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Timely changes of the circulating concentrations of haptoglobin and leptin in female cattle 

undergoing fat mobilization: assessment of the relevance of haptoglobin as an adipokine 

 

This study was undertaken to characterize the concentrations of haptoglobin (Hp) and leptin 

throughout the entire lactation period, to investigate the effect of long-term conjugated 

linoleic acids (CLA) supplementation on Hp and leptin in dairy cows, to examine the 

presence of Hp in bovine adipose tissue (AT), and to examine the effect of moderate feed 

restriction and re-feeding on Hp and leptin in non-lactating heifers. Samples from four 

different studies were used in this work. The first experiment “CLA-252 days in milk (DIM)” 

comprised heifers and cows observed from day (d) 21 ante partum (AP) until d 252 post 

partum (PP), receiving two doses of rumen-protected CLA supplementation (50 and 100 g/d, 

d 1 - 182 PP) versus a corresponding control group. A further experiment “CLA-post mortem 

(PM)-105 DIM” was done in heifers observed from d 21 AP until d 105 PP receiving either 

no CLA or 100 g/d CLA (d 1 - 105 PP). The CLA supplementation included equal 

proportions of each the t-10, c-12 and the c-9, t-11 isomer. The third experiment 

“Concentrate-roughage ratio” was conducted (d 21 AP - d 21 PP) using cows that received 

diets with either a concentrate-to-roughage ratio (dry matter basis (DM)) of 30:70% (low-

concentrate group) or 60:40% (high-concentrate group) after calving. The fourth experiment 

“Fat heifers restriction” was performed using non-lactating heifers fed either grass silage 

(100%) or grass silage diluted with straw (37:63 on DM basis). The physiological changes of 

Hp in the CLA-252 DIM experiment were related to parity and parturition. The 

concentrations of Hp were higher in heifers than in cows during the first week PP. The 

concentrations of Hp peaked around calving and decreased afterwards in both parity groups 

and CLA experiments. Long-term feeding of dairy cows with CLA had no effect on the 

concentrations of serum Hp. The animals in the concentrate-roughage ratio study had lower 

concentrations of Hp compared to those in the CLA studies. The immunohistochemistry and 

Western immunoblotting methods indicated the presence of Hp in bovine AT. The 

physiological changes in the concentrations of leptin in the CLA-252 DIM experiment were 

limited to parturition. Long-term feeding of dairy cows with CLA left the concentrations of 

leptin unaffected. The fat heifers restriction study indicated that neither Hp nor leptin 

concentrations were affected by the change in energy content of the ration fed. In conclusion, 

long-term feeding of dairy cows with CLA left the concentrations of Hp and leptin 

unaffected. The presence of Hp in bovine AT indicates that Hp can be classified as an 

adipokine in cattle. The lack of an evident relation between Hp and body fatness makes Hp 

irrelevant as an adiposity marker for ruminants. 
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Zeitlicher Verlauf der zirkulierenden Konzentrationen von Haptoglobin und Leptin in 

weiblichen Rindern, die eine Fettmobilisierung durchleben: Einschätzung der Relevanz 

von Haptoglobin als Adipokin   

 
Diese Studie wurde durchgeführt, um die Blut-konzentrationen von Haptoglobin (Hp) und 

Leptin über die gesamte Laktation zu charakterisieren, um den Langzeiteffekt der 

Supplementierung von konjugierten Linolsäuren (CLA) auf Hp und Leptin in Milchkühen zu 

prüfen und die Anwesenheit von Hp in bovinem Fettgewebe zu untersuchen. Außerdem 

wurde der Effekt einer moderaten Futterrestriktion mit anschließender Wiederaufnahme der 

Fütterung auf Hp und Leptin in nicht-laktierenden Färsen ermittelt. Proben aus vier 

verschiedenen Studien wurden in dieser Arbeit verwendet: Der erste Versuch “CLA-252 

DIM” beinhaltete Färsen und Kühe (untersucht von d 21 ante partum (AP) bis d 252 post 

partum (PP)), die von d 1 - 182 PP mit 0, 50 oder 100 g/d pansengeschützten CLA 

supplementiert wurden. Ein weiterer Versuch “CLA-post mortem (PM)-105 DIM” wurde mit 

Färsen durchgeführt; diese wurden von d 21 AP bis d 105 PP untersucht und erhielten 100 g/d 

CLA oder ein CLA-freies Kontrollsupplement. Die zugefütterten CLA enthielten zu gleichen 

Teilen das t-10, c-12 und das c-9, t-11 Isomer. Der dritte Versuch “Kraftfutter-Rauhfutter- 

Verhältnis” (KF:R) (d 21 AP - d 21 PP) wurde mit Kühen durchgeführt, deren Rationen nach 

der Kalbung, bezogen auf Trockenmasse geringe (KF:R = 30:70%) oder hohe (KF:R = 

60:40%) KF-Anteile enthielten. Der vierte Versuch “Fette Färsen” wurde mit nicht-

laktierenden Färsen durchgeführt, die entweder mit Grassilage (100%) oder mit durch Stroh 

verdünnte Grassilage (37:63 bezogen auf Trockenmasse) gefüttert wurden. Die 

physiologischen Veränderungen von Hp im CLA-252 DIM Versuch standen im 

Zusammenhang zu Parität und Geburt. Die Hp-Konzentrationen in der ersten Woche nach der 

Geburt waren bei Färsen höher als bei Kühen. In beiden Paritätsgruppen und CLA-Versuche 

konnte gezeigt werden, dass die Hp-Konzentration ihr Maximum zum Zeitpunkt der Geburt 

hatte und anschließend wieder absank. Mit der Langzeitfütterung von CLA konnten keine 

Veränderungen der Hp-Serum Konzentrationen erkannt werden. Die Tiere des Versuches 

“KF:R” hatten niedrigere Hp-Konzentrationen im Vergleich zu denen der CLA-Versuche. 

Durch Immunhistochemie und Western Blot konnte die Anwesenheit von Hp in bovinen 

Fettgewebe gezeigt werden. Die physiologischen Veränderungen der Leptinkonzentrationen 

im CLA-252 DIM Versuch waren auf den Zeitraum der Geburt begrenzt. Die CLA-

Langzeitfütterung der Milchkühe ließ die Leptinkonzentration unbeeinflusst. Der Versuch mit 



III 
 

fetten Färsen deutete drauf hin, dass weder Hp- noch Leptinkonzentrationen durch die 

Veränderung des Energiegehaltes des Futters beeinflusst waren. Zusammenfassend konnte 

gezeigt werden, dass Langzeitfütterung von Milchkühen mit CLA zu keiner Veränderung der 

Hp- und Leptinkonzentrationen führte. Die Anwesenheit von Hp in bovinem Fettgewebe 

bestätigt, dass Hp in Wiederkäuern als Adipokin klassifiziert werden kann. Der fehlende 

Zusammenhang zwischen Hp und Körperfettgehalt disqualifiziert Hp als Marker für den 

Körperfettgehalt in Wiederkäuern.  
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1. Introduction 

 

Livestock play a vital role in agricultural and rural economies of the world. Not only do they 

produce food directly but also they provide key inputs to crop agriculture and are a crucial 

link in nutrient cycles. Cattle are producers of both milk and meat and contribute greatly to 

human food supply. Over the last 50 years, dairy farming has become more intensive to 

increase the amount of milk produced by each cow. Dairy breeds such as Holstein Friesian 

have been selected to produce a very high yield of milk around 55 kg/day (d) (Breves, 2007). 

However, dairy cattle production exposes animals to a variety of stressors which can reduce 

feed intake and disease resistance. For instance, 50% of cows have one or more adverse health 

events during the periparturient period (Ferguson, 2001). During this period, the energy 

requirements can not entirely be met through dietary intake resulting in a condition of 

negative energy balance (NEB), as a consequence extensive metabolic and endocrine changes 

occur in dairy cows to accommodate parturition and lactogenesis (Bell, 1995). High-yielding 

dairy cows are then susceptible to various metabolic diseases, impaired immune function and 

fertility (Butler and Smith, 1989; Mallard et al., 1998). Dairy cattle production has been 

looking for more efficient and effective ways to minimize the health problems for a long time. 

Therefore, dietary adjustments that could enhance homeostasis and health status are given a 

broader scope (Bassaganya-Riera et al., 2001). In the last decade, there was sharply increased 

interest of the physiological effects of various fatty acids (FA), in particular to investigate the 

conjugated linoleic acids (CLA), which are naturally included in the milk and meat of 

ruminants, due to the potentially beneficial effects in terms of animal welfare, nutritional 

status and diseases. Besides the nutritional strategies, measurement of acute phase proteins 

(APPs) and hormonal concentrations can also be used to enhance cattle health and welfare 

status. 

 
1.1. Transition period  

 

The transition or periparturient period, beginning three weeks before calving and ending three 

weeks post-calving, clearly is the most critical phase of the lactation cycle for dairy cows 

(Grummer, 1995). This period is associated with elevated incidence of diseases such as 

mastitis, milk fever, metritis, ketosis, retained fetal membranes and displaced abomasum 

(Mulligan and Doherty, 2008). During this time, transition cows experience alterations related 

to increases in energy demands driven by both fetal growth requirements and lactogenesis 
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(Bell, 1995), and alterations related to metabolic, physical, behavioral and hormonal changes 

around parturition which are marked by a reduction in dry matter intake (DMI) (Allen et al., 

2005). Consequently, cows enter a situation of NEB. However, a significant adaptation to 

NEB is the mobilization of fat from body stores with release of nonesterified fatty acids 

(NEFA) into blood. In muscular tissue, proteolysis is increased and the mobilized amino acids 

contribute as substrates in the gluconeogenesis and milk protein synthesis (Herdt, 2000). The 

concentration of NEFA in blood reflects the degree of adipose tissue (AT) mobilization 

(Pullen et al., 1989). When the concentration of NEFA in blood increases around calving or in 

early lactation, more NEFA are taken up by the liver (Reynolds et al., 2003). In the liver, 

NEFA can be (1) completely oxidized to carbon dioxide to provide energy for the liver; (2) 

partially oxidized to produce ketone bodies such as β-hydroxybutyrate (BHB) that are 

released into the blood and serve as fuels for other tissues; or (3) reconverted to triglycerides 

(Drackley, 1999). A part of the triglyceride produced is exported out of the cells in the form 

of lipoproteins, of which very low density lipoproteins (VLDL) constitute the largest part 

(Drackley, 1999). If NEFA uptake by the liver becomes excessive, fatty liver may develop 

when the synthesis of triglycerides exceeds hepatic export capacity (Bobe et al., 2004). 

Negative energy balance and glucose deficit after calving also lead to increased production of 

BHB, which can result in clinical or subclinical ketosis (Herdt, 2000). Thus, increased 

circulating NEFA and BHB are highly associated with periparturient disorders and diseases 

(Herdt, 2000; Bobe et al., 2004). Moreover, the higher concentration of NEFA around calving 

could be related to inflammation (Kováč et al., 2009); thereby increasing susceptibility to 

inflammatory diseases including mastitis and metritis. Elevated plasma NEFA and BHB 

concentrations are usually accompanied by a reduction of plasma glucose, insulin and growth 

hormone (GH) concentrations, which reflects the greater glucose demand with the onset of 

lactation.  

 

1.2. Adipose tissue 

 

Adipose tissue is a type of loose connective tissue comprised of lipid-filled cells termed as 

adipocytes. Besides adipocytes, it contains connective tissue matrix, nerve cells, 

stromovascular cells (e.g. preadipocytes, fibroblast-like cells), and immune cells (Frayn et al., 

2003). Adipose tissue provides a virtually limitless storage site for energy in form of 

triglycerides, which are mobilized through lipolytic pathways to provide fuel to other organs. 

There are two types of AT existing in mammals: brown and white AT. Brown AT contains 
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several small lipid droplets and high numbers of mitochondria, its main role is to generate 

body heat particularly in neonates and hibernating species (Tran and Kahn, 2010). White AT, 

the predominant type of AT, is characterized by spherical adipocytes with a single lipid 

inclusion, eccentrically located nucleus and a small volume of cytoplasmic material at the cell 

periphery (Shen et al., 2003). However, only the white AT will be further addressed in this 

work. White AT is an active endocrine organ that secretes a variety of bioactive molecules 

called adipokines or adipocytokines. These adipokines include hormones implicated in energy 

balance (EB) (e.g. leptin, adiponectin), glucose tolerance and insulin sensitivity (e.g. 

adiponectin, resistin), cytokines (e.g. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)), 

and proteins involved in lipid metabolism (e.g. retinol binding protein, cholesteryl ester 

transfer protein), vascular homeostasis (e.g. plasminogen activator inhibitor-1, 

angiotensinogen), and in inflammation and stress responses (haptoglobin (Hp), 

metallothionein) (Trayhurn and Wood, 2004). White AT is consisting of different depots 

which are located in specific regions of the body. These depots are categorized into 

subcutaneous (SC) and internal AT. The SC depot comprises the fat layer found between the 

dermis and the aponeuroses and fasciae of the muscles, and anatomically is subdivided into 

superficial and deep SC AT (Shen et al., 2003). The internal AT is located around the internal 

organs, divided into visceral (VC; e.g. intrathoracic, intraabdominopelvic (e.g. omental, 

mesenteric, retroperitoneal)), and non-visceral (distributed among muscles and adjacent to 

bones) fat (Shen et al., 2003). 

 
The AT depots are different in terms of their metabolic functions according to the anatomic 

location of each depot, e.g. in human obesity, VC depots (omental) show a stronger 

connection with metabolic disorders (e.g. insulin resistance, type 2 diabetes), while SC depots 

are associated with improved insulin sensitivity and a lower risk of developing type 2 diabetes 

mellitus (Pérez-Pérez et al., 2009; Tran and Kahn, 2010). Subcutaneous AT secretes 

adiponectin more abundantly than VC AT (Nakamura et al., 2009), whereby this adipokine is 

associated with improvement of insulin sensitivity (Kim et al., 2007). In contrast, resistin and 

retinol-binding protein are associated with insulin resistance and type 2 diabetes mellitus, 

which are more abundantly secreted from VC than SC AT (Klöting et al., 2007). The omental 

but not the SC fat drains into the portal vein, and releases excess NEFA which interferes with 

the liver metabolism and contributes to glucose intolerance and other metabolic complications 

associated with human obesity (Pérez-Pérez et al., 2009). The metabolic differences among 

depots are also reported in cattle. In this regard, Hishikawa et al. (2005) reported that 
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adipocytes in the SC and VC depots showed differences in their basal metabolic properties 

such as regulating volume and lipid composition; also they present differential gene 

expression profiles. 

 
1.3. Immune system  

 

Animals undergo challenges to their state of health, and are protected by the immune system 

that consists of a complex network of cells and soluble mediators. The immune system is 

classified into two categories: innate and adaptive (acquired) immunity, which are highly 

interactive and coordinated to provide an optimal resistance to infectious diseases. Innate 

immunity is not specific for a particular antigen. The innate immune response is the first and 

fast-acting line of host defense against the invading pathogens; this response can be localized 

within affected tissues or mobilized to the site of infection (systemic). Components of the 

innate defense include the physical barrier of the skin and mucous epithelia, leukocytes 

(macrophages, neutrophils and natural killer cells), non immune cells (epithelial and 

endothelial cells), and certain soluble mediators (cytokines, eicosanoids and APPs). Acquired 

or specific immunity is triggered if the pathogen is able to evade or is not completely 

eliminated by the innate defense system, and it involves cells called lymphocytes (B and T 

cells). If the host should encounter with the same antigen more than once, immune reactivity 

will occur as a consequence of the immunological memory. Inflammation is one of the 

hallmarks and first responses of the innate immune system to infection, and is associated with 

heat, redness, pain, swelling and impaired function. It has two main functions in order to 

remove the injurious agents and to initiate the tissue healing process. The above mentioned 

section is summarized according to Lippolis (2008) and Sordillo et al. (2009). The local 

inflammation that develops at the site of infection induces the acute phase response (APR).  

 

1.4. Acute phase response and acute phase proteins 

 
The APR is a complex systemic innate-defense system activated by trauma, infection, stress 

and inflammation to prevent tissue damage, eliminate any infective organisms and activate 

the repairing processes in order to restore homeostasis. It is induced by the release of 

inflammatory cytokines, especially Interleukin-1 (IL-1), IL-6 and TNF-α from the 

macrophages or blood monocytes at the site of inflammatory lesions or infections. These 

inflammatory mediators set of both the local effects on adjacent cells (leukocytes, fibroblasts, 

smooth muscle cells and endothelial cells), and systemic effects on other organs that can be 
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reached through the blood stream. Liver is the main site of synthesis of most APPs. Cytokines 

therefore act like mediators between the local site of injury and the hepatocytes (liver) to 

produce and release the APPs. Cytokines can also act indirectly on the APPs production via 

the hypothalamic-pituitary-adrenal (HPA) axis, which involves the secretion of corticotropin-

releasing hormone (CRH) and the adrenocorticotropic hormone (ACTH), and subsequent 

production of cortisol. However, IL-6 is the major stimulator for the hepatocytic secretion of 

most APPs. The APPs are defined as proteins whose plasma concentrations increase or 

decrease classifying them into positive (e.g. C-reactive protein (CRP), serum amyloid A 

(SAA), Hp), and negative (e.g. albumin, transferrin, transcortin) APPs, respectively. The 

maximum concentrations are usually reached within 24 - 48 h after stimulation and decline 

with recovery from the infection. The above mentioned section is based on the review of Jain 

et al. (2011). Acute phase proteins’ changes reflect the presence and intensity of 

inflammation, and they have long been used as a clinical guide for diagnosis (Petersen et al., 

2004). The production of APPs differs among species with regard to their increase in 

concentrations in response to stimuli. In humans, CRP and SAA showed the highest increases 

during an APR (Jain et al., 2011). C-reactive protein, Hp and pig major APP (pig-MAP) are 

major APPs in pigs (Carpintero et al., 2005). In cattle, there are two major APPs, Hp and 

SAA which both increase during tissue injury and disease (Grönlund et al., 2005). This work 

will mainly focus on Hp as one of the strongly reacting APPs in cattle. 

 
1.4.1. Haptoglobin 

 

1.4.1.1. Structure and phenotypes 

 

Haptoglobin is an α2-glycoprotein with haemoglobin (Hb)-binding capacity, originally 

synthesized as a single αβ polypeptide which is cleaved by a protease into α and β chains, and 

then covalently linked via disulfide bonds producing the mature Hp (Kurosky et al., 1980). 

Glycosylation is an enzymatic process that attaches glycans to proteins, lipids or other organic 

molecules, which regulates the configuration and function of glycoproteins. For instance, 

human Hp is a liver-secreted serum glycoprotein with four potential N-glycosylation sites on 

its β chain (Shu et al., 2011). However, there are two major α chain sub-units; a shorter (α1) 

and a longer (α2) variation. The α1 and α2 chains form a link to one and two other α chains, 

respectively. The Hp gene is characterized by two common alleles, Hp 1 and Hp 2. The two 

alleles give rise to three different phenotypes (Fig. 1), which are composed of two α1β units 



Introduction  6 
 

(in Hp 1-1), two α1β and variable numbers of α2β units (in Hp 2-1), or variable numbers of 

α2β units (in Hp 2-2) (Cheng et al., 2007; Lai et al., 2008). Although Hp is found in serum of 

all mammals, this polymorphism (Hp 1-1, Hp 2-1 and Hp 2-2) exists only in humans, while it 

has been suggested that the structure of Hp in ruminants is similar to human Hp 2-2 (Lai et 

al., 2008). Bovine Hp consists of multiple α and β subunits with respective molecular weights 

reported as 16 kDa (α-chains) and 40 kDa (β-chains) (Eckersall and Conner, 1990) or 20 kDa 

peptide (α-chains) and 35 kDa glycopeptide (β-chains) (Morimatsu et al., 1991). In 

circulation, it is highly polymerized having a molecular weight of approximately 1000-2000 

kDa (Godson et al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A schematic model illustrating the structure of human Hp phenotypes. Hp 1-1 
represents a homodimer, the simplest combination of dimeric α1β chains (α1β)2. Hp 2-
2 is heterogeneous in size, starting with cyclic trimeric α2β chains (α2β)3 and other 
cyclic polymers. Hp 2-1 is also heterogeneous, but composed of simple homodimer 
(α1β)2, a linear trimeric αβ chain (αβ)3, and other linear polymers; where α represents 
a mixture of α1 and α2 chains. All types share a common structure of the β chain 
(Cheng et al., 2007).  

 
 
1.4.1.2. Sites of production  

 

Haptoglobin is mainly produced by the liver and secreted into the serum. Besides blood 

serum, Hp is found in bovine milk (Hiss et al., 2004), in human cord serum, cerebrospinal 

fluid, amniotic and vaginal fluids (Katnik and Dobryszycka, 1990), and in porcine saliva 

(Hiss et al., 2003). Haptoglobin messenger ribonucleic acid (mRNA) expression has been 
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reported under normal and inflammatory conditions in a variety of organs and tissues of mice 

including lungs, skin, spleen and kidneys (D’Armiento et al., 1997), adrenal gland, ovary and 

uterus (Friedrichs et al., 1995). For cattle, Hp mRNA is reportedly expressed in mammary 

gland (Hiss et al., 2004; Thielen et al., 2005), oviduct and liver (Lavery et al., 2004), and 

leukocytes (Thielen et al., 2005). There is a growing body of evidence indicating that Hp 

mRNA is expressed in AT. It was suggested that Hp is also involved in obesity because its 

serum concentrations are increased in obese humans (Chiellini et al., 2004), and this is 

consistent with the concept that obesity is a state of chronic mild inflammation (do 

Nascimento et al., 2004). In this regard, Friedrichs et al. (1995), Chiellini et al. (2002) and do 

Nascimento et al. (2004) reported that Hp gene is expressed in AT in normal and obese mice. 

Similarly, Hp gene expression has also been identified in human AT (do Nascimento et al., 

2004). The above mentioned authors concluded that Hp synthesis occurs in adipocytes rather 

than in other cell types within AT. Moreover, there are differences among the different AT 

depots in terms of Hp expression, i.e. VC depots release more Hp than SC depots in humans 

(Fain et al., 2004).  

 
1.4.1.3. Physiological functions  

 

The main function of Hp is binding Hb to prevent losses of iron via urine after haemolysis, 

thereby protecting tissues from being damaged by free Hb (Langlois et al., 1996; Petersen et 

al., 2004). The Hp-Hb complex has several other benefits: (1) it restricts the availability of 

iron necessary for bacterial growth, and thus inhibits bacterial activity (Delanghe et al., 1998); 

(2) it scavenges the Hb-driven free radicals (superoxide (O2
-) and hydroxyl (OH)) during 

oxidative stress (Melamed-Frank et al., 2001); (3) it inhibits nitric oxide, which is a potent 

vasodilator molecule that is produced by vascular endothelial cells (Edwards et al., 1986); and 

(4) it inhibits eicosanoid (prostaglandin) synthesis (Komoriya et al., 1980), hence Hp is 

suggested as an anti-inflammatory agent. Haptoglobin also exhibits other activities. For 

instance, Hp has been identified as a strong angiogenic agent required for proliferation and 

differentiation of endothelial cells in the formation of new blood vessels (Park et al., 2009), 

and as a modulator of the immune system, i.e. it inhibits the activation of neutrophils (Oh et 

al., 1990). Haptoglobin in AT might act as a monocyte chemoattractant factor (Maffei et al., 

2009), and as an antioxidant or angiogenesis agent (do Nascimento et al., 2009). 
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1.4.1.4. Haptoglobin as an indicator for health status 

 

In cattle and other ruminants, Hp is suggested as a marker of inflammation. In healthy cattle, 

Hp blood concentrations are low or even undetectable (Eckersall et al., 2001), but increase 

over 1000-fold (Eckersall et al., 2006) upon immune stimulation. For milk, a 160-fold 

increase in Hp concentrations has been observed after intramammary challenge with 

lipopolysaccharide (Hiss et al., 2004). Several studies have indicated the significance of Hp in 

serum for identifying the occurrence and severity of inflammatory responses such as mastitis 

(Eckersall et al., 2006; Hiss et al., 2007), and metritis (Chan et al., 2004; Huzzey et al., 2009). 

Elevated Hp concentrations occur with some conditions not generally associated with 

inflammation or tissue damage such as fatty liver (Nakagawa et al., 1997), and stress 

associated with transportation for 2 days (Murata and Miyamoto, 1993). Elevated Hp 

concentrations were also observed after surgical castration in bull calves (Fisher et al., 2001), 

and tail docking in heifers (Eicher et al., 2000). Several studies have been conducted to define 

the cut-off values for serum Hp to discriminate between healthy and diseased animals. In this 

regard, a cut-off value for serum Hp of 0.15 mg/mL was defined in dairy heifer calves with 

respiratory-tract disease, whereby sensitivity and specificity were 72% and 59%, respectively 

(Svensson et al., 2007). A cut-off value of 0.05 mg/mL was used to differentiate between 

healthy cows and those with mastitis, whereby sensitivity and specificity were 83% and 90%, 

respectively (Eckersall et al., 2001). In milk, to distinguish between healthy quarters and 

those with subclinical mastitis a cut-off value of 2.2 µg/mL was determined by Hiss et al. 

(2007), whereby sensitivity and specificity were 85% and 92%, respectively.  

 
1.5. Leptin 

 

1.5.1. Structure 

 

The product of the obese gene (ob), which was discovered in the mid-1990s by Zhang et al. 

(1994), was named leptin (derived from the Greek term leptos meaning thin). Leptin, a 16-

kDa protein consisting of 146 amino acids is released into the blood after cleavage of the 21 

amino acid signal peptide (Zhang et al., 1994). Leptin is a four-helix protein and contains a 

short helical segment (Fig. 2), which is similar to the structure of the cytokine-family (Zhang 

et al., 1997). Leptin contains one single disulfide bond that links two cysteines (Fig. 2), and 
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this bond has been proven critical for the structural integrity and stability of leptin (Rock et 

al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Ribbon diagram of the ob protein. The view is perpendicular to the four helical 
bundle axis (A, B, C and D), the additional short helical segment (E), and the 
connecting loops AB, BC and CD. The N and C terminal are indicated. The 
disulphide bridge between the C-terminal Cys 146 and Cys 96 in the AB loop is 
represented with ball-and-stick model (Zhang et al., 1997; Liefers, 2004). 

 
1.5.2. Occurrence and sites of production 

 
Leptin is an adipose-derived hormone that regulates a wide variety of physiological processes 

including appetite and EB, and it is also involved in the regulation of reproduction, 

neuroendocrine and immune function (Ahima and Flier, 2000; Ingvartsen and Boisclair, 

2001). Despite the evidence that leptin is produced mainly by adipocytes, other sites of it’s 

gene expression have been reported such as mammary gland (Casabiell et al., 1997), placental 

and fetal tissues (Masuzaki et al., 1997; Hoggard et al., 1998), stomach (Bado et al., 1998), 

muscles (Wang et al., 1998), hypothalamus and pituitary gland (Morash et al., 2000) and 

brown AT (Cinti et al., 1997). Leptin expression is influenced by the status of energy stores, 

but other metabolic and endocrine factors participate in regulating leptin production. Leptin 

synthesis is stimulated by obesity, insulin (Saladin et al., 1995), glucocorticoids (Slieker et al., 

1996), infection, endotoxins, cytokines (Grunfeld et al., 1996), glucose, lipids and estrogens 

(Wang et al., 1998), whereas it is inhibited by thyroid hormones (Escobar-Morreale et al., 

1997), fasting, cold, physical activity and testosterone (Castracane et al., 1998).  
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1.5.3. Role of leptin in food intake and body weight regulation  

 

Leptin is primarily produced in the AT as mentioned before, and acts via a family of 

membrane bound receptors. A total of six leptin receptor isoforms in different tissues was 

reported. One isoform with a long intracellular domain (ob-Rb) is predominantly expressed in 

the hypothalamic regions, and is involved in the regulation of food intake and energy 

homeostasis (Elmquist et al., 1998). Within the central nervous system (CNS), the 

hypothalamus is the main site of leptin action with respect to control food intake and energy 

expenditure (Ingvartsen and Boisclair, 2001). Therefore, leptin must enter the brain cavity to 

act on the CNS. Most of the plasma proteins enter the brain via the blood-cerebrospinal fluid 

barrier at the blood-brain barrier at the cerebral endothelium (Pardrige, 1998). Neuropeptide 

Y (NPY) is secreted by the hypothalamus and regulates food intake; leptin binds to ob-Rb 

receptors that are mainly localized on NPY neurons and thereby inhibits the signaling of 

NPY, resulting in a reduction of feed intake and an increase of energy expenditure (Jang et al., 

2000). Further, plasma leptin concentrations are affected by changes in the plane of nutrient 

supply. In sheep, feeding restricted to 39% of the maintenance energy requirements (MER) 

for 3 d (Delavaud et al., 2000), and to 38% of the MER for 14 weeks (Morrison et al., 2001) 

decreases plasma leptin concentrations. Complete food deprivation causes a rapid fall in 

plasma leptin within 24 h in sheep (Marie et al., 2001). In contrast, increasing the dietary 

intake from moderate to high in pregnant ewes and adult rams increases the concentrations of 

plasma leptin (Blache et al., 2000; Thomas et al., 2001). In humans and rodents, leptin is 

synthesized in proportion to the overall degree of adiposity (Friedman and Halaas, 1998). 

Similar relationships have been observed between leptin and body fatness in sheep (Blache et 

al., 2000; Thomas et al., 2001; Altmann et al., 2006), body condition score (BCS) (Ehrhardt et 

al., 2000; Delavaud et al., 2002) and adipocyte size in cows (Delavaud et al., 2002).  

 
1.5.4. Role of leptin in reproduction 

 

Leptin is involved in the regulation of reproductive functions; it stimulates the production of 

the gonadotropins (luteinizing hormone (LH) and follicle stimulating hormone (FSH)) from 

the hypophysis via gonadotrophin-releasing hormone (GnRH) neurons in the hypothalamus 

(Amstalden et al., 2003). Since leptin is involved in the regulation of food intake, body weight 

(BW) and reproductive function, it is an interesting hormone to be investigated during the 

periparturient period in dairy cattle when many changes take place both in energy metabolism 
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and reproductive physiology. During pregnancy, leptin concentrations are high, and then 

decline rapidly towards parturition (Holtenius et al., 2003; Hachenberg et al., 2007; Duske et 

al., 2009). These high concentrations of leptin during pregnancy are due to an increase in 

body fat reserves and a concomitant increase in leptin mRNA expression in AT (Ehrhardt et 

al., 2001). The decline in plasma leptin concentrations towards parturition with the onset of 

NEB is probably caused by the inhibition of leptin expression in AT (Block et al., 2001), and 

mobilization of AT (Liefers et al., 2005). Another reason is the regulation of leptin expression 

by insulin and GH. The onset of NEB around parturition is also associated with decreased 

plasma insulin and increased plasma GH (Block et al., 2003), suggesting that both hormones 

could mediate a portion of the effect of EB on plasma leptin. As mentioned before, leptin is 

involved in the regulation of immune function, therefore the reduction in leptin concentrations 

of early lactating cows could contribute to the development of depressed immunity as 

suggested in fasted mice that leptin has a specific effect on T lymphocyte responses, 

differentially regulating the proliferation of naive and memory T cells (Lord et al., 1998). 

Furthermore, leptin increases helper T-cell type 1 and suppresses helper T-cell type 2 

cytokine production (Lord et al., 1998). In addition, changes in leptin concentrations of early 

lactating cows could participate in the co-ordination of metabolism through promoting a faster 

increase in voluntary feed intake (Block et al., 2001; Holtenius et al., 2003).  

 
1.6. Nutritional considerations during the transition period 

 

Most of the attempts to improve the energy status and minimize the extent and the duration of 

NEB have been approached by increasing the energy density of the diet by feeding dietary fat 

sources and increasing non-fiber carbohydrates (e.g. grain-based supplements) (Grummer, 

2007). Supplemental fats have proven to be beneficial for improving energy intake and 

reducing an energy deficit in early lactation. Moreover, feeding supplemental fat could reduce 

FA mobilization from AT and potentially reduce the incidence of ketosis (Kronfeld, 1982), 

improve the reproductive efficiency (Staples et al., 1998), and modulate the immune reaction 

(Calder et al., 2008). In contrast, fat feeding can often result in a depression of DMI due to the 

effect of fat on ruminal fermentation and gut motility, the decrease of palatability and the 

increased rate of FA oxidation in the liver (Allen, 2000). Protecting FA from the degradation 

by rumen bacteria which will be mentioned later, makes them partially inert in the rumen and 

sometimes can prevent a depression in DMI (Jenkins and Palmquist, 1984). The duration 

(long- or short-term) of the exposure to the fat feeding, amount and type of FA differ among 
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studies. A new interest is directed to CLA, as one of the FA that play a role in the reduction of 

milk fat percentage during lactation in cows. The following section will provide the current 

knowledge about CLA and it’s interaction with Hp and leptin. 

 
1.6.1. Conjugated linoleic acids 

 
1.6.1.1. Structure, biological and commercial formation of conjugated linoleic acids  

 

Fatty acids are playing a central role in metabolism as energy storing units and major building 

blocks for cellular membranes. Linoleic acids (C18:2), the major FA in most oilseeds, and 

linolenic acid (C18:3), the major FA in fresh forages, are considered as essential FA because 

they cannot be synthesized by mammals or by ruminal microorganisms. Both are 

polyunsaturated fatty acids (PUFA) in that they have more than one double bond. Chilliard et 

al. (2000) proposed that 80% of dietary linoleic acids are biohydrogenated in rumen due to the 

toxicity of PUFA to many rumen microorganisms. One of the biohydrogenation intermediates 

is CLA. Conjugated linoleic acids refer to a group of PUFA that exist as positional and 

geometric isomers of linoleic acid (Gudbrandsen et al., 2009). The term conjugated pertains to 

the chemical bond system, in which two double bonds are linked by a single bond. Further, 

each of these positional conjugated diene isomers occurs in cis (c) or trans (t) configurations 

(Aydin, 2005). 

The existence of CLA is known since over 70 years. In 1935, it was observed that ultraviolet 

absorbance at 230 nm of milk fat increased when cattle were driven out to pasture in spring 

(Booth et al., 1935). However, the recent interest in CLA began with the isolation from meat 

as an anti-carcinogenic factor in mice and rats (Pariza and Hargraves, 1985). Nine different 

positional and geometric isomers of CLA are reported by Ha et al. (1989), whereby the (c-9, 

t-11), (t-10, c-12), (t-9, t-11) and (t-10, t-12) isomers account for more than 89% of total 

naturally occurring CLA, while the (c-9, c-11), (t-9, c-11), (c-10, c-12), (c-10, t-12) and (c-11, 

c-13) isomers are minor contributors. Of the isomers, the c-9, t-11 is the predominant natural 

CLA isomer derived mainly from ruminant meat and milk products (Raff et al., 2008). The 

chemical structures of linoleic acid, the c-9, t-11 and the t-10, c-12 isomers are shown in Fig. 

3. Food lipids from ruminants (dairy products, beef and lamb) contain considerably more 

CLA than lipids from non-ruminants. Concentrations in dairy products are variable and range 

from 3 to 9 mg/g fat (MacDonald, 2000). Beef contains 1 - 10 mg/g fat with slightly higher 

concentrations (4 - 19 mg/g fat) in lamb (Schmid et al., 2006). The concentrations in fats from 

non-ruminants and vegetable oils typically range from 0.6 to 0.9 mg/g fat (Chin et al., 1992). 



Introduction  13 
 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3. Structure of linoleic acid (top), c-9, t-11 CLA (mid) and t-10, c-12 CLA (bottom). 
Double bond positions are indicated by numbers (Aydin, 2005). 

 
 
Two pathways are contributing to CLA biosynthesis (Fig. 4). The first pathway is the 

formation of CLA during the ruminal biohydrogenation of linoleic acid, where the sequential 

reduction steps convert linoleic acid (C18:2 c-9, c-12) to the c-9, t-11 CLA, then to vaccenic 

acid (C18:1, t-11) and eventually to stearic acid (C18:0) by a rumen microorganism, i.e. by 

Butyrivibrio fibrisolvens (Bauman et al., 2000). The second synthetic pathway arises when the 

dietary supply of unsaturated FA is high, or the biohydrogenation process may be incomplete. 

Conjugated linoleic acid can then escape the rumen and become available for absorption in 

the lower digestive tract, thus providing a source of CLA to the mammary gland and AT 

through desaturation of C18:1, t-11 by ∆9-desaturase (Griinari and Bauman, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Role of rumen biohydrogenation and tissue ∆
9
-desaturase in the production of c-

9, t-11 conjugated linoleic acid in ruminant fat (Bauman et al., 2000). 
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The commercial CLA supplements are isomeric mixtures usually containing the t-10, c-12 

and the c-9, t-11 isomers in equal amounts. The CLA are commercially manufactured by: (1) 

alkali isomerization of linoleic acid (Yang et al., 2002); (2) dehydration of ricinoleic acid 

methyl ester (Body and Shorland, 1965); and (3) microbial synthesis of c-9, t-11 from linoleic 

acid using cultures of different microorganisms (Pariza and Yang, 1999). Several techniques 

are used to protect fat supplements from the degradation by rumen bacteria. These include the 

formation of calcium salts, amide linkages, formaldehyde treatment and lipid encapsulation 

(Moon et al., 2008). 

 
1.6.1.2. Physiological effects of conjugated linoleic acids  

 
A plethora of physiological effects in a wide range of experimental animals has been 

attributed to CLA including actions as an anti-adipogenic, anti-diabetogenic, anti-

carcinogenic, and anti-atherosclerotic factor (Belury, 2002; Wang and Jones, 2004). In 

addition, CLA affects the rate of bone formation as reported in rats (Li et al., 1999). The 

beneficial effects of CLA have been extended to include reduction in BW, food and energy 

intakes, and change in body composition, as well as beneficial regulatory effects on the 

immune functions. Moreover, CLA supplementation modulates lipid metabolism and leads to 

milk fat depression in lactating cows (Kay et al., 2007; Bauman et al., 2008). There appears to 

be an isomer-specific effect of CLA: the t-10, c-12 CLA isomer inhibits bovine milk fat 

synthesis (Baumgard et al., 2002). This isomer is much more effective at lowering BW and 

AT mass than the c-9, t-11 CLA isomer in mice (Park et al., 1999). On the other hand, 

adverse effects of CLA are described in some experimental animals such as inflammatory 

effects induced by the t-10, c-12 CLA isomer (Poirier et al., 2006), increased fat accumulation 

in the liver and eventual development of insulin resistance using an equimolar mixture of c-9, 

t-11 and t-10, c-12 CLA isomer (Tsuboyama-Kasaoka et al., 2000). Special emphasis in the 

up-coming sections will be given on the effect of CLA on BW and body composition as well 

as the immune modulatory functions of CLA.  

 
Feeding a mixture of CLA isomers has been reported to reduce BW gain in rats (Ryder et al., 

2001) and mice (Park et al., 1999). These studies illustrate that the reduction in BW is due to 

the action of the t-10, c-12 CLA isomer, whereas others observed no effect on BW (Yamasaki 

et al., 2003). The ability of CLA to lower AT mass by reducing the accumulation of 

triglycerides in adipocytes has been demonstrated in humans (Smedman and Vessby, 2001; 
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Thom et al., 2001), mice (DeLany et al., 1999), and pigs (Ostrowska et al., 1999). 

Furthermore, CLA induced a reduction in adipocyte size in rats (Poulos et al., 2001), mice 

(Tsuboyama-Kasaoka et al., 2000), and in dairy cows (Akter et al., 2011). Also, CLA has 

been reported to modulate adipokine production. For example, circulating leptin is reduced in 

rats fed 2% CLA (by diet weight; mixed isomers) for 12 weeks (Yamasaki et al., 2000), 1.5% 

CLA of the diet for 3 weeks (Yamasaki et al., 2003), and 1% CLA (of the diet weight) mixed 

isomers for 4 weeks (Rahman et al., 2001). Moreover, Parra et al. (2010) reported that when 

mice received two doses of 3 and 10 mg/d CLA (50:50 blend of c-9, t-11 and t-10, c-12 

isomers) for 30 days and twice the amounts for another 35 days, leptin concentrations were 

decreased with increasing the CLA dose associated with reductions in fat accumulation, 

NEFA and adiponectin. In humans, 3 g/d CLA (mixed isomers) for 64 days cause a reduction 

in leptin concentrations without any remarkable change in fat mass (Medina et al., 2000). 

Conversely, several studies reported that dietary CLA supplementation had no effect on leptin 

concentrations in beef heifers fed 2% (of total ration on dry matter (DM) basis) rumen-

protected CLA salts (a mixture of Ca-salts of palm oil FA with 31% CLA (27.2% c-9, t-11; 

32.8% t-10, c-12; 10.6% t-8, c-10; 18.95% c-11, t-13 and 10.5% various t, t CLA isomers)) on 

the last 32 or 60 days before slaughter (Gillis et al., 2004b), and in dairy cattle in mid to late 

lactation receiving 10 g/d abomasal infusions of either c-9, t-11 or t-10, c-12 CLA isomer for 

5 days (Baumgard et al., 2002). 

 
The mechanisms by which the CLA reduce adiposity are not only attributed to the reduction 

in food and energy intakes, but also involve other pathways including increasing the 

metabolic rate, energy expenditure, lipolysis and fat oxidation, and decreasing lipogenesis 

(Wang and Jones, 2004). Peroxisome-proliferator-activated receptors (PPAR) are a group of 

nuclear receptor proteins that function as transcription factors regulating the expression of 

genes and playing essential roles in the regulation of cellular differentiation, inflammation 

and metabolism (Kersten, 2002). Three different PPAR isotypes were identified: α, β and γ. 

However, the reasons for the effect of CLA on leptin could be that CLA act as a ligand that 

activates PPARγ (Medina et al., 2000), which might then reduce leptin gene expression. 

Conjugated linoleic acids are incorporated into the phospholipid fraction of cell membrane 

and might thereby have effects on signal transducing pathways and modify leptin production 

(Medina et al., 2000).  
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Fig. 5. Schematic diagram of putative cellular and molecular mechanisms of conjugated 

linoleic acids in modulating systemic conditions such as adiposity and 

inflammation (Belury, 2002). Abbreviations: COX = cyclooxygenase, LOX = lipoxygenase, 
PPRE = peroxisome proliferator response element, RXR = retinoid X receptor, 9CisRA = retinoic acid, 
n = α, β, γ. 

 

Fatty acids are important modulators of the immune system (Calder, 2008; Serhan et al., 

2008). In a number of different animals, CLA has been suggested to have anti-inflammatory 

and/or immune-ameliorating effects mediated partly by PPARγ (Yu et al., 2002). One of the 

perceived mechanisms by which CLA exerts its health effects in animals is through 

modulating the formation of eicosanoids through cyclooxygenase (COX) and lipoxygenase 

(LOX) pathways (Fig. 5), thus exerting a complex control mainly in inflammation and 

regulation of cytokine synthesis (Belury, 2002). Aspects of both the innate and the adaptive 

immune responses are affected by dietary CLA supplementation. O’Shea et al. (2004) 

reported that CLA decreased TNF-α and IL-6, and the c-9, t-11 and t-10, c-12 CLA isomers 

exerted distinct effects on T cell populations and immunoglobulin subclasses in rats. 

However, there is limited supporting information about the effect of CLA on APPs. In this 

regard, Noto et al. (2007) showed that rats fed 1.5% (1.5 g/100 g of total ration) CLA isomers 

(t-10, c-12; c-9, t-11; c-11, t-13 and t-8, c-10) for 8 weeks had lower serum Hp concentrations 

and adipose TNF-α mRNA, but no difference in liver Hp mRNA abundance was detected. 

However, on other inflammation markers, it has been shown that 3.4 g/d CLA (purified t-10, 

c-12) in men with metabolic syndrome for 12 weeks increase significantly CRP (2.2-fold), but 
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no significant increase was found for TNF-α and IL-6 (Risérus et al., 2002). In non obese 

humans, 3.2 g/d CLA (equal amounts of c-9, t-11 and t-10, c-12 isomers) for 12 weeks 

increased CRP, but CLA supplementation did not have any significant effect with regard to 

plasma concentrations of TNF-α (Smedman et al., 2005). In contrast, Moloney et al. (2004) 

found no effect of 3 g/d CLA (50:50 blend of c-9, t-11 and t-10, c-12) supplemented for 8 

weeks on CRP or IL-6 in humans. 

 

1.7. Study objectives  

 

Considering the immuno-compromised situation in early lactation and the comprehensive 

changes in fat mass during the lactation cycle of dairy cows, management of the transition 

cows emerged to underpin production and profitability on dairy farms. However, in dairy 

cows CLA is known to decrease milk fat percentage during lactation and decrease energy 

output during early lactation. It is still unknown if long-term nutritional supplementation with 

CLA could stimulate or inhibit the expression of the inflammatory response and adipokines, 

particularly in ruminant animals. Although Hp has been extensively studied under various 

inflammatory and non-inflammatory conditions, the effect of long-term CLA supplementation 

on this protein has not yet been investigated. The liver is reported as the main site of Hp 

production, but other sites of production were proved such as AT in humans and mice, but, 

however, less is known in ruminants. Researches on how long-term CLA supplementation 

may alter circulating leptin concentrations are limited. Finally, as early lactating cows 

mobilize AT under conditions of NEB, the initial step in non-lactating cows to overcome the 

energy deficit is the mobilization of an excessive quantity of AT. Thus, the question arises if 

there is any change in the concentrations of Hp and leptin in non-lactating, non-pregnant cows 

undergoing fat mobilization.  

Bearing in mind the above mentioned circumstances, the current study was undertaken to:  

1. Characterize the concentrations of Hp and leptin throughout the entire lactation period or 

early lactation in both heifers and cows.  

2. Investigate the potential effect of long-term CLA supplementation on the concentrations of 

Hp and leptin in dairy cows. 

3. Examine the presence of Hp in bovine AT using immunohistochemistry (IHC) and Western 

immunoblotting. 

4. Examine the effect of moderate feed restriction and re-feeding on the concentrations of Hp 

and leptin in non-lactating, non-pregnant heifers. 
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2. Materials and methods 

 

2.1. Animals, experiments and diets  

 

Samples from four different studies were used in this work. The first experiment was 

conducted to characterize the concentrations of Hp and leptin throughout lactation and to 

evaluate the effects of two different doses of CLA supplementation. This experiment 

comprised heifers and cows observed from d 21 ante partum (AP) until d 252 post partum 

(PP) and was named “CLA-252 days in milk (DIM)”. In addition, a further experiment using 

a CLA supplementation was done in heifers investigated from d 21 AP until d 105 PP. In this 

experiment, the animals were sequentially slaughtered for collection of post mortem (PM) 

tissue samples. This experiment was termed “CLA-PM-105 DIM”. The third experiment 

“Concentrate-roughage ratio” was conducted (d 21 AP - d 21 PP) using cows fed either low 

or high concentrate. A fourth experiment “Fat heifers restriction” using non-lactating, non-

pregnant heifers fed either grass silage or grass silage diluted with straw was performed to 

examine the effect of moderate feed restriction and re-feeding on the concentrations of Hp 

and leptin. The ingredients and chemical composition of the animals’ diets in the different 

studies are listed in the appendix A (Tab. A1 - A7). 

 
2.1.1. Conjugated linoleic acid studies 

 

All animals’ experiments were conducted according to the European Union regulations and 

were approved by the lower saxony state office for consumer protection and food safety 

(LAVES, file number 33.11.42502-04-071/07, Oldenburg, Germany), and described in detail 

by Pappritz et al. (2011) and von Soosten et al. (2011). All animals were housed in group pens 

in a free stall barn equipped with slatted floors and stalls covered with rubber mattresses at the 

experimental station of the Friedrich Loeffler Institute, Federal Research Institute for Animal 

Health, Braunschweig, Germany. Each group pen was equipped with a computerized 

concentrate and a partial mixed ration (PMR) feeding station (Type RIC, Insentec, B.V., 

Marknesse, The Netherlands). In addition, all animals were marked with an ear transponder to 

record the daily individual feed intake. Two experiments were performed; the CLA-252 DIM 

and the CLA-PM-105 DIM experiments, and all diets used were formulated according to the 

recommendation of the German Society of Nutrition Physiology (GfE, 2001). The BCS of 

each animal was recorded by using a five-point system (Edmonson et al., 1989). Milking took 
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place twice daily and the BW was automatically recorded when leaving the milking parlour. 

The occurred disease events were recorded during milking by the milking staff or during the 

daily animals control by the stockmen and/or the veterinarian, and when indicated, the 

animals were attended by the veterinarian. Abnormal vaginal discharges were classified as 

metritis. Cows with clinical mastitis were identified by farm personnel based on the presence 

of abnormal milk (presence of flakes, clots or altered color and viscosity). The somatic cell 

count (SCC) was measured by infrared milk analyzer (Milkoscan FT 6000 combined with a 

Fossomatic 5000, Foss Electric, Hillerod, Denmark) (von Soosten et al., 2011). The disease 

incidence rate was defined as the number of disease event cases divided by the total number 

of animals during the observation period according to Kelton et al. (1998). 

 
2.1.1.1. CLA-252 DIM experiment 

 
2.1.1.1.1. Treatments and diets 

 

German Holstein-Friesian cows (n = 33) and heifers (n = 16) were investigated from d 21 AP 

until d 252 of the subsequent lactation. The animals were randomly allocated to three dietary 

treatments taking into account the mean number of lactation (1.9 ± 0.1), the live weight (627 

± 9 kg), and the milk yield of the previous lactation (5,797 ± 122 kg, 200-d milk yield) for the 

cows. The dietary treatments were: (1) 100 g/d of control fat supplement (Silafat, BASF SE, 

Ludwigshafen, Germany; CTR: 11 cows and 5 heifers); (2) 50 g/d of rumen-protected 

commercial CLA supplement (lipid encapsulation method; Lutrell Pure, BASF SE, 

Ludwigshafen, Germany; CLA-50: 11 cows and 6 heifers) and 50 g/d of CTR fat supplement; 

and (3) 100 g/d of CLA (CLA-100: 11 cows and 5 heifers). The CLA supplementation started 

on d 1 PP and lasted until d 182 PP. In the AP period, all animals were received a diet 

consisting of PMR (40% grass silage (5.4 MJ NEL/kg) and 60% corn silage (6.4 MJ NEL/kg))  

on DM basis as ad libitum consumption and 2 kg/d concentrate (6.7 MJ NEL/kg) from the 

computerized concentrate feeding station (Tab. A1). During the supplementation period, the 

animals were fed PMR (6.8 MJ NEL/kg) ad libitum consisting of 63% silage and 37% 

concentrate on DM basis, and additionally each animal received 4 kg concentrate (8.8 MJ 

NEL/kg) from the concentrate station containing either 50 or 100 g/d of CLA supplement and 

50 g of CTR fat supplement (Tab. A2; Pappritz et al., 2011). During the post-treatment period 

(d 189 - 252 PP), the animals received only PMR without concentrate. The CLA supplement 

included 78% FA with a proportion of approximately 12% of the t-10, c-12 and c-9, t-11 CLA 



Materials and methods  20 
 

isomers in equal parts. In the CTR fat supplement, these isomers were substituted by a 

corresponding amount of stearic acid (C18:0). The FA profiles for both of CLA and CTR fat 

supplements are shown in Tab. A3 (Pappritz et al., 2011; von Soosten et al., 2011). The 

concentration of the t-10, c-12 CLA isomer in concentrates and silages was calculated based 

on the analyzed concentrations in these feed components. In the CLA concentrate, the 

concentration of the t-10, c-12 CLA isomer amounted to 2.25 g/kg DM (Tab. A2; Pappritz et 

al., 2011). Thus, the CLA-50 and CLA-100 groups had intakes of 4 and 8 g of t-10, c-12 

CLA/d, respectively.  

 
2.1.1.1.2. Blood collection 

 

Blood samples were drawn from the Vena jugularis externa on d –21, –14, –7, 1, 7, 14, 21, 

35, 49, 70, 105, 140, 182, 189, 196, 210, 224, 238, and 252 relative to parturition as shown in 

Fig. 6. The centrifugation of serum was performed after sampling, and the samples were 

stored at –80°C until analyzed (Pappritz et al., 2011).   

 

 

 

 

 

Fig. 6. Diagram of the experimental design and blood collection for the CLA-252 DIM 

experiment. 

 

2.1.1.2. CLA-PM-105 DIM experiment 

 

2.1.1.2.1. Treatments and diets 

 

German Holstein-Friesian heifers (n = 25) with an average age at first parturition of 23 ± 0.2 

months were used. The experiment started on d 21 AP and continued until d 105 PP. Before 

parturition, the heifers were kept in group pens and fed ad libitum with PMR (6.7 MJ NEL/kg) 

comprising of 60% corn silage and 40% grass silage as well as 2 kg concentrate (6.7 MJ 

NEL/kg) (Tab. A4; von Soosten et al., 2011). The heifers, which received the CTR (Silafat) or 

CLA (Lutrell Pure) after parturition, were housed in two group pens according to their diet. 

The PMR fed during the PP consisted of 25% grass silage, 38% corn silage and 37% PMR-

concentrate on a DM basis. In addition, 4 kg concentrate containing the CTR fat or CLA 

supplements (100 g/d each) were fed (Tab. A5; von Soosten et al., 2011). The CLA 

CLA supplementation 

  -21    -7      7      21    35     49      63     77    91    105   119  133  147   161   175   189   203   217   231  245   

Day of  
blood  

collection 
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supplementation started on d 1 PP and continued until slaughter. On the day of parturition, 5 

animals were slaughtered for determining the body composition and the weight of various 

organs as well as for collecting samples from SC and VC fat depots. The remaining 20 heifers 

were randomly allocated to either CTR fat supplement (100 g/d, n = 10) or CLA supplement 

(100 g/d, n = 10). Five animals each of the CTR and CLA group were then slaughtered on d 

42 PP and on d 105 PP. The FA profiles for both of CLA and CTR fat supplements are shown 

in Tab. A3 (Pappritz et al., 2011; von Soosten et al., 2011). The CLA concentrate contained 

1.7% of the t-10, c-12 and 1.6% of the c-9, t-11 CLA isomers (Tab. A5; von Soosten et al., 

2011). The heifers of the CLA group consumed 6 g/d and 5.7 g/d of the t-10, c-12 and c-9, t-

11 CLA isomers, respectively.  

 

2.1.1.2.2. Sample collection  

 

Samples of blood, milk and AT were collected for the CLA-PM-105 DIM experiment as 

demonstrated in Fig. 7. Blood samples were collected from the vena jugularis externa on d –

21, –14, –7, –3, 1 (n = 25), 7, 14, 21, 28, 42 (n = 20) and 105 (n = 10) relative to parturition. 

The centrifugation of serum was performed after sampling, and the samples were stored at –

80°C until analyzed (von Soosten et al., 2011). Milk samples were collected from each 

quarter of the 25 heifers on the respective slaughter days (d 1, 42 and 105) during the morning 

milking. After stunning and exsanguination, AT from 3 SC depots (tailhead, withers and 

sternum) and 3 VC depots (omental, mesenteric and retroperitoneal) were sampled and 

immediately fixed in 4% paraformaldehyde overnight. All AT depots were then dissected and 

weighted.  

 

 

 

 

 

 

 

 

 

 

Fig. 7. Diagram of the experimental design and sample collection for the CLA-PM-105 

DIM experiment. n: number of animals. 
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2.1.2. The concentrate-roughage ratio study  

 

2.1.2.1. Treatments and diets 

 

All animals were housed in a free stall barn at the experimental station of the Friedrich 

Loeffler Institute, Federal Research Institute for Animal Health, Braunschweig, Germany. The 

experimental design is described in detail by Locher et al. (2011). In brief, German Holstein 

dairy cows (n = 20) with a mean lactation number of 2.7 ± 0.18 were investigated from d 21 

AP until d 21 PP. The cows were randomly allocated to two dietary treatments after calving. 

The first treatment was a low concentrate diet (LC, n = 10), in which the animals were fed as 

a total mixed ration (TMR) consisting of 30% concentrate (8.3 MJ NEL/kg) and 70% 

roughage based on DM content. The second treatment was a high concentrate diet (HC, n = 

10), in which the animals were fed a TMR consisting of 60% concentrate (8.2 MJ NEL/kg) 

and 40% roughage. The feed ingredients and chemical composition of the PP diet are shown 

in Tab. A6 (Locher et al., 2011). During the experiment, no clinically relevant health 

problems occurred. Treatments were conducted according to the European Union regulations 

and were approved by LAVES, Germany (file number 33.14-42502-04-085/09). 

 
2.1.2.2. Blood collection 

 

Blood samples were harvested on d –21, –14, –7, –3, 1, 7, 14 and 21 relative to parturition. 

After centrifugation (10 min, 2,000 g), the serum was stored at –80°C until analyzed.  

 

2.1.3. The fat heifers restriction study  

 

2.1.3.1. Treatments and diets 

 

The animal experiment was approved by the North Rhine-Westphalian State Agency for 

Nature, Environment and Consumer Protection (LANUV-NRW, file number 

8.87.51.05.20.10.103, Recklinghausen, Germany). Twelve non-lactating, non-pregnant 

Simmental heifers with a mean BCS of 5 were housed in a tie stall barn at the research farm at 

Frankenforst, University of Bonn, Germany. The heifers were fed according to the 

recommendation of the German Society of Nutrition Physiology (GfE, 2001). The heifers (n = 

12), with an initial live weight of 692 ± 43.1 kg, were allocated to two different treatments 

(Fig. 8). During the adaptation period, which lasted for three weeks, all heifers received grass 
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silage (9.5 MJ/kg DM) ad libitum. After the adaptation period, the heifers were either 

continuously fed with grass silage as before (100%; n = 6), or were restricted to grass silage 

diluted with straw (hay/silage: straw mixture (8.1 MJ/kg DM) (37:63); n = 6) for 4 weeks. 

Thereafter, all animals received again the grass silage for further 3 weeks. The chemical 

composition of the diet is shown in Tab. A7. 

 
For synchronizing the heifers’ estrous cycle, progesterone-releasing intravaginal device 

(PRID®alpha, Ceva Sante Animale, Liboure, France) were inserted 12 days before the onset 

of the experiment, and were replaced regularly every 3 weeks. In addition, 2 mL 

prostaglandin (Estrumate®, Intervet, Unterschleißheim, Germany) were injected in each 

animal at the first day of progesterone-releasing intravaginal device insertion. The heifers’ 

weight was recorded at the beginning of the experiment and one day before or on each day of 

fat biopsy sampling as shown in Fig. 8.  

 

 

 

 

 

 

 

 

Fig. 8. Diagram of the experimental design and sample collection for the fat heifers 

restriction study. n: number of animals. 
 

2.1.3.2. Sample collection 

 

Blood samples were weekly collected from the coccygeal vein starting from the differential 

feeding period (Fig. 8). After centrifugation (20 min, 1,200 g, 4°C), the serum was stored at –

20°C until analyzed. Biopsy samples from SC tailhead were collected from each heifer on the 

0, 4th and 7th week (Fig. 8).  
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2.2. Laboratory analyses 

 

All chemicals, buffers and solutions used in the laboratory analyses are listed in the appendix 

C. 

 
2.2.1. Haptoglobin 

 

Haptoglobin was detected by using the following methods: an enzyme-linked immunosorbent 

assay (ELISA), immunohistochemistry (IHC) and Western immunoblotting.  

 

2.2.1.1. Measurement of haptoglobin in blood and milk by enzyme-linked 

immunosorbent assay 

 

A competitive ELISA as described by Hiss et al. (2004) was used. The assay was modified by 

Hiss et al. (2009) using a standard serum for coating the plates and for the calibration curve 

instead of Hp purified from bovine serum. The serum which was used as standard had been 

calibrated against a standard obtained from the European Union Concerted Action on the 

standardization of animal APP (QLK5-CT-1999-0153; Skinner, 2001). The limit of detection 

was 0.07 µg/mL, and the intra- and interassay coefficients of variation (CV) were 3.8% and 

5.6%, respectively. For performing the ELISA, 96 well-microtiter plates (EIA plate 9018, 

Corning Coster, Cambridge, MA) were coated with the calibrated bovine serum (dilution 

1:3,000 in coating buffer) at 4°C for 20 h. After blocking with 250 µL of 2.5% casein solution 

at room temperature (RT) for 2 h, the plates were washed 5 times with washing buffer by 

using a microtiter plate auto washer (EL405; Bio-Tek Instruments, Inc., Winooski, VT, USA), 

and stored at –20°C prior to use. To start the test, 50 µL of the standard solution at serial 

dilutions of 0.012, 0.037, 0.11, 0.33, 1, 3 and 9 µg/mL were added in duplicate. The controls 

with known concentration of Hp were added to the plate in duplicate. The samples with 50 µL 

volume were added in duplicate. Fifty µL of the antiserum (polyclonal rabbit antiserum 

against bovine Hp (dilution 1:100,000 in test buffer)) were then added and incubated for 2 h 

on a shaker (M-1000; Med Tec, New Bern, NC, USA) at RT. After 3 washes, 100 µL of the 

second antibody (goat anti-rabbit IgG coupled with horseradish peroxidase (HRP) (Sigma-

Aldrich Chemie, Taufkirchen, Germany, dilution 1:400,000 in test buffer)) were added and 

incubated for 30 min in a dark place. After 5 washes, the wells were filled with 140 µL of 

substrate solution and incubated in a dark place. The reaction was stopped after 30 min with 
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50 µL of 1 M oxalic acid, and the optical density (OD) was determined at 450 nm with a 

microplate reader (EL800; Bio-Tek Instruments). The concentrations of Hp in the samples 

were calculated from the calibration curve using the 4-parameter method of the Gen5TM data 

analysis software (Bio-Tek Instruments).  

 
2.2.1.2. Detection of haptoglobin in adipose tissue by immunohistochemistry 

 

The AT samples from the CLA-PM-105 DIM experiment were immediately fixed overnight 

in 4% paraformaldehyde (Roth, Karlsruhe, Germany, in phosphate buffered saline (PBS), pH 

7.4), dehydrated in ascending grades of isopropanol (Roth)) (40%, 70%, 80%, 96%, and 2 

times 100%), cleared in Roti®-Histol (Roth), and infiltered with a mixture of Roti®-Histol and 

melted paraffin (1:1, vol/vol) at 60°C. Finally, the samples were embedded in paraffin wax. 

The samples were cooled with Cryo-spray (Roth), sections (10 µm) were cut using a rotation 

microtome (SLEE, Mainz, Germany), mounted on SuperFrost®plus slides (Menzel, 

Braunschweig, Germany), dried at 60°C for 2 h, and hereafter at 37°C overnight. Sections 

were deparaffinized in Roti®-Histol, then gradually rehydrated in descending grades of 

isopropanol (100% (2 times), 96%, 80%, 70%, and 40%), and washed with distilled water. 

Antigen retrieval was performed with citrate buffer (0.01 mM pH 6) in a microwave oven for 

3 x 5 min at 700 W, and then the sections were allowed to cool at RT for 30 min, and washed 

with distilled water. The elimination of endogenous peroxidase activity was done using 3% 

H2O2 for 15 min, the sections were washed 3 x 5 min with PBS (pH 7.2, 0.05% Tween®-20), 

and the unspecific binding was blocked with normal goat serum (1:10) for 20 min. Thereafter, 

the sections were incubated with a polyclonal rabbit antiserum against bovine Hp (Hiss et al., 

2004; 1:2,000, in PBS) for 15 h. The sections were subsequently incubated with goat anti-

rabbit IgG coupled with HRP (1:200 in PBS) for 30 min. The sections were then stained with 

3-amino-9-ethylcarbazole (Biozol, Eching, Germany) as a substrate and counterstained in 

Mayer’s Haematoxylin (Merck Eurolab GmbH, Darmstadt, Germany). After rinsing with tap 

water for 10 min, the sections were mounted with Kaiser’s glycerol gelatin (Merck Eurolab 

GmbH). Based on previous findings that Hp mRNA is expressed in bovine leukocytes 

(Thielen et al., 2005), bovine lymph nodes were used as positive and negative controls 

(sections’ thickness: 6 µm). For negative controls, the primary antibody was replaced with 

non-immune rabbit serum. The sections were evaluated through a Leica DMLB microscope 

(Leica Microsystems, Wetzlar, Germany) at 200x magnification and photographed with a 

digital camera (JVC, Hachioji Plant of Victor Company, Tokyo, Japan). Positive cells were 
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counted within the boundaries of 10 random microscopic fields per section using DISKUS 

software (Hilgers, Königswinter, Germany), and the percentage of positive cells was 

calculated as the number of positive cells/total number of cells x 100. 

 

2.2.1.3. Detection of haptoglobin by Western immunoblotting 

 

Homogenates from fat (n = 1) and liver (n = 1) tissue samples from the CLA-PM-105 DIM 

experiment were prepared by chopping the frozen sections into small pieces. Then, the tissues 

(0.6 to 0.7 g) were transferred to Precellys®-tubes pre-filled with 1.4 mm ceramic beads 

(peQLab Biotechnology, Erlangen, Germany). Thereafter, the tubes were filled with 900 and 

600 µL of the homogenization buffer at pH 7.4 (10 mM HEPES, Applichem, Darmstadt, 

Germany) for the liver and fat tissue samples, respectively. The samples were homogenized 2 

times for 15 sec using a Precellys®24 homogenizer (peQLab Biotechnology). Afterwards, a 

protease inhibitor (CompleteTM, Roche, Mannheim, Germany) was added (45 µL/900 µL 

homogenization buffer for liver and 30 µL/600 µL homogenization buffer for fat), the 

homogenates were then vortexed, and finally centrifuged (10 min, 14,000 g). The supernatant 

was re-centrifuged (10 min, 14,000 g, 4°C), and the resulting supernant was then frozen at –

80°C.  

 

The Western immunoblotting analysis of Hp was performed as described by Hiss et al. 

(2004). The homogenized SC tailhead and liver tissue (10 µg/lane) as well as one bovine 

serum sample (1:200 in H2O) were each mixed with 1 µL dithiothreitol (5 M DTT, 

Applichem) and 10 µL sample buffer (5-fold, 20% sodium dodecyl sulfate (SDS)), boiled at 

95.7°C for 8 min and centrifuged (5 min, 10,000 g). The biotinylated molecular weight 

marker (RPN 2107, GE Health Care, Amersham, Buckinghamshire, UK) (5 µg/lane) was 

used, and boiled at 97.5°C for 8 min. The marker and samples were loaded on 5.6% stacking 

gel and separated using 12% resolving gel of acrylamide (Roth). The SDS polyacrylamide gel 

electrophoresis (PAGE) was performed starting with 50 V for 30 min, and then followed by 

150 V (Hoefer®pharmacia, Biotech, Inc., San Francisco, CA, USA).  

 
Polyvinylidene fluoride (PVDF) membranes (HybondTM-P, GE Health Care) were activated 

with methanol (10 sec), washed with distilled water (5 min), and finally embedded with 

blotting buffer II (10 min). Ten filter papers were used, in which 3 of them were incubated 

with blotting buffer I (pH 10.4, 0.3 M Tris/HCl, 10% methanol), 2 papers with blotting buffer 

II (pH 10.4, 25 M Tris/HCl, 10% methanol), and the other 5 papers with blotting buffer III 
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(pH 9.4, 25 M Tris/HCl, 10% methanol). The resolving gel was equilibrated with blotting 

buffer II (10 min). Then the filters, membranes and the resolving gel were all sequentially 

placed in a semi-dry Electro-Blotter (STARLAB, Ahrensburg, Germany). The proteins were 

electrically transferred from the gel to the membrane for 30 min (30 mA).  

 
Thereafter, the membranes were blocked with Roti®block (Roth) (diluted 1:10 in TBST (Tris-

Buffered Saline, 0.05% Tween®-20)) on the shaker (10 rpm) for 1 h. The membranes were 

incubated with the polyclonal rabbit antiserum against bovine Hp (diluted 1:240,000 in 

Roti®block with TBST) on the shaker (10 rpm) for 1 h. Then, the membranes were washed 4 

x 5 min with TBST, and incubated with the goat anti-rabbit IgG coupled with HRP (diluted 

1:250,000 in Roti®block with TBST) on the shaker (10 rpm) for 1 h. The incubation with 

streptavidin-peroxidase (diluted 1:700,000 in Roti®block with TBST) was performed on the 

shaker (10 rpm) for 1 h after washing 4 x 5 min with TBST. The membranes were washed 4 x 

5 min with TBST, placed in a plastic bag, and incubated with a mixture of equal volumes of 

each the enhanced chemiluminescence detection kit solutions A and B (ECL; RPN 2135, GE 

Health Care) for 5 min in darkness. The surplus from the detection kit was removed, and the 

membranes were placed under a CL-XPosureTM Film (Thermo Scientific). Finally, the film 

was exposed for 2 to 5 min and developed immediately. The obtained bands were visually 

evaluated according to their molecular weight without a densitometric analysis due to the low 

number of samples (n = 2). 

 
2.2.2. Measurement of leptin in blood by enzyme-linked immunosorbent assay 

 

Analysis of serum leptin was performed using a competitive ELISA as published by 

Sauerwein et al. (2004). The limit of detection was 0.3 ng/ml, and the intra- and interassay 

CV were 3.8% and 9.3%, respectively. The microtiter plates were coated by incubating 150 

ng sheep 6 anti-rabbit-Fc fragment in the coating buffer with a volume of 100 µL/well at 4ºC 

for 20 h. After blocking the free binding sites with 200 µL of 2.5% casein solution at RT for 2 

h, the plates were washed 5 times, filled with 200 µL test buffer/well, and stored at 4ºC. For 

performing the assay, the plates were decanted and 50 µL of the antiserum (polyclonal rabbit 

anti-leptin, diluted 1:12,000 in test buffer) with test buffer containing 1% goose serum were 

added. The controls with known concentrations of leptin and the serial standard dilutions 

(Recombinant ovine leptin, 0.11, 0.33, 1, 3, 9 and 27 ng/mL) were each pipetted (50 µL) in 

duplicate into the wells. Fifty µL of serum samples (diluted 1:2.5 in test buffer) were added 
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into each well. After 5 min shaking (M-1000; Med Tec), the plates were incubated for 16 h at 

25ºC using a Thermostatic cabinet (Aqualytic®GmbH, Dortmund, Germany), where all 

further incubation steps were done. After the incubation, 50 µL of biotinylated recombinant 

leptin (Tracer, diluted 1:3,000 in test buffer) were added. After 2 h shaking with a shaker 

(MTS 4; IKA®SCHUTTER WERKE, Phoenix, AZ, USA, 250 rpm), the plates were decanted 

and washed 3 times, filled with 100 µL streptavidin-peroxidase (Southern Biotech, diluted 

1:15,000 in test buffer) and incubated for 45 min. After washing 5 times, the last incubation 

step was performed using 140 µL of substrate solution and incubated for 45 min. Then the 

reaction was stopped with 50 µL of 1 M oxalic acid. The OD was measured at 450 nm, and 

leptin concentrations were calculated as previously mentioned for the Hp ELISA.  

 

2.3. Statistical analyses 

 

All statistical analyses were performed using SPSS software, version 17.0 (SPSS, Inc., 

Chicago, IL, USA).  

 
For the CLA-252 DIM experiment, the mixed model procedure was used to analyze the data 

of serum Hp and leptin. Treatment (CTR, CLA-50 and CLA-100) was considered as a fixed 

factor, the sampling date (time) as a repeated effect and the respective interaction (time x 

treatment) was included into the model. The parity (cows vs. heifers) was considered as a 

fixed effect together with its interaction with the treatment. Parturition was considered via 

nested periods (before and after parturition) within time. For Hp, the clinical observations 

(diseased or not diseased) were considered in the model as a random effect for taking disease 

specific variations among groups into account. The covariance structure heterogeneous first-

order autoregressive initially tested, and the one with the lowest value of the Akaike’s 

information criterion was then applied. Comparisons among means were done using the 

Bonferroni test (P ≤ 0.05).  

 
For the CLA-PM-105 DIM experiment, where the repeated design was not applicable, all data 

were first tested for homogeneity of variances. In case of inhomogeneous variances, the non-

parametric Mann-Whitney test was used to compare the CTR vs. CLA group. Disease as a 

random effect for Hp was tested using the general linear model (GLM). For IHC data, the 

GLM was used to perform the comparisons within the CTR and the AT depots of both CTR 

and CLA treatments at P ≤ 0.05. To compare between the CTR and CLA treatments as well as 

between SC and VC depots, the student t-test was used and significant differences were 
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determined at P ≤ 0.017 after Bonferroni α-correction for multiple comparisons (n = 3 

comparisons; α = 0.05/3 = 0.017). 

 
For the “Fat heifers restriction study”, the mixed model was used, in which Hp or leptin was 

considered as a dependent variable; group (animals fed grass silage vs. animals fed silage: 

straw mixture) as a fixed factor, time as a repeated effect, in addition, the respective 

interaction was included into the model.  

 
For discriminating healthy from diseased animals by their Hp concentrations, the 

determination of the cut-off value was carried out using Youden’s index (Youden, 1950) a 

function of sensitivity and specificity (sensitivity + specificity - 1). The Receiver Operating 

Characteristics’ (ROC) curves were used to evaluate the quality of classification, in which the 

corresponding values for sensitivity and 1-specifity of various values were calculated and 

plotted against each other (Perkins and Schisterman, 2006).  

 
Correlations were calculated using Pearson’s correlation coefficient. The following general 

categories were used to describe the strength of correlation: 0 < r < 0.2 (very weak), 0.2 ≤ r < 

0.4 (weak), 0.4 ≤ r < 0.6 (moderate), 0.6 ≤ r < 0.8 (strong), and 0.8 ≤ r < 1.0 (very strong). All 

data are presented herein as means ± SEM. 
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3. Results 

 

3.1. Conjugated linoleic acid studies 

 

3.1.1. Haptoglobin 

 

3.1.1.1. Serum haptoglobin 

 

The timely changes of the concentrations of Hp during the entire experimental period (d –21 

until d 252 relative to parturition) for both heifers and cows in the CLA-252 DIM experiment 

are shown in Fig. 9.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 9. Haptoglobin serum concentrations (means ± SEM) in heifers and cows receiving 

conjugated linoleic acid (CLA, Lutrell Pure, BASF SE) at 50 or 100 g/day or a 

control fat supplement (CTR, Sila Fat, BASF SE) from d 1 until d 182 post 

partum in the CLA-252 DIM experiment. The statistical results included in the 
graph comprise the treatment and post-treatment period (d 1 - 252). [CTR: cows n = 
11, heifers n = 6; CLA-50: cows n = 11, heifers n = 5; CLA-100: cows n = 11, heifers 
n = 5)]. ns: not significant. 
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The results of all animals examined in the entire period showed that the concentrations of Hp 

were affected by parity (heifers vs. cows; P < 0.05) and parturition (before vs. after; P < 

0.001). The concentrations of Hp increased during the first week PP compared with the 

preceding values to 2.94 ± 0.98 mg/mL for heifers and 1.70 ± 0.67 mg/mL for cows. During 

the first week PP, the concentrations of Hp were higher in heifers than in cows. Hereafter, the 

concentrations of Hp were again decreased and irregularly fluctuated over the entire period 

for both parity groups. The statistical analysis over the PP period (d 1 - 252) for heifers and 

cows showed that only time was significant, whereas neither CLA treatment nor disease were 

significantly associated with the concentrations of Hp (Fig. 9). During the treatment period (d 

1 - 182 PP), there were no significant differences in the concentrations of Hp among the 

different treatments (CTR, CLA-50 and CLA-100) in both heifers and cows.   

 
In the CLA-PM-105 DIM experiment, the timely changes of the concentrations of Hp in 

heifers throughout the entire period (d –21 until d 105 relative to parturition) are presented in 

Fig. 10.  

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

Fig. 10. Haptoglobin serum concentrations (means ± SEM) in heifers receiving 

conjugated linoleic acid (CLA, Lutrell Pure, BASF SE) at 100 g/day or a 

control fat supplement (CTR, Sila Fat, BASF SE) from d 1 until d 105 post 

partum in the CLA-PM-105 DIM experiment. The day of parturition is 
indicated by a vertical line. The statistical results included in the graph comprise 
the treatment period (d 1 - 105). [d –21 - 1: n = 25; d 7 - 42: n = 20 (10 each in 
CLA and CTR); d 105: n = 10 (5 each in CLA and CTR)]. ns: not significant. 
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The concentrations of Hp were affected by parturition (P < 0.001) with low values 3 weeks 

AP (0.35 ± 0.21 mg/mL), and elevated values during the first week PP (2.52 ± 0.61 mg/mL). 

Hereafter, the concentrations of Hp decreased again until d 105 PP. Further statistical analysis 

of the results revealed no significant differences in the concentrations of Hp during the first 

week PP between the heifers in this experiment and those in the CLA-252 DIM experiment. 

There were no differences in the concentrations of Hp between the CLA and CTR animals, as 

well as the concentrations of Hp were not affected by the health status of the animals (Fig. 

10).  

 
3.1.1.1.1. Relation of serum haptoglobin concentrations and body condition score, body 

weight, adipocyte size, fat mass, body fat content, concentrations of 

nonesterified fatty acids and β-hydroxybutyrate  

 

The correlations were calculated for different periods relative to parturition in both 

experiments, and presented herein as the coefficients of significant (P ≤ 0.05) correlations 

(summarized in appendix B; Tab. B1). Data for BCS, BW, adipocyte size, fat mass, NEFA 

and BHB were made available through the work of Akter et al. (2011), Pappritz et al. (2011) 

and von Soosten et al. (2011). 

When testing the potential relationships between the concentrations of Hp and BCS or BW, 

no correlations were observed in the CLA-252 DIM and the CLA-PM-105 DIM experiments 

during the entire experimental period or at certain dates. Adipocyte size, fat mass and body fat 

content recorded in the CLA-PM-105 DIM experiment were also not correlated with 

circulating Hp concentrations. 

For the cows in the CLA-252 DIM experiment, a very weak positive correlation was observed 

between the concentrations of Hp and NEFA in the following periods: d 21 AP - d 252 PP (r 

= 0.14, P ≤ 0.001), d 1 - 252 PP (r = 0.10, P ≤ 0.05), d 1 - 182 PP (r = 0.12, P ≤ 0.05), and a 

weak positive correlation on d 189 - 252 PP (r = 0.26, P ≤ 0.001). Concerning the BHB, a 

very weak positive correlation was recorded on d 21 AP - d 252 PP (r = 0.12, P ≤ 0.001), d 1 - 

252 PP (r = 0.11, P ≤ 0.05), and d 1 - 182 PP (r = 0.17, P ≤ 0.01). 

For the heifers in the CLA-252 DIM experiment, a weak positive correlation was recorded 

between the concentrations of Hp and NEFA on d 21 AP - d 252 PP (r = 0.38, P ≤ 0.001), a 

moderate correlation on d 1 - 252 PP (r = 0.43, P ≤ 0.001), and d 1 - 182 PP (r = 0.56, P ≤ 

0.001). In contrast, no relation was established between the concentrations of BHB and Hp. In 

the CLA-PM-105 DIM experiment, a moderate positive relation between the concentration of 
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Hp and NEFA was reported during the entire experimental period (d 21 AP - 105 PP: r = 0.54, 

P ≤ 0.001), the AP period (d 21 - 7: r = 0.46, P ≤ 0.001), and the PP period (d 1 - 105: r = 0.49, 

P ≤ 0.001), while a weak positive relation was reported between the concentrations of Hp and 

BHB (d 1 - 105: r = 0.23, P ≤ 0.01 and d 21 AP - 105 PP: r = 0.20, P ≤ 0.01). 

 
3.1.1.1.2. Haptoglobin as a measure of disease occurrence 

 

Disease events and incidence rates  

 
The disease events which were recorded for the animals in the CLA-252 DIM and the CLA-

PM-105 DIM experiments are presented in Tab. 1 and 2, respectively. In total, there were 59 

disease events in 41 animals (8 animals without any disease records) in the CLA-252 DIM 

experiment (Tab. 1), whereby more than one event at the same time and repeated events in 

one given animal had occurred. In the CLA-PM-105 DIM experiment, there were 32 disease 

events in 14 animals (11 animals without any records) (Tab. 2).  

 

Tab. 1. Disease events recorded for animals (heifers and cows) in the control and the 

conjugated linoleic acid treatment groups during the CLA-252 DIM 

experiment. 

 
 

Disease 

Cows                                 Heifers 

CTR 

(n = 11) 

CLA 

(n = 22) 

CTR 

(n = 6) 

CLA 

(n = 10) 

Mastitis       

Metritis 

Retained placenta  

Mouth disease* 

6 

3 

1 

2 

14 

8 

2 

5 

3 

4 

0 

1 

3 

4 

1 

2 

           *Mouth disease = whitlow or phlegmon. n: total number of animals. 

 
 

Tab. 2. Disease events recorded for heifers in the control and the conjugated linoleic acid 

treatment group during the CLA-PM-105 DIM experiment.  

 
 

Disease 

  d 1 (n = 5)            d 42  (n = 10)                      d 105 (n = 10) 

CTR               CTR             CLA              CTR               CLA 

Mastitis 1 0 2 3 3 

Metritis 0 2 4 1 3 

Retained placenta 1 1 2 1 1 

Diagnoses on slaughter day* 1 1 1 1 3 

*Abnormal findings during the slaughter process such as lung, liver, udder, uterus and rumen abscess. n: total number of animals. 
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The incidence rates ([number of cases/(number of animals x observation period (252 or 105 

d))] x 100) for the animals in the CLA studies (CLA-252 DIM and CLA-PM-105 DIM) are 

presented in Tab. 3, in which the rates were calculated regardless of the treatment. For 

mastitis, the incidence rates were 0.24% (cows; equivalent to 0.24 cases/100 cow/d) and 

0.15% (heifers; equivalent to 0.15 cases/100 cow/d) in the CLA-252 DIM experiment, and 

0.34% (heifers; equivalent to 0.34 cases/100 cow/d) in the CLA-PM-105 DIM experiment. 

The incidence rates for metritis were 0.13% (cows; equivalent to 0.13 cases/100 cow/d) and 

0.20% (heifers; 0.20 cases/100 cow/d) in the CLA-252 DIM experiment, and 0.38% (heifers; 

equivalent to 0.38 cases/100 cow/d) in the CLA-PM-105 DIM experiment. For retained 

placenta, the incidence rates were 0.04% (cows; equivalent to 0.04 cases/100 calvings) and 

0.03% (heifers; equivalent to 0.03 cases/100 calvings) in the CLA-252 DIM experiment, and 

0.23% (heifers; equivalent to 0.23 cases/100 calvings) in the CLA-PM-105 DIM experiment.  

 

Tab. 3. Disease incidence rates
* 

(%) in the CLA-252 DIM and the CLA-PM-105 DIM 

experiments. 

 
 

Disease 

CLA-252 DIM CLA-PM-105 DIM 

Cows Heifers  Heifers 

Mastitis       

Metritis 

Retained placenta 

0.24 

0.13 

0.04 

0.15 

0.20 

0.03 

 0.45 

0.45 

0.29 

*
Disease incidence rate = [number of cases/(number of animals x observation period in days)] x 100. 

Observation period = 252 and 105 d in case of the CLA-252 DIM and the CLA-PM-105 DIM experiments, respectively. 

Example: In the CLA-252 DIM, 20 mastitis cases (6 CTR + 14 CLA) in cows. 

Incidence rate = [20 mastitis cases/(33 x 252)] x100 = 0.24. 

 
   

Determination of haptoglobin cut-off value 

 

An optimal cut-off value of 0.16 mg/mL for the serum concentrations of Hp in the CLA-252 

DIM experiment was determined using Youden index (Fig. 11) at maximal values of 59% 

sensitivity, 73% specificity and 0.32 for Youden index (Youden index (J) = max optimal cut- 

value (c) [sensitivity + specificity - 1]).  
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Fig. 11. ROC curve obtained using the concentrations of serum haptoglobin in the CLA-

252 DIM experiment to differentiate between animals diagnosed with diseases 

and those without. The vertical line identifies the Youden index (J, dotted line), and 
the corresponding optimal cut-value (c).  

 

 

Sample classification according to cut-off value of 0.16 mg/mL 

 

The sample classification according to the cut-off value of 0.16 mg/mL in both CLA 

experiments in the PP period is presented in Tab. 4. In the CLA-252 DIM experiment, ~
 60% 

of the serum samples of all animals in the CTR and CLA treatments had lower concentrations 

of Hp than 0.16 mg/mL, while ~
 40% of the samples were higher than 0.16 mg/mL. In the 

CLA-PM-105 DIM experiment, 53% and 47% of the CTR and CLA samples had lower and 

higher concentrations of Hp than 0.16 mg/mL, respectively. 

 
Tab. 4. Sample classification according to a Hp-cut-off value of 0.16 mg/mL serum in the 

conjugated linoleic acid studies. 

 
Period1 Treatment n2 < Hp cut-off > n Pearson chi-square 

(P < 0.05) 

CLA-252 DIM 

d 1 - 252 

 

CTR 246 < 0.16 > 178 ns3 

CLA 193 < 0.16 > 119 

CLA-PM-105 DIM 

d 1 - 105 

CTR 35 < 0.16 > 31 ns 

CLA 35 < 0.16 > 30 

   1Period relative to parturition.2 number of samples below or above the cut-off value.3not significant. 

 

c 

J 
 

c = Optimal cut-point 
J = Youden index 
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Haptoglobin serum concentrations in healthy cows 

 
The concentrations of serum Hp from d 21 AP until d 21 PP for cows in the concentrate-

roughage ratio study are shown in Fig. 12.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Haptoglobin serum concentrations (means ± SEM) in cows (n = 20) observed 

from d –21 until d 21 relative to parturition in the concentrate-roughage ratio 

study. The day of parturition is indicated by a vertical line. 
 

In the concentrate-roughage ratio study, where the cows fed LC (30% concentrate: 70% 

roughage) or HC (60% concentrate: 40% roughage) diets, the results indicated that the 

treatment had no significant effect on the concentrations of Hp, and therefore the data are 

presented herein as means from both treatments. The animals were apparently healthy; 

therefore, they were used to define the concentrations of Hp in healthy animals. The results 

showed that the concentrations of Hp peaked in the first week PP and then gradually declined 

until d 21 PP (Fig. 12). During the first week PP (as a mean from both d 1 and d 7), the cows 

used in this study had lower concentrations of Hp (P < 0.05) compared with cows (2.3-fold) 

and heifers (3.9-fold) used in the CLA-252 DIM experiment (Fig. 9), and heifers (2.4-fold) 

used in the CLA-PM-105 DIM experiment (Fig. 10). 
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3.1.1.2. Milk haptoglobin 

 

Haptoglobin in the CLA-PM-105 DIM experiment was detected in 54 out of 96 milk udder 

quarter samples (56%), whereas 42 samples (44%) were below the limit of detection of 0.07 

µg/mL.  

 

Classification of the animals according to udder health status 

 

The classification of the animals according to udder quarters into healthy (Hp < 2.2 µg/mL) 

and diseased (Hp ≥ 2.2 µg/mL) is presented in Tab. 5. The mean concentrations of milk Hp in 

the healthy quarters were 0.20 µg/mL (d 42 PP, CTR, n = 5), and 0.17 µg/mL (d 42 PP, CLA, 

n = 3). In contrast, the mean concentrations of milk Hp in the diseased quarters were 47.0 

µg/mL (d 1 PP, CTR, n = 4), 53.6 µg/mL (d 42 PP, CLA, n = 2), 2.9 µg/mL (d 105 PP, CTR, 

n = 4), and 6.9 µg/mL (d 105 PP, CLA, n = 5).  

 
Tab. 5. Classification of animals in the control and the conjugated linoleic acid 

treatment group according to a Hp-cut-off value of 2.2 µg/mL
*
 milk in the 

CLA-PM-105 DIM experiment. 

 
 

Classification  

 

 

d 1 PP d 42 PP d 105 PP 

CTR CTR CLA CTR CLA 

(n = 4) (n = 5) (n = 5) (n = 5) (n = 5) 

Healthy quarters 

4/4 < 2.2 µg/mL 

 
 
 

 

- 

 

5 

 

3 

 

1 

 

- 

Diseased quarters 

1/4 ≥ 2.2 µg/mL 

2/4 ≥ 2.2 µg/mL 

3/4 ≥ 2.2 µg/mL 

4/4 ≥ 2.2 µg/mL 

 
 
 
 

 

1 

1 

- 

2 

 

- 

- 

- 

- 

 

- 

- 

- 

2 

 

2 

1 

- 

1 

 

2 

1 

2 

- 
*The cut-off value of 2.2 µg/mL was suggested by Hiss et al. (2007). n: number of animals. 

 
The Hp milk concentrations in the healthy and diseased quarters regardless of the treatment 

are presented in Fig. 13. The mean concentrations of Hp were 0.15 and 21.4 µg/mL in the 

healthy and in the diseased quarters, respectively. 
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Fig. 13. Haptoglobin milk concentrations in healthy and diseased udder quarters in the 

CLA-PM-105 DIM experiment. The plots show the medians (line within box), 25th 

and 75th percentiles (box), 10th and 90th percentiles (whiskers). The horizontal line 
indicated the cut-off value of 2.2 µg/mL. n: number of animals. The dot and star 
stand for the outliers and extreme values. 

 
The classification of the animals into healthy and diseased according to the SCC is 

summarized in Tab. 6.  

 

Tab. 6. Classification of animals in the control and the conjugated linoleic acid 

treatment group according to the somatic cell count in the CLA-PM-105 DIM 

experiment. 

 
 

Classification  

 

 

d 1 PP d 42 PP d 105 PP 

CTR CTR CLA CTR CLA 

(n = 2) (n = 2) (n = 3) (n = 5) (n = 5) 

Healthy quarters 

4/4 < 200 x 103 

 
 
 

 

- 

 

2 

 

- 

 

1 

 

- 

Diseased quarters 

1/4 > 200 x 103 

2/4 > 200 x 103 

3/4 > 200 x 103 

4/4 > 200 x 103 

 
 
 
 

 

- 

2 

- 

- 

 

- 

- 

- 

- 

 

1 

2 

- 

- 

 

2 

2 

- 

- 

 

1 

3 

- 

1 

n: number of animals. 

2.2 µg/mL 
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n = 9 
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0 
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There were 26 out of 68 quarters (n = 17 heifers) with values > 200 x 103 cells/mL. The mean 

SCC values in the healthy quarters were 58 x 103 (d 42 PP, CTR) and 39.8 x 103/mL (d 105 

PP, CTR), whereupon in the diseased quarters the mean values were 353 x 103 (d 1 PP, CTR), 

1017 x 103 (d 42 PP, CLA), 340 x 103 (d 105 PP, CTR), and 463 x 103/mL (d 105 PP, CLA). 

 
3.1.1.3. Presence of haptoglobin in adipose tissue 

 

3.1.1.3.1. Qualitative description of haptoglobin by immunohistochemistry  

 

Haptoglobin immune reactive staining was detectable in all tested SC and VC AT depots and 

in lymph node sections which were used as positive controls. In AT, Hp immunoreactivity 

was observed in the adipocytes, whereas the cells of the stromal-vascular fraction were all 

negative. In the adipocytes, Hp positive staining was evident along the cytoplasmic rim 

surrounding the large fat droplets (Fig. 14A), cytoplasmic rim edges (Fig. 14B) or as spot dots 

(Fig. 14C). Bovine lymph node tissue showed a punctuate, specific staining for Hp (Fig. 

14D). 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
                                      
Fig. 14. Representative images showing haptoglobin positive staining in adipose tissue 

sections and in lymph node tissue used as positive control. (A) Along the 
cytoplasmic rim (retroperitoneal tissue); (B) Cytoplasmic rim edges (subcutaneous 
withers tissue); (C) Spot dots (subcutaneous withers tissue); (D) Positive control 
(bovine lymph node tissue). Original magnification: 200x. Bars represent 50 µm. 
Arrows indicated Hp positive staining (red color).  

A  B  

D   C  
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3.1.1.3.2. Detection of haptoglobin by Western immunoblotting  

 
The primary antibody which was used in the immunohistochemical detection (as mentioned in 

the materials and methods section) was validated for it’s reactivity in the liver and SC tailhead 

fat (Fig. 15A). The primary antibody reacted with bands of molecular weights from 20 to 

34 kDa for liver and from 26 to 55 kDa for SC tailhead fat. The Western immunoblotting was 

used to detect any differences in the molecular weights between liver and serum samples as 

compared to SC tailhead fat (Fig. 15B). The results indicated that liver and serum bands were 

obtained on 34, 26 and 20 kDa molecular weights, while SC tailhead fat bands was obtained 

on 26 and 55 kDa molecular weights.  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

 

 

 

 

 

Fig. 15. Western immunoblot analysis of haptoglobin in bovine liver, subcutaneous 

tailhead fat and serum. (A) Test of antibody cross-reactivity in liver and 
subcutaneous tailhead fat. Lanes from left to right: (1) molecular marker in kDa; (2, 
3, 8) - primary antibody and + secondary antibody; (4, 5, 9) + primary antibody and 
- secondary antibody; (6, 7, 10) + primary antibody and + secondary antibody. (B) 
Comparisons of liver, subcutaneous tailhead fat and serum. 
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3.1.1.3.3. Haptoglobin in subcutaneous and visceral adipose tissue 

 

The results of histological localization of Hp indicated that VC fat had always higher portions 

of Hp positive cells than SC fat in both CLA and CTR treatments (Fig. 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Percentage (± SEM) of haptoglobin positive adipocyte cells in three visceral 

(VC) (upper panel) and three subcutaneous (SC) depots (lower panel) in heifers 

receiving conjugated linoleic acid (CLA, Lutrell Pure, BASF SE) or a control 

fat supplement (CTR, Sila Fat, BASF SE) at 100 g/day from d 1 until d 105 

post partum in the CLA-PM-105 DIM experiment. Disease as random effect was 
not significant. Significant timely differences within the CTR group are shown by 
different letters; treatment effects are shown by brackets and stars. ns: not 
significant. 

 

Comparing the different times of lactation, the VC depots underwent significant but 

inconsistent changes. In the CTR treatment, the percentage of Hp positive cells in the 

retroperitoneal tissue was significantly lower in d 1 PP compared to d 42 and 105 PP, in 

which the portion of percentage of positive cells increased 1.8-fold from d 1 to 105 PP.  In 

contrast, mesenterial tissue from d 105 had only 25% of the values from d 1. For omental 

tissue, the portion of positive cells peaked on d 42, reaching 2-fold higher values than on d 1 

and 105 PP. There were no significant differences in Hp positive cells in SC depots from 

sternum and tailhead with time, whereas the SC from withers had similar changes as observed 

in omental fat. Conjugated linoleic acid reduced significantly the percentage of Hp positive 
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cells in omental tissue by 4.3-fold (d 42) and increased significantly in mesenterial tissue in d 

105 PP. No significant differences were found in the percentage of Hp positive cells between 

CTR and CLA treatments in the other tissues (Fig. 16). 

 
3.1.2. Leptin 

 
The concentrations of leptin for all animals (heifers and cows) from d –21 until d 252 relative 

to parturition in the CLA-252 DIM experiment are demonstrated in Fig. 17. There were no 

significant differences in the concentrations of leptin in terms of parity (heifers vs. cows), 

whereas the concentrations of leptin were affected by parturition (before vs. after parturition; 

P < 0.001). The concentrations of leptin were high in the AP period with a mean of 5.93 ± 

0.53 ng/mL, and then the concentrations decreased PP below the pregnancy concentrations to 

4.65 ± 0.43 ng/mL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Leptin serum concentrations (means ± SEM) in animals (n = 49) receiving 

conjugated linoleic acid (CLA, Lutrell Pure, BASF SE) at 50 or 100 g/day or a 

control fat supplement (CTR, Sila Fat, BASF SE) from d 1 until d 182 post 

partum in the CLA-252 DIM experiment. The statistical results included in the 
graph comprise the treatment and post-treatment period (d 1 - 252). [(CTR: n = 17; 
CLA-50: n = 16; CLA-100: n = 16)]. ns: not significant. 

 
The statistical analysis from d 1 until d 252 PP for all animals confirmed no significant effects 

of CLA treatment, time and their interactions on the concentrations of leptin. During the 

treatment period (d 1 - 182 PP), the concentrations of leptin remained unaffected by CLA 

supplementation.  
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In the CLA-PM-105 DIM experiment, the changes in the concentrations of leptin from d –21 

until d 105 relative to parturition are shown in Fig. 18. The concentrations of leptin were 

reduced (P < 0.05) PP (4.88 ± 0.46 ng/mL) as compared to AP (5.49 ± 0.54 ng/mL). The 

concentrations of leptin were not affected by CLA treatment (d 1 - 105 PP; Fig. 18).  

 

 

 

 
 
 

 

 

 

 

 

 

Fig. 18. Leptin serum concentrations (means ± SEM) in heifers receiving conjugated 

linoleic acid (CLA, Lutrell Pure, BASF SE) at 100 g/day or a control fat 

supplement (CTR, Sila Fat, BASF SE) from d 1 until d 105 post partum in the 

CLA-PM-105 DIM experiment. The day of parturition and CLA supplementation 
is indicated by a vertical line. The statistical results included in the graph comprise 
the treatment period (d 1 - 105). [(d –21 - 1: n = 25; d 7 - 42: n = 20 (10 each in 
CLA and CTR); d 105: n = 10 (5 each in CLA and CTR)]. ns: not significant. 

 

 

Relation of serum leptin concentrations and body condition score, body weight, 

adipocyte size, fat mass, body fat content, concentrations of nonesterified fatty acids and 

β-hydroxybutyrate  

 

The correlations were examined in different periods relative to parturition in both 

experiments, and presented herein as the coefficients of significant (P ≤ 0.05) correlations 

(summarized in appendix B; Tab. B2 and B3). Data for BCS, BW, adipocyte size, fat mass, 

NEFA and BHB were made available through the work of Akter et al. (2011), Pappritz et al. 

(2011) and von Soosten et al. (2011). 

 
In the CLA-252 DIM experiment, a very weak positive correlation between the 

concentrations of leptin and BCS was observed from d 21 AP until d 252 PP (r = 0.19, P ≤ 
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positive relation between the concentrations of leptin and BCS was recorded in the AP period 

(d 21 - 7: r = 0.27, P ≤ 0.05) and in the PP period (d 1 - 105: r = 0.34, P ≤ 0.001). Concerning 

BW, a moderate positive relation (d 1 - 105: r = 0.46, P ≤ 0.001) was found only in the CLA-

PM-105 DIM experiment.  

 

In the CLA-PM-105 DIM experiment, there was a very strong positive correlation between 

the concentrations of leptin and adipocyte size on d 1 PP (mesenterial tissue: r = 0.98, P ≤ 

0.01), and a strong positive relation on d 105 PP (retroperitoneal tissue: r = 0.75, P ≤ 0.05; SC 

withers: r = 0.78, P ≤ 0.01, and SC sternum: r = 0.71, P ≤ 0.05). A very strong positive 

correlation was recorded between leptin and fat mass on d 42 PP in omental (r = 0.90, P ≤ 

0.001), retroperitoneal (r = 0.81, P ≤ 0.01), and SC (r = 0.83, P ≤ 0.01) as well as a strong 

relation in mesenterial (r = 0.71, P ≤ 0.05). A very strong positive correlation was recorded 

between the concentrations of leptin and body fat content on d 42 PP in omental (r = 0.86, P ≤ 

0.001), retroperitoneal (r = 0.83, P ≤ 0.01), and SC (r = 0.80, P ≤ 0.01) as well as a strong 

relation in mesenterial fat (r = 0.72, P ≤ 0.05). A very strong positive correlation was found 

between the concentrations of leptin and the total fat mass (r = 0.88, P ≤ 0.001) and total body 

fat content (r = 0.91, P ≤ 0.001) on d 42 PP. 

 

In the CLA-252 DIM experiment, a very weak inverse correlation was observed between the 

concentrations of leptin and NEFA in the following periods: d 21 AP - d 252 PP (r = -0.15, P 

≤ 0.001), d 1 - 252 PP (r = -0.11, P ≤ 0.01) and d 1 - 182 PP (r = -0.1, P ≤ 0.05). In contrast, no 

correlation was reported between BHB and the concentrations of leptin in the CLA-252 DIM. 

In the CLA-PM-105 DIM experiment, no correlation was found between the concentrations 

of leptin and NEFA, while a weak positive relation was recorded with BHB (d 1 - 105: r = 

0.34, P ≤ 0.001). 

 
3.2. Effect of fat mobilization on the concentrations of haptoglobin and leptin in the fat 

heifers restriction study 

 

The changes in the concentrations of Hp and leptin in the fat heifers restriction study are 

shown in Fig. 19A and B, respectively. There were no significant differences in the 

concentrations of Hp and leptin between animals fed either grass silage or hay/silage-straw 

mixture. In general, the concentrations of Hp and leptin varied slightly from week to week 

and did not show consistent changes across the investigated period. 
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Fig. 19. Haptoglobin (A) and leptin (B) serum concentrations (means ± SEM) in non-

lactating heifers receiving hay/silage-straw mixture (n = 6) or grass silage (n = 

6) for 4 weeks and only grass silage (n = 12) for 3 weeks thereafter in the fat 

heifers restriction study. The vertical lines indicate the differential feeding period. 
The statistical results included in the graph comprise the differential feeding period. 
ns: not significant. 
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4. Discussion 

 

4.1. Characterization of haptoglobin and leptin concentrations throughout lactation or 

during early lactation in the conjugated linoleic acid studies  

 

The CLA studies consisted of two independent experiments; the CLA-252 DIM comprising 

heifers (n = 16) and cows (n = 33) observed from d 21 AP until d 252 PP, and the CLA-PM-

105 DIM conducted on heifers (n = 25) only for a period from d 21 AP until d 105 PP. 

 

Serum haptoglobin concentrations  

 

The physiological changes observed during the CLA-252 DIM experiment were related to 

parity (heifers vs. cows) and parturition (before vs. after). During the first week after 

parturition, the concentrations of Hp were 1.7-fold higher in heifers than in cows. These 

results are in agreement with those obtained by Humblet et al. (2006) (study period: 8 weeks 

AP until 16 weeks PP), who demonstrated that heifers had 2.2-fold higher concentrations of 

Hp than cows in the first week following parturition. Moreover, Crawford et al. (2005) 

investigated heifers and cows from 3 weeks AP until 6 weeks PP and reported Hp 

concentrations being 1.3-fold higher in heifers than in cows during the first week after 

parturition. Furthermore, higher concentrations of Hp (1.9-fold) and ceruloplasmin (1.2-fold) 

have been reported during the first 27 d PP in heifers than in cows (Cullens, 2005). In 

contrast, Crawford et al. (2005) stated that there was no difference in the concentrations of Hp 

between cows and heifers in week 6 PP. The reason for the mostly higher concentrations of 

Hp recorded in heifers than in cows in the first week PP is not clear. It might be that 

parturition is more stressful for heifers than for cows. It could be concluded that our finding 

suggests a more intense physiological response to first calving than to later ones as suggested 

by Humblet et al. (2006).  

 
In the current study, the concentrations of Hp peaked around calving and decreased 

afterwards in both the CLA-252 DIM and the CLA-PM-105-DIM experiments. This finding 

is in agreement with the studies of Uchida et al. (1993), Hachenberg et al. (2007), Tóthová et 

al. (2008) and Kováč et al. (2009). This increase is probably related to the hormonal changes 

and the tissue lesions occurring during birth (Young et al., 1995; Hachenberg et al., 2007). 

However, the increase in energy requirements during the transition period results in NEB, and 
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therefore energy has to be mobilized from AT. This process results in increased circulating 

concentrations of NEFA and formation of ketone bodies (Herdt, 2000). Thus, the transition 

period in dairy cows presents a risk for metabolic disturbances such as fatty liver and ketosis. 

The APR is associated with numerous changes in lipid metabolism such as accelerated 

lipolysis and increased NEFA in plasma (Hardardóttir et al., 1994). Hiss et al. (2009) and 

Kováč et al. (2009) suggested that in cows with higher concentrations of NEFA, higher 

concentrations of Hp might be found. However, Uchida et al. (1993) showed that 

experimentally induced fatty liver was associated with increasing concentrations of Hp; 

therefore a part of this increase in the first week PP could be caused by NEB and metabolic 

stress (Crawford et al., 2005). In the current study, the relation between the concentrations of 

serum Hp and each of NEFA and BHB (Pappritz et al., 2011; von Soosten et al., 2011) was 

assessed. In the CLA-252 DIM (cows and heifers) and CLA-PM-105 DIM (heifers) 

experiments, a positive relation was recorded between the concentrations of Hp and each of 

NEFA and BHB. This finding is in accordance with Kováč et al. (2009) who also found a 

positive correlation between Hp and some variables of energy metabolism such as NEFA and 

BHB. In both experiments (CLA-252 DIM and CLA-PM-105 DIM), the concentrations of Hp 

showed a stronger positive correlation with NEFA in heifers than in cows; therefore it might 

be that heifers are more stressed by lipolysis than cows. 

 
The current study indicated that the time course of the concentrations of Hp after the first 

week of lactation did not show marked changes, which is in line with Humblet et al. (2006) 

(study period: 8 weeks AP until 16 weeks PP) who reported no significant effects of time on 

the concentrations of Hp after the first week PP.  

 
Serum leptin concentrations 

 

The present study demonstrated that physiological alterations in the concentrations of serum 

leptin in the CLA-252 DIM experiment were limited to parturition (before vs. after), whereas 

no parity (heifers vs. cows) differences could be found. Conversely, other researchers reported 

that the concentrations of leptin are affected by parity, whereby circulating leptin is 

significantly higher in heifers than in cows before calving (Wathes et al., 2007), and the 

peripartal decrease was steeper in heifers than in cows around calving (Meikle et al., 2004; 

Wathes et al., 2007). Heifers generally calve for the first time at about 24 months of age 

(Hoffman and Funk, 1992), and they are not physically mature at this stage (Coffey et al., 
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2006). Thus, heifers approaching their first calving are in a differing metabolic state to that 

experienced by cows as they require nutrients for their own continued growth in addition to 

that of their developing calf (Wathes et al., 2007). However, the steeper decrease in the 

concentrations of leptin in heifers might be explained by that heifers showed a 

metabolic/endocrine profile less balanced (e.g. higher NEFA and BHB, lower insulin-like 

growth factor-I (IGF-I) and thyroid hormones) than cows (Meikle et al., 2004). This reflects 

that heifers are recovering from the NEB period with more difficulty. Ehrhardt et al. (2000) 

estimated that BCS in late pregnant cows explained 37% of the variation in plasma leptin. In 

addition, Wathes et al. (2007) reported that the higher circulating leptin in heifers before 

calving might relate to the tendency towards a slightly higher BCS than cows. Both heifers 

and cows used in the present study (CLA-252 DIM experiment) had a BCS of 3.5 before 

calving; therefore, this might explain why parity did not significantly affect the concentrations 

of leptin. 

 
In the present study, the concentrations of leptin were high during late pregnancy and 

declined towards parturition, and then remained low in both CLA-252 DIM and CLA-PM-

105-DIM experiments. This finding is in agreement with several previous studies (Block et 

al., 2001; Liefers et al., 2005; Hachenberg et al., 2007; Wathes et al., 2007). The high 

concentrations of leptin during pregnancy are due to an increase in body fat reserves and a 

concomitant increase in leptin mRNA expression in AT (Ehrhardt et al., 2001). The decline in 

the concentrations of plasma leptin towards parturition with the onset of NEB is probably 

caused by the inhibition of leptin expression by AT (Block et al., 2001), and increased 

mobilization of AT (Liefers et al., 2005). Recently published studies, using the same animals 

that were used in the current study, indicated that positive EB was achieved after d 49 

(Pappritz et al., 2011) and d 14 PP (von Soosten et al., 2011) in the CLA-252 DIM and CLA-

PM-105 DIM experiments, respectively. In addition, the highest mobilization of AT, 

according to the concentrations of NEFA, occurred from d 7 AP until d 21 PP in both 

experiments (Pappritz et al., 2011; von Soosten et al., 2011). The onset of NEB around 

parturition is associated with decreased plasma insulin and increased plasma GH (Block et al., 

2001), suggesting that both hormones could mediate a portion of the effect of EB on plasma 

leptin and attribute to the reduction of leptin concentrations towards parturition.  

 

In humans and rodents, leptin is synthesized in proportion to the overall degree of adiposity 

(Friedman and Halaas, 1998). Similar relationships have been observed between leptin and 
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body fatness in ruminants (Blache et al., 2000; Thomas et al., 2001; Altmann et al., 2006), 

BCS (Ehrhardt et al., 2000; Delavaud et al., 2002) and adipocyte size (Delavaud et al., 2002). 

In the current study, the relationship between the concentrations of serum leptin and each of 

BCS, BW (Pappritz et al., 2011; von Soosten et al., 2011), fat mass and body fat content (von 

Soosten et al., 2011), and adipocyte size (Akter et al., 2011) on different days relative to 

parturition was tested in both experiments. The concentrations of leptin had a stronger relation 

with depots fat mass, body fat content, and adipocyte size than BCS. These observations 

confirm those of Delavaud et al. (2002) who reported that plasma leptin is more strongly 

related to adipose cell size (r = 0.91) than to BCS (r = 0.54). This finding suggests that the 

increase in leptin that is observed when adiposity increases is strongly related to hypertrophy 

of adipose cells as reported by Delavaud et al. (2002).  

 
In addition, the relationship between the concentrations of serum leptin and both of NEFA 

and BHB was tested in both experiments of the current study. It was found that the 

concentrations of leptin were negatively correlated with NEFA, and positively with BHB. The 

present results are in agreement with those of Block et al. (2001) and Accorsi et al. (2005) 

who reported that the concentrations of plasma leptin were negatively related to the 

concentrations of NEFA. Block et al. (2001) reported that the significant correlations between 

the plasma concentrations of leptin, insulin, GH, glucose and NEFA could represent co-

regulation by EB, and perhaps a role for these factors in mediating the effect of EB on leptin 

synthesis. At the beginning of lactation, GH concentrations increased, while a reduction 

occurred in leptin and insulin. This endocrine condition, such as the significant increase in 

NEFA plasma concentrations, is indicative of a marked lipid mobilization. In the more 

advanced stages of lactation, when both energy and protein balances become positive, leptin 

plasma concentrations increased, whereas NEFA concentrations declined (Accorsi et al., 

2005). 
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4.2. Effect of supplementation with conjugated linoleic acids on serum haptoglobin and 

leptin  

 

Efficacy of the treatments with conjugated linoleic acids  

 
The efficacy of the CLA supplementation in terms of milk fat reduction has been reported in 

both experiments using the same animals used in the present study (Pappritz et al., 2011; von 

Soosten et al., 2011). In the CLA-252 DIM experiment, Pappritz et al. (2011) reported that the 

CLA supplementation (d 56 until d 182 PP) resulted in a reduction of milk fat content by 7 

and 12% in the CLA-50 and in the CLA-100 group, respectively. In the CLA-PM-105 DIM 

experiment, the CLA supplementation decreased milk fat content by 14.1% (d 1 until d 42 

PP) and 25.4% (d 42 until d 105 PP) (von Soosten et al., 2011). In the CLA-252 DIM 

experiment, BW, BCS, plasma concentrations of glucose, BHB and NEFA did not differ 

among treatments over the CLA supplementation period although there was a trend for lower 

plasma NEFA concentrations in the CLA-100 animals from d 21 until d 182 PP (Pappritz et 

al., 2011). In the CLA-PM-105 DIM experiment, BW, BCS, NEFA, BHB and glucose were 

not changed by CLA supplementation in any period of experiment (von Soosten et al., 2011). 

Conjugated linoleic acids supplementation did not affect the weights of liver, VC (omental, 

mesenteric), or SC adipose depots with the exception of retroperitoneal fat, in which a trend 

to a lower weight of animals slaughtered on d 42 PP and d 105 PP was observed (von Soosten 

et al., 2011). Akter et al. (2011) reported that dietary CLA supplementation decreased 

adipocyte sizes of different SC and VC depots to different extents in dairy cows during the 

first 105 d PP. Moreover, the extent of CLA-induced decrease of adipocyte sizes is 

consistently higher at d 105 PP than at d 42 PP for both SC and VC depots. They concluded 

that CLA-induced decrease in adipocyte size indicates that CLA does affect body fat in dairy 

cows. 

 

Effect of supplementation with conjugated linoleic acids on serum haptoglobin 

 

The functioning of the immune system, like most systems in the body, is dependent on 

adequate nutrition. Moreover, nutrition signals can affect gene and protein expression which 

modulate the inflammation markers depending on the net changes in gene expression and 

resulting in both positive and negative effects (do Nascimento et al., 2009). Fatty acids are 

important modulators of the immune system (Calder, 2008; Serhan et al., 2008). In a number 
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of different animals, CLA has been suggested to have anti-inflammatory and/or immune-

ameliorating effects (Yu et al., 2002). The c-9, t-11 and t-10, c-12 isomers of CLA induce a 

number of physiological effects, some by the independent actions of a single isomer, others 

by (synergistic) interactions involving both isomers (Pariza et al., 2001). Moreover, the c-9, t-

11 and t-10, c-12 CLA isomers have been reported for possessing anti-inflammatory effects 

(Huebner et al., 2010). In contrast, the t-10, c-12 CLA isomer has also been reported to induce 

inflammation (Poirier et al., 2006). However, to the best of our knowledge this is the first 

report on the effect of CLA supplementation on Hp in ruminants. The present investigation 

demonstrated that long-term feeding of dairy cows with CLA containing 12% of the t-10, c-

12 and c-9, t-11 CLA isomers in equal proportions, had no effect on the concentrations of 

serum Hp in both experiments. However, one study in rats indicated a reduction in the 

concentrations of serum Hp fed 1.5% (1.5 g/100 g of total ration) CLA isomers (t-10, c-12; c-

9, t-11; c-11, t-13 and t-8, c-10) for 8 weeks (Noto et al., 2007). Contradictory results of other 

inflammation markers are reported in literature: supplementation with 3.4 g/d CLA (purified 

t-10, c-12) in men with metabolic syndrome for 12 weeks significantly increased CRP (2.2-

fold), but no significant increase was found for TNF-α and IL-6 (Risérus et al., 2002). In non 

obese humans, 3.2 g/d CLA (equal amounts of c-9, t-11 and t-10, c-12 isomers) for 12 weeks 

increased CRP, but CLA supplementation did not have any significant effect on plasma 

concentrations of TNF-α (Smedman et al., 2005). In contrast, Moloney et al. (2004) found no 

effect of 3 g/d CLA (50:50 blend of c-9, t-11 and t-10, c-12) supplemented for 8 weeks, on 

CRP or IL-6 in human subjects with type 2 diabetes. 

 
Effect of supplementation with conjugated linoleic acids on serum leptin 

 

Leptin is a protein secreted from adipocytes that has been implicated in the regulation of food 

intake, energy expenditure and whole-body EB. However, because CLA is reported to reduce 

body fat content in humans (Thom et al., 2001), rats (Yamasaki et al., 2000), mice (DeLany et 

al., 1999), and pigs (Ostrowska et al., 1999) as well as to induce reductions in adipocyte size 

in rats (Poulos et al., 2001), mice (Tsuboyama-Kasaoka et al., 2000) and dairy cows (Akter et 

al., 2011), CLA supplementation has been linked to a reduction of circulating leptin 

concentrations in rats (Rahman et al., 2001), mice (Parra et al., 2010), and humans (Medina et 

al., 2000). In addition, CLA may act directly on leptin production because it could reduce 

leptin without affecting the BW and body fat content as reported in humans (Medina et al., 

2000) and rats (Yamasaki et al., 2003). The t-10, c-12 CLA isomer has been suggested to 
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decrease and the c-9, t-11 CLA isomer to increase leptin secretion and gene expression 

(Rodríguez et al., 2002; Ahn et al., 2006; Gudbrandsen et al., 2009). However, the present 

results showed that long-term feeding of dairy cows with CLA containing 12% of the t-10, c-

12 and c-9, t-11 CLA isomers in equal parts had no significant effect on the concentrations of 

serum leptin in both experiments. This finding is in line with a relatively short study (5 days) 

on dairy cows in mid to late lactation receiving 10 g/d abomasal infusions of either c-9, t-11 

or t-10, c-12 CLA isomer and reporting no effect of CLA treatment on the concentrations of 

plasma leptin (Baumgard et al., 2002). In addition, Gillis et al. (2004b) reported that feeding 

beef heifers 2% (of total ration on DM basis) rumen-protected CLA salts (a mixture of Ca-

salts of palm oil FA with 31% CLA (27.2% c-9, t-11; 32.8% t-10, c-12; 10.6% t-8, c-10; 

18.95% c-11, t-13 and 10.5% various t, t CLA isomers)) on the last 32 or 60 days before 

slaughter had no effect on the concentrations of serum leptin.  

 
Long-term CLA supplementation after calving left the concentrations of serum Hp and leptin 

unaffected. In this study, it is difficult to make definite conclusions on the long-term CLA 

supplementation effect on the concentrations of Hp and leptin. The reasons for the lack of a 

CLA effect are unknown, but it is likely that dose, duration and the isomeric composition of 

CLA separately affect the ability of CLA to influence the concentrations of Hp and leptin in 

dairy cows. In addition, the individual dietary intake from the c-9, t-11 and t-10, c-12 CLA 

isomers was lower than planned in the CLA-252 DIM and CLA-PM-105 DIM experiments. 

The aim of the CLA-252 DIM experiment was to achieve an individual dietary intake of 5 and 

10 g/d of t-10, c-12 and c-9, t-11 CLA isomers in CLA-50 and CLA-100 groups, respectively. 

However, Pappritz et al. (2011) reported that the calculated intakes, based on the analyzed 

concentrations given in feed-concentrates, were 20% lower than expected (4 and 8 g/d of t-10, 

c-12 and c-9, t-11 CLA isomers in CLA-50 and CLA-100, respectively). In the CLA-PM-105 

DIM experiment, the aim was to achieve an individual dietary intake of 10 g/d of t-10, c-12 

and c-9, t-11 CLA isomers in CLA-100, but von Soosten et al. (2011) reported that the 

animals of the CLA group consumed only 6 g/d of the t-10, c-12 and c-9, t-11 CLA isomers 

(40% lower than planned). 

The unsaturated FA, which are preferentially saturated by ruminal microorganisms, must 

either be protected from ruminal biohydrogenation or be presented in amounts high enough to 

result in sufficient escape to the intestinal tract for absorption (Gillis et al., 2004a). In 

ruminant animals, FA composition of AT depots is dependent on: 1) supply of dietary FA to 

depots as influenced by the extent of ruminal biohydrogenation, as well as intestinal 
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absorption rates; 2) de novo synthesis of FA from precursors supplied to AT; and 3) rate of 

desaturation by the AT enzyme, ∆9-desaturase (Enser et al., 1999). However, in the current 

study, another reason for the lack of a CLA effect could be that the uptake of the c-9, t-11 and 

t-10, c-12 CLA isomers by different tissues was insufficient to elicit metabolic effects. The 

effect of CLA supplementation on the FA distribution in different tissues has been reported in 

both experiments using the same animals as in the present study (Kramer et al., 2010, 2011). 

In the CLA-252 DIM experiment, Kramer et al. (2010) evaluated the effect of CLA 

supplementation on FA distribution of liver and SC AT (biopsy samples collected on d 21 AP, 

1, 21, 70 and 105 PP) and reported that the FA distribution and FA ratios showed no 

significant differences between the CTR and the supplemented groups (CLA-50 and CLA-

100). Thus, an effect of the CLA supplementation on the FA synthesis and ∆9 desaturation in 

liver and AT could not be observed (Kramer et al., 2010). In the CLA-PM-105 DIM 

experiment, the FA distribution of liver tissue showed no significant changes between CTR 

and CLA supplement on d 105 PP. In contrast, retroperitoneal fat showed significant changes 

of c-9, t-11 (0.18% (CTR) to 0.24% (CLA) of FA methyl esters), and t-10, c-12 (0.00% 

(CTR) to 0.01% (CLA) of FA methyl esters) CLA isomers on d 105 PP (Kramer et al., 2011). 

Data on FA distribution and FA ratios for other fat tissues are not available yet. 

 
4.3. Presence of haptoglobin in adipose tissue 

 

The IHC method used in this study confirmed that Hp is present in all tested bovine AT, 

which is consistent with results obtained in mice (Friedrichs et al., 1995; Chiellini et al., 2002; 

do Nascimento et al., 2004), and in humans (Fain et al., 2004). Based on our results the 

presence of Hp is likely attributable to the adipocytes which is in agreement with Friedrichs et 

al. (1995), Chiellini et al. (2002), and do Nascimento et al. (2004). In contrast, Fain et al. 

(2004) reported that more Hp is made by the nonfat cells of human AT explants than is made 

by adipocytes. In the heifers investigated herein, the histological localization of Hp showed 

that VC fat had higher portions of Hp positive cells than SC fat. This finding is consistent 

with Fain et al. (2004) who reported that explants of human VC depots released more Hp than 

those of SC depots, and this might be due to the metabolic differences between the depots as 

mentioned previously in section 1.2. 

 
The Western immunoblotting method further confirmed the presence of Hp in AT. This 

method demonstrated differences in the obtained molecular weights of Hp in SC tailhead fat 
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(26 and 55 kDa) as compared to the liver or serum (34, 26 and 20 kDa). This finding is in line 

with Dilda et al. (2011) who reported several isoforms of Hp in bovine gastric tissues (16 and 

45 kDa in rumen and abomasum) that differed from those expressed in the liver (14 and 39 

kDa). Furthermore, Cooray et al. (2007) mentioned that the bovine granulocyte Hp consists of 

α (20 kDa) and β (40 kDa) chains each containing four and five isoforms, respectively. The 

reason for these differences is not clear, but differences in the glycosylation patterns of this 

protein have the potential to change its molecular weight (Wilson et al., 2002). Furthermore, it 

is also possible that specific glycosylation patterns, for proteins in general, are expressed in a 

tissue-specific and developmentally regulated manner (Ervasti et al., 1997). However, further 

investigations are required to ensure the protein identity. Taken together, these findings (by 

IHC and Western immunoblotting methods) provide an indication that Hp could be classified 

as an adipokine in ruminants as reported in humans (Chiellini et al., 2004; Fain et al., 2004). 

Within AT, Hp can play a role as a monocyte chemoattractant factor (Maffei et al., 2009), and 

as an antioxidant or angiogenesis agent (do Nascimento et al., 2009). However, further studies 

are required to give insight on Hp functions in bovine AT.  

 
It was suggested that Hp is also associated with obesity because its serum concentrations are 

increased in obese humans (Chiellini et al., 2004), and this is consistent with the concept that 

obesity is a state of chronic mild inflammation (do Nascimento et al., 2004). Unlike human 

studies, less is known about the relation between Hp and obesity in ruminants. In the current 

study, no relationship between serum Hp and each of BCS, BW and body fat content was 

established in both CLA experiments (not obese or over conditioned animals). In the over 

conditioned non-lactating heifers (fat heifers restriction study) there was a moderate negative 

correlation, which was completely surprising, between the concentrations of serum Hp and 

BW (r = -0.51, P = 0.002). Conversely, Chiellini et al. (2004) reported a strong positive 

relationship between circulating Hp and body fat in humans. The question as to whether the 

concentrations of Hp in serum might change in lactating cows if fat mass exceeds a certain 

level is unresolved yet. In addition, it is probable that Hp as an adiposity marker is irrelevant 

for ruminants.  

 
4.4. Haptoglobin as an inflammation marker  
 

Haptoglobin being one of the major APPs in cattle, is synthesized in response to infection and 

inflammation, with low constitutive serum concentrations under normal conditions ranging 

from 0.05 to 0.10 mg/mL (Svensson et al., 2007), exhibits a high relative increase up to 50 - 
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100-fold (Godson et al., 1996) and 1000-fold (Eckersall et al., 2006) in response to different 

inflammatory stimuli. Hirvonen et al. (1999) reported that the concentrations of Hp were high 

in cows with mastitis, metritis, and other inflammatory processes.  

 
In the CLA studies, the clinical examination of the animals revealed disorders of their general 

health conditions such as mastitis, metritis and retained placenta. These diseases are 

considered as being of economic importance for dairy production (Kelton et al., 1998), and 

can dramatically affect the profitability of dairy herds (Kossaibati and Esslemont, 1997). 

Disease frequency is usually reported either as incidence (the occurrence rate of disease cases 

per unit of time) or prevalence (the proportion of animals that are diseased at any single point 

in time) (Kelton et al., 1998). For mastitis, the incidence rates in the CLA-252 DIM 

experiment were 0.24 and 0.15 cases/100 cow/d for cows and heifers, respectively, and the 

incidence rate in the CLA-PM-105 DIM experiment was 0.45 cases/100 cow/d. The incidence 

rate of heifers in the CLA-252 DIM experiment is consistent with that of Plym-Forshell et al. 

(1995) who reported 56 cases/100 cow/year (equivalent to 0.153 cases/100 cow/d) in 

Denmark, and Erskine et al. (1988) who reported an incidence rate of 4.23 cases/100 

cow/month (equivalent to 0.141 cases/100 cow/d) in the USA. The incidence rates in our 

study in both experiments were higher than those reported by Gianneechini et al. (2002) (1.2 

cases/100 cow/month) in Uruguay, and Plym-Forshell et al. (1995) (21 cases/100 cow/year) in 

Sweden, which as daily incidence can be estimated as 0.04 and 0.06 cases/100 cow/d, 

respectively. The incidence rates for metritis in the CLA-252 DIM experiment were 0.13 and 

0.20 cases/100 cow/d for cows and heifers, respectively, whereas the incidence rate in the 

CLA-PM-105 DIM experiment was 0.45 cases/100 cow/d. These rates are considered low 

compared to Emanuelson et al. (1993) who reported 2.2 cases/100 cow/d in Sweden. For 

retained placenta in the CLA-252 DIM experiment, incidence rates of 0.04 and 0.03 

cases/100 calvings for cows and heifers were recorded, respectively, while, in the CLA-PM-

105 DIM experiment the incidence rate was 0.29 cases/100 calvings. These rates are 

considered low compared to Borsberry and Dobson (1989) who reported 1.3 cases/100 

calvings in the UK. 

 
The current results showed that the concentrations of Hp ranged from 0.01 to 12.4 mg/mL (n 

= 49, CLA-252 DIM experiment), 0.01 to 9.0 mg/mL (n = 25, CLA-PM-105 DIM 

experiment) and 0.02 to 3.5 mg/mL (n = 20, concentrate-roughage ratio study). The animals 

in the latter mentioned study were generally healthy, and they had significantly lower 
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concentrations of Hp compared to the animals in the CLA studies. This confirms that Hp is a 

useful indicator of general health status in animals. For the non-lactating heifers (n = 12, fat 

heifers restriction study), the concentrations of Hp ranged from 0.05 to 0.11 mg/mL.  

 
Serum Hp concentrations were used to distinguish between healthy and diseased animals in 

the CLA-252 DIM experiment. A cut-off value of 0.16 mg/mL (59% sensitivity and 73% 

specificity) was obtained in the current study. Humblet et al. (2006) and Svensson et al. 

(2007) relate the poor sensitivity to the un-noticed subclinical health disturbances, which 

restricts the ability to identify animals with pathologic disorders. A cut-off value of 0.15 

mg/mL (72% sensitivity and 59% specificity) was reported in dairy cattle suffering from 

respiratory-tract disease (Svensson et al., 2007), and a cut-off value of 0.19 mg/mL (98% 

sensitivity and 100% specificity) was established to differentiate between healthy cows and 

cows with different inflammatory diseases (Khoshvaghti et al., 2009). In the current CLA 

studies, 5% of the CLA-252 DIM samples (total 874), and 11% of the CLA-PM-105 DIM 

samples (total 209) had higher concentrations of Hp than 0.16 mg/mL without any clinical 

finding. It is to be mentioned that in the present study the time of diagnosis may not truly 

reflect the exact time of the disease onset. It should be considered that in the absence of 

disease, the animal health could be influenced by environmental factors, handling, and other 

types of stress (Petersen et al., 2004). 

 
Chronic sub-clinical mastitis is a common problem in dairy herds with considerable economic 

losses, mainly due to reduced milk production and discarded milk. For successful mastitis 

control in a herd, rapid and accurate diagnosis of mastitic cows is crucial (Grönlund et al., 

2005). Sub-clinical mastitis is mostly diagnosed by cow-side tests like the California Mastitis 

Test or by analyses of SCC using automatic cell counters. Acute phase proteins are sensitive 

and accurate parameters for mastitis diagnosis. In the CLA-PM-105 DIM experiment, from 

total milk samples (n = 96), 44% of the samples were below the detection limit of 0.07 

µg/mL. The concentrations of Hp below the detection limit are considered as a good indicator 

of healthy udder quarters as reported by Grönlund et al. (2005). The concentrations of Hp in 

milk samples ranged from 0.07 to 0.74 µg/mL for healthy quarters and from 0.07 to 199 

µg/mL for diseased quarters, which is consistent with Hiss et al. (2007), who reported that 

concentrations of Hp in milk ranged from 0.35 to 16 µg/mL in sterile samples and from 0.35 

to 974 µg/mL in samples with pathogens. In addition, the SCC in milk is the most commonly 

used parameter in diagnosis of mastitis. Many studies reported the correlation between SCC 
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and APPs. In this study, a positive moderate correlation was found between the 

concentrations of milk Hp and SCC (r = 0.41, P = 0.001), while a very strong correlation (r = 

0.80) was reported by Hiss et al. (2007). In the study of Hiss et al. (2007), to be able to 

include sufficient animals with subclinical mastitis, the cows were preselected on the basis of 

their milk SCC (i.e. half of the cows selected had elevated milk SCC for at least two months), 

which was not the case in the present study since the animals were not preselected depending 

on their SCC. This might be a proper reason that the correlation in our study is lower than in 

the study of Hiss et al. (2007). 

 

4.5. Effect of fat mobilization on the concentrations of haptoglobin and leptin 

 

The fat heifers restriction study aimed mainly at revealing if the change in EB induced any 

change in the concentrations of Hp and leptin in Simmental heifers fed grass silage or a 

hay/silage-straw mixture of reduced energy content. However, the current results indicated 

that neither Hp nor leptin concentrations were affected by the change in energy content of the 

ration fed. The results of serum Hp are in line with Berry et al. (2004) who demonstrated that 

two dietary energy levels (3.56 or 4.48 MJ NE for gain (NEg)/kg of feed on DM basis) and 

two dietary starch levels (34 or 48% of dietary ME from starch) fed to bull and steer calves 

for 42 days had no effect on the concentrations of serum Hp.  

 
If leptin serves as an endocrine signal linking peripheral adipose stores to regulatory centers 

within the hypothalamus, changes in nutritional status should be accompanied by changes in 

the concentrations of serum leptin (Morrison et al., 2001). In sheep, restricted feeding (39% of 

the maintenance energy requirement (MER) for 3 days (Delavaud et al., 2000) and 38% of the 

MER for 14 weeks (Morrison et al., 2001) decreased the concentrations of plasma leptin. 

Also, in non-lactating, non pregnant Holstein cows initially fed at 130% of MER for 28 days, 

restricted to 21% of MER for 7 days, and re-fed to 237% of MER for 21 days, the 

concentrations of plasma leptin decreased by restricted feeding and increased after re-feeding 

(Delavaud et al., 2002). In the current study, the concentrations of leptin were not changed in 

animals fed hay/silage-straw mixture compared with animals fed grass silage. In addition, the 

re-feeding did not affect the concentrations of leptin in heifers fed hay/silage-straw mixture 

diet. Fasting has been reported to cause an inhibition of white AT leptin gene expression, 

which is tightly associated with decreasing leptin blood concentrations (Frühbeck, 2001). It is 

possible that the re-feeding causes an increase of leptin gene expression in white AT which is 

associated with an increase in the concentrations of serum leptin (Frühbeck, 2001). In view of 
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no effect of moderate feed restriction and re-feeding on the concentrations of Hp and leptin, it 

might be that the degree and the duration of feed restriction were not sufficient to induce any 

significant changes in the current study.  

 
During fat mobilization, there is a concurrent loss of body condition and AT mass. The 

amount and rate of tissue mobilization probably depend on several factors such as the fatness 

of the cows, diet composition and extent of the energy deficit. High yielding cows have been 

selected and bred to produce more milk, mostly through their ability to mobilize fat and 

muscle to support milk production in early lactation (Knop and Cernescu, 2009). This results 

in a loss of body condition and is associated with alterations in blood metabolite and hormone 

profiles (Kadokawa and Martin, 2006). In this situation, the cows rely on the mobilization of 

adipose reserves and they often lose 60% or more of their body fat in the first weeks after 

parturition (Knop and Cernescu, 2009). As discussed before in section 4.1, in the Holstein 

cows the concentrations of Hp and leptin were increased and decreased around calving, 

respectively, and both were influenced by the onset of NEB and mobilization of AT. While, in 

the Simmental heifers the change in EB did not alter the concentrations of Hp and leptin. 

Also, using the same animals that were used in the current study, Germeroth et al. (2011) 

reported that Simmental heifers had larger adipocyte sizes in SC AT than Holstein heifers 

(CLA-PM-105 DIM experiment), indicating that the Simmental heifers tend to increase body 

reserves, whereas Holstein heifers spend extra energy preferentially for milk production. The 

concentrations of leptin in Simmental heifers used in this study were higher (P < 0.001) than 

that in Holstein heifers used in the CLA-PM-105 DIM experiment, probably due to the 

differing physiological state (lactating vs. non-lactating heifers), body fatness (BCS = 5 in 

Simmental heifers vs. 3 in  Holstein heifers), and the nutritional conditions. Due to the higher 

concentrations of leptin and larger adipocyte sizes in the Simmental heifers compared with 

the Holstein heifers, it might be that the Simmental heifers display a lower attitude in 

mobilizing body reserve than the Holstein heifers. 
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5. Conclusions 

 
The current study clearly demonstrated that the physiological changes in the concentrations of 

serum Hp were related to parity and parturition. In addition, heifers had higher concentrations 

of Hp in the first week PP than cows. This observation suggests a more intense physiological 

response to first calving than to later ones. Moreover, this study explored that the increase in 

the concentrations of Hp in the first week PP could be partly related to the metabolic stress, as 

indicated by the relation between the concentrations of Hp and each of NEFA and BHB. 

Furthermore, the concentrations of Hp showed a stronger positive relation with NEFA in 

heifers than in cows; therefore it might be that heifers are more stressed by lipolysis than 

cows. 

Long-term supplementation with CLA (equal proportions of each c-9, t-11 and t-10, c-12 

isomers) after calving in cows and heifers left the concentrations of serum Hp and leptin 

unaffected. Taken together, in this study it is difficult to make any definitive conclusions on 

the effect of long-term CLA supplementation on Hp and leptin. It is likely that dose and 

isomeric composition of CLA separately affect the ability of CLA to influence the 

concentrations of Hp and leptin in dairy cows. However, the results of this study might open 

new aspects for further studies to focus on the dose and single action of the c-9, t-10 and the t-

10, c-12 CLA isomers on Hp and leptin. 

The IHC and Western immunoblotting confirmed the presence of Hp in AT. This result gives 

an indication that Hp could be classified as an adipokine in cattle. Therefore, more attention 

should be paid to investigate the function of this protein to provide information as to why Hp 

is present in bovine AT. In addition, the lack of an evident relation between the 

concentrations of serum Hp and body fatness in the present study makes Hp irrelevant as an 

adiposity marker for ruminants.  

Finally, it can be concluded that in response to NEB, Holstein cows mobilize stored 

triglycerides in the AT in an attempt to meet energy demands for maintenance and milk 

production. While, the Simmental heifers tend to increase body reserves and display a lower 

attitude in mobilizing body reserve than the Holstein cows. 
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6. Summary 

 

Timely changes of the circulating concentrations of haptoglobin and leptin in female 

cattle undergoing fat mobilization: assessment of the relevance of haptoglobin as an 

adipokine 

 

Dairy cattle production exposes animals to a variety of stressors which can reduce feed intake 

and disease resistance. During the transition period (3 weeks AP to 3 weeks PP), the energy 

requirements can not entirely be met through dietary intake resulting in a condition of NEB, 

and cows may experience adverse health events. Extensive metabolic and endocrine changes 

occur in dairy cows to accommodate parturition and lactogenesis. Dairy cows during this 

period are susceptible to various metabolic diseases, impaired immune function and fertility. 

Dairy cattle production has been looking for more efficient and effective ways to minimize 

these health problems for a long time. In the last decade, there was sharply increasing interest 

in CLA due to its potentially beneficial effects in terms of animal welfare, nutritional status 

and diseases. Haptoglobin, one of the major APPs in cattle, is synthesized in response to 

infection and inflammation. In healthy cattle, Hp blood concentrations are low or even 

undetectable, but increase up to 1000-fold in response to different inflammatory stimuli. 

Leptin is a protein secreted from AT and has been implicated in regulation of food intake, 

energy expenditure and whole-body EB. However, circulating concentrations of Hp and leptin 

under long-term CLA supplementation have not yet been investigated. In addition, less is 

known about other sites of Hp production in ruminants such as AT. Moreover, as early 

lactating cows favor mobilization of AT under conditions of NEB, the initial step in non-

lactating cows to overcome the energy deficit is the mobilization of an excessive quantity of 

AT. Therefore, this study was undertaken to characterize the concentrations of Hp and leptin 

throughout the entire lactation period or during early lactation, to investigate the potential 

effects of CLA supplementation on the concentrations of Hp and leptin in dairy cows, to 

examine the presence of Hp in bovine AT, and to examine the effect of moderate feed 

restriction and re-feeding on the concentrations of Hp and leptin in non-lactating, non-

pregnant heifers.  

Samples from four different studies were used in this work. The first experiment “CLA-252 

DIM” was conducted to characterize the concentrations of Hp and leptin throughout lactation 

and to evaluate the effects of two different doses of rumen-protected CLA (50 and 100 g/d) 

supplemented from d 1 to 182 PP. This experiment comprised heifers (n = 16) and cows (n = 
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33) observed from d 21 AP until d 252 PP. In addition, a further experiment “CLA-PM-105 

DIM” was done in heifers (n = 25) studied from d 21 AP until d 105 PP and received 100 g/d 

CLA supplementation. The animals were sequentially slaughtered (d 1, 42 or 105 PP) for 

collection of PM tissue samples (3 VC and 3 SC depots). The CLA supplementation started 

on d 1 PP and continued until slaughter. In both experiments, the CLA supplementation 

included 12% (of total FA) of the t-10, c-12 and c-9, t-11 CLA isomers in equal parts. The 

third experiment “Concentrate-roughage ratio” was conducted using cows (n = 20) 

investigated from d 21 AP until d 21 PP, and received diets after calving with either a 

concentrate-to-roughage ratio on a dry matter basis of 30:70% (low-concentrate group) or 

60:40% (high-concentrate group). To examine the effect of moderate feed restriction and re-

feeding, a fourth experiment “Fat heifers restriction” with 12 non-lactating, non-pregnant 

heifers was performed. The heifers were fed either grass silage (100%) or grass silage diluted 

with straw (37:63 on DM basis). Serum and milk Hp, and serum leptin concentrations in the 

collected samples were detected using a competitive ELISA. Haptoglobin in AT was detected 

using IHC and Western immunoblotting. 

The physiological changes of Hp observed during the CLA-252 DIM experiment were related 

to parity (heifers vs. cows; P < 0.05) and parturition (before vs. after parturition; P < 0.001). 

The concentrations of Hp were 1.7-fold higher in heifers than in cows during the first week 

PP. The concentrations of Hp peaked around calving and decreased afterwards for both parity 

groups. In the CLA-PM-105 DIM experiment, the concentrations of Hp in heifers were 

affected by parturition (P < 0.001) with elevated concentrations during the first week PP and 

decreased afterwards. In both experiments, the time course of the concentrations of Hp after 

the first week PP did not show marked changes. Long-term feeding of dairy cows with CLA 

had no significant effect on the concentrations of serum Hp. No relationship was established 

between serum Hp and each of BCS, BW and body fat content in both CLA experiments. A 

positive relation was observed between the concentrations of Hp and NEFA in both CLA 

experiments, and this relation was stronger in heifers than in cows. In both CLA studies, the 

clinical examination of the animals revealed disorders of their general health conditions such 

as mastitis, metritis and retained placenta. The incidence rates of these diseases were 

determined. A cut-off point of 0.16 mg/mL with 59% sensitivity and 73% specificity was 

determined for the concentrations of serum Hp in the CLA-252 DIM experiment to 

discriminate between healthy and diseased animals. The IHC confirmed that Hp is present in 

all tested bovine AT. The VC fat had higher (P < 0.05) portions of Hp positive cells than SC 

fat. The Western immunoblotting indicated the presence of Hp in AT, and demonstrated 
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differences in the obtained molecular weights of SC tailhead fat (26 and 55 kDa) compared to 

liver or serum (34, 26 and 20 kDa).  

The physiological alterations in the concentrations of serum leptin in the CLA-252 DIM 

experiment were limited to parturition (before vs. after parturition; P < 0.001), whereas no 

parity (heifers vs. cows) differences could be confirmed. In both CLA studies, the 

concentrations of leptin were high in the AP period, and then decreased in the PP period 

below the pregnancy concentrations. Long-term feeding of dairy cows with CLA left the 

concentrations of serum leptin unaffected. The concentrations of leptin had a stronger relation 

with fat mass, body fat content, and adipocyte size than BCS.  

The fat heifers restriction study indicated that neither Hp nor leptin concentrations were 

affected by the change in energy content of the ration fed. The re-feeding (hay/silage-straw 

mixture to grass silage) had no significant effect on the concentrations of leptin.  

In conclusion, the physiological changes observed in the CLA-252 DIM experiment in the 

concentrations of serum Hp were related to parity and parturition. During the first week PP, 

the concentrations of Hp were higher in heifers than in cows, suggesting a more intense 

physiological response to first calving than to later ones. This study explored that the 

metabolic stress might modulate part of the increase in the concentrations of Hp in the first 

week PP as indicated by the relation between the concentrations of Hp and NEFA. Long-term 

feeding of dairy cows with CLA (equal proportions of each the c-9, t-11 and the t-10, c-12 

isomers) had no significant effect on the concentrations of serum Hp and leptin. However, the 

c-9, t-10 and the t-10, c-12 CLA isomer might divergently affect Hp and leptin. The presence 

of Hp in bovine AT indicates that Hp can be classified as an adipokine in cattle. The lack of 

an evident relation between the concentrations of Hp and body fatness in this study makes Hp 

irrelevant as an adiposity marker for ruminants.  
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7. Zusammenfassung  

 

Zeitlicher Verlauf der zirkulierenden Konzentrationen von Haptoglobin und Leptin in 

weiblichen Rindern, die eine Fettmobilisierung durchleben: Einschätzung der Relevanz 

von Haptoglobin als Adipokin   

 

Milchproduktion setzt die Tiere einer Vielzahl von Stressoren aus, die zu reduzierter 

Futteraufnahme und verminderter Krankheitsresistenz führen können. In der 

Transitionsperiode (3 Wochen vor der Geburt bis 3 Wochen nach der Geburt) können die 

Energieanforderungen durch die Futteraufnahme nicht mehr gedeckt werden, was zu einer 

NEB führt; dadurch sind Kühe nachteiligen Gesundheitsveränderungen ausgesetzt. Folglich 

resultieren daraus metabolische und endokrine Veränderungen um die Geburt und 

Milchproduktion zu gewährleisten. Milchkühe in diesem Zeitraum sind anfällig für eine Reihe 

metabolischer Erkrankungen, verminderter Immunfunktion und reduzierte Fruchtbarkeit. In 

der Produktion im Milchviehsektor wird schon seit langem nach effektiven Wegen gesucht, 

um die Gesundheitsprobleme der Kühe in dieser Zeit zu minimieren. Im letzten Jahrzehnt hat 

das Interesse an CLA zugenommen auf Grund deren potentiell positiver Wirkung auf das 

Wohlbefinden des Tieres, den Fütterungszustand und in Bezug auf Krankheiten. Haptoglobin 

ist eines der wichtigsten Akute Phase Proteine bei Rindern das als Antwort auf Infektion und 

Entzündung produziert wird. Bei gesunden Rindern sind die Blut Hp-Konzentrationen sehr 

niedrig bis nicht detektierbar, aber auf inflammatorische Stimulation können sie um das 1000-

fache ansteigen. Leptin ist ein Protein, das vom Fettgewebe produziert wird, es ist in die 

Regulation der Futteraufnahme involviert und gibt Auskunft über den Energiezustand und die 

Energiebilanz des Körpers. Zirkulierende Konzentrationen von Hp und Leptin unter längerer 

CLA-Supplementierung wurden noch nicht untersucht. Außerdem ist wenig bekannt über 

andere Gewebe die Hp in Wiederkäuern synthetisieren, wie das Fettgewebe. Außerdem 

begünstigen die ersten Tage der Laktation einer Kuh, die Fettmobilisierung aus dem 

Fettgewebe unter NEB, der erste Schritt nicht laktierender Kühe das Energiedefizit zu 

überwinden ist die exzessive Mobilisierung von Fett.  

Diese Studie wurde durchgeführt, um die Konzentrationen von Hp und Leptin über die 

komplette Laktation und über die ersten Tage der Laktation zu charakterisieren, den 

potentiellen Effekt der CLA-Supplementation auf Hp- und Leptinkonzentrationen in 

Milchkühen zu erforschen, das Vorkommen von Hp in bovinem Fettgewebe und den Effekt 
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von moderater Futterrestriktion und Wiederaufnahme der Fütterung in nicht laktierenden, 

nicht tragenden Färsen zu zeigen.  

Proben aus vier verschiedenen Versuchen wurde für diese Studie verwendet. Der erste 

Versuch “CLA-252 DIM” wurde durchgeführt, um die Konzentrationen von Hp und Leptin 

über eine Laktation zu charakterisieren und um die Effekte der Fütterung von zwei 

verschiedenen Dosen pansengeschützer CLA (50 und 100 g/d) zu evaluieren, die von d 1 bis d 

182 nach der Geburt gefüttert wurden. Dieser Versuch umfasste Färsen (n = 16) und Kühe (n 

= 33), die von d 21 bis d 252 nach der Geburt untersucht wurden. Zusätzlich wurde ein 

weiterer Versuch “CLA-PM-105 DIM” mit Färsen (n = 25) durchgeführt, die 100 g CLA/d 

gefüttert bekamen. Die Tiere wurden nacheinander für die Gewinnung von post mortalen 

Gewebeproben (3 viszerale und 3 subkutane Fett-depots) geschlachtet (d 1, 42 oder 105 PP). 

Die CLA Supplementierung begann an d 1 nach der Geburt bis hin zur Schlachtung.  In 

beiden Versuchen enthielten die zugefütterten CLA zu je 12% (der Gesamtfettsäuren) die t-

10, c-12 und die c-9, t-11 Isomere. Der dritte Versuch “Kraftfutter Rauhfutter Verhältnis” 

(KF:R) (d 21 AP - d 21 PP) wurde mit Kühen durchgeführt, deren Rationen bezogen auf 

Trockenmasse geringe (KF:R = 30:70%) oder hohe (KF:R = 60:40%) KF-Anteile nach der 

Kalbung enthielten. Um den Effekt von moderater Futterrestriktion und Wiederfütterung zu 

untersuchen, wurde ein vierter Versuch “Fette Färsen” mit 12 nicht laktierenden, nicht 

tragenden Färsen durchgeführt. Die Färsen bekamen entweder Grassilage (100%) oder 

Grassilage verdünnt mit Stroh (37:63 bezogen auf Trockenmasse). Serum und Milch Hp- und 

Serum-leptinkonzentrationen wurden mittels kompetitivem ELISA bestimmt. Haptoglobin in 

Fettgewebe wurde mit Immunhistochemie und Western Blot detektiert.  

Die physiologischen Veränderungen von Hp im CLA-252 DIM Versuch standen im 

Zusammenhang zu Parität (Färsen vs. Kühe; P < 0,05) und Geburt (vor vs. nach der Geburt; P 

< 0,001). Die Konzentration von Hp bei Färsen war 1,7-fach höher als bei Kühen in der ersten 

Woche nach der Geburt. In beiden Paritätsgruppen und CLA Versuchen konnte gezeigt 

werden, dass Hp eine maximale Konzentration zum Zeitpunkt der Geburt hatte und 

anschließend wieder absank. Im CLA-PM-105 DIM Versuch war die Hp-Konzentration in 

Färsen durch die Geburt beeinflusst (P < 0,001), erhöhte Konzentrationen wurden in der 

ersten Woche nach der Geburt gemessen, die danach wieder absanken. In beiden Versuchen 

zeigte der zeitliche Verlauf der Hp-Konzentration nach der ersten Woche PP keine auffälligen 

Veränderungen. Die CLA-Fütterung von Milchkühen über einen längeren Zeitraum zeigte 

keine signifikanten Effekte auf die Hp-Konzentration. In beiden CLA-Gruppen konnte kein 
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Zusammenhang zwischen Serum-Hp und BCS, Körpergewicht und Körperfettanteil ermittelt 

werden. Ein positiver Zusammenhang konnte zwischen der Hp- und NEFA-Konzentration in 

beiden CLA-Versuchen ermittelt werden, die Beziehung bei den Färsen war stärker als die bei 

den Kühen. In beiden CLA-Studien wurden durch klinische Untersuchungen verschiedener 

Erkrankungen, wie Mastitis, Metritis und retinierter Plancenta, festgestellt. Die 

Häufigkeitsraten dieser Erkrankungen wurden notiert. Ein Cut-off-Wert von 0,16 mg Hp/mL 

mit 59% Sensitivität und 73% Spezifität im CLA-252 DIM Versuch wurde ermittelt, um 

zwischen gesunden und kranken Tieren zu differenzieren.  

Die IHC bestätigte, dass Hp in allen getesteten Fettgeweben der Kuh vorkommt. Im 

viszeralen Fettgewebe wurden mehr Hp-postitive Zellen (P < 0,05) gefunden als im 

subkutanen. Durch Western Blot konnte das Vorkommen von Hp im Fettgewebe und 

unterschiedliche Molekulargewichte des Haptoglobins im subkutanen Schwanzfett (26 und 55 

kDa) verglichen mit Leber und Serum (34, 26 und 20 kDa) gezeigt werden. Die 

physiologischen Veränderungen in der Serum-Leptinkonzentration im CLA-252 DIM 

Versuch waren beschränkt auf die Geburt (vor vs. nach der Geburt; P < 0,001) wohingegen 

keine Paritätsunterschiede (Färsen vs. Kühe) festgestellt werden konnten. In beiden CLA-

Versuchen war die Leptinkonzentration in der Zeit AP hoch und sanken in der Zeit PP bis 

unter die Konzentration während der Trächtigkeit ab. Langzeitsupplementation von Kühen 

mit CLA hatte keinen Einfluss auf die Serum-Leptinkonzentration. Die Leptinkonzentration 

stand in stärkerer Beziehung zur Köperfettmasse, Köperfettanteil und der Adipozytengröße 

als zum BCS. Die “Fette Färsen” Studie zeigte, dass weder Hp- noch Leptinkonzentrationen 

durch Änderungen im Energiegehalt der Ration beeinflusst wurden. Wiederaufnahme der 

Fütterung (Grassilage vs. Heu/Grassilage-Stroh-Mischung) hatte keinen Effekt auf die 

Leptinkonzentration.  

Folglich waren die physiologischen Veränderungen in der Serum-Hp-Konzentration, die im 

CLA-252 DIM Versuch beobachtet wurden, auf die Parität und Geburt zurückzuführen. 

Während der ersten Woche PP waren die Hp-Konzentrationen in Färsen höher als in Kühen, 

was auf eine intensivere physiologische Antwort auf die erste Geburt als auf die Späteren 

hinweist. In dieser Studie wurde gezeigt, dass metabolischer Stress zumindest teilweise für 

einen Anstieg der Hp-Konzentrationen in der ersten Woche nach der Geburt verantwortlich 

ist, was über eine Beziehung zwischen Hp- und NEFA-Konzentration erklärt werden kann. 

Langzeitfütterung von Kühen mit einer CLA-Mischung, die gleiche Teile der c-9, t-11 und t-

10, c-12 Isomere enthält, hatte keinen signifikanten Einfluss auf die Serum-Konzentrationen 
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von Hp und Leptin. Dennoch könnten die c-9, t-11 und t-10, c-12 Isomere Hp und Leptin 

unterschiedlich beeinflussen. Das Vorkommen von Hp in bovinem Fettgewebe indiziert, dass 

Hp bei Rindern als Adipokin klassifiziert werden kann. Der fehlende Zusammenhang 

zwischen Hp und Körperfettgehalt macht Hp irrelevant als Marker für Fettleibigkeit in 

Wiederkäuern.  
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9. Appendixes 

 

Appendix A - Animal diets 

 

Tab. A1. Ingredients and chemical composition of the ante partum diet in the CLA-252 

DIM experiment. 

 

              PMR1 Concentrate 
Corn silage Grass silage          

Components (%) 
Wheat grain 
Barley grain 
Soybean meal 
Sugar beet pulp (dried) 
Zeolithe2  
Vitamin/mineral premix3  
 

   
25 
25 
20 
11 

12.5 
6.5 

Chemical composition 
DM (g/kg) 

 
295 

 
457 

 
877 

 

Nutrients (g/kg of DM) 
Crude ash 
Crude protein  
Ether extract 
ADF 
NDF 

 
40 
66 
31 

238 
445 

 
106 
113 
32 

332 
555 

 
83 

179 
31 
66 

189 
 

Energy4 (MJ/Kg DM) 
ME 
NEL 

 
10.6 
6.4 

 
9.2 
5.4 

 
10.6 
6.7 

1Partial mixed ration on DM basis (60% corn silage, 40% grass silage). 
2According to Grabherr et al. (2009) cows received 250 g Zeolithe/d for prevention of hypocalcaemia. 
3Per kg mineral feed: 60 g Ca, 105 g Na, 80 g P, 50 g Mg, 7 g Zn, 5.4 g Mn, 1.25 g Cu, 100 mg I, 40 mg Se, 30 
mg Co, 800 000 IU vitamin A, 100 000 IU vitamin D3, 1500 mg vitamin E. 

4Calculation based on nutrient digestibilities measured with wethers (GfE, 1991) and tabulated values 
(Universität Hohenheim-Dokumentationsstelle, 1997). 

Abbreviations: ADF = Acid detergent fiber, DM = Dry matter, ME = Metabolizable energy, NDF = Neutral 
detergent fiber, NEL = Net energy lactation. 
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Tab. A2. Ingredients and chemical composition of post partum fed concentrate and 

partial mixed ration in the CLA-252 DIM experiment (modified after Pappritz 
et al., 2011). 

 

 Concentrate PMR1 
CTR CLA  

Ingredients (%) 
Wheat grain 
Sugar beet pulp (dried) 
Rapeseed meal 
Soybean meal 
Soybean oil 
Calcium carbonate 
Vitamin/mineral premix2 
CLA supplement 
Control fatty acid  
 

 
38.5 
29 
20 
6.5 
1 

0.50 
2 
 

2.5 

 
38.5 
29 
20 
6.5 
1 

0.50 
2 

2.5 
 

 

Analyzed chemical profile 
DM (g/kg) 
 

 
889 

 
887 

 
426 

Nutrients (g/kg DM) 
Crude ash 
Crude protein  
Ether extract 
Crude fiber 
ADF 
NDF 
 

 
71 

187 
59 
88 

123 
258 

 
74 

187 
53 
89 

124 
256 

 
69 

118 
32 

193 
225 
425 

Energy3 (MJ/Kg DM) 
ME 
NEL 
CLA (g/kg of DM) 
t-10, c-12 CLA                      

 
13.9 
8.8 

 
0.02 

 
13.8 
8.8 

 
2.25 

 
11.1 
6.8 

 
 0.01 

1Partial mixed ration (63% silage, 37% PMR-concentrate on DM basis). 
2Per kg mineral feed: 140 g Ca, 120 g Na, 70 g P, 40 g Mg, 6 g Zn, 5.4 g Mn, 1 g Cu, 100 mg I, 40 mg Se, 5 mg 

Co, 1 000 000 IU Vitamin A, 100 000 IU Vitamin D3, 1500 mg Vitamin E. 
3Calculation based on nutrient digestibilities measured with wethers (GfE, 1991). 
Abbreviations: ADF = Acid detergent fiber, c = cis, CLA = Conjugated linoleic acids, DM = Dry matter, ME = 

Metabolizable energy, NDF = Neutral detergent fiber, NEL = Net energy lactation, t = trans. 
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Tab. A3. Fatty acids profile of fat supplements

1
 in the CLA-252 DIM and the CLA-PM-

105 DIM experiments
 (modified after Pappritz et al., 2011; von Soosten et al., 

2011). 
 

Fatty acids (% of total fatty acids) CTR CLA 
Palmitic acid (C16:0)  
Stearic acid (C18:0)  
Oleic acid (C18:1 c-9)  
 

10.89 
87.30 
<0.01       

10.89 
50.31 
10.66 

Conjugated linoleic acids (CLA) 
C18:2 c-9, t-11 
C18:2 t-10, c-12 
 

 
0.06 
0.02 

 
11.99 
11.88 

Other CLA 
 

0.15 0.95 

Other fatty acids 1.58 3.32 
1Supplementation CLA was included in the concentrate portion (fed by the computerized concentrate 
feeding station) as a rumen-protected CLA preparation. For the control group, CLA was distributed by 
stearic acid (C18:0).  

 

Tab. A4. Ingredients and chemical composition of the ante partum diet in the CLA-PM-

105 DIM experiment (von Soosten et al., 2011). 
 

 Concentrate PMR1 
Ingredients (%) 
Wheat grain  
Barley grain 

Soybean meal  
Sugar beet pulp (dried) 
Zeolithe2

 

Vitamin/mineral premix3 
 

 
25 
25 
20 
11 

12.5 
6.5 

 
 

Chemical composition 
DM (g/kg) 
 

 
894 

 
375 

Nutrients (g/kg DM) 
Crude ash 
Crude protein 
Ether extract 
Crude fiber 
ADF 
NDF 
 

 
155 
173 
22 
51 
68 

157 

 
56 
89 
29 

232 
256 
469 

Energy4 (MJ/kg DM) 
ME 
NEL 

 
10.6 
6.7 

 
11.0 
6.7 

1Partial mixed ration on DM basis (60% corn silage, 40% grass silage). 
2According to Grabherr et al. (2009) cows received 250 g Zeolithe/d for prevention of hypocalcaemia. 
3Per kg mineral feed: 60 g Ca, 105 g Na, 80 g P, 50 g Mg, 7 g Zn, 5.4 g Mn, 1.25 g Cu, 100 mg I, 40 mg Se, 30 

mg Co, 800 000 IU vitamin A, 100 000 IU vitamin D3, 1500 mg vitamin E. 
4Calculation based on nutrient digestibilities measured with wethers (GfE, 1991) and tabulated values 

(Universität Hohenheim-Dokumentationsstelle, 1997).  
Abbreviations: ADF = Acid detergent fiber, DM = Dry matter, ME = Metabolizable energy, NDF = Neutral 

detergent fiber, NEL = Net energy lactation. 
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Tab. A5. Ingredients and chemical composition of post partum concentrate and partial 

mixed ration in the CLA-PM-105 DIM experiment (von Soosten et al., 2011). 
 

 
 

Concentrate PMR1 
CTR CLA PMR1  

Ingredients (%) 
Wheat grain 
Sugar beet pulp (dried) 
Rapeseed meal 
Soybean meal 
Vitamin/mineral premix2 
Control fat supplement 
CLA supplement 
Calcium carbonate 
 

 
39.5 
29 
20 
6.5 
2 

2.5 
- 

0.5 

 
39.5 
29 
20 
6.5 
2 
- 

2.5 
0.5 

 
41 
30 
20 
6.5 
2 
- 
- 

          0.5 

 
 

Analyzed chemical profile 
DM (g/kg) 
 

 
873 

 
871 

 
870 

 
445 

Nutrients (g/kg DM) 
Crude ash 
Crude protein 
Ether extract 
ADF 
NDF 
 

 
65.2 
182 
50 

134 
259 

 
69 

180 
44 

133 
260 

 
64 

182 
20 

134 
265 

 
62 

124 
28 

208 
405 

Energy3 (MJ/kg DM) 
ME 
NEL 
CLA (g/kg of DM) 
C18:2 t-10, c-12 
C18:2 c-9, t-11 

 
13.9 
8.9 

 
0.0 
0.0 

 
13.7 
8.7 

 
1.7 
1.6 

 
13.5 
8.7 

 
0.0 
0.0 

 
11.9 
7.5 

 
0.0 
0.0 

1Partial mixed ration (25% grass silage, 38% corn silage, 37% PMR-concentrate). 
2Per kg mineral feed: 140 g Ca, 120 g Na, 70 g P, 40 g Mg, 6 g Zn, 5.4 g Mn, 1 g Cu, 100 mg I, 40 mg Se, 5 mg 

Co, 1 000 000 IU vitamin A, 100 000 IU vitamin D3, 1500 mg vitamin E. 
3Calculation based on nutrient digestibilites measured with wethers (GfE, 1991). 
Abbreviations: ADF = Acid detergent fiber, c = cis, CLA = Conjugated linoleic acids, DM = Dry matter, ME = 

Metabolizable energy, NEL = Net energy lactation, NDF = Neutral detergent fiber, t = trans. 
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Tab. A6. Nutrient, fibre and energy contents of the feed ingredients as well as intended 

percentages of silage and concentrate in the diets fed to cows post partum in 

the concentrate-roughage ratio study (Locher et al., 2011). 
 

              Feeding component 
Item Corn silage Grass silage LC  HC 

DM (g/kg) 368 289 885 883 
Ash (g/kg DM) 37 138 53 66 
CP (g/kg DM) 80 159 218 210 
EE (g/kg DM) 32 40 29 27 
ADF (g/kg DM) 223 311 52 53 

NDF (g/kg DM) 424 514 146 163 
ME (MJ/kg DM) 10.71 10.81 13.12 12.92 
NEL (MJ/kg DM) 6.41 6.51 8.32 8.22 

% in LC diet 42 28 30 - 
% in HC diet 24 16 - 60 

1Calculation based on nutrient digestibilities measured with wethers (GfE, 1991). 
2Calculation based on analyzed nutrient contents and tabulated values of apparent digestibilities (Universität 
Hohenheim-Dokumentationsstelle, 1997). 

Abbreviations: ADF = Acid detergent fiber, CP = Crude protein, DM = Dry matter, EE = Ether extract, HC = 
High concentrate, LC = Low concentrate, ME = Metabolizable energy, NDF = Neutral detergent 
fiber, NEL = Net energy lactation. 

 

Tab. A7. Chemical composition and energy contents of grass silage and hay/silage-straw 

mixture in the fat heifers feed restriction study (unpublished data). 
 

                                      Feeding component 
Item Grass silage Hay/silage-straw 

mixture 
DM (%) 37 63 
CP (%) 10.6 8.5 
ADF (%) 34.6 37 

NDF (%) 54.8 63.2 
ME (MJ/kg DM) 9.5 8.1 

                  Abbreviations: ADF = Acid detergent fiber, CP = Crude protein, DM = Dry matter, ME 
Metabolizable energy, NDF = Neutral detergent fiber. 
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Appendix B - Correlations 

 

Tab. B1. Coefficients of correlation between the concentrations of serum haptoglobin 

and body condition score, body weight, concentrations of nonesterified fatty 

acids and β-hydroxybutyrate during different periods in the conjugated 

linoleic acid studies. 

 
 
Experiment 

                 Cows                 Heifers 

Period BCS BW NEFA BHB  BCS BW NEFA BHB 

CLA-252 
DIM  

21 AP - 252 PP - - 0.14*** 0.12***  - - 0.38*** - 
21 AP - 7 AP - - - -  - - - - 
1 PP - 252 PP - - 0.10* 0.11*  - - 0.43*** - 
1 PP - 182 PP - - 0.12* 0.17**  - - 0.56*** - 
189 PP - 252 PP - - 0.26*** -  - - - - 

 

CLA-PM-
105 DIM  

21AP - 105 PP      - - 0.54*** 0.20** 

21 AP - 7 AP      - - 0.46*** - 
1 PP - 105 PP      - - 0.49*** 0.23** 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 
Abbreviations: AP = Ante partum, BCS = Body condition score, BHB = β-hydroxybutyrate, BW = Body weight, 

NEFA = Nonesterified fatty acids, PP = Post partum. 

 

 

Tab. B2. Coefficients of correlation between the concentrations of serum leptin and 

body condition score, body weight, concentrations of nonesterified fatty acids 

and β-hydroxybutyrate during different periods in the CLA-252 DIM and 

CLA-PM-105 DIM experiments. 

 

 
Experiment 

                All animals                      Heifers 

Period BCS BW NEFA BHB  BCS BW NEFA BHB 

CLA-252 
DIM  

21 AP - 252 PP 0.19*** - -0.15*** -      

21 AP - 7 AP - - - -      

1 PP - 252 PP - - -0.11** -      

1 PP - 182 PP - -  -0.10* -      

189 PP - 252 PP 0.18** - - -      

 

CLA-PM-
105 DIM  

21AP - 105 PP - - - -  - - - - 

21 AP - 7 AP - - - -   0.27* - - - 

1 PP - 105 PP - - - -   0.34*** 0.46*** - 0.34*** 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 
Abbreviations: AP = Ante partum, BCS = Body condition score, BHB = β-hydroxybutyrate, BW = Body weight,  

NEFA = Nonesterified fatty acids, PP = Post partum. 
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Tab. B3. Coefficients of correlation between the concentrations of serum leptin and fat 

mass, adipocyte size and body fat content of different fat depots for the heifers 

in the CLA-PM-105 DIM experiment. 

 
      Fat mass (kg)     Adipocyte size (µm2)    Body fat content (%) 

1 PP 42 PP 105 PP 1 PP 42 PP 105 PP 1 PP 42 PP 105 PP 

SC depots 

Tailhead 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

Withers  - - - - -   0.78** - - - 

Sternum - - - - - 0.71* - - - 

Mean SC - 0.83** - - - - - 0.80** - 
 

VC depots 
          

Omental 
Mesenterial 
Retroperitoneal 

- 
- 
- 

  0.90*** 
0.71* 

0.81** 

- 
- 
- 

- 
  0.98** 

- 

- 
- 
- 

- 
- 

 0.75* 

- 
- 
- 

0.86*** 
0.72* 

0.83** 

- 
- 
- 
 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 
Abbreviations: PP = Post partum, SC = Subcutaneous, VC = Visceral 
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Appendix C - Chemicals, buffers and solutions 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

Protease inhibitor CompleteTM    (Roche) 
1 tablet in 2 mL H2O 
 
Coating buffer 
0.05 M NaHCO3      (Roth) 
200 µL/L Protease inhibitor      
20 mL/L Proclin 150®      (Sigma) 
pH 9.6 
 
Casein solution 
0.05 M NaOH                                                                        (Applichem) 
1.5 mM EDTA (Disodium salt dihydrate)                             (Roth) 
2.5% Casein                                                                           (Sigma) 
200 µL/L Protease inhibitor 
20 mL/L Proclin 150®  
pH 7.2 
 
Test buffer  
0.12 M NaCl                                                                          (Roth) 
0.02 M Na2HPO4                                                                   (AppliChem) 
0.01 M EDTA                                                                        (Roth) 
0.005% Chlorhexidine                                                           (Sigma) 
0.1% Gelatine (Gelatine Hydrolysate)                                  (Sigma) 
0.05% Tween®20                                                                   (AppliChem) 
0.002% Phenol red                                                                 (Sigma) 
200 µL/L Protease inhibitor 
20 mL/L Proclin 150® 
pH 7.3 
 
Substrate buffer 
0.05 M Citric acid                                                                  (AppliChem) 
0.055 M Na2HPO4                                                                     
0.05% Urea peroxide                                                             (Sigma) 
20 mL/L Proclin 150® 
pH 4.05 
 
TMB-solution 
12.5 mg TMB (3, 3, 5, 5-Tetramethylbenzidine)                   (AppliChem) 
1 mL DMSO (Dimethyl sulfoxide)                                        (AppliChem) 
                                                                  
Substrate solution 
18 mL Substrate buffer 
360 µL TMB-solution 
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Stop solution 
1 M Oxalic acid                                                                   (Roth) 
 
Washing buffer (10-fold) 
1.36 M NaCl 
81 mM Na2HPO4                                                                         
27 mM KCl                                                                          (Roth) 
15 mM KH2PO4                                                                   (Roth) 
20 mL/L Proclin 150® 
55 g/L Tween®20 
pH 7.3 
To prepare a ready-made solution: 10 mL of washing buffer/1 L 
 
Immunohistochemistry (IHC) 

 

PBS (Phosphate buffered saline) 
0.136 M NaCl         
8.1 mM Na2HPO4 
2.7 mM KCl 
1.5 mM KH2PO4 
pH 7.2 
 
Washing buffer 
0.136 M NaCl 
8.1 mM Na2HPO4  
2.7 mM KCl 
1.5 mM KH2PO4 
0.5 ml (0.05%) Tween®20 
pH 7.2 
Filled up with H2O (1 L) 
 
Citrate buffer 
0.01 mM Citric acid, Anhydrous 
pH 6 
Filled up with H2O (1 L) 
 
Hydrogen peroxide (H2O2) 
100 µL H2O2                                                                        (Roth) 
1 mL PBS 

 

Western immunoblotting 

 

Resolving buffer 
1.5 M Tris (hydroxymethyl aminomethane)/HCl                (Roth)    
0.4% SDS (Sodium dodecyl sulfate)                                   (Sigma) 
pH 8.8 
 
Resolving gel (12%) 
4 mL Acrylamide (30%) (Rotiphorese® Gel A)                  (Roth)  
1.6 mL Bisacrylamide (2%) (Rotiphorese® Gel B)             (Roth)  
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2.50 mL Resolving buffer 
1.9 mL H2O 
The above mixture mixed with: 
45 µL 10% Ammonium persulfate (APS)                            (Sigma)  
5 µL Tetramethylenediamine (TEMED)                              (Roth)  
 

Stacking buffer 
0.5 M Tris/HCl    
0.4% SDS 
pH 6.8 
 
Stacking gel (5.6%) 
0.40 mL Acrylamide (30%)     
0.265 mL Bisacrylamide (2%) 
0.625 mL Stacking buffer 
1.71 mL H2O 
The above mixture mixed with: 
20 µL 10% APS 
5 µL TEMED 
 
Running buffer (10-fold) 
25 mM Tris                                                                          (Roth) 
0.2 M Glycine 
0.1% SDS 
 
Bromphenol blue solution 
0.2% Bromophenol blue                (Sigma) 
0.1 M Tris/HCl  
pH 7.5 
 
Sample buffer (2-fold) 
3 mL Bromophenol blue solution            
40 mL Glycerine                                                                  (Merck) 
4 mL 2-Mercaptoethanol                                                     (Sigma) 
10 mL 20% SDS 
4 mL 1M Tris/HCl  
pH 6.8 
Filled up with H2O (1 L),  
for 5-fold filled up with 40 mL H2O 
 

Tris/HCl 
0.1 M Tris/HCl 
pH 7.5 
 
Blotting buffer I 
0.3 M Tris/HCl 
10% methanol                 (AppliChem) 
pH 10.4 
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Blotting buffer II 
25 mM Tris/HCl 
10% methanol 
pH 10.4 
 
Blotting buffer III 
25 mM Tris/HCl 
10% methanol 
60 mM 6-Aminohexanoic acid 
pH 9.4 
 
TBS buffer (10-fold) 
0.05 M Tris/HCl 
0.9% NaCl 
pH 7.5 
 

TBST (Tris-Buffered Saline-Tween)  
0.5 mL (0.05%) Tween®20 
1 L TBS 
pH 7.3-7.4 
 
TBST with Roti®block 
9 mL TBST 
1 mL Roti® block 

 

Fat and liver samples homogenization 

 
Homogenization buffer 
50 mM Tris HCl 
300 mM KCl 
2.5 mM MgCl2 
pH 7 
 
Protease inhibitor CompleteTM 
1 tablet in 2 mL H2O 
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