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Abstract 

Virtual screening is an important tool in drug discovery that uses different 
computational methods to screen chemical databases for the identification of 

possible drug candidates. Most virtual screening methodologies are knowledge 
driven where the availability of information on either the nature of the target 
binding pocket or the type of ligand that is expect to bind is essential. In this 

regard, the information contained in X-ray crystal structures of protein-ligand 
complexes provides a detailed insight into the interactions between the protein 
and the ligand and opens the opportunity for further understanding of drug 

action and structure activity relationships at molecular level. Protein-ligand 
interaction information can be utilized to introduce target-specific interaction-
based constraints in the design of focused combinatorial libraries. Furthermore, 

such information can also be directly transformed into structural interaction 
fingerprints and can be applied in virtual screening to analyze docking studies or 
filter compounds. However, the integration of protein-ligand interaction 

information into two-dimensional compound similarity searching is not fully 
explored. Therefore, novel methods are still required to efficiently utilize 
protein-ligand interaction information in two-dimensional ligand similarity 
searching. Furthermore, application of protein-ligand interaction information in 

the interpretation of SARs at the ligand level needs further exploration. Thus, 
utilization of three-dimensional protein ligand interaction information in virtual 
screening and SAR analysis was the major aim of this thesis. The thesis is 

presented in two major parts. In the first part, utilization of three-dimensional 
protein-ligand interaction information for the development of a new hybrid 
virtual screening method and analysis of the nature of SARs in analog series at 

molecular level is presented. 

A new virtual screening hybrid methodology, termed the interaction 
annotated structural features, was introduced that assigns energy-based scores to 

two-dimensional substructures based on three-dimensional protein-ligand 
interaction information and utilize interaction-annotated features in virtual 
screening. Database molecules containing annotated fragments were assigned 

cumulative scores that serve as a measure of similarity to active reference 
compounds. In benchmark calculations on different high-throughput screening 
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data sets, the hybrid approach mostly performed better than conventional 
fragment-based two-dimensional fingerprint similarity searching and three-
dimensional docking calculations. 

On the other hand, to better understand how SAR discontinuity detected 
at the ligand level is reflected by three-dimensional protein-ligand interaction 
information, different compound series in combinatorial analog graphs were 

analyzed and substitution patterns that introduce activity cliffs were determined. 
The identified SAR determinants were then studied on the basis of three-
dimensional ligand-target X-ray crystal complexes to enable a structural 

interpretation of SAR discontinuity and underlying activity cliffs. The analysis 
showed that many discontinuous SAR features extracted from combinatorial 
analog graphs can be directly associated with experimental three-dimensional 

receptor-ligand interactions. However, this was not always possible and some 
substitution site patterns that introduce significant SAR discontinuity in analog 
series cannot be explained in structural terms. 

The second part of the thesis is focused on the application of different 
virtual screening methods for the identification of new cysteine and membrane-
bound serine proteases inhibitors. In addition, molecular modeling studies were 
also applied to analyze the binding mode of cyclic peptide inhibitors. 

Two major virtual screening campaigns were carried out to identify 
cathepsin K, cathepsin S and matriptase-2 inhibitors. While cathepsins K and S 
are cysteine proteases, matriptase-2 is a newly identified type II membrane-

bound serine protease. These proteases are considered to be important current 
pharmaceutical targets due to their involvement in bone resorption, immune 
response and iron metabolism, respectively. 

The first virtual screening application was focused at identification of 
dual cathepsin K and S inhibitors using a ligand-based compound mapping 
algorithm. By testing only 10 candidate compounds selected from a source 

database containing ~3.7 million molecules, two inhibitors of cathepsin K and S 
with new scaffolds were identified. Both inhibitors did not contain an 
electrophilic “warhead” that usually is present in most of the previously 

reported covalently interacting cathepsin inhibitors. 

In a second study, through structure-based virtual screening in 
combination with similarity searching and knowledge-based compound design, 

two N-protected dipeptide amides containing a 4-amidinobenzylamide were 
identified as the first small molecule inhibitors of matriptase-2 with Ki values of 
170 nM and 460 nM, respectively. An inhibitor of the closely related protease, 
matriptase-1 (Ki = 220 nM) with more than 50-fold selectivity over matriptase-2 

was also identified.  
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These newly identified inhibitors of the above proteases provide starting 
points for further chemical exploration of non-covalent cathepsins K and S 
inhibitors and non-peptidic matriptase-2 inhibitors. 

Finally, three new cyanobacterial peptides, brunsvicamides A-C, were 
identified as selective inhibitors of human leukocyte elastase (HLE) through 
enzyme-based screening assays. Further molecular modeling studies were 

performed to analyze the possible binding mode of the cyclic peptides. The 
results showed that the cyclic peptides bind into the active site of HLE by 
forming several putative intermolecular interactions and mimicking an 

experimentally determined binding mode of a similar cyclic peptide. 
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Chapter 1 

General introduction 

Drug discovery is a highly complex and costly process, which requires 
integrated efforts involving innovation, information technologies, expertise, 
research and development investments, and management (Gershell, 2003). The 

economic pressure to bring drugs to the market has forced the pharmaceutical 
industry to embark on a complex drug discovery paradigm: searching for a new 
gene, a new target, new lead compounds and new drug candidates (Oprea, 

2002). Discovery of innovative lead compounds is therefore, one of the key 
elements in a drug development project (Gershell, 2003; Kubinyi, 2007). 

Over the past decade, the pharmaceutical industry has made large 
investments to establish high-throughput screening (HTS) technology for the 

identification of novel hits. HTS comprises the screening of large chemical 
libraries for activity against biological targets via the use of automation, 
miniaturized assays, and large-scale data analysis. HTS has indeed substantially 

contributed to the drug-discovery pipelines (Fox et al., 2006; Mayr and Bojanic, 
2009). However, despite the great enthusiasm at the early stage, HTS has often 
also failed to identify active compounds that could be transformed into viable 

leads (Mestres, 2002; Stahl et al., 2002). 

The drug discovery process has also been advanced by the use of virtual 
screening (VS) methods to identify new active compounds. These methods have 

emerged as alternative and complementary approaches to experimental HTS 
(Bajorath, 2002; Mestres, 2002; Langer et al., 2009). Moreover, in silico drug 
design supports decisions at different steps of the drug discovery process, such 

as the identification of a biomolecular target of therapeutic interest, selection or 
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the design of new active compounds, and their modification to improve 
potency and pharmacokinetic and pharmacodynamic properties. For VS diverse 
computational methods and tools are used to identify, rank and select candidate 

compounds in large compound libraries. The purpose is to reduce the 
magnitude and complexity of the screening problem, and to focus drug 
discovery and optimization efforts on the most promising molecules having 

desired properties and/or biological activity (Bajorath, 2002; Schneider and 
Böhm, 2002; Jorgensen, 2004). 

In the initial phases of VS, filter criteria are often applied to eliminate 

compounds with undesired physicochemical properties such as the ‘rule of five’ 
(Lipinski et al., 2001) and/or presence of toxic or reactive structural fragments 
(Leeson et al., 2004; Chuprina et al., 2010). Since unfavorable in vivo properties 

(absorption, distribution, metabolism, excretion, and toxicity (ADMET)) of 
drug candidates frequently lead to attrition, increasing efforts are being made to 
define structural requirements for molecules to ultimately become drug 

candidates. (Lin et al., 2003; Kubinyi, 2007). 

Structure- and ligand-based methods 

In VS, there are two fundamental approaches. These are structure-based VS 

(SBVS), which mostly involves molecular docking and requires knowledge of 
three-dimensional (3D) structure of the target binding site (Lyne, 2002; Kitchen 
et al., 2004; Shoichet, 2004; Ghosh et al., 2006), and ligand-based VS (LBVS), 

which includes fingerprint based methods, similarity searching, quantitative 
structure activity relationships (QSAR), comparative molecular field analysis 
(CoMFA), and pharmacophore methods but does not require information on 
the target structure. 

LBVS methods extrapolate from known active compounds utilized as 
input information and aim at identifying structurally diverse compounds having 
similar biological activity. (Bender and Glen, 2002; Lengauer et al., 2004; Willett, 

2006; Eckert and Bajorath, 2007; Taft et al., 2008; Langer et al., 2009; Geppert 
et al., 2010). It is in part based on the similarity property principle (Johnson and 
Maggiora, 1990) stating that structurally similar molecules are expected to have 

similar biological activity. Moreover, in chemical space representations, similar 
compounds usually map to similar regions, in other words, their intermolecular 
distance is expected be small, which is consistent with the similarity concept 

(Eckert and Bajorath, 2007). 

Searching for compounds in databases that are similar to query 
molecules is one of the most widely applied LBVS approaches (Willett, 1998). 

Such similarity search methods are typically designed to capture structural 
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features and other properties of molecules in bit string format. Similarity search 
calculations are performed in “fingerprint space” (Eckert and Bajorath, 2007), 
which means that fingerprints are pre-calculated for query and database 

compounds and then quantitatively compared using various similarity metrics 
and coefficients such as the Tanimoto coefficient (Hert  et al., 2004). Molecular 
fingerprints consist of various descriptors that are encoded as bit strings. 

Fingerprint overlap between test compounds is regarded as a measure of 
molecular similarity. Thus, if the chosen coefficient reaches a pre-defined 
threshold value, compared molecules are considered to be similar not only in 

structure but also in activity. In many fingerprint designs, a bit position accounts 
for a specific substructural feature or property and the bit is set on if this feature 
is present in the molecule. Furthermore, value ranges of other molecular 

descriptors (e.g., molecular weight or the number of hydrogen bond acceptors) 
can also be incrementally encoded as bit strings (Xue et al., 2003). 

Structure-based virtual screening 

SBVS refers to the process of using the information contained in the 3D 
structure of a macromolecular target to design novel lead compounds that 
spatially fit the binding site forming energetically favorable intermolecular 

interactions (Lyne, 2002; Kitchen et al., 2004). Molecular docking (Kuntz et al., 
1982) is the most widely used SBVS method that computationally searches for a 
ligand to fit the binding site of a protein target. It can be used as a primary hit 

identification tool when only structure of a target and its binding site is available 
or as a lead optimization tool when modifications to known active structures 
can quickly be tested in computer models before compound synthesis (Kitchen 
et al., 2004; Sperandio et al., 2006). To date, over 60 docking programs and 

more than 30 scoring functions have been introduced (Sperandio et al., 2006; 
Moitessier et al., 2008). The most widely used docking software tools include 
AutoDock (Goodsell and Olson 1990; Morris et al., 1998), DOCK (Kuntz et al. 

1982), FlexX (Rarey et al. 1996) and Glide (Friesner et al. 2004). Each docking 
program relies on two complementary components: the proper positioning of 
the correct conformer of a ligand in the context of a binding site (posing) and 

its successful evaluation by a scoring function (scoring) (Kitchen et al., 2004; 
Sousa et al., 2006; Moitessier et al., 2008; Schulz-Gasch and Stahl, 2004; Leach 
et al., 2006). 

Despite large efforts to improve the effectiveness of docking tools they 
often display inconsistent performance (Kitchen et al., 2004). In this context 
scoring represents the major problem, the reasons for this include (i) inadequate 

treatment of electrostatics, electronic polarization and aqueous desolvation, (ii) 
lack of accounting for entropy changes on accompanying binding, (iii) 
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insufficient ligand conformer sampling, and (v) the assumption of a rigid 
protein (Kitchen et al., 2004; Warren et al., 2006; Sousa et al., 2006; Moitessier 
et al., 2008; Kim and Skolnick; 2008). In recent years, it has been attempted to 

improve the performance of molecular docking and scoring by using new and 
advanced algorithms that take receptor plasticity, solvation and entropy into 
account (Schulz-Gasch and Stahl, 2004; Leach et al., 2006). The use of targeted 

scoring functions that are extended and recalibrated for a specific target or 
target class has been shown to further increase the performance of general 
scoring function (Seifert, 2009). 

Integration of LBVS and SBVS methods 

LBVS and SBVS methods have been extensively utilized in drug design. 
Although the performance of VS methods is database and target protein 

dependent, several studies have shown that ligand based similarity searches are 
much more efficient than SBVS methods (Merlot et al., 2003; McGaughey et al., 
2007; Hawkins et al., 2007; Tan et al., 2008). However, LBVS approaches often 

identify compounds that are structurally similar to the training set compounds, 
making it more difficult to identify novel chemotypes. On the other hand, as 
discussed above, docking methods are limited by the accuracy of the scoring 

function (Kitchen et al., 2004; Sperandio et al., 2006; Kim and Skolnick; 2008). 
Therefore, approaches to efficiently combine the two methods are highly 
desired because both ligand similarity and binding site information can be 

simultaneously utilized to maximize VS information content.  

For example, LBVS and SBVS can be used sequentially where ligand-
based screening methods are initially used to reduce the size of a large 
compound database to a reasonable number for structure-based design by 

molecular docking (Kitchen et al., 2004). It is also possible to integrate ligand 
information with docking where candidate compounds from similarity searching 
are instantly subjected to docking, enabling pre-computed ligand similarities to 

be incorporated into the docking and scoring process (Vidal et al., 2006). 
Another hybrid approach, that uses ligand-based scoring, compares the shape 
and chemical features of a candidate compound with a 3D reference ligand 

(Zavodszky et al., 2009). 

In this thesis, both LBVS and SBVS methods were applied to identify 
new inhibitors of selected potential drug targets, including two cysteine 

proteases and a membrane bound serine protease. Two major VS campaigns 
were carried out to identify cathepsin K and S dual inhibitors and matriptase-2 
inhibitors. These proteases are considered to be important current 

pharmaceutical targets due to their involvement in bone resorption (Blair and 
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Athanasou, 2004; Stoch and Wagner, 2008), immune response (Driessen et al., 
1999; Honey and Rudensky, 2003) and iron metabolism (Du et al., 2008; 
Finberg et al., 2008; Melis et al., 2008; Ramsay et al., 2009), respectively. 

Understanding and utilizing of protein ligand interactions 

Understanding the guiding principles of interactions between a target protein 

and a ligand is of paramount importance in drug design (Böhm and Klebe, 
1996; Böhm and Schneider, 2003). Both strength and specificity of protein-
ligand interaction arise from the accumulation of many forces between the 
ligand and the protein target such as electrostatic interaction, hydrogen bonding, 

van der Waals interactions, cathion-π interactions, metal complexation, and 
hydrophobic effects (Böhm and Klebe, 1996; Böhm and Schneider, 2003; 
Whitesides and Krishnamurthy, 2005). Knowledge of the 3D structure of a 

protein target and its ligand-binding site is a fundamental step in understanding 
the properties and function of the protein and molecular recognition 
mechanisms (Böhm and Schneider, 2003). In this regard, the crystal structure of 

a ligand bound to a protein target provides detailed insights into intermolecular 
interactions. The 3D interaction information can also be extracted and utilized 
to improve the performance of conventional two-dimensional (2D) fingerprint-

based similarity search methods. Attempts have recently been made to directly 
and indirectly capture protein-ligand interaction information extracted from 3D 
complex structures for application in VS (Tan et al., 2008b; Tan and Bajorath, 

2009, Deng, et al., 2004, Kelly and Mancera, 2004, Chuaqui et al., 2005; Singh et 
al., 2006; Marcou and Rognan, 2007). 

In this thesis, it is also described how ligand-target interaction 
information can be utilized to complement conventional 2D similarity search 

methods. A new methodology is introduced to extract 3D interaction 
information on a per-atom basis and use it for scoring. Annotated substructures 
can then be applied in VS (Crisman et al., 2008). 

Structure-activity relationships 

The relationship between chemical structure and biological activity of 

molecules, termed structure-activity relationship (SAR), is one of the most 
important aspects in drug design. The observed specific biological activity of a 
ligand, to the most extent, is governed by 3D intermolecular interactions with a 
macromolecular target. Therefore, small-molecule SAR studies should also take 

knowledge of specific protein-ligand interactions into consideration (Bender and 
Glen, 2002). As discussed above, protein-ligand binding is determined by the 
existence of specific intermolecular interactions of different chemical nature, 
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shape complementarities and other entropic effects (Böhm and Klebe, 1996; 
Bender and Glen, 2002; Eckert and Bajorath, 2007). It is also known that a 
single interaction, such as a hydrogen bond, can dramatically alter the selectivity 

and/or potency of a compound. This can account for abrupt changes in the 
biological response to minor chemical modifications of active compounds in 
analogs. Hence, information obtained from X-ray crystal structures of ligand-

target complexes of analogs might provide critical information for structural 
interpretation of the nature of SARs. 

In this thesis, to better understand SAR discontinuity at the molecular 

level of detail, different compound series were studied in a data structure termed 
combinatorial analog graphs and substitution patterns that introduce activity 
cliffs of varying magnitude were determined. So identified SAR determinants 

were then analyzed on the basis of 3D ligand-target X-ray crystal structures to 
enable a structural interpretation of SAR discontinuity and underlying activity 
cliffs. 

. 
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1.2. Goals and approaches 

The major focal point of this thesis project have been the development of new 
VS methods, analysis of SARs in analog series, and practical application of 

virtual screening methodologies for the identification of new inhibitors of 
selected cysteine proteases and a membrane-bound serine protease. The major 
goals of the thesis include: 

Goal 1: Utilization of protein-ligand interaction information to develop 
new ligand-target interaction-based 2D similarity searching method; 

Goal 2: Identification of SAR determinants in analog series using 
combinatorial analog graphs and subsequent analysis of activity cliff 

determinants based on 3D ligand-target interaction information; 

Goal 3: Practical application of virtual screening methods for the 
identification of new inhibitors of selected pharmaceutical targets namely, 

cathepsin K, cathepsin S and matriptase-2; and 

Goal 4: Enzyme inhibition assay and molecular modeling studies on three 
cyclic peptides against human leukocyte elastase and related enzymes. 
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1.3. Thesis Outline 

The thesis is presented in two parts. The first part reports the development of a 
new VS method and analysis of SARs in analog series using 3D protein-ligand 

interaction information. This part is divided into two chapters, chapters 2 and 3. 

Chapter 2 focuses on the methodology and results of a new hybrid 
2D/3D virtual screening approach termed here the interaction annotated 

structural features (IASF) method. Details on method development and 
performance evaluation in real HTS datasets are presented. 

In Chapter 3, the nature of SAR discontinuity in analog series is analyzed 
at the level of protein-ligand interaction. 

The second part of the thesis focuses on the practical application of 
different VS methods for the identification of new inhibitors of selected novel 
protein targets. The results are summarized in chapters 4 and 5 

Chapter 4 presents application of a LBVS study to identify dual inhibitors 
of two cysteine proteases, cathepsins K and S. 

In Chapter 5, details of the results of combined LBVS and SBVS efforts 

to identify new inhibitors of human matriptase-2 are reported. 

Chapter 6 reports screening results and molecular modeling studies on 
three analogous cyanobacterial cyclic peptides against human leukocyte elastase. 

Finally, Chapter 7 summarizes the major results and presents general 
conclusions of the dissertation. 
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Chapter 2 

Integration of protein-ligand 
interaction information into 2D 
substructures for virtual screening 

The first part of the thesis, presented in chapters 2 and 3, reports studies carried 
out on VS method development and analysis of determinants of structure 
activity relationship discontinuities identified by combinatorial analogue graphs 
utilizing 3D protein-ligand interaction information. This chapter summarizes 
the development of a new VS methodology, the interaction annotated structural 
features (IASF) method (Crisman et al., 2008) and the next chapter presents SB 
interpretation of determinants of SAR discontinuities (Sisay et al., 2009a). 

2.1 Introduction 

A veritable plethora of chemical descriptors have been devised over the years, 
and, intuitively, one would think that those reflecting the 3D properties of a 
molecule would be more effective because the binding of a small molecule to a 
protein target is a 3D-dependent event. However, this is not always the case 
because most 3D-based methods, including molecular docking, rely on 
computational simplifications that significantly reduce the efficacy of the 
analytical process thereby making them less effective than 2D-based techniques, 
such as those that employ chemical substructures (Merlot et al., 2003). Similar 
trend has been observed when comparing molecular docking with simple 2D-
based similarity methods (Tan et al., 2008) or with 3D ligand centric shape 
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matching (Hawkins et al., 2007, McGaughey et al., 2007). Nevertheless, since 
binding of a ligand to a target protein (protein-ligand interaction) is certainly a 
3D event, which involves the 3D chemical and geometric complementarities of 
surfaces of both interacting molecules, efficient application of a 3D method 
might be more appropriate for defining molecular similarity. 

Taking this fact in to consideration, devising novel methods that 
indirectly combine or encode 3D protein-ligand interaction information into 2D 
similarity search approaches would maximize on the performance of 2D-based 
screening methods by focusing on matching of interacting substructural 
features. It can potentially be used to retrieve compounds with low structural 
similarity but contain the most important interacting substructural features that 
are critical for the successful interaction of the ligand with the target protein. 

2.1.1 Protein-ligand interactions 

The crystal structure of a protein-ligand complex provides a detailed insight into 
the interactions between the protein and the ligand. The interaction information 
can be used to identify where the ligand can be changed to improve the activity, 
physicochemical or ADMET properties of the compound, by identifying which 
parts of the compound are important for activity and which parts can be altered 
without affecting ligand binding. This can be further extended to map the 
specific substructures of the ligand which account most of the energetic 
contributions for biding. Such substructural features derived from protein-
ligand interaction can be used to prioritize substructures in 2D similarity search 
methods. Therefore, combining or encoding 3D protein-ligand interaction 
information into 2D-based search methods will allow the use of valuable 
information in a more quantitative and objective way. Such combinations of 
computational approaches have been utilized in different cases to augment the 
capabilities of the individual methods such as SB pharmacophore searches 
derived from protein-ligand X-ray crystal structures (Griffith et al., 2005) and 
application of docking derived interaction information to ligand similarity 
searching (Briem and Kuntz, 1996). 

Based on this basic idea, an effort was made to develop an alternative 
approach to conventional 2D fragment mapping that takes 3D protein-ligand 
interaction information into account. Interaction fingerprints have previously 
been reported that encode specific protein-ligand interaction information (Deng 
et al., 2004; Kelly and Mancera, 2004; Chuaqui et al., 2005; Singh et al., 2006; 
Marcou and Rognan, 2007; Pérez-Nueno et al., 2009). However, different from 
such representations, the aim of this work was designing a ligand-centric 
fragment approach that utilizes ensembles of 2D structural features and 
quantitatively annotates them with protein-ligand interaction information. For a 
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set of active reference molecules, interactions in crystallographic protein-ligand 
complexes are scored on a per-atom basis using an energy function and the 
atom-based scores are added to substructural features calculated for ligands 
using the extended connectivity fingerprints (ECFPs)1. The so derived sets of 
annotated substructures are used for database searching and subsequent 
ranking. In this chapter, a new VS methodology, the Interaction Annotated 
Structural Features (IASF) method, which utilizes protein-ligand interaction 
information to evaluate or rank database compounds based on 2D structural 
features, is reported.  

2.1.2 Structural fingerprints 

The use of molecular substructures or fragments has been extensively applied in 
computer-aided drug design and chemoinformatics, and has a long history in 
chemical and pharmaceutical research (Xue and Bajorath, 2000; Merlot et al., 
2003; Mauser and Stahl, 2007; Hajduk and Greer, 2007; Congreve et al., 2008). 
Fragments are among the most popular molecular descriptors for compound 
clustering, in studying structure-activity relationships or database searching (Xue 
and Bajorath, 2000; Merlot et al., 2003) and are frequently used for 2D 
similarity-based or 3D SB de novo compound design (Mauser and Stahl, 2007). 
Furthermore, they often serve as building blocks for SB ligand design (Hajduk 
and Greer, 2007) and other fragment linking schemes (Crisman et al., 2008). 
Substructural fragments can also be used in the identification of new building 
blocks rich in biological motifs that can be utilized for synthesis planning 
(Lewell et al., 1998). 

Fingerprints are bit-string representations of molecular substructures and 
properties. They represent a particularly popular format of fragment descriptors 
and are widely applied in compound clustering (Brown and Martin, 1998) and 
similarity searching (Willett et al., 1998; Willett, 2006). Structural fingerprints 
designed for similarity searching can essentially be either hashed connectivity 
pathways, structural dictionary-based or layered atom environments (Eckert and 
Bajorath, 2007). In the context of this work, two categories were considered; 
dictionary-based (keyed fingerprints) and layered atom environments (feature 
collections). Keyed fingerprints typically have a fixed format where each bit 
position is associated with a particular fragment whose presence or absence in a 
test molecule is monitored. They register the presence or absence of a 
substructure by a 1 or 0 in the corresponding position in a bit string (Figure 
2.1). Pioneering developments of such fragment dictionary-based fingerprints 
include MACCS structural keys (Durant et al., 2002) or BCI fingerprints 
                                                            
1
 Fingerprint methods, software and databases used in this thesis are provided in Appendix A 
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(Barnard and Downs, 1997). Recently, keyed fingerprints having a more variable 
format have also been introduced that encode varying numbers of compound 
class characteristic substructures (Batista and Bajorath, 2007). 

 

Figure 2.1: Keyed fingerprints. The substructural features of a molecule are coded as bits in a 

fixed length bit-string and each bit position monitors the presence or absence of a specific 

substructural feature (such as a carbonyl, an amide bond, tertiary nitrogen or a saturated or 

unsaturated ring system) by recording as 1 or 0, respectively. 

The second class of structural fingerprints, termed here feature 
collections, essentially represent layered atom environments that are 
systematically calculated for test molecules and recorded as individual strings or 
features. Since the number of accessible atom environments (and thus strings) 
can become exceedingly large, environments cannot be assigned to pre-defined 
bit positions, but are stored as individual sets of features. Thus, in contrast to 
keyed fingerprints, varying numbers of strings are generated for different test 
molecules. Similarity measures are then defined using set operators. For 
example, the intersection between two sets would correspond to the number of 
shared “1” bit positions in a keyed fingerprint. Pioneering designs of structural 
atom environment fingerprints include Molprint2D (Bender et al., 2004a; 
Bender et al., 2004b) or Scitegic’s Extended Connectivity Fingerprints (ECFPs) 

implemented in the Pipeline Pilot software. 

For the generation of ECFPs, a code is assigned to each non-hydrogen 
atom consisting of its mass, valence, atom charge, atom type and the number of 
bonds to other atoms (to hydrogens and non-hydrogens). The atom code is 
combined with bond information and codes of neighboring atoms through a 
hashing procedure; features are sampled iteratively until a pre-defined bond 
diameter (layer) is reached (Figure 2.2). These features represent substructures 
and are recorded as large integers for each molecule and duplicates are removed. 
Information gain diminishes at higher iteration. 
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Figure 2.2: Generation of ECFP fingerprints. Initially, a code is assigned to each non-hydrogen 

atom consisting of its mass, atom charge, bond-type and atom-type. The atom code is 

combined with bond information and codes of neighboring atoms through a hashing 

procedure. Following that, features are sampled iteratively until a pre-defined bond diameter 

(layer). Arbitrary iteration layers and the resulting features are shown. 

2.1.3 Similarity searching 

Similarity searching using fragment-type fingerprints is a typical LB 2D mapping 
procedure. Fingerprints of reference molecule(s) are calculated and compared to 
corresponding fingerprints of database compounds; fingerprint overlap 
(corresponding to the number of shared fragments) is quantified via a similarity 
coefficient. Various similarity metric exist that return a score indicating the level 
of similarity between two molecules under comparison (Willett, 1998; Eckert 
and Bajorath, 2007) termed similarity coefficients. The Tanimoto coefficient 
(Tc) (Willett, 1998; Hert et al., 2004a; Hert et al., 2004b) is often used as a 
similarity measure and is calculated by taking the ratio between intersection and 
union of the bit sets of features between two compounds. Considering two 
molecules A and B, if a is the number of features present in A (bits set on in A), 
if b is the number of features present in B (bits set on in B), and if c is the 
number of features common to both molecules (bits set on in both A and B), 
the Tc for the two molecules is given as: 
 

 

It has a range between 0 (indicating dissimilar molecules) and 1 (similar 
molecules) but does not necessarily mean the molecules are identical. 

(2.1) 
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2.2 Methodology 

The different steps involved in IASF calculations are summarized in Figure 2.3 
and its key aspects are highlighted in Figure 2.4. A set of ligands available in 
crystal structures of protein-ligand complexes were selected and each protein-
ligand complex was scored using the FlexX scoring function (Rarey et al., 1996; 
Rarey et al., 1997). The scoring gives detailed energy values of individual heavy 
atoms in a ligand. In parallel, ECFP4 structural features were generated for the 
selected ligands and were annotated with energy scores reflecting atomic 
contributions to interaction energies obtained from the FlexX per-atom scores. 
Database compounds were screened for corresponding features and obtain 
cumulative energy scores based on the features they contain. This produces a 
compound ranking by increasing cumulative scores that are utilized as a measure 
of similarity between active and database compounds (pipeline pilot script 
generation and data analysis was performed together with T. J. Crisman). It 
would be considerably more difficult to determine cumulative score cutoff 
values as an indicator of activity, due to the compound set dependence of 
feature annotation and the relatively small size of the available crystallographic 
reference sets. Accordingly, as a basis for compound selection, a ranked list in 
the case of IASF is expected to be less error prone than pre-defined threshold 
values. 
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Figure 2.3: Outline of the IASF approach. A flow diagram showing the different steps involved 

in fragment generation, interaction-based scoring and database searching. Detailed descript-

ion is given and the major steps are summarized in the right boxes. 
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Figure 2.4: Illustration of the flow chart of the IASF method. In the upper left, the crystal 

structure of the inhibitor complex is shown (PDB ID 1SVG). The representation in the upper 

right focuses on a hydrogen bonding interaction involving carbonyl oxygen (atom number 18). 

The structure of the inhibitor is displayed in the right center. Carbonyl oxygen 18 is part of an 

ECFP4 feature computed for the ligand (consistently shown in magenta). Examples of ECFP4 

features are shown at the middle bottom. On the basis of the calculated atom-based energy 

scores, the total score for the highlighted feature is obtained. If a database compound is found 

to contain this feature, it is assigned a score of -14.33. 

2.2.1 Data set 

The reference data set was assembled from the PDBbind database (Wang et al., 
2004; Wang et al., 2005), an online accessible compilation of protein-ligand 
complexes extracted from the Protein Data Bank (PDB) (Berman et al., 2000). 
Reference ligands were selected from the “refined” subset of the PDBbind, 
which provides high-quality ligand structures selected for comparison of SBVS 
methods. Structural feature ensembles of ligands in complex crystal structures 
were generated using extended connectivity fingerprints with a bond radius of 
four (ECFP4) using the Scitegic Pipeline Pilot Student edition(v6.1.5.0), a 
program that serves as the connection of multiple pieces of software from 
different vendors, thus building a “pipeline”. 

Atom 
Number 

Atom 
Scores 

2 -2.48 

13 -0.73 

16 -0.47 

17 -0.62 

18 -5.22 

19 -2.60 

20 -0.48 

24 -1.73 

Score sum -14.33 

 

FlexX 

ECFP4 features 
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For the analysis, complex crystal structures of five target proteins with 
multiple ligands were chosen for which HTS data sets were also publicly 
available. The target systems include c-jun N-terminal kinase 3 (JNK), heat 
shock protein 90 (HSP), human immunodeficiency virus reverse transcriptase 
(HIV), protein kinase A (PKA), and thrombin (THR). For each protein, 
complexes with different inhibitors available in the PDB were selected, as 
summarized in Table 2.1. The 2D structures of the active reference compounds 
with the corresponding PDB codes are provided in Appendix B. Five screening 
datasets, one for each target protein, were obtained from the PubChem public 
database. These data sets ranged in size from ~60,000 (JNK) to ~217,000 
(THR) tested compounds and contained between 62 (PKA) and 390 (HIV) 
biologically active hit compound. 

Table 2.1: Target proteins and screening data set. 'Screening IDs' reports the PubChem 

bioassay identifiers and 'Total actives' and 'Total inactives' the number of hits and inactive 

compounds in each screening dataset, respectively. 'Inactive subset' gives the number of 

randomly selected inactive compounds used as background for VS calculations and 'PDB IDs' 

contains the list of protein-ligand complexes used. 

Target 
protein 

Screening 
IDs 

Total 
actives 

Total 
inactives 

Inactive 
subset 

PDB IDs 
Docking 
template 

PKA 524, 548 62 64,814 6,456 

1Q8T, 1RE8, 
1REJ, 1REK, 
1YDS, 1YDT, 
2ERZ, 1SVE, 
1SVG, 1SVH 

1XH8 

THR 
1046, 
1215 

223 216,693 21,929 
1WAY, 1WBG, 
2C8W, 2C8X, 
2C8Y, 2C90, 2C93 

1A4W 

HIV 565, 651 390 63,969 6,066 

1C0T, 1C0U, 
1KLM, 1RT1, 
1RT2, 1RTH, 
1RTI, 1TKT, 
1TKX, 1TKZ, 
1TL1, 1TL3 

1RTH 

HSP 595 300 66,228 6,548 
1UY7, 1UY8, 
1UYC, 2VCI, 
2VCJ 

2BYI 

JNK 746 366 59,422 5,883 

1JNK, 1PMN, 
1PMQ, 1PMU, 
1PMV, 2B1P, 
2EXC, 2O0U, 
2O2U, 2OK1 

2B1P 

 



 

18|Chapter 2 

2.2.2 Atom-based scoring of protein-ligand interaction 

Most flexible molecular docking programs utilize a scoring function as a 
measure of the free energy of binding to rank poses generated for a single ligand 
or ranking of different ligands relative to a receptor protein. It can also be used 
to analyze protein-ligand complexes to get detailed atom-based interaction 
information. The major challenge of scoring functions is among others, the 
failure to accurately predict solvation and entropy effects. But the effect of these 
two factors can be further simplified by taking individual terms of the scoring 
function that account for each atom of the ligand instead of taking the whole 
ligand. Therefore, to obtain scores of substructural features generated from X-
ray crystal structure of protein-ligand complexes, individual components of the 
FlexX scoring function were used (Rarey et al., 1996; Rarey et al., 1997; Kramer 
et al., 1999). The FlexX scoring function is based on an empirical function, first 
reported by Böhm (Böhm, 1994), that estimates the free energy of binding. It is 
given as a sum of five different contributions: 

 

Figure 2.5: The FlexX scoring function. f(∆R, ∆α) is a scaling function penalizing deviations 

from the ideal geometry, and Nrot is the number of free rotatable bonds that are immobilized 

in the complex. The terms ∆Ghb, ∆Gio, ∆Grot, ∆Garo and ∆G0 are adjustable parameters 

accounting for the individual free energy contributions of the different interaction types. 

The equation divides hydrogen-bond, salt bridge, and nonpolar 
interaction distances into a small number of discrete bins. Energy is assigned to 
each interaction based on which bin it occupies. Additional terms in the 
function are both entropic as well as enthalpic in nature, and consider the effect 
of buried surface area and the number of rotatable bonds in the ligand. 

The scoring components are further divided in to 'match score' 
accounting for neutral hydrogen bonds, ionic and aromatic interactions as well 
as the 'contact score' accounting for lipophilic and van der Waals contacts. For 
example, the FlexX scoring function assigns an energy score of -4.7 kJ/mol to 
an ideal hydrogen bond, -8.7 kJ/mol to a strong ionic interaction, and -0.17 
kJ/mol to a nonpolar van der Waals contact (for fragment scoring, energy units 
were omitted). Energy score components were selected that could be separated 
into per atom contributions in a meaningful manner. 

Prior to scoring, the active site region for each ligand was defined by 
including residues within a 6.5 Å radius around each ligand atom. This radius 
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was chosen in order to ensure that longer range interactions were also taken 
into account. 

2.2.3 Feature annotation 

For each ligand, the calculated energy score components were summed up for 
individual atoms using in-house python-based parsing script that parses the 
original FlexX raw energy scores. This enables the scoring of ECFP features 
generated from the reference set. ECFP4 features are by design in part 
overlapping and each feature must be independently annotated with the 
interaction information. For each ECFP4 feature, contributions of participating 
atoms were summed to generate the feature score. Features only occurring in a 
single ligand within an activity class were not included in the analysis and not 
scored. For features generated by multiple ligands, individual feature scores 
were averaged to obtain an activity class feature score. 

2.2.4 Calculations 

For comparison of other methods with the new method, IASF, standard 
fingerprint search calculations were carried out using the ECFP4 features and 
MACCS keys applying the Tc coefficient as a weighing criterion. Each HTS data 
set was searched using the crystallographic inhibitors as reference molecules and 
the recall of active compounds among the by-Tc similarity top-ranked 500 
screening set compounds was monitored. Enrichment factors over random 
selection were also calculated. As a fingerprint search strategy for multiple 
reference compounds, 1-NN nearest neighbor searching (Hert et al., 2004) was 
applied for both fingerprints. This means that for each screening set compound, 
the Tc similarity to each of the reference molecules is calculated and the highest 
value is selected as the final similarity score. In addition to similarity searching, 
flexible docking calculations were also carried out using the FlexX docking 
software applying the default parameter settings. In order to meet the 
computational expense of these calculations and enable a direct comparison 
with the LB methods, approximately 10% of the total number of inactive 
compounds were randomly selected from each HTS set (Table 2.1) and all hits 
were added. These subsets were used for all (i.e. IASF, fingerprint, docking, and 
substructure search) calculations. As docking template, the target protein with 
highest crystallographic resolution available in the PDB was used after removal 
of the bound ligand and bound crystal water molecules if any (Table 2.1). To 
rule out simple substructure matching, IASF calculations were also compared to 
substructure searching. For this purpose, maximum common substructures 
were extracted from the crystallographic ligands sharing identical or similar 
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scaffolds. These substructures were then used to search the screening sets and 
retrieve all molecules containing or sharing the substructures. 

2.3 Results and Discussion 

2.3.1 The Interaction Annotated Structural Features (IASF) 

method 

Molecular fragments are typically used as binary (“present/absent”) descriptors 
in molecular similarity research, but have also been applied in weighted form, 
(Gillet and Willett, 1998; Durant et al., 2002; Jorgensen et al., 2006), for 
example, by calculating their frequency of occurrence in active compounds. The 
underlying idea of the IASF approach is to go beyond statistical analysis of 
fragment distributions and directly incorporate protein-ligand interaction 
information in fragment-based VS calculations. This enables the direct 
combination of 2D ligand similarity searching with 3D protein-ligand 
interaction information. 

Incorporation of experimental protein-ligand interaction information 
into fragment matching is facilitated through the application of an energy 
function. The accuracy of energy-based scoring functions in SBVS is generally 
limited (Kitchen et al., 2004; Leach et al., 2006). In IASF calculations, partly 
overlapping structural features are scored focusing on selected interactions 
without the need to calculate a global free energy minimum, which represents 
the major limitation of scoring functions due to failure to accurately estimate the 
solvation, desolvation and entropy effects. Conceptually, IASF is best 
rationalized as a hybrid approach that combines 2D fragment matching with 3D 
protein-ligand interaction-based fragment weighting. Cumulative scoring on the 
basis of atom-based interaction energy values balances these contributions. 

2.3.2 Analysis of the IASF method 

As reported in Table 2.1, between five (HSP) and 12 (HIV) different 
crystallographic ligands were used as reference molecules for feature generation 
and scoring. Comparable or larger numbers of complex structures with different 
ligands are available for a variety of target proteins in the PDB that could be 
subjected to IASF analysis. However, the choice of targets was largely 
determined by the availability of HTS data because it was intended to evaluate 
the approach on experimental screening data sets. Compared to artificially 
assembled compound benchmarking sets, screening data sets generally provide a 
more realistic and challenging basis for method comparisons because screening 
sets consist of experimentally confirmed active and inactive molecules. In 
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addition, screening hits are usually structurally diverse and chemically less 
complex than highly optimized active compounds that are often used for 
benchmarking and easier to distinguish from database compounds than 
screening hits. 

In principle, IASF analysis can be carried out using any fragment 
ensembles and energy functions. Extended connectivity fingerprints were used 
here because they generate feature sets for individual molecules that are more 
specific than for example, pre-defined fragment dictionaries. Furthermore, the 
FlexX scoring function was chosen for two reasons. FlexX energy component 
values can be easily parsed into individual atomic contributions and, in addition, 
the FlexX scoring function emphasizes both uncharged and charged hydrogen 
bond interactions. The latter aspect was considered important for feature 
annotation because we intended to primarily capture molecular recognition and 
specificity determinants that can be directly assigned to ligand fragments. By 
contrast, 3D scoring shape complementarity between ligand and target is 
difficult on the basis of 2D substructures and is here only partly and indirectly 
accounted for through the inclusion of non-polar van der Waals contacts (and 
steric overlap penalties). 

The feature and score distributions for the five compound classes are 
reported in Table 2.2 blow. Between 74 (HSP) and 110 (PKA) annotated 
ECFP4 features were generated per ligand set. These features were used for 
IASF similarity searching, as discussed below. 

Table 2.2: Feature and score distributions. 'Annotated Features' gives the total number of 

accepted ECFP4 features per compound reference set (i.e. features occurring in at least two 

reference molecules) and 'Features per Ligand' the average number of generated features per 

crystallographic reference molecule. 'Atoms min' and 'max' give the minimum and maximum 

number of atoms per feature, respectively. 'Score min', 'max', and 'avg' report the minimum 

(best), maximum, and average scores per reference set, respectively. 

Target 
protein 

Annotated 
features 

Features 
per ligand 

Atoms 
min 

Atoms 
max 

Score 
min 

Score 
max 

Score 
avg. 

PKA 110 10.0 1 10 -18.29 -0.32 -6.91 

THR 79 11.2 1 11 -11.58 -0.13 -3.65 

HIV 93 7.8 1 10 -15.33 -0.33 -5.71 

HSP 74 14.8 1 9 -14.13 -0.14 -4.38 

JNK 105 10.5 1 10 -23.97 0.00 -5.50 

 

The average number of features per ligand ranged from 7.8 (HIV) to 
14.8 (HSP), and individual features contained between one and 11 non-
hydrogen atoms. Feature scores were of comparable magnitude for the different 
ligand sets and in each case, features were found with scores close or equal to 
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zero (which means that they were essentially not involved in interactions 
accounted for by the score components). This gives a clear map of interacting 
and non-interacting fragments which can be used to directly apply the score 
annotated ligand fragments as fingerprints for use in similarity searching. 

2.3.3 Evaluation of the performance of IASF 

Following feature generation and annotation, IASF was applied to mine 
compounds from five HTS data sets. The performance of IASF was then 
compared with the selected reference methods, ECFP4 and MACCS fingerprint 
similarity searching and FlexX molecular docking. The results are summarized 
in Figures 2.6 - 2.10 below. 
 

(a) 

 

(b) 

 

Figure 2.6: Virtual screenings trials for PKA. Two graphs are shown that report recall curves 

(a) and enrichment factors (b) for search calculations using IASF and the selected reference 

methods. The color coding of the respective graphs is described in the legend. 
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(a) 

 

 

 

(b) 

 

Figure 2.7: Virtual screenings trials for THR. Two graphs are shown that report recall curves 

(a) and enrichment factors (b) for search calculations using IASF and the selected reference 

methods. The color coding of the respective graphs is described in the legend. 
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(a) 

 

 
 

(b) 

 

Figure 2.8: Virtual screenings trials for HIV. Two graphs are shown that report recall curves (a) 

and enrichment factors (b) for search calculations using IASF and the selected reference 

methods. The color coding of the respective graphs is described in the legend. 
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(a) 

 

 
 

(b) 

  

Figure 2.9: Virtual screenings trials for HSP. Two graphs are shown that report recall curves 

(a) and enrichment factors (b) for search calculations using IASF and the selected reference 

methods. The color coding of the respective graphs is described in the legend. 
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(a) 

 

 

 

(b) 

 

Figure 2.10: Virtual screenings trials for JNK. Two graphs are shown that report recall curves 

(a) and enrichment factors (b) for search calculations using IASF and the selected reference 

methods. The color coding of the respective graphs is described in the legend. 

As expected, these screening sets provided challenging test cases for all 
methodologies. Active compounds were retrieved in essentially all calculations 
but their frequently was only a two- to three-fold enrichment over random 
selection. IASF produced overall highest compound recall and enrichment 
factors in three of the five cases, PKA, THR, and HIV. In the case of PKA 
(Figure 2.6a and b), IASF clearly dominated the calculations. On THR (Figure 
2.7a and b), IASF outperformed the reference methods for small selection sets. 
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For HIV (Figure 2.8a and b), only IASF and docking calculations produced 
meaningful recall and enrichment factors. IASF performance was lowest in the 
case of HSP (Figure 2.9a and b) where only five crystallographic ligands were 
utilized for fragment generation and annotation. However, IASF was 
consistently superior to ECFP4 in this case. Here docking produced highest 
recall followed by MACCS keys. For JNK (Figure 2.10a and b), IASF produced 
highest recall of hits and enrichment factors for the first 50 screening set 
compounds. For larger sets, ECFP4 searching produced higher recall but the 
enrichment factors were comparable. Overall, IASF performed best on these 
five test cases, in particular, for small compound selection set sizes. Importantly, 
the performance of IASF was generally superior to ECFP4 searching, although 
ECFP4 generated a total of approximately 300 to 500 features for each of the 
five reference sets (compared to between 74 and 110 annotated IASF features). 
In four of the five cases, IASF was also superior to docking calculations. These 
findings demonstrate the gain in target-specific information achieved by 3D 
interaction annotation of ECFP4 features. IASF calculations displayed a notable 
tendency to enrich active compounds in relatively small database selection sets. 
This behavior suggests that annotation with interaction information renders 
search calculation specific for subsets of active compounds that engage in 
similar interactions. Thus, as intended, IASF calculations focus search 
calculations on selected structural features (and thereby depart from general 
structural feature matching). 

2.3.4 Comparison of IASF and substructure searching 

For comparison and to rule out any random substructure matching in the IASF 
method, substructure search calculations were performed using the largest 
common substructures shared by subsets of crystallographic reference ligands 
containing similar scaffolds. The results indicated that the substructure search 
calculations essentially failed to retrieve active compounds from the screening 
sets. The results are summarized in Table 2.3. 
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Table 2.3: Summary of the maximum common substructure searching results. Substructures 

and number of active and inactive compounds retrieved for (a) PKA, (b) THR, (c) HIV, (d) HSP 

and (e) JNK. 'No. of ligands' reports the number of crystallographic ligands from which the 

displayed maximum common substructure was derived. 'No. of actives retrieved' and 'No. of 

inactives retrieved' give the number of hits and inactive compounds retrieved from each 

screening set, respectively. In contrast to virtual screening calculations, the entire screening 

sets were used for the substructure searching. 

(a) 

No. of ligands Max. Common 
substructure 

No. of actives 
retrieved 

No. of inactives 
retrieved 

2 

OH

O

O

NHH
N

O

HO

O

 

0 0 

5 

O

OH

O
 

0 1 

5 
O

OH

 

0 5 

 
(b) 

No. of ligands Max. Common 
Substructure 

No. of actives 
retrieved 

No. of inactives 
retrieved 

2 

OH

NH

Cl

HN

O

S

O

O

 

0 0 

3 

OH

NH
HN

O

S

O

O

 

0 0 

4 

OH

NH
HN S

O

O

 

0 0 
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Table 2.3: (continued) Summary of the maximum common substructure searching results. 

Substructures and number of active and inactive compounds retrieved for (a) PKA, (b) THR, (c) 

HIV, (d) HSP and (e) JNK. 'No. of ligands' reports the number of crystallographic ligands from 

which the displayed maximum common substructure was derived. 'No. of actives retrieved' 

and 'No. of inactives retrieved' give the number of hits and inactive compounds retrieved from 

each screening set, respectively. In contrast to virtual screening calculations, the entire 

screening sets were used for the substructure searching. 

(c) 

No. of ligands Max. Common 
Substructure 

No. of actives 
retrieved 

No. of inactives 
retrieved 

3 NH

O

O

 

0 2 

5 

 

NH

O
 

0 210 

6 
  

H
N O

 
56 13,730 

 
(d) 

No. of ligands Max. Common 
Substructure 

No. of actives 
retrieved 

No. of inactives 
retrieved 

1 
O

N

O

HN

HN

O

OH

HO

 

0 0 

2 NN

N

NH2

N

O

 

0 0 

3 NN

N

NH2

N

 

0 0 
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Table 2.3: (continued) Summary of the maximum common substructure searching results. 

Substructures and number of active and inactive compounds retrieved for (a) PKA, (b) THR, (c) 

HIV, (d) HSP and (e) JNK. 'No. of ligands' reports the number of crystallographic ligands from 

which the displayed maximum common substructure was derived. 'No. of actives retrieved' 

and 'No. of inactives retrieved' give the number of hits and inactive compounds retrieved from 

each screening set, respectively. In contrast to virtual screening calculations, the entire 

screening sets were used for the substructure searching. 

(e) 

No. of ligands Max. Common 
Substructure 

No. of actives 
retrieved 

No. of inactives 
retrieved 

2 N

N

HN
Cl

Cl

N

N

H
N

 

0 0 

5 
H2N  107 15,203 

 

As shown in Table 2.3 above, in 12 of the 14 substructure search 
calculations performed, no hits were identified. In two calculations, on HIV and 
JNK, 56 and 107 active compounds were retrieved together with 13,730 and 
15,203 inactive compounds, respectively. Thus, the maximal common 
substructure searching did not provide meaningful search results. These findings 
demonstrate that the IASF calculations are not comparable to simple 
substructure searching. 

2.3.5 Analysis of annotated features 

Selected substructural features, generated by the IASF method, were further 
investigated to get a detailed understanding of their nature and the 3D 
interactions they form. For example, the substructure highlighted in Figure 2.7 
below obtained the third best score among all PKA features. It is part of the 
benzophenone motif that is a signature for this series of PKA inhibitors 
(Breitenlechner et al., 2004). 
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Figure 2.7: Key interaction between a ligand substructure and PKA. A close-up view of the 

carbonyl oxygen of the benzophenone moiety forming a hydrogen bond with the amide of the 

protein residue Phe54 is shown. The receptor is presented in surface with atom-type coloring. 

In the crystal structure, the carbonyl oxygen of the benzophenone 
moiety forms a hydrogen bond to the backbone amide NH of PKA residue 
Phe54. Figure 2.8 below shows the top 12 PKA features in the context of the 
inhibitor structures they were derived from. All of these features contain hetero 
atoms that function as hydrogen bond donor or acceptors, consistent with the 
choice of the FlexX score components and the proposed expectation. 
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Figure 2.8: Top scoring 12 PKA substructural features. The features are highlighted in red in 

the context of their inhibitor structures they were derived from. 

For example, the top two features contain major portions of the 
isoquinoline moiety including the nitrogen that forms a hydrogen bond to the 
adenine ring of ATP, the kinase cofactor. Feature annotation also discriminates 
between more and less conserved interactions. For example, if a heteroatom 
within a feature forms a hydrogen bond in only one of several inhibitors it 
occurs in, as also observed for PKA inhibitors of the benzophenone and 
azepine series depicted in Figure 2.8, the average absolute value of the score of 
this feature is low for the reference set. Thus, substructures involved in 
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interactions that are conserved among reference set inhibitors are most highly 
weighted. 

2.4 Summary 

In this study, a new 2D/3D hybrid methodology was introduced that adds 
protein-ligand interaction information to sets of substructures derived from 
active compounds. Interaction information is extracted from crystallographic 
data through the application of an energy function. Annotated substructures are 
then used to search databases for retrieval active compounds. Database 
compounds are assigned cumulative scores based on substructures they share 
with active reference compounds and the associated energy scores. The 
methodology is ligand-centric because it relies on mapping of interaction-
weighted substructures. These substructures represent the most important 
activity specific features. In benchmark calculations on different HTS data sets, 
the hybrid approach mostly performed better than 2D (fingerprint) and 3D 
(docking) calculations. These findings suggest that substructure and interaction 
knowledge is highly complementary in nature and that there is considerable gain 
in structure-activity relationship information when these 2D structures and 3D 
interaction components are combined. 
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Chapter 3  

Structural interpretation of activity cliffs 
revealed by systematic analysis of SARs 
in analog series 

In the previous chapter, a new methodology was introduced that utilizes 3D 
ligand-target interaction information to enhance the performance of 2D-based 
fingerprint similarity searching. The data showed that high scoring substructures 
extracted from active ligands represent the most important activity specific 
features. In benchmark calculations on different HTS data sets, the hybrid 
approach mostly performed better than 2D (fingerprint) and 3D (docking) 
calculations. The findings suggested the existence of high complementarity 
between ligand substructure and 3D interaction knowledge where considerable 
gain in structure-activity relationship information is observed when 2D 
structures and 3D interaction components are combined. This chapter focuses 
on a continued application of protein-ligand interaction information but this 
time for studying activity cliffs revealed by systematic analysis of SARs in analog 
series (Sisay et al., 2009a). Study design, methodology and results are discussed 
in detailed. 

3.1 Introduction 

Understanding the structure-activity relationships (SAR) of a set of 
compounds with measured biological activity plays a key role in VS. In hit-to-
lead and lead optimization projects, active compounds are subjected to chemical 
modification and series of analogs are generated from which SAR information is 
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extracted. In analog design and exploration, one typically attempts to identify 
substitution sites where substituent (R-group) variations lead to improved 
potency (and other desired compound physicochemical characteristics) and aims 
to identify SAR patterns that can be rationalized and ultimately used to predict 
highly potent compounds (Peltason and Bajorath, 2009). However, the 
derivation of SAR rules and guidelines for optimization is often severely 
compromised by abrupt changes in the biological response to minor chemical 
modifications of active compounds. This situation is typically attributed to the 
presence of an activity cliff (Maggiora, 2006) or a region of SAR discontinuity 
(Peltason and Bajorath, 2009). Both of these terms are derived from the 
intuitive concept of an activity landscape (Maggiora, 2006; Peltason and 
Bajorath, 2009; Bajorath et al., 2009) that describes activity responses to 
positional changes in biologically relevant chemical space. At activity cliffs, small 
changes in structure, corresponding to small steps in chemical space, lead to 
significant changes in the activity or potency hypersurface. Multiple activity 
cliffs can be present in the activity landscape shaped by a compound series 
(Schneider, G. and Schneider, P., 2004; Guha and van Drie, 2008; Peltason and 
Bajorath, 2009; Bajorath et al., 2009, Medina-Franco et al., 2009) and each of 
these cliffs gives rise to local SAR discontinuity observed for a compound 
subset. Accordingly, the terms activity cliff and SAR discontinuity are 
conceptually linked and can essentially be used interchangeably. The magnitude 
of activity cliffs is generally influenced by the chosen chemical reference space 
and molecular representation. The same applies to the location of different 
activity islands, i.e. small regions in chemical space that are enriched with 
compounds sharing a specific biological activity. 

SAR analysis functions (Bajorath et al., 2009) such as the SAR Index 
(SARI) (Peltason and Bajorath, 2007a) have been designed to quantitatively 
account for SAR continuity and discontinuity within compound data sets. In 
principle, a compound set is characterized by low SAR discontinuity if it 
consists of moderately similar or even structurally diverse compounds having 
only relatively small differences in potency and, in contrast, by high 
discontinuity if it contains very similar compounds with dramatic potency 
differences. 

A systematic study of such SAR patterns within analog series is generally 
complicated because SARs are typically heterogeneous in nature (Bajorath et al., 
2009), i.e. they consist of multiple components and often combine continuous 
and discontinuous elements. In order to study local SAR features in analog 
series, a data structure termed combinatorial analog graph (CAG) was recently 
developed by Peltason et al. (Peltason et al., 2009) that systematically divides 
analogs into subsets of compounds that only differ at defined substitution sites 
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and, in addition, incorporates the SARI scoring scheme to identify substitution 
patterns that are responsible for SAR discontinuity. 

CAGs and SAR analysis functions exclusively utilize similarity and potency 
information of active compounds as input, i.e. information encoded at the 
ligand level. However, SAR information contained in analog series is naturally to 
a large extent determined by underlying receptor-ligand interactions (Peltason 
and Bajorath, 2009), which are the focal point of SB ligand design efforts 
(Jorgensen, 2004). Given this close link between receptor-ligand interactions 
and compound activity or potency, one might perhaps expect that relationships 
between molecular structure and biological activity observed at the ligand level 
could be easily reconciled on the basis of 3D protein-ligand interaction 
information. However, it has been demonstrated that relationships between 2D 
similarity, 3D (binding mode) similarity, and potency of active compounds are 
often highly complex and difficult to predict (Peltason and Bajorath, 2007b). 
This emphasizes the fact that interactions seen in receptor-ligand complexes are 
only one of several factors that determine or influence SARs. Nevertheless, the 
presence of strong SAR discontinuity is often thought to be a direct 
consequence of compromised receptor-ligand interactions. 

In this study, in order to further understand the relationship between SAR 
discontinuity and protein-ligand interactions, analysis of analog sets for which 
3D structural information was available was carried out. This made it possible to 
interpret SAR information extracted from active compounds projected into 
chemical reference spaces at the target structural level. For the analysis, series of 
analogs directed against different targets were systematically analyzed in CAGs 
in order to identify substitution patterns that were directly responsible for SAR 
discontinuity within these series. Key substitution sites were then analyzed on 
the basis of crystallographic data to map activity cliffs and rationalize SAR 
discontinuity within the framework of specific receptor-ligand interactions. 

3.2 Methodology 

3.2.1 Compound analog series and X-ray structures 

For the analysis, five series of structural analogs of four target enzymes for 
which one of the analogs was available in a complex X-ray crystal structure was 
selected (Table 3.1). The analog series included inhibitors of carbonic anhydrase 
II (PDB code 2HOC), Tie-2 kinase (2P4I), factor Xa (2BMG and 2G00), and 
thrombin (1SL3). Active compounds and corresponding potency data were 
taken from the BindingDB public database (Liu et al., 2007), with the exception 
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of the thrombin inhibitor series that was taken from the literature (Young et al., 
2004). 

Table 3.1: Summary of study data set. In the column 'PDB code', the PDB code of the 

crystallographic enzyme-inhibitor complex is given, and the column 'PDB ligand id' reports the 

unique PDB identifier of the X-ray ligand. '# of Cpds' denotes the number of compounds. 'CA 

II': carbonic anhydrase II. 

Target protein PDB code PDB ligand id # of Cpds 
Potency range 

[nM] 

CA II 2HOC 1CN 6 0.3 - 9  

Tie-2 Kinase 2P4I MR9 8 1 - 399  

Factor Xa(1) 2BMG I1H 20 13 - 1053  

Factor Xa(2) 2G00 4QC 13 0.18 - 88 

Thrombin 1SL3 170 13 0.0015 – 940  

3.2.2 Analysis of 3D protein-ligand interactions 

For the analysis of the interaction of each analog with the corresponding 
enzyme, the reference protein-ligand complex was imported into the MOE 
graphical environment and repeated chains or any unwanted structures were 
removed. All water molecules, except those involved in ligand interaction were 
also removed. The active site was defined by taking all residues within 6.5 Å 
measured from all atoms of the bound X-ray inhibitor. Enzyme-inhibitor 
interactions in X-ray structures were analyzed with MOE by applying an 
additional 3D protein-ligand interaction analysis module. Following that each R-
group was attached to the reference compound and the resulting local 
interaction pattern including van der Waals clashes were thoroughly 
investigated. This was done by using the MOE-3D interaction analysis module 
and thorough manual inspection of the local active site interaction properties of 
the protein. In addition literature information on the physicochemical 
characteristics of each analog and the active site properties of the protein was 
taken into consideration. For the structural correlation analysis presented herein, 
SAR data was obtained from enzyme-based inhibition assays and not other 
assay formats.  

3.2.3 R-group decomposition 

For each analog series, the maximum common subgraph (MCS) shared by all 
analogs in the series was determined. The MCS was then utilized as the invariant 
core structure for R-group decomposition to determine (and consistently 
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number) corresponding substitution sites in analogs and assign sets of 
substituents (functional groups) to these sites. For the analog series studied 
herein, all substitution sites were unambiguously assigned. MCS calculation and 
R-group decomposition were performed using the Pipeline Pilot software. Table 
3.2 reports core structure, substitution sites, and R-groups for carbonic 
anhydrase II series (the CAG generation was performed by Dr. L. Peltason). 
The SAR tables including core structures, substitution sites, and R-groups for 
the rest of the four series discussed in this chapter can be found in Appendix C. 

Table 3.2: Carbonic anhydrase II inhibitor series core structure and corresponding R-groups 

after decomposition. Molecular frameworks and consistently numbered R-groups are 

presented. For individual compounds, substituents and potency values are reported. 

Attachment atoms are labeled with 'Z'. Compounds from the BindingDB are identified by their 

unique BindingDB monomer id. For the reference X-ray ligand, the PDB ligand identifier is 

given in parentheses. 

 

BindingDB 
monomer id 

Potency 
[nM] 

R1 R2 R3 

10870 2 
 

  

10886 9    

11621 0.8 
  

 

11622 0.6 
 

 
 

11625 
(1CN) 

0.3 
   

11628 0.5 
   

3.2.4 Organization and analysis of analog series 

In order to quantify contributions of substitution sites to SAR discontinuity, 
each analog series was systematically divided into subsets of compounds that 
only differed at a specific substitution site or combinations of up to three sites. 
For the resulting compound subsets, the SARI discontinuity score (Peltason and 
Bajorath, 2007a) was calculated and CAGs (Peltason et al., 2009) were used to 
organize analog subsets and visualize contributions of substitution patterns to 
SAR discontinuity. 
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3.2.5 SARI discontinuity scores 

The SARI discontinuity score (Peltason and Bajorath, 2007a) calculates pairwise 
potency differences between analogs and averages them to obtain a measure of 
the magnitude of potency differences among similar compounds. The pairwise 
potency differences are scaled by the similarity value of the corresponding 
compound pair in order to emphasize potency differences between highly 
similar compound pairs: 

( )),sim(meandisc
}|),{(

jiPP
ji

jiji
×−=

≠
   (3.1) 

Here, Pi and Pj denote the potency values of compounds i and j and sim(i, j) 
denotes their similarity, calculated as the Tc (Willett et al., 1998) for MACCS 
fingerprint representations. SARI scoring has been found to be rather stable for 
compound reference sets of varying size and different molecular representations 
including structural keys and topological fingerprints (Peltason and Bajorath, 
2009). For analyzing analog series, the application of a similarity threshold value 
for calculating the discontinuity score is not required because analogs have by 
definition highly similar structures. Therefore, the chosen molecular 
representation is also not critical in this case as long as it correctly counts for the 
high similarity of the compared compounds (which is certainly the case for 
structural keys).  

The discontinuity score is calculated for an entire analog series and all of 
its subsets. Scores are normalized and mapped to the value range [0, 1] as 
described previously (Peltason and Bajorath, 2007a). Score values close to 1 
account for a strongly discontinuous SAR, whereas low values close to 0 reflect 
a low degree of SAR discontinuity. Here, scores of all compound subsets within 
an analog series serve as reference for normalization of the series. Thus, score 
distributions are characteristic of a given analog series and account for 
individual potency distributions. 

3.3 Results and Discussion 

3.3.1 The CAG formulation 

The CAG representation organizes analog series as compound subsets having 
modifications exclusively at defined sites or site combinations and accounts for 
SAR discontinuity within subsets that can be directly attributed to modifications 
at the given substitution sites. Figure 3.1 shows a simple CAG representation 
for a small set of six carbonic anhydrase II inhibitors. Here individual analogs 
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are shown and the subsets they form at different nodes are reported, illustrating 
the fact that analogs usually participate in different subsets, given the 
distribution of substituents. 

 

 

Figure 3.1: CAGs and SAR discontinuity analysis: Combinatorial analog graph for the inhibitor 

series of carbonic anhydrase II is shown. Nodes in the CAG are labeled with substitution sites 

and site combinations and are color-coded according to the degree of SAR discontinuity within 

the corresponding compound subsets. All inhibitor structures are shown and the nodes are 

additionally given the corresponding inhibitor label in order to illustrate the composition of 

overlapping compound subsets corresponding to the nodes. If more than one subset is 

available for a node (e.g. at nodes 2, 3, 2-3 and 1-2-3), individual subsets are separated by a 

vertical line. 

As exemplified in Figure 3.1, a node might correspond to several subsets 
that consist of compounds that differ only at the given sites but are 
distinguished at another site. Discontinuity scores for these subsets are 
calculated independently and averaged. In the CAG, the top (root) node 
represents the entire analog series and each non-root node represents a subset 
of compounds with different substitutions at the specified sites. Node labels 
identify the substitution sites and report discontinuity scores for the compound 
subset representing each site combination. For example, “1” and “1-2” means 
that compound subsets only differ at site 1 or sites 1 and 2, respectively, but are 
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otherwise identical. Nodes are arranged in layers according to the number of 
substitution sites that are considered and color-coded according to discontinuity 
scores using a spectrum from green (score 0, i.e. no SAR discontinuity) over 
yellow to red (score 1, i.e. maximal discontinuity). Edges are drawn from a node 
to all other nodes in the next layer whose substitution site combination includes 
all of the sites represented by the originating node. Substitution site 
combinations for which no compounds are available (i.e. non-explored 
combinations) are shown as small white nodes. Combinations of up to three 
sites are systematically accounted for and the complexity of a CAG increases 
with the number of individual sites. For example, for three substitution sites, 
one bottom node with a three-site combination is obtained but for four sites, 
there are four bottom nodes. 

3.3.2 Patterns of SAR discontinuity and mapping of activity 

cliffs 

For each of the five analog series, CAG representations were generated and in 
each case, substitution patterns were identified that introduced SAR 
discontinuity. It was found that discontinuity patterns substantially varied 
among these analog series. In the following sections, the CAG representations 
of the different series are discussed and substitution sites that introduce SAR 
discontinuity are evaluated in the context of protein-ligand interactions. 

Carbonic anhydrase II: The six analog carbonic anhydrase inhibitors including 
the X-ray ligand range in potency from 0.3 nM - 9 nM and differ at three 
substitution sites. The CAG in Figure 3.1 clearly shows that individual 
modifications at single substitution sites do not lead to significant potency 
differences (green nodes 1, 2, and 3 at the first level). By contrast, combinations 
of modifications at sites 1-2 and 1-3 (but not 2-3) result in potency differences 
of more than one order of magnitude, and largest SAR discontinuity is observed 
for simultaneous modifications at sites 1-2-3 (red node at the bottom). Thus, 
given the SAR information that is extracted from overlapping compound 
subsets, this series would be suggested to contain substitutions that depend on 
each other and act in concert.  

The X-ray structure of the enzyme-inhibitor complex, shown in Figure 
3.2, indicated that substitutions at site 1 point outside the active site and are thus 
not expected to have significant interaction with the protein. Furthermore, the 
complex reveals information that could not be deduced from SAR analysis of 
this analog series. 

Importantly, for substitutions at sites 2 and 3 at the phenyl ring that is 
freely rotatable, only one small hydrophobic binding pocket exists which is 
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formed by the residues Val135, Leu198, Pro202 and Leu204. In this compound 
series, filling this pocket represents an activity cliff for strong inhibition. 
However, this can be accomplished by a halogen substituent at either site 2 or 3. 
Thus, substitutions at these sites do not act in a concerted manner, as suggested 
by analyzing the series, but in an alternative way. 

 

Figure 3.2: Complex crystal structure of carbonic anhydrase II with inhibitor 11625 

(numbered according to Table 3.1; PDB code 2HOC). In this structural representation, the 

active site of the enzyme is depicted as a solid surface. A selected hydrophobic pocket is shown 

with cyan surface coloring. The inhibitor is presented in stick using the atom color codes: light-

rose for carbon; red for oxygen; blue for nitrogen; yellow for sulfur; green for fluorine and 

dark-green for chlorine. Substitution sites in the inhibitor are circled and labeled accordingly. 

This information could not be deduced from the CAG because halogen-
substituted compounds at site 2, 3, or both sites have comparable potencies, 
consistent with the 3D protein-ligand interaction picture, and influence SAR 
discontinuity in similar ways. 

Tie-2 kinase: This series consists of eight analogs that are ATP-site directed 
inhibitors. The analogs differ at five substitution sites, and fall into the potency 
range of 1 nM - 399 nM. As illustrated by the CAG in Figure 3.3a, many 
potential combinations of substitution sites are currently unexplored (shown as 
“empty” nodes). 

However, substitution site 1 emerges as a prominent hotspot for individual 
modifications. For example, the addition of a methylamine at site 1 increases 
potency by up to two orders of magnitude (Table 3.1). This can be easily 
explained considering the structure and the protein-ligand complex shown in 
Figure 3.3b. The substituent at site 1 forms a strong hydrogen bond to the 
backbone carbonyl oxygen of Ala905 at the bottom of the pocket. The 
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interaction with this residue that is conserved in many kinases represents a 
prominent activity cliff for ATP site-directed inhibition. 

Furthermore, modifications at sites 2-3 and 2-4 introduce moderate SAR 
discontinuity but combinations of the same modifications at sites 2-3-4 yield a 
high degree of discontinuity. Thus, modifications at sites 2-3 and 2-4 have 
additive effects. Modifications of sites 2 and 4 include the presence or absence 
of a methyl group and only have a minor SAR effect. 

(a)  

 

(b)   

Figure 3.3: Tie-2 kinase inhibitors. (a) CAG for a set of eight inhibitors of Tie-2 kinase with 

substitutions at up to five different sites, (b) X-ray crystal structure of Tie-2 kinase in complex 

with inhibitor 14983 (PDB code 2P4I). In this structural representation, the active site of the 

enzyme is depicted as a solid surface. Selected hydrophobic pocket is highlighted with cyan 

coloring and residue Ala905 is labeled for reference. The inhibitor is shown in stick 

representation using the following atom color codes: light-rose for carbon; red for oxygen; blue 

for nitrogen and green for fluorine. Substitution sites in the inhibitor are circled and labeled 

accordingly. 
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However, in compounds corresponding to node 2-4, the methyl position 
is exchanged between sites 2 and 4, which resulted in moderate SAR 
discontinuity. This is the case because as can be seen in the complex (Figure 
3.3b), the hydrophobic pocket facing site 4 is smaller than the one facing site 2 
and the methyl group at site 4 is likely to form an unfavorably close contact with 
the Phe296 side chain (not shown), which reduced the compound potency by 
an order of magnitude.  

Moreover, in compounds corresponding to node 2-3-4, the methyl 
position is also switched between sites 2 and 4, and site 3 contains a piperazine 
or morpholine group or no substituent. These modifications at site 3 are also 
present in compounds corresponding to node 2-3 but only lead to moderate 
SAR discontinuity. However, simultaneous modifications at sites 2, 3 and 4 act 
in concert and lead to a considerable degree of SAR discontinuity. Nodes 3-5 
and 3-4-5 also display moderate and high discontinuity, respectively, which 
primarily results from the change of a cyclic to an acyclic substituent at site 3 
(the detailed R-groups are given in Appendix C). Preferences for substituents at 
site 3 are not apparent from the structure, except that crystallographic 
temperature factors indicate significant protein backbone flexibility in the 
region, which might give rise to induced fit effects. 

Factor Xa, series 1: This series contains 20 analogs that differ at four 
substitution sites and span a large potency range of 13 nM – 1053 nM. In this 
case, substitution site 3 forms a prominent SAR hotspot (Figure 3.4a). SAR 
discontinuity at this site is largely determined by the presence or absence of a 
hydroxyl substituent at the pyridine moiety that is engaged in strong π-π 
stacking interactions with aromatic binding site residues (Figure 3.4b).  
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(a)  

 

(b)   

Figure 3.4: Factor Xa inhibitor series 1. (a) CAG for a set of 20 analog factor Xa inhibitors with 

four substitution sites, (b) Crystal structure of inhibitor 13664 bound to factor Xa (PDB code 

2BMG). In this structural representation, the active site of the enzyme is depicted as a solid 

surface. Selected hydrophobic sub-sites are shown with cyan surface coloring. The inhibitor is 

shown in stick representation using the following atom color codes: light-rose for carbon; red 

for oxygen; blue for nitrogen and dark-green for chlorine. Substitution sites in the inhibitor are 

circled and labeled accordingly. 

Addition of the OH-group at position 3 to the pyridine group enables 
tautomerization, which destabilizes its π-electron system and diminishes the 
stacking interaction. A weakly potent analog having a bromine substituent at site 
4 also introduces moderate SAR discontinuity in this compound subset because 
a bromine at site 4 is expected to be larger at the entrance of the small 
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hydrophobic sub-pocket harboring site 1 substituents (Figure 3.4b) and imposes 
steric constraints. Hence, nodes including substitution sites 3 and 4 make the 
overall largest contributions to SAR discontinuity. 

Factor Xa, series 2: This alternative inhibitor series consists of 13 highly 
potent analogs (potency values ranging from 0.18 nM to 88 nM) that differ at 
four substitution sites. The resulting CAG, presented in Figure 3.5a, mirrors 
SAR features that are significantly different from the factor Xa inhibitor series 
discussed above (factor Xa, series 1). Series 2 displays a well-defined pattern of 
compound subsets representing discontinuous SARs all of which involve 
substitutions at site 4 that result in potency differences of up to 2 orders of 
magnitude. Figure 3.5b shows the X-ray structure of the complex containing the 
inhibitor that has the most favorable substituent at this position. 

The inhibitor-enzyme complex confirmed that site 4 substituents reach 
into the specificity determining S1 pocket in the active site of factor Xa that 
contains the residue Asp189 at the bottom. Interactions with this residue (or 
corresponding residues) represent a critical activity cliff and are a hallmark of 
trypsin-like serine protease inhibition. 
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(a)  

 

(b)    

Figure 3.5: Factor Xa inhibitor series 2. (a) CAG for another analog series consisting of 13 

factor Xa inhibitors with four substitution sites, (b) Complex crystal structure of factor Xa with 

inhibitor 12733 (PDB code 2G00). In this structural representation, the active site of the 

enzyme is depicted as a solid surface. Selected hydrophobic sub-site is shown with cyan surface 

coloring and charged/polar pockets with red coloring. The inhibitor is shown in stick 

representation using the following atom color codes: light-rose for carbon; red for oxygen; blue 

for nitrogen and light-green for fluorine. Substitution sites in the inhibitor are circled and 

labeled accordingly. 

The inhibitor shown in Figure 3.5b fills this pocket and forms a 
hydrogen bonding network with residues Asp189 and Gly218, which is 
consistent with its high potency. Compared to this interaction constraint, 
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substitutions at other sites or site combinations introduce considerably less SAR 
discontinuity. 

Thrombin: This set of thrombin inhibitors contains 13 analogs having four 
substitution sites and potency in the range of 0.0015 nM - 940 nM. In this case, 
most significant SAR discontinuity is observed for combinations of 
modifications involving sites 2, 3, and 4 (Figure 3.6a). Among individual sites, 
only substitutions at site 4 lead to notable discontinuity, which is due to an 
analog having a chlorine substituent at site 4 (in the absence of a chlorine at site 
2). The simultaneous addition of chlorine substituents at both sites (node 2-4) 
further increases SAR discontinuity by causing a potency increase of several 
orders of magnitude. The strong discontinuity at node 3-4 is mainly due to 
variations at site 3 (triazole, tetrazole, or no substituent). Analogs at nodes 1-2-
3, 1-3-4 and 2-3-4 combine the modifications described above that strongly 
affect potency. 

The X-ray structure in Figure 3.6b contains the most potent analog 
having chlorine substituents at both sites 2 and 4. Substituents at site 3 are 
partly solvent exposed and the significant SAR discontinuity introduced by site 
3 variations reflected in the CAG is difficult to explain in terms of interactions 
seen in the X-ray structure. Site 4 points into the S1 pocket and interactions 
involving key residues within the S1 pocket represent a pronounced activity 
cliff. 
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(a)  

 

(b)            

Figure 3.6: Thrombin inhibitors. (a) CAG for 13 analog thrombin inhibitors with four 

substitution sites, (b) Crystal structure of inhibitor 34 bound to the active site of thrombin (PDB 

code 1SL3). In this structural representation, the active site of the enzyme is depicted as a solid 

surface. Selected hydrophobic spots are shown with cyan surface coloring. The inhibitor is 

shown in stick representation using the following atom color code: light-rose for carbon; red 

for oxygen; blue for nitrogen; dark-green for chlorine and light-green for fluorine. Substitution 

sites in the inhibitor are circled and labeled accordingly. 

In this analog series, however, the large specificity determining S1 pocket 
is not occupied with a positively charged group but with a chlorine atom site 4 
substituent that strongly interacts with the π-electron system of Tyr228. The 
chlorine substituent at site 2 also fills the S2 hydrophobic pocket and the 
simultaneous presence of both chlorine substituents leads to a highly potent 
analog. This results in a strong SAR discontinuity which is clearly detectable in 
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the CAG (Figure 3.6a). The cooperative nature of these two sites is again hard 
to reconcile on the basis of the structure. Thus, taken together, the strong SAR 
discontinuity introduced by 2-4 and 3-4 substitutions in this series of thrombin 
inhibitors, as revealed by CAG analysis, could not have been deduced from 
interaction patterns in the X-ray structure. 

The primary motivation of this study was to analyze SAR information 
contained in analog series and interpret the results at the level of protein-ligand 
interactions seen in complex X-ray crystal structures. The outcome helps to 
better understand how SAR discontinuity detected at the ligand level is reflected 
by interaction information derived from complex crystal structures and, if 
possible, arrive at a structural interpretation of individual activity cliffs. The 
systematic extraction of SAR information from compound series is a non-trivial 
task. For this purpose, we have developed combinatorial analog graphs that, on 
the basis of R-group decomposition and SARI scoring, make it possible to 
organize compound sets and identify substitution patterns that are responsible 
for activity cliffs and induce SAR discontinuity. These graph representations 
have been applied here to analyze selected analog series directed against 
different targets. Care has been taken to select series for which X-ray structural 
information was available and that shared large maximum common subgraphs 
and multiple substitution sites. This explains why the analog series studied here 
were of relatively small size because not very many analogs could be identified 
that met these requirements. However, the selected series were well-analyzed to 
study SAR discontinuity resulting from minor variations of substitutions in 
otherwise identical molecules. For each of these series, compound subsets with 
well-defined substitution patterns were identified that introduced significant 
degrees of SAR discontinuity and in a number of cases, activity cliffs could be 
readily mapped in X-ray structures. However, results also indicated that 
discontinuity patterns substantially differed between analog series, as 
exemplified by the two factor Xa inhibitor series, and that it was not possible in 
all cases to rationalize SAR determinants at the structural level. Thus, although 
often assumed, there is not always a consistent and close correspondence 
between SAR discontinuity and compromised receptor-ligand interactions. The 
relationship between SAR information encoded in analog series and receptor-
ligand interactions seen in receptor-ligand structures is more complex. In some 
instances, individual SAR hotspots revealed in graph representations could be 
easily associated with critical interactions as, for example, in the case of the S1 
site in thrombin or the tautomerization effects in factor Xa inhibitors. By 
contrast, the SAR features of, for example, substitution site combinations in 
thrombin inhibitors could not be rationalized in structural terms. On the other 
hand, structural analysis helped to clarify SAR ambiguities detected at the ligand 



 

52|Chapter 3 

level as in the case of carbonic anhydrase II inhibitors. Thus, taken together, the 
results of this study also point at the complementary nature of LB SAR and 
structural analyses. 

3.4 Summary 

In study, SAR discontinuity information deduced from combinatorial analog 
graphs of different inhibitor series has been analyzed in light of receptor-ligand 
interactions in complex crystal structures, which has made it possible to explore 
activity cliffs at the small and macromolecular level. Although many effects of 
substitutions at defined sites in inhibitors could be rationalized in structural 
terms, SAR discontinuity detected in analog series could not only be attributed 
to the presence or absence of specific receptor-ligand interactions. However, 
structural interpretation helped to better understand the origin of SAR 
discontinuity in cases where LB analysis was insufficient. Clearly, information 
provided by systematic comparison of analogs and by analysis of complex 
crystal structures was highly complementary in a number of cases. Approaches 
for the extraction of SAR information from compound data sets should provide 
attractive starting points for the detection of activity cliffs and further 
exploration of local SAR patterns and SAR discontinuity at the target structural 
level. 
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Chapter 4  

Identification of dual cathepsin K and S 
inhibitors  

The previous part of the thesis, presented in chapters 2 and 3, was focused on 
analysis and utilization of protein-ligand interaction information for applications 
in VS and protein-ligand interaction-based SAR discontinuity analysis in 
analogue series. This part of the thesis, presented in chapters 4 and 5, focuses 
on practical applications of different VS methods for the identification of new 
inhibitors of selected cysteine proteases and a membrane-bound serine protease. 
Two major VS campaigns were carried out to identify dual cathepsin K and S 
inhibitors and matriptase-2 inhibitors. While cathepsins K and S are cysteine 
proteases, matriptase-2 is a newly identified type II membrane-bound serine 
protease. These proteases are considered to be important current 
pharmaceutical targets due to their involvement in bone resorption, immune 
response and iron metabolism, respectively. In the following two chapters, 
detailed VS methodologies and successful identification of inhibitors of the 
aforementioned enzymes are reported (Stumpfe et al., 2010; Sisay et al., in 
revision). 

4.1 Introduction 

In VS, computational methods are applied to search large databases for 
compounds having a desired biological activity using ligand (Bajorath, 2002) 
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and/or target structure (Shoichet, 2004; Kubinyi, 2007) information as input. In 
LBVS, computational methods are used to extrapolate from known active 
compounds and identify structurally diverse small molecules having similar 
biological activity, (Bajorath, 2002; Eckert and Bajorath, 2007) an objective 
often referred to as scaffold or lead hopping (Cramer et al., 2004). This study is 
focused in the application of a LB computational screening method to identify new 

inhibitors of two current pharmaceutical targets, cathepsins K and S. 

4.1.1 Cysteine proteases 

Cysteine proteases are implicated in a variety of human physiological processes 
and also form an essential component of the life cycle of a number of 
pathogenic protozoa and viruses. Cysteine cathepsins belonging to the papain-
like subfamily represent the largest and best characterized group of cathepsins. 
They have attracted considerable interest over the past decade where many of 
the cysteine cathepsins are considered important drug targets (Brömme and 
Kaleta, 2002; Nägler and Ménard et al., 2003; Vasiljeva et al., 2007; Frizler et al., 
2010). Among these enzymes the cathepsins K, S and L that are involved in 
bone remodeling, antigen presentation, and apoptosis, respectively, have 
attracted particular attention (Brömme and Kaleta, 2002; Yasuda et al., 2005; 
Vasiljeva et al., 2007). These proteases are highly similar homologues with 
mature enzyme sequence identities ranging from 56% to 60% (cathepsins K and 
L, 60%; S and K, 57%; and S and L, 56%) (Nägler and Ménard, 2003). 

4.1.2 Cathepsin K as a drug target 

Bone remodeling is a dynamic lifelong process where old bone is removed from 
the skeleton (resorption) and new bone is added (bone formation). Two groups 
of cells, osteoblasts which secrete new bone and osteoclasts which break bone 
down, are responsible for bone remodeling. As a result, bone is added where 
needed and removed where it is not required. Cathepsin K plays a critical role in 
the osteoclast-mediated degradation of collagen, the major component of bone 
matrix (Troen, 2004), and is predominantly expressed in osteoclasts that 
mediate bone resorption. It is capable of cleaving native type I collagen and 
other components of the bone matrix such as osteopontin and osteonectin 
(Blair and Athanasou, 2004; Stoch and Wagner, 2008). Accordingly, cathepsin K 
has become an attractive target for the development of drugs to treat 
osteoporosis and other disorders characterized by increased bone resorption 
(Blair and Athanasou, 2004; Stoch and Wagner, 2008; Zhao et al., 2009). 
Osteoporosis is a condition characterized by bone loss and microstructural 
deterioration that result in skeletal fragility and an increased risk in bone 
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fractures. Moreover, cathepsin K is also implicated in rheumatoid arthritis and 
osteoarthritis (Brömme and Kaleta, 2002; Yasuda et al., 2005; Vasiljeva et al., 
2007). 

4.1.3 Cathepsin S as a drug target 

Cathepsin S is expressed by adipocytes and antigen presenting cells such as 
macrophages and B cells, and is involved in the control of antigen presentation 
by the major histocompatibility complex class II (MHC class II). MHC class II 
molecules present at the cell surface products of lysosomal proteolysis to T 
cells. MHC class II molecules are protected from inappropriate peptide loading 
during their maturation by association with the invariant chain. The invariant 
chain is progressively degraded until only a fragment, termed the class II- 
associated invariant-chain peptide (CLIP), remain to block the peptide-binding 
groove of MHC class II molecule. CLIP is later replaced by a diverse array of 
peptides derived from exogenous and endogenous proteins. Cathepsin S 
selectively degrades the MHC class II-associated invariant chain, which is a 
prerequisite for peptide antigen loading and presentation by the MHC class II 
complex (Riese et al., 1996; Driessen et al., 1999; Honey and Rudensky, 2003). 
Thus, cathepsin S has received much recent attention as a target for therapeutic 
intervention in a range of diseases of the immune system such as autoimmune 
and inflammatory disorders (Katunuma et al., 2003; Taleb et al., 2006; Leung-
Toung et al., 2006). 

4.1.4 Cathepsin inhibitors 

Cathepsin inhibitors are typically substrate analogues with an electrophilic 
"warhead". Most inhibitors discovered early on contained electrophilic warheads 
that react with the catalytic cysteine residue resulting in reversible or irreversible 
inhibition of the enzyme (Leung-Toung et al., 2006; Markt et al., 2008; Frizler et 
al., 2010). A nitrile represents a less-reactive functional group which is more 
desirable for therapeutic applications (Frizler et al., 2010). These nitrile-
containing compounds interact with the active site cysteine residue forming a 
covalent reversible thioimidate adduct (Figure 4.1). Recent investigations have 
revealed differences in electrophilic reactivity depending on the chemical 
environment of the cyano group (Oballa et al., 2007; MacFaul et al., 2009). 



 

56|Chapter 4 

 

O

R
H
N

N

+ HS-Enz

O

R
H
N

N

HS-Enz

O

R
H
N

S-Enz

NH

R
1

R
1 R

1

 
Figure 4.1: Interaction of cysteine proteases with nitrile-based inhibitors. Reversible 

formation of a thioimidate adduct is illustrated. 

Within the last years, a number of potent inhibitors of cathepsin K and S 
have been identified that contain less reactive electrophilic functionalities and 
inhibit via reversible, covalent interaction (Brömme and Kaleta, 2002; Yasuda et 
al., 2005; Leung-Toung et al., 2006; Löser et al., 2008; Löser et al., 2009; Frizler 
et al., 2010). Among the covalently interacting molecules, the first inhibitors of 
human cathepsin K with high selectivity, balicatib (Falgueyret et al., 2005) and 
odanacatib (Gauthier et al., 2008), have proceeded to clinical evaluations. 
Moreover, several inhibitors have also been reported that lack an electrophilic 
group and inhibit cathepsins non-covalently (Gustin et al., 2005; Leung-Toung 
et al., 2006; Tully et al., 2006c). Such non-covalent inhibitors having no reactive 
group are highly desirable as they would not react with unspecific nucleophiles 
leading to reduced side effects (Leung et al., 2000; Löser et al., 2010). 

Computational screening methods have also been applied, but only in 
few cases, to identify cathepsin K or S inhibitors (Markt et al., 2008; Ravikumar 
et al., 2008; Stumpfe et al., 2009). This study is part of practical VS application 
efforts for the identification of cathepsin inhibitors aiming at (a) identifying 
inhibitors of both cathepsin K and S with previously unobserved scaffolds, 
possibly with non-covalent inhibition, which can be used as starting points for 
future chemical exploration and (b) further evaluating a new compound 
mapping algorithm, termed DynaMAD (‘Dynamic Mapping to Activity class-
specific Descriptor value ranges’). DynaMAD, is an unconventional VS method, 
for which, as of yet, only limited experience in practical applications is available. 
The characteristic feature of DynaMAD that sets it apart from other LBVS 
tools is that the method is designed to navigate molecular descriptor spaces of 
increasing dimensionality (whereas most compound classification techniques 
utilize low-dimensional reference space representations). Briefly, the DynaMAD 
is designed to map database compounds to activity-specific consensus positions 
in chemical space representations of step-wise increasing dimensionality (Eckert 
et al., 2006). The first step is the assignment of molecular descriptors to so-
called dimension extension levels (DEL). The underlying idea is that descriptors 
that are most responsive to a biological activity represented by a reference set of 
known active compounds should only adopt very narrow value ranges. 
Descriptors are scored to account for the reference set specificity of their value 
ranges (scores range from 100 to 0). Then a score layer interval of 5 is applied 
so that a total of 20 DEL (0-20) are obtained. On the basis of their score, 
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different numbers of descriptors are assigned to each layer and hence the 
number of descriptors and the dimensionality of the descriptor reference space 
increase in a step-wise manner from layer to layer. In the next step, descriptor 
values are calculated for individual database compounds and they are mapped to 
the descriptor value ranges of the reference set at each layer. Only compounds 
whose values fall into the value range of each descriptor are retained for the 
next dimension extension step; the others are discarded. Hence, the number of 
database compounds decreases over the DEL until a final selection set remains.  

4.2 Methodology 

4.2.1 Data set and search strategy 

For the VS experiment, a reference set of 42 compounds from literature sources 
that inhibited both cathepsin S and K (usually with differential activity), 
covering a wide potency range from picomolar to micromolar values (potency 
range for cathepsin S: 200 pM - 0.2 µM; for K: 140 nM - 100 µM) were 
assembled. Nineteen of these 42 reference inhibitors contained the electrophilic 
nitrile group, whereas the others did not. The original literature sources of the 
reference set are provided in Appendix D. 

As a source database, ~3.7 million compounds of the publicly available 
ZINC database was used (Irwin and Shoichet, 2005). These compounds were 
first subjected to a molecular similarity-based pre-filtering step. A fingerprint 
consisting of the publicly available set of 166 MACCS structural keys (Durant et 
al., 2002) was used to search the database against each reference compound, and 
ZINC molecules were retained if they produced a Tc (Willett et al., 1998) value 
of not less than 0.75 compared to at least one of the reference molecules. For 
DynaMAD, a set of 155 2D molecular property descriptors (i.e. calculated from 
the molecular graph) was used which was readily available in the MOE suit of 
programs. This implies that the last mapping step was carried out in a 155-
dimensional descriptor space. 

4.3 Results and discussion 

The MACCS similarity calculations yielded a ZINC pre-selection set of 28,930 
compounds that were further subjected to DynaMAD analysis. Pre-filtering is 
not essential for DynaMAD calculations (that are computationally efficient), but 
the search was focused on database compounds that displayed at least some 
remote structural similarity to reference set molecules (considering that there is 
currently only limited structural information available about non-electrophilic 
cathepsin inhibitor chemotypes). During DynaMAD calculations, the 28,930 
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database molecules were reduced to only 22 candidate compounds that 
remained after the last of 20 dimension extension steps. Thus, the mapping 
calculations had high stringency and de-selected almost all database compounds. 
Out of the 22 candidate compounds, only 10 were available for purchase and 
could ultimately be acquired from commercial sources for further experimental 
evaluation. Figure 4.1 summarizes the VS and compound evaluation process. 
The structures of the 10 purchased candidate compounds and the ZINC IDs of 
the remaining commercially unavailable compounds is provided in Appendix D. 

  

Figure 4.1: Summary of the VS protocol. The diagram summarizes the results of VS, 

compound selection, acquisition and testing. 

These 10 compounds were tested for enzyme inhibition using a 
spectrophotometric assay for cathepsin S and L and a fluorometric assay for 
cathepsin K. Inhibition assays were performed by M. Frizler, Pharmaceutical 
Institute, University of Bonn. Assay details for each enzyme are provided in 
Appendix E. 

The assay results showed that among the 10 candidate compounds, two 
were found to inhibit cathepsin K and S with IC50 values in the micromolar 
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range (which is often observed for structurally diverse hits identified by VS 
(Bajorath, 2002; Shoichet, 2004)). The structures of these compounds are 
shown in Figure 4.2 below together with their most similar reference 
compound. 

 

Figure 4.2: New cathepsin inhibitors. Shown are the two newly identified compounds 1 and 2 that 

inhibited cathepsins K and S, but not L. On top, two of the most similar reference compounds are 

shown. The MACCS Tc values are also indicated for reference (the value between the two newly 

identified compounds was 0.69). 

The compounds represent previously unobserved inhibitory scaffolds 
and are only remotely similar to the reference molecules. The MACCS Tc value 
to the most similar reference molecule is 0.80 for compound 1 and 0.78 for 
compound 2. These values are lower than what would usually be expected for 
compounds having similar biological activity (Martin et al., 2002). Compound 1 
has relatively comparable potency for cathepsin K and S (34 and 44 µM, 
respectively), whereas compound 2 inhibited cathepsin K (21 µM) about seven-
fold more than S (150 µM), for which it is only a weak inhibitor. 

Importantly, both inhibitors lack an electrophilic moiety such as a nitrile, 
although nearly half of the reference set contained such a group. Hence, these 
compounds add to the still limited spectrum of non-electrophilic cathepsin K 
and S inhibitors. These findings also demonstrate the ability of mapping 
calculations in high-dimensional descriptor spaces to abstract from eminent 
pharmacophore elements and detect new types of active compounds. Another 

1 2 
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noteworthy feature of these two inhibitors is that they are not detectably active 
against cathepsin L, which is consistent with the applied VS strategy that did not 
take cathepsin L inhibitor information into account. 

4.3.1 Binding mode analysis 

To get an insight into the possible binding mode of compound 2 toward the 
active site of cathepsin K, molecular docking studies were performed using the 
FlexX (Rarey et al., 1996) docking software. The 3D structure of the compound 
was prepared in MOE. The active site of cathepsin K (taken from X-ray crystal 
structure with PDB ID 2ATO) was defined in FlexX taking residues with in 6.5 
Å around the crystallographic inhibitor. Docking was performed taking default 
values. The docking results (shown in Figure 4.3a) indicated that the compound 
most probably extends along the active site cleft with its trifluoromethylphenyl 
group located inside the S3 pocket forming π-π interactions with Tyr67 and the 
cyclohexyl group inside the S1' site making several lipophilic contacts. In 
addition, the compound forms two hydrogen bonding interactions with the 
residues Asn161 and Gln19. The central phenyl ring is situated between the S1 
and S2 pockets. Most known cathepsin K inhibitors bear a small aliphatic 
group, such as isobutyl side chain of leucine that occupies the hydrophobic S2 
specificity determining pocket which is critical for tight binding into the enzyme 
active site (Altmann et al., 2003). In the case of compound 2, it does not occupy 
the S2 pocket indicating a possible room for future optimization to improve its 
potency and selectivity. Therefore, from the model it can be hypothesized that 
modifying compound 2 with a group that extends deeper into the S2 site could 
improve potency and/or selectivity (Figure 4.3b). An attempt was done to 
modify the compound by attaching a substructure similar to the isobutyl group 
of leucine, i.e. a 2-methylallyl residue, on the central phenyl moiety. This residue 
would potentially extend into the S2 specificity pocket. The synthetic work was 
done by S. Dosa, Pharmaceutical Institute, University of Bonn. Unfortunately, a 
newly synthesized derivative did not show better inhibitory activity compared to 
the parent compound 2. Further studies are required to clearly understand the 
binding mode and improve the potency of this compound. 
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(a)                 (b) 

Figure 4.3: Binding mode of 2 in the active site of cathepsin K. (a) Predicted binding mode of 

compound 2 in the active site of cathepsin K, (b) predicted binding mode of derivative of 

compound 2 with an additional moiety occupying the critical S2 specificity pocket. The enzyme 

is presented as surface and the inhibitor is shown in stick representation. The active site 

pockets are labeled. 

4.4 Summary 

In summary, by testing only 10 candidate compounds selected from a source 
database containing ~3.7 million molecules, two inhibitors of cathepsin K and S 
with new scaffolds have been identified in a VS application using the 
DynaMAD approach. These findings indicate that the mapping algorithm 
applied here detected inhibitory compounds in a more specific manner than 
often expected from LBVS methods. However, the identification of these 
cathepsin inhibitors is not only interesting from a methodological point of view 
because both inhibitors do not contain a nitrile or comparably reactive 
electrophilic groups. Therefore, they provide starting points for further chemical 
exploration of non-electrophilic prototypes of cathepsin K and S inhibitors. 
Molecular docking of compound 2 into the active site of cathepsin K indicated 
the presence of several putative intermolecular interactions. 
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Chapter 5 

Identification of new matriptase-2 
inhibitors 

In the previous chapter, the results of a LBVS strategy for the identification of 
dual inhibitors of cathepsin K and S is presented. This chapter reports the 
results of a similar study but in this case focusing on the application of 
combined ligand and SBVS supported by knowledge-based compound design 
to identify inhibitors of matriptase-2. Matriptase-2 is a newly identified type II 
membrane-bound serine protease. It was very recently discovered that 
matriptase-2 plays a crucial role in body iron homeostasis by down-regulating 
hepcidin expression, which results in increased iron levels. Thus, matriptase-2 
represents a novel target for the development of enzyme inhibitors potentially 
useful for the treatment of systemic iron overload (hemochromatosis). A 
comparative 3D model of the catalytic domain of matriptase-2 was generated in 
a previous project (Sisay et al., 2007) and was utilized for SBVS in combination 
with similarity searching and knowledge-based compound design (Sisay et al., in 
revision). Details of the search strategy used and results are discussed. 

5.1 Introduction 

5.1.1 Type II membrane-bound serine proteases 

The vast majority of known serine proteases are either secreted or sequestered 
in the cytoplasmic storage organelles awaiting signal-regulated release. Over the 
last years, a structurally distinct new class of serine proteases has been identified 



 

64|Chapter 5 

that are transmembrane proteins containing an extracellular trypsin-like serine 
protease domain (Netzel-Arnett et al., 2003). These enzymes are involved in 
regulation of signal transduction between cells and their extracellular 
environment. They function in several important physiological processes such 
as digestion, cardiac function and blood pressure regulation, hearing, iron 
metabolism and epithelial homeostasis (Hooper et al., 2001; Szabo et al., 2003; 
Bugge et al., 2009; Choi et al., 2009). Even though the exact pathophysiological 
roles of many membrane anchored serine proteases remain to be elucidated, 
some numbers are indicated to be involved in different stages of cancer 
progression including growth, invasion, migration, and metastasis (Netzel-
Arnett et al., 2003; Szabo et al., 2003; Noel et al., 2004; Lee et al., 2006; Szabo 
and Bugge, 2008; Bugge et al., 2009; Choi et al., 2009). The family of type II 
transmembrane serine proteases (TTSPs) possess a short intracellular N-
terminal tail, a transmembrane domain and a large extracellular portion 
containing a variable stem region and a C-terminal serine protease catalytic 
domain of the chymotrypsin fold (Hooper et al., 2001; Szabo et al., 2003; Noel 
et al., 2004; Szabo and Bugge, 2008). 

5.1.2 The matriptase subfamily 

The TTSPs can be divided into four subfamilies based on the phylogenetic 
analysis of the serine protease domain and the stem region. These include the 
hepsin/TMPRSS subfamily, the human airway trypsin-like protease (HAT)/ 
differentially expressed in squamous cell carcinoma (DESC) subfamily, the 
matriptase subfamily and corin as the representative of a further subfamily. The 
members of the matriptase subfamily represent recently identified TTSPs with a 
unique stem composition and phylogenetically related serine protease domains. 
Known members of the matriptase subfamily are matriptase-1 (Shi et al., 1993;  
Lin et al., 1999), matriptase-2 (Velasco et al., 2002) matriptase-3 (Szabo et al., 
2005) and the mosaic poly-protease, polyserase-1, (Cal et al., 2003) as well as its 
shorter splice-variant termed serase-1B (Okumura et al., 2006). 

5.1.3 Matriptase-1 as a drug target 

Matriptase-1 (membrane-type serine protease 1, MT-SP1, suppressor of 
tumorigenicity 14), the most studied representative of the matriptase subfamily, 
was originally identified with a novel gelatinolytic activity in human breast 
cancer cells (Shi et al., 1993). By activating its potential substrates, e.g. pro-
single-chain urokinase-type plasminogen activator (pro-uPA) and the proform 
of hepatocyte growth factor (HGF/scatter factor), matriptase-1 seems to play a 
relevant role in extracellular matrix degradation and cell scattering, whereas the 
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cleavage of profilaggrin is important for epithelial development (Lee et al., 2000; 
List et al., 2003; Lee et al., 2006; Szabo and Bugge, 2008). Matriptase-1 was 
shown to be overexpressed in a vast array of human tumors of epithelial origin 
including breast, prostate and ovarian cancers (Shi et al., 1993; Lin et al., 1999; 
Oberst et al., 2002; Lee et al., 2006; Uhland, 2006) and has been implicated in 
tumor growth and metastasis in murine models of prostate cancer (Lin et al., 
1999). Therefore, selective inhibition of matriptase-1 has therapeutic potential 
for the treatment of growth and metastasis of cancer. 

5.1.4 Matriptase-2 as a drug target 

Matriptase-2, (TMPRSS6, transmembrane serine protease 6), was first identified 
in 2002 by Velasco and co-workers (Velasco et al., 2002) as a novel membrane-
bound mosaic serine protease predominantly expressed in the liver. The 
extracellular stem region of matriptase-2 consists of a SEA (sea urchin sperm 
protein, enteropeptidase, agrin) domain-like region, two CUB (complement 
factor C1s/C1r, urchin embryonic growth factor, bone morphogenetic protein 
1) domains and three repeats of low density lipoprotein receptor class A 
(LDLRA) domains (Figure 5.1) (Velasco et al., 2002; Netzel-Arnett et al., 2003; 
Szabo et al., 2003; Park et al., 2005; Ramsay et al., 2008). 
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Figure 5.1: The modular structure of human matriptase-2. Different domains are labeled as 

follows: T, transmembrane domain; SEA, sea urchin sperm protein, enteropeptidase, agrin 

domain; CUB, complement factor C1s/C1r, urchin embryonic growth factor, bone 

morphogenetic protein 1 domain; L, low density lipoprotein receptor class A domain. HDS 

indicates the catalytic triad (His, Asp and Ser) of the catalytic domain. 

In contrast to matriptase-1, recent studies have shown that expression 
of matriptase-2 correlates with suppression of the invasiveness and migration of 
breast and prostate cancer cells (Parr et al., 2007; Sanders et al., 2008). However, 
precise functions of matriptase-2 in cancer remain to be further elucidated. 
Another interesting finding that recently attracted much attention is the 
correlation between mutations in the gene encoding matriptase-2 and iron-
refractory iron-deficiency anemia (IRIDA), a condition that is poorly responsive 
to iron supplementary treatments (Du et al., 2008; Finberg et al., 2008; Melis et 
al., 2008; Ramsay et al., 2009). Iron is an essential trace element in mammalian 
metabolism and due to its generation of bio-reactive superoxide anions and 
hydroxyl radicals, levels of plasma iron require tight regulation (De Domenico 
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et al., 2008; Ramsay et al., 2009). Hepcidin, a small peptide hormone synthesized 
in the liver, is the homeostatic regulator of plasma iron levels and iron tissue 
distribution. It inhibits iron absorption from the intestine, regulates iron 
recycling and release from iron stores, and controls iron transport through the 
placenta. Hepcidin mediates the internalization and degradation of the iron 
exporter ferroportin, located on the surface of intestinal enterocytes, 
macrophages and hepatocytes, thereby inhibiting iron release into the plasma 
(De Domenico et al., 2008). As such, control of hepcidin expression represents 
a critical checkpoint for maintaining iron balance (Nemeth et al., 2004; 
Niederkofler et al., 2005). Matriptase-2 suppresses hepcidin expression (Du et 
al., 2008; Melis et al., 2008; Guillem et al., 2008; Folgueras et al., 2008) through 
proteolytic processing of cell surface hemojuvelin (Silvestri et al., 2008;  Ramsay 
et al., 2009), a membrane-bound protein promoting hepcidin expression 
(Papanikolaou et al., 2004; Niederkofler et al., 2005; Malyszko, 2009). Due to 
the involvement in such a critical physiological process, matriptase-2 emerges as 
a new potentially important pharmaceutical target. Therefore, selective 
matriptase-2 inhibitors could be beneficial as pharmacological tools to further 
investigate its exact role in regulating iron homeostasis and might also be used 
for therapeutic intervention of frequent iron disorders such as systemic iron 
overload (hemochromatosis) or iron loading anemias where the level of 
hepcidin is inappropriately low. 

Although peptide-based matriptase-2 inhibitors, such as aprotinin, have 
previously been reported (Velasco et al., 2002; Béliveau et al., 2009), small 
molecule matriptase-2 inhibitors have not been described so far. An essential 
advantage of small molecule inhibitors of matriptase-2 compared to large 
peptidic inhibitors, such as aprotinin, is their higher metabolic stability and 
easier synthetic accessibility for further developments. Therefore, this work was 
aimed at identification of new inhibitors of matriptase-2 by applying VS 
methods. A previously constructed high quality homology model of the catalytic 
domain of matriptase-2 (Sisay et al., 2007) was utilized for SB compound design, 
VS and subsequent evaluation. Initially, the model was used to interactively 
design four substrate-analog inhibitors, two amidino- and two chloro-
substituted benzylamides. Following that, a VS campaign was carried out in the 
presence of these four compounds. On the basis of the screening calculations, 
the designed benzamidines were assigned a high priority with the ranked 
database compounds. These four substrate-analogue compounds were 
synthesized and their inhibitory profile was investigated in in vitro assays, which 
lead to the identification of the first low-molecular weight inhibitors of 
matriptase-2. 
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5.2 Methodology 

5.2.1 3D model of matriptase-2 

Since an X-ray crystal structure of human matriptase-2 is currently not available, 
a detailed homology model of the catalytic domain of matriptase-2 was 
generated in a previous project (Sisay et al., 2007). The 3D structure was 
constructed using the crystal structure of the closely related matriptase-1 and 
other homologue enzymes using homology modeling, a procedure by which the 
coordinates of atoms of a target protein are predicted based on a topological 
sequence alignment of the target and a template protein(s) of known structure 
(Sali and Blundell, 1993). 

5.2.2 Virtual Screening calculations 

The VS protocol was carried out by applying both ligand and SB approaches 
sequentially. To reduce the number of database compounds to a reasonable 
number for molecular docking, initial property-based screening was applied 
followed by LB similarity searching by utilizing two different structural 
fingerprints methods, MACCS (Durant et al., 2002) and Molprint2D (Bender et 
al., 2004b). The MACCS fingerprint consists of a set of 166 annotated structural 
fragments which are used as keys to asses the level of similarity between a pair 
of compounds. On the other hand, Molprint2D is a circular atom environment 
fingerprint that generates varying numbers of strings depending on the 
complexity of the compound. 

Following similarity searching, molecular docking was performed by 
applying two docking programs, DOCK6 (Meng et al., 1992) and FlexX (Rarey 
et al., 1996). The DOCK6 suite of docking programs is based on matching of 
spheres generated within the active site of the protein with ligand atoms and 
uses scoring grids to evaluate ligand orientations. FlexX uses a fast incremental 
construction algorithm which consists of base selection, placement complex 
construction and evaluation using a scoring function that estimates the free 
energy of binding. DOCK6 is more suitable for docking into large hydrophobic 
pockets whereas FlexX tends to be more efficient in docking of hydrophilic 
compounds in to active site pockets containing hydrogen bonding and charged 
groups. The detailed description of the VS and subsequent compound selection 
steps are given in Figure 5.2. 
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Figure 5.2: Flow diagram showing ligand and structure-based virtual screening protocol. The 

four manually designed compounds were additionally included into the 15,000 final docking 

set. 

5.2.3 Ligand-based virtual screening 

The ZINC public database (Irwin and Shoichet, 2005) containing a total of 
5,627,809 compounds was initially filtered to remove compounds containing 
toxic and reactive groups by applying a broadened ‘rule of five’ (molecular 
weight: 200 - 600, logP: -2 - 6, donors: 1 - 10, acceptors: 1- 10, rotatable bonds: 
0 - 18), reducing the number of compounds to 3,684,443. Then, eight known 
inhibitors of matriptase-1 (compounds 2, 8, 18, 20, 29, 31, 56 and 59 selected 
from Steinmetzer et al., 2006) were taken as a reference set for k nearest 
neighbor (1-NN) (Hert et al., 2004) and centroid (Schuffenhauer et al., 2004) 
similarity searching using MACCS structural keys (Durant et al., 2002) as a 
fingerprint and the Tc (Willett, 2005) as the similarity measure. Compounds 
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falling into the MACCS Tc interval between 0.6 and 0.8 were pre-selected in 
order to retain molecules with some structural resemblance to matriptase-1 
inhibitors but omit analogs or other notably similar compounds; a total of 
206,644 compounds from the nearest neighbor search and 203,039 from 
centroid search was obtained. Each of these pre-selections were re-ranked using 
the Molprint2D fingerprint search method (Bender et al., 2004), which is a 
higher-resolution similarity search tool than MACCS keys, and the top 50,000 
compounds from each list were taken. Merging of the two ranking lists gave a 
total of 67,346 unique compounds. These database compounds were further 
ranked on the basis of an approximate shape matching procedure using the 
MOE relative to the known matriptase-1 inhibitors (with a cut-off value of 0.5) 
giving 40,023 compounds. The top 15,000 compounds were then considered 
for screening by molecular docking to which four knowledge-based manually 
designed compounds were added. The compounds were designed by Prof. Dr. 
T. Steinmetzer, Institute of Pharmaceutical Chemistry, University of Marburg. 

5.2.4 Structure-based virtual screening 

The homology model of matriptase-2 was used for docking. As docking 
programs, DOCK6 (Meng et al., 1992) and FlexX (Rarey et al., 1996) were 
applied for flexible ligand docking. For FlexX, the active site was prepared by 
taking all residues within 6.5 Å around a crystallographic inhibitor of matriptase-
1 (PDB ID 2GV6) (Steinmetzer et al., 2006), after superposition of the 
matriptase-2 homology model and the X-ray crystal structure of matriptase-1. 
For DOCK6, a 10 Å radius was applied to generate and select spheres which are 
used to define and map the active site region. In both docking programs, 
docking parameters were adjusted by initially re-docking the inhibitor of 
matriptase-1 and reproducing its crystallographic pose to a reasonable level of 
accuracy. 

After optimization of all the necessary parameters and preparation of 
ligands and active site of the enzyme, the 15,004 compounds were docked into 
the active site of matriptase-2 with an initial shape-based scoring followed by an 
energy-based evaluation scheme with the DOCK6 program. In the final 
DOCK6 ranking, a total of 2,167 compounds produced a DOCK6 energy score 
of less than -20 kcal/mol. These compounds were further considered for re-
docking using the FlexX docking program. Finally, ten poses of the first 300 
top-scoring database compounds were visually inspected and 13 compounds 
were selected as potential candidates for further testing and investigations. Two 
of the manually designed compounds were among the 13 compounds. The final 
compound selection was mainly based on (i) active site shape/chemical 
complementarity, (ii) occupation of the S1 specificity pocket by a basic group, 
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(iii) omission of compounds with solvent-exposed bulky hydrophobic groups, 
and (iv) detailed assessment of conformational strains. 

5.3 Results and discussion 

The active site of matriptase-2, shown in Figure 5.3, resembles that of trypsin-
like serine proteases. At the bottom of the specificity determining S1 pocket, it 
has aspartic acid residue (Asp756) which is the major reason why matriptase-2 
cleaves after a basic residue such as arginine. The S2 pocket is between 
His617(57) and His665(99) (residue numbering according to the original whole 
sequence of matriptase-2; matriptase-1 numbering is given in bracket for 
reference, Friedrich et al., 2002). The large S3/S4 pocket extends from 
Leu785(217) to the backbone carbonyl groups of Glu62(96), Asp663(97) and 
Ser664(98) (Sisay et al., 2007). 

 

Figure 5.3: Active site of matriptase-2. Corresponding residues are labeled and color-coded 

according to the pocket they form. The numbering is based on the original whole matriptase-2 

sequence. The model was taken from Sisay et al., 2007. 

The structure of the four manually designed substrate analogue 
compounds and the best scoring database compound are shown in Table 5.1 
below. The four compounds suggestions (compound 1-4), originating from 
‘knowledge-based’ design, which were included in the SBVS calculations were 
ranked at positions 2, 92, 6, and 402 respectively. 
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Table: 5.1: Structure of selected compounds. The four manually designed compounds, 

including the best scoring ZINC compound, are shown. 'Ranking' reports the rank of the 

compound in the final selection and the 'FlexX score' indicates the final docking energies in 

kJ/mol. 

Ranking Structure Code 
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The structures of known potent inhibitors of matriptase-1 (Steinmetzer 
et al., 2006), the X-ray structure of a matriptase-1/inhibitor complex (shown in 
Figure 5.4), and comparison of active site features, were taken into account to 
support the modeling efforts. The manual compound design was specifically 
based on the different features of the active site of matriptase-2. Accordingly, a 
basic benzamidine group was selected to potentially interact with the acidic 
Asp756(189) at the bottom of the S1 pocket. Proline was used as a linker which 
could occupy the small S2 pocket followed by a D-configured arginine expected 
to extend to the partially negatively charged portion of the upper part of the 
S3/S4 pocket. As an alternative, a D-configured cyclohexylalanine and 
chlorobenzylamine groups were selected instead of the benzamidine and D-
arginine groups, respectively, resulting in four dipeptide amide-based 
compounds. 

 

Figure 5.4: The crystallographic matriptase-1 inhibitor complex (PDB ID 2GV6) (Steinmetzer 

et al., 2006). The complex was used to deduce a likely orientation of putative matriptase-2 

inhibitors in the binding site of the homology model of matriptase-2. The protein is presented 

as surface, the ligand as stick (with atom coloring scheme: cyan for carbon, red for oxygen, 

blue for nitrogen and yellow for sulfur) and the different active site pockets are labeled. 

As an example, the docking pose of the best scoring database 
compound, with ZINC ID ZINC03838230, from the final selection set is 
shown in the Figure 5.5 below. From the docking pose it can be seen that the 
compound forms several favorable intermolecular interactions within the 
enzyme active site. It forms more than six hydrogen bonds and a salt bridge at 
the bottom of the S1 specificity pocket with Asp756(189) residue. The 
interaction surface properties of the active site of the enzyme in most part 
match the interaction properties of the compound. Therefore, this compound is 
expected to be a likely inhibitor of matriptase-2. 
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Figure 5.5: Binding mode of the top scoring database compound (ZINC03838230). Surface 

presentation of the active site pockets of matriptase-2 is shown. The ligand is presented as 

stick with atom type coloring scheme: gray for carbon, red for oxygen, blue for nitrogen and 

yellow for sulfur.  

5.3.1 Enzyme inhibition assays 

Unfortunately, none of the 13 prioritized compounds, including the manually 
designed ones, were available for purchase (the ZINC IDs of the database 
compounds are provided in Appendix D). To get experimental data on the 
prioritized compounds and evaluate the practicality of the screening strategy, 
the four manually designed compounds (dipeptide amides 1-4, Table 5.1) were 
synthesized and tested against matriptase-2 and the homologous enzyme, 
matriptase-1. The synthetic work was done by Prof. Dr. T. Steinmetzer and M. 
Hammami, Institute of Pharmaceutical Chemistry, University of Marburg. As an 
enzyme source, the whole human matriptase-2 construct was cloned and 
expressed in human embryonic kidney (HEK) cells. Inhibition assays were 
performed using a shed form present in the supernatant of the cells that 
possesses the catalytic domain. Moreover, a purified form of the released 
enzyme was included in the study. Details of the enzyme expression and assay 
procedures are provided in Appendix E. The biological investigations were 
performed by Dr. M. Stirnberg, E. Maurer, S. Hauptmann, T. Bald and Stefan 
Frank, Pharmaceutical Institute, University of Bonn. The inhibitory potencies 
against matriptase-2 were compared with the activities against the catalytic 
domain of the structurally related matriptase-1 (Table 5.2). In addition, analysis 
of the binding mode of the compounds toward the two enzymes was 
performed.  



 

74|Chapter 5 

Table 5.2: Summary of enzyme inhibition assays. Kinetic parameters for inhibition of human 

matriptase-2 and human matriptase-1 by the compounds 1-4 are given. 

Compound. 

Ki ± SEM (µM)a 

Human matriptase-2 Human matriptase-1 

in conditioned medium 
of HEK-MT2 cells 

purified  
enzyme 

recombinant 
enzyme 

1 0.19 ± 0.01 0.17 ± 0.02b 0.055 ± 0.003 

2 > 10c > 10c 0.22 ± 0.01 

3 0.29 ± 0.02 0.46 ± 0.06 0.77 ± 0.15 

4 > 10c > 10c 2.1 ± 0.3 

a 
IC50 values were determined from duplicate measurements with at least five different 

inhibitor concentrations. Ki values were calculated using the equation Ki = IC50 / (1 + [S]/Km). 

Km values obtained for Boc-Gln-Ala-Arg-para-nitroanilide were 210 ± 7 µM for matriptase-2 

in conditioned medium of HEK-MT2 cells, 159 ± 21 µM for purified matriptase-2, and 381 ± 

33 µM for recombinant matriptase-1. SEM = standard error of measurement. 

b 
triplicate measurement with five different inhibitor concentrations. 

c 
duplicate measurement with three different inhibitor concentrations. 

Compound 1 containing a D-arginine and a benzamidine moiety was the 
most potent inhibitor for both enzymes with a 3-fold higher potency for 
matriptase-1 (Ki = 55 nM) than for matriptase-2 in the conditioned medium (Ki 
= 190 nM) and purified matriptase-2 (Ki = 170 nM). Dipeptides with a 4-
amidinobenzylamide group, such as 1, are known potent inhibitors of thrombin 
and factor Xa (Schweinitz et al., 2006; Hellstern et al., 2007; Stürzebecher et al., 
2007). The D-arginine and D-cyclohexylalanine derivatives 2 and 4, both lacking 
the benzamidine moiety, had only marginal inhibitory activity against 
matriptase-2 (Ki > 10 µM). Among the four dipeptide amides, only 3 exhibited a 
higher potency toward matriptase-2 in the conditioned medium (Ki = 290 nM) 
and the purified matriptase-2 (Ki = 460 nM) than against matriptase-1 (Ki = 770 
nM). 

5.3.2 Analysis of SAR and binding modes 

The highly ranked compounds 1 (final docking rank 2) and 3 (rank 6) were 
found to be inhibitors of matriptase-2, but not compounds 2 (rank 92) and 4 
(rank 402). Figure 5.6 shows the final manually optimized docking pose of the 
active compound 1. 
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Figure 5.6. Modeled enzyme-inhibitor complex. Manually adjusted docking pose of 

matriptase-2/compound 1 complex is shown with surface presentation of the active site of the 

enzyme. The compound is shown in stick (coloring scheme: cyan for carbon, red for oxygen, 

blue for nitrogen and yellow for sulfur) and the different binding pockets are labeled for 

reference. 

Due to accuracy limitations, it is generally not possible to predict 
detailed intermolecular interactions from docked poses, and here there is no 
attempt of doing so. However, likely structural characteristics of matriptase-2 
inhibition can be explored on the basis of the model and binding mode of 
related inhibitors to related enzymes. As has been previously documented in 
several related enzymes, matriptase-2 has an acidic Asp group at the bottom of 
the S1 pocket. Accordingly, it can be seen from the optimized docking pose that 
the basic benzamidine moiety is well accommodated in the S1 specificity pocket 
with the amidine group forming a salt bridge with the acidic side chain of 
Asp756(189) at the bottom of the S1 pocket. Furthermore, in the docked pose, 
the guanidino group of arginine occupies the upper part of the S3/S4 pocket 
and is in hydrogen bonding distance to the carbonyl groups of Glu662(96), 
Asp663(97) and Ser664(98). In addition, the proline side chain binds to the S2 
pocket. The inhibitor forms a short anti-parallel β-sheet to the backbone of 
Ser782(214) and Gly784(216) as has been experimentally shown in the binding 
of similar inhibitors to related enzymes (Schweinitz et al., 2004, 2006).  

The position of the benzylsulfonamide moiety of the inhibitor could 
not be deduced with a high level of confidence. It resides either at the lower 
part of the S3/S4 pocket or just above the shallow hydrophobic subsite behind 
the S1 binding pocket, packing against the Cys758(191)–Cys787(220) disulfide 
bridge. The latter orientation would be supported by the X-ray crystal structure 
of the complex of factor Xa with a structurally related benzamidine inhibitor 
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where the benzylsulfonamide moiety was located in a corresponding subsite 
(Schweinitz et al., 2006). The binding of compound 3 likely resembles that of 
compound 1 (Figure 5.7) except that the cyclohexyl group would be positioned 
within the S3/S4 pocket for favorable interactions with Trp783(215) and 
Leu785(217). 

 

Figure 5.7. Modeled enzyme-inhibitor complex. Shown is manually adjusted docking pose of 

matriptase-2/compound 3 complex. The enzyme active site is presented as surface and the 

different active site pockets are labeled. The ligand is shown in stick with coloring scheme: 

cyan for carbon, red for oxygen, blue for nitrogen and yellow for sulfur. 

Interestingly, compound 1 was also a potent inhibitor of the closely 
related homolog enzyme, matriptase-1. When modeled into the binding site of 
matriptase-1, it became apparent that the accommodation of the 
benzylsulfonamide moiety would represent the major difference. In matriptase-
1, this group is oriented toward the lower part of the S3/S4 pocket but could 
not extend into the shallow hydrophobic subsite behind the S1 pocket, because 
matriptase-1 has a tyrosine residue at position 146 whose side chain would 
block access of an inhibitor to this subsite. The guanidino moiety of 1 extends 
toward the upper part of the S3/S4 binding pocket forming hydrogen bonding 
to the Phe97 carbonyl oxygen and cation-π interaction with Phe99 and Trp215, 
as has been similarly described for other inhibitors of matriptase-1 (Steinmetzer 
et al., 2009). The observed higher potency of compound 1 towards matriptase-1 
is mainly because of the presence of the Phe97 phenyl ring system. This side 
chain together with Phe99 and Trp215 forms a solvent shielded π-electron 
system perfectly suited for a cathion-π interaction. 

The replacement of D-arginine in 1 by D-cyclohexylalanine in 3 resulted 
in a stronger decrease in potency against matriptase-1 compared to matriptase-2. 
This finding might be rationalized by the reduced hydrophobic character of the 
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lower part of the S3/S4 pocket in matriptase-1 compared to matriptase-2. In 
matriptase-2, the cyclohexyl ring of 3 might favorably interact with Leu-785, but 
in matriptase-1, this interaction would be absent and the cyclohexyl ring extends 
towards the upper part of the S3/S4 pocket. In addition, in the case of 
matriptase-1, the loss of the cation-π interaction contributes to the decreased 
activity (1 versus 3). 

In compounds 2 and 4, the benzamidine moiety is replaced by a para-
chlorobenzylamine group. These compounds were inactive against matriptase-2. 
However, both compounds, in particular 2, inhibited matriptase-1. Previously 
reported X-ray crystal structures of structurally similar inhibitors bound to 
thrombin (Rittle et al., 2003; Stauffer et al., 2005; Baum et al., 2009) showed that 
a chlorobenzene group occupied the S1 pocket with the chloro atom forming a 
van der Waals contact with Tyr228, which is conserved in matriptase-1 and -2. 
In a previous work focused on investigation of thrombin inhibitors containing a 
chlorobenzene group, Rittle et al. introduced an aminomethyl residue in para-
position to the chlorine, as present in compounds 2 and 4, and found further 
improvement on the inhibitory activity. In an X-ray structure of such a 
compound in the active site of thrombin, the amino group was observed 
forming salt bridge with Glu192 and a hydrogen bond to Gly216 at the entrance 
of the S1 pocket of the enzyme (Rittle et al., 2003). The major difference 
between matriptase-1 and matriptase-2 inside the S1 pocket is the presence of 
serine at position 190 in matriptase-1 instead of alanine in matriptase-2. 
Assuming a binding mode of compounds 2 and 4 in matriptase-1 similar to the 
one seen in thrombin (Rittle et al., 2003), which also has alanine at position 190, 
one would expect the benzamidine-chlorobenzylamine replacement to be 
tolerated by matriptase-2 rather than -1. However, compound 2 was identified 
as a selective inhibitor of matriptase-1, which can currently not be rationalized 
in structural terms. Additional inhibitors with structural variations at the P1 
position will be required to better understand selectivity determinants between 
the two enzymes. From the X-ray structure of a related N-(3-chlorobenzyl)-
prolinamide inhibitor (Baum et al., 2009) in complex with thrombin (PDB ID: 
2ZC9) it can be inferred that compound 2 might bind similarly to matriptase-1 
as the benzamidine-based inhibitor 1. 

However, while the amidine moiety of 1 would interact with Asp189 of 
matriptase-1, the chlorobenzylamine group of 2 would be buried inside the S1 
pocket and the chloro atom would point towards the aromatic ring of Tyr228. 
Figure 5.8 shows a model representing this predicted putative binding mode. 
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Figure 5.8: Modeled enzyme-inhibitor complex. It shows a manually adjusted docking pose of 

matriptase-1/compound 2 complex. The enzyme active site is presented as surface, the ligand 

as stick (with coloring scheme: cyan for carbon, red for oxygen, blue for nitrogen and yellow 

for sulfur) and the different binding pockets are labeled. 

5.4 Summary 

In summary, in this study a combined SBVS and LBVS method, supported by 
knowledge-based design, was used to successfully identify the first low-
molecular weight inhibitors of matriptase-2. The most potent compound 1 was, 
however, not selective for matriptase-2 over matriptase-1. Substitution of the 
guanidine moiety by cyclohexyl slightly reduced the potency against matriptase-2 
(1 versus 3). This effect, however, is more pronounced in the case of matriptase-1 
than matriptase-2, which might be due to the difference in hydrophobic 
character in the lower part of the S3/S4 pocket and the loss of the cation-π 
interaction in matriptase-1. Replacement of the benzamidine by the 
chlorobenzylamine moiety (1 and 3 versus 2 and 4) resulted in a complete loss of 
inhibitory activity towards matriptase-2. Compound 2 was identified as an 
inhibitor with strong preference for matriptase-1 over matriptase-2. Such 
selectivity might be crucial in the development of matriptase-1 inhibitors as 
anticancer agents, because simultaneous inhibition of matriptase-2 is likely to 
have undesirable effects on body iron metabolism. However, the N-protected 
dipeptide amides 1 and 3 described herein can be used as leads to develop 
inhibitors with selectivity towards matriptase-2. For example, further exploring 
the P1 site in these compounds is expected to lead to a better understanding of 
selectivity determinants in the two matriptases. The selective inhibition of 
matriptase-2 may serve as a new potential strategy in the treatment of primary 
hemochromatosis and iron loading anemias. 
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Chapter 6  

Inhibition and molecular modeling 
studies of brunsvicamides A - C against 
human leukocyte elastase 

In the previous chapters, 4 and 5, different VS methods were applied to 
successfully identify dual cathepsin K and S, and matriptase-2 inhibitors. This 
chapter reports the identification of three analogous cyclic peptides, 
brunsvicamides A, B and C, as inhibitors of human leukocyte elastase (HLE) 
through enzyme inhibition assays. Subsequent molecular modeling studies were 
performed to get an insight into their possible binding mode (Sisay et al., 
2009b). 

6.1 Introduction 

6.1.1 HLE as a drug target 

Human leukocyte (or neutrophil) elastase (HLE, EC 3.4.21.37) is a neutral 
protease which belongs to the chymotrypsin family of serine proteases. It has a 
primary specificity for small aliphatic residues, such as leucine, in the P1 
position of the substrate. HLE is a major constituent in the azurophilic granules 
of human neutrophils and it is one of the many proteolytic enzymes released to 
combat invading foreign bodies during inflammation (Korkmaz et al., 2008). It 
is able to catalyze the cleavage of extracellular matrix proteins including fibrous 
elastin, an important extracellular matrix protein with unique property of elastic 
recoil and plays a major role in lung elasticity and proteolytic resistance. Under 
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normal physiological conditions, the activity of HLE is regulated by endogenous 
inhibitors such as α1-protease inhibitor, α2-macroglobulin, and secretory 
leukocyte protease inhibitor but its excessive, uncontrolled activity could lead to 
tissue injury and several pathological states, including emphysema, chronic 
obstructive pulmonary disease, cystic fibrosis and rheumatoid arthritis (Chua 
and Laurent, 2006; Kodama et al., 2007). Due to its involvement in such 
pathophysiological processes, HLE has become an important pharmaceutical 
target particularly for the treatment of emphysema. Therefore, potent and 
selective HLE inhibitors can be used to reduce or treat HLE-mediated 
inflammatory disorders (Taggart et al., 2005; Pham, 2006; Siedle et al., 2007). 

6.1.2 Cyclic cyanobacterial peptides 

In recent years, several cyanobacterial secondary metabolites have been 
identified belonging to structurally novel cyclic peptides and depsipeptides 
(Moore, 1996; Sarabia et al., 2004). These natural products possess an attractive 
molecular architecture with a constrained conformation. They have an increased 
metabolic stability and display a variety of biological effects. Many of them 
inhibit enzymes, for example, peptides of the microcystin class (Honkanen et 
al., 1990; MacKintosh et al., 1990; Mehrotra et al., 1997) and oscillamides B and 
C (Sano et al., 2001) were found to inhibit protein phosphatases, while the 
cyanopeptolins, scyptolin A and B, (Matern et al., 2003) insulapeptolides A-D, 
(Mehner et al., 2008) and the anabaenopeptins B and F (Bubik et al., 2008) are 
inhibitors of elastases. Anabaenopeptins G, H, (Itou et al., 1999) I, J, and T 
(Murakami et al., 2000; Kodani et al., 1999) inhibit carboxypeptidase A. Trypsin 
and chymotrypsin inhibitory activities were reported for the cyanopeptolins 
A90720A and symplocamide A, respectively (Lee et al., 1994; Linington et al., 
2008). 

6.1.3 The brunsvicamides 

The brunsvicamides A, B and C were originally isolated from the 
cyanobacterium Tychonema sp. (Müller et al., 2006; Walther et al., 2008) and are 
structurally related to the sponge-derived mozamides (Schmidt et al., 1997). 
They are characterized by having six amino acids, five of which form a 19-
membered ring structure, closed by an amide bond between the carboxylic 
group of the C-terminal Phe and the ε-amino group of the N-terminal D-Lys. 
The sixth amino acid is attached to the α-amino group of the D-Lys via a urea 
moiety (Figure 6.1). 
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Figure 6.1: Structures of the brunsvicamides A-C.  

The brunsvicamides, anabaenopeptins, oscillamides, (Marsh et al., 1997; Sano 
et al., 2001) and the nodulapeptins (Fujii et al., 1997) are structurally related by having 
a D-Lys-urea motif attached to a terminal amino acid and an N-methylated peptide 
bond in common, but differ in their amino acid sequence (Figure 6.2). 
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Figure 6.2: Structures of the brunsvicamide related (a) anabaenopeptin A and (b) 

nodulapeptin A. The two cyclic pepdides are structurally similar to the brunsvicamides by 

having a D-Lys-urea motif attached to a terminal amino acid and an N-methylated peptide 

bond in common. 

6.2 Methodology 

The remarkable inhibitory properties of brunsvicamides against the tyrosine 
phosphatase B of Mycobacterium tuberculosis have been previously described 
(Müller et al., 2006), however, their protease inhibiting potential was not 
reported before. Based on previous findings that several cyclic cyanopeptides 
inhibit elastases, the brunsvicamides A-C were evaluated as potential inhibitors 
of HLE. Additionally, these cyanopeptides were assessed against a panel of 
proteases and two serine esterases including cathepsin G (which is also from 
human leukocytes), the serine proteases chymotrypsin and trypsin, as well as the 
cysteine protease cathepsin S. The two esterases, acetylcholinesterase (AChE) 
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and cholesterol esterase (CEase), that share the acyl transfer mechanism with 
serine proteases, were also included in the study. Furthermore, molecular 
modeling studies were performed to get insight into the possible binding mode 
of the brunsvicamides in the active site of HLE. 

6.3 Results and discussion 

6.3.1 Enzyme inhibition assays 

The three cyclic cyanobacterial peptides were tested for enzyme inhibition using 
a spectrophotometric assay system. The three compounds were kindly provided 
by Prof. Dr. G. König and Dr. C. Mehner, Institute for Pharmaceutical Biology, 
University of Bonn. The enzyme assays were carried out by S. Hauptmann, 
Pharmaceutical Institute, University of Bonn. For detailed description of assay 
and incubation experimental procedures see Appendix E. The concentration-
dependent inhibition of HLE activity by brunsvicamide B is presented in Figure 
6.3a. The progress curves of the HLE-catalyzed substrate consumption were 
linear over 10 min time course indicating time-independent inhibition by the 
brunsvicamides. The inhibition assay results with the corresponding IC50 values 
are given in Table 6.1. From the assay results, it can be seen that the 
brunsvicamides inhibited only HLE and not the related serine proteases or 
serine esterases. The brunsvicamides A-C were thus highly selective for HLE 
with Ki values of 1.1, 0.70, and 1.6 µM, respectively, calculated assuming 
competitive inhibition. The potencies against HLE were comparable for all the 
three cyclic cyanopeptides. 

Since the brunsvicamides are peptidic compounds, there is a possibility 
of degradation by HLE. To investigate the presence of any degradation of the 
brunsvicamides by HLE, incubation experiments were performed. HLE was 
incubated over 90 minutes with brunsvicamide C, and the enzyme activity was 
followed by adding aliquots to a chromogenic substrate (see Appendix E). A 
similar loss of HLE activity was observed in the presence and absence of the 
inhibitor during this incubation time period (Figure 6.3b). This indicates that 
brunsvicamide C was able to resist enzymatic hydrolysis by HLE and therefore, 
was not degraded. 
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Figure 6.3: Inhibition and incubation experiments. (a) Inhibition assay of brunsvicamide B 

against HLE. The assay was performed in the presence of 100 µM (= 1.85 Km) of the 

chromogenic substrate MeO-Suc-Ala-Ala-Pro-Val-pNA. The data are mean values of duplicate 

measurements. The reactions were followed over 10 min, and the rates, v, were determined 

by linear regression. The rates in absence of inhibitor, v0, were set to 100%. Nonlinear 

regression according to the equation v = v0/(1 + ([I]/IC50)
x
) gave a value IC50 = 2.00 ± 0.08 µM. 

(b) Results of incubation experiments. Incubation experiments were performed in order to 

determine the activity of HLE in the presence (●) and absence (○) of brunsvicamide C. Final 

concentration of the substrate was 100 µM, of brunsvicamide C was 5.70 µM. The data are 

mean values of duplicate measurements. 
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Table 6.1: Enzyme inhibitory activities of brunsvicamides A-C. The calculated Ki values for HLE 

are given in brackets.  

Enzyme IC50 [µM]a 

 Brunsvicamide A Brunsvicamide B Brunsvicamide C 

HLE 3.12 ± 0.15b 
(Ki = 1.1 µM) 

2.00 ± 0.08c 
(Ki = 0.70 µM) 

4.42 ± 0.32d 
(Ki = 1.6 µM) 

Cathepsin G > 100    100     81 

Chymotrypsin > 100 > 100 > 100 

Trypsin > 100 > 100 > 100 

Cathepsin S     nde > 100 > 100 

AChE > 100 > 100 > 100 

CEase > 100 > 100 > 100 
a
 Values with standard error were calculated from duplicate experiments at five different 

inhibitor concentrations, those without standard error are values or limits calculated from 

duplicate inhibition experiments at a single inhibitor concentration of 5 µg/mL (cathepsin S) 

or 25 µg/mL (other enzymes). 
b
 x = 2.0. 

c
 x = 1.6. 

d
 x = 1.3. 

e
 nd = not determined. 

6.3.2 Binding mode analysis 

To investigate the possible binding mode of the cyclic peptide inhibitors, 
molecular modeling was performed with the most potent representative, 
brunsvicamide B, in the active site of HLE. The initial approach was based on 
the X-ray crystal structure of scyptolin A in complex with porcine pancreatic 
elastase (PPE) (Matern et al., 2003). The cyclic peptide core of scyptolin A, 
formed by six amino acids, consists of 19 backbone atoms, which is exactly the 
same number as in the cyclic pentapeptide core of the brunsvicamides (Figure 
6.4). Hence, we have investigated the possibility that the cyclic peptide core of 
scyptolin A might be mimicked by the brunsvicamides. 

Computational modeling was carried out using the MOE software 
(Figure 6.5). First, the backbone structure of brunsvicamide B was mapped onto 
the 19-atom core of scyptolin A in its crystallographic conformation. After 
completing the backbone model, the corresponding amino acid side chains were 
replaced by close rotamer conformations, and residues outside the cyclic core 
were also added utilizing crystallographic backbone coordinates, to the extent 
possible. 
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(a) 

 

(b)  

 

Figure 6.4: Structure of scyptolin A and PPE/scyptolin A complex. (a) 2D structure of scyptolin 

A and (b) scyptolin A inside the active site of PPE is shown (taken from X-ray crystal structure 

PDB ID 1OKX, Matern et al., 2003). 

 

 
Figure 6.5: Molecular modelling work flow. The diagram summarizes the different steps 

involved in the modeling of brunsvicamide B inside the active site of HLE. 

The modeled inhibitor mimicking the bound conformation of scyptolin 
A was then transferred into the binding site of the HLE crystal structure (Bode 
et al., 1986) after superposition of porcine pancreatic elastase and HLE X-ray 
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crystal structures. Intra- and intermolecular contacts of the resulting elastase-
inhibitor model were optimized by a stepwise controlled energy minimization 
applying the Amber99 force field (Cornell et al., 1995) which is implemented in 
MOE. 

Analysis of the model shown in Figure 6.6 revealed the presence of a 
number of plausible putative interactions. In the binding conformation 
analogous to scyptolin A, the two Ile residues of the inhibitor occupy the S3/S4 
and S1 pockets, respectively, while the Leu residue occupies the S1’ and the N-
methyl-Trp occupies the S2’ pocket. Only the S2 pocket remains unoccupied 
indicating a future optimization potential to improve the potency of the 
brunsvicamides A-C. Structural violations of the putative binding mode were 
not observed. These finding suggest that brunsvicamides A-C are capable of 
mimicking the bound conformation of scyptolin A and might hence act through 
a similar inhibitory mechanism. 

 

Figure 6.6: The model of brunsvicamide B bound to the active site of HLE. The active site of 

the enzyme is shown as surface presentation and the ligand is shown stick. 

Serine protease-catalyzed hydrolysis follows an acylation-deacylation 
mechanism. The brunsvicamides may act as alternate HLE substrates with a 
strongly decelerated deacylation step, thus leading to enzyme inhibition (Pietsch 
and Gütschow, 2002), however, the observed time independent inhibition of 
HLE by brunsvicamide B and the inability of HLE to regain its activity in the 
incubation experiment with brunsvicamide C, strongly suggest that the peptide 
inhibitor is tightly bound to the enzyme without getting degraded. These 
findings are in agreement with results on the inhibition of HLE by 
insulapeptolides (Mehner et al., 2008) and porcine pancreatic elastase by 
scyptolin A (Matern et al., 2003).  

From the X-ray crystal structures of intact peptidic inhibitors bound to 
proteases, it has been thought that the rigidity of the enzyme–inhibitor 
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complexes effectively blocks the catalytic mechanism before the formation of 
the tetrahedral intermediate or before the formation of the acyl-enzyme. An 
alternative model suggests that the acyl-enzyme intermediate is formed readily, 
but that the peptide bond is more rapidly reformed, so that the intact form seen 
in crystal structures predominates (Zakharova et al., 2009). 

In a recent study, Zakharova and coworkers (Zakharova et al., 2009) 
showed that a peptidic trypsin inhibitor binds to the enzyme like a normal 
substrate but resists hydrolysis by forming an equilibrium between cleavage and 
reformation of the scissile bond. Using X-ray crystallography, they studied the 
interaction between cleaved bovine pancreatic trypsin inhibitor (BPTI) with 
active and inactive forms of rat trypsin. A high-resolution (1.46 Å) crystal 
structure of a complex formed between a cleaved form of BPTI with a 
catalytically inactive rat trypsin variant showed that the inhibitor remains cleaved 
and the N- and C-terminal moieties of the cleaved bond were ideally positioned 
in the active site for resynthesis. This structure defines the positions of the 
newly generated amino and carboxyl groups following the acylation and 
deacylation step in the hydrolytic reaction. On the other hand, incubation of the 
cleaved BPTI with active rat trypsin resulted in the reformation of the scissile 
bond.  

Close analysis of the structural complex revealed that a subtle rotation of 
the plane of the scissile bond allows the carbonyl carbon to be attacked from 
alternate directions in the two steps of the reaction, and the location of the 
catalytic His residue allows it to act as a proton acceptor or donor to the 
nucleophile or leaving group, respectively, with little or no change in position. 
Comparison of the structure of the complex with those representing other 
intermediates published previously, demonstrated that the residues of the 
catalytic triad are positioned to promote each step of both the forward and 
reverse reactions with remarkably little motion and with conservation of 
hydrogen bonding interactions. The results provide insights into the mechanism 
by which BPTI and possibly cyclic peptide inhibitors such as the 
brunsvicamides resist hydrolysis when bound to their target proteases.  

Another interesting aspect in resisting enzymatic hydrolysis of cyclic 
peptide inhibitors by the respective protease is the prevention of access of water 
to the catalytic site thus avoiding deacylation. The crystal structure of the 
elastase-scyptolin A complex showed that the macrocycle occupies a crucial part 
of the active site thereby preventing the access of hydrolytic water and thus 
cleavage (McDonough and Schofield, 2003). Interestingly, the distance between 
the carbonyl carbon of the scissile bond and the oxygen atom of the catalytic 
serine residue was found to be within interaction distances. This suggests that 
the acylation step indeed occurs but due to prevention of the access of a water 
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molecule that is required for the second step in the hydrolysis, the deacylation 
step is prevented. 

Conformational constraints also contribute to proteolytic stability of the 
protease-bound inhibitor. Proteases generally recognize their substrates and 
inhibitors in an extended β-strand conformation (Tyndall et al., 2005). Some 
macrocyclic peptidomimetics are constrained mimics of linear peptides with a 
preorganized β-strand conformation for protease binding. This concept has 
been implemented in the synthesis of macrocyclic protease inhibitors designed 
to be constrained into a β-strand-like geometry (Abell et al., 2009). It has also 
been shown that certain macrocyclic natural products present a short, extended 
β-strand to proteases (Loughlin et al., 2004). For example, the 19-membered 
thrombin inhibitor cyclotheonamide A adopts an extended β-strand 
conformation of its protease-binding region (D-Phe-Arg-Pro) (Greco et al., 
1996). In the elastase-scyptolin A complex, four N-terminal amino acids (Leu-
Thr-Thr-Ala) bind at subsites S1 through S4 of elastase forming hydrogen 
bonds, similar to those found in an antiparallel β-sheets (Matern et al., 2003). 
The corresponding substructure of brunsvicamide B (Ile-Lysurea-Ile) has the 
potential to form similar hydrogen-bonding interactions inside the active site of 
HLE. However, deviations from an extended β-strand conformation within the 
macrocyclic structure, as can be observed for both scyptolin A and 
brunsvicamide B, might result in repositioning of the cleavage site relative to the 
catalytic triad. Future investigations are needed to clarify whether scyptolin A 
and brunsvicamide B are cleaved and recyclized within the active site of HLE. 

The putative binding mode of brunsvicamides in the active site of HLE 
suggests that their inhibitory profile might be largely governed by the residue 
Val (or Ile) occupying the P1 position. Brunsvicamides inhibit HLE, an enzyme 
that has a primary specificity for small hydrophobic residues, but not 
chymotrypsin, cathepsin G or trypsin, which prefer an aromatic or basic moiety, 
respectively, at the P1 position. Related cyclic cyanopeptides containing an 
exocylic urea moiety at the N-terminal D-Lys are anticipated to bind in a similar 
manner to elastases, and the generated brunsvicamide-HLE model could be 
used to explain the inhibitory profile of these cyclic peptides with respect to 
their structure. For example, oscillamide Y (Marsh et al., 1997) or 
anabaenopeptins B, E, F, and T (Itou et al., 1999; Kodani et al., 1999; Bubik et 
al., 2008) with Ile/Val in the C-terminal position next to D-Lys (i.e. P1) do not 
inhibit chymotrypsin. 

On the other hand, the inhibitory activity of anabaenopeptins against 
carboxypeptidase A is obviously caused by a different mode of interaction. 
Their potency mainly depends on the exocyclic amino acid attached to the 
ureido group. Carboxypeptidase A is an exopeptidase with a substrate 
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preference for hydrophobic amino acids at the C-terminal position, which bind 
to the S1’ pocket (Vendrell, et al., 2000). Those anabaenopeptins with a terminal 
basic amino acid at the ureido group (B, E, F, H) showed lower potency than 
those with a hydrophobic residue (G, I, J, T), (Itou et al., 1999; Kodani et al., 
1999; Murakami et al., 2000) indicating that this residue occupies the S1’ pocket 
of carboxypeptidase A. 

6.4 Summary 

In summary, the three cyclic cyanobacterial peptides were found to be selective 
inhibitors of HLE. They did not inhibit the related serine proteases, serine 
esterases and cysteine proteases. Molecular modeling studies showed that the 
brunsvicamides mimic the binding mode of the experimentally determined 
scyptolin A in complex with PPE. The mechanism by which the cyclic peptides 
resist proteolytic cleavage and remain tightly bound to the active site is probably 
due to the equilibrium between cleavage and reformation of the peptide bond. 
The constrained conformation of the cyclic peptides also contributes to the 
observed inhibition. Finally, the brunsvicamides investigated here can be used as 
potential leads to further design a highly potent and stable inhibitor of HLE for 
use in the treatment of emphysema. 
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Chapter 7 

Summary and conclusions 

This chapter presents an overall summary of the findings of the thesis. 

The major objectives of the thesis were VS method development and practical 

applications for identification of inhibitors of selected pharmaceutical targets, 

two cysteine proteases and a membrane-bound serine protease. Additional 

enzyme inhibition and molecular modeling studies on three cyclic peptides 

against human leukocyte elastase were also performed. 

In the first part of the thesis, three-dimensional protein-ligand interaction 

information was successfully applied for the development of a new hybrid VS 

method. The methodology, termed the interaction annotated structural features 

(IASF), was introduced that assigns energy-based scores to two-dimensional 

substructures based on three-dimensional protein-ligand interaction information 

extracted by using a scoring function. The performance of the new method was 

evaluated in real HTS screening sets and was found to perform better than 

conventional fragment-based 2D fingerprint similarity searching and three-

dimensional docking calculations. The performance results indicate the 

information gain in 2D substructure searching when 3D interaction information 

is integrated. 

The second aim of the thesis was analysis of the nature of SARs in 

analogue series at molecular 3D protein-ligand interaction level. Different 

compound series in combinatorial analog graphs were analyzed and substitution 

patterns that introduce activity cliffs of varying magnitude were determined. 

The systematically identified SAR determinants were then studied on the basis 
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of three-dimensional ligand-target interaction to enable a structural 

interpretation of SAR discontinuity and underlying activity cliffs. The results 

showed that many discontinuous SAR features extracted from combinatorial 

analog graphs can be directly associated with experimental three-dimensional 

receptor-ligand interactions. However, some substitution site patterns that 

introduce significant SAR discontinuity in analog series were not clearly 

explainable based on only protein-ligand interaction information. 

In the second part of the thesis, as a practical experiment of applications 

of VS methods, different approaches were implemented for the identification of 

selected cysteine (cathepsin K and S) and a membrane-bound serine protease 

(matriptase-2) inhibitors. By applying the compound mapping algorithm, 

DynaMAD, from a database containing ~3.7 million compounds 10 candidate 

compounds were selected and tested. This resulted in the identification of two 

dual inhibitors of cathepsin K and S with new scaffolds. Both the identified 

inhibitors did not contain an electrophilic “warhead” that usually is present in 

most of the previously reported covalently interacting cathepsin inhibitors. 

In a similar VS application, through combined SB and LB approach 

supported by knowledge-based compound design, two N-protected dipeptide 

amides containing a 4-amidinobenzylamide were identified as the first small 

molecule inhibitors of matriptase-2 with Ki values of 170 nM and 460 nM, 

respectively. A new inhibitor of the closely related protease, matriptase-1, was 

also identified with a Ki value of 220 nM showing more than 50-fold selectivity 

over matriptase-2. 

Finally, three cyclic cyanobacterial peptides, brunsvicamides A-C, were 

tested against HLE and a panel of other serine proteases, serine esterases and a 

cysteine protease. The peptides were found to be potent and selective inhibitors 

of HLE. Molecular modeling studies were performed to get an insight into their 

possible binding mode. The results showed that the brunsvicamides form 

several favorable intermolecular interaction and they mimic the binding mode of 

the experimentally determined scyptolin A in complex with porcine pancreatic 

elasstase. 

These newly identified VS hits and the HLE inhibiting cyclic peptides 

provide starting points for further chemical exploration of new potential 

inhibitors of the respective enzymes. 
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Appendices 

A. Software and Databases 

Software and databases used for the various studies presented in this thesis are 
given in the following tables and are ordered alphabetically. 
 

BindigDB Skaggs School of Pharmacy and Pharmaceutical 

Sciences, California, USA 

Description BindingDB is a public database organized around the 

concept of the binding assay. It contains data on 

measured binding affinities of small drug-like molecules 

against relevant drug targets (Liu et al., 2007). 

WebSite http://www.bindingdb.org/ 

 

 

DOCK6 University of California, San Francisco, USA 

Description DOCK6 is a suite of automated molecular docking 

tools designed to predict binding modes of small 

molecules to a protein target (Meng et al., 1992). 

WebSite http://dock.compbio.ucsf.edu/ 
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DynaMAD Life Science Informatics, University of Bonn, Germany 

Description DynaMAD is designed to map database compounds to 
activity-specific consensus positions in chemical space 
representations of step-wise increasing dimensionality 
(Eckert et al., 2006). 

WebSite http://www.lifescienceinformatics.uni-bonn.de/ 

 

 

FlexX BioSolveIT GmbH, Sankt Augustin, Germany 

Description FlexX is a fast flexible docking tool using an 

incremental construction algorithm that first places a 

base fragment in the active site and then extends it to 

peripheral fragments according to the most favorable 

torsion and protein-ligand interactions (Rarey et al., 

1996). 

WebSite http://www.biosolveit.de/ 

 

 

MACCS Symyx Software, San Ramon, CA, USA 

Description MACCS structural keys represent a 2D fingerprint that 
consists of 166 bits coding for 166 structural fragments 
(McGregor and Pallai, 1997). 

WebSite http://www.mdl.com/ 

 

 

MDDR MDL Information Systems Inc., San Leandro, USA 

Description MDDR is a database that contains about 160,000 

therapeutically (targetwise) annotated biologically active 

compounds. 

WebSite http://www.mdl.com/products/knowledge/drug_data_report/ 

 

 

MOE Chemical Computing Group Inc., Montreal, Canada 

Description The Molecular Operating Environment (MOE) is a suit 

of molecular modeling tools which provides 

applications for computational modeling works. 

WebSite http://www.chemcomp.com/ 

 

 



 

Appendices |95 

 

Molprint2D Unilever Centre for Molecular Science Informatics,  

Cambridge, UK 

Description Molprint2D represents layered atom environment-

based 2D structural fingerprints of a molecule (Bender 

et al., 2004). 

WebSite http://www.molprint.com/ 

 

 

PDBbind Shaomeng Wang Laboratory, University of Michigan, 

USA 

Description PDBbind is a comprehensive collection of 

experimentally measured binding affinity data for 

protein-ligand complexes deposited in the PDB (Wang 

et al., 2004). 

WebSite http://www.pdbbind.org/ 

 

 

PipeLinePilot Accelrys Inc., San Diego, USA 

Description Scitegic Pipeline Pilot is a graphical software for 

creating workflow protocols and provides components 

for data analysis and various scientific applications. 

WebSite http://www.accelrys.com/products/scitegic/ 

 

 

PubChem National Center for Biotechnology Information, MD, 

USA 

Description PubChem is a comprehensive public database that 

provides information on the biological activities of 

small molecules. 

WebSite http://pubchem.ncbi.nlm.nih.gov/ 

 

 

PyMOL DeLano Scientific LLC, California, USA 

Description PyMOL is a free open-source molecular visualization 

tool. 

WebSite http://www.pymol.org/ 
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Python The Python Software Foundation 

Description Python is a dynamic programming language that is used 

in a wide variety of application domains. 

WebSite http://www.python.org/ 

 

 

ZINC University of California, San Francisco, USA 

Description ZINC is a free database of commercially available 

compounds in predicted 3D conformational states 

(Irwin and Shoichet, 2005). 

WebSite http://blaster.docking.org/zinc/ 
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B. Reference ligands from complex 
crystal structures 

The following tables present 2D structures of X-ray reference crystal ligands 

used in Chapter 2. Below each structure, the corresponding PDB ID is given. 

 

Figure B.1: Protein Kinase A (PKA). 
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Figure B.1: (continued) Protein Kinase A (PKA). 
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Figure B.2: Thrombin (THR). 

HN

N

NH2
+

Cl

 

S

N

N NH

Cl

 

N

NN

N

 

1WAY 1WBG 2C90 

O

S

O

O

NH

OH

NH2
+

Cl

 

+H3N

OH

NH
S

O

O

 O

S

O

O

NH

OH

NH2
+

Cl

N

N N

N

 
2C8X 2C8Y 2C8W 



 

Appendices |99 

Figure B.2: (continued) Thrombin (THR). 
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Figure B.3: Human immunodeficiency virus reverse transcriptase (HIV). 
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Figure B.3: (continued) Human immunodeficiency virus reverse transcriptase 

(HIV). 
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Figure B.4: Heat shock protein 90 (HSP). 
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Figure B.5: c-jun N-terminal kinase 3 (JNK). 
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C. SAR tables 

The SAR tables here present the individual compounds, corresponding R-

groups (‘R1’, ‘R2’, ...) and potency values for all compounds in the four analog 

series (Tie-2 kinase, Factor Xa (series 1 and 2) and thrombin) discussed in 

Chapter 3. Compounds are identified by the original BindingDB monomer id 

(except for thrombin where the original publication numbering is used). The 

core structure is presented on top of each table and attachment points are 

marked with the letter ‘Z’. For the reference X-ray ligand, the PDB ligand 

identifier is given in parentheses. 
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Table C.1: Tie-2 kinase inhibitors. 

 

BindingDB 
monomer id 

Potency 
[nM] 

R1 R2 R3 R4 R5 

14948 1 
 

    

14977 153      

14982 399   
 

  

14983 (MR9) 10 
 

 
 

  

14989 99 
 

 
 

  

14992 39 
 

 
 

  

14993 388 
 

 
 

  

14995 4 
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Table C.2: Factor Xa inhibitors (series 1). 

 

BindingDB 
monomer id 

Potency 
[nM] 

R1 R2 R3 R4 

13616 50 
  

  

13639 106  
 

  

13641 156   
  

13642 37   
  

13645 29 
  

  

13646 48 
  

  

13650 588 

 
 

  

13651 51  
 

 

 

13653 61 
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BindingDB 
monomer id 

Potency 
[nM] 

R1 R2 R3 R4 

13654 233 
 

 
  

13655 125  
 

 
 

13656 50 
  

 
 

13657 263 
  

 
 

13661 1053 
  

  

13663 13   
 

 

13664 (I1H) 18 
  

  

13665 41 
 

   

13667 41 
  

  

13673 57 
    

13678 950 
    

Table C.2: (continued) Factor Xa inhibitors (series 1). 
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Table C.3: Factor Xa inhibitors (series 2). 

 

BindingDB 
monomer id 

Potency 
[nM] 

R1 R2 R3 R4 

12730 0.82 

 

  

12731 2.7 

  

  

12732 12 

 

  
 

12733 (4QC) 0.18 

 

  

 

12734 20 

 

  

 

12735 2 

 

  
 

12736 88 

 

  

 

12737 54 

 

  

 



 

Appendices |107 

BindingDB 
monomer id 

Potency 
[nM] 

R1 R2 R3 R4 

12738 47 

 

  

 

12739 2.6 

 

   

12740 0.35 

 

 
 

 

12742 0.72 
 

  

 

12743 0.18 
 

 
 

 

Table C.3: (continued) Factor Xa inhibitors (series 2). 

 

 

Table C.4: Thrombin inhibitors. 

 

Compound 
Potency 

[nM] 
R1 R2 R3 R4 

4 12 

 
 

  

5 0.44 
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Compound 
Potency 

[nM] 
R1 R2 R3 R4 

13 0.45 

 
 

 

 

14 0.01 

 
 

 
 

16 0.1 

 
 

 

 

17 0.0015 

 
 

 
 

19 940 

 
 

 

24 16 

 

 

 

 

25 0.24 

 

 

 
 

33 0.05 

 

 
 

 

34 (170) 0.0014 

 

 
 

 

35 2.7 

 

 

 

 

36 0.033 

 

 

 
 

Table C.4: (continued) Thrombin inhibitors. 
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D. Screening data sets 

Active reference data source 

The following table shows summary of the sources of the 42 reference 

compounds used in cathepsin K and S inhibitor searching (chapter 4). The 

numbering of the compounds in the original scientific literature is given for 

reference. 

Table D.1. Reference compounds used in cathepsin K and S inhibitor searching. 

Compound Orignal reference 

21 (Chatterjee et al., 2007) 

12d (Inagaki et al., 2007) 

JNJ (Thurmond et al., 2004a) 

123689 MDDR 

15, 19, 20 (Lui et al., 2005) 

3d, 3e, 3f (Thurmond et al., 2004b) 

11c, 11d, 11e (Patterson et al., 2006) 

14, 15, 18, 23 (Tully et al., 2006b) 

3, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20 (Tully et al., 2006a) 

6, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 
21, 24, 25 

(Gauthier et al., 2007) 
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Selected candidate compounds 

The following figure shows the 2D structures of the candidate compounds 

selected from the virtual screening search calculations in Chapter 4. 

 

Figure D.1: Structures of the 10 tested candidate molecules from virtual screening of 

cathepsin K and S inhibitors. ZINC IDs of the two dual cathepsin K and S inhibitors identified 

are printed in bold and the corresponding numbers are given in brackets. 
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Figure D.1: (continued) Structures of the 10 tested candidate molecules from virtual 

screening of cathepsin K and S inhibitors. ZINC IDs of the two dual cathepsin K and S 

inhibitors identified are printed in bold. 
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Sources of compounds 

Table D.2: Suppliers from which the candidate molecules were purchased. ZINC IDs and 

corresponding supplier catalog (order) numbers are given. The compounds identified as active 

are indicated in bold. 

ZINC ID Supplier Catalog number 

ZINC04691085 Vitas-M STK117823 

ZINC00953523 Life Chemicals F3098-6036 

ZINC01382739 Asinex ASN05255922 

ZINC01361859 Asinex ASN06912209 

ZINC06600967 Asinex BAS06264611 

ZINC05000946 Asinex ASN10030324 

ZINC07544113 Enamine-REAL Z52266270 

ZINC07199053 Enamine-REAL ZU-4220039 

ZINC07406375 Enamine-REAL ZU-1831050 

ZINC08296007 AnalytiCon NAT14-316439 

 

 

Table D.3: ZINC IDs of commercially unavailable compounds. The ZINC IDs of candidate 

compounds selected from virtual screening runs which were not available for purchase, 

described in chapters 4 and 5, are given. 

Screening system ZINC IDs 

Cathepsin 

K and S 

ZINC03039475 ZINC04547528 

ZINC07447875 ZINC02016642 

ZINC03993509 ZINC04560102 

ZINC03963240 ZINC04056841 

ZINC07850162 ZINC03827073 

ZINC04505181 ZINC06716127 

Matriptase-2 

ZINC03838230 ZINC01549765 

ZINC03808361 ZINC01549825 

ZINC03966454 ZINC03818000 

ZINC01996748 ZINC03921255 

ZINC01548696 ZINC03808363 

ZINC03831686  
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D. Laboratory experimental details 

The following sections provide detailed laboratory experimental procedures for 

compounds discussed in chapters 4, 5 and 6. 

Cathepsin K inhibition assay 

A fluorometric assay (Perkin Elmer luminescence spectrometer LS 55) was used 

to measure the activity of recombinant human cathepsin K (expressed in Pichia 

pastoris) at 22 °C. The wavelengths for excitation and emission were 360 nm and 

490 nm, respectively. Assay buffer was 100 mM sodium citrate buffer, pH 5.0, 

100 mM NaCl, 1 mM EDTA, 0.01% CHAPS. An enzyme stock solution of 1.8 

µM in assay buffer was diluted 1:100 with assay buffer containing 5 mM DTT 

and incubated for 30 min at 37 °C. Inhibitor stock solutions were prepared in 

DMSO. A 20 mM stock solution of the chromogenic substrate Z-Leu-Arg-NH-

Mec (Bachem, Bubendorf, Switzerland) was prepared with DMSO. The final 

concentration of DMSO was 5% and the final concentration of the substrate Z-

Leu-Arg-NH-Mec was 40 µM. Assays were performed with a final 

concentration of 0.18 nM of cathepsin K. Into a cuvette containing 940 µL 

assay buffer, inhibitor solution and DMSO in a total volume of 48 µL, and 2 µL 

of the substrate solution were added and thoroughly mixed. The reaction was 

initiated by adding 10 µL of the cathepsin K solution and was followed over 8 

min. IC50 values were calculated from the linear steady-state turnover of the 

substrate. A Km value of 5.8 ± 0.4 µM was obtained in duplicate measurements 

with eight different substrate concentrations. Inhibitory activity, expressed as 

IC50 value, was determined from the linear steady-state turnover of the substrate 

in triplicate measurements at a single inhibitor concentration. 
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Cathepsin S inhibition assay 

Recombinant human cathepsin S (Calbiochem, Darmstadt, Germany) was 

assayed spectrophotometrically (Cary 100 Bio, Varian) at 405 nm at 37 °C. 

Assay buffer was 50 mM sodium phosphate buffer, pH 6.5, 50 mM NaCl, 2 

mM EDTA, 0.01% Triton X-100. An enzyme stock solution of 866 µg/mL in 

35 mM potassium phosphate, 35 mM sodium acetate, 2 mM DTT, 2 mM 

EDTA, 50% ethylene glycol, pH 6.5. This enzyme solution was diluted 1:100 

with assay buffer containing 5 mM DTT and incubated for 30 min at 37 °C. 

Inhibitor stock solutions were prepared in DMSO. A 10 mM stock solution of 

the chromogenic substrate Z-Phe-Val-Arg-pNA (Bachem, Bubendorf, 

Switzerland) was prepared with DMSO. The final concentration of DMSO was 

5% and the final concentration of the substrate Z-Phe-Val-Arg-pNA was 100 

µM. Assays were performed with a final concentration of 86.6 ng/mL of 

cathepsin S, which corresponded to an initial rate of 0.6 µM/min. Into a cuvette 

containing 940 µL assay buffer, inhibitor solution and DMSO in a total volume 

of 40 µL, and 10 µL of the substrate solution were added and thoroughly mixed. 

The reaction was initiated by adding 10 µL of the cathepsin S solution and was 

followed over 18 min. IC50 values were calculated from the linear steady-state 

turnover of the substrate. A Km value of 75 ± 7 µM was obtained in duplicate 

measurements with nine different substrate concentrations. Inhibitory activity, 

expressed as IC50 value, was determined from the linear steady-state turnover of 

the substrate in triplicate measurements at a single inhibitor concentration. 

Cathepsin L inhibition assay 

Recombinant human cathepsin L (Calbiochem, Darmstadt, Germany) was 

assayed spectrophotometrically (Cary 100 Bio, Varian) at 405 nm at 37 °C. 

Assay buffer was 100 mM sodium phosphate buffer, pH 6.0, 100 mM NaCl, 5 

mM EDTA, 0.01% Brij 35. An enzyme stock solution of 50 µg/mL in 20 mM 

sodium acetate buffer, pH 5.0, 100 mM NaCl, 10 mM trehalose, 1 mM EDTA, 

50% glycerol was diluted 1:100 with assay buffer containing 5 mM DTT and 

incubated for 30 min at 37 °C. This enzyme solution was diluted 1:5 with assay 

buffer containing 5 mM DTT. Inhibitor stock solutions were prepared in 

DMSO. A 10 mM stock solution of the chromogenic substrate Z-Phe-Arg-pNA 

(Bachem, Bubendorf, Switzerland) was prepared with DMSO. The final 

concentration of DMSO was 5% and the final concentration of the substrate Z-

Phe-Arg-pNA was 100 µM. Assays were performed with a final concentration 

of 4 ng/mL of cathepsin L, which corresponded to an initial rate of 0.9 

µM/min. Into a cuvette containing 910 µL assay buffer, inhibitor solution and 

DMSO in a total volume of 40 µL, and 10 µL of the substrate solution were 
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added and thoroughly mixed. The reaction was initiated by adding 40 µL of the 

cathepsin L solution and was followed over 10 min. IC50 values were calculated 

from the linear steady-state turnover of the substrate. A Km value of 16 ± 1 µM 

was obtained in duplicate measurements with nine different substrate 

concentrations. Inhibitory activity, expressed as IC50 value, was determined 

from the linear steady-state turnover of the substrate in triplicate measurements 

at a single inhibitor concentration. 

Matriptase-2 expression and purification  

The catalytic domain of recombinant human matriptase-2 is not commercially 

available and therefore, to study the inhibitory effect of compounds 1-4 

(discussed in chapter 5) on human matriptase-2, the whole matriptase-2 

construct was cloned and expressed in HEK (human embryonic kidney) cells 

with a Myc-tag at the C-terminal end of the protein. As shown in Figure E.1a 

an approximately 30 kDa C-terminal fragment of matriptase-2 was detectable 

using anti-c-Myc antibody in the conditioned medium of transfected HEK cells 

(HEK-MT2). This form represents the catalytic domain released from the cell 

surface after processing of the zymogen, as described previously (Silvestri et al., 

2008). No signal was detectable in HEK cells expressing the empty vector 

(HEK-mock). The catalytic domain of matriptase-2 was purified from the 

conditioned medium of HEK-MT2 cells by immunoaffinity chromatography. 

After isolation, the purity of matriptase-2 was checked on SDS-Page (Figure 

E.1b). One single band of approximately 30 kDa was visible after purification 

representing the catalytic domain of matriptase-2.  
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Figure E.1: Expression and purification of human matriptase-2. (A) Conditioned medium of 

HEK cells transfected with an expressing vector harbouring matriptase-2 cDNA (HEK-MT2) and 

without matriptase-2 cDNA (HEK-mock) was characterized by western blot analysis using anti-

c-Myc antibody. (B) The catalytic domain of matriptase-2 was isolated by affinity 

chromatography using immobilized anti-c-Myc antibody. Lane 1: flow-through; lanes 2-4: wash 

fractions; lanes 5-7: elution fractions; M: molecular mass markers. 

The activity profile of matriptase-2 in the conditioned medium and of 

the purified catalytic domain of matriptase-2 was characterized using the 

chromogenic substrate Boc-Gln-Ala-Arg-para-nitroanilide. Similar Km and Ki 

values were obtained from the experiments with either conditioned medium or 

purified enzyme. Moreover, no detectable activity was observed in the 

conditioned medium of non-transfected HEK cells or HEK cells expressing the 

empty vector (HEK-mock). Thus, it is possible to use the conditioned medium 

as a source for matriptase-2 activity. The Km values for matriptase-2 in the 

conditioned medium (210 µM) and for purified matriptase-2 (159 µM) in the 

micromolar range were similar to human recombinant matriptase-1 (refer to 

Table 5.2) and to the reported value (257 µM) (Cho et al., 2001) for the purified 

catalytic domain of murine matriptase-1 overexpressed in insect cells measured 

with the corresponding fluorogenic substrate. 

Matriptase-2 and matriptase-1 inhibition assays 

The activity of matriptase-2 in the conditioned medium of HEK-MT2 cells, of 

the purified catalytic domain of matriptase-2 and of recombinant matriptase-1 

(catalytic domain; Enzo Life Sciences, Lörrach, Germany) was assayed in Tris 

saline buffer (50 mM Tris, 150 mM NaCl, pH 8.0) at 37°C by monitoring the 

release of para-nitroaniline from the chromogenic substrate Boc-Gln-Ala-Arg-
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para-nitroanilide (Bachem, Bubendorf, Switzerland) at 405 nm using a Cary 100 

UV-Vis spectrophotometer (Varian, Darmstadt, Germany). Km values were 

determined with eight different substrate concentrations in duplicate 

experiments. Inhibition assays were performed in duplicate or triplicate 

measurements with three (2 and 4 at matriptase-2), or at least five (other 

experiments) different inhibitor concentrations. IC50 values were obtained by 

non-linear regression according to the equation v = v0 / (1 + [I]/IC50). 10 mM 

inhibitor stock solutions and a 100 mM stock solution of Boc-Gln-Ala-Arg-

para-nitroanilide were prepared in DMSO. The final concentration of the 

substrate was 400 µM and of DMSO was 1.5%. Into a cuvette containing 979 

µL pre-warmed assay buffer, 11 µL of an inhibitor solution and 4 µL of a 

substrate solution were added and thoroughly mixed. The reaction was initiated 

by adding 6 µL of an enzyme solution (5 µg / 6 µL total protein of the 

conditioned medium of HEK-MT2 cells; 28 ng / 6 µL purified catalytic domain 

of matriptase-2; 3 ng / 6 µL of matriptase-1) and was followed over 20 min. 

HLE inhibition assay 

Human leukocyte elastase (Calbiochem, Darmstadt, Germany) was assayed 

spectrophotometrically (Varian, Cary 50 Bio) at 405 nm at 25 °C for 10 min. 

Inhibitor stock solutions (brunsvicamides A-C were isolated as described by 

Müller et al. (Müller et al., 2006) and were provided by Prof. Dr. G. König and 

Dr. C. Mehner) were prepared in DMSO. Assay buffer was 50 mM sodium 

phosphate buffer, 500 mM NaCl, pH 7.8. An enzyme stock solution of 50 

µg/mL was prepared in 100 mM sodium acetate buffer, pH 5.5 and diluted with 

assay buffer. A 50 mM stock solution of the chromogenic substrate MeOSuc-

Ala-Ala-Pro-Val-pNA (Bachem, Bubendorf, Switzerland) was prepared in 

DMSO and diluted with assay buffer containing 10% DMSO. The final 

concentration of the substrate was 100 µM, of DMSO was 1.5% and of HLE 

was 50 ng/mL. Into a cuvette containing 890 µL assay buffer, 10 µL of an 

inhibitor solution and 50 µL of a substrate solution were added and thoroughly 

mixed. The reaction was initiated by adding 50 µL of the HLE solution. A 

three-parameter model v = v0/(1 + ([I]/IC50)x) was used for non-linear 

regression. 
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HLE incubation experiments 

To 450 µL of assay buffer, 10 µL of an HLE (Calbiochem, Darmstadt, 

Germany) solution (50 µg/mL) and 40 µL of a solution of brunsvicamide C 

(1.25 mg/mL in DMSO) or 40 µL DMSO were added. The mixtures were 

incubated at 25 °C and aliquots of 50 µL were added to a cuvette containing 894 

µL of assay buffer and 50 µL of a solution of MeOSuc-Ala-Ala-Pro-Val-pNA (2 

mM in assay buffer with 10% DMSO) and 6 µL DMSO. Final concentrations 

were as follows: 50 ng/mL HLE, 100 µM MeOSuc-Ala-Ala-Pro-Val-pNA, 5 

µg/mL brunsvicamide C and 1.5% DMSO. Reactions were followed at 25 °C 

for 10 min at 405 nm. 

Cathepsin G inhibition assay 

Human cathepsin G (Calbiochem, Darmstadt, Germany) was assayed 

spectrophotometrically (Varian, Cary 50 Bio) at 405 nm at 25 °C for 10 min. 

Inhibitor stock solutions were prepared in DMSO. Assay buffer was 20 mM 

Tris HCl buffer, 150 mM NaCl, pH 8.4. An enzyme stock solution of 200 

mU/mL was prepared in 50 mM sodium acetate buffer, 150 mM NaCl, pH 5.5. 

A 50 mM stock solution of the chromogenic substrate Suc-Ala-Ala-Pro-Phe-

pNA (Bachem, Bubendorf, Switzerland) in DMSO was diluted with assay 

buffer. The final concentration of the substrate was 500 µM, of DMSO was 

1.5% and of cathepsin G was 2.5 mU/mL. Into a cuvette containing 882.5 µL 

assay buffer, 5 µL of an inhibitor solution and 100 µL of a substrate solution 

were added and thoroughly mixed. The reaction was initiated by adding 12.5 µL 

of the cathepsin G solution. 

Chymotrypsin inhibition assay 

Bovine chymotrypsin (Calbiochem, Darmstadt, Germany) was assayed 

spectrophotometrically (Varian, Cary 50 Bio) at 405 nm at 25 °C for 10 min. 

Inhibitor stock solutions were prepared in DMSO. Assay buffer was 20 mM 

Tris HCl buffer, 150 mM NaCl, pH 8.4. An enzyme stock solution of 10 µg/mL 

was prepared in 1 mM HCl and diluted with assay buffer. A 40 mM stock 

solution of the chromogenic substrate Suc-Ala-Ala-Pro-Phe-pNA (Bachem, 

Bubendorf, Switzerland) in DMSO was diluted with assay buffer. The final 

concentration of the substrate was 200 µM, of DMSO was 6% and of 

chymotrypsin was 12.5 ng/mL. Into a cuvette containing 845 µL assay buffer, 

55 µL of an inhibitor solution and 50 µL of a substrate solution were added and 

thoroughly mixed. The reaction was initiated by adding 50 µL of a chymotrypsin 

solution. 
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Trypsin inhibition assay 

Bovine pancreas trypsin (Sigma, Steinheim, Germany) was assayed 

spectrophotometrically (Varian, Cary 50 Bio) at 405 nm at 25 °C for 10 min. 

Inhibitor stock solutions were prepared in DMSO. Assay buffer was 20 mM 

Tris HCl buffer, 150 mM NaCl, pH 8.4. An enzyme stock solution of 10 µg/mL 

was prepared in 1 mM HCl and diluted with assay buffer. A 40 mM stock 

solution of the chromogenic substrate Suc-Ala-Ala-Pro-Arg-pNA (Bachem, 

Bubendorf, Switzerland) in DMSO was diluted with assay buffer. The final 

concentration of the substrate was 200 µM, of DMSO was 6% and of trypsin 

was 12.5 ng/mL. Into a cuvette containing 845 µL assay buffer, 55 µL of an 

inhibitor solution and 50 µL of a substrate solution were added and thoroughly 

mixed. The reaction was initiated by adding 50 µL of a trypsin solution. 

Acetyl cholinesterase inhibition assay 

Acetylcholinesterase (AChE) from Electrophorus electricus (Fluka, Deisenhofen, 

Germany) was assayed spectrophotometrically (Varian, Cary 50 Bio) at 412 nm 

at 25 °C for 10 min. Inhibitor stock solutions were prepared in DMSO. Assay 

buffer was 100 mM sodium phosphate, 100 mM NaCl, pH 7.3. The enzyme 

stock solution (~100 U/mL) in assay buffer was kept at 0 °C. Appropriate 

dilutions were prepared immediately before starting the measurement. ATCh 

(Sigma, Steinheim, Germany) (10 mM) and DTNB (Sigma, Steinheim, 

Germany) (7 mM) were dissolved in assay buffer and kept at 0 °C. The final 

concentration of ATCh was 500 µM, of DTNB was 350 µM, of acetonitrile was 

5%, of DMSO was 1%, and of AChE was ~30 mU/mL. Into a cuvette 

containing 830 µL assay buffer, 50 µL of the DTNB solution, 50 µL acetonitrile, 

10 µL of the inhibitor solution, and 10 µL of an enzyme solution (~3 U/mL) 

were added and thoroughly mixed. After incubation for 15 min at 25 °C, the 

reaction was initiated by adding 50 µL of the ATCh solution.  

Cholesterol esterase inhibition assay 

Cholesterol esterase (CEase) from bovine pancreas (Sigma, Steinheim, 

Germany) was assayed spectrophotometrically (Varian, Cary 50 Bio) at 405 nm 

at 25 °C for 10 min. Inhibitor stock solutions were prepared in DMSO. Assay 

buffer was 100 mM sodium phosphate, 100 mM NaCl, pH 7.0. An enzyme 

stock solution (122 µg/mL) was prepared in 100 mM sodium phosphate buffer, 

pH 7.0, kept at 0 °C and was diluted immediately before starting the 

measurement. TC (Sigma, Steinheim, Germany) (12 mM) was dissolved in assay 
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buffer and kept at 25 °C. A stock solution of pNPB (Sigma, Steinheim, 

Germany) (20 mM) was prepared in acetonitrile. The final concentration of the 

substrate pNPB was 200 µM, of acetonitrile was 5%, of DMSO was 1%, of TC 

was 6 mM, and of CEase was 10 ng/mL. Into a cuvette containing 430 µL assay 

buffer, 500 µL of the TC solution, 40 µL acetonitrile, 10 µL of the pNPB 

solution, and 10 µL of the inhibitor solution were added and thoroughly mixed. 

After incubation for 5 min at 25 °C, the reaction was initiated by adding 10 µL 

of the enzyme solution (1 µg/mL). 
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