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Zusammenfassung                                                                                                            I 

Fraktionen von Bodenkohlenstoff und deren räumliche Muster – schnelle Erfassung durch 
Mittlere Infrarot-Spektroskopie 

Organischer Bodenkohlenstoff (SOC) spielt eine wesentliche Rolle in globalen C-Kreisläufen, doch die 
räumlichen Muster unterschiedlicher SOC-Fraktionen sind bislang kaum erforscht – zu aufwändig sind die 
klassischen Analysemethoden. Wenig bekannt ist daher auch der Einfluss effektiver Steuergrößen auf die 
Verfügbarkeit der einzelnen SOC-Fraktionen auf der Feldskala. 

Ziel meiner Arbeit war es, das Potenzial Mittlerer Infrarot-Spektroskopie (MIRS) zur schnellen und 
kostengünstigen Quantifizierung wesentlicher Kenngrößen des SOC-Haushaltes zu evaluieren. Des 
Weiteren sollten effektive Steuergrößen der räumlichen Heterogenität des C-Umsatzes auf der Feldskala 
identifiziert werden. 

Neben der quantitativen Bestimmung von SOC habe ich hierzu black carbon (BC), drei Fraktionen 
partikulärer organischer Substanz (POM) sowie mineralisch gebundenen Kohlenstoff als Differenz in 
Probensätzen unterschiedlicher Herkunft bestimmt und mit Hilfe qualitativer spektraler Informationen 
Vorhersagemodelle zur Parameterschätzung erstellt. Effektive Steuergrößen räumlicher Variabilität der 
einzelnen SOC-Fraktionen habe ich mit Hilfe statistischer Strukturanalyse und Geostatistik identifiziert. 

Zur erstmaligen quantitativen und qualitativen Bestimmung von SOC und BC mittels MIRS 
verwendete ich Grünland- und Ackerböden aus diversen Lössregionen der Welt (n = 309). Die BC-
Referenzwerte wurden mit Hilfe einer Biomarker-Methode (Benzolpolycarbonsäuren, BPCA) bestimmt, 
die spektroskopiegestützte BC-Charakterisierung habe ich anhand unterschiedlich carbonisierter 
organischer Substanz, welche individuelle Stadien der Verkohlung repräsentierte, validiert. Ebenso habe 
ich basierend auf den Ergebnissen der SOC- und BC-Bestimmungen regionalisierte Probensätze für die 
MIRS-gestützte Bestimmung von POM dreier Größenklassen (POM1: 2000–250 µm; POM2: 250–53 µm; 
POM3: 53–20 µm) für 129 Rasterpunkte eines 1,3 ha großen Testfeldes verwendet. Die Validierung dieser 
Vorhersagemodelle erfolgte unter anderem durch Ligninanalysen der untersuchten Proben. Als potenzielle 
Steuergrößen des C-Umsatzes habe ich den Steingehalt, die Textur der Feinerde, den Gehalt von 
pedogenen Eisenoxiden, Hangneigung und Höhe über normal Null, die 137Cs-Aktivität zur Abschätzung 
von erosiver Verlagerung sowie die Bodenfeuchte an allen 129 Rasterpunkten bestimmt. Die statistischen 
Methoden zur Identifikation effektiver Steuergrößen des C-Umsatzes umfassten Multidimensionale 
Skalierung einer Fuzzy-Kappa-Ähnlichkeitsmatrix, Hauptkomponentenanalyse, Korrelationsanalysen, 
multiple Regressionsmodelle sowie Semivarianzanalysen. 

Durch die Anwendung von MIRS konnten alle SOC-Fraktionen verlässlich abgeschätzt werden. Lokale 
Kalibrationen erklärten ca. 99 % der absoluten Variabilität des SOC. Die Qualität der BC-Vorhersage war 
etwas geringer (R² > 0,8), was teilweise auf unterschiedliche BC-Qualitäten zurückzuführen war. Diese 
sind durch den Anteil an Mellitsäure im BPCA-Spektrum charakterisiert, welcher ebenfalls mit den 
spektralen Signalen korrelierte (R² ≥ 0,6). Die erreichten Bestimmtheitsmaße zur Vorhersage von POM 
lagen zwischen 0,77 und 0,96. Das Vorhersagemodell für POM1 basierte dabei hauptsächlich auf 
Absorptionsbanden von Cellulose und Lignin, die Gehalte von POM2 wurden durch spezifische 
Spektralbanden von Abbauprodukten organischer Materialien wie CH-Gruppen und aromatischen 
Strukturen charakterisiert. Absorptionen von Carboxylgruppen trugen wesentlich zur Vorhersage von 
POM3-Gehalten bei. Enge räumliche Beziehungen konnten zwischen POM1, POM2 und Lignin 
festgestellt werden, welche auch zu großen Teilen die Variabilität von SOC im Gelände erklärten. Im 
Gegensatz dazu zeigten die Gehalte an POM3 eine weniger deterministische räumliche Struktur und trugen 
nur wenig zur Heterogenität des SOC bei. 

Mit Ausnahme von POM3 (R² = 0,20) konnte die Variabilität aller SOC-Fraktionen unter Verwendung 
des Steingehaltes, der Gehalte an pedogenen Oxiden und der Hangneigung in multiplen linearen 
Regressionsmodellen erklärt werden (R² = 0,68–0,79). Der stark variierende Steingehalt (4–60 %) erwies 
sich hierbei als dominierender Faktor der C-Dynamik auf der untersuchten Testfläche. Die räumliche 
Verteilung von BC war zusätzlich durch Bodenerosion bestimmt.  

Zusammenfassend gilt, dass sich mittels MIRS schnell und kostengünstig räumliche Muster von SOC, 
BC und POM im Gelände ermitteln lassen. Die identifizierten räumlichen Muster zeigen hohe Anteile 
deterministischer Variabilität und lassen sich überwiegend mit Sättigungsprozessen erklären, welche aus 
relativ erhöhten Einträgen von Pflanzenstreu in durch zunehmende Steingehalte reduzierte Feinerdeanteile 
resultieren. Daher ist es gerade in Böden mit stark variierenden Steingehalten essentiell, dass Bodenskelett 
zu berücksichtigen, um effektive Kenngrößen des SOC-Haushaltes auf der Feldskala ermitteln zu können – 
ein Faktor also, welcher in konventionellen Bodenanalysen (auf 2 mm gesiebte Feinerde) bislang wenig 
Beachtung findet. 



II                                                                                                                       Summary 

Soil organic carbon pools and their spatial patterns – rapid assessment using mid-infrared 
spectroscopy 

Soil organic carbon (SOC) plays an important role in global C cycling. Until today, the spatial patterns 
of individual SOC fractions are, however, largely undiscovered as traditional methods for their 
determination are too time consuming. In consequence, also the interaction of regulating parameters 
governing SOC turnover on the field scale remains unresolved. 

The aim of my work was to elucidate the potential of mid-infrared spectroscopy (MIRS) for time- and 
cost-effective quantification of constitutive parameters regulating SOC turnover, and to identify effective 
control parameters regulating the spatial heterogeneity of SOC dynamics on the field scale. 

In addition to SOC quantification, I determined amounts of black carbon (BC), and particulate organic 
matter (POM) of three size classes in sample sets of different regional provenance. Quantitative prediction 
models for parameter estimation of the measured values were derived from MIR spectra. Mineral-bound 
SOC was calculated by difference. Further on, I identified effective control parameters regulating the 
spatial heterogeneity of SOC dynamics by statistical structure analyses and geo-statistical instrumentation. 

Employing samples of various arable and grassland soils from loess regions all across the world 
(n = 309), I was able to conduct quantitative and qualitative determination of SOC and BC from MIR 
spectra for the first time. Black carbon contents were determined by a molecular marker method (benzene 
polycarboxylic acids, BPCA). The MIRS-based BC characterization was validated employing individual 
samples of charred organic matter which represented different stages of combustion. With regard to the 
results of the SOC and BC predictions, I employed regionalized sample sets for the MIRS-based 
determination of POM of three size classes (POM1: 2000–250 µm; POM2: 250–53 µm; POM3: 53–20 
µm) for 129 subsites of a 1.3 ha test site (R² = 0.77– 0.96). At this, primarily analyses of the lignin contents 
were used for validation of the individual prediction models.  

The stone content, texture of the fine earth, pedogenic oxides, hill slope, elevation above sea level, 
137Cs-activity as proxy for erosive translocation, as well as the soil moisture were considered as effective 
parameters regulating SOC turnover, and determined for all 129 subsites of the investigated test site. The 
statistical instrumentation for the identification of effective parameters for SOC turnover comprised 
multidimensional scaling of a fuzzy-kappa similarity matrix, principal component analysis, correlation 
analysis, multiple regression models, as well as analyses of semivariance. 

All investigated SOC fractions were successfully determined by MIRS predictions. About 99 % of total 
SOC variability was explained by local calibrations. The precision of BC prediction was lower (R² > 0.8), 
partly reflecting different BC quality. A measure of the latter is the mellitic acid-C percentage, which also 
correlated with MIRS patterns (R² ≥ 0.6).  

Coefficients of determination for the predictions of POM of three size classes ranged between 0.77 and 
0.96. The prediction model for POM1 chiefly relied on specific signals of lignin and cellulose; contents of 
POM2 were estimated by spectral bands assigned to degradation products as aliphatic C–H groups and 
aromatic moieties. Carboxylic groups essentially contributed to the prediction of POM3. There was a close 
spatial relation between the coarse POM1 and POM2 fractions and lignin, which largely also explained 
variations in bulk SOC. In contrast, POM3 exhibited a less deterministic pattern in the field, thus 
contributing little to spatial variation of the SOC content. 

With exception of POM3 (R² = 0.20), multiple regression models employing the stone content, contents 
of pedogenic oxides, as well as the hillslope, successfully predicted the spatial distribution of all 
investigated SOC fractions (R² = 0.68–0.79). The highly variable stone content (4–60 %) proved to be the 
dominating factor regulating SOC dynamics on the investigated test site. The spatial distribution of BC was 
additionally affected by erosive translocation. 

In summary, MIRS predictions facilitate a time- and cost-effective determination of spatial distributions 
of SOC, BC, and POM within landscapes. On the investigated test site, the observed variability is chiefly 
deterministic and can be attributed to saturation processes, caused by disproportionately high input of plant 
debris as amounts of fine earth are reduced by increasing stone contents. 

Especially in soils that comprise highly variable stone contents, the coarse texture thus necessarily needs 
to be considered in case effective parameters of SOC turnover are to be identified – even though only rarely 
considered in conventional soil analysis (soil sieved to grain sizes of 2 mm).  
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2                                                                                                   I General introduction 

1 RATIONALE 

Global warming and climate change are driven by man-made CO2 emissions and 

simultaneously represent major challenges that have to be coped by mankind. At this, 

global C inventories in soil exceed those of plants or atmosphere more than twofold 

(Batjes, 1996). Accordingly, the Kyoto Protocol again manifested the increased 

environmental relevance of soil organic carbon (SOC) in 1997 and its “source and sink 

function” for greenhouse active CO2 has received considerable interest ever since 

(Bellamy et al., 2005; Fierer et al., 2005; Davidson and Janssens, 2006). While 

agricultural and forestry activities are major contributors to increased CO2 emissions 

since the 1950s (Lal et al., 2008), sequestration of atmospheric CO2 in agricultural 

ecosystems may also mitigate parts of the greenhouse gas flux problem. 

The stocks of soil organic matter (SOM) are balanced by inputs and outputs of organic 

C, but prediction of global CO2 net fluxes from soils comprises high uncertainty 

(Prechtel et al., 2009). There is consensus that microbial decomposition of SOM is a 

main source of soil born CO2 emissions, but turnover of SOM can be highly 

heterogeneous, even on the field scale. This variability is caused by the heterogeneity 

of its effective control parameters. Amount and quality of litter input, inorganic soil 

properties like contents of clay and pedogenic oxides, pH etc., as well as 

environmental conditions like soil moisture and temperature directly and indirectly 

affect the population of the decomposer community and its actual activity. The 

interaction of all these parameters determines the biotic transformation of animal and 

plant litter into the various decomposition products comprised by SOM. Quantity and 

quality of SOM could thus serve as an indicator for potential spatial patterns of soil 

born CO2 emissions.  

Studies aiming to derive measureable indices for the description of SOM 

decomposition commonly categorize bulk SOM into discrete pools with individual 

turnover times (Jenkinson, 1990). Practically, biomarker methods are applied to gain 

hints on the origin and composition of SOM species (Kögel, 1986; Brodowski et al., 

2005) while physical (Christensen, 1992), or physicochemical soil fractionations 

(Cambardella and Elliott, 1992) represent the instrumentation for quantitative 

determination of SOM pools. Skjemstad et al. (2004) demonstrated for the first time, 
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that a conceptual carbon turnover model (RothC. Ver. 26.3) can be successfully 

initialized by measured soil carbon pools, comprising total organic carbon (TOC), 

particulate organic matter (POM), and black carbon (BC). 

While such multi–pool models are clearly superior to models treating SOC as a single 

homogeneous pool (Jones et al., 2005), the classical determination of these pools is 

laborious and costly. Their applicability for large scale surveys is thus limited, 

especially under consideration of the apparent field scale heterogeneity. Techniques 

like nuclear magnetic resonance spectrometry (NMR) and biomarker analyses gave 

new insights regarding the composition of bulk soil and the chemistry of particular soil 

fractions (Amelung et al., 1999; Brodowski et al., 2007; Kögel-Knabner et al., 2008), 

but they share the drawback of being time-consuming and costly. However, recent 

evidence indicates that a rapid characterization of SOC may also be feasible by 

minimum-invasive techniques like mid-infrared spectroscopy (MIRS).  

In combination with multivariate data analysis, MIRS has shown its potential for the 

rapid determination of various basic soil properties (Janik et al., 1998; Reeves et al., 

2001; Viscarra-Rossel et al., 2006) like SOC or clay contents. The possibility to 

determine the field scale heterogeneity of individual SOM pools, however, still awaits 

clarification. Concerning their relevance for modelling of perennial SOM turnover, 

particular interest should be given to the determination of passive and slow cycling 

pools like BC and POM (Skjemstad et al., 2004). Given that such SOM pools are 

indeed predictable, MIRS-based screenings could allow for the fast assessment of 

comprehensive soil data, even in dense grids. Such datasets would facilitate the 

elucidation of effective control parameters regulating SOM turnover on the field scale 

by systematic integration of the observed spatial patterns of organic and inorganic soil 

parameters.  
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2 STATE OF THE ART 

2.1 Spatial patterns 

2.1.1 Why spatial patterns of soil organic carbon pools? 

Major parts of global C cycling take place at the soil-vegetation-atmosphere (SVA) 

interface, where biogenic processes of C transformation are regulated by water and 

energy fluxes. The cycling and exchange between the involved compartments is 

thereby characterized by complex interactions among each other and the regulating 

parameters. Also the interference of human activity evokes mutual feedbacks on 

inherent exchange processes in the SVA system. These feedbacks may severely impact 

human living in many ways and represent a constitutive aspect of “global change”.  

Interactions between the SVA compartments are extremely complex due to their 

inherent spatial and temporal heterogeneity. At this, major parts of the observed 

heterogeneity are not random, but spatial patterns are formed by multidimensional 

non-linear coupling and feedback between the involved system compartments 

(Grayson and Blöschl, 2001). Predicting the reactions upon external changes thus 

represent a task of extreme complexity. An increasing number of numerical models 

aiming at different parts within the SVA system have become available and express a 

high demand for reliable input data. The use of point measurements and rather crude 

interpolations to deliver these input variables is limited as they inadequately smooth 

out much of the heterogeneity found in nature. This heterogeneity is, however, not 

random but highly organized, and a linear statistical representation of the variability 

will be hardly sufficient (Molz et al., 2004). 

Except of single aircraft-based measurements of CO2 and trace gases, measurement 

techniques to capture atmospheric properties on regional scales (> 100 km) 

concentrate on water and energy fluxes but the limited number of measurement 

stations restricts the parameterisation of meteorological modelling to rather coarse 

assumptions. Despite considerable spatial heterogeneity of relevant soil properties and 

hydraulic parameters, simple mean values or estimations of those are commonly 

applied and add further uncertainty to the gained results (Knorr and Heimann, 2001).  

On the field scale, rapid turbulent mixing of the atmospheric boundary layer in SVA 
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systems limits the possibility to capture spatial patterns of atmospheric CO2 

concentrations. Thus, CO2 fluxes in the field are usually assessed by eddy-covariance 

measurements above the vegetation canopy which capture the integrative signal of the 

turbulent layer. A large number of studies assessed the actual CO2 exchange in various 

ecosystems, including grassland and forest soils (Chen et al., 2006), as well as cropped 

agricultural soils (Werth and Kuzyakov, 2009; Li et al., 2010). At this, soil moisture 

has been identified as one key parameter regulating the actual C dynamics under 

vegetation (Aiken et al., 1991; Reichstein et al., 2003).  

Intensive research has improved our understanding of soil hydrology and a number of 

conceptual models are available for the simulation of subsurface water flow in the 

vadose zone (Van Genuchten and Simunek, 2004). But also here, multidimensional 

modelling demands data on spatial heterogeneity. Information on spatial patterns may 

be achieved by integrating data from remote sensing, geophysical surveys, and 

topographic information. A common limitation is, however, that the conversion of 

these datasets to the desired information for modelling is not straight forward and 

adequate ground truth data for validation is hardly available due to the considerable 

workload demanded for its acquisition (Braudeau and Mohtar, 2009). 

While soil respiration plays only a minor role in daily or seasonal changes of net CO2 

fluxes, the soil born respiration is an indicator for SOC decomposition which co-

determines the storage of carbon in soil in the long term (Ryan and Law, 2005). 

Practically, measures derived by the eddy covariance method are founded on limited 

numbers of soil data. The general assumption of uniformly distributed soil properties 

within the footprint area of eddy covariance measurements likely holds just as little as 

point measurements represent the actual spatial heterogeneity of parameters like soil 

moisture (Falge et al., 2001; Wilson and Meyers, 2001). The need for a better 

understanding of the spatial variability of SOC dynamics for the interpretation of eddy 

covariance measurements was also envisaged by Sanderman et al. (2003). There is 

consensus that beyond the consideration of rate parameters like soil moisture, the 

recognition of spatial patterns of soil organic carbon pools and inorganic soil 

parameters represents a key element for the elucidation of effective parameters of SOC 

turnover (Smith et al., 2003; Ahuja et al., 2006). Integrated attempts are needed that 
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combine CO2 efflux measurements as well as soil properties to allow for a better 

understanding of SOC dynamics. At this, the recognition of spatial patterns has to be 

considered for the modelling of long term C sequestration in SVA systems on all 

scales (Anderson et al., 2003; Manzoni and Porporato, 2009). Effective parameters and 

their representative mean values that are applied on regional or even global scales 

should thus be based on knowledge gained by recognition of spatial patterns on the 

field scale (Izaurralde et al., 1998; Vogel and Roth, 2003).  

In the past, field scale heterogeneity of basic soil properties like SOC or clay contents 

have been assessed by applying laborious lab-based measurements (Kern, 1994; 

Kuzyakova and Richter, 2003; Ye et al., 2008; Wang et al., 2009). Although a variety 

of different fractionation procedures have been proposed for the identification of 

individual carbon pools for the parameterisation of SOC turnover models (Paustian et 

al., 1997; Six et al., 2004; Skjemstad et al., 2004), the considerable expenditures for 

their determination renders the assessment of their spatial heterogeneity within larger 

areas almost impossible until today (von Lützow et al., 2007). Innovative methods that 

enable for the fast screening of organic and inorganic soil properties are thus a 

prerequisite for the recognition of spatial patterns and their implementation for SOC 

turnover modelling. 

2.1.2 Statistical assessment of spatial patterns in soil  

Early concepts aiming towards the prediction of specific soil properties based on 

factors of soil formation like climate, vegetation, or soil forming substrate, coupled 

with soil-landscape relationships (Jenny, 1941; Simonett, 1960). Applying 

climofunctions, Jones (1973) was able to derive relations between soil carbon, 

nitrogen, clay, annual rainfall, and altitude. These classical attempts, however, related 

to surveys on larger scales and are not capable of capturing spatial heterogeneity at the 

field scale. The spatial distribution of mineral soil constituents frequently co-

determines patterns of different soil organic carbon pools, which may also be 

autocorrelated to each other. The high degree of co-linearity in such datasets severely 

limits the applicability of simple linear and multiple linear regression analysis for the 

determination of effective control parameters that explain the spatial distribution of 

individual SOC pools. At this, multivariate explorative techniques and higher non-
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linear models are most suited for the identification of deterministic dependencies. Due 

to the limited number of spatial data achievable from classical soil survey, data 

intensive procedures like neural networks or partial least squares regression are usually 

restricted to applications in remote sensing or geophysical surveys (Cockx et al., 

2009). Principal component analysis is, however, also applicable to derive structures in 

smaller data sets (Hasie et al., 2001). The application of fuzzy-sets with subsequent 

multivariate exploration of the similarity matrices by multidimensional scaling 

represents a possibility to account for uncertainty associated with lab based 

determination of soil properties and the fuzziness of their spatial patterns in the field 

(Kruskal, 1964; Zadeh, 1965; McBratney et al., 2003). Multivariate statistical 

exploration of the dataset, however, represents only the initial step in the geostatistical 

data analysis. As a second step, quantitative description of spatial heterogeneity is 

routinely achieved by semivariogram analysis, which represents the single most 

important geostatistical tool in soil science (McBratney and Webster, 1986; Atkinson 

and Lloyd, 2007). Quantitative measures for the dependencies between dependent and 

independent soil parameters can finally be derived by nonparametric statistical 

methods like correlation or regression analysis (Kuzyakova and Richter, 2003; Yavitt 

et al., 2009). 
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2.2 Soil organic carbon  

2.2.1 Soil organic carbon in the arable soil environment 

Summing up to about 1.4 billion ha, arable soils account for approximately 10 % of 

worldwide land area (WRB, 2007) and contain about the same percentage of its SOC 

stocks (Jenkinson et al., 1991). The organic carbon that is stored within a soil 

represents floral and faunal litter in various stages of decomposition, microbial 

biomass and its detritus, as well as products of incomplete biomass burning and fossil 

fuel combustion. In addition to the in-situ inputs of plant and animal litter, 

considerable amounts of ex-situ litter may be introduced to agricultural soils by 

organic manuring. 

As arable soils have specifically been selected for cultivation, they are usually 

characterized by reasonably good aeration and drainage, allowing for vital plant 

growth with correspondingly high amounts of plant debris. Simultaneously these soil 

properties are favourable for decomposition and C stocks are thus rather low compared 

to the high biomass input (Davidson and Janssens, 2006). Upon cultivation, topsoil 

layers of native soils are homogenized and mixed with mineral soil horizons by 

varying kinds of tillage. The outcome of these practices is a soil profile with clear cut 

boundaries between two unequal sectors. Of these sectors, the tilled topsoil usually 

comprises the highest proportions of SOC as also indicated by data of Batjes (1996) 

who estimated 700 of the 2400 Gt of SOC in 0–200 cm to persist in the first 30 cm. 

Representing the active interface between pedosphere, atmosphere and vegetation, 

topsoils thus play a major role for carbon dynamics in SVA systems. Among arable 

soils, exceptions are represented e.g. by sandy soils that are prone to considerable 

leaching of SOC into deeper layers (Podzols), or by soils that naturally comprise SOC-

rich subsoils like Fluvisols or Histosols.  

2.2.2 Qualitative characterization of soil organic matter and its turnover  

Owing to its manifold constituents, SOC exhibits a complex chemistry which has 

challenged researchers all times. Early procedures attempting to characterize the 

chemical composition of SOC derived relatively unspecific measures for its contents 

of e.g. carbohydrates (Lowe, 1978), lipids and polypeptides (Stevenson, 1966), or 

“humic substances” (Coulson et al., 1959). While these classical extraction procedures 
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yielded a rather coarse chemical classification, the actual understanding on the origin 

of the manifold SOC species stems from a variety of biomarker methods with a higher 

degree of specification.  

Residues from incomplete combustion of biomass burning or fossil fuels are suspected 

to be most recalcitrant against biochemical degradation (Brodowski et al., 2007) and a 

variety of different methods have been proposed for the assessment of BC in soils 

(Hammes et al., 2007). These include the use of benzene polycarboxylic acids (BPCA) 

as biomarkers for highly condensed carbonatious material (Brodowski et al., 2005). In 

addition to the quantitative estimation of charred material, the gained biomarker 

spectrum delivers additional information about the degree of BC condensation, giving 

hints on its composition within the large spectrum from amorphous charcoal to highly 

condensed soot (Brodowski et al., 2007). The enhanced abundance of aromatic 

compounds in BC rich soils was also confirmed by studies applying pyrolysis GC/MS 

(De la Rosa et al., 2008; Kaal and Rumpel, 2009). 

Several biomarkers are also available for the identification of chemically stabilized 

moieties in SOM. Lignins are formed by terrestrial plants and received particular 

attention, e.g. with regard to rates of litter decomposition (Parton et al., 1987; 

Amelung et al., 1999; Otto and Simpson, 2006a). Quantitave and qualitative 

information on lignin in soils can be assessed by gas chromatographic analysis of 

lignin derived phenols which are soluble upon alkaline CuO oxidation (Hedges and 

Ertel, 1982; Kögel, 1986; Otto et al., 2005). Other bio-molecules that are released 

upon CuO oxidation comprise proteinaceous aromatic compounds and plant derived 

phenols such as tannins (Otto and Simpson, 2006b). Also for the identification of 

lignin in soils, measurement techniques combining pyrolysis and mass spectrometry 

have been applied (Schulten and Leinweber, 1993). While the identification of specific 

sources for n-alkanes is difficult (Lichtfouse et al., 1998), long chained n-alkane 

precursors like carboxylic acids can serve as useful indicators of plant derived SOC 

(Ninel et al., 1990). The ester-bound biopolymers cutin and suberin are biomarkers 

that allow for root-shoot-differentiation of SOC from non-woody plants (Bernards, 

2002; Nierop and Verstraten, 2004). Other lipids that are utilized as specific 

biomarkers comprise cutan and suberan (Buurman et al., 2007) or triterpenoids (Otto 
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and Simoneit, 2001; Otto et al., 2005). 

Fresh plant and animal litter usually comprises high amounts of easily degradable 

compounds and represents SOM of short turnover times. Plant derived carbohydrates 

constitute the main source of energy for microbial litter degradation, and are rapidly 

converted after they have entered the soil. Also microbial biomass and their 

metabolites contain significant amounts of carbohydrates. Non-cellulosic 

polysaccharides can, however, be removed prior to carbohydrate analyses, thus 

allowing to discriminate between plant derived carbohydrates and microbial 

metabolites (Amelung et al., 1996). On agricultural soils, easily degradable material 

may also enter the soil in form of animal feces by organic manuring. At this, 

cholesterol, 5β-stanole, and bile acids represent specific biomarkers for metabolic 

processes of higher mammals (Voet and Voet, 1995; Evershed et al., 1997). Finally, 

dead biomass of microbes and fungi contribute to SOM, while living biomass is 

assigned to the edaphon. Total amino-sugar concentrations in soils are used as a 

quantitative measure for the contribution of microbial necromass (Amelung and 

Zhang, 2001). Ratios of the individual amino-sugars have been used as indicators for 

the relative abundance of fungal and microbial communities (Liang et al., 2007a; 

Liang et al., 2007b). Due to the significant accumulation of amino-sugars in soils 

(Glaser et al., 2004), total amino-suger concentrations reflect a combination of 

historical and actual microbial communities. Also phospholipid fatty acids (PLFA) are 

primarily derived from microbial cell membranes, but in contrast to amino-sugars they 

are quickly decomposed after cell death, thus representing a measure for living 

microbial biomass (Zelles, 1999). Information on living fungal biomass can be derived 

by the use of Ergosterol (Ruzicka et al., 2000). The combination of methods 

determining total microbial necromass and living bacteria or fungi may thus provide 

valuable information on the turnover times of amino-sugars in soil and the significance 

for microbial communities in nutrient cycling (Liang et al., 2008). 
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While the use of biomarkers provides valuable qualitative information on specific 

compounds and their origin within SOM, they hardly reveal quantitative estimations 

on the composition of bulk SOM (Amelung et al., 2008). Such information is, 

however, mandatory for the elucidation of compositional SOC patterns that are 

relevant for spatial distributions of SOC turnover.  

The application of nuclear magnetic resonance spectroscopy (NMR) in soil science 

(Wilson, 1987) opened up new possibilities for the chemical characterization of intact 

soil samples. As the intensity of an NMR signal is proportional to the concentration of 

the nuclei that generate the signal, the integration of assignable NMR peaks allows 

estimating bulk SOC composition (Kögel-Knabner, 2000). Statistically analysing 

published NMR data, Mahieu et al. (1999) found humus rich top-soils to be dominated 

by O-alkyl C (45 %), alkyl C (25 %), and a combined carboxyl and amide C fraction 

(10 %). Although specific pulse techniques like cross polarization magnetic angle 

spinning (CPMAS), bloch decay, or proton spin relaxation (PSRE) widened the 

applicability of NMR, e.g. to the detection of 13C labelled molecules (Webster et al., 

1997) or to differentiate between structures from SOC pools like decomposed plant 

litter and charcoal (Golchin et al., 1997; De la Rosa et al., 2008), NMR still 

predominantly yields data on abundances of functional groups while little information 

is given on the molecular composition. This drawback has been overcome by recent 

investigations which successfully integrated NMR spectroscopy and biomarker 

analysis (Simpson et al., 2008). However, also the combination of biomarker analysis 

and NMR spectroscopy does not facilitate a quantitative estimation of particular 

carbon stocks. Its use for the rapid screening of large numbers of samples is further 

restricted by its requirement of time- and cost-intensive sample preparation, and the 

need for sophisticated instrumentation and expertise.  

During the last two decades, several methods using isotope ratio mass spectrometry 

(IRMS) have successfully been applied for the discrimination of the naturally 

occurring carbon isotopes in SOM (Amelung et al., 2008). Due to individual ratios of 
12C and 13C isotopes in C3 and C4 plants (Smith and Epstein, 1971), man induced land 

use changes by cropping plants with either of these photosynthesis pathways allows to 

discriminate between recent and ancient plant residues in SOC turnover studies 
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(Schwartz et al., 1996; Kramer and Gleixner, 2006; Krull et al., 2007). Also 

information on the role of fresh plant litter for soil aggregation can be obtained by 

natural δ13C labelling, as demonstrated by Bol et al. (2004). In a recent study, Bol et al. 

(2009) determined the molecular turnover time of naturally labelled SOC in physical 

soil fractions. Even the analysis of compound specific carbon isotope ratios can be 

facilitated (Amelung et al., 2008), e.g. by coupling of methods like gas 

chromatography (Quenea et al., 2006; Mendez-Millan et al., 2010), or thermal analysis 

systems as isolation step prior to isotopic determination (Lopez-Capel et al., 2005). 

The applicability of natural carbon isotope ratios for SOC turnover studies is, however, 

restricted to sites with a rigorous change between cropping of C3 and C4 plants and 

thus, as biomarker analysis and NMR spectroscopy, not suited for the elucidation of 

naturally evolved SOC patterns in agricultural ecosystems.  

Microbially mediated processes and chemical aspects of SOM dynamics have been in 

the focus of most soil scientists until Christensen (1992) highlighted the potential of 

physical soil fractionations for the elucidation of SOM turnover. Scanning physical 

soil fractions, Baldock et al. (1992) revealed a consistent change in the chemistry of 

SOC with particle size. While the sand fraction was characterized by signals of 

carbohydrates, the chemical shift of the NMR spectra indicated a dominance of 

aromatic moieties for the silt fraction and alkyl-dominated structures for the clay 

fraction. Contents of O-alkyl C in fresh organic litter are usually high but decline 

during a first stage of decomposition. On the contrary, contributions of alkyl-C 

increase (Baldock et al., 1997; Kögel-Knabner, 2000; Kögel-Knabner, 2002), 

supposedly caused by selective preservation and in-situ synthesis (Baldock et al., 

1992). Baldock and Skjemstad (2000) proposed that as O-alkyl C depletes, a second 

stage of SOC decomposition is initiated. Within this stage lignin is suspected to 

degrade, as indicated by a decline of aromatic structures in aging plant debris. Based 

on the concept that SOM associated to mineral particles of certain particle size 

fractions differs in structure and function, Christensen (1992) pointed out the potential 

of physical soil fractionations to deliver measurable SOM pools as desired for the 

initialization and validation of the emerging SOM turnover models. 
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2.2.3 Soil aggregation and turnover of soil organic matter 

There is growing evidence that physical stabilization mechanisms of structural debris 

in varying stages of decomposition are essential factors governing carbon dynamics in 

soil (Gulde et al., 2008; Stewart et al., 2008). Owing to its specific occurrence as 

stabilized SOM in soil aggregates of varying size or density, this SOC pool is 

commonly referred to as particulate organic matter (POM) or light fraction (LF). As 

major parts of it are biochemically readily available for decomposition, its stability is 

crucially affected by soil aggregation and several attempts were made to describe its 

formation and turnover in soils. While early models of soil aggregation proposed a 

direct relationship between specific surface area of clay minerals and SOC storage in 

soil aggregates (Emerson, 1959) most contemporary concepts are based on the model 

suggested by Oades (1984). According to his concept, microbially colonized plant 

debris initially forms macroaggregates (> 250 µm) as the coarse organic material is 

glued together with the mineral matrix by microbial carbohydrates and mucilage. In a 

second step, these macroaggregates burst into large microaggregates (20–250 µm) 

which continuously liberate small microaggregates (< 20 µm). Other concepts adopted 

the basic structure of the model by Oades (1984) but modifications were suggested 

with regard to site and point in time of microaggregate formation (Six et al., 2000). 

The importance of interactions between SOM and the mineral phase as suggested by 

Christensen (1996) is firmly established in the actual understanding of soil 

aggregation. In opposition to the concept of Oades (1984), Christensen (1996) 

assumed the primary structure of soils to be defined by its texture. The concept 

proposes the formation of “primary organo mineral complexes” by sorption of SOM 

on mineral particles. “Secondary organo-mineral complexes” are supposed to form 

upon aggregation of several primary organo-mineral particles. Applying transmission 

electron microscopy, Chenu and Plante (2006) found that many of < 2µm “particles” 

actually consisted of microaggregates and challenged the concept of primary particles. 

In line with these results, also von Lützow et al. (2007) concluded that several binding 

mechanisms are involved in the stabilization of clay sized SOM gained by particle size 

fractionation and highlighted the potential of emerging fractionation techniques like 

high gradient magnetic separation for characterization of clay sized SOM. In arable 

soils, the dynamics of SOM turnover are, however, dominated by sand and silt sized 
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SOM (Gulde et al., 2008) as protection of SOM by organo-mineral interactions is 

limited and saturation may occur (Hassink et al., 1997; Six et al., 2002; Wiseman and 

Puttmann, 2005).  

Changes between cultivated and uncultivated soils were observed to occur primarily in 

aggregated particulate organic matter, while fine-clay sized SOC was hardly affected 

(Golchin et al., 1995). Here, high concentrations of O-alkyl C in combination with 

relatively young δ13C ages suggested that fine-clay associated SOC was dominated by 

microbial biomass, its metabolites and detritus. Also Christensen (1992; 1996) found 

that different land-use strategies may have only moderate consequences for the 

chemical composition of SOM attached to < 20 µm aggregates. While none of the 

available models can explain the aggregate hierarchies in all soils, consensus prevails 

that in soils where SOC represents the main binding agent for aggregation, SOC 

turnover decreases with decreasing aggregate size. Generally, macroaggregation 

promotes the greater storage potential and microaggregation promotes long term 

sequestration due to enhanced physical stability. Positive relationships between soil 

aggregation and bulk SOC contents are indicated by long term studies of Watts and 

Dexter (1997). Also Six et al. (2000) observed a concurrent loss of bulk SOC and 

degradation of soil structure. Recently, Gulde et al. (2008) showed that elevated 

manure application resulted in a hierarchical sequestration of additional C in coarse 

fractions with relatively short turnover time.  

In soils where a limited number of key mechanisms control SOM stabilization, particle 

size fractionation thus provides a rough differentiation between active, intermediate, 

and passive SOM (von Lützow et al., 2007) and could also provide a basis for the 

recognition of spatial patterns in SOM dynamics.  

2.2.4 The pool concept of soil organic matter turnover 

Growing evidence that SOM comprises different moieties of specific structure and 

reactivity has led to the development of fractionation techniques aiming at isolation of 

biochemically meaningful pools (Cambardella and Elliott, 1992; Amelung and Zech, 

1999) as demanded for initiation and validation of SOM turnover models. Despite 

varying implementations used by the different concepts, all modelling approaches 

conceptualize SOM into pools of varying turnover times. The most popular models are 
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the Roth-C (Jenkinson and Rayner, 1977; Jenkinson, 1990), and Century (Parton et al., 

1987), but also models like APSIM (McCown et al., 1996), and others (e.g. Jenkinson 

and Rayner, 1977; Paul and Beauchamp, 1995; Paul et al., 1997; Falloon and Smith, 

2000) proved to successfully predict SOM dynamics under specific conditions. 

Commonly, the models comprise one or two labile pools, two or three physically or 

chemically protected pools and one pool considered to be slow or even “inert” 

(Falloon and Smith, 2000). The analytical identification of these pools, however, has 

challenged researchers ever since because of intrinsic difficulties.  

The Roth-C model can be used to calculate the C dynamics for specific crop rotations 

of agricultural soils as well as for the prediction of long term changes in carbon due to 

changing climate. Skjemstad et al. (2004) demonstrated for the first time, that this 

conceptual carbon turnover model (RothC. Ver. 26.3) can successfully be initialized 

by measured soil carbon pools. The group of Skjemstad measured total organic carbon 

(TOC), particulate organic carbon (POC), and a black carbon pool (BC). A forth, so 

called “humic” pool (HUM) was obtained as the residuum: HUM = TOC – POM – 

BC. The measured carbon pools were then used to initialize the Roth-C model for two 

long term rotation trials in Australia. At this, the measured fractions served as 

representatives for the original model pools of “resistant plant material” (POM), the 

“humic model pools” (HUM), and “inert organic matter” (BC) were in good 

agreement to modelled data for 18 years of cultivation. With regard to actual critical 

literature on the inertness of BC in terms of SOC turnover (Czimczik and Masiello, 

2007) I will refer to BC as “passive soil organic matter” in the following. 

2.2.5 Passive soil organic matter (black carbon) 

One of the chemically most recalcitrant forms of organic carbon is black carbon (BC), 

a major aromatic residue from the incomplete combustion of biomass and fossil fuels 

(Goldberg, 1985; Schmidt and Noack, 2000; Flessa et al., 2008). Repeatedly, BC was 

taken to be equivalent to the “inert” C pool for initialization of RothC soil carbon 

turnover models (Skjemstad et al., 2004; Rethemeyer et al., 2007). Beside its potential 

to act as an important sink for atmospheric CO2, BC may positively impact soil 

functions. It is suspected to be involved in the stabilization of humus (Schmidt et al., 

1999), soil aggregation (Picollo et al., 1997; Brodowski et al., 2006) and may promote 
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soil fertility (Schutter and Fuhrmann, 1999; Linker et al., 2006; Czimczik and 

Masiello, 2007). Due to its hydrophobic nature, BC substantially contributes to the 

sorption of organic pollutants in soils and sediments (Lohmann et al., 2005; 

Bornemann et al., 2007) and heavy metals (Hiller and Brümmer, 1997). In general, BC 

is assumed to comprise 1–6 % of SOC (Gonzalez-Perez et al., 2004) but accumulation 

via aeolian and fluvial transport (Patterson et al., 1987) as well as wildfires and 

anthropogenic BC input can enrich the content significantly (Laskov et al., 2002; 

Brodowski et al., 2007; Czimczik and Masiello, 2007). Proportions of BC in SOC of 

German soils range between 15–45 % (Schmidt et al., 2002), but up to 60 % have been 

reported to prevail in Canadian Chernozems (Ponomarenko and Anderson, 2001). 

While there is consensus that selective chemical preservation of BC inputs can be an 

important factor regulating quantity and turnover of SOC (Flessa et al., 2008), the 

paradigm of being biochemically inert is increasingly challenged. Incubation 

experiments (Baldock and Smernik, 2002; Hockaday et al., 2005), field measurements 

of loss rates (Flessa et al., 2008), and its presence in the dissolved organic carbon 

(DOC) pool (Wengel et al., 2006), however, indicate the dynamic nature of BC as 

SOC constituent. Recently, Czimczik and Masiello (2007) proposed a multi factor 

model for the prediction of BC storage in soils. Besides amount and quality of BC 

inputs, their concept also considers physicochemical soil properties, microbial activity, 

as well as anthropogenic impact as relevant control parameters for BC stocks in soil. 

The heterogeneity of BC makes its estimation in soils a challenging task. The various 

analytical methods available all capture only parts out of the continuum of BC 

materials (Hammes et al., 2007). While optical examination allows for qualitative 

characterization by means of morphology and particle size, quantitative information is 

limited: Applying light microscopy for BC analysis, particles on the submicron scale 

might not be detected. Further, areal observations as performed by electron 

microscopy will most likely not be representative for heterogeneous sample matrices 

(Karapanagioti et al., 2004). For thermal detection methods, the analysis is based on 

changes in transmission spectra of carbon during heating (Yang and Yu, 2002). As 

these techniques were originally implemented for the detection of soot and other 

atmospheric forms of BC, the applicability to samples from soils and sediments is 
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limited. Probably most widely applied are techniques employing either chemical 

(Skjemstad et al., 1993; Song et al., 2002) or chemo-thermal (Gustafsson et al., 2001) 

oxidation procedures in order to remove non-BC carbon, followed by elemental 

analysis or semi quantitative NMR. All these procedures are prone to intrinsic 

experimental uncertainty due to losses, artificial BC formation, or alteration of the 

molecular structure (Nguyen et al., 2004). Black carbon contents may thus be 

significantly over- or underestimated as also demonstrated by Hammes et al. (2007) 

who declared the need for a fast and universally applicable quantification method for 

BC in soils and sediments by employing a comprehensive inter-laboratory comparison. 

Estimation of BC content with the use of benzene polycarboxylic acids (BPCAs) at 

least satisfies one of the claimed needs: it is universally applicable as it is directly 

derived from the oxidation products of condensed aromatic structures (Glaser et al., 

1998). Additionally, the degree of condensation and thus the nature of the charred 

material, can be derived from different BPCA patterns. However, also this method is 

laborious and time consuming. 

2.2.6 Resistant plant material (particulate organic matter) 

Resistant plant material (RPM) has been shown to be closely linked to soil aggregation 

(Wander, 2004) and has been used for the initialization of slow cycling SOC pools in 

conceptual SOC turnover models (Skjemstad et al., 2004; Zimmermann et al., 2007b). 

Further on, different sub-fractions of RPM represent differently stabilized SOC (Kölbl 

et al., 2005), and the determination of biochemically meaningful RPM pools is needed 

for understanding and monitoring of SOC turnover processes (Olk and Gregorich, 

2006). The physical determination of RPM implies that the association of SOC with 

the mineral phase and their three-dimensional structure is representative for SOC 

dynamics. The physical properties applied for the characterisation of these structures 

are basically particle size and / or density. Ideally, the different methods are tailored to 

meet the specific objectives of the study and the properties of the analysed soils 

(Wander, 2004). Density fractionations aiming to gain the so called “light fraction” 

(LF) typically involve the use of sodium or potassium iodide, sodium polytungstate, or 

silica gel with common densities varying between 1.85 and 1.40 g cm3. Usually, the 

density fractionation is performed after a preliminary soil dispersion employing 
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prolonged shaking with glass beads. Density fractionations are most suited for 

analyzing the effects of different agronomic treatments as they have been shown to be 

most sensitive to changes in management practice (Carter et al., 1998; 2003). To 

separate the most active fractions as well as mineral protected SOC, density 

fractionations have also been combined with a precursor size fractionation to gain 

particulate organic matter (POM) (e.g. Cambardella and Elliott, 1992; Baldock et al., 

1997). The use of chemical density solutions, however, likely causes unintended 

artefacts which may constrain the validity of the gained results. Iodide solutions and 

silica gel alter the chemical characteristics of SOC and sodium polytungstate can 

hardly be completely removed from RPM. In direct comparison, the LF exhibits a 

darker colour than the POM as gained from single size fractionation. The observed 

phenomenon has been attributed to contaminations of the LF with humified moieties 

and microbial residues (Baldock et al., 1990; Kerek et al., 2002). Further limitations 

may be caused by high-surface-area materials like BC which have also been identified 

to represent unintended constituents of the LF (Kleineidam et al., 1999). The 

recognition of spatial patterns in SOC turnover models requires large numbers of 

samples for appropriate initialization and validation. Due to the excess workload and 

expenditure demanded by density fractionations their use is, however, inappropriate to 

gain such data sets. At this, also the generally more robust POM fractionations have 

been proven to effectively document changes in land use, tillage practices, crop 

rotations, and climatic effects (Amelung et al., 1997; 1999; Bowman et al., 1999). 

Generally, the POM comprehends major parts of the LF (Cambardella and Elliott, 

1992), but the recovered amounts of C and N are higher, while the C:N ratio is lower 

(Gregorich et al., 1996). Particulate organic carbon typically comprises 10–20 % of 

bulk SOC (Angers et al., 1997). For size fractionation, the suspended soil is most 

commonly dispersed by ultrasonication but also chemical reagents like sodium 

hexametaphosphate are used. For sonication, optimum values for energy and 

sonication time depend on the type of sample and the desired size fraction (Amelung 

and Zech, 1999). Stepwise procedures with initial low energy dispersion for the 

macroaggregate-containing coarse fraction, and high energy dispersion for the 

microaggregate fraction have been shown to deliver biochemically more meaningful 

fractions (Kölbl et al., 2005). The mesh-size limits commonly used for POM 
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fractionations are owing to their origin in procedures which were designed for the 

investigation of mineralogical controls over SOC dynamics and correspond to 

classically employed grain sizes for texture analyses. Typically, the lower boarder of 

POM is defined at 53 µm with an additional subdivision at 250 µm and upper boarders 

reaching from 2000–8000 µm, dependent on the envisaged questions (Hassink et al., 

1993). Content and composition of lignin are classical parameters for the identification 

and characterization of POM (Monreal et al., 1997). According to Skjemstad et al. 

(2004) the 53–2000 µm POM fraction can be used as a surrogate for the RothC pool of 

RPM. Amelung et al. (1999), however, found that the lignin signatures of the 20–

50 µm fraction and the 50–250 µm fraction were statistically identical, thereby 

challenging the commonly used lower border of 53 µm for POM fractionation. 

However, all disputed size boundaries for POM fractionation (250 µm, 53 µm, and 

20 µm) should be determined in order to elucidate effective control variables on POM 

turnover.  

2.2.7 Humified organic fractions 

Within the Roth-C model, the turnover time of the humified organic matter (HUM) is 

subjected to the clay content of the soil by an exponential equation (Jenkinson, 1990). 

The adjustment aims to meet the specific concerns of this SOC pool with very slow 

turnover, which is considered to be effectively protected by microaggregation. While 

the residence time of partly processed SOC like POM falls below one year, organic C 

that is protected by clay minerals may prevail undegraded for longer than a hundred 

years. The basic mechanisms of SOC sequestration by microaggregation involve 

adsorption of organic molecules by clay particles, polymerization of humic substances 

on clay surfaces, and incrustation of polymerized organic compounds by clay crystals 

(Laird et al., 2001). The chemical bindings which facilitate these close interactions are 

mainly anion-cation-anion bridgings which are promoted by polyvalent cations 

between the predominantly negatively charged organic matter and clay surfaces. But 

also H-bonding, van der Waals forces and Coulombic attractions are involved in 

microaggregation. The type and amount of SOC that is accumulated by 

microaggregation has been shown to be dependent on the particle size and the 

mineralogy of the inorganic phase (Wattel-Koekkoek et al., 2001). Special emphasis 
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has also been addressed to the role of pedogenic Al and Fe oxides (Kögel-Knabner et 

al., 2008). Monreal and Kodama (1997) even found that total SOC was negatively 

correlated to bulk clay contents while increasing amounts of extractable pedogenic Fe 

and Al oxides positively affected SOC storage. Recent results of Gulde et al. (2008) 

and Stewart et al. (2008) suggest that in agricultural environments, hierarchical 

saturation processes have considerable impact on the storage of SOC in small sized 

mineral associated fractions. The relevance of saturation processes for the 

determination of spatial distributions of SOC varying SOC pools, however, demands 

further clarification.  

2.2.8 Readily decomposable organic carbon 

Although water soluble soil carbon represents only a small proportion of total SOC, its 

influence on biological and ecological soil functions is well recognized (Chantigny, 

2003). This fraction with very fast turnover time is commonly defined as dissolved 

organic carbon (DOC) or water extractable organic carbon (WEOC). As the soil 

solution tends to equilibrate with the solid phase, both fractions largely represent the 

chemical composition of bulk SOC (Zsolnay, 2003) but spatiotemporal patterns of 

DOC and WEOC are controlled by numerous biotic and abiotic factors (Kalbitz et al., 

2000). While they may be included in model pools of fast turnover times like the 

“decomposable plant material” (DPM) of the Roth-C model (Jenkinson, 1990; 

Zimmermann et al., 2007 b), results of Skjemstad et al. (2004) and Zimmermann et al. 

(2007 b) confirm its role for modelling of SOC turnover to be inferior. The negligible 

contribution of the WEOC to total SOC storage in soil (Chantigny, 2003), its short 

time fluctuations, and the manifold interactions with the solid matrix further constrain 

its implementation as individually estimated model pool (Kalbitz et al., 2000). I thus 

precluded DOC and WEOC from further considerations in the context of this work. 
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2.2.9 Conclusion 

The results of Skjemstad et al. (2004) indicate that the essential mechanisms of 

perennial SOC dynamics are represented by SOC fractions that are accessible by 

determining BC, POM, and bulk SOC. The methods that are currently applied to 

determine BC and POM are either not quantitative or too laborious to be applied for 

routine analysis. The feasibility for fast screenings by economic measurement 

techniques like MIRS would provide the basis for recognition of their spatial patterns. 

The opportunity for simultaneous assessment of mineral soil constituents using MIRS 

further provides the basis for the determination of effective control parameters 

regulating SOC dynamics on the field scale. 
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2.3 Mid-infrared spectroscopy 

2.3.1 Physical principles 

At the beginning of the 18th century the German Astronomer Sir William Herschel 

discovered that invisible radiation beyond the red area of a light spectrum exhibited a 

higher heating potential than the visible light and named this spectral range “infrared” 

(IR). Further exploration of the IR range was hampered by the limited abilities for its 

detection and thus, the first fully automated instrument was not constructed before 

1937. From there, the spectroscopic instruments were continuously improved and the 

accessible spectral ranges successively broadened. Especially the advent of the Fourier 

transform (FT) technique in the 1960s opened up new dimensions of spectral 

bandwidth (Jones, 1985).  

As any other electromagnetic radiation, infrared light is characterized by its 

wavelength λ. The principle of infrared spectroscopy constitutes the interaction of 

infrared light and matter, that is molecules. As wavelength is, however, not a unit 

comprised by molecules, in spectroscopy the wavelength is classically translated into 

frequency values. Given that the IR radiation can spread with the velocity of light c, 

the frequency v is directly proportional to λ, 

i) v = c * λ. 

According to Planck’s law, the energy E of electromagnetic radiation is proportional to 

its frequency v, 

ii) E = h * v 

where h is the Plack-constant (h = 6.26*10–34Js). In spectroscopy, v is typically further 

translated into “wavenumbers” to avoid inconveniently large numbers. The 

wavenumber is a measure for the amount of waves in a wavetrain of 1 cm length and 

its unit correspondingly is cm–1. Ranging from 7.8*10–5 to 2.5*10–4 cm, the near 

infrared region (NIR) represents the shortest wavelength of the IR range. The mid-

infrared region (MIR) follows up to 5*10–3 cm and at 1*10–1 cm, the far infrared 

region (FIR) reaches the maximum wavelength within the IR range. Electromagnetic 

waves with shorter wavelength comprise visible and ultraviolet radiation, longer 

wavelengths represent microwaves. Figure I.1 summarizes frequency v, wavelength λ, 
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wavenumber w, and corresponding energy E of electromagnetic radiation. 

Whenever electromagnetic radiation impacts matter, it is either reflected, transmitted, 

absorbed, or transformed to fluorescence. Among these effects, the functionality of IR 

spectroscopy is based on the fact that the vibrational or rotational energy of a molecule 

gets enhanced upon absorbtion of IR radiation. At this, only molecules that express a 

change of dipole moment, that is where the center of charge is shifted during vibration, 

are IR active. The intensity of an absorbtion band is thereby proportional to the power 

of two of the change in dipole moment. Symmetric diatomic molecules like H2 and O2 

are IR inactive but they are detectable by Raman spectroscopy. The frequency of 

vibration is dependent on the properties of the binding: it increases the smaller the 

mass of the involved molecules and the higher the strength of the bonding is. The term 

absorption is defined as the uptake of photon energy under increase of vibrational 

energy. According to the laws of quantum physics, a continuous energy uptake is 

invalid and a molecule is thus only able to oscillate on certain energy levels. 

Consequently, only radiation with a defined frequency, that is certain energy (see ii), 

can be absorbed by a molecule, thereby achieving a higher mode of vibration. Thus, I 

find characteristic energy levels for different bondings of which the first level is 

referred to as the basic tone and the following levels are referred to as the overtones of 

vibration. On the basis of the presented principles, each molecule expresses 

characteristic combinations of vibrational frequencies. Commonly, the basic vibrations 

are found in the MIR range, while the overtones are ranging among the NIR range. For 

detailed information on the principles of IR spectroscopy the reader might be referred 

to specialized textbooks (e.g. Colthup et al., 1990; Guenzler and Gremlich, 2002).  

Raman spectroscopy is often linked to IR spectroscopy and I would like to briefly 

describe its basic principles for clarity. In contrast to IR spectroscopy, where the 

frequencies of molecule and photon are matching and the molecule is steadily shifted 

to a higher level of vibration, the Raman-effect represents an inelastic stroke of a 

photon with significantly higher frequency. 
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Fig. I.1 Frequency v, wavelength λ, wavenumber w, and corresponding energy E 
of electromagnetic radiation (modified after McBratney et al., 2003). 

The photon looses only a part of its energy upon the impact and the molecule is 

temporarily shifted to a higher energy level. When the molecule falls back to the initial 

vibrational level, the previously immited energy is emitted by a secondary photon 

which comprises lower energy and is detectable as Raman radiation. Infrared 

spectroscopy and Raman spectroscopy are thus not competitive but rather 

complementary to each other as either technique is able to detect bondings which are 

undetectable by the other technique. 

2.3.2 Infrared spectroscopy in soil science 

Traditional lab analysis of solid soil properties and especially different C pools is very 

time consuming and destructive. These approaches are thus not suitable to understand 

spatio-temporal patterns of solid soil properties. Spectroscopic techniques like remote 

sensing and short-range reconnaissance are used instead to detect soil heterogeneity at 

the field scale. Satellite data, however, suffer from inadequate spatial and temporal 

resolution (McBratney et al., 2003). New satellites like RAPID EYE and Terra SAR-X 

will provide a better insight into small-scale variability of soil moisture and humus 

content (McNairn and Brisco, 2004). Still, remote sensing will not be sensitive enough 

for a detailed soil characterisation. Geoelectric and other ground based techniques 

employ radiowaves in the range of 1 to 1*106 m. They are field tested and further 

progress can be expected from a refined data evaluation (Mertens et al., 2008; Pätzold 
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et al., 2008). Still, these methods are largely restricted to identify only textural 

differences among or within soils as they are based on a single signal which is 

influenced by multiple soil factors (Hedley et al., 2004).  

NIR and MIR spectroscopy (NIRS, MIRS) are efficient in characterizing a large 

number of soil variables without elaborate sample preparation in a short time. For 

NIRS, online measurements in the field are available, at least up to 1800 nm; for 

MIRS, this opportunity is about to come during the next decade. Although the 

potential of NIRS for classification of soil organic matter has early been recognized 

(Ludwig and Khanna, 1998) and recently gained further support (Terhoeven-

Urselmans et al., 2006), there is increasing evidence that MIRS is superior to NIRS in 

soil analysis regarding accuracy and the range of accessible parameters (Viscarra-

Rossel et al., 2006). In soil science, the use of MIRS has been limited until 

multivariate statistical procedures (chemometrics) were established in the late 1980s 

(Martens and Naes, 1989). While the first attempts concentrated on the 

characterization of isolated humic substances (Geyer et al., 1997), Janik and Skjemstad 

(1995) were able to show that organic and inorganic soil properties can be predicted. 

Infrared-spectroscopic techniques provide chemical information without any alteration 

or chemical pre treatment of the sample. Errors due to mishandling or diverse sample 

characteristics during the sample preparation are thus avoided (Janik et al., 1998). Lab 

based MIRS has already been applied to characterize the composition of bulk soil 

organic matter (e.g., Reeves et al., 2001; Leifeld, 2006). For highly weathered 

Australian soils, Janik et al. (1998) proved that cation exchange capacity, texture and 

moisture content can be derived from MIR spectra. Later work reinforced these results 

and denoted the suitability for further soil components (e.g. Groeningen et al., 2003). 

McCarty et al. (2002) were able to gain substantial information on the content of 

organic and inorganic C in a set of soil samples representing most of the variability in 

North American soils and stated that “Development of instrumentation specific for soil 

analysis holds promise for rapid and automated means of C measurement.” However, 

since only the total organic carbon was determined, the feasibility for an estimation of 

different carbon pools remained unclear. Also in a study by Mimmo et al. (2002), total 

organic C and N, as well as biological activity (reflected by three enzymes) were 
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successfully detected by MIRS. For dairy manures, MIRS allowed for the rapid 

estimation of the N mineralization potential (Reeves and Van Kessel, 2002; 

Boonmung and Riley, 2003). Recently, Zimmermann et al. (2007a) successfully 

determined SOC fractions with varying recalcitrance for a highly heterogeneous 

sample set of soils from Switzerland. Also Ludwig et al. (2008) and Reeves et al. 

(2006) were able to calibrate specific SOC pools by using highly heterogeneous 

sample sets. The identification of underlying spectral signatures for the apparently 

successful calibrations, however, remains unresolved. Furthermore, calibrations from 

such copious calibration models render their use for the exploration of spatiotemporal 

patterns on the field scale to a minimum as they are rather fitted for the discrimination 

of distinctive samples than for the quantification of sensible variations of soil 

properties.  

The highly condensed aromatic structures of BC are characteristic and give rise to the 

feasibility of spectroscopic identification and quantification of BC in soils. Size 

fractions of physically isolated POM represent moieties of SOC whose chemistry and 

functional groups are determined by distinct stages of litter decomposition. I am thus 

confident that the determination of field scale heterogeneity of BC and POM is 

feasible by taking advantage of local calibrations and adapted sample sets (Linker et 

al., 2006). Further progress can be expected by improved spectrometer hardware, 

selective use of spectral ranges, tailored spectral pre-processing, and more effective 

mathematical routines (Viscarra-Rossel, 2007).  
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2.4 Sampling sites 

To account for spatial heterogeneity in SOC turnover modelling we have to assess the 

spatial patterns of SOC fractions that are indicative for sustainable changes in SOC 

composition by fractionations that are suitable for initiation and validation of available 

turnover models. The test site that was chosen for this investigation features a smooth 

transition from a silt-rich to a sand-rich texture with moderate heterogeneity of soil 

clay contents. Correspondingly, significant differences across the test site can also be 

expected concerning size and stability of soil aggregates. Besides the physical 

properties of the mineral soil constituents, amount and quality of plant litter is the 

dominating factor regulating SOC dynamics in agricultural soils. The amount of plant 

litter that is incorporated into a certain volume of fine earth is, however, not only 

dependent on the productivity per area, but also on the fine earth content of the soil. 

On the investigated test site, the changes in mineralogy are accompanied by a drastic 

increase of the stone content in the sand rich areas (see also section V). As the test site 

has been under intensive agricultural management during the last decades, the relative 

litter input to amount of fine soil at identical litter quality can thus be expected to be 

significantly higher where amounts of fine earth are reduced. Hence, the investigated 

site is highly promising for detecting spatial patterns of different SOC pools and to 

derive further information on the role of hierarchical pool saturation for SOC 

dynamics in agricultural soils (Gulde et al., 2008; Stewart et al., 2008). 
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3 OBJECTIVES 

The specific environmental conditions adjacent to potentially mineralizable organic 

matter control the organic carbon dynamics in soil. This study aims at determining 

effective parameters controlling soil organic carbon turnover at the field scale and their 

acquisition by mid-infrared spectroscopy (MIRS). Special emphasis is given to the 

ability of MIRS for the detection of i) the passive or “inert” SOC pool, represented by 

black carbon, and ii) the “resistant plant material” or slow pool as represented by 

particulate organic matter. Spatial patterns of the individual SOC pools will then be 

determined on the field scale and related to pedological, hydrological, and 

geographical control parameters.  

I placed the main emphasis on the following questions 

i. Does MIRS-PLSR provide opportunity for rapid assessment and 
characterization of BC in the soil environment?  
I tested the ability of MIRS-PLSR for the prediction of the amounts and the 

composition of BC, as determined by a molecular marker method, on a sample 

set comprising soil samples from all over the world. Further on, I validated the 

MIRS based BC characterization by use of individual samples of charred 

organic matter representing different stages of combustion.  

ii. Is MIRS-PLSR suitable for the determination of POM and its spatial 
patterns on the field scale?  
I envisaged the determination of POM in three size classes by using 

regionalized sample sets for MIRS-PLSR predictions. Individual patterns of 

field-scale variation were identified by correlation analysis and fuzzy-kappa 

pattern recognition.  

iii. Is hierarchical saturation a relevant factor for field scale patterns of SOC 
storage in differently stabilized SOC pools?  
I employed a comprehensive data set containing stone content, texture, 

pedogenic Fe-oxides, elevation, erosive translocation, and soil moisture to 

determine the relevance of hierarchical saturation for the spatial distribution of 

SOC, BC, POM in three size classes, and nonPOM on a highly heterogeneous 

test site.  
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This PhD-thesis is part of the Transregional Collaborative Research Centre 32 

“Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, modelling and data 

assimilation”, which focuses on processes related to heat, energy, water and CO2 

fluxes in soil-vegetation-atmosphere systems on different spatial and temporal scales. 
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1 SITES 

1.1 Main study site 

The study site is a key-test site of the “Collaborative Research Center 32” of the German 

Research Foundation (DFG). This research association aims at understanding the spatio-

temporal patterns of water and CO2 fluxes between soil and atmosphere on different 

scales. The test site is located in Selhausen (50°52´09.34´´N; 6°27´00.58´´E) and is part 

of the Lower Rhine Embayment in Germany. The underlying sediments are fluvial 

deposits from the Rhine/Meuse River and the Rur River system, which were covered by 

aeolian sediments during the Pleistocene. The test site is weakly inclined (<4°) over 

~180 m in east-west direction. Whereas in the lower part the texture represents a silt loam 

(WRB, 2007) and the stoniness is less than 3 %, in the upper part sand contents increase 

by ~20 % at the expense of silt and the texture represents a loam. Simultaneously the 

stoniness increases to at most 57 % of weight. The soil types cover a broad range from 

Dystric Leptosol in the upper part, Orthic Luvisol in the middle part, up to a Stagnic 

Luvisol in the lower part of the test site (WRB, 2007). Mean annual temperature and 

precipitation are 9.8 °C and 694 mm, respectively (means between 1961 and 2003). 

Quintuple drilling cores were taken in a ten times ten meter raster (one transect in a five 

times ten meter raster due to the dimensions of the field plot) from 0–30 cm depth. Two 

samples within the plot were obviously anthropogenically disturbed and thus removed 

from the set. In the north-eastern corner sampling was precluded by a mobile building. 

The resulting 129 surface soil samples were stored in sealed plastic bags, and 

immediately deep-frozen at -18 °C. Subsequently, samples were dried at 60 °C and 

sieved to grain sizes < 2 mm. 

1.2 Mollisol samples 

The majority (231) of the 309 soil samples discussed in section III stem from horizons of 

whole soil profiles taken for a study investigating soil sequences in the “typical Mollisol 

areas of the world” (Tab. II.1, sample set 1). According to soil taxonomy, these are 

basically the central plains of Russia, the Great Plains of the U.S.A., the Pampas regions 

of Argentina, the Manchurian plains of China, and the loess region of Germany near 

Halle. The samples were collected between October 1991 and June 2000.  
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An additional set of mollisols consists of 26 topsoils (0–25 cm) and 40 samples from the 

horizons of whole soil profiles, collected at three experimental field trial stations in 

Germany between 1958 and 2002 (Tab. II.1). While the site in Rotthalmünster is 

assumed not to be significantly influenced by anthropogenic BC input, especially the 

sites at Halle and eventually also the sites at Bad Lauchstädt have been subjected to 

considerable anthropogenic BC input, caused by heavy industry, steam engines, and 

above ground mining activity. Details of locations, sampling techniques, and soil 

parameters are given in Brodowski et al. (2007). Additionally,Iemployed eight topsoil 

samples (0–30 cm) and two times two subsoil samples (30–60 cm and 60–90 cm) of the 

main study site in Selhausen (Tab. II.1, Set 3). All samples were air-dried, passed through 

a 2 mm sieve and milled thoroughly with mortar and pestle. 



ІІ Material and Methods                                                                                                33 

 

1.3 Supplementary loess soils 

Thirty topsoil samples (0–30 cm) of a field site in Sintsteden (51°2´55,47´´N; 

6°38´37,13´´E), with similar geological and pedological situation as in Selhausen were 

supplemented in order to broaden the range of the investigated soil characteristics for 

MIRS calibrations as discussed in section IV. Detailed information on the sample set is 

given by (Pätzold et al., 2008).  

Tab. II.1 Sites and soils employed for the BC predictions in section III. 

Country MAT 
[°C]

MAP  
[mm]

arable  
[n]

steppe  
[n]

forest  
[n]

soil types                  
(FAO)

Calcisol, Cambisol, 
Chernozem, Kastanozem, 

Phaeozem

Chernozem, Luvisol, 
Phaeozem

Luvisol

Chernozem, Kastanozem, 
Phaeozem

Chernozem, Kastanozem, 
Phaeozem

Chernozem

Chernozem, Greyzem, 
Kastanozem, Phaeozem

Set 1

Set 3

14

9.8 694 12Germany

8.2–8.8 479–890 66Germany

274–839

300–715 18

479 27

378–423 61

Set 2

8.8Germany

4.2–4.9China

6.5–23.4USA

4.1–7Russia

Argentina 1213.8–15.6 582–844 48

20

31

 
 



34                                                                                                   II Material and methods 

2 SPECIFIC SOIL ANALYSIS  

2.1 Texture 

Texture of the fine earth (< 2 mm) was determined by a combination of wet sieving (sand 

fractions) and sedimentation (silt and clay fraction) after Köhn (ISO 11277, 2002). At the 

main test site, about 15 l soil of each sampling point were additionally sampled and dry 

sieved to determine the proportion of the coarse texture (> 2 mm). The exact bulk density 

of the soil was determined for five samples of two transects (n = 10) which were also 

employed for 137Cs measurements. For this, cores of 25 cm diameter were drilled into the 

undisturbed soil to obtain soil samples of known volume. After air drying, samples were 

sieved to 2 mm and exact bulk density was determined for the coarse texture (> 2 mm) as 

well as for the fine earth (≤ 2 mm). The fine texture of soils may also be determined from 

infrared spectra as reviewed by Viscarra-Rossel et al. (2006). Recently, Pätzold et al. 

(2008) were able to successfully calibrate a model for the prediction of clay and silt 

contents employing a sample set comprising the soils of the investigated test site.  

2.2 Total organic carbon, total nitrogen 

The C and N contents of the sieved and milled soils was determined by elemental 

analysis (ISO 10694, 1995; ISO 13878, 1998).  

2.3 Particulate organic matter (POM) 

Fractionation of POM was conducted by ultrasonic dispersion according to Amelung and 

Zech (1999). Briefly, samples were gently sonicated (60 J ml–1) so that microaggregates 

were preserved from disruption (Kölbl et al., 2005). The coarse fraction (POM1: 2000–

250 µm) was separated by wet sieving, and the filtered remnant was sonicated a second 

time at 240 J ml–1. Intermediate (POM2: 250–53 µm) and fine (POM3: 53–20 µm) 

material was also gained by wet sieving and all fractions were dried at 40 °C prior to 

elemental analysis. Sieving was supported by gentle agitating using small rubber paddles. 

2.4 Black carbon (BC) 

BC content was determined using the BPCA method (Brodowski et al., 2005b). In brief, 

about 500 mg of soil were digested using trifluoroacetic acid to remove metal cations and 

BC was oxidised to benzene carboxylic acids with sulfuric acid in a high pressure 
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digestion unit. After cleanup using a cation-exchange resin, BPCAs were derivatized to 

trimethylsilyl derivatives and analyzed using gas chromatography (GC) with a flame 

ionization detector (FID). 

2.5 Lignin 

For lignin analysis, about 100 mg sieved and milled soil was oxidized with alkaline 

cupric oxide at 170 °C for 2 h. The monomers of lignin-derived phenols gained by 

oxidation were isolated by centrifugation of the suspension and humic acids were 

precipitated. The lignin derived phenols in solution were then isolated on C18 columns, 

extracted with ethyl-acetate, and analyzed by capillary gas chromatography and flame 

ionization detection (Hedges and Ertel, 1982; Amelung et al., 1997). The sum of the 

vanilyl-, syringyl-, and cinamyl-biomarkers (so called VSC-lignin) are a measure for total 

lignin in soil. True lignin contents cannot be assessed in soil using wet chemical 

procedures, for intact lignin is insoluble (Hedges and Ertel, 1982). 

2.6 Pedogenic oxides 

Amounts of pedogenic Fe and Al oxides were determined by the dithionite-citrate-bi-

carbonate (DCB) method as proposed by Mehra and Jackson (1960). On the investigated 

test site in Selhausen, DCB-soluble Al oxides continuously accounted for about 10 % of 

total pedogenic oxides, while Fe oxides dominated. Therefore, I considered only the 

DCB-soluble Fe oxides (Fe-Dith) in the context of this investigation.  

2.7 Volumetric water content  

The volumetric water content on the main test site was determined by time domain 

reflectrometry (Weihermüller et al., 2007). In order to obtain the water content of the fine 

earth, volumetric water content of the bulk soil was corrected by the stone content. The 

initial measurement was conducted at almost saturated conditions and compared with a 

repeated measurement after a dry period of 31 days (18th of May to 19th of June). The 

difference between both measurements (δθ) was used to estimate patterns of varying soil 

moisture. 
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2.8 Soil erosion 

To estimate the translocation of material by erosion or tillage I measured the activity of 
137Cs in topsoil samples. An aliquot of 50 g soil material with known bulk density (see 

II.2.1) was dried and the 137Cs activity was subsequently determined by γ-spectrometry 

(Schuller et al., 2007). The activity of the aliquot was then transferred to the activity of 

the sampling volume by correcting for stone content and bulk density. 



ІІ Material and Methods                                                                                                37 

 

3. MID-INFRARED SPECTROSCOPY 

3.1 Spectroscopic measurement 

About 20 mg sample were transferred to microplates and compacted with a plunger to 

leave a plain and dense surface for spectroscopic measurement of the diffuse reflectance. 

Spectra were recorded using a Bruker Tensor 27 equipped with an automated high 

throughput device (Bruker HTS-XT). This extension for automated spectroscopic 

measurement is equipped with a liquid N2-cooled mercury-cadmium-telluride (MCT) 

detector. Employing a broadband KBr beam splitter, spectra from 8000 to 600 cm–1 

(1250–16700 nm), with a resolution of 4 cm–1, were recorded in a single run. Five 

composite measurements, each comprising 120 scans, were conducted for each sample in 

order to minimize errors in spectroscopic measurement.  

3.2 Data treatment and statistical analysis 

The quality of the five repeat analyses, which were automatically corrected for water 

vapour and atmospheric CO2, was verified by calculating root mean square (RMS) 

values. The RMS calculates the difference between a single spectrum and the average 

spectrum of all repeat analyses (Terhoeven-Urselmans et al., 2006). Spectroscopic 

measurement was repeated for samples exceeding RMS values of 0.00025. 

PLSR quantification was performed using OPUS QUANT software (© BRUKER, 2006). 

Utilizing the PLS 1 algorithm (Martens and Naes, 1989), the software decomposes the 

data plotted in the spectral matrix X and the ground-truth matrix Y into latent variables 

(loadings), thereby maximising the covariance between spectral information and 

laboratory data. As forced by the algorithm, the first latent variable will exhibit the 

greatest predictive power. The following latent variables, always orthogonal to each 

other, will explain successively smaller parts until no further improvement is achieved. 

The rank of a prediction model nominates the number of latent variables needed to 

describe its spectral variability. Their corresponding multipliers (scores) represent the 

factors that would have to be applied in order to reconstruct a particular original spectrum 

from the loading weights of the PLSR model. Linking the spectral information for all 

samples in the data set to the sample property of interest, the first latent variable can also 

be interpreted as a first order approximation of the spectrum of the pure component 
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(Janik et al., 1998). Also, the plots showing the regression coefficients of the final 

calibration model at particular wave numbers may display chemical information. The 

regression coefficients highlight the most important spectral regions for the prediction of 

the analyte, even though riddled with disturbing effects such as interfering compounds 

and baseline deviations (Haaland and Thomas, 1988b). Further advantages of PLSR over 

classical univariate techniques are the significant compression of information, the ability 

to handle collinear data sets and some types of non linearity, as well as the discrimination 

between relevant spectral information and systematic error in measurement or spectral 

noise (Haaland and Thomas, 1988a). The latter becomes evident for consideration of 

changes in spectral information relating to varying analyte concentration. Accordingly, 

the algorithm employs identical scores for the respective latent variables in both spectral 

and laboratory data sets. As the scores are generated to fit the original laboratory data and 

the data estimated from the model in an optimum way, PLSR finds a compromise in 

describing the spectral variation and the correlation of the data sets. This is especially an 

advantage when laboratory methods are prone to appreciable measurement errors. In such 

cases, values calculated from PLSR calibrations may indeed be more accurate than the 

laboratory derived data used for the calibrations. 

Information on the applied spectral ranges, data-treatment, validation techniques and 

statistical quality for the individual predicted parameters is given in sections ІІІ, ІV, and 

V, respectively. 
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1 INTRODUCTION 

To mitigate global warming, it is necessary that soils enduringly sequester soil organic 

carbon (SOC). One of the most chemical recalcitrant forms of SOC is black carbon (BC), 

a major aromatic residue from the incomplete combustion of biomass and fossil fuels 

(Goldberg, 1985; Schmidt and Noack, 2000; Flessa et al., 2008). The objective of this 

work was to test MIRS as a potential rapid method for SOC and BC quantification from 

soils from all over the world, using the BPCA method for calibration purposes. As the 

latter method affords mellitic acid C only for highly condensed BC material, my final 

objective was to investigate whether spectral properties might even provide information 

on BC quality.  

2 MATERIAL AND METHODS 

2.1 Soils 

The quality of multivariate calibration procedures in spectroscopy is enhanced by 

investigating large numbers of samples. I utilized soils from three different studies where 

BPCA measurements had been conducted (see sections II.1.1; II.1.2). Even though partly 

comprehending samples from the same experimental field-trial stations, I did not merge 

the discrete sample sets for means of better identification of possible systematic 

measurement errors.  

2.2 Ground truth measurement (see section ІІ.2) 

2.3 Spectroscopic measurement (see section ІІ.3) 

2.4 Data treatment and statistical analysis 

Basic information on data treatments and statistical analysis of spectral data is given in 

sections II.3.2. The applied OPUS QUANT software supplies a routine that will 

automatically test combinations of varying spectral ranges and data treatment for the 

optimum prediction power of the model. The suggested model parameters for the applied 

sample sets were checked for plausibility and further optimized manually (Tab. III.1). For 

each sample set I conducted calibration procedures employing a leave-one-out full-cross 

validation (Efron, 2004). Samples that obviously did not fit the prediction model or 

exceeded the properly described range were treated as mavericks and removed from the 
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sample sets. After removal, the full-cross validation was repeated. The stability of the 

prediction models was verified by reciprocal test-set validation, with a desired ratio of 

calibration and validation samples of 50 %. For smaller sample sets, where bisection for 

test-set validation did not result in satisfactory results, the validation subsets were 

reduced to 30 % of the sample population.  

Apart from the coefficient of determination (R2) between measured and predicted values, 

the predictive power of the spectroscopic measurement was also described by other 

statistical parameters. The quality of the models was estimated by calculating the root 

mean square error of cross validation (RMSECV) and the root mean square error of 

prediction (RMSEP) for cross validation and test-set validation procedures, respectively 

(Geladi and Kowalski, 1986). Further on, I calculated the ratio of performance to 

deviation (RPD) and the modelling efficiency (EF) as dimensionless quality parameters. 

The RPD represents the quotient of standard deviation of the reference data and standard 

error of the calibration procedures, the EF is calculated as the relative deviation of the 

predicted data compared to the variation of the lab data (Loague and Green, 1991). The 

higher the RPD value, the better the predictive power of the calibration model; the EF 

should be as close to one as possible. 

 

Tab. III.1 Data treatent and spectral ranges used in prediction models 

 
Treatment Data processing Spectral range 

[cm–1]

1
1st derivative and 

multiplicative scatter 
correction

5380 – 4944  
4798 – 1238

2
1st derivative and 

multiplicative scatter 
correction

4719 – 1938 
1246 – 550

3
1st derivative and 

multiplicative scatter 
correction

3658 – 2592 
2299 – 1957 
1620 – 1278

4
1st derivative and 

subtraction of a straight 
line

4719 – 3329 
2634 – 1849 
1751 – 550

5 2nd derivative 5415 – 3329 
1940 – 550

6 vector standardisation 2634 – 550
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3 RESULTS AND DISCUSSION 

3.1 Prediction of soil organic carbon content 

Compared with other studies predicting OC content of soils as reviewed by Viscarra-

Rossel et al. (2005) the SOC predictions employing the whole sample set already 

indicated reliable predictions (Tab. III.2, model 1–3). The removal of six humus-rich 

samples from model 1, (Tab. III.2; Fig. II.1a) even resulted in further improvement of the 

RPD (4.75) while the EF stagnated (data not shown). For near infrared analysis of 

agricultural products, Williams and Sobering (1993) found RPD values between three 

and five to be satisfactory. Chang et al. (2001) even reported that RPD values > 2 might 

be sufficient for the prediction of various soil properties, provided that regression slopes 

were not significantly different from 1, and R² values exceeded 0.80. I assume, therefore, 

that model 1 predicted the SOC accurately in most cases. 

Tab. III.2 Model parameters and statistical indices for prediction of SOC, BC in 
SOC, and contribution of mellitic acid-C within the marker spectrum  

 
Fraction Calibration-set Model Treatmenta Concentration Spectra Mavericks R² RMSECVb RPDc EFd Slope LVe

range (n) (n)

complete 1 1 0.8 – 80.1 1545 – 0.95 2.46 4.45 0.95 0.96 12

steppe 2 2 1.6 – 45.4 298 17 0.97 2.01 5.8 0.97 0.97 11

Germany arable 
(Tab. 1: set 2+3) 3 3 0.8 – 25.0 380 10 0.99 0.70 10.1 0.99 0.99 8

complete 4 4 6.17 – 114.2 1270 30 0.63 13.80 1.64 0.63 0.68 10

arable 5 5 6.17 – 114.2 900 4 0.70 12.20 1.83 0.70 0.73 11

Argentina arable 6 4 6.17 – 64.43 170 10 0.81 6.08 2.31 0.81 0.85 6

complete 7 6 10.6 – 54.6 1265 34 0.58 5.77 1.55 0.58 0.62 12

arable 8 6 10.6 – 54.6 910 20 0.63 5.72 1.64 0.63 0.67 10

Argentina arable 9 6 6.2 – 64.4 160 10 0.76 3.20 2.05 0.76 0.86 10

SO
C

                    
[g kg

–
1 soil]

B
C

                     
[g B

PC
A

–C
 kg

–1 SO
C

]
M

ellitic acid–C
           

[%
 of total B

PC
A

–C
]

 
a Mode of data treatment used in the prediction models (see Tab. III.1); b root mean square error of cross validation; c ratio of performance to 
deviation; d modelling efficiency; e number of latent variables used for prediction.  
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Reducing the heterogeneity among the soil samples usually enhances the predictive 

power of PLSR models (Linker et al., 2006). I partitioned the samples into subsets 

according to varying land use, as it substantially affects SOC (Blanco-Canqui and Lal, 

2004). Only for the steppe soils, the predictions improved clearly (Tab. III.2, model 2) 

after separation.  

For further evaluation of possible structures within the applied data set, I conducted 

principal component analysis (PCA) of the spectral data. In contrast to PLSR, PCA 

decomposes the spectral matrix X into scores and loadings without consideration of 

the laboratory data. This way, the spectral information is condensed and can be 

utilized to visualize variability among the sample set. Distinct differences were 

revealed by plotting the first two PCA scores (Fig. III.2). Especially the soils from 

Argentina (turquoise) and from Germany (green) are clearly separated by the PCA 

scores. For the soils from China (magenta), the USA (blue), and Russia (red) the 

differentiation was not as unambiguous but certain clusters could be identified. Hence, 

I separated the sample sets with respect to their regional provenance for further 

calibrations. For all arable soils, the prediction of SOC content from MIRS improved 

considerably. After separation, each model reached RMSECV values of at least 1.33.  

Fig. III.2 Scatter plot of the first two scores from PCA employing the spectral 
information for the whole data set (n = 1545). Colours indicate the 
regional provenance of the soils (Argentina: turquoise; China: 
magenta; USA: blue; Russia: red; Germany: green). 
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At the same time the number of latent variables required could be reduced to at most 

nine. Accordingly, local calibrations may even increase the strong predictive power of 

MIRS data. With R2 and EF values reaching 0.99, as achieved for the arable soils from 

Germany (Tab. III.2, model 3; Fig. III.1b), further deviations from the calibration line 

may no longer be caused by lack of precision of MIRS but could as well reflect 

analytical errors in conventional SOC determinations. Variable agricultural cropping 

systems and input of debris from different plant species in the different countries may 

have affected the organic matter quality (Blanco-Canqui and Lal, 2004).  

For the steppe soils, easily decomposable structures like aliphatic CH2 and CH3 

(~2850 cm–1 and ~2925 cm–1), carboxylic acids (~2140 cm–1; ~1210 cm–1), aliphatic 

OH (~1120 cm–1), and cellulose structures (1020–1050 cm–1) contributed to the 

prediction of SOC content as displayed by Fig. III.3a (Haberbauer et al., 1998; Rumpel 

et al., 2001; Tatzber et al., 2007). Further signals of organic constituents could be 

identified between 830 cm–1 and 730 cm–1 which might be addressed to secondary 

amines or aromatic CH bend vibrations (Smidt and Meissl, 2007; Zimmermann et al., 

2007). Additionally, calcium carbonate (~2515 cm–1), clay minerals (~3695 cm–1; 

~3650 cm–1; ~690 cm–1), and Fe/Al oxides (~920 cm–1; ~890 cm–1) added information 

that helped to improve SOC quantification in the steppe soils (Doner and Lynn, 1989; 

Haberbauer et al., 1998; Madejova et al., 2002). In contrast, for German arable soils, 

only aliphatic stretching vibrations (~2850 cm–1 and ~2925 cm–1), small peaks of 

carbohydrates (2115 cm–1–2180 cm–1), and C=O stretching vibrations (1280 cm–1) 

were observable besides the dominating aromatic signals (Fig. III.3b). The responses 

at 1560 cm–1 and 1500 cm–1 are likely indicating C=C stretches of lignin (Rumpel et 

al., 2001; Leifeld, 2006), the smaller peak at ~1400 cm–1 can be assigned to phenol-

OH (Rumpel et al., 2001). 
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Fig. III.3 Loading vectors for the first latent variable from partial least squares 
regression (PLSR) used in the various prediction models (Tab. III.2). 
(Note that due to the data pre-treatment (Tab. III.1) maxima and 
minima of the original peaks are located at zero values for Fig. III.3a–
3c.) 
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3.2 Prediction of black carbon content 

Recently, Zimmermann et al. (2007) demonstrated that the chemically recalcitrant 

carbon after NaOCl oxidation may be predicted from MIRS-PLSR. Leifeld (2006) 

successfully predicted alkylic and carboxylic NMR regions of soil samples while the 

prediction of aromatic signals failed. Masking of the infrared absorptions as well as 

underestimation of aromatic signals of charred material by NMR (Baldock and 

Smernik, 2002) were discussed as possible reasons for the incompatibility. Using high 

resolution spectral recording, however, may help to decipher aromatic signals in SOM 

even if minerals are present. I thus tested the predictability of BC constituents by 

applying PLSR to BPCA-C. 

BPCA-C predictions (g C kg soil–1) of the complete data set resulted in an R² of 0.84 

and the RPD of about 2.5 indicated secure predictions (data not shown). However, the 

first loading vector of this model (data not shown) was quite akin to the ones for SOC 

predictions of the arable soils (e.g., Fig. III.3b) and I suspect that an intrinsic 

coherency between SOC and total BC contents occurred. Such a correlation was also 

reported by Glaser and Amelung (2003) and indeed, there was also a high correlation 

between the total BC and SOC content within the applied sample set (R² = 0.76). In 

order to avoid such spurious correlations for BC predictions I normalized the BC 

content by the SOC content. In doing so, autocorrelations to SOC content in bulk soil 

could be ruled out (R² = 0.05; data not shown). I am not aware of any other study that 

has attempted such an approach before.  

For the whole data set, the statistical parameters (Tab. III.2, model 4) did not match 

those reported by Zimmermann et al. (2007) for the recalcitrant organic matter fraction 

(RPD = 2; R² = 0.72). However, the latter might still be affected by autocorrelation 

effects to SOC. Again, as also done for bulk SOC, predictions could be improved by 

splitting the sample sets according to land use and country of origin, reflecting that 

both, SOM quality and BC dynamics are influenced by human management practices 

(Rodionov et al., 1999, 2006; Solomon et al., 2007). At intensive land management, 

light and readily decomposable SOM is degraded, leaving more stable forms of SOM 

behind (Schulten et al., 1992; Christensen, 1996). Splitting the complete set into arable 

and non arable soils resulted in enhanced predictions (Tab. III.2, model 5; Fig. III.1c), 
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although the RPD did not approach values of 2.0. The arable soils from Argentina 

(Tab. III.2, model 6; Fig. III.1d) allowed for predictions with RPD values as high as 

2.31 and an EF of 0.81 in the cross validation. Even better predictions were achieved 

in the respective test-set calibration (data not shown).  

The achievable quality of PLSR predictions is also dependent on the precision of the 

underlying conventional analysis. In our laboratory, the results of two repeated BPCA 

measurements differed on average by 6.9 %. However, the reproducibility between 

different laboratories applying the same method may be worse, as recently reported by 

Hammes et al. (2007) for BC analyses. Also the samples utilized in my study were 

analyzed in different laboratories and by different personnel, and I cannot rule out 

laboratory-specific deviations. The observed validation errors for the BC predictions 

were in the range of 20 % of the mean BC values measured among the sample sets 

(Tab. III.2). For the arable soils from Germany, the RMSECV even decreased, 

however, to values of ~ 10 % of the mean BC concentration (data not shown). My 

results indicate that reliable estimates of the BC content in SOC can be achieved, 

provided that a representative calibration set is available.  

As for the determination of SOC, relevant spectral information can be discovered from 

the loading plots of the latent variables. The first loading vector of the BPCA 

prediction for the Argentinean arable soils (Fig. III.3c) is dominated by signals of 

aromatic C. Additional major signals can be addressed to acetylic groups of xylan 

(~1760 cm–1), aromatic C=C and C-H bonds (~1510 cm–1; ~830–730 cm–1), as well as 

phenols (~1400 cm–1; 1270 cm–1; Rumpel et al., 2001; Leifeld, 2006; Nuopponen et 

al., 2006; Tatzber et al., 2007; Zimmermann et al., 2007). A signal of aliphatic OH 

occurs at ~1200 cm–1. Signals of clay minerals are apparent at 3695 cm–1,and 3630 cm–

1, Fe/Al oxides are indicated by bands at 2340 cm–1 (Clark et al., 1990) and 930–

880 cm–1 (Madejova et al., 2002). The regression coefficients of the respective spectral 

regions (data not shown) display that clay minerals and Fe/Al oxides were negatively 

correlated to BC found in SOM. The negative correlations likely reflect the ability of 

clay minerals and pedogenic oxides to stabilize also other SOM constituents such as 

cellulose and polysaccharides (Kögel-Knabner et al., 2008), which then dilute BC 

relative to bulk SOC. In contrast, aromatic signals, especially at 1400–1600 cm–1 and 
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at 830–770 cm–1, are positively related to BC. I am further assured in my hypothesis as 

in the models for the prediction of SOC (e.g. Tab. III.2, model 3; Fig. III.1a,) that the 

signals for clay minerals and pedogenic oxides were positively correlated to SOC 

content (data not shown). 

3.3 Prediction of proportion of mellitic acid-C 

Recently, Czimczik and Masiello (2007) emphasized the need for analytical 

approaches that would not only determine BC quantitatively, but also allow for 

qualitative interpretations. Applying the BPCA method provides a basis for such 

qualitative estimates by taking the percentage of mellitic acid-C of total BPCA-C as a 

measure for the degree of condensation (Brodowski et al., 2007). I was able to predict 

this proportion by means of MIRS (Tab. III.2, models 7–9). For all models, a vector 

normalization procedure yielded the best prediction of the % mellitic acid-C (Tab. 

III.1). Again, enhanced predictions were gained by grouping the samples according to 

their type of land use as a first step, but only for the Argentinean soils by grouping the 

countries of origin in a second step (Tab. III. 2, model 8, 9; Fig. III.1e, f), but 

statistical parameters of prediction were of poorer quality than for SOC and BC 

predictions (Tab. III.2). In view of the analytical challenge (i.e., low concentration 

range, quotient calculation with BPCA-C), this is not surprising. While for the 

complete set (model 7) the cross validation resulted in an RPD of only 1.55 and an EF 

of 0.58, the values rose to 2.05 and 0.76 for model 9, respectively. For models 8 and 9, 

standard errors of prediction comprised about 16 % of the mean value for mellitic 

acid-C. These values decreased to about 10 % for the steppe soils (data not shown). 

Considering the uncertainty in the conventional laboratory method, the accuracy of 

prediction is satisfactory. The dominating signals of the first latent variables in the 

prediction models for the percentage of mellitic acid-C in the Argentinean arable soils 

(Fig. III.3d) can be assigned to aromatic and phenolic responses, as already observed 

for the prediction of BPCA-C in SOC. On the contrary, mineral phases did not 

contribute notably to the predictions of mellitic acid-C proportions. Further evidence 

for the practicability of the method was gained in an additional experiment. Employing 

the calibration model of the non-tilled soils (data not shown) I predicted the percentage 

of mellitic acid-C in maize chars combusted at 400 °C and 500 °C. The predictions of 
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five repetitions resulted in mean mellitic acid-C proportions of 19.1 % (SD = 1.4) and 

34.4 % (SD = 2.9) of total BC for the respective combustion temperatures. The BPCA 

analytical method yielded proportions of 26.7 % (400 °C) and 32.6 % (500 °C) of 

mellitic acid-C. The realistic MIRS-based prediction of mellitic acid-C proportion in 

charred plant material using prediction models developed from the spectra of soils 

implies that the spectral features were interpreted correctly. I take this as additional 

hint that MIRS is capable of distinguishing among BC fractions with varying degrees 

of condensation. 

4 CONCLUSIONS 

Utilizing a comprehensive sample set of soils from different continents and of varying 

land use, my investigations revealed that  

i) not only the total amount of SOC but also the proportion of BC in SOC can be 

predicted by means of MIRS coupled with multivariate data analysis (PLSR). 

ii) calibrations comprising the whole data set provided satisfactory results, albeit 

local calibrations accounting for varying type of land-use and country of origin 

allowed for an enhanced quality of the predictions. 

iii) the proportion of mellitic acid-C, serving as an indicator of the degree of BC 

condensation, can be modelled successfully.  

iv) analytical errors in elemental analysis and in the BPCA method may be 

alleviated by the opportunity to easily conduct large numbers of repeat analyses 

and by averaging the variable ground truth data assigned to spectroscopic akin 

samples. 
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1 INTRODUCTION 

Comprising more than 60 % of the terrestrial carbon pool, soil organic carbon (SOC) is 

one of the principal factors regulating the global C cycle (Batjes, 1996). Recently, Gulde 

et al. (2008) showed that carbon sequestration in soils propagates by hierarchical 

saturation of different carbon pools. A homogeneous distribution of the respective pools 

and their potential for C storage within natural environments, however, is unlikely as the 

controlling soil parameters are subject to spatial and temporal heterogeneity (Cosby et al., 

1984; Kögel-Knabner et al., 2008; Kölbl and Kögel-Knabner, 2004). Capturing of the 

spatio-temporal patterns of different SOC pools is thus required to improve C turnover 

modelling at the field scale. Yet, comprehensive datasets are hard to obtain, mostly due to 

the extreme workload associated with a geostatistically adequate C pool assessment 

(Blanco-Canqui and Lal, 2004). In this work I present the compilation of a raster data set 

including SOC, POM of three size classes, and lignin contents, for a discrete test site as 

derived by MIRS-PLSR. My aims were to evaluate if, i) a local calibration with 

satisfying prediction quality is attainable, in particular for deciphering the spatial patterns 

of POM at the field scale, ii) whether the predicted carbon pools can be characterized 

chemically by the loading weights of the PLSR prediction models, and iii) whether 

conclusions on the C dynamics can be drawn from the correlations between the 

respective C pools. 

2 MATERIAL AND METHODS 

2.1 Soils 

The presented investigations apply to the main test site which is described in section 

ІІ.1.1. For MIRS analysis, samples as described in sections ІІ.1.3 were supplemented (n = 

30) in order to broaden the range of the investigated soil characteristics. In the following, 

calibrations containing samples from these two sampling sites are referred to as local 

calibrations. Another 27 samples originating from varying cropped loess soils all over 

North-Rhine Westphalia (Germany) were supplemented to investigate the effect of a 

more diversified sample set. Calibrations comprehending all three sample sets are 

referred to as extended calibrations. 
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2.2 Ground truth measurements 

Ground truth measurements were conducted as outlined in section ІІ.2. 

2.3 Spectroscopic measurements 

Spectroscopic measurement was conducted as outlined in section ІІ.3. 

2.4 Data treatment and statistical analysis of MIR spectra 

Basic information on data treatments and statistical analysis of spectral data is given in 

sections I.2.3, and II.3.  

Particular precaution has to be taken to avoid over-fitting when PLSR is applied to 

spectra of soil samples (Viscarra-Rossel, 2007). At this, also the appropriate mode of 

calibration procedure is subject to an ongoing debate. While a separation of the sample 

set into calibration and validation samples is suspected to deliver more robust and 

realistic calibrations (Chang et al., 2001; McCarty et al., 2002; Islam et al., 2003), 

especially for small sample sets also full-cross validations are widely accepted (Reeves et 

al., 2001; Moron and Cozzolino, 2004; Bornemann et al., 2008). Highest robustness, 

however, can be expected when the statistical parameters of varying calibration and 

validation techniques deliver akin results for a common sample set (Janik et al., 2007). I 

thus conducted complementary test-set calibrations and leave-one-out full cross 

validations for each predicted soil parameter in order to assure the robustness of the 

models. For test-set calibrations, 10 % of the samples were randomly removed from the 

calibration set. The calibration was then independently validated by applying the derived 

models to the previously removed samples. An even more important factor challenging 

the applicability of MIRS-PLSR in soil science is the employed sample set. At this, the 

capability of PLSR to maximize the covariance between spectral information represented 

by PLSR loading weights and a property of interest is crucially affected by the spectral 

heterogeneity of the sample set and the variability of the previously determined property 

among the soil samples. Recently, Bornemann et al. (2008) showed for a highly 

diversified sample set that local calibrations can be advantageous for the determination of 

SOC and BC in soils from all over the world. Also results of Linker et al. (2006) indicate 

that a reduction of the spectral heterogeneity within a sample set facilitates more accurate 

predictions of delicate soil parameters as nitrate contents. As a result, also in this 
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investigation, the effect of enhanced variability among the calibration samples was 

explored by applying local and extended calibration sample sets. The number of 

necessary samples to achieve robust model calibrations for the local sample set varied 

depending on the investigated fraction. For POM3 contents in bulk soil a set of 36 

samples was sufficient for reliable predictions, 24 additional samples were supplemented 

for the calibrations of POM2 and POM1. Ten samples that contained less than 

0.05 g POM1–C kg–1soil underwent the detection limit and were thus excluded from 

modelling. Predictions of the SOC contents within the fractions were conducted 

employing both samples of the repeated fractionation of the initial sample set, therefore 

comprising 72 samples for each fraction. Predictions of lignin contents were calibrated by 

51 samples. 

To avoid over-fitting during PLSR calibration, additional ranks were only accepted if the 

explanation of the spectral variability improved continuously. Additionally, the optimum 

number of calibration ranks was identified by applying an F-test determining a minimum 

error which does not differ significantly from the minimum error of validation (Geladi 

and Kowalski, 1986; Haaland and Thomas, 1988a). Apart from the coefficient of 

determination (R2) between measured and predicted values, the predictive power of the 

spectroscopic measurement was also described by the root mean square error of cross 

validation (RMSECV) and root mean square error of prediction (RMSEP), which are 

measures for the standard error of the respective calibration procedures and can be 

compared to a standard error of a lab-method (Geladi and Kowalski, 1986). Finally I 

calculated the ratio of performance to deviation (RPD), which represents the quotient of 

standard deviation of the reference data and standard error of the calibration procedures. 

It is thus a dimensionless quality parameter and most meaningful for the rating of 

quantitative chemometric predictions. The higher the RPD value, the better is the 

predictive power of the calibration model. Chang and Laird (2002) classified 

chemometric prediction models for soil parameters with respect to their RPD values. 

According to their classification RPD values >2 provide accurate predictions. 
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2.5 Statistical analyses  

In addition to classical correlation analyses, the maps representing different C pool 

distributions on the test site were analyzed by specialized software for the comparison of 

maps displaying different characteristics at identical locations (Visser and de Nijs, 2006). 

Originally developed for the comparison of nominal scaled maps, the actual release of 

this “Map Comparison Kit” also comprises an algorithm handling ratio scaled values. 

The so called “fuzzy-numerical” algorithm is based on a fuzzy-kappa comparison and 

features two essential advantages over classical cell by cell comparisons. Firstly, the 

expected percentage of agreement between two maps is corrected for the fraction of 

agreement which can be statistically expected by randomly relocating all cells in both 

maps by applying the kappa-statistic. Secondly, not the pure values of the original cells 

are compared. Based on fuzzy-set Theory (Zadeh, 1965), the neighbourhood of each cell 

is taken into account by creating a fuzzy-similarity map, comprising similarity values 

between 0 and 1. The resulting statistic, the κ-value, is the average similarity of the 

compared parameters over the whole map, where a value of 1 indicates absolute 

similarity, 0 indicates no similarity. In summary, the Kappa-statistic corrects the 

observed correlations by the statistically expected correlation of the randomly distributed 

values with regard to the observed frequency distribution. The quality of the correlations 

is thus corrected by the part of coherency that may occur by chance, and the gained 

results are thus more robust. For further information on the software and the methods 

applied the reader might refer to Visser and de Nijs (2006). 
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3 RESULTS AND DISCUSSION 

3.1 MIRS predictions 

By now, MIRS-PLSR is a well accepted technique for the reliable prediction of SOC 

contents (Viscarra-Rossel et al., 2006; Bornemann et al., 2008). Also for the soils of the 

investigated test site the prediction model for SOC proved to deliver excellent results 

(Tab. IV.1). To quantify particular SOC fractions independently from bulk SOC contents, 

the respective prediction models must rely on individual and characteristic chemical 

features. The POM fractions utilized in this study were gained by a physical fractionation 

procedure. Amelung et al. (1998; 1999) employed the same procedure and akin size 

boundaries for particle size fractionation of soils along a climosequence in the prairies. 

They showed that VSC-lignin contents decreased with decreasing particle size. At the 

same time oxidative side-chain alteration proceeded, thereby indicating a typical SOC 

decomposition gradient. Results of Ludwig et al. (2008) suggest that amounts of VSC-

lignin in a sample set of soils and litter can be predicted by means of MIRS-PLSR. 

Presuming that a decomposition and oxidation gradient is given with decreasing particle 

size (see above), variations in the spectral absorptions of lignin and other substances can 

also be expected among the samples of the investigated test site. A prediction of different 

POM pools in soil could thus, however, be facilitated by means of MIRS-PLSR. 

In agreement with Ludwig et al. (2008), the statistical parameters for the prediction of 

VSC-lignin in the investigated sample set suggest a good reliability as indicated by the 

RPD of 3.61 (Tab. IV.1). To safeguard that these calibration results rest upon the 

identification of VSC-lignin and to rule out autocorrelations to other soil C pools, I 

identified spectral bands that are related to VSC-lignin by setting up an artificial sample 

set: the same CuO-oxidation products of lignin as identified by GC-FID in the natural 

samples were added in ten concentration steps to four soils of the applied sample set. At 

this, the ratios of the added monomers remained unchanged. As these monomers are 

released from intact lignin upon CuO oxidation, MIRS-PLSR will be able to detect the 

monomers if it is able to detect intact lignins as presumed. Indeed, the spectral principal 
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component analysis revealed that beside the aryl and carbonyl groups (~1500 cm–1; 

~1660–1700 cm–1; Tab. IV.2) chiefly vibrations between ~1340–1360 cm–1 were 

indicative of the added phenols. According to Zimmermann et al. (2007) and Tatzber et 

al. (2007), these wavelengths can be ascribed to stretching vibrations of C–OH, and CO–

CH3 groups which are prevalent side chains of lignin derived phenols (Hedges and Ertel, 

1982). Especially the first, and to lesser extents also the second, and fourth latent variable 

of the prediction model for measured VSC-lignin expressed their major signals at these 

particular wavelengths (data not shown). While I am aware that these CuO derived 

oxidation products are not actually found in soil, they do resemble the chemical 

structures of natural lignin molecules. I am thus confident that varying amounts of VSC-

lignin in natural soil samples can be identified and their quantities can be predicted 

correctly by means of MIRS-PLSR. Predictions of the oxidative side chain alteration and 

ratios of syringyl- to vanillyl-monomers, however, failed. I presume that such a 

characterization was not feasible, simply because the qualitative lignin parameters hardly 

changed among the calibration samples (acid to aldehyde ratio: mean = 0.35; coefficient 

of variation = 10.0 %; syringyl to vanillyl units: mean = 0.91, coefficient of variation = 

6.5 %). But even if there was considerable variation within a calibration set, the chance 

for detection by means of MIRS-PLSR might remain low as the VSC monomers are 

produced by the action of CuO on the lignin. That is, only the precursor material is  

Tab. IV.2 Structural assignments of the main signals featured by the mean spectra 
(Fig. IV.1), and the loading weights (Fig. IV.2b), and cumulative loading 
weights (Fig. IV.2a) of the prediction models for the POM fractions. 

Wavenumber [cm–1] Structural assignment Cited reference
3600–3700 OH of clay and iron oxides Cornell and Schwertmann, 1996; Madejova et al., 2002
2850–2920 aliphatic C–H Haberbauer et al. 1998; Leifeld, 2006; Tatzber et al., 2007

1700 C=O of carbonyl–C Leifeld, 2006; Tatzber et al., 2007
1660 carbonyl–C Rumpel et al., 2001
1630 carboxyl–C Haberbauer et al., 1998; Leifeld, 2006

1600–1620 phenolic compounds Nuopponen et al., 2006; Rumpel et al., 2001
1565 carboxyl–C Rumpel et al., 2001; Haris et al., 1992

1500–1510 aromatic C–H and C=C Haberbauer et al., 1998; Leifeld, 2006; Tatzber et al., 2007
1427 carboxyl–C Rumpel et al., 2001
1410 aliphatic C–H Solomon et al., 2005
1320 hydroxylic C–O–H Zimmerman et al., 2007 
1250 carboxylic COOH Solomon et al., 2005
1160 polysaccharides Rumpel et al., 2001

1000–1080 C–O stretch of cellulose Solomon et al., 2005
870 aromatic C–H and C=C Haberbauer et al., 1998; Leifeld, 2006; Tatzber et al., 2007  
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directly subjected to MIRS, and not the CuO treated soil which actually contains the 

monomers.  

In order to evaluate if the fractionated POM pools comprise specific carbon species and 

to obtain evidence that discrimination between the pools via MIRS-PLSR is possible, I 

built prediction models for SOC contents within the sets of fractionated soils (in the 

following called POM-C). For this, spectra of the separated POM fractions were recorded 

and calibrated by their SOC contents which were previously determined by elemental 

analysis. The prediction models for the SOC contents of the discrete fractions delivered 

excellent results for all three POM-C fractions, and even outperformed the prediction 

model for SOC (Tab. IV.1). The latter applies to both, full-cross validations and test-set 

validations. Here, RPD values exceeded numbers of eight and R² values of 0.99 were 

achieved by the calibration models employing the number of loadings as recommended 

by the F-test.  

Calibration models employing a small number of samples are vulnerable to over-fitting, 

especially when high numbers of loading weights are calculated. To ensure that my 

calibration results were not falsified by over-fitted calibration models I also build more 

parsimonious calibrations employing only five loading-weights (Tab. IV.1). The 

statistical parameters of all models indicated only a slight decrease in calibration quality 

and again, full-cross validation and test-set validation delivered approximately similar 

parameters. The very high correlation coefficients realized for the predictions of POM-C 

in the fractionated soil samples are in line with results of Reeves et al. (2006), who 

reported that R² values of up to 0.99 may be achievable for the prediction of POM in soil 

samples. I address the high quality of the predictions for POM-C to a homogenization of 

the sample set upon fractionation: only parts of total SOM are isolated in individual C 

pools, still comprising varying contents of chemically distinct SOC. In such samples, the 

specific SOC features are better displayed than in bulk SOM, i.e. such sample sets ideally 

comply with the requirements for successful application of MIRS-PLSR (Geladi and 

Kowalski 1986) and the extraction of qualitative information (Haaland and Thomas, 

1988a). For soil fractions, highly significant results are thus likely achievable even a with 

reduced number of samples as compared to predictions employing bulk soil samples. 

Besides, these predictions rely on the identification of different C species in soil fractions 
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where former wet chemical analyses have given independent evidence that these species 

are truly abundant. On the other hand, the analyses remained robust against both, changes 

in degrees of freedom and sample size. 

While statistical parameters give indications for the quality of prediction models, 

evidence can be provided by chemical interpretations of spectral features and loading-

vectors of the prediction models. Characteristic differences between the investigated soil 

fractions are already evident from the mean spectra of the calibration samples. In Fig. 

IV.1, the attenuation of the peak at ~1000–1080 cm–1 indicates a decrease in the content 

of cellulose (Solomon et al., 2005) from POM1 to POM3. Simultaneously, the 

contribution of hydroxylic groups (1320 cm–1) and carbonyl-C (1660 cm–1) is increasing 

with decreasing particle size (Rumpel et al., 2001; Zimmermann et al., 2007).  

 
Fig. IV.1 Mean spectra of the separated particulate organic matter fractions 

(n = 72). Particulate organic matter fractions comprise particle sizes of 
POM1: 2000–250 µm, POM2: 250–53 µm, and POM3: 53–20 µm. 
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According to Haaland and Thomas (1988b), generally only the loading weights of the 

first single latent variable of a PLSR model should be interpreted chemically. Yet, in case 

of excellent predictions also the cumulative loading weights of all latent variables used in 

the particular prediction model may be used for structural interpretation (Haaland and 

Thomas, 1988b). Indeed, I also found distinct differences between the cumulative loading 

weights of the prediction models for the organic carbon contents of the soil fractions (Fig. 

IV.2a). Structural assignments for the main absorptions are given in Tab. IV.2. For 

POM1–C, C–O vibrations of polysaccharides, as well as aromatic C–H and C=C 

vibrations were dominating. Besides the vibrations at 1340–1360 cm–1 which were 

identified to be indicative for the VSC-lignin, also a strong phenol related signal 

at~1620 cm–1 was clearly observable.  

As already indicated by the mean spectra (Fig. IV.1), there was a lesser contribution of 

polysaccharides in the finer fractions (POM2–C and POM3–C), and aliphatic C–H 

stretching vibrations, especially at 2920 cm–1 and 2850 cm–1, were more pronounced 

(Fig. IV.2a). Also OH groups of mineral soil constituents like clays and Fe-oxides were 

positively related to carbon contents in soil fractions.  

Distinct differences between POM2–C and POM3–C were observable between 1800 cm–

1 and 1100 cm–1. The signals for POM2–C primarily indicated C=O bondings of 

carbonyl–C and aromatic C=C. The major phenol derived peak at ~1620 cm–1, which was 

observable for POM1, was weaker, and only a small shoulder was present at ~1340 cm–1. 

Also in contrast to POM1–C, aliphatic C–H deformation and to a lesser extent hydroxyl 

groups were now more important. This trend was even fortified for POM3–C, where the 

cumulative loading weights were dominated by carboxylic absorptions while phenol- and 

lignin-related signals vanished. Hydrophilic moieties in POM3–C further comprised 

carbonyl groups, hydroxyl groups and C–O stretches of polysaccharides. 

As a result, the fractionation borders of 20, 53, and 250 µm were indeed distinct enough 

for spectroscopic discrimination of the chemically different POM–C pools. The chemical 

properties of the POM fractions are also consistent with the current state of knowledge 

concerning degradation pathways of organic matter (Bachmann et al., 2008; Kögel-

Knabner et al., 2008). The POM1–C fraction consists of relatively fresh and 
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undecomposed plant debris, which primarily contains cellulose and unaltered lignin 

(Marschner et al., 2008). The POM2–C fraction already contains aliphatic CH2 and CH3 

groups as decomposition products. Kögel-Knabner et al. (2008) concluded from NMR 

analyses that mineral associated and thus protected organic matter of sandy soils is 

dominated by long-chained aliphatic molecules. 

Organic matter in POM3–C appeared to be depleted in VSC-lignin, and the band at 

~1030 cm–1 (C–O stretching vibration of cellulose) was missing. These changes in SOC 

composition suggest that structural carbohydrates have largely been metabolized. Also 

oxidation of plant lignin can be expected to be at a higher stage, due to a comparatively 

longer residence time of POM3 in soil (Christensen, 1992; Amelung et al., 1999). Yet, no 

significant differences in acid to aldehyde ratios were observable (see above), suggesting 

at least some of the aromatic and carboxylic moieties were selectively preserved during 

the decomposition of more labile substrates like cellulose in this POM pool. This 

hypothesis is also supported by the slight increase of vibrations from aromatic C=C 

bondings (Tab. IV.2) from POM1 to POM3 which are indicated by a small signal at 

1500 cm–1 in Fig. IV.1, and an observable shoulder in Fig. IV.2b. In fact, the loading 

weights and mean primary spectra of POM3–C are rather dominated by carboxylic acids 

and aliphatic moieties, most likely indicating products of microbial metabolism (Fig. 

IV.1; IV.2b). 

Having evidence that the POM–C fractions featured different chemical structures 

identifiable by MIRS-PLSR, I finally developed prediction models for the respective 

POM contents of the bulk samples (gPOM–C kg soil–1; in the following called POM1, 

POM2, and POM3). According to the classification of Chang et al. (2002), the statistical 

parameters of the local calibrations indicated reliable predictions for all POM fractions, 

with an excellent quality of POM3 predictions (Tab. IV.1). The latter applies for both, 

full-cross validations and test-set validations, where consistent statistical quality 

parameters indicate robust prediction models. Although the extended calibration models 

involved more samples, and for POM1 also a wider range of POM contents, a slight 

decrease of prediction quality was observable compared to the local calibrations (Tab. 

IV.1).  
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Fig. IV.2 Cumulative loading weights of the PLSR prediction models of soil organic 
carbon (SOC) in the separated particulate organic matter fractions 
(POM–C; Fig. IV.2a), and the loading weights of the first latent variable 
of the PLSR prediction models for the respective POM fractions in bulk 
soil (Fig. IV.2b) employing local calibration (continuous line) and 
extended calibration (dashed line). Particulate organic matter fractions 
comprise particle sizes of POM1: 2000–250 µm, POM2: 250–53 µm, and 
POM3: 53–20 µm. 
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Quantities of specific SOC fractions may be related to bulk SOC contents (Stewart et al., 

2008). Particular precaution has thus to be taken when spectroscopic data is used to 

predict such fractions from MIR spectra of bulk soil. I reassured that the good calibration 

results which were achieved for the predictions of the POM fractions from spectra of 

bulk soil rested on fraction-specific signals by comparing the loading weights of the first 

latent variables (Fig. IV.2b) to the cumulative loading weights of the prediction models 

for POM–C (Fig. IV.2a). Representing only the first loading weight relating to the 

particular contribution of a given POM fraction to bulk SOC, I obtained a better 

resolution and less peaks than using the cumulative loading weights as employed for the 

POM–C predictions (Fig. IV.2a). In accordance to the predictions of POM1–C, the first 

loading weights for the local and extended predictions of POM1 in bulk soil featured C–

O vibrations of polysaccharides and the indicative signal for VSC-lignin at 1340–

1360 cm–1 were characteristic. These features vanished for POM2 and POM3 which 

exhibited stronger vibrations of aliphatic C species. For POM2, the phenol-C signal at 

1600 cm–1 was dominating besides carboxylic vibrations. According to the spectral bands 

for POM3, carboxylic groups and polysaccharides were most characteristic. Other 

discernable signals in the loading weights for POM2 and POM3 comprised aromatic C 

and C–H deformation vibrations. Overall, the signals of the organic carbon species were 

essentially identical for local and the extended calibration sets of all three POM fractions 

(Fig. IV.2b). For POM2 predictions, however, differences were particular apparent for 

the mineral absorptions at 3800–3600 cm–1 and below 800 cm–1 (Cornell and 

Schwertmann, 1996; Madejova et al., 2002). I suppose that the integration of samples 

from 27 individual sites, as performed for the extended calibrations, lowered the 

prediction quality for POM by addition of interfering spectral variability (Tab. IV.1).  

The spectral signals that were indicative for the C content in the fractionated samples 

(POM–C; Fig. IV.2a) were identical with those which I used for predicting total POM 

contents (Fig. IV.2b), irrespective of the applied sample set. Keeping in mind that the 

compared loading weights are based on three totally different sets of spectra (fractions for 

POM–C, two sets of bulk soil for POM in bulk soil) and originate from individual 

calibration models, the analogies between the PLSR models indirectly prove the 

reliability and applicability of the MIRS technique for POM prediction.  
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A small positive relation between mineral absorptions (3000–3600 cm–1) and POM–C 

predictions was apparent for all size fractions of the fractionated soils (Fig. IV.2a), 

suggesting that varying amounts of minerals were associated with the organic fraction or 

present as thin coatings on the separated sand grains. In contrast, this effect was 

ambivalent considering the MIRS recordings of the bulk soil (Fig. IV.2b). In case of the 

local calibration, positive signals of mineral phases were detected only for POM3. The 

supplementation of variable samples in the extended calibration resulted in positive 

relations to POM2 and POM3. Kölbl and Kögel-Knabner (2004) found positive relations 

between occluded POM and clay contents, whereas the amounts of free POM were not 

affected by clay contents of the soil. The occlusion of SOC in soil is, however, dependent 

on the mineralogy, texture, and management (Blanco-Canqui and Lal, 2004) and 

observed relations between POM and mineral soil constituents likely depend on the 

applied sample set. 

3.2 Interrelationships and spatial patterns 

The consensus between the spectral signals of POM1, POM2, and VSC-lignin was 

confirmed by the high spatial correlations (ρ = 0.91) between these parameters at the 

investigated test site, as derived from a rigorous cell-by-cell comparison (Tab. IV.3). On 

the contrary, the correlations of POM3 to VSC-lignin were rather poor (ρ = 0.29), though 

still significant, reflecting the lower contribution of VSC-lignin to the finer POM3 pool. 

Also the spatial distribution of the varying C pools revealed individual patterns. The 

contents of SOC, POM1, POM2, and VSC-lignin show a clear increase in north-eastern 

direction (Fig. IV.3). In contrast, the POM3 contents are rather randomly distributed, 

only partly following the pattern observed for the other C pools. Here, the highest 

contents were detected in the south-eastern corner with a spotty distribution of extreme 

values throughout the remaining area.  
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Tab. IV.3 Correlations and fuzzy-kappa coefficients of the compared soil organic 
carbon (SOC), particulate organic carbon fractions (POM1–3), and 
VSC-lignin contents (n = 129). 

ρ κ ρ κ ρ κ ρ κ
SOC 0.88** 0.77 0.90** 0.74 0.54** 0.64 0.86** 0.77

POM1 0.88** 0.72 0.51** 0.57 0.91** 0.77

POM2 0.47** 0.54 0.91** 0.77

POM3 0.29** 0.56

POM1 POM2 POM3 Lignin

 
ρ: correlation coefficient after Pearson  
κ: fuzzy-kappa coefficient of map comparison algorithm 
 
 

With respect to the spatial heterogeneity of the gained data, a rigorous cell-by-cell 

comparison as realized by correlation analysis would likely overemphasize local extreme 

values. I thus applied fuzzy-kappa statistics, which smoothes the effect of local extrema 

and allows for better spatial pattern recognition by integration of the neighboring values 

(Visser and de Nijs, 2006). Furthermore, artifacts due to spatial microscale heterogeneity, 

imperfect field sampling, and measurement error are alleviated.  

The map comparisons by fuzzy-kappa statistics attenuated the estimated similarity of the 

maps, indicated by κ-values of 0.54 to 0.77 (Tab. IV.3). High degrees of conformity were 

again confirmed for SOC, POM1, POM2, and VSC-lignin. Contrasting to the correlation 

coefficients, the similarity of the patterns of SOC and POM1 was now considered higher 

as that between SOC and POM2, while both POM fractions and SOC resembled the same 

patterns of VSC-lignin in a similar way. The disparity of POM3 to the spatial patterns of 

the other C pools was displayed by low correlation coefficients (ρ) and was reapproved 

by the low κ-values.  

The map comparison of the predicted C pools yielded unambiguous results concerning 

the similarities and differences in C pool patterns. Moreover, these results suggest that 

POM1 and POM2 are regulated by akin control mechanisms. The correlations to the 

lignin contents can be interpreted as additional evidence that high contents of VSC-lignin 

are indicative of weakly degraded POM. The close relations of bulk SOC to lignin likely 

are an artifact due to a spurious correlation, resulting from the correlation between the 
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Fig. IV.3 Spatial distribution of soil organic carbon (SOC), particulate organic 
matter of three size classes (POM1: 2000–250 µm, POM2: 250–53 µm, 
POM3: 53–20 µm), and phenolic oxidation products of lignin (VSC-lignin) 
in topsoil samples at the investigated test site in Selhausen 
(50°52´09.34´´N; 6°27´00.58´´E). The sampling points represent a 10x10 m 
grid, with a 5x10 m grid for the northern borderline. 
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coarse POM fractions and lignin content. The smallest POM fraction seems, however, to 

be controlled by individual control mechanisms as it distributes independently from the 

other pools.  

Caused by the individual spatial patterns, also the proportions of the individual POM 

fractions to bulk SOC are distinct. Those of POM1 and POM2 are less variable (POM1: 

5.8–10.1 % of bulk SOC; POM2: 4.7–7.3 % of bulk SOC) as their fine earth contents 

distribute analogously to that of bulk SOC. On the contrary, the POM3 contents in fine 

earth exhibit an individual pattern, resulting in a more pronounced variability (5.8–

15.0 % of bulk SOC).  

Gulde et al. (2008) and Stewart et al. (2008) showed that hierarchical C pool saturation 

can explain the C dynamics under variable input of organic carbon to cropped soil 

systems. Thereafter, accumulation of SOC is proposed to proceed by a sequential 

saturation of differently stabilized C pools. Once the physically stabilized microaggregate 

fraction is saturated, storage of SOC is considered to proceed in coarser, rather labile 

fractions. In the SOC rich parts of the test site, the available solum is severely reduced by 

elevated stone contents. Under such conditions, there is an increased litter input to the 

remaining fine earth which could, at least principally, affect pool saturation at this point. 

To which extent, however, hierarchical saturation processes of differently sized C pools 

truly contribute to the observed C pool patterns warrants further clarification. 
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4 CONCLUSIONS 

From my results I conclude, that  

i. the creation of suitable MIRS-PLSR prediction models for differently sized POM 

pools at the field scale is possible. 

ii. at this, the application of localized calibration samples is advantageous over more 

diversified sample sets. 

iii. the predicted carbon pools can be characterized and chemically distinguished by 

the loading weights used in the PLSR prediction models, chiefly by specific 

absorptions of VSC-lignin, cellulose, and microbial metabolites.  

iv. on the investigated sampling site, the coarse POM fractions are regulated by akin 

control mechanisms, while the smallest sized POM distributes individually. 
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1 INTRODUCTION 

The pedosphere constitutes an essential compartment of atmospheric C exchange with 

the land surface. Evaluating the role of soils as either sink or source of atmospheric C, 

chemical and biological analyses are classically performed on fine soil, sieved to grain 

sizes < 2 mm. However, many soils contain considerable amounts of stones. For 

instance, Stendahl et al. (2009) reported that the average content of stones and 

boulders could be as high as 43.4 % for forest soils all across Sweden. More than 60 % 

of the Mediterranean land surface comprises major amounts of stones (Poesen and 

Lavee, 1994). Miller and Guthrie (1984) reported that soils with high stone contents 

comprise considerable parts of the agricultural land in the US (~16%). Furthermore, 

they presume that this proportion will increase due to erosion and cultivation of 

marginal land. In fact, only a very limited number of soil-forming substrates are 

entirely free from stones. Ignoring highly variable stone contents by interpreting 

results from sieved soil samples may thus lead to erroneous conclusions on soil C 

dynamics.  

High stone contents may limit plant growth due to a reduced solum and an accelerated 

leaching of dissolved nutrients (Poesen and Lavee, 1994). However, in arable 

ecosystems, nutrient deficiencies are usually alleviated by organic and inorganic 

fertilization. Hence, the biological productivity of agricultural soils, and thus also the 

amount of added plant debris, may be less dependent on stone contents than the 

turnover of SOM when soil solum, and thus the supply of moisture and mineral 

surfaces is reduced at high stone contents.  

Turnover models for SOC like the RothC-model are more and more initialized on the 

basis of measurable SOC pools: black carbon (BC), particulate organic matter (POM), 

and humified organic matter (Skjemstad et al., 2004; Zimmermann et al., 2007). 

Varying chemical (Skjemstad et al., 1993; Brodowski et al., 2005), physical 

(Christensen, 1996; Feller and Beare, 1997), physico-chemical (Six et al., 2000), and 

isotope-based (Rethemeyer et al., 2007; Amelung et al. 2008) isolation procedures 

have been applied to calibrate and test SOM turnover models. Recently, advances in 

fast screening detection methods like mid-infrared spectroscopy coupled with partial 

least squares regression (MIRS-PLSR) also allowed quantifying these parameters in 
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large quantities and at high spatial resolution (e.g., Zimmermann et al., 2007; 

Bornemann et al., 2008, 2010).  

Soil clay minerals and pedogenic oxides have been identified as important parameters 

regulating the storage of SOC by mineral associations (Chenu and Plante, 2006; von 

Lützow et al., 2006; Wiseman and Puttmann, 2006). Mineral associated SOC is 

thereby effectively sequestered and is characterized by slower turnover rates in soil 

carbon models compared to POM fractions (Balesdent et al., 1987; Skjemstad et al., 

2004; von Lützow et al., 2007). Also the potential for SOC storage by micro-

aggregation is significantly affected by clay and silt contents (Mayer et al., 2004), 

turning texture into key factor of C saturation concepts. Results of Kölbl and Kögel-

Knabner (2004) showed that even at field scale, the amount of SOC stored as occluded 

POM may reveal a significant spatial variability, depending on the spatial variation of 

the clay content. Results of Bornemann et al. (2010) confirmed that the amount of 

coarse POM in FE can be highly heterogeneous throughout a single agricultural site 

which was homogeneously managed but also contained variable stone contents. 

However, to my knowledge the relation between SOC pool sizes and the presence of 

coarse texture has not been considered in detail, yet. 

When artificially applying disproportionately high inputs of organic material, Gulde et 

al. (2008) and Stewart et al. (2007, 2008) found that the storage capacity of individual 

soils to sequester organic C was limited. In all three studies cited, the observed 

accumulation of organic matter was addressed to a systematic saturation hierarchy of 

increasingly stabilized SOC pools. In this respect, chemically and biochemically 

protected carbon pools have been observed to saturate after incorporation of high 

amounts of litter, and subsequent C accumulation then proceeded in the rather labile 

interaggregate-protected or even unprotected POM pools. However, one limitation of 

such studies is lacking comparability between results of the varying field trial stations 

as C dynamics are influenced by a range of factors as for instance climatic effects 

(Amelung et al., 1997; Lal, 2008), hydrology (Meersmans et al., 2008), parent material 

(Wagai et al., 2008), land use (Soussana et al., 2004), management practice (von 

Lützow et al., 2002; Metay et al., 2009) and fertilisation (Heitkamp et al., 2009, 

Sèquaris et al., 2010). This problem could be solved by investigating a single field site 
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with areas of highly different long-term C inputs to the fine earth.  

In this study I investigate the effect of highly variable stone contents on the SOC 

dynamics in the topsoil of a homogeneously managed agricultural site. I hypothesize 

that the reduced solum at high stone contents induces saturation of mineral bound SOC 

like nonPOM and accumulation of weakly decomposed plant material like POM, while 

BC stocks are less affected. 
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2 MATERIAL AND METHODS 

2.1 Test site  

The presented investigations apply to the main test site which is described in section 

ІІ.1.1. According to the digital elevation model as displayed in Fig. V.1a, the 

investigated test site can be segmented in three main areas of different 

geomorphology. The toe of the slope is characterized by a rather plain area reaching 

up to about 80 m longitude at latitude of zero and about 50 m of latitude at a longitude 

of 50 m. From here, the inclination reaches to about 180 m of latitude at longitude zero 

and about 150 m at longitude of 50 m. The remaining summit again represents a plain 

area. The distinct microrelief of the test site is perceptible by the disproportionately 

plotted z axis. 

Caused by the described geomorphology, also the amount of available solum varies 

considerably. While at the lower plane, the Aeolian substrate completely covers the 

underlying sediments from the Rhine and Rur-River systems and only small gravel 

contents (in the following referred to as “stones”) were mixed into the topsoil by soil-

fluction, the fluvial deposits with their high stone contents more and more penetrate 

the Pleistocene loess layer towards the summit where a gravel-stripe crosses the test 

site in north-western direction. Hence, the varying stone content as displayed in Fig. 

V.1b roughly reproduces the geomorphologic properties. However, not only the stone 

content but also the texture of the fine earth (FE) is affected by this change of soil 

forming substrate. The spatial pattern of the silt content (Fig. V.1c) represents the 

diminishing loess coverage and is accordingly almost reciprocal to that observed for 

the stone contents (Fig. V.1b). The sand contents distribute almost complementary to 

the silt contents as indicated by a strong negative correlation (R² = –0.93).  

2.2 Ground truth measurements 

Ground truth measurements were conducted as outlined in section ІІ.2. 
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2.3 Statistics 

Using fuzzy-kappa statistics, automated map comparison of the spatial distributions of 

all investigated parameters was performed by using the Map Comparison Kit (Visser 

and de Nijs, 2006). Automated map comparison algorithms like fuzzy-kappa statistics 

allow for the quantification of similarities between spatial distributions of soil 

parameters (Bornemann et al., 2010). Multidimensional scaling (MDS) is a 

complementary statistical procedure for visualization and interpretation of structures 

within large similarity matrices. The observed similarities, as represented by the 

distances dij in a multi-dimensional room, are forced into a much smaller m-

dimensional room (usually m=2 or 3) where the Euclidian distances resemble the dij as 

good as possible. The “stress” value relates the variance of the disparities of the 

observed similarities to the spatial distances within the multidimensional space of the 

MDS. The stress is thus a normalized measure of the variance and the routine quality 

index of MDS procedures. According to Kruskal (1964) a good representation of the 

observed similarities is indicated by stress values < 0.2. Multidimensional Scaling 

(MDS), correlation coefficients after Spearman (φ) and stepwise multiple linear 

regression models (MLR) were calculated using the software package STATISTICA 

for Windows. For MLR analyses, BETA values were calculated to quantify the 

contribution of the individual parameters to the MLR models. BETA values are 

calculated after datasets have been standardized to m=0 and stdv=1 and are thus 

independent from the individual units of the varying parameters. Semivariogram 

analysis was conducted by the software package Vesper (© University of Sydney: 

Australian Centre for Precision Agriculture). 
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Fig. V.1 Digital elevation model (a), stone content and sampling scheme (b), 
contents in fine earth of silt (c), clay (d) dithionite soluble Fe oxides (e), 
and black carbon contents in bulk soil at the investigated test site in 
Selhausen. 
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3 RESULTS AND DISCUSSION 

3.1 Spatial distribution of POM and nonPOM 

Constituting ~71–81% of bulk SOC, nonPOM represented the quantitatively most 

relevant SOC fraction at this field site. The remaining 19–29 % of total SOC were 

comprised by the POM fractions, with decreasing proportions in the order POM3 ≥ 

POM1 ≥ POM 2 (calculated from Tab. V.1). Investigating the potential of mid-

infrared  

Tab. V.1 Descriptive statistics and statistical parameters of the empirical 
variograms for the contents in fine earth of soil organic carbon (SOC), 
particulate organic matter of three size classes (POM1: 2000–250 µm; 
POM2: 250–53 µm; POM3: 53–20 µm), non-particulate organic matter 
(nonPOM), black carbon (BC), texture, and dithionite soluble Fe oxides 
(FeDCB), for the contribution of the individual SOC fractions to SOC 
in FE, as well as for the stone content, difference of soil moisture 
between two dates of measurement (δθ), hillslope, and elevation above 
sea level (ASL). 

a Coefficient of variation 
b Correlation length of the empirical semivariogram 
c Nugget to sill ratio of the empirical semivariogram 
d Data not applicable for semivariogram analysis 

mean min max Cv a rangeb [m] N/S ratio c

SOC [g kg–1] 11.75 8.76 16.85 0.15 30 0.09
POM1 [g kg–1] 0.85 0.59 1.29 0.21 32 0.14
POM2 [g kg–1] 0.68 0.51 1.06 0.17 30 0.67
POM3 [g kg–1] 1.24 0.66 1.86 0.16 28 0.29

nonPOM [g kg–1] 9.01 6.51 13.09 0.15 32 0.27
BC [g kg–1] 0.75 0.51 1.23 0.23 48 0.56

Sand [%] 20.0 12.0 45.7 0.36 55 0.24
Silt [%] 65.1 41.9 72.6 0.10 47 0.22

Clay [%] 14.9 11.7 18.3 0.09 32 0.23
FeDCB  [g kg–1] 9.79 8.18 12.15 < 0.01 58 0.41
SOC [g kg–1] 8.55 5.76 11.06 0.15 52 0.29

POM1 [g kg–1] 0.61 0.37 0.76 0.12 35 0.70
POM2 [g kg–1] 0.49 0.27 0.63 0.14 36 0.39
POM3 [g kg–1] 0.91 0.39 1.38 0.24 52 0.32

nonPOM [g kg–1] 6.54 4.30 8.62 0.15 50 0.39
BC [g kg–1] 0.54 0.34 0.75 0.13 60 0.63

Stones [%] 25.0 3.9 59.4 0.68 58 0.09
δθ [%] 5.7 2.4 9.8 0.28 34 0.24

Slope [%] 1.5 0.1 3.8 0.58 n/ad n/a
ASL [m] 105.2 103.4 108.4 0.01 60 0.18
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spectroscopy for the fast determination of SOC pools, Bornemann et al. (2010) 

revealed that bulk SOC, POM1, and POM2 exhibited a close spatial correlation on the 

investigated site, while POM3 showed a rather independent pattern. The spatial 

distribution of nonPOM and BC, as well as the effects of other soil properties on these 

patterns were, however, not investigated by Bornemann et al. (2010).  

In the light of the numerous parameters to be compared I computed a similarity matrix 

employing fuzzy-kappa statistics and visualized the determined similarities applying 

multidimensional scaling (MDS). As indicated by good to very good stress values 

(stress 1= 0.065, stress 2= 0.034; Kruskal, 1964), the similarity matrix was reproduced 

satisfactorily by the Euclidian distances of the first three dimensions of the MDS (Fig. 

V.2). According to the first dimension, silt exhibited the highest positive values (~2.5), 

followed by clay (~1.5), and POM3 (0.7). All other parameters were collocated 

between values of 0 to ~0.6, where two distinct clusters were indicated by dimension 

two, and three. Besides nonPOM, the first cluster comprised POM1, POM2, and SOC, 

whose close relation was already indicated by Bornemann et al. (2010). The MDS 

analysis thus indirectly supported their hypothesis of an independent distribution of 

POM3, and suggested individual control mechanisms for the distribution of BC. The 

second cluster included sand, ASL, stone contents, and δθ, whose close relation could 

be explained by the layering of the soil forming substrates and the inter-dependency of 

δθ and soil texture. However, statistical structure analysis by MDS did not facilitate 

the direct assignment of individual control variables to the patterns of the investigated 

SOC fractions.  

Parameters that are deterministically dependent can be identified by an identical 

directional variability. The possibility to differentiate directional variability and 

stochastic heterogeneity is a prerequisite for the elucidation of any deterministic 

relation between C dynamics and regulating soil parameters. A classical method for 

the identification of spatial dependence is the semivariogram analysis (Cressie, 1993). 

Due to distinct directional heterogeneity within the data set, I de-trended all 

determined parameters using second order polynomial functions to meet the 

requirements of this geostatistical procedure. As summarized in Tab. V.1, the FE 

contents of all SOC fractions except BC exhibit similar correlation lengths of ~30 m. 
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Against the background of strong correlations between SOC, POM1, POM2 and 

nonPOM with stone contents (Spearman´s rank correlation coefficient: φ= 0.75 – 

0.85), the correlation length of ~60 m observed for the stone content appears 

contradictory at a first glance. Anticipating that the varying stone content resembles 

the main directional trend of the contents of the coarse POM fractions within the FE, 

the de-trending procedure would largely eliminate this trend before the variogram is 

calculated. As a result, the spatial distribution of the de-trended data of contents in FE 

and in bulk soil would be akin and matching correlation lengths could be anticipated. 

Indeed, the correlation lengths of the coarse POM fractions 

Fig. V.2 Three-dimensional alignment of the Euclidian distances of the 
investigated soil parameters as derived by a multidimensional scaling 
procedure of a fuzzy-kappa similarity matrix. Investigated parameters 
include contents in the fine earth of soil organic carbon (SOC), 
particulate organic matter of three size classes (POM1: 2000–250 µm; 
POM2: 250–53 µm; POM3: 53–20 µm), non-particulate organic matter 
(nonPOM), black carbon (BC), dithionite-soluble Fe oxides (FeDCB), 
sand, silt, and clay, fine earth contents of stones, difference of 
volumetric soil moisture between two dates of measurement (δθ), as 
well as hillsope (slope) and elevation above sea level (ASL). 
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(POM1 and POM2) remained constant whether the variogram of the FE contents or 

the contents in bulk soil were computed (Tab. V.1). As there are no mechanisms by 

which high stone contents could directly enhance the storage of coarse POM, indirect 

effects as for instance the reduction of the available solum has to be responsible for the 

observed phenomenon. 

A close coherency between δθ and its driving forces, i.e. the delimited solum, high 

sand contents of the fine texture, and the top-slope location (ASL) was already 

indicated by the MDS analysis (Fig. V.2). A limited solum and reduced water holding 

capacity within the very gravelly topsoil likely also delimits microbial degradation, 

leading to the accumulation of weakly decomposed plant material. There are two 

indications that suggest δθ to co-determine the spatial distribution of the coarse POM 

beyond the dominating effect of the variable stone content. Firstly, the correlation 

lengths of the contents of coarse POM in bulk soil match the one of δθ (Tab. V.1). 

Secondly, a positive relation is indicated between the stone content and the C/N ratio 

of the bulk SOC (R² = 0.53), thereby documenting that SOC in the very gravelly areas 

of the test site is in deed enriched with weakly decomposed plant litter. Retarded 

decomposition and disproportionately high biomass input thus likely explain the 

enhanced contents of POM1 and POM2 in those areas of the test site that comprise 

high stone contents. 

3.2 Carbon storage in dependence of potential storage capacity 

In contrast to the coarse POM fractions, the correlation lengths of bulk SOC, POM3, 

and nonPOM shifted considerably after their contents in FE were transformed by the 

stone content. The correlation lengths of these fractions (~50m), thus suggest other 

secondary control factors (apart from the stone content) as indicated for POM1 and 

POM2. From literature, we know that the storage capacity of a particular SOC fraction 

is regulated by multiple protective mechanisms (von Lützow et al., 2006). Results of 

Wiseman and Puttmann (2006) suggest that the interaction of pedogenic Fe (FeDCB) 

and Al oxides and clay minerals play an important role for aggregation and 

stabilization of SOC in soils of temperate climates. According to Mayer et al. (2004), 

preservation of organic matter by micro-aggregation particularly includes abiotic 

networks of Fe and Al oxides. For my test site, the highest concentrations of FeDCB in 
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FE were located at areas with high stone contents. Nevertheless, elevated contents of 

FeDCB also represented a random component in the spatial distribution (Fig. V.1e). 

Indeed, the correlation length of FeDCB actually matched that of nonPOM (Tab. V.1). 

A stepwise multiple regression analysis proved the significant positive influence of 

FeDCB on SOC beyond the effect of varying stone contents (Tab. V.2). The SOC 

storage of the nonPOM, thus in part also resulted from higher FeDCB contents. 

As already pointed out above, POM3 shows the smallest variability among the 

investigated POM fractions. Hence, the high CV of its content in bulk soil (Tab. V.1) 

is not founded on the variability of its FE contents, but rather on the variability of the 

FE contents of the other SOC pools. Accordingly, no close relation to any of the 

control variables could be identified by statistical structure analysis (Fig. V.2), and 

even the correlation coefficient to the highly variable stone content did not exceed 

values of 0.34.  

However, akin correlation lenths (~50 m) suggest that the control mechanisms 

observed for the nonPOM also drive the spatial distribution of POM3. In contrast to 

the nonPOM fraction, the individual fractionation data revealed that the C content of 

the isolated POM3 fraction did not change despite changing fraction yield (data not 

shown). Apparently, the POM3 fraction does thus not only consist of very fine, 

degraded POM, 

Tab. V.2  Multiple linear regression models for the predictions of contents of 
black carbon (BC), non-particulate organic matter (nonPOM), and 
particulate organic matter (53–20 µm: POM3) in fine earth, from stone 
content, contents of dithionite soluble Fe oxides (FeDCB) in FE, and 
hillslope (Slope). The asterisks indicate significances at the probability 
level of p < 0.05. 

a partial regression coefficients of the data if standardized to mean=0 and stdv=1 
bcoefficient of determination of the multiple regression analysis 

dependend 
variable

independend 
variable

BETA a muliple    
R² b

BC stone cont. 0.73
[g kg−1] FeDCB 0.30

Slope -0.15 0.79*
nonPOM stone cont. 0.71
[g kg−1] FeDCB 0.15 0.68*
POM3 stone cont. 0.65
[g kg−1] FeDCB -0.43 0.20*
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but also of SOM attached to the surfaces of coarse silt (20–53 µm) – an assumption 

that is further backed by matching correlation lengths of POM3 and silt (Tab. V.2). 

3.3 Indications for hierarchical saturation of SOC fractions 

The concept of hierarchical C pool saturation implies that pools of mineral associated 

C fractions (i.e. nonPOM) saturate first and additional input of organic material will 

increase the amount of SOC fractions of larger particle size as soon as the next smaller 

fraction converges to the point of saturation (Stewart et al., 2007, 2008; Gulde et al., 

2008). In line with this concept, nonPOM should saturate first, then POM3, while 

other fractions may continue to accumulate to a certain degree. According to my 

findings, the nonPOM fraction is close to saturation and thus also the POM3 fraction 

may become increasingly saturated as the SOC inputs in the gravelly areas are 

subjected to a limited volume of FE. The MLR model for the prediction of POM3 

from stone content and FeDCB revealed a negative correlation of FeDCB to the residual 

of the correlation between stone content and POM3 (BETA = –0.43; Tab. V.2). This 

finding points to lower POM3 contents at areas where the storage capacity of the 

nonPOM fraction is enhanced by elevated FeDCB contents. In terms of a hierarchical 

saturation concept this indicates a more efficient C uptake by the nonPOM fraction, 

taking away the pressure from the POM3 to storage of SOC. 

The hypothesis of hierarchical structures concerning the relation between stone content 

and the individual POM fractions is further backed by a systematic variation of the 

dependency between stone content and SOC fraction (Fig. V.3). Here, the strong 

positive relation of the stone content to POM1 successively decreases for POM2, and 

POM3. In accordance with a proposed hierarchical saturation of individual SOC pools, 

this points to a steady-state concentration of POM3 while additional organic material 

is either stored in the coarser POM2 and POM1 or, also in dependence of FeDCB, 

within the nonPOM fraction.  

Intriguingly, much of the relative distribution of SOC among different particle-size 

pools can be explained with the concept of hierarchical saturation. The stone content 

influences the SOC pools because saturation of the FE is reached more rapidly when 

the FE content is lower at high stone contents. 
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3.4 Spatial distribution of BC 

Processes of C saturation are naturally limited to C species that are formed in situ and 

depend on the specific environmental conditions of each particular soil. However, soils 

also contain BC even if they are located offsite from anthropogenic point sources and 

when vegetation burning is of minor concern as BC deposition also takes place by 

aerial immission. These immissions are considered to be rather homogeneous 

throughout larger areas (Brodowski et al., 2007). Comprising about 6 % of the total 

SOC (calculated from Tab. V.1), BC constitutes an essential SOC fraction on the 

investigated site. Its individual  

Fig. V.3 Scatter plots displaying the relation between the stone content and 
contents of particulate organic matter of three size classes (POM1: 
2000–250 µm; POM2: 250–53 µm; POM3: 53–20 µm), as well as non-
particulate organic matter (nonPOM) in fine earth at the individual 
sampling locations of the test site Selhausen, respectively. All 
regressions are significant at p<0.001. 
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spatial distribution is already indicated by the correlation length of its FE contents, 

which differs from that of all other investigated SOC pools and amounts to 

approximately 50 m (Tab. V.1). 

With respect to the small size of the field plot and generally very slow turnover times 

of BC (Brodowski et al., 2007; Flessa et al., 2008), I expected the BC stocks to be 

distributed homogeneously across the whole test site. However, the highly variable 

stone contents determined the amount of FE to which supposedly homogeneous 

deposited BC was incorporated (plough layer). Indeed, the variability of the BC 

contents in FE showed the strongest variability of all SOC fractions (CV= 0.23; Tab. 

V.1). It was, however, also closely correlated to the stone content (φ= 0.80; data not 

shown). When related to bulk soil, the CV of BC contents in bulk soil was lower (CV= 

0.13). While the latter probably results from a homogeneous deposition and extensive 

biochemical recalcitrance, the stone content was obviously not the sole deterministic 

parameter driving the spatial distribution of BC. Figure V.1f shows that despite the 

lower CV, also the BC contents in bulk soil were not homogeneously distributed. They 

were low at the upper end of the slope where the site had also high slope gradients. 

Large BC contents in bulk soil were, in turn, detected at the toe of the slope. With 

respect to the hillslope position (up to 4° slope gradient, Fig. V.1a), these results 

suggest that BC from the upslope may have been horizontally transported to 

downslope positions by erosion. This coherency to erosion processes was also 

corroborated by corresponding correlation lengths for ASL and BC in bulk soil (Tab. 

V.1).  

In order to investigate a potential influence of erosive translocation on C-pool patterns, 

I applied γ-spectroscopy to identify 137Cs as an isotopic tracer. Corresponding to the 

related topography, similar patterns of 137Cs activity were observed for both 

investigated transects (B and F; Fig. V.4). Lowest 137Cs activities were apparent at the 

uphill positions of the test site (B18, F17). The activity then increased significantly 

along the inclined intersections at intermediate positions (B16, F6) and decreased 

again towards the bottom of the slope (B2, F2). The 137Cs activities even varied along 

the micro-relief at the sampling points at the upper part of the slope (Fig. V.4: B16, 

B18, F14, F17). Assuming a fairly homogeneous deposition of 137Cs with the fallout 
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event of Tschernobyl, the observed 137Cs patterns thus clearly support the assumption 

that erosion impacted the spatial patterns of BC. Also Rumpel et al. (2006) concluded 

that a preferential erosion of BC is “a crucial process determining its fate in terrestrial 

ecosystems”. They attributed the potential translocation of BC by water erosion to its 

small density. Irrigation experiments by Rumpel et al. (2009) revealed that 7–55 % of 

burned harvest residues were subject to horizontal translocation by splash erosion, 

which is the first step towards water erosion. Translocation of BC was also observed 

as a result of downslope tillage by Zhang et al. (2008), who identified significant 

downslope transport of bulk soil by altered 137Cs signatures of summit and toe slope 

following repeated hoeing of an orthic Regosol. In my study, multiple linear regression 

analysis also indicated a significant contribution of the hillslope to the observed spatial 

pattern of BC (Tab. V.2).  

Besides, particularly the coarse POM fractions may also be affected by erosive 

downslope transport. Yet, the rather short turnover times of POM1 and POM2 likely 

constrain the detection of spatial patterns originating from eroded POM.  

Fig. V.4 Elevation above sea level of the transects B and F (see also Fig. V.1a,b) 
and corresponding 137Cs activities at five points along the individual 
transects. 
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4 CONCLUSIONS 

My investigations revealed that variable stone contents on the investigated test site 

determine the patterns of all investigated SOC fractions. My results also suggest 

fundamental differences in the underlying mechanisms. High stone contents result in a 

disproportionately high biomass input to thus smaller volume of FE material. High 

stone contents also reduce amounts of water in the top soil and the resulting dryness 

probably prevents rapid SOM decay, thereby promoting the accumulation of POM1 

and POM2 in the respective gravely subsites. Smaller FE contents at given biomass 

input are more prone to saturation processes when stone contents increase. The 

contents of POM3 and nonPOM within the fine earth are thus likely governed by such 

C saturation processes. Varying contents of pedogenic oxides additionally influence 

the C saturation capacity and therewith the spatial distribution of nonPOM. In contrast 

to the other C pools, patterns of BC are significantly driven by erosion. 
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1 INTRODUCTION 

World estimates for SOC reach from 2300 Gt for belowground organic carbon (1–3 m; 

Davidson and Janssens, 2006) to 1500 Gt within the first meter of the pedosphere 

(Eswaran et al., 1993), equalling nearly three times that of aboveground biomass and 

about twice the amount found in the atmosphere. Indeed, about one third of the 

worldwide SOC stocks can be found in non-cultivated soils of the tropics and another 

25°% is stored in Histosols of which the largest moieties are inherent to swamps and 

soils of the arctic permafrost region (Jenkinson et al., 1991). The contribution of the 

spacious boreal forests is estimated at ~180 Gt. While these native ecosystems 

comprise a considerable proportion of worldwide SOC stocks, there is little 

opportunity for man induced increase in C sequestration. Actually, the SOC stocks of 

many ecosystems are subject to dramatic decrease. In the tropics, Brown and Lugo 

(1984) estimated the potential loss of stored SOC by deforestation and erosion of 

organic surface horizons at 20–50 %. Permafrost soils are endangered to loose 

significant shares of the stored C (~400 Gt) by global warming induced thawing, 

peatlands may diminish by changing water balances and man made drainage. 

In view of the poor prospects for an active C sequestration in native ecosystems, 

efforts for sequestration of atmospheric CO2 have to concentrate on agricultural 

environments. Here, the potential for (re-) storage of atmospheric CO2 is high, as 

native soils have lost big amounts of SOC upon cultivation (Smith, 2008). In 

temperate regions, native soils lost 30–50 % of SOC in 50–100 years (Lal, 2008). It 

appears virtually paradox that our biggest knowledge gaps concerning storage and 

turnover of SOC apply to arable ecosystems (Prechtel et al., 2009).  

While the invention of carbon trading programs and increasing bio-fuel production 

claim for better estimates of potential C storage in agricultural soils, a database for the 

site specific definition of baseline values, steady-state C levels, and potential C 

sequestration is lacking. Previous studies were largely conducted at a limited number 

of field trial stations and were designed to address specific issues, and individual or 

modified methods have been applied for soil survey. The resulting poor comparability, 

however, restricts the interconnection of the gained data sets for large scale surveys 

(Düwel and Utermann, 2008). The establishment of nation-wide or even world-wide 
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SOC monitoring programs involves the projection of local soil survey data to 

considerably larger areas. At this, the field scale heterogeneity of differently stabilized 

SOC pools and their regulating parameters have to be known in order to account for 

variable SOC dynamics, e.g. by adapted sampling strategies (McBratney et al., 2003; 

Mueller et al., 2004), or consideration of spatial variability in SOC turnover modelling 

(Aiken et al., 1991; Rochette et al., 1991). As efficient methodology for the acquisition 

of the required comprehensive datasets is currently lacking, the effective parameters 

that regulate SOC dynamics on the field scale remained precluded until today. Recent 

studies, however, suggested that besides the storage capacity of the mineral fraction, 

especially hierarchical saturation of differently stabilized SOC pools determines the 

storage of SOM in agricultural soils (Gulde et al., 2008; Stewart et al., 2008). My 

objectives were, i) to test the opportunity for rapid MIRS-PLSR based assessment and 

characterization of BC in the soil environment, ii) to evaluate the potential of MIRS-

PLSR for the determination of POM and its spatial patterns on the field scale and iii) 

to elucidate the role of hierarchical saturation for the storage of SOC in differently 

stabilized SOC pools on the field scale. 
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2 SUMMARY OF THE RESULTS 

i) Does MIRS-PLSR provide opportunity for rapid assessment and characterization of 
BC in the soil environment? 

Comprehensive data sets for understanding the global distribution of black carbon 

(BC) in soil are currently lacking because of the considerable expenditure of time 

needed for BC analyses. Here I report that reliable screening of soil BC can be 

achieved using mid-infrared spectroscopy (MIRS) and multivariate data analysis. 

Calibration models were built employing 309 samples from different soil depths and 

land-use systems in America, Asia, and Europe, characterized for soil organic carbon 

(SOC) and benzene polycarboxylic acids (BPCA) as specific BC markers. About 99 % 

of total SOC variability was explained by local calibrations with an error of prediction 

< 0.1 g SOC kg–1 soil. Also BPCA-C was assessable. The precision was lower (R² > 

0.8), partly reflecting different BC quality. A measure of the latter is the mellitic acid-

C percentage. It also correlated with spectral absorbtions (R² ≥ 0.6), which thus even 

allowed a MIRS-based classification of BC according to its degree of condensation. 

ii) Is MIRS-PLSR suitable for the determination of POM and its spatial patterns on the 
field scale? 

Modelling global C cycles requires in-depth knowledge about small scale C stocks and 

turnover processes. Yet, different soil organic carbon (SOC) pools reveal considerable 

spatio-temporal heterogeneity at the field scale which is scarcely known due to the 

considerable workload associated with traditional fractionation procedures. Here I 

investigated the potential of mid-infrared spectroscopy combined with partial least 

squares regression (MIRS-PLSR) for rapid assessment of different particulate organic 

matter (POM) pools and their spatial heterogeneity at field scale. Locally calibrated 

prediction models estimated the contents of SOC, POM of three size classes (POM1: 

2000–250 µm; POM2: 250–53 µm; POM3: 53–20 µm), and lignin contents for 129 

subsites of a 1.3 ha test field. Relations between the parameters were described using 

correlation analysis and fuzzy-kappa statistics (κ).  

All parameters were predicted successfully by applying local calibrations for MIRS-

PLSR (R² = 0.77– 0.96). The prediction model for POM1 chiefly relied on specific 

signals of lignin and cellulose, contents of POM2 were estimated by spectral bands 
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assigned to degradation products as aliphatic C–H groups and aromatic moieties; 

carboxylic groups essentially contributed to the prediction of POM3. There was a 

close spatial relation between the coarse POM1 and POM2 fractions and lignin 

(κ = 0.77), which largely also explained variations in bulk SOC. In contrast, POM3 

exhibited a less deterministic pattern in the field, thus contributing little to spatial 

variation in SOC content.  

iii) Is hierarchical saturation a relevant factor for field scale patterns of SOC storage in 
differently stabilized SOC pools? 

Stones are basic constituents of the pedosphere and may severely reduce the amount of 

fine earth per soil volume. However, little attention has been paid to the role of 

reduced solum on soil C dynamics. This study was designed to quantify the effect of 

variable stone contents on spatial patterns of bulk soil organic carbon (SOC), 

particulate organic matter (POM) of three size classes, non-particulate organic matter 

(nonPOM), and black carbon (BC). One-hundred and twenty-nine soil samples (0–30 

cm) were taken in a regular grid on an arable field (1.3 ha) nearby Selhausen 

(Germany). The weakly inclined site featured a strong gradient in stone contents, soil 

types covered Dystric Leptosols, Orthic Luvisols, and Stagnic Luvisols. In addition to 

C-pools patterns and stone contents, we determined texture, Fe oxides, soil moisture, 

as well as hillslope and elevation above sea level. Additionally, 137Cs measurements 

were conducted to indicate soil erosion.  

Multiple regression analysis indicated BETA values of 0.65–0.73 between stone 

content and BC, nonPOM, and the finest POM. Also C contents of the coarse POM 

fractions were positively correlated with the stone content (R² = 0.72–0.78) and their 

spatial patterns were assumed to be caused by disproportionate input of plant litter to a 

reduced solum. Statistical structure analysis and variography pointed to hierarchical C 

saturation of nonPOM and POM3, which was additionally regulated by Fe-oxide 

contents. Erosive translocation affected only the spatial distribution of BC (BETA= –

0.15). Varying stone contents thus crucially affected all investigated SOC pools. 
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3 SYNTHESIS 

The results of sections III and IV proved the applicability of MIRS-PLSR for 

simultaneous quantification and qualitative description of differently stabilized SOC 

pools. At this, local calibrations were continuously superior to calibrations including a 

wide variety of different samples. The use of specialized calibration sets allowed for 

improved prediction qualities and revealed qualitative aspects of the targeted SOC 

fractions. While the flexibility of the PLSR technique gives opportunity for the 

assessment of SOC fractions from different soils which may be determined by various 

methods, the superiority of local calibrations simultaneously focuses its use to studies 

where representative calibration samples are available.  

Irrespective of the method applied for quantification and characterization of any 

relevant SOC pool, the key for an effective SOC monitoring is a periodic screening 

with sufficient accuracy to detect SOC changes in relevant time frames. The 

investigated test site in Selhausen was explicitly chosen with regard to its considerable 

field scale heterogeneity and proved to be an ideal choice to demonstrate the 

detectability of spatial patterns of organic and inorganic soil constituents employing 

MIRS-PLSR. As outlined in section V, the different SOC pools in the employed test 

site are subjected to explicitly variable properties of the mineral phase, and as a reason 

of this, express a higher variability as compared to a sample set of 27 loess soils taken 

all across North-Rhine-Westphalia (section IV).  

In comparison to the variability on the investigated test site in Selhausen, the response 

of SOC pools on changes in management practice is usually considerably lower 

(Blanco-Canqui and Lal, 2004). The possibility for the detection of such effects in 

reasonable time frames by employing non-specific calibrations for MIRS-PLSR may 

thus be limited by lacking accuracies of prediction. In the past, alternative statistical 

methods to PLSR have been applied for the extraction of information from sets of 

infrared spectra of soil samples. These methods included neural networks (Fidencio et 

al., 2001; Daniel et al., 2003), wavelet analysis (Jahn et al., 2006), multivariate 

adaptive regression splines (Shepherd and Walsh, 2002), and others (Viscarra-Rossel 

et al., 2006). However, none of these procedures consistently outperformed PLSR, 

leaving it as the most popular technique for analysis of MIRS spectra until today. In 
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defiance of that, enhanced prediction accuracies of soil properties from MIR spectra 

can be anticipated by the application of specialized sample sets for calibration 

(sections III; IV; Linker et al., 2006). A set of ideal calibration samples comprises an 

unchanged matrix with varying quantities of the targeted property (Haaland and 

Thomas, 1988b). The high number of samples taken for large-scale monitoring 

programs would allow for the composition of specialized sample sets with regard to 

soil types and soil genesis, thereby allowing for higher accuracies of prediction. 

Finally, the periodic re-sampling of georeferenced sites as claimed for the 

implementation of national SOC inventories (Prechtel et al., 2009) would further 

improve the attainable accuracies of a MIRS based carbon pool assessment. The 

technical infrastructure to handle such large numbers of samples is already given: full 

automated spectrometer hardware facilitates 24h operation, while automated sample 

recognition and application of best suited calibration models is implemented in 

spectroscopic software-packages. In summary, MIRS-PLSR has proven its ability for 

identification and quantification of bulk SOC, physically separated particulate organic 

matter pools, and BC. Its capability to handle large numbers of samples at low running 

costs makes it a well suited analytical instrument for national and international SOC 

inventories. 

While SOC is presumed to be a continuum of related material rather than a series of 

discrete pools (Paul et al., 2006) there is consensus that the identification and 

quantification of SOC stored in meaningful soil carbon fractions is a prerequisite for 

any SOC surveying or carbon trading programs (Olk and Gregorich, 2006; Prechtel et 

al., 2009). Possible modes for stabilization of SOC include physical, chemical, and 

biological aspects. At this, especially physical fractionation procedures have been 

shown to display effects of varying management practice at appropriate timescales in 

quantity and quality (Christensen, 2001; Six et al., 2004; Gregorich et al., 2006). 

Physically uncomplexed organic matter responds most quickly to changes in land 

management as it is mainly comprised by unaltered plant material (Gregorich et al., 

1996). The similarity of their spatial distribution (see sections III, IV) and an improved 

MLR model (see section V) would legitimate the combination of POM1 and POM2 

for purposes of SOC monitoring. The structural information gained by the PLSR 
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loading weights of the MIRS-PLSR predictions, however, revealed well defined 

structural differences between POM1 and POM2. As also the influence of the 

regulating soil parameters (Section V) was variable, a separate examination of POM1 

and POM2 would still be mandatory for future studies aiming at elucidation of 

turnover processes.  

Structural composition and spatial distribution of POM3 differed substantially from 

those of the coarse POM fractions. While the latter is in contradiction with results of 

Amelung et al. (1999) who identified similar characteristics of POM2 and POM3 for 

grassland soils, it confirms the findings of Skjemstad et al. (2004) and Zimmermann et 

al. (2007) who successfully applied the 2000–53 µm boundary for initialization of the 

RPM pool in the Roth-C turnover model. However, although these results suggest that 

the 53–20 µm fraction should not be referred to as POM, its separate isolation 

facilitated the identification of saturation processes of nonPOM. The possibility for 

calculation of a complementary nonPOM fraction opens up opportunities for 

estimations of long term sequestration potential by combining information of actual 

fraction-C contents and the mineralogy of the nonPOM fraction (Section V). Applying 

scanning electron microscopy, Brodowski et al. (2005) evidenced organo-mineral 

interactions between BC and heavy mineral fractions. Particles of varying morphology 

were identified across different physical particle size fractions, indicating that BC from 

different sources is not selectively enriched (Brodowski et al., 2005). Despite the 

possibility to characterize BC in soil by means of MIRS-PLSR (Section III), an 

estimation of its distribution across physical particle size fractions thus remains 

precluded. A homogeneous distribution of BC contents among all individual SOC 

fractions should thus be anticipated in C turnover modelling. 

Until today, the considerable expenditures of time and money restricted the feasibility 

of studies on the field-scale heterogeneity of different SOC pools to small sample sets. 

The results presented in chapter V were only attainable by application of MIRS-PLSR 

for the rapid acquisition of a comprehensive data set. My results indicated that 

hierarchical saturation of differently stabilized SOC pools can indeed be a relevant 

factor governing the spatial distribution of nonPOM and POM3 on the field scale. 

Moreover, the elucidation of the effective parameters discovered that multiple factors 
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simultaneously determine the SOC storage within individual SOC pools. The 

complexity of the system thus enforces the acquisition of sufficient background 

information to draw conclusions on SOC dynamics or the C sequestration potential of 

a particular soil from SOC pool measurements. The latter was demonstrated by the 

inverse pattern of the SOC contents in FE and in bulk soil (section V).  

The relevance of the heterogeneity of individual SOC pools can be demonstrated by 

projecting the data to larger areas. In appendix A, I demonstrate the effect of different 

soil pre-treatments (ultrasonic vs. chemical dispersion) and physical POM size classes 

on CO2 emissions as predicted by the Roth-C turnover model. Just by combining 

individual particle size thresholds and fractionation techniques, the cumulative 

differences in modelled CO2 emission may rise up to almost 10 % of the total C loss. 

The spatial heterogeneity of the POM pools on the test site in Selhausen, however, 

exceeds the differences as modelled in appendix A by several times (POM1: more than 

tenfold, POM2: approx. threefold, POM3 approx. sevenfold). The ignorance of spatial 

heterogeneity on the field scale may thus lead to considerably over- or 

underestimations of soil born CO2 emissions in C turnover modelling.  

Applying the presented methods I was able to detect spatial patterns of individual SOC 

pools, and to identify regulating parameters and processes that lead to the observed 

field scale heterogeneity. This heterogeneity may be linked to heterotrophic soil 

respiration by application of geostatistical procedures that allow the use of multiple 

covariates. A short introduction on field scale heterogeneity of heterotrophic soil 

respiration and methodical approaches for their prediction and mapping are given in 

appendix B. The application of external-drift kriging for the prediction of 

heterotrophic soil respiration on the investigated field from the determined SOC pools 

(POM, nonPOM, and BC), however, improved the predictions by only 3–12 % (Herbst 

et al, in prep.). As also the gain of prediction quality by stochastic simulation using 

simulated annealing was immaterial, the results of Herbst et al. (in prep.) challenge the 

sufficiency of the determined SOC fractions for enhanced predictions of soil born CO2 

respiration.  
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4 OUTLOOK 

While my results demonstrated that the spatial distribution of different SOC pools can 

be regulated by multiple processes, the determination of SOC pools like POM, 

nonPOM, and BC may not be sufficient for the prediction of soil respiration. In fact, 

the discrimination between factors regulating soil respiration on different time scales is 

a prerequisite to identify the potential of POM pool measurements for predictions on 

soil born CO2 emission. While POM pools exhibit variability in the time scale from 

seasons to years, the microbial biomass, as for instance determined upon chloroform 

fumigation, has been proposed to be a suitable parameter reflecting actual soil 

respiration (Ocio and Brookes, 1990; Smith et al., 2002). Previous work has shown 

that also microbial biomass and measures of biological activity are predictable by 

MIRS (Reeves et al., 2001). Beyond that, a combination with partial combustion of 

soil samples for identifying thermo-labile SOM appears to be promising for the 

identification of potentially degradable SOM (Dorodnikov et al., 2007). Representing 

readily accessible SOC, also water extractable soil organic matter (WESOM) can be 

an indicator for actual microbial activity (Chantigny, 2003). The possibility for MIRS-

transmission measurements of inspissated aqueous soil extracts on silica plates thus 

offers further opportunity for a rapid quantification of additional control parameters 

for short-term variability of soil respiration.  

The simultaneous assessment of indicators for soil respiration on different spatial and 

temporal scales in soil (e.g. microbial activity, WESOM, POM), together with 

temporal series of local CO2 efflux measurements by using soil-chambers, combined 

with spatially averaged measurements employing the eddy-covariance method would 

provide the basis to identify the participation of POM in actual soil respiration. 

Without the possibility to distinguish between respiration from readily decomposable 

material like WESOC and slowly turning pools like POM, the elucidation of the chain 

of causes between actual CO2 evolution and deterministic soil properties will remain 

precluded. At this, also the opportunities of stable isotope chemistry should be used: 

altered δ13C signals of recently incorporated C4 plants can be identified if soils were 

formerly cropped with C3 plants (Balesdent et al., 1987); δ18O measurements allow to 

distinguish between soil carbonates and soil organic matter as sources for soil-born 
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CO2 emissions (Cerling, 1984). Finally, patterns that are observed in the field could be 

backed up with long-term incubation studies in the laboratory (analyses of soil 

respiration).  
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1 INTRODUCTION 

Concepts for modelling carbon turnover usually partition soil organic matter into 

discrete pools with different turnover times (Smith et al., 1997). Several attempts were 

made to approximate the modeled pools by measurable soil fractions (Smith et al., 

2002; Skjemstad et al., 2004). Particulate organic matter (POM), for instance, is a 

proxy for the so-called slow C pool in the RothC approach (Zimmermann et al., 2007). 

Yet, the procedures used for soil dispersion and subsequent POM isolation vary among 

scientists and little is known how the order of magnitude in modeled C turnover is 

affected by the fractionation procedures and boundaries for the assessment of the 

initial C pool sizes (Trumbore and Zheng, 1996; Sohi et al., 2001; Kölbl et al., 2005). 

My objective was, therefore, to document the effect of different soil pre-treatments 

(ultrasonic vs. chemical dispersion) and physical POM size classes on the initial pool 

sizes and modeled C turnover. 

2 MATERIAL AND METHODS 

Two sample sets were fractionated into three POM classes (fine: 20–53 µm, 

intermediate: 53–250 µm, and coarse: 250–2000 µm) using ultrasonic (Amelung and 

Zech, 1999) and polyphosphate dispersion (Cambardella and Elliott, 1992). Sample set 

1 comprised twelve Luvisol samples of a heterogeneous arable site in Selhausen, 

Germany (50°52´09.34´´N; 6°27´00.58´´E; Bornemann et al., 2008). For means of 

diversification, a second set with soils of Germany included two Gleysols and two 

Stagnosols under forest, two Stagnosols under grassland, four samples of an artificially 

bare Arenosol (Bornim experimental plot; Herbst et al., 2008), as well as a Chernozem 

and a Cambisol under arable management. Bulk soil samples were air dried and 

material >2 mm was removed. For chemical dispersion, 10 g of soil was shaken on a 

flat-bed shaker overnight in 50 ml sodium-polyphosphate solution (5 g l–1 [NaPO3]n). 

For physical dispersion, samples were gently sonicated (60 J ml–1) for coarse-sand 

(>250 µm) isolation (Amelung and Zech, 1999). The filtered remnant was sonicated a 

second time at 240 J ml–1. For both procedures, the three POM fractions were isolated 

by wet sieving. Organic carbon contents (OCC) of bulk samples and fractions were 

determined by elemental analysis (ISO10694, 1995). 
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The fractionation data were used to initiate the SOILCO2-RothC model, which is a 

coupled CO2 flux and carbon turnover model (Herbst et al., 2008). The calculated 

respiration flux at the surface, as an integral signal, equals the carbon loss of the pools 

distributed over the whole soil profile. Based on a validated model run with SOILCO2-

RothC for the Bornim experimental plot, four scenarios were established for the four 

Arenosol samples. All boundary conditions and parameters were identical to the 

original model run (Herbst et al., 2008), except for the input of fresh plant material 

which was omitted for the scenarios in order to focus on the effect of the carbon pool 

initialization. Further, eight years of meteorological data were looped twice to provide 

an adequate period for modelling.  

According to Skjemstad et al. (2004) the 53–2000 µm POM fraction can be used as a 

surrogate for the RothC pool of resistant plant material (RPM). However, Amelung et 

al. (1998) found that the POM fractions of 20–50 µm and 50–250 µm were chemically 

identical. With respect to these results, the lower threshold of 53 µm for the RPM pool 

remains questionable. I tested the impact of the two particle size boundaries (53–

2000 µm and 20–2000 µm) as well as the two dispersion methods (polyphosphate and 

ultrasonic) on the cumulative CO2 output. For each scenario, the stable carbon humus 

pool (HUM) was calculated from SOC after subtraction of the estimated inert organic 

pool (IOM) and microbial carbon pool (BIO) (Herbst et al., 2008) while it was 

assumed that the decomposable plant material pool (DPM) was zero. 

3 RESULTS AND DISCUSSION 

The mean differences (δm) of fractionation yields (soil mass distribution) indicate that 

for both sample sets, more material was gained by ultrasound in the fine (20–53 µm) 

POM fraction than was gained by chemical dispersion (Tab. VII.1).  

The differences for the intermediate (53–250 µm) fraction were inconsistent and those 

for the coarse fraction (>250 µm) were not significant. In contrast, more organic 

carbon remained in the coarse fractions using ultrasound dispersion, while this carbon 

was lacking in the intermediate fraction. Different axis intercepts suggest that a 

translation of the results of one dispersion procedure into those of the other is difficult.  

According to the different fractionation results I set up four different scenarios to be 
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used in the SOILCO2-RothC approach. The cumulative respiration of three of the four 

scenarios is displayed in Fig. VII.1. Due to the large overlap with the scenario 

“ultrasonic 53–2000 µm” I omitted the scenario “polyphosphate 20–2000 µm” in Fig. 

VII.1 for means of clarity. In all scenarios, respiration decreased during the 16 years 

because there was no plant input implemented into the model and the RPM pool was 

thus predetermined to run empty. Due to its relatively short half life of 2.3 y, the RPM 

pool depleted almost completely after six to seven years and respiration was now 

mainly fed by the more stable pools. For the 53–2000 µm fractionation scheme, the 

differences in the modeled cumulative CO2 release over 16 years between the 

scenarios ‘polyphosphate’ (15.62 t ha–1) and ‘ultrasonic’ (16.31 t ha–1) are lower (4 %), 

compared to the 20–2000 µm particle size threshold (‘ultrasonic’: 17.33 t ha–1; 

‘polyphosphate’: 16.33 t ha–1). Here, the data provided by the ultrasonic procedure 

indicates a carbon loss that is ~6 % higher as the data indicated by the polyphosphate 

alternative. However, combining thresholds and fractionation techniques, the 

cumulative differences may rise up to almost 10 % of the total C loss. The concern of 

these differences becomes especially evident by an exemplary projection of the gained 

data. According to the model results, the difference in estimated CO2 loss by either 

“polyphosphate 53–2000 µm”, or “ultrasonic 20–2000 µm” scenario would be 

1.71 t ha–1 within 16 years. 

If this data is extrapolated to the potential arable land of 4.14*109 ha in the world 

(FAO, 2000), these differences would sum up to ~1.9*109 t of emitted C within 16 

years. As reviewed by Davidson and Janssens (2006), Jones et al. (2005) estimated the 

potential worldwide C loss of SOC down to 1 m depth to be about 43*109 t in 95 

years, which equals 7.2*109 t within 16 years. While Jones et al. (2005) admit that 

their study was limited by some generalized assumptions, my experiments indicate that 

the assessment of the initial RPM pool on the basis of two different fractionation 

schemes may already result in differences as high as 26 % of the total estimated SOC 

loss. 
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Fig. VII.1 Cumulative heterotrophic respiration flux of an Arenosol soil profile 
for 16 years according to three different scenarios of POM 
fractionation. 
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1 INTRODUCTION 

It is generally recognized that soils heterotrophic and autotrophic respiration 

components bare an essential spatial variability at field scale, even within land use or 

soil taxonomic units (Kravchenko and Hao, 2008; Herbst et al., 2009; Martin et al., 

2009). This tremendous spatial variability was detected at an early stage (Aiken et al. 

1991; Rochette et al., 1991; Dugas, 1993) and basically every scientist trying to 

measure chamber-based soil respiration has to tackle this problem. For specific land 

covers like a pine plantation (Fang et al., 1998), an oak-grass savanna or agricultural 

fields (Rochette et al., 1991; Han et al., 2007) parts of this spatial variability in soil 

respiration could be attributed to the spatial pattern introduced by natural topologies or 

planting certain geometries like crop rows. However, even only bare soil 

(heterotrophic) respiration shows a considerable spatial variability (Dugas, 1993; La 

Scala et al. 2000; Herbst et al., 2009; Graf et al., 2010).  

Soil properties like organic carbon content (Kravchenko and Hao, 2008) or C:N ratio 

(Khomik et al., 2006) as well as state variables like soil temperature and soil water 

content (Aiken et al., 1991; Foti et al., 2008) were used to explain the spatial pattern in 

respiration. Experimentally determined soil organic matter fractions are increasingly 

used as a proxy for pool sizes in turnover models (Smith et al., 2002; Skjemstad et al. 

2004, Leifeld et al. 2007). Linked to the spatial variability this would indicate high 

respiration rates at those locations, which show larger amounts of labile organic 

matter, since the high turnover of the labile carbon would cause higher CO2 emissions. 

However, experimental evidence of this spatial coherence could not be found in 

literature yet. In one study the spatial pattern of a rather labile carbon fraction, 

potentially mineralizable carbon, was investigated at large field scale (Yanai et al., 

2005), but without linking this to local CO2 flux measurements. 

The effect of spatial autocorrelation of environmental variables like soil respiration is 

twofold: On the one hand, spatial autocorrelation needs to be taken into account in 

case uncorrelated samples, e.g. in order to derive a representative spatial average 

value, are intended (Herbst et al., 2009). On the other hand, it allows the application of 

geostatistical mapping techniques. However, all studies using this approach for 

respiration measurements are limited to kriging techniques without using covariates 
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(Kosugi et al. 2007, Konda et al., 2008; Panosso et al., 2009), which generally have 

some essential disadvantages in terms of reproducing the variogram and the 

probability density function of the original point data (Gooveaerts, 2000). 

Naturally, chamber-based measurements of soil CO2 efflux bare a certain inaccuracy 

(Pumpanen et al., 2004). Among all the sources of measurement errors, the small 

surface area covered by the chamber in relation to the underlying spatial variability 

seems to be one of the major drawbacks. This probably also explains the rather large 

nugget effect detected in almost all of the studies applying variography to chamber-

based respiration measurements (Konda et al., 2008; Panosso et al., 2009). 
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2 STATISTICAL INSTRUMENTATION 

2.1 Variography and kriging 

Spherical variogram functions can be fitted to the experimentally determined 

semivariances, 

(h) 
c0  c1 1.5 h

a
 0.5 h

a








3







 for h  a

c0  c1 for h  a









      (1) 

where h is the separation distance, c0 is the nugget, c1 is the structural semivariance 

and a is the spatial auto-correlation range. In the following the nugget effect is referred 

to as the ratio between the nugget and the total sill (c0+c1; Cambardella et al., 1994). 

Prior to the computation of the variograms and the kriging the data of the co-variates 

has to be spatially detrended for variables that exhibit a strong spatial trend in slope 

direction. The latter can be done with linear regressions between the variable values 

and the x coordinate. After applying the geostatistical procedures, the linear trend has 

to be added back to the estimates. 

Kriging estimates are a kind of weighted mean of the neighbouring sampling location 

values. The weights λi are usually chosen according to the semivariance γ as a function 

of distance h (Eq. 5) between prediction location x and the neighbouring sampling 

location values xj,  
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where µ is the Lagrange parameter. Ordinary kriging may be extended to external drift 

kriging by Ahmed and DeMarsily (1987). A co-variable Y(x) is assumed to be linearly 

related to the target variable and in order to minimize estimation variance under this 

assumption, the linear equation system can be modified to 
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with the Lagrange parameters 1 and 2. Ordinary and external drift kriging can for 

instance be performed by the KT3D-routine of the Geostatistical Software Library 

(Deutsch and Journel, 1998). 

Cross validation procedures allow to quantify the improvement of using covariates in 

the estimation procedure. A cross validation is typically applied to small data sets, like 

in this study, for which a Jack-knife validation is not possible since splitting the data 

into an estimation and a validation set would cause a change in the estimation model. 

Models based on a relative small number of observations are more sensitive towards 

further removal of data than models developed from larger data sets. With cross 

validation, the prediction performance is simply checked by dropping actual data one 

at a time and estimating the properties of the location from the co-variables and the 

neighboring data. This allows for computation of the error between the measurements 

and estimation for every sample location. In the first step, the root mean square error 

RMSE between estimates and measurements is computed according to 

RMSE 
1
n

SSE .          (4) 

In the second step, the relative improvement Ir is calculated according to Simbahan et 

al. (2006), 

Ir 
RMSEOK  RMSEEDK

RMSEOK

         (5) 

where the index denotes the RMSE for the reference ordinary krging OK or external 

drift kriging EDK. In case Ir is positive, the precision of the evaluated method is 

superior to the reference.  
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2.2 Stochastic simulation by simulated annealing 

In a stochastic simulation rather the reproduction of basic features of the measured 

data is approached than an optimum estimation at unsampled locations. There are 

several algorithms available like e.g. sequential gaussian simulation or the turning 

bands method. An algorithm that is able to efficiently perform multi-criteria stochastic 

siumlations is the simulated annealing (Deutsch and Journel, 1998). This is a global 

optimization technique, based on an anlogy with the physical process of annealing. 

Roughly, there are five steps involved: 

1. An initial candidate realisation is created by assigning a random value at each grid 

node by drawing from a prescribed population.  

2. An objective function is computed to measure the difference between desired spatial 

features and those of the candidate realisation. In this study, three criteria were 

used in the objective function. The cumulative distribution F*(z) of the stochastic 

simulation should match the prespecified cumulative distribution F(z) for a number 

of z values 

Oh  F * z  F z  
z
 2

.         (6) 

The prespecified variogram γ(h) should also be reproduced by the variogram of the 

stochastically generated realisation γ*(h) 

Os 
 * h  y h  2

 h 2
h


.         (7) 

The division by the square of the model semivariogram can be introduced to give more 

weight to the semivariance reproduction for small distances (Larocque et al., 2006). 

The use of a conditional distribution allows the realisations to be constrained to a 

secondary variable,  

Oc  f i
* j  fi j  2

j 0

n p


i 0

ns


         (8) 
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where ns and np are the number of secondary and primary classes; fi(j) is the 

conditional distribution of the primary variable (j = 1,…,np) given that the collocated 

secondary variable is in class i. The overall objective function value O is computed as 

the weighted sum of the three criteria 

O  hOh   sOs   cOc .         (9) 

The weights were set to 1.0, 5.0 and 1.0 for ώh, ώs and ώc, respectively.  

  

3. The realisation is perturbed by swapping pairs of values taken at random locations. 

4. The perturbation is accepted in case the objective function value is decreased; it is 

accepted with a certain probability even if the objection function value increased, 

which is done to avoid local optima.  

5. The perturbation procedure is looped, while the probability with which 

unfavourable swaps are accepted is reduced until a minimum objective criterion is 

achieved. 

For further details on simulated annealing in a geostatistical context refer to Deutsch 

and Cockerham (1994) and Deutsch and Journel (1998). 

According to Leuangthong et al. (2004) minimum criteria exist that should be met by 

geostatistical simulations. First of all, the data values must be reproduced at their 

locations. Secondly, the distribution of the stochastic simulation should match the 

distribution of original data. This was checked using the cumulative probability 

density function by comparing the fractions of values of the original data and the 

stochastically generated cumulative probability density function (ccdf) ))(|,( nzuF


 in 

p-probability intervals (PI) (Deutsch 1997; Goovaerts, 2001). Knowing the ccdf allows 

to compute the symmetric p-PI bounded by the (1-p)/2 and (1+p)/2 quantiles for any 

cumulative probability u. Knowing the ccdf of the stochastically generated data 

))(|,( nzuF


, j = 1,…, N and the original data z(uj), j = 1,…, N allowed calculating the 

fractions of true values falling into a given symmetric p-PI by 

 1,0),(1)(
1

 


ppu
N

p
N

j
j         (10) 
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where ),( pu j was given by 



 




otherwise
puFuzpuF

pu jjj
j 0

)2/)1(,()()2/)1(,(1
),(

11

 .    (11) 

The agreement between simulated fractions and the fractions of the original data was 

finally assessed by the G-statistics 

  dppppaG   )(2)(31
1

0

         (12) 

where the indicator function a(p) was given by 

otherwise
pppa 






)(

0
1

)(           (13) 

which causes a weight two times higher for the inaccurate case with p . A weight 

of one is assigned to the accurate case, for which the fraction of values falling into the 

p-probability interval was equal to or larger than expected. The closer the G-value is to 

1, the better the reproduction of the ccdf is. The following equation was proposed by 

Goovaerts (2000) to determine the accuracy of the reproduction of the variogram in a 

stochastic simulation, 









S

s s

ss

h
hh

1
2

2

)]([
)]()([




           (14) 

where S is a specific number of the first distance lags, 30 in this study, and )( sh


  is the 

semivariance at lag hs, calculated from the stochastic realisation. Note, that this 

criterion is identical to the one used to generate the stochastic simulation (Eq. 11). A 

small value of έr indicates good agreement between the reference variogram model and 

the variogram calculated from a stochastic realisation. 
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