
Institute of Crop Science and Rescource Conservation - Phytomedicine

Detection, identification, and quantification of fungal
diseases of sugar beet leaves using imaging and

non-imaging hyperspectral techniques

Inaugural-Dissertation
zur

Erlangung des Grades
Doktor der Agrarwissenschaften

(Dr. agr.)

der
Hohen Landwirtschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität

zu Bonn

vorgelegt am 04.11.2010
von

Anne-Katrin Mahlein
aus Ansbach



Referent: Prof. Dr. H.-W. Dehne
Koreferent: Prof. Dr. H. Goldbach

Tag der mündlichen Prüfung: 20.01.2011
Erscheinungsjahr: 2011



In liebevoller Erinnerung an meine Großmutter Maria Eff





Abstract

Plant diseases influence the optical properties of plants in different ways. Depending on the host

pathogen system and disease specific symptoms, different regions of the reflectance spectrum are

affected, resulting in specific spectral signatures of diseased plants. The aim of this study was to

examine the potential of hyperspectral imaging and non-imaging sensor systems for the detection,

differentiation, and quantification of plant diseases. Reflectance spectra of sugar beet leaves in-

fected with the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae causing

Cercospora leaf spot, powdery mildew, and sugar beet rust, respectively, were recorded repeatedly

during pathogenesis. Hyperspectral data were analyzed using various methods of data and image

analysis and were compared to ground truth data. Several approaches with different sensors on the

measuring scales leaf, canopy, and field have been tested and compared. Much attention was paid

on the effect of spectral, spatial, and temporal resolution of hyperspectral sensors on disease record-

ing. Another focus of this study was the description of spectral characteristics of disease specific

symptoms. Therefore, different data analysis methods have been applied to gain a maximum of

information from spectral signatures.

Spectral reflectance of sugar beet was affected by each disease in a characteristic way, resulting in

disease specific signatures. Reflectance differences, sensitivity, and best correlating spectral bands

differed depending on the disease and the developmental stage of the diseases. Compared to non-

imaging sensors, the hyperspectral imaging sensor gave extra information related to spatial resolu-

tion. The preciseness in detecting pixel-wise spatial and temporal differences was on a high level.

Besides characterization of diseased leaves also the assessment of pure disease endmembers as well

as of different regions of typical symptoms was realized. Spectral vegetation indices (SVIs) related

to physiological parameters were calculated and correlated to the severity of diseases. The SVIs

differed in their sensitivity to the different diseases. Combining the information from multiple SVIs

in an automatic classification method with Support Vector Machines, high sensitivity and specificity

for the detection and differentiation of diseased leaves was reached in an early stage. In addition to

the detection and identification, the quantification of diseases was possible with high accuracy by

SVIs and Spectral Angle Mapper classification, calculated from hyperspectral images. Knowledge

from measurements under controlled condition was carried over to the field scale. Early detection

and monitoring of Cercospora leaf spot and powdery mildew was facilitated.

The results of this study contribute to a better understanding of plant optical properties during

disease development. Methods will further be applicable in precision crop protection, to realize the

detection, differentiation, and quantification of plant diseases in early stages.
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Kurzfassung

Pflanzenkrankheiten wirken sich auf die optischen Eigenschaften von Pflanzen in unterschiedli-

cher Weise aus. Verschiedene Bereiche des Reflektionsspektrums werden in Abhängigkeit von Wirt-

Pathogen System und krankheitsspezifischen Symptomen beeinflusst. Hyperspektrale, nicht-invasive

Sensoren bieten die Möglichkeit, optische Veränderungen zu einem frühen Zeitpunkt der Krankheits-

entwicklung zu detektieren. Ziel dieser Arbeit war es, das Potential hyperspektraler abbildender

und nicht abbildender Sensoren für die Erkennung, Identifizierung und Quantifizierung von Pflan-

zenkrankheiten zu beurteilen. Zuckerrübenblätter wurden mit den pilzlichen Erregern Cercospora

beticola, Erysiphe betae bzw. Uromyces betae inokuliert und die Auswirkungen der Entwicklung

von Cercospora Blattflecken, Echtem Mehltau bzw. Rübenrost auf die Reflektionseigenschaften

erfasst und mit optischen Bonituren verglichen. Auf den Skalenebenen Blatt, Bestand und Feld

wurden Messansätze mit unterschiedlichen Sensoren verglichen. Besonders berücksichtigt wurden

hierbei Anforderungen an die spektrale, räumliche und zeitliche Auflösung der Sensoren. Ein wei-

terer Schwerpunkt lag auf der Beschreibung der spektralen Eigenschaften von charakteristischen

Symptomen. Verschiedene Auswerteverfahren wurden mit dem Ziel angewendet, einen maximalen

Informationsgehalt aus spektralen Signaturen zu gewinnen.

Jede Krankheit beeinflusste die spektrale Reflektion von Zuckerrübenblättern auf charakteristische

Weise. Differenz der Reflektion, Sensitivität sowie Korrelation der spektralen Bänder zur Befallsstär-

ke variierten in Abhängigkeit von den Krankheiten. Eine höhere Präzision durch die pixelweise Er-

fassung räumlicher und zeitlicher Unterschiede von befallenem und gesundem Gewebe konnte durch

abbildende Sensoren erreicht werden. Spektrale Vegetationsindizes (SVIs), mit Bezug zu pflanzen-

physiologischen Parametern wurden aus den Hyperspektraldaten errechnet und mit der Befallsstärke

korreliert. Die SVIs unterschieden sich in ihrer Sensitivität gegenüber den drei Krankheiten. Durch

den Einsatz von maschinellem Lernen wurde die kombinierte Information der errechneten Vegeta-

tionsindizes für eine automatische Klassifizierung genutzt. Eine hohe Sensitivität sowie eine hohe

Spezifität bezüglich der Erkennung und Differenzierung von Krankheiten wurden erreicht. Eine

Quantifizierung der Krankheiten war neben der Detektion und Identifizierung mittels SVIs bzw.

Klassifizierung mit Spektral Angle Mapper an hyperspektralen Bilddaten möglich.

Die Ergebnisse dieser Arbeit tragen zu einem besseren Verständnis der optischen Eigenschaften von

Pflanzen unter Pathogeneinfluss bei. Die untersuchten Methoden bieten die Möglichkeit in Anwen-

dungen des Präzisionspflanzenschutzes implementiert zu werden, um eine frühzeitige Erkennung,

Differenzierung und Quantifizierung von Pflanzenkrankheiten zu ermöglichen.
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1. INTRODUCTION

Von Witzke et al. (2008) recently demonstrated that the worldwide demand
for agricultural products exceeds the supply; hence there is a need to manage
the worldwide production of agricultural commodities more efficiently. The
potential yield of crops is affected by different stresses (e.g. pest, weed, nutrition
deficiencies or water stress), which can reduce the production capacity. Oerke
and Dehne (2004) indicated that the impact of diseases, insects, and weeds
represents a potential annual loss of 40% of world food production.

Traditional agricultural management practices assume parameters in crop fields
to be homogeneous, thus the output of pesticides and managing actions is not
in relation to the demands (Steiner et al., 2008). Due to high control costs
and the environmental impact of fungicides, a site-specific application accord-
ing to precision agriculture techniques is of high interest. Precision agriculture
– integrating different modern technologies like sensor, information, and man-
agement systems – aims to match agricultural input and practices to the spatial
and temporal variability within a field. Thus, a better use of resource and an
avoidance of great differences in yield quality and quantity due to small-scale
site-specific differences can be attained.

Considering that the occurrence of diseases depends on specific environmental
factors and that diseases often exhibit a patchy distribution in fields, remote
sensing techniques could be useful in identifying primary disease foci and areas
differing in disease severity in the field (Franke and Menz, 2007; Franke et al.,
2009). Based on the information from remote sensing techniques or non invasive
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sensor devices, application maps may be generated to manage agricultural fields
in due consideration of spatiotemporal disease heterogeneities. Site-specific ap-
plications of pesticides, according to precision agriculture strategies result in
a potential reduction in pesticide use, and thus can reduce the economical
expenses and ecological impacts in agricultural crop production systems (Geb-
bers and Adamchuk, 2010). Gerhards and Christensen (2003) have shown that
precision agriculture has the potential to reduce the application of herbicides.
With online weed detection by image analysis and a map-based GPS-controlled
patch spraying, the herbicide output was diminished in winter cereals against
dicotyledonous weeds by 60% and for monocotyledonous weeds by 90%. To
bring these practices forward to a site-specific application of fungicides, further
research has to be implemented. As a basis, automatic disease detection has to
be optimized.

Various indicators suggest that a detection, differentiation, and quantification
of fungal diseases based on reflectance measurement would be feasible. If a
symptom or a disease is detectable by naked eye, it should be measurable with
a sensor, recording the reflectance of the symptom different from that of healthy
tissue. Crucial points in sensor detection of biotic and abiotic stress factors, in
particular of plant diseases, are the sensitivity and the specificity of the devices.
Sensitivity denotes the ability of a sensor to detect various changes at a certain
time. The specificity is characterized by classifying the change causing agent,
or to discriminate between different possible causes. Stress causing agents, and
likewise different plant diseases often cause similar symptoms and changes in
plant physiology (Nutter et al., 1990; Stafford, 2000). As the primary effects
of different diseases to the plant biochemistry and physiology vary, different
wavebands should be suitable for detection. However, not only plant pathogens
cause chloroses and reduce the chlorophyll content.

A detailed understanding of plant physiological processes depending to a spe-
cific disease, as well as knowledge of sensor-object interaction is indispensable.
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1. INTRODUCTION

To implement hyperspectral sensors in threshold-orientated decision making
systems, the sensor system has to have the capability for disease quantifica-
tion. Beside the differentiation of stress factors and plant diseases among each
others, hyperspectral sensors have to allow a pre-symptomatic detection of dis-
ease infection, to intervene with proper management strategies, like time- and
site-specific fungicide application.

This study aims at exploring the potential of non-invasive hyperspectral sen-
sor systems from remote sensing science for the detection of plant diseases.
Experiments were carried out on sugar beet plants and their foliar pathogens
Cercospora beticola, Erysiphe betae, and Uromyces betae to investigate the use
of imaging and non-imaging hyperspectral sensors referring to the following
questions: Do plant diseases have specific spectral signatures useful for disease
identification? Is an early detection of infection by pathogens possible? What is
the potential of sensors to differentiate among leaf diseases? Is a quantification
of plant diseases at different stages possible?

Specific spectral signatures of leaves, diseased with Cercospora leaf spot, pow-
dery mildew, and sugar beet rust, caused by Cercospora beticola, Erysiphe betae,
and Uromyces betae, respectively, have been evaluated and compared during
disease development. The three disease causing pathogens differ in their way
of life and in their interaction with the host plant sugar beet. Thus, hyper-
spectral data of three differing host-pathogen systems have been assessed and
comparatively analysed.

The sensitivity and specificity of hyperspectral sensing for disease detection is
influenced by several factors. Hence, different approaches with different sensor-
devices on different measuring scales have been tested and compared (Fig. 1.1).
Observing the leaf and canopy level, much attention was paid on requirements
on the spectral, spatial, and temporal resolution of hyperspectral sensors for
disease detection. Experiments with different sensor systems have been made on
the leaf and canopy level under controlled conditions and in the field. One focus
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of this study was the comparison of non-imaging and imaging hyperspectral
sensors for their suitability of disease detection and for a detailed description of
spectral characteristics of disease specific symptoms. Until now disease-specific
spectral vegetation indices or the analysis of hyperspectral data for disease
detection are not available. Therefore, different data analysis methods have
been applied to gain a maximum of information from spectral signatures.

In an interdisciplinary approach with the Institute of Geodesy and Geoinfor-
mation, University of Bonn, an optimization of data analysis methods and the
development of disease specific spectral indices for an early detection and differ-
entiation of fungal diseases have been realized. This PhD work was embedded
in the Research Training Group 722 ’Use of Information Techniques for Pre-
cision Plant Protection’ funded by the German Research Foundation (DFG)
from 2007 to 2010.

Figure 1.1: Concept of data assessment and data analysis on different scales with specific hyperspectral
sensors.
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2. LITERATURE REVIEW

2.1 Precision Agriculture

The use of innovative technologies collectively named ’Precision Agriculture’ is
a promising approach to optimize agricultural production of crops. In field crop
production precision agriculture methodologies are applied to site-specific ap-
plication of fertilizer or pesticides, automatic guidance of agricultural vehicles,
product traceability, on-farm research or management of production systems
(Gebbers and Adamchuk, 2010). Recently precision agriculture also enhances
management decisions in livestock production, pasture management, viticul-
ture, and horticulture (Gebbers and Adamchuk, 2010; Schellberg et al., 2008).
Precision crop production aims to match agricultural input and practices to the
spatial and temporal variability within a field, instead of managing an entire
field based on a hypothetical average. Small-scale site-specific differences can
lead to great differences in yield and quality, thus a better use of resources
to preserve the quality and quantity of agricultural products with respect on
environmental resources is essential (Gebbers and Adamchuk, 2010).

The philosophy behind precision agriculture is not only including a direct eco-
nomical optimization of agricultural production, it also stands for a reduction
of harmful outputs into environment and non-target organisms. In particular a
contamination of water, soil, and food resources with pesticides has to be min-
imized in crop production (Bongiovanni and Lowenberg-Deboer, 2004). With
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2.1. Precision Agriculture

this aim, site-specific fertilizer application was the first successfully implementa-
tion in 1988, soil sampling, yield mapping, and site specific herbicide application
succeeded (Adamchuk et al., 2004; Gerhards and Oebel, 2006; Stafford, 2000).

Against the background of food security and sustainable production, adequate
technologies are fundamental for this agricultural practice (Zhang et al., 2002).
The implementation of information-based management systems into crop pro-
duction since the mid 1980s implies a huge potential to modernize the agricul-
tural practice. Since then different techniques for the characterization of soils
and crops have been engineered and included into decision making systems. To
name the most important ones, precision agriculture integrates different tech-
nologies like global positioning systems (GPS), geographic information systems
(GIS), as well as different kind of sensors and therefore it demands a high level
of expertise (Kühbauch and Hawlitschka, 2003; Stafford, 2000).

For the future an information-driven crop production as a combination of
geospatial and agricultural data management will encourage the actual utiliza-
tion of precision agriculture applications (Nash et al., 2009; Reichardt et al.,
2009). Current research on precision agriculture for crop production focuses
on the development of sensors for remote detection of crops and soil in real
time. Relevant field parameters like soil properties, topography, water status,
crop micro-climate, nutritional status, weeds, and pests and diseases as well as
yield can be monitored and estimated. Integration of different remote sensing
techniques and image analysis in combination with a global positioning system
will be an essential step towards online application.

Still one limiting factor of a successful use of precision agriculture is the in-
terpretation of properties derived from sensor data, rather than the collection
of relevant data (Schellberg et al., 2008). The interpretation of information
and its implementation into robust decision support systems will improve the
acceptance and implementation of precision agriculture techniques.
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2. LITERATURE REVIEW

2.2 Precision crop protection and monitoring of plant

diseases

Precision crop protection is a demanding challenge within precision agriculture
and offers high potential to reduce the costs and environmental impact of fungi-
cide use. According to the characteristics of plant diseases, a site-specific crop
management requires a high density of spatial and temporal information with
regard to the status of any crop growth-relevant parameter. The disease moni-
toring and decision-making process is the fundamental origin for a site-specific
managing of spatially and temporally variable diseased field sites (Steiner et al.,
2008).

Currently two different approaches for site specific fungicide application are un-
der examination; indirect decision-making by assessing canopy density or crop
growth stage (Dammer et al., 2008; Scotford and Miller, 2005) or direct dis-
ease detection (West et al., 2003). These modern methods in plant production
and crop protection are closely related to innovative technologies. Near-range
and remote sensing, like hyper- and multispectral sensors or thermography in
precision pest management possess multiple opportunities to increase the pro-
ductivity of agricultural production systems and to reduce the environmental
burden from pesticides. Real-time decision based on the information of the
sensing system- ’spray or don’t spray’ can control cultural practices (Stafford,
2000). Due to high control costs and the environmental impact of fungicides, a
site-specific application according to precision farming techniques – i.e. monitor
and manage spatially-variable fields site-specifically (Stafford, 2000) – is of high
interest. Therefore, a precise, reproducible, and time-saving disease monitoring
method is essential (Bock et al., 2010; Hillnhuetter and Mahlein, 2008; Sted-
dom et al., 2005). Remote sensing technologies are one basic tool of precision
agricultural practice which can provide an alternative to visual disease assess-
ment (Nutter et al., 1990). West et al. (2003) have provided a detailed overview
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of the sensor-based detection of stress. The variety/nature of a to monitored
phenomenon and its environmental circumstances thereby defines the required
sensor specifications (e.g. spatial and spectral resolution; temporal availability).

Many researchers have shown the potential of remote sensing techniques in
the area of agriculture (Combal et al., 2002; Doraiswamy et al., 2003; Galvao
et al., 2009; Kruse et al., 2006; Oppelt and Mauser, 2004; Thenkabail et al.,
2000) and also in the field of plant disease detection. E.g. Franke and Menz
(2007), Huang et al. (2007), Moshou et al. (2004), Steddom et al. (2005), and
Zhang et al. (2003) have proven the potential of spectral sensor systems for
the detection of fungal diseases. To implement these sensors into precision
plant protection technologies, they have to be robust, low-cost, and preferably
real-time sensing (Zhang et al., 2002).

2.3 Optical sensor systems

Innovative sensor systems can provide detailed and highly resolved information
on crop systems and single plants. Different sensor types can assess different
characteristics/parameters of the targeted objects, depending on signal-object
interactions. Chaerle and van der Straeten (2001) gave a detailed overview on
various sensor types used for assessing plant physiological parameters. Encour-
aging approaches are measurements based on thermal characteristics (Jones
and Schofield, 2008; Lenthe et al., 2007; Oerke et al., 2006), chlorophyll fluo-
rescence (Buschmann and Lichtenthaler, 1998; Chaerle et al., 2007a; Rascher
et al., 2000), and reflectance of plants (Oppelt and Mauser, 2004; Peñuelas and
Filella, 1998; Ustin et al., 2009). As thermal response and modifications in
photosynthesis of plants largely lack diagnostic potential for the identification
of plant diseases, more sophisticated sensor systems have to be developed. The
present work focuses on the use of non-imaging and imaging hyperspectral sen-
sors for the detection, identification, and quantification of plant diseases. Most
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of the optical sensor systems originate from geographical or remote sensing sci-
ence, but there are various approaches in literature to implement these sensors
into plant science.

The sensor evolution in remote sensing started from multispectral sensors to hy-
perspectral sensors and upcoming to ultraspectral sensors (Meigs et al., 2008).
These technically complex devices provide a multiplicity of information over the
covered spectral range. But depending on the measured object and aim just
few regions of the spectral range are of interest. Narrow spectral bands of hy-
perspectral sensors with a spectral resolution up to 1 nm are highly correlated
to each other, redundant information is being measured. Likewise, understand-
ing of spectral characteristics of the object and of signal-object interaction is
elementary for optimization of remote sensing sensors for disease detection.

Currently reflectance sensors are classified on their spatial scale, on their spec-
tral resolution, and by their way of data assessed, i.e. imaging or non-imaging
sensors (Melesse et al., 2007). Each sensor system covers a different scale, for
example airborne or spaceborne far-range systems with a smaller spatial resolu-
tion, or near-range sensing systems with maximal spatial resolution. The maxi-
mal spatial resolution is defined by the minimum size of one pixel and hence the
smallest identifiable symptom or structure. Technological advances in sensor
development, in particular progress from multispectral broadband sensors to
hyperspectral narrowband sensors have drastically increased the quantity and
quality of available information.

The way of data recording is essential for data interpretation and analysis. Non-
imaging sensors measure the averaged reflectance over a defined area (depending
on the field of view of the sensor), a detailed inference of the reflectance source
or pure object reflectance is not feasible (Mahlein et al., 2010; Steiner et al.,
2008). Further to non-imaging spectroradiometers, hyperspectral cameras facil-
itate the detection of both, spectral and spatial information of an object. The
information of a hyperspectral image is based on the spatial X- and Y-axes and
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a spectral Z-axis, which allows a more detailed and allocated interpretation of
the signal object interaction. Each spatially located pixel of an image contains
the information of several wavelengths (Fig. 2.1). The use of hyperspectral
imaging systems in plant pathology or in disease severity assessment is still in
the state of research.

Figure 2.1: Structure of a hyperspectral image data cube of a sugar beet leaf with spatial dimensions
X and Y, and the continuous spectrum with 210 reflectance values for an image-pixel from the spectral
dimension Z.

2.4 Reflection of vegetation

After various processes of absorption, reflection, and scattering in the atmo-
sphere, approximately 40% of the solar flux impacts to earth surface (Brooks
and Miller, 1963; Lacis and Hansen, 1973). This electromagnetic radiation
interacts with surfaces in different ways. The main interactions are I) absorp-
tion, i.e. the process by which energy of a photon is taken up by matter; II)
transmission, the process of light passing through matter; and III) reflectance,
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the process by which incident illumination reacts with matter and returns back
from its surface, converted to radiant energy (Baranoski and Rokne, 2001). The
reflectance is calculated by the ratio of radiant energy reflected from a surface
to the radiant energy incident on the surface and is therefore independent of
illumination variation (Lillesand and Kiefer, 2000).

Plant - sunlight interaction
In the interaction between sunlight and plant tissue, solar radiation is the en-
gine of photosynthetic processes and therewith the source of life on earth. The
attenuation of light insight plant leaves results from complex absorption and
scattering processes, influenced by the biochemical composition and morpho-
logical characteristics of the leaf tissue (Fig. 2.2; Govaerts et al., 1996). Leaf
reflectance of sunlight in the visible (VIS, 400 to 700 nm), near infrared (NIR,
700 to 1100 nm) and short wave infrared (SWIR, 1100 to 2500 nm) are driven
by multiple interactions: radiant energy absorption induced by leaf chemistry,
scattering of light as a result of leaf surface and internal cellular structures, and
radiant energy absorption induced by leaf water content (Fig. 2.3; Carter and
Knapp, 2001; Jacquemoud and Ustin, 2001).

The VIS range is characterized by low reflectance, due to absorption by photo-
active plant pigments. The chlorophyll amount in the parenchyma and spongy
mesophyll controls the level of light absorption (Govaerts et al., 1996). Chloro-
phyll a and chlorophyll b absorb blue (400 to 495 nm) and red light (620 to 700
nm), and transfer the absorbed energy into the photosynthetic electron chain
(Curran, 1989; Gamon and Surfus, 1999; Sims and Gamon, 2002). Carotenoids
absorb blue light (400 to 495 nm) and contribute this energy to the photosyn-
thetic system as well (Sims and Gamon, 2002). Furthermore carotenoids have
a trapping function to diminish light-induced damages by absorbing light in
the UV-region (Merzylak et al., 2008). Anthocyanins which have functions in
photoprotection against UV light, osmotic regulation, and warming (Archetti
et al., 2009; Gould et al., 1995; Lee et al., 2003) have an absorption maximum at
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Figure 2.2: Reflection, absorption, and transmission processes in the interaction between sunlight and
plant leaves.

550 nm. The transition from VIS to NIR is specified by the so called red-edge,
the reflectance slope between 680 and 750 nm (Filella and Peñuelas, 1994).

The reflectance in the NIR is mainly dominated by leaf internal structure, leaf
anatomy, and by the characteristics of the epidermal surface (e.g. wax com-
pounds, hairs, etc) (Jensen, 2002). High reflection in this region is influenced
by direct reflection on the leaf surface and multiple internal scattering processes
within the leaf tissue (Jacquemoud and Ustin, 2001). Govaerts et al. (1996) em-
phasized that the epidermis plays an important role in determining the overall
bidirectional reflectance of leaves. Leaf biochemical compounds like cellulose,
lignin and carbohydrates causes minor absorption in this region (Fig. 2.3; As-
ner, 1998; Curran, 1989). Two weak water absorption bands around 970 and
1200 nm are also characteristic for the NIR (Curran, 1989).

12



2. LITERATURE REVIEW

Leaf reflectance in the SWIR region is mainly influenced by strong water ab-
sorption bands at 1200, 1400, 1940, and 2400 nm. Likewise, absorption of
structural compounds like cellulose, lignin, starch, and protein occurs in the
SWIR (Fig. 2.3; Asner, 1998; Curran, 1989).

Measurements on the canopy scale are additionally effected by several envi-
ronmental factors. As a consequence of the complexity of canopy structure,
the leaf area, the leaf angle distribution (planophile or erectophile stands), and
the fraction of plant organs as green foliage, stems, florescence or reproductive
organs impact reflectance patterns (Jackson and Pinter, 1986; Jacquemoud and
Baret, 1990). Gitelson et al. (2002) emphasized that eminently reflectance in
the NIR depends on factors such as canopy architecture, cell structure and leaf
inclination and is thus more species-specific than reflectance in VIS, governed
mainly by pigment content. Shadow, bidirectional effects, and soil background
may interfere with the canopy reflectance as well (Biliouris et al., 2007; Gitelson
et al., 2002; Oppelt and Mauser, 2004; Pinty et al., 1998). Phenological stages
of plants may also have an impact on spectral reflectance as well, as Delalieux
et al. (2009) demonstrated in multi-temporal observations of apple plants.
The function described by the ratio of the intensity of reflected light to the
illuminated light for each wavelength forms the leaf/canopy spectral signature
(Carter and Knapp, 2001; Jones et al., 2003; West et al., 2003). Consequently,
biophysical and biochemical attributes of vegetation can be concluded from
reflectance spectra.

Optical methods like hyperspectral imaging and non-imaging sensors have
been proved to be a useful tool to detect changes in plant vitality (Apan et al.,
2005; Hatfield et al., 2008; Nilsson, 1995; Pinter et al., 2003; West et al., 2003).
Hence, spectral reflectance measurements are applicable for non-destructive
assessment of the physiological status of vegetation (e.g. pigment content, leaf
area), and in order to discriminate crop species or to detect the impact of stress
like plant diseases, drought stress or nutrition deficiencies (Blackburn, 1998b,a,
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Figure 2.3: Vegetation reflectance spectrum with leaf reflectance influencing factors in the VIS, NIR,
and SWIR and absorption characteristics of biochemical plant components (Curran, 1989; Jensen, 2002,
both modified).

2007; Gitelson et al., 2002, 2003; Moran et al., 1997; Richardson et al., 2001).
Nonetheless, an interpretation of spectral reflectance measurements without
knowledge on spectral behaviour of leaves is impossible.
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2.5 Hyperspectral sensors for disease detection

Several studies have shown a convincing ability of reflectance measurements in
discriminating between healthy and stressed plants. Disease symptoms often
result from physiological changes in plant metabolism brought about by the
pathogen (Apan et al., 2005; Nilsson, 1995; Oerke et al., 2006). The impact of
plant diseases on the physiology and phenology of plants, however, varies with
the host-pathogen interaction and may cause modifications in pigments, water
content, and tissue functionality of plants or in the appearance of pathogen-
specific structures (Gamon and Surfus, 1999; Jing et al., 2007; Pinter et al.,
2003). All these individual impacts may alter the spectral pattern of plants.
Knowledge on the physiological effects of diseases on the metabolism and tissue
structure of plants is therefore essential for the hyperspectral discrimination of
healthy and diseased leaf and canopy elements (Moran et al., 1997).

The best results for the detection of diseases were obtained in the VIS and NIR
range of the spectrum. Steddom et al. (2005) demonstrated that multispectral
disease evaluation can be used effectively to measure necrosis caused by Cer-
cospora leaf spot in sugar beets. A detection of rhizomania in sugar beet fields
was also feasible (Steddom et al., 2003). Using a quadratic discriminating model
based on reflectance, Bravo et al. (2003) could classify yellow rust infestation on
winter wheat with a reliability of 96%. Yellow rust decreases the chlorophyll a
concentration, which leads to an increase in canopy reflectance in the VIS range
and a decrease in the NIR (Jing et al., 2007). Larsolle and Muhammed (2007)
computed disease-specific spectral signatures of Drechslera tritici-repentis in-
fected spring wheat. Other researchers successfully used spectral data to detect
Magnaporthe grisea on rice (Kobayashi et al., 2001), Phytophthora infestans on
tomato (Zhang et al., 2002), Venturia inaequalis on apple trees (Delalieux et al.,
2007), yellow rust in wheat (Huang et al., 2007), and Dothistroma septospora
on pine trees (Coops et al., 2003). Damages to crops caused by virus diseases
(Naidu et al., 2009) or insects (Board et al., 2007; Carrol et al., 2008; Xu et al.,
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2007; Yang et al., 2007) could also be detected using spectral sensors. However,
most of these studies used airborne data for the discrimination between mature
disease symptoms and healthy leaves at an advanced level of infection.

The detection of a specific plant disease and the discrimination between healthy
and diseased plants was the main focus of several research groups. To bring
this research forward into field, there are still some difficulties and open ques-
tions. First, from the technical side it is still open, which spatial and spectral
resolution is required and following which sensor systems harbours the opti-
mal specifications for disease detection (Steiner et al., 2008). Second, an early
detection, even before visible symptoms appear, was realized only by few work-
ing groups using different technical and analytical approaches (Bravo, 2006;
Chaerle et al., 2007b; Rumpf et al., 2010). Third, the assessment of the disease
severity or quantification of diseases has to be implemented in further studies.
Larsolle and Muhammed (2007) classified disease severity from hyperspectral
reflectance in wheat and barley, compared to visual assessments using a near-
est neighbour classifier with an accuracy of 86.5%. Fourth, the sensor system
should be able to differentiate between different kinds of stresses, especially
different diseases. Most stress factors, such as diseases, nutrient deficiency or
water stress induce symptoms with little distinguishing spectral characteristics
(Stafford, 2000). Recently Moshou et al. (2006) discriminated between yellow
rust infection and nitrogen deficiency and Qin et al. (2009) – using hyperspec-
tral near range imaging – differentiated citrus canker from different kinds of
citrus diseases on grapefruit.

Since most of the published studies have used non-imaging hyperspectroscopy,
the application of hyperspectral imaging focusing on spectral information of
disease symptoms is limited. Bravo et al. (2003) used in-field spectral images
for an early detection of yellow rust infected wheat, Nansen et al. (2009) an-
alyzed hyperspectral data cubes for the detection of insect-induced stress in
wheat plants, and Polder et al. (2010) have combined different optical sen-
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sors for the detection of tulip breaking virus. By now, hyperspectral imaging
is more widespread in the field of monitoring fruit/food security and quality.
Balasundaram et al. (2009) and Qin et al. (2009) developed a hyperspectral
imaging approach to detect canker lesions on citrus fruits. In other studies
hyperspectral imaging has been successfully applied for quality assessment of
pickling cucumbers, maize kernels, poultry carcasse or apples (Ariana et al.,
2006; Nansen et al., 2008; Park et al., 2007; Xing et al., 2007). Though the use
of reflectance measurements in plant pathology research started about 20 years
ago, this is still a new technology, not fully tested or adapted to the needs of
plant disease detection and severity assessment (Bock et al., 2010).

2.6 Analysis of hyperspectral data

Characteristic for the use of non-imaging hyperspectrometers and especially of
hyperspectral imaging systems is the recording of high amounts of information
on the object acquired at the same time. Since large amounts of data also
implies enormous file sizes and computing times, the analysis of hyperspectral
data is a complex domain, and different approaches can be used to obtain the
results.

Reflection of contiguous wavebands of electromagnetic radiation by an object re-
sults in a spectral signature, the basis of hyperspectral data analyses. Anomalies
or differences between spectral signatures can be distinguished by calculating
difference spectra, ratios or derivations (Carter and Knapp, 2001; Pietrzykowski
et al., 2006; Richardson et al., 2001; Smith et al., 2004; Xu et al., 2007). Dif-
ferent parts of the spectral signatures can be correlated to biochemical or bio-
physical characteristics (Blackburn, 1998b,a, 2007; Carter and Spiering, 2002;
Delalieux et al., 2005; Fourty et al., 1996; Gitelson et al., 2001, 2002; Jacque-
moud et al., 1995; Le Maire et al., 2004; Richardson et al., 2001; Ustin et al.,
2009). Hosgood (1993) and Jacquemoud et al. (1995) established a detailed
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database called LOPEX, including spectral reflectance data of over 50 plant
species and their corresponding biochemical constituents like lignin, proteins,
cellulose, starch, chlorophyll, or water. Jacquemoud and Baret (1990) devel-
oped the well established model PROSPECT describing leaf optical properties
from 400 nm to 2500 nm. Le Maire et al. (2004) tested and established sev-
eral leaf chlorophyll vegetation indices using this leaf-radiatic transfer model to
determine the chlorophyll content.

Spectral vegetation indices
Based on the understanding of these principles and by using further results
of analytical investigations, spectral algorithms, based on specific wavelengths
of spectral signatures of vegetation, have been developed (Blackburn, 1998b;
Carter and Miller, 1994; Gamon and Surfus, 1999; Haboudane et al., 2004;
Laudien et al., 2003; Peñuelas et al., 1997). Spectral vegetation indices (SVIs)
are widely used for monitoring, analyzing, and mapping temporal and spatial
variation in vegetation (Gitelson et al., 2002). By calculating ratios of several
bands at different ranges of the spectrum, SVIs result in a reduction of data
dimension, which may be also useful in effective data analysis for disease dis-
crimination. They are highly correlated to several biochemical and biophysical
plant parameters indicating plant health or vitality and form the basis for many
remote sensing applications in crop management. As pigment concentrations
provide information on the physiological state of leaves, pigment-specific SVIs
may be useful in detecting stresses caused by fungal diseases.

Several approaches have shown that vegetation indices are related to character-
istics of crops and in principal they have the potential to detect plant diseases
(Hatfield et al., 2008; Thenkabail et al., 2000). E.g., Graeff et al. (2006) used
hyperspectral reflectance for the detection of powdery mildew (Blumeria grami-
nis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) of
wheat, Jing et al. (2007) correlated the severity of yellow rust to SVIs, Laudien
et al. (2003) developed a modified chlorophyll absorption integral for Rhizocto-
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nia late rot detection in sugar beet, and Delalieux et al. (2005) used vegetation
indices for the assessment of apple scab due to Venturia inaequalis. Steddom
et al. (2005) calculated SVIs from multispectral data from sugar beet fields and
compared these indices to disease severity, visually rated by plant pathologists.
Since indices commonly used in remote sensing of vegetations are not disease-
specific, the development of disease specific indices could improve the specificity
and sensitivity of SVIs for disease detection.

Classification algorithms
In remote sensing applications, many classification and change detection tech-
niques have been developed to obtain maximal information from hyperspectral
data and images. Classification is a procedure of assigning a spectral signa-
ture to a characteristic group or class, and confines these groups from each
other, respectively. The classes can be predefined (supervised classification) or
non-predefined (unsupervised classification). Change detection is the process
of identifying differences in the state of a spectral signature by observations
at different times (Singh, 1989). Since disease epidemiology and symptom de-
velopment is causing temporal and spatial changes in vegetation reflectance,
most classification techniques from remote sensing applications are likely to be
useful for the detection of disease-induced spectral changes. Principal compo-
nent analysis (PCA), spectral mixture analysis (SMA), spectral angle mapper
(SAM), and machine learning methods like artificial neural networks (ANN)
or support vector machines (SVM) are the most common methods used for
data analysis. Although all these algorithms have their own specifications and
merits, there is not a single approach which is optimal for all applications (Lu
et al., 2004).

The Spectral Angle Mapper is a supervised classification algorithm, comparing
the spectral similarity between image spectra to reference spectra (Kruse et al.,
1993). This method calculates the spectral angle between image spectra and
reference spectra in an n-dimensional space, whereas n is the number of hyper-
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spectral bands of the spectral range. Small spectral angles correspond to high
similarity, large spectral angles to less similarity. Given spectra from a visually
classified pixel can be used as reference spectra from a spectral library. Based
on the number of reference spectra, classification of pixels can be processed
simultaneously. The accuracy of SAM algorithms is assessed by comparing the
classification result with actual disease data (ground truth). The SAM classifier
is a common tool in geographical analyses of hyperspectral data for land cover
classification (Dennison et al., 2004), to study ecosystem processes (Ustin et al.,
2004), and for the classification of urban surface cover (Segl et al., 2003).

2.7 Host-pathogen model

Sugar beet (Beta vulgaris L. var. altissima) is a member of the Chenopo-
diaceae. The biannual plant forms a fleshy taproot accumulating assimilates
like polysaccharides or nitrogen compounds. Sugar beet was first cultivated
for sugar production in Europe in the eighteenth century (Van Cleef, 1915).
Sugar from sugar beet accounts for 30% of the world’s sugar production. Sugar
extraction is a highly developed process and high performance varieties from
plant breeding may provide high sugar yields. But foliar fungal diseases are se-
rious threats in worldwide sugar beet production. Cercospora beticola (Sacc.),
Erysiphe betae (Vanha) Weltzien and Uromyces betae (Persoon) Lev., causing
Cercospora leaf spot (CLS), powdery mildew (PM), and sugar beet rust (SBR),
respectively, are the most relevant fungal leaf pathogens causing losses in yield
quantity and quality (Wolf and Verreet, 2002). Disease-specific symptoms of
the leaf pathogens cause destruction of the leaf tissue. The sugar beet pro-
ductivity is highly influenced by solar radiation captured by the crop canopy
(Jaggard et al., 2009). Losses are primarily attributed to a reduction in the
photosynthetically active leaf area, and secondly to a subsequent reversion of
assimilate allocation from the roots to form new foliage. A reduction in root
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weight and in the sugar fraction of harvested roots is the consequence (Franc,
2010). Infection process, leaf colonization and spread of each pathogen have
specific optima for environmental factors – temperature, relative humidity, leaf
wetness – and host-intrinsic factors like nutritional status or ontogenetic status.
A heterogenic attribution of the pathogens in the growing area and even a spa-
tial and temporal variability within a field may be monitored (Mahlein et al.,
2009; Wolf and Verreet, 2002).

The three foliar diseases are associated with typical symptoms. The
perthotrophic pathogen C. beticola causes leaf spots with a reddish brown mar-
gin of typically 2 to 5 mm diameter (Franc, 2010; Weiland and Koch, 2004;
Wolf and Verreet, 2002). Under high temperature conditions and high relative
humidity the leaf spots coalesce to form large necrotic areas (Vereijsssen et al.,
2006). Pathogenicity of C. beticola-isolates is associated with the synthesis of
the pathotoxin cercosporin (Daub and Ehrenshaft, 2000). Causing yield losses
approaching 40%, Cercospora leaf spot is the most important foliar disease in
sugar beet production (Lartey et al., 2010).

The biotroph pathogen E. betae relies on the functional metabolism of sugar
beet tissue as a nutrient source (Francis, 2002). Characteristic symptoms of
powdery mildew are white, fluffy mycelia, which covers the upper and lower site
of the leaf. At mature infestation, leaf chlorosis and necrosis can be observed.
An inhibition of photosynthetic CO2 assimilation and a decrease of quantum
efficiency of light use is also reported (Gordon and Duniway, 1981; Magyarosy
et al., 1976). Losses up to 30% can occur under dry and hot conditions during
summer. Characteristic for powdery mildew is a fast spread by wind inside the
crop stand and across different growing regions (Wolf and Verreet, 2002).

The basidiomycete U. betae also is an obligate biotroph plant pathogen. Typ-
ical symptoms of sugar beet rust are small pustules (0.5 to 1.5 mm), often
encircled by a chlorotic ring, irregularly distributed over the leaves. Reddish-
brown uredospores are released after rupturing the epidermal layer. Moderate
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climate with temperatures around 20 ◦C and relative humidity up to 100% are
supporting conditions for infection. Thus river and cost regions are imperiled
areas (Wolf and Verreet, 2002).

2.8 Disease management of foliar sugar beet diseases

Yield quality and quantity are significantly influenced by crop stand manage-
ment, in particular by disease control. Foliar diseases of sugar beet are com-
monly controlled by planting resistant cultivars, crop rotation, or by multi-
ple fungicide applications. Since nonchemical, preventive alternatives like host
plant resistance and crop rotation do not provide adequate disease control,
fungicides are the most important tool for managing foliar diseases (Ioanni-
dis and Karaoglanidis, 2010). Strategies of chemical control must be based
on alternation of fungicides with different modes of action, use of products
with mixtures of fungicides differing in the mode of action, and on a threshold-
orientated management based on an accurate monitoring of the disease pressure
(integrated disease management).

Detailed knowledge on the epidemiology of foliar pathogens and their impact
on sugar yield has led to the development of several forecast and decision sup-
port systems like the IPM-model Sugar Beet (Wolf, 2001), CERCBET (Racca
and Jörg, 2007), ProPlant (Frahm et al., 1996), or BEETCAST (Pitblado and
Nichols, 2005). The implementation of these systems has shifted fungicide ap-
plications from ’calendar based’ spraying to a precise fungicide application con-
sidering multiple factors. These factors include disease susceptibility of sugar
beet cultivar, planting date, weather data, micro-climate of the canopy, leaf wet-
ness duration, inoculum level of pathogens, disease assessment and monitoring
as well as characteristics of the fungicides (Windels, 2010; Wolf and Verreet,
2010). The success of these programs, however, demands a high level of engage-
ment and of awareness of the farmer. Automation of disease assessment using
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optical sensor systems can be useful in order to improve existing forecast mod-
els. Considerations of temporal and spatial heterogeneities of diseases in field
would be just two future trends according to precision agriculture. A precise,
reproducible, objective, and time saving monitoring process is a further benefit.
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3. MATERIAL AND METHODS

3.1 Organisms

3.1.1 Plants

Sugar beet plants (Beta vulgaris, L.), cultivar Pauletta (KWS GmbH, Einbeck,
Germany), were used as experimental plants.

3.1.2 Pathogens

Cercospora beticola (Sacc.)
Erysiphe betae (Vanha)
Uromyces betae (Persoon) Lev.
All pathogens originated from the pathogen collection of INRES - Phy-
tomedicine and were collected from the experimental field site Bonn Poppels-
dorf, Germany.

3.2 Plant cultivation

3.2.1 Controlled conditions

Sugar beet seeds, cultivar Pauletta were pre-grown in small pots and were
piqued when the primary leaves had fully developed. For different experimental
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setups, sugar beet plants were cultivated in different pots. Seedlings were trans-
ferred into a commercial substrate (Klasmann-Deilmann GmbH, Germany) in
plastic pots (∅13 cm; ∅17 cm) for experiments on the leaf level. For exper-
iments on canopy level, sugar plants were grown in plant boxes (80 x 120 x
60 cm) in a soil mixture of 50% commercial substrate, 30% C-horizon and 20%
sand, or in quadratic big pots (20 x 20 x 30 cm). Plants were cultivated in
a controlled environment at 23/20 ◦C (day/night), 60 ± 10% relative humid-
ity (RH) and a photo-period (> 300 µmol m−2 s−1) of 16 h per day. Plants
were watered as necessary and fertilized weekly with 100 ml of a 0.2% solution
of Poly Crescal (Aglukon GmbH, Düsseldorf, Germany). Plants were used for
the experiments after reaching growth stage (GS) 16 (BBCH scale; Meier et al.,
1993). Control plants without fungal inoculation were kept healthy by applying
the fungicide Vegas R©, (Spiess-Urania, Germany; cyflufenamid 51.3 g/l, appli-
cation rate 650 µl/l) two days before inoculation of the other plants. In order
to avoid an unintentional infection of plants inoculated with C. beticola and
U. betae, respectively, with powdery mildew, the selective fungicide Fortress R©

(Dow AgroScience Ltd., United Kingdom; quinoxyfen 250 g/l, application rate
650 µl/l) was applied two days before inoculation.

3.2.2 Field experiment

A field experiment was conducted at the research station Klein-Altendorf
(50◦ 36′ 55.3′′ N, 7◦ 0′ 0.10′′ E) of the University of Bonn in the growing season
2008. Sugar beet plants, cultivar Pauletta were sown on the 24th of April with
1 unit/ha. Three herbicide applications were undertaken to avoid the influ-
ences of weeds on sugar beet plant growth and canopy reflectance (10th of May,
Betanal Expert R©, Bayer CropScience, Mohnheim, Germany, phenmedipham
75 g/l, desmedipham 25 g/l, ethofumesat 151 g/l, application rate 1 l/ha,
beetix R©, Stähler GmbH & Co.KG, Stade, Germany, metamitron 696 g/l, ap-
plication rate 1.5 l/ha; 20th of May, Betanal Expert R© + beetix R©, application
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rate 1.25 l/ha + 1.5 l/ha; 28th of May, Betanal Expert R© + beetix R©, application
rate 1.25 l/ha + 2 l/ha). The field was fertilized with 8.5 kg/ha nitro chalk on
the 6th of April before sugar beet was sown. At the 20th of June sugar beet
plants were fertilized with 8.5 kg/ha epsomite. Insecticide was applied on the
20th of June to avoid leaf damages caused by insects (Karate Zeon R©, Syngenta
Agro GmbH, Maintal, Germany, lambda-cyhalothrin 100 g/l, application rate
75 l/ha). The field size was about 3 ha with a homogeneous flat topography.
The field was divided into two treatments (Fig. 3.1); plot A without fungi-
cide application in order to monitor the occurrence of fungal diseases within
the growing season, plot B was treated at GS 39 with the fungicide Spyrale
(Syngenta Agro GmbH, Maintal, Germany, difenoconazol 100 g/l; fenpropidin
375 g/l, application rate 1 l/ha) to avoid fungal infections.

Figure 3.1: Field experiment, Klein-Altendorf 2008; plot A without fungicide application, plot B was
treated with fungicides to avoid fungal infections of sugar beets.

3.3 Production and inoculation of pathogens

3.3.1 Cercospora beticola

Inoculum of C. beticola, causal agent of Cercospora leaf spot was obtained from
heavily infected sugar beet leaves that were stored at room temperature after
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slowly drying. For sporulation the leaves were wetted and incubated for 24 h

under 100% relative humidity (RH). The spores were washed off with tap water
with one droplet of Tween 20 per l. The spore suspension was adjusted to
40000 spores per ml and was sprayed onto the upper and lower side of the
leaves. After inoculation, the plants were covered with plastic bags to create
100% RH at 25/20 ◦C (14/10 hours day/night) for 48 h. For further incubation,
plastic bags were removed and the plants were transferred to 23/20 ◦C (14/10
hours day/night) and 60± 10% RH.

3.3.2 Erysiphe betae

E. betae, causing powdery mildew of sugar beet was preserved on vital sugar
beet plants in the greenhouse. For inoculation, heavily infested plants were
used as an inoculum source of E. betae. Before these plants were transferred
into an inoculation chamber, old conidia-spores were removed from the leaves
by agitating. Young, virulent conidia were formed within 24 h and were used for
inoculation. Healthy plants were placed under the infested plants in a chamber
where a ventilator ran for 5 seconds in order to distribute E. betae conidia
evenly on the leaf surfaces. Plants were left overnight and were subsequently
transferred to a greenhouse at 23/20 ◦C (14/10 hours day/night) and 60±10%

RH, separated from the other plants in order to avoid unintentional infections
of healthy plants.

3.3.3 Uromyces betae

Spores of U. betae, the pathogen causing sugar beet rust, were harvested from
sporulating uredia and stored at 8 ◦C. For inoculation a suspension of U. betae
urediniospores in tap water (with one droplet of Tween 20 per l), with 40000

spores per ml, was prepared and sprayed onto the upper and lower side of sugar
beet leaves. The plants were covered with plastic bags for 48 h (100% RH)
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and were incubated in a climate chamber at 19/16 ◦C (14/10 hours day/night).
After removing the plastic bags, the plants were transferred to 23/20 ◦C and
60± 10% RH.

3.4 Assessment of plant physiological and physiochemical

parameters

3.4.1 Disease assessment

In greenhouse experiments, disease severity was assessed daily after inoculation
according to Wolf and Verreet (2002). For measurements on the leaf scale,
the percentage of diseased leaf area of the measured leaf in relation to healthy
leaf tissue was estimated visually. For powdery mildew infected plants, the
percentage of leaf area covered with white fluffy mycelium in relation to total
leaf area was recorded. For canopy scale measurements, the diseased leaf area
of plant canopy was classified. Furthermore digital RGB images of the leaves
were taken. On the field scale, ground truth data, in particular incidence (=
% plants/leaves infected) and severity (= % leaf area affected) of diseases were
collected at 50 sample points and geo-referenced.

3.4.2 Microscopic investigations

3.4.2.1 Stereo microscopy

A Leica MZ16 F stereomicroscope (Leica Microsystems, Wetzlar, Germany)
was used for monitoring the symptom development of C.beticola, E. betae, and
U. betae during pathogenesis. Images were taken daily after inoculation with
a fitted digital camera. The images were saved using the programm ’Discus’
(Technisches Büro Hilgers, Königswinter, Germany).
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3.4.2.2 Scanning electron microscopy

Scanning electron microscopic observations were obtained using a Phenom scan-
ning electron microscope (FEI Europe, Eindhoven, Netherlands) with a 5 kV

thermionic source and a backscattered electron detector1. Freshly harvested
leaves from inoculated sugar beet plants were sputter coated at 30 mA for 100
seconds with platinum.

3.4.3 Pigment assessment

The concentration of sugar beet leaf pigments, which is related to plant vitality
and absorption of solar light, was assessed during the progress of diseases.

3.4.3.1 SPAD-meter measurements

A Minolta SPAD-502 meter (Minolta Camera Ltd., Osaka, Japan), was used
for non-destructive assessment of leaf chlorophyll content. The instrument de-
termines the relative amount of chlorophyll present, by measuring the trans-
mittance of the leaf at two wave bands (600 to 700 nm and 400 to 500 nm).
The dimensionless SPAD-units are proportional to the amount of chlorophyll.

3.4.3.2 Extraction of leaf pigment

Destructive chlorophyll a and b and carotenoid extraction was performed daily
after inoculation of pathogens. Five leaf discs with a diameter of 1 cm were
collected from the centre of sugar beet leaves, beside the middle leaf vein for
each treatment. The content of chlorophyll a, chlorophyll b, total chlorophyll
as well as of carotenoids was determined using the method of Hiscox and Is-
raelstam (1979). Leaf disc were weighted and the pigments were extracted in
99% dimethylsulfoxide (DMSO) for 24 h in the dark.
1 Kindly supported by C. Pape, LOT and Dr. F. Fischer, FZ Jülich
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3.4.3.3 Measurement of pigment concentrations

Absorption of the extract was measured at 470 nm, 645 nm and 663 nm with
a double beam UV/VIS spectrophotometer, Uvikon 933 (BioTek Instruments,
USA). Pigment concentrations were calculated according to Hiscox and Israel-
stam (1979):

1. Chla [µg Chl/g] = solvent [ml]

weighted sample [g] · (12.7 ·A663−2.79 ·A645)

2. Chlb [µg Chl/g] = solvent [ml]

weighted sample [g] · (20.7 ·A645−4.62 ·A663)

3. Chltotal [µg Chl/g] = solvent [ml]

weighted sample [g] · (17.9 ·A645+8.08 ·A663)

4. Car [µg Car/g] = solvent [ml]

weighted sample [g] ·
(
4.37 ·A470−0.0143 ·Chla−0.454 ·Chlb

)

3.5 Sensor systems/Hyperspectral measurements

For the acquisition of hyperspectral information from sugar beet leaves various
non-imaging and imaging sensor systems were used.

3.5.1 ASD FieldSpecPro FR/ASD FieldSpecPro JR

Spectral reflectance was measured with two different handheld non-imaging
spectro-radiometers, the ASD FieldSpecPro FR and the ASD FieldSpecPro JR
(Analytic Spectral Devices (ASD), Boulder, USA). The spectral range of the
ASD FieldSpecPro is from 350 nm to 1100 nm. Because the reflectance spectra
data were noisy at the extremes, only values between 400 to 1050 nm were
analyzed. The spectral sampling interval was automatically interpolated from
1.4 nm to 1 nm steps using a linear equation by the RS3 spectral acquisition
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software (Analytic Spectral Devices (ASD), Boulder, USA). The spectral range
of the ASD FieldSpecPro JR is from 350 to 2500 nm. The sampling inter-
val is 1.4 nm from 350 to 1050 nm and 2 nm for the range 1050 to 2500 nm.
Resultant reflectance values were afterwards interpolated by the RS3 software
to 1 nm steps. Spectral jumps between the spectrometer’s detectors were re-
moved using the ASD ViewSpecPro software (Analytic Spectral Devices (ASD),
Boulder, USA). The instruments were warmed up for 90 min previous to mea-
surement to increase the quality and homogeneity of spectral data. Instrument
optimization and reflectance calibration were performed prior to sample ac-
quisition. The average of 25 dark-current measurements was calibrated to the
average of 25 barium sulphate white reference (Spectralon, Labsphere, North
Sutton, NH, USA) measurements. For measurements on the leaf scale, a plant
probe foreoptic with a leaf clip holder was used. The contact probe foreoptic
has a 10 mm field of view and an integrated 100 W halogen reflector lamp. The
internal light source enables constant and reproducible illumination conditions.
Thus, the integration time was adjusted to 17 ms per scan constantly. Finally,
reflectance spectra were obtained by determining the ratio of recorded sample
data to data acquired for the white reflectance standard. Each sample scan
represented an average of 25 reflectance spectra. Because reflectance spectra
were assessed under constant light and temperature conditions with the plant
probe foreoptic, pre-processing to smooth the spectrum and to reduce signal
noise was not necessary.

In each treatment (inoculated and non-inoculated sugar beet leaves), spectra
from 15 plants and 2 leaves per plant from the adaxial leaf surface were taken.
To realize a multi-temporal measurement, the sugar beet leaves were signed and
the leaf clip was placed in the middle of the leaf beside the middle leave vein.
Reflectance of leaves was measured with the ASD FieldSpecPro FR daily after
inoculation, with the ASD FieldSpecPro JR 0, 7, 14, and 21 days after inocula-
tion (dai). Measurements on the canopy level were conducted in a dark room.
A pistol grip foreoptic was used and mounted on a tripod, 50 cm above the
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target canopy. To realize constant and homogeneous illumination conditions,
three ASD-Pro-Lamps (Analytic Spectral Devices (ASD), Boulder, USA) sur-
rounded the target area. Sugar beet plants, grown in boxes were placed under
the optic and, using a field of view of 25◦, two areas of each plant box could be
measured. For reflectance normalisation a barium sulphate white reference was
centred under the pistol grip optic on the same level with the sugar beet canopy.
Reflectance spectra were obtained with an integration time of 134 ms per scan,
25 averaged reflectance spectra resulted in one sample scan. Each sample scan
was repeated five times, the plant boxes were measured daily from day 0 to day
21 after inoculation. The Savitzky-Golay filter (Savitzky and Golay, 1964), a
simplified least square procedure was applied afterwards, in order to smooth
the spectrum and to reduce the signal noise. A filtersize of 32 and polynomial
degree of 4 were used as parameters for the Savitzky-Golay filter.

3.5.2 Hyperspectral camera system ImSpector V10E

Hyperspectral images were taken in a dark chamber using the hyperspectral
imaging system ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland), with
a spectral range from 400 to 1000 nm (Fig. 3.2). The ImSpector V10E system
is a line scanner with a spectral resolution up to 2.8 nm. The maximal image
size of the sensor slot results in 1600 pixels per line with a sensor pixel size
of 0.0074 mm. Limited by the distance between target and sensor system
(0.60 m), a spatial resolution of 0.019 mm per pixel could be achieved. To
obtain images from the target, a mirror scanner was mounted in front of the
objective lens. The maximal field of view of the mirror scanner is 80◦. Using
the software SpectralCube (Spectral Imaging Ltd., Oulu, Finland) the angle
of the mirror scanner as well as the spectral and spatial resolution could be
adapted manually to the target. Images on leaf level were taken with spectral
binning 4 and spatial binning 1, on canopy level with spectral binning 4 and
spatial binning 2. Frame rate and exposure time was adjusted to the chosen
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binning and to the target. The camera system was focused manually to a
calibration bar (Spectral Imaging Ltd., Oulu, Finland) with black rhombi on
a white background, placed in the same distance to the camera as the target.
During measurements constant illumination intensity was provided by ASD-
Pro-Lamps (Analytic Spectral Devices (ASD), Boulder, USA) radiating a near-
solar light spectrum. The distance between lamps and the leaf target was 50 cm
with a vertical orientation of 45◦, between lamps and canopy target 80 cm. For
subsequent calculation of reflectance, three images were grabbed. To examine
the sensor sensitivity, a dark current image by closing an internal shutter of the
camera and an image of a white reference bar (Spectral Imaging Ltd., Oulu,
Finland), with the same horizontal size and on the same level like the target
area were recorded, both with the same exposure time. Subsequently an image
of the target area was recorded with improved exposure time.

Figure 3.2: Manual positioning XY-frame and hyperspectral sensor system ImSpector V10 with the
mirror-scanner, surrounded by six ASD-Pro-Lamps. The XY-frame was developed by the technical
service of the Institute of Agricultural Engineering, University of Bonn.

3.5.2.1 Technical setup

The hyperspectral sensor system ImSpector V10 was mounted on a manual po-
sitioning XY-frame, developed by the technical service of the Institute of Agri-
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cultural Engineering, University of Bonn surrounded by six ASD-Pro-Lamps
(Analytical Spectral Devices Inc., Boulder, USA), placed in a dark chamber
(Fig. 3.2)2. In order to realize optimal and reproducible illumination and con-
stant measurement conditions the plants were moved into the dark chamber.
Starting two days after inoculation, hyperspectral images were taken daily until
21 dai. All measurements were recorded between 8:00 and 12:00 AM in order to
reduce the effect of diurnal physiological changes in plant processes. For image
acquisition on the leaf level, the pots with sugar beet plants were placed on
mobile tables (0.8 m x 0.8 m, four plants per table) 2 dai. According to Chaerle
et al. (2007a), the fifth fully developed leaf pair of each sugar beet plant was
fixed horizontally on a frame between a grid patterns made of two layers of
rubber laminated mesh wire (Fig. 3.3). The frame and the grid pattern were
coated with a black, matte colour to reduce the reflectance of the material.
The mesh wire largely avoided movements of leaves which were subdivided into
equally-sized squares (2 x 2 cm) on the images.

Figure 3.3: Schematic diagram of sugar beet leaves fixed under a grid pattern. Two leaves per plant
were chosen for multi-temporal hyperspectral imaging and were measured consecutively.

2 Kindly supported by Dr. L. Damerow and A. Berg, Institute of Agricultural Engineering, University of Bonn
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3.5.2.2 Normalization and preprocessing of hyperspectral data

Calculations of reflectance relative to a white reference bar and the dark current
measurement were performed using the ENVI 4.6 + IDL 7.0 software (ITT
Visual Information Solutions, Boulder, USA). After this normalization process
the Savitzky-Golay filter (Savitzky and Golay, 1964) was applied to smooth the
signals from hyperspectral images. The parameters for the smoothing process
were 5 supporting points to the left and right, respectively, and a polynomial
degree of 5. The pre-processed images were used for further analysis using the
ENVI 4.6 + IDL 7.0 software.

3.5.3 Airborne sensors

On 1th July 2008 hyperspectral data from the high resolution airborne imaging
sensor system ROSIS were acquired at GS 39 of sugar beets. The Reflective
Optics Systems Imaging Spectrometer (ROSIS) was developed by the German
Aerospace Center (DLR), Cologne, Germany. The sensor provides 103 spectral
bands in the range from 430 to 850 nm with a spectral resolution of 4 nm.
The flight height of about 2880 meters resulted in a ground resolution of 2
m for the ROSIS sensor. A HyMap flight campaign was conducted on 6th

August 2008 at GS 45. HyMap is an aircraft-mounted hyperspectral sensor
(Integrated Spectronics, Sydney, Australia) which uses a whisk-broom scanner
with 512-pixel per line. It provides 126 spectral bands between 450 and 2500
nm. The bandwidths depend on the full width at half maximum (FWHM) of
the spectral bands, which is 15 nm in the VIS and NIR, 13nm in SWIR1, and
17nm in SWIR2. A nominal spatial resolution of 4 m was achieved. Both flight
campaigns were realized by the DLR. The datasets were radiometric calibrated
and an atmospheric correction was carried out using ATCOR4 to derive nadir-
normalized ground reflectance by the DLR, Oberpfaffenhofen, Germany.
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3.6 EM 38 soil sensor

The apparent electrical conductivity (ECa) of the soil in Klein-Altendorf was
measured using an EM 38 (Geonics Ltd., Mississauga, Ontario, Canada) on
15th of April 20083.

3.7 Data analysis

3.7.1 Development of spectral signatures

Characteristic spectral signatures were evaluated for each disease and diseased
leaves, respectively, depending on the day after inoculation and the disease
stage. Changes in spectral signature during pathogenesis as well as between the
diseases have been analyzed. In order to extract the wavelength(s) suitable for
the differentiation among diseases and disease severities, difference spectra were
calculated by subtracting the mean reflectance µ of diseased sugar leaves from
that of healthy sugar beets at each wavelength λ, where λ = 400− 1050 nm.

Diffλ = µdiseased − µhealthy

Reflectance sensitivity for each wavelength was calculated as the reflectance of
diseased leaves divided by the mean reflectance of healthy leaves.

Sensitivityλ = µdiseased/µhealthy

Changes in the spectral signature for each disease were evaluated by simple lin-
ear correlation analyses. Correlations between disease severity and reflectance
data were tested by computing Pearson’s coefficient of correlation (r) using the
Superior Performing System SPSS 17.0 (SPSS Inc., Chicago, USA). With cor-
relation curves, the intensity and direction of the relationship of each narrow
band of the spectrum was visualized and specific wavebands of the spectral
signature, closely related to disease infestation were selected.
3 Kindly conducted by C. Hbirkou, INRES-soilscience, University Bonn
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3.7.2 Spectral vegetation indices

Spectral vegetation indices (SVIs) are algorithms, calculated from hyperspec-
tral data, which are closely correlated to specific plant parameters, e.g. plant
vitality, biomass, pigment, or water content. An advantage of calculating SVIs
is a reduction of data dimensionality from hyperspectral sensors. To evaluate
the suitability of SVIs widely applied in remote sensing sciences for the identifi-
cation and discrimination between foliar diseases of sugar beet, SVIs related to
various plant parameters were calculated. Tab. 3.1 lists the SVIs calculated and
summarizes information related to disease relevant biophysical and biochemical
parameters of plants from literature. Simple ratio (SR), modified simple ra-
tio (mSR), normalized difference vegetation index (NDVI), red edge inflection
point (REP), and plant senescence reflectance index (PSRI) have been used as
indicators for plant vitality and for the estimation of plant biomass. Normal-
ized difference index (ND), modified normalized difference index (mND), pho-
tochemical reflectance index (PRI), structure insensitive pigment index (SIPI),
pigment-specific simple ratios for chlorophyll a and b (PSSRa /PSSRb) and for
carotinoids (PSSRc), pigment-specific normalized differences for chlorophyll a
and b (PSNDa /PSNDb) and for carotinoids (PSNDc), the modified chlorophyll
absorbtion reflectance index (MCARI), and the modified chlorophyll absorption
integral (mCAI) are indices related to leaf pigments involved in photosynthe-
sis. The anthocyanin reflectance index (ARI) is specific for the anthocyanins.
The blue/green index (BIG2) analyses the relation between blue and green
reflectance, the SumGREEN and SumVIS indices analyse absolute reflectance
in the green region and in the VIS, respectively. Correlation and regression
analyses between vegetation indices and disease severities for each disease were
conducted. In a next step, index combinations were tested to classify different
disease situations more specifically. 2D-scatter matrixes for all index combina-
tions were mapped, and the best differentiating combinations were examined.
Eight SVIs were used as features for supervised classification and early detection
of plant diseases using support vector machines (see 3.7.4).
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Table 3.1: Spectral vegetation indices and ratios correlated to various plant parameters used in this study.

Index Equation Indicator Reference

Simple ratio SR = R800/R670 Green biomass Birth and McVey (1968)

Modified simple ratio mSR = (R750−R445) / (R705−R445) Green biomass Sims and Gamon (2002)

Normalized difference index ND = (R750−R705) / (R750 +R705) Chlorophyll content Gitelson and Merzlyak (1994)

Modified normalized difference index mND = R750−R705
R750+R705−2 ·R445

Chlorophyll content Sims and Gamon (2002)

Normalized difference vegetation index NDVI = (R800−R670) / (R800 +R670) Biomass, leaf area Rouse et al. (1974)

Epoxidation state yanthophylls
Photochemical reflection index PRI = (R531− 570) / (R531 +R570) cycle; pigments and photo- Gamon et al. (1992)

synthetic radiation use efficiency

Structure insensitive pigment index SIPI = (R800−R445) / (R800 +R680) Carotinoid: chlorophyll a ratio Peñuelas et al. (1995)

PSSRa = R800/R680 Chlorophyll a
Pigment specific simple ratio PSSRb = R800/R635 Chlorophyll b Blackburn (1998a)

PSSRc = R800/R470 Carotinoid

PSNDa = (R800−R680) / (R800 +R680) Chlorophyll a
Pigment specific normalized difference PSNDb = (R800−R635) / (R800 +R635) Chlorophyll b Blackburn (1998a)

PSNDc = (R800−R470) / (R800 +R470) Carotinoid

Anthocyanin reflectance index ARI = 1/R550− 1/R700 Anthocyanin Gitelson et al. (2001)
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Tab. 3.1 continued

Index Equation Indicator Reference

mCAI =
(R545+R752)

2
· (752− 545)

Modified chlorophyll absorption integral
−
(∑R752

R545
R · 1.423

) Chlorophyll content Laudien et al. (2003)

Red edge position REP = 700 +
40 · (RRE−R700)

(R740−R700)
Inflection point red edge Guyot and Baret (1988)

Plant sensecence index PSRI = (R680−R500) /R750 Plant sensecence Merzlyak et al. (1999)

Water index WI = R900/R970 Water content Peñuelas et al. (1997)

Biomass with constant
Optimized soil adjusted vegetation index OSAVI =

(1+0.169) · (R800−R670)
R800+R670+0.16 soil adjustment factor

Rondeux et al. (1996)

Modified chlorophyll absorption MCARI = ((R701−R670)− 0.2

reflectance index · (R701−R550)) · R701
R670

Chlorophyll content Daughtry et al. (2000)

SumGREEN index SG = Average of R500 : R600 Green reflectance Gamon and Surfus (1999)

SumVIS index SV = Average of R400 : R600 VIS reflectance unpublished

Blue/Green index BIG2 = R450/R550 Chlorophyll content Zarco-Tejada et al. (2005)
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3.7.3 Spectral Angle Mapping classification

Automatic classification known from remote sensing image analysis was applied
to hyperspectral images of diseased sugar beet leaves for the differentiation of
diseases. The Spectral Angle Mapping method (SAM, Yuhas et al., 1992) was
performed using the ENVI 4.6 + IDL 7.0 software. Spectral classification ap-
proaches assign each image pixel to one out of several known categories or
classes (endmembers) through a statistical approach. Spectrally unique sig-
natures of pure image components, i.e. endmembers, have to be defined, and
specific classification algorithms can be calculated to classify the image pixel.
The data set was divided into a set of training data and a set of test data, to
train the classifiers. The classification decomposes the hyperspectral image into
a false colour image, containing thematic information of the previously selected
classes.

SAM calculates the spectral similarity of spectra and reference spectra using
the spectral angle between the two spectra in an n-dimensional space depen-
dent on the number of spectral bands (Fig. 3.4). The output of SAM is an
angular difference for each pixel which can be illustrated in a false colour im-
age; small spectral angles correspond to high similarity, large spectral angles to
low similarity (Kruse et al., 1993; Van der Meer et al., 2001). Because the anal-
ysed spectra are transferred as vectors, variable illuminations due to the surface
structure and veins of sugar beet leaves were attenuated (darker pixel will plot
along the same vector, but closer to the origin). The method proceeds in var-
ious steps. Since SAM is a supervised classification method, the first step was
the identification of reference spectra which were transferred from the spectral
library (see paragraph: ’disease specific spectra’). Subsequently the spectral
similarity of image spectra and reference spectra is calculated by the spectral
angle between the two spectra in an n-dimensional space. For the validation 15-
20 polygons per endmember-class with 15-200 pixel per polygon were selected
as ground reference. The polygons were defined with the ROI function using
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ENVI 4.6. The areas did not overlap with the training polygons. A confusion
matrix was generated from the validation pixels for each classification. As mea-
sures of classification accuracy the overall accuracy, quantifying the percentage
of cases correctly classified, and the kappa coefficient which accommodates for
the effects of change agreement were calculated.

Figure 3.4: Concept plot of the Spectral Angle Mapper with a test spectrum and a reference spectrum.
The angle α between the vectors, starting in the origin and projected trough the points representing the
actual spectra, represents the spectral similarity (Kruse et al., 1993, modified).

3.7.4 Machine learning

In cooperation with Till Rumpf, Institute of Geodesy and Geoinformation, De-
partment of Geoinformation, University Bonn, machine learning techniques
have been proven in their suitability for analyzing hyperspectral data. Sup-
port vector machines (SVMs) are a supervised, dichotomous classification al-
gorithm, based on the theory of Vapnik (1982). SVMs determine an optimal
separating hyperplane by quadratic optimisation aiming at maximising the mar-
gin between two classes. Different labels define different classes, e.g. healthy
sugar beet leaves and leaves inoculated with different pathogens, respectively.
Spectral vegetation indices (NDVI, SR, SIPI, PSSRa, PSSRb, ARI, REP, and
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mCAI) and the SPAD-value were used as features for automatic classification.
A linear function which has a fixed number of parameters given by the number
of features is a simple case of separation between the two classes. In order to
decide to which class a sample belongs, a measure of similarity to the function
is necessary. In SVMs, the dot product in the input space is used as similarity
parameter which describes the distance. The basic idea behind SVMs is to
separate the two different classes through a hyperplane which is constructed
by its normal vector and the bias. Using also a linear separation function for
a non-linear separation between the classes, a transformation into a higher di-
mensional space has been done. A linear separation is possible through the
mapping into a high-dimensional feature space, however, is computationally
expensive. Furthermore, the description of the separating hyperplane in the
low-dimensional input space is rather complex. For this reason a kernel func-
tion is introduced to increase the efficiency of computation (Boser, 1992). In
order to extend the dichotomous SVMs classifiers for a multi-class classification
of healthy leaves and leaves diseased by Cercospora leaf spot, powdery mildew,
and sugar beet rust effectively, a library for SVMs (LIBSVM) has been used
for classification (Chang and Lin, 2001). Here the ’one against one’ approach
(Knerr et al., 1990) was applied. The suitability of the model established by
using the training data set was evaluated by cross-validation. Specificity gives
the proportion of the correctly classified healthy leaves of all classified healthy
leaves. Sensitivity gives the proportion of correctly classified inoculated sugar
beet leaves in relation to all classified inoculated leaves. Accuracy is given by
the average of sensitivity and specificity. For more details on computation, see
Rumpf et al. (2010).

3.7.5 Geo-referenced maps

Values of SVIs, ECa as well as disease ratings from the field experiment were
displayed as geo-referenced maps using the Inverse Distance Weighting (IDW)
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function of ArcMap 9.2 (ArcGIS, ESRI Inc., Redlands, USA). NDVI values
from airborne sensor images were displayed as geo referenced maps in ENVI
4.6.1 (Research Systems Inc., Boulder, CO, USA).

3.8 Statistical analysis

Statistical analyses were performed using the Superior Performing System SPSS
17.0 (SPSS Inc., Chicago, USA). Data from repeated measures was analysed
using a general linear model and the Bonferroni test to determine statistically
significant differences (p = 0.01; p = 0.05). Data were analysed by standard
analysis of variance (ANOVA) and homogeneous subgroups were built using
the Tukey-test, with a significance level of p = 0.05. For pair wise compari-
son, Students t -test with a level of significance of p = 0.05, was undertaken.
Correlations between disease severity and reflectance data and spectral vegeta-
tion index values, respectively, were tested by computing Pearson’s coefficient
of correlation (r), and coefficients of determination

(
R2

)
were estimated by a

linear model. The experiments were repeated at least twice, except for the field
experiment.
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The present work focuses on the potential of hyperspectral non-imaging and
imaging sensors for the detection, differentiation and quantification of foliar
diseases of sugar beet. The hypothesis was that the three diseases Cercospora
leaf spot, powdery mildew, and sugar beet rust influence the optical properties
of a plant in different ways. Experiments under both, controlled and field condi-
tions with different sensor systems on different scales have been undertaken and
compared, since the measuring method is the groundwork of disease detection.
Thereby, different developing stages and different severities of the diseases have
been taken into account. To gain a maximum on information from hyperspec-
tral data, different data analysis methods have been applied. The pathogenesis
of the three diseases Cercospora leaf spot, powdery mildew, and sugar beet rust
have been observed. In a first approach, disease specific spectral signatures
have been assessed with a non-imaging spectroradiometer. Multiple spectral
vegetation indices from literature, related to biophysical and biochemical plant
parameters have been applied on hyperspectral data, and their ability for a
detection and discrimination has been proven. Building on that, a more de-
tailed observation of the temporal and spatial symptom development has been
undertaken with a hyperspectral camera system. Additionally, image based au-
tomatic classification methods have been applied on hyperspectral images. In
a last step the potential and negotiability of hyperspectral disease detection in
the field has been analysed.
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4.1 Etiology of sugar beet diseases

4.1.1 Disease progress on leaf scale

The temporal development of the diseases on the leaf scale varied for the three
pathogens (Fig. 4.1).

Cercospora leaf spot
First symptoms of Cercospora leaf spot appeared 6 days after inoculation
(Fig. 4.1 A). Disease severity increased slowly up to 10% diseased leaf area
until 10 dai; 21 dai disease severity increased constantly up to 85%. Fifteen
days after inoculation the mean disease severity reached 25%. Variation in dis-
ease severity among the leaves inoculated with C. beticola decreased with time
and increasing mean disease severity. Minimum disease severity was 25% and
maximal assessed disease severity was 80%, whereas mean disease severity was
about 55% 18 dai.

Powdery mildew
Infestation of sugar beet leaves with powdery mildew exhibited faster develop-
ment (Fig. 4.1 B). Symptoms could be monitored already 5 dai. Further spread
of the powdery mildew- characteristic mycelium on the leaf surfaces proceeded
faster than symptoms of the other diseases. An average disease severity of
17.5% was assessed 10 dai. Disease severities beyond 80% have been monitored
15 dai with a mean disease severity of 70%. The whole leaf area was covered
with white fluffy mycelia 17 dai. The density of mycelia coverage increased
within the next few days. The colonization progress of powdery mildew was
more consistent compared to infestation progress by Cercospora leaf spot or
sugar beet rust.

Sugar beet rust
With 8 days the latent period of U. betae was the longest among the pathogens
(Fig. 4.1 C). Single chlorotic pustules could be detected on the leaf surface.
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Figure 4.1: Progression of disease severity of (A) Cercospora leaf spot, (B) powdery mildew, and (C)
sugar beet rust on sugar beet leaves.
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They increased slowly in number and size by 14 dai. A mean disease severity
of 35% was monitored 18 dai. At this time some leaves had a disease severity
below 17.5%, whereas other leaves showed disease severities above 55%. The
maximal mean disease severity reached 50% 20 dai. Single leaves with a disease
severity up to 75% could be monitored in the end of the measuring period,
while several leaves showed disease severities still below 30%.

4.1.2 Disease progress on canopy scale

Disease severity assessed on the canopy scale differed marginal from disease
severity assessed on the leaf scale (Fig. 4.2). First symptoms of Cercospora leaf
spot appeared 7 dai. 5% of the leaf area showed characteristic symptoms 10
dai. Disease severity increased up to 17.5% leaf area 15 dai and to 60% 20 dai.
First symptoms of powdery mildew occurred 5 dai and spread rapidly over the
sugar beet canopy. Nearly 20% of the leaf area was covered by white mycelium
10 dai; disease severity reached 80% 15 dai, and 17 dai the whole canopy was
covered by powdery mildew. The disease progress of sugar beet rust on the
canopy scale was comparative to the progress of Cercospora leaf spot. First
rust pustules occurred 8 dai. Disease severity increased slowly, 17.5% of the
canopy was diseased 15 dai. The maximal disease severity of sugar beet rust
monitored on the canopy scale was 55% 20 dai.

4.1.3 Temporal and spatial symptom development

Depending on the biology of the pathogens, each foliar diseases of sugar beet
were characterized by disease-specific symptoms (Fig. 4.3). Inoculated plants
were first colonized without symptoms, after a latent period typical symptoms
appeared.

Cercospora leaf spot
Small, nearly circular necroses appeared as the first symptoms of Cercospora leaf
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Figure 4.2: Progression of disease severity of Cercospora leaf spot, powdery mildew, and sugar beet
rust on the canopy scale of sugar beet (bars denote standard derivation).

spot 6 to 8 dai (Fig. 4.3 A). Slight depressions in the leaf tissue with a diameter
of 0.5 mm and a greyish to dark greenish colouration were detectable. Adjacent
leaf tissue appeared green and healthy. From day 8 to 10 after inoculation,
the sunken lesions enlarged to 1.0 mm diameter, and the centre of the lesions
became dry and necrotic, while a margin circumvented the spot to healthy leaf
tissue. With further pathogenesis the margin became more evident. Lesion
centres appeared in light grey or beige hue. The colour shade of the lesion
border varied from grey over brown to deep red. Mature lesions developed
black pseudostroma, distributed within the centre. The spots coalesced and
formed large necrotic areas 14 dai. Heavily infested leaves became chlorotic and
often collapsed. As a consequence of leaf collapse, sugar beet plants responds
with increasing formation of new leaves. Symptoms of Cercospora leaf spot
typically appeared first on older sugar beet leaves, followed by younger leaves.
Appearances of characteristic leaf spots were the same on both, upper and lower
leaf surface. Elongated necrotic spots could be also reported on petioles and
leaf veins.
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Powdery mildew
First symptoms caused by E. betae appeared 5 dai (Fig. 4.3 B). Slight, nearly
circular mycelium colonies with about 0.5 cm diameter appeared on the upper
side of leaves. With further pathogenesis these colonies expanded rapidly and
also the lower leaf surface was colonized. The white mycelium covered both,
the total upper and lower leaf surface and became more and more dense until
14 dai. The colour of mycelial structures changed from white to grey. At
high disease severity stages accelerated senescence and earlier degradation into
yellowing and necrotic parts of powdery mildew diseased leaves was noticed.
Leaves became chlorotic 18 dai and finally necrotic 21 dai. Conidia production
could be observed from the second day after symptom appearance. Conidia
were continuously released in dusty clouds, when sugar beet leaves were moved,
resulting in new infections of non-diseased and younger leaves. Initial growth
and accumulation of colonies around leaf veins could be observed. Symptoms
were also observed on leaf petioles.

Sugar beet rust
First symptoms due to U. betae became visible 9 dai (Fig. 4.3 C). Small chlorotic
spots, about 0.2 mm in size, appeared on the upper and lower side of the leaf
surface. These circular lesions grew up to 0.5 - 1 mm in diameter, and the
epidermis became scabby. The centre of the early rust symptoms appeared in
light brown 12 dai. With proceeding disease development, rust spores ruptured
the epidermis and amber uredinia became visible 14 dai. The rust pustules
were encircled by a chlorotic halo. In some cases a second circle of rust spores
ruptured the epidermis in a distance of 1 mm around the primary symptom 16
to 21 dai. At high disease severity, the chlorotic ring around the rust pustules
expanded and contiguous leaf tissue was affected. Pustules of sugar beet rust
were also observed on leaf petioles. In addition, an accumulation of rust spores
along the leaf veins and the axilla of the rosulate ordered leaves near the beet
root was detectable. Symptoms of sugar beet rust appeared on young and older
leaves simultaneously.
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Figure 4.3: Development of disease specific symptoms of Cercospora leaf spot (A), sugar beet rust (B), and powdery mildew (C) on sugar beet
leaves (bar = 1000 µm).
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4.1.4 Modifications of leaf structure during pathogenesis

Scanning electron microscopic images visualize the typical infection structures
of the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae
on the host plant (Fig. 4.4). Each pathogen influenced the sugar beet leaf tissue
in a specific way.

Cercospora leaf spot
C. beticola entered the leaf through closed or open stomata with a germ tube.
Intercellular mycelia were formed and pseudostroma was developed in the sub-
stomatal area. On the surface of one day old lesions, conidiophores emerged
from pseudostroma through stoma aperture, with protruding conidia (Fig. 4.4
A). Ample hyphal growth, visible as thin, filamentous strands, occurred within
sporulating, older lesions (Fig. 4.4 B). On the border between Cercospora leaf
spot lesions and healthy tissue, deep splits and sulcate leaf tissue occurred. The
area of the lesions was obviously sunken.

Powdery mildew
The electron microscopic view of characteristic symptoms of powdery mildew
showed dense and multiple-branched mycelia structures covering the leaf surface
(Fig. 4.4 C). Conidia chains protruded from the mycelia. E. betae penetrated
the host tissue directly, no mycelial growth through stomata could be observed.

Sugar beet rust
A highly magnified pustule caused by U. betae is shown in Fig. 4.4 D. Swelling
of leaf tissue, caused by spore accumulation under the epidermis, was observed.
At advanced disease stages, accumulated uredina ruptured the epidermal layer.
The roundish uredinia were released and spreaded onto the neighbouring leaf
area.
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Figure 4.4: Fungal structures on the leaf surface of sugar beet leaves 21 dai. (A, B) Emerging hyphal
structures and conidia of Cercospora beticola from stomatal openings of sugar beet lesions. (C) Dense
mycelia of Erysiphe betae with conidia growing on the leaf surface of sugar beet. (D) Ruptured epidermis
of sugar beet by Uromyces betae uredinio-spores.

4.1.5 Effect of foliar diseases on leaf pigment content

The impact of the three foliar sugar beet diseases on biochemical parame-
ters, particularly on the leaf pigment content, was assessed by non-destructive
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(SPAD-meter) and destructive (chlorophyll extraction) analysis methods during
disease development (Tab. 4.1).

The chlorophyll index of healthy sugar beet leaves over a period of 20 days
varied between SPAD values of 43.6 to 47.0. No significant differences could be
detected. Leaves infected by Cercospora leaf spot showed a slight increase in
SPAD-meter values 5 to 9 dai. SPAD values decrease from 39.8, 10 dai to 28.8,
20 dai. First significant differences occurred 12 dai with a SPAD-meter value
of 36.2. SPAD values for powdery mildew diseased leaves decreased from 42.4,
6 dai to 38.1, 20 dai. Significant differences could be observed 16 dai and later.
SPAD values for sugar beet rust ranged from 39.1 to 34.4. A slight significant
difference was measured 16 dai, a significant difference only 20 dai.

The destructive assessment of total chlorophyll, chlorophyll a, chlorophyll b,
and carotenoid contents for healthy sugar beet leaves revealed no significant
differences during the measuring period (Tab. 4.1). After an increase in pigment
content, a general decrease without significant differences has been assessed for
all pigments because of senescence 5 to 8 dai. The mean pigment content of leaf
tissue with Cercospora leaf spot, powdery mildew, and sugar beet rust declined
with disease progress, but only slight differences could be detected (Tab. 4.1).
As the standard derivation of the individual groups was high and the number
of samples per treatment was low (n = 5) significant differences were rare.

Total chlorophyll content of tissue diseased with Cercospora leaf spot decreased
from a maximum of 2219 µg/ml 7 dai to 780 µg/ml 20 dai. The difference
to non-diseased was significant 16 dai with 1248 µg/ml. The chlorophyll a
content of Cercospora leaf spot diseased leaves decreased from 1814 µg/ml 5
dai to 614 µg/ml 20 dai. Significant differences were detected first 16 dai.

The mean amount of chlorophyll b decreased from 218 µg/ml 5 dai to
165 µg/ml 20 dai with significant differences 16 dai and later. Values of
carotenoids receded from 519 µg/ml 7 dai to 256 µg/ml 20 dai. The first
significant differences were detected 12 dai.
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Table 4.1: Effect of Cercospora leaf spot, powdery mildew, and sugar beet rust, respectively, on pigment concentration of sugar beet
leaves 5 to 20 days after inoculation1.

Treatment3 Days after inoculation
5 6 7 8 9 10 11 12 14 16 18 20

SPAD2 Healthy 43.6 44.3 44.2 46.1 46.0 47.0 46.1 46.5 46.5 45.8 46.1 45.8
CLS 39.2 39.4 39.8 40.5 40.1 39.8 37.5 36.2∗ 36.6 34.5 31.7 28.8
PM 42.0 42.4 41.9 41.2 40.8 40.4 41.3 42.2 41.2 39.9∗ 38.5 38.1
SBR 38.8 38.6 38.5 38.7 38.9 39.1 38.9 38.6 38.8 37.7 36.6∗ 34.4

Chltotal2 Healthy 2016 2017 2181 2387 2057 2180 1977 2264 2272 1889 1957 1661
(µg/ml) CLS 2030 2021 2219 2179 1913 1957 1732 1535 1452 1248∗ 1232 780

PM 2063 2315 2206 2619 1960 1778 1649 1652 1630 1535 1458 1156∗

SBR 2118 2233 2021 2428 2059 1951 1829 1835 1727 1519 1472∗ 1289

Chla2 Healthy 1804 1783 1908 2159 1821 1915 1760 2038 2021 1687 1751 1468
(µg/ml) CLS 1814 1794 1986 1915 1524 1750 1544 1337 1278 1120∗ 1084 615

PM 1841 2020 1965 2330 1734 1573 1446 1469 1415 1337 1278 993∗

SBR 1875 1985 1783 2172 1818 1721 1622 1640 1518 1356 1288∗ 1117

Chlb2 Healthy 212 231 274 229 237 266 217 227 252 203 208 193
(µg/ml) CLS 218 235 234 266 216 208 189 198 174 129∗ 149 165

PM 223 296 242 290 226 205 203 184 215 198 181 163
SBR 243 249 239 257 242 231 208 196 209 163 184 173

Car2 Healthy 494 506 562 589 503 514 454 547 512 431 476 470
(µg/ml) CLS 467 524 519 514 426 475 440 343∗ 362 315 304 256

PM 446 512 475 569 421 399 362 363 359 343 330 236
SBR 500 516 489 557 476 439 422 438 397 357∗ 359 334

1 for each parameter, bold letters with asterisk marks within a row denote first occurrence of significant differences during the measuring period, according to
a general linear model GLM and Bonferroni-test (p = 0.05; SPAD-meter measurements: n= 30; destructive pigment analysis: n = 5)

2 SPAD = SPAD-Meter values; Chltotal = total Chlorophyll content; Chla = Chlorophyll a content; Chlb = Chlorophyll b content; Car = Carotenoids
content

3 CLS = Cercospora leaf spot, PM = powdery mildew, SBR = sugar beet rust
Note: highlighted date indicates first appearance of visible disease symptom
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The total chlorophyll content of powdery mildew diseased leaf tissue decreased
from 2233 µg/ml 6 dai to 1156 µg/ml 20 dai (Tab. 4.1). Significant differences
could be found for total chlorophyll and chlorophylla only 20 dai. Concen-
trations of chlorophyll b and carotenoids showed similar tendencies, however,
without statistically significant differences.

The total chlorophyll content of leaves diseased with sugar beet rust decreased
from 2428 µg/ml 8 dai to 1289 µg/ml 20 dai (Tab. 4.1). Significant differ-
ences were measured 18 dai. Decreasing pigment contents were also observed
for chlorophyll a, chlorophyll b and carotenoids. Significant differences were
detected for chlorophyll a content 18 dai and for carotenoids content 16 dai;
changes in chlorophyll b content were not significant.

4.2 Differentiation of foliar diseases based on spectral

signatures of infected leaves

During pathogenesis spectral reflectance of diseased sugar beet leaves was mea-
sured with hyperspectral non-imaging sensors in the VIS, NIR, and SWIR (ASD
FieldSpec FR and ASD FieldSpecPro JR). Measurements were undertaken at
controlled conditions. Reflectance spectra on the leaf scale were assessed with a
plant probe foreoptic with an integrated light source, on the canopy scale with
a pistol grip foreoptic and ASD-Pro-Lamps as light source.

4.2.1 Impact of foliar diseases on the spectral reflectance of sugar
beet

Reflectance of non-inoculated leaves and leaves inoculated with the foliar
pathogens was recorded for 21 days after inoculation. In this period, re-
flectance spectra of non-inoculated sugar beet leaves were characteristic for
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healthy leaves and remained largely constant (Fig. 4.5 A): strong absorption
of light by photosynthetic pigments in the VIS, high reflectance plateau in the
NIR. For the differentiation of leaf diseases based on reflectance measurement,
specific spectral signatures at different disease severities have been measured
and compared. Standard derivations were assessed to validate the disease-
specific changes in spectral signature compared to the reflectance of healthy
sugar beet leaves. Fig. 4.5 summarizes the averaged spectral signatures of
sugar beet leaves with Cercospora leaf spot, powdery mildew, and sugar beet
rust at 0%, 10%, 20%, 50%, and 80% disease severity, respectively. Compared
to the spectra of healthy leaves, each disease had a divergent, characteristic
reflectance curve. The changes in reflectance were strongly correlated to the
occurrence of disease-specific symptoms.

Cercospora leaf spot
Spectral signatures of leaves, inoculated with C. beticola, changed evidently
in reflectance values with first disease symptoms. Reflectance between 550
to 700 nm and between 700 to 900 nm increased 12 dai and later according
to increasing disease severity (Fig. 4.5 B). Reflectance of C. beticola-infected
leaves (Fig. 4.6 A) increased in the VIS mostly in the green and red ranges
of the spectrum between 500 to 700 nm and decreased from 700 to 900 nm.
With disease severity > 10%, reflectance values in the VIS increased. This
increment was less pronounced between 450 to 530 nm and most pronounced
between 550 to 700 nm. In the NIR, decreasing reflectance between 700 to 900
nm, and slightly increasing reflectance from 900 to 1050 nm could be noticed.
With disease severities of 20% to 50% this effect on leaf reflectance intensity in
these regions became more pronounced. In addition, the slope at the red edge
position between VIS and NIR became less steeply. A blue shift of the red edge
position depending on Cercospora leaf spot disease severity was obvious. At a
disease severity of 80%, reflectance increased over the whole spectrum and a
typical spectral signature of vegetation was no longer detectable.
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Depending on disease severity, standard derivation of specific bands of the spec-
tra changed (Fig. 4.7). Standard derivation of reflectance of healthy sugar beet
leaves ranged between 0.008 to 0.02 and was most pronounced next to the green
peak at 550 nm and in the NIR between 700 to 900 nm. For Cercospora leaf
spot diseased leaves, standard derivation varied depending on disease severity
(Fig. 4.7 A). At 10%, 20%, and 50% disease severity of highest derivations were
noticed between 550 to 700 nm and 700 to 900 nm. These high values were
in the spectral bands, affected by Cercospora leaf spot, and ranged from 0.01
to 0.04. At 80% disease severity standard derivation was high between 600 to
850 nm, with a peak at 670 nm. Maximal derivation was comparatively lower
than at 20% to 50% disease severities. The results suggested that bands with
high reflectance differences among the Cercospora leaf spot disease severities
featured highest standard derivation due to variability among the leaves.

Powdery mildew
Reflectance of leaves colonized by the ectoparasite E. betae rose consecutively
within the measuring period and with increase in disease severity, starting 9 dai
(Fig. 4.5 C, Fig. 4.6 B). This steady increment was most distinctive in the VIS
and less pronounced in the NIR. Powdery mildew rather affected the overall level
of reflectance than the profile of spectra. The overall standard derivation ranged
from 0.005 to 0.025. At 10% and 20% disease severity standard derivation in the
VIS was similar to healthy plants, and lower in the NIR compared to healthy
plants (Fig. 4.7 B). At higher disease severities standard derivation in the VIS
raised to 0.015 to 0.025. A higher standard derivation compared to healthy
leaves was also noticed in the NIR.

Sugar beet rust
Due to the small symptoms of the biotroph U. betae scattered on the leaf area,
changes in reflectance spectra were comparatively low for leaf rust (Fig. 4.6
C). First changes in reflectance were measurable 15 dai (Fig. 4.5 D). At 10%
disease severity, changes were not significant compared to healthy leaves. In
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contrast, standard derivation at 10% disease severity was high from 500 to 700
nm, with a peak at 710 nm (Fig. 4.7 C). Reflectance of leaves with 20% disease
severity was higher than at healthy leaves from 550 nm to 700 nm. Explicit
changes were measured at 50% disease severity; i.e. high reflectance between
550 to 700 nm and low reflectance from 700 to 900 nm. The presence and
growth of uredinia increased the reflectance between 550 and 700 nm. With
increasing disease severity, standard derivation rose between 550 to 700 nm
and at a peak around 710 nm.

Figure 4.5: Spectral signatures of (A) healthy sugar beet leaves and sugar beet leaves affected with
(B) Cercospora leaf spot, (C) powdery mildew, and (D) sugar beet rust from 0 to 21 dai.
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Figure 4.6: Spectral signatures of sugar beet leaves affected by (A) Cercospora leaf spot, (B) powdery
mildew, and (C) sugar beet rust at different disease severities. Reflectance was measured under controlled
conditions using an ASD FieldSpec FR.
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Figure 4.7: Standard derivation of spectral reflectance of sugar beet leaves affected by (A) Cercospora
leaf spot, (B) powdery mildew, and (C) sugar beet rust at different disease severities. Reflectance was
measured under controlled conditions using an ASD FieldSpec FR.
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Correlation between spectral signatures and disease severity
The linear coefficient of correlation (r) for disease severity versus reflectance
considerably varied with the wavebands. Strong differences were detected
among the diseases (Fig. 4.8). The correlation between Cercospora leaf spot
severity and reflectance was positive in the VIS range, with high values from
430 nm to 520 nm and from 570 nm to 710 nm (Fig. 4.8 A). In the NIR the
correlation was negative with a maximum at 740 nm. For powdery mildew the
severity was highly correlated to all wavelengths (Fig. 4.8 B). The coefficient
of correlation was best in the VIS region and reached r = 0.85. Displaying the
correlation between sugar beet rust disease severity and reflectance, Fig. 4.8
C indicated that wavelengths from 510 nm to 700 nm grade a strong positive
correlation. In contrast to the other diseases, the correlation for sugar beet rust
and wavelengths from 400 nm to 500 nm was weak. Similar to Cercospora leaf
spot, a negative correlation was detected for sugar beet rust in the NIR.

Spectral reflectance in the SWIR
In addition to regular measurements of leaf reflectance in the range 400 nm to
1050 nm, reflectance spectra were recorded with a non-imaging spectroradiome-
ter in the range 400 nm to 2500 nm, 0, 7, 14, and 21 days after inoculation at
different disease severities (Fig. 4.9, Fig. 4.10).

The spectral signature of healthy sugar beet leaves in the SWIR is dominated
by strong water absorption bands at 1200, 1400, 1940, and 2400 nm (Fig. 4.10).
Two reflectance peaks occurred around 1650 nm and 2200 nm. Likewise, the
absorption of structural compounds like cellulose, lignin, starch, and protein
influences leaf reflectance in the SWIR.

Cercospora leaf spot
For sugar beet leaves with Cercospora leaf spot obvious changes in SWIR re-
flectance were assessed already 7 dai, at a mean disease severity of 1.3% (Fig. 4.9
A), while changes in the VIS and NIR were minor (Fig. 4.10 A). With increas-
ing disease severity, this effect steadily proceeded. Changes next to the water
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Figure 4.8: Diagram of coefficient of correlation (r) for the linear correlation between spectral re-
flectance of sugar beet leaves and disease severity in relation to wavelength for (A) Cercospora leaf spot,
(B) powdery mildew, and (C) sugar beet rust.

absorption bands at 1400 nm and 1940 nm were most obvious 14 and 21 dai
(disease severity: 14.7% and 57.9%, respectively). Changes in the SWIR were
greater than those in the VIS and NIR.

Powdery mildew
Powdery mildew caused distinctive changes in the SWIR from 14 dai and later
on (Fig. 4.10 B). With 2.5% disease severity 7 dai, reflectance curve of pow-
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Figure 4.9: Disease severity of (A) Cercospora leaf spot, (B) powdery mildew and (C) sugar beet rust
on sugar beet leaves at times of full range hyperspectral measurements in the VIS, NIR, and SWIR,0,
7, 14, and 21 days after inoculation (dai).
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dery mildew interfered with reflectance of non diseased leaves. With increasing
disease severity, reflectance in the SWIR rose slightly 14 and 21 dai (36.2%
and 100%, respectively; Fig. 4.9 B). Similar to changes in the VIS and NIR,
powdery mildew influenced more the absolute SWIR reflectance values than the
shape of the spectrum.

Sugar beet rust
Contrary to the other two foliar diseases, increasing disease severity of sugar
beet rust caused a decline of reflectance in the SWIR (Fig. 4.10 C). This effect
was already detectable 7 dai, before visible symptoms occurred, and remained
stable during the measurements until 14 dai with a disease severity of 4.9% and
21 dai with a disease severity of 42.5% (Fig. 4.9 C, Fig. 4.10 C).

Canopy reflectance
Canopy reflectance is influenced by several factors as leaf geometry, leaf an-
gle and shadow effects. Thus, disease-specific effects may be covered. High
variation in NIR reflectance during the measuring period was caused by the
growth of sugar beet plants and leaves, and thus by changes in the sugar beet
canopy. Plant growth influenced the canopy density, plant height, and soil
cover as well as the relation between leaf area, petioles, and vegetative plant
organs. Reflectance measurements on the canopy scale during disease progress
gave similar effects with minor peculiarity (Fig. 4.11). Reflectance in the VIS
of healthy leaves remained constant during the measuring period (Fig. 4.11
A). Reflectance of canopies of Cercospora leaf spot diseased sugar beet plants
revealed a steady increase in reflectance between 550 and 700 nm, similar to
measurements on the leaf scale (Fig. 4.11 B).

An impact of diseased leaves on canopy reflectance in the NIR was not de-
tected. Canopy reflectance of powdery mildew diseased plants rose in the VIS.
Variation in NIR reflectance was higher than in healthy leaves (Fig. 4.11 C).
Significant changes in canopy reflectance due to sugar beet rust symptoms were
not recorded (Fig. 4.11 D). Minimal reflectance deviation around the green peak
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Figure 4.10: Spectral reflectance in the VIS, NIR and SWIR of healthy sugar beet leaves and leaves
affected by (A) Cercospora leaf spot, (B) powdery mildew, and (C) sugar beet rust, 0, 7, 14, and 21 dai
(ASD FieldSpec JR).
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Figure 4.11: Spectral signature of (A) healthy sugar beet canopy and affected by (B) Cercospora leaf
spot, (C) powdery mildew, and (D) sugar beet rust, measured on the canopy level in the VIS and NIR
at different days after inoculation.

and between 550 to 700 nm occurred during the measuring period. In fact of
the small symptom size and the leaf area to symptom relation, it was not fea-
sible to assure a sugar beet rust infestation using a hyperspectral non-imaging
spectroradiometer on canopy scale.

4.2.2 Selection of disease-specific wavelengths

An appropriate way to enhance differences between spectral signatures and to
determine sensitive and significant wavelengths for a disease is the calculation
of difference and ratio spectra.
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Cercospora leaf spot
Maximal differences between healthy and Cercospora leaf spot diseased leaves
over all disease severity levels were in the VIS at 510 nm and 690 nm. A maximal
negative value was in the NIR at 740 nm (Fig. 4.12 A). High differences could
be generally denoted between 600 to 700 nm. The wavelengths of maximum
reflectance sensitivity to Cercospora leaf spot were predominant in the VIS
between 450 to 500 nm and 600 to 700 nm, with maximal values at 480 nm and
665 nm (Fig. 4.13 A). In contrast to reflectance differences, sensitivities were
low in the NIR.

Powdery mildew
For powdery mildew diseased leaves, reflectance differences were on a constant
level between 400 to 700 nm, with a small peak at 700 nm and minor distinctive
values between 720 to 1050 nm (Fig. 4.12 B). Maximal reflectance sensitivity
was between 400 to 530 nm and 570 to 700 nm (Fig. 4.13 B). Sensitivity had a
local minimum in the range from 530 to 570 nm.

Sugar beet rust
Comparatively minor differences and sensitivity values were estimated for spec-
tral reflectance characteristic for sugar beet rust. Maximum differences occurred
in the wavelengths of from 500 to 670 nm with an additional peak at 700 nm
(Fig. 4.12 C). In the NIR, differences from 720 nm to 800 nm were negative.
Sensitivity curve analysis indicated that wavelength most sensitive were from
500 to 670 nm and near 700 nm (Fig. 4.13 C).

The information from spectral reflectance measurement and their related pa-
rameters were combined in a table, summarising the principal impact of each
disease on sugar beet reflectance (Tab. 4.2). Similarities and differences be-
tween the different diseases became obvious. Cercospora leaf spot increased
reflectance in the blue, green, and red region and decreased reflectance in the
NIR. Reflectance in the SWIR increased significantly, reflectance in the SWIR
was decreasing with increasing disease severity.
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Figure 4.12: Difference spectra of sugar beet leaves affected by (A) Cercospora leaf spot, (B) pow-
dery mildew, and (C) sugar beet rust at different disease severities. Non-dimensional differences were
computed by subtracting reflectance of healthy leaves from that of diseased leaves.
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Figure 4.13: Ratio values of sugar beet leaves affected by (A) Cercospora leaf spot, (B) powdery mildew,
and (C) sugar beet rust at different disease severities. Non-dimensional ratio-values were computed by
dividing reflectance of diseased leaves by reflectance of healthy leaves.
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Table 4.2: Summary of the effects of Cercospora leaf spot, powdery mildew, and sugar beet rust, respectively, on spectral reflectance, ratio value,
reflectance difference, and correlation between reflectance and disease severity.

Spectral reflectance Ratio Difference Correlation

400–550 nm 550–650 nm 650–700 nm 700–1200 nm 1200-2500 nm

Blue Green Red NIR SWIR Min Max Min Max Min Max

495–514 nm
481 nm 499 nmCLS increase increase high decrease increase 550 nm
665 nm

524 nm 688 nm 725 nm
581–704 nm

694 nm

500 nm 754 nm 400–700 nmPM high high high increase increase < 700 nm
675 nm 965 nm

694 nm 764 nm
585 nm

629–638 nm488 nm
695 nm 634 nmSBR low decrease low decrease decrease 720 nm 698 nm 723 nm
747 nm

732 nm
688–704 nm921 nm

695 nm
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Wavelengths around the green peak region, next to 690 nm as well as the slope
at the red edge position were highly correlated to disease severity. Higher re-
flectance over the whole spectrum was characteristic for powdery mildew infes-
tations. In general, wavelengths in the VIS were stronger correlated to powdery
mildew disease severities than reflectance in the NIR and SWIR. The influence
of sugar beet rust on reflectance parameters was minor; no change of spectral
reflectance in the blue region, slight increase at the green peak region, and
decrease in the NIR were characteristic. In contrast to the other pathogens,
reflectance in the SWIR was decreasing with increasing disease severity.
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4. RESULTS

4.3 Spectral vegetation indices as indicators of plant

status and their correlation to diseases

Twenty-one SVIs related to physiological plant parameters were calculated for
each treatment and every day. Their suitability to distinguish between healthy
and diseased sugar beets was proven. Regarding the biochemical modifications
of diseased plants, some SVIs were more sensitive to detect changes in plant
health than others (Tab. 4.3, Tab. 4.4).

4.3.1 Effect of disease progression on spectral vegetation indices

The correlation between SVIs and disease severity varied among the differ-
ent diseases (Tab. 4.3). Disease severity of Cercospora leaf spot was strongly
correlated to vitality and leaf area related SVIs ND and NDVI (r = -0.89;
r = -0.89), to the chlorophyll related spectral vegetation indices PSNDa and
PSNDb (r = -0.89, r = - 0.90), as well as to PRI (r = -0.88) as an indica-
tor for photosynthetic radiation use efficiency. Spectral vegetation indices
highly correlated to powdery mildew were the pigment specific indices SIPI
(r = -0.88), PSNDa, PSNDb, and PSNDc (r = -0.88, r = -0.89, r = -0.88), the
NDVI (r = -0.88), and the SumGREEN index (r = -0.86), which is related to
reflectance between 500 to 600 nm. Correlations between sugar beet rust disease
severity and the SVIs was generally minor. Good correlations were found for
the PRI (r = -0.82) and for the anthocyanin specific ARI (r = 0.79). The mCAI
(r = -0.74) as an indicator for chlorophyll content and the ND (r = - 0.75) were
also correlated to sugar beet rust infestation.

Cercospora leaf spot
The PSRI was most sensitive to increases in disease severity of Cercospora leaf
spot (Tab. 4.4). Significant differences during the measuring period could be
detected 7 dai and later, according to the occurrence of first symptoms. Signifi-
cant changes were found for the BGI2, the ARI and the WI 8 dai, however, the
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4.3. Spectral vegetation indices as indicators of plant status and their correlation to diseases

correlation to these indices was lower. The WI was significantly affected only
by Cercospora leaf spot pathogenesis, while the impact of powdery mildew and
sugar beet rust was not significant. Chlorophyll related spectral vegetation in-
dices like SR, ND, NDVI, PRI, PSSRa, and PSSRb were able to detect changes
within the pathogenesis of C. beticola 9 dai. The mSR was not suitable for
the detection of physiological changes from Cercospora leaf spot. Significant
differences occurred only from 14 dai to 18 dai. Likewise, REP, SumGREEN,
and SumVIS were not appropriate to detect early changes caused by Cercospora
leaf spot (significant differences were measured only after 16 dai).

Table 4.3: Coefficients of correlation between disease severity and spectral vegetation
indices for the three leaf diseases of sugar beet.

Index Cercospora leaf spot Powdery mildew sugar beet rust

SR -0.85∗1 -0.85∗ -0.71∗

mSR -0.85∗ -0.60∗ -0.70∗

ND -0.89∗ -0.86∗ -0.75∗

NDVI -0.89∗ -0.88∗ -0.70∗

PRI -0.88∗ -0.77∗ -0.82∗

SIPI -0.86∗ -0.88∗ -0.51∗

PSSRa -0.81∗ -0.85∗ -0.64∗

PSSRb -0.81∗ -0.85∗ -0.61∗

PSSRc -0.74∗ -0.83∗ -0.23∗

PSNDa -0.89∗ -0.88∗ -0.64∗

PSNDb -0.90∗ -0.89∗ -0.72∗

PSNDc -0.81∗ -0.88∗ -0.22∗

ARI 0.73∗ 0.51∗ 0.79∗

mCAI -0.84∗ -0.78∗ -0.74∗

REP -0.76∗ -0.55∗ -0.62∗

PSRI 0.86∗ -0.27∗ 0.64∗

WI -0.68∗ -0.01 -0.59∗

MCARI -0.30∗ -0.39∗ 0.61∗

SumGREEN 0.80∗ 0.86∗ 0.60∗

SumVIS 0.87∗ 0.86∗ 0.59∗

BGI2 0.42∗ 0.82∗ -0.44∗

1 correlation was calculated as Pearsons coefficient of correlation (r); asterisks denote significant
correlation with p = 0.01, n = 630

Note: highlighted SVIs indicate high correlation to disease severity
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4. RESULTS

Powdery mildew
Although first symptoms appeared 5 dai, significant changes in SVIs from pow-
dery mildew were detected 8 dai (Tab. 4.4), the SumVIS index changed sig-
nificantly to the initial value of the measuring period. The sensitivity of the
SumVIS index, similar to the SumGREEN index differed strongly to the dis-
eases, significant differences occurred 9 dai. An impact of Cercospora leaf spot
and sugar beet rust were detectable by these indices only 16 dai and later.
The SVIs - mSR, NDVI, PSSRa, PSSRb, PSNDa, and PSNDb – assessing
the chlorophyll content, were sensitive to powdery mildew 10 dai, whereas the
mCAI index was significant already 9 dai. Other pigment-specific SVIs like the
carotenoid specific SIPI, PSSRc, and PSNDc and the anthocyanin-indicating
ARI showed significant differences 10 dai and later. The REP seems as well
appropriate to detect powdery mildew diseased sugar beet leaves. Significant
differences in the red edge position were detected 10 dai for powdery mildew
and only 16 dai for Cercospora leaf spot and sugar beet rust. The WI and the
MCARI were less qualified to detect powdery mildew.

Sugar beet rust
Changes between rust-infected and healthy plants were recorded for the
PRI linked to photosynthetic radiation use efficiency and for the senescence-
indicating PSRI 10 dai (Tab. 4.4). These results coincided with the first oc-
currence of rust-specific symptoms on sugar beet leaves. All other vegeta-
tion indices were less suitable to distinguish between healthy and rust-diseased
sugar beet leaves; significant differences occurred not earlier than 16 dai. No
significant differences among SVIs were found for the carotenoid specific in-
dices PSSRc and PSNDc. Although the non-inoculated plant remained healthy
during the measuring period, statistically significant differences were measured
within this treatment by SR, MCARI, BGI2, PSSRa, PSSRb, and PSNDa. In
most of the cases these significances were recorded 14 to 20 dai, when senescence
effects the healthy sugar beet leaves.
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Table 4.4: Coefficients of correlation between disease severity and different spectral vegetation indices for the three leaf diseases of sugar beet1.

Index2 Treatment Days after inoculation
0 5 6 7 8 9 10 11 12 14 16 18 20

SR Healthy 2.49 2.82 2.89 2.97 2.96 2.99 2.99 2.99 3.08 3.12∗ 3.07 3.07 3.02
CLS 2.48 2.72 2.78 2.76 2.61 2.42 2.22 2.16∗ 2.24 1.97 1.69 1.61 1.50
PM 2.98 2.90 2.87 2.91 2.77 2.66∗ 2.50 2.44 2.34 2.19 2.10 2.01 1.88
SBR 2.48 2.65 2.75 2.73 2.73 2.73 2.62 2.70 2.72 2.60 2.17∗ 2.04 1.83

mSR Healthy 3.03 3.51 3.63 3.77 3.65 3.79 3.81 3.81 3.98 4.03∗ 4.01 4.04 3.98
CLS 3.00 3.43 3.55 3.38 3.25 2.99 2.75 2.63 2.72 2.35∗ 1.95 1.83 1.69
PM 3.73 3.65 3.57 3.73 3.52 3.44 3.16∗ 3.31 3.21 3.23 3.18 3.03 2.94
SBR 3.07 3.22 3.34 3.34 3.36 3.35 3.22 3.32 3.30 3.16 2.49∗ 2.31 2.03

ND Healthy 0.43 0.48 0.49 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.50
CLS 0.43 0.46 0.47 0.47 0.45 0.42 0.38 0.37 0.38∗ 0.33 0.26 0.23 0.20
PM 0.50 0.49 0.48 0.49 0.47 0.45∗ 0.43 0.42 0.40 0.37 0.36 0.33 0.30
SBR 0.42 0.45 0.47 0.46 0.46 0.46 0.45 0.46 0.46 0.44 0.37∗ 0.34 0.29

NDVI Healthy 0.78 0.80 0.80 0.81 0.81 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.81
CLS 0.79 0.79 0.79 0.80 0.77 0.75∗ 0.71 0.70 0.70 0.64 0.58 0.56 0.51
PM 0.81 0.81 0.81 0.80 0.80 0.78 0.77∗ 0.73 0.70 0.64 0.62 0.59 0.54
SBR 0.78 0.80 0.80 0.80 0.80 0.80 0.79 0.79 0.80 0.79 0.76 0.75∗ 0.72

PRI Healthy 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.03
CLS 0.02 0.02 0.02 0.02 0.02 0.01∗ -0.01 -0.01 -0.01 -0.02 -0.03 -0.04 -0.05
PM 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.02 0.01∗ 0.01 0.01 0.01 -0.01
SBR 0.03 0.03 0.02 0.02 0.02 0.03 0.02∗ 0.01 0.01 0.01 -0.01 -0.01 -0.03

SIPI Healthy 0.79 0.81 0.81 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
CLS 0.79 0.80 0.80 0.81 0.78 0.77 0.74∗ 0.74 0.74 0.70 0.67 0.65 0.62
PM 0.82 0.81 0.82 0.80 0.80 0.78 0.77∗ 0.73 0.70 0.64 0.62 0.59 0.54
SBR 0.78 0.81 0.81 0.81 0.80 0.81 0.79 0.80 0.81 0.80 0.79 0.78 0.76∗

BGI2 Healthy 0.36 0.37 0.37 0.38 0.36 0.39 0.39 0.39 0.42∗ 0.41 0.43 0.44 0.43
CLS 0.34 0.39 0.40 0.36 0.40∗ 0.41 0.45 0.44 0.43 0.44 0.42 0.43 0.45
PM 0.38 0.39 0.38 0.42 0.40 0.42 0.43 0.50∗ 0.53 0.59 0.62 0.64 0.67
SBR 0.37 0.34 0.35 0.36 0.35 0.35 0.36 0.36 0.34 0.35 0.29∗ 0.30 0.29
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Tab. 4.4 continued

Index2 Treatment Days after inoculation
0 5 6 7 8 9 10 11 12 14 16 18 20

PSSRa Healthy 7.47 8.22 8.51 8.82 8.59 8.24 8.25 8.25 8.52 8.56 8.56 8.98∗ 8.91
CLS 7.65 7.99 8.03 8.03 7.15 6.47∗ 5.52 5.33 5.37 4.36 3.59 3.39 2.95
PM 8.72 8.49 8.95 8.23 8.03 7.48 7.12∗ 6.00 5.41 4.35 4.12 3.72 3.25
SBR 7.50 8.16 8.40 8.23 8.21 8.20 7.63 7.97 8.49 7.77 6.77 6.55∗ 5.63

PSSRb Healthy 6.54 7.42 7.61 7.82 8.18 7.94 7.94 7.94 8.01 8.39∗ 8.10 8.26 8.19
CLS 6.55 6.99 7.12 7.32 6.44 5.73∗ 4.93 4.77 5.02 4.06 3.31 3.10 2.70
PM 8.05 7.98 7.87 7.64 7.32 6.80 6.39∗ 5.50 4.98 4.10 3.81 3.48 3.03
SBR 6.45 7.21 7.54 7.25 7.19 7.18 6.71 6.94 7.23 6.60 5.46∗ 4.99 4.24

PSSRc Healthy 8.86 9.94 10.14 10.35 11.29 10.47 10.12 10.12 10.20 10.64 10.07 9.74 9.57
CLS 9.01 9.16 9.28 10.29 9.07 8.20 7.24∗ 7.40 7.75 6.73 6.08 5.86 5.25
PM 10.76 10.45 10.39 9.74 9.48 8.41 8.25∗ 6.53 5.91 4.61 4.27 3.94 3.42
SBR 8.46 9.90 10.36 10.15 9.98 9.81 9.33 9.78 10.65 9.66 9.82 9.35 8.88

PSNDa Healthy 0.76 0.78 0.79 0.80 0.79 0.78 0.78 0.78 0.79 0.79 0.79 0.80∗ 0.80
CLS 0.77 0.78 0.78 0.78 0.75 0.73 0.69∗ 0.68 0.69 0.63 0.56 0.54 0.49
PM 0.79 0.79 0.80 0.78 0.78 0.76 0.75∗ 0.71 0.69 0.63 0.61 0.58 0.53
SBR 0.76 0.78 0.79 0.78 0.78 0.78 0.77 0.78 0.79 0.77 0.74 0.74 0.70∗

PSNDb Healthy 0.73 0.76 0.77 0.77 0.78 0.78 0.78 0.78 0.78 0.79 0.78 0.78 0.78
CLS 0.74 0.75 0.75 0.76 0.73 0.70 0.66∗ 0.65 0.67 0.60 0.54 0.51 0.46
PM 0.78 0.78 0.77 0.77 0.76 0.74 0.73∗ 0.69 0.67 0.61 0.58 0.55 0.50
SBR 0.73 0.76 0.77 0.76 0.76 0.76 0.74 0.75 0.76 0.74 0.69 0.67∗ 0.62

PSNDc Healthy 0.80 0.82 0.82 0.82 0.84 0.83 0.82 0.82 0.82 0.83 0.82 0.81 0.81
CLS 0.80 0.80 0.81 0.82 0.80 0.78 0.76∗ 0.76 0.77 0.74 0.72 0.71 0.68
PM 0.83 0.83 0.82 0.81 0.81 0.79 0.78∗ 0.73 0.71 0.64 0.62 0.60 0.55
SBR 0.79 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.83 0.81 0.82 0.81 0.80

mCAI Healthy -33.9 -31.2 -30.6 -29.9 -29.0 -30.5 -30.4 -30.4 -28.6 -28.2 -28.8 -28.0 -30.2
CLS -33.1 -31.6 -31.0 -29.8 -31.0 -30.7 -30.4 -30.1 -31.8 -33.1 -38.5∗ -39.0 -42.2
PM -30.1 -29.7 -29.2 -29.9 -32.5 -33.3∗ -33.8 -36.4 -37.3 -43.6 -44.2 -47.4 -51.6
SBR -31.6 -31.1 -29.8 -30.7 -31.6 -32.0 -32.4 -31.6 -31.8 -31.8 -35.8∗ -35.6 -37.8

ARI Healthy -0.35 -0.53 -0.62 -0.73 -0.46 -0.45 -0.49 -0.49 -0.34 -0.25 -0.34 -0.42 -0.48
CLS -0.47 -0.55 -0.52 -0.30 0.07∗ 0.39 0.92 1.15 1.04 1.47 1.48 1.57 1.69
PM -0.39 0.04 -0.32 -0.14 -0.14 -0.24 0.13∗ 0.05 0.15 0.03 0.09 0.18 0.1577
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Tab. 4.4 continued

Index2 Treatment Days after inoculation
0 5 6 7 8 9 10 11 12 14 16 18 20

SBR -0.48 -0.56 -0.57 -0.55 -0.74 -0.77 -0.49 -0.50 -0.55 -0.43 0.02∗ 0.26 0.67
REP Healthy 716.3 717.9 718.2 718.5 717.9 718.2 718.2 718.2 718.8 718.6 718.6 718.6 718.4

CLS 716.2 717.7 718.1 717.5 717.7 717.4 717.1 717.0 716.9 716.2 714.1∗ 713.1 712.1
PM 718.3 718.0 717.9 718.2 717.5 717.3 716.8∗ 717.0 716.7 716.3 716.5 716.1 716.1
SBR 716.5 717.0 717.4 717.5 717.3 717.2 717.0 717.3 717.3 717.1 714.7∗ 713.9 711.9

PSRI Healthy 0.011 0.014 0.012 0.009 0.020 0.018 0.015 0.015 0.015 0.019 0.013 0.009 0.011
CLS 0.009 0.008 0.008 0.017∗ 0.017 0.017 0.031 0.038 0.042 0.064 0.089 0.099 0.124
PM 0.013 0.017 0.010 0.014 0.011 0.008 0.012 0.008∗ 0.009 0.004 0.003 0.008 0.006
SBR 0.004 0.014 0.016 0.014 0.011 0.009 0.017∗ 0.015 0.014 0.016 0.030 0.030 0.045

WI Healthy 1.04 1.04 1.04 1.04 1.04 1.03 1.04 1.04 1.03 1.04 1.03 1.03 1.03
CLS 1.04 1.03 1.04 1.03 1.02∗ 1.01 1.00 0.99 1.00 0.99 0.98 0.98 0.98
PM 1.04 1.04 1.03 1.03 1.03 1.04 1.03 1.04 1.03 1.04 1.03 1.03 1.04
SBR 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.02∗

MCARI Healthy 0.24 0.18 0.17∗ 0.16 0.17 0.17 0.16 0.16 0.14 0.15 0.15 0.16 0.17
CLS 0.24 0.19 0.17∗ 0.18 0.17 0.16 0.14 0.14 0.15 0.14 0.15 0.16 0.14
PM 0.17 0.18 0.19 0.17 0.20 0.20 0.21 0.17 0.16 0.15 0.14∗ 0.14 0.13
SBR 0.24 0.22 0.20 0.20 0.21 0.21 0.21 0.20 0.22 0.21 0.30∗ 0.31 0.33

SumGREEN Healthy 0.11 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.09 0.08 0.09
CLS 0.11 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.10 0.11 0.13∗ 0.13 0.14
PM 0.09 0.09 0.09 0.09 0.10 0.11∗ 0.11 0.12 0.13 0.16 0.16 0.18 0.20
SBR 0.12 0.10 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.12 0.12 0.13∗

SumVIS Healthy 0.08 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.07
CLS 0.08 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.09 0.11∗ 0.11 0.12
PM 0.07 0.07 0.07 0.07 0.09∗ 0.09 0.09 0.10 0.10 0.13 0.14 0.15 0.18
SBR 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.09∗ 0.09 0.10

1 for each index within a row, bold letters indicate significant differences to the initial value and asterisk marks denote first occurrence of significant differences during the
measuring period, according to general linear model GLM and Bonferroni-test (p = 0.01; n= 60)

2 CLS = Cercospora leaf spot, PM = powdery mildew, SBR = sugar beet rust
Note: From day 1 to day 6 there were no significant differences between healthy and diseased treatments;

highlighted date indicates first appearance of visible disease symptom
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4.3.2 Combination of spectral vegetation indices for disease identifi-
cation

The results presented above allow only a classification between healthy and
diseased plants. In a second approach, index combinations were tested to dif-
ferentiate the diseases. Pair-wise correlation coefficients between the SVIs were
calculated in a correlation matrix (Tab. 4.5). Low correlation coefficients indi-
cated high dissimilarity of scatter-plots and thus a suitable index combination
for disease detection and discrimination. Indices based on similar wavelength
or similar regions of the spectrum like NDVI and PSNDa, ND and SR, or mCAI
and SumGREEN, were not suitable for discrimination of healthy and diseased
plants or among the diseases, as indicated by their high correlation coefficient
(NDVI vs. PSNDa r= 0.99; ND vs. SR r = 0.98; mCAI vs. SumGREEN
r = - 0.99). Combinations of SVIs like ARI and SIPI (r = -0.60), MCARI
and SR (r= -0.21), BGI2 and PRI (r= -0.09), or WI and MCAI (r= -0.03)
were weakly correlated or not correlated, which indicated suitable combina-
tions for disease separation. Scatter matrixes for all index combinations were
mapped and the best differentiating combinations were examined (Fig. 4.14,
Fig. 4.15). Divergent scatter plots denoted robust index combinations to dis-
tinguish between the different diseases.

Plots of SIPI, PSSRa, PSSRb and NDVI, SumGREEN and SumVIS as well as
REP, PSRI, PRI versus each other resulted in stacked scatter plots (Fig. 4.14).
The discriminative potential of these combinations was low; the classes inter-
fered with each other. Combinations including the ARI, except those with PSRI
and PRI, respectively, showed obvious divergent scatter plots for diseased and
healthy leaves, as well as among the diseases. Most pronounced differences were
observed for the combination ARI vs. SIPI, ARI vs. NDVI, BGI2 vs. PRI. In
particular similar results could be noticed for ARI vs. mCAI.

79



4.3.Spectralvegetation
indices

as
indicators

of
plant

status
and

their
correlation

to
diseases

Table 4.5: Correlation1 matrix between calculated spectral vegetation indices from healthy sugar beet leaves and sugar beet leaves affected with
Cercospora leaf spot, powdery mildew, and sugar beet rust during measuring period. Low correlation coefficients (r) indicate high dissimilarity of
scatter-plots and thus a robust index combination for disease detection and discrimination. High correlation coefficients and thus inappropriate
index combinations are highlighted.

1 correlation was calculated as Pearsons coefficient of correlation (r); asterisk marks denote significant correlation with p = 0.01, n = 2520;
highlighted combination denote high correlation, with r ≥ 0.7
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The combination between SumVIS and PSRI offers potential to discriminate
between healthy, Cercospora leaf spot, and powdery mildew (Fig. 4.15). Scatter
plots for the healthy class is aggregated on the left bottom of the graph, while
powdery mildew scatter plots are orientated in a straight line to the upper left
and Cercospora leaf spot scatter plots to the right middle. Sugar beet rust
interferes with Cercospora leaf spot scatter plots and was not distinguishable
by this combination.

Figure 4.14: Scatter matrix of spectral vegetation indices combinations for the discrimination of three
leaf diseases of sugar beet, divergent scatter-plots denote a robust index combination for disease detection
and discrimination. Best divergent combinations were ARI vs. NDVI, ARI vs. SIPI, mCAI vs. ARI,
and mCAI vs. SIPI.
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Figure 4.15: Scatter matrix continued. Best divergent combinations were SumVIS vs. ARI, BGI2 vs.
PRI, and in particular to discriminate Cercospora leaf spot diseased plants from sugar beet rust diseased
plants MCARI vs. ARI and MCARI vs. PSRI.

Studying the combination ARI vs. SIPI in more detail showed that the severity
of diseases biased the scatter plots (Fig. 4.16). Values from leaves with low
disease severity were placed in the same region of the plot, irrespective of the
disease. With increasing disease severity, Cercospora leaf spot values changed
to lower SIPI values and increasing ARI values. For higher sugar beet rust
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severities only an increase in ARI values could be observed, whereas the SIPI
remained constant. The distribution of powdery mildew values was highly
divergent with constant ARI values, while SIPI values explicitly decreased with
increasing disease severity.

Figure 4.16: Scatter matrix between the spectral vegetation indices ARI and SIPI for healthy sugar beet
leaves and diseased leaves. Colours display disease severity. Each treatment has a typical orientation in
the coordinate system, thus a differentiation using this index combination seems feasible.

4.4 Detection and classification of plant diseases with

Support Vector Machines based on spectral

vegetation indices

The following results were achieved in cooperation with Till Rumpf, Institute of
Geodesy and Geoinformation, Department of Geoinformation, University Bonn,
using Support Vector Machines (SVMs) with SVIs as features for detection and
classification of the diseases.
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4.4. Detection and classification of plant diseases with Support Vector Machines based on spectral
vegetation indices

4.4.1 Dichotomous classification between healthy and diseased sugar
beet leaves

In a first dichotomous approach Support Vector Machines were used for the
differentiation between two classes, non-inoculated, healthy leaves and leaves,
inoculated with one of the three leaf pathogens, respectively. Eight SVIs (NDVI,
SR, SIPI, PSSRa, PSSRb, ARI, REP, mCAI) and SPAD-values were used as
features for classification. The results showed that the specificity of classifica-
tion was always above its sensitivity. Accuracy ranged from 93% to almost 97%
(Tab. 4.6).

The classification accuracy increased with increasing disease severity (Fig. 4.17).
Differences in the number of leaves per disease give additional information on
the reliability of classification results. With only 1% to 2% diseased leaf area,
the classification accuracy was about 65% for all diseases. The accuracy of dif-
ferentiating between healthy leaves and leaves with Cercospora leaf spot symp-
toms rapidly increased with 3% to 5% disease severity. When more than 10%
of the leaf area was covered by leaf spots, the classification accuracy reached
100% (Fig. 4.17). The accuracy of detecting symptoms of sugar beet rust and
powdery mildew was lower at low disease severities. For sugar beet rust classifi-
cation accuracy reached 95% when disease severity was above 6%. Leaves with
powdery mildew could be differentiated from healthy leaves with an accuracy
of about 95% when 10% to 15% of the leaf area was diseased (Fig. 4.17).

Table 4.6: Classification result of the dichotomous classification between healthy and diseased sugar
beet leaves based on spectral vegetation indices using Support Vector Machines.

Leaf disease Accuracy [%] Specificity [%] Sensitivity [%]

Cercospora leaf spot 96.68 97.84 95.45
Sugar beet rust 96.20 97.14 95.14
Powdery mildew 93.18 94.80 91.40
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Figure 4.17: Classification result of non-inoculated sugar beet leaves and sugar beet leaves with three
diseases depending on disease severity (numbers within bars denote class size).

4.4.2 Multi-class classification among healthy leaves and leaves with
specific disease symptoms

Tab. 4.7 summarises the results of the model learned which classified healthy
sugar beet leaves and leaves diseased with Cercospora leaf spot, sugar beet
rust, and powdery mildew, respectively (multi-class classification). The overall
classification accuracy was better than 88%, differences between the classes
were low. The class recall of each class ranged between 84% and > 92%. The
class of healthy leaves was classified best. Classification difficulties occurred in
separating between sugar beet rust and Cercospora leaf spot and also in the
classification between powdery mildew and healthy sugar beet leaves.

4.4.3 Classification of healthy leaves and leaves inoculated with fun-
gal pathogens at early stages of pathogenesis

For the differentiation between healthy sugar beet leaves and leaves inoculated
with one of the pathogens before specific disease symptoms became visible,
SVI data were used starting 3 dai. First symptoms of Cercospora leaf spot
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Table 4.7: Classification results of the multi-class classification between healthy and diseased sugar
beet leaves based on spectral vegetation indices using Support Vector Machines.

Ground truth
Cercospora Sugar beet Powdery ClassPrediction Healthy
leaf spot rust mildew precision

Healthy 942 32 47 69 86.42%
Cercospora leaf spot 12 748 61 13 89.69%
Sugar beet rust 20 88 622 14 83.60%
Powdery mildew 46 12 10 834 92.46%

Class recall 92.35% 85.00% 84.05% 89.68% 88.12%

appeared 6 dai, rust 8 dai, and powdery mildew 5 dai. Leaves inoculated with
C. beticola were correctly classified by SVMs with an accuracy range from 65%
to 80%, even before symptoms became visible (Fig. 4.18 A). When specific
symptoms occurred 6 dai, the classification accuracy increased until 12 dai
when it converged at 100%. Throughout the 21 days of the experiment, the
classification accuracy of the automatic procedure was consistent to visually
classified Cercospora leaf spot-infected leaves. The classification accuracy of
healthy leaves was almost 87% 3 dai and reached > 95% 8 dai and later.

Although first symptoms of sugar beet rust appeared only 8 dai, a classification
accuracy of 90% for U. betae-infected leaves was reached 3 to 5 dai (Fig. 4.18 B).
One day before first rust symptoms became visible, the sensitivity decreased to
about 71% and increased again 15 dai to > 98%. The results of the automatic
classification were inferior to visual ratings only between 12 and 14 dai. Healthy
sugar beet leaves were classified with an accuracy of 72% at early stages of leaf
colonization by U. betae, but from 10 dai the classification accuracy was always
> 95%.

Already 3 dai the classification accuracy of powdery mildew was > 80% and
increased to almost 92% 5 dai (Fig. 4.18 C). After the appearance of first
visible colonies the classification rate decreased < 70% 6 dai, and subsequently
increased again from 10 to 20 dai > 95%. In contrast to the results for the leaves
colonized by the other pathogens the visual classification of E. betae-infected
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leaves was superior (13% to 23%) to the automatic classification procedure from
6 to 9 dai. In the beginning of the experiment, the classification rate of healthy
leaves was > 91%; in the third week, however, it decreased to 77% 20 dai.

Figure 4.18: Effect of incubation time on the Support Vector Machines classification based on SVIs
between healthy sugar beet leaves inoculated with Cercospora beticola (A), Uromyces betae (B), and
Erysiphe betae (C), respectively.
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4.5 Hyperspectral imaging for disease detection,

identification, and quantification

Hyperspectral imaging data assessed with the hyperspectral camera ImSpector
V10 enables – in contrary to non-imaging hyperspectral data – both, the spatial
and temporal observation of disease development.

4.5.1 Pixel-wise attribution of spectral signatures during disease de-
velopment

4.5.1.1 Spectral signatures of mature symptoms

Hyperspectral imaging enables the observation changes in sugar beet leaf tissue
due to the foliar diseases Cercospora leaf spot, powdery mildew, and sugar beet
rust on the pixel level. Changes in spectral reflectance of healthy leaf tissue
due to growth and senescence processes can be recorded as well. The spectral
signatures from a transect through healthy leave tissue is plotted in Fig. 4.19
A, where each spectrum belongs to one pixel from the transect. Spectral re-
flectance of healthy leaf tissue from adjacent pixels over a leaf segment was quite
homogeneous. Minor variations can be explained by the natural heterogeneity
of the surface, the surface structure of sugar beet leaves, and the interaction
with incoming light.

Cercospora leaf spot
Spectral reflectance from a transect through a mature Cercospora leaf spot
symptom showed obvious differences, depending to the region of the symptom
(Fig. 4.19 B). Reflectance of tissue from the margin of a leaf spot increased
in the VIS and decreased in the NIR. Spectra from the necrotic centre were
characterized by increased reflectance in the VIS and NIR; the slope at the red
edge position was lower.

88



4. RESULTS

Powdery mildew
Reflectance of leaf tissue diseased with powdery mildew was increasing, depend-
ing on the density of the mycelial cover of the leaf surface (Fig. 4.19 C). Spectral
reflectance of the margin of a powdery mildew colony was characterized by an
obvious increase of reflectance in the VIS and a minor increase in the NIR.
With higher mycelia density in the centre of a colony, reflectance increase in
the VIS and NIR became more pronounced.

Sugar beet rust
Changes in spectral signatures caused by sugar beet rust were less obvious, in
fact of the small symptom size and the less destructive interaction with the
host plant (Fig. 4.19 D). The margin from healthy tissue to a rust pustule was
characterized by a general decrease in reflectance. The centre of rust pustules
revealed inferior reflectance values around the green peak.

4.5.1.2 Changes in spectral signatures during pathogenesis

In addition to characteristic spectral signatures of distinctive regions of a symp-
tom, the developmental stages had an effect on spectral reflectance (Fig. 4.20).
Spectral signature of a one day-old Cercospora leaf spot symptom showed
marginal differences to healthy leaf tissue (Fig. 4.20 A). With further symp-
tom development, reflectance in the VIS increased most explicit between 580
to 700 nm. Reflectance in the NIR declined consistent with advanced age of
symptoms and the slope at the red edge position became less steep.

For pixels representing powdery mildew, reflectance in the VIS and NIR in-
creased with time. Reflectance of a three day-old symptom in the VIS was al-
ready 0.05%/100 higher than reflectance of an one day-old symptom (Fig. 4.20
B). Reflectance further increased with the maturation of powdery mildew
colonies.
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Figure 4.19: Impact of foliar diseases on the spectral reflectance of sugar beet leaves, pixel-wise re-
flectance spectra of a transect trough leaf tissue from hyperspectral imaging. (A) Healthy tissue and
mature symptoms of (B) Cercospora leaf spot, (C) powdery mildew, and (D) sugar beet rust.

Single uredia of sugar beet rust occurred late in the measuring period. Hence,
temporal evolution of the symptoms was monitored over five days only. Spec-
tral reflectance of a one and a two day old symptom showed no significant
difference to reflectance of healthy tissue (Fig. 4.20 C). Minor changes between
healthy tissue and three day-old rust pustules were detected between 550 to
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700 nm. Reflectance decrease of little account at 750 nm was observable for
almost mature uredina.

Figure 4.20: Changes in spectral signatures of sugar beet disease during maturation of symptoms,
starting from the first appearance of symptoms. Reflectance spectra were obtained from imaging data
by pixel-wise extraction from regions of interest. (A) Cercospora leaf spot, (B) powdery mildew, and
(C) sugar beet rust.
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4.5.2 Spatial illustration of vegetation indices during disease
development

Spectral vegetation indices, calculated from hyperspectral imaging data,
facilitate to highlight diseased leaf tissue and to discriminate among healthy
and diseased leaf area on the spatial scale. The correlation of a SVI to a spe-
cific disease differs depending on the biochemical and biophysical parameters
affected and described by SVIs.

Cercospora leaf spot
Fig. 4.21 visualizes eight spectral vegetation indices calculated from hyperspec-
tral imaging data of a sugar beet leaf diseased by Cercospora leaf spot. The
visual disease severity on the RGB image (R: 639 nm, G: 551 nm, B: 458 nm)
of the sugar beet leaf was 20% 14 dai (Fig. 4.21 A). NDVI values enabled a
clear separation of healthy leaf areas and area with Cercospora leaf spots by
bright and dark pixels, respectively (Fig. 4.21 B). Similar results were obtained
for SR and SIPI, but these SVIs were more sensitive to differences in leaf to-
pography and different illumination conditions (Fig. 4.21 C, G). The use of
SumGREEN, mCAI, and REP revealed a lower discriminating potential of the
SVIs (Fig. 4.21 D, E, F). Values of REP from diseased leaf tissue appear as dif-
fuse spots, not clearly distinguishable from healthy tissue (Fig. 4.21 F). Explicit
visual differentiation of healthy and diseased leaf tissue by these SVIs seems not
possible. As already proven on non-imaging hyperspectral data, the ARI was
correlated positively to disease severity of Cercospora leaf spot. Hence, bright
pixels in the false-colour image denote symptoms of Cercospora leaf spot and
darker pixels denote healthy leaf tissue (Fig. 4.21 H). False-colour image of WI
values highlighted a distinctive detection of the Cercospora leaf spot symptoms
(Fig. 4.21 I). The WI was largely insensitive to differences in leaf topography
and illumination conditions. The leaf was displayed as a homogenous, grey
coloured plane with disease symptoms highlighted in black. Another advantage
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of this index was the clear separation of healthy and diseased leaf tissue from
leaf veins, which were coloured in white.

Powdery mildew
The same spectral vegetation indices calculated from hyperspectral imag-
ing data revealed differences in their suitability to detect powdery mildew
(Fig. 4.22). Fig. 4.22 A is a RGB image of a sugar beet leaf, with powdery
mildew at 30% disease severity. Powdery mildew mycelium covered the middle
part of the leaf and tissue around the leaf veins. A distinctive separation of
healthy and diseased leaf parts was feasible calculating the NDVI (Fig. 4.22 B),
SR (Fig. 4.22 C), and SIPI (Fig. 4.22 G). The SumGREEN index accentuated
healthy, green parts by low values, displayed by dark pixels in the SVI false-
colour image (Fig. 4.22 D). This SVI was therefore highly suitable to detect
powdery mildew diseased areas of sugar beet leaves. The mCAI, REP, ARI,
and WI were not convenient for the detection of powdery mildew (Fig. 4.22 E,
F, H, I).

Sugar beet rust
The detection of sugar beet rust by the use of SVIs calculated from hyper-
spectral imaging data was most demanding. Due to the small symptom size,
and thus the high amount of mixed pixel in hyperspectral data, only few SVIs
highlighted symptoms caused by U. betae (Fig. 4.23). A magnified sub-square
of a sugar beet rust diseased leaf and the use of different SVIs is illustrated in
Fig. 4.23. The small, 0.5 to 1 mm sized rust pustule in the upper middle of
the leaf segment was only detectable by the MCARI, PSRI, and ARI. However,
a separation from heterogenic leaf tissue like leaf veins or leaf concavity was
difficult.
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Figure 4.21: Use of spectral vegetation indices calculated from hyperspectral imaging data of a sugar
beet leaf with Cercospora leaf spot, for the separation of healthy and diseased plant tissue 17 dai. (A)
RGB image, (B) NDVI, (C) SR, (D) sumGREEN, (E) mCAI, (F) REP, (G) SIPI, (H) ARI, (I) WI.
Spectral vegetation indices were visualized by a grey-scale false-colour image, black pixel denote lower
SVI-values and white pixel higher SVI-values.
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Figure 4.22: Use of spectral vegetation indices calculated from hyperspectral imaging data of a sugar
beet leaf with powdery mildew. Separation of healthy and diseased plant tissue 14 dai. (A) RGB
image, (B) NDVI, (C) SR, (D) sumGREEN, (E) mCAI, (F) REP, (G) SIPI, (H) ARI, (I) WI. Spectral
vegetation indices are visualized by a grey-scale false-colour image, black pixel denote lower SVI-values
and white pixel higher SVI-values.

95



4.5. Hyperspectral imaging for disease detection, identification, and quantification

Figure 4.23: Use of spectral vegetation indices calculated from hyperspectral imaging data of a sugar
beet leaf segment with sugar beet rust. Separation of healthy and diseased plant tissue 17 dai. (RGB
image, SVIs calculated: NDVI, REP, sumGREEN, mCAI, MCARI, PSRI, ARI. SVIs are visualized by
a grey-scale false-colour image, black pixel denote lower SVI-values and white pixel higher SVI-values).

4.5.2.1 Binary classification of healthy and diseased leaf tissue by
spectral vegetation indices

Based on SVIs from hyperspectral imaging data, a binary classification model
for each sugar beet disease was developed in coorporation with Thorsten Mewes,
Centre for Remote Sensing and Land Surfaces, University of Bonn. Twenty-
eight SVIs were calculated from hyperspectral imaging data. Values of SVIs
were visualized in false-colour images (Fig. 4.24; Fig. 4.25). In a next step
disease responsive SVIs were determined manually and threshold-values of SVIs
were defined for each disease and each spectral vegetation index, respectively
(Tab. 4.8). SVIs values greater or lower than threshold-values were displayed
in a binary disease image with black (non-diseased) and white (diseased) pixels
(Fig. 4.24; Fig. 4.25).
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Figure 4.24: Differentiation of healthy and diseased sugar beet leaf tissue by calculating spectral vegetation indices and creating binary images,
0, 8, 11, 14, 17, and 20 days after inoculation. Pixels representing Cercospora leaf spot were assessed using the NDVI with a threshold of < 0.6.
For the binary images, white pixel denote diseased leaf tissue, black pixel denote healthy leaf tissue.
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Figure 4.25: Differentiation of healthy and diseased sugar beet leaf tissue by calculating spectral vegetation indices and creating binary images,
0, 8, 11, 14, 17, and 20 days after inoculation. Pixels representing powdery mildew were assessed using the PSSRb with a threshold of < 5. For
the binary images, white pixel denote diseased leaf tissue, black pixel denote healthy leaf tissue.
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Table 4.8: Threshold values to distinguish healthy and diseased tissue of sugar beet leaf to create
binary images of diseased leaf tissue and coefficient of determination of visually assessed disease severity
and automatically classified disease severities by different vegetation indices.

Disease2

Index Threshold1 CLS PM SBR

SumGreen > 0.2 0.44 0.57 0.01
NDVI < 0.6 0.98 0.69 0.06
SR < 2 0.96 0.36 0.31
SIPI < 0.6 0.37 0.68 0.19
PSSRa < 0.5 0.89 0.87 0.14
PSSRb < 0.5 0.77 0.93 0.07
PSSRc < 0.5 0.46 0.86 0.11
PSNDa < 0.6 0.98 0.68 0.06
PSNDb < 0.55 0.97 0.64 0.06
PSNDc < 0.55 0.75 0.50 0.17
ARI < 0.1 0.95 0.45 0.67
1 pixels with spectral vegetation indices values greater/or lower
than threshold values were classified as diseased

2 correlation was calculated as Pearsons coefficient of correlation
(r), asterisk marks denote significant correlation with ** p =
0.01, and * p = 0.05, n=50; bold numbers indicate high corre-
lation

Conformance of visible symptoms in the RGB image with parts of the leaves
classified as Cercospora leaf spot or powdery mildew diseased was obvious
(Fig. 4.24; Fig. 4.25). Because of low correlation, images for sugar beet rust are
not shown.

Quantification of diseased and healthy leaf area from binary disease images was
possible in a next step. High coefficients of determination could be obtained
for the relationship between SVIs-based automatically classified disease severity
and visually assessed disease severity (Fig. 4.26). For Cercospora leaf spot de-
tection, the NDVI

(
R2 = 0.98

)
, PSNDa/b

(
R2 = 0.98

)
, and SR

(
R2 = 0.96

)
showed best correlation (Tab. 4.8). The PSSRa, b, and c fitted best for pow-
dery mildew

(
R2 = 0.87, R2 = 0.93, R2 = 0.86, respectively

)
. The quantifica-

tion of sugar beet rust by the ARI gave lower correlation to visual assessment(
R2 = 0.67

)
. All other SVIs were not significantly correlated to the results of

automatic disease severity classification of sugar beet rust.
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Figure 4.26: Correlation between spectral vegetation index based versus visually disease assessment.

4.5.3 Spectral angle mapper classification for the assessment of fo-
liar leaf diseases from hyperspectral images and its ability to
distinguish multiple disease symptoms

Based on hyperspectral imaging data the SAM was used to distinguish healthy
and diseased sugar beet tissue and to detect disease specific symptoms of dif-
ferent peculiarities. Characteristic endmember spectra from healthy tissue and
disease symptoms were extracted from hyperspectral imaging data and stored
in a spectral library. Each endmember represents a to distinguish class. Back-
ground, grid wire, and leaf veins were masked out and coloured in black.

Cercospora leaf spot
For Cercospora leaf spot classification, the three classes ’healthy’ sugar beet
tissue, ’margin’ of Cercospora leaf spots, and their necrotic ’centre’ were chosen.
The SAM classification resulted in false-colour class images (Fig. 4.27), where
green colour denote ’healthy’ leaf tissue, red pixels belong to the class ’margin’,
and yellow pixels denote ’necrotic’ centre of Cercospora leaf spots. The first
row of Fig. 4.27 shows RGB images of the classified hyperspectral data cube.
No visible symptoms of Cercospora leaf spot occurred 0 dai and 8 dai. The
result of the SAM, shown in the second row, was similar; the whole leaf area
was classified as healthy leaf tissue. Eleven days after inoculation first sporadic
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symptoms became visible as sunken necrotic leaf tissue. Early symptoms of
Cercospora leaf spot were classified as margin of Cercospora leaf spot with high
reliability. However, non-diseased leaf tissue next to the grid wire and leaf
veins was inaccurately classified as margin of Cercospora leaf spot. Symptoms
of different development stages were found on the RGB images 14 dai. Fully
developed Cercospora leaf spots next to emerging spots were assessed. False-
colour SAM classification gave similar images to the ground truth RGB image.
Healthy leaf tissue appeared as green pixels, the margin was correctly classified
in red, and scattered necrotic centres were displayed as yellow pixels. Minor
misclassified pixels around the grid wire and leaf border were visual. Healthy
and diseased leaf tissue was reliably detected by the SAM classifier also 17 dai,
when larger, coalescing necrotic areas due to Cercospora leaf spot appeared.

Classification results of the SAM algorithm were validated using a confusion
matrix (Tab. 4.9). On the first day of the measuring period, 99.89% of the
total leaf area was classified as healthy leaf tissue (overall accuracy of 99.88%).
Only 0.11% of the healthy leaf tissue remained unclassified. The very high
kappa coefficient of 0.99 underlines the agreement between ground truth data
and classification result. Similar results were obtained 8 dai. Only 1.1% of
the healthy leaf tissue was unclassified with an overall classification accuracy
of 98.9% and a kappa coefficient of 0.99. Classification accuracy decreased
to 89.58% with a kappa coefficient of 0.52, 11dai; 11.2% of healthy area was
classified as margin of a Cercospora leaf spot, whereas 9% of the margin was
unclassified or classified as healthy tissue. With higher disease severity and
mature symptoms, classification accuracy increased to 96.58% and a kappa
coefficient of 0.92, 14 dai. Differentiation between healthy leaf tissue and the
margin of Cercospora leaf spots and between the margin of a Cercospora leaf
spot and the necrotic centre was demanding. At this time of disease progress
the diseased leaf area was classified as 7.61%. Seventeen days after inoculation
the SAM classification resulted in 20.95% leaf area diseased by Cercospora leaf
spot (overall accuracy = 99.73, kappa coefficient = 0.98).
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Figure 4.27: Automatic classification of Cercospora leaf spot using spectral angle mapper (SAM) algorithm. The three classes ’healthy’ (green),
’margin’ of Cercospora leaf spots (red), and ’necrotic centre’ of Cercospora leaf spot (yellow) were separated at different disease severity stages
with a maximum angle threshold of 0.1◦.
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Table 4.9: Classification accuracy of spectral angle mapper classification of Cercospora leaf spot diseased
leaves during disease progress.

Days after inoculation 0

Ground truth

Class Healthy Margin Centre Total

unclassified 0.11 0 0 0.11
Healthy 99.89 0 0 99.89
Margin 0 0 0 0
Centre 0 0 0 0

Overall = 99.88, Kappa = 0.99

Days after inoculation 8

Ground truth

Class Healthy Margin Centre Total

unclassified 1.1 0 0 1.1
Healthy 98.9 0 0 98.9
Margin 0 0 0 0
Centre 0 0 0 0

Overall = 98.90, Kappa = 0.99

Days after inoculation 11

Ground truth

Class Healthy Margin Centre Total

unclassified 0 6.67 0 0.53
Healthy 88.82 2.22 0 92.91
Margin 11.18 91.11 0 6.56
Centre 0 0 0 0

Overall = 89.01, Kappa = 0.53

Days after inoculation 14

Ground truth

Class Healthy Margin Centre Total

unclassified 0 0 0.1 0
Healthy 100 4.78 0 92.39
Margin 0 93.53 16.07 6.18
Centre 0 1.79 83.82 1.43

Overall = 96.58, Kappa = 0.92

Days after inoculation 17

Ground truth

Class Healthy Margin Centre Total

unclassified 0 0 0 0
Healthy 87.5 1.08 0 79.05
Margin 12.5 98.92 0 15.01
Centre 0 0 100 5.94

Overall = 98.73, Kappa = 0.98

103



4.5. Hyperspectral imaging for disease detection, identification, and quantification

Powdery mildew
For powdery mildew classification, the classes ’healthy’ sugar beet tissue, ’light
mycelium’, and ’dense mycelium’ of powdery mildew were chosen. When the
entire tissue was healthy, the total leaf area was classified as healthy leaf tissue
by the SAM algorithm 0 dai (Fig. 4.28). A visible powdery mildew mycelium
colony appeared 8 dai in the right middle of the sugar beet leaf and next to
the branching leaf veins. These parts were coloured in yellow and red in the
classification image, according to the chosen endmembers. The powdery mildew
coverage enlarged with time, first over the entire right leaf side, followed by
the upper left leaf area. SAM classification images were in accordance with
visually assessed disease symptoms. Verifying the classification accuracy using
a confusion matrix, high classification accuracies > 94% were reached over the
measuring period (Tab. 4.10). A classification accuracy of 100% and a perfect
agreement (kappa coefficient = 1) between classification result and ground truth
data was reached. An overall classification accuracy of 94.3% and a kappa
coefficient of 0.88 was computed 8 dai.

Minor difficulties in separating between healthy tissue and tissue covered by
light mycelium occurred; some parts of the dense mycelium remained unclas-
sified. 12.6% misclassification of light mycelium as healthy leaf tissue resulted
in a 96.8% classification accuracy (kappa coefficient = 0.91), 11 dai. With fur-
ther disease development a distinctive separation between healthy and diseased
sugar beet leaf tissue was possible, 100% of the ground truth class ’healthy’
were classified correctly 14 dai and 17 dai, respectively.

The separation between light and dense powdery mildew mycelium resulted in
6% misclassification 14 dai and reduced overall classification accuracy to 97.2%
(kappa coefficient = 0.95). Seventeen days after inoculation, 11.9% of the light
mycelium was classified as dense mycelium, and 25% vice versa. The higher
rate of misclassification caused a comparatively lower classification accuracy of
90.11% (kappa coefficient = 0.84).
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Figure 4.28: Automatic classification of powdery mildew using spectral angle mapper (SAM) algorithm. The three classes ’healthy’ (green),
’light mycelium’ of powdery mildew (yellow), and ’dense mycelium’ of powdery mildew (red) were separated at different disease severity stages
with a maximum angle threshold of 0.1◦.
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Table 4.10: Classification accuracy of spectral angle mapper classification of powdery mildew diseased
leaves during disease progress.

Days after inoculation 0

Ground truth

Class Healthy Light mycelium Dense mycelium Total

unclassified 0 0 0 0
Healthy 100 0 0 100
Light mycelium 0 0 0 0
Dense mycelium 0 0 0 0

Overall = 100, Kappa = 1

Days after inoculation 8

Ground truth

Class Healthy Light mycelium Dense mycelium Total

unclassified 0 0 3.49 0.41
Healthy 94.04 4.44 0 85.16
Light mycelium 5.96 94.07 0 9.69
Dense mycelium 0 1.48 96.51 4.74

Overall = 94.34, Kappa = 0.88

Days after inoculation 11

Ground truth

Class Healthy Light mycelium Dense mycelium Total

unclassified 0 0 0 0
Healthy 99.92 12.62 0 80.63
Light mycelium 0.08 77.1 0 10.65
Dense mycelium 0 10.28 100 8.72

Overall = 96.79, Kappa = 0.91

Days after inoculation 14

Ground truth

Class Healthy Light mycelium Dense mycelium Total

unclassified 0 0 0 0
Healthy 100 0 0 58.06
Light mycelium 0 93.63 6.82 20.38
Dense mycelium 0 6.37 93.18 21.56

Overall = 97.23, Kappa = 0.95

Days after inoculation 17

Ground truth

Class Healthy Light mycelium Dense mycelium Total

unclassified 0 0 0.29 0.09
Healthy 100 0 0 49.87
Light mycelium 0 88.07 25 25.71
Dense mycelium 0 11.93 74.71 24.33

Overall = 90.18, Kappa = 0.84
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Sugar beet rust
The small size of U. betae uredia and the low disease severity complicated clas-
sification of sugar beet rust by the SAM algorithm. Additionally, the spatial
resolution of the camera system limited the detection of rust pustules and re-
sulted in high amount of mixed pixels. First rust pustules became visible 20
days after inoculation. Before this day, no classification of sugar beet rust in-
oculated sugar beet leaves was possible. Fig. 4.29 illustrates the difficulties of
classifying sugar beet rust pustules based on hyperspectral data.

Figure 4.29: Automatic classification of sugar beet rust using spectral angle mapper algorithm on leaf
scale and zoom into one sub-square. Mature symptoms (red) were separated from healthy leaf tissue
(green), 20 days after inoculation. Black pixel denote unclassified pixel.
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In the RGB image sugar beet rust uredia, marked by black arrows, were hardly
detectable by the naked eye. The high magnification of one leaf sub-square,
containing characteristic sugar beet rust pustules is shown on the bottom left
of Fig. 4.29. Structures were diffuse without distinctive separation of the various
components. However, nearly all rust pustules were detected by the SAM algo-
rithm correctly, but there was a high amount of misclassified pixels (Fig. 4.29,
right side). Numerous pixels next to the grid wire and along the leaf border
were classified as sugar beet rust. Likewise, it was not possible to assign the
entire healthy leaf parts to the class ’healthy’. As a consequence, the post
classification based on ground truth data yielded in an overall classification ac-
curacy of 61.7% with a low kappa coefficient of 0.56 (Tab. 4.11), with 15.98%
unclassified healthy leaf area and 15.12% unclassified symptoms of sugar beet
rust. Differentiation between healthy leaf parts and symptoms of sugar beet
rust was also not fulfilling; 20.67% of the rust pustules were classified as healthy
and 4% of the healthy tissue was classified as rust.

Table 4.11: Classification accuracy of spectral angle mapper classification of sugar beet rust diseased
leaves with mature symptoms.

Days after inoculation 20

Ground truth

Class Healthy Rust Total

unclassified 15.98 15.12 15.98
Healthy 80.02 20.67 82.13
Rust 4.00 64.21 2.89

Overall = 61.70, Kappa = 0.56
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4.6 Monitoring of plant diseases on the field scale using

remote sensing technologies

The temporal and spatial disease development on the field scale was observed by
different hyperspectral airborne and handheld sensors at different times during
vegetation period, at the experimental station Klein-Altendorf 2008.

4.6.1 Spatial soil heterogeneity

The EM 38 measurements of the area showed only marginal variability of the
apparent electrical conductivity (ECa, Fig. 4.30). With ECa values from 23.5
to 46.5 mS m−1 the soil texture was quite heterogeneous, indicating loamy silt
at high field moisture capacity. However, most parts of the field had ECa values
from 23.5 to 30.2 mS m−1, indicating a rather homogeneous soil texture.

Figure 4.30: Variability of the apparent electrical conductivity (ECa) at the field site Klein-Altendorf,
measured with EM38 soil sensor on 15th of April 2008.
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4.6.2 Progress of Cercospora leaf spot and powdery mildew

At the field site Klein-Altendorf 2008, powdery mildew was the dominant fo-
liar sugar beet disease (Fig. 4.31 B). In July sugar beet plants were healthy
throughout the field, diseased sugar beet plants could not be monitored in the
two plots. In early August, average disease severity of Cercospora leaf spot and
powdery mildew in the untreated plot were 0.3% and 5% diseased leaf area, re-
spectively (Fig. 4.31 A, B). Only a few clusters of Cercospora leaf spot diseased
plants were detected in the untreated plot (Fig. 4.32 A). Two Cercospora leaf
spot patches with disease severity up to 7% were identified. Around these dis-
ease centres, single plants infested with Cercospora leaf spot were monitored.
Fungicide-treated sugar beet plants remained almost healthy, solitary plants
with single Cercospora leaf spot spots were detected in the southern part of the
fungicide-sprayed plot. Plants with higher intensity of powdery mildew were
aggregated in the western part of the untreated plot (Fig. 4.32 C).

From this part of the field declining powdery mildew severity declined towards
the fungicide-treated plot. In September, increasing disease severity of both
diseases was visually assessed in both plots (Fig. 4.31 A, B). Cercospora leaf
spot appeared in patches with 12% disease severity in the untreated plot and
2% diseased leaf area in the fungicide treated plot, respectively. In general,
only few plants with Cercospora leaf spot ratings up to 35% diseased leaf area
could be monitored in the northern part of the non-treated plot (Fig. 4.32 B).

Sugar beet plants with high Cercospora leaf spot infection exhibited lower pow-
dery mildew infection and vice versa (Fig. 4.32 B, D). Mean disease severity
of powdery mildew increased to 67% over the area in the untreated plot, and
uniformly to 22% diseased leaf area in the fungicide-treated plot (Fig. 4.31 B).
In the untreated plot, higher powdery mildew disease severities were monitored
in the western and southern part (Fig. 4.32 D).

110



4. RESULTS

Figure 4.31: Disease progress of Cercospora leaf spot (A) and powdery mildew (B) on sugar beet,
Klein-Altendorf 2008.

Figure 4.32: Spatial distribution of disease severity of Cercospora leaf spot (A, B) and powdery mildew
on 6th of August (A,C) and 9th of September (B,D), Klein-Altendorf 2008.
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4.6.3 Impact of plant diseases on sugar beet biomass

Significant differences in plant biomass, assessed as leaf dry matter were de-
tected in the growth period (Fig. 4.33). In early July mean leaf biomass of
20 sugar beets, from 5 sampling points in the plots, did not vary significantly.
Overall biomass of sugar beet leaves increased from July to August. In August,
dry matter of fungicide-treated sugar beet leaves was higher than that from
non-treated plants, although without statistically significances. Leaf biomass
in September was lower than in August, with a significantly lower dry matter of
untreated sugar beets compared to sugar beet leaves from the fungicide-treated
plot.

Figure 4.33: Impact of fungicide treatment on plant biomass from sugar beet canopy, sampled at
different measuring dates during growth period of sugar beet, Klein-Altendorf 2008 (bars denote standard
derivation, dry matter values within one sampling date with different letters are significantly different
according to Students t-test, p = 0.5).
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4.6.4 Multi-temporal and multi-sensoral monitoring of diseases

The NDVI is the most common vegetation index in remote sensing and gives
information on crop biomass and plant vitality. Therefore, NDVI values were
calculated pixel-wise for the classification of the ROSIS and HyMap images
(Fig. 4.34). In July, NDVI values were distributed homogeneously over the
experimental field; no significant differences could be detected at this early
stage of the growth period (Fig. 4.34 A). By this time no fungicide treatment
had been applied and no fungal infection of sugar beet plants could be assessed
visually.

In early August, however, NDVI values showed a general spatial trend. NDVI
values in the untreated plot were obviously lower than in the fungicide-treated
plot. Because the NDVI is negatively correlated to disease severity, this sensor
based information coincided with early infection patterns in the field (Fig. 4.31
B; Fig. 4.35). A cluster of lower NDVI values appeared in the south western
part of the field (Fig. 4.34 B). A coefficient of determination of R2 = 0.69
was calculated for the NDVI with incidence of powdery mildew symptoms and
powdery mildew disease severity. NDVI values of the sprayed plot were around
0.9, while NDVI values of the untreated plot declined to 0.88. Due to low
Cercospora leaf spot disease severity, Cercospora leaf spot and NDVI were not
correlated.

From non-imaging hyperspectral data, measured with the ASD FieldSpec in
September, various spectral vegetation indices were calculated. All SVIs were
significantly correlated to disease severity of Cercospora leaf spot and powdery
mildew, respectively (Tab. 4.12). The NDVI showed a strong negative correla-
tion to powdery mildew severity (r = -0.71). Due to the overall low incidence,
the correlation to Cercospora leaf spot was lower (r= -0.48). The mCAI, related
to leaf chlorophyll content, was highly correlated to the disease severity of pow-
dery mildew (r = -0.72) and also showed a correlation to Cercospora leaf spot
(r = -0.60). In this field study, the ARI, an indicator of pigment modifications,
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Figure 4.34: Classified NDVI images calculated from airborne hyperspectral ROSIS data from 1th July,
and HyMap image from 6th August, Klein-Altendorf 2008.

Figure 4.35: Relationship between disease severity of powdery mildew and NDVI calculated from
HyMap scene on 6th August, Klein-Altendorf 2008.
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Table 4.12: Coefficients of correlation between disease severity and spectral vegetation indices for the
leaf diseases of sugar beet on the canopy scale, Klein-Altendorf 2008.

Index Cercospora leaf spot Powdery mildew

NDVI -0.48∗∗1 -0.71∗∗

REP -0.29∗ -0.54∗∗

SR -0.45∗∗ -0.64∗∗

PSSRa -0.45∗∗ -0.65∗∗

PSSRb -0.44∗∗ -0.64∗∗

SIPI -0.44∗∗ -0.69∗∗

ARI 0.73∗∗ 0.79∗∗

mCAI -0.60∗∗ -0.72∗∗

MCARI -0.49∗∗ -0.63∗∗

OSAVI -0.53∗∗ -0.59∗∗

MCARI/OSAVI 0.56∗∗ 0.73∗∗
1 correlation was calculated as Pearsons coefficient of correlation (r) asterisk marks denote
significant correlation with ∗∗ p = 0.01, and ∗ p = 0.05, n = 50

gave the best correlation between index values and disease severity, for both
powdery mildew (r = 0.79) and Cercospora leaf spot (r = 0.73). Also the soil
effect minimizing index combination between MCARI and OSAVI was highly
correlated to powdery mildew (r = 0.73), but lower to severity of Cercospora leaf
spot (r = 0.56). The chlorophyll specific indices PSSRa and PSSRb, MCARI
as well as the additionally tested vegetation indices REP, SR, SIPI, and OSAVI
were lower correlated to pathogen incidence of powdery mildew and Cercospora
leaf spot (Tab. 4.12). Because powdery mildew was the predominant disease in
this growing season, indices highly correlated to powdery mildew severity were
selected and plotted to examine their potential for discriminating the untreated
and fungicide-treated plots (Fig. 4.36). A general gradient between sprayed and
non-sprayed sugar beets was detected. Scatter plots of SVIs from the fungicide-
treated plot could be separated from scatter plots relating to spectral vegetation
indices from the untreated plot.

Comparing the spatial pattern of these index values with that of visual assessed
disease severity levels (Fig. 4.37), the lower NDVI and mCAI values and higher
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ARI and MCARI/OSAVI values followed the spatial distribution of disease
severity for powdery mildew and Cercospora leaf spot. Significant lower NDVI
values have been measured in the untreated plot compared to the sprayed part
of the field (Fig. 4.37 A). A clear differentiation of the treatments by calculating
mCAI and ARI values as well as by the ratio between MCARI and OSAVI seems
possible (Fig. 4.37 B, C, D).

Figure 4.36: Scatter plots displaying the relationship between disease severity of powdery mildew and
spectral vegetation indices NDVI, mCAI, ARI, and MCARI/OSAVI of sugar beet canopy, measured at
growth stage 49, 9th September, Klein-Altendorf 2008.
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Figure 4.37: Classified maps of spectral vegetation indices of sugar beet canopy reflectance, measured
by ASD-FieldSpec at growth stage 49, 9th September, Klein-Altendorf 2008 (n = 50).
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5. DISCUSSION

The main emphasis of this work was to investigate the potential of hyperspectral
sensors for applications in plant pathology and precision crop protection. Reli-
able detection and identification of plant diseases and precise and reproducible
quantification of disease severity are important for predicting yield loss, moni-
toring and forecasting of epidemics, phenotyping for disease resistance breeding,
and for the understanding of fundamental biological processes during disease
progress. In this work high attention has given to the three key points, whether
the detection, identification, and quantification of fungal diseases can be imple-
mented by hyperspectral sensors. Knowledge of how solar radiation interacts
with vegetation is necessary to interpret and process reflectance data (Kni-
pling, 1970). The interactions between the host plant sugar beet and the fungal
pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae influence
the reflectance of solar radiation of the plant during disease development in
different ways. Resulting spectral signatures, unique for the diseases may be
useful for detection and identification of the plant diseases. The quality and
quantity of information of spectral signals depend on several factors like the
sensor system (spectroradiometer, hyperspectral camera, or airborne sensor),
the measuring scale (leaf, plant, canopy, or field), and on data analysis and
interpretation. Limitations and difficulties in the detection of foliar diseases
due to different scales and measuring conditions – controlled conditions in a
laboratory, under greenhouse conditions, and in the field – should be revealed.
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Effect of diseases on reflectance
The investigations were based on the hypothesis that reflectance of diseased
plants differs from that of healthy leaf tissue. An optical differentiation of
healthy and diseased plants may be based on spectral measurements of dif-
ferent wavebands or on a combination of wavebands (West et al., 2003). The
identification of a specific disease or stress using remote sensing techniques
is still a significant challenge in vegetation monitoring. Wavelengths in the
VIS range are largely absorbed by pigments. The reflectance of NIR radiation
depends on leaf structure and multiple scattering within the leaf related to
the fraction of air spaces. Reflectance in the SWIR is highly influenced by
the absorption of water, proteins, and other carbon constituents (Asner, 1998;
Ceccato et al., 2001; Curran, 1989; Jacquemoud and Ustin, 2001; Jensen, 2002).
To classify various fungal diseases, multi-temporal approaches on different scales
were chosen under controlled conditions and in the field to collect and compare
spectral signatures of foliar sugar beet diseases.

Changes in reflectance result from modifications of biophysical and biochemical
characteristics of plant tissue. The recording of changes caused by the deve-
lopment of fungal diseases may allow disease discrimination by hyperspectral
sensing. Diseases may cause changes in tissue colour and leaf shape, transpi-
ration rate, crop canopy morphology and density as well as variation in the
interaction of solar radiation with plants (West et al., 2010). This results in
modified optical properties of leaf tissue. Reflectance of leaves has been shown
to be sensitive to plant stress due to changes in pigmentation, hypersensitive
reaction and cell wall degradation (Blackburn, 2007; Carter and Knapp, 2001;
Chaerle et al., 2004; Lenk et al., 2006). Disease-specific symptoms like chloroses,
necroses or fungal structures may be also detectable (Bravo, 2006; West et al.,
2003).

Physiological interactions between diseases and crops depend on the pathogen
and its host plant (Glazebrook, 2005; Jones and Dangl, 2006; Knogge, 1996;
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Mendgen and Hahn, 2002; Van Kan, 2006). Primary symptoms of leaf di-
seases often are associated with the formation of chlorotic or necrotic tissue.
The pattern of responses and the degree of up- and down-regulation of phy-
siological processes are related to the type of the host-pathogen relationship.
Perthotrophs like C. beticola rapidly kill plant cells to feed subsequently on the
nutrients released from the dead tissue, biotroph pathogens like E. betae, and
U. betae form haustoria to take up nutrients from living cells. As characteristic
symptoms differ as well, different wavebands are suitable for the detection of
different diseases (Nutter and Littrell, 1996).

Composition and content of leaf pigments change when plants are exposed to
pathogens that induce chlorotic and necrotic symptoms (Carter and Knapp,
2001; Coops et al., 2003; Jing et al., 2007; Pietrzykowski et al., 2006). Pigment
content of sugar beet leaves inoculated with C. beticola, E. betae or U. betae was
slightly decreasing during disease progress. However, the development of disease
specific symptoms had only a small effect on leaf total chlorophyll content. This
effect was only significant to a decrease in pigment content at high infection rates
with mature symptoms. Trends were also evident in accessory pigment content;
chlorophyll a and b, and carotenoids decreased. Levall and Bornmann (2000)
came to comparative results. Due to high variation between sampled leaves
infected with C. beticola, no significant differences in pigment content were
reported in their study. However, according to Malthus and Madeira (1993), a
slight increase in pigment content has been observed at early infection stages.
This effect was most evident for the biotroph diseases powdery mildew and
sugar beet rust from 5 to 8 days after inoculation.

Symptoms of infections by C. beticola are a consequence of the biological ac-
tivity of cercosporin in the host cells and the intracellular growth of the fungal
mycelia (Daub and Ehrenshaft, 2000; Feindt et al., 1981). The fungal toxin
causes membrane damage and cell death after the fungus has penetrated the
leaf through stomata (Daub and Ehrenshaft, 2000; Knogge, 1996; Weiland et al.,
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2010). The toxin is produced during vegetative growth of the fungus in the light,
relevant for virulence and pathogenicity of C. beticola. Intracellular growth and
colonization of leaf tissue by the pathogen is facilitated by leakage of nutrients
into the intercellular spaces where fungal colonization occurs (Daub et al., 2010;
Goodwin and Dunkle, 2010). Electron microscopic observations visualized the
cell collapse and the sharp discrimination between symptomatic and healthy
tissue. Differences in symptom expression, particularly colouration of the mar-
gin of Cercospora leaf spots were observed under different cultivation and light
conditions. The characteristic reddish brown border was formed under natu-
ral sunlight illumination in the field, whereas it appeared pale brown under
artificial illumination in the greenhouse. The link between light exposure and
development of the necrotic spot and red margin typical of Cercospora leaf spot
is consistent with cercosporin’s mode of action as a photosensitizer (Daub and
Ehrenshaft, 2000).

Changes in spectral signature of Cercospora leaf spot resulted from necrotic
areas that enlarged with time. These localized, in early infection stage non-
uniform patches of necrotic tissue, are surrounded by healthy tissue. Due to
tissue degradation and the accumulation of brown and reddish brown pigments,
reflectance spectra of Cercospora leaf spot significantly increase in the com-
plete VIS, especially between 600 and 700 nm. Decreasing reflectance in the
NIR and increasing reflectance in the SWIR is due to the effect of the inva-
sive growth of C. beticola on the tissue structure of sugar beet leaves. With
further symptom development the colonized tissue degrades more and more;
collapse of parenchyma and epidermal cells, decrease of cell water content, and
increased lignifications are the consequences (Feindt et al., 1981; Steinkamp
et al., 1979). Changes in sugar beet leaf reflectance in the NIR and SWIR were
most pronounced for Cercospora leaf spot than for the other diseases.

In early disease stages the impact of powdery mildew on the chlorophyll content
is rather low, since the biotrophic fungus on the plant surface relies on the
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photosynthetic activity of the host tissue (Francis, 2002; Glawe, 2008; Mendgen
and Hahn, 2002). Significant changes in the chlorophyll absorption bands of
powdery mildew diseased leaves could be detected neither early after inoculation
nor at moderate disease severities. Coverage of the leaf surface by white mycelia
generally increased reflection, especially in the VIS and less marked, but still
obvious, in the NIR and SWIR. The increase in the NIR and SWIR may be
due to direct reflectance of fungal hyphae on the leaf surface and to changes in
water content of the host cell wall due to activities of the fungus.

Similar to E. betae, U. betae the causal agent of sugar beet rust is a biotrophic
pathogen, colonising living plant cells and not apparently triggering any obvious
adverse plant response (Heath, 1997). The very small uredinia surrounded
by a chlorotic halo were scattered on the leaf surface and resulted only in
minor reflectance changes between 550 and 700 nm. In contrast to the other
diseases, sugar beet rust did not increase leaf reflectance in the violet-blue
region. Also the effect on NIR and SWIR was low, although sugar beet rust
generally decreased reflectance in the SWIR.

Disease detection and its assessment by reflectance spectra are feasible for di-
seases causing changes in pigments – VIS range – or cell structure – NIR range
(Malthus and Madeira, 1993). The authors described a flattening of the re-
flectance in the VIS and a decrease in the NIR reflectance shoulder at 800 nm
for leaves infected by the necrotrophic pathogen Botrytis fabae. These responses
may correspond to the collapse of tissue structure due to pathogen spread.
Reflectance of cucumber leaves infected by Colletotrichum orbiculare was af-
fected in the violet-blue region and the NIR (Sasaki et al., 1998). Comparing
different disease assessment methods for downy mildew in quinoa, reflectance
measurement in the red in the NIR provided highest correlation with yield loss
(Danielsen and Munk, 2004).

In situ leaf reflectance measurements indicated specific spectral signatures for
sugar beet leaves, respectively diseased with C. beticola, E. betae, and U. betae.
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The intensity of physiological changes and the extent of the symptoms influ-
enced changes in spectral reflection of sugar beet. Similar trends with minor
exiguous impact on spectral reflectance have been observed on the canopy and
field scale. Specific effects of some diseases, specific effects of disease stages, and
the impact of disease severity on spectral characteristics of plants are sophisti-
cated, but may be also used for the characterization of host-pathogen interac-
tions. Hyperspectral measurements of diseased sugar beet leaves revealed that
spectral response of early symptoms or low disease severity differs from that
from mature symptoms or high disease severity. Furthermore specific regions of
the spectrum seem to have higher potential for discrimination of diseases than
only one or few wavelengths.

The spectral response of plants to different stress factors may be similar (Bock
et al., 2010; Stafford, 2000). Plant stress begins with a constraint or highly
unpredictable fluctuations imposed on regular metabolic patterns, which cause
tissue injury, disease or aberrant physiology. According to Gaspar et al. (2002),
plant stress is the altered physiological condition caused by factors that tend
to alter an equilibrium. Plant growth, productivity, and reproductive capacity
generally are influenced negatively (Rhodes and Nadolska-Orczyk, 2001). Most
abiotic stress factors like water deficiency, nutrient deficiency, solar radiation,
and temperature as well as pathogens affect the photosynthetic apparatus and
its functions (Carter and Miller, 1994; Chapin, 1991; Stafford, 2000). Associated
response to different kinds of stress in reflectance spectra by minor reflectance
around 700 nm and 550 to 575 nm have been measured by Carter and Knapp
(2001).

Stress-induced physiological consequences are highly variable (Balachandran
et al., 1997). Plant fungus interactions and the resulting disease symptoms
are influenced by various external factors and thus are variable as well (Dangl
et al., 1996). The spatial and temporal distribution of stress symptoms caused
by pathogens is different from those caused by abiotic factors (Vollenweider and
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Günthard-Georg, 2005). Nutrient deficiencies, drought stress, or temperature
stress cause relative uniform patterns, whereas foliar diseases are associated
mostly with localized, discrete lesions. This has to be considered for disease
detection.

Comparison of hyperspectral non-imaging and imaging sensing
The sensitivity of hyperspectral sensing systems to changes in plant reflectance
largely depends on sensor technology and the measuring scale. Spectroradiome-
ters average the reflection in several narrow wavebands of light within the field
of view of the sensor (West et al., 2003, 2010). Measurements with the non-
imaging spectroradiometer gave a good correlation of reflectance to diseases
regardless to spatial information. But as the portion of diseased tissue in the
mixed signal decreases with disease severity, the sensitivity and specificity of
the non-imaging spectroradiometer was limited at low disease severities. Re-
flectance curves measured with non-imaging systems always represent the mean
of the reflectance of healthy and diseased tissue. This results in a number of
problems, typical for single point measurements (Scholten et al., 2005). The
effect of small or a few disease symptoms, e.g. sugar beet rust on spectral re-
flectance of the field-of-view was low. The spectra include a high percentage
of reflectance from healthy tissue and only a low portion of reflectance from
symptomatic tissue.

Hyperspectral imaging systems, in contrast, record leaf reflectance in several
narrow wavebands for each pixel, forming a focussed image (Bock et al., 2010;
West et al., 2010). Spatial and spectral information can be acquired simultane-
ously (Fitzgerald, 2004). It is expected that hyperspectral imaging can improve
disease detection through a better examination of the host pathogen interac-
tions (Bock et al., 2010; Chaerle and van der Straeten, 2001). Imaging sensor
systems allows a pixel-wise attribution of disease-specific symptoms and healthy
tissue (Steiner et al., 2008) and improves both, the specificity and sensitivity
of hyperspectral disease detection. Some diseases and their symptoms can only
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be distinguished from other diseases and stresses when hyperspectral imaging
with high spatial resolution is used (West et al., 2010). Using the example of
sugar beet uredinia, pure spectral signatures could be extracted pixel-wise from
hyperspectral imaging data. Nevertheless, the small size of uredinia and limited
spatial resolution of the sensor resulted in a strong influence of neighbouring
pixels and a high amount of mixed pixels.

Hyperspectral imaging enabled the detailed description and comparison of leaf
reflectance during the development of the diseases. The three sugar beet di-
seases differed in their temporal and spatial development. On the leaf scale
Cercospora leaf spot formed fast growing leaf spots, finally resulting in necrotic
areas. On the canopy scale the disease often were accumulated in clusters.
Sugar beet rust mainly appeared in singular uredinia over a leaf, and on single
plants on the field scale. The small size of rust colonies impeded the classi-
fication in early stages or at low disease severity. Similarly, an unambiguous
detection of powdery mildew in early stages is challenging. First symptoms are
fluffy white mycelia covering the leaf surface which affects the spectral signature
like a dusty coat. But unique for powdery mildew is its plane colonization of
the leaf tissue and the fast spread and infestation inside crop stands. Similar
differences were monitored for leaf rust and powdery mildew in wheat crops
(Franke et al., 2009). Leaf rust appeared mainly in stable patches, whereas
powdery mildew exhibited a more dynamic distribution within the field and
over time. The development of patterns in time and space may help to identify
the disease or stress influencing the crop canopy (Nutter et al., 2010).

Besides analysing the temporal development of the pathogenesis and disease-
specific symptoms, also spatial patterns of discrete symptoms of sugar beet
diseases could be investigated. The results revealed parallels between tempo-
ral and spatial disease characteristics. Modifications of spectral reflectance
at different developmental stages were reproduced in spectral signatures of
different regions of the symptom. For instance, reflectance of the necrotic
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centre of Cercospora leaf spot was consistent with overall reflectance of ma-
ture symptoms, whereas reflectance of new, immature symptoms was similar to
that from the margin of fully developed lesions. Similar results were obtained
for different developmental stages and different regions of mature symptoms
of powdery mildew and sugar beet rust. These observations derived from hy-
perspectral imaging clearly demonstrate the gradual transition from healthy to
diseased tissue for all diseases in both, time and space. Based on hyperspectral
image data cubes, pure spectral signatures from healthy tissue and areas with
Cercospora leaf spot, powdery mildew, and sugar beet rust can be extracted.
However, there is always a gradient in reflectance between symptomatic and
symptom-less/healthy leaf tissue and a clear classification between healthy and
diseased is difficult. This phenomenon has not been described in literature by
now and may be investigated even at smaller scales at the cellular level.

The potential of hyperspectral imaging for the detection of diseases in crops
was shown convincingly only in few studies. In most of these studies hyper-
spectral imaging was used for the detection of one disease in a crop. Disease
quantification or the differentiation among several diseases or stress symptoms
have been reported only in very few studies. In an early attempt, Coops et al.
(2003) categorized the severity of needle blight in Australian Pine from air-
borne hyperspectral imagery and reached a classification accuracy of > 70% for
the three classes low, medium, and high infection as compared to ground truth
data. Bravo et al. (2003) successfully implemented a hyperspectral line scan-
ning system to detect yellow rust in wheat fields. The hyperspectral camera
system was mounted on a hand pushed cart, 1 m above the ground. Detection
accuracy of 96% was realized using four selected wavelengths from the range of
460 to 900 nm. Polder et al. (2010) compared hyperspectral imaging to colour
and fluorescence imaging for the detection of tulip breaking virus (TBV) in
tulips. Best results were obtained from the spectral camera system in the VIS
and gave results similar to that of visual assessment by experts. The authors
aim to develop an autonomous robot equipped with a hyperspectral camera
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for the detection of diseased tulips. Insect-induced stress has been detected by
hyperspectral data cubes in wheat plants. According to Nansen et al. (2009)
the main advantages of hyperspectral detection systems are I) fast data col-
lection, II) the potential of a real-time data analysis, and III) non-destructive
data collection enable repeated measurements on the same individuals.

Extraction and use of disease relevant parameters
Next to the technical specifications of hyperspectral sensor systems for data
recording, data analysis is essential to extract suitable results without losing
important information. According to Carter and Knapp (2001), who linked
spectral characteristics to stress and chlorophyll concentration, the subtraction
of spectra from healthy leaves from those representing diseased leaves revealed
the responses of significant spectral regions. For sugar beet diseases, the corre-
lation in the different ranges was tributary to disease specific symptoms, and
the sensitivity was regulated by disease severity. As wavelengths near 700 nm
have the strongest linear relationship to total chlorophyll content (Carter and
Knapp, 2001; Gitelson et al., 2003), the response of leaves diseased with Cer-
cospora leaf spot and sugar beet rust in this range was more pronounced than
the response to powdery mildew. Reflectance in the VIS from 450 to 520 nm
and from 570 to 710 nm was highly correlated to severity of these diseases. This
is in contrast to results from Steddom et al. (2005), who measured Cercospora
leaf spot with a multispectral radiometer in the field. The deviation is likely to
result from differences in the sensor systems (hyperspectral with 1 nm resolu-
tion vs. multispectral with 9 bands) and in measuring conditions (lab vs. field;
constant light conditions vs. sunlight). Jing et al. (2007) estimated a strong
linear correlation between chlorophyll a concentration and yellow rust severity
in wheat at around 700 nm. Similar results were obtained for spectral sensi-
tivity of Eucalyptus globules foliage in response to Mycosphaerella leaf disease
(Pietrzykowski et al., 2006). In further data analyses, wavelengths with highest
correlations may be used for ratio development according to Carter and Knapp
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(2001), Carter and Spiering (2002), Richardson et al. (2001), and Yang et al.
(2007).

From the different methods for waveband selection used in this study it can
be concluded, that not a single wavelength can be used to detect or to iden-
tify a disease. The combination of specific spectral regions or broad spectral
bands improves the detection accuracy. Variability of reflectance among the
three sugar beet diseases exceeded intradisease variability. Nevertheless, there
are still some difficulties. E.g., it is still under examination in which way mixed
infections of plants with two or more diseases affect spectral reflectance signa-
ture.

Many data analysis methods for hyperspectral application aim to reduce data
dimensionality. Redundant information from narrow bands is removed and the
computation time may be reduced. A common method is the calculation of
SVIs. For early detection and for site-specific plant protection, SVIs have to be
sensitive to changes in the reflection caused by diseases. Similarly, they have
to be specific for diseases/stress.

The potential of SVIs for early disease detection has been investigated in several
studies (e.g. Delalieux et al., 2009; Graeff et al., 2006; Naidu et al., 2009; Sted-
dom et al., 2003, 2005). Most of the developed indices are highly correlated to
the content of pigments, biomass, or leaf area (Le Maire et al., 2004; Thenkabail
et al., 2000). Different changes in spectral reflectance not only denoted the oc-
currence of a disease, but also provided information on the developmental stage
and severity of the disease. Delalieux et al. (2009) demonstrated that the dis-
criminatory performance of SVIs for apple scab depends on the infection stage
and the phenological stage of apple leaves. Indices commonly used in remote
sensing, however, lack disease specificity. Nevertheless, SVIs gave promising re-
sults in studies assessing only one disease. A binary classification into healthy
and diseased plants using single SVIs was feasible. The three diseases affected
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leaf reflectance assessed with non-imaging and imaging sensors – and SVIs – of
sugar beet in different ways.

SVIs highly correlated to chlorophyll, anthocyanin, and water content showed
a high sensitivity to different stages of Cercospora leaf spot (e.g. NDVI, ARI,
WI). The anthocyanin specific ARI was developed by Gitelson et al. (2001) to
retrieve anthocyanin content from reflectance. Anthocyanins are water-soluble
pigments with a absorption peak around 550 nm, responsible for red coloration
of plant tissue. Depending on the sugar beet variety and illumination intensity
the boundary zone of Cercospora leaf spots is coloured from pale brown to deep-
wine red as a result of betacyanin accumulation (Steinkamp et al., 1979). Beta-
cyanins are highly water-soluble pigments, present in the cell vacuole. Similar
to anthocyanins, the absorption maximum of betacyanins is from 538 nm to
550 nm (Frank et al., 2005; Kobayashi et al., 2000; Piatelli and Minale, 1964).
Although reddish brown symptoms of Cercospora leaf spot result from beta-
cyanin accumulation, the ARI based on reflectance at 550 nm is useful for the
detection of disease symptoms not related to anthocyanins.

For powdery mildew detection, however, carotenoid-specific indices and SVIs
combining the information from absolute reflectance over a spectral range (e.g.
SIPI, PSSRc, SumGREEN, BGI2) were more suitable. In contrast to the other
diseases, powdery mildew affected reflectance also in the violet-blue region of
the spectrum where absorption of carotenoids is maximal. This effect may be
explained by the overall reflection increase due to powdery mildew as the disease
had no significant effect on the level of carotenoids.

For sugar beet rust the photochemical reflection index (PRI) was most sensi-
tive. The PRI was developed to estimate photosynthetic light use efficiency
(Gamon et al., 1997; Rascher et al., 2010). The basic wavelength of PRI is
531 nm correlated to the composition of xanthophylls, pigments involved in
non-photochemical quenching (Gamon et al., 1992). An effect of rust infec-
tion on non-photochemical quenching has been described for oat and beans.
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Scholes and Rolfe (1996) investigated the efficiency of photosynthesis in lo-
calised regions of oat leaves infected by crown rust (Puccinia coronata). Non-
photochemical quenching was low within diseased regions, but much higher,
compared to healthy leaves, in uninfected regions of diseased leaves. Similar
results have been obtained for Phaseolus vulgaris infected by Uromyces appen-
diculatus (Peterson and Aylor, 1995).

SVIs, calculated on hyperspectral imaging data revealed the potential for dis-
criminating among healthy and diseased tissue on the leaf scale. Besides the
detection of the three diseases, Cercospora leaf spot and powdery mildew could
be quantified and the results were highly correlated to visual disease assessment.
Due to the small symptom size and exiguous infestation severity, quantification
of sugar beet rust was not feasible. With Cercospora leaf spot and powdery
mildew diseased tissue of sugar beet leaves were accurately recognized and visu-
alized in binary images. This simple, threshold-based analysis seems suitable for
an automatic disease detection and quantification for many fields of application.
Compared to the approach of Camargo and Smith (2009b), who developed an
algorithm for automatically identification of visual symptoms on RGB images,
hyperspectral images offers a surplus on information, which is required for high
sensitivity. The origin and quality of the sensor data is essential for the success
of any system for disease and pattern recognition. Shafri and Ezzat (2009) and
Shafri and Hamdan (2009) applied SVIs on airborne hyperspectral images to
map and quantify Ganoderma disease on oil palms. With and accuracy of 82.8%
in their study, the NDVI fitted best for disease detection in forests, regardless
of disease specificity.

Analysis of non-imaging hyperspectral data showed that the use of more than
just one SVI improves the sensitivity and specificity for disease detection and
identification. As the correlation between disease severity and SVIs differs
significantly among diseases, it can be concluded that combinations of SVIs have
a high potential for hyperspectral disease detection and discrimination. First
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analyses confirmed this idea and demonstrated that diseases may be detected
and identified in very early stages (Rumpf et al., 2010). Thereby it is crucial
to combine SVIs based on different wavelength of the hyperspectral spectrum.
SVIs related to different physiological parameters showed divergent scatter plots
for healthy plants and mapped each disease separately. SVIs based on similar
wavelengths of the spectrum are highly correlated to each other, and hence not
feasible for discrimination.

Powerful data processing methodology is required to utilize the full potential
of combined SVIs, given that sensor-based disease detection allows automatic
classification of diseases for precision crop protection applications. Data mining
techniques, the process of extracting important and useful information from a
large set of data (Mucherino et al., 2009; Wu et al., 2008b), and in particular
SVMs seem to be able to solve this complex problem. Different techniques have
been proposed for mining data in terms of disease detection. All solved a di-
chotomous problem, i.e. the classification between healthy and plants with ma-
ture disease symptoms. Bravo et al. (2003) investigated the difference in spec-
tral reflectance between healthy and rust-diseased wheat. Using a quadratic
discrimination model based on the reflectance of four wavebands, they cor-
rectly differentiated spectra of diseased and healthy crops at a classification
accuracy of 96%. In a next step they successfully applied the neural network
Self-Organizing Maps (SOM) to discriminate between healthy plants, nitrogen
deficiency, and diseased wheat plants in the field (Moshou et al., 2006). Wang
et al. (2008) spectrally predicted late blight infections on tomatoes using arti-
ficial neural networks (ANNs).

Wu et al. (2008a) recently showed that early detection of grey mould due to
Botrytis cinerea on eggplant leaves is possible, even before first symptoms be-
came visible. Owing to the complexity of the original spectral data, principal
component analysis was applied to reduce the numerous wavelengths to several
principal components in order to decrease the amount of calculation and im-
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prove the accuracy. These principal components were set as input variables
of back-propagation neural networks. In contrast to Wu et al. (2008a), who
used hyperspectral reflectance for classification, a classification result above
90% for discriminating the three sugar beet diseases by using SVIs as features
for SVMs was achieved. This approach included the combinations of individual
wavelength from different SVIs. In order to further improve the detection of
plant diseases, disease-specific wavelengths and SVIs have to be identified.

For automatic classification of foliar sugar beet diseases SVMs are a powerful
data mining tool. They may be even applied for classifying data that is not
linearly separable by using a kernel (Vapnik, 2000). Moreover, because of the
maximummargin hyperplane founded by SVMs the generalization ability is best
(Schölkopf and Smola, 2002). Not only the differentiation between healthy and
diseased leaves, but also the identification of diseases (multi-class approach) can
be realized. In a recent publication, Camargo and Smith (2009a) used SVMs for
the identification of visual symptoms of cotton diseases based on RGB images
and reached a classification accuracy of 90%.

An advantage of SVMs is that models can be learned without long computation
time (Rumpf et al., 2010). It has been shown that combinations of SVIs are
suitable to discriminate among Cercospora leaf spot, sugar beet rust, powdery
mildew, and healthy leaves. Furthermore, infections could be assessed even
before the first symptoms became visible. Both the number of necessary SVIs
as features and the feature combinations depend on the disease(s) of interest
(Rumpf et al., 2009). Two SVIs are sufficient for the detection of Cercospora
leaf spot, whereas three and more are needed to identify leaf rust and powdery
mildew. The classification accuracy of diseases even before the appearance
of visible symptoms was highest when all nine SVIs were considered (Rumpf
et al., 2009). Several modifications in cellular leaf structure may occur before
symptom formation, e.g. changes in water content at infection sites, initiation
of cell death by fungal toxins, or defence reactions of plant tissue (Daub and
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Ehrenshaft, 2000; Jones and Dangl, 2006; Knogge, 1996). Likewise fungal spores
on the leaf surface after inoculation may influence reflectance in an early stage.
These modifications are associated with changes in spectral reflectance which
may be detectable by analysing hyperspectral data using SVMs.

Furthermore the classification accuracy differed between diseases. In order to
improve the early detection and identification of sugar beet diseases by data
mining techniques, two future approaches are conceivable. Instead of SVIs, the
information of the entire spectrum may be used as original data by machine
learning. This method enables the use of optimal scanning positions and most
relevant wavelengths for each disease. In a next step, this information may
be reduced to the essential by the development of disease-specific SVIs. The
extraction of the most relevant wavelength for disease-specific indices requires
an appropriate methodology, which may be implemented by machine learning
methods. In a further step, cheap multispectral sensors tailored to the particular
diseases and based on the wavelength of the disease-specific indices may be
produced for precision crop protection. Key benefits from these disease-specific
sensors are lower costs and lower technical complexity with simplified handling.

The analysis of hyperspectral images aims to detect and identify diseased parts
of sugar beet leaves. A spectral matching algorithm was used for statistical
comparison between reference spectra and unknown spectra. Given that the
different spectral patterns of healthy and diseased tissue are known, supervised
classification was the choice to analyse the images. The SAM implemented the
three main objectives: detection, differentiation, and quantification of diseases.
Since the SAM classification is based on defined endmember spectra, a detection
before visible symptoms occurs was not feasible by this methodology, but visible
symptoms were classified with high accuracy. Similar to Zhang et al. (2003),
who differentiated various levels of Phytophthora infestans infection of tomatoes
from airborne hyperspectral images, disease severity could deduced by using the
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SAM classification. In a recent approach, Bauriegel et al. (2009) could detect
Fusarium head blight by means of SAM analysis of hyperspectral images.

Insensitivity to heterogeneities of surface topography and illumination are bene-
fits of the SAM algorithm for disease detection on sugar beet. Sugar beet leaves
do not have plane surfaces. Leaf veins and differences in growth rates cause
a characteristic undulated, grooved topography of sugar beet leaves depending
on the genotype. Heterogeneities in reflectance intensity occur, as radiation is
not reflected straightforward by these surfaces. Spectral similarity is calculated
as the angle between the two spectra, treating them as vectors in a space with
dimensionality equal to the number of bands (Kruse et al., 1993). The direction
of the vector is independent from the distance of a point to the origin (= effect
of illumination). The measure of similarity by SAM is insensitive to gain fac-
tors (like illumination and topographic illumination effects), because the angle
between two vectors is invariant with respect to the length of the vectors (Kruse
et al., 1993).

Although classification accuracy of SAM was satisfying, it should be mentioned
that this classification algorithm uses the average spectrum of each endmember
class (e.g. healthy and different symptom peculiarities). The spectral vari-
ability within each endmember class, denoted as intra-class variability is not
retained. Luc et al. (2005) obtained a higher overall classification accuracy of
Belgian coastline regions by modifying the common SAM to an optimized SAM
preserving the intra-class variability. This approach may also resolve problems
in disease classification, e.g. lower accuracy for early disease stages when only
immature symptoms occur. Similarly, the detection of minor spectral changes
due to small sugar beet rust symptoms was less accurate. Zhang et al. (2003)
also described problems in the differentiation between late blight categories of
high spectral similarity by SAM, and among healthy and tomato plants with
low disease levels.
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Disease assessment on the canopy and field scale
As mentioned above, the measuring scale influences spatial resolution and sen-
sitivity of hyperspectral sensors. Reflectance from plant canopies depends not
only on reflectance properties of individual leaves and stems, but also on their
orientation and distribution in the 3D space (Gamon et al., 1995). Knipling
(1970) has shown that absolute canopy reflectance is about 40% in the VIS and
70% in the NIR of absolute reflectance from a single leaf. Leaf orientation influ-
ences the amount of light reflected, as shown for field-grown rice (Murchie et al.,
1999). Under stress conditions both factors are likely to change and different
fractions of vegetation and soil are exposed to the spectral sensor (Jackson and
Pinter, 1986). When lower leaves are exposed, canopy reflectance may be af-
fected because reflectance properties of leaves grown in shade differ from those
of leaves exposed to sunlight (Jackson and Pinter, 1986). Several fungal diseases
preferably affect older or lower leaves due to the presence of soil-borne primary
inoculum, favourable micro-climate and environmental conditions in lower leaf
levels and may also influence canopy reflectance.

On the field scale an early detection of diseased sugar beet by hyperspectral
images from airborne sensors was possible by calculating SVIs. Already in
early disease stages, slight changes in reflectance due to primary symptoms of
powdery mildew and Cercospora leaf spot could be classified using the NDVI. In
agricultural practice, fungicides are applied according to disease-specific action
thresholds. According to Wolf and Verreet (2002), an action threshold of 5%
disease frequency is used for the control of powdery mildew and Cercospora leaf
spot. With a disease severity of almost 5% this action threshold was reached
for powdery mildew in early August 2008. At higher infection rates later in the
vegetation period, a classification based on near-range data was also feasible.
The SVIs from different sensors differed in their correlation to disease severity
of powdery mildew as described earlier for wheat diseases by Franke and Menz
(2007).

136



5. DISCUSSION

Several field studies have tested the usefulness of SVIs for the discrimination
between healthy and infected crops at varying disease levels. Steddom et al.
(2005) demonstrated that necrosis caused by Cercospora leaf spot may be de-
tected effectively by using SVIs in the field. Huang et al. (2007) used the photo-
chemical reflectance index to quantify the level of yellow rust infection of wheat
in the field from airborne and near-range hyperspectral data. The differentia-
tion between abiotic stress and diseases and among diseases, however, is still
a challenge. Because the incidence of Cercospora leaf spot at Klein-Altendorf
was marginal in 2008, the discrimination between diseases from airborne data
was not feasible.

West et al. (2003) summarized the potential of optical remote sensing for disease
monitoring and fungicide application mapping. Scotford and Miller (2005) used
indirect spectral information like leaf area index and tillering stage to create
fungicide application maps. A high correlation between disease severity and
reflectance data of wheat was obtained by using neural networks (Moshou et al.,
2004). These authors were also able to differentiate between fungal infection
and nutrition deficiency.

Early detection of primary disease foci in the field is another challenge. Binary
information – whether plants are infected or not – may be derived from remote
sensing data. For the extraction of quantitative information on disease levels,
further research and data analysis is required. Integrating these different ap-
proaches, hyperspectral sensor-based information such as SVIs are very likely
to be suitable for the generation of fungicide application maps. Online systems
require even more technological development.

The use of hyperspectral techniques in agricultural fields, however, is limited by
several factors. Actually the availability of remote sensing data with high spec-
tral and spatial resolution suitable for disease identification in crops is limited
(Franke and Menz, 2007). Airborne sensor campaigns are expensive, complex
in organization, and rely on good weather conditions. In contrast, disease de-
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velopment in the field is influenced by various parameters like temperature,
relative humidity, genetic disease resistance, crop growth stage, etc. The ac-
quisition of spectral data appropriate in time and space for disease detection,
therefore, is difficult – at least under the environmental conditions in Western
Europe. The three sensors used in this study are proved to be quite sensitive in
order to detect changes in canopy reflectance of arable crops. Because of limi-
tations in sensor availability and costs it was not possible to use all sensors at
each monitoring for comparative studies. The ROSIS sensor with high spatial
and spectral resolution recorded a homogeneous canopy reflectance of healthy
sugar beets. Although 4 m spatial resolution of the HyMap sensor is lower,
early changes in canopy reflectance due to fungal infections could be detected.
Advantages of the hand-held ASD sensor are flexibility and simple handling
associated with high spectral sensitivity. Therefore, tractor mounted on-the-go
sensors seem to be more practical for precision crop protection than airborne
sensors.

Relevance of hyperspectral sensing for precision crop protection
There is a huge potential of hyperspectral sensor systems for precision crop
protection and for various plant pathology applications (Delalieux et al., 2009;
Hatfield et al., 2008; Nutter et al., 2010; Stafford, 2000; Voss et al., 2010; West
et al., 2010). Precision crop protection is a part of precision agriculture, a man-
agement concept depending on information technologies related to within-field
variability (Hillnhuetter and Mahlein, 2008; Steiner et al., 2008). Monitoring
of health and detection of diseases is crucial for sustainable plant production.
Variability in environmental conditions, heterogeneous distribution of primary
inoculum, or variation in crop growth can lead to spatial and temporal vari-
ability of diseases in the field (West et al., 2010). Hyperspectral methods on
different scales – from airborne to tractor mounted and handheld sensors – en-
ables the detection and mapping of disease foci or pest infestations. Such areas
may be treated site-specifically, particularly in early stages, without spraying
the entire field and thereby wasting money and increasing the environmental
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burden from crop protection (Stafford, 2000; Steiner et al., 2008; West et al.,
2010). Nutter et al. (2010) predict that in the short to mid-term future, imagery
from remote-sensed data provides permanent records of disease intensity and
will be used to quantify the temporal and spatial dynamics of pathogens and
diseases.

The investigations on foliar sugar beet diseases at different scales have approved
that detection, differentiation, and quantification of diseases can be realized by
different hyperspectral sensors. On the leaf scale, hyperspectral imaging was
superior to the non-imaging sensor. The precision in detecting spatial and
temporal differences was high. Such imaging systems may be used to speed
up screening assays in resistance breeding when plant-fungus interactions have
to be monitored in time series under rather controlled conditions. Plants are
usually inoculated with a pathogen at a well-known spore concentration. These
are optimal conditions for an automatic hyperspectral screening system with
high sensitivity and specificity (Chaerle et al., 2007a; Delalieux et al., 2009).
Disease detection and quantification may be based on SVIs or classification
algorithms like the SAM.

For precision crop protection in the field, airborne and spaceborne sensors offer
large-scale applications. The use of airborne and spaceborne sensors in prac-
tice, however, is limited by their spatial resolution and temporal availability
(Franke and Menz, 2007; Mahlein et al., 2009; Voss et al., 2010). The link
with epidemiological knowledge about temporal and spatial dynamics of plant
diseases is essential to implement hyperspectral disease detection into practice
(West et al., 2010). Depending on symptom size and disease severity, patchiness
of primary disease and epidemic spread, higher resolutions may be necessary.
Tractor-mounted, non-imaging sensor systems may realize on the go spray-
decisions. An example for a commercialized, tractor-mounted sensor system is
the Yara N-sensor for N-fertilization (Agricon, Ostrau, Germany). Based on
reflectance measurement and chlorophyll estimation analogue to the analysis
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by SVIs, application rates are directly transferred to a manure distributor or a
sprayer. Similar technology may be suitable for disease control; however, the
discrimination between different kinds of stress is indispensable. This challenge
may be met by machine learning techniques like SVMs which enable high speci-
ficity and sensitivity as demonstrated by the early detection and differentiation
of sugar beet diseases.

Hyperspectral data from airborne sensors resulted in good disease detection
in the field. Both spatial and temporal variability of powdery mildew and
Cercospora leaf spot could be monitored. Combining optical sensing methods
from different scales (airborne, tractor-mounted or even handheld) with new
modelling approaches or existing decision support systems, like the IPM-model
sugar beet (Wolf, 2001), CERCBET (Racca and Jörg, 2007), and BEETCAST
(Pitblado and Nichols, 2005) may improve their validity and reliability, as well
as the economical and ecological benefits of these technologies. The automation
of disease assessment using optical sensor systems can be useful in order to
enhance existing forecast models.

Conclusions and future perspectives
Hyperspectral non-imaging and imaging sensor systems originate from remote
sensing sciences and have been introduced to plant pathology only recently.
Remote sensing has been defined as ’obtaining information about an object
without having direct physiological contact with it’ (De Jong and Van der
Meer, 2006). In classical disease detection, the human eye is a remote sensing
device which, in combination with the brain, acts as an image analysis system
(De Jong and Van der Meer, 2006; Nilsson, 1995). Since the response of vi-
sual disease rating is not reproducible and depends on several factors, imaging
and non-imaging hyperspectral sensing offers potentially reliable and accurate
information (Nutter and Littrell, 1996; Steddom et al., 2005). What can be
seen with the human eye should be also detectable by a hyperspectral sensor
system and manifold data analysis methods may conform prospects for plant
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disease detection (Bravo, 2006; Chaerle and van der Straeten, 2001). Hyper-
spectral remote sensing and near-range sensing can provide a precise, objective,
reproducible, and time-saving method for disease monitoring in various fields
of applications in the near future. The effectiveness of crop protection actions
may be optimized economically and ecologically by increased precision in both,
space and time.

New insights from hyperspectral disease detection in sugar beet, like sensor
specificities and different analysis methods may be transferred to other plant-
pathogen systems. Disease-specific characteristics and crop characteristics have
to be taken into account for sensor optimization in order to obtain the highest
sensitivity and specificity. For practical applications sensor systems, as well as
algorithms for the analysis of hyperspectral data need to be simplified. Turn-key
solutions with an appropriate degree of automated calibration and processing
to compensate for different plant parameters, suitable for use by specialists and
non-specialists are needed (Hatfield et al., 2008). The development of disease-
specific SVIs or classification algorithms may increase the overall performance
of the system. The commonly used classification methods analyze hyperspectral
images without incorporating information from spatially adjacent data (Plaza
et al., 2009). Simultaneous multi-dimensional data analyses of spatial and spec-
tral patterns will be of high relevance in future, especially for the interpretation
of hyperspectral images to detect and characterize plant diseases.

Hyperspectral recordings can improve monitoring systems for plant diseases and
will by this support farmers and breeders to achieve an improved assessment
and control of plant diseases in the future. This technology will contribute
to optimize the use of natural resources, to maintain the quality and quantity
of agricultural products at high standards, and to reduce the environmental
impacts from crop protection.
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6. SUMMARY

Fungal plant diseases often are distributed heterogeneously in the field. Preci-
sion crop protection, as a part of precision agriculture, is a management concept
depending on information technologies related to within-field variability. Mon-
itoring of health and detection of diseases is critical for sustainable plant pro-
duction. Hyperspectral imaging and non-imaging has the potential for precise,
objective, reproducible, and time-saving disease monitoring in various fields of
applications. This would make it possible to treat such areas site-specifically,
particularly at early disease stages, without needing to spray an entire field.
The present study, therefore, focused on the prospects of hyperspectral sensing
to detect, differentiate, and to quantify plant diseases. Sugar beet infected by
the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae
causing Cercospora leaf spot, powdery mildew, and sugar beet rust, respec-
tively, were used as a model system. The effects of diseases on reflectance of
sugar beet leaves were recorded during their temporal and spatial development
on various scales.

• The three diseases of sugar beet differed in their interaction with the host
plant. Spatial, temporal, and visual differences during pathogenesis were
observed. The perthotroph pathogen C. beticola caused reddish brown
necrotic spots, which coalesced during pathogenesis, whereas the biotroph
pathogen E. betae colonized the leaf surface with a white, fluffy pow-
dery mycelia. Symptoms due to U. betae were singular small uredina,
distributed over the leaf surface.
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• Characteristic spectral signatures of diseased sugar beet leaves were
recorded with a non-imaging spectroradiometer during pathogenesis. Cer-
cospora leaf spot increased reflectance in the VIS between 450 and 700
nm. A shift of the red edge position was monitored. Reflectance in the
NIR decreased with increasing disease severity, whereas an obvious increase
of reflectance in the SWIR was measured. Powdery mildew caused an in-
crease of reflectance over the entire range. This effect was most pronounced
in the VIS, and minor in the NIR and SWIR. Sugar beet rust slightly in-
creased reflectance from 550 to 700 nm, reflectance in the NIR and SWIR
decreased during pathogenesis. Reflectance spectra assessed on the leaf
scale were similar to those recorded on the canopy scale. However, changes
on the canopy level were less pronounced due to several influencing factors
like leaf geometry, shadowing, and the relation of healthy to symptomatic
leaf area.

• Spectral vegetation indices calculated from hyperspectral non-imaging data
differed in their correlation and sensitivity to the three diseases. The NDVI
and the chlorophyll related indices PSNDa and PSNDb were correlated
best to Cercospora leaf spot. The carotenoid specific indices SIPI, PSNDc
as well as the NDVI and the PSNDa were suitable for the detection of
powdery mildew. The PRI and the ARI were most suitable to detect
reflectance changes due to sugar beet rust.

• Combinations of two or more SVIs offered the potential for detection and
differentiation among sugar beet diseases. In a further approach SVIs were
used as features for an automatic classification by Support Vector Ma-
chines. Non-inoculated, healthy sugar beet leaves and sugar beet leaves
inoculated with C. beticola, E. betae, and U. betae, respectively, were clas-
sified with an accuracy of > 86%. Furthermore, plant diseases could be
detected pre-symptomatically. Depending on the type and stage of disease
the classification accuracy ranged from 65% to 90%.
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• Hyperspectral imaging enabled the observation of changes in sugar beet
leaves due to Cercospora leaf spot, powdery mildew, and sugar beet rust
on the pixel level. The temporal and spatial development of disease symp-
toms gave characteristic reflectance patterns on the leaf level. Spectral
signatures obtained from hyperspectral imaging coincided with spectral
signatures from non-imaging measurements.

• Several SVIs showed a potential to discriminate between healthy and
diseased tissue. The use of disease-responsive SVIs in combination with
disease-specific threshold levels resulted in the compilation of binary
images, differentiating between diseased and healthy tissue. The automatic
quantification of disease severity from these images gave high correlations
to visual disease assessments. The coefficients of correlation for the quan-
tification of Cercospora leaf spot and powdery mildew were R2 = 0.98 and
0.93, respectively. Difficulties remained for the very small rust uredinia
(R2 = 0.67).

• Applying the Spectral Angle Mapper algorithm on hyperspectral imaging
data, high accuracies for the differentiation between healthy and diseased
leaf tissue were obtained. Besides the differentiation of symptomatic and
healthy parts of a leaf, also different regions of disease-specific symptoms,
and different developing stages could be differentiated. For the detection
of Cercospora leaf spot the accuracy of classification ranged from 89% 11
dai to 98% 17 dai. Similar high accuracies could be assessed for powdery
mildew classification (94% 8 dai, 97% 14 dai, and 90% 17 dai). Classifica-
tion of sugar beet rust was less exact (accuracy 62% 20 dai).

• A multi-temporal and multi-sensoral approach on different scales was used
in an experiment on the field scale in 2008. The experimental field site in-
cluded two treatments, one plot was sprayed with fungicides and one plot
was untreated. E. betae, causing powdery mildew was the most frequent
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leaf pathogen during the growing season. The vitality of the sugar beet
plots was characterized by calculating the NDVI from airborne hyperspec-
tral data (ROSIS and HyMap campaign, respectively). At growth stage
45 healthy and diseased parts of the field could be differentiated; the co-
efficient of determination to ground truth data was 0.69. A classification
of healthy and diseased sugar beets was possible at growth stage 49 by
calculating SVIs from canopy reflectance.

New insights from hyperspectral disease detection on sugar beet make a con-
tribution to a better understanding of plant optical properties during disease
pathogenesis. Different analysis methods and sensor specificities can be trans-
ferred and generalized for other plant-pathogen systems. It has been shown that
hyperspectral near-range and remote sensing has the potential for an implemen-
tation in precision crop protection applications. Moreover, the technologies may
be also used in plant pathology for investigating the effect of pathogenesis on
the cellular level.
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