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Abstract

Relativistic jets are highly collimated plasma outflows that can be present in extra-
galactic radio sources, which are associated with active galactic nuclei (AGN). Observations
give strong support for the idea that a supermassive black hole (BH), surrounded by an
accretion disk, is harbored in the center of an AGN. The jet power can be generally provided
by the accretion disk, by the BH rotation, or both. Such powerful jets can also be sites
of the origin of ultra-high-energy cosmic rays (UHECRs). In this work, we study the jet
formation from rapidly-spinning BHs in the framework of General Relativity and General
Relativistic Magnetohydrodynamics, as well as the acceleration of UHECRs in AGN jets.

Magnetic connection model for launching relativistic jets from a Kerr
black hole: Despite intense efforts to understand the processes responsible for formation
of the AGN jets, we still face the problem of exactly how to explain them. Here, we present
a model for launching relativistic jets in active galactic nuclei (AGN) from an accreting
Kerr black hole (BH) through the rotation of the space-time in the BH ergosphere, where
the gravitational energy of the accretion disk, which can be increased by the BH rotational
energy transferred to the ergospheric disk via closed magnetic field lines that connect the BH
to the disk (BH-disk magnetic connection), is converted into jet energy. The main role of the
BH-disk magnetic connection is to provide the source of energy for the jets when the mass
accretion rate is very low. We assume that the jets are launched from the ergospheric disk,
where the rotational effects of the space-time become much stronger. The rotation of the
space-time channels a fraction of the disk energy (i.e., the accreting rest mass-energy plus
the BH rotational energy deposited into the disk by magnetic connection) via a magnetic
flow into a population of particles that escape from the disk surfaces, carrying away mass,
energy, and angular momentum in the form of jets and allowing the remaining disk gas to
accrete. We use general-relativistic conservation laws for the structure of the ergospheric
disk to calculate the mass flow rate into the jets, the launching power of the jets, and the
angular momentum transported by the jets. As far as the BH is concerned, it can (i) spin
up by accreting matter and (ii) spin down due to the magnetic counter-acting torque on the
BH. We found that a stationary state of the BH (a∗ = const) can be reached if the mass
accretion rate is larger than ṁ ∼ 0.001. For ṁ < 0.001, the BH spins down continuously,
unless a large amount of matter is provided. In this picture, the maximum AGN lifetime
can be much longer than ∼ 107 yr when using the BH spin-down power. Next, we derive (i)
the relation between the BH spin-down power and the particle maximum energy in the jets
and (ii) the relation between the BH spin-down power and the observed radio flux-density
from flat-spectrum core sources. In the limit of the spin-down power regime, the model
proposed here can be regarded as a variant of the Blandford-Znajek mechanism, where
the BH rotational energy is transferred to the ergospheric disk and then used to drive the
jets rather than transported, via Poynting flux, to remote astrophysical loads from where
matter-dominated jets can form. As a result, the jets driven from an ergospheric disk can
have a relatively strong power for low mass accretion rates.

Ultra-high-energy Cosmic Ray contribution from the spin-down power
of black holes: The possibility to trace sources of UHECRs is of crucial importance to
particle astronomy, as it can improve constraints on Galactic and extragalactic magnetic
fields, set upper limits on Lorentz invariance, and probe the AGN engine as an acceleration
mechanism. A considerable improvement was achieved by trying to identify the nature of
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x Abstract

UHECRs using ground detector arrays’ data as, for instance, Auger data. We propose a
model for the UHECR contribution from the spin-down power of BHs in low-luminosity
active galactic nuclei (LLAGN) with energy flow along the jet Ljet 6 1046 erg s−1. This is
in contrast to the opinion that only powerful AGN can accelerate particles of energy > 100
EeV. Assuming that the UHECRs (protons) are accelerated (with a power-law energy dis-
tribution) by shocks in the AGN jets, one can evaluate the maximum energy of the particles
under both the spatial limit and synchroton emission losses. Under the conditions of the
proposed model, we rewrite the equations which describe the synchrotron self-absorbed
emission of a non-thermal particle distribution to obtain the observed radio flux-density
from flat-spectrum core sources. In general, the jet power provides the UHECR luminosity
and so, its relation to the observed radio flux-density. As a result, we obtain the expres-
sions for the minimum luminosity and flux of the UHECR as a function of the observed
radio flux-density and jet parameters. First, we apply the model to Cen A and M87, two
possible sources of UHECRs, and then use a complete sample of 29 steep-spectrum radio
sources (Caramete 2010), with a total flux density greater than 0.5 Jy at 5 GHz, to make
predictions for the maximum particle energy, luminosity, and flux of the UHECRs. We
found that the particles can be accelerated to energies higher than 100 EeV, despite the
fact that the jet power is 6 1046 erg s−1. The present Auger data indicate that Cen A is
a noteworthy source of UHECRs, and our model calculations suggest that Cen A is indeed
a very strong candidate. However, the UHECR-AGN correlation should be substantiated
with further statistics, from Auger and other observatories.

General relativistic magnetohydrodynamics simulation of jet formation
from Kerr black holes: The first general relativistic magnetohydrodynamics (GRMHD)
code for numerically simulating jet formation from accreting BHs was developed by Koide
et al. (1999) using the conservation form of the ideal GRMHD equations on fixed geometry
(either Schwarzschild or Kerr). Using the GRMHD code of Koide et al., we present numer-
ical results of jet formation from a thin accretion disk co-rotating with a rapidly-spinning
BH (a∗ = 0.95). We found that the jet consists of (i) a gas pressure-driven component and
(ii) an electromagnetically-driven component which is developed inside the former. This
is different from the previous results obtained by Koide et al., where the jet has two sep-
arately components (the pressure-driven and electromagnetically-driven components). As
the time evolves, the disk plasma loses angular momentum by the magnetic field torque
and falls towards the BH. When the rapid infall of plasma encounters the disk plasma that
is decelerated by centrifugal forces near the BH, a shock is produced inside the disk at
∼ 3 rS (rS denotes the Schwarzschild radius). The high pressure behind the shock pushes
the plasma outward by gas-pressure forces and pinches it into a collimated jet. As a re-
sult, a gas pressure-driven component of the jet is produced. On the other hand, the
electromagnetically-driven component of the jet has two origins: one associated with the
extraction of the BH rotational energy in the BH ergosphere and the other one with the
twisting of the magnetic field far from the BH. The maximum velocity of the plasma in the
jet is ∼ 0.4 c, which is considerable lower than the velocity of the inner parts of some AGN
jets for which the observations indicate relativistic speeds. However, the outer parts of the
jet can have mildly- and sub-relativistic speeds. Despite this low velocity in the inner part
of the jet, the electromagnetically-driven component of the jet is important by itself as it
shows that the extraction of the rotational energy from the BH via a Penrose-like process in
the BH ergosphere is possible, though for transient jets. Further development of the code
may accomplish the attempt to fully match the AGN observational data.



Acronyms

ADM: Arnowitt-Deser-Misner (formalism)
AGN: Active Galactic Nuclei
BLRG: Broad-Line Radio Galaxy
BH: Black Hole
CFL: Courant-Friedrichs-Lewy (stability condition)
CR: Cosmic Ray
FIDO: FIDucial Observer
GR: General Relativity
GRB: Gamma-Ray Bursts
GRMHD: General Relativistic MagnetoHydroDynamics
GZK: Greisen-Zatsepin-Kuzmin (cutoff)
HiRes: High Resolution (Fly’s Eye experiment)
LLAGN: Low Luminosity Active Galactic Nuclei
MHD: MagnetoHydroDynamics
MRI: MagnetoRotational Instability
LINER: Low-Ionization Nuclear Emission-line Region (galaxy)
NLRG: Narrow-Line Radio Galaxy
OVV: Optically Violent Variable (quasars)
PDE: Partial Differential Equation
QUASARS: QUAuasiStellar Radio Source
SED: Spectral Energy Distribution
STVD: Simplified Total Variation Diminishing (method)
TVD: Total Variation Diminishing (method)
UHE: Ultra High Energy
UHECR: Ultra-High-Energy Cosmic Ray
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Preface

Active galactic nuclei are galaxies whose nucleus (or central core) spectrum cannot
be explained by standard stellar physics, e.g., a dense stellar cluster of massive stars or a
stellar mass BH. The most successful general interpretation is now a spinning supermassive
BH (M ∼ 107 − 109 M⊙), as a result of the discovery of compact X-ray sources (in the
late sixties and early seventies), which was followed by a large amount of work on BHs
and accretion onto BHs from both theoretical and observational point of views. The BH is
supposed to be surrounded by a rotating accretion disk, which supplies the BH with gas and
magnetic fields. A distinctive feature of an AGN is the jet, which can extend far beyond the
host galaxy, in some cases as much as a few Mpc (e.g., ∼ 4.38 Mpc for 3C 236 and ∼ 4.69
Mpc for J1420 – 0545). Curtis (1918) was the first to observe a jet in the M87 galaxy, which
he described as a “curious straight ray” being “apparently connected with the nucleus by a
thin line of matter. The ray is brightest at its inner edge, [...].”

One of the major processes at the center of an AGN is the accretion of disk matter
onto the BH. The disk matter is heated and the excessive radiation energy is emitted, due
to the viscosity of the accretion disk. Close to the BH, the accretion disk can convert the
rest mass-energy of the infalling matter onto the BH into output energy of either radiation
or jets. Theoretically, up to 42 percent of the rest mass-energy of the accreting matter can
be converted into radiation if the BH rotates at its maximum spin (Bardeen 1970). The
fact that quasars1 are more abundant in the early universe suggests that, when the BH has
had little matter available in the host galaxy to consume, they stop shining (i.e., the ratio
between their nucleus luminosity and the Eddington luminosity2 becomes less than about
0.01). The jet formation is usually associated with a mass accretion rate onto the BH (Ṁ )
that is less than the Eddington accretion rate [ṀEdd = LEdd/(εc

2), where ε is the efficiency
of converting the accretion disk energy into radiation, usually being taken as 0.1]. When
the mass accretion rate is 10−2ṀEdd . Ṁ . ṀEdd, the jet production in AGN might be
intermittent [i.e., it might be in a flaring mode (e.g., Ulvestad & Ho 2001)], as it has been
observed in microquasars for more than one decade (Pooley & Fender 1997; Rodŕıguez &

1Quasars point to an early epoch in the history of the universe when the universe was less than a billion
years old and a sixth of its current size. At the beginning of the sixties, observations of certain radio-
emitting objects, thought to be stars, resulted in spectra which showed unusual properties for a star. In
1963, these spectra were explained by very large Doppler-shifted emission lines. This amount corresponds to
a receding velocity which is a large fraction of the speed of light, therefore these objects must have emitted
the now-a-days observed radiation a very long time ago. Since in a short exposure optical image one saw
only the compact nucleus, these objects were indistinguishable from a star, and they were, therefore, termed
quasistellar radio sources (quasars). Later on, it became clear that only a small fraction of quasars, about
10 percent, have hundreds to thousands of times stronger radio emission than optical emission. Historically,
the first identification of an object (3C 295) with a member of a galaxy cluster at an unusual redshift was
obtained by Minkowski (1960). In 1962-1963, independent studies of the objects 3C 273 and 3C 48 by
Hazard et al. (1963), Oke (1963), Schmidt (1963), and Greenstein & Matthews (1963) suggested that these
objects can be of extragalactic origin, with redshifts reflecting the Hubble expansion. It turns out that these
objects were the first quasars ever discovered.

2For a system with a spherical accretion, the Eddington luminosity represents a theoretical upper limit
to its luminosity, and it is obtained by equating the outward nuclear continuum radiation pressure with the
inward gravitational force. This procedure yields: LEdd = 1.3 × 1047(M/109M⊙) erg s−1. Though, super-
Eddington luminosities were observed in some accreting binary systems [e.g., King (2010) and references
therein].
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Figure 0.1: Schematic representation of
the typical spectrum of a quasar.

Mirabel 1997). The jets have the most obvious observational effects in the radio band,
where radio interferometry arrays can be used to study the synchrotron radiation emitted
by the jets down to sub-parsec scales. However, they radiate in all wavelengths from radio
to γ-ray via the synchrotron and inverse-Compton processes. The synchrotron emission
observed from the AGN jets implies that magnetic fields must be present in the jets as well.
From radio polarization observations, the magnetic field in the jets looks relatively ordered.

Over the last four decades or so, a considerable amount of theoretical work has
been aimed at explaining the role of the BH and its accretion disk in the mechanism of jet
formation in AGN, with particular emphasis on the power source of such a jet. The AGN
jets are believed to be powered by (i) the accretion disk, (ii) the BH rotation, or (iii) both. In
the first case, the jets may either be launched only electromagnetically (e.g., Blandford 1976;
Lovelace 1976) or by (General Relativistic) Magnetohydrodynamics processes at the inner
region of the accretion disk (e.g., Blandford & Payne 1982; Koide et al. 1999; McKinney
& Gammie 2004). In the second case, the jets may be powered by the Blandford-Znajek
mechanism (Blandford & Znajek 1977); that is, the energy flux of the jets is provided by
conversion of the BH rotational energy into Poynting flux, which is then dissipated at large
distances from the BH by current instabilities, as these instabilities become important when
the jet slows down (Lyutikov & Blandford 2002). For the third case, we developed a model
that is presented in Chapter 2. [But also see Wang et al. (2008).] Despite intense efforts
to understand the AGN jets by either theoretical modeling and numerical simulation or by
observation, clear answers to numerous questions have not been found yet, such as those
related to the processes responsible for their formation, acceleration, and collimation, as
well as their composition of normal or pair plasma and magnetic fields.

The majority of AGN shows broad emission over the entire electromagnetic spec-
trum. Their broad-band spectrum [or spectral energy distribution (SED)] is a combination
of thermal and non-thermal synchrotron emission and is by far wider than that of a normal
galaxy. The spectra can provide clues about the physical processes taking place in the AGN
and help distinguish different types among the AGN. Furthermore, many AGN show strong
emission lines and variability of their radiation flux. AGN spectra can show (i) strong opti-
cal emission lines (in many cases with abnormal line-intensity ratios); (ii) patterns of high
or low-ionization, (iii) a power-law (of different slopes) in the radio/infrared band due to
the synchrotron emission of the jets (which can extend to optical and X-ray bands for very
powerful jets), (iv) an infrared excess from the thermal radiation, which is re-emitted by
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dust grains in the torus (see below), (v) an unusual ultraviolet excess (called the “big blue
bump”) that ranges from the visual to ultraviolet band and peaks at about 3000 Å , which
is produced by thermal radiation from the accretion disk, (vi) a soft X-ray excess, whose
origin is under debate (e.g., Miniutti et al. 2008), or (vii) very densely distributed narrow
absorption lines in the quasar spectra which are thought to be produced by intervening,
tenuous intergalactic clouds at various redshifts (see Fig. 0.1 for the typical spectrum of a
quasar). Furthermore, a good indicator of an AGN is the presence of a compact radio core,
when available.

Observations give strong support for a unification scheme of the AGN. This unifi-
cation is based (i) on the bolometric luminosity of the source (Lbol), (ii) on the Eddington
ratio (Lbol/LEdd), (iii) on the radio properties of the source, and (iv) on the orientation of
the source with respect to the line of sight, provided that the symmetry axis of the AGN is
identified with the symmetry axis of the jet3 (Antonucci 1993; Urry & Padovani 1995). Since
all these objects present quite heterogenous properties, it is difficult to construct a single
scheme to unify them. However, they still can be separated into classes, and some of these
classes might share the same underlying physics, looking different just because they are
seen from other angles of view. In a simple manner, the AGN can be (i) of high-luminosity
or low-luminosity,4 (ii) of Type 1 (unobscured) or Type 2 (obscured), or (iii) radio-loud or
radio-quiet. These classes will be discussed further in this section. One should keep in mind
that we do not know with certainly whether the low-luminosity AGN are or not scaled-down
versions of the high-luminosity ones. They might be separated by different physical and
spectroscopical properties. Figure 0.2 shows a schematic representation of the AGN from
the unification point of view.

The bolometric luminosity of a source is derived directly from its SED, when the
measurements are available. Otherwise, Lbol is estimated by applying some bolometric
corrections derived from a set of well-observed calibrator sources (Ho 2008). This is usually
obtained by taking the optical B-band (which is centered at the wavelength λ = 4400 Å)
as a reference point, which, in the case of low-luminosity AGN, is not a suitable technique.
This is in part because their optical continuum measurements are scarce and the optical/UV
region of the SED depends on the source extinction; in this case an extrapolation from the
bolometric luminosity in the X-band is typically used. Based on the bolometric luminosity,
AGN are classified as (i) high-luminosity AGN (e.g., quasars) with Lbol ∼ 1046 − 1048

erg s−1 or (ii) low-luminosity AGN (LLAGN) with Lbol < 1045 erg s−1, going as far
down as ∼ 1037 erg s−1 (Ho 2009). From lower to higher luminosity, the LLAGN are,
for instance, absorption-line nuclei, transition objects, low-ionization nuclear emission-line
region galaxies (LINERs),5 and Seyfert galaxies (see below). Radio galaxies are also found
among the LLAGN (e.g., M87 and Centaurus A). In the spectra of LLAGN, the big blue
bump is very weak or absent, which is in contrast to the high-luminosity AGN. LLAGN
are much more common as they are associated with nearby AGN, and therefore easier to

3If every AGN episode involves a spin-flip of the central BH, then there is a third axis.

4Sometimes the highest luminosity is in a waveband which we do not know. Until rather recently we did
not know that there were AGN which emit most in gamma rays. It can be possible that there are AGN that
emit most in neutrinos.

5Here, we include the LINERs in discussion, although newer interpretations of the LINER ionization
mechanism indicate that galaxies with LINER spectra might not be AGN at all [e.g., Schawinski et al.
(2010) and references therein].



xvi Preface

Figure 0.2: AGN unification scheme. Many of
the differences among the AGN may be only due
to a different orientation of the source with re-
spect to the observer. Grey arrow indicates the
viewing angle.

sample. By comparison, a normal galaxy has a bolometric luminosity . 1042 erg s−1, where
the bulk of its luminosity is emitted in the optical band and is mainly produced by stars.
Therefore, for very low-luminosity AGN, good techniques must be employed in order to
separate the optical emission of the nucleus from that of its host galaxy.

The distinctive features of AGN are the broad-line regions (BLRs), as well as
the narrow-line regions (NLRs), whose major ionization mechanism is the photoionization
by the continuum radiation produced by the accretion disk. Consequently, these regions
produce broad lines (with widths up to 104 km s−1) and narrow lines (with a width ∼ 100
km s−1), respectively, in the AGN spectra. A key element in the unification scheme is the
obscuring dusty torus, or other geometrical form. A direct view to the central BH and
to the BLRs results in type 1 AGN, whereas a blocked view of the BLRs yields type
2 AGN. In the latter case, the existence of hidden BLRs can be revealed in polarized
light (Antonucci 1993), as well as through X-ray spectroscopy Mushotzky (1982); Lawrence
& Elvis (1982). Therefore, the two types of AGN might be the same phenomenon, but
they look different only because the observer orientation with respect to the dusty torus
is not the same. The size of the obscuring torus was originally predicted by theoretical
calculations to be hundreds of parsecs, where the (compact) torus was associated with a
dusty, optically thick region of a hydromagnetic wind flowing outward from the middle part
of the accretion disk. However, high-resolution infrared observations indicate that the torus
size is just about a few parsecs (Elitzur 2006). Elitzur explained that this difference occurs
as a result of the clumpy nature of the torus.

Very low-luminosity AGN lack BLRs (Laor 2003). This might occur as a result
of the underlying physics, which may impose an upper limit to the line width. A possible
explanation might be provided through the model developed by Elitzur & Shlosman (2006).
Their model predicts that for a bolometric luminosity below ∼ 1042 erg s−1, the dusty torus
disappears and the release of the accreting rest mass-energy switches from hydromagnetic
disk winds to radio jets.

AGN can also be classified as radio quiet or radio loud based on their radio
properties, which are, in fact, due to the synchrotron emission of the jets. This classification
is usually made based on the value of the radio loudness parameter (R), which is defined as
the ratio of observed radio-to-optical flux density.6 In many studies of the radio loudness

6The observed flux density (Fν) is defined as the observed flux (F ) per observing frequency interval (∆ν).
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of AGN, the radio flux was measured at 5 GHz and the optical flux in the B-band. The
radio-quiet AGN (R ∼ 0.1 − 1) are much more numerous than the radio-loud AGN (R ∼
100− 1000), where a deficit of sources is shown in between of them (e.g., Kellermann et al.
1989; Barvainis et al. 2005). Another criterion for the radio loudness of AGN was proposed
by Miller et al. (1990), which is based only on the radio luminosity of the source; i.e., the
delimitation between radio-quiet and radio-loud AGN is set to the radio luminosity at 5
GHz of P5GHz ∼ 1025 W Hz−1 sr−1 (1032 erg s−1 Hz−1 sr−1).

Powerful jets usually end in a strong shock against the intergalatic medium at
the so-called hotspot, and then the outflow plasma inflates the lobes of the source. For
radio-loud AGN, the contribution from the jets and lobes dominates the luminosity of the
AGN, at least in the radio band. In the case of radio-quiet AGN, the radio emission is
rather weak and the morphology of the jet is different from that of the radio-loud sources,
in the sense that the jet usually does not end in a strong shock at the hotspot but it is
rather disrupted relatively close to the host galaxy. The reason for observing these two
types of AGN may not necessarily imply just a weak jet; in principle, it could also be due to
a unusual cosmic-ray electron spectrum. Under the assumption that the jets are powered
by the Blandford-Znajek mechanism, Blandford (1990) suggested that the observed radio
loud/quiet dichotomy might be explained based on the hypothesis that the jets in radio-loud
AGN could be driven by rapidly-spinning BHs, whereas the jets in radio-quiet AGN are
driven by slowly-rotating BHs. This is also known as the “spin paradigm.” It is known that
the radio galaxies (which are radio-loud AGN) reside in giant ellipticals and Seyfert galaxies
(which are radio-quiet) in disk (spiral and lenticular) galaxies [e.g., Ho & Peng (2001) and
references therein]. Sikora et al. (2007) studied the population of radio loud/quiet AGN and
showed that, when the total radio emission of the AGN is considered, the AGN split into
two different populations. Specifically, the AGN hosted by giant elliptical galaxies can be
about 1000 times louder than the AGN hosted by disk galaxies. This “spin paradigm” can
also be related to the cosmological evolution of BHs (i.e., merging and accretion histories)
in their host galaxies (Volonteri et al. 2007), since the galaxies themselves (ellipticals or
disks) evolved in a different manner.

Radio-quiet AGN have (i) high bolometric luminosity like radio-quiet quasars,
which usually reside in giant elliptical galaxies, and (ii) low bolometric luminosity like
Seyfert galaxies (Seyfert 1943), which are mainly found in spirals, as well as LINERs.
There are two types of Seyfert galaxies: Type 1 Seyfert galaxies, which have two sets of
emission lines in their optical spectra, narrow and broad lines, and Type 2 Seyfert galaxies,
which show only the narrow line component. Seyfert 1s are predominantly more luminous
radio sources than Seyfert 2s (Ulvestad & Ho 2001), and their upper bolometric luminosity
is ∼ 1045 erg s−1. By analogy with Seyfert galaxies, radio-quiet quasars are of (i) type
1, which are optically-unobscured and their spectra show the blue bump, as well as the
broad emission lines, and (ii) type 2, which are obscured having quasar-like luminosities

The observed radio flux represents the rate of flow of radio waves, being equal to F = L/4πd2, where L is the
source luminosity and d is the distance to the source. If L refers to the observed monochromatic luminosity
at one specific frequency, it has the units erg s−1 Hz−1. Instead, if L refers to the integrated luminosity
over a corresponding frequency band, it has the units erg s−1. Observationally, the AGN radio emission
can be either extended or core-dominated, the latter being specified by the radio flux at an intermediate
frequency (∼ 1 GHz) which is dominated by that of a single radio emission component whose size is ∼ 1 kpc
(Blandford & Königl 1979). For beamed emission, the observed flux is enhanced by the Doppler factor to
a power which depends on the structure of the jet (see Chapter 3). If the source is extended, the observed
flux is also taken per steradian.
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but not strong optical nuclear continuum or broad line emission. Type 2 quasars might be
the evolutionary precursors of type 1 quasars; however, they are intrinsically different [e.g.,
Vir Lal & Ho (2010) and references therein]. An intriguing question is whether there are
type 2 quasars at high luminosity as well.

Radio-loud AGN have (i) high bolometric luminosity like radio-loud quasars, op-
tically violent variable (OVV) quasars, and broad-line radio galaxies7 (BLRGs), and (ii)
low-luminosity like the narrow-line radio galaxies (NLRGs), which have emission-line spec-
tra similar to those of Seyfert 2s (e.g., M87 and Centaurus A) and the BL Lac objects. BL
Lac objects show a lack of strong optical emission or absorption lines in their spectra. On
the other hand, the OVVs show large variations (> 0.1mag) in their optical flux on short
timescales (e.g., a day). Collectively, BL Lac objects, OVVs, and highly polarized quasars
are called blazars. They are mainly described as rapidly variable, having polarized optical,
radio, and X-ray emission. All known blazars are radio sources which have a high radio
luminosity combined with a flatness of their radio spectrum and show apparent superlumi-
nal motions. Eddington ratios of the BL Lac objects are generally lower than those of the
radio-loud quasars, with a rough separation at Lbol/LEdd ∼ 0.01.

In the view of the standard unification scheme of AGN, Seyfert 1s and BLRGs
may differ from Seyfert 2s and NLRGs, respectively, only by the orientation of the obscur-
ing torus. BL Lac objects and OVVs are both face-on versions of radio sources. In other
words, the compact radio sources are extended radio sources viewed along their relativistic
jets, where the relativistically Doppler-boosted emission from the innermost parts of the jet
exceeds the unboosted emission from the surrounding extended radio source. Furthermore,
LLAGN do not seem to follow the unification scheme since the BLR, as well as the obscur-
ing torus, is actually missing and not just hidden (Elitzur & Ho 2009). However, further
characteristics of AGN will continue to be revealed as theoretical models and observational
techniques improve. Nevertheless, whatever difficulties are posed when constructing a uni-
fication scheme of AGN, the presence of BHs in the heart of AGN and their spectacular
jets which mark the dynamics of AGN is well established.

In this work, we try to provide new insights into the physics of jet formation from
spinning BHs at the center of an AGN, as well as into the UHECR acceleration process
by such a jet. In the beginning, we give a short introduction to rotating (Kerr) BHs. In
Chapter 2, we present a model for launching relativistic jets in AGN from the ergospheric
region of an accretion disk surrounded a Kerr BH, as a fraction of the disk energy (i.e., the
accreting rest mass-energy plus the BH rotational energy transferred to the ergospheric disk
via BH-disk magnetic connection) is converted into jet energy. In Chapter 3, we propose
a model for ultra-high-energy cosmic ray contribution from the spin-down power of BHs in
LLAGN. In Chapter 2, we present General Relativistic Magnetohydrodynamics numerical
results of jet formation from a rapidly-spinning BH. In the end, we present an outlook and
describe future plans.

7The radio galaxies were first observed in the forties and have become well known since the mid-fifties,
by which time the Third Cambridge Catalog (3C) had been released. Radio galaxies can be extended (e.g.,
Cygnus A) or core-dominated (e.g., blazars). Fanaroff & Riley (1974) classified extended radio galaxies
according to their radio morphology. They determined the ratio between the two brightest peaks and the
total extent of the source, and then classified the sources having a ratio lower than 0.5 as class I and the
sources with a ratio greater than 0.5 as class II. These classes have been called FR-I and FR-II ever since.
More specifically, the brightest radio-emitting region is located near the center of the source in FR-Is (e.g.,
Centaurus A), but at the extremities of the sources in FR-IIs (e.g., Cygnus A). Furthermore, in FR-I the
extended emission is usually not easily detected, since its surface brightness is so weak.



Chapter 1

Introduction to Kerr Black Holes

1.1 Introduction

Albert Einstein’s theory of general relativity is the extension of the special rela-
tivity to non-inertial frames. Its formulation has its root in the so-called weak principle
of equivalence (Galileo principle of equivalence); that is, in a gravitational field, all bodies
fall with the same acceleration. In general relativity, the Minkowski space-time (of spe-
cial relativity) is replaced with a curved (pseudo-)Riemannian space-time, in which there
are generally no preferred coordinate systems. There are two results of special relativity
important for general relativity: (i) the intrinsic properties of space-time are described by
the metric and (ii) the trajectories of the free-falling test particles1 are time-like geodesics
of that metric. But in a curved space-time, initially parallel geodesics do not remain par-
allel. The same thing happens to two free-falling observers who are initially at rest in a
non-uniform gravitational field. They will not remain at rest with respect to each other;
therefore, their geodesics will not remain parallel. This observation is the key idea in gen-
eral relativity, which is to identify the free-falling test particles in a gravitational field with
the inertial observers of special relativity. Consequently, in general relativity the metric
describes the gravitational field by specifying (through its time-like geodesics) the motion
of the free-falling observers.

The space-time of general relativity is a four-dimensional differentiable manifold
endowed with a metric. Generally, manifolds are mathematical tools for analyzing a surface
by describing it as a collection of overlapping, simple surfaces smoothly related to each other.
The overlapping of simple surfaces makes it easier to move from one surface to another.
Therefore, in curved space-time, one needs to consider coordinate patches (sub-regions of
space-time which can be covered by one coordinate system) with overlap transition functions
that cover the entire space. Let us consider two events, say A and B, very close to each
other, where the difference in each of their four generalized coordinates (xµ, µ = 0, 1, 2, 3)
is an infinitesimal quantity. The “distance” between these events is given by

ds2 = gµνdx
µdxν , (1.1)

where the quantities gµν are the components of the metric tensor. The metric tensor

1A test particle is defined as having no charge, negligible gravitational binding energy compared to its
rest mass, and negligible angular momentum, being small enough that inhomogeneities of the gravitational
field within its volume have a negligible effect on its motion.

1
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Figure 1.1: The space-time dia-
gram for generalized coordinates.

at each point of the space-time is covariant, symmetric (gµν = gνµ), and nondegenerate
(det gµν 6= 0), with a signature of either -2 or +2, depending on convention.

For any vector vµ, the metric assigns the real number ||v||2 = gµνv
µvν , where ||v||

is the norm of the vector. Since the space-time in general relativity is a pseudo-Riemannian
manifold, the vector squared norm can be positive, negative, or null, and consequently,
the vector is called time-like, space-like, or null.2 The space-time diagram for generalized
coordinates is shown in Fig. 1.1.

In Riemannian geometry, a key notion is the connection (or parallel transport),
which allows one to compare what happens at two distant points of a curved space. The
connection coefficients (or Christoffel symbols) can be calculated directly from the metric
and its first derivatives, though they are not the components of a tensor themselves. The
derivative of a tensor on a differentiable manifold is called the covariant derivative and
represents the generalization of the ordinary partial derivative in the Euclidean space to an
arbitrary manifold.

The theory of general relativity is a result of Einstein’s attempt to find the relativis-
tic equivalent of Poisson’s equation ∇2ϕ = −4πGρ, where ϕ is the gravitational potential
of a distribution of matter with the density ρ and G is the constant of gravitation. Heuris-
tically, the first step is to replace the mass density with the time-time component of the
tensor describing a physical system, in the limit of a weak field. The tensor in question is
the stress energy-momentum tensor of the matter, T µν . The second step is to look for a
tensor whose components involve the metric tensor and its first and second derivative, as-
suring a second-order partial differential equation generalizing the Poisson equation, whose
divergence vanishes. The quantity which distinguishes between a flat and curved space-time
is the Riemann tensor, whose trace is the Ricci tensor Rµν . In covariant form, Einstein’s
equations read

Rµν −
1

2
gµνR =

8πG

c2
Tµν , (1.2)

where c is the speed of light. The left hand side of the Eq. 1.2 represents the so-called
Einstein tensor Gµν , and R = Rµ

µ = gµνRµν is the curvature scalar. The covariant derivative
of both tensors Gµν and Tµν vanishes. Equation 1.2 shows that the gravitational field can
be described by a purely geometric quantity, its source being the matter tensor.

2The metric can have the signature -2, i.e., the signs of the diagonal components are, in order, (+ - -
-), thus, the squared norm is positive for time-like vectors and negative for space-like vectors. When the
metric has the signature +2 (- + + +), the squared norm is negative for time-like vectors and positive for
space-like vectors.
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In general relativity, there is complete freedom in choosing the coordinate system;
i.e., a given space-time can be represented by different coordinates. Even though the metric
tensor components depend on the coordinate system, the space-time itself does not. The
physical events happen independently of our observations, as Einstein stated; therefore, it
must be possible to express physical laws that take the same form whatever coordinate
system one chooses. The laws are called covariant, and Einstein’s principle is the principle
of general covariance. Furthermore, all physical laws that hold in flat space-time can be
expressed in terms of vectors and tensors, provided that the derivatives are replaced with
the covariant derivatives.

Schwarzschild solution

The first solution of the Einstein’s vacuum field equations was found by Schwarz-
schild (1916). It is assumed that the field outside of a distribution of mass M does not
change with time and has a spherical symmetry. Schwarzschild started from a general line
element for the assumed symmetry and, then, determined the metric coefficients by inte-
grating the field equations. He then found the line element that forms the exact solution of
Einstein’s equation with a suitable transformation of the rectangular-like coordinates to the
spherical-like coordinates (r, θ, φ, and t). The latter coordinates are called the Schwarzschild
coordinates, and the frame of reference that they form is called the Schwarzschild reference
frame. The frame is static and non-deformable, and it can be thought as a coordinate lattice
formed by weightless rigid robes which fill the whole space-time. The robes intersections
give spatial positions, and at each intersection there is a clock which can be synchronized
with all the others by sending and receiving light signals. The radial coordinate r is de-
fined through the surface area 4πr2 of the sphere of constant r. The point given by r = 0
represents the center of the symmetry. The metric can be rewritten as

ds2 = −
(

1− rs
r

)

dt2 +
(

1− rs
r

)−1
dr2 + r2

(

dθ2 + sin2 θ dφ
)

, (1.3)

where rs = 2MG/c2 is the Schwarzschild radius. The factor (1− rs/r) in the second term
reflects the curvature of the three-dimensional space-time. The rate of the flow of the
physical (proper) time, τ , at a given point does not coincide with the t-coordinate. It is
specified by dτ =

√−gtt dt. Far from the gravitational source (r → ∞), gtt → 1 and,
therefore, dτ = dt; that is, t is the physical time measured by an observer removed to
infinity. The parameterization t = const for the events means simultaneity in the entire
reference frame for the observers being at rest in this frame.

Schwarzschild’s solution becomes singular at r = rs or r = 0. On the surface
r = rs, the norm of the time-like Killing vector is gtt = 0, so that the world lines of the
particles becomes null (or light-like). These world lines coincide with the photon world
line, thus the light cones of all events on the surface r = rs are tangent to the surface.
Therefore, this surface can be crossed only in one direction, and it is called the event
horizon. The world lines are time-like for r > rs and space-like for r < rs. The acceleration
of free-falling particles goes to infinity as they approach the event horizon. All particles
passing through the horizon will be falling in towards r = 0, but to an observer outside
the horizon, it appears to take an infinite amount of time. The singularity at r = rs is a
physical singularity only in the Schwarzschild reference frame; that is, it is just not possible
to extend the Schwarzschild reference frame as a rigid and non-deformable reference frame
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beyond r = rs. The singularity at r = 0 is, however, a true singularity of the space-time
for which the curvature tensor diverges itself. The singularities of coordinate systems are
typical in general relativity. In general, they can be removed by suitable transformations
to another set of coordinates. Therefore, to solve the Einstein’s field equations, special
coordinate systems must be chosen, though the chosen coordinates may not cover the entire
space-time.

1.2 Kerr solution

Kerr solution (Kerr 1963, 2007) of Einstein’s vacuum field equations describes the
external field of an isolated source at rest having non-zero angular momentum.3 The solution
discovered by Kerr is not a result of an attempt to directly solve the general equations
for a stationary axisymmetric space-time. The solution is a consequence of studying the
vacuum space-times that have algebraically special curvature tensors. An example of an
algebraically special metric is the Kerr-Schild metric (Kerr & Schild 1965a,b; Kerr 2007).
Kerr metric itself belongs to the Kerr-Schild algebraical class and, consequently, it can be
written in a Kerr-Schild form. This form was used by Kerr to show that the Kerr space-time
is asymptotically flat and rotates. By applying the Kerr-Schild formalism, one can construct
new solutions of the Einstein field equations from the Minkowski space-time and its null
geodesic vector fields, which can then be applied to some energy momentum content, like
the vacuum or the electromagnetic field. Schwarzschild solution can be also written in a
Kerr-Schild form.

To find the solution, Kerr looked for the symmetries of the space-time. The metric
admits two Killing vectors, which are associated with the time translations and rotations
about the axis of the symmetry. The space-time is stationary and one can choose a time-
independent reference frame, which can be transformed in the Lorentz frame at infinity.
Kerr found such a reference frame and expressed the Kerr-Schild form of the metric in this
coordinates as

ds2 =

(

1− 2Mr

Σ

)

dt2 +

(

1 +
2Mr

Σ

)

dr2 +Σdθ2 +

[

(

r2 + a2
)

+
2Mr

Σ
a2 sin2 θ

]

sin2 θ dφ2

+
4Mr

Σ
dt dr − 4Mra sin2 θ

Σ
dt dφ− 2a sin2 θ

(

1 +
2Mr

Σ

)

dr dφ

,

(1.4)
where Σ = r2 + a2 cos2 θ. Since the metric is asymptotically flat, the parameter M can be
identified with the mass of the field source and the parameter a with its angular momentum.
The metric of Eq. 1.4 resembles the Boyer-Lindquist form of the Kerr metric, the latter
metric being simpler, though. For a = 0, the Kerr metric is reduced to the Schwarzschild
metric.

The Kerr geometry is believed to be the late-time limit reached by gravitational
collapse of any rotating body (Novikov & Thorne 1973a; Hawking & Ellis 1973; Frolov
& Novikov 1998). If the body contracts to a size less than its gravitational radius, a
black hole4 is formed. The velocity required to leave the boundary of the BH (or the

3Throughout the rest of the chapter, we use geometrical units: c = G = 1.

4The term “black hole” was popularized by Wheeler (1968). It is not clear who actually invented this
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event horizon) equals the speed of light. Since the speed of light is an absolute limit on the
propagation speed for any physical signal, nothing can escape from the region inside the BH.
All the properties of the matter that formed the BH are gone except for the mass, angular
momentum, and electric charge (which is known as the “no hair” theorem). They are just
slightly smaller than those the body had before the collapse, because the gravitational waves
carry off a part of the total energy and angular momentum of the body during the collapse.

1.3 Kerr black holes in Boyer-Lindquist coordinates

In this section, we describe the Kerr space-time outside of a rotating and uncharged
BH in the most commonly used coordinates of Boyer & Lindquist (1967). Even though the
metric in these coordinates has a pathological behavior at the event horizon, its structure is
simpler and describes the space-time exterior to the event horizon very well. As we shall see
in Chapter 4, in the case of the General Relativistic Magnetohydrodynamics simulations of
jets formation from Kerr BHs, using the Kerr-Schild coordinates may be a better choice to
overcome the numerical problems that occur when approaching the BH event horizon.

In the Boyer-Lindquist coordinates (t, r, θ, φ), the Kerr metric reads

ds2 = −
(

1− 2Mr

Σ

)

dt2 − 4Mar sin2 θ

Σ
dtdφ

+
Σ

∆
dr2 +Σdθ2 +

(

r2 + a2 +
2Ma2r sin2 θ

Σ

)

sin2 θdφ2

, (1.5)

where M is the BH mass, a is the BH angular momentum per unit mass per speed of light
(|a| ≤ M), and the metric functions are defined by

∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ. (1.6)

Since the metric coefficients in Boyer-Lindquist coordinates are independent of t
and φ, both ξt = (∂t)r,θ,φ and ξφ = (∂φ)r,θ,φ are the Killing vectors for the metric. In
Boyer-Lindquist coordinates, their components are (1, 0, 0, 0) and (0, 0, 0, 1), respectively.
The vector ξφ generates rotations about the axis of symmetry z. On the other hand, the
vector ξt corresponds asymptotically to time translation; that is, the Killing vector field
which is directed along the lines of time t shifts the three-dimensional space to another
identical to it. Thus, the coordinate t, the time of the distant observers, can be thought as
the universal time enumerating the three-dimensional slices. In other words, the space-time
is split into a family of three-dimensional slices of constant t plus the universal time t which
enumerates these slices. This is called the 3+1 decomposition of the space-time. In the
Schwarzschild reference frame, the condition t = const meant simultaneity in the entire
external space. In the Kerr space-time this condition does not hold anymore because the
metric has non-vanishing off-diagonal components. The Killing vector ξt becomes space-like
at points close to the event horizon, and the grid of the three-dimensional space would move
at superluminal speed with respect to any observer. The scalar products5 of the Killing

term. It seems that the first recorded use of the term was through a report by Ewing (1962).

5The scalar product of any two (tangent) vectors is v ·w = gµνv
µwν .
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vectors with themselves and each other are (Misner et al. 1973)

ξt · ξt = gtt , ξφ · ξφ = gφφ , and ξt · ξφ = gtφ. (1.7)

The Killing vectors are geometric properties of the space-time, so that they are indepen-
dent of the coordinate system in which the metric is written. The fact that these scalar
products are equal to the metric components is a result of a good choice of Boyer-Lindquist
coordinates. Therefore, the metric components gtt, gφφ, and gtφ keep the information about
the space-time symmetry, being responsible for different features of Kerr space-time, such
as the time dilation, the stationary limit surface, or the dragging of inertial frames.

The standard metric form valid for any stationary, axisymmetric, and asymptoti-
cally flat space-time is (Bardeen 1970)

ds2 = −e2νdt2 + e2Ψ (dφ− ωdt)2 + e2µ1dr2 + e2µ2dθ2 , (1.8)

which is reduced to the Kerr metric in Boyer-Lindquist coordinates if

e2ν =
Σ∆

A
= α2 , e2Ψ =

A

Σ
sin2 θ , e2µ1 =

Σ

∆
, e2µ2 = Σ , ω =

2Mar

A
, ω̃ =

√
A

Σ
, (1.9)

with the metric function A =
(

r2 + a2
)2 − a2∆sin2 θ.

The physical and geometrical interpretation of the terms in the metric equation
(Eq. 1.8) is as follows: the lapse function α relates the proper time of zero-angular-
momentum observers (see below) τ to the universal time t, time of the distant observers
(gravitational redshift factor); ω is the frame-dragging angular velocity; ω̃ is the cylindrical
radius such that 2πω̃ = 2π

√
gφφ is the circumference of a circle around the axis of the

symmetry; and ∆ and Σ are geometrical functions which introduce the event horizon and
the stationary limit surface, respectively.

The Kerr metric has coordinate singularities at ∆ = 0 and Σ = 0 (see later in
this section). For ∆ = 0, there are three possibilities: M2 < a2, M2 = a2, and M2 > a2.
Only for the last one, the space-time allows an event horizon. The equation ∆ = 0 has two
solutions, the outer or the event horizon r+ and the inner r− horizon,

r± = M ±
√

M2 − a2 , (1.10)

see Fig. 1.2. The difference between the Schwarzschild and Kerr geometry is the existence
of the ergosphere (or stationary limit surface) in the Kerr case, which is caused by
the dragging of inertial reference frames due to a non-vanishing angular momentum. The
time-like Killing vector becomes null at the stationary limit surface rsl, rather than at the
event horizon. First, we consider

ξt · ξt = gtt = −
(

1− 2Mr

Σ

)

= 0, (1.11)

for (Σ− 2Mr) = 0. This gives two surfaces of infinite red-shift:

r = M ± (M2 − a2 cos2 θ)1/2. (1.12)

The inner surface of infinite red-shift is located inside of the event horizon. The outer
surface of infinite red-shift,

rsl = M + (M2 − a2 cos2 θ)1/2 , (1.13)
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Figure 1.2: Schematic representation of a
Kerr BH.

is called the stationary limit surface, and coincides with the event horizon only at the poles
(θ = 0, π). For r < rsl, the Killing vector ξt becomes space-like (ξt · ξt > 0). The region
between the stationary limit surface and the event horizon defines the ergoregion. Stationary
observers moves along world lines (r, θ) = const with constant angular velocity relative to
the local geometry. For them, the space-time geometry is unchanged in their neighborhood.
If their angular velocity is zero, so that they move only in time along world lines (r, θ, φ)
= const, they can be though as being static with respect to the asymptotic rest frame (the
frame of distant observers at rest in the Boyer-Lindquist coordinates). Static observers,
whose world lines would have ξt as tangent vectors, cannot exist inside the ergosphere since
ξt is space-like there. The angular velocity relative to distant observers is Ω = dφ/dt > 0
for a > 0 and r < rsl; that is, an observer moving along a non-spacelike world line inside
the ergosphere must co-rotate with BH. Nothing inside the ergosphere can remain at rest
with respect to distant observers. This process is called dragging of inertial frames, or
in short frame dragging. Stationary observers cannot have angular velocities of any value.
The angular velocity is constrainted by the condition that the four-velocity of stationary
observers must lie inside the future cone; that is,

gtt + 2Ωgtφ +Ω2gφφ > 0. (1.14)

This gives the limits of angular velocity,

Ω− 6 Ω 6 Ω+, where Ω± = ω ± α

ω̃
. (1.15)

Figure 1.3 shows the angular velocity of the frame dragging in comparison with
its prograde (Ω+) and retrograde (Ω−) limits.6 At the stationary limit surface Ω− = 0.
Inside this limit, all stationary observers must orbit the BH with positive angular velocity,
so that static observers cannot exist there. The frame-dragging “strength” increases as the
observers approach the event horizon. At the event horizon, all angular velocities are the
same, that is, the BH forces everything to rotate with it.

To study the motion of particles, one must introduce a reference frame which does
not rotate. This frame is called the locally non-rotating frame of zero angular momentum
observers (ZAMOs). In the picture of 3+1 decomposition of the space-time, the frame is
chosen such that its world lines are orthogonal to the slices of constant t; that is, the world

6We use the normalization to the gravitational radius rg = GM/c2; thus, the BH spin parameter is
a∗ = a/rg and the radius is r∗ = r/rg.
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Figure 1.3: Frame-dragging process for
a BH with a spin parameter of a∗ =
0.95. The middle curve is the frame-
dragging angular velocity ω, whereas
the upper and lower curves are the pro-
grade and retrograde limits, Ω+ and
Ω−, respectively. Note that Ω− changes
signs at the stationary limit surface,
which is 2 rg in the equatorial plane of
the BH. At the horizon, which is located
at rH ≃ 1.3 rg, all curves coincide (for
an angular velocity of ∼ 0.36 c3 G−1

M−1); that is, everything must rotate
with the angular velocity of the BH.

lines are time-like lines which are not twisted. The ZAMOs are at rest in this frame, and
move with respect with the Boyer-Lindquist coordinate system. So that, they move in the
absolute space at constant r and θ, and at constant, in time, angular velocity in φ.

Both Killing vectors ξt and ξφ are tangent to the horizon, and are space-like there.
The null geodesic generators of the horizon are tangent to the null vectors ξ = ξt + ΩHξφ,
where ΩH is called the BH angular velocity,

ΩH ≡ ω(rH) =
a

2MrH
=

a

r2H + a2
. (1.16)

The BH angular velocity is constant over the horizon, so that the event horizon rotates
rigidly.

Now, we go back to the coordinate singularity for Σ = 0. This gives r2+a2 cos2 θ =
0, so that r2 = 0 for θ = π/2. The Boyer-Lindquist coordinates were obtained from the Kerr
coordinates (x, y, z, t) applying a set of transformations. In this picture, the singularity at
r = 0 corresponds to a ring of radius a: x2 + y2 = a2 for z = 0.

1.4 Orbits in the Kerr metric

In the case of a thin accretion disk, the disk particles orbit around the BH and
lose energy and angular momentum in some processes (e.g., viscosity). The particle orbits
in Kerr space-time can be described by three constants of motion (Carter 1968). They
are: the particle specific energy, the particle angular momentum, and the so-called Carter’s
constant. The motion of particles, if it was initially in the equatorial plane of the BH,
remains in the equatorial plane the whole time if Carter’s constant vanishes. Using Carter’s
formalism, Bardeen et al. (1972) derived the equations governing the particle trajectory for
orbits in the equatorial plane of the BH. For circular motion, the particle specific energy
and angular momentum are

E† = E/m =
r3/2 − 2Mr1/2 ± aM1/2

r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2
, (1.17)

L† = L/m =
±M1/2(r2 ∓ 2aM1/2r1/2 + a2)

r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2
, (1.18)
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and the particle angular velocity is

Ω =
dφ

dt
= ± M1/2

r3/2 ±M1/2a
, (1.19)

where the upper sign refers to direct orbits, whereas the lower sign refers to retrograde
orbits. At large radii, both direct and retrograde orbits are bound, with nearly equal
binding energies (Bardeen 1973a). A spin-orbit coupling effect, which increases the binding
energy of the direct orbit and decreases the binding energy of the retrograde orbit relative
to the Schwarzschild value, becomes important at small radii. Nonetheless, circular orbits
do not exist for all radii. The denominator of equations (1.17) and (1.18) must have a real
value,

r3/2 − 3Mr1/2 ± 2aM1/2 ≥ 0. (1.20)

Next, we mention the particle orbits that are possible around a Kerr BH. They can be found
in more detail in (Bardeen et al. 1972; Chandrasekhar 1983).

Photon orbits: The photon orbit is obtained from the limiting condition in Eq.
1.20,

rph∗ = 2
{

1 + cos
[

2/3 cos−1 (∓a∗)
]}

, (1.21)

where the normalization to the gravitational radius was used (see the footnote on page 8).
At r = rph∗ the specific particle energy (Eq. 1.17) becomes infinity, therefore it is a photon
orbit. This photon orbit represents the innermost boundary of the circular orbits, but it
is unstable (it can also be seen in Fig. 1.4, where the photon orbit is inside the innermost
stable orbit). The envelope of the photon orbits represents the so-called photon sphere.

Marginally bound orbits: An unbound circular orbit is an orbit with E† > 1.
A small outward perturbation to the particles in such an orbit can produce an escape of
the particles to infinity. The marginally bound orbits correspond to E† = 1, for particles
falling towards the BH from rest, as seen at infinity,

rmb∗ = 2∓ a∗ + 2 (1∓ a∗)
1/2 . (1.22)

A particle with an orbit r < rmb falls directly into the BH.
Innermost stable (circular) orbits: Bound circular orbits are not all stable.

The condition of stability implies a maximum binding energy of the particles in the BH
gravitational potential (1− E†), which gives a minimum particle angular momentum of

rms∗ = 3 + z2 ∓ [(3− z1) (3 + z1 + 2z2)]
1/2 , (1.23)

z1 = 1 +
(

1− a2∗
)1/3

[

(1 + a∗)
1/3 + (1− a∗)

1/3
]

, z2 =
(

3a2∗ + z21
)1/2

.

In the theory of thin accretion disks (Shakura & Sunyaev 1973), or its general
relativistic approach (Novikov & Thorne 1973a; Page & Thorne 1974), the inner edge of the
disk is located at the innermost stable radius. When the disk particles reach this radius,
they drop out of the disk and go directly into the BH.

Figure 1.4 shows the orbit radii as a function of BH spin parameter for the whole
interval −1 6 a∗ 6 1. The left side corresponds to retrograde orbits, the right side to direct
orbits, and the middle to a Schwarzschild BH (a∗ = 0). The radii from top to bottom are:
the marginally stable orbit, the marginally bound orbit, the photon radius, the stationary
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Figure 1.4: Characteristic orbit radii as
a function of BH spin parameter for the
whole interval −1 6 a∗ 6 1. The radii
from top to bottom are: the marginally
stable orbit rms∗, the marginally bound
orbit rmb∗, the photon orbit rph∗, the
stationary limit surface in the equato-
rial plane rsl∗, and the event horizon
rH∗. Note that the stationary limit sur-
face is 2 rg for any value of the BH spin
parameter.

limit radius in the equatorial plane, and the event horizon. Note that the stationary limit
surface is 2 rg for any value of the spin parameter. For a maximal rotating BH (a∗ = 1),
there is an apparent coincidence of the first three orbits with the BH event horizon. This is
induced by general relativistic effects. To calculate the proper distance between any of the
three radii and the BH radius, one needs to include the square root of the metric component
grr. This implies a non-zero limit for the proper distance between the orbits.

1.5 Stretched horizon – membrane paradigm

The BH can be surrounded by a boundary surface, so that the interaction of the
BH with the outside world can be described in terms of special boundary conditions at
this boundary surface. Znajek (1978) and Damour (1978) developed a formalism in which
the BH horizon is identified with such a boundary surface. There is a physical distinction
between the horizon and the boundary of an ordinary body; the BH horizon is a null
surface, while the boundary of an ordinary body is a time-like surface. To overcome this
problem, Thorne & Macdonald (1982); Thorne et al. (1986), chose the boundary surface
representing the BH slightly outside of the event horizon. The horizon is then stretched
to cover up this boundary surface; this is known as stretched horizon. In this way, the
null horizon is replaced with a physical membrane endowed with electrical, mechanical,
and thermodynamical properties. For example, Macdonald & Thorne (1982) presented, in
details, the electrodynamics of Kerr BHs from the membrane paradigm point of view by
using the 3+1 decomposition of space-time. The motion of coordinates within a surface is
described by the shift vector, whose φ component is the reverse sign of the frame-dragging
angular velocity.

Blandford & Znajek (1977) proposed a mechanism for extracting the rotational
energy of the BH, where the angular momentum and rotational energy of the BH are trans-
ferred to a large-scale magnetic field and transported out as a Poynting flux. They derived
the equations for a stationary and axisymmetric force-free magnetosphere in curved space-
time and reduced the set of equations to a constraint equation relating the toroidal magnetic
field to the charge density and toroidal current density. The mechanism is explained from
the membrane paradigm point of view, where the equations were written using the elec-
tric and magnetic three-vectors in absolute space whose time dependence is governed by
Maxwell-type equations. We will refer to the membrane paradigm in the following chapter.



Chapter 2

Magnetic Connection Model for
Launching Relativistic Jets from
Kerr Black Holes

In this chapter, we present a model for launching relativistic jets in active galactic
nuclei (AGN) from an accreting Kerr black hole (BH) as an effect of the rotation of the
space-time, where the gravitational energy of the accretion disk inside the ergosphere, which
can be increased by the BH rotational energy transferred to the disk via closed magnetic
field lines that connect the BH to the disk (BH-disk magnetic connection), is converted
into jet energy. The main role of the BH-disk magnetic connection is to provide the source
of energy for the jets when the mass accretion rate is very low. We assume that the jets
are launched from the disk inside the BH ergosphere, where the rotational effects of the
space-time become much stronger, being further accelerated by magnetic processes. Inside
the ergosphere, we consider a split topology of the magnetic field, where parts of the disk
connect to the BH and other parts to the jets via magnetic field lines. The rotation of
the space-time channels a fraction of the disk energy (i.e., the gravitational energy of the
disk plus the rotational energy of the BH which is deposited into the disk by magnetic
connection) into a population of particles that escape from the disk surfaces, carrying away
mass, energy and angular momentum in the form of jets, allowing the remaining disk gas to
accrete. Since the accretion disk can be cooled very efficiently as its energy is taken away
by jets, the accretion disk beneath the jets is left non-radiant. In this picture, the BH can
undergo recurring episodes of its activity with: (i) a first phase when the accretion power
dominates and (ii) a second phase when the BH spin-down power dominates. In the limit
of the spin-down power regime, the model proposed here can be regarded as a variant of
the Blandford-Znajek mechanism, where the BH rotational energy is transferred to the disk
inside the ergosphere and then used to drive the jets. As a result, the jets driven from a
disk inside the BH ergosphere can have a relatively strong power for low mass accretion
rates. We use general-relativistic conservation laws to calculate the mass flow rate into the
jets, the launching power of the jets and the angular momentum transported by the jets
for BHs with a spin parameter a∗ > 0.95. As far as the BH is concerned, it can (i) spin up
by accreting matter and (ii) spin down due to the magnetic counter-acting torque on the
BH. We found that a stationary state of the BH (a∗ = const) can be reached if the mass
accretion rate is larger than ṁ ∼ 0.001. The maximum value of the BH spin parameter
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depends on ṁ being less but close to 0.9982 (Thorne’s model). For ṁ < 0.001, the BH spins
down continuously, unless a large amount of matter is provided. In addition, the maximum
AGN lifetime can be much longer than ∼ 107 yr when using the BH spin-down power.
We also study the relation between the BH spin-down power and the particle maximum
energy in the jets and the relation between the BH spin-down power and the observed radio
flux-density from flat-spectrum core source.

2.1 Introduction

Relativistic jets are highly collimated plasma outflows present in extragalactic
radio sources, which are associated with many AGN. The radio emission from the jets is
synchrotron radiation produced by relativistic electrons and positrons in the jets. The
particles interact with their own synchrotron photons by inverse Compton process, which
leads to a boosting of the self-generated synchrotron photons to higher energies like X-
and γ-rays. Therefore, the jets can be observed over a wide range of the electromagnetic
spectrum. Moreover, the observed radio emission from the jets proves the presence of
magnetic fields and particles accelerated to the relativistic regime. The magnetic fields can
accelerate plasma by magnetic gradient forces, and then collimated it by hoop stresses.1

If the matter accreted by a BH has enough angular momentum compared to that
of a particle moving in a circular orbit around and near the BH, an accretion disk can be
formed.

The launching power of the jet can generally be provided by the accretion disk,
by the BH rotation, or both. Moreover, as the jet is launched, the BH can evolve towards
a stationary state with a spin parameter whose maximum value is less but close to one
(a∗ . 1, where theoretically −1 6 a∗ 6 +1). One can consider the launching power of the
jet to be a fraction of the disk power. A number of questions come to mind: Is this fraction
generally valid for astrophysical jets from BHs with the same mass and spin? Can the disk
manage to launch the jet by itself as the BH accretes at low rates? How does the magnetic
field get involved? Can the BH take over and support the disk to launch the jet as the mass
accretion rate goes down? How does the BH spin evolve while the jet is launched, and what
is the maximum spin parameter in this case? We try to answer these questions using the
model proposed in this chapter.

A supermassive BH (M ∼ 109M⊙) can be fed and spun up by accreting matter
with a consistent sense of the angular momentum [the first calculations for a Kerr BH were
performed by Bardeen (1970)] or by merging with another BH (e.g., Berti & Volonteri 2008;
Gergely & Biermann 2009).

The disk luminosity is generated by the release of accreting rest mass-energy in
the BH gravitational field. The accretion process is usually described by (i) the efficiency
of converting the accreting rest mass-energy into radiation energy ε (which also establishes
the relation between the AGN bolometric luminosity and the BH growth rate) and (ii) the
Eddington ratio ṁ, which relates the bolometric luminosity to the Eddington luminosity.
The Eddington luminosity describes the balance between the gravitational force and the
radiation pressure on the accreting matter. If the radiation pressure dominates, that is, the

1By ‘hoop’ stress, a large-scale and predominantly toroidal magnetic field exerts an inward force on the
jet particles. The hoop stress is balanced either by the gas pressure of the jet or by centrifugal force if the
jet is spinning.
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accretion rate is larger than the Eddington limit (ṁ > 1), the accretion stops. Jet formation
is usually associated with a radiatively-inefficient accretion flow (ṁ < 1). Among the first
proposed models of accretion onto supermassive BHs were those of Prendergast & Burbidge
(1968) and Lynden-Bell (1969). Lüst (1952) developed the first mathematical description
of an optically thin accretion disk.

The general relativistic effects on the structure of the inner regions of an accretion
disk surrounding a Kerr BH were first studied by Novikov & Thorne (1973a) and Page &
Thorne (1974) using Bardeen et al.’s (1972) orthonormal frames of the locally nonrotating
observers. These studies resulted in a geometrically thin, optically thick accretion disk
model [see also Shakura & Sunyaev (1973) for a quasi-Newtonian approach to the description
of the disk accretion onto a Schwarzschild BH]. This is known as the standard, thin-accretion
disk model. The model assumes that the disk is quasi-Keplerian (i.e., the radial pressure is
negligible and the radial velocity of the flow is much smaller than its azimuthal component),
and extends to the innermost stable (circular) orbit. The disk is driven by internal viscous
torque, which transports the angular momentum of the disk outwards, allowing the disk
matter to be accreted onto the BH. It is assumed that the torque vanishes at the innermost
stable orbit, so that the disk matter plunges into the BH carrying the specific energy and
angular momentum that it has had at the innermost stable orbit. In the general relativistic
regime, accretion onto the BH implies the conversion of the rest mass-energy of the infalling
matter in the BH potential wall into kinetic and thermal energy of the accreting mass flow.
If the thermal energy is efficiently radiated away, the orbiting gas becomes much cooler than
the local virial temperature, and the disk remains geometrically thin. In the inner regions
of the disk, the radiation pressure dominates the gas pressure. The opacity is dominated by
electron scattering; i.e., the photons random-walk before leaving the disk as they scatter off
of electrons. Since the half-thickness of the disk at a given radius, r, is much smaller than the
radius itself, h(r) ≪ r, the disk structure can be described through one-dimensional (1-D)
hydrodynamic equations which are integrated in the vertical direction. Donea & Biermann
(1996) developed a model of thin accretion disk driven jets, which can explain the shape of
UV spectra from an AGN when the disk is sub-Eddington. Models of jet/wind formation
from an accretion disk typically invoke specific magnetic field structures, as the synchrotron
radio emission observed in (extra)galactic jets is possible only if magnetic fields are present.
The jet can be launched and collimated, for instance, by centrifugal and magnetic forces
(e.g., Blandford & Payne 1982). A possible condition for centrifugal launching of jets from a
thin accretion disk is that the coronal particles, which are found just above the disk, should
go into unstable orbits around the BH (Lyutikov 2009). The jets/winds can also be launched
from either (i) a geometrically thick disk with, e.g., an advection-dominated accretion flow
(e.g., Narayan & Yi 1994; Armitage & Natarajan 1999), a convection-dominated flow (Meier
2001), or an advection-dominated inflow and outflow (Blandford & Begelman 1999), or (ii)
a layer located between the accretion disk and the BH corona which consists of a highly
diffusive, super-Keplerian rotating and thermally dominated by virial-hot and magnetized
ion-plasma (Hujeirat et al. 2002). [See also the work by Kuncic & Bicknell (2004) for the
first fully analytic description of a turbulent magnetohydrodynamics (MHD) accretion disk
coupled to a corona.] Falcke & Biermann (1995, 1999) proposed a jet-disk symbiosis model
for powering jets; starting from the assumption that radio jets and accretion disks are
symbiotic features present in radio quasars, these objects consist of a maximal jet power
with a total equipartition (i.e., the magnetic energy flow along the jet is comparable to the
kinetic jet power), and the total jet power is a particular fraction of the disk power. This
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fraction can be found by fitting the jet parameters to the observational data.

The energy and angular momentum of a BH can be electromagnetically extracted
in the presence of a strong magnetic field threading the BH and supported by external
currents flowing in the accretion disk, as shown by Blandford & Znajek (1977). In this
case, the energy flux of the jets is provided by conversion of the BH rotational energy
into Poynting flux, which is then dissipated at large distances from the BH by current
instabilities (Lyutikov & Blandford 2002). The Blandford–Znajek mechanism has been
widely applied to jet formation in AGN, as well as to microquasar jets and gamma ray
bursts, in an attempt to match a number of observational data. Macdonald & Thorne
(1982) explained this mechanism in terms of the BH membrane paradigm, in which case
an imaginary stretched horizon (a conducting surface located just outside of the BH event
horizon) mimics the BH electrodynamics as seen by outside observers. The electric charge
that falls into the stretched horizon do not cross it. Instead, it circulates on the stretched
horizon, being conserved, until a charge of opposite sign falls into the stretched horizon
to annihilate it. The electric current can flow into the stretched horizon, stay there, and
then flow out again. The charge and the current on the stretched horizon are fictitious
to an observer which falls through the stretched horizon, whereas they look perfectly real
to an observer who stays outside of the stretched horizon. From the viewpoint of Thorne
et al. (1986), the membrane paradigm implies not only the existence of a stretched horizon,
but also a 3+1 split of space-time into (absolute) space and (universal) time. Therefore,
the stretched horizon is regarded as a 2-D space-like surface that resides in 3-D space and
evolves in response to driving forces from the external universe (Price & Thorne 1986). As a
result, outside observers can make measurements at the stretched horizon and describe the
physical properties of the horizon using modified pre-relativistic equations, such as Ohm’s
law. As another possibility, Poynting jets can be driven by an ergospheric disk, as a result
of gravitohydromagnetics processes (i.e., interactions between a large-scale magnetic field
and the plasma inside the BH ergosphere), which were first described by Punsly & Coroniti
(1990).

Different theoretical models of jet formation have been tested already by using
numerical simulations. For instance, general relativistic magnetohydrodynamics (GRMHD)
simulation results are consistent with models of gas pressure and magnetically driven jets
(e.g., Koide et al. 1999; Mizuno et al. 2004a; Nishikawa et al. 2005b; Hawley & Krolik
2006), as well as with the Blandford–Znajek mechanism (e.g., Komissarov 2001; Koide
2003; McKinney & Gammie 2004). On the other hand, Punsly et al. (2009) performed fully
relativistic 3-D MHD simulations of jets driven through the interaction of the magnetic field
with the accreting gas in the BH ergosphere. Once again, the BH ergosphere is a part of
the stationary asymptotically flat space-time (as the Kerr space-time) in which the Killing2

vector that corresponds asymptotically to time translation becomes space-like (Friedman
1978). The ergosphere lies outside of the BH event horizon, and its boundary intersects
the event horizon only at the poles. At the stationary limit surface, an observer must move
at the speed of light opposite the rotation of the BH just in order to stay still. Inside the
ergosphere, the space-time itself is dragged in the direction of the BH rotation; i.e., nothing
can stay there at rest with respect to distant observers, but it must orbit the BH in the same
direction in which the BH rotates. This process is called the dragging of inertial frames

2Since the Kerr space-time is stationary (i.e., time-independent) and axially symmetric, there are two
Killing vectors associated with these two symmetries (e.g., Kerr 2007).
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(e.g., Misner et al. 1973).

The BH-disk magnetic connection, first mentioned by Zeldovich & Schwartzman
and quoted in Thorne (1974), can occur and change the energy-angular-momentum bal-
ance of the accreting gas in the disk (e.g., Macdonald & Thorne 1982; Thorne et al. 1986;
Blandford 1999; van Putten 1999). Li (2000a,b, 2002a) derived the equations for the energy
and angular momentum transferred from a Kerr BH to a geometrically-thin accretion disk
(which consists of a highly-conducting ionized gas) by magnetic connection, and we shall
use these equations. [But also see the work by Wang et al. (2003).] As the BH rotates
relative to the disk, an electromotive force is generated. This drives a poloidal electric cur-
rent flowing through the BH and the disk and produces an additional power on the disk.
From the conservation laws of energy and angular momentum for a thin Keplerian accre-
tion disk torqued by a BH, Li (2002a) calculated the radiation flux, the internal viscous
torque, and the total power of the disk, and found that the disk can radiate even with-
out accretion. Li (2002b) also looked for observational signatures of the BH-disk magnetic
connection as more energy is radiated away from the disk and showed that the magnetic
connection can produce a steeper emissivity compared to the standard, thin-accretion disk
model. Uzdensky (2004, 2005) obtained the numerical solution of the Grad-Shafranov equa-
tion for a BH-disk magnetic-connection configuration in the case of both Schwarzschild and
Kerr BHs. The Grad-Shafranov equation is a non-linear, partial differential equation that
describes the magnetic flux distribution of plasma in an axisymmetric system. Uzdensky
found that the BH-disk magnetic connection can only be maintained very close to the BH
(see in the next section). In recent years, a number of models that also include the BH-disk
magnetic connection have been developed. A BH magnetic field configuration with both
open and closed magnetic field lines was considered by Lei et al. (2005), who described the
field configuration by the half-opening angle of the magnetic flux on the horizon, which
can evolve to zero in some range of the power-law index of the radial distribution of the
magnetic field on the disk. Wang et al. (2007) proposed a toy model for the magnetic
connection, in which case a poloidal magnetic field is generated by a single electric current
flowing in the equatorial plane around a Kerr BH. Ma et al. (2007) derived the energy and
angular momentum fluxes for a Kerr BH surrounded by an advection-dominated accretion
disk. To solve the equations of the accretion flow, they used a pseudo-Newtonian potential.
Gan et al. (2009) solved the dynamic equations for a disk-corona system and simulated its
X-ray spectra by using the Monte Carlo method. Zhao et al. (2009) studied the magnetic
field configuration generated by a toroidal distributed continuously in a thin accretion disk,
as well as the role of magnetic reconnection in the disk to produce quasi-periodic oscil-
lations in BH binaries. In the context of GRMHD, Koide et al. (2006) presented a 2-D
GRMHD result of jet formation driven by a magnetic field produced by a current loop near
a rapidly-rotating BH, in which case the magnetic flux tubes connect the region between
the BH ergosphere and a co-rotating accretion disk. Furthermore, relativistic Poynting jets
driven from the inner region of an accretion disk that is initially threaded by a dipole-like
magnetic field were studied by Lovelace & Romanova (2003). Their model is derived from
the special relativistic equation for a force-free electromagnetic field. [See also Lynden-Bell
(1996, 2003).]

In this chapter, we propose a model for launching relativistic jets from a (geometrical-
ly-thin) disk inside the ergosphere as an effect of the rotation of the space-time. We consider
here the BH-disk magnetic connection, whose main role is to provide the source of energy
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for the jets when the mass accretion rate is very low. We use the general relativistic form of
the conservation laws for the matter in a thin accretion disk to describe the disk structure
when both the BH-disk magnetic connection and the jet formation are considered. The
model is based on the calculations of Novikov & Thorne (1973a), Page & Thorne (1974),
and Li (2002a), being mainly influenced by the work of Znajek (1978) and Macdonald &
Thorne (1982). [Some incipient ideas which are at the base of this model were exposed in
Duţan & Biermann (2005).] This is the first work that studies the process of jet launching
from a (geometrically-thin) accretion disk inside the BH ergosphere when the energy and
angular momentum are transferred from the BH to the disk via closed magnetic field lines,
whithin the framework of general relativity. An important result of the model proposed
here, with impact on observation of the AGN jets, is that the power of the jets does not
depend linearly on the mass accretion rate all the way down to very low accretion rates for
BHs of a given mass. This result is different from that of Allen et al. (2006), who found a
linear dependence between the power of the jet and the mass accretion rate by considering
a spherical Bondi-type accretion onto BHs (in which case the accreting matter has zero or
very low angular momentum). In their calculations, the power of the jet is estimated from
the energy and time scale required to inflate the cavity observed in the surrounding X-ray
emitting gas. The model proposed here combines two regimes associated with the driving of
the jets, an accretion power regime and a (BH) spin-down power regime, where the switch
from the former to the latter regime corresponds to a mass accretion rate of ṁ ∼ 10−1.8. In
the accretion power regime, the power of the jets is linearly dependent on the mass accretion
rate, whereas in the spin-down power regime the power of the jets depends very weakly on
the mass accretion rate. In the accretion power regime, the energy and angular momentum
are extracted and transported away from the disk inside the BH ergosphere by both the ki-
netic flux of particles and Poynting flux in the form of jets. Instead, in the spin-down power
regime the energy and angular momentum are extracted and carried away from the disk
inside the ergosphere predominantly in the form of Poynting flux with just little amount of
kinetic flux of particles. The work presented in this chapter is different from that of Wang
et al. (2008), in which the production of Poynting flux jets is associated with a combination
of the Blandford–Znajek mechanism, the BH-disk connection, and the Blandford–Payne
mechanism. Furthermore, we argue that the accretion, which is initially at either close to
the Eddington rate or at low rates, can be driven in a non-radiant, geometrically thin, and
quasi-Keplerian disk inside the BH ergosphere by the external jet torque. This is distinctly
different from optically thin, advection-dominated accretion flow models (e.g., Narayan &
Yi 1994), in which the accretion at low rates is advection-dominated (i.e., the thermal en-
ergy generated via viscous dissipation is mostly retained by the accreting mass flow rather
than being radiated, and the energy is advected in towards the BH) and quasi-radial (i.e.,
the flow is geometrically thick, having roughly a spherical structure), which results from the
increase of the gas temperature. Our first goal in the present work is to obtain estimations
for jet-related quantities, in particular the mass loading, power and Lorentz factor of the
jet, when the BH rotational energy is transferred to the disk inside the ergosphere and then
to compare them with those derived from the Blandford-Znajek mechanism. In the limit
of the spin-down power regime, the model proposed here can be regarded as a variant of
the Blandford-Znajek mechanism, where the BH rotational energy is transferred to the disk
inside the ergosphere rather than transported to remote astrophysical loads. Our second
goal is to determine the upper limit of the spin attained by a stationary Kerr BH when
both jet formation and BH-disk magnetic connection are considered and to investigate how
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the value of the mass accretion rate can influence the departure of the BH spin parameter
from its theoretical maximum limit of a∗ = 1.

Chapter outline

In Section 2.2, we describe the assumptions of the model. In Section 2.3, we derive
the mass flow rate into the jets. Using the general-relativistic conservation laws for energy
and angular momentum of the matter in the accretion disk (Section 2.4), we derive the
launching power of the jets (Section 2.5) and the angular momentum removed by the jets
(Section 2.6). In Section 2.7, we calculate the efficiency of launching the jets and show that
when the BH accretes at low rates, the spin-down of the BH is an efficient mechanism to
launch the jets via the accretion disk. In Section 2.8, we study the spin evolution of the BH
and discuss conditions of BH stationary states for given mass accretion rates. In Section
2.9, we refer to the long lifetime of an AGN from the BH spin-down power as a particular
relevance of the proposed model to the observational data. In Section 2.10, we present a
summary of the key points, as well as our conclusions, and suggest further work to be done.

2.2 Basic assumptions

• We consider that matter outside of the BH has negligible gravitational effects com-
pared to the BH gravity and that an

• We consider that matter outside of the BH has negligible gravitational effects com-
pared to the BH gravity and that an accretion disk settles down in the equatorial
plane of a Kerr BH. We assume that the accretion disk is geometrically thin and
quasi-Keplerian, therefore the physical quantities integrated over the vertical direc-
tion can be used in order to describe the radial structure of the disk. The inner part of
the accretion disk is located inside the BH ergosphere, extending from the stationary
limit surface (or ergosphere) inward to the innermost stable orbit (see Fig. 2.1). In
the BH equatorial plane, the stationary limit surface is located at rsl = 2 rg and does
not depend on the BH spin parameter, whereas the radius of the innermost stable
orbit depends on a∗ [cf. eq. 2.21 of Bardeen (1970)]; so that, rms(a∗) = 2 rg for
a∗ = 0.95 and ∼ 1.2 rg for a∗ ∼ 1. Here, rg = GM/c2 is the gravitational radius

[rg = r†g(M/109M⊙) = 1.48× 1014(M/109M⊙) cm], G is the Newtonian gravitational
constant, M is the BH mass and c is the speed of light.

• We adopt the viewpoint of the BH membrane paradigm of Thorne et al. (1986) and
represent the BH by the stretched horizon.

• We consider the case of rapidly-spinning BHs with a spin parameter a∗ > 0.95, based
on the argument by Bardeen (1973b) that a strong preference for a particle to orbit
in the equatorial plane requires the BH spin parameter to be close to its maximum
value.

• We consider that closed magnetic field lines connect the BH to the accretion disk (e.g.,
Blandford 1999; Li 2000b). The poloidal component of the magnetic field transfers
angular momentum and energy (in the form of Poynting flux) from the BH to the
disk, thereby increasing the amount of the gravitational energy which is released from
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Figure 2.1: Schematic representation of the in-
ner part of the accretion disk-BH-jet system,
where the BH is represented by the stretched
horizon (Thorne et al. 1986). Above the sur-
face of the disk inside the BH ergosphere, the
closed magnetic field lines (solid lines) do not
cross the open magnetic field lines (dashed
lines); they overlap only in the line-of-sight
projection. For some explanation on the struc-
ture of the magnetic field in the ergospheric
disk, the reader is referred to the text below.

the accretion disk. This energy is liberated very close to the BH, where most of
the gravitational energy of the accretion disk is available (in our case, from the disk
inside the BH ergosphere). Next, we assume that the disk energy (which, once again,
represents the disk gravitational energy plus the BH rotational energy deposited into
the disk by magnetic connection) is used to launch the jets. In this way, the disk
remains cool and geometrically thin. By comparison, in a standard, thin accretion
disk, the thermal energy is efficiently radiated away, so that the orbiting gas becomes
much cooler than the local virial temperature, and the disk remains geometrically
thin.

• As the numerical results obtained by Uzdensky (2005) indicate, a closed magnetic
field configuration can only be maintained in a region close to the BH. This region is
limited to the radius of ∼ 12 rms = 72 rg for a static BH (a∗ = 0) and decreases to
∼ 6 rms = 20.4 rg as the BH spin parameter increases to a∗ = 0.7. Therefore, it might
be possible that, for a BH with a∗ > 0.95, the closed magnetic field configuration to
exist only in the region bounded by the BH ergosphere.

• We constrain the jet formation to the disk inside the ergosphere, where the rotational
effects of the space-time become much stronger. The slope of the specific energy of disk
particles (Eq. 2.13) for a∗ > 0.95 steepens in the BH ergosphere, indicating that most
of the gravitational energy of the accretion disk is realeased from there. Moreover,
inside the ergosphere, the space-time is dragged in the direction of the BH rotation
and everything must co-rotate with the BH. (We shall ignore the possibility for the
plasma inside the BH ergosphere to have negative mechanical energy at infinity.)
Outside the ergosphere, it is plausible that patches of the disk gas may counter-rotate
with the BH due to some instability or turbulence in the disk. If some magnetic field
lines are frozen in such patches, they likely reconnect with the co-rotating magnetic
field lines, and the closed magnetic field configuration can be destroyed. On the other
hand, as discussed above, it seems that a closed magnetic field configuration might
exist only in the region bounded by the BH ergosphere. And it is this magnetic field
that transferres rotational energy from the BH to the accretion disk.

• A more general magnetic field threading the BH would consist of a combination of
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closed magnetic field lines, as discussed above, and open magnetic field lines (extending
from the BH to infinity), which can enable the extraction of BH rotational energy
through the Blandford–Znajek mechanism. Now, one can wonder: (i) How much
of the rotational energy of the BH is directly extracted by jets and how much is
transferred to the disk, and (ii) under which specific conditions? These questions can
be addressed in some future work. We limit the present work to the case of a BH
threaded only by closed magnetic field lines and compare the values of some basic
physical quantities (such as the power) of a jet driven solely from the disk inside the
BH ergosphere with those of a jet powered by the Blandford-Znajek mechanism.

• We assume that the jets remove angular momentum from the disk, enabling the
accretion process. The external torques acting on the disk inside the BH ergosphere
(i.e., magnetic BH-disk torque and jet torque) can dominate over the internal viscous
torque of the disk (Blandford 2001), where the internal torque can be produced by
magneto-rotational instability (e.g., Balbus & Hawley 1991), which is driven by the
free energy available from the differential rotation of the gas flow. This is based on
the fact that the magnetic BH-disk and jet torques have lever arms that are external
to the accretion disk, and therefore potentially very large[see, e.g., the discussion on
the winds from accretion disks in Pudritz (2000)].

• To form the jet, at some point, the particles must cross the magnetic field lines.
One can picture this as being due to drifts and instabilities inside the disk (Balbus
& Hawley 1994, 1996, 1998). In addition to the closed magnetic field lines that
connect the BH to the disk inside the ergosphere, the magnetic field in the disk can
be represented similar to the magnetic field on the Sun surface. In a direct top-down
view, it looks mottled, with arcs of magnetic fields connecting different regions and
other magnetic flux tubes extending into free space and allowing matter to flow out
[see also fig. 36 of Thorne et al. (1986)]. [An accretion disk with a magnetic field
configuration similar to that of the Sun was studied by Yuan et al. (2009) for driving
episodic magnetohydrodynamic (MHD) jets.] However, the closed (BH-disk) and open
(disk-infinity) magnetic field lines are supposed to be dominant in the model proposed
here.

• To examine the fate of the magnetic field in the space around the BH, we follow
the ideas of Thorne et al. (1986) on the ‘cleaning’ of the magnetic field by the BH
stretched horizon to maintain an ordered magnetic field [see fig. 36 of Thorne et al.
(1986)]. Since the magnetic field is frozen into the accretion disk, the field lines
are transported in toward the BH by the accretion flow. Once the flow reaches the
innermost stable orbit, it drops out of the disk and falls directly into the BH, and
becomes causally disconnected from the field lines to which it was attached. However,
the flux conservation law assures that the field lines, although disconnected from their
source, will be pushed onto the BH by the Maxwell pressure of the adjacent field lines
or thread through the near-vacuum region between the accretion disk and the BH
or pushed back into the disk via Rayleigh-Taylor instabilities. If this cleaning works
efficiently enough, an approximately stationary and axisymmetric magnetic field of the
type described in the paragraph above can be formed [see also Li (2000c)], otherwise
the process discussed in this chapter is not continuous and a different description than
that presented here must be employed. Furthermore, our approach here is simple in
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the sense that with the assumption of an approximately stationary and axisymmetric
magnetic field, the outflow near the launching region is thereby taken to be quasi-
stationary (∂/∂t = 0). Therefore, we are limited by not being able to specify time-
dependent effects in the outflow. We concentrate here on the launching region of the
jets, determining the mass flow rate into the jets and other conserved quantities of
the outflow, and discuss the importance of the magnetic field in accelerating the jets
on sub-parsec scales without solving the entire flow problem (see Section 2.5).

• To allow for jet formation, we assume that the surface density of the disk and the mean
radial velocity combine themselves in such a way to keep their product constant over
the disk inside the BH ergosphere (see Section 2.3). This can be thought of as being an
effect of the BH rotation. By comparison, in the model of Blandford & Payne (1982)
the disk particles are driven upwards by the gradient of the pressure in the disk to
fill the corona around the disk. The plasma should be sufficient to produce whatever
charge and current densities are required for an MHD flow. The magnetic field lines
that pass through the corona will be bent from near vertical to make a certain angle
with the disk surface. If this angle is greater than 60◦, the particles will fling outwards
under centrifugal forces. Then, as magnetic stresses become important, the particles
will be further accelerated by the gradient of the magnetic pressure. Far from the disk,
the particles inertia will cause the magnetic field to become increasingly toroidal. As
a result, the flow will be collimated by the magnetic hoop stresses to a cylindrical
shape outside the (outer) light cylinder. In the model proposed here, the rotation of
the space-time is responsible for ejecting particles in the direction perpendicular to
the disk. The escape particles then slide along the open magnetic field lines (dashed
lines in Fig. 2.1), being accelerated by magnetic forces (see Section 2.5).

• Due to the motion of the disk plasma in which magnetic field lines are frozen, it is
also possible that magnetic reconnection will take place at the interface of closed and
open magnetic field lines. (Such a non-ideal MHD effect, which is common to impul-
sive and gradual flares, can convert magnetic energy into kinetic energy and thermal
energy, and topologically change field lines; this can have significant consequences for
the global evolution of a system. This effect is also connected with a violation of the
magnetic flux conservation.) Such a magnetic reconnection that allows outflows to be
driven has been observed in time-dependent resistive MHD simulations of jet/wind
formation from neutron stars performed by Romanova et al. (2009). This role of mag-
netic reconnection in driving outflows can also be extended to accreting BH systems.
To estimate the rate of the magnetic energy that can be extracted through recon-
nection, we follow the work by de Gouveia dal Pino & Lazarian (2005); de Gouveia
Dal Pino et al. (2010). If we apply eq. 12 of de Gouveia dal Pino & Lazarian (2005)
to a BH of 109 M⊙, we obtain a value of ∼ 1043 erg s−1, which is about two orders of
magnitude smaller than the minimum value of the power of the jet that we obtain in
the model proposed here.

• We use the Kerr metric (Kerr 1963) in cylindrical coordinates. In and near the BH
equatorial plane, the metric is given by

ds2 = −e2νdt2 + e2ψ (dφ− ωdt)2 + e2µdr2 + dz2, (2.1)

where r, φ and z are defined as the cylindrical coordinates in the asymptotic rest
frame, and t is the physical time of an observer removed to infinity (Page & Thorne
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1974). The components of the metric tensor in (2.1) are specified by

e2ν =
r2∆

A
, e2ψ =

A

r2
, e2µ =

r2

∆
, ω = 2rgaA

−1, (2.2)

where the metric functions read

∆ = r2 − 2rgr + a2, A = r4 + r2a2 + 2rgra
2, (2.3)

where a = J/(Mc) is the angular momentum of the BH about the spinning axis
(J) per unit mass and per speed of light. The BH spin parameter is defined as
a∗ ≡ J/Jmax (= a/rg), where Jmax = GM2/c is the maximal angular momentum of
the BH.

To describe the structure of a thin accretion disk (Novikov & Thorne 1973a), the
reference frames used in their calculations are: (i) the frame of Boyer-Lindquist coordinates
for the space-time outside of a Kerr BH (in our case, the Boyer-Lindquist coordinates are
transformed to cylindrical coordinates); (ii) the orbiting orthonormal frames of zero angular
momentum observers (ZAMOs), and (iii) the mean local rest frame of gas particles.

The Boyer-Lindquist coordinates (and the cylindrical coordinates) are, to some
degree, unphysical in the BH ergosphere because physical observers cannot stay at rest, due
to the frame-dragging effect of the BH rotation. Therefore, the physical processes around
a Kerr BH must be studied in a reference frame which does not rotate with respect to the
reference frame of the Boyer-Lindquist coordinates (or the cylindrical coordinates). The
reference frame in question is the frame of ZAMOs (Bardeen et al. 1972). The observers
carry with them an orthonormal tetrad of 4-vectors, their locally Minkowskian coordinate
basis vectors, so that the physical quantities are described by their projections on the
orthonormal tetrad.

Novikov & Thorne (1973a) proved that the mean local rest frame of the gas par-
ticles is nearly identical to the orbiting orthonormal frame of ZAMOs if the motion of gas
particles is nearly geodesical. Since the disk is assumed to be in a quasi-steady state, the
gas-related quantities are averaged on a scale comparable to the thickness of the disk. All
physical quantities (vectors, tensors, etc.) related to the matter in the accretion disk are
described in ZAMO’s reference frame.

2.3 Mass flow rate into the jets

First, let us explain the terms used for the (rest-)mass flow rates, which are mea-
sured by observers at infinity. The term mass accretion rate refers to the mass flow rate
through the disk up to the ergosphere (ṀD = ṁṀEdd). In the ergosphere, ṀD is divided
into the mass outflow rate into the jets (Ṁjets) and the mass inflow rate onto the BH (Ṁin).
Now, we can write the mass outflow rate as

Ṁjets = Ṁin(rsl)− Ṁin(rms), (2.4)

where Ṁin(rsl) and Ṁin(rms) denote the mass inflow rate at the stationary limit surface and
at the innermost stable orbit, respectively. The mass outflow rate can also be expressed as

Ṁjets = qjetsṀin, (2.5)
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Figure 2.2: Schematic repre-
sentation of the mass flow
through the disk inside the BH
ergosphere.

where the parameter qjets indicates the fraction of the mass of the disk inside the BH
ergosphere that goes into the jets. Figure 2.2 shows a schematic representation of the mass
flow in the disk inside the BH ergosphere.

The amount of mass that flows inward across a cylinder of radius r during a
coordinate time interval ∆t, when averaged by the method in Novikov & Thorne (1973a),
is

Ṁ = −2π
√

|g|Σ v̄r̂ D1/2, (2.6)

where
√

|g| = eν+ψ+ν = r is the square root of the metric determinant (Eqs. 2.1 and
2.2), Σ = 2h < ρ0 > is the surface density of the disk (with h being the half-thickness
of the disk and < ρ0 > the density of rest mass), v̄r̂ is the mass-averaged radial velocity,
and D = (1 − 2/r∗ + a2∗/r

2
∗) is one of the functions used to calculate general relativistic

corrections to the Newtonian accretion disk structure. Here, r∗ = r/rg is the dimensionless
radius. We mention that Eq. 2.6 does not include the jet outflow, yet.

Next, we estimate the mass inflow rate at one specific radius of the disk inside the
BH ergosphere using Eq. 2.6, so that the mass outflow rate becomes

Ṁjets =
[

−2πrΣ v̄r̂ D1/2
]

rsl
−
[

−2πrΣ v̄r̂ D1/2
]

rms

. (2.7)

The mass inflow rate at the stationary limit surface is also given by ṁṀEdd. Then,

Ṁjets = ṁṀEdd

[

1− Ṁ(rms)

Ṁ(rsl)

]

. (2.8)

By analogy with a standard, thin accretion disk [eqs. 5.9.5 and 5.9.10 of Novikov
& Thorne (1973a)], the product of the surface density and the mass-averaged radial velocity
can depend on the disk radius as Σv̄r̂ ∝ rp. One can recover a standard, thin accretion disk
by setting p = −1, in which case the mass accretion rate [Eq. 2.6, also eq. 5.6.2 of Novikov
& Thorne (1973a)] is independent of the radius. Now, instead of trying to obtain an exact
condition for jet launching, let us simply take p = 0, as this gets rid of the requirement to
know Σ and v̄r̂ precisely. Let us examine the consequences of this choice. Clearly, p = 0
corresponds to a product Σv̄r̂ constant for any radius of the disk inside the ergosphere,
and consequently the mass inflow rate on to the BH decreases with radius as Ṁin(r) ∼ r,
and the difference flows into the jets. Then, Ṁin(r) at a given radius is specified by the
general relativistic factor D1/2, which depends on the BH spin parameter. For an ADAF
disk that allows outflows, Ṁin(r) ∼ rq, where 0 6 q < 1 [eq. 13 of Blandford & Begelman
(1999)]. Therefore, our choice of q = 1 (or p = 0 ) represents a limiting case in the model
by Blandford & Begelman (1999).
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Figure 2.3: Mass outflow parameter
(qjets) as a function of the BH spin
parameter (a∗). For a∗ ∼ 1, almost
the whole material of the disk inside
the BH ergosphere flows into the jets
(qjets ≃ 0.98); that is, the BH almost
stops being fed by accreting matter. *
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Figure 2.4: Mass outflow parameter as
a function of the BH spin parameter
if the inner disk would have been ex-
tended beyond the stationary limit sur-
face. The jet formation occurs for a∗ >
0.755, which corresponds to qjets > 0.
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Using equations (2.5) and (2.8), as well as the expression of D, we obtain the
fraction of the mass inflow that goes into the jets (or the mass outflow parameter) as

qjets(a∗) = 1− rms∗

rsl∗

(

1− 2/rms∗ + a2∗/r
2
ms∗

1− 2/rsl∗ + a2∗/r
2
sl∗

)1/2

, (2.9)

where rms∗ = rms/rg and rsl∗ = rsl/rg.

Figure 2.3 shows the mass outflow parameter as a function of the BH spin param-
eter. For a∗ = 0.95, the mass outflow into the jets is only about 8 percent of the available
mass inflow through the disk inside the BH ergosphere. Instead, for the extreme value of the
spin parameter a∗ ∼ 1, the mass outflow is about 98 percent of the available mass inflow.
This means that in the case of extreme spin, the BH almost stops being fed by accreting
matter.

Suppose the inner disk would have been extended beyond the stationary limit
surface. In this case, the disk particles can form the jets (qjets > 0) if and only if the BH
spin parameter were a∗ > 0.755 (Fig. 2.4).

We mention that the results presented in this section are valid for our choice of
p = 0. This, of course, need not be a necessary condition for jet launching, since we have
examined the mass outflow parameter for just one value of p, that which makes Σv̄r̂ constant
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for any radius of the disk inside the BH ergosphere and qjets dependent only on the BH spin
parameter, but it is certainly sufficient. The BH rotation causes an outflow of particles
from the disk, where the energy (and angular momentum) carried by the escape particles
is taken from the accretion disk. The escape particles then slide along the open magnetic
field lines, being accelerated by magnetic forces (see Section 2.5).

2.4 Angular momentum and energy conservation laws

To describe the structure of the disk inside the BH ergosphere, we use the angular
momentum and energy conservation laws derived by Page & Thorne (1974) and include both
the BH-disk magnetic connection and the jet formation. When deriving the conservation
laws, Page & Thorne (1974) do not make any assumption about the type of stress-energy
present (e.g., magnetic fields, viscous stresses, etc.). The calculations performed by Page
& Thorne (1974) are valid even if the disk is highly dynamical, but can also be applied to
steady-state and quasi-steady-state disks, in which case the mass accretion rate is constant
throughout the disk. Here, we consider that the removal of the angular momentum of the
disk inside the BH ergosphere can be produced by the external jet torque and that the
external torques acting on the disk inside the BH ergosphere (i.e., BH-disk magnetic torque
and jet torque) dominate over the internal viscous torque of the disk. In this case, we can
write the angular momentum conservation law3 as

d

dr

[

(1− qjets) ṀDcL
†
]

+ 4πrH = 4πrJL† , (2.10)

where on the left-hand side, the first term describes the angular momentum carried by the
accreting mass of the disk inside the BH ergosphere, and the second term describes the
angular momentum transferred from the BH to the disk inside the ergosphere. The term
on the right describes the angular momentum carried away by the jets. L† is the
specific angular momentum of a gas particle orbiting in the accretion disk, J is the total
flux of energy (of particle and magnetic origin) carried away by jets, and H is the flux of
angular momentum transferred from the BH to the disk inside the ergosphere. H is defined
through the magnetic torque produced by the BH on both surfaces of the accretion disk
THD (Li 2002a)

THD = 2

∫ r2

r1

2πrHdr, (2.11)

where the limits of integration are two radii of the accretion disk with r1 < r2.

Similar to the angular momentum conservation law, we can write the energy con-
servation law as

d

dr

[

(1− qjets) ṀDc
2E†

]

+ 4πrHΩD = 4πrJE† , (2.12)

where on the left hand-side, the first term describes the rate of the energy flow through the
disk inside the BH ergosphere, and the second term is the magnetic torque per unit area
of the disk inside the ergosphere THDΩD (here ΩD is the Keplerian angular velocity of the
gas particles in the disk). The third term describes the energy flow along the jets. E†

3The equation describing the angular momentum conservation is derived in Appendix 1.
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Figure 2.5: Difference between the an-
gular velocities of the BH and the in-
ner edge of the accretion disk. When
ΩH > ΩD, energy and angular momen-
tum are transferred from the BH to the
accretion disk. When ΩH < ΩD, en-
ergy and angular momentum are trans-
ferred from the accretion disk to the
BH. For a∗ = 0.35, ΩH = ΩD, and there
is no transfer of energy (or angular mo-
mentum) in either direction. For a∗ =
0.999999, ΩH−ΩD = 0.0052 c3G−1M−1.
The turning point corresponds to a∗ =
0.9275. *
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is the specific energy of a gas particle having mass µ and orbiting in the same direction as
the BH rotation (Bardeen et al. 1972):

E† ≡ E

µ
=

r3/2 − 2rgr
1/2 + r

1/2
g a

r3/4
(

r3/2 − 3rgr1/2 + 2r
1/2
g a

)1/2
. (2.13)

The flux of angular momentum transferred from the BH to the disk inside the
ergosphere by magnetic connection has the following expression (Li 2002a):

H =
1

8π3r

(

dΨD

c dr

)2 ΩH − ΩD

(−dRH/dr)
, (2.14)

where ΨD is the flux of the poloidal magnetic field lines which thread the surface of the
disk inside the BH ergosphere, and ΩH is the BH angular velocity. The derivation of Eq.
(2.14) is based on the supposition that the accretion disk consists of a highly conducting
ionized gas. This implies that (i) the accretion disk resistance is neglected in comparison
with the BH surface resistance and (ii) the magnetic field lines are frozen in the accretion
disk, being transported by the disk gas and rotating with ΩD. On the other hand, the
angular velocity of the magnetic field lines threading the horizon is ΩH, due to the effect
of the frame-dragging at the BH horizon. For a∗ > 0.35 and r ≥ rms, one obtains
ΩH > ΩD, so that the BH transfers energy (and angular momentum) to the
disk (Fig. 2.5). For a∗ < 0.35, one obtains ΩH < ΩD, and this time the accretion disk
transfers energy (and angular momentum) to the BH. For a∗ = 0.35, it yields ΩH = ΩD; this
condition implies that there is no energy (nor angular momentum) transfer between the BH
and the accretion disk by magnetic connection. The maximum value of the flux of angular
momentum transferred from the BH to the accretion disk corresponds to a∗ = 0.9275.

2.5 Launching power of the jets

We are now in the position to calculate the launching power of the jets with the
help of the conservation laws previously derived. First, we define the launching power of
both jets as

Pjets = 2

∫ rsl

rms

2πJE†rdr . (2.15)
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Integrating the equation of the energy conservation law (Eq. 2.12) over the disk inside the
BH ergosphere, we find the launching power of the jets:

Pjets = (1− qjets) ṀDc
2
(

E†
sl − E†

ms

)

+ 4π

∫ rsl

rms

rHΩDdr . (2.16)

The first term describes the rest energy of the accreting matter onto the BH, and the second
term describes the energy transfer from the rotating BH to the disk inside the ergosphere.
E†

sl and E†
ms are the specific energy of the gas particle (Eq. 2.13) evaluated at the stationary

limit surface and at the innermost stable orbit, respectively.
Using Eq. (2.14), we obtain the launching power of the jets as

Pjets = (1− qjets) ṀDc
2
(

E†
sl − E†

ms

)

+
1

2π2

∫ rsl

rms

(

dΨD

c dr

)2 ΩH − ΩD

(−dRH/dr)
ΩDdr, (2.17)

where the angular velocities of the BH and the accretion disk, respectively, are

ΩH ≡ c

2rg

a∗

1 + (1− a2∗)
1/2

=
c

rg
ΩH∗, (2.18)

ΩD ≡ c

rg

1

r
3/2
∗ + a∗

=
c

rg
ΩD∗. (2.19)

To calculate the launching power of the jets, we need to evaluate both ΨD and
(−dRH/dr). First, we write the magnetic flux that threads the accretion disk surface,

ΨD =

∫

BD(dS)z=0, (2.20)

where BD is the poloidal component of the magnetic field that threads the disk. The surface
area between two equatorial surfaces in a Kerr space-time can be calculated from

(dS)z=0 =
√

det g(rφ) dr dφ, (2.21)

where the determinant of the surface metric is

det g(rφ) =

∣

∣

∣

∣

grr grφ
gφr gφφ

∣

∣

∣

∣

=

∣

∣

∣

∣

e2µ 0
0 e2ψ

∣

∣

∣

∣

=
A

∆
. (2.22)

This result follows from Eqs. (2.1), (2.2), and (2.3). With these, the surface area in Eq.
(2.21) reads

(dS)z=0 =

(

A

∆

)1/2

2π dr. (2.23)

The poloidal component of the magnetic field that threads the BH horizon, BH,
and the poloidal component of the magnetic field at the inner edge of the accretion disk,
BD(rms), can be of the same order (e.g., Livio et al. 1999) and related by

BH = ζBD(rms) , where ζ ≥ 1. (2.24)

On the other hand, the poloidal component of the magnetic field that threads the accretion
disk surface scales as BD ∝ r−n, where 0 < n < 3 (Blandford 1976). Consequently,

BD = BD(rms)

(

r

rms

)−n

=
BH

ζ

(

r

rms

)−n

. (2.25)
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Since the BH horizon behaves, in some aspects, like a rotating conducting surface
(e.g., Damour 1978; Znajek 1978; Thorne et al. 1986), it can be thought of as being a
“battery” driving currents around a circuit. The energy for this comes from the BH rotation
(Znajek 1978). The internal resistance of the battery in the horizon, i.e., the resistance
between two magnetic surfaces that thread the horizon, is

dRH = RH
dl

2πrH
, (2.26)

where RH = 4π/c = 377 ohm, dl is the horizon distance between two magnetic surfaces (see
Fig. 2.1), 2πrH is the cylindrical circumference at r = rH, and rH = rg[1+(1−a2∗)

1/2] = rgrH∗

is the radius of the BH horizon (Thorne et al. 1986).
The voltage difference generated by the BH has a maximum magnitude of V =

ΩHΨH, where ΨH = BHAH is the magnetic flux threading the BH, and AH = 8πrgrH =
8πr2grH∗ is the surface area of the BH.

Assuming that the magnetic field is carried into the BH by the accreting
disk gas, we set the BH potential drop to the energy of the gas particles carried
into the BH, the latter being the particle specific energy at the innermost stable
orbit. Suppose that during a first epoch, the BH accretes at a rate approximately equal to
the Eddington rate.4 This supposition provides V 2 = ṀaccE

†
msc2. Therefore, the maximum

value of the magnetic field that threads the BH horizon is

(Bmax
H )2 =

ṀEddcE
†
ms,lim

4πr2g(a∗,lim)
2

, (2.27)

where a∗,lim = 0.9982 is the BH limiting spin in the case of a radiatively-efficient accretion
disk (Thorne 1974), and the corresponding particle specific energy at the innermost stable

orbit is E†
ms,lim = 0.6759. Although this limit of the BH spin may be even closer to its

maximum value a∗ ∼ 1, it produces a negligible variation in the maximum value of the BH
magnetic field. Using the expression of the gravitational radius (see page 18), the maximum
value of the magnetic field that threads the BH horizon (Eq. 2.27) becomes

(Bmax
H )2 =

Ṁ †
EddcE

†
ms,lim

4π εlim(r
†
g)2(a∗,lim)2

(

M

109M⊙

)−1

, (2.28)

or

Bmax
H = 0.56 × 104

(

M

109M⊙

)−1/2

gauss. (2.29)

This result is similar to the calculation performed by Znajek (1978). [See also Lovelace
(1976).] The only difference is that we set the BH potential drop to the specific energy of
the particles at the innermost stable orbit, whereas Znajek (1978) makes use of the fact
that the Eddington luminosity sets an upper bound on the radiation pressure (as the disk
is radiatively efficient), and thus V 2 ∼ LEdd.

4The Eddington accretion rate is defined from the Eddington luminosity as ṀEdd = LEdd/(εc
2) =

4πGM/(εκTc), where ε is the efficiency of converting the accreting rest mass-energy into radiation energy,
and κT denotes the Thomson opacity. ε depends on the BH spin parameter as ε = 1− E†

ms (Thorne 1974),
so that ε = 0.06 for a Schwarzschild BH and ε = 0.42 for an extremely spinning Kerr BH. We scale the BH
mass to 109M⊙, so that ṀEdd = Ṁ†

Eddε
−1(M/109M⊙), where Ṁ†

Edd = 1.38 × 1026 g s−1.
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Figure 2.6: BH magnetic field strength
established during the early epoch when
the BH accretes at the Eddington limit
and reaches a stationary state with the
spin parameter a∗ = 0.9982. It is given
for a BH mass in the (107 − 1010)M⊙

range.

The dependence of BH on the BH mass is shown in Figure 2.6, given the limiting
BH spin parameter a∗ = 0.9982 for a BH of mass in the range of (107 − 1010)M⊙. For
a∗ > 0.95, the magnetic field is weakly dependent on the spin parameter for a given mass
of the BH.

The continuum of the magnetic field within a narrow strip between two magnetic
surfaces, which connect the BH to the disk inside the ergosphere, dΨH = dΨD (e.g., Wang
et al. 2007), gives

BH2πrH dl = −BD

(

A

∆

)1/2

2π dr. (2.30)

Making use of Eqs. (2.25), (2.26), and (2.30), we obtain

(−dRH/dr) =
2

c r2H

1

ζ

(

r

rms

)−n (A

∆

)1/2

. (2.31)

Next, we write the particle specific energy (Eq. 2.13) using the dimensionless
radius and the spin parameter. Then, we substitute this equation (evaluated at rsl∗ and
rms∗ , respectively) together with (2.18) – (2.27), (2.30), and (2.31) for Eq. (2.17). So, the
launching power of the jets becomes

Pjets = ṁṀ †
Eddc

2ε−1(1− qjets)
(

E†
sl∗

− E†
ms∗

)

(

M

109M⊙

)

+ Ṁ †
Eddc

2 C∗

(

BH

Bmax
H

)2( M

109M⊙

)∫ rsl∗

rms∗

r1−n∗ R
1/2
∗ (ΩH∗ − ΩD∗)ΩD∗dr∗

, (2.32)

where

C∗ =
r2H∗

rnms∗E
†
ms∗,lim

4πζ(a∗,lim)2εlim
, R∗ =

1 + a2∗r
−2
∗ + 2a2∗r

−3
∗

1− 2r−1
∗ + a2∗r

−2
∗

. (2.33)

For the following calculations, we consider the strength of the magnetic field in Eq. (2.32)
to be as high as its maximum value BH

∼= Bmax
H . On the right-hand side, the first term

represents the accretion power of the disk inside the BH ergosphere, and the second term
represents the BH spin-down power transferred to the disk inside the ergosphere by magnetic
connection. So, Eq. (2.32) can also read:

Pjets = P acc
jets + P rot

jets . (2.34)
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Figure 2.7: Launching power of the jets
as a function of the mass accretion rate
ṁ (Eq. 2.32) for a given BH spin pa-
rameter a∗ = 0.99. The switch from an
accretion power regime to a spin-down
power regime corresponds to a mass ac-
cretion rate ṁ ≃ 10−1.8. EddM/DM = m accretion rate 
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Figure 2.8: Launching power of the jets
as a function of ζ given that a∗ = 0.99
and ṁ = 0.1; its maximum corresponds
to ζ = 1. The same behavior is obtained
for any a∗ ∈ [0.95, 1] and ṁ; thus, we set
ζ for our calculations by taking its value
corresponding to the maximum of the
launching power of the jets; i.e., ζ = 1. )
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In Fig. 2.7, we plot the launching power of the jets as a function of the mass
accretion rate. The plot shows that a transition from an accretion power regime to a spin-
down power regime is produced for ṁ ≃ 10−1.8. So, we have: (1) an accretion power
regime in which case ṁ > 10−1.8 and the dominating term in the launching power of
the jets is P acc

jets, and (2) a spin-down power regime in which case ṁ < 10−1.8 and the
dominating term in the launching power of the jets is P rot

jets. This is an important result,
which can directly be related to observations. As we mention in the introduction of this
chapter, the dependence of the power of the jet on the mass accretion rate differs for the two
regimes; that is, in the accretion power regime, the power of the jets is linearly dependent
on the mass accretion rate (see Eq. 2.32), whereas in the spin-down power regime the power
of the jets depends very weakly on the mass accretion rate.

In Eq. (2.32), the launching power of the jets depends on: (i) the mass accretion
rate ṁ, (ii) the BH mass M , (iii) the BH spin parameter a∗, (iv) the power-law index n,
and (v) the ratio of the magnetic field strengths ζ. We chose the last two parameters as
follows: the power-law index n is taken to be ‘2’ as for a frozen magnetic field (Alfvén 1963),
and ζ is set by taking its value corresponding to the maximum of the launching power of
the jet, which is one (see Fig. 2.8). Therefore, for the following calculations, we consider

n = 2 and ζ = 1 .

In Fig. 2.9, we plot the launching power of the jets as a function of the BH
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Figure 2.9: Launching power of the jets
as a function of a∗ (Eq. 2.32) for four
values of the mass accretion rate. The
mass accretion rates from top to bot-
tom are 1, 0.5, 0.1, and 0.01. The bot-
tom curve represents the power of the
jets given by the BH spin-down P rot

jets.
Note that there is a slight difference be-
tween the two bottom curves (red and
turquoise curves). In the case of very
low mass accretion rates, ṁ < 10−1.8,
Pjets is approximately equal to the BH
spin-down power.

spin parameter, for a BH mass of 109M⊙, given four values of the mass accretion rate
(ṁ = 1, 0.5, 0.1, and 0.01), as well as the BH spin-down power contribution to the jets
power (bottom curve). Since the area of the disk inside the BH ergosphere increases with
an increase of a∗, there is a dominating trend of the jet power to increase as well, except
for a∗ close to the extreme value. The turn-over of the curve is produced due to the general
relativistic factor that appears in the term (1 − qjets) of the accretion power. In the case
of the spin-down power regime, the jet power is ∼ 1045 erg s−1, which is only 10−2 of
the Eddington luminosity of a 109 solar mass BH. This value of P rot

jets is comparable to the

maximum rate of energy extraction by the Blandford–Znajek mechanism, which is ∼ 1045

erg s−1 for a BH mass of 109M⊙ and a∗ close to the extreme value [Eq. 4.50 of Thorne
et al. (1986)]. For a lower mass of the BH, the jet power decreases, as the launching power
of the jets is proportional to the BH mass.

On sub-parsec scales, the jets are likely to be dominated by electromagnetic pro-
cesses (MHD or pure electrodynamic), where the energy is transported along the jets via
Poynting flux, and are potentially unstable if significant thermal mass load is present (Meier
2003). Next, we estimate the magnetization parameter of the jet plasma at the launching
points, σ, which reflects the effect of a rotating magnetic field on accelerating the jet plasma
by measuring the Poynting flux in terms of particle flux (e.g., Michel 1969; Camenzind 1986;
Fendt & Greiner 2001). The initial magnetization parameter of the jets (denoted by an index
‘0’) is given by

σ0 =
Ψ2Ω2

D

4πṀjetsc3
, (2.35)

where Ψ =
∫

B dS and ΩD is here taken as the angular velocity of the magnetic field lines
frozen in the disk. For illustration, we evaluate σ0 for three values of the mass accretion
rate (ṁ = 1, 0.1, 0.01 and 0.001) in the case of a BH with the spin parameter of a∗ = 0.99
(see Fig. 2.10). The magnetization parameter increases with decreasing mass accretion rate
(σ0 ∼ ṁ−1), as well as with decreasing radius. When σ0 > 1, the Poynting flux dominates
in the jets and the energy can be transferred from the magnetic field to the particles. As
a result, the jets can be accelerated on the expense of the stored energy in the magnetic
field as the Poynting flux is converted into kinetic energy flux by magnetic forces (e.g.,
Fendt 2004). The magnetic force can be split in two components: the magnetic pressure
force (∼ ∇B2

φ ), which points in positive outward direction, and the magnetic tension
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Figure 2.10: Initial magnetization pa-
rameter of the jet plasma as a function
of the disk radius for three values of
the mass accretion rate when the BH
spin parameter is a∗ = 0.99. The mass
accretion rates from top to bottom are
0.01, 0.1 and 1. For σ > 1, the jets are
Poynting flux-dominated outflows; i.e.,
the energy content of the jets is mainly
in the magnetic part. For σ < 1, the jets
are particle-dominated outflows. Note
that σ0 ∼ ṁ−1. g = r/r*radius r
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force (∼ B2
φ ), which points in negative inward direction. (Bφ denotes the strength of the

toroidal component of the magnetic field.) In the case of a ballistic jet, which expands
with a constant speed, the two forces cancel each other and the toroidal component of the
magnetic field decreases as Bφ ∼ z−1 due to the magnetic flux conservation. (z denotes the
distance along the jet.) To accelerate the flow, the magnetic pressure gradient must prevail
over the magnetic tension force. This can be possible, in principle, due to the decrease in the
strength of the toroidal magnetic field as the jet propagates away from the source, but one
has to solve the full problem to verify whether the magnetic pressure gradient dominates
over the magnetic tension force. The magnetic acceleration process is limited by the free
energy available in the magnetic field, and saturation must occur at some point. When the
kinetic energy flux becomes dominant in the jet, strong shocks can occur. These shocks
can further accelerate the jet. However, if the magnetic field becomes highly twisted, the
magnetic field itself will not be able to explain the acceleration of the jet, as the magnetic
reconnection or other instability in the jet can lead to magnetic energy dissipation and
shock formation. (Strong toroidal magnetic fields are subject to the kink instability, which
excites large-scale helical motions that can distort or even disrupt the jet [e.g., Mizuno et al.
(2009a) and references therein]. However, the growth rate of the kink mode may be reduced,
for instance, by increasing the magnetic pinch or by including a gradual shear, an external
wind or relativistic bulk motion.) How far the magnetic acceleration of the jets can occur
depends from one case to another, and the ambient medium into which jets propagate can
play a significant role. On parsec scales, relativistic shocks are expected to be prominent
(Lobanov 2007). A first stationary, strong shock can be produced in the approximate range
(3 − 6) × 103 rg (Markoff et al. 2001; Marscher et al. 2008), whereas moving shocks can
occur between 20 and 200 rg. For very large values of the magnetization parameter, the
MHD approximation breaks down (Mizuno et al. 2009a). For σ0 = 1 the Poynting flux and
the particle kinetic energy flux are in equipartition, whereas for σ0 < 1 the jets are kinetic
energy flux-dominated outflows. For given mass accretion rate and BH spin parameter, the
value of σ0 is not much less than one, being only within one order or magnitude smaller
than one. Therefore, it is possible that the jets will be stable and propagate initially with
a constant speed. However, plasma processes can become more important in this case.

For given mass accretion rate and radius, σ0 increases with the BH spin parameter;
i.e., the Poynting flux in the jets increases as the BH rotates faster. For ṁ = 1 (Fig. 2.10),
the maximum value of σ0 is 0.993, which is obtained at the innermost stable orbit for a
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Figure 2.11: Lorentz factor of the jets
as a function of ṁ (Eq. 2.36). The
jets have a bulk Lorentz factor γ >
2 when the mass accretion rate ṁ <
10−1.8, which corresponds to the spin-
down power regime. In the case of the
accretion power regime, ṁ > 10−1.8,
the jets are mildly- and sub-relativistic,
γ < 2.

BH spin parameter of 0.9982. (However, σ0 increases for higher spins but we limit here the
value of the BH spin parameter to that of Thorne’s model.) For ṁ = 10−1.8, which delimits
the accretion power regime from the spin-down power regime, the initial magnetization
parameter is larger than ∼ 5 for any a∗ > 0.95.

One can consider a relation between the magnetization parameter (Eq. 2.35) and

the initial Lorentz factor of the jets of the form γ0 = σ
1/q
0 , where the value of the power low

index depends on the magnetic field configuration. For a radial outflow with negligible gas
pressure, q = 3 (Michel 1969). For a collimated MHD jet, the value of q is also 3 if the flux
distribution is the same (Fendt & Greiner 2001). With the power low above, the jets can
present a radial distribution of the initial Lorentz factor, which increases with decreasing
radius. Note that γ0 differs from the bulk Lorentz factor of the jets (γ) that is defined below
(Eq. 2.36), where it is assumed that the Poynting flux in the jets has been fully converted
into kinetic energy flux.

The bulk Lorentz factor of the jets γ, defined by

Pjets = γṀjetsc
2 = γqjetsṁṀEddc

2, (2.36)

[which follows, e.g., from Falcke & Biermann (1995); see also Vila & Romero (2010)] is
drawn in Fig. 2.11 as a function of the mass accretion rate. The jets have a relativistic
speed of 0.9 − 0.995 c (or γ = 2 − 10, which is the typical bulk Lorentz factor for an AGN
jet) when the mass accretion rate ṁ ∈ [10−2.5, 10−1.8]; i.e., these jets correspond to the
spin-down power regime. In the case of the accretion power regime, the jets are mildly- and
sub-relativistic (γ < 2). There is no significant variation of γ with the BH spin parameter
(a∗ > 0.95) for a given mass accretion rate.

2.6 Rate of the disk angular momentum removed by the jets

Now, we define the rate of the disk angular momentum removed by the jets as

Jjets = 2

∫ rsl

rms

2πJL†rdr . (2.37)
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Figure 2.12: Rate of the disk angu-
lar momentum removed by the jets
(Eq. 2.40) as a function of the BH
spin parameter a∗ for four values of the
mass accretion rate. The mass accre-
tion rates from top to bottom are 1, 0.5,
0.1, and 0.01. The bottom curve repre-
sents the BH spin-down transferred to
the disk inside the ergosphere by mag-
netic connection. Note that there is a
slight difference between the two bot-
tom curves (red and turquoise curves).
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Using the angular momentum conservation law (Eq. 2.10), the rate of the disk angular
momentum removed by the jets can be written as

Jjets = (1− qjets) ṀDc
(

L†
sl − L†

ms

)

+ 4π

∫ rsl

rms

rHdr , (2.38)

where the dimensionless specific angular momentum of the gas particle orbiting in the
accretion disk is

J†(r∗) = r
−1/2
∗

1− 2a∗r
−3/2
∗ + a2∗r

−2
∗

(

1− 3r−1
∗ + 2a∗r

−3/2
∗

)1/2
. (2.39)

Combining equation (2.38) with equations (2.18) – (2.27) and (2.30) – (2.31), the
rate of the disk angular momentum removed by the jets becomes

Jjets = ṁṀ †
Eddc rgε

−1(1− qjets)
(

L†
sl∗

− L†
ms∗

)

(

M

109M⊙

)

+ Ṁ †
Eddc rgC∗

(

BH

Bmax
H

)2( M

109M⊙

)
∫ rsl∗

rms∗

r1−n∗ R
1/2
∗ (ΩH∗ − ΩD∗) dr∗,

, (2.40)

where C∗ and R∗ are defined by equation (2.33). We can also write the disk angular
momentum removed by the jets as the sum of two components, the accretion and the
rotation parts,

Jjets = Jacc
jets + J rot

jets . (2.41)

Figure 2.12 shows the rate of the disk angular momentum removed by the jets as
a function of the spin parameter of the BH, given four values of the mass accretion rate
(ṁ = 1, 0.5, 0.1, and 0.01), as well as the BH spin-down J rot

jets (bottom curve). To know
how this angular momentum is transported by the jets, further models must be employed.

2.7 Efficiency of jet launching

We define the efficiency of jet launching as the ratio of the launching power of
the jets to the total power that comes from the accreting rest mass-energy and from the
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Figure 2.13: Efficiency of jet launching
(Eq. 2.42) as a function of the BH spin
parameter a∗ for different mass accre-
tion rates. The mass accretion rates
from the top to bottom are 0.0001,
0.001, 0.01, 0.01, and 1. For very low
mass accretion rates, ṁ < 0.001, the
BH spin-down becomes a very efficient
mechanism of launching the jets via the
accretion disk.

rotational energy of the BH. Thus,

η =
Pjets

ṁṀEddc2 + P rot
jets

. (2.42)

In Figure 2.13, we plot the efficiency of jet launching for the range of the mass
accretion rate ṁ ∈ [0.0001, 1]. For very low mass accretion rates, ṁ < 0.001, the efficiency of
jet launching reaches values close to unity, in which case the spin-down of the BH becomes a
very efficient mechanism to launch the jets via the accretion disk. For the spin-down power
regime, the efficiency of jet launching is higher than the maximal efficiency of converting the
gravitational energy of the accretion disk into radiation (ε = 0.42), as a result of transferring
the BH rotational energy to the accretion disk via BH-disk magnetic connection.

2.8 Spin evolution of the black hole

Theoretically, a Kerr BH can be spun up to a state with a spin parameter whose
maximum value is a∗ = 1. As the spin evolves, a Kerr BH can achieve a stationary state.
A theorem established by Hawking (1972) states that a BH is in a stationary state if and
only if the BH is either static or axisymmetric. Suppose we have a Kerr BH. Perturbating
fields can, however, deflect the spin orientation away from the symmetry axis. In this case,
the BH must either spin down until a static (Schwarzschild) BH is reached or evolve in such
a way that it aligns its spin with the perturbative field orientation. This can be the case of
an warped accretion disk, which is, for instance, directly observed in NGC 4258 [see Moran
(2008)].

Next, we study the BH spin evolution and seek the maximum spin parameter that
corresponds to a stationary state of the BH, when both the BH-disk magnetic connection
and the jet formation are considered. Thorne (1974) calculated the influence of photon
capture on the spin evolution of the BH and found a limiting state of a∗,lim ≃ 0.9982. This
limit does not apply to our model since the disk inside the BH ergosphere is not radiative,
as in the case of Thorne’s model. Instead, it drives the jets. We consider this limit only
to determine the maximum value of the BH magnetic field, given at the time when the BH
accretes at near the Eddington limit.
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Bardeen (1970) showed that the mass and angular momentum of the BH can be
changed by the specific energy and angular momentum of the particles carried into the
BH. The BH mass (and the angular momentum) variation equals the value of the particle
specific energy (and angular momentum) at the innermost stable orbit multiplied by the
rest mass accreted (dM0) if no other stress energy is allowed to cross the horizon. That is,

dM = E†
ms dM0 and dJ = J†

ms dM0, (2.43)

where E†
ms and J†

ms are the specific energy and angular momentum of the particles evaluated
at the innermost stable orbit. Using Eq. (2.43), one can obtain the differential equation
that describes the spin evolution of the BH due to matter accretion:

(

da∗
d lnM

)

matter

=
c

GM

(

dJ

dM

)

− 2a∗ . (2.44)

Now, we consider the magnetic extraction of the BH rotational energy through the
BH-disk magnetic connection. The spin evolution law (Eq. 2.44) will be changed
due to the counter-acting torque exerted on the BH by the magnetic field
that connects the BH to the disk inside the ergosphere. The energy and angular
momentum lost (or gained, depending on the angular velocities of the BH and disk, cf. Eq.
2.14) by the BH through the BH-disk magnetic connection are (see, e.g., Li 2002a):

c2
(

dM

dt

)

HD

= 2PHD and

(

dJ

dt

)

HD

= 2THD, (2.45)

where PHD = ΩHTHD, and the factor ‘2’ comes from the fact that the accretion disk has two
surfaces, as well as two jets. Adding the effects of the BH spin-up by accretion (Eq. 2.43)
and the BH spin-down by magnetic connection (Eq. 2.45), the equations for evolution of
the BH mass and the BH angular momentum become:

c2
(

dM

dt

)

= (1− qjets) ṀDc
2E†

ms + c2
(

dM

dt

)

HD

, (2.46)

(

dJ

dt

)

= (1− qjets) ṀDL
†
ms +

(

dJ

dt

)

HD

. (2.47)

Using these two equations, we can express the BH spin evolution as

(

da∗
d lnM

)

total

=
c

GM

(1− qjets)ṀDL
†
ms +

(

dJ
dt

)

HD

(1− qjets)ṀDE
†
ms +

(

dM
dt

)

HD

− 2a∗ , (2.48)

when both the BH spin-up by accreting matter and the BH spin-down due to the angular
momentum transferred from the BH to the disk inside the ergosphere are considered. From
Eqs. (2.44) and (2.48), the spin-down of the BH by means of BH-disk magnetic connection
is described by

(

da∗
d lnM

)

HD

=

(

da∗
d lnM

)

total

−
(

da∗
d lnM

)

matter

. (2.49)
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Figure 2.14 shows the spin evolution of a Kerr BH for two values of the mass
accretion rate ṁ = 0.1 and ṁ = 0.01, respectively. The purple line represents the driving
torque by which the matter spins up the BH [Eq. 2.44; see also fig. 6 in Thorne (1974)],
and the blue and green lines represent the counter-acting torque on the BH due to transfer
of rotational energy from the BH to the disk (Eq. 2.49) for ṁ = 0.1 and ṁ = 0.01,
respectively. The crossing point of the plots corresponds to the spin parameter for which
the BH is in a stationary state. For ṁ = 0.1, if the BH initially rotates with a∗ = 0.9982, the
BH may spin down to a stationary state with a maximum spin parameter of a∗ = 0.9944.
For ṁ = 0.01, the maximum spin parameter is a∗ = 0.9762, whereas for ṁ = 0.001, the
maximum spin parameter is a∗ = 0.9525. Thus, as the mass accretion rate decreases, the
maximum spin parameter corresponding to a stationary BH decreases as well. On the other
hand, as the mass accretion rate decreases, the magnetic torque reaches values close to
unity, so it is greater than 0.43, which is the maximum value of the matter torque. This
implies deviations from pure Keplerian orbits, and so the possibility to drive away the
excess angular momentum of the disk in the form of jets when the BH spin-down power is
considered. A further analysis of the spin evolution (which is not explicitly shown in Fig.
2.14) suggests that a BH needs a mass accretion rate of at least ṁ ∼ 0.001 for its spin to
stay high (a∗ > 0.95). For lower mass accretion rates (ṁ < 0.001), the BH may spin down
continuously until the BH reaches a static state. It can spin-up again to a∗ > 0.95 if a large
amount of matter is provided by accretion (or by merging, which is not discussed here). In
this case, the amount of accreting mass should be a factor of about 1.84 from the initial
mass of the BH (Thorne 1974).

2.9 Relevance to the observational data

2.9.1 Maximum lifetime of the AGN from the black hole spin-down power

In this section, we calculate the time-scale needed for a Kerr BH to spin down from
a∗ ∼ 1 to 0.95, which can then be related to the maximum lifetime of the AGN, provided
that the BH was spun up to nearly its maximum spin during a phase when the AGN was
active. The AGN can be active as long as the accreting rest mass-energy is converted into
observed radiation energy. Such an AGN can have a longer lifetime through the additional
use of its BH spin-down power, despite having a very-low mass-accretion rate (ṁ < 0.1).
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Figure 2.15: Lifetime of the AGN from
the BH spin-down power as a function
of the mass accretion rate. The lifetime
of the AGN is ∼ 3 × 107 yr when us-
ing the accretion power. The BH spin-
down power adds to the lifetime of the
AGN, for instance, 2.8×108 yr, 3.9×108

yr, and ∼ 4 × 108 yr when ṁ = 10−2,
ṁ = 10−3, and ṁ < 10−4, respectively
(while the BH spin parameter decreases
from a∗ ∼ 1 to 0.95). maccretion rate 
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Following the well-known work by Salpeter (1964), the time needed to fuel the AGN to a
bolometric luminosity Lbol ∼ 1045 erg s−1 can be ∼ 107 yr for a typical radiative efficiency
of ε = 0.1. Moreover, the lifetime of high accreting AGN (and quasars) was constrained
by recent observations to the range ∼ 107 − 108 yr (e.g., Porciani et al. 2004; Hopkins &
Hernquist 2009). These numbers have been essentially the same since the 1960s, just a bit
smaller now than originally.

Next, we estimate the maximum lifetime of the AGN. Differentiating the BH
angular momentum J = Mca = (GM2/c) a∗ with respect to time t, the BH time evolution
is specified by

(

da∗
dt

)

=
c

GM2

(

dJ

dt

)

− 2
a∗
M

(

dM

dt

)

. (2.50)

Integrating this equation, the time interval over which the BH spin evolves between two
given values of a∗ is

t =

∫ a∗2

a∗1

[

c

GM2

(

dJ

dt

)

− 2
a∗
M

(

dM

dt

)]−1

da∗ , (2.51)

where (dJ/dt) can be obtained from Eqs. (2.47) and (2.49), and (dM/dt) from Eqs. (2.46)
and (2.49). With the above equation, we can estimate the lifetime of the AGN. We specify
that the time interval (Eq. 2.51) is not dependent on the BH mass.

In Fig. 2.15, we plot the time evolution of the AGN as a function of the mass
accretion rate (Eq. 2.51), when the BH spin parameter decreases from a∗ ∼ 1 to 0.95. For a
mass accretion rate close to the Eddington limit, the lifetime of the AGN is about 3×107 yr.
The lifetime curve moves toward lower mass accretion rates for another ∼ 108 yr, when the
AGN uses its BH spin-down power to launch the jets. Therefore, the total lifetime of the
AGN can be much longer than the Hubble time (tH ∼ 1010.14 yr). The maximum lifetime of
the AGN is, however, dependent on the mass accretion rate. The maximum lifetime of the
AGN from the BH spin-down power is, for instance, ∼ 2.8×108 yr, ∼ 3.9×108 yr, ∼ 4×108

yr for ṁ = 10−2, ṁ = 10−3, and ṁ < 10−4, respectively. In the latter case, the BH may
not attain a stationary state and spins down until a static BH is reached. The lifetime of
the AGN scales with the strength of the BH magnetic field relative to its maximum value as
t ∼ (BH/B

max
H )−2. Therefore, if the BH is a factor of k lower than Bmax

H , then the maximum
lifetime of the AGN will be a factor of k2 larger. For instance, when k = 7 and ṁ = 10−2,
one obtains the exact Hubble time.
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Now, we compare our results to the lifetime of an AGN powered by the Blandford–
Znajek mechanism. The total energy that can be extracted by the Blandford–Znajek mech-
anism is (e.g., Li 2000a):

EBZ ≃ 0.09Mc2 ≃ 1.6× 1062 erg

(

M

109M⊙

)

. (2.52)

The maximum rate of energy extraction by the Blandford–Znajek mechanism is [Eq. 4.50
of Thorne et al. (1986)]:

PBZ ≃ 1045 ergs−1

(

BH

104G

)2( M

109M⊙

)2

, (2.53)

for a BH with a∗ ∼ 1. Therefore, the lifetime of an AGN powered by the Blandford–Znajek
mechanism is:

tBZ =
EBZ

PBZ
≃ 5× 109 yr

(

BH

104G

)−2( M

109M⊙

)−1

, (2.54)

which is not dependent of the BH mass, as BH scales with (M/109M⊙)
−1/2. Except for the

exact time scale, our result (Eq. 2.51) scales with the magnetic field and with the BH mass
exactly the same way as for the Blandford-Znajek mechanism.

Moving back to our results, if the mass accretion rate changes over the whole life
of the AGN from ṁ ∼ 10−1.8 to ṁ < 10−4, the maximum lifetime of the AGN can be even
longer than that of an AGN powered by the Blandford–Znajek mechanism. In summary, the
maximum lifetime of the AGN can be much longer than ∼ 107 yr when using the BH spin-
down power. The lifetime is dependent on the mass accretion rate, as well as on the factor
(BH/B

max
H ). We mention that the results presented here refer only to rapidly-spinning BHs

(a∗ > 0.95).

2.9.2 On the relation between the spin-down power of a black hole and
the particle maximum energy in the jets

Particles (electrons/positrons and protons) can be accelerated by shocks in the
jets to the relativistic regime and then produce the synchrotron spectrum observed from
radio jets. Cosmic ray protons can survive the radiative cooling, propagate through the
intergalatic medium, and produce secondary particles through interaction with Earth’s at-
mosphere. A model for the ultra-high-energy cosmic ray contribution from the spin-down
power of BHs is discussed in Chapter 3.

In this section, we seek the relation between the BH spin-down power and the
particle maximum energy in the jets. From Eq. 2.32, the BH spin-down power contribution
to the jet power is

P rot
jets = Ṁ †

Eddc
2C∗

(

M

109M⊙

)

·
∫ rsl∗

rms∗

r−1
∗ R

1/2
∗ (ΩH∗ − ΩD∗)ΩD∗dr∗, (2.55)

where C∗ and R∗ are specified by equation 2.33.

In the case of the spatial (geometrical) limit, which means that the jet particle
orbits must fit into the Larmor radius, the particle maximum energy is derived in Section
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Figure 2.16: Factor k =
(P rot

jets/10
45 erg s−1)/(Esp

max/10
20 eV)2

as a function of the BH spin parameter.
A maximum particle energy of 1020 eV
corresponds to a jet power of ∼ 3×1045

erg s−1 for an spin parameter close to
the maximum allowed value. Therefore,
particles can be accelerated to ultra-
high-energy regime in low-luminosity
AGN. *
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3.4. The equation reads

Esp
max = 5× 1020

(

M

109M⊙

)1/2

(eV) , (2.56)

for a jet launched from within the ergosphere, r0 = 2 rg.

The BH spin-down power and the particle maximum energy are related through
the equation

(

P rot
jets

1045 erg s−1

)

= K

(

Esp
max

1020 eV

)2

, (2.57)

where

K = (4× 10−47)Ṁ †
Eddc

2C∗

∫ rsl∗

rms∗

r−1
∗ R

1/2
∗ (ΩH∗ − ΩD∗)ΩD∗dr∗. (2.58)

Figure 2.16 shows that factor K is weakly dependent on the BH spin parameter, when the
latter varies in the [0.95, 0.9982] range. Therefore, a maximum particle energy of 1020 eV
corresponds to a jet power of ∼ 3×1045 erg s−1 for a spin parameter close to the maximum
allowed value. This means that a jet with an energy flow of 1045 erg s−1, which is powered
by the BH spin-down, can be a site of particle acceleration to ultra-high energies of > 100
EeV. Since the jet luminosity is the lower limit of the energy flow along the jet, Lbol

jets 6 Pjets,
we can conclude that ultra-high-energy cosmic rays can be produced in low-luminosity AGN
(Lbol < 1045 erg s−1).

2.9.3 On the relation between the spin-down power of a black hole and
the observed radio flux-density from flat-spectrum core source

Blandford & Königl (1979) showed that the flat-spectrum radio synchrotron emis-
sion of a compact jet core can be produced by superposition of self-absorbed synchrotron
spectra at different positions of the jet. In their model, the observed radio flux-density
depends on the jet power and the distance to the jet source Ds:

Fν ∼ P
17/12
jet D−2

s . (2.59)
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This ‘luminosity’ reflects the radiative property of the jet, in which case the radiated energy
is replaced by dissipation of the jet kinetic energy. In comparison with the disk emission,
the jet luminosity in Eq. 2.59 does not depend on the BH mass.

Falcke & Biermann (1995) found that for radio-loud AGN, the jet luminosity
depends non-linearly on the BH mass:

Fν ∼ M17/12D2.2
jet γ

−1.8
jet , (2.60)

where Djet is the Doppler factor of the jet, and γjet is the bulk Lorentz factor of the jet.
The result is obtained for the case of an accretion-dominated jet, i.e., Pjet ∼ Ldisk, where
Ldisk is the luminosity of the disk (also see Falcke et al. 1995).

Heinz & Sunyaev (2003) obtained a generalization of Eq. 2.59, for any scale-
invariant jet model producing a power-law synchrotron spectrum with an index α in the
form of:

Fν ∼ P
(17+8α)/12
jet M−α, (2.61)

where M is the BH mass. Because of the large mass difference between AGN and micro-
quasars, this non-linearity function of the observed radio flux-density with the BH mass
indicates that the AGN jets are more radio-loud that the microquasar jets.

In Chapter 3, we derive the expression of the observed radio flux-density (see
equation 3.46) for a conical jet, where the magnetic field along the jet scales with the
distance, B ∼ z−1, and the electron number density in the jet scales as C ′ ∼ z−2. We
showed that the observed radio flux-density is dependent on the energy flow along the jet,
the distance to the jet source, and the BH mass as

Fν ∼ P
5/6
jet D−2

s M7/12 D−3
jet γ

33/5
jet (tan θ)6/5 , (2.62)

where θ is the half-opening angle of the jet. Therefore, in the BH spin-down power
regime, the jet luminosity is dependent on the BH mass, but with a different
exponent than in the case of the accretion-dominated regime. Similar to Eqs.
2.59, 2.60, and 2.61, the expression of observed radio flux-density in equation 2.62 is not
dependent on the distance along the jet; thus, it can be applied to microquasars as well.

2.10 Summary and conclusions

Starting from the general-relativistic conservation laws for matter in a thin accre-
tion disk, we included both the BH-disk magnetic connection and the jet formation. The
jets are launched from the disk inside the BH ergosphere, where the rotational effects of the
space-time become much stronger. In the BH ergosphere, the frame-dragging effect ensures
that the magnetic field lines frozen in the disk co-rotate everywhere with the BH, reducing
the effect of magnetic reconnection and keeping the magnetic field configuration globally
the same. Furthermore, the jets can extract mass, energy, and angular momentum from
the disk inside the BH ergosphere. For this situation, we derived the mass flow rate into
the jets, the launching power of the jets, the angular momentum removed by the jets, the
efficiency of launching the jets, the maximum spin parameter attained by a stationary BH,
and the maximum lifetime of an AGN.
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• We found that the mass flow rate into the jets is dependent on the BH spin parameter,
where the mass outflow into the jets can be associated with the rotation of the space-
time itself. For the extreme value of the spin parameter a∗ ∼ 1, the mass outflow
into the jets is about 98 percent of the available mass flow through the disk inside
the BH ergosphere, whereas for a∗ = 0.95 this is only about 8 percent. This means
that in the case of extreme spin, the BH stops being fed by accreting matter. As a
possible alternative, the jets may have no matter right at the beginning (i.e., they
are Poynting flux jets) and get it only very quickly from drifts just above the disk or
the surrounding wind (i.e., indirectly from the disk). This may only be relevant for
extremely low accretion rates.

• In this work, we considered the case of rapidly-spinning BHs with a spin parameter
of a∗ > 0.95 and a mass of 109M⊙, and we assumed that the power of the disk inside
the BH ergosphere is used to drive the jets. This fraction is specified by mass outflow
into the jets through the parameter qjets, which in turn depends on the BH spin
parameter, as well as on the mass accretion rate 2.42. The efficiency of jet launching
is higher at low mass accretion rates, reaching values close to unity for ṁ ∼ 10−4, in
which case, the jet power can be supplied by the BH rotational energy via the disk
inside the ergosphere. The switch from an accretion power regime to a spin-down
power regime corresponds to a mass accretion rate of ṁ ≃ 10−1.8. In the case of the
spin-down power regime (ṁ < 10−1.8), the jet power is ∼ 1045 erg s−1, which is only
10−2 of the Eddington luminosity of a 109 solar mass BH. This is comparable to the
maximum rate of energy extraction by the Blandford–Znajek mechanism, which is
∼ 1045 erg s−1 for a BH mass of 109M⊙ and a∗ ∼ 1. This implies that, in principle,
both the Blandford–Znajek mechanism and launching the jets from the disk inside
the ergosphere via the BH-disk magnetic connection can operate. We intend to study
the driving of the jets when the BH is threaded by a combination of open and closed
magnetic field lines in future work.

• The jets can have a relativistic speed, 0.9−0.995 c (or γ = 2−10, which is the typical
bulk Lorentz factor for an AGN jet), when the mass accretion rate ṁ ∈ [10−2.5, 10−1.8].
In the case of the accretion power regime, the jets are mildly- and sub-relativistic.
However, after launching the jets can be accelerated through magnetic processes. The
jets remove the angular momentum of the disk inside the BH ergosphere at a rate
which is dependent on the BH spin parameter. To know how this angular momentum
is transported by the jets, further models have to be employed. The efficiency of
jet launching is higher at low mass accretion rates, reaching values close to unity for
ṁ ∼ 10−4. In this case, the BH spin-down power is efficiently used to launch the jets.

• Considering the balance between the BH spin-up by accreting matter and the BH
spin-down due to the magnetic counter-acting torque on the BH, we determined the
maximum spin parameter which corresponds to a stationary state of the BH. The
maximum spin value shifts towards a∗ = 0.95 as the mass accretion rate decreases.
For instance, the maximum spin parameter corresponding to ṁ = 0.1, ṁ = 0.01, and
ṁ = 0.001 is a∗ = 0.9944, a∗ = 0.9762, and a∗ = 0.9525, respectively. At lower mass
accretion rates (ṁ < 0.001), the BH may undergo a spin-down process towards a
static BH. The BH never reaches a stationary state unless a large amount of matter
is provided (perhaps by star capture or by merging) to spin up the BH again to
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a∗ > 0.95.

• We showed that an AGN can have a much longer lifetime than ∼ 107 yr when using the
BH spin-down power, and the maximum lifetime is dependent on the mass accretion
rate, as well as on the factor (BH/B

max
H ). After an accretion-dominated phase of

about 3× 107 yr, the AGN can live off of the BH spin-down power for another 108 yr.
The BH spin-down power adds to the lifetime of the AGN, for instance, ∼ 2.8 × 108

yr, ∼ 3.9× 108 yr, ∼ 4× 108 yr for ṁ = 10−2, ṁ = 10−3, and ṁ < 10−4, respectively.
Moreover, if the BH is a factor of k lower that Bmax

H , then the lifetime of the AGN
will be a factor of k2 larger. For k = 7 and ṁ = 10−2, one obtains the exact Hubble
time. Another possibility is that the mass accretion rate changes over the whole life
of the AGN from ṁ ∼ 10−1.8 to ṁ < 10−4. In this case, the maximum lifetime of
the AGN can be even longer than that of an AGN powered by the Blandford–Znajek
mechanism, which is∼ 5×109 yr for a BH with a∗ close to the extreme value. However,
it will be difficult to predict a maximum lifetime of the AGN for this case, since there
is no mechanism, to date, to control the change of the mass accretion rate over long
intervals of time.

• We determined the relation between the BH spin-down power and the particle maxi-
mum energy in the jets. Considering the production of ultra-high-energy cosmic rays
(> 100 EeV) by shocks in AGN jets, we found that low-luminosity AGN can be sites
of particle acceleration to such high energies.

• We obtained the relation between the BH spin-down power and the observed radio
flux-density from flat-spectrum core source, and found that the observed radio flux-
density depends non-linearly on the BH mass and energy flux along the jet.

In the limit of the BH spin-down regime, the model proposed here can be thought
of as being a variant of the Blandford-Znajek mechanism. It is a variant of to the Blandford-
Znajek mechanism if an insignificant fraction of the rotational energy is transported away
by jets through open magnetic field lines that might thread the BH. If we were to consider
the open magnetic field lines in addition to the closed magnetic field lines that thread
the BH, our calculations would have been completed such that they would include the
Blandford-Znajek mechanism.

The results presented in this chapter are dependent on our assumptions that a
BH-disk magnetic connection exists. Closed magnetic field lines in the BH ergosphere may
be produced by a current ring in the vicinity of the BH. Models for the magnetic connection
where a poloidal magnetic field is generated by a single electric current flowing in the BH
equatorial plane or at the inner edge of the accretion disk were proposed, for instance, by
Li (2002c) and Wang et al. (2007). The key parameters of our model are, however, the BH
mass, the BH spin, and the mass accretion rate.

One indirect way to test whether this mechanism operates in reality is to study the
relation between the observed radio flux density from AGN (e.g., from flat-spectrum core
sources) and their mass accretion rates in order to fit the model prediction with respect to
the relation between the power of the jet and the mass accretion rate (see Fig. 2.7). The
latter shows that the power of the jet does not depend linearly on the mass accretion rate
all the way down to very low accretion rates, so that there can be sources with relatively
strong jet power but low mass accretion rate. In this case the jet power is mainly dependent
on the BH parameters, such as the mass and the spin of the BH. The first step is to find
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a relation between the power of the jets and the observed radio flux density, Fobs. For a
conical jet (where the magnetic field along the jet scales with the distance, B ∼ z−1, and
the electron number density in the jet scales as C ′ ∼ z−2) from a flat-spectrum core source,

we found the dependence: Pjets ∼ F
6/5
obs D

12/5M−7/10, where D is the distance to the AGN
and M is the BH mass (see Chapter 3). The second step is to produce a complete sample
of AGN with known jet parameters, as the Doppler factor, and whose mass accretion rate
can be constrained by observational data, and then to fit the model prediction.

Furthermore, if AGN were in the Poynting flux limit disregarding the mass accre-
tion rate, then one might expect that the power in the jet from a large sample runs into a
lower limit, which is given by the minimum Poynting flux.

The model presented here can also be extended to microquasars considering that
physical quantities (e.g., BH magnetic field, jet power, etc.) scale with the BH mass.

Although numerical simulations of jet formation from the ergosphere of a rapidly-
spinning BH with closed magnetic field lines that connect the BH to the disk inside the
ergosphere has not been performed yet, this can be one of the challenges to be faced by
numerical relativists.
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Chapter 3

Ultra-High-Energy Cosmic Ray
Contribution from the Spin-Down
Power of Black Holes

We propose a model for the ultra-high-energy cosmic ray (UHECR) contribution
from the spin-down power of BHs in low-luminosity active galactic nuclei (LLAGN), which
present a jet power Pj 6 1046 erg s−1. This is in contrast to the general opinion that
only powerful AGN can accelerate particles to energies > 100 EeV.1 The jet launched from
the ergospheric disk propagates along a cylinder of length z0 (a few gravitational radii),
using the spin-down power of the BH, and then opens in a conical shape. Due to the
lateral expansion, the internal pressure drops rapidly below the outside pressure and a
recollimation shock is produced. A first strong shock, which accelerates the jet particles
with a power-law energy distribution, can be produced at z ∼ 3 × 103 gravitational radii.
Under the conditions of the proposed model, we rewrite the equations which describe the
synchrotron self-absorbed emission of such a non-thermal particle distribution to obtain
the observed radio flux-density from flat-spectrum core sources. In general, the jet power
provides the UHECR luminosity and so, its relation to the observed radio flux-density. As
a result, we obtain the expressions for the minimum luminosity and flux of the UHECR as a
function of the observed radio flux-density and jet parameters. We apply the model to M87
and Cen A, two possible sources of UHECRs whose jet parameters can be inferred from
observational data. In addition, both sources are LLAGN with an accretion rate relative
to the Eddington accretion rate < 10−2.5, therefore they can be powered by the BH spin
down. We use a complete sample of 29 steep-spectrum radio sources (Caramete 2010) with
a total flux density greater than 0.5 Jy at 5 GHz to make predictions for the maximum
particle energy, luminosity, and flux of the UHECRs. They indicate that, although the jet
power is 6 1046 erg s−1, the jet particles can be accelerated to energies > 100 EeV.

3.1 Introduction

Cosmic rays (CRs) are relativistic particles of extraterrestrial origin, consisting
mainly of protons, alpha particles, and other atomic nuclei but also including some high-

1EeV = 1018 eV, where 1 eV = 1.6× 10−19 J.
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energy electrons and photons. They enter Earth’s atmosphere, collide with atomic nuclei,
and produce many secondary particles, principally pions, muons, electrons, neutrinos, as
well as gamma rays, which all together form the so-called CR air shower.

CR astrophysics began with a discovery by Victor Hess, who in 1912 made mea-
surements of radiation levels at different altitudes with electroscopes aboard a balloon. He
found that the radiation levels increased with altitude and concluded that such radiation
must enter the atmosphere from outer space, therefore the name “cosmic radiation.”2 Since
then, questions about from where these particles come and how they are accelerated have
not yet been answered. The study of CR secondaries, as “little” showers in cloud chambers,
has led to great discoveries in physics of new particles such as positrons and muons.

At first, CRs were believed to be photons, and later on, based on the so-called
latitude effect (the intensity of radiation at equator is less than the intensity of radiation
at higher latitudes), it was established that CRs consist of charged particles as well. This
result was an essential ingredient in the theory by Baade & Zwicky (1934), who were the first
to propose that CRs are produced in supernova explosions. A stronger indication for the
charged CR came from the East-West effect (see, e.g., the review by Gaisser & Stanev 2008).
Furthermore, using broadly separated detectors, Auger et al. (1939) observed extended air
showers generated by CRs, with energies of the primary particles up to 1014 eV, which was
quite unexpected. The energy spectrum, which is usually taken to be the number of particles
within some energy interval dE and counted per surface area per time per solid angle can
be expressed as a power-law ∼ E−p with a spectral index p = 2.7.3 Later, the primary
particles at GeV energies were identified as mostly protons and, with a lesser abundance,
heavier nuclei (e.g., helium).

The present-day understanding of the CR acceleration process has its roots in the
seminal papers by Fermi (1949, 1954). In his first paper, Fermi proposed a mechanism
by which particles injected into the interstellar medium with energy above a particular
threshold are accelerated randomly by collisions with magnetic irregularities in moving
clouds. In his second paper, Fermi proposed specific models for the magnetic field which
would imply an increase in the energy gain. Fermi’s idea led to the development of the
diffusive shock acceleration theory by various authors in the late 1970s (see, e.g.,
Axford et al. 1977; Krymsky 1977; Bell 1978a,b; Blandford & Ostriker 1978). The theory
of diffusive acceleration at shock fronts describes the interaction of (test) particles with a
non-relativistic fluid flow at a given parallel shock front (where the normal to the shock
front is parallel to both the direction of fluid flow and magnetic field). In the initial form of
the theory, the particles were considered reactionless, i.e., the back-reaction of accelerated
particles on the shock structure was neglected. Furthermore, the theory assumed that
particles undergo scattering off magnetic irregularities (waves), with a scattering mean path
larger than the shock thickness. In this way, the particles can cross the shock many times
and gain momentum at each crossing cycle as a result of the velocity difference between
the upstream (ahead of the shock) and downstream (behind the shock) scatters, which is
caused by the shock compression. For an isotropic particle distribution, in the shock frame,
the mean energy4 gain (∆E/E) depends linearly on the shock velocity (βsh): ∆E/E ∼ βsh,

2The term “cosmic rays” was introduced by Millikan (1926).

3Latest data on the CRs energy spectrum are presented later in this section.

4Here, we use energy and later momentum. One should bare in mind that the shock acceleration theory
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where βsh ≤ 10−1. The energy gain differs, however, when different background conditions
are imposed at the shock front, such as the particle back-reaction on the shock, the shock
velocity, perturbations of the magnetic field, or the obliquity of the shock (see, e.g., Drury
1983; Jokipii 1987; Gallant & Achterberg 1999; Kirk et al. 2000; Keshet & Waxman 2005;
Meli et al. 2008). After crossing the shock many times, the particles lose the information
about the initial momentum, and without a momentum scale, their distribution becomes
a power-law in momentum f ∼ P−s (here, P is the particle momentum and s is the
power-law index of the phase-space density of the injected particles with some Lorentz
factor). Due to being scale-free in particle momentum, the acceleration process can produce
a power-law spectrum in particle energy, at least for ultrarelativistic particles, whose velocity
is nearly independent of the energy (Kirk 2005). The estimated value of the power-law
index of the accelerated particle density [N(E) ∼ E−p] matches the observed spectral
slope of the synchrotron emission from a non-thermal electron distribution (Iν ∼ ν−α), for
example, in AGN (see, e.g., Wiita 1985). The slopes are related through α = (p − 1)/2
with s = 2 + p. Now, if we refer to radio galaxies, a flat-spectrum core source has a
spectral index which is typically α 6 0.5 at the very center and α ≃ 0.5 − 0.7 at a larger
radius (the compact radio core can be extremely weak compared with the very bright and
luminous radio lobes, suggesting that the radio core might suffer absorption). The latter
spectral index corresponds to a power-law index of the accelerated particle of p ≃ 2.0− 2.4.
The power-law index of the accelerated particle can be considered, in different models,
as that of the injection spectrum of UHECR. To determine the formation of the UHE
spectrum after propagation from the acceleration region (which is here considered to be an
AGN) to the outer Earth atmosphere, one needs to consider the followings: (i) UHECR
source distribution; (ii) cosmic ray source luminosity, (iii) cosmic ray injection (acceleration)
spectrum, (iv) maximum acceleration energy, (v) cosmic ray chemical composition, and
(vi) cosmic ray source cosmological evolution (Stanev 2008). Berezinsky et al. (2006) have
argued that the injection spectrum of (pure proton composition) UHECR is E−2.7. Their
model fits the observed UHECR HiRes spectrum, but it does not appear to fit the Auger
spectrum (some details on the cosmic-ray research projects, such as Hires and Auger, are
given later in this section).

Hillas (1984) identified possible sites of accelerating particles to UHEs in either a
one-shot process by electric fields, along large-distance, strong magnetic fields of neutron
stars or BH accretion disks, or at parallel shock waves. The maximum energy of a particle
of charge eZ accelerated within a region of size L was found by balancing the acceleration
time with the escape time from the acceleration region, when the diffusion mean free path
is comparable to the particle gyro-radius. Hence,

Emax = βZBL, (3.1)

where B is the magnetic field inside the acceleration region and β is the velocity of the shock
wave. For oblique shocks, the β term is replaced with a geometrical factor of order unity
. 1 (Jokipii 1987). The magnetic field needs to be strong enough to confine the particles
within their acceleration region, and the acceleration region must be large enough so that
the particles can gain sufficient energy before they escape. This criterion was used to select
possible acceleration sites, which are plotted in a Log(B) vs. Log(L) diagram (known as

uses momentum only. Just for relativistic energies, energy and momentum are equivalent [see later in the
same paragraph or in Kirk (2005)].
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the Hillas diagram). Using the acceleration versus available times, the hot spots in radio
galaxies were considered to be the only possible sites for accelerating UHECR. Biermann
(1994) was the first to introduce γ-ray bursts (GRBs) as possible accelerators for UHECR,
and later Waxman (1995) and Vietri (1995) developed quantitative theories. Particles with
energies below 100 EeV may originate from within our Galaxy [for e.g., supernova remnants
(SNRs) or Galactic disk].

After taking into account the transport through the interstellar medium, particle
acceleration in diffusive parallel shock waves implies a power-law index which matches the
slope of the galactic CR spectrum (∼ 2.7). Thus, this mechanism has been largely considered
for accelerating cosmic rays in SNRs. Even so, the particles can achieve a maximum energy
as high as ∼ 1 PeV (see, e.g., Lagage & Cesarsky 1983; van der Swaluw & Achterberg 2004).
Therefore, to explain the production of UHECRs (> 100 EeV), one must look for different
mechanisms. Relativistic shock acceleration, unipolar induction, and magnetic flares are
the most plausible acceleration mechanisms, and oblique shocks can help a great deal (see,
e.g., Meli & Biermann 2006). Alternative scenarios are given by “top-down” models; that
is, UHECRs are generated through the decay of some supermassive particles released from
topological defects (relics of cosmological phase transitions which might have been produced
in the early universe). This is only valid if the UHECRs are protons. We note that Auger
now publicly claims that the particles are heavy nuclei, while HiRes claims the opposite
(see, e.g., Abraham et al. 2010; Abbasi et al. 2010).

The magnetic field plays an important role for the particle acceleration mecha-
nism. The field should be strong enough to confine the particles in the acceleration region,
but at the same time, weak enough to avoid too much loss by radiative cooling. In AGN
jets of kpc scales, the magnetic field strength is typically ∼ 10−2 − 10−4 G, which provides
a maximum energy up to Emax ∼ 1 ZeV for a particle (Biermann & Strittmatter 1987).
The requested value may not be reachable in GRBs if the particles are accelerated at super-
luminal, ultrarelativistic shocks (see, e.g., Meli et al. 2008). Nonetheless, the detection of
high-energy (> 1 TeV) neutrinos can be used as an indicator for acceleration sites of UHE-
CRs, either AGN or GRBs, since neutrino production is expected to occur when UHECRs
interact with matter or radiation fields. Since neutrinos are not deflected by magnetic fields
in the interstellar and intergalatic space, they can point back directly to their sources. For
charged particles, models of particle propagation from the acceleration region to the outer
Earth atmosphere must be taken into account.

A first identification of a CR with energy 1020 eV was reported by Linsley (1963),
as a result of observing the fluorescent light from an air shower with the Volcano Ranch
Array. Soon after the discovery of the cosmic microwave background (CMB, Penzias &
Wilson 1965), Greisen (1966) and Zatsepin & Kuzmin (1966) realized that the universe
is not empty at all; it is filled with photon gas, so that the universe is not transparent
to UHECRs. They showed that UHE particles, if they are protons with energy larger or
about equal to 50 EeV, cannot propagate freely. (50 EeV is not the threshold but the de
facto feature in the resulting spectrum.) The particles are subject to energy loss by pion
photo-production by scattering off of the CMB photons: pγ → pπ0(nπ−), with subsequent
decays in neutrinos, electrons, and γ-rays. The mean free path collisions (of protons with
respect to CMB photons) is less than 10 Mpc, but since the energy loss in a single collision
is about 20 percent only, the mean free path for losing a significant amount of energy is of
order 50 Mpc; that is, the effective radius of free penetration of protons from a source to
the observer is ∼ 50 Mpc. The mean free path is a function of energy beyond the threshold
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Figure 3.1: CR energy spectrum (from
http://www.telescopearray.org). The
spectrum is formed from measurements
of different instruments to cover the
energy range from 108 to 1021 eV.
The spectrum steepens around 1 PeV
(the “knee”), as the power-law index α
changes from 2.7 to about 3.1, and then
flattens around 3 EeV (the “ankle”). The
GZK effect implies a suppression of the
spectrum beyond 50 EeV.

(see, e.g., Allard et al. 2008). Therefore, the energy of CR protons is highly unlikely to be
> 1020 eV, unless their sources are within a few tens of Mpc. This is known as the GZK
cutoff. The CR energy spectrum is shown in Fig. 3.1. It needs to be stressed that: (i) the
GZK is not really a cutoff, only a strong turn-off of the spectrum (it does continue); (ii) it
was obvious from the beginning that the nearby few sources (of UHECRs) would dominate
(see, e.g., Ginzburg & Syrovatskii 1963; Cunningham et al. 1980); (iii) since the argument
on the GZK cutoff uses ∆-resonances in the pγ interaction, then arguments change when
heavy nuclei are taken into account; and (iv) the GZK cutoff becomes a paradox if one
considers that there are no really powerful radio galaxies in our neighborhood as sources of
UHECRs.

With the introduction of new techniques for observing the air fluorescence and
detecting e−/e+, muons, and Cerenkov photons with ground-based detectors, as well as the
construction of large arrays,5 new UHECR were detected in the 1990s. The data released
from a number of experiments has been widely discussed, because they show discrepant
results with respect to the GZK cutoff. As of the year 2001, the HiRes spectrum showed a
GZK cutoff, whereas the AGASA spectrum did not. Moreover, data from AGASA showed
an intriguing feature (at that time): a small angle anisotropy in angular distribution of
the arrival direction of the primary particles. The arrival direction of the primary particles
is not expected to point to their sources. One can obtain a weak correlation with the
distribution of the sources only if the particles are protons (see, e.g., Das et al. 2008; Ryu

5Since the flux of particles with energy exceeding 1020 eV is 1 particle/km2/per century/steradian, very
large ground-based air-shower arrays are needed to study the energy spectrum, chemical composition, or
large-scale (an)isotropy of the UHECR.
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Figure 3.2: Expanded view of the
highest energy portion of the CR
spectrum [from (Biermann et al.
2008)]. Except for AGASA data,
the measurements point to the
possibility of the GZK cutoff oc-
currence.

et al. 2008). The data discrepancy between HiRes and AGASA (Fig. 3.2) might be resolved
by the Pierre Auger Observatory, designed to use both techniques, air fluorescence (e.g.,
HiRes) and ground-based detectors (e.g., AGASA), on a larger scale. Auger Observatory,
by far the biggest array, is located in Argentina and has surface detector stations covering
∼ 3000 km2.

The results released by the Auger Collaboration of 27 UHECR events with ener-
gies E > 52 EeV (Abraham et al. 2007, 2008a,b) show an anisotropy in the distribution
of the arrival direction of CRs, 20 of which are correlated with the distribution of
nearby AGN in the Véron-Cetty & Véron catalog [VCV catalog, Véron-Cetty & Véron
(2006)]. The study of the anisotropy indicates that UHECRs are predominantly protons
from sources at less than ∼ 75 Mpc, so evidence of the GZK cutoff. The VCV catalog
is a high-quality compilation of all published optical identifications of extragalactic AGN.
Although the catalog is the largest “critical” collection of known AGN, especially for the
southern hemisphere where the Auger exposure is large enough, it is heterogeneous and
incomplete;6 therefore it should not be used in correlation studies. Nonetheless, the Auger
collaboration used the catalog as a tracer to the true sources; that is, the observed corre-
lation does not necessarily mean that UHECRs are produced by the sources to which they
are correlated. In the absence of a complete full-sky catalog, the correlation of UHECRs
with nearby AGN is not yet established.

The current UHECR map found by the AUGER collaboration shows a lack of
correlation with the Virgo cluster. This is not a surprise, since the Auger array has very
little sensitivity at the location of M87. At first sight, two out of 27 events coincide with
Cen A, whereas a few other events are clustered around it. When taking into account the
entire radio emission from Cen A, Rachen (2008) found that five Auger events are perfectly
aligned with the main lobe axis. There is an intense interest to find out which sources the
events can be correlated to and what the source morphology looks like (see, e.g., Nagar &

6The completeness is specified by Log(N) − Log(S) distribution of the sources (of the same class) with
the usual power-law form N(> S) = KS−a, where N(> S) is the number of sources with fluxes higher than
S, a is the slope, and K is the normalization factor. For a spatially homogeneous distribution of sources in
a static Euclidean universe, N is proportional to the volume of space which encloses the sources, and S is
inversely proportional to the square of the distance, so N ∼ S−1.5. The Log(N) − Log(S) argument gives
different powers for the large-scale structure within about 300 Mpc (see, e.g., Cavaliere et al. 1991).
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Matulich 2008; Moskalenko et al. 2009). Moskalenko et al. (2009) found eight additional
AGN within θ 6 3◦.2 with z 6 0.018 (the same criteria used by Auger). The sources are
mainly LLAGN with a bolometric luminosity of Ljet 6 1043 erg s−1 (Zaw et al. 2009), and
just a few of them have known jets.

Poynting flux models for the origin of jets from force-free magnetosphere above a
thin accretion disk were first proposed by Lovelace (1976) and Blandford (1976). A rotat-
ing magnetic field sweeps ambient matter and, consequently, feels a strong induced poloidal
electric field. Since the magnetic field (which is predominantly toroidal at large distances
in the jet) has a poloidal component, angular momentum and energy are carried away by a
Poynting flux. In the model by Lovelace, the accreting protons are accelerated in the poten-
tial drop across the disk by an electric force, which exceeds the BH gravitational attraction
by a factor of ∼ 1012. It is assumed that particles can form two high-current, aligned, and
opposite proton beams. The output electrical power in the beams is proportional to the
protons’ maximum energy squared: L ∼ E2

max. The maximum energy to which the accretion
disk can accelerate the proton beams is set by the Eddington luminosity. If one takes the
Poynting flux as a lower limit to the energy flux along a relativistic jet, UHECR production
in LLAGN cannot be explained. Biermann et al. (2008) rewrote Lovelace’s equation as

LP =
c

4π
fflare

(

Emax

eZγsh

)2

, (3.2)

where Z is the mass number of the nuclei, γsh is the Lorentz factor of the shock, and
fflare(< 1) is the jet intermittency. As the authors state, probably all three elements are
required if one considers UHECR production by sources like M87 and Cen A, whose energy
flow along the jet are < 1045 erg s−1 and < 1043 erg s−1, respectively (Whysong & Antonucci
2003). The energy flow along the jet for Cen A is confirmed by Abdo et al. (2010).

Boldt & Ghosh (1999) suggested that particles with energies > 1020 eV may be
accelerated near the event horizon of spinning BHs associated with presently inactive quasar
remnants. The required electromagnetic force is generated by the BH induced rotation of
externally supplied magnetic field lines threading the horizon. The BH behaves as a battery,
driving currents around a circuit, with an electromagnetic force of up to 1021 eV (for a BH
with a mass of 109M⊙). In this case, the production of observed flux of the highest energy
cosmic rays would constitute a negligible drain on the BH dynamo. That is, replenishing
the particle ejected at high energies (> 1020 eV) would require a minimal mass input; a
luminosity of 1042 erg s−1 in such particles (if protons) corresponds to a rest mass loss
< 10−5M⊙ in a Hubble time.

In this chapter, we propose a model for UHECR contribution from the spin-down
power of BHs in LLAGN. The particles in the jet manage to tap the spin-down power
of the BH, and then they are accelerated at relativistic shocks and reached energies up
to the UHE domain. The electrons lose their energy through synchroton emission (and
also through inverse-Compton emission), whereas the protons are capable of surviving the
radiative cooling and perhaps of propagating through the intergalatic medium. Since both
particles undergo the same acceleration process, there must be a correlation between the
electron synchrotron emission and the UHECR proton energy. We seek this correlation to
make predictions for UHECRs from nearby LLAGN.
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Chapter outline

In Section 3.2, we provide a description of the model. In Section 3.3, we derive
the relation between the luminosity (and flux) of the UHECRs and the observed radio flux-
density for a flat-spectrum core source. In Section 3.4, we calculate the particle maximum
energy taking into account the spatial limit and synchroton emission losses. In Section 3.5,
we present the application of the model to M87 and Cen A. In Section 3.6 we provide the
predictions for nearby galaxies as UHECR sources, with specific emphasis on the UHECR
contribution from the spin-down power of BHs in LLAGN. In Section 3.7, we present a
summary of the key points and discuss the implication of this model for further studies of
the UHECRs.

3.2 Model description

3.2.1 Model conditions

• We assume that the UHECRs are accelerated by shocks in AGN jets, which are
launched from the ergospheric disk (see Chapter 2). The ergospheric disk extends
from the stationary limit surface rsl inward to the innermost stable orbit rms. When
the accretion rate relative to the Eddington accretion rate is < 10−1.8 (which is the
case of LLAGN), the jets can be powered by the spin down of the BH via the accretion
disk, where the rotational energy of the BH is transferred to the ergospheric disk by
closed magnetic field lines that connect the BH to the disk. The jet propagates along
a cylinder of length z0 (see Fig. 3.3) using the BH spin-down power and then extends
into a conical shape with a constant opening angle 2 θ, as a consequence of the free
adiabatic expansion of the jet plasma. (The tip of the cone is located at some z < z0.)
A similar geometry of the jet was considered by Markoff et al. (2001).

• We assume that the UHECRs are proton-dominated. This is based on the measure-
ment of a suppression of the CR flux at energies larger than 50 EeV, which indicates
that the UHECRs are of extragalactic origin and have a light mass spectrum that is
dominated by protons.

• In the observer frame, the magnetic field along the jet varies as B ∼ γ−1
j z−1 and the

electron number density in the jet scales as ∼ γjz
−2, where γj is the bulk Lorentz

factor of the jet. (See discussions below.)

• We set the slope of the particle density distribution to p = 2 (which corresponds to
flat-spectrum core sources with a spectral index α = 0.5) and the strength of the
BH magnetic field to its maximum value (Bmax

H ). The latter condition provides, in
turn, the minimum value for the particle maximum energy, luminosity, and flux of the
UHECRs.

3.2.2 Magnetic field scaling along a steady jet

To describe the jet physics, we use the following reference frames: (i) the frame
comoving with the matter in the jet and (ii) the (rest) frame of the observer, in which the
relativistic jet moves with the bulk Lorentz factor.
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Figure 3.3: Schematic representation of
the jet geometry. The jet is launched from
the ergospheric disk and propagates along
a cylinder up to a distance z0. Then, it
expands freely into a conical shape with
a constant opening angle 2 θ. The open
magnetic field that threads the ergospheric
disk (dashed line) is wound up, far from
the BH, into a toroidal magnetic field Bφ

which collimates the jet. In the region of
the ergospheric disk, the closed magnetic
field connects the BH to the ergospheric
disk (solid line). In addition, the magnetic
field structure in the ergospheric disk con-
tains magnetic field lines similar to those
on the Sun surface; i.e., it contains mag-
netic loops which connect distant regions
of the inner disk and field lines which ex-
tend out very far from the disk and allow
matter to flow out. The closed magnetic
field lines do not cross the open magnetic
field lines.
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In a frame comoving with the jet, the poloidal component of the magnetic field is
considered to vary as Bp ∼ z−2. This variation follows from the conservation of magnetic
flux along the axis z. To keep the field divergence-free, the toroidal component must
vary as Bφ ∼ z−1. This topology of Bφ ∼ z−1 was first derived by Parker (1958) for
the magnetohydrodynamics solution of a spherical-symmetric flow (so that, a jet can be
considered a conical cut along the flow surfaces). [See also Blandford & Königl (1979).]
The observational support to this variation of Bφ is specified later on in this section. At
a distance, say, z0, the poloidal and toroidal components of the comoving magnetic field
become approximately equal Bp0 ≃ Bφ0. We consider z0 of a few gravitational radii, based
on the fact that the VLBI observation, for instance, of the jet in M87 at 7 mm gives evidence
on the jet collimation (by the toroidal magnetic field) on scales of 60− 200 rg (Biretta et al.
2002) and the global 3.5 mm VLBI observations have resolved sizes for the compact radio
sources of ∼ 10 rg (see, e.g., Lee et al. 2008). A large-scale and predominantly toroidal
magnetic field can exert an inward force (hoop stress), confining and collimating the jet
(see, e.g., Bisnovatyi-Kogan & Ruzmaikin 1976; Blandford & Payne 1982). The magnetic
hoop stress is balanced either by the gas pressure of the jet or by centrifugal force if the jet
is spinning. From z0 upward, the poloidal component of the magnetic field becomes weaker,
so that the field lines are soon wound up in the azimuthal direction by the jet rotation.
Thus, above z0, the magnetic field along the jet is nearly azimuthal B ∼ Bφ (for a steady
jet) and varies inversely proportional to the distance along the jet,

B = B0

(

z

z0

)−1

, (3.3)

where B0 ≡ Bφ0 ≃ Bp0 is the strength of the magnetic field at the height z = z0 above
the equatorial plane of the BH. This z-dependence of the magnetic field appears to be
contradicted by radio-polarization observations (Bridle & Perley 1984). These observations
strongly suggest that the magnetic field is predominantly parallel to the jet axis initially and
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only later becomes perpendicular to the jet axis, with some parallel magnetic field left over.
Becker & Biermann (2009) argued that the basic pattern of the magnetic field is indeed
Bφ ∼ z−1, and that the observational evidence for a parallel magnetic field is due to highly
oblique shocks. Their argument is based on the observations of the jet structure which
indicate the occurrence of moving shocks between 20 and 200 rg, while the first stationary,
strong shock can be produced in the approximate range of (3− 6)× 103 rg (Markoff et al.
2001, 2005; Marscher et al. 2008).

The strength of the magnetic field in the comoving frame B0 can be related to the
poloidal magnetic field in the BH frame BH (see, e.g., Drenkhahn 2002) as

B0 =
1

γj
BH =

Bmax
H

γj

(

BH

Bmax
H

)

, (3.4)

where the maximum value of the BH magnetic field is given by

Bmax
H ≃ 0.56 × 104

(

M

109M⊙

)−1/2

gauss, (3.5)

(Eq. 2.29) which is obtained in a similar manner as the calculation performed by Znajek
(1978), with the difference that the BH potential drop (V ) is set to the specific energy of
the particles at the innermost stable orbit, whereas Znajek (1978) makes use of the fact
that the Eddington luminosity sets an upper bound on the radiation pressure (as the disk
is radiatively efficient), and thus V 2 ∼ LEdd. The maximum value of the BH magnetic field
corresponds to the time when the accretion rate was as high as the Eddington accretion
rate. In this case, the BH spin parameter is limited to a∗ = 0.9982 (Thorne 1974). Although
this limit might be even closer to the maximal value of the spin parameter ∼ 1, this will
introduce just a small variation of the maximum value of the BH magnetic field.

3.2.3 Electron and proton number densities

The jet is assumed to be composed mainly of electrons, positrons, and protons.
We denote by fep ≡ ne/np the ratio of the electron to proton number densities, where
the number densities are measured in a frame comoving with the jet plasma. Unless oth-
erwise noted, ne should be assumed to include the positron number density as well. It
is straightforward to generalize to a mixed chemical composition, including many heavy
nuclei. Furthermore, both electrons and protons can have thermal and non-thermal popu-
lations before being accelerated at a shock front. There may also be a substantial number
of positrons from pion production and decay processes (also called secondaries).

Now, we look for the expression of the proton and electron number densities in-
jected into the accelerating region. First, we consider the mass flow rate into the jets, which
in the observer frame is given by

Ṁj =
d

dt
(ρjVj) =

d

dt
[nmz(S)z=0] = γjnmvj(S)z=0, (3.6)

where ρj is the rest-mass density of the jet, Vj is the comoving volume of the jet, (S)z=0 is
the launching area of the jet, z is the length of the cylinder along which the jet propagates
before expanding freely in a conical geometry, and vj = βjc is the bulk velocity of the jet.
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The surface area between two equatorial surfaces of a Kerr BH can be calculated
as

(dS)z=0 =

(

A

∆

)1/2

2πdr, (3.7)

where the Kerr metric functions are

∆ = r2 − 2rgr + a2 and A = r4 + r2a2 + 2rgra
2, (3.8)

where r is the coordinate radius. Next, we use normalizations to the gravitational radius,
so that r∗ = r/rg is the dimensionless radius. The surface area is then

(S)z=0 = 2πr2g

rsl∗
∫

rms∗

r∗

√

1 + r−2
∗ a2∗ + 2r−3

∗ a2∗
1− r−1

∗ + r−2
∗ a2∗

dr∗ ≡ 2πr2gk0, (3.9)

where the factor k0 increases from ∼ 2 to ∼ 80 as the BH spin parameter increases from 0.95
to ∼ 1. For the first equality, we use the fact that the ergospheric disk, from where the jet
is launched, has its inner and outer radii at the innermost stable orbit rms and stationary
limit surface rsl = 2rg ≡ r0, respectively.

The comoving density of the jet can be expressed in terms of the ratio of the
electron to proton number densities as

nm = npmp + neme = npmp

(

1 + fep
me

mp

)

≡ npmpf0. (3.10)

If one assumes, in average, one electron/positron for each proton in the jet, fep = 1 and
f0 ≃ 1. For protons dominating over the electrons, fep < 2 × 103, where electrons and
positrons can partially occur as secondaries.

Substituting Eqs. (3.9) and (3.10) for (3.6), we obtain the mass flow rate into the
jet,

Ṁj = γjβjcnpmpf02πr
2
gk0. (3.11)

This expression provides the proton number density, which in turn we use to derive the
electron number density,

ne = fep
Ṁj

γjβjcmpf02πr2gk0
. (3.12)

We shall use this result later for evaluating the self-absorbed synchrotron emission of the
jets (Section 3.2.5).

3.2.4 Particle energy distribution

We suppose that a recollimation shock (Sanders 1983) is produced at the jet height
∼ z0. As a result, a power-law energy distribution of the particles is established. For a
given frequency, the emission from the synchrotron process for electrons and protons gives
a factor (mp/me)

3 ≃ 1010 in favor of electrons (see, e.g., Novikov & Thorne 1973b). In
addition, Biermann & Strittmatter (1987) showed that the proton synchrotron emission
can be competitive if one considers that the proton emission ranges to much higher photon
energy. Moreover, it is also not at all obvious that they have the same normalization at the
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same Lorentz factor of the particle and that the particles have a continuous power-law from
rest mass to UHE. The number density of the electrons in the energy interval E, E + dE
[or mec

2γ, mec
2(γ + dγ)] has the power-law form

N(E)dE = CE−pdE, (3.13)

or, in terms of the Lorentz factor,

N(γ)dγ = C ′γ−pdγ, (3.14)

where γ ∈ [γmin, γmax] is the Lorentz factor of the electrons and p is the power-law index
(see, e.g., Rybicki & Lightman 1979). The normalization coefficients of the electron number
density in Eqs. 3.13 and 3.14 are related by

C = C ′(mec
2)p−1. (3.15)

The normalization of the electron number density C ′ follows the pressure in a reheating flow
(∼ z−2), whereas an adiabatic flow would give a steeper dependence, which leads to shocks
(see, e.g., Sanders 1983). Adiabatic behavior implies P ∼ ργad , where γad is the adiabatic
index. Since a relativistic fluid usually has γad = 4/3, in an adiabatic flow the temperature
runs as z−2/3. Furthermore, one can have a conical flow only if the temperature of the flow
is approximately constant. The energy for reheating can be taken from the flow through
highly oblique shocks. The normalization of the electron number density, in the case of a
conical jet, is therefore

C ′ = C ′
0

(

z

z0

)−2

(cm−3). (3.16)

Possible values of the power-law distribution indices p of the electrons accelerated
by the relativistic shock are discussed later in Section 3.5.

3.2.5 Self-absorbed synchrotron emission of the jets

The spectra from compact radio sources can be explained by self-absorbed syn-
chrotron emission of the jets produced by electrons with a power-law energy distribution.
In this section, we rewrite the quantities which describe the self-absorbed synchrotron emis-
sion, derived in Rybicki & Lightman (1979), and express them under our model considera-
tions. We first introduce the absorption coefficient, optical depth, synchrotron emissivity,
and source function in order to calculate the flux density of the synchrotron emission from
radio sources with a flat-spectrum core. (The quantities which describe the self-absorbed
synchrotron emission are in cgs units.)

The specific intensity of radiation Iν is defined as the radiative energy flux per
unit frequency, per unit solid angle (i.e., the energy per time, per unit area, per unit
frequency, per unit solid angle). The radiative transfer equation for the specific intensity of
the radiation Iν along a distance ds through a medium combines both the absorption and
emission effects as

dIν
ds

= −ανIν + jν , (3.17)

where αν is the absorption coefficient and jν is the emission coefficient. Instead of using the
radiative transfer equation of the form in Eq. 3.17, it becomes more convenient to introduce
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another variable, the optical depth τν , which is measured along the direction of propagating
radiation, as

dτν = ανds. (3.18)

Therefore, τν can be obtained by integrating Eq. 3.18 along a path through the medium.
For τν > 1 the medium is called optically thick (or opaque), whereas for τν < 1 the medium
is called optically thin (or transparent), in which case a photon of a given frequency ν can
travel without being absorbed by the medium itself. If one divides the radiative transfer
equation by αν and uses the definition of the optical depth, then

dIν
dτν

= −Iν + Sν , (3.19)

where Sν ≡ jν/αν is called the source function.
To find how the specific intensity varies as radiation travels through a medium,

one needs to specify the coefficients αν and jν , or alternatively Sν and τν , for every point
along the path length. The solution of the transfer equation (Eq. 3.19), for a constant
source function, is written as

Iν = Iν,0e
−τν + Sν(1− e−τν ), (3.20)

where the first term on the right-hand side describes the amount of radiation left over from
the intensity after it has passed through an optical depth τν , and the second term represents
the contribution of the intensity from the radiation emitted along the path. When there is
only emission from a specific region, then

Iν = Sν(1− e−τν ). (3.21)

Lind & Blandford (1985) showed that the phase space distribution of the emitting particles
is not isotropic in any frame of reference, given a relativistic shock. It helps, however, to
assume that there is such a frame (to assume that this is approximately true leads to a small
errors only in the derived quantities). On the other hand, in the case of weak sources, the
beaming could go backwards under special circumstances, whereas for strong superluminal
source, the beaming propagates towards us. Next, we also neglect the flux from components
moving away from the observer.

For an optically thick case, e−τν ≃ 0 and Iν = Sν . Thus, when looking at an
opaque medium, it does not matter what radiation sources are behind this, the specific
intensity is given by the source function of the medium which faces the observer.

The power radiated per unit volume per unit frequency dP/(dV dν) ∼ ν−
p+1
2 has

a high-frequency cutoff at the highest frequency produced by the highest energy electrons
in the emitting region. There is also a low-frequency cutoff due to the self-absorption of
the synchrotron radiation. Computing the absorption and emission of radiation is rather
complicated, because the synchrotron emission is not necessarily isotropic since the magnetic
field imposes a preferred direction. A way out of this situation is to look at the region in
which the magnetic field is chaotic, so it has no net direction. (This looks like a contradiction
with the other assumption of B ∼ z−1, since in a chaotic regime we have B ∼ z−4/3 for
density ∼ z−2. Of course, the observations show that there is some fraction of regularity, and
so the earlier assumption is justified. One could also argue, that in each shock the magnetic
field is re-regularized.) Therefore, the emission coefficient can be set as the angle-averaged
synchrotron power per unit volume per unit frequency.
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The absorption coefficient is dependent on the emitting frequency as αν ∼ ν−
p+4
2 .

If p = 2, the absorption coefficient will be αν ∼ ν−3. This steep dependence on frequency
implies that the emission region will be optically thick to synchrotron radiation at sufficiently
low frequencies. Instead, at high frequency, the region will be transparent to the synchrotron
radiation.

Absorption coefficient

In a frame comoving with the jet plasma, the absorption coefficient of the syn-
chrotron radiation can be calculated as

αν =

√
3e3B sinα0

8πme

(

3eB sinα0

2πm3
ec

5

)
p
2

C Γ

(

3p + 2

12

)

Γ

(

3p+ 22

12

)

ν−
p+4
2 (cm−1), (3.22)

where e is the electric charge of the electron, me is the electron mass, p is the power-law
index of the particles distribution, C is the normalization factor for the power-law electron
energy distribution (Eq. 3.13), B is the magnetic field in the frame comoving with the
jet, Γ(x) is the Gamma function of argument x, and ν is the frequency of the synchrotron
radiation [eq. 6.26 in Rybicki & Lightman (1979)]. To average over the pitch angle α, for a
local randomly oriented magnetic field with a probability distribution 1

2 sinαdα, one needs
to evaluate the following integral (Longair 1994)

∫ π

0

1

2
sinα(sinα)

p+2
2 dα =

√
πΓ
(

p+6
4

)

2Γ
(

p+8
4

) . (3.23)

Including the values of the physical constants and using the expressions for the
normalization of the electron distribution function, C and C ′ (Eqs. 3.15 and 3.16), as well
as for comoving magnetic field along the jet (Eq. 3.3), the absorption coefficient becomes

αν = K1C
′
0

(

z

z0

)− p+6
2

B
p+2
2

0 ν−
p+4
2 , (3.24)

where

K1 = 8.4× 10−3(1.25 × 1019)
p
2
(

8.2× 10−7
)p−1

√
π

2
Γ

(

3p+ 2

12

)

Γ

(

3p+ 22

12

)

Γ

(

p+ 6

4

)

Γ−1

(

p+ 8

4

)

.
(3.25)

Optical depth of the self-absorbed region

To calculate the observed distance along the jet where the jet becomes self-absorbed,
we first determine the optical depth τν of the jet material. The averaged path of a photon
through the jet has the length r(z), which is a reasonable approximation for a jet observed
at large inclination angle (see, e.g., Kaiser 2006). This is not in contradiction to the idea
that some jets point towards us (see the footnote on page 63). We introduce a factor l0 in
the expression of the path length to account for a small inclination angle. Thus, we can
write the optical depth as

τν = ανr(z)l0. (3.26)
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For conical jets, the intrinsic half-opening angle is given by tan θ = r/z ∼= r0/z0. With the
absorption coefficient specified through Eq. (3.24), the optical depth can be written as

τν = K1C
′
0r0l0

(

z

z0

)−
p+4
2

B
p+2
2

0 ν−
p+4
2 . (3.27)

The distance along the jet where the jet becomes self-absorbed (zssa) is defined as
the distance z for which τν = 1. Using Eq. (3.27), we obtain

zssa =
(

K1C
′
0l0
)

2
p+4 (tan θ)−1 r

p+6
p+4

0 B
p+2
p+4

ν−1

0 . (3.28)

Synchrotron emissivity

The total power radiated per unit volume per unit frequency by a non-thermal
particle distribution equals

Pω =

√
3e3

2πmec2
C ′B sinα0

p+ 1

(

mecω

3eB sinα0

)−
p−1
2

Γ

(

p

4
+

19

12

)

Γ

(

p

4
− 1

12

)

, (3.29)

where ω = 2πν [Eq. 6.36 in Rybicki & Lightman (1979)]. Using Eqs. (3.3) and (3.16), as
well as the method to calculate the averaged pitch angle employed in Longair (1994), the
expression of the total power becomes

Pν = 2πPω = K2C
′
0

(

z

z0

)−
p+5
2

B
p+1
2

0 ν−
p−1
2 , (3.30)

where

K2 = 3.7× 10−23
(

1.2× 10−7
)−

p−1
2 (p + 1)−1

√
π

2
Γ

(

p

4
+

19

12

)

Γ

(

p

4
− 1

12

)

Γ

(

p+ 5

4

)

Γ−1

(

p+ 7

4

)

.
(3.31)

Next, we derive (z/z0) from Eq. 3.27 when τν = 1. With this, the expression for the total
power takes the form

P ′
ν = K2 (K1r0l0)

−
p+5
p+4 (C ′

0)
− 1

p+4B
− p+3

p+4

0 ν3, (3.32)

and the emission coefficient is simply: jν = Pν/4π.

Source function

The emission coefficient is defined as the product between the absorption coef-
ficient αν and the source function Sν . At low frequencies, the emitting region is opaque
to synchrotron radiation and the observed intensity of radiation Iν is proportional to the
source function, while at high frequencies, the region is transparent and the observed inten-
sity is proportional to the emission coefficient. The two dependences should be matched at
the transition from opaque to transparent regime. This transition corresponds to an optical
depth τν = 1. The source function in the self-absorbed limit is then

Sν =
1

4π

Pν
αν

=
1

4π

K2

K1

(

z

z0

) 1
2

B
− 1

2
0 ν

5
2 (erg s−1cm−2Hz−1), (3.33)
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where the last equality was obtained using Eqs. (3.24) and (3.30). Note that in the source
function, the emitting frequency does not depend on the power-law index of the electron
energy distribution. For τν = 1, the source function becomes

S′
ν = K3

(

C ′
0r0l0

)
−1
p+4 B

− 1
p+4

0 ν2 (erg s−1cm−2Hz−1), (3.34)

where K3 = K
−

p+3
p+4

1 K2.

Flux density of the synchrotron emission

To obtain the emission spectrum, one needs to solve the equation for the radiative
transfer through a homogeneous medium. Because the angular sizes of the jets are small,
instead of the specific intensity of the radiation, one usually measures the flux density Fν
(energy per unit time, per unit frequency interval, that passes through a surface of unit
area). Thus,

dFν = IνdΩ = Sν [1− exp(−τν)] dΩ. (3.35)

Since the frequency shift of the approaching photons, specified by the Doppler factor,7 is
νobs = Djν, the transformation of the specific intensity to the observer frame is

Iν,obs = D3
j Iν , (3.36)

where the relativistic invariant quantity Iν/ν
3 was used. The solid angle corresponding to

the source is

dΩ =
2πrdz

D2
s

, (3.37)

where Ds is the distance from the observer to the jet source, and r = z tan θ. If we insert
Eq. (3.37) into Eq. (3.35) and integrate it from z0 to z, we obtain the flux density of the
synchrotron emission in the case of τν = 1 as

F ′
ν = S′

ν [1− exp(−1)]π(tan θ)D−2
s z2

[

1−
(z0
z

)2
]

, (3.38)

where the second term in the last squared bracket can be neglected with respect to the first
term for z ≫ z0 (where the jet emission becomes self-absorbed). Using Eqs. (3.28) and
(3.34), the flux density is then

F ′ = K4(C
′
0l0)

5
p+4 r

2p+13
p+4

0 B
2p+3
p+4

0 D−2
s (tan θ)−1 , (3.39)

where K4 = 0.16K
− p−1

p+4

1 K2. The radio flux density in Eq. (3.39) does not depend on the
emitted frequency of the radiation since we already adopted the case of flat-spectrum core
sources when τν = 1.

7The Doppler factor of the jet is Dj = γ−1
j (1−βj cosϕ)

−1, where ϕ is the inclination angle of the jet axis
with respect to the line of sight (which is Lorentz transformed through sinϕobs = Dj sinϕ). The angles are
rotated by the Lorentz transformation, so that a jet seen at angle γ−1

j is rotated basically to a transverse

view for large γj.
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For a power-law synchrotron spectrum of the form Fobs ∼ ν−αobs , the observed flux
density is related to the intrinsic flux density as

Fobs = D3+α
j F ′, (3.40)

where Eq. (3.36) was used. Equation (3.40) is valid for a single blob emission (see, e.g.,
Blandford & Königl 1979). For a continuous jet consisting of uniformly-spaced blobs, one
needs to consider the emission per unit length in the observer frame. Therefore,

Fobs = D2+α
j F ′, (3.41)

due to the fact that the number of the blobs observed per unit length is ∼ 1/Dj.

3.3 Luminosity and flux of the ultra-high-energy cosmic rays

In this section, we look to find the UHECR luminosity flux FCR specified as a
function of the observed radio flux-density Fobs. First, we consider the kinetic luminosity
defined as

LCR = ǫCRγ
2
j Ṁjc

2 , (3.42)

where we assume that the spin-down power of the BH drives the jet, and the UHECR
luminosity is a fraction of the jet power, therefore LCR ∼ ǫCRLj = ǫCR(Lkin+Lmagn+LCR).
If we were to adopt the point of view that the jet power is shared equally in a comoving
frame between the baryonic matter, magnetic field and cosmic rays extending to the highest
energy, then εCR ≃ 1/3. In the jet-disk model of Falcke & Biermann (1995), the energy
equipartition in the comoving frame appears to be a good approximation. If it were also
true here, it would determine the Lorentz factor and would suggest that AGN driven by the
BH spin-down power, and suffering from a low accretion rate, may attain a higher Lorentz
factor, consistent with some observations.

An upper limit for the electron density is given by ne 6 C ′
0. Next, we use this result

(Eq. 3.12) in the expression for the observed radio flux-density (Eq. 3.40 and Eq. 3.41) and
find the mass flow rate into the jet Ṁj. On the other hand, the magnetic field B0 follows
from equations 3.4 and 3.5. After performing these calculations, we obtain the UHECR
luminosity

LCR = K5fβjD−h
j

(γj
5

)
2p+13

5

(

tan θ

0.05

)
p+4
5
(

r0
2rg

)− 2p+13
5
(

BH

Bmax
H

)− 2p+3
5

F
p+4
5

obs D
2(p+4)

5
s

(

M

109M⊙

)−
2p+3
10

ergs−1, (3.43)

where

K5 =
π

6
mpc

3K
−

p+4
5

4 (5)
2p+13

5
+h(2.96 × 1014)−

2p+3
5 (0.56 × 104)−

2p+3
5 (0.05)

p+4
5 , (3.44)

where h = [(p + 5)(p + 4)]/10 for single blob emission (Eq. 3.40) or [(p + 3)(p + 4)]/10
for continuous blob emission (Eq. 3.41), and f = f0k0(l0fep)

−1. We use a normalization
value for the jet Lorentz factor, say 5, although the jet Lorentz factor can range from ∼ 2
to ∼ 100, as observational data suggest. We adopt fep ∼ 1− 10 (and f0 ≃ 1), which means
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that there is one electron for at least one proton in a jet powered by a rapidly-spinning BH
(a∗ > 0.95) and observed at a large angle (> 10◦). Sadly, there is a very poor constraint on
the BH spin parameter from the UHECR luminosity.

Given the UHECR luminosity, one can easily obtain the UHECR flux,

FCR =
LCR

4πD2
s

. (3.45)

Mildly-relativistic shocks (1 . γs . 10) are believed to occur in the AGN jets.
Gallant & Achterberg (1999) have shown that at relativistic shocks, the particles typically
perform a fraction ∼ γ−1

s of the Larmor orbit upstream before recrossing the shock, and
the particle energy gain increases by a factor of γ2sh in the first shock-crossing cycle. In
the subsequent shock-crossing cycles, the energy gain is of the order of 2. The predicted
spectral index is ≃ 2. A series of Monte Carlo simulations,8 performed under a wide
range of background conditions at the shock front, indicate a value p ≃ 2.2 − 2.3 for
the slope (see, e.g., Bednarz & Ostrowski 1998; Achterberg et al. 2001; Kirk et al. 2000;
Keshet & Waxman 2005). It follows that in the regime of arbitrarily high Lorentz factor
shocks, the acceleration process generates particle spectra which are quasi-independent of
the considered background conditions, leading to a quasi-universal slope of ∼ 2.2. The
picture can be changed when one considers more realistic conditions in the vicinity of the
shock. For example, Niemiec & Ostrowski (2006) studied possible models for perturbed
magnetic field upstream of the shock and found that for superluminal mildly-relativistic
shocks (γsh ∼ 5 − 30), a flattening of the spectrum occurs, p ≃ 1.5, with a cutoff at lower
energies than as expected for UHECRs. A flattening of the spectrum, p ∼ 2.1− 1.5, is also
observed in simulation results obtained by Meli et al. (2008) for the case of superluminal
ultra-relativistic shocks (100 < γsh < 1000), with a turbulent magnetic field and various
shock obliquity; however, for subluminal mildly-relativistic shocks, the spectral slope has
values between 2.0 < p < 2.3.

We adopt p = 2 , which is the upper value of the spectral index for flat-spectrum

core sources. The cosmic ray luminosity (Eq. 3.43) becomes

LCR =3.6× 1038βjD−3
j

(γj
5

)17/5
(

tan θ

0.05

)6/5( r0
2rg

)−17/5( BH

Bmax
H

)−7/5

(

Fobs

mJy

)6/5( Ds

Mpc

)12/5( M

109M⊙

)−7/10
, (3.46)

where a continuous jet was considered (h = 3). For p . 2, the results for the CR luminosity
are slightly reduced.

3.4 Maximum particle energy of ultra-high-energy cosmic

rays

3.4.1 Spatial limit

Now, we look for the maximum energy of the UHECR in the case of the spatial
(geometrical) limit (Falcke & Biermann 1995); i.e., the jet particle orbits must fit into the

8Monte Carlo simulations are meant to find a way of constructing the trajectories of particles whose
distribution obey the desired transport equation.
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Larmor radius. Following Gallant & Achterberg (1999), the maximum particle energy in
the downstream rest frame can be written as

Esp
max = γseZBr, (3.47)

where γs is the shock Lorentz factor, Z the particle mass number, and B is the magnetic
field in the comoving frame. Using the expression for the magnetic field along the jet (Eqs.
3.3 and 3.4) and the fact that tan θ = r0/z0, the CRs maximum energy (in the observer
frame) becomes

Esp
max = eZBmax

H r0

(

γs
γj

)(

BH

Bmax
H

)

, (3.48)

where BH is the magnetic field in the BH frame. For protons,

Esp
max = 5× 1020

(

BH

Bmax
H

)(

r0
2rg

)(

M

109M⊙

)1/2

(eV) , (3.49)

where γs ≃ γj was used.

3.4.2 Synchrotron loss limit

Setting synchrotron losses equal to diffusive shock acceleration gains, Biermann
& Strittmatter (1987) showed that a ubiquitous cutoff in the non-thermal emission spectra
of AGN, knots and hot spots in the jets can be explained. This requires that protons
to be accelerated near 1021 eV. The cutoff frequency, ν∗, might be produced at about
3000 − 6000 rg. Rewriting their expression for the maximal proton energy,

Eloss
max ≃ 1.4× 1020

(

ν∗
3× 1014Hz

)1/2

B−1/2 (eV), (3.50)

and using the expression for the magnetic field, we obtain the maximal proton energy in
the loss limit:

Eloss
max ≃ 4.2× 1018

(

ν∗
3× 1014Hz

)1/2 (γj
5

)1/2
(

BH

Bmax
H

)−1/2( M

109M⊙

)1/2 ( z

z0

)1/2

(eV) .(3.51)

3.5 Application to M87 and Cen A

In this section, we investigate the UHECR luminosity flux for two possible sources
of UHECR, M87 and Cen A, whose jet parameters can be inferred from observational data.

M87 (NGC 4486) is a giant elliptical galaxy located at ∼ 16 Mpc, perhaps the
dominant galaxy in the closest big galaxy cluster to us, the Virgo Cluster. Although the
galaxy hosts a supermassive BH with mass of (3.2± 0.9)× 109M⊙ (Macchetto et al. 1997),
its radio morphology places it near the FR-I/FR-II division.9 Its giant optical jet was

9The Fanaroff-Riley classification (Fanaroff & Riley 1974) of a galaxy depends on its radio luminosity.
The definition of FR-I and FR-II follows from the radio morphology, FR-I have the lobe emission center-
brightened, whereas FR-II have the lobe emission edge-brightened. The radio morphology strongly correlates
with the radio luminosity at low radio frequency (see, e.g., the review by Miley 1980). Most galaxies that
are brighter than 2× 1025h−2

100WHz−1str−1 at 178 MHz are of the FR-II type, while less luminous galaxies
belong mainly to the FR-I class. The division between the two classes becomes sharper if the distribution as
a function of the radio luminosity, as well as of the absolute optical magnitude, is taken into account (see,
e.g., Barthel 1989).
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discovered by Curtis (1918) and was the first extragalactic large-scale jet ever observed.
Since then, the jet has been observed over a wide range of the electromagnetic spectrum.
The radio map at 7 mm with VLBI (Biretta et al. 2002) reveals the structure of the jet
on the sub-parsec scale and indicates a jet (apparent) opening angle of approximately 60◦

on scales of about 0.04 pc. On large scales, the jet shows apparent superluminal motion of
∼ 6c, which implies a small angle to the line of sight, of just a few degrees. Whysong &
Antonucci (2003) have estimated an energy flow along the jet of Ljet ∼ 1045 erg s−1.

Cen A (NGC 5128) is the nearest active galactic nucleus at a distance of ∼ 3.5
Mpc. There are quite a few distance measurements with values in the 3.4− 4.4 Mpc range
(see, e.g., Tonry et al. 2001; Rejkuba 2004; Ferrarese et al. 2007). The giant elliptical galaxy
features a dark lane and a twisted edge-on disk of gas and dust which contain H II regions
obscuring the nucleus at optical wavelengths. They are believed to be remnants of a merger
of a giant elliptical galaxy with a smaller spiral galaxy, which has occurred about 107 − 108

years ago (Malin et al. 1983). Due to its radio morphology, Cen A has been classified as a
FR-I radiogalaxy. The radio maps show jet structures extending from the core on pc and
kpc scales to giant outer lobes which extend to an apparent diameter of 10◦ on the sky. The
jets point in a very different direction from the overall lobes (Junkes et al. 1993a,b), and this
may have two reasons: (i) there may have been a spin-flip, so that the big radio lobes refer
to the old spin direction and the jets to the new spin direction; or (ii) a cosmologically large
scale structure (LSS) shear flow (Ryu et al. 1998, 2008) pulls the relativistic gas ejected
by the active BH along the local LSS shear. A general relativistic approach for the spin-
flip of the BH was described by Gergely & Biermann (2009). A recent determination of
its BH mass of M = (5.5 ± 3.0) × 107M⊙ (Cappellari et al. 2009) was obtained by using
high-resolution integral-field observations of the stellar kinematics.

Taking r = 2 rg and BH ≃ Bmax
H , the equations for the maximum particle energy

in the spatial (Eq. 3.49) and loss (Eq. 3.51) limits, as well as for the UHECR luminosity
(Eq. 3.46), become

Esp
max = 5× 1020

(

M

109M⊙

)1/2

(eV),

Eloss
max ≃ 4.2× 1018

(
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)1/2
(γj
5

)1/2
(

M

109M⊙

)1/2( z

z0

)1/2

(eV),

LCR = 3.65× 1038βj (1− βj cosϕ)
3
(γj
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)32/5
(

tan θ

0.05

)6/5

(

Fobs

mJy

)6/5( Ds

Mpc

)12/5( M

109M⊙

)−7/10

(erg s−1).

(3.52)

This set of equations is used for the following estimations on UHECR contribution from
the BH spin-down power. For the expression of Eloss

max in Eq. (3.52), we use (z/z0) ∼ 103.
Our choice is based on the results obtained by Becker & Biermann (2009), which show that
a first large steady shock can be produced at about z ∼ 3 × 103 rg [following the work by
Markoff et al. (2001)]. This is confirmed by observations of a blazar inner jet as revealed by
a radio-to-γ-ray outburst (Marscher et al. 2008). The same conclusion was reached earlier
by Biermann & Strittmatter (1987) using the observed cutoff in the radio emission of AGN.

Table 3.1 contains our estimations for the UHECR maximum particle energy, lu-
minosity, and flux in the case of M87 and Cen A, whose jet parameters can be obtained
from observational data. The observed radio-core flux-density corresponds to the frequency
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Table 3.1: The jet parameters for M87 and Cen A, and the corresponding maximum particle energy
(spatial and loss limits), UHECR luminosity and flux. Here, the quantities assume that the particles
are protons.

Source γj ϕ θ Ds M F 5GHz
core Esp

max Eloss
max LCR FCR

(◦) (◦) (Mpc) (×109M⊙) (mJy) (ZeV) (ZeV) (erg s−1) (erg s−1cm−2)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

M87 6 10 19 16 3 2875.1 0.86 0.25 2.03× 1043 7.03× 10−10

Cen A 2 65 5 3.5 0.055 6984 0.11 0.21 3.16× 1042 2.28× 10−9

NOTE: Col. (1) Source name; Col. (2) Jet Lorentz factor; Col. (3) Angle to the line of sight; Col. (4) Jet
semi-opening angle; Col. (5) Distance to the source; Col. (6) BH mass; Col. (7) Core flux density at 5 GHz; Col.
(8) maximum particle energy (spatial limit); Col (9) maximum particle energy (loss limit); Col. (10) UHECR
luminosity for a power-law index of particle distribution p = 2; Col. (11) UHECR flux. REFERENCES: Jet
Lorentz factor: Biretta et al. (1999) and Meisenheimer et al. (2007); Angle to the line of sight: Biretta et al.
(1999) and Tingay et al. (1998); Distance to the source for M87 Macri et al. (1999) and for Cen A we assume
a distance Ds = 3.5 Mpc to be consistent with the BH mass determination; BH mass: Macchetto et al. (1997)
and Cappellari et al. (2009); Core flux density at 5 GHz: Nagar et al. (2001) and Slee et al. (1994). The value
of the quantities inferred from observational data are the median ones, which we use in our estimations.

of GHz. For comparison, the energy along the jet estimated by Whysong & Antonucci
(2003), is ∼ 1045 erg s−1 and ∼ 1043 erg s−1 for M87 and Cen A, respectively. [The energy
flow along the jet for Cen A is confirmed by Abdo et al. (2010).] The estimations of the
luminosity and flux of the UHECR correspond, however, to the slope of the particle density
distribution of p = 2. For a steeper slope of the particle density distribution, both the lu-
minosity and flux of the UHECR increase. Although the sources have a low power jet, they
are powerful enough to provide the environment for particles to be accelerated to ultra-high
energies of ∼ 1 ZeV. In this case, the jet power is supplied by the BH spin-down power.

Eliminating the BH mass using the expressions of Esp
max and LCR (Eq. 3.52), the

UHECR luminosity and the maximum particle energy are related through the following
equation

(

LCR

1045erg/s

)−10/7

= K

(

Esp
max

1020eV

)2

, (3.53)

where

K = 6.27×107β
−10/7
j (1− βj cosϕ)

−30/7

(

tan θ

0.05

)−12/7
(γj
5

)−64/7
(

Fobs

mJy

)−12/7 ( Ds

Mpc

)−24/7

.

(3.54)
Equation (3.53) is, therefore, not dependent on the BH mass, instead it is dependent on
the jet-related quantities.

3.6 Predictions for nearby galaxies as ultra-high-energy cos-
mic ray sources

We apply the model to a complete sample of steep-spectrum radio sources (Bier-
mann et al. 2008; Caramete 2010), at redshift z < 0.025 (about 100 Mpc), with a total
radio flux density larger than 0.5 Jy. The numbers for the estimated flux and maximal
energy exclude the GZK effect, but they include the dilution with distance. The selection
criteria used by the authors are presented in more detail in their papers. Table 3.2 lists the
predictions for the UHECR particle maximum energy, luminosity, and flux. We emphasize
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Figure 3.4: Integral source counts of the
complete sample of steep-spectrum ra-
dio sources (see Table 3.2.), where their
UHECR flux is estimated relative to
that of M87.

that there could be a common scaling limit, such as a condition that the Larmor radius has
to fit three times or five times into the jet. The scaling limit is not critical to our predictions
as long as we refer the quantities to, say, M87; therefore, the jet parameters are assumed
to be the same as for M87, all scaled by mass, radio power, and distance. That can be seen
when comparing the estimated values of the UHECR maximum particle energy and flux
for Cen A in Tables 3.1 and 3.2; the differences are within one order of magnitude. Using
a scaling relative to M87, one implicitly allows for the possibility that all sources produce
heavier nuclei (Z > 1). Of course this again assumes that all sources are the same in this
respect. We argue that although the sources are LLAGN, they can be sites of accelerating
particles to ultra-high energies ∼ 1 ZeV with an UHECR luminosity < 1043 erg s−1.

In Fig. 3.4, we show the plot of integral source counts (N) versus relative UHECR
flux (last column in Table 3.2.), where the data points are split in 8 bins of variable width
with the bin upper edge three times larger than the bin lower edge. Although the data
points are too sparse to discriminate models of the flux distribution, we estimate the most
likely model parameters that could generate those data points. We fit a power-law model
(N = C fκ) to the mean values of the data in each bin forN(> 0.405) (see Fig. 3.5) using the
log-likelihood method.10 The errors for the data points are estimated by

√
N . For the best

fit that we obtained, the model parameters are: C = 4.88±1.74 and κ = 0.86±0.45. (Since
the source counts for each bin is too low, especially in the tail of the assumed power-low
distribution, we cannot perform a χ2-test.) Within the errors, we can consider a power-law
model with κ > 1, which implies that weak sources can dominate over the strong sources.
In this view, LLAGN (powered by the BH spin down) can make a large contribution to
the integrated UHECR flux in the local universe, as the density of LLAGN is significantly
higher than the density of powerful AGN.

3.7 Summary and conclusions

In this work we developed a new model for UHECR contribution from BH spin-
down power. We relate the observed radio flux-density to the cosmic ray luminosity and
flux, and calculate the maximum particle energy in both spatial and loss limits. This model

10For plotting numerical results and for data analyzing, we use ROOT, which is an open source, data
analysis program developed at CERN.
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Figure 3.5: Integral source counts of the
same sample as in Fig. 3.4. The model
parameters for the best fit of a power-
law model (N = C fκ) with N(> 0.405)
are: C = 4.88±1.74 and κ = 0.86±0.45.
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is relevant for many radio galaxies, where the accretion rate is very low, and therefore the
BH spin-down power is a better option for powering their jets. Our predictions can be used
in various propagation codes for UHECR, which typically use the maximal energy and flux
of the cosmic rays scaled relative to a canonical radio galaxy, as well as the slope of the CR
spectrum. The only difficulty is that the predicted quantities scale a bit differently if some
of the UHECRs are heavy nuclei at the origin. That is because for heavy nuclei, the energy
scales up with Z. For a middling FIR/Radio ratio,11 as Cen A has, a starburst may have
provided all the necessary pre-accelerated nuclei. Nonetheless, this is not the case for M87.
We would like to point out that our model is just an extension of associating sites of the
origin of UHECRs to AGN with low accretion rates, beside those of high accretion rates.

Table 3.2. NOTE: Col. (1) Source name; Col. (2) Distance to the source; Col. (3) BH mass; Col. (4) Core

flux density at 5 GHz; Col (5) Maximum particle energy (spatial limit); Col. (6) Maximum particle energy

relative to the corresponding value for M87; Col. (7) UHECR luminosity; (8) UHECR flux; (8) UHECR

flux relative to the corresponding value for M87.

11“FIR” is the flux density at 60 µ and “Radio” is the flux density at 5 GHz.
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Table 3.2: UHECR predictions for a complete sample of 29 steep-spectrum radio sources (Biermann et al. 2008; Caramete 2010). The numbers for
the estimated flux and maximal energy exclude the GZK effect, but include the dilution with distance.

Source D M F 5GHz
core Esp

max Esp
max/ Eloss

max Eloss
max/ LCR FCR FCR/

(Mpc) (×109M⊙) (mJy) (1020 eV) Esp,M87
max (1020 eV) Eloss,M87

max (erg s−1) (erg s−1 cm−2) FM87
CR

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

ARP 308 69.7 0.1 67.8 1.57 0.18 0.45 0.18 8.39×1043 1.52×10−10 0.21
CGCG 114-025 67.4 0.19 443.39 2.16 0.25 0.63 0.25 4.70×1044 9.15×10−10 1.30
ESO 137-G006 76.2 0.92 631.32 4.76 0.55 1.38 0.55 3.19×1044 4.87×10−10 0.69

IC 4296 54.9 1 214 4.97 0.57 1.44 0.57 3.75×1043 1.10×10−10 0.15
IC 5063 44.9 0.2 29 2.22 0.25 0.64 0.25 6.49×1042 2.84×10−11 0.04

NGC 0193 55.5 0.2 40 2.22 0.25 0.64 0.25 1.58×1043 4.55×10−11 0.06
NGC 0383 65.8 0.55 92 3.68 0.42 1.07 0.42 3.19×1043 6.52×10−11 0.09
NGC 1128 92.2 0.2 39 2.22 0.25 0.64 0.25 5.20×1043 5.41×10−11 0.07
NGC 1167 65.2 0.46 243 3.37 0.39 0.98 0.39 1.13×1044 2.36×10−10 0.33
NGC 1316 22.6 0.92 26 4.76 0.55 1.38 0.55 3.76×1041 6.51×10−12 0.01
NGC 1399 15.9 0.3 10 2.72 0.31 0.79 0.31 1.12×1041 3.94×10−12 0.005
NGC 2663 32.5 0.61 160 3.88 0.45 1.13 0.45 1.06×1043 8.89×10−11 0.12
NGC 3801 50 0.22 635 2.33 0.27 0.67 0.27 3.19×1044 1.12×10−9 1.60
NGC 3862 93.7 0.44 1674 3.29 0.38 0.96 0.38 2.83×1045 2.85×10−9 4.06
NGC 4261 16.5 0.52 390 3.58 0.41 1.04 0.41 6.80×1042 2.20×10−10 0.31
NGC 4374 16 1 168.7 4.97 0.57 1.44 0.57 1.46×1042 5.05×10−11 0.07
NGC 4486 16 3 2875.1 8.61 1 2.50 1 2.03×1043 7.03×10−10 1
NGC 4651 18.3 0.04 15 0.99 0.11 0.28 0.11 1.05×1042 2.78×10−11 0.03
NGC 4696 44.4 0.3 55 2.72 0.31 0.79 0.31 1.02×1043 4.59×10−11 0.06
NGC 5090 50.4 0.74 268 4.27 0.49 1.24 0.49 4.94×1043 1.72×10−10 0.24
NGC 5128 3.5 0.055 6984 1.16 0.13 0.33 0.13 2.53×1043 1.82×10−8 25.95
NGC 5532 104.8 1.08 77 5.16 0.6 1.50 0.6 4.92×1043 3.96×10−11 0.05
NGC 5793 50.8 0.14 95.38 1.86 0.21 0.54 0.21 4.67×1043 1.60×10−10 0.22
NGC 7075 72.7 0.25 20 2.48 0.28 0.72 0.28 1.13×1043 1.89×10−11 0.02
UGC 01841 84.4 0.1 182 1.57 0.18 0.45 0.18 4.34×1044 5.39×10−10 0.76
UGC 02783 82.6 0.42 541 3.22 0.37 0.93 0.37 5.58×1044 7.23×10−10 1.02
UGC 11294 63.6 0.29 314 2.67 0.31 0.78 0.31 2.01×1044 4.39×10−10 0.62
VV 201 66.2 0.1 88 1.57 0.18 0.45 0.18 1.01×1044 2.04×10−10 0.29
WEIN 45 84.6 0.27 321.6 2.58 0.3 0.75 0.3 4.31×1044 5.33×10−10 0.75



Chapter 4

General Relativistic
Magnetohydrodynamics Simulation
of Jet Formation from Kerr Black
Holes

The first GRMHD code for simulating jet formation from accreting BHs was de-
veloped by Koide et al. (1999) using the conservation form of the ideal GRMHD equations
on fixed geometry (either Schwarzschild or Kerr). Using the simulation code by Koide et
al., we present numerical results of jet formation from a rapidly-spinning BH (a∗ = 0.95),
when the accretion disk co-rotates with the BH rotation and the coronal plasma falls freely
towards the BH.1 The main result of the numerical simulation presented here consists of
an electromagnetically-driven component of the jet which, near the BH, is developed inside
the gas pressure-driven component of the jet. This is different from the previous results
obtained by Koide et al., where the jet has two separately components (the pressure-driven
and magnetically-driven components). The jet consists of plasma coming from the disk, as
well as from the BH corona. Far from the BH, the jet is basically driven by electromag-
netic forces, whereas the gas-pressure forces of the coronal plasma, which decelerate the jet,
are somewhat weaker than the driving electromagnetic forces. The maximum velocity of
the plasma in the jet is ∼ 0.4 c (i.e., the jet is sub-relativistic). This is considerable lower
than the velocity of the inner parts of some AGN jet for which the observations indicate
relativistic speeds. However, the outer parts of the jet can have mildly- and sub-relativistic
speeds. Despite this low velocity in the inner part of the jet, the electromagnetically-driven
component of the jet is important by itself as it shows that the extraction of the rotational
energy from the BH via a Penrose-like process in the BH ergosphere is possible, although
for transient jets. Further development of the code may accomplish the attempt to fully
match the AGN observational data.

1The simulations using the code by Koide et al., as well as the tests with the RAISHIN code by Mizuno et
al., were performed on a machine at the National Center for Supercomputing Applications at the University
of Illinois at Urbana-Champaign, USA, through the collaboration with Ken-Ichi Nishikawa and Yosuke
Mizuno.
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4.1 Introduction

General relativistic magnetohydrodynamics (GRMHD) describes the dynamics of
relativistic, electrically conducting fluids, when magnetic fields are present, in the gravi-
tational field of compact objects. Connecting magnetohydrodynamics (MHD) to general
relativity, the GRMHD provides a suitable framework to study time-dependent accretion
flow and jet formation from the region near BHs or neutron stars (NSs). Here, we make
use of the GRMHD laws written in 3+1 language for a general space-time. The laws are
expressed in terms of quantities (magnetic field, flow velocity, etc.) which are measured by
the fiducial observers2 whose world lines are orthogonal to the hypersurfaces of constant
time (see Section 4.2.1 for details).

The formation of relativistic jets in AGN and microquasars, explained (i) by mag-
netohydrodynamical effects as in the jet model of Blandford & Rees (1974), (ii) by MHD
centrifugal acceleration as in the Blandford-Payne mechanism (Blandford & Payne 1982), or
(iii) by electromagnetic extraction of energy as in the Blandford-Znajek mechanism (Bland-
ford & Znajek 1977), involves an accretion disk around rotating BHs. The discovery of
quasi-periodic oscillations in X-ray binaries extended the frequency range over which these
oscillations occur into timescales associated with the relativistic, innermost regions of ac-
cretion disks (e.g., Mirabel & Rodriguez 1999). A relativistic description is also necessary
in scenarios involving the explosive collapse of massive stars to a BH (collapsar model, see,
e.g., Woosley 1993) or during the last phases of the coalescence of neutron star binaries.
These catastrophic events are believed to exist at the central engine of highly energetic
gamma-ray bursts (GRBs, see, e.g., Piran 2000). In addition, non-spherical gravitational
collapse leading to BH formation or to a supernova explosion, and neutron star binary
coalescence are among the most promising sources of short GRBs.

Powerful tools to improve our understanding of these astrophysical phenomena
are accurate, large-scale, 3-D numerical simulations. Nowadays, computational general-
relativistic astrophysics is an increasingly important field of research. In addition to the
large amount of observational data by X- and gamma-ray satellites such as BATSE, Bep-
poSAX, Chandra, XMM-Newton, INTEGRAL, SWIFT, FERMI, formerly GLAST (e.g.,
Abdo et al. (2009) and also http://fermi.gsfc.nasa.gov/], or in the future IXO (http://
ixo.gsfc.nasa.gov/), and EXIST (http://exist.gsfc. nasa.gov/)], and the new generation of
gravitational wave detectors [LIGO and LISA (http://www.ligo.org/ and http://www.lisa.
org/)], the rapid increase in computing power through parallel supercomputers and the
associated advance in software technologies is making large-scale numerical simulations in
the framework of general relativity possible.

Recent observations and theoretical research suggest that magnetic fields play a
crucial role in determining the evolution of many astrophysical objects. In any highly con-
ducting astrophysical plasma, a frozen-in magnetic field can be amplified appreciably by
gas compression or shear. Even when an initial seed field is weak, the field can grow in
the course of time to significantly influence the gas dynamical behavior of the system. This
process is called the magnetorotational instability [MRI, e.g., Balbus & Hawley (1998) and
references therein], and it is an efficient mechanism to magnetically induce the transport
of angular momentum in a thick torus-like accretion disk (with H/r > 0.1, where H is the

2Also known as the Eulerean observers, which are the zero angular momentum observers in the case of
Kerr space-time.
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half-thickness of the disk at the disk radius r) around a BH. Perturbations in a differentially
rotating disk grow when the magnetic pressure is smaller than the gas pressure. As a result,
weak magnetic fields are amplified on dynamic time scales. In fact, the angular momentum
in a GRMHD disk can generally be transported by either the MRI or the magnetic braking.
The latter is observed in the GRMHD jet formation obtained by Koide et al. (1998) when
a thin accretion disk is considered. In this case, the differential rotation of the accretion
disk winds up a toroidal magnetic field, which then begins to transport angular momentum
from the inner to the outer part of the accretion disk. The MRI does not grow in a thin
accretion disk since the wavelength at the maximum grow rate is larger than the height of
the disk (Mizuno et al. 2006a). If, in addition, the gravitational field is strong and dynam-
ical, magnetic fields can even affect the entire geometry of space-time, according to general
relativity. In this situation, terms involving magnetic and electric fields are important not
only as electromagnetic forces acting on the matter in the equations of relativistic hydro-
dynamics but also as stress-energy sources governing the metric in Einstein’s gravitational
field equations.

In the most general case, the equations governing the dynamics of relativistic
astrophysical systems form a coupled system of time-dependent partial differential equa-
tions comprised of the MHD equations and the Einstein gravitational-field equations. To
investigate the dynamics of accretion disks and the associated jet formation in AGN or
in microquasars, GRMHD simulation codes have been developed (e.g., the review by Font
2008). The first distinction between the GRMHD codes is the way the equations are written:
in a conservation or non-conservation form.

In short, a conservation GRMHD code3 is based on: (i) the choice of coordi-
nates (e.g., Boyer-Lindquist coordinates or Kerr-Schild coordinates); (ii) the discretization
of the system (the finite difference methods, the finite element methods, or the finite vol-
ume methods); (iii) the scheme to integrate the non-linear hyperbolic system of GRMHD
equations and handle the discontinuities [e.g., a (Godunov-type4) high-resolution shock-
capturing schemes]; (iv) the scheme to keep the magnetic field divergence-free (e.g., con-
strained transport); (v) the recovery scheme to derive primitive variables from the conserved
ones (see later in this chapter); and (vi) the validation tests (e.g., 1-D tests in Minkowski
space-time that include Alfvén wave propagation, fast and slow magnetosonic shocks, or
non- and relativistic shock tubes).

As long as the electric resistivity is negligible, the electric and displacement cur-
rents do not need to be explicity calculated when the conservation form of the GRMHD
equations is applied. Therefore, the numerical errors that can occur when calculate the
electric current density are eliminated. This is one advantage of using the GRMHD equa-
tions in conservation form in comparison with using forms of the GRMHD equations that
include explicity the electric current density (Koide 2003).

For non-conservation forms, a ZEUS-like (Stone & Norman 1992) approach is em-
ployed. De Villiers & Hawley (2003) numerically simulated an accretion disk by considering

3Some details on the GRMHD code used in this chapter are given in Section 4.3.

4Godunov-type scheme, encouraged by successful applications to the Euler equations, are considered to
be highly effective in resolving discontinuities, such as shock waves, for high-speed flow problems (Myong
& Roe 1998). Godunov (1959) used the local characteristic structure obtained from solving a Riemann
problem to define an upwind method. The Riemann problem concerns the evolution of an arbitrary initial
discontinuity, which can be described by various self-similar waves and contact discontinuity, as well as shock
waves.
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a magnetized gas disk and the ideal MHD equations. They developed a scheme to permit
the integration of an internal energy equation rather than a total energy equation (as for the
conservation schemes), which is, however, suitable in regions of a flow where the internal
energy is small compared to the total energy (highly supersonic flows). As a result, the
kinetic energy, as well as the magnetic energy, can be lost at the grid scale. Therefore,
an artificial viscosity term which is added in the internal energy equation enables some of
the kinetic energy to be captured as heat. As the authors state, the shortcoming of their
simulation code revealed by the validation tests is due to the artificial viscosity algorithm of
the underlying hydrodynamic solver. Nevertheless, their numerical code can be applied to
the study of the MRI thick tori evolution for both the Schwarzschild and Kerr BHs. Their
numerical simulation also shows significant outflow driven by the accretion disk (see also
De Villiers et al. 2005; Hawley & Krolik 2006).

Unless otherwise noted, the next numerical GRMHD codes which are next men-
tioned are based on conservation schemes.

The first GRMHD simulations of jet formation were performed by Koide et al.
(1998, 1999, 2000a) using the 3+1 formalism of general relativistic conservation laws of
mass, momentum, and energy, and Maxwell equations with infinite electric conductivity
(ideal MHD approximation) with the static metrics. These conditions are the base of most
studies of jet formation. The GRMHD equations are solved in the test-fluid approximation,5

using the simplified total variation diminishing (TVD) method.6 The background geometry
is either Schwarzschild or Kerr space-time with Boyer-Lindquist coordinates. In particu-
lar, Koide et al. (1999) investigated (in 2-D) the dynamics of an accretion disk initially
threaded by a uniform magnetic field [described by the vacuum solution of Wald (1974)]
in a non-rotating corona (either in a state of steady fall or in hydrostatic equilibrium)
around a Schwarzschild BH. The GRMHD numerical results show that matter in the disk
loses angular momentum by magnetic braking, and then it falls into the BH. The disk falls
faster in this simulation than in the non-relativistic case because of the general-relativistic
effects that are important below 3 rS, where rS ≡ 2GM/c2 is the Schwarzschild radius. A
centrifugal barrier at r = 2 rS strongly decelerates the infalling material. Plasma near the
shock at the centrifugal barrier is accelerated by the J × B force (where J and B denote
the current density vector and the magnetic field vector, respectively) and forms bipolar
jets. Inside this magnetically driven jet, the gradient of gas pressure also generates a jet
above the shock region (gas-pressure driven jet). This two-layered jet structure is formed
both in a hydrostatic corona and in a steady-state falling corona. Koide et al. (2000a)
also developed a GRMHD code using the Kerr geometry and found that with a rapidly-
rotating BH magnetosphere of a spin parameter a∗ = 0.95, the maximum velocity of the
jet is (0.3 − 0.4) c. The simulations show how the BH drags the inertial frames around in
the ergosphere. Simulations with free-falling corona and initial uniform magnetic field as
initial conditions were performed also by Koide (2003, 2004) and Nishikawa et al. (2005b).

3-D GRMHD simulation results of jet formation from a Schwarzschild BH obtained

5In this case, the self-gravity of the fluid is neglected in comparison with the background gravitational
field, so that the energy-momentum of the fluid does not couple to the metric and does not deform the Kerr
geometry.

6The code represents an extension of the jet formation in the case of non-steady Newtonian MHD (Shibata
& Uchida 1986; Uchida & Shibata 1985). MHD formation of the jet (in 2-D and 3-D) has been obtained for
relativistic regime, for instance, by Koide et al. (1996), Nishikawa et al. (1997), and Nishikawa et al. (1998).
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by Nishikawa et al. (2003, 2005b) show a bipolar jet with velocity ∼ 3 c. In the later stage,
a wind with a much wider angle than the early-stage jet’s angle and a thick disk are formed.
The jet is formed from the initially accreting matter and, since at the outer boundary of
the disk no matter is further injected, the power to generate the jet is dissipated and the
jet is transformed into a wind. Compared to the previous 2-D numerical results, due to a
longer simulation time, a thickening of the disk is also observed by the end of simulation
run.

Mizuno et al. (2004a) presented results of jet propagation through progenitor stel-
lar models of collapsar. In this case, 2.5-D GRMHD simulations of the gravitational collapse
of a rotating magnetized massive star with a Kerr BH at the center are performed [for a
Schwarzschild BH see Mizuno et al. (2004b)]. These simulations show the formation of
a disk-like structure and the generation of a mildly relativistic jet (∼ 0.3 c). The jet-like
outflow is accelerated mainly by the magnetic field; when the rotation of the BH is faster,
the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic
energy stored by the twisting magnetic field is directly converted into kinetic energy of the
jet rather than propagating as an Alfvén wave. Thus, as the rotation of the BH becomes
faster, the poloidal velocity of the jet becomes faster. The obtained kinetic energy of the
jet is about 1054 erg, which is large enough to explain the standard energy in GRBs (∼ 1051

erg). The jet velocity is, however, too low to account for the jet velocity in GRBs, therefore
new mechanisms need to be considered, perhaps neutrino-annihilation or shock acceleration
of particles. Nonetheless, these results can be applied to baryon-rich outflows associated
with failed GRBs, which may be observed as hypernovae (e.g., SN 2002ap).

More GRMHD simulations were developed (e.g., Gammie et al. 2003; Komissarov
2004; Anninos et al. 2005; McKinney 2006; Mizuno et al. 2006a; Del Zanna et al. 2007;
Giacomazzo & Rezzolla 2007; McKinney & Blandford 2009). In the paper series by Gam-
mie et al. (2003), McKinney & Gammie (2004), or McKinney (2006), the numerical scheme
HARM (High Accuracy Relativistic Magnetohydrodynamics) was employed, in which case a
conservation, shock-capturing scheme is applied. The Kerr metric is written in Kerr-Schild
coordinates, such that the inner radial computational boundary can be placed inside the
horizon and so out of causal contact with the flow. The jets have two components: (i) a
matter-dominated outflow moving at about 0.3 c along the centrifugal barrier surrounding
an evacuated axial funnel and (ii) a highly-relativistic Poynting-flux-dominated jet, within
the funnel, which is accelerated and collimated by magnetic and gas pressure forces in the
inner torus and the surrounding corona. The latter paper is an extention of the previ-
ous ones to study the Poynting-flux-dominated jets, which are accelerated by continuous
mass-loading from the disk. In this case, large Lorentz factors are obtained, Γ ∼ 10, with
a maximum terminal Lorentz factor of Γ∞ . 103 (McKinney 2006). Komissarov (2004)
obtained the first numerical results of a magnetically-dominated monopole BH magneto-
sphere. He found that the numerical solution evolves towards a stable steady-state solution,
which corresponds to the Blandford-Znajek force-free solution. Furthermore, Anninos et al.
(2005) developed a code (Cosmos++) to solve the GRMHD equations in fixed background
space-times using time-explicit, finite-volume discretization. The code has options for solv-
ing the GRMHD equations using traditional artificial viscosity or non-oscillatory, central
difference methods, or a new extended artificial viscosity scheme using artificial viscosity
together with a dual energy/flux-conserving formulation. This code is applied, for instance,



74
Chapter 4: General Relativistic Magnetohydrodynamics Simulation of Jet Formation from

Kerr Black Holes

by Fragile & Meier (2009) to investigate how the hard-state objects7 behave if they would
radiate efficiently. Giacomazzo & Rezzolla (2007) presented a new code (WhiskyMHD) de-
veloped to solve the full set of GRMHD equations in a dynamical and arbitrary space-time
with high-resolution shock-capturing techniques on domains with adaptive grid refinements.

Mizuno et al. (2006a) developed a new code, RAISHIN,8 which is based on a
3+1 formalism of the general-relativistic conservation laws of particle number and energy
momentum, Maxwell equations, and Ohm’s law with no electrical resistance (ideal MHD
condition). In the RAISHIN code, a conservation, high-resolution shock-capturing scheme is
employed. The numerical fluxes are calculated using the Harten et al. (1983) approximate
Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to
maintain a divergence-free magnetic field. The RAISHIN code has proven to be accurate to
the second order and has passed a number of numerical tests, including highly relativistic
cases and highly magnetized cases in both special and general relativity. The RAISHIN
code has been used in its relativistic MHD configuration (Mizuno et al. 2007) to study the
effects of strong magnetic fields and weakly relativistic sheath motion, c/2, on the Kelvin-
Helmholtz instability associated with a relativistic, γ = 2.5, jet spine-sheath interaction,
as well as the development of current-driven kink instability through 3-D relativistic MHD
simulations (Mizuno et al. 2009b).

In many cases, equations which describe non-adiabatic processes (such as viscosity,
resistivity, or radiative transfer) or sophisticated microphysics (e.g., realistic equations of
state for nuclear matter), which can be important contributors to the dynamics of the
accretion flows, must be added to the GRMHD equations. Radiative transfer calculations
in general relativity were considered, for instance, by Fuerst & Wu (2004), Nishikawa et al.
(2005a), De Villiers (2008), and Wu et al. (2008).

In this chapter, we present the numerical results of jet formation from rapidly-
spinning BHs (a∗ = 0.95), surrounded by a thin accretion disk with a free-falling corona,
using the GRMHD code developed by Koide et al. (1998, 1999, 2000a) and Mizuno et al.
(2004a). The results are compared to the numerical simulations performed with the RAISHIN
code (Mizuno et al. 2006a), as well as with other work. Geometrized units (G = c = 1) are
used throughout this chapter, except where explicitly indicated. The signature of 4-metric
is +2 and Greek (Latin) indices run from 0 to 3 (1 to 3); the Einstein summation convention
is used. Four-vectors are denoted through index notation or boldface letters, e.g., vµ or v.

For the theoretical part exposed on this chapter, we generally follow Baumgarte &
Shapiro (2003) and Wilson & Mathews (2003) for 3+1 decomposition of the space-time, as
well as Koide (2003), Nishikawa et al. (2005b), Mizuno et al. (2006b), Camenzind (2007),
Font (2008), and Nishikawa9 for specific aspects of GRMHD.

7In X-ray binaries (BH-BH or BH-NS), the hard X-ray state (10-20 keV) is usually observed when the
source is faint, having a photon spectrum index of about 1.7; thus, the name low/hard state (e.g., Remillard
& McClintock 2006). This state is associated with emission from all three components: the accretion disk,
the hot corona, and the jet. Objects in hard-state usually produce jets with speeds of ∼ 0.3 c.

8RAISHIN stands for RelAtIviStic magnetoHydrodynamics sImulatioN; it is also the ancient Japanese
god of lightning.

9Nishikawa, K.-I.: book on “Black Hole Simulations,” which is work in progress.
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Chapter outline

In Section 4.2 we assemble the complete set of GRMHD equations in conservation
form using the 3+1 decomposition of space-time. They determine the self-consistent evolu-
tion of a relativistic MHD fluid in Kerr space-time. In Section 4.3, we describe the GRMHD
simulation code (Koide et al. 1998, 1999, 2000a; Mizuno et al. 2004a) employed further in
this chapter. In Section 4.4 we present the numerical results of jet formation from rapidly-
spinning BHs (a∗ = 0.95). The simulation results show that a jet with velocity of about 0.4 c
is formed. By the end of simulations and far from the BH, the jet is accelerated mainly by
electromagnetic forces, where the simulations ran over one hundred light-crossing time units
(τS = rS/c). A comparison with the code developed by Mizuno et al. (2006a), RAISHIN, as
well as other work, is also presented. A summary and conclusions are presented in Section
4.5.

4.2 General relativistic magnetohydrodynamics equations in

conservation form

The set of GRMHD equations are obtained from the local conservation laws of the
energy-momentum tensor,10 the continuity equation (conservation of the matter density),
and the Maxwell equations. In addition, an equation of state for the fluid must be specified.
Here, we consider only ideal MHD; that is, the fluid is a perfect conductor with no resistivity
and no viscous loss. Effects due to viscosity, as well as radiation transport, are neglected.

In the case of numerical relativity, an appropriate formalism to study the time
evolution of a system is, among others [e.g., characteristic methods (Gómez et al. 1998)],
the Cauchy approach in 3+1 decomposition of the space-time. This formalism, which is
applied to a large extent in GRMHD numerical simulations, is described in the following
section.

4.2.1 3+1 decomposition of the space-time (in the Eulerean formulation)

In the standard covariant form, Einstein equations (e.g., Misner et al. 1973),

Gµν = 8πTµν , (4.1)

do not explicitly describe the time evolution of a system. To produce numerical solutions
of the Einstein equations, the equations are recast into a so-called 3+1 formulation (in
which the coordinate time is split from the three spatial coordinates) and reformulated as
an initial value (or Cauchy) problem; that is, the gravitational field is considered to be the
time history of the geometry of a space-like 3-D hypersurface on which the initial value
problem is solved, and the evolution equations are integrated along the trajectories of a
chosen reference frame.

The usual 3+1 decomposition of the Einstein equations is the Arnowitt-Deser-
Misner (ADM, Arnowitt et al. 1962) formalism, by which the space-time is foliated into a
family of space-like 3-D hypersurfaces Σ(t), labeled by the time coordinate t. This time

10In general relativity, the distribution of the mass, momentum, and stress due to matter, and to any
non-gravitational fields, is described by the energy-momentum tensor T µν .
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Figure 4.1: Schematic represen-
tation of observer frames in the
ADMmetric [adapted fromWilson
& Mathews (2003)].

coordinate is chosen along a normal unit vector to the 3-D hypersurfaces. These hypersur-
faces are separated by differential displacements in coordinate time, dt (see Fig. 4.1). The
data on each space-like hypersurface is specified by both γµν and Kµν , where

γµν = gµν + nµnν , (4.2)

is the spatial metric induced by the space-time metric gµν onto each slice Σ(t), and n is
the future directed unit vector normal to Σ(t). This unit vector satisfies the normalization
relation nµn

µ = −1. The extrinsic curvature, Kµν , can be written in terms of the Lie
derivatives11 of the spatial metric along the unit normal vector, Kµν = −(1/2)Lnγµν .

Since n is a unit time-like vector, the vector cn (c is the speed of light12) can
be interpreted as the 4-velocity field of the observers that are instantaneously at rest in
the spatial slices Σ. These observers are usually referred to as the Eulerean observers.
In the case of Kerr space-time, the Eulerean observers are called zero angular momentum
observers (ZAMOs). They move through space-time in a direction orthogonal to the spatial
slices with clocks showing the proper time τ . This implies that from the point of view of the
Eulerean observer, the hypersurface Σ(t) can be locally regarded as a set of simultaneous
events. The frame of a Eulerean observer is an appropriate frame in which to measure
physical quantities such us the fluid velocity, etc., since this frame is defined independently
of the choice of coordinates.

The general covariance of general relativity provides four degrees of freedom, which
are used to adjust the coordinate system as desired. This freedom is embodied in four
functions: the lapse function α and the spatial shift vector βµ (which has, at most, three
non-zero components).

The orthogonal proper time interval between two slices is α dτ , so that one can
choose Nµ = αnµ as the (orthogonal) vector field connecting the slices and then α =
(−gµνN

µNν)1/2. So that, any 4-vector field t can be decomposed into a part proportional
to n (the time-like part) and the other part tangent to the hypersurface Σ (the spatial part)
as

tµ = αnµ + βµ, (4.3)

where βµnµ = 0 (since the shift vector is tangent to the hypersurface Σ, whereas the vector
n is normal to Σ). The lapse function and the shift vector determine how the coordinates

11An introduction to Lie derivatives can be found, for example, in Schutz (1980).

12Here, we include c in the 4-velocity definition, but later we shall drop it.
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Figure 4.2: Schematic representation of
the ADM metric [adapted from Wilson &
Mathews (2003)].
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evolve from one slice to the next, in the sense that the lapse function determines how
much proper time elapses between slices along the unit normal vector, while the shift vector
determines by how much the spatial coordinates are shifted with respect to the normal
vector (see Figs. 4.2 and 4.3).

Similarly, any 4-D tensor can be decomposed into a spatial part and a time-like
part. The spatial part is obtained by contracting the tensor with the projection operator,

γµν = gµσγσν = gµν + nµnν = δµν + nµnν, (4.4)

and the time-like part by contracting it with −nµnν . For example, the 3+1 decomposition
of a 4-D tensor can be applied to the energy-momentum tensor of a magnetized fluid, which
gives, in fact, the GRMHD equations (see later in this chapter).

To describe a system in the 3+1 approach, the following reference frames are used:
(i) the coordinate frame, (ii) the Eulerean frame, and (iii) the fluid frame (see Fig. 4.1).

The coordinate frame is defined by the coordinate basis {eµ}, whose time leg
is the vector t, so that the scalar products of the tangent vectors constitute the metric
eµ · eν = gµν . The components of the coordinate basis vectors are (eµ)

ν = δ νµ and (eµ)ν =
gµν .

For any vector V, the following holds: nµV
µ = ntV

t = −αV t. By definition, the
contraction of any spatial vector with the unit normal vector is zero, so if V is spatial,
we then have nµV

µ = 0. Using Eq. 4.6, the time component of the contravariant spatial
vector is then zero, V t = 0. Since the shift vector is spatial, we have βt = 0, and thus
βµ = (0, βi). From Eq. 4.6 and taking into account that nµn

µ = −1, we have nt = α−1.
The contravariant component of the unit normal vector is then obtained from the definition
in Eq. 4.3, together with βµ = (0, βi), as

nµ =
1

α
(1,−βi). (4.5)

Since nµn
µ = −1, the components of the unit normal vector n in the coordinate frame are

nµ = (−α, 0, 0, 0), (4.6)

which, when inserted into the definition of the spatial metric (Eq. 4.2), gives γij = gij . In
addition, γµt = 0, which follows from the fact that the time components of contravariant,
spatial tensors are zero. With these ingredients, the inverse of the 4-metric can be written
as

(

gtt gtj

git gij

)

=

(

− 1
α2

βj

α2

βi

α2 γij − βiβj

α2

)

. (4.7)
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of the lapse function α and the shift vec-
tor βi.

Using ni = 0, γij = gij , γ
µt = 0, and γikγkj = δij , the components of the 4-metric

with respect to a coordinate system, xµ, can be written in terms of the lapse function α,
the shift vector βi, and the 3-metric γij as

(

gtt gtj
git gij

)

=

(

βkβ
k − α2 βj
βi γij

)

. (4.8)

So, the line element between any two points in a 3+1-dimensional space-time (also called
the ADM metric) is

ds2 = gµνdx
µdxµ = −(α2 − βiβ

i)dt2 + 2βidxidt+ γijdx
idxj

= −α2dt2 + γij(dx
i + βidt)(dxj + βjdt).

(4.9)

Figure 4.2 shows a schematic representation of the ADM metric.
A coordinate observer moves through space-time in a direction such that the spatial

coordinates xi on slice Σ(t) are equal to the space coordinates of his location at time t+ dt
(the blue curves in Fig. 4.3). Besides this, one has complete freedom to choose where those
coordinates connect to the next spatial slice, i.e., where the point P ′ should be located.
Though, this freedom is restricted by causality if causality is automatically obeyed. The
shift of the space coordinates from one 3-D hypersurface to the next one is then specified
by βi (the green line in Fig. 4.3). If point Q, where the normal to the slice Σ(t) connects
with the slice Σ(t+ dt), has the coordinate yi, one can write

xi(t) = xi(t+ dt) = yi + βidt. (4.10)

Thus, the length of the space-time vector stretching from the coordinate observer’s position
at point P to point P ′ is the one specified by the observer’s watch,

(ds2)c.o. = (−α2 + βiβ
i)dt2, (4.11)

so that the lapse of proper time shown by a clock moving in the coordinate observer’s frame
is given by

dτ =
√

α2 − β2 dt. (4.12)

Let us consider the points P (t, xi), Q(t + dt, xi − βidt), and R(t + dt, xi + dxi)
in the coordinate frame. In this frame, the 4-velocity of a particle u, normalized so that
uµu

µ = −1, has the components

uµ =
(dt, dxi)

dτ
= (ut, ui) =

(

dt

dτ
,
dxi

dτ

)

, (4.13)
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which, in the Eulerean reference frame,13 reads

u′µ =
(αdt, dxi + βidt)

dτ
= (αut, ui + βiut) = αut

(

1,
ui

αut
+

βi

α

)

. (4.14)

The Lorentz factor between the Eulerean frame and the coordinate frame is given
by W = −nµu

µ = αut = (1 − v2)−1/2, where v2 = γijv
ivj is the squared modulus of the

3-velocity of the particle with respect to the Eulerean observer. From the last term in
Eq. 4.14, one can define the particle’s 3-velocity in the Eulerean frame as

vi =
ui

αut
+

βi

α
, (4.15)

with the covariant component vi = γijv
j = ui/(αu

t) = ui/W .

When the 3+1 metric in Eq. 4.9 is applied to the Einstein equations, these equa-
tions are decomposed into evolution and constraint equations [for a full description of these
equations, see, for example, Wilson &Mathews (2003)]. The constraint equations come from
projecting the Einstein equations along the unit normal vector. There is a similar decom-
position in the case of electromagnetism; Maxwell equations are split into time-independent
(divergence) equations that constrain the electric and magnetic fields at an instant time
and time-dependent (curl) equations that determine their evolution from one instant time
to the next. For both gravitation and electromagnetism, if the constraint equations are
satisfied at some initial time, the evolution equations guarantee that they will be satisfied
at subsequent times. However, the decomposition of Einstein equations is not unique, thus
various 3+1 methods have been developed (e.g., Font 2008). Nevertheless, all those methods
should produce the same result. In many cases, the evolution equations are replaced with
an evolution system which is specialized to the matter being described. This is also the case
of GRMHD, where the evolution equations of GRMHD are based on the 3+1 decomposition
of the energy-momentum tensor (fluid plus electromagnetic field tensor).

4.2.2 3+1 decomposition of the energy-momentum tensor

The energy-momentum tensor can be decomposed into quantities which refer to
the slice alone. These quantities, which are measured by an Eulerean observer, are:

• the total energy density,

E = T µνnµnν , (4.16)

which follows from the fact that the 4-velocity of the Eulerean observer is the unit
normal vector n;

• the momentum density in the λ direction, tangent to Σ(t),

Sλ = −T µνnµγ
ν
λ ; and (4.17)

• the spatial stress tensor,

Sλσ = Tµνγ
µ
λγ

ν
σ. (4.18)

13In the Eulerean reference frame, the coordinates of the points P , Q, and R read: P (t′, x′i), Q(t′ +
αdt, x′i), and R(t′ + αdt, x′i + βidt+ dxi).
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4.2.3 Perfect fluid approximation

A perfect fluid is defined as having no forces between the particles and no heat
conduction or viscosity in the fluid rest frame. In this approximation, the matter is char-
acterized by various thermodynamic quantities, such as the rest-mass density ρ (ρ = nmB,
where n is the baryon number density and mB is the average rest mass of the baryons),
the specific internal energy ε, the average pressure p, and the average 4-velocity of the fluid
u. These quantities are defined in the rest frame of a fluid element at a point xµ. It is
convenient to use the relativistic specific enthalpy defined as

h = 1 + ε+
p

ρ
. (4.19)

With these ingredients, the energy-momentum tensor for a perfect fluid can be
written as

T µνfluid = ρhuµuν + pgµν . (4.20)

The energy-momentum tensor must be boosted from the fluid frame into the Eulerean frame
when the Einstein equations are written in the Eulerean frame.

If the fluid is assumed to be in local thermodynamic equilibrium, one can write an
equation of state of the form p = p(ρ, ε), which relates the pressure with ρ and ε.

In the case of a magnetized fluid, the energy-momentum tensor is obtained by
adding the electromagnetic tensor to the fluid tensor (elaborated on later in this chapter).

4.2.4 Evolution of the electromagnetic fields

In this section, the evolution equation of the magnetic field is derived. This equa-
tion enters into the GRMHD conservation system of equations. In general relativity, the
electromagnetic field is described by the Faraday electromagnetic tensor Fµν . This tensor
is expressed by the electric field Eµ and the magnetic field Bµ, which are measured by an
Eulerean observer (having the 4-velocity nµ), as

Fµν = nµEν − nνEµ + nλǫ
λµνσBσ, (4.21)

where ǫλµνσ is the antisymmetric Levi-Civita tensor density.14 Both electric and magnetic
fields are orthogonal to nµ (Eµnµ = Bµnµ = 0), and they are given by

Eµ = Fµνnν and Bµ =
1

2
ǫµνκλnνFκλ = nν

∗F νµ, (4.22)

where the quantity

∗Fµν =
1

2
ǫµνκλFκλ (4.23)

denotes the dual of electromagnetic field tensor.

14The components of the Levi-Civita tensor density are the same in any coordinate system. Antisymmetry
means that the tensor changes sign if any two indices are exchanged; e.g., ǫλµνσ = −ǫµλνσ. This tensor
density has the values +1 for an even permutation of the reference sequence, −1 for an odd permutation
of the reference sequence, and 0 if any two indices are the same. One can form an ordinary contravariant
tensor by multiplying ǫλµνσ by |g|1/2, where g = det gµν is the determinant of 4-metric (Weinberg 1972).
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In ideal MHD, the fluid is considered to be a perfect conductor; that is, the fluid
has infinite conductivity, and in order to keep the current finite, the conduction current
must vanish,

Fµνuν = 0, (4.24)

which means that the electric field in the rest frame of the fluid is zero. The electric and
magnetic fields measured by a comoving observer are

Êµ = Fµνuν and B̂µ = uν
∗F νµ. (4.25)

The ideal MHD condition (Eq. 4.24) implies that the electric field measured by a comoving
observer becomes zero (Êµ = 0). Moreover, B̂µ is orthogonal to uµ, i.e. uµB̂

µ = 0. Both
the electromagnetic tensor and its dual can be expressed in terms of B̂µ as

Fµν = uλǫ
λµνσB̂σ and ∗Fµν = B̂µuν − B̂νuµ. (4.26)

Using the spatial metric in Eq. 4.2 and the fact that B̂µ is orthogonal to uµ, we have
γµν B̂ν = B̂µ . From Eqs. 4.22 and 4.26, one can obtain

γµνB
ν = −nλu

λB̂µ. (4.27)

Therefore, the magnetic field measured by a comoving observer becomes

B̂µ = −γµνBν

nνuν
, (4.28)

whose time and space components are given by

B̂t =
WviB

i

α
and B̂i =

Bi + αB̂tui

αut
. (4.29)

The evolution equation for the magnetic field can be obtained in conservation form
from the dual of Maxwell’s equation,

Fµν,λ + Fλµ,ν + Fνλ,µ = 0, (4.30)

which in a coordinate basis reads

∗Fµν
;ν =

1
√

|g|
∂

∂xν
(
√

|g| ∗Fµν) = 0. (4.31)

Since
√

|g| = α
√
γ and ∗F it = Bi/α, the time component of Eq. 4.31 gives the divergence-

free magnetic field constraint,
1
√

|g|
∂

∂xi
(
√
γ Bi) = 0, (4.32)

whereas the spatial components give the induction equation,

1
√

|g|
∂

∂t
(
√
γ Bi) +

1
√

|g|
∂

∂xi
[
√

|g| (ujB̂i − uiB̂j)] = 0. (4.33)

From the spatial part of the comoving magnetic field in Eq. 4.29, one can obtain

ujB̂i − uiB̂j = (ṽjBi − ṽiBj), (4.34)
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where ṽi = vi − βi/α. Therefore, the induction equation can be written as

1
√

|g|
∂

∂t
(
√
γ Bi) +

1
√

|g|
∂

∂xi
[
√

|g| (ṽjBi − ṽiBj)] = 0 . (4.35)

Generally, the electromagnetic tensor reads

T µνEM =
1

4π

(

FµλF ν
λ − 1

4
gµνFαβF

αβ

)

, (4.36)

which in the ideal MHD condition, can be simply expressed in terms of the magnetic 4-vector
bµ = B̂µ/

√
4π as

T µνEM = b2uµuν +
b2

2
gµν − bµbν , (4.37)

where b2 = bµbµ.

4.2.5 Conservation Equations

The evolution equations for matter can be expressed as the local conservation laws
for particle number and energy-momentum. The particle number conservation equation is
written as

(ρuµ);µ = 0, (4.38)

where ρ is the rest-mass density of the fluid and uµ is its 4-velocity. Equation 4.38 can be
written in a coordinate basis as

1
√

|g|
∂

∂xµ
(
√

|g| ρuµ) = 0. (4.39)

On the other hand, the energy-momentum conservation equation is given by T µν;ν =
0, which in a coordinate basis can be written as

1
√

|g|
∂

∂xµ
(
√

|g|T µν) = 0, (4.40)

and
1
√

|g|
∂

∂t
(
√

|g|T tν) + 1
√

|g|
∂

∂xi
(
√

|g|T iν)− ΓνµσT
µσ = 0, (4.41)

where Γνµσ is the Christoffel symbol.

For a magnetized fluid, the energy-momentum tensor is obtained by adding the
energy-momentum tensor of the fluid to that of the electromagnetic field,

T µν = T µνfluid + T µνEM. (4.42)

Now, if we consider Eqs. 4.20 and 4.37, the total energy-momentum tensor be-
comes

T µν = (ρh+ b2)uµuν +

(

p+
b2

2

)

gµν − bµbν . (4.43)
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In the case of 3+1 formalism, one can define the following conserved variables:15

D = −Jµnµ = −ρuµnµ = ρW ,

Sj = αT tj = (ρh+ b2)W 2vj ,

E = T µνnµnν = α2T tt = (ρh+ b2)W 2 −
(

p+
b2

2

)

, (4.44)

where Jµ = ρuµ denotes the rest-mass flux. For numerical calculations, it is useful to
include a derived conserved variable,

τ = E −D , (4.45)

instead of the total energy density E.

Using the conserved variables, one can obtain the conservation laws of

• the baryon number conservation,

1
√

|g|
∂

∂t
(
√
γ D) +

1
√

|g|
∂

∂xi
(
√

|g|Dṽi) = 0 ; (4.46)

• the momentum equation, from the spatial components of the energy-momentum con-
servation equation,

1
√

|g|
∂

∂t
(
√
γ Sj) +

1
√

|g|
∂

∂xi
(
√

|g|T ij ) = T µν
(

∂gνj
∂xµ

− Γσνµgσj

)

; (4.47)

• the energy equation, from the time component of the energy-momentum conservation
equation,

1
√

|g|
∂

∂t
(
√
γ τ) +

1
√

|g|
∂

∂xi
[
√

|g| (αT ti −Dṽi)] = α

(

T µt
∂ lnα

∂xµ
− T µνΓtνµ

)

. (4.48)

To form the GRMHD system of equations, the equations 4.46, 4.47, and 4.48 are
augmented by the induction equation (Eq. 4.35). To complete the system of equations, one
needs to specify the fluid equation of state (EOS); a Γ-law EOS is assumed next, thus

p = (Γ− 1)ρu, (4.49)

where Γ is the adiabatic index.
In a compact form, the evolution equations of GRMHD can be written as

1
√

|g|
∂(
√
γU)

∂t
+

1
√

|g|
∂(
√

|g|F)
∂xi

= S , (4.50)

15The derivation of the conserved variables as well as the conservation equations are provided in Appendix
2.
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where the quantities U (conserved variables), F (fluxes), and S (source terms) are

U =









D
Sj
τ
Bi









, (4.51)

F =









Dṽi

T ij
αT ti −Dṽi

ṽiBj − ṽjBi









, (4.52)

and

S =











0

T µν
(

∂gνj
∂xµ − Γσνµgσj

)

α
(

T µt ∂ lnα∂xµ − T µνΓtνµ
)

0i











, (4.53)

where 0i ≡ (0, 0, 0)T.

The GRMHD system of equations (Eq. 4.50) is a set of eight non-linear hyperbolic
partial differential equations (PDEs) written in conserved form.16 In general, the hyperbolic
equations represent wave propagation. The main difficulty to be encountering when solving
non-linear hyperbolic PDEs is the spontaneous development of discontinuous solutions even
for smooth initial data (e.g, when a supersonic flow has shock waves). Numerical methods
in conservation form are likely to be employed in GRMHD for the following reason: the
conservation form is preserved during the integration of the equations and assures the cor-
rect jump conditions across discontinuities (but only if there are no phase transitions, like
in an ionization front). The behavior of the conservation form is based on the theorem by
Lax & Wendroff (1960), which states that if the numerical solution converges, it converges
to a weak solution (solution with shocks and contact discontinuities) of the original system
of equations. However, weak solutions are not uniquely determined by their initial values,
so in order to find a physically admissible solution an additional condition must be satisfied
such as the entropy condition.17 A wide variety of different methods have been employed
to obtain numerical solutions to the systems of non-linear hyperbolic PDEs. Among them,
we mention two classes of shock-capturing methods: (i) high-resolution shock-capturing
schemes which are based on Riemann solvers18 and make use of the characteristic informa-
tion of the system, so that the schemes take into account the direction of signal propagation
(or wave propagation), e.g., McKinney & Gammie (2004), Mizuno et al. (2006a); and (ii)
high-order methods which do not explicitly use the information on wave propagation. The

16Strict conservation law is possible only in flat space-time. For Minkowski metric, the source term S

vanishes itself.

17The entropy of any fluid element should increase when running through a discontinuity.

18An exact (and an approximate) solution to the Riemann problem on the cell interfaces describes the
evolution of an initial discontinuity at these interfaces which is then used to evaluate the numerical fluxes.
To compute the fluxes, one must differ between the left-going and right-going waves with respect to the cell
interface, which can be regarded as an upwind procedure. For details on Riemann solvers see, e.g., Toro
(2009).
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methods of the first class are said to be upwind-based methods.19 The schemes of the second
class are based on either high-order central TVD20 schemes as the Lax-Wendroff scheme
with an additional diffusion term (e.g., Koide et al. 1999), or on non-oscillatory high-order
extensions of first-order central schemes as the Lax-Friedrichs scheme (see Font 2008, and
reference therein).

Any conserved GRMHD scheme updates the vector of conserved variables (U,
Eq. 4.51), which contains eight variables (D,Sj , τ , and Bi). However, to model the flow the
“primitive” (or physical) variables (density, pressure, and velocity components of the flow)
must be known. There is no analytic solution to the problem of deriving primitive variables
from the conserved variables, therefore root-finding algorithms must be employed.

The wave property of the GRMHD equations is intimately related to the con-
struction, analysis, and implementation of the corresponding discrete approximations, al-
though the eigenstructure of the problem, i.e., the characteristic decomposition of the flux
F, may not be explicitly known. This approach is also specific to Davis’ simplified total-
variation-diminishing (STVD) method, which is employed by Koide et al. for their GRMHD
simulation code (Section 4.3.3).

4.3 General relativistic magnetohydrodynamics simulation
code (Koide et al.)

As we already mentioned, the first GRMHD code for simulating jet formation from
accreting BHs was developed by Koide et al. (1999) using the conservation form of the ideal
GRMHD equations on fixed geometry (either Schwarzschild or Kerr). The code can be
applied to the study of jets propagation through a magnetized corona, as well as the early
stages of jet formation from (non-)rotating BHs. The code is very stable when jets with a
Lorentz factor less than 10 are simulated.

Using Koide et al. simulation code, we present numerical results of jet formation
from rapidly-spinning BHs, a∗ = 0.95, focusing on the effect of the BH rotation when sim-
plified microphysics is used; i.e., processes such as neutrino cooling and photodisintegration
are ignored.

4.3.1 Metric and coordinates

As the accreting mass is sufficiently small on the simulation timescale, the space-
time metric does not evolve with time. The space-time is described by the metric tensor
gµν , which is expressed in Boyer-Lindquist coordinates (x0, x1, x2, x3) = (ct, r, θ, φ), with a
modified tortoise coordinate in the radial direction, x = ln(r/rS). This coordinate transfor-
mation compensates to some degree the Boyer-Lindquist coordinate singularity at the BH
horizon by increasing the numerical spatial resolution as one approaches the BH horizon.
The line element can be written as

ds2 = gµνdx
µdxν = −h20(cdt)

2 +

3
∑

i=1

[h2i (dx
i)2 − 2h2iωidtdx

i], (4.54)

19The term upwind schemes, as well as central (or symmetric) schemes, refers to spatial discretization.

20The order of accuracy for time-accurate calculations refers to both the time and spatial discretization.
Once again, TVD stands for total variation diminishing, and it will be discussed later.
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where

g00 = −h20 , gii = h2i , gi0 = g0i = −h2iωi/c. (4.55)

Using the definition of the lapse function α and the shift velocity βi as

α =

√

√

√

√h20 +
3
∑

i=1

(

hiωi
c

)2

, (4.56)

βi =
hiωi
c α

, (4.57)

the line element becomes

ds2 = −α2(cdt)2 +
3
∑

i=1

(hidx
i − cβαdt)2. (4.58)

The contravariant metric components are then

g00 = − 1

α2
, gi0 = g0i = − 1

α2

ωi
c
, gij =

1

hihj
(δij − βiβj), (4.59)

where δij is the Kronecker’s δ symbol.

In the Boyer-Lindquist coordinates, the metric of Kerr space-time is written as

h0 =

√

1− 2rgr

Σ
, h1 =

√

Σ

∆
, h2 =

√
Σ, h3 =

√

A

Σ
sin θ, (4.60)

ω1 = ω2 = 0, ω3 =
2cr2ga∗r

A
, (4.61)

where ∆ = r2 − 2rgr + (a∗rg)
2 cos2 θ, Σ = r2 + (a∗rg)

2 cos2 θ, and A = {r2 + (a∗rg)
2}2 −

∆(a∗rg)
2 sin2 θ are the metric functions (Section 1.3). The lapse function is α =

√

∆Σ/A

and the radius of the event horizon is rH = rg(1 +
√

1− a2∗).

4.3.2 General relativistic magnetohydrodynamics equations in zero an-
gular momentum observer’s frame

Now, using the notations that were introduced in the previous section, the GRMHD
equations (Eq. 4.50) in the fiducial observer (FIDO) frame, which once again is a locally
inertial frame, are rewritten following Koide (2003) and Koide et al. (2006). Once again,
FIDOs are the ZAMOs in the case of the Kerr metric. Therefore, the GRMHD equations
are expressed in a form based on fluid and field quantities which are measured by ZAMOs
directly, the ZAMO-measured magnetic field and fluid velocity, and the mass density and
pressure as seen in the comoving frame.21

21An observer in the comoving frame rides on the fluid and sees events locally. Since any quantity observed
in this frame is by nature a fluid characteristic, it is usually called proper value.
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The conserved variables22 (Eq. 4.44) are defined as a function of the variables
measured in the ZAMO’s frame (denoted with hat):

D = γρ ,

P̂ i =
1

c2
hγ2v̂i +

1

c2

(

Ê× B̂
)

i
,

ǫ = hγ2 − p−Dc2 +
B̂2

2
+

Ê2

2c2
, (4.62)

where P̂ i is the momentum density and ǫ is the total energy density. The boosting Lorentz
factor from the coordinate frame to the ZAMO’s frame is γ̂ ≡ γ = [1 −

∑3
i=1(v̂

i/c)2]−1/2,
where v̂i is the three-velocity and the relativistic enthalpy density is h = ρc2+Γp/(Γ−1) =
eint+p. The electric charge density is ρ̂e ≡ ρe = c−1αJ0, where J0 is the time component of
the electric four-current density, Jµ = (J0, J1, J2, J3). The total energy-momentum tensor
(fluid + electromagnetic field) is

T̂ ij = pδij +
h

c2
γ2v̂iv̂j +

(

B̂2

2
+

Ê2

2c

)

δij − B̂iB̂j −
ÊiÊj
c2

, (4.63)

where δij is the Kronecker symbol.
With these ingredients, the GRMHD equations in ZAMO’s frame become

∂D

∂t
= − 1

h1h2h3

∑

i

∂

∂xi

[

αh1h2h3
hi

D
(

v̂i + cβi
)

]

, (4.64)

∂P̂ i

∂t
= − 1

h1h2h3

∑

j

∂

∂xj

[

αh1h2h3
hj

(

T̂ ij + cβjP̂ i
)

]

−
(

ǫ+Dc2
) 1

hi

∂α

∂xi

+ αf icurv −
∑

j

P̂ jσji +
∑

cαβj
(

GijP̂
i −GjiP̂

j
)

, (4.65)

∂ǫ

∂t
= − 1

h1h2h3

∑

i

∂

∂xi

[

αh1h2h3
hi

c2
(

P̂ i −Dv̂i +
βi

c
ǫ

)]

−
∑

i

c2P̂ i 1

hi

∂α

∂xi
−
∑

i,j

T̂ ijσij −
∑

i

cαβif icurv , (4.66)

∂B̂i

∂t
= − hi

h1h2h3

∑

j,k

ǫijk
∂

∂xj



αhk



Êk −
∑

l,m

ǫklmcβlB̂m







 . (4.67)

The system of equations consists of eight conservation laws. To them, the constraint equa-
tion for the magnetic field must be added,

∑

i

1

h1h2h3

∂

∂xi

(

h1h2h3
hi

B̂i

)

= 0. (4.68)

22Here, we use the notations by Koide (2003) for the conserved variables.
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The electric field, the electric charge density, and the electric current density are
calculated using the following expressions:

Êi = −
∑

j,k

ǫijkv̂
jB̂k, (4.69)

ρe =
∑

i

1

c2
1

h1h2h3

∂

∂xi

(

h1h2h3
hi

Êi

)

, (4.70)

α
(

Ĵ i + ρecβ
i
)

+
1

c2
∂Êi
∂t

=
∑

j,k

hi
h1h2h3

ǫijk
∂

∂xj



αhk



B̂k +
∑

l,m

ǫklmβ
l Êk
c







 , (4.71)

where f icurv ≡∑i(Gij T̂
ij −GjiT̂

ji), Gij ≡ − 1
hihj

∂hi
∂xj

, and σij ≡ 1
hi

∂
∂xj

(cαβi).

4.3.3 Description of the code

The scheme employed by Koide et al. to solve the system of GRMHD equations
belongs to the class of high-order central schemes. It is a two-step Lax-Wendroff scheme
with a TVD diffusion term. The algorithm, which is known as the simplified total-variation-
diminishing (STVD) method, was developed by Davis (1984) as a shock capturing scheme
for hydrodynamics, and adapted to jet formation from accreting BHs by Koide et al. For
the STVD method to work, only the maximum speed of the waves is required, no Jacobian
and characteristic decompositions are needed. For this reason, the STVD method is simple
and less expensive, especially when it is applied to multi-dimensional problems. More on
the advantages as well as the disadvantages of applying the STVD method see towards the
end of the chapter.

Coordinate system

The code can be used in a wide variety of coordinate systems: (i) Cartesian coor-
dinates; (ii) cylindrical coordinates (also in the general relativistic case); (iii) spherical co-
ordinates; (iv) Boyer-Lindquist coordinates for Schwarzschild BH; and (v) Boyer-Lindquist
coordinates for Kerr BH. Evidently, the last two coordinate systems are specific to jet
formation from accreting BHs. The code written in Kerr-Schild coordinates is work in
progress.

Discretization of the GRMHD equations and the STVD method

The GRMHD system of equations (Eq. 4.50) is a set of non-linear hyperbolic PDEs
written in conserved form. Let us consider the conservation equation in one dimension,

∂u(x, t)

∂t
+

∂f(u, t)

∂x
= 0, (4.72)

where u and f are the state and flux vectors, and let unj be the numerical approximation
of u(x, t) at x = j∆x and t = n∆t. The subscript index j runs in the spatial direction, the
superscript index n runs for time, ∆x is the grid size, and ∆t is the time step (see Fig. 4.4).
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Any numerical solution to systems of PDEs is based on discretization of the system.
For a finite-difference discretization, one must replace the derivatives with approximate, al-
gebraic difference quotients, which are expressed in terms of the state variables at two or
more grid points, unj . To build a numerical scheme, it is necessarily to construct the numeri-
cal fluxes (starting from the grid point values unj ), which must be consistent approximations
to the physical fluxes f across the cell interfaces. Since the problem is time dependent, a
time-marching procedure must be used to advance the solution from one time level to the
next, such that the solution at a new time can be obtained from the approximations in the
previous time steps. To march the solution in time, Koide et al. used a variation of the
two-step Lax-Wendroff scheme, which is second-order accurate (in space and time).

Numerical methods are devised with specific properties of accuracy, efficiency, sta-
bility (in particular, lack of spurious oscillations), etc. Non-linear hyperbolic equations
admit discontinuous solutions (called weak solutions), which can arise spontaneously after
a finite time even for smooth initial data. Finite differencing across shock and contact
discontinuities will inevitably cause oscillations, which can lead to inaccuracies, spurious
physical effects, and numerical instabilities. Therefore, numerical schemes must be able to
capture any discontinuity that might arise in the solution. By means of difference equations,
finite-difference solutions represent, in fact, inexact solutions to the governing PDEs, but
exact solutions to the slightly modified PDEs. Such equations are called modified equa-
tions, and they contain second, third, or higher-order derivatives of the state variables.
For first-order solutions (or monotone schemes), the truncation error contains second-order
derivatives in the state variables which act as dissipative terms. These dissipative terms
are responsable for producing smooth numerical solutions free of the spurious oscillations.
Therefore, the dissipation is needed for the stability of the scheme, but at the same time
one may wish to get rid of this dissipation for obtaining good quality solutions. Unfor-
tunately, the first-order schemes usually create too much dissipation which smooth the
solution excessively, and cannot produce accurate solutions for complex flow problems. In
contrast, higher-order accurate schemes have too little numerical dissipation, and many of
them have third derivatives in the modified equation which cause numerical dispersion. The
numerical dispersion produces a distortion of the propagation of different phases of a wave,
which shows up as wiggles in front of and behind the wave (e.g., Anderson 1995). The
error can propagate to smooth regions of the flow and corrupt the accuracy of the solution
on a global level. The combined effect of dissipation and dispersion is often referred to
as diffusion. Whereas the first-order methods produce physically plausible solutions with
poor accuracy, the higher-order methods, on the other hand, may produce solutions in the
smooth regions with non-physical fluctuations caused by discontinuities (e.g., reflection at
boundaries). A way out of this situation was to design higher-order shock-capturing meth-
ods, which are higher-order in the smooth part of the flow with numerical dissipation only
in the neighborhood of a discontinuity. Higher-order TVD methods are based on non-linear
dissipation terms, which means that the diffusion coefficient depends on the local behavior
of the solution, so that the amount of dissipation varies from one grid point to another and
usually consists of automatic feedback mechanism without adjustable parameters.23 These

23For classical schemes, the dissipation term (also called artificial viscosity) is either linear, such that the
same amount is applied at all grid points, or contain of adjustable parameters (see Yee 1989, and reference
therein). In this case, it is difficult to find an appropriate form that introduces just enough dissipation to
preserve monotonicity without causing unnecessary smearing of the solutions. For this reason, it is usually
not applied to problems with very strong shocks. Another difficulty is the reflection of weak waves from the
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methods often use limiters which impose constraints on the gradient of the state variables
(slope limiters) or on the flux function (flux limiters).

The class of TVD methods originated in a series of papers by Harten (1983, 1984),
Davis (1984), Roe (1984), Sweby (1984), Osher & Chakravarthy (1984), Yee (1985), which
are based on the modified flux approach. Although Harten (1983) has introduced the
concept of TVD to characterize oscillation-free systems, Harten’s method has little in com-
mon with other TVD methods (Laney 1998). The stability condition for the flux-limited
method design by Harten is, in fact, a stronger stability condition than the TVD condi-
tion. The TVD condition is a non-linear stability condition, so that the total variation of
a discrete solution is controlled in a non-linear way in order to prevent the appearance of
any new extremum. The total variation of the solution, defined as the summed differences
TV (un) =

∑

j |unj+1 − unj |, is a measure of the overall amount of oscillations in solution.
This can be seen in the equivalent definition TV (un) = 2(

∑

j umax −
∑

j umin), where each
maximum is counted positively twice and each minimum is counted negatively twice. The
formation of spurious oscillations can contribute with new maxima and minima, so that
the total variation will increase. So, the TVD condition specifies that, in order to have
oscillation-free solutions, the total variation should not grow for any initial condition. It
reads

∑

j

|un+1
j+1 − un+1

j | 6
∑

j

|unj+1 − unj |. (4.73)

The smaller the decrease is in the total variation, the smaller the error is. Nevertheless,
the term “TVD” refers to a wide range of modern methods, such as the already mentioned
flux-limited methods, and do not necessarily focus on the TVD stability condition, but
usually on stronger non-linear stability conditions. These methods were developed after the
invention of the term TVD in 1983 (Laney 1998). For more hints on the TVD methods see,
for instance, van Leer (2006).

Taking the two-step Lax-Wendroff scheme as an example, the flow tends to be
discontinuous at the time-centered cell interfaces, posing particular problems to the com-
putation of the numerical fluxes. These can be avoided using a variant of the two-step Lax-
Wendroff scheme such as the MacCormack (1971) method, which is a two-step predictor-
corrector algorithm. The MacCormack method reduces to the original Lax-Wendroff scheme
in the linear case f(u) = au, with a a constant matrix. Although the MacCormack method
suffers as well from oscillatory behavior of the solution near discontinuities and points of
extrema, the oscillations can be suppressed when using a TVD method. The MacCormack
method can be easily implemented for non-linear problems since it does not require the
calculation of the Jacobian matrix of f , ∂f/∂u.

The STVD method developed by Davis (1984) for strong shocks is a variation
of the two-step Lax-Wendroff scheme with an additional non-linear term, using
a flux-limited approach (Eq. 4.78). Therefore, the solution is free of spurious oscillations
without losing the scheme accuracy in other regions of the flow. The time step is constrained
by the Courant-Friedrichs-Lewy [CFL, Courant et al. (1928)] stability condition c∆t/∆x <
1. [See also Courant & Friedrichs (1977) and Richtmyer & Morton (1994)]. A description
of the STVD scheme can be also find in Koide et al. 1999 (Appendix D). The following is
a presentation of the STVD scheme.

boundary of the simulation box, which then get strengthened on axis.
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Figure 4.4: Representation of the numer-
ical grid.
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Let us consider the conservation equation in one dimension (Eq. 4.72), and let
κ = ∆t/∆x be the grid ratio (Fig. 4.4). The procedure of updating one time step is
based on a sequence of two sub-steps in which the spatial derivatives are taken in alternate
directions (backwards and forward, respectively),

u
(1)
j = unj − κ

(

fnj − fnj−1

)

,

u
(2)
j =

1

2

[

unj + u
(1)
j − κ

(

f
(1)
j+1 − f

(1)
j

)]

,
(4.74)

so that the updated solution is given by

un+1
j = u

(2)
j +Dn

j+1/2 −Dn
j−1/2, (4.75)

where the TVD correction term is added to the last step to eliminate oscillations. The TVD
correction term is given by

Dn
j+1/2 =

[

K̄(ν, r+j ) + K̄(ν, r+j+1)
]

(

unj+1 − unj
)

, (4.76)

with ν = maxm(|cm|)κ, where cm is the speed of each wave. So, the scheme is TVD under
the CFL stability condition. The coefficients in equation 4.76 are given by

K̄±(ν, r±j ) = 0.5C(ν)
[

1− φ(r±)
]

, (4.77)

where φ is the flux limiter function, which is defined as

φ(r) =

{

min(2r, 1) for r > 0,

0 for r 6 0,
(4.78)

and

C(ν) =

{

ν(1− ν) for ν 6 0.5,

0.25 for ν > 0.5,
(4.79)

r+j =
(∆unj−1/2,∆unj+1/2)

(∆unj+1/2,∆unj+1/2)
, (4.80)

r−j =
(∆unj−1/2,∆unj+1/2)

(∆unj−1/2,∆unj−1/2)
, (4.81)
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where (.,.) denotes the inner product in Rm, and ∆unj+1/2 = unj+1 − unj .

Koide et al. extended the STVD method to a 2-D scheme through the use of
the splitting method. This procedure introduces a weak checkerboard numerical instability,
which is avoid when the two coefficients K̄+ and K̄− are combined into a single coefficient
K̄ defined as

K̄(ν, r+, r−) = 0.5C(ν)
[

1− φ(r+, r−)
]

, (4.82)

with

φ(r+, r−) = max[0,min(2r+, r−, 1),min(2r−, r+, 1)]. (4.83)

Method to keep the magnetic field divergence-free

Regarding the evolution of the magnetic field, the induction equation is already
part of the GRMHD equation system (Eq. 4.51). The number of the GRMHD equations is
reduced from eight to five when the components of the magnetic field are obtained analyt-
ically. Here, the magnetic field is initially uniform, as seen by observers at infinity, being
represented by Wald’s solution (1974). However, the divergence free condition must be
maintained throughout the whole computation. Koide et al. uses the so-called magnetic-
field cleaning method, a procedure through which the components of the magnetic field are
re-defined at each time step.

Method to recover the primitive variables from the conserved variables

The quantities that are updated during the integration of GRMHD equations are
the conserved variables. However, one must know the primitive variables in order to describe
the flow, and so the primitive variables must be computed as a function of conserved vari-
ables at each time step. All conservation GRMHD schemes require methods to transform
from primitive variables to conserved variables and vice-versa. The direct transformation
(primitive variables → conserved variables) is easily obtained using the set of equations 4.62.
Instead, the inverse transformation (conserved variables → primitive variables) usually in-
volve the numerical solutions of non-linear algebraic equations. There is more than one way
to do this. The method which is used by Koide et al. to recover the primitive variables from
the conserved variables solves numerically two non-linear, simultaneous algebraic equations
with unknown variables x ≡ γ − 1 and y ≡ γ(v ·B)/c2,

x (x+ 2)
[

ΓRx2 + (2ΓR− d)x+ ΓR− d+ u+ Γ
2 y

2
]2

=
(

Γx2 + 2Γx+ 1
)2 [

f2(x+ 1)2 + 2σy + 2σxy + b2y2
]

and (4.84)

[

Γ
(

R− b2
)

x2 +
(

2ΓR − 2Γb2 − d
)

x+ ΓR− d+ u− b2 + Γ
2 y

2
]

y

= σ (x+ 1)
(

Γx2 + 2Γx+ 1
)

, (4.85)

where R = D + ǫ/c2, d = (Γ − 1)D, u = (1 − Γ/2)B̂2/c2, f = P̂/c, b = B̂/c, and
σ = B̂ · P̂/c2. Equations 4.84 and 4.85 are solved at each cell using a two-variable Newton-
Raphson iteration method.



Chapter 4: General Relativistic Magnetohydrodynamics Simulation of Jet Formation from

Kerr Black Holes 93

Validation tests

The code is checked by undergoing various test calculations: (i) the steady state
infall of a finite pressure gas into the BH (Bondi flow), which is approximately in free fall
and presents a transonic solution; (ii) the transonic solution with a shock; (iii) the Keplerian
motion in a free-fall corona; (iv) the sub-Keplerian motion in a free-fall corona; and (v) the
Keplerian motion in a hydrostatic corona (Koide et al. 1999).

Transonic solution for a free-fall flow

Following Koide et al. (1999), a steady state infall of a finite pressure gas onto the
BH (which, in approximation, is a free-fall flow) can be described by the solution of Bondi
& Hoyle (1944). The gas inflow is supposed to be spherical symmetric with a polytropic
equation of state, p ∝ ρΓ. The gas equation of motion can be written as a function of
two constant of motion, F (a sort of adiabatic invariant) and respectively H (∼ specific
enthalpy):

F =

(

H

αγ
− 1

)

(

αr2γ
v

c

)Γ−1
, (4.86)

where, once again, α is the lapse function and γ is the Lorentz factor, and

H = α0γ0

(

1 +
Γ

Γ− 1

p0
ρ0c2

)

, F =
Γ

Γ− 1

p0
ρ0c2

(

α0r
2
0γ0

v0
c

)Γ−1
, (4.87)

where α0, γ0, p0, ρ0, and v0 are evaluated at an arbitrary point r = r0.

For a given H and Γ, the equation of motion F (v, r) admits a transonic solution,
which in a radial distribution of the flow velocity passes through the sonic point from the
subsonic to supersonic regions. The sonic point is obtained by solving

∂F

∂γ
= 0,

∂F

∂α
= 0. (4.88)

From the first equation, one obtains the sonic flow condition: v = vs = (Γp/h)1/2c, where
h, once again, denotes the relativistic enthalpy, h ≡ ρc2 + Γp/(Γ − 1). When solving for
both equation, one can obtain the following reduced equation

(

H2 − 1
)

x3 +

(

9

4
− 2gH2

)

x2 +

(

H2g2 − 33

42

)

x+

(

3

4

)3

= 0, (4.89)

where x ≡ r/rS and g ≡ (3Γ− 2)/4(Γ− 1). Therefore, the velocity of the flow at a specific
r = x rS is determined by v = vs with α = H(γ−2 + Γ− 2)/[(Γ − 1)γ].

Normalizations

For the thermal, magnetic, and rotational energy, the following non-dimensional
parameters are used:

Eth =
v2s0
v2K0

, Emag =
v2A0

v2K0

, Erot =
v2φ
v2K0

, (4.90)
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where vs0 is the relativistic sound speed,

vs0 = c

√

Γp0
ρ0c2 + Γp0/(Γ− 1)

, (4.91)

vA0 is the Alfvén velocity,

vA0 = c
B0

√

ρ0c2 + Γp0/(Γ− 1) +B2
0

, (4.92)

and vK0 is the relativistic Keplerian velocity,

vK0 =
c

√

2(r0/rS − 1)
, (4.93)

which is reduced to the Newtonian Keplerian velocity, vK = (GM/r)1/2, when the non-
relativistic limit is considered, rS/r ≪ 1. Here, all velocities are evaluated at the innermost
stable orbit by ZAMOs, being denoted with the subscript “0.”

4.4 Simulation of jet formation from a Kerr black hole

We perform 2.5-D simulations of jet formation from a Kerr BH surrounded by a
thin Keplerian accretion disk in the numerical domain 1.5 rS 6 R 6 15rS, 0 6 θ 6 π/2 with
128 × 128 grid points.

4.4.1 Initial conditions

• The simulations are performed for a BH spin parameter of a∗ = 0.95.

• The coordinates are set to: (x1min = 1.5, x1max = 30) in the radial direction, (x2min =
0 rad, x2max = 6.28 rad) for the azimuthal angle, and (x3min = 0.03 rad, x3max = 1.57
rad) for the polar angle.

• A free boundary condition at the inner and outer boundaries is used, so that waves,
fluids, and magnetic fields can pass through freely.

• The numerical computation is scale free (i.e., they do not depend on the BH mass),
where the physical quantities are normalized as follows:

physical quantity normalization unit

time (τS) rS/c
length (r) rS
density (ρ) ρ0
pressure (P ) ρ0c

2

velocity (v) c

magnetic field
√

ρ0c2

For a BH with mass of 3M⊙, the Schwarzschild radius is ∼ 8× 105 cm and the time
unit τS = 3× 10−5 s. The normalization unit of density ρ0 is the initial proper mass
density of the corona density at (r, z) = (3 rS, 0). For a density unit of ρ0 = 1010 g
cm−3, the magnetic field strength unit is 3×1014 G and the pressure unit is P = 1029

dyn cm−2.
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• The coronal plasma is considered to be a transonic free-fall flow with the specific
enthalpy h/ρc2 = 1 + Γp/[(Γ − 1)ρc2] = 1.3, where the specific heat ratio is set to
Γ = 5/3.

• The magnetic field is initially uniform, as seen by observers at infinity, being repre-
sented by Wald’s solution (Wald 1974). The vector potential24 of the Wald solution
is

Aµ =
B0

2
(gµ3 + 2a∗rggµ0), (4.94)

where B0 denotes the magnetic field strength. When the metric is written in Boyer-
Lindquist coordinates, the components of the magnetic field measured by a comoving
observer are (Koide 2003)

B̂r = B0
cos θ√

A

{

∆+
2rgr

[

r4 − (a∗rg)
4
]

Σ2

}

, (4.95)

B̂θ = −B0

√

∆

A
sin θ

{

r − rg +
rg
Σ2

{[

r2 + (a∗rg)
2
]

Σ+ 2(a∗rg)
2
[

r2 − (a∗rg)
2
]

cos2 θ
}

}

.

(4.96)

In the simulations, the magnetic field strength B0 is set by comparing the magnetic
energy density, uB ∼ B2

0 , to the rest-mass energy density of the plasma, um ∼ ρ0c
2.

For a magnetic-field-dominating case (uB > um), the Alfvén velocity is close to the
speed of light (Koide 2003). The magnetic field strength can be written as B0 =
b0
√

ρ0c2, where b0 is a simulation parameter.

• The inner edge of the disk is at r = 3 rS.

• The disk inclination angle with respect to the BH equatorial plane is 15◦.

• In the disk, the azimuthal component of the velocity is assumed to be the relativistic
Keplerian velocity (Eq. 4.93), and the poloidal component vanishes.

• The ratio of the disk mass density to the coronal mass density is 100.

4.4.2 Numerical results

The simulation of jet formation is initiated with a large-scale uniform magnetic
field passing through a thin (Keplerian) accretion disk, with the magnetic field being set
as for b0 = 0.1 and the pressure of plasma around the BH being set to p0 = 1.0ρ0c

2. A
magnetic field with b0 = 0.1 is considered to be weak. (Strong fields are those for which
b0 > 1.)

Times for various snapshots were chosen to cover the entire computed evolution
of the plasma density (Fig. 4.5), the plasma being divided in two parts: (i) the corona
around the BH and (ii) the thin accretion disk that co-rotates with the BH (Fig. 4.5a).
The rest-mass density is represented in a logarithmic scale. The solid line shows the poloidal

24The covariant component of the electromagnetic field tensor can be witten in terms of the four-vector
potential as Fµν = ∂µAν − ∂νAµ, where Aµ = (Φe, A

1, A2, A3) is the four-vector potential (Φe is the electro-
static potential).
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component of the magnetic field (Bp), and the arrow represents the plasma poloidal velocity
as seen in the ZAMO frame normalized to the speed of light (vp/c). As the simulation
evolves, the disk plasma losses angular momentum by the magnetic field torque and falls
toward the BH. Figure 4.5b shows the state at t = 64 tS, when the inner edge of the disk
has rotated 1.6 cycles. The centrifugal force decelerates the disk plasma at r ∼ 3 rS, and
the rapid infall of the plasma in front of this produces a shock inside the disk. The high
presure behind the shock begins to produce the jet (we will refer to this as the formation
of the pressure-driven component of the jet).

The gas pressure and electromagnetic forces that are used to accelerate (or decel-
erate) the plasma are, in the ZAMO frame,

Wgp = −v · ∇(αp), (4.97)

WEM = αv · (E+ J×B) , (4.98)

where α is, once again, the lapse function.

The disk plasma carries the frozen magnetic field with it, causing a considerable
deformation of the field lines. As there is no stable orbit at r 6 3 rS, the accretion disk
continues to fall rapidly toward the BH, enters the ergosphere, and then crosses the horizon.
This is shown by the crowded magnetic field lines near the BH. Figure 4.5c shows the state
at t = 120 tS, by which time the inner edge of the disk has rotated 3 cycles. In the shock
region, the matter is accelerated by the electromagnetic force and the increased gas pressure.
Figure 4.5d shows the final state at t = 186 tS when the inner edge of the disk has rotated
4.7 cycles. The jet is formed almost along the poloidal magnetic field lines. The maximum
total velocity of the jet is ∼ 0.4 c. The time evolution of rest-mass density indicates that
the jet consists of:

1. a gas pressure-driven component and

2. a magnetically-driven component which is developed inside the gas pressure-
driven jet.

The former comes from the region of the disk near the shock r 6 3 rS. The latter comes
on one hand from the extraction of the BH rotational energy in the ergosphere, and on the
other hand from the twisting of the magnetic field far from the BH.

For a better illustration of the distribution of the regions of acceleration (or decel-
eration) of the plasma by gas-pressure and electromagnetic forces, in Figs. 4.6 and 4.7 we
plot these forces in the z direction, (- W z

gp) and W z
EM (color), overlapped with the poloidal

component of the magnetic field (solid line), and in Figs. 4.8 and 4.9 overlapped with the
(negative) toroidal component of the magnetic field, Bφ (solid line). The magnetic field
lines are twisted counter to the accretion disk rotation, therefore we plot −Bφ. In Figs. 4.6
and 4.8, the light green-orange color shows the region were the plasma is accelerated by the
gas-pressure force, whereas the blue color shows the region where the plasma is decelerated.
The gas-presure force accelerates the plasma (orange) in the region of the disk where the
shock is produced, as well as in the region very close to the BH where the coronal plasma is
present. This high gas-pressure force acting on the plasma near the BH reflects the general
relativistic effects which are introduced in the system by the lapse function. The gradient
(in the z direction) of the lapse function increases about one order of magnitude in the re-
gion close to the BH (Fig. 4.10), and then it decreases as one approaches the event horizon.
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Figure 4.5: Time evolution of the jet formation in the magnetosphere of a BH with a spin parameter
a∗ = 0.95. The black circle indicates the BH. Solid line represents the poloidal component of the
magnetic field, Bp. Color shows the logarithm of the proper mass density, ρ. Arrows represent
the plasma poloidal velocity as seen in ZAMO frame normalized to the speed of light, vp/c. The
distance and the time are in units of rS and τS ≡ rS/c, respectively. (a) For the initial conditions,
a coronal plasma distribution, which is given by a transonic solution with Γ = 5/3 and H = 1.3,
and a Keplerian accretion disk around the BH are set up. The density of the disk is 100 greater
than that of the corona. (b) t = 64 tS. The disk plasma falls towards the BH. The magnetic field
lines are twisted through the plasma motion and through the frame dragging effect that occurs in
the BH ergosphere. A shock is produced in the accretion disk at ∼ 3 rS. (c) t = 112 tS. In the shock
region, the matter is accelerated by the Lorentz force and the increased gas pressure, leading to jet
formation. (d) t = 186 tS. The jet is formed almost along the magnetic field lines. The maximum
poloidal velocity of the jet is ∼ 0.4 c.
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Figure 4.6: Magnitude of the gas-pressure force in the z direction, W z
gp (color), that accelerates (or

decelerates) the plasma. Solid line shows the poloidal component of the magnetic field and arrow
represents the plasma poloidal velocity. Light green-orange color shows the region were the plasma
is accelerated, whereas blue color shows the region where the plasma is decelerated.
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Figure 4.7: Magnitude of the electromagnetic force in the z direction that accelerates the plasma,
W z

EM (color). Solid line shows the poloidal component of the magnetic field and arrow represents the
plasma poloidal velocity. The plot shows the magnetically-driven jet component which is associated
with the twisting of the magnetic field (blue region), as well as with the electromagnetic extraction
of the BH rotation energy (red-yellow region close to the BH).
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Figure 4.8: Magnitude of the gas-pressure force in the z direction (color) that accelerates (or de-
celerates) the plasma. Solid line shows the toroidal component of the magnetic field and arrow
represents the plasma poloidal velocity. Light green-orange color shows the region were the plasma
is accelerated, whereas blue color shows the region where the plasma is decelerated.
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Figure 4.9: Magnitude of the electromagnetic force in the z direction that accelerates the plasma,
W z

EM (color). Solid line shows the toroidal component of the magnetic field and arrow represents the
plasma poloidal velocity. The plot shows the magnetically-driven jet component which is associated
with the twisting of the magnetic field (blue region), as well as with the electromagnetic extraction
of the BH rotation energy (red-yellow region close to the BH).
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1.5 rS.

This decrease of the gradient towards a null value close to the BH is explained through
the fact that the lapse function in Boyer-Lindquist coordinates becomes null at the event
horizon. The horizon is located behind our boundary at r = 1.5 rS, therefore we cannot
follow the profile of the gradient of the lapse function very close to the event horizon. (The
horizon is located at rH ∼ 0.65 rS for a BH spin parameter of a∗ = 0.95.) If we compare
Fig. 4.8 with Fig. 4.9, we can observe that the region of electromagnetic acceleration of the
plasma is clearly associated with the twisting of the magnetic field lines far from the BH,
where there is a lack of plasma accelerated by gas pressure.

In Fig. 4.7, the electromagnetic power (color) increases over one order of magni-
tude from the blue to the light red-yellow. The plot shows the electromagnetically-driven
jet component which is associated with the twisting of the magnetic field (blue region in
Figs. 4.7c and d), as well as with the electromagnetic extraction of the BH rotation energy
(red-yellow region close to the BH). In the BH ergosphere, the electromagnetically-driven
jet is accelerated by the magnetic field which is frozen into the accretion disk. Due to the
frame dragging effect, the disk is forced to rotate in the same direction as the BH rotation.
As a result, both the azimuthal component of the magnetic field and the magnetic tension
increase, therefore the plasma is accelerated by the magnetic pressure. Such mechanism of
jet production can be thought of as being a MHD Penrose process that uses the magnetic
fields to extract rotational energy of the BH and eject a collimated outflow from very near
the horizon (Koide et al. 2000a). In contrast, running long-term simulations, Komissarov
(2005) concluded that his results can be explained if the rotational energy is extracted from
the BH through the purely electromagnetic mechanism of Blandford and Znajek (1977).
In the numerical simulations of Komissarov (2005), no regions of negative hydrodynamic
“energy at infinity” are seen inside the ergosphere, and therefore the MHD Penrose process
does not operate. This might suggest that an MHD Penrose process can be observed only
for transient jets. This conclusion might be revised when long-term simulations using the
code of Koide et al. (1998, 2000a) and Koide (2003) will be performed.

We refer to the region of stronger acceleration of the plasma by the gas-pressure
and electromagnetic forces as the jet-forming region. For a better understanding of the
physics of the jet formation mechanism, in Fig. 4.11 we plot the plasma beta, β = pgas/pmag

(color), and the toroidal component of the magnetic field (contour). The blue color shows
the region where the magnetic pressure dominates the gas pressure and light red-yellow-
green shows where the gas pressure is dominant. Initially, the dominant component of the
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Figure 4.11: Time evolution of the plasma beta β = pgas/pmag (color). Solid line shows the toroidal
component of the magnetic field and arrow represents the plasma poloidal velocity. In the region
where the magnetic field is twisted stronger, the magnetic pressure is higher.
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jet is the gas pressure-driven component (blue-green regions in Fig. 4.11b). By the end of
the simulation, t = 186 tS, a magnetically-driven jet component had begun to be developed
inside the pressure-driven component of the jet (dark blue regions in Fig. 4.11d), as the
toroidal component of the magnetic field has increased about five times the initial value
(Fig. 4.12d). This amplification is caused by the shear of the plasma flow in the Boyer-
Lindquist frame due to the frame dragging effect of the rotating BH, and the magnetic field
amplification energy comes from the rotation of the BH itself (Koide et al. 2000a). The
magnetic tension accelerates the plasma by the magnetic pressure. The region of the jet
where the magnetic pressure dominates (Fig. 4.11d) is clearly associated with the region of
electromagnetic extraction of the BH rotation energy (Fig. 4.7d).

To illustrate the physical processes that occur during the simulation, we plot the
x-profiles of various physical quantities first on the surface of z = 0.7 rS, which is close to the
BH equatorial plane, at t = 64 tS (Fig. 4.12). (Here, the coordinate x denotes the coordinate
r.) In Fig. 4.12a, the density profile shows the presence of a shock at r ∼ 3 rS. Behind
the shock, the increased gas pressure dominates the magnetic pressure. This dominance is
also shown in Fig. 4.12f, where the plasma beta in the region r ∈ [1.5, 3.8] rS is over unity.
In this region, the acceleration of the plasma is, therefore, produced by the gas-pressure
force (the dotted line in Fig. 4.12e). The azimuthal components of the velocity and of
the magnetic field are dominant (Figs. 4.12b and d), suggesting that the disk plasma is
also accelerated by centrifugal forces. However, at the shock front, the azimuthal velocity
of the plasma decreases (Fig. 4.12b). The total velocity of the plasma is less that the
Keplerian velocity, being supersonic and super-Alfvénic. Behind the shock the plasma
becomes, however, subsonic and sub-Alfvénic (Fig. 4.12c). Both the sonic and Alfvénic
velocities drop from ∼ 0.3 c to zero at the shock front and then increase to ∼ 0.6 c behind
the shock. The Keplerian velocity in the shock region is ∼ 0.6 c. The jet from the disk has
not been formed yet by the time of t = 64 tS. The plasma accelerated in the z-direction
corresponding to the region r < 3 rS, where the poloidal component of the plasma velocity
increases (Fig. 4.12b), comes from the BH corona. By the end of the simulation, t = 186 tS
(Fig. 4.13), all components of the magnetic field have been increased to values greater than
ten times the initial value of the magnetic field and the total velocity of the plasma has
reached a value close to the Keplerian velocity. Note that the plasma motion is here studied
on a surface close to the BH equatorial plane. The fact that the radial magnetic field is
strongly amplified near the BH reflects the dragging of the magnetic field lines by the disk
plasma.

In Fig. 4.14, we plot the x-profiles of various physical quantities on the surface of
z = 5.15 rS by the end of the simulation (t = 186 tS). By this time, the total velocity of
the plasma flowing in the region r ∈ [4, 9] rS has reached a value greater than the Keplerian
velocity of the disk (Fig. 4.14c). On the other hand, the plasma in the very same region has
a positive component of the velocity in the z direction (Fig. 4.14b), therefore the disk and
coronal plasma is likely to flow out in the z direction and form a jet. The plasma is, on one
hand, decelerated by the gas-pressure force (see the corresponding blue-green region in Fig.
4.6) and, on the other hand, accelerated by the electromagnetic force (see the corresponding
orange-blue region in Fig. 4.7), the latter being stronger though (see also Fig. 4.14e).

To show the structure of the jet, we plot the z-profiles of various physical quantities
on the surface of x = 4.73 rS at t = 186 tS which corresponds to the maximum value of the
plasma velocity (Fig. 4.15). On this surface, the magnetic pressure dominates the gas
pressure up to about z = 10 rS (Figs. 4.15a and f). The dominant component of the
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Figure 4.12: The x-profiles of various physical quantities on the surface of z = 0.7 rS at t = 64 tS,
the time at which the shock in the disk starts to be developed. (a) Density ρ (solid line), gas
pressure pgas (dashed line), and magnetic pressure pmag (dot-dashed line). (b) Components of the
plasma velocity, vr (solid line), vz (doted line), vφ (dashed line), and vp (3-dot-dashed line). (c)
Total velocity vtot = (v2r +v2z +v2φ)

1/2 (solid line), Alfvén velocity vA (dashed line), sound velocity cs
(dot-dashed line), and Keplerian velocity vK (3-dot-dashed line). (d) Components of the magnetic
field, Br (solid line), Bz (dot-dashed line), and Bφ (dashed line). (e) Vertical component of the
electromagnetic force W z

EM (solid line) and the gas-pressure force W z
gp (doted line). (f) Plasma beta

β = pgas/pmag.
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Figure 4.13: The x-profiles of various physical quantities on the surface of z = 0.7 rS at the end of
the simulation t = 186 tS. (a) Density ρ (solid line), gas pressure pgas (dashed line), and magnetic
pressure pmag (dot-dashed line). (b) Components of the plasma velocity, vr (solid line), vz (doted
line), vφ (dashed line), and vp (3-dot-dashed line). (c) Total velocity vtot = (v2r + v2z + v2φ)

1/2 (solid
line), Alfvén velocity vA (dashed line), sound velocity cs (dot-dashed line), and Keplerian velocity
vK (3-dot-dashed line). (d) Components of the magnetic field, Br (solid line), Bz (dot-dashed line),
and Bφ (dashed line). (e) Vertical component of the electromagnetic force W z

EM (solid line) and the
gas-pressure force W z

gp (doted line). (f) Plasma beta β = pgas/pmag.
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Figure 4.14: The x-profiles of various physical quantities on the surface of z = 5.1 rS (which cor-
responds to the base of the jet) at the end of the simulation t = 186 tS. (a) Density ρ (solid line),
gas pressure pgas (dashed line), and magnetic pressure pmag (dot-dashed line). (b) Components of
the plasma velocity, vr (solid line), vz (doted line), vφ (dashed line), and vp (3-dot-dashed line). (c)
Total velocity vtot = (v2r +v2z +v2φ)

1/2 (solid line), Alfvén velocity vA (dashed line), sound velocity cs
(dot-dashed line), and Keplerian velocity vK (3-dot-dashed line). (d) Components of the magnetic
field, Br (solid line), Bz (dot-dashed line), and Bφ (dashed line). (e) Vertical component of the
electromagnetic force W z

EM (solid line) and the gas-pressure force W z
gp (doted line). (f) Plasma beta

β = pgas/pmag.
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velocity still remains the azimuthal component (Fig. 4.15b). However, as Fig. 4.15c shows,
the jet is likely to be produced from about z = 3 rS all the way up, becoming subsonic
and sub-Alfvénic from about z = 4 rS though. The total velocity of the particles has the
maximum value of about ∼ 0.4 c. The dominant component of the magnetic field is the
toroidal component (Fig. 4.15d), which increases in the jet-forming region. The ratio of
the toroidal to the poloidal component of the magnetic field, Bφ/Bp, represents the twist
of the magnetic field. This twist increases strongly in the jet-forming region (Fig. 4.15e),
where the magnetic energy stored by the twisting magnetic field is converted into kinetic
energy of the jet. Such a large twist of the magnetic field implies a large magnetic pressure
as well, which is also reflected by a low plasma beta in this region (Fig. 4.15f).

We would like to point out that the main result of the simulation presented in
this chapter is the presence of an electromagnetically-driven component of the jet which,
close to the BH, is developed inside the gas pressure-driven jet component. In the regions
far from the BH, the jet is accelerated by electromagnetic forces. Similar to the previous
simulations performed by Koide et al., where the accretion disk co-rotates with the BH
rotation in a free-falling corona, the maximum value of the jet velocity is ∼ 0.4 c, i.e., the
jet is sub-relativistic.

4.4.3 Comparison with the RAISHIN simulation code (Mizuno et al.)

The critical problem of Koide et al. GRMHD code is that the schemes can not
maintain a divergence-free magnetic field automatically. Therefore, Mizuno et al. (2006b,
2007, 2009b) have developed a new 3-D GRMHD code, RAISHIN, which is a conservative,
high-resolution shock-capturing scheme. A Harten-Lax-van Leer approximate Riemann
solver is employed to compute the numerical fluxes. In order to maintain the divergence-
free condition, a flux-interpolated, constrained transport scheme is applied. As far as the
numerical accuracy and the numerical costs are concerned, one can select a method, which
is more computationally efficient, from the following four reconstruction algorithms: the
piecewise linear methods with either Minmod or MC slope-limiter function, the convex
essentially non-oscillatory method, and the piecewise parabolic method, where a multistep
TVD Runge-Kutta method either with second or third-order time accuracy can be applied
to advance the solution in time.

Simulations of jet formation from non-rotating (a∗ = 0) and rapidly-rotating (a∗ =
0.95) BHs were performed, when a thin accretion disk and a uniform magnetic field are
considered initially. The simulation results indicate that mildly relativistic jets (v & 0.4 c)
are driven by the Lorentz force and the gas pressure gradients. In the case of the rotating
BH, an additional, faster, and more collimated matter-dominated inner jet (v & 0.5 c) is
produced and accelerated through the twisting of the magnetic field that occurs in the
BH ergosphere. The jet kinematic structure depends mainly on the BH spin and on the
magnetic field configuration and strength. The simulations were carried out for Boyer-
Lindquist coordinates. Nevertheless, the RAISHIN code with the Kerr-Schild coordinates
is subject to further work by Mizuno et al. This approach may provide a way to overcome the
numerical problems that occur when approaching the BH event horizon, as for the boundary
conditions. The expected results would be longer term simulations (∼ 103 − 104 tS) when
strong magnetic fields are considered (b0 > 1).

To show the behavior of the Kerr-Schild coordinates at the BH event horizon,
which is a physical singularity in the Boyer-Lindquist reference frame, in Fig. 4.16 we plot
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Figure 4.15: The z-profiles of various physical quantities on the surface of x = 4.73 rS at the end of
the simulation t = 186 tS. (a) Density ρ (solid line), gas pressure pgas (dashed line), and magnetic
pressure pmag (dot-dashed line). (b) Components of the plasma velocity, vr (solid line), vz (dot-
dashed line), and vφ (dashed line). (c) Total velocity vtot = (v2r + v2z + v2φ)

1/2 (solid line), Alfvén
velocity vA (dashed line), sound velocity cs (dot-dashed line), and Keplerian velocity vK (double-
dot-dashed line). (d) Components of the magnetic field, Br (solid line), Bz (dot-dashed line), and
Bφ (dashed line). (e) Ratio of toroidal to poloidal magnetic components Bφ/Bp. (f) Plasma beta
β = pgas/pmag.
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Figure 4.16: Radial distribution of the
lapse function in the Boyer-Lindquist
reference frame (purple line) and in
the Kerr-Schild reference frame (green
line). The lapse function in the Boyer-
Lindquist frame becomes singular at
the event horizon (rH ∼ 0.65 rS for
a∗ = 0.95), whereas the lapse func-
tion in the Kerr-Schild frame is a well-
behaved function all the way down to
the true singularity of the space-time at
r = 0. We use the normalized radius
r/rS.

the radial distribution of the lapse function (which in turn gives the acceleration of free-
falling particles, the external magnetic field strength, etc.) in the two reference frames:
Kerr-Schild (green line) and Boyer-Lindquist (purple line), respectively. We consider here
the case when the BH spins at a∗ = 0.95, so that the horizon radius is ≃ 0.65 rS. The
lapse function in the Boyer-Lindquist reference frame, αBL =

√

Σ∆/A (Eq. 1.9), becomes
singular as one approaches the BH horizon. Instead, the lapse function in the Kerr-Schild
reference frame [αKS = 1/

√
1 + Z with Z = 2r2gr∗/Σ = r2Sr∗/(2Σ), e.g., Font et al. (1999)]

stays finite. Moreover, the lapse function in the Kerr-Schild frame is a well-behaved function
all the way down to the true singularity of the space-time at r = 0.

4.4.4 Comparison with other work

The results presented in this chapter are obtained for a geometrically thin accre-
tion disk. Nevertheless, numerical simulations of jet formation for a thick accretion disk
were performed, for instance, by McKinney & Gammie (2004); McKinney (2006); Hawley &
Krolik (2006). As we already mentioned in the introduction, McKinney & Gammie (2004);
McKinney (2006) have developed a conservative shock-capturing scheme (called HARM) for
axisymmetric simulations of jet formation. The code uses modified Kerr-Schild coordinates.
In one of their models, large-scale magnetic fields are created self-consistently by a thick
accretion disk with hight to radius ratio H/R & 0.1. The jets formed in their simulations
also present two components: (i) a highly-relativistic, Poynting flux-dominated “funnel,”
originating from around the BH poles, and (ii) a “wind,” which consists of a cone of ma-
terial near the edge of the funnel and moves at sub-relativistic speeds (v ∼ 0.3 c). The
funnel region is nearly force-free and consistent with the Blandford-Znajek mechanism, for
which the authors presented a self-contained derivation in Kerr-Schild coordinates. Their
results indicate that the rotational energy of the BH is extracted via the Blandford-Znajek
mechanism, but not through an MHD Penrose process. Instead, their second component
of the jet is similar to the gas pressure-driven component of the jet in our simulations.
Hawley & Krolik (2006) also obtained two components of the jet [similarly to McKinney &
Gammie (2004) and McKinney (2006)] using a GRMHD code that resembles the algorithms
employed in the ZEUS code used for non-relativistic astrophysical MHD simulations, with
Boyer-Lindquist coordinates. In the numerical simulations performed by McKinney (2006)
and Hawley & Krolik (2006), poloidal-loop magnetic fields inside the torus are considered
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initially. This magnetic field is then twisted and expands from the torus (i.e., the thick
disk) as a magnetic tower, which fills the funnel region. In our case, the magnetic field is
initially vertical, threading the disk and the BH ergosphere, which is then twisted by the
frame dragging effect and form a magnetically-driven component of the jet. Although the
same basic mechanism of jet formation is used in the work by McKinney & Gammie (2004);
McKinney (2006); Hawley & Krolik (2006) as in our work, the jets show different features.
These differences can be attributed to a different type of the magnetic field and accretion
disk used initially for simulations.

4.5 Summary and conclusions

After an introduction to the GRMHD equations in 3+1 formalism, we presented
the results of GRMHD simulation of jet formation from a thin accretion disk that co-rotates
with a rapidly-spinning BH (a∗ = 0.95) in a free-falling corona, using the code developed
by Koide et al. (1998, 2000a); Koide (2003).

• For the numerical results presented in this chapter, we set the simulation parameters
in such a way to perform a longer term simulation. We used a weak magnetic field
of 0.1(ρ0c

2)1/2 and an inner boundary at 1.5 rS, so that the final stage of the jet
formation corresponds to t = 186 tS. Koide et al. have performed simulations of jet
formation from a Kerr BH using a variety of parameter set, including the strength of
the magnetic field as strong as 5.57(ρ0c

2)1/2.

• The numerical results show that, as the time evolves, the disk plasma loses angular
momentum by the magnetic field torque and falls toward the BH. When the rapid
infall of plasma encounters the disk plasma that is decelerated by centrifugal forces
near the BH, a shock is produced inside the disk at ∼ 3 rS. The high pressure behind
the shock pushes the plasma outward by gas-pressure forces and pinches it into a
collimated jet. As a result, a gas pressure-driven component of the jet is produced.
On the other hand, the magnetic field is frozen in the accretion disk. Therefore,
the infalling plasma bends the magnetic field inward, creating a significant radial
component of the field which is then twisted by the differential disk rotation into an
azimuthal component. As the azimuthal component of the magnetic field increases,
and so the magnetic tension, the plasma is accelerated by the magnetic pressure. This
electromagnetically-driven component of the jet has two origins: one associated with
the extraction of the BH rotational energy in the ergosphere and the other one with
the twisting of the magnetic field far from the BH.

• Similar to Koide et al., the maximum jet velocity obtained in this numerical simulation
is ∼ 0.4 c. This is considerable lower than the velocity of the inner parts of some
AGN jet for which the observations indicate relativistic speeds (e.g., Ghisellini et al.
2005). However, the outer parts of the jet can have mildly- and sub-relativistic speeds.
Nevertheless, the jet can be accelerated further out at shock fronts. This acceleration
might eventually be seen in longer term simulations. A relativistic jet of ∼ 0.9 c has
been obtained in the numerical simulations performed by Koide et al. (2000b), in the
case of a non-rotating disk around a rapidly-rotating BH though.

• The previous simulations performed by Koide et al. show a two-component jet: (i)
an inner, low density, fast, electromagnetically-driven jet and (ii) an outer, high den-
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sity, slow, gas pressure-driven jet. In the case of the simulation results presented
in this chapter, the dominant component of the jet in the region close to the BH is
initially the gas pressure-driven component, which becomes weaker compared to the
electromagnetically-driven component as the time goes on. So that, by the end of
the simulation, the electromagnetically-driven component of the jet has already been
developed inside the gas pressure-driven jet. On the other hand, in the region far from
the BH, the jet is mainly driven by electromagnetic forces. There, the gas-pressure
forces of the coronal plasma which decelerate the jet are somewhat weaker than the
driving electromagnetic forces.

• To illustrate the dependence of jet formation on the BH spin (for a rapidly-rotating
BH, a∗ > 0.95), we also performed simulations in the case of a higher spin of a∗ =
0.9982 (not shown in this chapter). The physical quantities obtained as a result
of the simulation do not differ between the two cases of the BH spin, therefore we
conclude that the eventual differences between them might be revealed when longer
term simulations are performed.

The results presented here are strongly dependent on the strength of the magnetic
field, as well as on the location of the inner boundary. For stronger magnetic fields, the
jet should be totally electromagnetically driven, and we can study the Penrose-like process
in the BH ergosphere for the extraction of the BH rotational energy for this case as well.
On the other hand, choosing an inner boundary closer to the BH can reveal some physical
processes which might not be shown by the numerical results presented here. As stated
before, the development of the code for Kerr-Schild coordinates is expected to produce
longer term simulations when strong magnetic fields are considered.

Despite intense efforts to understand the processes responsible for formation, ac-
celeration, and collimation of the jets from BHs, we still face the problem of exactly how
to explain these processes. The numerical results of jet formation presented in this chapter
indicate how outflows from a thin accretion disk co-rotating with a rapidly-spinning BH
might be produced within the framework of the GRMHD. The main purpose of these time-
dependent simulations was to study the initial transient effects associated with acceleration
of the jets. The results presented here, using the code by Koide et al. (1998, 2000a); Koide
(2003), are able to shed light on how the jets can be accelerated thanks to the gas-pressure
and electromagnetic forcess and to show that the extraction of the rotational energy from
the BH via a Penrose-like process in the BH ergosphere is possible, as found by Koide et al.
(2000a), but see Komissarov (2005).



Outlook

In this thesis, we have studied some aspects of the physics of jets from spinning
BHs that regard their formation, as well as the acceleration of UHECRs. Our main findings
were summarized at the beginning of this thesis. Here, we give an outlook and describe
future plans.

In Chapter 2, we proposed a model through which AGN jets can be launched from
the ergospheric disk surrounded a Kerr BH, when closed magnetic field lines connect the
BH to the ergospheric disk. Through such a BH-disk magnetic connection, the BH transfers
energy and angular momentum to the disk, and the available accreting rest mass-energy
increases. Furthermore, the jets can extract and transport away mass, energy, and angular
momentum from the ergospheric disk. A more general magnetic field threading the BH
would consist of a combination of closed magnetic field lines and open magnetic field lines,
extending from BH to infinity, which can enable the extraction of BH rotational energy
through the Blandford–Znajek mechanism. As part of our future work, we plan to extend
the work presented in this thesis by including the open magnetic field configuration and
develop a self-consistent physical model that may fully describe the energy extraction from
the BH.

Turning to the Chapter 3, the possibility to trace sources of UHECRs is of crucial
importance to particle astronomy, as it can improve constraints on Galactic and extragalac-
tic magnetic fields, set upper limits on Lorentz invariance through GZK considerations, and
probe the AGN engine as an acceleration mechanism. A considerable improvement was
achieved by trying to identify the nature of UHECRs using ground-detector arrays’ data
as, for instance, Auger data. Although the present Auger data indicate that Cen A is a
noteworthy source of UHECRs, the UHECR-AGN correlation should be substantiated with
further statistics, either from Auger or other observatories. In this context, the contribution
of the spin-down power of BHs in LLAGN to the UHECRs may help to understand better
this UHECR-AGN correlation by applying the model developed in Chapter 3 to a larger
complete sample of AGN.

In Chapter 4, we presented numerical results of jet formation from a thin accre-
tion disk co-rotating with a rapidly-spinning BH within the framework of the GRMHD. A
difficulty encountered by us was the short term of the present calculations (∼ 200 tS) due
to numerical problems that occur when approaching the BH event horizon. We plan to
improve the results by using the code with the Kerr-Schild coordinates, which may allow
for longer term simulations (∼ 103 − 104 tS), to further test and clarify the mechanism of
energy extraction from the BH via a Penrose-like process in the BH ergosphere, as well as to
perhaps reveal new relevant features of jet formation. Moreover, the Lorentz factor of the
jet obtained by our calculations has a lower value than that of the inner jet, as indicated by
some observations. An obvious solution is further acceleration along the jet (e.g., Blandford
& Königl 1979; Falcke & Biermann 1995).
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Appendix 1

Derivation of the angular momentum conservation law (Eq. 2.10)

Here, we present the derivation of the angular momentum conservation law for
the matter that flows in the ergospheric region of the accretion disk (Eq. 2.10). This
derivation is based on the general-relativistic angular-momentum conservation law that
describes the structure of a geometrically-thin accretion disk (Page & Thorne 1974). Based
on this conservation law, Li (2002) derived the conservation law that includes the BH-
disk magnetic connection, and Donea & Biermann (1996) derived the conservation law that
includes the jet. In a slightly different manner, our result is obtained when both the BH-disk
magnetic connection and the jet formation are considered.

The angular-momentum conservation law can be obtained by contracting the
energy-momentum tensor of the matter in the disk with the axial Killing vector of Kerr
space-time (∂/∂φ). The energy-momentum tensor T can be decomposed with respect to
the 4-velocity field u as (Page & Thorne 1974)

T = ρ0(1 + Π)u⊗ u+ t+ u⊗ q+ q⊗ u, (4.99)

where ρ0 is, again, the density of rest mass, Π is the specific internal energy, t is the stress
tensor in the averaged rest frame (which is a second-rank, symmetric tensor orthogonal to
u, t · u = u · t = 0), and q is the energy-flow vector, which is a 4-vector orthogonal to u,
q · u = 0. Here, geometrical units are used: c = G = k (Boltzmann constant) = 1.

For a geometrically thin accretion disk, the internal energy is negligible compared
to the gravitational potential energy, Π ≪ 1− E†.

Page & Thorne (1974) assumed that the only energy flow is in the vertical direction,
and the angular momentum is transported mechanically by torques in the disk (by magnetic
stress, viscous stress, etc.). This means that: < tzφ >=< tzt >=< tzr >=< qφ >=< qt >=<
qr >= 0, at z = ±h.

The quantity F (r) =< qz(r, z = h) >=< −qz(r, z = −h) > represents the energy
per unit proper time (τ) per unit proper area (A) flowing out of upper face of disk, as
measured by an observer on the upper face who orbits with the time-averaged motion of
the disk matter (or the time-averaged flux flowing out of lower face), and W r

φ ≡
∫ +h
−h <

trφ > dz = (grr)1/2× (time-averaged torque per unit circumference acting across a cylinder
at radius r, due to the stresses in the disk).

In differential form, the angular-momentum conservation law reads

∇ · J = 0, J ≡ T · ∂/∂φ = (density-flux 4-vector for angular momentum). (4.100)

This conservation law can be simplified to a useful form as in equation (23) of Page & Thorne
(1974), where the differential form of the conservation law is converted to an integral form
by integrating over the 3-volume of the disk between radius r and r +∆r. Gauss theorem
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is then applied to convert the volume integral to a surface integral. Thus,

0 =

∫

V

∇ · J
√

|g|dtdrdzdφ =

∫

∂V
J · d3Σ =

∫

∂V
Tαφ d

3Σα

=







h
∫

−h

t+∆t
∫

t

2π
∫

0

[

ρ0(1 + Π)uφu
r + trφ + uφq

r + qφu
r
]

(−g)1/2 dφ dt dz







r+∆r

r

+







r+∆r
∫

r

t+∆t
∫

t

2π
∫

0

[

ρ0(1 + Π)uφu
z + tzφ + uφq

z + qφu
z
]

(−g)1/2 dφ dt dr







h

−h

+ {total angular momentum in the 3-volume}t+∆t
t ,

(4.101)

which is equation (23) of Page & Thorne (1974). In the first brace, one can neglect Π
(negligible specific heat), as well as the terms uφq

r and qφu
r by comparison with the term

uφq
z of the second brace (negligible heat transport along the plane of the disk). Therefore,

the first brace reduces to







H
∫

−H

(2π∆t)
(

< ρ0 > uφu
r+ < trφ >

)
√

|g|dz







r+∆r

r

. (4.102)

Now, we calculate this brace taking into account the jet formation as

{

(2π∆t)(ΣL†ur +W r
φ)
√

|g|
}r+∆r

r
= ∆t∆r

[

−(ṀD − Ṁjets)L
† + 2πrW r

φ

]

,r
, (4.103)

where we made use of the rest-mass conservation law that includes the mass flow into the
jets , ṀD − Ṁjets = −2πrΣur.

In the second brace of equation 4.101, we keep the term uz that accounts for the
particle motion in the vertical direction and obtain

2 (2π∆t)(Σuz + F )L†
√

|g|∆r = 2 (2πr∆t∆r)JL†, (4.104)

where J = Σuz + F denotes the total flux of energy (of particle and magnetic origin)
transported by jets.

The third brace of equation 4.101 is negligible compared with the first brace since,
by assumption (Page & Thorne 1974), the time interval ∆t is small enough that during this
interval the external geometry of the BH changes negligibly.

Combining equations 4.103 and 4.104, equation (23) of Page & Thorne becomes
[

(ṀD − Ṁjets)L
† − 2πrW r

φ

]

,r
= 4πJL†. (4.105)

Using the definition of the magnetic torque produced by the BH on both surfaces of
the accretion disk given by Li (see Eqs. 2.11 and 2.14), the angular momentum conservation
law (Eq. 4.105), including c, becomes

d

dr

[

(1− qjets) ṀDcL
†
]

+ 4πrH = 4πrJL†, (4.106)

when both the BH-disk magnetic connection and the jet formation are considered.
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Derivation of the GRMHD equations (Eq. 4.51)

The GRMHD system of equations is a set of eight non-linear hyperbolic partial
differential equations (PDEs) which we write in conserved form. The GRMHD equations
can be derived from the fundamental conservation laws: the rest-mass, angular momentum,
and energy conservation laws. For the following calculations, we use the quantities listed
below (see Eq. 4.15 and comments there):

ut =
W

α
,

ui

W
= vi − βi

α
,

ui
W

= vi.

(4.107)

The conservative variables are defined as

D = −Jµnµ = −ρuµnµ = ρW,

Sj = −T µν nµ(∂j)
ν = αT tj = α

[

(ρh+ b2)utuj +

(

p+
b2

2

)

gtj − btbj

]

= (ρh+ b2)W 2vj − αbtbj ,

where (∂j)
ν = δνj ,

E = T µνnµnν = α2T tt = α2

[

(ρh+ b2)utut +

(

p+
b2

2

)

gtt − (bt)2
]

= (ρh+ b2)W 2 −
(

p+
b2

2

)

− α2(bt)2.

(4.108)

In practical numerical calculations, it is useful to use the quantity τ = E −D.
Next, we calculate the components of the energy-momentum tensor for GRMHD:

T tt =
1

α2
E,

T ti = (ρh+ b2)utui +

(

p+
b2

2

)

gti − btbi = (ρh+ b2)
W 2

α

(

vi − βi

α

)

+

(

p+
b2

2

)

βi

α
− btbi,

T ti =
1

α
Si,

T ij = (ρh+ b2)uiuj +

(

p+
b2

2

)

gij − bibj = Sj
uiuj
Wuj

(

vi − βi

α

)

+

(

p+
b2

2

)

δij − bibj

= Sj

(

vi − βi

α

)

+

(

p+
b2

2

)

δij − bibj .

(4.109)

In the following, we derive the conservation laws for GRMHD. We start with the
rest-mass conservation law, which in the differential form reads

Jµ;µ = 0, (4.110)
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where Jµ = ρuµ denotes the rest-mass flux. The above can be evaluated as

Jµ;µ =
1√−g

(
√−gJµ),µ =

1√−g
(
√−gρuµ),µ =

=
1√−g

(

α
√
γρ

W

α

)

,t

+
1√−g

(√−gρW (vi − βi

α
)

)

,i

=

=
1√−g

(
√
γD),t +

1√−g
D

(

vi − βi

α

)

,i

= 0

, (4.111)

which represents the first GRMHD equation. Let us obtain the remaining seven. To recap,
the Eulerean basis consists of four vectors eµ = {n, ∂i}. Consider now the expression

(T µν(eγ)
ν);µ = T µν;µ(eγ)

ν + T µν(eγ)ν;µ = T µν
(

(eγ)ν,µ − Γλνµ(eγ)λ

)

, (4.112)

where T µν;µ = 0 from the conservation law of the energy-momentum tensor.

Next, we obtain the angular-momentum and energy conservation laws by evaluat-
ing the above expression. First, we consider the left-hand side of equation( 4.112) for the
index γ = t,

(T µν(et)
ν);µ = (T µνnν);µ = (−αT µt);µ = − 1√−g

{

(
√−gαT tt),t + (

√−gαT it),i
}

= − 1√−g

{

(
√
γα2T tt),t +

(√−gα

[

(ρh+ b2)
W 2

α

(

vi − βi

α

)

+

(

p+
b2

2

)

βi

α2
− bibt

])

,i

}

= − 1√−g

{

(
√
γE),t +

(√−g

[(

E +

(

p+
b2

2

))(

vi − βi

α

)

+

(

p+
b2

2

)

βi

α
− αbibt

])

,i

}

= − 1√−g

{

(
√
γE),t +

(√−g

[

E

(

vi − βi

α

)

+

(

p+
b2

2

)

vi − αbibt
])

,i

}

,

(4.113)

where we used the fact that (ρh+ b2)W 2 = E +
(

p+ b2

2

)

.

The right-hand side of equation (4.112) reads

T µν
(

(et)ν,µ − Γλνµ(et)λ

)

= −T µtα,µ + αΓtνµT
µν = α

(

−T µt(lnα),µ + ΓtνµT
µν
)

. (4.114)

Substituting equations (4.113) and (4.114) for equation (4.112), we obtain the second
GRMHD equation (energy conservation law)

1√−g

{

(
√
γE),t +

(√−g

[

E

(

vi − βi

α

)

+

(

p+
b2

2

)

vi − αbibt
])

,i

}

= α
(

−T µt(lnα),µ + ΓtνµT
µν
)

. (4.115)
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Next, we consider the left-hand side of Eq. (4.112) for the index γ = j,

(T µν(ej)
ν);µ = (T µj);µ =

1√−g

{

(√−gT µj
)

,µ

}

=
1√−g

{

(
√−gT tj),t + (

√−gT ij),i
}

=
1√−g

{

(
√−γSj),t +

(√−g

[

Sj

(

vi − βi

α

)

+

(

p+
b2

2

)

δij − bibj

])

,i

}

.

(4.116)

The right-hand side of equation reads

T µν
(

(ej)ν,µ − Γλνµ(ej)λ

)

= T µν
(

[

gνλ(ej)
λ
]

,µ
− Γλνµgλσ(ej)

σ

)

= T µν
(

gνj,µ − Γλνµgλj

)

.

(4.117)
Substituting equations (4.116) and (4.117) for equation (4.112), we obtain the

other three GRMHD equations (angular-momentum conservation law),

1√−g

{

(
√−γSj),t +

(√−g

[

Sj

(

vi − βi

α

)

+

(

p+
b2

2

)

δij − bibj

])

,i

}

= T µν
(

gνj,µ − Γλνµgλj

)

. (4.118)

The remaining three GRMHD equations are the three components of the induction
equation, which was derived in Section 4.35. The GRMHD equations can be written in a
compact form

1
√

|g|
∂(
√
γU)

∂t
+

1
√

|g|
∂(
√

|g|F)
∂xi

= S , (4.119)

where the quantities U (conserved variables), F (fluxes), and S (source terms) are

U =









D
Sj
τ
Bi









, (4.120)

F =













Dṽi

Sj ṽ
i +
(

p+ b2

2

)

δij − bibj

τ ṽi +
(

p+ b2

2

)

vi − α2(bt)2 +Dṽi

ṽiBj − ṽjBi













, (4.121)

S =











0

T µν
(

∂gνj
∂xµ − Γσνµgσj

)

α
(

T µt ∂ lnα∂xµ − T µνΓtνµ
)

0i











, (4.122)

where ṽi =
(

vi − βi

α

)

and 0i ≡ (0, 0, 0)T.



132 Appendix 2

.



List of Publications

1. Ultra-High-Energy Cosmic Ray Contribution from the Spin-Down Power of Black
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