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Abstract

Due to gravitation, the main reflector of a radio telescope underlies a deformation which causes
a change in focal length depending on the variations of the elevation angle of the telescope. In order
to estimate these gravity dependent deformations of the main reflector of the 100m radio telescope
at Effelsberg, Germany, we propose a measurement concept based on a laser scanner being mounted
upside-down on the subreflector. The measurements which have been performed at seven different
elevations between 90 and 7.5 are used to estimate the focal length variation of the main reflector
parameterized by a rotational paraboloid. To guarantee reliability of the adjustment, we perform an
orthogonal distance regression (ODR) rather than a classical least squares adjustment in a Gauss-
Helmert model. We formulate the independence of the focal length estimation from the absolute
position and orientation of the main reflector in space as a requirement for a reliable adjustment
approach. Our investigations attest the ODR a superior reliability with regard to this criterion. A
three-step adjustment procedure based on an alteration of the ODR and several outlier eliminations
is used to determine the variations of the focal length due to gravitation. The estimated focal
length decreases by a maximum of 12.6mm when tilting the reflector from 90 to 7.5 elevation angle.
The post-fit discrepancies between the best-fit paraboloid and the reflector’s surface are Gaussian
distributed within the accuracy of the measurements which supports the assumption of a homologous
deformation of the main reflector.
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Introduction

In geodetic VLBI applications, radio telescopes are used to perform measurements of differences in signal
arrival times to estimate the distance between the reference points of different telescopes. The signal
path within the optics of the telescope does not influence the observation if it remains constant, because
it is absorbed in the clock corrections during the data analysis (Sarti et al. 2011). But if the focal length
of the main reflector and following the signal path underlie a variation between different elevation angles
of the main reflector, these focal length variations can impact the VLBI observable to a non negligible
extent. This variation influences, among other parameters, the height of the telescope reference point
and, as a consequence, the distance between the telescopes (Sovers et al. 1998). Therefore, this variation
has to be known as accurately as possible to correct the VLBI geometric delay. The dependence of the
signal path on the construction of the main reflector, i.e., its surface, and on the resulting focal length of
the reflector is shown in Fig. 1.

Figure 1: Effelsberg 100m radio telescope including a sketch of two distinct signal paths.

In general, signal path variations ∆L are not only dependent on the the focal length variation ∆f
but also on the displacement of the receiver ∆R and the displacement of the main reflector ∆V (Clark
and Thomsen 1988). The corresponding equation in dependence of the telescope pointing elevation e is

∆L(e) = 2 · αR ·∆R(e) + αV ·∆V (e) + αf ·∆f(e). (1)

Eq. (1) applies to VLBI systems observing in secondary focus as is the case at the radio telescope of
investigation at Effelsberg, Germany. The linear coefficients αR, αV and αf depend on the dimensions and
structure of the telescope (Abbondanza and Sarti 2010). Thus, the estimation of focal length variations is
only a first, important step towards the definition of a complete correction model for signal path variations
due to gravitation (Sarti et al. 2009b). But although not sufficient to determine the total variation of the
signal path, knowledge about focal length variations is necessary to define the telescope specific correction
model to be implemented in the VLBI data reduction. Nowadays, telescope gravitational deformations,
despite their potential impact on the accuracy of VLBI positioning, are neglected in the analysis of
geodetic VLBI observations.

In the recent years, many investigations have been done in order to analyze the surface of the main
reflector of several radio telescopes. These investigations can be categorized into studies that aimed at
measuring the deformations of the main reflector, i.e., its actual shape and surface, and into the studies
that aimed at determining the focal length variations of its best-fit approximation and the deformation
patterns induced by gravity at different elevation angles. Into the first category, the investigations
of Subrahmanyan (2005) and Shankar et al. (2009) can be classified. They used photogrammetric
measurements in order to analyze the shape of the main reflector and its smoothness. Also the studies of
Dutescu et al. (2009) which are based on laser scanner measurements aimed at determining the shape of
the main reflector. They analyzed its deviations from the best-fit surface and the deviation of the actual
focal length from the one proposed by the manufacturers at the radio telescope at Wettzell and the Deep
Space antenna at Weilheim. The studies of Sarti et al. (2009a) can be included into the second category.
They estimated focal length variations of the radio telescopes Medicina and Noto, Italy, in dependence

2



of the elevation angle based on laser scanner measurements. These investigations are comparable to the
ones of our study.

Regarding the aforementioned publications also using a laser scanner for analysis (Dutescu et al. 2009,
Sarti et al. 2009a), the measurement conditions coincide in several aspects:

� The main reflectors of the observed radio telescopes are of minor size in diameter (Wettzell: 20m,
Weilheim: 30m, Medicina and Noto: 32m) with a focal length of about 10m.

� More than one station had to be occupied by the instrument for the scanning of the whole surface.

� The laser scanner’s station was chosen very close to the reflector or even on the surface of the main
reflector itself leading to short distance measurements but also to bad angles of incidence.

In order to estimate the gravity dependent deformations of the main reflector of the 100m radio telescope
at Effelsberg, Germany (Fig. 1), we developed a measurement concept which differs in all these aspects.
It is optimized for the extremely large size of the reflector and for the surrounding topography which
makes it impossible to position the laser scanner outside the radio telescope. Instead, it is mounted
upside-down underneath the subreflector near the prime focus (Fig. 2 and 3).

Figure 2: Subreflector of the radio telescope.

Figure 3: Upside-down observing station of the laser scanner inside the subreflector at an elevation angle
of 90°of the main reflector.

Because of the main reflector’s size of 100m in diameter and the massive weight of 3′200 tons of the
whole construction (MPIfR 2011), the manufacturers took special care in the design regarding gravita-
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tional deformation which is accounted for by a homologous deformation (Hachenberg 1968). This means
that the main reflector indeed underlies a gravity dependent deformation but also that the deformed sur-
face always results in a rotational paraboloid again. Thus, only a change in focal length should become
noticeable with variable elevation angles and no local deformation patterns should be revealed on the
surface (Hachenberg 1968).

Within the adjustment of the observations for the estimation of the focal length, it is essential to choose
an appropriate model approach. While Sarti et al. (2009a) apply a classical least squares adjustment
in a Gauss-Markov model, Dutescu et al. (2009) compare the estimated parameters of a classical least
squares approach in a Gauss-Helmert model with the ones of an adjustment with pseudo observations and
a fitting method of the Software Mathematica leading to equal results. As a condition for the verification
of a suitable adjustment approach, we formulate that the focal length estimation should be independent
from the absolute values of the parameters describing the position and orientation of the main reflector
in space. For this purpose, we investigate and compose two distinct approaches, i.e., a classical least
squares adjustment in a Gauss-Helmert model and an orthogonal distance regression, which differ in the
point of linearization and the definition of the estimated discrepancies.

In summary, two main aspects are contained in this paper: First, the specific mounting of the laser
scanner inside the subreflector which leads to its station being temporary upside-down. Second, an
advanced adjustment model represented by the orthogonal distance regression is used for parameter
estimation. These aspects will be further discussed in the following sections.

Laser Scanner Measurements

In order to estimate the elevation dependent deformations, laser scanner measurements were performed
on July 8th, 2010, at seven different elevation angles between 90°and 7.5°, i.e., 90°, 75°, 60°, 45°, 30°, 15°,
7.5°. This represents the maximal range of operation. An observing station outside of the telescope as
an absolute static position was not feasible. As a consequence, we mounted the instrument on top of a
special receiver box which was hoisted to the prime focus underneath the subreflector (Fig. 2 and 3).
That means that the laser scanner moves with the telescope’s steel structure for different elevations and
that its vertical axis is always pointing approximately into the direction of the main reflector’s vertex.
This results in scanning distances from 30m to 50m. Thus, at an elevation angle of 90°of the radio
telescope the standing axis of the laser scanner was upside-down and at an elevation angle of 7.5°the
standing axis was nearly horizontal.

Because of this arrangement, it was possible to scan nearly the whole surface of the main reflector
from one laser scanner station. Therefore, the necessity for a matching procedure for separate point
clouds from several stations as mentioned in Dutescu et al. (2009) and Sarti et al. (2009a) is avoided.
Furthermore, this reduces the complexity of the measurement procedure because no target points had
to be installed for transformations as well as it benefits the accuracy because no matching process is
performed. Another benefit of this station is the geometry of the measurement leading to angles of
incidence of larger than 55.

The observation vector li = [si, βi, ti]
T , i = 1, ...,m, of a laser scanner includes the distances si, the

vertical angles βi and the horizontal directions ti. These measurements are related to a fixed interval of
horizontal direction increments and vertical angle increments, determined by the desired scan resolution,
an the phase-based distance measurements. The measurements can be transformed into the coordinates
Xi by Eq. (2), represented in the coordinate system defined by the origin and the axes of the laser
scanner:

Xi =

 Xi

Yi
Zi

 =

 si · sinβi · sin ti
si · sinβi · cos ti

si · cosβi

 . (2)

Additionally, the laser scanner also measures the intensity of the reflected signal. This normalized in-
tensity I ∈ [0, 1] can be used to segment the main reflector from the background as will be discussed
later.

For the measurements with distances from 30m to 50m, a Leica HDS 6100 laser scanner was used. The
scan density was chosen as Ultra High leading to a density of 7.9mm ·7.9mm at a distance of 50m (Leica
Geosystems 2011). This results in a point cloud of about m ≈ 370 million points and a measurement
time of about 30 minutes for each elevation angle. The associated specifications of accuracy of the laser
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Observation Accuracy

s ≤ 25m ≤ 2mm− 3mm
s ≤ 50m ≤ 3mm− 5mm

t 125µrad
β 125µrad

Table 1: Relevant accuracy specifications of the distance s, horizontal direction t and vertical angle β
corresponding to the laser scanner Leica HDS 6100 (Leica Geosystems 2011).

scanner are presented in Tab. 1. We attest the distance measurements a higher accuracy than quoted by
the manufacturer based on in-house calibration measurements. These test measurements were performed
at different distances with respect to an interferometer of superior accuracy. The standard deviation of
σs,i = 0.6mm + si · 0.05mm/m results in an accuracy of 2.1mm at a distance of 30m and in 3.1mm
at a distance of 50m. However, because these values are achieved under optimal conditions which are
not given during the measurements at the paraboloid, we adopt the specifications of Tab. 1 leading to
a standard deviation of the distance measurements of σs,i = si · 0.1mm/m which equals an accuracy of
3.0mm at a distance of 30m and 5.0mm at a distance of 50m. As described in the final results, an
analysis of the post-fit discrepancies supports this magnitude.

Adjustment Approaches

We parameterize the surface of the main reflector by a rotational paraboloid. We choose this repre-
sentation because of the assumption of a homologous deformation of the surface always leading to a
rotational paraboloid again (Hachenberg 1968). The corresponding parameters can be separated in ex-
trinsic parameters describing the position and orientation of the paraboloid in space and in the intrinsic
shape parameter, i.e., the focal length. The focal length is the desired parameter to describe the inner
deformation caused by a variation at different elevations. Its estimation should be invariant from changes
in position and orientation of the main reflector in space. To ensure this requirement, two adjustment
approaches are discussed. The first one is based upon a classical least squares minimization and the
second one describes two modifications leading to an orthogonal distance regression (ODR).

Parameterization

A rotational paraboloid whose vertex is placed in the origin of the coordinate system and whose rotational
axis coincides with the z-axis of the coordinate system is parameterized by

x2 + y2

4f
= z, (3)

with f being the focal length as the only intrinsic form parameter (Clark and Thomsen 1988). Because
the laser scanner is mounted on the subreflector and not on the vertex of the paraboloid, the measured
coordinates X have to be transformed into the coordinates x = [x, y, z]T by a rotation around the x- and
y-axis, i.e., ϕx, ϕy, and a translation xv = [xv, yv, zv]

T before being related to the focal length by Eq.
(3). The rotation around the z-axis is neglected due to the rotational symmetry of the paraboloid. Thus,
the implicit model of the rotational paraboloid g(X,p) = 0, expressed in the measured coordinates X, is
defined by six parameters p = [xv, yv, zv, ϕx, ϕy, f ]T :

g : g(Xi,p) =
x2
i + y2

i

4f
− zi = 0. (4)

With the definition of the matrices Rx(ϕx) and Ry(ϕy) describing the rotations around the x- and y-axis,
the observed coordinates Xi are transformed into the coordinates xi within the laser scanner system by

xi = Rx(ϕx) ·Ry(ϕy) ·Xi − xv. (5)

As already described, a reliable adjustment of these six parameters enables an estimation of the focal
length f independent from the absolute values of the five extrinsic parameters. Therefore, two different
adjustment strategies will be discussed in regard to this requirement.
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Classical Least Squares Approach

At first, we briefly describe the classical least squares approach because we later refer the improvement of
the ODR to this. The classical least squares adjustment is based on an adjustment of the observations l
that can be included into the functional model of Eq. (4) by Eq. (2). Due to the fact that an isolation of
the observations in Eq. (4) is impossible, the functional model g(l,p) = 0 is implicit. This type of least
squares adjustment is known as a Gauss-Helmert model or the general case of adjustment (e.g., Mikhail
and Ackermann 1976).

While the functional model is given by Eq. (4), the corresponding stochastic model Σll rests upon the
variances of the measured distance σ2

s,i = s2
i · 0.12mm2/m2, the vertical angle σ2

β,i = 1252 µrad2 and the

horizontal direction σ2
t,i = 1252 µrad2. As already described, these stochastic informations are extracted

from the manufacturer’s specifications (see Tab. 1). The combined stochastic model of the observations
is a covariance matrix with values only in the main diagonal neglecting correlations:

Σll,i = diag{σ2
s,i, σ

2
β,i, σ

2
t,i}. (6)

Because the observations l are never free of error, i.e., the variances in Eq. (6) are non-zero, residuals

v have to be added in order to gain the estimated observations l̂ = l + v and to fulfill Eq. (4) with the

included estimated parameters p̂ : g(̂l, p̂) = 0. For linearization, the discrepancies w, a design matrix A
and a condition matrix B have to be set up (e.g., Mikhail and Ackermann 1976). The discrepancies w
represent the deviations between the assumed functional model of Eq. (4), including the observations l
and the approximated parameters p0, and the best-fit paraboloid:

w = g(l,p0). (7)

Through a linearization of the functional model at the approximated parameters p0 and at the observa-
tions l, the design matrix A and the condition matrix B are calculated:

A =
∂g

∂p

∣∣∣∣
p0,l

; B =
∂g

∂l

∣∣∣∣
p0,l

. (8)

By means of the definitions of Eqs. (7) and (8) and the determination of ∆p̂ = p̂ − p0 as the vector of
reduced parameters, it is possible to set up the linearized functional model as

Bv + A∆p̂ + w = 0. (9)

These definitions form the classical adjustment approach based on a non-linear implicit functional model
where the iteration is only performed on the parameters, not on the observations. It is described in several
publications, e.g., Kupferer (2004) or Lösler (2009), or standard literature for parameter adjustment, e.g.,
Mikhail and Ackermann (1976) or Niemeier (2008).

The estimation of the desired parameters p̂ is then based upon the minimization of the cost function
vTΣ−1

ll v which leads to the normal equations (Mikhail and Ackermann 1976)[
BΣllB

T A

AT 0

] [
k

∆p̂

]
=

[
−w
0

]
, (10)

where k are the Lagrange multipliers. By solving this equation system, the reduced parameters ∆p̂ and
following p̂ = p0 + ∆p̂ and the associated covariance matrix Σp̂p̂ can be estimated iteratively.

Orthogonal Distance Regression

The described approach of the classical least squares adjustment is not an optimal solution for estimation
of the parameters p̂ of the implicit model of Eq. (4). This is based on two reasons:

� First, the design matrix A and the condition matrix B are not linearized at the paraboloid itself
represented by the estimated observations l̂ = l + v but at the true observations l (Eq. (8)).

� Second, an algebraic error criterion as stated in Eq. (7) is used to define the discrepancies instead
of a geometrically interpretable one.
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The orthogonal distance regression (ODR) overcomes the drawbacks of the classical least squares adjust-
ment (Ahn et al. 2002).

The first insufficiency is discussed in several geodetic publications (e.g., Lenzmann and Lenzmann
2003, Neitzel 2010). An adaption of the point of linearization can also be found in the actual document
about concepts of adjustments of the German Institute for Standardization (DIN 18709, 2010): While in
the document of the year 1984 (DIN 18709, 1984) a linearization at the observations l similar to Eq. (8)

is propagated, the document of 2010 suggests a strict linearization at the estimated observations l̂ in
non-linear models. This modification as described in Lenzmann and Lenzmann (2003) and Neitzel (2010)
leads to a different definition of the vector of discrepancies. They refer to the associated algorithm as
total least squares representing a rigorous solution of the Gauss-Helmert model.

The ODR as a technique for shape recognition and approximation is well known in the mathematics
or computer science community (e.g., Helfrich and Zwick 1993, Ahn 2008). While the classical least
squares approach is often named as algebraic fitting, the ODR is referred to as geometric fitting being
superior in regard to the algebraic one because of the following reasons (Ahn et al. 2001):

� The algebraic fitting has drawbacks in accuracy.

� The estimated intrinsic parameters are invariant to the position and orientation of the shape in
space in comparison to the algebraic fitting.

� The geometric discrepancies are physically interpretable. In contrast, the algebraic discrepancies of
Eq. (7) do not follow a physical interpretation not being equal to a geometric distance.

To overcome these insufficiencies, the aforementioned modifications have to be accomplished. Because
the foundation of this ODR approach is a coordinate-based distance as a criterion for the discrepancies,
we directly include the measured points X into the functional model instead of the observations l so that
the implicit model g(X,p) = 0 is given as in Eq. (4). The associated stochastic model ΣXX is gained by
variance propagation (e.g., Mikhail and Ackermann 1976) of the covariance matrix of the observations
Σll,i, i = 1, ...,m, of Eq. (6):

ΣXX,i =

[
∂Xi

∂li

]
· Σll,i ·

[
∂Xi

∂li

]T
. (11)

In contrast to the stochastic model Σll,i of the classical least squares approach, the covariance information
ΣXX,i of the ODR is a full matrix including correlations due to variance propagation.

Helfrich and Zwick (1993) divide the algorithm in two parts: The first one is based upon the calculation
of estimated coordinates, i.e., the orthogonal contacting points X′, which lie on the estimated paraboloid
parameterized by the actual approximated parameters p0. They represent the shortest distances, i.e.,
the signed orthogonal distances, between the measured points X and the paraboloid g(X′,p0) = 0 (Fig.

4). These are the correspondents to the estimated observations l̂ because we now adjust the measured
coordinates X instead of the observations l.

The second part defines signed orthogonal distances d to set up the discrepancies geometrically. This
two-step adjustment as described in Helfrich and Zwick (1993) is also called the separation of variables
approach in which the calculation of orthogonal contacting points X′ and the estimation of the optimal
parameters p̂ is separated in an inner and outer iteration until convergence is reached (Rouhani and
Sappa 2009).

For the parameter estimation, we preserve the normal equation (Eq. (10)) while we define the required
variables, i.e., the matrices A, B and the discrepancies w, deviant from Eqs. (7) and (8) adjusted to the
ODR approach as described below.

We linearize the implicit model g(X,p0) of Eq. (4) including the observed coordinates X and the
approximated parameters p0 at approximated coordinates X0 by a Taylor series:

g(X,p0) = g(X0,p0) +∇gX0
· (X−X0)

+O{(X−X0)2}. (12)

The gradient ∇gX0
is defined as ∇gX0

= [gX0
, gY0

, gZ0
]T , with gX0

= ∂g(X,p0)/∂X0 and the terms of
higher order equal O{(X −X0)2}. Then, by definition that the points of linearization are equal to the
orthogonal contacting points, i.e., X0 = X′, and with the knowledge that the implicit functional model
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Figure 4: Relation between the measured point Xi and its correspondent orthogonal contacting point X′i;
the normal vector ∇gX′

i
is orthogonal to the tangent plane plane hi which is an approximation

of the surface g, i.e., the paraboloid, at X′i.

equals zero at the orthogonal contacting points X′ lying directly on the paraboloid itself defined by the
parameters p0

g(X′,p0) = 0, (13)

we reduce the linearized Eq. (12) by neglect of the higher order terms to

h : g(X,p0) = ∇gX′ · (X−X′). (14)

Eq. (14) defines tangent planes h, being approximations of the paraboloid g characterized by Eq. (13)
at the orthogonal contacting points X′ (Fig. 4). Ahn et al. (2002) describe as necessary condition that
the connecting lines of X and X′ are parallel to the normals of the paraboloid at the points X′ which
equal the gradients ∇gX′ :

∇gX′ × (X−X′) = 0. (15)

A rearrangement of Eq. (15) leads to (Ahn et al. 2002)

gX′

X −X ′ =
gY ′

Y − Y ′ =
gZ′

Z − Z ′ , (16)

which is equal to (
X−X′

)
= λλλ · ∇gX′ , (17)

with some unknown vector λλλ = [λ1, ..., λm]T . Eqs. (13) and (17) together build up the necessary first
order conditions for the calculation of the orthogonal contacting points X′ (Helfrich and Zwick 1993). In
order to estimate the corresponding unknown parameters of dimension four for each measured point Xi,
i.e., the orthogonal contacting point X′i and the scalar λi, i = 1, ...,m, we solve this four dimensional
equation system iteratively. Therefore, we integrate Eq. (17) into Eq. (14). This results in the calculation
of the vector λλλ

λλλ =
g(X,p0)

||∇gX′ ||2 , (18)

whereupon the squared normalization factor of the orthogonal contacting points, ||∇gX′ ||2 = g2
X′ + g2

Y ′ + g2
Z′ ,

is iteratively updated by an isolation of the orthogonal contacting points X′ in Eq. (17). For initializa-
tion, we set ||∇gX′ ||2 equal to ||∇gX||2. After a defined convergence criterion is reached, we finally can
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recalculate the orthogonal contacting points X′ by Eq. (17) so that the design matrix and the condition
matrix end up as

A =
∂g

∂p

∣∣∣∣
p0,X

′
; B =

∂g

∂X

∣∣∣∣
p0,X

′
, (19)

linearized at the approximated parameters p0 as well as at the approximated coordinates, i.e., the or-
thogonal contacting points X′. This inner iteration is performed at each outer iteration step for the
estimation of the parameter update ∆p̂.

For the calculation of the signed orthogonal distance in the outer iteration, we build up the Hessian
normal form of the planes h by normalizing Eq. (14) with the normal vectors’ length ||∇gX′ ||:

∇gX′

||∇gX′ || · (X−X′)− g(X,p0)

||∇gX′ || = 0. (20)

The signed distances d from points X to their closest points X′ lying on approximated planes can be
defined by d = ∇gX′/||∇gX′ || · (X−X′) with ∇gX′/||∇gX′ || being the unit normal vectors of the planes
(e.g., Hoppe et al. 1992). Because we equalize the signed distances d with the discrepancies of the
adjustment w, we define the discrepancies of the ODR based upon Eq. (20) as

w =
g(X,p0)

||∇gX′ || . (21)

With the definition of the design and condition matrices of Eq. (19) and the discrepancies of Eq. (21),
we build up the normal equation (Eq. (10)) and estimate the parameters p̂ and the associated covariance
matrix Σp̂p̂ iteratively analogue to the classical least squares approach. Instead of using Σll of Eq. (6)
as stochastic model, now ΣXX of Eq. (11) is included into the normal equations as already mentioned.

Helfrich and Zwick (1995, 1996) propose a trust region algorithm for the iterative adjustment. Here,
the size of the iteratively estimated reduced parameters ∆p̂ is limited as in the Levenberg-Marquardt
algorithm (e.g., Moré 1978). But in addition, this limitation factor is adjusted in every iteration step by
a defined neighborhood. We neglect an adaption of this extension in the presented application because of
reliable initial approximate values p0 which ensure the convergence. We gain these initial values by the
knowledge about the approximate focal length and the spatial transformation between the main reflector
and the subreflector. These parameters are sufficient due to the fact that the laser scanner is mounted
on the subreflector with its vertical axis approximately pointing into the direction of the main reflector’s
vertex.

The formulation of the discrepancies in Eq. (21) is comparable to the one discussed by, e.g., Sampson
(1982): w = g(X,p0)/||∇gX||. Here, the discrepancies are also normalized but not with the gradient at
the point of the orthogonal contacting points X′ but directly at the measured coordinates X. This is a
simplification of the approach used here without the need of calculating the orthogonal contacting points
(Mart́ınez-Morera and Sarlabous 2003). Several publications, e.g., Ahn et al. (2002), call this approach
of the normalized algebraic distance fitting superior to the classical least squares fitting but inferior to
the geometric fitting of the ODR.

Comparison of Approaches

A reliable estimation of the focal length is independent from the absolute values of the position and
orientation of the rotational paraboloid in space (Ahn et al. 2002). In order to proof the stability of
the focal length estimation in regard to this requirement, we transform the point clouds representing the
main reflector. Therefore, we change the zero direction of the measured horizontal direction ti of the
observations iteratively by

t̃i,j = ti +
2π

k
· j, (22)

with j = 1, ..., k steps so that t̃i,k = ti. This produces a horizontal rotation of the main reflector inside
the laser scanner coordinate system (Xi, Yi, Zi). This equals a transformation of four parameters in the
paraboloid coordinate system (xi, yi, zi), i.e., a rotation around the ϕx- and ϕy-angles and a translation
in x- and y-direction named xv and yv. Thus, as a result of the adjustment approaches with input
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Elevation CLS ODR
[] [mm] [mm]

90 0.2 0.0
75 0.1 0.0
60 0.6 0.0
45 0.8 0.0
30 0.5 0.0
15 0.9 0.0
7.5 1.7 0.0

Table 2: Maximal variation of the parameters f̃j due to an alteration of the horizontal direction t̃i,j as
stated in Eq. (22). The adjustment is performed within a classical least squares approach (CLS)
and the orthogonal distance regression (ODR).

of the rotated observations l̃i,j = [si, βi, t̃i,j ]
T or the rotated point clouds X̃i,j calculated by Eq. (2),

respectively, only these four parameters x̃v,j , ỹv,j , ϕ̃x,j and ϕ̃y,j should underly a variation with altering

j. In contrast, the estimated translation in z-direction z̃v,j and the estimated focal length f̃j should
remain constant for all j = 1, ..., k.

An analysis of the different point clouds of the varying elevations results in six parameters per each
of the seven elevations per k steps. In order to make a reliable conclusion, we chose a number of k = 36
steps which equals 10 as step size.

As a result, the curves of the estimated transformation dependent parameters x̃v,j , ỹv,j , ϕ̃x,j and
ϕ̃y,j (not shown here) match in magnitude and form between the classical least squares approach and
the ODR. The largest deviations between the two adjustment procedures are about 1.8mm concerning
the two estimated translations x̃v,j and ỹv,j . The superior reliability of the ODR over the classical least

squares adjustment is revealed by an analysis of the estimated focal lengths f̃j : while they stay constant
within the ODR, they vary significantly within the classical least squares approach. The variations of
the classical least squares approach always follow a sine curve with varying magnitude and location of
local maximum (Fig. 5). The results of maximal parameter variation f̃j are presented in Tab. 2. As can
be seen, the variation corresponding to the classical least squares approach is maximal at an elevation of
7.5 and minimal at 75 elevation, whereas the maximal variations corresponding to the ODR always stay
zero regarding the accuracy of calculation.
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Figure 5: Reduced relative variation of the estimated focal length f̃j within the classical least squares
approach due to a change in horizontal direction as stated in Eq. (22).

These results attest the ODR approach a superior performance over the classical least squares approach
with regard to the requirement of a reliable focal length estimation independent from changes in position
and orientation of the observed main reflector of the radio telescope in space. Thus, in order to guarantee
a focal length estimation as accurately as possible, we choose the ODR for parameter estimation within
the whole data processing procedure presented in the next section.
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Data Processing and Results

For data processing, we propose a stepwise adjustment procedure consisting of the ODR and outlier
eliminations. We first describe this stepwise adjustment procedure before we illustrate the final results
of the deformation analysis with regard to the focal length variation due to gravitation.

Stepwise Adjustment Procedure

As already described, the measurements at each elevation angle consist of about m ≈ 370 million points.
In order to estimate the focal length based upon each point cloud, the covariance matrix and the Jacobian
matrices of Eqs. (11) and (19) have to be built up. Since neighboring data points are highly correlated
and processing time has to be optimized, data reduction is performed to an average point spacing of
0.25m · 0.25m which equals a remaining point cloud of m ≈ 1 million points. We regard this amount of
points as sufficient for a reliable parameter estimation because tests show that the parameter estimation
is independent from this reduction step. This point cloud reduction step is performed within the Leica
Geosystems Software Cyclone. Subsequently, we divide the data processing into three adjustment steps:

� First, the observations of the main reflector are separated from the background by an elimination of
all points having a distance from the laser scanner of more than 51m or less than 30m. These values
arise from the geometry of the main reflector and its associated focal length. Additionally, points
are eliminated by a threshold in the measured intensity. Therefore, all points having a normalized
intensity I ∈ [0, 1] of I ≤ 0.5 are excluded. This threshold is set up by an empirical and visual
examination.

� After a first parameter estimation within the ODR, systematic outliers are removed from the point
cloud by an analysis of the estimated discrepancies w and a threshold of 5 cm. These outliers
correspond to the construction of the radio telescope, e.g., the beams of the subreflector, but do
not directly lie on the surface of the main reflector.

� The successive second adjustment is followed by a removal of points lying near the edge of the
reflector and by an elimination of points with a systematic discrepancy belonging to the construction
once again. The points which are lying near the edge are eliminated due to the fact that the outer
ring of the main reflector is perforated as can be seen in Fig. 6. Because this perforation produces
a partial transparency, the distance measurements of the laser scanner can underlie gross errors
influencing the parameter estimation. Afterwards, the final third ODR is performed.

Figure 6: Perforated outer ring of the main reflector. Its radial dimension is approximately 10m.

The resulting point clouds being finally adjusted consist of about m ≈ 500′000 remaining points. This
three-step adjustment procedure is performed within each of the seven point clouds corresponding to the
different elevations from 90 to 7.5.
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Elevation x̂v ŷv ẑv ϕ̂x ϕ̂y
[] [m] [m] [m] [rad] [rad]

90 -0.0467 0.0171 -29.9088 3.1384 0.0094
75 -0.0652 -0.0187 -29.9088 3.1410 0.0106
60 -0.0784 -0.0490 -29.9081 3.1431 0.0113
45 -0.0896 -0.0790 -29.9070 3.1451 0.0121
30 -0.0992 -0.0976 -29.9056 3.1465 0.0126
15 -0.1035 -0.1087 -29.9040 3.1475 0.0130
7.5 -0.1051 -0.1064 -29.9034 3.1475 0.0131

Table 3: Final estimated extrinsic parameters. The standard deviations σ̂x,v = 0.25mm, σ̂y,v = 0.25mm,
σ̂z,v = 0.01mm, σ̂ϕ,x = 0.01mrad and σ̂ϕ,y = 0.01mrad are estimated too optimistic because
of the neglect of correlations in the stochastic model of the adjustment.

Elevation x′ y′ z
[] [mm] [mm] [mm]

90 0 0 0
75 -3.7 -40.1 -0.0
60 -4.6 -73.1 -0.7
45 -3.8 -105.2 -1.8
30 -5.7 -126.0 -3.2
15 -5.5 -137.9 -4.8
7.5 -7.9 -136.4 -5.4

Table 4: Relative deformation in the spatial relation between the subreflector and the main reflector at
the individual elevations. The x′-axis is parallel to the elevation axis of the main reflector, the
y′-axis is the main tilting direction and the z-axis equals the rotational axis of the paraboloid.

Final Results

As the final results of the data processing, we obtain six estimated parameters p̂ for each of the seven
elevations with corresponding covariance matrices Σp̂p̂. In Tab. 3, the extrinsic parameters for the seven
elevations are given. The associated standard deviations are σ̂x,v = 0.25mm, σ̂y,v = 0.25mm, σ̂z,v =
0.01mm, σ̂ϕ,x = 0.01mrad, σ̂ϕ,y = 0.01mrad. These standard deviations do not change significantly
between the different elevations. Because of the extremely large number of observations and because of
the neglect of spatial correlations between neighboring points, these standard deviations are estimated
much too optimistic but a realistic guess is not possible at the moment.

The variations of the extrinsic parameters describe a change in relative position and orientation
between the laser scanner and the paraboloid. Because the laser scanner was mounted on the subreflec-
tor, the variations reveal a deformation in the spatial relation between main reflector and subreflector.
By an integration of the laser scanner station XLS inside the laser scanner coordinate system, i.e.,
XLS = [0, 0, 0]T , into the transformation equation (Eq. (5)), it is possible to calculate the position of
the laser scanner xLS in each paraboloid’s coordinate system corresponding to the different elevations.
After rotation of the paraboloid’s coordinate system around its z-axis so that the x′-axis is roughly paral-
lel to the elevation axis of the telescope and the y′-axis is perpendicular to the x′z-plane pointing towards
the direction of the tilting of the main reflector, the main direction of this relative deformation can be
analyzed. The resulting spatial deformations between main reflector and subreflector are shown in Tab.
4. As can be seen, the main deformation is revealed along the y′-axis, i.e., the vertical tilting direction
of the main reflector. The relative deformations in horizontal x′-direction and along the z-axis are of
minor size. This effect of relative deformation between main reflector and subreflector originates from
two facts: (a) the support beams of the subreflector are independent from the construction of the main
reflector and (b) the beams holding the subreflector cabin deform.

It should be emphasized that the determination of the extrinsic parameters in Tab. 3 and the de-
termination of relative spatial deformations in Tab. 4 are purely based upon the adjustments of the
individual paraboloid point clouds. For this reason, there is, at this point, no direct and absolute rela-
tionship between the location parameters of the individual elevations. The reason is that we do not yet
have any link to an absolute reference which would enable us to determine the absolute movements of the
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Elevation f̂ ∆f̂
[] [m] [m]

90 29.9892 0
75 29.9880 -0.0012
60 29.9847 -0.0045
45 29.9822 -0.0070
30 29.9794 -0.0098
15 29.9766 -0.0126
7.5 29.9779 -0.0113

Table 5: Final estimated focal length f̂ and its corresponding variation ∆f̂ (compared to the estimation
at 90 elevation). The standard deviations σ̂f = 0.05mm and σ̂∆f = 0.07mm are estimated too
optimistic because of the neglect of correlations in the stochastic model of the adjustment.

paraboloid and the subreflector cabin. These have to be expected due to the homologous construction
characteristics of the telescope. Therefore, only the focal length can be considered as a parameter which
can be interpreted geometrically between the different elevations.

The focal length f̂ estimated at different elevations is shown in Tab. 5. The associated graph in Fig.
7 reveals a linear decrease of the focal length together with the elevation. An exception is the focal length
estimated at the elevation of 7.5 for which the expected strong monotony is violated. However, at this
time we cannot yet present a plausible reason for this behavior. The corresponding standard deviation
of σ̂f = 0.05mm which does not change significantly between the elevations analogue to the ones of the
extrinsic parameters is also estimated too optimistic as already stated above for the extrinsic parameters.
As can be seen in Tab. 4, the variation of the focal length ∆f̂ has a magnitude of max{∆f̂} = 12.6mm
with a standard deviation of σ̂∆f = 0.07mm, calculated by variance propagation. These significant focal
length variations affect the VLBI measurements. The impact of focal length variations on signal path
variations as stated in Eq. (1) is further described in Abbondanza and Sarti (2010) and Sarti et al.
(2009b, 2011).
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Figure 7: Final estimated focal length f̂ at different elevations.

In order to characterize the quality of the measurements and of the adjustment model, a histogram of
the discrepancies of the final best-fit paraboloid of elevation 15 is shown in Fig. 8. The discrepancies follow
approximately a Gaussian distribution with a standard deviation of σ̂w = 3.2mm. This distribution is
similar also for the ones estimated at the other elevations. This empirical standard deviation is very
similar to the a priori accuracy of the distance σs,i = si · 0.1mm/m, being between 3mm and 4mm
at distances between 30m and 40m after elimination of the points lying on the perforated outer ring
of the main reflector. This consistence supports the magnitude of the a priori accuracy of the distance
measurements. This is based on the symmetry of the paraboloid and on the observing station of the
laser scanner because it is mounted on the subreflector with its vertical axis pointing approximately into
the direction of the main reflector’s vertex. Thus, especially the accuracy of the horizontal direction
measurements has only a small impact on the parameter estimation whereas particularly the one of the
distance measurements is of greater importance.

The discrepancies in the paraboloid’s coordinate system of elevation 15 are shown in Fig. 9. On
the surface of the main reflector, no significant systematic discrepancies occur within the measurement
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Figure 8: Histogram of the post-fit discrepancies between the best-fit paraboloid and the measured co-
ordinates corresponding to an elevation of 15 (gray), approximated by a Gaussian distribution
(black).

accuracy. There are no systematic residuals visible which would lead to the supposition that the observed
main reflector would be parameterized better by a surface deviant from a rotational paraboloid. Similar
results are obtained for the post-fit discrepancies belonging to the other elevation angles. Thus, no local
deformation patterns are revealed. This fact strengthens the assumption of a homologous deformation of
the main reflector as stated in Hachenberg (1968).
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Figure 9: Scatter plot of the post-fit discrepancies w between the best-fit paraboloid and the measured
coordinates X corresponding to an elevation of 15, shown in the paraboloid’s coordinate system.

Discussion and Conclusions

In this paper, we present a survey concept and an adjustment procedure that are suitable to estimate the
elevation dependent focal length variations of a large paraboloid’s main reflector. It consists on the one
side on a laser scanner which is mounted on the subreflector so that its station is temporary upside-down.
On the other side, the orthogonal distance regression (ODR) is chosen for parameter estimation in order
to guarantee unbiased parameter estimates.

Especially the use of a laser scanner proves to be adequate in order to scan a large surface in a
comparatively short time with a small spatial discretization in comparison to other geodetic instruments.
The adjustment concept with the discussed ODR for parameter estimation enables a reliable estimation
of the focal length. The ODR described here is a two-step modification of a classical least squares
approach leading to an independence of the focal length estimation from the absolute values of the
extrinsic parameters describing the position and orientation of the paraboloid in space.

The adjustment procedure is performed at seven different elevations revealing a significant gravity
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dependent decrease of the focal length with a magnitude of max{∆f̂} = 12.6mm between 90 and 15
elevation. This decrease is approximately linear disregarding the estimated focal length at an elevation
of 7.5. The estimated decrease of focal length as well as the linear characteristic differ from the results
in Sarti et al. (2009a) where a greater magnitude was revealed with a quadratic characteristic although
their observed reflectors are of smaller size. This different deformation characteristic can be explained
by the special construction of the Effelsberg radio telescope leading to a homologous deformation of the
main reflector (Hachenberg 1968). This homologous deformation can be confirmed by an analysis of
the post-fit discrepancies following a Gaussian distribution. Thus, no local deformation patterns can be
revealed inside the surface of the main reflector within the measurement noise which would lead to a
best-fit surface deviant from a rotational paraboloid.

It should be emphasized that this study does not offer a detailed quantitative estimation of gravita-
tional deformations of the main reflector. For this purpose, photogrammetric methods, a finite element
analysis or other techniques would have been applied. Instead, this study offers a qualitative evaluation
of the homologous deformation of the main reflector as well as an estimation of the variability of its focal
length. This latter variability is a consequence of the gravitational deformation of the main reflector.

As already mentioned in the introduction, these results only concern one factor of the whole equation
which models the signal path variation as described in Clark and Thomsen (1988) (see Eq. (1)). But
nevertheless, this estimation of the focal length variation is a first important step towards the definition
of a complete correction model of the signal path. Investigations concerning the modeling of the complete
correction can be seen in Abbondanza and Sarti (2010) and Sarti et al. (2009b, 2011).
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