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ABSTRACT 
 
 
About 85% of the Ethiopian population is engaged primarily in agriculture. However, changing 
environmental factors have led to soil quality (SQ) degradation that poses a critical risk for food 
security. But, despite some alarming figures, there is no consistent information on the rate and 
extent of soil degradation in the country. This is due to the fact that the results of research on 
SQ degradation are more generalized to the country with its different environments and also 
based on empirical models or on runoff plot studies. It is problematic to extrapolate results from 
such case studies to other areas, and the resulting reports are thus inadequate to guide policy 
action on a large scale. Appropriate approaches that address such research gaps are thus needed 
for the country.  

This study employs a participatory survey and scientific soil measurements, geo-
statistics and erosion modeling to concurrently evaluate SQ degradation that can facilitate 
development of appropriate management strategies for the Mai-Negus catchment conditions in 
the northern Ethiopian highlands. A participatory SQ survey and group discussions with local 
farmers were conducted to identify SQ diagnosis indicators as well as the severity and 
determinants of SQ degradation. Soil samples were collected for analysis from the different SQ 
categories, land-use and soil management systems and erosion-status sites identified in the 
catchment. Data were subjected to statistical analysis. A soil erosion model (Soil and Water 
Assessment Tool; SWAT) interfaced in a GIS environment was evaluated and then applied to 
identify and prioritize erosion-hotspot sub-catchments. Finally, potential management strategies 
(scenarios) were simulated targeting prioritized areas to identify scenarios that can better reduce 
soil degradation caused by erosion.   

The results of this study show that farmers used indicators such as crop yield, soil 
depth, soil color, soil erosion risk, sedimentation, for categorizing the catchment soils into high, 
medium and low SQ status (categories). The scientifically measured soil attributes were 
significantly different (P ≤ 0.05) among these SQ categories. Using the soil attributes (cation 
exchange capacity, porosity, sand, total phosphorus, and Ca:Mg) retained in four component 
factors that explain about 88% of the SQ variability, discriminant analysis correctly classified 
the soils in the different SQ categories. Such SQ variability shows that farmer evaluation of SQ 
agrees well with the measured soil attributes. The maps of the interpolated soil properties show 
a well-defined trend of higher contents of fine soil particles and soil nutrients in the toe-slope 
and foot-slope areas in the catchment and those with better vegetation cover and soil 
management practices. The results of the soil erosion model show that > 45% of the catchment 
area has experienced soil losses through erosion of over 30 t ha-1 y-1, which is higher than the 
soil loss tolerance for Ethiopia (18 t ha-1 y-1). About 91% of the catchment experienced a soil 
erosion rate over 15 t ha-1 y-1, which is higher than the average African soil loss (10 t ha-1 y-1).  

Land management scenarios that involve land-use redesign, terracing, grassed 
waterways and gully stabilization structures can reduce runoff, sediment yield and nutrient 
losses by up to 75% at catchment level and up to 90% in the hotspot sub-catchments (soil loss 
over 18 t ha-1 y-1) as compared to the baseline scenario. Generally, the results of this study 
confirm that the use of farmers` knowledge to evaluate SQ status and prioritize areas for 
implementing management intervention is useful as it is rapid, less expensive, has high 
reproducibility and is reasonably accurate as compared to scientific soil measurements and 
erosion modeling. This can thus support informed decision-making about SQ degradation in 
areas where professional experts and resources are limited, and where extrapolation of measured 
soil data is difficult. However, further research on catchments with contrasting environment is 
necessary to account for the heterogeneity of farmer knowledge of SQ degradation on a regional 
and national scale. 
 
 



Modellierung von Bodenerosion und Bewertung von Bodenqualität für 
Managementstrategien in NordÄthiopien 
 
 
KURZFASSUNG 

 
Etwa 85% der äthiopischen Bevölkerung ist primär in der Landwirtschaft beschäftigt. 
Veränderte Umweltfaktoren haben jedoch zu einer Verschechterung der Bodenqualität (soil 
quality; SQ) geführt, die große Risiken für die Nahrungssicherheit darstellt. Aber trotz 
alarmierenden Zahlen gibt es kaum konsistente Information über Geschwindigkeit und Ausmaß 
der Bodendegradation im Lande. Dies liegt daran, dass die Forschungsergebnisse für das 
gesamte Land mit seinen verschiedenen Umweltbereichen generalisiert werden und auf 
empirischen Modellen oder Studien über Abflussflächen basieren. Es ist problematisch, die 
Ergebnisse solcher Fallstudien auf andere Gebiete zu übertragen; die Berichte sind daher als 
Grundlage für entsprechende Maßnahmen im großen Maßstab ungeeignet. Geeignete Ansätze, 
die solche Forschungslücken schließen könnten, sind daher notwendig.  

In dieser Studie wurden partizipative Erhebung, wissenschaftliche 
Bodenuntersuchungen, Geostatistik, und Erosionsmodellierung eingesetzt, um die SQ-
Degradation zu bewerten und damit die Entwicklung sinnvoller Managementstrategien für die 
Bedingungen im Mai-Negus Wassereinzugsgebiet im nördlichen Hochland Äthiopiens zu 
erleichtern. Eine partizipative SQ-Erhebung und Gruppendiskussionen mit örtlichen Farmern 
wurden durchgeführt, um Indikatoren für eine SQ-Diagnose sowie Ausmaß und 
Bestimmungsgrößen der SQ-Degradation zu bestimmen. Im Einzugsgebiet wurden zur Analyse 
Bodenproben aus den verschiedenen SQ-Kategorien, Landnutzung- bzw. 
Bodenbewirtschaftungssysteme und Bereichen mit unterschiedlichem Erosionsstatus 
genommen. Die Daten wurden einer statistischen Analyse unterzogen. Ein Boden-
Erosionsmodell (Boden und Wasser Bewertungsinstrument; SWAT) innerhalb einer GIS-
Umgebung wurde bewertet und anschließend eingesetzt, um die besonders stark von Erosion 
betroffenen Bereiche (hotspots) zu ermitteln und priorisieren. Schließlich wurden potentielle 
Managementstrategien (Szenarien) zielgerichtet auf die priorisierten Bereiche simuliert, um 
Szenarien zu ermitteln, die am besten erosionsbedingte Bodendegradation reduzieren können.   

Die Ergebnisse dieser Studie zeigen, dass die Farmer Ertrag, Bodentiefe, Bodenfarbe, 
Erosionsrisiko und Bodenablagerungen als Indikatoren verwendeten, um die Böden in die 
Kategorien hohe, mittlere bzw. niedrige SQ einzuteilen. Die wissenschaftlich gemessenen 
Bodenattribute waren signifikant unterschiedlich (P ≤ 0.05) zwischen diesen SQ-Kategorien. 
Die Bodenattribute (Kationenaustauschkapazität, Durchlässigkeit, Sandgehalt, Gesamtphosphor 
und Ca:Mg), die in vier Komponentenfaktoren verblieben, die circa 88% der SQ-Variabilität 
erklärten, wurden in der Diskriminanzanalyse verwendet und klassifizierten die Böden korrekt 
in die verschiedenen SQ-Kategorien. Eine solche SQ-Variabilität zeigt, dass die SQ-Bewertung 
der Farmer mit den gemessenen Bodenattributen gut übereinstimmt. Die Bodenkarten weisen 
einen klaren Trend mit feinkörnigeren Böden in den Hangfußbereichen sowie in den Bereichen 
mit höheren Vegetationsbedeckungsgraden und mit besseren Bewirtschaftungsmethoden auf. 
Die Ergebnisse des Erosionsmodels zeigen, dass > 45% des Gebiets erosionsbedingte 
Bodenverluste von über 30 t ha-1 y-1 erfahren hat, ein Wert höher als die Bodenverlusttoleranz 
für Äthiopien (18 t ha-1 y-1). Ungefähr 91% des Gebietes leidet unter Bodenverlusten von über 
15 t ha-1 y-1, höher als der afrikanische Durchschnitt von 10 t ha-1 y-1.  

Managementszenarien mit einer Neuausrichtung der Landnutzung sowie Terrassen, 
mit Gras bewachsenen Wasserwege sowie Strukturen zur Stabilisierung von Erosionsrinnen 
können Abfluss, Bodenablagerungen und Nährstoffverluste um bis zu 75% im gesamte 
Einzugsgebiet verringern und bis zu 90% in den hotspot Bereichen (Bodenverlusts über 18 t ha-1 
y-1) verglichen mit dem Grundszenario. Die Ergebnisse dieser Studie bestätigen, dass der 



Einsatz von Farmerwissen zur Bewertung der SQ und zur priorisieren von Bereichen für die 
Implementierung von Managementmaßnahmen von großem Nutzen sein kann, da die Methode 
schnell, weniger teuer, leicht reproduzierbar und verhältnismäßig genau ist verglichen mit 
Bodenanalysen und Erosionsmodellierung. Diese Methode kann daher Entscheidungen in 
Bezug auf SQ-Degradation in Gebieten unterstützen wo Experten und Ressourcen beschränkt 
sind und wo die Extrapolation von Bodendaten schwierig ist. Weitere Untersuchungen über 
Wassereinzugsgebiete mit unterschiedlichen Umweltbedingungen sind auf regionaler und 
nationaler Ebene notwendig, um die Heterogenität des Farmerwissens über SQ-Degradation zu 
berücksichtigen.  
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1 INTRODUCTION 

 

1.1 General 

Agriculture is the mainstay of Ethiopia economy, which supports more than 85% of the 

population. This sector directly or indirectly forms an important component of the 

livelihoods of more than 70 million people (FDREPCC 2008). However, changing 

environmental factors have led to soil quality (SQ) degradation, which poses a critical 

risk of failure in agricultural productivity and food security (Bekele and Holden 1999; 

Krowntree and Fox 2008); on average, 1-3 million Ethiopians face the risk of food 

insecurity each year (USAID 2003). Soil degradation due to erosion and soil nutrients 

losses has become the most important problem constraining food security and 

environmental services (Sonneveld and Keyzer 2003). In addition, sedimentation 

reduces the capacity of reservoirs and drainage ditches and blocks irrigation canals, 

which is threatening irrigated crop production in the Ethiopian highlands (Oldeman 

1994; Tamene 2005). Development of management strategies that effectively reduce 

degradation is thus fundamental to ensure food security and improve livelihoods. 

Soil degradation in Ethiopa can be seen as a direct result of the historical 

development of agriculture and human settlement in the highlands because the 

highlands are the oldest settlement areas due to the favorable climatic conditions and 

fertile soil there (Huffnagel 1961). The high dependence on ´resource-poor´ agriculture 

characterized by uncertain rainfall, poor management and steep terrains, has resulted in 

high rates of deforestation and expansion of cultivation into steep fragile and marginal 

lands that aggravate SQ degradation due to soil erosion and soil nutrient depletion 

(Graaff 1993; Sonneveld and Keyzer 2003; Moges et al. 2007).  

Severe soil degradation can be observed in about 50% of the Ethiopian 

highlands, whereas from the remaining areas about 54% are highly vulnerable to 

erosion (Kebede et al. 1996). A decline in land productivity due to erosion at the rate of 

2.2% per year has also reported by FAO (1986). The problem of degradation is 

particularly escalating in the highlands, which account for ~45% of the country’s total 

area with its more than 88% of the human and 77% of the livestock population 

(McCann 1995). A severe soil degradation pressure is found in the northern Ethiopian 

highlands (Hakkeling 1989; Sonneveld 2003), and the effect is especially severe in the 
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Tigray region (Tamene 2005). A report by El-Swaify and Hurni (1996) also shows that 

the Ethiopian highlands, particularly the north, constitutes part of the most degraded 

lands in Africa.  

Regardless of the great deal of efforts undertaken to reduce soil degradation in 

Ethiopia since the 1970s, soil erosion by water is recognized to be a severe threat to the 

national economy, as soil losses are estimated to amount to 1493 million t y-1, of which 

42 t ha-1 y-1 come from cultivated fields (Hurni 1990; 1993; Sutcliffe 1993). This is 

greater than the tolerable soil loss1 (18 t ha-1 y-1) as well as the annual rate of soil 

formation (6 t ha-1 y-1) in the country (Hurni 1983; 1985). Bojo and Cassells (1995) 

reported an estimation of immediate gross financial losses due to degradation about 

USD 106 million per year, which was about 3-7% of the country’s gross domestic 

production at that time. However, such studies do not consider the sediment delivery 

ratio, i.e., the estimation of the sediment delivered to the downstream area of interest. In 

addition, there is little research on a large scale in Ethiopia on soil erosion, which 

changes the physical, chemical and biological properties of a soil and ultimately reduces 

SQ and crop yields (Lal 1995). Reports show (e.g., Stoorvogel and Smaling 1990; 

UNDP 2002) that Ethiopia had among the highest rates of soil nutrient depletion for 

about 60 kg ha-1 (30 kg ha-1 nitrogen (N) and 15-20 kg ha-1 phosphorous (P)) in Sub-

Saharan Africa. However, there is limited understanding on the spatial variability of soil 

losses and other SQ indicators due to erosion at catchment scale in northern Ethiopia.  

Many of the areas of greatest soil degradation concern in Ethiopia’s highlands 

are located in the Tigray region (Hakkeling 1989; Hagos et al. 1999; Tamene 2005). 

Soil is being degraded on a large scale with respect to its rate and geographical extent 

due to natural and human factors (e.g., Valentin 1998; Tamene 2005). Previous studies 

in the region indicate a rate of soil erosion ranging from 7 t ha-1 y-1 (Nyssen 2001) to 

more than 24 t ha-1 y-1 (Tamene 2005) and 80 t ha-1 y-1 (Tekeste and Paul 1989). Erosion 

rates at 130 t ha-1 y-1 for cropland and a 35 t ha-1 y-1 average of all land-use types in the 

highlands of Ethiopia are also estimated (FAO 1986). Though the above figures 

highlight the significance of soil degradation, the discrepancies in the results of the 

studies are mainly due to differences in the methods employed and the scale of analysis. 

 
1Tolerable soil loss indicates that the maximum rate of soil erosion that can occur and still allow crop 

productivity to be sustained economically (Renard et al. 1997; Shi et al. 2004). 
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Discrepancies in the rate of soil nutrient losses associated to sediment and runoff are 

also reported for Tigray, northern Ethiopia (e.g., Haregeweyn et al. 2006; Grimay et al. 

2009). These indicate that area-specific research using a suitable methodology is needed 

for appropriate land management planning for the catchments in the region.  

Predominantly, previous studies that illustrate SQ degradation are more 

generalized to the country with its different environmental and socio-economic settings, 

as the results are based on either qualitative or empirical models like USLE2 or runoff 

plot studies (Hurni 1985; 1993; Nyssen 2001). Such approaches have limitations with 

respect to interpolation to an entire catchment or other similar areas. Past studies in the 

region also do not address well the SQ degradation aspect based on local farmer 

knowledge, scientific measurements and spatial variability of soil properties at 

catchment scale. In fact, information on physical soil degradation as conventionally 

reported by scientists as rates of soil erosion, extent of areas with particular degradation 

processes, tons of soil lost, etc., are not adequate to guide for policy action (UN-

ESCWA 2007). It is difficult therefore to develop appropriate management strategies 

based on the previous research results to combat the existing SQ degradation processes 

using the limited resources at hand. Thus, the assessment of soil degradation must go 

beyond estimating soil erosion using simple erosion model or runoff plot studies, and 

this also should be preceded by SQ evaluation.  

Despite the seriousness of soil degradation problem and its negative 

consequences on SQ and food security for individual households and the region at large, 

little is known about the application of process-based models that support decision-

making at catchment scale. Past studies that show rates and hotspot areas of soil 

degradation through field SQ assessments and soil erosion modeling are also limited at 

the catchment scale in northern Ethiopia. In this study, local farmers´ knowledge, 

scientific measurements and soil erosion modeling are thus integrated to evaluate SQ 

status and spatial variability to identify critical areas of soil degradation and finally to 

suggest possible management strategies that can help to reduce the observed problem.  

The results of this study could be useful  for planners and  decision-makers  to  
 

2 In the 1970s, the Universal Soil Loss Equation (USLE) was developed to estimate soil erosion rates in 
temperate agriculture at small field (plots) (Wischmeier and Smith 1978). This model has been adapted 
for research and development actions in the tropical conditions. It is also widely applied at the 
catchment and even at national scales to estimate erosion, regardless of the criticism that it is often 
wrongly applied. 



Introduction 

4 

 

guide efficient land management strategies that reduce SQ degradation. As this study 

was conducted in a dryland region, the approaches and results could contribute to 

decision-making in other tropical environments where degradation and the associated 

problems remain a crucial concern. This study could also contribute scientific 

information to the scientific community for the development of alternative ways of 

assessment of the problem. 

 

1.2 Main objectives 

The main objectives of the study are to: 

 Evaluate soil quality (SQ) based on farmers knowledge and using laboratory 

measurements as potential indicators of soil degradation for sustainable 

development decision-making; 

 Assess variability of catchment-scale spatial soil properties (SQ indicators) and 

the implications for site-specific soil management; 

 Evaluate and apply the Soil and Water Assessment Tool (SWAT) model to 

identify and prioritize soil degradation hotspots based on estimated runoff, 

sediment yield and soil nutrient losses and suggest suitable management options; 

 Evaluate the effectiveness of alternative management strategies (scenarios) of 

land-use and cover redesign and conservation measures in reducing the existing 

soil degradation problem using the SWAT model in a GIS environment. 

 

1.3 Thesis outline 

The thesis is organized into nine chapters. Chapter 1 introduces the research relevance, 

problem and major objectives. Chapter 2 reviews the state-of-the-art on soil quality, soil 

degradation, and erosion models. Chapter 3 presents about the study area and general 

methodology employed. Chapter 4 deals with participatory SQ assessment and Chapter 

5 evaluates the SQ identified by farmers using scientific soil measurements. Chapter 6 

examines the catchment-scale spatial variability of selected SQ indicators. Chapter 7 

evaluates and applies the SWAT model. Chapter 8 presents the simulation of alternative 

management strategies that reduce the effect of erosion. Finally, Chapter 9 summarizes 

the key findings of the research, concludes and presents policy and research 

implications for future research and development attention. 
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2 STATE OF THE ART 

 

2.1 Soil quality concepts and definitions  

Soil quality (SQ) is a holistic concept, which recognizes soil as a system related to 

management and ecosystem dynamics and diversification using soil attributes (Swift 

1999; Karlen et al. 2001; Sanchez et al. 2003). These authors added that as a concept, it 

differs from conventional approaches that focus exclusively on production functions of 

soil. Other studies reported that the SQ concept cannot be viewed separately, but must 

be integrated with the land-use and other management systems (e.g., Karlen et al. 1998; 

Jijo 2005). Because of such conepts of soils in the farming system, a quantitative 

assessment of SQ is needed to determine the sustainability of land management systems 

related to agricultural production and practices, and to assist farmers, and scientists in 

the formulation of suitable strategies and resources evaluation systems (Mairura et al. 

2007).  

In literature, there are different and also sometimes inconsistent definitions of 

SQ (Jijo 2005). However, ´the capacity of soil to function´ is the simplest definition for 

SQ (Karlen et al. 1997). The word quality implies value judgment of the soil status to 

serve for a specific purpose (Jijo 2005). In addition to the anticipated function of a 

particular soil for the intended purpose, the specific definition of SQ is dependent on the 

soil inherent capabilities (Jijo 2005). Gregorich et al. (1994) define SQ as a composite 

measure of both a soil’s potential to function and how well it functions relative to a 

specific use. Considering many factors, SQ is defined as the fitness of a specific soil to 

function within natural or managed ecosystem boundaries, to sustain plant and animal 

productivity, maintain or enhance water and air quality, and support human health and 

habitation (Larson and Pierce 1994; Karlen et al. 1997; Kruse 2007). This definition 

was thought by Karlen et al. (1997) as a similar to that defined by Larson and Pierce 

(1991), Doran and Parkin (1994) and Acton and Gregorich (1995), and allows for 

quantification of SQ dynamics as well as for inherent differences among soils in 

assessing the intensity of soil degradation. Others have recommended that soil resilience 

should be considered in defining SQ (e.g., Singer and Ewing 2000). 

Generally, to manage and maintain soils in an acceptable state for future 

generations, soil quality and health must be defined, and the definition must be broad 



State of the art 

6 

 

enough to encompass the many functions of soil (Doran and Safley 1997; Nielsen and 

Winding 2002). The terms soil quality and soil health are often applied interchangeably 

in the popular press and scientific literature, but scientists in general prefer the term 

´soil quality´ and producers ´soil health´ (Doran and Safley 1997). In this study, the 

terms soil quality and soil health are used synonymously. 

 

2.2 Soil quality functions and indicators 

The important functions of soil in an ecosystem as described by SQ includes physical 

support to plants, moderation of the hydrological cycle, disposal of wastes and dead 

organic matter, retention and delivery of water and solute (nutrients) to plants, renewal 

of soil fertility, and regulation of major element cycles (Daily et al. 1997). Larson and 

Pierce (1991) also noted that SQ functions describe how effectively soils respond to 

different sustainable soil management systems and degradation processes. The use of 

specified soil functions when defining SQ however is not universally accepted (Kruse 

2007). A challenge in defining soil function is that soil that might be ´´good´´ for one 

function may be ´´poor´´ for another function (Kruse 2007). Efforts to quantitatively 

assess SQ should attempt to overcome such criticism by a prior determination of soil 

management goals or the soil functions to be evaluated (e.g., Andrews et al. 2004; 

Kruse 2007). In line with this, Kruse (2007) reviewed the example of lower nitrate 

levels in the soil as positive for soil functioning to protect the environmental services, 

but negative for soil functioning to enhance agricultural productivity. This illustrates 

that a device that assesses the changes in SQ indicators due to adoption of certain soil-

crop management practices is a better approach than just identifiying soils in the order 

of their best soil function. 

Soil quality indicators refer to measurable soil attributes that influence the 

capacity of soil to perform the intended functions. These can be measurable physical, 

chemical and biological soil attributes or morphological and visual features of soils and 

plants (Jijo 2005). Important indicators are those that can be described by qualitative or 

quantitative approaches, and which are easy to measure soil parameters and are able to 

evaluate changes in soil system (functions), correlate well with ecosystem processes, 

assessed in a reasonable period of time, meet management goals, are components of 

existing databases, and are sensitive to variations in climate and management systems 
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on temporal and spatial point scale (Doran and Parkin 1996; Karlen et al. 2004; Murphy 

et al. 2004; Jijo 2005). Soil attributes that are most sensitive to management or erosion 

influencing factors are thus the most desirable soil indicators in this study. A system 

that contributes negatively to the SQ indicators could be considered potentially 

unsustainable and modified quickly in the system. On the contrary, strategies that 

improve the condition of the SQ indicators can be demonstrated and promoted to assure 

sustainability of soil resources (Arshad and Martin 2002). The existing literature 

contains an overlap of information concerning SQ indicators selection. The challenge is 

that literature shows that no scientific agreement exists on whether any one indicator 

measures or predicts changes in SQ better than the other (Kruse 2007). Similarly, Doran 

and Parkin (1994; 1996) and Seybold et al. (1998) stated that the selection of SQ 

indicators is based on indicators that considered reasonably useful to that particular 

area, and considering the purpose and financial situation.  

Local farmers have a vast amount of practical knowledge about how the SQ 

indicators affect crop productivity and the environment at large (Birmingham 2003). 

The strengths of their knowledge can be an important contribution to SQ improvement 

currently. Such resource is greatly underutilized and should be much more vigorously 

pursued in developing world (NRC 1993). Farmers’ criteria for SQ classifications are 

usually functionally related to visual observation of SQ indicators, similar to the 

morphologic categorizations derived by soil scientists (Birmingham 2003). Pawluk et 

al. (1992) reported that classifications resulting from state of observation of the local 

environment may lead to solutions for production related problems with reasonable 

costs. Despite the fact that the topic of farmer SQ indicators knowledge has been 

formally studied in many other settings elsewhere, limited information is documented 

on farmers’ knowledge of SQ indicators that assess the consistency with the existing 

situation of science-based measurement in Ethiopia.  

 

2.3 Soil erosion impact on soil quality and productivity 

Soil erosion, i.e., the physical displacement of soil, can have severe adverse economic 

and environmental impacts. Such impacts can include SQ deterioration, crop damage by 

runoff and sediment deposition, introduction of weeds and pathogens, infrastructure and 

life destruction, siltation of water sources (reservoir) and irrigation channels (Holmes 
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1988). Erosion adversely affects on-site SQ by reducing infiltration rates, water-holding 

capacity, organic matter, nutrients, soil biota and soil depth, and in turn the SQ 

influences runoff and soil loss. Each of these factors influences on soil productivity 

individually and also interacts with each and other physical, environmental and human 

induced factors, making evaluation of the impacts of soil erosion more challenging (El-

Swaify et al. 1985; Troeh et al. 1991; Pimentel et al. 1995).  

Erosion rates are poor indicators of lossses in productivity, because soils may 

be redistributed within a catchment and not necessarily lost from production (Elliot et 

al. 1999). Soils also vary in tolerance level to erosion. For example, Andisols have a 

relatively higher water-holding capacity and natural fertility. Erosion may be severe on 

such sites, but declining in productivity may be little (Elliot et al. 1999). Conversely, 

Lithosols are shallow soils and are generally less productive, so a small rate of erosion 

can lead to a significant decline in overall soil fertility, water-holding capacity and 

thereby in productivity (Elliot et al. 1999). The effects of erosion are most severe in 

shallow soils or where there is a root-restrictive layer at shallow depth and on steep 

terrain (Wainwright et al. 2003). This indicates that erosion effect on SQ depends on the 

minimum soil depth required to sustain productivity and maintain the environmental 

regulatory capacity. The understanding of site-specific soil erosion impacts therefore 

has essential practical implications for successful soil degradation management.  

The two most important processes that adversely affect SQ and hence 

contribute to soil degradation in Ethiopia are soil erosion and declining soil nutrient 

(fertility) (Badege 2001). The northern highlands of Ethiopia are particularly vulnerable 

to such soil degradation, given the inherent high population and historical tillage 

system, coupled with unreliable rainfall, steep terrains and improper land practices 

(Huffnagel 1961; McCann 1995; Badege 2001). Soil erosion also leads to the 

development of landforms over short and long time scales. For instance, in some cases 

the landscape can significantly modify in a matter of hours as a consequence of an 

extreme storm event that leads to high flooding (Wainwright et al. 2003). Erosion 

processes are highly variable over catchment hillside fields because the soils of some 

landscape units´ are more susceptible to erosion and erosion-induced degradation than 

others (Lal and Elliot 1994). In many cases, constantly high erosion rates can result in a 

total loss of productivity and ecosystems services, leading to desertification (soil 
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degradation) (Desmet and Govers 1997). Understanding soil erosion at catchment level 

is therefore fundamental to explaining the SQ and geomorphology of an area and 

defining appropriate erosion protection measures. Testing tools (e.g., erosion models, 

interpolation SQ indicators maps, field survey) that can identify different risks of 

erosion and soil nutrient losses in a catchment are thus important for site-specific 

management planning. 

Soil erosion incurs a substantial yield reduction in Sub-Saharan Africa, e.g., 

about 3.6 million tons of cereals, 6.5 million tons of roots and tubers, and 0.36 million 

tons of pulses were lost through erosion in 1989 (Lal 1995). The average yield loss was 

estimated to be 6% at that time, but if accelerated soil erosion continues, yield losses in 

Sub-Saharan Africa by the year 2020 could be 14.5% (Lal 1995). The effects of erosion 

on crop yields arise as a result of reduction in effective rooting depth, loss of plant 

nutrients, loss of plant (soil) available water, damage to seedlings, loss of cultivated 

land area due to gully initiation and expansion, and reduced efficiency of external inputs 

which impair productivity and environmental regulatory capacity (Letey 1985; Lal et al. 

1999). The loss of soil nutrients and water can account for about 90% of the losses in 

land productivity (Pimentel et al. 1995). A ton of fertile topsoil can have 1-6 kg N, 1-3 

kg P, and 2-30 kg of K whereas a severely eroded soil may have considerably lower 

levels of these nutrients (Troeh et al. 1991). Despite the above facts, the impact of soil 

erosion on SQ at catchment scale is not well documented in the Sub-Saharan Africa in 

general and Ethiopia in particular.  

 

2.4 Severity of soil degradation 

The extent of soil degradation is estimated to be between 5 and 7 million ha per year, 

which means that 0.3 to 0.5% of the world's arable land area is being lost every year 

through soil degradation (FAO/UNEP 1983). About 87% of the world’s degraded soils 

are caused by erosion (Oldeman et al. 1991; UNEP 1992; Katyal and Vlek 2000). A soil 

degradation assessement by WRI (1990) reported that 10% of the world land surface 

has changed from forest and rangelands into desert, and another 25% is at a high risk. 

The report by Oldeman et al. (1991) shows that 7 and 1.5 million ha of agricultural land 

are degraded annually due to soil erosion and chemical degradation, respectively, of 

which more than 40% of the strongly degraded land is in Africa. Steiner (1998) also 
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reported that in Africa alone, 12% of the potential agricultural land has been severely 

degraded, 18% has lost substantial productivity, and 0.5% has become unsuitable for 

cropping. Out of the estimated 60 million ha of agriculturally productive land in 

Ethiopia, about 27 million ha experienced erosion, 14 million ha are considered eroded 

and requiring rehabilitation, and 2 million ha are considered lost with an estimated total 

loss of 2 million m3
 
of top soil per year with average annual soil loss from cultivated 

lands of 100 t ha-1 (FAO 1986). The economic impact of soil erosion is more significant 

in developing countries due to lack of capacities to protect existing nutrients and to 

replace lost nutrients (Erenstein 1999). If the soil degradation continues at the present 

rates, the consequence will be a challenge for sustainable future productivity and food 

security of many developing countries. 

Soil erosion is one of the physical degradation processes and is the most 

widespread form of soil degradation in Ethiopia. According to FAO (1986), about 50% of 

the land area in the highlands was significantly eroded, 25% was seriously eroded, 5% had 

reached the point of no return and the remaining 20% was considered to be rather free from 

serious erosion risks. Later studies also show that severe soil degradation due to soil 

erosion has occurred in Ethiopia (Tamene 2005; Tizale 2007). In some of the densely 

populated highlands of the country, entire hillsides have passed the threshold of 

degradation and entered the irreversible stage at which restoration is hardly possible. 

Such severely affected areas are mainly found in the northern highlands of the country 

(Tamene 2005). Literature on the state of soil degradation in Ethiopia indicates that the 

main contributing factors are diverse and related to the country’s physiographical 

settings and socio-economic condition. Although there is evidence of declining soil 

productivity, especially in fragile ecosystems, quantitative information on the spatial 

variability of the severity of soil degradation is sketchy and fragmented (FAO 1994; 

Tizale 2007). 

Soil erosion by water and its associated negative effects on productivity, food 

security and well being of the population are recognized to be the severe threats to 

the national economy of Ethiopia. As more than 85% of the country’s population 

depends on agriculture for living; soil loss and the associated nutrient losses have 

contributed to food insecurity (Hurni 1993; Sutcliffe 1993; Bekele and Holden 1999). 

The highlands of Ethiopia in general and the Tigray region in particular experience 
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severe soil erosion mainly due to steep terrain, poor surface cover, cultivation of sloppy 

areas, and degradation of grazing lands due to human and livestock pressure. In the 

region, erosion leaves stones and bare-rock on the surface of landscapes as it has been 

removed almost all topsoil in many places and in some cases the subsoil also (Tamene 

and Vlek 2008). It is assumed that some of the eroded soils have been deposited at the 

downstream, but the areas in the catchment that benefit from the depositions are quite 

small and in unfavorable position compared to the source areas where the soil was 

detached (Sonneveld and Keyzer 2003). In the region, the eventual delivery of sediment 

to streams and reservoirs is also high (Tamene 2005), indicating that this may reduce 

the possibility of soil redistribution within the catchment. 

Previous studies related to soil degradation due to erosion in the Tigray region 

provide a quantitative picture of the magnitude of the problem. For instance, Hunting 

(1974) estimated the mean erosion rate in the highlands of central Tigray to be above 17 

t ha-1 y-1. Other studies estimated soil loss rates higher than 80 t ha-1 y-1 (Tekeste and 

Paul 1989), 21 t ha-1 y-1 and 19 t ha-1 y-1 based on data from an in-filled dam and rainfall 

simulation, respectively, (Machado et al. 1996). Hurni and Perich (1992) also reported 

that the Tigray region has lost 30-50% of its productive capacity compared to the 

original state 500 years ago, which challenges the achievement of the goal of food 

security. The same report shows that the cost of rehabilitating the degraded areas is 10-

50 times higher than that of preventing degradation in early stages. The different 

estimates of soil erosion rates indicate the dynamics of erosion processes and causes, 

and also the need for area-specific research using appropriate methodologies for the 

situation of such diversified environmental settings. Besides, from a policy standpoint, 

what matters most is not how much land has already been lost, but rather the current 

rates of degradation, and hence losses in the future (Tamene 2005). Such questions can 

not be answered unless degradation is measured and proper indicators of changes are 

identified to develop and suggest appropriate remedial measures.  

Accurate information is needed by land managers and policy makers on the 

actual areas where severe soil degradation is taking place and where better soil 

management and improvement is necessary, and the nature of the effects on agricultural 

production (Scherr 1999; Tamene 2005). However, past studies of such data are 

insufficient to guide and prioritize areas for targeted rehabilitation policy action. As a 
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result, more qualitative and quantitative information on SQ degradation is needed for 

many areas of the developing region, as extrapolations to those areas from previous 

studies will not be adequate. Integrating local knowledge, erosion rates, spatial patterns 

and controlling factors of SQ degradation is thus necessary in order to identify hotspot 

areas and then prioritize for deisigning intervention based on appropriate approaches. 

 

2.5 Effect of management practices on soil quality degradation 

Negative impacts of erosion can be masked by technological advances, e.g., using 

improved cultivars, chemicals, and soil-crop management practices, but the cost of 

production with these technologies rises on eroded soils. As a result, production in such 

condtions may not be sustainable due to an extra cost incurred to counteract the overall 

SQ decline due to continued soil erosion (Pagiola 1992). The low-input agricultural 

systems with little or no investment in conservation-effective measures, and removal of 

crop residues from farmlands are among the many management factors that aggravate 

SQ degradation. Other important factors include deforestation, over-exploitation and 

excessive grazing. Sound soil management is thus the most important factor that 

counteracts erosion-induced changes in SQ through judicious input and appropriate 

systems of soil and crop management (Doran and Parkin 1994; Lal 1999). The latter 

author also reported that subsistence agriculture, based on little or no input leads to 

deterioration in SQ, e.g., decreasing soil fertility and soil organic matter, poor soil 

structure, low crop stand and canopy cover, and increased soil susceptibility to erosion. 

Therefore, the assessment of SQ would provide valuable information for the evaluation 

and recommendation of appropriate and sustainable soil and land management options.  

Management schemes that maintain the SQ include conservation tillage 

practices, crop rotation, crop residue management, fertilizers, organic amendments, 

water conservation techniques, terracing, contour farming, improved drainage, and 

better management systems that match the respective cultivar to the soil and climatic 

conditions (Pagiola 1992; Lal 1998). Assessing SQ allows producers and educators to 

recognize the early warning signs of management effects and then make informed 

decisions about the sustainability of their management practices (Pagiola 1992; Karlen 

et al. 1997). Studies on SQ can thus make decision makers focus more on soil 

conservation rather than on erosion, on soil fertility enhancement rather than on nutrient 
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depletion and imbalance, on soil restoration rather than on degradation and 

desertification, and on judicious use of input rather than on low input systems (Kruse 

2007). 

 

2.6 Modeling soil erosion: erosion and sediment transport models 

The existing soil erosion assessment methods can be grouped into three main 

approaches: a runoff plot experiment that provides net soil loss (Hurni 1985; Herweg 

and Stillhardt 1999), a field survey that involves the measurement of visible soil erosion 

indicators and the combination of erosion-influencing factors (Whitlow 1986; Herweg 

1996), and erosion modeling that involves the use of empirically derived equations or 

process-based models (Wischmeier and Smith 1978; Helldén 1987). The methods that 

measure or estimate soil erosion and sediment yield have various limitations for 

example, scale (spatial and temporal), representativeness, data requirement, cost and 

range of environments in application (Zapata 2003). In addition, erosion on a field scale 

is a result of interlinked erosion processes involving continuous and gradual removal of 

surface soil, which makes it complicated to quantify using conventional methods. The 

need for alternatives and complementary techniques that measure the past soil erosion 

compared to the existing situation has led to the use of radio nuclides such as the 

cesium-137 (137Cs) (Higgitt 1995). 

At present, a variety of erosion and sediment models exists focusing on 

different spatial scales (point to regional) and temporal scales (event to continuous) with 

different degrees of complexity and precision to address the practical implication of soil 

erosion at landscape level. However, researchers (e.g., Coppus 2002; Romero 2005) 

proved that there is no single erosion or sediment transport model that can be 

universally applied better to complex catchments. There is also no clear agreement in 

the scientific community on which kind of model is more appropriate for simulation 

purposes in a specific ecological condition (Tamene 2005), as several modeling 

alternatives exist all with potentials and limitations that need to be known. Therefore, 

when using soil erosion and hydrological models as a tool for understanding erosion-

deposition processes at catchment scale or predicting sediment yield to rivers and 

reservoirs, the model user should be aware of the possibilities and limitations of the 
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model beforehand and also understanding the basic considerations when choosing a 

model is crucial (Govers 1987; Desmet and Govers 1997; Wainwright et al. 2003).  

Based on the nature of the basic algorithms, there are three main types of 

erosion models. These are: empirical, conceptual and physical models (Wheater et al. 

1993; Argent et al. 2005). Empirical models are the simplest of the three model types. 

They are based on extensive experimental results (site-specific observations) and input-

output relationships. The data and computational requirements for such models are 

usually less than for conceptual and physically-based models (Li et al. 1996). Empirical 

models have constraints of applicability to regions and ecological conditions other than 

from which data were used in their development (Merritt et al. 2003) but such models 

are simply calibrate a relationship between inputs and outputs without any effort to 

describe the condition caused by each processes (Argent et al. 2005). Examples of 

empirical models include the Universal Soil Loss Equation (USLE) and its derivatives.  

Physical (process)-based models are based on the understanding of the physics 

of flow and sediment transport processes and their interaction using equations 

governing the transfer of mass, momentum and energy (Doe et al. 1999; Kandel et al. 

2004). In principle, they can be applied outside the range of conditions used for 

calibration. This is because physical models are based on computation of erosion using 

mathematical representations by deeper understandings of the fundamental hydrologic 

and erosion processes (Argent et al. 2005). Such models can be applied across multiple 

landscape conditions, as the mathematical relationships are derived from physical laws 

of water flow over and through soil and vegetation that must be obeyed under all 

circumstances (Maidment 1996; Merritt et al. 2003). Physically-distributed models are 

commonly applied to small catchments represented by detailed data, e.g., Water Erosion 

Prediction Project (WEPP) (Flanagan and Nearing 1995), European Soil Erosion Model 

(EUROSEM) (Morgan et al. 1998). An important limitation of the physical models has 

been the need of intensive data for model parameterization, calibration and more 

particularly the lack of data for validating the spatial pattern of runoff, sediment and soil 

nutrients losses and redistribution within a catchment in order to apply a model to a 

wide range of field conditions. The other major limitation of these models is that they 

are too complex and also suffer from computational costs and from reliance on data to 

test and calibrate for assessment of performance before the model output is used for 
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decision-making (Foster 1990; De Roo and Walling 1994; Mitasova et al. 1999; Argent 

et al. 2005). It is difficult to reliably apply most of the physical-based models developed 

in the data-rich regions to developing countries, where both data availability and quality 

are critically poor. Selection of appropriate model(s) that can suit the areas under study 

is therefore crucial and needs to be based on the objective at hand, resources available 

(e.g., access data, expertise, time and money, etc.) and scale of investigation required.  

Placed somewhere in between empirical and physically-based models, 

conceptual models reflect the physical processes governing the system but describe 

them with empirical relationships, e.g., Agricultural Non-Point Source (AGNPS). Such 

models incorporate the underlying transfer mechanisms of sediment and runoff 

generation in their structure, and are formulated to mimic the functional flow paths in 

the catchment as a series of storages, each requiring some characterization of its 

dynamic behavior (Viney and Sivapalan 1999; Viney et al. 2000; Merritt et al. 2003). 

These models have the inherent limitations of the empirical models and also require 

relatively detailed data for calibration.  

In this study, following the literature review of different types of erosion 

models, the physical-based SWAT model was selected and evaluated based on the 

northern Ethiopian catchment conditions to assess the magnitude of SQ degradation and 

to identify erosion-hotspot areas. This was because the participatory approach that used 

local knowledge and was evaluated by a science-based approach shows the severity and 

general pattern of the SQ degradation, but not the rate and detailed spatial distribution 

of erosion-hotspot areas. Model description and the reasons for its selection are given in 

Chapter 7. Knowledge about the SQ degradation alone is not adequate. It is necessary to 

know ``what`` to do ``where`` to tackle SQ degradation in a catchment. In support of 

this, Mitasova et al. (2001) show that through model simulation the selection of 

appropriate management options that create a sustainable landscape is possible. In this 

study, therefore, model-based simulation of management strategies was done that enable 

reduction of soil degradation to less than a tolerable level as compared to the current 

conditions after identifying soil erosion-hotspot areas using the model and SQ 

evaluation results in the study catchment.   
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3 AREA DESCRIPTION AND GENERAL METHODOLOGY 

 

3.1 Study area description 

Ethiopia lies within the zone of Sub-Saharan Africa in the horn of Africa. The Tigray 

region is located in northern Ethiopia. The study was conducted in the Mai-Negus 

catchment in the highlands of the Tigray region (Figure 3.1).  Brief description of the 

biophysical resources of the study area is given in the following sub-sections (section 

3.1.1 to 3.1.3). 

 

Figure 3.1: Location of the study area (A) Africa, (B) Ethiopia, (C) Tigray and (D) Mai-  
Negus catchment. Blue area is the reservoir 

 

3.1.1 Ethiopia: biophysical description 

Ethiopia is located in east Africa in the area referred as the Horn of Africa (32°42'-

48°12' E longitude and 3°24'-15°00' N latitude). The country covers about 1.13 million 

km2. The highlands > 1500 m above sea level (a.s.l.) constitute around 45% of the total 

area are inhabited by > 80% of the Ethiopian population (Gebeyehu 2002). In general, 

Ethiopia is a land of natural contrasts with landscapes ranging from the top of the 
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rugged Siemens Mountains (4300 m a.s.l.) to high plateaus (above 2000 m a.s.l.), and 

lowlands (< 1500 m a.s.l.) to the depths of the Danakil Depression at 120 m below sea 

level, which is one of the lowest dryland points on earth (EMA 1988). The population in 

Ethiopia is more than 76 million (FDREPCC 2008). 

Agriculture contributes to more than 50% of the gross domestic production 

and over 80% of the overall export revenue of the country (Sonneveld and Keyzer 2003; 

FDREPCC 2008). Agricultural production is mainly rain-fed, and harvests are 

determined by the vagaries of the climatic conditions in the country. The south-

westerly monsoon is the most important moisture-bearing wind system (Daniel 1977; 

FAO 1984a). The highest mean annual rainfall (above 2700 mm) is in the south-western 

highlands, which gradually decreasing to 100 mm or less in the north-eastern lowlands. 

The mean annual temperature ranges between less than 0oC at night in the highlands to 

45°C in the Afar lowlands (Dallol Depression) (FAO 1984a; EPA 2003). 

Vegetation types in Ethiopia are the direct reflections of altitude and climate 

(Gemechu 1977). The major vegetation types range from montane evergreen forest in 

the south-western areas and scattered bushes and shrubs in the lowlands to dominantly 

barren land in some of the coastal deserts (Gemechu 1977). The faunistic diversity of 

Ethiopia is high, reflecting the diversity in climate, vegetation and terrain. Such wide 

range resources have resulted in a high variability of soil types (FAO 1984b; Eweg et al. 

1997). The main soil types are Lithosols, Nitosols, Cambisols and Regosols (FAO 

1984b).  

Soils are subjected to severe losses of nutrients through soil erosion. From the 

Ethiopian highlands, over 1.5 billion tons of topsoil per annum is lost through erosion 

(Taddese 2001). This could have added to the country’s harvest a grain loss about 1-1.5 

million tons (Taddese 2001). However, the soil formation rate for Ethiopia is less than 6 

t ha-1 (Hurni 1983), which is very low compared to the estimated soil erosion rates. 

About 60% of the highland areas in the country have a slope of more than 16% 

(Cloutier 1984), and cultivation on these steep slopes has accelerated severe soil 

erosion. Such losses will certainly cause biomass decrease and this will remain as 

environmental challenge unless appropriate measures are taken.  

 



Area description and general methodology 

18 

 

3.1.2 Tigray region: biophysical description 

The Tigray region is located in the northernmost part of Ethiopia (12°00'-15°00' N 

latitude and 36°30'-41°30' E longitude) (Figure 3.1B-C). The region has a total 

population of 4.3 million, with an average population growth rate of 2.5%, occupaying 

an approximate area of 53,000 km2 (FDREPCC 2008). The average population density 

in the region is about 80 persons km-2 (FDREPCC 2008), which exceeds the country’s 

average of 49 persons km-2 (Elias 2002). The region has very rugged topography, which 

consists of both high mountains and incised deep gorges. Altitude varies from 500 m to 

4000 m a.s.l. with a significant proportion of the region having an altitude of more than 

2000 m a.s.l. Terrain slope generally ranges from more than 80% in the central and 

southern parts to less than 2% in the western lowlands of the region (Tamene 2005).  

In Tigray, rainfall is highly variable in spatial as well as temporal scales. It 

increases from the eastern to the central, western and southern parts of the region 

(Figure 3.2). The main rainy season is from June-September, and the higher rainfall 

occurs in July and August. The average annual rainfall ranges between 250 mm and 

1000 mm. The annual rainfall coefficient of variation in the region is 20-40% 

(CoSAERT 1994; Belay 1996) which is high as compared to 8% variability for the 

whole Ethiopia (Belay 1996). Rainfall intensity is generally very high, i.e., on average 

60% falls at rates exceeding 25 mm h-1 (Virgo and Munro 1978). In the region, the 

average annual temperature is about 18°C, but it varies mainly with altitude and 

seasons. 

The geology of the Tigray region is composed of weakly metamorphosed 

rocks formed by a Precambrian basement complex, which are extremely folded and 

foliated (Tamene 2005). The common rocks include slates and phyllites of sedimentary 

origin and granites (igneous), but greenstones of basic volcanic origin are the 

predominant rock types in the region (Tamene et al. 2006a). The main soil types in the 

region can reflect the variability in altitude and geology. Generally, Leptosols are 

common on the step-slopes, Cambisols on intermediate positions and Vertisols on the 

lower slopes of the region (Tamene and Vlek 2007). 

In Tigray region, agriculture is one of the most important activities. About 

65% of the land is used for cultivation and the remaining is allocated for 

grazing/pasture, plantations/forests, wasteland, etc. In the region, smallholder farmers 
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farmed over 95% of the cultivated area (BoANRD 1997). In this part of the country, 

agricultural crop cultivation has the oldest history (Tamene et al. 2006a). Tigray`s 

agriculture is based on the use of oxen-drawn plows of predominantly cereal 

production. Environmental deterioration that caused a decline in production together 

with the population increase has created a shortage of land. These processes have led to 

expand agricultural and grazing activities into marginal and steep-slope which has 

accelerated land degradation (Tamene et al. 2006b). The increasing losses of topsoil due 

to erosion and the exploitation of forests for fuelwood and cultivation have exposed the 

region to serious environmental and ecological dangers (Gebre-Egziabher 1989; 

CoSAERT 1994). 

 

 

Figure 3.2: Isohyets showing mean annual rainfall distribution in the Tigray region. 
Arrows indicate the direction of rainfall increment 

 

In the Tigray region, soil degradation is one of the highest in Ethiopia. Due to 

population growth, political instability, deforestation and repeated drought, the region 

has virtually lost its forest cover, and has been left with only a remnant vegetation of an 

estimated 0.3% (CoSaERT 1994). The existing vegetation cover includes sparse 

woodland of thorny acacia, bushes and scrubs spread between cultivated areas. The 

combination of rugged terrain, which is sensitive to erosion effects and also difficult for 

its utilization and management with the poor surface cover and the prominent gullies 
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have led the region to be considered as one of the most degraded area in the Ethiopian 

highlands (Eweg et al. 1997). There have been efforts to cover the bare landscape with 

trees in the last 30 years. These were not able to reduce erosion and the consequent 

effects significantly because of limitations in scope and budget.  

Regardless of the significant amounts of runoff and high irrigation potential in 

the highlands of Tigray (CoSAERT 1994), the economic conditions and complex 

topography make it difficult to implement the existing irrigation potential that is 

necessary for the food security of the growing population. Since the runoff originates 

from a higher topography with high flow energy and also the rivers flow in gorges, the 

use of the high runoff potential in the highlands of the region for irrigation is limited. 

Harvesting such high runoff potential is, therefore, considered an alternative to 

supplement the rain-fed agriculture using small-scale irrigation in the region. However, 

the risk of reservoir sedimentation due to high soil erosion challenges such irrigation 

option (Tamene 2005). Thus, efforts to rehabilitate degraded habitats and protect non-

degraded ones should be the focus in the region using appropriate decision-support tools 

and techniques. 

 

3.1.3 Study site: Mai-Negus catchment  

The Mai-Negus catchment (14. 07 o N and 038. 39 o E) is situated 249 km south-west of 

Mekelle, the capital of the Tigray region (Figure 3.1C-D). Altitude varies over short 

distances and ranging between 2060 and 2650 m a.s.l. The catchment has a total area of 

1240 ha. The mean annual temperature is 22oC and precipitation 700 mm. Annual 

rainfalls is erratic in distribution and also highly variable over a single main rainy 

season (June to early September). About 70% of the annual rainfall is concentrated in 

July and August. In general, the seasonal rainfall is inadequate in amount, poor in 

distribution (erratic) and intensive mainly during July-August (Figure 3.3). Despite such 

weather variability and soil erosion and socio-economic constraints, agriculture is the 

leading economic sector for the farmers in the catchment. The catchment has a long 

time human settlement history which related to its agricultural activities. 

 The population density in the study catchment is 72 persons km-2. This is 

relatively low compared to the regional average of 80 persons km-2 (FDREPCC 2008). 

The average landholding by a household in the catchment is small (1.2 ha) with a range 
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of 0.5 to 2.0 ha. The average number of household members is 6.5, ranging from 3 to 9 

members. Land-use is mainly characterized by smallholder subsistence rainfed cereal 

agriculture. 

0

50

100

150

200

250

300

350

Jan Feb Mar April May June July Aug Sep Oct Nov Dec

Months

R
ai

nf
al

l (
m

m

 

Figure 3.3: Mean monthly rainfall in Mai-Negus catchment, northern Ethiopia (1963-
2009) (source: Meteorology Agency Mekelle branch) 

 

The farming system in the catchment is a mixed crop-livestock system where 

livestock provide the draught power for the farming operations; crop residues are fed to 

the livestock. Teff (Eragrostis tef) cultivation, a cereal with very fine grains endemic to 

Ethiopia, is practiced on the majority of the arable land (above 80%). Teff has very fine 

seeds that require repeated plowing of fields to prepare fine seedbeds but the plow 

creates loose soil, which increases soil susceptibility to erosion (Bewket and Sterk 

2003). The remaining land coverage is maize (Zea mays) and wheat (Triticum vulgare). 

Other crops such as lentil (Lens culinaris), faba bean (Vicia faba), field pea (Pisum 

sativum), chick pea (Cicer arietinum), flax (Linum usitatissimum), barley (Hordeum 

vulgare) and sorghum (Sorghum bicolor) are also important crops but cover only a very 

small area. Livestock production is essential part of the farming system, although 

livestock numbers have decreased with time due to animal feed shortage. But a 

significant part of the study catchment is used as grazing land regardless of its potential 

in productivity. In the catchment, cattle are kept mostly for draught power and milking, 

goats and sheep for live sale and for their own meet demand, and equines for 

transportation. Despite the high agricultural diversification in the catchment, farmers are 
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not able to feed their family throughout the year with what they produce. This indicates 

that the productivity of the catchment in particular and of northern Ethiopia in general 

needs to be improved.  

Vegetation in most of the catchment is sparse and has been overexploited for a 

many years. The existing vegetation consists of some shrubs and bushes of little 

economic value and little patches of mixed forest. The frequently occurring tree species 

observed include seraw (Acacia etbaica), chea’ (Acacia abyssinica), acacha (Acacia 

decurrence), Awhi (Cordia africana) momona (Acacia albida), tambock (Croton 

machostachys), bahrizaf (Eucalyptus globulus), tahsus, (Dodonaea euquistifolia), Awlie 

(Olea europaea), lahai (Acacia lahai), Kulkual (Euphorbia candelabrum) and Kulieo 

(Dovyelis abyssinica). Leucena (Leuceana leucacephala) and sesbania (Sesbania 

sesban) and some grass species also occur in the catchment. Tree species such as 

Eucalyptus camaldulensis have been introduced through reafforestation. Generally, the 

vegetation coverage is not good, which demands sound management practices. 

 

3.2 Methodology 

3.2.1 Study site selection 

This study was conducted in the Mai-Negus catchment in the Tigray region in northern 

Ethiopia. The site is considered representative for the highland catchments in the region 

with respect to farming system, land-use and land -cover diversity, terrain complexity, 

soil degradation and presence of a water-harvesting reservoir in the downstream of the 

catchment and its sedimentation risk. When selecting this catchment as a study site, 

previous preliminary survey results of the Ministry of Water Resources (MWR 2002) 

and knowledge of the author in the region were used. The report of the MWR showed 

that the catchment has already been identified as a site with high soil degradation-

related problem in the Tigray region. After site selection, field data were collected from 

May 2009 to June 2010. A brief description of the data collected and the approaches are 

described in the sub-sections 3.2.2 to 3.2.7. 

 

3.2.2 Identification of geomorphic landforms 

Having a landform map is crucial to show the variability of soil quality degradation 

across small units of the landscape. The geomorphic landform map (Figure 3.4A) was 
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developed in ArcGIS software using a field survey in combination with the topographic 

map information. The topographic map (scale 1:50,000) was obtained from EMA 

(1997). It was used for field verification, delineation of boundaries, generation of a 

digital elevation model (DEM), and for capturing other vector features in the catchment. 

In addition, information from geological map was taken into account while developing 

the landforms. A report by MWR (2002) about the landforms in the study catchment 

was also reviewed to classify these. The study catchment is characterized by different 

landforms that range from flat plains to undulating and rolling land to steep mountains 

and escarpments. Considering elevation, slope, and geomorphologic character (surface 

and subsurface flows, alluvial and colluvial deposition), the catchment topography can 

be classified into six landforms. The landforms also vary in vegetation cover and most 

morphodynamic processes.  The major geomorphic landforms (Figure 3.4A) are valley 

(covers 19% of the catchment area), plateau (8%), rolling-hills (9%), central-ridge 

(27%), escarpments (29%), and mountainous (6%) with an average slope of 4%, 13%, 

18%, 22%, 36%, and 80%, respectively. The reservoir, which is considered as a 

separate landform, covers about 2% of the catchment area.  

 
 

Figure 3.4: Geomorphic landform (A); digital elevation model (B); major soil types (C) 
and land-use and-cover (D) of the Mai-Negus catchment, northern Ethiopia  
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A brief description of the six landforms is given as follows. (i) Valley: the two 

big valleys with the extended alluvial accumulation zone join where the reservoir is 

located, (ii) central ridge: divides the drainages of the two valleys, and is composed of 

crystalline rocks possibly due to regional metamorphism of parent sediment rocks, (iii) 

plateau: at the eastern part of the catchment, covering an area of approximately 1 km2, 

built of basic intrusive (gabbros) covered by sandstone showing only slightly undulating 

relief, (iv) escarpment: downhill from the plateau area at the eastern and below the 

mountainous margin of the drainage, (v) rolling hills: in the western margin of the 

catchment and composed of predominantly basic volcanic rock, and (vi) mountainous 

area: mountains with high relief in the northern margin of the catchment characterized 

not only by steep slopes but also by scarp faces with a height up to 20 m basic volcanic 

rock (MWR 2002). Generally, topography is best described using a digital elevation 

model (DEM) for erosion modeling, rather than using the landforms. 

 

3.2.3 Generating digital elevation model  

The digital elevation model (DEM) is a digital representation of the hight of a terrain 

over a given area, usually at a regularly spaced grid (Richardson 2000). It is often not 

readily available at an adequate resolution and quality at catchment scale. Topography 

can be modeled digitally from elevation data collected from a variety of sources (Maune 

2001). The DEM is one of the data models required for erosion modeling and in 

disciplines such as climatology, geomorphology, hydrology, ecology and also for 

extracting drainage networks and topographic parameters at catchment scale (Moore et 

al. 1991; Sulebak 2000; Maune 2001). The knowledge of surface relief is of great 

importance for understanding and evaluating different topographic processes.  

The DEM of the study area (Figure 3.4B) was prepared with a resolution of 10 

m cell size after digitizing the topographic map (scale 1:50,000) with a contour spacing 

of 20 m (EMA 1997) in ArcGIS 9.2. The map was scanned, and contours and spot 

heights were digitized and tagged with elevation values in a GIS environment. The map 

was geo-referenced using ground control coordinate points collected in the field and 

taken from the map. The vector elevation map was converted to raster and projected 

using the Universal Transverse Mercator 37 North (UTM-37N) reference system. After 

the DEM was created, pits/sinks were filled before processing undertaken in order to 
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´route´ runoff to the catchment outlet. Flow tracing can be difficult if the DEM has low 

accuracy, insufficient vertical resolution and numerous pits that trap the flow lines 

(Martz and Garbrecht 1992). A grid cell resolution affects the routing of surface runoff 

and sediment movement across the catchment. Zhang and Montgomery (1994) 

suggested that a 10 m grid size can show the effect of increasing resolution of grid size 

and the data volume needed for hydrological and erosion modeling. A grid size of 10 

m after comparing various grid sizes to validate a terrain-based hydrological model 

prediction was also suggested by Quinn et al. (1991), Maidment (1996) and Bundela 

(2004). Thus, a DEM with cell size of 10 m was generated in this study (Figure 3.4B). 

 

3.2.4 Mapping major soil types 

The soil data were obtained from the NEDECO database (NEDECO 1998). Additional 

soil physical, chemical and morphological properties were determined on-site to 

supplement the data gap in the database. According to the FAO-UNESCO (1974) Soil 

Classification System, the main soil types in the study catchment are Eutric cambisols 

(67%), Chromic cambisols (13%), Leptosols (15%) and Chromic vertisols (5%). 

Chromic cambisols and vertisols occupy almost flat areas, Eutric cambisols the 

undulating plains and rolling land and Leptosols steep to very steep lands (Figure 3.4C).  

 

3.2.5 Driving land-use and land-cover (LULC) 

Different LULC types were identified during the field survey in the study catchment. 

Ground truthing was conducted in the dry season between mid September and 

November 2009 using a Geographic Positioning System (GPS) (Garmin III). The GPS 

points were used to geo-reference the image and as training samples for supervised 

classification of the Landsat image of November 2007 for the study catchment. The 

LULC image was rubber sheeted to match ground control locations, and the area 

containing only the Mai-Negus catchment was extracted from the full scene. A root 

mean square error less than 5 m was achieved while geo-referenced. Sampling points 

ranging from 10 to 15 were selected for each land-use class. Maximum likelihood 

classifier was then applied for the land-use image data classification into six LULC 

classes (Figure 3.4D). About 55% of the land area in the catchment was allocated as 

arable land, 21% for grazing, and 14% as protected (enclosure) plantation. Dense bush 
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and woodland with mixed forest accounted for about 2% of the catchment. The rest of 

the land was miscellaneous such as settlement, marginal area and reservoir (8%). 

 

3.2.6 General methodological research framework 

Figure 3.5 shows the general methodological framework employed in this study. 

Detailed descriptions of the data collection, analysis and interpretation methods are 

given in the respective chapters. This study was carried out in several stages with the 

aim to collect the required data in the catchment (Figure 3.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Methodological framework for evaluating soil quality (SQ) using farmer 
knowledge, scientifc measured soil data and soil erosion modeling so as to 
evaluate management strategies (scenarios) that reduce soil degradation 

 

First, a reconnaissance survey was executed to get a general field impression about the 

landforms, land-use and land-cover, topography, geology and the soil types in the study 

Data on catchment characteristics 
(landform, DEM, soils, land-use and 

land-cover, climate, and other 
catchment attributes) 

Participatory SQ 
assessment 

(transect walks, 
group discussions, 

interviews) 

Scientific SQ indicator 
measurement (soil 

sampling, analysis and 
interpretation based on 

SQ categories)

Zone soil sampling from 
SQ categories, land-use 
and soil management 
systems, and erosion-

status (develop spatial SQ 
indicator) 

Calibration, 
verification 
(Evaluation) 

Erosion modeling 
(SWAT) on runoff, 
sediment yield and 

nutrient losses 

Observed data on 
runoff, sediment 
yield and nutrient 

losses

Scenarios 
simulation for 
management 

option 

Model simulation 
to identify hotspot 

erosion sub-
catchments 

Status of SQ 
degradation 

Scenario development 

Sensitivity 
analysis 



Area description and general methodology 

27 

 

catchment. In the second stage, data and information regarding land-use history, local 

knowledge on SQ as well as land and crop management practices were obtained through 

field transect walks and group discussions supplemented by interview. In the third 

stage, soil information was gathered from representative sampling zones in the 

catchment (see section 3.2.7) for laboratory analysis. In the fourth stage, field-based 

data for model calibration and verification (evaluation) were prepared and data for the 

SWAT model simulation at catchment scale were collected before model running. In the 

final stage, scenarios were developed and compared to the baseline condition to suggest 

management strategies that best reduce soil degradation.  

 

3.2.7 Soil sampling design 

Field surveys were employed to characterize the study catchment in terms of different 

attributes such as visual SQ indicators, SQ categories (high, medium low), long-term 

land-use and soil management systems, and erosion-status (stable, eroded, deposition) 

based on knowledge of farmers, extension agents and researcher field observations. On 

the basis of such soil sampling zones, soil samples were collected and then analyzed to 

acquire the intended soil parameters. The purpose of stratifying the catchment area into 

different sampling zones (Figure 3.6) was to ensure that the sampling points were well 

distributed across representative sampling units in the catchment. The soil samples were 

analyzed following the standard laboratory procedure and results interpreted to address 

the purpose of the study. The results of the soil analysis were also used as an input for 

SWAT model dataset (Chapter 7). 

 

3.2.8 Data analysis 

Data were subjected to different statistics such as descriptives, analysis of variance, 

correlation, regression, factor and discriminant analysis using SPSS 18.0 (SPSS 2010), 

and geo-statistical analysis by ArcGIS 9.2 software. Normality tests were conducted for 

the soil parameters and non-normal data were transformed to stabilize the variance. The 

SWAT model simulation performance between observed and simulated values was 

evaluated by the coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE) 

(Nash and Sutcliffe 1970). 
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Figure 3.6: Soil sampling design employed in the Mai-Negus catchment, northern 

Ethiopia.  

  Note: LS1, natural forest; LS2, afforestation of protected area; LS3, grazed 
land; LS4, teff (Eragrostis tef)-faba bean (Vicia faba) rotation; LS5, teff-
wheat (Triticum vulgare)/ Barley (Hordeum vulgare) rotation; LS6, teff 
mono-cropping; LS7, maize (Zea mays) mono-cropping; LS8, marginal 
land   
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4 PARTICIPATORY SOIL QUALITY ASSESSMENT IN MAI-NEGUS 

CATCHMENT, NORTHERN ETHIOPIA  

 

4.1 Introduction  

Agriculture is the mainstay of Ethiopia economy, providing the major source of 

employment and income. About 85% of the population in the country is primarily 

engaged in this sector (FDREPCC 2008). Thus, agriculture directly or indirectly forms 

an important component of the livelihoods of more than 70 million people in the 

country. However, changing environmental factors have led to soil quality degradation, 

which poses a critical risk of agricultural productivity and food security (Bekele and 

Holden 1999; Krowntree and Fox 2008). Soil quality is commonly defined as the 

capacity of the soil to function (Karlen et al. 1997).  

Soil quality (SQ) degradation is often associated with interactions among land-

use, soil management and local knowledge regarding agricultural production and with 

inherent soil forming and erosion factors (Karlen et al. 2001). Deforestation and 

accelerated soil erosion that causing SQ degradation are serious problems in Ethiopia 

(Badege 2001). Even though several impact assessment studies have demonstrated that 

investments in rehabilitating degraded landscapes in tropical regions do payoff in 

economic terms (Boyd and Turton 2000; Holden et al. 2005), the overall productivity of 

many areas in the country is often perceived to be so dramatically damaged by human 

impact that recovery is deemed impossible (Nyssen et al. 2009). Regardless of this, 

there has been a great deal of attempts to reduce soil degradation-related problems in 

Ethiopia, though success in reversing land degradation is minimal (Badege 2001; 

Nyssen et al. 2009). Among the main reason for the lack of success is that the 

introduced measures and technologies were not well-matched to the conditions local 

farmers face, and that local communities were often not involved in the technology 

selection processes (Kebrom 1999; Badege 2001).  

An active involvement of communities under consideration is vital for 

successful implementation of introduced land management practices. Participation of 

local communities in evaluating SQ, its determining factors and possible management 

options is crucial, not only for the measures to be accepted and implemented, but also 

for sustaining those practices. Local knowledge also benefits our scientific 
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understanding of the entire land management and decision-making processes (Sillitoe 

2000; Barrera-Bassols et al. 2006).  

Worldwide, traditional rural societies still encompass the majority of small 

farmers, and the result of conventional soil survey information often fails because it 

does not take into account or underestimates the importance of local knowledge 

(Barrera-Bassols et al. 2009). Local people and their cultures have substantial 

knowledge about soils and environments gained through experiences of many 

generations living close to the land. The environmental knowledge rooted in local 

communities provides a long-term perspective about land-use and management systems 

(WinklerPrins 1999; WinklerPrins and Sandor 2003). The long-term experience of local 

communities with natural resource use and management, including successes and 

failures, can help in evaluating SQ of the land-uses in relation to sustainable agriculture 

through a participatory approach (Romig et al. 1995; WinklerPrins and Sandor 2003). 

Participatory processes are useful for providing persons with different 

backgrounds the opportunity to develop shared abilities for discourse and reflection, 

engage in an interactive dialogue, and communicate their perspectives (Röling 2002; 

Patel et al. 2007). There is also an increasing awareness and acceptance that information 

obtained from local people at the ´grassroots´ level can both provide feedback on and 

enrich decisions made at even the national or international level (Patel et al. 2007). 

Persons at the local level are usually those most affected by the issue at stake and are 

often the greatest experts on many aspects affecting their own situation (Patel et al. 

2007). Farmer participation is thus for the most part valued as a means to enable and 

enhance democracy (Patel et al. 2007), and creates empowerment for implementing 

practical and effective decisions on the ground (Stave 2002; Mostert 2003). 

Despite the aforementioned importance, previous SQ studies using 

participatory local communities are lacking in Ethiopia. Taking into account such 

benefits of participatory research and information gaps regarding SQ in the country, this 

study was designed to explore the experiences of local communities in the diagnosis of 

SQ and to assess the contribution of local knowledge as potential indicators of soil 

degradation for sustainable decision-making. The goal was to enhance our 

understanding of both the determining factors causing land degradation at the local level 

and the benefits of local participation in problem identification and solution 
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prescription. If successful, the experience could also help redesign strategies, 

investment programs and projects that enhance SQ and thereby food security not only in 

the study area but also throughout the Ethiopian highlands. 

 

4.2 Methodology  

4.2.1 Study area 

This study was conducted in Mai-Negus catchment in the Tigray region (12o00´-15o00´ 

N latitude and 36o30´-41o30´ E longitude) of northern Ethiopia (Figure 4.1). The 

catchment has an area of 1240 ha with a rugged terrain and altitude ranging from 2060 

to 2650 m a.s.l. Land-use is predominantly arable with teff (Eragrostis tef) being the 

major crop along with different proportions of pasture and scattered patches of trees, 

bush and shrubs land.  

 

 
Figure 4.1: Location of Mai-Negus catchment in Tigray, northern Ethiopia. Blue area is 

the reservoir  
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The major rock types are lava pyroclastic and meta-volcanic. Soils are 

commonly Leptosols on the very steep positions, Cambisols on middle to steep slopes 

and Vertisols on the flat areas. Soils are highly eroded in most landscape positions and 

the overall terrain erosivity potential is high because the slope gradient often reaches 

80% or more. Surface cover is also poor with high human disturbance often facilitating 

SQ degradation processes throughout the catchment.   

 

4.2.2 Research approach and sampling strategy 

A participatory field survey complemented by household head interviews was carried 

out to collect relevant information related to SQ within the catchment. The first field 

visit covered the whole catchment in June 2009 to provide a clear, overall impression 

about the area. Local farmers were then selected randomly from different wealth 

categories to be involved in transect walks. Finally, in addition to the participatory 

transect walks; arrangements were made to supplement the data from field observations 

by group and informal discussions with farmers and development agents (DAs).  

Categorizing farmers into different socio-economic groups was done entirely 

by the farmers themselves using local criteria such as (1) food security status and (2) 

draught oxen ownership and the number of other livestock held by their household. The 

aim for differentiating farmers into groups was to include farmer knowledge associated 

with different levels of resources, as the respective farmers may also have different 

views on SQ degradation. Three farmer wealth groups were identified in the study 

catchment, i.e., poor, medium and rich.  

Rich farmers were defined as those who are able to feed the household 

members throughout the year, medium farmers were those who sometimes have 

problems with their daily food supply, and poor farmers were those with no means of 

getting daily food and who were thus dependent on the sale of fuelwood, grass and 

wage labor for most months of the year. Physical assets such as the condition of the 

house, farm size and ownership of permanent trees and other crops were also considered 

as additional criteria for categorizing farmers into different wealth groups. Resource-

rich farmers accounted for only 13% of the total households in the study area. Medium 

farmers constituted about 47% and the rest were poor farmers. Based on the list of 
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farmers assigned to each wealth category, names of farmers were randomly drawn and 

these farmers were participated in the SQ assessment survey in the catchment.  

 

4.2.3 Participatory transect walks and group discussions 

Each field transect walk took place with a group consisting of five farmers from each of 

the three wealth categories (total of 15 farmers). The individuals were randomly 

selected to participate because it was impractical due to group size for all the household 

heads to participate. Doing so would have been problematic not only for the walks but 

also for the discussions and consensus building that were needed to extract accurate and 

representative information from all economic groups. The transect walks and 

discussions were guided by the author with two development agents serving as 

facilitators.  

The participatory transect walks and field observations were conducted in two 

different months. The first was in June 2009 before planting and the second in 

September 2009 at the vegetative stages. In June it was easy to identify and differentiate 

SQ indicators such as erosion, texture, color, hard surfaces, and terrain factors. While 

the land was being prepared for planting, it was also very easy to visually identify 

management practices, soil conservation efforts and tillage effects resulting in both 

good and poor SQ conditions. Similarly, in September it was easy to observe 

differences in SQ across the landscape using biological indicators, e.g., weeds, grasses 

and crop performance at the vegetative and flowering stages.  

Prior to the transect walks, the research goals and type of preliminary 

information that was to be obtained (i.e., the dominant soils and land-use practices in 

relation to SQ degradation indicators across the landscape) were explained to the 

farmers. Once awareness had been created, the participants in consultation with 

facilitators planned the route considering diversity of topography, soil types, land-uses 

and catchment-related degradation problems. In short, the transect was designed to cross 

several land-uses and soil types as much as possible, with at least part of it aligned 

perpendicular to the direction of the main drainage course. The route was neither a 

single straight line nor confined to the most accessible roads or paths, as such a strategy 

could give a false perception about the area. Once the route to be followed was agreed 
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upon, the walk began at a point near the hydrological divide of the catchment and 

continued downhill toward the drainage line.  

A specific checklist of issues that guided the discussions during the transect 

walks and field observations was developed. These included: (1) identifying observable 

SQ indicators of erosion such as rills, sheet wash, gullies, root exposure, pedestals, rock 

exposure, sedimentation or deposition and relative severity of the erosion indicators, 

and reasons for continued soil erosion processes. The frequency of rills, gullies and 

other soil erosion indicators on the surface was counted per 100 m2 quadrants at several 

points along the transect to estimate the relative severity of erosion indicators on SQ; 

(2) observing soil color, texture, thickness of topsoil, workability, drainage, dominant 

landform, soil fertility and management requirements and practices across different soil 

quality soils; (3) observing crop and weed species SQ indicators in the landscape; (4) 

observing general land husbandry practices, and their relationship to SQ degradation; 

(5) categorizing SQ conditions and identifying hotspot degraded areas using the 

indicators; (6) determining the spatial variability of SQ based on field observation by 

the farmers participating in the transect walks. Geographical Positioning System (GPS) 

readings according to farmer understanding of SQ and hotspot degraded areas were 

taken during the walks. 

During the transect walks, the author and development agents took note of 

indicators of SQ degradation associated with water erosion, soil fertility, weeds and 

crops, and management practices based on information given by the participant farmers. 

Occasionally, open-end interviews were also carried out with local farmers within the 

catchment along and after the transect walk. Group discussions were conducted after the 

walk focusing on the existing status of SQ and the diagnosis indicators employed in the 

catchment. Observations during the walk were presented to the household heads to 

discuss, review, and reach consensus about (sometimes to vote) by a designated 

presenter. The transect walks were implemented in the morning, whereas group 

discussions were held in the afternoon of the next day.  

In order to have a common understanding about the SQ indicators (e.g., soil 

erosion, soil fertility, soil thickness, yield, etc.), assessment categories, and severity of 

the degradation and its main causes, the group discussion meeting was held among the 

15 farmers involved in the transect walk and the other 52 household head farmers in the 
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catchment. During this group discussion, the 15 farmers presented the common SQ 

indicators, SQ categories and general resource variability across the study catchment. 

These farmers also described the appearance of each of the indicators in the fields and 

their associated causes. The farmers who participated in the transect walks analyzed all 

the soil quality indicators during the group discussions to establish a final list of 

observable SQ indicators based on consensus using their defined criteria to categorize 

SQ into categories of high, medium or low soil SQ status in the catchment. Farmers 

used their experience to decide which of the listed indicators describes a relatively more 

severe SQ degradation than the others.  

 

4.2.4 Household interviews 

Forty-two household heads were chosen for the questionnaire interview at random 

among the farmers who had participated in the transect walks and group discussions 

(Appendix 1). The interview was carried out to complement the information collected 

during the transect walks and group discussions. This was done by collecting data on 

individual farmer knowledge of a range of SQ indicators that they used to identify the 

SQ categories. The interview thus addressed specific information not well covered 

during the transect walks and group discussions. This was done based on the 

assumption that each SQ indicator mentioned in a group discussion might not be 

representative for every farmer when categorizing the SQ categories. Having such 

information was helpful to identify the indicators most frequently used by the local 

farmers as diagnostic criteria for the SQ categories into high, medium or low. The 

interview also gave the chance to explore the status of the fields farmers possessed with 

respect to the SQ categories described in the transect walks and group discussions.  

 

4.2.5 Data management and analysis 

Data management was handled using a Microsoft Excel spreadsheet. All spatial data 

(point location using GPS) for each SQ category and source of runoff and sediment 

were identified based on the consensus of the participant farmers and entered into the 

spreadsheet. The data were then accessed by Geographical Information System (GIS) 

software and used to develop a SQ map that helped identify critical sources of runoff 

and sediment delivery. In addition, data analysis was carried out using SPSS release 
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18.0 software. Descriptive statistics such as frequencies and percentages were used. 

Chi-square (χ2) was applied to test whether a particular SQ indicator was significantly 

used by the interviewed farmers or not while categorizing the SQ.   

 

4.3 Results and discussion 

4.3.1 Participatory soil quality diagnosis 

The results of the participatory SQ survey indicate that farmers have the experience and 

knowledge to assess SQ status and the severity and determinants of SQ degradation. 

The local farmers identified many SQ indicators in the transect walks and described the 

SQ status based on their own diagnostic criteria (Tables 4.1 and 4.2). Table 4.1 shows 

that the local farmers’ SQ indicators ranged from physical (soil-related indicators) to 

biological (yield and yield components) while Table 4.2 shows how they categorized 

their soil in local terms without yield and yield component information. 

Indicators related to crop yield and erosion (e.g., soil depth, color) were often 

used by the farmers to classify their soils into the SQ categories high, medium and low. 

Their classification was not limited to the soil nutrient status but also considered soil 

erosion, fertility, color, thickness, water-holding capacity, yield and crop performance 

indicators. Soil quality was seen as dynamic by the farmers, since a particular unit of 

land can have high or low SQ based on the type of management imposed or natural 

processes, including erosion, that were observed. 

The farmers used popular local terms for good, medium and low SQ (Table 

4.2). They stated that dark soils are fertile with high water-holding capacity and that 

they generally produce good crop yields. The local term ´Diqua´, meaning fertile soil, 

was commonly used to describe good SQ. According to the farmers, medium soil depth, 

mixed red and dark color, and presence of some stone out-crop on the soil characterized 

medium SQ.  Red, white and yellow colored soils were usually used by local farmers to 

describe poor SQ. The farmers thought that poor soils showed low fertility, a tendency 

to dry up quickly and to generally produce lower crop yields, particularly in low rainfall 

seasons. The farmers added that poor soil can be described by shallow depth, high weed 

infestations, a sandy texture, and a very loose surface that is easily detached by 

raindrops and runoff (Table 4.2).  
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Table 4.1: Diagnostic criteria of soil quality (SQ) indicators into high, medium and low 
SQ categories agreed on by farmers in Mai-Negus catchment, northern 
Ethiopia 

 

SQ indicator 

Diagnostic criteria  

High soil quality Medium soil quality Low soil quality 

Crop yielda Teff (Eragrostis tef) yield more 

than 1.5 t ha-1 

Teff (Eragrostis tef) yield 

1.0 to 1.5 t ha-1 

Teff (Eragrostis tef) yield less 

than 1.0 t ha-1 

Crop appearance 

and vigour 

Overall crop is dark green, large, 

tall, in a dense stand, even 

growth, matures on time 

Overall crop is light green, 

small, thin stand, uneven 

growth and late to mature 

Overall crop is poor, stunted, 

discolored, uneven stand, 

rarely matures 

Weed 

infestation/ 

incidenceb 

Low weed biomass and incidence 

but high in diversity and 

demanding least labor 

Some how high biomass 

and diversity, demanding 

relatively less labor 

Higher biomass due to high 

weed infestation but low 

diversity, demand high labor 

Soil fertility Soil is high potential nutrient 

with little or no fertilizer need 

Soil needs some inputs as 

its potential is decreasing 

Very low, needs higher 

fertilizer inputs for production 

Soil erosion Little or no erosion evident and 

topsoil resists erosion 

Signs of sheet and rill 

erosion and some topsoil 

blows away, moderate 

erosion level 

Considerable topsoil moved, 

rills, gullies formed that 

resulted in severe erosion 

Soil compaction Soil stays loose, does not pack  Thin hardpan or plow layer Soil is tight and compacted, 

thick hardpan 

Moisture in dry 

season 

Soils holds moisture well, and 

gives and takes water easily 

Soil is drought prone in 

dry weather 

Soils dries out very fast and 

resulted in wilted crops 

Topsoil 

thickness 

Soil is deep to a root or water-

restricting layer 

Topsoil is shallow (about 

plow depth) 

Subsoil exposed or near 

surface 

Earthworm 

population 

Soil has numerous worm holes 

and castings, birds follow tillage  

Few worm holes and 

castings 

No worm casts holes or 

activity 

Fertilizer  

response of soil 

Soils are responsive to some 

fertilizer 

Demanding high fertilizer 

input 

Need higher fertilizer rate 

Soil tilth/ 

workability 

Soil is easy to work or soil flows 

and falls apart 

Soils difficult to work or 

need extra passes 

Plowing is hard or soil never 

works down 

Soil color Surface soil color is dark, dark 

brown, dark gray, black 

It is brown, gray or reddish It is light, light yellow, light 

gray, or orange white color 

Soil texture Texture is clay loam, loamy, 

loam clay 

Texture is too light or too 

heavy but presents no or 

little problem 

Texture is extremely sandy, 

or clayey rocky 

Drainage  Water drains at good rate, no 

ponding, and moves through soil 

progressively, soil not too wet 

and not too dry 

Soil drains gradually, slow 

to dry out, water remains 

on surface for short 

periods, eventually drains 

Poor drainage as soil is often 

oversaturated or waterlogged  

for long periods, very wet 

ground for long time 

a Teff is the most commonly grown crop in the catchment regardless of soil quality category. That is why farmers 
selected and used its grain yield to categorize soil quality. 

b Farmers can identify weed species that grow on productive soils, heavily eroded surfaces and heavily degraded 
gullies, or that indicate extreme shortage of nutrients and moisture, and the trend in declining soil quality. 
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Table 4.2: Consensus-based description of soil quality indicator terms used for 
classifying high, medium and low soil quality by local farmers in Mai-
Negus catchment, northern Ethiopia  

Soil descriptor (local terms) Translation  

Reguid  High soil quality 

Tselimo hamed  Darkish soil 

Aeman zeibilu Not stony out-cropped 

Diqua` Highly fertile soil 

Reguid hamed Deep soil 

Maekelay  Medium soil quality 

Hawsi Walka / tselimo Mix of red and dark soil 

Maekelay  Medium soil depth 

Kirub Aeman zelebo Some stone out-crops  

Rekik Low soil quality 

Keih, hamekushtay hamed Red soil, light yellow soil 

Aeman zelebo Stone out-crops dominate 

Enda-Tsihayay  High weed infestation 

Hashewama Sandiness 

Teferkashay  Loose soil 

Rekik hamed Shallow soil 

 

In addition, farmers reported that reguid (deep soil) has better water-holding 

capacity, is more fertile and therefore more productive. This is consistent with research 

findings by Haile (1995) and Corbeels et al. (2000) in reports that focus on soil fertility, 

which is just one indicator of SQ. Systematic studies using farmers’ soil knowledge and 

their local soil classification system have been carried out in some developing countries, 

such as Nigeria (Osunade 1988), Indonesia (Grobben 1992), Zambia (Sikana 1993), 

Rwanda (Habarurema and Steiner 1997) and Kenya (Macharia and Ng’ang’a 2005). The 

present study adds to the scientific knowledge by incorporating the farmers’ experience 

and understanding of SQ in northern Ethiopia.  

The SQ indicators identified in this participatory survey reveal that the valley 

bottom of the catchment had medium to high SQ, whereas low SQ was widespread on 

the rolling-hills, central-ridge, and mountains landforms in the catchment. This is 

illustrated by the transect walk diagram (Figure 4.2) and spatial distribution of SQ 

categories (Figure 4.3). It is important to note that a wide range of criteria was used by 

the farmers to describe their field SQ. Farmers were not only concerned with factors 
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such as soil fertility, depth, color etc., and its suitability for crop production but also 

took into account a broad range of other issues related to previous management and 

productivity history and the comparison with other nearby fields. In agreement with 

this, Elias (2000) reported that farmers´ soil description and other management 

decisions are based on a range of factors in southern Ethiopia. Such findings contrast 

with the classic approaches in evaluating soil, which only use the physical aspects to 

assess inherent or dynamic soil qualities in determining agricultural or environmental 

values (Beyene et al. 2001). Despite such knowledge of the local communities, the 

problem of SQ degradation still continues in many areas of Ethiopia. Therefore, to 

tackle this common problem, approaches that fully involve the local community should 

be designed in such away to address the concern of resource degradation in Ethiopia and 

other similar areas.  

In general, this SQ study is rooted in field experiences of local farmers, which 

translate the descriptive indicators based on soil look, feel, smell, workability, 

productivity and presence of biota. That could be part of the reason why Pawluk et al. 

(1992) and Harris and Bezdicek (1994) remarked that farmer-derived descriptive soil 

indicators are valuable for describing SQ in meaningful terms. The present study also 

provides groundwork for validating an analytical assessment of SQ indicators that based 

on quantifiable laboratory results in order to be used as a tool for management and 

policy decisions at large scale. It is thus concluded that farmer knowledge regarding 

management of SQ throughout Ethiopia should be utilized and well documented. 

 



Participatory soil quality assessment in Mai-Negus catchment, northern Ethiopia 

40 

 

 
Figure 4.2:  Transect walk diagram showing soil quality indicators and other resource variability across the landscape according to farmers’ 

views in Mai-Negus catchment, northern Ethiopia. Each column designated by I-VI was subjected to each transect route in the 
catchment 

 

Reservoir (Micro-dam) 
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Figure 4.3:Spatial distribution of soil quality categories as identified during 
participatory farmer transect walks in a northern Ethiopia catchment. 
Pocket small fields were generalized during classification to each of the 
soil quality categories because tracing them manually would have been too 
time and labor consuming  

 

4.3.2 Severity of degradation as soil quality indicators 

For evaluation of SQ, it is desirable to select indicators that are suitably related to the 

intended soil function (Karlen et al. 1997). Thus, key indictors of SQ were identified 

and assessed during transect walks by a group of farmers (Figure 4.2 and 4. 3). During 

the transect walks, the group of farmers having different economic status identified SQ 

indicators that describe the severity of SQ degradation and then discussed these with 

other household head farmers in the study catchment. After the discussion, a consensus 

was reached on the list of SQ indicators. The frequency of rills, gullies and other SQ 

indicators that were counted at several points along the transect walk was summed to 

estimate the abundance of such indicators and then the severity of degradation with 

respect to the SQ indicators was ranked (Table 4.3). The SQ indicators identified by the 

farmers as the most important severity indicators in the study catchment were rills, 

followed by root and subsoil exposure (Table 4.3). Indicators of SQ in the form of 

erosion and sedimentation processes were easy to identify during the transect walks.  
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The process of achieving community consensus (involving above 60% of the 

land owners) on ranking SQ indicator in the form of erosion, soil depth and color led to 

a huge debate among the farmers in the meetings. In some cases, farmers had to visit the 

actual fields so that they could demonstrate the differences in the severity status of an 

indicator. In order to verify further whether the participants in the group discussion 

agreed with the farmer group participating in the transect walks, the overview of the SQ 

descriptors was discussed, which resulted in important reactions among all the 

participants. Final decisions on the common and relative severity of the SQ erosion 

indicators showing that the presence of active gullies, subsoil exposures and rills in the 

catchment soil surface (Table 4.3) indicated that the erosion position was severe, and 

soils in such conditions were believed to be not sustainable for crop production unless 

appropriate remedies are taken. In the study catchment where soil surfaces showed 

evidence of erosion indicators such as deposition, splash pedestal, sheet wash and soil 

structure becoming loose; it was understood by the farmers that SQ was deteriorating. 

Therefore, the order of erosion severity ranking reflects the scale of soil damage caused 

by widespread erosion features as shown by their higher frequencies (Table 4.3). This 

also helps in identifying possible causes and solutions from the farmers’ point of view.  

When farmers met, they actively participated in describing the status of the 

soils in the fields they possessed and identified production constraints and potentials. 

They were differentiated the SQ indicators that had evolved because of ongoing or past 

soil erosion effects and other related soil management practices (Table 4.3). This helped 

the farmers to appreciate the history of soil erosion in a segment of field or landscape 

profile, and to judge whether the soil erosion situation was high, moderate or low 

(Okoba et al. 2007). Many farmers could also evaluate the conditions of their own fields 

using changes in topsoil characteristics due to the effect of erosion. They were also able 

to link the changes in soil conditions due to erosion to crop productivity.  

The evidence of the existing soil erosion as one SQ indicator was 

demonstrated by identification of many on-site erosion and soil fertility indicators and 

of off-site reservoir sedimentation indicators that were observed during the transect 

walks (Table 4.3). The most frequently observed erosion indicators were rills, root 

exposure, and subsoil exposure (Table 4.3; Figure 4.4). Even though the numbers of 

gullies are few as compared to the other indicators, their contribution to sedimentation 
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and soil loss might be significant since most of the gullies were active. The severity of 

sheet wash and pedestals can be masked, as these are easily destroyed by human and 

animal activities. 

 

Table 4.3: Consensus-based soil quality indicators, total frequency and relative severity 
as ranked by local farmers in Mai-Negus catchment, northern Ethiopia  

Soil quality 

descriptor  

Total frequency 

count 

Severity 

ranking a 

 

Indicator due to b, c  

 

Measure 

Rills 89 1 Ongoing soil losses Presence of rills  

Root exposure 82 2 Past soil losses Soil depth differences 

Subsoil exposure 51 3 Past soil losses Soil depth differences 

Soil  color change 43 4 Ongoing soil losses Direct observation 

Sheet wash  38 5 Ongoing soil losses Direct observation 

Build-up of soil 

against barriers 

27 6 Past soil losses Soil accumulation 

depth  

Sedimentation  23 7 Ongoing soil losses Sediment thickness 

Splash pedestals  18 8 Ongoing soil losses Soil depth differences 

Presence of gullies 11 9 Past and ongoing soil losses Gully expansion or 

development 

Rock exposure 7 10 Past soil losses Direct observation 

rock out-crops 

a Where severity ranks in the order 1 = severe degradation and 10 = low degradation. This ranking is 
based on the count made for each soil quality indicators using erosion features along the transect walks 
in 10 m x 10 m area.  Farmers noticed the presence of few gullies as compared to the other indicators. 
But gullies may contribute to high soil loss as they are active in the study area, and this demands further 
investigation. 

b Farmers described ongoing erosion indicators are those indicators that developed within a single or 2-3  
rainfall events on the soil but where evidence of such indications were easily destroyed during tillage 
processes; they are thus considered as a reversible erosion  indicators.  

c Past erosion indicators were described as those indicators that had developed increasingly due to more 
severe erosion situations generally related to negligence of the recurring of ongoing  indicators on time. 
These can either be or not be destroyed during tillage operations or any other restorative management. 
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Figure 4.4:  Most frequently observed soil quality indicators due to water erosion during 
transect walks with farmers in June 2009: rills, sediment deposition, root 
exposure, subsoil exposure and stone out-crop in Mai-Negus catchment, 
northern Ethiopia 

 

Stone terraces were the most common structures designed to reduce soil loss in 

the study catchment. However, the failure or breaching of these soil and water 

conservation structures due to runoff force from upper slopes and human and livestock 

interference has resulted in subsequent erosion damage in the downhill fields by 

creating new gullies or changing the direction of the flow and breaking other 

conservation structures. Generally, the participatory survey confirmed that farmers have 

adequate knowledge related to factors determining SQ.  However, they are not able to 

tackle the problem of SQ deterioration mainly because of lack of capital, labor and 

technical options in addition to their reluctance. They suggested that the food insecurity 

problem affects the interest of farmer to take proper measure against degradation, as 

they give priority to actions related to their immediate daily food requirements.    
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The SQ indicators identified by the farmers were also ranked as more 

problem1, less problem2, no problem3 and don’t know4 (Figure 4.5) as compared to the 

status in the past 5-10 years. Soil erosion followed by soil fertility was considered by 

the majority of the farmer (about 80% in the group discussions) as a more problem. This 

was followed by soil dryness and compaction in decreasing order. On the other hand, 

soil workability followed by soil compaction was pointed as a less problem in the study 

catchment. The number of farmers who voted for no problem for soil workability was 

larger than for the other indicators, but the number of farmers who voted for no problem 

for soil fertility and erosion was very small. Most farmers in the catchment also 

understood that SQ was declining as evidenced by the high fertilizer demand of soils, 

and they thought that the problem might be getting worse through time. However, some 

farmers stated that the increasing demand for fertilizer is associated with the need to 

increase productivity. Considering the existence of such strength and limitation of local 

knowledge, appropriate strategies that involve and empower the local farmers should be 

designed to halt the SQ degradation problem.  
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  Figure 4.5: Severity of soil quality indicators from different levels of problem 
perspectives of local farmers in Mai-Negus catchment, northern Ethiopia 

 
1    Clearly visible erosion, poor soil fertility and water-holding capacity compared to productive soils. Soil is virtually lost and not 

suitable for agricultural systems; the original resources are largely degraded and need major investments and work to restore to 
full productivity. 

2    Fields that showed good productivity but strongly declining fertility as it has shown by some SQ indicators.  These are still 
suitable for the local farming system. Inherent quality and biotic resources are partially destroyed and as a result soils demand 
major improvement efforts from the land users. 

3    Soil fullfills intended function and is suitable for local farming system; full productivity with some additional inputs. 
4    Not enough observations or knowledge whether the trend of a particular SQ indicator is changed or not. 
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Farmers participating in the transect walks identified that the steepest 

landscape parts are the source of large amounts of runoff and sediment (hotspots of 

degradation) (Figure 4.6). This confirms the findings of Hurni et al. (2005) who 

reported that degradation is not uniform, even in the same landscape. Farmers noticed 

that these source areas need first priority when introducing management practices. This 

is because as farmers underlined during the transect walks that the sediment sources 

such as the gullies at the lower part of the catchment are formed as a result of the runoff 

coming from the steeper areas. But cultivation close to the margin of the gullies and 

over grazing increases the collapsing of gully sides and development of wider gullies 

due to high runoff. These areas are thus the source of high sediment yield in the 

catchment. This was supported by the farmers during the group meetings, and they 

agreed that small areas of land be likely to be the source of disproportionately large 

amounts of runoff and sedimentation within the catchment. This indicates that confining 

mitigation to erosion source areas costs less than targeting wider areas in a resource- 

poor country such as Ethiopia using the local knowledge as input for decision making. 

The results of this study suggest that environmental programs should be focused on 

critical problem source areas within a hydrological unit instead of introducing large-

scale measures.  

Furthermore, when farmers were asked to suggest remedial actions and 

solutions to the problem of SQ degradation, they suggested more than one action. The 

most important management measures suggested were constructing terraces throughout 

the catchment integrated with planting economic trees and shrubs, enclosed low SQ 

areas, use of fertilizers and appropriate cropping systems and other related management 

practices. The assumption is that integration of such practices considering the land-use 

and terrain factor differences can rehabilitate degraded areas rapidly. Zero-grazing using 

a cut and carry system of grasses introduced recently in the study catchment was also 

appreciated by the farmers as part of the important approach to improve SQ degradation 

as compared to stocking the livestock for the whole year on the grazing land (Figure 

4.7). But the area currently used as protected land for the cut and carry grass system was 

very small in proportion.  
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Figure 4.6: Overview of high runoff and sediment sources (hotspot) areas based on 
information from farmers who had participated in transect walks in Mai-
Negus catchment, northern Ethiopia 

 

Farmers also pointed out that in order to successfully rehabilitate degraded 

areas by enclosing, active involvement of the farmers within the catchments is needed, 

and potential conflicts of resources among land-users should be first resolved. Farmers 

whose land is to be enclosed should get compensation land or other equivalent 

incentives from the government or supporting agents. Strict local regulations should be 

setout by the farmers themselves to manage effectively any destruction or interferences 

by humans or livestock to enclosed areas. Strategies should also be designed to grow 

trees that increase income for the local farmers while improving SQ in the enclosures. 

In the long term, when using such an approach, resource exploitation from the 

enclosures can provide sustainable support for the farmers and the environment. 
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Figure 4.7: (A) Land rehabilitation after two years of enclosed pasture under cut and 
carry grass system; (B) livestock stocked throughout the year in Mai-Negus 
catchment, northern Ethiopia, July 2009 

 

4.3.3 Farmers’ understanding of causes for declining soil quality  

The farmers´ group discussions based on the transect walk information as a brain 

storming indicated that erosion negatively impacted the SQ (crop production) and the 

overall environmental condition through sedimentation of reservoir and field borders. It 

also revealed that rainfall intensity is high, resulting in severe soil losses when the soils 

are bare. Soil erosion levels in the study catchment are still high due to the fact that 

farmers are not building much progress with respect to conservation measures and land-

use redesign. This might be because many farmers are engaged in off-farm activities to 

maximize income regardless of the seriousness of the ongoing soil erosion. Besides, 

lack of full involvement of local community on problem identification and suggestion 

of remedies to problems before the implementation of new recommendations might 

make farmers reluctant to adopt the introduced soil and water conservation measures. 

By involving farmers from the beginning to the final stage of a new technology, the 

constraints of the recommended techniques from the soil productivity and 

environmental perspective can be understood better, and the farmers also feel 

ownership. Generally, the observations from the transect walks indicate that steep- 

slopes have a tendency to be relatively vulnerable to water erosion as indicated by 

widespread subsoil and root exposure, rills and shallow active gullies, and sediment 

deposition and formation of large gullies on flat to gentle slopes (Table 4.4).  
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Table 4.4: Observed soil quality indicators and their causes based on local farmers’ 
consensus in meetings following transect walks in Mai-Negus catchment, 
northern Ethiopia 

 

Soil quality 

indicator 

 

No. of observed 

indicators 

Observable causes (%) 

Poor soil 

cover 

Steep 

slopes 

Runoff Poor 

terracing 

Loose 

soilsm  

Othersn 

Rills a 89 62 14 11 5 6 2 

Gullies b 11 9 4 75 7 4 1 

Root exposure c 82 4 6 56 3 7 24 

Red soil color d 43 3 12 28 1 4 52 

Stoniness e 8 7 16 37 6 1 23 

Rock out-crops f 7 4 5 65 6 9 11 

Sedimentation g 23 4 8 59 8 2 19 

Sheet-wash h 38 5 3 62 4 16 10 

Splash pedestals i 18 3 2 45 0 16 34 

Broken SWC 

structures j 

53 4 9 12 19 7 49 

Subsoil exposure k 51 2 5 65 3 20 5 

Soil fertility loss l 45 14 11 25 3 4 43 

a Continuous or discontinuous channels developed after an intensive rainfall event and started from a short distance 
that concentrate into channel; can be easily destroyed by tillage.  

b Wider and deeper than rills and locally easily distinguished from rills that a 7-year-old child cannot jump across it. 
c Exposure of roots after topsoil is removed by runoff and splash effect of raindrops. This indicates that topsoil had 

been removed thus weakening the nutrient-rich soils for crop stability. 
d Indicates that topsoils rich in organic matter have been removed by runoff; also used as an indicator of severe 

erosion leaving unproductive shallow soils. 
 e Many stones out-cropped to the soil surface signified that the overlaying soil layers have been washed off  by water 

erosion. 
f Exposed rocks indicate that almost the whole part of the overlying soil layers have been removed  by runoff flow. 
g Identified by the the depth of soil accumulated that burying crops/grass indicators. Such effect is considered as 

fertile or infertile in a field depending on the intended soil functions. The deposited soils could be fine soil materials 
which are nutrient-rich or coarse sandy/stony deposits or a combination of these. 

h Noticeable by its runoff flow path that leaving surfacse showing the removal of very small part of the topsoil in the 
direction of the flow. 

i Describes the craters formed by raindrops and runoff detachment impact on soils which create soil column 
indicators as a result of  stones, roots or crop residues etc.  

j Noticeable of gaps or breaching in formerly continuous bunds of conservation measures 
k Described by shallow soil depth and rock out-crop exposures. Thus, it used as an indicator of severely eroded soils. 
l  Fields marked by shallow soil depth and poor crop vegetative performance. 
mSoils that are exposed  to erosion and raindrop scouring effect as these have poor soil structure and poor water-

holding capacity. 
n Includes management practices such as tillage, fertilizer, removal of crop residues, grazing pressure, deforestation 

and human and livestock interference. 

 

Farmers were also asked to list and rank the main causes for declining SQ 

indicators (Table 4.4). They agreed that the main causes for the observed increasing soil 

erosion based SQ indicators were poor soil cover, steep slopes/terrain, high intensive 

rainfall, inappropriate spacing of terraces and untimely maintenance of conservation 

measures and the presence of loose soil in the fields (Table 4.4). The farmers also 
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agreed that the number of observations of rills was highest as compared to the other 

indicators. The main cause for this indicator was identified as poor soil cover followed 

by steep slopes. The presence of poor soil cover and steep slopes in many parts of the 

catchment caused the formation of more rills by runoff. This is supported by Poesen 

(1984) and Herweg and Ludi (1999) who observed as slope-gradient increasing and in 

conditions with poor soil cover there is a tendency of rill formation as these increased 

the concentrated overland flow.   

Farmers agreed that for the other indicators such as gullies, sheet-wash, red 

soil color, subsoil and root exposure and sedimentation, the main cause was excess 

runoff, which aggravated by high rainfall intensity, terrain, and poor soil cover (Table 

4.4). The interference of human activities on steep terrain can aggravate the effect of 

runoff on SQ. Broken soil and water conservation structures coupled with wide spacing 

and inappropriate structure may also increase the runoff amount and its effect on SQ. 

The reasons for continued soil erosion processes in the study catchment are thus 

interrelated and call for a comprehensive approach that takes into account 

environmental variables such as slope, soil, crop cover and rainfall conditions, as well 

as the management practices. For example, regular bund maintenance mainly on 

terraces height increment is essential to maintain the effectiveness of bunds in allowing 

the continued reduction of slope-steepness and overland flows, in addition to the 

introduction of other appropriate techniques. 

The soil thickness and vegetation cover observed in the field and informal 

discussions with farmers and experts indicated that SQ has been declining due to 

erosion, and that nutrients are also mined because of erosion effect and continuous 

cropping with minimal crop rotation and fertilizer inputs. Gullies have long been 

established and still continue to expand (Figure 4.8A), which in turn has increased the 

reduction in farm and grazing land size and therefore aggravated land fragmentation and 

land pressure. Rills and sheet erosion are also frequently visible on cultivated land 

mainly on teff (Eragrostis tef) fields and other croplands located on the hillside slopes 

of the study catchment and are a challenge for SQ maintenance.  

The results of this study also suggest that to improve the SQ degradation in 

Ethiopia, limitations of the existing conservation measures and land-use systems should 

be assessed from the context of the local community in each catchment, besides the 
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contribution of local communities to sustain the technologies. This assessment is based 

on field observations that indicated that past efforts on conservation measures did not 

greatly improve the situation of soil degradation in large parts of the study catchment, 

though some areas are getting substantially better. There was evidence supporting this, 

as many fields were not protected, terraces were destroyed and not regularly maintained, 

gullies continued to expand and develop, and there were highly degraded shallow 

marginal soils and poor soil cover in many parts of the catchment (Figure 4.8).  

 

 
 
Figure 4.8  Continued gully development  (A) rock out-crop exposure after topsoil 

has been removed by erosion (B) breached stone bunds without 
maintenance on shallow soil in marginal area (C) in Mai-Negus 
catchment, northern Ethiopia, July 2009 

 
Therefore, designing solutions to the processes of SQ degradation in the 

study catchment and other similar areas should consider the landforms, potential 

erosion sources areas, appropriateness of the selected technology and full involvement 

of local farmers in all processes to ensure sustainable natural resource management. 
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Moreover, to clearly understand farmers` knowledge of SQ degradation and the effect 

of the technologies employed, different approaches need to be attempted. As a general 

remark, participatory assessment of SQ using the experience of local communities is 

crucial to rapidly monitor the adoptability of land management systems that sustained 

gricultural and environmental services. This can assist farmers, decision makers and 

scientists in formulating and evaluating agricultural soil management systems and 

land-use redesign against that prevent SQ degradation from end users´ perspectives. 

 

4.3.4 Farmer´s use of indicators for diagnosis of soil quality  

The Chi-square (χ2) test revealed that the percentage of the interviewed farmers that 

used the SQ indicators identified during the participatory group discussions to 

categorize SQ was significantly different from those who did not use it (Table 4.5 and 

4.6). Statistically significant Chi-square values indicate a marked difference in rating 

between the farmers regarding the use or not use of each of the SQ indicators. The 

percentage of farmers who used crop yield (95%), top soil thickness (90%), crop vigour 

(86%), soil fertility (78%) and soil erosion (83%) indicators to categorize SQ 

significantly (P = 0.000) differed from those who did not use such indicators.  

In addition, the Chi-square probability levels show significant differences 

between the proportions of respondents who used soil color, fertilizer response of soils, 

moisture in the dry season, weed infestation, texture, drainage conditions and 

earthworm population and those who did not use such indicators to categorize the SQ 

(Table 4.5). Even though the results of the test are significantly different, the number of 

farmers who used earthworms as a SQ indicator (14%) to classify the SQ was small 

compared to the farmers who did not (86%). The number of farmers who used 

indicators such as soil compaction or soil tilth and workability compared to those who 

did not use these to categorize SQ was not significantly different at P ≥ 0.05 (Table 4.5). 

Those farmers who did not use soil compaction, and tilth and workability to categorize 

their field SQ might be confused with indicators such as temporal soil dryness, because 

they assumed that dry soils are compact and difficult to work and so this was not a SQ 

problem.  

 



Participatory soil quality assessment in Mai-Negus catchment, northern Ethiopia 

53 

 

Table 4.5: Percentage of farmers that used soil quality (SQ) indicators to categorize 
their SQ in Mai-Negus catchment, northern Ethiopia (n = 42) 

 

SQ indicator 

Farmers who used SQ indicatorsa  

χ2 probability Yes (%)b No (%)c 

Crop yield  40 (95) 2(5) 0.000 

Topsoil thickness  38 (90) 4 (10) 0.000 

Crop performance/vigour 36 (86) 6 (14) 0.000 

Soil fertility 33 (78) 9 (22) 0.000 

Soil erosion 35 (83) 7 (17) 0.000 

Soil color 31 (74) 11 (26) 0.002 

Fertilizer response of soil 30 (71) 12 (29) 0.005 

Moisture holding in dry season 28 (67) 14 (33) 0.031 

Weed infestation/ abundance 27 (64) 15 (36) 0.031 

Soil compaction 16 (38) 26 (62) 0.123ns 

Soil tilth and workability  22 (52) 20 (48) 0.758ns 

Earthworm population 6 (14) 36 (86) 0.009 

Texture  29 (69) 13 (31) 0.014 

Drainage condition 28 (67) 14 (33) 0.031 

a Values in parentheses are percentages of respondents and without are counts. Percentage total is more 
than 100% because each respondent chose more than one SQ indicator; χ2 is Chi-squared, ns is non- 
significant at probability level > 0.05. 

b Indicates farmers that used the SQ indicators to categorize their soils in the field into high, medium or 
low levels.  

 c Shows those farmers did not use indicators for such purposes. 
 

For all the local terms for SQ indicators, the Chi-square test shows a 

significant difference between the number of farmers who used these as criteria during 

SQ categorization and those who did not use (Table 4.6). For instance, the percentage of 

farmers who used the local term Diqua` (fertile soil) (98%) to indicate high SQ was 

high and significantly different (P = 0.000) from those who did not. The same holds true 

for all the other local indicator terms. Similarly, the terms Maekelay hamed (medium 

soil depth) for medium SQ, and Rekik hamed (shallow soil depth) for low SQ category 

were used by the highest percentage of farmers as compared to the other indicators in 

these categories (Table 4.6). The results of the Chi-square test also show that the 

proportion of farmers who had fields with high (12%), medium (40%) and low (48%) 

SQ in the study catchment was significantly different at P = 0.011. According to the 

farmers (88%), most soil in the catchment was in the range of low to medium quality. 

This reveals that much work has to be done to mitigate the existing SQ degradation. 
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Table 4.6: Percentage of interviewed farmers who used the local term for soil quality 
indicators for categorizing into high, medium and low SQ in Mai-Negus 
catchment, northern Ethiopia (n = 42)   

Soil quality indicator 
(in local terms) 

 
Translation 

 
Respondents (%)a,b 

 
χ2 probability 

Reguid  High soil quality   

Tselim hamed  Dark soil 86 (36) 0.000 

Aeman zeibilu No stone out-crop, pure soil 76 (32) 0.000 

Diqua` Highly fertile soil 98 (41) 0.000 

Reguid hamed Deep soil 95 (40) 0.000 

Maekelay  Medium soil quality   

Hawsi Walka/tselimo Mix of red and dark soil 88 (37) 0.000 

Maekelay hamed Medium soil depth 95 (40) 0.000 

Kirub Aeman zelebo Some stone-out crop 86 (36) 0.000 

Rekik Low soil quality   

Keih, hamekushtay Red, white, yellow soil 88 (37) 0.000 

Aeman zibeziho Stone out-crop 81 (34) 0.000 

Enda-Tsihayay  High weed infestation 71 (30) 0.005 

Hashewama Sandy dominanted soil 88 (37) 0.000 

Teferkashay  Loose soil 90 (38) 0.000 

Rekik hamed Shallow soil 98 (41) 0.000 
a  Percentage total is more than 100% because each respondent used more than one indicator for   each SQ category.  
b Values in parentheses are percentage of respondents who used local term for SQ indicators, and without parenthese 

are the corresponding counts. 

 

In general, this study indicates that crop yield, top soil thickness, crop vigour, 

soil erosion and soil fertility were the most frequently cited SQ indicators by farmers, 

besides the local indicator terms used to describe the SQ. The reason for this frequency 

was due to their simple visual measurement or judgment compared to the other 

indicators. Romig et al. (1995) reported that crop growth and yield and erosion 

indicators were ranked first by farmers in the northern US as the most important 

properties for describing SQ, which is consistent with the present results.  

A similar observation was reported by Saito et al. (2006) and Mairura et al. 

(2008) who stated soil colors as an important SQ indicator mentioned by farmers. The 

composition and abundance of weed species on agricultural soils is also a useful 

indicator of SQ frequently used by farmers, but the local knowledge of plant species has 

not been well documented. In addition, farmers reported that some weeds that grow in 

one season may not do so in the next season. In general, this study indicates that such 
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visual approach for SQ classification is rapid, less expensive and is participatory in 

nature, which has important implications for practical decision-making. In line with this 

study, case studies elsewhere have shown a consistent rational ways to the need of local 

SQ indicators in decision-making processes (e.g., WinklerPrins 1999; Ramisch 2004). 

 
4.4 Conclusions  

This study shows that the assessment of SQ using a participatory survey is an important 

approach to sustain soil functions as it is quick, less costly and easily reproducible. Such 

an approach supports successful technology introduction and dissemination targeting 

the SQ problem areas. Generally, a well-structured local knowledge base on SQ exists 

in the study area, even though knowledge was not homogeneous among farmers. Many 

of them exhibited a refined and robust local knowledge and understanding of SQ that 

can support decision-making to minimize SQ degradation at catchment scale.  

The local farmers used soil erosion, soil fertility and biological (crop and 

weed) indicators together to describe the SQ as high, medium or poor, but there was a 

significant difference between the number of farmers who used a certain SQ indicator 

compared with those who did not use it. Since SQ measurement using scientific 

techniques is expensive, time consuming and limited in upscaling to large areas and 

complex catchments, the participatory survey approach of assessing SQ can be useful in 

developing countries where resources are scarce. It can be thus noted that farmer-

derived SQ indicators are important for providing the basis for sustainable management 

and policy decision making. However, for effectively implementing anti-degradation 

technologies, farmers should understand the issue of the technologies and be fully aware 

of SQ degradation especially of its nature, scope, and responsible factors. They should 

suggest possible solutions from the local perspective so that technologies can be 

implemented easily and adopted sustainably.  

A participatory survey also promotes collaboration between local and external 

participants, and forms the basis for agreed land management planning, implementation 

and evaluation that can be part of a robust approach for sustainable management of 

natural resources. However, further research that verifies the SQ categories identified by 

the local communities using scientific soil measurement should be carried out so as to 

discover discrepancies and similarities between local and scientific approaches before 

extrapolation of results to similar environmental conditions. 
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5 EVALUATION OF SOIL QUALITY IDENTIFIED BY LOCAL 

FARMERS IN MAI-NEGUS CATCHMENT, NORTHERN ETHIOPIA 

 

5.1 Introduction 

A significant decline in soil quality (SQ) has occurred through worldwide due to 

adverse changes in physical, chemical and biological soil properties and contaminations 

by inorganic and organic chemicals (Arshad and Martin 2002). From 1950-2000, over 

25% of the 8.7 billion ha of agricultural land, permanent pastures, and forests and 

woodlands have been degraded (Chadha 1996), with the largest share being from 

developing countries. Of the world's degraded lands, around 66% are found in Asia and 

Africa. However, human- induced degradation is most severe in Africa, where 30% of 

the agricultural land, pastures, forests, and woodlands are degraded, which are major 

sources of food, incomes, and employment (Sheikh and Soomro 2006). As a result, 

expansion of global grain production dropped from 3% in the 1970s to 1.3% in the 

period 1983-1993 (Arshad and Martin 2002). 

In many areas of Sub-Saharan Africa, positive feedback dynamics between 

growing populations, land-cover and climate change have led to a rapid loss in the 

capacity of soils to deliver essential ecosystem services (Davidson et al. 2003). These 

changes are not easily reversible and represent major development costs. This 

challenges the prospects for a better future for Africans, and has potential for increased 

conflicts over land (Moseley 2001). Moreover, the population in the area is likely to 

double over the next 25-30 years, rising to an expected ~1.75 billion people (Hendrix 

and Glaser 2007), which will pose serious pressure on resources and their services. 

Thus, maintaining the levels of production or planing to increase output in order to meet 

the needs of the ever increasing number of people requires improvement of SQ (Alemu 

2006). Such practical views have ignited the interest in the concept of SQ assessment 

for many researchers (e.g., Larson and Pierce 1994; Karlen et al. 2001; Barrios and 

Trejo 2003; Mairura et al. 2008). 

In natural conditions, SQ tends to maintain an equilibrium between 

pedogenetic factors (Parr and Papendick 1997; Masto et al. 2007). According to Masto 

et al. (2007) however, this equilibrium is easily upset by human-induced activities (e.g., 

agriculture) and other soil related actions. Such effects are aggravated in arid and semi-
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arid developing countries such as Ethiopia with its poor technical and financial 

resources.  

Knowledge of SQ is important for developing appropriate anti-degradation 

measures and designing management plans. However, acquiring SQ data based on field 

measurements and laboratory analysis is difficult, especially in developing regions. An 

alternative option for evaluating soil conditions to prioritize areas of intervention is thus 

necessary. Evidence indicates that assessing SQ degradation based on the knowledge of 

local farmers is rapid, less costly and has high reproducibility (Pretty 1995; Paytona et 

al. 2003). Local knowledge generally offers important long-term insights about human 

responses to environmental change, such as SQ degradation processes (e.g., Neef 2005). 

However, such a claim should be first assessed in the context of each region before 

employing the approach for effective soil resource management planning purposes. 

Measured data from representative locations can be used to evaluate farmers' knowledge 

of SQ so that results can be extrapolated to similar areas with reasonable accuracy. 

There is thus a need to evaluate the SQ issue under Ethiopian conditions by 

concurrently integrating the knowledge of farmers and measured soil parameters at 

catchment scale.   

Assessment of SQ change from the perspective of farmers’ knowledge in 

combination with the technical knowledge is the primary concern of sustainable 

agriculture (Karlen et al. 1997). Integrating and harnessing knowledge from within and 

between scientific and local knowledge bases enables communities to fully realize their 

capacity and become involved in monitoring and responding to the challenges of soil 

degradation (Reed et al. 2007). This allows development and introduction of appropriate 

soil and crop management systems and also the improvement of technology adoption. 

The present study aims to evaluate the SQ status (categories) identified by local farmers 

using scientific soil measurements, and to assess their potential as indicators of soil 

degradation for decision-making processes in the Mai-Negus catchment, northern 

Ethiopia. The study will contribute to enhancing the synergies and discrepancies in 

scientific and local knowledge of SQ in the developing countries like Ethiopia. 
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5.2 Materials and methods 

5.2.1 Study area 

The study was conducted in the Mai-Negus catchment in the Tigray region, northern 

Ethiopia (Figure 5.1), which covers an area of 1240 ha. The landscape of the catchment 

is generally rugged terrain with altitudes ranging from 2060 to 2650 m a.s.l. Land-use is 

dominantly arable with a teff (Eragrostis tef) cropping system (> 80%) but with 

different percentages of pasture land, and scattered tree, bush and shrub covers. The 

dominant rock types are lava pyroclastic and meta-volcanic. Soils are mainly Leptosols 

on the very steep positions, Cambisols on the middle to steep slopes and Vertisols at 

locations around the flat areas. Soils are highly eroded in most parts of the landscape. 

Besides, terrain erosivity potential is high as slope gradients reach higher 85%. Surface 

cover is poor, and human disturbance is high, which facilitates SQ deterioration.  

 

 

Figure 5.1: Map of Ethiopia (A), Tigray (B) and Mai-Negus catchment (study site) (C) 
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5.2.2 Research approach and soil sampling procedure 

The study employed two approaches. The first deals with identification and 

categorization of SQ using knowledge of local farmers. In the second approach, SQ 

status is evaluated based on laboratory analysis of soil samples located in the different 

SQ status areas as identified by local farmers. In the first approach, participatory field 

transect walks with groups of 15 randomly selected farmers with different economic 

status were conducted to identify SQ indicators for categorizing soils of the catchment 

into low, medium and high SQ status. The collected information was supplemented by 

group meeting discussions with 52 household farmers in the catchment not involved in 

the walk (for details see Chapter 4).  

In the second approach, soil samples were collected at 0-20 cm soil depth (plow layer) 

based on the SQ categories identified. The geographical positions of the soil sampling 

points in each SQ category were recorded using GPS and interpolated by ordinary 

kriging to show the spatial distribution of the SQ categories across the study catchment 

(Figure 5.2). Considering the analytical costs and soil variability, a total of 51 

composite soil samples were collected to represent the SQ categories as low, medium 

and high, i.e., each SQ category had 17 soil sampling points. For each sampling point in 

each SQ category, six (n = 6) composite soil samples were collected in a grid of 20 m x 

30 m. The samples were thoroughly mixed in a bucket, and a subsample was taken for 

analysis. Soil samples were air dried and sieved to pass 2 mm sieve before analysis.     

 



Evaluation of soil quality identified by local farmers in Mai-Negus catchment 

60 

 

 
Figure 5.2: Spatial distribution of soil quality (SQ) categories and soil sampling points 

in Mai-Negus catchment, northern Ethiopia  
 

5.2.3 Soil sample analysis  

Soil samples were analyzed for texture, soil aggregate stability (SAS), dry bulk density 

(BD), pH, electrical conductivity (EC), exchangeable potassium (K), calcium (Ca), 

magnesium (Mg), sodium (Na), available phosphorous (Pav), organic carbon (OC), total 

nitrogen (TN), total phosphorous (TP) and cation exchange capacity (CEC) following 

the standard laboratory procedures adopted by the Ethiopian National Soil Laboratory 

(MoNRDEP 1990). For certain soil parameters (e.g., OC, EC), samples were duplicated 

for quality monitoring of the laboratory results. The results were reported to the farmers 

and development agents in the study area in a half-day seminar, where similarities and 

differences between farmers' understanding and categorization of SQ in relation to field 

and laboratory results were discussed. 

 

5.2.4 Data analysis 

Data were subjected to statistical analysis using SPSS 18.0 (SPSS 2010). One-way 

analysis of variance (ANOVA) was used to test the differences in soil attributes among 

the SQ categories identified by local farmers. The SQ category was considered as a 
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group variable. Normality and homogeneity assumptions of ANOVA were checked 

using the Kolmogorov-Smirnov and Levene tests (Zar 1996). The least significant 

difference (LSD) method at the probability level (P) of 0.05 was used to separate mean 

difference of the soil attributes among the SQ categories. 

Correlations among the soil properties were checked by the Pearson product 

moment correlation test (2-tailed) in order to determine the strength of their association. 

Factor analyses (principal component analysis, PCA) were then used to extract high 

loading factors by statistically grouping soils attributes into major principal components 

(PCs). Four PCs with eigenvalues > 1 were selected for interpretation, as PC receiving 

high values best describe the variability in the factors (Brejda et al. 2000). Among well-

correlated variables within the PC, the variable with the highest correlation coefficient 

(absolute value) was retained in the component factors. If highly weighted variables 

were not well correlated (r < 0.60), each was considered important and retained in the 

component factor.  

Using the retained variables in the PCA, discriminant analysis was executed to 

identify the best discriminator among the SQ categories (group variables) and 

relationship between a group variable and scale-independent variables (soil attributes). 

Given a set of scale-independent and categorical dependent variables, discriminant 

analysis was used to determine linear combinations of those variables that best 

discriminate the group variables (Everitt and Dunn 1992). These combinations are 

called discriminant functions and are shown in the equation as: 

 

                pkmpkmkmkm XuXuXuuf  ...22110                          (5.1) 

 

where fkm is the value (score) of the discriminant function for case m in the 

group k,, Xpkm is the value of the discriminant variable Xp for case m in group k, and up is 

standardized coefficient. The analysis automatically chooses the first function that 

separates the groups as much as possible. It then decides a second function which is 

uncorrelated with the first function and provides as much further separation as possible. 

The number of functions is one less the number of group variables (SPSS 2010).  

Discriminant functions are interpreted by means of standardized coefficients. 

The larger the standardized coefficient, the greater is the contribution of the respective 
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variable to discriminate between the groups of SQ categories (Everitt and Dunn 1992). 

The classification functions rate (%) in the discriminant analysis were also used to 

determine to which group each case most likely belonged in the original and cross-

validation cases. In cross-validation, each case is classified by the functions derived 

from all cases other than that case (SPSS 2010). 

 

5.3 Results and discussion 

5.3.1 Evaluation of soil quality status using physical soil attributes 

The physical SQ attributes differed significantly (P ≤ 0.05) among the SQ categories 

(Table 5.1). The mean percentage of sand was significantly higher in the low SQ (55%) 

as compared to the medium SQ (36%) and high SQ (27%) category. The high sand 

content in the low SQ may be attributed to the selective behavior of erosion on soils 

with fine textures, as the low SQ fields are located commonly on steep slopes which are 

susceptible to erosion. Percentage silt was lower in the low SQ than in the medium and 

high SQ category, especially on fields where farmers indicated soil erosion as the main 

concern for agriculture production, and environmental rehabilitation. This observation 

confirms the basic principle that silt is the first soil component susceptible to erosion 

processes (Mairura et al. 2007). Besides, the effect of different management practices 

by farmers may influence soil texture and overall SQ in the long-term. The proportion 

of silt and clay content in the high and low SQ categories showed significant differences 

(P ≤ 0.05), but no statistical difference (P > 0.05) between the high and medium SQ 

categories was observed. However, the clay content was higher in the high SQ than in 

the medium SQ category. Generally, the textural class of the high SQ category was clay 

loam, and that of the medium and low SQ was loamy sand and sandy loam, respectively 

(Table 5.1).  
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Table 5.1: Mean soil physical properties of soil quality categories at 0 - 20 cm soil depth 
in Mai-Negus catchment, northern Ethiopia 

 

 

Soil parameter b 

Farmers' soil quality category a 

High  

( n = 17) 

Medium 

( n = 17) 

Low 

( n = 17) 

Sand (%) 27b 36b 55a 

Silt (%) 42a 40a 27b 

Clay (%) 31a 24ab 18b 

Textural class Clay loam Loamy sand Sandy loam 

Bulk density (Mg m-3) 1.37a    1.49b 1.63c 

Total porosity (%) 48a     41b 23c 

Soil aggregate stability (%) 51a     41b 24.8c 

Means followed by different letters in the same row are significantly different at probability level, P ≤ 0.05. 
aNumber of representative sampling points used for soil analysis in each soil quality category. 
bCorresponds well with farmer rating of SQ. 

 

The results of this study indicate that up to 70% of the soil texture was sand in 

the low SQ category as compared to the maximum sand content of 41% in the high and 

50% in the medium SQ categories. The implication is that sand dominates over the 

active part of the soil in the low SQ category. As a result, farmers categorized sandy 

soils as low SQ because they perceived that such soils have low water-holding capacity 

and low soil nutrient contents, which agreed with the measured results. Among the 

popular descriptor of the high SQ category is the presence of a high soil clay content, 

which farmers describe as black soil. Such soils were evaluated by the farmers as being 

more fertile with a higher water-holding capacity than the sandy soils. The farmers' 

evaluation of SQ also corresponded well with measured bulk density (BD). An ideal BD 

for root growth in clay loam soil (< 1.37 Mg m-3) and loamy sand (1.49 Mg m-3) were 

found in the high and medium SQ categories, respectively, while a BD that negatively 

affects root growth was found in the sandy loam texture of the low SQ (1.63 Mg m-3) 

category. The difference in BD in the SQ categories was described by farmers using the 

level of hard pans observed on the plow layer. They stated that low SQ soils are tight 

and difficult to get into. In support of this, Baruah and Barthakur (1999) and Doran 

(2002) reported that as bulk density increases, the circulation of air, water and plant 

nutrients and the root system are negatively affected.  



Evaluation of soil quality identified by local farmers in Mai-Negus catchment 

64 

 

Soil bulk density and porosity are influenced by soil aggregate (Hillel 1971). 

Increased soil looseness was cited by farmers to describe the decrease in soil aggregate 

stability (SAS), e.g., in the low SQ category. This is validated by the statistical 

difference among the SQ categories, which showed the lowest SAS in the low SQ 

(24.8%) compared to the medium (41%) and high SQ (51%) categories. This is 

probably due to lower levels of soil organic matter (SOM) and the fine-texture soils 

(silt, clay) in the low SQ. Significant movements of nutrients have been described in 

coarse soil textures such as soils in the low SQ category (Sojka and Upchurch 1999). 

Cultivation for many years without proper soil management also reduces the stability of 

soil aggregates and lowers carbon values (Mairura et al. 2007), which may account for 

the lower mean soil aggregates in the low SQ category. Besides this, inherent soil 

property is also a factor that influences the soil aggregate (Arshad et al. 1996; Baruah 

and Barthakur 1999). A decrease in SAS increases bulk density, which indicates an 

increase in physical soil degradation. In general, the physical soil attributes indicate that 

farmer categories of SQ as high, medium and low status agrees well with the trend of 

laboratory measurements.   

 

5.3.2 Evaluation of soil quality status using chemical soil attributes 

The SQ status classified by the local farmers in terms of high, medium and low was also 

evaluated using soil chemical attributes. A statistically significant difference (p ≤ 0.05) 

was observed for many of the soil attributes among the SQ categories (Table 5.2). 

However, there was no statistically significant difference among the SQ categories 

regarding exchangeable sodium, exchangeable acidity, base saturation percentage 

(BSP), Mg:K, and Ca+Mg:K (Table 5.2). Irrespective of the statistical significance, the 

trend of the values of the indicators is well fitted with the direction of SQ categorization 

by the local farmers. This means that the value of soil chemical indicators based on 

laboratory measurement increased as we moved from low to medium, and then to high 

SQ fields in an ascending order, particularly for the soil nutrient indicators. For 

instance, the trend of nutrient stocks determined using nutrient concentrations shows 

that SOM, TN and Pav are higher in the high SQ than in the other SQ categories (Figure 

5.3).  
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Table 5.2: Mean soil chemical attributes of soil quality categories at 0 - 20 cm depth in 
Mai-Negus catchment, northern Ethiopia 

 

Soil parameter 

Farmers' soil quality category a 

High ( n = 17) Medium ( n = 17) Low ( n = 17) 

pH 6.9a 6.4b 6.3b 

EC (dS m-1) 0.33a 0.24ab 0.16b 

OC (%) 2.56a 1.57b 0.98c 

Pav (mg kg-1) 17.95a 8.68b 5.57b 

TN (%) 0.53a 0.21b 0.12c 

TP (mg kg-1) 1050a 361b 465b 

Ex. K (cmolc kg-1) 1.33a 0.62b 0.67b 

Ex. Ca (cmolc kg-1) 22.4.0a 15.0b 9.3c 

Ex. Mg (cmolc kg-1) 12.4a 7.1b 7.8b 

Ex. Na (cmolc kg-1) 0.22a 0.34a 0.36a 

Sum of  cations (cmolc kg-1) 36.3a 23.1b 18.2c 

CEC (cmolc kg-1) 40.5a 23.7b 19.3c 

Ex. Acidity (cmolc kg-1) 4.19a 1.05a 0.62a 

Base saturation % 90a 98a 94a 

ESP 0.56b 1.36ab 1.90a 

Ca : Mg ratio 1.80b 2.14a 3.22c 

Mg : K ratio 9.38a 12.00a 17.62a 

Ca + Mg : K ratio 26a 37a 39a 

Means followed by different letters in the same row are significantly different at P ≤ 0.05.  
BD, bulk density; pH, hydrogen ion concentration; EC, electrical conductivity; OC, organic carbon; TN, 
total nitrogen; Pav, available phosphorus; TP, total phosphorus; Ex., exchangeable; K, potassium; Ca, 
calcium; Mg, magnesium; Na, sodium; ESP, exchangeable sodium percentage.  
a Nnumber of representative sampling sites used for soil analysis in  each soil quality category. 
 
 

The soil nutrient measurements (Table 5.2) reveal that the soil in the high SQ 

category was characterized by high TN (0.53%) and Pav (17.95 mg kg-1), and very high 

CEC (40 cmolc kg-1), Ex K (1.2 cmolc kg-1), Ex Mg (12.4 cmolc kg-1), and Ex Ca (22.4 

cmolc kg-1) compared to the rate for African soils observed by Landon (1991). 

Exchangeable K was in the range of high for medium (0.62 cmolc kg-1) and low SQ 

(0.67 cmolc kg-1). This agrees well with other studies, which reported that K is not a 

limited soil nutrient in Ethiopia (Elias and Fantaye 2000).  The soils in the medium SQ 

category contained medium levels of TN, Pav and CEC, while the soils in the low SQ 

showed low levels of TN, Pav, CEC and medium levels of Ex Ca and Mg. This 

indicates that SQ degradation of the soil attributes is higher in the medium and low SQ 
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than in the high SQ category. In soils with high pH, Pav is the highest, as decreasing pH 

increases the solubility of iron and aluminum that results in the retention of phosphorus 

(Mairura et al. 2007). This might be another reason for the low Pav in the low SQ, 

besides the nutrients lost through erosion. 
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Figure 5.3: Mean (n = 17) soil nutrient stocks at 0-20 cm soil depth for the soil quality 
(SQ) categories identified by local farmers in Mai-Negus catchment, 
northern Ethiopia 

 

 

In the high and medium SQ categories, SOM (SOM% = 1.72 * %OC (Landon 

1991)) was 4.2 and 2.70%, respectively, which is rated as medium (2-4.2%), whereas in 

low SQ, it was 1.69%, i.e., rated as low (1-2%). However, the area coverage of the high 

SQ category is small, i.e., about 5-8% of the total arable land in the study catchment. 

Such high SQ farmlands are usually located near to homesteads that experience 

intensive soil and crop management. Thus, attention and support should be given to 

scale-up such promising practices to the low and medium SQ fields. Farmers recognized 

soils with higher SOM by color, as the soil looks darker in the high SQ, soil color is 

brown, gray or reddish in the medium SQ, and  light, light yellow, orange white or light 

gray in the low SQ category. The overall biomass of vegetation is also used as an 

indicator of high SOM, as farmers expected this to be high in the high SQ status.  

Farmers are also able to associate SQ status with plant growth and 

development conditions. According to the farmers, crops in the high SQ category are 

dark green, tall, in a dense stand and with even growth, in the medium SQ crops are 
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light green, small, stands are thin and growth uneven, and in the low SQ category they 

are poor, stunted, discolored, and stands are uneven and never seem to mature. Farmers 

were also well acquainted with the SQ categories with respect to the fertilizer demand. 

Accordingly, they described soils in the high SQ category as having high potential 

nutrients needing little fertilizer, whereas in the low SQ more fertilizer needs to be 

applied. Farmers are well familiarized with N, P and SOM. They used general terms to 

describe the exchangeable bases including CEC, calling them simply other minerals. 

Farmers do not have clear information about the sources and effect of such minerals on 

productivity. Knowledge enhancement of farmers on overall integrated SQ management 

and its implication should be thus part of future attention.    

 

5.3.3 Synthesis of soil quality variability based on soil attributes 

The results of this study show that farmer evaluation of SQ status based on SQ 

indicators acquired through generations of trial and error agrees well with the measured 

physical and chemical soil attributes. Soils described as having high quality by the 

farmers using their own descriptors was confirmed by higher pH, SAS, TN, Pav, OC, 

CEC, base cations, silt and clay content, and lower sand content and bulk density than 

in the medium and low SQ categories. Similar results have been reported in other 

studies (e.g., Murage et al. 2000; Mairura et al. 2007; 2008) where productive soils 

(high SQ) had higher soil nutrients than unproductive soils (low SQ).  

Scientific measurements of soils are expensive, and also results are not 

representative enough to interpolate or extrapolate to areas having complex catchments 

in many developing countries like Ethiopia. The results of this study thus indicate that 

the use of local SQ knowledge to categorize the differences in SQ status as low, 

medium and high can be very crucial from time, cost, reproducibility, and efficiency 

perspectives with regard to decision-making on where and which intervention to 

implement. The correspondence of such local soil knowledge with laboratory results 

can also help assess the status of soils and facilitate informed decisions about soil 

management in areas where no professional expertise is available and resources are 

limited, and also if extrapolation of measured data is difficult. Assessment of SQ 

attributes that appropriately link measured SQ levels to those of farmer-defined SQ 

levels is therefore essential before out-and up-scaling for decision-making processes to 
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combat SQ degradation. However, even though the analyses confirm the consistency of 

farmer-defined SQ categories with the measured results, the key soil attributes that 

determine and control SQ variability in the catchment need to be examined using further 

analysis.  

 

5.3.4 Soil variability using factor analysis 

The correlation analysis revealed a moderate to strong correlation among many soil 

properties, which indicates the effect of multicollinearity (data not shown). The factor 

analysis can help reduce the dimension of soil attributes into factor components that 

best account for SQ variability by minimizing the effect of data redundancy. Among the 

19 soil attributes initially analyzed, those that showed significant differences between 

SQ categories were subjected to factor analysis. As a result, soil attributes were grouped 

into four main PC factors using PCA to assess gradients in the data structure that best 

explain the variability in the SQ categories (Table 5.3). The communalities of the soil 

attributes (Table 5.3) indicate that the extracted four factors are explained by 70 to 98% 

of the variance of the soil attributes, which indicates that the extracted components are 

well represented by the soil variables. A high communality estimate suggests that a high 

portion of variance was explained by the factor; therefore, it gets higher preference over 

a low communality (Shukla et al. 2006). The first four PC factors with eigenvalue > 1 

explain about 88% of the soil variability. The first two PC explain about 56% of the 

variance, which indicates that they are potential components to explain the SQ 

variability.  
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Table 5.3: Factor loadings and communalities of soil attributes in soil quality categories 
identified by local farmers in Mai-Negus catchment, northern Ethiopia 

 

Soil quality attribute 

Principal Component, PC a, b, c  

Communalities 
1 2 3 4 

Eigenvectors d 
Exchangeable sodium percentage, ESP -0.77 -0.19 -0.07 -0.20 0.85 

Dry bulk density, BD -0.76 -0.45 -0.18 -0.10 0.86 

Available phosphorus, Pav 0.75 0.19 0.41 0.21 0.86 

Cation exchangeable capacity, CEC 0.73 0.33 0.54 0.14 0.95 

Total porosity, por 0.72 0.33 0.42 0.47 0.97 

Soil aggregate stability, SAS 0.69 0.42 0.29 0.46 0.94 

Sum of base forming cations, SBF 0.68 0.44 0.54 0.18 0.98 

Exchangeable calcium, Ca 0.67 0.41 0.46 0.38 0.96 

Exchangeable potassium, K 0.60 0.11 0.57 -0.01 0.70 

Exchangeable magnesium, Mg 0.59 0.44 0.58 -0.26 0.95 

Sand  -0.44 -0.92 -0.18 -0.12 0.98 

Clay  0.05 0.85 -0.13 0.03 0.83 

Total nitrogen, TN 0.24 0.63 0.31 0.14 0.80 

Silt  0.28 0.63 0.31 0.41 0.81 

Organic carbon, OC 0.56 0.61 0.33 0.36 0.88 

Total phosphorus, TP  -0.01 0.25 0.89 -0.25 0.91 

pH 0.29 -0.04 0.84 0.23 0.85 

Ca:Mg ratio -0.04 0.11 -0.14 -0.96 0.92 

Electrical conductivity, EC  0.38 0.47 0.43 0.49 0.78 

Eigen values 11.96 4.26 2.65 1.73 n.a 

% of variance 30.95 25.35 19.98 12.00 n.a 

Cumulative variance (%) 30.95 56.30 76.28 88.27 n.a 

a Rotation method: Varimax with Kaiser Normalization. 
b Boldface factor loadings are considered highly weighted; underlined boldface factors correspond to the indicators 

included in the multiple discriminant analysis because each factor is mainly linked to these variables. n.a, not 
applicable. 

 cPC1 is soil nutrient and soil structure factor, PC2 is soil texture factor; PC3 is soil total phosphorus and reaction, 
and PC4 is Ca:Mg factor. 

 dExtraction method: principal component analysis. 

 
In the PC analysis, the first component factor is termed as the ‘soil nutrient 

and soil structure factor’ due to the higher positive loading on Pav (0.75), CEC (0.73) 

porosity (0.72), and the higher negative loading on ESP (-0.77) and bulk density (-0.76). 

The variance represented by a combination of these variables is too complex to 

interpret, because all these high loading variables are strongly correlated with each 

other. To avoid repetition, the CEC (soil nutrient) with higher correlation coefficient (r 

> 0.90) than the other loadings was retained in PC1. The variable porosity (soil 
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structure) with correlation coefficients of r < 0.60 which is the cutting point was also 

retained in PC1. This component factor is thus mainly linked to soil CEC and porosity. 

The second component factor is termed as the ‘soil texture factor’ due to the high 

positive loading of clay (0.85) and high negative loading of sand (-0.92). Since the 

correlation (r = -0.89) between these two variables is strong, their communality was 

used to eliminate their redundancy. As a result, this factor is mainly linked to sand 

content because of the higher communality of sand (0.91) than clay (0.85).  

The third component factor is termed as the ‘soil total phosphorus and 

reaction factor’, because of the high positive loading in TP (0.89) and soil pH (0.84). 

These two variables correlated at r = 0.87, which indicates the need for selection of the 

variable contributing most to this factor. Thus, the third main component factor is 

mainly linked to TP due to its higher communality (0.91) and factor loading than soil 

pH (0.85). The fourth component factor is termed as the ‘Ca:Mg factor’ due to its high 

negative loading (-0.96). The other variables in the fourth component factor had loading 

values below 0.49, which is much lower than the cutting point (±0.7). Farmers can use 

PC1 and PC2 to describe SQ variability in relation to soil physical properties, e.g., soil 

water-holding (sand), soil color (clay, SOM), soil drainage or high runoff and erosion 

(poor porosity), and hardpans that restrict root penetration (high bulk density). 

Component factors related to soil nutrients such as PC1 and PC3 make it easy for 

farmers to recognize the SQ variability using indicators such as crop growth and yield 

performance.  

Generally, the PCA suggests that the variability of SQ categories identified by 

farmer knowledge is mainly linked to soil CEC, porosity, sand, TP, and Ca:Mg. As a 

result, the focus is on these variables in further multiple discriminant analysis to identify 

the best discriminator variable among the SQ categories (group variables) and also to 

assess the relationship with the group variables. However, first it is important to show 

and assess briefly how the factor analysis PC separates the SQ categories identified by 

the farmers by plotting the features using the PC on two-dimensional axes.  

The best method to show the distribution of the n-variables with the 

corresponding PC factor would be to plot in n-dimensional space, which however is 

physically impossible for n > 3. Therefore, only two PC factors are used at a time, and 

the factor loadings are plotted on two-dimensional axes (Figure 5.4). Six combinations 
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of the four rotated PC factor axes are plotted to separate the different SQ categories. 

Most of the factor loading points falls in the first quadrant, followed by the third and 

second quadrant in descending order in all the plots. This means that the first quadrant 

makes up the highest density clusters of loadings. 

The SQ categories located within the first quadrant at the right side (high SQ) 

and third quadrant (low SQ) (Figure 5.4A) are based on the factor loadings Pav, CEC, 

porosity, OC, SAS, Ca, K, Mg for high SQ, and ESP and BD for low SQ with respect to 

PC1. The loading of sand in PC2 also contributes to the separation of low SQ in the 

third quadrant because low SQ has a higher sand content than medium and high SQ. 

The other soil attributes could not separate low SQ from medium and high SQ because 

no point falls in the third quadrant other than ESP, BD and sand for PC1 versus PC2 

(Figure 5.4A). The medium SQ category is located mainly in the first quadrant, but a 

few points are distributed in the second and fourth quadrant due to variables such as 

clay, TN, silt, TP. Such wider scattering of points over different quadrant indicates that 

some of the points may be misclassified. Generally, the low SQ category loading points 

are separated at a higher distance than the other SQ categories, indicating a possible SQ 

disassociation. Similarly, the factor loadings of PC1 versus (vs.) PC3, PC1 vs. PC4, 

PC3 vs. PC2, PC4 vs. PC2 and PC4 vs. PC3 (Figure 5.4B-F) also indicate that the high 

SQ category is located on the right part of the first quadrant due to the higher positive 

loading values but medium SQ to the left of the first quadrant, and low SQ mainly in the 

third quadrant due to the high negative loadings of the PCs.  

Generally, the plot PC1 vs. PC2 is likely more important in separating the 

different SQ categories than the other component factors because of the lower 

heterogeneity of the loadings in each SQ category group. The visual comparison with 

no statistical value of the separated group variables (SQ categories) using factor 

loadings on the two-dimensional axes suggests a high reliability of trends between 

measured soil properties and the SQ categories identified by the local farmers. 

However, without statistical measurement, it is difficult to judge the efficiency of the 

factor analysis in separating the group variables.  
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Figure 5.4: Series of two-dimensional plots using factor loadings to different pairs of principal components (PC) rotated factor axes. For 

details of variables see Table 5.3. 
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As a result, PCA is suggested to be used as a pre-processing step to discriminant 

analysis and clustering (Everitt and Dunn 1992). In addition, literature suggests that the 

use of discriminant analysis is worthwhile to discriminate, classify and make 

predictions of categorical variables such as SQ categories (Everitt and Dunn 1992).  

 
5.3.5 Multiple discriminant analysis 

In the discriminant analysis, the actual values of the five soil attributes (CEC, porosity, 

sand, TP, and Ca:Mg ratio) with high factor loadings retained in the four PCs (Table 

5.3) were used. The discriminant function coefficients (Table 5.4) show that soil 

porosity followed by CEC and sand content are the best discriminators in the first 

function between group 1 (low SQ) and the combination of group 2 (medium SQ) and 

group 3 (high SQ), but Ca:Mg was least effective in discriminating these groups. The 

trend of the discriminant coefficients of these independent variables is similar to that of 

function 1 in function 2 (Table 5.4). This is because in function 2 soil porosity, CEC 

and sand are the variables with the largest standardized coefficients that discriminate 

best between the medium and high SQ category. This indicates that soil porosity and 

CEC in the PC1 factor, followed by the sand content in PC2, offers the greatest 

potential for monitoring changes in SQ variability with changes in land-use and soil 

management practices at catchment scale, as these are the most important for group 

separation in the discriminant function. 

About 95% of the variance explained by the discriminant model is due to the 

first discriminant function, and the remaining 5% to the second function. This indicates 

that the variability between the low SQ group and the combination of the medium and 

high SQ groups is higher than that between the medium and high SQ groups. In 

addition, the relation of each group variable (dependent variables) with the independent 

variable as indicated by a discriminant function coefficient shows that soil porosity 

followed by sand content and CEC is the most influential in all the group variables 

(Table 5.4). But the size of prediction by the same independent variable is not the same 

in all the group variables. As a result, the R2 of the independent variables in the low, 

medium and high SQ status as group variables is explained by 94, 88 and 94%, 

respectively. This percentage is analogous to the R2 in the multiple regression analysis. 

When we examine the relationship of the functions and the predictors, the coefficient of 
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each independent variable defines the extent of the effect of that variable on the 

dependent variable and the sign of the coefficient the direction of the effect.  

 

Table 5.4: Standardized and unstandardized coefficient functions of multiple 
discriminant analysis 

Function a  Constant Porosity CEC Sand TP Ca:Mg Model b 

1 -5.004 0.516 0.491 -0.435 0.341 0.086 (R2 = 95%), P = 0.000 

2 -5.622 0.991 -0.689 0.548 0.102 0.178 (R2 = 5%), P = 0.008 

Group Constant Porosity CEC Sand TP Ca:Mg Model 

Low SQ -32.843 1.029 0.289 0.561 0.204 0.112 (R2 = 94%), P = 0.000 

Medium SQ -50.101 1.457 0.465 0.476 0.389  0.167 (R2 = 88%), P = 0.001 

High SQ -53.973 1.503 1.503 0.352 0.524 0.219 (R2 = 94%), P = 0.000 

a Wilks’Lambda test of functions shows that the discriminant model was significant at probability P = 
0.000 and 0.008, for function 1 and 2, respectively, indicating that these functions contributed more in 
the model. 

b Coefficient of determination (R2) is optimal combination of the variables so that the functions provide 
the best overall discrimination between groups and prediction within groups.  

  Sand (%); total porosity (%); TP, total phosphorous (mg kg-1 soil); Ca, exchangeable calcium (cmolc 

  kg-1); Mg, magnesium (cmolc kg-1); CEC, cation exchangeable capacity (cmolc kg-1) 
 

In addition to the discrimination function coefficients, visualization of the 

functions that discriminate the group variables by plotting the individual scores of each 

case is crucial (Figure 5.5). In this figure, the first discriminant function is shown to 

discriminate mainly between the group of low SQ and the combined groups (medium 

and high SQ categories) because low SQ falls to the left of the centre line (0), but the 

combined groups to the right of the centre line in function 1. In the vertical direction 

(function 2), some of the low SQ category points fall above the center line (0). 

However, most medium SQ points are above the centre line of function 2. Most points 

of the high SQ category fall below the centre line (0) of function 2. The implication is 

that the second discrimination function discriminates between the medium and high SQ 

category (Figure 5.5).   
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Figure 5.5: Discriminant functions separating the group variables as low, medium and 
high soil quality (SQ) category. Note: Group means are the centroids used 
as the cutting points for classifying cases to each group (SQ categories) 

 

Figure 5.5 and Table 5.5 show that for the original grouped cases, the discriminant 

analysis correctly classified 16, 15 and 16 of the 17 in each group as low, medium and 

high SQ categories with a 94.1, 88.2 and 94.1% correct classification rate, respectively.   

In addition, in the cross-validated cases, 15 of the 17 cases in each group of the low and 

medium SQ category, the correct classification rate was 88.2%, which is similar in both 

groups. Of the 17 high SQ category group cases, 16 were correctly classified, i.e., a 

94.1% correct classification rate in the cross-validated cases. Overall, about 92.1% of 

the original grouped cases and 90.2% of the cross-validated cases were correctly 

classified by the discriminant analysis method. This suggests that the overall prediction 

capability of the discriminant function analysis based on the independent variables can 

be accepted as more than 90% correct classification is adequate in discrimination of the 

SQ categories identified by the local farmers. 
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Table 5.5: Classification of soil quality (SQ) categories (group variables) by 
discriminant analysis method 

 

Case  

 

Actual group a 

Discriminant classification of predicted group membership b 

Low SQ Medium SQ High SQ Group classification rate (%) 

 

Original group 

Low SQ 16 1 0 94.1 

Medium SQ 0 15 2 88.2 

High SQ 0 1 16 94.1 

Total 16 17 18 92.1d 

 

Cross-validated c 

Low SQ 15 2 0 88.2 

Medium SQ 0 15 2 88.2 

High SQ 0 1 16 94.1 

Total 15 18 18 90.2 e 

 a 17 weighted cases in each SQ category.  
b Boldface figure in each group is number of cases correctly classified by the discriminant function  
  analysis 
c In cross-validation, each case is classified by the functions derived from all cases other than that case. 
d Overall 92.1% of original grouped cases correctly classified. 
e Overall 90.2% of cross-validated cases correctly classified. 
 

5.3.6 Implication of evaluating farmer knowledge with scientific measurements 

In this study, farmers’ knowledge of SQ was evaluated through comparison with 

measured soil attributes. The results show that farmer SQ knowledge can be used for 

decision-making processes (Figure 5.6) regarding technology development, introduction 

and dissemination with respect to SQ degradation. Similar to the present results, other 

studies have shown that there are significant similarities and complementarities between 

indigenous knowledge and scientific understanding of soils (e.g., Saito et al. 2006). 

These authors noted that such potential synergism is crucial especially for solving 

problems related to soil and land management. Many researchers also reported that the 

use of local knowledge facilitates soil surveys and evaluation of land resources for 

designing suitable agricultural development and also increases the probability of 

implementing research projects to meet local community demands and cultural values 

(e.g., Barrios and Trejo 2003; Saito et al. 2006; Mairura et al. 2007; 2008). 
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Figure 5.6: Conceptualization the similarities of local farmer soil quality categories with 
scientific measured indicators for decision-making process in Mai-Negus 
catchment, northern Ethiopia 

 

Local farmers categorized SQ according to features that are easily visually 

recognizable and that are passed from generation to generation. The presentation of the 

results of the measured soil attributes in each SQ category in seminar to the local 

farmers (Figure 5.6) encouraged them to use their knowledge in characterizing and 

suggesting management related to soil resources, even in the absence of ‘professionals’. 

This shows that farmers understood well the nature and condition of their SQ status. 

They used such knowledge in making farm and environmental management decisions 

Farmer SQ evaluation 
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- Dark soils, high water 
content 
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- Little to no hard pans 
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- Soils dry out too fast 
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hardpan 
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N (0.53%) and P (18 mg kg-1) 
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based on the differences in SQ, but not in an organized approach. Thus, in low-input 

farming systems due to resource limitation, local knowledge is the key input in 

agricultural production and environmental management, and farmer involvement and 

empowerment is crucial to combat SQ degradation. Evaluation of farmers' knowledge 

with technical knowledge systems is thus decisive for achieving a more realistic 

assessment of SQ before out-scaling. Moreover, development recommendations are 

only relevant and successful if they take into account site-specific environmental factors 

and techniques based on local farmers’ knowledge (Saito et al. 2006). Thus, 

considerations of farmers' experience and knowledge of SQ can improve the quality of 

technologies to be recommended and the chance for successful implementation and 

sustainable adoption. Such involvement of local communities also facilitates partnership 

between farmers, extension workers and researchers while working to achieve the goal 

of sustaining natural resources and enhancing productivity. 

 

5.4 Conclusions 

In this study, evaluation of farmer SQ knowledge using measurements of soil attributes 

of SQ categories identified as high, medium and low by the local farmers was carried 

out. Higher values of soil attributes such as CEC, OC, TN, Pav, exchangeable bases, 

porosity, and soil aggregate corresponded well to the high SQ category. Low sand 

content and bulk density also agreed well with the high SQ category. The soil attributes 

that differentiate the SQ categories were well described by the farmers in terms of low 

yield and crop performance for low soil nutrient-related parameters, hardpans for high 

bulk density, darker soil color for clay and organic matter dominated soils, water 

logging for conditions related to low porosity, soil looseness to low soil aggregate 

status, and low soil water-holding for sand dominated soils. Besides, the level of 

fertilizer demand (fertility status) is also an important aspect used by the farmers to 

categorize SQ. However, since all the soil attributes do not equally contribute to the 

differences in SQ status, factor analysis indicates that soil attributes such as soil 

porosity, CEC, sand, TP and Ca:Mg are the main variables that influence the SQ 

variability. In addition, the discriminant analysis shows that porosity, followed by CEC 

and sand content, is the most powerful soil attribute to group into different SQ 

categories.  The overall implication of this study is that farmer evaluation of SQ based 
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on experience acquired over generations agrees well with the physical and chemical 

properties determined scientifically. However, soil attribute measurements are 

expensive, time consuming, and also results are not representative enough to interpolate 

or extrapolate to areas having complex catchments in many developing countries like 

Ethiopia. This study indicates that the use of local SQ knowledge is thus feasible from 

time, cost, reproducibility, and efficiency perspectives to develop SQ management 

strategies that sustain soil resources to achieve the intended future production capacity. 

Therefore, alternative approaches should be developed for integrating farmer knowledge 

in soil science research and other development activities in the context of developing 

countries like Ethiopia in order to increase the chance of technology adoption by 

farmers that sustain soil resources. 
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6 CATCHMENT-SCALE SPATIAL VARIABILITY OF SOIL 

PROPERTIES AND IMPLICATIONS FOR SITE-SPECIFIC SOIL 

MANAGEMENT 

 

6.1 Introduction  

The most serious form of environmental degradation that threatens agriculture in many 

parts of the world such as Ethiopia is Soil erosion (Haregeweyn et al. 2008). The impact 

of erosion is more serious in the Tigray highlands (northern Ethiopia) because average 

soil loss by erosion from cultivated land is about 49 t ha-1 y-1 in the region (Tamene, 

2005) as compared to the 42 t ha-1 y-1 average soil loss estimated for cultivated land in 

Ethiopia (Hurni 1993). Stoorvogel and Smaling (1990) also reported a 60 kg ha-1 

nutrient outflow in Ethiopia, while inflow from fertilizers is very low (< 10 kg ha-1).  

Efforts to assess degradation by soil erosion often measures degradation in 

terms of erosion rate, rather than based on the soil properties spatial variability and 

redistribution (Pierce and Lal 1994; Haregeweyn et al. 2008). However, studies 

elsewhere have shown that erosion processes can contribute significantly to the soil 

properties variability and the associated nutrients within complex catchments (e.g., 

Kreznor et al. 1989). Similarly, Haregeweyn et al. (2008) reported that soil erosion and 

sediment delivery processes are responsible for high sediment transport and the 

associated export of sediment-bound nutrients to deposition areas in a catchment as 

influenced by landscape characteristics.  

In addition, many studies on soil nutrient balance have indicated that more 

positive nutrient balance at farm level than plot level (Stoorvogel and Smaling 1990; 

Elias et al. 1998; Scoones 2001). This might be attributed to the fact that nutrient 

redistribution due to erosion-deposition processes and other input-output mechanisms 

counteracts positively at farm level as compared to plot level. Characterizing the spatial 

variability and distribution of soil properties at catchment scale is therefore essential for 

foreseeing rates of ecosystem processes (Schimel et al. 1991), and realizing how 

ecosystems and their services change with the effect of practices (Kosmas et al. 2000). 

Knowledge of soil spatial variability is also necessary to locate homogenous sites that 

need careful management for sustainable development (Schimel et al. 1991). This 

implies that accounting for the spatial variability of soil properties at catchment scale 
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enhance site-specific decision-making processes related to soil management and other 

practices.   

Geostatistics provide the basis for quantitative estimating spatial variations 

and distribution of soil properties (Webster 1985; Webster and Oliver 1990). Infact, 

geostatistical analysis has been used to study several soil properties, most of them 

physical and chemical (Cambardella et al. 1994). However, only few studies have been 

conducted that examine the spatial structure and variability of soil properties at 

catchment scale in many developing tropical regions in general and Ethiopia in 

particular. This has constrained the design of appropriate fertilizer recommendations 

and the planning of suitable land management decisions considering potentials and 

constraints. Understanding the spatial variability of soil properties at catchment scale in 

Ethiopia is therefore important for site-specific sustainable soil and crop management 

decisions. This study thus aims (1) to assess the variability of soil properties using a 

classical (exploratory) statistics approach, and (2) to examine the spatial dependence 

and variability of soil properties at catchment scale using a geostatistical method in the 

Mai-Negus catchment of northern Ethiopia. The two statistical approaches are used to 

explain soil properties variability (spatial vs. non-spatial) at catchment scale. The results 

of the study would enable the identification of sites where remediation such as 

management decision is needed to improve agricultural production and enhance 

environmental services. Therefore, a better understanding of the spatial variability and 

distribution of soil properties would be essential for refining agricultural and 

environmental management practices to improve sustainable soil and land-use, and 

provide a valuable basis for subsequent measurements (Cambardella et al. 1994).  

 

6.2 Materials and methods 

6.2.1 Study area 

The study was conducted in the Mai-Negus catchment of the Tigray region, northern 

Ethiopia (Figure 6.1), which covers an area of 1240 ha. The landscape of the catchment 

is generally rugged terrain with altitude ranging from 2060 to 2650 m a.s.l. Land-use is 

dominantly arable with a teff (Eragrostis tef) cropping system (> 80%) but with 

different percentages of pasture land, and scattered tree, bush and shrub covers. The 

dominant rock types are lava pyroclastic and meta-volcanic. Soils are mainly Leptosols 
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on the very steep positions, Cambisols on the middle to steep slopes and Vertisols at 

locations around the flat areas. Soils are highly eroded in most parts of the landscape. 

Besides, terrain erosivity potential is high, as slope gradients reach more than 85%. 

Surface cover is poor, and human disturbance is high, which facilitates soil quality 

deterioration.  

 

 

Figure 6.1:  Map of Ethiopia (A), Tigray (B) and Mai-Negus catchment (study site) (C) 
 

6.2.2 Soil sampling approach and soil sample analysis 

Sampling approaches that divide a field into small units (zones of sampling) allow 

capturing variability and provide more information about soil-test levels compared with 

one-composite sample collected from an entire field or large sampling areas (Birrell et 

al. 1996). Zone sampling has been suggested to reduce the number of samples, and 

sampling and soil analysis costs, as it provides a way to group the spatial variability 

inherent to soils while maintaining acceptable level of information about the soil 

properties variances within fields (Franzen et al. 1998). Sampling by zone assumes that 
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sampling areas can be grouped on the basis of specific criteria for the zones with 

different landscape characteristics such as soil, cropping system, elevation, aspect, 

management practices, where such zones are likely to remain temporally stable 

(Franzen et al. 1998).   

In this study, zone sampling was employed to collect the soil samples based on 

prior and existing knowledge of the soils and land-use in the landscape of the whole 

study catchment. The influence of both natural and management factors on the spatial 

variability of soil properties was considered across the landscape while identifying soil 

sampling zones. Three representative soil sampling zones based on soil quality (SQ), 

long-term land-use and soil management systems, and erosion-status sites were 

identified in the study catchment, using farmers’ opinions, and researcher and extension 

agents´ judgement. The information that divided the catchment into the soil sampling 

zones was derived mainly by informal discussions with local farmers, extension agents 

and field observation during the field reconnaissance surveys in June 2009. The SQ-

based sampling zone was entirely covered by arable land whereas the other two 

sampling zones belonged to all the land-use systems in the catchment. These three 

sampling zones were further sub-divided into different sub-sampling zones considering 

the variability within each zone and analytical costs.  

The SQ sampling zone was divided into three sub-zones, i.e., high, medium 

and low SQ status, by a group of farmers. They used indicators such as yield and yield 

components, soil depth, color, and fertility conditions to divide into such sub-zones (for 

details see Chapter 4). The sampling zone identified in the catchment based on long-

term land-use systems included eight sub-zones based on farmers’ historical and present 

information acquired in the catchment. These included: (i) natural forest, (ii) 

afforestation of protected area, (iii) grazing land, (iv) teff (Eragrostis tef)-faba bean 

(Vicia faba) rotation, (v) teff (Eragrostis tef)-wheat (Triticum vulgare)/ barley 

(Hordeum vulgare) rotation, (vi) teff (Eragrostis tef) mono-cropping, (vii) maize (Zea 

mays) mono-cropping, and (vii) uncultivated marginal land. The age of the systems 

varied from 5-6 years for teff mono-cropping and 20-30 years for maize mono-cropping. 

The average age of the other systems was about 10 years except for the afforested area, 

grazed land and uncultivated marginal land systems with more than 15 years.  
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The erosion-status-based sampling zone included three sub-zones, i.e., stable, 

eroded and deposition sites. Information from the local farmers, extension agents and 

researcher observation regarding the level of topsoil depth (A-horizon), deposition, rills, 

pedestals, root and sub-soil exposure and gullies was used to classify the catchment into 

these three sub-zones. Those areas with an A-horizon and the lowest number of erosion 

indicators were considered as stable sites, and those without an A-horizon and with the 

highest number of erosion indicators as eroded sites. Depositional sites were also easily 

identified, as they are mainly located in depression and flat areas with evidence of 

recent sediment deposition. In total, 14 sub-sampling zones across the catchment for the 

soil sample collection were located. The soil sampling points in each sub-zone were 

located at the center of each zone in order to reduce soil variability. Each sampling point 

was geo-referenced (Figure 6.2.) The sampling distance among the sampling points was 

not regular but ranged from 40 to 180 m. 

 

 

Figure 6.2: Distribution of representative soil sampling points in the study catchment 

 

Soil samples were collected in June 2009. From the SQ-based sampling zone, 

a total of 51 soil samples (3 sub-zones x 17) were collected. A total of 24 soil samples 

(8 sub-zones x 3) from the long-term land-use systems, and of 42 soil samples (3 sub-

zones x 14) from the three erosion-status-based sampling zones were collected. The 
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grand total of the samples collected across the sampling sub-zones was 117. Each soil 

sample was collected using composite of 5-8 samples from each representative sub-

sampling zone depending on the size and homogeneity of the sampling area. All soil 

samples were collected at a soil depth of 0-20 cm (plow depth), since this is where most 

changes are expected to occur due to erosion and the long-term land-use and soil 

management practices. The composites soil samples were pooled in a bucket and mixed 

thoroughly to homogenize and a sub-sample of 500 g was re-sampled. The samples 

were air dried and sieved to pass 2 mm sieve and then analyzed for texture, dry bulk 

density (BD), pH, total nitrogen (TN), available phosphorous (Pav), total Phosphorous 

(TP), organic carbon (OC), exchangeable calcium (Ca), magnesium (Mg) and potassium 

(K), cation exchange capacity (CEC), and available iron (Fe) following the standard soil 

analysis procedures adopted by Ethiopian National Soil Laboratory (MoNRDEP 1990).  

 

6.2.3 Statistical analysis 

Exploratory statistical analysis 

Data were subjected to descriptive (classical) analysis using SPSS 18.0 release software. 

The mean, minimum and maximum, standard deviation, skewness, kurtosis, and 

coefficient of variation were computed for each soil parameter to describe the central 

trend and spread of the soil properties datasets. The coefficient of variation (CV) was 

mainly used to assess the variability of the different datasets averaged at catchment 

scale. Exploratory data analysis for outliers and normality tests were checked. Normal 

quantile-quantile (Q-Q) plots were used for identification of probability of obvious 

outliers (extreme values) (Fu et al. 2010). Non-normal data were transformed to 

stabilize the variance. The normality tests were recalculated using the transformed data, 

as asymmetry in the distribution of data has an important effect on the geostatistical 

analysis (Fu et al. 2010).  

 

Geostatistical analysis 

The semivariogram analysis and kriging interpolation were performed in ArcGIS 9.2. 

Prior to geostatistical analyses, the data were examined for the presence of trend (i.e., 

deterministic variation where properties vary as a function of their coordinates). Trend 

in the variation signals a departure from the intrinsic hypothesis in which the process is 
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assumed to be random, and violates the assumptions on which geostatistics are based 

(McCormick et al. 2009). These authors also noted that the data can be examined for 

trend by fitting linear or quadratic function surfaces (polynomial line) to the coordinates 

of soil variables initially. Analysis using the trend removal could help to justify data an 

assumption of normality (Cressie 1993). By removing the trend, it will be possible to 

more accurately model the variation because the trend will not be influencing the spatial 

analysis (Kerry and Oliver 2007).  

The semivariogram analyses were conducted before ordinary kriging 

interpolation of the soil data. This is because the semivariogram model determined the 

interpolation function. Each model was constructed by 12 lags for all continuous 

normalized data. The spatial variability of the different variables was described in terms 

of three main statistics of the perceptible distance of spatial dependence (range), process 

variance (sill), and the spatially independent or random error (nugget) in the 

semivariogram models. A semivariogram is defined by the following equation (Ayoubi 

et al. 2007) as: 
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where γ(h) is experimental semivariogram value at a distance interval h, m(h) 

is the number of sample value pairs within the distance interval h, and z(xi), z(xi+h) are 

sample values at two points separated by the distance interval h (Ayoubi et al. 2007). 

Semivariogram functions were evaluated to decide the best fit with the data of this 

study. In this study, Spherical, Exponential or Gaussian models were fitted to the 

empirical semivariograms. The stationary models, i.e., Gaussian (Eq. (6.2)), 

Exponential (Eq. (6.3)) and Spherical model (Eqs. (6.4-6.5)), that fitted the 

semivariograms were defined in the following equations (Burgess and Webster 1980):   
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where C0 is the nugget, C1 is the partial sill, and a is the range of spatial 

dependence to reach the sill (C0 + C1). The ratio C0/(C0+C1) and the range are the 

parameters that characterize the spatial structure of soil property. The C0/(C0+C1) 

relation is the proportion in the dependence zone, and the range defines the distance 

over which the soil property values are correlated with each other (Parfitt et al. 2009). A 

low value for the C0/(C0+C1) ratio and a high range generally indicate that high 

precision of the property can be obtained by kriging (Parfitt et al. 2009). The 

classification proposed by Cambardella et al. (1994) considers the degree of spatial 

dependence (DSD) as C0/(C0+C1) x 100. According to the authors, the DSD is strong 

when DSD ≤ 25 %, moderate when 25 < DSD ≤ 75 %, and weak when DSD > 75 %. 

Low ratios indicate a negligible nugget variance and therefore a relatively high spatial 

dependence and a more homogeneous distribution of the observed parameter, whereas 

high ratios point towards a higher small-scale variability and a more heterogeneous 

distribution. 

The semivariogram models were selected by comparing the statistics of the 

cross-validation, which compared values predicted from the semivariogram models with 

actual values (Ayoubi et al. 2007). The prediction accuracy of models can be evaluated 

by the statistics of the mean square error (MSE) (Utset et al. 2000): 
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where n is number of observations for each case (soil parameter), z(xi, yi) is 

estimated soil parameter value, z(xi, yi) is observed soil parameter value, and (xi, yi) are 

sampling coordinates. In addition to the MSE, the goodness-of-prediction criterium, G 

(Agterberg 1984), was used as criteria to check and compare interpolated map 

accuracies, and defined as: 
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                           G = (1-MSE/MSEaverage)100%                                         (6.7) 

 

where MSEaverage is the mean square error obtained from a catchment average 

value as an estimate of all test soil data (using exploratory statistics). Positive G values 

indicate that the map obtained by interpolating data from the samples is more accurate 

than a catchment average. Negative and close to zero G values indicate that the 

catchment-scale average predicts the values at unsampled locations as accurately as or 

even better than the sampling estimates (Parfitt et al. 2009). 

Once the trend analysis of the soil data and the semivariogram models were 

evaluated, they were used in the construction of maps by ordinary kriging interpolation 

(Ayoubi et al. 2007). This interpolation method was used to estimate parameters over 

the landscape so that data could be obtained at all points over the surface. Ordinary 

kriging was selected as the preferred method for soil properties spatial interpolation 

because it is more reliable than the other interpolation methods based on the mean 

squared error, which compares the measured values with the predicted ones. Moreover, 

since the spacing of the measured soil sampling was relatively sparse and randomly 

chosen for each soil sub-sampling zone, ordinary kriging is the best unbiased predictor 

for conditions at specific unsampled locations (Cressie 1993). Ordinary kriging has an 

additional advantage of minimizing the influence of outliers (Triantafilis et al. 2001). 

 

6.3 Results and discussion 

6.3.1 Overall variability of soil properties in the catchment 

The descriptive statistics of the soil properties in the study catchment show moderate to 

high skewness for part of the parameters (Table 6.1). The highly skewed soil parameters 

include BD, OC, TN, and TP whereas silt, Pav and Ex K are moderately skewed. This 

indicates that these highly skewed elements have a local distribution, i.e, high values 

were found for these elements at some points, but most values were low (Grego et al. 

2006). The other soil parameters were approximately normally distributed in the 

catchment. The same tendency was observed for the coefficient of kurtosis, which 

ranged from -0.25 (Ex Mg) to 0.47 (silt) after transformation (Table 6.1). The 

underlying reason for normal or non-normal distribution of the soil parameters may be 

associated with differences in management practices, land-use and land-cover, 
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topographic effects and soil erosion processes across the landscape of the catchment. 

Such factors can be the source of a large or very small concentration of materials in 

some of the samples that leads to the non-normal distribution. For the non-normally 

distributed soil parameters, data were transformed using appropriate transformation 

methods and then fitted to approximately normal distribution. 

 

Table 6.1: Exploratory statistics of soil properties in 0-20 cm soil depth in Mai-Negus 
catchment, northern Ethiopia 

Variable  Mina  Maxb  Mean  SDc CVd (%) Skewnesse  Kurtosis  

Sand  14.7 70.3 50.0 11.98 24.9 0.06 0.17 

Siltf  18.2 76.6 27.2 10.70 38.9 0.48 0.47 

Clay  3.08 50.7 22.8 16.70 73.4 -0.01 0.25 

BDg  1.02 2.00 1.59 0.14 9.1 -0.36 0.20 

OCf 0.10 4.87 1.21 0.76 62.7 0.08 0.42 

TNf 0.04 1.00 0.12 0.07 58.0 0.05 0.22 

Pavh 0.87 26 7.80 5.02 64.4 0.18 -0.03 

Ex Kg 0.20 1.3 0.77 0.11 14.2 0.23 0.45 

Ex Ca 5.14 28 13.1 3.98 30.4 0.28 0.36 

Ex Mg 1.62 15 6.90 1.65 23.9 0.37 -0.25 

CEC 8.09 51 23.4 13.42 57.3 -0.13 -0.16 

Fe 3.4 45 19.7 6.74 34.2 -0.16 0.19 

TPf 118 2171 984 235 23.9 0.53 0.32 

pH 5.60 7.54 6.61 0.57 8.6 -0.03 -0.06 

BD, dry bulk-density (Mg m-3); Ex K, Exchangeable potassium (cmolc kg-1); Ex Ca, Exchangeable 
calcium (cmolc kg-1); Ex Mg, Exchangeable magnesium (cmolc kg-1); CEC, cation exchange capacity 
(cmolc kg-1); OC, soil organic carbon (%); TN, total nitrogen (%); Pav, available phosphorus (mg kg-1); 
TP, total phosphorus (mg kg-1); Fe, iron (mg kg-1). 
a Min, minimum; bMax, maximum; cSD, standard deviation; dCV, coefficient of variation; eSkewness 

provides an indication of symmetry, and a value of 0 indicates perfectly symmetrical distribution, and 
values between -1 and +1 are considered approximately symmetric (normally distributed) for field data 
(Ott 1977); fLog- transformed; gsquare- transformed and hsquare-root-transformed.  

 

A wide range of soil parameter values was observed at catchment scale (Table 

6.1). For instance, the sand content ranged from 15-70%, silt from 18-77% and clay 

from 3-51%. The range of bulk density was 1.02 to 2.00 Mg m-3. Soil OC, TN and Pav 

ranged from 0.61-4.87%, 0.04-1.00% and 0.87-26 mg kg-1, respectively. The CEC of 

the soils ranged from 9-51 cmolc kg-1. The maximum values of the soil chemical 

properties and fine (silt and clay) materials were found in areas where deposition and 

vegetation coverage is high and on cultivated land with intensive soil management 
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practices. But the proportions of such areas are small in the study catchment. On the 

other hand, the low soil chemical and high physical properties such as sand content and 

BD were observed on soils prone to erosion, with poor vegetation cover and with 

intensive cultivation without proper management system (Table 6.1). The mean BD 

(1.59 Mg m-3) for the catchment was high according to Arshad et al. (1996), who 

reported that BD higher than 1.4 Mg m-3 impairs root growth. Such high BD may be 

associated with the low organic matter in the soils.  

The mean value of OC (1.21%), TN (0.12%), and Pav (7.8 mg kg-1) of the 

soils in the catchment were low, but that of Ex K (0.77 cmolc kg-1) was high, and of 

CEC medium (23.4 cmolc kg-1) compared to the rate for African soils observed by 

Landon (1991). This study agrees well with other studies, which reported that Ex K is 

not a limited nutrient in Ethiopia (Elias and Fantaye 2000). The mean TP of the soils 

had values higher than 200 mg kg-1, which is the value indicated by Olsen and 

Engelstad (1972) as the maximum TP value for highly weathered tropical soils. The 

mean pH (6.61) of the soils was within the slightly acidic pH range. The mean Fe (19.7 

mg kg-1) was below the critical value set for crop production (50 mg kg-1) (Jones et al. 

1973).  

The coefficient of variation (CV) of the soil properties ranged from 8.6% (pH) 

to 73.4% (clay) (Table 6.1). Regarding the small CV for pH, it should be noted that pH 

values were already transformed data of H+ concentrations (Fu et al. 2010). The clay 

content had the highest CV amongst the different soil parameters, which may be 

difficult to capture by the sampling approach as it is susceptible to the erosion-

deposition processes along the landscape. In line with this, previous studies showed that 

fine soil particles are susceptible to erosion (Stone et al. 1985). Similar to the soil clay, a 

higher CV of Pav (64.4%), followed by OC (62.7%) and TN (58.0%), was observed at 

the catchment scale. According to the classification proposed by Wilding and Drees 

(1983), BD, Ex K and pH in this study showed low variability compared to their mean 

(CV ≤ 15 %), whereas the sand, Ex Ca, Mg, Fe and Fe showed moderate variability 

compared to their mean (15 < CV ≤  35 %). The silt, clay, OC, TN, Pav, and CEC soil 

datasets inturn showed high variability compared to their mean (CV > 35 %). In general, 

the use of the CV is a common procedure to assess the soil properties variability, since 

it allows a comparison among the samples with different units of measurement. 
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However, such classical statistics could not show the soil properties spatial variability in 

the study catchment. The geostatistical techniques must be thus carried out for 

understanding the spatial dependence and variability of the soil properties (Liu et al. 

2006). However, before the geostatistical method is used, there is the need to determine 

the normal Q-Q plots to establish if the soil properties are normal distributed. 

 

6.3.2 Normal Q-Q plots for row data 

A Q-Q plot of selected variables shows the proportion of observed value against the 

expected normal value of the normal distribution. In general such plot is used to 

determine whether the distribution of the soil parametrs matches the normal 

distribution. If so, the points of a soil parameter row data cluster around a straight line 

(Wang et al. 2009). In this study, the normal Q-Q plots were produced for the raw data 

of selected soil parameters (Figure 6.3). Soil exchangeable Ca, Mg, sand and clay data 

followed a straight diagonal line with some exception of a very few points that slightly 

deviated from the majority at both ends, indicating approximately normal distribution.  

It was necessary to remove the few outliers, as the deviation was seen in the Q-Q plots. 

The soil Fe and pH expected normal values followed a near straight line.  

A concave shape was displayed for soil BD, whereas a convex shape was displayed for 

the OC for some expected value. This indicates that some abnormally high and low 

values were observed in the dataset. The low values of soil nutrients and fine soil 

materials were located in the poor SQ and eroded and marginal part of the landscape, 

while the high values were in the high vegetative cover and high SQ sections and stable 

soils. Multiple small changes on the slope of the nearly normally distributed soil data 

were also detected and were probably attributed to differences in dataset sourced from 

multiple sites within the catchment. Similar normality testing was done using the 

normal Q-Q plot for the rest of the soil parameters (Figures not shown). Generally, the 

soil variables that are not normally distributed such as BD and OC were close to the 

straight line after transformation and can be used for further geostatistical analysis.  

 

6.3.3 Trend analysis of soil properties 

The trend of the soil properties was analyzed using the ´Geostatistical Analyst´ in 

ArcGIS 9.2. This is because global trend is an overriding process that affects all 
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measurements in a deterministic way (nonrandom) (Cressie 1993). The trend analysis 

was achieved by plotting the soil sample locations on the x,y plane and the value of the 

soil property of each parameter on the z dimension. In addition, the values of the soil 

properties are projected onto the x,z and y,z planes as scattered plots (Figure 6.4).  

 

 

 

Figure 6.3: Normal Q-Q plots for selected soil parameter data 
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Figure 6.3 continued
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Figure 6.3 continued
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Figure 6.4: Trend analysis of soil properties in Mai-Negus catchment, northern Ethiopia 

 

In Figure 6.4, the trend projection on the plane is shown by the green and blue 

lines. The yellow points are input data points, and the dark red, blue and green are 
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projected data points. A global trend exists if a curve that is not flat (i.e., a polynomial 

equation) can be fitted when the data fluctuate. For the soil samples of the study 

catchment, the trend analysis shows that part of the soil properties had a trend while the 

rest did not (Figure 6.4). For silt, BD, OC, TN, Pav, Ex K, and TP, the strongest 

influence of a directional trend was identified from southeast to northwest. This can be 

associted to the geographic and land-cover characteristics of the catchment (valley 

surrounded by gentle to mountainous good vegetation cover landforms in the southeast 

to the mountainous area with poor vegetation cover in the northwest direction). Such 

trend can influence the spatial distribution of the measured soil properties. But this 

could not lead to a final remark that there is clear directional soil properties variability 

whereby the values increase or decrease differently in different directions (e.g., Pav 

with quadratic trend of the green line with values starting low, then rising and then 

dropping). The trend exhibited by the blue line appears to be more linear and gradual. In 

contrast, no directional trend was observed for sand, clay, Ex Ca, Mg, CEC, Fe and pH 

(Figure 6.4). However, the existence of a trend for part of the soil parameters indicates 

that trend analysis (removal) was required to create more accurate interpolation maps, 

as this could help to justify values an assumption of normality. The results of this study 

suggested that a second-order polynomial should be fitted to the data that have trend so 

as to normalize before they are used for further analysis. 

 

6.3.4 Spatial dependence of soil properties 

Knowledge of spatial dependency and distribution of soil properties is crucial for 

natural resource evaluation and environmental management on unsurveyed locations 

using known points. This section presents the spatial dependence and variability of 

selected soil properties. The results of the geostatistical analyses reveal that the soil 

parameters showed spatial dependence and fitted to different models (Table 6.2). Soil 

parameters such as TN and TP were best fitted with a Gaussian model, whereas clay, 

Pav, Ex Ca and Mg fitted best to an exponential model. The remaining soil parameters 

were fitted to the spherical model. Model selection for each soil parameter was based on 

the mean squared error, i.e., a model with low error values was preferred.  

In geostatistical theory, the range of the semivariogram is the maximum 

distance between correlated measurements, and can be an effective criterion in 
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evaluation sampling design for mapping soil properties (Fu et al. 2010). Table 6.2 

shows that the spatial correlation (range) of the soil properties widely varied from 33 m 

(silt) to 223 m (Ex K). Beyond these ranges, there is no spatial dependence 

(autocorrelation). The soil sampling distance in the range of 40-180 m in this study was 

close to that of the models. The spatial dependence can indicate the level of similarity or 

disturbance of the soil condition.  

 

Table 6.2: Model parameters values for the best fitted semivariogram model in the Mai-
Negus catchment, northern Ethiopia 

Soil parameter Model C0 (C0+C1) Range DSD (%) MSE G (%) 

Sand Spherical 0.028 0.243 49 12 28.32 76 

Silta Spherical 0.057 0.39 33 15 29.95 79 

Clay Exponential 0.201 0.427 41 47 69.63 71 

BDb Spherical 0.108 1.397 47 8 0.0066 65 

OCa Spherical 0.031 0.096 67 32 0.35 54 

TNa Gaussian 0.015 0.064 63 23 0.003 53 

Pavc Exponential 0.217 0.986 52 22 15.84 58 

Ex Kb Spherical 0.048 0.267 223 18 0.0065 46 

Ex Ca Exponential 0.052 0.267 91 19 6.47 59 

Ex Mg Exponential 0.165 0.368 88 45 2.00 26 

CEC Spherical 0.103 0.437 76 24 53.91 55 

Fe Spherical 0.393 1.43 65 27 44.85 37 

TPa Gaussian 0.289 0.461 98 63 89.08 3 

pH Exponential 0.010 0.087 116 14 0.126 61 

C0 = Nugget Effect; C0 + C1 = Sill; DSD = C0/(C0 + C1); DSD, degree of spatial dependence; strong 
DSD (DSD ≤ 25%); moderate DSD (25 < DSD ≤ 75%); weak DSD (DSD > 75%) according to 
Cambardella et al. (1994). 
MSE, mean square error; G, goodness-of-prediction criterium; BD, dry bulk-density (Mg m-3); Ex K, 
Exchangeable potassium (cmolc kg-1); Ex Ca, Exchangeable calcium (cmolc kg-1); Ex Mg, Exchangeable 
magnesium (cmolc kg-1); CEC, cation exchange capacity (cmolc kg-1); OC, soil organic carbon (%); TN, 
total nitrogen (%); Pav, available phosphorus (mg kg-1); TP, total phosphorus (mg kg-1); Fe, iron 
(mg kg-1). a Log transformed; bsquare transformed and csquare root transformed parameter. 

  

According to Ayoubi et al. (2007), a large range indicates that observed values 

of the soil variable are influenced by other values or factors over greater distances than 

soil variables that have smaller ranges. Thus, a range of about 223 m for Ex K can 

indicate that the measured Ex K value can be influenced the neighbouring values over 

greater distances as compared to the soil variables having a small range (Table 6.2). 

This means that soil variables with a smaller range such as silt are good indicators of the 
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more disturbed soils. The different ranges of the spatial dependence among the soil 

properties may be attributed to differences in response to the erosion-deposition factors, 

land-use and land-cover, topography, parent material and human and livestock 

interferences in the study catchment. Consistent to this study, several studies have 

reported a large differences in the ranges of different soil properties, for instance, Weitz 

et al. (1993) found 30 to 100m, Doberman (1994) between 80 and 140 m, and 

Cambardella et al. (1994) about 80 m for total organic nitrogen. 

The nugget, which is an indication of micro-variability, was higher for Fe 

followed by TP as compared to the other soil attributes. This may be due to the fact that 

the selected sampling distance could not capture their spatial dependence well. The 

lowest nugget was for soil pH (Table 6.2). This indicates that pH had low spatial micro-

variability within small distances. As a rough guide, the sampling interval should be less 

than half the semivariogram range for most variables (Fu et al. 2010). According to 

Ayoubi et al. (2007), knowledge of the range of influence for various soil properties 

allows one to construct independent accurate datasets for similar areas in future soil 

sampling design to execute using both classical and geostatistical analysis. In addition, 

this helps to determine where to resample if necessary, and to design future field 

experiments that avoid spatial dependence (Ayoubi et al. 2007). Therefore, for future 

studies that aiming in characterizing the spatial dependency of the soil properties in the 

study catchment and/or a similar area, it is recommended that the soil properties should 

be sampled at distances shorter than the range found in this study. But the purpose and 

information required together with the cost of sample collection and analysis besides 

spatial dependence should be considered. 

The resulting semivariograms indicate the existence of strong to moderate 

spatial dependence for all soil properties determined in this study. The degree of spatial 

dependence (DSD) that describes the characteristic of strength in soil spatial structure 

was between 8 and 63% (Table 6.2). Kravchenko (2003) stated that DSD values greater 

than 60% corresponded to a weak spatial structure, i.e., more than 60% of the data 

variability consisted of random, unexplainable, and short-distance variation. This is 

inconsistent with the results of a study by Cambardella et al. (1994) who established the 

classification of the DSD between adjacent observations of soil property >75% to 

correspond to weak spatial structure. In this study, the semivariograms indicate strong 
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spatial dependence (DSD ≤ 25%) for soil properties such as sand, silt, BD, TN, Pav, Ex 

K, Ex Ca, CEC and pH, while the other soil properties show moderate (25 < DSD ≤ 

75%) spatial dependence (Table 6.2). The strong spatial dependence of the soil 

properties may be restricted by intrinsic variability in soil characteristics (e.g., soil 

texture, mineralogy) whereas extrinsic variations (e.g., tillage, fertilizer conditions, 

conservation measures and management practices) may control the variability of the 

weakly to moderately spatially dependent parameters (Cambardella et al. 1994).  

Kriging cross-validation was used to choose the semivariogram models that 

could give the most accurate spatial predictions of the unknown values of the field. The 

test was checked with the mean square error (MSE) values. The model with the lowest 

MSE value was chosen and applied in this study (Table 6.2). The MSE values for the 

respective models in Table 6.2 are low, indicating that kriging estimation of soil 

properties distribution are closer to field measured values. The accuracy of the kriged 

soil properties spatial maps was also assessed by the G value (Table 6.2). The G value 

for the soil parameters indicates that the prediction capacity of the datasets using kriging 

from the sample points as compared to catchment average values. For example, the G 

value for silt equals 79%, which indicates that the kriged silt map was 79% more 

accurate than that can be achieved using the average catchment scale values. A similar 

trend of accuracy of the kriged maps for sand, clay, BD, Ca, Pav, CEC, TN was 

achieved compared to the average catchment values. However, the G value was lower 

for the moderate spatial structure soil data, e.g., G equaled 3%, 26%, and 37% for TP, 

Ex Mg and Fe, respectively. Such soil properties had a DSD between 26 and 45%. 

These values are in a similar range with the observations reported in the literature for 

different soil datasets (e.g., Mueller et al. 2003). However, recent studies (e.g., Parfitt et 

al. 2009) reported that for a soil property with a weak spatial structure, an accurate map 

may be obtained at the expense of intensive sampling. For such soil properties, unless 

intensive sampling is an acceptable option, a catchment-scale average value could be 

used (Parfitt et al. 2009). However, as the values of G are higher than zero, kriging was 

more accurate than the catchment-scale average value for the study catchment 

conditions. Thus, the use of the interpolation technique was suitable for developing the 

soil properties spatial maps that can support for generation of site-specific soil 

management strategies.  
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6.3.5 Spatial distribution of soil properties 

The semivariogram parameters were used for kriging that produced an interpolation 

map of the soil properties (Figure 6.5). High spatial distribution of sand (50-70%) in the 

north and north-western parts of the catchment, particularly in the mountainous and 

central-ridge landforms was observed (Figure 6.5A). However, spatial distribution of 

sand content decreases in the direction towards the valley and reservoir landforms 

(south part) to 20%. The reservoir, followed by the valley and plateau landforms thus 

showed the lowest sand content. The pattern of distribution of silt content showed the 

reverse of sand, as the highest silt content (48-77%) was in many parts of the valley, 

followed by the reservoir and some areas of the escarpment,  and the lowest silt content 

(18%) on the central-ridge and mountainous landforms where some noisy trend was 

observed (Figure 6.5B). There was a comparatively high clay content (40-51%) spatial 

distribution along the toe-slope (e.g., reservoir, valley) and parts of the plateau landform 

in the south and south-east direction of the catchment (Figure 6.5C). The mountainous 

followed by the central-ridge landform showed the lowest clay content. This indicates 

that the content of finer soil materials increases towards the lower and flat area of the 

catchment, whereas the reverse is true for sand content. Saldana et al. (1998) found a 

similar trend of soil texture variability in their study that covered lower to higher river 

terraces in Spain. 

The spatial distribution of soil bulk density (BD) was high (1.75-2.00 Mg m-3) 

in the north and north-western part of the catchment (mountainous), followed by the 

central-ridge landform (center parts of the catchment). The lowest BD value was found 

in the reservoir (1.2 Mg m-3), followed by the valley and to some extent in the 

landforms such as escarpment and plateau in the eastern part of the catchment (Figure 

6.5D). This study indicates that a large part of the catchment (> 70%) shows high BD (> 

1.60 Mg m-3), which creates conducive conditions to increase erosion through runoff; 

because soil infiltration and soil water-holding capacity is reduced as BD increases 

(Ahmed et al. 1987). The low soil OC content could be partly responsible for the high 

BD, as the correlation between soil OC and BD was strong and significant (r = -0.83, P 

= 0.001). 

From the spatial distribution map of the soil OC (Figure 6.5E), we can see that 

the OC values are higher (4.0-4.5%) in the south-eastern than in the western, central or 
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northern parts of the study catchment. The north-western catchment includes the 

mountainous, central-ridge and parts of the escarpment landforms that show severe 

degradation in soil OC. In these landforms, the main reasons for low soil OC could be 

the relatively steep terrain (natural factor) and the anthropogenic factors (e.g., intensive 

tillage, cutting of trees, removal of plant and other organic sources, overgrazing), which 

enhance OC losses. 

 

 

 
Figure 6.5: Spatial distribution of selected soil properties interpolated by ordinary  

kriging for Mai-Negus catchment: (A) sand (%), (B) silt (%), (C) clay (%), 
(D) dry bulk density (Mg m-3), (E) OC, organic carbon (%), (F) TN (%), 
total  nitrogen,  (G) Pav, available phosphorous (gm kg-1), (H) Ex K, 
exchangeable potassium (cmolc kg-1), (I) Ex Ca, exchangeable calcium 
(cmolc kg-1), (J) Ex Mg, exchangeable magnesium (cmolc kg-1), (K) CEC, 
cation exchangeable capacity (cmolc kg-1), and (L) Fe, iron (mg kg-1). 
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Figure 6.5: continued  
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  The soil OC spatial pattern is approximately consistent with the spatial 

distribution of topography and land-use and land-cover in the catchment. The highest 

spatial distribution of OC (Figure 6.5E) was observed due to the mixed forest land-

cover in the eastern part of the catchment (partly located on both the escarpment and 

plateau landforms). This is followed by the reservoir and valley and to some extent by 

the rolling-hills landforms. Similarly, Figure 6.5F shows a higher spatial distribution of 

TN in parts of the escarpment and plateau followed by the reservoir and part of the 

valley, whereas it was the lowest in the mountainous and central-ridge landforms. Such 

rating of the level of OC and TN is catchment specific. However, OC and TN were 

generally limited in the soils of the study catchment as compared to the standards used 

in rating for tropical soils.  

The trend of the spatial distribution of Pav, Ex K, Ca, Mg, CEC and Fe (Figure 

6.5G-L) show a similar spatial pattern. These figures show that the highest values were 

located in the reservoir and decreased towards the upper part (steep slopes in the north 

and west direction) of the catchment; although patterns were sometimes irregular. The 

valley in the north-east direction of the catchment also showed high rates of spatial 

distribution of Pav (18-26 mg kg-1) similar to that of the reservoir. Such information and 

knowledge on the spatial distribution and variability of soil properties is beneficial for 

determining the trend and rate of soil nutrients in a landscape for future soil 

management planning. The spatial variability of soil properties may have several 

reasons, e.g., inherent soil conditions, marginal farming that use minimal inputs (Miller 

et al. 1988), tillage conditions and fertilizer practices (Sabbe and Marx 1987), cropping 

system, soil conservation measures  and management practices (Ryan 1998). However, 

a better understanding of the main factors controlling the spatial variability of the soil 

properties in the study catchment demands further investigation.  

Generally, spatial distribution of the soil properties showed a well-defined 

pattern of high contents of fine soil particles and soil nutrients in the reservoir (toe-

slope) and valley (foot-slope) and in the sites with high vegetative cover. Due to its 

selective nature, soil erosion may cause such spatial variability of soil fine materials and 

the associted soil nutrients that are transported long distances towards depositional areas 

(Stone et al. 1985; Krogvang 1990). The soil parameters are also transported dissolved 

in runoff. Quantifying the rate of nutrient export to the deposition areas in the study 
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catchment can show well the effect of erosion on the rate of spatial variability of the soil 

properties losses from a landscape units. For the purpose of site-specific soil 

management based on the maps of the spatial distribution of soil properties developed in 

this study, prioritization should be given to the north-west parts of the catchment 

(mountainous and central-ridge). This study indicates that the spatial distribution of 

topsoil properties can be used as an indicator for the spatial variability of soil 

degradation status at catchment scale. 

 

6.4 Conclusions 

The results of this study demonstrate that the use of classical statistics and geostatistical 

methods can simplify the soil sampling process without losing the quality of soil 

information. This is because both methods reveal the statistical variability of the soil 

properties across the study catchment. However, the geostatistical techniques are 

preferred to the classical statistics for estimation of the values of the soil parameters 

spatially and to show their variability in a catchment for site-specific decision-making. 

This indicates that the classical statistical techniques lack the necessary tools to identify 

the kind of systematic spatial variability of the soil properties at catchment scale.  

The classical statistics of the soil properties show a coefficient of variation up 

to 73% for the soil parameters, but such values do not allow identification of the 

location of the sources of variability. Despite of this, the results of the semivariogram 

analysis show the presence of a strong to moderate spatial structure (dependence) of the 

selected soil properties within the catchment. Such understandings of the soils in the 

catchment provide new insights for site-specific management planning that can address 

the issues such as ``where to place the proper interventions``. The presence of spatial 

dependence also suggests that a composite or catchment average soil test is insufficient 

to provide information on soil properties under similar conditions.  

The results of this study show that soil properties with a strong to moderate 

spatial structure can predict relatively accurate soil properties maps using the number of 

sampling locations in the study area than the catchment average value. In general, this 

study indicate a large range of soil properties variability, as the kriged maps show the 

lowest value of soil nutrients and fine soil particles in the mountainous (northwest) and 

central-ridge landforms, whereas the highest were in the reservoir followed by the 
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valley (south direction). It can therefore be concluded that such spatial distribution of 

soil properties can be used for developing soil degradation indicator maps that can 

identify sites of prioritization within the study catchment for their management and 

reclamation requirements. Thus, introducing appropriate interventions (soil 

management practices) targeting the prioritized sites based on the kriged soil properties 

spatial variability in the study catchment is crucial for sustaining agricultural production 

and environmental services. 
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7 SOIL EROSION MODELING USING THE SWAT MODEL IN A SEMI-

ARID NORTHERN ETHIOPIA CATCHMENT 

 

7.1 Introduction  

Soil erosion is one of the most serious land degradation problems all over the world. At 

the global scale, soil erosion is the dominant agent of soil degradation (Scherr 1999; Lal 

2001; Morgan 2005), accounting for 70 to 90% of total soil degradation (Lal 2001; 

Zoebisch and DePauw 2002). Total land area affected by soil erosion all over the world 

is 1,094 Mha of which 43% suffer from deforestation and the removal of natural 

vegetation, 29% from overgrazing, 24% from improper management of the agricultural 

land and 4% from over-exploitation of natural vegetation (Walling and Fang 2003). 

Erosion has long-term impacts on soil quality, agricultural productivity, transportation 

of pollutants and ecological degradation (Lal 1998; Saha 2004). Erosion reduces not 

only topsoil but also organic matter, soil nutrients and soil moisture (Lal 1999). 

Moreover, sedimentation due to erosion reduces the capacity of reservoirs and drainage 

ditches and also poses a risk of flooding and blocking of the irrigation canals, which is 

frequently observed in the Ethiopian highlands (Oldeman 1994; Tamene 2005). Dejene 

(1990) and Admassie (1995) show that there is nowhere in the world where erosion is as 

destructive to the ecosystem as in the northern Ethiopian highlands.  

The adverse influences of widespread soil erosion that causes severe soil 

degradation have long been documented as severe environmental and production 

problems for human sustainability (Lu et al. 2004). However, estimation of soil erosion 

loss is often difficult due to the complex interplay of many factors such as climate, land-

cover, soil, topography, lithology and human activities (Lal 1998; Lu et al. 2004). In 

addition, social, economic, political, and scale and methodological components 

influence the estimated soil erosion rate (Ananda and Herath 2003). Reports on soil 

quality (SQ) degradation are thus generalized for the whole country though derived 

from sources with different environmental settings, and have limitations in scope. It is 

problematic to extrapolate results from such case studies to other areas, and the resulting 

reports are also inadequate to guide policy action. In support of the above facts, 

previous studies in the Tigray region, northern Ethiopia, indicate that the rate of soil 

erosion varies from 7 t ha-1 y-1 (Nyssen 2001) to more than 24 t ha-1 y-1 (Tamene 2005) 



Soil erosion modeling using the SWAT model in a semi-arid northern Ethiopia  

107 

 

and 80 t ha-1 y-1 (Tekeste and Paul 1989). Erosion rates are also estimated to be 130 t ha-

1 y-1 from cropland and 35 t ha-1 y-1 averaged over all land-use types in the highlands of 

Ethiopia (FAO 1986). The discrepancies in the results of the above studies are mainly 

due to differences in the methods employed and their respective scale of analysis. Some 

of the soil loss estimates are derived from empirical models, and some are based on 

erosion plots while others employed reservoir surveys (e.g., Haregeweyn et al. 2006; 

Tamene et at. 2006a). Discrepancies on the rate of soil nutrient losses associated to 

sediment and runoff is also reported for Tigray, northern Ethiopia (e.g., Haregeweyn et 

al. 2006; Grimay et al. 2009). 

 Predominantly, past soil erosion estimates and extrapolations in Ethiopia are 

mainly based on plot level studies (Hurni 1985; 1993; Nyssen 2001). Although runoff 

plots provide good experimental insight into the relationships between soil loss under 

different cover, soils and slopes, results cannot be extrapolated to an entire catchment 

(Mutua et al. 2006). It also poses many limitations in terms of cost, representation, and 

reliability of the resulting data (Lu et al. 2004). Modeling soil erosion using physical 

models thus provides a sophisticated alternative tool for investigating the processes and 

mechanisms of soil erosion at catchment scales (Boggs et al. 2001).  

To estimate soil erosion and develop suitable management plans, many 

erosion models such as the Annualized Agricultural Non-Point Source model 

(AnnAGNPS) (Bingner and Theurer 2001), European Soil Erosion Model (EUROSEM) 

(Morgan et al. 1998), Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998), 

Water Erosion Prediction Project (WEPP) (Flanagan and Nearing 1995), and Universal 

Soil Loss Equation (USLE) (Wischmeier and Smith 1978) have been developed. 

Among these models, the USLE has continued as the most practical approach for 

estimating field soil erosion potentials for more than 40 years, whereas the other 

process-based erosion models developed afterward have limitations in applicability due 

to intensive data and computation requirements (Lim et al. 2005). However, studies 

using the USLE do not consider the sediment delivery ratio to estimate the sediment 

delivered to the downstream point of interest (Lim et al. 2005). This could be part of the 

reason for developing other erosion and hydrological models that consider the sediment 

delivery process.  
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The application of these models is not always an easy task since they require 

large amounts of information which often is not available. However, physical models 

are the only current tools that enable an approximate quantification of soil erosion 

processes, facilitating the recognition of high-risk areas and consequently the 

development of efficient planning to prevent soil degradation at catchment scale (Santhi 

et al., 2001) though such models are rarely applied in Ethiopia for many reasons. Before 

applying any of the models developed elsewhere for natural resource management 

decision-making, evaluation of model performance from the context of the new 

environment is very crucial (Ndomba et al. 2005). In this study, following a literature 

review of different types of erosion models, the physical-based SWAT model interfaced 

in a geographical information system (GIS) environment was selected to be evaluated 

and then applied in a northern Ethiopian catchment so as to assess soil quality (SQ) 

degradation management. The SWAT model is based on extensive modeling experience 

and also incorporates the features of several other models (Neitsch et al., 2005). Recent 

advances in the use of GIS, remote sensing and digital elevation model have promoted 

the application of such models at catchment scale with reasonable costs and better 

accuracy (Lu et al. 2004; Mutua et al. 2006).  

While the study area lacks some of the data needed for most physically- 

distributed models, it is possible to accommodate the requirements of SWAT by 

integrating field and literature survey. Despite this fact, little information is available 

that evaluate and apply SWAT model for catchment scale management planning in 

northern Ethiopia. The objectives of this study are to (1) evaluate the performance of the 

SWAT model  by comparing predicted stream flow, sediment yield and soil nutrient 

loadings with the corresponding measured values at the study catchment, (2) apply the 

verified model in identification and prioritization of  hotspot soil degradation sub-

catchments on the basis of estimated runoff, sediment yield and nutrient losses, (3) 

assess the relationships among these losses and (4)  suggest suitable management 

options that can help tackle the observed problem. Identification of erosion-hotspot 

areas using a physical model that estimates soil erosion rates with sufficient accuracy 

will have great importance for implementing appropriate erosion control practices (Shi 

et al. 2004). Evaluation of the model application to conditions in northern Ethiopia will 

also be a contribution to scientific community to expand research on soil degradation. 
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7.2 Materials and methods 

7.2.1 Study area 

This study was conducted in the Mai-Negus catchment, northern Ethiopia (Figure 7.1). 

The study catchment is located in the central zone of the Tigray region, 245 km west of 

Mekelle, the capital of the region. The catchment area is about 1240 ha. Altitude varies 

over short distances within the range of 2060 to 2650 m a.s.l. The catchment is part of 

the northern highlands of Ethiopia comprising high and low mountains, hilly lands, and 

valleys. The catchment has a mean annual temperature of 22oC and precipitation of 700 

mm, with a main rainy season from July to September. The dominant soil type in the 

catchment is Cambisols. Soils in the mountains, hilly land and piedmont areas are 

generally shallow and relatively deep in the valley. The farming system is principally 

crop-oriented, supplemented by livestock. The vegetation has been almost cleared due 

to deforestation. Forest covers a small area and is classified as a deciduous and dry 

forest with medium-sized and small trees as well as bushes, and some scattered trees 

showing evidence of former natural forest. Other land-use types include grazing land, 

and rainfed annual crops (Zea mays, Eragrostis tef, pulses, e.g., Vicia faba, etc.).  

However, Eragrostis tef covers the largest part (> 80%) of the cultivated land. 
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Figure 7.1: Location of the study area (A) Ethiopia, (B) Tigray, and (C) Mai-Negus 
catchment 

 

7.2.2 SWAT model description 

The Soil and Water Assessment Tool (SWAT) is a river-basin scale, continuous-time 

and spatially-distributed physically-based model developed to predict the impact of land 

management practices on water, sediment and agricultural chemical yields in complex 

catchments with varying soils, land-use and management conditions over long periods 

of time (Setegn et al. 2009). In this study, the ArcSWAT 2009 model version was 

applied to predict runoff, sediment yield and nutrient losses. The model was selected 

after hydrological models were reviewed using predefined criteria, i.e., meeting the 

objectives of the study, practical use in the area, data availability (DEM, land-use and 

land-cover, soil, weather), model sensitivity and uncertainty analysis, applicability in a 

complex catchment, spatial continuity, interface with GIS and its continuous review and 

improvements. The recently developed SWAT-CUP interfaced program for calibration 

and uncertainty analysis procedures (CUP) also made the SWAT model more attractive 

for this study. 
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As a physically-based model, the SWAT uses the spatial heterogeneity in 

terms of land-use and land-covers, soil types and slopes to divide catchment into sub-

catchments and further subdivided into Hydrologic Response Units (HRUs). The water 

balance is the driving force for the simulation of hydrology from each HRU. The 

SWAT model uses two steps for the simulation: land phase and routing phase. The land 

phase controls the amount of water, sediment, nutrient and pesticide loadings to the 

main channel in each sub-basin. The routing phase of the model defines the movement 

of water, sediments and nutrients through the channel network of the catchment to the 

outlet (Lenhart et al. 2005). The SWAT model simulates the hydrological cycle based 

on the water balance equation in Setegn et al. (2009) defined as: 
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where SWt is the final soil water content (mm), SW0 is the initial soil soil water 

content on day i (mm), t is the time (days), Rday is the amount of precipitation on day i 

(mm), Qsurf is the amount of surface runoff on day i (mm), Ea is the amount of 

evaporation on day i (mm), Wseep is the amount of water entering the vadose zone from 

the soil profile on day i (mm), and Qgw is the amount of return flow on day  i (mm). A 

comprehensive description of the SWAT model can be found in SWAT2005 theoretical 

documentation (Neitsch et al. 2005). But an overview of the model output calculation is 

given as follows. 

 

Runoff 

The SWAT model has two methods for estimating surface runoff: the Soil Conservation 

Service (SCS) curve-number (CN) (SCS 1972) and the Green and Ampt infiltration 

method (Green and Ampt 1911). Using daily or sub-daily rainfall amounts, the model 

estimates surface runoff volumes and peak runoff rates for each HRU. The SCS CN 

method is less data intensive than the Green and Ampt method (Fontaine et al. 2002). In 

this study, the SCS CN method was used to simulate surface runoff amount because 

sub-daily data for the Green and Ampt method was unavailabile for the study area. The 

SCS runoff equation is an empirical model that came into common use in the 1950s 
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after more than 20 years of research of rainfall-runoff relationships from small 

watersheds across the U.S.A. The model was developed for quantifying runoff amount 

across various land-uses and soil types (Rallison and Miller 1981). The SCS curve-

number runoff equation (SCS 1972) is: 
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where Qsurf is the daily accumulated surface runoff or rainfall excess (mm), 

Rday is the rainfall depth for the day (mm), Ia is the initial abstractions which include 

surface storage, interception and infiltration prior to runoff (mm), and S is the retention 

parameter (mm). The retention parameter varies spatially due to changes in soils, land-

use, management and slope, and temporally due to changes in soil water content. The 

retention parameter is defined in Xue and Xia (2007) as: 
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where CN is the curve-number for the day. Runoff will only occur when Rday > 

Ia (=0.2S). The SWAT calculates the peak runoff rate using a modified rational method 

(Setegn et al. 2010). For further information on surface and subsurface runoff see 

SWAT2005 theoretical documentation (Neitsch et al. 2005).   

 

Sediment 

The SWAT model uses the Modified Universal Soil Loss Equation (MUSLE) to 

calculate surface erosion due to rainfall and runoff for each HRU. The USLE predicts 

average annual gross erosion as a function of rainfall energy, whereas in the MUSLE 

the rainfall energy factor is replaced by a runoff factor to estimate soil loss (sediment 

yield) (Williams 1975). This improves the sediment yield prediction accuracy, 

eliminates the need for delivery ratios (the sediment yield at any point along the channel 

divided by the source erosion above that point), and single storm estimates of sediment 

yields can be calculated (Setegn et al. 2009). In MUSLE, sediment yield prediction is 
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improved because runoff is a function of antecedent moisture condition and rainfall 

energy. The crop management factor is also recalculated every day when runoff occurs. 

It is a function of aboveground biomass, residue on the soil surface and the minimum C-

factor for the plant (Setegn et al. 2009). In SWAT model, the MUSLE (Williams 1975) 

is:                  

      CFRGLSPCKareaqQSed USLEUSLEUSLEUSLEhrupeaksurf  56.0)(8.11            (7.4) 

 

where sed is the sediment yield on a given day (metric tons), Qsur is the 

surface runoff volume (mm ha-1), qpeak is the peak runoff rate (m3 s-1), areahru is the area 

of the HRU (ha), KUSLE is the USLE soil erodibility factor (0.013 metric ton m2 hr (m3-

metric ton cm)-1), CUSLE is the USLE cover and management factor, PUSLE is the USLE 

support practice factor, LSUSLE is the USLE topography factor, and CFRG is the coarse 

fragment factor. The hydrological model component estimates the runoff volume and 

peak runoff rate that are inturn used to calculate the runoff erosive energy variable 

(Setegn et al. 2009). The details of the USLE factors description and their respective 

equation components can be viewed in SWAT theoretical documentation (Neitsch et al. 

2005).  

In SWAT, the sediment routing model consists of two components that operate 

simultaneously to simulate the sediment transport in the channel network. These are the 

deposition and degradation processes (Neitsch et al. 2005). To decide such processes, 

the maximum sediment concentration in the reach is compared with that of sediment in 

the reach at the beginning of the time step. The maximum amount of sediment that can 

be transported from a reach segment is calculated as (Neitsch et al. 2005):  

 

                                             exp
,,,

sp
pKchpsmxchsed vCConc                                                 (7.5) 

 

where concsed,ch,mx is the maximum concentration of sediment that can be 

transported by the water (ton m-3), Csp is a coefficient defined by the user, vch,pk is the 

peak channel velocity (m s-1), and spexp is exponent parameter for calculating sediment 

reentrained in channel sediment routing that is defined by the use and normally varies 

between 1.0 and 2.0. The maximum concentration of sediment calculated in equation 

7.5 is compared with the concentration of sediment in the reach at the beginning of the 
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time step, concsed,ch,i. If concsed,ch,i > concsed,ch,mx, deposition is the dominant process in 

the reach segment and the net amount of sediment deposited (Neitsch et al. 2005) is: 

 

                                chmxchsedichseddep VconcconcSed  )( ,,,,                        (7.6) 

 

where seddep is the amount of sediment deposited in the reach segment (metric 

tons), concsed,ch,i is the initial sediment concentration in the reach (tons m
-3), concsed,ch,mx 

is the maximum concentration of sediment that can be transported by the water (ton m-

3), and Vch is the volume of water in the reach segment (m3). Conversely, if concsed,ch,i < 

concsed,ch,mx, degradation is the dominat process in the reach segment and the net amount 

of sediment reentrained is calculated as ( Neitsch et al. 2005): 

 

                         CHCHchichsedmxchsed CKVconcconcSed  )( ,,,,deg           (7.7) 

 

where seddeg is the amount of sediment reentrained in the reach segment 

(metric tons), concsed,ch,mx is the maximum concentration of sediment that can be 

transported by the water (tons m-3), concsed,ch,i  is the initial sediment concentration in 

the reach (tons m3), KCH is the channel erodibility factor (cm h-1 Pa-1), and CCH is the 

cahnnel cover factor. Once the amount of degradation and deposition has been 

calculated, the final amount of sediment in the reach (basin´s outlet) is determined as: 

 

                              deg, sedsedsedsed depichch                                        (7.8) 

 

where sedch is the amount of suspended sediment in the reach (metric tons), 

sedch,i is the amount of suspended sediment in the reach at the beginning of the time 

period (metric tons), seddep, is the amount of sediment deposited (metric tons) and seddeg 

is the amount of sediment reentrained in the reach segment (metric tons).  

 

Soil nutrients 

The SWAT model also allows the computations of soil nutrient losses such as nitrogen 

(N) and phosphorus (P) through runoff flows and attached to sediment from the sub-

basins to the basin outlet (Tripathi et al. 2003; Neitsch et al. 2005). Runoff transported 
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NO3-N is estimated by considering the toplayer (10 mm) only. The total amount of 

water leaving the layer (QT, mm) is the sum of surface runoff, lateral subsurface flow, 

and percolation. Amounts of NO3-N transported in runoff, lateral flow and percolation 

are estimated as the products of the volume of water lost and the average NO3-N 

concentration (Tripathi et al. 2003) as: 

 

                           333 NONOTNO CQV                                                        (7.9) 

 

where VNO3 is the amount of NO3-N lost from the first layer (kg ha-1), QT is 

total amount of water leaving the layer (mm), CNO3 is the concentration of NO3-N in the 

first layer (Kg mm-1 H2O), and ßNo3 is the nitrate percolation coefficient. Leaching and 

lateral subsurface flows in the lower layers are treated with the same approach as in the 

upper layer except that surface runoff is not included (Tripathi et al. 2003). The amount 

of organic N transported with sediment to the stream from the HRU for individual 

runoff events is calculated with the loading function (Tripathi et al. 2003; Neitsch et al. 

2005) defined as: 

 

                                  sedN
hru

orgNsurf area

sed
concorgN :001.0                                 (7.10) 

 

where orgNsurf is the amount of organic N transported to the main channel in 

surface runoff loss at the sub-basin outlet (kg ha-1), concOrgN is the concentration of 

organic N in the topsoil layer (g ton-1), sed is the sediment yield on a given day (tons), 

arearhu is the HRU area (ha) and sedN :  is the nitrogen enrichment ratio. The SWAT 

model uses the logarithmic relationship between enrichment ratios and sediment 

concentration to calculate organic N. The logarithmic equation estimating nitrogen 

enrichment ratio (Neitsch et al. 2005) is: 

 

                        2468.0
,: 78.0  surqsedsedN conc                                              (7.11) 

 

where concsed,surq is the concentration of sediment in runoff (ton m-3). Total 

nitrogen (TN) was considered as the sum of NO3-N and organic N in this study. As P is 
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commonly deependable on the sediment phase, the soluble P in runoff can be expressed 

(Tripathi et al. 2003; Neitsch et al. 2005) as: 

 

                                   
surfdsurf

surfsurfsolution
surf Kdepthb

QP
P

,

,







                                                   (7.12) 

 

where Psurf  is the amount of soluble P lost in surface runoff (kg ha-1), 

Psolution,surf is the amount of P in solution in the top 10 mm (kg ha-1), Qsurf, is the amount 

of surface runoff on a given day (mm), b is the bulk density of the top 10 mm (Mg m-3) 

(assumed to be equivalent to bulk density of the first soil layer), depthsurf is the depth of 

the surface layer (10 mm), and kd,surf is the P soil partitioning coefficient (m3 Mg-1) 

which is the ration of soluble P concentration in surface soil to the concentration of 

soluble P in surface runoff. The value of kd,surf used in SWAT is 175 (Tripathi et al. 

2003). 

The phosphrous (P) transported associated with sediment is simulated using 

the loading function described in Tripathi et al. (2003) as: 

 

                                            )()()(01.0 ERCYY pp                                                    (7.13) 

 

where YP is the amount of P transported with sediment to the main channel in 

runoff (kg ha-1), Y is the sediment yield (ton ha-1), Cp is the concentration of P in the 

topsoil layer (g ton-1), and ER is the P enrichment ratio. Details about the processes of 

the soil nutrients and sediment routing by the SWAT model can be found in SWAT 

theoretical documentation (Neitsch et al. 2005). 

 

7.2.3 Model inputs 

The GIS input files needed for the SWAT model are the digital elevation model (DEM), 

land-use and land-cover, soils and daily observed weather data. The weather generator 

can be used to generate missed data. The data required for the SWAT model are 

determined following the information given in Neitsch et al. (2005). Digital Elevation 

Model (DEM): A 10 m by 10 m cell size DEM was developed from the topographical 

map of the area (Figure 7.2A). After the DEM was created, pits/sinks were filled before 
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any processing was undertaken in order to route runoff to the catchment outlet. The 

DEM was used to delineate the catchment boundary and develop the drainage patterns 

of the catchment as well as estimate slope parameters. 

Land-use and land-cover and soil data: Land-use is one of the most important 

factors that influences the model estimated outputs in a catchment. The SWAT model is 

capable of splitting the land-use and land-cover into different proportions based on the 

information from the user. The land-use and land-cover was derived from a Landsat 

Image of November 2007 (Figure 7.2B). These were changed into SWAT codes. The 

model requires soil map which was derived for the study catchment (Figure 7.2C). The 

SWAT model also requires soil physical and chemical properties such as available 

water content, soil texture, bulk density, hydraulic conductivity, organic carbon, etc., for 

different layers of each soil type (Neitsch et al. 2005; Setegn et al. 2009). These data 

were obtained from the NEDECO (1998) and field observation. 

 

Weather data: In this study, the weather variables used for simulation the 

hydrological balance by the model were daily rainfall, minimum and maximum air 

temperature, solar radiation, wind speed and relative humidity obtained for the period of 

1992-2009. These data were collected from Ethiopian National Meteorological Agency, 

Mekelle branch for the station located near the catchment. The weather generator in the 

SWAT model was used to estimate missed data for daily rainfall, temperature, solar 

radiation, wind speed and relative humidity.  
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Figure 7.2: SWAT model inputs: (A) Digital elevation model (DEM), (B) land-use and 

land-cover and (C) major soils of Mai-Negus catchment, northern Ethiopia 
 

7.2.4 Model setup 

The SWAT model system embedded within GIS integrates the spatial environmental 

data inputs of soil, land-cover, topography and weather. The DEM was utilized by 

ArcSWAT to automatically delineate the basin (or catchment) into 16 sub-basin 

boundaries, calculate sub-basin average slopes and delineate the drainage networks.  By 

overlaying the slope map along with the reclassified land-use and soil datasets, all the 

three map inputs were used to determine Hydrologic Response Units (HRUs) 

combinations that define the level of spatial detail to be included in the model. Within 

each sub-basin, the HRUs were created by ArcSWAT when the option to create 

multiple HRUs per sub-basin was enabled. The multiple slope option (an option for 

considering different slope classes for HRU definition) was used in this study. The land- 

use, soils and slope threshold values used in this application were 4%, 4% and 2%, 

respectively. These were selected in order to keep the HRUs to a reasonable number of 

369. The model calculates unique runoff, sediment and nutrient transport to each HRU. 
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7.2.5 Preparation of observed data 

The SWAT model does not use observed data values of flow, sediment and soil 

nutrients in calculations, but instead these are used for comparing the simulated values 

during model calibration and validation. Nevertheless, the SWAT model was originally 

developed to operate in ungauged basins with little or no calibration efforts (Shi et al. 

2011). This is because the applicability of the model can be improved by a priori 

parameter estimation from the physical catchment characteristics (Atkinson et al. 2003; 

Shi et al. 2011). This implies that given appropriate spatial input data, SWAT can 

provide a satisfactory simulation output (Shi et al. 2011). To improve the simulation 

result in this study, first-hand catchment characteristics such as curve-number, 

Manning’s coefficients, soil erodibility, management practices, land-cover, terrain and 

weather factors were collected and used as model input.  

Model calibration and validation requires sufficiently long, quality 

observations of stream flow and the other variables, but observed data on both spatial 

and temporal scales of interest are very limited, especially in ungauged catchments such 

as the Mai-Negus catchment. In such situations, different methods have been used to 

build hydrologic modeling systems in ungauged basins, including the extrapolation of 

response information from gauged to ungauged basins, measurements by remote 

sensing, the application of process-based hydrological models in which climate inputs 

are measured, and the application of combined meteorological-hydrological models that 

do not require the user to specify precipitation inputs (Sivapalan et al. 2003).  

In this study, the extrapolation of response information as a mean value from 

gauged to ungauged basins was adopted to prepare the observed data for model 

calibration and validation in the Mai-Negus catchment. In doing so, the measured 

(observed) runoff (Q) was determined through the runoff coefficient (RC) method 

described in Neitsch et al. (2005) (equation 7.14), which multiplies the daily rainfall of 

the period 1992-2009 (18 years) by the RC obtained from studies conducted in different 

parts of the Tigray region having a similar farming system (dominated by cereals), 

climate, topography and soil conditions (Appendix 2). This is because there are no 

short-and long-term measured stream flow or other hydrological parameters for the 

study catchment or other similar areas in this region. A mean RC of 0.20 was thus 

adopted in this study, which was assumed representative for the real situation of the 
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study catchment, since it is an average of different sites having many aspects in 

common. Generally, reports for RC in the region are in the range of 15-30%. 

 

                              Q = RC · Rday                                                                (7.14) 

 

 where Q is runoff (mm), RC is runoff coefficient (-), and Rday is the rainfall 

for the day (mm).  

The sediment thickness in the reservoir of the study catchment was collected 

using a pit-based survey in June 2009 when a large part of the reservoir bed was almost 

without water. The number of point (pit) samples depended on size and shape of the 

reservoir as well as on the pattern of sediment deposition based on judgment and visual 

observation. Then the Thiessen interpolation method was used to estimate sediment 

deposition in the reservoir (Tamene 2005). Soil total nitrogen (TN) and mineral 

phosphorus (P) were determined from the sediment exported to the reservoir following 

the standard laboratory procedures. In addition to the sediment and soil nutrients 

observed in the reservoir, data from past studies in the region with similar catchment 

characteristics were also used for model calibration and validation (Appendix 3).  

 

7.2.6 Model sensitivity analysis, calibration and validation 

The SWAT model is a complex catchment model relying on numerous parameters. This 

creates problems when attempting to calibrate the model to a specific study area due to 

the number of parameters and the possible correlations between each other 

(Vandenberghe et al. 2001). Therefore, a sensitivity analysis was performed before 

model calibration to identify the important input parameter sets on predicting stream 

flow, sediment, and N and P losses. Model sensitivity is defined as the change in model 

output per unit change in parameter input (Byne 2000). The analysis was conducted for 

the study catchment to determine the parameters needed to improve simulation results 

and thus to understand better the behavior of the hydrologic system, but it could also be 

useful to interpret results during the calibration phase (Kleijnen 2005). The parameters 

used in the sensitivity analysis were selected by reviewed previously used calibration 

parameters and the SWAT model documentation (e.g., Werner 1986; Zeleke 2000; 

Neitsch et al. 2005; Chekol 2006; Ashagre 2009).  
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The sensitivity analysis was carried out for flow, sediment and soil nutrients 

(N and P) using 29 parameters. The parameters were analyzed with a Latin Hypercube 

interval value of 10, and the sensitivity analysis thus required 290 simulations. 

Parameters with high sensitivity were chosen with care for this study, because small 

variations in their values can cause large variations in model output (Byne 2000). The 

analysis was run for the period 1992 to 1995. The year 1992 was used as a warm-up 

period for the model, and the other years (1993 to 1995) were considered in the 

sensitivity analysis. Relative sensitivity (absolute value) was categorized by Lenhart et 

al. (2002) as 0-0.05, 0.05-0.2, 0.2-1.0 and > 1 for small to negligible, medium, high and 

very high sensitivity, respectively, which was used to rank the sensitivity of model 

parameters. 

Following the sensitivity analysis, the SWAT Calibration and Uncertainty 

Procedures (SWAT-CUP) version 3.1.3 was applied to calibrate, validate, and assess 

model uncertainty (Abbaspour et al. 2007). The calibration and uncertainty analysis was 

performed using the SUFI-2 (sequential uncertainty fitting version 2) algorithm, which 

is a semi-automated inverse modeling procedure for a combined calibration-uncertainty 

analysis (Abbaspour et al. 2004; 2007).  

In order to utilize any predictive catchment model for estimating the 

effectiveness of future potential management practices, the model must be first 

calibrated to measured data and should then be tested without further parameter 

adjustment against an independent set of measured data (model validation). Model 

calibration determines the best or at least a reasonable parameter set while validation 

ensures that the calibrated parameters set performs reasonably well under an 

independent dataset.  

The SWAT was calibrated and validated based on daily, monthly and annual 

data basis for flow, whereas sediment yield and soil nutrients losses at the catchment 

outlet were calibrated only on an annual basis. The constraint to calibrate and validate 

sediment and soil nutrients on a daily and monthly basis is that no measured data 

existed for the catchment or similar areas. Flow data from 1992 to 2000 were used for 

calibration using the 1992 data as a warm-up period for the model. The 2001 to 2009 

data were used for model validation using the 2000 year as the warm-up period. The 

model was next calibrated for sediment and then for soil nutrients. Observed sediment 
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and nutrient data from 2001 to 2004 were used during calibration. The period 2001 was 

used for the model warm-up during calibration. For model validation of sediment and 

soil nutrients, the observed data from 2005 to 2009 were used, with the 2005 as the 

warm-up period.  

 

7.2.7 Model evaluation 

The efficiency of the SWAT model was evaluated using the coefficient of determination 

(R2) and the Nash-Sutcliff coefficient (NSE) (Nash and Sutcliffe 1970) between the 

observed data and the best simulation values. The R2 is the square of the Pearson’s 

correlation coefficient that describes the proportion of the total variance in the observed 

data that can be explained by the model. It ranges from 0.0 to 1.0 with higher R2 values 

indicating better agreement (Kim et al. 2007). The range of NSE is between −∞ and 1.0 (1 

inclusive), with NSE = 1 being the optimal value (Nash and Sutcliffe 1970). In general, 

values ranging between 0.0 and 1.0 are indicated better model efficiency than the mean 

observed values, but values of NSE > 0.50 is accepted as satisfactory for the SWAT 

model. In contrast, NSE values < 0.0 indicate that the mean observed value is a better 

estimator than the model simulated value, which indicates poor performance of model 

(Santhi et al. 2001). The R2 and NSE can be calculated as: 
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where Oi is the measured data at time i, O  is the mean of measured data, Pi is 

the predicted data at time i, P  is the mean of the predicted data, and N is the number of 

compared values. Provided that the model predictive capability is demonstrated as being 

reasonable in the calibration and validation phase using such model evaluation criteria, 
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the model can be used with confidence for future predictions under different 

management scenarios. 

 

7.2.8 SWAT for identification and prioritization of hotspot sub-catchments 

The evaluated model was applied for identifying and prioritizing of hotspot runoff, 

sediment yield (soil loss) and soil nutrient losses in the study catchment. The categories 

of erosion (soil loss) rates suggested by Tamene (2005) were set as thresholds for 

identification of degradation hotspot sub-catchments. In identification such sub-

catchments, average annual runoff, sediment yield and soil nutrient losses for the 

simulation period 1992-2009 were generally considered. The hotspot sub-catchments 

were then prioritized for the implementation of suitable interventions that reduce the 

runoff, sediment yield and soil nutrient losses. Priorities were targeted on the basis of 

rank assigned to each hotspot sub-catchment according to categories of soil erosion 

hazard zone described by Tamene (2005) (Table 7.1). For nutrient losses, a threshold 

value of 10 mg l-1 for NO3-N and 0.5 mg l-1 for dissolved P as described by the US 

Environmental Protection Agency (Tripathi et al. 2003) were adopted as criteria for 

identifying the hotspot sub-catchments.  

 

7.2.9 Data analysis and interpretation 

In this study, descriptive, correlation and regression analysis were used to analyze 

SWAT model outputs. In addition, data were interpreted in relation to standards (soil 

loss severity classes, soil loss tolerance) for the study catchment condition. GIS maps in 

ArcGIS 9.2 were also developed to display the magnitude and spatial variability of 

model outputs for the sub-catchments in the study catchment. 
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Table 7.1: Classification of soil erosion based on soil loss rate 
Soil loss range (t ha-1 y-1) Category 

0-5 Very low 

5-15 Low 

15-30 Medium 

30-50 High 

> 50 Very high 

                        Source: Tamene (2005) 
 

7.3 Results and discussion 

7.3.1 Model sensitivity analysis 

The relative sensitivity value, category and rank of 12 parameters with respect to each 

variable were determined (Table 7.2). The 12 parameters were chosen to minimize 

calibration time and maximize model efficiency. Among the parameters used for the 

sensitivity analysis, the most sensitive in the range of medium to very high sensitivity 

during flow, sediment and soil nutrient simulation were ranked from first (most 

important) to the least.  For example, the most sensitive parameters for flow simulation 

were CN2, slope, Esco, Sol_Awc, Gwqmn, Slsubbsn, Sol_k and Sol_BD. The CN2 

determines the amount of precipitation that becomes runoff and the amount that 

infiltrates. The Esco is used for modifying the depth distribution for meeting soil 

evaporative demand to account mainly for the effect of capillary action, and the Gwqmn 

is used for regulating the return flow and groundwater storage. The effect of the other 

parameters on model outputs can be found in SWAT documentation (Neitsch et al. 

2005).  

The very high sensitive parameters for sediment included Usle_C, Spcon, 

Usle_P and slope. The soil nutrient N was highly sensitive to ErorgN, Surlag, Nperco 

and Usle_C, whereas P was highly sensitive to Usle_K, Usle_P, Usle_C and Erorgp. 

There are common parameters which show high sensitivity to flow, sediment and soil 

nutrients, regardless of the differences in the sensitivity values. An example of this is 

that Usle_K, Usle_C, Usle_P, slope, and Slsubbsn are sensitive to change these model 

outputs.  In general, the obtained sensitivities show consistency with results determined 

in other studies for most of the parameters (e.g., Chekol 2006; Ashagre 2009).  
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Table 7.2: Most sensitive parameters for flow, sediment and soil nutrients simulation in Mai-Negus catchment, northern Ethiopia 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Ranking of 1 is the highest relative sensitivity (RS) decreasing up to 12 for flow, sediment and soil nutrients simulation. 
RS, relative sensitivity; CN2, Initial SCS curve-number II; Slope, Average slope steepness (m m-1); Esco, Soil evaporation compensation factor; Sol_Awc, Available 
water capacity (mm mm-1); Gwqmn, Threshold water depth in the shallow aquifer for flow (mm); Surlag, Surface runoff lag time (days); Sol_K, Saturated hydraulic 
conductivity (mm hr-1); Sol_BD, soil moist bulk density (Mg m-3); Ch_K2, Channel effective hydraulic conductivity (mm hr-1); Ch_N2, Manning's n value for main 
channel; Ch_Cov, channel cover factor; Alpha_Bf, Base flow alpha factor (days); Sol_Z, Soil depth (mm); Spcon, maximum amount of sediment that can be re-
entrained during channel sediment routing; Erorgp, P enrichment ratio with sediment loading; Usle_C, Universal soil loss equation cover factor; Usle_P, Universal 
soil loss equation management factor; Canmx, Maximum canopy storage (mm); Spexp, Sediment channel re-entrained exponent parameter; Slsubbsn, Prf, Sediment 
routing factor in main channels; Slsubsn, Average slope length (m); Usle_K, Universal soil loss equation soil factor;  Ch_Erod, channel erodibility; Epco, plant 
uptake compensation factor; Nperco, Nitrate percolation coefficient(10 m3 Mg-1); Pperco, P percolation(10 m3 Mg-1); Ubn, N uptake distribution parameter; ErorgN, 
Organic N enrichment for sediment; Erorgp, Organic P enrichment for sediment; GwNO3, Concentration of NO3 in groundwater; Psp, P availability index.  

Flow Sediment Nitrogen (N) Phosphorus (P)         

 Rank1Parameter RS category parameter RS category parameter RS category parameter RS category

CN2 2.02 v. high Usle_C 2.34 v. high ErorgN 0.89 high Usle_K 1.32 v. high 1 

Slope 1.33 v. high Spcon  2.12 v. high Surlag 0.87 high  Usle_P 1.10 v. high 2 

Esco 0.84 high Usle_P 1.84 v. high Nperco 0.75 high Usle_C  0.97 high 3 

Sol_Awc 0.75 high Slope 0.89 high Usle_C 0.73 high Erorgp 0.92 high 4 

Gwqmn 0.56 high Ch_N2 0.68 high CN2 0.70 high Slope  0.86 high 5 

Slsubbsn 0.47 high Ch_Erod  0.53 high Slope  0.62 high Ch_N2 0.78 high 6 

Sol_K 0.42 high Usle_K 0.37 high Ubn 0.57 high Ch_Erod 0.73 high 7 

Sol_BD 0.22 high Spexp 0.33 high Epco 0.18 medium Psp  0.56 high  8 

Ch_K2 0.18 medium Ch_Cov 0.28 high Usle_P 0.15 medium Pperco 0.49 high 9 

Surlag 0.13 medium Canmx 0.19 medium Sol_Z 0.11 medium Slsubbsn 0.17 medium 10 

Sol_Z  0.10 medium Slsubbsn  0.14 medium Slsubbsn 0.08 medium Epco 0.13 medium 11 

Alpha_Bf 0.06 medium Prf 0.10 medium GwNO3 0.06 medium Prf 0.09 medium 12 
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7.3.2 Flow calibration and validation 

After the sensitive parameters had been identified, the calibration process focused on 

adjusting the model-sensitive input parameters determined in the sensitivity analysis to 

obtain best fit between simulated and observed data. Model calibration is an important 

step in catchment modeling studies that helps to reduce uncertainties in model 

predictions (Setegn et al. 2010). During the model stream flow calibration process, the 12 

sensitive parameters were considered. The final fitted values of these parameters were 

included in the SWAT model (Table 7.3) so as to fine tune the simulation with the 

observed data during validation. The effect of each parameter on model results is given 

in the SWAT documentation (Neitsch et al. 2005). 

 

Table 7.3: Calibrated flow, sediment and soil nutrient parameter fitted valuesa for Mai-
Negus catchment, northern Ethiopia 

Flow Sediment Total nitrogen (TN) Mineral phosphorus (P) 

Parameter Value Parameter Value Parameter Value Parameter Value 

CN2 -0.2b Usle_C 0.27c ErorgN  2.35c Usle_K 0.15b 

Slope 1.50b Spcon 0.003c Surlag 0.10c Usle_P 0.8c 

Esco 0.53c Usle_P 0.8v Nperco  0.12c Usle_C  0.35c 

Sol_Awc -0.11b Slope 1.20b Usle_C 0.27c Erorgp 3.5c 

Gwqmn 53c Usle_K 0.12b Ch_N2 0.03c Slope  1.20b 

Slsubbsn 0.25b Ch_Erod  0.42c Slope  1.20b Ch_N2 0.03c 

Sol_K 0.15b Ch_N2 0.03c Ubn 3c Ch_Erod  0.42 c 

Sol_BD 0.15d Spexp 1.25c Epco 0.03c Epco 0.14c 

Ch_K2 1.2c Ch_Cov 0.45c Usle_P 0.6c Pperco -0.10b 

Surlag  0.10c Canmx 0.13c Sol_Z -0.10b slsubbsn 0.20b 

Sol_Z  -0.10b Slsubbsn  0.20b Slsubbsn 0.20b Psp 0.20c 

Alpha_Bf 0.12c Prf 1.10c GwNO3 -0.10b Prf 1.1c 

a Lower and upper parameter values are based on ranges recommended in the SWAT User’s Manual 
(Neitsch et al. 2005). 

b Relative change in the existing parameter where the current value is multiplied by 1 plus a given value. 
c Substitution of the existing  parameter value by the given value. 
d Given value is added to the existing parameter value. 
  For description of parameters see Table 7.2. 
 
 

The calibration and validation results of the simulated stream flow on daily, 

monthly, and annual basis perform well for the Mai-Negus catchment as shown in the 

model goodness-of-fit of the SUFI-2 algorithm (Table 7.4).  The NSE for stream flow 

calibration and validation on a daily basis was 0.55 and 0.53, respectively. An R2 of 

0.67 for daily flow calibration and 0.64 for daily flow validation was achieved. The 
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model calibration efficiency value for monthly stream flow was NSE = 0.59 and R2 = 

0.72, whereas the monthly flow validation statistics was NSE = 0.61 and R2 = 0.79. This 

indicates that model statistical values for daily flow validation were slightly lower than 

the calibration result while the opposite was found for the monthly value. But the model 

calibration and validation statistics are within the acceptable or satisfactory levels in 

both periods. On the other hand, the annual flow calibration (NSE = 0.67, R2 = 0.81) and 

validation (NSE = 0.73, R2 = 0.84) values of the model goodness-of-fit were higher than 

for the daily and monthly flow (Table 7.4).   

Generally, efficiency values > 0.50 for NSE and > 0.60 for R2 are considered 

adequate for SWAT model applications in management planning, as these values 

capture the variability of simulated and observed values reasonable well (Santhi et al. 

2001). Considering such model statistics (NSE and R2) for flow calibration and 

validation, the SWAT model was thus successfully calibrated and validated for the 

annual, monthly and daily stream flows. This indicates that the final values of the 

model-sensitive parameters selected during the calibration represent those parameters in 

the study area. 

 

Table 7.4: Model evaluation statistics for stream flow calibration and validation at Mai-
Negus catchment, northern Ethiopia 

Nash-Sutcliffe model efficiency (NSE) Coefficient of determination (R2) 

Daily  Monthly Annual  Daily  Monthly Annual  

Cal  0.55 0.59 0.67 0.67 0.72 0.81 

Val  0.53 0.61 0.73 0.64 0.79 0.84 

Cal, calibration; Val, validation. 
 

In addition to the statistical measures (R2, NSE), the visual comparison of 

graphs also show model performance during calibration and validation of stream flows 

(Figure 7.3). This is used to identify differences in model bias in the timing and 

magnitude of peak flow simulation. The model underestimated daily peak flow for a 

number of days in the main rainy season (June to September) during calibration, but 

overestimated the daily peak flow for the validation period (Figure 7.3A-B). The same 

trend is also shown for the monthly peak stream flow during calibration and validation. 

The SWAT model underestimated high flows for 6 out of 8 peaks for monthly 

calibration, and overestimated flows for 6 out of 9 peak flows during monthly validation 
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(Figure 7.3C-D). Generally, the peak runoff value predicted by the model in the dry 

dates and months (Oct., Nov., Dec., Jan., Feb. and Mar.) during calibration and 

validation were slightly higher than those of the observed values. This could be 

associated with the sub-surface flows simulated by the model for such conditions. The 

SWAT model overestimated the high flows 5 out of 8 years during annual calibration, 

and overestimated 6 out of 9 years during validation (Figure 7.3E-F). Nevertheless, the 

SWAT model tracked most of the peak flow events well that occurred in the study 

catchment as indicated by the statistics values and Figure 7.3.  

In general, the SWAT model in this study provides an acceptable and better 

prediction efficiency of stream flow that can use in further analysis to identify and 

prioritize critical runoff source sites and simulate alternative management strategies. In 

addition, the results show how well spatially distributed models are able to produce 

acceptable results using readily available, physically based input parameters in 

ungauged small catchments. Given further information about a catchment's 

characteristics and the availability of measured flow data using gauged stations, it can 

be expected that better simulation results than in this study could be obtained. 
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Figure 7.3: Model simulated and observed stream flow during (A) daily calibration, (B) 

daily validation, (C) monthly calibration, (D) monthly validation, (E) annual 
calibration, and (F) annual validation periods for Mai-Negus catchment, 
northern Ethiopia 
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Figure 7.3: continued 
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Figure 7.3: continued 
 
 
7.3.3 Calibration and validation of sediment and soil nutrients 

The parameters and the fitted values considered during the sediment and soil nutrients 

model calibration are presented in Table 7.3 (section 7.3.2). The SWAT model 

calibration and validation statistics for the annual sediment yield and soil nutrients 

losses show an adequate level of accuracy (Table 7.5). The R2 and NSE values computed 

between the simulated and observed annual sediment yields for the calibration period 

were 0.73 and 0.57, respectively. The validation of annual sediment yield showed a R2 

of 0.85 and NSE of 0.76, which is higher than the calibration values. The calibration of 

annual TN gave R2 of 0.72 and NSE of 0.54, and of annual mineral phosphorus (P) 

calibration was 0.72 and 0.81, respectively.  The efficiencies for P calibration are higher 

than for sediment and TN (Table 7.5). The reason may be attributed to the uncertainty in 

the observed data used, and also to the use of best-fit parameters during calibration. 

Similarly, in the model validation R2 and NSE were higher for sediment and P than for 
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TN (Table 7.5). These model efficiencies improved during validation for sediment, TN 

and P as compared to calibration. The improvement for sediment was from 0.57 to 0.76 

for NSE and from 0.73 to 0.85 for R2, whereas for TN it was from 0.54 to 0.67 for NSE 

and from 0.72 to 0.83 for R2. Phosphorus prediction efficiency also increased during 

validation from 0.72 to 0.76 and 0.81 to 0.87 for NSE and R2, respectively.  

The higher annual validation statistics for sediment yield and P than for TN 

indicates that the close agreement between measured and predicted values on an annual 

basis better explained by NSE and R2 for P followed by sediment yield and TN. A better 

fit between simulated and measured values for P followed by sediment and TN is likely 

related to the quality of the input data used for the model. The sources of TN were 

included in the model; however, it was difficult to obtain all potential N sources and 

losses. Overall model prediction capacity for the sediment yield and soil nutrients is 

acceptable for the study catchment as it is greater than 0.50 for NSE and 0. 60 for R2. 

 
Table 7.5: Observed, simulated and model statistics during calibration and validation 

of annual sediment yield, total nitrogen (TN) and mineral phosphorus (P) 
at the outlet of the Mai-Negus catchment, northern Ethiopia 

Year 

Calibration period (2002-2004) 

 

Year 

Validation period (2006-2009) 

Sediment (ton) TN (kg) P (kg) Sediment (ton) TN (kg) P (kg) 

Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim 

2002 17732 19540 22320 23460 109 110 2006 25048 28400 13640 17060 99 118
2003 22568 23500 26040 25010 115 115 2007 20708 24720 15748 15810 180 169 

2004 19964 21080 24180 25072 113 111 2008 22940 25480 14694 14802 139 150 

NSE   0.57 0.54 0.72 2009 24304 26680 21998 23426 167 185 

R2 0.73 0.72 0.81 NSE   

R2 

0.76  

0.85 

0.67  

0.83 

0.76 

 0.87 

Obs, observed; Sim, Simulated; NSE, Nash-Sutcliffe model efficiency; R2, coefficient of determination. 
 

With regard to the observed versus simulated data for sediment calibration and 

validation, results of this study reveal that the model overestimated in all the simulation 

years (Table 7.5). The overestimation of sediment yield ranged from 4-10% for 

calibration and 9-13% for validation. The model also overpredicted for TN and P by 5-

15% during validation. However, during calibration TN was overestimated (5-8%) for 

two years (2002 and 2004) and underestimated in 2003 by about 5%. Similarly, P was 

overestimated in 2002 and 2003 and underestimated in 2004 within an acceptable range 

of deviation. It is, therefore, important to estimate soil erosion and soil nutrient losses 
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using the calibrated SWAT model, which captured well the complex catchment 

characteristics for targeted land-use and conservation intervention after identifying and 

setting priorities to most vulnerable landscapes with the help of the model results. 

 
7.3.4 Estimated runoff, sediment yield and soil nutrient at catchment level 

After the SWAT model had been validated and evaluated, the model-fitted parameter 

values were used for simulation at catchment level. Average annual runoff, sediment 

yield, total N and P for the entire catchment were estimated as 168.0 mm, 34 t ha-1 y-1, 

18.1 and 1.1 kg ha-1 y-1, respectively. The sediment yield estimated by SWAT indicates 

that soil loss at catchment level is high and above the soil loss tolerance level. The 

percentage of each soil loss category in the study catchment is presented in Table 7.6. 

The spatial pattern of the rate of sediment yield, runoff and soil nutrient losses are also 

shown in Figure 7.4. On the basis of the soil loss categories that corresponded with the 

annual sediment yield, the erosion spatial pattern was reclassified into five categories of 

soil erosion hazard zones, namely very low, low, medium, high and very high (Table 

7.6; Figure 7.4A). The estimated sediment yield and the spatial patterns of the erosion 

categories are generally reasonable when compared to what has been observed in the 

study landscape. 

 

Table 7.6: Soil loss categories and runoff in Mai-Negus catchment, northern Ethiopia 
Sediment yield aRunoff 

Category t ha-1 yr-1 Area (%) Range (mm) Area (%) 

Very low 0-5 1.70 109-130 8.30 

Low  5-15 6.60 130-150 23.1 

Medium  15-30 46.3 150-180 11.2 

High  30-50 13.1 180-210 18.0 

Very high > 50 32.3 210-234 39.5 
athe sum of both surface and base flows 

 

The predicted sediment yield by the SWAT model shows that 13.1 and 32.3% 

of the catchment areas have a high and very high potential soil erosion rate, equivalent 

to average sediment yield of 30 to 50 and > 50 t ha-1y-1, respectively. It was estimated 

that 2% of the catchment experienced very low erosion rates, whereas 7% and 46%, 
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respectively, is categorized as low and medium rates of soil erosion. In total, 45% of the 

catchment was considered to be affected by both high and very high sediment yield (soil 

loss) rates. The catchment areas with the highest and lowest runoff were 39.5 and 8.3%, 

respectively (Table 7.6). Generally, sediment yield was high in parts of the catchment 

where high runoff was observed (Figure 7.4A-B). The spatial patterns of the nutrient 

losses as TN and TP associated with runoff and sediment in the catchment are shown in 

Figure 7.4C-D. These figures also indicate that areas with high runoff and sediment 

yield are susceptible to high soil nutrient losses, despite the fact that they are below the 

threshold value set for environmental protection. Such below threshold losses of soil 

nutrients may be attributed to the low soil nutrient levels in the soils of the catchment. 

 

 

Figure 7.4: Variability in spatial pattern of annual losses as sediment yield (A), runoff 
(B), total nitrogen (TN) (C) and total phosphorus (TP) (D) in Mai-Negus 
catchment, northern Ethiopia. Sub-catchments are numbered 1 to 16.  
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Figure 7.4: continued 
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Figure 7.4: continued 
 

Field observation indicated that the parts of the catchment that produce high 

and very high sediment yields as indicated by the SWAT model output are dominated 

by cultivated land, steep slopes and active gully erosion development. Erosion on fields 

planted with small-seed cereals such as Eragrostis tef was found to be high as shown by 

the high cover-factor (C1) value. A comparison of the slopes with the spatial distribution 

of sediment yield and the associated soil nutrient losses across the catchment indicates 

that the sites on the steep-slopes are more at risk than the gentle to flat landscape 

provided that they have the same land-cover, management (P2) and erodibility factors. A 

relatively less severe erosion was also observed in the sites where vegetation cover is 

high, which agrees with (Hurni 1985) who reported using plot level study in forested 

areas soil loss rates are not commonly higher than 1 t ha-1 y-1.  

__________________________ 
1 Cover (C)-factor values for different cover types in Ethiopia were defined by Hurni (1985). These values 

include dense forest = 0.001; dense grass = 0.01; bush/shrub = 0.02; degraded grass = 0.05; 
sorghum/maize = 0.10; cereals/pulses = 0.15; Ethiopian Teff = 0.25 (Tamene and Vlek 2008). 

2 Support practices (P)-factor values defined by Hurni (1985) and Eweg and Lammeren (1996) for 
Ethiopia are summarized in Tamene and Vlek (2008) as protected areas = 0.50; stone cover (80%) = 
0.5; terraces = 0.6; stone cover (40%) = 0.8; strip cultivation = 0.80; plowing on   contour = 0.9; 
plowing up and down = 1.0. 
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7.3.5 Identification and prioritization of hotspot areas using SWAT modeling 

After the SWAT model results have been used to categorize the erosion severity at 

catchment level, the model was also used to identify and prioritize erosion-hotspot sub-

catchments. This is because substantial studies have demonstrated that for many 

catchments, a few erosion sensitive (prone) areas are the sources of higher amount of 

sediment yields and the associated soil nutrient losses (Mati et al. 2000; Tripathi et al. 

2003; Tamene 2005). The mean annual runoff, sediment yield and soil nutrient losses 

estimated for each sub-catchment using the model are presented in Table 7.7. Priorities 

were given to erosion-hotspot sub-catchments based on the relative severity of the 

erosion hazard zones.  

 
Table 7.7: Results of SWAT modeling (annual average) for identification of erosion- 

hotspot sub-catchments in the Mai-Negus catchment, northern Ethiopia 
Sub-catchment 

(SC) 

Area 

(ha) 

Runoff 

(mm) 

Sediment 

yield (t ha-1) 

Organic N 

(kg ha-1) 

Organic P, 

(kg ha-1) 

NO3-N,  

(kg ha-1) 

Soluble P 

(kg ha-1) 

SC1 101 230 46.8 12.8 1.14 2.26 0.09 

SC2 35.3 223 38.0 12.0 1.11 1.84 0.07 

SC3 28.0 143 28.4 10.1 1.04 1.88 0.10 

SC4 68.7 160 21.3 8.14 0.93 1.91 0.09 

SC5 42.3 133 23.0 9.17 0.82 2.40 0.08 

SC6 108.0 229 56.1 16.0 1.56 2.47 0.13 

SC7 140.8 210 16.2 11.6 1.01 2.28 0.15 

SC8 15.4 202 33.3 11.8 1.07 1.97 0.11 

SC9 61.1 176 19.9 11.3 1.04 2.30 0.10 

SC10 198.1 149 16.1 9.57 0.87 2.77 0.09 

SC11 53.3 185 65.3 13.3 1.17 2.88 0.08 

SC12 214.8 234 53.1 14.9 1.25 2.08 0.13 

SC13 62.0 111 10.3 8.75 0.96 2.79 0.08 

SC14 19.8 130 4.85 5.37 0.65 1.46 0.07 

SC15 14.3 109 7.47 6.91 0.87 2.33 0.09 

SC16 0.48 181 5.47 5.53 0.58 1.55 0.07 

N, nitrogen; P, phosphorus; organic N + NO3-N = TN (total nitrogen); organic P + soluble P = TP (total 
phosphorus) 

 

The location of each sub-catchment (SC) with respect to the rate of erosion is 

given in Figure 7.4. Results show that out of the 16 sub-catchments, SC6, SC11 and 

SC12 were in the very high soil loss category (> 50 t ha-1 y-1). The sub-catchments SC1, 
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SC2 and SC8 were in the high soil loss category (30-50 t ha-1 y-1). The sub-catchments 

in the medium soil erosion category (15-30 t ha-1 y-1) were SC3, SC4, SC5, SC7, SC9 

and SC10, while SC15 and SC16 were in the low soil loss category (5-15 t ha-1 y-1) and 

SC14 was in the very low erosion category (0-5 t ha-1 y-1). The rates of soil loss in the 

sub-catchments were also examined with respect to the soil loss tolerance and soil 

regeneration condition for Ethiopia in order to indicate the state of sustainability. The 

model predicted higher sediment yields than the maximum tolerable soil loss rate (18 t 

ha-1 y-1) reported for the country by Hurni (1985), for all sub-catchments except SC7, 

SC10, SC13, SC14, SC15 and SC16. If an annual soil formation rate of 6 t ha-1 y-1 

(Hurni 1983), is also considered, the soil loss rates estimated by the SWAT model in 

most of the sub-catchments could still be beyond the acceptable level. The only sub-

catchments where soil loss rates predicted within the average soil generation rate for 

Ethiopia were SC14 and SC16. 

The landscape positions of most of the sub-ctachments where erosion is above 

the tolerable soil loss limit are generally located on upslopes of greater than 15% and 

relatively low sediment yield potential are commonly located on slopes less than 15%. 

This is in agreement with the view of past studies that showed higher elevations and 

steep-slope areas with poor surface cover are more vulnerable to accelerated erosion 

compared to the lower slope areas with similar soil cover (e.g., Tamene and Vlek 2008). 

However, the widespread of collapsing gullies, which contribute higher amount of 

sediment, are located in the downstream parts of the catchment (e.g., SC11) where the 

slope gradients are not very steep but such areas are the source of high sediment yield 

and soil nutrient losses. This is well represented by the SWAT model as the model 

predicted high sediment yield values in such sub-catchments. Based on this study, it is 

possible therefore to suggest management strategies that can reduce the severity of 

erosion, such as increasing the soil cover (vegetation), terraces and gully stabilizing 

structures, land-use redesign or their combination. But to compare and select the most 

effective one, model simulation using the suggested manangement strategies is 

important after prioritizing erosion-hotspot sub-cathcments. 

In addition to the soil loss rate, the runoff which is the driving force for 

sediment yield and soil nutrient losses, was highest in SC12 (234 mm) followed by SC1 

(229 mm) and SC6 (228 mm), and the lowest in SC15 (109 mm) (Table 7.7). The model 
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simulation results of the sub-catchments indicate that the dissolved soil nutrient losses 

with runoff that include NO3-N and soluble P were below the maximum limit in this 

study (Table 7.7). As these values in the sub-catchments were below the threshold, the 

highest value was considered for prioritization for management planning. The highest 

NO3-N loss was in SC8 followed by SC11 and SC13, while the lowest was in SC14 and 

SC16. The lowest soluble P loss was in SC14 and SC16 while the highest was in SC7 

followed by SC12 and SC6. The average losses of nutrients associated with sediment 

yield (organic N and P) were highest in SC6 followed by SC12, SC11, SC1, SC2 and 

SC8 (Table 7.7). A similar trend can be observed for TN and TP (Figure 7.4C-D). 

On the basis of the erosion severity (runoff, sediment yield and soil nutrient 

losses), the sub-catchments SC1, SC2, SC6, SC12, SC11, and SC8 were found to be 

critical hotspots of soil degradation, as they are the sources of higher runoff, sediment 

and soil nutrients losses. These sub-catchments were ranked as SC6, SC12, SC11, SC1, 

SC2 and SC8 in descending order for introducing appropriate land-use, management 

and conservation measures that reduce these losses. The other sub-catchments to be 

considered while designing best management practices in the study catchment next to 

the above highly prioritized areas are in the order of SC3, SC4, SC5 and SC9. This is 

because those sub-catchments show sediment yields more than the maximum soil loss 

tolerable limit for the country. Such identification and prioritization of erosion-hotspot 

areas will help for successfully plan and implement appropriate interventions with the 

available resources and capital. Finally, this study also confirms the applicability of the 

SWAT model for decision-making processes concerning management of small 

catchments using available data for the northern Ethiopian conditions. 

Generally, the results indicate that the mount of soil nutrient losses does not 

necessarily depend on the amount of sediment yield or runoff. It may also be influenced 

by the nutrient concentration of the source sediment. The SWAT predicted soil nutrients 

(TN and TP) for the sub-catchments show consistency with those results reported by 

Haregeweyn et al. (2006) in the study of sediment-bound nutrients export using 13 

reservoir catchments in Tigray, and of those of Girmay et al. (2009) from research at 

plot level for different land-use types in some sites in the region. However, as reservoirs 

are sinks of sediment coming from all parts of the catchment, reservoir sediment 

nutrient analysis could not show the contribution of the various upland sub-catchments 
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and land-uses (Girmay et al. 2009). Besides, plot level erosion associated losses may 

not be representative if extrapolated to large scale areas. This study has thus contributed 

to filling such study gaps by showing the source areas and the rate of nutrient losses. 

 
7.3.6 Relationships of runoff, sediment yield and soil nutrients  

Assessing the relationship among the SWAT output variables that were used to 

prioritize the erosion-hotspot sub-catchments for management planning is crucial in 

order to target the nutrient losses due to either runoff or sediment transport, or their 

combinations. Even though the hotspot erosion areas in the catchment are assessed in 

section 7.3.4 and 7.3.5, further discussion is merited for the relationship of the soil 

nutrient losses with sediment yield and runoff so as to get a clear impression of their 

role to soil nutrient degradation in the sub-catchments. The correlation, regression and 

trend analysis results are presented in Table 7.8, Figure 7.5, and 7.6, respectively, to 

show the magnitude of the relationships. 

A significatly (P = 0.001, 2-tailed) strong positive correlation between 

sediment yield with organic nitrogen (ON), TN, organic phosphorus (OP) and TP at r = 

0.88, 0.87, 0.84 and 0.81, respectively was observed in the sub-catchments. A 

significantly (P = 0.001, 2-tailed) moderate positive correlation between these soil 

nutrients and runoff in the sub-catchments was observed (Table 7.8). The correlation 

between sediment yield with nitrate (NO3-N) and soluble phosphorus (SP) was weak 

and non-significant (P > 0.05). However, SP shows moderately positive significant 

correlation with runoff whereas there was no correlation between NO3-N with runoff 

(Table 7.8). The TN was strongly correlated with ON than NO3-N. Similarly, a stronger 

correlation of TP with OP than SP was found. The implication of the weak or no 

correlation between the available soil nutrients with sediment yield and runoff is that the 

soluble soil nutrient condition in the catchment is highly degraded. 
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Table 7.8: Pearson correlation coefficients of runoff, sediment yield and soil nutrients 
predicted by SWAT model for the sub-catchments (n = 16) of Mai-Negus 
catchment, northern Ethiopia 

* correlation is significant at the 0.05 level (2-tailed); ** correlation is significant at 0.01 level (2-tailed); ns is non 
significant at > 0.05 level. 
Runoff, runoff (mm); SY, sediment yield (t ha-1 y-1); ON, organic nitrogen (kg ha-1 y-1); OP, organic phosphorus (kg 
ha-1 y-1); NO3-N, nitrate nitrogen (kg ha-1 y-1); SP, soluble phosphorus (kg ha-1 y-1); TN, total nitrogen (kg ha-1 y-1); 
TP, total phosphorus (kg ha-1 y-1). 

 

In addition, the regression analysis showed a moderate relationship of TN and 

TP with sediment yield and a poor relationship with runoff coming from the sub-

catchments (Figure 7.5A). About 75 and 66% of the variation in the TN and TP losses 

in the sub-catchments, respectively, can be explained by sediment yield coming from 

the sub-catchments. On the other hand, about 50 and 43% of the variation in TN and TP 

losses, respectively, can be explained by the runoff generated from the sub-catchments 

(Figure 7.5B). These relationships indicate that the variability in TN loss is higher than 

TP in both sediment and runoff, even though the variation of TN losses was more 

explained in sediment yield as compared to runoff in the sub-catchments. This implies 

the proportion of TN is mainly organic sources which demands further mineralization 

processes in order to be available for plant in the source soils.  Approximately 48% of 

the variability in sediment yield can be explained by the runoff potential differences in 

the sub-catchments (Figure 7.5C). The remaining 52% of sediment yield variability in 

the sub-catchments can be explained by unknown and inherent catchment factors such 

as slope, land-cover.  

Parameter Runoff  SY ON OP NO3-N SP TN TP 

Runoff  1.00  

SY  0.69** 1.00  

ON 0.76** 0.88** 1.00 

OP 0.64* 0.83** 0.94** 1.00 

NO3-N -0.11ns 0.31ns 0.40ns 0.38ns 1.00 

SP 0.53* 0.30ns 0.61* 0.57* 0.09ns 1.00 

TN 0.70** 0.87** 0.99** 0.94** 0.51* 0.58* 1.00 

TP 0.65** 0.81** 0.94** 0.99** 0.38ns 0.63** 0.94** 1.00 
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Figure 7.5: Scatter plot and best fitting regression lines that relating sediment yield with 
soil nutrients (A), runoff with soil nutrients (B) and runoff with sediment 
yield (C) for the sub-catchments of Mai-Negus catchment, northern Ethiopia. 
TN is total nitrogen; TP is total phosphorus; R2 is coefficient of 
determination 

 

The annual runoff and sediment yield variability have also shown similar trend 

to that of soil nutrient losses in the sub-catchments across the periods 1992-2008 
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(Figure 7.6).  This indicates that as sediment yield or runoff increases, the associted soil 

nutrient losses is becoming high and vice-versa. The rate of soil nutrient losses across 

the simulation periods showed a slight decrease (but irregularly) with time which may 

be attributed to the effect of the intermittently introduced conservation measures, 

change in climate, and/or mixed up of sub-soil with low topsoil soil fertility that reduce 

the overall soil nutrient concentration in the eroded sediment (Palis et al. 1994). These 

are however, demanding further verification in the context of northern Ethiopia. 

0.1

1

10

100

1000

1992 1994 1996 1998 2000 2002 2004 2006 2008

Year SWAT model simulated (1992-2009)

R
u

n
o

ff
 (

m
m

),
 S

Y
 (

t 
h

a-1
 y

-1
) 

an
d

 s
o

il 

n
u

tr
ie

n
t 

(k
g

 h
a

-1
 y

-1
)

runoff SY TN TP

 

Figure 7.6: The trend of runoff, sediment yield (SY), total nitrogen (TN) and total 
phosphorus (TP) during the simulated periods for the study catchment 

 

 Generally, the significantly strong positive correlation and best linear fitting 

regression function between sediment yield and the soil nutrient losses from the sub-

catchments reflect that nutrient losses are more strongly linked to sediment than runoff. 

This may be due to the low soil nutrient solubility or strongly bounded to soil particles. 

Therefore, management planning such as stone bunds and vegetative strips that target 

the sediment rather than runoff loss as a priority should be designed so as to decrease 

the nutrient losses from the erosion hotspot areas. This also increases the lifespan of the 

reservoir in the study catchment. In the study catchment condition, targeting to 

significantly reduce runoff can lead to other disadvantages such as reducing surface 

flow to the reservoir which badly hampering irrigation and domestic supplies. 
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7.4 Conclusions 

 The results of this study demonstrate that the SWAT model is a very useful tool for 

planning alternative catchment management strategies that reduce soil degradation 

cuased by soil erosion. However, the application of the model becomes more effective if 

it is calibrated and validated in the context of study catchment. Such model evaluation is 

an important issue in order to reduce model uncertainity and to increase model user 

confidence in its predicative abilities. A set of important parameters for calibration 

based on the sensitivity analysis of the model were identified during this study. The 

model was successfully calibrated and validated for flow, sediment yield, and soil 

nutrient losses with NSE > 0.5 and R2 > 0.6 in the Mai-Negus catchment, northern 

Ethiopia. The successful evaluation of SWAT as illustrated in this study can provide the 

opportunity for extending the model to other ungaged basins in the region. The results 

thus confirm that the model can be applied to simulate runoff, sediment yield and soil 

nutrient losses for similar catchments in northern Ethiopia.  

The results of the model demonstrate that all sub-catchments within a catchment do not 

equally contribute to stream flow, sediment yield and soil nutrient losses. Within a 

catchment, small areas of land (e.g., gullies, steep slopes, poor soil cover) are likely to 

be the sources of higher erosion. The SWAT model predicted sediment yield from the 

sub-catchments ranging from 0-5 t ha-1 y-1 to more than 50 t ha-1 y-1. The model 

identified and ranked six sub-catchments that highly need management interventions 

due to their excessive runoff, sediment and soil nutrients losses. This indicates that the 

model is effective for identification and prioritization of erosion-hotspot sub-catchments 

to develop management strategies that reduce these losses. Therefore, the model can be 

used to confine mitigation to erosion source areas, which costs less than targeting wider 

areas. The output of this study can support decision-makers and planners by answering 

where the management strategies should be implemented to achieve the best benefit 

through reducing soil degradation. After knowing where to place the interventions, the 

completely verified SWAT model should be used to evaluate which alternative 

management strategies (scenarios) can reduce the existing consequences of erosion 

better. However, it is recommended that a wider validation effort is needed before 

adopting the model for decision-making purpose throughout the Tigray region (northern 

Ethiopia), which has a diverse environment. 
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8 EVALUATION OF CATCHMENT MANAGEMENT STRATEGIES 

THROUGH SWAT MODELING IN A GIS ENVIRONMENT 

 

8.1 Introduction 

At global scale, soil erosion is the dominant form of soil degradation (Scherr 1999; Lal 

2001; Morgan 2005), which accounts for 70 - 90% of total soil degradation (Zoebisch 

and DePauw, 2002). The total land area affected by soil erosion worldwide is 1,094 

Mha (Walling and Fang 2003). Soil degradation by erosion is thus a serious problem 

and will remain so as a major global issue during the twenty-first century, especially in 

developing world (Lal 1998; Saha 2004). The importance of soil degradation among 

global issues is enhanced because of its impact on world food security and environmental 

quality (Eswaran et al. 2001). Erosion has long-term impacts on soil quality, agricultural 

productivity, pollutants, and ecological degradation (Lal 1998; Saha 2004).  

Deforestation, overgrazing, expansion of cropland to marginal and steep-slope 

areas with poor soil management practices, and unsustainable use of natural resources 

are the major causes for the alarming rate of soil degradation in the Ethiopian highlands 

(Nyssen et al. 2004; Tamene 2005). Such practices accelerate erosion, and this leads to 

the exhaustion of soil resources, deterioration in soil quality, and eventually to a decline 

in land productivity. Although soil erosion may not be perceived to be an immediate 

major problem in farmers’ fields, degradation can result in a huge impact on soil 

productivity in the long term (Lal 1998; Scherr 2002). Substantial studies have 

demonstrated that erosion can significantly contribute to variability in soil properties 

and the associated nutrients losses (e.g., Stone et al. 1985; Kreznor et al. 1989).  

Evidence in the Ethiopian highlands indicates that erosion has degraded the 

soil resources on which agricultural production and food for the people are entirely 

based (Hurni 1986). In such situation, the resource-poor small-scale farmers, who are 

predominantly subsistence oriented, will be seriously affected by long-term 

consequences on land productivity (Lal 1998; Scherr 2002). The highlands of northern 

Ethiopian that include the Tigray highlands are thus at a high risk of soil degradation 

unless appropriate correction measures are implemented (Nyssen et al. 2004; Tamene 

2005). The degradation severity makes large areas unsuitable for agriculture, because 
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the topsoil and part of the sub-soil in some areas have been removed, and only stones or 

bare rock remain at the surface (Gebrermichael et al. 2005; Tamene 2005). 

 There have been great efforts to address soil degradation problems in Ethiopia 

since the 1970s, though success in reversing land degradation is minimal. One reason for 

this is that the introduced interventions and technologies may not be well suited to the local 

conditions. Such a situation demands an integrated approach of catchment management 

that addresses both technical and non-technical issues. Alternative land-use redesign 

and conservation measures that consider local farmers’ active involvement should be 

developed targeting the sources areas of runoff, sediment yield and nutrients losses in a 

catchment. This would answer questions such as what measures are necessary and 

where these should be implemented to reduce the severity of soil degradation.  

According to Tamene and Vlek (2007), the effectiveness of land management 

to minimize the impacts of soil erosion in a complex landscape can be improved by 

detailed prediction of erosion rates of proposed management strategies. Optimization of 

measures aiming at forming stable landscapes is possible through simulation alternative 

management strategies that offer remedial solution for the existing erosion-related 

problems (Tamene and Vlek 2007). However, only a limited number of studies have 

been conducted on the application of hydrology models to simulate the impact of 

management strategies on runoff, sediment yield and soil nutrient losses under the 

conditions in northern Ethiopia catchment.  

Soil conservation and sediment control measures are effective when 

combating a specific soil erosion or sediment delivery process in the source areas 

(Verstraeten et al. 2002; Tamene 2005). The impact of soil erosion and sediment 

delivery processes vary spatially with operating at various source locations. Therefore, 

implementation of a single conservation measure throughout a catchment will not be as 

effective as targeting such measures at those locations where they are most suited 

(Verstraeten et al. 2002). Management strategies (scenarios) should therefore be 

designed to integrate a variety of techniques into a catchment management plan. Such 

scenarios need to be possible, credible, and relevant to be useful in decision-making 

processes. In this study, the SWAT model in a GIS environment (Arnold et al. 1998), 

which supports identification of erosion-hotspot sub-catchments, and can simulate 

different management strategies (scenarios), was applied.This model can take into 
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account many of the complex factors and interactions that affect rates of erosion and 

other hydrological variables. The aim of this study is to evaluate the effectiveness of 

different catchment management scenarios in reducing soil degradation as runoff, 

sediment yield and soil nutrients losses using SWAT model and then suggest suitable 

management options for the Mai-Negus catchment in northern Ethiopia. 

 
8.2 Methodology  

8.2.1 Study area  

The study was conducted in the Mai-Negus catchment in the Tigray region, northern 

Ethiopia (Figure 8.1), which covers an area of 1240 ha. The landscape of the catchment 

is generally rugged terrain with altitude ranging from 2060 to 2650 m a.s.l. Land-use is 

dominantly arable with a teff (Eragrostis tef) cropping system (> 80%) but with 

different percentages of pasture land, and scattered tree, bush and shrub covers. The 

dominant rock types are lava pyroclastic and meta-volcanic. Soils are mainly Leptosols 

on the very steep positions, Cambisols on the middle to steep slopes, and Vertisols in 

the flat areas. Soils are highly eroded in most parts of the landscape. Terrain erosivity 

potential is high, as slope gradients can reach more than 85%. Surface cover is poor, and 

human disturbance is high, which has facilitated soil quality deterioration.  
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Figure 8.1: Study area in Ethiopia (A), Tigray (B) and Mai-Negus catchment (C). Blue 
area is the reservoir 

 

8.2.2 The SWAT model  

The Soil and Water Assessment Tool (SWAT) is a river-basin scale, continuous-time 

and spatially-distributed physically-based model developed to simulate the impact of 

land management practices on water, sediment and agricultural-chemical yields in 

complex catchments with varying soils, land-use and management conditions over long 

periods of time (Setegn et al. 2009). As a physically-based model, the SWAT uses the 

spatial heterogeneity in terms of land-use and land-covers, soil types and slopes to 

divide catchment into sub-catchments and further subdivided into Hydrologic Response 

Units (HRUs). Weather data are also needed for the model on a daily basis. In this 

study, the ArcSWAT 2009 version of the SWAT model was applied after it had been 

calibrated and validated to have an acceptable level of performance efficiency for the 

study catchment. For additional information on model description and application see 
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Chapter 7 of this thesis. Moreover, a detailed description of the SWAT model can be 

found in the SWAT2005 theoretical documentation (Neitsch et al. 2005).  

After the SWAT model had been calibrated and validated successfully, it was then used 

to identify and prioritize erosion-hotspot sub-catchments for introducing appropriate 

management strategies (Figure 8.2A). The SWAT model was run with the actual land-

use and land-cover, management and terrain characteristics to identify critical soil 

erosion areas. The SWAT model`s discretized 16 sub-catchments (SC) are numbered 1 

to 16 in this Figure. The soil loss rate in the prioritized sub-catchments (SC) of SC3, 

SC4 and SC5 ranged from 20-30 t ha-1 y-1 and those of SC1, SC2, SC6, SC8, SC11 and 

SC12 from 30-66 t ha-1 y-1. The model is also capable of predicting sediment sourced 

from waterways and gullies as a higher sediment yield was estimated from the sub-

catchments having active gullies and dense waterways (Figure 8.2B).   

 

8.2.3 Scenario development and description 

Given the spatial variability of the extent and intensity of erosion and delivery 

processes, land-use redesign, conservation or management measures, in general, should 

be applied at appropriate sites of the catchment so as to use resources efficiently. The 

modeled mean annual soil erosion eastimated for each sub-catchment was considered in 

developing the management strategies (scenarios), as well as for the mean losses at the 

outlet of the entire catchment and the knowledge of local farmers on sources of erosion. 

In order to compare the effectiveness of alternative management strategies that may 

reduce soil degradation due to soil erosion, it is necessary to develop and describe the 

relevance of the scenarios. Scenario development is a process of evaluating possible 

alternative outcomes based on the current or baseline situation.  
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Figure 8.2: Spatial distribution of areas needing intervention (A) Prioritized areas by 
integrating farmers´ knowledge of soil quality degradation and erosion rate 
predicted by the SWAT model, (B) Waterways and gullies in Mai-Negus 
catchment, northern Ethiopia 

 

Different scenarios were developed (Table 8.1) based on the current (baseline) 

condition of the study catchment. When developing the scenarios, the severity of the 

erosion rate/sediment yield, runoff and soil nutrient losses (hotspot areas), and the most 

strongly influencing (sensitive) factors and their relevance were considered. Scenario 

simulation and analysis can be used to select the most effective strategies for reducing 

soil degradation. The details of the scenarios (management strategies) developed in this 

study are described below.  

 

Scenario 1: Baseline scenario 

The baseline scenario corresponds to the current catchment land-use and land-cover, 

terrain, management and other factors. This includes cultivated land dominated by the 

teff crop cover-factor (C = 0.25), a conventional tillage system (Ethiopian maresha) of 

contoured plowing (P factor = 0.9), and degraded grazed lands (C-factor = 0.05). In 

such poor hydrologic conditions, the curve-number (CN) values are high and ranging 

from 79-88; values depend on the hydrologic soil groups. This indicates that the runoff 

flow that derives the loss of sediment yield and soil nutrients is high in this scenario. 

Runoff, sediment yield, and soil nutrient losses were determined using existing 
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catchment factors. The baseline scenario was used as a benchmark against which the 

results of the other scenarios were rated. 

 

Scenario 2: Afforesting hotspot areas of erosion 

Afforesting all cultivated fields in the study catchment is impractical for many reasons. 

Instead, afforesting hotspot areas of degradation due to erosion is feasible (Figure 

8.2A). Such areas in the catchment were identified by the local farmers´ defined 

indicators of degradation and model-estimated erosion rates. Dialogue with local 

stakeholders about the physical conditions and management practices in the catchment 

was used for obtaining reliable information for the location of degraded land by erosion 

to be afforested. Besides, on the basis of the results of the baseline scenario, sub-

catchments with erosion rates > 18 t ha-1 y-1 were taken into account for the simulation 

of the afforestation scenario. This threshold was set based on the maximum tolerable 

soil loss of 18 t ha-1 y-1 for Ethiopia soils reported by Hurni (1985). This scenario 

afforested only the prioritized sub-catchments that comprised of cultivated land (35%), 

grazing and marginal land (55%), and others (10%). This area covers about 57% of the 

catchment. The scenario 2 changes the C-factor to 0.001 in the long-term and to 0.01 

(dense grass) when simulated as pasture area in the short-term. The curve-number (CN) 

values for this scenario ranging from 40-60 on the basis of the hydrological soil groups, 

and were lower than in scenario 1. The CN determines the separation of precipitation 

between surface runoff and infiltration as a function of soil hydrologic group, land-use, 

and antecedent moisture condition (Mishra and Singh 2003). These areas were 

simulated with dense grass covers that reduce CN and the USLE’s C-factor values but 

increase the Manning’s n-value as given in Table 8.1. 

 

Scenario 3: Parallel terraces/conservation measures 

In a catchment vulnerable to erosion, there is a need for conservation measures such as 

terraces that reduce further soil degradation. Wherever soil loss rates exceed 16-18 t ha-1 

y-1 in Ethiopia, soil conservation measures are recommended (WAPCOS 1990). This is 

therefore the reason for scenario 3 targeting vulnerable sub-catchments that are shown 

in Figure 8.2A. Terraces act as a barrier to runoff, increasing infiltration and decreasing 

flow volumes and speed, and ultimately reduce the transport capacity and encouraging 
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sediment deposition (Tamene and Vlek 2007). Erosion computation of the SWAT 

model is most sensitive to the curve-number (CN) and slope, as these influence the rate of 

runoff, sediment and soil nutrients losses. The CN and the consequent simulated surface 

runoff amount can be expected to decrease significantly under terraced scenario. The 

sensitivity analysis (Chapter 7) indicated that simulations of the SWAT model are very 

sensitive to the USLE_P. The expected slope length and steepness reduction due to 

scenario 3 was 50% and 25%, respectively, as compared to in the baseline scenario. 

During the calibration for the baseline scenario the USEL_P was 0.9. This value was 

changed to 0.6 for the targeted sub-catchments in scenario 3. Additional information is 

provided in Table 8.1. 

 

Scenario 4: Grassed waterways 

Grassed waterways are used to cover a stream or gully channels, and act as a barrier for 

sediment and also filter some of the nutrient loadings carried in the surface runoff 

(Borin et al. 2005). Grassed waterways reduce runoff and soil loss using the grasses in 

the channels. In the SWAT model, three parameters that represent grassed waterways 

were modified. These were the channel cover-factor (Ch_Cov), the channel erodibility 

factor (Ch_Erod), and the channel Manning’s ‘‘n’’ value (Ch_N2) (Table 8.1). The 

SWAT model uses Manning’s equation to compute the velocity of flow in the channel 

segments (EPA 2004). Runoff (flow) velocity decreases with an increase in Ch_N2. The 

SWAT model default value for Ch_N2 is 0.014 whereas during calibration it was 0.030. 

These values were modified to 0.24 for the channel segment with grassed waterways 

(EPA 2004). Such channel segments were considered fully protected by the vegetation 

cover (Ch_Cov = 0) and thus to be non-erosive (Ch_Erod = 0). The simulation was 

targeted to the rehabilitation of the waterways in the study catchment by covering these 

areas with grass (Figure 8.2B). 
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Table 8.1: Scenarios and representation as the SWAT model parameters 
 

Scenario 

 

 

 

Function 

Representing SWAT 

parameter 

 

 

Value when scenario 

simulated 

 

No.   

 

Description  

 

Variable 

 

Range  

1 Baseline Used as bench mark - - - 

2 Afforesting  

hotspot areas 

of erosion 

Reduce rill-sheet erosion  USLE_C 0-0.5 0.01a 

Reduce overland flow 

Increase surface roughness 

CN2 0-100 40-60b 

n-value 0.17-0.3 0.24 

3 Parallel 

terraces 

Reduce overland flow CN2 0-100 70-80b 

Reduce rill-sheet erosion USLE_P 0-1 0.6 

Reduce slope length SLSUBBSN 10-150 maximum 75 m c 

Reduce slope gradient Slope (S) 0.0-475 Reduced by 25% for S >5% 

4 Grassed 

waterways 

Increase channel cover Ch_Cov 0-1  0.0 (completely protected) 

Reduce channel erodibility Ch_Erod 0-1 0.0 (non-erosive channel) 

Increase channel roughness Ch_N2 0-0.3 0.24 

5 Gully/grade 

stabilization 

structures 

Reduce gully erosion Ch_Erod 0-1 0.0 (non-erosive channel) 

Reduce slope steepness Ch_S2 0.006  0.0015d 

Reduce rill-sheet erosion USLE_P 0-1 0.6 

6a 2 and 3e Combination of the above   -  -   - 

6b 2, 4 and 5e Combination of the above   -  -   - 

6c 2, 3, 4 and 5e Combination of the above   -  -   - 

a In the long-term, the USLE_C factor value will be changed to 0.001, but 0.01 for dense grass was taken 
as a short-term effect of the scenario 2.  

b Determined based on the land-use and hydrologic soil group conditions of the HRU. 
c Slope length was expected to be 50% less than in the baseline scenario.  
d SWAT calibrated value reduced by 75% due to the structures.  
e Combined scenario; USLE, Universal Soil Loss Equation; C, soil cover; CN2, runoff curve- number for 

antecedent moisture condition II; n, Manning’s roughness coefficient; P, support practices; SLSUBBSN, 
sub-basin slope length; Ch_Cov, channel cover factor; Ch_Erod, channel erodibility factor; Ch_N2, 
Manning’s ‘n’ value for tributary channels; Ch_S2, channel slope 

 

Scenario 5: Gully/grade stabilization structure  

The grade stabilization structure scenario was developed on the basis that it can stabilize 

the channel grade so as to control erosion and prevent the formation or advance of 

gullies. Such structures can be vertical drop structures, check dam, concrete, earth or 

riprap chutes, gabions, or pipe drop structures which are physical conservation measures 

(GSWCC 2000). Permanent ponds or detention basins can also be part of a grade 

stabilization structures. Check dams built across an existing gully reduce water flow and 

the associated sediment yield and soil nutrient losses through gully erosion (Borin et al. 

2005). Field observation of active gullies (Figure 8.2B; 8.3), as well as the simulated 
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SWAT erosion rates, and the discussion with farmers and extension agents in the study 

catchment confirmed that gullies can greatly contribute to high sediment yield. Before 

implementation of scenario 5, these areas with steep-slopes in the natural water course 

caused bank collapse and gully erosion advancement. Hence, in the baseline scenario, 

areas along the streams/gullies with degraded grass, steep-slope land and high C-factor 

in the MUSLE in the SWAT model accounted for bank sloughing and gully erosion. In 

scenario 5, the assumption is that building small earthen structures such as check dams 

can stabilize channel grade that reduce gully erosion. As a result, USLE_P = 0.6 was 

used for this scenario along the streams/gullies in the catchment. In addition, the slope 

and channel erodibility factors were modified in the SWAT model to values presented 

in Table 8.1.   

 

          
 
Figure 8.3: Gully head and side collapses in Mai-Negus catchment, northern Ethiopia 

(July 2009) 
 

Scenario 6: Combined scenarios 

Catchment management should not focus on single soil conservation or sediment 

control measures or land-use redesign strategies. Therefore, integrated land-use redesign 

and conservation measures were evaluated through scenarios 6a-6c. Scenario 6a was the 

combination of scenarios 2 and 3, and 6b the combination of scenarios 2, 4 and 5. 

Scenario 6c combined scenarios 2, 3, 4, and 5. Such scenarios assume that it is possible 

for more parameters in the SWAT model to be modified at the same time (Table 8.1).   

 

Active gully head cut 

Active gully side collapse 
with rocky bed 
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8.2.4 Scenario simulation 

After the types of scenarios were defined and described, the parameters were modified 

in the appropriate SWAT input files such as management file, crop database file, 

channel input data and other HRU related files. First, the runoff, sediment yield and soil 

nutrient losses were simulated based on the baseline scenario to determine the reference 

conditions. The model was run using 18-year daily weather data (1992-2009) from a 

single gauge nearest to the catchment. The same simulation was performed using each 

of the alternative scenarios after modifying the parameter inputs. Average annual values 

of the alternative scenarios were compared with the baseline to compute percent change 

in average values for the simulation period. A comparison of model simulations of 

different scenarios enables the determination of the long-term impacts of the alternative 

management strategies on runoff, sediment yield and nutrient losses at the outlet of the 

catchment and the prioritized sub-catchments. 

 

8.3 Results  

8.3.1 Reductions by individual scenarios at catchment level 

Results of the simulations at catchment level are presented in Table 8.2 and Figure 8.4. 

The figure shows the relative reduction of water, sediment yield (soil loss) and nutrient 

losses in the alternative scenarios simulated as compared to the baseline. In general, the 

simulation results indicate that land-cover change (afforestation) and the introduction of 

conservation measures can significantly change the hydrologic response of the 

catchment. The highest soil erosion rate as sediment yield (41900 t y-1) was simulated in 

scenario 1 (baseline condition) followed by scenario 4 (36900 t y-1). However, the 

lowest sediment yield at the catchment level was simulated in scenario 6c (9200 t y-1) 

followed by scenario 6a (14700 t y-1). A similar trend in runoff and the associated soil 

nutrients losses were also simulated in these scenarios (Table 8.2). The percentage 

reduction in these losses due to the interventions in the simulated scenarios as compared 

to the baseline scenario is given in Figure 8.4. A detailed description of the result of 

each scenario is given below. 

 
Scenario 1: Baseline scenario  

Mean sediment yield in the baseline scenario was nearly 41900 t y-1, runoff was about 

168 mm, TN was 22400 kg y-1, and TP was 1360 kg y-1 at catchment level. In general, 
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most of the sediment source areas are located on steep-slopes, cultivated and open 

grazed fields, whereas lower slope positions show low soil loss despite the poor surface 

cover and inappropriate management pracitces that increase the hydrological losses due 

to gully expansion and initiation.  

 

Table 8.2: Results of scenarios for runoff, sediment yield, total nitrogen (TN) and total 
phosphorus (TP) at catchment outlet level in northern Ethiopia 

Scenario  Runoff (mm) Sediment (t y-1) TN (kg y-1) TP (kg y-1) 

1 168 41900 22400 1360 

2 77.6 20500 15700 740 

3 109 28100 18000 900 

4 156 36900 16600 800 

5 151 35600 18600 970 

6a 63.9 14700 10550 570 

6b 70.6 17600 7900 420 

6c 50.4 9200 6300 340 

 1, base line; 2, afforested hotspot areas of erosion; 3, parallel terraces; 4, grassed waterways; 5, gully 
stabilization structure; 6a, combined scenarios 2 and 3; 6b, combined scenarios 2, 4 and 5; 6c, combined 
scenarios 2, 3, 4, and 5. 
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Figure 8.4: Percentage reduction in runoff, sediment yield, total nitrogen (TN) and total 
phosphorus (TP) losses as compared to the baseline scenario at catchment 
level in northern Ethiopia. For description of scenarios see Table 8.2 

 

Scenario 2: Afforesting hotspot areas of erosion  

When parts of the catchment considered as degraded by the local farmers and confirmed 

with the SWAT model to have soil erosion rates of > 18 t ha-1 y-1 were afforested, 
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runoff, sediment yield, TN and TP losses could be reduced by about 55, 51, 30 and 

46%, respectively (Table 8.2). Scenario 2 showed the highest reduction in runoff and 

followed by sediment yield and TP and TN losses (Table 8.2; Figure 8.4). 

 

Scenario 3: Parallel terraces targeting hotspot areas  

The use of parallel terraces on the prioritized areas can reduce the potential of runoff 

(35%), sediment yield (34%), TN (32%) and TP (20%) losses at catchment level (Table 

8.2; Figure 8.4).  

 

Scenario 4: Grassed waterways 

This scenario of biological conservation measures targeted to waterways and gullies in 

the catchment. Reductions in TP, TN, sediment yield and runoff by 41, 26, 12 and 7%, 

respectively, were achieved as compared to the baseline scenario (Table 8.2; Figure 

8.4). The reduction is higher for TP followed by TN, sediment yield and runoff. The 

lowest runoff and sediment yield reduction was simulated in this scenario (Figure 8.4). 

 

Scenario 5: Gully/grade stabilization structures  

This scenario involved stabilization of gullies in the catchment which reduced TP losses 

by 29%, sediment yield by 26%, TN losses by 17% and runoff by 15% (Table 8.2; 

Figure 8.4). This indicates that when gullies are stabilized through appropriate 

structures, losses can be reduced to a certain extent. Further reductions could be 

achieved through introducing additional support structures in the upstream parts of a 

catchment. Thus, adequate soil conservation practices are needed in the upstream of the 

catchment for gully stabilization structures to effectively reduce excess runoff and 

sediment that come from gully initiation and expansion.  

 

Scenario 6: Combined scenarios 

Combination of measures yielded the lowest hydrological losses (Table 8.2). 

Combining scenarios 2 and 3 (= scenario 6a) reduced the sediment yield, runoff, and TP 

and TN losses by 65, 62, 58 and 53%, respectively. The combination of scenarios 2, 4 

and 5 (= scenario 6b) resulted in the reduction of TP and TN losses, sediment yield and 

runoff by 69, 65, 58 and 57%, respectively. A reduction of sediment yield, TP and TN 

losses and runoff by 78, 75, 72 and 70%, respectively, was achieved by integrating 
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scenarios 2, 3, 4, and 5 (= scenario 6c) (Figure 8.4), leading to higher reductions than 

the other scenarios. The rate of reduction in sediment yield, runoff and nutrient losses is 

lower in scenario 4 and 5 than in scenarios 2, 3 and 6 (Figure 8.4). This is due to the fact 

that additional conservation and management measures are needed in the upper hotspot 

areas for scenario 4 and 5 to be effective across the catchment. Thus, the integration of 

conservation measures with land-use redesign such as afforestation can conserve soil 

quality, which inturn decreases the runoff that drives sediment yield and soil nutrient 

losses. Such approach is more effective than application of individual management 

strategy such as afforestation or conservation measures. 

 

8.3.2 Reductions by individual scenarios at prioritized sub-catchments level 

Results of sediment yields for the scenarios simulated while targeting the prioritized 

areas at the sub-catchment level are given in Table 8.3. All the scenarios can contribute 

to the reduction of soil degradation as reductions in sediment yield from 5-95% were 

achieved when compared to the baseline scenario. However, the general trend for the 

effectiveness of the simulated scenarios in reducing sediment yield at the outlet of the 

prioritized sub-catchments are scenario 6c > 6a > 6b > 2 > 3 > 5 > 4 > 1. In addition, for 

all the prioritized sub-catchments, the sediment yield in scenario 6c was less than the 

maximum tolerable soil loss (18 t ha-1 y-1) established for Ethiopian soils (Hurni 1985). 

This scenario also resulted in sediment yields below the maximum soil regeneration rate 

(6 t ha-1 y-1) (Hurni 1983) for SC6, SC8, SC11 and SC12. The sediment yield due to 

scenario 6a followed by 6b also fall for most of the sub-catchments below the tolerable 

soil loss level for the country. In general, the impacts of the scenarios vary with the 

condition of the sub-catchments. For example, scenario 4 and 5 perform better in 

sediment reduction for areas dominated by streams and gullies than scenarios 1 to 3, and 

vice-versa. A similar trend as that of sediment yield was observed in the effectiveness of 

the different scenarios in reducing runoff and soil nutrient losses in the prioritized sub-

catchments (data not shown). 

The ranges of sediment yield (soil loss) rates and their severity categories 

suggested by Tamene (2005) were also used for identification of critical hotspot soil 

degradation sub-catchments based on the simulation result of the baseline scenario. 

According to this author, soil losses 0-5, 5-15, 15-30, 30-50 and > 50 t ha-1 y-1 are rated 
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as very low, low, medium, high and very high erosion categories, respectively. In this 

study, the sub-catchments (SC) with > 30 t ha-1 y-1 erosion rates were identified and 

ranked as SC6, SC12, SC11, SC1, SC2 and SC8 in descending order. These prioritized 

areas covered about 45% of the catchment area. Generally, the simulation of the 

alternative scenarios in these sub-catchments resulted in ´very low to medium´ erosion 

classes except for scenario 4 and 5.  

 

Table 8.3: Model simulated sediment yield (t ha-1 y-1) of the different scenarios for the 
sub-catchment (SC) in the Mai-Negus catchment, northern Ethiopia  

 Scenario 

Sub-catchment Area, ha 1 2 3 4 5 6a 6b 6c 

SC1 101 46.80 22.9 32.3 42.1 38.8 19.2 21.1 13.1 

SC2 35.3 37.98 19.4 24.7 35.0 30.8 14.1 16.3 9.50 

SC3 28.0 28.39 18.5 21.9 25.8 27.6 17.3 18.2 15.6 

SC4 68.7 21.32 15.8 17.0 18.7 20.6 13.0 14.1 11.5 

SC5 42.3 23.00 16.7 18.9 19.8 21.3 14.7 15.7 13.9 

SC6 108 56.05 21.9 34.8 47.7 39.8 14.6 17.4 3.93 

SC8 15.4 33.72 17.5 24.3 30.0 25.9 11.9 16.2 6.07 

SC11 53.3 65.30 35.8 43.8 53.5 34.4 21.5 19.6 3.27 

SC12 215 53.13 22.8 33.5 44.6 38.2 13.3 17.5 4.78 

1, base line scenario; 2, afforest hotspot areas of erosion; 3, parallel terraces; 4, grassed waterways; 5, 
gully stabilization structures; 6a, combined scenarios of 2 and 3; 6b, combined scenarios of 2, 4 and 5; 
6c; combined scenarios of 2, 3, 4, and 5 
 

The percentage reductions of sediment yield and nutrient losses due to the 

scenarios 2-6 were compared with the baseline scenario for the six erosion-hotspot sub-

catchments (Figure 8.5). The estimated average annual reductions in sediment yields 

varied from 8% to 95% across these sub-catchments (Figure 8.5A). The highest 

percentage reduction was predicted in the sub-catchments SC6, SC11 and SC12 due to 

the integrated land-use redesign and erosion control measures (scenario 6c), followed by 

scenario 6a and 6b. The lowest reduction was predicted for scenario 4 followed by 

scenario 5. However, the impact of sediment reduction due to scenario 4 and 5 was 

higher for SC11, which is characterized by active gullies and dense drainage network.  
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Figure 8.5: Sub-catchment level percentage reduction in sediment yield (A), total 
nitrogen (TN) loss (B), and total phosphorus (TP) loss (C) in Mai-Negus 
catchment, northern Ethiopia. For description of scenarios see Table 8.3 
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The predicted average annual TN loading reductions in the sub-catchments varied from 

12% to 93% (Figure 8.5B). Highest reductions of TN losses were observed in scenario 

6c, followed by 6a and 6b for SC6, SC11 and SC12. This study shows that scenario 2 

can effectively reduce the effect of overland flow and sheet erosion, but its integration 

with erosion control measures can further reduce TN losses by both runoff and sediment 

yield from the sub-catchments. Similarly, reductions in TP losses varied from 21% to 

92% across the sub-catchments (Figure 8.5C). The reductions varied as a function of the 

gully stabilization structure (scenario 5) and the integration of land-use and 

conservation measures (scenario 6c). The estimated reductions in sediment yield, TN 

and TP suggest that significant benefits can be expected in maintaining the soil 

resources by the application of integrated management strategies (scenarios) (Figure 

8.5A-C). 

 

8.4 Discussion 

In this study, scenarios of land-use redesign, conservation measures and their 

integration were simulated for targeted erosion-hotspot areas. The scenarios assessed 

increasing soil cover, infiltration, and surface roughness, and decreasing raindrop and 

runoff detachment impact, channel erodibility, slope length and steepness through 

afforestation, grassed waterways, and conservation measures. The study indicates that 

afforestation (scenario 2) of erosion-hotspot areas (degraded lands) alone would be less 

effective in reducing soil erosion rate at catchment and sub-catchment level if other 

catchment management measures are not applied.  

Similarly, the application of soil conservation measures individually such as 

terracing (scenario 3), grassed waterways (scenario 4) or gully stabilization structures 

(scenario 5) in such erosion-hotspot lands can reduce soil loss, but this is not as 

effective as the combination of these scenarios with each and other measures (e.g., 

scenarios 6a-6c). Of the tested scenarios, scenario 6c followed by scenario 6a reduced 

sediment yield at the catchment level by about 78% and 65%, respectively. In the 

erosion-hotspot sub-catchments, the reduction of sediment and nutrient loadings by 

scenario 6c was more than 90%. Thus, scenario 6c provides the most effective potential 

management option for reducing soil degradation by erosion at both catchment and sub-

catchment level (Figure 8.4 and 8.5). 
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Based on the SWAT model scenario simulations, grassed waterways (scenario 

4) and gully/grade stabilization structures (scenario 5) reduced nutrient losses at the 

outlet of the catchment and at the sub-catchments level more effectively than it reduced 

sediment yield. However, the construction of terraces (scenario 3) showed higher 

reductions in sediment yield than grassed waterways or grade stabilization structures. 

This indicates that application of management strategies such as parallel terraces would 

be more successful for catchments such as in the case of the study catchment where 

upland areas are the dominant sources of sediments and nutrient losses as stated by EPA 

(2004). On the other hand, if scenario 4 and 5 are to effectively reduce both sediment 

yield and nutrient losses, the erosion source areas should be targeted by different 

management measures that reduce the velocity and volume of runoff at its origin and 

prevent undercutting, piping or scouring of erosion channels (Chow 1964; Goldman et 

al. 1986). This is because without decreasing the runoff speed and volume in the source 

area, the erosion route may be diverted in a new direction in scenario 4 and 5, which 

could be more destructive than the current condition.  

Generally, the reductions in soil nutrient loads were consistent with the trend 

of sediment yield at the outlet of the catchment and sub-catchments level for all the 

scenarios. This indicates that the impact of management scenarios in reducing nutrient 

losses was a consequence of the reduction of sediment yield. It can thus be argued that 

nutrient losses are closely associated with (dependable on) the sediment yield within the 

study catchment. 

A concern is the feasibility (cost effectiveness) of the scenarios presented in 

this study in larger catchments given the limited resources available (e.g., capital). Part 

of the solution could be in defining priority sub-catchments. Generally, cost-benefit 

analyses for the different scenarios are necessary to assess the economic feasibility of 

the proposed measures. Even for the the relatively effective scenarios regarding 

reduction in runoff, sediment yield and soil nutrient losses, decisions would depend on 

the financial efficiency of the measures and resource availability. However, previous 

studies have not provided standardized soil-erosion-related costs (e.g., Pimentel et al. 

1995; Pretty et al. 2000). Further research on cost effectiveness of the scenarios is 

important to support for decision-making. 
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 In the sub-catchments with high soil erosion rates, the land-use types are 

either cultivated but not properly managed, over-grazed or marginalized steep-slopes. 

Such areas currently do not offer a high production potential for the farmers. Excluding 

these areas from cultivation (35% of cultivation) or grazing (55% from grazing land) by 

afforesting may not have a considerable immediate effect on the overall livelihoods of 

the farmers. In order to avoid conflicts among land-users, consensus should be built on 

which land is to be selected to be afforested and what benefits can be shared. The 

benefits could be through increasing productivity by improving farm management of 

cultivated lands at other locations, incentives, sharing downstream irrigation and 

resource use in the afforested areas (e.g., firewood, grass in a cut-and-carry system, 

fruits, bee forage). Training farmers in off-farm activities and ecologically friendly farm 

activities (apiculture, poultry production) would reduce their dependence on the 

unproductive and fragile cultivated lands, and would help to avoid conflicts when 

implementing a catchment management strategy.  

 

8.5 Conclusions  

In this study, the SWAT model was used to simulate the effectiveness of a variety of 

‘‘what if’’ scenarios in reducing runoff, sediment yield, and total nitrogen (TN) and 

total phosphorus (TP) losses in the Mai-Negus catchment, northern Ethiopia. The 

simulation results demonstrate that compared to the baseline scenario, the alternative 

scenarios could reduce runoff by about 7-73%, sediment yield by 12-78%, TN losses by 

17-72% and TP losses by 29-75% at the catchment level. Similarly, at the erosion- 

hotspot prioritized sub-catchments level, a reduction of 5-95%, 12-93% and 21-92% in 

sediment yield, and TN and TP losses, respectively, was achieved.  

The highest reductions in runoff, sediment yield and soil nutrient losses were 

achieved when integrated management strategies that combined land-use redesign and 

conservation measures (scenario 6c) was applied, whereas the lowest reduction in 

sediment yield was found in scenario 4 (grassed waterways only) and in soil nutrient 

losses in scenario 5 (gully/grade stabilization structure). The scenario 6c reduced the 

sediment yield to 9200 t y-1 as compared to the current rate of 41900 t y-1 at catchment 

level. A similar and consistent reduction trend to that of sediment yield was also 

simulated by the model for runoff, TN and TP losses when scenario 6c was applied. 
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Thus, scenario 6c appears to be effective as a potential management strategy in reducing 

the soil degradation at both catchment and sub-catchment level. The results of the 

SWAT model need to be extended to similar environmental conditions to support 

decision-making processes in a catchment management plan.  

The current erosion modeling approach can be very useful for decision-makers 

to evaluate the benefits of individual and integrated management strategies that best 

reduce the soil degradation interms of runoff, sediment yield and soil nutrient losses at 

the catchment and sub-catchment level. This should be helpful to identify suitable 

scenarios for implementation in a catchment and sub-catchment or to quantify the 

benefits of the management practices where they have been already implemented in a 

catchment. Generally, this study demonstrates that the SWAT model is a potentially 

powerful tool for land managers, allowing them to select the technically most effective 

management strategies for reducing soil degradation due to soil erosion at the catchment 

scale. However, further cost-benefit analyses are required of the respective management 

strategies. 

 



Summary and conclusions 

164 

 

9 SUMMARY AND CONCLUSIONS 

 

This chapter synthesizes and concludes the major findings of this study with respect to 

the main objectives. The summary of the results focuses on answering the general 

research question how severe is the existing soil quality degradation problem, and what 

management strategies can reduce the problem more efficiently in the Mai-Negus 

catchment, northern Ethiopia. Figure 9.1 summarizes the research framework of the 

major approaches, tasks and implication of the study results. Understanding the severity 

(magnitude) of the soil degradation problem is an important step for prioritization 

catchment areas for introducing appropriate intervention by planners and decision 

makers. The following sections summarize how the existing soil quality (SQ) 

degradation is severe, as described in the view of SQ evaluation and erosion model 

results, and the role of the simulated management strategies in reducing soil degradation 

in the study catchment. 

Data on catchment characteristics
(landform, DEM, soils, land-use 
land-cover, climate, and other

catchment attributes)

Participatory soil 
quality (SQ) 
assessment 

(transect walks, 
group discussions, 

interviews)

Scientific SQ indicator 
measurement (soil 

sampling, analysis and 
interpretation based on 

SQ categories) 

Zone soil sampling from SQ 
categories, land-use and soil 
management systems, and 

erosion-status sites 
(develop spatial SQ indicator)

Erosion modeling
(SWAT) on runoff, 
sediment yield and 

nutrient losses

Observed data 
on runoff, 

sediment yield 
and nutrient 

losses 

Scenarios 
simulation for 
management 

strategies

Model simulation 
to identify hotspot 

erosion sub-
catchments

Status of SQ 
degradation

Scenario development

Calibration, 
verification
(Evaluation)

Semi-quantitativeModel 
sensitivity
analysis

Figure 9.1: Research framework employed to fulfil the objectives of the study 
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9.1 What are the indicators and how severe is the problem? 

(a) How can farmer soil quality knowledge contribute as a potential indicator of soil 

degradation to sustainable development decision-making? 

In this study, a participatory SQ assessment was carried out to assess the contribution of 

local farmer knowledge of soil quality as potential SQ degradation indicators. 

Participation of local communities in evaluating SQ degradation, its determining factors 

and possible management options is crucial, not only for the measures to be accepted 

and implemented, but also to sustain those practices. The results of the participatory SQ 

survey indicate that farmers have the experience and knowledge to assess SQ status as 

well as the severity and determinants of SQ degradation. They have the knowledge to 

diagnose the status of SQ degradation and to identify erosion source areas and the main 

driving forces (terrain, poor surface cover, high runoff, inappropriate practices) for the 

degradation processes. The SQ diagnostic indicators related to crop yield and erosion 

(e.g., soil depth, color) were often used by the farmers to classify their soils to three SQ 

categories: high, medium and low. Their classification was not limited to the soils’ 

nutrient status but also considered soil erosion, fertility, color, thickness, water-holding 

capacity, and yield and crop performance indicators. The local farmers reported that 

high SQ soils are dark, fertile and with high water-holding capacity, and that they 

generally produce good crop yields. The farmers thought that poor SQ soils had low 

fertility, were light in color, had a tendency to dry-up quickly and generally lower crop 

yields production potential. The farmers added that poor soil can also be described by 

shallow depth, high weed infestation, sandy texture, and a very loose surface that is 

easily eroded. The medium SQ category soil shows an intermediate character in 

between the high and low SQ categories, and has medium soil depth, and a mixed red-

dark color. Despite such knowledge of the local communities, the problem of SQ 

degradation still continues in many areas of Ethiopia. Therefore, for addressing the 

concern of SQ degradation in Ethiopia and other similar areas, approaches that fully 

involve the indigenous community should be designed.  
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(b) How does the scientific soil measurement evaluation compare with the SQ 

categories identified by the local farmers? 

Evaluation of measured soil data from representative locations of the SQ categories 

identified by farmers' knowledge is crucial to test whether the participatory SQ 

assessment approach is within a reasonable accuracy for developing appropriate 

management plans to combat SQ degradation. Soil attributes in the respective SQ 

categories determined following the standard soil sampling and analysis procedures 

corresponded well with the SQ classification made by the farmers. For instance, low SQ 

is characterized by significantly (P ≤ 0.05) higher sand content and bulk density, and 

has lower soil nutrients (TN, Pav, CEC, organic matter), pH, SAS and clay content than 

the medium and high SQ categories. Farmers’ categorized sand-dominated soils as low 

SQ because they perceived that such soils have low water-holding capacity and low soil 

nutrients, which agreed with laboratory results. Farmers are also able to associate SQ 

nutrient status with plant growth and development conditions. In addition, most soil 

nutrient attributes determined in the low and medium SQ categories were rated as low 

following the standard ratings for tropical soils. This indicates that SQ degradation is 

higher in the medium and low SQ than in the high SQ category. However, even though 

the analyses confirm the consistency of farmer-defined SQ categories with the measured 

indicators, the key soil attributes that determine and control SQ variability need to be 

examined using further analysis. 

Among the 19 soil attributes initially analyzed, those that showed significant 

differences between SQ categories were subjected to factor analysis. As a result, soil 

attributes were grouped into four main PC factors using PCA (eigenvalues > 1) in 

assessing gradients in the data structure that explain about 88% of the SQ variability in the 

SQ categories. Generally, the PCA suggests that the variability of SQ categories 

identified by farmer knowledge is mainly linked to soil CEC, porosity, sand, TP, and 

Ca:Mg. Focus is thus given on these variables in the multiple discriminant analysis to 

identify the best discriminator variable among the SQ categories (group variables) and 

also to assess the relations with the group variables. In the discriminant analysis, the 

actual values of the five soil attributes (CEC, porosity, sand, TP, and Ca:Mg ratio) with 

high factor loadings retained in the four PCs were used. The discriminant function 

coefficients show that soil porosity, followed by CEC and sand content are the best 
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discriminators in the first function between group 1 (low SQ) and the combination of 

group 2 (medium SQ) and group 3 (high SQ), but that Ca:Mg was least effective in 

discriminating these groups. The trend of the discriminant coefficients of these 

independent variables was similar in function 2 to that in function 1. This study 

indicates that the discriminant analysis correctly classified (> 90%) for the cases in the 

SQ categories, indicating statistically that the SQ categories identified by the farmers 

are correct. Generally, this shows that the measured soil data corresponded well with 

those of farmer identified SQ categories. As a result, local SQ knowledge can be used 

for decision-making processes regarding SQ degradation. 

 

(c) What do catchment-scale spatial soil properties imply for site-specific soil 

degradation and its management? 

Understanding the variability of soil properties at catchment scale is important for site-

specific sustainable soil and crop management decisions. Soil saamples were collected 

using zone sampling as SQ categories, land-use and soil management systems and 

erosion-status sites. The descriptive statistics results in this study show a wide range of 

the soil parameters values at catchment scale, e.g., 15-70% sand, 18-77% silt, and 3-

51% clay. The mean BD (1.59 Mg cm-3) was high. The mean OC (1.21%), TN (0.12%), 

and Pav (7.8 mg kg-1) of the soils in the catchment were low, while values were high for 

Ex K (0.77 cmolc kg-1), and medium for CEC (23.4 cmolc kg-1) compared to the rate for 

African soils observed by Landon (1991). The coefficient of variation of the soil 

properties ranged from 8.6% (pH) to 73.4% (clay). However, such classical statistics 

information could not show the soil parameters´ spatial variability in the study 

catchment. The geostatistical technique was thus applied to determine spatial 

dependence and variability of the soil parameters after testing for normal distribution. 

 The results of the geostatistical analyses indicate that the soil parameters 

showed spatial dependence and fitted to different semivariogram models. The range of 

the soil properties varied from 33 m (silt) to 223 m (Ex K). The degree of spatial 

dependence was between 8% (strong) and 63% (moderate). The accuracy of the maps of 

the kriging interpolation soil properties was also assessed by goodness-of-prediction 

criterion (G) value. The values of G higher than zero indicate that kriging was more 

accurate than the average catchment values of descriptive statistics.  
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A higher sand (50-70%) and bulk density (1.75-2.00 Mg m-3) spatial 

distribution in the north and north-west of the catchment, particularly in the 

mountainous and central-ridge landforms, was observed. The maps of the soil properties 

also showed well-defined patterns of higher fine soil particles and soil nutrients in the 

reservoir (toe-slope) and valley (foot-slope) landforms and on high vegetation cover 

sites in the catchment. The spatial maps indicate that the mountainous, central-ridge and 

part of the escarpment landforms had severe degradation with respect to soil nutrients. 

For the purpose of site-specific soil management, prioritization should be given to these 

areas. The spatial distribution of topsoil properties could be used as an indicator for the 

spatial variability of soil degradation, and thus support site-specific soil management 

decisions at catchment scale. This part of the study thus answered the question which 

landscape positions require prior attention from soil nutrient degradation perspective. 

  

(d) Where are the major erosion sources (severe soil degradation) in the catchment? 

Knowledge of the SQ status and the respective spatial distribution may not be adequate 

to tackle the SQ degradation problem unless the source and rates of soil erosion in the 

catchment is properly identified. This is demanding a model that identifies the location 

of hotspot areas i.e., important sources of runoff, sediment yield and nutrient losses. 

This is a necessary step as all areas of the catchments can not be conserved for financial 

and practical reasons. The GIS-interfaced SWAT model was used to show the spatial 

patterns of soil degradation and identify erosion-hotspot sub-catchments within the 

catchment so as to prioritize areas with a high risk of soil erosion. To do so, the model 

was first evaluated in the context of the study catchment. Model efficiency values > 

0.50 for NSE and > 0.60 for R2 were obtained for flow, sediment yield and nutrient 

losses during calibration and validation, which is adequate for SWAT model to apply 

for management planning regarding the most vulnerable landscapes.  

The spatial patterns in the sediment yield map were used to classify into 

different soil loss categories, and sub-catchments experiencing soil loss rates higher 

than the acceptable threshold (18 t ha-1 y-1) were identified as those requiring prior 

attention for intervention. The SWAT model predicted sediment yield of the catchment 

ranged from 0-5 t ha y-1 to more than 50 t ha y-1. Priorities were given according to 

ranks assigned to each hotspot sub-catchments on the basis of erosion hazard categorie 
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and the associated soil nutrient losses. Generally, the sub-catchments characterized by 

high elevation and steep slopes, poor surface cover, poor SQ and with a dense network 

of active gullies experienced higher rates of runoff, soil loss and nutrient losses than 

others. Thus, out of 16 sub-catchments, the model prioritized nine sub-catchments 

experiencing soil erosion rates higher than 18 t ha-1 y-1. Doing this can answer the 

question: where should the appropriate interventions to be located to tackle soil 

degradation in the study catchment? 

 

9.2 What is a robust solution for the existing severe soil degradation? 

After having scientific evidences on the status of SQ degradation from the context of 

local knowledge, scientific soil measurements, spatial variability of soil indicators and 

erosion modeling, alternative management strategies that reduce the existing soil 

degradation can be evaluated for the prioritized areas. The management strategies 

targeting hotspot areas should, therefore, reduce upstream erosion and the associated 

losses and the downstream effect on gully expansion and development and the related- 

problems. 

In this study, different management strategies (8 scenarios) were simulated to 

assess their effectiveness in reducing soil degradation at catchment level and the 

targeted hotspot soil degradation sub-catchments. The highest soil erosion rate as 

sediment yield (41900 t y-1) was simulated in scenario 1 (baseline scenario) followed by 

scenario 4 (36900 t y-1). However, the lowest sediment yield was simulated in scenario 

6c (9200 t y-1) followed by scenario 6a (14700 t y-1). A similar trend in runoff and the 

associated soil nutrients losses was also simulated in these scenarios. Some of the 

scenarios targeting the hotspot sub-catchments show the suitablity in reducing soil 

degradation to an acceptable level. The simulation results show that reductions of 

sediment yield, TP and TN losses and runoff by 78, 75, 72 and 70%, respectively, can 

be achieved at catchment level by introducing the integration of afforestation, terracing, 

grassed waterways, and gully stabilization (scenario 6c) in the hotspot-erosion areas, as 

compared to the baseline condition. A higher reduction in sediment yield, runoff, and 

soil nutrient losses was observed for the prioritized sub-catchments than at the 

catchment level due to the scenarios effect. This demonstrates the importance of 

introducing appropriate management strategies to sustain the productivity of soil 
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resources by reducing the severity of soil degradation. Such scenario analysis can 

therefore make it possible to answer the question: Which management strategies placed 

where are more efficient? 

 

9.3 Overall conclusions 

The results of this study show that the use of local farmer knowledge of soil quality 

(SQ) can be used to indicate the status of SQ degradation at catchment scale. The SQ 

status identified by local farmers corresponded well with scientific measured soil data, 

interpolated spatial soil properties, and the hotspot-erosion sites identified by the 

erosion modeling. Areas identified by the farmers as a poor SQ showed low soil 

nutrients and low fine soil particle contents in the laboratory results, and were also 

identified as the sources of severe soil erosion by the SWAT model. This shows that 

farmers understood well the nature and condition of the SQ degradation.  However, they 

are not able to tackle the problem of SQ deterioration mainly because of lack of capital, 

organized labor, technical skills, and immediate food requirements (food insecurity 

problems), besides their reluctance and not fully involved on related issues.  Generally, 

this study confirms that the evaluation of SQ degradation status to prioritize areas of 

attention for decision-making using the knowledge of local farmers is rapid, less 

expensive, has high reproducibility and is participatory in nature, and is reasonably 

accurate when compared to scientific soil data measurement and erosion modeling. This 

can thus facilitate informed decision making on SQ management in areas where no 

professional experts are available and resources are limited, and if extrapolation of 

measured soil data is also difficult. Further efforts that address the issue of up-scaling of 

the knowledge and approaches acquired in this study are also important for researchers 

and decion-makers to implement successfully the best management strategies that 

reduce soil degradation in a similar condition. A higher reduction in runoff, sediment 

yield and soil nutrient losses can be achieved when management strategies such as land-

use redesign and conservation measures are integrated during implementation. 

 

9.4 Research and policy implications 

The erosion modeling and SQ evaluation conducted in this study provide relevant 

scientific information for planners and decision-makers. The study also serves the 
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scientific community as a basis for further study. The main research and policy 

implications are outlined below. 

1) A participatory SQ degradation assessment is crucial to monitor the impact of soil 

and other management systems on the sustainability of agricultural production and 

environmental services at large scale. Attention must be paid to the broader systems 

of policy-making and governance and the ways in which participatory SQ 

degradation assessments can be institutionalized. However, research on additional 

catchments with contrasting environmental conditions is necessary to account for 

the heterogeneity of farmer knowledge of SQ degradation before the result of this 

study is used for decision-making with respect to anti-degradation measures at 

regional or nation scales. Development recommendations at large scale are only 

successful if they take into consideration site-specific factors based on local 

farmers’ knowledge perspectives. 

2) The scientific soil attributes measured to evaluate the SQ status identified by local 

farmers were determined from the topsoil (plow depth) of 0-20 cm depth. The 

results indicate that the laboratory results agree well with the farmers´ classification 

of SQ status at the given soil depth. However, further research needs to be assessed 

the soil attributes in the sub-soil depths of the different SQ categories. Generally, as 

the soil surface can be easily assessed by the farmers, interpolation or extrapolation 

of the study results to similar areas would reduce resource wastage in conducting 

research of the same purpose. 

3) Currently, many interpolation methods are available in geostatistical techniques. 

However, kriging interpolation showed that maps of soil properties are more 

accurate than average values at catchment scale. It is suggested that further 

investigation of the effect of soil sampling spacing across different slopes/elevations 

on the efficiency of the interpolation methods is crucial for the northern Ethiopia 

condition. In addition, the results of geostatistically determined soil properties can 

be used by planners and decision-makers to focus on site-specific soil management 

practices, e.g., variable fertilizer rate recommendations considering within field 

spatial soil nutrient variability.  

4) The SWAT model applied in this study was calibrated and validated for conditions 

in the study catchment. Regardless of the data demand, the model identified erosion 
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hotspot sub-catchments and thereby the severity of soil degradation. Planners and 

decision-makers can use such models in order to quantitatively describe the rate and 

spatial pattern of soil erosion at catchment scale.  However, it is recognized that a 

wider validation effort is needed before adopting the model for decision-making 

purposes throughout the Tigray region, which has a diverse environment. This 

model may need to be evaluated across different agro-ecological zones to see how it 

works under different governing factors in the region. 

5) The scenarios simulated in this study demonstrate that an integrated catchment 

management strategy, e.g., afforestation with conservation measures on the major 

erosion sources sub-catchments could significantly reduce runoff, sediment yield 

and nutrient losses. The immediate problem for afforested areas that have been 

already used for cultivation and free grazing for many years is the resistance of the 

farmers to accept such decisions. Therefore, thorough discussions with the farmers 

about the necessity and benefits of such measures in the short-and long-term are 

necessary for successful implementation of the intended management strategies. 

Incentives for farmers who manage and protect their fields from severe soil 

degradation should also be considered by policy-makers to encourage sustainable 

land-use based on farmer innovation knowledge. Such involvement of local 

communities also facilitates partnership between farmers, extension workers and 

researchers while working to achieve the goal of sustaining natural resources and 

enhancing soil productivity. Consideration of farmers' experiences and knowledge 

of SQ can improve the quality of technologies to be recommended and the chance 

for successful implementation and sustainable adoption. Further efforts that address 

the issue of up-scaling of the knowledge and approaches acquired in this study to 

similar conditions should be given due attention by researchers,  planners and 

decision-makers. 
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11 APPENDICES 

 

Appendix 1: Semi structure questionnaire 

1. Do you use the following soil quality indicators to categorize the soils of the arable 

fields in the study catchment into different soil quality status? Tick in the 

appropriate column below. 

SQ indicator Yes (%) No (%) 

Crop yield    
Top soil thickness    
Crop performance/vigour   
Soil fertility   
Soil erosion   
Soil color   
Fertilizer response of soil   
Moisture holding in dry season   
Weed infestation/ abundance   
Soil compaction   
Soil tilth and Workability    
Earthworm population   
Texture    
Drainage condition   

 

2. Which soil quality indicators from the above table are most frequently used to 

categorize your soils? List them in the order of their importance from most to least. 

___________________________________________________________________

___________________________________________________________________ 

 

3. What soil quality descriptors (local terms) do you commonly use to describe each 

of the soil quality status as high, medium and low? 

___________________________________________________________________

___________________________________________________________________ 

    

4. Could you arrange according to their popularity from the most to the least   

    applicable local terms of SQ indicators in question no. 3? 

___________________________________________________________________

___________________________________________________________________ 

5. Which soil quality category can describe your farm plot soils? 

   1. Low soil quality        2. Medium soil quality      3. High soil quality 
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Appendix 2: Annual rainfall (P) and runoff (R) measured data for selected catchments and experimental plots within different catchments 
in Tigray region, northern Ethiopia (Note: SG, slope gradient; A, area; n, replication; P, rainfall; RC, runoff coefficient; years 
= duration) 

Location 

/catchment 

oN oE SG (%) Elevation 

(m) 

A(km2) n years P (mm) R (mm) RC (%) Land use source 

Adi Gudum 13o14` 39o32` 3 2000-2500 9.5 x10-5 2  422 65.3 15.5 cultivation Gebreegziabher et al. 2009 

May Zeg Zeg 

(before catchment 

management) 

13o39` 39o11` Flat to > 

30 

2100–2650  1.65 1 629 95 15 Cultivated, grazing, 

exclosure 

Nyssen et al. 2010 

May Zeg Zeg 

(after catchment 

management) 

13o39` 39o11` Flat to > 

30 

2100–2650 1.65 1 629 51 8.1 Cultivated, grazing, 

exclosure 

Nyssen et al. 2010 

Giba (with out soil 

conservation) 

13o30` 39o29` 2 2550 2 x10-5 3 4 600 96-180 16-30 cultivation Araya and Stroosnijder 2010 

Giba (with soil 

conservation) 

13o30` 39o29` 2 2.4 x10-5 3 4 600 30-45 5-9 cultivation Araya and Stroosnijder 2010 

Maileba 13o14` 39o15` Flat to 

470 

2300-2935 17.3 8 2 588 188 32 Cultivated  Grimay et al. 2009 

4 2 588 106 18 Grazing  

4 2 588 53 9 Plantation  

3 2 588 47 8 Exclosure 

Gum Selasa 13o15` 39o32` Flat to 80 2000-2500 23.5 8 2 452 136 30 cultivated Grimay et al. 2009 

4 2 

52 

81 18 Grazing  

Hagere Selam 13o39` 39o10` 15-110 2650 1 x10-5 28 2 700 12-245 1.7-35 Degraded grazing,  

young to old 

exclosure 

Descheemaeker et al. 2006 

 

Mean  650 130 20   
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Appendix 3: Measured sediment, total nitrogen (TN) and Phosphorus (P) at the outlet of 
the study catchment and other similar areas in Tigray region, northern 
Ethiopia 

Sediment yield 

(t ha-1 Y-1) 

Total nitrogen  

 (kg ha-1 y-1) 

Mineral  

Phosphorus 

  (kg ha-1 y-1) 

Year 

 

source 

14.3 18 0.094 2002 Haregeweyn et al. (2006) 

18.2 21 0.099 2003 Haregeweyn et al. (2006) 

16.1 19.5 0.097 2004 Mean of 2002 and 2003 

20.2 11.0 0.08 2006 Girmay et al. (2009) 

16.7 12.7 0.145 2007 Girmay et al. (2009) 

18.5 11.85 0.112 2008 Mean of 2006 and 2007 

19.6 17.74 0.135 2009 Author (from the study 

area) 
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