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Introduction

Make everything as simple as possible,

but not simpler.

– Albert Einstein –

When studying real-world phenomena employing models, scientists in general and

economists as well as econometricians, in particular, are almost always confronted

with the trade-off between completeness and manageability. On the one hand, the

respective model should be as complete as possible in the sense of capturing all those

aspects of reality which are considered to be relevant to the particular investigation.

On the other hand, it is, however, necessary to abstract from certain features of the

phenomenon, which are regarded as being unimportant, to keep the model manageable

and to be able to carry out a fruitful analysis at all. While recently, driven by the

increase in computing power, the trade-off tilted more towards completeness, it is

nevertheless true that simplification and abstraction is still a necessary and important

ingredient of model building. It would be impossible to work with a model that tries

to capture all aspects of a real-world phenomenon up to the smallest detail, let alone,

would it be possible to comprehend such a model. Furthermore, as reality already

provides us with such a complete“model,” the actual phenomenon itself, we would not

be able to gain any insights or conclusions over and above those we could obtain from

looking at the phenomenon directly. Going too far in the other direction, however,

by abstracting from essential features of reality, which are relevant to the questions

at hand, is similarly problematic. The structural analysis in general and the policy

implications, in particular, could depend to a large extend on the chosen degree of

abstraction. The crucial aspect of model building then is to strike the right balance

between completeness and manageability.

In choosing this balance, the close interaction of macroeconomic theory and em-

pirical analysis as well as econometric techniques is of particular importance. When

studying empirically a certain economic relationship, a natural starting point of the

1



2

econometric model is, of course, the theory underlying this relationship. It offers, for

example, guidance on the relevant variables to include and on the functional relation

between those variables. As a more specific example, the principle of optimization

underlying macroeconomic models in conjunction with the information structure, i.e.,

what is known to the different agents at the respective point in time, could have im-

plications for the data-generating process of the resulting economic series. This, in

turn, could indicate the appropriate econometric model and technique to use in the

empirical study. Similarly, the findings of empirical investigations could help to de-

cide how to further refine, or even set up, theoretical models. For instance, what are

the dynamic relationships between different economic variables found in the data and

what are the consequences for theoretical modeling, such that it is possible to match

those dynamics? Alternatively, is there empirically sufficient heterogeneity in certain

subaggregates, which would warrant considering those in the theoretical model? What

are the (policy) implications of choosing such a different level of abstraction? All this

is affected by the level of sophistication of the econometric techniques available. New

methodological developments, for example, could facilitate more precise estimates

leading to stronger results and implications for model building. Furthermore, more

advanced econometric methods could allow to take into account certain features of

the data-generating process implied by economic theory, as indicated above.

The overall contribution of this dissertation is to illustrate the importance of choos-

ing an appropriate balance between completeness and manageability, both in the field

of macroeconomics and econometrics. In this regard, it focuses strongly on the close

interaction of macroeconomic theory and empirical analysis supported by novel econo-

metric techniques. On a more general level, this interplay is not least reflected in the

fact that each of the three chapters of this dissertation has a focus on one of these

three aspects. While Chapter 1 centers on econometric theory and suggests a new

econometric technique, Chapter 2 is a contribution to macroeconomic theory in the

area of monetary economics. Finally, Chapter 3 is a combination of the two fields in

the sense of featuring an empirical analysis of a macroeconomic question using a newly

suggested econometric method. Each individual chapter, however, also draws on the

other aspects, thereby highlighting the aforementioned interaction. As a unifying
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theme, each of the chapters shows that there are potentially dramatic consequences

of taking into account additional layers of reality. Those added aspects pertain to the

core of the respective investigation, so that the models exhibit an increased level of

completeness. This is achieved, however, without forfeiting manageability, not least

due to the development and application of novel econometric methods. The particular

models and techniques employed are still easy to handle and understand.

In terms of econometric theory, Chapter 1 shows that considerably more precise

estimates within a so-called dynamic factor model are attainable by taking into ac-

count additional features of the data-generating process. In particular, we suggest a

simple two-step estimation procedure to obtain efficient estimates in the presence of

both autocorrelation and heteroskedasticity. We demonstrate that those features are

in fact present in a widely used macroeconomic data set and illustrate the superior

performance of our estimator via a simulation exercise based on this set of time series.

Moreover, the dynamic factor model itself is a nice example of how to reconcile the,

in most cases, conflicting goals of completeness and manageability. Factor models are

based on the idea that a potentially very large set of time series can be represented

as the sum of two (unobservable) parts: first, the common component, which is ulti-

mately driven by a small number of common factors shared by the entire panel, and

second, the idiosyncratic component, driven by shocks only relevant to the specific

series. Due to this separation, the information contained in an exhaustive set of time

series can be easily summarized by this small set of factors and utilized for structural

analysis and forecasting.

With respect to macroeconomic theory, Chapter 2 considers a New-Keynesian dy-

namic stochastic general equilibrium (DSGE) model featuring labor market frictions.

Within this setup, Chapter 2 highlights the dramatic consequences for equilibrium

allocations and optimal monetary policy when replacing the standard approach of

a uniformly rigid real wage by heterogeneous wage setting with different degrees of

rigidity. The introduction of the latter is motivated by empirical evidence and cor-

respondingly implemented by distinguishing new hires and ongoing workers. This

emphasizes once more the close interplay of empirical analysis and macroeconomic

model building. With only these minor changes compared to the standard setup and
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despite an economy-wide average sticky wage, the sizable short-run inflation unem-

ployment trade-off which is obtained in the original model with a uniformly sticky

wage disappears. This profoundly affects the optimal conduct of monetary policy. It

leaves the monetary authority with a single target so that it can solely focus on infla-

tion with no concern for employment stabilization. The costs of this increase in the

level of completeness with respect to such an important aspect of the model, i.e., the

wage setting mechanism, are small as manageability basically does not change com-

pared to the original setup. Overall, this chapter illustrates that policy implications

derived in a particular model might depend to a large extend on the chosen degree of

abstraction.

Finally, the empirical investigation presented in Chapter 3 highlights the impor-

tance of taking into account particularities of the information structure as well as of

focusing on subcomponents of certain fiscal aggregates when estimating the effects

of fiscal policy on the macroeconomy. In particular, we suggest a new empirical ap-

proach based on a structural vector autoregression (SVAR), which explicitly allows

for the fact that major fiscal policy measures are typically anticipated. Moreover,

our investigation indicates that it is crucial to distinguish those subcomponents of

total government spending, which might have different effects on the macroeconomy

as implied by economic theory. Those two ingredients allow us to reconcile the con-

flicting results obtained in the literature based on the narrative and standard SVAR

approaches, in particular with respect to the consumption response to an increase in

government spending. These approaches just take into account either anticipation

issues or disaggregate variables but not both. Thus, our findings again illustrate the

important role played by the chosen level of abstraction. While at a certain level, the

findings of the different approaches seem to be in conflict with each other, at another

level, i.e., when allowing for fiscal policy anticipation and considering subcomponents

of government spending, the antagonism vanishes. Within this chapter, the interac-

tion of macroeconomic theory, empirical analysis, and novel econometric techniques is

particularly rich. The necessity to augment the econometric model in order to account

for fiscal policy anticipation results from economic and institutional considerations.

In particular, fiscal policy actions are usually known before they are actually imple-
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mented. This is mostly due to the extensive public debate typically preceding political

decisions, but it also results from the fact that many measure are usually introduced

at a certain date, e.g., next January 1st. Optimizing agents, in turn, adjust their plans

as soon as they learn about the respective measure and do not wait until implementa-

tion. This special information structure must be taken into account when estimating

the dynamic relationships between the relevant macroeconomic variables. Intuitively,

the econometrician needs the same amount of information as the private agents in

order to be able to uncover the dynamics correctly. Using a standard VAR might

not be sufficient in this regard. Moreover, distinguishing different subcomponents of

total government spending is motivated by theoretical findings of the macroeconomic

literature and our empirical results indeed correspond to those findings. The empir-

ical results, in turn, also have implications for macroeconomic modeling. Since the

results of the standard fiscal VAR literature are difficult to reconcile with benchmark

macroeconomic models, the literature recently increased efforts to align those models

with the aforementioned empirical results. Our findings at least raise the question,

whether this is a promising way to proceed.

After having discussed the contributions of the different chapters from a global

perspective, i.e., with respect to the unifying theme of the dissertation, the remainder

of the introduction focuses on each of the chapters individually and summarizes the

respective contributions and main findings.

Chapter 1.1 Dynamic factor models can be traced back to the work of Sargent

and Sims (1977) and Geweke (1977), where only systems with a small number of time

series are considered. Recent work by Forni, Hallin, Lippi, and Reichlin (2000) and

Stock and Watson (2002a, 2002b) extends the setup to large dimensional panels, so

that both the time series dimension as well as the number of cross section units are

potentially large. Important contributions such as Bai and Ng (2002) and Bai (2003)

consolidate this development and lay the foundations for the success of this class of

models in areas such as macroeconomic forecasting and structural analysis.

Consistent estimates of the parameters of the model under the weak assump-

tions of an approximate factor model (Chamberlain and Rothschild 1983) can be ob-

1This chapter is based on a joint paper with Jörg Breitung (Breitung and Tenhofen 2010).
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tained by employing either the standard principal component (PC) estimator (Stock

and Watson 2002a, Bai 2003) or Forni, Hallin, Lippi, and Reichlin’s (2000) dynamic

principal component estimator. The situation concerning the efficient estimation of

those parameters, however, is not as clear-cut. This is particularly true when moving

away from the rather strong assumption of Gaussian i.i.d. errors. While there are

some suggestions for the cases when the errors are either heteroskedastic (Boivin and

Ng 2006, Doz, Giannone, and Reichlin 2006, Choi 2008) or autocorrelated (Stock and

Watson 2005), simple approaches that allow for both of those features are nonexis-

tent. This is all the more important since, as we show in Chapter 1, the idiosyncratic

components obtained from typical data sets, such as the one of Stock and Watson

(2005), indeed feature a considerable amount of heterogeneity with respect to their

(sample) variances and first order autocorrelations.

In order to obtain efficient parameter estimates of the dynamic factor model in

the presence of both autocorrelation and heteroskedasticity, in Chapter 1 a simple

two-step estimation procedure is suggested. We derive the asymptotic distribution

of the resulting estimators, investigate the asymptotic efficiency relative to standard

PC, and study the performance of the different estimators in small samples via Monte

Carlo simulations.

The two-step estimator is derived from an approximate Gaussian log-likelihood

function. In particular, the approximating model features mutually uncorrelated id-

iosyncratic components, but it allows for both individual specific autocorrelations

and variances. The resulting estimator employs standard PC in the first stage in

order to obtain preliminary estimates of the common factors and factor loadings. In-

tuitively, PC can be considered as an ordinary least squares (OLS)-like estimator,

as it does not take into account the covariance structure of the errors. In the sec-

ond stage, generalized least squares (GLS)-type transformations are applied, yielding

the ultimate two-step PC-GLS estimates of the common factors and factor loadings.

Interestingly, when estimating the factors, it is only necessary to take into account

possible heteroskedasticity of the errors, whereas the loadings are estimated using just

the traditional GLS transformation for autocorrelated errors. Not having to compute

the full two-way GLS transformations with respect to both autocorrelation and het-
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eroskedasticity for the respective estimator highlights the simplicity of our approach,

which furthermore enables fast computation.

In contrast to the assumptions underlying the aforementioned approximating

model, which is employed to derive the estimator, our main results concerning the

asymptotic distribution are obtained under much weaker assumptions. The idiosyn-

cratic components, for example, are allowed to be weakly correlated in the sense of

Bai and Ng (2002) and Stock and Watson (2002a). With respect to the asymptotic

distribution of the two-step estimator, we show that it is not affected by the estima-

tion error in the regressors, i.e., in the estimated covariance parameters and the PC

estimates of the factors or loadings. Thus, the feasible two-step PC-GLS estimator is

asymptotically as efficient as the estimator that (locally) maximizes the full approx-

imate likelihood function. To obtain small sample gains in efficiency, the two-step

estimator can be iterated, using the second stage estimates in future steps as well as

improved estimates of the covariance parameters based on the second step residuals.

With respect to the relative asymptotic efficiency, it can only be shown that the

PC-GLS estimators are at least as efficient as (and generally more efficient than) the

standard PC estimators if the temporal and contemporaneous variance and covariance

functions of the errors are correctly specified. In order to obtain an estimator which

is always at least as efficient as standard PC and two-step PC-GLS individually, we

suggest a generalized method of moments (GMM) estimator based on the two sets of

moment conditions corresponding to the aforementioned estimators.

While it is a theoretical possibility that there are situations when standard PC

is asymptotically more efficient than two-step PC-GLS, the extensive Monte Carlo

simulations presented in Chapter 1 indicate that this is unlikely to occur in practice,

even if the covariance functions are misspecified. We compare the performance of the

various estimators in different scenarios featuring autocorrelation, heteroskedasticity,

as well as cross-sectional correlation. As a final simulation experiment, we generate

data based on the widely used set of time series provided by Stock and Watson (2005).

This allows to examine the performance of the respective estimators when applied

to more “realistic” data sets. In all those simulations, we document the superior

performance of the two-step PC-GLS estimator and particularly its iterated version
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compared to standard PC estimation.

Chapter 2.2 A striking aspect of the standard version of the New-Keynesian

DSGE model, the workhorse model of monetary policy analysis, is the absence of

interesting dynamics and even concepts with respect to the labor market. In its

basic version, it employs a Walrasian labor market and thus lacks equilibrium un-

employment and dynamics in related variables, even though these features are an

important aspect of the business cycle. Recent research has begun to address this

shortcoming by integrating labor market frictions into the model (e.g., Krause and

Lubik 2007, Trigari 2009, Blanchard and Gaĺı 2010, Christoffel and Linzert 2010),

where the wage-determination mechanism is a particularly important ingredient. Mo-

tivated by the so-called “unemployment volatility puzzle,” the standard approach in

this regard is to employ an overall rigid real wage. The aforementioned puzzle, most

visibly documented by Shimer (2005), describes the difficulty of the baseline Diamond-

Mortensen-Pissarides style search and matching model to generate fluctuations in un-

employment and vacancies which are consistent with the data. Recent contributions

by Haefke, Sonntag, and van Rens (2008) and Pissarides (2009), however, argue that

it is inconsistent with empirical evidence to use such a uniformly rigid real wage.

They find that the wages for workers in ongoing job relationships are indeed rigid,

but those of new hires are highly cyclical. As the latter kind of wages are the relevant

ones for search and matching models, they conclude that wage rigidity cannot be the

answer to the unemployment volatility puzzle. Instead, Pissarides (2007) recommends

augmenting the model by additional driving forces.

Correspondingly, Chapter 2 investigates optimal monetary policy in an environ-

ment characterized by labor market frictions, heterogeneous wage setting, as well as

markup shocks. In particular, this chapter features two main contributions. First,

it studies the consequences for equilibrium allocations, particularly for labor mar-

ket dynamics and optimal monetary policy, of employing heterogeneous wage setting

which is consistent with the empirical findings of the aforementioned authors. Second,

this chapter investigates the implications for the dynamic responses of inflation and

unemployment under different monetary policy regimes of adding markup shocks as

2This chapter is based on Tenhofen (2010).
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additional driving forces to the model.

In the first part of the chapter, I introduce heterogeneous wage setting into the

New-Keynesian DSGE model of Blanchard and Gaĺı (2010), which features labor

market frictions in terms of hiring costs. While Blanchard and Gaĺı (2010) follow the

traditional approach in the literature of employing a uniformly rigid wage, I distinguish

two kinds of workers in order to introduce some degree of wage heterogeneity. In

particular, I distinguish between workers in ongoing job relationships and newly hired

workers. Consistent with the empirical studies of Haefke, Sonntag, and van Rens

(2008) as well as Pissarides (2009), the former earn a rigid wage in the spirit of Hall

(2005), whereas the latter bargain over the wage for the current period, modeled by

employing the generalized Nash solution. As the main finding it emerges that the

sizable short-run inflation unemployment trade-off, which is obtained in the original

setting with a uniformly rigid wage, disappears. This results even though I change the

setup of Blanchard and Gaĺı (2010) only to a small extend and despite an economy-

wide average wage which is still sticky. As a result, employing a form of wage rigidity

consistent with empirical findings has profound effects on the policy implications of

this model, in particular, with respect to the optimal conduct of monetary policy. It

is left with a single target, so that it can concentrate exclusively on inflation with no

concern for employment stabilization.

Nevertheless, the question remains, how to address the unemployment volatility

puzzle and what are the consequences of a corresponding mechanism for monetary

policy. Hence, in the second part of the chapter, I follow the suggestion of Pis-

sarides (2007) and add markup shocks as additional driving forces to the aforemen-

tioned DSGE model with heterogeneous wage setting. This is achieved by assum-

ing a stochastic elasticity of substitution in the Dixit-Stiglitz constant-elasticity-of-

substitution consumption aggregator à la Steinsson (2003) and Rotemberg (2008).

The resulting markup fluctuations are consistent with empirical evidence as docu-

mented by Rotemberg and Woodford (1991, 1999) and Gaĺı, Gertler, and López-Salido

(2007). A short-run inflation unemployment trade-off arises and I investigate the dy-

namics of the model under different monetary policy regimes. The main finding of

this part of Chapter 2 is that within this model featuring labor market frictions, het-
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erogeneous wage setting, and markup shocks, optimal policy is characterized by an

overriding focus on inflation stabilization. This result is in line with much of the re-

cent literature on optimal monetary policy (e.g., Woodford 2003), but contrasts with

the findings of Blanchard and Gaĺı (2010). Furthermore, markup shocks are not able

to generate an extensive amount of fluctuations in unemployment within the setup

considered in this chapter.

Chapter 3.3 When considering the empirical literature on the effects of fiscal

policy on the macroeconomy, rather conflicting results emerge. On the one hand,

the narrative approach typically finds that GDP increases while private consumption

and real wages fall in response to shocks to government expenditure (Ramey and

Shapiro 1998, Edelberg, Eichenbaum, and Fisher 1999, Burnside, Eichenbaum, and

Fisher 2004). This approach uses dummy variables that indicate large (exogenous) in-

creases in government spending related to wars. On the other hand, the findings of the

SVAR literature are that GDP as well as private consumption usually increase in re-

sponse to a shock to government spending (Blanchard and Perotti 2002, Perotti 2005,

2008). The SVARs are typically identified by assuming that government expendi-

ture are predetermined within the quarter. In sum, the main difference concerns

the consumption response to a shock to government spending. While the findings of

the narrative approach are readily aligned with theoretical predictions of standard

macroeconomic models, both of the neoclassical (Baxter and King 1993) and most

New-Keynesian (Linnemann and Schabert 2003) variants, this is not so easy when

considering the SVAR results. Recently, however, there have been efforts to recon-

cile current business cycle models with the latter strand of the empirical literature

(Gaĺı, López-Salido, and Vallés 2007). The crucial aspect is to generate a positive

consumption response to an increase in government spending. All in all, these con-

flicting results of the empirical literature constitute a rather unfortunate situation, as

empirical findings shape our modeling efforts and understanding of the economy.

The starting point of the investigation presented in Chapter 3 is the contribution

of Ramey (2009). Her explanation for the different results is that VARs miss the fact

that major changes in government expenditure are typically anticipated. On a more

3This chapter is based on joint work with Guntram Wolff (Tenhofen and Wolff 2010).
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general level, this corresponds to the fundamental problem that in certain settings a

misalignment of the information sets of private agents and the econometrician arises.

With respect to the anticipation of fiscal policy, this means that private agents not only

know the variables observed by the econometrician, but in addition have information

on the fiscal shocks occurring in future periods. This misalignment of information

sets could impair the ability of standard VARs to recover the actual economic shocks,

so that tools based on those econometric models may yield incorrect inferences (e.g.,

Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson 2007, Leeper, Walker,

and Yang 2009).

Chapter 3 investigates the response of private consumption to fiscal shocks within

an SVAR framework, taking into account anticipation of fiscal policy actions. In order

to avoid the problems of standard VARs, we suggest a new empirical approach which

is designed to align the information sets of the private agents and the econometri-

cian. A simulation study based on a theoretical model featuring (imperfect) fiscal

foresight is performed, in order to illustrate the ability of this method to correctly

capture macroeconomic dynamics. Finally, we present an application to real life data,

with a particular focus on the response of private consumption to shocks to different

subcomponents of government spending.

With respect to the empirical approach, we start out from the well established

SVAR setup suggested by Blanchard and Perotti (2002), but augment it to explicitly

take into account perfectly anticipated fiscal policy one period in advance. This is

achieved, in particular, by adding expectation terms for next period’s fiscal variables

as well as equations modeling the formation of those expectation to a standard AB-

model SVAR. The crucial point is that the aforementioned expectation are formed with

respect to an information set which not only includes current and past endogenous

variables of the system but also next period’s fiscal shocks. This reflects the special

information structure due to fiscal policy anticipation.

As the information structure is generally unknown in practice, it is interesting

to investigate the robustness of our methodology to possible deviations from the as-

sumption of one period perfect foresight. Consequently, we simulate data based on

a standard neoclassical growth model featuring both anticipated and unanticipated
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fiscal shocks, so that private agents only have imperfect foresight. By comparing the

theoretical impulse responses of the model to the estimated ones, it is possible to check

whether the respective approach is able to capture anticipation effects. In particular,

the estimated impulse responses are obtained by applying both a VAR à la Blanchard

and Perotti (2002) as well as our expectation augmented VAR to the simulated data.

The main finding of this part of the chapter is that the new approach, in contrast to

the standard VAR, delivers impulse responses which are very close to the theoretical

ones. This holds not just in a setup when there are only anticipated fiscal shocks,

perfectly corresponding to the underlying assumptions of the expectation augmented

VAR, but also in the case of imperfect foresight. Thus, this exercise indicates that the

approach is robust to situations with a potentially different information structure.

In the subsequent application to real life data, we distinguish in particular govern-

ment defense and non-defense expenditure. This is motivated by economic theory, as

we expect the response of private consumption to be different to rather wasteful de-

fense and potentially productive non-defense expenditure. Indeed, the results indicate

that it is important in empirical work to allow for anticipation of fiscal policy and, par-

ticularly, it is crucial to distinguish subcomponents of total government spending. As

expected from economic theory, we find private consumption to decrease significantly

in an expectation augmented VAR in response to a shock to defense expenditure,

whereas it increases significantly to non-defense expenditure shocks. Both findings

are in line with Ramey’s (2009) general argument and the former result corresponds

to her findings for the narrative approach. Consequently, by distinguishing defense

and non-defense expenditure it is possible to reconcile the results of the narrative and

SVAR approaches to the study of fiscal policy effects. On the other hand, when consid-

ering total government spending, the resulting impulse responses are not as clear-cut,

since we lump together items with different macroeconomic effects. Moreover, the

responses resulting from a VAR à la Blanchard and Perotti (2002) are all rather weak

and mostly insignificant, highlighting the importance of anticipation issues.

While this introduction summarizes the key contributions and main findings of

this dissertation and highlights its unifying theme, the subsequent three chapters are

each developed in an independent and self-contained way.



Chapter 1

GLS estimation of dynamic factor

models

1.1 Introduction

Since the influential work of Forni, Hallin, Lippi, and Reichlin (2000), Stock and

Watson (2002a, 2002b), Bai and Ng (2002), and Bai (2003), dynamic factor models

have become an important tool in macroeconomic forecasting (e.g., Watson 2003,

Eickmeier and Ziegler 2008) and structural analysis (e.g., Giannone, Reichlin, and

Sala 2002, Bernanke, Boivin, and Eliasz 2005, Eickmeier 2007). Under the weak

assumptions of an approximate factor model (Chamberlain and Rothschild 1983), the

parameters of the models can be consistently estimated by applying the traditional

principal component (PC) estimator (Stock and Watson 2002a, Bai 2003) or – in

the frequency domain – by using the dynamic principal component estimator (Forni,

Hallin, Lippi, and Reichlin 2000). Assuming Gaussian i.i.d. errors, the PC estimator

is equivalent to the ML estimator and, therefore, the PC estimator is expected to

share its asymptotic properties. It is well known that a generalized least squares

(GLS)-type criterion function yields a more efficient estimator than the OLS based PC

estimator if the errors are heteroskedastic (e.g., Boivin and Ng 2006, Doz, Giannone,

and Reichlin 2006, Choi 2008). It is less clear how the estimator can be improved

in the case of serially correlated errors. Stock and Watson (2005) suggest a GLS

transformation similar to the one that is used to correct for autocorrelation in the

linear regression model. However, as we will argue below, this transformation affects

13
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the static representation of the factor model.

In this chapter, we consider the Gaussian (pseudo) ML estimator in models, where

the errors are assumed to be heteroskedastic and autocorrelated. We derive the first

order conditions for a local maximum of the (approximate) log-likelihood function

and show that the resulting system of equations can be solved by running a sequence

of GLS regressions. Specifically, the factors can be estimated by taking into account

possible heteroskedasticity of the errors, whereas the factor loadings are estimated by

using the usual GLS transformation for autocorrelated errors. We show that the fea-

sible two-step GLS estimation procedure is asymptotically equivalent to the estimator

that locally maximizes the approximate likelihood function. In small samples, how-

ever, our Monte Carlo simulations suggest that the iterated PC-GLS estimator can be

substantially more efficient than the simpler two-step estimator. In a related paper,

Jungbacker and Koopman (2008) consider the state space representation of the factor

model, where the number of variables (N) is fixed and the vector of common factors

has a VARMA representation. As we will argue below, as N → ∞ their (exact) ML

estimator converges to the approximate ML estimator suggested in this chapter. Thus,

the two-step GLS estimator can be seen as a simplification of the exact ML approach

proposed by Jungbacker and Koopman (2008) as N gets large. Furthermore, we do

not specify a particular parametric model for the vector of common factors, as the

data generating process of the factors becomes irrelevant as N → ∞. Accordingly, our

approach sidesteps the problem of choosing an appropriate lag length for the VARMA

representation of the factors.

It may be argued that in practice the efficiency gain from taking into account serial

correlation and heteroskedasticity may be small if the variances of the idiosyncratic

components are similar and their autocorrelations are small. To assess the potential

of the suggested estimator, we therefore consider the distribution of the variances

and first order autocorrelations estimated from the widely used data set provided by

Stock and Watson (2005). This data set contains 132 monthly US series including

measures of real economic activity, prices, interest rates, money and credit aggregates,

stock prices, and exchange rates. The sampling period runs from 1960 to 2003.1 As

1The original data set is provided for the years 1959 to 2003. Some observations are, however,
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usual, the time series are differenced if unit root tests are not able to reject the

null hypothesis of nonstationarity. Applying the information criteria of Bai and Ng

(2002) suggests that the number of common factors is r = 7. The idiosyncratic

component is obtained by subtracting the estimated common component from the

standardized series. The resulting histograms with respect to sample variances and

first order autocorrelations of the idiosyncratic components are presented in Figures

1.1 and 1.2. Since the variables are standardized, the variances of the idiosyncratic

components are identical to 1 − ci, where ci is the “commonality” of variable i. A

value of ci close to zero implies that the factors do not contribute to the variance of

the time series. In our example, 13 percent of the variables have a commonality less

than 0.05. Furthermore, the variances do not seem to be concentrated around some

common value. Accordingly, ignoring the heteroskedasticity in the data will lead to

a severe loss of efficiency. A similar picture emerges for the autocorrelations of the

idiosyncratic errors. Most of the estimates are far away from zero. Moreover, there

is substantial heterogeneity among the estimates, suggesting that the model should

allow for individual specific autocorrelations. In order to investigate the impact of

those features of the data and to illustrate the potential of our suggested estimators,

one of the Monte Carlo experiments presented in the latter part of this chapter is

based on Stock and Watson’s (2005) data set.

The rest of Chapter 1 is organized as follows. In Section 1.2, we consider some

prerequisites of the dynamic factor model. Section 1.3 introduces the PC-GLS esti-

mator and Section 1.4 studies the asymptotic distribution of the two-step estimator.

The relative asymptotic efficiency of the standard PC and PC-GLS estimators is in-

vestigated in Section 1.5. The small sample properties of alternative estimators are

compared by means of Monte Carlo simulations in Section 1.6. Finally, Section 1.7

concludes.

missing in 1959. We therefore decided to use a balanced data set starting in 1960.
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Figure 1.1: Histogram of the sample variances
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Figure 1.2: Histogram of the sample autocorrelations
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1.2 The dynamic factor model

Following Stock and Watson (2002a, 2002b) and Bai and Ng (2002), we consider the

dynamic factor model

xit = θi(L)
′gt + eit , (1.1)

where xit is the i’th variable (i = 1, . . . , N) observed in period t (t = 1, . . . , T ), gt is a

k×1 vector of dynamic factors, and θi(L) = θ0i+θ1iL+· · ·+θmiLm is a k×1 polynomial

of factor loadings. As usual in this literature, we ignore possible deterministic terms

and assume E(xit) = E(eit) = 0.

Let Θ(L) = Θ0 + Θ1L + · · · + ΘmL
m and Θj = [θj1, . . . , θjN ]

′ (j = 0, . . . ,m) and

define Gt = [g′t, . . . , g
′
t−m]

′. The static factor representation results as

Xt = ΘGt + et ,

where Xt = [x1t, . . . , xNt]
′, Θ = [Θ0, . . . ,Θm], and et = [e1t, . . . , eNt]

′. It is important

to note that Θ need not have full column rank. For example, a subset of the factors

may not enter with all lags. In this case the respective columns of Θ are zero. Let

r ≤ (m+1)k be the rank of the matrix Θ. Then there exists an N × r matrix Λ such

that ΘGt = ΛFt, where Ft = RGt and R is a nonsingular r × (m+ 1)k matrix. Ft is

called the vector of static factors.

Finally, in full matrix notation the model is written as

X = FΛ′ + e, (1.2)

where X = [X1, . . . , XT ]
′ and e = [e1, . . . , eT ]

′ are T × N matrices. The columns of

the T × r matrix F = [F1, . . . , FT ]
′ collect the observations of the r static factors.

Under fairly weak assumptions, the factors and factor loadings can be estimated

consistently as N → ∞ and T → ∞ by the PC estimator that minimizes the total

sum of squares

S(F,Λ) = tr [(X − FΛ′)′(X − FΛ′)] ,

subject to the constraint T−1F ′F = Ir (Stock and Watson 2002b, Bai and Ng 2002).

The estimators of F and Λ result as F̂ =
√
T V̂r and Λ̂ = T−1/2X ′V̂r, respectively,

where V̂r is the matrix of the r orthonormal eigenvectors corresponding to the r
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largest eigenvalues of the matrix XX ′ (e.g., Stock and Watson 2002b). The resulting

estimators for Λ and F will be called the PC-OLS estimators.

If the idiosyncratic errors are heteroskedastic or autocorrelated, the PC-OLS es-

timator is not efficient. Before introducing our estimator, we briefly discuss existing

proposals for efficient estimation in the presence of either heteroskedastic or auto-

correlated errors. First, for the heteroskedastic case, Doz, Giannone, and Reichlin

(2006) and Choi (2008) suggest GLS-type estimators that minimize the weighted sum

of squares

S(F,Λ,Ω) = tr
[
Ω−1(X − FΛ′)′(X − FΛ′)

]
,

where Ω =diag[E(e21t), . . . , E(e
2
Nt)] for all t. Forni, Hallin, Lippi, and Reichlin (2005)

and Choi (2008) consider the case of an arbitrary covariance matrix Ω. It should be

noted, however, that the factors are not identified without additional assumptions on

the matrix Ω. To see this, consider the spectral decomposition Ω =
∑N

i=1 µiviv
′
i, where

µi and vi denote the i’th eigenvalue and corresponding eigenvector, respectively. The

matrix Ω may be decomposed in form of a factor model yielding Ω = ΓΓ′+Ω∗ where,

for example, ΓΓ′ =
∑k

i=1wiµiviv
′
i, k ≤ N , 0 < wi < 1 for all i, and

Ω∗ =
k∑

i=1

(1− wi)µiviv
′
i +

N∑

i=k+1

µiviv
′
i

is a symmetric positive definite matrix. Thus, E(XtX
′
t) = ΛΛ′ + Ω = Λ∗Λ∗′ + Ω∗,

where Λ∗ = [Λ,Γ]. In order to distinguish the common factors from the idiosyncratic

components, the covariance matrix Ω has to be restricted in such a way that the

idiosyncratic errors cannot mimic the pervasive correlation due to the common factors.

This is usually ensured by assuming that all eigenvalues of Ω are bounded as N → ∞.

One possibility in this regard is to specify Ω as a diagonal matrix, which is what we

do in our approach. Another possibility is to allow for some spatial correlation of the

form Ω = σ2(IN − ̺WN)(I− ̺W ′
N), where all eigenvalues of the spatial weight matrix

WN are smaller than one and 0 ≤ ̺ ≤ 1 (e.g., Chudik, Pesaran, and Tosetti 2010). An

additional problem is that in a model with arbitrary covariance matrix Ω, the number

of parameters increases with the square of N , i.e., the model implies a large number

of additional parameters that may even exceed the number of observations. Finally,

the estimator Ω̂ = T−1(X − F̂ Λ̂′)′(X − F̂ Λ̂′) is singular and, hence, the inverse does
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not exist (see also Boivin and Ng 2006). As a result, when deriving our estimator

we start from an approximate likelihood function featuring mutually uncorrelated

idiosyncratic components, thereby following the traditional factor framework. Our

main results concerning this estimator, however, are obtained under much weaker

assumptions. In particular, the idiosyncratic components are assumed to be weakly

correlated in the sense of Bai and Ng (2002) and Stock and Watson (2002a).

Second, to account for autocorrelated errors, Stock and Watson (2005) consider the

model ρi(L)xit = λ′iF̃t+ ε̃it, where ρi(L) = 1−ρ1,iL−· · ·−ρpi,iLpi , which implies that

F̃t and ε̃it enter the time series in a similar way. However, if a more general dynamic

structure as in (1.1) is assumed, the approach suggested by Stock and Watson (2005)

yields

ρi(L)xit = θ∗i (L)
′gt + εit, (1.3)

where θ∗i (L) = ρi(L)θi(L) and εit = ρi(L)eit is white noise. In general, this transfor-

mation increases the number of static factors. As an example, assume that the scalar

factor gt enters with a single lag (i.e., m = 1) and the autoregressive lag order is pi = 1

for all i. Since θ∗i (L)
′gt = [θ0i, θ1i − θ0iρi,−θ1iρi][gt, gt−1, gt−2]

′, the number of static

factors is r = 3, whereas the original model implies only r = 2 static factors.2

In the following section, we propose a GLS-type estimator which in contrast to

earlier work focusing on either heteroskedastic (Forni, Hallin, Lippi, and Reichlin 2005,

Doz, Giannone, and Reichlin 2006, Choi 2008) or autocorrelated errors (Stock and

Watson 2005) accommodates both features.

1.3 The PC-GLS estimator

In this section, we follow Stock and Watson (2005) and assume that the idiosyncratic

components have a stationary heterogeneous autoregressive representation of the form

ρi(L)eit = εit, (1.4)

where ρi(L) is defined above. It is important to note that (1.4) is employed as an

auxiliary model to capture the main features of the idiosyncratic dynamics. Our

2Only if all autoregressive coefficients are the same, i.e., ρi = ρ for all i, then this representation

implies two static factors F ∗

t = [gt − ρgt−1, gt−1 − ρgt−2]
′.
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asymptotic analysis allows for misspecification of the dynamic process that gives rise

to some remaining autocorrelation in εit.

The autoregressive structure of the idiosyncratic component can be represented in

matrix format by defining the (T − pi)× T matrix

R(ρ(i)) =




−ρpi,i −ρpi−1,i −ρpi−2,i · · · 1 0 0 · · ·
0 −ρpi,i −ρpi−1,i · · · −ρ1,i 1 0 · · ·
...

. . . . . . . . . . . . . . . · · ·


 .

Thus, the autoregressive representation (1.4) is written in matrix form as

R(ρ(i))ei = εi , (1.5)

where εi = [εi,pi+1, . . . , εiT ]
′ and ei = [ei1, . . . , eiT ]

′. Furthermore, we do not impose

the assumption that the idiosyncratic errors have the same variances across i and t,

but assume that σ2
i = E(ε2it) may be different across i.

We do not need to make specific assumptions about the dynamic properties of

the vector of common factors, Ft. Apart from some minor regularity conditions the

only consequential assumption that we have to impose on the factors is that they are

weakly serially correlated (Assumption 1 in Section 1.4).

Consider the approximate Gaussian log-likelihood function:

S(F,Λ, ρ,Σ)=−
N∑

i=1

T − pi
2

log σ2
i −

N∑

i=1

T∑

t=pi+1

(eit − ρ1,iei,t−1 − . . .− ρpi,iei,t−pi)
2

2σ2
i

,(1.6)

where Σ = diag(σ2
1, . . . , σ

2
N). Note that this likelihood function results from condi-

tioning on the pi initial values. If xit is normally distributed and N → ∞, then the

PC-GLS estimator is asymptotically equivalent to the ML estimator. This can be seen

by writing the log-likelihood function as L(X) = L(X|F ) +L(F ), where L(X|F ) de-
notes the logarithm of the density function of x11, . . . , xNT conditional on the factors

F and L(F ) is the log-density of (F ′
1, . . . , F

′
T ). Since L(X|F ) is Op(NT ) and L(F )

is Op(T ), it follows that as N → ∞ maximizing L(X|F ) is equivalent to maximizing

the full likelihood function L(X).

An important challenge for the maximization of this likelihood function is that the

likelihood function is unbounded in general (see e.g., Anderson 1984, p. 570). To see

this, consider a factor model with a single factor (i.e., r = 1). If F̂t = yit/(T
−1
∑T

t=1 y
2
it)
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and λ̂i = 1 for some i and t = 1, . . . , T , then σ̂2
i = 0 and, therefore, the likelihood

tends to infinity. This problem is well-known also in other fields of statistics (e.g., the

estimation of mixture densities) and we adapt techniques for obtaining the maximum

likelihood estimator that were developed to cope with this problem. Specifically,

we are focusing on the estimator θ̂ = (F̂ ′
t , λ̂

′
i)
′ that attains a local maximum of the

likelihood function. Redner and Walker (1984) provide two conditions under which

the local maximum in a neighborhood of the true values θ0 yields a consistent and

asymptotically normally distributed estimator. These two conditions ensure that the

likelihood function is concave in a neighborhood of the true values.

Consider the derivatives of the likelihood function:

gλi(·) =
∂S(·)
∂λi

=
1

σ2
i

{
T∑

t=pi+1

εit[ρi(L)Ft]

}
(1.7)

gFt(·) =
∂S(·)
∂Ft

=
N∑

i=1

1

σ2
i

(εitλi − ρ1,iεi,t+1λi − · · · − ρpi,iεi,t+piλi)

=
N∑

i=1

1

σ2
i

[ρi(L
−1)εit]λi (1.8)

gρk,i(·) =
∂S(·)
∂ρk,i

=
1

σ2
i

T∑

t=pi+1

εit(xi,t−k − λ′iFt−k) (1.9)

gσ2
i
(·) = ∂S(·)

∂σ2
i

=

∑T
t=pi+1 ε

2
it

2σ4
i

− T − pi
2σ2

i

, (1.10)

where εis = 0 for s > T . It is not difficult to verify that Condition 1 of Redner

and Walker (1984) related to the derivatives of the likelihood function is satisfied.

Furthermore, the Fisher information matrix is well defined and positive definite at

θ0 (Condition 2 of Redner and Walker 1984). It follows that the ML estimator that

locally maximizes the log-likelihood function is consistent and asymptotically normally

distributed. Our proposed estimator maximizes the likelihood in the neighborhood of

the PC estimator. Since this estimator is consistent for a particular normalization of

the parameters, the local maximizer of the log-likelihood function in the neighborhood

of the PC estimator is consistent and asymptotically normally distributed.

A practical problem is the large dimension of the system consisting of 2Nr+N +
∑
pi equations. Accordingly, in many practical situations it is very demanding to

compute the inverse of the Hessian matrix that is required to construct an iterative



22

minimization algorithm. We therefore suggest a simple two-step estimator that is

asymptotically equivalent to locally maximizing the Gaussian likelihood function.

Let us first assume that the covariance parameters ρ and Σ are known. The

(infeasible) two-step estimators F̃t (t = 1, . . . , T ) and λ̃i (i = 1, . . . , N) that result

from using PC in the first stage, are obtained by solving the following sets of equations:

gFt(Λ̂, F̃t , ρ,Σ) = 0 (1.11)

gλi( λ̃i , F̂ , ρ,Σ) = 0, (1.12)

where F̂ = [F̂1, . . . , F̂T ]
′ and Λ̂ = [λ̂1, . . . , λ̂N ]

′ are the ordinary PC-OLS estimators of

F and Λ.

It is not difficult to see that the two-step estimator of λi is equivalent to the

least-squares estimator of λi in the regression:

(
ρi(L)xit

)
=
(
ρi(L)F̂t

)′
λi + ε∗it (t = pi + 1, . . . , T ), (1.13)

where ε∗it = εit + ρi(L)(Ft − F̂t)
′λi.

The two-step estimator of Ft (given Λ̂) is more difficult to understand. Consider

the two-way GLS transformation that accounts for both serial correlation and het-

eroskedasticity:
1

σi
ρi(L)xit =

1

σi
λ̂′i[ρi(L)Ft] +

1

σi
εit, (1.14)

where for notational convenience we assume pi = p for all i. Furthermore, our notation

ignores the estimation error that results from replacing λi by λ̂i.
3

We will argue below that in order to estimate Ft we can ignore the GLS trans-

formation that is due to serial correlation. But let us first consider the full two-step

GLS estimator of Ft that corresponds to condition (1.8). Collecting the equations for

t = p+ 1, . . . , T , the model can be re-written in matrix notation as

X̃i = Z̃if + ε̃i, (1.15)

where X̃i = σ−1
i [ρi(L)xi,p+1, . . . , ρi(L)xiT ]

′, ε̃i = σ−1
i [εi,p+1, . . . , εiT ]

′, Z̃i =

σ−1
i [λ̂i

′ ⊗R(ρ(i))], and f = vec(F ). The complete system can be written as

x̃ = Z̃f + ε̃, (1.16)

3The complete error term is given by σ−1

i [εit + (λi − λ̂i)
′ρi(L)Ft]. However, as will be shown

below, the estimation error in λ̂i does not affect the asymptotic properties of the estimator.
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where x̃ = [X̃ ′
1, . . . , X̃

′
N ]

′, Z̃ = [Z̃ ′
1, . . . , Z̃

′
N ]

′, and ε̃ = [ε̃′1, . . . , ε̃
′
N ]

′. To see that the

least-squares estimator of f is equivalent to a two-step estimator setting the gradient

(1.8) equal to zero (given some initial estimator of λi), consider the model with only

one factor (i.e., f = F ) and ρi(L) = 1− ρiL. Since

N∑

i=1

Z̃ ′
iε̃i =

N∑

i=1

λ̂i
σ2
i




−ρi 0 0 · · · 0

1 −ρi 0 · · · 0

0 1 −ρi · · · 0
...

. . .

0 0 0 · · · 1







εi2

εi3

εi4
...



=

N∑

i=1

λ̂i
σ2
i




−ρiεi2
εi2 − ρiεi3

εi3 − ρiεi4
...

εiT




it follows that the system estimator based on (1.16) solves the first order condition

(1.8). Note that the resulting estimator involves the inversion of the T × T matrix

Z̃ ′Z̃, which is computationally demanding if T is large.

Fortunately, this estimator can be simplified, since the GLS transformation due to

the serial correlation of the errors is irrelevant. The GLS transformation resulting from

heteroskedastic errors yields X∗
t = Λ∗Ft+ut, where X

∗
t = Σ−1/2Xt, Λ

∗ = Σ−1/2Λ, and

ut = Σ−1/2et. Replacing Λ∗ by Λ̂∗ = Σ−1/2Λ̂, two-step estimation implies estimating

F1, . . . , FT from the system

X∗
1 = Λ̂∗F1 + u∗1
...

...

X∗
T = Λ̂∗FT + u∗T ,

where u∗t = ut + (Λ∗ − Λ̂∗)Ft. Note that the vectors u∗t and u∗s are correlated, which

suggests to estimate the system by using a GLS estimator. However, it is well known

that the GLS estimator of a seemingly unrelated regressions (SUR) system is identical

to (equation-wise) OLS estimation, if the regressor matrix is identical in all equations.

Indeed, since in the present setup the regressor matrix is Λ̂∗ for all equations, it follows

that single-equation OLS estimation is as efficient as estimating the whole system by

using a GLS approach. Thus, the estimation procedure for Ft can be simplified by

ignoring the serial correlation of the errors. This suggests to estimate Ft from the

cross-section regression

1

ωi
xit =

(
1

ωi
λ̂′i

)
Ft + u∗it (i = 1, . . . , N), (1.17)
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where u∗it = ω−1
i

[
eit + (λi − λ̂i)

′Ft

]
and ω2

i = E(e2it), i.e., ignoring the GLS transfor-

mation with respect to autocorrelation. In what follows, we focus on this simplified

version of the two-step estimation approach as its properties are equivalent to those

of the full two-way GLS estimation procedure.

1.4 Asymptotic distribution of the two-step PC-

GLS estimator

Our analysis is based on a similar set of assumptions as in Bai (2003), which is restated

here for completeness.

Assumption 1: There exists a positive constant M < ∞ such that for all N and T:

(i) E||Ft||4 ≤ M for all t and T−1
∑T

t=1 FtF
′
t

p→ ΨF (p.d). (ii) ||λi|| ≤ λ < ∞ for all

i and N−1Λ′Λ → ΨΛ (p.d.). (iii) For the idiosyncratic components it is assumed that

E(eit) = 0, E|eit|8 ≤ M , 0 < |γN(s, s)| ≤ M , T−1
∑T

s=1

∑T
t=1 |γN(s, t)| ≤ M , where

γN(s, t) = E(N−1
∑N

i=1 eiseit). Furthermore, N−1
∑N

i=1

∑N
j=1 τij ≤M ,

∑N
i=1 τij ≤M ,

where τij = supt{|E(eitejt)|},

1

NT

N∑

i=1

N∑

j=1

T∑

t=1

T∑

s=1

|E(eitejs)| ≤M

E

∣∣∣∣∣
1√
N

N∑

i=1

[eiseit − E(eiseit)]

∣∣∣∣∣

4

≤M.

(iv) E(N−1
∑N

i=1 ||T−1/2
∑T

t=1 Ft−keit||2) ≤M for all N , T and k.

(v) For all t, k, N and T :

E

∣∣∣∣∣

∣∣∣∣∣
1√
NT

T∑

s=1

N∑

i=1

Fs−k[eiseit − E(eiseit)]

∣∣∣∣∣

∣∣∣∣∣

2

≤M

E

∣∣∣∣∣

∣∣∣∣∣
1√
NT

T∑

s=1

N∑

i=1

Fs−kλ
′
ieis

∣∣∣∣∣

∣∣∣∣∣

2

≤M

1√
N

N∑

i=1

λieit
d→ N (0, V

(t)
λe ),

where V
(t)
λe = lim

N→∞
N−1

N∑
i=1

N∑
j=1

λiλ
′
jE(eitejt) and for each i

1√
T

T−pi∑

t=pi+1

Ftei,t+k
d→ N (0, V

(i)
Fe ) for − pi ≤ k ≤ pi,
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where V
(i)
Fe = lim

T→∞
T−1

T∑
s=1

T∑
t=1

E(FtF
′
sei,s−kei,t−k).

For a thorough discussion of these assumptions, see Bai and Ng (2002) and Bai (2003).

It is well known (e.g., Bai and Ng 2002) that for the asymptotic analysis of the

estimators, the factors have to be normalized such that in the limit the common

factors obey the same normalization as the estimated factors. Following Bai and Ng

(2002), this is achieved by normalizing the factors as

FΛ′ = (FH)(H−1Λ′)

= F∗Λ
′
∗,

where

H = TΛ′ΛF ′F̂ (F̂ ′XX ′F̂ )−1.

It can be shown that T−1F∗
′F∗

p→ Ir and, therefore, F∗ has asymptotically the same

normalization as F̂ .

As we do not impose the assumptions of a strict factor model with stationary

idiosyncratic errors, we define the following “pseudo-true” values of the autoregressive

and variance parameters:

ω2
i = lim

T→∞
T−1

T∑

t=1

E(e2it)

[ρ1,i, . . . , ρpi,i]
′ = Γ−1

i,11Γi,10,

where

Γi = lim
T→∞

E




1

T

T∑

t=pi+1




ei,t−1

...

ei,t−pi



[
eit · · · ei,t−pi

]

 =

[
Γi,10 Γi,11

]
,

Γi,10 is a pi × 1 vector, and Γi,11 is a pi × pi matrix.

For the asymptotic analysis, we need to impose the following assumption.

Assumption 2: (i) There exists a positive constant C < ∞, such that for all i:

1
C
< ω2

i < C. (ii) The matrix Γi,11 is positive definite.

In practice, the covariance parameters are usually unknown and must be replaced by

consistent estimates. The feasible two-step PC-GLS estimators λ̃i,ρ̂ and F̃t,ω̂ solve the



26

first order conditions

g̃λi(λ̃i,ρ̂, F̂ , ρ̂
(i)) =

T∑

t=pi+1

[ρ̂i(L)(xit − λ̃′i,ρ̂F̂t)][ρ̂i(L)F̂t] = 0 (1.18)

g̃Ft(Λ̂, F̃t,ω̂, Ω̂) =
N∑

i=1

1

ω̂2
i

(xit − λ̂′iF̃t,ω̂)λ̂i = 0, (1.19)

where

ω̂2
i =

1

T

T∑

t=1

ê2it (1.20)

and êit = xit − λ̂′iF̂t. Furthermore, ρ̂(i) = [ρ̂1,i, . . . , ρ̂pi,i]
′ is the least-squares estimator

from the regression

êit = ρ̂1,iêi,t−1 + · · ·+ ρ̂pi,iêi,t−pi + ε̂it. (1.21)

To study the limiting distribution of the feasible two-step PC-GLS estimator, the

following Lemma is used.

Lemma 1: Let ρ̂(i) = [ρ̂1,i, . . . , ρ̂pi,i]
′ denote the least-squares estimates from (1.21)

and ω̂2
i is the estimator defined in (1.20). Under Assumption 1 we have as (N, T →

∞)

ρ̂(i) = ρ(i) +Op(T
−1/2) +Op(δ

−2
NT ) and ω̂2

i = ω2
i +Op(T

−1/2) +Op(δ
−2
NT ),

where δNT = min(
√
N,

√
T ).

The following theorem presents the limiting distribution of the feasible two-step PC-

GLS estimator.

Theorem 1: (i) Under Assumptions 1-2 and if (N, T → ∞) and
√
T/N → 0, then

for each i, √
T (λ̃i,ρ̂ −H−1λi)

d→ N (0, Ψ̃
(i)−1

F Ṽ
(i)
Fe Ψ̃

(i)−1

F ),

where

Ṽ
(i)
Fe = lim

T→∞

1

T

T∑

s=pi+1

T∑

t=pi+1

E[ρi(L)H
′Ft ρi(L)F

′
sH εisεit]

εit = ρi(L)eit

Ψ̃
(i)
F = lim

T→∞

1

T

T∑

t=pi+1

E {[ρi(L)H ′Ft][ρi(L)H
′Ft]

′} .
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(ii) If (N, T → ∞) and
√
N/T → 0, then for each t,

√
N(F̃t,ω̂ −H ′Ft)

d→ N (0, Ψ̃−1
Λ Ṽ

(t)
λe Ψ̃

−1
Λ ),

where

Ṽ
(t)
λe = lim

N→∞
N−1

N∑

i=1

N∑

j=1

1

ω2
i ω

2
j

H−1λiλ
′
jH

′−1E(eitejt) ,

Ψ̃Λ = limN→∞N−1H−1Λ′Ω−1ΛH
′−1, and Ω =diag(ω2

1, . . . , ω
2
N).

Remark 1: From (i) it follows that the asymptotic distribution remains the same

if the estimate ρ̂i(L)F̂t in (1.13) is replaced by ρi(L)H
′Ft. This suggests that the

estimation error in F̂t and ρ̂i(L) does not affect the asymptotic properties of the

estimator λ̃i,ρ̂. A similar result holds for the regressor ω̂−1
i λ̂i. In other words, the

additional assumptions on the relative rates of N and T ensure that the estimates of

the regressors in equations (1.13) and (1.17) can be treated as “super-consistent”.

Remark 2: The assumptions on the relative rates of N and T may appear to be in

conflict with each other. However, the two parts of Theorem 1 are fulfilled if N = cT δ

where 1/2 < δ < 2. Therefore, the limiting distribution should give a reliable guidance

if both dimensions N and T are of comparable magnitude.

Remark 3: It is interesting to compare the result of Theorem 1 with the asymp-

totic distribution obtained by Choi (2008). In the latter paper, it is assumed

that E(ete
′
t) = Ω for all t, where et = [e1t, . . . , eNt]

′, i.e., the idiosyncratic compo-

nents are assumed to be stationary. In this case, the model can be transformed as

X∗ = F ∗Λ∗′ + e∗, where X∗ = XΩ−1/2, F ∗ = FJ , Λ∗ = Ω−1/2Λ(J ′)−1, e∗ = eΩ−1/2

and

J = TΛ′Ω−1ΛF ′F̃ (F̃ ′XΩ−1X ′F̃ )−1,

such that the covariance matrix of e∗ is identical the identity matrix. Note that the

matrix normalizing the factors in Choi (2008), J , is different from the one employed

for the PC-OLS estimator (and for our PC-GLS estimator), H. Imposing the former

normalization, the asymptotic covariance matrix of Choi’s (2008) GLS estimator F̃

reduces to a diagonal matrix.
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Remark 4: If the errors are serially uncorrelated, our PC-GLS estimator of Ft is

related to the estimator suggested by Forni, Hallin, Lippi, and Reichlin (2005). Anal-

ogous to Choi (2008), an important distinguishing feature is the different normaliza-

tion of the factors. Forni, Hallin, Lippi, and Reichlin (2005) propose an estimator

of Ω that is obtained from integrating the estimated spectral density matrix of the

idiosyncratic errors. The factors are obtained from solving the generalized eigenvalue

problem |νΩ̃ − T−1X ′X| = 0, where Ω̃ denotes the estimated covariance matrix of

the idiosyncratic errors. Note that the matrix of eigenvectors, Ṽ , of the generalized

eigenvalue problem obeys the normalization Ṽ ′Ω̃Ṽ = I.

Remark 5: The two-step approach can also be employed to an unbalanced data set

with different numbers of time periods for the variables. Stock and Watson (2002b)

suggest an EM algorithm, where the missing values are replaced by an estimate of the

common component. Let x̂it = λ̂′iF̂t denote the estimated observation based on the

balanced data set ignoring all time periods with missing observations. The updated

estimates of the common factors and factor loadings are obtained by applying the

PC-OLS estimator to the enhanced data set, where the missing values are replaced by

the estimates x̂it. Employing the updated estimates of Ft and λi, results in improved

estimates of the missing values that can in turn be used to yield new PC-OLS estimates

of the common factors and factor loadings. This estimation procedure can be iterated

until convergence. Similarly, the two-step estimation procedure can be initialized by

using the reduced (balanced) data set to obtain the PC-OLS estimates F̂t and λ̂i. In

the second step, the vector of common factors is estimated from regression (1.17). As

the T cross-section regressions may employ different numbers of observations, missing

values do not raise any problems. Similarly, the N time series regressions (1.13) may

be based on different sample sizes. As in the EM algorithm, this estimation procedure

can be iterated until convergence.

Remark 6: The two-step estimators can be iterated using the resulting estimates λ̃i,ρ̂

and F̃t,ω̂ instead of the estimates F̂t and λ̂i in regressions (1.13) and (1.17). Similarly,

improved estimators of the covariance parameters can be obtained from the second

step residuals, ẽit = xit − λ̃′i,ρ̂F̃t,ω̂. However, since the estimation error of the factors,

factor loadings, and covariance parameters does not affect the limiting distribution
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of the two-step estimators, additional iteration steps do not improve their asymptotic

properties. Nevertheless, further iterations may improve the performance in small

samples.

1.5 Asymptotic efficiency

In this section, we study the relative asymptotic efficiency of the estimators. The

following theorem shows that the PC-GLS estimator is generally more efficient than

the PC-OLS estimator if the temporal and contemporaneous variance and covariance

functions of the error, eit, are correctly specified.

Theorem 2: Under Assumptions 1–2 and if E(ete
′
t) = Ω = diag{ω1, . . . , ωN},

E(εiε
′
i) = σ2

i IT−pi, and Ft is independent of eit for all i and t, then the PC-GLS

estimators of λi and Ft are asymptotically more efficient than the respective PC-OLS

estimator in the sense that the difference of the respective asymptotic covariance ma-

trices is positive semidefinite.

Admittedly, this result is of limited practical use as we typically cannot assume that

all variance and covariance functions are correctly specified. In Section 1.3 we have

argued that the PC-GLS estimator can be seen as a pseudo ML estimator, which pro-

vides us with simple and generally more efficient estimators even if the variance and

covariance functions are misspecified. Indeed, our Monte Carlo experiments (some of

which are presented in Section 1.6) indicate that the PC-GLS estimator tends to out-

perform the PC-OLS estimator even if the covariance functions are misspecified. This

finding may suggest that the PC-GLS estimator is always more efficient, as it takes

into account at least some form of heteroskedasticity and autocorrelation, whereas the

PC-OLS estimator simply ignores the possibility of individual specific variances and

serial correlation. Unfortunately, this is not true as it is possible to construct special

cases characterized by misspecification of the variance or covariance function, where

the PC-OLS estimator is asymptotically more efficient than the PC-GLS estimator.4

4For example, the PC-GLS estimator of λi is less efficient than the PC-OLS estimator if we

fit an AR(1) model to the idiosyncratic errors, which are in fact generated by the MA(2) model

eit = εit+0.7εi,t−1−0.7εi,t−2. Note, that in this case the fitted AR(1) model implies a positive second



30

One possibility to cope with this problem is to minimize the misspecification by care-

fully determining the autoregressive lag order employing, for instance, the Akaike or

Schwarz criterion.

In what follows, we propose an alternative approach that combines the two afore-

mentioned estimators yielding a “hybrid estimator” which is at least as efficient as

each of the two estimators. To construct such an estimator, we combine the moment

conditions of PC-OLS and PC-GLS such that the respective generalized method of

moments (GMM) estimator based on two sets of moment conditions is more efficient

than any estimator based on a subset of moment conditions. The respective moments

for estimating the common factors are:

PC-OLS: m1(Ft) =
N∑

i=1

λ̂i(xit − λ̂′iFt) (1.22)

PC-GLS: m2(Ft) =
N∑

i=1

1

ω̂2
i

λ̂i(xit − λ̂′iFt). (1.23)

Define zi = [λ̂′i, λ̂
′
i/ω̂

2
i ]

′ as the vector of instruments and Z = [z1, . . . , zN ]
′ is an N×(2r)

matrix. The GMM estimator F̂ gmm
t is given by (e.g., Hayashi 2000, chap. 3)

F̂ gmm
t = (Λ̂′ZWtZ

′Λ̂)−1Λ̂′ZWtZ
′Xt. (1.24)

The optimal weight matrix Wt results as

Wt = [E (Z ′ete
′
tZ)]

−1
.

If et is independent of Z and E(ete
′
t) = Ω for all t = 1, . . . , T , we can invoke the law

of iterated expectations yielding Wt = W = [E(Z ′ΩZ)]−1. This suggests to estimate

the weight matrix as Ŵ = (Z ′Ω̂Z)−1, where Ω̂ = T−1
∑T

t=1 êtê
′
t and êt denotes the

residual vector from the PC-OLS or PC-GLS estimator, respectively. Unfortunately,

this yields a singular weight matrix since the residual vector is orthogonal to the

respective columns of the instrument matrix Z. We therefore employ the estimator

for the covariance matrix of the idiosyncratic components suggested by Forni, Hallin,

Lippi, and Reichlin (2000, 2005). This estimator (denoted as Ω̃) is obtained from the

dynamic principal component method by integrating the estimated spectral density

order autocorrelation, whereas the actual second order autocorrelation of the errors is negative.
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matrix of the vector of idiosyncratic components. Estimating the weight matrix as

W̃ = (Z ′Ω̃Z)−1 yields the GMM estimator

F̂ gmm = [F̂ gmm
1 , . . . , F̂ gmm

T ]′ = XZW̃Z ′Λ̂(Λ̂′ZW̃Z ′Λ̂)−1. (1.25)

A similar approach can be employed to combine the moment conditions of the

PC-OLS and PC-GLS estimators of the factor loadings. First, consider the moments

of the PC-GLS estimator based on AR(1) errors:

m∗(λi) =
T∑

t=2

(F̂t − ρ̂iF̂t−1)[xit − ρ̂ixi,t−1 − λ′i(F̂t − ρ̂iF̂t−1)]

= (1 + ρ̂2i )
T∑

t=1

F̂t(xit − λ′iF̂t)− ρ̂i

T−1∑

t=2

(F̂t+1 + F̂t−1)(xit − λ′iF̂t) +Op(1).

Therefore, if T is large, these moments are equivalent to a linear combination of the

moments

m3(λi) =
T∑

t=1

F̂t(xit − λ′iF̂t) (1.26)

m4(λi) =
T−1∑

t=2

(F̂t+1 + F̂t−1)(xit − λ′iF̂t). (1.27)

Since m3(λi) is the moment of the PC-OLS estimator, the “hybrid estimator”

is obtained by employing the vector of instruments ξt = [F̂ ′
t , F̂

′
t+1 + F̂ ′

t−1]
′ for

t = 2, . . . , T − 1, ξ1 = [F̂1, 0], and ξT = [F̂T , 0]. Furthermore, define the matrix

Ξ = [ξ1, . . . , ξT ]
′. The GMM estimator for λi results as

λ̂gmmi = (F̂ ′ΞWiΞ
′F̂ )−1F̂ ′ΞWiΞ

′Xi. (1.28)

To estimate the weight matrix Wi, we employ the usual heteroskedasticity and auto-

correlation consistent covariance (HAC) estimator suggested by Hansen (1982). Using

êit = xit − λ̂′iF̂t and

Γ̂i(k) =
1

T

T∑

t=k+1

êitêi,t−kξitξ
′
i,t−k,

the weight matrix is estimated as

Ŵi = Γ̂i(0) +
ℓ∑

j=1

τj(Γ̂i(j) + Γ̂i(j)
′),
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where τj = (ℓ− j + 1)/(ℓ+ 1) is the weight function and ℓ denotes the truncation lag

obeying ℓ/T → 0.

Since the hybrid estimators for λi and Ft employ r additional moments, the small

sample properties may deteriorate if r is large relative to T . Thus, although the GMM

estimators are asymptotically more efficient than the PC-OLS or PC-GLS estimators,

the hybrid estimators may perform worse in small samples, in particular, when the

weight matrices are poorly estimated. Some improvement of the small sample prop-

erties may be achieved by using the continuously updated GMM estimator proposed

by Hansen, Heaton, and Yaron (1996).

1.6 Small sample properties

In order to investigate the small sample properties of the proposed estimators, we

perform a Monte Carlo study. In particular, we calculate a measure of efficiency and

compare the performance of five different approaches: the standard PC estimator, the

two-step and iterated PC-GLS estimators as described above, the hybrid estimator

introduced in the previous section, and the quasi maximum likelihood (QML) esti-

mator of Doz, Giannone, and Reichlin (2006). The latter authors suggest maximum

likelihood estimation of the approximate dynamic factor model via the Kalman filter

employing the EM algorithm. In order to make the standard estimation approach of

traditional factor analysis feasible in the large approximate dynamic factor environ-

ment, Doz, Giannone, and Reichlin (2006, 2007) abstract from possible cross-sectional

correlation of the idiosyncratic component. However, their estimation procedure does

take into account factor dynamics as well as heteroskedasticity of the idiosyncratic

errors.5

Furthermore, we consider two sets of simulation experiments. First, we study a

setup featuring a single factor, where the parameters governing the data-generating

5Even though their actual implementation of the estimator does not allow for serial correlation of

the idiosyncratic components, Doz, Giannone, and Reichlin (2006) point out that, in principle, it is

possible to take into account this feature in the estimation approach. However, the resulting estimator

is computationally demanding as it implies N additional transition equations for the idiosyncratic

components.
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process only exhibit a relatively loose relation to those obtained from real-life data.

This allows us to get a transparent overview of the relative merits of the respective

estimator in various – perfectly controlled – environments concerning autocorrelation,

heteroskedasticity, as well as cross-sectional correlation. In our second experiment,

on the other hand, we generate data based on the widely used data set of Stock and

Watson (2005), where we consider the case of multiple factors. This puts us in a

position to study the performance of the various estimators when applied to “more

realistic” data sets, i.e., data sets representative for the ones typically encountered in

practice.

1.6.1 Simulation in a controlled environment

The data-generating process of our first Monte Carlo experiment is the following:

xit = λiFt + eit,

where

Ft = γFt−1 + ut , ut
iid∼ N (0, (1− γ2))

eit = ρiei,t−1 + εit , εt
iid∼ N (0, RΓR) , εt = [ε1t . . . εNt]

′

Γ = ΣΩΣ (1.29)

R = diag

(√
1− ρ21, . . . ,

√
1− ρ2N

)
, Σ = diag(σ1, . . . , σN )

ρi
iid∼ U [a, b]

λi
iid∼ U [0, 1],

where U [a, b] denotes a random variable uniformly distributed on the interval [a, b].

As mentioned above, in these baseline simulations, we set the number of static and

dynamic factors equal to one and, therefore, Ft is a scalar.

Four different scenarios are considered. In the first two, we abstract from cross-

sectional correlation, i.e., Ω = I, and concentrate on either autocorrelation or het-

eroskedasticity. In the autocorrelation case, we focus on the dynamic aspects and

set γ = 0.7, ρi
iid∼ U [0.5, 0.9], as well as σ2

i = 2 for all i. In the case focusing on

heteroskedasticity, we set γ = 0, ρi = 0 for all i, and σi
iid∼ |N (

√
2, 0.25)|.
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In the other two scenarios, we allow for non-zero cross-sectional correlation, so

that Ω is not the identity matrix. In constructing Ω we follow Chang (2002), in

order to ensure that only weak cross-sectional correlation is present. In particular,

the covariance matrix is generated using the spectral decomposition with Ω = HVH ′,

where H is a matrix consisting of orthonormal column vectors and V is a diagonal

matrix. H is constructed as H = M(M ′M)−1/2, where the elements of M are drawn

from U [0, 1]. To obtain V , a set of eigenvalues νi, i = 2, . . . , N − 1, is generated by

drawing from U [w, 1], where w > 0. Furthermore, to control the ratio of the minimum

to the maximum eigenvalue via w, ν1 = w and νN = 1. In line with Chang (2002),

we choose w = 0.1 in all simulations. By construction, in the scenarios featuring

cross-sectional correlation, heteroskedasticity is always present, where we also set

σi
iid∼ |N (

√
2, 0.25)|. As a result, we distinguish only the cases when autocorrelation

is present or not. In the former scenario we set γ = 0.7 and ρi
iid∼ U [0.5, 0.9], whereas

in the latter γ = 0 and ρi = 0 for all i.

We generate 1000 replications for different sample sizes. In particular, we set

N = 50, 100, 200, 300 and T = 50, 100, 200. In order to assess how precisely we can

estimate the true factors or loadings, we compute a measures of efficiency. Concerning

the common factors, it is simply R2(F, F̂ ), i.e., the coefficient of determination of

a regression of F (the true factor) on F̂ (the estimator under consideration) and a

constant. Obviously, an analogous measure can also be defined for the factor loadings.

Employing the coefficient of determination has the advantage that our measure of

efficiency is invariant to the normalization of the factors (or loadings).6

1.6.1.1 Autocorrelation and heteroskedasticity

Table 1.1 reports the results for the case of autocorrelated errors when abstracting

from cross-sectional correlation. Apparently, the PC and QML estimators perform

poorly, in particular with respect to the factor loadings, where the R2s are of compa-

rable magnitude. The low accuracy can be explained by the fact that both estimators

fail to take into account serial correlation of the idiosyncratic component. The QML

procedure takes into account the dynamics of the common factors. However, as has

6Doz, Giannone, and Reichlin (2006) also employ the (trace) R2 as their performance measure.
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Table 1.1: Efficiency: one factor, autocorrelated errors

loadings (λi) factors (Ft)

PC two-step iterated QML PC two-step iterated QML

T=50

N=50 0.287 0.525 0.622 0.267 0.735 0.730 0.848 0.640

N=100 0.294 0.559 0.646 0.287 0.812 0.809 0.924 0.752

N=200 0.298 0.576 0.653 0.300 0.858 0.855 0.959 0.809

N=300 0.304 0.591 0.660 0.313 0.884 0.884 0.974 0.846

T=100

N=50 0.487 0.756 0.774 0.438 0.837 0.833 0.871 0.761

N=100 0.511 0.781 0.793 0.492 0.908 0.906 0.935 0.875

N=200 0.525 0.792 0.801 0.519 0.945 0.943 0.967 0.928

N=300 0.525 0.794 0.802 0.522 0.957 0.956 0.978 0.945

T=200

N=50 0.685 0.875 0.876 0.645 0.872 0.870 0.881 0.830

N=100 0.700 0.886 0.888 0.683 0.932 0.930 0.939 0.915

N=200 0.708 0.890 0.891 0.701 0.963 0.962 0.969 0.956

N=300 0.711 0.892 0.893 0.707 0.973 0.973 0.979 0.969

Notes: Entries are the R2 of a regression of the true factors or loadings on the corresponding

estimate and a constant. PC is the ordinary principal component estimator, two-step and

iterated indicate the two-step PC-GLS and iterated PC-GLS estimators, respectively, introduced

in Section 1.3, and QML is the quasi maximum likelihood estimator of Doz, Giannone, and

Reichlin (2006). The following parameter values are used: γ = 0.7, ρi
iid∼ U [0.5, 0.9], σ2

i = 2 for

all i.

been argued in Section 1.3, the dynamic properties of the factors are irrelevant for

the asymptotic properties as N → ∞. In contrast, for the factor loadings the R2s for

both the two-step and the iterated PC-GLS estimator are considerably larger than the

ones for the PC and QML estimators. In particular, with larger T the two PC-GLS

estimators become increasingly accurate and show a similar performance as expected

from Theorem 1. This picture changes somewhat when examining the results for the

factors. Using the two-step estimator basically leads to the same R2s as using standard

PC. In this respect, note that the two-step regression for the common factors is not

affected by possible autocorrelation of the errors but exploits possible heteroskedas-
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ticity. Interestingly, iterating the PC-GLS estimator until convergence, on the other

hand, leads to a substantial increase in accuracy.7 This is due to the fact that the

loadings are estimated more precisely by taking into account the autocorrelation of

the errors. Thus, in the second step, the regressors have a smaller error and this

improves the efficiency of the factor estimates. This increase in accuracy is mainly

noticeable for small T . For larger sample sizes, iteration still leads to more precise

estimates, but in absolute terms the improvement is marginal and all estimators show

a similar performance characterized by high accuracy.

The results for heteroskedastic errors and without cross-sectional correlation are

presented in Table 1.2. Considering the results for the factor loadings, standard PC

and two-step PC-GLS estimation show a similar performance, where both estimators

become increasingly accurate with sample size. These findings are not surprising,

since the two-step PC-GLS estimator of the factor loadings has the same asymptotic

properties as the ordinary PC estimator if the errors are serially uncorrelated. A

slight efficiency improvement with respect to the loadings is attainable by employing

the iterated PC-GLS estimator, in particular if N is small compared to T . Analogous

to the case with autocorrelated errors, the efficiency gain is due to the fact that by es-

timating the factors more precisely via incorporating heteroskedasticity, in the second

step, the regressors have a smaller error, thus improving the accuracy of the estimated

factor loadings. However, in line with Theorem 1, for larger samples the two PC-GLS

estimators perform similarly. There are two reasons for the limited gain in efficiency

via iteration compared to standard PC and two-step PC-GLS estimation. First, as

explained in Section 1.3, relevant for the efficient estimation of the factor loadings

is to allow for autocorrelation of the errors. Not surprisingly, as there is no serial

correlation in this scenario, the accuracy of PC (and two-step PC-GLS) is relatively

high. Second, and in contrast to the autocorrelation case, the reduction in the error

of the regressors is not that large as indicated by the rather small absolute gain in

efficiency with respect to the common factors by taking into account heteroskedastic-

ity. Overall, the results concerning the common factors imply that heteroskedasticity

7The number of iterations is limited to a maximum of 5. First, this reduces the computational

burden and we find no further improvement if the number of iterations is increased.
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Table 1.2: Efficiency: one factor, heteroskedastic errors

loadings (λi) factors (Ft)

PC two-step iterated QML PC two-step iterated QML

T=50

N=50 0.569 0.559 0.618 0.629 0.833 0.917 0.929 0.932

N=100 0.605 0.596 0.623 0.632 0.915 0.964 0.969 0.970

N=200 0.630 0.618 0.630 0.640 0.958 0.984 0.987 0.987

N=300 0.630 0.618 0.625 0.635 0.972 0.991 0.992 0.992

T=100

N=50 0.714 0.710 0.770 0.774 0.849 0.929 0.935 0.939

N=100 0.756 0.751 0.774 0.778 0.924 0.968 0.970 0.972

N=200 0.772 0.767 0.777 0.781 0.962 0.986 0.988 0.988

N=300 0.777 0.772 0.778 0.782 0.975 0.992 0.993 0.993

T=200

N=50 0.821 0.820 0.871 0.872 0.857 0.931 0.934 0.938

N=100 0.858 0.857 0.875 0.876 0.929 0.970 0.972 0.973

N=200 0.872 0.870 0.878 0.878 0.964 0.987 0.988 0.988

N=300 0.875 0.874 0.878 0.879 0.976 0.992 0.993 0.993

Notes: Entries are the R2 of a regression of the true factors or loadings on the corresponding

estimate and a constant. The following parameter values are used: γ = 0, ρi = 0 for all i,

σi
iid∼ |N (

√
2, 0.25)|. For further information see Table 1.1.

of the errors does not seem to be that severe of a problem, as the R2s of the four

estimators under consideration basically all indicate high accuracy. While taking into

account heteroskedasticity of the errors does indeed lead to an increase in the R2s

compared to standard PC, the difference is really noticeable only in small samples.

Finally, the QML estimates of the factors as well as the factor loadings show a strong

performance, even slightly better than the iterated PC-GLS estimator. This is due to

the fact, that in this scenario the approximating model coincides with the true model

and the QML estimator is equivalent to the exact ML estimator.
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1.6.1.2 Introducing cross-sectional correlation

Another typical feature of many data sets is non-zero cross-sectional correlation. Con-

sequently, in the next simulations, we check whether the superior performance of the

two PC-GLS estimators still holds under such a correlation structure. First, con-

sider the case of autocorrelated idiosyncratic errors as presented in Table 1.3.8 The

general conclusions from the autocorrelation case presented above carry over to this

scenario with added cross-correlation, even though with some modifications due to

the presence of heteroskedasticity. With respect to the loadings, the gain in efficiency

of using the two-step and iterated PC-GLS estimators compared to standard PC is

considerable, where the two PC-GLS estimators show a similar performance in large

samples. The improvement when iterating the PC-GLS estimator is even more notice-

able. This is due to the presence of heteroskedasticity in addition to autocorrelation.

Consequently, there is not only a direct beneficial effect in terms of taking into ac-

count dynamic aspects with respect to the factor loadings, but also an indirect effect

in terms of a reduction of the error in the regressors, i.e., the common factors, by tak-

ing into account heteroskedasticity. Concerning the common factors, standard PC,

two-step PC-GLS, and iterated PC-GLS all show a strong performance. Still, employ-

ing the two PC-GLS estimators leads to more efficient estimates than PC, where the

gain is most noticeable in small samples. Due to the presence of heteroskedasticity,

the performance of two-step PC-GLS relative to standard PC is more comparable to

the heteroskedasticity case presented above. Again, the benefit from iteration is even

more noticeable than in the autocorrelation scenario abstracting from cross-sectional

correlation. Analogous to the factor loadings, this is the result of the presence of both

autocorrelation and heteroskedasticity. As a result, not only the factors are estimated

more precisely by taking into account heteroskedasticity, but there is also the indirect

effect of reducing the error in the regressors by taking into account autocorrelation in

the idiosyncratic component. This leads to R2s very close to one.

8As mentioned above, heteroskedasticity is always present by construction in this set of simula-

tions. Moreover, due to the computational burden, we do not present results for the QML estimator

for these simulations. We checked, however, whether the overall findings of the previous scenarios

carry over to the cross-correlation case by running a subset of the simulations including the QML

estimator. Indeed, we do not find a substantial change in results.
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Table 1.3: Efficiency: one factor, cross-sectional correlation, autocorrelated errors

loadings (λi) factors (Ft)

PC two-step iterated GMMe GMMê PC two-step iterated GMMW GMM
Ŵ

T=50

N=50 0.419 0.649 0.751 0.700 0.507 0.828 0.893 0.955 0.894 0.829

N=100 0.442 0.702 0.762 0.753 0.541 0.903 0.949 0.982 0.948 0.907

N=200 0.459 0.721 0.761 0.770 0.560 0.941 0.973 0.993 0.973 0.950

N=300 0.464 0.727 0.761 0.776 0.568 0.952 0.980 0.995 0.979 0.962

T=100

N=50 0.611 0.816 0.862 0.835 0.740 0.890 0.944 0.960 0.947 0.889

N=100 0.644 0.851 0.869 0.867 0.781 0.944 0.976 0.983 0.977 0.944

N=200 0.654 0.860 0.870 0.876 0.793 0.970 0.989 0.993 0.990 0.971

N=300 0.659 0.863 0.870 0.878 0.797 0.977 0.993 0.996 0.993 0.979

T=200

N=50 0.767 0.901 0.927 0.906 0.877 0.912 0.957 0.962 0.960 0.909

N=100 0.794 0.922 0.931 0.927 0.902 0.957 0.982 0.984 0.982 0.956

N=200 0.801 0.928 0.932 0.932 0.909 0.978 0.992 0.993 0.992 0.978

N=300 0.803 0.929 0.932 0.933 0.910 0.984 0.995 0.996 0.995 0.984

Notes: Entries are the R2 of a regression of the true factors or loadings on the corresponding estimate

and a constant. GMMe is the hybrid estimator for the factor loadings as suggested in Section 1.5

using the true idiosyncratic errors to compute the weighting matrix, whereas GMMê is the corre-

sponding estimator using the estimated idiosyncratic components. GMMW is the hybrid estimator

for the common factors using the true covariance matrix of the idiosyncratic components to compute

the optimal weighting matrix, whereas GMM
Ŵ

employs the estimator for the covariance matrix sug-

gested by Forni, Hallin, Lippi, and Reichlin (2000, 2005). The following parameter values are used:

νi
iid∼ U [0.1, 1], γ = 0.7, ρi

iid∼ U [0.5, 0.9], σi
iid∼ |N (

√
2, 0.25)|. For further information see Table 1.1.
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Second, consider the scenario without autocorrelation presented in Table 1.4. The

overall findings are very similar to the ones with heteroskedasticity but abstracting

from cross-sectional correlation, so that the introduction of the latter does not really

seem to affect the performance of the suggested estimators. With respect to the factor

loadings, the precision of standard PC and two-step PC-GLS is again very similar due

to the absence of autocorrelation of the idiosyncratic errors. Iterating the PC-GLS

estimator leads to slight efficiency improvements for the reasons stated above, while for

large samples the two PC-GLS estimators perform similarly, in line with Theorem 1.

Moreover, the results concerning the common factors again indicate high accuracy for

all estimators, i.e., the R2s tend to be very close to one, where the increase in the R2s

of using the two PC-GLS estimators is really noticeable only in small samples.

1.6.1.3 The hybrid estimator

As a final investigation within our first Monte Carlo setup, we consider the hybrid

estimator suggested in Section 1.5. As it is constructed to circumvent the problem that

in some special cases, characterized by misspecification of the variance or covariance

function, standard PC is asymptotically more efficient than the PC-GLS estimator,

we compare our new estimator in particular to PC-OLS and the two-step PC-GLS

estimator.9 We consider the data-generating process with non-zero cross-sectional

correlation and heteroskedasticity as presented in Tables 1.3 and 1.4, where setups

with and without autocorrelation are distinguished.

Moreover, while asymptotically the GMM estimator is more efficient than both

the PC-OLS and PC-GLS estimators, this does not need to hold in finite samples. In

particular, it turns out that having a reliable estimate of the optimal weighting matrix

greatly affects the performance of the hybrid estimator. Consequently, we present

results for two versions of this estimator. First, a variant which actually estimates

the optimal weighting matrix as suggested in Section 1.5. In the second variant, we

employ improved estimates of this matrix. For the estimator of the common factors, it

9It is not possible to actually construct such a pathological case in our standard simulation setup.

But to be consistent with our results discussed above, we stay within this setting. The simulation

experiment nevertheless allows to draw comparisons between the different estimators and gives a

comprehensive picture of the hybrid estimator’s performance in finite samples.
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Table 1.4: Efficiency: one factor, cross-sectional correlation, no autocorrelation in the

errors

loadings (λi) factors (Ft)

PC two-step iterated GMMe GMMê PC two-step iterated GMMW GMM
Ŵ

T=50

N=50 0.726 0.719 0.749 0.772 0.712 0.910 0.956 0.960 0.958 0.909

N=100 0.748 0.740 0.754 0.795 0.734 0.956 0.982 0.984 0.983 0.956

N=200 0.757 0.748 0.753 0.802 0.740 0.979 0.992 0.993 0.992 0.978

N=300 0.759 0.750 0.753 0.804 0.742 0.986 0.995 0.996 0.995 0.985

T=100

N=50 0.836 0.833 0.859 0.854 0.828 0.917 0.960 0.962 0.962 0.917

N=100 0.851 0.848 0.860 0.869 0.843 0.959 0.983 0.983 0.983 0.958

N=200 0.863 0.860 0.864 0.879 0.855 0.980 0.993 0.993 0.993 0.980

N=300 0.865 0.862 0.864 0.881 0.856 0.987 0.996 0.996 0.996 0.987

T=200

N=50 0.903 0.902 0.924 0.910 0.900 0.919 0.961 0.962 0.963 0.919

N=100 0.922 0.921 0.928 0.928 0.919 0.961 0.984 0.985 0.984 0.961

N=200 0.926 0.926 0.929 0.931 0.923 0.981 0.993 0.993 0.993 0.981

N=300 0.928 0.927 0.929 0.933 0.925 0.987 0.996 0.996 0.996 0.987

Notes: Entries are the R2 of a regression of the true factors or loadings on the corresponding estimate

and a constant. GMMe is the hybrid estimator for the factor loadings as suggested in Section 1.5

using the true idiosyncratic errors to compute the weighting matrix, whereas GMMê is the corre-

sponding estimator using the estimated idiosyncratic components. GMMW is the hybrid estimator

for the common factors using the true covariance matrix of the idiosyncratic components to compute

the optimal weighting matrix, whereas GMM
Ŵ

employs the estimator for the covariance matrix sug-

gested by Forni, Hallin, Lippi, and Reichlin (2000, 2005). The following parameter values are used:

νi
iid∼ U [0.1, 1], γ = 0, ρi = 0 for all i, σi

iid∼ |N (
√
2, 0.25)|. For further information see Table 1.1.
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is computed using the true covariance matrix of the idiosyncratic components resulting

from our simulation setup. Concerning the estimator of the factor loadings, we replace

the estimated idiosyncratic components by the true errors generated in each simulation

run to obtain a better estimate of the corresponding weighting matrix. The second

variant, while not feasible in practice, clearly illustrates the effect of using a (possibly

poor) estimator of the optimal weighting matrix.

Consider first the case featuring autocorrelated errors as presented in Table 1.3.

The hybrid estimator with an improved estimate of the optimal weighting matrix al-

ready delivers the results in finite samples, which we expect the standard version to

attain asymptotically. It is at least as efficient as both the standard PC and two-step

PC-GLS estimator for the common factors and factor loadings. In most cases, in

particular for the loadings, this variant of the hybrid estimator yields considerably

more efficient estimates than both reference estimators. The gain in efficiency, how-

ever, vanishes in larger samples. The hybrid estimator employing an estimated weight

matrix, on the other hand, does not yield as strong a performance. With respect to

the factor loadings, the corresponding R2s lie in between those of the standard PC

and two-step PC-GLS estimators. The loss in efficiency in finite samples compared

to the (more efficient) two-step estimator, however, becomes less severe as N and T

get larger. This does not result for the common factors, where the efficiency of the

hybrid estimator with estimated weight matrix is similar to that of the less efficient

PC-OLS estimator for all sample sizes considered.

Analogous findings are obtained in the setup without autocorrelation in the id-

iosyncratic components (Table 1.4). The only difference is that the hybrid estimator

for the factor loadings with estimated weight matrix performs about as well as the

two reference estimators, where only a slight loss in efficiency can be observed in small

samples. This is, of course, due to the absence of autocorrelation in the errors so that

there is basically no difference in the performance of the standard PC and two-step

PC-GLS estimators. The hybrid estimator with an improved estimate of the optimal

weighting matrix is again at least as efficient as the two reference estimators, with a

particularly strong performance for the factor loadings. The version with estimated

weight matrix, moreover, estimates the common factors about as well as the less ef-
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ficient standard PC estimator. In sum, these results clearly illustrate the important

role played by the estimation of the optimal weighting matrix.

1.6.2 Simulation based on Stock and Watson’s (2005) data

set

In our second Monte Carlo experiment, we study the performance of the different

estimators when applied to more realistic data sets. The starting point is the well

known set of time series provided by Stock and Watson (2005). Since we do not

want to impose a specific ARMA-structure on the simulated common factors or id-

iosyncratic components, which would constitute an advantage for the ARMA-based

PC-GLS estimators, we employ the circular block bootstrap of Politis and Romano

(1992). In particular, motivated by its superior performance in the first simulation

experiment, we apply the iterated PC-GLS estimator to the aforementioned data set.

In line with Stock and Watson’s (2005) findings, we set the number of factors equal to

seven. Thus, we obtain estimates for the common factors, F , the factor loadings, Λ,

and thus for the common component, FΛ′, as well as for the idiosyncratic errors, e. In

each simulation run, we resample overlapping blocks of a given length from the esti-

mated factors and idiosyncratic errors to obtain a new set of factors and idiosyncratic

components. Those series are then combined with the estimated factor loadings to

obtain an individual sample for our simulation experiment. The block length differs

between the factors and idiosyncratic errors, but is the same over all individual factors

and errors, respectively. It is chosen optimally, based on Politis and White (2004) and

including the correction of Patton, Politis, and White (2009).10 In order to preserve

the structure of the cross-sectional correlation, we choose the same permutation for

all individual series, i.e., factors and errors, respectively, within one simulation run.

The scree plots presented in Figure 1.3 suggest that our simulated series are in fact

representative for the real-life data set of Stock and Watson (2005). This figure shows

10We use the MATLAB-implementation provided by Andrew Patton on his web page

(http://econ.duke.edu/ ap172/code.html). As it only delivers the optimal block length of the indi-

vidual series, we use the mean of the individual block lengths as our optimal value. As a robustness

check, we also used larger and smaller block lengths than suggested by the procedure. This does not,

however, change our results.

http://econ.duke.edu/~ap172/code.html
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Figure 1.3: Scree plots
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Notes: This figure shows the scree plot of Stock and Watson’s (2005) original data

set (solid line) as well as the respective smallest and largest eigenvalue over 1000

simulation runs from the simulated series (dashed lines). (N=132, T=526)

the scree plot of Stock and Watson’s (2005) original data set as well as the respective

smallest and largest eigenvalue over 1000 simulation runs from the simulated series.

As can be seen from the graph, while there is of course some variation over the dif-

ferent simulations, the scree plots are close so that the basic dependence structure is

preserved in the simulations.

Again, we generate 1000 replications for different sample sizes. Since this set of

simulations is based on Stock and Watson’s (2005) data set, we use their number of

variables in all simulations, i.e., N = 132. We consider different time series dimensions,

however, and set T = 100, 200, 400, 526, 800, where T = 526 is the number of time

periods in Stock and Watson’s (2005) data set. Varying the times series dimension

is achieved by resampling the respective T observations with replacement from the

estimated factors and idiosyncratic components. Such a bootstrap resampling scheme
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Table 1.5: Efficiency using Stock and Watson’s (2005) data set:

circular block bootstrap

loadings (λi) factors (Ft)

PC two-step iterated PC two-step iterated

N=132

T=100 0.579 0.602 0.679 0.818 0.856 0.884

T=200 0.683 0.706 0.770 0.829 0.870 0.892

T=400 0.758 0.777 0.826 0.836 0.878 0.897

T=526 0.782 0.798 0.837 0.839 0.881 0.896

T=800 0.810 0.823 0.857 0.843 0.884 0.897

Notes: Entries are the trace R2 of a regression of the true factors or loadings

on the corresponding estimate and a constant. Simulation based on circular

block bootstrap of factors and idiosyncratic component as estimated from

Stock and Watson’s (2005) data set, where r = 7. For further information

see Table 1.1.

allows us, in particular, to obtain the necessary time series with a dimension that

is larger than that of Stock and Watson’s (2005) original data set. To assess the

performance of the different estimators, the same measure of efficiency as introduced

above is used. It has to be generalized, however, to make it applicable to the multi-

factor case. In particular, now the trace R2 of a regression of the true factors or

loadings on the respective estimated factors or loadings and a constant is used.11

The results of this final Monte Carlo experiment are presented in Table 1.5. With

respect to the factor loadings, an efficiency gain compared to standard PC is observed

for both the two-step and iterated PC-GLS estimators. While the increase in accuracy

of the two-step estimator is not that large, it is more pronounced for the iterated

version. The latter again stems from the reduction in the error of the regressors,

which is supported by the particular relation between N and T observed in this

simulation. An increasing T relative to N positively affects the accurate estimation of

the common factors and adversely affects the precision of the estimated loadings for

11We do not present results for the QML estimator in the second simulation experiment. A setup

with seven factors increases the computational burden considerably, making it infeasible in practice

to compute the required 1000 estimations in a reasonable amount of time.
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the PC-OLS and two-step PC-GLS estimators. Consequently, this leaves more room

for improvement with respect to the factor loadings and, furthermore, the regressors

for the additional steps of the iterated estimator are estimated quite precisely, which

additionally boosts the performance of that estimator.

Similar findings arise for the estimated common factors, where the efficiency of

standard PC is larger than for the factor loadings, however. Nevertheless, employing

two-step PC-GLS and, in particular, the iterated PC-GLS estimator leads to more

precise estimates compared to PC-OLS. The gain in efficiency of using two-step PC-

GLS compared to standard PC is already quite noticeable, whereas the subsequent

increase of using iterated PC-GLS is not as large as for the factor loadings. This also

stems from the particular relation between N and T present in this simulation. As

noted above, the increasing T relative to N positively affects the two-step estimates of

the common factors, so that there is less room for improvement via iterating the PC-

GLS estimator. Furthermore, since the relation between N and T adversely affects the

accuracy of the estimated factor loadings, the reduction in the error of the regressors

in the subsequent iteration steps is not that large. Overall, this table clearly illustrates

the advantages of employing the two-step PC-GLS estimator or its iterated version,

when confronted with a real-life data set.

1.7 Conclusion

In this chapter, we propose a GLS-type estimation procedure that allows for het-

eroskedastic and autocorrelated errors. Since the estimation of the covariance param-

eters does not affect the limiting distribution of the estimators, the feasible two-step

PC-GLS estimator is asymptotically as efficient as the infeasible GLS-estimator (as-

suming that the covariance parameters are known) and the iterated version that solves

the first order conditions of the (approximate) ML estimator. Furthermore, we show

that the PC-GLS estimator is generally more efficient than the PC-OLS estimator

provided the variance and covariance functions are correctly specified. We also pro-

pose a GMM estimator that combines the moments of PC-OLS and PC-GLS to yield

an estimator that is asymptotically at least as efficient as each of the two estimators if

the second moments are misspecified. Notwithstanding these asymptotic results, our
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Monte Carlo experiments suggest that in small samples the hybrid estimator suffers

from the poor properties of the estimated weight matrix. We therefore recommend

the (iterated) PC-GLS estimator for datasets of moderate sample size.

If one is willing to accept the framework of a strict factor model (that is a model

with cross-sectionally uncorrelated factors and idiosyncratic errors), then our approach

can also be employed for inference. For example, recent work by Breitung and Eick-

meier (2011) shows that a Chow-type test for structural breaks can be derived using

the iterated PC-GLS estimator. Other possible applications are LR tests for the

number of common factors or tests of hypotheses on the factor space.
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Appendix to Chapter 1

The following lemma plays a central role in the proofs of the following theorems:

Lemma A.1: It holds for all k ≤ pi that

(i) T−1

T∑

t=pi+1

(F̂t −H ′Ft)F
′
t−k = Op(δ

−2
NT ), T−1

T∑

t=pi+1

(F̂t −H ′Ft)F̂
′
t−k = Op(δ

−2
NT )

(ii) T−1

T∑

t=pi+1

F̂tF̂
′
t−k = T−1

T∑

t=pi+1

H ′FtF
′
t−kH +Op(δ

−2
NT )

(iii) T−1

T∑

t=pi+1

(F̂t −H ′Ft)ei,t−k = Op(δ
−2
NT )

(iv) N−1

N∑

i=1

1

ω2
i

(λ̂i −H−1λi)λ
′
i = Op(δ

−2
NT ), N−1

N∑

i=1

1

ω2
i

(λ̂i −H−1λi)λ̂
′
i = Op(δ

−2
NT )

(v) N−1

N∑

i=1

1

ω2
i

(λ̂i −H−1λi)eit = Op(δ
−2
NT ) .

Proof: (i) The proof follows closely the proof for k = 0 provided by Bai (2003,

Lemmas B.2 and B.3). We therefore present only the main steps.

We start from the representation

F̂t −H ′Ft =
1

NT
V −1
NT

(
F̂ ′FΛ′et + F̂ ′eΛFt + F̂ ′eet

)
,

where et = [e1t, . . . , eNt]
′, e = [e1, . . . , eT ]

′, and VNT is an r× r diagonal matrix of the

r largest eigenvalues of (NT )−1XX ′ (Bai 2003, Theorem 1). Consider

1

T

T∑

t=pi+1

(F̂t −H ′Ft)F
′
t−k =

1

NT 2
V −1
NT

(
F̂ ′FΛ′

T∑

t=pi+1

etF
′
t−k + F̂ ′eΛ

T∑

t=pi+1

FtF
′
t−k

+F̂ ′e
T∑

t=pi+1

etF
′
t−k

)

= I + II + III.
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From Assumption 1 (v) it follows that

Λ′

T∑

t=pi+1

etF
′
t−k =

N∑

i=1

T∑

t=pi+1

eitλiF
′
t−k = Op(

√
NT ),

and using Lemma B.2 of Bai (2003) it follows that T−1F̂ ′F = T−1H ′F ′F + T−1(F̂ −
FH)′F = T−1H ′F ′F +Op(δ

−2
NT ). Thus, we obtain

I = V −1
NT

(
T−1F̂ ′F

)( 1√
NT

Λ′

T∑

t=pi+1

etF
′
t−k

)
1√
NT

= Op

(
1√
NT

)
.

Next, we consider

Λ′e′F̂ = Λ′

T∑

t=1

etF
′
tH + Λ′

T∑

t=1

et(F̂t −H ′Ft)
′.

Following Bai (2003, p. 160), we have

1

NT
Λ′

T∑

t=1

etF
′
tH = Op

(
1√
NT

)

1

NT
Λ′

T∑

t=1

et(F̂t −H ′Ft)
′ = Op

(
1

δNT
√
N

)
.

Using T−1
∑T

t=pi+1 F
′
tFt−k = Op(1), we obtain

II = V −1
NT

(
1

NT
F̂ ′eΛ

)(
1

T

T∑

t=pi+1

FtF
′
t−k

)
=

[
Op

(
1√
NT

)
+Op

(
1

δNT
√
N

)]
Op(1).

For the remaining term, we obtain

1

NT 2
F̂ ′e

T∑

t=pi+1

etF
′
t−k =

1

NT 2

T∑

s=1

T∑

t=pi+1

e′setF̂sF
′
t−k

=
1

T 2

T∑

s=1

T∑

t=pi+1

F̂sF
′
t−kζNT (s, t) +

1

T 2

T∑

s=1

T∑

t=pi+1

F̂sF
′
t−kγN(s, t),

where

ζNT (s, t) = e′set/N − γN(s, t)

γN(s, t) = E(e′set/N).

As in Bai (2003, p. 164f), we obtain

III = V −1
NT

[
Op

(
1

δNT
√
T

)
+Op

(
1

δNT
√
N

)]
.
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Collecting these results, we obtain

I + II + III = Op

(
1√
NT

)
+Op

(
1√
TδNT

)
+Op

(
1√
NδNT

)
= Op

(
1

δ2NT

)
.

The proof of the second result in (i) is a similar modification of Lemma A.1 in Bai

(2003) and is therefore omitted.

(ii) Consider

T−1

T∑

t=pi+1

F̂tF̂
′
t−k = T−1

T∑

t=pi+1

[H ′Ft + (F̂t −H ′Ft)][H
′Ft−k + (F̂t−k −H ′Ft−k)]

′

= T−1

(
T∑

t=pi+1

H ′FtF
′
t−kH + (F̂t −H ′Ft)F

′
t−kH +H ′Ft(F̂

′
t−k − F ′

t−kH) + (F̂t −H ′Ft)(F̂
′
t−k − F ′

t−kH)

)

= T−1




T∑

t=pi+1

H ′FtF
′
t−kH +H ′Ft(F̂

′
t−k − F ′

t−kH)︸ ︷︷ ︸
Ta

+(F̂t −H ′Ft)F̂
′
t−k︸ ︷︷ ︸

Tb




=

(
T−1

T∑

t=pi+1

H ′FtF
′
t−kH

)
+ a+ b.

Using (i) the terms a and b can be shown to be Op(δ
−2
NT ).

(iii) The proof for k = 0 is given in Bai (2003, Lemma B.1). It is not difficult to

see that the result remains unchanged if k 6= 0.

(iv) Following Bai (2003, p. 165) we have

λ̂i −H−1λi = T−1H ′F ′ei + T−1F̂ ′(F − F̂H−1)λi + T−1(F̂ − FH)′ei, (1.30)

where ei = [ei1, . . . , eiT ]
′. Post-multiplying by ω−2

i λ′i and averaging yields

N−1

N∑

i=1

1

ω2
i

(λ̂i −H−1λi)λ
′
i = T−1H ′F ′

(
N−1

N∑

i=1

1

ω2
i

eiλ
′
i

)

+ T−1F̂ ′(F − F̂H−1)

(
N−1

N∑

i=1

1

ω2
i

λiλ
′
i

)
+ T−1(F̂ − FH)′

(
N−1

N∑

i=1

1

ω2
i

eiλ
′
i

)
.

From Bai (2003, p. 165) it follows that the last two terms are Op(δ
−2
NT ). From As-

sumption 1 (v) and Assumption 2 (i) it follows that

∣∣∣∣∣

∣∣∣∣∣
T∑

t=1

1

ω2
i

H ′Ftλ
′
ieit

∣∣∣∣∣

∣∣∣∣∣ ≤
1

ω2
min

∣∣∣∣∣

∣∣∣∣∣
T∑

t=1

H ′Ftλ
′
ieit

∣∣∣∣∣

∣∣∣∣∣ = Op(1/
√
T ),
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where ωmin = min(ω1, . . . , ωN). Thus, the first part of (iv) is Op(δ
−2
NT ). The second

equation can be shown by using the first part and Lemma A.1 (v).

(v) From (1.30) it follows that

N−1

N∑

i=1

(λ̂i −H−1λi)eit = N−1T−1

T∑

s=1

N∑

i=1

F̂seiseit +N−1T−1

T∑

s=1

N∑

i=1

F̂s(Fs −H ′−1F̂s)
′λieit

= a+ b.

For expression a we write

N−1T−1

T∑

s=1

F̂s

N∑

i=1

eiseit = T−1

T∑

s=1

F̂s

[
N−1

N∑

i=1

eiseit − E(eiseit)

]
+T−1

T∑

s=1

F̂sγN(s, t).

From Lemma A.2 (a) and (b) of Bai (2003), it follows that the first term on the r.h.s.

is Op(N
−1/2δ−1

NT ), whereas the second term is Op(T
−1/2δ−1

NT ).

To analyze b we note that by Lemma A.1 (i) and Assumption 1 (v)

[
T−1

T∑

s=1

F̂s(Fs −H ′−1F̂s)
′

][
N−1

N∑

i=1

λieit

]
= Op(δ

−2
NT )Op(N

−1/2).

Collecting these results, it follows that

∣∣∣∣∣

∣∣∣∣∣N
−1

N∑

i=1

1

ω2
i

(λ̂i −H−1λi)eit

∣∣∣∣∣

∣∣∣∣∣ ≤ 1

ω2
min

∣∣∣∣∣

∣∣∣∣∣N
−1

N∑

i=1

(λ̂i −H−1λi)eit

∣∣∣∣∣

∣∣∣∣∣

= Op(T
−1/2δ−1

NT ) +Op(N
−1/2δ−1

NT ) +Op(N
−1/2δ−2

NT ) = Op(δ
−2
NT ).

Proof of Lemma 1:

Let

zt =




eit
...

ei,t−pi+1


 and ẑt =




xit − λ̂′iF̂t
...

xi,t−pi+1 − λ̂′iF̂t−pi+1


 .

Using the same arguments as in Lemma 4 of Bai and Ng (2002), it can be shown that

T−1

T∑

t=pi+1

êitẑt−1 − T−1

T∑

t=pi+1

eitzt−1 = Op(δ
−2
NT )
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and T−1
∑T

t=pi+1(ẑt−1ẑ
′
t−1 − zt−1z

′
t−1) = Op(δ

−2
NT ). Therefore, we obtain for the least-

squares estimator of ρ(i)

ρ̂(i) = ρ(i) +

(
T∑

t=pi+1

zt−1z
′
t−1

)−1 T∑

t=pi+1

zt−1εit +Op(δ
−2
NT )

= ρ(i) +Op(T
−1/2) +Op(δ

−2
NT )

and, similarly, for the least-squares estimator of ω2
i :

ω̂2
i = ω2

i +

(
T−1

T∑

t=pi+1

e2it − ω2
i

)
+

(
T−1

T∑

t=pi+1

(
ê2it − e2it

)
)

= ω2
i +Op(T

−1/2) +Op(δ
−2
NT ).

Proof of Theorem 1:

The feasible two-step estimator of λi is obtained as

λ̃i,ρ̂ = [F̂ ′R(ρ̂(i))′R(ρ̂(i))F̂ ]−1F̂ ′R(ρ̂(i))′R(ρ̂(i))Xi

= [F̂ ′R(ρ̂(i))′R(ρ̂(i))F̂ ]−1F̂ ′R(ρ̂(i))′R(ρ̂(i))(Fλi + ei)

= [F̂ ′R(ρ̂(i))′R(ρ̂(i))F̂ ]−1F̂ ′R(ρ̂(i))′R(ρ̂(i)){[F̂ + (FH − F̂ )]H−1λi + ei)}

λ̃i,ρ̂ −H−1λi = [F̂ ′R(ρ̂(i))′R(ρ̂(i))F̂ ]−1F̂ ′R(ρ̂(i))′R(ρ̂(i))[(FH − F̂ )H−1λi + ei],

where ei = [ei1, . . . , eiT ]
′.

Using Lemma A.1 (ii) and Lemma 1, we obtain

1

T
F̂ ′R(ρ̂(i))′R(ρ̂(i))F̂

=
1

T

T∑

t=pi+1

(F̂t − ρ̂1,iF̂t−1 − . . .− ρ̂pi,iF̂t−pi)(F̂t − ρ̂1,iF̂t−1 − . . .− ρ̂pi,iF̂t−pi)
′

=
1

T
F̂ ′R(ρ(i))′R(ρ(i))F̂ +Op(T

−1/2) +Op(δ
−2
NT ) [by Lemma 1]

=
1

T
H ′F ′R(ρ(i))′R(ρ(i))FH +Op(T

−1/2) +Op(δ
−2
NT ) [by Lemma A.1 (ii)].

Lemma A.1 (i) yields T−1
∑T

t=pi+1 F̂t−k(F̂
′
t−k−F ′

t−kH) = Op(δ
−2
NT ) and by using Lemma

1

T−1F̂ ′R(ρ̂(i))′R(ρ̂(i))(F̂ − FH)H−1λi = Op(δ
−2
NT ) +Op(δ

−2
NTT

−1/2).
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Next, we consider

T−1/2

T∑

t=pi+1

[ρ̂i(L)F̂t] [ρ̂i(L)eit]

= T−1/2

T∑

t=pi+1

ρ̂i(L)[H
′Ft + (F̂t −H ′Ft)]ρ̂i(L)eit

= T−1/2

T∑

t=pi+1

ρi(L)H
′Ft [ρi(L)eit] +Op(

√
T/δ2NT ) +Op(T

−1/2),

where Lemma A.1 (iii) and Lemma 1 are invoked. Hence, we find

√
T (λ̃i,ρ̂ −H−1λi) = [T−1H ′F ′R(ρ(i))′R(ρ(i))FH]−1T−1/2H ′F ′R(ρ(i))′R(ρ(i))ei

+Op(
√
T/δ2NT ) +Op(T

−1/2),

where
√
T/δ2NT → 0 if

√
T/N → 0. Finally, Assumption 1 (v) implies

T−1/2H ′F ′R(ρ(i))′R(ρ(i))ei
d→ N (0, Ṽ

(i)
Fe ),

where Ṽ
(i)
Fe is defined in Theorem 1. With these results, part (i) of the theorem follows.

The proof of part (ii) is similar. We therefore present the main steps only. The feasible

two-step estimator of the common factors is given by

F̃t,ω̂ = (Λ̂′Ω̂−1Λ̂)−1Λ̂′Ω̂−1Xt

= (Λ̂′Ω̂−1Λ̂)−1Λ̂′Ω̂−1[(Λ̂− Λ̂ + ΛH
′−1)H ′Ft + et]

F̃t,ω̂ −H ′Ft = (Λ̂′Ω̂−1Λ̂)−1Λ̂′Ω̂−1[(ΛH
′−1 − Λ̂)H ′Ft + et],

where et = [e1t, . . . , eNt]
′. Under Lemma 1, the (diagonal) elements of (Ω̂−1 − Ω−1)

are Op(T
−1/2) + Op(δ

−2
NT ). Following Bai (2003) and using Lemma A.1 (iv) and (v),
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we obtain

N−1Λ̂′Ω̂−1Λ̂ = N−1H−1Λ′Ω−1ΛH
′−1 +Op(T

−1/2) +Op(δ
−2
NT )

p→ Ψ̃Λ

N−1Λ̂′Ω̂−1(Λ̂− ΛH
′−1) ≤ N−1Λ̂′Ω−1(Λ̂− ΛH

′−1)

+

(
1

N

N∑

i=1

|ω̂−2
i − ω−2

i |2
)1/2(

1

N
||(Λ̂′ −H−1Λ′)Λ̂||2

)1/2

= Op(δ
−2
NT ) +Op(T

−1/2/δ2NT )

N−1(Λ̂− ΛH ′−1)′Ω̂−1et = N−1(Λ̂− ΛH ′−1)′Ω−1et +N−1

N∑

i=1

(
1

ω̂2
i

− 1

ω2
i

)
eit(λ̂i −H−1λi)

= Op(δ
−2
NT ) +Op(T

−1/2/δ2NT )

N−1/2H−1Λ′Ω̂−1et = N−1/2H−1Λ′Ω−1et +Op(T
−1/2) +Op(δ

−2
NT )

d→ N (0, Ṽ
(t)
λe )

Ṽ
(t)
λe = E

(
lim
N→∞

N−1H−1Λ′Ω−1ete
′
tΩ

−1ΛH
′−1
)

= lim
N→∞

N−1

N∑

i=1

N∑

j=1

1

ω2
i ω

2
j

H−1λiλ
′
jH

′−1E(eitejt).

From these results the limit distribution stated in Theorem 1 (ii) follows.

Proof of Theorem 2:

First, we compare the asymptotic covariance matrices of the PC-OLS estimator F̂t and

the PC-GLS estimator F̃t (where for notational convenience the dependence on ω̂ is

suppressed). Using the results presented in Theorem 1 (ii), the asymptotic covariance

matrix of F̃t can be written as

lim
N,T→∞

N (Λ′
0Ω

−1Λ0)
−1Λ′

0Ω
−1E(ete

′
t)Ω

−1Λ0(Λ
′
0Ω

−1Λ0)
−1,

where Λ0 = ΛH ′−1. If the covariance structure is correctly specified, then E(ete
′
t) = Ω

and the asymptotic covariance matrix reduces to

(
lim

N,T→∞

1

N
Λ′

0Ω
−1Λ0

)−1

.

The asymptotic covariance matrix of the PC-OLS estimator is (Bai 2003)

lim
N,T→∞

N (Λ′
0Λ0)

−1Λ′
0E(ete

′
t)Λ0(Λ

′
0Λ0)

−1

= lim
N,T→∞

N (Λ′
0Λ0)

−1Λ′
0ΩΛ0(Λ

′
0Λ0)

−1,
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if the covariance matrix Ω is correctly specified.

Let F̂t = F̃t + δt where δt = F̂t − F̃t. From

var(F̂t) = var(F̃t) + var(δt) + cov(F̃t, δt) + cov(δt, F̃t)

it follows that F̃t is asymptotically more efficient than F̂t if N cov(F̃t, δt) → 0 or

lim
N,T→∞

N E[(F̃t −H ′Ft)(F̂t −H ′Ft)
′] = lim

N,T→∞
N E[(F̃t −H ′Ft)(F̃t −H ′Ft)

′].

Since

lim
N,T→∞

N E[(F̃t −H ′Ft)(F̂t −H ′Ft)
′]

= lim
N,T→∞

N (Λ′
0Ω

−1Λ0)
−1Λ′

0Ω
−1E(ete

′
t)Λ0(Λ

′
0Λ0)

−1

= lim
N,T→∞

(
1

N
Λ′

0Ω
−1Λ0

)−1

,

it follows that the difference of the asymptotic covariance matrices of the PC-GLS

and PC-OLS estimators is positive semidefinite.

In a similar manner, it can be shown that the PC-GLS estimator of λi is asymptot-

ically more efficient than the PC-OLS estimator. Let F0 = FH and R(ρ(i)) as defined

in Section 1.3. The asymptotic distribution of the PC-GLS estimator λ̃i presented in

Theorem 1 (i) can be written as

[
lim

N,T→∞
E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))F0

)]−1

× lim
N,T→∞

E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))eie
′
iR(ρ

(i))′R(ρ(i))F0

)

×
[

lim
N,T→∞

E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))F0

)]−1

.

If the autoregressive model for the idiosyncratic errors is correctly specified, we have

E(εiε
′
i) = σ2

i IT−pi , where εi = R(ρ(i))ei. If F0 is independent of εi, it follows from the

law of iterated expectations that the asymptotic covariance matrix of the PC-GLS

estimator λ̃i reduces to

σ2
i

[
lim

N,T→∞
E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))F0

)]−1

.
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Consider

lim
N,T→∞

T E[(λ̃i −H−1λi)(λ̂i −H−1λi)
′]

=

[
lim

N,T→∞
E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))F0

)]−1
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N,T→∞

E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))eie
′
iF0

)[
lim

N,T→∞
E

(
1

T
F ′
0F0

)]−1

=

[
lim

N,T→∞
E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))F0

)]−1

× lim
N,T→∞

EF0

{
E

[
1

T
F ′
0R(ρ

(i))′R(ρ(i))eie
′
iR(ρ

(i))′R(ρ(i))[R(ρ(i))′R(ρ(i))]−1F0

∣∣∣F0

]}

×
[

lim
N,T→∞

E

(
1

T
F ′
0F0

)]−1

= σ2
i

[
lim

N,T→∞
E

(
1

T
F ′
0R(ρ

(i))′R(ρ(i))F0

)]−1

and, therefore, the asymptotic covariance between λ̃i and λ̂i − λ̃i tends to zero. It

follows that the PC-GLS estimator λ̃i is asymptotically more efficient than the PC-

OLS estimator λ̂i.
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Chapter 2

Optimal monetary policy under

labor market frictions: the role of

wage rigidity and markup shocks

2.1 Introduction

Considering the importance of unemployment fluctuations with respect to the busi-

ness cycle, recent research has started to integrate labor market frictions into the

workhorse model of monetary policy analysis, the New-Keynesian model.1 The lat-

ter, in its standard specification featuring a Walrasian labor market, lacks equilibrium

unemployment and related labor market dynamics. Thus, incorporating the aforemen-

tioned type of rigidities addresses a salient shortcoming of this framework with respect

to the labor market dimension. A central feature of models with labor market frictions

is the wage-determination mechanism. Employing rigid real wages has become stan-

dard in this respect, in order to address the so-called“unemployment volatility puzzle.”

The latter describes the difficulty of the standard Diamond-Mortensen-Pissarides style

search and matching model employing Nash bargaining to determine wages, to gener-

ate empirically plausible fluctuations in unemployment and vacancies in response to

1Starting with Merz (1995) and Andolfatto (1996), who introduce rigid labor markets into a

standard real-business-cycle model, recent contributions with respect to a New-Keynesian setting

include Krause and Lubik (2007), Trigari (2009), Blanchard and Gaĺı (2010), and Christoffel and

Linzert (2010).
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shocks.2

In this chapter, I take up the recent criticism and suggestions by Haefke, Sonntag,

and van Rens (2008) and Pissarides (2009) with respect to such an approach. They

argue that using a uniformly rigid real wage is not consistent with empirical evidence.

As an alternative mechanism to address the unemployment volatility puzzle, the lat-

ter author suggests extending the models to include additional driving forces. Ac-

cordingly, I investigate optimal monetary policy in an environment with labor market

frictions, heterogeneous wage setting, and markup shocks. My contribution is twofold.

First, I investigate the implications of introducing heterogeneous wage setting which is

consistent with the aforementioned authors’ empirical findings for equilibrium alloca-

tions, and specifically, labor market dynamics and optimal monetary policy. Second,

I examine the consequences of introducing additional driving forces in the form of

markup shocks for the dynamic responses of inflation and unemployment to those

shocks under different monetary policy regimes.

The two independent studies by Haefke, Sonntag, and van Rens (2008) and Pis-

sarides (2009) challenge the empirical relevance of a uniformly rigid real wage, for

example, in the spirit of Hall’s (2005) “wage-norm” idea. They show by either per-

forming their own empirical investigation or surveying empirical evidence on wage

rigidity, that the wages which are rigid, are those of workers in ongoing job relation-

ships, whereas wages for new hires are highly cyclical. Moreover, as these authors

argue, the relevant wage series for search and matching models is wages for new hires.

Consequently, since empirically the latter move one-for-one with labor productivity

and Nash bargaining implies wages which are highly responsive to changes in produc-

tivity, it is consistent with the data to employ this standard mechanism to determine

wages. Thus, the authors conclude that wage rigidity cannot be the answer to the

unemployment volatility puzzle.

Accordingly, in the first part of this chapter, I introduce heterogeneous wage set-

ting into a New-Keynesian dynamic stochastic general equilibrium (DSGE) model

featuring labor market frictions in terms of hiring costs, following Blanchard and Gaĺı

(2010). Their model constitutes a particularly convenient benchmark and starting

2See, for instance, Shimer (2005).
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point due to its transparency as well as sharp results concerning the efficient alloca-

tion. The latter makes it very easy to trace the effects of introducing features like

heterogeneous wage setting and additional driving forces. At the same time, it gives an

analytical relation between the dynamics of the economy and the underlying charac-

teristics of the labor market. Blanchard and Gaĺı (2010) also take the standard route

of the literature of introducing an overall rigid wage, which constitutes the starting

point of my investigation. In order to introduce heterogeneous wage setting into their

setup, I distinguish between two kinds of workers: those in ongoing job relationships

and newly hired workers. Opposed to Blanchard and Gaĺı (2010), who introduce a

rigid real wage for every worker, and consistent with the empirical studies mentioned

above, I assume that only ongoing workers earn a rigid real wage in the spirit of Hall

(2005). New hires, on the other hand, bargain over the wage for the current period,

modeled by employing the generalized Nash solution. The main finding of this section

is that with only these minor changes to the Blanchard and Gaĺı (2010) setup, and

despite an economy-wide average sticky wage, the inflation unemployment trade-off

which they obtain in their model with an overall sticky wage disappears. This is

because the expected wage sum and thus the expected labor costs for an individual

worker over the course of her tenure at an individual firm moves one for one with

labor productivity. This, in turn, eliminates potential hiring incentives, leading to

unchanged employment and unemployment levels in response to technology shocks,

which corresponds to the constrained efficient allocation. Consequently, introducing a

form of wage rigidity which is consistent with empirical evidence leaves the monetary

authority with a single target. It can solely focus on inflation with no concern for

employment stabilization.

However, this still leaves open the question of what other mechanisms can ac-

count for the observed fluctuations in unemployment and what are the implications

for monetary policy. In the second part of this chapter, I therefore examine the conse-

quences of introducing an alternative approach to address the unemployment volatility

puzzle. In particular, following the suggestion of Pissarides (2007),3 I incorporate ad-

ditional driving forces in the form of markup shocks into the New-Keynesian DSGE

3This is the more extensive working paper version of Pissarides (2009).
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model with heterogeneous wage setting described above.4 Following Steinsson (2003)

and Rotemberg (2008), the elasticity of substitution in the Dixit-Stiglitz constant-

elasticity-of-substitution (CES) consumption aggregator is assumed to be stochastic.

As a result, the elasticity of demand and thus the desired markup are also stochas-

tic. This can be interpreted as a constantly changing market power of firms due

to changes in substitutability of the different varieties of goods. The consistency of

markup fluctuations with empirical evidence can be seen from, for example, Rotem-

berg and Woodford (1991, 1999) and, more recently, Gaĺı, Gertler, and López-Salido

(2007). In my setup, shocks to the market power of firms and consequently move-

ments in the desired markup feed via markup pricing into price dynamics and via

resulting shifts in the labor demand schedule into employment and unemployment

dynamics. Furthermore, a short-run inflation unemployment trade-off emerges, which

I study by calibrating the system and simulating the movements of the endogenous

variables in response to shocks under different monetary policy regimes. In this re-

gard, I consider three different policies: first, completely stabilizing unemployment,

which brings about the allocation of the latter variable in the constrained efficient

allocation. Second, I investigate a policy of perfect inflation stabilization. In stan-

dard New-Keynesian models, which do not feature a trade-off, such a policy would be

optimal. Optimality is used here in the sense of the utility-based approach to welfare

analysis, as extensively described in, for example, Woodford (2003). Ultimately it

means minimizing a loss function derived from the preferences of the private agents

and the equilibrium conditions of the model. Finally, I consider optimal monetary

policy in the preceding sense. The investigation is rounded off by deriving the effi-

cient policy frontier, i.e., the plot of the standard deviations of unemployment and

inflation under a policy of optimal commitment while varying the relative weight on

4Both Mortensen and Nagypál (2007) as well as Hall and Milgrom (2008) also point out by

running simple regressions of labor market variables on productivity measures that one cannot expect

productivity shocks to be the only source of fluctuations in unemployment, as implicitly assumed

by Shimer (2005). Similarly, Balleer (2009) shows by employing a structural vector autoregression

(SVAR) that the standard deviations of different labor market variables conditional on identified

technology shocks are a lot smaller than the corresponding unconditional quantities. Consequently,

all those authors emphasize the importance of alternative driving forces with respect to the labor

market to match the observed (unconditional) moments.
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unemployment stabilization in the monetary authority’s loss function from zero to

one. The main finding of this exercise in a setup with labor market frictions, hetero-

geneous wage setting, and markup shocks again supports the result of the literature

concerning the importance of price stability.5 Moreover, using markup shocks within

the framework employed in this chapter, it is difficult to generate a significant amount

of volatility in unemployment.

Concerning the related literature, not much work has been done on optimal mon-

etary policy in an environment exhibiting labor market frictions. The main contri-

butions in this area are Arseneau and Chugh (2008), Thomas (2008), Faia (2008,

2009), and Blanchard and Gaĺı (2010). The two articles by Ester Faia study optimal

monetary policy in an environment with monopolistic competition, price adjustment

costs, and matching frictions in the labor market. Faia (2008), in addition, intro-

duces wage rigidity in the spirit of Hall (2005). In her two articles, she considers

optimal policy in the sense of both a globally optimal as well as constrained Ram-

sey approach and in terms of simple interest rate reaction functions. However, she

neither looks at heterogeneous wage setting nor at alternative approaches to address

the unemployment volatility puzzle. Thomas (2008) incorporates matching frictions

into a New-Keynesian model and studies the effects of staggered nominal wage bar-

gaining à la Gertler and Trigari (2009). The latter leads to a setup where inflation

stabilization is not optimal. While he considers some type of wage heterogeneity, he

does not distinguish between wages for ongoing workers and new hires, even though

empirical evidence suggests the importance of such a differentiation.6 Furthermore,

he only looks at productivity shocks. Arseneau and Chugh (2008) consider a DSGE

model with search and matching frictions in the labor market and costs of adjusting

nominal wages to study optimal monetary and fiscal policy via the Ramsey approach.

They do not focus, however, on tackling the unemployment volatility puzzle, and ab-

stract from heterogeneous wage setting. Blanchard and Gaĺı (2010), finally, start out

from a simple New-Keynesian model with labor market frictions, where they intro-

duce an ad-hoc rigid real wage in the sense of Hall (2005). This leads to a sizable

5See, for example, Woodford (2003).

6In particular, he assumes “that workers hired in between contracting periods receive the same

wage as continuing workers” (p. 943).
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short-run inflation unemployment trade-off. They only consider a uniformly rigid real

wage, however, and do not take into account other possible approaches to generate

data-consistent fluctuations in labor market variables.

The remainder of Chapter 2 is organized as follows. Section 2.2 presents a sim-

ple New-Keynesian model featuring labor market frictions following Blanchard and

Gaĺı (2010). I incorporate heterogeneous wage setting into this framework and study

the implications for the resulting equilibrium allocation. In Section 2.3, I introduce

markup shocks into the New-Keynesian model with heterogeneous wage setting de-

rived in the preceding section. Different monetary policy regimes in this environment

are studied in Section 2.4. In particular, I calibrate the model and simulate the

dynamic responses of the endogenous variables to shocks to the elasticity of substitu-

tion under those monetary policy regimes and calculate the efficient policy frontier.

Finally, Section 2.5 concludes.

2.2 A simple New-Keynesian model with labor

market frictions

2.2.1 Economic environment

With respect to the basic setup, I follow Blanchard and Gaĺı (2010), who present a

simple New-Keynesian model where labor market frictions are introduced via hiring

costs. The latter are increasing in labor market tightness, i.e., the ratio of hirings to

unemployed. Even though this is a different formalism than in a standard search and

matching model, it has similar implications for hiring decisions and unemployment

dynamics.7 In general, the economic environment is specified as follows:8

7Gaĺı (2010), in fact, shows the equivalence of the hiring cost approach employed here and the

more traditional matching function setup.

8Even though, in the following, I am primarily concerned with monetary policy analysis, I follow

Woodford (2003) by considering a “cashless” economy and abstract from monetary frictions, which

would give rise to a demand for money. Alternatively, the model presented here could be thought of

as a “cashless limiting economy.” This simplification of the analysis is mainly motivated by the fact

that the consequences of incorporating monetary frictions are negligible from a quantitative point of

view, as shown by the aforementioned author. Furthermore, since the short-term nominal interest

rate is considered as the monetary policy instrument, which follows the current practice of major
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• Preferences:

In order to avoid distributional issues potentially originating from the absence of per-

fect income insurance, I follow Merz (1995) and Andolfatto (1996) and assume income-

and consumption-pooling of the households. Consequently, the representative house-

hold consists of a continuum of members normalized to measure 1 with preferences

U0 = E0

[
∞∑

t=0

βt

(
logCt − χ

N1+φ
t

1 + φ

)]
, (2.1)

where β ∈ (0, 1) is the household’s discount factor, Ct is a CES aggregator over a

continuum of goods (Dixit and Stiglitz 1977)

Ct =

[∫ 1

0

ct(i)
ε−1

ε di

] ε
ε−1

, (2.2)

with elasticity of substitution ε > 1. Nt ∈ [0, 1] denotes the fraction of household

members employed and φ indicates the inverse of the Frisch labor supply elasticity.

• Technology:

There is a continuum of firms indexed by i on the unit interval. Using an identical

technology, which is a constant returns to scale (CRS) production function,

Yt(i) = AtNt(i), (2.3)

each firm produces a differentiated good. At indicates the common state of technology,

which moves exogenously over time. Labor is the sole input to production and evolves

according to

Nt(i) = (1− δ)Nt−1(i) +Ht(i), (2.4)

where separation is modeled as an exogenous process governed by the rate δ ∈ (0, 1),9

and the measure of workers hired by the individual firm in period t is indicated by

central banks like the European Central Bank or the Federal Reserve, the absence of an explicit

money demand relation is inconsequential.

9As suggested by Hall (2004), the flow into unemployment is rather constant over time. Conse-

quently, unemployment dynamics mainly result from changes in the exit rate out of unemployment

and not from changes in the entrance rate into unemployment. Hence, I assume a constant separation

rate.
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Ht(i).

• Labor market:

The labor market is characterized by the following timing and laws of motion. Since

assumptions will be made to ensure full participation,10 at the beginning of period t

there is a measure of Ut unemployed workers, who are available for hire, consequently

given by

Ut = 1− (1− δ)Nt−1. (2.5)

This is just the difference between the labor force of measure 1 and the non-separated

workers of the previous period, where aggregate employment at time t is denoted by

Nt ≡
∫ 1

0
Nt(i)di. Firms hire exclusively from this pool Ut, and the measure of newly

hired workers, who start working in the same period, is given by Ht ≡
∫ 1

0
Ht(i)di and

evolves according to

Ht = Nt − (1− δ)Nt−1, (2.6)

which is the difference between aggregate employment in the current period and last

period’s employment after separation.

Furthermore, end-of-period unemployment is denoted by ut, and due to the full-

participation assumption, it is given by

ut = 1−Nt, (2.7)

the measure of potential workers left without a job after hiring decisions have been

made in the given period.11

Following the labor search and matching literature, an index of labor market tight-

ness is defined as

xt ≡
Ht

Ut
∈ [0, 1], (2.8)

10This facilitates a better comparison to the constrained efficient allocation, which also features

full participation. See Section 2.2.2.

11Later on, I use this unemployment measure when analyzing different monetary policies. Unem-

ployment at the beginning of a period, Ut, is just given to completely specify the hiring process.
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the ratio of aggregate hires to unemployment.12 For the representative unemployed

this ratio is just the job-finding rate for period t, i.e., the probability of being hired

in the given period.

As a final characteristic of the labor market, the costs creating a friction in that

market are defined. In a standard labor search and matching model these frictions

are introduced by the cost per period of posting a vacancy multiplied by the expected

time to fill it. Consequently, in such a model these costs are stochastic, since the

time needed to fill the vacancy is uncertain, depending on the degree of labor market

tightness. In the model presented here, the corresponding costs, called hiring costs,

are deterministic. It is assumed that vacancies are filled instantly by paying these

costs, which are a function of labor market tightness, as well. Hence, even though a

different formalism is used to create hiring-cost frictions, the implications for hiring

decisions and unemployment dynamics are similar. In particular, firm’s hiring costs in

terms of the CES aggregator of goods are given by GtHt(i). This is just the product

of the cost per hire, Gt, and the firm’s hires in period t. Since Gt is taken as given

by the firm and is independent of Ht(i), but is an increasing function of labor market

tightness, an externality arises. Accordingly, it is assumed

Gt = AtBx
α
t , (2.9)

where α ≥ 0, B ≥ 0, and δB < 1.

2.2.2 Allocating resources

So far, this setup is basically Blanchard and Gaĺı’s (2010) economic environment.

Thus, in order to facilitate a transparent comparison of their findings to the ones of

this chapter, I just repeat their main results with respect to the different allocations.

In particular, this makes obvious the consequences of introducing heterogeneous wage

setting and markup shocks.

First, consider the constrained efficient allocation.13 In this case a social planner

12In the standard labor search and matching model the corresponding index is defined as the ratio

of vacancies to unemployed, θ = v
u
.

13I present this allocation in a little bit more detail, since it also constitutes the constrained efficient
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maximizes the utility of the representative household subject to the technological

constraints and labor market frictions, but internalizes the externality indicated above.

Because labor market participation is unambiguously beneficial, the allocation exhibits

full participation and due to the symmetric setup production and consumption will

be the same for all i. Furthermore, the optimality condition results as

χCtN
φ
t

At︸ ︷︷ ︸
MRS
At

≤ 1− (1 + α)Bxαt

+β(1− δ)Et

[
Ct
Ct+1

At+1

At
B(xαt+1 + αxαt+1(1− xt+1))

]

︸ ︷︷ ︸
MRT
At

, (2.10)

which holds with strict equality in the case of Nt < 1. This is just the standard opti-

mality result that the marginal rate of substitution between labor and consumption

should equal the marginal rate of transformation, here both simply divided by At.

For both with and without hiring costs, i.e., B > 0 and B = 0, the preceding opti-

mality condition implies a constant level of employment, Nt = N∗ ∀t, which does not

move in response to technology shocks.14 Plugging N∗ into the production function

delivers the efficient level of output, Y ∗
t = AtN

∗, and inserting it into the aggregate re-

source constraint results in the efficient level of consumption, C∗
t = AtN

∗(1− δBx∗α).

Consequently, both of these quantities move one for one with productivity, At.
15

As a second way to allocate resources, consider the decentralized economy with

monopolistic competition and flexible prices. In this environment, Blanchard and Gaĺı

(2010) look at two different wage setting mechanisms: the generalized Nash solution

as the standard bargaining setup of the search and matching model and an ad-hoc

rigid real wage in the spirit of Hall’s (2005) “wage-norm” idea. With respect to Nash

allocation of the model with markup shocks presented in Section 2.3.

14This invariance result is not least due to the specification of preferences and the absence of

capital accumulation. However, such a setup makes transparent the effects of incorporating labor

market frictions, heterogeneous wage setting, and markup shocks.

15For more on the constrained efficient allocation, see Blanchard and Gaĺı (2010).
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bargained wages, the equilibrium condition results as

χCtN
φ
t

At
=

1

M − (1 + ϑ)Bxαt + β(1− δ)Et

[
Ct
Ct+1

At+1

At
B(xαt+1 + ϑxαt+1(1− xt+1))

]
,

(2.11)

where M ≡ ε
ε−1

denotes the optimal markup of the value maximizing, monopolisti-

cally competitive firm and ϑ is the worker’s relative bargaining weight in the Nash

bargain. As in the constrained efficient allocation, this equilibrium with Nash bar-

gaining features a constant employment level, i.e., a level unaffected by technology

shocks. Consequently, when employing the generalized Nash solution, there is no in-

flation unemployment trade-off and the monetary authority can exclusively focus on

inflation with no concern whatsoever for employment stabilization. Intuitively, the

equilibrium Nash bargained wage moves one for one with productivity, thus elimi-

nating all potential hiring incentives, leading to an unchanged employment level in

response to technology shocks.

In a next step, Blanchard and Gaĺı (2010) follow Hall (2005) when introducing an

ad-hoc rigid real wage of the formWt = ΘA1−γ
t , γ ∈ [0, 1],Θ > 0, which breaks the one-

for-one relation between productivity and the wage if γ > 0. With this kind of wage

setting mechanism, productivity shocks affect firms’ hiring incentives, leading in turn

to fluctuations in (un)employment. Moreover, these fluctuations are inefficient since

the constrained efficient employment level is constant, implying that the monetary

authority is faced with a short-run inflation unemployment trade-off. Provided the

monetary authority assigns at least some weight to unemployment stabilization, the

optimal monetary policy problem becomes nontrivial.16

2.2.3 Heterogeneous wage setting

Even though a standard approach in the recent literature, introducing wage rigidity for

each and every worker is not supported by the facts, as pointed out by Haefke, Sonntag,

and van Rens (2008) and Pissarides (2009). When disaggregating the rigid aggregate

wage series, the authors find that this rigidity is mostly due to noncyclical wages for

16Of course, to be able to continue the analysis, Blanchard and Gaĺı (2010) introduce sticky prices

such that monetary policy is effective in this setting.
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workers in ongoing job relationships, whereas wages for new hires are highly cyclical.

The latter, in turn, is consistent with employing Nash bargaining to determine wages.

Accordingly, the authors conclude that wage rigidity cannot be the answer to the

unemployment volatility puzzle, which typically serves as a rationale for introducing

those rigidities.

Taking these findings as a starting point, in this section, I investigate the im-

plications of introducing a wage setting mechanism into the presented model which

is consistent with empirical evidence. In particular, heterogeneous wage setting is

employed when considering the decentralized economy. In this setup, I distinguish

between two kinds of workers: those who are in ongoing job relationships and those

who were hired in the current period, i.e., newly hired workers. Contrary to Blan-

chard and Gaĺı (2010) who use a rigid wage for every worker, in my setup only workers

in ongoing job relationships earn this rigid wage. New hires bargain over the wage

for the current period, modeled here by employing the generalized Nash solution. It

should be noted that this is just a slight change to the framework of Blanchard and

Gaĺı (2010), since I use the same type of rigid wage as in their model. It applies,

however, only to workers in ongoing jobs. Nevertheless, since the overwhelming part

of the labor force is in ongoing jobs, it is just a very small fraction of workers who

are affected by the changes in the wage determination mechanism.17 Moreover, the

economy-wide average wage is still rigid.

First, consider the representative firm’s problem given the wage, W a
t (i), where a

indicates that this is the average real wage the representative firm pays. It is just the

wage sum divided by the number of workers employed by the individual firm. Thus,

W a
t (i) =

(1− δ)Nt−1(i)W
o
t +Ht(i)W

n
t

Nt(i)
(2.12)

=
(1− δ)Nt−1(i)

Nt(i)
ΘA1−γ

t +
Ht(i)

Nt(i)
W n
t , (2.13)

where W o
t = ΘA1−γ

t is the rigid wage for ongoing jobs specified as in Blanchard and

Gaĺı (2010), and W n
t is the wage for new hires, to be determined in a separate step

by Nash bargaining. Furthermore, the number of workers in ongoing job relationships

is (1− δ)Nt−1(i), i.e., last period’s non-separated worker, and new hires are given by

17For empirical evidence on the US, see Haefke, Sonntag, and van Rens (2008), for instance.
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Ht(i). Since all firms are identical, it is possible to write W a
t (i) = W a

t ∀i.
In this setup with flexible prices and monopolistic competition, the representative

firm maximizes its value

max
{Pt+k(i)}

∞

k=0

Et

[
∞∑

k=0

Qt,t+k(Pt+k(i)Yt+k(i)− Pt+kW
a
t+kNt+k(i)− Pt+kGt+kHt+k(i))

]
,

(2.14)

by setting the price of its differentiated good, Pt(i), optimally each period, subject to

the production function and demand given by

Yt(i) =

(
Pt(i)

Pt

)−ε

(Ct +GtHt) ∀t. (2.15)

In addition, the time path for the aggregate price index Pt =
[∫ 1

0
Pt(i)

1−εdi
] 1

1−ε

, the

average real wageW a
t , cost per hire Gt, and the stochastic discount factor for nominal

payoffs Qt,t+k ≡ βk Ct
Ct+k

Pt
Pt+k

are taken as given.

Solving this problem leads to the usual optimal price setting rule in such an envi-

ronment, i.e., relative prices are set as a markup over real marginal cost

Pt(i)

Pt
= MMCt ∀t, (2.16)

where the optimal markup is given by M ≡ ε
ε−1

, and real marginal cost are obtained

as

MCt =
W n
t

At
+Bxαt − β(1− δ)Et

[
Ct
Ct+1

At+1

At

(
W n
t+1

At+1

−ΘA−γ
t+1 + Bxαt+1

)]
. (2.17)

This is just the respective costs less expected savings of hiring a worker now instead

of next period. The former consist of this period’s (Nash) wage and hiring costs,

each normalized by productivity. The latter depend on next period’s expected hiring

costs and the expected difference between the wage for a newly hired worker and the

ongoing wage, again normalized by productivity.

Furthermore, symmetry of the equilibrium implies Pt(i) = Pt ∀i, and thus due to

equation (2.16)

MCt =
1

M ∀t. (2.18)
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Finally, plugging this equilibrium condition for real marginal cost into equation (2.17)

leads to

W n
t

At
=

1

M − Bxαt + β(1− δ)Et

[
Ct
Ct+1

At+1

At

(
W n
t+1

At+1

−ΘA−γ
t+1 + Bxαt+1

)]
. (2.19)

These conditions are derived under the assumption that wages, and in particular

the wage for new hires, are taken as given. In order to specify the equilibrium, I have

to assume a wage determination scheme for the newly hired workers, leading to an

expression for the process ofW n
t , which can be combined with the preceding equation.

In accordance with the high cyclicality of wages for new hires, I use the generalized

Nash solution. To derive the wage schedule, first consider the household side. The

(real) value of a newly hired worker to the household at time t is given by

VNt = W n
t − CtχN

φ
t + βEt

[
Ct
Ct+1

(
δ(1− xt+1)VUt+1 + (1− δ)VOt+1 + δxt+1VNt+1

)]
.

(2.20)

This is just the (Nash) wage minus the marginal rate of substitution plus the dis-

counted expected continuation values. With respect to the latter, conditional on

being employed in period t, δ(1− xt+1) is the probability of being separated and not

rehired in the next period, thus becoming unemployed. With probability (1 − δ) a

worker is not separated, i.e., she is in an ongoing job in the next period, and δxt+1 is

the probability of being separated but hired again in t + 1, i.e., being a newly hired

worker. Similarly, the value of a worker in an ongoing job to the household at time t

results as

VOt = ΘA1−γ
t − CtχN

φ
t + βEt

[
Ct
Ct+1

(
δ(1− xt+1)VUt+1 + (1− δ)VOt+1 + δxt+1VNt+1

)]
.

(2.21)

The preceding expression has the same structure as the one for the value of a newly

hired worker except that the Nash wage is replaced by the rigid wage for workers in

ongoing jobs. Finally, the value of an unemployed member to the household at time
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t is given by

VUt = βEt

[
Ct
Ct+1

(
xt+1VNt+1 + (1− xt+1)VUt+1

)]
, (2.22)

where unemployment income is set to zero, and the probability of being employed, and

thus newly hired, in the next period conditional on being unemployed in the current

period is the job-finding rate next period, xt+1. From these expressions it is possible

to calculate the household’s surplus from a newly created job, VNt − VUt .
Concerning the firm side, and as in Blanchard and Gaĺı (2010), the surplus of that

agent from a newly created job is simply VJt = Gt. This is due to the fact that the

hiring cost are the marginal cost the firm has to pay when it chooses to substitute a

newly hired worker for another one.

Employing the usual sharing rule, VNt −VUt = ϑVJt , where ϑ indicates the worker’s

relative bargaining weight,18 results in the following expression for the wage:

W n
t

At
− β(1− δ)Et

(
Ct
Ct+1

At+1

At

W n
t+1

At+1

)
= (2.23)

ϑBxαt +
CtχN

φ
t

At
− β(1− δ)Et

[
Ct
Ct+1

At+1

At

(
ϑ(1− xt+1)Bx

α
t+1 +ΘA−γ

t+1

)]
.

Combining this with the equilibrium condition (2.19), leads to

χCtN
φ
t

At
=

1

M − (1 + ϑ)Bxαt + β(1− δ)Et

[
Ct
Ct+1

At+1

At
B(xαt+1 + ϑxαt+1(1− xt+1))

]
,

(2.24)

which together with the equation describing the evolution of newly hired workers

(2.6), the definition of labor market tightness (2.8), the aggregate resource constraint

Ct = At(Nt −BxαtHt), and an exogenous process for At characterizes the equilibrium

under heterogeneous wage setting.

The important thing to note here is that this is the same equilibrium as in Blan-

chard and Gaĺı’s (2010) setting with Nash bargaining for every worker and not only for

18Alternatively, the optimality condition can be written as (1 − ζ)
(
VN
t − VU

t

)
= ζVJ

t , where

ζ ∈ (0, 1) such that ϑ = ζ
1−ζ

∈ (0,∞). ζ indicates the share of the joint surplus going to the

household.
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new hires, i.e., equation (2.11). Consequently, as in their setup and also as in the con-

strained efficient allocation, the equilibrium features a constant unemployment level.

This, in turn, implies that the short-run inflation unemployment trade-off, obtained

with a rigid wage for every worker, disappears, even though the economy-wide average

wage is rigid if γ > 0. The latter can be seen from the expression for the equilibrium

average wage, which results as

W a
t = ΘA1−γ

t + δAt

[
1

1− β(1− δ)

(
1

M − (1− β(1− δ))B(x∗)α
)

−Θ
∞∑

i=0

βi(1− δ)iEt(A
−γ
t+i)

]
, (2.25)

where x∗ is the (constant) equilibrium job-finding rate. For γ = 0 the average wage

moves one for one with productivity. If γ > 0, however, this one-for-one relation

breaks down and the average wage is rigid. The preceding equation (2.25) is obtained

by plugging in the equilibrium Nash bargained wage for the new hires into equation

(2.13). This equilibrium Nash wage, in turn, results when combining the equilibrium

condition (2.24) and the wage schedule (2.23), yielding

W n
t

At
=

1

1− β(1− δ)

(
1

M − (1− β(1− δ))B(x∗)α
)
−Θ

∞∑

i=1

βi(1−δ)iEt(A−γ
t+i). (2.26)

The first term of this expression is the expected discounted Nash wage from pe-

riod t into the infinite future, where the term in parenthesis is the equilibrium Nash

bargained wage in a setup where every worker gets the Nash wage, normalized by pro-

ductivity. The second term just subtracts the expected discounted future rigid wage

starting from period t + 1, normalized by productivity.19 Consequently, in expected

discounted value terms an individual worker gets the same wage sum over the course

of her tenure at a firm in this setup as in the framework with Nash bargaining for

every worker in every period. Thus, since what matters for hiring incentives and thus

employment fluctuations is the permanent wage and not how the stream of wage pay-

ments is distributed over the duration of the job, it comes as no surprise that the same

19Depending on the stochastic process for productivity, even the Nash wage could be rigid to some

degree in this setup.
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equilibrium arises in the case with heterogeneous wages as in the case with general

Nash bargaining.20 Moreover, as a result, the expected labor costs for an individual

worker over the course of her tenure at an individual firm normalized by productivity

corresponds to the first term of expression (2.26), which is constant. Hence, expected

labor costs move one for one with productivity, eliminating all potential hiring incen-

tives, which in turn leads to an unchanged employment level in response to technology

shocks.

In sum, introducing a form of wage rigidity which is consistent with empirical

evidence leaves the monetary authority with a single target. It can exclusively focus

on inflation with no concern whatsoever for employment stabilization. Furthermore,

since wage rigidity cannot be a valid answer to the unemployment volatility puzzle,

the question remains what other mechanisms can account for the observed fluctuations

in unemployment and what are the implications for monetary policy. The following

section sheds light on this issue.

2.3 Introducing markup shocks

In this part of Chapter 2, I follow the suggestion put forward by Pissarides (2007) to

generate data-consistent employment fluctuations. He recommends introducing addi-

tional driving forces, e.g., in the form of markup shocks as in Rotemberg (2008). In

particular, I investigate the implications for (optimal) monetary policy. I start out

from the model presented in the preceding section, i.e., the New-Keynesian model

with labor market frictions of Blanchard and Gaĺı (2010), extended by heterogeneous

wage setting as described above. Then, in order to introduce markup shocks and

following Steinsson (2003) and Rotemberg (2008), the elasticity of substitution in the

Dixit-Stiglitz CES aggregator is assumed to be stochastic. As a result, the elasticity

of demand and thus the desired markup are also stochastic. This can be interpreted

20For related results with respect to a standard search and matching framework, see, for example,

Shimer (2004) and Pissarides (2009). They show that labor market dynamics are unaffected by

rigidities in wages for ongoing workers compared to a model with period-by-period Nash bargaining,

as long as wages in new matches are determined via the generalized Nash solution. Consequently,

also this property carries over to the hiring cost setup employed in this chapter.
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economically as a permanently changing market power of firms due to changes in sub-

stitutability of the different varieties of goods. The consistency of markup fluctuations

with empirical evidence can be seen from Rotemberg and Woodford (1991, 1999) and,

more recently, Gaĺı, Gertler, and López-Salido (2007).21

The economic environment as described in Section 2.2.1 is basically unchanged.

The only difference is the stochastic elasticity of substitution, εt, in the CES aggregator

Ct =

[∫ 1

0

ct(i)
εt−1

εt di

] εt
εt−1

, εt > 1. (2.27)

Since this does not affect the social planner’s problem, the constrained efficient

allocation is the same as depicted in Section 2.2.2. Thus, the constrained efficient

employment level is again constant, i.e., it does not move in response to shocks.

2.3.1 Equilibrium in the decentralized economy with flexible

prices

As a next step, consider the decentralized economy, first with flexible prices. Again,

with respect to the firm side, by setting the price of its differentiated good optimally

each period, the monopolistically competitive firm maximizes its value

max
{Pt+k(i)}

∞

k=0

Et

[
∞∑

k=0

Qt,t+k(Pt+k(i)Yt+k(i)− Pt+kW
a
t+kNt+k(i)− Pt+kGt+kHt+k(i))

]
,

(2.28)

subject to the production function and demand now given by

Yt(i) =

(
Pt(i)

Pt

)−εt

(Ct +GtHt) ∀t. (2.29)

Note that due to the stochastic elasticity of substitution, the elasticity of demand is

now also time varying. Furthermore, the firm takes as given the time path for the

average real wage, W a
t , as defined in Section 2.2.3, cost per hire, Gt, the stochastic

21The highly tractable modeling approach used in this chapter already provides the main in-

sights concerning the effects of introducing this kind of shocks. The “deep habits” model of Ravn,

Schmitt-Grohé, and Uribe (2006) represents a possible framework to provide more fundamental mi-

crofoundations for markup variation.
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discount factor for nominal payoffs, Qt,t+k, and the aggregate price index, which is

also slightly altered due to the time-varying market power of firms,

Pt =

[∫ 1

0

Pt(i)
1−εtdi

] 1

1−εt

. (2.30)

Once more, this optimization problem leads to the well known markup pricing rule

Pt(i)

Pt
= MtMCt ∀t. (2.31)

However, now the desired markup reflects the time-varying market power of firms

and results as Mt ≡ εt
εt−1

, where real marginal costs are unaltered and thus given by

equation (2.17). Furthermore, using the symmetry of the equilibrium in conjunction

with this equation leads to an equilibrium condition, given the wage for new hires,

W n
t

At
=

1

Mt

− Bxαt + β(1− δ)Et

[
Ct
Ct+1

At+1

At

(
W n
t+1

At+1

−ΘA−γ
t+1 + Bxαt+1

)]
, (2.32)

where the only difference to the analogous expression (2.19) in Section 2.2.3 is the

stochastic markup. In accordance with the heterogeneous wage setting framework,

the wage for new hires is derived by using Nash bargaining. Since this derivation is

not affected by the introduction of markup shocks, the expression for the wage is un-

changed and thus given by equation (2.23). Combining the latter with the equilibrium

condition above leads to an equation which together with the equation describing the

evolution of newly hired workers (2.6), the definition of labor market tightness (2.8),

the aggregate resource constraint, and exogenous processes for At and εt describes

the equilibrium under heterogeneous wage setting and markup shocks:

χCtN
φ
t

At
=

1

Mt

− (1 + ϑ)Bxαt + β(1− δ)Et

[
Ct
Ct+1

At+1

At
B(xαt+1 + ϑxαt+1(1− xt+1))

]
.

(2.33)

By using the definition of labor market tightness, the equation describing the

evolution of aggregate hirings as well as unemployed and imposing Mt = M ∀t leads
to the constant equilibrium employment level

Nd = N(xd) =
xd

δ + (1− δ)xd
, (2.34)
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where xd denotes the (constant) equilibrium level of labor market tightness. The

latter is implicitly given by the solution to the following equation, which is obtained

by plugging in the resource constraint and the equation describing the evolution of

aggregate hirings into the equilibrium condition (2.33), and imposing again a constant

markup:

χ (1− δBxα)N(x)1+φ = (2.35)

1

M − (1− β(1− δ))(1 + ϑ)Bxα − β(1− δ)ϑBx1+α.

Consequently, equilibrium output and consumption are given by

Y d
t = AtN

d (2.36)

Cd
t = AtN

d(1− δB(xd)α). (2.37)

In order to ensure full participation, I only consider equilibria where the respective

wage stays above the marginal rate of substitution which results in the case of full

employment

W o
t

At
> χ(1− δB),

W n
t

At
> χ(1− δB), ∀t. (2.38)

Of course, this constancy result with respect to the employment variables only

holds when the markup is constant. If it is not, thus reflecting a time-varying market

power of firms, it can be seen from equation (2.35) that xdt and in turn Nd
t will move in

equilibrium. Furthermore, in addition to the movements of At this will also be reflected

in equilibrium output and consumption. Intuitively, changes in the substitutability of

goods implies changes in the market power of firms, which thus leads to movements

in the desired markup. In turn, this shifts the labor demand schedule (2.32), leading

to fluctuations in employment and unemployment. Consequently, shocks to the elas-

ticity of substitution translate into movements in those labor market variables in this

setup, which are inefficient, since the constrained efficient allocation exhibits constant

employment variables. Provided the monetary authority assigns at least some weight

to unemployment stabilization, the optimal monetary policy problem becomes non-

trivial. In order for monetary policy to be effective in this environment, the following
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section introduces sticky prices. Subsequently, I derive the policymaker’s loss function

to determine optimal policy.

2.3.2 Equilibrium in the decentralized economy with sticky

prices

As is standard in this kind of literature, I introduce nominal rigidities in the form of

price staggering à la Calvo (1983). Accordingly, there is a constant probability of firms

having the opportunity to adjust their prices each period, 1− θ, so that the measure

of firms which reset and not reset prices in a given period are 1−θ and θ, respectively.
Analogous to the derivation in Blanchard and Gaĺı (2010), value maximization by the

representative firm leads to the following optimal price setting rule for a firm with the

opportunity to reset prices in period t

Et

[
∞∑

k=0

θkQt,t+kYt+k|t
1− εt+k
1− ε

(P ∗
t −Mt+kPt+kMCt+k)

]
= 0. (2.39)

Yt+k|t is the output level at time t + k for a firm adjusting its price at time t, ε > 1

is the steady-state value of the elasticity of substitution, P ∗
t is the optimal price set

in period t by the firm under consideration, and real marginal costs are unchanged

compared to the flexible price case and thus given by equation (2.17). Except for

the latter, the preceding optimal price setting rule collapses to the corresponding

expression obtained by Blanchard and Gaĺı (2010), if the elasticity of substitution is

nonstochastic, i.e., εt = ε = ε ∀t.
In a next step, I log-linearize the equilibrium relations obtained so far. First,

consider the optimal price setting rule (2.39) as well as the expression for the price

index in this case

Pt =
(
θ(Pt−1)

1−εt + (1− θ)(P ∗
t )

1−εt
) 1

1−εt . (2.40)

Log-linearizing those equations around a zero inflation steady state and combination

leads to a New-Keynesian Phillips curve of the form

πt = βEt(πt+1) + λ(m̂ct + m̂t), (2.41)
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where hat variables denote log deviations from their respective steady-state values,

i.e., m̂ct = log
(
MCt
MC

)
as well as m̂t = log

(
Mt

M

)
, and λ ≡ (1−θβ)(1−θ)

θ
. The presence

of the additional term λm̂t indicates that stabilizing marginal cost does not lead to

stable inflation and vice versa. Furthermore, as implied by the following derivations,

it is possible to establish a relation between marginal cost and unemployment. Thus,

the appearance of this extra term highlights the short-run trade-off between inflation

and unemployment.

As a first step to derive such a relation between marginal cost and unemployment,

I log-linearize equation (2.17), i.e., the expression for real marginal cost, leading to

m̂ct = MW n(ŵnt − ât) +Mαgx̂t

−β(1− δ)MEt[(W
n −Θ+ g)[(ĉt − ât)− (ĉt+1 − ât+1)]

+W n(ŵnt+1 − ât+1) + Θγât+1 + αgx̂t+1]. (2.42)

Variables without a time index denote steady-state values where steady-state produc-

tivity is normalized to one, i.e., A = 1, g ≡ Bxα, and note that MC = 1
M
.

Moreover, approximation of the wage equation (2.23) results in

MW n
[
(ŵnt − ât)− β(1− δ)Et(ŵ

n
t+1 − ât+1)

]
=

M
[
(ϑg −W n)ât + αϑgx̂t + CχNφĉt + φCχNφn̂t

−β(1− δ)Et[(ϑ(1− x)g +Θ−W n)(ĉt + (ât+1 − ĉt+1))

−Θγât+1 + ϑg(α(1− x)− x)x̂t+1]
]
, (2.43)

which can be combined with the preceding equation to yield the following expression

for real marginal cost

m̂ct = M(ϑg −W n)ât +Mαg(1 + ϑ)x̂t +MCχNφĉt

+MφCχNφn̂t − β(1− δ)MEt

[
(ϑ(α(1− x)− x) + α)gx̂t+1

−g(1 + ϑ(1− x))(ĉt+1 − ât+1) + g(1 + ϑ(1− x))ĉt

−(W n −Θ+ g)ât

]
. (2.44)
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Next, log-linearization of the desired markup, labor market tightness, and con-

sumption leads to

m̂t =
1

1− ε
ε̂t (2.45)

δx̂t = n̂t − (1− δ)(1− x)n̂t−1 (2.46)

ĉt = ât +
1− g

1− gδ
n̂t +

g(1− δ)

1− gδ
n̂t−1 −

αg

1− gδ
δx̂t. (2.47)

Then, consider the optimization problem of the representative household, i.e.,

maximizing (2.1) subject to the following budget constraint

∫ 1

0

Pt(i)ct(i)di+QtBt ≤ Bt−1 +W a
t Nt + Tt (2.48)

and the no-Ponzi-game condition

lim
T→∞

Et(BT ) ≥ 0 ∀t, (2.49)

where ct(i) is household’s consumption of good i in period t, Bt denotes purchases

in period t of one-period nominal riskless discount bonds, where at maturity a single

bond pays one unit of money, Qt is the price of that bond, and Tt indicates the

lump-sum part of household income, e.g., dividends due to firm ownership. Using the

demand equation ct(i) =
(
Pt(i)
Pt

)−εt
Ct and the definition of the aggregate price index,

it is possible to rewrite the budget constraint as

PtCt +QtBt ≤ Bt−1 +W a
t Nt + Tt. (2.50)

Next, solving this optimization problem and approximating the resulting consumption

Euler equation yields

ĉt = Et(ĉt+1)− (it − Et(πt+1)− ρ), (2.51)

where it ≡ − logQt is the short-term nominal interest rate and ρ ≡ − log β denotes

the household’s discount rate.22

22Note that Qt =
1

1+ιt
, where ιt is the yield of the one-period bond. The definition of the nominal

interest rate is motivated by the approximation log(1 + x) ≈ x, which is accurate for small x. The

discount rate is derived analogously.
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The preceding equations (2.41) and (2.44) to (2.47) as well as (2.51) together with

exogenous processes for technology and the elasticity of substitution, as well as a char-

acterization of monetary policy specify the equilibrium of this model. The equations

just given, however, can be significantly simplified by applying the additional approxi-

mations suggested by Blanchard and Gaĺı (2010). First, they assume that hiring costs

are small relative to output, or more exactly, g as well as δ are considered to be of the

same order of magnitude as fluctuations in n̂t. Accordingly, terms featuring gn̂t, δn̂t,

and δg can be dropped since they are of second order. A second approximation the

aforementioned authors consider to be justified is that “fluctuations in x̂t are large rel-

ative to those in n̂t” (p. 14). This assumption is motivated by the log-linearization of

labor market tightness, i.e., equation (2.46). It implies that δx̂t and n̂t are of the same

order of magnitude so that terms featuring the former expression cannot be dropped.

Furthermore, since δ and g are assumed to be of the same order, this also holds for

gx̂t. These two assumptions markedly simplify the expressions for consumption and

marginal cost23

ĉt = ât + n̂t (2.52)

m̂ct = MχN1+φ(1 + φ)n̂t +Mαg(1 + ϑ)[x̂t − βEt(x̂t+1)]. (2.53)

As a subsequent step, I combine the preceding equations in order to obtain a

more compact description of the equilibrium. First, using the approximation ût =

−(1−u)n̂t, where ût ≡ ut−u is the deviation of the end-of-period unemployment rate

from steady state, in conjunction with the log-linearization of labor market tightness

(2.46) leads to

ût = (1− δ)(1− x)ût−1 − (1− u)δx̂t. (2.54)

Second, plugging the expressions for marginal cost (2.53) and the optimal markup

(2.45) into the New-Keynesian Phillips curve (2.41), using the aforementioned ap-

proximation of unemployment, as well as the preceding equation yields

23Note that equation (2.53) relates marginal cost to employment and labor market tightness,

which both in turn can be linked to unemployment. Hence, a relation between marginal cost and

unemployment results, as mentioned at the beginning of this section.
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πt = −η
∞∑

k=1

βkEt(ût+k)− (η + κ(1 + ϑ))ût

+κ(1 + ϑ)(1− δ)(1− x)ût−1 +
λ

1− ε

∞∑

k=0

βkEt(ε̂t+k), (2.55)

where

κ ≡ αgMλ

(1− u)δ

η ≡ λMχ(1− u)1+φ(1 + φ)

1− u
.

Third, I combine the expressions for unemployment, consumption, as well as the log-

linearized consumption Euler equation (2.51) to obtain

ût = Et(ût+1) + (1− u)(it − Et(πt+1)− r∗t ), (2.56)

where r∗t = ρ− ât + Et(ât+1) is the efficient real interest rate.

In sum, the New-Keynesian Phillips curve (2.55) together with the expectational

IS curve (2.56), exogenous processes for technology and the elasticity of substitution,

as well as a description of monetary policy completely specify the equilibrium of this

model.

As implied by the constancy of the unemployment level in the constrained efficient

allocation, an optimal policy in this environment would aim at achieving both constant

unemployment and inflation. This is, however, not feasible in the presence of shocks

to the elasticity of substitution, as can be seen from the Phillips curve relation (2.55).

For example, stabilizing unemployment by setting the nominal interest rate in such a

way that the real interest rate tracks the efficient rate, will not achieve stable inflation,

as shocks to the market power of firms, i.e., the last term in equation (2.55), will lead

to changes in the inflation rate. Analogously, stabilizing inflation will not achieve

constant unemployment, since such a policy basically delivers unemployment equal

to its natural rate. The latter, in turn, is the level obtained in a setting without

nominal rigidities, which is not constant, as shown in the preceding section. The

fundamental reason behind these results is the non-constancy of the gap between the
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natural rate and the constrained efficient unemployment level. If it was constant then

stabilizing the gap between the actual unemployment rate and the natural rate, done

via a constant inflation policy, would be equivalent to stabilizing the gap between

actual and efficient unemployment, which is the gap relevant from a welfare point of

view. In the model described here, however, shocks to the elasticity of substitution

will result in a gap between the natural and efficient level which is not constant so that

simply implementing a policy of stable inflation will not achieve the optimal outcome.

In the words of Blanchard and Gaĺı (2007), there is no “divine coincidence.” I analyze

the nature of this short-run inflation unemployment trade-off and its implications for

monetary policy in more detail in the next section.

2.4 Monetary policy analysis

In order to continue the investigation, it is necessary to specify the stochastic processes

governing technology and, most importantly, the elasticity of substitution. Following

Blanchard and Gaĺı (2010), both are assumed to be described by stationary AR(1)

processes

ât+1 = ρaât + eat+1, |ρa| < 1, eat+1
iid∼ (0, σ2

ea) (2.57)

ε̂t+1 = ρεε̂t + eεt+1, |ρε| < 1, eεt+1
iid∼ (0, σ2

eε). (2.58)

Combining this with the Phillips curve (2.55) leads to the following simplification of

the latter relation

πt = −η
∞∑

k=1

βkEt(ût+k)− (η + κ(1 + ϑ))ût

+κ(1 + ϑ)(1− δ)(1− x)ût−1 +
λ

1− ε

1

1− βρε
ε̂t. (2.59)

The expectational IS curve (2.56), in turn, is used to determine the respective inter-

est rate rule leading to the allocation characterized by the particular time path for

inflation and unemployment under a certain policy regime.
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2.4.1 Two polar cases and optimal monetary policy

To obtain a first impression concerning the extent of the short-run trade-off, two polar

cases are considered.24 First, I examine a policy which implements the constrained ef-

ficient unemployment level. Consequently, this implies an approach which completely

stabilizes unemployment around its efficient level, i.e., ût = n̂t = x̂t = 0 ∀t. Thus, by
equation (2.59), inflation in such a regime is described by the following equation

πt =
λ

1− ε

1

1− βρε
ε̂t. (2.60)

The magnitude of the inflation fluctuations resulting from shocks to the market power

of firms depends, of course, on the parameters of the model. The more persistent the

process of the elasticity of substitution and the closer its steady-state value is to one,

the larger will be the fluctuations in inflation in response to shocks. On the other hand,

the higher the degree of nominal rigidities, i.e., the larger θ, leading to a smaller λ, the

smaller are the inflation fluctuations in absolute terms. However, in general, it should

be noted that the overall coefficient on ε̂t is negative. Thus, a positive deviation of the

elasticity of substitution from its steady state will lead to a reduction in the inflation

rate. Intuitively, an increase in the elasticity of substitution implies a loss in market

power for the individual firm, leading to a reduction of the desired markup. The

latter, in turn, due to markup pricing in this environment, brings about the reduction

in prices. All this, however, is influenced by price staggering of firms, implying a role

for the degree of price rigidity. The higher the rigidity, the larger the incentive for a

firm actually being able to adjust prices not to reduce them as much as in the flexible

price case, in order to avoid setting prices in deviation from the general price level.

This mechanism amplifies the direct effect of a higher degree of rigidity, being that

fewer firms are able to change their price in the first place.

As a second polar case, I consider a policy of completely stabilizing inflation, which

in the usual setup of a New-Keynesian model featuring a divine coincidence, would

also lead to stable unemployment. Here, however, when setting πt = 0 ∀t the Phillips
curve implies

24Note that implicitly it is assumed that monetary policy is completely credible.
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ût = − η

η + κ(1 + ϑ)

∞∑

k=1

βkEt(ût+k) +
κ(1 + ϑ)(1− δ)(1− x)

η + κ(1 + ϑ)
ût−1

+
1

η + κ(1 + ϑ)

λ

1− ε

1

1− βρε
ε̂t. (2.61)

Current unemployment will depend on future expected unemployment and also ex-

hibits serial correlation beyond that of the elasticity of substitution. Moreover, shocks

to the latter move unemployment in the same direction as inflation in the preceding

case. The magnitude, however, is influenced by an additional factor depending mainly

on parameters describing the labor market, e.g., steady-state employment and hiring

costs as well as the separation rate, but also on the steady-state markup, the workers’

relative bargaining power, and the degree of nominal rigidities. Intuitively, the loss in

market power due to the increased substitutability of goods, implies a reduction of the

desired markup. This shifts out the labor demand schedule (2.32), leading to an in-

crease in employment and reduced unemployment. Overall, this positive shock to the

elasticity of substitution brings the equilibrium closer to the one under perfect com-

petition. The latter, compared to the equilibrium under monopolistic competition,

features higher output as well as employment and a lower price level. Furthermore,

the movements of unemployment under a flexible price regime will also be described

by the equation above, since a policy of inflation stabilization brings about the same

allocation as the one of a setup with flexible prices.

Finally, I consider optimal monetary policy where it is possible for the monetary

authority to credibly precommit to such a strategy. In this regard, I follow Blanchard

and Gaĺı (2010) and assume that unemployment moves around a constrained efficient

steady-state value. Furthermore, as is standard in this kind of literature, I base

my normative analysis on the preferences of the private agents in the economy. In

particular, a second-order Taylor series approximation to the level of expected utility

of the representative household in the steady state is performed.25 An analogous

derivation to the one in Blanchard and Gaĺı (2010) leads to the following quadratic

25For an extensive overview of this approach to welfare analysis, see Woodford (2003).
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loss function:

L = E0

[
∞∑

t=0

βt(π2
t + αuû

2
t )

]
, (2.62)

where

αu ≡
λ(1 + φ)χ(1− u)φ−1

ε
> 0. (2.63)

Consequently, the monetary authority’s problem is to minimize the loss function (2.62)

subject to the time path of Phillips curve relations (2.59), ∀t. Unfortunately, there

does not exist an analytical solution so that numerical methods are used. In particular,

I calibrate the model and use the approach of Söderlind (1999) to obtain the dynamics

of the economy in response to shocks under the optimal commitment policy.

2.4.2 Calibration and dynamics of the economy

In order to get an impression of the dynamic properties of the model in response

to shocks to the elasticity of substitution under the aforementioned policy regimes, I

first calibrate the equilibrium relations, then numerically solve for the optimal policy if

applicable, and finally simulate the evolution of the endogenous variables in response

to those shocks.26

Concerning the calibration, I take the same values as Blanchard and Gaĺı (2010),

and consequently the same time structure, i.e., one time period in the model is chosen

to correspond to a quarter. This is done mainly for comparability reasons, but also

since the basic modeling structure is similar so that their values also apply to the setup

of this chapter. Moreover, to investigate the implications of different degrees of rigidity

in the labor market, I also distinguish between two calibrations. The first represents

a flexible labor market characterized by a low steady-state unemployment rate and

high job-finding and separation rates. The second corresponds to a more sclerotic

labor market featuring a higher unemployment rate and lower turnover, i.e., lower

26As can be inferred from the preceding equations and also from the discussion in Section 2.2.3,

productivity shocks do not lead to a short-run inflation unemployment trade-off in this model. In

particular, these shocks do not bring about movements in those endogenous variables. Consequently,

in the calibration exercise I only consider shocks to the market power of firms.
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Table 2.1: Calibration (common values)

Symbol Value Description

β 0.99 household’s discount factor

φ 1 inverse of Frisch labor supply elasticity

ε 6 steady-state elasticity of substitution

M 1.2 steady-state markup

θ 0.67 measure of firms not resetting prices in a given period

α 1 elasticity of hiring costs w.r.t. labor market tightness

B 0.11 scale factor of hiring costs

ϑ 1 worker’s relative bargaining weight

job-finding and separation rates. I present a first set of parameters, being identical

in both calibrations, in Table 2.1. The values given are standard in the literature

and consistent with the relevant micro and macro evidence. Fortunately, it is not

necessary to calibrate the parameter for which there is the weakest empirical basis in

Blanchard and Gaĺı’s (2010) calibration: the one describing the degree of real wage

rigidity. This is due to the fact that the equilibrium as presented at the beginning of

this section does not depend on the latter.

Table 2.2 indicates the calibration for the flexible and sclerotic labor market, re-

spectively. As in the preceding table, the parameters are chosen such that they cor-

respond to the relevant empirical evidence, where the flexible labor market refers to

the United States and the sclerotic labor market to continental Europe. This table

also includes the parameter governing the relative importance of the disutility of work

in total utility, χ. The latter is set to obtain an efficient steady state in the two

calibrations, in order to be able to apply the log-linear approximation in both cases.27

Figures 2.1 - 2.3 present the results of the simulation exercise, i.e., the dynamic

responses of unemployment and inflation to a shock to the elasticity of substitution

under the various policy regimes and different degrees of persistence of the shock. The

impulse response functions plot the dynamics of the endogenous variables in percent

over a horizon of 20 periods in response to a market power shock corresponding to a

27For more on the calibration, see Blanchard and Gaĺı (2010).
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Table 2.2: Calibration (specific values)

Symbol Value Value Description

(flexible) (sclerotic)

x 0.7 0.25 steady-state job-finding rate

u 0.05 0.1 steady-state end-of-period unemployment rate

δ 0.12 0.04 separation rate

g 0.077 0.028 steady-state hiring costs

χ 1.03 1.22 scale factor of disutility of work

one percent increase in the desired markup.28

Consider first a policy of complete unemployment stabilization. Consequently,

Figure 2.1 only shows the inflation response to a market power shock. Moreover,

as can be seen from equation (2.60), the impulse response function does not depend

on the degree of rigidity in the labor market so that the dynamic responses under

the “sclerotic” and the “flexible” labor market calibration coincide. As expected, the

magnitude and persistence of the inflation response increases with an increasing degree

of persistence of the shock. For the case of a purely transitory shock, inflation is

only affected on impact and to a relatively small extend, it increases by about 0.16%.

Increasing the autoregressive parameter to 0.5 and then 0.9 amplifies the instantaneous

impact considerably, being now approximately 0.31% and 1.44%, respectively. This

is a result of the forward looking character of the Phillips curve. Moreover, it also

increases the persistence of the response, which becomes particularly apparent in the

case of ρε = 0.9. Basically, the persistence of the shock carries over to the inflation

process. Furthermore, the magnitude of the inflation response is in all cases about as

large as the comparable one in Blanchard and Gaĺı (2010), where productivity shocks

are considered.

Next, Figure 2.2 depicts the response of unemployment to a shock to the elasticity

of substitution under a policy which completely stabilizes inflation. In this case, the

responses in a sclerotic and a flexible labor market are different, even though not to

a large extent. Analogous to the mechanism indicated above, the inward shift in the

28Note that this implies a decrease in the elasticity of substitution.
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Figure 2.1: Unemployment stabilization regime
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Notes: These figures show the respective response of inflation to shocks to market power for

different degrees of persistence of the shock process.

labor demand schedule due to the increase in the desired markup temporarily leads to

a higher level of unemployment, which ultimately reverts back to its steady-state level.

As expected, the speed of this reversion is inversely related to the degree of persistence

of the shock. The latter also influences the magnitude of the unemployment response,

however not by as much as in the preceding case. The maximum response for the

“sclerotic”calibration, for instance, increases from 0.18% via 0.21% to 0.29%. The last

maximum occurs not on impact as in the other cases, but in the subsequent period,

thereby indicating the well-known hump-shaped pattern. Overall, the flexible labor

market exhibits slightly larger increases in unemployment, which are less persistent

than in the “sclerotic” calibration, however. This is basically a consequence of the

higher turnover, in particular, a larger sacrifice ratio, under the “flexible” calibration.

Due to the smaller responsiveness of inflation to changes in unemployment as indicated
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Figure 2.2: Inflation stabilization regime
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Notes: These figures show the respective response of unemployment to shocks to market

power for different degrees of persistence of the shock process.

by the coefficients of the Phillips curve, the movements in unemployment which are

needed to obtain the same change in inflation are larger in the US-style calibration

than in the European one. This stems from two factors: a higher separation rate

and a smaller steady-state unemployment rate in the “flexible” specification. With

respect to the former, as indicated by equation (2.46), in an environment with a

higher separation rate, larger movements in employment are needed to obtain a given

change in labor market tightness. These feed via changes in marginal cost into changes

in inflation.29 As a second factor, the smaller steady-state unemployment rate leads,

in percentage terms, to larger changes in unemployment which are necessary to obtain

a given change in employment. The general intuition is that a particular change in

employment can be digested much easier by a flexible labor market, featuring a higher

29See equations (2.53) and (2.41).
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turnover. Furthermore, due to the same channel as for the former factor, higher

separation and steady-state job-finding rates lead to a less persistent unemployment

response. Again, as indicated by equation (2.46), last period’s employment is less of

an importance for changes in labor market tightness the larger δ and x.30

Overall, the responses of unemployment under this policy are quite small and,

in particular, considerably smaller than in Blanchard and Gaĺı (2010). Furthermore,

as indicated by those dynamic responses, the model allows for the markup to move

countercyclically, i.e., an increase in the desired markup coincides with an increase

in unemployment or equivalently a decrease in employment. These countercyclical

movements correspond to empirical evidence as presented, for example, in Rotemberg

and Woodford (1991, 1999) and Gaĺı, Gertler, and López-Salido (2007).

Figure 2.3, finally, presents the dynamics of unemployment and inflation under the

optimal monetary policy. Again, the evolution of the endogenous variables differs only

slightly between the sclerotic and flexible labor market calibration. The difference in

the dynamics, i.e., the marginally larger but less persistent unemployment response in

the flexible labor market, can be explained as in the preceding case. In response to a

purely transitory shock to market power, both unemployment and inflation practically

do not move. Qualitatively, however, they broadly follow the same pattern as in the

two cases with a persistent market power shock, which I describe in the following. In

those two simulations, it is optimal to almost completely stabilize inflation. Only in

the second time period is the inflation rate slightly positive. Unemployment, on the

other hand, decreases somewhat on impact and subsequently it follows a path quite

close to the one under complete inflation stabilization, i.e., in particular an increase

followed by a reversion back to the steady-state unemployment level. The magnitude

of the unemployment response, however, is smaller than in the case of complete infla-

tion stabilization. As is characteristic of a policy of optimal commitment, by inducing

a certain time path of inflation expectations it is possible to improve the trade-off

between inflation and unemployment stabilization faced by the monetary authority in

the period of the shock. More specifically, here the expectation of a monetary policy

30Ultimately, the effect on unemployment persistence can be seen from the coefficient on ût−1

in equation (2.61), which is 0.108 under the US-style calibration and 0.299 under the European

specification.
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Figure 2.3: Optimal policy regime
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Notes: These figures show the respective responses of unemployment and inflation to shocks

to market power for different degrees of persistence of the shock process.

response that leads to an increase in unemployment for a couple of periods following

the inflationary market power shock, induces the expectation of countervailing de-

flationary pressures in the coming periods. This brings about less pronounced price

increases in the first place so that the initial unemployment response does not have

to be that large to counter the inflationary pressures. In fact, on impact there is a

negative unemployment response, which is also explained by the optimal stabilization

motive and the particular form of the Phillips curve (2.59). Since it features lagged un-

employment with a positive coefficient, it is optimal to reduce unemployment initially

to induce additional deflationary pressures in the next period to counter the infla-

tionary shock. The counterproductive inflationary effect obtained on impact due to

this approach can easily be balanced by offsetting expectations of positive deviations

of unemployment from steady state. Moreover, as in the preceding case, the dynamic
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responses indicate countercyclical movements of the markup in this model. Overall,

an optimal policy in this environment with shocks to the elasticity of substitution is

one of “price stability” with only minor emphasis on employment stabilization.

The preceding results can also be illustrated by computing the efficient policy

frontier, i.e., the plot of the standard deviations of unemployment and inflation under

a policy of optimal commitment while varying the relative weight on unemployment

stabilization in the monetary authority’s loss function from zero to one. Such a graph

highlights, in particular, the trade-off between unemployment and inflation variability

faced by the policymaker. Figure 2.4, for instance, presents the results when ρε = 0.9

for both the flexible and sclerotic calibration.31 As expected from the preceding dis-

cussion, the findings for the two specifications are not markedly different. Only the

standard deviation of unemployment is slightly larger for the flexible labor market, for

the reasons stated above, when the monetary authority assigns at least some weight

to inflation stabilization. However, in line with the preceding results, the standard

deviation of unemployment is rather small, not exceeding 0.115 and 0.131 under the

European- and US-style calibration, respectively. The maximum inflation variability,

on the other hand, is considerably larger, increasing to a value of 2.064 under a policy

of complete unemployment stabilization. In that case the standard deviations under

both specifications coincide in accordance with equation (2.60). Apart from this vari-

ability relation in favor of inflation stabilization, the curvature of the efficient policy

frontier also points to the direction of the optimality of a strong focus on stabiliz-

ing inflation.32 It is already quite steep in the lower right region, whereas the social

marginal rate of substitution between unemployment and inflation variability, i.e., the

αu resulting from the respective calibration, is rather small, being just 0.058 and 0.069

in the flexible and sclerotic calibration, respectively.33 Consequently, as highlighted in

31In particular, each point on the efficient policy frontier depicts the combination of the standard

deviation of unemployment in deviation from steady state as well as of the annualized rate of inflation

corresponding to a certain value of αu in the loss function (2.62). Furthermore, a value for σ2
eε in

the specification of the process of the market power shock is assumed such that a shock to ε̂t in the

magnitude of one standard deviation changes annualized inflation, 4πt, by one percentage point in

absolute value.

32Note the different scale of the two axes.

33This small weight on unemployment variability in the loss function is in line, for instance, with
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Figure 2.4: Efficient policy frontier
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the graph, the standard deviation combinations referring to optimal policy, indicated

by a point of tangency of an indifference curve with slope αu with the efficient policy

frontier, are already in that lower right region. Thus, unemployment variability is

only slightly reduced compared to a policy of complete inflation stabilization, whereas

inflation variability is still quite small.

In sum, the fluctuations introduced by shocks to the elasticity of substitution

are, in general, not large. In particular, at least in the setting presented in this

chapter, it does not seem to be a promising approach of using this kind of shocks

to generate a significant amount of volatility in unemployment. Moreover, the result

of the optimality of stabilizing inflation also in this environment with labor market

frictions and markup shocks is consistent with much of the recent literature on optimal

monetary policy, represented by Woodford (2003), for example. This finding contrasts,

however, with the results of Blanchard and Gaĺı (2010), where only technology shocks

are considered. Optimal policy in their model leads to a significant reduction in

results presented in Woodford (2003).
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unemployment fluctuations compared to a policy that completely stabilizes inflation.

This, in turn, implies some additional inflation fluctuations, thus reflecting a more

pronounced focus on unemployment relative to inflation than in the model presented

here.34

2.5 Conclusion

In this chapter, I investigate the consequences of introducing heterogeneous wage

setting and shocks to the market power of firms for the dynamics of inflation and

unemployment under different monetary policy regimes and, in particular, optimal

monetary policy.

In the first part, I examine the implications for the equilibrium allocation as well

as monetary policy of incorporating a form of wage rigidity which is consistent with

empirical evidence. Even though widely used in the literature in order to obtain

data-consistent fluctuations in labor market variables, uniform wage rigidity is not

supported by empirical evidence. I show by using the modeling framework of Blan-

chard and Gaĺı (2010) that replacing the latter type of rigidity by a form of wage

rigidity which is consistent with empirical results can have significant consequences

for the equilibrium allocation and conduct of monetary policy. In that environment,

the equilibrium unemployment level is again constant, and hence the short-run infla-

tion unemployment trade-off disappears, even though the average wage is still sticky.

Since expected labor costs are highly responsive to changes in labor productivity, hir-

ing incentives are unaffected by technology shocks, which in turn leads to the absence

of unemployment fluctuations.

Still, this leaves the question unanswered what other mechanisms can provide a

34In a recent paper, Sala, Söderström, and Trigari (2008) find considerably larger effects of a cor-

responding type of markup shock. In their setup with various sources of disturbances, the significant

trade-off obtained mainly results from price markup shocks. However, the magnitude of this trade-off

critically depends on the presence of wage rigidities. Under flexible wages, the standard deviation of

the unemployment gap when completely stabilizing inflation, reduces by a factor of eight compared

to the case of rigid wages. The latter are introduced into their model via staggered wage bargain-

ing, and thus they do not distinguish between wages for ongoing workers and new hires, which is

important for search and matching models, however, as discussed in the introduction of this chapter.
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solution to the unemployment volatility puzzle and what are the implications for mon-

etary policy. Consequently, in the second part, I follow the suggestion of Pissarides

(2007) and incorporate additional driving forces in the form of markup shocks into

the preceding model with heterogeneous wage setting. These shocks lead via markup

pricing to movements in prices and via shifts in the labor demand schedule to em-

ployment and unemployment dynamics. Even though, as a consequence, a short-run

trade-off arises in this setup with markup shocks, optimal policy primarily focuses on

inflation stabilization. This finding is in line with the general prescription put forward

in the standard literature concerning optimal monetary policy. It is not least due to

the other main result of this part of this chapter, i.e., shocks to the market power of

firms do not generate significant fluctuations in unemployment in this model.

Nevertheless, since wage rigidity does not provide a data-consistent solution to the

unemployment volatility puzzle, a further examination of the empirical performance

of alternative approaches to generate fluctuations in labor market variables, and an

investigation of the consequences for monetary policy are relevant topics for future

research.



98



Chapter 3

Does anticipation of government

spending matter? The role of

(non-)defense spending

3.1 Introduction

The empirical literature on the effects of fiscal policy on the macroeconomy is incon-

clusive. It can broadly be divided into two strands according to the identification

approach. On the one hand, fiscal policy events are identified with the narrative

approach employing dummy variables that indicate large increases in government ex-

penditure related to wars.1 These foreign policy events are assumed to be exogenous to

the state of the economy and can therefore be used to identify the effects of fiscal pol-

icy. This line of research typically finds that in response to such a shock to government

spending, GDP increases whereas private consumption and real wages fall (Ramey and

Shapiro 1998, Edelberg, Eichenbaum, and Fisher 1999, Burnside, Eichenbaum, and

Fisher 2004). On the other hand, structural vector autoregressions (SVARs) usually

achieve identification by assuming that government spending is predetermined within

the quarter and government revenue does not respond to macroeconomic develop-

ments in the same quarter except for exogenous automatic stabilizers (Blanchard and

Perotti 2002). This strand of the literature finds that private consumption, similar

1The narrative approach goes back to Romer and Romer (1989) in the area of monetary policy.

A recent paper by Romer and Romer (2010) employs the narrative approach for tax changes.
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to GDP, usually increases after a shock to government spending. Those results have

been confirmed and extended in the papers by Perotti (2005, 2008), for example.2

These contrasting empirical findings have important implications for our view of

the macroeconomy. Standard macroeconomic models focusing on fiscal policy, such as

the neoclassical model of Baxter and King (1993) but also most New-Keynesian vari-

ants (for example, Linnemann and Schabert 2003), have an unambiguous prediction

concerning the response of private consumption to a shock to government spending.

Whereas output is expected to increase in response to such a shock, consumption

should fall. The central reason for the latter dynamic response in those models is

that government expenditure (financed by lump-sum taxes) constitute a withdrawal

of resources from the economy, which in turn do not substitute or complement pri-

vate consumption nor contribute to productivity. The resulting adverse wealth effect

drives the negative consumption response. In contrast, Gaĺı, López-Salido, and Vallés

(2007) construct a New-Keynesian model with a positive consumption response, in

order to reconcile current business cycle models with the empirical findings of the

SVAR literature. Gaĺı, López-Salido, and Vallés (2007) make clear, however, that

many very special conditions have to be fulfilled for the model to be able to generate

a positive response of private consumption. In particular, sticky prices and “rule-of-

thumb” consumers drive the result.3 Empirical findings therefore shape our modeling

and understanding of the economy. Unfortunately, however, the different methods

employed do not yield consistent results.

In an important contribution, Ramey (2009) aims at explaining the difference

between the results of the two empirical approaches. She argues that VAR techniques

miss the fact that major changes in government spending, such as expenditure related

to wars, are usually anticipated. Within a standard model, it is easy to show that

2More empirical evidence with respect to European countries is provided by Biau and Girard

(2005) for France, Giordano, Momigliano, Neri, and Perotti (2007) for Italy, de Castro and de Cos

(2008) for Spain, and Tenhofen, Wolff, and Heppke-Falk (2010) for Germany. A different identifica-

tion procedure was proposed by Fatás and Mihov (2001) and Mountford and Uhlig (2009), who also

document a positive consumption response.

3An earlier contribution featuring a positive consumption response is Devereux, Head, and

Lapham (1996), for instance. In this paper, consumption only increases if returns to specializa-

tion are sufficiently high.
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missing the point of anticipation will result in a positive response of consumption to a

shock to government spending, as consumption following the initial drop increases with

investment. In support of her hypothesis that shocks are indeed anticipated, Ramey

(2009) documents that the war dummy shocks Granger-cause the VAR shocks, but

not vice versa.

These problems fit into the more general discussion on when it is possible to relate

the innovations recovered by a VAR to the shocks of a particular economic model.

Early contributions in this regard are Hansen and Sargent (1980, 1991), Townsend

(1983), Quah (1990), and Lippi and Reichlin (1993, 1994), with a recent reminder

of these problems to the profession in Fernández-Villaverde, Rubio-Ramı́rez, Sargent,

and Watson (2007). An application of these insights to fiscal policy anticipation, in

particular concerning tax changes, with a thorough discussion of the related issues

can be found in Leeper, Walker, and Yang (2009). This literature centers on the

fundamental problem that in certain setups the information sets of the private agents

and the econometrician are misaligned. In the case of fiscal policy anticipation, this

means that private agents in addition to the variables observed by the econometrician

know about the fiscal policy shocks occurring in future periods and act immediately

on this information. The econometrician, on the other hand, only observing variables

up to the current period, does not possess this information. On a more technical note,

(fiscal) foresight in a generic dynamic stochastic general equilibrium (DSGE) model

may introduce a non-invertible moving-average (MA) component into the equilibrium

process. In this case, the shocks identified by a VAR using only current and past

endogenous variables do not match the shocks of the economic model. As a result,

standard tools based on VARs, like impulse response functions or variance decompo-

sitions, can yield incorrect inferences.

We contribute to the empirical literature on the effects of fiscal policy by explicitly

modeling anticipation in an SVAR framework. Our approach is designed to align the

information sets of the econometrician and the private agents. Thereby we are able to

avoid the problems encountered by standard VARs in settings featuring fiscal policy

anticipation. In particular, we are able to exactly capture a situation, where private

agents perfectly know fiscal shocks one period in advance. While our method is not
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general in the sense of being applicable in the presence of all possible (and in practice

unknown) kinds of information flows, the findings of a simulation exercise support

the approach. In particular, this exercise indicates that the methodology is robust to

situations with a potentially different information structure. In order to document the

validity of our method, we simulate data from a theoretical model with fiscal foresight,

where we demonstrate that the equilibrium process features a non-invertible MA com-

ponent by using methods recently developed by Fernández-Villaverde, Rubio-Ramı́rez,

Sargent, and Watson (2007). Despite having both anticipated and unanticipated fiscal

shocks in the model, so that private agents only have imperfect foresight, our approach

correctly captures the dynamics within a VAR framework, while a standard VAR does

not deliver the negative consumption response of the theoretical model.

In a next step, we apply our methodology to real life data to investigate the ef-

fects of anticipated fiscal policy on private consumption. As Ramey (2009) argues,

fiscal policy anticipation could have dramatic consequences by changing the sign of

the consumption response. Our findings indeed highlight the importance of taking

into account fiscal foresight in empirical work. We show that it is crucial to distin-

guish those subcomponents of total government spending, which might have different

effects on the macroeconomy. In this regard, we take advantage of the flexibility of

the econometric approach. Motivated by economic theory and in line with previous

studies, we consider government defense and non-defense expenditure.4 This allows

us to reconcile the results of the narrative and SVAR approaches mentioned above

and qualify recent findings in the literature.

We find that when taking into account anticipation issues private consumption

significantly decreases on impact and in subsequent periods in response to a shock to

government defense expenditure, exactly in line with Ramey’s (2009) findings using

the narrative approach. When considering shocks to non-defense spending, on the

other hand, consumption increases significantly on impact and in the following peri-

4While Blanchard and Perotti (2002) have a short subsection where they distinguish defense and

non-defense expenditure, they only consider the response of output and do not take into account

anticipation issues. Perotti (2008) also distinguishes defense and non-defense spending shocks in one

of his SVAR specifications. Again, he does not allow for fiscal policy anticipation, which is the main

focus of our investigation, where we show the importance of taking into account those issues.
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ods in our expectation augmented VAR. In contrast, the corresponding responses in a

standard VAR à la Blanchard and Perotti (2002) are quite weak and mostly insignifi-

cant. This highlights the importance of taking into account anticipation issues and is

in line with Ramey’s (2009) general argument that standard VAR techniques fail to

allow for fiscal foresight thereby invalidating the structural analysis.

Furthermore, the responses reported for the expectation augmented VAR are in

line with central predictions of standard macroeconomic models. In those settings,

less productive defense expenditure lead to a decrease in consumption while other,

potentially more productive expenditure have the opposite effect. If we do not separate

different expenditure components but use total government spending, we do not obtain

clear-cut results, as we lump together spending items with different macroeconomic

effects. Our findings are robust to adding real GDP and/or a short-term interest

rate to the specification as well as to changes in the exogenous elasticities needed to

identify the SVAR.

The remainder of Chapter 3 is structured as follows. The next section develops the

expectation augmented VAR, while Section 3.3 presents estimation results based on

model-generated data. Section 3.4 presents the findings of the empirical investigation

with a particular focus on government defense and non-defense expenditure. Section

3.5 checks robustness and, finally, the last section concludes.

3.2 An expectation augmented VAR

In order to explicitly take into account perfectly anticipated fiscal policy, we develop

a new empirical approach. It is based on the framework put forward by Blanchard

and Perotti (2002), which constitutes a well established SVAR methodology focusing

on fiscal policy. Their basic idea is to exploit fiscal policy decision lags to identify

structural shocks. In particular, the authors argue that as governments cannot re-

act in the short run, e.g., within the same quarter, to changes in the macroeconomic

environment, reactions of fiscal policy to current developments only result from so-

called “automatic” responses. However, apart from decision lags, policymaking is also

characterized by implementation lags. After a decision on a spending increase or tax

cut, for instance, has been made, it takes time for the public authorities to imple-
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Figure 3.1: Sequence of events
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ment those measures. As a result, even though there has been no actual adjustment

of the respective policy instrument yet, private agents already know that there will

be a change in fiscal policy, i.e., they anticipate fiscal policy actions, and act imme-

diately on this information. Not taking account of those implementation lags could

invalidate the analysis due to the potential misalignment of the information sets of

the private agents and the econometrician. Such a misalignment arises particularly

in standard setups, where the econometrician uses data only up to the current period

and neglects information on future fiscal shocks. Figure 3.1 summarizes graphically

the aforementioned ideas by means of a timeline and illustrates, in particular, the

concepts of decision and implementation lags.

Blanchard and Perotti (2002) address anticipation issues by including expectations

of future fiscal policy variables in their model. In particular, they assume that agents

perfectly know fiscal policy shocks one period in advance and are able to react to

it. Thus, the aforementioned expectations are taken with respect to an information

set which includes next period’s fiscal shocks. Impulse responses to anticipated fiscal

shocks are derived by simulating the system under rational expectations. They only

consider the response of output, however, which is weaker but still positive. In par-

ticular, they do not report consumption responses, where anticipation effects could

result in a different sign of the response as argued by Ramey (2009). The weaker
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output effect, though, might be an indication of a negative consumption response.

To allow for anticipation by the private sector, we go beyond the standard SVAR

of Blanchard and Perotti (2002) by explicitly modeling the process describing expec-

tation formation within such a multivariate time series framework. Furthermore, a

central contribution of this chapter is to investigate the relevance of anticipation ef-

fects for the dynamic response of private consumption to fiscal policy shocks. We

emphasize in particular the importance (of the nature) of the particular spending

category under consideration, e.g., productive vs. unproductive public expenditure.

We propose the following setup, based on a standard AB-model SVAR, but aug-

mented with expectation terms and equations describing the formation of those ex-

pectations:

Yt = GF̂t+1 + C(L)Yt−1 + Ut (3.1)

AUt = BVt (3.2)

F̂t+1 = D(L)Yt +HVt+1, (3.3)

where Yt = [ct gt rt]
′ is the vector of endogenous variables, F̂t+1 = [ĝt+1 r̂t+1]

′ denotes

next period’s expected fiscal variables which are described in more detail in the next

paragraph, Ut is the vector of reduced form residuals, and Vt = [vct v
g
t vrt ]

′ is the

vector of structural shocks to be identified. Here ct denotes real private consumption,

gt is real government expenditure, rt denotes real government revenue, and vit is the

respective structural shock.

The important difference relative to a standard (S)VAR is the presence of ĝt+1 and

r̂t+1 in the preceding equations, both in equation (3.1) and, in particular, via equation

(3.3). These expressions, reflecting fiscal policy anticipation, denote the conditional

expectation of the respective fiscal variable with respect to current and past endoge-

nous variables as well as next period’s fiscal shocks, i.e., ĝt+1 = E(gt+1|Υt, v
g
t+1, v

r
t+1)

and r̂t+1 = E(rt+1|Υt, v
g
t+1, v

r
t+1), where Υt = [Yt, Yt−1, Yt−2, . . .]. Accordingly, agents

in the economy form expectations about the course of future fiscal policy on the basis

of all information available to them. Besides the current and past realizations of the

variables in the system, the agents know about the fiscal shocks occurring next period.
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These fiscal shocks are known as fiscal policy actions require time to be implemented.

Moreover, they are usually subject to a broad public discussion before their actual

implementation making the information available to a very broad audience. In order

to capture this special information structure, equation (3.3) is added to the system.

It describes how model-consistent expectations with respect to future fiscal variables

are formed.5

Those features of our approach are designed to align the information sets of the

private agents and the econometrician. The goal is to avoid the problems encountered

by standard VARs, when confronted with data generated from a process featuring a

non-invertible moving-average component due to fiscal foresight. The setup is able

to exactly capture a situation, where private agents have one-period perfect foresight

with respect to fiscal shocks. Even though this is not a general approach applicable in

the presence of all possible kinds of information flows, the findings of the subsequent

simulation exercise support our method. It indicates that the methodology is robust

to situations with a potentially different information structure. Moreover, it is easily

applicable to different spending categories. Without much effort and in a readily

reproducible way, we can go beyond defense spending, i.e., beyond the point for which

studies using the narrative approach exist.

3.2.1 A simplified setting: the general idea of the approach

In order to describe the basic idea of the approach, we first consider a simplified version

of the aforementioned model, in particular, a setup which does not exhibit lagged

dependent variables. This framework, however, easily generalizes to the standard case

including lags, which is discussed subsequently. The system can be partitioned into

two parts: first, one set of equations representing the basic structure of the economy,

and second, the remaining equations modeling the process describing expectation

formation. In the general setup given above, the former part is described by equations

(3.1) and (3.2), whereas the latter part is modeled by equation (3.3).

More specifically, the basic framework of the economy in the simplified setup is

5An extensive discussion of the issues related to those equations can be found in the next subsec-

tion.
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given by the first three equations of the model, presented here in structural form:

ct = γ1ĝt+1 + γ2r̂t+1 + αcggt + αcrrt + vct (3.4)

gt = αgcct + vgt (3.5)

rt = αrcct + βrgv
g
t + vrt . (3.6)

In accordance with the idea of fiscal policy anticipation by the private sector and fol-

lowing Blanchard and Perotti (2002), the two expectation terms, ĝt+1 and r̂t+1, appear

in the consumption equation. Furthermore, we have to assume a relative ordering of

the fiscal variables. Here we act on the assumption that spending decisions come

first, i.e., the structural revenue shock, vrt , does not enter the expenditure equation,

whereas vgt enters the revenue equation.6

As indicated above, the remaining part of the model consists of equations modeling

the process describing expectation formation, in the simple framework given by:7

ĝt+1 = E(gt+1|Υt, v
g
t+1, v

r
t+1) = ηEgg vgt+1 + ηEgr vrt+1 (3.7)

r̂t+1 = E(rt+1|Υt, v
g
t+1, v

r
t+1) = ηErg vgt+1 + ηErr vrt+1. (3.8)

Even though a standard VAR also implicitly models expectation formation, here we

have to augment the basic VAR equations with the expectation terms and expec-

tational equations, since we have to deal with a special information structure. In

particular, not only variables indexed up to time t are part of the information set

with respect to time t, but it also contains future variables, i.e., shocks indexed t+1.

Accordingly, one-period anticipation of fiscal policy actions is reflected in the presence

of vgt+1 and vrt+1 in the preceding equations.

Analogous expectation terms, however, do not appear in the fiscal equations, i.e.,

equations (3.5) and (3.6) in this simplified setting, and there are no separate expec-

tational equations for the non-fiscal variables. That does not mean that the public

sector does not form (rational) expectations about future developments in the econ-

omy. It just reflects the fact that the fiscal authority’s information set with respect

6Note that since the model is presented in structural form, the coefficients αc
g, α

c
r, α

g
c , α

r
c , and βr

g

are elements of the A and B matrices, respectively.

7In this simplified setup, due to the absence of lagged dependent variables, Υt is not relevant for

expectation formation. In the general case, however, Υt does play a role.
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to the private sector only includes variables indexed up to the current period.8 It is

hard to think of a case of aggregate implementation lags for the private sector, which

would give rise to the anticipation of future private sector actions by the government,

analogous to the setting of fiscal foresight described in this chapter. Consequently, we

do not have to augment the fiscal equations by expectation terms and the system by

corresponding expectational equations to accommodate such a setup.

Ultimately, we are interested in deriving impulse response functions with respect

to perfectly anticipated fiscal policy shocks. Consequently, we have to obtain the

corresponding MA-representation of the model. Concerning consumption, which is

the main variable of interest, such a representation in this simplified setup results

when using equations (3.5) - (3.8) in equation (3.4) and solving for ct:

ct =
1

1− αcgα
g
c − αcrα

r
c

[
(γ1η

Eg
g + γ2η

Er
g )vgt+1 + (γ1η

Eg
r + γ2η

Er
r )vrt+1

+(αcg + αcrβ
r
g)v

g
t + αcrv

r
t + vct

]
. (3.9)

Consequently, concerning government expenditure for example, the dynamic response

of consumption results as

∂ct
∂vgt+1

=
γ1η

Eg
g + γ2η

Er
g

1− αcgα
g
c − αcrα

r
c

(3.10)

∂ct+1

∂vgt+1

=
αcg + αcrβ

r
g

1− αcgα
g
c − αcrα

r
c

(3.11)

∂ct+s
∂vgt+1

= 0 ∀s ≥ 2. (3.12)

Note that this is the response to next period’s fiscal shock, which is, however, perfectly

anticipated today. In particular, consumption at time t moves in response to the fiscal

shock of period t+ 1.9

8As the private sector, the government of course does know its own fiscal shocks next period

and its effects on current non-fiscal variables. This is reflected in the system by equation (3.4) in

combination with the fiscal equations.

9Due to the absence of lagged dependent variables in this simplified setting, the dynamic response

is zero for ct+s, ∀s ≥ 2. In the general framework, of course, this is typically not the case as indicated

in the impulse responses presented below.
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We would like to emphasize the rationale of our expectational equations (3.7) and

(3.8). The purpose of those equations is to describe how model-consistent expectations

with respect to future fiscal variables are formed. In this respect, we are not interested

in the structural relations between the different variables and thus the structural

coefficients, but rather in the expectation of the respective fiscal variable in the sense

of an optimal forecast based on the structure of the economy and all information

available to the agent at the respective point in time.

Due to the linear structure of the economy, we consider linear projections as fore-

casts, which are the (reduced form) conditional expectation in this kind of setting.

Consequently, since the conditional expectation leads to the forecast with the smallest

mean squared error, linear projections produce optimal forecasts in this sense in such

an environment. What remains to be specified are the relevant variables on which

to project. In this respect, we consider all information available to the agent, which

at time t comprises Υt, v
g
t+1, and vrt+1. In particular, both future fiscal shocks are

relevant variables to produce a forecast for both government expenditure and revenue

despite the relative ordering assumption of the structural equations. This can be seen

by leading those equations (3.5) and (3.6) by one period and taking expectations.

The resulting expressions imply that to obtain a forecast of next period’s respective

fiscal variable, a forecast of future private consumption is necessary. To this, in turn,

both expected future government expenditure as well as expected future government

revenue and thus the corresponding shocks are relevant as indicated by equation (3.4).

Intuitively, the two fiscal shocks are useful for estimating future private consumption,

which in turn is relevant to forecasting the fiscal variables.

Moreover, in this simplified setting we can easily solve for ĝt+1 and r̂t+1 by leading

equations (3.4) to (3.6) by one period, combination, and taking expectations with

respect to the information available at time t, yielding:
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ĝt+1 =
1− αcrα

r
c + αgcα

c
rβ

r
g

1− αcgα
g
c − αcrα

r
c︸ ︷︷ ︸

ηEgg

vgt+1 +
αgcα

c
r

1− αcgα
g
c − αcrα

r
c︸ ︷︷ ︸

ηEgr

vrt+1 (3.13)

r̂t+1 =
αrcα

c
g + βrg − αcgα

g
cβ

r
g

1− αcgα
g
c − αcrα

r
c︸ ︷︷ ︸

ηErg

vgt+1 +
1− αcgα

g
c

1− αcgα
g
c − αcrα

r
c︸ ︷︷ ︸

ηErr

vrt+1. (3.14)

This demonstrates the consistency of the expectational equations with the equations

describing the basic structure of the economy. In particular, the linear projection

coefficients of equations (3.7) and (3.8) can be related to the structural coefficients of

equations (3.4) to (3.6).

3.2.2 The general setting: estimating an expectation aug-

mented VAR

After having discussed the basic idea of our approach in the simplified setting, we

now turn to the general case and present the estimation procedure. Taking into

account lagged dependent variables, the basic structure of the economy is given by

the following set of equations:

ct = C11(L)ct−1 + γ1ĝt+1 + αcggt + C12(L)gt−1 + γ2r̂t+1

+αcrrt + C13(L)rt−1 + vct (3.15)

gt = αgc1ct + αgc2ct−1 + C̃21(L)ct−2 + C22(L)gt−1 + C23(L)rt−1 + vgt (3.16)

rt = αrc1ct + αrc2ct−1 + C̃31(L)ct−2 + C32(L)gt−1 + C33(L)rt−1

+βrgv
g
t + vrt , (3.17)

where we pulled ct−1 out of the lagpolynomial, since we have to treat the correspond-

ing coefficients separately due to the identification scheme of Blanchard and Perotti

(2002).
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The expectational equations in the general setup result as:

ĝt+1 = E(gt+1|Υt, v
g
t+1, v

r
t+1)

= D11(L)ct +D12(L)gt +D13(L)rt + ηEgg vgt+1 + ηEgr vrt+1 (3.18)

r̂t+1 = E(rt+1|Υt, v
g
t+1, v

r
t+1)

= D21(L)ct +D22(L)gt +D23(L)rt + ηErg vgt+1 + ηErr vrt+1. (3.19)

Estimation of this model basically proceeds in three steps.10 First, we look at

the fiscal equations (3.16) and (3.17). Here we start by exploiting the assumption

concerning decision lags. In particular, in order to address endogeneity issues, we use

exogenous consumption elasticities of government expenditure and revenue to com-

pute adjusted real government direct expenditure and net revenue.11 Furthermore, we

not only have to assume that there is no fiscal policy discretionary response to con-

sumption developments within the quarter but also no response to such developments

in the previous quarter. This indicates a tradeoff inherent in this method. On the one

hand, we are able to incorporate fiscal foresight in the benchmark fiscal VAR model of

Blanchard and Perotti (2002), but on the other we are constrained by the assumptions

on which this approach is based. In particular, the maximum anticipation horizon we

can implement depends on the number of periods we are willing to assume that fiscal

policy is not able to discretionarily respond to macroeconomic developments. This

step leads to the following setup:

gAt ≡ gt − αgc1ct − αgc2ct−1 = C̃21(L)ct−2 + C22(L)gt−1 + C23(L)rt−1 + vgt (3.20)

rAt ≡ rt − αrc1ct − αrc2ct−1 = C̃31(L)ct−2 + C32(L)gt−1 + C33(L)rt−1

+βrgv
g
t + vrt . (3.21)

10Here our focus is on the aspect of anticipation. A more detailed description of the general

estimation approach can be found in Blanchard and Perotti (2002) and Tenhofen, Wolff, and Heppke-

Falk (2010).

11Blanchard and Perotti (2002) argue that fiscal policy decision making is a slow process, involving

many agents in parliament, government, and civil society. As a result, reactions of fiscal policy to

current developments only result from automatic responses. Those are defined by existing laws and

regulations and can be taken into account by applying exogenous output or consumption elastici-

ties. Adjusting government expenditure or revenue using these elasticities allows to obtain unbiased

estimates of the structural coefficients and thus the structural fiscal policy shocks.
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Subsequently, we recursively estimate the resulting equations by OLS to obtain the

structural shocks to the respective fiscal variable, i.e., we first estimate equation (3.20)

and obtain vgt , and then use this shock series as an additional regressor to estimate

equation (3.21).

In the second step, we consider the equation modeling private consumption. We

begin by rewriting equation (3.15) as follows:

ct = C11(L)ct−1 + γ1gt+1 + αcggt + C12(L)gt−1 + γ2rt+1

+αcrrt + C13(L)rt−1 + ṽct , (3.22)

where

gt+1 = E(gt+1|Υt, v
g
t+1, v

r
t+1) + ugt+1 (3.23)

rt+1 = E(rt+1|Υt, v
g
t+1, v

r
t+1) + urt+1, (3.24)

and consequently ṽct = vct−γ1ugt+1−γ2urt+1. Subsequently, equation (3.22) is estimated

by instrumental variables, in order to account for the correlation of the respective

regressors and error term. Since current and next period’s adjusted government ex-

penditure and revenue are perfectly known at time t,12 they are uncorrelated with the

expectational errors in ṽct . Furthermore, due to the adjustment procedure they are

also uncorrelated with vct , so that we can use gAt+1, g
A
t , r

A
t+1, and r

A
t as instruments to

estimate γ1, α
c
g, γ2, and α

c
r.

Finally, in the third step, we look at the equations modeling expectations. Since,

as mentioned above, with respect to these two equations we are only interested in

forecasting and not in estimation of the structural parameters, it is sufficient to just

plug equations (3.18) and (3.19) into equations (3.23) and (3.24), respectively, and

estimate these by OLS, as OLS provides a consistent estimate of the linear projection

coefficient.13

Following this procedure, we obtain all coefficients necessary to compute the struc-

tural impulse response functions. In particular, it is possible to derive the dynamic

12To see this, note that due to the informational assumptions, all variables on the utmost right

hand side of equations (3.20) and (3.21), and the corresponding ones for gAt+1 and rAt+1, are known

as of time t.

13See, for example, Hamilton (1994, p. 76).
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response to a perfectly anticipated fiscal policy shock. The actual computation of the

impulse responses starts out from the VARMA-representation of the model which is

obtained by combining the equations of the general system (3.1) - (3.3):

Yt = R−1K(L)Yt−1 +R−1GHVt+1 +R−1A−1BVt , (3.25)

where R = (I −GD0) and D0 is the first coefficient matrix of the lag polynomial

D(L), and K(L) = GD̃(L) + C(L), where D̃(L) = (D(L)−D0)L
−1. Owing to the

assumption of fiscal policy anticipation, the only unusual aspect of this representation

are the time indices of the moving average part. By defining Wt ≡ Vt+1, however,

we arrive at a standard VARMA model with corresponding pure MA-representation,

which can be used to compute impulse response functions.

3.3 Application to simulated data

In order to illustrate the ability of our approach to capture fiscal policy anticipation,

we present an application to model-generated data. We consider a stylized theoretical

model featuring fiscal foresight to assess whether the approach is able to address

problems related to non-invertibility due to fiscal policy anticipation. In particular,

we use a variation of the model of Ramey (2009), which is a standard neoclassical

growth model, to simulate time series and subsequently use these artificial data to

estimate both a standard VAR and an expectation augmented VAR to derive impulse

response functions. A convenient feature of simulating data from a theoretical model

is that we know the true impulse response functions in this setup. Consequently,

by comparing the estimated impulse responses to the theoretical ones, we can check

whether the two aforementioned VAR models are able to address anticipation effects.

Ramey (2009) presents a simple neoclassical growth model featuring government

spending financed via nondistortionary taxes, where agents learn about changes in

government expenditure before their actual realization. We take her setup as a start-

ing point, but augment it with a few features to be able to apply Fernández-Villaverde,

Rubio-Ramı́rez, Sargent, and Watson’s (2007) invertibility condition.14 As mentioned

14Our model is still relatively close to Ramey’s (2009) original specification. In particular, in the

two models the impulse responses which are at the center of our investigation, i.e., the ones with
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in the introduction, fiscal foresight in a generic DSGE model may lead to an equi-

librium process with a non-invertible MA component, posing substantial problems

for standard VAR analysis.15 These problems can be illustrated as follows: for each

non-invertible process there exists an invertible one, featuring the same mean and

autocovariance-generating function. This implies that these processes cannot be dis-

tinguished based on the first two moments, so that Gaussian likelihood or least-squares

procedures, for instance, run into an identification problem. As a result, it is standard

in the VAR literature to disregard all non-invertible representations and focus solely on

the corresponding invertible process. This means, however, that the econometrician

is only able to recover the fundamental innovations corresponding to the invertible

representation of the process, whereas the true economic shocks might correspond to

the non-fundamental innovations of a non-invertible process.16 As a result, standard

tools based on such VARs, like impulse response functions or variance decompositions,

potentially yield incorrect inferences.

In order to detect whether non-invertibility is present in a given DSGE model,

Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007) derive a condition

based on the state-space representation of the equilibrium process of an economic

model:

xt+1 = Axt + Bwt+1 (3.26)

yt+1 = Cxt +Dwt+1, (3.27)

where xt is a vector of (possibly unobserved) state variables, yt is a vector of variables

the econometrician observes, and wt denotes the vector of economic shocks. If “the

eigenvalues of A− BD−1C are strictly less than one in modulus,”17 a standard VAR

will be able to recover the true economic shocks, wt. Note, however, to be able to

respect to a government spending shock, are quite similar.

15An MA process is called invertible, if all the roots of the corresponding characteristic equation

are outside the unit circle.

16Please note that in this description, we use a relation between (non-)invertibility and

(non-)fundamentalness which abstracts from the borderline case, when at least one root of the char-

acteristic equation of the moving-average process is on the unit circle (and none inside). Then, the

process is non-invertible but the innovations are said to be fundamental.

17CONDITION 1 in Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007, p. 1022).
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apply this condition, the matrix D has to be nonsingular. In particular, the matrix

must be square, i.e., the number of variables observed by the econometrician has to

equal the number of economic shocks. For many models, this will not be the case,

and this prerequisite is not met in Ramey’s (2009) original setup. Consequently,

we add investment-specific technology shocks and an error in forecasting government

expenditure to the model, to obtain a nonsingular matrix D.18 The latter feature is

particularly interesting for this exercise. It allows to vary the relative importance of

anticipated vs. unanticipated shocks to government expenditure. In particular, the

model is able to represent a setting where foresight is not perfect.

With respect to the economic environment of the model, preferences and technol-

ogy are specified as follows: the representative household maximizes

U0 = E0

[
∞∑

t=0

βt (logCt + ψt logLt)

]
, (3.28)

where β is the household’s discount factor, Ct is private consumption, and Lt denotes

leisure. The production function of the representative firm is given by

Yt = (ZtNt)
1−αKα

t , (3.29)

where Yt is output, Nt denotes labor input, and Kt is the capital stock, which evolves

according to

Kt+1 = (1− δ)Kt +XtIt. (3.30)

In the latter equation, It denotes (gross) investment, Xt is the level of investment-

specific technology, and δ is the rate of depreciation for capital.19 The two resource

constraints in this economy are given by

Lt +Nt ≤ 1 (3.31)

Ct + It +Gt ≤ Yt. (3.32)

18Going back to Greenwood, Hercowitz, and Huffman (1988), investment-specific technology shocks

are considered to be a major source of economic growth as well as business cycle fluctuations. With

respect to the former, see for example Greenwood, Hercowitz, and Krusell (1997), whereas the latter

point is made, for instance, by Greenwood, Hercowitz, and Krusell (2000) and Fisher (2006).

19This way of introducing investment-specific technological change follows Fisher (2006).
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The stochastic processes governing the shocks to technology, the marginal rate of

substitution, and investment-specific technology are assumed to evolve according to

logZt = ρ1 logZt−1 + ezt , ezt
iid∼ (0, σ2

ez) (3.33)

logψt = ρ2 logψt−1 + eψt , eψt
iid∼ (0, σ2

eψ) (3.34)

logXt = ρ3 logXt−1 + ext , ext
iid∼ (0, σ2

ex). (3.35)

Finally, the evolution of government spending, financed via non-distortionary taxes,

is specified as follows:

logGt = logGF,j
t−j + log EGt , j > 0 (3.36)

logGF,j
t = d1 logG

F,j
t−1 + d2 logG

F,j
t−2 + d3 logG

F,j
t−3 + eGFt , eGFt

iid∼ (0, σ2
eGF ) (3.37)

log EGt = d1 log EGt−1 + d2 log EGt−2 + d3 log EGt−3 + eEGt , eEGt
iid∼ (0, σ2

eEG), (3.38)

where Gt is actual government spending at time t, GF,j
t is the j-period forecast of gov-

ernment spending made at time t, and EGt is the error made in forecasting government

expenditure. Alternatively and perhaps more intuitively, one can think of government

expenditure as following an AR(3) process, where the error consists of an anticipated

and an unanticipated part:

logGt = d1 logGt−1 + d2 logGt−2 + d3 logGt−3 + eGt (3.39)

eGt = eGFt−j + eEGt . (3.40)

Combining such a specification with the forecasting relation (3.36) and the process

for the forecast error (3.38) yields equation (3.37). The anticipated part of the error

is known j periods in advance. Consequently, the preceding equations imply j-period

imperfect foresight with respect to government expenditure shocks. In the following

exercise, j is set to 1, corresponding to the specification in our empirical application

in the next section.20 This setup is quite convenient in the sense that by varying the

variances of the anticipated and unanticipated shock, eGFt and eEGt , respectively, it is

20This is an additional slight deviation from Ramey’s (2009) original model, where she introduces

two periods of foresight. Our estimation approach could also accommodate such a setting, but we

want to be consistent with the informational assumptions employed in our subsequent empirical

investigation.
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Table 3.1: Calibration

Symbol Value Symbol Value Symbol Value Symbol Value

β 0.99 ρ2 0.95 σeψ 0.008 σem 0.005

α 0.33 ρ3 0.95 σex 0.012 d1 1.4

δ 0.023 ρ4 0.95 σeGF 0.0275 d2 -0.18

ρ1 0.95 σeZ 0.01 σeEG 0.005 d3 -0.25

possible to vary the relative importance of the two shocks for government expenditure.

As σ2
eEG tends to zero, we approach a case of j-period perfect foresight, whereas when

σ2
eGF goes to zero, fiscal foresight will vanish. Furthermore, Ramey (2009) introduces

measurement error in the logarithm of output, governed by an AR(1) process with

autocorrelation coefficient ρ4 and variance σ2
em .

With respect to the calibration of the model, the same parameters are chosen as

in Ramey (2009), where one time period in the model corresponds to a quarter. The

calibration of the stochastic process for investment-specific technology, which is not

present in Ramey’s (2009) original model, is taken from In and Yoon (2007). These

authors estimate this process for quarterly data, following an approach introduced by

Greenwood, Hercowitz, and Krusell (1997, 2000), where the latter use annual data.

Furthermore, we distribute the variance of the government expenditure shock given

by Ramey (2009) among the anticipated and unanticipated part. In our benchmark

calibration, we choose the same value for the standard deviation of the forecast error

with respect to government spending as for the standard deviation of the measurement

error in output. All in all, the values chosen are standard and summarized in Table 3.1.

Based on this calibration, we compute the eigenvalues of the matrix mentioned

in Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson’s (2007) invertibility

condition. In this way we can check, whether the equilibrium process of the model just

presented features a non-invertible moving-average component. Indeed, two eigenval-

ues are larger than one in modulus, implying that a standard VAR will not be able to

recover the true economic shocks from current and past endogenous variables.21 Even

21For this model, the eigenvalues of the matrix A − BD−1C in modulus are as follows: 1.6245,

1.6245, 0.9977, 0.7442, 0.7442, 0, 0, 0, 0, 0, 0.
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though we know that the economic shocks cannot be exactly recovered from the ob-

served current and past endogenous variables used in a VAR, it is still possible that (a

subset of) those shocks can be reconstructed with relatively high accuracy. This point

is made by Sims and Zha (2006) and demonstrated for a particular DSGE model.

Since we are primarily interested in impulse response functions, in the following we

check the actual severity of the invertibility problem introduced by fiscal foresight

by comparing the theoretical impulses responses to the estimated ones obtained from

a standard VAR using Blanchard and Perotti’s (2002) identification scheme. Fur-

thermore, by computing the corresponding impulse responses using an expectation

augmented VAR, we can examine whether our approach is able to align the informa-

tion sets of the agents and econometrician and can cope with the more demanding

informational setup introduced by anticipation of fiscal policy.

Taking the theoretical impulse responses as a reference point, we simulate 1000 sets

of time series of 100 observations from the setup described above and subsequently

employ these artificial data in the estimation of a standard VAR and an expectation

augmented VAR. Since our main focus is on the consumption response to an antici-

pated government spending shock, we concentrate on bivariate VARs in consumption

and actual government expenditure while solely plotting the impulse response for

consumption with respect to a shock to the latter variable. In the standard VAR,

we use a Cholesky decomposition to identify the structural shocks, where government

spending is ordered first. In this simplified setting, this amounts to the identification

scheme of Blanchard and Perotti (2002), where the consumption elasticity of govern-

ment spending is assumed to be zero contemporaneously. Concerning the expectation

augmented VAR, we proceed as described in the previous section. In both cases, we

include a constant and four lags of the endogenous variables in the estimation.22

The results are presented in Figure 3.2.23 Each graph plots the response of con-

22This follows the specification of Ramey (2009). In her paper, she performs a similar exercise,

in order to stress the importance of timing in a VAR. In particular, she compares two recursively

identified VARs, where in the first estimation she uses actual government expenditure, Gt, and in

the second one the forecast of that variable, GF,j
t .

23The corresponding results when only anticipated shocks are present in the economic model can

be found in Figure 3.19 in the appendix. The dynamic responses are almost identical to the ones

presented here, highlighting the robustness of the expectation augmented VAR to the joint presence
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sumption to a one standard deviation anticipated or unanticipated shock to govern-

ment expenditure over a horizon of 20 periods. In the theoretical model, the response

to both of those shocks is qualitatively the same. Consequently, and since our main

focus is on the issue of fiscal foresight, we just show the theoretical impulse response re-

sulting from the model for the anticipated shock to government expenditure, displayed

in the first graph of the figure. The remaining plots show the corresponding impulse

response function for the standard and expectation augmented VAR, respectively. We

present the median dynamic response as well as the 16th and 84th percentile obtained

from the 1000 simulation runs, thus also plotting 68% confidence intervals.24 The

timeline is normalized in such a way that period 0 corresponds to the point in time

when there is the actual change in government spending, potentially coinciding with

an unanticipated shock to government expenditure. The starting point, however, is

period -1, when in the theoretical model, which governs the data generating process,

the news about an increase in government expenditure arrives. This corresponds to

the anticipated government spending shock.25

In the theoretical model, even though government spending does not move until

period 0, consumption reacts immediately upon arrival of the news, i.e., in period

-1. Due to the negative wealth effect, consumption drops on impact followed by a

slow increase. Such a response, however, does not result when estimating a standard

VAR and employing the well-established identification approach of Blanchard and

Perotti (2002). In particular note that this conclusion is unaltered if instead an

unanticipated government expenditure shock is considered, since the dynamic response

in the theoretical model is qualitatively the same for both of those shocks.26 The

of anticipated and unanticipated shocks.

24In this regard, we follow the literature on the effects of fiscal policy shocks. See, for example,

Blanchard and Perotti (2002) or Ramey (2009).

25The remaining theoretical impulse responses corresponding to an anticipated government ex-

penditure shock are presented in Figure 3.20 in the appendix. Note in particular that all variables

except government spending, of course, move immediately when the news about the shock arrives.

26The latter comparison might be more appropriate, as a standard VAR is only able to identify a

government spending shock which immediately leads to a change in government expenditure. The

arrival of the news in this setup coincides with the actual change in the fiscal variable. Consequently,

the impulse response of consumption in this case starts at period 0.
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Figure 3.2: Theoretical and VAR impulse responses
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Notes: This figure shows the theoretical and VAR impulse responses

of consumption to an anticipated one standard deviation shock to

government spending as well as 68% confidence intervals. The eco-

nomic model features both anticipated and unanticipated shocks.

consumption response for the standard VAR is insignificant over the entire horizon,

where the median response is basically zero on impact and then somewhat decreases.

Such a result is in line with typical findings of the VAR approach concerning the effects

of fiscal policy shocks. In this model, problems related to non-invertibility due to fiscal

policy anticipation do not seem to be only a theoretical feature of the data, but have

important consequences for empirical research. Reflecting Ramey’s (2009) argument,

when using standard VAR techniques, structural shocks are not identified correctly,

invalidating the structural analysis in a qualitatively and quantitatively important

way.27

27As expected, these problems become less severe when the importance of unanticipated relative
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The expectation augmented VAR, on the other hand, seems to be able to align the

information sets of the private agents and the econometrician. It correctly captures

the response of consumption to the anticipated government spending shock (third

graph of Figure 3.2), even in the case when foresight is not perfect but obscured by

unanticipated fiscal shocks. Not only the sign and subsequent qualitative movement

of consumption corresponds to the true response derived from the model, but also

the estimated impulse responses are very close to the theoretical one. The median of

the estimated impact responses is -0.022 compared to -0.024 in the theoretical model.

Moreover, the 68% confidence band includes the true impulse response up to period

5, and the theoretical response is just marginally outside the confidence interval after

that.

Overall, the expectation augmented VAR thus correctly captures the effects of

an anticipated fiscal shock. It addresses the more complex information structure of

anticipated shocks within a VAR framework and delivers results closely matching

the theoretical impulse responses. Opposed to standard approaches, it thus correctly

takes into account the informational setup of the underlying data generating process,

thereby rendering valid structural analysis feasible. In the next section, we apply our

expectation augmented VAR to real-life data in order to investigate the impact of

fiscal policy anticipation on the consumption response to a shock to total government

expenditure and its subcomponents.

3.4 Empirical investigation

3.4.1 Data and elasticities

With respect to the data of our empirical investigation, real private consumption,

real GDP, as well as real government direct expenditure, and real government net

revenue for the US are defined as in Blanchard and Perotti (2002).28 The series are

to anticipated government spending shocks is increased. Reducing the importance of fiscal foresight

yields impulse responses for a standard VAR which are quite close to the theoretical ones.

28Figures 3.21 and 3.22 in the appendix plot the expenditure and tax to GDP ratio, respectively, as

shown in Blanchard and Perotti (2002). The data are taken from the Bureau of Economic Analysis

website (www.bea.gov).
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seasonally adjusted, in per capita terms, and we take logs. The frequency of the

employed time series is crucial for the identification approach. In order to exclude

the possibility of discretionary fiscal policy actions within one time period, quarterly

data are used. The system is estimated in levels including a constant, a time trend,

and a dummy to account for the large tax cut in 1975:2. The sample starts in 1947:1

and runs up to 2009:2. The number of lags for the VAR is chosen to be three as

suggested by the Akaike information criterion (AIC). With respect to the output

and consumption elasticities, we follow Blanchard and Perotti (2002) and assume

that there is no automatic response of government spending in the current and the

previous quarter, and that the consumption elasticities of net revenue are 2.08∗0.6468
and 0.16∗0.6468 for time t and t−1, respectively, where 2.08 and 0.16 are the output

elasticities and 0.6468 is the average share of consumption in GDP over the sample

period. We perform various robustness checks concerning these elasticities without

any substantial change in results.29

3.4.2 Total government expenditure

The starting point of our empirical investigation is a VAR à la Blanchard and Perotti

(2002), featuring highly aggregated fiscal variables. In order to investigate Ramey’s

(2009) hypothesis that when fiscal policy anticipation is properly taken into account

the positive consumption response typically found in VAR studies will turn negative,

our VAR models include real private consumption, real direct expenditure, and real

net revenue as endogenous variables. In Figures 3.3 and 3.4, we present the responses

of private consumption to a shock to government spending derived from a standard

VAR and an expectation augmented VAR, respectively.30 Both of those responses are

basically insignificant. In the model which is not taking into account anticipation,

29In particular, as do Blanchard and Perotti (2002), we also set the output elasticity of net revenue

at t− 1 to 0 and 0.5, and consequently the consumption elasticity to 0 and 0.5 ∗ 0.6468; see Section

3.5.

30We plot the point estimate of the impulse response function as well as 68% bootstrap confidence

bands based on 5000 replications. We show 68% confidence intervals to be comparable to the lit-

erature, e.g., Blanchard and Perotti (2002) or Ramey (2009). Moreover, the corresponding impulse

response functions with respect to a shock to government revenue for the current and following

specifications can be found in the appendix.
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Figure 3.3: Standard VAR: government expenditure

0 2 4 6 8 10 12

−0.05

0

0.05

0.1

0.15

Govt. E on C

Notes: This figure plots the response of private consumption to

a government expenditure shock, employing a standard SVAR

model without anticipation. Sample: 1947q1-2009q2.

however, consumption turns significantly positive after the ninth quarter, while in

the model with anticipation the consumption response is insignificant over the entire

horizon considered. Of course, the insignificant response of the standard VAR stands

somewhat in contrast to the paper by Blanchard and Perotti (2002). It should be

noted, however, that we show the effect on private consumption, not GDP. Moreover,

the respective sample periods under consideration are different. Whereas Blanchard

and Perotti (2002) base their results on the sample 1960:1 – 1997:4, we not only

use data also from the first decade of the new century but in addition include the

1950s. The latter period might be important, which we will discuss below. The main

point, though, to be taken from this first set of results is that at least at this highly

aggregated level, taking into account anticipation issues does not overturn the results

obtained from a standard VAR.

When considering a variable like real government direct expenditure, however, we

are lumping together the different subcomponents of this variable, which could have

very different effects on private consumption. For example, expenditure on education

might have a different effect on economic activity than defense expenditure. Indeed,

the crucial feature of models à la Baxter and King (1993) to generate a negative

consumption response to an increase in government expenditure is that the latter

represents a withdrawal of resources from the economy, which does not substitute or

complement private consumption nor contributes to production. Thus, even though

government spending might affect utility, it does not influence private decisions except
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Figure 3.4: Expectation augmented VAR: government expenditure
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Notes: This figure plots the response of private consumption to an anticipated

government expenditure shock, employing an expectation augmented VAR. The

shock occurs in period 0 and is anticipated in period -1. Sample: 1947q1-

2009q2.

through the budget constraint. However, Baxter and King (1993) show that once gov-

ernment expenditure enter the production function, for example, an increase in this

kind of spending can have very expansionary effects depending on the productivity

of the good. Consequently, already in the framework of this model, we might expect

public expenditure on non-defense items like education, infrastructure, or law enforce-

ment, which probably contribute to aggregate productivity, to induce an increase in

private consumption. Public spending on national defense, on the other hand, lacking

any complementarity or substitutability with respect to private consumption or any

contribution to the private production process, might lead to the opposite response.31

In fact, a change in defense spending is probably the closest approximation to the

standard policy experiment conducted in models like Baxter and King (1993), i.e., a

setup where in particular unproductive government expenditure are considered. But

when we combine those defense and non-defense items in a single variable and study

its dynamic effects on private consumption, the respective individual responses might

cancel and lead to such weak results as reported above.

Consequently, in order to avoid this blurring of results, we focus in the following on

31Following the same reasoning, Turnovsky and Fisher (1995) in their theoretical investigation

of the macroeconomic effects of subcomponents of government spending, distinguish “government

consumption expenditure” and “government infrastructure expenditure.” The former includes items

like national defense or social programs, whereas the latter consists of spending on roads, education,

and job training, for example.
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different subcomponents of government spending. In particular, we distinguish defense

and non-defense expenditure. Considering defense spending is, of course, similar in

spirit to Ramey’s (2009) exercise of using dummy variables or other more sophisticated

measures to capture large increases in government spending related to wars. Thus, we

are able to check whether we can replicate Ramey’s (2009) findings in an SVAR-based

framework, when taking into account anticipation issues. Our method, however, is

not confined to defense spending, so that we can also investigate the role of fiscal

foresight when considering non-defense items of government expenditure.32

3.4.3 Defense expenditure

First, we look at public expenditure on national defense, which exhibit some noticeable

features, particularly compared to non-defense spending. Major movements in total

US government expenditure since the 1950s are related to defense spending. Figure 3.5

shows that while real non-defense expenditure per capita have increased substantially,

the increase is rather smooth and follows GDP growth. In contrast, defense spending

moved considerably and is rather volatile reflecting the different engagements of the

USA in international wars. Most notably, the 1950s are characterized by a strong

increase in defense expenditure, mainly due to the Korean War build-up. As depicted

in Figure 3.6, this military engagement, along with increased defense spending due to

the cold war, led to an increase of the ratio of defense expenditure to GDP from less

than 7 percent in 1948 to almost 15 percent in 1952.33 Moreover, the correlation be-

32We distinguish defense and non-defense spending and interpret them in terms of their respective

degree of substitutability or complementarity or degree of productivity in the private production

process in the spirit of Baxter and King (1993) and Turnovsky and Fisher (1995). Another strand of

the literature highlights the importance of breaking total government spending down into purchases

of goods and services and compensation of public employees (Rotemberg and Woodford 1992, Finn

1998, Forni, Monteforte, and Sessa 2009, Gomes 2009). Our focus, however, is on the different

results of the narrative and SVAR approaches concerning the effects of fiscal policy and we therefore

highlight defense and non-defense expenditure as subcomponents of total government spending.

33Concerning the choice of the sample period, we follow Ramey’s (2008) argument and do not

disregard the 1950s – including the Korean War – in the subsequent estimations. The Korean War,

she forcefully argues, is an important source of variation in the data and should not be ignored. She

notes that “[e]liminating the Korean War period from a study of the effects of government spending

shocks makes as much sense as eliminating the 1990s from a study of the effects of information
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Figure 3.5: Real per capita govern-

ment spending
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Figure 3.6: Ratio of defense expendi-

ture to GDP (in percent)
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tween the detrended series of total government spending and defense spending is 0.81,

whereas it is only 0.39 for total government expenditure and non-defense spending.

Turning to the estimation results, Figure 3.7 shows the response of consumption

to a shock to defense spending derived from a standard fiscal VAR in the spirit of

Blanchard and Perotti (2002). Compared to the dynamic response to a shock to total

government spending, the point estimate shifts markedly downwards, in line with our

expectations derived from economic theory. However, it is insignificant except for

periods 2-6. In particular, the point estimate on impact is zero and not significant.

A very different picture emerges, when the VAR is augmented with our methodology

to account for anticipation effects, depicted in Figure 3.8. The dynamic response

of consumption is significantly negative up to period 7. In particular, we find that

consumption falls on impact and after further decreasing for a couple of quarters it

slowly increases again. Consequently, even though defense spending does not move

before period 0, the private agents respond immediately when they learn about the

shock in period -1.

Thus, we can reconcile the narrative and SVAR approaches by replicating Ramey’s

(2009) findings in an SVAR-based framework. Our results are furthermore in line

with Ramey’s (2009) hypothesis that the difference between those two approaches

arises because standard VAR techniques fail to allow for anticipation issues. In order

technology.” Not surprisingly, when disregarding the important period 1947-1959 in the following

estimation, we obtain weaker results (Figures 3.25 and 3.26 in the appendix).
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Figure 3.7: Standard VAR: defense expenditure
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Notes: This figure plots the response of private consump-

tion to a government defense expenditure shock, employ-

ing a standard SVAR model without anticipation. Sample:

1947q1-2009q2.

Figure 3.8: Expectation augmented VAR: defense expenditure
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Notes: This figure plots the response of private consumption to an antic-

ipated government defense expenditure shock, employing an expectation

augmented VAR. Sample: 1947q1-2009q2.

to see those effects clearly, however, it is necessary to look at more disaggregated

variables to avoid interferences due to potentially different dynamic responses to other

items of total government expenditure. All in all, our results underscore the need to

appropriately take into account fiscal foresight in empirical research.

We can also look at these results from the viewpoint of the problems related to

the misalignment of information sets of private agents and the econometrician due to

fiscal policy anticipation. In those settings, even though we cannot obtain the true

structural shocks from current and past endogenous variables, the system is invertible

in current and future variables. Thus, as pointed out by Leeper, Walker, and Yang

(2009), for example, it is possible to understand the two aforementioned approaches
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within the single framework of finding instruments for future variables. In this regard,

it is encouraging that two different approaches of tackling those problems, in particular

two different sets of instruments -“war dummies”on the one hand and future identified

shocks to defense spending on the other - yield very similar results.

3.4.4 Non-defense expenditure

Next, we move to non-defense spending. As explained at the beginning of this section,

we might expect private consumption to react differently to rather wasteful defense

and potentially productive non-defense expenditure. Since private agents reoptimize

and thus respond to new information as soon as it arrives regardless of whether it

concerns defense or non-defense items of government spending, fiscal foresight is not

confined to changes in the former variable. Thus, we move beyond Ramey’s (2009)

exercise and take advantage of the flexibility of our econometric approach, and in-

vestigate the consequences of fiscal policy anticipation for dynamic responses to non-

defense expenditure.

In Figure 3.9, we plot the impulse-response function of private consumption to a

shock to government expenditure, where the latter do not include defense spending. It

is derived from a three variable VAR estimated over the entire sample period without

taking into account anticipation. In this standard framework, we find a significantly

positive consumption response after 5 quarters. Thus, the dynamics move broadly

in the direction implied by economic theory. The point estimate, however, is still

basically zero on impact and insignificant, and it takes a couple of quarters for the

response to move significantly into positive territory. As Figure 3.10 makes clear,

extending the VAR to allow for anticipation of fiscal shocks yields a different picture.

We now find a significantly positive consumption response already in period -1, when

the increase in non-defense expenditure is anticipated. Furthermore, the response

stays significantly positive over the entire horizon under consideration.

Analogous to the results obtained for defense spending, anticipation effects are

also of empirical relevance when considering non-defense expenditure. This finding

is in line with Ramey’s (2009) overall argument, even though we obtain a significant

increase in private consumption. Thus, it is important to distinguish the potentially
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Figure 3.9: Standard VAR: non-defense expenditure
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Notes: This figure plots the response of private consumption

to a government non-defense expenditure shock, employing a

standard SVAR model without anticipation. Sample: 1947q1-

2009q2.

Figure 3.10: Expectation augmented VAR: non-defense expenditure
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Notes: This figure plots the response of private consumption to an antici-

pated government non-defense expenditure shock, employing an expectation

augmented VAR. Sample: 1947q1-2009q2.

different dynamic responses to the separate subcomponents of total government ex-

penditure.

An unambiguously positive consumption response would be expected when con-

sidering the model of Baxter and King (1993) for the case of productive government

expenditure, for example.34 Given the opposite findings for defense and non-defense

expenditure, the effects of fiscal policy when lumping together those two items in one

fiscal aggregate are likely to be weak.

As a final analysis of this section, we take up another point made by Ramey (2009).

34Of course, this result is also in line with the model of Gaĺı, López-Salido, and Vallés (2007).
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Figure 3.11: Standard VAR: federal non-defense expenditure
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Notes: This figure plots the response of private consumption to a fed-

eral non-defense expenditure shock, employing a standard SVAR model

without anticipation. Sample: 1947q1-2009q2.

She argues that aggregate VARs are not very good at capturing shocks to spending

which is determined locally. Consequently, in order to make sure that our findings

are not driven by the fact that large parts of non-defense expenditure are made by

states and local authorities, we look at federal non-defense consumption spending.35

As depicted in Figures 3.11 and 3.12, we find our previous results confirmed. In

particular, the consumption response derived from an expectation augmented VAR

is again significantly positive on impact and over the entire horizon. But also the

dynamic response based on a standard VAR is very similar. These results suggest that

the difference between defense and non-defense spending is not determined by the fact

that large parts of non-defense spending are made by states and local authorities.

All in all, our findings highlight the importance of taking into account fiscal fore-

sight when studying empirically the dynamic effects of changes in fiscal policy on

economic activity. Our results are in line with Ramey’s (2009) hypothesis that stan-

dard VARs fail to take into account anticipation issues and therefore yield incorrect

inferences. Motivated by economic theory, we emphasize the need to look at differ-

ent subcomponents of total government spending and show that they have different

effects on the macroeconomy. Lumping together the different items in a single fiscal

aggregate blurs the results. For defense spending, we are able to replicate Ramey’s

(2009) findings of a decrease in private consumption in an SVAR-based framework

35Please note that since state and local governments do not have expenditure on national defense,

federal defense spending equals total defense spending.
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Figure 3.12: Expectation augmented VAR: federal non-defense expenditure
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Notes: This figure plots the response of private consumption to an anticipated fed-

eral non-defense expenditure shock, employing an expectation augmented VAR. Sample:

1947q1-2009q2.

and can thereby reconcile the narrative and SVAR approaches of studying the effects

of fiscal policy. For non-defense spending, we also find an important role for fiscal

policy anticipation, but in this case private consumption increases significantly. This

result is exactly what would be expected when considering standard neoclassical or

New-Keynesian models of fiscal policy for the case of productive public expenditure,

for example.

Our findings, moreover, correspond to the results of the recent papers by Kri-

woluzky (2009) and Mertens and Ravn (2009). These authors also study the effects of

fiscal foresight on the dynamic responses to government expenditure shocks.36 Neither

paper, however, looks at subcomponents of total government spending. By distin-

guishing defense and non-defense spending, we can put their findings into perspective

and also qualify the result in an earlier version of the paper on which this chapter is

based, where we find a negative consumption response in an expectation augmented

VAR (Tenhofen and Wolff 2007). For instance, similar to our finding for the con-

sumption response to total government expenditure, Kriwoluzky (2009) also obtains a

rather weak response in the first couple of quarters. Mertens and Ravn (2009), on the

other hand, conclude based on their results that anticipation of fiscal policy does not

36The former employs sign restrictions derived from a DSGE model to identify the structural

shocks of a vector MA (VMA) model estimated by likelihood methods. The latter consider a vector

error-correction model (VECM) and use Blaschke matrices as suggested by Lippi and Reichlin (1993,

1994) to obtain non-fundamental innovations.
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alter the positive effects of fiscal policy on consumption and output. Finally, from the

viewpoint of the problems related to the misalignment of information sets due to fiscal

foresight, we find encouraging that different approaches of tackling these problems, in

particular different sets of instruments, yield basically the same results. In the next

section, we turn to the robustness of our findings.

3.5 Robustness checks

First, we want to make sure that our results are not driven by the omission of other,

potentially important macroeconomic variables. In particular, we consider adding

measures of real output and/or a short-term interest rate to the specifications men-

tioned above.

With respect to the latter variable, while Blanchard and Perotti (2002) also do not

control for short-term interest rates, follow-up papers by Perotti add such a variable

to a standard fiscal SVAR. Since monetary policy is not orthogonal to fiscal policy,

its inclusion might alter our results. We therefore extend our SVAR approach to also

feature a short-term interest rate. In particular, following Giordano, Momigliano,

Neri, and Perotti (2007) and Tenhofen, Wolff, and Heppke-Falk (2010), we assume a

recursive ordering for the equations of the non-fiscal variables. Accordingly, whereas

consumption is assumed not to react to the short-term interest rate contempora-

neously, this is not true vice versa. This ordering assumption, reflecting the more

sluggish nature of consumption compared to financial variables like interest rates, is

common practice in the monetary VAR literature. Furthermore, when estimating the

interest-rate equation, we have to add to the set of instruments the structural shock

to consumption, vct , obtained from the consumption equation, in order to get unbiased

estimates. Apart from that, the additional equation for the interest rate also includes

expectation terms of the fiscal variables, in order to be consistent with the assumption

of fiscal policy anticipation.37

37For more details on the estimation when the block of non-fiscal variables includes more than one

variable, see Giordano, Momigliano, Neri, and Perotti (2007) and Tenhofen, Wolff, and Heppke-Falk

(2010).
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Figure 3.13: Standard VAR: defense expenditure (incl. 3-month T-bill rate)
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Notes: This figure plots the response of private consumption to a government defense expen-

diture shock, employing a standard SVAR model without anticipation. The VAR includes

the 3-month T-bill rate. Sample: 1947q1-2009q2.

With respect to data, in our estimation we use the 3-month T-bill rate.38 Con-

cerning the (semi-)elasticities, we follow Perotti (2005) in assuming that government

spending does not react to changes in the interest rate in the current and also in the

previous quarter. Indeed, the government spending variable does not include interest

payments. Regarding the impact on revenue, we also follow Perotti (2005) and assume

no contemporaneous response, but also no response to movements in the interest rate

in period t − 1. However, we checked robustness of the results to changes in these

elasticities. Our findings are not altered in substance and available from the authors.

Figures 3.13 and 3.14 show the results for a defense expenditure shock once the

respective specification is extended to control for the 3-month T-bill rate. As in

the benchmark case, we find consumption to fall on impact in the expectation aug-

mented SVAR, while in the case of the standard SVAR it is insignificant on impact.

Furthermore, the resulting impulse responses are quite similar to the ones arising in

the corresponding three-variable benchmark case. Thus, the inclusion of an interest

rate does not significantly alter the effects of government defense spending on private

consumption.

Next, we consider the effects of including real GDP in addition to the 3-month T-

bill rate and the three variables of our specification focusing on defense spending, i.e.,

real private consumption, real government defense expenditure, as well as real gov-

38The corresponding time series is taken from the FRED database of the Federal Reserve Bank of

St. Louis.
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Figure 3.14: Expectation augmented VAR: defense expenditure (incl. 3-month T-bill

rate)
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Notes: This figure plots the response of private consumption to an anticipated government defense

expenditure shock, employing an expectation augmented VAR. The VAR includes the 3-month T-bill

rate. Sample: 1947q1-2009q2.

ernment net revenue. GDP and private consumption are two closely linked variables.

The SVAR approach up to now did not control for the developments of the former

variable. It is therefore possible that our results are spuriously driven by the omission

of this important determinant of private consumption as well as of government activ-

ity. We therefore extend the specification of the preceding paragraph to also control

for real GDP per capita. This extension is analogous to the one just discussed, where

we assume that output does not react contemporaneously to consumption and the

short-term interest rate, whereas consumption does react to developments in output

within the same period, but not to movements in the interest rate. The latter vari-

able, in turn, is considered to be the least sluggish one among the non-fiscal variables,

so that it is assumed to react to both output and consumption contemporaneously.39

Whereas the assumption with respect to the interest rate is probably uncontroversial,

the ordering of the other two variables might be less so. Consequently, in order to

check the robustness of our findings, we changed the ordering of output and consump-

tion in our estimation. However, this does not affect our results. As already indicated

in Section 3.4, with respect to the output elasticities, we assume the same values as

in Blanchard and Perotti (2002), which are furthermore in line with our assumptions

39Note that in the estimation of the consumption equation, we have to extend the set of instru-

ments to include the structural shock to output, vyt . When estimating the interest-rate equation, we

furthermore have to add the structural shock to consumption, vct .
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Figure 3.15: Expectation augmented VAR: defense expenditure (incl. GDP and 3-

month T-bill rate)
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Notes: This figure plots the response of private consumption to an anticipated government defense

expenditure shock, employing an expectation augmented VAR. The VAR includes GDP and the

3-month T-bill rate. Sample: 1947q1-2009q2.

concerning the consumption elasticities.

Considering Figure 3.15, we indeed find, in line with standard economic theory as

well as our previous results, that shocks to government defense expenditure lead to a

decrease in private consumption in the expectation augmented VAR, even when con-

trolling for output per capita, where the consumption response is also quantitatively

of similar size. Thus, the inclusion of GDP does not affect our main results.40

When looking at non-defense expenditure, we also find our main results confirmed

(Figures 3.16 to 3.18).41 The inclusion of a short-term interest rate or GDP does

not alter the previous findings. Consumption increases, in particular on impact, in

response to a non-defense spending shock in the expectation augmented VAR. In the

standard VAR, on the other hand, consumption only increases after a couple of periods

and the point estimate is basically zero on impact and insignificant.

Our final robustness check focuses on the elasticities. First, in our specification

featuring defense expenditure, we set the elasticity of revenue to private consumption

at t − 1 to zero. Figure 3.37 in the appendix shows that the negative consumption

response is unaffected. Increasing this elasticity to (0.5 ∗ 0.6468) yields Figure 3.38,

40The corresponding graph for the standard fiscal VAR is also basically unchanged and given in

the appendix (Figure 3.35).

41The graph concerning the standard VAR when including real GDP as well as a short-term interest

rate is again given in the appendix (Figure 3.36).



136

Figure 3.16: Standard VAR: non-defense expenditure (incl. 3-month T-bill rate)
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Notes: This figure plots the response of private consumption to a government non-defense

expenditure shock, employing a standard SVAR model without anticipation. The VAR includes

the 3-month T-bill rate. Sample: 1947q1-2009q2.

Figure 3.17: Expectation augmented VAR: non-defense expenditure (incl. 3-month

T-bill rate)
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Notes: This figure plots the response of private consumption to an anticipated government non-

defense expenditure shock, employing an expectation augmented VAR. The VAR includes the 3-

month T-bill rate. Sample: 1947q1-2009q2.

where the response to a shock to defense spending also remains negative and signif-

icant. Next, when doing the same exercise based on our specification featuring non-

defense expenditure, we also find our previous results confirmed. Regardless whether

we use an elasticity of revenue to private consumption at t−1 of zero or (0.5∗0.6468),
private consumption increases significantly on impact and over the entire horizon con-

sidered (Figures 3.39 and 3.40 in the appendix). Furthermore, using the tax revenue

elasticity to GDP as the elasticity of tax revenue to consumption does not change the

results (Figures 3.41 to 3.44 in the appendix). All in all, even when adding macroe-

conomic variables to the system or when changing the exogenous elasticities needed
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Figure 3.18: Expectation augmented VAR: non-defense expenditure (incl. GDP and

3-month T-bill rate)
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Notes: This figure plots the response of private consumption to an anticipated government non-

defense expenditure shock, employing an expectation augmented VAR. The VAR includes GDP and

the 3-month T-bill rate. Sample: 1947q1-2009q2.

to identify the SVAR, we clearly find our previous findings confirmed.

3.6 Conclusion

How does private consumption react to public expenditure shocks? In this chapter, we

develop an SVAR approach which allows for anticipation of fiscal policy shocks. Our

goal is to avoid problems encountered by standard VARs and align the information

sets of the private agents and the econometrician, which makes valid structural analy-

sis feasible. We are able to exactly capture a situation, where private agents perfectly

know fiscal shocks one period in advance. Even though our method is not general

in the sense of being applicable in the presence of all possible kinds of information

flows, the findings of a simulation exercise document that our approach is robust to

situations with a potentially different information structure. When confronted with

data simulated from a model featuring fiscal foresight and an equilibrium process

with a non-invertible MA component, our method correctly captures macroeconomic

dynamics. In contrast, standard VARs do not capture the dynamics properly. This

performance is even more noticeable as the economic model under consideration fea-

tures both anticipated and unanticipated fiscal shocks, so that private agents only

have imperfect foresight. This makes it more difficult for our method to trace out the

individual dynamic effects.



138

The empirical investigation highlights the importance of taking into account an-

ticipation issues in fiscal VAR studies. In contrast to the rather weak and mostly

insignificant consumption responses in a standard VAR in the spirit of Blanchard

and Perotti (2002), our expectation augmented VAR yields unambiguous responses.

In this regard, we show that it is important to distinguish subcomponents of total

government spending, which might have different effects on the macroeconomy. This

focus on more disaggregated variables is facilitated by the flexibility of our econometric

approach and allows us to qualify recent findings in the literature. Considering total

government expenditure, on the other hand, does not yield clear-cut results. This is

due to the fact that when considering this aggregate, we lump together subcomponents

with potentially different effects on the macroeconomy.

The response of private consumption to a shock to defense spending in the expec-

tation augmented VAR corresponds to Ramey’s (2009) finding of a negative consump-

tion response. Thus, we are able to reconcile the narrative and SVAR approaches of

studying the effects of fiscal policy. Non-defense spending, on the other hand, yields

a significantly positive response of private consumption. All in all, our findings are in

line with Ramey’s (2009) overall argument that standard VAR techniques fail to allow

for anticipation issues which invalidates the structural analysis. Moreover, the results

reported for the expectation augmented VAR are what would be expected when con-

sidering standard macroeconomic models for different degrees of productivity of public

expenditure. Defense and non-defense spending are very different in nature, where

the latter has a more productive character.



Appendix to Chapter 3

Figure 3.19: Theoretical and VAR impulse responses (only anticipated shocks)
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Notes: This figure shows the theoretical and VAR impulse responses

of consumption to an anticipated one standard deviation shock to

government spending as well as 68% confidence intervals. The eco-

nomic model features only anticipated shocks.
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Figure 3.20: Theoretical impulse responses
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Notes: This figure shows the theoretical impulse responses to a one standard

deviation anticipated shock to government spending resulting from the eco-

nomic model.

Figure 3.21: Ratio of government

direct expenditure to GDP (in %)
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Figure 3.22: Ratio of government

net revenue to GDP (in %)
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Figure 3.23: Standard VAR: gov-

ernment revenue
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Notes: Response of private consumption

to a government revenue shock, employing

a standard SVAR model without anticipa-

tion. Sample: 1947q1-2009q2.

Figure 3.24: Expectation aug-

mented VAR: government revenue
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Notes: Response of private consump-

tion to an anticipated government rev-

enue shock, employing an expectation aug-

mented VAR. Sample: 1947q1-2009q2.

Figure 3.25: Standard VAR: de-

fense expenditure (ex 1950s)
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Notes: Response of private consumption to

a government defense expenditure shock,

employing a standard SVAR model with-

out anticipation. Sample: 1960q1-2009q2.

Figure 3.26: Expectation aug-

mented VAR: defense expenditure

(ex 1950s)
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Notes: Response of private consumption

to an anticipated government defense ex-

penditure shock, employing an expectation

augmented VAR. Sample: 1960q1-2009q2.
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Figure 3.27: Standard VAR: gov-

ernment revenue (incl. defense ex-

penditure)
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Notes: Response of private consumption

to a government revenue shock, employing

a standard SVAR model without anticipa-

tion featuring defense expenditure. Sam-

ple: 1947q1-2009q2.

Figure 3.28: Expectation aug-

mented VAR: government revenue

(incl. defense expenditure)
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Notes: Response of private consumption to

an anticipated government revenue shock,

employing an expectation augmented VAR

featuring defense expenditure. Sample:

1947q1-2009q2.

Figure 3.29: Standard VAR: gov-

ernment revenue (incl. defense ex-

penditure, ex 1950s)
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Notes: Response of private consumption

to a government revenue shock, employing

a standard SVAR model without anticipa-

tion featuring defense expenditure. Sam-

ple: 1960q1-2009q2.

Figure 3.30: Expectation aug-

mented VAR: government revenue

(incl. defense expenditure, ex

1950s)
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Notes: Response of private consumption to

an anticipated government revenue shock,

employing an expectation augmented VAR

featuring defense expenditure. Sample:

1960q1-2009q2.
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Figure 3.31: Standard VAR: gov-

ernment revenue (incl. non-defense

expenditure)
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Notes: Response of private consumption

to a government revenue shock, employ-

ing a standard SVAR model without antic-

ipation featuring non-defense expenditure.

Sample: 1947q1-2009q2.

Figure 3.32: Expectation aug-

mented VAR: government revenue

(incl. non-defense expenditure)
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Notes: Response of private consumption to

an anticipated government revenue shock,

employing an expectation augmented VAR

featuring non-defense expenditure. Sam-

ple: 1947q1-2009q2.

Figure 3.33: Standard VAR: gov-

ernment revenue (incl. federal non-

defense expenditure)
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Notes: Response of private consumption

to a government revenue shock, employing

a standard SVAR model without anticipa-

tion featuring federal non-defense expendi-

ture. Sample: 1947q1-2009q2.

Figure 3.34: Expectation aug-

mented VAR: government revenue

(incl. federal non-defense expendi-

ture)
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Notes: Response of private consumption to

an anticipated government revenue shock,

employing an expectation augmented VAR

featuring federal non-defense expenditure.

Sample: 1947q1-2009q2.
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Figure 3.35: Standard VAR: defense expenditure (incl. GDP and 3-month T-bill rate)
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Notes: Response of private consumption to a government defense expenditure shock, employing

a standard SVAR model without anticipation. VAR includes GDP and the 3-month T-bill rate.

Sample: 1947q1-2009q2.

Figure 3.36: Standard VAR: non-defense expenditure (incl. GDP and 3-month T-bill

rate)
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Notes: Response of private consumption to a government non-defense expenditure shock, employing

a standard SVAR model without anticipation. VAR includes GDP and the 3-month T-bill rate.

Sample: 1947q1-2009q2.
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Figure 3.37: Expectation aug-

mented VAR: defense expenditure

(εc,r(t− 1) = 0)
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Notes: Response of private consumption

to an anticipated government defense ex-

penditure shock, employing an expecta-

tion augmented VAR. Elasticity of tax rev-

enue to consumption at t − 1: 0. Sample:

1947q1-2009q2.

Figure 3.38: Expectation aug-

mented VAR: defense expenditure

(εc,r(t− 1) = 0.5 ∗ 0.6468)
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Notes: Response of private consumption

to an anticipated government defense ex-

penditure shock, employing an expectation

augmented VAR. Elasticity of tax revenue

to consumption at t− 1: 0.5*0.6468. Sam-

ple: 1947q1-2009q2.

Figure 3.39: Expectation aug-

mented VAR: non-defense expendi-

ture (εc,r(t− 1) = 0)
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Notes: Response of private consumption

to an anticipated government non-defense

expenditure shock, employing an expecta-

tion augmented VAR. Elasticity of tax rev-

enue to consumption at t − 1: 0. Sample:

1947q1-2009q2.

Figure 3.40: Expectation aug-

mented VAR: non-defense expendi-

ture (εc,r(t− 1) = 0.5 ∗ 0.6468)
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Notes: Response of private consumption to

an anticipated government non-defense ex-

penditure shock, employing an expectation

augmented VAR. Elasticity of tax revenue

to consumption at t− 1: 0.5*0.6468. Sam-

ple: 1947q1-2009q2.
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Figure 3.41: Standard VAR: de-

fense expenditure (εc,r(t) = 2.08)
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Notes: Response of private consumption to

a government defense expenditure shock,

employing a standard SVAR model with-

out anticipation. Elasticity of tax rev-

enue to consumption at t: 2.08. Sample:

1947q1-2009q2.

Figure 3.42: Expectation aug-

mented VAR: defense expenditure

(εc,r(t) = 2.08)
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Notes: Response of private consumption

to an anticipated government defense ex-

penditure shock, employing an expecta-

tion augmented VAR. Elasticity of tax rev-

enue to consumption at t: 2.08. Sample:

1947q1-2009q2.

Figure 3.43: Standard VAR: non-

defense expenditure (εc,r(t) = 2.08)
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Notes: Response of private consumption

to a government non-defense expenditure

shock, employing a standard SVAR model

without anticipation. Elasticity of tax rev-

enue to consumption at t: 2.08. Sample:

1947q1-2009q2.

Figure 3.44: Expectation aug-

mented VAR: non-defense expendi-

ture (εc,r(t) = 2.08)
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Notes: Response of private consumption

to an anticipated government non-defense

expenditure shock, employing an expecta-

tion augmented VAR. Elasticity of tax rev-

enue to consumption at t: 2.08. Sample:

1947q1-2009q2.



Concluding remarks

From a global perspective, this dissertation illustrates the consequences of choosing a

particular balance between completeness and manageability in terms of model build-

ing, both in the field of macroeconomics and econometrics. As a fundamental basis,

it emphasizes the close interaction of macroeconomic theory and empirical analy-

sis as well as novel econometric techniques. Each of the three chapters shows that

there are potentially dramatic consequences of taking into account, in a manageable

way, additional and – with respect to the question at hand – essential layers of re-

ality. In particular, in terms of econometric theory, Chapter 1 demonstrates that

considerably more precise estimates within a dynamic factor model are obtainable

by employing simple two-step estimators taking into account additional features of

the data-generating process, i.e., autocorrelation and heteroskedasticity. Chapter 2,

furthermore, considers a macroeconomic model featuring labor market frictions. It

highlights the important consequences for equilibrium allocations and optimal mone-

tary policy when altering the central aspect of the wage determination mechanism, so

that it is consistent with empirical evidence. This illustrates that the chosen degree of

abstraction might determine to a large extend the policy implications of a particular

model. Finally, Chapter 3 presents an empirical investigation, studying the effects of

fiscal policy on the macroeconomy. In this regard, it demonstrates the importance of

allowing for particular features of the information structure as well as of distinguishing

certain subcomponents of the fiscal variables, which might have different macroeco-

nomic effects as implied by economic theory. As a result, we can illustrate that while

at a certain level of abstraction, the findings of different approaches in the literature

seem to be in conflict with each other, at another level the antagonism vanishes.

More specifically, Chapter 1 considers efficient estimation of dynamic factor mod-
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els, a class of models popular in areas such as, for instance, macroeconomic forecasting

and structural analysis. A simple two-step estimation procedure is suggested to ob-

tain efficient estimates in the presence of both heteroskedasticity and autocorrelation.

Interestingly, with respect to the factors, it is only potential heteroskedasticity which

has to be taken into account, whereas for the loadings the relevant aspect is just auto-

correlation. We derive the asymptotic distribution of the estimators and show that it

is not affected by the estimation error in the covariance parameters and first stage PC

estimates of the factors or loadings. While, as a result, the feasible two-step PC-GLS

estimator is asymptotically as efficient as the estimator that (locally) maximizes the

full approximate likelihood function, small sample gains may be obtained by iterat-

ing the two-step estimator. This is indeed reflected in the results of our extensive

Monte Carlo investigation, which includes scenarios featuring autocorrelation, het-

eroskedasticity, and cross-sectional correlation as well as a setup based on a popular

macroeconomic data set. Moreover, we also document the superior performance of

the two-step PC-GLS estimator compared to standard PC.

The investigation of Chapter 2 is motivated by recent empirical findings with re-

spect to the structure of wage rigidity. It studies optimal monetary policy using a

simple New-Keynesian model featuring labor market frictions, heterogeneous wage

setting, as well as markup shocks. Replacing the typically used uniformly rigid wage

by a form of wage heterogeneity consistent with the data, has profound effects on

the policy implications of this model. In particular, the sizable short-run inflation

unemployment trade-off, which is present in the original setup, disappears. This re-

sults despite the fact that the original setup is just slightly changed and even though

the model features an economy-wide average wage which is still rigid. Consequently,

optimal monetary policy can exclusively concentrate on inflation with no concern

for employment stabilization. As an overall rigid real wage is typically employed to

address the so-called unemployment volatility puzzle, I follow suggestions in the lit-

erature with respect to an alternative mechanism and introduce markup shocks as

additional driving forces into the model. While a short-run inflation unemployment

trade-off indeed arises in this setup, optimal policy is nevertheless characterized by

an overriding focus on inflation stabilization. Moreover, markup shocks do not gen-
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erate a considerable amount of unemployment fluctuations within the model under

consideration.

In light of the conflicting empirical results concerning the effects of fiscal policy on

the macroeconomy and the potentially important role of fiscal policy anticipation in

this regard, Chapter 3 investigates the response of private consumption to fiscal shocks

within an SVAR framework, explicitly taking into account fiscal foresight. A new

empirical approach is suggested, designed to align the information sets of the private

agents and the econometrician, which allows us to avoid the problems of standard

VARs. A simulation experiment based on a theoretical model featuring (imperfect)

fiscal foresight documents the ability of the approach, in contrast to a standard VAR,

to correctly capture macroeconomic dynamics. This result is even robust to deviations

from the underlying informational assumptions of the expectation augmented VAR.

The subsequent application to real life data indicates that it is indeed important in

empirical work to allow for anticipation of fiscal policy. Moreover, it shows that it

is crucial to distinguish subcomponents of total government expenditure which might

have different macroeconomic effects according to economic theory. By distinguishing

government defense and non-defense spending, it is possible to reconcile the results of

the narrative and SVAR approaches to the study of fiscal policy effects.

In addition to the more abstract unifying theme indicated above, when considering

future work it is possible to draw a more direct line between the three chapters of

this dissertation. It would be a potentially fruitful avenue for further research to

bring together the different aspects of the respective parts of this thesis. Once more,

this would reflect the point stressed above of the importance of a close interaction of

macroeconomic theory and empirical analysis as well as novel econometric techniques.

Considering Chapters 1 and 2, it would be interesting to employ dynamic fac-

tor models and particularly the suggested estimators to establish stylized facts and

additional empirical regularities, which could help in guiding future macroeconomic

modeling efforts. This would take the analysis presented in Chapter 2, which focuses

on the aspect of the structure of wage rigidity found in the data, one step further.

As this chapter illustrates the potentially crucial role played by aspects of the labor

market for policy implications, it would be interesting to extend the set of stylized
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facts in this regard. Dynamic factor models in general and factor-augmented VARs

(FAVARs) in the spirit of Bernanke and Boivin (2003) and Bernanke, Boivin, and

Eliasz (2005), in particular, could be especially helpful in this context. In order to

avoid degrees-of-freedom problems, standard (and also Bayesian) VARs are restricted

in the number of variables which can be included. As a result, labor market variables

are typically not considered in a monetary VAR. Hence, stylized facts with respect

to the dynamic responses of the various labor market variables to monetary policy

shocks are not well established. Since FAVARs do not have this limitation, it could

be a potentially fruitful investigation to estimate those models with a particular focus

on labor market aspects. The corresponding results, in turn, could help to further

refine macroeconomic models with respect to the labor market dimension, potentially

yielding new insights concerning the policy implications of those models. Employing

the estimators presented in Chapter 1 could be of particular importance in this regard,

as this would lead to more precise estimates for the impulse response functions, for

instance. This could potentially increase the range of variables for which we could

make statements with a certain degree of confidence.

Bringing together Chapters 2 and 3, it would be an interesting topic for further

research to investigate the effects of fiscal policy on various labor market variables,

taking into account fiscal policy anticipation. Macroeconomic models in the spirit

of Chapter 2, but extended to include an interesting fiscal dimension, could help to

decide which labor market variables are important to consider in the VAR and which

subcomponents should be distinguished. The empirical findings, in turn, could give

guidance on how to further refine those macroeconomic models. Furthermore, refining

current models to take into account the empirical regularities concerning fiscal policy

and the labor market might have important consequences with respect to the policy

implications of the different models. Analogous to the investigation of Chapter 3, it

would also be interesting to examine, whether the empirical results concerning the

labor market are indeed affected by the presence of fiscal foresight and what is the

importance of distinguishing different fiscal variables.

Finally, the methods developed in Chapter 1 could also be brought to bear on the

problems related to fiscal policy anticipation as presented in Chapter 3. The extensive
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amount of information captured by a dynamic factor model could help to address the

fundamental difficulty that the information set typically used by an econometrician

is strictly smaller than the information set of the private agents.42 As a result, it

would be possible to recover the actual economic shocks and perform valid structural

analysis. Thus, as an alternative to the approach presented in Chapter 3 and as a

cross-check, estimating FAVARs or related models as suggested, for example, by Forni,

Giannone, Lippi, and Reichlin (2009) could be an interesting topic for future research.

Indeed, one motivation for estimating FAVARs when studying the effects of monetary

policy is the so-called “price puzzle” found in standard monetary VARs, which can

also be explained by a misalignment of information sets. The price puzzle describes a

situation where following a positive shock in the interest rate the price level increases

rather than decreases, as implied by standard economic theory. A possible explanation

for this dynamic response is given by Sims (1992). He argues that the central bank

possesses information about future inflation developments that is not included in the

VAR. A typical“solution”to this problem is to enhance the information of the VAR by

adding a commodity price index to the variables already present. However, this is quite

arbitrary so that FAVARs have been employed (successfully) to address this problem.

With respect to fiscal policy, a recent paper by Forni and Gambetti (2010) in fact uses

the approach of Forni, Giannone, Lippi, and Reichlin (2009) to study the effects of

government expenditure in the presence of fiscal policy anticipation. An interesting

extension of that investigation, which would be in line with the analysis presented in

Chapter 3, would consider shocks to different subcomponents of government spending.

Moreover, applying the estimators suggested in Chapter 1 could address a shortcoming

pervading almost the entire fiscal VAR literature and also the paper by Forni and

Gambetti (2010). When presenting impulse response functions, what is typically

plotted in conjunction with the point estimate are just 68% confidence bands. Using

the more efficient estimators of Chapter 1 could help to raise the standard in this

regard.

42See, for instance, Giannone and Reichlin (2006).
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