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Abstract

The photoproduction of mesons off the nucleon provides an excellent tool to gain further
insight into the structure of baryons and their excitation spectrum. A large number of
final states yielding various resonance contributions are accessible in photoproduction
experiments. Especially in the regime of high-lying resonances, the photoproduction
of multi-meson final states is of increasing importance, giving access to sequential de-
cays of such resonances via e.g. ∆(1232)P33 or N(1535)S11 in the intermediate state.
For a complete understanding of the processes involved, however, it is insufficient to
measure only unpolarized total and differential cross sections. The extraction of polar-
ization observables from data obtained using polarized beams and targets is mandatory
to constrain theoretical models and analyses and to uniquely determine the amplitudes
participating in a given process.
This work presents the analysis of data taken with the Crystal Barrel/TAPS experiment
at the accelerator facility ELSA in Bonn, using a linearly polarized photon beam imping-
ing on a liquid hydrogen target. The detector system is optimized for the detection of
multi-photon final states. The data has been selected for the reaction γp → pπ0η → p4γ

for an incoming photon energy range of 970 MeV to 1650 MeV. In this range, photon
polarizations of up to 50% have been achieved.
From this data, all polarization observables accessible with a linearly polarized photon
beam and an unpolarized target have been extracted. This includes the beam asym-
metry Σ, determined as a function of various invariant masses and angles using a quasi
two-body approach, along with the three-body asymmetries Ic and Is. The latter two
observables are unique to the acoplanar kinematics of multi-meson final states and have
been measured for the first time within this work. The comparison of the results to
solutions derived from various theoretical frameworks demonstrates the sensitivity of
the observables to the contributing resonances and their decays.
Main results of this work have already been published in [GSvP+08] and [GSvP+10].
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Zusammenfassung

Die Photoproduktion von Mesonen am Nukleon ist hervorragend dazu geeignet, ein
besseres Verständnis der Struktur der Baryonen und ihres Anregungsspektrums zu
gewinnen. In Photoproduktionsexperimenten ist eine Vielzahl von Endzuständen zu-
gänglich, zu denen verschiedene Resonanzen auf unterschiedliche Weise beitragen. Ins-
besondere im Bereich höherliegender Anregungsenergien gewinnt hierbei die Multi-
Meson-Produktion an Bedeutung und erlaubt den Zugang zu sequentiellen Resonanz-
zerfällen, z.B. über Zustände wie ∆(1232)P33 oder N(1535)S11. Für ein umfassendes
Verständnis der beteiligten Prozesse ist allerdings die reine Messung von totalen und dif-
ferenziellen Wirkungsquerschnitten unzureichend. Für die eindeutige Bestimmung der
an einem Prozess beteiligten Amplituden ist zudem die Extraktion von Polarisation-
sobservablen unabdingbar. Hierzu sind Experimente unter Verwendung polarisierter
Photonstrahlen und polarisierter Targets notwendig.
In der vorliegenden Arbeit wird die Analyse von Daten präsentiert, die mit dem Crystal-
Barrel/TAPS-Experiment an der Bonner Beschleunigeranlage ELSA gewonnen wur-
den. Hierbei kam ein linear polarisierter Photonenstrahl, der auf ein Flüssigwasserstoff-
Target traf, zum Einsatz. Das Detektorsystem ist auf den Nachweis von Viel-Photonen-
Endzuständen optimiert. Die Daten wurden für einen Energiebereich der einlaufenden
Photonen von 970 MeV bis 1650MeV im Hinblick auf die Reaktion γp → pπ0η → p4γ

selektiert. In diesem Bereich konnten Polarisationsgrade von bis zu 50% erreicht wer-
den.
Aus diesen Daten wurden sämtliche Polarisationsobservablen extrahiert, die mittels lin-
ear polarisierter Photonen und einem unpolarisierten Target zugänglich sind. Dies
beinhaltet die Quasi-Zweikörper-Strahlasymmetrie Σ, die als Funktion verschiedener
invarianter Massen und Winkel bestimmt wurde. Zudem wurden zum ersten Mal die
Dreikörper-Asymmetrien Ic und Is gemessen, die einzig in der akoplanaren Kinematik
von Multi-Mesonen-Endzuständen auftreten. Der Vergleich der gewonnenen Daten mit
Ergebnissen verschiedener theoretischer Ansätze zeigt die Sensitivität der Observablen
auf die beitragenden Resonanzen und ihre Zerfälle.
Wesentliche Ergebnisse dieser Arbeit wurden bereits in [GSvP+08] und [GSvP+10]
veröffentlicht.
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1 Outline of this work

This work is structured as follows: The next chapter gives a brief introduction to the
field of hadrons as composite systems of strongly interacting constituents in general and
the excitation spectrum of baryons in particular.
In chapter 3 the motivation for the determination of polarization observables in pseu-
doscalar meson photoproduction is given. The significance of the pπ0η final state in
particular is discussed along with an overview of the available data and theoretical
models for this reaction.
The following chapter introduces the experimental facilities and techniques used to ob-
tain the data relevant for this work. This includes the production of linearly polarized
photons from the primary electron beam delivered by the Electron Stretcher Acceler-
ator ELSA, and the setup of the Crystal Barrel/TAPS experiment, a high acceptance
calorimeter arrangement optimized for the detection of multi-photon final states.
Chapter 5 gives an outline of the calibration and reconstruction methods applied to
the detector system. Here the electronic signals provided by the various components
are translated to physical quantities like time and energy and correlated to the actual
particles creating the detector signals in the first place.
The datasets used in this analysis and the identification of the pπ0η final state are the
topics of chapter 6. Here the basic considerations for the selection process are illustrated
and the cuts applied on the data are described along with the application of a kinematic
fit.
Chapter 7 focuses on the extraction of the polarization observables from the selected data
sample in a quasi two-body and a full three-body approach. The resulting beam asym-
metries are shown as functions of various quantities along with invariant mass distribu-
tions and Dalitz plots, illustrating the different contributions to π0η-photoproduction.
The discussion of the results in comparison to other published data and in the context of
the Bonn-Gatchina partial wave analysis, the Fix isobar model and the Valencia chiral
unitary framework is topic of chapter 8, leading to an interpretation of the data with
respect to the participating excited states and their decay couplings.
The experimental findings within the framework of this analysis and their interpretation
are summarized in chapter 9 and the current and future experimental program of the

1



2 1 Outline of this work

Crystal Barrel/TAPS experiment is presented briefly.
The tabular presentation of the results is given in the appendices, along with addi-
tional spectra, some technical information, and a list of publications and conference
contributions based on this work.



2 Introduction

2.1 Hadrons and the quark model

Starting with experiments utilizing high-energy cosmic rays in the 1930s and culminating
in the use of the first particle accelerators in the following decades, a multitude of
seemingly elementary particles were discovered, a situation referred to as the particle zoo.
It was not until the 1960s that a successful classification scheme was devised, introducing
elementary particles, the quarks, as constituents of composite systems, the hadrons. This
classification scheme, the quark model, developed independently by Murray Gell-Mann
and George Zweig1, allowed for a comprehensive description of the properties of the two
classes of hadrons, the mesons and the baryons.

2.1.1 Properties of quarks

It is now known that in nature six versions of quarks, so called flavors, exist, named
up (u), down (d), charm (c), strange (s), top (t) and bottom (b), along with their
corresponding antiparticles. In the following some of the main properties of the quarks
are summarized.
The quarks are, like the leptons, spin s = 1/2 particles and come in two (electrical)
charge states with ∆q = 1, q = +2/3 and q = −1/3. This suggests a classification
scheme in three generations, analogous to the six leptons (νe, e), (νµ, µ), and (ντ , τ),
with increasing masses [A+08b]:(

q = +2
3

q = −1
3

)(
u, m = 1.5− 3.3 MeV
d, m = 3.5− 6.0 MeV

)(
c, m = 1.27+0.07

−0.11 GeV

s, m = 104+26
−34 MeV

)(
t, m = 171.2± 2.1 GeV
b, m = 4.20+0.17

−0.07 GeV

)
.

The masses of the three light flavors, u, d, and s, are orders of magnitude smaller than
for the other three, with the quarks within the first generation being approximately
mass-degenerate. This situation is reflected in the proton and the neutron, which are

1The term quarks was introduced by Gell-Mann, Zweig referred to the constituents as aces, assuming
there were four of them.

3



4 2 Introduction

also (nearly) mass-degenerate states differing only in electrical charge. This suggests
the identification of these particles as two states of the same particle, the nucleon, and
the introduction of a new quantum number associated with this behavior, the isospin
I, defined analogously to the spin of a particle, introducing an SU(2) symmetry. Ac-
cordingly, the isospin is a conserved quantity with respect to the strong interaction2.
In this framework the quarks composing the nucleon, u and d, form a doublet with
isospin 1/2, differing in the third component I3, being 1/2 for the u- and −1/2 for the
d-quark. In general, particles of given isospin I occur in 2I + 1 charge states. Other
quark-flavors than u and d carry isospin 0, but here additional flavor quantum numbers
such as strangeness S arise.
The comparably light masses of the three flavors u, d, and s suggest an extension of
the SU(2)isospin symmetry to include the strange flavor. This (approximate) SU(3)flavor

symmetry will be addressed in section 2.1.2. These masses however might seem incon-
gruous at first, knowing that e.g. the proton with a mass of mp = 938.272 MeV consists
of two u and one d quark (see 2.1.2). This apparent discrepancy can be resolved by
acknowledging the complicated structure of the interaction between the quarks con-
fined in a hadron. It gives rise to a sea of gluons, the mediators of the strong inter-
action, and quark-antiquark-pairs generated within e.g. the proton, contributing to
its effective mass. It is therefore convenient to introduce the constituent quark mass
which takes these effects into account, as opposed to the current quark masses stated
above. In this framework, the constituent masses of up and down quarks amount to
mu ≈ md ≈ 350 MeV and for the strange quark to ms ≈ 500 MeV.
The source of the strong interaction between the quarks is the color charge. The concept
has been introduced to address a problem posed by the existence of the ∆++-baryon.
The quark content of the ∆++ is |uuu〉 with spin S = 3/2, Isospin I = 3/2, and vanishing
angular orbital momentum L = 0 between the quarks. Therefore, the decomposition of
the wavefunction for this state in its components

|uuu〉 = |space〉S |spin〉S |flavor〉S, (2.1)

contains only symmetrical terms. The Pauli exclusion principle however states that the
total wavefunction of a system of fermions has to be antisymmetric. The introduction
of a new quantum number, color, solves this by extending the wavefunction by an
antisymmetrical term:

|uuu〉 = |space〉S |spin〉S |flavor〉S |color〉A. (2.2)
2According to Noether’s theorem, every symmetry transformation implies a corresponding conservation

law.



2.1 Hadrons and the quark model 5

The quarks are assigned three different color charges, called red (R), green (G), and
blue (B), respectively, generating again an SU(3) symmetry, here an exact symmetry,
SU(3)color. Antiquarks carry the respective anticolors anti-red (R̄), anti-green (Ḡ) and
anti-blue (B̄). Up to now only colorless particles and especially no free quarks have been
observed. This leads to the conclusion that quarks are confined to colorless, composite
systems, the most simple of which would be composed of either a quark-antiquark pair
|qq̄〉 or three quarks |qqq〉, the mesons and baryons. For a three-quark system, like the
∆++, the color wave function reads:

|color〉A =
1√
6
(RGB −RBG + BRG−BGR + GBR−GRB). (2.3)

In case of the mesons, the color singlet state is symmetrical and reads:

|color〉S =
1√
3
(RR̄ + GḠ + BB̄). (2.4)

2.1.2 Mesons and baryons

The considerations stated above now make it possible to classify the multitude of discov-
ered particles in terms of their quark content and quantum numbers. Figure 2.1 shows
such an ordering scheme for mesons using the strangeness S and the third component of
the isospin I3 as ordering parameters. These multiplets arise when grouping the mesons
according to their total angular momentum J = L + S and parity P = (−1)L+1. Here
the lightest ground state (L = 0) mesons form nonets with JP = 0− (S = 0), the
pseudoscalar mesons, and JP = 1− (S = 1), the vector mesons.
The three lightest quarks form a representation of the special unitary group SU(3), 3,
and the according antiquarks form the conjugate representation 3̄. The combination of
both yields:

3⊗ 3̄ = 8⊕ 1, (2.5)

so these nonets are in fact a combination of an octet and a singlet3. For the baryons the
ordering scheme is similar, their nature of being qqq states however gives rise to more
complex configurations. The description of the three quarks within their SU(3)flavor

3Actually two isosinglets with identical quantum numbers exist in the nonet. Therefore a mixing
between these states is possible. In case of the pseudoscalar mesons, these states, the η1 SU(3)-
singlet and the η8 SU(3)-octet state, mix in such a way that η1 ≈ η ′ and η8 ≈ η. In case of the
vector mesons the situation is less clear due to the maximal mixing of the ω and φ. See e.g. [Gri08]
for details.
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JP = 0− S

1

−1

I3−1 −1
2

1
2 1

K0 K+

π− η′ η

π0

π+

K− K̄0

JP = 1− S

1

−1

I3−1 −1
2

1
2 1

K∗0 K∗+

ρ− ω φ

ρ0

ρ+

K∗− K̄∗0

Figure 2.1: Pseudoscalar and vector meson nonets. The mesons are ordered by
their strangeness S (vertical) and third component of the isospin I3 (hori-
zontal). Using this scheme, particles with the same electrical charge fall on
the same diagonal. Left: Pseudoscalar mesons (JP = 0−), Right: Vector
mesons (JP = 1−).

representation yields:

3⊗ 3⊗ 3 = 10S ⊕ 8MS ⊕ 8MA ⊕ 1A, (2.6)

where the subscripts refer to the symmetry properties under the exchange of quarks.
This translates to one completely symmetric (S) decuplet, one octet with mixed sym-
metry (symmetric under exchange of the first two quarks, MS ), one octet with mixed
antisymmetry (antisymmetric under exchange of the first two quarks, MA) and one
completely antisymmetric singlet. Considering spin in addition leads, using the SU(2)
representation, to the following configurations:

2⊗ 2⊗ 2 = 4S ⊕ 2MS ⊕ 2MA. (2.7)

The combination of (2.6) and (2.7) leads to

6⊗ 6⊗ 6 = 56S ⊕ 70MS ⊕ 70MA ⊕ 20A. (2.8)
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These multiplets can be subdivided into:

56 = 410 +2 8

70 = 210 +4 8 +2 8 +2 1

20 = 28 +4 1.

The superscript denotes the number of possible spin orientations within the multiplet,
2S+1. The requirement for an antisymmetric wavefunction for the baryons now leads to
two multiplets, the JP = 1/2+ octet and the JP = 3/2+ decuplet, shown in figure 2.2,
again arranged by their strangeness S and third component of the isospin I3.

JP = 1
2

+

S

0

−2

I3−1 −1
2

1
2 1

n(939) p(938)

Σ−(1197) Σ0(1193)

Λ(1116)

Σ+(1189)

Ξ−(1321) Ξ0(1314)

JP = 3
2

+

S

0

−2

I3−1 −1
2

1
2 1

∆−(1232) ∆0(1232) ∆+(1232) ∆++(1232)

Σ−(1387) Σ0(1384) Σ+(1383)

Ξ−(1535) Ξ0(1532)

Ω−(1672)

Figure 2.2: Baryon octet and decuplet. The baryons are ordered by their strangeness
S (vertical) and third component of the isospin I3 (horizontal). Using this
scheme, particles with the same electrical charge fall on the same diagonal.
Left: JP = 1/2+ octet, Right: JP = 3/2+ decuplet.
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2.2 Excitation spectrum
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Figure 2.3: Nucleon excitation spectrum. Shown are the excited states of the nu-
cleon ordered by their masses (vertical) and their total angular momentum
and parity, JP . Each column shows on the left the predictions by the Bonn-
constituent-quark-model [LMP01] in blue and on the right the experimental
findings with the uncertainties in their masses (colored boxes) and PDG
classification (stars) [A+08b].

The nature of baryons as composite systems allows for their excitation and thereby
the formation of new states. The structure of Quantum Chromodynamics (QCD), the
theory of the strong interaction, does not allow for the calculation of such states4; con-
stituent quark models are used to describe the excitation spectra of hadrons. Such
models assume constituent quarks as introduced in the previous section, bound by a
confinement potential. One difference between these respective modern quark models
is the parametrization of the residual interaction between the quarks. Figure 2.3 shows
the excitation spectrum of the nucleon as predicted within the framework of the Bonn-
model [LKMP01, LMP01] as blue lines on the left for each JP combination, compared to

4In the energy regime of baryons, the strong coupling constant αs approaches 1, ruling out a pertubative
treatment of the system.
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γp → pX

γp → pπ0

γp → pη
(CB-ELSA)

(TAPS)
γp → pπ0π0

γp → pπ0η
(CB-ELSA)

Figure 2.4: Photoabsorption cross section on the proton. Shown is the world
data on the total photoabsorption cross section on the proton ([black])
along with selected single- ([blue]) and double-meson ([red]) production
cross sections.

the experimental findings on the right (red lines with colored boxes denoting the uncer-
tainties in their masses). While at low excitation energies the agreement between model
and experiment is qualitatively reasonable, starting at masses of about 1900 MeV major
discrepancies are observed. The model predicts a multitude of states for which few to no
experimental findings are reported. Assuming the premise of three constituent quarks
being the effective degrees of freedom for baryon excitation is correct, this presents an
experimental challenge.
Nearly all of the experimental data shown in figure 2.3 has been obtained in pion-
nucleon-scattering experiments. Should the missing states couple only weakly to Nπ,
they might have escaped detection in the experiments, an interpretation supported by
calculations, see e.g. [CR93, CR94, LKMP01]. Photoproduction experiments, investi-
gating final states different from Nπ, therefore have a big discovery potential. Figure 2.4
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shows the total photoabsorption cross section on the proton along with selected final
states. It is obvious that a direct determination of the excited states from this spec-
trum, like in atomic spectroscopy, is not possible. Excited states in baryon spectroscopy
exhibit large decay widths5, and are energetically close, leading to an overlap of the
states. Different structures in the cross sections have been observed, depending on the
final state under investigation, however for a detailed identification of states contribut-
ing to a specific reaction a more refined analysis technique is necessary, the partial
wave analysis (PWA). In a PWA, states contributing to different partial waves are
parametrized in a K-matrix formalism in case of strongly overlapping resonances or as
relativistic Breit-Wigner amplitudes. The superposition of these states, along with non-
resonant background amplitudes, then results in the cross section. An example is shown
in figure 2.5 for the total cross section in η-photoproduction. The three partial waves,
with JP = 1/2−, 3/2+, and 5/2−, which are strongly contributing to the reaction,
are depicted, along with contributions due to ρ- and ω-exchange, as calculated within
the framework of the Bonn-Gatchina partial wave analysis (BnGa-PWA) [ASB+05], a
coupled channel analysis in which the positions, total and partial widths and relative
strengths of the contributing states are calculated and fitted to different data sets in
parallel. The information contained in total and differential cross sections however does
not sufficiently constrain the fit, ambiguous solutions describing the data with equal
quality can occur. This problem can be countered by the measurement of a set of ob-
servables that unambiguously fixes the amplitudes for a given reaction, leading to a
unique partial wave decomposition. This set of measurements, the complete experiment
is in part the topic of the next chapter.

5Excited, non-strange baryonic states decay via the strong interaction, resulting in lifetimes of the order
of 10−23 s. The lifetime τ and the width Γ of a state are correlated due to Heisenberg’s uncertainty
principle: τ = }/Γ.
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CB-ELSA

CLAS

GRAAL

TAPSTAPS

Figure 2.5: Total cross section for η-photoproduction. Given are the dominat-
ing partial waves (1/2−, 3/2+, 5/2−) along with t-channel ρ-/ω-exchange
contributions as derived from a BnGa-PWA fit (red line) [ASB+05].
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3 Motivation

3.1 Polarization observables and complete experiment

The term complete experiment refers to a set of measurements that uniquely fixes the
four (eight) complex helicity or transversity amplitudes of a given single meson (meson-
pair) photoproduction reaction [BDS75, RO05]. The unpolarized cross section, obtained
already in experiments without defined incoming photon beam or target polarization
only provides information on the sum of the absolute squares of these amplitudes. Single,
double and in the case of meson-pair production also triple polarization measurements
are necessary to fulfill the constraints posed by the complete experiment to allow for
the extraction of the real and imaginary parts of the amplitudes independently1. For
the field of pseudoscalar meson production these constraints will be introduced in the
following pages.

3.1.1 Single pseudoscalar meson production

For the photoproduction of a single pseudoscalar meson the total cross section including
all polarization observables reads [SHKL09]:

σ = σ0(1 − δlΣ cos 2φ + ΛyT + Λy′P (3.1)

− δ�ΛzE + δlΛzG sin 2φ + δ�ΛxF + δlΛxH sin 2φ

+ δ�Λx′Cx′ + δ�Λz′Cz′ + δlΛx′Ox′ sin 2φ + δlΛz′Oz′ sin 2φ

+ ΛzΛx′Lx′ + ΛzΛz′Lz′ + ΛxΛx′Tx′ + ΛxΛz′Tz′).

Here δl (δ�) denotes the degree of linear (circular) photon polarization, Λx,y,z (Λx′,y′,z′)
the polarization of the target (recoiling) baryon along the respective axis. In the case of
recoil polarization, the direction of the recoiling baryon is −ẑ′. φ is the angle of the pho-
ton polarization vector with respect to the (x̂,ẑ)-plane, the incoming photon direction

1In fact the polarization observables can be expressed as the real (imaginary) part of linear combinations
of bilinears formed from these amplitudes.

13
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ẑ

ŷ

x̂

p(−~k)

γ(~k)

Λ

δlφ

ẑ

ŷ

x̂

p(−~k)

γ(~k)

π0(~q)

p′(−~q)

Λ′

ẑ′

ŷ′ = ŷ
x̂′

Figure 3.1: Coordinate systems in single meson production. The center-of-
momentum coordinate systems used in (3.1) for the reaction γ(~k, δl) +
p(−~k, Λ) → π0(~q) + p(−~q,Λ′). Left: Initial γp-system, right: Final pπ0-
system [SHKL09].

is ẑ (see figure 3.1). A total of 16 observables arise. These are, in the first line of (3.1),
the unpolarized cross section σ0 along with three single polarization observables, the
beam asymmetry Σ, the target asymmetry T and the recoil asymmetry P . Combining
beam- and target polarization (BT), beam- and recoil polarization (BR) and target-
and recoil polarization (TR), four more observables are accessible for each combina-
tion. A complete experiment now requires the measurement of a selected set of eight of
these, exploiting certain identities of combinations of the observables. This set is not
arbitrary but requires the determination of the unpolarized cross section and the three
single-polarization observables along with four well chosen double-polarization observ-
ables. An overview of the sets constituting a complete experiment and the respective
identities can be found in [CT97].

3.1.2 Pseudoscalar meson-pair production

When dealing with two pseudoscalar mesons in the final state, a first step to the deter-
mination of polarization observables is the treatment of the reaction in a quasi two-body
kinematic, e.g. Xη instead of pπ0η, with X → pπ0. Such an ansatz has the advantage
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that the formalism introduced in the previous section can be applied to such three-
body reactions just the same. Allowing for an additional final state particle however
introduces additional degrees of freedom to the reaction which is reflected in the cross
section. In case of a linearly or circularly polarized beam and without target- or recoil-
polarization measurement for example, the cross section for two-meson production reads,
within the framework introduced in [RO05],

σ = σ0(1 + δ�I� (3.2)

− δl(Is sin 2φ + Ic cos 2φ).

In this configuration alone already four observables arise, where in single meson produc-
tion only two, σ0 and Σ, are accessible. Taking target- and recoil-polarization and their
combinations (BT, BR, TR and BTR) into account, a total of 64 observables appear
in the cross section. As for the single-meson production, using a set of identities, the
number of measurements for a complete experiment in pseudoscalar meson-pair produc-
tion can be derived, leading to a set of 15 observables to be determined. The possible
sets, for examples see [RO05], consist of the unpolarized cross section along with single-
double- and triple-polarization observables.
Here the problem inherent to the quasi two-body approach becomes apparent. In this
framework only 16 observables are accessible in general, none of which occur due to
triple-polarization experiments. While the measurements of such observables still yields
valuable information for the interpretation of the reactions, a full three-body approach
to the photoproduction of pseudoscalar meson-pairs is indispensable for a complete
description of the processes. In the example given in (3.2) for instance, additional infor-
mation is contained in the polarization observables Is and Ic which would be reduced to
one single observable Σ in a quasi two-body approach, using linearly polarized photons
(cf. chapter 7); using circularly polarized photons without defined target polarization,
no information in addition to the unpolarized cross section would be obtained.
For the reaction γN → Nππ, data on the helicity asymmetry I� (see (3.2)) has been
published in [S+05a, KZF+09] and an analysis with respect to the beam asymmetries
Is and Ic will be presented in [Sok10]. For the reaction γN → Nπη however, prior to
this thesis, no data has been published in a full three-body framework, apart from the
results presented in this work.
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3.2 π0η-photoproduction off the proton

The photoproduction of π0η-pairs is a comparably young field of research with the first
experimental data published in 2006 [N+06]. This is, among other constraints such
as incoming beam energy, most likely due to the high demands posed by this reaction
concerning geometrical acceptance and photon detection efficiency of the experimental
setup. The study of the reaction γp → pπ0η does, however, give the opportunity to
address some intriguing questions in the field of hadron physics, as shown below.

Missing resonances As can be seen in figure 2.4, with increasing incoming photon
energy the cross sections for production of meson-pairs exceed the ones for the single
mesons. This is particularly interesting, since the open question of the missing reso-
nances predicted by constituent quark models arises in this high-energy region. Such
high-lying resonances may not decay directly to the nucleon ground-state via emission
of a single meson, but rather via a sequential decay chain, e.g.

X → Y η → pπ0η. (3.3)

Such a process not only provides independence from the πN couplings mentioned in
section 2.2 due to the photoproduction mechanism, but is also independent of the photon
coupling of the state Y .
In addition to the general advantages of meson-pair production, the pπ0η final state is
particularly attractive due to its isospin-selectivity. The η-meson is an isoscalar, so in
the example given in (3.3), the states X and Y have the same isospin. This allows for
the distinct study of excited ∆-states via the cascade

∆∗ → ∆η → pπ0η. (3.4)

Negative-parity ∆-states Figure 3.2 shows the ∆ excitation spectrum, in the same way
as for the nucleon in section 2.2 as a comparison of the experimental findings to predic-
tions by the Bonn model [LMP01]. Apart from the missing resonances also predicted
in this isospin channel, a second distinct feature is apparent, a triplet of negative-parity
states with masses of ≈ 1900 MeV. Not only is the existence of these states, ∆(1900)S31,
∆(1940)D33, ∆(1920)S35, less well established, as denoted by the number of stars, than
for their positive-parity counterparts ∆(1910)P31, ∆(1920)P33, and ∆(1905)F35, but
also the quark model predictions for the two parity states exhibit large discrepancies.
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Figure 3.2: ∆ excitation spectrum. Shown are the ∆-resonances, ordered by their
masses (vertical) and their total angular momentum and parity, JP (horizon-
tal). Each column shows on the left the predictions by the Bonn-constituent-
quark-model [LMP01] in blue and on the right the experimental findings with
their uncertainties (colored boxes) and PDG classification (stars) [A+08b].

While in case of the positive parity states these predictions describe the experimental
findings quite accurately, the negative parity states are all predicted with masses of
about 150-250 MeV higher than observed2. Additionally, further experimental evidence
for the existence of such parity doublets is much needed for their interpretation with
respect to quark dynamics or chiral symmetry restoration [Glo00, Kle03].

Resonance decays other than ∆η The decay chain (3.3) is only an example of the
possible cascades occurring for high-lying resonances. Couplings to N(1535)S11π

0 or
pa0(980)3 are by no means forbidden but widely neglected in theoretical models (see
chapter 8). Here the π0η-photoproduction presents a unique tool for the further inves-
tigation of resonance decays via higher-mass baryons or mesons.

2A similar point concerning the mass predictions can be made for the ∆(1600)P33. This state can be
seen as the first radial excitation of the ∆ ground state, analogue to the N(1440)P11 Roper -resonance
in the nucleon spectrum (see e.g. [CG98, FK09]), which is predicted equally too high (c.f. fig. 2.3).

3The scalar meson a0(980) dominantly decays to π0η [A+08b].
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3.2.1 Existing data
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A2/CBTAPS@MAMI
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Figure 3.3: Experimental data on the γp → pπ0η total cross section. Data
taken from [N+06, H+08a, A+08a, KF+09].

As mentioned before, the reaction γp → pπ0η is a comparably new field of study, and
therefore the available data is rather sparse. In figure 3.3 all published data on the total
cross section for π0η-production off the proton is compiled.
The first analysis has been conducted by Nakabayashi et al. in 2006 [N+06], who pub-
lished four datapoints for the total cross section from threshold up to an incoming photon
energy of Eγ = 1150MeV along with some angular- and momentum distributions.
In 2008 the first Crystal Barrel data has been published by Horn et al. [H+08a, H+08b],
extending the energy range for the total cross section to Eγ = 3000MeV and also in-
cluding differential cross sections dσ/dΩ and dσ/dM .
As the first data obtained using linearly polarized photons, parts of the results of the
analysis presented in this work have been presented at the NSTAR 2007 conference
[NST08] and published in the following year [GSvP+08] at the same time as data
obtained by the GRAAL collaboration [A+08a]. Both publications feature the quasi
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two-body beam asymmetry Σ. The GRAAL data, determined for an energy range of
Eγ = 1100 − 1500 MeV, is shown in figure 3.4. Within this analysis, the total and
mass-differential cross sections have also been extracted.
The latest data on the unpolarized cross section, obtained with the Crystal Ball/TAPS
experiment at MAMI, has been published in 2009 by Kashevarov et al. [KF+09]. Here,
the total cross section along with angular- and invariant mass distributions has been
determined from threshold up to Eγ = 1400MeV.
In 2010, again parts of the results of this work, the first measurement of the beam
asymmetries Is and Ic, have been published [GSvP+10].

Figure 3.4: Beam asymmetry Σ as published by the GRAAL collaboration.
Beam asymmetries for the incoming photon energy ranges Eγ = 1050 ±
50 MeV (a), Eγ = 1250 ± 50 MeV (b), Eγ = 1350 ± 50 MeV (c), Eγ =
1450 ± 50 MeV (d) as function of two-body invariant masses; solid curves:
Valencia chiral unitary framework [A+08a].



20 3 Motivation

3.2.2 Theoretical frameworks

The photoproduction of the pπ0η final state is studied theoretically within various frame-
works. Most prominently, three approaches have to be noted, the partial wave analysis
of the data within the BnGa-PWA [H+08b], the chiral unitary framework developed by
Döring et al. [DOS06, DOM10] and the isobar model by Fix et al. [FOT08, FKLO10].
The prerequisites of these and the differences in terms of resonant contributions and
their decay couplings is the topic of chapter 8, where the application of the different
frameworks to the results of this work and the implications thereof are discussed.



4 Experimental setup

This chapter gives an overview over the experimental facility used to take the data
presented in this thesis. This includes the ELectron Stretcher Accelerator ELSA [Hil06]
as well as the setup of the Crystal Barrel/TAPS experiment during the data taking
period 2001-2003. After a description of the accelerator facility and its capabilities
along with the production of a photon beam off the primary electron beam, the various
detectors included in the experimental setup will be discussed, closing with the trigger
system used to select the events during data taking.

4.1 Primary electron beam

4.1.1 ELSA

The Electron Stretcher Accelerator ELSA at the Physikalisches Institut of the university
of Bonn is a three stage facility consisting of a linear accelerator, a booster synchrotron
and a stretcher ring. ELSA is able to accelerate an electron beam up to energies of
3.5GeV. This beam can then be extracted to two different experimental areas. Figure 4.1
gives an overview over the facility. The three accelerator stages are:

• Electron source and linear accelerator (LINAC)

In the data taking period relevant to this work, electrons from a 48 keV ther-
mal source were accelerated to 26 MeV by LINAC2 before being injected into the
booster synchrotron. Additionally a second electron source is available, producing
polarized electrons via photoemisson induced by a circularly polarized laser beam
incident on a GaAs-like crystal. These electrons carry a degree of polarization of
approx. 80%.

• The booster synchrotron

The pre-accelerated electron beam is injected into the booster synchrotron [A+68]
where it is typically accelerated further up to an energy of 1.2 GeV. It is then

21
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stretcher ring
0.5 - 3.5 GeV

booster
synchrotron
0.5 - 1.2 GeV

synchrotron
radiation

experiments

hadron physics
experiments

Crystal Barrel/TAPS

Figure 4.1: The ELSA accelerator facility at the university of Bonn. In a three
stage system consisting of LINAC, booster synchrotron and stretcher ring
electrons up to an energy of 3.5 GeV can be delivered to two experimental
areas suitable for medium energy physics experiments (upper left).

extracted into the stretcher ring as a pulsed beam with an extraction rate of
50 Hz.

• The stretcher ring

The stretcher- or storage ring can be operated in one of three different modes,
depending on the requirements of the respective experiment:

1. Stretcher mode
In this mode of operation the electron beam is not further accelerated, so
the maximum extraction energy caps at the maximum energy of the booster
synchrotron. This beam, however, can be extracted to the experimental areas
quasi-continuously for the time between two injections using slow extraction.

2. Post-accelerator mode
In this mode of operation several injections are accumulated and accelerated
further in the stretcher ring, so energies up to 3.5 GeV can be provided. Since
it is not possible to extract the electrons with a defined energy during the
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post-acceleration phase, the extraction lasts for 1 to 30 s, depending on the
extracted current, followed by a pause of about 1 s. Design values are 3 nA
for an extraction time of 10 s, resulting in a duty factor of 50-90% [Hof01].
For the Crystal Barrel/TAPS experiment, ELSA was operated in this mode.

3. Storage ring for synchrotron-radiation experiments
When used purely as a storage ring, the electron beam is stored at a constant
energy for up to six hours. Due to the high beam currents this mode is mainly
used for the production of high energetic synchrotron radiation which can be
utilized by experiments at six dedicated beamlines.

4.2 Photon beam

The aim of the Crystal Barrel/TAPS experiment is the investigation of photon-induced
reactions on the nucleon. For this, photons within the energy range of interest have to be
produced from the primary electron beam. In general, two main procedures to achieve
this are laser backscattering [D+00] as used for instance in the GRAAL experiment
[Sch92], and the utilization of the bremsstrahlung process. In case of linearly polarized
photons, Compton-backscattering of polarized laser light yields linear photon beam
polarizations up to 100%, but it limits the achievable luminosity as well as the maximum
photon energy [San95]. In the Crystal Barrel/TAPS experiment the bremsstrahlung
method is applied using a diamond radiator for the production of linearly polarized
photons.

4.2.1 Bremsstrahlung

When passing through matter, electrons lose energy by three processes: ionization,
radiation of bremsstrahlung, and Møller scattering. The relative strengths of these
contributions are functions of the incoming electron energy as depicted in figure 4.2.
While the contribution of Møller scattering is generally low, ionization is the leading
process in the low energy regime and bremsstrahlung dominates above 10 MeV. The
critical energy, Ec, is defined as the incoming electron energy at which the energy losses
due to ionization and bremsstrahlung are equal; it can be approximated by [BS64]:

Ec =
800 MeV
Z + 1.2

,
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Figure 4.2: Fractional energy loss per radiation length in lead as a function
of e+/e− energy. At low energies the primary process of energy loss for
electrons in matter is ionization with contributions from bremsstrahlung
and Møller scattering. Above 1 GeV of incoming electron energy, the region
in which the ELSA accelerator operates, bremsstrahlung clearly dominates
[A+08b].

leading to critical energies of Ec ≈ 26.5 MeV for copper and Ec ≈ 111 MeV for carbon
(diamond), the two radiator materials used in the Crystal Barrel/TAPS experiment.
These numbers are well below the primary electron beam energy of 3200 MeV at which
the Crystal Barrel/TAPS experiment operated. It is therefore safe to assume that, for
electrons interacting with the radiator target, bremsstrahlung is the relevant process.

Incoherent bremsstrahlung

Bremsstrahlung can be characterized as the radiation of one or more real photons with
energy k by an electron with initial momentum ~pe, accelerated in the Coulomb field of
an atomic nucleus:

e− + N → e− + N + γ.

Conservation of 4-momentum dictates that the scattering nucleus has to take the recoil
momentum, ~q:

~q = ~pe − ~pe′ − ~k, (4.1)
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with ~pe′ being the momentum of the outgoing electron.
The differential cross section of the bremsstrahlung process is given by:

dσ =
|Sfi|2

t ·Ne−
, (4.2)

with Sfi the transition matrix element, t the time and Ne− the flux of the primary
electron beam [Jac98]. Taking a pointlike charge distribution, in momentum space
given by the Fourier transformed Coulomb potential:

V (~q) =
−Ze4π

~q2
, (4.3)

the Born approximation leads to a bremsstrahlung cross section:

dσ ∝ |V (~q)|2 ∝ 1
|~q|2

. (4.4)

Accordingly, processes with small momentum transfers ~q are preferred. The energy
distribution of the bremsstrahlung process is described by the Bethe-Heitler cross section
[Hei54] and yields, after integration [LBP82]:

dσB.H. = 4Z2αa0
2 dk

k

E

E0

[
E0

E
+

E

E0
− 2

3

] [
ln
(

2E0E

k

)
− 1

2

]
(4.5)

with α being the fine structure constant, a0 the Bohr radius, E0 and E the energies of
incoming and outgoing electron and k the energy of the bremsstrahlung photon. Thus,
the bremsstrahlung spectrum follows approximately a 1

k shape.
For an amorphous radiator the scattering centers are isotropically distributed and there
is on average no preferred planar relation between the incoming electron and the out-
going photon. As a result, the orientation of the electric field vectors is statistically
random and the photons effectively unpolarized.

Coherent bremsstrahlung

The use of a crystal as a radiator target leads to additional effects due to its periodic lat-
tice structure. Depending on the orientation of the crystal lattice and the kinematic con-
ditions, it is possible to get constructive interference of the various bremsstrahlung am-
plitudes from single atoms. Additionally, the recoil momentum ~q of the bremsstrahlung
process can be absorbed by the whole crystal lattice, rendering it effectively recoilless.
The term coherent reflects the fact that the bremsstrahlung photons are created in a pro-
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Figure 4.3: Recoil momentum transfer in incoherent and coherent
bremsstrahlung. Left: Incoherent process, the recoil momentum is
transferred to a single atom. Right: Coherent process, the recoil momentum
is transferred to the crystal lattice. Notation according to (4.1).

cess in which many indistinguishable atoms are participating. Coherent bremsstrahlung
only occurs under the condition that the transferred recoil momentum ~q coincides with
a reciprocal lattice vector ~g 1 of the crystal. Accordingly, only discrete recoil momenta

~q = n · ~g (4.6)

can be transferred to the lattice as a whole (see figure 4.3), fixing the orientation of
the scattering plane spanned by the incoming electron and the recoil momentum. This
yields a fixed plane of the electric field vector of the bremsstrahlung photon and produces
linearly polarized photons. The following kinematic constraints for the longitudinal (ql)
and transversal (qt) momentum transfers can be derived [Pal68]:

δ +
q2
t

2E0
≤ ql ≤ δ

x
(4.7)

0 ≤ qt . 1 (4.8)

with δ = 1
2E0

x
1−x and x = k

E0
. This selects a kinematic region, the so-called pancake

[Ü56], in momentum-space in which momentum transfer is allowed (see figure 4.4).
Only one defined reciprocal lattice vector should fall into the allowed region to avoid de-
structive interference of polarization contributions from perpendicular scattering planes.
This can be achieved by proper alignment of the crystal radiator with respect to the
incoming electron beam. For the incoherent process, where momentum transfer occurs
on individual atoms, an increase in x and therefore a shift of the pancake in momentum

1The reciprocal lattice is a representation of the crystal lattice in Fourier space. The components of

reciprocal lattice vectors are given by the Miller indices hi: ~g =
3P

i=1

hi
~bi [Kit04].
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Figure 4.4: Kinematically allowed region for the recoil momentum transfer.
The hatched area denotes the pancake region defined by (4.7).

space leads to the 1
k shape of the bremsstrahlung spectrum mentioned above. For the

coherent process however, momentum transfer has to fulfill (4.6) so only reciprocal lat-
tice vectors within the pancake region contribute to the coherent cross section. Once x

reaches a certain value, the vector leaves the pancake, resulting in an acute drop in the
cross section, a discontinuity referred to as coherent edge as visible in figure 4.5. Since
real crystals are not completely periodical due to thermal motion of the participating
atoms, it is still possible to transfer the recoil momentum to single atoms leading to
a fraction of incoherent processes. Accordingly the cross section for the production of
bremsstrahlung off a crystal consists of two parts:

dσcrystal = dσcoh. + dσincoh.. (4.9)

Figure 4.5 shows a typical bremsstrahlung spectrum obtained with the Crystal Bar-
rel/TAPS experiment using a diamond crystal as a radiator, after normalization on the
incoherent spectrum.
The degree of linear polarization of the photons is defined as the ratio of coherent to
incoherent processes. It can be improved by reducing the incoherent contribution in the
bremsstrahlung spectrum. Seeing that coherent and incoherent processes have different
angular distributions [Els07], collimation of the photon beam is one option to do so.
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Figure 4.5: Relative intensity of coherent bremsstrahlung. The spectrum was ob-
tained with the tagging system of the Crystal Barrel/TAPS experiment (see
section 4.2.3) and a diamond crystal radiator (section 4.2.2) and normal-
ized to the corresponding incoherent spectrum [E+09]. The enhancements
due to coherent processes are clearly visible. Solid line: ANB calculation
[NGH+03, Els07].

4.2.2 Goniometer and radiator targets

Goniometer

A variety of radiators are accessible to produce bremsstrahlung photons off the pri-
mary electron beam, along with means for beam diagnosis. These are mounted on a
5-axis goniometer contained in a vacuum tank (Figure 4.6, far left). Figure 4.7 shows a
schematic view of the goniometer. It is possible to precisely align the crystal radiator,
located at the intersection of the three rotatory axes, to fulfill the requirements for co-
herent bremsstrahlung stated in section 4.2.1. The other radiators are mounted on an
aluminum disc and can be positioned in the beam via translation along the x-axis and
rotation in φ.
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Figure 4.6: Schematic overview of the beamline of the Crystal Barrel/TAPS
experiment. Electron beam entering from the left. Descriptions of the
different components: see text.

θh

θv

φ

Figure 4.7: Schematic view of the goniometer. The goniometer disc contains car-
riers for amorphous radiators and tools for beam diagnostics ([gray]) along
with the diamond radiator mounting ([green]). The five axes of the go-
niometer are divided in two translational axes (perpendicular to beam di-
rection, [blue]) and three rotatory axes (θhorizontal, θvertical, φ, [red]).
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Crystal radiator

A diamond crystal for the production of linearly polarized bremsstrahlung photons is
glued on a 12.5µm thick Kapton foil in the center of the goniometer. The diamond
itself has a face plane of 4 mm × 4 mm and a thickness of 500 µm. This corresponds to
1/243 of the radiation length2 of diamond, X0 = 12.13 cm, and is chosen to match the
effective thickness of one of the amorphous radiators most commonly used (see table
4.1 for details). The diamond is cut in a way that the reciprocal lattice vector [100] is
perpendicular to its face plane [Els07].

Density Radiation Length X0 Thickness X
Material

[g/cm3] [g/cm2] [cm] [µm]
X/X0

15 1.05 · 10−3

Copper 8.96 12.86 1.43 50 3.50 · 10−3

150 1.05 · 10−2

Carbon (diamond) 3.52 42.70 12.13 500 4.12 · 10−3

Table 4.1: Bremsstrahlung radiators used in the Crystal Barrel/TAPS exper-
iment. Given are the key characteristics to be considered for the production
of bremsstrahlung off the radiators [A+08b].

Amorphous radiators

Three copper radiators are mounted radially on the goniometer disc, allowing for the
incoherent production of bremsstrahlung photons for unpolarized measurements and
normalization purposes. These are 4 mm wide copper strips with thicknesses of 15 µm,
50 µm, and 150 µm, respectively. These thicknesses correspond to approximately 1/1000,
3/1000 and 1/100 of the radiation length of copper (X0 = 1.43 cm, see table 4.1 for
details). Only the two thinnest radiators have been used under experimental conditions
to avoid multiple scattering in the radiator material and the resulting uncertainty in the
energy measurement (see section 4.2.3).

2The radiation length is the mean distance in matter over which an electron loses all but 1/e of its
energy by bremsstrahlung. For photons it is equal to 7/9 of the mean free path for pair production
[A+08b].
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Beam diagnostics

Two different means of control and optimization for the electron beam position and
shape are implemented in the goniometer. A Chromox 3 luminescence screen is viewed
by a camera and yields basic information about the position and extension of the beam.
To precisely measure not only the position and size but also the relative intensity distri-
bution, two individual iron wires of about 1 mm thickness are mounted horizontally and
vertically on the goniometer disc. When passing the beam, the bremsstrahlung events
produced off the wire are measured by the tagging system, leading to an intensity profile
of the beam in x- and y-direction. A non-invasive method for beam diagnostics dur-
ing data taking is given by monitoring the position of the coherent edge which is very
sensitive to the beam position (see section 4.2.1).

4.2.3 Tagging system

In order to determine the energy of the incident photon and thereby the center-of-
mass energy of a hadronic reaction, the energy loss of the primary electrons after the
bremsstrahlung process is measured:

Eγ = E0 − Ee− , (4.10)

with E0 being the incident electron energy and Ee− the measured electron energy after
the bremsstrahlung process. This is achieved by the tagging system, consisting of two
parts, the tagging dipole magnet and the tagging detector (see figure 4.8). After passing
the radiator target, the electron and photon beams enter the tagging magnet, where the
electrons are deflected according to their momentum:

pe− = Ee− = eBr for pe− � me− , c ≡ 1, (4.11)

with bending radius r and magnetic field strength B. Most of the electrons do not
participate in the bremsstrahlung process due to the relatively small cross section for
bremsstrahlung. The electrons with energy E0 have to be diverted into the electron beam
dump (section 4.2.4). For the data presented in this work, a primary beam energy of
3176 MeV and an according dipole field of 1.413 T has been used4.

3Chromium-doped Al2O3
4The mentioned relations base on the assumption of a constant magnetic field over the full flight

path of the electrons. In reality variations of the field have to be taken into account for a reliable
reconstruction. This is addressed in chapter 5
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Figure 4.8: Schematic view of the tagging system. After passing the radiator
target the incoming electron beam is diverted by the dipole field in the
gap of the tagging magnet ([red]). Unscattered electrons hit the electron
beam dump ([green], see section 4.2.4) while electrons having undergone a
bremsstrahlung process are detected in a tagging detector system consisting
of three parts of varying granularity: 14 plastic scintillator bars ([yellow]),
a 208-wire proportional chamber ([red]), and a hodoscope consisting of 480
scintillating fibers ([blue]).

Electrons that have produced a bremsstrahlung photon are detected in a three-part
detector system, depicted in figure 4.8. 14 slightly overlapping scintillator bars of 4 cm
thickness, and widths varying according to the expected rate. The uppermost bar,
exposed to the highest rates, has a width of 30.5 mm, the lowermost bar, corresponding
to the highest photon energies, of 208.3 mm. Together the bars cover an energy region of
22% to 92% of the primary electron beam energy with resolutions varying from 0.5 MeV
to 30MeV from lowest to highest electron energies5. The scintillator bars are read out
by two photomultipliers each whose signals are processed by TDCs6 and QDCs7 and
counted by scalers.

5Values correspond to a primary beam energy of 3200 MeV.
6Time-to-Digital Converter
7Charge(Q)-to-Digital Converter
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To improve the spatial resolution and with that the energy resolution, a second layer
of detector components supplements the system. The high photon energy range of 80%
to 92% of the incoming beam energy is covered by a 208-wire proportional chamber
(MWPC). Since the energy region covered by the MWPC is outside the region of interest
for this work, this component will not be used in the analysis.
The photon energy range of 18%8 up to 80% of incoming beam energy is covered by a
scintillating-fiber hodoscope. The hodoscope comprises a total of 480 fibers, 2 mm in
diameter, arranged in two layers in such a way that 2/3 of each fiber from one layer
overlap with two fibers from the other layer. The fibers are read out by multi-anode
photomultipliers in sets of 16, whose signals are then processed by multi-hit TDCs and
counted by scalers. The TDCs have a time resolution of 64 ps per channel, the energy
resolution of the fibers varies due to dispersion between 2 MeV and 13MeV.

4.2.4 Electron beam dump

High energy electrons, mainly the unscattered part of the primary beam, are deflected
towards the electron beam dump by the tagging magnet. This beam dump, located
between the tagger and the Crystal Barrel calorimeter, consists of lead and iron in-
terrupted by layers of boron carbide and polyethylene. The construction is such that
outside the beam dump neither electromagnetic radiation nor neutrons should occur.
No additional background should be introduced in the surrounding detectors. Data
analysis shows however distinct background patterns in the Crystal Barrel calorimeter
as well as an increased background rate in the tagger, both of which has been found to
stem from leakage from the electron beam dump (see chapter 6).
Embedded in the photon beam line running through the beam dump are two iron col-
limators of 20 cm length and inner radii of 11.9mm and 16,0 mm, respectively. The
setup also contains two sweeping dipoles to divert electron-positron-pairs created off
the collimators into the lead end-wall of the beam dump. An insufficient alignment of
the collimators however can introduce additional background in the upstream part of
the Crystal Barrel, as shown in chapter 6.

4.2.5 γ-intensity monitor

On the far end of the beamline (far right in figure 4.6) a γ-intensity monitor, consist-
ing of nine PbF2 crystals arranged in a 3x3-matrix and read out by photomultipliers,

8Only 450 of the 480 fibers actually overlap with the scintillator bars, thus the whole taggable range
is 18% to 80% of the primary electron energy.
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measures the total photon flux on the target. Photons entering the detector produce an
electromagnetic shower and are detected by the Čerenkov light emitted by the shower
particles. The segmentation of the detector, in combination with certain weighting al-
gorithms for the energy deposition also gives the option to use the γ-intensity monitor
for the determination of the photon beam position (see [Kon01] for details).

4.3 Reaction target and detector components

4.3.1 Reaction target

Located in the center of the Crystal Barrel calorimeter is a 5.275 cm long, cylindrical
target cell [Kop02] with a diameter of 3 cm. The cell itself consists of a 125 µm thick
Kapton cylinder with endcaps of 80 µm thickness. It can be filled with either liquid hy-
drogen or liquid deuterium, cooled down by a separate liquid hydrogen circuit joined to
the target circuit by a heat-exchanger. With the low density of Kapton (ρ = 1.4 g/cm2)
and its large radiation length of X0 = 28.6 cm, the target cell in combination with the
surrounding vacuum pipe (1 mm Al) ending in a 625µm Kapton window yields a suffi-
ciently low material budget around the reaction vertex to allow the decay products to
reach the detector components almost undisturbed.

4.3.2 Inner detector

Figure 4.9: Schematic view of the inner detector. Visible are the three layers of
a total of 513 scintillating fibers with their respective angles to the photon
beamline. See text for details.

The target cell is surrounded by a cylindrical scintillating fiber detector sensitive to
charged reaction products, covering the angular range of 28◦ ≤ θ ≤ 172◦ (see figure 4.10)
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[Fös01, Bog02]. This inner detector consists of a total of 513 scintillating fibers, 2 mm
in diameter. They are arranged in three layers on carbon fiber cylinders of 40 cm length,
and stabilized by an inner aluminum cylinder of 1.8mm thickness. The fibers of the
inner detector are connected via lightguides in sets of 16 to multi-anode photomultipliers
outside of the Crystal Barrel calorimeter, providing a fast timing signal. In the outer
layer the scintillating fibers are aligned parallel to the beam axis while the middle and
inner layer are oriented at angles +25.7◦ and −24.5◦, respectively (see figure 4.9). This
arrangement, with the fibers of the rotated layers circling only half of the cylinder, allows
for the reconstruction of a charged hit if two of the three layers detect the particle, the
efficiency of which is 98.4% (77.6% for the detection of a three-layer hit). The overall
angular resolution for this detector amounts to 0.4◦ in φ and up to 0.1◦ in θ, respectively
[S+05b].

4.3.3 Crystal Barrel calorimeter

The central part of the experimental setup is the Crystal Barrel calorimeter, consisting
of 1290 CsI(Tl) modules pointing towards the target center and covering a polar angular
range of 30◦ ≤ θ ≤ 168◦ and the full azimuthal angle. Figure 4.10 shows the arrangement
of these modules in 23 rings around the beam axis. Rings of type 1 - 10 consist of 60
crystals per ring with angular coverages of ∆φ = 6◦ and ∆θ = 6◦, whereas the last
three rings in the upstream direction (types 11 - 13) consist of 30 crystals each, covering
∆φ = 12◦ and ∆θ = 6◦ per module. Photons entering the calorimeter deposit their
energy via electromagnetic showers, the depth and width of which are constrained by
the characteristics of the absorbing material. Table 4.2 gives an overview over the main
features of CsI(Tl). The crystal length of 30 cm corresponds to 16 radiation lengths,
leading to an almost complete deposit of the shower energy of a 2 GeV photon within the
calorimeter. This energy deposit however encompasses a number of crystals due to the
transversal extent of the shower, given by its energy and the Molière radius9 of CsI(Tl).
An energy weighted reconstruction of such clusters allows for an improvement of the
effective angular resolution with respect to the granularity down to 1◦-1.5◦, depending
on the energy of the incident photon (see 5.2.2). The energy resolution of the calorimeter
scales with the deposited energy like [A+92]

σ(E)
E

=
2.8%

4
√

E[GeV]
. (4.12)

9The Molière radius RM defines a cylinder in which 90% of the shower energy is deposited. Its
dependence on the radiation length approximates to RM = 0.0265X0(Z + 1.2) [A+08b].
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Figure 4.10: Schematic view of the Crystal Barrel calorimeter. The photon beam
enters from the left. Numbers denote φ-symmetric rings of identical module
types. Also visible are the position of the inner detector ([red]) and the
LH2 target cell surrounded by the beam pipe ([orange]).

Figure 4.11: Schematic view of a CsI(Tl) module. 1: Titanium casing, 2:
Wavelength-shifter, 3: Photodiode, 4: Preamplifier, 5: Optical fiber, 6:
Electronics casing.

Figure 4.11 shows the layout of a CsI(Tl) module in detail. The scintillation light pro-
duced within the CsI(Tl) crystal is shifted in wavelength towards the region of maximum
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sensitivity of the photodiode used for readout. Since the output signal of photodiodes
is rather weak, a preamplification of the signal has to take place before transmission to
the readout electronics located outside the experimental area. These signals are then
shaped and read out by 12-bit dual-range ADCs10. For monitoring and calibration pur-
poses light of defined relative intensities can be introduced directly to the wavelength
shifter via an optical fiber connected to a lightpulser system [Bar00, Bös06] (see 5.1.2).

Density Radiation Molière Energy Maximum of Decay
length radius loss rate emission time

Scintillator ρ X0 RM dE/dx λmax τdecay

CsI(Tl) 4.53 g/cm3 1.86 cm 3.8 cm 5.6MeV/cm 550 nm 7.0µs
0.9µs

BaF2 4.89 g/cm3 2.03 cm 3.1 cm 6.6MeV/cm 220 nm 0.9 ns
300 nm 630 ns

Table 4.2: Main properties of the calorimeter crystals [A+92, A+08b].

4.3.4 TAPS

The TAPS calorimeter complements the Crystal Barrel in forward direction, covering the
polar angular range from 30◦ down to 5.8◦. It consists of 528 hexagonal BaF2 modules
in a forward wall setup (see figure 4.12), 1.18 m from the target center. According to
[G+94], the energy resolution of the calorimeter for an incoming photon energy range
of 45 - 790 MeV using a collimated beam is

σ(Eγ)
Eγ

=
A√
Eγ

+ B, (4.13)

with A = 0.79% and B = 1.80% for the fast component of the scintillation light and
A = 0.59% and B = 1.91% for the total light output, respectively. Figure 4.13 shows
a detailed view of one BaF2 module used in the TAPS calorimeter. A hexagonal BaF2

crystal with a height of 59mm and a length of 115 mm, corresponding to 12 radiation
lengths (see table 4.2 for details), ending cylindrically with a diameter of 54mm is
attached to a photomultiplier. The front of the crystal is covered by a separate, 5 mm
thick plastic scintillator for the identification of charged particles. These charged particle
vetos [Jan98] are read out via optical fibers connected to multi-anode photomultipliers.

10Analog-to Digital Converter
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Figure 4.12: Schematic view of the TAPS calorimeter. Hexagonal forward wall
setup of 528 BaF2 modules. The light blue area represents the 30◦ opening
left by the Crystal Barrel calorimeter.

Figure 4.13: Schematic view of a BaF2 module. 1: Plastic scintillator, 2: BaF2

crystal, 3: Photomultiplier, 4: Optical fiber.

The readout of the BaF2 modules with photomultipliers allows for signal processing
without the use of additional preamplifiers or shapers and can be used not only for energy
but also timing information. The signals of each module are split and processed by
constant-fraction discriminators (CFDs, see chapter 5) and leading-edge discriminators
(LEDs) for trigger purposes as described in the next paragraph.
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4.4 Trigger system

Since the hadronic cross section is orders of magnitude smaller than the electromagnetic
cross section, the detector responses during data taking have to be prefiltered online
according to specific topologies to ensure the taken data mainly consists of events due to
the desired reactions. In the Crystal Barrel/TAPS experiment a two-level trigger system
is implemented which generates a signal depending on the fulfillment of previously set
trigger conditions [JG04]. On the first level a fast decision is made whether a digitization
of all measured values by the detectors should be started. The decision time for this
level is determined by the time it takes for the analog signals from the detectors to
reach the readout electronics and can be set using delay lines. For the data taking
periods relevant for this work, this time was fixed by the TAPS detector whose signal
propagation time has been 300 ns. This timeframe only allows for rather simple trigger
logic derived from the fast detector signals. If the first-level trigger condition is met and
the digitization is started, the second-level trigger decides whether the event should be
written out. For the second level trigger, more complex logics can be applied since the
digitization time is in the order of 1ms. In particular, the comparably slow signals of
the Crystal Barrel calorimeter11 can be used in this stage.

4.4.1 First-level trigger

In the data taking periods used in this work, only the signals of the TAPS calorime-
ter have been considered for the first-level trigger decision. The trigger signals of the
TAPS calorimeter are generated by two leading-edge discriminators (LEDs) connected
to each BaF2 module. The thresholds for the two discriminators are set to different
values, referred to as LED High and LED Low, to allow for more complex trigger con-
ditions12. The thresholds are set individually for each ring of the calorimeter, with the
innermost thresholds being at the highest possible value of approx. 1GeV (see 5.1.1)
in order to suppress electromagnetic background. Figure 4.14 shows the segmentation
of the calorimeter surface with respect to the generation of the LED High and LED
Low trigger signals. For each threshold set, the calorimeter is subdivided into eight
segments consisting of 64 modules each13. The signals from the individual modules of

11The necessary pre-amplification and shaping of the Crystal Barrel signals results in a risetime of the
order of 2 µs.

12Due to the limited number of available LED modules, the trigger signals of the LED High segments
G and H are generated by the LED Low modules.

13The 4× 4 modules not assigned to a trigger segment (white modules at the edge in figure 4.14) show
a considerably reduced efficiency and are therefore not used during data taking.
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Figure 4.14: Trigger segmentation of the TAPS calorimeter. Trigger segments
for the LED Low (left, numbered) and LED High (right, lettered) trigger
conditions.

each segment are passed through a logical OR unit, thus generating one trigger signal
per segment for each LED setting. The different layout of the LED Low trigger segmen-
tation was chosen to limit the probability that e+e−-pairs created by photon conversion
hit two different segments, fulfilling trigger condition B described below.

4.4.2 Second-level trigger

The available time for the second-level trigger decision is sufficient to take the hits
detected in the Crystal Barrel calorimeter into account. The corresponding trigger signal
is created by the FAst Cluster Encoder (FACE), a clusterfinder based on a cellular logic
[Fle01]. A cluster is in this case defined as a contiguous group of detector modules
containing energy of the electromagnetic shower created by the incident photon14. The
time for the logic to determine the number of clusters in a given event is on the order
of 6 - 10µs, depending on the number of participating crystals. The trigger signal
itself, based on a predefined minimum number of clusters to be detected, then either
acknowledges or interrupts the digitization of the detector information started by the
first-level trigger.

14For the TAPS calorimeter the issue of online cluster detection is circumvented by the introduction of
trigger segments.
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4.4.3 Trigger conditions

During the data taking periods relevant for this work the trigger facetest2new was used,
comprising two conditions based on the two trigger levels introduced above:

• Condition A: At least one hit in the TAPS calorimeter above the LED high
threshold (LED-High OR), accompanied by at least two separate clusters in the
Crystal Barrel calorimeter identified by the FACE.

• Condition B: Two hits in the TAPS calorimeter in separate LED Low trigger
segments over their according thresholds. The second-level FACE decision is by-
passed in this case.

Other triggers have been used for calibration and monitoring purposes, most impor-
tantly the Tagger-OR trigger, whose only condition is a hit in one of the scintillator
bars of the tagging hodoscope. Data taken with this trigger is mandatory for the deter-
mination of the photon flux as well as the monitoring of the photon polarization.

4.4.4 Trigger simulation

The hardware trigger has also been implemented in the offline analysis by means of a
trigger simulation package [JG04]. The concept is based on the binary nature of trigger
conditions; either a given combination of conditions (i.e. detector signals) is fulfilled or
not. The trigger conditions are therefore formulated as a 16-bit binary trigger word,
where each bit represents a possible trigger signal. During analysis of an event, the
same pattern is generated from the respective detector responses and compared to the
pre-loaded trigger condition. Trigger thresholds, scaling factors and arbitrary trigger
conditions can be set by means of initialization files.
The simulation is applied to both the experimental data, e.g. for threshold adjustment
purposes (see section 5.1.1) and Monte Carlo simulations (section 6.1) to e.g. reproduce
trigger acceptances in the simulated data. For further information on the trigger sim-
ulation as well as the trigger logic of the Crystal Barrel/TAPS experiment and other
trigger conditions used during data taking, see [JG04].
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5 Calibration and reconstruction

The experimental setup described in the previous chapter provides digital information
obtained by a variety of detectors. To use this information in terms of physical quantities
like time or energy, the data has to be calibrated accordingly. The next step is then to
correlate the calibrated information with the actual particles which created the detector
signals, a process referred to as reconstruction.

5.1 Subdetector calibration

5.1.1 TAPS calibration

Time calibration

The time calibration of the TAPS calorimeter consists of two parts, the determination
of the gain (time/channel) of the TDC-modules and the correction of offsets due to
varying cable lengths and signal propagation delays within the electronics. To measure
the gain, pulses of different, known frequencies are fed into the TDCs resulting in a series
of sharp signals in each time spectrum. The relative position of these peaks allows for the
calculation of the gain-factor for each module. The time offset between the individual
modules is determined using the decay photons of a π0 event, both of which are detected
in the TAPS calorimeter. The central crystal for each photon-cluster gives the time for
the particle, and the time difference between all possible pairs of particles is entered into
two histograms, one for each central module. Should, due to defects, no timing signal
be available for a module, it is assigned the time of a neighboring module belonging to
the same cluster, the signal of which stems from the same incident photon. The offset
of the modules is now corrected in such a way that the time signals are at the same
position, 0 ns. This process is done iteratively, since only the central crystal timing is
corrected in each pass. Figure 5.1 shows the resulting spectra.

43
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Figure 5.1: Calibrated relative timing of TAPS modules. The time difference
between two photons from a π0 decay detected in the TAPS calorimeter.
Left: Summed over all BaF2 modules. Right: As a function of the module
number. White points denote peak positions, empty channels correspond to
modules with bad timing signals [Cas06]. For the beamtimes subject to this
work, a time resolution of σ = 0.39 ns has been achieved.

Energy calibration

The energy calibration of the TAPS calorimeter is a three-stage process. In the first
stage, the linear relation between deposited energy and QDC channel number is ex-
ploited [G+94]. A first calibration point is obtained using a pedestal pulser, resulting
in a sharp peak in the QDC spectrum (see figure 5.2), corresponding to 0 MeV energy
deposit. The second point needed for a linear extrapolation is given by the response of
the BaF2 modules to cosmic muons. Since all TAPS modules are identical in shape and
orientation, the energy deposition of cosmic muons is the same for each crystal, namely
38.9MeV1 (cf. figure 5.2). This calibration is sufficient for control purposes during data
taking. In the second step of the process, the decay photons of the π0 meson, detected
in the TAPS calorimeter are used, analogous to the time calibration. For all possible
pairs of hits, the invariant γγ-mass is calculated as

Mγ1γ2 =
√

2Eγ1Eγ2(1− cos(θγ1γ2)) (5.1)

where Eγi are the measured energies of the photons and θγ1γ2 their respective opening
angle. This invariant mass is histogrammed for both of the central modules of the elec-
tromagnetic showers. The difference between the position of the π0 peak in the invariant
mass spectrum to its nominal mass of 134.98 MeV [A+08b] results in a correction factor

1Assuming perpendicular entry to the flat side of a crystal of 5.9 cm thickness and dE/dx =
6.6MeV/cm.
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Figure 5.2: Example cosmic ray spectrum for a TAPS BaF2 module [Cas06].

for the corresponding central module. The module detecting the second decay photon
is arbitrary, so its effect on the calibration of the first detector cancels out on average.
As for the time calibration, this process is done iteratively. The overall π0 peak as well
as the peak positions for the individual detector modules after calibration are shown
in figure 5.3. One complication arises due to the fact that the outermost parts of the
TAPS calorimeter are shadowed by the Crystal Barrel, so that only few π0 events hit
this region. For the according modules, an overall correction factor, the average of all
detectors, is applied and these modules are rejected in the data analysis as central de-
tectors for electromagnetic showers.
A cross-check of the calibration at this point, using the invariant mass of the η meson,
reconstructed from its γγ-decay as described above for the π0, yields a mass-shift of
about 5 to 10 MeV towards higher masses. This can be explained by the fraction of
energy loss for the respective clusters due to modules with energy deposits below the
CFD threshold. This effect, for the π0 corrected by a factor as described above, is
energy-dependent [Kot01]. The decay photons of the η meson have in general higher
energies than for the π0, so the influence of the CFD thresholds is less, since more
modules participate in a cluster; the η mass is overcorrected. Since the statistics for η

events, due to cross section, opening angle and branching ratio restrictions, is signifi-
cantly lower than for the π0, a different approach has to be taken. Additionally, only
the η mass has to be corrected and the π0 has to stay untouched, since it is already set
to the correct position. Using the peak positions of the respective meson masses in the
invariant γγ-mass spectrum as reference and assuming that the decay photons have the
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same energy, a correction function of the form

Enew = a + b · Eold + c · E2
old, (5.2)

is used. The zero point of the calibration is fixed by the pedestal, so the parameter a

has to be zero. The parameters b and c are then determined by

b =
mπ

mγγ
π
− c · Eπ (5.3)

c =
(

mη

mγγ
η
− mπ

mγγ
π

)/
(Eη − Eπ). (5.4)

Here (mπ,mη) are the nominal meson masses, (mγγ
π ,mγγ

η ) the reconstructed peak posi-
tions in the invariant γγ-mass spectrum and (Eπ, Eη) the mean reconstructed energies
of the respective mesons. For the data presented here, the parameters have been deter-
mined to b = 1.0165; c = −5.6715 · 10−5 within this work (cf. figure 5.4).

Figure 5.3: Calibrated π0 mass reconstructed in the TAPS calorimeter. Left:
Invariant mass of two photons detected in the TAPS calorimeter, summed
over all BaF2 modules. Right: As a function of the module number. White
points denote peak positions, empty channels correspond to the parts of the
detector shadowed by the Crystal Barrel [Cas06].

LED calibration and threshold determination

As described in 4.4, the TAPS calorimeter creates two trigger signals depending on two
thresholds set for the leading-edge discriminator (LED) for each detector module, LED
High and LED low. To ensure a reliable, reproducible situation for each data taking
period, the according discriminators have to be calibrated. This calibration is done
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Figure 5.4: Effect of the energy-dependent calibration. Reconstructed π0- [left]
and η-mass [right] before [blue] and after [black] application of the correc-
tion function (5.2) (using different data samples, counts refer to uncorrected
spectra). The peak positions, as derived from a fit assuming a Gaussian
signal (solid line) and polynomial background (dashed) show virtually no
change for the π0 (134.8MeV to 134.2 MeV) while the position of the η-
signal changes from 574.0MeV to 547.6 MeV.

Figure 5.5: TAPS LED thresholds for photons and protons. Ratio of energy
spectra taken under the condition that the LED has fired and without any
condition. Left: LED low, right: LED high. The threshold is defined as the
center of the arising edge (vertical line). Due to their different pulse shape,
protons [top] and photons [bottom] exhibit different threshold character-
istics [Cas06].
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using data taken at three different LED voltage settings. For each setting two energy
spectra are recorded for each module, one only with entries for which the corresponding
LED has given a signal and one without any condition (raw spectrum). From the ratio
of these spectra the thresholds can be determined either in units of QDC channels or,
after energy calibration, in MeV. Figure 5.5 shows the resulting ratios.
The thresholds were set to the same value for each ring of the TAPS detector with values
increasing with decreasing polar angle to reduce the effects of e+e− pair production off
the primary photon beam. It is also possible to set slightly higher thresholds than
the hardware settings artificially in the offline analysis to compensate for variations
occurring during data taking e.g. due to thermal shifts in the electronics. In order
to determine such variations, which may have an influence on the resulting angular
distributions, the same method as for the LED calibration is used during data analysis.
The threshold values used in this analysis are given in appendix D. The same values
are also used in the analysis of Monte Carlo simulations.
For a more detailed description of the calibration process for the TAPS calorimeter, see
[Cas06].

5.1.2 Crystal Barrel calibration

Figure 5.6: Squared π0 mass for the Crystal Barrel after calibration. π0 peak
used for calibration for one CsI(Tl) module in various stages of the calibra-
tion [Jun00].

The calibration process for the Crystal Barrel calorimeter is handled in the same way as
the second step of the TAPS energy calibration, using π0 events with both decay photons
detected in the Crystal Barrel. For each CsI(Tl) module the position of the π0 peak is
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iteratively compared to its nominal mass, resulting in a calibration factor. The central
module of the second electromagnetic shower is again arbitrary so that effects from the
second module cancel out in average. A cross-check of this calibration using the η-mass
as described above does not show the need for an additional energy-dependent correc-
tion. This is partially due to the comparably low single crystal thresholds of 1MeV,
because of which modules with energy deposits below this threshold do not influence
the π0-calibration as much as for the TAPS calorimeter. Additionally, a different means
of energy- and angle-dependent correction is applied during reconstruction (see 5.2.2).
In contrast to the TAPS calorimeter, the Crystal Barrel utilizes 12bit dual-range ADCs.
The two ranges are realized by splitting the signal at the ratio of 8:1:1, feeding 8/10
to the low range and 1/10 to the high range input of the ADC. The remaining 1/10 is
fed to a reference channel and used for an internal pedestal correction. The logic of the
ADC, using two internal discriminators, decides which channel to digitize, resulting in a
low energy, high resolution range for energies up to ∼ 130 MeV and the lower resolution,
high-energy range covering energies up to ∼ 1100 MeV. The π0 calibration method is
used to fix the gain for the high resolution, low range of the ADCs. A second means
of calibration, covering both the low and the high range of the ADCs is given by a
lightpulser system [Bar00].
This system feeds lightpulses matching the spectral distribution of the CsI(Tl) scintillat-
ing light directly into the wavelengthshifter of each module. The intensity of the pulses
can be varied using different filters, thus mimicking the CsI(Tl) response to different
energy deposits. Using the proportionality of ADC response and energy known from the
π0 calibration this allows for a continuous calibration over both energy ranges [Bös06].
A detailed description of the calibration of the Crystal Barrel calorimeter is given in
[Jun00].

5.1.3 Tagging hodoscope calibration

Time calibration

The time of an event is given by the trigger which in the given case is created by
the TAPS calorimeter with its excellent timing resolution (cf. 5.1.1). Accordingly, the
time calibration of the fiber hodoscope is done with respect to this detector. Once the
calibration for TAPS is finished, the mean time between two photons from the decay
of a π0 serves as a timing reference. The tagging hodoscope calibration itself is now
conducted in such a way that the time difference between the 480 individual fibers,
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registering the incident electron for each π0 event, and the TAPS reference time is zero.
Figure 5.7 shows the resulting spectra.

Figure 5.7: Calibrated relative timing between the tagging hodoscope and
TAPS. The time difference between the mean time of two photons from
a π0 decay detected in the TAPS calorimeter and the associated electron
in the tagging hodoscope after the calibration process. Left: Sum over all
fibers of the tagging hodoscope. Right: As a function of the fiber number
[Cas06]. For the beamtimes subject to this work, a relative time resolution
between the tagging hodoscope and TAPS of 0.69 ns has been achieved.

Energy calibration

Goal of the energy calibration of the tagging system is the assignment of a distinct
electron - and therefore photon - energy to each of the 480 fibers of the hodoscope for a
given setting of primary electron beam energy and field strength of the tagging dipole.
In a first step, a fifth degree polynomial expressing this correlation has been calculated
using the field map of the dipole and the known spatial positions of the fibers [Hor04].
In a second step, a low rate primary electron beam is varied in energy and is deflected
by a constant field of the tagging dipole directly into the tagging hodoscope (direct
injection). In this way four measurements, using primary electron energies of 680 MeV,
1300 MeV, 1800 MeV, and 2050 MeV at a dipole field strength of B = 1.413 T, have
been conducted [Kle10]. This data has then been used to correct the polynomial (see
figure 5.8). For the presented data, taken using primary electrons with an energy of
3176 MeV, the final polynomial reads:

E = Pol(x)|3.2GeV = 2533.81− 190.67 · 10−2x + 28.86 · 10−4x2 (5.5)

− 34.43 · 10−6x3 + 95.59 · 10−9x4 − 12.34 · 10−11x5,
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with E being the photon energy in MeV and x the fiber index. For a different pri-
mary beam energy, E2, and thus a different field strength of the dipole (see 4.2.3), this
polynomial is scaled using the ratio of the energies:

Pol(x)|E2
=

3.2 GeV
E2

· Pol(x)|3.2GeV . (5.6)

Figure 5.8: Relation between photon energy and fiber number. Dashed line:
Tagger polynomial (5.5), points: Data obtained by direct injection method
[Kle10].

5.2 Subdetector reconstruction

In order to process a recorded event with respect to a certain hadronic reaction, in-
formation about the initial and final state particles has to be obtained. This requires
knowledge of the energy of the incoming photon and the four-vectors of the outgoing
decay products. The former can be calculated from the information generated by the
tagging system. For the latter, the energy and direction of the final state photons can
be obtained from the response of the calorimeters. In the case of protons, only the
direction can be derived from detector information, since they mainly only deposit part
of their energy in the calorimeter crystals. The full energy of the protons has to be
calculated from energy-momentum-conservation.
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Figure 5.9: CFD thresholds for the March and May 2003 beamtimes. The
thresholds have been determined from the data for the March ([top]) and
May ([bottom]) 2003 beamtimes [Nan06, Jae06]. Lower ([red]) line: Hard-
ware threshold setting (10 MeV). Upper ([blue]) line: Software threshold
setting (30 MeV). Vertical ([green]) lines: TAPS LED High segmentation
(see figure 4.14).

In the following, the reconstruction of final state photons in the TAPS and Crystal
Barrel calorimeters along with the reconstruction of the incoming photon energy will be
discussed.
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5.2.1 TAPS reconstruction

In general, photons do not deposit their energy in just one crystal but instead form
electromagnetic showers spanning multiple detector modules. This is accounted for by
a cluster-finding algorithm implemented in the TAPS reconstruction. A cluster is de-
fined as any contiguous group of BaF2 crystals registering an energy deposit above the
threshold of their respective constant-fraction discriminators (CFDs).
For the beamtimes relevant to this work the hardware CFD thresholds had been set
to 10MeV. Independent analyses of the data [Nan06, Jae06] however showed a signif-
icant spread over a wide energy range. Figure 5.9 shows the distributions of the CFD
thresholds for the March and May 2003 beamtimes as extracted from the data. Since
the larger variations in the CFD thresholds led to artificial asymmetries in the data
analysis, the data has been recalibrated using a software threshold setting of 30MeV.
The energy of a cluster is then calculated as the sum of the energies detected in the
participating modules, the module with the highest entry is treated as the center of the
shower.
The timing information available for each BaF2 module gives an additional constraint
on the reconstruction of clusters. All signals of one cluster have to be coincident within
5 ns with the central module to assure the energy deposits originate from the same inci-
dent photon. Should, due to inefficiencies, no timing signal be available for the central
module, the one with the next highest energy deposit is used as reference for the clus-
ter. Modules without timing information are then assigned a mean time derived from
all TAPS detectors. Modules belonging to a cluster, but having a relative timing outside
of the coincidence window are discarded.
The spacial distribution of an electromagnetic shower allows for a reconstruction of the
position of the incident particle with a resolution better than the inherent resolution
due to the granularity of the calorimeter. This is achieved by means of a weighted sum
of the x and y coordinates of the individual members of a cluster:

X =
∑

i wixi∑
i wi

, Y =
∑

i wiyi∑
i wi

, (5.7)

where:
wi = max

{
0;W0 + ln

Ei∑
i Ei

}
. (5.8)

This logarithmic weighting yields a significantly better description of the energy depo-
sition than e.g. a linear weighting [AOP+92]. The value of the constant W0 = 4 has
been determined by GEANT simulations [Cas06]. This method of position reconstruc-
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Figure 5.10: Shower depth correction for the TAPS calorimeter. See text for
details.

tion assumes that electromagnetic showers start at the front face of the BaF2 modules,
neglecting the penetration depth of the photon into the detector before the shower is
formed. This method leads to an error in the position reconstruction of the incident
photon as illustrated in figure 5.10. To account for this, the travel length Z of the
photon in the detector material has to be calculated [A+08b]:

Z = X0

(
ln

E

Ec
+ Cγ

)
, (5.9)

with the radiation length of BaF2, X0 = 2.03 cm, incident photon energy, E, and the
critical energy for the crystal, Ec = 12.78 MeV (see chapter 4.2.1). The constant Cγ

is given in [A+08b] as Cγ = 0.5. This value however has been found by Monte Carlo
simulations to be too small. Figure 5.11 shows the difference of the generated and
reconstructed polar angle for photons in the TAPS calorimeter, using three different
values for Cγ . In the analysis presented in this work, a value of Cγ = 2.0 has been used.
With this information the position corrections ∆X and ∆Y can be approximated by
[Hej98]:

∆X

X
=

∆Y

Y
=
( s

Z
+ 1
)−1

. (5.10)

Using these methods a polar angular resolution for photons of less than 1.3◦ can be
achieved [Cas06].
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Figure 5.11: Polar angle reconstruction in the TAPS calorimeter. Difference
between the generated and reconstructed polar angle for photons in the
TAPS calorimeter. Left to right: Cγ = 0.5, Cγ = 1.2, Cγ = 2.0 (see (5.9)).

5.2.2 Crystal Barrel reconstruction

The reconstruction methods applied to the Crystal Barrel are very similar to those
described above for the TAPS calorimeter. Here, a cluster is defined as any contiguous
group of CsI(Tl) modules with an individual energy deposit of at least 1MeV (single-
crystal threshold) and a total energy sum of at least 20 MeV (cluster threshold). This
cluster threshold is applied to reduce the influence of shower fluctuations (split-offs).
Split-offs can occur when the energy deposit in a module belonging to a cluster is below
the single crystal threshold, thus breaking the single contiguous group of modules into
two, the main one and a small, low energetic one split off from it. This can lead to a
wrong multiplicity in the calorimeter, since the one photon creating the split-off would
be counted as two2.
It is possible for a cluster to be formed by more than one incident particle due to
overlapping electromagnetic showers. This is accounted for by scanning the participating
crystals for local maxima in the deposited energy. Such a maximum is considered as
the central crystal of the cluster if its energy deposit exceeds 13MeV (central crystal
threshold). In case of clusters containing only one such maximum, they are identified
with one incident particle, forming a PED3 and the PED energy is equal to the energy
sum of the participating modules:

EPED = Ecl =
∑

i

Ei. (5.11)

In case of more than one local maximum, the energy reconstruction is somewhat more
2This applies - to a lesser extent - also for the 30MeV cluster threshold for the TAPS calorimeter.
3Particle Energy Deposit
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Figure 5.12: A cluster containing 2 PEDs. CsI(Tl)-modules with an energy deposit
exceeding the single crystal threshold are colored red, central crystals blue.
The dashed (dotted) line denotes the crystals relevant for the nine-energy
of central crystal A (B). The energy deposit in detectors neighboring both
central crystals (C-E, magenta) is split between the two nine-energies ac-
cording to (5.13).

complicated, since the energy of the cluster has to be distributed among the incident
particles. In a first step, the energy sum of each central crystal k and its eight neighbors,
the so called nine-energy E9, is calculated:

Ek
9 = Ek

cen +
8∑

j=1

Ej . (5.12)

If a crystal is adjacent to more than one central crystal, only a fraction of its energy is
added to the corresponding nine-energies. Let crystal i be neighbor to j local maxima.
Then the fraction of its energy Ei that enters the nine-energy of central crystal k, Ei

9k,
is calculated as:

Ei
9k =

Ek
cen∑

j
Ej

cen

· Ei. (5.13)

In the example illustrated in figure 5.12, this translates to e.g.:

ED
9A =

EA

EA + EB
· ED.
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The energy of each PED is now the cluster energy, weighted with the nine-energies:

Ei
PED =

Ei
9∑

k

Ek
9

· Ecl. (5.14)

As for the clusters, the PED energies have to exceed a threshold of 20 MeV to be ac-
cepted as a particle in the reconstruction.
The PED energy calculated as described above is however not equal to the energy of
the incident photon, since parts of the electromagnetic shower are not detected due to
insensitive material between the CsI(Tl)-crystals or leakage at the edges of the calorime-
ter. These effects vary with the true energy and therefore shower size as well as with the
polar angle. This is accounted for by the application of an energy- and angle-dependent
correction function of the form [Jun00]:

Ecorr
PED =

(
a(θ) + b(θ) · e−c(θ)·EPED

)
· EPED. (5.15)

Typical values for the coefficients used in this work are a ≈ 1.05, b ≈ 0.05, and c ≈ 0.007.
The position reconstruction for 1-PED cluster in the Crystal Barrel calorimeter is carried
out similar to the TAPS reconstruction using a weighted sum of the crystals participating
in the cluster. In this case however instead of the Cartesian coordinates in (5.7) the
polar and azimuthal angles of the crystal centers, θi and φi are used:

θPED =
∑

i wiθi∑
i wi

, φPED =
∑

i wiφi∑
i wi

. (5.16)

The weighting factors are defined as in (5.8) with a constant W0 = 4.25. In case of
multi-PED clusters, only the central crystal and its direct neighbors can be used for the
position reconstruction, so the sum over all crystal energies,

∑
i Ei, in (5.8) is replaced

by the nine-energy (5.12). This leads to a spatial resolution for photons of 1◦ − 1.5◦ in
θlab and φlab, depending on the energy and polar angle of the incident photon [Jun05].
The CsI(Tl) modules of the Crystal Barrel are pointing towards the target center, so a
correction due to the penetration depth of electromagnetic showers is not necessary.

5.2.3 Tagging hodoscope reconstruction

The reconstruction of the incident photon energy for each event implies the determina-
tion of the position of the incident electron within the fiber hodoscope of the tagging
system. A fiber is considered as hit by an electron once the corresponding multi-hit
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TDC shows at least one entry for the given event. Since an electron can produce a
signal in more than one fiber, such hits in the hodoscope have to be clustered according
to their spatial and timing information. In the given analysis, any contiguous group
recording a hit in their corresponding TDCs within 2 ns of each other is regarded as a
cluster. Should one fiber adjacent to two signaling ones not record a hit, this is still con-
sidered a cluster to account for inefficiencies. To obtain the energy value corresponding
to a cluster, the fiber numbers are averaged and the tagger polynomial (see 5.1.3) is
calculated for the resulting average number.
The readout of the fibers via multi-hit TDCs allows for the possibility of more than one
hit being registered per event. The determination of the correct hit associated with the
hadronic event under consideration is part of the selection process and is described in
detail in chapter 6.

The energy region of interest for this work, with respect to the extraction of polariza-
tion observables, was covered completely by the fiber hodoscope of the tagging system.
Therefore the calibration and reconstruction of the wire chamber has been omitted in
this chapter. The scintillator bars and the γ-intensity monitor, which are mainly used
for the photon flux determination, have also been left out since an absolute normaliza-
tion is not needed in the presented analysis.
The use of the charge-sensitive subdetectors of the Crystal Barrel/TAPS experiment has
also been avoided for efficiency reasons explained in the following chapter. For further
information on these components, see e.g. [Cas06].



6 Selection of the reaction γp→ pπ0η

In this chapter the relevant datasets are introduced and the selection of events with
respect to the pπ0η final state is described. The latter comprises cuts on timing infor-
mation and kinematic constraints, as well as the application of a kinematic fit.

6.1 Monte Carlo

In order to understand possible background contributions to the data and for acceptance
and efficiency determination, 3 million Monte Carlo events of the type

γp → pπ0η → p4γ

were generated for a photon energy range from threshold to 3.175 GeV. This set, pro-
duced using the GEANT3 based CBGEANT [Cre01] simulation package, has been sub-
jected to the same analysis chain as the data, allowing for a cross-check of each step.
The experimental setup described in chapter 4 is realized in the simulation package as
accurately as possible, including all detector components as well as insensitive material
placed in the path of the reaction products, such as holding structures. The simula-
tion starts, however, at the target point; the incoming photon beam, tagging system
and beam dump are not included. The desired reaction products are produced by an
event generator according to the available phasespace, taking into account energy- and
momentum-balance. Dynamical effects, like the formation of resonant states, are not
simulated. Next the created particles are tracked through the insensitive material and
detector components in small steps and their interactions calculated on a statistical
basis. Possible processes include ionization, Coulomb-scattering, shower formation and
decays. The results of the simulation are then digitized based on the properties of the
sensitive detector components and stored in the same format as the real experimen-
tal data, allowing for the use of the same analysis framework for data and simulation.
Additionally, the Monte Carlo data has also been subjected to the trigger simulation
[JG04] (see chapter 4.4).

59
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6.2 Datasets

A
B

Figure 6.1: Degree of linear polarization for the two beamtimes. The high-
est polarizations were 49.2% at Eγ = 1305 MeV (A, March) and 38.7%
at 1610MeV (B, May), respectively (see [E+09] for details). Vertical lines
indicate the three energy ranges chosen for the extraction of polarization
observables.

The selection procedure derived in this chapter and the results presented in chapter 7 are
based on data taken with the Crystal Barrel/TAPS experiment in March and May 2003.
Figure 6.1 shows the polarization settings for these data taking periods. In both cases
the linearly polarized photons were produced via coherent bremsstrahlung off a diamond
radiator, using a primary electron beam with an energy of 3.2 GeV. The measurements
were performed using a liquid hydrogen target. For the March beamtime the coherent
edge position was set to 1350 MeV, resulting in a maximum degree of polarization of
49.2% at a photon energy of 1300MeV; for the May 2003 beamtime the coherent edge
was set to 1650 MeV, leading to a maximum polarization of 38.7% at a photon energy
of 1600 MeV. The data taken during these beamtimes amounts to a total of 160 hours
and 245 million events of raw data on disk1.
The two datasets were subdivided into three energy ranges for the determination of the
polarization observables, Eγ = 1085 ± 115 MeV, 1325± 125 MeV, and 1550± 100 MeV
respectively, as indicated by the vertical lines in Fig. 6.1. The low energy range consists
solely of data taken with the polarization setting A (March), and the high energy range
of data taken only with setting B (May), to guarantee a sufficiently high degree of
polarization. Both datasets were combined for the intermediate energy range. The
spectra shown in this chapter are, unless stated otherwise, integrated over the energy

1Due to a problem with the trigger settings, parts of the May beamtime had to be excluded from the
analysis, resulting in the given numbers.
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range of 970 to 1650 MeV.
The photon energy range of 900 MeV, slightly below the π0η production threshold, to
2500 MeV, corresponding to the lower end of the tagging hodoscope, has also been
selected for analysis to perform further cross-checks of the data. A selection of the
resulting invariant mass distributions and Dalitz plots is shown in chapter 7, and the
full set is shown in appendix C.

6.3 Preselection

Meson Decay mode Branching ratio

π0 γγ (98.798± 0.032)%

η γγ (39.31± 0.20)%

π0π0π0 (32.56± 0.23)%

π+π−π0 (22.73± 0.28)%

π+π−γ (4.60± 0.16)%

Table 6.1: Dominant decay modes of π0 and η mesons. Values taken from
[A+08b].

Particle multiplicity Table 6.1 gives an overview of the dominant decay modes of the
π0 and η mesons. Since the Crystal Barrel and TAPS calorimeters are designed for the
detection of photons, decay modes involving charged particles will not be taken into
account for further analysis. This poses no limitation in case of the π0, since its neutral
decay π0 → γγ has a branching ratio2 of ≈ 98.8%. In case of the η this constraint
leaves the two decay modes η → γγ and η → π0π0π0, whose combined branching ratio
is ≈ 72%. These considerations lead to two possible final states to be measured by
the detector system, the proton along with 4 photons (η → γγ) and the proton plus
eight photons (η → π0π0π0). The latter state however poses the problem of a significant
decrease in acceptance and a dramatic increase in combinatorial background. Therefore
this analysis is limited to data preselected for five distinct hits in the calorimeters
(PEDs), identified as described in chapter 5.
The initial state of the reaction is completely known kinematically (incoming photon
momentum, proton mass and momentum), so it is generally possible to reconstruct

2The branching ratio is defined as the ratio of the decay width of the given decay mode to the total
decay width: BR = Γi/Γ · 100%
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the final state even if one of the particles escaped detection. This option is not used
however, since no significant signal for the pπ0η final state could be distinguished from
the background for such 4-PED events.

Charge identification The main goal of this work is the determination of asymme-
tries in the φ-distributions of the final state particles (see 3.1), so it has to be ensured
that no artificial asymmetries are introduced by detector inefficiencies. While for the
calorimeters the efficiencies are well known and under control [Jun05, Cas06], this is not
necessarily the case for the charge sensitive inner detector and the TAPS vetos. Here
uncertainties in the determination of the efficiencies exist and inefficient channels would
lead to the omittance of events in certain proton-angles, thus leading to artificial asym-
metries. This is illustrated in figure 6.2. Shown are in the upper row the reconstructed
φ-θ-distributions of the proton, determined as described below, for the incoming photon
energy range Eγ = 1325 ± 125 MeV, once with a cut on exactly one charged particle
(left) and once with a cut on one or no charged particle in the final state (right). The
comparison shows distinct areas of less statistics in the spectrum cut on exactly one
charged particle, for example at (φ, θ) ≈ (60◦, 10◦) (A) or (φ, θ) ≈ (−160◦, 24◦) (B).
Here inefficient TAPS veto-scintillators lead to the omission of otherwise good events.
For example A this is further illustrated in the bottom row of figure 6.2. On the left side
the projections on the φ-axis of the φ-θ-distributions are shown for a θ region of 1◦−15◦.
The area of less statistics in the spectrum cut on exactly one charged particle (solid line)
is clearly seen in comparison to the cut on one or no charged particle (dashed line) as
a dip at φ ≈ 60◦. This is also reflected in the ratio of the distributions shown in the
bottom right. The binning for the projections has been chosen according to the binning
of the φ-distributions later used for the extraction of the polarization observables (see
chapter 7). The difference in statistics between the two variants is approx. 10%.
The data has therefore, in addition to the selection of five PEDs mentioned above,
been selected for events where not more than one of these PEDs has been identified
as charged, allowing for five “neutral” particles in the final state. Additionally, charge
information, where available, will not be used in the further analysis. Effectively, all
five final state particles are regarded as photons and the proton will be determined via
the kinematic constraints posed on the fourvectors. The analysis is carried out in such
a way that each of these five “photons” is left out of the analysis loop once, leaving five
4-photon combinations. These are then tested for compatibility with the assumption
that the left out particle is the proton. This leads to five individual analyses for each
event to ascertain the correct proton out of the five particles.
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Figure 6.2: Charge identification efficiency. Top row: Reconstructed φ-θ-
distribution of the proton, identified by combinatorics using all cuts de-
scribed in the following sections with the exception of the kinematic fit, for
a preselection of the data requiring (a) exactly one charged particle and (b)
one or no charged particle in the final state. Already in this picture detection
inefficiencies are visible for the cut on exactly one charged particle (A, B).
Bottom row: (c) φ-projections of the distributions (a) and (b), integrated
over 1◦ ≤ θ ≤ 15◦. φ-binning according to the distributions later used for
the extraction of polarization observables. Solid ([red]) line: Cut on exactly
one charged particle, dashed ([blue]) line: Cut on less or equal one charged
particle. The dip around φ = 60◦ corresponds to structure A in (a). (d)
Ratio of the projections in (c).
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tTAPS−tagger[ns]

Figure 6.3: TAPS-tagger time spectrum. Background events in the signal region
([green]) are accounted for by sideband subtraction using events from the
uniform part in the random background region ([red]). The signal region is
chosen asymmetrically to account for timing signals produced by protons in
the TAPS calorimeter.

Timing information The tagging system of the Crystal Barrel/TAPS experiment op-
erated with rates of about 107 Hz in combination with multi-hit TDCs (see chapter 5).
Therefore multiple hits in the tagging system are recorded for each event. This can be
treated up to a certain extent by using the reconstruction methods described in 5.2.3,
but still multiplicities as high as 15 per event can occur. Each of these hits has to be
processed individually, always yielding the same topology in the other detectors, but
with a different energy for the incoming photon. For further analysis however, it is
necessary to have complete, unique information about the initial state, for example for
missing mass calculations. The Crystal Barrel/TAPS experiment has two subdetectors
defining the timing of an event, the tagging system and the TAPS calorimeter (see chap-
ter 5). For the beamtimes used in this work, TAPS triggered the readout for an event,
giving a distinct time reference. Only those hits in the tagger that, after calibration,
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Figure 6.4: Example for the time-background subtraction. Shown is the 4γ-
missing mass (described below) for an incoming photon energy range of
970 MeV ≤ Eγ ≤ 1650 MeV. In this spectrum, cuts on the masses of the final
state mesons are already applied. Left: Missing mass of events in the signal
region (figure 6.3, [green]) and the corresponding random time-background
as determined from the sidebands and scaled accordingly ([red]). Right:
Subtracted spectrum.

are coincident with this trigger signal of TAPS can be correlated to the actual event.
Figure 6.3 shows an example of a TAPS-tagger timing spectrum. A sharp coincidence
signal is visible on top of a flat, uncorrelated background. The coincidence signal is
not symmetric around zero since not only photons but also protons can produce trigger
signals in the TAPS calorimeter. The signal is therefore a superposition of the fast
photon and the slower proton timing signals, leading to an asymmetric broadening of
the peak. It is not sufficient to just cut the data with respect to the coincidence peak,
since there is still a considerable amount of background located underneath. This back-
ground, however, is uniformly distributed, so it is possible to subtract it using events
from the sidebands. This is done by performing all further analysis steps in parallel
for events in the coincident, ”signal” region (green area in figure 6.3) and events in the
uniform part of the uncorrelated region (shaded red). Each histogram is then filled
once with the signal events and once with the uncorrelated events, scaled in such a way
that the integral of uncorrelated events in figure 6.3 matches the number of background
events below the coincidence peak3, assuming a uniform distribution. In the end, the

3In the given analysis, a time window of ±180 ns is used with a coincidence window of [−30;+20],
leading to a scaling factor of 5

31
.
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weighted background histogram is subtracted from the signal spectrum. This procedure
is illustrated in figure 6.4 using the example of the 4γ-missing mass as described in the
next paragraph. Shown is the missing mass of four photons with respective invariant
γγ-masses compatible with one π0 and one η meson (see Meson masses below). No other
cuts have been applied to the spectrum. The colors in the left spectrum correspond to
those in figure 6.3, the green distribution being the missing mass calculated from events
in the signal region. The red distribution has been calculated from events in the random
background region and scaled to match the background below the coincidence peak. It
is notable that the timing-background peaks at the proton-mass, meaning that a cut
on this spectrum without the background subtraction would lead to a contamination
by uncorrelated events. Also, the lineshape is affected by the subtraction, since the
low-mass part in the signal distribution is dominated by such uncorrelated events, as
is clearly visible in the subtracted spectrum. Additional examples for the effects of the
time-background subtraction will be given in the following sections.
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6.4 Kinematic cuts

The selection of the pπ0η final state from the preselected data described above exploits
certain kinematical constraints posed by energy-momentum-conservation as well as by
the knowledge of the masses of the particles involved. The according kinematic variables
are introduced in the following and the application of cuts based on their distributions
is described.

6.4.1 Kinematic variables

Missing mass A first constraint to be imposed on the five 4-photon combinations per
event is that their missing mass has to be compatible with the mass of the proton,
mp = 938.272 MeV [A+08b]. The missing mass is calculated according to:

mmiss =
√

(Ef,miss, ~pf,miss)
2 =

√(∑
(Ei, ~pi)−

∑
(Ef,meas, ~pf,meas)

)2
, (6.1)

with (Ei, ~pi) and (Ef,meas, ~pf,meas) being the fourvectors of the initial and measured final
state particles, respectively.

Eγ = 1310± 340 MeV
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Figure 6.5: 4-particle missing mass distribution. Shown is the calculated missing
mass for five combinations per preselected event without any further cuts.
Signals at the position of the proton mass are seen above combinatorial
background in the Monte Carlo simulation ([left]) as well as a shoulder
in the non background subtracted data spectrum ([center, green]). The
uncorrelated timing-background ([center, red]) however shows no distinct
feature at the proton mass. After subtraction, a clearer signal for the proton
is visible above combinatorial and other background ([right]).
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Figure 6.5, shows the missing mass distribution for the incoming photon energy range
of 970 MeV to 1650 MeV for the Monte Carlo simulation of the reaction γp → pπ0η →
p4γ in the left panel. A signal at the correct proton mass can be seen on top of
combinatorial background. In the central panel the according spectrum for the data
is shown, once for the complete signal region without random background subtraction
(green, cf. figure 6.3) and once for the uncorrelated timing-background (red). A shoulder
at the correct position is visible for the uncorrected signal events, whereas the timing-
background shows no distinct features. In the subtracted spectrum, shown in the right
panel of figure 6.5, a peak at the proton mass is visible more clearly, however on top
of a significant background. Unlike in the Monte Carlo simulation, this background
is not just combinatorial, but comprises events from competing reactions where for
example particles escaped detection, as well as non-hadronic contributions, detailed in
the following paragraphs. All events enter the histograms five times due to the process
of proton determination described above, so signatures not simulated but present in the
data impair the signal-to-background ratio excessively, compared to the Monte Carlo
simulation.

Meson masses An additional constraint for the identification of the pπ0η final state
is posed by knowledge of the meson masses,

mπ0 = 134.6799± 0.0006 MeV and mη = 547.853± 0.024 MeV [A+08b].

Only events for which the invariant mass of either pair of photons is independently
compatible with these masses are to be considered for further analysis:

mγγ =
√

((Eγ1 , ~pγ1) + (Eγ2 , ~pγ2))
2 = mM , (6.2)

with mM being the mass of the respective meson and mγγ the invariant mass of the two
photons γ1 and γ2. In order to reconstruct two mesons out of the four measured photons,(
4
2

)
= 6 combinations have to be processed for each proton candidate in each event,

leading to 30 entries per event entering the according histogram shown in figure 6.6. The
fact that the final state comprises two different mesons that have to be reconstructed
concurrently reduces the number of γγ-combinations by a factor of 2, but this is canceled
by the fact that each mγγ-mγγ-pairing is entered twice - (m1,m2) and (m2,m1) - for
symmetry reasons. While in the Monte Carlo simulation the signal at (mπ,mη) and
(mη,mπ), corresponding to the simulated reaction γp → pπ0η, is clearly visible on
top of combinatorial background, for the data the predominant feature is the signal at



6.4 Kinematic cuts 69

Eγ = 1310± 340 MeV

MC DATA DATA

×103 ×103 ×103

×103 ×103 ×103

450 500 550 600 650

4

8

12

16

450 500 550 600 650

10

20

30

40

50

450 500 550 600 650

4

8

12

16

0 200 400 600 800

4

8

12

16

20

0 200 400 600 800

200

400

600

800

1000

0 200 400 600 800

100

200

300

0 200 400 600 800
0

200

400

600

800

1

102

103

0 200 400 600 800
0

200

400

600

800

1

102

103

104

105

0 200 400 600 800
0

200

400

600

800

1

102

103

104

m(γγ) [MeV]

Figure 6.6: Invariant γγ-mass. Top row: Invariant γγ-mass of one photon-pair versus
the invariant mass of the other pair for all five combinations per event,
entered symmetrically, for the Monte Carlo simulation ([left]) and the data
without ([center]) and with time-background subtraction ([right]). Lines
denote the region used for the projections below. Clear signals are visible
at (mπ,mη) and (mη,mπ) above combinatorial background for the Monte
Carlo simulation, while the data is dominated by 2π0-production. Center
row: Projections from 85 MeV to 185 MeV of the two-dimensional spectra
above. Bottom row: Zoom on the η-mass range. Central panels: Projections
of the coincident events ([green]) and uncorrelated background ([red]).
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Figure 6.7: φ-difference between the 4γ-system and the proton candidate.

Shown is the difference for five combinations per preselected event with-
out any further cuts. Distinct coplanarity peaks at ±180◦ are seen above
combinatorial background in the Monte Carlo simulation ([left]) as well as
in the data ([center, right]). In the data however, an additional signal
at 0◦ is visible, dominating in the uncorrelated timing-background ([cen-
ter, red]), but still being present in the background subtracted spectrum
([right]). These events are caused by leakage from the electron beam dump.
See text, figure 6.8 for details.

(mπ,mπ), stemming from the competing reaction γp → pπ0π0. In the energy region
Eγ = 1310± 340 MeV the cross section for this reaction is up to a factor 3 larger than
for π0η-production (cf. figure 2.4) and its branching ratio to 4γ of 97.6% highly exceeds
that of the π0η final state of 38.8% (cf. table 6.1). The signal for π0η-production is
however visible in the data as well, especially in the projection zoomed in on the η

mass region (figure 6.6, bottom right). The separation of the two final states poses no
problem due to the comparably high mass of the η meson, as will be shown below.

Coplanarity The sum of the three-momenta of the outgoing particles for any given
final state has to equal zero in the center of momentum frame, as dictated by energy-
momentum-conservation. This means in particular that the difference between the az-
imuthal angle φ of the proton and of the meson system comprising the π0 and η has to
be 180◦4. The latter is at the given stage represented by the sum of the four photons,
since the final state mesons are yet to be identified. Figure 6.7 depicts the difference of
the azimuthal angle of the proton candidate and the sum of the remaining four particles,
again for the Monte Carlo simulation and for the data. As expected, distinct peaks at
±180◦ are visible on top of combinatorial background. The data however shows another
signal around ∆φ = 0◦, dominated by random timing background but still discernible

4Since the azimuthal angle is Lorentz-invariant, this condition holds also true in the laboratory frame.
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after the background subtraction (central panel).
Figure 6.8 illustrates the signature of these background events. Panel (a) shows the θ-
φ-distribution for events in the region of the ∆φ = 0 peak from figure 6.7. A heightened
intensity in the negative φ-region, corresponding to the lower halves of the calorimeters,
is visible, starting at θ ≈ 156◦ and extending throughout the whole Crystal Barrel up
to the lower part of TAPS. Panel (b) shows the φ-difference between the 4γ-system and
the proton candidate as function of the azimuthal angle of the proton candidate. It is
clearly visible that the additional intensity around ∆φ = 0◦ is confined to the lower
half of the calorimeter system. An additional feature of these events is the number of
reconstructed PEDs per cluster for the proton candidate, as shown in panels (c) and (d)
of figure 6.8. Panel (c) shows the φ-distribution of proton candidates for events with
a ∆φ within ±20◦. Again for the lower half of the setup, a tendency towards higher
numbers of PEDs per cluster, up to four, is visible. This is confirmed in panel (d)
where the ∆φ-distribution is shown as function of the number of PEDs. An explana-
tion for this type of signal lies in the general setup of the experiment, especially the
position of the electron beam dump (cf. section 4.2.4). Should particles like neutrons
be able to escape the beam dump, they would enter the Crystal Barrel in the region
of ring 11, corresponding to θ ≈ 156◦. They would then deposit energy all throughout
the calorimeter, fluctuations in the deposition leading to the reconstruction of multiple
PEDs within one large cluster, and finally reach TAPS, triggering the event. Since the
data shown has been preselected for five PEDs, the PED multiplicity per cluster caps at
4, the fifth PED being the one in TAPS. All these PEDs are created by a single particle
traversing the detector setup in a straight line, thus having all the same azimuthal angle,
leading to the peak at ∆φ = 0◦ in figure 6.7. This background is, however, easily sepa-
rable, due to its distinct signature, as can be seen in figure 6.8 (b). The considerations
concerning momentum conservation also allow for the calculation of the polar angle of
the proton from the fourvectors of the photon system. Figure 6.9 shows the difference
between the polar angle of the missing particle for all 4γ-combinations per event and
the measured angle of the fifth PED, both in the laboratory frame. A signal around
∆θ = 0◦, above a background distribution5, is seen in the Monte Carlo simulation as
well as in the data. Two distinct features are apparent in the data, however, that do
not appear in the simulation, at ∆θ ≈ −30◦ (A) and ≈ −160◦ (B). Both signals are
also prominent in the random timing background (shaded red in the central panel in
figure 6.9), but stay visible even after background subtraction (right panel). Figure 6.10
shows, in the upper row, again the ∆θ-distributions for the Monte Carlo simulation and

5The distribution is asymmetric because due to the Lorentz boost the proton has to go in forward
directions while photons are reconstructed over the full θ range.
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Figure 6.8: Signature of background events stemming from beam dump leak-
age. (a) θ-φ-distribution of events with a ∆φ within ±20◦ (see figure 6.7).
A distinct accumulation of events in the lower half of the Crystal Barrel
(negative φ-values) is visible, starting at θ ≈ 156◦, corresponding to ring
11 in the upstream half of the calorimeter and extending up to the lower
part of TAPS at θ ≈ 30◦. (b) ∆φ-distribution (figure 6.7) as function of the
azimuthal angle. The background events clustering at ∆φ = 0◦ are again
visible in the lower part of the detector system. (c) φ-distribution of par-
ticles as function of the number of PEDs reconstructed per cluster for the
∆φ-region ±20◦. Events in the lower half of the detector system tend to have
higher numbers of PEDs. (d) ∆φ-distribution as function of the number of
PEDs per cluster. The higher numbers of PEDs accumulate in the region of
the background events at ∆φ = 0◦. See text for details.
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Figure 6.9: θ-difference between calculated and measured proton candidate in

the laboratory frame. Shown is the difference for five combinations per
preselected event without any further cuts. A peak at ∆θ = 0◦ is seen above
combinatorial background in the Monte Carlo simulation ([left]) as well
as in the data ([center, right]). In the data however additional features
at ∆θ ≈ −30◦ (A) and ≈ −160◦ are visible (B), also pronounced in the
random timing background ([center, red]). These can by identified with a
heightened background contribution in the Crystal Barrel caused by leakage
from the electron beam dump (A) and e±-pairs created at the collimator and
diverted into the last ring of the Crystal Barrel calorimeter by the sweeping
magnet (B). See text, figure 6.10 for details.

the background subtracted data, this time separated for combinations for which the
proton candidate was detected in the TAPS (blue) and Crystal Barrel (red) calorime-
ter. The TAPS calorimeter covers polar angles up to 30◦, so the maximum (negative)
difference between calculated and measured proton candidate is −30◦, from this point
on all measured PEDs are detected in the Crystal Barrel. The enhancement in intensity
at ∆θ ≈ −30◦ in the overall spectrum is therefore not due to a distinct signal but the
result of an overall heightened background in the Crystal Barrel. This additional back-
ground can be identified with the events caused by leakage of the beam dump mentioned
before, as shown in the φ-dependence of the polar angle difference in figure 6.10 (c).
Figure 6.10 (d) shows the φ-distribution of the measured proton candidates in the ∆θ-
region around −160◦. Here, additional intensity is visible at φ ≈ ±100◦, responsible for
feature B in the projection (fig. 6.10 (b)). A likely explanation for this signature is the
production of e±-pairs by the primary photon beam off the collimators, the positions of
which were not exactly determined [Wal10]. Under certain conditions it is possible that
such e±-pairs were deflected by the sweeping magnets (cf. section 4.2.4) in such a way
that they could be detected in the innermost ring of the upstream half of the Crystal
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Figure 6.10: Background features in ∆θ. Top row: θ-difference from figure 6.9, sep-
arated for combinations with the proton candidate detected in the Crystal
Barrel ([red]) and TAPS ([blue]) calorimeter. (a) Monte Carlo simulation,
(b) preselected data, after random background subtraction. The signal at
∆θ ≈ −30◦ (A) is due to the overall heightened background in the Crystal
Barrel calorimeter, due to events stemming from beam dump leakage. (c)
φ-∆θ-distribution for the data. Background events from the beam dump
are visible as increased intensity around φ = −90◦ (C). (d) Zoom of (c) to
the ∆θ-region of signal B. Regions of increased intensity are visible around
φ ≈ ±100◦. Their origin is most likely e±-pairs created by the primary
photon beam off a collimator and bent by the sweeping magnets towards
ring 13 of the Crystal Barrel calorimeter [Wal10]. See text for details.
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Barrel, ring 13 (see figure 4.10), covering 168◦ ≤ θ ≤ 162◦6. Since this background is al-
ways present, these hits lead to an enhancement in the ∆θ-distribution. The separation
of these events, however, again poses no problem due to their distinct signature.

6.4.2 Application of the cuts

The determination of the widths of the cuts on the kinematic variables introduced
above is an iterative process. Beginning with wide cuts and observing their effects on
the according spectra, the cuts are optimized over various iterations until a reasonable
signal-to-background ratio is achieved. It is to be kept in mind that the selection pro-
cess for the data does not end at this point, but the application of a kinematic fit, as
described in the next section, further refines the data. Table 6.2 summarizes the cuts

Variable Fit function Mean [MeV] σ [MeV] Cut width

Missing mass Gaussian + 3rd order pol. 936.403 31.761 ±123.55 MeV

m(γγ), π0 Gaussian + 3rd order pol. 135.261 8.640 ±33.61 MeV

m(γγ), η Gaussian + 1st order pol. 548.159 20.920 ±81.38 MeV

∆φ − ±180◦ − ±10◦

∆θ − 0◦ − ±15◦ (CB)

±5◦ (TAPS)

Table 6.2: Width of the kinematic cuts. The cuts on the missing mass and the γγ
invariant masses have been determined using a fit assuming a Gaussian signal
on a polynomial background. The resulting width of the cuts applied is 3.89σ,
translating to a net loss of the integrated signal intensity of not more than
10−4 (see for example the Statistics section in [A+08b]). In case of the angular
differences, conservative cuts have been applied derived from the according
distributions. The different cuts on ∆θ take the different granularity of the
calorimeters into account.

finally used in the selection process before applying the kinematic fit. The missing- and
invariant mass distributions have been fitted assuming a Gaussian signal and polynomial
background. The effective cut width has been set to 3.89 times the σ of the Gaussian.
This is consistent with a net loss of signal of not more than 10−4 or a confidence interval
of 99.99% (see for example the Statistics section in [A+08b]). These rather wide cuts

6An additional slight tilt of the collimator probably leads to the intensity showing at φ ≈ ±100◦ instead
of ±90◦.
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Figure 6.11: Missing mass after cuts. Evolution of the missing mass signal after the
application of the cuts on the other variables. Top row: Data, bottom row:
Monte Carlo. Left to right: Uncut spectrum, after background subtraction
(a), cut on ∆θ (b), additional cut on ∆φ (c), additional cut on the meson
masses (d). The shaded area denotes the width of the cut applied on this
spectrum. See text for details.

accommodate the fact that the masses enter the kinematic fit applied in the next step
as direct constraints.
The cuts on the angular differences between the measured and calculated proton can-
didate have been fixed in a more conservative manner. Here the cut widths have been
estimated such that at least 2σ of the signal is included. In case of the ∆θ-distribution,
the different granularities of the calorimeters have been taken into account by applying
separate cuts for proton candidates measured in the Crystal Barrel or in TAPS. The
effects of the cuts are shown in figures 6.11-6.16 and described below.

Missing mass spectrum Figure 6.11 shows the evolution of the missing mass distri-
bution after time-background subtraction and the application of the cuts on the other
variables introduced above. In the uncut spectrum for the data, only a small signal at
the mass of the proton is visible on top of a substantial background (a). This back-
ground is greatly reduced by the application of the cut on the θ-difference between the
calculated and measured proton candidate for each combination per event (b). This
reduction is on the one hand due to the elimination of combinatorial background, as
can be seen in comparison to the according Monte Carlo spectrum. Additionally, this
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cut eliminates misinterpreted 4-PED events, where a fifth PED is mimicked by the e±

signals in ring 13 of the Crystal Barrel calorimeter (see figure 6.10), as well as the
better part of background due to beam dump leakage (see Coplanarity below). A sub-
sequent cut on the φ-difference between the 4γ-system and the proton candidate for the
remaining combinations again reduces combinatorial background as well as it removes
residual events stemming from the beam dump (see figure 6.8). The main effect of the
cut on the masses of the final state mesons (d) in the data is a substantial reduction
in statistics due to the elimination of the competing reaction γp → pπ0π0, along with
a further elimination of combinatorial background. The shaded area in figure 6.11 (d)
corresponds to the cut on this spectrum of 3.89σ of the Gaussian signal, translating to
±135.55 MeV, as stated above.

Meson masses Figure 6.12 shows the invariant γγ-mass of one photon-pair versus
the other for all five combinations per event and entered symmetrically, after time-
background subtraction (a). In comparison to the Monte Carlo simulation it is to be
noted that in the data the signature of π0π0-events dominates the spectra, while the
simulation only contains π0η-events. The cuts on the θ- (b) and φ-differences (c) mainly
just improve the overall signal-to-background ratio for the π0π0- and π0η-events in the
data, since the specific background contributions from pair-production and beam bump
leakage do not show as prominent features in this spectrum. The final cut on the missing
mass (d) then predominantly eliminates background intensity at very low invariant γγ-
masses.
Figures 6.13 and 6.14 show the same distributions, projected over a mass range of
85 MeV to 185MeV, as denoted by the lines in figure 6.12, for illustration purposes. The
width of the cuts on the meson masses is determined from the signal at (mπ,mη), cut
on the width of the π0 and projected on the η mass range, and vice versa. The resulting
widths of the cuts are denoted by the shaded areas and translate to ±33.61 MeV for the
π0 and ±81.38 MeV for the η, respectively.
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Figure 6.12: Invariant γγ-mass after cuts. Evolution of the invariant γγ-mass after
the application of the cuts on the other variables. Top row: Data, bottom
row: Monte Carlo. Left to right: uncut spectrum, after background sub-
traction (a), cut on ∆θ (b), additional cut on ∆φ (c), additional cut on the
missing mass (d). Lines denote the region used for the projections shown
in figures 6.13, 6.14. See text for details.

Coplanarity Figure 6.15 shows the evolution of the φ-difference between the 4γ-system
and the proton candidate after time-background subtraction (a) and the application
of the cuts on the other variables (b - d). The cut on the θ-difference between the
calculated and measured proton candidate for each combination per event reduces the
combinatorial background considerably (b). It also eliminates most of the events due to
beam dump leakage which by definition cannot fulfill coplanarity (see previous section).
The additional cut on the missing mass further reduces combinatorics (c) while the cut
on the meson masses (d) predominantly reduces statistics due to the removal of the
pπ0π0 final state. For the final cut on the φ-difference, a conservative width of ±10◦, as
denoted by the shaded areas in figure 6.15 (d), has been chosen. It stands to reason that
background contributions in the angular variables influence the result of the kinematic
fit more than in case of the masses, which enter the fit as direct constraints (see next
section).
The effects of the cuts on the θ-difference between the calculated and measured proton
candidate, shown in figure 6.16, are mainly concurrent to what has been stated before
in case of the φ-difference. Here the cut on ∆φ takes the place of the ∆θ-cut, again
eliminating combinatorial background and events stemming from the beam dump. This
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Figure 6.13: Projection of the invariant γγ-mass after cuts. Same as figure 6.12,
projected from 85 MeV to 185 MeV. The shaded areas denote the width of
the cuts applied on the meson masses. Note that the data at this point is
still dominated by the reaction γp → pπ0π0, which is not present in the
simulation.
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Figure 6.14: η-signal after cuts. Zoom of figure 6.13 to the η mass region. The shaded
area denotes the width of the cut on the η-mass.
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Figure 6.15: φ-difference after cuts. Evolution of the φ-difference between the 4γ-
system and the proton candidate after the application of the cuts on the
other variables. Top row: Data, bottom row: Monte Carlo. Left to right:
uncut spectrum, after background subtraction (a), cut on ∆θ (b), addi-
tional cut on the missing mass (c), additional cut on the meson masses (d).
The shaded regions denote the width of the cuts applied on this spectrum.
See text for details.

can clearly be seen in the substantial reduction of background for combinations where the
proton candidate has been detected in the Crystal Barrel calorimeter (red distribution in
figure 6.16), in accordance with the argumentation stated before. In case of the widths
of the cuts on the θ-difference, the different granularities of the calorimeters have to be
taken into account. Therefore, and following the same reasoning as for the φ-difference,
a cut of ±5◦ has been chosen for TAPS (shaded blue in figure 6.16 (d)) and ±15◦ for
the Crystal Barrel (shaded red).
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Figure 6.16: θ-difference after cuts. Evolution of the θ-difference between the cal-
culated and measured proton candidate in the laboratory frame after the
application of the cuts on the other variables. Top row: Data, bottom
row: Monte Carlo, both separated for combinations with the proton candi-
date detected in the Crystal Barrel ([red]) and TAPS ([blue]) calorimeter.
Left to right: uncut spectrum, after background subtraction (a), cut on ∆φ
(b), additional cut on the missing mass (c), additional cut on the meson
masses (d). The shaded regions denote the width of the cuts applied on
this spectrum. See text for details.
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6.5 Kinematic fit

A kinematic fit [vP03] is applied to the data in two steps after the selection of the
π0η final state by kinematic cuts. The energy- and momentum-values used in the re-
construction and selection are not error-free due to uncertainties given for example by
the detector resolution. Therefore, energy-momentum-conservation is in general not
fulfilled exactly. The kinematic fit varies the measured quantities within their error
margins event by event to achieve energy-momentum-conservation using a χ2-test. Ad-
ditionally, it is possible, even after the selection process described above, that more than
one combination of four “photons” and one proton candidate per event pass the cuts.
This issue is also addressed using the kinematic fit, ascertaining the one combination
with the highest probability for further analysis.

6.5.1 Basic principle

The kinematic fit is an event-based, least-squares fit with constraints, using the measured
parameters of the reaction, such as the energies and angles of the particles. If n values
were measured, this can be written in terms of an n-dimensional vector ~y. The measured
values differ from the exact ones ~η within their error margins ~ε:

~y = ~η + ~ε. (6.3)

The constraints, posed by conservation laws and the known masses of intermediate and
final state particles, can be used to calculate r not measured parameters, as long as the
number of constraints m is larger or equal to the number of unmeasured quantities. Let
~x be the r-dimensional vector of parameters to be calculated. Then the m conservation
laws can be written in the form:

f1...m(~x, ~η) = f1...m(~x, ~y − ~ε) = 0. (6.4)

Here the estimated error margins ~ε, in which the measured values are allowed to vary,
are an input to the fit. The set of constraints is referred to as the hypothesis of the fit.
Solutions for ~x and ~y are those values, for which

M = ~εT C−1
y ~ε (6.5)

is minimal, while the constraints are fulfilled exactly. Here Cy is the covariance matrix
of the measured quantities. The resulting values for M follow a χ2-distribution f(χ2)
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with m− r degrees of freedom.
If no systematic errors in the measured values are present, the difference between the
measured and the fitted values should form a distribution centered at zero, since the
fit will just as likely increase a specific value as decrease it. A systematic error, not
accounted for in the error margins handed to the fit, will cause a shift in the distribution
to either positive or negative values. A normalization of this distribution to the error
should result in a Gaussian distribution with σ = 1. Such a distribution is called the
pull of a measured quantity yi:

pull(yi) =
ηi − yi√

σ2(ηi)− σ2(yi)
. (6.6)

Any deviation of these pulls from σ = 1 points towards a wrong estimation of the er-
rors passed to the fit. A narrower distribution means that the fit did not use the full
range of the error margins passed to it, the errors have been estimated too high. Analo-
gously, errors which are too small lead to a broader distribution. Figure 6.17 shows such
pull-distributions using the example of the γp → xp nγ hypothesis. The xp denotes a
missing proton-fit, meaning the proton is treated as a not measured particle, consistent
with the selection criteria described before. Without any further mass-constraints this
constitutes a fit using four constraints from energy- and momentum-conservation. The
coordinate system used for the kinematic fit is based on the energy, and the polar and
azimuthal angles of the particles, (

√
E, θ, φ)7, leading to three unmeasured quantities

for the final state proton. This is called a one-constraint (1C) fit. The errors for the
measured quantities are estimated for the incoming beam photon and the final state
photons, dependent on the calorimeter in which they were detected. These errors have
to be estimated for each hypothesis, for data and Monte Carlo, independently in an it-
erative process. The distributions shown in figure 6.17 fulfill the requisites stated above,
suggesting a correct estimation and no systematic effects.
A means to quantify the quality of the fit bases on the fact that the minimized quan-
tity M in (6.5) follows a χ2-distribution. If all errors are properly estimated and no
systematic effects are present, f(χ2) should follow the standard χ2-distribution fst(χ2),
obtained by adding m− r Gaussians with µ = 0 and σ = 1. The distribution for events
that do not fulfill the requirements imposed by the constraints will peak at higher or
lower f(χ2) values than fst(χ2). In practice, the quantity used for control purposes is

7Previous investigations have shown that using the square root of the energy leads to a better descrip-
tion of the errors in terms of a Gaussian distribution than using the energy linearly [vP03].
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Figure 6.17: Pull-distributions for the hypothesis γp → xp nγ, data. Top to
bottom: Pull distributions for the incoming photon, photons in the Crystal
Barrel calorimeter, photons in TAPS. Left to right: Pull distribution for√

Eγ , θγ , φγ . Blue line: Gaussian fit from -2 to 2. Mean and standard
deviation of the fit are given in each panel.
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Figure 6.18: CL-distribution for the hypothesis γp → xp nγ, data. Blue line:
Constant fit from 0.2 to 1. The peaking of the distribution towards low
probabilities is due to background events not fulfilling the constraints posed
by the hypothesis.

the confidence level (CL), a function varying between 0 and 1:

CL = 1−

(∫ χ2

0
fst(χ2)dχ2

)
. (6.7)

The distribution function f(CL) = f(χ2)/fst(χ2) should accordingly be flat, if the mea-
sured values are distributed according to a Gaussian distribution around the fitted values
and the input errors have been estimated correctly. It is however safe to assume that
background events result in much higher χ2- and therefore lower CL-values than events
fulfilling the constraints. Therefore a cut on the confidence level, selecting events above
a certain CL-value, can be used to dramatically reduce the background with little loss
of good events. Figure 6.18 shows the confidence level distribution for events subjected
to the γp → xp nγ 1C-fit described before. The flat distribution of probabilities again
demonstrates the correct estimation of the errors, as visualized by a constant fit, using
a fit range from 0.2 to 1. As stated above, background events which do not fulfill the
constraints posed by the hypothesis cause a steep rise of the distribution towards low
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probabilities. In the given example, a cut on CL > 0.1 would eliminate nearly all of the
background events but would only lead to a loss of 10% of the valid events.

6.5.2 Application to the data

In the given analysis, the data and the Monte Carlo simulation have been subjected to
four differently constrained fit hypotheses:

γp → xp4γ (1C) (6.8)

γp → xpπ0γγ (2C)

γp → xpπ0η (3C)

γp → xpπ0π0 (3C).

The first two hypotheses are tested just for control purposes, seeing that the two three-
constraint hypotheses include both the energy-momentum-balance and the π0 mass-
constraint8.
In a first step, the problem of multiple combinations per event passing the kinematic
cuts is addressed by subjecting the selected data sample to the γp → xpπ0η-fit. Here
the only condition to be met is the convergence of the fit. Should an event enter the fit
more than once, due to ambiguities in the proton determination, only that combination
with the highest probability (confidence level, CL) is retained. This way all residual
combinatorial background in the event sample is eliminated.
In the next step the cleaned event sample is subjected to the fit hypotheses given in
(6.8). The events that are to be retained for the final extraction of the observables have
to exceed a probability of 10−2% in case of the 1C-fit and 8% in case of the 2C-π0γγ-fit.
As stated before, these cuts however pose no real restriction with respect to the results.
Regarding the hypotheses imposing two meson mass-constraints, it is in general possible
that a given event is identified both as a pπ0η and a pπ0π0 final state. Therefore a naive
cut on just the confidence level of the xpπ0η hypothesis might leave a contamination
by events passing the xpπ0η hypothesis with a high probability. Figure 6.19 shows
the according confidence levels in a two-dimensional histogram for an incoming photon
energy range of Eγ = 1325± 125 MeV , confirming this assumption. Both in the Monte
Carlo simulation and especially in the data, events with high probabilities for both
hypotheses are observed. Therefore, to avoid the contamination of the final sample

8It is possible that the hypothesis including both meson mass constraints selects different final state
photons for the π0 than the π0γγ hypothesis. This does, however, not pose a problem with respect
to the assessment of the statistics and background contamination of the final event sample.
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Figure 6.19: Confidence levels of the three-constraint fit hypotheses, 2D. Shown
is the confidence level distribution for the γp → xpπ0π0 hypothesis versus
the distribution for the γp → xpπ0η hypothesis for the Monte Carlo simu-
lation ([left]) and the data ([right]). Magenta lines denote the cuts on
the respective CLs of < 0.01 for the π0π0 hypothesis and > 0.06 for the
π0η hypothesis (see also figure 6.20). See text for details.

by probable π0π0-events, the following cuts on the confidence levels have been chosen,
denoted by the magenta lines in figure 6.19 and the shaded areas in figure 6.20:

CL(γp → xpπ0η) > 6% (6.9)

CL(γp → xpπ0π0) < 1%.

This is also illustrated in figure 6.20, showing the one-dimensional confidence level
distributions for the respective hypotheses. Here the shaded areas denote the prob-
abilities that have to be met by events to be retained. Note that while the Monte
Carlo sample consists solely of simulated pπ0η-events, pπ0π0-probabilities up to 100%
occur. In the final step, a cross-check between the reconstruction and the kinematic fit
is performed by comparing the direction of the proton identified using the kinematic
cuts described before and the direction of the proton resulting from the kinematic fit,
imposing the γp → xpπ0η hypothesis, for events passing the confidence level cuts. This
is done by calculating the azimuthal and polar angle-difference between the respective
fourvectors, as shown in figure 6.21. In case of the θ-difference, this check is again per-
formed independently for protons detected in the Crystal Barrel or TAPS calorimeter.
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Figure 6.20: Confidence levels of the three-constraint fit hypotheses, 1D. Shown
are the confidence level distributions for the γp → xpπ0π0- ([top]) and
the γp → xpπ0η hypothesis ([bottom]) for the Monte Carlo simulation
([left]) and the data ([right]). Shaded areas denote the probabilities
which have to be met by each event to be retained for further analysis.
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Figure 6.21: Matching of fitted and reconstructed proton. Shown are the differ-
ences in the azimuthal ([top]) and polar angle ([bottom]) between the
particle identified as proton using kinematic cuts and using the kinematic
fit for the Monte Carlo simulation ([left]) and the data ([right]). In case
of the θ-difference, the distributions are separated for particles detected in
the Crystal Barrel ([red]) and TAPS ([blue]) calorimeter. The shaded
areas denote the width of the cuts applied. See text for details.

In general, much narrower distributions are obtained than when comparing measured
and calculated proton candidates during the determination of the kinematic cuts (cf.
figures 6.15, 6.16). The distributions however do exhibit tails towards higher angular



90 6 Selection of the reaction γp→ pπ0η

differences, corresponding to events for which the kinematic fit had to overly adjust the
proton direction. While this is perfectly within the margins passed to the fit, it might
point towards a mismatch between the reconstruction and the fit which, especially with
respect to the extraction of asymmetries in the φ-distributions of the final state particles,
can affect the results. Therefore, following the reasoning presented for the application
of the cuts on the angular differences between the measured and the calculated proton
before, the following cuts, denoted by the shaded areas in figure 6.21:

∆φ = 0◦ ± 4◦ (6.10)

∆θ CB = 0◦ ± 5◦

∆θ TAPS = 0◦ ± 2◦.

For the final assessment of the background contamination of the event sample used
for the extraction of the observables described in the next chapter, the invariant mass
of the two free photons from the γp → xpπ0γγ fit in the η mass range is studied.
Figure 6.22 shows the according distribution for the incoming photon energy range Eγ =
1310± 340 MeV after the application of all cuts mentioned before with the exception of
the cut on the confidence level of the γp → xpπ0η fit. A fit assuming a Gaussian signal
on a linear background leads to a total of 68,514 (226,249) events in the data (Monte
Carlo), including background, translating to a signal-to-background ratio of 17.5 : 1
(18.9 : 1) in a mass range of mη ± 3.89σ. The cut on the π0η confidence level rejects
3083 (9856) of these events, leading to a final background contamination of 624 (1516)
events or 0.95% (0.99%).
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Figure 6.22: η-signal after the kinematic fit. Invariant mass of the free γγ-pair
after the γp → xpπ0γγ (CL > 8% ) fit. A cut on the confidence level of
the γp → xpπ0π0 (CL < 1% ) fit is applied, as well as on the reconstructed
and fitted proton direction. This yields a total number of 68514 (226249)
events including the linear background (dashed line) for the data (Monte
Carlo). An additional cut on the γp → pπ0η fit (CL > 6%) rejects 3083
(9856) events, retaining 624 (1516) background events (≈ 1%).
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7 Results

In the previous chapters the process of selecting the pπ0η final state from raw informa-
tion obtained with the Crystal Barrel/TAPS experiment has been introduced. In this
chapter the extraction of polarization observables from this data will be described and
the obtained beam asymmetries Σ, Ic and Is will be presented. The latter two observ-
ables have been extracted for the first time in the framework of this analysis. This has
been done, using a full three-body approach never before utilized in linearly polarized
photoproduction data.
Additionally, invariant mass distributions and Dalitz plots will be presented, illustrating
the various physics contributions to the data, later addressed in chapter 8 in the context
of different theoretical frameworks.

7.1 Polarization observables in quasi two-body kinematics

Prior to the analysis presented in this work, the only polarization observable investigated
in the photoproduction of non-strange pseudoscalar mesons using linearly polarized
photons and an unpolarized target was the beam asymmetry Σ. While this observable
already occurs in single meson production (see for example [E+07, E+09]), it is also
accessible in meson-pair production by restricting the kinematics to a quasi two-body
final state (for example [A+08a, GSvP+08]). This is achieved by adding two of the three
fourvectors of the final state particles. For the pπ0η final state this translates to the
three quasi two-body reactions:

γp → pX, with X → π0η,

γp → ηY, with Y → pπ0,

γp → π0Z, with Z → pη.

The cross section for such two-body final states can be written as [Wor72]:

dσ

dΩ
=
(

dσ

dΩ

)
0

(1 + δlΣ cos 2φ) , (7.1)
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where
(

dσ
dΩ

)
0

is the unpolarized cross section and δl the degree of linear polarization. In
this work the angle φ is defined as depicted in figure 7.1. Two planes are relevant for

polarization plane

reaction plane

~k

~ε

φ−90◦

θ

p

π0η

z

Figure 7.1: Angle definitions in the quasi two-body approach. The relevant
planes in the center-of-momentum frame are spanned by the incoming pho-
ton ~k and its polarization vector ~ε (polarization plane) and by the incoming
photon and one of the final state particles recoiling against the remaining
two-particle system, respectively (reaction plane). φ is the angle of the reac-
tion plane with respect to the normal of the polarization plane, θ is measured
against the z-axis defined by the incoming photon direction.

the kinematics of the process in the center-of-momentum frame, the polarization plane
spanned by the incoming photon and its polarization vector and the reaction plane
spanned by the incoming photon and one of the final state particles recoiling against
the combination of the other two. In this framework, φ is the azimuthal angle of the
reaction plane with respect to the normal to the polarization plane.
The unpolarized cross section is independent of the azimuthal angle, so according to
(7.1), the φ-distribution of any final state particle should exhibit a cos 2φ-modulation
on top of a flat, unpolarized contribution. The amplitude of the modulation is then
given by the degree of polarization and the beam asymmetry Σ. Such a φ-distribution,
using the example of the final state π0, recoiling against the pη-system, is depicted in
figure 7.2. The φ-distribution is shown in five bins in cos θπ, and also integrated over
all cos θπ for the energy range Eγ = 1325 ± 125 MeV. The full set of φ-distributions is
given in appendix B.
A distinct cos 2φ-modulation is visible over the full range. The distributions were fitted
according to the cross section given in (7.1) with the expression:

f(φ) = A + P ·B · cos 2φ. (7.2)

The polarization degree is determined for each event individually, using a modified ver-
sion of the ANalytic Bremsstrahlungs Calculation software ANB [NGH+03]. This pack-
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Figure 7.2: φ-distributions for the final state π0. Shown are the φ-distributions
with respect to the final state π0 recoiling against the pη-system in the
energy range Eγ = 1325 ± 125 MeV for five bins in cos θπ0 along with the
spectrum integrated over all cos θ. The data is not polarization-weighted.
Solid line: Fit according to (7.2).

age, developed at the university of Tübingen, calculates the photon polarization based
on a parametrization of the properties of the incoming electron beam, type, orientation,
thickness, and temperature of the radiator as well as collimation. The analytical results
are in excellent agreement with the experimental data (see figure 4.5). For a more de-
tailed description see [Els07].
In the analysis, each histogram used for the extraction of the beam asymmetry, for
example φ versus cos θ, is filled twice, once with the polarization as weight and once
without. For each cos θ-bin, both distributions are then integrated over φ and the ratio
of the integrals enters the fit (7.2) as the average polarization P . The ratio of the fit-
parameters B/A then translates to the beam asymmetry Σ and is shown in figure 7.4 for
the three energy ranges under consideration and all three final state particles. Asym-
metries of the order of 50% and higher can be observed as well as distinct differences
in the sign of the asymmetry in case of the η recoiling compared to the proton and π0,
respectively.
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Figure 7.6 shows again the beam asymmetry Σ, determined in the same way as de-
scribed, but for each recoiling particle as a function of the invariant mass of the other
two particles. Similar features as stated above are apparent, along with a distinct
energy-dependence, especially noticeable in the pπ0 invariant mass. Asymmetry data
for the pπ0η final state as function of invariant masses has also been measured by the
GRAAL collaboration [A+08a] and is in good agreement with the results presented here.
In their work however a finer energy binning was used which, applied to this analysis,
leads to a substantial increase in the statistical error. The according distributions are
shown in chapter 8 together with the data published by the GRAAL collaboration.
Detection efficiencies should not influence the result since they cancel out in the asym-
metry determination using the method described above, assuming a phase space binning
reasonably small compared to variations in efficiency. Yet, due to geometrical limita-
tions present in every experimental setup, the phase space is not covered completely,
leading to areas of vanishing acceptance. Attempts at a full acceptance correction of the
data using the ratio of reconstructed and generated Monte Carlo events failed due to
the amount of diskspace and computing power necessary to cover the five-dimensional
phasespace with sufficient statistics and in a reasonable binning (see [Sok10] for details).
Two different methods have been applied to the data, however, to estimate the influence
of acceptance variations and other systematic effects on the results. In a first step, the
two-dimensional acceptance has been determined for the three energy ranges separately
as function of φ of the recoiling particle and the variable intended for binning the po-
larization observable. The data has been corrected for this acceptance, determining the
resulting change in the observables for each bin. Figure 7.3 shows this acceptance using
cos θ of the respective recoiling particle as the second variable. The absolute value of
the change in Σ due to the correction of the data for this acceptance is shown in fig-
ure 7.4 as blue bars. The same has been done using the invariant mass of the respective
two-body system the particle is recoiling against as the second variable. The according
acceptances are shown in figure 7.5, and the influence on the observables in figure 7.6.
In the second step, the Bonn-Gatchina partial wave analysis, described in the next
chapter, has been implemented. Here, the lack of statistics for a five-dimensional deter-
mination of the acceptance is treated by extrapolating into the uncovered regions using
the predictions of the PWA solution. A weighting factor, derived from the solution for
each phasespace bin, similar to the procedure derived in [Fuc05], is applied to generated
and reconstructed Monte Carlo events. The resulting five-dimensional distributions are
then, binned in energy and for example cos θ, integrated and normalized to the num-
ber of events, resulting in a one-dimensional φ-distribution from which the polarization
observables are extracted. In the case of the generated Monte Carlo set the obtained
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distributions represent the original prediction from the PWA solution, and the results
derived from the reconstructed set are additionally convoluted with the geometrical
acceptance and detection efficiencies of the experiment. Here again the differences in
terms of the observables are calculated and their absolute value entered as the red bars
in figures 7.4, 7.6.
In both cases, the obtained estimates for the systematic uncertainties due to the accep-
tance and detection efficiency of the experiment and the reconstruction are comparable
to or less than the statistical errors. Larger deviations are only seen for the systematics
derived using the two-dimensional acceptance correction in the invariant mass binning.
This is due to the strongly varying statistics over the given mass ranges, as can be seen
in the invariant mass distributions shown in section 7.3.1.
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Figure 7.3: Acceptance, φ versus cos θ. Shown are the ratios of reconstructed to
generated Monte Carlo events, binned in the azimuthal angle φ and cos θ
of each of the three recoiling particles (left to right: p, η, π0) for the three
energy ranges used for the extraction of the polarization observables (top to
bottom).
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Figure 7.4: Beam asymmetry Σ as function of cos θ. Left to right: Beam asym-
metries derived from the φ-distribution of the final state proton, η, and
π0, respectively, as functions of the corresponding cos θ in the center-of-
momentum frame (see figure 7.1). Bar graphs represent the systematic er-
ror estimate derived from acceptance correction ([blue], positive) and PWA
phasespace-weighting ([red], negative). See text for details.
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Figure 7.5: Acceptance, φ versus invariant masses. Shown are the ratios of recon-
structed to generated Monte Carlo events, binned in the azimuthal angle φ
of each of the three recoiling particles (left to right: p, η, π0) and the invari-
ant mass of the remaining two-particle system for the three energy ranges
used for the extraction of the polarization observables (top to bottom).
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Figure 7.6: Beam asymmetry Σ as function of invariant mass. Left to right:
Beam asymmetries derived from the φ-distribution of the final state proton,
η and π0, respectively, as functions of the invariant mass of the remaining
two final state particles. Bar graphs represent the systematic error estimate
derived from acceptance correction ([blue], positive) and PWA phasespace-
weighting ([red], negative). See text for details.
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7.2 Polarization observables in full three-body kinematics

In the quasi two-body approach described in the previous section, the number of degrees
of freedom for meson-pair production is artificially decreased by restricting the three-
body final state to three, two-body final states. In general, the three outgoing particles
and the incoming photon are not coplanar but another plane occurs spanned by the
final state particles, being at an angle to the reaction plane as defined before. Figure 7.7
illustrates this situation. The occurrence of this additional angle φ∗ between the reaction

~k

φ∗

p

p′

π0

η

x′ z′

Figure 7.7: Angle definitions in the three-body approach. The angle φ∗ occurs
as an additional degree of freedom due to the general acoplanarity of the
final state particles and the incoming photon momentum ~k. It is defined as
the angle between the reaction plane (see figure 7.1) and the decay plane
spanned by the three final state particles. It is identical to the polar angle
in the rest frame of the π0η-system (in this example) with the z′-axis in the
direction of the total momentum of this system (helicity frame).

plane and the newly defined decay plane leads to a modification of the cross section
[RO05]:

dσ

dΩ
=
(

dσ

dΩ

)
0

(1 + δl (Ic(φ∗) cos 2φ + Is(φ∗) sin 2φ)) . (7.3)

Here, two polarization observables arise, Ic and Is, defining the amplitudes of a cos 2φ-
and an additional sin 2φ-modulation, respectively.
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Figure 7.8: φ-distributions for the final state proton. Shown are the φ-
distributions with respect to the final state proton recoiling against the
π0η-system in the energy range Eγ = 1325 ± 125 MeV for eight bins in
φ∗ as defined in figure 7.7 along with the spectrum integrated over all φ∗.
The data is not polarization-weighted. Solid line: Fit according to (7.11).
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Figure 7.8 shows the φ-distribution of the final state proton for eight φ∗-bins for the
energy bin 1200 MeV to 1450MeV (see appendix B for the full set of distributions).
The effect of both asymmetries is clearly visible in the superposition of the cos 2φ and
sin 2φ-modulations, both varying in amplitude as function of φ∗. For the calculation
of this angle from the scalar product of the normals to the corresponding planes, this
work follows the angle definitions for the determination of helicity asymmetries in 2π0-
production using circularly polarized photons as described in [Roc05]. In the example
of the reaction plane being spanned by the recoiling proton momentum ~p′ = −~q, ~q =
~pπ0 + ~pη, and incoming photon momentum ~k (figure 7.7), the definition reads:

cos φ∗ =
(~k × ~q) · (~q × ~pπ0)

|~k × ~q| · |~q × ~pπ0 |
(7.4)

=
(~k × ~p′) · (~pπ0 × ~pη)

|~k × ~p′| · |~pπ0 × ~pη|

and

sinφ∗ = −1 ·

(
(~k × ~q)× ~q

)
· (~q × ~pπ0)

|(~k × ~q)× ~q| · |~q × ~pπ0 |
(7.5)

=

(
(~k × ~p′)× ~p′

)
· (~pπ0 × ~pη)

|(~k × ~p′)× ~p′| · |~pπ0 × ~pη|
.

Therefore:

φ∗ =

{
arccos(φ∗) for sin(φ∗) > 0

2π − arccos(φ∗) else.
(7.6)

In the case of one of the mesons being the recoiling particle, the momenta of the proton
and the respective meson are interchanged in (7.4) and (7.5).
As visible in figure 7.8, the amplitudes of the modulations of the cross section vary
with φ∗, so the beam asymmetries themselves are functions of this angle. Taking the
definitions in figure 7.7 into account, the following constraints can be derived:

• In coplanar kinematics, meaning for φ∗ = 0, π, 2π, the situation is indistinguish-
able from the one presented for the quasi two-body approach, where no sin 2φ-
modulation is present in the cross section. Therefore Is has to vanish for these
configurations: Is(φ∗ = 0) = Is(φ∗ = π) = Is(φ∗ = 2π) = 0.

• The transition φ∗ → 2π − φ∗ is equivalent to a mirror operation of the system
with respect to the reaction plane. The polarization plane is thereby mirrored as
well, leading to the transition φ → 2π−φ (see figure 7.1). Since sin(2 · (2π−φ)) =
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− sin(2φ) and cos(2 · (2π − φ)) = cos(2φ), (7.3) yields:

Is(2π − φ∗) = −Is(φ∗) and (7.7)

Ic(2π − φ∗) = Ic(φ∗). (7.8)

Taking these considerations into account, the asymmetries can be expanded in a series
of sine and cosine functions,

Is(φ∗) =
∑
n=0

an sin(nφ∗) and (7.9)

Ic(φ∗) =
∑
n=0

an cos(nφ∗). (7.10)

In this ansatz, the relation between Ic and the two-body asymmetry Σ becomes clear.
The transition from the three-body approach to the quasi two-body situation effectively
implies an integration over the angle φ∗. For the expansions of the observables (7.9),
(7.10), this means that Is vanishes, as expected regarding the absence of a sin 2φ-
modulation in the two-body cross section. In case of Ic however only higher terms in the
expansion vanish and the integration leaves the constant term which then corresponds
to Σ. The two asymmetries are therefore not identical, but Ic contains Σ along with
additional information from higher terms in the expansion.
Figures 7.10 and 7.11 show the asymmetries as functions of φ∗, derived from a fit to the
according φ-distributions in the same way as described before, using the function:

f(φ) = A + P · [B · cos(2φ) + C · sin 2φ)]. (7.11)

The solid symbols show the observables themselves determined as stated above. The
open symbols have been obtained by exploiting the relations given in (7.7), (7.8), per-
forming the transition φ∗ → 2π − φ∗ and changing the sign in the case of Is. The
symmetry properties imposed by these relations are clearly visible in the data, and the
sporadic deviations are consistent with statistics. This demonstrates the comparably
small uncertainties due to systematic effects. As for the quasi two-body asymmetry Σ,
these effects were studied further, determining the two-dimensional acceptance, here as
function of the variables φ and φ∗ as shown in figure 7.9, and using the PWA phasespace-
weighting technique. Again, large asymmetries in the order of up to 50% can be observed
for all recoiling particles with systematic uncertainties in the order of, or well below the
statistical errors. The symmetry constraints imposed by the expansions (7.9), (7.10) are
clearly fulfilled as shown by the associated second order fits applied to the observable



106 7 Results

distributions (solid lines in figures 7.10 and 7.11). The correspondence between Ic and
the two-body beam asymmetry Σ is visible in the baseline shift of the cosine series,
especially in the case of the recoiling η.
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Figure 7.9: Acceptance, φ versus φ∗. Shown are the ratios of reconstructed to gen-
erated Monte Carlo events, binned in the azimuthal angle φ of each of the
three recoiling particles (left to right: p, η, π0) and corresponding angle
φ∗ for the three energy ranges used for the extraction of the polarization
observables (top to bottom).
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Figure 7.10: The beam asymmetry Ic. Left to right: Beam asymmetries derived
from the φ-distribution of the final state proton, η and π0, respectively,
as functions of the angle φ∗. Filled symbols: Beam asymmetry Ic(φ∗) as
derived from the data. Open symbols: Ic(2π − φ∗) (see (7.8)). Solid line:
Second order cosine-series fit (see (7.10)). Bar graphs represent the system-
atic error estimate derived from acceptance correction ([blue], positive)
and PWA phasespace-weighting ([red], negative).
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Figure 7.11: The beam asymmetry Is. Left to right: Beam asymmetries derived
from the φ-distribution of the final state proton, η and π0, respectively,
as functions of the angle φ∗. Filled symbols: Beam asymmetry Is(φ∗) as
derived from the data. Open symbols: −Is(2π−φ∗) (see (7.7)). Solid line:
Second order sine-series fit (see (7.9)). Bar graphs represent the systematic
error estimate derived from acceptance correction ([blue], positive) and
PWA phasespace-weighting ([red], negative).
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7.3 Invariant mass distributions and Dalitz plots

7.3.1 Invariant mass distributions

Figures 7.12 to 7.15 show the distributions for the three accessible two-body invariant
masses in the reaction γp → pπ0η for different ranges of incoming photon energy. They
are compared with the according spectra resulting from reconstructed Monte Carlo
events. Since no dynamical processes are simulated, these are pure phasespace dis-
tributions, including the detector acceptance and efficiency. Here the analysis is not
restricted to the energy range used for the extraction of the polarization observables
since the degree of polarization has no influence on the distributions shown. This has
the advantage that structures appearing at the edge of the phase space covered by the
polarization observables can be studied further towards higher energies and for example
first indications for the intermediate states ∆η, S11π

0 and pa0 (see chapter 3) can be
obtained.
Figure 7.12 shows the pπ0 invariant mass distribution, once for the three energy ranges
under consideration for the extraction of the polarization observables and additionally
integrated over the full energy range from 900MeV to 2500 MeV. A clear signal for the
∆(1232)P33 is observed beginning with the second energy bin, indicating the formation
of an intermediate ∆η state. In the case of the pη invariant mass (figure 7.13), the signal
for the N(1535)S11 resonance, indicating a S11π

0 intermediate state, appears only on
the very edge of the phasespace and is therefore less prominent. It is however clearly
visible in a different representation, the Dalitz plot, introduced in the next section. In
the π0η invariant mass shown in figure 7.14, no distinct features are visible in the energy
regions selected for the extraction of the beam asymmetries. In the integrated spectrum
however, a shoulder at the position of the scalar meson a0(980) can be observed. The
invariant mass region of this signal is also covered in part in the third energy range from
1450 MeV to 1650 MeV, so intermediate pa0 states might contribute to the reaction in
this bin.
Figure 7.15 shows invariant mass distributions for the three, two-particle systems for
three selected photon energy ranges of 100 MeV width each. Here the evolution of the
signals for the intermediate ∆η, S11π

0, and pa0 states becomes apparent. The lowest
energy bin shown, Eγ = 1650 ± 50 MeV partly overlaps with the high energy bin used
for the extraction of the polarization observables, demonstrating the contributions of all
of these intermediate states to the beam asymmetries extracted for this bin. This issue
will be further discussed in chapter 8. For a full set of invariant mass distributions, see
appendix C.
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Figure 7.12: Invariant mass distributions, pπ0-system. The arrow indicates the
position of the ∆(1232)P33 resonance. Hatched area ([red]): Phasespace
distribution, including detector acceptance.
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Figure 7.13: Invariant mass distributions, pη-system. The arrow indicates the
position of the N(1535)S11 resonance. Hatched area ([red]): Phasespace
distribution, including detector acceptance.
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Figure 7.14: Invariant mass distributions, π0η-system. The arrow indicates the
position of the scalar meson a0(980). Hatched area ([red]): Phasespace
distribution, including detector acceptance.
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Figure 7.15: Selected invariant mass distributions. Left to right: Invariant masses
calculated for the π0η-, pπ0-, and pη-system. Arrows indicate the positions
of the a0(980), ∆(1232)P33, and N(1535)S11, respectively. Structures aris-
ing towards higher invariant masses, particularly visible in the m(pπ0)- and
m(pη)-distributions are in fact reflections of resonances in the respective
other invariant mass (see next section). Hatched area ([red]): Phasespace
distribution, including detector acceptance.
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7.3.2 Dalitz plots

The Dalitz plot is a representation of a three-body system, commonly used to ascer-
tain resonances contributing to a given reaction. For three final state particles, two
squared invariant masses m2

12 and m2
23 are calculated and entered in a two-dimensional

histogram. In the absence of dynamical processes in the reaction, the resulting inten-
sity distribution exhibits no structures. Resonant contributions to the reaction however
appear in the Dalitz plot as regions of increased intensity. Resonances in the invariant
masses m12 and m23 can be seen as horizontal or vertical bands at their respective po-
sitions, resonances in the m13 invariant mass appear as diagonals. See for example the
Kinematics section of [A+08b] for details.
Figures 7.16 to 7.18 show Dalitz plots obtained from the data for four selected photon
energy ranges, starting at the upper end of the high energy bin used for the extraction
of the polarization observables. For a full set of plots covering the full energy range
from 900 to 2500 MeV, see appendix C. Distinct bands indicating the formation of the
three intermediate states mentioned above, ∆η, S11π

0, and pa0 are visible throughout,
supporting the interpretation of the linear invariant mass distributions in the previous
section.
The comparison of these plots with the linear invariant masses, especially figure 7.15,
also shows the origin of the peak-like structures at the upper end of the phasespace. In
case of the pη-system for example, this structure is in fact the reflection of the ∆(1232)-
signal in the pπ0 invariant mass, as can be clearly seen in figure 7.17. This demonstrates
the advantage of this representation over one-dimensional mass spectra.
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Figure 7.16: Selected Dalitz plots, m2(pπ0) versus m2(π0η). Squared invariant
masses calculated for four incoming photon energy ranges. Arrows indi-
cate the positions of the scalar meson a0(980) and the ∆(1232)P33 reso-
nance. Not indicated but clearly visible in the diagonal is the signal for the
N(1535)S11 resonance.
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Figure 7.17: Selected Dalitz plots, m2(pπ0) versus m2(pη). Squared invariant
masses calculated for four incoming photon energy ranges. Arrows indicate
the positions of the ∆(1232)P33 and N(1535)S11 resonances. Not indicated
but visible in the diagonal is the signal for the scalar meson a0(980).
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Figure 7.18: Selected Dalitz plots, m2(pη) versus m2(π0η). Squared invariant
masses calculated for four incoming photon energy ranges. Arrows indi-
cate the positions of the scalar meson a0(980) and the N(1535)S11 reso-
nance. Not indicated but clearly visible in the diagonal is the signal for the
∆(1232)P33 resonance.
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8 Discussion

In chapter 3 the importance of the determination of polarization observables in general
and the study of the reaction γp → pπ0η in particular has been pointed out with respect
to selected open questions in hadron physics. In this chapter the results of this work
are compared to other available data.
Additionally, several frameworks to describe the photoproduction of π0η-pairs are avail-
able [DOS06, KCL07, H+08b, FKLO10] or in development [Rob10]. Attempts to de-
scribe the results of this work using three different theoretical approaches will be pre-
sented, after a brief introduction of the corresponding frameworks.

8.1 Comparison to other data

The first data on the quasi two-body beam asymmetry Σ in the reaction γp → pπ0η

has been published independently at about the same time by the CBELSA/TAPS col-
laboration (parts of the results presented in this work, [GSvP+08]), and the GRAAL
collaboration [A+08a] (see 3.2.1). In the latter publication, the beam asymmetry has
been extracted for all three recoiling particles as a function of invariant masses over an
incoming photon energy range of 1100MeV ≤ Eγ ≤ 1500 MeV. In the GRAAL experi-
ment, linearly polarized photons were produced by Compton-backscattering of polarized
laser light (see 4.2), resulting in a high, constant degree of polarization, allowing for a
finer energy-binning. The respective data obtained in this work has been rebinned ac-
cordingly for an energy range of 1000 MeV ≤ Eγ ≤ 1700 MeV to allow for a direct
comparison of the results, as shown in figures 8.1 to 8.3.
The GRAAL data, shown as open (red) circles in the energy ranges covered by the ex-
periment, is in excellent agreement with the results obtained in this analysis (closed blue
circles). Especially the tendency towards positive asymmetries in case of the recoiling
η (figure 8.2), starting at intermediate energies, is consistent in both experiments. It
should be noted though that due to differences in the covered phase space because of
the different geometrical acceptance of the two experiments, a perfect matching of the
datapoints cannot be expected in general (see 7.1, [Sok10] for details).
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Figure 8.1: Σp as function of the π0η invariant mass. The beam asymmetries
are given for seven bins in incoming photon energy, each of 100 MeV width.
Open circles ([red]): GRAAL [A+08a], full circles ([blue]): This work.
Only statistical errors are given.
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Figure 8.2: Ση as function of the pπ0 invariant mass. The beam asymmetries
are given for seven bins in incoming photon energy, each of 100 MeV width.
Open circles ([red]): GRAAL [A+08a], full circles ([blue]): This work.
Only statistical errors are given.
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Figure 8.3: Σπ as function of the pη invariant mass. The beam asymmetries
are given for seven bins in incoming photon energy, each of 100 MeV width.
Open circles ([red]): GRAAL [A+08a], full circles ([blue]): This work.
Only statistical errors are given.
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8.2 Comparison to theoretical results

The description of beam asymmetry data in the reaction γp → pπ0η has, up to now, been
addressed within three different theoretical frameworks, the Bonn-Gatchina partial wave
analysis [GSvP+08, GSvP+10], the isobar model developed by Fix et al. [FKLO10] and
the Valencia chiral unitary model [A+08a, DOM10]. These frameworks differ consider-
ably in their underlying methodology as well as the considered resonance contributions
and their decay couplings. They are introduced briefly in the following and the latest
results with respect to the beam asymmetries extracted within this work are discussed.
The systematic error estimates shown in figures 8.4-8.7 were obtained by comparing
the effects as derived from the two-dimensional acceptance correction and the PWA-
weighting techique described in the previous chapter. For each bin, the larger of the
two contributions is shown as grey bars. These are same values as the ones given in
appendix A as systematic error.

Bonn-Gatchina partial wave analysis The main concepts of the partial wave analysis
approach have already been given in chapter 2.2. The BnGa-PWA is a coupled-channel
analysis incorporating data on about 40 observables in pion- and photoproduction, in-
cluding single- and double-meson- as well as strangeness production. The partial wave
fit itself is, in case of double-meson production, performed using an unbinned, event-
based maximum likelihood method that takes the full correlations between all variables
in the 5-dimensional phasespace into account. For a detailed introduction into the for-
malism, see [AKST05, AS06, AAK+07], the application of the analysis with respect to
the pπ0η final state is described in [H+08b]. For the results shown in figures 8.4-8.7 the
data presented in this work has been incorporated into the fit along with data on other
reactions as given in [H+08b]. The resonances contributing to the solution and their
decay modes are given in table 8.1. The solution derived in the BnGa-PWA framework
describes the data very well and it should be kept in mind that the distributions pre-
sented here are only a fraction of the datasets that are described in parallel. Since the
predictions for the beam asymmetries Σ [GSvP+08] as well as Ic and Is [GSvP+10], ob-
tained within this framework, already described the data considerably well, the solution
shown barely differs from the one published in [H+08b], confirming the results obtained
from the partial wave analysis of the unpolarized data for the reaction γp → pπ0η

[Sar10]. This includes the necessity for a second D33-resonance, ∆(1940), in addition
to the ∆(1700)D33 dominating the reaction at threshold, as well as decay couplings of
participating resonances to pa0 and N(1535)π0 (see table 8.1).
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Fix isobar model Unlike the BnGa-PWA results shown in figures 8.4-8.7, where the
presented data was included in the fit, the isobar model developed by Fix et al. pro-
vides predictions for the beam asymmetries. It is based on a single-resonance model
developed in [KF+09] for data on the unpolarized γp → pπ0η cross section for low and
intermediate energies [FKLO10]. In an isobar formalism the production of two mesons
is described via successive two-body decays, the quasi two-body states being the iso-
bars. In this model these are N(1535)S11π

0 and ∆(1232)P33η, with these resonances
subsequently decaying into pη and pπ0, respectively. The pa0(980) isobar is assumed to
not contribute [FKLO10]. Additionally, only the isospin I = 3/2 channel is considered
for the initial resonance produced. It is to be noted that this model has been developed
in order to describe data only up to an incoming photon energy of Eγ = 1400MeV.
The relevant resonant contributions and their decays are again given in table 8.1. For
further information on the model and its theoretical basis, see [FOT08, FKLO10].
Especially in the low-energy bin but extending to the intermediate energies, the Fix-
model describes the data quite well, further confirming the ∆(1700)D33-dominance at
lower energies as first claimed by the Valencia group in [DOS06]. Going to the highest
bin however, the agreement between model and data gets increasingly worse. This is
most notable in the case of the η being treated as the recoiling particle, where the model
fails to reproduce the large positive asymmetries in the quasi two-body case (figures 8.4,
8.5), leading to a wrong baseline for the asymmetry Ic (figure 8.6). This is also, to a
lesser extend, true for the case of the proton recoiling. For Is (figure 8.7), and here es-
pecially for the recoiling π0, the model underestimates the amplitude of the asymmetry
and seems out of phase in the η-recoil case.
In [FKLO10], the authors claim again the necessity for a second D33-resonance, the
∆(1940), reported first by the Bonn-Gatchina-PWA group in [H+08a], in order to de-
scribe the data. In their publication they also give alternative solutions with varied
parameters, yielding a worse agreement with the data already at lower energies. The
problem at higher energies is not addressed, and it is, at this point, difficult to predict
the impact of for example the pa0(980) couplings or contributions from isospin I = 1/2
resonances within this framework [Fix10].

Valencia chiral unitary model The Valencia model is based on the assumption of cer-
tain resonances, for example the N(1535)S11 and the ∆(1700)D33, being dynamically
generated by meson-baryon interactions. These are treated in a unitarized chiral La-
grangian formalism [DOS06]. In this ansatz, only the excitation of the ∆(1700)D33 reso-
nance is relevant for π0η photoproduction, however not only couplings of this resonance
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to ∆η and S11π
0 are considered, but also the intermediate formation of for example a

KΣ(1385) state, subsequently decaying to S11π
0 is incorporated. The formation of a

pa0-state however is not included in this model. A comparison of the predictions to the
results of this work has already been presented in [DOM10], illustrating the effects of
for example the ∆(1700)− η∆- and∆(1700)−KΣ(1385)-couplings on the beam asym-
metries.
In the low-energy region, where the reaction γp → pπ0η is dominated by the excitation
of the ∆(1700)D33, the Valencia model shows very good agreement with the data for all
observables. Beginning at intermediate energies two distinct features however become
apparent. As for the Fix isobar model, the positive quasi two-body asymmetries in the
case of the recoiling η are not reproduced (figures 8.4, 8.5), leading also to a shift in
the baseline for Ic

η (figure 8.6). Additionally, while the description of Σπ is widely satis-
factory, the three-body asymmetries Ic

π and Is
π do not exhibit any φ∗-dependence. For

high energies the agreement between data and model becomes again somewhat worse,
although, especially in the case of the recoiling proton, the main features are widely
reproduced.
In [DOM10] the authors provide additional predictions, obtained by excluding certain
∆(1700)D33-couplings. A satisfactory description of the data can only be achieved by
including couplings to ∆η and KΣ(1385), both derived from their model based on the
dynamical generation of the ∆(1700)D33. The poor agreement between the predictions
and the data towards higher excitation-energies though proves that a full description
of the process by just one dominating resonance is only sufficient in the threshold region.

Figures 8.4-8.7 show the beam asymmetries obtained in the analysis presented in this
work in comparison to the latest BnGa-PWA fit and the recent predictions derived from
the Fix and Valencia models.
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Decay modes
Resonance

BnGa-PWA Fix et al.

N(1880)P11 pa0(980), N(1535)π0 not included

N(2200)P13 pa0(980), N(1535)π0 not included

∆(1750)P31 not included ∆(1232)η, N(1535)π0

∆(1600)P33 ∆(1232)η ∆(1232)η, N(1535)π0

∆(1920)P33 pa0(980), ∆(1232)η ∆(1232)η, N(1535)π0

∆(1700)D33 ∆(1232)η, N(1535)π0 ∆(1232)η, N(1535)π0

∆(1940)D33 pa0(980), ∆(1232)η, N(1535)π0 ∆(1232)η, N(1535)π0

∆(2360)D33 pa0(980), ∆(1232)η, N(1535)π0 not included

∆(1905)F35 ∆(1232)η, N(1535)π0 ∆(1232)η, N(1535)π0

background t-channel ρ/ω-exchange
contributions u-channel p/∆-exchange

Born terms

Table 8.1: Resonant contributions to the pπ0η final state within the BnGa-
PWA and the isobar model developed by Fix et al. Note that for the
Fix-model, with the exception of the ∆(1600)P33 all resonances dominantly
decay to ∆η. For details see [H+08b, FKLO10].
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Figure 8.4: The beam asymmetry Σ as function of cos θ. Left to right: Beam
asymmetries derived from the φ-distribution of the final state proton, η,
and π0, respectively, as functions of the corresponding cos θ in the center-of-
momentum frame. Grey bars: Estimate of systematic errors due to accep-
tance and efficiency. Solid ([black]) line: BnGa-PWA, short-dashed ([red])
line: Valencia chiral unitary model [DOM10], long-dashed ([green]) line:
Fix isobar model [FKLO10, Fix10].
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Figure 8.5: The beam asymmetry Σ as function of invariant mass. Left to right:
Beam asymmetries derived from the φ-distribution of the final state proton,
η and π0, respectively, as functions of the invariant mass of the remaining
two final state particles. Grey bars: Estimate of systematic errors due to
acceptance and efficiency. Solid ([black]) line: BnGa-PWA, short-dashed
([red]) line: Valencia chiral unitary model [A+08a, Dör10], long-dashed
([green]) line: Fix isobar model [FKLO10, Fix10].
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Figure 8.6: The beam asymmetry Ic. Left to right: Beam asymmetries derived from
the φ-distribution of the final state proton, η and π0, respectively, as func-
tions of the angle φ∗. Filled symbols: Beam asymmetry Ic(φ∗) as derived
from the data. Open symbols: Ic(2π− φ∗). Grey bars: Estimate of system-
atic errors due to acceptance and efficiency. Solid ([black]) line: BnGa-
PWA, short-dashed ([red]) line: Valencia chiral unitary model [DOM10],
long-dashed ([green]) line: Fix isobar model [FKLO10, Fix10].
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Figure 8.7: The beam asymmetry Is. Left to right: Beam asymmetries derived
from the φ-distribution of the final state proton, η and π0, respectively,
as functions of the angle φ∗. Filled symbols: Beam asymmetry Is(φ∗) as
derived from the data. Open symbols: −Is(2π − φ∗). Grey bars: Esti-
mate of systematic errors due to acceptance and efficiency. Solid ([black])
line: BnGa-PWA, short-dashed ([red]) line: Valencia chiral unitary model
[DOM10], long-dashed ([green]) line: Fix isobar model [FKLO10, Fix10].
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The comparison of the theoretical approaches used for the interpretation of the data
on the beam asymmetries shows the complexity of the reaction γp → pπ0η, once the
incoming photon energy sufficiently exceeds the threshold energy for the process. A
good description at low energies is already achieved by including just one resonant
process, the excitation of the ∆(1700)D33, dominating the threshold region, as first
introduced by the Valencia group in [DOS06]. The results are also consistent with
the assumption that this resonance is in fact dynamically generated by meson-baryon
interactions, as claimed by the same group. The further dominance of the D33 partial
wave, at higher energies populated by the ∆(1940)D33, first claimed by the BnGa-PWA
group in [H+08a], is confirmed by the Fix-model. The poor agreement between the
models, as opposed to the partial wave analysis, and the data in the high-energy bin
however leads to the conclusion, that additional contributions have to be considered
for the reaction. Those may include decay couplings of the participating resonances to
pa0(980) as well as excited isospin I = 1/2 states.
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9 Conclusions and outlook

In this work, the analysis of data taken with the Crystal Barrel/TAPS experiment at
the ELSA accelerator facility in Bonn with respect to the photoproduction of π0η-pairs
off the proton has been presented. The data has been obtained, using linearly polarized
photons produced from a primary electron beam with an energy of 3.2GeV via the
process of coherent bremsstrahlung. For the extraction of polarization observables, a
data sample of approximately 65.000 events for the reaction γp → pπ0η has been selected
for an incoming photon energy range of 970 MeV ≤ Eγ ≤ 1650 MeV.

The quasi two-body beam asymmetry Σ has been extracted for all three final state
particles as a function of various angles and invariant masses. Data on this asymmetry
as a function of invariant masses, published by the GRAAL collaboration for an incoming
photon energy range of 1100 MeV≤ Eγ ≤ 1500 MeV, is in excellent agreement with the
results presented here.
The full three-body final state beam asymmetries Ic and Is have been determined for
the first time for any two-meson final state. Thus, the complete set of polarization
observables accessible for the reaction γp → pπ0η, using a linearly polarized photon
beam and unpolarized target, has been measured.
Additionally, invariant mass distributions and Dalitz plots for an energy range from
threshold up to 2500 MeV have been presented, illustrating the complex structure of the
pπ0η final state with respect to the contributing intermediate states pa0(980), ∆(1232)π0

and S11(1535)η.

Some open questions in hadron physics accessible in two-meson photoproduction in ge-
neral and the production of π0η-pairs in particular could be addressed by comparing
the data with the results of three different theoretical frameworks. Here, aspects like
the D33 partial wave dominance in the reaction could be confirmed, which is manifest in
the need for the ∆(1700)D33- and ∆(1940)D33-states. The problems of certain model-
approaches to describe the data at higher excitation energies point to an even more
complex structure of the processes involved. Here couplings of participating resonances
to pa0(980) as well as the participation of isospin I = 1/2 resonances might have to be
considered.
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Continuing analyses within the theoretical frameworks presented here, for example the
event-based inclusion of the presented data in the BnGa-PWA, as well as upcoming
models will shed more light on these questions. Further experiments providing higher
statistics on the reaction γp → pπ0η are desirable to allow for a binning of the three-
body asymmetries Ic and Is in additional variables and to test the theoretical models
even more thoroughly.

The topic of polarization observables and the photoproduction of meson pairs remains
a fascinating field of research with a high potential for gaining a better understanding
of the physics of hadrons. Experiments using linearly and circularly polarized beams
and longitudinally and transversely polarized targets, like the Crystal Barrel/TAPS
experiment in Bonn, now have access to a multitude of observables and will continue to
provide valuable information to fix the spectrum and properies of baryon resonances.



A Beam asymmetry data points

m(π0η)
cos θp Σp ∆(Σp)stat ∆(Σp)sys

[MeV]
Σp ∆(Σp)stat ∆(Σp)sys

Eγ = 1085± 115 MeV

-0.80 0.145228 0.154078 0.055593 691.5 0.024927 0.275407 0.258173

-0.40 -0.104341 0.117535 0.026900 724.5 -0.216493 0.101572 0.053900

0.00 -0.328174 0.103305 0.010300 757.5 -0.148796 0.088402 0.060638

0.40 -0.309937 0.104680 0.095649 790.5 -0.333239 0.096894 0.105825

0.80 -0.245332 0.138622 0.049891 823.5 -0.477480 0.308103 0.035530

Eγ = 1325± 125 MeV

-0.80 -0.058754 0.069327 0.032872 703.5 -0.108359 0.085554 0.049765

-0.40 -0.209271 0.050561 0.076766 760.5 -0.375685 0.040257 0.156056

0.00 -0.279997 0.045996 0.018045 817.5 -0.165783 0.036636 0.053458

0.40 -0.263880 0.045159 0.058139 874.5 -0.096327 0.053434 0.022892

0.80 -0.184049 0.057087 0.038400 931.5 -0.324845 0.199944 0.086288

Eγ = 1550± 100 MeV

-0.80 0.067833 0.085565 0.010622 712.5 0.181704 0.118926 0.023561

-0.40 -0.045094 0.068828 0.033830 787.5 -0.059312 0.078596 0.015980

0.00 -0.301180 0.071834 0.042992 862.5 -0.234193 0.065586 0.076317

0.40 -0.193844 0.075200 0.045953 937.5 -0.114146 0.059316 0.012697

0.80 -0.042320 0.094534 0.011630 1012.5 -0.221567 0.110483 0.010869

Table A.1: Two-body beam asymmetry Σp. The beam asymmetry values are given
as a function of cos θp ([left]) and the π0η invariant mass ([right]). See
figures 7.4, 7.6.
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m(pπ)
cos θη Ση ∆(Ση)stat ∆(Ση)sys

[MeV]
Ση ∆(Ση)stat ∆(Σeta)sys

Eγ = 1085± 115 MeV

-0.80 -0.146531 0.110365 0.027037 1090.5 -0.257881 0.337918 0.062098

-0.40 0.161170 0.116453 0.064667 1121.5 0.018701 0.154504 0.039601

0.00 -0.011704 0.118603 0.056724 1152.5 0.031734 0.108645 0.033652

0.40 0.130520 0.123281 0.026366 1183.5 -0.003187 0.085170 0.052603

0.80 -0.166730 0.129358 0.039335 1214.5 -0.072862 0.110594 0.061310

Eγ = 1325± 125 MeV

-0.80 0.069591 0.048124 0.009158 1102.5 0.103913 0.150369 0.035222

-0.40 0.102427 0.051019 0.077080 1157.5 0.155323 0.057681 0.069500

0.00 0.011473 0.053250 0.002686 1212.5 0.090407 0.030284 0.029830

0.40 0.236442 0.054051 0.067600 1267.5 0.044191 0.050595 0.013190

0.80 0.067999 0.053660 0.014370 1322.5 0.253121 0.160869 0.033860

Eγ = 1550± 100 MeV

-0.80 0.065273 0.083237 0.011170 1111.5 0.670868 0.185345 0.067004

-0.40 0.209445 0.093367 0.073393 1184.5 0.359683 0.063978 0.049309

0.00 0.244779 0.084511 0.033500 1257.5 0.290467 0.057297 0.066093

0.40 0.422241 0.070821 0.034600 1330.5 0.018965 0.074585 0.017550

0.80 0.224294 0.065418 0.008200 1403.5 0.003379 0.116248 0.057342

Table A.2: Two-body beam asymmetry Ση. The beam asymmetry values are given
as a function of cos θη ([left]) and the pπ0 invariant mass ([right]). See
figures 7.4, 7.6.
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m(pη)
cos θπ Σπ ∆(Σπ)stat ∆(Σπ)sys

[MeV]
Σπ ∆(Σπ)stat ∆(Σπ)sys

Eγ = 1085± 115 MeV

-0.80 -0.299940 0.141949 0.051487 1491.5 -0.597769 0.113034 0.072579

-0.40 -0.514620 0.110197 0.057576 1524.5 -0.456010 0.069288 0.060810

0.00 -0.622264 0.107054 0.080919 1557.5 -0.063295 0.132063 0.021200

0.40 -0.422171 0.117425 0.048000 1590.5 -0.139903 0.274024 0.069577

0.80 -0.168803 0.123038 0.034109 1623.5 0.720708 1.075660 0.247275

Eγ = 1325± 125 MeV

-0.80 -0.313620 0.055179 0.046300 1503.5 -0.439144 0.038999 0.073087

-0.40 -0.479484 0.046310 0.044824 1560.5 -0.482071 0.036007 0.099859

0.00 -0.566781 0.047135 0.090380 1617.5 -0.334156 0.049729 0.034300

0.40 -0.445107 0.052955 0.090128 1674.5 -0.240763 0.123835 0.061700

0.80 -0.215775 0.058792 0.038530 1731.5 -0.508486 0.417589 0.115600

Eγ = 1550± 100 MeV

-0.80 -0.351726 0.076090 0.054600 1512.5 -0.246747 0.081265 0.037711

-0.40 -0.253762 0.065984 0.043162 1587.5 -0.407502 0.064377 0.059657

0.00 -0.376694 0.070413 0.043272 1662.5 -0.277923 0.059726 0.031939

0.40 -0.291627 0.086808 0.008900 1737.5 -0.221801 0.087259 0.040806

0.80 -0.098437 0.102371 0.016727 1812.5 0.090842 0.191130 0.062436

Table A.3: Two-body beam asymmetry Σπ0. The beam asymmetry values are given
as a function of cos θπ0 ([left]) and the pη invariant mass ([right]). See
figures 7.4, 7.6.
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φ∗ [◦] Ic
p ∆(Ic

p)stat ∆(Ic
p)sys Is

p ∆(Is
p)stat ∆(Is

p)sys

Eγ = 1085± 115 MeV

30.00 -0.221727 0.135888 0.011800 -0.002915 0.134390 0.013090

90.00 -0.158597 0.129852 0.075775 0.369107 0.131274 0.067550

150.0 -0.374261 0.122431 0.100800 0.247185 0.118447 0.026100

210.0 -0.082350 0.126153 0.089300 0.107738 0.126708 0.044600

270.0 -0.258322 0.134153 0.077720 -0.503513 0.132315 0.055900

330.0 -0.163854 0.136773 0.024700 -0.223122 0.138595 0.011300

Eγ = 1325± 125 MeV

22.5 -0.302428 0.065853 0.010850 0.094128 0.066461 0.009350

67.5 -0.029712 0.064383 0.030610 0.442825 0.063391 0.035623

112.5 -0.140093 0.068234 0.080815 0.449206 0.067686 0.040700

157.5 -0.410206 0.063465 0.085300 0.197607 0.064490 0.034705

202.5 -0.420373 0.064824 0.073400 -0.096702 0.064931 0.035800

247.5 -0.103309 0.067488 0.074630 -0.342822 0.067146 0.052150

292.5 -0.095431 0.063743 0.016935 -0.367220 0.064131 0.018750

337.5 -0.266949 0.065445 0.026112 -0.053497 0.065883 0.014733

Eγ = 1550± 100 MeV

30.00 -0.154556 0.074322 0.025926 0.220537 0.075981 0.016050

90.00 -0.026409 0.085522 0.037841 0.624019 0.083063 0.010300

150.0 -0.225029 0.097872 0.089860 0.156335 0.099358 0.017400

210.0 -0.247731 0.099015 0.086385 -0.098926 0.098100 0.012550

270.0 -0.041444 0.086590 0.042424 -0.344485 0.085878 0.024163

330.0 -0.076097 0.075455 0.022650 -0.421735 0.076019 0.008450

Table A.4: Three-body beam asymmetry values, Ic
p, Is

p as function of φ∗. See
figures 7.11, 7.10.
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φ∗ [◦] Ic
η ∆(Ic

η)stat ∆(Ic
η)sys Is

η ∆(Is
η)stat ∆(Is

η)sys

Eγ = 1085± 115 MeV

30.00 -0.105113 0.169477 0.032800 0.194394 0.173727 0.041721

90.00 0.356798 0.122318 0.023500 0.185975 0.123551 0.041722

150.0 -0.196009 0.120246 0.018650 0.071901 0.117146 0.104220

210.0 -0.244845 0.118813 0.042131 0.070264 0.116259 0.103955

270.0 0.168357 0.117397 0.044950 -0.027924 0.120151 0.046750

330.0 -0.093466 0.163142 0.032596 -0.148949 0.161578 0.059741

Eγ = 1325± 125 MeV

22.5 -0.197031 0.090500 0.038800 0.093916 0.090157 0.031454

67.5 0.249561 0.066301 0.029220 0.129065 0.066260 0.031298

112.5 0.336445 0.057260 0.035757 0.059553 0.057529 0.033704

157.5 -0.059403 0.059982 0.042180 -0.041265 0.059861 0.064984

202.5 -0.131917 0.059422 0.057805 0.038108 0.059346 0.072754

247.5 0.312824 0.057012 0.020105 -0.025102 0.056631 0.039012

292.5 0.210579 0.068614 0.047010 -0.006388 0.068093 0.037554

337.5 -0.377806 0.089007 0.032560 -0.120228 0.092815 0.033396

Eγ = 1550± 100 MeV

30.00 0.139350 0.116099 0.011750 -0.035511 0.113440 0.023340

90.00 0.405572 0.077530 0.007800 -0.072681 0.077503 0.023134

150.0 0.166505 0.076727 0.055715 0.026650 0.076816 0.038010

210.0 0.246521 0.076165 0.062955 0.127413 0.077122 0.050006

270.0 0.254471 0.076501 0.011300 0.216573 0.076860 0.026546

330.0 0.088470 0.111377 0.030920 0.092033 0.113765 0.029105

Table A.5: Three-body beam asymmetry values, Ic
η, Is

η as function of φ∗. See
figures 7.11, 7.10.
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φ∗ [◦] Ic
π ∆(Ic

π)stat ∆(Ic
π)sys Is

π ∆(Is
π)stat ∆(Is

π)sys

Eγ = 1085± 115 MeV

30.00 -0.378218 0.127208 0.025399 0.018822 0.125548 0.016438

90.00 -0.573893 0.123072 0.027200 0.189788 0.126656 0.034563

150.0 -0.283492 0.147437 0.039550 0.032843 0.148838 0.040461

210.0 -0.600361 0.144362 0.053000 -0.167537 0.141524 0.012854

270.0 -0.415358 0.122641 0.026650 -0.061376 0.122959 0.038975

330.0 -0.224247 0.122068 0.029500 -0.080252 0.120459 0.028156

Eγ = 1325± 125 MeV

22.5 -0.274848 0.058958 0.022500 0.146172 0.059058, 0.010296

67.5 -0.403297 0.060477 0.019910 0.144098 0.060251 0.045615

112.5 -0.472535 0.067747 0.042329 0.138508 0.068206 0.030847

157.5 -0.619475 0.078324 0.050867 0.089502 0.080203 0.041104

202.5 -0.514680 0.078421 0.041953 -0.079809 0.078631 0.039828

247.5 -0.529680 0.069395 0.073265 -0.208225 0.069628 0.027637

292.5 -0.381028 0.059474 0.016600 -0.104856 0.060468 0.012050

337.5 -0.352699 0.058586 0.015500 0.029522 0.059249 0.038722

Eγ = 1550± 100 MeV

30.00 -0.391084 0.065053 0.040950 0.145078 0.065380 0.011115

90.00 -0.108909 0.094063 0.033514 0.441145 0.094698 0.033200

150.0 -0.279185 0.122877 0.037693 0.046095 0.123411 0.016295

210.0 -0.440761 0.124220 0.043951 -0.140301 0.126098 0.013025

270.0 -0.229636 0.093707 0.038528 -0.250564 0.093039 0.023550

330.0 -0.276995 0.064157 0.041150 -0.185470 0.064361 0.024300

Table A.6: Three-body beam asymmetry values, Ic
π, Is

π as function of φ∗. See
figures 7.11, 7.10.
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Figure B.1: φ-distributions as function of cos θ, Eγ = 1085± 115 MeV. Top to bottom: φ-distributions of the final state
proton, η, π0, binned in cos θ of the respective particle. Solid line: Fit according to (7.2). Numbers in each bin give
the χ2/NDF for each fit.
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Figure B.2: φ-distributions as function of cos θ, Eγ = 1325± 125 MeV. Top to bottom: φ-distributions of the final state
proton, η, π0, binned in cos θ of the respective particle. Solid line: Fit according to (7.2). Numbers in each bin give
the χ2/NDF for each fit.
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Figure B.3: φ-distributions as function of cos θ, Eγ = 1550± 100 MeV. Top to bottom: φ-distributions of the final state
proton, η, π0, binned in cos θ of the respective particle. Solid line: Fit according to (7.2). Numbers in each bin give
the χ2/NDF for each fit.
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Figure B.4: φ-distributions as function of invariant masses, Eγ = 1085± 115 MeV. Top to bottom: φ-distributions of
the final state proton, η, π0, binned in the invariant mass of the other pair. Mass ranges are given on top of each
panel. Solid line: Fit according to (7.2). Numbers in each bin give the χ2/NDF for each fit.
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Figure B.5: φ-distributions as function of invariant masses, Eγ = 1325± 125 MeV. Top to bottom: φ-distributions of
the final state proton, η, π0, binned in the invariant mass of the other pair. Mass ranges are given on top of each
panel. Solid line: Fit according to (7.2). Numbers in each bin give the χ2/NDF for each fit.
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Figure B.6: φ-distributions as function of invariant masses, Eγ = 1550± 100 MeV. Top to bottom: φ-distributions of
the final state proton, η, π0, binned in the invariant mass of the other pair. Mass ranges are given on top of each
panel. Solid line: Fit according to (7.2). Numbers in each bin give the χ2/NDF for each fit.
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Figure B.7: φ-distributions as function of φ∗, Eγ = 1085 ± 115 MeV. Top to bottom: φ-distributions of the final state
proton, η, π0. Solid line: Fit according to (7.11). Numbers in each bin give the χ2/NDF for each fit.
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Figure B.8: φ-distributions as function of φ∗, Eγ = 1325 ± 125 MeV. Top to
bottom: φ-distributions of the final state proton, η, π0. Solid line: Fit
according to (7.11). Numbers in each bin give the χ2/NDF for each fit.
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Figure B.9: φ-distributions as function of φ∗, Eγ = 1550 ± 100 MeV. Top to bottom: φ-distributions of the final state
proton, η, π0. Solid line: Fit according to (7.11). Numbers in each bin give the χ2/NDF for each fit.
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Figure C.1: pπ0 invariant mass distributions, 900 MeV ≤ Eγ < 1700 MeV.
Numbers denote the bin center in Eγ , the arrow indicates the position of
the ∆(1232)P33 resonance. Hatched area ([red]): Phasespace distribution,
including detector acceptance.
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Figure C.2: pπ0 invariant mass distributions, 1700MeV ≤ Eγ ≤ 2500 MeV.
Numbers denote the bin center in Eγ , the arrow indicates the position of
the ∆(1232)P33 resonance. Hatched area ([red]): Phasespace distribution,
including detector acceptance.
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Figure C.3: pη invariant mass distributions, 900 MeV ≤ Eγ < 1700 MeV.
Numbers denote the bin center in Eγ , the arrow indicates the position of
the N(1535)S11 resonance. Hatched area ([red]): Phasespace distribution,
including detector acceptance.
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Figure C.4: pη invariant mass distributions, 1700MeV ≤ Eγ ≤ 2500 MeV.
Numbers denote the bin center in Eγ , the arrow indicates the position of
the N(1535)S11 resonance. Hatched area ([red]): Phasespace distribution,
including detector acceptance.
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Figure C.5: π0η invariant mass distributions, 900 MeV ≤ Eγ < 1700 MeV.
Numbers denote the bin center in Eγ , the arrow indicates the position of
the scalar meson a0(980). Hatched area ([red]): Phasespace distribution,
including detector acceptance.
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Figure C.6: π0η invariant mass distributions, 1700 MeV ≤ Eγ ≤ 2500 MeV.
Numbers denote the bin center in Eγ , the arrow indicates the position of
the scalar meson a0(980). Hatched area ([red]): Phasespace distribution,
including detector acceptance.
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Figure C.7: Dalitz plots, m2(pπ0) vs. m2(π0η), 900 MeV ≤ Eγ < 1700 MeV.
Numbers denote the bin center in Eγ , the arrows indicate the positions of
the scalar meson a0(980) and the ∆(1232)P33 resonance. Not indicated but
visible in the diagonal is the signal for the N(1535)S11 resonance.
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Figure C.8: Dalitz plots, m2(pπ0) vs. m2(π0η), 1700MeV ≤ Eγ ≤ 2500 MeV.
Numbers denote the bin center in Eγ , the arrows indicate the positions of
the scalar meson a0(980) and the ∆(1232)P33 resonance. Not indicated but
visible in the diagonal is the signal for the N(1535)S11 resonance.
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Figure C.9: Dalitz plots, m2(pπ0) vs. m2(pη), 900 MeV ≤ Eγ < 1700 MeV.
Numbers denote the bin center in Eγ , the arrows indicate the positions of
the ∆(1232)P33 and N(1535)S11 resonances. Not indicated but visible in
the diagonal is the signal for the scalar meson a0(980).
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Figure C.10: Dalitz plots, m2(pπ0) vs. m2(pη), 1700MeV ≤ Eγ ≤ 2500 MeV.
Numbers denote the bin center in Eγ , the arrows indicate the positions of
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Figure C.11: Dalitz plots, m2(pη) vs. m2(π0η), 900 MeV ≤ Eγ < 1700 MeV.
Numbers denote the bin center in Eγ , the arrows indicate the positions
of the scalar meson a0(980) and the N(1535)S11 resonance. Not indicated
but visible in the diagonal is the signal for the ∆(1232)P33 resonance.
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D TAPS LED threshold settings

Ring March 2003 May 2003

number LED Low LED High LED Low LED High

1 1107 MeV 1077 MeV 1118 MeV 1076 MeV

2 154 MeV 181 MeV 167 MeV 184 MeV

3 122 MeV 150 MeV 133 MeV 166 MeV

4 103 MeV 125 MeV 96 MeV 148 MeV

5 82 MeV 115 MeV 70 MeV 94 MeV

6 84 MeV 119 MeV 79 MeV 97 MeV

7 86 MeV 87 MeV 86 MeV 78 MeV

8 85 MeV 81 MeV 82 MeV 85 MeV

9 104 MeV 91 MeV 92 MeV 96 MeV

10 79 MeV 82 MeV 81 MeV 85 MeV

11 84 MeV 93 MeV 97 MeV 103 MeV

12 100 MeV 104 MeV 73 MeV 83 MeV

Table D.1: TAPS LED threshold settings. Given are the trigger thresholds for
photons, protons see an effective threshold that is 20% higher.
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[CG98] Cano, F. and P. Gonzáles: A consistent explanation of the Roper phe-
nomenology. Physics Letters, B(431):270–276, 1998.

[CR93] Capstick, S. and W. Roberts: Nπ decays of baryons in a relativized
model. Physical Review, D(47):1994–2010, 1993.

[CR94] Capstick, S. and W. Roberts: Quasi-two-body decays of nonstrange
baryons. Physical Review, D(49):4570–4586, 1994.

[Cre01] Crede, V.: CBGEANT 1.08/01. CB-Note, October 2001.

[CT97] Chiang, W.-T. and F. Tabakin: Completeness rules for spin observables
in pseudoscalar meson photoproduction. Physical Review, C(55):2054–2066,
1997.

[D+00] D’Angelo, A. et al.: Generation of Compton backscattering γ-ray beams.
Nuclear Instruments and Methods in Physics Research, A(455):1–6, 2000.
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