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CHAPTER 1

Introduction

Equivariant (co)homology groups are an important tool for studying G-spaces.
These (co)homology groups are de�ned via the Borel construction. For discrete
group they can also be de�ned using projective resolutions. One can also de�ne
Tate (co)homology groups for G-spaces in a similar way. There is a map from
equivariant cohomology to Tate cohomology. In such a situation one naturally asks
two questions:

- Can one say something about the kernel and cokernel of this map?
- Can one de�ne Tate cohomology groups for spaces when G is not a �nite

group but a compact Lie group?
To both questions we give an answer in this thesis. The answer to the �rst ques-

tion is given by de�ning a third (co)homology theory called backwards (co)homology
and an exact sequence relating all three (co)homology theories. This new theory
is a straightforward generalization of the construction of equivariant (co)homology
and Tate (co)homology in terms of resolutions. Of course, this only works for �nite
groups.

Kreck has given a geometric bordism description of singular homology groups
and - for smooth manifolds - of singular cohomology groups using stratifolds. This
can be used to give a bordism description of equivariant homology groups de�ned
via the Borel construction. This works for compact Lie groups and is the starting
point for the answer to the second question.

Before we come to this we address another question. For ordinary (co)homology
one of the most important results and tools is Poincaré duality. This does not hold
for equivariant (co)homology as one can see for the simplest G-manifold: the point.
The equivariant homology and cohomology groups of a point are trivial in negative
dimensions but in general non-trivial in positive degree giving no room for Poincaré
duality. Thus the following question is very natural:

- Can one de�ne new (co)homology groups which are Poincaré dual to the
groups given via the Borel construction?

In the case of �nite groups the new (co)homology groups give an answer to this
question, the new cohomology theory is Poincaré dual to the homology of the Borel
construction whereas the new homology theory is Poincaré dual to the cohomology
of the Borel construction. This is a very natural since the Tate cohomology groups
are self dual (with the expected dimension shift). We also give a bordism inter-
pretation of the new groups which extends to actions of compact Lie groups. This
gives the answer to the second question.

The question of Poincaré duality has been dealt already before by Greenlees
and May, who construct equivariant spectra allowing duality by general principles.
But this answer is rather abstract and - although this should be the case - it is not

4



1. INTRODUCTION 5

obvious whether their groups agree with ours. We did not manage to decide this
question.

Besides allowing a generalization to actions of compact Lie groups one of the
main motivation for de�ning equivariant (co)homology groups by bordism groups is
that this might be helpful for computations. In particular this might be interesting
for the computation of equivariant Tate cohomology groups which is very hard.
The exact sequence mentioned above relating classical equivariant (co)homology,
the new equivariant (co)homology groups and the equivariant Tate (co)homology
groups shows that the equivariant Tate (co)homology groups measure the failure
of Poincaré duality between equivariant homology and cohomology groups of the
Borel construction. The Tate groups vanish if and only if this duality holds. This
is one reason why the computation of the equivariant Tate (co)homology groups
of a G-manifold is interesting (and di�cult). We use our geometric de�nitions to
compute such groups for certain actions on the 3-sphere, just to indicate how such
computations can be done. There are other good reasons to compute Tate groups
as we will indicate later in this introduction.

The Tate cohomology groups (of a group G, not a G-space) have a ring struc-
ture given by the cup product. As in ordinary cohomology the computation of cup
products can be very di�cult. In the case of a smooth manifold the cup product
often is computed geometrically using representatives given by manifolds or strat-
ifolds. Kreck has constructed a geometric product on negative Tate cohomology
groups and asked for the relation to the cup product. We show that these products
agree, if G is a �nite group.

These are the main themes and indications of the answers of this thesis. We
now summarize the results in more detail.

LetG be a discrete group andX aG−CW complex. One de�nes the equivariant
(co)homology of X as the (co)homology of the Borel construction EG ×G X, and
denotes it by HG

∗ (X) and H∗G(X) resp. If G is �nite one can also de�ne the Tate

(co)homology of X, denoted by ĤG
∗ (X) and Ĥ∗G(X) resp. An important property of

Ĥ∗G is that if X is a �nite dimensional G−CW complex and ΣX is the subcomplex
consisting of all points with non trivial stabilizer then the inclusion induces an
isomorphism Ĥ∗G(X)→ Ĥ∗G(ΣX) and similarly in homology. In particular, Ĥ∗G(X)
vanishes if G acts freely on X.

There is a natural transformation H∗G(X)→ Ĥ∗G(X). One can wonder whether
there is a third cohomology theory and natural transformations to H∗G(X) and from

Ĥ∗−1
G (X) to this new theory such that the corresponding sequence is exact. We

construct such an equivariant cohomology theory, which we denote by DH∗G(X)
and call the backwards cohomology. We have the following:

Theorem. (5.22) For every �nite group G we construct an equivariant coho-
mology theory DH∗G on the category of �nite dimensional G− CW complexes and
equivariant cellular maps and a natural exact sequence:

(1) ...→ DHk
G(X)→ Hk

G(X)→ Ĥk
G(X)→ DHk+1

G (X)→ ...

A similar construction also exists in homology where we denote the groups by
DHG

k (X) and the sequence looks like:

...→ DHG
k+1(X)→ ĤG

k (X)→ HG
k (X)→ DHG

k (X)→ ...
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This construction is both simple and natural but we could not �nd it in the litera-
ture. It answers a natural problem. Obviously equivariant (co)homology does not
ful�ll Poincaré duality as one can see in the case X a point. Thus one can wonder
about Poincaré dual theories. The groups DH∗G(X) and DHG

∗ (X) �ll this gap. We
have chosen the notation DH for that reason, ”D” stands for Poincaré duality. In
the following we assume that all actions on oriented smooth manifolds are smooth
and orientation preserving.

Theorem. (5.40) (Poincaré duality) Let M be a closed oriented smooth man-
ifold of dimension m with an action of a �nite group G. We have the following
isomorphisms:

Hk
G(M)→ DHG

m−k(M), DHk
G(M)→ HG

m−k(M), Ĥk
G(M)→ ĤG

m−k−1(M).

For suchM the map DHk
G(M)→ Hk

G(M) together with Poincaré duality gives

a map HG
m−k(M)→ Hk

G(M). This map is not an isomorphism in general, Ĥ∗G(M)

is an obstruction for that. Poincaré duality between HG
∗ (M) and H∗G(M) holds if

and only if Ĥ∗G(M) is zero. Note that Ĥ∗G(M) vanishes if and only if the action is
free, in which case Poincaré duality is ordinary Poincaré duality of the quotient.

If we will be able to compute the kernel and the cokernel of the mapDHk
G(X)→

Hk
G(X) we will be able to compute Ĥ∗G(X) up to extension. IfM is a closed oriented

G manifold then for k > m the map Hk
G(M)→ Ĥk

G(M) is an isomorphism and for

k < −1 the map Ĥk
G(M) → HG

m−k−1(M) is an isomorphism. The group Ĥ−1
G (M)

is mapped isomorphically to the torsion part of HG
m(M). When G has periodic

cohomology (for example if there is an orientation preserving free G action on a

sphere) then computing Ĥ∗G(M) is easier then computing H∗G(M) and HG
∗ (M) and

this might help in computing the map HG
m−k(M)→ Hk

G(M).
The Borel construction can be applied also to compact Lie groups and so one

has equivariant (co)homology theories generalizing the case of �nite groups. The
construction of the backwards theories for �nite groups is based on homological
algebra. This does not generalize immediately to compact Lie groups. In this
situation we look at a new construction of theories isomorphic to the (co)homology
of the Borel construction for arbitrary compact Lie groups for which we can also
de�ne the backwards theory. This is done by a geometric construction of equivariant
(co)homology theories as certain bordism groups. The theories corresponding to
the (co)homology of the Borel construction are denoted by SHG

∗ (X) and SH∗G(X)
resp. where in the case of cohomology we have to assume that X is a smooth (in
general non compact) oriented manifold with a smooth and orientation preserving
action. In this geometric context we de�ne backwards theories DSHG

∗ (M) and

DSH∗G(M) and Tate groups ŜH
G

∗ (X) and ŜH
∗
G(X) where again X is a smooth

manifold when we consider cohomology. The exact sequences above generalize to
compact Lie groups:

Theorem. (6.51) For every compact Lie group G we construct equivariant
cohomology theories on the category of smooth oriented G-manifolds and equivariant

smooth maps, denoted by DSH∗G(M), SH∗G(M) and ŜH
∗
G(M) and a natural exact

sequence:

(2) ...→ DSHk
G(M)→ SHk

G(M)→ ŜH
k

G(M)→ DSHk+1
G (M)→ ...
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There are corresponding equivariant homology theories on the category of �nite
dimensional G− CW complexes and an exact sequence:

...→ SHG
k (X)→ DSHG

k (X)→ ŜH
G

k (X)→ SHG
k−1(X)→ ...

For G �nite one would expect that the theories occurring in the �rst theorem
and in the last theorem are naturally isomorphic. For G the trivial group this was
proved by Kreck applying the characterization of ordinary (co)homology theories
by the Eilenberg Steenrod axioms. To generalize this to the equivariant case we
give explicit isomorphisms which requires a lot of e�ort. Unfortunately we can only

prove this for the theories SH∗G, SH
G
∗ , DSH

∗
G, DSH

G
∗ and ŜH

G

∗ (X). Nevertheless,
for Tate cohomology we construct an isomorphism, only naturality is a problem.
We summarize this as:

Theorem. (6.63) There are natural isomorphisms DSHk
G(M) → DHk

G(M),

SHk
G(M) → Hk

G(M) and an isomorphism ŜH
k

G(M) → Ĥk
G(M) such that the fol-

lowing diagram commutes:

DSHk
G(M) → SHk

G(M) → ŜH
k

G(M) → DSHk+1
G (M)

↓ ↓ ↓ ↓
DHk

G(M) → Hk
G(M) → Ĥk

G(M) → DHk+1
G (M)

We also have in homology natural isomorphisms SHG
k (X)→ HG

k (X), DSHG
k (X)→

DHG
k (X), ŜH

G

k (X)→ ĤG
k−1(X) such that the following diagram commutes (6.61):

SHG
k (X) → DSHG

k (X) → ŜH
G

k (X) → SHG
k−1(X)

↓ ↓ ↓ ↓
HG
k (X) → DHG

k (X) → ĤG
k−1(X) → HG

k−1(X)

The new cohomology theories and their geometric generalizations to compact
Lie groups might be useful in computing the �classical groups� for example the
Tate groups. For this, one would exploit the exact sequence (2) by computing
DSH∗G(M) and SH∗G(M) and the induced maps. It seems that even in very simple
cases the computation of the Tate cohomology of a space is very di�cult. This
view is supported by the following: If Γ is a group of �nite virtual cohomological
dimension then its Farrell integral cohomology is isomorphic to Ĥ∗G(X) for a �nite
quotient of Γ denoted by G and some G − CW complex X (see [1]). Often one
can take X to be a closed oriented manifold. Although the following example is
of di�erent nature it illustrates how such a computation of the Tate cohomology
groups can be done:

Theorem. Let G = Z/n act on S3 ⊆ C2 by (x, y) 7→ (θkx, θly) where θ is the

generator of G considered as a subgroup of S1, then Ĥr
G(S3) ∼= Z/gcd(n, k · l) for

all r ∈ Z.

We believe that it is possible to make other computations with similar methods.
In the last part we give a simple geometric interpretation of the cup product in

negative Tate cohomology of a �nite group using the join of cycles, which generalizes
to compact Lie groups. For a compact Lie group G, the elements in DSH∗G(pt) are
bordism classes of compact oriented regular p-stratifolds with a free and orientation
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preserving G action. The cup product is given, up to sign, by the Cartesian product
with the diagonal action - [S, ρ] ⊗ [S′, ρ′] → [S × S′,∆] (ρ, ρ′,∆ denote the G
action). When dim(S), dim(S′) > 0 this product vanishes since it is the boundary
of [CS × S′, ρ̃] where ρ̃ is the obvious extension of the action ∆, but it is also
the boundary of [S × CS′, ρ̂] (up to sign) where ρ̂ is the obvious extension of the
action ∆. The Kreck product, denoted by ∗, is a secondary product de�ned by
gluing both bordisms along the boundary [S, ρ] ∗ [S′, ρ′] = [S ∗ S′, ρ ∗ ρ′] (note
that after the gluing what we get is the join of the two p-stratifolds). This product
DSHn

G(pt)⊗DSHm
G (pt)→ DSHn+m−1

G (pt) does not vanish in general, for example
when G �nite cyclic or more generally for every group acting freely and orientation
preserving on some sphere like G = S1 and G = S3. For these groups the product
has a very simple geometric interpretation.

By Poincaré duality and the isomorphism SHG
n (X) → Hn−dim(G)(EG ×G X)

this gives a product Hn(BG) ⊗ Hm(BG) → Hn+m+1+dim(G)(BG), again denoted by
∗. We prove the following:

Theorem. (7.13) Let G be a �nite group, then there is a natural isomorphism

ϕ : SHG
∗ (pt) → Ĥ−∗−1(G,Z) for ∗ > 0 and ϕ(α ∗ β) = ϕ(α) ∪ ϕ(β) for all

α ∈ SHG
n (pt) and β ∈ SHG

m(pt) where n,m > 0.

There is another approach for de�ning dual equivariant theories by Greenlees
and May which appears in [15]. They do it in stable homotopy theory using equi-
variant spectra and so it applies to more general (co)homology theories. It would
be interesting to study the relations between their theories and ours.

In this thesis we consider only compact Lie groups. An attempt to generalize
SHG
∗ (M) to non compact Lie groups is strait forward but for DSH∗G(M) there are

fundamental problems (we can de�ne induced maps only for proper maps and it is no
longer a multiplicative theory). The fact that we can only de�ne it for proper maps
makes it impossible to de�ne the natural transformation DSH∗G(M) → SH∗G(M)
and thus we cannot de�ne a generalization of Tate cohomology for non compact
Lie groups so we decide not to deal with this case.

Organization of the paper.
Chapter 2 is a short exposition about stratifolds. We discuss some properties

of stratifolds and give some examples.
Chapter 3 deals with (non equivariant) homology theories de�ned using bordism

maps from stratifolds. We present the following homology theories:

• SH∗ - Stratifold homology

• SH lf
∗ - Locally �nite stratifold homology

• SH∞∗ - Stratifold end homology

where SH∗ was de�ned by Kreck and the other two are new. These theories are
related by a long exact sequence:

...→ SHk(X)→ SH lf
k (X)→ SH∞k (X)→ SHk−1(X)→ ...

We construct natural isomorphisms between these theories and their singular equiv-

alents: SH∗ → H∗, SH
lf
∗ → H lf

∗ , SH
∞
∗ → H∞∗ .

Chapter 4 deals with (non equivariant) cohomology theories de�ned using bor-
dism maps from stratifolds. We present the following cohomology theories de�ned
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on the category of smooth oriented manifolds and smooth maps (proper smooth
maps in the latter two cases):

• SH∗ - Stratifold cohomology
• SH∗c - Stratifold cohomology with compact support
• SH∗∞ - Stratifold end cohomology

where SH∗ was de�ned by Kreck and the other two are new. These theories are
related by a long exact sequence:

...→ SHk
c → SHk → SHk

∞ → SHk+1
c → ...

We construct natural isomorphisms SH∗ → H∗, SH∗c → H∗c , SH
∗
∞ → H∗∞.

Chapter 5 is a survey about homological algebra. For a �nite group G we de�ne
DH∗G(X), called the backwards cohomology, discussed before.

Chapter 6 deals with equivariant homology and cohomology theories de�ned
using stratifolds where the groups are compact Lie groups. We present equivariant
stratifold homology SHG

∗ and construct a natural isomorphism SHG
∗ → HG

∗−dim(G)

where dim(G) is the dimension of G and HG
∗ is the homology of the Borel con-

struction.
stratifold backwards cohomology DSH∗G(M) is de�ned for smooth oriented

manifolds with a smooth and orientation preserving action of G. It has the prop-
erty that for a compact oriented smooth manifold of dimension m with a smooth
and orientation preserving action of G there is a Poincaré duality isomorphism
DSHk

G(M) → SHG
m−k(M). For a �nite group G we construct a natural isomor-

phism DSH∗G(X) → DH∗G(X). Using this we de�ne a geometric version of Tate

cohomology for compact Lie groups, denoted by ŜH
k

G.

Chapter 7 deals with the cup product in the negative part of Ĥ∗(G,Z). By
duality, this product gives a product structure on the integral homology of BG with
a dimension shift: Hk(BG,Z)⊗Hl(BG,Z)→ Hk+l+1(BG,Z). We give a geometric
construction of a product with the same grading, introduced by Kreck, and prove
that those products coincide.
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CHAPTER 2

Stratifolds and Parametrized Stratifolds

Abstract. In this chapter we collect some fundamental properties of strati-
folds, used later on.

Stratifolds were introduced by Kreck in [23], as a generalization of manifolds.
Brie�y, a stratifold is a pair, consisting of a topological space S together with
a subsheaf of the sheaf of continuous real functions on S. S is assumed to be
locally compact, Hausdor� and second countable and thus paracompact. The sheaf
structure is assumed to present S as a union of strata which are smooth manifolds.
For a stratifold S, we will denote by Sk its kth stratum and by Sk its kth skeleton.
The sheaf is supposed to ful�ll certain axioms, which we won't present here but
appear in [23].

A stratifold is said to be oriented if its top stratum is oriented and the stratum
of codimension one is empty.

A stratifold S is said to be regular if for each x ∈ Sk there is an open neigh-
borhood U of x in S, a stratifold F with F 0 a single point pt, an open subset V
of Sk, and an isomorphism φ : V × F → U , whose restriction to V × pt is the
projection.

There is also a notion of a stratifold with boundary, which is called a c-stratifold
since a part of its structure is a collar. The main relations between the two is that
for two c-stratifolds (T, S) and (T ′, S′) and an isomorphism f : S → S′ there is a
well de�ned stratifold structure on the space T ∪f T ′ which is called the gluing, and
for a smooth map g : T → R such that there is a neighborhood of 0 which consists
only of regular values the preimages g−1((−∞, 0]) = T ′ and g−1([0,∞)) = T ′′ are
c-stratifolds and T is equal to the gluing T ′ ∪Id T ′′.

Among the examples of stratifolds are manifolds, real and complex algebraic
varieties [16], and the one point compacti�cation of a smooth manifold. The cone
over a stratifold and the product of two stratifolds are again stratifolds.

If S is a stratifold and g : S → R is a smooth map such that there is a
neighborhood of 0 which consists only of regular values then S′ = g−1(0) has a
natural structure of a stratifold. If S is oriented then we orient S′ in the following
way: Look at the top stratum Sk, there is an embedding i : (−1, 1) × S′k ↪→ Sk

with the property that g◦i = π1 where π1 : (−1, 1)×S′k → (−1, 1) is the projection
on the �rst factor. We orient S′ such that i will be orientation reversing (outward
normal �rst, this is the same convention as in [29]). We call this the induced
orientation on S′.

A parametrized stratifold, or a p-stratifold, is a kind of a stratifold constructed
inductively by gluing manifolds with boundary and a collar in a process similar
to the construction of a CW complex, but the attaching maps are supposed to
be proper and smooth. The sheaf of functions consists of all functions which are
smooth when restricted to all manifolds and commute with a germ of the collars. A

11



2. STRATIFOLDS AND PARAMETRIZED STRATIFOLDS 12

p-stratifold of dimension n is oriented if and only if in the n−1 step we don't attach
any smooth manifold and in the nth step we attach an oriented smooth manifold
along its boundary.

There is also a parametrized version of c-stratifolds, which we refer to as p-
stratifolds with boundary. It is also constructed inductively. We will talk about it
later.

We will use three properties of p-stratifolds:

(1) The cone over a p-stratifold has a p-stratifold structure so each p-stratifold
is the boundary a p-stratifold with boundary.

(2) If S is a p-stratifold and f : S → R is a smooth map then the preimage
of a regular value is naturally a p-stratifold.

(3) P-stratifolds have the homotopy type of a CW -complex:

Proposition 2.1. Let (T, S) be p-stratifolds with boundary then it has the
(proper) homotopy type of a CW pair (X,A) with dim(X) ≤ dim(T ).

Proof. This can be proved by induction, where the inductive step uses the
fact that (T, S) is constructed by gluing manifolds along their boundary, as will be
explained later, which are known to be CW pairs. �

Not every stratifold is isomorphic to a p-stratifold, for example the one point com-
pacti�cation of the surface obtained by an in�nite connected sum of tori [23]. This
stratifold does not have the homotopy type of a CW -complex, thus it doesn't have
a p-stratifold structure.

In this paper we will only use p-stratifolds.



CHAPTER 3

Stratifold Homology Theories

Abstract. In this chapter we summarize de�nitions and properties of various

homology theories and introduce new homology theories: SHlf
∗ and SH∞∗ and

identify them with the corresponding homology theories.

3.1. Report about stratifold homology

Stratifold homology was de�ned by Kreck in [23]. We will describe here a
variant of this theory called parametrized stratifold homology, which is naturally
isomorphic to it for CW complexes. In this thesis we will refer to parametrized
stratifold homology just as stratifold homology and use the same notation for it.

(parametrized) Stratifold homology is a homology theory, denoted by SH∗. We
will construct a natural isomorphism Φ : SH∗ → H∗. It gives a new geometric point
of view on integral homology, and has some advantages, some of which we will view
later.

Definition 3.1. Let X be a topological space and k ≥ 0, de�ne SHk(X) to
be {g : S → X} / ∼ i.e., bordism classes of maps g : S → X where S is a compact
oriented regular p-stratifold of dimension k and g is a continuous map. We often
denote the class [g : S → X] by [S, g] or by [S → X]. SHk(X) has a natural
structure of an Abelian group, where addition is given by disjoint union of maps
and the inverse is given by reversing the orientation. If f : X → Y is a continuous
map than we can de�ne an induced map by composition f∗ : SHk(X)→ SHk(Y ).

A triple (U, V,X) consists ofX which is a topological space and U, V ⊆ X which
are two closed subspaces such that their interiors cover X. For each triple there is a
natural boundary operator ∂ : SHk(X)→ SHk−1(U ∩ V ). We de�ne it for X = S,
a compact oriented regular p-stratifold of dimension k, and the element [S, Id] and
extend it to all other triples by naturality. Choose a smooth map f : S → R such
that f |S\U = −1 and f |S\V = 1 and a regular value −1 < x < 1. Denote by

S′ = f−1(x), then S′ is a compact regular p-stratifold of dimension k − 1 and we
give it the induced orientation discussed before. De�ne ∂([S, Id]) = [S′, i] where

i is the inclusion S′
i−→ U ∩ V . The fact that it is well de�ned and the following

appears in [23]:

Theorem 3.2. (Mayer-Vietoris) The following sequence is exact:

...→ SHk(U ∩ V )→ SHk(U)⊕ SHk(V )→ SHk(X)
∂−→ SHk−1(U ∩ V )→ ...

where, as usual, the �rst map is induced by inclusions and the second is the di�er-
ence of the maps induced by inclusions.

Remark 3.3. In [23], Mayer-Vietoris Theorem is stated for open subsets U, V ,
but the same proof holds in our case.

13
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We de�ne the cross product in SH∗ - × : SHk(X)⊗SHl(Y )→ SHk+l(X ×Y )
by [g1 : S → X] × [g2 : T → Y ] = [g1 × g2 : S × T → X × Y ]. This product is
bilinear and natural.
SH∗ with the boundary operator and the cross product is a multiplicative homology
theory.

A natural isomorphism between SH∗ and H∗.
We are going to construct a natural isomorphism Φ : SH∗ → H∗, where H∗

is integral homology. In order to do so we want to associate to each compact
oriented regular p-stratifold S of dimension k a fundamental class which we denote
by [S] ∈ Hk(S).

Lemma 3.4. Let S be a p-stratifold of dimension k then Hl(S) vanishes for
l > k.

Proof. This can be proved by induction. The inductive step uses the Mayer-
Vietoris long exact sequence and the fact that for Mk, a compact k dimensional
smooth manifold (with boundary), Hl(M

k) vanishes for l > k. �

Let S be a compact oriented regular p-stratifold of dimension k and denote by
(Mk, ∂Mk) the smooth manifold we attach as a top stratum.

The map Hk(Mk, ∂Mk)
∼=−→ Hk(S, Sk−2) is an isomorphism by excision. The

map Hk(S)
∼=−→ Hk(S, Sk−2) is an isomorphism by the long exact sequence for the

pair (S, Sk−2) and the fact that Hl(Sk−2) vanish for l = k − 1, k by the previous
lemma.

Definition 3.5. De�ne [S] ∈ Hk(S) to be the image of [Mk, ∂Mk] (the funda-

mental class of (Mk, ∂Mk)) under the compositionHk(Mk, ∂Mk)
∼=−→ Hk(S, Sk−2)

∼=−→
Hk(S). We call [S] the fundamental class of S. Note that [S q S′] = [S] + [S′] and
[−S] = −[S].

Recall the notion of a p-stratifold with boundary:

Definition 3.6. A k dimensional p-stratifold with boundary (T, ∂T ) is a pair

of topological spaces where
◦
T = T \ ∂T is a k dimensional p-stratifold and ∂T is

a k − 1 dimensional p-stratifold, which is a closed subspace of T together with a
germ of collar [c] . We call ∂T the boundary of T . A smooth map from T to R is a

continuous function f whose restrictions to
◦
T and to ∂T are smooth and commutes

with an appropriate representative of the germ of collars, i.e., there is a δ > 0 such
that fc(x, t) = f(x) for all x ∈ ∂T and t < δ.

Let (T, S) be a k + 1 dimensional p-stratifold with boundary. We have the
following:

Lemma 3.7. As a topological space, (T, S) is constructed inductively, where in
the kth stage we have a p-stratifold with boundary (Tk, Sk−1). (Tk+1, Sk) is ob-
tained from (Tk, Sk−1) together with a smooth manifold with boundary and collar
(Mk+1, ∂Mk+1) such that ∂Mk+1 = ∂+ ∪ ∂− and both ∂+ and ∂− are k dimen-
sional manifolds with boundary, ∂+ ∪ ∂− is obtained by gluing them along their
boundary, and a continuous map fk+1 : ∂+ → Tk sending ∂+ ∩ ∂− to Sk−1. That
is (Tk+1, Sk) = (Tk, Sk−1) ∪∂+

(Mk+1, ∂).
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Proof. We do this by induction on the dimension of (T, S). S is a p-stratifold
thus S = Sk−1 ∪∂N N for some k dimensional smooth manifold N with boundary

∂N .
◦
T is a p-stratifold thus

◦
T =

◦
T k ∪∂P P for some k + 1 dimensional smooth

manifold P with boundary ∂P . The collar c gives us an embedding N×(0, 1)→ P .
Denote by M the space N × [0, 1) ∪c P . M is a k + 1 dimensional topological
manifold with boundary ∂M = ∂P ∪∂N N . We will get the same notations as
above if we set N = ∂− and ∂P ∪c ∂N = ∂+. �

Let (T, S) be a compact oriented regular p-stratifold of dimension k + 1 with

boundary. The map Hk+1(Mk+1, ∂Mk+1)
∼=−→ Hk+1(T, Tk−1∪S) is an isomorphism

by excision. The map Hk+1(T, S)
∼=−→ Hk+1(T, Tk−1 ∪ S) is an isomorphism by the

long exact sequence for the triple (T, Tk−1∪S, S) and the fact thatHl(Tk−1∪S, S) ∼=
Hl(Tk−1, Sk−2) by excision which vanishes for l = k, k + 1.

Definition 3.8. De�ne [T, S] ∈ Hk+1(T, S) to be the image of [Mk+1, ∂Mk+1]

under the composition Hk+1(Mk+1, ∂Mk+1)
∼=−→ Hk+1(T, Tk−1∪S)

∼=−→ Hk+1(T, S).

Lemma 3.9. Let (T, S) be a compact oriented regular p-stratifold of dimension
k + 1 with boundary, then ∂[T, S] = [S].

Proof. For compact oriented manifolds with boundary (M,∂M) it is proved
in appendix 1 that ∂[M,∂M ] = [∂M ] (this is a subtle question of orienting the
boundary in a way that this equation will hold).

The following diagram is commutative:

Hk+1(Mk+1, ∂Mk+1)
∂−→ Hk(∂Mk+1) → Hk(∂Mk+1, ∂+)

∼=−→ Hk(∂−, ∂+ ∩ ∂−)
↓∼= ↓ ↓ ↓∼=

Hk+1(T, Tk−1 ∪ S)
∂−→ Hk(Tk−1 ∪ S) → Hk(Tk−1 ∪ S, Tk−1)

∼=−→ Hk(S, Sk−2)
↑∼= ↑ ↑∼= ↑∼=

Hk+1(T, S)
∂−→ Hk(S)

Id−−→ Hk(S)
Id−−→ Hk(S)

We follow the image of [Mk+1, ∂Mk+1]. Its image in Hk(∂−, ∂+ ∩ ∂−) is the gener-
ator that by the de�nition is mapped to [S]. On the other hand, as de�ned before,
[Mk+1, ∂Mk+1] is mapped to [T, S] ∈ Hk+1(T, S), so by the commutativity of the
diagram we conclude that ∂[T, S] = [S]. �

Corollary 3.10. Let (T, S) be a compact oriented regular p-stratifold of di-
mension k+ 1 with boundary. Denote the inclusion of S in T by i then i∗([S]) = 0.

Proof. This follows from the previous lemma and the exactness of the se-

quence for the pair - Hk+1(T, S)
∂−→ Hk(S)

i∗−→ Hk(T ). �

De�ne a natural transformation Φ : SHk(X)→ Hk(X) by Φ([S, g]) = g∗([S]).
Φ is well de�ned: If (S, g) and (S′, g′) are bordant, then there is a k + 1 dimen-
sional p-stratifold with boundary (T, S q −S′) and a map g̃ : T → X such that
g̃|S = g and g̃|S′ = g′. Denote the inclusion of S q −S′ in T by i, then by the
lemma above we have i∗([S q−S′]) = 0. We deduce that:
0 = g̃∗(i∗([Sq−S′])) = g̃∗(i∗([S])−i∗([S′])) = g̃∗(i∗([S]))−g̃∗(i∗([S′])) = g∗([S])−g′∗([S′]),
therefore Φ(S, g) = Φ(S′, g′).
Φ is a group homomorphism: This follows from the fact that [SqS′] = [S]+[S′]
and [−S] = −[S]
Φ is natural: It follows from the functoriality of singular homology.
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Φ commutes with boundary: We have to show that for a triple (U, V,X) the
following diagram commutes:

SHk(X)
∂−→ SHk−1(U ∩ V )

↓ Φ ↓ Φ

Hk(X)
∂−→ Hk−1(U ∩ V )

By functoriality, it is enough to prove this for S, a compact oriented regular p-
stratifold of dimension k and the element [S, Id] ∈ SHk(S). Assume we have such
a p-stratifold S and U, V ⊆ S two closed subspaces such that their interiors cover
S. Let f : S → R be a smooth map such that f |S\U = −1, f |S\V = 1 and suppose 0

is a regular value and its preimage S′ = f−1(0) has a (closed) bicollar S′× [−ε,+ε]
(0 < ε < 1) such that f(s, t) = t (this can be done since by compactness regular
values are open). Denote by U ′ = f−1[−ε,∞) ⊆ U V ′ = f−1(−∞, ε] ⊆ V , then
there is a map of triples (U ′, V ′, S)→ (U, V, S). By functoriality, again, it is enough
to prove the claim for the triple (U ′, V ′, S) where U ′ ∩ V ′ = S′ × [−ε,+ε]. The
boundary map SHk(S)→ SHk(S′× [−ε,+ε]) maps [S, Id] to the inclusion of S′ in
S′ × [−ε,+ε] as the zero section. Thus we have to show that the same is true for
Hk.

The following diagram commutes:

Hk(S) → Hk(S, S \
◦
U ′) → Hk(U ′, S′ × {ε}) ∂−→ Hk−1(S′ × {ε})

↓ Id ↓ ↓∼= ↓
Hk(S) → Hk(S, V ′) → Hk(U ′, U ′ ∩ V ′) ∂−→ Hk−1(U ′ ∩ V ′)
The boundary in singular homology is the composition Hk(S)→ Hk(S, V ′)→

Hk(U ′, U ′∩V ′)→ Hk−1(U ′∩V ′) ([10] III,8.11). We want to show that ∂[S] = [S′].
To do so we have to follow the image of [S] ∈ Hk(S) in the lower row. Since the
diagram is commutative, we can follow its image in the upper row. [S] ∈ Hk(S) is
mapped to [U ′, S′×{ε}] ∈ Hk(U ′, S′×{ε}) and as we saw before ∂[U ′, S′×{ε}] =
[S′ × {ε}] so we deduce that ∂[S] = i∗[S

′ × {ε}] = i∗[S
′] ∈ Hk−1(U ′ ∩ V ′).

Φ commutes with the cross product: We have to show that Φ(α × β) =
Φ(α)×Φ(β). By the naturality of the cross product in H∗ and in SH∗ it is enough
to show that for any two compact oriented regular p-stratifolds S, T of dimension
k and l we have [S × T ] = [S]× [T ]. If k or l are equal to 0 then it is clear, so we
can assume that k, l > 0. In each component of the top strata we choose a single
point - {s1...sp} and {t1...tq}. By the naturality of the cross product we have (we
use the notation H∗(X|x) instead of H∗(X,X \ {x}) for brevity):

Hk(S)⊗Hl(T )
∼=−→ Hk(S, {s1...sp})⊗Hl(T, {t1...tq})

∼=←− ⊕Hk(Rk|0)⊗Hl(Rl|0)
↓ ↓ ↓

Hk+l(S × T )
∼=−→ Hk+l(S × T, {si × tj})

∼=←− ⊕Hk+l(Rk+l|0)

Which reduces this to the fact which is proved in appendix 1 that the cross product
of the generators in Hk(Rk|0) and Hl(Rl|0) is the generator of Hk+l(Rk+l|0) with
the standard orientations.
Φ is a natural isomorphism: For a one point space it is easy to show that
Φ : SH0(pt)→ H0(pt) is an isomorphism. For k > 0 the map Φ : SHk(pt)→ Hk(pt)
is also an isomorphism since both groups vanish (every compact oriented regular
p-stratifold of positive dimension is the boundary of its cone which is also compact
and orientable. For a zero dimensional p-stratifold the cone is non orientable since
its codimension 1 stratum is non empty).
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We have the Mayer − V ietoris long exact sequence for both SH∗ and H∗, Φ
commutes with the boundary therefore by the �ve lemma we have the following:

Lemma 3.11. Φ is an isomorphism for �nite dimensional CW complexes.

The following is more general

Lemma 3.12. Φ is an isomorphism for all CW complexes.

This follows from the fact that for every CW complex X we have Hk(X) =
lim−→(Hk(Xα)) and SHk(X) = lim−→(SHk(Xα)) where both limits are taken over all

�nite subcomplexes of X (the fact that SHk(X) = lim−→(SHk(Xα)) follows from the

fact that we use compact p-stratifolds).

Theorem 3.13. Φ is an isomorphism for all spaces.

Proof. Let X be a topological space and f : XCW → X be its cellular approx-
imation. f is a weak equivalence thus if we show that f∗ : SHk(XCW )→ SHk(X)
is an isomorphism we will conclude that Φ : SHk(X)→ Hk(X) is an isomorphism.
The last statement follows from the fact that p-stratifolds have the homotopy type
of a CW complex and therefore all maps from a p-stratifold to X factor, up to
homotopy, through XCW . �

Here are two corollaries of this theorem:

Corollary 3.14. Let X be a topological space. Every α ∈ H2(X,Z) can be
represented by a map from a closed oriented two dimensional manifold, that is
there exists a closed oriented surface M2 with a fundamental class [M ] and a map
f : M → X such that f∗([M ]) = α.

Proof. This follows from the classi�cation of compact oriented p-stratifolds
of dimension two. Let S be a compact oriented p-stratifold of dimension two. By
de�nition S = M2 ∪∂M2 P where P is a �nite discrete set of points and M2 is a
compact oriented surface with boundary. Take the manifoldM to beM2∪∂M2qD2

where to each boundary component ofM2, which is a circle, we glue a disc along the
boundary. Thus M is a compact oriented surface and the quotient map q : M → S
maps the fundamental class of M to the fundamental class of S. �

Remark. This fact is well known by other methods.

Corollary 3.15. Let X be a CW complex. Every α ∈ Hk(X,Z) can be
represented by a map from a compact oriented smooth manifold with boundary, in
the sense that there exists a compact oriented smooth manifold Mk of dimension k
with boundary and a map g : (Mk, ∂Mk)→ (X,Xk−2) such that g∗([M

k, ∂Mk]) =
α̃ where α̃ is the image of α under the isomorphism Hk(X)→ Hk(X,Xk−2) we get
from the long exact sequence for a pair.

Proof. We use the isomorphism Φ : SHk(X) → Hk(X) to represent α by
a pair (S, g), that is g∗([S]) = α. We can choose g such that g(Sk−2) ⊆ Xk−2

by cellular approximation. By de�nition [S] is the image of [Mk, ∂Mk] under the

composition, mentioned before, Hk(Mk, ∂Mk)
i∗−→ Hk(S, Sk−2)

∼=−→ Hk(S). Look at
the following commutative diagram:
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Hk(S)
g∗−→ Hk(X)

↓ p1 ↓ p2

Hk(Mk, ∂Mk)
i∗−→ Hk(S, Sk−2)

g∗−→ Hk(X,Xk−2)

By the long exact sequence for pairs the vertical maps are isomorphisms. We have
i∗([M

k, ∂Mk]) = p1([S]) thus g∗ ◦ i∗([Mk, ∂Mk]) = g∗ ◦ p1([S]) = p2 ◦ g∗([S]) =
p2(α) = α̃ as stated in the corollary. �

3.2. Report about locally �nite homology

Remark. This section is based mainly on chapter 3 in [20].

Given a topological space X, its singular homology is the homology of the
chain complex S∗(X) where Sk(X) is the free Abelian group generated by singular
k simplices. It is sometimes useful to look at chains which are formal sums of
in�nitely many singular simplices. An example of this is the generalization of
Poincaré duality to non compact manifolds, which we will talk about later. If we
wish to look at chains of arbitrary formal sums Σσ∈Inσσ we will have a problem to
de�ne the boundary map since a singular simplex may be the boundary of in�nitely
many singular simplices of higher dimension. In order to avoid this problem we have
the following de�nition of locally �nite homology ([20] 3.1):

Definition 3.16. Let X be a space, de�ne the locally �nite chain complex

Slfk (X) to be the set of all formal sums of singular k simplices Σσ∈Inσσ such that for
every x ∈ X there is an open neighborhood U such that {σ ∈ I|nσ 6= 0 and |σ| ∩ U 6= ∅}
is �nite where |σ| is the image of σ. Slf∗ (X) is a chain complex. Its homology is

called the locally �nite homology of X and it is denoted by H lf
∗ (X).

Remark. The condition that for every x ∈ X there is an open neighborhood
U such that {σ ∈ I|nσ 6= 0 and |σ| ∩ U 6= ∅} is �nite is equivalent to the condition
that for every compact subset K ⊆ X there is an open neighborhood U such that
{σ ∈ I|nσ 6= 0 and |σ| ∩ U 6= ∅} is �nite. For locally compact spaces it is equivalent
to the condition that every compact subset meets only �nitely many simplices.

If f : X → Y is a continuous map than the image of a locally �nite chain is
not necessarily locally �nite as one can see in the example where X is an in�nite
discrete set and Y is a point.

Definition 3.17. A continuous map f : X → Y between two topological
spaces is called proper if for every compact subset K ⊆ Y its preimage f−1(K) is
compact.

Lemma 3.18. Let f : X → Y be a proper map where Y is a locally compact
Hausdor� space, then f is closed.

Proof. It is enough to show that f(X) is closed. Let y ∈ Y be a point which
is not in the image, and let K ⊆ Y be a compact neighbourhood of y. Since f is
proper f−1(K) is compact. A = f(f−1(K)) is compact and Y is Hausdor� so it is

closed.
◦
K \ f(X) =

◦
K \A is open and contains y thus f(X) is closed. �

Assume f is proper and Y is locally compact. Take Σσ∈Inσσ a locally �nite
chain, y ∈ Y and letK be a compact neighborhood of y. Since f is proper f−1(K) is
compact inX, thus it has a neighborhood U such that {σ ∈ I|nσ 6= 0 and |σ| ∩ U 6= ∅}
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is �nite, hence {σ ∈ I|nσ 6= 0 and |f(σ)| ∩K 6= ∅} is �nite and Σσ∈Inσf(σ) is a locally

�nite chain. Thus there is a map f∗ : Slfk (X) → Slfk (Y ) compatible with the

di�erential which induces a map in locally �nite homology f∗ : H lf
k (X)→ H lf

k (Y ).
If f is properly homotopic to g then f∗ = g∗. Therefore, locally �nite homology is
a proper homotopy invariant.

For a closed subset A ⊆ X we have a short exact sequence:

0→ Slf∗ (A)→ Slf∗ (X)→ Slf∗ (X)/Slf∗ (A)→ 0

that gives a long exact sequence in homology, just like in singular homology. The
homology of the third term is called the relative locally �nite homology and is

denoted by H lf
∗ (X,A).

Locally �nite homology ful�lls the axioms of a homology theory on the category
of locally compact Hausdor� spaces and proper maps. All the proofs are standard,
except maybe for excision where we refer to [31] 7.1. The proof is the same as
for singular homology. Once one has excision one can de�ne the Mayer Vietoris
sequence.

We note the following simple observations: For a disjoint union qXα we have

isomorphisms Slf∗ (qXα) → ΠαS
lf
∗ (Xα) and H lf

∗ (qXα) → ΠαH
lf
∗ (Xα). For every

space X there is a chain map S∗(X) → Slf∗ (X) which induces a map in homol-

ogy H∗(X) → H lf
∗ (X). For a compact space X the maps S∗(X) → Slf∗ (X) and

H∗(X)→ H lf
∗ (X) are isomorphisms (even identities).

The following proposition relates the locally �nite homology and the singular
homology of a space:

Proposition 3.19. ([20] 3.16) 1) Let X be a topological space then Slf∗ (X) =
lim←−S∗(X,X \K) where the inverse limit is taken over all compact subsets K ⊆ X.

2) Let X be a σ compact space and let Xk ⊆ X be compact subsets such that

Xk ⊆
◦

Xk+1 and X = ∪k
◦
Xk then the following is an exact sequence for every k:

0→ lim1

←−−Hk+1(X,X \Xi)→ H lf
k (X)→ lim←−Hk(X,X \Xi)→ 0

In particular every manifold can be presented this way since we always assume
that the manifolds are second countable.

Proof. 1) For each suchK ⊆ X there is a natural map Slf∗ (X)→ S∗(X,X\K)

which induces a map to the inverse limit ϕX : Slf∗ (X)→ lim←−S∗(X,X \K).

ϕX is injective - if ϕX(Σσ∈Inσσ) = 0 then the image of this element vanishes
when restricted to S∗(X,X \ K) for every K ⊆ X. Taking K = |σ| we get that
nσ = 0, doing this for all σ we get Σσ∈Inσσ = 0.

ϕX is surjective - an element in lim←−S∗(X,X\K) is of the form (aK) ∈ ΠKS∗(X,X\K)

such that for every K ⊆ K ′ we have aK′ 7→ aK . We can choose representatives
for all aK of the sort Σσ∈IKnσσ where IK is �nite and all σ ∈ IK meet K. In
this description Ik ⊆ Ik′ and the map aK′ 7→ aK will be of the form Σσ∈IK′nσσ 7→
Σσ∈IKnσσ. De�ne Σσ∈Inσσ where I = ∪Ik. ϕX(Σσ∈Inσσ) has a �nite support
when restricted to each compact subset and hence Σσ∈Inσσ is a locally �nite chain.
2) In this case the inverse limit lim←−S∗(X,X \ K) taken over all compact subsets

K ⊆ X, is equal to lim←−S∗(X,X \ Xk) since each compact subset is included in

some Xk. To prove the exactness of the above sequence one needs the following
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proposition and the fact that the tower ... → S∗(X,X \ X2) → S∗(X,X \ X1)
satis�es the Mittag Le�er condition since all the maps are surjective. �

Proposition 3.20. ([33] 3.5.8) Let (...→ C2 → C1 → C0) be a tower of chain
complexes of Abelian groups satisfying the Mittag Le�er condition. Set C to be the
inverse limit of this tower, then the following is an exact sequence for every k:

0→ lim1

←−−Hk+1(Ci)→ Hk(C)→ lim←−Hk(Ci)→ 0

Corollary 3.21. Let M be a connected oriented manifold of dimension m
then H lf

m (M) is in�nite cyclic with generator which we denote by [M ]lf such that
for every point x ∈ X we have [M ]lf 7→ [M,M/ {x}].

Proof. Present M = ∪k
◦
Mk where Mk are connected, compact and Mk ⊆

◦
Mk+1. In this case Hm+1(M,M \K) vanish for all K ([10] VIII,4.1) so the map
H lf
m (M) → lim←−Hm(M,M \ Mi) is an isomorphism. The statement holds since

lim←−Hm(M,M \Mi) = Z. �

Lemma 3.22. Let M be a connected oriented manifold of dimension m, X
a topological space and f : X → M a proper map. If f is not surjective then
f∗ : H lf

m (X)→ H lf
m (M) is the zero map.

Proof. M is locally compact and Hausdor� and f is proper so by lemma 3.18
Im(f) is closed. Choose a small disc D ⊆ M \ Im(f) and look at the following
commutative diagram:

H lf
m (X) → H lf

m (M)
↓ 0 ↓∼=

H lf
m (X,X) → H lf

m (M,M \D)

�

Corollary 3.23. Let (M,∂M) be a connected oriented manifold of dimension
m with non empty boundary then H lf

m (M) vanishes.

Proof. Denote by DM the double of M , that is M ∪∂M M . The inclusion
i : M → DM is a proper retract thus the map i∗ : H lf

m (M)→ H lf
m (DM) is injective.

By the lemma, i∗ is the zero map so H lf
m (M) must vanish. �

Corollary 3.24. Let (M,∂M) be a connected oriented manifold of dimension
m with non empty boundary then H lf

m (M,∂M) is in�nite cyclic with generator
which we denote by [M,∂M ]lf and ∂[M,∂M ]lf = [∂M ]lf .

Proof. Denote by DM the double ofM and byM− the other copy ofM . We
have the following commutative diagram:

Hlf
m (∂M) → Hlf

m (M) → Hlf
m (M,∂M) → Hlf

m−1(∂M) → Hlf
m−1(M)

↓ ↓ ↓ ↓ ↓
Hlf
m (M−) → Hlf

m (DM) → Hlf
m (DM,M−) → Hlf

m−1(M−) → Hlf
m−1(DM)

H lf
m (M−) and H lf

m (M) vanish since M and M− are both connected oriented
manifolds of dimension m with non empty boundary. There is homeomorphism

M →M− which preserve ∂M thus an element in H lf
m−1(∂M) is mapped to zero in

H lf
m−1(M) if and only if it is mapped to zero in H lf

m−1(M−). By exactness the map
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the mapH lf
m (M,∂M)→ H lf

m−1(M) is the zero map so also the mapH lf
m (M,∂M)→

H lf
m−1(M−) is the zero map. By excision H lf

m (M,∂M) → H lf
m (DM,M−) is an

isomorphism, so the map H lf
m (DM,M−) → H lf

m−1(M−) is the zero map. We

conclude that the map H lf
m (DM) → H lf

m (DM,M−) is an isomorphism. Since
H lf
m (DM) is in�nite cyclic we know that the same is true for H lf

m (DM,M−) and
for H lf

m (M,∂M). We Denote by [M,∂M ]lf the element corresponds to [DM ]lf .
The fact that ∂[M,∂M ]lf = [∂M ]lf is a local question since by de�nition these

classes are detected locally. Therefore this follows from the compact case which is
proved in appendix 1. �

For a discussion about locally �nite homology the reader is referred to [20],
[25] and [31].

Locally �nite homology for CW complexes.
For CW complexes the following is the analog of local compactness:

Definition 3.25. A CW complex X is called locally �nite if the set of closed
cells is locally �nite, that is every point has a neighborhood which meets only
�nitely many closed cells.

Proposition 3.26. A CW complex is locally �nite if and only if it is locally
compact.

Proof. If X is a locally �nite CW complex then every x ∈ X has a neighbor-
hood which meets only �nitely many closed cells, and thus contained in a compact
subset which implies that X is locally compact. If X is locally compact then every
point has a compact neighborhood which meets only �nitely many cells and thus
X is locally �nite. �

There is also a cellular version of locally �nite homology. Let X be a CW

complex we de�ne Clfk (X) = H lf
k (Xk, Xk−1) with the di�erential coming from

the long exact sequence for the triple (Xk, Xk−1, Xk−2). For locally �nite CW
complexes we have by the properties above:

H lf
k (Xk, Xk−1) ∼= H lf

k (qIDk,qISk−1) ∼= ΠIH
lf
k (Dk, Sk−1) ∼= ΠIZ

where I is the set of k cells of X.
In general the locally �nite cellular homology and the locally �nite singular

homology are di�erent. For a certain class of CW complexes they agree.

Definition 3.27. A CW complex X is called strongly locally �nite if it is the
union of �nite subcomplexes such that every point in X has a neighborhood which
meets only �nitely many of them.

Clearly, a strongly locally �nite CW complex is locally �nite but a locally �nite
CW complex needs not be strongly locally �nite. An example for this is the space
X = e0∪e1∪e2... where we attach each k-cell ek to e0∪e1∪e2...∪ek−1 by collapsing
its boundary to a point in the interior of ek−1. X is not strongly locally �nite since
e0 is contained in any subcomplex (see [11] 1.8).

We have the following propositions regarding strongly locally �nite CW com-
plexes:

Proposition 3.28. ([11] 1.4) Every locally �nite, �nite dimensional CW com-
plex is strongly locally �nite.
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And the following:

Proposition 3.29. ([20] 4.7) For a (countable) strongly locally �nite CW com-

plex X the singular chain Slf∗ (X) and the cellular chain Clf∗ (X) are homology equiv-

alent so H lf
∗ (X) = H∗(S

lf
∗ (X)) = H∗(C

lf
∗ (X)).

Remark 3.30. The fact that X is countable plays no role since every compo-
nent of a locally �nite CW complex is countable ([13] 11.4.3) and it is enough to
prove it for connected spaces.

In [13] there is a full treatment of the cellular version.

Poincaré duality for non compact manifolds.
Poincaré duality is a deep theorem about manifolds. In its most common version
it states that a closed oriented manifold of dimension m has a fundamental class
[M ] ∈ Hm(M) and there is an isomorphism PDM : Hk(M) → Hm−k(M) given
by ϕ 7→ ϕ ∩ [M ]. There is a similar result for smooth manifolds in locally �nite
homology ([25] 3.1):

Theorem 3.31. Let M be a smooth oriented manifold of dimension m, not
necessarily compact, then M has a fundamental class [M ]lf ∈ H lf

m (M) and there is

an isomorphism PDM : Hk(M)→ H lf
m−k(M) given by ϕ 7→ ϕ ∩ [M ]lf .

3.3. Locally �nite stratifold homology

Definition 3.32. Let X be a topological space and k ≥ 0, de�ne SH lf
k (X) to

be {g : S → X} / ∼ i.e., bordism classes of maps g : S → X where S is an oriented

regular p-stratifold of dimension k and g is a continuous proper map. SH lf
k (X) has

a natural structure of an Abelian group, where addition is given by disjoint union of
maps and the inverse is given by reversing the orientation. If f : X → Y is a proper

map than we can de�ne an induced map by composition f∗ : SH lf
k (X)→ SH lf

k (Y ).

For each triple there is a boundary operator ∂ : SH lf
k (X) → SH lf

k−1(U ∩ V ).
We de�ne it for X = S, an oriented regular p-stratifold of dimension k, and the
element [S, Id] and extend it to all other triples by naturality. Choose a smooth
map f : S → R such that f |S\U = −1 and f |S\V = 1 and a regular value x ∈ R.
Denote by S′ = f−1(x) with the induced orientation discussed before. De�ne

∂([S, Id]) = [S′, i] where i is the inclusion S′
i−→ U ∩ V . The fact that it is well

de�ned and the following is similar to what we had before (see App. B in [23] for
a more subtle discussion):

Theorem 3.33. (Mayer-Vietoris) The following sequence is exact:

...→ SH lf
k (U ∩ V )→ SH lf

k (U)⊕ SH lf
k (V )→ SH lf

k (X)
∂−→ SH lf

k−1(U ∩ V )→ ...

where, as usual, the �rst map is induced by inclusions and the second is the di�er-
ence of the maps induced by inclusions.

We de�ne the cross product in SH lf
∗ - × : SHlf

k (X)⊗SHlf
l (Y )→ SHlf

k+l(X × Y )

by [g1 : S → X] × [g2 : T → Y ] = [g1 × g2 : S × T → X × Y ]. This product is
bilinear and natural.

SH lf
∗ with this boundary operator and the cross product is a multiplicative

homology theory on the category of topological spaces and proper maps. We call
it locally �nite (parametrized) stratifold homology.
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Remark 3.34. Recall that SHk was de�ned as bordism classes of maps g :
S → X where S is a compact oriented regular p-stratifold of dimension k and g is

a continuous map. That is, in the de�nition of SH lf
k we use proper maps rather

than compact p-stratifolds. Since a continuous map from a compact space to a

Hausdor� space is proper there is a natural transformation SHk(X)→ SH lf
k (X).

A natural isomorphism between SH lf
∗ and H lf

∗ .

We are going to construct a natural isomorphism Φlf : SH lf
k → H lf

k . The

construction of Φlf and the proof that it is an isomorphism is similar to what we
did for singular homology. We will give only the outline and stress the di�erences.

In order to do so we want to associate to each oriented regular p-stratifold S

of dimension k a fundamental class which we denote by [S]lf ∈ H lf
k (S).

Lemma 3.35. Let S be an oriented regular p-stratifold of dimension k then

H lf
l (S) vanish for l > k.

Proof. This can be proved by induction. The inductive step uses the Mayer-
Vietoris long exact sequence and the fact that for Mk, a k dimensional smooth

manifold (with boundary), H lf
l (Mk) vanish for l > k (when we use MV we use the

fact that all p-stratifolds are locally compact). �

Let S be an oriented regular p-stratifold of dimension k. The map Hlf
k (Mk, ∂Mk)

∼=−→

Hlf
k (S, Sk−2) is an isomorphism by excision. The map H lf

k (S)
∼=−→ H lf

k (S, Sk−2) is
an isomorphism by the long exact sequence for the pair (S, Sk−2) and the fact that

H lf
l (Sk−2) vanish for l = k − 1, k by the previous lemma.

Definition 3.36. De�ne [S]lf ∈ Hk(S) to be the image of [Mk, ∂Mk]lf under

the composition H lf
k (Mk, ∂Mk)

∼=−→ H lf
k (S, Sk−2)

∼=−→ H lf
k (S). We call [S]lf the

fundamental class of S. Note that [S q S′]lf = [S]lf + [S′]lf and [−S]lf = −[S]lf .

Let (T, S) be an oriented regular p-stratifold of dimension k+1 with boundary.

The map H lf
k+1(Mk+1, ∂Mk+1)

∼=−→ H lf
k+1(T, Tk−1 ∪ S) is an isomorphism by exci-

sion. The map H lf
k+1(T, S)

∼=−→ H lf
k+1(T, Tk−1 ∪ S) is an isomorphism by the long

exact sequence for the triple (T, Tk−1 ∪ S, S) and the fact that H lf
l (Tk−1 ∪ S, S) ∼=

H lf
l (Tk−1, Sk−2) by excision which vanish for l = k, k + 1.

Definition 3.37. De�ne [T, S]lf ∈ H lf
k+1(T, S) to be the image of [Mk+1, ∂Mk+1]lf

under the composition H lf
k+1(Mk+1, ∂Mk+1)

∼=−→ H lf
k+1(T, Tk−1∪S)

∼=−→ H lf
k+1(T, S).

Lemma 3.38. Let (T, S) be an oriented regular p-stratifold of dimension k + 1
with boundary, then ∂[T, S]lf = [S]lf .

Proof. The same proof as for SH∗. �

Corollary 3.39. Let (T, S) be an oriented regular p-stratifold of dimension
k + 1 with boundary. Denote the inclusion of S in T by i then i∗([S]lf ) = 0.

Proof. This follows from the previous lemma and the exactness of the se-

quence for the pair - H lf
k+1(T, S)

∂−→ H lf
k (S)

i∗−→ H lf
k (T ) �

De�ne a natural transformation Φlf : SH lf
k (X) → H lf

k (X) by Φlf ([S, g]) =

g∗([S]lf ).
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Φlf is well de�ned: As before, it follows from the fact that ∂[T, S]lf = [S]lf .
Φlf is a group homomorphism: This follows from the fact that [S q S′]lf =
[S]lf + [S′]lf and [−S]lf = −[S]lf .

Φlf is natural: It follows from the functoriality of H lf
∗ .

Φlf commutes with boundary: The boundary is de�ned in a similar way to
that in SH∗. Again the same proof holds, just note the di�erences. For the proof
that we can �nd a bicollar for S we used the fact that T was compact. Instead we
use the fact that we can always choose a map with a regular value such that its
preimage will have a bicollar ([23] appendix B).
Φlf commutes with the cross product: We have to show that Φlf (α × β) =
Φlf (α) × Φlf (β). By the naturality of the cross product, it is enough to show
that for any two oriented regular p-stratifolds S, T of dimension k and l we have
[S × T ]lf = [S]lf × [T ]lf . If k or l are equal to 0 then it is clear, so we can assume
that k, l > 0. In each component of the top strata we choose a small closed disc,
Dα in S and Dβ in T . By the naturality of the cross product we have (we use the
notation Hk(X|A) instead of Hk(X,X \A) for brevity):

Hlfk (S)⊗Hlfl (T )
∼=−→ Hlfk (S| q

◦
Dα)⊗Hlfl (T | q

◦
Dβ)

∼=←− ⊕Hlfk (Dk, Sk−1)⊗Hlfl (Dl, Sl−1)
↓ ↓ ↓

Hlfk+l(S × T )
∼=−→ Hlfk+l(S × T | q

◦
Dα ×

◦
Dβ)

∼=←− ⊕Hlfk+l(D
k+l, Sk+l−1)

Since the spaces on the right side are compact the locally �nite homology is equal
to the singular homology. In this case we have

⊕Hk(Dk, Sk−1)⊗Hl(D
l, Sl−1)

∼=−→ ⊕Hk(Rk|0)⊗Hl(Rl|0)
↓ ↓

⊕Hk+l(D
k+l, Sk+l−1)

∼=−→ ⊕Hk+l(Rk+l|0)

Which reduces this to the fact which is proved in appendix 1 that the cross product
of the generators in Hk(Rk|0) and Hl(Rl|0) is the generator of Hk+l(Rk+l|0) with
the standard orientations.
Φlf is a natural isomorphism: We have theMayer V ietoris long exact sequence

for both SH lf
∗ and H lf

∗ , Φlf commutes with boundary and it is an isomorphism on
a one point space. This implies the following:

Lemma 3.40. Φlf is an isomorphism for locally �nite, �nite dimensional CW
complexes.

Proof. We do it by induction on the dimension of X. We know it is true for 0
dimensional CW complexes. Assume it is true for all locally �nite CW complexes
of dimension < n and let X be an n dimensional locally �nite CW complex. From
Mayer V ietoris sequence we have:

SH lf
k (qαSn−1)→ SH lf

k (qαen)⊕ SH lf
k (Xn−1)→ SH lf

k (X)
∂−→ ...

↓∼= ↓∼= ↓
H lf
k (qαSn−1)→ H lf

k (qαen)⊕H lf
k (Xn−1)→ H lf

k (X)
∂−→ ...

...
∂−→ SH lf

k−1(qαSn−1)→ SH lf
k−1(qαen)⊕ SH lf

k−1(Xn−1)
↓∼= ↓∼=

...
∂−→ H lf

k−1(qαSn−1)→ H lf
k−1(qαen)⊕H lf

k−1(Xn−1)

This diagram is commutative from the naturality of Φlf and the fact it commutes
with ∂. All the vertical arrows except the middle one are isomorphisms by induction
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(en are properly contractible) so by the �ve lemma it is also true for the middle one
(when we write Xn−1 we actually mean Xn−1∪fα I×Sn−1

α - the n−1 skeleton with
a collar of the attaching maps of the n cells thus it is properly homotopy equivalent
to Xn−1 since X is locally compact). �

To deal with the in�nite dimensional case we have to use the following:

Proposition 3.41. ([11] 1.7)(Cellular approximation theorem) Let K and M
be strongly locally �nite CW complexes, L a subcomplex of K and f : K → M
a proper map with f |L is cellular; then f is properly homotopic to a cellular map
through a homotopy �xed on L.

Corollary 3.42. Φlf is an isomorphism for all strongly locally �nite CW
complexes.

Proof. p-stratifolds with boundary have the proper homotopy type of a CW
pair which is �nite dimensional and locally �nite (since p-stratifolds are locally
compact), hence strongly locally �nite by proposition 3.28. This implies that for a
map from a p-stratifold with boundary to a strongly locally �nite CW complexX we

can use cellular approximation and therefore we have an isomorphism SH lf
k (X) =

lim−→(SH lf
k (Xn)). We also have H lf

k (X) = lim−→(H lf
k (Xn)), since we can compute

both sides by the cellular chain (both limits are taken over the skeleta Xn). Thus
the statement follows from the �nite dimensional case. �

3.4. Stratifold end homology

Let X be a locally compact topological space. The short exact sequence 0 →
S∗(X) → Slf∗ (X) → Slf∗ (X)/S∗(X) → 0 gives a long exact sequence in homology.
The homology of the third term is called the end homology and is denoted by
H∞∗ (X). The long exact sequence has the form:

...→ Hk(X)→ H lf
k (X)→ H∞k (X)→ Hk−1(X)→ ...

We note few properties of H∞k :

• Like H lf
∗ the end homology are functors from the category of locally com-

pact topological spaces and proper maps to Abelian groups.
• Since both singular homology and locally �nite homology are invariant of
the proper homotopy type so is end homology, by the �ve lemma.

• For a compact space the map Sk(X)→ Slfk (X) is an isomorphism and so

is Hk(X)→ H lf
k (X) thus H∞∗ (X) vanish, this is not the case in general.

We de�ne stratifold end homology denoted by SH∞∗ such that the following is a
long exact sequence:

...→ SHk(X)→ SH lf
k (X)→ SH∞k (X)→ SHk−1(X)→ ...

and we construct a natural isomorphism Φ∞ : SH∞∗ → H∞∗ such that the map
between the two long exact sequences will be a chain map.

Definition 3.43. Let X be a topological space and k ≥ 0, de�ne SH∞k (X) to
be {g : (T, S)→ X} / ∼ i.e., bordism classes of maps g : (T, S)→ X where (T, S) is
a p-stratifold with boundary which is oriented regular of dimension k, S is compact
and g is a continuous proper map. The bordism relation is de�ned the following
way: g : (T, S) → X is bordant to g′ : (T ′, S′) → X if and only if g|S : S → X is
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bordant to g′|S′ : S′ → X via a compact bordism T ′′ and g′′ : T ∪ T ′′ ∪ T ′ → X is
null bordant (note that T ′′ might be non empty even if S and S′ are empty).

Lemma 3.44. This is an equivalence relation.

Proof. The relation is re�exive: Given a map ((T, S), g) one can give the
structure of a p-stratifold with boundary to T × I such that its boundary will be
equal to S′ = T × {0} ∪ S × I ∪ T × {1} by a similar procedure to the one appears
in [23] in appendix A. This implies that ((T, S), g) is equivalent to itself.
The relation is symmetric: This is clear.
The relation is transitive: In order to prove this we have to know how to glue two
p-stratifolds along a part of their boundary. This is proved in [23] in appendix
A. �

SH∞k (X) has a natural structure of an Abelian group, where addition is given
by disjoint union of maps and the inverse is given by reversing the orientation. There

is a natural transformation SH lf
k (X) → SH∞k (X) given by [T, g] 7→ [(T, ∅), g] and

a boundary operator SH∞k (X)→ SHk−1(X) given by [(T, S), g] 7→ [S, g|S ].

Proposition 3.45. The following is a long exact sequence

...→ SHk(X)→ SH lf
k (X)→ SH∞k (X)→ SHk−1(X)→ ...

Proof. Clearly, the composition of every two maps is the zero map.

Exactness in SHk(X) - If [S, g] ∈ SHk(X) is mapped to zero in SH lf
k (X) than

S is the boundary of some T and g can be extended to a proper map g̃ : T → X,
which means that [S, g] = ∂[(T, S), g̃].

Exactness in SH lf
k (X) is by the de�nition of the bordism relation in SH∞k (X).

Exactness in SH∞k (X) - Assume [(T, S), g] ∈ SH∞k (X) and [S, g|S ] = 0 ∈
SHk−1(X). Take a (compact) bordism of it and glue it to (T, S) → X and you
will get a map from a boundaryless p-stratifold to X. It only left to see that
gluing a compact element doesn't change the bordism class which is clear by the
de�nition. �

A natural isomorphism between SH∞∗ and H∞∗ .
Let (T, S) be a p-stratifold with boundary which is oriented regular of dimen-

sion k, and S is compact. There is a long exact sequence for the pair (T, S) -
H∞k (S)→ H∞k (T )→ H∞k (T, S)→ H∞k−1(S). Since S is compact its end homology

vanishes, hence the map H∞k (T )→ H∞k (T, S) is an isomorphism. Take [T, S]lf and

push it forward toH∞k (T, S) using the mapH lf
k (T, S)→ H∞k (T, S), and use the iso-

morphism H∞k (T )→ H∞k (T, S) to de�ne the fundamental class [T, S]∞ ∈ H∞k (T ).
Note that if we don't require anything about T this element might be the zero
element. If we assume that Hk(T, S) is trivial (or that the fundamental class in

H lf
k (T, S) is not in the image of the map Hk(T, S) → H lf

k (T, S)) then it implies
that [T, S]∞ is non zero. This suggests that we can look only on maps from pairs
(T, S) with this property, for example when T is non compact, or better, has no
compact components. As before we have [T q T ′, S q S′]∞ = [T, S]∞ + [T ′, S′]∞

and [−T,−S]∞ = −[T, S]∞.

Lemma 3.46. In the previous notation, for the map ∂ : H∞k (T ) → Hk−1(T ),
we have ∂[T, S]∞ = i∗([S]) where i denotes the inclusion of S in T .
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Proof. By the de�nition of [T, S]∞, there is a representative which is an
in�nite cycle modulo S, that is its boundary is �nite and is contained in S. ∂[T, S]∞

is de�ned as the class of this boundary, considered as a class in Hk−1(T ). If we look

at the same representative as an element of H lf
k (T, S), its boundary in H lf

k (S) =
Hk(S) is exactly the same boundary (even though it lies in a di�erent group). As
we saw before, this element is [S], and therefore ∂[T, S]∞ = i∗([S]). �

Lemma 3.47. Let (T, S) be a p-stratifold with boundary which is oriented regular
of dimension k, and S is compact. Let (T ′,−S) be a p-stratifold with boundary
which is oriented regular of dimension k, and T ′ is compact. Denote by T ′′ the
gluing of both p-stratifolds along their boundary and the inclusion of T in T ′′ by i
then i∗([T ]∞) = [T ′′]∞.

Proof. We have the following commutative diagrams and a natural transfor-
mation between them:

H lf
k (T ) → H lf

k (T, S)
↓ ↓

H lf
k (T ′′) → H lf

k (T ′′, T ′)

H∞k (T )
∼=−→ H∞k (T, S)

i∗ ↓ ↓
H∞k (T ′′)

∼=−→
j∗

H∞k (T ′′, T ′)

T ′ is compact and therefore the map j∗ : H∞k (T ′′)→ H∞k (T ′′, T ′) is an isomorphism
so it is enough to prove that j∗ ◦ i∗([T ]∞) = j∗([T

′′]∞). We start with j∗ ◦ i∗([T ]∞).
By the commutativity of the right diagram this equals to the image of [T, S]lf under

the composition H lf
k (T, S)→ H∞k (T, S)→ H∞k (T ′′, T ′) or by commutativity to its

image under the composition H lf
k (T, S) → H lf

k (T ′′, T ′) → H∞k (T ′′, T ′). The �rst

map is an isomorphism by excision and [T, S]lf is mapped to the image of [T ′′]lf

under the map H lf
k (T ′′) → H lf

k (T ′′, T ′). Therefore the result follows from the
commutativity of the following diagram:

H lf
k (T ′′) → H lf

k (T ′′, T ′)
↓ ↓

H∞k (T ′′) → H∞k (T ′′, T ′)

�

De�ne a natural transformation Φ∞ : SH∞∗ → H∞∗ by Φ∞([(T, S), g]) =
g∗([T, S]∞).

Proposition 3.48. Φ∞ is a well de�ned natural transformation.

Proof. Φ∞ is well de�ned: It is enough to prove that g∗([T, S]∞) = 0 for
the inclusion g : (T, S) → L where L is a null bordism, that is L is an oriented
regular p-stratifold with boundary equal to T ′′ = T ∪S T ′ where T ′ is compact.
By the lemma above i∗([T ]∞) = [T ′′]∞. [T ′′]∞ is by de�nition the image of [T ′′]lf .
The result follows from the commutativity of the following diagram:

H lf
k (T ′′) → H lf

k (L)
↓ ↓

H∞k (T ) → H∞k (T ′′) → H∞k (L)

Φ∞ is a group homomorphism: This follows from the fact that [T q T ′, S q
S′]∞ = [T, S]∞ + [T ′, S′]∞ and [−T,−S]∞ = −[T, S]∞

Φ∞ is natural: It follows from the functoriality of H∞∗ . �
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Proposition 3.49. The following diagram commutes:

SHk(X) → SH lf
k (X) → SH∞k (X) → SHk−1(X)

↓ ↓ ↓ ↓
Hk(X) → H lf

k (X) → H∞k (X) → Hk−1(X)

Proof. The left square commutes: It is enough to prove it for X = S a
compact oriented regular p-stratifold of dimension k and the element [S, Id]. In
this case it is trivial since both horizontal maps are actually the identity maps.

The middle square commutes: It is enough to prove it for X = S an oriented
regular p-stratifold of dimension k and the element [S, Id] and this is clear.

The right square commutes: It is enough to prove that in the following case:
X = (T, S) a regular oriented p-stratifold of dimension k with boundary where S
is compact. Here we have to show that the fundamental class [T, S]∞ ∈ H∞k (T ) is
mapped to the class i∗([S]) ∈ Hk−1(T ) which is the case by lemma 3.46. �

Corollary 3.50. The natural transformation Φ∞ : SH∞∗ → H∞∗ is an iso-
morphism for all strongly locally �nite CW complexes.

Proof. This follows from the fact that the natural transformations Φ : SH∗ →
H∗ and Φlf : SH lf

∗ → H lf
∗ are isomorphisms and the �ve lemma. �



CHAPTER 4

Stratifold Cohomology Theories

Abstract. In this chapter we summarize de�nitions and properties of various
cohomology theories and introduce new cohomology theories: SH∗c and SH∗∞
and identify them with the corresponding ordinary cohomology theories. We
also construct an explicit natural isomorphism between stratifold cohomology
and singular cohomology. The existence of such an isomorphism was known
but the construction is new.

4.1. Report about stratifold cohomology

Stratifold cohomology was de�ned by Kreck in [23]. We will describe here a
variant of this theory called parametrized stratifold cohomology, which is naturally
isomorphic to it. In this paper we will refer to parametrized stratifold cohomology
just as stratifold cohomology.

(parametrized) Stratifold cohomology, denoted by SH∗, is an ordinary coho-
mology theory de�ned on the category of smooth oriented manifolds and smooth
maps. We will construct a natural isomorphism Θ : SH∗ → H∗. It gives a new
geometric point of view on integral cohomology, and has some advantages, some of
which we will view later. Poincaré duality for a closed oriented smooth manifold

M of dimension m is given by SHk(M)
∼=−→ SHm−k(M) which is trivial.

Definition 4.1. Let M be a smooth oriented manifold of dimension m (not
necessarily compact) and k ≥ 0, de�ne SHk(M) to be {g : S →M} / ∼ i.e., bor-
dism classes of maps g : S → M where S is an oriented regular p-stratifold of
dimension m− k and g is a smooth proper map. SHk(M) has a natural structure
of an Abelian group, where addition is given by disjoint union of maps and the
inverse is given by reversing the orientation. If f : N → M is a smooth map than
we can de�ne an induced map f∗ : SHk(M)→ SHk(N) by pullback (after making
f transversal to g). See [23] for details on how do we orient this pullback. It can
be shown that for the projections πM : M × N → M and πN : M × N → N
we have π∗M ([S, g]) = [S × N, g × Id] and π∗N ([T, g′]) = (−1)ml[M × T, Id × g′]
([T, g′] ∈ SH l(N)) where we orient the products by the product orientation.

A triple (U, V,M) consists ofM which is a smooth oriented manifold and U, V ⊆
M which are two open subspaces cover M , with the orientation induced by M . For
each triple there is a natural coboundary operator δ : SHk(U ∩ V ) → SHk+1(M)
which is de�ned in [23] in a similar way to ∂ in SHk (but in the opposite direction).
We will de�ne it later, note that we add a sign so it will be consistent with the
de�nition in [10]. The following is proved in [23]:

Theorem 4.2. (Mayer-Vietoris) The following sequence is exact:

...→ SHk(M)→ SHk(U)⊕ SHk(V )→ SHk(U ∩ V )
δ−→ SHk+1(M)→ ...

29



4.1. REPORT ABOUT STRATIFOLD COHOMOLOGY 30

where, as usual, the �rst map is induced by inclusions and the second is the di�er-
ence of the maps induced by inclusions.

SH∗ is a multiplicative theory. The cross product × : SHk(M) ⊗ SH l(N) →
SHk+l(M ×N) is given by [g1 : S →M ]× [g2 : T → N ] = (−1)ml[g1× g2 : S×T →M ×N ]

(again, the sign di�ers from the one in [23]). This product is bilinear and natural.
The cup product is given by α ∪ β = ∆∗(α × β) where ∆ : M → M ×M is the
diagonal map. It can be shown that the cup product is also given by transversal
intersection. We denote by 1M or just 1 the element [M, Id], we will see that it is
the unit element.

Here are several properties of the cross product which are easily veri�ed (M
and N are two smooth oriented manifolds of dimension m and n respectively):

(1) The cross product is associative (this is a simple sign check).
(2) Let τ : M ×N → N ×M be the �ip map de�ned by τ(x, y) = (y, x) then

τ∗(α×β) = (−1)klβ×α for every α ∈ SH l(N) and β ∈ SHk(M) (similar
to [23]).

(3) π∗M (α) = α × 1N and π∗N (β) = 1M × β for every α ∈ SHk(M) and
β ∈ SH l(N) where the maps are the projections (this follows from the
computation of π∗M (α) above).

(4) 1 ∪ α = α ∪ 1 = α for every α ∈ SHk(M) (1 ∪ α = ∆∗(1 × α) =
∆∗(π∗M (α)) = α since πM ◦∆ = Id).

(5) α× β = π∗M (α) ∪ π∗N (β) for every α ∈ SHk(M) and β ∈ SH l(N).

Proof. This follows from properties 1-4 using the relation ∆M×N = T ◦
(∆M ×∆N ) where:
∆M , ∆N and ∆M×N are the diagonal maps of M , N and M ×N .
τ the �ip map de�ned above.
T : M ×M ×N ×N →M ×N ×M ×N de�ned by IdM × τ × IdN . �

SH∗ with the coboundary operator and the cross product is a multiplicative coho-
mology theory. We call it (parametrized) stratifold cohomology.

Poincaré duality.
There are two forms of duality called Poincaré duality:

Theorem 4.3. Let M be a closed oriented smooth manifold of dimension m
then there is an isomorphism PDM : SHk(M)→ SHm−k(M).

Theorem 4.4. LetM be a smooth oriented manifold of dimension m then there

is an isomorphism PDM : SHk(M)→ SH lf
m−k(M).

Both proofs use the following approximation proposition ([23] 12.4):

Proposition 4.5. Let g : T → M be a continuous map from a smooth c-
stratifold T to a smooth manifold M, whose restriction to ∂T is a smooth map.
Then g is homotopic rel. boundary to a smooth map.

The �rst one also uses the fact that a continuous map to a compact space is
proper if and only if the domain is compact.
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A natural isomorphism between SH∗ and H∗.
Let M be an oriented manifold of dimension m. We have the following isomor-

phisms:

(1) Poincaré duality PDM : SHk(M)→ SH lf
m−k(M)

(2) Φlf : SH lf
m−k(M)→ H lf

m−k(M)

(3) Poincaré duality PD−1
M : H lf

m−k(M)→ Hk(M) which is well de�ned since
M is oriented.

The composition SHk(M) → SH lf
m−k(M) → H lf

m−k(M) → Hk(M) is an isomor-
phism of groups for all oriented manifolds, denote it by Θ. We would like to show
that Θ is a natural isomorphism.

Before we do that, here are some properties of the cap product we will use
later. The signs in the formulas are a subject of convention, and change from one
book to the other, depending on the way we de�ne the various products. We follow
the one used in [10] (see also appendix 1).
We have the following:

• Naturality - Let f : X → Y be a continuous map then f∗(f
∗(ϕ) ∩ α) =

ϕ ∩ f∗(α) for all ϕ ∈ Hk(Y ) and α ∈ Hm(X) ([10] VII,12.6).
• Associativity - ϕ ∩ (ψ ∩ α) = (ϕ ∪ ψ) ∩ α for all ϕ ∈ Hk(X), ψ ∈ H l(X)
and α ∈ Hm(X) ([10] VII,12.7).

• Unit - Denote by 1X ∈ H0(X) the identity element in cohomology then
1X ∩ α = α for all α ∈ Hm(X) ([10] VII,12.9).

• Relation with cross product - (ϕ×ψ)∩(α×β) = (−1)ml(ϕ∩α)×(ψ∩β) for
all ϕ ∈ Hk(X), ψ ∈ H l(Y ), α ∈ Hm(X) and β ∈ Hn(Y )([10] VII,12.17).

The �rst three formulas hold on chain level so they remain true if we switch H∗
with H lf

∗ or H∗ with H∗c for the last one we will need the following:
For a CW complex X, one can de�ne the cap product in cellular homology.

First choose a cellular approximation for the diagonal map ∆ : X → X × X

denoted by ∆′. This induces a map ∆′∗ : C∗(X)→ C∗(X ×X)
∼=−→ C∗(X)⊗C∗(X).

Let α ∈ Cm(X) be a cellular chain and ϕ ∈ Ck(X) a cellular cochain. Denote
∆′∗(α) =

∑
α1
i ⊗α2

m−i and de�ne ϕ∩α = (−1)k·(m−k)ϕ(α2
k) ·α1

m−k. This de�nition
does not depend on the choice of ∆′ after passing to homology. More about it
can be found in [27]. The same thing can be done for locally �nite homology for
strongly locally �nite CW complexes.

Lemma 4.6. Let X and Y be strongly locally �nite CW complexes. The relation
above: (ϕ × ψ) ∩ (α × β) = (−1)ml(ϕ ∩ α) × (ψ ∩ β) also holds for locally �nite
homology, that is for , ϕ ∈ Hk(X), ψ ∈ H l(Y ), α ∈ H lf

m (X) and β ∈ H lf
n (Y ) .

Proof. We prove it using cellular homology. We choose cellular approx-
imations to the diagonal maps which we denote by ∆′X : X → X × X and
∆′Y : Y → Y ×Y . The map ∆′X×∆′Y is also cellular. Let τ : X×Y → Y ×X be the
�ip map then ∆′X×Y = (IdX × τ × IdY ) ◦ (∆′X ×∆′Y ) is a cellular approximation
for the diagonal map ∆X×Y : X × Y → X × Y ×X × Y .

Let α ∈ Cm(X) and β ∈ Cn(Y ) be cellular chains and ϕ ∈ Ck(X) and ψ ∈
Cl(Y ) be cellular cochains. Denote ∆′X∗(α) =

∑
α1
i⊗α2

m−i and ∆′Y ∗(β) =
∑
β1
j⊗β2

n−j

then:
∆′X×Y ∗(α× β) = (IdX × τ × IdY )∗ ◦ (∆X ×∆Y )∗ (α× β)

= (IdX × τ × IdY )∗
(∑

α1
i ⊗ α2

m−i ⊗ β1
j ⊗ β2

n−j
)
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=
∑

(−1)(m−i)j (α1
i ⊗ β1

j

)
⊗
(
α2
m−i ⊗ β2

n−j
)

We conclude:
(ϕ× ψ) ∩ (α× β) = (−1)k(n−l)+(k+l)(m+n−k−l)ϕ× ψ(α2

k ⊗ β2
l ) · α1

m−k ⊗ β1
n−l

= (−1)k(n−l)+(k+l)(m+n−k−l)+klϕ(α2
k)ψ(β2

l ) · α1
m−k ⊗ β1

n−l
= (−1)km−kk+lm+ln−llϕ(α2

k)ψ(β2
l ) · α1

m−k ⊗ β1
n−l

= (−1)ml(−1)k(m−k)ϕ(α2
k) · α1

m−k ⊗ (−1)l(n−l)ψ(β2
l )β1

n−l
= (−1)mlϕ ∩ α× ψ ∩ β
The same relation holds after passing to homology. �

Lemma 4.7. Θ(1M ) = 1M .

Proof. This follows from the fact that 1M ∩ [M ]lf = [M ]lf (Unit). �

Proposition 4.8. Θ is natural, that is for every smooth map f : N → M
between two smooth oriented manifolds of dimension n and m resp. the following
diagram commutes:

SHk(M)
Θ−→ Hk(M)

f∗ ↓ ↓ f∗

SHk(N)
Θ−→ Hk(N)

Proof. First case - f : N ↪→M is an embedding ofN as a closed submanifold
of M :

Take an element α = [S, g] ∈ SHk(M). We can assume that g is transversal
to f , thus we can �nd a (closed) tubular neighborhood U of N with boundary ∂U
(also transversal to g) and a projection map πN : U → N with the property that
the pullback of U will be a tubular neighbourhood πS : S t U → S t N (see
appendix 1). This can be done when S is a smooth manifold and for a p-stratifold
this can be done inductively. We claim that the following diagram commutes:

H lf
m−k(S)

g∗−→ H lf
m−k(M)

PD−1
M−−−−→∼= Hk(M)

↓ (1) ↓
H lf
m−k(S, S \ g−1(

◦
U))

g∗−→ H lf
m−k(M,M \

◦
U)

∼=↑ Excision (2) ∼=↑ Excision ↓ f∗

H lf
m−k(S t U, S t ∂U)

g∗−→ H lf
m−k(U, ∂U)

∼=↓ ε · τπS ∩ − (3) ∼=↓ ε · τπN ∩ −

H lf
n−k(S t N)

g∗−→ H lf
n−k(N)

PD−1
N−−−−→∼= Hk(N)

Where ε = (−1)(n−k)(m−n). The fact that the right side commutes is proved in

appendix 1. Squares (1) and (2) commute by the functoriality of H lf
∗ . Square

(3) commutes by the naturality of the Thom class and the fact that the bundle
πS : S t U → S t N is the pullback of the bundle πN : U → N :
g∗ ◦πS∗(ε ·τπS ∩α) = ε ·πN∗ ◦g∗(τπS ∩α) = ε ·πN∗ ◦g∗(g∗(τπN )∩α) = πN∗(ε ·τπN ∩g∗(α))

We follow both images of [S]lf ∈ H lf
m−k(S). By de�nition, the image of [S]lf in the

top row is Θ(α), which is mapped in the right column to f∗(Θ(α)). The composition
of the maps on the left is denoted in appendix 1 by (−1)(n−k)(m−n) · φ and it is
proved there that (−1)(n−k)(m−n) · φ([S]lf ) = [S t N ]lf . By de�nition its image in
the bottom row is equal to Θ(f∗(α)) using the fact that [S t N, g] = f∗(α). Since
the diagram commutes we conclude that f∗(Θ(α)) = Θ(f∗(α)).
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The general case - f : N →M is an arbitrary smooth map:
We embed i : N ↪→ Rp as a closed submanifold for some p. f is equal to

the composition N
f×i−−→ M × Rp πM−−→ M . f × i is an embedding of N as a

closed submanifold. πM has an inverse up to homotopy which is an embedding -

M
Id×0−−−→M × Rp hence this follows from the previous case. �

Proposition 4.9. Θ commutes with the coboundary operator in the Mayer-
Vietoris sequence.

Proof. Let (U, V,M) be a triple where M is a smooth oriented manifold of
dimension m and U, V are two open sets in M . For k ≥ 0 the coboundary operator
δ : SHk(U∩V )→ SHk+1(M) is given in the following way: For [S, g] ∈ SHk(U∩V )
we choose a smooth map f : M → R such that f |M\U = −1 and f |M\V = 1 and a

regular value −1 < x < 1 of the composition f ◦ g. Denote by S′ = (f ◦ g)−1(x),
then S′ is a regular p-stratifold of dimension m− k − 1 and we give it the induced
orientation. The map g′ : S′ →M is proper, we de�ne δ([S, g]) = (−1)k+1[S′, g′].

We can choose x to be a regular value both of f ◦g and f . DenoteM∂ = f−1(x),
then M∂ is a closed submanifold of M of dimension m − 1 which is included in
U ∩ V , we give it the induced orientation. Denote the inclusions i : M∂ → U ∩ V
and j : M∂ →M Then (−1)k+1δ equals to the composition:

SHk(U ∩ V )
i∗−→ SHk(M∂)

PDM∂−−−−→ SHlf
m−k−1(M∂)

j∗−→ SHlf
m−k−1(M)

PD−1
M−−−−→ SHk+1(M)

By what we showed so far the following diagram commutes:

SHk(U ∩ V )
i∗−−→ SHk(M∂)

PDM∂−−−−−−→ SH
lf
m−k−1

(M∂)
j∗−−→ SH

lf
m−k−1

(M)
PD
−1
M−−−−−→ SHk+1(M)

Θ ↓ Θ ↓ Φlf ↓ Φlf ↓ Θ ↓

Hk(U ∩ V )
i∗−−→ Hk(M∂)

PDM∂−−−−−−→ H
lf
m−k−1

(M∂)
j∗−−→ H

lf
m−k−1

(M)
PD
−1
M−−−−−→ Hk+1(M)

Denote by ρ : Hk(U ∩ V ) → Hk+1(M) the composition of the maps in the
bottom row. By commutativity of the diagram Θ(δα) = (−1)k+1ρΘ(α). If we
show that (−1)k+1ρ equals to δ we will deduce that Θ(δα) = δΘ(α).

Denote by Ũ = f−1([x,∞)) and Ṽ = f−1((∞, x]) then Ũ ∩ Ṽ = M∂ . There is

a map of triples s : (Ũ , Ṽ ,M) → (U, V,M). We claim that the following diagram
commutes up to sign (−1)k+1 (here δ is the connecting homomorphism in the
sequence of a pair):

Hk(U ∩ V )
i∗−→ Hk(M∂)

PDM∂−−−−→ H lf
m−k−1(M∂)

δ ↓ (1) δ ↓ (4) i∗ ↓
Hk+1(U,U ∩ V )

i∗−→ Hk+1(Ũ ,M∂)
PDŨ−−−→ H lf

m−k−1(Ũ)
excision ↓ (2) excision ↓ (5) s∗ ↓

Hk+1(M,V )
i∗−→ Hk+1(M, Ṽ )

−∩[M,Ṽ ]lf−−−−−−−→ H lf
m−k−1(M)

↓ (3) ↓ (6) ↓
Hk+1(M)

Id−→ Hk+1(M)
PDM−−−→ H lf

m−k−1(M)

(1) Commutes by the naturality of the connecting homomorphism for pairs.
(2) Commutes by the functoriality H∗.
(3) Commutes by the functoriality H∗.
(4) Commutes up to sign (−1)k+1 by ([10] VIII, 9.1).
(5) Commutes by the naturality of the cap product:

Take ϕ ∈ Hk+1(M, Ṽ ) then the composition:
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Hk+1(M, Ṽ )
s∗−→ Hk+1(Ũ ,M∂)

PD
Ũ−−−→ Hlf

m−k−1(Ũ)
s∗−→ Hlf

m−k−1(M) equals to:

ϕ 7→ s∗(ϕ) 7→ s∗(ϕ) ∩ [Ũ ,M∂ ]lf 7→ s∗(s
∗(ϕ) ∩ [Ũ ,M∂ ]lf )

= ϕ ∩ s∗([Ũ ,M∂ ]lf ) = ϕ ∩ [M, Ṽ ]lf

which equals to the image of ϕ under the map:

Hk+1(M, Ṽ )
−∩[M,Ṽ ]lf−−−−−−−→ H lf

m−k−1(M).
(6) Commutes by the naturality of the cap product.

We conclude that (−1)k+1ρ equals to the composition:

Hk(U ∩ V )
δ−→ Hk+1(U,U ∩ V )

excision−−−−−→ Hk+1(M,V )
i∗−→ Hk+1(M)

We would like to show that this composition is equal to the coboundary map in the
Mayer Vietoris sequence. To see that we just note that both maps take an element
[ϕ] ∈ Hk(U ∩ V ) and map it in the following steps:

(1) Extend ϕ to U denoted by ϕ̄ by de�ning ϕ̄(σ) = ϕ(σ) if σ is a simplex in
U ∩ V and 0 else.

(2) Take its di�erential δ(ϕ̄) = (−1)k+1ϕ̄◦∂ and notice that it lies in Ck+1(U,U∩
V ).

(3) Extend this cochain by zero to an element in Ck+1(M,V ) which is also
an element in Ck+1(M).

�

Lemma 4.10. Θ commutes with the cross product, that is for every two smooth
oriented manifolds M and N of dimension m and n respectively the following dia-
gram commutes:

SHk(M)⊗ SH l(N)
Θ⊗Θ−−−→ Hk(M)⊗H l(N)

× ↓ ↓ ×
SHk+l(M ×N)

Θ−→ Hk+l(M ×N)

Proof. This diagram is equal to the composition of the following three dia-
grams:

The �rst diagram commutes up to sign (−1)ml since the horizontal maps are
identities and the vertical maps are equal up to that exact sign:

SHk(M)⊗ SH l(N)
PDM⊗PDN−−−−−−−−→ SH lf

m−k(M)⊗ SH lf
n−l(N)

× ↓ ↓ ×
SHk+l(M ×N)

PDM×N−−−−−−→ SH lf
m+n−k−l(M ×N)

The second diagram commutes:

SH lf
m−k(M)⊗ SH lf

n−l(N)
Φlf⊗Φlf−−−−−−→ H lf

m−k(M)⊗H lf
n−l(N)

× ↓ ↓ ×
SH lf

m+n−k−l(M ×N)
Φlf−−→ H lf

m+n−k−l(M ×N)

since Φlf commutes with cross product (as was shown before).
And the third diagram commutes up to sign (−1)ml:

H lf
m−k(M)⊗H lf

n−l(N)
PD−1

M ⊗PD
−1
N−−−−−−−−−→ Hk(M)⊗H l(N)

× ↓ ↓ ×

H lf
m+n−k−l(M ×N)

PD−1
M×N−−−−−−→ Hk+l(M ×N)
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This can be seen by the formula ϕ×ψ∩ [M ]lf× [N ]lf = (−1)mlϕ∩ [M ]lf×ψ∩ [N ]lf

and the fact that [M ]lf × [N ]lf = [M ×N ]lf .
Composing the three diagrams we get the commutativity of the original diagram.

�

We proved that Θ : SH∗ → H∗ is a natural isomorphism of graded groups, it
commutes with the coboundary operator in the Mayer − V ietoris sequence and
with the cross product, thus we proved the following:

Theorem 4.11. Θ is a natural isomorphism of multiplicative cohomology the-
ories.

4.2. Stratifold cohomology with compact support

Stratifold cohomology with compact support, denoted by SH∗c , is a multiplica-
tive theory de�ned on the category of smooth oriented manifolds and smooth proper
maps between them. It is given by bordism classes of smooth maps from compact
oriented regular p-stratifolds. The de�nitions are similar to those of stratifold co-
homology so we will not repeat them.

Let (U, V,M) be a triple, that is U and V are open subspaces in M . Since the
inclusion of an open subspace is not proper we don't have induced maps SH∗c (M)→
SH∗c (U) and SH∗c (M)→ SH∗c (V ) so we don't have a Mayer − V ietoris sequence
like we had for SH∗. For an open subspace of a manifold we can de�ne an induced
map in the other direction by composition so we will get maps SH∗c (U)→ SH∗c (M)
and SH∗c (V ) → SH∗c (M). We can de�ne ∂ : SHk

c (M) → SHk+1
c (U ∩ V ) like the

one we had for SH∗ and we will get the following Mayer − V ietoris sequence in
SH∗c :

...→ SHk
c (U ∩ V )→ SHk

c (U)⊕ SHk
c (V )→ SHk

c (M)
∂−→ SHk+1

c (U ∩ V )→ ...
We have the following duality which is also called Poincaré duality:

Theorem 4.12. Let M be a smooth oriented manifold of dimension m then
there is an isomorphism PDM : SHk

c (M)→ SHm−k(M).

Proof. This follows from the approximation proposition we stated before, that
every map from a stratifold to a smooth manifold is homotopic to a smooth map
relative its boundary. �

A natural isomorphism between SH∗c and H∗c .
Like we did before, for a smooth oriented manifold M of dimension m we have

group isomorphisms SHk
c (M) → SHm−k(M) → Hm−k(M) → Hk

c (M) where the
last isomorphism is given by Poincaré duality. We denote the composition by Θc.

Lemma 4.13. Let M and N be two smooth oriented manifolds of dimension m
and n respectively, then for every ϕ ∈ Hk

c (M) and ψ ∈ H l
c(N) we have:

ϕ× ψ ∩ [M ×N ]lf = (−1)mlϕ ∩ [M ]lf × ψ ∩ [N ]lf

Proof. Hk
c (M) = lim−→H

k(M,M \K) and Hk
c (N) = lim−→H

k(N,N \ L) where

the limits are taken over all compact subsets ([17] p. 244). Let ϕ0 ∈ Hk(M,M \K0)
and ψ0 ∈ Hk(N,N \ L0) be two classes that are mapped to ϕ and ψ. Note that
also ϕ0 × ψ0 is mapped to ϕ× ψ. This means that:

(1) ϕ0 ∩ [M ]K0
= ϕ ∩ [M ]lf

(2) ψ0 ∩ [N ]L0
= ψ ∩ [N ]lf
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(3) ϕ0 × ψ0 ∩ [M ×N ]K0×L0
= ϕ× ψ ∩ [M ×N ]lf

Combining this with the fact that [M ×N ]K0×L0
= [M ]K0

× [N ]L0
we get:

ϕ× ψ ∩ [M ×N ]lf = ϕ0 × ψ0 ∩ [M ×N ]K0×L0
= ϕ0 × ψ0 ∩ [M ]K0

× [N ]L0
=

(−1)mlϕ0 ∩ [M ]K0 × ψ0 ∩ [N ]L0 = (−1)mlϕ ∩ [M ]lf × ψ ∩ [N ]lf �

Proposition 4.14. Θc commutes with the cross product.

Proof. It is proved in a similar way to what we had for Θ, using the lemma
above. �

Proposition 4.15. Θc is natural.

Proof. First case - f : N ↪→M is an embedding ofN as a closed submanifold
of M :
This is proved just like what we had for Θ.
Second case - f = πM : M × N −→ M is a projection (for example on the �rst
factor) with N compact:

SHk
c (M)

Θc−−→ Hk
c (M)

π∗M ↓ ↓ π∗M
SHk

c (M ×N)
Θc−−→ Hk

c (M ×N)

Let α ∈ SHk
c (M) then Θc◦π∗M (α) = Θc(α×1N ) = Θc(α)×Θc(1N ) = Θc(α)×1N =

π∗M (Θc(α)).
We used here the following facts proved before:

(1) π∗M (α) = α× 1N which is true both for SH∗c and for H∗c .
(2) Θc(1N ) = 1N
(3) Θc commutes with the cross product.

The general case - f : N →M is an arbitrary smooth map:

We cannot use the factorization N
f×i−−→ M × Rp πM−−→ M since πM is not proper.

Instead we embed N ↪→ Rp and compose it with the map in Rp → Sp. We get an
injective map g : N → Sp which is not proper but the map f × g : N →M × Sp is
proper (it is enough that f is proper) and the map πM : M × Sp → M is proper.
Hence the general case follows from the previous cases. �

Proposition 4.16. Θc commutes with the induced maps for inclusions of open
subspaces and with ∂.

Proof. Unlike the situation in ordinary cohomology, in cohomology with com-
pact support all the functors SHk

c (M), SHm−k(M), Hm−k(M), Hk
c (M) are covari-

ant with respect to inclusions of open subspaces and ∂ maps in the same direction.
To show that Θc commutes with the induced maps for inclusions of open subspaces
and with ∂ we will show that each of the natural transformations above does.
PDM : SHk

c (M)→ SHm−k(M) commutes with induced maps of inclusions of open
subspaces and with ∂ by de�nition.
Φ commutes with induced maps of inclusions of open subspaces and with ∂ as was
shown before.
PD−1

M : Hm−k(M) → Hk
c (M) commutes with induced maps of inclusions of open

subspaces and with ∂ (in the proof of [29] A.9). �
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4.3. Stratifold end cohomology

Stratifold end cohomology, denoted by SH∗∞, is de�ned in a similar way to
stratifold end homology and the induced maps are de�ned like those in stratifold
cohomology. It is de�ned on the category of smooth oriented manifolds and proper
smooth maps between them. It is given by bordism classes of proper maps from
oriented regular p-stratifolds with boundary which is compact. The de�nitions are
similar to those of stratifold end homology so we will not repeat them. Note that
it is not multiplicative. Again we have a long exact sequence:

...→ SHk
c → SHk → SHk

∞ → SHk+1
c → ...

We can construct Θ∞ : SH∗∞ → H∗∞ as the composition SH∗∞(M)→ SH∞m−∗(M)→
H∞m−∗(M)→ H∗∞(M). We will have the following:

Proposition 4.17. Let M be a smooth oriented manifold of dimension m then
the following diagram commutes:

SHk
c (M) → SHk(M) → SHk

∞(M) → SHk+1
c (M)

↓ ↓ ↓ ↓
Hk
c (M) → Hk(M) → Hk

∞(M) → Hk+1
c (M)

Proof. The following diagram clearly commutes:

SHk
c (M) → SHk(M) → SHk

∞(M) → SHk+1
c (M)

↓ ↓ ↓ ↓
SHm−k(M) → SH lf

m−k(M) → SH∞m−k(M) → SHm−k−1(M)

We proved before that the following diagram commutes:

SHm−k(M) → SH lf
m−k(M) → SH∞m−k(M) → SHm−k−1(M)

↓ ↓ ↓ ↓
Hm−k(M) → H lf

m−k(M) → H∞m−k(M) → Hm−k−1(M)

And the following diagram commutes by ([25] 3.1):

Hm−k(M) → H lf
m−k(M) → H∞m−k(M) → Hm−k−1(M)

↓ ↓ ↓ ↓
Hk
c (M) → Hk(M) → Hk

∞(M) → Hk+1
c (M)

The composition of those diagrams gives us the diagram above by the construction
of Θ, Θc and Θ∞. �



CHAPTER 5

Backwards (Co)Homology and Equivariant
Poincaré Duality

Abstract. Let G be a �nite group. In this chapter we introduce a new
cohomology theory for G − CW complexes called backwards (co)homology,
relate it to ordinary equivariant (co)homology and Tate (co)homology and
prove equivariant Poincaré duality for closed oriented manifolds with a smooth
and orientation preserving G action.

5.1. Group (co)homology with coe�cients in a chain complex

We follow the presentation of (co)homology in [7] and [3]. To do this we need
some basic constructions. In this chapter the group G is assumed to be �nite
unless stated otherwise and all modules are assumed to be left modules unless
stated otherwise. Moreover, since each left Z[G] module has a natural structure
of a right Z[G] module and vice versa we will not pay attention to the di�erence
between them.

We �x a group G. We start by introducing group homology and cohomology
which are functors from the category of Z[G] modules to the category of grades
Abelian groups. Note that both group homology and group cohomology are covari-
ant considered this way. Before we do that, here are some preliminaries:

Let M be a Z[G] module. A projective resolution of M is a sequence of pro-
jective Z[G] modules ...→ Q1 → Q0 with a map Q0 →M such that Q∗ →M → 0
is exact. There is a functorial way to construct projective resolutions.

The following implies the uniqueness of projective resolutions:

Proposition 5.1. ([7] I,7.5) Let Q∗ and Q
′
∗ be two projective resolutions of a

Z[G] module M then there exists an augmentation preserving chain map f : Q∗ →
Q′∗ which is unique up to homotopy and f is a homotopy equivalence.

We will later need the following (here R is a ring):

Theorem 5.2. (Duality [7] I,8.3) Let P be a �nitely generated projective (left)
R module and denote P ∗ = HomR(P,R) then:
1) P ∗ is a �nitely generated projective (right) R module.
2) For every (left) R module M there is an isomorphism P ∗⊗RM → HomR(P,M)

of Abelian groups.
3) For every (right) R moduleM there is an isomorphismM⊗RP → HomR(P ∗,M)

of Abelian groups.
4) There is an isomorphism P → P ∗∗ of (left) R modules.

38
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Proposition 5.3. ([7] VI,3.4) For any �nite group G and any module M there
is a natural isomorphism of Z[G] modules ψ : HomZ(M,Z)→M∗ = HomZ[G](M,Z[G])

given by ψ(u)(m) = Σg∈Gu(g−1m) · g

Group homology and cohomology.
Let P∗ be a projective resolution of Z as a trivial Z[G] module. The homology

of the group G with coe�cients in the Z[G] module M , denoted by H∗(G,M),
is the homology of the chain complex P∗ ⊗Z[G] M . The cohomology of G with
coe�cients in M , denoted by H∗(G,M), is the homology of the cochain complex
HomZ[G](P∗,M) (we use the sign convention as in [7] (δu)(x) = (−1)n+1u(∂x) for
all u ∈ HomZ[G](Pn,M) and x ∈ Pn+1). A consequence of proposition 5.1 is that
the de�nition is independent of the choice of the projective resolution.

Remark 5.4. From now on we will assume that G is �nite(!)

A backwards projective resolution of Z is a sequence of projective Z[G] modules
P0 → P−1 → ... with a map Z→ P0 such that 0→ Z→ P∗ is exact. The following
appears in ([7] VI,3.5) and it implies the existence and uniqueness of backwards
resolutions:

Proposition 5.5. Let G be a �nite group and P∗ → Z a �nite type (all Pk
are �nitely generated) projective resolution then the dual cochain complex Z →
HomZ[G](P0,Z[G]) → HomZ[G](P1,Z[G]) → ... is a backwards projective resolu-
tion. Every �nite type backwards projective resolution is obtained this way up to
isomorphism.

Remark 5.6. 1) The condition that P∗ is of �nite type can always be obtained,
even in a functorial way.
2) In the dual chain, we use the sign convention for Hom complexes.

Let P+
∗ be a projective resolution and P−∗ a backwards projective resolution.

By splicing together P+
∗ and P−∗ [−1] (P−∗ with a dimension shift) we get what

is called a complete (projective) resolution ..P1 → P0 → P−1 → ... (for k < 0 we
de�ne Pk = P−k+1 ). We denote the whole sequence by P∗. The map P0 → P−1

is given by the composition P0 → Z → P−0 which is a part of the data of a
complete resolution. From now on, we use the notation P+

∗ , P
−
∗ , P∗ for a projective

resolution, a backwards projective resolution and a complete resolution respectively.

Remark 5.7. We use the convention that the boundary operator in P−∗ [−1] is
minus the boundary operator in P−∗ .

Tate homology and cohomology.
Tate homology and cohomology are de�ned for �nite groups. The Tate ho-

mology (cohomology) of the group G with coe�cients in the Z[G] module M , de-

noted by Ĥ∗(G,M) (Ĥ∗(G,M)), is the homology of the chain complex P∗⊗Z[G] M
(HomZ[G](P∗,M)) where P∗ is a complete resolution. One might show that the
de�nition is independent of the choice of the complete resolution ([7] VI,3.3).

Backwards homology and cohomology.
We de�ne the backwards homology and cohomology for �nite groups. The

backwards homology (cohomology) of the group G with coe�cients in the Z[G]
module M , denoted by DH∗(G,M) (DH∗(G,M)), is the homology of the chain
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complex P−∗ ⊗Z[G] M (HomZ[G](P
−
∗ ,M)) where P−∗ is a backwards projective res-

olution. One might show that the de�nition is independent of the choice of the
backwards projective resolution (similar to [7] VI,3.3).

At �rst look this doesn't look interesting due to the following:

Proposition 5.8. There are natural isomorphisms:
DHk(G,M)→ H−k(G,M) and DHk(G,M)→ H−k(G,M).

Proof. DHk(G,M) is the homology of the chain complex P−∗ ⊗Z[G] M . We

may assume that all the modules in the complex P−∗ are �nitely generated and
are equal to HomZ[G](P−k,Z[G]). By the duality theorem we have a natural iso-
morphism HomZ[G](P−k,Z[G]) ⊗Z[G] M → HomZ[G](P−k,M) since P−k is �nitely
generated. Thus we get that DHk(G,M) is naturally isomorphic to the homol-
ogy of the complex HomZ[G](P−k,M) which is equal to H−k(G,M). The other
statement is proved in a similar way. �

Remark 5.9. This isomorphism is natural in M but not in G.

Proposition 5.10. ([7] III,6.1) Let 0 → M → M ′ → M ′′ → 0 be an exact
sequence of Z[G] modules then the following is exact:

...→ Hk(G,M)→ Hk(G,M ′)→ Hk(G,M ′′)→ Hk−1(G,M)→ ...

We also have similar results for Ĥ∗ and DH∗ and also in cohomology.

There is a short exact sequence of complexes 0 → P−∗ [−1] → P∗ → P+
∗ → 0

since for k < 0 we have 0 → Pk
Id−→ Pk → 0 → 0 and for 0 ≤ k we have 0 → 0 →

Pk
Id−→ Pk → 0. This implies that for every Z[G] module M the following are short

exact sequences:
0→ P−∗ [−1]⊗Z[G] M → P∗ ⊗Z[G] M → P+

∗ ⊗Z[G] M → 0

0→ HomZ[G](P
+
∗ ,M)→ HomZ[G](P∗,M)→ HomZ[G](P

−
∗ [−1],M)→ 0

Thus we have the following:

Proposition 5.11. The following are exact:

...→ DHk+1(G,M)→ Ĥk(G,M)→ Hk(G,M)→ DHk(G,M)→ ...

...→ Ĥk−1(G,M)→ DHk(G,M)→ Hk(G,M)→ Ĥk(G,M)→ ...
for every �nite group G and Z[G] module M .

Remark 5.12. The boundary mapsHk(G,M)→ DHk(G,M) andDHk(G,M)→
Hk(G,M) are induced by the chain map P+

∗ → P−∗ .

The only interesting case is when k = 0 since in all other cases the maps are
isomorphisms or the zero map. This gives us the following:

Corollary 5.13. The following is exact:

0→ Ĥ−1(G,M)→ H0(G,M)→ H0(G,M)→ Ĥ0(G,M)→ 0.

Proof. This follows from the fact thatDHk(G,M) vanishes for k = 1,Hk(G,M)
vanishes for k = −1 and the isomorphism DH0(G,M)→ H0(G,M). �

(Co)homology with coe�cients in a chain complex.
Before we start talking about homology and cohomology with coe�cients in a

chain complex we recall the basic operations on chain complexes, that is the tensor
product and the Hom complex. In this section all chain complexes, tensor products
and Hom complexes will be over R, for some ring R, but we will omit it from the
notation.
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Let C∗ and D∗ be two chain complexes of R modules. We de�ne their tensor
product to be (C∗ ⊗ D∗)n = ⊕k+l=nCk ⊗ Dl with the following di�erential: ∂ :
⊕k+l=nCk ⊗Dl → ⊕i+j=n−1Ci ⊗Dj given by ∂(c ⊗ d) = ∂c ⊗ d + (−1)k(c ⊗ ∂d).
It is easily veri�ed that C∗ ⊗D∗ is a chain complex.

The tensor product of chain complexes is functorial in the sense that if we
have chain maps f : C∗ → C ′∗ and g : D∗ → D′∗ then there is an induced map
f ⊗ g : (C∗ ⊗D∗)→ (C ′∗ ⊗D′∗).

Let C∗ be a chain complex and D∗ a cochain complex of R modules. We
de�ne the Hom complex of C∗ and D

∗ to be Hom(C∗, D
∗)n = ⊕k+l=nHom(Ck, D

l)
where the di�erential ⊕k+l=nHom(Ck, D

l) → ⊕i+j=n+1Hom(Ci, D
j) is given by

δϕ = δD ◦ ϕ + (−1)n+1ϕ ◦ ∂C . It is easily veri�ed that Hom(C∗, D
∗) is a cochain

complex.
The Hom complex of a chain complex and a cochain complex is functorial in

the sense that if we have chain maps f : C ′∗ → C∗ and g : D∗ → D′∗ then there is
an induced map Hom(f, g) : Hom(C∗, D

∗)→ Hom(C ′∗, D
′∗), that is contravariant

in the �rst factor and covariant in the second.

Remark 5.14. We can associate to a chain complex A∗ a cochain complex A−∗

and vise versa. In this way we can de�ne for example the tensor product of cochain
complexes or the Hom complex of maps between chain complexes, after making the
right adjustments to the indexing of the sums.

We have the following:

Proposition 5.15. ([7] I,0 ex. 6) Let C1 and C2 be complexes of Z[G] modules,
and C3 a complex of Z modules. There is a natural isomorphism:
HomZ(C1 ⊗Z[G] C2, C3)→ HomZ[G](C1, HomZ(C2, C3)) which is a chain map.

We call this map the adjunction map.

Remark 5.16. Here HomZ(C∗, D
∗) = Πk+l=nHom(Ck, D

l) and not as men-
tioned before. We will only use the adjunction map when there is no di�erence
between the direct sum and the direct product.

It is a simple check of signs that the following isomorphism is a chain map:

Proposition 5.17. Let R be a ring and C1 and C2 be complexes of R modules.
If C1 consists of �nitely generated projective modules then the duality map intro-
duced before induces a natural isomorphism:
ϕ : HomR(C1, R)⊗C2 → HomR(C1, C2) given by ϕ(f⊗c2)(c1) = (−1)|f ||c2|f(c1)·c2
which is a chain map.

We call this map the duality map.
Now, it is easy to de�ne the homology (cohomology) of a group G with coef-

�cients in a chain (cochain) complex M∗ (M∗) to be the homology of the chain
(cochain) complex P+

∗ ⊗Z[G] M∗ (HomZ[G](P
+
∗ ,M

∗)) where P+
∗ is a projective res-

olution of Z as we had before. We denote it by H∗(G,M∗) (H∗(G,M∗)). In a
similar way we de�ne the Tate homology and cohomology with coe�cients in a
chain/cochain complex and the backwards homology and cohomology with coe�-
cients in a chain/cochain complex for a �nite group.

Proposition 5.18. Let 0→M∗ →M ′∗ →M ′′∗ → 0 be an exact sequence of
Z[G] chain complexes then the following is exact:
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...→ Hk(G,M∗)→ Hk(G,M ′∗)→ Hk(G,M ′′∗ )→ Hk−1(G,M∗)→ ...

We also have similar results for Ĥ∗ and DH∗ and also in cohomology.

Proof. The same proof as before. �

Proposition 5.19. The following are exact:

...→ DHk+1(G,M∗)→ Ĥk(G,M∗)→ Hk(G,M∗)→ DHk(G,M∗)→ ...

...→ Ĥk−1(G,M∗)→ DHk(G,M∗)→ Hk(G,M∗)→ Ĥk(G,M∗)→ ...
for every �nite group G and every chain complex M∗ and cochain complex M∗.

Proof. The same proof as before. �

Remark 5.20. As before, the boundary maps in the long exact sequences
Hk(G,M∗) → DHk(G,M∗) and DHk(G,M∗) → Hk(G,M∗) are induced by the
chain map P+

∗ → P−∗ . Since P
+
∗ → P−∗ factors through Z we can study this map

as the composition of two simpler maps.

Product structure.
Let M be a Z[G] module and N a Z[G′] module then M ⊗Z N is a Z[G×G′]

module. In case G = G′ restriction along the diagonal map ∆ : G→ G×G makes it
into a Z[G] module. The action of G will be the diagonal action g(x⊗y) = gx⊗gy.
This also holds for chain complexes.

If P+
∗ is a projective resolution of Z over Z[G] and P̄+

∗ is a projective resolution
of Z over Z[G′] then P+

∗ ⊗Z P̄
+
∗ is a projective resolution of Z over Z[G × G′]

([7] V,1.1). If G = G′ then P+
∗ ⊗Z P̄

+
∗ is a projective resolution of Z over Z[G]

([7] V,1.2). Therefore, there are augmentation preserving homotopy equivalences
P+
∗ ⊗Z P̄

+
∗ → P+

∗ and P+
∗ → P+

∗ ⊗Z P̄
+
∗ which are unique up to homotopy.

Homology cross product - The map:(
P+
∗ ⊗Z[G] M∗

)
⊗Z
(
P̄+
∗ ⊗Z[G′] N∗

)
→
(
P+
∗ ⊗Z P̄

+
∗
)
⊗Z[G×G′] (M∗ ⊗Z N∗)

given by (x⊗m)⊗ (x̄⊗ n) 7→ (−1)|x̄|·|m| (x⊗ x̄)⊗ (m⊗ n)
induces a map:

× : Hk(G,M∗)⊗Z Hl(G
′, N∗)

×−→ Hk+l(G×G′,M∗ ⊗Z N∗)
If G = G′ we can compose it with the transfer map Hk+l(G × G,M∗ ⊗Z N∗) →
Hk+l(G,M∗ ⊗Z N∗) and get the cross product:
× : Hk(G,M∗)⊗Z Hl(G,N∗)→ Hk+l(G,M∗ ⊗Z N∗)
Cohomology cross product - The map:

HomZ[G](P
+
∗ ,M

∗)⊗Z HomZ[G′](P̄
+
∗ , N

∗)
×−→ HomZ[G×G′](P

+
∗ ⊗Z P̄

+
∗ ,M

∗ ⊗Z N
∗)

given by 〈u× ū, x⊗ x̄〉 = (−1)|x||ū| 〈u, x〉 ⊗ 〈ū, x̄〉
induces a map:
× : Hk(G,M∗)⊗Z H

l(G′, N∗)→ Hk+l(G×G′,M∗ ⊗Z N
∗)

If G = G′ we can compose it with the restriction map Hk+l(G×G,M∗ ⊗Z N∗)→
Hk+l(G,M∗ ⊗Z N∗) and get the cross product:
× : Hk(G,M∗)⊗Z H

l(G,N∗)→ Hk+l(G,M∗ ⊗Z N
∗)

Cup product - If M∗ has a product, that is a map M∗ ⊗Z M
∗ → M∗ then we

have a cup product:
∪ : Hk(G,M∗)⊗Z H

l(G,M∗)→ Hk+l(G,M∗)
Similar results are obtained for backwards resolutions so we have similar prod-

ucts in DH∗(G,−) and DH∗(G,−). For Tate cohomology this require a bit more
work, and we refer to ([7] VI,5).
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5.2. Backwards (co)homology

Let G be a discrete group and X a G − CW complex. Denote by C∗(X)
the cellular chain complex of X. This is a chain complex of Z[G] modules. We
denote H∗(G,C∗(X)) by HG

∗ (X) and call it the equivariant homology of X. Denote
by C∗(X) the cellular cochain of X (that is HomZ(C∗(X),Z)) then we denote
H∗(G,C∗(X)) by H∗G(X) and call it the equivariant cohomology of X.

Let EG be a contractible G−CW complex with a free G action. The fact that
the action is free implies that C∗(EG) consists of free (and hence projective) Z[G]
modules. The fact that EG is contractible implies that C∗(EG) → Z is acyclic
(where the map to Z is the augmentation map). We conclude that C∗(EG) is a
projective resolution of Z as a Z[G] module, denote it by P+

∗ . Recall that the Borel
construction on X is the quotient space EG×G X. We have the following:

Proposition 5.21. There are natural isomorphisms H∗(EG×GX) ∼= HG
∗ (X)

and H∗(EG×G X) ∼= H∗G(X) which commute with the cross product.

Proof. 1) H∗(EG×GX) = H∗(C∗(EG×GX)) ∼= H∗(C∗(EG)⊗Z[G]C∗(X)) =

= H∗(P
+
∗ ⊗Z[G] C∗(X)) = HG

∗ (X)
Using the natural isomorphism C∗(EG×G X) ∼= C∗(EG)⊗Z[G] C∗(X).
2) H∗(EG×GX) ∼= H∗(HomZ(C∗(EG)⊗Z[G]C∗(X),Z) ∼= HomZ[G](C∗(EG), HomZ(C∗(X),Z))

= H∗(HomZ[G](P
+
∗ , C

∗(X)) = H∗G(X) where the second isomorphism is the adjunction.
The fact that the natural isomorphisms commute with the cross product follows
from the fact that EG×G X × EG′ ×G′ Y ∼= E(G×G′)×G×G′ X × Y . �

In a similar way, for a �nite group G we de�ne Tate homology and cohomology
of a G−CW complex which we denote by ĤG

∗ (X) and Ĥ∗G(X) and the backwards
homology and cohomology of a G − CW complex which we denote by DHG

∗ (X)
and DH∗G(X). Note that the equivariant homology theories are covariant in X and
the equivariant cohomology theories are contravariant in X (although they are all
covariant in the chain complex of coe�cients). As before we have:

Theorem 5.22. The following are exact:

...→ DHG
k+1(X)→ ĤG

k (X)→ HG
k (X)→ DHG

k (X)→ ...

...→ Ĥk−1
G (X)→ DHk

G(X)→ Hk
G(X)→ Ĥk

G(X)→ ...
for every �nite group G and every G− CW complex.

Remark 5.23. We could use the locally �nite cellular chain complex of a locally
�nite G − CW complex to de�ne analogs of these theories in the locally �nite

setting which we will denote by H lf,G
∗ (X) for example. The same can be done for

cohomology with compact support, end homology and end cohomology. We will
get long exact sequences similar to those we had before. We can actually associate
to each G − CW complex a lattice of groups where each row and each column is
exact, both for homology and cohomology.

The spectral sequences.

Remark 5.24. In this section we use the language of [8] for spectral sequences.

The homology and cohomology theories described before are the homology and
cohomology of the total complex of a double complex. The total complex of a
double complex An = ⊕Ak,n−k has two natural �ltrations: by columns F pI A

n =
⊕k≥pAk,n−k and by rows F qIIA = ⊕k≥pAn−k,k. Each �ltration gives rise to a
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spectral sequence. In several cases these spectral sequences strongly converge to
the homology of the total complex.

Equivariant homology and cohomology - The two double complexes are �rst
quadrant and therefore the spectral sequences are bounded. Therefore we have the
following:

Theorem 5.25. The following spectral sequences strongly converge: ([7]VII,5.3,5.6):

E2
pq = Hp(G,Hq(X)) =⇒ HG

p+q(X) and Epq2 = Hp(G,Hq(X)) =⇒ Hp+q
G (X)

E1
pq = Hq(G,Cp(X)) =⇒ HG

p+q(X) and Epq1 = Hq(G,Cp(X)) =⇒ Hp+q
G (X)

Tate cohomology and backwards cohomology - In both cases the �rst �ltration
is regular and hence strongly convergent ([8] XV,4.1):

Theorem 5.26. The following spectral sequences strongly converge:

Epq2 = Ĥp(G,Hq(X)) =⇒ Ĥp+q
G (X) and Epq2 = DHp(G,Hq(X)) =⇒ DHp+q

G (X)

In case X is �nite dimensional the spectral sequences associated to both �ltra-
tions are bounded and therefore strongly converge:

Theorem 5.27. Let X be a �nite dimensional G−CW complex. The following
spectral sequences strongly converge:

E2
pq = Ĥp(G,Hq(X)) =⇒ ĤG

p+q(X) and E2
pq = DHp(G,Hq(X)) =⇒ DHG

p+q(X)

E1
pq = Ĥq(G,Cp(X)) =⇒ ĤG

p+q(X) and Epq1 = Ĥq(G,Cp(X)) =⇒ Ĥp+q
G (X)

E1
pq = DHq(G,Cp(X)) =⇒ DHG

p+q(X) and Epq1 = DHq(G,Cp(X)) =⇒ DHp+q
G (X)

Corollary 5.28. ([7] VII,7.3) Let f : X → Y be an equivariant cellular
map between two G − CW complexes. If f∗ : Hn(X) → Hn(Y ) (f∗ : Hn(Y ) →
Hn(X)) is an isomorphism then the maps HG

n (X) → HG
n (Y ) (Hn

G(Y ) → Hn
G(X))

are isomorphisms. Similar results can be obtained for Tate and backwards homology
and cohomology (in the case of homology we have to assume that X and Y are �nite
dimensional G− CW complexes).

We use the following ([10] V,1):

Proposition 5.29. Let X be a CW complex. Denote by S∗(X) the singular
chain of X and by C∗(X) the cellular chain of X. There is a chain complex of Z
modules D∗(X) which is natural in X and weak equivalences (maps which induce
isomorphism on homology) C∗(X)← D∗(X)→ S∗(X).

From the construction of D∗(X) it follows that when X is a G−CW complex
then D∗(X) is a chain complex of Z[G] modules and all the maps are Z[G] chain
maps.
The following appears partially in ([3] 4.6.12) :

Corollary 5.30. There is an isomorphism H∗(G,S∗(X)) ∼= H∗(G,C∗(X))
which is natural in X. A similar result holds in cohomology and in Tate and
backwards cohomology.

Proof. Look at the spectral sequences associated to the �rst �ltration. We
have an isomorphism on E2

pq term. Since those sequences are strongly convergent

this implies the isomorphism H∗(G,C∗(X))
∼=←− H∗(G,D∗(X))

∼=−→ H∗(G,S∗(X))
([8] XV,3.2). For cohomology use the argument in ([3] 4.6.12) to show that there
is a weak equivalence C∗(X)→ S∗(X) which is natural in X up to homotopy and
then use the spectral sequence. �
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Corollary 5.31. 1) HG
∗ (X) and H∗G(X) are independent of the G − CW

structure.
2) Ĥ∗G(X) and DH∗G(X) are independent of the G− CW structure.

Remark 5.32. It is actually shown in the proof that the isomorphism is natural
in X. This proof can be used also to the case of locally �nite homology for strongly
locally �nite G− CW complexes by the methods of [20] in appendix A.

Properties of the (co)homology theories.
Equivariant homology and cohomology are well known, as well are Tate homol-

ogy and cohomology. We mention few facts about them, and deduce some facts
about the backwards homology. In the following propositions X is a G − CW
complex. We state the results in cohomology but they stay the same for homology:

Proposition 5.33. For k < 0 the group Hk
G(X) vanishes. If X is �nite di-

mensional then for k > dim(X) the group DHk
G(X) vanishes.

Corollary 5.34. For k < 0 we have Ĥk−1
G (X) ∼= DHk

G(X). If X is �nite

dimensional then for k > dim(X) we have Hk
G(X) ∼= Ĥk

G(X).

Proposition 5.35. ([7] VII,7.3) Let X be �nite dimensional and Y its singular

part, that is all points with non trivial stabilizer, then Ĥk
G(X) → Ĥk

G(Y ) is an

isomorphism. Therefore, if X is free, Ĥk
G(X) vanishes.

Corollary 5.36. If Y is the singular part of X (a �nite dimensional G−CW
complex), then for k < 0 the map DHk

G(X)→ DHk
G(Y ) is an isomorphism.

Proposition 5.37. If the action of G is free then Hk
G(X) ∼= Hk(X/G).

Proof. This follows from the fact that Hk
G(X) = Hk(EG×GX) and when X

is free the map EG×G X → X/G is a homotopy equivalence. �

Corollary 5.38. If X is �nite dimensional and the action of G is free then
DHk

G(X) ∼= Hk(X/G).

Proof. Since Ĥk
G(X) vanishes, by the long exact sequence in cohomology we

have DHk
G(X) ∼= Hk

G(X) ∼= Hk(X/G). �

5.3. Equivariant Poincaré duality

LetM be a smooth oriented manifold of dimension m with a smooth and orien-
tation preserving action of a �nite group G. There is an equivariant triangulation of
M ([22]) which gives M a structure of a G−CW complex. Let σM ∈ Clfm (M) be a
representative of [M ]lf . For any g ∈ G we know that g ·σM is also a representative

of [M ]lf since the action is orientation preserving . Since Clfm+1(M) = 0 we deduce
that g · σM = σM .

Proposition 5.39. The map T : Ck(M) → Clf
m−k

(M) de�ned by T (ϕ) =

ϕ ∩ σM is a Z[G] chain map. T induces an isomorphism DHk
G(M)→ H lf,G

m−k(M).

Proof. De�ning the cap product on cellular chains requires a choice of a
proper cellular approximation of the diagonal map ∆ : M → M ×M . We can
choose it to be equivariant. Since σM is invariant T is actually a Z[G] chain map:
g · T (ϕ) = g∗(ϕ ∩ σM ) = g∗((g∗ ◦ (g−1)∗ϕ) ∩ σM ) = (g−1)∗ϕ ∩ g∗σM = (g · ϕ) ∩ σM = T (g · ϕ)

T commutes with the boundary due to the following formula which is proved by a
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sign check:
∂(ϕ ∩ σ) = δϕ ∩ σ + (−1)|ϕ|ϕ ∩ ∂σ
which implies that:
∂(T (ϕ)) = ∂(ϕ ∩ σM ) = δϕ ∩ σM + (−1)|ϕ|ϕ ∩ ∂σM = δϕ ∩ σM = T (δϕ)
By Poincaré duality T is a weak equivalence.
Choose a projective resolution P+

∗ of �nite type and the dual backwards resolution
P−∗ de�ned by P−i = HomZ[G](P

+
−i,Z[G]).

We have the duality isomorphism:
HomZ[G](P

−
∗ , C

∗(M))→ HomZ[G](P
−
∗ ,Z[G])⊗Z[G] C

∗(M) = P+
−∗ ⊗Z[G] C

∗(M).
We also have the map induced by T :

Id⊗ T : P+
−∗ ⊗Z[G] C

∗(M)→ P+
−∗ ⊗Z[G] C

lf
m−∗(M).

Id⊗T induces an isomorphism on the Epq2 term of the spectral sequences associated
with the �rst �ltration. Since these spectral sequences strongly converge this map
is also a weak equivalence. The composition of those two weak equivalences induces

an isomorphism in homology DHk
G(M)→ H lf,G

m−k(M). Note that DHk
G(M) is inde-

pendent of the G − CW structure as we noted so the same is true for H lf,G
m−k(M).

The following theorem is proved similarly: �

Theorem 5.40. Let M be a smooth oriented manifold of dimension m with a
smooth and orientation preserving action of a �nite group G. We have the following
isomorphisms:

PDM : Hk
G(M)→ DH lf,G

m−k(M) and ifM is compact PDM : Hk
G(M)→ DHG

m−k(M).

PDM : DHk
G(M)→ H lf,G

m−k(M) and ifM is compact PDM : DHk
G(M)→ HG

m−k(M).

PDM : Ĥk
G(M)→ Ĥ lf,G

m−k−1(M) and ifM is compact PDM : Ĥk
G(M)→ ĤG

m−k−1(M).
where the lf stands for using the locally �nite cellular chain complex.
Moreover, the following diagram commutes:

...→ Ĥk−1
G (M) → DHk

G(M) → Hk
G(M) → Ĥk

G(M) → ...
PDM ↓ PDM ↓ (1) PDM ↓ PDM ↓

...→ Ĥ lf,G
m−k(M) → H lf,G

m−k(M) → DH lf,G
m−k(M) → Ĥ lf,G

m−k−1(M) → ...

Let M be as before and, for simplicity, let us assume that it is compact. We

look at (1), composing the isomorphism HG
m−k(M)

PD−1
M−−−−→ DHk

G(M) with the map

DHk
G(M)→ Hk

G(M) gives us a map HG
m−k(M)→ Hk

G(M). This map is an isomor-

phism if and only if the map DHk
G(M)→ Hk

G(M) is an isomorphism. By exactness
we deduce that the map HG

m−k(M) → Hk
G(M) is an isomorphism for all k if and

only if Ĥk
G(M) vanish for every k, for example when G acts freely on M .

If we were able compute this map we would have been able to compute Ĥ∗G(M)
up to extension. We give some information about this map, a more concrete way
of computing is given in 6.65.

Let P+
∗ → Z and Z → P−∗ be projective and backwards resolutions respec-

tively. There are also natural maps Z[G]→ P+
∗ and P−∗ → Z[G] given by the map

G→ EG. We can view Z and Z[G] as chain complexes concentrated in dimension
zero then the maps Z[G] → P+

∗ → Z → P−∗ → Z[G] can be considered as chain
maps. The composition Z[G] → Z[G] is given by 1 7→ N where N = Σg∈Gg is the
norm element. This induces chain maps:
Hom(Z[G], C∗(M))→ Hom(P−∗ , C

∗(M))→ Hom(Z, C∗(M))→ Hom(P+
∗ , C

∗(M))→ Hom(Z[G], C∗(M))

where all Hom complexes are over Z[G]. And similarly in homology:
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Z[G]⊗ C∗(M)→ P+
∗ ⊗ C∗(M)→ Z⊗ C∗(M)→ P−∗ ⊗ C∗(M)→ Z[G]⊗ C∗(M)

where all tensor products are over Z[G].
We get the following commutative diagram:

Hk(M) → DHk
G(M) → Hk(M/G) → Hk

G(M) → Hk(M)
PDM ↓∼= PDM ↓∼= PDM ↓∼= PDM ↓∼=
Hm−k(M) → HG

m−k(M) → Hm−k(M/G) → DHG
m−k(M) → Hm−k(M)

The reason we don't have a map Hk(M/G) → Hm−k(M/G) is that the map
HomZ[G](Z,Z[G]) ⊗Z[G] C

∗(M) → HomZ[G](Z, C∗(M)) is not an isomorphism in
general since Z is not a projective Z[G] module. If G acts freely on M then this
map is an isomorphism and we do get a map Hk(M/G)→ Hm−k(M/G) commut-
ing with the rest of the diagram, which is also an isomorphism. The composition
Hm−k(M) → HG

m−k(M) → Hk
G(M) → Hk(M) is equal to N · PD−1

M where N is
the map induced by the multiplication with N .



CHAPTER 6

Equivariant Stratifold Homology and Cohomology
Theories for Compact Lie Groups

Abstract. This chapter is the center of this thesis. We de�ne equivariant
stratifold (co)homology theories of various types, relate them to each other and
prove some fundamental properties: we relate those theories by a long exact
sequence, identify them with the theories introduced in chapter 5 in the case
the group is �nite and prove Poincaré duality. Furthermore, we demonstrate
their potential for computation by looking at a concrete example.

6.1. Equivariant stratifold homology

Group actions and equivariant maps.
Let G be a compact Lie group of dimension dim(G) and X a topological space.

A continuous map ρ : G × X → X which induces a homomorphism ρ̃ : G →
Homeo(X) is called an action of G on X. We denote ρ(g, x) by g · x and ρ̃(g) by
ρg. A space with a G action is called a G space. If X is a smooth manifold, or more
generally a stratifold, we say that the action is smooth if the map ρ : G×X → X is
smooth. In this case all maps ρg : X → X are di�eomorphisms. If X is a stratifold
this will imply that G acts on each strata separately. For p-stratifolds we would
like to require a bit more, we ask that the action will be by isomorphisms of p-
stratifolds, that is if S = M0 ∪∂M1 M1...∪∂Mn Mn then the action can be extended
to every manifold with boundary (Mk, ∂Mk) separately and the gluing maps will
be equivariant.

A map f : X → Y between two G spaces is called equivariant if it commutes
with the action of G, that is for each g ∈ G and x ∈ X we have f(g · x) = g · f(x).

Here is a theorem which we will often use:

Theorem 6.1. ([6] 5.8) Suppose X is a completely regular G space, G compact
Lie, and that all the orbits have type G/H. Then the orbit map X → X/G is the
projection in a �ber bundle with �ber G/H and a structure group N(H)/H (acting
by right translations on G/H). Conversely, every such bundle comes from such an
action.

In particular, in the case of H = {1}, the theorem states that if the action is
free then the map X → X/G is a principal G bundle and every principal G bundle
comes from a free action on the total space X.

Let G be a group, a contractible CW complex with a free cellular G action is
denoted by EG. EG has the following universal property: for every paracompact
space X with a free G action there is a continuous equivariant map f : X → EG
and f is unique up to G-homotopy. This implies the uniqueness of EG up to G-
homotopy equivalence. The quotient space EG/G is called the classifying space of
principal G bundles and is denoted by BG.

48
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There are several ways to construct EG, we just note that it is possible to
construct EG as a union of closed oriented manifolds EGn ⊆ EGn+1 ⊆ ... (in-
clusion as submanifolds) with a free and orientation preserving G action and with
πk(EGn) = {0} for k ≤ n. Denote BGn = EGn/G, oriented as we will explain
later, then the quotient map EGn → BGn is a principal G bundle. This bundle
has the universal property that for every principal bundle p : E → B where B is
(homotopy equivalent to) a CW complex of dimension less then or equal to n there
is a bundle map

E → EGn
↓ ↓
B

f−→ EGn/G

and f is unique up to homotopy ([21] 13.1 chapter 4). We will call the map
E → EGn the classifying map. We set one copy of EG for each G and work with
it all along. More about that appears in [9] and [21].

Remark 6.2. From now on we will assume that all spaces are paracompact.
This is not very restrictive for us since it includes all manifolds, or more generally,
p-stratifolds, and all CW complexes.

Smooth actions on p-stratifolds.
Let G be a compact Lie group. An action of G on a p-stratifold S is called

regular if for each x ∈ Si there is an open invariant neighborhood U of x in S, a
p-stratifold F with F 0 a single point pt, an open invariant subspace V of Si, and
an equivariant isomorphism φ : V × F → U , whose restriction to V × pt is the
projection (where the action on V × F is given by g · (v, f) = (g · v, f)). Clearly, if
the action of G on S is regular then S is regular.

Here are some properties of p-stratifolds with a free action and their quotients:

Lemma 6.3. Let S be a p-stratifold of dimension k (with boundary) with a
smooth G action.

(1) If the action is free then S/G has a unique structure of a p-stratifold of
dimension k − dim(G) (with boundary), such that the map π : S → S/G
is smooth.

(2) If the action is regular then S/G is regular.
(3) If S is compact then so is S/G.
(4) If S is oriented and the action is orientation preserving then there is a

natural orientation for S/G.
(5) If the action is free then π : S → S/G is a principal G bundle.

Proof. Assume S is as above then:

(1) We say that a map f : S/G→ R is smooth if and only if the composition
S → S/G → R is smooth. If S is a smooth manifold with boundary this
gives a structure of a smooth manifold with boundary to S/G ([9] I,5.2)
and for a p-stratifold this can be proved by induction. (The same proof
holds for G non compact if we assume that the action is also proper, a
condition which is always ful�lled when G is a compact Lie group. We
will discuss that later).

(2) This is clear.
(3) This is clear.
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(4) We start by �xing an orientation on G such that the action of G on itself
by multiplication on the left is orientation preserving (if G is discrete then
we give it the positive orientation). For a point x ∈ S/G we choose some
y ∈ S such that π(y) = x and we orient S/G at a point x as the quotient

TyEGn/TeG
∼=−→ TxBGn. This is independent of the choice of y since the

action is orientation preserving.
(5) This follows from the fact that p-stratifolds are completely regular (since

they are paracompact).

�

Lemma 6.4. Let S be a p-stratifold of dimension k and S̃ → S a principal
G-bundle.

(1) There is a unique p-stratifold structure on S̃ of dimension k + dim(G)
such that the quotient is smooth.

(2) If S and G are compact then so is S̃.

(3) If S is oriented there is a way to give S̃ an orientation such that the action

will be orientation preserving and the map S̃/G → S will be orientation
preserving using the convention above.

(4) If S is regular then the action of G is regular.

Proof. Assume S is as above then:

(1) Look at the classifying map S → BG. BG is the union of BGn = EGn/G
which are closed oriented manifolds, since S has the homotopy type of a
�nite dimensional CW complex it is homotopic to a map which factors
smoothly through some BGn. The following is a pullback square:

S̃ → EGn
↓ ↓
S → BGn

Since the map on the right is a smooth submersion of manifolds the maps

are transversal thus S̃ has a p-stratifold structure. The structure of S̃
does not depend on the choice of EGn by the uniqueness of the classifying
maps up to homotopy and the functoriality of the pullback.

(2) This is proved like the fact that a product of compact spaces is compact
since the bundle is locally trivial.

(3) As above, just in the opposite way.
(4) This is clear.

�

Lemma 6.5. Let X be a completely regular space with a free G action where G

is a compact Lie group. Let S
g−→ X/G be a map where S is an oriented regular

p-stratifold of dimension k then in the pullback diagram

S̃
g̃−→ X

π′ ↓ ↓ π
S

g−→ X/G

(1) S̃ has a natural structure of an oriented p-stratifold of dimension k +
dim(G) with a free orientation preserving regular G action.

(2) S̃ is compact if and only if S is compact.
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(3) The map g : S → X/G is proper if and only if the map g̃ : S̃ → X is
proper.

Proof. The �rst two assertions follows from the previous lemma and the fact
that the pullback of a principal bundle is a principal bundle.

For the third, assume g : S → X/G is proper. Take a compact subset K ⊆ X
then π(K) ⊆ X/G is also compact and therefore g−1(π(K)) is compact (since
g is proper). K is closed in X (since X is Hausdor�) thus g̃−1(K) is closed in
g−1(π(K))×K hence compact.

Assume g̃ : S̃ → X is proper. Take a compact subset K ⊆ X/G then π−1(K) ⊆
X is also compact ([6] I,3.1). Since g̃ : S̃ → X is proper g̃−1(π−1(K)) is compact
and so is its image under the map π′, which is equal by the commutativity of the
diagram and the fact that π′ is surjective, to g−1(K). �

Equivariant stratifold homology.
Equivariant stratifold homology was de�ned in [24] and is denoted by SHG

∗ .
This is an equivariant homology theory de�ned on the category of G spaces and
equivariant maps, where G is a compact Lie group of dimension dim(G). This
equivariant homology theory is naturally isomorphic to the homology of the Borel
construction after a dimension shift - SHG

∗ (X) ∼= H∗−dim(G)(EG×G X) (when X
is completely regular). If G is �nite this implies by what we showed before that
SHG
∗ (X) ∼= HG

∗ (X).

Definition 6.6. Let G be a compact Lie group, X a G space and k ≥ 0, de�ne
SHG

k (X) = {g : S → X}G / ∼ i.e., bordism classes of equivariant maps g : S → X
where:

• S is a compact oriented p-stratifold of dimension k with a G action.
• The action of G on S is free, smooth, orientation preserving and regular.
• g is a continuous equivariant map.
• The bordism relation has to ful�ll the same properties as S does. In
particular the action on the cobordism should be free and extend the
action on the boundary.

SHG
k (X) has a natural structure of an Abelian group, where addition is given by

disjoint union of maps and the inverse is given by reversing the orientation. If
f : X → Y is a continuous equivariant map than we can de�ne an induced map by
composition f∗ : SHG

k (X)→ SHG
k (Y ).

A triple (U, V,X) consists of X which is a G space and U, V ⊆ X which are
two equivariant closed subspaces such that their interiors cover X. The boundary
map is de�ned in a similar way to the boundary in SH∗ we just have to choose an
equivariant map f : S → R so the preimage of every point will be invariant. This
way we will get a well de�ned G action on the boundary. This can be done by
pulling back any smooth map from S/G. We then have:

Theorem 6.7. (Mayer-Vietoris) The following sequence is exact:

...→ SHG
k (U ∩ V )→ SHG

k (U)⊕ SHG
k (V )→ SHG

k (X)
∂−→ SHG

k−1(U ∩ V )→ ...

where, as usual, the �rst map is induced by inclusions and the second is the di�er-
ence of the maps induced by inclusions.
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IfH is a closed subgroup ofG then everyG space has a natural structure of anH
space. We de�ne the transfer map trGH : SHG

k (X)→ SHH
k (X) by [S → X] 7→ [S → X]

where on the right side the spaces are considered as spaces with an action of H.
The cross product × : SHG

k (X) ⊗ SHG′
l (Y ) → SHG×G′

k+l (X × Y ) is de�ned by

[g1 : S → X]× [g2 : T → Y ] = (−1)dim(G)(l−dim(G′))[g1×g2 : S×T → X×Y ]. This prod-
uct is bilinear and natural. If G = G′ we can use the diagonal ∆ : G→ G×G and com-
pose this product with the transfer map - trG×G∆(G) : SHG×G

k+l (X × Y )→ SHG
k+l(X × Y ).

This gives us a cross product × : SHG
k (X)⊗ SHG

l (Y )→ SHG
k+l(X × Y ).

SHG
∗ with the boundary operator and the cross product is a multiplicative equivari-

ant homology theory. We call it equivariant (parametrized) stratifold homology.

A natural isomorphism between SHG
∗ and H∗−dim(G)(EG×G −).

Lemma 6.8. Let X be a G space, the projection πX : EG×X → X induces an
isomorphism πX∗ : SHG

∗ (EG×X)→ SHG
∗ (X).

Proof. The inverse of πX∗ is given by [g : S → X] 7→ [f × g : S → EG×X]
where f : S → EG is the classifying map de�ned by the universal property of EG
and the fact that the action on S is free. f is unique up to homotopy thus the map
is well de�ned. �

Lemma 6.9. Let X be a completely regular topological space with a free G action,
then there is a natural isomorphism SHG

∗ (X)→ SH∗−dim(G)(X/G).

Proof. We de�ne this map by [S → X] 7→ [S/G→ X/G]. This is well de�ned

by lemmas 6.3 and it has an inverse [S → X/G] 7→ [S̃ → X] which is also well
de�ned by lemmas 6.5. �

Remark 6.10. For a �ber bundle π : E → B with �ber F which is a com-
pact oriented manifold one can de�ne a dimension shifting transfer SH∗(B)

tr−→
SH∗+dim(F )(E) by pullback. Using the natural isomorphism SH∗ → H∗ we can
de�ne it in singular homology. When F is discrete this agrees with the ordinary
notion of transfer.

Theorem 6.11. Let X be a completely regular G space, there is a natural
isomorphism ΦG0 : SHG

∗ (X) → H∗−dim(G)(EG ×G X). ΦG0 commutes with the
boundary, with the transfer and with the cross product.

Proof. We de�ne ΦG0 to be the composition:
SHG
∗ (X)→ SHG

∗ (EG×X)→ SH∗−dim(G)(EG×G X)→ H∗−dim(G)(EG×G X)
where the second isomorphism is well de�ned since the action on EG ×X is free.
Clearly, it is natural.

ΦG0 commutes with the boundary:
The �rst two maps clearly commute with the boundary and we also proved that
the third one does. Therefore, ΦG0 commutes with the boundary.

ΦG0 commutes with the transfer:
Let G be a Lie group and H a closed subgroup. We would like to show that the
following diagram commutes:

SHG
∗ (X)

trGH−−→ SHH
∗ (X)

ΦG0 ↓ ↓ ΦG0

H∗−dim(G)(EG×G X)
trGH−−→ H∗−dim(H)(EG×H X)
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Given α = [g : S → X] ∈ SHG
∗ (X) then ΦG0 (α) = (f×Gg)∗([S/G]) ∈ H∗−dim(G)(EG×GX)

trGH([S/G]) = [S/H] so by functoriality of the transfer we get trGH◦ΦG0 (α) = ΦG0 ◦trGH(α).
ΦG0 commutes with the cross product:

We �rst show that the following diagram commutes:

SHG
k (X)⊗ SHG′

l (Y ) → SHk−dim(G)(EG×G X)⊗ SHl−dim(G′)(EG
′ ×G′ Y )

× ↓
× ↓ SHk+l−dim(G)−dim(G′)(EG×G X × EG′ ×G′ Y )

↓
SHG×G′

k+l (X × Y ) → SHk+l−dim(G)−dim(G′)(E(G×G′)×G×G′ X × Y )

Given α = [S → X] ∈ SHG
k (X) and β = [T → Y ] ∈ SHG′

l (Y ), we follow the image
of α⊗ β. If we �rst go down and then right we get:
(−1)dim(G)(l−dim(G′))[S × T/G×G′ → E(G×G′)×G×G′ X × Y ]
If we �rst go right and then down we get:
[S/G× T/G′ → E(G×G′)×G×G′ X × Y ]
S×T/G×G′ and S/G×T/G′ are isomorphic as p-stratifolds. The orientations on

these p-stratifolds di�ers by the sign (−1)dim(G)(l−dim(G′)). Therefore the diagram
commutes.
The following diagram also commutes since Φ is natural and multiplicative:

SHk−dim(G)(EG×G X)⊗ SHl−dim(G′)(EG′ ×G′ Y ) → Hk−dim(G)(EG×G X)⊗Hl−dim(G′)(EG′ ×G′ Y )

× ↓ × ↓
SHk+l−dim(G)−dim(G′)(EG×G X × EG′ ×G′ Y ) → Hk+l−dim(G)−dim(G′)(EG×G X × EG′ ×G′ Y )

↓ ↓
SHk+l−dim(G)−dim(G′)(E(G×G′)×G×G′ X × Y ) → Hk+l−dim(G)−dim(G′)(E(G×G′)×G×G′ X × Y )

We conclude that the composition commutes:

SHG
k (X)⊗ SHG′

l (Y ) → Hk−dim(G)(EG×G X)⊗Hl−dim(G′)(EG
′ ×G′ Y )

× ↓
× ↓ Hk+l−dim(G)−dim(G′)(EG×G X × EG′ ×G′ Y )

↓
SHG×G′

k+l (X × Y ) → Hk+l−dim(G)−dim(G′)(E(G×G′)×G×G′ X × Y )

Since ΦG0 commutes with the transfer we deduce that it also commutes with the
cross product × : SHG

k (X)⊗ SHG
l (Y )→ SHG

k+l(X × Y ). �

If G is �nite and X is a G − CW complex we can compose ΦG0 with the
isomorphism H∗(EG×G X) → HG

∗ (X). Denote the composition SHG
∗ (X) → HG

∗ (X)

by ΦG, then we have the following:

Theorem 6.12. Let X be a G−CW complex, the map ΦG : SHG
∗ (X)→ HG

∗ (X)

is a natural isomorphism. ΦG commutes with the boundary, with the transfer and
with the cross product .

Proof. The map H∗(EG ×G X) → HG
∗ (X) is a natural isomorphism and

commutes with the boundary (see also [3] 1.2.8). It also commutes with trGH and
the cross product since the following diagram commutes:

Hk(EG×G X)⊗Hl(EG
′ ×G′ Y ) → HG

k (X)⊗HG
l (Y )

× ↓
Hk+l(EG×G X × EG′ ×G′ Y ) × ↓

↓
Hk+l(E(G×G′)×G×G′ X × Y ) → HG×G′

k+l (X × Y )
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So we get the commutativity of the following diagram:

SHG
k (X)⊗ SHG′

l (Y ) → HG
k (X)⊗HG

l (Y )
× ↓ × ↓

SHG×G′
k+l (X × Y ) → HG×G′

k+l (X × Y )

Since ΦG commutes with the transfer we deduce that it also commutes with the
cross product × : SHG

k (X)⊗ SHG
l (Y )→ SHG

k+l(X × Y ). �

Locally �nite equivariant stratifold homology.

Locally �nite equivariant stratifold homology, denoted by SH lf,G
∗ , is de�ned in

a similar way to SHG
∗ , but instead of compact p-stratifolds we use proper maps

from arbitrary p-stratifolds. We will not get into all the details, since they are
similar to what we had before, we just stress the di�erences.

Proposition 6.13. Let X be a G space and EGn an n connected closed ori-
ented manifold with an orientation preserving free G action. The projection πX :

EGn ×X → X is proper and induces an isomorphism πX∗ : SH lf,G
k (EGn ×X)→

SH lf,G
k (X) for n > k + 1.

Proof. We cannot follow the same proof we used before since EG is not
compact thus the projection EG×X → X is not proper. Therefore we approximate
EG by EGn for n big enough. The inverse of πX∗ is given by [g : S → X] 7→ [f×g :
S → EGn×X] where f : S → EGn is the classifying map de�ned by the universal
property of EGn and the fact that the action on S is free and S has the homotopy
type of a CW complex of dimension ≤ k. f is unique up to homotopy thus the
map is well de�ned. Note that since g is proper so is f × g. �

Proposition 6.14. Let X be a completely regular topological space with a free

G action, then there is a natural isomorphism SH lf,G
k (X)→ SH lf

k−dim(G)(X/G).

Proof. We de�ne this map by [g : S → X] 7→ [g/G : S/G → X/G]. This is
well de�ned by lemma 6.3 and the fact that if g is proper and G is compact then

so is g/G (proved in lemma 6.5). It has an inverse [g : S → X/G] 7→ [g̃ : S̃ → X]
which is also well de�ned by lemma 6.5. Again, if g is proper then so is g̃. �

Corollary 6.15. Let X be a strongly locally �nite G−CW complex, there is a

natural isomorphism Φlf,Gn : SH lf,G
k (X)→ H lf

k−dim(G)(EGn×GX) where n > k+1.

Φlf,Gn commutes with the boundary, the transfer and with the cross product.

Proof. We de�ne this isomorphism to be the composition:
SHlf,G

k (X)→ SHlf,G
k (EGn ×X)→ SHlf

k−dim(G)(EGn ×G X)→ Hlf
k−dim(G)(EGn ×G X)

where the second isomorphism is well de�ned since the action on EGn ×X is free.
Φlf,Gn commutes with the boundary, the transfer and the cross product for the same
reason ΦG does. �

Corollary 6.16. Let G be a �nite group and X a strongly locally �nite G−CW
complex. There is a natural isomorphism Φlf,G : SH lf,G

k (X) → H lf,G
k (X), which

commutes with the boundary, the transfer and the cross product.

Proof. EGn are compact so we can identify Clf∗ (EGn) with C∗(EGn). Denote
P+
∗ = lim−→(C∗(EGn)) then P+

∗ = C∗(lim−→(EGn)) = C∗(EG) so it is a projective res-

olution. Since colimits commute with homology and with tensor products we have:
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lim−→(H lf
k (EGn×GX)) = Hk(lim−→(Clfk (EGn×GX))) ∼= Hk(P+

∗ ⊗C
lf
∗ (X)) = H lf,G

k (X)

We saw before that Φlf,Gn is an isomorphism for n large enough therefore Φlf,G is
also an isomorphism. Φlf,Gn commutes with boundary and with the cross product

for all n and also the maps H lf
k (EGn×GX)→ H lf

k (EGn+1×GX) which imply the
same thing for the colimit (both the boundary and the cross product commute with

the colimit since in order to compute them we only need the group H lf
k (EGn×GX)

for k < n and those stabilize. �

6.2. Stratifold backwards cohomology

Stratifold backwards cohomology was de�ned in [24] and is denoted by DSH∗G
(in [24] it is denoted SH∗G and called equivariant stratifold cohomology). This
is an equivariant cohomology theory de�ned on the category of smooth oriented
manifolds with a smooth, orientation preserving G action and equivariant maps
between them, where G is a compact Lie group. Poincaré duality for a closed
oriented smooth manifold M of dimension m with an orientation preserving G

action is given by PDM : DSHk
G(M)

∼=−→ SHG
m−k(M) which is trivial.

Definition 6.17. Let G be a compact Lie group and M a smooth oriented
manifold of dimension m with an orientation preserving smooth G action. For
k ≤ m, de�ne DSHk

G(M) = {g : S →M}G / ∼ i.e., bordism classes of equivariant
maps g : S →M where:

• S is an oriented p-stratifold of dimension m− k with a G action.
• The action of G on S is orientation preserving, regular, smooth and free.
• g is a smooth equivariant proper map.
• The bordism relation has to ful�ll the same properties as the p-stratifolds
and the action does. In particular the action on the cobordism should be
free and extend the action on the boundary.

DSHk
G(M) has a natural structure of an Abelian group, where addition is given

by disjoint union of maps and the inverse is given by reversing the orientation. If
f : M → N is a continuous equivariant map than we can de�ne an induced map by
pullback f∗ : DSHk

G(N)→ DSHk
G(M) (for equivariant transversality see [24] lemma

5).
A triple (U, V,M) consists of M which is a smooth oriented manifold with a

smooth G action and U, V ⊆ M which are two equivariant open subspaces which
cover M . The coboundary map is de�ned in a similar way to the coboundary in
SH∗. For an element [S →M ] ∈ DSH∗G(M) choose an equivariant map f : S → R
so that we will get a well de�ned G action on the preimage of every point. This
can be done by taking any smooth map S/G → R and pulling it back to S. We
then have:

Theorem 6.18. (Mayer-Vietoris) The following sequence is exact:

...→ DSHk
G(M)→ DSHk

G(U)⊕DSHk
G(V )→ DSHk

G(U∩V )
δ−→ DSHk+1

G (M)→ ...

where, as usual, the �rst map is induced by inclusions and the second is the di�er-
ence of the maps induced by inclusions.

Let G be a compact Lie group and H a closed subgroup. Every G manifold
has a natural structure of an H manifold. De�ne the restriction map:
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resGH : DSHk
G(M) → DSHk

H(M) by [S → X] 7→ [S → X] where on the right side
the spaces are considered as spaces with an action of H.

There is a cross product DSHk
G(M)⊗DSHl

G′(N)→ DSHk+l
G×G′(M ×N) given by:

[g1 : S → M ] × [g2 : T → N ] = (−1)(m+dim(G))l[g1 × g2 : S × T → M ×N ]. This
product is bilinear and natural.

If G = G′ we can use the diagonal ∆ : G → G ×G and compose this product
with the restriction map resG×G∆(G) : DSHk+l

G×G(M × N) → DSHk+l
G (M × N), and

to get a cross product × : DSHk
G(M)⊗DSH l

G(N)→ DSHk+l
G (M ×N). The cup

product is given by α ∪ β = ∆∗(α × β) where ∆ : M → M ×M is the diagonal
map.

DSH∗G with the coboundary operator and the cross product is a multiplicative
equivariant cohomology theory. We call it (parametrized) stratifold backwards
cohomology.

Here are some properties of stratifold backwards cohomology:
The main property is Poincaré duality. As before, there are obvious forms of equi-
variant duality:

Theorem 6.19. Let M be a closed oriented smooth manifold of dimension m
with a smooth and orientation preserving G action then there is an isomorphism
PDM : DSHk

G(M)→ SHG
m−k(M).

Theorem 6.20. Let M be a smooth oriented manifold of dimension m with a
smooth and orientation preserving G action then there is an isomorphism:

PDM : DSHk
G(M)→ SH lf,G

m−k(M).

In both proofs we have to use an equivariant analog to the approximation
proposition we used before. This can be deduced from ([6] VI,4.2)

Theorem 6.21. For a smooth oriented manifold M with a free orientation
preserving G action we have a natural isomorphism ΥG : DSH∗G(M)→ SH∗(M/G)
(notice that in cohomology there is no dimension shift).

Proof. We de�ne ΥG by [g : S → M ] 7→ [g/G : S/G → M/G]. The proof
that it is a well de�ned isomorphism is similar to what we had before.
ΥG commutes with the cross product:
Let α = [S →M ] ∈ DSHk

G(M) and β = [T → N ] ∈ DSH l
G′(N) then:

ΥG×G′(α× β) = ΥG×G′((−1)(m+dim(G))l[S × T →M ×N ]) =
= (−1)(m+dim(G))l[S × T/G×G′ →M ×N/G×G′]
The di�eomorphism S/G × T/G′ ∼= S × T/G × G′ switches the orientation by

(−1)dim(G)·(dim(T )−dim(G′)), and the di�eomorphismM/G×N/G′ ∼= M×N/G×G′
switches the orientation by (−1)dim(G)·(n−dim(G′)),thus the above is equal to:
= (−1)ml[S/G× T/G′ →M/G×N/G′] = [S/G→M/G]× [T/G′ → N/G′] = ΥG(α)×ΥG′ (β)

�

The coe�cients DSH∗G(G/H) are determined completely by Poincaré duality
(where H is a closed subgroup of dimension dim(H)). All the maps are isomor-
phisms:

DSHkG(G/H)
PD−−→ SHGdim(G)−dim(H)−k(G/H)

ΦG0−−→ H−dim(H)−k(EG×GG/H)→ H−dim(H)−k(BH)

(= H−k(H,Z) if H is discrete). This is isomorphic to SHH
−k(pt)→ DSHk

H(pt)
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A natural isomorphism between DSH∗G and DH∗G.
Let G be a �xed �nite group and M a smooth oriented manifold of dimen-

sion m with a smooth and orientation preserving G action. The composition

DSHk
G(M)→ SH lf,G

m−k(M)→ H lf,G
m−k(M)→ DHk

G(M) is an isomorphism of groups

for all oriented manifolds, denote it by ΘD
G . We would like to show that ΘD

G is a
natural isomorphism of multiplicative equivariant cohomology theories.

We choose n > m−k+1 and let EGn be an n connected closed oriented smooth
manifold of dimension dn with a free and orientation preserving G action.

Remark 6.22. From now on we will assume, without loss of generality, that
all dn are even. This way we avoid some sign problems that would have occurred
otherwise.

Lemma 6.23. There is a natural isomorphism:

C∗(EGn)⊗Z[G] C
∗(M)

×G−−→ C∗(EGn ×GM)

Proof. Since G is �nite we have an isomorphism:

C∗(EGn)⊗Z[G] C
∗(M)

∼=−→ HomZ[G](C∗(EGn),Z[G])⊗Z[G] C
∗(M)

C∗(EGn) are �nitely generated since EGn is compact and projective since G acts
freely on EGn. So, by the duality theorem, we have:
∼=−→ HomZ[G](C∗(EGn), C∗(M))
By adjunction we have:
∼=−→ HomZ(C∗(EGn)⊗Z[G] C∗(M),Z)

∼=−→ HomZ(C∗(EGn ×GM),Z) = C∗(EGn ×GM).

One might check that the composition is given by:
ϕ×G ψ(e⊗m) = (−1)|ϕ|·|ψ|Σg∈Gϕ(ge) · ψ(gm) �

Lemma 6.24. The following diagram commutes up to homotopy:

Cdn+∗(EGn)⊗Z[G] C
∗(M)

×G−−→∼= Cdn+∗(EGn ×GM)

PDEGn ⊗ PDM ↓ ↓ PDEGn×GM

C−∗(EGn)⊗Z[G] C
lf
m−∗(M)

×G−−→∼= Clfm−∗(EGn ×GM)

Proof. Let σEGn =
∑
ek ∈ Cdn(EGn) and σM =

∑
ml ∈ Clfm (M) be the rep-

resentatives of the fundamental classes of EGn and M respectively. Let σEGn,G =∑
ek′ ∈ Cdn(EGn) be a chain with the property that

∑
g∈G g · σEGn,G = σEGn

then σEGn,G ⊗ σM is the representative of the fundamental class of EGn ×GM in

Clfdn+m(EGn ×G M) ∼= Cdn(EGn) ⊗Z[G] C
lf
m (M). Choose equivariant cellular ap-

proximations to the diagonal maps: ∆1 : EGn → EG2
n, ∆2 : M →M2 and using these

maps choose ∆ : EGn ×G M → (EGn ×GM)2. Denote ∆1∗(σEGn,G) =
∑
i e

1
i ⊗ e2

dn−i

and ∆2∗(σM ) =
∑
jm

1
j ⊗m2

m−j then ∆∗(σEGn,G ⊗ σM ) =
∑
i,j(−1)(dn−i)je1

i ⊗G m1
j ⊗

e2
dn−i ⊗G m

2
m−j .

We follow the image of an element ϕ⊗ψ ∈ Cdn+∗(EGn)⊗Z[G] C
∗(M). If we �rst

go down and then right we get:
(ϕ ∩ σEGn)⊗ (ψ ∩ σM ) = ϕ ∩ (Σgg · σEGn,G)⊗G ψ ∩ σM
= Σg (ϕ ∩ (g · σEGn,G)⊗G ψ ∩ (g · σM )) (σM is invariant - g · σM = σM )

= Σg

(
(−1)|ϕ|(dn−|ϕ|)ϕ(ge2

|ϕ|) · ge
1
dn−|ϕ| ⊗G (−1)|ψ|(m−|ψ|)ψ(gm2

|ψ|) · gm
1
m−|ψ|

)
= (−1)|ϕ|(dn−|ϕ|)+|ψ|(m−|ψ|)

(
Σgϕ(ge2

|ϕ|) · ψ(gm2
|ψ|)
)
· e1
dn−|ϕ| ⊗G m

1
m−|ψ|

= (−1)|ϕ|(dn−|ϕ|)+|ψ|(m−|ψ|)+|ϕ||ψ|ϕ×G ψ(e2
|ϕ| ⊗G m

2
|ψ|) · e

1
dn−|ϕ| ⊗G m

1
m−|ψ|
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ϕ×G ψ ∩ σEGn,G ⊗ σM
which is equal to the image if we �rst go right and then down. �

De�ne a map Hk+dn(EGn×GM)→ DHk
G(M) on chain level as the composition:

C∗+dn(EGn ×GM)→ C∗+dn(EGn)⊗Z[G] C
∗(M)→ P+

−∗ ⊗Z[G] C
∗(M)→

→ HomZ[G](P
−
∗ ,Z[G])⊗Z[G] C

∗(M)→ HomZ[G](P
−
∗ , C

∗(M)) = DHk
G(M)

Where C∗+dn(EGn) has an augmentation Cdn(EGn) → Z[G] given by evaluation
on the top class and the map C∗+dn(EGn)→ P+

−∗ is the unique (up to homotopy)
augmentation preserving map given by the universal property of P+

∗ ([7] I,7.4).

Lemma 6.25. The following diagram commutes:

Hk+dn(EGn ×GM) → DHk
G(M)

↓ PDEG×GM ↓ PDM

H lf
m−k(EGn ×GM) → H lf,G

m−k(M)

Moreover, this diagram can be de�ned on chain level and there it commutes up to
homotopy.

Proof. We prove that the following diagram commutes up to homotopy:

Cdn+∗(EGn ×GM) → Cdn+∗(EGn)⊗Z[G] C
∗(M) → P+

−∗ ⊗Z[G] C
∗(M)

↓ PDEGn×GM (1) PDEGn ⊗ PDM ↓ (2) PDM ↓
Clfm−∗(EGn ×GM) → C−∗(EGn)⊗Z[G] C

lf
m−∗(M) → P+

−∗ ⊗Z[G] C
lf
m−∗(M)

(1) This is lemma 6.24.

(2) We have to show that Cdn+∗(EGn)
PDEGn−−−−−−→ C−∗(EGn) is augmentation pre-

serving. Take a cochain ϕj ∈ Cdn(EGn) with the property that ϕj(ej) = 1

for one n-cell ej and zero else then ϕj ∩ σEGn = ϕj ∩ ej = e0 which is a
single one cell so the image of e0 under the map C0(EGn)→ Z is 1.

This proves the lemma since the right vertical map induces the map DHk
G(M)

PDM−−−−→
Hlf,G
m−k(M). �

Proposition 6.26. ΘD
G is natural, that is for every smooth equivariant map

f : N → M between two smooth oriented manifolds of dimension n and m resp.
with a smooth and orientation preserving G action the following diagram commutes:

DSHk
G(M)

ΘDG−−→ DHk
G(M)

f∗ ↓ ↓ f∗

DSHk
G(N)

ΘDG−−→ DHk
G(N)

Proof. First case - f : N ↪→ M is an embedding of N as a closed invariant
submanifold of M :

Take an element α = [S, g] ∈ DSHk
G(M). We can assume that g is transversal

to f , thus we can �nd a (closed) invariant tubular neighborhood U of N with
boundary ∂U ([6] VI,2.2) (also transversal to g) and a projection map πN : U → N
with the property that the pullback of U will be a tubular neighbourhood πS : S t
U → S t N (similar to what we did in chapter 3).

Let EGn be as above, we claim that the following diagram commutes:
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Hlf
m−k(S/G)

(h×Gg)∗−−−−−−→ Hlf
m−k(EGn ×GM) → Hlf,G

m−k(M)
PD−1

M−−−−→ DHk
G(M)

ε · φ ↓ (1) ↓ ε · φ (2) ↓ f∗

Hlf
n−k(S t N/G)

(h×Gg)∗−−−−−−→ Hlf
n−k(EGn ×G N) → Hlf,G

n−k (N)
PD−1

N−−−−→ DHk
G(N)

i) h : S → EGn is the classifying map de�ned by the universal property of EGn and
the fact that S has the homotopy type of a CW complex of dimension ≤ m−k < n
and has a free G action.

ii) H lf
m−k(EGn ×GM)

φ−→ H lf
n−k(EGn ×G N) and H lf

m−k(S/G)
φ−→ H lf

n−k(S t N/G)

are de�ned in appendix 1 and ε = (−1)(n−k)(m−n). Both maps are de�ned using
the Thom isomorphism.
(1) commutes by the naturality of the Thom class. This was also proved in chapter
3. To prove that (2) commutes it is enough to show that the following diagram
commutes (using lemma 6.25):

H lf
m−k(EGn ×GM) → Hk+dn(EGn ×GM) → DHk

G(M)
↓ ε · φ ↓ f∗ ↓ f∗

H lf
n−k(EGn ×G N) → Hk+dn(EGn ×G N) → DHk

G(N)

The left side commutes by proposition 7.21, the right side clearly commutes.

Remark. It is actually true that all the maps in both diagrams can be de�ned
on chain level and the it will commute up to homotopy. We will use that later.

We follow both images of [S/G]lf ∈ H lf
m−k(S/G) in the original diagram. By

de�nition, the image of [S/G]lf in the top row is ΘD
G(α), which is mapped in

the right column to f∗(ΘD
G(α)). As seen before ε · φ([S/G]lf ) = [S t N/G]lf .

By de�nition its image in the bottom row is equal to ΘD
G(f∗(α)) using the fact

that [S t N/G, g]lf = f∗(α). Since the diagram commutes we conclude that
f∗(ΘD

G(α)) = ΘD
G(f∗(α)).

The general case - f : N →M is an arbitrary smooth map:
There exists a �nite dimensional representation V G and a smooth equivariant

embedding i : N ↪→ V G as a closed submanifold [30]. f is equal to the compo-

sition N
f×i−−→ M × V G πM−−→ M . f × i is an embedding of N as a closed invari-

ant submanifold. πM has an inverse up to G homotopy which is an embedding -

M
Id×0−−−→M × V G hence this follows from the previous case.

�

Lemma 6.27. ΘD
G commutes with the cross product, that is for every two smooth

oriented manifolds M and N of dimension m and n respectively with a smooth and
orientation preserving G action the following diagram commutes:

DSHk
G(M)⊗DSH l

G′(N)
ΘDG⊗ΘD

G′−−−−−−→ DHk
G(M)⊗DH l

G′(N)
× ↓ × ↓

DSHk+l
G×G′(M ×N)

ΘD
G×G′−−−−→ DHk+l

G×G′(M ×N)
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Proof. The following diagram commutes up to sign (−1)ml since the horizon-
tal maps are identities and the vertical maps are equal up to that exact sign:

DSHk
G(M)⊗DSH l

G′(N)
PDM⊗PDN−−−−−−−−→ SH lf,G

m−k(M)⊗ SH lf,G′

n−l (N)
× ↓ ↓ ×

DSHk+l
G×G′(M ×N)

PDM×N−−−−−−→ SH lf,G×G′
m+n−k−l(M ×N)

The following diagram commutes:

SH lf,G
m−k(M)⊗ SH lf,G′

n−l (N)
ΦlfG⊗ΦlfG−−−−−−→ H lf,G

m−k(M)⊗H lf,G′

n−l (N)
↓ × ↓ ×

SH lf,G×G′
m+n−k−l(M ×N)

Φlf
G×G′−−−−→ H lf,G×G′

m+n−k−l(M ×N)

since ΦlfG commutes with the cross product (as was shown before).
And last, the following diagram commutes up to sign (−1)ml:

H lf,G
m−k(M)⊗H lf,G′

n−l (N)
PD−1

M ⊗PD
−1
N−−−−−−−−−→ DHk

G(M)⊗DH l
G′(N)

↓ × × ↓

H lf,G×G′
m+n−k−l(M ×N)

PD−1
M×N−−−−−−→ DHk+l

G×G′(M ×N)

To see that take an element p ⊗ ϕ ⊗ q ⊗ ψ ∈ P+
G ⊗ C∗(M) ⊗ P+

G′ ⊗ C∗(N). If we
�rst go left and then down we get:
p⊗ϕ⊗ q⊗ψ 7→ p⊗ (ϕ ∩ σM )⊗ q⊗ (ψ ∩ σN ) 7→ (−1)|q|·|ϕ∩σM |p⊗ q⊗ (ϕ ∩ σM )⊗ (ψ ∩ σN )

where σM and σN are the representatives of the fundamental classes of M and N .
If we �rst go down and then left we get:
p⊗ ϕ⊗ q ⊗ ψ 7→ (−1)|q|·|ϕ|p⊗ q ⊗ ϕ⊗ ψ 7→ (−1)|q|·|ϕ|p⊗ q ⊗ (ϕ⊗ ψ) ∩ (σM ⊗ σN )
(σM ⊗ σN is the representative of the fundamental class of M ×N).
= (−1)|q|·|ϕ|+m·|ψ|p⊗ q ⊗ (ϕ ∩ σM )⊗ (ψ ∩ σM )
Comparing the signs we get that the diagram commutes up to the sign:
(−1)|q|·|ϕ|+m·|ψ| · (−1)|q|·|ϕ∩σM | which is equal to (−1)m·(|ψ|+|q|) = (−1)m·l

Combining the three diagrams we get the commutativity of the original diagram.
�

Lemma 6.28. ΘD
G commutes with the coboundary operator.

Proof. This is similar to what we did for Θ. �

Lemma 6.29. ΘD
G commutes with the restriction map.

Proof. This follows from the fact that the mapsDSHk
G(M)→ SH lf,G

m−k(M)→
H lf,G
m−k(M) → DHk

G(M) commute with the restriction in cohomology and transfer
in homology. �

We proved that ΘD
G : DSH∗G(M) → DH∗G(M) is a natural isomorphism of

graded groups, it commutes with the coboundary operator in theMayer−V ietoris
sequence, with the cross product and the restriction map, thus we proved the fol-
lowing:

Theorem 6.30. ΘD
G : DSH∗G(M) → DH∗G(M) is a natural isomorphism of

multiplicative equivariant cohomology theories.
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6.3. Stratifold Borel cohomology

Let G be a compact Lie group and M a smooth manifold of dimension m with
an orientation preserving smooth G action. De�ne the stratifold Borel cohomology
SHk

G(M) to be lim←−DSH
k
G(EGn ×M) with respect to the maps induced by the

inclusions EGn ×M ↪→ EGn+1 ×M .

Remark 6.31. This inverse limit is di�erent from lim←−DSH
∗
G(EGn×M) in the

category of rings!

This inverse limit stabilizes due to the following:

Lemma 6.32. For n large enough the maps DSHk
G(EGn+1×M)→ DSHk

G(EGn×M)

are isomorphisms.

Proof. The following diagram commutes and all the maps are isomorphisms:

DSHk
G(EGn+1 ×M)

∼=−→ SHk(EGn+1 ×GM)
∼=−→ Hk(EGn+1 ×GM)

↓ ↓ ↓∼=
DSHk

G(EGn ×M)
∼=−→ SHk(EGn ×GM)

∼=−→ Hk(EGn ×GM)

�

SH∗G(M) has a natural structure of an Abelian group. As we saw before, one
can de�ne triples and a boundary map for a triple and we will have the following:

Theorem 6.33. (Mayer-Vietoris) The following sequence is exact:

...→ SHk
G(M)→ SHk

G(U)⊕ SHk
G(V )→ SHk

G(U ∩ V )
δ−→ SHk+1

G (M)→ ...

Proof. This follows from the fact that if (U, V,M) is a triple then also (EGn×
U,EGn×V,EGn×M) are triples so we can use the Mayer-Vietoris for DSH∗G. �

We can also de�ne the cross product. SH∗G with the boundary operator and
the product is a multiplicative equivariant cohomology theory.

A natural isomorphism between SH∗G and H∗G.
A natural isomorphism ΘG : SHk

G → Hk
G given by the composition:

SHk
G = lim←−DSH

k
G(EGn×−)→ lim←−SH

k(EGn×G−)→ lim←−H
k(EGn×G−)→ Hk

G

ΘG is a natural isomorphism of graded groups, it commutes with the coboundary
operator in the Mayer − V ietoris sequence and with the cross product since it is
a composition of such natural isomorphisms. This proves the following:

Theorem 6.34. ΘG : SH∗G → H∗G is a natural isomorphism of multiplicative
equivariant cohomology theories.

In order to see the relation with ΘD
G we present the dual homology theory:

6.4. Stratifold backwards homology

Let G be a �xed compact Lie group, we introduce the homology theory dual to
stratifold Borel cohomology, which we call stratifold backwards homology (since it
is naturally isomorphic to the backwards homology when G is �nite) and denote it
by DSHG

∗ . It is de�ned on the category of �nite dimensional G− CW complexes,
and equivariant cellular maps between them.

Let X be a �nite dimensional G−CW complex. For EGn and EGn+1 as before
we de�ne a map:
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i! : SHG
k+dn+1

(EGn+1 × X) → SHG
k+dn

(EGn × X) the following way: For an

element α = [S, g] ∈ SHG
k+dn+1

(EGn+1×X) we can change g up to homotopy such

that the composition πEGn+1
◦ g : S → EGn+1 will be transversal to the inclusion

EGn ↪→ EGn+1. We de�ne i!(α) to be the pullback of g : S → EGn+1 ×X (after
changing g) along the inclusion i : EGn × X ↪→ EGn+1 × X. The fact that it is
well de�ned is similar to the corresponding result in DSH∗G keeping in mind that
the following diagram is a pullback diagram:

S′ → EGn ×X
πEGn−−−−→ EGn

↓ ↓ ↓
S → EGn+1 ×X

πEGn+1−−−−−→ EGn+1

Remark 6.35. In case X is a smooth oriented manifold with a smooth and
orientation preserving G action i! is the umkehr map.

Lemma 6.36. i! commutes with induced maps, that is for f : X → Y , an
equivariant continuous map between two �nite dimensional G−CW complexes, the
following diagram commutes:

SHG
k+dn+1

(EGn+1 ×X)
i!−→ SHG

k+dn
(EGn ×X)

↓ f∗ ↓ f∗
SHG

k+dn+1
(EGn+1 × Y )

i!−→ SHG
k+dn

(EGn × Y )

Proof. Let [g : S → EGn+1 ×X] be an element in SHG
k+dn+1

(EGn+1 ×X).

The commutativity of the diagram follows from the fact that the following diagram
is a composition of pullback squares:

S′ → EGn ×X → EGn × Y
↓ ↓ ↓
S → EGn+1 ×X → EGn+1 × Y

�

De�ne the stratifold backwards homology DSHG
k (X) to be lim←−SH

G
k+dn(EGn×X)

with respect to the maps i!. The induced maps are de�ned to be the inverse limit
of the induced maps in SHG

∗ . This is well de�ned by the lemma above.

Remark 6.37. This idea is quit general, we can de�ne homology theories using
a �ltration of a space by a sequence of manifolds Mn ↪→ Mn+1 (with or without a
group action).

DSHG
∗ has a natural structure of an Abelian group. Like before, one can de�ne

triples and a boundary map for a triple and we will have the Mayer-Vietoris long
exact sequence.

Remark 6.38. Similarly we can de�ne a locally �nite version of this theory

DSH lf,G
k (X).

As before, there are obvious forms of equivariant duality we call Poincaré du-
ality:

Theorem 6.39. Let M be a closed oriented smooth manifold of dimension m
with a smooth and orientation preserving G action then there is an isomorphism
PDM : SHk

G(M)→ DSHG
m−k(M).
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Theorem 6.40. Let M be a smooth oriented manifold of dimension m with a
smooth and orientation preserving G action then there is an isomorphism:

PDM : SHk
G(M)→ DSH lf,G

m−k(M).

A natural isomorphism between DSH lf,G
∗ and DH lf,G

∗ .
We now restrict to the case of G �nite. Let X be a locally �nite, �nite di-

mensional G − CW complex. We would like to construct a natural isomorphism

Φlf,GD : DSH lf,G
∗ (X)→ DH lf,G

∗ (X).

Lemma 6.41. The following diagram commutes:

SH lf,G
k+dn+1

(EGn+1 ×X) −→ H lf,G
k+dn+1

(EGn+1 ×G X)

i! ↓ ↓ φ
SH lf,G

k+dn
(EGn ×X) −→ H lf,G

k+dn
(EGn ×G X)

Where φ is de�ned as in appendix 1.

Proof. Similar to the proof of 6.26, since we did not use the fact that X was
a manifold (we use here the fact that dn+1 − dn is even). �

Lemma 6.42. The map C∗+dn+1
(EGn+1)⊗Z[G] C

lf
∗ (X)

φ⊗Id−−−−→ C∗+dn (EGn)⊗Z[G] C
lf
∗ (X)

induces in homology the map Hk+dn+1
(EGn+1 ×G X)

φ−→ Hk+dn(EGn ×G X).

Proof. Consider EGn as an invariant submanifold of EGn+1 and �nd an
invariant tubular neighborhood U with boundary ∂U . Let τ be a representative of
the Thom class of π : U → EGn. It can be chosen to be invariant by pulling back a
representative of the Thom class of π : U/G→ EGn/G using the fact that G acts
freely on EGn). The pullback of the Thom class of the bundle U×GX → EGn×GX
along the quotient map to the bundle U ×X → EGn ×X is equal to τ × 1X . We

can de�ne φ : Clf∗+dn+1
(EGn+1 ×G X) → Clf∗+dn(EGn ×G X) on chain level by

e⊗ x 7→ (π ×G Id)∗(τEGn×GX ∩ ē⊗ x) where ē =

{
0 if e /∈

◦
U

e else
The fact that the pullback of τEGn×GX to EGn×X is equal to τ ×1X implies that
that e⊗x 7→ φ(e)⊗x. Note that if u denotes the representative of [U, ∂U ]lf and σEGk
denotes the representative of the fundamental class of EGk then τ ∩ u = i∗(σEGn)
therefore φ(σEGn+1) = π∗(τ ∩ u) = σEGn . �

We construct a natural isomorphism Φlf,GD : DSH lf,G
k (X) → DH lf,G

k (X) as
the composition of two natural isomorphisms:

1) The limit map: lim←−SH
lf,G
k+dn

(EGn ×X)→ lim←−Hk(C∗+dn(EGn)⊗Z[G] C
lf
∗ (X))

2) The map lim←−Hk(C∗+dn(EGn)⊗Z[G] C
lf
∗ (X))→ DH lf,G

k (X) which is the inverse

of the following map: Let P−∗ be a backwards projective resolution. By ([7] VI,2.4)
there are chain maps ιn : P−∗ → C∗+dn(EGn) which commute with the coaug-
mentation maps Z → P−0 and Z → Cdn(EGn) where the latter map is given by
k 7→ k ·σEGn , (ιn are unique up to homotopy). φ is co-augmentation preserving thus
φ ◦ ιn+1 ∼ ιn by uniqueness up to homotopy of co-augmentation preserving maps.
If we truncate both chain complexes under k = −n the map will be a homotopy
equivalence (truncate, but leave the images of the last map). The ιn's induce maps

ι∗n : DH lf,G
k (X) → Hk(C∗+dn(EGn) ⊗Z[G] C

lf
∗ (X)) which are compatible with the
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maps φ, so they induce a map DH lf,G
k (X) → lim←−Hk(C∗+dn(EGn) ⊗Z[G] C

lf
∗ (X)).

ι∗n are isomorphisms for n large enough (here we use the fact that X is �nite di-
mensional) so the limit map is also an isomorphism.

Remark 6.43. Given an element α = [S, g] ∈ SH lf,G
∗ (EGn×X) one can look at

the composition: Clf∗ (S/G)
g∗−→ C∗+dn(EGn)⊗ Clf∗ (X)

ι′n⊗Id−−−−→ P−∗ ⊗ C
lf
∗ (X)

then Φlf,GD (α) will be image of [S/G]lf (ι
′

n is a map C∗+dn(EGn)
ι′n−→ P−∗ which is

de�ned only for ∗ > −n but this is not a problem since we are only interested in n
large, here we use the fact that X is of �nite dimension).

Proposition 6.44. The natural isomorphism ΘG : SHk
G(M)→ Hk

G(M) is equal

to the composition SHk
G(M)

PD−−→ DSHlf,G
m−k(M)

Φ
lf,G
D−−−−→ DHlf,G

m−k(M)
PD−−→ Hk

G(M).

Proof. Look at the following diagram:

lim←−DSH
k
G(EGn ×M) → lim←−H

k(EGn ×GM) → Hk
G(M)

↓ PDEGn×M (1) ↓ PDEGn×M (2) ↓ PDM
lim←−SH

lf,G
m−k+dn

(EGn ×M) → lim←−H
lf
m−k+dn

(EGn ×GM) → DHlf,G
m−k(M)

(1) This square commutes for all n by de�nition thus it also commutes in the limit.
(2) Look at the following diagram:

C∗(EGn)⊗Z[G] C
∗(M) ← P−−∗ ⊗Z[G] C

∗(M)
↓ PDEGn ⊗ PDM ↓ PDM

Cdn−∗(EGn)⊗Z[G] C
lf
m−∗(M) ← P−∗ ⊗Z[G] C

lf
m−∗(M)

This diagram commutes after passing to homology since 1EGn ∩ σEGn = σEGn (so
the map C∗(EGn) → Cdn−∗(EGn) is co-augmentation preserving). This implies
the commutativity of the diagram (2) by lemma 6.24. �

Proposition 6.45. The following diagram commutes:

SH lf,G
k (X)

Φlf,G−−−→ H lf,G
k (X)

↓ ↓

DSH lf,G
k (X)

Φlf,GD−−−→ DH lf,G
k (X)

Proof. Let EGn be as before, denote by σEGn ∈ Cdn(EGn) the representa-
tives of the fundamental class of EGn. It is unique and thus invariant since we are us-
ing cellular chains. Choose augmentation preserving chain maps l+ : C∗(EGn)→ P+

∗

and l− : C∗+dn(EGn) → P−∗ (the second map is de�ned only for ∗ > −n but this is
not a problem since we are only interested in n large, here we use the fact that X
is of �nite dimension).

De�ne a degree dn chain map: ρ : C∗(EGn)→ C∗+dn(EGn) the following way:
ρ : C0(EGn) → Cdn (EGn) is de�ned on generators by ρ(e0) = σEGn (this is a map of
Z[G]-modules since σEGn is invariant). For k 6= 0 let ρ : Ck(EGn)→ Ck+dn(EGn)
be zero map. We have the following commutative diagram:

C∗(EGn) → Z → C∗+dn(EGn)
↓ l+ ↓ Id ↓ l−
P+
∗ → Z → P−∗
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Where the composition of the top row is ρ and the composition of the bottom row
is the map P+

∗ → P−∗ we had before (l− is the map ι′n we had before).

Let [S, g] be an element in SH lf,G
k (X). By approximation we can assume,

without loss of generality, that S is a CW complex. Denote by σS ∈ Clfk (S) the
representative of the fundamental classes of S. Again, it is invariant. Choose an
equivariant map S → EGn, it is unique up to G-homotopy. It gives us a map to
the product EGn × S which we approximate by a cellular map h : S → EGn × S.
The map f : S → X induces a map S/G

h/G−−−→ EGn ×G S
Id×Gf−−−−→ EGn ×G X. We

have the following (strictly) commutative diagram:

Clf∗ (S/G)
h∗−−→ C∗(EGn)⊗ Clf∗ (S)

Id⊗f∗−−−−−→ C∗(EGn)⊗ Clf∗ (X)
l+⊗Id−−−−−→ P+

∗ ⊗ C
lf
∗ (X)

↓ ρ⊗ Id ↓ ρ⊗ Id ↓

C∗+dn (EGn)⊗ Clf∗ (S)
Id⊗f∗−−−−−→ C∗+dn (EGn)⊗ Clf∗ (X)

l−⊗Id−−−−−→ P−∗ ⊗ C
lf
∗ (X)

where all tensor products are over Z[G].

The composition S
h−→ EGn × S

πS−−→ S is homotopic to the identity, thus

the same holds for the composition Clf∗ (S/G)
h∗−→ C∗(EGn) ⊗Z[G] C

lf
∗ (S)

πS∗−−→
Clf∗ (S/G). Therefore [S/G]lf is mapped to itself and by uniqueness the same is
true for its representative σS/G. This implies that h∗(σS/G) is of the form:
e0 ⊗ σS,G + Σ0<iei ⊗ sk−i where the image of e0 under the map C0(EGn) → Z is
1 and σS,G is a lift of σS/G (any element with the property Σg∈Gg · σS,G = σS).
Thus (ρ⊗ Id) ◦ h∗(σS/G) = σEGn ⊗ σS,G. The proposition follows from the fact

that the image of [S, g] under the map SH lf,G
k (X) → DSH lf,G

k (X) is [Id × g :
EGn × S → EGn ×X] and σEGn ⊗ σS,G is the representative of the fundamental
class of EGn ×G S. �

Corollary 6.46. The following diagram commutes:

DSHk
G(M)

ΘDG−−→ DHk
G(M)

↓ ↓
SHk

G(M)
ΘG−−→ Hk

G(M)

Proof. This follows from the proposition above together with the commuta-
tivity of the following two diagrams:

DSHk
G(M)

PDM−−−→ SH lf,G
m−k(M)

↓ ↓
SHk

G(M)
PDM−−−→ DSH lf,G

m−k(M)

H lf,G
m−k(M)

PDM−−−→ DHk
G(M)

↓ ↓
DH lf,G

m−k(M)
PDM−−−→ Hk

G(M)

�
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6.5. Stratifold Tate homology and cohomology

Stratifold Tate cohomology.
Let G be a compact Lie group and M a smooth manifold of dimension m with

an orientation preserving smooth G action. For every n we de�ne ŜH
k

G(M)n to be
{(T, S, g, i∂)} / ∼ where:

• T is an oriented p-stratifold of dimension m + dn − k (where dn is the
dimension of EGn) with boundary together with a G action which is
orientation preserving, regular, smooth and free.

• S is an oriented p-stratifold of dimension m − k − 1 together with a G
action which is orientation preserving, regular, smooth and free.
• i∂ : EGn×S → ∂T is an orientation preserving, equivariant isomorphism.
• g : T → EGn×M is a proper equivariant smooth map and the composition
g ◦ i∂ : EGn × S → EGn ×M is of the form Id× g̃ for some equivariant
smooth map g̃ : S →M .

The bordism relation is de�ned the following way: We say that (T, S, g, i∂) is bor-
dant to (T ′, S′, g′, i′∂) if the following conditions hold:

• There exists a bordism (B,S q−S′, h) between g̃ : S →M and g̃′ : S′ →M

(i.e., [S, g̃] = [S′, g̃′] as elements in DSHk+1
G (M)).

Thus (EGn × B,EGn × (S q S′) , Id × h) is a bordism between Id × g̃ :

EGn × S → EGn ×M and Id × g̃′ : EGn × S′ → EGn ×M . (Note that B
might be non empty even if S = S′ = ∅).
• By gluing (EGn×B,EGn×SqEGn×S′) to (T, ∂T )+(T ′, ∂T ′) along i∂ + i′∂
we obtain an oriented p-stratifold of dimension m+dn−k together with a
G action which is orientation preserving, regular, smooth and free, which
we denote by B̃. We require that the element [g + g′ + Id × h : B̃ →
EGn ×M ] ∈ DSHk

G(EGn ×M) will be the zero element.

Proposition 6.47. The bordism relation is an equivalence relation.

Proof. The relation is re�exive: Given an element (T, S, g, i∂) one can
give T × I the structure of a p-stratifold with boundary such that its boundary will
be equal to T × {0} ∪ ∂T × I ∪ T × {1} by a similar procedure to the one appears
in [23] in appendix A. This implies that (T, S, g, i∂) is equivalent to itself.
The relation is symmetric: This is clear.
The relation is transitive: In order to prove this we have to know how to glue
two p-stratifolds along a part of their boundary. This is proved in [23] in appendix
A. �

The maps i : EGn → EGn+1 induce maps i∗ : ŜH
k

G(M)n+1 → ŜH
k

G(M)n by transver-
sal pullback. Notice that the pullback of Id × g̃ : EGn+1 × S → EGn+1 ×M along
the map EGn×M → EGn+1×M is equal to Id× g̃ : EGn×S → EGn×M , hence the

map is well de�ned. De�ne the stratifold Tate cohomology to be lim←−ŜH
k

G(M)n.

This limit stabilizes due to the following:

Lemma 6.48. The maps i∗ : ŜH
k

G(M)n+1 → ŜH
k

G(M)n are isomorphisms for
n large enough.

Proof. This follows from the following diagram and the �ve lemma :
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DSHkG(M) → DSHkG(EGn+1 ×M) → ŜH
k
G(M)n+1 → DSHk+1

G
(M) → DSHk+1

G
(EGn+1 ×M)

↓ Id ↓ i∗ ↓ i∗ ↓ Id ↓ i∗

DSHkG(M) → DSHkG(EGn ×M) → ŜH
k
G(M)n → DSHk+1

G
(M) → DSHk+1

G
(EGn ×M)

�

Remark 6.49. The exactness of the rows and the de�nitions of the natural
transformations are explained below.

ŜH
∗
G(M) has a natural structure of an Abelian group. As we saw before, one

can de�ne triples and a boundary map for a triple and we will have the following:

Theorem 6.50. (Mayer-Vietoris) The following sequence is exact:

...→ ŜH
k

G(M)→ ŜH
k

G(U)⊕ ŜH
k

G(U)→ ŜH
k

G(U ∩ V )
δ−→ ŜH

k+1

G (M)→ ...

De�ne the cross product of [(T, S, g, i∂)] ∈ ŜH
k

G(M) and [(T ′, S′, g′, i′∂)] ∈ ŜH
l

G(N)

by:
[(−1)(m+dim(G))l(T × T ′, T × ∂T ′ ∪ ∂T × T ′, g × g′, Id× g̃′ ∪ g̃ × Id)]
after smoothing the corners in T × T ′ and then pulling it back along the map

EGn ×M × N → EGn ×M × EGn × N . ŜH
∗
G with the boundary operator and

the cup product is a multiplicative equivariant cohomology theory.
There are natural transformations:

• DSH∗G → SH∗G given by [S → M ] 7→ [EGn × S → EGn ×M ] which is
induced by π∗ where π : EGn ×M →M is the projection.

• SH∗G → ŜH
∗
G given by [(T, g)] 7→ [(T, ∅, g, ∅)].

• ŜH
∗
G → DSH∗+1

G given by [(T, S, g, i∂)] 7→ [(S, g̃)].

Note that the �rst two natural transformations are multiplicative.
We have the following:

Theorem 6.51. The following is a long exact sequence:

...→ DSH∗G → SH∗G → ŜH
∗
G → DSH∗+1

G → ...

Proof. This follows easily from the de�nition of the bordism relation in ŜH
∗
G.

To prove exactness in ŜH
∗
G one might use the following: �

Lemma 6.52. Let (T, S, g, i∂) be as before and assume that the map g̃ : S →M
bounds the map ḡ : (S′, S)→M . Denote by (T ′, ∅, ĝ, ∅) = (T, ĝ) the element we get
by gluing (T, S, g, i∂) and (EGn×S′, S, ĝ, i) where i is the inclusion of EGn×S in
EGn × S′. Then (T, S, g, i∂) is bordant to (T ′, ∅, ĝ, ∅) = (T, ĝ).

Proof. This is trivial from the de�nition of the bordism relation. �

Corollary 6.53. Let M be a closed oriented smooth manifold of dimen-
sion m with a smooth and orientation preserving G action. DSHk

G(M) vanishes
for k > m − dim(G) and SHk

G(M) vanishes for k < 0. Therefore the map

Hk(EG ×G M) → ŜH
k

G(M) is an isomorphism for k > m − dim(G) and the

map ŜH
k

G(M) → Hm−k−1−dim(G)(EG ×G M) is an isomorphism for k < −1. If

dim(G) > m we deduce that ŜH
k

G(M) is isomorphic to Hk(EG×GM) when k ≥ 0
and to Hm−k−1−dim(G)(EG×GM) when k < 0.
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Example 6.54. Suppose M = pt (consists of one point) then:
DSHk

G(pt) = SHG
−k(pt) = H−k−dim(G)(BG) is concentrated in the non positive part.

SHk
G(pt) = Hk(BG) is concentrated in the non negative part.

The long exact sequence consists only of isomorphisms and zero maps aside of

maybe in k = 0, what makes the computation of ŜH
∗
G(pt) easy. We would like to

see that geometrically.

If k ≥ 0 then ŜH
k

G(pt) consists of elements of the form [(T, ∅, g, ∅)] that is
without boundary since otherwise the dimension of S would have been negative.

Therefore the map SHk
G(pt)→ ŜH

k

G(pt) is surjective and if k > 0 it is actually an
isomorphism.

For k < 0 take any element [S → pt] ∈ DSHk+1
G (pt). S is the boundary of the cone

CS. CS has a natural G action which is not free. Nevertheless, EGn×CS has a free
G action and its boundary is EGn×S and the projection π : EGn×CS → EGn give

an element [(EGn × CS, S, π, i)] ∈ ŜH
k

G(pt) so the map ŜH
k

G(pt) → DSHk+1
G (pt)

is surjective. It is actually an isomorphism since DSHk
G(EGn × pt) vanishes.

The map ŜH
∗
G(M)→ DSH∗+1

G (M) is not multiplicative since it shifts dimension.

In the case of M = pt the isomorphism ŜH
k−1

G (pt) → DSHk
G(pt) for k < 0 gives an

interesting product DSH−kG (pt) ⊗DSH−lG (pt) → DSH−k−l−1
G (pt) (k, l > 0). This

induces by Poincaré duality a product SHG
k (pt) ⊗ SHG

l (pt) → SHG
k+l+1(pt) or in

singular homology Hk(BG)⊗Hl(BG)→ Hk+l+1+dn(BG). More about that appears
in chapter 7.

Stratifold Tate homology. LetG be a �xed compact Lie group, we introduce

stratifold Tate homology and denote it by ŜH
G

∗ . It is de�ned on the category of
�nite dimensional G−CW complexes and equivariant cellular maps between them.
The de�nition is like for stratifold Tate cohomology so we will not repeat it. Induced
maps are de�ned by composition.

ŜH
G

∗ (X) has a natural structure of an Abelian group. Like before, one can
de�ne triples and a boundary map for a triple and we will have the Mayer-Vietoris
long exact sequence.

As before, there are obvious forms of equivariant duality we call Poincaré du-
ality:

Theorem 6.55. Let M be a closed oriented smooth manifold of dimension m
with a smooth and orientation preserving G action then there is an isomorphism

PDM : ŜH
k

G(M)→ ŜH
G

m−k(M).

Theorem 6.56. Let M be a smooth oriented manifold of dimension m with a
smooth and orientation preserving G action then there is an isomorphism:

PDM : ŜH
k

G(M)→ ŜH
lf,G

m−k(M).

There are natural transformations:

• SHG
∗ → DSHG

∗ given by [S → X] 7→ [EGn × S → EGn ×X].

• DSHG
∗ → ŜH

G

∗ given by [T, g] 7→ [T, ∅, g, ∅].
• ŜH

G

∗ → SHG
k−1 given by [T, S, g, i∂ ] 7→ [S, g̃].

We have the following (the proof is the same as for cohomology):
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Proposition 6.57. The following is a long exact sequence:

...→ SHG
∗ → DSHG

∗ → ŜH
G

∗ → SHG
∗−1 → ...

A natural isomorphism between ŜH
lf,G

∗ and Ĥ lf,G
∗−1 .

The algebraic mapping cone: Let A and B be two chain complexes and
f : A→ B be a chain map. The algebraic mapping cone (or just mapping cone) of
f , denoted by Cf , is the chain complex Cf,k = Bk+1⊕Ak with the di�erential given
by ∂(b, a) = (f(a)− ∂b, ∂a). It is easy to check that Cf is a chain complex.

Here are some properties of the mapping cone. We omit the proofs, which are
left as an easy exercise.
1) The maps B[−1] → Cf , given by b 7→ (b, 0), and Cf → A, given by (b, a) 7→ a,
are chain maps and the following is an exact sequence:

0→ B[−1]→ Cf → A→ 0

2) This sequence induces a long exact sequence in homology:

...→ Hk(A)
f∗−→ Hk(B)→ Hk−1(Cf )→ Hk−1(A)

f∗−→ Hk−1(B)→ ...

and the connecting homomorphism ∂ is equal to f∗.
3) The mapping cone is functorial in the category of chain complexes and chain
maps. That means that given a square of chain complexes which strictly commutes:

(∗)
A

f−→ B
hA ↓ ↓ hB
A′

f ′−→ B′

then the map hC : Cf → Cf ′ given by hC(b, a) = (hB(b), hA(a)) is a chain map and
the following diagram commutes:

B[−1] → Cf → A
↓ hB ↓ hC hA ↓
B′[−1] → Cf ′ → A′

inducing a map between the long exact sequences mentioned in 2).
4) Given a square of chain complexes which commutes up to homotopy s:

(∗)
A

f−→ B
hA ↓ ↓ hB
A′

f ′−→ B′

then the map hC : Cf → Cf ′ given by hC(b, a) = (hB(b) + s(a), hA(a)) is a chain
map and the following diagram commutes:

B[−1] → Cf → A
↓ hB ↓ hC hA ↓
B′[−1] → Cf ′ → A′

inducing a map between the long exact sequences mentioned in 2).
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Remark 6.58. hC depends on the choice of s, even after passing to homology.
Replacing any of the maps by another chain map which is chain homotopic to it
might change the map induced in homology by hC . These facts make the mapping
cone non functorial in the homotopy category of chain complexes, which leads to a
great deal of trouble. We will have to overcome this trouble again and again, since
most of our maps are de�ned only up to chain homotopy, depending on choices that
we made.

A fundamental class for a pair (T,EGn × S).
Let G be a �nite group, S a regular oriented p-stratifold of dimension k − 1

together with a free and orientation preserving G action and (T,EGn × S) a regular
oriented p-stratifold of dimension k + dn with boundary together with a free and
orientation preserving G action and i∂ : EGn×S → T the inclusion which is assumed

to be equivariant. Look at the map ρ̄ : Clf∗ (S/G) → Clf∗+dn(T/G) de�ned as the
composition:

Clf∗ (S/G)→ C∗(EGn)⊗ Clf∗ (S)
ρ⊗Id−−−→ C∗+dn(EGn)⊗ Clf∗ (S)

i∂∗−−→ Clf∗+dn(T/G)

as de�ned in proposition 6.45. Denote the mapping cone of this map by Clf∗ (T, S).
For a regular oriented p-stratifold P (with boundary) of dimension l denote by

σP ∈ Clfl (P ) the representatives of its fundamental class. For example we have

σS ∈ Clfk−1(S), σEGn ∈ Cdn(EGn) and σT ∈ Clfk+dn
(T ). De�ne the fundamental

class [̂T, S]
lf

to be the class of (σT/G, σS/G) ∈ Clfk−1(T, S). This is a cycle since:
∂(σT/G, σS/G) = (i∂∗(σEGn×GS)− ∂σT/G, ∂σS/G) = (0, 0).

Let (T,EGn × S) be as above and let (T ′′, T ′) be a null bordism, that is a
regular oriented p-stratifold of dimension k + dn + 1 with boundary, together with
a free and orientation preserving G action, such that its boundary is obtained by
gluing (T,EGn × S) with an element of the form (S′ × EGn, S × EGn) along the
boundary.

Lemma 6.59. The inclusion induces a commutative square:

C∗(S/G) → C∗(S
′/G)

↓ ↓
C∗+dn(T/G) → C∗+dn(T ′′/G)

which induces a map between the mapping cones, mapping [̂T, S]
lf

to zero.

Proof. This follows from the fact that:
∂(−σT ′′/G,−σS′/G) = (∂σT ′′/G − σS′×GEGn ,−∂σS′/G) = (σT/G, σS/G). �

Construction of the natural isomorphism.
Let X be a locally �nite, �nite dimensional G−CW complex where G is a �nite

group. We would like to construct a natural isomorphism Φ̂lf,G : ŜH
lf,G

∗ (X) →
Ĥ lf,G
∗−1 (X). Choose n > dim(X)−k+1. Let [T, S, g, i∂ ] be an element in ŜH

lf,G

k (X)n
and choose a representative (T, S, g, i∂). Recall the diagram we had before:

Clf∗ (S/G)
h∗−−→ C∗(EGn)⊗ Clf∗ (S)

Id⊗g∗−−−−−→ C∗(EGn)⊗ Clf∗ (X)
l+⊗Id−−−−−→ P+

∗ ⊗ C
lf
∗ (X)

↓ ρ⊗ Id ↓ ρ⊗ Id ↓

C∗+dn (EGn)⊗ Clf∗ (S)
Id⊗g∗−−−−−→ C∗+dn (EGn)⊗ Clf∗ (X)

l−⊗Id−−−−−→ P−∗ ⊗ C
lf
∗ (X)
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where all tensor products are over Z[G]. Note that the map l− is de�ned only for
j > −n so the map l− ⊗ Id is de�ned only for j > dim(X)− n, This is the reason
we have to choose n > dim(X)− k+ 1. The map EGn×G S → EGn×GX factors

through T/G thus the map C∗+dn(EGn) ⊗ Clf∗ (S)
Id⊗g∗−−−−→ C∗+dn(EGn) ⊗ Clf∗ (X)

factors through Clf∗+dn(T/G). We get the following commutative diagram:

Clf∗ (S/G)
g∗−→ C∗(EGn)⊗ Clf∗ (X)

l+⊗Id−−−−→ P+
∗ ⊗ C

lf
∗ (X)

ρ̄ ↓ ↓ ρ⊗ Id ↓
C∗+dn(T/G)

g∗−→ C∗+dn(EGn)⊗ Clf∗ (X)
l−⊗Id−−−−→ P−∗ ⊗ C

lf
∗ (X)

This induces a map between the mapping cones. The mapping cone of ρ̄ was denoted

by Clf∗ (T, S), and the mapping cone of the map P+
∗ ⊗ C

lf
∗ (X) → P−∗ ⊗ C

lf
∗ (X) is

naturally isomorphic to P∗⊗Clf∗ (X). We get a map g∗ : Clf∗ (T, S)→ P∗⊗Clf∗ (X).

De�ne Φ̂lf,G([T, S, g, i∂ ]) = g∗([̂T, S]
lf

).

There were some choices involved in the de�nitions of the maps in the above di-
agram. Since maps between mapping cones depend on the actual maps and not only

on the homotopy classes of the maps we will be careful and show that g∗([̂T, S]
lf

)
does not depend on those choices:
1) The choice of the representative (T, S, g, i∂) and the choices of the cellular approx-

imations Clf∗ (S/G)
g∗−→ C∗(EGn)⊗Clf∗ (X) and Clf∗ (T/G)

g∗−→ C∗(EGn)⊗Clf∗ (X):
This follows from lemma 6.59.

2) The choices of the maps C∗(EGn)
l+−→ P+

∗ and C∗+dn(EGn)
l−−→ P−∗ :

We choose those maps once and for all.

3) The choice of the map h∗ : Clf∗ (S/G)→ C∗(EGn)⊗ Clf∗ (S):

Let h1
∗, h

2
∗ : Clf∗ (S/G) → C∗(EGn) ⊗ Clf∗ (S) be two cellular approximations,

then there is a chain homotopy between them, denote it by s. Since s rises the
dimension ρ⊗ Id

(
s(σS/G)

)
= 0. We get two diagrams for i = 1, 2:

Clf∗ (S/G)
Id⊗g∗◦hi∗−−−−−−→ C∗(EGn)⊗ Clf∗ (X)

ρi ↓ ↓ ρ⊗ Id
Clf∗ (T/G)

g∗−→ C∗+dn(EGn)⊗ Clf∗ (X)

We follow both images of [̂T, S]
lf
. They are equal to (g∗(σT/G), Id⊗ g∗ ◦ hi∗(σS/G)).

We show that their di�erence is a boundary:
(0, Id⊗g∗◦(h2

∗−h1
∗)(σS/G)) =

(
0, Id⊗ g∗ ◦

(
s∂(σS/G) + ∂s(σS/G)

))
=
(
0, Id⊗ g∗

(
∂s(σS/G)

))
=
(
0, ∂

(
Id⊗ g∗

(
s(σS/G)

)))
= ∂

(
0, Id⊗ g∗

(
s(σS/G)

))
−
(
ρ⊗ Id ◦ Id⊗ g∗

(
s(σS/G)

)
, 0
)

= ∂
(
0, Id⊗ g∗

(
s(σS/G)

))
−
(
Id⊗ g∗ ◦ ρ⊗ Id

(
s(σS/G)

)
, 0
)

= ∂
(
0, Id⊗ g∗

(
s(σS/G)

))
Which is a boundary.
4) The choice of n:

Let [T ′, S′, g′, i′∂ ] be an element in ŜH
lf,G

k (X)n+1 and [T, S, g, i∂ ] an element

in ŜH
lf,G

k (X)n such that [T, S, g, i∂ ] = i∗([T ′, S′, g′, i′∂ ]). We would like to show

that Φ̂lf,G([T, S, g, i∂ ]) = Φ̂lf,G([T ′, S′, g′, i′∂ ]). We may assume that (T, S, g, i∂) is
given as the transversal intersection of (T ′, S′, g′, i′∂) with EGn ×X (in the sense

mentioned before) so S′ = S. Φ̂lf,G([T ′, S, g′, i′∂ ]) is the class of the image of
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(σT ′/G, σS/G), and Φ̂lf,G([T, S, g, i∂ ]) is the class of the image of (σT/G, σS/G), we
would like to show that their images di�er by a boundary.

The �rst thing we notice is that by choosing the maps l+ : C∗(EGn) → P+
∗

and l+ : C∗(EGn+1)→ P+
∗ compatible with the map C∗(EGn)→ C∗(EGn+1) the

images of σS/G in P+
∗ ⊗ C

lf
∗ (X) will be equal. We can do it by de�ning P+

∗ to

be the colimit of C∗(EGi) and the maps l+ to be the limit maps. Therefore, it is
enough to show the following:

Lemma 6.60. Denote by γ and γ′ the images of σT/G and σT ′/G resp. in

P−∗ ⊗Z[G] C
lf
∗ (X) then γ − γ′ is a boundary.

Proof. In lemma 6.42 we constructed a map:

φ : C∗+dn+1
(EGn+1)⊗Z[G] C

lf
∗ (X)→ C∗+dn(EGn)⊗Z[G] C

lf
∗ (X)

using a representative τ of the Thom class. This map depends on the choice of a
diagonal approximation. By making the right choice this map will be of the form:

φ⊗ Id : C∗+dn+1
(EGn+1)⊗Z[G] C

lf
∗ (X)→ C∗+dn(EGn)⊗Z[G] C

lf
∗ (X)

By pulling back τ and the tubular neighbourhood we can de�ne in a similar way a

map φ : Clf∗+dn+1
(T ′/G) → Clf∗+dn(T/G). Again it depends on a diagonal approx-

imation. It is shown in appendix 1 that φ([T ′/G, ∂T ′/G]) = [T/G, ∂T/G] so the
same is true for the representatives φ(σT ′/G) = σT/G. This is true for every choice
of a diagonal approximation. Look at the following diagram:

Clf∗+dn+1
(T ′/G)

g∗−→ C∗+dn+1
(EGn+1)⊗ Clf∗ (X)

l′⊗Id−−−→ P−∗ ⊗Z[G] C
lf
∗ (X)

φ ↓ ↓ φ⊗ Id ↓ Id
Clf∗+dn(T/G)

g∗−→ C∗+dn(EGn)⊗ Clf∗ (X)
l′⊗Id−−−→ P−∗ ⊗Z[G] C

lf
∗ (X)

Denote by γ′′ the image of σT ′/G under the composition:

Clf∗+dn+1
(T ′/G)→ C∗+dn+1

(EGn+1)⊗ Clf∗ (X)→ C∗+dn (EGn)⊗ Clf∗ (X)→ P−∗ ⊗Z[G] C
lf
∗ (X)

It is enough to show that γ′′ − γ′ and γ − γ′′ are boundaries:
1) γ′ − γ′′ is a boundary - The right square commutes up to a homotopy of the
form H = h⊗ Id, so γ′− γ′′ = H∂g∗(σT ′/G) + ∂Hg∗(σT ′/G). It is enough to show that
H∂g∗(σT ′/G) = 0. But H∂g∗(σT ′/G) = H(σEGn+1

⊗ g∗(σS,G)) = h(σEGn+1
)⊗ g∗(σS,G) = 0

since P−1 vanishes.
2) γ − γ′′ is a boundary - It is enough to show that the di�erence between the

two images of σT ′/G in C∗+dn(EGn) ⊗ Clf∗ (X) is a boundary. We prove that the
left square commutes up to homotopy, denoted by h, and by choosing the diagonal
approximations in a certain way we will get h∂(σT ′/G) = 0 thus:
g∗(σT ′/G)− g∗(σT/G) = h∂(σT ′/G) + ∂h(σT ′/G) = ∂h(σT ′/G).

Denote by CT ′ the mapping cylinder of the map T ′/G
g−→ EGn+1×GX. Since

both T ′/G and EGn+1 ×G X are subcomplexes of CT ′ we can use the homotopy
extension lemma to choose a diagonal approximation for CT ′ which is compatible
with those of T ′/G and EGn+1 ×G X. In a similar way to what we had before we
can construct the following diagram:

Clf∗+dn+1
(T ′/G)

i∗−→ C∗+dn+1
(CT ′)

i∗←− C∗+dn+1
(EGn+1)⊗ Clf∗ (X)

φ ↓ ↓ φ ↓ φ⊗ Id
Clf∗+dn(T/G)

i∗−→ C∗+dn(CT )
i∗←− C∗+dn(EGn)⊗ Clf∗ (X)



6.5. STRATIFOLD TATE HOMOLOGY AND COHOMOLOGY 73

Where CT is the mapping cylinder of the map T/G
g−→ EGn×GX and i denote the

various inclusions into the mapping cylinders. Since the diagonal approximation are
compatible the diagram strictly commutes. Look at the following diagram where π
denotes the projection from CT ′ to EGn+1 ×G X and form CT to EGn ×G X :

Clf∗+dn+1
(T ′/G)

i∗−→ C∗+dn+1
(CT ′)

π∗−→ C∗+dn+1
(EGn+1)⊗ Clf∗ (X)

φ ↓ ↓ φ ↓ φ⊗ Id
Clf∗+dn(T/G)

i∗−→ C∗+dn(CT )
π∗−→ C∗+dn(EGn)⊗ Clf∗ (X)

The composition of the horizontal maps is equal to g∗. The left side commutes as
before. Denote by h the homotopy between i∗ ◦ π∗ and the identity in CT ′, then
for every a ∈ C∗+dn+1(CT ′) we will have:
φ⊗Id◦π∗(a) = π∗◦i∗◦φ⊗Id◦π∗(a) = π∗◦φ◦i∗◦π∗(a) = π∗◦φ(a)+π∗◦φ (h∂a+ ∂ha)
By taking a = i∗(σT ′/G) we get that:

φ⊗ Id(g∗(σT ′/G))− g∗(σT/G) = π∗ ◦ φ
(
h∂i∗(σT ′/G)

)
+ ∂

(
π∗ ◦ φ

(
hi∗(σT ′/G)

))
The fact that π∗ ◦φ

(
h∂i∗(σT ′/G)

)
= 0 follows from the fact that it factors through

Clfdn+k(EGn ×G Kk−1) = {0} where Xk−1 be the k − 1 skeleton of X. The reason
for this is that the computation can be reduced to the mapping cylinder of the map

EGn+1 ×G S
g−→ EGn+1 ×G Xk since the map is cellular.

We conclude that Φ̂lf,G([T, S, g, i∂ ]) = Φ̂lf,G([T ′, S, g′, i′∂ ]). �

Theorem 6.61. The following diagram commutes:

SH lf,G
∗ → DSH lf,G

∗ → ŜH
lf,G

∗ → SH lf,G
∗−1

↓ ↓ ↓ ↓
H lf,G
∗ → DH lf,G

∗ → Ĥ lf,G
∗−1 → H lf,G

∗−1

Proof. This is clear from the construction of the natural transformation. �

Corollary 6.62. Φ̂lf,G : ŜH
lf,G

k → Ĥ lf,G
k−1 is a natural isomorphism.

Proof. Naturality is clear. The fact that it is an isomorphism follows from

the fact that we know that SH lf,G
∗ → H lf,G

∗ and DSH lf,G
∗ → DH lf,G

∗ are natural
isomorphisms and by the 5 lemma. �

An isomorphism between ŜH
∗
G and Ĥ∗G.

Let G be a �xed �nite group andM a smooth oriented manifold of dimensionm

with a smooth and orientation preserving G action. The composition ŜH
k

G(M)→
ŜH

lf,G

m−k(M)→ Ĥ lf,G
m−k−1(M)→ Ĥk

G(M) is an isomorphism of groups for all oriented

manifolds, denote it by Θ̂G. We do not prove that it is natural. Trying to prove it in
a way similar to what we had before runs into some technical problems, nevertheless
it seems like it is possible.

Corollary 6.63. The following diagram commutes:

DSH∗G → SH∗G → ŜH
∗
G → DSH∗+1

G

↓ ↓ ↓ ↓
DH∗G → H∗G → Ĥ∗G → DH∗+1

G

Proof. This follows from the analog diagram for homology. �
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Lemma 6.64. Let M be a smooth oriented manifold of dimension m with a
smooth and orientation preserving action of a �nite group G. Choose n > k and
n′ > m− k + dn, then the following diagram commutes:

DSHk
G(M)

π∗−→ DSHk
G(EGn ×M)

∼=↓ (1) ↓∼=
DSH

k+dn′
G (EGn′ ×M)

π∗−→ DSH
k+dn′
G (EGn′ × EGn ×M)

∼=↓ (2) ↓∼=
Hk+dn′ (EGn′ ×GM)

π∗−→ Hk+dn′ (EGn′ × EGn ×M/G)

where the horizontal maps are induced by the projection.

Proof. (1) The left vertical map is de�ned by [S → M ] 7→ [S → EGn′ ×M ]
where the map S → EGn′ is the classifying map given by the fact that G acts
freely on S which is of dimension ≤ m− k and n′ > m− k. This is an isomorphism
since it has an inverse given by [S → EGn′ ×M ] 7→ [S → M ] (note that the map
S → EGn′ ×M is proper if and only if the map S → M is proper since EGn′

is compact). The right vertical map is given in a similar way, and it is also an
isomorphism.
Take [S →M ] ∈ DSHk

G(M), its image inDSHk
G(EGn×M) is equal to [EGn×S →

EGn ×M ], which is mapped to [EGn × S → EGn′ × EGn ×M ]. On the other

hand, the image of [S →M ] in DSH
k+dn′
G (EGn′ ×M) is equal to [S → EGn′ ×M ]

which is mapped to [EGn × S → EGn′ × EGn ×M ].
(2) commutes since G acts freely on both spaces. �

Corollary 6.65. Let M , EGn and EGn′ be as in lemma 6.64. There are
maps ϕ,ψ such that the following sequence is exact:

H
k+d

n′ (M
′
/G)

π∗−−→ H
k+d

n′ (EGn×GM ′)
ϕ−→ Ĥ

k
G(M)

ψ−→ H
k+d

n′+1
(M
′
/G)

π∗−−→ H
k+d

n′+1
(EGn×GM ′)

where π∗ is induced by the projection map and M ′ = EGn′ ×M .

6.6. Some computations

We give a simple computational example which is rather geometric. It is in
the spirit of [1]. Let Σm be an odd dimensional homology sphere, that is a closed
oriented m dimensional smooth manifold having the same homology as Sm, with
an orientation preserving action of G = Z/n.

Lemma 6.66. There exists b which divides n such that Ĥr
G(Σm) ∼= Z/b for all

r ∈ Z. b = 1 if and only if the action is free.

Proof. G is cyclic so it has a two periodic complete resolution. This im-
plies that Ĥ∗G(Σm) is also two periodic. We have a spectral sequence Epq2 =

Ĥp(G,Hq(Σm)) ⇒ Ĥp+q
G (Σm), the only non vanishing rows are q = 0,m where

we have Ĥ∗(G,Z) which is equal to G if ∗ is even and 0 else. By looking at the

di�erential d : E0,m
2 → Em+1,0

2 we get an exact sequence: 0 → Ĥm
G (Σm) → G

d−→
G→ Ĥm+1

G (Σm)→ 0

Regardless to what the di�erential d is, the order of Ĥm
G (Σm) and Ĥm+1

G (Σm) is
equal and since they are both �nite cyclic groups this means that they are isomor-
phic. �
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Lemma 6.67. Let G be a �nite group and M a closed oriented smooth manifold
of dimension m with an orientation preserving smooth G action. Assume that G
acts transitively on π0(M) then H0

G(M) and the G-invariant part of Hm(M) are
in�nite cyclic and the degrees of the maps DH0

G(M) → H0
G(M) and HG

m(M) →
Hm(M) are equal (the map HG

m(M)→ Hm(M) is equivariant so the image lies in
the G-invariant part).

Proof. Let [S → M ] be an element in DH0
G(M) ∼= HG

m(M), its image in
H0
G(M) is given by [EGn×S → EGn×M ]. The degree of this element in H0

G(M)
is the degree when we forget the G action which is equal to the degree of [S →M ]
as an element in Hm(M) when we forget the action. �

Lemma 6.68. Ĥ−1
G (Σm) ∼= Tor(HG

m(Σm)) and Ĥ0
G(Σm) ∼= Z/deg where deg is

equal to the degree of the map HG
m(M)→ Hm(M).

Proof. We have the long exact sequence:
0→ Ĥ−1

G (Σm)→ DH0
G(Σm)→ H0

G(Σm)→ Ĥ0
G(Σm)→ DH1

G(Σm)

Ĥ∗G(Σm) are torsion groups (by a transfer map argument) and H0
G(Σm) ∼= Z is tor-

sion free so Ĥ−1
G (Σm) ∼= Tor(DH0

G(Σm)) ∼= Tor(HG
m(Σm)) using Poincaré duality.

Since the Ĥ0
G(Σm) is also torsion we can deduce that the free part in HG

m(Σm) is
Z. The second part follows from the fact that DH1

G(Σm) ∼= HG
m−1(Σm) = 0 which

we deduce from the spectral sequence. �

We use this to compute two speci�c examples:

Theorem 6.69. Let G = Z/n act on S1 ⊆ C by x 7→ θkx where θ is the
generator of G considered as a subgroup of S1 and k is some integer which divides

n, then Ĥr
G(S1) ∼= Z/k for all r ∈ Z.

Proof. We compute Tor(HG
1 (S1)) which is isomorphic to Ĥr

G(S1) for all r ∈
Z. The subgroup H = Z/k acts trivially on S1 so HG

1 (S1) ∼= H1(EG ×G S1) ∼=
H1(BH ×G/H S1)

Denote by X = BH ×G/H S1 then we have a �bration BH → X → S1. We have
the Wang sequence:

H1(BH)
Id−m∗−−−−→ H1(BH)→ H1(X)→ H0(BH)

Id−m∗−−−−→ H0(BH)
Where m∗ is the monodromy map. In this case the monodromy is homotopic to
the identity since the action on BH extends to an action of S1 so m∗ = Id and we
get an exact sequence 0 → H1(BH) → H1(X) → H0(BH) → 0 which splits since
H0(BH) ∼= Z. Therefore the map H1(BH) → Tor(H1(X)) is an isomorphism so

Tor(HG
1 (S1)) ∼= Tor(H1(X)) ∼= Z/k and Ĥr

G(S1) ∼= Z/k for all r ∈ Z. �

Theorem 6.70. Let G = Z/n act on S3 ⊆ C2 by (x, y) 7→ (θkx, θly) where θ is

the generator of G considered as a subgroup of S1, then Ĥr
G(S3) ∼= Z/gcd(|G| , k · l)

for all r ∈ Z.

Proof. By corollary 6.68 we have to compute the image of the mapHG
m(S3)→

Hm(S3). We take another copy of S3 with the free action given by (x, y) 7→ (θx, θy).
To avoid confusion we denote this copy by S3

f . S
3
f ×G S3 contains the 3 skeleton

of S∞ ×G S3 so the inclusion induces a surjection H3(S3
f ×G S3) � HG

3 (S3) so it

is enough to compute the image of the composition H3(S3
f ×G S3) � HG

3 (S3) →
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H3(S3). We look at the �bration S3 → S3
f ×G S3 → L3, by the Serre spec-

tral sequence we get that H3(S3
f ×G S3) ∼= Z ⊕ Z where one generator is given

by the fundamental class of the �ber. Another generator is given by a section -
(x, y)→ (x, y, xk, yl) ((xk, yl) is not of norm one but we can normalize it). We use
the following commutative diagram in order to compute the images of the genera-
tors.

S3
f → S3

f × S3 → S∞ × S3 ' S3

↓ ↓ ↓
L3 → S3

f ×G S3 → S∞ ×G S3

The map HG
3 (S3)→ H3(S3) is the transfer map H3(S∞ ×G S3)→ H3(S∞ × S3).

The �rst generator is the image of the fundamental class of S3 which is mapped by
the transfer to |G|·[S3]. To compute the image of the second generator note that the
composition H3(L3) → HG

3 (S3) → H3(S3) is equal to the composition H3(L3) →
H3(S3

f ) → H3(S3). The �rst map is an isomorphism, the second map S3
f → S3 is

given by (x, y) → (xk, yl) which is of degree k · l. We conclude that the image is

generated by |G| and k · l, so deg = gcd(|G| , k · l) and Ĥr
G(S3) ∼= Z/gcd(|G| , k · l) for

all r ∈ Z. If for example k and l are coprime then it is equal to k · l. In this case G
acts freely outside of S1×{0} and {0}×S1 so the inclusion of the two circles induces

an isomorphism Z/k · l ∼= Ĥr
G(S3) → Ĥr

G(S1 × {0}) ⊕ Ĥr
G({0} × S1) ∼= Z/k ⊕ Z/l

which �ts with the previous example. �

Remark 6.71. From the proof one sees that in the general case, in order
to compute the Tate groups Ĥ∗G(Σm) it is enough to construct a section Lm →
Sm ×G Σm and to follow the image of the fundamental class of Lm.



CHAPTER 7

On the Product in Negative Tate Cohomology for
Finite Groups

Abstract. Our aim in this chapter is to give a geometric interpretation of
the cup product in Tate cohomology in negative degrees. By duality it corre-
sponds to a product in ordinary homology of BG - Hn(BG,Z)⊗Hm(BG,Z)→
Hn+m+1(BG,Z) for n,m > 0. We �rst interpret this product as join of cy-
cles, which explains the shift in dimensions. Our motivation came from the
product de�ned by Kreck using stratifold backwards cohomology for compact
Lie groups. We then prove that for �nite groups the cup product in negative
Tate cohomology and the Kreck product coincide.

7.1. Another description of the cup product in Tate cohomology

In chapter 5 we gave a de�nition of Tate (co)homology using complete resolu-
tion. In this chapter we give another de�nition of Tate cohomology and the cup
product which appears in [5]. To do so we introduce the language taken from the
stable module category. We will not go into details, for a formal treatment the
reader is referred to appendix 2.

Let M,N be two R-modules, we denote by HomR(M,N) the quotient of
HomR(M,N) by the maps that factor through some projective module.

Definition 7.1. Given an R-moduleM , denote by ΩkM the following module:

take any partial projective resolution of M , Pk−1
dk−1−−−→ Pk−2...P0 → M then

ΩkM = ker(Pk−1
dk−1−−−→ Pk−2). This module clearly depends on the choice of the

resolution. Nevertheless, as proved in appendix 2, the modules HomR(ΩkM,ΩlN)
do not depend on the choice of resolutions i.e., they are well de�ned up to canonical
isomorphisms. If we would like to stress the dependency in P we would use the
notation ΩkPM .

Note that there is a natural map Ψ : HomR(M,N)→ HomR(ΩM,ΩN) (ΩM = Ω1M).

Definition 7.2. We de�ne the Tate cohomology of G with coe�cients in a

Z[G]-module M to be Ĥn(G,M) = Êxt
n

Z[G](Z,M) = lim−→
m

HomZ[G](Ω
n+mZ,ΩmM)

(if n < 0 we start this sequence from m = −n).
In our case where G is �nite we have the following proposition which is proved in
appendix 2:

Proposition 7.3. If G is a �nite group and M is a Z[G]-module which is pro-
jective as a Z-module then the homomorphism Ψ : HomZ[G](M,N)→ HomZ[G](ΩM,ΩN)

is an isomorphism.
Therefore, since Z and ΩkZ are projective as Z-modules this limit equals to

Ĥn(G,M) = HomZ[G](Ω
nZ,M) if n ≥ 0 or Ĥn(G,M) = HomZ[G](Z,Ω−nM) if

n < 0. Our main interest will be the second case, especially when M = Z.

77
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Example 7.4. For n = −1 we have Ĥ−1(G,Z) = HomZ[G](Z,Ω1Z). Take

the following exact sequence 0 → I → Z[G]
f−→ Z → 0 where the map f is the

augmentation map and I is the augmentation ideal. I = Ω1Z thus (Ω1Z)G = {0}
and therefore Ĥ−1(G,Z) = {0}.

Let G be a �nite group. We construct a natural isomorphism Ĥ−n−1(G,Z)→
Hn(G,Z) for n ≥ 1. Before that we prove a small lemma.

Lemma 7.5. Let G be a �nite group and P a projective Z[G]-module, then for
every element x ∈ P we have:
1) x ∈ PG ⇔ ∃y ∈ P, x = Ny
2) y ⊗ 1 = y′ ⊗ 1 ∈ P ⊗Z[G] Z⇔ Ny = Ny′

Where PG are the invariants of P under the action of G, N is the norm homomor-
phism de�ned by multiplication by the element N =

∑
g∈G

g ∈ Z[G].

Proof. For every Z[G]-module M we showed before the following exact se-

quence 0 → Ĥ−1(G,M) → H0(G,M) → H0(G,M) → Ĥ0(G,M) → 0, where the
map H0(G,M) → H0(G,M) is given by N : M ⊗ Z → MG (N(x ⊗ k) = kNx)

([7] VI,4). If M is projective then Ĥm(G,M) = 0 for all m ∈ Z, hence N is an
isomorphism. We conclude:

1) For a projective module P the map N : P ⊗ Z→ PG is surjective and thus
x ∈ PG ⇔ ∃y ∈ P, x = Ny.

2) For a projective module P the map N : P ⊗ Z→ PG is injective and thus for
every y ∈ P we have y ⊗ 1 = y′ ⊗ 1 ⇔ Ny = Ny′.

�

Proposition 7.6. Let G be a �nite group then there is a natural isomorphism

between Ĥ−n−1(G,Z) and Hn(G,Z) for n ≥ 1.

Proof. Let G be a �nite group. We de�ne a map Φ : Ĥ−n−1(G,Z) →
Hn(G,Z) the following way. We take a projective resolution of Z · · · → Pn

dn−→
Pn−1...→ P0 → Z, taking the tensor of it with Z gives us the chain complex for the
homology ofG which we denote by C∗(G). We de�ne a map fromHomZ[G](Z,Ωn+1Z)

to Cn(G) the following way: Given a homomorphism f : Z → Ωn+1Z, f(1) = x is
an invariant element in Pn. By the lemma, since Pn is projective and x is invariant
there is some y ∈ Pn such that x = Ny. We de�ne Φ(f) = y ⊗ 1. This doesn't
depend on the choice of y since Ny = Ny′ ⇔ y ⊗ 1 = y′ ⊗ 1 by the lemma. We
know that Ndn(y) = dn(Ny) = dn(x) = 0 and by the lemma this implies that
dn(y)⊗ 1 = 0 (Pn−1 is projective and here we use the fact that n ≥ 1). We deduce
that y ⊗ 1 ∈ Zn(G). The map described now HomZ[G](Z,Ωn+1Z) → Zn(G) is
surjective since given an element y⊗1 ∈ Cn(G) such that dn(y)⊗1 = 0 so as before
this implies that Ndn(y) = 0, so we de�ne f(k) = kNy, this is well de�ned since
Ny is invariant and in the kernel of dn.

We now have a surjective homomorphism Φ : HomZ[G](Z,Ωn+1Z)→ Hn(G,Z).
If f ∈ ker(Φ) then there exist an element s ∈ Pn+1 such that Φ(f) = y ⊗ 1 =
dn+1(s)⊗1 then the map f : Z→ Ωn+1Z factors through Pn+1, which is projective,
by 1 7→ Ns. On the other hand if f factors through a projective module, w.l.o.g.
Pn+1, then Ny = f(1) = dn+1(Ns) (every invariant element in Pn+1 is of the
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form Ns by the lemma). This implies that Ndn+1(s) = Ny ⇔ dn+1(s ⊗ 1) =
dn+1(s)⊗ 1 = y ⊗ 1.

We conclude that the induced map Φ : Ĥ−n−1(G,Z) = HomZ[G](Z,Ω
n+1Z) →

Hn(G,Z) is an isomorphism for all n ≥ 1. �

The product structure.
The cup product in Tate cohomology Ĥ−n(G,Z)⊗Ĥ−m(G,Z)→ Ĥ−n−m(G,Z)

is given by composition (this is also called the Yoneda composition product): Given
[f ] ∈ Ĥ−n(G,Z) = HomZ[G](Z,Ω

nZ), [g] ∈ Ĥ−m(G,Z) = HomZ[G](Z,Ω
mZ) ∼= HomZ[G](Ω

nZ,Ωn+mZ)

we compose them to get a map [g ◦ f ] ∈ HomZ[G](Z,Ωn+mZ). Since for n,m ≥ 2

we have Ĥ−n(G,Z) ∼= Hn−1(G,Z), Ĥ−m(G,Z) ∼= Hm−1(G,Z) we have a product
Hn−1(G,Z) ⊗ Hm−1(G,Z) → Hn+m−1(G,Z). Our main interest will be to show
that this product is the same product as the one de�ned by Kreck. What we have
to understand is the isomorphism HomZ[G](Z,ΩmZ) ∼= HomZ[G](Ω

nZ,Ωn+mZ). In
order to understand it we will use the following construction:

The join of augmented chain complexes.
Let G be a �nite group and let P and Q be the following augmented chain

complexes over Z[G] - ... → P2 → P1 → P0 → Z and ... → Q2 → Q1 → Q0 → Z.
We de�ne the join of those two chain complexes to be P ∗ Q = (ΣP ) ⊗Z Q that
is the suspension of the tensor product over Z (with a diagonal G action). To be
more speci�c (P ∗Q)n = ⊕

0≤k≤n+1
Pk−1⊗ZQn−k. P ∗Q is an augmented Z[G] chain

complex in a natural way.

Proposition 7.7. If both P and Q are projective and acyclic augmented Z[G]
chain complexes then P ∗Q is projective and acyclic augmented Z[G] chain complex.

Proof. Z[G] is a free Z-module thus every projective Z[G]-module is also a
projective Z-module, so both P and Q are projective acyclic chain complexes over
Z so the same is true for their tensor product, by the Künneth formula (here
we use the fact that the modules are projective over Z and that Z is a PID).
(P ∗Q)n is projective over Z[G] for n ≥ 0 since each of the modules Pk−1 ⊗ZQn−k
is projective. �

Lemma 7.8. Let P and Q be two resolutions of Z over Z[G], and let s ∈ Qn−1

be an element, n > 1. De�ne a map s∗ : Pk−1 → (P ∗ Q)k+n−1 by s∗(x) = x ⊗ s
called the join with s. Then we have:
1) s∗ is a group homomorphism.
2) If s is G-invariant then the map s∗ is a homomorphism over Z[G].
3) If s ∈ ker(Qn−1 → Qn−2) then s∗ commutes with the boundary so it will be a
chain map of degree n.

Proof. 1) Follows from the properties of the tensor product.
2) If s is G-invariant then for every g ∈ G we have:
g(s∗(x)) = g(x⊗ s) = g(x)⊗ g(s) = g(x)⊗ s = s∗(g(x))
3) If s ∈ ker(Qn−1 → Qn−2) then:
∂(s∗(x)) = ∂(x⊗ s) = ∂(x)⊗ s+ (−1)|x|+1x⊗ ∂s = ∂(x)⊗ s = s∗(∂(x)) �

This implies the following theorem:

Theorem 7.9. Let n,m > 0, the product Ĥ−n(G,Z)⊗Ĥ−m(G,Z)→ Ĥ−n−m(G,Z)
is given by [f ] · [g] = [f ∗ g] where (f ∗ g)(k) = k · f(1)⊗ g(1) ∈ Ωm+n

P∗P Z and k ∈ Z.
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Proof. Take a projective resolution P for Z over Z[G]. Let [f ] ∈ Ĥ−n(G,Z) =

HomZ[G](Z,ΩnZ), [g] ∈ Ĥ−m(G,Z) = HomZ[G](Z,ΩmZ) ∼= HomZ[G](Ω
nZ,Ωn+mZ).

Choose representatives f, g and de�ne a degree m map P → P ∗P by x 7→ x⊗g(1).
Since g(1) is invariant and in the kernel this map is a chain map of Z[G] chain
complexes of degree m. This gives us a concrete construction of the isomor-
phism HomZ[G](Z,ΩmZ) ∼= HomZ[G](Ω

nZ,Ωn+mZ). The composition is therefore

g ◦ f(1) = f(1) ∗ g(1). �

7.2. An interpretation of the product by joins of cycles

We now consider resolutions which come from singular chains of spaces. Let G
be a �nite group, recall that a contractible G− CW complex with a free G action
is denoted by EG and the quotient space EG/G is called the classifying space of
G principal bundles and is denoted by BG.

We consider now the augmented singular chain of EG denoted by C∗(EG). We
noted before that C∗(EG) is projective (n ≥ 0) and acyclic.

As we saw before every element of Hn(G,Z) can be considered as an invariant
cycle in Cn(EG) (modulo invariant boundary), we will show that the product can
be considered as the join of the two such cycles, which is naturally an invariant
cycle in C∗(EG ∗ EG) where EG ∗ EG is the join of two copies of EG.

Proposition 7.10. The space EG ∗ EG is contractible, has a natural free G
action so its augmented singular chain complex is a projective resolution of Z over
Z[G].

Proof. EG ∗EG is contractible since the join of contractible spaces is a con-
tractible space. The action of G on EG ∗ EG is de�ned by g(x, y, t) = (gx, gy, t).
This action is free since it is free on both copies of EG. �

We now associate the join of chain complexes to the join of spaces.

Proposition 7.11. Let A and B be two spaces and let C∗(A) and C∗(B) be
their augmented (!) singular chain complexes, then there is a natural chain map
h : C∗(A) ∗ C∗(B)→ C∗(A ∗ B). If G acts on A and B then it also acts on A ∗ B
and the chain complexes are complexes over Z[G] and h is a map of Z[G] chain
complexes

Proof. We �rst note that for n,m ≥ 0, for every two singular simplices σ ∈
Cn(A) and τ ∈ Cm(B) there is a canonical singular chain σ∗τ ∈ Cn+m+1(A∗B) and
this de�nition can be extended in a bilinear way to chains. De�ne h the following
way:
Given an element s⊗t ∈ Cn(A)⊗Cm(B), if n,m ≥ 0 then h(s⊗t) = s∗t, else n = −1
(orm = −1) then s is an integer, denote it by k then h(s⊗t) = h(k⊗t) = k ·t where
t is the chain induced by the inclusion of B in A ∗B (and similarly for m = −1).

We have to show that h is a chain map. For two simplices of positive (!)
dimension we have the formula ∂(σ ∗ τ) = ∂(σ) ∗ τ + (−1)dim(σ)+1σ ∗ ∂(τ). The
formula extends to chains, so we have:
∂h(s⊗t) = ∂(s∗t) = ∂(s)∗t+(−1)|s|+1s∗∂(t) = h(∂(s)⊗t+(−1)|s|+1s⊗∂(t)) = h(∂(s⊗t)).
For σ, a simplex of dimension 0 (a point), σ ∗ τ is the cone over τ and its boundary
is given by ∂(σ∗τ) = τ+(−1)dim(σ)+1σ∗∂(τ). Since the boundary map C0(A)→ Z
is the augmentation map we see indeed that also in this case h commutes with the
boundary (with respect to the way we have de�ned h(k ⊗ t)).
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The boundary formula is not (!) true when one of the simplices is zero dimen-
sional due to the non symmetric way we de�ne the faces of a zero simplex (the n
simplex has n + 1 faces while the zero simplex has no faces). If we wanted to be
consistent with the boundaries of the higher simplices we should have used only
augmented chain complexes. For a detailed discussion in this direction see [12].

When there is a G action on both spaces then clearly all the complexes are
complexes over Z[G]. h is a Z[G] chain map since for every g ∈ G we have h(g(s⊗
t)) = h(gs⊗ gt)) = gs ∗ gt = g(s ∗ t) = g(h(s⊗ t)). �

Theorem 7.12. The cup product in negative Tate cohomology gives a prod-
uct Hn(G,Z) ⊗ Hm(G,Z) → Hn+m+1(G,Z) (n,m > 0). Each homology class in
Hn(G,Z) is represented by an invariant cycle in EG. The product of two classes
is given by the join of those cycles, which is an invariant cycle in EG ∗ EG.

Proof. We already saw that the product can be interpreted by the join of
resolutions. By the proposition above there is a degree zero chain map C∗(EG) ∗
C∗(EG) → C∗(EG ∗ EG). The image of f(1) ⊗ g(1) under this map is the join
of f(1) with g(1). This gives a more concrete model where the cycles are actual
invariant singular cycles of the space EG ∗ EG. �

7.3. Comparing Kreck's product and the cup product

Let G be a compact Lie group. The cup product in DSH∗G(pt) is given, up to
sign, by the Cartesian product with the diagonal action - [S, ρ]⊗[S′, ρ′]→ [S×S′,∆]
(here, instead of writing the map to pt we denote the G action). When n,m < 0
this product vanishes since it is the boundary of [CS×S′, ρ̃] where ρ̃ is the obvious
extension of the action ∆, but it is also the boundary of [S × CS′, ρ̂] (up to sign)
where ρ̂ is the obvious extension of the action ∆.

The Kreck product, denoted by ∗, is a secondary product de�ned by gluing both
along the boundary [S, ρ]⊗[S′, ρ′]→ [S∗S′, ρ∗ρ′] (note that after the gluing what we
get is the join of the two p-stratifolds). This product DSHn

G(pt) ⊗DSHm
G (pt) →

DSHn+m−1
G (pt) does not vanish in general, for example when G cyclic or more

generally for every group acting freely and orientation preserving on some sphere
like S1 and S3. When G = Z/2 thenDSH∗G(pt) is zero in positive dimensions and in
even dimensions, in�nite cyclic when ∗ = 0 and G for negative odds. The generators
in negative odd dimensions can be taken to be odd dimensional spheres with the
antipodal action. In this case the product of generators is again a generator. A
similar construction will hold for S1 and S3.

By Poincaré duality this gives a product SHG
n (pt)⊗SHG

m(pt)→ SHG
n+m+1(pt).

For a �nite group G we constructed an isomorphism Ψ′ : SHG
n (pt)→ Hn(G,Z), we

conclude that there is an isomorphism Ψ : SHG
n (pt)→ Ĥ−n−1(G,Z) (for n > 0).

It it easy to show that this isomorphism is given the following way: Take some
model for EG. Its singular chain complex C∗(EG) is a projective resolution for
Z over Z[G]. Let [(S, ρ)] be an element in SHG

n (pt), then there is an equivariant
map f : S → EG called the classifying map, which is unique up to G homotopy. f

induces a Z[G] chain map between the singular chain complexes - C∗(S)
f∗−→ C∗(EG).

S has a fundamental class, we take some representative of it which is G invariant
(we can do that by lifting a fundamental class of S/G) and denote it by s. We
get an element f∗(s) ∈ Cn(EG) which is both invariant and a cycle thus we get
an element in HomZ[G](Z,ΩnZ). As before di�erent choices of S, s and f will give
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elements that di�er by a map which factors through a projective (the fundamental
class of the bordism is mapped into Cn+1(EG) which is projective), hence gives

a homomorphism SHG
n (pt) → HomZ[G](Z,ΩnZ) = Ĥ−n−1(G,Z) which is exactly

the isomorphism explained above.
Given two such p-stratifolds S and S′, the join of their fundamental classes

is a fundamental class of S ∗ S′. We give S ∗ S′ this orientation thus the map
SHG
∗ (pt) → Ĥ−∗−1(G,Z) commutes with the product. We have thus proved the

following:

Theorem 7.13. Let G be a �nite group, there is a natural isomorphism ϕ :
SHG
∗ (pt)→ Ĥ−∗−1(G,Z) for ∗ > 0 and ϕ(α∗β) = ϕ(α)∪ϕ(β) for all α ∈ SHG

n (pt)
and β ∈ SHG

m(pt) where k, l > 0.

In other words, the product in group homology de�ned by Kreck using stratifold
homology and the join is the same product as the cup product in negative Tate
cohomology.



Appendix 1 - Homology, orientation and sign
conventions

A great deal of this paper is dedicated to the construction of natural transfor-
mations. In order to make those natural transformations as simple as possible and
to avoid getting an extra sign we have to choose the right set of de�nitions and this
is our goal in this appendix. Text books in algebraic topology like [31, 10, 17, 29]
use di�erent sign conventions. For example for the cup and cap products and for
the boundary operator for cochains. Therefore, the signs in the formulas change
from one book to the other, depending on the way the various products are de�ned.

We follow the de�nitions of [10] and [29] since they are well suited for working
on chain level (those de�nitions also agree with the ones appear in [7]). The de�-
nitions regarding orientation of vector spaces and vector bundles are the ones used
in [29]. Note that the de�nitions for the cap product agree with the one as in [17]
after passing to homology, but the cup product di�ers by a sign.

We also give proofs to certain propositions which are related to those de�nitions,
mostly the ones which use the Thom isomorphism.

Homology cross product.
Let ∆n denote the standard n simplex we de�ne two maps λp : ∆p → ∆n and

ρq : ∆q → ∆n by λp(t0, ...tp) = (t0, ...tp, 0...0) and ρq(t0, ...tq) = (0, ...0, t0, ...tp).
Let X and Y be two topological spaces, the Alexander Whitney map A : S∗(X ×
Y ) → S∗(X) ⊗ S∗(Y ) is given by mapping the generators (σX , σY ) ∈ Sn(X × Y )
to A(σX , σY ) = ΣσX ◦ λk ⊗ σY ◦ ρn−k. This map is a chain equivalence with an
inverse called the Eilenberg-Zilber map EZ : S∗(X) ⊗ S∗(Y ) → S∗(X × Y ). We
de�ne the cross product in homology to be the composition H∗(X) ⊗ H∗(Y ) →
H∗(S∗(X)⊗ S∗(Y ))

EZ−−→ H∗(X × Y ).

Orientation of vector spaces and manifolds.
Let V be an n dimensional real vector space. An orientation of V is a choice

of a generator τV ∈ Hn(V, V0) where V0 = V \ {0}. Equivalently, we can choose a
generator τV ∈ Hn(V, V0) and we can switch from one to the other by requiring
that

〈
τV , τV

〉
= 1. Denote by o1 ∈ H1(R,R0) the class of σ : ∆1 → R given by

σ(t0, t1) = t1− t0, then ∂o1(x) = {1}− {−1} ∈ H0(R0). Denote on = o1× o1× ..o1

which is a generator of Hn(Rn,Rn0 ). We call it the standard orientation of Rn. By
associativity om × on = om+n. We denote by on ∈ Hn(Rn,Rn0 ) the unique element
with the property 〈on, on〉 = 1.

Let V be an n dimensional real vector space with an ordered base (v1, ...vn).
Denote by f : Rn → V the map f(x1, ...xn) = Σxi ·vi then we give V the orientation
f∗(on). If V has 2 bases that di�er by a linear map with a positive determinant then
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both maps will be homotopic as maps of pairs since GLn(R)+ is path connected so
this procedure will give V the same orientation.

Let ξ : E → B be an n-dimensional vector bundle (whenever we say a bundle
we mean a locally trivial bundle). We denote by E0 the set of non zero elements
in E, and for each b ∈ B we denote V b = ξ−1(b) so V b0 = V b ∩ E0. An orientation
of ξ is a choice of orientations τb to each V b (or τ b) such that each b ∈ B has a
neighbourhood U ⊆ B such that ξ|U is a trivial bundle and there is an orientation
preserving bundle map (that is it preserves orientation in every �ber):

ξ−1(U) → U × Rn
↓ ↓
U

Id−→ U

where we take the standard orientation of Rn.
Let M be a smooth manifold of dimension m. A local orientation of M at

x ∈M is a choice of a generator τx ∈ Hm(M,M \ {x}) and an orientation of M is
local orientation of M at each point such that every x ∈ M has a neighbourhood
U and an element τU ∈ Hm(M,M \ U) such that for every y ∈ U , τU is mapped
to τy. We have the following:

Theorem 7.14. ([29] A.8) Let M be a smooth oriented manifold of dimension
m and K ⊆M a compact subset then there is a unique class τK ∈ Hm(M,M \K)
that for every x ∈ K is mapped to τx. If M is compact we can take K = M then
τ ∈ Hm(M) is called the fundamental class of M .

For a smooth manifold M there is a way of identifying the tangent space over
a point x ∈ M with a neighbourhood of x. This gives a way to associate to an
orientation of the tangent bundle an orientation of M and vice versa.

Proposition 7.15. Let M and N be two closed smooth manifolds with an ori-
entation of their tangent bundle and denote the corresponding fundamental classes
by [M ] and [N ]. We give the tangent bundle of M ×N the product orientation and
denote the corresponding fundamental class by [M×N ], then [M ]× [N ] = [M×N ].
The same holds if one of the manifolds has a boundary and we take the fundamental
class relative its boundary.

Proof. Given a point (x, y) ∈M×N , we look at the composition Hm+n(M×
N) → Hm+n(M × N,M × N \ {(x, y)}) → Hm+n(Rm+n,Rm+n \ {(0, 0)}) Where
the latter map is induced by excision. The image of [M ×N ] is om+n by the way
we oriented M ×N . By the naturality of the cross product the image of [M ]× [N ]
is om× on so the proposition follows from the fact that om× on = om+n. The same
proof holds in case one of the manifolds has a boundary. �

LetM be a closed oriented smooth manifold with boundary ∂M then we orient
∂M in a way that the inclusion of the collar (0, 1) × ∂M is orientation reversing
(outward normal �rst, this is the same convention as in [29]). Then we have:

Proposition 7.16. 1) ∂(M × N) = (∂M) × N is an orientation preserving
di�eomorphism.
2) Orient I = [0, 1] by the induced orientation from R then ∂[I, ∂I] = {1} − {0}.
3) ∂[M,∂M ] = [∂M ]
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Proof. 1) Clear by the de�nition of the orientation.
2) Follows from the de�nition of o1.
3) We use the following notation - C(∂M) is the cone over ∂M , that is I×∂M/ {0}×
∂M . The subspace {1} × ∂M is denoted by ∂C and the cone point is denoted by
∗. The cylinder I × ∂M is denoted by Σ(∂M) and its boundary is denoted by ∂Σ.
The collar c : [0, 1] × ∂M → M is orientation reversing so we de�ne the map
c′ : [0, 1] × ∂M → M by c′(t, x) = c(1 − t, x) then c′ is orientation preserving. It
induces a map (M,∂M) → (C(∂M), ∂C ∪ ∗) which is orientation preserving and
maps ∂M to ∂C. c′ gives us the following maps of pairs:
(M,∂M)→ (C(∂M), ∂C ∪ ∗)← (Σ(∂M), ∂Σ)
We get the following commutative diagram in homology:

Hm(M,∂M) → Hm(C(∂M), ∂C ∪ ∗)
∼=←− Hm(Σ(∂M), ∂Σ)

↓ ↓ ↓
Hm−1(∂M) → Hm−1(∂C ∪ ∗) ← Hm−1(∂Σ)

In the upper row [M,∂M ] is mapped [Σ(∂M), ∂Σ], since c′ is orientation preserving.
In the lower row [∂M ] is mapped to [{1}×∂M ] in Hm−1(∂C∪∗) and in Hm−1(∂Σ).
Thus the result follows from the fact that:
∂[Σ∂M, ∂Σ] = ∂[I × ∂M, ∂I × ∂M ] = ∂[I, ∂I]× [∂M ] = [{1}× ∂M ]− [{0}× [∂M ].
We conclude that ∂[M,∂M ] = [∂M ]. �

Thom isomorphism.
For an oriented vector bundle we have the following ([29] 9.1):

Theorem 7.17. (Thom isomorphism) Let ξ : E → B be an n dimensional
oriented vector bundle, then there exists a unique class τ ∈ Hn(E,E0) such that
τ |(V b, V b0 ) = τ b for every b ∈ B. τ is called the Thom class of ξ. The map Hk(E)→
Hn+k(E,E0) de�ned by ϕ 7→ ϕ ∪ τ is an isomorphism for all k. Precomposing it
with the isomorphism ξ∗ : Hk(B)→ Hk(E) gives us an isomorphism τ ξ : Hk(B)→
Hn+k(E,E0). τ ξ is called the Thom isomorphism.

There is also a homological version to this theorem ([29] 10.7):

Theorem 7.18. Let ξ : E → B be an n dimensional oriented vector bundle.
The map Hn+k(E,E0)→ Hk(E) de�ned by α 7→ τ ∩α is an isomorphism for all k.
Composing it with the isomorphism ξ∗ : Hk(E)→ Hk(B) gives us an isomorphism
τξ : Hn+k(E,E0)→ Hk(B). τξ is called the Thom isomorphism.

Closed submanifolds.
LetM be a smooth oriented manifold of dimension m and N a smooth oriented

submanifold of dimension n which is closed. N has a tubular neighbourhood U ⊆M
with projection p : U → N ([29] 11.1). We orient the normal bundle of N in a way
that the map from TN ⊕ νN to TM |N is orientation preserving where T denotes the
tangent bundle and ν the normal bundle. Denote by φ the composition:

Hm+k(M)→ Hm+k(M,M \N)
excision−−−−−→ Hm+k(U,U \N)

τp−→ Hn+k(N)

Proposition 7.19. Let M be a closed oriented smooth manifold of dimension
m and N a smooth oriented submanifold of dimension n which is closed (and hence

compact) then φ([M ]) = (−1)n(m−n)[N ].



APPENDIX 1 - HOMOLOGY, ORIENTATION AND SIGN CONVENTIONS 86

Proof. Choose an orientation preserving local coordinates f : Rn → N and
pullback the bundle p : U → N :

Rm f ′−→ U
π ↓ ↓ p
Rn f−→ N

Where π is the projection on the �rst n coordinates. We orient this bundle by
identifying the �bers with Rm−n, we can choose f ′ to be orientation preserving
(otherwise we take −f ′). This implies that τ ′ = f ′∗(τ) is the Thom class of π :
Rm → Rn where τ is the Thom class of p : U → N . For each x ∈ N we have the
following diagram:

Hm(U,U \N) → Hm(U,U \ {x})
∼=←− Hm(Rm,Rm \ {0})

τ∩ ↓ τ∩ ↓ τ ′∩ ↓
Hn(U) → Hn(U,U \ V x)

∼=←− Hn(Rm,Rm \ {0} × Rm−n)

The vertical maps are de�ned using the cap product with the Thom class:

• Hm(U,U \N)⊗Hm−n(U,U \N)→ Hn(U)
• Hm(U,U \ {x})⊗Hm−n(U,U \N)→ Hn(U \ V x)
• Hm(Rm,Rm \ {0})⊗Hm−n(Rm,Rm \ Rn × {0})→ Hn(Rm,Rm \ {0} × Rm−n)

The diagram commutes by the naturality of the cap product and the fact that
τ ′ = f ′∗(τ). Composition with the maps induced by p : U → N and π : Rm → Rn
gives the following commutative diagram:

Hm(U,U \N) → Hm(U,U \ {x})
∼=←− Hm(Rm,Rm \ {0})

τp ↓ τp ↓ τπ ↓
Hn(N) → Hn(N,N \ {x})

∼=←− Hn(Rn,Rn \ {0})

The image of [N ] is on since f is orientation preserving.
f ′ is orientation preserving as a bundle map so by our orientation convention for
normal bundle we deduce that f ′ is also orientation preserving as a map between
manifolds. Thus the image [U,U \N ] is om.
By commutativity of the diagram it is enough to show that τπ(om) = (−1)n(m−n)on.

Denote by π′ : Rm → Rm−n the projection on the last m−n coordinates, then
π′∗(om−n) = 1n× om−n is the Thom class of the bundle π : Rm → Rn since clearly
its restriction to each �ber is the standard generator. Thus we get:
τπ(om) = π∗(τ

′ ∩ om) = π∗(π
′∗(om−n) ∩ om) = π∗(1

n × om−n ∩ on × om−n)) =
= (−1)n(m−n)π∗ ((1n ∩ on)× (om−n ∩ om−n)) = (−1)n(m−n)on �

A similar proof can be applied in locally �nite homology. We just have to take
care that all pairs are of a space and a closed subspace. We can do this, for example,
by using (M,M \ U) instead of using (M,M \N):

Proposition 7.20. Let M be a smooth oriented manifold of dimension m and
N a smooth oriented submanifold of dimension n which is closed then φ([M ]lf ) =
(−1)n(m−n)[N ]lf .

We conclude the following:
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Proposition 7.21. Let M be a smooth oriented manifold of dimension m
and N a smooth oriented submanifold of dimension n which is closed and denote

f : N → M the embedding. Let f! : H lf
m−k(M) → H lf

n−k(N) be the umkehr map

PDN ◦ f∗ ◦ PD−1
M and φ : H lf

m−k(M) → H lf
n−k(N) the map de�ned above then

f! = (−1)(n+k)(m−n)φ.

Proof. We have to show that the following diagram commutes:

Hk(M)
f∗−→ Hk(N)

PDM ↓ PDN ↓

H lf
m−k(M)

(−1)(n+k)(m−n)φ−−−−−−−−−−−→ H lf
n−k(N)

Given ϕ ∈ Hk(M) we follow its image. If we �rst go down and then right we get:
(−1)(n+k)(m−n)φ(ϕ ∩ [M ]lf ) = (−1)(n+k)(m−n)π∗

(
τ ∩

(
ϕ ∩ [U, ∂U ]lf

))
= (−1)n(m−n)π∗

(
ϕ ∩

(
τ ∩ [U, ∂U ]lf

))
= π∗

(
ϕ ∩

(
f∗[N ]lf

))
= π∗ ◦ f∗

(
f∗(ϕ) ∩ [N ]lf

)
= f∗(ϕ) ∩ [N ]lf . �

Consider the following situation: Let M be an oriented manifold of dimension
M and N a closed submanifold of dimension n with a tubular neighbourhood U .
Let g : S →M be a proper map where S is a p-stratifold and assume that g and f
are transversal, where f : N ↪→M is the inclusion. Consider the pullback diagram:

S′ ↪→ U ′ ↪→ S
↓ ↓ ↓ g
N ↪→ U ↪→ M

Since f and g are transversal S′ is a p-stratifold. The pullback of the tubular
neighbourhood U of N which we denote by U ′ is a tubular neighbourhood of S′ in
S in the sense that there is a vector bundle V ′ → S′ and an isomorphism V ′ → U ′

that maps the zero section isomorphically onto S′.
In order to construct the map φ we only used the fact that N is a closed subset

ofM and it has a tubular neighbourhood in this sense. Therefore, we can construct
a map φ : Hm+k(S)→ Hn+k(S′) in a similar way to what we did for M and N . A
similar proof will show the following:

Proposition 7.22. Let S be a compact oriented regular p-stratifold of dimen-
sion l and S′ a compact regular oriented p-stratifold of dimension k with an in-
clusion S′ ↪→ S and a tubular neighbourhood as explained above then φ([S]) =
(−1)k(l−k)[S′].

And a version in locally �nite homology:

Proposition 7.23. Let S be a regular oriented p-stratifold of dimension l and
S′ a regular oriented p-stratifold of dimension k with an inclusion S′ ↪→ S and a
tubular neighbourhood as explained above then φ([S]lf ) = (−1)k(l−k)[S′]lf .

Similarly to what we had before, assume that S is a regular oriented p-stratifold
of dimension l with boundary mapped toM as before and N is a closed submanifold
which is transversal both to S and to ∂S. Denote by (S′, ∂S′) the intersection of

(S, ∂S) and N . By the previous propositions we can de�ne a map φ : H lf
l (S, ∂S)

φ−→
H lf
l+n−m(S′, ∂S′) then we will have:

Proposition 7.24. φ([S, ∂S]lf ) = (−1)(l+n−m)(m−n)[S′, ∂S′]lf
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Proof. Denote by DS the double of S, that is S ∪∂ −S. The map S → M
factors through DS. We know that the assertion is true for DS an therefore is is
true for the relative case so we prove it by excision:

H lf
l (S, ∂S)

∼=−→ H lf
l (DS, S−)

φ ↓ φ ↓
H lf
l+n−m(S′, ∂S′)

∼=−→ H lf
l+n−m(DS′, S′−)

�



Appendix 2 - The stable module category

In this appendix we give the background needed for the construction we used
for Tate cohomology in chapter 7. Again R is ring with a unit and all modules are
left R-modules.

The stable category St−mod(R).
Let M and N be two R-modules, denote by PHomR(M,N) the set of R-

homomorphisms M
f−→ N that factor through a projective R-module, i.e., there

exists a projective R-module P and two mapsM
f1−→ P

f2−→ N such that f = f2◦f1.
The following proposition is left as an easy exercise:

Proposition 7.25. PHomR(M,N) is a submodule of HomR(M,N) and the
composition of two homomorphisms such that one of them factors through a pro-
jective module also factors through a projective module.

By the proposition above we can de�neHomR(M,N) = HomR(M,N)/PHomR(M,N)

which is anR-module, and a compositionHomR(N,K)×HomR(M,N)→ HomR(M,K)

which is R-bilinear.

Definition 7.26. Let R be a ring, denote by St − mod(R) the category
whose objects are all R-modules and the morphisms between each M and N are
HomR(M,N). This category is called the stable module category.

The functor Ω.
For every R-module M choose (once and for all) a projective cover, that is a

surjective map πM : PM → M where PM is a projective R-module (for example
the canonical free cover).

De�ne a functor Ω : St −mod(R) → St −mod(R) the following way: For an
object M de�ne Ω(M) = Ker(πM ). For a morphism [f ] ∈ HomR(M,N) choose
some representative f : M → N , use the fact that PM is projective and πN is

surjective to de�ne a map f̃ : PM → PN such that the following diagram become
commutative:

0 −→ Ω(M) −→ PM −→ M −→ 0

↓ ↓ f̃ |Ω(M) ↓ f̃ ↓ f ↓
0 −→ Ω(N) −→ PN −→ N −→ 0

Now take Ω(f) to be the class of the induced map f̃ |Ω(f) : Ω(M)→ Ω(N). This is
well de�ned by the following lemma:

Lemma 7.27. 1) In the previous notations, if f̃1 and f̃2 are two lifts of f ◦ πM
then f̃1|Ω(M) and f̃2|Ω(M) represent the same element in HomR(ΩM,ΩN).
2) The map HomR(M,N)→ HomR(ΩM,ΩN) is a homomorphism.
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3) If f factors through a projective then also f̃ |Ω(f) does, thus we get a homomor-
phism HomR(M,N)→ HomR(ΩM,ΩN).

Proof. 1) Assume we have two such lifts f̃1 and f̃2 then the following diagram

is commutative (where h = f̃1|Ω(M) − f̃2|Ω(M)):

0 −→ Ω(M) −→ PM −→ M −→ 0

↓ ↓ h ↓ f̃1 − f̃2 ↓ 0 ↓
0 −→ Ω(N) −→ PN −→ N −→ 0

It will be enough to show that h factors through PM which is projective. This
follows from the fact that the image of the map f̃1 − f̃2 is contained in Ω(N) by
the commutativity of the diagram.

2) Choose the lifting of a · f + b · g to be a · f̃ + b · g̃.
3) Assume f factors through a projective module P . We have the following diagram:

0 −→ Ω(M) −→ PM −→ M −→ 0
↓ ↓ ↓ ↓ ↓
0 −→ 0 −→ P −→ P −→ 0
↓ ↓ ↓ s ↓ ↓
0 −→ Ω(N) −→ PN −→ N −→ 0

The map s : P → PN can be de�ned using the fact that P is projective and the
map PN → N is surjective. We get that the induced map Ω(M) → Ω(N) is the
zero map. �

The following is important for the de�nition of Tate cohomology:

Proposition 7.28. Let G be a �nite group and R = Z[G]. If M is a Z[G]-
module which is projective as an Abelian group then the map HomR(M,N) →
HomR(ΩM,ΩN) is an isomorphism.

Proof. Before we start recall ([7] VI,2) that a Z[G]-module Q is called rel-
atively injective if for every injection A ↪→ B of Z[G]-modules which splits as an
injection of Abelian groups and every Z[G] homomorphism A→ Q there exists an
extension to a Z[G] homomorphism B → Q, and that if G is a �nite group every
projective module is relatively injective ([7] VI,2.3).

We construct an inverse to this map. Given a map f : ΩM → ΩN . We have
the following diagram:

0 −→ Ω(M) −→ PM −→ M −→ 0
↓ ↓ f
0 −→ Ω(N) −→ PN −→ N −→ 0

Since M is projective as an Abelian group the upper row splits as Abelian
groups. This means that Ω(M) −→ PM is a split injection as Abelian groups. PN is
projective and hence relatively injective therefore we can extend the homomorphism
Ω(M) −→ PN to a homomorphism f̃ : PM → PN such that the diagram will
commute. This induces a homomorphism f : M → N . Of course f depends on the
choice of f̃ . Suppose that f̃1, f̃2 are two extensions then f̃1 − f̃2 vanishes on Ω(M)
hence the map f1 − f2 : M → N factors through PN which is projective. This
gives a well de�ned homomorphism HomR(ΩM,ΩN) → HomR(M,N). Assume
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f : ΩM → ΩN factors through a projective P then we can choose f̃ to factor
through P again since it is relatively injective and get that f is the zero map:

0 −→ Ω(M) −→ PM −→ M −→ 0
↓ ↓ ↓ ↓ ↓
0 −→ P −→ P −→ 0 −→ 0
↓ ↓ ↓ s ↓ ↓
0 −→ Ω(N) −→ PN −→ N −→ 0

Hence we get a homomorphismHomR(ΩM,ΩN)→ HomR(M,N) which is eas-
ily seen to be the inverse of the homomorphism HomR(M,N)→ HomR(ΩM,ΩN).

�

We have de�ned the endofunctor Ω. We de�ne Ωn by induction: Ω0 = Id and
Ωn = Ω ◦ Ωn−1.

Proposition 7.29. Let M be an R-module and let ... → Qn−1 → ... → Q0 →
M be any projective resolution ofM , then Ωn(M) can be identi�ed with Ker(Qn−1 →
Qn−2), that is there is a canonical map Ker(Qn−1 → Qn−2)→ Ωn(M) which is an
isomorphism in the category St−mod(R).

Proof. Given an R-module M we construct a canonical projective resolution
of it using the projective covers we have chosen before. We do it by induction
where Pn is de�ned to be the projective cover of Ker(Pn−1 → Pn−2) with the
induced map Pn → Pn−1, which clearly make this into a projective resolution.
Notice that by the de�nition of Ω we have Ωn(M) = Ker(Pn−1 → Pn−2), and for
a map f : M → N the map Ωn(f) can be be constructed by extending the map
f to a chain map between the two resolutions. In order to prove the proposition
it will su�ce to show that given two projective resolutions of M ... → Qn−1 →
... → Q0 → M and ... → Pn−1 → ... → P0 → M there is a canonical isomorphism
Ker(Qn−1 → Qn−2) → Ker(Pn−1 → Pn−2). This follows directly by induction
from what we have already showed in the case of a the projective cover of M . �

Remark 7.30. By similar reasons we can compute the induced maps Ωn(f) for
any map f : M → N by taking any two resolutions for M and for N and extending
f into a chain map between the two resolutions.
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