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ABSTRACT3

Gantry cranes load and unload containers from container ships. To ensure safety and operation,4

the deflection of their main beams under load should be analyzed. This deflection depends on the5

weight of the loaded container as well as on the position of the trolley that moves the container. A6

bivariate polynomial model is build up that estimates the deflection based on these two inputs. This7

two-dimensional load-dependent model is developed in four steps. It determines the shape of the8

deflection (dependent on the trolley position) as well as its magnitude (dependent on the container9

weight).10

A specific gantry crane was monitored with several sensors: five inclinometer sensors observ-11

ing the tilt along the crane’s main beam; two tacheometers observing the trolley position and the12

absolute deflection. Collecting the data of 18 loading operations, the parameters of the deflection13

model are estimated. Upon this, the deflection under load is processed dependent on the container14

weight and trolley position. The verification of the whole model shows deviations within ± 4mm15

in comparison to an independent loading operation. This quality is acceptable regarding the used16

measurements.17
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INTRODUCTION AND BACKGROUND22

Gantry cranes are subject to an aging process due to their permanent utilization by loading23

of goods. To ensure safety and operation, the deflection of their main beams during the loading24

should be monitored periodically. In the present study, a mathematical model is developed that25

estimates the beam deflection at every longitudinal position of the beam dependent on two inputs:26

1. the longitudinal position of the trolley that carries the load,27

2. the weight of the load.28

Here, the shape of the deflections in longitudinal direction of the gantry crane as well as the mag-29

nitude are of interest. These target variables should be determined with an accuracy of a few30

millimeters.31

The gantry crane of investigation has a length of 134m (see Fig. 1). Its main beam is supported32

by two (support) beams. This construction type is known as a simply supported beam. The over-33

hang is asymmetric and equals 20m on the one side and 40m on the opposite. The main beam is34

not a closed body but consists of three single beams that are connected by several cross sections.35

The cross beams on top of the main beam are also mounted asymmectrically. The asymmetric36

construction type is due to the function of the gantry crane: It loads and unloads containers with its37

trolley from container ships. The goods are loaded from the ships at the longer overhang, moved38

to the middle of the bridge and placed on a truck. Furthermore, the support beams are mounted on39

rails so that the whole gantry crane is moveable horizontally perpendicular to its longitudinal axis.40

FIG. 1. Sketch of the gantry crane from side view; its main beam of investigation
(black), the two vertical support beams supporting the bridge (dark gray), the dif-
ferent cross beams stabilizing the structure (light gray) and the trolley (black)

Based on this background, the deflection of the main beam is not expected to be symmetric41

even if the loaded trolley is positioned in the middle of the two support beams. The deflection of42

the whole beam is rather expected to be asymmetric and thus very sensitive to the position of the43

trolley. This has to be considered when building up a model to estimate the deflection.44

Beam deflection analysis regarding gantry cranes or other bridges is widespread in literature.45

The corresponding studies can be grouped into the ones that are focussed on sensors and process-46

ing techniques to measure and analyze the deflection with high accuracy, precision and spatial47

resolution. The second group of studies builds up new models or implements existing models to48

mathematically and physically describe the deflection of the bridge.49

Concerning the first group, promising methods are, e.g. digital image correlation (Yoneyama50

et al. 2007) or the sampling moiré method (Ri et al. 2012). Furthermore, ”Grating Eddy Current51

Sensors” (Lü et al. 2012) or range cameras (Lichti et al. 2012) are proposed. They are claimed52
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to gain better results than total station measurements, dial gauges or laser displacement meters.53

Disregarding these studies, using laser scanners for measuring beam deflection is also common54

as an alternative to digital photogrammetry or other techniques (Gordon and Lichti 2007). The55

resulting benefit in accuracy and spatial resolution is shown in several studies (Rönnholm et al.56

2009; Lee and Park 2011). And yet other studies install multi-sensor systems to monitor the whole57

bridge dependent on several inputs as wind, traffic or temperature (Wegner et al. 2006; Bogusz58

et al. 2012). Here, e.g. the GPS, accelerometers and inclinometers are used.59

In the second group, finite element models are often considered to model the bridge (Gerdemeli60

et al. 2010; Pinca et al. 2009). Upon this, the strength of the bridge’s structure can be analyzed61

(Pinca et al. 2010). This strength degrades with time and use as it can be seen in a long-run62

behavior analysis of a reinforced concrete beam (Seidel 2009). Moreover, the safety of gantry63

cranes is analyzed with a sensitivity analysis (Castillo et al. 2003) to optimize its design (Castillo64

et al. 2008). The assembled models are mostly based on physical parameters that describe e.g. the65

stress of the bridge. Thus, the physical behavior including e.g. material parameters, the weight of66

the bridge and its detailed structure has to be known.67

The mentioned studies of the first group are combined in the fact, that the beam deflection is68

analyzed for a specific load (and its corresponding weight) that acts at one specific position on69

the bridge. When moving the load on the bridge or when changing its weight, a new deflection70

curve is measured or analyzed. Mostly, no mathematical model is build up to connect the weight71

of the load and its position on the bridge to the deflection curve. This could be done with the finite72

element models of the second group. However, these models commonly suffer from the integration73

of physical material parameters and the resultant uncertainty due to their estimation. Thus, both74

groups do not allow an analysis of the deflection dependent on the loading and its position simply75

based on geometrical measurements without knowledege of the crane’s physical structure.76

A model combining the desired requirements is multi-dimensional. In general, multi-dimensional,77

i.e. spatial, deformation analysis in engineering geodesy is based on approximating some model78

to spatial observations. Afterwards, the deviations regarding another epoch or a reference can be79

analyzed. Usually, these models are geometric primitives as, e.g. paraboloids (Holst et al. 2012), if80

the geometry is known. Otherwise, if the geometry is not known, e.g. bivariate polynomials (Holst81

et al. 2013) or freeform surfaces as splines and NURBS (Vezočnik et al. 2009) are often used.82

The identification of an appropriate model suited for the here presented application of deflec-83

tion analysis is the main aspect of the present study. The challenge is to adapt this model to the84

input of only limited measurements and sensors as uniaxial inclinometers and tacheometers with-85

out any prior knowledge about the crane’s structure. This results in a model being non-parametric86

following geodetic terminology of deformation analysis (Welsch and Heunecke 2001).87

In the following sections, the sensors and the measurement concept are proposed. Afterwards,88

the model for analysis of the beam deflection is presented in four steps. Finally, the results are89

analyzed and discussed.90

MEASUREMENT CONCEPT AND PRE-PROCESSING91

The measurement concept has to consider the target variables of the deflection analysis: These92

are (1) the shape of the deflections in longitudinal direction of the gantry crane as well as (2) the93

magnitude of the deflection with an accuracy of a few millimeters. Thus, the whole main beam94

has to be observed to achieve the desired target. Furthermore, the used sensors have to be accurate95

enough to enable an analysis of the deflection with the desired accuracy of a few millimeters.96
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Additionally, the following main aspects have to be considered for the observation of the beam97

deflection:98

1. The main beam is not constructed as a closed body but consists of three single beams that99

are connected by several cross sections.100

2. Cross beams are mounted above the main beam (height of a few meters).101

3. The gantry crane moves horizontally on a rail.102

4. The usual operation chart of the gantry crane cannot be interrupted for the measurements.103

5. The expected deflections are in the range of a few centimeters.104

Upon these circumstances, several instruments cannot be considered: Laser scanners or pho-105

togrammetric sensors without object point definition suffer from aspects 1 and 3. Even if the106

object is signalized by defined targets, the changing distance from a fixed station of the sensors to107

the object could be a problem. Furthermore, dependent on the scanning frequency, aspect 4 can108

also be critical for laser scanner measurements. This is, because the positions of the trolley and the109

crane need to be assumed as being constant during the measurements. GPS with antennas fixed at110

several positions on the main beam would be unaffected from these aspects. Nevertheless, because111

of aspect 2 and the resulting significant multipath effects that cannot be separated from the real112

deflection, GPS also has to be dismissed.113

Rather five uniaxial inclinometers (”Zerotronic 10” by Wyler), working capacitively with a114

pendulum, and two tacheometers (”TCA 2003” and ”TPS 1101” by Leica Geosystems) were used.115

The uniaxial inclinometers were positioned along the beam of the gantry crane so that they were116

able to measure the tilt in longitudinal direction (Fig. 2). The two outer ones were fixed above the117

support beams, the others equidistant inbetween so that the third one was located in the middle of118

the bridge. The sampling frequency was 5Hz.119

The first tacheometer was stationed in front of the gantry crane on a stable position to observe120

the deflection of the beam in its middle position where a prism was fixed to the main beam (near121

the third inclinometer). The second tacheometer recorded the position of the trolley in x-direction122

from a station on the gantry crane itself. Thus, the relative tilt and the absolute deflection can123

be related to the position of the trolley along the x-axis. The two tachemoeters observed with a124

non-constant sampling frequency of 2–3Hz. This sampling frequency is acceptable regarding the125

eigenfrequency of the gantry crane of approximately 0.37Hz (see pre-processing step 2).126

FIG. 2. Sketch of the gantry crane and the used sensors from top view; inclination
sensors (black rectangles, labeled 1–5), tacheometers (black circles) and prisms
(black triangles)
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This measurement concept leads to the fact that the analysis was focussed on the deflection in-127

between the two support beams. Based on this measurement concept, 18 loading operations of the128

gantry crane during its normal workflow could be observed. The loaded containter weighted be-129

tween 6000kg and 25000kg. Some loading operations were observed without any loaded container130

so that only the weight of the trolley (15000kg) deflected the bridge.131

After the collection of the measurements, they are pre-processed in five steps:132

1. First, gaps in the time series are filled and the tacheometer observations are interpolated to133

a sampling frequency of 5Hz by spline interpolation.134

2. Second, the eigenfrequency of the gantry crane is detected by a frequency analysis of the135

measured time series. It is approximately 0.37Hz. The oscillations were initiated by the136

moving of the trolley, the charging and discharging of the containers. Figs. 3 and 4 show137

the time series of one specific loading operation of one inclination sensor as well as of the138

heights in the middle of the bridge measured by the tacheometer.139

3. The eigenfrequency has to be filtered out of the measurements to gain the deflection or tilt,140

respectively, unaffected by oscillations. This is done in the third pre-processing step by a141

moving-average (see also Figs. 3 and 4). The moving average’s length is calculated by the142

quotient of the sampling frequency and the eigenfrequency. At a sampling frequency of143

5Hz and an eigenfrequency of 0.37Hz, the length equals approximately 13. Because this144

length is only an approximation, the filtering should eventually be processed more than one145

time per time series.
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FIG. 3. Measured time series of one inclination sensor during one specific loading
operation before (gray) and after filtering (black)

146

4. The fourth step defines one trolley position that was covered by all the 18 loading operations147

without any load as reference. All time series are referred to this reference regarding their148

temporal starting points. Furthermore, the relative observations are reset to zero at this149

point: From this follows that the observations being integrated in the model after pre-150

processing are differences to this reference.151

5. In the fifth step, the measurements are finally synchronized. Afterwards, they are integrated152

into the deflection model of the following section.153

ANALYSIS OF BEAM DEFLECTION UNDER LOAD154

The discussed measurements are used to build up a mathematical model for deformation anal-155
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FIG. 4. Time series of the height of the main beam at its middle position, calculated
by the tacheometer measurements, during one specific loading operation before
(gray) and after filtering (black)

ysis. This model should be able to predict the deflection of the beam of the gantry crane at any156

position dependent on two inputs: the trolley position and the container weight. The target vari-157

ables are the shape of the deflection as well as its magnitude that should be estimated with an158

accuracy of a few millimeters.159

Regarding the characterization and classification of deformation models (Welsch and Heunecke160

2001), the proposed one is a static model: The time component is not included and the deflections161

are a function of acting forces that are used as input in the model. The integration of a possible162

creeping into the model is not necessary based on investigated observations measured during a time163

of no trolley movement. This applies accordingly to a possible transition. The model is developed164

in four steps:165

• Step 1: A one-dimensional polynomial is used to describe the beam deflection of each sep-166

arate loading operation spatially dependent on the container weight and the trolley position.167

• Step 2: This spatial model of the first step can be expanded to a two-dimensional model.168

Here, bivariate polynomials parameterize the deflections in two dimensions. The additional169

dimension equals the position of the trolley on the beam. This second step can be performed170

analogue to the first one for each separate loading operation.171

• Step 3: To combine all measured loading operations into one general model in the third172

step, all measurements are integrated into the parameterization of the bivariate polynomial.173

The different loading operations are considered by a scale factor that is estimated for each174

loading operation in addition to the usual polynomial parameters.175

• Step 4: The fourth step replaces the loading operation-dependency by a load-dependency176

because not the specific loading operation is of interest for the deformation but the weight177

of the load.178

Finally, the deflection of the gantry crane can be predicted based upon several parameters depen-179

dent on the trolley position and its load. The steps 1–4 are subsequently explained in detail.180

Step 1: One-dimensional Modeling181

For each loading operation T , N = 6 observations are performed in every time step. These182

are five tilts by the inclination sensors (lt,1, lt,2, lt,3, lt,4, lt,5) positioned along the x-axis (see Fig. 2)183
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and the measured height by the first tacheometer (lh). As described in the previous section, these184

observations are pre-processed: In fact, they equal differences to a defined reference. In all further185

investigations, these pre-processed measurements are used.186

Additionally to these observations, one further measurement is regarded as deterministic input:187

The position of the trolley (y) along the x-axis measured by the second tacheometer. This is not188

included as observation because it is not integrated in the adjustment of the one-dimensional mod-189

eling: one separate polynomial is estimated for each trolley position y of each loading operation190

T . Thus, the modeling of each deflection curve z(x) depends on the loading operation T and the191

trolley position y along the x-axis: zy,T (x).192

For the parameterization of the deflection curves, a polynomial of order ax – as will be ex-
plained later in this subsection – is chosen:

zy,T (x) =
ax∑
i=1

pi · xi. (1)

Here, p = [p1, ..., pax ]T are the parameters that are to be estimated. Because the offset of the
polynomial at x = 0m, which is above the left support beam, is assumed to be zero zy,T (x =
0m) = 0m, the parameter p0 can be neglected. This reduces the number of parameters to ax. For
the estimation of these parameters, the observations

l = [lt,1, lt,2, lt,3, lt,4, lt,5, lh, lo]
T (2)

are used. Here, the pseudo-observation lo forces the end of the polynomial, which is above the right193

support beam, to zero: zy,T (x = 74m) = 0m. This fixation of the polynomial at both positions194

above the two support beams leads to a more reliable estimation due to the limited number of195

observations. Because this pseudo-observation is stochastic as the other real observations, the196

polynomial is only fixed to zero at x = 74m within its standard deviation σo. This would be197

different if the pseudo-observation was introduced as condition equation instead.198

The corresponding covariance matrix ΣΣΣll is given by

ΣΣΣll = diag{[σ2
t , σ

2
t , σ

2
t , σ

2
t , σ

2
t , σ

2
h, σ

2
o ]}. (3)

The standard deviations are σt = 0.1mm/m for the inclinometer measurements, σh = 2.5mm199

for the measured height by the tacheometer and σo = 0.1mm for the pseudo-observation. The200

standard deviation of the inclinometers σt is presumed very pessimistically. This is not based201

upon the precision of the inclinometer sensor itself but rather integrates the misalignment error202

and the uncertainty due to the oscillations of the beam. After all, all of these standard deviations203

are empirical assessments based on manufacturer’s specifications and geometrical considerations204

(distances measured by tacheometer, misalignment of inclinometers).205

Integrating the observations l and their covariance matrix ΣΣΣll into a least-squares fit in a linear
Gauss-Markov model (Koch 1988)

l + v̂ = Ap̂, (4)
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the parameters are estimated by

p̂ =
(
ATΣΣΣ−1

ll A
)−1 ATΣΣΣ−1

ll l. (5)

The estimated residuals are defined by v̂ and the design matrix by A. The design matrix connects206

the observations l with the functional model of the deflection curve. For the measured height lh207

and the pseudo-observation lo, this functional model equals Eq. (1). The functional model for the208

measured tilts lt,1 − lt,5 equals the derivative of the deflection curve of Eq. (1): ∂zy,T/∂pi.209

For the one-dimensional beam modeling, the order ax of the polynomial has to be determined.210

This is done both by geometrical and statistical investigations and leads to an optimal order of211

ax = 5 independent from the position of the trolley and the specific loading operation. Fig. 5 shows212

the coefficient of determination – also known as goodness of fit – of three different polynomial213

orders (4,5,6) corresponding to one specific loading operation. A coefficient near 1 attests a good214

fit whereas a value near 0 suggests a revision of the fit (Borradaile 2003). As can be seen, order215

5 improves the fit significantly compared to order 4, but order 6 does not lead to a significant216

enhancement of the fit anymore.217
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FIG. 5. Coefficient of determination of polynomial approximation of one specific
loading operation; polynomial of order 4 (gray), 5 (black) and 6 (gray dashed)

Fig. 5 reveals the fact that the approximation is best if the trolley is positioned in the middle218

of the bridge at 37m. The quality of the fit seems to decrease when moving the trolley away from219

the middle. But because the coefficient of determination is also sensitive to the magnitude of the220

deflection, further parameters should be considered when judging the quality of the fit. These can221

be the estimated residuals v̂ and the a posteriori variance of the adjustment ŝ2. Both support the222

previous result (graphs not shown here): The quality of the fit decreases when moving the trolley223

to the endings of the beam. These findings are due to two reasons: (1) The used polynomial model224

gets less adequate for parameterization if the trolley moves to the endings of the crane. (2) The225

signal-to-noise ratio gets worse when moving the trolley to the endings because the deflection’s226

magnitude decreases. Thus, to gain reliable results by the approximation, all further investigations227

are limited to trolley positions between 20m to 50m.228

Nevertheless, it has to be mentioned that a statistical analysis based on these values should be229

done carefully: Only six observations plus one pseudo-observation are integrated in each adjust-230

ment so that the redundancy of r = N + 1− ax = 2 is not very high.231
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The chosen polynomial model of order ax = 5 is also reasonable regarding physical beam232

deflection theory (Beer and Johnston 1992). The deflection of a simply supported beam being233

depended on the trolley position is modeled based on physical parameters as a polynomial of third234

order (Gordon and Lichti 2007). But this model does not incorporate asymmetric overhangs as in235

the present gantry crane. Following, the order should be raised by two in comparison to a simply236

supported beam. This considers the deflection at the overhangs as well as the asymmetry of the237

deflection due to the overhangs of different length.238

Fig. 6 shows the resulting deflection curves of one specific loading operation dependent on239

three different trolley positions. As can be seen, the magnitude of the deflection as well as the240

position of maximal deflection depends on the position of the trolley. Furthermore – as already241

assumed because of the asymmetric construction of the gantry crane – the deflection curves are242

also asymmetric to the middle of the beam.243
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FIG. 6. Estimated polynomials (black) dependent on the trolley position (gray) of
25.5m, 37.0m and 48.5m of one specific loading operation

Step 2: Two-dimensional Modeling244

So far, one deflection curve zy,T (x) exists for each time step (trolley position) y and each
loading operation T (see Fig. 6). Now, the deflection curve zy,T (x) is expanded by the trolley
position y along the x-axis to a two-dimensional model zT (x, y). Therefore, the polynomial is
simply expanded to a bivariate polynomial (Lancaster and Salkauskas 1986)

zT (x, y) =
ax∑
i=0

ay−i∑
j=0

pi,j · xiyj; i+ j 6= 0. (6)

The order of this bivariate polynomial remains ax = 5 in the already parameterized x-direction245

whereas it is increased to ay = 6 in y-direction. This is due to a better coefficient of determination246

and will be explained later in the discussion. Eq. (6) thus consists of (ay + 1) · (ay + 2)/2−2 = 26247

parameters (Lancaster and Salkauskas 1986). The reduction by two is based on the neglection of248

parameter p0,0 again as well as of p6,0 due to the limitation of ax = 5.249

Now, because the position of the trolley y and the deflection along the longitudinal direction of250

the bridge x is integrated in one model, one combined bivariate polynomial exists for each loading251

operation. Nevertheless, there is still no link between the modeling and the polynomial parameters252

of different loading operations T .253
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Step 3: Two-dimensional Loading Operation-Dependent Modeling254

To investigate a model that predicts the deflection of the main beam of the gantry crane, all
loading operations T have to be assimilated into one single model. Otherwise, the parameters and
the deflection model are only valid for one specific loading operation not being able to be gen-
eralized and predicted to other loading operations. To overcome this drawback, the polynomial
parameters pi,j are only estimated uniquely for all loading operations. The different loading op-
erations are incorporated by a loading operation-specific scale factor MT . This suggests that the
shape of each estimated two-dimensional deflection model ẑT (x, y) stays the same, independent
from the specific loading operation – only the magnitude of the deflection varies by the modeled
scale factor MT :

z(x, y, T ) = MT ·
ax∑
i=0

ay−i∑
j=0

pi,j · xiyj; i+ j 6= 0. (7)

This model includes the measurements of all 18 loading operations T and all trolley positions y to255

estimate the deflection. It consists of (ay + 1) · (ay + 2)/2− 2 + 18 = 44 parameters including one256

scale factor MT for each loading operation T . Because of the scale factors, Eq. (7) is nonlinear.257

Thus, the parameters are estimated iteratively by a nonlinear Gauss-Markov model with a Taylor258

series approximation (Mikhail and Ackermann 1976) instead of using Eq. (5).259

Assuming a scale factor ofMT = 1, the corresponding estimated bivariate polynomial is shown260

in Fig. 7. As already described, the trolley positions are limited to the interval of 20m to 50m261

because of an analysis of the goodness of fit (see Fig. 5), the estimated residuals v̂ and the a262

posteriori variance ŝ2. Analogue to Fig. 6, the deflection is asymmetric to the middle of the beam263

because of the asymmetric construction of the gantry crane.264
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FIG. 7. Two-dimensional load-dependent polynomial model of the beam deflection
assuming a scale factor of MT = 1

Step 4: Two-dimensional Load-dependent Modeling265

So far, all measurements are included in the bivariate polynomial model (7) to estimate the266

deflection ẑ(x, y, T ) along the x-axis dependent on the trolley position y and one of the 18 load-267

ing operations T . The individual container weights of the different loading operations have been268

neglected until now. The estimated scale factors are thus not related to the container weight.269
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Thus, instead of using a scale factor for each loading operation, the container weights of the270

loaded goods during each loading operation should be integrated. Tab. 1 shows these container271

weights. The weight of 0kg indicates that no container was loaded so that only the trolley was272

moved without any goods. As can be seen, the 18 estimated scale factors could have been grouped273

to seven classes of weights so that only 7 scale factors would have been estimated. While this274

would lead to less scale factors of higher precision, the final model quality resulting from the275

present step of modeling should stay unaffected from this modification.276

Container Weight [kg] 0 6000 8000 15000 20000 22000 25000
Number of Loading Operations 5 2 2 2 3 2 2

TABLE 1. Number of loading operations that were traced and the corresponding
container weights (total number of 18 loading operations)

The relation between the scale factors and the container weights of the loading operations is277

presented in Fig. 8. Here, to focus on the maximal deflection dependent on the container weight,278

the scale factors are multiplied by the maximal deflection using model (7) and a scale factor of279

MT = 1. This relation can be approximated by a polynomial of order 2 and three parameters280

b0, b1, b2 with a very high coefficient of determination. The residuals between this model and the281

container weights are mostly due to the uncertainty of the developed model.282
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FIG. 8. Estimated scale factors multiplicated with the maximal deflection (gray) and
the approximated polynomial of order 2 (black)

Following these investigations, the polynomial parameters b0, b1, b2 are now integrated into the
model instead of using one scale factor MT for each loading operation:

z(x, y, g) = (b0 + b1 · g + b2 · g2) ·
ax∑
i=0

ay−i∑
j=0

pi,j · xiyj; i+ j 6= 0. (8)

This enables a modeling dependent on the container weight g instead of the specific loading oper-283

ation T where the container weights were disregarded. Furthermore, the number of parameters is284

reduced to (ay + 1) · (ay + 2)/2− 2 + 3 = 29.285

As a conclusion, after estimating the 29 parameters p̂ = [p̂0,1, ..., p̂5,1]
T and b̂ = [b̂0, b̂1, b̂2]

T ,286

the deflection of the main beam of the gantry crane can be predicted by ẑ(x, y, g), Eq. (8), at any287
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longitudinal position x. Inputs are the container weight g and the trolley position y.288

DISCUSSION289

The presented analysis shows that the parameterization of the deflection of the main beam of290

the described gantry crane is possible. A bivariate polynomial model of orders ax = 5 and ay = 6,291

expanded by an additonal regression, enables the estimation of the deflection at any position of the292

main beam dependent on the container weight and the trolley position. The model is developed293

in four steps. Each step is reasonably chosen but some points should be analyzed deeper. This is294

done in the present section.295

Measurement Concept296

It is obvious that a more accurate model could be built up upon an improved measurement297

concept. E.g. more inclination sensors could have been fixed on the bridge to gain more continuous298

observations and a higher spatial resolution of the deflection. Also more prisms could have been299

used as absolute reference. Alternatively, other sensors could have been considered. Nevertheless,300

this was not feasible because of the surrounding conditions. E.g. the measurements had to take301

place during the gantry crane’s normal workflow. Based on this, the present study was not focussed302

on an improvement of the measurement concept. Rather, the task was to find an appropriate model303

that can be processed simply upon the given observations.304

One-dimensional Modeling with Polynomial305

In the first step, the measurements are approximated by the polynomial model of Eq. (1). The306

order ax = 5 was chosen because of the coefficient of determination. An analysis of the residuals307

of the fit has not been given so far. Figs. 9 and 10 show the estimated residuals v̂ = Ap̂ − l (see308

Eq. 4) of all estimated polynomials corresponding to the varying trolley positions of one specific309

loading operation. As can be seen, these residuals depend on the trolley position. Thus, the quality310

of the polynomial approximation depends on the trolley position.311

Regarding the inclination sensors, the best approximation is given if the trolley is positioned312

near the middle of the beam at x = 37m. This was already investigated based on the coefficient313

of determination (see Fig. 5). Furthermore, the choice of limiting the analysis to trolley positions314

between 20m to 50m can be confirmed. Nevertheless, especially the residuals of the measured315

heights by the tacheometer are between -1mm and -2mm. This implies, as the tacheometer is the316

only absolute reference, that the whole gantry crane sinks and deforms under load. This assumption317

can be encouraged by the fact that one support beam is a pendulum beam so that the main beam318

is supported flexible. The inclinometer sensors are not sensitive to this flexible structure because319

they are reset to zero in the pre-processing before each new loading operation. The absolute tilt is320

thus eliminated in the pre-processing.321

Disregarding these facts, the polynomial model still seems to be a sufficient approximation of322

the measurements. Investigations and results concerning the approximation of a traverse or splines323

do not lead to better results.324

Choice of Polynomial Order for Two-dimensional Modeling325

When expanding the one-dimensional model to a two-dimensional model, the order of the326

polynomial in y-direction ay = 6 is larger than the one in x-direction ax = 5. This is due to327

a better coefficient of determination with order ay = 6. From this follows that – although the328

one-dimensional approximation is sufficient with order ax = 5 – the expansion of the polynomial329
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FIG. 9. Residuals of inclinometer sensors of polynomial approximations corre-
sponding to the varying trolley positions of one specific loading operation; first
(black lined), second (black dotted), third (black dashed), fourth (gray dashed) and
fifth (gray lined) inclinometer
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FIG. 10. Residuals of calculated heights (black), measured by tacheometer, and
pseudo-observations (zy,T (x = 74m) = 0, gray) of polynomial approximations corre-
sponding to the varying trolley positions of one specific loading operation

by the trolley position y to a bivariate approximation cannot be modeled sufficiently with order 5330

anymore.331

This can also be confirmed by a further analysis: The one-dimensional estimated polynomials332

ẑy,T (x), Eq. (1), of one specific loading operation are estimated for all trolley positions y. These333

can be compared to the two-dimensional loading operation-dependent model ẑ(x, y, T ), Eq. (7),334

of the same loading operation. Fig. 11 shows the residuals between these two models. As can be335

seen, the residuals are within ± 4mm. The systematics in the residuals are due to the distinction of336

the different loading operations only by one single scale factor.337

When performing the same comparison with order 5 in y-direction of the two-dimensional338

model, the deviations increase significantly. An analysis of the other loading operations leads339

to similar results. Both these findings, the better coefficient of determination and the smaller340

residuals, suggest using an order of ay = 6 for the two-dimensional models of Eqs. (6), (7) and341

(8).342

It should be mentioned that the here examined specific loading operation is not part of the343

parameter identification process when performing this comparison. Otherwise, the specific loading344
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FIG. 11. Comparison between the one-dimensional model, Eq. (1), estimated at
different trolley positions, and the two-dimensional loading operation-dependent
model, Eq. (7), of the same loading operation

operation would be highly correlated with the model parameters and the comparison would lose345

its validity. Thus, only 17 loading operations are used for parameter estimation and one is used for346

validation during this comparison. The estimated model parameters are not affected significantly347

by this procedure.348

Process of Parameter Estimation349

Theoretically, the two-dimensional load-dependent model ẑ(x, y, g) could be estimated simply350

upon the original measurements. Then, because only one adjustment model is used, no variance351

propagation would be necessary. Nevertheless, the two-dimensional load-dependent model is pro-352

cessed step by step in this study because it was developed in these individual steps. First, the origi-353

nal measurements are approximated by the one-dimensional model ẑy,T (x). Upon this, the deflec-354

tion curves can be build up. They are used afterwards to approximate them by the two-dimensional355

loading operation-dependent model ẑ(x, y, T ), before the regression parameters b̂0, b̂1, b̂2 are es-356

timated in the last step for the two-dimensional load-dependent model ẑ(x, y, g). Between these357

steps, an integrated variance propagation is necessary (Mikhail and Ackermann 1976). Thus, based358

upon the covariance matrix ΣΣΣll of the original measurements of each loading operation (Eq. 3), the359

variances are propagated according to the mentioned individual steps.360

Some measurements used in the developed model during the different steps are assumed to be361

error-free (see Tab. 2). In fact, this assumption is not applicable regarding especially the accuracy362

of the container weights. This value of approximately 1000kg is very low because the weight363

was measured only by a balance on the trolley during the gantry crane’s normal workflow. It was364

not possible to determine the weight more precisely. Following, these uncertainties due to the365

measurements should technically be considered in the modeling. This can be done by a Gauss-366

Helmert model (Mikhail and Ackermann 1976) or a total least-squares model (Markovsky and367

Huffel 2007) where errors are assumed to be in all variables. However, the developed model is368

not sensitive to the simplifications when neglecting these errors. This was proved in every step of369

modeling; no significant effect could be observed.370

CONCLUSION371

The analysis presented a bivariate polynomial model that is able to estimate and predict the372
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Step Measurement Instrument Accuracy
1 position of inclinometer sensors on x-axis t (unique) mm–cm
1 position of prism on x-axis t (unique) mm–cm
2 trolley position on x-axis t (continuous) mm–cm
4 container weights b (unique per load) 1000kg

TABLE 2. Error-free assumed measurements that are used as input in the different
steps of modeling; corresponding instruments (t = tacheometer, b = balance on
trolley) and approximate accuracies

deflection of the main beam of a gantry crane. Based upon the measurements of five inclinometers373

and one tacheometer, the deflection curve is modeled two-dimensionally. Input parameters are the374

container weight and the position of the trolley. The model is defined by 29 estimated parame-375

ters whereupon 26 polynomial parameters describe the shape of the deflection and 3 regression376

parameters its magnitude. Based on geodetic terminology for deformation analysis (Welsch and377

Heunecke 2001),378

• the container weight and the trolley position equal the system input,379

• the polynomial model equals the object behavior and380

• the deflection, measured by inclination and vertical displacement, equals the system output381

or system reaction.382

The system input as well as the system output are measured only to a certain precision. The383

container weight and the trolley position are measured by a balance on the trolley and a tacheome-384

ter, respectively. Especially the accuracy of the balance is very low. Nevertheless, the simplifica-385

tion of neglecting these uncertainties and regarding the input as deterministic does not lead to a386

loss in accuracy of the model.387

The prediction of the deflection fulfills the desired accuracy: Deviations between the deflection388

curves of a specific loading operation, estimated directly based on the measurements, and the final389

model are in the range of a few millimeters. To ensure the independency between the model and390

the reference, this specific loading operation is not part of the parameter estimation during this391

comparison. Thus, the goal of estimating the deflection, i.e. its shape and magnitude, with an392

accurcay of a few millimeters upon several input factors is reached.393

The proposed model quality is limited to the central section of the gantry crane between 20m to394

50m. The outer sections cannot be approximated by the polynomial model with the same quality.395

This limitation could possibly be avoided when using a finite element model of the gantry crane.396

This model could have handled the special asymmetric geometry of the crane better if its structure397

had been known in detail. However, the developed model is sufficient for the proposed goal of the398

present study.399
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