, mathematician, physicist and writer René Descartes,
* March 31, 1596 in La Haye en Touraine, Indre-et-Loire, France, + February 11, 1650 in Stockholm,
Sweden, who was also known by his Latinized name Renatus Cartesius [1].
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Explicit Jump 1IM [366, 367, 369, 297], also considering expected singularities in the
solution and not only discontinuities of the coefficient. This method has been used
for determining effective elasticity properties in [299, 298]. The bridge to the finite
element world is built by ‘Immersed Finite Elements’ in 1D and 2D in [212, 214, 208].
An overview of applications of the IIM can be found in [213].

Partition of Unity Methods (PUM) combine the partition of unity subject to a finite
cover of the object (classically: supports of FE basis functions) with a priori knowledge
about the behavior of the solution at the interface [241, 27].

Generalized Finite Element Methods (GFEM) [240, 101, 28, 29] were also developed
under the name hp clouds [105, 108, 106, 107, 263] and are per se meshless methods.
GFEM use local spaces (of not necessarily polynomial functions) reflecting available
information about the unknown solution, thus improving local approximation. They
were combined with classical FE to improve their approximation capabilities [328,
102, 329, 103].

Extended Finite Element Methods (XFEM) [99, 46] are classical FE ‘enriched” by addi-
tional basis functions for incorporating discontinuities. The meshes are independent
of the location of the discontinuities, but additional degrees of freedom are in-
troduced by the enrichment. An important application of XFEM is simulation of
crack growth [247, 90, 327, 26, 325, 331, 177, 128, 354] where XFEM avoids frequent
remeshing necessary for classical methods [44, 181].

Fictitious Domain Methods (FDM) go back to [179, 301, 302, 20], see also [135, 286].
They use domain-independent meshes (which are larger than the actual object and
easy to mesh) and the PDE under consideration is extended outside the object. This is
combined with the p version of FE to the Finite Cell Method in 2D [271] and 3D [110].

Weighted Extended B-Splines (WEB splines) [169, 168, 167] use tensor products of splines
on uniform grids multiplied by weight functions adapted to the geometric boundary.
This method is particularly useful in CAD where splines are also used for object
descriptions and allows multigrid solvers [170].

Unfitted Meshes have been introduced and analyzed for problems on curved do-
mains [38, 40, 41, 162] and for discontinuous coefficients across curved interfaces [39,
156, 157]. Here interfaces are not resolved by the computational grid, but accounted
for by adapting integration on interfaced elements.

Depending on the method, the ‘complicated domain’ case can be viewed and treated
as the limiting case of ‘discontinuous coefficients” with one degenerate coefficient
(zero for resistance-type or infinity for conductance-type parameters). In the CFE
context presented here, the two cases are viewed as problems in their own right and
treated in separate ways.

The term ‘composite” has also appeared elsewhere in the FE literature as Composite
Triangles [148, 336]. These methods also use a virtual subdivision of tetrahedral
elements, but not as an adaptation to the geometry of the underlying domains.



1.4 Composite Finite Elements

1.4 Composite Finite Elements

We will use the method of CFE with the underlying idea of assigning degrees of
freedom (DOF) to a computational mesh and using non-standard basis functions
that are composed of simpler basis functions on an auxiliary submesh. In short,
standard FE treat geometric complexities by ‘simple basis functions on a complicated
mesh’, in contrast CFE use ‘complicated basis functions on a simple mesh’. Originally,
CFE were developed for more general computational meshes. With the focus on
geometry description by images, however, our presentation in this thesis will be
restricted to uniform cubic meshes.

The CFE concept was originally introduced for complicated domains in [152, 150,
149]. Dirichlet boundary conditions on complicated domains are treated in [151].
A 1D multigrid method is presented in [126], a 2D one in [324] and a 2-scale CFE
method in [289]. A posteriori error estimates are proved in [288]. A CFE approach
with adaptive refinement can be found in [290]. CFE for discontinuous coefficients
are treated in [364, 304] together with a multigrid strategy, [303] is an overview of
CFE for complicated domains and CFE for discontinuous coefficients.

A CFE method on uniform cubic (Cartesian grids) for discontinuous coefficients
is presented in [216]. The construction of [216] does not attain optimal orders of
convergence in the approximation error. The implementation therein, however,
was used as the basis for our implementation. [273] combines CFE for complicated
domains and discontinuous coefficients on uniform cubic grids.

Own Contributions. We present the CFE construction for geometrically complicated
domains given by 3D voxel datasets in [217, 282] along with a CFE multigrid solver.
Our CFE construction for discontinuous coefficients across geometrically complicated
interfaces for 3D scalar and vector-valued problems is presented in [310, 281]. In [311]
we develop a CFE-based homogenization framework for periodic microstructures in
case of complicated domains. We extend this method to statistically periodic com-
plicated domains in [296] and apply the method to specimens of trabecular bone of
different species. The cases of periodic and statistically periodic microstructures with
discontinuous coefficients are treated in [281]. We moreover use CFE for complicated
domains in a biomechanical parameter study [379] for artificial statistical osteoporosis
models.

1.5 Image Data Acquisition and Domain Preprocessing

Two types of real specimens are used for the simulations throughout this thesis, these
specimens were mostly prepared by Uwe Wolfram (UFB, University of Ulm). On the
one hand, we consider aluminum (Al) foams where cuboid specimens were obtained
using a band saw, some of these were embedded in polymethylmethacrylate (PMMA).
On the other hand, specimens of young human, osteoporotic human, porcine and
bovine vertebrae are considered. These were obtained by first extracting individual
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| extract
| pCT scan
combine

slices

Figure 1.3. Sample and image acquisition workflow for vertebral bone (from left to right): After
harvesting a vertebra (photograph by Annette Kettler, UFB Ulm), cylindrical specimens are
extracted. Specimens are then scanned in uCT, resulting in a voxel dataset (of which one
slice is shown). After denoising and segmentation, the resulting inner structure can be
visualized.

vertebrae from the corresponding (frozen) spine, removing top and bottom plates
using a band saw and leaving slices of approximately 12 mm thickness. Cylindrical
specimens of 8 mm diameter were extracted using a trepan. Bone marrow was then
removed using a pulsed water jet device (oral irrigator) and specimens were selected
by visual inspection and assessment of structural damage by the sample extraction
process. The specimens were then scanned in micro-CT (pCT), typically at 35 pm
resolution. This workflow is shown in Figure 1.3.

Computed tomography (CT) is an important medical and technical 3D imaging tech-
nique that was patented in 1972 [176] based on [87, 88]. In this process, an object is
scanned slice by slice by X-rays shot through the object in different directions and
measuring the attenuation (depending on the material) along its path. These mea-
surements can then be converted to a voxel dataset of X-ray attenuation values [306].
Different values are subsequently interpreted as different materials. Clinical in vivo
CT scans with harmless doses of X-ray and tolerable measurement times currently
achieve resolutions of several 100 ym and are thus unable to resolve trabecular
structures in human vertebrae.

Another 3D imaging technique is magnetic resonance imaging (MRI) [204] that uses
strong magnetic fields and is thus less harmful for the patient. MRI is better suited
for imaging soft tissues. We refer to [121] for a historical overview of these imaging
processes. In situations where pCT resolution is insufficient, synchrotron radiation
has been used [337] to obtain 3D images of trabecular bone structures in undeformed
and deformed state.

The image data obtained by these imaging techniques is typically noisy so that
an appropriate denoising method has to be applied before segmentation can be
performed. Simple denoising techniques include isotropic diffusion or median
filtering. An appropriate denoising method should remove noise but not structures,
and should not introduce artifacts (structures not present in the physical object). An
overview of different denoising techniques can be found in [66]. For our applications,
we use simple isotropic diffusion, the edge-preserving Perona-Malik method [275],
or an anisotropic method using the implementation from [256].
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As for segmentation, we need a method that converts our voxel dataset into
a level set representation [266] where, without loss of generality, the interface is
the zero level set and negative values correspond to the inside. In the simplest
case, this can be achieved by an affine transformation of gray values (subtracting a
threshold and possibly flipping the sign), where the threshold can be determined
automatically [293, 339, 225], which turned out to be sufficient for our purposes.
For reviews on more elaborate segmentation methods, we refer to [270, 276], joint
denoising-segmentation include the Mumford-Shah model [254] implemented in [73].

If subsets of the specimen (in case of material/void interfaces) are selected after-
wards, they may consist of more than one connected component, typically one main
large component and several small pieces of trabeculae actually connected to parts
outside the subset. There is no physical coupling between these, so any parts of the
domain not connected to the main component (or to faces of the bounding box where
we apply boundary conditions) are removed from the dataset.

1.6 A Brief Review of Multilevel and Multigrid Methods

Finite element simulations typically involve three computationally expensive steps:

1. generating a mesh for the object under consideration

2. assembling a system of equations discretizing the PDE which is used to model
the physical process under consideration

3. solving the system (possibly multiple times for non-stationary problems)

In many applications, the solution step is most time consuming, so one is particularly
interested in efficient solvers.

Multigrid solvers are a class of solvers for linear systems that are of optimal (linear
in the number of unknowns) computational complexity for fixed solver accuracy
and have turned out to be very efficient in many applications. The main idea is to
use iterative methods to reduce high frequency components of the error and, to also
reduce lower frequencies, compute corrections on coarsened versions of the problem.
Based on ideas in [56, 119, 31, 19], the multigrid algorithm goes back to [59].

Obtaining a coarsened version of the problem is easy for uniform dyadic cubic
meshes where 23 cubes can be combined to a larger cube of twice the edge length.
Coarsening of FE basis functions discretizing the problem is equally straight-forward.
An overview on and an introduction to geometric multigrid methods can be found
in [258, 153, 383, 61, 360]. Some aspects of convergence are addressed in [34, 226, 33,
388, 389]. This approach will be used for CFE for complicated domains where we also
have a uniform cubic computational mesh.

In case of unstructured meshes, coarsening is significantly more difficult, generating
a coarser mesh on a subset of nodes is possible but leads to a non-nestedness of the
meshes. This problem has been addressed e. g. in [58, 312, 72, 349, 244, 97].
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Multigrid ideas have also been applied to problems where no mesh but only a
sparse matrix is explicitly given. In this case, one can interpret the sparsity structure
of the matrix as a graph and search for components that are more strongly connected
than others to obtain coarse scales in the problem. Such strategies are referred to as
algebraic multigrid (AMG), in contrast to geometric multigrid methods that only make
use of the mesh geometry. For an introduction to and an overview on AMG, we
refer to [60, 330, 114]. More details on AMG and its implementation can be found
in [350, 54, 351, 348, 35, 229, 63, 84, 141, 64, 65]. AMG is typically used as a black
box method because it only needs the system matrix, but no information about the
underlying problem or discretization. Hybrid methods between purely geometric
(‘white’) and purely algebraic (‘black’) methods are also possible [123, 120], forming a
‘spectrum” in between [74]. Less general, problem-adapted coarsening (e. g. in case of
anisotropies) has also been applied [91, 237, 305, 362]. A particular focus on multigrid
methods for problems with non-smooth coefficients can be found in [74, 2, 9].

Besides being a solver themselves, multigrid cycles have also been used as a
preconditioner [24, 57, 384, 140, 60], e. g. for the conjugate gradients (CG) solver [164].

1.7 Homogenization

The problem of determining effective material properties for a microscopically in-
homogeneous but macroscopically (at least statistically) homogeneous material is
generally called upscaling [15, 352] or homogenization [333]. Homogenization can
e.g. be used for two-scale FE simulations [13, 14], or more generally for multiscale
simulations [234, 233].

Multigrid coarsening for upscaling [252, 196, 223], using standard geometric coars-
ening just yields the arithmetic average of the material coefficients [251] ignoring
any underlying geometric structure. It is thus difficult to use such techniques in
a black-box manner without problem-/geometry-specific knowledge built into the
method. We furthermore refer to [16, 17, 62] for overviews on multigrid-based and
other upscaling techniques.

We use the method of ‘cell problems’ [10, Chapter 1] that was introduced in the
1970s by Luc Tartar, whose book chapter [333] gives a review and some theoretical
background on this method. The basic idea is to perform few microscopic simu-
lations (using CFE) on a periodic cell of the (exactly) periodic material, computing
macroscopic heat flux or stress for a simple macroscopic temperature difference or
strain profile, and thus obtain the effective thermal diffusivity or linear elasticity
tensor.

In cold chain management, an application we consider for single-scale simulations,
one typically has at least three canonical size scales: individual packages, bulk
packages or pallets, containers or trucks. Given representative geometry descriptions,
material parameters for the goods being transported and the packaging material,
and few temperature measurements, an important task here is to estimate possible
reduction of shelf life due to temperature abuse, see [12] for a single-scale model.

10



1.8 Qutline

Figure 1.4. The left image shows a fundamental cell of an artificial periodic structure of two
different materials, the right image shows part of a porcine T1 vertebra considered as a
statistically representative fundamental cell.

FE models of whole bones require huge amounts of computational resources [343],
which makes a full-resolution approach prohibitive for the simulation of larger
anatomical structures. Continuum models can be used instead (cf. [160, 185] for
their limitations). These, however, rely on a proper knowledge of macroscopic elastic
properties. Determining effective elastic properties of cellular solids from unit cells
has been of interest for many years [133, 376, 134, 78]. Homogenization techniques
using microscopic FE simulations for trabecular bone specimens have been presented
in the biomechanics literature e.g. in [172, 171, 257, 269]. Periodic cells are fre-
quently referred to as ‘representative volume’ [178], ‘representative volume elements’
(RVE) [173, 174] or ‘representative elementary volume’ [144], the term ‘statistical
volume element’ (SVE) [267] is used in case of statistical periodicity. A criterion for
the size of SVEs for trabecular bone is that they should include 5 inter-trabecular
lengths [160]. We will use the term fundamental cell to denote exactly periodic or
statistically representative cells, cf. Figure 1.4. While [267] distinguishes between
microscale (of the microstructure), mesoscale (RVE or SVE), and macroscale (object),
our focus lies only on two scales.

Parameterized models for artificial osteoporotic structures have been considered
in [284, 321, 393, 385, 341, 147, 199, 279, 95, 96] so that the effect of different variations
(e.g. of geometry, material properties) on macroscopic elastic behavior could be
studied. In contrast to lattice models, our volume-based CFE approach [379] permits
a better resolution of trabecular junctions and is also applicable to voxel scans of
physical objects.

1.8 Outline

This dissertation is structured as follows. This chapter presents the background of
applications of the CFE methods and a literature overview alternative approaches.
A mathematical description of the corresponding model problems is discussed in
Chapter 2, along with the respective interfacial coupling conditions. CFE basis
functions are then constructed in Chapter 3. Numerical homogenization as a central
application framework is addressed in Chapter 4. Chapter 5 deals with multigrid

11
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solver strategies taylored to the CFE methods. Algorithms and their implementation
are presented in Chapter 6. The results of different numerical simulations are shown
in Chapter 7, concluding with an outlook in Chapter 8.

Many details of the construction are first introduced for the scalar heat diffusion
model problem and then generalized to the vector-valued linear elasticity model
problem. This will allow us to focus on the CFE peculiarities in the simplest case
first and then explain how the construction generalizes to the more technical, vector-
valued case.

12



2 Model Problems and Interfacial Coupling Conditions

ECALLING PHYSICAL AND MATHEMATICAL BACKGROUND and introducing notation,

the aim of this chapter is to describe scalar and vector-valued model problems.
Since our focus lies on the numerical methods and not on detailed modeling of
physical processes, the model problems considered are relatively simple ones: heat
diffusion in Section 2.1 and elasticity in Section 2.2. For the case of discontinuous
coefficients, coupling conditions across interfaces are derived in Section 2.3 as they
will be needed for the CFE construction for discontinuous coefficients.

The model problems discussed here are introduced for a general domain A. In the
context of complicated domains, this A will be the complicated domain, whereas for
discontinuous coefficients we assume the interface to divide A into two subdomains
with different material properties. In this setting, the interface can also be viewed as
the jump set of the coefficient function.

2.1 Heat Diffusion

Let us first consider isotropic heat diffusion in 3D with material parameters being
constant in time, but not necessarily in space. Let p be the density (mass per volume),
c the specific heat capacity (energy difference per mass and temperature difference) and
A thermal conductivity (transmitted power times length per temperature difference
and cross section area), their SI units are
kg J Wm W
[C]_K_kg W—m—a-

Heat diffusion is governed by continuity of temperature u (with [u] = K) and
conservation of energy and expressed in terms of the (physical) heat flux g = AVu,
(with [g] = Wm™2):

ot(pcu) —div(AVu) = f (2.2)

with a source term f in units Wm™3. We will often consider the case f = 0

for simplicity. All material coefficients are assumed to be constant in time and
independent of temperature.
For pc also being constant in space, we can define the thermal diffusivity

A m?

= e [a] = < (2.3)

o] (2.1)

_m3

a

and rewrite the steady state of Equation (2.2), d;(pcu) = 0, as the scalar elliptic model
problem

—div (aVu) = f, (2-4)

13
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where f is meant as a generic right hand side with different units than in (2.2). We
will use the simpler form Equation (2.4) for the CFE construction but keep in mind
that we need the splitting in A and pc in Equation (2.2) for actual simulations. For the
sake of simplicity we will also use 4 = aVu instead of the physical heat flux defined
above.

The temperature u is a scalar function u: R — R. In the more general anisotropic
case, a is a symmetric and positive definite second-order tensor, the isotropic case
can also be viewed as the special case a ~ ald.

The weak form of (2.4) (for zero Dirichlet boundary values for a domain A) is
obtained as usual (see e.g. [335]) by testing with functions in the Sobolev space’
Hy*(A) and integration by parts.

Problem 2.1. Find u € H(l)’z(A) such that

/(aVu,Vv) :/fv Vo e Hé’Z(A). (2.5)
A A

For a detailed discussion of Sobolev spaces, we refer to [7].

2.2 Linear Elasticity

A deformation is a sufficiently smooth mapping ®: A — R with det V® > 0 where
A C RY is referred to as the reference configuration. This reflects the physical under-
standing that deformations are locally injective and positivity of volumes is preserved.
Writing ® = Id + u we can define the displacement u: RY — R? which we will usually
work with throughout this thesis. For a detailed mathematical description of 3D
elasticity we refer to [83].

Define the (second-order) strain tensor € as the symmetrized gradient of the dis-
placement

elu] = % [Vu + (Vu)T] . (2.6)

The skew-symmetric part 3 [Vu — (Vu)T] is not considered in the strain because it
describes infinitesimal rotations. Then stress ¢ is obtained via

o(u) = Celu] (27)

with the (fourth order) elasticity tensor C satisfying the symmetry relations

Cijt = Cjirt = Cijix = Crij (2.8)
and the ellipticity estimate

Y Cijulijlr = a« >0 (2.9)

ikl

"Named after the Russian mathematician Cepreii JIsBoBuu CoGones (Sergei Lvovich Sobolev),
* October 6, 1908 in St. Petersburg, + January 3, 1989 in Moscow [262].
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for all ¢ € R¥*3 with ||&||r = 1. Here, ||Al|r = (X A2)1/2 is the Frobenius norm? of a
square matrix A.

The second order tensors € and ¢ are symmetric, hence it is convenient to write
relation (2.7) in matrix-vector form, called Voigt’s notation [356, 92]3. In 3D, it can be
written as

[0y [Coo Co1 Co2 Coz Cosa Cos]| [ €xx ]|

Tyy Cio Ci1 C2 Ci3 Cis Cis| | €yy

Oz | _ |Coo Co1 Co2 C3 Cpy Cos| | €22 (2.10)
0yz C30 C31 Gz C33 Css Czs| |26y '
Oxz Cyp Cyn Cp Cg Cyy Cys| |2€x:
[Ty [Cs0 Cs1 Csz Csz Csg Css] [2€xy ]

where other forms (without the factor 2) are also common in the literature. The 6 x 6
matrix in this notation is always symmetric and the tensor is hence described by at
most 21 independent material constants. Equation (2.19) illustrates the structure of
the elasticity tensor for orthotropic materials.

The elastic energy in a body A subject to a volume force f: A — R (e. g. gravity) is

Eelast[t] = %/ACe[u] s efu] — //\(f,u). (2.11)

The elasticity model problem is to find the displacement u satisfying given boundary
conditions and minimizing the elastic energy. Using vanishing first variation of (2.11),

d
0= @Eelast(u + 190)

d1
:EE/ACe[u—i—l‘)v] :e[u+l90]—/[\<f,u+1%>

~5 ] Celol : elu)+ elul : Celo] = [ (£,

/Ce /(fv)

we obtain the weak form of the elasticity problem.

9=0

9=0 (2.12)

Problem 2.2. Find u € H'?(A;R®) such that

/ Celu] : e[v] = / (f,v) Yve HZ(ARY), (2.13)
A A

2Named after the German mathematician Ferdinand Georg Frobenius, x October 26, 1849 in Berlin-
Charlottenburg, + August 3, 1917 in Berlin [1, 262].

3Named after the German Physicist Woldemar Voigt, * September 2, 1850 in Leipzig, + December 13,
1919 in Gottingen.

15
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Note that (2.13) is also the weak form of the problem
—divCelu] = f (2.14)

in A with suitable boundary conditions. We will typically use Dirichlet boundary
conditions on part of dA (and transform these to zero ones) and zero Neumann
boundary conditions on the remaining boundary.

The volume force (source) term f could e. g. represent gravity. Given the material
stiffnesses (where forces on the order of 10 N are applied for typical displacements)
and the weight of the specimens (on the order of 1073 N for masses on the order of
100 mg), gravity can be neglected and source terms will typically be set to zero.

Physical Interpretation. Deformations and displacements have unit [®] = [u] = m
and strains have unit [e] = 1, therefore strains are often given in percent (of the
respective length). Elasticity tensors and stresses are measured in Nm~2 = Pa.
Typical elasticity coefficients are in the range of GPa.

Isotropic materials can be described by Young’s modulus* (uniaxial compressive
stiffness) E > 0, and Poisson’s ratio> (bulging ratio under uniaxial compression)
v € [—1,0.5] (see e.g. [221, Section 3.3]) where

E_ force  length
~ area elongation

v — % _ radial bulging - length (2.15)
~ elongation " e]ongation - radius =
length
N
El=— =P =1.
[E] = 5 =Pa v

v = 0 thus means no bulging and v = 0.5 means volume preservation (incompressibil-
ity), most solids have v € (0,0.5). Materials with v < 0 are called auxetic, examples
are certain foam structures [203].

For v € (—1,0.5), these parameters can be converted to the Lamé-Navier pammeters6
A and p [83, Section 3.8]

3= Ev = E
(1+v)(1—2v) 2(1+v) (2.16)
., N
A =[1=
and the elasticity tensor has the form
Cijrr = Adijops + 1 (Sidjk + dixdji) (2.17)

4Named after the English physicist (and expert in other fields) Thomas Young, x June 13, 1773 in
Milverton, Somerset, + May 10, 1829 in London [1].

5Named after the French mathematician, geometer, and physicist Siméon-Denis Poisson, x June 21,
1781 in Pithiviers, Loiret, + April 25, 1840 in Sceaux, Hauts-de-Seine [1].

®Named after the French mathematician Pére de Gabriel Léon Jean Baptiste Lamé, « July 22, 1795
in Tours, + May 1, 1870 in Paris [262] and the French engineer and physicist Claude Louis Marie
Henri Navier, x February 10, 1785 in Dijon, + August 21, 1836 in Paris [262].
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where ¢;; is the usual Kronecker symbol” (6;; = 1if i = j, §;; = 0 otherwise). In this
case, we can write

Ce = A(tre)ld + 2pue. (2.18)

Orthotropic Materials. For an orthotropic material, only the upper left block and
the lower right diagonal of the elasticity tensor in Voigt’s notation (2.10) are nonzero.
It can be described by Young’s moduli E;, shear moduli G;; and Poisson’s ratios v;;,
the inverse of the elasticity tensor in Equation (2.10) can be written as

[ €xx | [ 1/E, —Vay/Ey  —Vxz/Ey 0 0 0 Txx
Eyy _VW/Ey 1/Ey —Vyz/Ey 0 0 0 Oyy
€ | | —V=/E. —Vu/E. 1/E 0 0 0 Orr
2,0 | 0 0 0 6. 0 0 | |op (2.19)
2€Zx 0 O O 0 1/GZX O sz
_Zexy_ L 0 O O 0 0 1/ny_ _O-.X']/_

Due to symmetry, only three of the Poisson’s ratios v;; are independent. Due to the
block structure, the elasticity tensor for orthotropic materials has the same sparsity
structure as its inverse: The upper left block and the lower right diagonal are nonzero.

Forces. For any section A through the object, the force F acting on A is given by

F— /A (o(x),n(x)) dA(x) (2.20)

where n(x) is the normal to A at x (in a defined direction). In particular, ‘actio =
reactio” implies that it does not matter where we cut the body to compute the force
for a deformation. Forces are measured in [F] = N which fits to planar integration of
stress.

Von Mises Stress. Let o be the 3 x 3 symmetric second order stress tensor and
Ao 1,2 its eigenvalues. Then the von Mises stress® [357, 36] is defined and computed as

OyM = \/% [(7&0 — )%+ (Ao — A2 + (A — )\2)2}

— 2 2 2 2 2 2
= \/0'00 + o7y + 05, — 0p0011 — 00022 — 011022 + 3 (0’01 + 0 + 0'12) .

(2.21)

Due to symmetry of o, the eigenvalues are real and oy is also real. The von Mises
stress is used in materials science as a fictitious uniaxial stress with similar wear as
for real multiaxial loading and obviously has the same physical units as o.

7Named after the German mathematician and logician Leopold Kronecker, * December 7, 1823 in
Liegnitz, + December 29, 1891 in Berlin [1].

8Named after the Austrian mathematician Richard Edler von Mises, x April 19, 1883 in Lemberg
(now Lviv, Ukraine), + July 14, 1953 in Boston, U.S.A. [1].
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2 Model Problems and Interfacial Coupling Conditions

To become familiar with the quantities defined above, let us consider a few simple
displacements in the Lamé-Navier setting in 3D. Shifting an object, u(x) = ¢, clearly
does not require elastic energy

eu=0, c=0, owm=0.

Isotropic compression is described by u(x) = ax

o (BA +2p)a
€lu] = ( It ) , o= ( (BA 4+ 2u)a )
« (BA +2u)a

where the von Mises stress is not a meaningful quantity. Uniaxial compression (which
will be simulated frequently later on) is described by u(x) = (axo,0,0)

« Aw
e[u]( 0 ), (7( A ), OyM = 240
0 (A +2p)a

One case of shearing is described by the displacement u(x) = (ax1,0,0)

0 %zx 0 pa
efu] = a 0 , o= |puax O , oo = Voua.
0 0

Rigid Body Motions and Linearization. Note that linear elasticity is a simplified
model of reality: rigid body motions are not necessarily stress-free and stress-free
deformations are not necessarily rigid body motions. More precisely, an affine
displacement u(x) = Sx + b is

; OyM =0

1. arigid body motion <= S +1d =: Q € SO(d), i.e. the deformation ®(x) is
the sum of a rotation and a translation, ®(x) = Qx + b. Consider a rotation by
« around the x, axis, which is not stress-free in the isotropic linear setting:

cos(w) —1  sin(a) cos(a) — 1 0
S=| —sin(a) cos(a)—1 , €[u] = 0 cos(a) —1 ,
0 0

2(A + p)(cos(a) — 1)
o= 2(A+p)(cos(a) — 1)

7

2A(cos(a) — 1))
oM = 2p(cos(a) — 1),

2. stress-free <= S is skew-symmetric (hence € = 0), e. g. the stretching rotation
described by

0 B
S(,B 0 ), eul =0, c=0, om=0.
0
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Figure 2.1. The planar approximation I of an interface y at a point z divides the full space
in two half-spaces H. and defines a normal direction 7 and a tangential direction ¢. In 3D,
there is an additional tangential direction s.

2.3 Coupling Conditions Across Interfaces

The construction of CFE basis functions for discontinuous coefficients later on in
Section 3.3.2 will be such that typical profiles of physical quantities can be well
approximated at interfaces. This requires first of all knowing the behavior of such
profiles. Based on physical conservation principles, continuity of physical quantities
and discontinuity of the material parameters leads to a nondifferentiability in the
physical quantity.

In this section, we discuss these coupling conditions depending on both interface
geometry and material coefficients. The case of isotropic heat diffusion is the most
basic one where the coupling results in a kink of the temperature profile in normal
direction to the interface. This allows to understand the coupling without technical
complications due to anisotropy. In the anisotropic case, the coupling involves both
normal and tangential components and thus becomes more technical and cannot be
understood as a simple kink. In the linear elasticity case, we will encounter additional
technicalities due to the vector-valued nature of the problem.

Geometric Setting

Consider the following geometric situation. Let z be a point on an interface y be-
tween two domains ()_ and (), with different material properties, forming, cf. Equa-
tion (3.1), QO = Q_ Uy U Q. For simplicity of the presentation, we only consider a
planar approximation I' of the interface y at z, so that I' defines two half-spaces H-.
Let n be normal and s, t tangential to the interface - such that 1, s and, t are pairwise
orthogonal and normalized, in particular Hy = {x|(x — z,n) 2 0}, cf. Figure 2.1.

Definition 2.3. For ¢ piecewise continuous on ()4, we define the jump across the
interface <y as

[¢]y =g (z) —g (z) where g*(z) := lim g(x). (2.22)

X—Zz
xeQq

More generally, define the restriction to a subdomain as

g =gla, - (2.23)
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2 Model Problems and Interfacial Coupling Conditions

For a scalar function u, we can convert between directional derivatives and the
Euclidean gradient?

ng ni My dou onu dou ng So to ou
S) S1 S oiu|l=\ou| < |ou|l=1|n s1 h osu | , (2.24)
to t1 to azu 8tu azu ny Sy fto 8tu
N————
=G

where we used the property that G € SO(3) so that G~! = GT.

Applying a fourth-order tensor H with entries H;j, to a second-order tensor M
with entries My, can be written using Einstein summation convention™ (summation
over indices appearing twice in a term of a product) as

(HM);j = HijjuMy = Y Y  HijuMy; - (2.25)
P

Similar to (2.24), the symmetrized gradient e[u] of a vector-valued function u can be
expressed in terms of directional derivatives using the fourth-order tensor H in

anuo asuo atuo
(Vu+Vul) = H | dyuy su1 sy (2.26)
anuz asuz atuz

N =

e(u) =

with Hjy = 3 (6xGj + 63%xG;;) with the second-order tensor G as in (2.24), see Sec-
tion 2.3.2 for an explicit form in 2D.

2.3.1 Heat Diffusion Model Problem

Isotropic Heat Diffusion

Conservation of energy at the interface implies continuous heat flux across the
interface, that is

ato,ut(z) =a 0,u” (z), (2.27)
which in case of isotropic heat diffusion, i. e. scalar and positive a®*, translates to the
coupling condition

aut(z) = L apu(2)

Os ™ (z) = dsu” (2)

(2.28)

where the continuity of the directional derivatives in the tangential directions is also
accounted for. This continuity is sufficient for the temperature to be continuous along
the interface.

9Named after the ancient Greek mathematician Edx\eidec (Euclid of Alexandria), x around 300 BC in
Alexandria, Egypt [1].

°Named after the physicist Albert Einstein, x March 14, 1879 in Ulm, Germany, + April 18, 1955 in
Princeton, U.S. A. [1].

20



2.3 Coupling Conditions Across Interfaces

Definition 2.4. The kink ratio is the scalar factor x := g—; in Equation (2.28).

It describes the kink of the (continuous) temperature profile perpendicular to the
interface. For physical reasons (strictly positive diffusivity coefficients), « is strictly
positive and finite.

Remark 2.5. For a continuous and piecewise continuously differentiable function, a
kink in the function corresponds to a jump in its derivative.

Equation (2.28) implies that any locally (in a neighborhood of z) admissible tem-
perature profile has a first order Taylor approximation™ in directions n, s, and ¢ (as
explained at the beginning of this section)

(2.29)
b{x —z,n)+cs(x—2z,8) +cr{x—zt)+d forx e H_

{Kb(x —z,n)+cs(x—2z,8) +c(x—zt)+d forx e Hy
U: x +—
with b, ¢, ¢, d € R. Such functions form a four-dimensional vector space.

Lemma 2.6. The space of piecewise affine functions of the form (2.29) is spanned by
the prototype functions

k{x —z,n) forxe H
UO(x): < > +
(x —z,n) forxe H_

7'(x) = (x—z,1) (2.30)
77 (x) = (x —z,5)
2 (x) =1.

Even though those 7' obviously form a basis of their span, we prefer the term
‘prototype” functions to distinguish them from CFE basis functions.

Anisotropic Heat Diffusion

In the anisotropic heat diffusion case where the diffusivity coefficient is second-order
tensor-valued (matrix-valued), a more general coupling condition holds, not merely
interpretable as a kink. We again have continuous heat flux across the interface (in
normal direction) and continuously differentiable temperature along the interface
(in tangential directions):

(a*Vut(z),n) = (a”Vu (z),n)

s 1™ (z) = 9s4u” (2) (2.31)

"Named after the English mathematician Brook Taylor, * August 18, 1685 in Edmonton, Middlesex,
+ December 29, 1731 in London [1].
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2 Model Problems and Interfacial Coupling Conditions

where the first condition translates to

o u™ T
(a™G | osu™ | ,n) = {(a~G | osu= | ,n). (2.32)
8tu+ o~

Substituting G defined in (2.24), we obtain
n]na u™t +a;; s]nau —l—a*tn&m =a; n]na u +a; s]nau +a; tnatu

which, combined with the tangential coupling conditions, results in the system

]n]nl ]s]nl a;]ftjni Q,ut agnin; agsing agting\ (9uu”
0 1 0 dsut | = 0 1 o o5t~
0 1 oru™ 0 0 1 o~

=K~

N S/ J/

0
_K+ K

onu™ b Y T K" K
= (ot | = (KK | ou | = (2.33)
atu+ o~ O E)tu

where K™ is invertible because a™ is positive definite, hence a;Tn]-ni # 0. Let us point
out that the entries of the coupling matrix K depend on both the thermal diffusivity
tensor a and the local geometry (1, s, t). Note that for the isotropic case (2 being a
multiple of 1d), (2.33) simplifies to (2.27) with K" = x, K¥ = K' = 0. Furthermore
note that the coupling now involves all directional derivatives, not only the one in
normal direction. In summary, we obtain the following lemma.

Lemma 2.7. The space of piecewise affine functions satisfying (2.31) is spanned by
the prototype functions

O(x) _ JK(x—zn) for x € Hy

! B (x —z,n) forx € H_
1(.X')_ KS<X—Z,H>—|—<X—Z,5> fOI'XEH+

T (x —2zs) forx e H- (2.34)
Z(x)— K (x —z,n) + (x —zt) forx € Hy

! B (x —z,t) forxe€ H_
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2.3 Coupling Conditions Across Interfaces

2.3.2 Linear Elasticity Model Problem

The coupling condition in the elasticity caes is given by local equilibrium of force
(continuity of normal stress) across the interface (in normal direction)

Crelu™] (z)n=Celu"] (z)n (2:35)

besides continuous differentiability in the tangential directions.
Using G defined in (2.26), we can express this condition in terms of the directional
derivatives of the displacement u

Onlly  Osity Opug Onlly Oslly Oy
+ + + + o — - - ,
Ci]'leklpq Bnu£L Bsulr 8@13r nj = Cijleklpq 8nu1_ 8Su1_ atul_ nj.
Only Osu, Oty pa Onl, Osu, O, pa

(2.36)

Together with continuity of dsu and d;u, we can substitute H, expand (2.36) toa 9 x 9
system in block structure and rewrite it in the form

Lvt LSt LPF opu™ L*— LS L~ Onl™
0 Id 0 out | =10 Id 0 st~
0 0 Id oru™ 0 0 Id o~

J/ N J/

~~ N~

- - (2.37)
out U~ L" L[5 Lt o U~
= |out | =) L™ [osu= | =0 Id 0] |ou|.
atu+ ou~ 0 0 Id ou~
7
Equation (2.36) can indeed be rewritten in this form.
Lemma 2.8. The matrix L"" in (2.37) is invertible.
Proof. This can be shown by proving that, given the coupling conditions, Vi~ = 0 im-

plies that Vu™ = 0. First observe that d;u™ = o;u™ = 0 because of dsu~ = du~ = 0.
Hence we can write Vu™(x) = wn! for some w = w(x) € R3. Continuity of the
normal stress implies C~e[u~] = 0, and scalar multiplication by w leads to

0=(Ce[u]nw)=}, (ijl Ciwe [ ]y ”J‘) wi (2.38)
=) (Z]’kl Cz'erkl(V”Jr)kl”j) Wi = Zz’jkl Cawenmwin; > aljwon’ |,

where we used symmetry and ellipticity (2.9) of the elasticity tensor. Hence wn' = 0,
from which w = 0 and thus Vu* = 0 immediately follow. O

In summary, we obtain the following lemma.
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2 Model Problems and Interfacial Coupling Conditions

Lemma 2.9. The space of piecewise affine vector-valued functions that satisty (2.35)
is spanned by the prototype functions {n*'};—,. 3,j—0,1, defined by

: (x —z,n)L" forx € Hy
109(x) = f
(x —z,n)e; for x € H_
V() = (x — z,n)L;T +{x —z,5s)e forx € Hy
(x —z,5)e forx € H_ (2.39)
P (x) 1= (x — z,n)L;f + (x —z,t)e; forxc Hy
(x —zt)e; forx e H-

173’j(x) = ej

where the index i corresponds to the same index as in the scalar case (2.34) whereas j
refers to the jth vector component. Here, L; denotes the jth column of the matrix

L* = (Lz‘.]')i,j:O,l,Z-
Remark 2.10. The 17i'j can also be written in a different form. Let

(

Lg]. 00
L’f]. 00 forx € Hy
. LY. 00
L(x) = ¢ 7 (2.40)
bj 00
6 00 forx € H_
(\d; 00
( Ly &oj O ( Ly 0 &
Li} 51] 0 x € Hy Lij 0 51] x € Hy
S t
LY (x) = sz %j 0 Lzrj(x) = sz 0 0
0 & O 0 0 do
0 51] 0 x € H_ 00 51] x € H_,
L 0 52]' 0 L 00 52]
then we can write
N N (x —z,n)
n(x) =LY (x) | (x—2z5s) i=0,127=0,12,
(x —z,t) (2.41)
7 (x) = ¢ j=0,1,2.
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2.3 Coupling Conditions Across Interfaces

Explicit Formulas for Isotropic Lamé-Navier Elasticity in 2D

As an example, let us explicitly state the form of the elasticity coupling conditions for
the isotropic case in 2D [310] where the elasticity tensor is given as in Equation (2.17).
Let us first determine an explicit form of the tensor H in Equation (2.26). For n = (%)
and t = (i‘l’ ), we can write

ng fto - aouo 81u0 ng to o anl/lo atl/l()
Vi (nl t1> B (aoul a1Ml) <Yl1 tl) B (anul oty (242)
so that
Yy — 8nu0 atuo ng to - . 8nu0 atuo nog mn
- anul E)tul n f - anul atul to tH
_ (M09t + tdrug 119U + t104g (2.43)
nOnty + tgdsuy M10uuy + t101uy )’
divu = tr Vu = ngd,ug + n10,uq + toodsug + t10:u7.
Hence
dnllg Otllg) _ _ T
2H (anul I 2¢(u) = Vu+Vu (2.44)
_ 2100ty + 200l n10uug + t10sUy + o,y + tgorug
ngdyuq + todsuy + n10,ug + £10:1Ug 2110,11 + 210514 '

If we use G = (Z‘l) :‘1’ ), then the entries of the fourth-order tensor H are given as

Hij = 3 (61 Gji + 6 Gi).-
Now let us collect the terms arising in Ce[u] n:

<vu n VMT> 0= ((271% + n%)anuo + (nonl)anul + (2n0t0 + Tlltl)atuo + (Tllto)atul)
(nonq)dnug + (13 + 2n2)duur + (noty)dsug + (noto + 2n1t1 )0k )’
n%anuo + ngn19,uq + notgdsly + notlatul)

non1Onttg + niOutty + nitodsiig + nytidsiy (2.45)

(divu)n = (
Due to orthonormality of n and ¢ (n% + n% = t% + t% =1, notp + n1t; = 0) and using
Equation (2.17) we obtain

[An3 4+ u(1 +n3)] 9uuo + [Anony + ungny] Ouuig + . ..
oo+ [Angto 4+ unogto] sug + [Angty + unyto] oruq
[Angny + pnony] duutg + [An? + u(1+n?)] 9puq + ...
oo+ [Angtg + ungt1] sug + [Anqty + ungti] osuq

Celuln = (2.46)
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2 Model Problems and Interfacial Coupling Conditions

Hence the coupling condition (2.36) across the interface is given by the linear system
of equations

L™t LN (o,u™\  (L" LI7\ [9,u~ (2.47)
o 1 /)\out) " VLo 1) \ou 47
with

[t _ AEnd+ uE(1+n3)  AEngng + pFnomy
AMngny + pEngny A2 +ut(1+n2)) (2.48)
2.
/\inoto + “l/l:ti’lot() )\ii’lotl + "l/t:tnlto 4

L = :
(/\inlto + yinotl )\inltl + “Ll:ti’lli'1>

We can in fact proceed as in Equation (2.37) because L is nonsingular because
the analogon of Lemma 2.8 is true in 2D.

Let us point out that the derivative in normal direction is coupled to the derivatives
in the tangential directions via (2.47) even for v* = 0 (which implies A* = 0) and a
jump only in E.
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3 Construction of Composite Finite Elements

DAPTED BASIS FUNCTIONS are the heart of CFE methods. When dealing with a
Acomplicated domain, CFE basis functions will be constructed as standard affine
FE basis functions on a Cartesian grid (not resolving the domain boundary) restricted
by the boundary. For discontinuous coefficients across a geometrically complicated
interface, basis functions are constructed such that they are able to interpolate the
expected nondifferentiability in the solution.

Starting from voxel data implicitly describing the domain boundary, a local auxiliary
submesh G approximating the interface is defined. In case of complicated domains,
this G2 is used to construct standard affine FE basis functions restricted to the interior.
Figure 3.1 (left column) sketches the idea for this construction in 1D. The 2D and
3D case are conceptually not more complicated, except that ‘complicated” no longer
means ‘disconnected” as in 1D.

For discontinuous coefficients, the coupling conditions across the interface dis-
cussed in Section 2.3 are exploited to construct CFE basis functions. For this purpose,
we consider local approximation (or interpolation) problems from nodes of the regu-
lar cubic grid to nodes of G*. Their solutions are used to compose CFE basis functions
from a standard affine FE basis on G* by linear combination with appropriate coeffi-
cients (composition weights). This construction is sketched for the scalar 1D case in
Figure 3.1 (right column). Generalized to 2D and 3D, this will no longer mean that
basis functions themselves satisfy the coupling condition across the interface.

Notice that the construction of local auxiliary meshes depends solely on the interface
geometry. Hence also CFE basis functions for complicated domains only depend on
the interface geometry. In contrast, the coupling conditions of Section 2.3 and thus

B--®--8---EH-+ §

. . - (a)
N - - - /)<>-< (b)
XXX K

Figure 3.1. Sketch of the scalar 1D CFE construction. Left column: Basis functions for a
complicated domain, right column: basis functions for discontinuous coefficients with kink
ratio ¥ = 3 between two domains (dashed and dotted). (2) shows the uniform Cartesian grid
that does not resolve the geometry. Nodes with degrees of freedom assigned are marked
by gray squares. (b) shows a standard basis on a local auxiliary (sub-)mesh approximately
resolving the geometry, and (c) shows the resulting CFE basis functions.

B - - - - - -8 - AoEoeoaa@oeoa @ o@lo- — 48
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3 Construction of Composite Finite Elements

the construction of CFE basis functions for discontinuous coefficients also depend on
the material coefficients. Actual simulations moreover depend on boundary values
and source terms.

The construction of the local auxiliary submesh is discussed in Section 3.1. Sec-
tion 3.2 describes the construction of CFE basis functions for complicated domains.
As for discontinuous coefficients, the isotropic and anisotropic scalar cases and the
general vector-valued case are treated in Section 3.3 where composition weights are
determined based on the interfacial coupling conditions discussed in Section 2.3.
Boundary conditions in the CFE context are discussed in Section 3.4. Finally matrices
arising the CFE discretization are addressed in Section 3.5.

The geometric preliminaries and the CFE method for complicated domains are
mainly the one in [216] and have been adapted to our CFE framework. It has been
published in [217, 282]. The CFE constructions for discontinuous coefficients for both
scalar and vector-valued problems have been developed as part of this thesis and has
been published and submitted for publication in [310, 281].

3.1 Hexahedral Voxel Grids and Local Auxiliary Meshes

We will explain the CFE construction for the unit cube Q) := (0,1)3 as a computational
domain which is decomposed in two subdomains ()+ and an interface <y described

by

OQr={xeQ|px)>0} Q_:={xeQ|¢e(x) <0}
v:={xeQp(x) =0}

where the level set function [266] ¢: (2 — R is assumed to be continuously differen-
tiable almost everywhere and non-degenerate in the sense that V¢(z) # 0 for z € 7.
Note that we require non-degeneracy only for the zero level set.

The interface v represents either the boundary of the geometrically complicated
domain ()_ or the interface between two regions with different material properties.
The level set function ¢ is typically given as voxel image data on a uniform cubic
mesh, canonically with piecewise multilinear interpolation.

We will restrict the presentation to the case of two subdomains (i.e. (Q_ is a
single, not necessarily connected subdomain, so is () even though a single level set
function allows for multiple subdomains without triple junctions. The extension to
more general () or multiple subdomains is possible, as well as the combination of
both a complicated domain and an interface with discontinuous coefficients [273].

(3-1)

3.1.1 Regular Tetrahedral Mesh

Definition 3.1. Let G, the regular cubic grid, be a uniform cubic mesh discretizing (),
and let G¥, the regular tetrahedral mesh, be obtained by dividing each cubic element
in six tetrahedra in the way shown in Figure 3.2. Let N'¥ be set of regular nodes

corresponding to GY and let Z¥ C N be an index set for A’ with index map
jr NH — TH.

28



3.1 Hexahedral Voxel Grids and Local Auxiliary Meshes

AN NIYN N

Figure 3.2. Subdivision of a cube into 6 tetrahedra. The diagonals on the left and right, top
and bottom, and front and back faces are pairwise consistent with the neighboring cube,
hence the resulting tetrahedral mesh G¥ is admissible in the usual sense (see e.g. [55]),
in particular there are no hanging nodes. The angles of the regular tetrahedra lie in
arccos{0,1/2,1/v3,1/v2,V2/\/3} ~ {905, 60°, 54.74°, 45°, 35.26°}.

The division of cubic elements is performed in such a way that each cube is split
in the same way and such that the (face) diagonals introduced are consistent with
neighboring cubes. Note that this introduces a certain anisotropy in the mesh, similar
to “criss’ (@-type division of squares in triangles) or ‘cross’ (N-type) meshes in 2D.
Note moreover that the node sets A= and N'® (corresponding to G ™) coincide, and
we will consistently use A'™. We will typically use r and s as variables for regular
nodes.

Two obvious other choices are not preferable for our application, also in their
3D analogs. Criss-cross (X-type) meshes introduce additional nodes. Alternating
between criss and cross subdivision of neighboring elements does not allow to treat
all elements in the same way and would make the whole construction technically
more involved.

Upper case ® will denote the piecewise affine approximant of the level set function
@ and I the zero level set of @, i.e. a piecewise planar approximation of y. Moreover,
Q% denotes the piecewise tetrahedral approximation of Q)+ for which I' forms the
interface (the triangle symbol matches G* defined below in Definition 3.3).

Definition 3.2. Let E be a cubic element of G- with a fixed ordering of the vertices
(e. g. inversely lexicographical ordering of the nodes as explained in Definition 6.1)
and ¢ be the level set function. Then the signature ¢(E) € {—1,1}8 is defined to be
the sign pattern of ¢ at the vertices. Similarly we define the signature of a simplex
T € G, ¢(T) € {—1,1}*, as the sign pattern of its vertices.

3.1.2 Virtual (Tetrahedral) Mesh

Now let us consider a single simplex intersected by the interface (non-intersected
simplices require no modification). For this construction we assume that the interface
does not pass exactly through any node of G¥, see below for a discussion of this issue.
In 2D, we can only have a 2 : 1 splitting of the vertices, cutting one regular triangle in
one virtual triangle and one quadrilateral q. Subdividing the g in two further virtual
triangles is automatically consistent with neighboring regular triangles because no
new objects of codimension 2 are introduced. We can hence define the local auxiliary
mesh consisting of the virtual triangles.
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3 Construction of Composite Finite Elements

A T ea s

4448 L4646

Figure 3.3. Splitting a tetrahedron into one pentahedron and one tetrahedron (fop) or two
pentahedra (bottom) by the interface I'. The dashed lines in the middle column show the
resulting subdivision in local auxiliary tetrahedra which are visualized individually on the
left and right. Each pentahedron has two triangular faces and three quadrilateral faces for
which the subdivision of two neighboring polyhedra needs to be consistent.

Note that our goal is again to use the same subdivision in every square/cube,
which may lead to badly shaped simplices as discussed below in Remark 3.6.

In 3D, there are two possibilities how an interface can cut a regular tetrahedron
T, see Figure 3.3. Either (top row in Figure 3.3) the vertices of T are split 1 : 3,
cutting it into one virtual tetrahedron and one pentahedron which is subdivided in
three virtual tetrahedra. Or (bottom row) its vertices are split 2 : 2, cutting T in two
pentahedra, each of which is subdivided in three virtual tetrahedra. In both cases, the
subdivision of neighboring regular tetrahedra needs to be performed in a consistent
way. This is not trivially satisfied because the subdivision introduces new edges (of
codimension 2). The virtual tetrahedra finally form the local auxiliary (sub-)mesh. By
construction, the union of all virtual tetrahedra in one regular tetrahedron equals this
regular tetrahedron.

Definition 3.3. Let G be the virtual mesh obtained by this subdivision procedure
with node set N'* = NPUNVI™t consisting of regular nodes and purely virtual nodes.
Let N'© be indexed by j: N& — 7% C N.

Since the meaning of j will always be clear from the context, we do not distinguish
notationally between indexing different node sets. Moreover, we will often identify
nodes and their indices (and thus e. g. use nodes as indices for the associated basis
functions) to keep notation simple. We will typically use z or y as variables for nodes

in N2,
Lemma 3.4. The meshes and node sets are nested (“>~’) in the following way:

g2 -G8 - g~
NE = N® c NA o NVt it AT — (3-2)

Proof. This follows immediately from the definitions. ]

Notice the resemblance between this subdivision strategy and the marching cubes
algorithm [220] and the marching tetrahedra algorithm (see e.g. [307, Section 6.2]).
In particular splitting cubes in regular tetrahedra is performed in the same way for
each cube E, which is also true for the subdivision of regular in virtual tetrahedra.
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3.1 Hexahedral Voxel Grids and Local Auxiliary Meshes

GY, v G%, v GA T

Figure 3.4. The regular (Cartesian) grid G- and the regular tetrahedral mesh G* for a 2D
example do not resolve the interface (dotted line) and have the same set of nodes N = N
shown as s. The virtual mesh G# additionally has purely virtual nodes A"V shown as e.

Remark 3.5. The topology of the virtual mesh for one cubic element E only depends
on the signature ¢(E) whereas the geometry depends on the values of ® (for which
we use piecewise affine interpolation).

If we used a piecewise trilinear approximation of ¢ to find its zeroes (which is the
canonical interpretation of voxel data), we would have to deal with ambiguities for
certain ¢(E) (cf. the ambiguities of marching cubes/tetrahedra, [260, 236, 338]). Along
face and space diagonal edges, multilinear means second and third order polynomial,
respectively. So the same sign of ¢ at both end vertices may mean zero or two roots
on the edge, and a sign change may be due to one or three roots. Using a piecewise
affine interpolation on the tetrahedral subdivision explained above, the topology of
the interface approximation is uniquely determined, but due to the mesh anisotropy
it is not invariant under rotation or flipping of the data set. Figure 3.5 shows the
complete classification of signatures in 128 troublesome and 128 non-ambiguous
cases (see also [260]). In the troublesome cases, more than one connected component
of the interface cuts through the cube so that the regular tetrahedral subdivision
is not topologically invariant under rotation of the dataset. In the other cases, the
difference between multilinear and affine approximation is O(h?) for grid spacing ,
thus the location of the interface is determined up to sub-pixel shift, and this error
can be neglected compared to inaccuracies in the image acquisition.

Remark 3.6. The virtual tetrahedra can have arbitrarily bad aspect ratio (radius of
the smallest containg sphere divided by the radius of the largest contained sphere,
cf. [77]). For geometric reasons, only certain types of badly shaped tetrahedra [77]
can occur in the virtual mesh, see Figure 3.6. As the virtual mesh is not used as a
computational mesh, this is no immediate numerical problem in the CFE context.

However, to avoid numerical instabilities due to extremely small virtual tetrahedra,
we require the virtual nodes to lie away from the regular nodes by at least a certain
fraction of the respective edge length. If there is a lower and upper bound on
the gradient of ®, this can also be achieved by shifting ® away from zero. For
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3 Construction of Composite Finite Elements

Figure 3.5. For each possible signature (sign pattern of the level set function), the topology
of the corresponding local auxiliary mesh is shown. Solid red frames indicate ambiguous
cases in a marching cubes approach (the interface cuts the element more than once) for
which the topology of the local auxiliary mesh (and thus also G*) is not invariant under
rotation or mirroring of the dataset. Dashed green frames show the invariant cases. A
mirror is placed below each cube to show all corners of the element.
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|| |

spire splinter spear spike spindle wedge spade sliver

D

Figure 3.6. The classification of badly shaped tetrahedra (with small aspect ratio) accord-
ing to [77]. The bottom row shows examples for those types that can occur in the CFE
construction, ¥ indicates those types that cannot occur due to geometric reasons.

1§

Figure 3.7. Virtual nodes are shown as small red dots for three different interfaces, a sphere
(viewed and visualized as a complicated domain), part of an aluminum foam and an
artificial trabecular structure (left to right, both viewed as domains with discontinuous coef-
ficients). The geometric locations of the virtual nodes (on edges of the regular tetrahedral
mesh G¥) and the (flat) shading of the faces reflects the cubic structure of G¥.

Figure 3.8. The two balls are CFE-reconstructed zero level sets of a floating point voxel dataset
(left) and a 7 bit (to pronounce the effect) quantized version of the same dataset (right),
showing that quantization leads to non-smooth interfaces.
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3 Construction of Composite Finite Elements

appropriate correction parameters this modification shifts the interface only by
a negligible amount compared to image acquisition inacurracies. Note that this
correction can also handle the case ®(r) = 0, i.e. the case of an interface passing
precisely through a regular grid point € G¥ (the only decision in this case being
whether to use a positive or negative shift).

Examples of the interface reconstruction along with the location of virtual nodes
are shown in Figure 3.7 for three different interfaces. Artificial interfaces are typically
given by analytically computed signed distance functions, whereas actual physical
specimens are described by quantized image data. Figure 3.8 illustrates how quan-
tization of the voxel data (which are often only 8 bit images) leads to less smooth
appearance of the reconstructed interface.

3.1.3 General Composite Finite Element Notation
For future use, let us introduce the following notation.

Definition 3.7. If a virtual node z lies on the edge [r,s] in G¥ between two regular
nodes 7,5 € N5, these two nodes are referred to as geometrically constraining nodes,
P> (z) = {r,s}. Conversely, z will also be written as 7s.

Definition 3.8. Let A(z) = {T € G¥|z € T} be the set of regular tetrahedra
containing z (simplices adjacent to z, patch or star around z). Furthermore, let
IP¥(z) be the set of all vertices of regular tetrahedra in A(z), which clearly satisfies
IP>(z) C IP®(z). These constraint sets are shown in Figure 3.9 for a 2D example.

Definition 3.9. Let A" C A'™ be the set of nodes (on the Cartesian grid) that are
assigned a DOF. In case of complicated domains, A/°°F will be a proper subset of V™.
In case of discontinuous coefficients, the two sets will coincide.

Let ($2),ens be a standard nodal tent basis on G (virtual basis). The CFE basis
functions (P£™),camor Will be composed of the virtual basis functions as a linear

combination

po= Z mz,r’abzA (3-3)

zeD(r)

with the set of constrained nodes ID(r) C N and composition weights 1, to be
determined in detail in the following sections. In the complicated domain case,
Equation (3.3) holds only inside the object. Conversely, we define a set IP(z) of
regular nodes constraining a virtual node z

P(z) == {r e N° |z € D(r)} (34

where the notation reflects an m : n parent/descendant (child) relation, hence the
symbols [P and .

Note that one could view this composition (3.3) as a oth (multigrid) coarsening step.
This interpretation, however, is misleading because the virtual mesh considered here
is never used as a computational mesh.
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3.1 Hexahedral Voxel Grids and Local Auxiliary Meshes

Figure 3.9. The sets P> (e) of geometrically constraining regular nodes for two virtual nodes
are shown on the left, the sets P (e) for the same nodes are shown on the right.

CFE basis functions to be constructed later in this section will be denoted by “**

(scalar) and Y“** (vector-valued basis functions). The corresponding function spaces
are defined to be

VIE = gpan {¢™F | r € NPT} in the scalar case, and

VI = span {Y;y |r € N?°", 0 € {0,1,2}}  in the vector-valued case. (3:5)
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3 Construction of Composite Finite Elements

3.2 CFE for Complicated Domains

Let, for an arbitrary set M,
Xm: M — R

x = Xm(x) =

1 forxe M (3.6)
0 otherwise

be the characteristic function of M.

Definition 3.10. Scalar CFE basis functions for complicated domains are the standard
basis functions (2),ca0 on the regular tetrahedral mesh G¥, restricted to the
interior of the domain approximation Q%

S = Xaayr. (3.7)

The constraint sets in this case are IP(z) = IP>(r) for all virtual nodes z € NV and
IP(r) = {r} for all regular nodes r € N'&.

Let us put this construction in the general CFE context introduced above. This
will allow us to use general CFE methods for assembling FE matrices rather than
adapted quadrature to capture the influence of the characteristic function yn2. Let
z € NVt be a virtual node lying on the edge [ro, 71] in G between two regular nodes
ro,711 € N'H. Then we define

Ir1 = zl2
0] = —
O I = ol
Iz —7oll2
= — = 1 — 10
mz,rl H]"l - ]"0”2 z,rg 7 (38)

w,,:=1 foranyre NZ,
wy,, =0 foranyre N 5 and any other (regular or virtual) node p € N2

We can compute the geometric location of z in terms @ with piecewise affine interpo-
lation along the edge as

Z—19 r—z

0=&(z) = —— @(r1) + . —-(r0)
D(r1) — D(rg)  —roP(r1) — 11 P(ro)
Sz = p— (3.9)

—ro®(r1) — r1P(ro)
®(r1) — @(ro)

= Z=

and substitute these expressions in (3.8).



3.2 CFE for Complicated Domains

With these definitions, the CFE basis functions for complicated domains can be
expressed in the following way.

Lemma 3.11. Basis functions can be expressed as

fFE = Z mz,rQDZAXQér (3-10)

zeD(r)

and the set of DOF is N'PF = {r € N'U[yS® £ 0}, i.e. the set of nodes for which the
corresponding CFE basis function does not vanish on whole Q2.

This construction in 1D is illustrated in Figure 3.10.

Remark 3.12. This definition of “** does not depend on isotropy or anisotropy
of coefficients in the problem to be considered. In vector-valued problems, each
spatial component of the quantity under consideration is discretized separately, that

1 CFE __ CFE
is Y = ¥y eq.

Remark 3.13. For assembling CFE matrices, multiplication by the characteristic func-
tion xqo is implemented by restricting the integration to Q2.

A A VANESYVANRSTIVAN A VANTWASTVAN
1‘/)7’0 1IJT’1 l)bf’z 1l]r3 l)l]Z IIJ7‘4 l)[J7‘7 v rs
D00 AN
10 71 72 r3 )z ‘(4 r7 UARE:
! \ ! 1
! \ ! |
Wzrs 1 [ Wzry Wyr MWy

Do
XQ,:'I \\ .X07

I : \
STE ST pCFE g pfr 8 STl
- -----W-+—m—— — -
7o 41 2 r3 T4 r7 rg

Figure 3.10. For a complicated domain in 1D, CFE basis functions §** (bottom row) are
standard affine tent functions restricted to the interior. In the general CFE context and
for the implementation, the “** are constructed as linear combinations (with weights
shown next to the arrows) of the virtual basis functions ¢* (middle row) restricted to the
interior ()_. The virtual basis functions for the regular nodes all contribute to the CFE basis
functions with weight 1, for which arrows in the figure are omitted.
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3 Construction of Composite Finite Elements

Proposition 3.14. The CFE basis functions for complicated domains (¢£™),caror

satisfy the following properties:

1. The ¢S are piecewise affine on Q2.
2. The ¢S™ form a partition of unity inside Q2.
3. The ¢S are nodal for regular nodes r € AN’V inside Q2.

4. For r € NV being inside Q) with ID(r) = {r} (far from the interface), ¢S is
simply the standard tent function 2.

5. For r € N5 (on either side) with ID(r) N V™ - @ (near the interface), Y™ is
modified and has smaller support than 2.

6. For any r € N, the number of nodes s € N with overlapping support of

CFE

their basis functions, supp(ys™) N supp(ys™) # @, is bounded by 15.

Proof. ad 1. This follows immediately from 3;** being a linear combination of piece-
wise affine 2.

ad 2. This is because the 2 do and because for any z € N2,

Z 0, =

{mz,ro + 10y, forz e NVt = P(z) = {ro,r}
relP(z)

1o, , forz=rec NY = P(z) = {r}. (3.11)
=1

ad 3. This is due to nodality of ¥2*, i.e. p2*(y) = dy; for all y,z € N'2, the partition
of unity property 2, and the fact that o, s = dys for all 7,s € NV

The remaining properties follow from the construction by observing that no con-
straints other than the geometric ones are used, thus CFE node neighborhoods are
contained in standard affine FE neighborhoods. O

Remark 3.15. Item 3 of Proposition 3.14 implies linear independence of the (¥2*),e A,
so they indeed form a basis of V.

Nodes r € N being inside Q. with ID(r) = @ (nodes outside and far from the
interface) are not assigned a degree of freedom, thus there is no corresponding CFE
basis function. Figure 3.11 shows a 2D example of CFE basis functions for complicated
domains.



3.2 CFE for Complicated Domains

\

Figure 3.11. 2D CFE basis function example. Left: Inside the domain Q)_ (blue region, equals
Q2 for this straight line interface) and away from the interface (red line), the CFE basis
function equals a standard tent function on the cross mesh (gray lines). Middle two: At the
interface, the standard basis functions are set to zero outside the domain (the light gray
tents indicate the standard basis functions). Right (no tent function): Nodes outside the
domain and far from the interface do not have degrees of freedom or basis functions.

Figure 3.12. 2D CFE basis function example for discontinuous coefficients, isotropic scalar
case with a kink ratio ¥ = 10. Left: In the () domain (blue region) and away from the
interface (red line), the CFE basis function equals a standard tent function on the cross mesh
(gray line). Middle two: At the interface, CFE basis functions are modified so that locally
admissible functions can be approximated correctly. This enlarges their support compared
to standard tent functions and allows negative values. Right: In the (), domain (yellow
region) and away from the interface, we again obtain standard tent functions.
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3 Construction of Composite Finite Elements

3.3 CFE for Discontinuous Coefficients

For the construction of CFE basis functions for discontinuous coefficients, the intro-
ductory 1D example in Figure 3.1 is partially instructive but may also be misleading.
In d space direction, the interface has one normal and d — 1 tangential directions
which makes the 1D case (without tangential directions) rather special. The CFE
basis functions are constructed in such a way that they are capable of a first-order
approximation of locally admissible functions as discussed in Section 2.3. This means
in particular that the construction is problem-specific. It will turn out that this
interpolation property cannot be satisfied if only the two IP™(z) nodes are used
for interpolation and that, in the vector-valued case, spatial components cannot be
discretized separately at the interface.

The construction of CFE basis functions for discontinuous coefficients is based on
interpolation operators Z: C° — V%, the space of piecewise affine functions on G%,
evaluating functions at regular grid nodes and determining values at the virtual
nodes on the interface. Interpolation here needs to be consistent with the interfacial
coupling conditions (2.28), (2.32), or (2.36).

Degrees of freedom will be assigned to each node of the regular cubic grid,
i.e. NPOF = N1,

In this section, we will first discuss the CFE construction for the scalar model
problem (Section 3.3.1), then extend it to the vector-valued model problem in Sec-
tion 3.3.2. Details about whether the local problems arising in the construction are
uniquely solvable or not and examples for specific properties of the resulting CFE
basis functions are finally presented in Section 3.3.3.

Geometric Situation. Consider a piecewise planar interface cutting through a reg-
ular tetrahedron T with vertices ry, 11, 12, r3 and one particular virtual node z. For
z, consider directions 7 normal and s and ¢ tangential to the interface such that n, s,
and t are pairwise orthogonal and normalized and 7 is the outer normal to ()_.

Figure 3.13. Example of a piecewise planar interface approximation cutting through one
regular tetrahedron. At one virtual node z, the normal direction n and the tangential
directions s, t are shown. A local interpolation scheme from the regular nodes r; to the
virtual node z will be constructed by local Taylor expansion of admissible functions.
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3.3 CFE for Discontinuous Coefficients

For a general, curved interface, n approximates the outer normal to (Q_ at the
node z. We compute n by summing the gradient of the level set function over all
T € A(z) (adjacent tetrahedra, cf. Definition 3.8) and then normalizing the sum. One
may be able to improve the approximation of the interface normal by different choice
of averaging weights, but this does not necessarily improve the overall approximation.

3.3.1 Heat Diffusion Model Problem

Using the planar interface approximation on T and the corresponding division of
R3 into Hy = {x|(x —z,n) = 0}, we define the space of locally admissible functions
Vloaal|T 7 1] to be the span of the local prototype functions 7* defined in (2.30) for
the isotropic case or (2.34) for the anisotropic case. As an example, we consider
the case shown in Figure 3.13, rg, 72 € H4 and 11,73 € H_, throughout the different
constructions. Other sign patterns ¢(T) are treated similarly.

CFE Construction based on Local Approximation

First let us define the set of coefficients yielding a suitable approximation of a function
u € CVin Y'oal[T, 7, 7].

Problem 3.16. Let M, ,[u] be the set of coefficient vectors (&°,...,&>

Y ico,.3 <“(ri) — Y0, E‘kﬁk(ﬁ'))Z (3.12)

where the r; are the vertices of the tetrahedron T. There is not necessarily a unique
minimizer, so to select a unique coefficient vector, we define

) minimizing

0 3y . ; ~k\2
(a,..., &%) := argming, e Myl Zk:o,...,3(“ ). (3.13)
Remark 3.17. The set M, ,[u] is an affine subspace of R?*, in particular M7, ,, [u]
is nonempty. Its dimension does not depend on u, so the existence of a unique
minimizer of (3.12) is independent of u. Equation (3.13) always has a unique solution
because we minimize the Euclidean norm of (&, ...,&3) over the affine subspace

MT,z,n [u]

In Section 3.3.3 we will see that in the isotropic case there exists a unique interpola-
tion of any set of nodal values u(rg),...,u(r3) in V!°?[T,z,n]. Thus the minimum
in (3.12) is zero and the minimizer is unique. In contrast, for anisotropic tensors a*t
there may exist an affine solution space of dimension at least 1, and correspondingly
not every set of nodal values u(ry), ..., u(r3) can be interpolated appropriately by a
function in V[T, z,n].

The local evaluation of this approximation of u at the interface point z is then
defined as

PT,Z,H [I/l] = ZkzO,...,?) “krlk(z) . (3-14)
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3 Construction of Composite Finite Elements

Now that we have defined Pr , for each regular tetrahedron T intersected by the
interface, we can construct a global interpolation operator via local averaging near
the interface.

Definition 3.18. Let Z[e]: CO — V be the interpolation operator defined by

1

#A(z) PT,p,n(p) [u] for pE NVt

)
TeA(p) (3.15)
u(p) for p € NV

Zlul(p) :=

and piecewise affine interpolation on G*.

Note that the set A(z) is non-empty and its cardinality is bounded by 8. By
construction, Z[u](p) is determined solely by values of u at regular nodes r € N,

For curved interfaces, using an approximate interface and interface normal for each
virtual node causes the interpolation Z[e] to satisfy the interfacial isotropic coupling
condition (2.28) or the anisotropic one (2.32) only in an approximate way.

Definition 3.19. The CFE basis functions for discontinuous coefficients and the corre-
sponding CFE space are now defined based on the interpolation Z|e] as

CE=T[Y] Vre NY, VIEi=span {yp™|r e N}, (3.16)

We will see in Equation (3.22) how the ™ are actually composed of the ™.

Reinterpretation of the Construction as Based on Local Interpolation

For this section let us assume that the local approximation problem (3.12) has a
unique solution. Then the minimum set M. ,[u] consists of a single coefficient
vector corresponding to the minimum zero, and we can equivalently consider a local
interpolation problem in V!°®[T, z, n]. For any set of r;-nodal values y; there exists
a unique u € V[T, z,n] with u(r;) = y; and we determine interpolation weights
t, . satisfying

PT,z,n [1/1] - u(z) - Zi:o,...,3 mz,r,-;Tl’l(ri) . (3-17)

In other words, the w, .1 are used to compute the value of any locally admissible
function u satistying the coupling condition (2.28) at a virtual node z as a linear
combination of the values of u at the regular nodes of the tetrahedron T € A(z). This
is done by solving the following problem.

Problem 3.20. Solve the system of equations
[;71(1,])] ij [mz,rj;T}j = [ﬂi(z)}i (318)

where the 7’ are the prototype functions defined in Equation (2.30) or (2.34) spanning
the space of locally admissible funtions have been substituted in Equation (3.17).
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3.3 CFE for Discontinuous Coefficients

The 4 x 4 system matrix, called B for later use, obviously depends on x = x(a)
and the geometry ( ;, z, n, s, t). If (3.12) has a unique solution with minimum zero,
the system (3.18) is also uniquely solvable. Let us point out that the last line of the
system (3.18) implies } ;v .7 = 1, but the 1. ;7 may be negative or greater than 1,
so Equation (3.17) is not necessarily a convex combination (see Section 3.3.4 for 2D
examples for w ¢ [0, 1]).

Example 3.21. For the splitting case shown in Figure 3.13 (r9,72 € H_, 11,73 € H}),
the system (3.18) becomes

k(ro—z,n) (r1—zmn) x(ro—zmn) (r3—zn) 10, 50T 0
<TO_Z/S> <1’1 —Z,S> <7/2_er> <1’3—Z,S> mz,rl;T _ 0 ( 1 )
(ro—zt) (rn—zt) (rn—zt) (r3—zt)]| |wgmr| |0]"’ 3-19
1 1 1 1 Y02 ;T 1
(ro—z,K'n ) (rp—zmn) (rp—2zK'n ) (r3—zn) 2 ;T 0
(ro—z,Kn+s) (r1—zs) (rn—zKn+s) (r3—zs) Wzt | _ |0
(ro—z,Kin+t) (rn—zt) (n—zKn+t) (r3—zt) w1 | |0
1 1 1 1 mZ,Tg;T 1

for the isotropic and anisotropic cases, respectively.

Local Interpolation Operator. In case of a globally planar interface, the interpola-
tion scheme obtained above is exact for any other T € A(z). The weights v, .1, and
to, .1, for the same pair of a virtual and a regular node with respect to different sim-
plices T and T;, however, cannot be expected to be the same. In general, the interface
is curved (and a planar approximation is considered inside each regular tetrahedron),
so the interpolation scheme Equation (3.17) only yields an approximation. There is
no general preference measure for the adjacent tetrahedra, so we use the arithmetic
mean of all possible weights.

Definition 3.22. Let (g, 71,12, 73) be the vertices of T € A(z) and v 21T be the weights
obtained by Equation (3.19), then the averaged interpolation weights are obtained as

1
) W7 (3.20)

W, =
#A(2) TeA(z)

where v, ;.7 = 0 if s is not a vertex of T.

This averaging preserves the property ) , v, = 1 and yields a correct interpolation
scheme for a planar interface.

Definition 3.23. Let P(z) = {r € N" |w,, # 0} C P%(z), then we define the inter-
polation operator J [¢]: C* — V> by

Tu)(z) = Y wu(r) (3.21)

relP(z)

and piecewise affine interpolation on G*.
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3 Construction of Composite Finite Elements

As in Definition 3.10, let P(r) = {r} and w,, = 1 and 1, = 0 for any remaining
(regular or virtual) node p not covered by (3.20).

In the implementation (Section 6.2.3) it will turn out that we have a (binary)
preference measure and exclude certain ‘unreliable’ tetrahedra from A(z) based on
whether the numerical solution of Equation (3.19) is satisfactory. As long as A(z)
remains non-empty, the stated properties of the construction above still hold.

Composition of CFE Basis Functions. Let us now reinterpret this interpolation to
use it for the construction of CFE basis functions. For a fixed regular node r € N7,
consider a function B, € V2 with values B,(s) = &5 atall s € NY. Even though
such B, does not globally satisfy Equation (2.28), we can interpolate B, via (3.21).
The value ., = J[B;|(z) is then the value which a a composite finite element basis
function 5 should have at the virtual node z, or in other words the composition

weight with which the virtual basis function ¥2* contributes to <™.

Lemma 3.24. CFE basis functions y“** defined in Equation (3.16) are composed of
virtual basis functions ¥* by

) = ) wnyl(x). (3-22)

zeD(r)

This construction is (in 1D) illustrated in Figure 3.14.

Yo YL e v 9D eRh ¢ vheReR

\

I \ : \

| \ ! \
CFE CFE CFE E FE CFE CFE E FE
1o r1 ry lpﬁf lpﬁl rs T6 lpi 1/’*3

Figure 3.14. For discontinuous coefficients in 1D for kink ratio x = 3.5, CFE basis functions
™ are constructed as linear combinations of the virtual basis functions ¥**. The virtual
basis functions for the regular nodes all contribute to the CFE basis functions with weight 1,
for which arrows are omitted in the figure.
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3.3 CFE for Discontinuous Coefficients

Proposition 3.25. The CFE basis functions for discontinuous coefficients in the scalar

case (s ),camor satisfy the following properties:

1. The ¥<™ are piecewise affine on Q2.

2. The ** form a partition of unity if constructed by solving the interpolation
problem (3.18).

3. The ¢S are nodal on NV if constructed by solving the interpolation prob-
lem (3.18).

4. Forr € NY with D(r) = {r} (far from the interface), <™ is simply the standard
tent function 2.

5. For r € N with D(r) UNYI™ £ @ (near the interface), a ¥S™ may have
larger support than . For such a node z, supp(¢5*) ¢ supp(y¥), and thus
supp (¥5**) = supp (¥7°) UUzen() supp (7).

6. Neighborhoods in the sense of overlapping support of basis functions are now
larger than for standard affine FE. They are, however, contained in a ball with

diameter 6/ (in 3D) with respect to the maximum norm. Their cardinality is
thus bounded by 7° = 343,

Proof. ad 1. This follows immediately from ;™ being a linear combination of the
piecewise affine 2.

ad 2. This is because the 2 do and because for any z € N2, Y reP(z) 0z = 1.

ad 3. Nodality follows from nodality of $2 (i.e. 2 (y) = 6y. for each y € N'2), the
partition of unity property 2, and the facts that w, s = d, for all r,s € N7, If
CFE is not constructed via (3.18), we still obtain ¥S™(s) = 0 for any s € NV

with s # 7.
ad 6. For two nodes in the support the distance can be at most two times the distance
between regular and virtual node plus the maximal distance between two

virtual nodes of the same local auxiliary tetrahedron.

The remaining properties follow from the construction and the observation that
regular nodes far from the interface do not constrain virtual nodes but regular
nodes near the interface may constrain more virtual nodes than they constrain
geometrically. O

Additional properties of the basis functions are summarized in the following
remark. Figure 3.12 shows a visualization of 2D CFE basis functions for discontinuous
coefficients.

Remark 3.26. 1. Near the interface, ¢;"™* may attain negative values or values

greater than 1, which follows from the possible existence of construction weights
outside [0, 1], see below in Section 3.3.4.

2. The ;™ themselves do not necessarily satisfy the interfacial coupling con-
ditions (2.28) or (2.32), in particular V** has a proper subspace of functions
(approximately) satisfying the interfacial coupling conditions, see Figure 3.12.

45



3 Construction of Composite Finite Elements
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Figure 3.15. For the interface (shaded plane) cutting through the regular grid G&, an example
is shown where 3D CFE basis functions have larger support than the corresponding ¢¥. The
virtual node zj is constrained by the nodes ry and r; (among others) and the node z; is
constrained by the node r, (among others), because z lies in a regular tetrahedron (dashed)
containing rp and r; and z; lies in a regular tetrahedron containing r,. Furthermore,
there is a local auxiliary tetrahedron T (solid) of G2 with nodes r3,20,21,22. Hence,
T C supp 1pfgf1} Nsupp 5™ which implies that the supports of the CFE basis functions
corresponding to the nodes ry and 2 (on the same side of the interface) and r; and r» (on
different sides of the interface) overlap.

3. Again, item 3 in Proposition 3.25 implies linear independence of the ¢;** which
thus indeed form a basis of V.

4. It turns out that the neighborhoods mentioned in item 6 of the previous propo-
sition have cardinality up to 89. The ¢ diameter (or radius) bound is sharp
as illustrated by the example in Figure 3.15. Note that for this distance to
occur, a virtual simplex needs to have two virtual nodes on opposite faces of
codimension 1 of the Cartesian grid cell. This is not possible for triangles in 2D,
where the bound on the diameter is 4h.

3.3.2 Linear Elasticity Model Problem

In the linear elasticity case, we have seen that coupling condition (2.37) implies
a coupling of normal and tangential directional derivatives in locally admissible
functions. The prototype functions 7/ defined in Equation (2.30) have contributions
in all three space directions.

Let us again consider the geometric situation for an interfaced tetrahedron as shown
in Figure 3.13.

CFE Construction based on Local Approximation

In analogy to the scalar case (Problem 3.16), consider the following problem.

Problem 3.27. Let M7, [u] be the set of coefficient vectors (&)1 j—o, 3 € R
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3.3 CFE for Discontinuous Coefficients

minimizing (cf. (3.12))

y 2
Y uln R ()| (3-23)
i=0,...,3 012
]
To select a unique coefficient vector, let
k,j ._ : ~k,j|2
(" )k=0,1,2,j=0,..,3 = argmin Yy @ (3-24)
(&) eMrpu[u] k=012
j=0

Remark 3.28. For the same reason as in Remark 3.17, M, ,[u1] is nonempty and an
affine subset of R'?. The existence of a unique minimizer of (3.23) does not depend
on u and (3.24) always has a unique minimizer.

We will see in Section 3.3.3 that (3.23) is guaranteed to have a unique minimizer
with zero minimum only in the special case v = 0 (no bulging).

The associated approximation of a function u € (C°)% in VI°[T, z, ] at the inter-
face point z can be evaluated as (cf. (3.14))

Pronlu] == 2 k'jqk’j. (3.25)
k 1,2

j=0,...3
Based on the evaluation Pr . ,[u] of the local approximation, we proceed as in
the scalar case and define the global interpolation Z[u]: (C°)® — (V%) as in for-
mula (3.15), now obtaining a vector-valued interpolant.

Definition 3.29. The CFE basis functions for discontinuous coefficients in the vector-
valued case and the corresponding CFE space are again defined based on the in-

terpolation Z[u| (cf. Definition 3.19) as
YIE = T[ye,] Vre NY, a=0,1,2, (3:26)
2
VE = span {¥<F [ r e N, 0 =0,1,2}. 3

Remark 3.30. A single ¢, discretizes the displacement in only one space direction
whereas Y}/ (near the interface) may have contributions in all space directions.

Reinterpretation of the Construction as Based on Local Interpolation

Local Interpolation Scheme. Again, if the minimum set Mr () [u] defined in
(3.23) consists of a single coefficient vector with zero minimum, we can equivalently
consider the interpolation problem in V[T, z, 1] of finding 3 x 3 matrix-valued
interpolation weights 20, , .7 such that

uo(z) 3 uo(7;)
Pronlul(z) = u(z) = [ m(2) | =) Worr | a(ri) | - (3-27)
us(z) =0 ua(r;)

We again substitute the prototype functions # (as written in Equation (2.41)) in
Equation (3.27) and obtain the following problem.
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3 Construction of Composite Finite Elements

Problem 3.31. Solve the system

0 3 ~[{ri—zmn)
0] =), W, ,. TL* | (ri—zs) | jk=0,...2
0 i=0 (ri —z,t)

(3-28)
doj 3 Ooj
(51] = ZQBZIT‘[;T (51] ] - 0,...,2

of 12 x 3 equations in 4 x 9 unknowns (entries of the construction weights 20, ,..1).

The bottom three equations imply that the resulting construction weights sum up
to a 3 x 3 identity matrix. As before, if Equation (3.23) has a unique minimizer with
zero minimum, also the system (3.28) has a unique minimizer.

The 36 x 36 system matrix, called B for later use, again depends on L (i.e. the
coefficient function) and the geometry (r;, z, n, s, t), where L is the matrix from (2.37)
encoding the coupling conditions, used for defining the prototype functions 7 in
(2.39). Solving the system, we obtain the local CFE construction weights 20, , .T.

Local Interpolation Operator. The weights are averaged, as before, over the set of
all adjacent tetrahedra A (z) to a virtual node z (cf. Definition 3.22)

20, 20, ;. 2
#A( )T€§ » T (3-29)

and the interpolation operator is defined in analogy to Definition 3.23.

Definition 3.32. Let P(z) = {r € NV |20, , # 0} C P%(z), then we define the inter-
polation operator J[o]: (C)° — (V)3 by

(C

T [u]o(2) 0(7)

Tu)(z) = [ Tluli(z) | = Y e, | wa(r) (3.30)
J[u]2(2) reP(z) uy(r)

and piecewise affine interpolation on G*.

As before, let P(r) = {r} for all » € N'V. For construction weights involving
only regular nodes, we now need the appropriate one and zero: 20, , = Idgsxs and
200, » = Orsxs for any regular node r and any other (virtual or regular) node n not
covered by (3.29).

Remark 3.33. The interpolation in Equation (3.30) is not separated in space directions.
We now obtain the analog results of Lemma 3.24 and Proposition 3.25.

Lemma 3.34. If we let ‘PZA;“ := pLe, (standard tent functions ‘in a single space
direction «’), the CFE basis functions for discontinuous coefficients in the vector-
valued case defined in Equat1on (3 26) are composed of the ‘I’ . by

‘PCFE Z 2, r‘P Z lPZ gUz reu - (3-31)
ZEID( ) zeID( )



3.3 CFE for Discontinuous Coefficients

Proposition 3.35. The CFE basis functions for discontinuous coefficients in the vector-
valued case (Y5') e arvor, acf0,1,2) Satisfy the following properties:

1. The ¥}’ are piecewise affine on 02,

2. The Y} ¥ form a partition of unity if constructed by solving the interpolation
problem (3.28).

3. The Y¥¢}* are nodal on N 5 if constructed by solving the interpolation prob-
lem (3.28).

4 For r € NY with D(r) = {r} (far from the interface), ¥<* is simply the
standard tent function ¥~ only having contributions in one space direction «.

5. For r € N with D(r) N NVt £ @ (near the interface), YSEF may have larger
support than ¥ with the same neighborhood structures as in Proposition 3.25.

Proof. ad 1. This follows immediately from Y7} being a linear combination of the

piecewise affine ‘IIZA;DL'
ad 2. This is because the ‘I’ﬁx do and because for any z € N the last triple of
equations in Equation (3.28) implies } . cp(;) Wz, = Idgsxs.

ad 3. Nodality follows from nodality of ‘I’ﬁx, ie. ‘I’Zﬂ;a(y) = Oyzeq forally e N/ 2, the
partition of unity property 2, and 20, = &;IdRs«s for all r,s € NU. If ¥ is

not constructed via (3.28), we still obtain ‘I’fF,XE(s) =0 for any s € \V' Ds #£r.
As before, the remaining properties follow from the construction and the obser-
vation that regular nodes far from the interface do not constrain virtual nodes but
regular nodes near the interface constrain may more virtual nodes than they constrain
geometrically. O

Additional properties of the basis functions are summarized in the following
remark.

Remark 3.36. 1. Near the interface, Y7}’ may have negative entries and entries
larger than 1 and they typically have contributions in all three space directions.

2. Once again, nodality in item 3 of Proposition 3.35 implies linear independence
of the ¥}¥ which thus form a basis of V.

In the elasticity case, the decision about reliability and exclusion of tetrahedra in
A(z) is twofold. The numerical solution of Equation (2.37) to determine the coupling
condition and the numerical solution of Equation (3.28) to determine the construction
weights both need to be considered satisfactory. For details, we again refer to the
discussion of implementation in Section 6.2.3.

3.3.3 Unique Solvability of the CFE Construction Systems

Let us now discuss under which circumstances the optimization problems (3.12) and
(3.23) in the CFE construction have a unique solution, i. e. the system of equations (3.18)
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3 Construction of Composite Finite Elements

and (3.28) to determine the CFE construction weights in the discontinuous coefficients
case have a unique solution. They do if a piecewise affine function w satisfying the
coupling condition across the interface is uniquely determined by its values w(r;) at
the vertices r; € N of the regular tetrahedron.

In the scalar isotropic case, an angle condition on the regular tetrahedra ensures
unique solvability whereas there are counterexamples in the anisotropic case. In
the isotropic elasticity case, unique solvability can be proved if there is no bulging
(Poisson’s ratio v = 0, i.e. A = 0) and only a discontinuity in the stiffness (Young's
modulus E), otherwise there are counterexamples.

Heat Diffusion Model Problem

An affine function is determined uniquely by its values at the vertices of a geometri-
cally non-degenerate tetrahedron. This is not necessarily true if the tetrahedron is
interfaced by H, the local planar interface approximation, and the function is only
piecewise affine satisfying one of the coupling conditions (2.28) across H.

Proposition 3.37. In the scalar isotropic case, Problem 3.16 has a unique solution.

Proof. Consider the evaluation mapping I: V@ — R* u +— (u(r;));. Preimage
and image space have the same dimension (as V'°? is spanned by four linearly
independent functions 7;) , so the desired uniqueness follows from linearity and
injectivity of I, i.e. u = 0 being the only piecewise affine function with zero nodal
values at the 7;.

Without loss of generality let us assume that the tetrahedron T = (r;); has vertices
ro,71 € H_ and r3 € H, r; may be on either side of H. Let w be a piecewise affine
function satisfying the respective coupling condition across H and define the zero
level sets Z := [wi = 0] C Hy of w on both sides of the interface. Moreover let z5, z3
be two points on the interface intersected with the edges of T such that the (virtual)
tetrahedron (rg,r1,22,23) also is not geometrically degenerate. If I is not injective,
then there exists 0 # w € V'l with w(r;) = 0 for each i, without loss of generality
with w(zp) # 0. In this case, the Z+ are of codimension 1, i.e. planes parallel to
H or half-planes on each side of the interface not containing z;. In the parallel
case, zp + Rn (the straight line through z; in normal direction n) clearly intersects
Z_ and Z,, which implies a sign change of d,w at z;, contradicting the coupling
condition (2.28) in the scalar isotropic case. In the non-parallel case, continuity
implies that Z_ N H = Z N H is a line. Since the angles of the edges of the regular
tetrahedron (g, r1,12,73) are bounded from above by 90° (see Figure 3.2) and its
vertices lie in Z_ U Z, also the angle between Z_ and Z is bounded by 90°. This
implies that z; + R7 in fact intersects the half-planes Z_ and Z, leading to the same
contradiction as before. O

Remark 3.38. The 90° condition is crucial for the proof to work. Without this bound
on the regular tetrahedra, we can construct a counterexample in the following way.
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3.3 CFE for Discontinuous Coefficients

- YVw'

Vw~ .

7
_ _ﬁém .
10 2 % zp+Rn

Figure 3.16. The left figure shows a setting where, for an anisotropic diffusivity tensor, nodal
evaluation does not uniquely identify a piecewise affine function satisfying the coupling
condition (2.32). On the right, a counterexample for the isotropic case is shown if angles
greater than 90° are allowed (which is not the case in G %),

In 2D, we have two rays Z starting at the origin and containing three vertices r; of a
geometrically non-degenerate triangle, two scalar diffusivities a* and a piecewise
affine function w # 0 satisfying the coupling condition (2.28). Clearly, Vw® 1 Z..
Consider the dataa™ =10, =1, H=[x=0],n = (}), t = (), and the functions
w(x,y) =01lx+y wt(xy) =x+y.

Continuity of w across H and of its derivatives in tangential direction is clearly
satisfied and the coupling condition a~d,w~ = 10-0.1 = 1-1 = a"9,w™ holds.
Figure 3.16 (right) shows that a geometrically non-degenerate triangle (rg,r1,73) with
vertices in Z4 and intersected by H exists, but clearly w # 0. Constant extension in
the third space direction and r; lying above 7y (or any other of the two vertices) turns
this into a 3D counterexample. This type of counterexample can be found as soon as
T has one angle greater than 90°.

Example 3.39. In the scalar anisotropic case, the angle condition does not guarantee

unique solvability. Consider the tensors a~ = (1332) and a™ = (}9) for which
positive definiteness is easily verified. Againlet H =[x =0],n = (}),t = (?), and
consider the functions w™ (x,y) = —2x +y, w' (x,y) = 4x +y. w and its tangential

derivatives are clearly continuous across H and the coupling condition is also satisfied

vem=( (3 3) ()0 - (2) () -
wrver= (s ) (06 = ()-0) -+

Z* = [w* = 0] are two rays starting at the origin perpendicular to Vw®. Due
to £(Vw™,Vw™) >90° and £(Z~,Z") < 90°, a triangle (rg,r1,73) with ro,r; € Z
and r3 € Z~ with a 90° angle and catheti of the same length exists, see Figure 3.16
(left). Let zp = 7or3 N H, then w(zy) # 0 because w is zero at the origin but nowhere
else on H. A 3D counterexample is obtained in the same manner as before. Notice
that we use the notation pg for the straight line (not the line segment) through two
points p and 4.

(3-32)
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3 Construction of Composite Finite Elements

Linear Elasticity Model Problem

In the elasticity case we consider vector-valued w with piecewise affine components.
We still consider the vertices r; of a non-degenerate tetrahedron on which w vanishes,
and without loss generality rg,r1 € H_, r3 € Hy. w(r) = 0 implies w being zero in
each component. w(z) # 0 is satisfied if, without loss of generality, at least the first
component of w does not vanish at z.

Lemma 3.40. The zero level sets of w*, Z4, can be determined as the zero level sets
of the first component of w, i. e. its other components are scalar multiples of the first
component.

Proof. Any component w; = 0 is clearly a scalar multiple of wy. For all other w; we
distinguish the following cases:

1. rp € H_. In this case, we have three non-collinear points rg, 71,12 in [wl_ = 0]
for all i, hence Z_ = [w; = 0] for each i. Now we distinguish the cases

a) Z_||H, where continuity of w implies H||Z; = [w;” = 0] for each i as they
have r3 in common, or

b) Z_NH is a straight line L, where continuity of w implies L = [w;" = 0] N H
for all i, and r3 € [w;” = 0] \ L implies Z, = [w;” = 0] for each i.

2. rp € H,. Here, distinguish the cases

a) ori NH = @ = ror3NH. If [w; = 0N H = L is a straight line, then
continuity implies [w;" = 0] N H = L, so orq || L || 7273, hence all r; are
coplanar and T is degenerate, contradiction. So [w; = 0]||H and we

1
proceed as in case 1a.

b) 7ori "H = {p}, 273N H = {gq}. We can assume p # g, else r; are
coplanar, contradiction. Then ry, 1, q are not collinear and contained in
Z_ = [w; = 0] for each i, similarly ry, 73, p are not collinear and contained
in Zy = [w;" = 0] for each i.

c) 7ori NH = {p}, 23N H = @. Here, r,, 13, p are not collinear and contained
in Z, = [w;" = 0] for each i, and there exists a point g € [w; = 0]NH\ {p}
such that 7o, r1,q are not collinear and contained in Z_ = [w;” = 0] for
each i.

d) 7ori N H = @, 1ar3 N H = {q}. This case is treated by obvious modification
of the previous case. O

Proposition 3.41. For isotropic elasticity with Poisson’s ratio v = 0, problem (3.23)
has a unique solution.

Proof. If there is no bulging, that is Poisson’s ratio v = 0 = A = 0, we have
C*e[w*] = E*e[w®]. Let us consider the 2D case where H = [x = 0], n = (}),
t = (9), and mention that the extension to 3D and general planes H is straightforward.
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3.3 CFE for Discontinuous Coefficients

Building in the continuity of w and its derivatives in tangential direction, general w™
are of the form

+
w™(x,y) (wﬁ, wﬂ) (y) (3:33)
so that
+ 1 + + +
5 +wi)\ (1 E*w
Crelwt|n = Ei( @00 2(@or 10 ) ( ) = ( 00 ) .
[ ] %(wol —+ Wito) w11 0 EiZU(n + Eiw% (3 34)

leads to the coupling condition

Etwdy = E wy, (3.352)
ETwy + ETwiy = E"wy + E"wy. (3.35b)

We now wish to extend the proof from the scalar isotropic case to this vector-valued
case. So let again ro,7r1 € H_, r3 € Hy, and Z and its geometric properties restricted
to 2D as before. If w(r;) = 0 but component j of w does not vanish (the assumption
that this may be taken as the first component does no longer hold as we have possibly
rotated our frame of reference) and the other one is a multiple of it, we know as in
the scalar case that anj_ and E)nw;r have different sign and do not vanish. We can
distinguish the following cases:

1. j = 0 = wgy # 0. Since E* and E~ are both strictly positive, we have a
contradiction to the coupling condition (3.35a).

2.] #0 = waLO = 0. Then Equation (3.35a) implies w,, = 0 and w, is the
non-vanishing component with wj, - w;; < 0. The fact shown before that
wp is a multiple of w; then implies that wy; = 0, so Equation (3.35b) reads
E*w{y = E~wy,, so that positivity of E* implies w}, - w;, > 0, contradiction.

]

Example 3.42. If Poisson’s ratio v # 0, there is again a counterexample for unique
solvability of Problem 3.27. Consider the elasticity constants E~ = 1,v~ = 0.4 and
Et =25,y = 0.35, then we have

- E-v 10 B 1750
T Otv)(d-2v) 7 o= oa+v)” 8l
o Etut _5 oo BT 250

I+vH)(1—2vF) 14 21 +vt) 27

and the piecewise affine functions w* with

211 7 67993 7

- _ (1500 10 + _ [~ 175000 70

Vw™(x,y) = | 3 1 Vw™(x,y) = _ 67993 4
1050 122500
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3 Construction of Composite Finite Elements

where continuity and continuity of the derivative in tangential direction t = () are
obvious. Moreover, we have

3211 1973 67993 17757
—1_ [ 1500 7050 o 175000 245000
elw™] = 1973 4 elw™] = 17757 1
1050 245000

so that the coupling condition (2.36)

4211
Celw |n=A"trefw | n+2uelw | n= (1790703>
1470
=Aftre[wt|n+2uTelw | n=Cre[w ] n

is satisfied for n = (}). The angle between the two gradients is

W
o

211) < 67993 )
150 175000
7

[L(le_, Vw]) = ]L(Vwo_, Vwg ) = arccos

( > H H ( 67993 ) H
00 175000

VA

10

89700523

= arccos ~ 100.9244°
V11413 0211/19 629 298 049

and hence greater than 90°, thus the angle between the two zero level sets (to which
the gradients are perpendicular) is smaller than 90°. Therefore there exists a regular
triangle with one 90° angle so that its vertices liein Z_ U Z,.

3.3.4 Construction Weights in 2D leading to a Non-Convex Combination

The fact that the CFE basis functions may attain negative values or values greater
than 1 (equivalent to interpolation weights ., ¢ [0,1]) can be observed even in 2D
and for the isotropic scalar problem. Let us consider the two examples shown in
Figure 3.17 where the cell shown is assumed to be the unit square.

Figure 3.17. Geometric configurations in 2D for which kink ratios ¥ = 10 (left) and « = 40
(right) lead to CFE construction weights outside [0, 1] so that the corresponding CFE basis
functions attain values [0, 1].
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3.3 CFE for Discontinuous Coefficients

Example 3.43. In the left case of Figure 3.17 (which is the underlying construction for
Figure 3.12), we use k = 10, z = (fﬁ), n=(})andt=(9). The systems of equa-
tions corresponding to the CFE construction on Ty := (rg,71,12) and Ty := (r1,72,73)

(with r; being the vertices of the unit square) are

0 (ro—z,n) x(rp—zmn) (rp—zn) 10 /0T,
T : 0] =1 (ro—2zt) (rn—zt) (rn—=z1) 10, 41T,
1 1 1 1 0, 1. T,
72/3 10/3 72/3 mZ,ro;To
- _1/3 _1/3 2/3 mZ,rl;To
1 1 1 mZ,rZ;TO
0 k(rp—z,n) (rp—zmn) x(r3s—zn) 10, r T,
T; : 0] = (r—z,t) (rp—zt) (r3—zt) 10, 1.7,
1 1 ]. 1 mzl;’3;Tl
10/3  —-2/3 10/3 2 1Ty
=|-1/3 2/3 2/3 W2,r,:Ty
1 ]. ]. mz’r3;T1
so that
102,14 1/4
2 10:To 1/2 W21 2/3 1o 5/12
1o = | /6 o = | 5/6 = 2l =
zri;To | — z,r; Ty | — 1o, - 7/12
102 1Ty 1/3 10, p..T ~1/2 "2
Z,12;10 Z,r3;11 mZ,7’3 71/4

and we obviously obtain a negative interpolation (and construction) weight o ,,.

Example 3.44. In the right case in Fj@‘e 3.17, we use the kink ratio ¥ = 40, the point
z=(34),n= (\7%), and t = (~V7) to obtain weights greater than 1. Now only
rp lies in Q) resulting in the term «(ry — z, n) while the other entries have no factor
x, and a short calculation yields

o 0.2932

T 0.5862 W21y 22130 . 1.2317

wopt | A (02504 ), | o | A | 04687 | = | B x| T8

L 0.1634 W25y —1.6817 D, ~0.8408
Z,r3 *

This shows that also weights greater than 1 (in this case tv,,,) are possible. Since
the sum of all construction weights for one virtual node needs to be equal to 1, this
implies that at least one weight needs to be negative (in this case w,,,). Both cases
also occur in the 3D scalar case and for entries of the weights in the vector-valued
cases.

Let us point out that negative weights imply a change of sign in the directional
derivative of an admissible function along the edge—which does not conflict with
the coupling condition Equation (2.28) in normal direction.
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3 Construction of Composite Finite Elements

3.4 Boundary Conditions

In the CFE method derived so far, we have the usual homogeneous Neumann bound-
ary conditions' on the boundary of the bounding box () and, in case of complicated
domains, also on the interface .

Focussing on the applications we have in mind, it will be necessary to implement
Dirichlet boundary conditions? on a subset of d(), the faces of the bounding box. This
reflects temperature or displacement boundary conditions applied to the outside of a
specimen but not its microstructure. Periodic boundary conditions (for the numerical
homogenization procedures) on d() will also be discussed and are treated in a way
similar to Dirichlet boundary conditions. Nonzero Neumann boundary conditions
on d() or 7y and Dirichlet boundary conditions on 7 as treated for CFE in general [289]
will not be discussed here.

Dirichlet Boundary Conditions

Since virtual nodes z € AV do not have assigned DOF, we cannot prescribe Dirichlet
boundary conditions for them, merely for regular nodes. In case of complicated
domains, any virtual node z; € d() is constrained by two regular nodes 1y, s; € 0(,
so implicitly any function evaluated at z;, yields the appropriate interpolation of
Dirichlet boundary values at r;, and s;.

Near the edges of d() we may encounter z ¢ d() constrained by r;, on one face and
sp on a different face of (). Regardless of whether r, and s; are both Dirichlet nodes
or only one of them is, the influence of the Dirichlet boundary extends only to an
O(h) layer near the boundary.

In case of discontinuous coefficients, in principle there may be virtual nodes z; € 0Q)
constrained also by inner regular nodes. This may result in an interpolation with z;,
not satisfying the Dirichlet boundary condition. This, however, is not a problem of
the discretization: if the interface 7y and the outer boundary d() intersect, boundary
conditions and interfacial coupling conditions need to be compatible already for the
continuous function.

Periodic Boundary Conditions

For our numerical homogenization method for periodic structures, we need to run
simulations satisfying periodic boundary conditions on opposite faces of (). These
boundary conditions are implemented by identifying DOF at different nodes that are
viewed as periodic copies of one another. Along with the DOF, the corresponding
basis functions are also combined. Details of the treatment of periodic boundary
conditions are discussed in Section 4.3.

*Named after the German mathematician Carl Gottfried Neumann, x May 7, 1832 in Kénigsberg
(now Kaliningrad, Russia), + March 27, 1925 in Leipzig [262].

?Named after the German mathematician Johann Peter Gustav Lejeune Dirichlet, * February 13, 1805
in Diiren, + May 5, 1859 in Gottingen [1].
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For complicated domain CFEs, this clearly only works if the structure is exactly peri-
odic. Otherwise, there are nodes in N°°F on one face and nodes of N2 without DOF
on the other side, making the identification clearly impossible. In the discontinuous
coefficient CFE case, this identification is always possible because all nodes in AN'™
have DOF assigned. However, they may lie in different subdomains ((2_ and (), so
the naive identification is obvioulsy not appropriate.

3.5 CFE Discretization and Matrices

Let us now discuss how the CFE basis functions constructed before are used to
discretize our model problems. This leads to CFE variants of the usual FE mass,
stiffness and elasticity matrices. Their sparsity and block structures are visualized
in Figure 3.18. Also, we will briefly present the transformation to zero Dirichlet
boundary conditions and the corresponding matrix modifications, and implicit Euler
time discretization of heat diffusion.

Throughout this section we identify grid nodes r and their indices j(r) to simplify
notation.

3.5.1 Heat Diffusion Model Problem

As usual, continuous temperature profiles u: (3 — R will be approximated by

u(x) = Ux) =) 9™ (x)ulr) (3-36)

reNTPoF

where we use the notation U, = U(r) = u(r) where it will be clear from the context
whether U is the discrete function (with CFE interpolation) or the vector of nodal
values.

The CFE matrices of the previous section arise in the spatial discretization of
Problem 2.1 if the unknown quantities are discretized as in Equation (3.36) and test
functions are also in V. In the scalar steady state case, we obtain

/(aVu,Vv) = /fv

- w(rz U ), vy = [ (8 R )y wen® ()

eNt reNU

o ¥ ([uvwm v u = ¥ ([eme)n wene,
reNH

reNU

This can be written in the usual form LU = MF if we use Definition 3.45 and observe
symmetry of M and L.
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3 Construction of Composite Finite Elements

Definition 3.45. The CFE mass matrix M and (weighted) stiffness matrix L are defined
in the usual way by their entries

CFE . CFE CFE
M;ys = M5~ : / P,

(3-38)
Lrs — LS;E = /<aVl[JCFE CFE>

where the domain of integration will be specified below.

Using the expressions in Lemma 3.10 and 3.24 for CFE basis functions, M and L can
be computed as described in the following lemmas.

Lemma 3.46. In case of CFE for complicated domains, basis functions are restricted
to the domain ()_ so that the CFE matrices are computed as follows:

MEFE = / PP =Y ) iy / Yy (3-39)

zeD(r) yeD(s)

Lo — /Q KON CATCO R M o / "ot on;

zeD(r) yeD(s)
for all r,s € N'P°F where a4 may vary spatially.

Lemma 3.47. In case of discontinuous coefficients, the sets ID(r) and the weights 1o, ,
are different from the complicated domain case and integration is performed over
the whole domain Q)

My® = / P =) ), oy / popy (3-40)

zeD(r) yeD(s)

L;:SFE:/Q a(x) (V™ V™) = Z Z 102,10y,5 / (x);ailpzAailpyA'

zeD(r) yeD(s)
for all r,s € N/POF,

As the 2 are piecewise affine on G*, exact integration for constant coefficient a is
possible, otherwise quadrature is necessary3, cf. Section 6.3.3. Equations (3.39) and
(3.40) show in particular that the virtual grid is used for assembling matrices for DOF
on the regular grid but not visible afterwards.

Transformation to Zero Dirichlet Boundary Conditions

In the continuous setting, nonzero Dirichlet boundary values can be transformed to
zero Dirichlet boundary conditions in the usual way, see e.g. [55, Section II.2]. In
discrete form, the system matrix L is modified for this purpose such that

3Unlike some authors [248, 86, 222, 85] who prefer the term ‘cubature’, we denote the numerical
approximation of integrals by ‘quadrature’ regardless of the space dimension.

58



3.5 CFE Discretization and Matrices

1. the rows of L for Dirichlet nodes are set to identity rows (rows containing only
a 1 on the diagonal) and the RHS (right hand side) entry is set to zero so that
the corresponding node is no longer a degree of freedom, and

2. the columns of L for Dirichlet nodes are set to zero away from the diagonal
entry because the corresponding vector entry is already known to vanish.

The resulting modified system matrix is still symmetric and definiteness is not lost
either. After solving the system of equations, the boundary conditions are added
again. The vector-valued case with a system block matrix is treated similarly.

Implicit Euler Time Discretization
In the time-dependent case (2.2), we first discretize in space and obtain
M(o:U) + LU = MF. (3-41)

Implicit Euler time discretization* approximates d;U = ukﬂr_uk where UF is the
discrete solution at time 7k (time step k) so that, in each time step, we need to solve

Muk—H _ Muk

€ Luk+1 — MFk+1

(3.42)
= (M + tL) U = MU + TMFFT

3.5.2 Linear Elasticity Model Problem

As for the vector-valued problem, the general discretization is

u(x) = Ux) = ), ¥ (x)ua(r) (3-43)
re\/Por
xef{0,1,2}

where Uy, = U, (7) = uy(r) is the vector of discrete values (that can be thought of
as a block vector consisting of three blocks with the discrete values of the x, y, and
z components of the displacement, or as a block vector consisting of #A/°°F blocks
containing the displacement at each DOF). Problem 2.2 is discretized using (3.43), and

we obtain
[ celuelel = [ (£,0)

- / Ce[ y ‘FU] e[| = / (Y WIE,, ¥ )

re N'POF re N'POF
xe{0,1,2} xe{0,1,2}
o v ([eeremierg] ) un - ¥ (o) m
reN/POF re N/POE
xc{0,1,2} 0€{0,1,2}

for all s € NP°F and B € {0,1,2}. This can be written in the usual form EU = MF if
we use Definition 3.48 and observe symmetry of E and M.

4Named after the Swiss mathematician and physicist Leonhard Euler, * April 15, 1707 in Basel,
+ September 18, 1783 in St. Petersburg, Russia [1].
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Definition 3.48. The CFE block mass matrix M and elasticity matrix E are defined in the
usual way by the entries r,s € N'°°F of their blocks «, 8 € {0,1,2}

(M), = [ ¥
(), = [ Cel¥sr] s e[¥sy]

where the domain of integration will be specified below.

(3-44)

Using the expressions in Remark 3.10 and Lemma 3.34 for CFE basis functions, M
and E can be computed as described in the following lemmas.

Lemma 3.49. The mass matrix for elasticity problems on complicated domains has
block structure with three standard CFE mass matrices (3.39) as diagonal blocks and
zero off-diagonal blocks whereas in general all blocks of E** are nonzero. The entries
of the elasticity block matrix is obtained as

( CFE Z Z oz rmysz Czﬁktxa lpy asz . (3-45)

zelD( r) y€D(s)

Remark 3.50. For isotropic Lamé-Navier elasticity with C as in (2.17), the integrands
for the elasticity matrix in case of complicated domains can be written as

/\/ 3alPrCFE3 IPCFE+y/ aﬁ¢CFEaa¢§FE+5 Z “Il/ amlpCFEa CFE.

This is due to

leCFE — ( l/JCFE e 9 lPCFE e 90 IPCFE ) ( 6)
((5zzxa]1/)CFE) ) 3.4

so that
CFE / C€ CFEea] € |: CFEe‘B:|

_ Z z]kl (5 alchFE +5laaklpCFE) ( l‘Ba]lI]CFE +5 J: l/JCFE)
ijkl

— 2 ; zﬁkzxaklp;(}FEa lPCFE
ik -

where we used the symmetry (2.8) of the elasticity tensor C in the last step.

Lemma 3.51. In case of discontinuous coefficients, single basis functions may have
contributions in all space directions, which implies that also the mass matrix is now

filled in all blocks.
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3.5 CFE Discretization and Matrices

The mass and elasticity block matrices are given as

( EEE)I’S:/‘Y%&E‘Y%F;:/< Z mz,rlljera, Z QUyISleAEIB>

Q zeD(r) yeD(s)
= Z Z Z(mz,r)kzx(m]y,s)kﬁ/ SUZAleA, (3-47)
zeD(r) yeD(s) k . Q
:((w”)Tm%s)aﬁ

(E),. = [ Cel¥s) s e(¥5p)
C
- /Q Y (3 (FSEE )+ 9 (PSEE ] [P (EIE ) + 21 (Y
klmn
C
= Z 2 %{ (mz,r)na(wyﬁ)lﬁ/ aml/)zAak‘PyA (3-48)
ZY klmn 0
+ (an,r)na(fmy,s)kﬁ/QamlpzﬁallpyA
+ (imz,r)moc(Qﬁy,S)lﬁ/QaiﬂzbzAaklpyA
+ (Qﬂz,r)ma(myﬁ)kﬁ/Qan'abzﬁallpf] :

The sparsity structures of the matrices discussed in this section are visualized in
Figure 3.18.
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3 Construction of Composite Finite Elements
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Figure 3.18. Visualization the block and sparsity structure of (a) a stiffness matrix for standard
affine FE on G%, (b) a CFE elasticity matrix for a complicated domain and (E,v) = (1.0,0.3),
(c) a CFE stiffness matrix for discontinuous thermal diffusivity coefficient with x = 2,
(d) a CFE block mass matrix and (e) a CFE block elasticity matrix for (E~,v~) = (1.0,0.3) and
(E*,v") = (1.5,0.1) are shown. A nonlinear HSV blue-to-red m== = color scale represents the
values of nonzero entries where green are entries almost equal to zero and white are entries
exactly equal to zero. For computational resolution 5%, matrices for the scalar problems
are of size 125 x 125 and block matrices for the vector-valued problems are of total size
375 x 375, in the complicated domain case (b), 124 of the 125 nodes are DOF nodes.

62



4 Numerical Homogenization

HE GOAL OF NUMERICAL HOMOGENIZATION is to determine effective, macroscopic

material properties. We are interested in finding effective diffusivity or elasticity
tensors for periodic or statistically periodic materials. The CFE method, using cubic
or brick-shaped computational domains, is well suited for numerical homogenization
schemes in which cubic fundamental cells are considered.

In this chapter we first review a numerical homogenization technique for exactly
periodic cells (Section 4.1) and extend it to statistical prototype cells in Section 4.2.
The CFE discretization is presented in Section 4.3 and suitable solvers for correspond-
ing systems of equations are discussed in Section 4.4. Orthotropy, a special case
of anisotropy, of resulting homogenized elasticity tensors is finally addressed in
Section 4.5. The two-scale approach presented here distinguishes only between mi-
croscale and macroscale, but can easily be iterated to allow for multiscale simulations.
Results obtained using the methods of this chapter can be found in Section 7.4.

The application of CFE in homogenization has been published in [311] (for the
case of complicated domains and periodic microstructures) and in [296] (for the case
of statistically periodic complicated domains), moreover homogenization of (both
types of) microstructures with discontinuous coefficients has been treated in [281]
(submitted).

Periodic vs. Statistically Periodic Microstructures

In case of exactly periodic structures, we can microscopically simulate simple tem-
perature gradient and loading cases with periodic boundary conditions to obtain
macroscopic material properties by computing effective heat fluxes and stresses.

Natural structures are typically only periodic in a statistical sense, so that periodic
boundary conditions cannot be imposed. One might be tempted to make specimens
periodic by mirroring in all space dimensions as discussed in [269], but this may
introduce artificial structural kinks and destroy existing anisotropy as sketched in
Figure 4.1. Simply applying periodic boundary conditions in case of non-periodic
media does not work either, since this means identifying points on the boundary
with different material parameters leading to inconsistent geometric structures or
identifying points inside and outside the object. Our approach is to replace peri-
odic boundary conditions by interpolated Dirichlet boundary conditions, clearly
introducing boundary artifacts in the microscopic simulation. In case of trabecular
microstructures, the influence of boundary artifacts can be diminished by evaluating
heat fluxes and stresses only on a centered subdomain, ignoring a boundary layer.
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4 Numerical Homogenization

General Notation for Homogenization

We use the notation O for one fundamental cell of the microstructure, being either
a periodic cell for exactly periodic structures or a representative cell for statisti-
cally periodic structures. Q¥ is usually assumed to be a cube, the extension to a
cuboid, however, is not difficult. Tilings of R? into more complicated Q¥ will not be
considered in our CFE context.

Let us now pick up the notation from Chapter 2. Let A* be one or more copies of
O (intersected with the macroscopic material domain Q)_ in case of complicated
domains). A* is referred to as the periodic domain for computation. Let us point out that
periodic or Dirichlet boundary conditions in the following are only applied to the
boundary 0~ A* of the bounding box intersected with A*, but not the (inner) interface
in case of complicated domains. For statistically periodic cells, the periodic domain
for evaluation A*f will denote A* minus some boundary layer and will be assumed
to contain one or more copies of 0, see below for the precise definition. We will
furthermore use the notation & for macroscopic or effective quantities.

Using microscopic periodic source terms in the homogenization may seem sur-
prising at first glance, but if these are not visible at the macroscale one may want
to account for them in homogenized material properties. An example for the heat
diffusion model problem are heat sources due to electric resistance in conducting
components of computer chips. As for the elasticity problem, gravity could be de-
composed in a gravity term f for the apparent density of the microstructure plus
a periodic correction term f being positive inside and negative outside the micro-
structure. In our applications no such microscopic source terms occur, so they are
omitted from the discussion here and we assume f = 0. Also macroscopic source
terms f are assumed to vanish.

J .\

Figure 4.1. The left example shows that periodization of merely statistcally periodic structures
results in artificial interfaces. Mirroring is not an appropriate solution for this problem
(middle and right) as it changes structural anisotropy and connectivity.
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4.1 Homogenization for Periodic Specimens

4.1 Homogenization for Periodic Specimens

Let us first consider the case of geometrically exactly periodic microstructures.

4.1.1 Cell Problems for Periodic Cells
Heat Diffusion Model Problem

The effective heat flux § for A* is given in terms of the macroscopic diffusivity tensor
a by

g=avVu=a4 Vu. (4.1)

For numerical homogenization via ‘cell problems’ [10, Chapter 1], we now run
multiple microscopic simulations. For specific choice of u, we compute 7 so that
we obtain enough equations to determine 4. This is most easily obtained for unit
temperature gradients Vii = e; for which the corresponding 7 is simply the ith
column of a.

For given ii we need to find a periodic correction profile ii so that

u=1i+1i (4-2)

is the actual physical equilibrium profile that has the same average gradient and
macroscopic heat flux as ii. This decomposition is unique only up to addition of a
constant, so we additionally require {4 i = 0. Periodicity of a C! function u implies
fa# Vii = 0 due to Fubini’s theorem®. This decomposition is illustrated in Figure 4.2.

Substituting this condition in the PDE (2.4) describing the steady state of heat
diffusion, we obtain the equation for computing i from ii:

in A

—div (aV

& — div (aV (4.3)

(@ +

i+)
) = aVu‘)

~—~

with periodic boundary conditions for i and f,s 7 = 0. We hence obtain the following
weak problem.

Problem 4.1. Find 7 € Hy?(A*) satisfying
/ (aVil, Vo) = — / (aViL, Vo) Vo e HA(AY) (44)
N N

where Hy?(A*) denotes the space H'?(A¥) restricted to functions satisfying periodic
boundary conditions on 9" A*.

"Named after the Italian mathematician Guido Fubini, * January 19, 1879 in Venice, + June 6, 1943 in
New York, U.S. A. [262].
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/
/

Figure 4.2. For the Z-shaped periodic object (top left) with one fundamental cell ¥ high-
lighted, the decomposition of the equilibrium profile u (bottom left) in the smooth macro-
scopic part it (middle) and microscopic periodic correction profile i (right) is shown on the
fundamental cell (bottom row) and on a larger part of the domain (top middle and right),
using different nonlinear color scales for better illustration of the decomposition.

For given i1 we first compute i using (4.4) and then the macroscopic heat flux 7
(cf. (4.1)) by integration over the full domain A" as

q:]{\#q:]ﬁ#aVu:]i#aV(ﬁ—kﬁ). (4.5)

Substituting # and 7 in (4.1) then yields one equation used for determining the
effective diffusivity tensor 4. Using three linearly independent ' with Vii' = ¢,
i =0,1,2, we can determine @ column by column via

a;= ]f\# a(Vil' + V') = ]i# a(Vi' +¢;) (4.6)

where ii’ solves (4.3) for given i,

The effective diffusivity tensor is symmetric due to physical reasons. In the spatially
smooth case we will see in Section 4.1.3 that also 7 obtained by the homogenization
procedure is symmetric. This is not exactly satisfied in the discrete case, but a
violation of symmetry is considered to be a numerical artifact and the tensor is
symmetrized.

Linear Elasticity Model Problem

For linear elasticity, the relevant physical quantity is the effective stress & which can
be expressed in terms of the macroscopic elasticity tensor as

o = Celu] = CfA#e[u] . (4.7)
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4.1 Homogenization for Periodic Specimens

Figure 4.3. Top row: The Z-shaped geometry (left) is deformed under tensile loading with
affine-periodic boundary conditions (middle). For comparison, tensile loading with no
displacement boundary conditions enforced on the side faces is shown on the right. Color
(same m=== color scale for all plots) encodes the von Mises stress at the surface of the
structures. The bottom row shows a larger part of the periodic domain.

Similar to the scalar case, for given il we need to find a periodic correction profile 7
so that

u=1ua+1i (4.8)

is the actual physical equilibrium profile that has the same average gradient and
macroscopic stress as ii. Compared to (4.2), the functions u are now vector-valued
displacements. Again, for a C! displacement i, Fubini’s theorem implies {4 €[if] = 0.

This decomposition is unique only up to addition of v(x) = Sx + b, with a constant
b and a skew-symmetric matrix S. Periodic boundary conditions on 9~'A* only allow
S = 0, and the additional requirement f; i = 0 only allows b = 0, thus making
decomposition (4.8) unique. This decomposition of displacements is illustrated in
Figure 4.3.

Substituting this in (2.14) we obtain

—divCeli+1i] =0

& — div Ce[ir] = div Ce[] (4-9)

with periodic boundary conditions for 7. We hence obtain the following weak
problem.

Problem 4.2. Find 7 € Hy?(A*, R®) satisfying

/ Celd] : e[o] = — / Cela] : efo] Vo € H(A,RP). (4.10)
A A
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For given i, we again first compute i via (4.10) and then the effective stress (cf. (4.7))

via
o= ]f\#oz ]ﬁ# Celu| = ]f\# Celu+ 1] . (4.11)

Substituting # and & in (4.7) yields one equation for determining C.
Using six linearly independent "/ with €[] = ¢;; := 3 (e; ® ¢j + ¢; ® ¢;), where
i <je€{0,1,2}, we can determine C via

Cij = ]ﬁ# C (e @] +ey) (4.12)

where ii'/ solves (4.9) for given .

4.1.2 Variational Formulation of the Cell Problems

It turns out to be mathematically more convenient to consider—in the spatially
continuous case equivalent—variational formulations for the correction profiles .

Heat Diffusion Model Problem

For the scalar model problem we consider the following problem.
Problem 4.3. Find the minimizer # in
][ @V, Vi) =  inf ][ (aV (i +0), V(i1 + 5)) (4.13)
A SeHA (AF) J A¥
for a symmetric tensor a.

This leads to the same Euler-Lagrange equation as (4.4). The minimum in (4.13)
is attained by i solving (4.3) for given ii. Defining e;j := %(ei + ¢;) and taking into
account that

aix = (aej, ex) = (aeirk, Civk) — (A€i_, €ik) (4-14)

holds for symmetric a leads to the following lemma. Recall that 2 was assumed to be
symmetric for physical reasons.

Lemma 4.4. The entries a;; of a are obtained as
Aik = ][ (@vi', vi*) = ][ (@v (@' +a'), V(@ + ab)) (4.15)
N A#
= f (@@ ), V(@ ) — @V @ ), V()
A#

for Vii! = ¢;, Vit = ¢, and a'** being the corresponding solution of (4.3). The
tensor 7 is symmetric.

Proof. The second equality is due to the fact that i solves the cell problem (4.3). The
third equation finally uses (4.14) and symmetry of the tensor 4. Symmetry of 7 is
then verified easily. O
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4.1 Homogenization for Periodic Specimens

Linear Elasticity Model Problem

For the linear elasticity model problem we consider the following formulation,
cf. Equation (4.3).

Problem 4.5. Find the minimizer i in

][ Celi] : €[] = inf ][ Celi + 9] : €[i + 7| (4.16)
N SeHY (A R3) J A

leading to the same Euler-Lagrange equation as (4.10).

The minimum in (4.16) is again obtained by i solving (4.9) for given . Defining
Cij+kl ‘= %(eij + ¢j;) and using

Cijrr = Ceijj = exg = Cejjy = €ijrk — Ceijg1 * €jj—ki (4.17)
for symmetric C, we obtain the following lemma.

Lemma 4.6. The entries Ci]-kl of the effective elasticity tensor C are obtained from

Ci]'kl _ Ce -aiji| :€|:1/_lkl] :][ Ce [ﬁ1]+ﬁl]i| :€|:L—[kl+ﬁij]
AL y
_ ]i# Ce _aif”d +ﬁi]'+kl] : e[aij+kl +ﬁij+kl] (4.18)
— CelaiH 4 aiiH) : i 1 i)

where e[ﬂ = ejj+x as defined above and Ak is the corresponding solution

of (4.9). The tensor C hence satisfies the symmetry relation Cijkl = Cij-

i

Proof. The second equation results from 7 solving the cell problem (4.10). The third
equation uses (4.17) and the symmetry of C in the first two and in the last two indices.
The symmetry property is then easily verified. O

4.1.3 Symmetry of the Homogenized Tensors

For physical reasons, the homogenized tensors must be symmetric. Let us show that
this is also true for the tensors obtained by our homogenization procedures under
smoothness assumptions for the microscopic tensor.

Heat Diffusion Model Problem

Let us first consider the scalar model problem of heat diffusion. Symmetry is first
shown for the tensor obtained by the cell problem approach, then we show that the
same tensor is obtained by the variational formulation (4.13) which is hence also
symimetric.
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Proposition 4.7. The effective thermal diffusivity tensor 4 obtained by our cell prob-
lem approach (4.3) is symmetric if the microscopic tensor a is sufficiently smooth.

Proof. For ii* with VX = ey, il* solves (4.3) with periodic boundary conditions for ii*.
In coordinates, we can write (using Einstein summation convention and the notation
e ; = 0;e for partial derivatives

_(aijﬁf{j),i = Qik,i s (4.19a)
7 = (aij6i)i = (@i, (4.19b)
ay =g = ][ a;j (65 + ﬁk]) , (4.19¢)

Vi

where (4.19a) follows from — div(aVi) = divaViF, (4.19b) from ¢ = aVu and
Vi, = ex, and (4.19¢) follows from (4.6).
Symmetry can now be seen from

_ _ (a8 _k i _k i
ik — Ak = ][aij(éjk T @) — o ak(0i + ;) = o an — ag + aijil; — agit;
(b) ~k _i (0) —k ~i
N 7[ aijilj — il = o —aij i + agg i
d) ~k ~i (@) ~iy -k kN i
= ][ —aji il +ajp i = (aﬂu,l),ju — (a]-lu,l),]-u

® ik ki (®) ik ik
= ][—a]'lu,lu’j + a]'lu/lu’]' — _a]'lu/lu’]' + al]'u,ju/l — 0

(4.20)

where, for simplicity, we omit the domain of integration A*. Step (a) is due to (4.19¢),
(b) uses symmetry of the microscopic tensor a, (c) results from integration by parts
with periodic boundary conditions, (d) again uses microscopic symmetry, (e) uses
(4.19a), (f) once more results from integration by parts, and (g) finally is a renaming
of indices. Let us point out that steps (b) and (f) require differentiation of the
microscopic tensor a4 which is not necessarily possible in the discrete setting. O

Proposition 4.8. The effective thermal diffusivity tensors obtained by the cell problem
approach (4.3) and by the variational formulation (4.13) coincide if the microscopic
tensor is sufficiently smooth.

Proof. For Vii'tl = J(e; £ ej) the periodic function 1"+ solves

]i#@wiff, Vi) = — ][A#<avaiif, V) (4.21)

for all test functions 7 € H;’Z(A#). Making use of the notation above we observe that
% = (' £ /). Moreover,

7 = %(qi ) = ][A V(@ + @), (4.222)
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4.1 Homogenization for Periodic Specimens

0= ][ aV (@ + a1\ Vo (4.22b)
Y

for all test functions @ as above.
Hence, again omitting the domain of integration A*,

ajj = ][<ﬁ€i,€j> = ][(c‘qui,Vuj>
(a)][<av( 1 4 @), V(@ att) — (aV (@ Fat ), V(a4 )

(4.23)
. A A A 1., A
ai; + djj — djj — llji) = E(ai]- + llji)

where 4 denotes the homogenized tensor obtained by the non-variational cell problem
formulation above. Here, step (a) follows from Lemma 4.4. Step (b) uses the fact that
the 7 are admissible test functions in (4.22b), (c) takes into account (4.22a), (d) uses
the property (4.19c¢) for the tensor 4, and finally (e) is the result of Proposition 4.7. So
the two tensors are equivalent and 7 is also symmetric. O

Linear Elasticity Model Problem

Microscopic symmetry of stress and strain ensures the symmetries Cijkl = Cjikl = Cijlk
for the first and second pair of indices separately also for the homogenized elasticity
tensor. For physical reasons, the symmetry Cjji; = Cy;j also needs to be satisfied. The
proof for this works in the same way as above and has been presented in [296], it is
given here mainly for completeness.

Proposition 4.9. The effective elasticity tensor C obtained by our cell problem ap-
proach (4.9) is symmetric if the microscopic tensor C is sufficiently smooth.

Proof. First observe the analog of (4.19)

(Cljklﬁ;nkn) ( z]mn)' (4.24a)
= (Cijmnelex]n)ij = (Cijpa)ij (4.24b)
Cijkl = 5’51 — ]f\# Cijkl(éikéjl + T/Nl;(,ll) (424C)

where (4.24a) follows from (4.9) and the symmetry of the microscopic tensor C, (4.24b)
follows from o = Ce[u], €[] = ey, and (4.24¢) follows from (4.12).
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4 Numerical Homogenization

Then the desired symmetry holds due to
= = @ Kkl ~ij
Ciit — Cutij = 1 Cijimn Skt + Ty ) — Cklmn(5mi5nj + f,m)
][ Cz]kl Cklz] + Cz]mnun m Cklmn n m ][ Cz]mn ~ﬁlm Cklmnﬁ;],m
© - ~ij ()
= ][ _Cijmn,mun + Cklmn mU Z] ][ Cmm] mu + Cmnkl m”;’{ (4 25)
O] Kl
][(Cmnpq q]p) (Cm”r’q”q P) m”’{
( ij Kl ~
© ][ Cmnpqu;]puﬁ m T Cmnpquglpu;]m =0.

The domain of integration A" is again left out. Step (a) is due to (4.24¢), (b) uses
the symmetry of C, (c) results from integration by parts with periodic boundary
conditions, (d) again uses symmetry of C, (e) takes into account Equation (4.24a),
and (f) is again based on an integration by parts. O

Proposition 4.10. The effective elasticity tensors obtained by the cell problem ap-
proach (4.9) and by the variational formulation (4.16) coincide if the microscopic
tensor is sufficiently smooth.

Proof. First,

G _ E((-Tz] k) = ]ﬁ# Ce [u—z]ikl n ﬁz]ikl] , (4.26a)
0 :][ Ce [aijikl _I_ﬁijj:kl] : e[9] (4.26b)
AH#

for all test functions 7 € H;’z(A#; IR3). Hence
Cijp = ][Cijkleij Lep = Cz]kle[ ]} ie[ﬁkl]
@ ][ Cijkl c ZZij+kl _|_ﬁij+kl] : e[ﬂij—i—kl _I_ﬁij+kl]
_Cijkle[ 7K i kz} e [ 7K 4 il kz}

o ][Cijkze [gij+kl z;+kl] . [ 1]+kl} C; kle[ gkl = kl} e [gij—kl]

—~

C

~

[( 7+ 1 (e +en) — (77 — ) : (eij_ekl)] (4-27)

(Cijij — Cijrr — Cuaij + Cranar)

—
=

1
4
1 . . 1
=1 (Cijij + Cijua + Craij + Cuama) — 1
1 A
=5 (Cijuar + Cuif)

where C denotes the homogenized tensor obtained cell problem formulation (4.12)
above and where the domain A* of integration is again left out. Step (a) results from
Lemma 4.6, step (b) uses admissibility of the functions i as test functions in (4.26b),
step (c) takes into account (4.26a), step (d) uses the property (4.24¢c) for C. Il
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4.2 Homogenization for Statistically Periodic Specimens

In case we do not have exact periodicity of the material, the cell problems with
the decomposition in macroscopic and correction profiles and the use of periodic
boundary conditions can be replaced by enforcing a macroscopic profile via Dirichlet
boundary conditions. These boundary conditions are clearly not zero ones, and the
term ‘(in)homogeneous boundary conditions” should—and will—be avoided in the
context of homogenization.

Let

AP = {x e A* )dist(x, TAH)) > ﬁ} , (4.28)

then A* is A*F plus an additional boundary layer used for simulation, but not for
evaluation. The choice of B can be tedious because increasing  leads to (desired)
reduced influence of the boundary layer but (undesired) computational overhead
for fixed A*f C A* or decreased representativity for fixed A¥, it will be further
investigated below.

The (strong) cell problem formulations (4.3) and (4.9) are now modified to boundary
value problems with the same macroscopic profiles i as before.

Problem 4.11. For given macroscopic temperature profile i, solve

—div (aVu) =0 in A" (4.20)
2
u=1a ond A" +29
Problem 4.12. For given macroscopic displacement i1, solve
—div (Ce[u]) =0 in A
(4.30)

U=1 on o-A* .

The Dirichlet boundary conditions in Equation (4.30) lead to artificial stiffening (in
the elasticity case) near the boundary, as illustrated in Figure 4.4, and to overestimated
energy in (4.16). The same effect happens for the scalar model problem and for the

Figure 4.4. For a1l x 1 x 1 rod dataset, the difference between periodic (middle) and Dirichlet
(right) boundary conditions is shown for one tensile loading case. Dirichlet boundary
conditions prevent the longitudinal rods from thinning at the boundary and force the
transverse rods to an elliptic cross section at the boundary, leading to higher average stress
for the same macroscopic strain. Color === = encodes the von Mises stress at the interface.
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4 Numerical Homogenization

energy in (4.13) but is less intuitively explained there. To reduce the influence of
these boundary artifacts, heat fluxes or stresses are now averaged only over the strict
subdomain A"

q pu— = V .
q ]ﬁ#ﬁq ][A#ﬁa u (431)
= ][ o= Celu] (4-32)
NP NP

where u is computed for given i by solving (4.29) or (4.30).
The effective thermal diffusivity and elasticity tensors are then obtained as described
in the following lemmas.

Lemma 4.13. Using three linearly independent il with Vil = e;, 1 = 0,1,2, the
columns a.; of the effective thermal diffusivity tensor a for statistically representative
fundamental cells can be determined via

a;= ][ aVu' (433)
NP

where u’ solves (4.29) for given i

Lemma 4.14. Using six linearly independent macroscopic displacement profiles i/,
i <j e {01,2} with e[d] = ¢; := 3 (¢;®ej+e;®e;), we can determine the

effective elasticity tensor C for statistically representative fundamental cells via

C..i]- = ]f\#ﬁ C(e [uij]> (4-34)

where u'/ solves (4.30) for given '

For physical reasons the homogenized tensors have to satisfy symmetry conditions
which we have proven in the case of periodic fundamental cells and for sufficient
smoothness of the microscopic tensor. We hence consider small symmetry defects in
the tensors obtained from Lemma 4.13 or 4.14 as numerical artifacts and symmetrize
the tensors (unless mentioned otherwise). Figure 7.32 lists the non-symmetrized
elasticity tensors for the same object at different computational resolutions and shows
that the symmetry defect diminishes for increasing resolution.

Choice of the Boundary Layer

To evaluate the effect of the Dirichlet boundary condition and the parameter § on
the homogenized effective elasticity tensor in case of a trabecular microstructure, we
performed the following numerical experiment: A structure with 8 x 8 x 8 cylindrical
rods of diameter-to-length ratios 4/1 = (0.4,0.35,0.3) (see Section 7.3.2 and Figure 7.22)
with microscopically isotropic material properties (E = 10, v = 0.1) embedded in
1 m3 of material with E = 1, v = 0.3 (see Figure 4.5) at computational resolution 129°
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4.2 Homogenization for Statistically Periodic Specimens

boundary layer g 0/8 1/8 2/s 3/8
relevant Frobenius difference 0.108 0.045 0.029 0.020
relative DOF usage 1.000 0.422 0.125 0.016

Figure 4.5. For an artificial trabecular structure, the image shows the evaluation subdomain
N for B = 1/s. A larger boundary layer does not yield a significantly better tensor when
using the homogenization method for statistically periodic fundamental cells compared to
the tensor obtained using the method for periodic cells, but results in a drastic increase of
computational resources required.

was first viewed as a periodic fundamental cell. The corresponding homogenization
procedure was used to obtain the reference macroscopic tensor in Voigt’s notation
2.698 0.652 0.650
0.652 2505 0.649
C — 0650 0.649 2314
0.581

0.611
0.642

where entries smaller than 1073 times the maximal entry have been omitted. Con-
sidering this domain as a merely statistically representative fundamental cell and
applying the corresponding homogenization procedure with Dirichlet boundary
values, the following macroscopic tensors were obtained for different values of

2.713 0.652 0.651 2.698 0.652 0.650
0.652 2.525 0.649 0.652 2.505 0.649
CﬁZO — |0.651 0.649 2337 Cﬁ:% — |0.650 0.649 2314
0.609 / 0.592
0.641 0.624
0.673 0.657

where again small entries have been omitted. Obviously, artificial stiffening near
the boundary plays a significant role for the diagonal entries in the Voigt tensor for
B = 0. Leaving out a boundary layer of one trabecular distance size (8 = 1/8 in this
case) almost completely eliminates this effect. In fact, choosing larger B only leads to
a slight improvement in the Frobenius norm difference of the relevant entries (upper
left block and lower right diagonal in Voigt’s notation), at the cost of immensely
decreasing relative DOF usage (number of DOF used for evaluation, which need to
cover one fundamental cell O, relative to number of DOF used in the simulation),
cf. Figure 4.5.

According to [160], the size of a cell should be at least 5 inter-trabecular lengths for
the cell to be statistically representative for morphological quantites determined on
the cell. This criterion is used also when determining effective elasticity properties
e.g. in [171, 345].

Hence we require A*? to be of size about 5 inter-trabecular lengths and add a
boundary layer of one inter-trabecular length at each side, so that we typically rescale
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Figure 4.6. The identification of an inactive node ¢ with its active counterpart  is shown
on the left, correspondingly the support of the associated basis function is disconnected
(middle), leading to a different node neighborhood structure. For corner nodes (right), there
are even more components of the support.

our problem to A* =[0,1]3 D [1/s,7/s] = A", B = 1/s. Let us point out that A*F
determines the computational cost (where the boundary layer overhead contributes
by power 3). This amounts to a computational overhead of about 137 % compared to
a simulation only on the evaluation domain A*.

Table 7.38 indicates that p = 1/8 is also a useful value for non-artificial trabecular
objects. The same thickness of a boundary layer to be ignored is obtained in a similar
approach in [340]. The authors of [340] consider cylindrical specimens and model
a standard mechanical experiment with stress-free side boundary which leads to
artificial softening of the structure compared to its in situ properties.

4.3 Composite Finite Element Discretization

Let us now discuss the peculiarities of the CFE method used for homogenization.
Periodic boundary conditions are treated in Section 4.3.1, the constraints of the
form f U = 0 are discretized in Section 4.3.2 and an algorithm for cell problems for
periodic fundamental cells is given in Section 4.3.3.

4.3.1 Periodic Boundary Conditions

Periodic boundary conditions in the FE context are treated in the standard way
by identifying certain degrees of freedom. In this section we describe what these
identification means in the CFE context and how it is implemented.

Let us introduce some notation for the nodes involved. A node r is called inactive
node if, by periodicity assumption, the value of u at r is the value of u at a counterpart
node and thus no DOF is associated to r. The node to which we actually associate
a DOF and that DOF will be called active counterpart node and active counterpart DOF,
respectively. For an active node, the terms active counterpart node and active
counterpart DOF just refer to the node/DOF itself. See Figure 4.6 for an example.

This identification of inactive DOF and their active counterparts also means iden-
tifying the associated CFE basis function, implying that the support of such basis
functions is disconnected within A* (because it extends to an adjacent cell).
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4.3 Composite Finite Element Discretization

Figure 4.7. The CFE mesh for one periodic cell has the set of DOF shown as filled = and ¢
symbols on the left. For the same geometric object being the full domain (and not merely
one fundamental cell), the set of DOF is shown on the right, showing that these two sets are
mutually not contained.

In case of complicated domains, counterparts of inactive nodes are not necessarily
DOF on the CFE mesh determined only on A*, even though periodicity implies the
same intersection of the domain with opposing periodic faces of A*, see Figure 4.7
for an example. This is not surprising, however, because a CFE mesh for the periodic
extension of such domains does have DOF at such positions. In summary, we observe
that the sets of CFE DOF and their active counterpart DOF may be distinct in the sense
that none is subset of the other, see Figure 4.7 for an example.

Periodicity in data vectors and for matrices must be taken into account when
passing between the interpretation of A" as a single cell and a periodic cell. For
simplicity (and computational efficiency, albeit at the cost of additional memory
requirement), we use data structures for a full discretization of the cell N,

When dealing with vectors containing point values, the point value at an inactive
node equals the value at its active counterpart node, so the vector entries correspond-
ing to inactive nodes are ignored in the data vectors and set to zero. We call this
operation periodic restriction (as opposed to the grid transfer restriction R in multigrid
methods) and denote it by O, see below for a precise definition. The inverse 91,
filling those entries back in by copying them, will be referred to as periodic extension.

Identifying basis functions leads to larger support for those at active boundary
nodes. So, when dealing with integrated quantities in data vectors or matrices
(containing integrals of basis functions or integrals of their derivatives), this is
translated to adding entries at inactive nodes to those at their active counterparts. We
call this operation periodic collapsion and denote it by S (as in summation).

For matrices and vectors in these periodized interpretations, we use the notation e*.
It will be clear from the context whether this means ¢ = Q(e) or o* = S(e). In the
vector-valued case, the operators are applied separately to all components of a block
vector or all blocks of a block matrix.

The effect of the periodic collapsing S on a CFE mass matrix for a complicated
domain is visualized in Figure 4.8. The visualization shows the effect of DOF removed
because they are periodic copies of other nodes and DOF newly introduced as
explained above. In particular, using band matrices requires introducing additional
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Figure 4.8. The sparsity structure of a CFE mass matrix corresponding to the 3D analogon
of the situation in Figure 4.7 (an object similar to the ball in Figure 7.9) is shown before
(left) and after (right) periodic collapsion and writing identity rows for non-DOF nodes.
Computational resolution 5° implies that the matrices are of size 129 x 129. In the middle,
the difference between the two sparsity structures is shown, red pixels indicate those entries
which are no longer DOF after collapsion, green pixels indicate newly introduced DOF.
Identity rows for non-DOF nodes have been ignored in the ‘diff” view in the middle.

full bands of length 7> containing only O(n?) nonzero entries and is thus inefficient,
in terms of both computational workload and memory.

Definition 4.15. Let a(r) denote the active counterpart of a node r, V be a vector and
M be a matrix. Then we define the periodic restriction Q

V; if i is an active node
Q(V)z = l .
0 otherwise
M;; ifbothiand j tive nod (435
;i if both i and j are active nodes
QM) =1 " e
0 otherwise,
the periodic extension o1 (only used for vectors)
QN (VH); =V, (4-36)
and the periodic collapsion S
= ) Vi S(M)jj:== Y, My (4-37)

k:a(k)=i ka(k):‘

4.3.2 Discretization of Equality Constraints

Lemma 4.16. Constraints of the form { U = 0 for discretized functions U are canoni-
cally discretized as

<ﬁ1\/ﬁ, uy=:(,u)y=0 (4-38)

where M is the CFE mass matrix and 1 is the all-1 vector.
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4.3 Composite Finite Element Discretization

Proof. This follows from

][U:][ ul = ! /]HJ. (4-39)
N A# fA#ﬂ Vi

where 1 is the constant-1 function. O]

This constraint is periodized via
M*TH
(ML T
The factor 1/(Mm1,1) is non-trivial for the case of corgplicated domains. If A* is simply
the unit cube, this factor is 1 and | simplifies to M1.

—.

M* = S(M), "= 9(T), T = (4.40)

Scalar Problem. The periodic and discretized form of Equation (4.3), the system of
equations for determining the temperature correction profile, is obtained by using
L*=S(L), B* = —S(LU) (4.41)
so that we obtain the system
L*0* = B*
- 42
subject to (J*, ") = 0 (4-42)

where the system matrix L* is singular and has a one-dimensional kernel (eigenspace
to the zero eigenvalue) corresponding to addition of constant functions. The addi-
tional condition makes the system (4.42) uniquely solvable for suitable right hand
side.

Vector-Valued Problem. In the elasticity case, our constraints for the discrete dis-
placement apply to all spatial components separately, i.e.

(Jh,0f) =0 vae{0,1,2}. (443)

In the vector-valued case, the system of equations for determining the displacement
correction profile (4.9) is periodized using

E* = S(E) B* = S(EU) (4-44)

so that we obtain

El Eq ER\ (US B
E#o Eﬁ Efz Lﬁ = B#
B E3 EN/) \US B3
J* ag 0 ag 0 ag
subject to ((O) , (l]f)) = <<]#) , (CI#)) = <(O) , (le)) =0.
o) \ut o/ \uz ) \u3

Here, the system block matrix E*is singular with three-dimensional kernel corre-
sponding to addition of constant displacements (shifts) in the three space directions.

(4-45)
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Subspace Projection. Let s := {u|fu = 0} be the subspace of all continuous
functions satisfying the average-zero constraint. The projection onto s is given by
ITsu = u— (f u)1 for any continuous .

Remark 4.17. I, is indeed a projection because the idempotency I1s o Il = II; is
satisfied.

In discrete form, we consider the subspace S := span {]}L using | defined in (4.38)
and obtain the projection

Ms(U) = U — (J,U)T. (4.46)
or
Mg(u*) = u* — (J*, u")1*. (4-47)

in periodized form. Again, idempotency is clear, so Ilg is indeed a projection. In the
vector-valued case, each spatial component is projected separately.

4.3.3 Algorithms for Cell Problems

Let us now summarize the steps necessary for treating one instance (given 1) of the
cell problems, both for periodic and Dirichlet boundary conditions.

Cell Problems for Periodic Cells. For the scalar model problem, the procedure for
determining an effective thermal diffusivity tensor is summarized in Algorithm 4.9.

In the vector-valued case, the procedures in Algorithm 4.10 are almost the same,
except we now use block matrices M and E (instead of L), block vectors, and a
different CFE construction.

Dirichlet Boundary Conditions/Statistically Periodic Cells. In case of statistically
periodic specimens, the macroscopic temperature or displacement profile was en-
forced by corresponding nonzero Dirichlet boundary conditions. These are trans-
formed to zero Dirichlet boundary conditions and treated in a standard manner as
described in Section 3.5.1.
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4.3 Composite Finite Element Discretization

procedure DETERMINEEFFECTIVEHEATFLUX(macroscopic temperature profile U)

set up 1 and CFE matrices M, L as usual > depends on A* and microscopic tensor a
B* — —S(LU) > compute the right hand side
M* — S(M) > periodize matrices ...
L¥ — S(L)

1" — (1) > ... and the all-1 vector
J# — M*T*/ (et 7 > compute the constraint vector
solve the system (4.42), L*U* = B* subject to (J*, I*) = 0, for U*

Uu— o (" +u > periodically extend the solution and add macroscopic part
Q«— favVU > compute effective heat flux
return Q

procedure DETERMINEEFFECTIVETHERMALDIFFUSIVITYTENSOR
for i € {0,1,2} do
set up vector U’ as usual, discretizing ' with Vi = ¢;
Q' « DETERMINEEFFECTIVEHEATFLUX (UI7)
aji — Q; > Q' becomes it column of a

return effective tensor i

Algorithm 4.9. Cell Problems for the scalar model problem

procedure DETERMINEEFFECTIVESTRESS(macroscopic displacement profile U)

set up 1; and CFE block matrices M, E > depends on A* and microscopic tensor C
B* «+— —S(EU) > compute the right hand side
M* — S(M) > periodize matrices ...
E* «+ S(E)

Tﬁ — 9(Ty) > ... and the all-1-block vectors
Ji— ML/ (v#Te T > compute the constraint vectors
solve the system (4.45), E*U* = B* subject to (J#, U*) = 0 Vk, for U*

U~ o Y(i"H+u > periodically extend the solution and add macroscopic part
o — { Ce[U] > compute effective stress
return ¢

procedure DETERMINEEFFECTIVEELASTICITYTENSOR
for i <je {0,1,2} do
set up block vector U as usual, discretizing ii”/ with €[] = e;;
' — DETERMINEEFFECTIVESTRESS (L")
C_mnij A dr]zn
fill whole C by tensor symmetry
return effective tensor C

Algorithm g4.10. Cell Problems for the vector-valued model problem
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4.4 Solvers for the Constrained Systems

Let us now discuss how to solve the ‘constrained systems of equations’ (4.42) and
(4.45). For simplicity of notation, let us omit the periodicity throughout this section
and consider the generic problem

AU =B

48
subject to (J;, U) =0 Vi (4-48)

with A standing for L or E. Clearly, this system can only be solved if the right hand
side B lies in the image of the A.

This system can be solved using a projecting (preconditioned) conjugate gradient
solver where the The projection is performed according to Equation (4.47). The
conjugate gradient solver [164] is a Krylov space method? [25] and thus has the
desired property that, starting with initial guess in the subspace S = span {]}L, all
iterates lie in this subspace. As we typically start with zero as the initial guess, the
condition is trivially satisfied. However, this property is only true in exact arithmetic,
but not using floating point numbers of finite precision.

To prevent the numerical solution from ‘drifting” away from the desired subspace S,
we thus project the iterates back to S if the constraints are violated by more than a
given threshold (due to finite precision, we cannot expect it to be satisfied exactly).

This projection makes sense because it does not change the residual (which would
clearly interfere with CG convergence).

Lemma 4.18. The projection Ilg defined in Equation (4.46) does not change the
residual of the systems LU = B or EU = B.

Proof. In the scalar case,
L(ITsU) — B = L(U — (], U)
=LU - (J,U)

—|

)—B
_B=LU-B (4-49)

Il <P‘
(=R )

and in the vector-valued case
E(HSU)_B:E(U_ Z <]a/u>Ta)_B

xef{0,1,2} ( )
. .50
—EU- Y (JuU)El,—B=EU—B 2
~—~—
«c{0,1,2} -0
where T,X is the block vector that is all-1 in the block for space direction a. [l

Let us point out that this projection scheme is compatible with preconditioning
because this only changes the iterates but not the actual system or the residual
computation. The projection can also be combined with our CFE multigrid method,
this is discussed in Section 5.3.

*Named after the Russian naval engineer, applied mathematician and memoirist Asnexceit Huxo-
naesuu Kpoinos (Alexei Nikolaevich Krylov), x August 15, 1863 in Simbirsk (today Ulyanovsk),
+ October 26, 1945 in St. Petersburg [262].
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4.5 Orthotropy Directions

4.5 Orthotropy Directions

Once an effective elasticity tensor for a given microstructure has been determined,
an interesting question is whether it corresponds to an orthotropic material. If it
does, the axes of orthotropy will typically not be aligned with the coordinate axes,
so they also need to be determined. As for trabecular bone, only the craniocaudal
axis is rather easy to preserve throughout our sampling and scanning process if the
cylindrical specimens are aligned with this axis.

A straightforward idea for checking orthotropy [344, 392] is to determine the
rotation R € SO(3) that ‘best rotates the effective tensor to an orthotropic one’ in
terms of an orthotropy violation measure to be defined below. Such a method also
provides a mechanism to check whether the orthotropy assumption was justified:
after optimal rotation, the orthotropy violation should be small.

To simplify notation, we will use no bars atop a or C throughout this section even
though the methods described here will typically be applied to homogenized tensors.

4.5.1 Rotation of Tensors

Rotations in Q € SO(3) can be described as

Q= Q(a, ﬁf’Y) = Qxy(“)sz(;B)Qyz(’)’)

cos(a) —sin(a) 0\ [cos(B) 0 —sin(B) 1 0 0
= | sin(a) cos(a) O 0 1 0 0 cos(y) —sin(7y)
0 0 1 sin(B) 0 cos(B) 0 sin(y) cos(7)
(4.51)

with a, B,y € [—7/4,7/4) being the rotations in the xy, xz, and yz plane, respectively.
These angles are also referred to roll, pitch, and yaw angles and commonly used in
computer graphics and aviation, see e.g. [194]. Note that rotations do not commute,
and that the inverse rotation is given by

Qback (&, B,7) = QyZ(_'Y) QXZ(_.B)Qxy(_D‘) . (4.52)

Note moreover that our bounds are chosen such that ambiguities due to switching
axes by 90° rotations are ruled out, as we have no preference which of the axes of
orthotropy should correspond to which coordinate axis.

Suppose we have a material with orthotropic thermal diffusivity tensor a for which
the axes of orthotropy are the coordinate axes rotated by some rotation matrix Q, see
Figure 4.11.

Lemma 4.19. Let Q € SO(3) be the rotation from an (unknown) aligned configuration
to the actual configuration, and let #* denote quantities in the aligned configuration.
Then the thermal diffusivity tensor is rotated according to

Amn = Qi Qnjij; - (4-53)
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Figure 4.11. Axes of orthotropy in the actual configuration (right) are not aligned with
the coordinate axes but rotated from a reference configuration (left) by some rotation Q.
Quantities in the aligned configuration are denoted by x.

Proof. With gradients written as column vectors, we obtain
*=Qx, u(x*)=u(x), Vu(x*)=Q Vu(x), (4-54)
so that in the quadratic form assigned to the diffusion problem 2.1 we obtain

(a*Vu*, Vu*) = (a*QTVu, QT Vu)

— (QrQTVu, Vi) (4.55)

so that a = Qa*QT. This can be written in components as a,; = Qmiai*j ]7;1 from
which (4.53) follows. O

Lemma 4.20. Let Q € SO(3) be the rotation as in the previous lemma. Then the
elasticity tensor is rotated according to

Cmnpq = QmiankaquC;jkl . (4.56)

Proof. In the linear elasticity case, also the displacement u needs to be rotated and its
component-wise gradients are interpreted as rows of Vu, hence we obtain

u(x) = Qu*(x*), Vu(x) = QVu*(x*)QT
_ 1 Ty _ 1 * (N NT * (kT T
= elu] = 5 (Vu+Vu ) =5 (QVu (x*)Q" + (QVu (x)Q ) ) (4.57)
1
= > (QVir(x)Q" + Q"TVu T (x)Q") = Qelu’] Q"
Hence we obtain in the quadratic form assigned to the elasticity problem 2.2

C*e[u*] : e[u*] = C*QTe[u] Q: QTe[u] Q

= C;jkl sze[u]pq quQ;“?[”]mn Q11]

(4.58)
= (sz’ankaquCi*jm) efu],, €[ul,,
= Celu] : €[u]
with C as in Equation (4.56). O
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4.5.2 Visualization of Elasticity Tensors

A mere listing of macroscopic elasticity tensors is not particularly intuitive, so we
use a visualization of such tensors that is common in biomechanics [71, 161] showing
them as deformed and colored spheres K. We briefly explain this visualization here
and show one example in Figure 4.12.

Deformation. Let n be any unit vector in R? (corresponding to a point on the unit
sphere). The sphere is deformed according to compressive stiffness in the respective
direction n. For this purpose, compute

N=n®n in components: Nj; = n;n;
§=CN Sij = Cijxi N (4-59)
c=N:S§ O'ZNI']'SZ']'

and finally draw the shape K¢ = {o(n) |||n| =1}.

Color. Moreover we compute the bulk modulus tr S = }; S;; and color the shape K¢
with the resulting values from minimal to maximal value an HSV (hue, saturation,
value) color map.

Figure 4.12. Example for the visualiation of an elasticity tensor C as a deformed and colored
sphere K¢. The shadow underneath is meant to improve the 3D visual impression.
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4.5.3 Determining Orthotropy Directions

Recall Voigt’s notation for elasticity tensors (2.10)

[0 [Coo Cor Coz Coz Cos Cos] [ €xx ]|

Tyy Cio Ci1 Cr2 Ci3 Gy Cis| | €yy

Ozz| _ |Coo Cou G2 Co3 Coy G5 | €22 (4.60)
Oyz C3o Cs1 Czp Czz3 Cag Cas| |26y '
Oz Cao Cu Cp Cy3 Cyy Cy5| |2y

[ Oy [Cs0 Cs1 Csp Cs3 Csg Css] |26y

We will now switch back and forth between standard tensor notation with four
indices and Voigt notation with two indices.

For an orthotropic material whose axes of orthotropy coincide with the coordinate
axes, the upper right 3 x 3 (and, due to symmetry, also the lower left 3 x 3) block of
a is zero and the lower right 3 x 3 block is diagonal. Symmetry holds independent of
orthotropy. A lack of orthotropy can be quantified by

2 5 5 2 5
RO 2Eico N G+ 2E0s Ko G + 400514 €

F(C) = =
IR, (C)] I3 1330 0Ch+4x 5C

(4.61)

where the function F differs from the one proposed in [344, Equation (4)] in the
weighting factors 2 and 4 (the authors of [344] use 1 everywhere) which reflects
that entries in the Voigt tensor represent up to four entries of the full fourth order
tensor. R, is the restriction to the entries not present in an orthotropic tensor whereas
Ry is the restriction to those present (upper left block and diagonal of lower right
block). Small F(C), which is clearly bounded from below by 0, thus corresponds to
small undesired entries relative to the desired entries. Then consider the following
optimization problem.

Problem 4.21. Determine an optimal rotation minimizing

Ge(w, B,y) = F (QuiQnjQokQpiCijir) (4.62)
over the admissible set A := [—7/4,7/4)% where Q is the matrix Qpac (&, B,7)-

The objective function G is not convex and may have multiple local minima and
also multiple global minimizers. However, G is not highly oscillatory and depends
on only three variables, so an inelegant and inefficient minimization method by
interval nesting is sufficient: We discretize A with finite angular resolution, evaluate
Gc at every point to determine the discrete minimizer and proceed by discretizing
a smaller interval there until a fixed accuracy in the angles is attained. As this
optimization procedure is typically part of the postprocessing and compared to the
main simulation, the workload is not critical.

If the minimal value is sufficiently small so that the rotated tensor can be considered
orthotropic, we can use Equation (2.19) to determine compressive and shear moduli,
and Poisson’s ratios.
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HILE THE SYSTEMS OF EQUATIONS resulting from CFE discretizations have a nice

sparsity structure, the performance of standard iterative solvers still suffers
from bad condition numbers (cf. Section 7.1.4) or other effects. The major advantage
of the underlying Cartesian grids is that they contain canonical coarse scales, thus
permitting the construction of ‘geometric’ multigrid solvers.

In this chapter we first discuss the general framework of multigrid solvers based on
geometric coarsening in Section 5.1. Section 5.2 deals with the coarsening procedure
for complicated domains. The performance of the CFE multigrid method will later be
compared to other solvers in Section 7.1.5. Certain geometric situations severely affect
the computational efficiency, which will later be discussed in Section 8.2. In case of
discontinuous coefficients (Section 5.4), the multigrid construction cannot be extended
in a straightforward manner. Like the CFE construction for complicated domains, the
multigrid method is orginally the one in [216] and it has been published in [217, 282].
The multigrid method for homogenization applications has been published in [311].

5.1 Geometric Coarsening

Let us briefly recall the basic ideas behind multigrid methods in general. The solution
of a system of equations Ax = b resulting from a discretization procedure can be
viewed as the iterative reduction of the (Euclidean) norm of the residual r = Ax — b.
Iterative methods such as the Jacobi method® [180] or the Gaufs-Seidel method?
(cf. [387, 315]) are capable of reducing high-frequency components of the residual
within a few iterations, even though general convergence is typically slow. Frequency
is relative to the resolution of the discretization, so low frequencies for the original
problem can be treated efficiently on a coarsened version of the problem.

5.1.1 Basic Multigrid Scheme

The basic multigrid cycle, first stated in this form in [59], is of the form shown in
Algorithm 5.1. The solve step 7 can be replaced by multiple recursive calls of the
multigrid method on the next coarsest level. In case of one or two recursive calls,
the cycles are denoted by V cycles and W cycles, respectively. V cycles are typically
faster in practice whereas certain convergence results are only known for W cycles.

Named after the German Mathematician Carl Gustav Jacob Jacobi, x December 10, 1804 in Potsdam,
+ February 18, 1851 in Berlin [1].

*Named after German mathematicians Johann Carl Friedrich Gaufs, » April 30, 1777 in Braunschweig,
+ February 23, 1855 in Gottingen [1] and Philipp Ludwig von Seidel, * October 24, 1821 in
Zweibrticken, + August 13, 1896 in Miinchen [262].
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procedure MULTIGRIDSOLVE(system matrix A, right hand side b)
if A is on explicit level then
apply explicit solver: x « A~1b
else
k—0,x%=x
while ||b — Ax*|| > threshold do

xXKHY3 . FAlre () > perform vpre GauR-Seidel iterations (presmoothing)
r—b— Axkt'/s > compute residual
7—R(r) > restrict residual
&« (A, &) = MULTIGRIDSOLVE (A, &) > solve coarse problem (A = RAP)
e — P(e) > prolongate
XK x5 e > coarse grid correction
XKL Evpost (xkH7/3) > perform vpost GauB-Seidel iterations (postsmoothing)

return Solution x

Algorithm 5.1. Basic Multigrid Algorithm. In the CFE context, presmoothing & and
postsmoothing & will be performed by Gaufi-Seidel iterations whereas restriction R
and prolongation P will be developed in this section.

The “explicit solver” in this context can be a direct solver (if the coarsest problem is
sufficiently small) or an iterative (e. g. preconditioned conjugate gradient) solver. We
will use the notation

Vi (Vpre/ Vpost) cycles (5.1)

for a multigrid method with coarsening up to level [, vpre pre- and vpost postsmoothing
steps in a V cycle.

Coarsening Schemes. The typical choice in FE methods is a geometric coarsening
procedure with R being weighted averaging and for P = R being its transpose (and
also an interpolation), see Section 5.2.1. The coarsened system matrix is then obtained
as A = RAP where the grid-transfer operators are identified with their matrix
representation. The coarsening scheme is chosen such that coarsened basis functions
resemble those FE basis functions one would obtain for the coarse discretization, thus
A resembling the coarse discretization of the problem. Our CFE multigrid methods
are based on finding such an appropriate coarsening procedure.

Algebraic Multigrid. Algebraic multigrid (AMG) methods already mentioned in the
introduction (Section 1.6) do not consider any underlying mesh geometry for a given
system matrix. Instead, they mimic this coarsening procedure purely based on the
matrix, interpreting the sparsity structure of the matrix as a graph with matrix entries
assigned to the respective edges and replacing the notion of geometric neighborhood
by ‘strong’ connectivity of the graph.
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5.1 Geometric Coarsening

For comparison of our CFE multigrid methods to established methods, we will use
the boomerAMG [163, 116] (part of the hypre software library [82, 117, 115]) as a
black box method3.

5.1.2 Computational Costs

The advantage of multigrid methods compared to other iterative solvers lies in their
efficiency. If we have an estimate that, in each iteration, the error norm decreases by
a factor ¢ < 1, |lexs1]| < Clek|, then the iterative process is guaranteed to reduce the
error by a given tolerance € within O(log(1/¢)) iterations. The total computational
cost of the solution is determined by the number of iterations times the cost per
iteration.

Let us briefly compare the computational costs for the conjugate gradient (CG)
method [164] as a ‘classical’ iterative solver and for multigrid methods. We can
assume only a limited number b of entries per row in the matrix and let n be the
number of unknowns. For CG, each iteration has complexity O(bn) (dominated
by one matrix-vector multiplication and a fixed number of vector operations), the
constant in the number of iterations can be bounded via the convergence rate %
for x being the condition number of the system matrix. Convergence depends on
the whole spectrum (distribution of eigenvalues of the matrix) and preconditioning
techniques (see e. g. [154]) can reduce x and thus improve convergence, but in practice
the number of CG iterations tends to be large and grows with problem size. A single
multigrid cycle has the same order of complexity, but a larger constant due to multiple
smoother steps (typically involving every matrix entry), prolongation and restriction
(involving each vector entry on the fine grid multiple times, bounded by the number
of neighbors in the coarsening scheme) and operations on the coarse problem (with
exponentially less grid points). The convergence rate of the multigrid cycles, however,
is not affected directly by large condition numbers and tends to be small in practice
(even though there are situations where both the condition number is large and
multigrid performance is poor). Roughly speaking: the better the correction obtained
from the coarse problem in each step, the faster the convergence.

3This notion is nicely explained in [93]: “We refer to this method as black box multigrid not because—
as some would have it—multigrid is black magic, but because the code which implements the
method acts as a black box for the user.’
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5.2 Multigrid Coarsening for Complicated Domains

This section describes how standard multigrid coarsening for affine FE on the regular
tetrahedral mesh G¥ is adapted to a coarsening scheme for CFE for complicated
domains. The method is based on [126, 324].

5.2.1 Notation for Cartesian and Regular Grids

The geometric structure of the Cartesian (regular hexahedral) grids G- permits
a natural octree structure if we assume that the number of nodes in each space
direction is 2F + 1 for some nonnegative integer grid depth L. The same is true for
the regular tetrahedral grids G¥. Let (G™'),_o 1, (G®!)/—... 1 be these grids and
(NFE= N &l)lzol'“’L the corresponding node sets.

In a geometric interpretation, we have the obvious inclusion of NZ/=1 in NUL If
the nodes are indexed in the canonical way (0, .. .,2! in each component), a node
n € N is present on the next coarsest grid if and only if all its components have
an even index. Such nodes will also be referred to as even nodes. This means that
n € NP1 is geometrically the node 2n € N'UL. As our coarsening procedure is
purely discrete, we prefer referring to nodes by their indices rather than geometric
location.

Definition 5.1. For a node n € NP/, let
S(n) := {v € NP! | v is a neighbor of 1 considered for coarsening} . (5-2)

It depends on the CFE scheme which nodes we will consider here. We can then define
‘descendant’ (child) and “parent’ relations between nodes ¢ € N/ Hi-1 and fenN ol

c € P(f) & f € 8(2c)

feD(c) & ce P(f) 5-3)

which permits interpreting S(n) as a ‘sibling” relation.

Consider coarsening weights ¢, for f € N/ Bland ¢ € NP1 to be determined in
such a way that

1Pc?(fgirser'led c Z 1o f,CleclflEe f (5'4)
feD(c)

is an appropriate approximation of ¢} . .. Weights g for ¢ & ID(c) are set to

zero. Then restriction and prolongation operators are defined in terms of these
weights. They are only used in a discrete setting, so we define them by their matrix
representation

Pl—1—>l —Pc ]R#NDIX#NDFl , P = 1o ,
feo T (5-5)

01— 01
Rl—>l—1 =R e IR#N T #N , Rcf — mf,C )
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5.2 Multigrid Coarsening for Complicated Domains

If Al is the FE system matrix on grid level /, the coarsened version is obtained by
Galerkin coarsening* [153] as

Al—l — Rl—>l—1AlPl—1—>l ) (56)

Remark 5.2. For exact coarsening of basis functions in Equation (5.4) and FE stiffness
matrices, this implies the following formula for the entries.

-1 __ CFE CFE CFE CFE
Lcd - /Q <V¢C08rse c’ VIlJcoalrse d> / <V¢C0arsened c’ VIpcoarsened d>

— [V wpin VL weavi )
oIl $ (5.7)

CFE CFE

- Z 2 mﬁC/ <v¢ﬁnef 'vwﬁne g>mg,d
feb(c) geD(d) Q

_ZRZHI 1L1 l 1—l

Similar formulas hold for the mass matrix M and the elasticity block matrix E where
each block is treated separately.

Notice that Equation (5.7) is based on a similar idea as Equation (3.39) and (3.40):
coarse (CFE) basis functions are written as a linear combination of fine (virtual)
basis functions. The difference, however, is that the fine grid here is used as a
computational grid whereas the virtual mesh in the CFE construction is never used
globally for computations.

5.2.2 Coarsening Neighborhoods and Coarsening Weights

Node neighborhoods for coarsening in the complicated domain case S(n) are simply
the standard neighborhoods defined by G¥. Given N'°°*/, the set of nodes with
assigned DOF on grid level I, NP°*/~1 is defined as

NDOFZ 1. {C E./\/'IZIZ 1 ‘S(zc)mNDOFl 7&®} (5.8)

which means that a coarse node ¢ of G¥/~! has a DOF if the corresponding fine node
2c of G®! or any other of ¢’s descendants has a DOF.

In the construction of CFE basis functions y“** for complicated domains, we have
seen the peculiarity that we have one layer of DOF outside the actual object. This
now also occurs during the coarsening process, and since ‘layer’ is relative to the
current grid (spacing), the coarsening process will introduce coarse DOF at geometric
locations where there are no fine DOF.

4Named after the Russian mathematician and engineer Gopuc I'puropresuu I'anéprun (Boris
Grigoryevich Galerkin), ¥ March 4, 1871 in Polozk, Belarus, + July 12, 1945 in Moscow [262].
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5 Multigrid Solvers for Composite Finite Elements

Definition 5.3. Coarsening weights for f € N%!, ¢ € N®!~! are defined to be

1 ifce NPOFIZL £ e NPOFLA £ = 2c,
c =112 ifce NPoFI=L e NPOFEAS(2c) 5 f # 2c, (5.9)
0  otherwise.

Wy,

/

Let us point out that, far from the interface, these coarsening weights are those one
uses for piecewise affine FE on G¥, and that (unlike for multilinear FE) the value 1/2
is independent of space dimension. Figure 5.2 illustrates this coarsening process for
basis functions in 1D.

In Section 3.2, CFE basis functions were constructed from standard basis functions
on the virtual mesh G2. This could be viewed as a 0th coarsening step (but should
not be interpreted in this manner because G A s no computational mesh), and the
™ inherit certain properties from the $**. A similar inheritance of properties also
holds for the multigrid coarsening process, where coarsened basis functions are
obtained as a linear combination of fine basis functions.

Proposition 5.4. The coarsened CFE basis functions for complicated domains satisfy
the following properties:

1. They are piecewise affine on Q2, the piecewise tetrahedral approximation of
()_ on the finest level.

2. They form a partition of unity.
3. They are nodal.

4. Far from the interface, standard affine FE coarsening results in standard coarse
basis functions.

5. Near the interface, we obtain modified coarsened basis functions with possibly
smaller support than the standard ones.

6. The neighborhood structure of nodes is the same as before (contained in the 15
standard neighbors of affine FE on G%).

Proof. ad 1. This follows immediately from the fact that coarsening is achieved by
linear combination of fine basis functions.

ad 2. The partition of unity property is preserved because } .cp(s) wys. = 1 for all
fine nodes f.

ad 3. Preservation of nodality follows from tvy; . = d.4.

The remaining properties follow from the construction and the fact that no addi-
tional neighbors are introduced. O

Remark 5.5. The coarsened and coarse basis functions generally do not coincide
because the resolution (triangulation) of the interface on the coarse grid is generally
different from the one on the fine grid, except for very simple, e.g. hyperplanar
interfaces. In particular, if the coarsened grid (especially after several coarsening
steps) is too coarse to resolve interface details of ()_, the coarsened basis functions
may still resolve them, see Figure 5.3.
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¢CFE IPCFE lPCFE CFE CFE CFE
fine fo fine f17 fine fo fme fo fme f$b fine f»
\ /

fo‘i_ﬁ __f2 fo__flv'z‘_,TfZ

[ Lo
'meCO R LT Mfiert 10 g
;o Loy

IIJCFE N
coarse cg_

Figure 5.2. The left sketch shows how 1D basis functions are coarsened by computing
weighted sums of fine grid basis functions using coarsening weights .. The right sketch
shows this coarsening procedure in the 1D complicated domain case and the coarsening
weights. The dotted line indicated by % shows that coarsening from non-DOF nodes on the
fine grid can be viewed as using a (non-existing) zero fine grid basis function. In this case,
a new DOF (gray square) on the coarsened grid is introduced.

Figure 5.3. Coarsened 2D CFE basis functions contain details that could not be resolved by the
construction immediately on the coarse grid. In this geometric case, this may be a desired
property. The complicated domain is shown in gray, the support of the basis functions at
different coarsening steps is shaded.

Figure 5.4. On a fine grid (left), the gap is sufficiently wide so that no basis function has
disconnected support. After coarsening, the support of the basis function shown in the
middle is still connected, but the one shown on the right has two disconnected components,
numerically coupling parts of the domain with weak physical coupling of this horseshoe-
type geometry.
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5 Multigrid Solvers for Composite Finite Elements

This effect may be desired, but may also be problematic, in particular if coarsened
basis functions turn out to consist of multiple disconnected components. In this case,
coarsening introduces an artificial (numerical but unphysical) coupling on the coarse
scale, resulting in poor coarse grid corrections and slow overall convergence of the
multigrid solver, as illustrated in Figure 5.4. In many cases reported in Chapter 7, we
successfully applied the multigrid solver, e. g. convergence rates better than 0.6 were
obtained for the elasticity simulations in Figure 7.16. One example where this artificial
coupling may introduce problems is shown in Figure 7.10. A possible approach to
avoid this type of problem in a multigrid solver is presented in Section 8.2.

5.2.3 Treatment of Dirichlet Nodes

The fact that the coarsening process introduces additional nodes may pose a difficulty
if we have Dirichlet boundary conditions and new boundary nodes are introduced.
For this purpose we assume the problem to be transformed to zero Dirichlet boundary
conditions on the finest level. If Dirichlet boundary conditions are imposed on a
whole face of the bounding box (), any newly introduced nodes geometrically lying
on that face are also Dirichlet nodes. In general, we consider a hierarchy of boundary
element faces (objects of codimension 1). A face on the finest grid is labeled ‘D’
(Dirichlet) if at least one of its nodes is a Dirichlet node, ‘N’ (Neumann) otherwise.
In a coarsening step, a face is ‘D’ if at least one of its descendant faces is ‘D’, it is'N’
otherwise. All vertices of ‘D’ faces are Dirichlet nodes on the coarsened grid. This
procedure is illustrated in Figure 5.5.

If a face of the bounding box has nonempty intersection with both the Dirichlet
and Neumann boundary, the coarsening above leads to conservative coarse grid
corrections, because the Dirichlet boundary on coarsened grids grows. However,
shrinking Dirichlet boundary throughout the coarsening process would mean that
coarse grid corrections are computed for which the prolongation leads to a violation
of the boundary conditions.

5.3 Homogenization Multigrid Solvers (Complicated Domains)

For being able to use a multigrid solver for the problems with periodic boundary
conditions for the complicated domain case, recall that periodicity changes neighbor-
hood relations, which also affects multigrid restriction and prolongation schemes,
see Figure 5.6.

Coarsening Scheme. As usual, the coarsening weight r . from a fine grid node f
to a coarse grid node c is simply the value of the coarse grid basis function located
at c evaluated at f. These weights, as we know from Section 5.2.2, are 0, 1/2, and 1.
Modified neighborhoods imply that we loop over all coarse nodes which are active
DOF nodes or whose active counterpart nodes are active DOF nodes, see Figure 5.6. In
either case, we prolongate only to a fine neighbor of the coarse node if the fine node
is an active DOF node.
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Figure 5.5. Coarsening of Dirichlet boundary conditons (2D CFE complicated domain case):
for the jellyfish-shaped domain with DOF and Dirichlet nodes shown as filled circles and
squares, respectively, on the left, boundary faces are labeled Dirichlet or Neumann. On the
right, newly introduced DOF and Dirichlet nodes are shown as open circles and squares,
boundary faces are again labeled.

As in the non-periodic case, the restriction is the adjoint (transpose) of the pro-
longation and subject to the same modifications due to periodicity. Coarsening
of the system matrices is also performed as in the non-periodic case by pre- and
postcomposing with prolongation and restriction, respectively.

Constraints and Projection. The smoothing operations (standard, possibly block-
wise, Gaufi-Seidel smoothing using the periodized matrices) used in our multigrid
solver do not guarantee that we stay inside the subspace satisfying the constraints
(Jo, U) = 0, so the multigrid solver has to perform projections to the space S as shown
in (4.46). Our approach is to perform this projection after presmoothing, coarse-grid
correction and postsmoothing on each but the coarsest level. On the coarsest level,
we use a projecting CG solver (as described in the previous subsection) to make the
coarsest problem uniquely solvable. A theoretical justification why the multigrid
method can be combined with subspace projection, hence why this approach should
work in general, is not known at present.

We thus need coarsened constraints (J,). These are computed using all-1 vectors
(periodically restricted) corresponding to the coarse grid and using coarsened mass
matrices (periodically collapsed). For this purpose, we use the same coarsening
method as for the system matrices in the scalar case.

Figure 5.6. Identification of inactive nodes ¢ with their active counterparts 4 changes stan-
dard neighborhoods (w) for multigrid prolongation and restriction, see also Figure 4.6.
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5 Multigrid Solvers for Composite Finite Elements

Figure 5.7. Virtual edges (dashed lines) for a planar interface on a fine grid (left) do not
appear in the construction on a coarse grid (right) and vice versa.

This coarsening process accumulates rounding errors in the coarsened system
matrices so that constant vectors no longer exactly lie in the kernel. Thus, the
projection may destroy convergence of the CG solver. To remedy this, note that a
constant vector is an eigenvector to eigenvalue 0 if and only if each row of the matrix
has sum zero. If this condition is not satisfied for coarsened system matrices (due to
rounding errors), we can reestablish it by modifying the diagonal entry in such rows.
This modification is justified because it is of the same magnitude as the rounding
errors.

5.4 Multigrid Coarsening for Discontinuous Coefficients

A multigrid coarsening strategy for CFE for discontinuous coefficients cannot be
designed as a straightforward generalization of the complicated domain case. Using
standard coarsening weights on standard neighborhoods is not a suitable approach
because it does not produce an appropriate representation of the coupling conditions
on coarsened levels.

In 1D, we are in the special situation that basis functions themselves satisfy the
kink property given by the coupling condition. It is thus possible to use a coarsening
strategy preserving the kinks at interface positions and not introducing artificial
kinks in the coarsened basis functions that would not be present in basis functions
constructed on the coarse grid (provided the interface can be resolved there), see
Figure 8.3.

In more than one space dimension, this is no longer possible. Due to the tangential
directions, CFE basis functions on the fine grid themselves do not satisfy the coupling
condition across the interface (and merely need to allow to interpolate functions
satisfying it). Moreover, Figure 5.7 shows that virtual edges on the coarse grid do
not exist on the fine grid and vice versa. So if we compare coarsened basis functions
to those constructed immediately on the coarse grid, depending on the construction
weights the coarsened ones may or may not have kinks across the fine virtual edges
(note that these are not interface kinks but classical mesh edge kinks of tent functions)
but cannot have kinks across coarse virtual edges as the coarse basis functions do.

In Section 8.3 we present some ideas for a coarsening strategy. However, a gen-
erally effective multigrid solver could not be developed for CFE for discontinuous
coefficients, even in the scalar isotropic case.
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P-TO-DATE COMPUTERS provide large amounts of memory and computational
Upower and to some extent modern compilers are capable of effective automatic
optimization. As one usually aims at running the largest simulations possible on
the available hardware, it makes sense to implement methods in an efficient way,
both in terms of memory consumption and CPU time. The aim of this chapter is
to discuss efficient implementation of the methods presented before. After some
technical remarks on global indexing in Section 6.1 we discuss the data structures
and algorithms for the CFE construction in Section 6.2. Data vectors and matrices
are treated in Section 6.3 and algorithmic aspects concerning multigrid methods
are addressed in Section 6.4. Algorithms will be presented in pseudocode notation
here. If it helps to keep the presentation of the algorithms simple, some obvious
optimizations are omitted in the presentation of the algorithms.

We will encounter the common trade-off in scientific computing between memory
and computational efficiency. Keeping in mind that we are particularly interested
in what we can compute on standard PCs, today providing about 4 GiB of mem-
ory, typically memory efficiency will be considered more important. For current
shared-memory multi-core or multi-processor computers, parallelizing code allows
significant speed-up at low implementational effort. Parallel reading of the same
data is not problematic in this case (except for possible speed and cache issues), but
simultaneous write access to the same data must be avoided. As parallelization is not
our main focus here, we will only use it where modifications of the algorithms are
obvious and where write conflicts can be ruled out. We will not consider distributed
computing that may be necessary for even larger problems but where specialized data
structures and algorithmic techniques are necessary to avoid extreme communication
costs dominating computational costs [32].

In the actual implementation in C++, data structures make use of the standard
template library (STL) where appropriate. OpenMP is used for parallelization, making
e. g. matrix-vector multiplications very easy to parallelize automatically.

The implementation described here is based on the one for [216] but has been
extended substantially for being able to treat discontinuous coefficients and for
making available efficient matrix data structures and multigrid solvers. Parts of the
description here are also part of the previous publications listed in the preamble.
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6 Algorithms and Implementation

6.1 Global Indexing

This section briefly describes global indexing of DOF (necessary for organizing data
vectors and matrices) and virtual nodes (as they also need to be stored, see Sec-
tion 6.2).

Nodes in the regular cubic grid (or in the regular tetrahedral mesh) in 3D are
identified by index triples corresponding to their geometric location. Such triples can
be assigned a single global index in an inversely lexicographical manner which is
commonly used in computer graphics.

Definition 6.1. Inversely lexicographical index mapping is achieved by the mapping

j: {0,...,Ny =1} x {0,...,Ny =1} x {0,...,N; =1} = N,

L L . o (6.1)
(io,11,12) = j(io, i1,i2) := Ny - Ny -ip + Ny - i1 +ip .

In our applications, 32 bit integers are sufficiently large for the global indices. For
cubic domains, I = 10 implies #A/°°F = (22 +-1)3 = 1025% < 231, 50 32 bit integers
can be used without problems due to the sign bit. This is at the limit of memory
capabilities of current hardware because already a data vector in this case takes about
8 GiB if standard IEEE 754 double floating-point numbers are used.

The same indexing can also be used for cubic elements E € GY if these are identified
by their vertex with smallest global node index. Note, however, that certain elements
such as (0,0, N, — 1) then do not exist. Local vertex indices for an element E are then
easily converted to global node indices.

Definition 6.2. A global index of a virtual node z = 75 is given by

o 22+ j(s) ifj(r) > j(s),
j(7s) = {232]'(5) +j(r) otherwise. (62)

For a virtual node 73, clearly r # s so that at most one of them can have global
index 0. Hence j(73) > 2% and the ranges of global indices of regular nodes and
virtual nodes are disjoint. Note that the definition in Equation (6.2) differs from the
one in [217, Section 4.2]. Note moreover that the concatenation of two 32 bit integers
results in a 64 bit integer.

Observing that virtual nodes 7s only lie on edges between neighboring nodes (and
that there is only a very limited number of neighbors for a given node, e. g. 15 in 3D),
one could save many bits by defining global indices j(7s) in terms of j() or j(s) and
a neighbor index.

6.2 Virtual Meshes and CFE Basis Functions

Let us first consider the steps necessary to construct the CFE basis functions for
complicated domains and for discontinuous coefficients. A lookup table for the
topological subdivision of cubic elements based on their signature is constructed
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in Section 6.2.1, based on which the actual geometric subdivision is treated in
Section 6.2.2. Constraints and CFE construction weights are then determined in
Section 6.2.3.

All these steps do not require significant computational time (compared to assem-
bling matrices and solving systems of equations), so parallelization is of little benefit
here. Moreover, avoiding write conflicts in the algorithms of this section would not
always be trivial.

6.2.1 Topology Lookup

In Section 3.1 we have seen that extracting the object geometry from the level set
function can be sped up significantly if topology and geometry of the interface
cutting through a cubic element E is determined separately. The topology of the
subdivision of E in regular and virtual simplices only depends on the signature ¢(E)
(the sign pattern of the level set function on the vertices of E). The number of possible
signatures is 22" (256 in 3D) of which 128 are possibly ambiguous (cf. Figure 3.5).

We can compute a lookup table containing the subdivision for each signature which
is determined by Algorithm 6.1. Different from [217, Algorithm 1], we here also
include positive tetrahedra. In Algorithm 6.1, we use element-local instead of global
indices for the vertices ry.

Computational and Storage Costs. This lookup table could be computed once and
for all because it does not depend on any level set function describing an object.
However, it only takes a few milliseconds to compute the lookup table, so loading
it from a file is of no benefit compared to computing it during each program run.
In our implementation for double floating point accuracy, the lookup table requires
about 2067 KiB and thus a negligible amount of memory compared to vectors and
matrices.

6.2.2 Storage of Virtual Nodes

As we have seen in Sections 3.2 and 3.3, we need to store data associated with virtual
nodes. As virtual nodes lying on element faces are part of different elements, a
per-element storage of virtual nodes is not feasible. However, during grid traversal,
the set of virtual nodes for a given element needs to be easily accessible. Hence an
efficient global storage strategy is necessary.

A global index for a virtual node z is defined in Equation (6.2), and these indices
can be used as keys in an STL map (without additional hashing) to store virtual nodes
and data for them (see Algorithm 6.2), including

* geometric information: the location of the virtual node is stored, additionally
an averaged (over adjacent regular tetrahedra) normal to the zero level set at z

e CFE construction information: constraining regular nodes IP(z) and construction
weights w,, for r € P(z), and

¢ administrative information: tetrahedra in which z lies.
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procedure CREATETOPOLOOKUP
TopoLookup = @
for¢ € {—1,1}8 do > for each signature ¢(E) of an element
forj€{0,...,5} do > for each standard tetrahedron T; of E
TopoLookup « TopolLookup U SPLITTETRAHEDRON (T}, 6(T}))

return TopolLookup

procedure SPLITTETRAHEDRON(simplex T = (ry,...,r3), signature ¢ = (go,---,63))

N, — @ > local virtual nodes
fora,b e {0,...,3},a #b do

if ¢, # ¢, then > if the edge (r,, 1) of T is interfaced

N, «— Ny U {71y} > store local virtual node

Ni — {rj |¢j=+1} > positive and negative vertices of T

S1 — @ > positive and negative local virtual simplices

if #N_ = 0 then > T does not split and lies inside

Sy — S, U{(T,T)} B> store pair (regular simplex containing itself, simplex)

else if #N_ = 1 then > T splits into tetrahedron inside and pentahedron outside

reorder vertices such that N_ = {ro}, Ny = {r, 72,13} andry < rp <r3

S_ — S_U{(T, (ro, For1, For2, 7or3)) } > tetrahedron inside
Sy — Sy U{(T, (r, r2,r0r2,r0r3))} > subdivision of . ..
S, «— S, U {(T, (ro, 13, 11,7013))} > pentahedron
S+ — Sy U{(T, (r1,7or1, Fora, 7or3)) } > ...outside
else if #N_ = 2 then > T splits into two pentahedra
reorder vertices such that N_ = {rg, 71}, Ny = {ra,713},ro <rpandr, <r;3
S_ — S_U{(T, (ro, rl,r/lr\g,ﬁr\z))} > subdivision of ...
S_ — S_U{(T, (ro, Fora, For3,7172)) } > pentahedron
S_.«—S5 U {(T, (1’0,1’11’3,1’01’3, ))} > ... inside
St — S U{(T, (ro, 7113, 7073, 7172)) } > subdivision of ...
S+ — S U{(T, (ro, 7ora, 7013, 7172)) } > pentahedron
S+ — Sy U{(T, (ro, 13,7013,7173)) } > ... outside
else if #N_ = 3 then > T splits into pentahedron inside and tetrahedron outside
reorder vertices such that N_ = {rg, 7,7}, Ny = {rs3}andrg <r <r
S_ —S_U{(T,(ro, 1r,7173,72713))} > subdivision of . ..
S_ —S_U{(T,(r1, 1o 7’0,1’21’3)) > pentahedron
S_ «— S_U{(T, (ro, or3,7173,7273)) } > ... inside
Sy — S U{(T, (r3, 7or3, 1173, 7273)) } > tetrahedron outside
else > #N_ =4, T does not split and lies outside

S-S U{(T,T)}

forT€S_US, do
if T does not have positive orientation then
switch Tp and Ty > make orientation positive by switching two vertices

return N, S_, S

Algorithm 6.1. Creating a lookup table for the topological decomposition of cubic elements
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procedure DETECTVIRTUALNODES(level set function @)

VNMap = @
for E = (rg,...,r7) € G- do > for each (cubic) element in the grid
for S. € TopoLOOKUP (g(E)) do > lookup table determined by Algorithm 6.1
for (T, T) € S+ do > virtual tetrahedra for E
for z = 5ps7 virtual vertex of T do > local vertex indices for E

i« e, k < es, > sothatz = 77 are global node indices of regular nodes
if VNMaplj(z)] does not yet exist then
VNMaplj(z)] - global geometric position: [®|,, ) = 0]

Add E and T, to set A(z) of constraining regular tetrahedra of VNMap[j(z)]
return VNMap
procedure DETECTANDINITVIRTUALNODES(level set function ®, coefficients a)

VNMap = DETECTVIRTUALNODES (D)
for z € VNMap do

n < Ogs > for approximate normal of [® = 0] at z
for T, € A(z) do > constraining regular tetrahedron of z

n<«—n+ V@]TP > by affine interpolation of vertex values of ®
n«— n/|n|| > normalization is implicitly also averageing

store normalized normal n for z
for z € VNMap do
DETERMINEWEIGHTSANDCONSTRAINTS (z,4) > for CFE, cf. Section 6.2.3

Algorithm 6.2. Detection and initialization of virtual nodes. The subroutines DETER-
MINEWEIGHTSANDCONSTRAINTS are described in Algorithms 6.3 and 6.4 for the case of
complicated domains and discontinuous coefficients, respectively.

In Algorithm 6.2, the piecewise affine approximation ® of the continuous level set
function ¢ is used so that the geometric location of the virtual node z on the edge
(ro,r1) is obtained as in Equation (3.9)

. ro®(r1) + r1®(rp)
D(rg) — P(r1)

(6.3)

The normalized outer normal to the zero level set is given by V®(z)/||[Ve(z)|. As z lies
on the edge where the piecewise affine approximation is continuous, but in general
not differentiable, the gradient is computed on each adjacent regular tetrahedron (and
constant there), added up and finally normalized, implicitly averaging the normals
before the normalization. Determining constraints and construction weights for the
CFE basis functions is discussed in the next section.

Computational and Storage Costs. The typical memory requirement for the data to
be stored for each virtual node is about 250 bytes for the case of complicated domains
and about 300 and 750 bytes in the scalar and vector-valued cases of discontinuous
coefficients, respectively.
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The number of virtual nodes clearly depends on the geometric complexity of a
given interface. Typically the interface is a hypersurface (i. e. of dimension 2), so that
we have O(2%) virtual nodes compared to O(2%) regular grid points, but with large
constant. The resolution is typically limited (e.g. to few grid cells per trabecular
diameter) so that our objects may seem to have fractal dimension [37]. In any case,
the number of virtual nodes is bounded by a small constant times the number of
regular nodes.

The computational cost for Algorithm 6.2 is O(n) in the number of elements and
O(nlogn) in the number of virtual nodes (insertion to the STL map VNMap has
logarithmic complexity), and takes about 14 seconds for the case of complicated do-
mains and 32 and 943 seconds for the scalar and vector-valued case of discontinuous
coefficients for the dataset used in Figure 7.13 with 1368973 virtual nodes and
on one 3 GHz Opteron processor. The (constant) complexity of the subroutine
DETERMINEWEIGHTSANDCONSTRAINTS is discussed in the next section.

6.2.3 Constraints and CFE Construction Weights

The most important ingredient for the CFE construction are the constraints IP(z) and
construction weights w,(r) € IP(z) for a virtual node z, see Equation (3.3). We now
give an algorithmic description how these are determined for the case of complicated
domains (cf. Section 3.2) and discontinuous coefficients in case of isotropic diffusion
(cf. Section 3.3.1) and linear elasticity (cf. Section 3.3.2).

Let us point out that we describe the computation of CFE construction weights based
on the interpolation Problems 3.20 and 3.31. These are only useful if Problems 3.16
and 3.27 have unique solutions. However, cases where the latter problems do not
have unique solutions were tested for and never observed in our computations. This
is not only a numerical artifact. For non-uniquely solvable Problems 3.16 and 3.27 we
can expect large unreliability values ¢ 2 1 as discussed below for failing numerical
matrix inversion. The observed values ¢, however, are on the order of 10710, which
indicates only accumulated numerical errors.

CFE for Complicated Domains. In case of complicated domains, we know from
Equation (3.8) that the constraint set of a virtual node consists only of its geometrically
constraining nodes, moreover the construction weights are given by Equation (3.8).
The corresponding Algorithm 6.3 is rather straightforward and given here mainly for
completeness.

CFE for Discontinuous Coefficients, Isotropic Diffusion. For scalar isotropic dif-
fusion, we determine simplex-wise construction weights for each adjacent regular
simplex and average these. On each simplex, the 4 x 4 matrix B from Equation (3.19)
needs to be inverted.

The inversion (yielding the numerically computed inverse denoted by B~!) may be
ill-conditioned in certain geometric situations, in which case the resulting construction
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6.2 Virtual Meshes and CFE Basis Functions

procedure DETERMINEWEIGHTSANDCONSTRAINTS(virtual node z = 73)
C«— {r,s} > geometrically constraining regular nodes

Wir] — s=2ll2

lls=rll2

Wis] — z=7ll2

lls=rll2

return C, W

Algorithm 6.3. Constraints and CFE construction weights for complicated domains

weights may not be useful (and destroy the convergence order of the approximation).
We hence define an unreliability measure.

Definition 6.3. For a tetrahedron T and the the matrix B = B(T) in Equation (3.19),
the unreliability measure is defined as

os(T) := |[BB™ —Id]p (6.9)
where || ¢||r is the Frobenius norm.

In exact arithmetic we have os(B) = 0, so large g5 stands for low reliability. If
0s(B) is greater than some threshold, the current tetrahedron is excluded from the
averaging process (used with averaging weight 0). The threshold needs to be chosen
sufficiently small such that numerical instabilities in the inversion do not result in
bad CFE construction weights but also sufficiently large so that each virtual node has
at least one adjacent regular tetrahedron from which CFE construction weights can be
determined. The corresponding Algorithm 6.4 summarizes the procedure for the CFE
construction for discontinuous coefficients.

CFE for Discontinuous Coefficients, Linear Elasticity. In the vector-valued linear
elasticity case, the construction is essentially the same for matrix-valued construction
weights. The main difference is that determining the local coupling condition as
described in Section 2.3.2 also requires inverting the matrix L™ defined in Equa-
tion (2.37), depending on the directions 7, s,t and the elasticity coefficient C. This
numerical matrix inversion is also considered for the reliability of single adjacent regu-
lar tetrahedra for the averaging. The complete construction procedure is summarized
in Algorithm 6.4.

Definition 6.4. For a tetrahedron T and the matrices Lt = L (T) defined in Equa-
tion (2.37) and Bx = b, B = B(T),b = b(T) being the system of equations (3.28), the
unreliability measure is defined as

ov(T) := max (||[LTL*~ —1d||g, |B(B™'b) —bl}2). (6.5)

Note that we here check the quality of the numerical inverse of the 3 x 3 matrix
L* and the norm of the residual for the 36 x 36 system Bx = b because only L7 is
inverted explicitly.
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6 Algorithms and Implementation

procedure WEIGHTCONSTRAINTCONSTRUCTION(scalar case; a, T, W, P, Nyeliab, - - -)
set up system matrix B := B(a,r;,z,n,s,t) from Equation (3.19)
B~! « numerically computed inverse of H
0s(T) « ||[BB~! —1d||r > unreliability measure (6.4)
if 05(T) < reliability threshold then
Nreliab — Nreliab +1

P« PU{ry,...,13} > use all vertices of T, = (r;); as constraints

[V, 0T Wap T WapT Wgp7] T gt 0 0 0 1]T > solve for weights

Wiri] — WIri] + w1 > store per-tetra weights
else

do nothing > consider T, unreliable and ignore it

procedure WEIGHTCONSTRAINTCONSTRUCTION(vector-valued case; C, T, W, P, Nyeliab, - - -)

set up matrix L* = L(C,n,s,t) from Equation (2.37) for the local coupling condition
compute L « (LT)~1L~
set up system block matrix B = B(L, r;,z,n,s,t) from Equation (3.28): Bx = b
ov(Tp) «— max(||L* (L")~ —1d||g, ||B(B~'b) — b||2) > unreliability measure (6.5)
if 0v(T,) < reliability threshold then

Nreliab <~ Mreliab 1 1

P—PU{ry..., 13} > use all vertices of T, = (r;); as constraints

T
[?Zﬂz,ro;Tp W1, Way, QHZ,,S;TP} «— solution of Equation (3.28) using B™!

W(ri] «— W[ri] + 2,1, > store per-tetra weights
else
do nothing > consider T, unreliable and ignore it

procedure DETERMINEWEIGHTSANDCONSTRAINTS(virtual node z = 777, coefficient k)

P—@QW—Q > for constraints and weights
Nyeliab < 0 > count number of reliable tetrahedra
s, t «— tangential directions, orthonormal and orthogonal to n

for T, = (ro,...,73) € A(z) do B> constraining regular tetrahedron of z

WEIGHTANDCONSTRAINTCONSTRUCTION (k, Ty, W, P, Nreliab, - - -)
if Nretiab = 0 then

return Exception, need to increase threshold
for r; entry of W do

W(ri| < WIri]/ Nreiab > average weights
if W[r;] = 0 then
P — P\ {r} > remove constraints with weight 0
return C, W

Algorithm 6.4. Constraints and CFE construction weights for discontinuous coefficients (here
denoted by k) are computed using the corresponding subprocedure for the scalar or
vector-valued case.
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Computational Costs. As the number of tetrahedra ajdacent to a virtual node,
#A(z), is bounded by 8 for geometric reasons, Algorithms 6.3 and 6.4 have constant
O(1) computational complexity if the necessary data (including evaluation of the
coefficient functions a, C) can be provided in constant time. They produce O(1) data
for each virtual node that needs to be stored.

6.3 Data Vectors and Composite Finite Element Matrices

Let us now discuss algorithmic and memory complexity of data vectors (Section 6.3.1),
CFE system matrix operations (Section 6.3.2) and assembly (Section 6.3.3).

6.3.1 Data Vectors

Data vectors for CFE simulations contain entries for all nodes of N™ in inversely
lexicographical ordering as defined in Equation (6.1). In particular, non-DOF nodes in
case of complicated domains are not left out to preserve the simplicity and efficiency
of data structures for uniform hexahedral grids, even though this wastes a certain
amount of memory.

For vector-valued problems, we use block vectors containing one (large) vector
for each spatial component of the unknown quantity (e. g. displacement). The total
memory requirement is thus O(#¥AM™) = O(2%) with constant 8 for double floating
point accuracy times the number of spatial components.

6.3.2 Matrix Data Structures

The sparsity structure of the resulting CFE matrices (see Figure 3.18) is clearly de-
termined by neighborhood structures of regular grid nodes in terms of supports of
basis functions, since matrices contain integrals of basis functions or their derivatives.
As we have seen before, the number of entries per row is limited to

* 15 for DOF nodes in the complicated domain case (see Section 3.2)

¢ 89 for nodes near the interface in the scalar isotropic discontinuous coefficients
case and 15 far from the interface (see Section 3.3.1)

so the total number of matrix entries is linear in the number of DOF, see also Fig-
ure 3.18. As we have already seen for the data vectors, even in case of complicated
domains, we wish to store matrix rows also for non-DOF nodes (either as zero rows
or as identity rows), so the total number of matrix entries is O(2%). The constant,
however, is relatively large (compared to the data vectors) and matrices require most
of the memory necessary for a CFE simulation, so it is worth investigating how they
can be stored memory-efficiently. There are different possibilities how the matrices
can be stored.
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6 Algorithms and Implementation

General sparse matrix format clearly requires least implementational effort, but is also
rather inefficient. In most cases, the sparsity structure is known and need not be
stored explicitly (wasting a column index per entry). Moreover, typical row-wise
storage does not immediately allow fast access to matrix columns if this is necessary
(e. g. for treatment of boundary conditions).

Band matrix format is computationally more efficient, but also wastes memory. For
complicated domains and non-DOF nodes, at most a diagonal entry 1 needs to be
stored; for discontinuous coefficients, a substantial number of rows only contains
15 entries each (instead of 89). Moreover, additional bands would have to be intro-
duced for periodic boundary conditions but would only be filled for nodes near the
boundary.

Mixed row-wise (hybrid) matrix format can be rather efficient if the format is tailored to
the CFE application. We use different types of rows, depending on the node to which
the row corresponds. For DOF nodes far from the interface, the sparsity structure is
the one of standard neighborhoods, thus only the 15 entries need to be stored. For
non-DOF nodes, diagonal rows only need to store the diagonal entry. Rows with
non-standard sparsity structure (due to nodes near the interface) will be stored as
general sparse rows.

If coefficients are constant throughout the whole subdomains, the rows correspond-
ing to nodes far from the interface all contain the same entries (merely in different
columns). The same is true for the diagonal rows corresponding to non-DOF nodes.
This fact can be exploited by storing single reference rows and marking such rows
as column-shifted copies of the corresponding reference row. This approach can
reduce the memory requirement dramatically. As matrices are assembled by adding
contributions from the individual elements (cf. Section 6.3.3), one needs to make sure
that the reference row is written to only once.

Parallelization of matrix-vector multiplications is parallelized in a straightforward
manner by splitting the set of row indices, automatically preventing write conflicts.

In block matrices, whose structure obviously needs to be compatible with block
data vectors, each block is treated separately. Sharing sparsity structure information
which is stored explicitly could slightly reduce memory requirements but makes the
implementation more complicated.

6.3.3 Assembling Matrices Element by Element

The entries of CFE matrices need to be computed according to Section 3.5. However,
regular nodes constraining a given virtual node are stored, but not vice versa.
We hence follow the usual approach of assembling FE matrices by looping over
all elements and summing up the local contributions rather than looping over all
entries [55, Section I1.8].

This way, we can assemble standard local FE matrices on the virtual mesh gL
using the virtual basis functions ¢, this is denoted by the function COMPUTELOCAL-
TETRAMATRIX in Algorithm 6.5 where M can stand for mass or stiffness matrix. In
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procedure AsSEMBLEADDCFEMATRIX(coefficient a)
for E = (ro,...,17) € GY do > for each (cubic) element in the grid
if ¢(E) € {(—-1,-1,-1,-1,—-1,—-1,—1,-1),(1,1,1,1,1,1,1,1)} then
> element is not interfaced
fork,1 € {0,...,7} do > for each pair of cube vertices
MI%¢ « COMPUTEHEXAMATRIX ()
V <= T, S <17
MBYP[j(r), j(s)] « MEP[j(r), j(s)] + MIS[k, 1]
else > element is interfaced
for (T, T) € S+ € ToPOLOGYLOOKUP (g(E)) do
(To,...,T3) — T
Mlee — COMPUTELOCALTETRAMATRIX (E, T, a)
fork,1 € {0,...,3} do > loop over pairs of vertices Ty, T;
retrieve IP(z), IP(y) and weights 1, ., 10, . from VNMAP[y], VNMAP|z]
for r € IP(z) do
fors € IP(y) do
ME[j(r), (s)] — ME[j(r), j(5)] + ros,10,, MI< [k, 1]
return Ms8loP

Algorithm 6.5. Element-by-element assembling scheme for CFE matrices. Only interfaced
elements require special treatment. In the complicated domain case, only elements and
virtual tetrahedra in ()_, i. e. with negative signature, are considered.

the elasticity case, both the local and global matrices M have block structure and
matrix-valued weights 20, , are used instead of w,,. For the innermost for loops,
recall that P(r) = {r} and tv,, = 1 (or 20,, = IdRs«3) for simplex vertices being
regular nodes r € N'%.

Let us point out that these local matrices can be obtained from precomputed
ones for the reference configuration by an appropriate scaling. For all elements not
intersected by the interface, the quadrature is geometrically the same and only differs
if the problem coefficient a is not constant, this case is hence treated separately by
the function COMPUTEHEXAMATRIX in the algorithm. If a (in the scalar case) or C (in
the vector-valued case) is constant, these contributions can be precomputed.

For varying coefficient 4, the methods COMPUTELOCALTETRAMATRIX and COMPUTE-
HEXAMATRIX perform quadrature. For this purpose, constant average a for E N Q%
and ENQf are computed as the arithmetic average of the values of a at the corre-
sponding vertices of E.

The assembling procedure is not parallelized because solving the system of equa-
tions later on dominates the workload of a CFE simulation even though it is easy
(but not trivial) to protect shared data from race conditions in an element-by-element
assembling scheme.
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6.4 Iterative and Multigrid Solvers

6.4.1 Multigrid Implementation

Most building blocks of the CFE multigrid solver presented in Section 5 are standard
and require no further discussion here.

The grid transfer operations (restriction and prolongation) can be implemented
explicitly by loops over the coarse grid nodes and their sets of fine grid descendants or
by multiplication with appropriate (rectangular) matrices. Due to standard coarsening
weights and simple neighborhoods the explicit scheme is more efficient, both in terms
of memory and computational workload. This may be different for adapted multigrid
schemes as discussed in Section 8.2 and 8.3. Similarly, coarsening of system matrices
can be implemented as the multiplication of three matrices or explicitly by loops
implementing the sums in Equation (5.7).

The workload for restriction and prolongation is clearly O(Ngpe) where Ny is the
number of nodes on the fine grid. The constant depends on the number of (multigrid
coarsening) parent nodes per fine grid node. When coarsening the system matrix,
the algorithmic complexity is also O(Ngpe) and the constant depends on the square
of the number of (multigrid coarsening) sibling nodes.

6.4.2 Parallelization

Parallelization of a standard conjugate gradient (CG) solver is easily achieved by
parallelizing the matrix-vector multiplication (in the scalar case). In the vector-valued
case where block matrices and block vectors are multiplied, it is more beneficial to
parallelize at the block level (first—and on the level of individual matrices only if
many parallel threads are desired).

For a block diagonal and block SSOR preconditioner, it makes sense to cache the
inverses of 3 x 3 blocks for each DOF node instead of computing them in each iteration.
Parallelization of this caching is obvious, but not very beneficial. The (standard and
block) SSOR preconditioner itself can be parallelized if our inversely lexicographical
ordering of the DOF is adapted to a 2n zebra-type ordering [109] for parallelization
to n threads, where our typical choice was n = 2. The zebra scheme rules out write
conflicts. Block preconditioners obviously cannot be parallelized at the block level.

As for the CFE multigrid solver, the individual iterations are inherently sequential,
but still parallelization of the steps in each iteration is possible and useful (cf. [184]).
The smoother can be parallelized in the same manner as the SSOR preconditioner.
Prolongation can be parallelized by partitioning the index set of coarse grid nodes,
whereas restriction needs to protect shared data from race conditions. For the vector-
valued problem, the grid transfer operations can be parallelized at the block level
provided the coarsening process does not involve coupling of the spatial components.

System matrix coarsening could be parallelized but (similar to assembling matrices)
one must again ensure protection of shared data from race conditions. Note that this
is different for AMG where the coarse grid generation process is expensive and thus
also a candidate for parallelization [5, 142, 143].
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ESULTS OF DIFFERENT numerical tests and simulations are presented in this chap-
Rter. We start with numerical tests in Section 7.1, proceeding to applications of the
CFE methods to heat diffusion and elasticity simulations in Section 7.2 and Section 7.3,
respectively. In either case, both artificial objects and specimens of real objects with
realistic material parameters are considered. Moreover, we present results of the
homogenization procedure in Section 7.4.

Throughout this chapter we will use SI units for the material parameters and
results whenever they represent realistic materials, but not for artificial examples.
Temperatures (for heat diffusion simulations) and von Mises stresses at the interface
(for elasticity simulations) are visualized using a standard HSV (hue, saturation,
value) color map, also known as the ‘rainbow color map’. While this is not generally
the ideal color map [294, 239], we consider it very intuitive for temperatures and
appropriate for showing qualitative results. Most of the results here were already
part of previous publications listed in the preamble, references are given in the text.

7.1 Numerical Tests

In this section we present results of numerical tests. For the case of scalar isotropic
discontinuous coefficients, we investigate convergence of the CFE approximation
of given functions in Section 7.1.1. We moreover consider elliptic BVP for which
the analytic solution is known and examine the convergence of the CFE solution.
Numerical consistency for both complicated domains and discontinuous coefficients is
investigated in Section 7.1.3 for both scalar and vector-valued problems. Furthermore,
the influence of geometric degeneracy or increasing discontinuity of the coefficient
on the condition numbers of CFE matrices is examined in Section 7.1.4 and the
performance of different solvers and preconditioners for CFE example problems (again
scalar and vector-valued, for complicated domains and discontinuous coefficients) is
measured in Section 7.1.5.

7.1.1 Function Approximation by CFE

Let us first determine the numerical order of convergence when approximating an
analytically given function satisfying a given kink condition across an interface by
CFE. As an extension of the cases presented in [281], we considered three differ-
ent interfaces (shown in Figure 7.1) with different test functions and kink ratios
x € {2,32,1000,10°}.
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1. For the (rotated) planar interface, we used the corresponding rotation of a
piecewise affine and continuous function with kink across the interface and
non-vanishing derivatives in the tangential directions

(1,2,5)7 forxe Q.

1
(x,2,5)7 xfor € Q. (7.1)

Vuplanar(x) = {

2. For the cylindrical interface, we used the prototype function shown in Figure 7.1
to build a cylindrically symmetric function intersecting the boundary 9} of the
computational domain. The prototype function was constructed in such a way
that it is piecewise second order polynomial, continuous and has the desired
kink across the interface for fixed radius R = 1/3.

) 0 r? for0 <r <R (7:2)
= 2

profotype kr2 + (1 —x)R?> forr >R 7
ucylind(x) = uprototype(r(x)) (7.3)

where r(x) = dist(x, central axis of the cylinder).

3. For the spherical interface, we reused the prototype defined in Equation (7.2)
and built a spherically symmetric test function, now multiplied by the tangential
modulation term also shown in Figure 7.1 of the form

XoX1X2
m(x) = (74)
B+ B+ B/B+ 5
where ¥ = x — center of the sphere, m(center) = 0 and
usphere(x) = uprototype(r(x)) -(1- 0-1m(x)) (7.5)

where r(x) = dist(x, central axis of the sphere).

4. Moreover, a spherically symmetric (and unmodulated) test function usppere o for
the cylindrical interface was considered based on the piecewise fourth-order
polynomial prototype Uprototype 0 Shown in Figure 7.1. The function uprototype 0
was constructed in such a way that it is continuous, has the desired kink and
vanishing second derivative at r = R = 0.3, and has C? transition to constant
1 at » = 0 and to constant 0 at r = 0.45. The last condition ensures that
Usphere 0 = 0 on 9Q).

All these functions were given analytically and their partial derivatives could also
be computed in closed form. We computed approximate L?> and H' errors of the
CFE approximation of these functions by midpoint quadrature over the tetrahedra
of the virtual mesh G* for increasing computational resolution, divided by the L?
norm of the function to be approximated. This normalization compensates for scaling
effects of x in the function. An approximate L* error was computed as the maximal
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0 intefface 0 intefface 0.45

Figure 7.1. The top row shows the different interfaces used for numerically testing CFE
approximation quality in Figure 7.2. Across the planar interface, a piecewise affine function
was used. For the cylindrical interface, cylindrically symmetric functions with kink, based
on the prototype function uprototype (bottom left), were used. For the spherical interface,
a spherically symmetric function based on the same prototype was multiplied by the
tangential modulation 1 — 0.1m(x) (bottom middle). Moreover, a spherically symmetric
function based on the prototype tprototype 0 With zero Dirichlet boundary conditions (bottom
right) was used for testing the CFE approximation quality both of the function itself and of
the solution of an elliptic BVP in Figure 7.3.

difference over all nodes AN/ and all quadrature points. For comparison and for
using the same quadrature, we also computed these errors for an approximation by
standard affine FE (stdFE) which do not resolve the kink.

Figure 7.2 shows that CFE perfectly approximated the piecewise affine function for
the planar interface up to machine accuracy. For the cylindrical test case, the CFE
approximation error shows second order convergence in the L and L? norms and
first order in the H! norm. For the spherical test case, second order convergence is
lost in the L norm. These outliers, however, do not affect convergence in L2 or HY,
where full second and first order can be observed. In contrast, stdFE exhibit orders
1, 1.5, and 0.5 in the L®, L2, and H! norm, respectively. The loss of one full order
compared to CFE in the L* norm is due to non-representation of the kink in a layer
of volume O(h) near the interface of codimension 1. This leads to a loss of half an
order in the convergence in L? and H'! norms due to l(fo(h) O(h)?)V? = O(K/?)
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Figure 7.2. For three different interfaces and corresponding test functions with kink, the
plots show the decrease of the CFE approximation error (normalized by the L? norm
of the function considered) as the grid is refined. For a planar interface (top row), the
approximation is exact up to machine accuracy, otherwise convergence in the L* and L?
norms is of second order and convergence in the H! norm is of first order. This expected
order is shown by black dashed lines. For comparison, standard affine FE which do not
resolve the kink only attain orders 1, 1.5 and 0.5.

7.1.2 Approximation of the Solution of an Elliptic BVP by CFE

Let us now consider the test function with zero boundary values of item 4. We com-
puted its negative Laplacian® f = —Aug,pere o and subsequently solved the problem
—Au = f subject to zero Dirichlet boundary conditions for u using CFE. We then com-
pared the CFE solution to the known analytic solution of the problem. Convergence
of both the approximation of usphere o and of the solution of the elliptic boundary
value problem are shown in Figure 7.3. The observed orders of convergence for the
function approximation are the same as before. The same orders of convergence are
achieved for the solution once the asymptotic range is reached. For larger kink ratio,
the coarse discretizations lie outside this asymptotic range.

"Named after the French mathematician and astronomer Pierre Simon, marquis de Laplace,
* March 23, 1749 in Beaumont-en-Auge, Normandy, + March 5, 1827 in Paris [1].

112



7.1 Numerical Tests

H! norm
100

error

0.01

error

0.1

0.01

752—2 2—3 2—4 2—5 2—6 2—7 2—8 2—9 10732—2 2—3 2—4 2—5 2—6 2—7 2—8 2—9

solution approximation function approximation

104

27 2 i 2F a6 g7 g g 10
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Figure 7.3. For a radially piecewise polynomial test function across a spherical interface with
inherent zero boundary conditions for the unit cube, the top row shows the decrease of the
CFE approximation error as in Figure 7.2. The bottom row shows the decrease of the error
of the CFE solution of a corresponding elliptic boundary value problem with analytically
known solution given by the test function.

7.1.3 Numerical Consistency Tests

We now turn to scalar and vector valued boundary value problems for which no
analytic solution is given. Here, we investigated how the numerical solutions converge
to a reference solution obtained on a very fine grid.

Linear Elasticity on a Complicated Domain. This case was investigated in [379]
where two geometric objects of 3 x 3 x 3 trabeculae with diameter-to-length ratios
d/1 = (0.2,0.2,0.4) and (0.4,0.4,0.4) were considered (see Figure 7.22). For linear
elasticity, Lamé constants A = 9.779 GPa and yu = 5.038 GPa were used for the struc-
ture, corresponding to Young’s modulus E = 13.4 GPa [291] and Poisson’s ratio
v = 0.33 [291, 201] for trabecular bone. We computed the L2 norm of the difference
between the results obtained at different coarse solutions and the reference solution
obtained for a 513% grid by midpoint quadrature over the coarse virtual mesh G*,
relative to the imposed displacement of 1% of the edge length. The actual value of
the edge length of this artificial object is irrelevant for the relative errors.

The results reported in Table 7.4 show that coarse resolution in this case under-
estimates the volume of the structures and that the errors decrease with more than
order 1. Moreover, a relative L? error of about 0.01 is obtained at resolution 332,
corresponding to a resolution of 2.13 and 4.26 voxels per trabecular diameter for
d/1 = 0.2 and 0.4, respectively.
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Table 7.4. Sample geometries (3 x 3 x 3 trabeculae) with the same diameter-to-length ratios
4/1in all space directions and with thinner transverse trabeculae were resolved at different
resolutions. Results obtained on 9° to 257° grids were compared to the results for a
513% grid, considering the fraction of volume segmented, and a relative L? error of the
displacement for compression and shear simulations, relative to the imposed displacement.

d/1=(0.2,0.2,0.4) d/1 = (0.4,0.4,04)
grid volume rel. error rel. error volume rel. error rel. error
fraction  (compr.) (shear) fraction  (compr.) (shear)

93 0.841816 0.040175 0.033242 0.883848 0.055986 0.027218
173 0.978785 0.017572 0.014527 0.978967 0.015301 0.016932
333 0992192 0.006604 0.010219 0.992375 0.007203 0.011090
65° 0.997183 0.002943 0.004 587 0.997552 0.003150 0.004 636

1293 0.999167 0.001486 0.001654 0.999344 0.001287 0.001877
2573 0.999823 0.000616 0.000510 0.999868 0.000443 0.000561

Table 7.5. For numerical consistency tests we considered the domain on the left. Results
obtained at different resolutions were compared to reference solutions computed on 5133
and 2573 grids, respectively, using pointwise £> and Frobenius norms for the vector-valued
displacement and its derivative.

scalar problem elasticity problem
grid L® error L2?error H! error L® error L2 error H! error

173 0.055279 0.008245 0.359515 0.266884 0.007583 0.564 360

333 0.023502 0.003393 0.193077 0.108070 0.003046 0.268633

65° 0.009512 0.001092 0.097312 0.051376 0.000939 0.121923
1293 0.004850 0.000348 0.048578 0.049559 0.000230 0.056526
2573 0.002119 0.000090 0.023283

Table 7.6. The numbers of degrees of freedom and the total memory requirement (in MiB)
are listed for the complicated domain elasticity simulations for 4/1 = (0.2,0.2,0.4) (left) in
Table 7.4 as well as for the scalar and elasticity problem with discontinuous coefficients in
Table 7.5 (middle and right).

Tab. 7.4, 4/1 = (0.2,0.2,0.4) Tab. 7.5, scalar Tab. 7.5, elasticity
grid # DOF  memory # DOF memory # DOF  memory
93 1395 4
178 8163 14 4913 102 14739 137
333 39789 67 35937 132 107811 263
65° 213309 327 274625 262 823 875 822
1293 1358175 1837 2146 689 874 6440067 3515

2578 9562185 10816 16974593 3814 50923779 16307
5133 71219541 73163 135005 697 19656
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7.1 Numerical Tests

Heat Diffusion and Linear Elasticity with Discontinuous Coefficients. Further-
more, we considered the 3% rod interface shown in Table 7.5. For this configuration
we computed the solutions of a scalar boundary value problem (isotropic coefficient
with kink ratio ¥ = 42, boundary values 0 and 1 on two opposite faces of the cube)
and an elasticity problem (compression by 1 in z direction, which clearly lies far
outside the physical range of (even non-)linear elasticity, and material parameters
E =5,v =0.2in the rods and E = 1, v = 0.2 in the embedding) [281]. The solutions
were computed at different resolution and compared to a reference solution obtained
on a 5132 grid (scalar problem) and a 257° grid (elasticity problem). We evaluated the
L*®, [, and H' norms of the difference by midpoint quadrature now on the finest G
In the elasticity case, pointwise ¢? and Frobenius norms were used for differences of
the vector-valued quantity and its derivatives, respectively.

We observe in both problems that convergence in L* is far from second order
(which is due to outliers at individual quadrature points) whereas convergence in L?
is closer to order 2 and in H! we have almost perfect first order convergence.

Memory Requirements. As in [379] we also list the number of degrees of freedom
and the memory requirements for some simulations in this section.

Table 7.6 shows that, unlike in the discontinuous coefficient case, not every node
of N was assigned degrees of freedom for a complicated domain. Moreover, the
elasticity problems clearly need 3 DOF per grid node. Even though the interfaces are
different in the two cases, one can see that higher density of matrix entries caused
by larger parent sets IP(z) of virtual nodes z and the vector-valued CFE construction
weights in the discontinuous coefficient case lead to larger memory requirement
compared to the complicated domain case.

7.1.4 Condition Numbers of CFE Matrices

Let us now extend the investigation of condition numbers for CFE matrices in [282].
For this purpose and to pronounce the influence of intersected grid cells, we con-
sidered an interface perpendicular to the x; axis located in (0.5,0.75) where the
computational resolution is 5° and with higher sample density near the interval
boundaries. A 2D projection of this division of the unit cube in two bricks is shown
in Figure 7.7, the extension in the third space direction is constant.

We considered the matrix M + TL for T = h arising in an implicit Euler scheme for a
time-dependent heat diffusion problem and the matrix for an elasticity problem with
Dirichlet boundary conditions at the top and bottom. For the complicated domain
case, the diffusivity was assumed to be 1 and the material properties for linear
elasticity were set to E = 1 Pa, v = 0.33. For the discontinuous coefficients cases, the
scalar kink ratio was x = 42, in the vector-valued case we used (E—,v~) = (70,0.35)
and (ET,v") = (3,0.38). With E in GPa, these are realistic values for aluminum and
PMMA. Furthermore for the discontinuous coefficient cases, we varied the scalar kink
ratio and the stiffness E~ for (E~,0.1) and (E™,v") = (1.0,0.3) for fixed geometric
location of the interface.
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Figure 7.7. For fixed coefficients in the complicated domain cases and fixed discontinuity in
the discontinuous coefficients cases, the plots show how changing the geometric location
of the interface (shown as a 2D projection on the left) influenced the condition number of
CFE matrices in a scalar and vector-valued problem. The plots also show to what extent
diagonal and geometric scaling preconditioning are capable of reducing the condition

number.
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Figure 7.8. For fixed geometric location of the interface, the plots show the influence of the
discontinuity in the coefficient on the condition number of CFE matrices for a scalar and
vector-valued problem. Again diagonal and geometric scaling preconditioning are capable
of reducing the condition number.
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The plots in Figures 7.7 and 7.8 then show the condition numbers of the matrices
A = M+ hL or the elasticity matrix described determined by vector iteration [155,
Section 25] for the matrix and its inverse to obtain the largest and smallest eigen-
value. The effect of preconditioning is shown by evaluating the condition number
of D'/2AD"? where D is a diagonal matrix containing the inverses of the diagonal
entries of A (diagonal preconditioning [285, Chapter 4]) or the inverses of row-wise
I norms of A (preconditioning by geometric scaling [139]).

We observe that bad virtual tetrahedra in the complicated domain case lead to
ill-conditioned matrices, which can be remedied by simple diagonal preconditioning.
In the discontinuous coefficient cases for fixed discontinuity, the effect of increasingly
bad virtual tetrahedra on the condition number of the matrices is marginal. For a
fixed location of the interface without bad virtual tetrahedra, varying the scalar kink
ratio also has marginal effect on the condition number whereas varying the ratio of
Young’s moduli (stiffnesses) for discontinuous Poisson’s ratio (bulging number) leads
to large condition numbers for E7/E* away from 1.

7.1.5 Solver and Preconditioner Performance

For the conjugate gradient (CG) solver [164], smaller condition number of the matrix
to be inverted implies a smaller bound on the convergence rate [154], but the actual
convergence speed depends on more properties of the system. In the scenarios before,
diagonal preconditioning turned out to be capable of reducing the condition number,
but this is certainly not the only preconditioning technique.

To investigate the effect of different solvers and preconditioners in CFE simulations
of the heat diffusion and elasticity problems above, we considered part of a porcine
T1 vertebral trabecular bone dataset at 70 pm resolution and the same physical
problems and sets of parameters as before. For the complicated domain example,
again E =1 Pa, v = 0.33 were used as elasticity parameters. In case of discontinuous
coefficients, the scalar kink ratio and the material parameters were again x = 42,
(E7,v7) = (70,0.35), and (E~,v~) = (3,0.38) for the vector-valued problem. The
following solvers were used:

1. standard conjugate gradient solver (CG)
2. preconditioned CG solvers [285, Chapter 4] using

a) diagonal preconditioning for both physical problems and block-diagonal
preconditioning [285, Chapter 4] for the elasticity problem, where the
unknowns are (implicitly) ordered in such a way that considering 3 x 3
blocks along the diagonal simultaneously treats the displacement in all
spatial directions at a single node (diag-PCG, blockDiag-PCG)

b) geometric scaling preconditioner [139] as described before (geomSca-PCG)

) successive symmetric over-relaxation (SSOR) preconditioning with relax-
ation parameter w = 1.2) [154, Chapter 4], again also in a block variant for
the elasticity problems (SSOR-PCG)
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Figure 7.9. The plots show the computational performance of different iterative solvers and
preconditioners applied to a scalar (one implicit Euler time step of heat diffusion with time
step h using the 65° dataset shown on the right) and a vector-valued (linear elasticity BVP
using the 33° dataset shown on the right) CFE problem, both for complicated domains and
discontinuous coefficients. The first and third row of plots uses a logarithmic time axis to
show the decrease of the squared norm of the residual also for less efficient solvers and
to emphasize the different computational workload for setting up the different solvers,
whereas the second and fourth row of plots uses a linear time scale for a better comparison
of those solvers that quickly converge for our test problems.
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d) incomplete LU decomposition ILUO (see e.g. [361] or [285, Chapter 4]) as
a general-purpose preconditioner which requires conversion of our CFE
matrices to some matrix format where all entries are stored (which is not
the case for our ‘hybrid” matrices, cf. Section 6.3.2)

e) the CFE multigrid methods described below applied as a preconditioner,
using a single V cycle (complicated domains only)

3. the CFE multigrid solvers described in Chapter 5 using V7 (3, 3) cycles coarsening
up to grid level 2 (5° grid), for the case of complicated domains only

4. the general-purpose algebraic multigrid solver BoomerAMG [163, 116] (part of
the HYPRE preconditioner library [82, 117, 115]), viewed as a black box method
for our purposes, with Falgout-CLJP coarsening, V(1,1) cycles with hybrid
Gauf3-Seidel /Jacobi relaxation and which requires converting our CFE matrices
to a HYPRE matrix structure

We measured the CPU time on a 3.6 GHz Pentium 4 processor both for setting
up the solver and for applying it where the stopping criterion was reduction of the
norm of the residual by 8 orders of magnitude or a maximum number of iterations.
The total time for applying the solver is then divided by the number of iterations
to give an approximate time per iteration. While this is not generally justified, it
is a suitable approximation for our purposes. The solvers printed their squared
residual after each iteration so we can plot the decrease of the squared residual over
approximate CPU time spent. Plotting data points connected by line segments in the
plots in Figure 7.9, we can compare the solver performance quantitatively in terms of
CPU time and at least qualitatively in terms of iteration count.

This study has some major limitations. The example geometries and problems are
chosen arbitrarily without any justification of them being representative for other
scenarios. Possibly the parameters of the different solvers can be optimized further
for individual scenarios. Moreover, the ILUo preconditioner and BoomerAMG solver
are general purpose methods and not optimized for the CFE matrix sparsity and data
structures, requiring an artificially long setup phase and making them infeasible
for larger simulations due to memory consumption. Furthermore we wanted to
test a larger (also somewhat arbitrary) selection of solvers by some of which we
are restricted to the medium-scale simulations of up to 65°. Finally, benefits of
parallelization are completely ignored here.

Judging from the examples considered here, preconditioned CG using block-
diagonal or standard SSOR as preconditioners seem to be the most robustly efficient
solvers. In more detail, the following can be observed:

* Not unexpectedly from the condition numbers determined above, the standard
CG converged slowly and preconditioning could significantly improve conver-
gence. Particularly in the scalar problem for complicated domains, standard CG
did not converge monotonically but exhibits oscillations.

* Diagonal and geometric scaling preconditioning were comparable in the com-
plicated domain examples whereas geometric scaling was slightly faster in the
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cube with 1/14 slot solid cube
lexpl Niter final conv. rate Niter final conv. rate
6 7 0.106366 7 0.101203
5 8 0.171015 8 0.143673
4 32 0.650487 8 0.152011
3 37 0.696033 8 0.154998
2 39 0.706050 8 0.159531

Figure 7.10. For the geometric object shown on the left resolved at grid level 7 corresponding
to computational resolution 1293, the table lists the number of Vet (3,3) multigrid cycles
for different explicit levels I, < 7 and the convergence rate in the final iteration. For
comparison, the same numbers are listed for a solid cube without slot. Convergence breaks
down as soon as coarse grid corrections involve basis functions supported in both legs of
the ‘horseshoe’.

discontinuous coefficient examples. Block-diagonal preconditioning lead to
faster convergence even though each iteration had slightly higher workload.

¢ Standard SSOR preconditioning, in contrast, outperformed block-SSOR precondi-
tioning in terms of CPU time. For the discontinuous coefficient example, this
was even true in terms of iteration count.

¢ The ILUo preconditioner took significant time to set up, which is not surprising
as an incomplete LU decomposition needs to be computed. It then performed
well in many of the examples but seemed to be ineffective for the discontinuous
elasticity examples.

¢ Our CFE multigrid method needs to perform matrix coarsening. It was fast in
the scalar complicated domain example but not in the elasticity examples, both
when used as a solver and as a preconditioner.

¢ The BoomerAMG method was the slowest method when being set up, which
is also hardly surprising as it had to copy the matrix and analyze its sparsity
structure for algebraic coarsening. Convergence of the AMG afterwards was only
comparable to the other efficient methods in the scalar complicated domain
example.

Let us finally show one example where the CFE multigrid solver for complicated
domains fails for an inappropriate choice of the grid resolution where an explicit
solver is applied. For this purpose, consider the horseshoe-type object shown in
Figure 7.10 for which we solve the heat equation with Dirichlet boundary data £1
at the end plates of the two legs. The gap has width 1/14, so the coarsest level at
which basis functions will extend across the gap will be grid level 4 corresponding
to resolution 173. Using different explicit levels in the multigrid solver, we clearly
observe that the convergence rate and the number of iterations breaks down at that
point.
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7.2 Heat Diffusion Simulations

We now consider the scalar model problem of heat diffusion for numerical simula-
tions, both for complicated domains and for discontinuous coefficients, using both
artificial and actual physical objects.

7.2.1 Complicated Domains

Let us first consider the case of complicated domains. Artificial objects consisting
of an array of cylindrical pillars between two thick plates are shown in Figure 7.11,
where a heat source was placed in one corner [217]. V3(3,3) multigrid cycles were
used with a stopping criterion of reducing the norm of the residual by 8 orders of
magnitude. For the 4 x 4 and 32 x 32 pillar example (leftmost and rightmost picture
in Figure 7.11) in (resolved on a 257% grid), 12 and 142 iterations with convergence
rates 0.251 and 0.944 were necessary, taking and 37 and 40 seconds per iteration,
respectively.

The resulting temperature profiles at time t = 5 and ¢ = 30 in Figure 7.11 show that
the resulting temperature isosurfaces do not resemble spheres as one would observe
in a solid object but—due to the geometric structure—a cone as indicated in the 8 x 8
example.

A realistic geometry is shown in Figure 7.12 where the tissue part of a human liver
was considered as computational domain [217]. Blood vessels (where one would
also have to deal with advection, see the author’s Diplom thesis [309] for a simple
coupled 2D model) were not included in the heat diffusion simulation with a local
source at 1293 resolution, making the simulation realistic only to a limited extent.

Again, V,(3,3) multigrid cycles were used with a stopping criterion of reducing
the norm of the residual by 8 orders of magnitude. In the first diffusion time step, the
solver requires 12 iterations with convergence rate 0.219 in the final iteration which
took 4.3 seconds.

7.2.2 Discontinuous Coefficients

As for the case of discontinuous coefficients, let us consider the specimen of Al/PMMA
shown in Figure 7.13 with edge length 7.71 mm resolved at 257° [281]. Using realistic
volume-specific heat capacities pc = {2.43,1.75} - 10 J/m3k and thermal conductivi-
ties of A = {237.0,0.19} W/mK for Al and PMMA, respectively, we here considered a
kink ratio of approximately 1247 in A. The initial condition for the temperature was
293.15 K (room temperature), boundary conditions were set to 194.65 K (sublimation
point of CO,) at the bottom and 373.15 K (boiling point of H,0) at the top. The results
in Figure 7.13 show that an almost steady state was reached significantly faster in the
metal than in the plastic.
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# pillars 4x4 8 x8 16 x16 32 x 32

# DOF 4350226 4545512 4990894 6010360
# virtual nodes 1192986 1875326 3188938 5521294

Figure 7.11. On an object consisting of parallel pillars of increasing number and thus increas-
ing geometric complexity (4 x 4 up to 32 x 32) between two plates, we simulated diffusion
of heat from a source in one corner. An HSV m== = colorbar shows the temperatures on the
interior at times t = 5 (top row) and t = 30 (bottom row). The magenta lines in the lower,
second to left visualiaztion indicate a temperature isosurface. The table moreover lists the
the number of DOF and of virtual nodes.

Figure 7.12. Diffusion of heat was simulated on a domain segmented from a CT dataset of
a human liver (dataset by Tobias Preusser, Fraunhofer MEVIS), where blood vessels are
considered as void. The top row shows the temperature profile at t = 5 whereas the bottom
row two correspond to t = 30. In the left column we show cuts through the computational
domain whereas in the middle column the internal vascular structure (which is not part of
the computational domain) is shown colored by the temperature on the interface according
to an HSV mw= = colorbar. The right column shows zooms to the regions indicated.
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',,,,‘ \z pd
t=0.0 t =0.05

t=10 t =10.0 t =20.0

Figure 7.13. On a specimen of Al foam embedded in PMMA with a kink ratio in the thermal
diffusivities of 237 : 0.19, we simulated the diffusion of heat. Temperatures for the given
times are visualized on the material interface (top row) and on a slice through the composite
material (bottom row).

7.2.3 Thermal Diffusivity of Meat Specimens

Application Background

An important problem in cold chain management is to estimate temperature profiles
in goods being transported depending on environmental influences during transport.
For this purpose, different thermal effects such as conductive, convective and radiative
heat transfer are included in models that can become rather involved to properly
represent the underlying physical processes and material properties.

One application of CFE in this context [295] is a simulation to determine the thermal
diffusivity of meat (chicken breast). Let us briefly describe the experiments and
models used for this purpose. Figure 7.14 shows the experimental setup used
in [355, 295]: a piece of meat is placed in water (inside a Dewar flask®, an insulating
container) which was stirred continuously. Time-dependent temperature curves of the
water and at approximately the center of the meat were measured until they reached
a steady equilibrium value. This final value yields the specific heat capacity of the
meat whereas the temporal evolution depends on and can be used for determining
the thermal diffusivity coefficient.

This section summarizes joint work with Judith Kreyenschmidt, Verena Raab,
and Annette Rudorf (Cold Chain Management group, Institute of Animal Science,
University of Bonn), and Remmer Meyer-Fennekohl (Institute for Applied Physics,
University of Bonn). This material has not been published yet and is thus presented
here in some detail.
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Dewar flask
meat specimen
V.i] water
.‘ wire frame

Figure 7.14. The experimental setup for determining thermal diffusivity coefficients of meat
is shown on the right. Inside an insulating container (Dewar flask, photo on the left), a
cold piece of meat was placed in water at room temperature. Under constant stirring,
temperatures of the water and near the center of the meat were measured. The images
were adapted from [295, Figures 3 and 4].

Numerical Model

The heat capacity of the dewar flask was first determined experimentally. The water
was then assigned ‘virtual” material properties, namely a specific heat capacity
J

kg CDewar
=10°25 . (4.1868— 6
pew m3 ( g K * Mwater ) (7.6)

also accounting for the Dewar flask, and a ‘large” thermal diffusivity accounting for
the stirring process. The equilibrium temperature was used to determine the specific
heat capacity pcy of the meat.

For the CFE simulation, we chose a cubic water domain of edge length s with
specific heat capacity

real water volume

pcy pcw (7.7)

"~ box volume — meat volume

in which an ellipsoid with radii 0.4s, 0.26s, 0.1s represented the piece of meat. These
radii approximated the geometry of actual chicken breasts as measured in [355].
The edge length s was chosen such that the volume of the ellipsoid was the same
as the (measured) volume of the specimen. Since we did not have scans of each
specimen used and since the exact position of the temperature probe was unknown,
this simple approximation is sufficient. The temperature sensor inserted into the
meat was ignored for the diffusion process.

Artificial thermal diffusivity values were set to ay; = 1 m? /time unit for the meat and
ay = 100 m*/time unit for the virtual water. What matters here is that the ‘virtual’ water
has large thermal diffusivity compared to the meat to account for the stirring process.
A rescaling of the units of time was later used in a parameter fitting to obtain a value
of ayg in SI units (see below).

The initial temperature profile throughout water and meat cannot be modelled
to be discontinuous if we use (globally) continuous FE for the simulation, instead

*Named after the British chemist and physicist James Dewar, x September 20, 1842 in Kincardine-on-
Forth, Scotland, + March 27, 1923 in London [1].
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nodal values are interpolated continuously at the meat/water interface. To start with
correct initial energy contained in the meat, we corrected its specific heat capacity as
follows

f o) I CFEXmeat
volume of meat

PCyM = pCym - (7.8)
This effect was neglected for the water domain.

Our usual implicit Euler time stepping scheme was used for numerically solving
the time-dependent heat equation. In this case, however, using the standard CFE mass
matrix lead to violation of the maximum principle, more precisely an unphysical
decrease of the central meat temperature was observed in the simulation. This well-
known effect can be remedied by using lumped mass matrices [335]. Computational
resolution was 65° and the time step was 1 in the artificial units. For each time step,
the temperature value at the center of the (meat) ellipsoid was evaluated.

Parameter Fitting

Suppose temperatures inside the meat were measured with time step 7, and its
values are given in a value vector V of length K, the computation was performed
with time step 7, and values are stored in a vector in U. If we assume that in both
cases initial conditions were given at t = 0 and temperature remained constant after
the last measurement/sample, we can interpolate (and extrapolate) the temperature
via

o(t) = I [V] (Ti - tshift> (measured)
Q_Z; (7.9)

ul6)(t) = T [U] ( ) (simulated)

Ty
where 6 is the unknown factor by which A = 1 needs to be scaled to obtain Ay, this is
the inverse scaling of 7,,. u and v are extended to the left and right by the initial and
terminal temperatures, respectively. Moreover, tg;¢; is an unknown time offset due to
variable beginning of the measurement. Z!" is the piecewise linear interpolation of
the discrete values, constantly extended outside the considered time intervals.

We determined 0 and tg,; by parameter fitting, more precisely by minimizing the
squared error between measurement and simulation over 6 over an appropriate time
interval [fminE, fmaxEF),

EmaxF

(6] (1) — o(t — tapire) |

E(, tsniet) = /

EminF

KmaxF . 2 (7'10)
~ Z ‘Ilm[l,[] <9kTv> _ kaKs‘ — min!
k=KminF Tu

where tminF = ToKminF, tmaxfF = ToKmaxp, tshift = ToKs and Vi = V for k < 0.
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Figure 7.15. Results of the parameter fit for computing thermal diffusivities of chicken meat
for two measurements in [355] (left) and [295] (right).

We used a simple interval nesting scheme for the minimization in 6 and fixed
discrete possibilities for minimization in t;¢ because E (0, tgnist) is sufficiently non-
oscillatory but not necessarily convex (thus we need a global optimization strategy)
and the objective function depends on only two variables. For the results in Fig-
ure 7.15 we used the time interval fjnp = 500 s, faxr = 2500 s.

The table in Figure 7.15 lists the parameters of two measurements and the rescal-
ing factor 6 which is also the value of A in W/mK. For 4 experiments in [355],
A =0.354 £ 0.064 W/m-K (mean =+ standard deviation) was obtained, for 5 experi-
ments in [295], we obtained A = 0.361 &= 0.045 W/m K. These values compare quanti-
tatively to those obtained for turkey (processed and emulsified meat) in [230, Fig 1]
which can be extrapolated to around 0.3 W/m K in our temperature range, the authors
of [375] obtain A = 0.477 W/m K by measurements using a guarded hot plate.

While the authors of [230] consider a temperature range of 293 to 353 K (20 to
80 °C) and find a dependence of A on the temperature, we assumed that in our lower
temperature range (below 295 K), A does not change significantly with temperature.

For the matches shown in Figure 7.15, we observed an increase of temperature of
both meat and water at the end of the measurements (and not the simulations). This
is probably due to an influence of the environment and thus ignored for matching
simulated and measured curves.
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7.3 Linear Elasticity Simulations

For the linear elasticity simulations described in this section, we considered both
artificial objects and scans of actual physical specimens. For most of the artificial
objects we simulate large deformations that, in reality, would lie far outside the range
of linear elasticity but allow unscaled visualization.

7.3.1 Individual Artificial Objects
Complicated Domains

Again let us start with simulations for complicated domains. We first considered
compression of solid domains with spherical holes shown in Figure 7.16 [217, 282].
The bottom of the objects was fixed and we impose a downward displacement at
the top by 1% of the edge length. Material parameters are E = 1, v = 0.33. The
deformed objects are colored according to the von Mises stress at the interface.

For the left and middle objects shown in Figure 7.16, 3 - 258064 = 774192 and
3-16458 648 = 49 375944 DOF were used, and the simulations required 534 MiB and
28 GiB, respectively. The first simulation could thus be run on a standard PC, taking
193 seconds (about three minutes) on a 3.6 GHz Pentium 4 processor for the multigrid
solver with the usual stopping criterion (reduction of the norm of the residual by
8 orders of magnitude) and achieving convergence rate 0.548 in the last iteration. The
second simulation was run on a compute server and the solver took 10411 seconds
(less than three hours) on one 1.8 GHz Opteron processor, achieving convergence
rate 0.552 in the last iteration. For the right object, 3 - 16482675 = 49448 025 DOF
were used. The multigrid solver using V»(3,3) cycles needed 19 iterations taking 579
seconds (less than ten minutes) each and achieved a convergence rate 0.580 in the
last iteration.

A second compression scenario (again by 1%) was simulated on the artificial
trabecular objects shown in Figure 7.17. These are 3D grids of 20 x 20 x 20 rods
resolved at 257°, and the same geometry with 10 percent (up to integer rounding)
of the trabeculae removed at random (see below for details). These simulations

Figure 7.16. Results of a compression simulation for a solid domain with 83 spherical holes
at resolution 65° and 16% and 322 spherical holes at resolution 2572 (from left to right). The
HSV ms= = colorbar indicates the von Mises stress at the interface.
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7 Numerical Results and Applications

Figure 7.17. From left to right, compression of 20 x 20 x 20 rods and zoom to the top left
corner, the same object minus 10 percent of the trabeculae (chosen randomly) removed,
and zoom to an ‘interesting’ region are shown.

i

bk

I

Figure 7.18. The elastic deformation of artificial objects under shearing displacement is
shown. From left to right the number of pillars increases from 4 x 4 to 32 x 32, again
resolved on a 257° computational grid. For the 32 x 32 case we additionally show a zoom
to the lower left corner. The HSV m== = colorbar again indicates the von Mises stress at the
interface.
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used 3 -5028836 = 15086508 and 3 - 4653 815 = 13961 445 DOF, they required about
30 GiB of memory and about 1.4 and 4 days of CPU time on one Opteron 1.8 GHz
processor, respectively. Poor final multigrid convergence rates of approximately
0.977 and 0.996 were observed in this case, which is not surprising for this type of
microstructure.

As other examples of artificial objects we reused the objects shown in Figure 7.11.
We there simulated shearing by fixing the bottom of the object and imposing a
displacement of the top to the right [217]. The same type of visualization as before is
used to show the results in Figure 7.18.

Discontinuous Coefficients

As a first toy example for discontinuous coefficients, we considered a spherical stiff
sphere of radius 0.3 (E; = 10 and v, = 0.1) embedded in a softer cube [310] of edge
length 1 m (Eg = 1 and vg = 0.3), cf. Figure 7.19. For a compression simulation by
20 % of the edge length, the bottom face was fixed and the top face was shifted in
downward direction. Figure 7.19 shows the undeformed and deformed object and a
visualization of the displacement. A resolution of 65° was used for this simulation,
resulting in a memory requirement of about 550 MiB.

Let us furthermore study the influence of a spatially varying elasticity tensor.
For this purpose, we considered a circular column embedded in a softer material
as shown in Figure 7.20. We first simulated compression for constant material
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o O 0 U

undeformed deformed x displacements y displacements z displacements
—0.03 m== = 0.03 —0.2m==0.0

Figure 7.19. Results of an elasticity simulation (compression by 20 %) with discontinuous
coefficients. The effect of the 10-fold stiffness of the sphere becomes visible both in the
deformed object and in the displacements.

P EE (E -

tensors z displacement x displacements y displacements z displacements

—0.2 me= 0.0 —0.04 === 0.04 —0.2 me= 0.0
o . ‘
o
tensors difference in difference in difference in
x displacements y displacements z displacements
—0.004 === 0.004 —0.0005 m=== 0.0005

Figure 7.20. A comparison of piecewise constant and spatially varying material properties for
a stiff column embedded in a softer material is shown. On the very left, the elasticity tensors
are visualized for different geometric locations within the object. The top row visualizes the
displacement of the object subject to compression on the material interface and on a slice at
y = 0.5 through the object, the bottom row shows the difference to displacements obtained
for constant elasticity tensor in the column.

undeformed deformed x displacements y displacements z displacements
—0.16 me= = 0.16

Figure 7.21. Results of a torsion by 20° simulation for an artificial trabecular dataset with
varying transverse isotropy in the trabeculae are shown. On a slice through the object, the
three spatial components of the displacement are visualized.
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Figure 7.22. Artificial 10 x 10 x 10 trabecular datasets are parameterized by the diameter-to-
length ratios 4/1 of the trabeculae and the degradation ratios p (up to integer rounding) in
the three space directions.

parameters Eg = 1 and vg = 0.38 in the surrounding material and E, = 10 and
Vo = 0.33 in the column (results not shown). Then the material parameters of
the column were modified in such a way that it has only half Young’s modulus
E.(z = 0.5) = 5 in the middle with linear transition to E,(z € {0,1}) = 10 at the
top/bottom. In Figure 7.20 we show the resulting displacements for this second case
and the difference to the case of piecewise constant stiffness tensor for compression
by 20 %. Combined with the surrounding material, the spatially varying material
parameter in the column (being softer on average) lead to slightly more bulging.

A more complicated example for spatially varying elasticity tensor is shown in
Figure 7.21. In this example from [310], we considered a 5 x 5 x 5 grid of circular
rods. Using the transversely isotropic elasticity tensor

[19.7785 8.4190 8.4190 i
84190 16.1824 7.6152
8.4190 7.6152 16.1824
8.5671
9.4713

9.4713]

in GPa for human vertebral trabecular bone [381], we assigned this tensor C (rotated
appropriately for the trabeculae so that the longitudinal axis was assigned the more
stiff x direction in C) to the center of the trabeculae and interpolate trilinearly in
between. The surrounding material was assigned the isotropic properties of PMMA
(E =3 GPa, v = 0.38). Figure 7.21 shows the results of simulation of 20° torsion.3 In
reality this lies far outside the range of linear elasticity but enhances the visualization
of the effect here.
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7.3 Linear Elasticity Simulations

7.3.2 Statistical Osteoporosis Models

In [379], a wider selection of artificial trabecular objects was considered, selected
results are reported here. For compression and shearing simulations, the effect of
different degradation scenarios (thinning or removal of trabeculae) on the macroscopic
stiffness was investigated. These objects are characterized by a diameter-to-length
ratio 4/1 of the trabeculae and a remouval percentage p, see Figure 7.22. Both are triples
whose entries correspond to the trabeculae in the different space directions. If all
entries are the same, p and 4/1 are also given as a scalar and referred to as “isotropic’.
Trabeculae to be removed were chosen randomly using a pseudo random number
generator based on the Mersenne twistert [235].

The objects considered consisted of 10 x 10 x 10 rods with circular cross section
of diameter 0.134 mm [165] for the reference configuration 4/1 = 0.4, resulting in
9 x 9 internal trabeculae in each space direction and 10 x 10 free trabecular ends
on each face at the outside. The bottom face was clamped (zero Dirichlet boundary
conditions), for the top face we imposed a displacement in longitudinal (downward;
compression in z direction) or transverse direction (to the right; shear in x direction).
We did not impose displacement boundary conditions on the remaining side faces.
Microscopically we assumed Young’s modulus E = 13.4 GPa [291] and Poisson’s ratio
v = 0.33 [291, 201] for the structures, corresponding to A ~ 9.779 GPa, u ~ 5.038 GPa.

After computation of the displacements for the given boundary conditions and in
order to evaluate the macroscopic stiffness, we evaluated the corresponding forces
acting on the elastic object. For this purpose, we considered cutting planes A parallel
to the fixation plane through the object. Consider one such cutting plane passing
through grid points and a virtual CFE tetrahedron T for which one face TN A lies in
the cutting plane. Then the displacement u is affine within T, thus the local stress
tensor

o(T) = p [ Vau(T) + (Vu(T)"| + A[(divu(T))1] (7.11)

is constant in T and we can compute the force distribution [, ,(o(x),n(x)) on the
local facets T N A. For each facet in the interior we average the two forces evaluated
on the two adjacent tetrahedra. Hence, the total force on A can be approximated by

F(A) =) (o(T),n)-area(TNA) (7.12)

where we sum over all faces T N A lying in the cutting plane. Let us emphasize that
due to static equilibrium, the exact value for the resulting total force is independent
of the cutting plane. To avoid numerical artifacts at specific slices, we chose a
larger set of lattice planes and computed mean and standard deviation of the forces
obtained for each of these planes. For each configuration of 4/ and p, we considered
six different specimens, the plots show the corresponding six mean values and six
standard deviations corresponding to the per-specimen averaging.

3Notice that, in linearized elasticity, torsion by 20° is not the same as torsion by 1° scaled by 20.
4Named after the French theologian, philosopher, mathematician, and music theorist Marin Mersenne,
* September 8, 1588 near near Oizé, Maine, + September 1, 1648 in Paris [1].

131



7 Numerical Results and Applications

2500 2500 2500

2000%. 2000%-._ 2000%----- - oo -

1500 1500 1500

1000 1000 1000

500 500 500

compressive stiffness in MPa

240 240 240

I¢]
180F 180 : 180
£ wlp b S
@ 120 120 120
a
9] % 3
= 60 60 60 &"4"*‘%"‘*“4‘%4¥a4><4;%ﬁ4<4¥iﬁﬁ
v
— 6‘Av—‘Ah%HA‘¥h<‘h%\‘*“<‘~%‘_ﬂv‘_ﬁﬁ &‘A""V%?;¥‘v“i%v‘iﬂvv“%"““‘ﬂ
<
£ o ° '
7 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
isotropic degradation mainly transverse degradation  only transverse degradation

Figure 7.23. For specimens with /1 = (0.4,0.4,0.4) (dashed lines) and 4/1 = (0.2,0.2,0.4)
(solid lines, thinner transverse trabeculae), we consider isotropic (p = (B, B, B), left), mainly
transverse (p = (B, B,8/2), middle) and only transverse (p = (B, 8,0), right) degradation.
The plots shows the decrease of compressive (top row) and shear (bottom row) stiffness for
B € [0,0.32]. The standard deviations shown by error bars in the plot are those obtained for
each specimen when computing the compressive forces for different cutting planes through
the object.

& 2500 240

z g

=

£ 2000 S 1s0l % B

7} - c N T

Q . 5 "

£ 1500 s P ,} %

E T Z20p 1

2 1000 §i -

. 5 60 \

- R SR AN AN

g X )

S

e zoonly isotropic x&y zOonly isotropic x&y
degradation directions degradation directions

s

iy
B mhna
iy W\.{)
BHE! :
tb@ ) e T

T T

FEE
EEOrERIER

SRR

Figure 7.24. For specimens with 4/1 = (0.4,0.4,0.4) (dashed lines) and 4/1 = (0.2,0.2,0.4) (solid
lines, thinner transverse trabeculae), we fixed a total degradation of 10 %. The plots show
how varying the degradation anisotropy according to p = (0.58,0.58,0.3 — B), B € [0.0,0.3],
from degradation in longitudinal direction z to degradation in the transverse directions
x and y (left to right in the plots) influences macroscopic compressive (left plot) and shear
(right plot) stiffness.
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7.3 Linear Elasticity Simulations

Table 7.25. The relative loss of compressive top table and shear bottom table stiffness for
isotropic up to 32 % degradation of specimens with different /1 is listed averaged over 6
different specimens, along with the average (intra-specimen) standard deviations for the
force computation process.

p d/1 =04 d/1 =03 d/1=02 d/i=(02,0.2,04)
0.00 0.000+0.055 0.000+0.074 0.000+0.113 0.000 == 0.041
0.08 0.233+0.040 0.267+0.051 0.317+£0.074 0.368 + 0.026
0.16 0.443+0.028 0.494+0.034 0.563+0.045 0.625=+0.015
024 0.615+0.019 0.669+0.021 0.737 +0.026 0.788 == 0.009
032 0.766+0.011 0.812+0.012 0.865+0.013 0.898 == 0.005

p d/1 = 0.4 d/1 =03 /1=02 d/i=(02,02,04)
0.00 0.000+0.156 0.000 +0.259 0.000 % 0.529 0.000 = 0.382
0.08 0.192+0.125 0.184+0.210 0.174+0.436 0.175+0.310
0.16 0.369+0.097 0.355+0.168 0.33940.348 0.343 -+ 0.242
024 0534+0.071 0522+0.121 0.507+0.258 0.516+0.175
032 0.673+£0.050 0.663+0.084 0.652+0.181 0.663 = 0.120

In Figure 7.23 we considered a reference configuration of 4/1 = 0.4 in each space
direction and an object with thinner transverse trabeculae subject to different degra-
dation scenarios. We observe that the trabeculae in longitudinal direction play
an important role for shear stiffness and even more so for compressive stiffness.
Loss of transverse trabeculae, however, has a significantly smaller influence on the
macroscopic stiffness.

Isotropic degradation for different 4/1 is considered in Table 7.25 where we com-
puted the loss of compressive and shear stiffness relative to the full 10 x 10 x 10
structure. We here observe that the loss of compressive stiffness varies more with
varying diameter of the trabeculae than the shear stiffness does.

We moreover investigated how anisotropy of the degradation (for a fixed total
degradation percentage) influences the macroscopic compressive and shear stiffness.
Figure 7.24 shows that the macroscopic compressive stiffness is more sensitive to
degradation anisotropy than shear stiffness.

For the specimen with radii 4/1 = (0.2,0.2,0.4) and isotropic degradation ratios
p = (0.16,0.16,0.16), the following computational profile was observed: For a volume
fraction of 0.131 resolved at 1293, 3 x 647728 = 1943 184 DOF were used (correspond-
ing to a DOF fraction of 0.302). The computation required 2408 MiB of memory
for data vectors, matrices and the solver. Computation times on a 3.6 GHz Pen-
tium 4 processor are listed in Table 77.26, where for this parameter study we used
V2(3,3) cycles and a stopping criterion of reducing the norm of the the residual by
7 orders of magnitude. The solver took 50 multigrid iterations in these cases, the
convergence rates in the last step were 0.877 and 0.879, respectively, and one iteration
took approximately 42 and 41.5 seconds, respectively. So an additional order of
magnitude in the solver accuracy takes about 12 min 15 s.
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Table 7.26. Computational profiles for two of the statistical osteoporosis models

simulation compression shear
generating level set representation of specimen 16.01 s 15.86 s
setting up CFE grid 6.96 s 6.04 s
setting up system of equations (assembling matrices

and enforcing boundary conditions) 13098 s  131.22s
solving system of equations 2220.14s 2187.03 s
postprocessing (force computation) 109.39s 10940 s

7.3.3 Simulations on Real Specimens
Complicated Domains

In Figure 7.27 we show the elastic deformation of the different specimens of the
internal trabecular structure (spongiosa) of a porcine T1 vertebra [217]. Again we
imposed a displacement shearing the upper boundary of the bone volume to the right
while the lower boundary plate was kept fixed. Here we chose material parameters
E =109 GPa, v = 0.3. Again, the deformed objects are colored according to the
von Mises stress at the interface. The numbers of DOF and virtual nodes are

resolution 333 65° 1293 2573

# DOF 27921 243477 1847286 10124160
# virtual nodes 16887 142234 1004417 5606274

For the 33 and 129° (left and second to right) specimens, 71 and 384 V;(3,3) multi-
grid cycles taking 0.5 and 56 seconds each were required to achieve a reduction of
the norm of the residual by 8 orders of magnitude achieving convergence rates of
0.860 and 0.978 seconds in the final iteration.

Discontinuous Coefficients

Finally, we simulated linear elasticity for objects with discontinuous coefficients. For
this purpose we again considered an Al/PMMA specimen [281] with realistic stiffness
parameters E = 70 GPa, v = 0.35 and E = 3 GPa, v = 0.38, subject to 1° torsion.
The object was now resolved at 120 um resolution on a 65° computational mesh and
shown in Figure 7.28. This was the same object as previously used in Figure 7.13 but
at different resolution and visualized from a different perspective.

Figure 7.28 also shows a specimen extracted from a porcine T1 vertebra with
parameters E = 13 GPa and v = 0.32 for the trabecular microstructure. These values
are realistic for human vertebral trabecular bone [380] whose inter-trabecular spacing,
however, is larger than the one in pigs. The specimen is assumed to be filled with
PMMA with the same parameters as before. The corresponding computational mesh
was 143 x 143 x 214 for a scan resolution of 35 pm. Results of the simulation of
compression in longitudinal direction are shown in Figure 7.28.

134



7.3 Linear Elasticity Simulations

Figure 7.27. The plots visualize shearing of specimens of a porcine T1 vertebra. The elastic
deformation of the internal structure of a porcine vertebral bone is depicted. From left to
right the resolution increases from 33% to 257°. The top row shows the original undeformed
structures whereas the bottom row shows the deformed structures where a HSV mw= = colorbar
visualizes the von Mises stress at the interface. For the object of highest complexity, we
also show a zoom to the regions indicated by magenta boxes.

deformed z displacements von Mises stress
(scaled by 20) —0.001 me== 0.0003 (Qme==(0.06 GPa 0 wm==(.2 GPa

y displacements von Mises stress
—7 271077 0 === 0.15 GPa

Figure 7.28. The top row shows torsion of an Al/PMMA specimen. Besides the undeformed
and deformed object, we show the z displacements and von Mises stresses on a slice
(v = 1/6) through the object and on the material interface (stresses only). The bottom row
shows compression of a porcine trabecular bone specimen embedded in PMMA, where
y displacements and von Mises stresses are visualized on the slice y = 1/2 through the
object and on the material interface (stresses only). Both displacements are given relative
to the specimen height. In both cases, the effect of the higher stiffness of the trabecular
microstructure becomes visible in the displacements induced by the microstructure.

135



7 Numerical Results and Applications

7.4 Homogenization

Let us now present results obtained by our homogenization method. Results of heat
diffusion (Section 7.4.1) and elasticity (Section 7.4.2) homogenizations for artificial
object geometries are presented to show the capabilities of our method for both
periodic and merely statistically representative fundamental cells. In Section 7.4.3 the
method is applied to actual specimens of trabecular bone.

7.4.1 Heat Diffusion in Artificial Objects

For the scalar case of heat diffusion, we first considered the fundamental cells shown
in Figure 7.29 consisting of 10 x 10 x 10 cylindrical rods, an example from [281].
These objects have different 4/1 ratios and removal percentages where the removal
of trabeculae was performed in such a way that these structures are periodic funda-
mental cells. The chosen ratio of 237 : 0.19 between the two diffusivity coefficients
reflects realistic values for aluminum and PMMA. The figure also reports the resulting
homogenized diffusivity tensors.

To further investigate how the finite resolution introduces slight anisotropy for
objects that appear to have isotropic macroscopic properties, we considered a geo-
metrically simpler structure and the resulting homogenized thermal diffusivity
tensors in Figure 7.30, also from [281]. Indeed, for this structure we expect to have
isotropic macroscopic properties, and the off-diagonal entries in the tensor diminish
for increasing computational resolution.

7.4.2 Linear Elasticity of Artificial Objects
Aligned Orthotropic Objects

As a first artificial elastic object, we considered the one shown in Figure 7.32
from [311], 1 X 1 x 1 cylinders with /1 = (0.4,0.3,0.2). This was assumed to be
a complicated domain with material parameters E = 1, v = 0.33 and edge length
of O of 1 m. The figure also shows the visualization of the homogenized tensor as
described in Section 4.5.2. Different from later tensor listings, the tensors obtained by
our homogenization method is listed here without symmetrizing them as described in
Section 4.1.3. We observe that, for increasing computational resolution, the roll, pitch
and yaw angles (obtained by our optimization procedure to check for orthotropy,
cf. Section 4.5) decrease as well as the final orthotropy violation.

In [311] we furthermore compared the homogenization results from Figure 7.32 to
compressive and shearing stiffnesses obtained for n x n x n fundamental cells (¥
as in Figure 7.32 (see [379]) subject to the corresponding boundary conditions (two
opposite faces of the bounding cube were displaced by a fixed value, no boundary
conditions were imposed on the side faces). Microscopic elasticity parameters were
setto E =1, v = 0.33. A5 x5 x5 such structure is shown in Figure 7.31. In this
geometric situation, compressive stiffnesses for individual specimens are almost the
same as those obtained by homogenization (periodic and natural Neumann boundary
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a b C d

126 —-0.14 -0.02 1093 -0.11 -0.02 93.1 0.13 0.22 699 —043 -0.02
—-0.14 109 0.11 —0.11 1094 0.16 013 93.1 0.40 —0.43 106 0.17

-0.02 011 711 —-0.02 016 109.6 022 040 931 -0.02 017 106

Figure 7.29. For different artificial objects, homogenized thermal diffusivity tensors are listed.
Specimen (a) is a 10 x 10 x 10 structure of cylindrical rods with 4/1 = (0.38,1/3,0.24),
whereas specimens (b), (c), (d) have diameter/length ratios 1/3 in each space direction
where (a), (b) are full structures, (c) has removal percentages p = (0.1,0.1,0.1) and (d) has

p = (0.3,0,0).
3 653

126.44 —0.1141 —O0. 0595 12537 —0.1366  0.0033
—O 1141  109.40 0.3583 —0.1366 106.94 —0.0111
I I —0.0595 03583 71.33 0.0033 —0.0111 69.88

1293 2573
(125.42 —0.0587 —0.0059) (125.46 —0.0213 0.0001)

—-0.0213 107.27 —0.0000
0.0001 —0.0000  69.95

—0.0587 107.01 0.0117
—0.0059  0.0117 70.27

Figure 7.30. For 2 x 2 x 2 rods with 4/1 = (0.38,0.33,0.24) (left), the zoom to one trabecular
crossing (magenta box) at different computational resolution is shown, along with the
numerically homogenized thermal diffusivity tensors obtained at the respective resolution.
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compressive

n resolution stiffness (x)
1 1293 0.133939 Pa
5 1293 0.133248 Pa
10 1293 0.132871 Pa
15 2573 0.132860 Pa
20 2578 0.132436 Pa

displacement  stiffness

x compression 0.132726 Pa

y compression 0.082275 Pa

z compression  0.039549 Pa

xy shear 0.0021291, 0.0020593 Pa
xz shear 0.0029628, 0.0026015 Pa
yz shear 0.0072422, 0.0068263 Pa

Figure 7.31. For artificial trabecular specimens consisting of n x n x n circular rods with

d/1 = (0.4,0.3,0.2) (middle image for n = 5), the left table lists the compressive stiffness
in x direction for different values of n and different computational resolutions. The right
table lists compressive and shear stiffnesses for the 10 x 10 x 10 specimen at computational
resolution 2573.

17%: (—8.50-1072,—4.52-1072,—-2.23-1072)°

[ 0.126657 0.012256 0.003419 —1.73-107% 6.88-1077 —2.37-107*]
0.012355 0.079110 0.002030 —5.08-10° 9.45.1075 —5.02-10*
0.003537 0.002092 0.022781 —1.93-10"% —881-107° 1.16-10~*
—1.64-107* —453-107> —190-10~* 0.002714 —3.76-107* —1.21-10"*
—3.83-107°% 854-107° —1.06-10"% —4.02-10~*  0.003323 1.31-10~%
|—1.84-107% —3.74-10~* 1.88-107% —1.22-10~* 1.35-10~* 0.010845 |
- 33% (—1.17-1072,-1.98 - 1072,1.50 - 1072)°
— [ 0.128019 0.011907 0.005881 —2.70-107° —4.83-107¢ —1.25-10">]
0.012029 0.076170 0.003064 —1.76-10"5  4.00-10~° —451-10°
I 0.005877 0.003137 0.039644 —6.04-1075 —2.65-10"° 1.49-107°
Y —264-107° —460-107° —6.70-1075 0.001768 —7.86-107> —1.86-107°
X —923.107® 334-107° —240-1075 —7.33-10"%  0.002691 2.81-1075
> |-147-107° —1.19-107° 547-107° —2.34.107° 337-107° 0.007038 |
1293 (—1.22 -1073,-250-1073,1.34 - 10*3)°
[ 0.132389 0.012208 0.005717 —3.58-107¢ —1.09-107¢ —6.50-10°]
0.012258 0.081428 0.003551 —4.78-107® 3.98-107® —1.34-107°
0.005751 0.003553 0.039215 —1.04-1075 —429-107° 294.10°°
—328-107¢ —4.75-107® —1.10-10~°> 0.001733 —8.19-107¢® —1.72-10°
—-1.10-107® 4.23-107® —3.77-107° —8.81-107°  0.002222 3.50-107°
|—648-107% —1.14-10"> 544-107°® —2.00-10°® 3.56-10~°  0.006709 |
2573: (—4.65 -107%,—-8.84-1074,2.79 - 10*4)"
[ 0.132314 0.012126 0.005700 —1.65-107° —3.92-1077 —3.64-107°]
0.012143 0.081494 0.003596 —1.94-107® 1.33.10~® —7.35.10"°
0.005700 0.003588 0.039394 —4.32-107® —1.54-10"°® 1.43-10°°
—138-107°® —1.85-107® —4.29-10® 0.001718 —2.83-107® —5.03-10"7
—410-1077 1.40-107® —1.37-107® —3.01-107°  0.002182 1.26-107°
|-371-107® —658-107°® 262-107® —568-1077 1.25-107° 0.006620 |

Figure 7.32. For a 1 x 1 x 1 artificial trabecular crossing with 4/1 = (0.4,0.3,0.2), the cor-

responding homogenized orthotropic elasticity tensor is visualized (left). For different
computational resolution, roll, pitch, and yaw angles yielding the best rotation to an
aligned orthotropic tensor are listed along with the homogenized tensors in Voigt’s no-
tation. To show the convergence behavior, the tensors have not been symmetrized and
small entries have not been omitted, instead those entries not present in a perfectly aligned
orthotropic tensor have been listed in exponential notation and in units of GPa.
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7.4 Homogenization

conditions make almost no difference). This is no longer true for structures (with
e. g. higher density in terms of volume percentage) where macroscopic bulging cannot
be neglected.

As for discontinuous coefficients, we again considered object (a) from Figure 7.29
with an edge length of 1 m, resolved at 129° and microscopically isotropic elasticity
parameters of (E~,v~) = (13,0.32) and (E*,v") = (3,0.38). The resulting homog-
enized tensor is listed in Figure 7.33 and exhibits moderate anisotropy due to the
geometric structure.

Non-Aligned Orthotropic Objects

Let us now study an example from [311] of an orthotropic structure which is not
aligned with the coordinate axes, investigating how well our rotation optimization
procedure can detect known anisotropy. For this purpose, we used a 5 x5 x 5
trabecular structure with d/1 that was rotated about the x axis by the roll angle
a = arctan(1/5) ~ 11.310° and scaled in such a way that we obtain the fundamental
cell of edge length 1 m shown in Figure 7.34. For microscopic elasticity parameters
E =1and v = 0.33, the following macroscopic elasticity tensor C and its back-rotated
version C* were obtained

[0.152681  0.019914 0.020399
0.019914  0.140770 0.027324 —0.017414
C 0.020399  0.027324 0.141225 0.017371
—0.017414 0.017371 0.022457 —1.69-107*
—1.69-107*  0.015305 218-107*
218-107*  0.014825

[ 0.152681  0.019962 0.020352 —1.58-10*
0.019962  0.148068 0.020060
C* 0.020352  0.020060 0.148455
—1.58-10~* 0.015193
0.015371
0.014759

for the rotation angles (—11.33,2.25-1073,—~1.72-1072)°. As above, small entries
have been omitted.

The geometrically same interface has also been used in the case of discontinuous
coefficients [281] with E = 10, v = 0.1 inside the structure and E = 1, v = 0.3 in
the surrounding material. In this case a rotation by —11.289° in the (y,z) plane is
obtained and the resulting tensors are

1.822  0.607  0.606 1.822 0.607 0.607
0.607 1.794  0.630 —0.049 0.607 1.815 0.610
C_ — 0.606  0.630 1.803  0.050 C* — |0.607 0.610 1.823
—0.049  0.050 0.485 0.465
0.465 0.465
0.463 0.463

where small entries have again been omitted. In both cases, the expected angle
is recovered almost perfectly and the resulting tensors exhibit small orthotropy
violation.
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12.386 5.768 5.571
5768 11.927 5.499
5571 5499 11.152
2.520
2.644
2.937

Figure 7.33. For the specimen shown on the left, the homogenized elasticity tensor C is listed
where entries smaller than 1073 times the maximal entry have been omitted.

~

Figure 7.34. A periodic rotated 5 x 5 x 5 rod sample with constant d// = (0.4,0.4,0.4) is
shown, along with a visualization of the corresponding macroscopic orthotropic elasticity
tensor. The axes of orthotropy match the geometric axes of the structure and are identified

correctly by our optimization procedure.

7.23 w2978

-
-

7.37 w2 10.84

Figure 7.35. On the top left a cross section through a honeycomb structure viewed as a com-

plicated domain is shown. For constant isotropic material properties with Young’s modulus
E = 8, the geometric symmetry axes lead to a non-orthotropic macroscopic elasticity tensor
visualized on the bottom left where the color bar shows the range of the bulk modulus.
In the top middle a honeycomb structure with constant radii is visualized where the micro-
scopically isotropic elasticity tensor varies in the structure and is constant 1 in the cylinders
visualized in yellow. The variation is shown on a cross section through the structure on
the top right where red corresponds to a Young’s modulus of 4, green to 8, blue to 12 and
values are interpolated in between. The corresponding macroscopic elasticity tensor is
again non-orthotropic and visualized bottom middle and right. The perspectives for the
visualizations in the bottom row matches those for the visualizations above.
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7.4 Homogenization

Non-Orthotropic Objects

Non-orthotropy can be caused e. g. by lack of geometric symmetry or by non-constant
microscopic material parameters. Let us consider one example for each of these cases
to show that our method also treats this case correctly. A geometric non-orthotropy
can be obtained for the pattern of radii shown on the left side of Figure 7.35 which
shows the constant cross section of a 3D object viewed as a complicated domain.
Isotropic microscopic elasticity parameters were set to E = 8, v = 0.38 in the structure
and the computational resolution was 56 x 64 x 64 for the object of size 1 m in z
direction Moreover, we considered a 2D honeycomb structure with constant radii,
shown on the right side of Figure 7.35. Here we assumed microscopically isotropic
material with varying Young’s modulus in one subdomain. In the cylinders, we
assume E = 1, v = 0.25, whereas the honeycomb structures are assumed to have
v = 0.38 and E varying between 4 and 12, according to position as visualized in the
figure. Computational resolution here was 65 x 57 x 65. The homogenized elasticity
tensors C© for the complicated domain and CM for the discontinuous and varying
coefficient were (in Voigt’s notation)

4172 1.899 2.307 1.22-10710 —758.10"10 0.125 7

1.899 3.451 2.033 453-10710 —357.10710  —0.051

CG — 2.307 2.033 6.499 420-1071% —1.32.10"% 0.028
122-10710  453.10710 420.10°10 1.179 0.036 12210713

~758-10710 —357-10"10 —1.32.10"% 0.036 1.337 8.44-10~1
0.125 —0.051 0.028 1.22-1071%  844.10~1 1.085 |
4362 1.711 2.140 -1.02-107%  573.107%  —0.030 ]

1.711 3.652 1.868 1.49-107%  4,69.107% 0.051

CM — 2.140 1.868 5.769 2,03-107% —3.21.107% 0.008
—1.02-107% 1.49.107% 203-1070 1.111 0.015 1.12-107%
5.73-107% 4.69-10"% —-3.21-107% 0.015 1.351 5.47-107%7
—0.030 0.051 0.008 112-107%  547.10"% 1.043 |

after symmetrization and optimal rotation to an aligned orthotropic tensor. The
resulting tensors obviously show the expected lack of orthotropy.

7.4.3 Linear Elasticity for Real Specimens
Complicated Domains

In [296] specimens of trabecular bone of different specimens were compared in terms
of their homogenized elasticity tensors. Specimens were harvested from a young male
(human-y; T11-L2 vertebrae) and an osteoporotic elderly female Caucasian human
donor (human-o; T10-T12), and from a porcine (T1-T6) and a bovine (L1-L2) spine.
As described in the introduction in Section 1.5, we obtained cylindrical specimens
from different vertebrae by removing top and bottom end plates and then extracting
cylinders by a trepan so that the cylinder axis coincides with the craniocaudal
anatomical axis (up to orientation) but the other axes are no longer known and differ
between different cylinders. A segmentation threshold was determined based on the
gray value histogram [293] and two cubes of 1293 voxels (corresponding to 5.16 mm
edge length) were extracted at the bottom and top of the cylindrical dataset. Thereby,
the z axis in the datasets is the craniocaudal anatomical axis (up to orientation)
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Figure 7.36. Four specimens of trabecular bone are visualized for each species along with
the resulting effective elasticity tensors (from the same perspective, i. e. before optimizing
axis alignment). The scale of the tensor visualization is the same for all human specimens
(left two columns) and four times bigger than for all animal specimens (right two columns).
The lower two rows show specimens from the same vertebra per species, spaced apart about
2 mm (visualized approximately to scale).
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Figure 7.37. The left plot shows scattering of the compressive stiffnesses in the transverse
directions for different species (after determining the axes of orthotropy). On the right, the
compressive stiffness in craniocaudal direction is plotted against the average transverse
compressive stiffness (again after determining the axes of orthotropy). The ellipses in both
cases show one standard deviation obtained by a principle component analysis [183] for
each species.
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7.4 Homogenization

whereas the dorsoventral and dextrosinistral axes are no longer known and differ
between specimens (but are the same for each pair of cubes from the same cylinder).

For the trabecular structures, we assume Young’s modulus E = 13 GPa and
Poisson’s ratio v = 0.32 which are realistic values for human trabecular bone [380]
but slightly questionable for the animals. While the constituents of bone tissue are the
same across mammals [243], the sub-microscopic setup could be different, possibly
resulting in different microscopic material properties for the different species.

Trabecular separation (Tb.Sp) was determined via the identification of the largest
sphere that includes the point of interest and that fits completely in the pore [166].
For a boundary layer of thickness B = 1/8, the evaluation domain A*# then had size
4.22 Tb.Sp and 3.65 Tb.Sp for the human-y and human-o specimens, respectively,
so the human specimens do not fully satisfy the criterion of [160]. For the animal
specimens, A" had size 9.08 Tb.Sp and 7.90 Tb.Sp for the porcine and bovine
specimens, respectively, so these specimens are sufficiently large.

Four specimens for each species and the resulting homogenized elasticity tensors are
visualized in Figure 7.36. For the top one in each column, we examined the influence
of the parameter B on the compressive stiffnesses in the three space directions.
Table 7.38 shows that B = 1/8 is a good choice if we use the same f for all species.

As only the craniocaudal axis can still be identified as the z axis in the specimens, we
assume transverse isotropy and average the compressive stiffnesses in the remaining
two directions. The scatter plots in Figure 7.37 show the differences between the
species concerning whether this assumption is justified (left plot) and to what extent
the structures are anisotropic measured as craniocaudal over average transverse
compressive stiffness (right plot).

The human osteoporotic specimens in our study have about half the compressive
stiffness of the non-osteoporotic ones in craniocaudal direction and an anisotropy
that is about 1.6 times as large. The bovine specimens have slightly smaller cranio-
caudal compressive stiffness than the porcine ones, but a higher anisotropy ratio
(approximately 1.9 vs. 2.6). Comparing the bovine to the non-osteoporotic human
specimens, craniocaudal compressive stiffness is about four times as large and the
anisotropy ratio is slightly larger.

Table 7.38. For one specimen of each species (those in the top row of Figure 7.36), the
resulting compressive stiffnesses (in units of GPa) in direction of the optimal axes of
orthotropy are listed. These are computed from the effective elasticity tensors obtained by
evaluation over different A*F.

human-y human-o porcine bovine
B Exx Eyy Ez Exx Eyy Ez Exx Eyy Ez Exx Eyy Ez

0/16 0.389 0.368 1.024 0.107 0.151 0.300 1.812 2101 3.628 1.392 1.858 3.519
1/16 0.255 0.298 0.975 0.064 0.105 0.283 1.656 1.959 3.568 1.218 1.735 3.438
2/16 0293 0231 0914 0.053 0.092 0.254 1.613 2.012 3.635 1.232  1.735 3.426
3/16 0.258 0.197 0.886 0.052 0.083 0.232 1.585 2.012 3.620 1.238 1.741 3.364
4/16 0309 0.194 0.953 0.043 0.086 0.231 1.663 2.0056 3.747 1.238 1.741 3.364
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roll = —7.52°, pitch = 9.44°, yaw = —18.22° roll = —12.27°, pitch = 10.75°, yaw = —26.27°
Exx = 1.199, Eyy = 1.492, E,; = 3.584 GPa Eyx = 0.903, Ey, = 0.786, E;, = 2.690 GPa

Figure 7.39. For two specimens from the same bovine vertebra (spaced apart approximately
2 mm in craniocaudal direction), the resulting axes of orthotropy and macroscopic elasticity
tensors differ significantly.

8.369 4585  4.575 —0.012  0.061 7929 4433 4427 0.030
4585 8424 4587 -0.017 0.075 4433 8.072 4442 0.053
C — 4575 4587  9.040 —0.059 0.018 C — 4427 4442 8629 —0.029
—-0.057 1996  0.033 -0.029 1879  0.021
—0.012 0.034  1.990 -0.020 0.021 1863 —0.012
0.061 0075 0.018 —0.020  1.897. 0.030  0.053 —0.012  1.783

roll = 3.82° pitch = 7.26°, yaw = —25.12° roll = 7.37°, pitch = 2.16°, yaw = —40.99°

8.250  4.594  4.560 7.902 4422 4424
4594 8519 4598 —0.012 —0.098 —0.014 4422 8120 4444
C* — 4560  4.598  9.055 C* — 4424 4444  8.633
—0.012 2.025 1.890  0.009
—0.098 1.958 0.009  1.851
—0.014 1.903 1.772

Figure 7.40. Two cubic specimens of a porcine T1 vertebra, embedded in PMMA, are shown
in the fop row. For the homogenized elasticity tensors C in GPa, we determine rotation
angles to an optimally aligned orthotropic tensor C*, obtaining rather similar tensors.
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7.4 Homogenization

Figure 7.39 emphasizes that the interior of vertebral bodies (spongiosa) does not
have constant macroscopic properties throughout one vertebral body and indicates
that a full two-scale model should be employed for simulations on a whole vertebra
(which additionally contains the compact outer shell). This spatial variation of
effective properties is even more important in other bones where the geometry of the
trabecular microstructure is strongly adapted to the shape of the bone and stresses
for typical anatomical loading®.

For the simulations for the leftmost (human-y) specimen in Figure 7.36 at resolution
1293, the CFE discretization resulted in a 3 x 3 block matrix using 1158.6 MiB of
memory, where the solver took 6755.6 seconds of CPU time on a 3 GHz Opteron
processor on average for each of the six different settings of boundary conditions
and a reduction of the norm of the residual by 8 orders of magnitude. For the (more
dense) rightmost (bovine) specimen, matrix memory consumption was 1808.8 MiB
and solver CPU time was 14 426.5 seconds.

Discontinuous Coefficients

As real specimens in the case of discontinuous coefficients we considered two cubic
specimens from the same porcine T1 vertebra shown in Figure 7.40 at 35 pm resolution
and on a 129° computational mesh [281]. The dataset is part of the one used in
Figure 7.28. We assumed the same bone/PMMA parameters as before, E = 13 GPa,
v = 0.32 in the bone, E = 3 GPa, v = 0.38 in the PMMA. The specimens are sufficiently
large (trabecular separation is 0.432 and 0.438 mm, respectively) so that A*f for
B = 1/8 covers more than five inter-trabecular lengths in each space direction, and
thus the criterion of [160] for a representative cell is satisfied.

The homogenized tensors for these two specimens listed in Figure 7.40 are in fact
quite similar and exhibit small orthotropy violation. The z axis in the specimens is
roughly parallel to the craniocaudal axis of the pig, its orientation and the alignment
of x and y axes, however, is unknown but the same for both cubes.

’

5This has been known at least since the 1870s [378]: . dass in der That das spongidse
Knochengefiige nicht ein regelloses und gleichgiiltiges Gewirre von Knochenbélkchen und
Hohlrdumen ist, wie man das bisher geglaubt hat, dass ihm vielmehr wirklich jene ,wohlmotivirte
Architectur” eigen ist, durch die jedem seiner Bilkchen eine statische Bedeutung, und, so zu sagen,
eine bestimmte Rolle als zweckmaéssig angelegter Baustein in dem grossartigen Gesammtbaugertist
des Knochens zugewiesen ist.’
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8 Conclusions and Outlook

ARTING WITH a summary of what has been achieved and which points require

further investigation, Section 8.1 is intended to suggest questions for future
research. Section 8.2 summarizes some ideas how the multigrid solver in the com-
plicated domain case can possibly be improved and Section 8.3 presents ideas for a
multigrid coarsening strategy for discontinuous coefficients. Both these have not lead
to success so far.

8.1 Summary and Open Problems

Implementation of CFE. The CFE for complicated domains presented in this thesis
have been implemented except for the case of spatially varying elasticity param-
eters. This, however, will not require much effort. The corresponding multigrid
method has also been implemented successfully with the limitations presented in
Section 5.2.2. Some ideas for improvement of the multigrid method are presented
below in Section 8.2.

As for the case of discontinuous coefficients, the scalar isotropic and the general
linear elasticity cases have been implemented (but not the scalar anisotropic case).
The development of a corresponding multigrid coarsening strategy has not been
successful, some first ideas are discussed below in Section 8.3.

Both methods have not only been applied to simple artificial geometries but also to
scans of actual trabecular structures with high geometric complexity.

Homogenization. Homogenization procedures have been implemented and ap-
plied for all combinations of {complicated domains, discontinuous coefficients}
and {periodic, statistically periodic} fundamental cells. For complicated domains,
an appropriate multigrid solver for both types of fundamental cells has also been
implemented successfully, with the same limitations as before.

Again, the homogenization methods have been applied successfully to artificial
geometries and samples of real trabecular bone.

Generalization of the CFE Concept. First of all, it would be useful to have a 2D CFE
implementation for the cases discussed here in the same C++ framework as our 3D
implementation. This should not involve methodical difficulties and would allow for
easier testing of further extensions.

While we only consider 3D non-adaptive cubic meshes, a similar construction of CFE
for general hexahedral, non-hexahedral or adaptive meshes is possible. This certainly
requires using efficient and well-known methods for not globally uniform meshes.
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Figure 8.1. For an experimental validation of the CFE elasticity simulations for complicated
domains, specimens of trabecular bone are tested in mechanical compression experiments
and force is measured as a function of strain. Stiffness in the linearly elastic range (here for
about 1 % of the specimen height of 12 mm) is then compared to simulation results.

If domains are described by image data, one typically uses the corresponding voxel
grid and adaptivity is obtained by coarsening (unlike adaptive refinement if one
starts with a coarse geometry approximation).

For 2D complicated domains, CFE for not uniformly hexahedral meshes have
already been discussed in [290] and an extension to 3D should not be difficult.
In contrast, CFE for discontinuous coefficients on non-uniform meshes require an
appropriate interface approximation, identification of coupling conditions across the
approximated interface, and finally composition of basis functions, which can be
expected to be significantly more technical.

Validation. Validation of the methods used here for the elasticity case is work in
progress. First, the segmentation of the image data needs to be compared to speci-
men volumes measured e. g. using Archimedes’ principle® by helium micropycnometry,
cf. [75, 332]. The elasticity method can be validated by comparing simulated macro-
scopic stiffnesses to those measured in compression experiments (for which the range
of linearly elastic behavior needs to be identified, see Figure 8.1).

First experiments indicate that the thresholding according to [293] works well. This
method determines the segmented volume by counting voxels with gray value above
or below a fixed value. It seems to be unnecessary to use the CFE segmentation
instead, which makes finding the threshold more than two orders of magnitude more
expensive in terms of CPU time. Denoising or resampling of the dataset, however,
needs to be performed with care since the structures are only a few voxels in diameter
and biased errors in the segmentation will not only result in incorrect segmented
volume but also in incorrect simulated mechanical results.

"Named after the Greek mathematician and scientist ‘Apyiundne (Archimedes) who lived in the third
century BC, x and  in Syracuse, Sicily [1].
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8.2 Ideas for Improved Coarsening for Complicated Domains

As we have seen in Figure 7.10, some geometric situations may lead to poor multigrid
convergence because coarse-grid correction introduces artificial numerical coupling.
Stopping the coarsening process globally is a simple remedy (cf. Figure 7.10) which
drastically decreases the efficiency of the multigrid solver. The following ideas on
how this problem could be overcome are meant as suggestions for future research.
Let us propose a geometric criterion for troublesome situations in the multigrid
coarsening where numerical coupling is introduced between parts of the structure
whose physical coupling is only weak. Note, however, that this geometric criterion is
necessary but not sufficient for a weak physical coupling of the components.

Detour-Connectedness. Recalling Figure 5.4 we observe that the support of a coars-
ened basis function consists of disconnected components if those components are
part of disjoint subsets of the structure ()_ or if the geodesic distance (minimal dis-
tance along paths inside ()_) between the components is greater than the Euclidean
distance. Let us introduce the term detour-connected (relative to ()_) for sets where,
between any two points, the geodesic distance (with respect to ()_) is not larger than
the Euclidean distance plus a maximal detour (. If { = 0, the set is convex.

If the imaging resolution is sufficiently high, we can assume that all supports
of basis functions on the finest level are detour-connected. We can now attempt
standard CFE coarsening and check whether the coarsened basis functions still have
detour-connected support. If one basis function does not, a troublesome case has
been detected. We can then stop the coarsening process globally and mark the current
fine level as the explicit level.

We could instead stop the coarsening process only locally. This means modifying
restriction and prolongation operators such that rows in the restriction matrices are
left out and the coarsened problem has less DOF and no correction is prolongated
from the coarse grid correction—instead of an unphysical coarse grid correction.
This might make sense if detour-disconnectedness occurs only at few geometric
locations and the overall convergence is not impeded by this ‘better be safe than sorry’
coarse grid correction. At those points, coarse grid correction could be replaced by
additional smoothing steps as [53] recommends for ‘pollution” of multigrid methods
by reentrant corners.

Adaptive Coarsening. Another option is to determine detour-connected compo-
nents of the support of basis functions. This could be achieved by assigning a ‘seed
node’ to each DOF on the finest grid and computing geodesic distances from this
seed node to neighboring DOF. During coarsening, coarse grid parent nodes could
tirst inherit the seed of one of their descendants and geodesic distances (bounded
by a detour parameter depending on the grid spacing of the current grid) could be
computed for a larger neighborhood, forming the first detour-connected component
of the support. If not all descendants are captured in this neighborhood, further
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components of the support could be introduced until all descendants are processed.
For each component, a separate instance of the coarse grid node could be intro-
duced, resulting in a ‘cloning’ of DOF. In further coarsening steps, this might result
in further cloning, but also in ‘recombination” if basis functions are found to have
detour-connected support on an even coarser level. Figure 8.2 shows an example of
this cloning and recombination. This approach would require bookkeeping of the
different instances for the restriction and prolongation operators, either by storing
additional instances separately or by using multiple copies of the grid.

Computational Complexity. Distance information can be computed using a sweep-
ing method [326, 188], see also [80, 261, 390]. These methods usually finish within a
small constant number of iterations (even though this need not be true in the worst
case) with O(n?) algorithmic and memory cost if the neighborhood for which dis-
tances are computed is of size n> where n of course depends on the detour parameter
Z. On the finest grid, the number of nodes is O(N?) and we need one neighborhood
for each node. Neighborhood and distance information is always computed on the
finest grid because we need to consider the full topology information about the do-
main. In each coarsening step the number of grid nodes decreases roughly by a factor
of 23, so only 1/8 of the neighborhoods (on the finest grid) need to be considered
further. Their size, however, is increased by a factor 23. Multiple DOF for the same
grid node result in multiple neighborhoods with different distance information. In
the—unrealistic—worst case of 15-fold cloning, the memory requirement increases
by a constant factor in each of the O(log N) coarsening steps. In total, the constants
are relatively large and an implementation of this approach has not proven to be
efficient.

Further Ideas. Besides this geometrically (that is, sample-specific) adapted coars-
ening, it may also be worth investigating the possibilities and performance of an
algebraically adapted coarsening (which, most likely, depends on both specimen and

Figure 8.2. For the same example geometry as in Figure 5.4, the left basis function has
connected support. The support of the middle basis function consists of two detour-
disconnected components A and B, we could thus use two instances of the corresponding
node. On the next coarsest level on the right, the two instances could be recombined because,
for small nonzero detour parameter ¢, the basis function then has detour-connected support.

150



8.3 Ideas for a Discontinuous Coefficients Coarsening Procedure

boundary conditions in a simulation). It may be possible (and possibly beneficial)
to combine automatic coarsening methods known from algebraic multigrid solvers
with the geometric information (regular structure in G¥, knowledge about interface)
available. Another option could be the adaption of pseudo-L?-projection [97] origi-
nally developed for non-nested meshes. In the terminology of [74], these could be
considered (light) ‘gray box” methods. If Dirichlet nodes are not visible as DOF to an
algebraic coarsening procedure, these will simply be ignored and need not be treated
separately.

8.3 Ideas for a Discontinuous Coefficients Coarsening Procedure

Defining a multigrid coarsening strategy for CFE for discontinuous coefficients is a
difficult task that remains an open problem. A very first idea for a coarsening scheme
is to simply use standard neighborhoods with standard coarsening weights 0, 1/2,
and 1. In any space dimension, this clearly introduces artificial kinks in the coarsened
basis functions across faces of the fine grid not present on the coarse grid.

A Geometric Coarsening Scheme in 1D. A geometrically intuitive idea for a more
refined coarsening scheme can be built on the approach that coarsened basis functions
should not have “artificial” kinks on edges of the coarse grid (because a basis function
constructed immediately on the coarse grid, provided that the geometry is resolved
there, cannot have those kinks). This method was not found to be an effective solver
strategy and its presentation is included here only for the sake of completeness.
This geometric idea can be turned in a “slope balancing’ condition from which we
can determine more appropriate coarsening weights. Suppose we construct a basis
function <™ on the coarse grid with the edge [Cinit, Cterm| C supp Y™ (note that this
does not imply ¢ € [Cinit, Cterm] In 2D, cf. Figure 8.4, or in 3D). Then ™ has a kink on
[Cinit, Cterm ] 1f and only if the interface intersects the edge, and the kink occurs at the

fetr
S 5

finit=fe 5fmm‘

fetr = frerm
N
N

AN 5f ctr

---------- fetr—* frer
f init f ctr f term

Cinit Cterm

Figure 8.3. Left: Coarsening weights w can be chosen such that the coarsened basis function
does not have artificial kinks at positions where a coarse basis function would not have a
kink. Right: For this purpose, slopes s of the basis functions involved locally need to be
balanced, resulting in new relevant slopes for the next coarsening step.
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corresponding virtual node. In particular, there is no kink at the intermediate node
%(cinit + Cterm) Which is only present on the fine grid. A coarsened basis function
should also satisfy this property. Obviously, having a kink means that one-sided
and other-sided slopes differ, so avoiding additonal artificial kinks can be viewed as
balancing two one-sided slopes, see Figure 8.3.

Extension to 2D and 3D. For extending this coarsening scheme to more than one
space dimension, first all relevant edges of the fine grid for a coarse grid node have to
be identified. Note that those edges need not be incident to the coarse grid node, due
to the slightly extended supports of CFE basis functions for discontinuous coefficients,
also other nearby edges may play a role here. Moreover, along one such relevant
edge, more than the two fine grid basis functions of the incident nodes contribute to
the coarsened basis function and hence need to be considered for the slope balancing,
see Figure 8.4. In total, a not necessarily symmetric local system of equations needs
to be solved for the slope balancing.

The relevant slope information needs to be computed once on the finest grid, any
coarsening step / 41 to level / then involves

1. computing coarsening weights ¢, based on slopes on fine grid

2. coarsening data about neighbors and relevant edges and thus determine neigh-
borhoods S(n)! for the next coarsening step

3. computing (relevant) coarsened slopes from fine slopes and coarsening weights

Notice that in absence of kinks, this slope balancing simplifies to standard coarsen-
ing. Thus the slope information only needs to be stored explicitly for basis functions
affected by the interface.

Drawbacks of This Coarsening Scheme. This construction is only based on prop-
erties of the basis functions themselves. In contrast, the construction of CFE basis
functions on the finest grid is based on their interpolation capabilities. This approach
hence neither depends on whether we are dealing with a scalar or a vector-valued

Figure 8.4. Coarsening for CFE for discontinuous coefficients requires to consider neighbor-
hoods S which are larger than those for standard affine FE, resulting in larger supports for
coarsened basis functions. Edges highlighed by dotted lines contribute with standard coars-
ening weights, additional artificial kinks need to be avoided on those edges highlighted by
the thick dashed lines. The thin dashed line indicates the interface.
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8.3 Ideas for a Discontinuous Coefficients Coarsening Procedure

problem, nor does it distinguish between the isotropic and anisotropic cases. It
moreover turns out that this approach leads to a violation of the partition of unity
condition for the coarsened basis functions, making necessary a relaxation of the
slope balancing condition.

Let us furthermore point out that kinks are avoided only across edges of the coarse
grid. The CFE basis functions on the fine grid have kinks across virtual edges on
the fine grid, and those virtual edges do not appear on the coarse grid (even in
case of planar interfaces), as illustrated in Figure 5.7. The coarsening process does
not remove such kinks by averaging them to zero (at least not near the interface).
Consequently, even for simple planar interfaces, the coarsened basis functions do not
coincide with those we could obtain by construction directly on the coarse grid.

Numerical Results. A CFE multigrid solver using V5 (3, 3) cycles for scalar isotropic
discontinuous coefficients has been implemented with adaption of the coarsen-
ing weights so that the coarsened basis functions form a partition of unity. Fig-
ure 8.5 shows the convergence performance of this method compared to an SSOR-
preconditioned CG solver as one example of the solvers shown in Figure 7.9, and
a multigrid method using standard coarsening for affine FE on G¥ (which clearly
is not a generally useful approach for discontinuous coefficients across general in-
terfaces). Additionally, both multigrid methods cycles have also been applied as
preconditioners.

We observe that the multigrid preconditioning is not effective and that perform-
ing the coarsening described above (not surprisingly) takes longer than standard
coarsening. In the cases considered here, the multigrid method is effective and not
significantly slower than standard multigrid, but still outperformed by the SSOR-
preconditioned CG solver. Depending on geometry and (scalar) kink ratio we also
encountered cases where the multigrid solver diverged.

11 - v ‘ ] 1 7 7 ' 'SSOR-PCG - ]
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Figure 8.5. The plots compare the solver convergence of multigrid solvers and precondition-
ing using the coarsening scheme described here and standard affine FE coarsening, using a
logarithmic and a linear time scale. The same bone interfaces as in Figure 7.9 were used,
the scalar kink ratio was again x = 42. An SSOR-preconditioned CG solver outperforms all
multigrid-based solvers in this case.
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