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SUMMARY 

The main goal of the presented dissertation was to evaluate the genetic potential of P. 

chrysogenum E01-10/3 strain for the production of polyketides.  

This marine-derived P. chrysogenum strain was isolated from the Mediterranean sponge 

Ircinia fasciculata in the course of a research program focused on the discovery and 

characterization of novel natural products. This led to the isolation and characterisation of two 

novel and structurally highly similar polyketides: sorbicillactone A and sorbicillactone B. 

Consistent with their structural similarity, it was proposed that the biosynthesis of both 

compounds might be encoded by the same gene cluster. Consequently, the identification of 

the sorbicillactone A gene cluster was in the focus of this dissertation as this compound was 

previously shown to posses promising antileukaemic, antiviral and neuroprotective properties.  

The iterative type I PKSs, which have only one multidomain protein with all the enzyme 

activities covalently bound together, are responsible for the biosynthesis of fungal 

polyketides. The single multifunctional protein is used to iteratively catalyze multiple rounds 

of chain elongation and appropriate β-keto processing of a polyketide. 

Since all of the fungal PKSs belong to the iterative type I PKS enzymes, degenerate primers 

and hybridization probes fitting to this type of fungal PKS systems were used in PCR and 

hybridization experiments. Of special help for the present study was the possibility to 

differentiate between subtypes of fungal iterative type I PKSs on the amino acid level: 

Nonreducing (NR), partially reducing (PR), and highly reducing (HR), in respect to level of 

reduction of their polyketide products. Accordingly, PCR and hybridization experiments were 

set up in order to take advantage of this fact. 

During the course of this study, use of PCR enabled the amplification of partial PKS 

sequences from nine putatively distinct fungal type I PKS gene loci from P. chrysogenum 

E01-10/3. Six partial KS domain DNA sequences were used to reconstruct evolutionary 

relationships in respect to other iterative type I PKSs. The results of the phylogenetic analysis 

for KS domains illustrated that P. chrysogenum E01-10/3 strain has the genetic potential to 

produce all three main categories of fungal polyketides – HR, PR (i.e. 6-MSA type) and NR.  

The results of the phylogenetic analysis of PCR-amplified partial KS domains were valuable 

to judge on good candidates for the screening of genomic library for putative sorbicillactone 

gene cluster: Three partial PKS sequences shown to be putative members of the NR clade III 
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(KHKS1, KHKS32 and AT-9-11). For each of these three sequences specific primer pairs 

were designed and used in a complex genomic library screening procedure. 

The subcloning and sequencing of the AT-9-11 genomic region revealed that one putative 

reducing PKS and one non-reducing PKS were located next to each other. The genomic insert 

anticipated to carry the core of the putative AT-9-11 PKS gene cluster was completely 

sequenced and analysed. 

The sequence analysis of the putative sorbicillactone gene cluster identified eight putative 

ORFs matching fungal protein sequences from public databases. The first identified gene 

encodes for a putative transcriptional regulator (slr or orf1), which might be capable to 

coordinate expression of the structural genes in the cluster. This putative regulatory gene is 

followed by the gene encoding for one putative monooxygenase (slmox or orf2) that may be 

responsible for one post-PKS hydroxylation reaction during the sorbicillactones biosynthesis. 

The core of the identified gene cluster contains two PKS genes (PKSSL1/orf3 and 

PKSSL2/orf4) located next to each other in opposite directions. The second putative 

transcriptional regulatory gene (sltr or orf5) appears as a fifth ORF and is placed next to a 

putative gene for a MFS transporter protein (slMFS or orf6). The product encoded from the 

seventh ORF (slox or orf7) could be an oxidoreductase. The last identified ORF that showed 

putative homology to fungal proteins was orf8 that shared significant similarity with fungal 

actin cytoskeleton-regulatory complex proteins. This ORF was excluded from the predicted 

sorbicillactone gene cluster model, since its involvement in cytoskeleton dynamics is not 

likely to be required for the biosynthesis nor transport of sorbicillactones. 

The analysis of the exact domain organisation of the identified P. chrysogenum PKS genes – 

pksSL1 and pksSL2, enabled the prediction of their putative routes in the sorbicillactone A and 

B biosynthesis. The performed protein sequence analysis showed that the domain organisation 

of PKSsl1 is consistent with the one expected for the members of NR clade III: SAT-KS-AT-

PT-ACP-MT-RED. All known PKS active site motifs were conserved and the analysed 

domains were not fragmented. These facts supported the prediction that they are active in P. 

chrysogenum PKSsl1. Additionally, the phylogenetic analysis of the PT domain gave clear 

hint that PKSsl1 could work as a tetraketide synthase. 

Based on the domain analysis it was confirmed that PKSsl2 has the typical domain structure 

of a R clade I PKS: KS-AT-DH-(MT)-ER-KR-ACP. Thus, PKSsl2 could be sufficient for 

biosynthesis of the advanced triketide starter unit, since it contains all domains required for 

condensation and the complete processing of a ß-carbon. All PKSsl2 domains have conserved 

consensus sequences within active sites and are not fragmented. However, there is a high 
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chance that the detected PKSsl2 MT domain has no activity since the consensus sequence 

within its active site is not preserved. Such nonmethylated, reduced triketide starter unit could 

be produced by the PKSsl2 within two successive condensation and ß-processing rounds. This 

advanced starter unit may be then accepted by the SAT domain of PKSsl1 that probably 

makes three additional nonreducing extension rounds. At the end of the discussed putative 

sorbicillactone polyketide routes, it was proposed that hexaketide thiolester intermediates of 

sorbicillactone biosynthesis are released in an aldehyde form by the RED domain encoded 

reductase followed by the release of the free holo-ACP thiol of PKSsl1. 

 

Taking into account the number and potential bioactivities of polyketides isolated from 

marine-derived fungi, the number of compounds reported up to date from different P. 

chrysogenum strains as well as the genetic potential of P. chrysogenum E01-10/3 for 

polyketide production identified in this study, it becomes apparent that this particular marine-

derived strain may be a valuable source for pharmacologically useful polyketides.  
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INTRODUCTION  

1 Fungi as producers of biologically active secondary metabolites 

The fungal kingdom includes many species with unique and unusual biochemical 

pathways [1]. The production of secondary metabolites in fungi is a complex process often 

coupled with morphological development [2]. Secondary metabolites often have obscure or 

unknown functions in organisms but have considerable importance for mankind due to their 

broad range of useful antibiotic, pharmaceutical as well as toxic activities [3]. The products 

of these pathways include important pharmaceuticals such as penicillin (6), cyclosporin (12) 

and statins (10 and 11), as well as potent poisons including aflatoxins (e.g. 1 aflatoxin B1) 

and trichothecenes [1]. The systematic study of fungal secondary metabolites began in 1922 

by Harold Raistrick, who characterised more than 200 fungal metabolites [1]. However, it 

was the discovery and development of penicillin that have awakened scientific interest in 

fungal metabolites. Penicillin has been the first broad-spectrum antibiotic discovered from 

fungus Penicillium notatum (alias Penicillium chrysogenum) in 1929 by Alexander 

Fleming [4, 5]. The discovery of penicillin and its clinical use encouraged pharmaceutical 

companies to establish extensive screening programs for microbial bioactive metabolites [1]. 

A recent literature survey of fungal metabolites found 1500 compounds isolated and 

characterised between 1993 and 2001. More than half of these molecules show antibacterial, 

antifungal or antitumour activity [6] thereby illustrating that natural products are the most 

important source of anti-cancer and anti-infective agents [7]. Besides, it has been estimated 

that over 60% of approved and pre-New Drug Application (NDA) candidates are either 

natural products or related to them [7, 8]. The most prolific sources of fungal secondary 

metabolites are members of Aspergilli and Penicillia with lots of salt tolerant, fast growing 

species that are easily obtained from many substrates. Numerous compounds have been 

detected as promising candidates for investigation of secondary metabolites with 

pharmacological activities [9]. Up to date, there are dozens of fungal secondary metabolites 

that are used as antibiotic, antitumor, immunosuppressive, hypocholesterolaemic, 

antimigraine, and antiparasitic agents. A number of these products were first discovered as 

antibiotics that failed in their development, or as mycotoxins [10]. In addition new active 

fungal secondary metabolites have been discovered with pharmacological activities both in 

terrestrial [11, 12] and marine environment [13, 14] and some of them have already entered 

clinical testing. 
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1.1 Fungal mycotoxins 

In the early 1960s thousands of turkey poults mysteriously died in hatcheries in and around 

London. The investigations on suspicious fungi led to the isolation of toxic metabolites called 

aflatoxins (name derived from the species A. flavus) [1, 5].  

Mycotoxins are known as low-molecular-weight natural products (i.e. small molecules) 

produced as secondary metabolites in filamentous fungi. These metabolites represent a 

chemically heterogeneous group, but they all exhibit high toxicity. By definition mycotoxins 

are synthesised in filamentous fungi and are toxic to vertebrates and other animal groups in 

extremely low (i.e. microgram) concentrations [15]. When present in food, these fungal 

metabolites can have toxic effects with acute (e.g. liver or kidney deterioration) and chronic 

(e.g. liver cancer) symptoms. Due to their mutagenic and teratogenic profile, exposure to 

fungal metabolites may result in skin irritation, immunosuppression, birth defects, 

neurotoxicity and death [16]  

Since the natural fungal flora in foods is dominated by three genera — Aspergillus, 

Fusarium, and Penicillium, many toxicology studies are focussed on metabolites produced 

by these genera [17-21]. It is important to note that as many as 300-400 compounds are now 

recognised as mycotoxins [22]. Despite their toxicity, the fact that mycotoxins are associated 

with strong biological activities has initiated the search of new drug candidates among these 

secondary metabolites.  

1.1.1 Polyketide-derived mycotoxins 

The biosynthesis of many compounds characterised as mycotoxins has shown to be 

associated with the polyketide pathway. Since this study deals with the genetic potential of 

marine-derived P. chrysogenum strain E01-10/3 (IFM-GEOMAR collection) to produce 

polyketide-derived compounds, it is essential to present details on polyketide-derived 

mycotoxins, their bioactivities and biosynthesis in the following sections. 

Aflatoxin and sterigmatocystin are potent, polyketide-derived, carcinogenic mycotoxins 

produced by fungi of the genus Aspergillus and constitute a major agricultural problem [23]. 

Among at least 16 structurally related aflatoxins, there are only four major aflatoxins, B1, B2, 

G1 and G2, that contaminate agricultural commodities and are regarded as potential risk to 

livestock and human health [24]. Among them, aflatoxin B1 (1) is recognised as the most 

potent (known) natural hepatocarcinogen and is usually the major aflatoxin produced by 

toxigenic strains [22, 25, 26]. These biosynthetically related compounds share the same 

polyketide precursor, norsolorinic acid (NA) [23]. The cloning of the norsolorinic synthase 
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(NAS) gene from both the sterigmatocystin pathway of A. nidulans [27] and the aflatoxin 

pathway of A. parasiticus [28, 29] was achieved in 1995. Up to date 25 open reading frames 

(ORF), or genes involved in the yet well-defined aflatoxin pathway have been identified and 

shown to be clustered on one chromosome. Similarly, the homologous genes of 

sterigmatocystin synthesis in A. nidulans and their involvement in the common part of 

biochemical pathway have been analyzed as well [30]. 

 

Figure 1: Fungal polyketide-derived mycotoxins. 
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Citrinin (2) was first isolated from Penicillium citrinum before World War II; subsequently, 

it was identified in over a dozen species of Penicillium and several species of 

Aspergillus [22]. More recently, citrinin has also been isolated from Monascus ruber and 

Monascus purpureus, i.e. industrial species used to produce red pigments [19]. Citrinin is 

bactericidal against Gram-positive bacteria, but due to its nephrotoxicity in mammalian 

systems it was not used in the clinical setting [31]. Besides, it shows embryotoxic, 

teratogenic, and genotoxic activity in short-term tests [32]. The biosynthesis of citrinin is 

another example of a mycotoxin polyketide. The working group of Nihira et al. identified 

genomic DNA fragment in M. purpureus suspected to be citrinin PKS (pksCT [33]. Later on, 

the same group identified additional five ORF within 21 kb region flanking pksCT from both 
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sides. Among these ORFs, one was proven to be an activator-gene involved in citrinin 

biosynthesis – ctnA [34]. 

Fumonisins were first described and characterised in 1988 [22]. They are primary amines 

thought to be synthesised by condensation of the amino acid alanine into an acetate-derived 

precursor [35]. Unlike other mycotoxins, they do not have an aromatic structure or a unique 

chromophore for easy analytical detection. Fumonisins are produced by a number of 

Fusarium species [36]. The most abundantly produced member of the family is fumonisin B1 

(5) [22]. Fumonisins affect animals in different ways by interfering with the sphingolipid 

metabolism [21, 37-39]. In humans fumonisins are supposed to be linked with oesophageal 

cancer [40]. The genes involved in fumonisin-biosynthesis are clustered in around 45 kb 

stretch of DNA. An expression analysis in Fusarium verticillioides indicated that 15 genes 

(ORF1 and ORF6-19) are co-regulated and exhibit patterns of expression that correlate with 

fumonisin-production. These ORF are designated as FUM genes [41]. FUM5 encodes the 

polyketide-synthase-gene that was shown to be required for the fumonisin biosynthesis [42]. 

Patulin (3) is produced by many different fungal species but was first isolated as an 

antimicrobial active principle from Penicillium patulum (now Penicillium griseofulvum) 

during the 1940s. In early studies patulin was assessed for its antibiotic activity. However, 

during the 1950s and 1960s, it became apparent that besides its antibacterial, antiviral, and 

antiprotozoal activity, patulin is toxic to both plants and animals and was then re-classified as 

a mycotoxin [22]. Most of the patulin toxicity research conducted since 1995 has been 

focused on genotoxicity [43].The patulin biosynthetic pathway is complex and contains at 

least ten enzymes involved in the direct biosynthetic pathway and as many as 19 enzymes 

involved in side pathways [44]. The patulin biosynthetic pathway played an important role in 

the study of the classical biochemistry of polyketide-biosynthesis. In 1990 the first fungal 

PKS-gene coding 6-methylsalicylic acid synthasae (MSAS) was isolated by Beck et al. from 

the P. patulum [45]. Actually, 6-methylsalicylic acid (6MSA) is the polyketide that serves as 

a precursor of patulin and genetic homologues of MSAS have since been isolated from 

numerous fungi [46, 47]. Isoepoxydon dehydrogenase (IDH) is an enzyme involved in the 

terminal portion of the patulin biosynthetic pathway [44]. Recently, the full length idh gene 

has been cloned from P. expansum and shown to be useful for detection of patulin-producers 

via PCR analysis [48]. Up to now sequences of only these two genes (MSAS and idh) of the 

patulin pathway enzymes are present in GenBank [49]. It is interesting to note that even 

though numbers of genes for partially reduced (PR) PKS (see 2.3.1) are now known from 
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fungal genomesequencing projects, the MSAS gene has been the only gene so far with a 

matched chemical product [50] (see Table 3). 

Ochratoxin A (4) was discovered as a metabolite of Aspergillus ochraceus in 1965 during a 

large screening-procedure of fungal metabolites intended to identify new mycotoxins [22]. 

Subsequently, members of the ochratoxin family have been also found as metabolites in 

many different Aspergillus species [17, 51]. Although some early reports suggested their 

presence in several Penicillium species, it is now established that P. verrucosum and P. 

nordicum are the only confirmed ochratoxin producers in this genus [20, 52]. It has been 

shown that ochratoxin A is nephrotoxic, hepatotoxic, immune-suppressive, a potent 

teratogen, and carcinogen as well [53]. The PKS gene required for ochratoxin A biosynthesis 

in A. ochraceus was detected by a suppression-subtractive-hybridization PCR-based 

approach (SSH-PCR) [54]. In addition, it was reported by Karolewiez and Geisen [55] that a 

polyketide-synthase gene, i.e. otapksPN from P. nordicum, is essential for ochratoxin 

biosynthesis. 

1.2 Fungal secondary metabolites as approved pharmaceuticals  

Certainly, this section has to start with the penicillin story. Fleming’s discovery led to the 

first successful chemotherapeutic produced by microbes that has initiated the golden age of 

antibiotics. This discovery opened the way for the development of many other antibiotics, 

and up to date penicillin has still remained the most active and the least toxic compound 

among many others [11].  

Penicillins together with cephalosporins belong to the group of β-lactam compounds. The 

biosynthesis of the penicillin/cephalosporin antibiotics involves a common pathway with 

core enzyme activities conserved in all producer microorganisms. These producer species 

include a number of filamentous fungi, most notably members of the genera Penicillium, 

Aspergillus and Cephalosporium but also bacteria including Streptomyces and Nocardia 

species harbour genes for production of β-lactam compounds [56]. There are several types of 

penicillins, e.g. F, G, K, N and V. Penicillin V and G are active against most aerobic Gram-

positive organisms. Penicillin G (6) is one of the most widely-used antibiotic agents today 

and is used against streptococcal, staphylococcal and meningococcal infections. The 

bactericidal effect of penicillins is based on the inhibition of bacterial cell-wall-

synthesis [57]. In general, penicillins are well-tolerable [Food and Drug Administration 

(FDA), see Table 31], however, many cases of allergic reactions have been reported for 

penicillins [58, 59]. The penam nucleus of penicillins, as well as the cephem nucleus of 
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cephalosporins, is formed by condensation of the three precursor amino acids L-α-

aminoadipic acid, L-cysteine and L-valane into tripeptide δ(L-a-aminoadipyl)-L-cysteinyl-D-

valane (ACV) by a mechanism designated as non-ribosomal peptide (NRP) synthesis [60]. In 

the penicillin and cephalosporin pathways, the initial NRP product, ACV, undergoes 

extensive modifications via transacylases, epimerases, and other enzymes [61]. Both 

enzymes and corresponding genes of these pathways were extensively studied in filamentous 

fungi [60, 62]. In the industrial scale penicillin G (6) is produced by fermentation of P. 

chrysogenum [63]. 

The ergot alkaloids are a complex family of indole alkaloids that are classified as 

mycotoxins [64] and are derived from a tetracyclic ergolane ring system through 

nonribosomal peptide synthesis [65]. Lysergic acid, with a structure common to all ergot 

alkaloids, was first isolated in 1934 [22]. Probably the most famous member of the family is 

ergotamine (8). Some ergot alkaloids show structural similarity to the neurotransmitters 

serotonin and dopamine and have affinity to the cognate receptors in the central nervous 

system. Therefore, ergot alkaloids have a long history in treatment of a variety of disorders of 

the central and peripheral nervous systems. In addition, several ergot alkaloids induce smooth 

muscle contractions [66]. These compounds are produced as a toxic cocktail of alkaloids in 

the sclerotia of Claviceps species that are common pathogens of various grass species [22]. 

Besides, the rather distantly related fungus A. fumigatus was also shown to be producer of 

ergot alkaloids [65]. The ingestion of these sclerotia, or ergots, has been associated with 

diseases such as “St. Anthony’s fire” since antiquity [10].  

Sometimes the lane between toxin and drug is defined with the shift of a decimal point of 

compound amount, or a change in a small chemical moiety with ergot alkaloids being a good 

example [22]. It is amazing that these “poisons” are now used to treat angina pectoris, 

hypertonia, migraine headache, cerebral circulatory disorder, uterine contraction, hyper-

tension, serotonin-related disturbances, inhibition of prolactin-release in agalorrhoea, to 

reduce bleeding after child birth, and to prevent implantation in early pregnancy. Some of the 

ergot alkaloids also have antibiotic activity [10]. The roles of several genes from the ergot 

alkaloids synthesis gene cluster in Claviceps purpurea have been characterised [66] and their 

functions have been analyzed by heterologous expression or gene replacement 

approaches [67-69]. The non-ribosomal peptide synthetase (NRPS) that catalyzes the 

assembly of ergot-alkaloides is unique among fungal synthetases and consists of two 

separately encoded polypeptides, Lps1 and Lps2. Lps1 catalyzes the adenylation and 

thiolation of amino acids, while Lps2 activates D-lysergic acid [61]. The cluster also contains 
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genes predicted to encode oxidoreductases, a catalase and a gene for an additional NRPS, i.e. 

LpsC for which the function is still not known [70, 71]. 

Zearalenone (9) is another example of a mycotoxin with pharmacologically useful properties. 

It is a polyketide that is synthesised entirely from acetate-malonate units [72]. Zearalenone is 

produced by several Fusarium species [73]. It resembles 17β-estradiol, the principal hormone 

produced by the human ovary, to allow binding to the estrogen receptors in mammalian 

target cells. Thus, zearalenone is better classified as a nonsteroidal estrogen or mycoestrogen. 

It causes hyperestrogenism, especially in pigs, and reproductive disorders in experimental 

studies with animals and livestock [74]. The reduced form of zearalenone, i.e. α-zearalenol, 

has revealed to increase estrogenic activity [75]. Alpha-zearalenol was recently shown to 

inhibit atherogenesis, lowering plasma low-density lipoprotein (LDL), cholesterol and 

limiting aortic plaque formation in ovariectomised rabbits fed with high doses of 

cholesterol [76]. Although this estrogenic compound showed no mutagenicity in Ames tests, 

this substance induced chromosomal anomalies in some lymphocyte, oocyte, and kidney cell 

cultures [77]. A synthetic commercial formulation called zeranol has been successfully 

marketed for use as an anabolic agent for both sheep and cattle [78]. In 1989, zeranol was 

banned by the European Union, but is still in use in other parts of the world [79]. 

Zearalenone has also been applied for the treatment of postmenopausal symptoms in 

women [80], and both zearelanol and zearalenone have been patented as oral 

contraceptives [81]. In summary, the zearalenone family of metabolites is an example of both 

potentially harmful metabolites and promising pharmaceutical candidate. Recently, Graffoor 

et al. located two PKS genes (PKS4 and PKS13) [23] within the complete genome-sequence 

of Gibberella zea (alias Fusarium graminearum) and proved their involvement in 

zearalenone-biosynthesis via gene disruption experiments [82].  

Another fungal secondary metabolite, cyclosporine A (12), was originally discovered as a 

narrow spectrum antifungal metabolite produced by the fungus Tolypocladium infatum [83]. 

It is a lipophilic cyclic polypeptide that produces specific calcium-dependent reversible 

inhibition of transcription of interleukin-2 and several other cytokines, predominantly in T-

helperlymphocytes. This fungal secondary metabolite is associated with reduction of 

cytokine formation and inhibition of activation and/or maturation of various cell types. This 

includes as well those cells involved in cell-mediated immunity, thus, cyclosporine A is used 

as an immunosuppressant in human transplantation surgery and the treatment of autoimmune 

diseases [84]. The entire peptide biosynthesis of cyclosporine A is catalyzed by the 
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cyclosporin synthetase non-ribosomally. The gene encoding the cyclosporin synthetase of 

Tolypocladium infatum (simA) has been cloned and sequenced [85].  

A very old broad-spectrum compound, mycophenolic acid (7), first discovered in 1896 and 

never commercialised as an antibiotic, has recently been developed as a new 

immunosuppressant [86]. Before being developed for an approved immunosuppressant, this 

organic acid was used to treat psoriasis [10]. 5-Methylorsellinic acid, but not orsellinic acid, 

is a precursor of mycophenolic acid in P. brevicompactum [72]. PKS genes neither for 5-

methylorselinic acid synthase, nor orsellinic acid synthase have been found yet, although 

they are coding for simplest tetraketides that require no ß-keto-reductions (see 2.1) during 

their biosynthesis [50]. 

The members of the statin family of secondary metabolites are potent inhibitors of 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the key enzyme in 

cholesterol biosynthesis in humans [87]. Beside their main cholesterol-lowering effect, 

members of the statin family have also strong antifungal activities, especially against 

yeasts [10]. Brown et al. discovered in 1976 the first member of this group - compactin (10) 

(i.e. ML-236B), as an antibiotic product of P. brevicompactum. Independently, in the same 

year, Endo et al. discovered compactin in broths of P. citrinum as an inhibitor of HMG-CoA. 

Few years later Endo and Alberts independently discovered the more active methylated form 

of compactin known as lovastatin (11) (monacolin K or mevinolin) in broths of Monascus 

ruber and A. terreus, respectively [88]. These compounds are synthesised via the polyketide 

pathway and are composed of a conjugated decene ring system and 2-methylbutyryl side 

chain joined with an ester linkage [89]. The identification of a ~250 kDa polypeptide 

correlated with a production of lovastatin in A. terreus, and led to the cloning of the lovB 

gene that encodes lovastatin nonaketide synthase (LNKS) [90]. The lovastatin diketide 

synthase (LDKS) gene – lovF, was identified in the lovastatin biosynthetic gene cluster 

adjacent to the lovB gene [91]. The compactin (ML-236B) biosynthetic gene cluster was 

cloned from P. citrinum. The presence of mlcA and mlcB genes that show high homology 

with lovB and lovF genes, respectively, were identified in the gene cluster [92]. It is 

important to emphasise that natural statins and their derivates are an example of multibillion-

dollar drugs arising from fungal secondary metabolites [93]. One such derivative is 

pravastatin, which is produced by bioconversion of compactin [94].  
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Figure 2: Pharmaceuticaly approved fungal secondary metabolites. 
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1.3 Marine-derived fungal polyketide metabolites  

In search for novel and bioactive molecules for drug development, marine-derived natural 

resources have become an important research area. Although almost three quarters of the 

Earth’s surface is occupied by seas and oceans, the isolation from soil was rather a common 

method to get fungal isolates. However, since fungal strains from terrestrial sources often 

yielded already known secondary metabolites, it was obvious that new sources are needed 

and therefore marine fungi have become an important source for isolation of 

pharmacologically active metabolites [9, 95, 96].  

The group of marine-derived fungi include obligate marine fungi, which grow and sporulate 

exclusively in the marine or estuarine habitat, as well as facultative marine fungi, which grow 

equally well in marine, freshwater, and terrestrial environment [97]. Interestingly, all known 

marine fungal products have been isolated from cultured organisms, though, up to now it is 

estimated that fewer than 1% of all microorganisms, including fungi, have been successfully 

cultured [98]. As illustrated in section 1.2, terrestrial fungi produce many therapeutically 

significant molecules. Since marine organisms live in an environment significantly different 

from those of terrestrial organisms, it is reasonable to expect that their secondary metabolites 

will differ considerably. Although these natural resources have only recently been explored 

for natural products, there are currently over 15 fungal marine-derived secondary metabolites 

in clinical trials [13]. Moreover, it has been shown that among the nearly 300 new natural 

products isolated from marine-derived fungi [9], many of them are polyketides [13, 99]. 

Therefore, metabolites of this class might be the largest part of the secondary metabolites 

derived from marine as well as terrestrial microorganisms.  

Since the P. chrysogenum E01-10/3 (IFM-GEOMAR collection) strain being subject of this 

work was cultured from a sample of the Mediterranean sponge Ircinia fasciculata (Elba, 

Italy) and has been shown to be capable for production of polyketides with 

pharmacologically interesting features [100], it is of interest to illustrate in the following the 

potential bioactivities of fungal polyketide metabolites isolated from marine environments. 

These polyketides are presented in the following section dealing with polyketides isolated 

from the fungus P. chrysogenum (see 1.4, Table 2).  

All other polyketides that were up to date isolated from marine-derived fungi other than P. 

chrysogenum and have shown promising bioactivities are listed in the Table 1. Bioactive 

polyketides that were originally isolated from terrestrial fungi and later on re-isolated from 

marine-derived fungi, as well as marine-derived fungal polyketides without significant 
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bioactivity are not presented in this table. This list is covering reports from 1989 until 2008 

(February).  

 

Table 1: Bioactive polyketide metabolites from marine-derived fungi. 
 

Isolated fungus  
Source/ symbiont 
of Isolated polyketide(s) 

Reported 
bioactivity References 

Trichoderma 
reesei 

Marine mud Trichodermatide A-D (13) Cytotoxicity Sun et al., 
2008 [101] 

Penicillium sp. Ulva pertusa 
(marine green alga) 

Redoxicitrinin (14) Antioxidant 
activity 

Zhang et al., 
2007 [102] 

Gliocladium sp. Syringodium 
Isoetifolium (sea 
grass) 

Cladionol A (15) Cytotoxicity Kasai et al. 
2005 [103] 

Emericella 
variecolor 

Marine sediment Shimalactone A (16) Neurotrophic factor Wei et al., 
2005 [104] 

Penicillium 
terrestre 

Marine sediment Penicillones A and B (20) Cytotoxicity Liu et al., 
2005 [105] 

Cladosporium 
sp. 

Actinotrichia fragilis 
(marine brown alga) 

Sporiolides A and B (21) Cytotoxicity Shigemori et 
al., 2004 [106] 

Aspergillus sp. Mytilus edulis 
(marine mussel) 

Aspermytin A (22) Neurotrophic factor Tsukamoto et 
al., 2004 [107] 

Penicillium 
terrestre 

Marine sediment Dihydrobisvertinolone and 
Tetrahydrobisvertinolone 
(17) 

Cytotoxicity  Liu et al., 
2005 [108] 

2-(2’,3-dihydrosorbyl)-3,6-
dimethyl-5- hydroxy-1,4-
benzoquinone (18) 

3-acetonyl-2,6-dimethyl-5-
hydroxy-1,4-benzoquinone 
(19)

Phoma sp. - Phomoxin and Phomoxide 
(23), (24) 

Antioxidant 
activity 

Liu et al., 
2003 [109] 

Epicoccum sp. Fucus vesiculosus 
(marine brown alga) 

Epicoccone (25) Antioxidant 
activity 

Abdel-Lateff 
et al., 
2003 [110] 

Emericella 
variecolor 

Haliclona 
valliculata (marine 
sponge) 

Evariquinone and 
Isoemericellin (26), (27) 

Antiproliferative 
activity 

Bringmann et 
al. 2003 [111] 

Wardomyces 
anomalus 

Enteromorpha sp. 
(marine green alga) 

2,3,6,8-tetrahydroxy-1-
methylxanthone(37) 

Antioxidant 
activity 

Abdel-Lateff 
et al. 
2003 [112] 2,3,4,6,8-pentahydroxy-1-

methylxanthone (37) 

Aspergillus 
ostianus 

Marine sponge of 
Pohnpei 

8-chloro-9-hydroxy-8,9-
deoxyasperlactone (38) 

Antibiotic activity Namikoshi et 
al., 2003 [113] 

9-chloro-8-hydroxy-8,9-
deoxyasperlactone (38) 

9-chloro-8-hydroxy-8,9-
deoxyaspyrone (39) 
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Isolated fungus  
Source/ symbiont 
of Isolated polyketide(s) 

Reported 
bioactivity References 

Acremonium sp. Cladostephus 
spongius (marine 
brown alga) 

7-isopropenylbicyclo 
[4.2.0]octa-1,3,5-triene-2,5-
diol (36) 

Antioxidant 
activity 

Abdel-Lateff 
et al., 
2002 [114] 

7-isopropenylbicyclo 
[4.2.0]octa-1,3,5-triene-2,5-
diol-5-b-D-glucopyranoside 
(36)

Aspergillus 
parasiticus 

Carpopeltis cornea 
(marine red alga) 

Parasitenone (28) Antioxidant 
activity 

Son et al., 
2002 [115] 

Emericella 
variecolor 

Spong of the 
Caribbean Sea 

Varitriol , varioxirane and 
varixanthone (29) 

Cytotoxic and 
antibiotic 
properties 

Malmstrom et 
al. 2002 [116] 

Paecilomyces 
sp. 

Coral reef Paecilospirone (30) inhibitor of 
microtubule 
assembly 

Namikoshi et 
al. 2000 [117] 

Penicillium sp. Mytilus 
coruscus(marine 
bivalve) 

Sculezonones A and B (32) Inhibition of DNA 
polymerase 

Komatsu et al. 
2000 [118] 

Penicillium sp. Enteromorpha 
intestinalis (marine 
alga) 

Penochalasins A-C (33) Cytotoxicity Numata et al. 
1996 [119] 

Unidentified 
fungus 

Spirastrella 
vagabunda (sponge) 

14,15-Secocurvularin (31) Antibiotic activity Abrell et al. 
1996 [120] 

Penicillium sp. Sea sediment Epolactaene (34) Neuritogenic 
activity  

Kakeya et al. 
1995 [121] 

Passeriniella 
obiones 

Spartina alterniflora 
(salt marsh grass) 

Obionin A (35) CNS activity  Poch et al. 
1989 [122] 

 

 

Figure 3: Bioactive polyketide metabolites from marine-derived fungi. 
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Evidentially, polyketides isolated from marine-derived fungi represent an interesting group 

of bioactive substances that display myriads of effects on cell systems such as antioxidant, 

antibiotic, cytotoxic, neurotrophic and antiproliferative activities. Furthermore, polyketides 

can act as inhibitors of microtubule assembly, be responsible for inhibition of DNA 

polymerase or have antagonistic effect on receptors in the central nervous system (CNS). 

Their structural complexity can be quite impressive which complicates the establishment of 

commercially viable synthesis [13]. In addition, it is extremely difficult to provide sufficient 

amounts of active substances from fungi due to their limited levels of biosynthesis. 

Biosynthesis of bioactive marine-derived polyketides is dependent on many factors, one of 

which is certainly the rare occurrence of fungi themselves, especially those from marine 

environment. The establishement of fermentation procedures for such microorganisms would 

be an option, even though good knowledge on the biosynthetic as well as the genetic 

background of a particular strain is an essential prerequisite. Therefore, the research on 

marine fungi and the use of biotransformation and biotechnological methods may help to 

obtain potent candidates among polyketides for clinical use. 

1.4 The diversity of polyketides produced by fungus P. chrysogenum  

P. chrysogenum is an ascomycotina fungus belonging to the genus Penicillium that together 

with other members of subgenus Penicillium has a characteristic terverticillate 

penicill. [123]. It is a ubiquitous fungus, among the most common eukaryotic life forms on 

earth. It occupies a wide range of habitats including soils, decaying vegetation and foods, and 

several other habitats from marine environment. Thus, the distribution of the fungus appears 

to be universal, throughout all biologically accessible regions and climates [124].  
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In 1927 Fleming incorrectly identified the producer of the β-lactam antibiotic penicillin (6) as 

P. rubrum. This view was corrected by Clutterbuck and collaborators in 1932 proving that 

Fleming’s penicillin producing strain is actually P. chrysogenum [125]. It has been reported 

that P. chrysogenum strains produce a surprisingly high number of antibiotic families - 

penicillins, sorbicillins, secalonic acids, roquefortines, xanthocillins, questiomycins, 

negapillin, notatin and the antifungal protein PAF. The reason for this high number of 

identified compounds is based on the fact that P. chrysogenum has been intensively 

investigated since 1940 for antibiotics other than penicillin [126].  

Moreover, several polyketides were up to date isolated from different P. chrysogenum 

strains. Among them are the teratogenic mycotoxins secalonic acid (60) that posseses 

antibiotic, antifungal, antitumour and antiulcer activity [126-128]. Two oktaketides, emodic 

acid (61) and ω-hydroxy emodin (62) were isolated form this fungus in 1940s. Since that 

time several studies were conducted to investigate potential bioactivities of these two 

compounds [129-131]. There is evidence that emodic acid, due to its capability to mediate 

generation of reactive oxygen species (ROS), could be employed in targeted chemotherapy 

of tumours by coupling with receptors that are preferentially expressed by tumour cells [132]. 

The xanthoviridicatins E (58) and F (59) are two novel polyketide natural products isolated 

from a fermentation broth of an endophytic strain of P. chrysogenum from living leaves 

collected in Peru. The HIV-1 integrase inhibitory activity of these two compounds was 

described by the Merck Research Laboratories in 2003 [133]. 

The yellow pigment sorbicillin (40) has been observed previously as a minor metabolite of P. 

chrysogenum (formerly known as P. notatum) by Cram et al. in 1948 [134]. Later it was 

shown by Abe and collaborators that sorbicillin exhibits scavenger activity against 1,1-

diphenyl-2-picrylhydrazyl (DPPH) free radical [135]. The typical carbon skeleton of 

sorbicillin is found in a wide variety of fungal metabolites, which accordingly are called 

sorbicillinoid or, in the case of dimers, bisorbicillinoid natural products [136]. Several fungal 

genera, including Penicillium, Trichoderma, Verticillium, Aspergillus, and Paecilomyces, 

produce sorbicillinoids and bisorbicillinoids [137].  

During the course of time, numbers of sorbicillinoid and bisorbicillinoid compounds were 

reported from different P. chrysogenum strains [100, 136, 138, 139]. However, the majority 

of strains sequester the bisorbicillinoid yellow pigment trichodimerol (56) [136, 140], which 

have recently been prepared in biomimetic syntheses [141]. It has been shown that 

trichodimerol suppresses the formation of tumor necrosis factor alpha (TNF-α) [142]. In the 

year 1995, Miller and Huang isolated the new sorbicillinoid monomer that was named 
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sorrentanone (42) [139] due to its distinctive sorrel color. Within the same study, this 

compound showed activity against both Gram-positive and Gram-negative bacteria. They 

also isolated bisvertinolone (57), dimeric sorbicillin-related natural product [143], that was 

originally isolated from fungus Verticillium intertestum [144]. Bisvertinolone is reported to 

be a ß-1,6-glucan biosynthesis inhibitor [145] and a potent DPPH radical scavenger [135].  

The group of Laatsch from Göttingen isolated and characterised from a P. chrysogenum 

strain that was actually a bench top contaminant some sorbicillin analogues and related 

dimeric compounds [138]. Among isolated compounds were the monomers 2’,3’-

dihydrosorbicillin (41), the new sohirnones A-C (43-45), oxosorbicillinol (46; a stable 

tautomer of sorbicillin) and 7-deacetoxyyanuthone (49). This group also isolated a complex 

mixture of dimeric compounds containing the sorbicillin skeleton, i.e., the Diels-Alder 

dimers bisorbicillinol (52), its dihydro derivative bisvertinoquinol (53), bisorbibutenolide 

(54) and the new adducts rezishanones A-D (55). All compounds were tested for potential 

antimicrobial activity in the agar diffusion tests against several bacterial, fungal and algal 

species. The (41), (43), (44), (46), (49), (52), (53), and (55) exhibited weak activity against 

Staphylococcus aureus and Bacillus subtilis. Fungi and algae were not inhibited by any of the 

isolated compounds [138]. In one prior study it was shown that 7-deacetoxyyanuthone 

exhibits weak cytotoxicity against human solid tumor cells [146]. In addition, DPPH radical 

scavenging activity was previously reported for bisorbicillinol, bisvertinoquinol and 

bisorbibutenolide by Abe et al. [135]. 

In the search for novel bioactive compounds from sponge-derived microorganisms, research 

groups within the BMBF funded “BIOTECmarin”consortium identified three novel 

sorbicillin-derived compounds from the P. chrysogneum strain cultured from a sample of the 

Mediterranean sponge Ircinia fasciculata (Elba, Italy). Among these compounds there are 

two structurally and biosynthetically unprecedented fungal metabolites, the novel-type 

alkaloids sorbicillactone A (50) and its 2’,3’-dihydroanalog sorbicillactone B (51) [136, 147]. 

Moreover, sorbicillactone A exhibits highly selective activity against the murine leukaemic 

lymphoblast cell lane L5178y, and has antiviral and neuroprotective properties [136, 148]. 

Despite its almost identical molecular structure, sorbicillactone B is significantly less active 

than sorbicillactone A (by factor 10) [136, 148]. The third novel sorbicillin-derived 

compound sorbivinetone (48) might be an artifact derived from sorbicillinol by Diels-Alder 

reaction with ethyl vinyl ether [136].  
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A short overview on bioactivities of mentioned polyketide metabolites from different P. 

chrysogenum strains is given in Table 2, while chemical structures of these metabolites are 

shown in Figure 5. 
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Figure 4: HPLC chromatogram of metabolites isolated from P. chrysogenum strain E01-10/3.  
Newly isolated substances during the course of this study [136] are given in red (personal 
communication) [149]. 
 

 
Table 2: Reported diversity of polyketides produced by P. chrysogenum. 
 
P. chrysogenum polyketide(s) Reported bioactivity References 

2’, 3’-Dihydrosorbicillin (41) Antibiotic activity Maskey et al., 2005 [138] 

7-Deacetoxyyanuthone (49) Antibiotic and cytotoxic activity Maskey et al., 2005 [138] 

Bisorbibutenolide (54) Antioxidant activity Maskey et al., 2005 [138] 

Bisorbicillinol (52)  Antibiotic and antioxidant activity Maskey et al., 2005 [138] 

Bisvertinolone (57) Antioxidant activity and 
ß-1,6-glucan biosynthesis inhibitor 

Trifonov et al., 1986 [144] 

Bisvertinoquinol (53) Antibiotic and antioxidant activity Maskey et al., 2005 [138] 

Emodic acid (61) and ω-hydroxy 
emodin (62) 

Antitumour Rahimipour et al., 2001 [132] 

Oxosorbicillinol (46) (tautomer)  Antibiotic activity Maskey et al., 2005 [138] 

Rezishanones A-D (55) Antibiotic activity Maskey et al., 2005 [138] 

Secalonic acid (60) Antibiotic, antifungal, antitumour 
and antiulcer activity 

Frisvad et al., 2004 [126] 

Sohirnones A (43)and B (44) Antibiotic activity Maskey et al., 2005 [138] 

Sorbicillactone A (50) and B (51) Cytotoxicity, antiviral and 
neuroprotective activities 

Bringmann et al., 2005 [136] 
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P. chrysogenum polyketide(s) Reported bioactivity References 

Sorbicillin (40) Antioxidant activity Cram et al., 1948 [134] 

Sorbivinetone (48) - Bringmann et al., 2005 [136] 

Sorrentanone (42) Antibiotic activity Miller et al., 1995 [139] 

Trichodimerol (56) Anti-inflammatory activity 
(suppression of the formation of 
TNF-α) 

Andrade et al., 1999 [140] 

Xanthoviridicatin E (59) and F (59) Inhibition of HIV-1 integrase Singh et al., 2003 [133] 

 

 

Figure 5: Polyketides produced by different P. chrysogenum strains. 
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As shown above, many polyketides have been isolated from P. chrysogenum. In this context, 

a surprisingly high number of sorbicillinoid and bisorbicillinoid compounds are found among 

these polyketides. To the best of my knowledge, none of these metabolites has been up to 

date associated with certain PKS genes. In particular, in light of the diverse structures and 

interesting bioactivities it is of scientific interest to identify genes involved in biosynthesis of 

these compounds. Especially for sorbicillinoid and bisorbicillinoid compounds, it would be 

challenging for researchers to disclose the genetics behind the biosynthesis of these bioactive 

and structurally related fungal secondary metabolites. 

2 Polyketide biosynthesis  

More than hundred years ago, Collie coined the term “polyketide” for natural products 

derived from simple two-carbon acetate building blocks [89]. This proposal was later proven 

experimentally by Birch who used isotopically labelled acetate in the study of 6MSA 

biosynthesis in fungi and showed that it was formed from four acetate units. Then, Lynen and 

his coworkers succeeded in detecting MSAS activity in a cell-free extract of P. patulum, the 

first demonstration of polyketide synthase function in vitro. These chemical and biochemical 

experiments with fungi established the concepts of “polyketide biosynthesis” and “polyketide 

synthase” (PKS) [89]. Nowadays it is obvious that polyketides represent the largest family of 

structurally diverse secondary metabolites synthesised in both prokaryotic and eukaryotic 
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organisms [150]. The biological activities associated with polyketides encompass e.g. 

antibacterial, antiviral, antitumor, antihypertensive activities, as well as immunosuppressant 

and mycotoxin compounds. 

2.1 The molecular background to understand polyketide biosynthesis 

Independent of their structural diversity all polyketides have a common biosynthetic origin. 

They are derived from highly functionalised carbon chains whose assembly mechanism has 

close resemblance to the fatty acid biosynthetic pathway [151]. The assembly process is 

controlled by multifunctional enzyme complexes called PKS [150]. The core of the PKS 

function is the synthesis of long chains of carbon atoms through repetitive Claisen 

condensation reactions of small organic acids (such as acetic and malonic acid) via a 

ketosynthase (KS) enzyme activity. The building units, acetate, propionate, malonate or 

methylmalonate, are activated units in form of coenzyme A (CoA) esters, such as acetyl-CoA 

and malonyl-CoA, before involvement in the assembly of the polyketide chain. The most 

common starter-unit acetyl-CoA with two carbon atoms is condensed with a malonyl-CoA, 

with three carbons, to give a chain of four carbon atoms with loss of one carbon dioxide. 

Only two carbons are included into the chain in each round of condensation with malonyl-

CoA (see Figure 6). If the extender unit is methylmalonyl-CoA, the “extra” carbon forms a 

methyl side branch to keep the original extension speed in the main chain [152]. Each 

condensation is followed by a cycle of optional modifying reactions that involve the enzymes 

ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) in the subsequent reduction 

steps. At this stage, a major difference between fatty acid and polyketide biosynthesis 

becomes apparent. Fatty acid synthases (FAS) catalyze the full reduction of each ß-keto 

moiety prior to further chain extension in every cycle. The polyketide biosynthesis, however, 

shows a higher degree of complexity due to full or partial omission of reduction steps 

following condensation [23] and thus affecting function: ß-keto (no reduction), ß-hydroxy 

(keto reduction), enoyl (keto reduction and dehydration), to alkyl (keto reduction, 

dehydration and enoyl reduction).  

This control of ß-keto reduction is the key feature of the reducing PKS (R PKS) that 

differentiates these enzymes from FAS and that leads to a great structural diversity among 

polyketide compounds [153, 154]. The ability to use different chain starter-units (such as 

acetate, benzoate, cinnamate, and/or amino acids) and alternate extender units (malonate, 

methylmalonate and ethylmalonate) by bacterial synthases gives rise to further structural 

diversity among the polyketides. The assembled polyketide chain can also undergo further 
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modifications such as cyclization, reduction or oxidation, alkylation, and rearrangements 

after release from a PKS [23]. 

 

Figure 6. The chemistry of polyketide chain assembly. 
A. After activation as the corresponding coenzyme A (CoA) esters, acetyl and malonyl units are attached by specific 

acyl transferases to components of the polyketide synthase (PKS). The starter-unit acetyl-CoA is attached to the 
active site (cysteine thiol) of the ketosynthase (KS), which catalyzes condensation, and the extender unit malonyl-
CoA to a thiol residue of the acyl carrier protein (ACP). One carbon from malonyl-CoA is lost as carbon dioxide 
during the condensation to yield a four-carbon chain attached to the ACP. After transfer back of the saturated chain 
from the ACP to the KS, the cycle is then repeated to produce a polyketide chain.  

B. The three-step reductive cycle that converts a keto group to a hydroxyl, then to a double bond, and finally to a fully 
saturated carbon.  

C. A complex polyketide containing keto groups, hydroxyl groups, double bonds and fully saturated carbons at 
different positions. (Hopwood, 2004) [152]. 

 

2.2 Types of polyketide synthases 

In analogy to the classification of FASs, PKSs have traditionally been subdivided into two 

main categories [155]. The first category encompasses multifunctional modular systems that 

ddeehhyyddrraattaassee  
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are responsible for the biosynthesis of macrolactones, polyenes and polyethers and are 

designated as type I PKS [156]. The fully dissociable complex of small, discrete 

monofunctional proteins that catalyze the biosynthesis of bacterial aromatic polyketides is 

termed type II PKS [157]. In the past decade, as cloning and sequencing of PKS genes were 

advancing especially since the discovery of fungal and plant PKSs, these categories of PKSs 

were redefined and enriched by type III PKS and the expansion of type I PKS into two 

subclasses, modular type I PKSs and iterative type I PKSs (see Figure 7) [158].  

The modular type I PKSs representing bacterial systems are large multifunctional 

polypeptides arranged in a modular fashion with each module being responsible for one 

round of chain extension and subsequent β-keto processing. Particularly, each active site in 

modular type I PKS is used only once during polyketide biosynthesis [156].  

The iterative type I PKSs are responsible for the biosynthesis of fungal metabolites such as 6-

methylsalicyclic acid [45] and lovastatin (11) [90, 91]. The iterative type I PKS has only one 

multidomain protein, in which all the enzyme activities are covalently bound together. The 

single multifunctional protein is used iteratively to catalyze multiple rounds of chain 

elongation and appropriate β-keto processing [156]. 

In the iterative type II PKSs, the active site for each biosynthetic step is encoded in a single 

gene. There is only one set of a heterodimeric ketosynthase (KSα-KSβ) and an acyl carrier 

protein (ACP), that have to operate a specific number of times to build a polyketide chain in 

correct length and subsequent cyclisation, reduction and aromatization are performed by 

cyclase (CYC), KR and aromatase (ARO), respectively (see Figure 7). In some type II PKSs, 

the malonyl-CoA ACP acyl transferase (MAT), which catalyzes acyl transfer between 

malonyl-CoA and the ACP, is missing and is possibly shared between the PKS and the 

housekeeping FAS [159]. The type II PKSs usually catalyze the biosynthesis of a broad 

range of polyfunctional aromatic natural products and are so far restricted to bacteria [157].  

In contrast to the type I and II PKSs that are composed of ketosynthases and accessory 

enzymes, the type III PKSs are dimers of KS-like enzymes (more precisely homodimers) that 

accomplish a complex set of reactions, such as priming of a starter-unit, decarboxylative 

condensation of extender units, ring closure, and aromatization of the polyketide chain, in a 

multifunctional active site pocket [160] (see Figure 7). Chalcone synthases, the most well-

known representatives of this family, are ubiquitous in higher plants and provide the starting 

material for a diverse set of biologically important phenylpropanoid metabolites [161]. Type 

III PKSs were traditionally associated with plants but recently discovered in a number of 

bacteria [162] as well as in fungi [160, 163]. 
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Figure 7 : Different classes of polyketide synthases.  
Modular type I PKSs consist of multi-domain proteins forming a modular unit for each condensation cycle. In 
iterative type I PKSs, one copy of each active domain, ketosynthase (KS), malonyl-acetyl transferase (MAT), 
acyl carrier protein (ACP) and optional activites for reduction, ketoreductase (KR), dehydratase (DH) and 
enoyl reductase (ER) are assembled in one protein and iteratively used during the biosynthesis. In contrast, 
active sites of type II PKSs are encoded in different genes and act in an iterative fashion. Type III CHS-like 
PKS have a simple architecture like CHS (a homodimer of identical KS monomeric domains) with an 
optional chalcone reductase (CHR). TE, thioesterase; CYC, cyclase; ARO, aromatase [164].  
 

2.3 Fungal polyketide synthases 

Up to date, only few fungal PKS genes have been isolated as compared to the large number 

of isolated bacterial PKS genes. In general, the fungal PKSs are iterative type I enzymes [23]. 

The non-iterative fungal type I PKS perform only one condensation cycle and result in a 

production of a diketide (e.g. LDKS). Each one that has been characterised so far is encoded 

by a gene that resides in a gene cluster, along with a PKS gene encoding an iterative 

PKS [90, 92]. Recent genome projects for Neurospora crassa [165] and A. oryzae [166] 

predict the presence of type III PKS genes in these filamentous fungi [160, 163]. On the other 

side, fungal modular type I and fungal type II systems have not yet been observed [23]. 

Unfortunately, the nomenclature in the area is rather confusing with many fungal PKS genes 
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being named pks1 or similar. Cox et al. brought some order in this area and established a 

system based on the function of genes (see Table 3). 

The minimal domain structure of fungal PKSs consists of KS, AT and ACP domains. The KS 

domain is the most highly conserved domain in type I PKSs and FASs [167]. The optional β-

keto processing reactions may be catalysed by KR, DH, and ER domains, in a stepwise 

fashion. Further accessory domains are represented by CYC and methyl transferase (MT) 

activities [168]. The C-methylation takes place during polyketide chain formation due to 

activity of this intrinsic MT domain, thus it is not a tailoring reaction as it can be in the case 

of O- and N-methylation reactions governed by distinct enzymes following polyketide 

assembly [169]. It is important to note that in the fungal polyketide biosynthesis there are no 

methylmalonyl elongation units employed, in contrary to the numerous examples of the 

bacterial type I PKSs. As previously mentioned, the fungal iterative PKS can use each active 

site in an iterative way during chain assembly and determine the degree of reduction and C-

methylation within each elongation round. It is fascinating, but a still not resolved mystery, 

how a single set of active domains determines chain length, degree of reduction, and timing 

of C-methylation at a particular step in the pathway [168]. 

 

Table 3. Fungal PKS genes.  
 
Organism Gene Synthase 

component 
Final product PKS type Reference 

Acremonium 
strictum 

PKS1 MOS 3-methylorcinaldehyde  NR PKS Bailey et al. 2007 [170] 

A. fumigatus alb1 alb1p YWA1 NR PKS Watanabe et al. 
2000 [171] 

A. nidulans PKST NSAS Sterigmatocystin NR PKS Minto and Townsend 
1997 [172] 

A. nidulans wA WAS YWA1 NR PKS Watanabe et al. 
1999 [173] 

A. parasiticus pksA NSAS Aflatoxin B1 (1) NR PKS Minto and Townsend 
1997 [172] 

A. terreus atX MSAS 6-MSA PR PKS Fuji et al. 1996 [46] 

A. terreus lovB LNKS Lovastatin (11) HR PKS Kennedy et al. 
1999 [91] 

A. terreus lovF LDKS Lovastatin (11) HR PKS Kennedy et al. 
1999 [91] 

Beauveria 
bassiana 

ORF4 TENS Tenellin HR PKS Eley et al. 2007 [174] 
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Organism Gene Synthase 
component 

Final product PKS type Reference 

Cochliobolus 
heterostrophus 

pks1 TTS1 T-toxin HR PKS Yang et al. 1996 [175] 

Cochliobolus 
heterostrophus 

pks2 TTS2 T-toxin HR PKS Baker et al. 2006 [176] 

Colletotrichum 
lagenarium 

PKS1 THNS Tetrahydroxy 
naphthalene 

NR PKS Takano et al. 
1995 [177] 

Dothistroma 
septosporum 

pksA NSAS Dothistromin NR PKS Bradshaw et al. 
2006 [178] 

Fusarium 
heterosporum 

eqiS EQS Equisetin HR PKS Sims et al. 2005 [179] 

Fusarium 
moniliforme 

ORF3 FUSS Fusarin C HR PKS Song et al. 2004 [180] 

Gibberella zeae PKS13 ZS–B Zearalenone (9) NR PKS Gaffoor and Trail 
2006 [82] 

Gibberella 
fujikuroi 

fum1 FUMS Fumonisin B1 (5) HR PKS Proctor et al. 1999 [42] 

Gibberella zeae PKS4 ZS–A Zearalenone (9) HR PKS Gaffor and Trail 
2006 [82] 

Glarea 
lozoyensis 

pks2 MSAS 6-MSA PR PKS Lu et al. 2005 [47] 

Monascus 
purpureus 

pksCT CitS Citrinin (2) NR PKS Shimizu et al. 
2005 [33] 

P. citrinum mlcA CNKS Compactin (10) HR PKS Abe et al. 2002 [92] 

P. citrinum mlcB CDKS Compactin (10) HR PKS Abe et al. 2002 [92] 

P. patulum MSAS MSAS 6-MSA PR PKS Beck et al. 1990 [45] 

Phoma sp. PhPKS1 SQTKS Squalestatin tetraketide HR PKS Cox et al. 2004 [181] 

Wangiella 
dermatitidis 

WdPKS1 THNS Tetrahydroxy 
naphthalene 

NR PKS Feng et al. 2001 [29] 

PKS, polyketide synthase; NR, non-reduced; PR, partially-reduced; HR, highly-reduced; NSAS , norsolorinic 
acid synthase; WAS, naphthopyrone synthase; YWA1, napthopyrone; THNS, tetrahydroxynaphthalene 
synthase; ZS-A, zearalenone synthase A; ZS-B, zearalenone synthase B; CitS, citrinin synthase; MOS, 3-
methylorcinaldehyde synthase; MSAS, 6-methylsalicylic acid synthase; 6-MSA, 6-methylsalicylic acid; LNKS, 
lovastatin nonaketide synthase; LDKS, lovastatin diketide synthase; CNKS, compactin nonaketide synthase; 
CDKS, compactin diketide synthase; SQTKS, squalestatin tetraketide synthase; TTS1, T-toxin synthase 1; 
TTS2, T-toxin synthase 2; FUMS, fumonisin synthase; FUSS, fusarin synthase; EQS, equisetin synthase; 
TENS, tenellin synthase [23, 50]. 
 

2.3.1 Classification of fungal polyketide synthases 

According to their architecture and the presence or absence of additional ß-keto-processing 

domains, fungal PKSs are grouped into the non-reducing (NR PKS), partially-reducing (PR 

PKS), and highly-reducing PKSs (HR PKS) [168]. Recent phylogenetic studies on the basis 
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of KS amino acid sequences have provided valuable insights into the evolutionary 

relationship between different types of fungal PKS [169, 182]. Kroken et al. showed that 

amino acid sequences of fungal KS domains cluster according to the degree of reduction of 

their products into reducing (ß-keto reductive domains: KR, ER,DH) and non-reducing PKSs 

(no ß-keto reduction), each type being further divided into four subclades [167]. 

Non-reducing PKSs 

NR PKS are shown to be responsible for the biosynthesis of non-reduced polyketides such as 

1,3,6,8-tetrahydroxynaphthalene, norsolorinic acid (NA) and naphthopyrone (YWA1), that 

require no ß-keto reductive steps during their biosynthesis [23]. In all cases, known genes for 

these synthases encode type I iterative PKS proteins [50]. The main characteristic of NR 

PKSs is that they do not contain ß-keto processing domains in their multidomain 

organization. At the N-terminus, a domain is present that appears to mediate the loading of a 

starter-unit and is thus named starter unit–ACP transacylase (SAT) component (see Figure 

8). It is assumed that the starter unit is derived from a corresponding FAS, another PKS or an 

acyl-CoA. The SAT domain is followed by typical KS and AT domains responsible for chain 

extension and malonate loading. Beyond the AT there is a conserved domain designated as a 

product template (PT) with a not yet proven function. Nevertheless, a sequence analysis of 

this domain suggested that it may be involved in the control of chain-length. The PT domain 

is followed by one or more ACP domains. Some NR PKS appear to terminate after the ACP, 

but many feature a diverse range of different domains including Claisen-cyclase–thioester-

ases (CLC–TE), MT and reductases (R). Although not described in the literature, a sequence 

analysis of the M. purpureus pksCT sequence [33] showed that it has a C-terminal thioester 

reductase domain. Similar domains were found in the NRPS systems with reductase domains 

as chain release mechanisms resulting in an aldehyde or primary alcohol. Very recently, by 

joint efforts Cox and Simpsons demonstrated the role of the terminal reductase domain in 

product release via heterologous expression of MOS in A. oryzea [170]. In sum, it appears 

that these synthases are equipped with an N-terminal loading component, a central chain 

extension component consisting of KS, AT and ACP domains with a possible control over a 

number of extensions, and a C-terminal processing component as shown in Figure 8. 
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Figure 8. General domain organisation of NR PKSs. 
The general architecture of NR PKS genes in fungi: SAT, starter unit ACP transacylase; KAS, ß-
ketoacylsynthase; AT, acyl transferase; PT, product template; ACP, acyl carrier protein; TE, thiolesterase; 
CLC, Claisen cyclase. There is a possibility that other domains can be included as well at the C-terminus after 
TE/CLC (e.g. C-MeT; see next figure). According to Cox 2007 [50]. 
 

Partially reducing PKSs 

Less is known about the enzymology of the PR PKS [50]. The domain structure is much 

closer to mammalian FASs, with an N-terminal KS followed by AT, and DH domains. A so-

called “core” domain follows the DH, and this is followed by a KR domain. A typical PR 

PKS terminates with an ACP domain as e.g. for MSAS (see Figure 9). The domain structure 

differs considerably from the NR PKS in such a way that there is no SAT or PT domain, and 

the PKS terminates after the ACP with obviously no requirement for a CLC–TE domain 

responsible for offloading of the product. Although a number of PR PKS genes are known 

from genome sequencing projects, only three genes have been matched to their chemical 

products - in all cases the tetraketide 6MSA (e.g., a single round of KR and DH) [23].  

The first MSAS to be discovered was from P. patulum, encoded by MSAS [45]. The Ebizuka 

group have worked with the atX gene from A. terreus [46] and most recently Tkacz et al. 

have described an MSAS gene (pks2) isolated from Glarea lozoyensis [47]. Both P. patulum 

and A. terreus MSAS form homo-tetramers [50]. A short region of the core domain was 

identified by Fujii et al.; the presence of this region region proved to be essential for 

successful complementation among diverse deletion mutants of atX gene. It was 

hypothesised that this region of 122 amino acids probably forms a motif required for 

subunit–subunit interaction. Interestingly, this core sequence is present in other fungal PR 

PKS, and in the bacterial PKS such as CalO5 from calicheamicin biosynthesis [183, 184]. 

 
Figure 9. Domain organisation of MSAS.  
Domain architecture of MSAS encoded by A. terreus at X, G.lozoyensis pks2 and P. patulum MSAS: KAS, ß-
ketoacylsynthase; AT, acyl transferase; dehydratase (DH); “Core” domain; ketoreductase (KR), and ACP, acyl 
carrier protein enoylreductase (ER). According to Cox 2007 [50]. 

Highly reducing PKSs 

The HR PKSs is the third class of fungal PKSs that produce complex, highly reduced 

compounds such as lovastatin (11), T-toxin, fumonisin B1 (5) and squalestatin. These PKSs 
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have an N-terminal KS domain, followed by AT and DH domains. In many cases, the DH is 

followed by a MT domain. Some HR PKSs possess an ER domain, in others there is a 

roughly equivalent length of sequence without known function. An ER domain is succeeded 

by a KR domain, and finally the PKS often terminates with an ACP (see Figure 10). The 

lovB, gene that encodes for LNKS involved in lovastatin biosynthesis, appears to encode one 

part of an NRPS condensation (C) domain immediately downstream of the ACP. It was 

proposed that this domain plays role in product release. In general, in HR PKS there seems to 

be no domains that are similar to the PT or SAT domains of the NR PKS, as well as no “core 

domain” of the PR PKS [50]. PKS genes of all three classes identified up to now are 

presented in Table 3. 

 
Figure 10. General domain organisation of HR PKSs.  
General domain architecture of HR PKSs: KAS, ß-ketoacylsynthase; AT, acyl transferase; dehydratase (DH); 
C-MeT, methyltransferase; enoylreductase (ER) as optional; ketoreductase (KR), and ACP, acyl carrier 
protein. According to Cox 2007 [50]. 

2.4 Current challenges in the fungal polyketide research area 

The number of genes and chromosomes, as well as sizes of fungal genomes are not yet 

known exactly [185]. The variability of intraspecies ploidy levels is an important 

consideration in fungi, while it can lead to variations in estimation of genome size and 

chromosomes number. Compared with bacteria, fungi have larger genomes: ~90% of the 

available fungal data are within the range of 10–60 megabases (Mb), with an average of ~37 

Mb [186]. Generally, fungal genomes are compact, showing a high gene density, i.e. one 

gene in every 2.1 – 3.6 kb of a genome [187-189]. Introns are usually small in fungal genes, 

ranging from 50 to 300 bp in the majority of cases. In Saccharomyces cerevisiae, introns are 

rare; only 4% of genes are interrupted by introns [187]. The frequency of introns in other 

fungi is considerably higher; as much as 43% among S. pombe genes [188]. The splice sites 

resemble general eukaryotic consensus sequences [190]. Thus, the determination of gene 

structure is relatively straightforward in S. cerevisiae due to its high gene density and low 

frequency of introns. In contrast, the identification of genes within the genomic sequences of 

other fungi has proven to be much more challenging [185].  

2.4.1 Accessing DNA sequences of fungal genomes 

Over 40 fungal genomes sequences are currently publicly available with over 40 additional 

projects underway. These genomes represent important human pathogens, plant pathogens, 
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saprophytes, and model organisms from all four major fungal groups i.e., ascomycetes, 

basidiomycetes, zygomycetes, and chytrids [191].  

At the very beginning it is important to note that extraction of genomic DNA represents an 

essential step for the molecular analyses of fungi. The standard method to prepare fungal 

DNA consists of lyophilization of mycelia, disruption of cell wall by grinding, extraction of 

DNA in buffers containing detergents like sodium dodecyl sulfate, removal of proteins with a 

mixture of phenol and chloroform, and precipitation of DNA with 2-propanol [192]. Such a 

method is particularly suitable to obtain a large amount of pure DNA usually needed for the 

preparation of genomic libraries within the course of sequencing of fungal genomes. 

However, it is time consuming and is associated with labor intensive method, furthermore, it 

generates toxic phenol and chloroform waste [193]. Therefore, developing rapid and simple 

methods for DNA preparation on a small scale are goals of researchers in this area ever since. 

Although many current fungal DNA extraction procedures eliminate the contaminants that 

commonly inhibit the PCR, the resulting protocols are still laborious and costly [194]. Thus, 

the fungal research community still needs to work on protocols for genomic DNA isolation 

that meet with efficient procedure and purity of isolated DNA, both of which is needed for 

PCR-based applications, screening transformants to obtain isolates with a targeted gene 

modification or for the preparation of fungal genomic libraries. 

Initially, eukaryotic genomes were sequenced based on mapped, large-insert clones, e.g., 

cosmids and Bacterial Artificial Chromosomes (BACs). Later on, whole-genome shotgun-

sequencing has proved to be a more efficient approach for sequencing of fungal 

genomes [185]. Despite this improvement, such projects still leave behind hundreds of clone 

gaps even after multiple coverage of the genome [165, 185]. Some gaps may result from 

DNA sequences that are not clonable in E. coli or present difficulties for conventional 

sequencing reactions. A sequencing of additional clones from different genomic libraries 

with different technologies will be necessary to improve genome assemblies. However, all 

fungal genome-sequencing projects usually exclude reads that cannot be assembled. Many of 

these unassembled reads are repetitive sequences often associated with telomeres, 

centromeres, and ribosomal DNA (rDNA) repeats. Robust automated methods are needed to 

include non-mitochondrial excluded reads into genome assemblies [195]. These facts 

indicate that the sequencing of fungal genomes itself represents a challenging point in this 

area of research. In addition, the data of many fungal genome projects are not yet publicly 

accessible [185]. 
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2.4.2 Targeting PKS genes from fungal genome DNA sequence 

Besides whole genome sequencing there are other methods to access genes of interest within 

a particular fungal genome. A partial sequencing approach can be used as well in order to 

target PKS genes in microorganisms. In this approach, randomly chosen small fragments 

(~500 bp) of uniformly sized random genomic library (~1 kb fragments) are subject to 

sequencing in order to identify PKS genes within that genomic library. It is clear that this 

approach is only effective when the target PKS gene cluster comprises a significant portion 

of the genome (0.4-1%) as in the case of modular PKS clusters (40-150 kb each) within 

relatively small-sizes bacterial genomes (average 4-10 Mb). In opposite to this, the iterative 

fungal type I PKS genes are only 6-8 kb in size, and the fungal genomes are at least twice 

that of an actinomycete, making it unlikely that this library-sequencing method could be 

efficient [23].  

Thus, for finding fungal PKS genes it is the usual approach to establish and screen the 

genomic (cosmid or BAC) as well as the complementary (cDNA; e.g. phage) DNA libraries 

via Southern hybridization with heterologous or homologous probes and/or by PCR with 

degenerated primers [168]. These methods are facing several challenges, at first due to the 

quite low sequence conservation among fungal PKS genes. Consequently, the use of PKS 

probes derived from bacterial sources is not generally successful [23]. Even more important, 

fungal PKS genes which are not functional homologues are rather highly divergent to serve 

as probes for cloning novel PKS genes [182]. The strategy of designing degenerate PCR 

primers based upon the extent of reduction required for the formation of the fungal 

polyketide product (see 2.3.1), as well as the use of primers based on the methylation 

domain, appears to overcome some of the previously mentioned limitations [23, 169].  

Moreover, when targeting a gene cluster responsible for the production of a particular fungal 

polyketide, many other PKS genes present in a producer strain may complicate the isolation 

of a wanted cluster. Up to date many PCR methods have sampled different templates 

including fungal genomic DNA and cDNA generated at different growth stages. A typical 

filamentous fungus has the genetic potential to produce as many as 10 structurally diverse 

polyketides [23]. Besides, more putative PKS gene clusters may be present than expected 

based on the number of known products, and some of these clusters might not be expressed 

under laboratory conditions [1]. A good example is the fungus Neurospora crassa, which 

was thought to produce only one polyketide, i.e. the polyketide-derived pigment melanin. 

Surprisingly, seven putative PKS genes were identified via the whole genome sequencing 

project, but only one of which was a melanin-type PKS gene [165].  
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The use of automated and manual annotations of fungal genomes provided with predictions 

of gene functions based on the homology to already characterised genes and their products. 

This procedure has revealed that many fungal genomes posses even larger numbers of 

putative pks genes, e.g. 15 in Gibberella moniliformis and Gibberella zeae, 20 in Botriotynia 

fuckeliana, 25 in Cochliobolus heterostrophus [167], 23 in Magnaporthe grisea [196], 30 in 

A. oryzae, 14 in A. fumigatus, and 27 in A. nidulans [1] (etc.). Up to date, the experimental 

settings have shown that it is not manageable to identify all PKS gene clusters from a 

particular fungus solely by use of PCR and/or Southern hybridization methods. 

2.4.3 Bioinformatic analysis of accessed PKS genes 

Once a DNA sequence has been obtained - whether the sequence of a single cloned fragment 

or an entire chromosome - various methods can be employed to locate the genes that are 

present. The computational approach involves the inspection of the sequence by the use of 

specialised computer programs to look for special sequence features in genes. The second 

approach involves those methods that locate genes by experimental analysis of the DNA 

sequence. The sequence inspection via bioinformatic tools can be used to locate genes 

because genes are not random series of nucleotides but have distinctive features. This is a 

powerful tool and is usually the first method applied to analyse a new sequence from a 

certain genome [197], since the identification of gene coding sequences is an immediate goal 

in every genome sequencing project. 

Several software tools have been used for the prediction of genes in fungi. However, in 

particular programs for the prediction of genes in filamentous fungi are not yet widespread. 

Among the often used programs are GeneID [198], FGenesh and FGenesh+ [199], 

SNAP [200] and GeneWise [165]. Although nowadays bioinformatic programs trained on 

eukaryotic organisms rarely miss completely one fungal gene, occasionally these programs 

artificially fuse two closely linked genes. For such programs it is especially difficult to match 

very small fungal genes [185]. However, many small genes have been shown to be 

transcribed in S. cerevisae [201], and several are already known in Neurospora crassa as 

well [185, 202]. Additionally, the presence of introns within a genome can be a major 

challenge for screening, heterologous expression, and functional studies of fungal 

genes [168]. In brief, given the significant differences in the characteristics of exons and 

introns between fungi, the training of gene prediction tools on organism-specific data would 

be of great importance [191].  
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Annotated databases provide with data on proteins predicted by gene sequence analysis. The 

functional properties of proteins are deducible from a variety of database searches. The most 

reliable prediction of protein function is based on a high sequence identity to known proteins 

covering the entire sequence length [185]. In contrast to bacteria, only insufficient 

information on functions and cellular locations of fungal proteins are available in public 

databases. For illustration purpose, only one third of genes identified in the genomic 

sequence of Neurospora crassa represent novel genes lacking readily detectable relatives in 

accessible databases. This rather large portion of orphan genes is an indication for the small 

sampling of known genes from filamentous fungi [185]. As a consequence, gene prediction 

in fungi relies considerably on de novo gene prediction that is rather not reliable taking into 

account that significant discrepancy exists between different automated gene prediction 

systems used even on a same genome [195].  

As with many other eukaryotes, an additional factor that complicates gene annotation in 

fungi, as well as experiments with fungal DNA, is the occurrence of alternative 

splicing [191]. The manual annotation could improve the accuracy of automated annotation, 

but this is time-consuming and labour-intensive with regard to the amount of data generated 

by a single genome-sequencing project. Apparently, sequencing and analysis of more fungal 

genomes, especially of closely related species, would open the door for more intensive 

comparative gene prediction that could correct automated annotation as well [195]. 

In general, the prediction of PKS gene clusters is based on protein domain analysis. Within 

proteins of a particular biosynthetic pathway, such domains are well conserved and provide 

with information on protein function as well as on types of produced metabolites. In the case 

of modular type I bacterial PKS systems, one can literally “read” the sequence of domains in 

a deduced protein sequence (from a gene DNA sequence) and infer the structure of the 

produced polyketide [203]. On the contrary, it is not possible to predict the structure of any 

polyketide of an iterative type I fungal PKS by analysis of domain and motif structures alone.  

However, on then basis of solely protein domain structure analysis, numerous PKS genes 

have been identified from fungal genomic DNA sequence data so far [166]. The rapid 

progress in this area was facilitated by what is now considered as attribute of secondary 

metabolic biosynthetic pathways – the grouping of pathway genes in a contiguous cluster [1]. 

Despite this fact, there are many PKS and associated genes of certain metabolites that are still 

not found. An interesting example is orsellinic acid, the simplest tetraketide that requires no 

reduction steps during its biosynthesis and that is produced by many fungi in the genera 
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Aspergillus and Penicillium [50]. Despite the early work (1968) [204] with the protein – 

orsellinic acid synthase (OSAS), a corresponding PKS gene has not been discovered yet [50].  

Furthermore, the homology search for oxidoreductase, methylase, acetylase and esterase 

genes as putative members of such clusters is challenging, since genes for these so called 

“tailoring” enzymes are not exclusive to secondary metabolism [1]. Even though 

bioinfomatics nowadays can give first information on putative protein function, the 

functional study of putative gene clusters is necessary in order that their functions do not 

remain speculative. 

2.4.4 Functional studies of putative genes  

At this point, research obviously turns again towards the experimental analysis of fungal 

DNA sequence. This process of identifying a gene’s function subsequent to describing its 

DNA sequence is known as reverse genetics [205]. The comparative analysis using the 

GenBank database can designate putative functions by association to earlier identified genes, 

but only the characterization of mutants can offer a definitive answer to gene functions as 

mentioned previously [206].  

The classical fungal genetic approaches for gene identification rely on the inactivation of 

genes in order to receive recognizable phenotypes. A number of methods have been explored 

for this purpose including homologous recombination, insertional mutagenesis, and gene 

silencing. Up to date, in most fungal systems knockout mutations are generated by promoting 

the homologous recombination of mutated gene construct with the genomic wild-type 

sequence by using an appropriate transformation system [205]. One of the major problems 

for functional gene analyses is that the integration of transformed DNA can occur in a non-

homologous manner as well [168]. The frequency of homologous integration varies greatly 

between different organisms and depends on the length of homologous DNA. The insertional 

mutagenesis is an alternative method to gene knock out and is used for large-scale reverse 

genetics. It is based on the insertion of foreign DNA into the gene of interest by using mobile 

elements of various origins Agrobacterium tumefaciens T-DNA, transposable elements, 

retrotransposons, restriction-enzyme-mediated integration (REMI), etc. [205]. In addition to 

gene disruption or deletion, RNA-mediated gene silencing represents another genetic tool 

that can be helpful for exploring gene functions in fungi [168]. This method represents a 

post-transcriptional gene silencing (PTGS), in which synthesised double-stranded RNA 

triggers degradation of sequence-homologous mRNA. A disadvantage of this method may be 

that homologous genes are silenced simultaneously [207-209]. 
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The success of such methods relies on a set of tools to facilitate these genetic manipulations. 

Such a tool set normally comprises of fungal vectors and transposons, transformation 

technology, means of mutagenesis, selection markers, controllable promoters, etc. It is 

important to point out that rates of protoplast regeneration, transformation frequency, and the 

degree of gene targeting are all variable depending on the fungal species and even the genetic 

background of a particular strain [206]. The application of molecular genetics has been 

adopted in fungal research quite slowly because of the need to develop protoplasting 

techniques, transformation systems, and appropriate vectors. These are still the most 

important restrictions for transformation of many fungal species [205].  

Traditionally, fungal transformation relies largely on variations of the same basic protocol: 

Use of protoplasts, cell wall degradation with lytic enzymes and permeabilisation of cell 

membranes with polyethylene glycol (PEG) and calcium chloride [210]. It is worth to note 

that the main obstacle in any transformation system is the fungal cell wall [205]. Beside, the 

process of protoplast generation could be very tedious mainly due to the fact that cell-wall-

free fungal cells are osmotically sensitive and therefore must be handled with care. 

Furthermore, independent of the transformation method used, transgenic line selection is one 

of the most important limitations. Commonly used selection markers for transformants are 

either nutritional markers, which complement an auxotrophic requirement (e.g. pyrG, amdS, 

argB, trpC, niaA) or dominant antibiotic resistance markers against hygromycin B, 

phleomycin, bialaphos (BASTA), sulfonylurea, and benomyl [168]. The main advantage in 

the use of selection markers (that confer drug resistance) is that it is not necessary to have 

prior knowledge of the genotype of the fungus subjected to transformation [205]. 

Nevertheless, in some cases, fungi show natural drug resistance and consequently, a high 

drug concentration is required and has to be defined. 

An important aspect of fungal transformation is the fate of DNA introduced into the fungal 

cells. In fact, in order to obtain stable transgenic lines, the transforming DNA has to be 

transferred to the daughter cells after mitotic and/or meiotic divisions [205]. There are two 

alternatives in order to achieve this condition: Either exogenous DNA (transforming) should 

replicate in an autonomous way, so vectors containing an origin of replication are required; 

or stable integration of the exogenous DNA into the chromosomes should occur via 

homologous recombination as briefly mentioned before.  

Autonomously replicating vectors are commonly derived from mitochondrial plasmids or 

contain autonomously replicating sequences (ARSs). Vectors with ARSs promote a high 

transformation frequency when used in Saccharomyces cerevisiae; for this reason they 
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represent powerful tools in the isolation and cloning of yeast genes [211]. However, ARSs 

arising from yeast do not seem to work in filamentous fungi [205]. Even though many efforts 

have been made toward generation of truly autonomously replicating vectors in fungi, none 

of these attempts were clearly conclusive [212-215]. Partly this may be due to the limited 

occurrence of ARSs among filamenous fungi. An alternative explanation could be that the 

known plasmids used with ARSs do not contain telomeric and centromeric sequences of 

adequate size, so they can not behave as true chromosomes [205]. Furthermore, centromeric 

sequences that provide stability to the replicating vectors in flamentous fungi have not yet 

been isolated to best of my knowledge. Thus, the fungal vector technology remains relatively 

unchanged with integrative vectors being prevalent for filamentous fungi [206]. 

2.4.5 Industrial production of fungal polyketides 

Since many of fungal polyketides show impressive bioactivities (see sections 0-1.4) and 

could serve for drug development, there is a of course interest to produce these polyketide 

metabolites in large-scale fermentation processes [216]. Even though the functional analysis 

of PKSs cluster and a confirmation of gene (or genes) identity could be successfully 

accomplished, a production of polyketide by the original host might be still hampered by the 

requirement for sophisticated growth conditions, inefficient production or/and large 

biosynthetic background of the host [168]. These drawbacks are obstacles for the isolation 

and work on particular metabolite. Consequently, some universal fungal PKS gene 

expression systems are highly desirable.  

In sum, at this point the fungal research community is facing many additional challenges. 

Explicitly, the reconstruction of polyketide biosynthesis in heterologous hosts demands that:  

 Large multienzyme assemblies be functionally expressed,  

 their posttranslation modification needs to be adequately met, 

 their substrates be available in vivo in sufficient quantities at adequate time point, and 

 the producer cells be protected against the toxicity of the biosynthetic product [216]. 

The very first challenge is undoubtly the proper assembly of all enzymatic functions on the 

DNA level, and this can be tedious work due to the presence of introns and strain-specific 

splicing mechanisms [168]. The formation of a biologically active polyketide often requires 

the activity of various “tailoring” enzymes acting on a PKS-derived intermediate in order to 

yield the final natural product. In most cases, heterologous expression of these 

monofunctional enzymes is relatively straightforward, although co-substrate availability can 

be an issue [216]. In addition, the ACP domain itself requires posttranslational 
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4’-phosphopantetheinylation catalysed by 4’-phosphopantetheinyl transferase (PPTase). This 

enzyme can be quite specific, which makes it necessary to co-express a species-specific 

PPTase together with a PKS in order to obtain a functional holo-ACP [168]. Besides, the 

pathway specific regulatory genes (i.e. narrow transcriptional factors) that positively regulate 

expression of genes in a cluster are also embedded in PKS gene clusters and have to be 

heterologously expressed as well [1].  

Given the potential cytotoxicity of many bioactive polyketides, transmembrane proteins are 

required for their export out of the cells. Although putative export proteins are often found 

associated with PKS gene clusters, very little is known about their mechanism or 

selectivity [216]. If the goal is heterologous production of one biologically active polyketide, 

then a resistance mechanism capable to abolish effect of a natural product on the 

heterologous host has to be considered as well. Such self-resistance genes have been already 

found within the natural PKS gene clusters [217, 218]. However, coexpression of these genes 

adds another level of complexity to the heterologous production of polyketides and can be 

particularly challenging in cases where novel polyketides are engineered for which no known 

resistance mechanisms have been identified. Consequently, a large size of the gene locus 

encoding particular biosynthetic pathway in question can lead to instability of expression 

construct with so many genes [168].  

In the end, it is important to emphasise that beside the already mentioned narrow (i.e. 

specific) pathway regulators, broad regulatory factors are necessary in order to ensure that 

polyketide pathway can respond to the demands of general cellular metabolism and the 

presence of specific pathway inducers [216]. Broad transcriptional factors are usually located 

outside the gene cluster and can either positively or negatively regulate the metabolite 

production. They are conserved in all fungi and other eukaryotes. Apparently, closer 

knowledge on these factors could increase chance for successful heterologous expression of 

one PKS-derived metabolite. 

2.5 The perspectives in fungal poylketide research area 

As a consequence of recent fungal genome sequencing projects, the data on as-yet 

unexplored putative PKS gene clusters has been considerably enlarged [167, 168, 219]. The 

opportunities that have been opened for work in the PKS research area by means of 

“combinatorial biosynthesis” and “metabolic engineering” approaches are more than 

impressive. Combinatorial biosynthesis makes use of more than one biosynthetic pathway 

and is able to generate hybrid polyketide products with improved or even novel bioactivities. 
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Additionally, metabolic pathway engineering is an approach to optimise production of a 

single polyketide in a suitable heterologous host [220]. Based on recent pioneering work it 

seems to be manageable to engineer fungal polyketide biosynthesis pathways as well [168]. 

The first experiments that involved domain swapping have been recently done by Du et al. in 

order to closely investigate programming in HR PKS systems [221]. Very recently, Hertweck 

and collaborators managed to express a silent PKS-NRPS gene cluster from the genome of A. 

nidulans via ectopic expression of a specific regulatory gene [222]. Nevertheless, very few 

conclusions have been drawn from such experiments and many more questions have been 

arisen so far.  

Even though many molecular tool kits for fungi have been developed over the last few 

decades, it will still take a while until fungal PKS research can follow up the speed at which 

achievements are currently accumulating for bacterial PKS systems. Apparently, the 

monomodular-iterative nature of fungal PKS systems, together with absence of sexual 

systems for many producer fungal species, is regarded as constantly challenging genetic 

work on these gene cluster systems. In the end, taking in account the moderate size of the 

fungal research community, tool development and improvement remain a constant challenge 

in order to clarify many fundamental aspects of fungal PKS systems. 

3 Biosynthesis of sorbicillactone A  

As a part of our collaboration with “Center of Competence BIOTECmarin” we were provided 

with the P. chrysogenum strain E01-10/3 (IFM-GEOMAR collection). The interest of our 

group was the identification of the genetic background for sorbicillactone A (50) production 

for which the knowledge on sorbicillactone A biosynthesis is essential. The working groups 

of Prof. G. Bringmann (Institut für Organische Chemie, Würzburg) and Prof. J. F. Imhoff 

(IFM Geomar, Kiel) conducted a number of feeding experiments after optimizing the growth 

conditions of the fungus for the production of sorbicillactone A as the major secondary 

metabolite [136]. Based on these feeding experiments with [13C2]-acetate, [13C3]-L-alanine, 

and [methyl-13C]-L-methionine, a biosynthetic route for sorbicillactone A was postulated 

(see Figure 11). A key intermediate of this presumed biosynthesis is a twice C-methylated 

and, thus, branched hexaketide chain (63), which is reduced at C-1, cyclised, and oxidatively 

dearomatised to give sorbicillinol (64). To this highly reactive compound, the amino acid 

alanine is introduced by esterification with the hydroxyl group at C-5 to give the intermediate 

(68). After α-deprotonation of the alanine portion, the 5-ring lactone could be closed by 

intramolecular Michael addition (route A, intermediate 65). Alternatively, the Michael 



 Introduction  

 - 46 -

addition could take place first, leading to the intermediate (66), followed by the ring-closing 

step now through an SN1 type substitution (route B). Both routes seem imaginable, but the 

cis-fused annulated ring system can be seen as an argument in favour of route A, which leads 

to this configuration “automatically” as a consequence of the intramolecular C, C-bond 

formation. In the last step of the proposed pathway, the bicyclic amino lactone (68) is 

converted to (50) by N-acylation with a fumaric acid related, yet unsymmetric precursor. 

Sorbicillactone A does not only possess a unique structure, but is also the first member of a 

novel class of amino acid derived sorbicillinoid natural products, the “sorbicillinoid 

alkaloids” [136]. All other sorbicillinoid and bisorbicillinoid metabolites, as yet known, are 

derived from one or two sorbicillinol molecules with no other precursors involved in their 

biosynthesis.  Therefore, identification of the gene cluster responsible for biosynthesis of 

bioactive sorbicillactone A, involving introduction of amino acid alanine and one extra acyl 

moiety, represents a great scientific challenge. In addition, high structural similarity of 

sorbicillactone A to pharmacologicaly unwanted compound sorbicillactone B (51) leads to 

the proposal that this two metabolites could originate from the same biosynthetic gene 

cluster. This further implicates that probably one distinctive enzyme activity (i.e. an 

oxidoreductase) within a cluster may be responsible for the conversion of sorbicillactone A 

to sorbicillactone B. This even more increases the interest for identification of the cluster, 

since it would give opportunity to preclude biosynthesis of sorbicillactone B via knock out of 

a distinctive enzyme activity within the gene cluster itself.  
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Figure 11: Possible biosynthetic routes to sorbicillactone A [136]  
All three putative biosynthetic routes are in more details discussed in the text above. Legend for the chemical 
structures within Figure 11: 
63 Sorbicillactone A hexaketide intermediate, 64 Sorbicillinol, 65 Intermediate of sorbicollactone A, 
biosynthesis, 66 Intermediate of sorbicollactone A biosynthesis, 67 Intermediate of sorbicollactone A 
biosynthesis, 68 Intermediate of sorbicollactone A biosynthesis, 50 Sorbicillactone A, Py Pyridoxal 
phosphate moiety. 
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4 Research goals 

As already illustrated throughout the introduction section, fungal secondary metabolites play 

an important role as drugs and drug leads. Although a number of compounds have been 

discovered in recent years, the rate of discovery has declined drastically while the need for 

novel compounds has grown considerably. In recent years the marine environment has been 

brought into focus as a novel source for bioactive compounds. 

The present evaluation is based on the effort to access the potential of marine-derived fungi 

for production of bioactive compounds. Our investigation focused on the marine-derived P. 

chrysogenum strain E01-10/3 (FM-GEOMAR collection) that was isolated from the 

Mediterranean sponge Ircinia fasciculata within a collaborative project of “BIOTECmarin”. 

The unusual structure and promising bioactivities of the sorbicillactone A has prompted 

molecular analysis of the requisite gene cluster. 

The main goals of this study are the identification of the gene cluster responsible for 

biosynthesis of sorbicillactone A and the assessment of the genetic potential of this particular 

P. chrysogenum strain for polyketide production. Several tasks, which are given below, had 

to be elaborated in order to achieve these goals: 

 Designing primers for amplification of partial PKS sequences of different classes of 

fungal type I iterative PKS gene clusters. 

 Sequence analysis of partially amplified PKS sequences via homology search in gene 

databases in order to predict the putative functions of certain PKS. 

 Disclosure of the evolutionary relationships of partially amplified KS domain 

sequences and evaluation of promising candidates in order to screen P. chrysogenum 

E01-10/3 genomic library for the presence of the sorbicillactone A gene cluster. 

 Construction and screening of the genomic library of the sorbicillactone A producer 

via hybridization and PCR methods. 

 Shot-gun sequencing of the fosmid harbouring the potential candidate for gene cluster 

involved in biosynthesis of sorbicillactone A. 

 Detailed sequence analysis of the sequenced genomic region in order to reveal the 

putative function of the deduced gene products. 

 Analysis of the domain composition of the sequenced PKS genes and evaluation of 

active site motifs for each domain. 
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 Defining evolutionary relationships of the sequenced P. chrysogenum PKS gene(s) in 

respect to other members of fungal type I PKS systems. 

 Proposal for the polyketide routes of sorbicillactone A and sorbicillactone B 

biosynthesis. 

 Feeding experiments with radioactively labelled putative precursors. 

The identification of the sorbicillactone A gene cluster would help to specify the biosynthesis 

of sorbicillinoid compounds and to open the way for future strain optimization through 

genetic manipulations. 
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RESULTS AND DISCUSSION 

5 Detection of sorbicillactone A from P. chrysogenum E01-10/3 liquid 
cultures 

In order to confirm that P. chrysogenum strain E01-10/3 retained its [135] capability for 

sorbicillactone A production (see 1.4) it was necessary to re-isolate this compound from the 

liquid cultures of the fungus. A general rule is that secondary metabolite genes are not 

constitutively expressed, [223] since they are not required for growth or development of 

producing organism under laboratory conditions [224]. Although in most cases the 

production of metabolite is consistent from isolate to isolate in a species [126], to the 

unfortune of the scientists in this area of research – some formerly active secondary 

metabolite genes become silent or lost with repeated culturing [223]. The abolishment of 

metabolite production via inactivation of the gene involved in its biosynthesis and successive 

restoring of biosynthesis via recovery of the gene by introduction of a wild type gene copy is 

a common way to prove function of the gene in question (see 2.4.4). Taking these facts into 

account, production of sorbicillacton A by P. chrysogenum strain E01-10/3 is a prerequisite 

for the localization of the gene cluster in its genome, as well as for future functional studies 

on the cluster itself.  

In order to check for production of sorbicillactone A, malt extract agar plates were inoculated 

with frozen P. chrysogenum spores. Agar cultures were grown 5-7 days before a small piece 

of mycelium was transferred to a malt extract liquid medium [100]. After 10-14 days of 

growth, the mycelium facing the liquid culture became yellow which is an indicative for 

sorbicillactone A production (even though some other metabolites of P. chrysogenum have 

yellowish colour as well, see 1.4). The liquid culture medium was collected via pipetting and 

the pH was changed to a slightly acidic before extraction with ethyl acetate (for details see 

12.20). The extraction was repeated two more times in the same manner before the upper 

ethyl acetate yellowish phase was collected into a fresh flask. Subsequently, this phase was 

filtrated through round filter papers and dried in rotary evaporator. Before high-performance 

liquid chromatography (HPLC) runs, both the sorbicillactone A standard and the culture 

extract were dissolved in acetonitrile. Both samples were submitted to HPLC under 

conditions published by Bringmann et al 2003 [100] (see 12.20). 

In Figure 12 it is shown that extract from liquid culture of P. chrysogenum contained a 

compound whose retention time was ~21 min in HPLC runs, which correlated to the 
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retention time of the reference compound sorbicillactone A. Moreover, the UV spectrum of 

the detected compound correlated to the UV spectrum of the reference compound (see 

Appendix Figure 42). This was the proof that the fungus is still capable of sorbicillactone A 

production. Other peaks that can be seen in Figure 12 (under A), may correspond to other 

metabolites that are produced by the strain (see 1.4) or to their degradation products.  

Figure 12: Production of sorbicillactone A by P. chrysogenum E01-10/3 liquid cultures.  
A: HPLC chromatogram of P. chrysogenum E01-10/3. B: HPLC chromatogram of pure sorbicillactone A 
compound that served as a reference. 
 

6 Genetic potential of P. chrysogenum strain E01-10/3 for polyketide 
production 

6.1 Design of PCR primers and cloning of putative PKS gene fragments 

The PCR-based molecular biological studies were conducted in order to determine the 

biosynthetic potential of P. chrysogenum strain E01-10/3 for polyketide biosynthesis. The 

published methods to have access to PKS genes often employ consensus or degenerate PCR 

with primers designed on conserved sequences found in proteins from specific PKS families. 

The choice of approach is dependent on the desired outcome: Either selective cloning of a 

PKS associated with a unique compound, or overall assessment of the total PKS biosynthetic 

potential of an organism [23]. The structure and incorporation pattern of sorbicillactone A 

suggested involvement of a fungal type I PKS in the biosynthesis of the polyketide skeleton 

(see 3). In this study, PCR screenings were applied in order to locate the gene cluster 

responsible for the biosynthesis of sorbicillactone A, as well as to estimate the number of the 

PKS genes present in the analysed P. chrysogenum strain. The genomic DNA was extracted 
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from P. chrysogenum (12.5) and used as a template in a number of PCRs with diverse 

conditions and primer pairs. The PCR parameters like annealing temperature, MgCl2 

concentration and primer concentration were optimised (12.8). To create optimal PCR 

conditions for the primer annealing step, usually a temperature gradient PCR was set up in 

accordance to the given or calculated Tm temperature of primers (12.8.2). The MgCl2 

concentration varied between 1.5 and 4.5 mM (12.8.1). Furthermore, the primer 

concentration of the degenerate primers ranged from 50-100 pmol according to the degree of 

degeneration. Specific amplification products of expected sizes were detected by agarose gel 

electrophoresis, extracted and purified from the agarose gel (12.9 and 12.10, respectively). 

They were directly ligated into the pGEM-T Easy® or pBluescript vectors (12.12) and 

transformed into E. coli (12.14). The purified plasmid DNA (12.11) was sequenced and 

cleaned from cloning vector residues using the VecScreen tool available on the web site of 

the National Center for Biotechnology Information (NCBI; Table 31). All sequences were 

checked for sequence homologies via Basic Local Alignment Search Tool (BLAST; Table 

31), an additional publicly available program on NCBI Homepage. This program compares 

nucleotide or protein sequences with sequences in a database and calculates the statistical 

significance of the matches. Particularly, the “BLASTX” variant of the BLAST search was 

employed for the analysis of PCR-amplified genomic DNA fragments. Via the “BLASTX” 

nucleotide sequences are translated into their corresponding protein sequences according to a 

specified genetic code, thus allowing cross-comparisons between nucleotide and protein 

sequences. The translations were performed in the three forward as well as the three reverse 

reading frames, so that no possible translation was missed. This approach enabled detection 

of a number of putative PKS partial sequences from the genome of P. chrysogenum as it is 

illustrated in the following text. 

6.1.1 KS domain amplification primers 

The KS domain is the most conserved domain among fungal type I PKS [154]. Therefore 

primers deduced from conserved amino acid motifs within this domain were first employed 

to amplify homologous KS regions in the genome of P. chrysogenum. The primary choice 

was the LC series of primers published by Bingle et al. [182]. The primer pair LC1 and LC2 

was designed for the naphthopyrone synthase (WA) subclass of fungal NR type I PKS, while 

the primer pair LC3 and LC5c was created to suit the MSAS subclass of PR PKSs. The 

positions of both primer pairs within the KS domain of typical fungal type I PKS and amino 

acid motifs from which they originate are shown in Figure 15. A temperature gradient PCR 
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was performed for both pairs of degenerate KS-specific primers in order to determine the 

optimal temperature for the expected size of fragments. For the LC1/LC2 primer pair, the 

expected 720 bp PCR amplified fragments (see Figure 13) were electrophoretically separated 

and cloned into the pGEM-T Easy Vector in order to be sequenced. The optimal annealing 

temperature for LC1/LC2 primers was 52 °C (see Figure 13, lane 2). The sequence analysis 

of four single colonies revealed three insert DNA sequences (KSnr-7, KSnr-8 and KSnr-10) 

with putative homology to the WA class of fungal type I PKS (see Table 5). A closer analysis 

of these sequences via alignment in the BioEdit program (see Table 31) and comparison of 

sequences chromatograms via the FinchTV program (see Table 31) suggested that they may 

be amplified from the same gene locus of the analysed P. chrysogenum strain. The minor 

sequence differences were 3-5% (data not shown). These differences may be due to errors 

that occurred during automated DNA sequencing, or to differences in the length of analysed 

DNA. The sequences shared 96-97% identity with the corresponding fragment of the putative 

WA type PKS of P. patulum (GeneBank: Q9Y832). Additionally, they were 88-89% 

identical to the naphthopyrone synthase (WAS) of A. nidulans (GeneBank: Q03149) - the 

PKS proven to be involved in biosynthesis of naphthopyrone (YWA1) [173]. 

In the case of the PCR products generated with the LC3/LC5c primer pair, the 680 bp 

amplicons were purified and cloned in the vector in the same manner as for LC1/LC2 primer 

pair. The permissive primer annealing temperature for LC3/LC5c primer pair was 57 °C (see 

Figure 13, lane 7). Only one sequence (out of four sequenced) showed homology to fungal 

type I PKS sequences. The KSpr-MI sequence (see Table 5) was 94% similar to the putative 

PKS of P. patulum (PKS2; GenBank: P87001) and shared 71% identity with the deduced 

sequence of the characterised gene for MSAS of A. terreus(GenBank: P87162) [46]. 

 
Figure 13: PCR amplification with LC series KS-specific primers - ethidium bromide agarose gel.  
Lane M contains 100 bp ladder as a fragment size standard. Lanes 1-5 are showing temperature gradient PCR 
obtained with the LC1/LC2 primer pair, with expected size fragment being amplified in the lane 2. The 
temperature gradient PCR with the LC3/LC5 primer pair is shown in lanes 6-10, and the correct size PCR 
product is visible in the lane 7. In PCRs for both primer pairs temperature gradient was spanning from 46.0 – 
64.0 °C with individual gradient steps being automatically generated by the PCR cycler for the given range of 
temperatures. 
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Based on a phylogenetic analysis of KS domain amino acid sequences, Kroken and 

coworkers have identified so-called NR clade III fungal PKS genes whose activity involves 

two rare PKS domains: MT and the C-terminal thiolester reductase (R) domain (see 

2.3.1) [167]. The research group of Cox designed a pair of degenerate primers, KHKS2 and 

KHKS3c, based on conserved KS regions belonging to this clade [170]. The authors 

carefully chose clade-specific positions in order to design primers unlikely to amplify 

members of other clades. The relative positions of these primers within the typical clade III 

members are given in Figure 15. 

This primer pair was used in order to screen for putative NR PKS clade III members in the 

genome of P. chrysogenum. PCRs afforded the expected 245 bp products that were separated 

on stained ethidium bromide agarose gel (see Figure 14, lanes 1-5). The PCR products were 

collected, purified and cloned in a standard manner. As many as 50 clones containing the 

correct insert size were sequenced. All sequences appeared to correspond to putative PKS 

genes. They grouped into 10 distinctive KS fragments, initially suspected to originate from 

10 different genomic loci. However, after detailed inspection of all DNA sequences (BioEdit 

and FinchTV programs) it appeared that 4 discrete PKS gene loci have been amplified. 

Moreover, some of the amplified sequences appeared not to belong to the NR PKS clade III, 

for which the PCR primer pair was designed. The closest homologues of PKS sequences 

amplified with KHKS primer pairs are presented in Table 5.  

The KHKS1, KHKS9 and KHKS37 sequences shared homology to putative PKS of A. 

terreus (GeneBank: Q0C8A4) with identity values ranging between 72-78% (see Table 5). In 

case of these 3 sequences, no characterised fungal homologue appeared within the first 50-60 

BLASTX matches. In line with detailed sequence analysis in the BioEdit program and  the 

BLAST search results, it was concluded that all three sequences originate from a same locus 

of the P. chrysogenum genome.  

Another three sequences (KHKS32, KHKS42 and KHKS46) shared homology to the same 

fungal type I PKS sequences. They displayed homology to putative PKS of A. nidulans 

(GeneBank: Q5AUX7) with 63-69% identity (see Table 5). Besides, the closest characterised 

homologue of all three sequences was the citrinin PKS [33] (PKSct; GeneBank: Q65Z23). 

Further on, the closest homologue of KHKS3 and KHKS44 was putative PKS of 

Chaetomium globosum (GeneBank: Q2GPL2), while KHKS27 sequence shared homology 

with a putative PKS of Magnaporthe grisea (Syn8; GeneBank: Q5XF88). The closest 

characterised homologue of these three sequences was the CNKS of P. citrinum [92] (67-

73%; GeneBank: Q8J0F7). Thus, it could be concluded that they were amplified from a 
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single locus of P. chrysogenum genome. Furthermore, the KHKS51 sequence showed 55% 

and 51% similarity to a putative PKS of Phaeosphaeria nodorum (GeneBank: Q0UAE2) and 

Gibberella moniliformis (PKS14; GeneBank: Q6RKK1), respectively (see Table 5). No 

characterised homologue was identified for this sequence in public gene databases.  

It is important to note that two E. coli fosmid clones from a genomic library of A. nidulans 

F6SCA4 were purchased from Fungal Genetic Stock Center (FGSC), each containing one 

putative PKS gene of NR clade III. The AN8352 F2 fosmid containing the Q5BEJ6 PKS 

(later labelled as FOS AN1 F2 fosmid) and the AN8459 B5 fosmid with the Q5B7U4 PKS 

(later labelled as FOS AN3 B5) were used in a protein alignment of putative NR PKS clade 

III members (see Figure 15). Moreover, the isolated plasmids were used in PCR with the 

KHKS series of primers as positive controls for amplification of NR clade III PKS (illustrated 

for FOS AN1 F2 in the Figure 14). The identity of both controls was confirmed by 

sequencing of PCR-amplified KS fragments from these two loci. 

 
Figure 14: - PCR with the KHKS series of KS-specific primers - ethidium bromide stained agarose gel.  
Lane M contains 100 bp ladder as a fragment size standard. Lanes 1-5 show temperature gradient PCR 
obtained with KHKS2/KHKS3c primer pair and genomic DNA from P. chrysogenum as a template. 
Temperature gradient PCR with KHKS2/KHKS3c primer pair is shown in lanes 6-10 with plasmid DNA 
from FOS AN1 F2 fosmid as a positive control for PKS fragment amplification. In PCRs employing both 
primer pairs, a temperature gradient was chosen from 44.0 – 54.0 °C with individual gradient steps being 
automatically generated by PCR cycler for the given rang of temperatures. 
 
Besides, the newly designed KS domain specific primers were made with the intention to 

increase the chance for amplification of a partial PKS fragment from sorbicillactone A gene 

cluster and to further examine PKS diversity in the fungus P. chrysogenum. These are based 

on conserved amino acid motifs obtained from an alignment of deduced protein sequences 

from the putative members of NR PKS clade III genes. The sequences chosen for alignment 

were those that had similar PKS domain organisation [167] and high sequence similarities to 

deduced amino acid sequence of the citrinin polyketide synthase (PKSct) of M. purpureus, i.e. 



 Results and Discussion  

 - 56 -

the only characterised member of clade III up to that time point. The sequences to be aligned 

with the PKSct were chosen via standard protein-protein BLAST (BLASTP) search, i.e. a tool 

to find similar sequences in protein databases. Thus, besides PKSct of M. purpureus, eighteen 

additional sequences from diverse fungal species that fulfilled the given criteria were used in 

alignments via BioEdit program. One part of this alignment that encompasses the KS domain 

and was used to design KS-specific primers is shown in Figure 15. Detailed information on 

used sequences including species origin, locus designations, accession numbers and 

references are to be found in Table 4.  

 

Table 4: Sequences used in alignment for members of NR PKSclade III - 19 sequences alignment. 
 

Organism Gene/ORFa Protein 
Accession 
numberb 

Shortened 
namec References 

A. nidulans 
F6SC A4 

AN0523.2 
AN1034.2 
AN2032.2 
AN3230.2 
AN3386.2 

Hypothetical protein 
similar to PKS 

Q5BG07 
Q5BEJ6 
Q5BBP8 
Q5B8A0 
Q5B7U4 

Q5BG07 An 
Q5BEJ6 An 
Q5BBP8 An 
Q5B8A0 An 
Q5B7U4 An 

Galagan et al., 
2005 [219] 

A. fumigatus AFUA_3602570 Hypothetical protein 
similar to PKS 

Q4WED7 Q4WED7 Af Nierman et al., 
2005 [225] 

A. oryzae AO090010000114 
AO09070100831 
AO090001000402 

Hypothetical protein 
similar to PKS 

Q2TXJ8 
Q2U7I0 
Q2UNE1 

Q2TXJ8 Ao 
Q2U7I0 Ao 
Q2UNE1 Ao 

Machida et al., 
2005 [166] 

A. terreus 
NIH 2624 

ATEG_03432 
ATEG_08662 
ATEG_07661 

Hypothetical protein 
similar to PKS 

Q0CSA2 
Q0CCC2 
Q0CF73 

Q0CSA2 At 
Q0CCC2 At 
Q0CF73 At 

Birren et al., 
2005 [226] 

Botryotinia 
fuckeliana 
B05.10 

pks17 Hypothetical protein 
similar to PKS 

Q6RKI3 PKS17 Bf Kroken et al. 
2003 [167] 

Chaetomium 
globosum 
CBS 

CHGG_10027 
CHGG_09586 

Hypothetical protein 
similar to PKS 

Q2GPS7 
Q2GR18 

Q2GPS7 Cg 
Q2GR18 Cg 

Birren et al., 
2005 [227] 

Coccidioides 
immitis RS 

CIMG_07081 
CIMG_05571 

Hypothetical protein 
similar to PKS 

Q1DRI2 
Q1DVU2 

Q1DRI2 Ci 
Q1DVU2 Ci 

Birren et al., 
2005 [228] 

Gibberella 
moniliforme 

pks3 Hypothetical protein 
similar to PKS 

AY495593 PKS3 Gm Kroken et al., 
2003 [167] 

M. purpureus pksCT Citrinin polyketide 
synthase 

Q65Z23 PKSct Mp Shimizu et al., 
2005 [33] 

a Gene or ORF designation in GenBank; b TrEMBL Accession Number; c Shortened name of deduced proteins 
that are used in alignment (Figure 1) and Table 32 – Table 36. 
 

Within three regions of high amino acid similarity (homology regions I-III; see Figure 15), 

conserved motifs were chosen for degenerate primer design. The forward sorb1-FFK-forv 

primer was designed from the (N/D)YDTFDHKFFK conserved motif of the homology region 
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I. Two other primers, sorb2-PTG-rev and sorb3-KPF-forv originate from the PTGQCKPF 

motif of the KS homology region II. Additional reverse primer, sorb4-GAS-rev, was 

constructed from the conserved GASGSNA amino acid motif within KS homology region III. 

The exact positions of designed primers, as well as corresponding amino acid motifs are 

shown in Figure 15. More details on the conserved protein motifs are given in Table 32 of 

appendix section. Despite of efforts taken, no cloned fragments from the PCR reactions with 

these newly design primers correspond to any known PKS or PKS-related proteins in publicly 

available databases (data not shown). 

In sum, 14 sequences from KS domain were amplified with three different degenerate primer 

pairs (LC1/LC2c, LC3/LC5c [182] and KHKS2/KHKS3c [170]). However, detailed 

sequence analysis in the BioEdit program and mentioned BLAST search results showed that 

these 14 sequences actually originate from 6 different loci of the analyzed P. chrysogenum 

genome. 

According to the presented BLASTX results, 3 partially amplified KS domains belong to the 

non-reducing (NR) fungal type I PKSs. The KSnr-7, KSnr-8 and KSnr-10 (i.e. locus KSnr-7) 

showed putative homology to members of the fungal NR clade I. The KHKS1, KHKS9 and 

KHKS37 sequences (i.e. KHKS1 locus) as well as the KHKS32, KHKS42 and KHKS46 

sequences (i.e. locus KHKS32) shared homology with members of the fungal NR clade III. 

The KSpr-MI sequence showed similarity to members of joined bacterial and fungal type I 

PKS systems with a partially reducing (PR) character. The KHKS51 sequence, showed 

putative homology to the reducing (R) clade IV in respect to closest match of a BLASTX 

analysis (see Table 5). Last but not least, the KHKS3, KHKS27 and KHKS44 (i.e. locus 

KHKS3) shared similarity with members of the R clade II. 

Thus, the PCR amplification from the KS domain illustrated that the genome of the analyzed 

P. chrysogenum strain contains 3 main fungal type I PKS systems – NR, PR and R. 
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Figure 15: Alingment for members of NR PKS clade III - KS domain.  
19 deduced amino acid sequences of putative members of NR PKS clade III: M. purpureus (Mp: PKSct ), Botryotinia fuckeliana (Bf: PKS17), A. nidulans (An: Q5BG07, 
Q5BEJ6, Q5BBP8, Q5B8A0 and Q5B7U4), Gibberella moniliformis (Gm: PKS3), A. terreus (At: Q0CSA2, Q0CCC2 and Q0CF73), Coccidioides immitis (Ci: Q1DRI2 and 
Q1DVU2), Chaetomium globosum (Cg: Q2GPS7 amd Q2GR18), A. oryzae ( Ao: Q2TXJ8, Q2U7I0 and Q2UNE1) and A. fumigatus (Af: Q4WFD7). The most conserved 
amino acids in all compared sequences are shaded red; similar amino acid sequences are shaded yellow. Threshold for both identity and similarity shading is 80%, meaning for 
at least fifteen sequences out of nineteen. The arrows indicate the primer position and direction. The exact amino acid motif is given for each primer from which it was 
designed. The newly designed primers based on here presented alignment are shown in red. LC and KHKS series of primers for NR PKS are given in green, while LC primers 
for PR PKS amplification are blue. The KS domain active site motif (DTACSSS) is given in black. Numbers on the right indicate the position of the displayed amino acid 
sequence within the complete sequence published. The ruler above indicates the position of the extracted alignment in the overall alignment.  
 
                   450       460       470       480       490       500       510       520       530       540       550           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  PGQLLGGTQKLNLTDL--------------------------------PDERIAVIGMACRLPGAEDHEGFWEILKTGQSQHREVP-EDRFGMA-TAWREAD---KRKWY 437   
PKS17  Bf  PGELLGTHRTNAFANI--------------------------------PDERVAVVGMACQLPGAEDLEEYWKILSSGKSQHTEIP-QERFSME-TAWREADS--ERKWF 451   
Q5BG07 An  PAPLY-----TLQDSG--------------------------------QDESIAVVGMACNFPGGSDLDEFWDTVCAAKSQCTEVP-PERVDFDYEAWRENDT--QRKWF 445   
PKS3   Gm  PTSVPSVPDAG------------------------------------TSKPKLAIVAMSGRFPGAKDNEAYWDLLYKGLDVHKPVPSLRWDQQTHVDPTGAAKNTSATPF 424   
Q0CSA2 At  S----AVKTPG----------------------------------EMVSEDEIAVIGMAIKVAGADDADEFWDLNLTAESQHREVP-AERFT-FETHWRTVDP--ARKWY 453   
Q1DRI2 Ci  EG----LQKDQ----------------------------------RTYSDNDIAVVGMSCKFAGAEDLEEFWNLLCSGKSQHREVP-KERFG-FETAFRDTDP--KRKWF 443   
Q2GPS7 Cg  SPKDGALNPPGSYTAWSAAR-------------------------GNENDSDIVVVGMSCRVAGADDLDEFWKILCAGKSQHIEVP-GERFG-VETQWRDVDS--SRKWY 410   
Q0CCC2 At  VSP--LLQTPR------------------------------------VYDEDIAVVGMACRVAGADDLEEFWKLLCSGQSQHQELP-LERYKDFETPWRPDA---IRPWF 430   
Q2TXJ8 Ao  TPP--LYQTPR------------------------------------SYDSDIAVVGIACRVAGADDLEEFWRLLCSGASQHQEMP-LERYKDYETPWRPSA---IRPWY 450   
Q4WFD7 Af  DAHLQ-----SSPRPL--------------------------------QDTDVAVIGMACKLPGANDLGEFWKLLCKPRSQHREVP-QERMDMAVFKWRDSPSSTEWKWY 445   
Q0CF73 At  -SSWMP-NAPHGPQQQLQ---QRQLPVEVHTKPAFDVS-----------NEAIAIVGMSVKTAGADDLAEFAEMLKTGQSQHIPIT-RDRLMHDMLFRESADSDPKRKYY 486   
Q1DVU2 Ci  DHNNHNHN-----------------HTPVS-------------------DDAIAIVGMSIKVAGADDLDEFSQLLRKGTSQHEKVT-RERLNFDSLFRE----PDTRDYF 442   
Q5BEJ6 An  -SFWLTPQSSPPPQPQLQPVLQLQQQQTTRVEPVMPVSP---------QSEPIAIVGMSVKTAGADDLDEFVAMLKTGQSQHIPIT-RDRLMHDMLFRENADADPKRKFY 494   
Q2U7I0 Ao  DDDLVNDNNPVDDKNPINDNNTINGNTPVNSDKPVNNDEPVNNDDPVNDDDAIAIVGMSIKVAGADDLDEFSQLLRKGTSQHEKVT-RERLNFDSLFRE----PDTRDYF 481   
Q5BBP8 An  -RQYDKGKEPVHDTESVQ----------VAEPPLQEAD-----------ENVIAVVGMSIKVAGANDLEEFQQMLKTGHSQHQLVT-NDHITPNMMFRN---KVPNRKWY 459   
Q5B8A0 An  ------------------------------------------------QENMIAVVGMSIKTAGADDVDEFAQMLRTGTSQHQAIM-EDDINFNTPWRTD---KGSRTWY 416   
Q2GR18 Cg  GGDSNPDARPVVS------------------------------------ETDIAVIGMACNVAGAQDLGQYWQIMLDGTSQHRELIPNDRFVMETTHRPGEEGSEKKKWY 445   
Q5B7U4 An  RDH--ELATRP------------------------------------PAETDIAIVGMACRVAGADDLDEFWDLLCSGQSQHREMP-RERYANYETPWRPEAS--HRSWL 458   
Q2UNE1 Ao  PPALG-----ALLGPI--------------------------------EDDAIAVVGMACHFPGGSDLNEFWDTICAAESQCTEVP-SDRINFDYAAWRENDE--KRKWF 445   
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      Homology region I (KS domen) 
 
                   560       570       580       590       600       610       620       630       640       650       660           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  GNFIDNYDTFDHKFFKKSPREMASTDPQHRLMLQVAYQAVEQSGYFRN--NGTNRR------IGCFMGVGNVDYEDNIACYPANAYSATGNLKSFLAGKISHHFGWTGPS 539   
PKS17  Bf  GNFVENYNTFDHKFFKKSPREMASTDPQHRLMLQIAYQTVEQSGYFGS--LNADKH------IGCFLGVGNVDYEANVACYPATAYSATGNLKSFVAGKISHYFGWTGPS 553   
Q5BG07 An  GNFIREYDTFDHKFFQKSPREMISTDPQHRIMLQVAYQAVQQSGYFNR--PGRSKH------VGCYVGIGVTDYENNVACHPPTAYTATGNLKSFAAGKISHFFGWSGPG 547   
PKS3   Gm  GCWLDDPSEFDARFFNISPREAPQIDPAQRLALMTAYEAIEQAGIVPDATPSTRPD-----RVGIFYGVTSNDWMETNSAQNIDTYFIPGGNRAFIPGRINYFFKFSGPS 529   
Q0CSA2 At  GNFVRDHDAFDHKFFQKSPREATTQDPQQRIFLQSAYQAVEQSGYFNSLHADRN--------VGVSV------------------------------------------- 512   
Q1DRI2 Ci  GNFVNGHDMFDHKFFKKSPRESATMDPQQRHLLQIAYQAVEQSGYFHSANPEKN--------IGCYMGVCATDYENNIACHAPNAFSATGNLQGFIAGKVSHYFGWTGPG 545   
Q2GPS7 Cg  GNFIRDHDTFDHKFFKKSPREMTSSDPQQRLMLQCAYQAVEQSGYFHQAKVDT--------------------------------------------------------- 463   
Q0CCC2 At  GNFVRDIDAFDHKFFRKVPREAMSQDPQQRLVLQVAYQALEQAGYFQQDDIDKN--------IGCYIASCTVDYEHNVNCHPASAYAATGLLRSFLAGKLSHYFGWRGPA 532   
Q2TXJ8 Ao  GNFVRDIDAFDHKFFKKVPREAMSQDPQQRLLLQVAYQAVQQSGYFHRPNINRN--------IGCYIASCTVDYEHNVNCHPASAYSATGLLRSFMAGKLSHYFGWRGPA 552   
Q4WFD7 Af  GNFIDDYDAFDHRFFKKSPREAASMDPQQRLMLQTAYQAVAQAGHFVQDPSRRTRR------VGCYIGVSNVDYENHVACHPANAYSATGTLKSFVAGKVSHFFGWTGPS 549   
Q0CF73 At  GCFFRDGDAFDHKFFKRSPREAAAMDPQSRIVLQTAYQAIEQSGYFAEDHTGYTPDGRDKAHVGVYLGSCGVDYEHNISCHDPNAFTATGALKSFITGRVSHLFGWTGPC 596   
Q1DVU2 Ci  CNFVRDVDAFDHRFFKRSPRESAAMDPQHRLLLQAAYQTVEQAGLFTEATRAGQED-RDRSHVGVYIGSPSVDYEHNVSTHPLNALMATGNLQSYLPGRVANHFGWTGPA 551   
Q5BEJ6 An  GCFFRDGDAFDHKFFKRSPRESAAMDPQSRIVLQAAYQAVEQSGYFVEDHNGYTPDGRDKMHVGVYLGSCGVDYEHNISCYDPNAFTATGALKSFITGRVSHHFGWTGPC 604   
Q2U7I0 Ao  CNFVRDVDAFDHKFFKRSPRESAAMDPQHRLLLQAAYQAVEQAGMFTEATRAGQED-KDRNHVGVYIGTPSVDYEHNVATHPLNAFMATGNLQSYLPGRVANYFGWTGPA 590   
Q5BBP8 An  GNFVRDPDAFDHKFFKKSPRESMAIDPQGRLSLEAAYQALEQSGYFNELTMTSAAEQERKKHVGVYVGVCSYEYDSNVHCHPPSAFTTTGELRSFIPGRISHYFGWTGPS 569   
Q5B8A0 An  SNLIRDRSQFDHSFFKMSPREAAAMDPQHRLFLQAAYQAVEQSGYFLEPGHN--ETKLPEDSVGVFH----------VSCYDPNAYTATGNLRAFLAGRVSHHFGWTGPA 514   
Q2GR18 Cg  GNFLDDTAVFDHKFFKKSPREALHMDPQQRLILQTAYQAVAQAGYYFQPKGNKSSD----RRIGCYIGAVTNDYEYNISHAIPNAFSATGALRSYIAGKVSHFFGWTGPA 551   
Q5B7U4 An  GNFVRDIDAFDHKFFRKSPREAMSQDPQQRLMLQVAYQALESAGYFSQPSPGKD--------IGCFIATCTVDYEHNVNCHPASAYAATGLLRSFLAGKLSHHFGWRGPS 560   
Q2UNE1 Ao  GNFVRDYDAFDHKFFQKSPRETVSSDPQHRMMLQVAYQAVQQSGYFSK--AAIDQH------VGCYVGIGVVDYENNVACHAPTAYTATGNLKSFAAGKISHFFGWSGPG 547   
 
                 (N/D)YDTFDHKFFK: sorb1-FFK-for  
               
                     DPRFFNM:  LC1    
               
 AEQMDPQ:  LC3 
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                                               Homology region II (KS domain)                                       
              670       680       690       700       710       720       730       740       750       760       770 
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  LTLDTACSSSSVAIHQACRSILSGECNGALAGGVNVITSPNWYHNLAGASFLSPTGQCKPFDAKGDGYCRGEGVGAVFLKRLSSAIADGDQVFGVIASTKVYQNQNCTAI 649   
PKS17  Bf  LTIDTACSSSSVSIHYACRSILSGECNSALAGGINIITSPNWYHNLSGASFLSPTGQCKPFDAKGDGYCRGEGVGAVLLKKLSSAVADGDQVLGVISSTGVYQNGNDTAI 663   
Q5BG07 An  VTVDTACSSSALAIHLACKAILSGECDASLAGGVNVITSPEWYQNLDGASFLSPTGQCKPFDAAADGYCRGEGAGAVFLKRLSSAVEDGDQIVGVIRATSVNQNENCSAI 657   
PKS3   Gm  YAVDTACSSSLAGIHLACNALWQGDVDTAIAGGTNVLTNPDYHAGLDRGHFLSRTGNCKTFDDGADGYCRGEGVATIIIKRLDDAIAENDPILGVVLGAYTNHSAESESI 639   
Q0CSA2 At  --ITLDGMGMDTSLYPTLYQVDSGECTAALAGGTNIMTSPLWFQNLAGASFLSQTGPCKPFDAKADGYCRGEGVACVFLKKMTKAIEDGNTIIGSIRSTAVYQNDNCTPI 620   
Q1DRI2 Ci  LTIDTACSSSTVAVHQACRAIISGECNAALAGGTHIMSGPLWFQNLAGASFLSTTGQCKPFDADADGYCRGEGIAAVFLKKASAAIADGDQILGVIAATAVQQNQNCTPI 655   
Q2GPS7 Cg  -------------------------------------------KNLSGASFLSPTGQCKPWDQGADGYCRGEAAAVVFLKRRADAVADGNRILGCISSTAVYQNENCTPV 530   
Q0CCC2 At  FCVDSACSGSAVALHQACQAILKGDCTAAIVGGANAIMSPLAYDNLAGASFVSPTGPCKPFDAKADGYCRGEGFAAIFIKKMSDALAAGDTILGTIAATAVEQNANCTPI 642   
Q2TXJ8 Ao  FCVDSACSGSAVALHQACQSIIRGECTAALVGGANAIMSPLAYDNLAGASFVSPTGPCKPFDASADGYCRGEGFAAIFIKKMSDALADGDIVLGTIASTAVEQNNNCTPI 662   
Q4WFD7 Af  LTIDTACSGAAVALHQACQGLLTGDCDEALAGGVNILASPLWFQNLAGASFLSPTGACKPFDASADGYCRGEGCGAVYLKRAKAALADGDPIIGIIPGTAVQQNENCTPI 659   
Q0CF73 At  MTFDTACSSSAVAIHTACRNLLSGECTAALAGGSNTVTNMNWFQNLAAGSFVSPTGQCKPFDDDADGYCRAEGAAFVFLKRLSDAVRDGNPILATIASSAVYQNQNCTPL 706   
Q1DVU2 Ci  IAFDTACSSSAVAIHTACNSLRNGECYAALAGGVCILTNPHWFQNLTAASFLSPTGQCKPFDEKGDGYCRAEGIACVLLKRMADARADGNPILGQLASSAVYQNQNHTPI 661   
Q5BEJ6 An  MTFDTACSSSAVAIHTACRNLLSGECTAALAGGSNTVTNMNWFQNLAAGSFVSPTGQCKPFDDDADGYCRAEGAAFVYLKRLSDALRDGNQVIATIAASAVYQNENCTPL 714   
Q2U7I0 Ao  IAFDTACSSSAVAIHSACNSIRNGECYAALAGGVCILTNPHWFQNLTAASFLSPTGQCKPFDEKGDGYCRAEGIACVFLKRMADARADGNPILGRLASSAVYQNQNHTPI 700   
Q5BBP8 An  LTFDTACSSSTVALHNACRDLLSGEVPAALCGGVNILTSLQWTQNLAAGSFISPTGQCKPFDSGADGYCRGDGIAYVFLKKLSNAVADGNTVLGTICSTGVNQNLNTTPL 679   
Q5B8A0 An  LTLDTACSSSAVAIHLACRSILSGECSAALAGGVAVMSSPFWFQNLGAASFLSPTGQCKPFDEKGDGYCRSEGIGCVMLKKMSAAVANNDQILGCIGASAVHQNQNCTAV 624   
Q2GR18 Cg  MTLDTACSASTVAIDLAIQAILSGECSAAL-------------------------------------------------------------------------------- 581   
Q5B7U4 An  LCVDTACSGSAVALHHACRAILSGDCTAALVGGANAITSPLAYDNLAGASFLSPTGPCKPFDAKADGYCRGEGFAAIYIKKLSHAIADGDQVLATIASTAVEQNDNCTPI 670   
Q2UNE1 Ao  VTIDTACSSSALAVHHACNAILNGECNAALAGGVNVMTSPEWYQNLDGASFLSPTGQCKPFDEAADGYCRGEGAGAVFLKKLSAAMEDGDQVLGVIRGSSVNQNANCSAI 657   
 
              DTACSSS         sorb2-PTG-rev (reverse):PTGQCKPF ADGYCRG: (KHKS2)  
                            sorb3-KPF-for (forward)   
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                   780       790       800       810       820       830       840       850       860       870       880           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  TVPNAISLSELFTDVVRQARLEPKDITLVEAHGTGTAVGDPAEYDGIRAVFGG------PIRS--DVLSLGSVKGLVGHTECASGVVSLIKTLLMIQQGFIPPQASFS-S 750   
PKS17  Bf  TVPISDSLSDLFLHVLHKAKLEPKDISVVEAHGTGTPVGDPAEYKGIQRVFGG------PDSS--HKVSLTSVKGLIGHTECASGVASLLKVILMVQEGFIPPQASFT-S 764   
Q5BG07 An  TAPSVRSLANVFNGVIRKARVDPKQISVVEAHGTGTQVGDRAEYDSIRTVLGG------PGRA--YPLSLGSVKGLIGHLECASGIAALIKVLLMVQNGIIPPQPGFS-K 758   
PKS3   Gm  TRPHVGAQRVIFNKILNEAAVDPYSVSYVEMHGTGTQAGDATEMSSVLETFAPPLAEGKVARPDSQKLYIGSAKANIGHGEAASGVCSVIKVLQMLKKDTIVPHCGIKNK 749   
Q0CSA2 At  FVPNAPSLSGLFDDVVRKSGLSPKDITLVEAHGTGTPVGDPAEWDSIRKTLGGR-----SVRSV--PMPVGSVKGLIGHTECTSGVVALIKVLLLIHYGIIPPQASFQ-T 722   
Q1DRI2 Ci  FVPNVPSLSSLFCAVRNQARIKPAEISVVEAHGTGTAVGDPAEYDSIRKALGG------PARTG--PLMLGSVKGLVGHIECTSGIVSIIKVLLMIQKSMIPPQASFN-T 756   
Q2GPS7 Cg  FVPNSPSLTYLFKDVLDRAKLEPRDISVVEAHGTGTPVGDPAEYLSVLQALGG------SLRDK--PLALGSVKGLIGHTEGASGVVSLIKIILMMQHGYVPPQASFQ-S 631   
Q0CCC2 At  VVPDTQSLAGLFKKATARAHILPRDISVVEAHGTGTQAGDPAEYASVRQSLGG------PQRKA--PLFLGSVKGLVGHTEGVSGLIALVKVLLMLQEGKIPPQPNFQ-T 743   
Q2TXJ8 Ao  VVPDASSLAGLFTQVTKKAHLHPRDISVVEAHGTGTQAGDPAEYVSIRQTLAG------PRRTS--PLSLGSVKGLVGHTEGVSGLIALVKILLMINEGIIPPQPNFQ-T 763   
Q4WFD7 Af  TVPNSVSLTDLFRRVLDKSQLSPDQISVVEAHGTGTAVGDPAEYTSIQQVLGG------PKRPRHNPVNLGSVKGLVGHLECASGIVSVLKILLMLKARTIPPHVGLE-T 762   
Q0CF73 At  FVPNSPSLSHLFKDVMHQAKITANDVSLVEAHGTGTPVGDPAEYESIRVALGG------PIRK--KTLPIGSVKGHIGHTEGASGAIALVKIIMMMREGFIPPQASFK-K 807   
Q1DVU2 Ci  FVPNSPSLAQLFGDVIKKAHVSPRDIALVEAHGTGTAVGDPAEWAALRKAVGG------PIRP--QPLPVGSVKGHIGHTEGTSGVISLIKVLIMMHEGYIPPQASFN-Q 762   
Q5BEJ6 An  FVPNSPSLSHLFKDVMRQAKVTANDVSLVEAHGTGTPVGDPAEYESILAALGG------PSRK--KKLPIGSVKGHIGHTEGASGAIALVKIIMMMREGFIPPQASFK-T 815   
Q2U7I0 Ao  FVPNSPSLAQLFGDVVKKAHLSPRDIALVEAHGTGTAVGDPAEWAALRKAVGG------PIRP--QPLPVGSVKGHVGHTEGASGIISLIKVLMMIHEGFIPPQASFN-K 801   
Q5BBP8 An  FVPNVPSLSTLFNEVIRKARIARRDISLVECHGTGTPVGDPAEWQSIRNAVAG------PRRD--TVLPIGSVKGHVGHTEGASGLVSLIKVLMMMRGNFIPPQASFN-T 780   
Q5B8A0 An  VVPNKPSLAPLFKQVISKSGLTPADISLVEAHGTGTAVGDPAEYASIADALNV------ASRP--SPLILGSVKGHIGHTEAAAGVVSLIKVLMMMNEGFIPPQASHT-R 725   
Q2GR18 Cg  ----------------------------------------------IRQIFGG------SARAGMKPLQIGSAKGLVGHTEGASGIVALIKVLLMILESRIPLQASFN-T 638   
Q5B7U4 An  VVPDTASLAGLFKKVTQRAHLHSRDISIVEAHGTGTQAGDPAEYESVRDVLGG------PRRVG--NLALGSVKGLVGHTEGVSGIIALCKVVLMILNGQIPPQPGFH-S 771   
Q2UNE1 Ao  TAPSVQSLTGVFNTVLRKARLDPKQISVVEAHGTGTQVGDRAEYDSVRRVLGG------PGRA--EPLSLGSVKGLIGHLECASGVAALIKVLLMIQNGAIPPQSSFR-T 758  
                                                LC2c :EMHGTGT, KHKS3c :VEAHGTG  
                                            LC5c :EAHATST 
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                          Homology region III (KS domen) 
                 
                   890       900       910       920       930       940       950       960       970       980       990           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  INPSLNAKAE-EKIEISTRLKPWDA----PFRAALINNYGASGSNASMVVTQPPNLTETPSTPLP-G----KSYPFWISAFDQQSLQSYVRRLRQFLEKH-AA---DKNL 846   
PKS17  Bf  VNPNLGLTPD-DKIEISAQLKPWEV----EFRAALINNYGASGSNASMVVTQAPKLISQIPSKLP-SN---RTYPFWFCGNDEHSLRAYITKLLGFLRSQGTP---GKDL 862   
Q5BG07 An  INPKLEALPS-DNIEIPTSLRPWNP----GFRAALLNNYGASGSNASLVVTQAGVPHLN-QSAIP-KGASAGRRPFWLSGTDVQSLRSYAAKLVQMLRSRKAD---DPRF 858   
PKS3   Gm  INHRFPTDLDQRNVRIALEPTGWKKGTETNPRRVFVNNFSAAGGNSALLIQDAPPRKQLIASSDS-----RVQFPIAITAKSGVSLQGNMRSMLKFLSTN-------PHT 847   
Q0CSA2 At  LSPALKATAD-DMLEVCTKQTPWNV----EYRAALINNYGASGSNASMIVTQPPKLRGNGPFS---PPTDGGKYAFWLTGLDERSLRDYARRLSGFLASKKIS------- 817   
Q1DRI2 Ci  INPAIDATPA-DNMSIPTKLQAWNT----DFKAALINNYGASGSNASMVITQPLVPRSKTAPESPIEVAAGTKFPFWFCGLDDQSLRRYSEAFRKFIAGQSSS---TKGL 858   
Q2GPS7 Cg  LAHNIAASPS-DKIEIVTKLRSWDA----DYRAALINNYGASGSNASMVVTPPPQPNRAALSP---IHAPGIKHPFWLCGLDDKALIAYSKRLRHFIAHKTSSYSSTATI 733   
Q0CCC2 At  LNPHISTSHD-DNMTIPTRLMPWDA----GYRAVLINNYGASGSNASMVITQSPASSLQDCQSS--IHTPGNSLPFRMCASDENRLRDYAQRVRQFIREKSIS--AGNSA 844   
Q2TXJ8 Ao  LNPHINASPD-DQIHIAVTLEQWRE----NFRAALINNYGASGSNASMVITEAPYASEHRMSSS--IHTFTVALPILICASDEGRLSDFAKRLRQFLHHQAIS--AAPAT 864   
Q4WFD7 Af  INPELAANSE-SQIEIPLSLRPWQA----PFRAALINNYGASGSNASLVVMDAAGYYDQPRANDS-SS--LKRIPFYISALDDRALQAYCAKFLSYIASC------RRSV 858   
Q0CF73 At  MNRKIPVRAD-DNMEVVTKLRPWDE----PHKTALLNNYGACGSNASMIITEPDKALSGPIDGSR-YRNTGQRYPFWIPGFDSRAITAYCAKLGSWLRSC------RQEP 905   
Q1DVU2 Ci  LNAAIKAAADSDMMEIVTSLRSWDS----RNKVALINNYGASGSNAAMVVAAPPTPNERQDVASI-KTLDG-RFPFFISGSDARAVKAYAAKLAALVERR------QSRS 860   
Q5BEJ6 An  MNKKIPVKAD-DNIEVVTRLRAWEE----ERKTALLNNYGACGSNASMIVTQPD--LRGPHSRS--HAVAGARYPFWIPGLDTRAITAYCAKLGPWLRSR------AEEP 910   
Q2U7I0 Ao  LNPTIKATAASDMMEIVTSLRSWDS----RNKVVLINNYGASGSNAAMVVAAPRTPNERQDAASI-KKLEG-RFPFCISGSDARAVKEYAAKLATIVNR-------QSKS 898   
Q5BBP8 An  MSPGIHAQPS-DNMEVVTALRSWPG----AQKVALINNYGACGSNSSAIVAHSA---HKPVKGP---LSGGQRLPFWISGLDARSIAAYSTALASYLHSQ------DQAA 873   
Q5B8A0 An  LSPRITAATD--KLRISTSLRPWET----DQKAALVNSYGASGSNTSMVILQLPKRHTFPHQGV---TKDGLAQPFWISGTNEVEITAYCARLAEYIRTR------PTVR 820   
Q2GR18 Cg  LNPAIQYSPS-DNMEIAKASLPWTD----DRKVAMINNYGAAGSNASILIQQAPKMTQGENAMST-GSASSCRWPFYISGLDDKAIQAYAAKLHLFLRERPVS---GHHL 739   
Q5B7U4 An  LNPHIRAMPD-DHIEIGTRVKPWEV----GFRAALINNYGACGSNASMVITQGPQKDEVQERG---IHAENVALPFRVCGLDKARLQAYAARLRRFLSR------SERGI 867   
Q2UNE1 Ao  ISSKLDASPL-DNIEISTCLRPWAT----GSRAALINNYGASGSNASLVITQADHAEVQSEAPRV-VEAFAGKRPFWFSGIDDQSLRSYAAKMVRFLQTRKPN---DNRF 859   
 
                                              GASGSNA: sorb4-GAS-rev 
   

 

Table 5: Sequence similarities of the deduced amino acid sequences of the amplified partial KS fragments from P. chrysogenum E01-10/3. 
 

Sequence name(a) 
Primer 
pair(b) 

Sequence 
size Sequence homologoues(c) 

Identities 
(%)(d) 

Positives 
(%)(d) References(e) 

KSnr-7 (pMA4) LC1,LC2c 707 bp ▪Putative WA type PKS (fragment) , P. patulum 

▪ Naphthopyrone PKS (WA), A. nidulans 

97 

89 

99 

96 

Q9Y832; Bingle et al., 1999 

Q03149; Watanabe et al., 1999 

KSnr-8 (pMA5) LC1,LC2c 703 bp ▪Putative WA type PKS (fragment) , P. patulum 

▪ Naphthopyrone PKS (WA), A. nidulans 

97 

88 

99 

95 

Q9Y832; Bingle et al., 1999 

Q03149; Watanabe et al., 1999 

KSnr-10 (pMA6) LC1,LC2c 707 bp ▪Putative WA type PKS (fragment) , P. patulum 96 98 Q9Y832; Bingle et al., 1999 
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Sequence name(a) 
Primer 
pair(b) 

Sequence 
size Sequence homologoues(c) 

Identities 
(%)(d) 

Positives 
(%)(d) References(e) 

▪ Naphthopyrone PKS (WA), A. nidulans 88 94 Q03149; Watanabe et al., 1999 

KSpr-MI (pMA1) LC3,LC5c 686 bp ▪Putative PKS (PKS2), P. patulum 

▪6-methylsalicylic acid synthase (MSAS), A. terreus 

94 

71 

97 

83 

P87001; Bingle et al., 1997 

P87162; Fuji et al., 1996 

KHKS1 (pMA9) KHKS2, 
KHKS3c 

248 bp ▪ Putative PKS, A. terreus 
▪ Myxalamid PKS (Mxac), Stigmatella aurantiaca (bacterium) 

78 
56 

87 
73 

Q0C8A4; Birren et al., 2005 
Q93TW9; Silakoski et al., 2001 

KHKS3 (pMA10) KHKS2, 

KHKS3c 

259 bp ▪ Putative PKS, Chaetomium globosum  

▪ Compactin nonaketide synthase (CNKS), P. citrinum 

73 

72 

87 

82 

Q2GPL2; Birren et al., 2005  

Q8J0F7; Abe et al., 2002 

KHKS9 (pMA11) KHKS2, 

KHKS3c 

290 bp ▪ Putative PKS, A. terreus 

▪ Curacin A PKS (CurL), Lyngbya majuscula (bacterium) 

72 

50 

82 

69 

Q0C8A4; Birren et al., 2005 

Q6DNE1; Chang et al., 2004 

KHKS27 (pMA12) KHKS2, 
KHKS3c 

290 bp ▪ Putative PKS (Syn8), Magnaporthe grisea  
▪ Compactin nonaketide synthase (CNKS), P. citrinum 

73 
67 

82 
77 

Q5XF88; Bohnert et al., 2004   
Q8J0F7; Abe at el., 200 

KHKS32 (pMA13) KHKS2, 

KHKS3c 

278 bp ▪ Putative PKS ; A. nidulans  

▪ Citrinin PKS (PKSct), M. purpureus 

65 

61 

80 

76 

Q5AUX7; Galagan et al., 2005  

Q65Z23; Shimizu et al., 2005 

KHKS37 (pMA14) KHKS2, 

KHKS3c 

259 bp ▪ Putative PKS, A. terreus 

▪ Myxalamid PKS (Mxac), Stigmatella aurantiaca (bacterium) 

78 

56 

87 

73 

Q0C8A4; Birren et al., 2005 

Q93TW9; Silakoski et al., 2001 

KHKS42 (pMA15) KHKS2, 
KHKS3c 

286 bp ▪ Putative PKS , A. nidulans  
▪ Citrinin PKS (PKSct), M. purpureus 

69 
65 

85 
81 

Q5AUX7; Galagan et al., 2005  
Q65Z23; Shimizu et al., 2005 

KHKS44 (pMA16) KHKS2, 

KHKS3c 

310 bp ▪ Putative PKS; Chaetomium globosum  

▪ Compactin nonaketide synthase (CNKS); P. citrinum 

73 

69 

87 

82 

Q2GPL2; Birren et al., 2005  

Q8J0F7; Abe et al., 2002 

KHKS46 (pMA17) KHKS2, 
KHKS3c 

247 bp ▪ Putative PKS , A. nidulans  
▪ Citrinin PKS (PKSct), M. purpureus 

63 
59 

82 
79 

Q5AUX7; Galagan et al., 2005  
Q65Z23; Shimizu et al., 2005 

KHKS51 (pMA18) KHKS2, 

KHKS3c 

350 bp ▪ Putative PKS, Phaeosphaeria nodorum 

▪ Putative PKS (PKS14), Gibberella moniliformis 

55 

51 

62 

68 

Q0UAE2; Birren et al., 2005 

Q6RKK1; Kroken et al., 2003 

(a) Working name of a sequence with plasmid name in brackets; (b) Primer pair used for amplification of the sequence in question; (c) Putative sequence homologues retrieved via 
BLASTX search showing the first match for homology search and the closest characterised homologue; names for corresponding genes are given in brackets and species in italics (d) 
Identity/similarity (%) of the deduced amino acid sequences. (e) Reference to TrEMBL accession number, author and the year for first deposition of a sequence in GenBank database. 
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6.1.2 AT domain amplification primers  

The AT domain was also used for design of degenerate primers suitable for detecting 

members of NR PKS clade III. The same alignment of 19 sequences was used as in the case 

of KS specific degenerate primers design (see Table 4). Five homology regions (I–V) were 

chosen within the AT domain. The part of the alignment corresponding to the AT domain is 

shown in Figure 17. The homology region I (PVILCFGGQV) and the homology region II 

(VVGHSFGE) each gave rise to one forward and one reverse primer (sorb7-GQV-for and 

sorb6-PVI-rev; sorb9-FGE-for and sorb8-VVG-rev, respectively). From the homology region 

III one forward primer was generated (NVTNAFH: sorb10-NAFH-for), while homology 

region V gave rise to one reverse primer (PPYQFEK: sorb13-PPY-rev). Within the homology 

region IV two variations of conserved motifs were used for the creation of two reverse 

primers: IWLEAGSN for sorb11-IWL-rev and IFLEAGSN for sorb12-IFL-rev. In addition, 

homology region III, which corresponds to the end of the KS domain, was used to design 

sorb5-ASG-for as the forward primer for amplification from the AT domain (see Figure 15). 

Corresponding amino acid residues from these sixth homology regions of all deduced protein 

sequence used in alignments are shown in Table 33. The number of PCRs with different 

combinations of forward and reverse primers (data not shown) as well as variation of PCR 

conditions (see 12.8) were performed in order to obtain the amplification from AT domains 

from P. chrysogenum that correspond to putative members of NR clade III PKS. After 

optimization of PCR conditions and utilization of a hot start PCR protocol (12.8.1), a 

combination of sorb9-FGE-for and sorb11-IWL-rev primer pair gave rise to a PCR product of 

expected size (587 bp) (see Figure 16). One of two sequenced PCR products showed 59% 

identity to a putative PKS of Chaetomium globosum (GeneBank: Q2GR18) as well as 52% 

identity to the characterised PKSct (citrinin) of M. purpureus (GeneBank: Q65Z23); see 

Table 6. 

Although 5 forward and 6 reverse newly designed primers were used for the amplification of 

the AT domain of the fungal NR PKS clade III (see Table 27), only one cloned sequence 

corresponded to a member of this subclade (i.e. AT-9-11). With regard to the 6 fungal partial 

KS domain sequences amplified with the aid of 3 different KS domain primers (see section 

6.1.1), the amplification from the AT domain appears rather less efficient. These KS domain 

amplification primers were designed in a manner to be able to amplify both members of the 

fungal PR PKSs (LC3/LC5c) as well as members of the fungal NR PKSs (LC1/LC2 and 

KHKS2/KHKS3c), which might contribute to the diversity of amplified KS domain 
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sequences. Secondly, the KS domain of fungal type I PKSs is regarded as the most conserved 

domain.  

However, the combination of sorb9-FGE-for and sorb11-IWL-rev AT domain primer pair 

gave rise to a dominant band with the PCR product of expected size (587 bp), as illustrated in 

Figure 16. It is of interest to mention that from all the AT domain primers used, this primer 

pair was the only one which was not degenerated. It might be that this fact enhanced the 

amplification of the partial sequence that corresponds to a member of the targeted fungal NR 

PKS clade III. 
 

 

 Figure 16: PCR amplification with AT-specific primers - 
ethidium bromide agarose gel.  
The sorb9-FGE-for and sorb11-IWL-rev primer pair was 
used. Lane M contains 100 bp ladder as a fragment size 
standard. Lanes 1 and 2 are showing hot start PCR for two 
different temperatures (55 °C and 59 °C, respectively) 
obtained with 1 ng (1:10 dilution) of genomic DNA from P. 
chrysogenum that served as a template. Lanes 3 and 4 
represent hot start PCR for the same two temperatures 
(55 °C and 59 °C, respectively) obtained with non diluted 
genomic DNA preparation from P. chrysogenum (10 
ng/reaction). In lane 5 a negative control was run in parallel 
with samples. Lane 3 shows clear amplification of PCR 
product of the expected size (587 bp). 
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Figure 17: Alingment for members of NR PKSb clade III - AT domain.  
The extracted part of the alignment corresponds to the end of KS domain and the whole AT domain. Nineteen deduced amino acid sequences of putative members of the NR 
PKS clade III: M. purpureus (Mp: PKSct ), Botryotinia fuckeliana (Bf: PKS17), A. nidulans (An: Q5BG07, Q5BEJ6, Q5BBP8, Q5B8A0 and Q5B7U4), Gibberella 
moniliformis (Gm: PKS3), A. terreus (At: Q0CSA2, Q0CCC2 and Q0CF73), Coccidioides immitis (Ci: Q1DRI2 and Q1DVU2), C. globosum (Cg: Q2GPS7 and Q2GR18), A. 
oryzae (Ao: Q2TXJ8, Q2U7I0 and Q2UNE1) and A. fumigatus (Af: Q4WFD7). The most conserved amino acids in all compared sequences are shaded red; similar amino acid 
sequences are shaded yellow. The threshold for both identity and similarity shading is 80%, meaning for at least fifteen sequences out of nineteen. The arrows indicate the 
primer position and direction. The exact amino acid motif is given for each primer from which it was designed with the corresponding region of homology and direction of 
given primer. The newly designed primers are shown in red. In sum, six regions of homology are shown in alignment: The region of homology III from KS domain, and five 
regions of homology with AT origin (I-V). The numbers on the right indicate the position of the displayed amino acid sequence within the complete sequence published. The 
ruler above indicates the position of the extracted alignment in the overall alignment. 
 
                                                                       Homology region III (KS domain) 
 
            890       900       910       920       930       940       950       960       970       980       990           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  INPSLNAKAE-EKIEISTRLKPWDA----PFRAALINNYGASGSNASMVVTQPPNLTETPSTPLP-G----KSYPFWISAFDQQSLQSYVRRLRQFLEKH-AA---DKNL 846   
PKS17  Bf  VNPNLGLTPD-DKIEISAQLKPWEV----EFRAALINNYGASGSNASMVVTQAPKLISQIPSKLP-SN---RTYPFWFCGNDEHSLRAYITKLLGFLRSQGTP---GKDL 862   
Q5BG07 An  INPKLEALPS-DNIEIPTSLRPWNP----GFRAALLNNYGASGSNASLVVTQAGVPHLN-QSAIP-KGASAGRRPFWLSGTDVQSLRSYAAKLVQMLRSRKAD---DPRF 858   
PKS3   Gm  INHRFPTDLDQRNVRIALEPTGWKKGTETNPRRVFVNNFSAAGGNSALLIQDAPPRKQLIASSDS-----RVQFPIAITAKSGVSLQGNMRSMLKFLSTN-------PHT 847   
Q0CSA2 At  LSPALKATAD-DMLEVCTKQTPWNV----EYRAALINNYGASGSNASMIVTQPPKLRGNGPFS---PPTDGGKYAFWLTGLDERSLRDYARRLSGFLASKKIS------- 817   
Q1DRI2 Ci  INPAIDATPA-DNMSIPTKLQAWNT----DFKAALINNYGASGSNASMVITQPLVPRSKTAPESPIEVAAGTKFPFWFCGLDDQSLRRYSEAFRKFIAGQSSS---TKGL 858   
Q2GPS7 Cg  LAHNIAASPS-DKIEIVTKLRSWDA----DYRAALINNYGASGSNASMVVTPPPQPNRAALSP---IHAPGIKHPFWLCGLDDKALIAYSKRLRHFIAHKTSSYSSTATI 733   
Q0CCC2 At  LNPHISTSHD-DNMTIPTRLMPWDA----GYRAVLINNYGASGSNASMVITQSPASSLQDCQSS--IHTPGNSLPFRMCASDENRLRDYAQRVRQFIREKSIS--AGNSA 844   
Q2TXJ8 Ao  LNPHINASPD-DQIHIAVTLEQWRE----NFRAALINNYGASGSNASMVITEAPYASEHRMSSS--IHTFTVALPILICASDEGRLSDFAKRLRQFLHHQAIS--AAPAT 864   
Q4WFD7 Af  INPELAANSE-SQIEIPLSLRPWQA----PFRAALINNYGASGSNASLVVMDAAGYYDQPRANDS-SS--LKRIPFYISALDDRALQAYCAKFLSYIASC------RRSV 858   
Q0CF73 At  MNRKIPVRAD-DNMEVVTKLRPWDE----PHKTALLNNYGACGSNASMIITEPDKALSGPIDGSR-YRNTGQRYPFWIPGFDSRAITAYCAKLGSWLRSC------RQEP 905   
Q1DVU2 Ci  LNAAIKAAADSDMMEIVTSLRSWDS----RNKVALINNYGASGSNAAMVVAAPPTPNERQDVASI-KTLDG-RFPFFISGSDARAVKAYAAKLAALVERR------QSRS 860   
Q5BEJ6 An  MNKKIPVKAD-DNIEVVTRLRAWEE----ERKTALLNNYGACGSNASMIVTQPD--LRGPHSRS--HAVAGARYPFWIPGLDTRAITAYCAKLGPWLRSR------AEEP 910   
Q2U7I0 Ao  LNPTIKATAASDMMEIVTSLRSWDS----RNKVVLINNYGASGSNAAMVVAAPRTPNERQDAASI-KKLEG-RFPFCISGSDARAVKEYAAKLATIVNR-------QSKS 898   
Q5BBP8 An  MSPGIHAQPS-DNMEVVTALRSWPG----AQKVALINNYGACGSNSSAIVAHSA---HKPVKGP---LSGGQRLPFWISGLDARSIAAYSTALASYLHSQ------DQAA 873   
Q5B8A0 An  LSPRITAATD--KLRISTSLRPWET----DQKAALVNSYGASGSNTSMVILQLPKRHTFPHQGV---TKDGLAQPFWISGTNEVEITAYCARLAEYIRTR------PTVR 820   
Q2GR18 Cg  LNPAIQYSPS-DNMEIAKASLPWTD----DRKVAMINNYGAAGSNASILIQQAPKMTQGENAMST-GSASSCRWPFYISGLDDKAIQAYAAKLHLFLRERPVS---GHHL 739   
Q5B7U4 An  LNPHIRAMPD-DHIEIGTRVKPWEV----GFRAALINNYGACGSNASMVITQGPQKDEVQERG---IHAENVALPFRVCGLDKARLQAYAARLRRFLSR------SERGI 867   
Q2UNE1 Ao  ISSKLDASPL-DNIEISTCLRPWAT----GSRAALINNYGASGSNASLVITQADHAEVQSEAPRV-VEAFAGKRPFWFSGIDDQSLRSYAAKMVRFLQTRKPN---DNRF 859   
 
        ALINNYGASG: sorb5-ASG-for 
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                               Homology region I (AT domain) 
            1000      1010      1020      1030      1040      1050      1060      1070      1080      1090      1100          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  SVANLSFQVAC-QSNWSLPQALVFSASTKEELNRALASFE------KGSTDFPSVQLP-DPKPVILCFGGQVSTYVGLDQEVYNSTAILRHYLDQCDAMCLSLG-LQSIY 947   
PKS17  Bf  STSNLSFQVSR-QSNRSLDWALIFNCNSSSELQDKLAAHL------KGEKSITAIRTP-STRPVILCFGGQVSTYVGLNQEIYDTIPLLRRYLDQCDAIFISMD-LGSIY 963   
Q5BG07 An  TVANLSFQLAR-QSNRNLGQALIFSCASVDELEAKLADFA------SGGNTLTSVPRPDSSRPVILCFGGQRSSFVGLDREAFDSFKLLKSHLTHCHETSLALG-LGGIL 960   
PKS3   Gm  SLAELSYTTTA--RRIHHQHRILVPGATPEEICSKIETALQN---------NTGVTRPKAAPKVVFTFTGQGAQYPGMGKQLFEENEFVRNELLSLDRIAQNLGFTSMLS 946   
Q0CSA2 At  SLSSLSFNAYR-QSNRALPHGLIFSSSSMEELQTQLTDFAKG----NGKLSATTRKPVR---PVILCFGGQISRFVGLDKAVYESIGTLRTHLDRCDATLQSLG-LDGLY 918   
Q1DRI2 Ci  SLSNISFNLAR-QSNRSLERSLMFSVRSVDELLQKLEMFEKG----DMSVASAATTAQP--RPVVLCFGGQVSTFIGLDPNVYKRVAILQKHLDTVDAAARSLG-AGSIF 960   
Q2GPS7 Cg  SLANLSFNVCR-QSNRHLDRALMFSCSSLGELDEKLALFIDG----DAKLGSTSTKTITKRRPVIMCFGGQVSSFVGLDRQVYDSVKIVRDYLDQCNAVFLSIG-LEGIF 837   
Q0CCC2 At  SLANISYNMCR-QSNPALEAQIAFRCASPEELDNNLTAIIDG----RGPQITKLRKSSR---PVVLCFGGQVSTFVGLDGGVYDAFPLLRQHLDDCDTTLKEMG-HEGLY 945   
Q2TXJ8 Ao  DLGNLSFNICR-QSNPTLDSQVAFTCCSKSELSSKLSSIIDG----ETSHIFRFIKSPR---SIVLCFGGQVSTFVGLDRTVYDCISLLRYWLDQCDSLAQSFG-YGSLF 965   
Q4WFD7 Af  SLDALAFNLSR-QSNRDLGCVLTLGCTSIEDLEKQLREVQ------AGRRAWRSRVPQ---RPVILCFGGQTSTFVGLNRDVFISNPLLRMHLDECDRMCRSMA-LDGIY 957   
Q0CF73 At  TLADVSFNVNR-QSNRSLTQGFIFNCRSMTELHEKLEQAAAAG---KDAAANAGITPVKAERPVVLCFGGQVSRFVGLDRNLFESVAILRQHLDHVDAVVTSQG-LGSIY 1010  
Q1DVU2 Ci  ALADLSFNINR-QSNPDLPQRFLLRCRSVDELKER-----------LASVSEHDMTDTQAERPVVLCFGGQVSTFVGLDRKLYDSIAVFRHHLDECDEIVQAELGLPSIF 958   
Q5BEJ6 An  TLADISFNLSR-QSNRGLPQGFIFNARSLAELHEKIEQAVAAAPSSKDAAASVGIAPVKAERPVILCFGGQISRFVGLDRGLFDAVALFRKHLDAVDTVVKAQG-LVSIY 1018  
Q2U7I0 Ao  TLADLSFNINR-QTNPDLPQRLLLRCRSVDELKDR-----------LASVSEEELTNTQAERPVVLCFGGQVSTFVGLDRKLYDNIAVFRHHLDECDNVLQTELGLPSIF 996   
Q5BBP8 An  SLADAKLALAA-KAT-------------------------------KDTAPSVGIVPVKPERPVILCFGGQVSTFIGLDRAVYEGASVFRHHLDTCNAAITSHS-LESIY 950   
Q5B8A0 An  -LDDLSFNLSR-QCNRTLARQLVFSCRSMSELQAMLS---------RGASAEGSSKVVPTERPVILCFGGQVSTFVGLNRLVYENVGLLRRYLDECDMAMTNMG-LESIY 918   
Q2GR18 Cg  DIENVSFNVNRQSMNGSLGRAAMFAAGSIDELEQQLG-------------SLETAATPVSTRPVILAFGGQVGKVVGLDREVFDKSTILRHHLDDCDRACKSIQ-AGSIY 835   
Q5B7U4 An  SFANIAFNLTR-KSNPALECQCVFQTRSESELKDILTGLEEG----DNKYIIQVKKPKR---PLVLCFGGQVGRSIGLDRTFYNAFPLFKHHLDSCDDILKANG-DSSIY 968   
Q2UNE1 Ao  TIDNLSYQLAR-QSNRSLGQSLIFSCASVAELEAKLASFA------DGWSELKSTQRQQSSRPVILCFGGQKSNFVGLDREAYDHFKVLRTHLDQCHEICLSLG-LGGII 961   
 
                                                           PVILCFGGQV: sorb6-PVI-rev, sorb7-GQV-for 
                                                                           
                                          Homology region (AT domain) 
                   1110      1120      1130      1140      1150      1160      1170      1180      1190      1200      1210          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  --PAIFQRSPIEDIVQLQTALFAMQYSCAKAWIDSGLK--VASVVGHSFGELIALCVSNAVSLKDAVKMISGRARLIKERWGADKGSMIAVEADLSDVEALLAKVKSQM- 1052  
PKS17  Bf  --PDIFQKSPVQDIVKLHSILFALQYSTAKCWIDCGIK--VAAAIGHSFGELTALCVSNALPLKHAIEMITGRAHLIQQKWTAERGCMMAVEADAANVNALLAKSK---- 1065  
Q5BG07 An  --PAIFDRTPRSSIVELQLMQFALQYSCAKTWIDSGIH--VAALVGHSFGELTAMCVSGTLSLQDTLRMIAGRARIIEEKWGPDRGSMMAVDGELELVQRLLHNAHEAS- 1065  
PKS3   Gm  FIQSDEPDVSKFAPSLVQLASVCLQITLSKLWATWGIT--PTAVVGHSLGEYAALNVAGVLSDTDTLFLVGGRAQLLEQKCTRGTHAMLVVKGSQEEIANALKGEN---- 1050  
Q0CSA2 At  --PGIFERSQVDDPVKLQTMLFALQYSCAKCWLDCGLQ--PVAVVGHSFGELTALCIAGVLTLRDSLQVVAMRAQLIKSSWGPDPGAMMAVEGNLADVQTLLKNAERACP 1024  
Q1DRI2 Ci  --PSIFERSPIQDTVKLQLILFAMQYACAHSWIDSGIQ--PAAVVGHSFGELTALCVSQILSLEDSLRMVRVKQKLSRGDSSQHCLLQRTQELHYCWFYSVYRSRR---- 1062  
Q2GPS7 Cg  --PAVFQREPIEDPVRLQTALFAVQYACAKSWMDSGIQ--AEAVVGHSFGELTALCVSGVLSLLDASKMIVARAKLVRDTWGSDRGAMAAVEADLDMVRSAIESHNRAMV 943   
Q0CCC2 At  --PGIFEHAPINDQVKLQTKLFALQYACARSWIQSGLS--VAAVVGHSFGELTSLCVCGALSLADALTLVARRAAIIRDSWGSDSGAMMAVEADRVEVEQLLNEHNTSCP 1051  
Q2TXJ8 Ao  --PGIFEHNPIIDQIQLHIQLFSLQYSCARCWIDSGLA--VEAVVGHSFGELTALCISGALSLGDTITLIARRAAIIRDGWGHDHGAMLAVEGNKDDIMRLIDEACRNTP 1071  
Q4WFD7 Af  --PEIFQKSPIEDVVKLQLALFALQYACAATWIDCGAP--VAAVVGHSFGELTALCIAGVLSLEDTVRLIAGRAGLVRDSWGKDRGGMIAAEGDLPVIKSLLECANHRCG 1063  
Q0CF73 At  --PEIFEREPVRDTVKLQTMLFALQYACAKSWMDSGLQGKVQAVVGHSFGEITALCIAGVLSLEHTVQLVAARAALVRDNWGADPGAMMAIEADENLVNELLLEAN--RG 1116  
Q1DVU2 Ci  --PDIFSRTPLGDPVRLQVALFAMQYASARSWIDCGLSGKVVSVVGHSFGELTALCISGALSLKHALTLVSRRAQLVRDAWGDEKGSMMAVEADESLVQKLLEHAGRQL- 1065  
Q5BEJ6 An  AAPDIFSREPIEDTVKLQTMLFAMQYACAQTWIDCGLNGKVQALVGHSFGEITALCVAGTLSLDETVRLVAARAKLVRDSWGADRGAMMALEGDEGLVHQLLSEANGASG 1128  
Q2U7I0 Ao  --PDIFSRTALPDPVRLQVALFAMQYASARSWIDCGLSGKVVSVIGHSFGELTALCISGVLSLKDALTLIARRAQLVRDAWGDEKGSMMAVEADESLVHSLLEHAGRQLG 1104  
Q5BBP8 An  --PDIFSSEPYQDTIKLQTALFAMQYASAKTWMDCGIAEKVVSVVGHSFGEITALCVSGVLSLEDSVKLIAGRAKLVQTAWGADSGSMMAIEADGAVVQDLLQESN--AR 1056  
Q5B8A0 An  --PEIFSTSPVQDTVKLQCMLFAMQYSCARCWLDCGVSTRIAAVVGHSFGELTALSISGVLSVQDTIKLVAGRARLIRDQWGSDRGAMMAVEGDESTIQQLLEEASQQTP 1026  
Q2GR18 Cg  --PTIFQREPINDPSVLQPVLFSLQYACAKSWIDCGVEP--AALVGHSFGELTALCISGVLSLEDTLRMVHGRSKVIRDSWGAEPGSMVAVEGDPADVENVIAAVNAQLD 941   
Q5B7U4 An  --PGIFATAPVLDIVQLHTQLFALQYACARSWMDCGVE--VTAVIGHSFGELTALCISGALSLPDALTLIVRRAVLIRDKWGADPGAMLAVEGDRSTLEKHLESSS---- 1070  
Q2UNE1 Ao  --PAIFERTPRSSIVELQTMQFALQYSCAKSWIDSGVQ--VAALVGHSFGELTAMCVCGTLSVRDTLKMIVGRARLLEEKWGLDRGSMMAVDGELESIQKLLRETNAAH- 1066  
 
                                                     VVGHSFGE: sorb8-VVG-rev, sorb9-FGE-for 
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                                                              Homology region III (AT domain) 
 
                   1220      1230      1240      1250      1260      1270      1280      1290      1300      1310      1320          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  ----GSETGLAIACYNASKSFTLAGPTKDVDHAENLLKN---DPDFSGIRYKRLNVTNAFHSVLVDALIDDLESLGQGIRFKEPTIKLERATEQES---TSTLNANYVAT 1152  
PKS17  Bf  --------NVAIACYNGPRSFTLAGTGKAIDSLEEMAKS---DPTFSGVKLKKLNVTNAFHCHLVDPLMEDLEKFGMKLVFREPDFPLETATEYEF---TDKRDEKFVAR 1161  
Q5BG07 An  ----PNEPAVNIACFNGPRLFTLAGTTKAMRVVREVLSK---DNRLSSIKVKSLETSHAFHSTLVEPLIPDLEELGEESIFRKPVVVHERATQNSV---AGPPPFSIFAS 1165  
PKS3   Gm  ---------YETACINSPIETVLAGPNEQIAKVKEQLTA-------ASFKTTLLKVPYAFHSSQLEPVVFDIEKLAKKVAFSEPRIPVLCPLEGTVIENENPFNASYLAR 1144  
Q0CSA2 At  -----EETPATVACFNGPTTFTLAGSTKAIDAVSECIS------SVSVVRGKKLSVSNAFHSTLVEPLKDQLGQLAEGMIFGEAKIRWERATENQTS--ANIGP-EFFAS 1120  
Q1DRI2 Ci  -------------CFYLHTSFFID-------------------------ESEETECYQCISLCFARPLLEQLEQGSKNLNFGEPIIPMERATEFPHQ--EKLTP-RFVSD 1131  
Q2GPS7 Cg  ----DDELPVTIACYNGPRSFTLAGPTKSMDKFVETLTGSP--MYSPVMRVKRLNVTHAFHSVLVEPLIDELDAIGRTLTFREPSILLERSTKELN---LETTS-EFVAQ 1043  
Q0CCC2 At  ----IGGFPASIACYNGPRSFTLAGSTSSIDKIQDVIRTN---LRFSHIRTKRLSVTNAFHSSLVDPLVTELEHVTDGLTLNQPSIHLEHATENPSN--CTIPT-TFVAD 1151  
Q2TXJ8 Ao  ----TNVAPATIACFNGPSSFTLAGTTAAIDGIQATLKT----PSYISLKAKRLFVTNAFHSDLVDPLLPALEDVMCGIHPQEPIIPCEKATENACT--GTVTS-DMVAK 1170  
Q4WFD7 Af  F---PEGAGASIACVNGPRSFTLAGPTKAMDAIEAIVSEPAEQPQLGALRMKRLNVSNAFHSTLVQPLTRDLELLGQSLSFYPARIRVERSTECAS---PPPSTGRYVAD 1167  
Q0CF73 At  ----S-DGSASIACYNGPRSFTIAGSTGAIDAVQQTMGS---NSKFGSIKSKRLSVTNAFHSALVDKISDGLERIGKTLTFHRPIIPVERATEMPFD--MDNLDGSFVSQ 1216  
Q1DVU2 Ci  ------DNPATIACYNGPRSFTLSGSVEAIDAVAEAIANN--SDKFSALRSKRLNVTNAFHSSLVDPLLDRLEQVGNDLEFHEPSIPLERATETAF---TGPLTPKFVPD 1164  
Q5BEJ6 An  ----S-DGSASIACYNGPRSFTIAGSTSAVDQVQQTIS----RPEFGSIKGKRLNVTNAFHSSLVDKISDGLDSIGKTLTFNSPLIPVERATEVAS---ARATDASFVSQ 1226  
Q2U7I0 Ao  ----GLDSPASIACYNGPRSFTLAGSVKAIDAVAEAISN---GDKFSAVRSKRLNVTNAFHSSLVDPLIDRLEDVGKQLEFHEPSIPLERATETAF---AGPLTPKFVPN 1204  
Q5BBP8 An  ----S-DGTAGIACYNGPRSFTVAGSTKAIDAFAATLP-------GKEVKSKRLNVTNAFHSALVESIVDRLGEVGKEVTFHDAVIPIERATEHSG---DATLDWTFVGS 1151  
Q5B8A0 An  ----S-DHPATIACYNGPRSFTLGGSTAAIEGVKETLLS-----KYPYIRHKRLNVTNAFHCSLVGNIVEPLNQLGEELTFNSPVIHIEHSSSTPST--GARPSSTFVAD 1124  
Q2GR18 Cg  NKGDGRHGMACIACVNGPRSFTLAGSVAACDAVQQHIEARDADSIRPTIKHKRIHVTNAFHSGLVEPLKPELLAVGSQLTFRQPRIPLERETEGYR---KCPSDASYVAE 1048  
Q5B7U4 An  ---------ANIACFNGPRSFTVAGPTAVIDFLQEELGA------DSAFRLKRLEVTNAFHSTLVDPLLPALASAIDGLALNTATIPIERATEHQAA--DTIPL-SIVAD 1162  
Q2UNE1 Ao  ----TTEPPVNIACFNGPRQFTLAGTSKAMAVVKQTLSS---NPFFSSIKAKQLDTTHAFHSVLVDPLVPELEKLGEDLIFRSPVIPHERATQEAI---RDPPAFNVFAS 1166  
 
                                                                 NVTNAFH: sorb10-NAFH-for 
                     
                                    Homology region IV (AT domain) Homology region V (AT domain)                     
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                   1330      1340      1350      1360      1370      1380      1390      1400      1410      1420      1430          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  HMRKPVFFAQAVKRLSDK---FPVAIWLEAGSNSTITAMASRALGTS----NSS---FQAVNITS-EGAFRFLCDTTVKLWKEGQ-KVSFWAHHRLQTPMYTPVLLPPYQ 1250  
PKS17  Bf  HLRSPVFFHHAVQRIAKK---HPDATWLEAGSNSTVTTMASRALGSS----GASSSHFQPINITS-DNSFNFLAEATSRLWKEGL-RVLFWAHHPVQASSYTPVILPPYQ 1262  
Q5BG07 An  HMRDPVYFDRAVQRLANR---YPSSIWLEAGSGSGVTNLASRAAGSR----AMA---FQSINITS-SSAVQNVADATLNLWKEGL-QVMFWEHVR-PSPKFPLLLLPPYQ 1262  
PKS3   Gm  HSRQPVNMLTALTTAYRDGYLSDRSMVLEVGPHPAVSGMVKPTLGQQ---------ITCVASLQRSRAPWDMLSAALKSLYDAGA-SINWADYQSNFPGAHTVVDLPAYS 1244  
Q0CSA2 At  HMRDPVYANHALQRLHRE---FPSAIWLEAGSNSTITRMANKALGF------PAESYFADINITS-DSASNTLTESFVNLWKEGL-AIPHWAHHCTQAPAYSTLLLPPYQ 1219  
Q1DRI2 Ci  HIRSPVFFHHAVERLSKR---HLSCIFLEAGSNSTITSMASRALGN------PGSSHFHAVNITC-DNGINNLTDTTLSLWRAGL-KVDHWPHQTAQTKEHTPLLLPPYQ 1230  
Q2GPS7 Cg  HMRQPVFFEHAVKRLAEQ---YPDAAWIEAGSASTITNMASRALGS------PSTYHFQSLNITC-DHGMKSLADATLALWKAGV-ETAYWPHHPGQTYEFDHLFLPPYQ 1142  
Q0CCC2 At  HLRRPVYFNQAVERLAEK---YKSCVWLEAGSNSTITLMAARALGS------SGEHHFQAVNITS-NAGLQNLTDRTISLWREGV-FVRFWGHHACQSPEYGPVLLPPYQ 1250  
Q2TXJ8 Ao  HLRQPVYFHHAVQRLAEK---YGPCVWLEAGSNSTITYMVNRALVP------SSGHHCQAVNITT-ERGMQSLSDATVSLWKASV-SVAFWGHHSQQAQKYVPMFLPPYQ 1269  
Q4WFD7 Af  HMRNPVYFHQAVQRLAHE---YPSAIWLEAGSNSTITNMASRALDNP----ASS--HFQPVNLTN-DSSSVTFADVFIKLWDQGLSFVSFWPHHPSQGHRYEMLLLPPYQ 1267  
Q0CF73 At  HMRQPVYFNHALQRLVKR---YPQAIFLEAGSSSTITIMASRAIAQS-QASSSDAHHFQAMSITS-DTAFDSLTDATMALWKQGL-RVSFWAHHAVQARDYAQLLLPPYQ 1320  
Q1DVU2 Ci  HMRQPVFFSHAMQRLAKK---HPSAIFLEAGSSSTITVMASRALAG----QASKSHHFESVSVTN-EKGLDGLTDTTISLWKQGL-RVAFWAHHTLQTNDYTYILLPPYQ 1265  
Q5BEJ6 An  HMRQPVFFNHAVQRLAKR---HPQAIFLEAGSSSTITVMAGRAIAQG-QASS-ESHYFQAVSITN-ETALDSLADTTTALWKQGL-RVTFWAHDAVQTAEYAHLLLPPYQ 1329  
Q2U7I0 Ao  HMRNPVFFSHAIQRLAKK---YPSAIFLEAGSSSTITVMARRALAG----QVSKSQHFESVSVTN-EKGLDGLTDATVSLWEQGL-RVAFWAHHTLQTKDYTHILLPPYQ 1305  
Q5BBP8 An  HMRRPVFFNHAVQRLAEK---YPDAIFLEAGSNSTITVMASRALAN-----PKSTHHFQSISITNTNKGIARLTDATVDLWKQGL-RVSFWAHHRFQKDEYAQLLLPPYQ 1252  
Q5B8A0 An  HLRKPVYFYHAIERLARA---YPDSIWLEAGSNSTITTMAGRALRPTSDIVGQSHHHFQALNITHGGRGSDSLTETTLSLWKEGL-RVSFWQHHPVQKDQYEHLILPPRQ 1230  
Q2GR18 Cg  HMRDPVYWLQAVERLASK---YPDAIWLEAGSNSTITNMASKALGMP------RSATFLPVNITGDDRCLQHLVDITMGLWRAGV-HVAFWPHSRAQTHQYAPIMLPPYQ 1148  
Q5B7U4 An  HLRQPVYFNNAVQRLAAR---HGPAIWLEAGSNSTITSLARRALGLG-----VSGNTFHSVNVTS-TSALMNLTDVTVGLWSDNV-PCTFWGYHARQTREYAPLLLPPYQ 1262  
Q2UNE1 Ao  HMRDPVYFDQAVQRLAQK---YPSSIWLEAGSGSGVTALASRAAGSC----GMV---FQSINITG-SGAVQNVADATFNLWKEGL-NVSFWGHVG-QTVKS-LLLLPPYQ 1262  
                                     ... 
                                   I(W/F)LEAGSN: sorb11-IWL-rev, sorb12-IFL-rev          PPYQFEK: sorb13-PPY-rev
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Region of homology V (AT domain) 
       ... 
                   1440      1450      1460      1470      1480      1490      1500      1510      1520      1530      1540          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct  Mp  FEKS-RHWMDLKVPPKPEAS---VQVAEQTAIIE---------------APKGLTTFVGYQDAS--QRSVRFRVNVTTEKFNRLLSGHIMANAAAVCPGMFQVEIALDAL 1339  
PKS17  Bf  FEKS-KHWMDLKKAPKLEP------LVVKTQTKE---------------LPKGLTTFVGYQDEA--NHSALFQVNTKTERFARLVSGHVMASVAAVCPGIFQMELALDAL 1348  
Q5BG07 An  FAKS-RHWLERRKLKTKVF-------VPASPVQE---------------AQKGLWTFVGYQDSD--RCQARFQIHITSDEFQNYVSAHVIAQTAPICPSMFQQVIARDAL 1347  
PKS3   Gm  WDLK-EYWIQYVNDWSLRKGDPPLVINNVSKLEST-----------------TIHSVVEESGNS-KKTHIVVEADIARKDLSPLVQGHEVDG-IPLCTPSVYADIALSLG 1334  
Q0CSA2 At  FEKS-RHWLELKKPQ--AVQ---LIELPSKAQQEE--------------LPTKLYTFVGYQDEG--KRQARFRVNTMIKAYEEFVSGHLIVQTAAICPATLEVDITIEAL 1307  
Q1DRI2 Ci  FDKV-SHWIELRGPP--KVS---STPTLPKEEEER--------------VPDQLLTFVGYQDGR--KRLAKFQINTMISKYDRLIVGHVIAETEPICPSTVQLDLVVEAI 1318  
Q2GPS7 Cg  FEKV-KHWMDLKKPQKGLVE---LPAAEAGNVEAR--------------VPVGLWSFLGYDDSK--EQTARFVVNTDSKKYHDFVSGHLIANTAPICPATLEVDMAIEAL 1232  
Q0CCC2 At  FEKS-RHWMDNKKLPS---------TTSHPTSAQA--------------REDDLICFMGYEGRN--KETAKFRINTAHPRYQSAVTGHIVAHTAPVAPASIILNTVLEAL 1334  
Q2TXJ8 Ao  FEKS-RHWLSNKKLPG---------PAHEAGATPA--------------VSASALRFVGYQDTQ--QLVARFSIDTAHPQYQESIAGHVVSHTSPVAPASFMLDYVVEAL 1353  
Q4WFD7 Af  FELF-RHLLPMTPREEQDVQ---GKVGSASSTKPG--------------SEQDLWSFVGSHN-----AQSRFQIHMDNSKIQEYVTGHTVAGSAPLCPSTLQLELAIETI 1354  
Q0CF73 At  FDTSSRHWLPMKSPLEEVKKAAAAMVAAGGDVGTG---QHQQNDALQDPRLQSLWNFVEFQDGD--NKKPRFRINTGSDKYNRFVLSHVIAQTAPICPGTLECDIVIEAL 1425  
Q1DVU2 Ci  FEKA-RHWMDFKSATDLVAG----FLTQNAPPVSD-------------PKTMPLWEFVGYQGND--TKHPRFRVNLVSDKFKKLVSGHVFAHTAPVLSGTVQSDMAVEAL 1355  
Q5BEJ6 An  FDTSSRHWLPMKSPVEKVKEAALALIAANGGSLAGAGLQGQQAGTPQDPRTLPVWEFVGYQDDE--TRQARFRVNTSADKYNRYVLSHVIAQTAPICPGTLECDIVIEAL 1437  
Q2U7I0 Ao  FEKA-RHWMDYKSASDLVAG----MTQR--APVSD-------------SKSMPLWEFVGYQNND--TKHPRFRVNIISDKFKKLVSGHIFAHTAPVLSGTVQSDMAVEAL 1393  
Q5BBP8 An  FEKT-RHWLELKSPIEQAMN--IAKVQDGIAAQKG----------HVNNKSLEIWTFLGFQKQKKKTKLARFRINTSSDKYQRLFATHVIAKTAPIAPATLEIDMAIETL 1349  
Q5B8A0 An  FART-RHGLDIIAP----------KTDQGAAQQTG------------VPKPDGLWTFVGYEDNN--RSRPRFLINSNSEKYLAMVEGHVMARTAAICPAGLEVDMAIEAL 1315  
Q2GR18 Cg  FERN-RHWLDFKPPLKQVGQETQPSEQAKSGAEGG------------FLPPSGPYTFVGYKDNK-TKKESRFLINNSIKSYVGIVSGHVIAKQAPVLPVPFAIDLAIQAI 1244  
Q5B7U4 An  FERT-RHWMENKPLP----------------------------------------------------------LKYNQAQAVMEVSGHTAAKTAPIAPATLLLDYAIELL 1313  
Q2UNE1 Ao  FAKT-RHWLERRKPEVKEA-------APVAPWPK---------------SPKGLWTFMGFQDSG--NTHARFQIHSTSDEFKKYVGAHLVAQTAPICPSMFQHVMAREAL 1347  
     ...  
PPYQFEK: sorb13-PPY-rev 
 
 
Table 6: Sequence similarities of the deduced amino acid sequences of the amplified partial MT fragments from P. chrysogenum E01-10/3. 
 
Sequence 
name(a) Primer pair(b) 

Fragment 
size Sequence homologoues(c) 

Identities 
(%)(d) 

Positives 
(%)(d) References(e) 

AT-9-11 sorb9-FGE-for/ 
sorb11-IWL-rev 

592 bp ▪ Putative PKS, Chaetomium globosum 

▪ Citrinin PKS (PKSct/CitS), M. purpureus 

59 

52 

72 

68 

Q2GR18; Birren et al., 2005 

Q65Z23; Shimizu et al., 2005 
(a) Working name of a sequence with plasmid name in brackets; (b) Primer pair used for amplification of the sequence in question; (c) Putative sequence homologues 
retrieved via BLASTX search: showing the first match for homology search and the closest characterised homologue; (d) Identity/similarity (%) of the deduced amino 
acid sequences. NR stands for non-reducing fungal PKS. (e) Reference combines sequence TrEMBL accession number, referent author and the year for first deposition 
of a sequence in GenBank database. 
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6.1.3 MT domain amplification primers 

The PCR primers designed to amplify C-MT domain regions could provide additional 

specificity on the cloning approach for gene clusters of methylated polyketides like 

sorbicillactone A. The C-MT domain is thought to add a methyl group, derived from S-

adenosyl methionine (SAM), to ß-ketoacyl PKS intermediates (see 2.3.1 for NR PKS). This 

strategy for introducing branch points is used as well by bacterial modular synthases, with 

exception of actinomycetes where side-chain groups derive from the incorporation of 

modified chain extender (e.g. methyl-malonyl) unit [23]. Despite the overall low sequence 

similarity generally observed for non-DNA methyltransferases, Kagan and Clarke 

(1994) [229] were the first to identify three conserved sequence motifs (motifs I, II, III see 

Figure 19). The motif I is involved in SAM binding, while the motif III is part of the active 

site or is thought to participate in binding of the magnesium cofactor. The motifs I and III 

were found in all known MT domains, while the motif II is conserved in approx. 80% of the 

enzymes analyzed (e.g. not found in LDKS nor LNKS) [169]. In addition, the I-IV consensus 

motifs were described by Miller et al. in 2003 [230]. Their positions in respect to motifs 

described by Kagan and Clarke are also shown in Figure 19.  

Some sets of primers composed of one forward primer (CMeT1) derived from Kagan and 

Clarke motif I and two reverse primers (CMeT2c, CMeT3c) derived from Kagan and Clarke 

motif III were designed by Nicholson et al. (2001) [169]. The CMeT1 is a general SAM 

binding site primer, where reverse primers (CMeT2c, CMeT3c) contain MT domain active 

site and correspond to either LDKS or LNKS, respectively. The relative positions of these 

primers together with conserved amino acid motifs are shown in Figure 19. By use of a 

protocol for hot start PCR (see 12.8.1), PCR products of expected size (320 bp) could be 

amplified with both primer pairs (see Figure 18). From several sequenced amplicones, two 

showed homology to the fungal type I PKS. The closest putative homologues of these two 

partial MT domain sequences are shown in Table 8. The deduced amino acid sequence of 

CMeT-3 was 56% identical with a putative PKS of A. terreus (GeneBank: Q0CGB3) while 

the closest characterised homologue was A. terreus LNKS synthase (52% identity; GeneBank: 

Q0C8M3). The CMeT-9 sequence shared 54% identity with putative PKS of Neruospora 

crassa (GeneBank: Q7S380) and the closest characterised homologue of this sequence was 

LDKS synthase of A. terreus (49% identity; GeneBank: Q8JOF5). 
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 Figure 18: PCR amplification with 
CMeT series of MT-specific primers - 
ethidium bromide agarose gel.  
Lane M contains 100 bp ladder as a fragment 
size standard. Lanes 1-3 show temperature 
gradient PCR obtained with CMetT1/CMeT2c 
primer pair and genomic DNA from P. 
chrysogenum as a template. Temperature-
gradient PCR with the CMeT1/CMeT3c 
primer pair is shown in lanes 4-6. In PCRs 
employing both primer pairs temperature hot 
start conditions were employed with a 
preselected narrow range of temperatures (46.0 
– 52.0 °C) and individual gradient steps 
automatically generated by the PCR cycler for 
the chosen rang of temperatures. 

 
Additionally, new MT primers that correspond to members of the NR PKS clade III were 

designed. Initially, only eight conceptually translated MT domain containing PKSs were used 

for the alignment, of which six were already classified by Kroken et al. [167] as putative 

members of NR clade III. Two others PKS actually originate from AN1034.2 and AN3386.2 

loci of A. nidulans F6SC A4 as it was already described in section 6.1.1. Detailed information 

on the used sequences including species origin, locus designations, accession numbers, their 

shortened names and references are listed in Table 7.  

The amino acid sequence within motif I (SAM binding site) [229] was used as the first region 

of homology for design of forward primers. The goal was to modify this often used position 

within the MT domain in order to better apply them/it for members of NR PKS clade III (see 

Figure 19). Besides, a second region of high amino acid sequence conservation that correlates 

with positions of motif II (Kagan and Clarke, 1994) [229] and motif III (Miller et al., 

2003) [230] was chosen for the construction of reverse primers (see Figure 19). The extracted 

amino acid motifs of each sequence from alignment are given in Table 34. The degeneracy of 

primers was decreased by choosing two variations of amino acids within each conserved 

motif (see Figure 19 region of homology Ia and II). As a result, two forward (MTnr III_Fa 

and MTnr III_Fb) and two reverse (MTnr III_R1a and MTnr III_R1b) primers were made. 

The combination of these forward and reverse primers was expected to amplify PCR products 

between 220-230 bp accorging to differences in the length of amino acid stretches between 

these two regions of homology for compared protein sequences. Although a number of PCRs 

were performed with variations of PCR conditions (temperature, primer and template 

concentration, magnesium concentration and other; see 12.8), no cloned PCR product showed 

homology to any known PKS gene deposited in publicly available databases. 
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As a result of the performed PCRs with 2 pairs of the MT domain-specific primers, two 

different partial PKS sequences were amplified. The CMeT-3 sequence was amplified with 

CMeT1/CMeT2c primer pair (Nicholson et al.) [169], while the CMeT1/CMeT3c primer pair 

amplified the CMeT-9 sequence. By yielding two different fungal type I PKS sequences, MT 

domain based PCR strategy appeared to be more efficient than the AT doman amplification 

approach in regard to assessment of the biosynthetic potential of P. chrysogenum E01-10/3 

for polyketide biosynthesis. 

Furthermore, the closest classified putative homologue of CMeT-3 sequence is the C. 

heterostrophus PKS5 (GenBank: Q6RKF9) grouped as member of R clade I. Besides, this 

sequence showed homology to the LNKS of A. terreus (GenBank: Q0C8M3) as the first 

characterised match that otherwise belongs to the R clade II. In the case of the CMeT-9 

sequence, both – the first classified putative homologue (Botryotinia fuckeliana PKS2, 

Q6RKJ8) and the first characterised putative homologue (A. terreus LDKS, Q8JOF5; Table 8) 

- belonged to the R clade I. Nevertheless, among other putative homologues of CMeT-9 

sequence there are also putative members of R clade II and R clade IV. Based on such 

dispersed grouping of BLASTX matches for these two MT domain amplified sequences, it is 

difficult to infer a nature of the full-length PKS. 

 

Table 7: Sequences used for the deduced protein alignment for members of NR PKS clade III for 
design of MT and RED domain degenerate primers. 
 

Organism Gene/ORF* Protein 
Accession 
number** 

Shortened 
name*** References 

A. nidulans F6SC 
A4 

AN1034.2 
AN3386.2 

Hypothetical protein 
similar to PKS 

Q5BEJ6 
Q5B7U4 

Q5BEJ6 An 
Q5B7U4 An 

Galagan et al., 
2005 [219] 

Botryotinia 
fuckeliana B05.10 

pks16 
pks17 
pks18 

Hypothetical protein 
similar to PKS 

Q6RKI4 
Q6RKI3 
Q6RKI2 

PKS16 Bf 
PKS17 Bf 
PKS18 Bf 

Kroken et al. 
2003 [167] 

Cochliobolus 
heterostrophus C4 

pks21 
pks22 

Hypothetical protein 
similar to PKS 

Q6RKE4 
Q6RKE3 

PKS21 Ch 
PKS22 Ch 

Kroken et al. 
2003 [167] 

M. purpureus pksCT Citrinin polyketide 
synthase 

Q65Z23 PKSct Mp Shimizu et al., 
2005 [33] 

* Gene or ORF designation in GenBank; ** TrEMBL Accession Number; *** Shortened names of deduced 
proteins that are used in alignment (see Figure 19) and Table 34 - Table 35 (appendix). 
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Figure 19: Alingment for members of NR PKS clade III - MT domain.  
Eight deduced amino acid sequences of putative members of the NR PKS clade III: A. nidulans (An: Q5BG07, Q5BEJ6, Q5BBP8, Q5B8A0 and Q5B7U4), M. purpureus 
(Mp: PKSct), B. fuckeliana (Bf: PKS16, PKS17 and PKS18) and Cochliobolus heterostrophus (Ch: PKS21 and PKS22).The most conserved amino acids in all compared 
sequences are shaded red; similar amino acid sequences are shaded yellow. Threshold for both identity and similarity shading is 80%, meaning for at least six sequences out of 
eight. Arrows indicate the primer position and direction. Exact amino acid motif is given for each primer from which it originate. Newly designed primers based are shown in 
red. Forward and reverse primers of CMeT series are given in blue. Motif I that has the same position in both cases (Kagan and Clarke, 1994 and Miller et al., 2003) is given 
in black. Motifs II and III (Kagan and Clarke, 1994) are given in green while motifs II-IV (Miller et al., 2003) are in violet colour. The asterisk is indicating the key amino acid 
residue that interacts with the SAM (Miller et al., 2003). Numbers on the right indicate the position of the displayed amino acid sequence within the completely published 
sequence. The ruler above indicates the position of the extracted alignment in the overall alignment. 
                   2320      2330      2340      2350      2360      2370      2380      2390      2400      2410      2420          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Q5BEJ6 An  -------ILASFGQVKMQTDTLMKEYGVDKTEGVMLSGSNRLCTALVVEAMDELGCPLRTASPGQPLARVAFLPQHGRLMQWVYEFLERDARLINIDPASGQITRTHITA 2036  
Q5B7U4 An  -------VLDALDETKGLTDQFLADNKCSGRLLNFTPLMVEMCIVLTLEALEELGSNIRSARANDRLPRIEFDTQHGPLVEYLYGRLLEAG-LIKLDGST--VIRTEICA 1808  
PKSct Mp   -------ILDAFRIAKEATDDFILNGQLGTYYNEVMPRSTELCVAHIVNAFEQLGCPIRSAAAYQRLERVPYLPKHERFMNLIYGLL-EEARLIDINGSE--ITRTSVPV 1885  
PKS17 Bf   -------VLDAFQKASKATDEFIVNGHLGTYYNEIMPKSTELCVIYILDAFEVLGVNIRATAPGHKIERVPYLPKHQQLMNLIYDLLCKDARLIDINGSE--IIRTAVAP 1886  
PKS18 Bf   -SSFLKGSQLAFDKGRREFDAFAKKTGFNDFWEKVYPLQKKLVLSYVVEAFVKLGCLIPSMVPGEVLSSIDFLPKHQKLVSQLHNILEDGD---LIKSGGGRFLRTNVPV 2017  
PKS21 Ch   -------AIKAFSEAKMETDQLMEKFGAPGYLQTIAPQQDQLCVALVVEAFSKLDCDLSTAKAGEELPYIPHAGDQKKFAQYLYTVL-ETARLVDLDNDK--IIRTNVPV 1980  
PKS16 Bf   -PIVLANPMDVMEKCQAAFEPAAMKLGYINYWSEVGPKQDELLIAYIAEAFKTLDVNLWKLVNGQELPKITYLPKHL--KVMTRYMEILQSGGIIEKKG-SKYLRTSRTL 1800  
PKS22 Ch   VPADMPSPFDSLVVNERDYAAKASKCGFLDFDAKVSSRQDELMLSYIVEAFVELGVDLRKLKHGAPLPPLAYRSKHAYDRLMQRIWVILDKHGLVTTVGTSQHVRGAAKC 2209  
 
 Motif I (Kagan & Clarke, 1994) 
  (Miller et al., 2003) 

     GxGxGG   (active site) 
 
                   2430      2440      2450      2460      2470      2480      2490      2500      2510      2520      2530          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Q5BEJ6 An  PRKTSQVILQEVLASDPGFAVPNRLAYYAGQQLAGVLSGSTDGIRVLFGSPEGRELTAAMYCEHTFNCMSYAQMREVTNLLAERIG----RTGETLKVLEMGAGTGGTTL 2142  
Q5B7U4 An  PTESSSTLLHKIEREYPEYGGASKLTFYTGSRLASVLRGEQDGLQLIFGTAEGQRLVSWMYGDEPHNVAGYKLMGEFIRRLVDKLPPAAAREGMTLRILEMGAGTGGGTK 1918  
PKSct Mp   STKSVETMLEELLHDEPLHAAEHKLTSLTGSKFADCITGKEDGLQLIFGSPEGREIVTDVYAKSPINAVWIQQAEFFLEQLVKRLP----NTGEPLRILEMGAGTGGTTV 1991  
PKS17 Bf   PTKSADALLGELLRNAPVHAAEHKLTKLTGERFADCITGKADGLQLIFGTPEGREIATDLYAKSPINGIWIQQAEYFLETLVAGLP----KDGEPLCILEMGAGTGGTTI 1992  
PKS18 Bf   DTTPSSQLYEEILTEAPFFHLEHRVLHVTGSNLADCLTGKADPVQLLFGKRENKTLLEEWYATAPAPAAITAHLTHFLHQALSVHS-------GIVKILEIGGGTGGTTK 2120  
PKS21 Ch   PTRASSDLLRELLDKYPEHACCNELAYWTGSHLAGILTGKEDGIKLIFGTERGRELVGAVYADFPLNKLYYAQMGDFLRRLATSPS--RRPEHGPLKILEMGAGTGATTN 2088  
PKS16 Bf   RNTSSNDLLQDLLRKYPAYAAETRLMELTGPKLASCLIGKADPVALMFGSATAQRIMGDYYTTSPMLGTLTEQLVDFMRQIVIDTT-----GNAPIKILEVGAGFGGTTT 1905  
PKS22 Ch   PQSPSKELLGRMRQDFPAYNCEFSLMNLTGSQLGQCFAGKQDPIALMFKTHDAQSIMEDFYLNSPMLATATEMLVDTIVDTVSKSK-----INNPVNILEIGAGFGGTTR 2314  
                                                                                                                * *  * 

     EMG(A/G)GTG: (MTnrIII_Fa)   
     E(I/V)GAGFG: (MTnrIII_Fb) 

 Region of homology Ia (MT domain)     
                                                                                                                

     EIG(G/A)GTG (CMeT1) 
     (Nicholson et al. 2001) 
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                                                                           Motif II            Motif III          Kagan & Clarke, 1994) 
                              Motif II                                   Motif III              Motif IV   Miller et al., 2003) 
 ... 
                   2540      2550      2560      2570      2580      2590      2600      2610      2620      2630      2640          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Q5BEJ6 An  IMAPFLATLAESGALPIEYTFTDISPSMVANARRRFSKQYPFMRFAVHDIEKPP-ADELR--NQHLVLASNAIHATHNLGVSLSNIHQALRPDGFLMMLEMTEVVPFVDL 2249  
Q5B7U4 An  WMLPLLAALP----VPVEYTFSDISPAFLAQARRKFR-DYQFVRYCVHDIEKPP-SEDLG--KYHIIMASNAVHATSNLQVSTGNMRQALRPDGVLMLLEMTRPVFAIDL 2020  
PKSct Mp   KMLPLLERLG----VPVEYTMTDLSSSLIAAARKRFK-KYPFMKFKVVNIESPPDPQLVH--SQHIILATNCVHATRNLEISTRNIHRILRPDGFLLLLEMTEQVPWVDF 2094  
PKS17 Bf   KMVQLLARLG----IPVKYTITDLSSSLVVAARKRFK-QYKFLEFKVLDIEAAPDSSLLH--SQHIVLATNCVHATRNLTISTTNIHKILRPDGFLLLIEMTEQVPWVDF 2095  
PKS18 Bf   HMIDFLTSND----IPFEYTFSDISPMFVNAAKKKFS-KYPNVTVTTLDIEKPVSENMQS--KFHIVLSTNCIHATKDISNSTAHIRDMLLPNGFCSLVEFTRNIFWFDL 2223  
PKS21 Ch   SLVPLLATLG----VNIEYTFTDLAPSFVAAARKKYK-QYPFMKFRVHDIEKEPAADLLQ--SQHVVIASNAVHATRSLPVSTANIRKMLRPDGVLMLLEMTEPMYWCDI 2191  
PKS16 Bf   RLAEVLQEIG----RSVEYTFTDISPSLVKNAKAKFA-KYDWMKFQTFNLEKDIPANMR--GQYDIAIGTNCVHATTNKTSSTTHLRETLRDGGFVVLSEVTKLIDLYDV 2008  
PKS22 Ch   KLVQSLNRLG----RPVKYTFTDISPTLVGRALKVFSDQYPWLQFQTWNMEQTPSSTLCATGPFDIIIGTNCVHATQDRTSTLNRLKQLLHPTGFVVLSEVTEIVDWYDI 2420  
                                 *                                        *                                   * 
                                                          SNA(V/I)HAT: (MTnrIII_R1a)            KPGG(K/Q)(L/M)(I/V): (CMeT2c) 
                                                          TNC(V/I)HAT: (MTnrIII_R1b)            (Nicholson et al. 2001)  (CMeT3c)  
 Region of homology II (MT domain) 
                                                           
 
 
           Motif IV continuing (Miller et al., 2003) 
      ... 
                   2650      2660      2670      2680      2690      2700      2710      2720      2730      2740      2750          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Q5BEJ6 An  VFGLLEGWWLFDDGRHHAVVPAEHWESELHRAGFGHVDWTDGNLPENTFQKVIIALASGAQGARLPKPGPVQTLIPELNRENVEARTATAESLVAKYTAGWETPKLRALA 2359  
Q5B7U4 An  VFGLFRGWWVFNDGRTHAITNEQRWKDDLQAVGYGHVDWTDGESNEVGVQRVIFATAGGEQ-------------YHPVSPQEDAARLRTVVEYVYQHTAGFTMP---ALP 2114  
PKSct Mp   IFGLLEGWWLFEDGRRHALQPATHWKKILTSVGYGHVDWTEGTRPEANIQRLIIALASEPRYDHTPQSLQP---PVQVPLTDIAGRQEIIDTYIREYTEDFRALPIPGIQ 2201  
PKS17 Bf   IFGLLEGWWLFNDGRQHALQPPTYWEKILSSVGFGHIDWTRGNRPEANIQRLIIALADGSRYDPVPKPHPP---TAQMVLTKNTVRQTAIDVYAYEYSKEFFFEPRNLIS 2202  
PKS18 Bf   VFGLLDGWWFFEDGRTHVLADEWFWESSMKAAGFGHVSWTHSSSAESRTVRIITGFLEPPE------------------------------------------------- 2284  
PKS21 Ch   VFGVFEGWWLFEDGREHAVAPPQTWEKVLHSVGYGHVDWSDGNVEEVRCERVIIATASGKQ------------------------------------------------- 2252  
PKS16 Bf   VYGLLDGWWLGNDA-DYPLQPPEFWMECFKKAGYASASYTEGPTPDSNTQRLLIASTKLLK------------------------------------------------- 2068  
PKS22 Ch   TYGLLDSWWSDKDG-CYPLQCAETWMRCFKDAGFAVASHSQGPSADLNIQKLLIASMR---------------------------------------------------- 247 
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                                    (V/I)(L/I)VTGATG RED domain primer design: region of homology Ib (MT domain) (see) 
  
                  2760      2770      2780      2790      2800      2810      2820      2830      2840      2850      2860          
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Q5BEJ6 An  SRAEKESGKTQAPHAAPGRRAHEAVVIVTGATGSLGSHIVQRLAETPSVATVVCLNRRSSSTTPEKRQQAALTARGITLSPGARAKLRVLETDTSKPQLGLPPLEYGWLL 2469  
Q5B7U4 An  PRIR-------AP-------ANHACILVTGATGSLGSHLVARLVQLSNVQAVICLN-RVSRMGPRVRQKEAVAARGLSLESKEETKLMVIETDTANDRMGLSVEQCRYLQ 2209  
PKSct Mp   QAVMPA--------------PTGHCVLVTGATGSLGSHVVGYLSRLPNVHTVVCLN-RRSTVPATIRQEEALKVRGISLDDNSRSKLVVLEVETAKPLLGLPVETYQKLV 2296  
PKS17 Bf   YPVHPS--------------NEKYCVLVTGTTGSLGSHIVAYFAQLPEVETVVCLN-RLSMVDATLRQQQSFALRGISLDKISMSKLRVIETDTAKSMLGLPKSTFQYLT 2297  
PKS18 Bf   -----------------------------------------------------------RTSFVPKRPRKSFKYESLEYKITGECKLFADVYYDSSAAKNDIKRPVALMI 2335  
PKS21 Ch   ---------------------------------------------------------LERLTVPSKPVQQEVCMIPISVD------------------------------ 2275  
PKS16 Bf   ----------------------------------------------------------TPNREIATKQKSKLCHKIDTVTYKIVDGVEVLADVFLPEVAPINPMPIALMI 2120  
PKS22 Ch   -------------------------------------------------------------NDIEAPKRAPLRPKLETVVYKTIDGVDIHADVFFPQQPPATAMPLGTNS 2526 
 
 
 
 
 
Table 8: Sequence similarities of the deduced amino acid sequences of the amplified partial MT fragments from P. chrysogenum E01-10/3 
 
Sequence 
name(a) 

Primer 
pair(b) 

Fragment 
size Sequence homologoues(c) 

Identities 
(%)(d) 

Positives 
(%)(d) References(e) 

CMeT-3 
(pMA2) 

CMetT1/ 
CMeT2c 

326 bp ▪ Putative PKS, A. terreus 
▪ LNKS synthase, A. terreus 

56 
52 

74 
69 

Q0CGB3; Birren et al., 2005 
Q0C8M3; Birren et al., 2005 

CMeT-9 
(pMA3) 

CMetT1/ 
CMeT3c 

327 bp ▪ Putative PKS, Neurospora crassa 
▪ LDKS synthase, A. terreus 

54 
49 

70 
69 

Q7S380; Galagan et al., 2003 
Q8JOF5; Abe et al., 2002 

 
(a) Working name of a sequence with plasmid name in brackets; (b) Primer pair used for amplification of the sequence in question; (c) Putative sequence 
homologues retrieved via BLASTX search: showing the first match for homology search and the closest characterised homologue; (d) Identity/similarity (%) 
of the deduced amino acid sequences. (e) Reference combines sequence TrEMBL accession number, referent author and the year for first deposition of a 
sequence in GenBank database. RED stands for reducing fungal PKS. 
.
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6.1.4 RED domain amplification primers 

As already mentioned in the introduction section (see 2.3.1 ), some of the NR type fungal 

PKS possess at the C-terminus, after the MT domain, a specific domain corresponding to a 

NAD(P)H-dependent thiolester reductase (RED). Thus, the design of primers that are 

capable to amplify this specific domain could facilitate an amplification of NR PKS 

sequences from the genome of P. chrysogenum. With this goal in mind, several primers 

were designed from conserved motifs found within the RED domain itself and the last part 

of the MT domain. At that time point only five deduced amino acid PKS sequences 

containing both domains were available in GenBank: The citrinin PKS [33] from M. 

purpureus and four additional putative NR PKS sequences arising from whole genome 

sequencing projects of A. fumigatus, A. nidulans, Botryotinia fuckeliana and Gibberella 

moniliformis [167]. Approximately 500 C-terminal amino acids corresponding to the RED 

domain were chosen from each protein sequence and subsequently aligned in the BioEdit 

program as given in Figure 21. Detailed information on used sequences, along with their 

accession numbers, are given in Table 9. In this alignment three homology regions were 

chosen for primer design. From homology region Ib, located at the very end of MT domain, 

the VLVTGATG consensus motif was chosen for design of two forward (RED-F1a, RED-

F1b) and two reverse primers (RED-R1a, RED-R1b, see Table 35). The GYWNPVEH 

consensus sequence from homology region III of RED domain served for the creation of 

one forward and one reverse primer, namely, RED-F2 and RED-R2, respectively. Finally, 

homology region IV (RED domain) containing the MSCGGLI consensus amino acid 

stretch has been used for the design of two additional reverse primers: RED-R3a and RED-

R3b. The exact positions of all three conserved motifs within the RED domain alignment 

are illustrated in Figure 21, while primer sequences are to be found in Table 27.  

Additionally, the reverse primers CMeT2c and CMeT3c (Nicholson et al., 2001) [169] for 

amplification of the MT domain (see 6.1.3) were modified to serve as forward primers for 

the RED domain amplification. The CMeT1 forward primer of the same series was used 

unchanged. Numerous combinations of primres (see Table 37) were applied under various 

PCR conditions (12.8) and many amplified PCR products of expected sizes were cloned 

and sequenced.  
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Figure 20 illustrate one such attempt for amplification of the region between the MT and 

the RED domain using previously described CMeT1 and newly designed RED-R1b primer. 

Due to differences in size of amino acid stretches between two conserved motifs, these 

primers may amplify PCR products ranging from 375 bp as expected PKSct of M. 

purpureus and PKS17 of B. fuckeliana, or up to 696 bp for a putative PKS sequence from 

A. nidulans. Beside this, two remaining sequences from alignment (PKS3 M. purpureus and 

Q4WFD7 of A. fumigatus; see Table 9) did not contain any of the conserved MT motifs 

previously described by Kagan and Clarke (1994) [229] or Miller et al (2003) [230].  

After extensive optimization of PCR via protocol for hot start PCR (12.8.1) it was possible 

to restrict PCR products sizes to expected range (375-696 bp; see Figure 20). Despite 

extensive efforts for RED domain amplification, no sequenced PCR product showed 

homology to any reported PKS sequence in publicly available databases. Other performed 

combinations of PCR primers for the MT and RED domains are shown in Table 37. 

 

 

 
 
Figure 20: Ethidium bromide-stained agarose 
gel forRED domain amplification via CMeT1 
and RED-R1b primer pair.  
Lane M contains 100 bp ladder as a fragment size 
standard. Lanes 1 and 2 show temperature optimised 
hot start PCR (49 °C and 50 °C, respectively) 
obtained with CMetT1/RED-R1b primer pair and 
genomic DNA from P. chrysogenum as a template. 
The expected size of PCR product ranged from 375-
695 bp. 
 

 

 
Table 9: Sequences used in deduced protein alignment for members of NR PKS clade III fordesign 
of RED domain specific degenerate primers 
 

Organism Gene/ORF* Protein 
Accession 
number** 

Shortened 
name*** References 

A. fumigatus AFUA_36025
70 

Hypothetical protein 
similar to PKS 

Q4WFD7 Q4WFD7 Af Nierman et 
al., 2005 

A. nidulans F6SC 
A4 

AN0523.2 
 

Hypothetical protein 
similar to PKS 

Q5BG07 
 

Q5BG07An 
 

Galagan et 
al., 2005 
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Organism Gene/ORF* Protein 
Accession 
number** 

Shortened 
name*** References 

Botryotinia 
fuckeliana B05.10 

pks17 
 

Hypothetical protein 
similar to PKS 

Q6RKI3 
 

PKS17 Bf 
 

Kroken et al. 
2003 

Gibberella 
moniliformis 

pks3 Hypothetical protein 
similar to PKS 

AY495593 PKS3 Gm Kroken et al. 
2003 

M. purpureus pksCT Citrinin polyketide 
synthase 

Q65Z23 PKSct Mp Shimizu et 
al., 2005 

* Gene or ORF designation in GenBank; ** TrEMBL Accession Number; *** Shortened names of deduced 
proteins that are used in alignment (Figure 21) and Table 35 (appendix). 
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Figure 21: Alingment for members of NR PKS clade III - RED domain.  
The extracted part of the alignment that corresponds to very end of MT domain and RED domain. 8 deduced amino acid sequences of putative members of the NR PKS clade 
III A. fumigatus (Af: Q4WFD7), A. nidulans (An: Q5BG07), M. purpureus (Mp: PKSct ), Botryotinia fuckeliana (Bf: PKS17) and Gibberella moniliformis (Gm: PKS3).The 
most conserved amino acids in all compared sequences are shaded red; similar amino acid sequences are shaded yellow. Threshold for both identity and similarity shading is 
80%, meaning for at least four sequences out of five. Arrows indicate the primer position and direction. exact amino acid motif is given for each primer from which it 
originate. Newly designed primers based on here presented alignment are shown in red. Regions of homology from which the primers are derived, designed primers and their 
orientations are shown in red. Numbers on the right indicate the position of the displayed amino acid sequence within the completely published sequence. The ruler above 
indicates position of amino acids within the alignment for C-terminal part of these five sequences.  
 
 
               Homology region Ib (MT domain)                                    Homology region II (RED domain) 
 
                   120       130       140       150       160       170       180       190       200       210       220           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct Mp   GHCVLVTGATGSLGSHVVGYLSRLPNVHTVVCLNRR-STVPATIRQEEALKVRGIS--LDDNSRSKLVVLEVETAKPLLGLPVETYQKLVNTATHIVHSAWPMSLTRPIR 216  
PKS17 Bf   KYCVLVTGTTGSLGSHIVAYFAQLPEVETVVCLNRL-SMVDATLRQQQSFALRGIS--LDKISMSKLRVIETDTAKSMLGLPKSTFQYLTDNVTHIVHNAWPMSLTRTVS 217  
Q5BG07 An  -HCVLVTGATGSLGSHLVAHLVKQSSVTKVVCLNRV-SGSDATSRQLDAFQSKGLI--LDSESLSKLEVIETDSSAPSLGLVPERYQHLVNTVTDVVHNAWAMSMTRPVR 155  
PKS3 Gm    -NVVLVTGASGGLGSHLVYALAQLEEVRTIICLNRP-NREDATTRQYKAMRDKGIR--FPEHLKSKVRIFQADTSKPKLGVADSEYQSLIQSVTHIIHNAWPMSAKRPLS 133  
Q4WFD7 Af  ---VLVTGATGSLGSHLVAHLLRIPTVSKVICLNRR-SGMPAENRQQHAFHSRNIP--VDPASASKLYVYETDTSQHMLGLAADEYERLLSTVTHVVHNAWPMTIARPVQ 130  
               
               VLVTGATG: RED-F1a, RED-F1b (forward)                                      IVH(S/N)AWP: sorb15-IVHS-rev 
                           RED-R1a, RED-R1b (reverse)                                                  sorb16-IVHN-rev 
 (reverse, both) 
 
              VTGATGSLG: sorb14-SLG-for (forward)                                                                      
 
                   230       240       250       260       270       280       290       300       310       320       330           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct Mp   GYES-QFKVMQNLINLAREVAAWRPVPF-KFSFQFISSIGVVGYYPLRY---GEIIAPEETMTADSVLPVGYAEAKLVCERMLDETLHQYPDRFRPMAVRIAQIAGSTSN 321  
PKS17 Bf   AYES-QFKVMRNLIALSSEATSQRPAPF-KLGFQFISSIGVIGYYPLWT---GKVLAPEESMPVDSVLPVGYADAKLVCERMLDETLHRYPEHFRPMAVRIAQIAGSTIN 322  
Q5BG07 An  GFEP-QFKTMRNLIDLCRDCANRRHSDTGKVGFQFVSSVSVVGCHPFIT---KKAIVPEQPVNAESALPMGYADAKLVCEHILDETLHMHPDIFRTMSVRVGQISGSKIN 261  
PKS3 Gm    GFES-QFQVFRNLLDLGRECASSRPADF-KFSFQMISSIGVVGQWGLAAGQTGKIVVPEERTTIDSLLGNGYAEAKWGCERMLDETLHKFTDRFRPMVVRLGQIAGSKTS 241  
Q4WFD7 Af  GFEA-QFRTWRNMIELVRNATIRQSTPR-PISIQFISSIATVGMYPLHK---GDTVVPETHMTVESTLASGYGDAKLICEKMLENTLQRFPTQFRASVVRLGQVAGSSVT 235  
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           Homology region III (RED domain) 
 
                   340       350       360       370       380       390       400       410       420       430       440           
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
PKSct Mp   GHWNPVEHFAFLIKSSQTLKALPDFDGSLSWCPVDDVSATLGELLISN------TTPYSIYHIENPSRQQWRKMVKTLAQSLDIPRDGIIPFDQWIERVRNSSASI--ND 423  
PKS17 Bf   GYWNPVEHFASFLKSSQTLNILPDLKGTLSWCTVQDVAATLGELLISN------TPPYPIYHIENPSRQPWPDMIMVLANELGIPSNNIVPFDEWLSRVRRFPGST--ND 424  
Q5BG07 An  GYWNPVEHLVHLIKSSKTLNVLPDLEGVLSWCPVDDVAAALGDLLLTN------KPAYSVYHIENPVRQPWPDMLTILADALDIPRTNAVPFKEWLRRVRHFPPSLGFSE 365  
PKS3 Gm    GYWNPMEHFGFLIKSSQTLNALPDVDGNLNWTPVNDIADSLTDLILSD------RTPYPIYHIDNPIGQQWRDVNNILSDTLRIP--NKVPFKQWLDMVRKAPQ----QD 339  
Q4WFD7 Af  GYWNPVEHLAFLFKSAKTLNILPNLPGELSWCPVNEAAAILTDLLLCP------DPVPPVFHVENPVRQPWADMIAALARELDIRIGNIVPFEDWLNRMRNFVGDE--AA 337  
                      
          GYWNPVEH: RED-F2 (forward), RED-R2 (reverse) 
            WNPVEHFAF: sorb17-WNP1-rev, sorb18-WNP2-rev (reverse, both) 
 
 
 
                            Homology region IV (RED domain) 
 
                   450       460       470       480       490       500       510       520        
           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|... 
PKSct Mp   NPARQLLEFFDQHFIR-MSCGNLILDTTKTREHSATLRERGPVGPGLVEKYISAWKTMGFLD--------------------- 484  
PKS17 Bf   NPAGQLVEFFDKHFVR-MSCGGLILDTVKSQEHSKTIRSTGPVSIDLVRKYILSWKSSGFLS--------------------- 485  
Q5BG07 An  NPAARLADFFETDFLR-MSCGGMILDTTRSREHSATLRSLGPIDQDLVMKITFKRIYAIFAKSSEVKIKKSS----------- 436  
PKS3 Gm    NPAALLADFLEDTYLR-MACGGLVLDVKHSLEHSKSLSAVGPVSETVVRKYIHIWKEIGFLKTTAEDKAGFEAERLKLWGPRV 421  
Q4WFD7 Af  NPAKRVDDFLEEHFVR-MACGGVVLDTQQTARLSARFRALKAVDPGMVKLFVEYWRKTGFMN--------------------- 398  
                                                     

                      MSCGGLI:   RED-R3a, RED-R3b (reverse)         
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Within the course of time, the number of members of the NR PKS clade III increased due to 

the extensive programs for sequencing of fungal genomes. Thus, 19 sequences were aligned 

together in order to further optimise the design of the RED domain primers for NR PKS clade 

III. The alingment itself is not shown, but conserved motifs from chosen regions of homology 

that were used for degenerate primer construction, as well as conserved amino acid stretches 

from each protein sequence in alignment that correspond to certain motif are given in Table 

36 (see Appendix). The region of homology Ib, which is placed within the MT domain, and 

the region of homology III from RED domain were again used for primer design (sorb14-

SLG-for; sorb17-WNP1-rev and sorb18-WNP2-rev, respectively). In addition, a new region 

of homology within the RED domain, designated as region of homology II was used for 

primer design. Two variations of conserved motifs gave rise to two reverse primers: 

sorb15-IVHS-rev (from IVHSAWP) and sorb16-IVHN-rev (from IVHNAWP). The position 

of the region of homology II with respect to other chosen regions is illustrated in previously 

shown alignment for the RED domain in Figure 21. Some more information on used 

sequences with accession numbers for all deduced protein sequences are given in Table 4. 

Newly designed primers from this extended alignment were used in numerous PCR reactions 

that employed different PCR conditions and primer pairs (data not shown). Despite the efforts 

taken to optimise PCRs, all attempts failed to amplify DNA regions homologous to any PKS 

sequence so far deposited in GenBank database.  

6.1.5 Summary of PCR-amplified PKS gene fragments from P. chysogenum E01-10/3 

strain 

During the course of present study, the application of a PCR-based stratedy enabled the 

amplification of partial PKS sequences from 9 putatively distinct fungal type I PKS gene loci 

from P. chrysogenum E01-10/3. The use of various primer pairs designed for different PKS 

domains (Table 27), as well as variation of PCR conditions (see 12.8), contributed to the 

diversity of amplified partial PKS sequences.  

Most of the amplified sequences originate from the KS domain and were amplified with 3 

different degenerate primer pairs as shown in Table 5. Three same partial KS sequences 

(KSnr-7, KSnr-8 and KSnr-10, later in text as KSnr-7) amplified with the LC1/LC2c primer 

pair (Bingle et al) [182] appeared to originate from the same gene locus encoding for putative 

WA type PKS. Besides, the application of another primer pair of the same series, i.e. 

LC3/LC5c, resulted in amplification of the unique sequence KSpr-MI that displayed putative 

homology to MSAS of A. terreus [46].  
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Further on, 10 partial PKS sequences that were amplified with the KHKS2/KHKS3c primer 

pair (Bailey et al) [170] after detailed analysis were shown to represent 4 distinct putative 

PKS genes. The KHKS1, KHKS9 and KHKS37 sequences, later in this study designated as 

KHKS1, showed approximately the same level of homology to the putative PKS of A. terreus 

(Q0C8A4; see Table 5). Another three sequences (KHKS3, KHKS27 and KHKS44 ) had 

CNKS of Penicillium citrinum [92] as the common putative PKS homologue (later in text as 

KHKS3). Furthermore, an already characterised member of the NR clade III – citrinin 

synthase (PKSct) [33] was BLASTX-match of three additional partial KS sequences 

(KHKS32, KHKS42 and KHKS46, later in text as KHKS32). The last sequence amplified 

with KHKS2/KHKS3c primer pair was KHKS51 that showed the highest homology to a 

putative PKS of the fungus Phaeosphaeria nodorum (GeneBank: Q0UAE2). 

In addition to numerous partial KS sequences, the AT-9-11 partial PKS sequence was 

amplified with newly synthesised primers for the AT domain (see Table 6). According to 

BLASTX analysis, this sequence shares homology to PKSct as it was the case for KHKS32 

set of sequences (see in text before). Moreover, two different partial PKS sequences were 

amplified with two different combinations of degenerate primers for MT domains (see Table 

8). The CMeT-3 sequence that showed homology to the characterised LNKS of A. terreus 

(GeneBank: Q0C8M3) was amplified with CMeT1/CMeT2c primer pair (Nicholson et 

al.) [169]. Further on, the CMeT1/CMeT3c primer pair of the same series yielded the CMeT-

9 sequence that was similar to LDKS synthase of A. terreus (GeneBank: Q0C8M3) as it was 

shown previously (see 6.1.3). 

Despite efforts for the RED domain amplification, no sequenced PCR product shared 

homology to any known fungal PKS gene up to date deposited in GenBank database. 

Accordingly, it is possible that the chosen PCR parameters or the degenerate primer 

sequences may not be optimal for the amplification of this particular PKS domain from the 

analysed P. chrysogenum strain. The fact that the RED domains appear relatively rare among 

fungal type I PKS systems and that they are in general weakly conserved may have influenced 

the degenerate primer design and thus the outcome of PCR screening study for this particular 

domain. 

As it was illustrated in the introductory section (2.4.2), different fungal species can differ in 

the number of putative PKS genes that are present in their genomes: from 7 PKS in the 

genome of Neurospora crassa [165] to even 30 PKS genes in the genome of A. oryzae [166]. 

Apart from the whole genome sequencing projects, the PCR screening studies employing 

degenerate primers have given clear evidence that most fungal strains have the genetic 
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capacity to produce a considerable variety of polyketides. Nevertheless, only a subset of PKS 

genes that are present in a genome of particular fungal strain may be detected via PCR 

screening. As an illustration, 4-5 PKS genes were localised in producer of squalestatin 

(Phoma sp.) [23] or 7 distinct PKS genes from the genome of the lovastatin producer (A. 

terreus) were amplified by use of degenerate PKS primers. Further on, 3 PKS; including one 

that correlates to melanin biosynthesis, were identified in the genome of Glarea 

lozoyensis [231] with various sets of KS primers developed by Lee et al. [232]. On the other 

side, the screening the genome of P. citrinum with different degenerate primers for various 

domains resulted in detection of 4 PKS genes, one of which was a PKS involved in compactin 

biosynthesis [33]. Among other polyketide biosynthesis genes that were located in genomes 

of their producers by usage of degenerate PCR approach were also the fumonisin polyketide 

synthase gene (fum5) from Gibberella fujikuroi [42]and PKS gene encoding the citrinin 

synthase (pksCT) in M. purpureus [33]. Moreover, one big PCR screening study performed by 

Wright and collabolators [99] employed LC series degenerate primers [182] in order to 

estimate the genetic potential of marine fungal isolates for polyketide production. They 

analyzed genomic DNA from 160 cultured isolates representing 142 distinct marine fungal 

species. In overall, 99 isolates yielded products in the expected range, most of which 

generated only a single PCR product. Although this study was able to demonstrate that 

marine-derived fungi posses an astonishing diversity of putative PKS genes, it should be 

pointed out again that the PCR-based approach is likely to underestimate the number of 

present PKS genes in a single fungal species. 

Despite the fact that only a subset of PKS genes harboured in one fungal genome can be 

identified by application of degenerate PCR, this method stays a powerful tool for the 

assessment of the polyketide-producing potential of both pathogenic and pharmaceutically 

interesting fungi and very often a start point for the isolation of particular PKS clusters. The 

detection of 9 distinct partial PKS sequences from the genome of P. chrysogenum E01-10/3 

strain, which was analysed in the course of present study, does support this evidence as well. 

Besides, we expect that among the amplified PKS fragments there could be also sequences 

that correspond to sorbicillacton A polyketide synthase. With this goal in mind and to get 

more reliable information on the reducing character and clade distribution of targeted partial 

PKS sequences, efforts were made to perform phylogenetic analysis of cloned KS fragments 

as presented in the following section (see 6.2). The results of this analysis were important to 

identify good candidates for the screening of a genomic library to clone the putative 
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sorbicillactone A and B gene cluster via the hybridization method (see 7.2) and PCR based 

screening of the library (see 7.3). 

6.2 Phylogenetic analysis of amino acid sequences from putative PKS gene fragments  

The phylogenetic reconstruction was performed in order to disclose the evolutionary 

relationships of partially amplified P. chrysogenum PKS genes (6.1) compared to other 

members of the fungal type I PKS genes. As already mentioned in the introductory section 

(2.3.1) the fungal PKS were grouped into NR PKS, PR PKS and HR PKS [168] according to 

their presence of ß-keto reducing domains. Moreover, Kroken et al. [167] have shown that 

similar PKS domain organization and similar chemical characteristics of the resulting 

polyketide products are reflected in evolutionary relationships between the amino acid 

sequences of their KS domain. The KS domain was chosen by Kroken et al. for analysis 

because it is the most highly conserved domain in type I PKSs and FASs. The resulting KS 

domain genealogy were interpreted by defining the major clades and subclades of PKS 

enzymes (see Kroken et al. 2003) [167] . 

The same strategy was applied for 6 cloned P. chrysogenum E01-10/3 partial KS sequences in 

order to reconstruct an evolutionary tree aimed at unravelling its ancestry. For this purpose 

KS domains from the closest BLASTX matches, as well as known members from defined 

PKS clades [167] were extracted from published full-length PKS genes, deduced from amino 

acid sequences and multiple-aligned in the BioEdit program (Table 31). The FAS of 

Caenorhabditis elegans (GenBank: NP_492417), i.e. an animal fatty acid synthases, was used 

to root the resulting phylogenetic tree according to Kroken et al. [167] and Chooi et al. [233]. 

This step was important since pre-knowledge on direction of changes is crucial for a proper 

reconstruction of fungal PKS evolutionary processes [167, 234]. Importantly, members of the 

NR clade III were included into the alignment, since the putative sorbicillactone A PKS may 

belong to this clade. 

In particular, some time was spent to look for regions of conservation and to manually adjust 

the alignment to the phylogenetic tree. In order to calculate an evolutionary relationships 

among the aligned KS sequences, the alignment was transferred into FASTA format to the 

Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [235] (Table 31). A 

minimum evolution (ME) method was used to calculate the pairwise distances between the 

aligned sequences and to group sequences that are most similar. The resulting bootstrapped 

consensus tree inferred after 1000 replications is shown in Figure 11. Principally, the 

bootstrap value for a clade is the percentage of replicates supporting that clade. The labeling 
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of clades and subclades, as well as domain organisation, is presented in accordance to the 

published classifications [167, 233]. The scale bar given in this figure represents 0.1 

substitutions per amino acid site. In Figure 22, KS domain sequences amplified from the 

genomic DNA of P. chrysogenum are shaded red, while reference sequences from GenBank 

are given in black. Additionally, GenBank accession numbers of 35 reference sequences are 

shown in Table 10.  
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 Figure 22: Phylogeny of the PCR amplified partial KS domains from P. chrysogenum E01-10/3 strain. 
Bootstrapped consensus tree in MEGA 4.0 inferred by the ME method. Bootstrap values greater than 50 are 
shown at the nodes and were calculated from 1000 replications. The scale bar represents 0.1 substitutions per 
amino acid site. KS domain sequences that were amplified from genomic DNA of P. chrysogenum are shown in 
red, while reference sequences from GenBank are given in black Classification of PKS based on Kroken et al. 
2003 [167].  
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For 5 of 6 amplified KS domains from P. chrysogenum E01-10/3 the resulting genealogy 

presented in Figure 22 is supported by the BLASTX results. This means that for each 

amplified KS fragment the closest full-length classified homologue is in the same clade and 

subclade as indicated by the BLASTX results. The only exception among the analysed 

sequences is KHKS51, which groups into the reducing (R) clade II in the tree but has PKS14 

of Gibberella moniliformis (Q6RKK1) from R clade IV as the closest match according to a 

BLASTX analysis (see Table 5).  

The phylogenetic analysis showed that two PCR-amplified KS domains, i.e. KHKS3 and 

KHKS51, are grouped within the R clade II. In principal, members of R clade type I fungal 

PKSs are featuring ß-keto processing domains [167]. The only exception among reducing 

PKSs is the absence of an ER domain from R clade II. The PKS of this subclade were also 

found to have a condensation (CON) domain typical for NRPS, or even an entire NRPS 

module consisting of a CON domain, an adenylation (AMP) domain and a PP 

(phospopantetheine) as shown in Figure 22. Moreover, the reducing clade III was 

characterised by the lack of a MT, while members of three remaining reducing subclades may 

or may not have a conserved MT domain. In addition, most of the reducing PKS have only 

one PP domain, although some members of R clade III or IV may have two PP domains at 

once. 

As it is ilustrated in phylogenetic tree (see Figure 22) three analyzed KS domains belong to 

the non-reducing (NR) fungal type I PKS clade. The key characteristic of this clade is the 

absence of ß-keto reducing domains – DH; ER and KR [167]. The general domain 

organisation of NR members is mainly the same for all 4 subclades with a cyclization (CYC) 

domain being obligatory for members of the NR clade I and II, but rather facultative for the 

NR clade basal to I and II, and NR clade III (see Figure 22). Thus, polyketides synthetised by 

NR PKSs are unreduced and usually cyclic (i. e. aromatic) [167]. The members of NR clade 

III may have a MT domain located directly after PP domain (synonym ACP). An additional 

peculiarity in this subclade is the presence of a C-terminal RED domain as already mentiond 

in the introductory section (2.3.1). The resulting phylogenetic analysis showed that the 

sequence KSnr-7 clusters with the NR clade I, while KHKS1 and KHKS32 are members of 

NR clade III. 

The last PCR-amplified sequence (KSpr-MI) clustered with members of joined bacterial and 

fungal type I PKS systems that together share a partially reducing (PR) character (Figure 22). 
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The partial reduction implies that various members may or may not posses certain ß-keto 

reducing domains anticipated as general organisation of this clade: KS-AT-(DH)-(MT)-(ER)-

(KR)-PP. Likewise, they may or may not contain MT domain. 

An especially challenging point for this phylogenetic analysis was the fact that only very short 

and size-different KS domain sequences (from 259-707 bp, see Table 5) were compared with 

the whole KS domains of reference sequences from the GenBank (see Table 10). A complete 

deletion of gaps was used as an option in the MEGA 4.0 phylogeny reconstruction program 

(see Table 31) in order to compensate for these differences. As a result of this site-by-site 

sequence comparison only 87 amino acid positions were considered for the phylogenetic 

analysis. Nevertheless, in the resulting phylogenetic tree (see Figure 22) all the reference KS 

domain sequences were clustered in proper clades as in the reviewed literature [167, 233]. 

The fact that these 87 analyzed amino acid positions did not encompass the KS active site 

indicates that even such KS fragments might be useful for disclosing evolutionary 

relationships among fungal type I PKS (Figure 15 for KHKS2/KHKS3c primer pair amplified 

sequence). Up to now, several studies have shown that short KS regions including active sites 

are valuable for phylogenetic reconstruction and investigation of the reducing character of the 

full-length fungal type I PKS [99, 233].  

On the contrary, other fungal type I PKS domains have not been approved yet as suitable for 

such phylogenetic reconstruction. Consequently, only BLASTX results can be used to judge 

upon a putative reducing character and subclade distribution of the remaining 3 PCR-

amplified PKS sequences from P. chrysogenum.  

Accordingly, all the closest putative homologues of amplicon covering the AT domain (AT-9-

11) are members of the NR clade III, inclusive well characterised clade member, i.e. the 

citrinin PKS of M. purpureus [33] (see Table 6). Furthermore, the closest classified putative 

homologue of CMeT-3 sequence (see 6.1.3) is C. heterostrophus PKS5 (GenBank: Q6RKF9) 

grouped as a member of R clade I. Besides, the same sequence showed homology to LNKS of 

A. terreus (GenBank: Q0C8M3) as the first characterised match that otherwise belongs to the 

R clade II (see Table 8). On the other hand, in the case of CMeT-9 sequence, both the first 

classified putative homologue (Botryotinia fuckeliana PKS2, Q6RKJ8) and the first 

characterised putative homologue (A. terreus LDKS, Q8JOF5; Table 8) belonged to R clade I. 

Nevertheless, among other putative homologues of CMeT-9 sequence are the putative 

members of R clade II and R clade IV as well. Based on such dispersed grouping of the 

BLASTX matches for these two MT domain amplified sequences, it is difficult to infer the 

nature of the full-length PKS. 
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Within the course of our PCR-based study on genetic potential of P. chrysogenum E01-10/3 

for polyketide production, 9 putatively distinct PKS gene loci were detected by use of 6 

different degenerate primer pairs. The phylogenetic analysis of KS domains illustrated that 

the analyzed P. chrysogenum strain has genetic potential to produce all three main classes of 

fungal polyketides – reducing, partially reducing (i.e. 6-MSA type) and non-reducing. Taking 

in account the numbers of reported polyketides produced by different P. chrysogenum strains 

(1.4), as well as the relatively low degeneracy of early PCR primers (e.g. Bingle et al. and 

Nicholson et al.) [169, 182] that were used in this study, it can be anticipated that the actual 

number of putative PKS genes within analyzed strain might be much higher. 

As mentioned previously (see section 4), the identification of the sorbicillactone A gene 

cluster is within the focus of the current study. Thus, among the amplified partial PKS 

sequences the candidates that might originate from this cluster were considered for screening 

of the P. chrysogenum genomic library (see sections 7). 

The chemical structure of sorbicillactone A, as well as of sorbicillactone B, indicated ß-keto-

reductive activities during the early PKS steps and no ß-keto reduction in later steps of the 

biosynthesis (see 3). In line with the proposed biosynthesis of the sorbicillactone A 

(Bringmann et al.), our working group proposed that hexaketide-thiolester-intermediate of 

sorbicillactone A (and B) is off-loaded from the PKS in the aldehyde-form (Figure 11, 

intermediate 63) by action of C-terminal-reductase (i.e. RED domain) of fungal NR clade III.  

Some other fungal polyketides like citrinin, dehydrocurvularin, monocerin and zearelenone 

share this structural feature as well [50]. Furthermore, specific incorporations of isotope-

labelled acetate-precursors supported the model of reducing/non-reducing biosynthesis of 

these polyketides. 

The PCR studies on genetic potential of the fungus P. chrysogenum E01-10/3 for polyketide 

production revealed the presence of three partial PKS sequences as putative members of the 

fungal NR clade III. The KHKS1 and KHKS32 sequences derived from KS domain (Table 5), 

while AT-9-11 was amplified with primers specific for AT domain of fungal PKS genes 

(Table 6). According to anticipated involvment of the fungal NR clade III in the biosynthesis 

of sorbicillactones, these three partial PKS sequences were considered as potential cluster 

candidates for sorbicillactone A (and B) production. 
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Table 10: Protein sequences included in the multiple alignment and phylogenetic analysis of PCR 
amplified P. chrysogenum partial KS domains. 
 
Organism Gene/Protein* Accession number** 

Acremonium strictum PKS1/MOS gb: CAN87161 

Aspergillus fumigatus alb1 gb:AAC39471 

Aspergillus nidulans PKST7NSAS tr: Q12397 

Aspergillus nidulans wA/WAS tr: Q03149 

Aspergillus parasiticus PKSsl1 tr: Q12053 

Aspergillus parasiticus PKSsl2 gb: AAC23536 

Aspergillus terreus at5 gb: BAB88752 

Aspergillus terreus lovB/LNKS gb: AAD39830 

Aspergillu terreuss lovF/LDKS gb: AAD34559 

Botryotinia fuckeliana PKS4 gb: AAR90240 

Botryotinia fuckeliana PKS8 gb: AAR90244 

Botryotinia fuckeliana PKS14 gb: AAR90250 

Botryotinia fuckeliana PKS15 gb: AAR90251 

Botryotinia fuckeliana PKS17 gb: AAR90253 

Botryotinia fuckeliana PKS18 gb: AAR90254 

Botryotinia fuckeliana PKS19 gb: AAR90254 

Caenorhabditis elegans FAS gb: NP_492417 

Cochliobolus heterostrophus PKS1/TTS1 gb: AAB08104 

Cochliobolus heterostrophus PKS11 gb: AAR90266 

Cochliobolus heterostrophus PKS17 gb: AAR90271 

Cochliobolus heterostrophus PKS19 gb: AAR90271 

Cochliobolus heterostrophus PKS20 gb: AAR90274 

Cochliobolus heterostrophus PKS21 gb: AAR90275 

Colletotrichum lagenarium PKS1 gb: BAA18956 

Gibberella moniliformis fum1/FUMS gb: AAD43562 

Gibberella moniliformis PKS1 gb: AAR92208 

Gibberella moniliformis PKS12 gb: AAR92219 

Glarea loyozensis PKS1 gb: AAN59953 

Micromonospora echinospora calO5 gb: AAM70355 

M. purpureus PKS1 gb: CAC94008 

M. purpureus pksCT/CitS gb: BAD44749 

Penicillum citrinum mlcA/CNKS gb: BAC20564 

Penicillum citrinum mlcB/CDKS gb: BAC20566 

Penicillium patulum 6MSAS/MSAS gb: CAA39295 

Streptomyces viridochromogenes aviM/AviM gb: AAK83194 

*Gene or protein designation in GenBank; ** GenBank (gb) or TrEMBL (tr) Accession Number 
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7 Screening of a genomic library for the putative sorbicillactone gene 
cluster 

In order to clone the sorbicillactone A biosynthesis gene cluster, the genomic DNA of P. 

chrysogenum E01-10/3 was used for construction of a fosmid genomic library. 

7.1 Construction of P. chrysogenum genomic fosmid library 

The genomic DNA of P. chrysogenum E01-10/3 was size-fractionated by gel electrophoresis 

yielding fragments with an average size of 40 kb (12.15.1 and 12.15.2) and blunted using the 

end-repair mix (12.15.3). After size selection by electrophoresis the approximate 40 kb DNA 

fragments were ligated into the supplied blunt-ended pCC1FOS fosmid vector (12.15.4). 

Thereupon, the ligation product was subject to an ultra high-efficiency MaxPlaxTM Lambda 

Packaging Extract and plated on phage T1-resistant E. coli EPI300-T1TM 
cells (Epicentre®; 

see 12.15.5). The obtained fosmid clones were selected via antibiotic resistance by the 

chloramphenicol resistance gene (chl) located on the fosmid vector. In order to determine the 

titer of the packaged fosmids, serial dilutions were made and the fosmid library size was 

estimated to be approximately 400 000 clones. After random detection of insert sizes within 

10 single colonies (~40-50 kb), the 4800 fosmid clones were inoculated into 50 ninety-six-

well plates for preservation of the library at –80 °C. The overall size of the genomic DNA 

deposed in genomic library represents a 5 fold coverage of P. chrysogenum E01-10/3 genome 

(~34 Mb), therefore, the created fosmid genomic library should comprise all genes of this 

eukaryote including the sorbicillactone A biosynthesis gene cluster. 

7.2 Screening of the genomic library via hybridization  

During this project, in parallel with PCR experiments for the amplification of partial PKS 

fragments (6.1), the P. chrysogenum E01-10/3 genomic library was screened via hybridization 

with homologous and heterologous DNA probes for the presence of NR PKS gene clusters. 

The KSnr7 partial PKS sequence that showed high homology to the WA type of fungal NR 

PKS clade I (see 6.2) was used as a homologous probe to screen the genomic library for 

fosmid clones containing KS domain of the NR type. As already explained (6.1.1), two E. coli 

fosmid clones from genomic library of A. nidulans F6SCA4 strain were purchased from 

FGSC, each containing one putative PKS gene of NR clade III. The isolated plasmids of these 

clones were used in the PCR with the KHKS series of primers as the positive controls for 

amplification of the NR clade III PKSs. 
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Moreover, being aware of the fact that reductive domains are quite rare among fungal PKSs, 

specific primers that originate from these two A. nidulans F6SCA4 PKS genes (Q5BEJ6 and 

Q5B7U4, see Table 4) were used for amplification of two RED domains. The RED-F.AN1 

and RED-R.AN1 primer pair was used for RED-AN1 domain probe amplification from 

Q5BEJ6 PKS. Besides, the RED-AN3 domain probe from Q5B7U4 PKS was amplified with 

the RED-F.AN3/ RED-R.AN3 primer pair. For primer sequences see Table 27. These two 

heterologous DNA probes were cloned and sequenced in order to confirm their identities, and 

thereupon combined together for screening the P. chrysogenum genomic library for presence 

of the NR-RED domain fosmid clones. 

Different hybridization techniques were employed to screen the genomic library: Southern 

hybridization (12.17.1), colony hybridization (12.17.2) and dot blot hybridization (12.17.3). A 

variety of parameters crucial for the outcome of hybridization procedure were optimised: The 

procedure for lysing and fixing colonies to the nylon membrane in the protocol for colony 

hybridization (e.g. treatment of cell debris after fixation of DNA to the membrane), the 

amount of DNA probe that was used per hybridization reaction in tubes (100-600 ng/ reaction 

tube), pre-hybridization and hybridization incubation times (e.g. reducing or prolonging), 

incubation times for each washing step, detection reaction time, X-ray films exposure and 

developing times for all three used hybridization techniquies, as well as the type of 

hybridization buffer that gives most acceptable intensity of colony background (12.17.2). 

BamHI-restricted plasmid DNA preparations, each corresponding to one microtiter plate from 

P.chrysogenum E01-10/3 library, were electrophoretically separated and transferred via 

Southern blotting procedure to the nylon membrane and further hybridised with the 

homologous KSnr7 probe (see Figure 23). As a result, five microtiter plates (MPs) gave 

strong hybridization signals to KSnr7 probe, namely: MP15, MP17, MP18, MP26 and MP48, 

as shown in the Figure 23. 
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Figure 23: Southern hybridization with KSnr7 probe.  
A and C: Plasmid DNA preparations from 50 microtiter plates (MP) enzymatically digested with BamHI and 
electrophoretically separated. A shows MP1-MP29 divided in two rows. C displays MP30-MP51 also divided 
into two rows; in addition, run for MP10 from the first gel was repeated (first sample lane of the first row). 
Each agarose gel was photographed with a ruler on the left side in order to enable estimation of fragments 
sizes in the case of weak signal from marker (1 kb, first lane in each row). Second lane of each row contains 
KSnr7 fragment as a control for the positive signal generated with hybridization probe itself. KSpr-MI probe, 
used as a plasmid in A and as a fragment in C, served as a control for stringency of hybridization procedure. 
B and D: After gel electrophoresis samples were transferred onto a nylon membrane via Southern blot. A 
labelled KSnr7 probe was used for hybridization. B is showing positive signals coming from four MP 
preparations: MP15, MP17, MP18 and MP26. The fifth positive signal is illustrated in D and is coming from 
MP48.  
 

These five MPs were then hybridised with the combined probe for the RED domain (RED-

AN1 and RED-AN3) via the colony hybridization protocol. Hybridization, washing and 
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detection procedures were all done in the same day. The goal was to shorten the hybridization 

procedure from overnight to just 4-5 h of incubation and thus get reduced colony background 

signals from cell debris bound to a nylon membrane. Also washing steps were done under low 

stringency conditions (11.2.5) in order to enable heterologous hybridization probe to stay 

bound to the potentially homologous fosmid DNA. These colony hybridization experiments 

resulted in two clones from P. chrysogenum library as putative hosts of PKS gene clusters 

with the RED domain: The 17B9 and the 18G3 fosmids as shown in Figure 24 (A and B, 

respectively). In order to verify these results, Southern hybridization with BamHI-restricted 

plasmid DNA from these two clones was performed with the combined RED domain probe. 

This time a strong signal came only from 17B9 candidate clone (see Figure 24, C). 

 

Figure 24: Hybridization with RED domain probe for fungal NR PKS.  
A and B representing developed autoradiographs from colony hybridization for MP17 and MP18 microtiter 
plates, with two positive signals coming from clones MP17-B9 and MP18-G3 respectively. C show 
autoradiography after Southern blot hybridization with BamHI-restricted plasmid DNA of MP17-B9 and MP18-
G3. On the right side are BamHI plasmid preparations from MP39-MP51; not shown in complete.  
 
Further on, plasmid DNA of 17B9 clone candidate was digested with numerous enzymes to 

look for a restriction pattern that enables the best separation of fragments via agarose gel 

electrophoresis. Among 12 restriction patterns, HindIII digestion was chosen since it gave rise 

to 12 optically easily detectable bands (i.e. fragments between 0.75-18 kb). The plasmid DNA 

from clone 18G3 was also restricted with the same enzymes, giving clear information that we 

are dealing with two clones from P. chrysogenum genomic library that carry different 

genomic inserts (data not shown). The HindIII-digested 17B9 plasmid DNA was hybridised 

with the RED domain probe in Southern blotting experiments aimed to reduce efforts and 



 Results and Discussion  

 - 96 -

costs required to prove the identity of the cloned P. chrysogenum genomic fragment, i.e. 

cloning and sequencing of only RED domain positive HindIII restriction fragments.  

Despite repetition of these experiments, no fragment showed prominent hybridization signal 

with the RED domain probe (data not shown). In order to get more 17B9 plasmid DNA for 

transfer to the nylon membrane, of special importance for small restriction fragments, the 

Epicentre CopyControl® protocol for induction of high copy fosmid number per bacterial cell 

(12.17.2) was employed and hybridization experiments were repeated. The experiments 

encountered difficulties in aspect of transfer such DNA to a nylon membrane. A significant 

amount of sample-plasmid DNA stayed in slots of agarose gel, thus reducing the overall 

amount of DNA that could be transferred to the nylon membrane. Even after several 

repetition of the experiment under optimised conditions (higher amount of hybridization 

probe, prolonged hybridization and DNA transfer incubation times etc.) no significant signals 

could be observed.  

The subcloning of HindIII fragments of 17B9 was an option for the previously described 

hybridization experiments with the RED domain probe. In this case 17B9 carrying an insert of 

interest was not induced to a high copy number prior to plasmid isolation. Twelve restriction 

fragments were separated via agarose gel, cloned in the pBluescpript® vector and end-

sequenced (from both sides of genomic insert if insert size was more that 1.2 kb). The 

sequencing of cloned fragments was realised by GATC Biotech (Konstanz, Germany) with 

the T7 and T3 primer pair. The average size of end sequences was 500-800 bp. The end-

sequencing revealed that at least 15 different HindIII restricted fragments were generated 

from 17B9. The sum of all released fragments led to the estimation of ~ 50 kb size for this 

genomic insert (see Table 11). The BLAST results of deduced amino acid sequences for all 15 

end sequenced inserts with the highest similarities to sequences in the GenBank are 

summarised in Table 11. The band designated as fragment 10 (F10, see Table 17) contained 

actually three different fragments (17B9F10a, 17B9F10b and 17B9F10c; Table 11), while 

band named as F12 (not shown in Figure 25) contained two individual fragments (17B9F12a 

and 17B9F12b; see in Table 11). Three end sequences: 17B9F2-T3, 17B9F2-T7 and 17B9F7-

T7, were of rather very low quality with numerous ambiguous letters (i.e. not representing 

nucleotides) over the whole sequence length. Even repetition of sequencing with freshly made 

plasmid preparation of the subclones carrying F2 and F7 fragments did not improve the 

sequence quality. Thus, no homology data are available for these three end sequences. Beside 

that, three end sequences showed no homology to any known fungal sequences in database: 

17B9F1-T7, 17B9F5-T7 and 17B9F12b-T7. They showed homology to mostly bacterial 
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proteins that are either not associated with PKS biosynthesis clusters, or not exclusively 

associated with these type of clusters (e.g. 17B912b-T7: Cytochrome c oxidase subunit I 

Ehrlichia canis; Q3YQV6). For more details see Table 11.  

All homologies to bacterial, plant or animal sequences span relativelly small amino acid 

region of subject sequence (from 20-100 aa). However, if the similarity value is good, the 

inferred gene function should be correct. These similarity values are shown within Table 11.  

Several putative fungal protein homologues, with homology regions of 30-60 aa and the 

identity value between ~40-75% aa were found for the following sequences: 17B9F3-T3 end 

sequence (es), 17B9F3-T7 es, 17B9F4-T3 es, 17B9F4-T7 es, 17B9F6-T3 es, 17B9F9-T3 es 

and 17B9F11-T7 es. For the information on their inferred gene functions see Table 11.  

Moreover, up to 85% identity to putative flavin binding monooxygenase of A. clavitus 

(GenBank: A1CGT2) and Neosartorya fischeri (GenBank: A1CXZ8) was found over more 

than 220 aa homology stretch for 17B9F1-T3 es. Similarity to putative C6 zinc finger domain 

protein (i.e. putative function in transcriptional regulation) of A. clavatus (GenBank: 

A1CBQ9) and A. fumigatus (GenBank: B0XR17) is shared between three end sequences: 

17B9F5-T3 17B9F10a-T7 and 17B9F12a-T7. A homology to A. niger putative prolane 

permease (GenBank: A2QHN9) was detected for both end sequences of 17B9F7 subclone 

(T3: 72 aa, 61% identity; T7: 191 aa, 80% identity). Likewise, a homology to putative amino 

acid permease of Coccidioides immitis (Q1DZQ4) was found within 17B9F10c-T7 sharing 

72% identity over the 43 amino acid stretch. The putative JmjC domain protein, as 

demethylase signature motif [236], was identified within 17B9F8-T7 end sequence and 

showed homology to A. niger protein (GenBank: A2QHN7; 85 aa, 34% identity), while 

17B9F10b-T7 end sequence showed significantly higher homology to A. fumigatus protein 

(B0Y5G6; 197 aa, 69% identity ) for the same predicted function.  

In sum, analysis of end sequences of all 15 HindIII 17B9 fragments revealed no homology to 

deduced amino acid sequences of known fungal PKS genes. Flavin-binding monooxygenases 

are frequently associated with the PKS biosynthesis clusters and are involved in tailoring 

reactions that often follow the release of nascent polyketide. The similarity to these enzyme 

functions was high (up to 85% identity). Moreover, the 17B9F9-T3 deduced amino acid 

sequence of F9 fragment showed 41% identity to acyltransferase (AT) domain of bovine fatty 

acid synthase (FAS; GenBank: Q71SP7) over homology stretch of 39 aa residues. This 

sequence was presumably the only fatty acid synthase (FAS) among numerous homology 

matches that were found over a rather small homology stretch within F9-T3 end sequence (not 

all shown in Table 11).  
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At this point, it is important to note that the homology search for new fungal genomic 

sequences are encountered with considerable problem due to the scarce availability of fungal 

sequences in gene databases as compared to bacterial ones (see 2.4.3). In addition, 18 kb size 

of F1, the largest fragment that was subcloned from the 17B9 clone (see Figure 25), leaves 

enough space for even two PKS genes next to each other, when keeping in mind that the 

average size of fungal PKS gene is 6-8 kb [23]. Beside all that, there is no information on 

sequence content for the second largest fragment F2 that was estimated to be 9 kb large. In 

accordance to previous statement for an average size of fungal PKS gene, it might be possible 

to place one fungal PKS gene cluster within the F2 fragment as well.  

Thus, PCRs with F1 and F2 plasmid DNA and KS domain specific primers of LC and KHKS 

series were employed under conditions that previously enabled amplification of the partial KS 

sequences using the P. chrysogenum genomic DNA as a template. No fragment was cloned 

that correspond to any PKS biosynthesis cluster or to associated genes (data not shown). In 

order to investigate the eventual presence of PKS gene clusters within these two fragments, 

more sequence data are required from both fragments. According to data available up to this 

time point, it is not possible to anticipate the presence of fungal Type I PKS gene cluster 

within the 17B9 clone from P. chrysogenum E01-10/3 genomic library. 

 

Figure 25: Cloning HindIII restriction fragments of 17B9 clone candidate.  
On the left side are shown fragment patterns generated via 12 different restriction endonucleases. Enzymatic 
digestion with HindIII was chosen for subcloning of 17B9 clone candidate into the pBluescript® vector (on 
the right). Overall size of genomic insert cloned within 17B9 clone is estimated to be ~50 kb, while the size 
of the largest cloned fragment was identified to be ~18 kb. 
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Table 11: Sequences homologies of deduced amino acid sequences from 17B9 subcloned fragments. 
 

Sequence 
name(a) 

Fragment 
size(b) Sequence homologoues(c) 

Identities 
(%)(d) 

Positive
s (%)(d) 

Hom. str. 
(aa)(e) References(f)  

17B9F1 (T3) 18.0 Kb ▪ Putative flavin binding monooxygenase, A. clavitus 
▪ Putative flavin binding monooxygenase, Neosartorya fischeri 

66 
64 

80 
78 

223 
223 

A1CGT2; Fedorova et al., 2008;  
A1CXZ8; Fedorova et al., 2008 

17B9F1 (T7) ▪ Putative uncharacterised protein, Desulfovibrio vulgaris (bacterium) 

▪ Elongation factor G1 (fusA1), Hahella chejuensis (bacterium) 

35 

29 

49 

48 

59 

74 

 

Q728B0; Heidelberg et al.,  

2004; Q2S909; Jeong et al., 
2005 

17B9F2 (T3) 9.0 kb ▪ No significant similarity to any sequence (low sequence quality) - - - - 

17B9F2 (T7) ▪ No significant similarity to any sequence (low sequence quality) - - - - 

17B9F3 (T3) 5.0 Kb ▪ Putative mating type switch (DNA repair) protein, A. fumigatus 

▪ Putative dihydrofolate reductase, Neosartorya fischeri 

50 

38 

61 

54 

138 

59 

Q4WNMA4; Nierman et al.,  

2005; A1DGI8; Fedorova et al., 
2008 

17B9F3 (T7) ▪ Putative progesterone binding protein, A. clavatus 

▪ Putative helicase IV protein, Vibrio cholerae (bacterium) 

75 

33 

86 

48 

47 

80 

A1CGT6; Fedorova et al., 2008; 

 Q9KLM6; Heidelberg et al., 
2000 

17B9F4 (T3) 3.2 Kb ▪ Putative DNA binding protein B7F21.040, Neurospora crassa 
▪ Putative membrane protein MembB, Bifidobacterium longum  
  (bacterium) 

37 
33 

62 
48 

29 
68 

Q9P3J0; Schulte at al., 2000;  
Q5FBB1; Tanaka at al., 2005 

17B9F4 (T7) ▪ Putative sugar kinase, Alcanivarax borkumensis (bacterium) 
▪ Putative MFS transporter protein, A. nidulans 

51 
51 

59 
63 

27 
33 

Q0VPP3; Schneiker at al., 2006;  
Q5B8H0; Galagan et al., 2005 

17B9F5 (T3) 2.8 Kb ▪ Putative C6 zinc finger domain protein (transcriptional regulation),  
  A. clavatus 

54 61 219 A1CBQ9; Fedorova et al., 2008 

17B9F5 (T7) ▪ Putative transposase family protein, Shigella boydii (bacterium) 

▪ Putative uncharacterised protein (unknown function), Oryza sativa  

36 

30 

54 

52 

91 

96 

B2TST7; Rasko et al., 2008  

Q7XVR8; Feng et al., 2002 

17B9F6 (T3) 2.0 Kb ▪ Putative uncharacterised protein, Tetrahymena thermophila (bacterium) 
▪ Putative protein kinase, A. fumigatus 

29 
52 

41 
64 

85 
34 

Q22YM3; Eisen et al., 2006 ;  
B0XZK9; Fedorova et al., 2008 

17B9F6 (T7) ▪ Putative cell division protein, A. nidulans 51 67 218 Q5B8H1; Galagan et al., 2005 

17B9F7 (T3) 1.7 Kb ▪ Putative prolane permease, A. niger 61 75 72 A2QHN9; Pel et al., 2007 
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Sequence 
name(a) 

Fragment 
size(b) Sequence homologoues(c) 

Identities 
(%)(d) 

Positive
s (%)(d) 

Hom. str. 
(aa)(e) References(f)  

17B9F7 (T7) ▪ Putative prolane permease, A. niger 80 90 191 A2QHN9; Pel et al., 2007 

17B9F8 (T3) 1.5 Kb ▪ Putative JmjC domain protein (demethylase signature motif), A. niger 34 55 85 A2QHN7; Pel et al., 2007 

17B9F8 (T7) ▪ Putative flavin binding monooxygenase, Neosartorya fischeri 

▪ Putative flavin binding monooxygenase, A. clavitus 

85 

79 

93 

86 

74 

74 

A1CXZ8; Fedorova et al., 2008; 

A1CGT2; Fedorova et al., 2008 

17B9F9 (T3) 1.4 Kb ▪ EST an_1834, A. niger 

▪ AT domain of fatty acid synthase (from transcription), Bos taurus  

58 

41 

83 

53 

31 

39 

A2QHP1; Pel et al., 2007 

Q71SP7; Roy et al., 2003 

17B9F9 (T7) ▪ No significant similarity to any sequence (low sequence quality) - - - - 

17B9F10a (T7) 1.0 Kb ▪ Putative C6 zinc finger domain protein A. fumigatus 65 79 163 B0XR17; Fedorova et al., 2008 

17B9F10b (T7) 950 bp ▪ Putative JmjC domain protein (demethylase signature motif) , A.   
  fumigatus   

69 77 197 B0Y5G6; Fedorova et al., 2008 

17B9F10c (T7) 900 bp ▪ Putative amino acid permease, Coccidioides immitis 72 90 43 Q1DZQ4; Birren et al., 2005 

17B9F11 (T7) 850 bp ▪ Putative transporter protein, Streptomyces avermitilis (bacterium) 

▪ Putative starch-binding protein (phosphodiesterase activity), A. oryzae 

34 

42 

52 

56 

69 

50 

Q82JP3; Ikeda et al., 2003 

Q2UED0; Machida et al., 2005 

17B9F12a (T7) 800 bp ▪ Putative C6 zinc finger domain protein (transcriptional regulation),  
  A. clavatus 

47 61 150 A1CBQ9; Fedorova et al., 2008 

17B9F12b (T7) 750 bp ▪ Hypothetical protein Ccur92 Campylobacter curvus (bacterium) 
▪ Cytochrome c oxidase, subunit I Ehrlichia canis str. Jake (bacterium) 

30 
27 

54 
43 

50 
97 

A7H056; Fouts et al., 2007, 
Q3YQV6; Mavromatis et al., 
2006 

(a) Fragment name; T7 or T3 in brackets are standing for primer used for sequencing. (b) Fragment size estimated by comparison with referent fragment sizes via agarose gel 
electrophoresis (c) Putative sequence homologues retrieved via BLASTX search showing the first match for homology search. In addition, second putative homologue, if given, 
represents the closest fungal protein that is available: If the first match is not a fungal protein, second match that differs in predicted function from a first match in BLAST search, 
or a first characterised putative gene homologue available in TrEMBL database I do not understand, please shorten sentence(d) Identity/similarity (%) of the deduced amino acid 
sequences. (e) Homology stretch represents a number of amino acid residues within deduced subject sequence from TrEMBL database which was found to share homology with a 
given query sequence. (f) Reference combines sequence TrEMBL accession number, reference to author and the year for first deposition of a sequence in GenBank database. 
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7.3 Screening of the genomic library via PCR  

PCR studies on the genetic potential of P. chrysogenum E01-10/3 for polyketide production 

revealed the presence of three partial PKS sequences as putative members of fungal NR clade 

III (see 6.2). The KHKS1 and KHKS32 sequences derived from KS domains (Table 5), while 

AT-9-11 was amplified with primers specific for AT domains of fungal PKS genes (Table 6). 

Since the structure of sorbicillactone A indicated involvement of the fungal NR PKS clade III 

in its biosynthesis (see 3), these three partial PKS sequences qualified themselves as potential 

cluster candidates for the sorbicillactone A production. For all three PKS sequences, specific 

primers that originate exactly from the amplified DNA streches were designed, and PCR 

screening reactions were optimised to enable amplification of specific PCR products. Each 

screening primer pair was designed in such a manner that amino acid sequences, from which 

they originate, were inside the sequence spanned by degenerate primers, since it can always 

be some mismatch pairing between degenerate primers and the DNA template. The PCR 

protocols with either complex superpool plasmid DNA as a template or a whole cell PCR 

(12.8.1) were employed during the screening procedure. As a result, individual fosmid clones 

that corresponded to each cluster candidate were localised within the genomic library of P. 

chrysogenum. The identity of genomic inserts cloned within fosmids was investigated by end 

sequencing and further subcloning of endonuclease-released fragments shared between 

fosmid clones that belong to a particular gene cluster. The aim was to get detailed information 

on PKS domain organization of these three clusters and to evaluate which cluster might be a 

probable candidate for the sorbicillactone A biosynthesis. 

7.3.1 Screening for KHKS1 cluster  

A screening for the KHKS1 cluster candidate was performed with sorb-spec2-for and sorb-

spec2-rev primer pair in order to amplify an expected 193 bp PCR product (Table 27). 

Initially, all superpool plasmid DNAs corresponding to MP1-MP51 (excluding MP44 that 

was lost during library preparation) were used as templates in PCRs with this primer pair. The 

amplification of correctly sized PCR product was detected for five MPs: MP1, MP3, MP5, 

MP6 and MP11 (Figure 26A). Later on, eight colony pools were made from every microtiter 

plate, each corresponding to 12 individual fosmid clones of one MP-row (12.16). In sum, 60 

pools were created for 5 microtiter plates. One µl aliquot of the cell suspension from each 

pool was used as a template in protocols for the whole-cell PCR (12.8.1). Rows 1G, 3E, 5E, 

6E and 11D were positive for amplification, and thus all individual clones belonging to these 
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rows were further screened in the whole-cell PCR setups. Apart from lane 1G that gave two 

clone candidates(1G5 and 1G12), exactly one positive clone was found for each of four 

remaining lanes: 3E11, 5E12, 6E11 and 11D12 (Figure 26: B, C and D). The distinction 

between real and false positives was rather challenging, since the correct PCR products and 

primer dimers overlapped on agarose gel (see Figure 26). The plasmid DNA of these 6 

individual fosmid clone candidates was restricted with several endonucleases in order to 

check whether they contain the common part of P. chrysogenum genome. BamHI digestion of 

fosmid candidates clearly showed that they share numerous fragments of different sizes 

within their restriction profiles (see Figure 27) and thus supported the PCR screening results. 

 

 
Figure 26: PCR screening for KHKS1 gene cluster.  
M stands for 100 bp ladder as a fragment size standard. The strongest bands are considered as positive signals 
for amplification of specific 193 bp PCR product with KHKS1 screening primer pair (sorb-spec2-for and 
sorb-spec2-rev). A displays results of MPs (microtiter plates) superpool screening: five positive signals from 
five MPs: MP1, MP3, MP5, MP6 and MP11. B: On the left side screening results for lane MP1-G; positive 
signals for two fosmids - 1G5 and 1G12. On the right side are results for lane MP3-E with the strongest signal 
correlating with fosmid 3E11. C shows positive signal from 6E11 fosmid clone of MP6-E lane. D represents 
PCR screening results for two lanes: on the left side MP5-E with 5E12 positive fosmid clone and on the right 
positive signal from 11D12 within lane MP11-D. 
 
 

Figure 27: BamHI restriction profiling of KHKS1 
gene cluster.  
M stands for 1 kb ladder as a fragment size standard. 
BamHI digestion showing that 11D12, 6E11, 5E12, 
3E11 and 1G12 fosmids share numerous fragments of 
different size within their restriction profiles. BamHI 
digestion profile of 1G5 is rather alternate compare to 
other restricted DNAs. 
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The position of the cloned KHKS1 cluster within these five fosmids was investigated via end 

sequencing of each fosmid (data shown in Table 12), while the first information on PKS 

cluster organisation came from further subcloning and sequencing of the selected fragments 

shared among analysed fosmids (data shown in  

Table 13). The pCC1™/pEpiFOS™ forward primer (FP) and pCC1™/pEpiFOS™ reverse 

primer (RP) were used for end-sequencing from the CopyControlTM pCC1FOSTM genomic 

library preparation vector (Table 27). The end-sequencing provided information that the 1G5 

fosmid could contain the intact core of the KHKS1 cluster, since both terminal sequences did 

not correspond to any putative PKS sequence. It could not be estimated if this is the case for 

1G12, 3E11 and 5E12 fosmids as well, since 1G12-RP, 3E11-FP and 5E12-FP end sequences 

were of very low quality and gave no significant sequence similarities via BLAST search. 

Beside, the BamHI restriction profile of 1G5 fosmid was rather puzzling, generating a number 

of fragments that were not present in restriction profiles of other KHKS1 fosmid candidates 

(Figure 27), thus indicating that this fosmid may be a false positive. Two KHKS1 fosmid 

candidates, 6E11 and 11E12, contained at one end of their inserts the same partial PKS 

sequences resembling the AT domain of a putative PKS of A. terreus (GenBank: Q0C8G5; 

see Table 12), therefore supporting the presence of a PKS on KHKS1 cluster candidate. 

For further subcloning of the KHKS1 cluster, the BamHI-fragments F7, F10, F13, F15 and 

F17 were chosen to be sequenced from 11D12 fosmid, since they were suspected to be 

relevant for this PKS gene cluster. For the construction of the subclone library, gel purified 

DNA of these five fragments was ligated into the pBluescript® II phagemide vector (2.9 kb in 

size). In addition, fragment F16 was co-cloned with fragment 15 (similar in size, see  

Table 13). The BLAST results for the deduced amino acid T7/T3 end sequences of these six 

subclones, with the highest similarities to sequences in GenBank, are summarised in  

Table 13. The deduced amino acid F7-T3 sequence showed 74% identity to the last part of the 

SAT domain and the beginning of KS domain from A. nidulans putative PKS (GenBank, 

Q5ATJ7). In addition, the same sequence shared around 50% identity with the SAT-KS-

amino acid-stretch of the citrinin PKS from M. purpureus (GenBank: Q65Z23, citrinin 

biosynthesis), the first genetically characterised member of the fungal NR PKS clade III [33], 

as it was already mentioned. Therefore, one side of ~4 kb large F7 most probably encodes the 

part of the SAT and the KS domains of putative fungal PKS. In addition, the whole fragment 

F15 (~1.8 kb) was similar to the part of the KS and the AT domains from PKSs of A. nidulans 

and M. purpureus (GenBank: Q5ATJ7 and Q65Z23, respectively) meaning that this genomic 
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fragment of P. chrysogenum could be part of an extension component of the NR fungal type I 

PKS gene [167].  

The second end sequence of F7 (F7-T7), when translated to protein sequence, shares 

moderate homology to a putative ABC transporter protein of A. niger (GenBank: A2QM91). 

In addition, F16 (~1.6 kb) exibits significant homology (56-58% identity) to the same 

transporter protein of A. niger over both sequenced parts of the insert, providing further 

support that one gene encoding putative transporter protein could be in close environment of 

the PKS core of this gene cluster. At least 1 kb DNA (~314 aa) of F10 (T7 and T3 es) shows 

significant homology (62% identity) to a putative flavin binding monooxygenase of A. terreus 

(GenBank: Q0CGP4). The whole F17 (~1.2 kb) exert high homology (71-87% identity) to the 

already mentioned putative flavin binding monooxygenase of A. terreus (GenBank: Q0CGP4; 

see before in text). Thus, it is probable that the KHKS1 gene cluster could encode one flavin 

binding monooxygenase enzyme.  

The second end sequence of F10 (F10-T3) shares high similarity (86% identity) with putative 

C2H2-zinc-finger domain protein of A. terreus (GenBank: Q0CGP3). The F13-T3 es showed 

less homology (62% identity) to another putative zinc finger domain protein of A. fumigatus 

(GenBank: Q4WD01). Beside, this sequence shared 32% identity with one characterised 

C2H2 zinc finger domain DNA-binding regulatory protein (AmdX) from A. nidulans 

(GenBank: P79045). AmdX is an activator of amdS gene expression [237]. The amdS gene of 

A. nidulans encodes an acetamidase enzyme and is required for acetamide catabolism. The 

amdS gene expression is one of the best-studied systems for eukaryotic structural gene 

expression. C2H2-zinc-binding-motifs recognise DNA sequences by binding to the major 

groove of DNA but can also bind to RNA and protein targets (see Table 31). As a result, 

proteins that contain this motif are deemed to have diverse functions which complicate the 

function prediction for putative proteins that display homology to this motif. A rather 

moderate similarity of F13-T3 amino acid sequence (32% identity) to the AmdX 

transcriptional regulator can be suggestive for a putative protein function.  

On the other side, F13-T7 has displayed high homology (76% identity) to another putative 

FAD oxidoreductase of A. terreus (GenBank: Q0D021). The same deduced sequence also 

shared 62% identity over the 74 aa with putative gene for sulphydryl oxidase (soxA) from A. 

niger (GenBank: Q68CM8). Although this homology is involved over relatively short amino 

acid stretch, this could be an indication for the potential presence of one additional 

oxidoreductase in this gene cluster. 
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Table 12: Sequences homologies of deduced amino acid sequences for KHKS1 gene cluster. 
 

Fosmid name 
Sequencing 
primers(a) Sequence homologoues(b) 

Identities 
(%)(c) 

Positives 
(%)(c) References(d)  

1G5 fosmid FP ▪ Putative RTA1 domain protein, A. fumigatus  41 50 Q4WXU9; Nierman et al., 2005 

RP ▪ Putative serine/threonine-protein kinase BUR1, Kluyveromyces lactis 32 46 Q6CRA9; Dujon et al., 2004 

1G12 fosmid FP ▪ Putative carboxylesterase type B protein, A. oryzae 65 79 Q2UC28; Machida et al., 2005 

RP ▪ No significant similarity to any sequence (low sequence quality) - - - 

3E11 fosmid FP ▪ No significant similarity to any sequence (low sequence quality) - - - 

RP ▪ Similar to extensin cyc 17 protein, Catharanthus roseus 33 39 Q39600; Ito et al., 1998 

5E12 fosmid FP ▪ No significant similarity to any sequence (low sequence quality) - - - 

RP ▪ Similar to extensin cyc 17 protein, Catharanthus roseus 83 91 Q1DHX7; Birren et al., 2005 

6E11 fosmid FP ▪ Putative mitochondrial dihydroxy acid dehydratase, A. nidulans 69 80 Q5AZD4; Galagan et al., 2005 

RP ▪ Putative PKS (AT domain), A. terreus NIH 2624  47 65 Q0C8G5; Birren et al., 2005 

11E12 fosmid FP ▪ Putative extracellular serine-rich protein, A. terreus NIH 2624 36 45 Q0C8G4; Birren et al., 2005 

RP ▪ Putative PKS (AT domain), A. terreus NIH 2624 51 72 Q0C8G5; Birren et al., 2005 

(a) Primers that were used for end sequencing from CopyControlTM pCC1FOSTM library preparation vector: FP stands for pCC1™/pEpiFOS™ forward primer, while RP 
represents pCC1™/pEpiFOS™ reverse primer. (b) Putative sequence homologues retrieved via BLASTX search showing the first match for homology search. (c) 
Identity/similarity (%) of the deduced amino acid sequences. (d) Reference combines sequence accession number in GenBank database, authors and the year for first deposition of 
a sequence in GenBank database. 
 
 
Table 13: Results of end sequencing of subcloned BamHI restricted fragments from KHKS1 gene cluster. 
 
Sequence 
name(a) 

Fragment 
size(b) Sequence homologoues(c) 

Identitiy 
(%)(d) 

Positive 
(%)(d) 

Hom. str. 
(aa)(e) References(f) 

Fragment 7 (T7) 4.0 kb ▪ Putative transporter protein (ABC family; ATP binding), A. niger 32 47 94 A2QM91; Pel et al., 2000 

Fragment 7 (T3) ▪ Putative PKS (SAT + KS domain), A. nidulans 
▪ Citrinin PKS (PKSct) (SAT + KS domain), M. purpureus 

74 
48 

84 
67 

186 
176 

Q5ATJ7; Galagan et al., 2005 ; 
Q65Z23; Shimizu et al., 2005 
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Sequence 
name(a) 

Fragment 
size(b) Sequence homologoues(c) 

Identitiy 
(%)(d) 

Positive 
(%)(d) 

Hom. str. 
(aa)(e) References(f) 

Fragment 10 (T7) 2.0 kb ▪ Putative flavin binding monooxygenase, A. terreus 62 74 315 Q0CGP4; Birren et al., 2005 

Fragment 10 (T3) ▪ Putative flavin binding monooxygenase, A. terreus  
▪ Putative C2H2 zinc finger domain protein, A. terreus 

59 
86 

63 
91 

88 
96 

Q0CGP4; Birren et al.,2005 
Q0CGP3; Birren et al., 2005 

Fragment 13 (T7) 2.2 kb ▪ Putative FAD oxidoreductase, A. terreus 

▪ Sulphydryl oxidase (SoxA), A. niger 

76 

62 

87 

77 

63 

74 

Q0D021; Birren et al.,2005 

Q68CM8; Schaap et al., 1995 

Fragment 13 (T3) ▪ C2H2 zinc finger domain protein, A. fumigatus 

▪ C2H2 zinc finger domain DNA binding regulatory protein  
  (AmdX), A. nidulans 

62 

32 

75 

52 
 

126 

46 

Q4WD01; Nierman et al., 2005 ; 
P79045; Murphy et al., 1997 

Fragment 15 (T7) 1.8 kb ▪ Putative PKS (KS-AT domain), A. nidulans 

▪ Citrinin PKS (PKSct) (KS-AT domain), M. purpureus 

51 

32 

69 

51 

276 

301 

Q5ATJ7; Galagan et al., 2005 ; 
Q65Z23; Shimizu et al., 2005 

Fragment 15 (T3) ▪ Putative PKS (KS-AT domain), A. nidulans 

▪ Citrinin PKS (PKSct) (KS-AT domain), M. purpureus 

54 

40 

70 

64 

189 

190 

Q5ATJ7; Galagan et al., 2005 ; 
Q65Z23; Shimizu et al., 2005 

Fragment 16 (T7)  1.6 kb ▪ Putative transporter protein (ABC family; ATP binding), A. niger 56 75 339 A2QM91; Pel et al., 2007 

Fragment 16 (T3) ▪ Putative transporter protein (ABC family; ATP binding), A. niger 58 73 180 A2QM91; Pel et al., 2007 

Fragment 17 (T7) 1.2 kb ▪ Putative flavin binding monooxygenase, A. terreus 71 82 70 Q0CGP4; Birren et al. 2005 

Fragment 17 (T3) ▪ Putative flavin binding monooxygenase, A. terreus 87 92 123 Q0CGP4; Birren et al. 2005 
(a) Fragment name; T7 or T3 in parentheses are standing for primer used for sequencing. (b) Fragment size estimated by comparison with reference fragment sizes via agarose gel 
electrophoresis (c) Putative sequence homologues retrieved via BLASTX search showing the first match for homology search. In addition, a second putative homologue, if given, 
represents the closest fungal protein that is available if the first match is not a fungal protein, a second match that differs in predicted function from a first match in BLAST 
search, or a first characterised putative gene homologue available in GenBank database. I do not understand Please shorten sentence(d) Identity/similarity (%) of the deduced 
amino acid sequences. (e) Homology stretch represents a number of amino acid residues within deduced subject sequence from GenBank database which was found to share 
homology with a given query sequence. (f) Reference combines the sequence TrEMBL accession number, the reference author and the year for first deposition of a sequence in 
GenBank. 
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7.3.2 Screening for the AT-9-11 cluster  

The screening for fosmid clones that contain the AT-9-11 cluster was performed analoguously 

to the strategy applied for the KHKS1 cluster. The sorb 9-11 spec f1 and sorb 9-11 spec r1 

primer pair were employed for the amplification of an expected 587 bp PCR product from the 

AT sequence previously amplified with degenerate primers (see B 6.1.2). Initially, all 50 pool 

plasmid DNA preparations, each one composed of plasmid DNA from 96 individual fosmid 

clones from one genomic library plate, were used as templates in PCR screening. The 

expected PCR product was amplified when plasmid preparations from MP31, MP39, MP42, 

MP46 and MP49 were used as PCR templates (Figure 28A). From these five positive plates, 

60 lane pools were made and screened by whole-cell PCR (12.8). Further on, all individual 

fosmid clones from detected positive rows were used as the source of DNA for new whole-

cell PCRs. Five putative AT-9-11 fosmids were finally identified: 31F1, 39B7, 42H12, 46H11 

and 49C8 library clones (Figure 28: B, C and D). The plasmid DNA of these 5 individual 

fosmid clones were enzymatically restricted in order to investigate whether they belong to the 

same genomic region of P. chrysogenum. The BamHI restriction profiles supported the 

assumption that these five fosmid clones share one genomic region (Figure 29). 

 

 
Figure 28: PCR screening for AT-9-11 gene cluster. 
M stands for 100 bp ladder as a fragment size standard. The strongest bands are considered as positive signals 
for amplification of specific 589 bp PCR product with AT-9-11 screening primer pair (sorb 9-11 spec f1 and 
sorb 9-11 spec r1). A displays results of microtiter plates (MPs) superpool screening - five positive signals 
from five MPs: MP31, MP39, MP42, MP46 and MP49. On B is to find positive signal from 49C8 fosmid 
clone of MP49-C lane. On the left side of C are screening results for row MP31-F with positive signal from 
31F1 fosmid clone. On the right side of C are results for row MP39-F with the strongest signal correlating 
with fosmid 39B7. D represents PCR screening results for two row s: on the left side MP42-H with 42H12 
positive fosmid clone and right side of D shows positive signal from 46H11 within row MP46-H. 
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Figure 29: BamHI restriction profiling of AT-9-11 cluster fosmid clones  
M stands for 1 kb ladder as a fragment size standard. BamHI digestion shows that 31F1, 39B7, 42H12 and 
49C8 share numerous fragments of different size within their restriction profiles.  
 
As in the case of the KHKS1 cluster, the position of the cloned AT-9-11 cluster within 

fosmid-candidates was investigated via end sequencing of inserts (data shown in Table 14). 

The preliminary information on cluster organisation was provided via subsequent subcloning 

and sequencing of fragments that were released by BamHI enzymatic digestion of individual 

fosmid inserts (data shown in Table 15).  

Two fosmids, 42H12 and 46H11, had no end sequences that corresponded to any putative 

PKS cluster sequences. Therefore, they were considered as candidates for the cluster-

containing fosmids. Fosmids 31F1 and 39B7 contain at one side of their inserts approximately 

the same part of an MT domain that belonged to a PKS most similar to the putative PKS R 

clade I from Chaetomium globosum (GenBank: Q2GR19) according to the phylogenetic 

analysis performed by Kroken et al. [167]. In addition, the reverse sequenced side of the 49C8 

insert displayed homology to the SAT domain of putative PKS NR clade III (due to Kroken et 

al.) [167] also from Chaetomium globosum (GenBank: Q2GR18). Thus, the end sequencing 

provided information that the gene cluster covered by these fosmids could encode two 

different classes of fungal type I PKSs. Nevertheless, it is important to emphasise that domain 

analysis and phylogenetic studies on larger portions of these PKS genes may provide more 

reliable information upon the reducing type and the clade they belong to (see 8.4). 
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Table 14: End sequencing of fosmid clones from P. chrysogenum genomic library candidates for AT-9-11 gene cluster. 
 

 (a) Primers that were used for end sequencing from CopyControlTM pCC1FOSTM library preparation vector: FP stands for pCC1™/pEpiFOS™ forward primer, while RP 
represents pCC1™/pEpiFOS™ reverse primer. (b) Putative protein homologues retrieved via BLASTX search showing the first match for homology search. (c) Identity/similarity 
(%) of the deduced amino acid sequences. (d) Reference combines sequence TrEMBL accession number, authors and the year for first deposition of a sequence in GenBank 
database. 
 

Fosmid name 
Sequencing 
primers(a) Sequence homologoues(b) 

Identities 
(%)(c) 

Positives 
(%)(c) References(d)  

31F1 fosmid FP ▪ Putative PKS (MT domain), Chaetomium globosum 49 63 Q2GR19; Birren et al.,2005 

RP ▪ Putative transcriptional regulator, RpiR family; Pseudomonas syringae 
  (bacterium) 

32 50 Q48BM3; Joardar et al., 2005 

39B7 fosmid FP ▪ Putative protoporphyrinogeno oxidase, Streptomyces avermitilis 33 48 Q82KY9; Ikeda et al., 2003 

RP ▪ Putative PKS (MT domain), Chaetomium globosum 51 65 Q2GR19; Birren et al., 2005 

42H12 fosmid FP ▪ Putative actin cortical patch assembly protein (similar to Pan1), A.  
  fumigatus 

60 66 Q4WG58; Nierman et al., 2005 

RP ▪ Putative uncharacterised protein (unknown function), A. terreus 32 47 Q0CBE5; Birren et al., 2005 

46H11 fosmid FP ▪ Putative uncharacterised protein (unknown function) Borrelia  
  burgdorferi (bacterium) 

33 53 Q9S042; Fraser et al., 1997 

RP ▪ MOUSE-5 (Nat13) isoform 5 of Q6PGB6, Mus musculus (mouse) 55 75 Q6PGB6-5; Carninci et al., 2005 

49C8 fosmid FP ▪ Putative uncharacterised ASPCL type protein, A. fumigatus 47 62 Q4WG63; Nierman et al. 2005 

RP ▪ Putative PKS (SAT domain), Chaetomium globosum 53 69 Q2GR18; Birren et al. 2005 
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A subclone library was constructed in order to gain more information on the AT-9-11 cluster 

organisation. In overall, 10 BamHI fragments (out of 15 initially recognised among all fosmid 

clones) were estimated to cover the core of putative PKS gene cluster were subcloned into 

pBluescript® II. The smallest fragments: F13 (~1.9 kb, present only within 39B7 clone), F14 

(~1.5 kb, common for all clones) and F15 (~ 0.7 kb, shared among 31F1, 39B7 and 49C8 

clones) were not cloned. Similarly, F4 (~ 8.0 kb) presumably be present only within the 

46H11 clone and F8 (~ 4.5 kb), postulated to be unique for the 42H11 clone, was excluded 

from this subcloning. In addition, F9 (~3.2 kb) was repetitively cloned instead of cloning F10 

that was estimated to be very similar in size (~2.8 kb). In a similar manner, attempts to clone 

F5 (~7.2 kb) failed. Instead, F7 (~6.0 kb) was repetitively cloned. Nevertheless, cloning of F6, 

initialy recognised as a single ~7.0 kb fragment, yielded two fragments encoding different 

putative fungal proteins. The BLAST results for the deduced amino acid T7 and T3 es of 10 

cloned fragments with the highest homologies to sequences deposed in GenBank are 

summarised in Table 15. 

Numerous fragments showed homology to different domains of fungal type I PKS as shown 

in Table 15. The sequence F12-T3 (~2.1 kb) showed 64% identity to the beginning of a 

putative PKS from Chaetomium globosum (GenBank: Q2GR18) [167]. Additional homology 

to the citrinin PKS of M. purpureus (GenBank: Q65Z23; 31% identity) [33], revealed that 

homology to the SAT domain may be in question (Table 15). As previously mentioned 

(2.3.1), the SAT domain, located at the N-terminus of the fungal NR clade III PKS systems, is 

thought to be responsible for a transfer of ß-reduced “advanced” starter unit (made by R PKS 

or FAS) onto an ACP domain of the same NR clade III PKS [50]. Moreover, the chemical 

structures of sorbicillactones support the model of reducing/non-reducing biosynthesis of 

these polyketides. 

Concerning the estimated size of F12 (~2.1 kb) it is probable that it encodes for the whole 

SAT domain and a part of the KS domain of a putative NR PKS. The T3 end sequence of the 

much larger F7 (~6.0 kb) covers exactly the same SAT-KS part like the F12-T7 sequence. 

Since these two end sequences are almost identical, it is possible that F12 represent a 

shortened version of F7.  

Moreover, both ends of F9 (~3.2 kb), when translated to protein sequences, show homology 

to the already mentioned two putative NR clade III PKS. It has to be emphasised that the 

identity is significantly higher [48% (T3)-58% (T7)] for the putative PKS from Chaetomium 

globosum (GenBank: Q2GR18) than as it is for the citrinin PKS of M. purpureus [GenBank: 

Q65Z23; 32% (T3)-40% (T7)]. The F9-T3 is homologous to the last part of the AT domain 
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and probably the beginning of the PT domain, while F9-T7 end sequence exerts homology to 

the ending part of the MT domain and the first half of the RED domain of both mentioned NR 

clade III PKS. This would mean that the whole fragment F9 probably spans the biggest part of 

the putative NR PKS: AT-PT-ACP-MT-RED domains. The last sequence that corresponds to 

the putative AT-9-11 PKS cluster, namely F14-T3, shows 70% and 28% identity to RED 

domains of the putative PKS from Chaetomium globosum (GenBank: Q2GR18) and the 

citrinin PKS from M. purpureus (GenBank: Q65Z23), respectively.  

It is important to emphasise that a detailed analysis of PKS domain organization through the 

phylogenetic study of the whole PKS sequence and identification of active domain sites is 

necessary in order to make the correct prediction of the class and the clade of fungal type I 

PKSs. Furthermore, the subcloning of BamHI restricted AT-9-11-fragments supported the 

results of fosmid end sequencing: Several sequences were found to show homology to 

putative members of NR clade III and R clade I PKS.  

The fragment F7 showed homology to a putative NR clade III PKS over its T3 es, and shared 

significant homology with the putative members of R clade I PKS systems over its T7-

sequenced end. The highest similarity (52% identity) F7-T7 sequence showed to be a part of 

the AT domain of the putative PKS of A. oryzae (GenBank: Q2U7I5). In addition, for the 

same sequence, significant similarity (40% identity) was found for the AT domain of the 

well-characterised gene for LDKS [91] from A. terreus that is involved in biosynthesis of the 

cholesterol-lowering drug lovastatin (GenBank: Q9Y7D5). The second part of the AT domain 

was identified within the T7 end sequence, while part of the MT domain was localised on the 

T3 end sequence of F11. These two DNA sequences, when translated to protein sequences, 

were the most similar to the putative PKS from Chaetomium globosum (GenBank: Q2GR19; 

53% and 50% identity, respectively). The closest genetically characterised homologue of 

these two sequences was CDKS [92] of P. citrinum (GenBank: Q8JOF5; 37% identity for 

F11-T7 and 33% identity for F11-T3) responsible for biosynthesis of the methylbutyryl side 

chain during compactin biosynthesis. The last end sequence that corresponded to one part of a 

putatively R-clade I PKS from the analysed P. chrysogenum strain was the F3-T7 sequence. 

This sequence showed similarity to the part of the ER domain of the putative Chaetomium 

globosum PKS (GenBank: Q2GR19; 49% identity) as first match, and the CDKS of 

Penicillium citrinum (GenBank: Q8JOF5; 35% identity) as the first characterised putative 

homologue. Nevertheless, a more detailed analysis is required in order to judge upon the 

subclassification of the cloned putative fungal type I PKS from P. chrysogenum. 
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The remaining end sequences showed homologies to some non-PKS genes. For example, a 

significant similarity (46% identity) to a putative flavin-binding monooxygenase of 

Coccidioides immitis (GenBank: Q1DRI4), over a large homology stretch (170 aa), was 

identified for F2-T3 amino acid (see Table 15). In addition, F2-T3 sequence showed 

homology to the protein of A. nidulans that is similar to the bacterial salicylate 1-

monooxygenase (SalA) (GenBank: Q9HFQ8; 39% identity, 191 aa). SalA has been 

demonstrated to be involved in resistance to terbinafine [238]. Beside that, homology to a 

putative flavin oxidoreductase gene was found over a very small part of the F14-T7. The first 

match in the homology search was the putative Zn-binding dehydrogenase of Chaetomium 

globosum (GenBank: Q2GZ40; 62% identity, 58 aa). Further on, in accordance to the 

BLASTX results, one characterised gene for the salicylate hydroxylase (salA) from the 

bacterium Pseudomonas peudoalcaligenes (GenBank: Q4F8I6) shared 48% identity to F14-

T7 as well. The salA gene is part of a gene cluster that is responsible for the conversion of 

salicylate to acetyl CoA [239]. This observation may indicate that at least one flavin-binding 

oxidoreductase gene could be associated with two different types of PKS genes within 

putative AT-9-11 cluster candidate that might be involved in the sorbicillactone A production.  

Furthermore, the F2-T7 translated sequence shared high (72%) identity with the putative 

Barren family protein of A. clavatus (GenBank: A1CD76) over a large amino acid stretch 

(223 aa). Besides, more than 1 kb of the deduced F1-T7 sequence exhibited the same level of 

homology (72% identity) to the putative Barren family protein of A. terreus (GenBank: 

Q0CPW2; over 339 aa). Similar homology (71% identity) to the same putative Barren family 

protein of A. terreus was found for T3 end sequence of F6a over the 334 aa as it is shown in 

Table 15. The deduced F1-T7 and F6a-T3 sequences covered the same homology stretch 

within putative Barren family protein of A. terreus (positions 532-872 aa in subject sequence) 

and displayd 96% identity to each other in the BioEdit pairwise alignment which allowed 

ends of sequences to slide over each other in order to perform an optimal alignment (data not 

shown). Since size of F1 is estimated to be much larger (~15.0 kb) compared to F6a (~7.0 kb), 

it is probable that F6a represents a shortened version of F1 that was found at one end of 31F1 

fosmid insert, while F1 was found only in the BamHI restriction profile of 49C8 fosmid clone. 

In contrast, the F2-T7 sequence did not pair with any of these two sequences, and showed 

homology to beginning of putative Barren family protein of A. clavatus (positions 19-242 aa). 

These results indicate that one protein of the Barren family, required for the correct sister-

chromatid segregation during mitosis, is located relatively near to the core of the analysed 

PKS cluster of P. chrysogenum. 
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Two putative enzymatic functions involved in carbohydrate metabolic processes were 

detected within the course of subsequencing of the AT-9-11 cluster. A putative 

glycosyltransferase function was inferred based on homology that F6b-T7 shared with 

putative protein of this type from Magnaporthe grisea (GenBank: A4RLP8; over 128 aa). 

Additionally, homology to a putative glycosyl hydrolase from A. terreus (GenBank: Q0CXJ2; 

over 340 aa), an enzymatic function that hydrolyses O-glycosyl compounds, was identified 

for the aa sequence at F6b-T3 sequenced end. Since both putative functions were identified as 

end sequences of the ~7.6 kb F6b, it is adequate to expect that a part of the fragment F6b 

encodes for enzymes involved in carbohydrate metabolism.  

Finally, it was not possible to distinctively attribute a putative function of the F1-T3 deduced 

aa sequence to only one gene product. This sequence shared the highest similarity (47% 

identity) with the putative adenosine triphosphate (ATP) synthase of Neosartorya fischeri 

(GenBank: A1DC56). This sequence also appeared to be a putative homologue of the veA 

gene of A. parasiticus (GenBank: Q69B22; 30% identity). The protein of the veA gene 

represents one broad transcriptional regulator involved in mycotoxin production and fungal 

development [240]. 

The PCR screening for the AT-9-11 PKS-cluster and further subsequencing of five AT 

domain-encoding fosmids identified two different PKSs. One PKS was similar to the NR 

clade III PKS members, including the well characterised citrinin PKS of M. purpureus [33]. 

The second PKS showed high similarity to members of the R clade I (LDKS [91] and 

CDKS [92]). Concerning the reducing/non-reducing character of the sorbicillactones 

biosynthesis, the results presented here implicate that the AT-9-11 cluster might be 

responsible for the biosynthesis of these polyketides. 

Moreover, subsequencing of the AT-9-11 genome identified several non-PKS protein 

functions in the vicinity of two PKS genes: a putative fungal flavin-binding oxidoreductase, a 

putative fungal Barren family protein, as well as homology to two putative proteins involved 

in fungal carbohydrate metabolic processes.  

In regard to their diversity, the results of the PCR screening for the AT-9-11 cluster are 

summarised in section 7.4. 
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Table 15: Results of end sequencing of subcloned BamHI restricted fragments from AT-9-11 gene cluster. 
 
Sequence 
name(a) 

Fragment 
size(b) Sequence homologoues(c) 

Identities 
(%)(d) 

Positives 
(%)(d) 

Hom. str. 
(aa)(e) References(f) 

Fragment 1 (T7) ~ 15.0 kb ▪ Putative Barren family protein, (mitosis), A. terreus 72 81 339 Q0CPW2; Birren et al., 2005 

Fragment 1 (T3) ▪.Putative ATPase (alfa and beta subunits), Neosartorya fischeri 
▪.Velvet global gene regulator (VeA), A. parasiticus  

47 
30 

62 
41 

142 
101 

A1DC56; Nierman et al., 2006;  
Q69B22; Calvo et al., 2004 

Fragment 2 (T7) ~ 12.5 kb ▪ Putative Barren family protein, (in mitosis), A. clavatus 72 76 223 A1CD76; Nierman et al., 2006 

Fragment 2 (T3) ▪ Putative flavin binding monooxygenase, Coccidioides immitis 
▪ putative salicylate 1-monooxygenase, Aspergillus nidulans 

46 
39 

62 
57 

170 
191 

Q1DRI4; Birren et al.,2005 
Q9HFQ8; Graminha et all, 2004 

Fragment 3 (T7) ~ 10.0 kb ▪ Putative PKS (ER domain), Chaetomium globosum 
▪ Compactine diketide synthase (ER domain), Penicillium citrinum 

49 
35 

62 
54 

153 
142 

Q2GR19; Birren et al., 2005 
Q8JOF5; Abe et al., 2002 

Fragment 3 (T3) ▪ Putative RNA polymerase; A. terreus 
  Putative actin cortical patch assembly protein, A. fumigatus 

66 
63 

70 
67 

172 
180 

Q0CPW4; Birren et al.,2005 
Q4WG58; Nierman et al., 2005 

Fragment 6a (T7) ~ 7.0 kb ▪ Putative tRNA modification enzyme, Botryotinia fuckeliana 26 44 98 A6SM10; Birren et al., 2005 

Fragment 6a (T3) ▪ Putative Barren family protein, (mitosis), A. terreus 71 81 343 Q0CPW2; Birren et al., 2005 

Fragment 6b (T7) ~ 7.6 kb ▪ Putative glycosyltransferase, Magnaporthe grisea 68 78 128 A4RLP8; Dean et al., 2005 

Fragment 6b (T3) ▪ Putative glycosyl hydrolase (hydrolyzing O-glycosyl compounds), 
  A. terreus 

77 87 304 Q0CXJ2; Birren et al., 2005 

Fragment 7 (T7) ~ 6.0 kb ▪ Putative PKS (AT domain), A. oryzae 
▪ Lovastatin diketide synthase (AT domain), A. terreus 

52 
40 

68 
58 

332 
348 

Q2U7I5; Machida et al., 2005 ; 
Q9Y7D5; Kennedy et al., 1999 

Fragment 7 (T3) ▪ Putative PKS NR clade III ( SAT+ KS domains), Chaetomium  
  globosum 
▪ Citrinin PKS (PKSct) (SAT+ KS domains), Monascus purpureus 

54 
 

38 

73 
 

55 

261 
 

294 

Q2GR18; Birren et al., 2005 
 
Q65Z23; Shimizu et al., 2005 

Fragment 9 (T7) ~ 3.2 kb ▪ Putative PKS ( MT+ RED domains), Chaetomium globosum 
▪ Citrinin PKS (PKSct) (MT+ RED domains), Monascus purpureus 

58 
40 

68 
57 

351 
261 

Q2GR18; Birren et al., 2005 
Q65Z23; Shimizu et al., 2005 

Fragment 9 (T3) ▪ Putative PKS ( AT+ PT domains), Chaetomium globosum 
▪ Citrinin PKS (PKSct) (AT+ PT domains), Monascus purpureus 

48 
32 

65 
56 

229 
233 

Q2GR18; Birren et al., 2005 
Q65Z23; Shimizu et al., 2005 

Fragment 11 (T7) ~ 2.5 kb ▪ Putative PKS (AT domain), Chaetomium globosum 
▪ Compactine diketide synthase (AT domain), P. citrinum 

53 
37 

68 
56 

320 
326 

Q2GR19; Birren et al., 2005 
Q8JOF5; Abe et al., 2002 

Fragment 11 (T3) ▪ Putative PKS (MT domain), Chaetomium globosum 
▪ Compactine diketide synthase (MT domain), P. citrinum 

50 
33 

66 
52 

350 
363 

Q2GR19; Birren et al., 2005 
Q8JOF5; Abe et al., 2002 
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Sequence 
name(a) 

Fragment 
size(b) Sequence homologoues(c) 

Identities 
(%)(d) 

Positives 
(%)(d) 

Hom. str. 
(aa)(e) References(f) 

Fragment 12 (T7) ~ 2.1 kb ▪ Putative PKS ( SAT+ KS domains), Chaetomium globosum  
▪ Citrinin PKS (PKSct) (SAT+ KS domains), Monascus purpureus 

54 
37 

73 
53 

262 
313 

Q2GR18; Birren et al., 2005 
Q65Z23; Shimizu et al., 2005 

Fragment 12 (T3) ▪ Putative PKS ( SAT domain), Chaetomium globosum 
▪ Citrinin PKS (PKSct) (SATdomain), Monascus purpureus 

64 
31 

77 
50 

104 
95 

Q2GR18; Birren et al., 2005 
Q65Z23; Shimizu et al., 2005 

Fragment 14 (T7) ~ 1.5 kb ▪Putative Zn binding dehydrogenase (FAD-oxidoreductase; not as 
part of PKS), Chaetomium globosum  
▪ Salicylate hydroxilase (SalA), Pseudomonas peudoalcaligenes 

62 
 

48 

79 
 

68 

58 
 

64 

Q2GZ40; Birren et al., 2005 
 
Q4F8I6; Fujihara et al., 2006 

Fragment 14 (T3) ▪ Putative PKS ( RED domain), Chaetomium globosum 
▪ Citrinin PKS (PKSct) (RED domain), Monascus purpureus 

70 
28 

82 
43 

168 
165 

Q2GR18; Birren et al., 2005 
Q65Z23; Shimizu et al., 2005 

(a) Fragment name; T7 or T3 in brackets stand for primer used for sequencing. (b) Fragment size estimated by comparison with referent fragment sizes via agarose gel electrophoresis 
(c) Putative protein homologues retrieved via BLASTX search showing the first match for homology search. In addition, the second homologue, if given, represents the closest 
putative fungal homologue that is available if the first match is not a fungal protein, the second match that differs in predicted function from a first match in BLAST search, or a first 
characterised putative gene homologue available in GenBank database (d) Identity/similarity (%) of the deduced amino acid sequences; (e) Homology stretch represents the number of 
amino acid residues within the deduced subject sequence from GenBank database which was found to share homology with the given query sequence. (f) Reference combines 
sequence TrEMBL accession number, referent author and the year for first deposition of a sequence in GenBank. 
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7.3.3 Screening for KHKS32 cluster  

The first step to disclose the identity of KHKS32 cluster candidate was to check whether the 

KHKS32 amplified partial KS sequence of the P. chrysogenum genome originates from the 

same PKS cluster as AT-9-11 sequence amplified with degenerate primers for the AT domain. 

An indication that this may be the case was the fact that both partial PKS sequences showed 

similarty to the citrinin PKS from M. purpureus (GenBank: Q65Z23, citrinin biosynthesis) in 

BLAST search: 61% identity for KHKS32 and 52% identity for AT-9-11 (Table 5 and Table 

6 respectively). On the contrary, the KHKS1 PKS sequence, amplified with the same 

degenerate primer pair as KHKS32 sequence (see 6.1.1) displayed rather different homology 

to members of the NR clade III (see Table 5) and thus was considered to be likely amplified 

from another PKS gene.  

After KHKS32, KHKS42 and KHKS46 partial KHKS sequences were aligned in the BioEdit 

(seem to originate from the same PKS - 6.1.1), the specific primer pair was designed to cover 

the sequence regions of 100% DNA identity. The expected size of the PCR product with the 

32 triple f1 and 32 triple r1 primer pair was 160 bp. The plasmid DNAs from all five clones, 

previously identified to carry parts of AT-9-11 cluster candidate (see 7.3.2), were used in 

PCRs with this KS-KHKS32 amplification primer pair. In addition, the plasmid DNA of 

clone 11D12 that was proven to carry parts of the KHKS1 cluster candidate (see B:7.3.1), was 

used as a negative control. The KHKS32 specific primer pair was able to amplify the 

expected size PCR product from all five AT-9-11 fosmid inserts, while the PCR was negative 

when the 11D12 fosmid DNA served as a template (Figure 30). This assessment proved the 

KHKS32 and the AT-9-11 partial PKS sequences to be originally amplified from two 

different PKS domains (KS and AT, respectively) of the same P. chrysogenum putative PKS 

cluster.  
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Figure 30: PCR for the KHKS32 cluster.  
“M” stands for 100 bp ladder as a marker of fragments sizes 31F1, 39B7, 42H12, 46H11 and 46H11 are 
fosmid clones that carry the AT-9-11 cluster candidate from the P. chrysogenum genome (shown in black). 
The 11D12 fosmid represents the KHKS1 cluster (shown in red). The negative control represents PCR that 
was carried out without a DNA template (last lane, shown in red). The KS-KHKS32 primer pair amplified 
160 bp large PCR products from all five fosmids of the AT-9-11 PKS cluster. The PCR was negative for 
fosmid 11D12 as well as for the negative control (absence of specific product amplification). 
 

7.4 Summary of P. chrysogenum E01-10/3 genomic library screening  

Despite efforts taken to screen the genomic library by the use of different hybridization 

protocols (12.17), no fosmid clone was found to carry the genomic region involved in the 

biosynthesis of sorbicillactone A. On the other side, performed studies on PKS genetic 

potential of the P. chrysogenum E01-10/3 strain resulted in amplification of three partial PKS 

sequences presumably belonging to the NR clade III based on BLAST search results (see 6.1) 

and subsequent phylogenetic studies (see 6.2). Two of these sequences, namely KHKS1 and 

KHKS32, were amplied from the KS domain of the fungal type I PKS (see Table 5), while 

AT-9-11 derived from an AT domain (see Table 6). All sequences were initially amplified 

with degenerate primer sets as described previously (see 6.1). In the course of the PCR 

screening of the genomic library, specific primer pairs that encompass each sequence were 

designed and applied in complex screening procedures (see 7.3.1, 7.3.2 and 7.3.3). 

In the case of the putative KHKS1 PKS cluster (see 7.3.1) six library clones appeared to carry 

a part of the KS domain for which the sorb-spec2-for and sorb-spec2-rev primer pair was 

designed. Further subsequencing of BamHI-digested 11D12 fosmids generated several DNA 

sequences with similarity to the fungal type I PKS genes. Several end sequences from 11D12 

genomic insert corresponded to putative SAT, KS and/or AT PKS domains. These end 

sequenced fragments showed high similarity to the citrinin PKS of M. purpureus [33] which 

was not the case for the partial KS sequence initially amplified with degenerate primers (see 
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6.1.1). In addition, subcloning and subsequencing of 11D12 insert indicated the presence of 

one putative fungal ABC transporter gene and one putative fungal flavin-binding 

monooxygenase gene that could be part of this cluster as well (see 7.3.1). Moreover, the 

BLAST-search for KHKS1 PKS cluster sequences, indicated similarity to the class of putative 

C2H2 zinc finger domain proteins (see 7.3.1). 

The PCR screening procedure for the AT-9-11 PKS cluster candidate resulted in the 

identification of five AT domain-encoding fosmids within the genomic library (see 7.3.2). 

The end sequencing of the five P. chrysogenum genomic regions indicated the presence of 

two apparently different fungal type I PKSs that may differ in respect to their PKS-reducing 

potential. In order to obtain more DNA sequence information, ten BamHI-restricted fragments 

from the putative AT-9-11 gene cluster, originating from different fosmid clones, were 

subcloned and sequenced as mentioned before (see 7.3.2). The subsequencing results (Table 

15) support the assumption of the co-existence of two different PKS systems. 

One of two PKS showed consistent homology to the NR clade III PKS members, including 

the well characterised citrinin PKS of M. purpureus [33]. The BLAST search revealed that 

several AT-9-11 PKS cluster sequences together span a typical domain organization for one 

fungal NR class III PKS, along with the optional MT domain and the relatively rare RED 

domain (see 2.3.1 for NR PKS): SAT-KS-AT-PT-ACP-MT-RED (Table 15). On the other 

hand, several other AT-9-11 PKS cluster sequences indicated the presence of one reducing 

PKS as well. Among these sequences, high similarity to members of the R clade I 

(LDKS [91] and CDKS [92]) was found for putative AT, MT and ER domains (Table 15). 

Further on, subsequencing of the AT-9-11 genomic region identified several putative non-

PKS protein functions that could be nearby the two previously described putative PKS genes 

of P. chrysogenum. First of all, one putative fungal flavin-binding oxidoreductase that could 

be part of the PKS gene cluster was discovered in this genomic region (Table 15). Besides, 

one putative fungal Barren family protein with probable function in mitosis, as well as 

homology to two putative enzyme functions involved in fungal carbohydrate metabolic 

proceses, were detected within the course of BLAST analysis. Putative functions of other 

non-PKS genes recognised within the large AT-9-11 genomic region of P. chrysogenum (i.e. 

more than 50 kb) are still ambiguous, as for the F1-T3 sequene that showed similarity to both, 

the ATPase of Neosartorya fischeri and the VeA regulatory protein of A. parasiticus (Table 

15).  
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In order to identify the complete AT-9-11 biosynthesis gene cluster, as well as the KHKS1 

gene cluster, further sequence data are required that may be provided via shot-gun sequencing 

(see 12.18.2) of fosmid inserts containing a whole cluster in question. 

As it was shown via PCR amplification of the specific KS-KHKS32 sequence from AT-9-11 

fosmids (7.3.3) the KHKS32 and the AT-9-11 genomic regions harbour the same PKS 

biosynthesis gene cluster (Figure 30). This simplified the decision on the choice of PKS gene 

cluster for the shot-gun-sequencing, by reducing options from three to only two. 

The decision was made taking into account the chemical structure of sorbicillactone A (50) 

which indicated presence of one R PKS and one NR PKS (with involment of RED domain), 

similarly as postulated for citrinin (2) and zearalenone (9) [50]. The structures of the 

compounds indicate high levels of reduction during early polyketide biosynthesis and no 

reductions during later steps. In fact, the chemical structure of sorbicillactone A (50) 

implicated the involvement of ß-keto reductive PKS domains only in the early steps of its 

biosynthesis (i.e. sorbyl side chain). Beside, C-methylation that take place during later non-

reducing steps of polyketide chain formation indicated the necessity of one intrinsic MT 

domain. Moreover, the presence of one terminal RED domain responsible for reductive 

release of the polyketide intermediate to the aldehyde level [170] has been anticipated for the 

sorbicillactone A biosynthesis as well (see 3). This aldehyde could play a role in the ring 

closure (either spontaneous or enzymatically catalyzed) after PKS product release.  

In the light of these postulations and according to our findings that one putative reducing PKS 

(homology over ER domain) and one non-reducing PKS (homology over SAT, MT and RED 

required domains) are encoded next to each other, our choice lead sequencing of AT-9-11 

putative PKS gene cluster. Moreover, the fact that during subcloning and sequencing of 

KHKS1 genomic region no similarity was found to any ß-keto reducing domain, neither to 

MT and/or RED domains supported this decision (Table 12 and Table 13). 

8 DNA sequence analysis of the putative sorbicillactone gene cluster 

In order to construct a random shotgun-library for sequencing the putative sorbicillactone 

gene cluster from the AT-9-11 genomic region of P. chrysogenum E01-10/3, lenghts of 

fosmid inserts carried by the 42H12 and 46H11 clones, supposed to contain the core of this 

cluster, were calculated from their BamHI restriction profiles (see Figure 29). The fosmid 

insert of 42H12 was estimated to be ~37.7 kb, while the fosmid insert of 46H11 was 

presumed to be ~34 kb in size. Since it appeared that the fosmid DNA of clone 42H12 
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contains a larger portion of the putative gene cluster, this clone was chosen for whole fosmid 

shotgun sequencing.  

8.1 Shotgun sequencing of the putative sorbicillacone gene cluster 

Shotgun sequencing and generation of continuous DNA sequence from 42H12 insert was 

performed by GATC Biotech (Konstanz, Germany). For this purpose, the fosmid DNA of 

42H12 was dissolved in sterile purified water and sonicated under suitable conditions in order 

to generate most of DNA fragments ranging between 1-3 kb (see 12.18.2). The size of 

sherared DNA fragments was monitored by gel electrophoresis. The cloning procedure of the 

shotgun fragments was performed with the pCR4 blunt Topo® vector system. For the 

sequencing reactions, the primers M13-RP and M13-FP were used (Table 27). The 42H12 

shotgun library in size of one 384-well plate was sequenced forwards and reverses. After 

evaluation of initial 768 DNA sequences for quality and eventual presence of vector 

sequence, 625 trimmed sequences were left. With those DNA sequences an amount of 

50.3520 bases in total was generated that represented 10.4 coverage for the estimated size of 

cloned P. chrysogenum genomic insert (40-50 kb). The GATC used complex SeqMan® 

software (LasergeneTM) to compile these 625 trimmed sequences into one single DNA contig 

of 45.93 kb. This continuous DNA sequence, namely contig-4, was subsequently analysed for 

the presence of putative fungal open reading frames (ORFs). 

8.2 Identification of ORFs and prediction of enzyme functions  

The analysis of putative ORFs within contig-4 (i.e. the GATC generated contig) was managed 

via a combination of two online programs: “Fgenesh” [199], software for hidden Markov 

model (HMM) based gene structure prediction in eukaryota and “FramePlot 2.3.2” [241], a 

web based tool for analysing protein coding regions in bacterial DNA with a high GC content, 

i.e. similar as for fungal genomes (see Table 31). However, the subsequent analysis of PKS 

active sites (see 8.5.1) indicated that the putative NR PKS gene from contig-4 misses the AT-

active-site motif (Figure 33) that implies inactivity of such PKS. Thus, all 768 original DNA 

sequences were checked again for the presence of cloning vector traces and after trimming 

used for the creation of new contings via the SeqMan® program (LasergeneTM; see Table 31) 

under different program settings. The longest generated continous DNA sequence, named as 

conting-7, comprised of 48.83 kb in total and included the intact AT site (Figure 33) that 

qualified this contig for further ORF analysis. The Fgenesh was able to detect 10 putative 

ORF with 31 predicted exons in both orientations of 46.91 kb coding sequence (Figure 43). 
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The protein sequences correspond from each ORF were generated by Fgenesh program and 

were subsequently analysed via BLAST search for the presence of putative homologues in 

protein databases The protein-to-protein sequence searches were performed using original 

member of the BLAST suite of programs, known as “BLASTP”. The results of this analysis 

are shown in Table 16 ORFs with the same deduced protein homologies were also inferred by 

FramePlot 2.3.2, (data not shown). As shown in Table 16, the deduced amino acid sequences 

of eight ORFs showed similarity to fungal sequences in gene databases  

Among the identified ORFs there were two putative PKS genes: orf3 that encodes for the 

putative fungal NR PKS, and orf4 that implies to be a reducing fungal PKS. As illustrated in 

Figure 31, these two PKS genes are of opposite orientation. The highest similarity of orf3 is to 

the citrinin PKS (CitS/PKSct; GenBank: Q65Z23; 42% identity) [33] responsible for 

biosynthesis of citrinin (2), i.e. the polyketide mycotoxin of M. purpureus. The closest 

characterised homologue of the orf4-derived protein was the compactin diketide synthase 

(CDKS or MlcB; GenBank: Q8JOF5; 41% identity) [92] that is responsible for synthesis of 2-

methylbutyryl side chain during compactin biosynthesis pathway.  
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(orf1)  ( orf2)                       (orf3)                   (orf4)                       (orf5)    (orf6)     (orf7)

1.7      1.3                                     8.0            7.7                              1.7         1.5           1.4                              [size in kb]

slr    slmox                      pksSL1                      pksSL2                        slltr    slMFS     slox

(orf1)  ( orf2)                       (orf3)                   (orf4)                       (orf5)    (orf6)     (orf7)

1.7      1.3                                     8.0            7.7                              1.7         1.5           1.4                              [size in kb]1.7      1.3                                     8.0            7.7                              1.7         1.5           1.4                              [size in kb]

 

Figure 31: Proposed gene organization of putative sorbicillactone gene cluster.  
Arrows represent relative positions and orientations of seven identified ORFs postulated to be part of putative 
sorbicillactone gene cluster. Additionaly, each arrow contains an approximate size (in kb) for the ORF in 
question. Below arrows names of ORFs are given. Above arrows are given working names of identified 
putative genes (ORF) with hints to their putative functions. This chart contains the following genes according 
to their appearance in predicted sorbicillactone gene cluster (orf1-orf7): putative transcriptional regulatory 
gene (slr), gene for putative monooxigenase (slmox), gene for putative sorbicillactone PKS1 (PKSSL1), gene 
for putative sorbicillactone PKS2 (PKSSL2), gene for putative transcriptional regulatory gene (sltr), gene for 
putative MFS transporter protein (slMFS) and gene for putative oxidoreductase (slox). 
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Table 16: Fgenesh inferred ORFs within the shotgun sequenced fosmid 42H12.  
(a) The predicted amino acid sequences for the ORFs were deduced following removal of the putative intron regions (b) (+) for ORFs identified in direct DNA strand and (-) for 
ORF identified in complementary DNA strand. (c) The function of each encoded protein was deduced with its putative functional domains and from the predicted function of 
the first characterised protein sequence or protein sequence showing the highest degree of similarity if no characterised gene was available. (d) Identity/similarity (%) of the 
deduced amino acid sequences. (e)Reference combines sequence accession number in the GenBank database, referent author and the year of first deposition of a sequence in 
TrEMBL database. 
 

ORF Gene name Size (bp/aa)(a) Orientation (+/-)(b) Plausable function(c) Protein homology(c) 
Identity/ 
Similarity (%)(c) Reference(d) 

orf1 slr 1662/553 + Fungal specific 
transcriptional regulator 

CtnR, citrinin biosynthesis 
transcriptional activator, M. 
purpureus  

32/50 Q1ERI1; Shimizu et al., 
2007 

orf2 slmox 1338/445 - Monooxygenase 
(hydroxilase) 

SalA, salicylate 1-monooxigenase, 
A. nidulans 

34/52 Q9HFQ8; Graminha et all, 
2004 

orf3 PKSSL1 7995/2664 - Non reducing class 
polyketide synthase 

CitS, citrinin polyketide synthase, 
M. purpureus 

42/61 Q65Z23; Shimizu et al., 
2005 

orf4 PKSSL2 7746/2581 + Reducing class polyketide 
synthase 

MlcB, compactin diketide synthase, 
Penicillium citrinum 

41/59 Q8JOF5; Abe et al., 2002 

orf5 sltr 1743/580 - Fungal specific 
transcriptional factor 

Putative transcriptional factor, 
Neosartorya fischeri 

56/67 A1DJQ4; Fedorova et al., 
2008 

orf6 slMFS 1539/512 + Transporter Putative Major Facilitator 
Superfamily (MFS) transporter, A. 
nidulans 

75/81 Q5B860; Galagan et al., 
2005 

orf7 slox 1416/471 + FAD dependant 
oxidoreductase (oxidase) 

Putative FAD dependant 
oxidoreductase, A. nidulans 

63/73 Q5B862; Galagan et al., 
2005 

orf8 / 4176/1391 - Component of the PAN1 
actin cytoskeleton-
regulatory complex 

Putative actin cytoskeleton-
regulatory complex protein, A. 
terreus 

55/63 Q0CPW4; Birren et al., 
2005 
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Along with these PKS genes, two genes for putative fungal flavin-dependent oxidoreductases 

were detected on the cluster. orf2 displays similarity to salA of A. nidulans (GenBank: 

Q9HFQ8; 34% identity) which is deemed to be involved in the resistance development 

towards terbinafine. This is probably managed through degradative hydroxylation of the 

naphthalene nucleus of this aromatic compound, as mentioned before [238]. Consequently, 

FAD-dependent oxidoreductase domain was detected within orf2. This could mean that the 

putative flavin monooxygenase encoded by orf2 may perform a hydroxylation reaction in the 

sorbicillactone A and sorbicillactone B biosynthesis.  

The second oxidoreductase was inferred from the deduced amino acid sequence of orf7, and 

shared the highest similarity with the putative FAD-dependent oxidoreductase of A. nidulans 

(GenBank: Q5B862; 63% identity). However, no characterised oxidoreductase gene was 

among the matches for orf7 searched via BLASTP. Based on these results of the “BLASTP” 

analysis it is likely that orf7 encodes an FAD-dependent oxidoreductase. The precise role of 

such an oxidoreductase during sorbicillactone biosynthesis has to be further investigated. 

Additionally, two fungal specific transcriptional regulators were identified (Table 16), each 

nearby one PKS gene (see Figure 31). The BLASTP analysis showed that both ORFs 

contained the full length (180 aa) fungal specific transcriptional regulator domain. The 

transcriptional regulator encoded by orf1 is placed next to the putative NR PKS gene orf3, 

and shares 32% identity with citrinin biosynthesis transcriptional activator [34] of M. 

purpureus (CtnR,GenBank: Q1ERI1) that regulates biosynthesis of citrinin. The second 

transcriptional regulatory gene (orf5) is next to the putative reducing class PKS (orf4) and has 

significant similarity to the putative transcriptional regulator of Neosartorya fischeri 

(GenBank: A1DJQ4; 56% identity). The relative positions of mentioned ORF are shown in 

Figure 31. 

Further on, one of the identified ORFs, namely orf6, exhibits 75% identity to the putative 

Major Facilitator Superfamily (MFS) transporter protein of A. nidulans (GenBank: Q5B860). 

The MFS transporters are single-polypeptide secondary carriers capable only of transporting 

small solutes in response to chemiosmotic ion gradients. It is interesting that among putative 

homologues of orf6 was also the putative citrinin biosynthesis transporter [34] of M. 

purpureus (GenBank: Q1ERH8; 36% identity) that was recently identified adjacent to the 

pksCT gene.  
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The last identified ORF that showed similarity to fungal genes was orf8 that shared significant 

similarity with the putative actin cytoskeleton-regulatory complex from A. terreus (GenBank: 

Q0CPW4; 55% identity). BLASTP found several domains within orf8: precisely two EPS15 

homology (EH) domains and one calcium-binding domain of the EF-hand type within each of 

the EH domains. Besides, one Wiskott-Aldrich homology 2 (WH2) domain was identified as 

well. The EH protein-protein interaction module was found in several proteins involved in 

endocytosis, vesicle transport and signal transduction in organisms ranging from yeast to 

mammals. This domain is often implicated in the regulation of protein transport/sorting and 

membrane-trafficking. The WH2 actin-binding motif (~18 aa) was found as a modular part of 

larger proteins. It binds actin monomers and can facilitate the assembly of actin monomers 

into newly forming actin filaments. The WH2 domains occur in eukaryotes from yeast to 

mammals, in insect viruses, and in some bacteria.  

8.2.1 Summary of the ORF prediction 

Based upon the highest similarities that the deduced products of the identified ORFs 

displayed via BLASTP database search, putative functions were postulated along with the 

gene organization of identified cluster (see Figure 31). It was presumed that seven ORFs 

(orf1-orf7, see Table 16) could be part of the same gene cluster. orf8 was excluded from the 

cluster model since its involvement in cytoskeleton dynamics does not suggest the 

biosynthesis or transport of sorbicillactones . 

As it is shown in the Figure 31, one gene for the putative transcriptional regulator (slr or 

orf1), that could coordinate expression of the structural genes in the cluster, is followed by the 

gene encoding for one putative monooxygenase (slmox or orf2) that could be responsible for 

one post-PKS hydroxylation reaction during sorbicillactone A/B biosynthesis. The core of the 

identified putative gene cluster contains two PKS genes (PKSSL1/orf3 and PKSSL2/orf4) 

located next to each other in opposite orientations. The second putative transcriptional 

regulatory gene (sltr or orf5) appears as a fifth ORF in a row and is located before putative 

gene for one MFS transporter protein (slMFS or orf6). As mentioned before (see 2.4.5), 

transporter genes are usually associated with gene clusters responsible for biosynthesis of 

active secondary metabolites and play a role in excretion of potentially harmful intracellular 

metabolites to a surrounding environment as form of self-defense mechanism. The product of 

the last identified putative ORF (slox or orf7) may be an oxidoreductase.  

An additional confidence to putative PKS functions detected within analyzed gene cluster and 

a precise identification of the domain architecture were made through the phylogenetic 
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analysis (see 8.4) and domain active sites analysis (see 8.5) of the deduced protein sequences 

from the two presented PKS genes (PKSSL1 and PKSSL2, see Figure 31). Taking into account 

the chemical structure of sorbicillactone A (50) and its proposed biosynthetic route (see 3) 

more protein functions need to be considered for this compound to be made. The Introduction 

of amino acid alanine into the molecule via esterification with the hydroxyl group of 

sorbicillinol-intermediate could be performed by the action of one pyridoxal phosphate 

(PLP)-dependent aminotransferase. Besides, the N-acylation step after lactone ring closure 

requires the presence of one gene encoding for a post-PKS acyl-transferase activity. In order 

to search for the presence of these additional protein functions within the assumed 

sorbicillactone cluster, further subcloning was made from AT-9-11 genomic region of P. 

chrysogenum (see 8.3). 

8.3 Subcloning of fragment-2 from 49C8 fosmid clone  

The shotgun-sequencing of the fosmid clone 42H12 that was presented in the previous 

subsection (see 8.2) revealed the presence of seven putative ORFs as candidates for genes 

involved in the sorbicillactone A biosynthesis. In order to identify additional putative protein 

functions being part of the cluster, larger fragments generated by BamHI profiling of AT-9-11 

genomic-region (see 7.3.2) were considered for further subcloning. The detailed sequence 

analysis of F1 (~15.0 kb) and F2 (~12.5 kb) of the AT-9-11 genomic region (Figure 29) in 

alignment with the contig-7 DNA sequence (BioEdit program, alignment not shown) pointed 

out that the reverse complement of F2-T3 sequence shares one BamHI restriction site, as well 

as surrounding nucleotide sequence, with conting-7. Consenquently, these two sequences also 

share homology to a putative flavin monooxigenase protein function as previously mentioned 

(see for F2-T3 in Table 15 and for orf2 in Table 16). This indicates that F2 could contain 

additional genes of the identified cluster, upstream of the transcriptional regulatory gene 

(orf1, Figure 31). Since the last identified ORF (orf8, Figure 31) from sequencing of 42H12-

fosmid was a gene whose putative product is probably involved in cell cytoskeleton 

dynamics, it was regarded to be pivotal to focus on the upstream region of the putative 

sorbicillactone cluster. 

F2 was subsequently restricted with several endonucleases. The PstI restriction that released 

six fragments (see Table 18: F2a-F2f) was chosen for further subcloning of F2 subfragments 

in pBluescript® II. The cloned subfragments were end sequenced with T7 and T3 primers 

(Table 27). The closest homologues for all retrieved end-sequences are shown in Table 17. 

Several putative non-PKS protein functions were detected via BLASTX search. BLAST 
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search results for subcloned F2 fragments (i.e. F2a-F2f), as well as other putative non-PKS 

protein functions identified from analyzed AT-9-11 region, are all presented in Table 18. 

Therefore, additional identified non-PKS protein functions (apart from ones already described 

in 8.2) will be discussed in the following sections. 

One of the putative non-PKS protein functions detected in a relative neighbourhood of two 

detected PKS genes was the Barren-family-protein-function assigned to the A. terreus protein 

(GenBank: Q0CPW2,72% identity). As already mentioned before, this putative function was 

found in large portions of F1-T7 and F6a-T3 sequences (see 7.3.2). This family consists of 

several Barren-protein homologues from eukaryotic organisms. In Drosophila, The Barren 

(encoded by barr gene) is required for sister-chromatid segregation in mitosis and has 

homology to? yeast and humans. The Barren-protein is localised in chromatin throughout 

mitosis [242]. Thus, there is a relatively high probability that one protein with a role in 

chromosomal segregation during mitosis or chromatin-condensation is encoded on the 

genomic fragment of P. chrysogenum that was analyzed within this study. Further on, the F1-

T3 sequence exerted homology to two putative functions: a putative ATPase of Neosartorya 

fischeri (GenBank: A1DC56, 47% identity) and VeA protein of A. parasiticus (GenBank: 

Q69B22, 30% identity). Both homologies are displayed over a relatively short homology 

stretch as shown in Table 18. A putative ATPase function indicates probability that one 

protein involved in transport of protons across a membrane could be in the proximitiy of two 

PKS genes. On the other hand, it is interesting that VeA, the second putative homologue, is 

being produced exclusively by fungal species. This global regulator is conserved in numerous 

fungal species although it was not strictly found in yeast organisms such as S. cerevisiae or 

Schizosaccharomyces pombe [243]. Besides the role of VeA in regulation of morphogenesis, 

VeA also functions as a key global metabolic regulator in the biosynthesis of secondary 

metabolites. Among them are carcinogenic mycotoxins like aflatoxin and sterigmatocistin (A. 

nidulans [244], A. parasiticus [240] and A. flavis [245]), and antibiotics as penicillin (A. 

nidulans [244]) and cephalosporin C (Acremonium chrysogenum [246]). Within the herein 

cited studies it was found that the expression of genes involved in the synthesis of secondary 

metabolites commonly found in clusters was affected by VeA. The VeA N-terminal region 

contains two putative nuclear localization signal (NLS) motifs: predicted pat7 motif and 

bipartite NLS motif [243]. However, F1-T3 sequence shared homology with less conserved 

C-terminal part of protein that did not carry these NLS-motifs. No VeA homologue was 

reported from P. Chrysogenum in public data bases. It is certain that more sequence data 
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from F1 is necessary in order to estimate whether such putative fungal protein function is 

present. 

The first putative protein function discovered via subcloning of F2 was an ion exchanger 

protein function. The deduced amino acid sequences of F2b-T7, F2f-T7 and F2f-T3 shared 

high similarity to putative integral membrane sodium/calcium exchanger protein of A. niger 

(GenBank: A2R181; 48-84% identity, see Table 18). Probably the significantly lower quality 

of the F2b-T7 end-sequence, compared to the sequenced F2f, decreased the otherwise high 

homology to this putative ion exchanger. Nevertheless, together these three sequences 

covered approximately 600 aa homology stretch within the match protein and supported the 

likelihood for the presence of a Ca2+ signalling protein about 15-16 kb away from the flavin 

monooxygenase of the putative sorbicillactone gene cluster. In filamentous fungi, in which 

growth patterns and development are complex, there is evidence for the involvement of Ca2+ 

in many physiological processes, including the cell cycle, sporulation, spore germination, 

hyphal tip growth, hyphal orientation, hyphal branching, and circadian rhythms [247]. 

Further, the subcloned F2d-T7 derived amino acid sequence shared modest homology to two 

different putative bacterial protein functions. Although the quality of this ~0.9 kb DNA 

sequence was sufficiently good, surprisingly no fungal protein matches were found via 

BLASTX search. Among the discovered bacterial putative homologues, the highest similarity, 

F2d-T7 shared with putative RNA methyltransferase of Desulfotalea psychrophila (GenBank: 

Q6AQE8; 45% identity over ~30 aa). This is an enzyme that is potentially involved in the 

modification of nucleotides during ribosomal RNA maturation via transfer of methyl group 

from the ubiquitous SAM (S-adenosyl methionine). Besides, the same conceptually translated 

sequence (F2d-T7) shows homology to a putative radical SAM superfamily domain protein of 

Staphylococcus epidermidis (GenBank: Q5HN57; 27% identity over ~60 aa). The radical 

SAM proteins catalyze diverse reactions, including unusual methylations, isomerizations, 

sulphur insertion, ring formation. They function in DNA precursor, vitamin, cofactor, 

antibiotic and herbicide biosynthesis and in biodegradation pathways [248]. Due to their wide 

repertoire of functions these enzymes are not easily recognizable via bioinformatic tools for 

sequence inspection.  

On the other hand, the T3 sequenced end of F2d showed relatively low similarity to even two 

putative bacterial proteins. The first deduced function exerts similarity toward the putative 

TonB-like protein of Xanthomonas oryzae pv. oryzae (GenBank: Q2P6I6; 24% identity over 

~70 aa within putative peptidase M56 domain). This is a putative cell membrane protein 

involved in iron ion and protein transport. Beside that, the presence of the peptidase domain 
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may imply the involvement in cell signalling pathways through site-specific proteolytic 

cleavage of a target protein [249]. The second deduced homology for F2d-T3 sequence 

matches the protein sequence annotated as non-ribosomal peptide synthase modules and 

related proteins from Hahella chejuensis (GenBank: Q2SHZ4; 27% identity over ~100 aa 

within the first condensation domain). One of the largest and most important groups of 

microbial secondary metabolites comprises peptides that are synthesised by enzymes without 

ribosome function. These enzymes are known as non-ribosomal peptide synthetases (NRPSs). 

Similarly like PKSs, NRPSs are large, multifunctional enzymes typically comprised of 

numerous semiautonomous catalytic domains in a lanear series [61]. There are also known 

complexes that include both enzyme systems, so called NRPS/PKSs. Although NRPSs from 

fungi share many important characteristics with bacterial NRPSs, they also differ from their 

bacterial counterparts in some key traits. Thus, the low similarity, detected over a small 

homology stretch of condensation domain, implies that the identified match might not be a 

homologue (proteins are either homologous or not homologue).  

As it was expected on the basis of results presented for subcloning of the whole AT-9-11 

cluster candidate (Table 15), one part of F2 shares homology with the putative Barren family 

of proteins. Further subcloning of this fragment (Table 17) pointed out that the F2e-T7-

derived protein sequene is similar to a putative protein from A. clavatus (GenBank: A1CD76; 

58% identity over ~250 aa), annotated as condensing complex component Cnd2. This protein 

carries the same predicted Barren domain as in the previously described cases of F1-T7 and 

F6a-T3 sequences and has the same putative function as it was emphasised before for the 

protein of A. terreus (GenBank: Q0CPW2). Onwards, one side of T3-sequenced F2e 

subfragment shares homology to the same protein of A. clavatus over a significantly shorter 

homology stretch (GenBank: A1CD76; 83% identity ~71 aa).  

However, another side of derived F2e-T3 sequence is not as uniform concerning 

demonstrated homology. First homology referred to putative DNA-binding-protein of A. 

nidulans (GenBank: Q5B5S4; 24% identity over ~150 aa), while the second putative 

homologue is the predicted PLP-dependent aminotransferase from the bacterium 

Methanococcoides burtonii (GenBank: Q12VN3; 36% identity over ~70 aa). As illustrated in 

Table 18, both homologies span relatively short parts of their protein matches. In addition, it 

is not easy to directly infere a concrete function for such putative DNA binding protein since 

the Myb domain that has been predicted for this protein may be found in a large number of 

proteins and could be involved in different stages of chromatin dynamics. Maddox and 

collaborators [250], that studied Myb domain containing proteins, underlined that it was not 
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straightforward to make a clear link between such proteins from different organisms during 

their initial bioinformatic analysis. Concerning the capability of bioinformatic tools to identify 

PLP-dependant enzymes, the situation is not less demanding, taking into account that PLP 

(pyridoxal phosphate, a vitamin B6 derivate) represents one of the most versatile organic 

cofactors in biology, and is used by a variety of enzymes in all organisms [251] having more 

than 140 distinct enzymatic activities which are catalogued by the Enzyme Commission (EC; 

http://www.chem.qmul.ac.uk/iubmb/enzyme/). Almost all PLP-dependent enzymes are 

associated with biochemical pathways that involve amino compounds, mainly amino acids. 

Despite their functional variety, all structurally characterised PLP-dependent enzymes belong 

to just five distinct structural groups. Although the limited structural diversity facilitates the 

identification of PLP-dependent enzymes from genomic sequences, there are at least two 

limitations that are inherent to homology-search for PLP enzymes. Structurally similar 

enzymes may escape detection if their sequence-similarity has become negligible [252]. 

Furthermore, homology searches fail to identify PLP-dependent genes if encoding enzymes 

do not fall into the five fold-type categories [253, 254]. Generally, such limitations are not 

exclusive for PLP-dependent enzymes and can be extrapolated into other classes of enzymes 

as well. 

In order to reveal which match is a true homologue, the use of the PSI-BLAST (position 

specific iterated BLAST) was valuable. PSI-BLAST provides with a tool for detecting distant 

relationships between proteins, or in other words – it enables searching for distantly related 

homologues that are in danger to be missed if a search would be solely based on similarity 

between compared sequences (like it is for “BLASTX” and “BLASTP”). The PSI-BLAST 

tool utilises a profile called a Position Specific Score Matrix (PSSM) as a model of sequence 

alignment and provides with values on the amino acids at certain positions. The iterative 

nature of the procedure further improves sensitivity by incorporation of increasingly distant 

functional homologues in the profile resulting in increasingly wider searches among protein 

sequences. 

After four PSI-BLAST iterations for F2e-T3 protein sequence, the most similar putative 

homologues were annotated as condensing complex component Cnd2 proteins. However, no 

protein similar to a PLP-dependent enzyme produced alignments with E-value better than the 

preset threshold (data not shown). 

Among additional non-PKS homologies that were detected during subcloning of a putative 

AT-9-11-cluster is a homologue of putative RNA polymerase of A. terreus (GenBank: 

Q0CPW4; 66% identity over ~150 aa). This homologue was identified from the F3-T3-
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deduced amino acid sequence. Besides, the F6a-T3-derived sequence displayed homology to 

one putative tRNA modification enzyme of Botryotinia fuckeliana (GenBank: A6SM10; 26% 

identity over 100 aa) that may be involved in biosynthesis, transport and/or utilisation of 

methionine as it has been annotated. The last two non-PKS putative protein functions are 

referred to enzymes of carbohydrate metabolism as it was already discussed in 7.3.2. A 

putative glycosyltransferase function was inferred based on similarity that the F6b-T7 

sequence shares with a putative protein of this class from Magnaporthe grisea (GenBank: 

A4RLP8; over 128 aa homology stretch). The homology to a putative glycosyl hydrolase 

from A. terreus (GenBank: Q0CXJ2; over 340 aa homology stretch), an enzymatic function 

that hydrolyses O-glycosyl compounds, was identified for the deduced amino acid sequence 

of F6b-T3.  
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Table 17: Results of subcloning and subsequent sequencing of fragment 2 from the AT-9-11 cluster 
 
Sequence name(a) Fragment 

size(b) 
Sequence homologoues(c) Identities 

(%)(d) 
Positives 
(%)(d) 

References(e)

Fragment F2a (T7) 3.3 kb • Putative flavoprotein monooxygenase; A. terreus 40 58 Q0CCB8; Birren et al. 2005 

Fragment F2a (T3) • Putative flavoprotein monooxygenase; Coccidioides immitis 43 61 Q1DRI4; Birren et al. 2005 

Fragment F2b (T7) 2.8 kb • Putative sodium/calcium exchanger protein; A. niger 48 57 A2R181; Pel et al. 2007 

Fragment F2b (T3) • Predicted protein (no function proposed); Botryotinia fuckeliana 66 83 A6RVH5; Birren et al. 2005 

Fragment F2c (T7) 2.6 kb • Putative fungal specific transcription factor; Chaetomium globosum 74 88 Q2GR15; Birren et al. 2005 

Fragment F2c (T3) • Putative fungal specific transcription factor; A. terreus 61 78 Q0CF68; Birren et al. 2005 

Fragment F2d (T7) 1.4 kb • Putative RNA methyltransferase (Mtase); Desulfotalea psychrophila  

• Radical SAM superfamily domain protein; Staphylococcus epidermidis 

45 

27 

67 

56 

Q6AQE8; Rabus et al. 2004 

Q5HN57; Gill et al. 2005 

Fragment F2d (T3) • TonB-like protein; Xanthomonas oryzae pv. oryzae (bacterium) 
• Non-ribosomal peptide synthetase (condensation domain); Hahella  
  chejuensis (bacterium) 

24 
27 

44 
44 

Q2P6I6; Ochiai et al. 2005 
Q2SHZ4; Jeong et al. 200 

Fragment F2e (T7) 1.3 kb • Condensin complex componenent cnd2 (Barren protein family,  
  mitosis); A. clavatus 

58 6 A1CD76; Nierman 2006 

Fragment F2e (T3) •Condensin complex componenent cnd2 (Barren protein family,  
  mitosis); A. clavatus   

• Putative DNA-binding protein; A. nidulans  

• Putative DegT/DnrJ/EryC1/StrS PLP dependant aminotransferase;   
  Methanococcoides burtonii 

83 
 

24 

36 

87 
 

36 

46 

A1CD76; Nierman 2006 
 

Q5B5S4; Galagan et al. 2005 

Q12VN3; Copeland et al. 
2006 

Fragment F2f (T7) 1.1 kb • Putative sodium/calcium exchanger protein; A. niger 84 93 A2R181; Pel et al. 2007 

Fragment F2f (T3) • Putative sodium/calcium exchanger protein; A. niger 82 89 A2R181; Pel et al. 2007 

(a) Fragment name; T7 or T3 in brackets are standing for primer used for sequencing. (b) Fragment size estimated by comparison with referent fragment sizes via agarose gel 
electrophoresis (c) Putative homologues retrieved via BLASTX search showing the first match for the sequence similarity search. In addition, the second match, if given, 
represents the closest fungal protein that is available if the first sequene match is not a fungal protein, the second match that differs in predicted function from a first match in 
BLAST search, or a first characterised putative gene homologue available in GenBank database (d) Identity/similarity (%) of the deduced amino acid sequences.(e) Reference 
combines sequence accession number in TrEMBL database, referent author and the year for first deposition of a sequence in GenBank. 
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Table 18: Inferred non-PKS gene homologies retrieved via subcloning of putative AT-9-11 gene cluster.  
Data in this table contain information on putative homologous protein functions and their organisms of origin. In addition, protein cellular localization and putative protein 
domains/motifs are given if stated in reviewed literature. For each protein function one or more query DNA sequences (fragments from AT-9-11 genomic region), for which 
the homology search was made, are also presented in the table. Besides, the lengths of amino acid stretch for which a certain level of homology [identity (I)/similarity (P)] was 
identified are also listed. The last column of this table contains reference to publications or internet databases that served as source of information for this analysis. 
 

Protein(s) 
Organism /  
Cellular localization 

Predicted molecular 
function 

Protein domains / 
motifs 

Query 
sequences(a) Homology stretch(b) I, P (%)(c) 

Reference/ 
Source(d) 

Putative Barren 
family protein 

• A. terreus 
(Q0CPW2) 

/ 
Nucleus 

• Chromosomal 
segregation during 
mitosis 

• Barren domain F1 (T7) 

F6a (T3) 

~ 340 aa out of 874 aa 

~ 340 aa out of 874 aa 

72, 81 
71, 81 

• Pfam* 

• Bhat et al., 
1996 

Putative ATPase • Neosartorya fischeri 
(A1DC56) 
/ 
Cellular membrane 

• ATP synthesis and/or 
hydrolysis 

• Transport of protons 
across a membrane. 

• alpha and beta 
subunits 

F1 (T3) ~ 140 aa out of 308 aa (at the 
start of protein) 

47, 62 • InterPro** 

VeA (velvet) global 
regulator 

• A. parasiticus 
(Q69B22) 
/ 
Cytoplasm or nucleus 

• Morphological 
development 

• Mycotoxin biosynthesis 

Two putative nuclear 
localization signals 
(NLS): 
•bipartite NLS 

• pat7 motif 

F1 (T3) ~ 100 aa out of 574 aa (toward 
end of the protein) 

30, 41 • InterPro 

• Stinnett et al. 
2007 
• Calvo et al., 
2008 

Putative 
flavoprotein 
monooxygenase 

•A. terreus (Q0CCB8)

•Coccidioides immitis 
(Q1DRI4) 

•Chaetomium 
globosum (Q2GZ40) 
/ 
Substrate dependant 

• Oxygenation reaction: 
incorporation of hydroxyl 
group into substrate 

• FAD binding domain

• Aromatic-ring 
hydroxylases domain 

F2a (T7) 

 
F2a (T3) 

 

F14 (T7) 

~ 280 aa out of 466 aa (toward 
end of the protein) 
~190 aa out of 482 aa 

 

~ 60 aa out of 498 aa 

40, 58 

 
43, 61 

 

62, 79 

• InterPro 

Putative 
sodium/calcium 
exchanger protein 

• A. niger (A2R181) 
/ 
Cell membrane 

• Regulation of 
intracellular Ca2+ 
concentration 

• Integral membrane 
regions 

F2b (T7) 
F2f (T7) 

F2f (T3) 

~ 600 aa overall out of 994 aa 48, 57 
84, 93 

82, 89 

• Pfam 
• Zelter et al., 
2004 
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Protein(s) 
Organism /  
Cellular localization 

Predicted molecular 
function 

Protein domains / 
motifs 

Query 
sequences(a) Homology stretch(b) I, P (%)(c) 

Reference/ 
Source(d) 

Putative RNA 
methyltransferae 

• Desulfotalea 
psychrophila 
(Q6AQE8) 
/ 
Nucleolus 

• Modification of 
nucleotides during 
ribosomal RNA 
maturation in a site-
specific manner 

Not specified F2d (T7) ~ 30 aa out of 158 aa (in the 
middle of the protein) 

45, 67 • Pfam 

Radical SAM 
superfamily domain 
protein 

• Staphylococcus 
epidermidis 
(Q5HN57) 
/ 
Substrate-dependent 

Catalyze diverse 
reactions: 

• unusual methylations 
•isomerization 
•ring formation, etc. 

• Radical SAM 
domain 

• YfkB-like domain, 
potentially interacts 
with radical SAM 
doamin 

 

F2d (T7) ~ 60 aa out of 380 aa (within 
radical SAM domain) 

27, 56 • Pfam 
• Sofia et al., 
2001 

TonB-like protein • Xanthomonas oryzae 
pv. oryzae (Q2P6I6) 
/ 
Cell membrane 

• Iron ion and protein 
transport 

• Proteolytic cleavage 

• Peptidase M56 
domain 

• TonB energy-
transducer domain 

F2d (T3) ~ 70 aa , out of 438 aa within 
peptidase M56 domain 

24, 44 • InterPro 
• Pfam 

• Zhang et al., 
2001 

Non-ribosomal 
peptide synthetase 
modules and related 
protein 

• Hahella chejuensis 
(Q2SHZ4) 
/ 
Subcellular: 
organelle-like 
membrane-associated 
complex 

• Generates polypeptides 
sans ribosome 

• two AMP binding 
domains 

• three condensation 
domains 
• two PP domains 

F2d (T3) ~ 100 aa within the first 
condensation domain, out of 
2426 aa 

27, 44 • Pfam 

Condensin complex 
component cnd2 

• A. clavatus 
(A1CD76) 
/ 
Nucleus 

• Chromosomal 
segregation during 
mitosis 

• Barren domain F2e (T7) 
F2e (T3) 

~ 250 aa out of 881 aa 
~ 70 aa out of 881 aa 

58, 63 • Pfam 

Putative DNA-
binding protein 

• A. nidulans 
(Q5B5S4) 
/ 
Nucleus 

• DNA binding •Myb-like DNA-
binding region 

F2e (T3) ~ 150 aa out of 427 aa 24, 36 • InterPro 
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Protein(s) 
Organism /  
Cellular localization 

Predicted molecular 
function 

Protein domains / 
motifs 

Query 
sequences(a) Homology stretch(b) I, P (%)(c) 

Reference/ 
Source(d) 

Putative 
DegT/DnrJ/EryC1/S
trS PLP-dependant 
aminotransferase 

•Methanococcoides 
burtonii (Q12VN3) 
/ 
Substrate-dependent 

• Members of this family 
have variety of molecular 
functions 

• Domain referring to 
the 
DegT/DnrJ/EryC1/Str
S PLP-dependant 
aminotransferase 
family 

F2e (T3) ~ 70 aa out of 370 aa 36,46 • Pfam 

Putative RNA 
polymerase 

• A. terreus 
(Q0CPW4) 
/ 
Nucleus 

• DNA- directed RNA 
synthesis 

• Calcium ion binding 

• RNA polymerase 
Rpb3/Rpb11 
dimerisation domain 
•Domain of unknown 
function (DUF1720); 
often engaged with EF 
hand domain and thus 
likely involved in 
cytoskeletal processes 
•EF hand domain 
(calcium ion binding) 
•WH2 actin-binding 
motif 

F3 (T3) ~ 150 aa at the end of protein 
containing WH2 actin-binding 
motif 

66, 70 • Pfam 

Putative tRNA 
modification 
enzyme 

• Botryotinia 
fuckeliana (A6SM10)
/ 
Cytoplasm 

• May be involved in 
methionine biosynthesis, 
transport and/or 
utilisation 

• Met-10 like-protein 
domain 

F6a (T3) ~ 100 aa out of 295 aa 26, 44 • Pfam 

Putative 
glycosyltransferase 

• Magnaporthe grisea 
(A4RLP8) 
/ 
Substrate-dependent 

• Transfer of sugar 
moieties from activated 
donor molecules to 
specific acceptor 
molecules, forming 
glycosidic bonds 

• Glycosyltransferase 
family 28 N-terminal 
domain with acceptor 
binding site and likely 
membrane association 
site 

F6b (T7) ~ 120 aa out of 801 aa 68, 78 • Pfam 

Putative glycosyl 
hydrolase 

• A. terreus (Q0CXJ2)
/ 
Substrate-dependent 

• Hydrolyse the 
glycosidic bond (O-
glycosyl) 

• Glycosyl hydrolase 
family 5 domain 

F6b (T7) ~ 300 aa out of 761 aa 77, 87 • Pfam 
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(a)Query sequence is a T7/T3 sequenced end of a fragment (F) for which a BLAST homology search was performed.(b) Homology stretch represents a number of amino acid 
residues within deduced subject sequence from TrEMBL database which was found to share homology with a given query sequence. (c) Identity (I) or similarity (P) of the 
deduced amino acid sequences shown off in %. (d)Reference describes used online database resources like Pfam and InterPro (see beneath) or a publication as a source of 
information. * Pfam: Protein domain database; ** InterPro: Integrated resource of protein families, domains and functional sites; AMP – adenosine monophosphate; ATP - 
adenosine triphosphate; DNA - desoxyribonucleic acid; FAD - flavin adenine dinucleotide; PLP - Pyridoxal phosphate-dependent; PP- Phosphopantetheine binding domain; 
RNA - ribonucleic acid; SAM - S-adenosyl methionine: 
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8.3.1 Summary of F2-49C8 subsequencing 

After subsequencing of the F2 fragment, no putative post-PKS acyl transferase activity 

needed for addition of acyl moiety to sorbicillactone A and B molecules was detected among 

the analyzed end-sequences (Table 17). Beside a putative condensing complex component 

Cnd2 protein function, the BLASTX results for F2e-T3 end-sequence matched a putative 

PLP-dependent aminotransferase activity as well. A rather low similarity value with the PLP-

dependent aminotransferase (i.e. 36% identity) was found over a very short homology stretch 

(see Table 18) implying that this is probably not a real homolgue. The PSI-BLAST with the 

F2e-T3 protein sequence showed that the most similar matches were annotated as condensing 

complex component Cnd2 proteins. Further sequencing of F2 fragment and/or functional 

studies might completely resolve this issue. 

A subcloning and sequencing of bigger fragments that correlate to the end part of the 

analyzed AT-9-11 region [e.g. F4 (~8.0 kb) and F5 (~7.2 kb)] would be an option in order to 

screen for putative downstream members of predicted sorbicillactone gene cluster.  

The analysis of sequence similarity with regard to putative sorbicillactone gene cluster is 

indicative of underlying structural similarity, which may be associated with similar function. 

However, it is not adequate to assume that all similar sequences share a common function. 

Thus, a reconstruction of evolutionary relationships of cloned PKS genes as well as 

investigation of the domain architecture within the deduced protein sequences is highly 

recommended. As already illustrated in section 6.2, the KS domain genealogy is successfully 

used to predict reducing character and thus to disclose the classification of the whole-length 

fungal PKSs. On the other hand, domains can be regarded as construction frames of protein 

functionality, i.e. the presence or lack of a protein domain may help to assess homology 

predictions based on BLAST search. Therefore, the following two sections (8.4 and 8.5) will 

attend to these two aspects of analysis of two cloned PKS genes from P. chrysogenum. 

8.4 KS domain phylogenetic analysis of cloned whole –length PKS genes  

In order to confirm the reducing characters of the two cloned whole-length P. chrysogenum 

PKS genes (PKSSL1 and PKSSL2, Figure 31), KS domains of 48 selected amino acid 

sequences available form Kroken et al. [167] were used for multiple alignments in the 

BioEdit program (see Table 16).  

A neighbour-joining (NJ)-distance method from MEGA 4.0 (Table 31) was used to infer the 

phylogenetic tree after 1000 replications. The resulting bootstrapped NJ consensus tree is 
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shown in Figure 32. The KS domains from the cloned P. chrysogenum PKS are shown in blue 

(ORF3/PKSsl1 and ORF4/PKSsl2), while reference sequences are shown in black. Both, PKS 

classification and domain organisation in this figure are presented according to Kroken et 

al. [167]. The GenBank accession numbers of the protein sequences used for this alignment 

and subsequent phylogenetic analysis are listed in Table 19. 

The resulting KS genealogy supported predictions made by previous BLAST analysis (see 

8.2). In accordance to it, P. chrysogenum ORF3/PKSsl1 KS domain grouped with members of 

the NR clade III, together with the characterised M. purpureus PKSct. As it can be seen in 

Figure 32, members of this subclade have in common the following domain organisation: KS-

AT-PP-(PP)-MT-(CYC) [167]. As mentioned previously (see 2.3.1 and 6.2) they can 

alternatively contain the C-terminal reductase known as reductive domain (RED). 

The second analysed P. chrysogenum KS domain (ORF4/PKSsl2) clustered with the R clade I 

known to include two well characterised diketide synthases: LDKS [91] of A. terreus and 

CDKS [92] of Penicillium citrinum. The deduced general domain organisation of this 

subclade consists of KS-AT-DH-(MT)-ER-KR-PP domains [167]. However, many of the 

predicted PKS in this subclade have highly divergent and often non-functional MT domains. 
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Figure 32: Phylogeny of the cloned KS domains from putative PKS of P. chrysogenum E01-10/3 strain.  
Bootstrapped consensus tree with MEGA 4.0 inferred by the NJ method. Bootstrap values greater than 50 are 
shown at the nodes and were calculated from 1000 replications. The scale bar represents 0.1 substitution per 
amino acid site. KS domain sequences that were amplified from the genomic DNA of P. chrysogenum are 
shown in red, while reference sequences from GenBank are given in black. Classification of PKS based on 
Kroken et al. 2003 [167]. The accession numbers of sequences used in alignment are shown in Table 19. 
 
 
 
Table 19: Protein sequences for multiple alignment and phylogenetic analysis of KS domains from the 
whole-length PKS . 
 

Organism Gene/Protein* Accession number** 

Altenaria solani PKSN gb:BAD83684 

Acremonium strictum PKS1/MOS gb:CAN87161 

Aspergillus fumigatus alb1 gb: AAC39471 
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Organism Gene/Protein* Accession number** 

Aspergillus nidulans PKST7NSAS tr: Q12397 

Aspergillus nidulans wA/WAS tr: Q03149 

Aspergillus parasiticus PKSsl1(pksA)/ NSAS tr: Q12053 

Aspergillus parasiticus PKSsl2 gb: AAC23536 

Aspergillus terreus at1 gb: BAB88688 

Aspergillus terreus at5 gb: BAB88752 

Aspergillus terreus lovB/LNKS gb: AAD39830 

Aspergillu terreuss lovF/LDKS gb: AAD34559 

Botryotinia fuckeliana PKS2 gb: AAR90238 

Botryotinia fuckeliana PKS4 gb: AAR90240 

Botryotinia fuckeliana PKS10 gb: AAR90246 

Botryotinia fuckeliana PKS8 gb: AAR90244 

Botryotinia fuckeliana PKS14 gb: AAR90250 

Botryotinia fuckeliana PKS15 gb: AAR90251 

Botryotinia fuckeliana PKS16 gb: AAR90252 

Botryotinia fuckeliana PKS17 gb: AAR90253 

Botryotinia fuckeliana PKS18 gb: AAR90254 

Botryotinia fuckeliana PKS19 gb: AAR90254 

Botryotinia fuckeliana PKS20 gb: AAR90256 

Caenorhabditis elegans FAS gb: NP_492417 

Cochliobolus heterostrophus PKS1/TTS1 gb: AAB08104 

Cochliobolus heterostrophus PKS2/TTS2 gb: ABB76806 

Cochliobolus heterostrophus PKS11 gb: AAR90266 

Cochliobolus heterostrophus PKS17 gb: AAR90271 

Cochliobolus heterostrophus PKS18 gb: AAR90272 

Cochliobolus heterostrophus PKS19 gb: AAR90271 

Cochliobolus heterostrophus PKS20 gb: AAR90274 

Cochliobolus heterostrophus PKS21 gb: AAR90275 

Cochliobolus heterostrophus PKS22 gb: AAR90276 

Cochliobolus heterostrophus PKS23 gb: AAR90277 

Colletotrichum lagenarium PKS1/THSN gb: BAA18956 

Gibberella moniliformi (fujikuori) fum1/FUMS gb: AAD43562 

Gibberella moniliformis (fujikuori) PKS1 gb: AAR92208 

Gibberella moniliformis (fujikuori) PKS2 gb: AAR92209 

Gibberella moniliformis (fujikuori) PKS12 gb: AAR92219 

Glarea loyozensis PKS1 gb: AAN59953 

Micromonospora echinospora calO5 gb: AAM70355 

Monascus purpureus PKS1 gb: CAC94008 

Monascus purpureus pksCT/CitS gb: BAD44749 

Penicillum citrinum mlcA/CNKS gb: BAC20564 

Penicillum citrinum mlcB/CDKS gb: BAC20566 

Penicillium patulum 6MSAS/MSAS gb: CAA39295 

Streptomyces viridochromogenes aviM/AviM gb: AAK83194 
*Gene or protein designation in GenBank; ** GenBank (gb) or TrEMBL (tr) Accession Number 
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8.5 Domain analysis of cloned whole-length PKS genes 

The results of the phylogenetic analysis enabled prediction of the reducing character for each 

of two cloned whole-length PKS genes from P. chrysogenum E01-10/3 strain. Based on the 

proposed subclade classification (see 8.4), a putative domain organisation was inferred. A 

detailed analysis on the domain architecture and conservation of amino acid residues within 

the PKS domain active sites was necessary in order to gain additional confidence for the 

results generated by the phylogenetic analysis (see Figure 22). Therefore, deduced amino acid 

sequences of these two cloned P. chrysogenum PKS genes were aligned in the BioEdit 

program with members of the corresponding fungal type I PKS clades from the phylogenetic 

tree (i.e. reducing/non-reducing). The active site residues were analysed for each putative 

domain within these two PKS proteins and consequently predictions were made with respect 

to their activity status. A supportive assistance for this analysis were the internet tools Pfam 

and InterPro (see Table 31) that are able to recognise domains within protein sequences (data 

not shown). The active site motifs analysis enabled valuable information upon preservation of 

PKS domains and their probable activity, and provided a platform for prediction of putative 

sorbicillactone A and sorbicillactone B PKS biosynthetic routes (see 8.6). 

8.5.1 Non-reducing PKS 

Analysis of domain organisation and active sites motifs 
Based on the results of the BLASTX analysis (see 6.1.1) and KS domain genealogy (see 8.4), 

the identified pksSL1 gene (i.e. orf3, Table 16) is supposed to be member of the NR clade 

III [167]. In order to check the existence of subclade characteristic domains [50, 167], the 

deduced PKSsl1 sequences from two generated contigs (4 and 7) were aligned with PKS 

members of NR clade III. The reference sequences from alignments are shown in Figure 33 

and are detailed presented in Table 4. In the following text letter “x” stands for a variable 

amino acid residue within the active site of PKS domain in question. 

At the very beginning of the deduced PKSsl1-protein-sequence, a SAT domain with the 

conserved GxCxG motif [255] was identified as shown in Figure 33-A. As previously 

mentioned (2.3.1), this N-terminal starter unit ACP transacylase domain is thought to be 

responsible for a transfer of advanced starter-unit (reduced) onto an ACP domain of fungal 

NR clade III PKS systems. The chemical structures of sorbicillactones support the model of 

reducing/non-reducing biosynthesis of these polyketides requiring of two different PKSs. In a 

recent study Crowford et al. [255] proved that SAT of NSAS catalyses the selective transfer 



 Results and Discussion  

 - 141 -

of hexanoate from CoA onto ACP. The conservation of this active-site-motif is an indicative 

that the identified SAT domain is able to perform its activity. 

Following up, a KS domain with the conserved DxACS active site motif [46] was identified. 

It is important to mentioned that the position of acyl binding cysteine (C) was intact as shown 

in Figure 33-B. Further on, CHSxG conserved motif [46] of AT domain active site, with 

preserved pantetheine binding serine (S) was found as well (see Figure 33-C). According to 

the conservation of amino acid residues crucial for enzymatic activity, both domains should 

be active within PKSsl1. 

It is expected that a PT domain (i.e. Product Template) is expected to follow up the AT 

domain in typical NR clade III member. However, this domain is still not well characterised 

and an active site motif is not yet defined. Thus, its function is not established although there 

are assumptions that this domain could be involved in chain-length control [50, 256]. 

Consequently, in the absence of a defined active-site-motif, the whole size PKSsl1 PT domain 

from conting7 was compared with PT domains of other NR clade III PKS whose polyketide 

products were already known. This phylogenetic analysis of PKSsl1 PT domain, that was 

performed according to published analysis of Cox and collaborators [50, 170], is shown in the 

next subsection. 

Moreover, the conserved motif of ACP domain – GxDS [46], with the preserved 

phosphopantotheine binding serine (S) was detected within PKSsl1 as well (see Figure 33-D). 

The next located domain was a MT domain with the conserved glycine (G) loop 

(GxGxGG) [229, 230] that is involved in binding of S-adenosylmethionine (Figure 33-E). All 

designated glycines are preserved within the MT domain of PKSsl1. In alignment for this 

domain less reference sequences were used since not all of the NR clade III members used for 

phylogenetic analysis contained the MT domain. At this level of sequence analysis, it seems 

that both domains could be functional in PKSsl1. 

Finally, at the C-terminus of the deduced sequence a domain corresponding to a NAD(P)H-

dependent thiolester-reductase (i.e. RED domain) was localised. As it was recently 

demonstrated by Bailey et al. [170], the RED domain of 3-methylorcinaldehyde synthase 

(MOS) is involved in reductive release of nascent polypeptide chain in form of an aldehyde. 

In addition, the position of a RED domain after an ACP domain supports the claim that this 

domain might not be involved in reductive modifications during PK-biosynthesis itself, but 

rather is involved in its release. To the best of my knowledge, the active site motif for this 

domain has not been defined yet. Nevertheless, the above analysed PKSsl1 of P. chrysogenum 

shared several conserved motifs within this domain when aligned to other members of NR 
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clade III (alignment not shown). As noted before, the presumed path of the sorbicillactone A 

and B biosynthesis requires one RED domain to be active in the release of nascent polyketide 

chains (see 3). 

Figure 33: PKS domain consensus motifs within P. chrysogenum PKSsl1/orf3.  
The deduced protein sequences that were used in alignments are shown in Table 19. 
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Phylogenetic analysis of PT domain 

The PT domain has been shown to have a low primary sequence similarity to other known 

proteins or domains in published in databases [257]. Nevertheless, significant similarity has 

been found among PT domains of putative fungal NR type I PKS systems. Accordingly, Cox 

and collaborators [50] have shown that the geneology of the PT domain correlates with the 

product length in the case of several characterised fungal NR PKSs. In consequence that 

would mean that disclosure of evolutionary relationships between PKSsl1 PT domain of P. 

chrysogenum and PT domains of known fungal NR PKS could be helpful to anticipate the 

number of extension rounds performed by PKSsl1. 

For this purpose nine PT domain amino acid sequences, along with the P. chrysogenum 

PKSsl1-PT sequence (in Figure 34 as “PT orf3”), were aligned together in the BioEdit 

program. Therefore, approximately 450-550 amino acids were extracted between AT and 

ACP domain of each sequence from the whole-length protein sequences (accordingly to 

alignment; data not shown). A neighbour-joining (NJ) distance method from MEGA 4.0 was 

used to infere the phylogenetic tree. The resulting bootstrapped NJ consensus tree is shown in 

Figure 34. The P. chrysogenum PT domain is shown in green colour, while reference 

sequences are shown in black. The GenBank accession numbers of the protein sequences used 

in this alignment and for the subsequent phylogenetic analysis, as well as respective 

polyketides are listed inTable 20. 

 

Figure 34: Phylogeny of PT domain from PKSsl1 (orf3) of P. chrysogenum E01-10/3 strain.  
The bootstraped consensus tree in MEGA 4.0 was inferred by the NJ method. Bootstrap values greater than 
50 are shown at the nodes and were calculated from 1000 replications. The scale bar represents 0.1 
substitution per amino acide site. PT domain of P. chrysogenum is shown in green, while reference sequences 
from GenBank are given in black. Classification of PKSs is based on Kroken et al. 2003 [167]. Accession 
numbers of sequences used in the alignment are shown in Table 20. 
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Table 20: Reference sequences used for PT domain phylogenetic analysis. 
 
Organism Gene* Synthase 

component 
Intermediate Final product Accession 

number** 

Acremonium 
stricutum 

PKS1 MOS Tetraketide 3-methylorcinaldehyde gb:CAN87161 

Aspergillus 
nidulans 

PKST NSAS Oktaketide  Sterigmatocystin  tr: Q12397 

Aspergillus 
nidulan 

wA WAS Heptaketide Napthopyrone 
(YWA1) 

tr: Q03149 

Aspergillus 
parasiticus 

pksA 
(PKSsl1) 

NSAS Oktaketide Aflatoxin B1 tr: Q12053 

Colletotrichum 
lagenarium 

PKS1 THNS Pentaketide Tetrahydroxy 
naphthalene 

gb: BAA18956 

Gibberella zeae PKS13 ZS–B Tetraketide Zearalenone gb:AAS57297 

Dothistroma 
septosporum 

pksA NSAS Oktaketide Dothistromin gb:AAZ95017 

Monascus 
purpureus 

pksCT CitS Tetraketide Citrinin gb: BAD44749 

Wangiella 
dermatitidis 

WdPKS1 THNS Pentaketide Tetrahydroxy 
naphthalene 

gb:AAD31436 

*Gene designation in GenBank; ** GenBank (gb) or TrEMBL (tr) Accession Number 
 

In the calculated phylogenetic tree, the P. chrysogenum PT domain is most similar to the PT 

domains of M. purpureus PKSct/CitS, Acremonium strictum PKS1 and PKS13 of Gibberella 

zeae. These three PKS catalyze biosynthesis of tetraketide polyketides and thus were 

designated as tetraketide synthases [50]. Beside this, in Figure 34 all PKS are grouped 

analogue to the length of their biosynthetised products (i.e. number of extension rounds): 

Tetraketide-, pentaketide-, heptaketide- and octaketide synthases. 

In summary, the performed protein sequence analysis showed that the domain organisation of 

PKSsl1 (Figure 35) is consistent with the one expected for members of NR clade III: SAT-

KS-AT-PT-ACP-MT-RED (see 2.3.1). All known PKS active site motifs are conserved, and 

the analysed domains are not fragmented. These facts are supporting the evidence that they all 

may be active in P. chrysogenum PKSsl1. Additionally, the PT domain phylogenetic analysis 

gave a clear hint that PKSsl1 could be involved in the biosynthesis of a non-reduced 

tetraketide chain, as it is expected for the sorbicillactones according to their late biosynthesis 

steps. 

   

   
Figure 35: Domain organisation of P. chrysogenum PKSsl1.  
The figure shows a putative non-reducing type I fungal PKS with domain organisation characteristic for NR 
clade III. 

SAT KS AT REDMTACPPTSAT KS AT REDMTACPPT



 Results and Discussion  

 - 145 -

 

8.5.2 Reducing PKS 

The results of the KS domain geneology in section 8.4 led to assumption that the 

pksSL2-encoded protein sequence (orf4, Table 16) is a member of R clade I. The subclade 

domain architecture was inferred from Kroken et al. [167] (see Figure 32) and active motifs 

were analysed through alignment of PKSsl2 protein-sequence (contig4 and contig7, see 

Figure 36) with characterised members of fungal reducing PKS clade. For each of the 

sequences used in the alignment, the respective subclades are shown in Figure 36 as well. The 

accession numbers for all reference sequences from the alignment are listed in Table 21. 

Analysis of domain organisation and active sites motifs 

The first identified N-terminal PKS domain is a KS domain with the conserved DxACS [46] 

active site motif shared by the majority of aligned protein sequences. An acyl-binding-cystein 

(C) is preserved within the KS domain of PKSsl2. At the first position of the motif, an 

aspartic acid (D) residue is substituted by a glutamic acid (E) residue. Nevertheless, this 

substitution should not influence the KS domain activity since a similar substitution [aspartic 

acid (D) is substituted with histidine (H)] has been detected in PKS4 (i.e. ZS-A) that has been 

proven to be necessary for biosynthesis of mycotoxin zearalenone in Gibberella zeae [73]. 

Besides, the FUMS polyketide synthase involved in biosynthesis of fumonisine B1 in 

Gibberella fujikuroi [42] is also active despite the substitution of aspartic acid with lysine (K) 

[ see Figure 36-A]. 

As expected, directly after the KS domain, the AT domain’s GHSxG [46] conserved motif 

along with conserved pantetheine-binding-serine (S) was identified. The amino acid glycine 

(G) at the first position in this motif is changed to serine (S) [Figure 36-B]. The same 

substitution is seen in LDKS (LovF, A. terreus) [90] and CDKS (MlcB, Penicillium 

citrinum) [92], two PKSs that are involved in the biosynthesis of lovastatin and compactin 

(respectively). Thus, there is evidence that this domain is fully active in PKSsl2. 

Following up, a dehydrase (DH) active site conserved motif HxxxGxxxxP [258] was detected. 

Based on mutagenesis studies, it is up to now confirmed that the replacement of histidine (H) 

completely eliminates DH activity [259]. Therefore, this residue should be crucial for the 

activity of this domain. Less is known about the importance of preservation of other residues 

of this motif. The P. chrysogenum orf4 possesses a conserved histidine (H) and a proline (P) 

residue, but glycine (G) is changed for serine (S) as shown in Figure 36-C. Nevertheless, 

other fungal R PKS from this alignment have been proven to be involved in the biosynthesis 
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of products like lovastatin (LDKS) [91], compactin (CDKS) [92], T-toxin (PKS1 and PKS2 

of Cochliobolus heterostrophus) [175], and have exactly the same substitution at the same 

position (see Figure 36-C). 

The next identified domain is a MT domain that is rather optional for members of the R clade 

I. As mentioned before, many members of fungal reducing clades feature MT domains that 

are either inactive due to changes in active site motif or domains that are completely absent. 

The typical MT active site motif is represented by conserved glycine (G) loop – GxGxGG, in 

which glycines form the pocket for SAM-binding [229, 230]. Within the putative R clade I 

PKS protein sequence from P. chrysogenum two glycines are missing in the glycine loop 

(GAATGA). In Figure 36-D the alignment with characterised PKSs that contain active MT 

domains was made, while in Figure 36-E inactive MT domains of otherwise active PKS are 

used for alignment with PKSsl2-MT. As it is illustrated in Figure 36-D, active MT domains 

have conserved glycines at positions that are missing in PKSsl2; while aligned MT domains 

thought to be inactive miss glycines at the same positions like in PKSsl2 (Figure 36-E). 

According to structure and biosynthesis paths of produced polyketides (T-toxin and 

compactin), none of the two PKSs used in alignment in Figure 36-E requires functional MT 

domain (TTS1 [175] and CNKS [92], respectively). Based on this motif analysis it can be 

suspected that the MT motif of putative R clade I PKS encoded by P. chrysogenum orf4 is 

inactive as well. This would be coherent to the proposed early biosynthesis steps of 

sorbicillactones that do not require C-methylation of a ß-reduced “advanced” starter-unit (i.e. 

sorbyl moiety). The methylations of the unreduced part of sorbicillactones [see structure (50) 

and (51)] are presumably performed by the activity of the MT domain that is part of the 

previously described PKSsl1 (see 8.5.1) 

The nicotinamide-adenine dinucleotide phosphate (NADP)-binding sites of ER and KR are 

commonly recognised by the presence of the characteristic glycine-rich GxGxxG/A 

motif [258, 259]. The first two glycine residues in the motif are believed to be necessary to 

permit access of the pyridine nucleotide, since the presence of side chains would block this 

step. As experimentally shown [260], substitutions of these two glycines severely 

compromised reductive activities of these domains. However, this NADP-binding-motif is 

conserved within both – ER and KR domains of P. chrysogenum PKSsl2 as it is shown in 

Figure 36-F and -G. Thus, most likely these two domains are active within this PKS.  

At this point, it is interesting to mention that the absence of a PKS domain sometimes can be 

compensated by externally encoded enzyme function. Although biosynthesis of dihydro-

monacolin L (i.e. intermediate of lovastatin) requires enoyl-reduction [90], a putative ER 
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domain of LNKS that is responsible for biosynthesis of this nonaketide does not contain a full 

NADP-binding consensus sequence as shown in Figure 36-F and has low similarity with the 

known ERs [23]. Nevertheless, the lovC gene [91], coding for an enzyme that shows 

similarity to ER domains of PKS, was found to be adjacent to the previously identified gene 

for LNKS (lovB) of A. terreus. Subsequent disruption of lovC blocked the production of 

dihydromonacolin L. Therefore, the conducted experiments suggested that at least two 

enzymes, LNKS and the lovC-encoded ER, are needed for proper biosynthesis of lovastatin’s 

nonaketide intermediate dihydromonacolin L. 

The last detected domain at the C-terminus of PKSsl2-deduced protein sequence was an ACP 

domain. The GxDS active site with conserved phosphopantetheine-binding serine (S) was 

found within this sequence as shown in Figure 36-H, thus, its activity was postulated within 

PKSsl2. 
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Figure 36: PKS domain consensus motifs within P. chrysogenum PKSsl2/orf4.  
Deduced protein sequences that were used in alignments are shown in Table 21. A represents part of 
alignment containing KS domain active site (DxACS); In B AT domain active site is shown (GHSxG), while 
DH domain active site (HxxxGxxxxP) is presented in C. D shows part of alignment of active MT domains 
containing consensus sequence GxGxGG, while in E inactive MT domains are alignt. In F and G active 
motifs of ER and KR are shown (respectively). Part of alignment encompassing ACP consensus sequence is 
shown in H. Conserved amino acid residues that are known to be crucial for domain-activity are shown in 
bold letters. The small “x” letter stands for varialble amino acid residues within conserved motif. Contig7-
orf4 and contig4-orf4 stand for deduced protein sequence of NR clade III PKSsl1 that was identified within 
orf3 of compiled DNA sequences generated via the SeqMan® software of LasergeneTM during the course of 
this study. 
 
 
Table 21: Reference sequences used for P. chrysogenum PKSsl2 domain active site analysis. 
 
Organism Gene/Protein* Reducing PKS 

subclade 
Accession number** 

Aspergillus terreus lovB/LNKS R II gb: AAD39830 
Aspergillus terreus lovF/LDKS R I gb: AAD34559 

A: KS domain active site

DxACS

B: AT domain active site

GHSxG

C: DH domain active site

HxxxGxxxxP

D: MT domain active site – active MTs

E: MT domain active site – inactive MTs

GxGxGG
F: ER domain active site

GxGxxG/A

G: KR domain active site

GxGxxG/A

H: ACP domain active site

GxDS

A: KS domain active site
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B: AT domain active site

GHSxG

C: DH domain active site

HxxxGxxxxP

D: MT domain active site – active MTs

E: MT domain active site – inactive MTs
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F: ER domain active site
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G: KR domain active site

GxGxxG/A

H: ACP domain active site

GxDS
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Organism Gene/Protein* Reducing PKS 
subclade 

Accession number** 

Cochliobolus heterostrophus pks1/TTS1 R I gb: ABB76806 
Cochliobolus heterostrophus pks2/TTS2 R III gb: ABB76806 
Cochliobolus heterostrophus pks3 RI gb: AAR90258 

Gibberella fujikuroi fum1/ FUMS R IV gb: AAD43562 

Gibberella zeae PKS4/ ZS–A R I AAS57289 

Penicillum citrinum mlcA/CNKS R II gb: BAC20564 
Penicillum citrinum mlcB/CDKS R I gb: BAC20566 

 
Based on this domain architecture analysis we confirmed that PKSsl2 has the typical domain 

structure of R clade I PKSs : KS-AT-DH-(MT)-ER-KR-ACP [167]. Therefore, PKSsl2 itself 

could be sufficient for biosynthesis of an advanced triketide starter unit, since it contains all of 

the domains required for condensation (KS, AT and ACP) and complete processing of the ß-

carbon (KR, DH and ER). Additionally, the mentioned domains have conserved consensus 

sequences within active sites and were not fragmented. However, there is a high chance that 

the detected PKSsl2-MT domain is inactive, since the consensus sequence within its active 

site is not preserved. Such a non-methylated, reduced triketide starter unit generated by 

PKSsl2 could be further accepted by the SAT domain of PKSsl1 that is proposed to make 

three additional non-reducing extension rounds, presumably resulting in biosynthesis of 

hexaketide intermediates (see 8.6) of sorbicillactone A and sorbicillacton B.  

 

 KS AT DH (MT) ER KR ACPKS AT DH (MT) ER KR ACP  

   
Figure 37: Domain organisation of P. chrysogenum PKSsl2.  
The figure shows a putative reducing fungal type I PKS with the domain organisation characteristic for fungal 
R clade I PKSs. The MT domain is shown in red to point out its putative inactivity. 
 

The putative biosynthetic routes for the two sorbicillactones presumably associated with the 

two P. chrysogenum PKS, are discussed in detail in the following section (see 8.6). 

8.6 Proposed PKS biosynthetic route of sorbicillactones biosynthesis 

The structures of sorbicillactone A (50) and B (51), two highly similar metabolites from the 

analysed P. chrysogenum E01-10/3 strain, are shown in introduction section (see 1.4). It is 

likely that the same PKS gene cluster could be responsible for biosynthesis of both 

metabolites. Besides, the chemical structures of both compounds indicated ß-keto-reductive 

activities during the early PKS steps and no ß-keto reduction in the remaining steps. Some 

other fungal polyketides like citrinin, dehydrocurvularin, monocerin and zearelenone share 

this structural feature as well [50]. Furthermore, specific incorporations of isotope-labelled 
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acetate supported the model of reducing/non-reducing biosynthesis of these polyketides. It 

was argued that such compounds may be formed by more than one PKS [50]. This would 

mean that a first PKS (or FAS) makes a ß-reduced “advanced” starter unit, which is then 

passed to a second PKS for further extension in a non-reducing manner. This assumption is 

substantiated by the experiments of Watanabe et al. who isolated and characterised this kind 

of protein complex being involved in the aflatoxin biosynthesis of A. parasiticus [261]. 

Additonally, Crawford and coworkers have shown that the SAT domain of NSAS catalyses 

the transfer of the advanced starter unit (i.e. hexanoate) from CoA onto ACP and thus 

confirmed, based on sequence analysis the acyl transferase activity of this domain [255]. 

As described in section 8, two PKSs (PKSsl1 and PKSsl2) were found to be encoded next to 

each other in the genome of the analysed P. chrysogenum strain. The domain organisation and 

active sites analysis confirmed predictions about the reducing character of these two PKSs 

initially made according to the performed phylogenetic analysis (see Figure 32). The putative 

domain organisation of the reducing PKSsl2 and its probable role in the biosynthesis of 

advanced starter units for sorbicillactone A and B are drafted in Figure 38. Similarly, the 

putative domain organization and predicted biosynthesis routes for sorbicillactone A and B 

performed by the NR PKSsl1 are shown in Figure 39.  



 

 Results and Discussion   

 - 151 -

Figure 38: PKSsl2 putative biosynthesis route.  
The second round of putative PKSsl2 biosynthesis route is different for sorbicillactone A and sorbicillactone B advanced starter units. NADP* is oxidised, and NADPH reduced form of 
NADP coenzyme; 
69 sorbicillactone A starter unit; 70 sorbicillactone B starter unit 
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The biosynthetic routes in Figure 38-Figure 39 are presented in accordance to the general 

rules of polyketide biosynthesis that are already illustrated in section 2.1. The individual 

active site residues that are important for condensation of starter and extender units are 

considered in these routes and were previously found to be conserved in both P. chrysogenum 

PKS (see 8.5). As it was discussed in the same subsection, all other active site motifs within 

the PKS domains of both multifunctional enzymes were found to be conserved as well. The 

only exception is the MT of PKSsl2 that was regarded to be inactive (see 8.5.2). 

According to the structures of these two “sorbicillinoid alkaloids” and previous feeding 

experiments [136] (see 3), we expect that PKSsl2 catalyzes two elongation rounds in order to 

create the non-methylated reduced triketide starter unit that correlates to the sorbyl sidechain 

of both compounds (see sorbicillactone A 50 and B 51). Since sorbicillactone B represents the 

2’,3’-dihydroderivate of sorbicillactone A, the ß-keto reducing steps within the second PKSsl2 

round are slightly different for these two compounds: That means that the creation of 

sorbicillactone A starter unit (69) uses only ketoreduction and dehydration steps (KR and DH 

domains, resperctively), while the creation of the sorbicillactone B starter unit (70) 

additionally requires action of the ER in order to reduce the enoylmoiety to the saturated 

acylmoiety (i.e. 2’,3’-dihydro, Figure 38). These advanced starterunits are then transferred to 

the SAT domain of PKSsl1 that is responsible for further three non-reducing elongation 

rounds leading to the doubly methylated hexaketide intermediates of sorbicillactone A (63) 

and sorbicillactone B (71) biosynthesis. The Figure 39 shows that the MT domain of PKSsl1 

is responsible for two C-methylations in each of two sorbicillactones by use of S-

adenosylmethionine as a donor of a methyl-group. The first methylation takes place in the 

second round, while the second methyl group is added in the third round of the PKSsl1 route. 

In line with the above way, we propose that the hexaketide thiolester intermediates are 

released in the aldehyde form (intermediates 63 and 71) by action of the C-terminal reductase 

(i.e. RED domain), accompanied by the release of the free holo-ACP thiol of PKSsl1 (Figure 

39). 

The predictions of the post-PKS biosynthesis steps were already made by Bringmann and 

collaborators based on the feeding experiments [136] and are presented in section 3. These 

experiments along with a recent study on biosynthesis of sorbicillinoids in Trichoderma 

sp [137] strongly support the assumption that the closure of the six-membered ring could be 

coupled with an oxidative process which may involve a putative monooxygenase activity (i.e. 

Slmox/ ORF2, see Table 16) that has been detected within the putative sorbicillactone cluster 

(see Figure 31). 
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Up to now, there is only a hint that one PLP-dependent aminotransferase activity, which 

might be required for introduction of alanine, could be encoded from the sequenced genomic 

region of the P. chrysogenum E01-10/3 strain (see Table 18). Only small parts of deduced 

protein sequence (~70 aa) from F2 of 49C8 fosmid clone exhibit 36% identity to the PLP-

dependent aminotransferase of bacteria Methanococcoides burtonii (GeneBank: Q12VN3). 

As emphasised in the introduction section 2.4.3, the most reliable in situ prediction of the 

protein function implies high sequence identity over the entire sequence. Similarly, no gene 

encoding for external AT activity was identified near the analysed gene cluster. However, 

such AT enzymatic activity is necessary in order to form post-PKS fumaryl-side-chain that is 

attached to the lactone ring of both sorbicillactone molecules. 

 

9 Isotope-labelled feeding experiments 

As already mentioned above, the production of sorbicillactone A in a marine-derived P. 

chrysogenum strain is ineffectively low. Therefore, it is crucial to know how to improve the 

production of sorbicillactone A and especially to clarify the time point of unwanted hydration 

of the C2´/C3´double bond and thus the moment of divergency in biosynthesis of 

sorbicillactone A and B. The feeding experiments aimed to check the incorporation of the 
13C2-labeled sorbicillin in P. chrysogenum and should demonstrate if the reduction of C-2´/C-

3`-double bond occurs earlier or later in the course of biosynthesis of these natural products. 

The incorporation of 13C2-labeled sorbicillin (40) into both sorbicillactone A and B would 

indicate the hydration at C-2´/C-3´at a later time point of biosynthesis, i.e. after the complete 

formation of the basic polyketide intermediate (see Figure 40). However, in case that the 

labeled precursor (40) would be incorporated only in sorbicillactone A and conversely 13C2-

2´,3´-dihydrosorbicillin only in sorbicillactone B, then the reduction of the double bond for 

the formation of sorbicillactone B would be expected very early, e.g. at the stage of the linear 

poly-ß-ketoesters like (63) and (71) (see Figure 39). 

The feeding experiment of 13C2-labelled sorbicillin in P. chrysogenum was conducted by the 

working group (WG) of Prof. Imhoff. The 13C2-labelled sorbicillin, as well as unlabelled 

synthetic material used to optimise condition of the experiment, were prepared by the WG of 

Prof. Bringmann. Even though experimentators were able to resolve the initial problem 

concerning solubility of the substrate, it was not possible to exclude the considerable lowering 

of sorbicillactone A production with sometimes complete absence of the desired secondary 

metabolite. Furthermore, irrespective of the above-mentioned low production performances, it 
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was astonishing to find out that all fungal cultures completely metabolised applied 13C2-

labelled sorbicillin. Only in one set of experiments it was possible to isolate very low amounts 

(<< 1 mg) of sorbicillactone A. However, by means of NMR spectroscopy it was not possible 

to definitely prove the incorporation of 13C2-labelled sorbicillin into sorbicillactone A. 

 

 

Figure 40: Feeding of 13C2-labelled sorbicillin in P. chrysogenum.  
Determination of the time point of the unwanted hydration of the 2´-3´double bond in the biosynthesis of 
sorbicillactone A and B [262]. 
 
Furthermore, in repeated experiments with a larger amount of labelled substance in a higher 

number of cultures the production of the secondary metabolites was completely absent. Thus, 

the feeding experiments could not prove nor disprove the incorporation of 13C2-labelled 

sorbicillin (40). According to Gulder T. A. [262], the future feeding experiments should be 

done with a higher number of independently inoculated small single cultures, instead of small 

numbers of big cultures, in order to increase probability of sorbicillactone A production. 

On the basis of molecular genetic analysis of the putative sorbicillactone A gene cluster that 

was conducted in our group, it was proposed that the starter unit for the production of 

sorbicillactones is not an acetate but a sorbic acid-related precursor (see 8.6). A proof of this 

assumption would offer the possibility to increase the production of sorbicillactone A by 

means of feeding fungal cultures with higher amounts of sorbic acid as a precursor 

compound. 

If the biosynthesis of sorbicillactone B (51) begins directly with 2´,3´-dihydrosorbic acid , 

then a massive feeding with sorbic acid would be associated in the optimal case with a 
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complete collapse of sorbicillactone B production. This would be a simple alternative for the 

biotechnological production of sorbicillactone A. Thus, new serials of feeding experiments 

with 13C2-labelled sorbic acid (72) were performed in working group of Professor Imhoff and 

Professor Bringmann. First, feeding experiments were optimised (WG Imhoff) with 

unlabelled sorbic acid with results thereof showing non-toxicity for the fungus. This initial 

administration of unlabelled sorbic acid was neither associated with a significant increase of 

sorbicillactone A and B production, nor a shift in the production ratio of sorbicillactone A and 

B. Under the same conditions feeding experiments were repeated with a 13C2-labelled sorbic 

acid (72) synthetised by WG Bringmann. The fermentation products from these experiments 

were sent to WG Bringmann where sorbicillactone A and B were extracted and isolated. 

Subsequently, a potential incorporation of 13C2-label into these compounds was determined 

with 13C-NMR spectroscopy; however, in both cases no incorporation of 13C2-units could be 

detected. 

One possible explanation according to the feeding experiments with sorbic acid is that the 

substance itself may not serve as a starter molecule for the sorbicillactone A biosynthesis. But 

it may also be possible that the compound is too polar to penetrate into the cell membrane of 

the fungus and therefore would not be available for the biosynthesis of (50) and (51). 

However, this is contrary to the observation that reference sorbic acid could not be detected in 

the culture incubations and extracts neither with HPLC-MS nor HPLC-UV and co-elution. 

Therefore, it seems that the substance was metabolised by the fungus, or catabolised for the 

gain of energy, but it was not used for the biosynthesis of (50) and (51). Another assumption 

is that sorbic acid in its free form is not used for sorbicillactone biosynthesis. This open 

question could be elucidated in future work by the synthesis of activated thioesters, e.g. (73) 

or (74) and their feeding to P. chrysogenum [262]. Additionaly, a potential catabolic 

degradation may be suppressed by concomitant feeding with ß-oxidation inhibitors. 
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Figure 41: Putative substrates for sorbicillactone PKS: sorbic acid and its thioesters. 
72 sorbic acid, 73 thioester precursor, 74 thiosester precursor. According to Gulder 2008 [262]. 
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10 General discussion and further prospectives 

The main goal of the present dissertation was to evaluate the genetic potential of P. 

chrysogenum E01-10/3 strain for the production of polyketides. This marine-derived P. 

chrysogenum strain was isolated from the Mediterranean sponge Ircinia fasciculata in the 

course of a research program focused on the discovery and characterization of novel natural 

products [147]. Within the course of that program two novel and structurally highly similar 

polyketides were isolated and characterised: sorbicillactone A (50) and sorbicillactone B 

(51) [136]. Consistent to this structural similarity, we proposed that biosynthesis of both 

compounds could be encoded by the same gene cluster. Consequently, we put our attention at 

the identification of the sorbicillactone A gene cluster as this compound was previously 

shown to posses promising antileukaemic, antiviral and neuroprotective properties [136].  

Since all of fungal PKSs belong to the iterative type I PKS enzymes, degenerate primers and 

hybridization probes (6.1 and 7.2, respectively) fitting to this type of fungal PKS systems 

were used in PCR and hybridization experiments. Of special help for the present study was 

the possibility to differentiate between subtypes of fungal iterative type I PKSs on the amino 

acid level: Nonreducing (NR), partially reducing (PR), and highly reducing (HR) (see 2.3.1) 

in respect to level of reduction of their polyketide products. Accordingly, PCR and 

hybridization experiments were set up in order to take advantage of this fact. 

During the course of this study, use of PCR enabled the amplification of partial PKS 

sequences from nine putatively distinct fungal type I PKS gene loci from P. chrysogenum 

E01-10/3. Six amplified sequences derived from the KS domain and were amplified with 

three different degenerate primer pairs (LC1/LC2c, LC3/LC5c [182] and KHKS2/KHKS3c 

 [170], see 6.1.1). These six partial KS domain DNA sequences were used to reconstruct 

evolutionary relationships in respect to other iterative type I PKS (accordingly to Kroken et 

al [167]). The disclosed evolutionary relationships were then presented as the bootstrapped 

ME consensus tree created in MEGA 4.0 software from the alignment of deduced amino acid 

sequences in BioEdit (Figure 22, in 6.2). The results of the phylogenetic analysis for KS 

domains illustrated that P. chrysogenum E01-10/3 strain has the genetic potential to produce 

all three main categories of fungal polyketides – HR, PR (i.e. 6-MSA type) and NR. For five 

of six amplified KS domains results from the genealogy analysis supported the predicted 

subclade distribution according to previous BLASTX results (see 6.1.1 and 6.1.5). Three 

analyzed KS domains belonged to the NR fungal type I PKS clade. The resulting 

phylogenetic analysis showed that the KSnr-7 sequence clusters to the NR clade°I, while 
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KHKS1 and KHKS32 are members of NR clade III. Two other PCR-amplified KS domains, 

KHKS3 and KHKS51, are grouped within R clade II. Last of all, the KSpr-MI sequence was 

grouped with members of joined bacterial and fungal type I PKSs that feature PR character of 

their polyketide products (see 6.2). 

In addition, three non-KS partial sequences were amplified from the genomic DNA of the 

analysed P. chrysogenum strain. However, fungal PKS domains other than KSs have not yet 

been approved as suitable for the phylogenetic reconstruction that should give information 

upon reducing character and subclade distribution of a whole protein. Consequently, only the 

BLASTX-analysis was used to judge on the character of these three putative PKS (see 6.1.5). 

Among these non-KS sequences, one sequence was amplified with newly synthesised primers 

for the AT domain (sorb9-FGE-for/ sorb11-IWL-rev). The BLASTX-analysis indicated that 

the AT-9-11 sequence could be a member of the NR clade III (see 6.1.2). Besides, two 

different MT domain-derived partial PKS sequences were PCR-amplified as well. The CMeT-

3 sequence was amplified with the CMeT1/CMeT2c primer pair (Nicholson et al.) [169], 

while for the amplification of the CMeT-9 sequence the CMeT1/CMeT3c primer pair was 

used (see 6.1.3). Each of the MT domain sequences showed homology to putative members of 

several fungal R-subclades (see Table 8). Based on such dispersed grouping of BLASTX 

matches it was difficult to infer a putative nature of the full-length PKSs. In order to predict 

the character of these two putative PKSs, analysis of other member domains would be 

necessary which implies localization of these two gene clusters in the genome of the analysed 

P. chrysogenum strain. Regarding time and funding limitations such analysis was not 

possible. 

Despite the efforts to amplify the RED domain (see 6.1.4), no sequenced PCR product shared 

homology to any known fungal PKS gene. It is possible that the chosen PCR parameters or 

degenerate primer sequences were not optimal for the amplification of this particular PKS 

domain from this fungal strain. The fact that the RED domain appears relatively rare among 

fungal type I PKS systems and its generally low conservation may have influenced degenerate 

primer design and thus the outcome of the PCR screening study for this particular domain. 

The identification and sequencing of more fungal NR PKSs that harbour the RED domain and 

their deposition in public databases would improve chances to design degenerate PCR primers 

able to amplify RED domains from the analysed P. chrysogenum strain and many other 

fungal species as well. 

Taking in account the range of PKS genes usually identified in one fungal strain by genome 

sequencing (see 2.4.2), the number of reported polyketides produced by different P. 
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chrysogenum strains (see 1.4), a relatively low degeneracy of PCR primers used in this study 

(e.g. Bingle et al. and Nicholson et al.), as well as the inherent limitations of PCR-based 

technology itself (see 2.4.2), it is to anticipate that the actual number of putative PKS genes 

within the analyzed P. chrysogenum strain could be much higher. 

Further on, it is important to note that the results of the phylogenetic analysis of PCR-

amplified partial KS domains were valuable to judge on good candidates for the screening of 

genomic library for the presence of the putative sorbicillactone A and B gene cluster via 

hybridization method (see 7.2) and PCR-based screening of the library (see 7.3). Moreover, 

the characteristic reducing-nonreducing dynamic of polyketide biosynthesis is reflected in the 

structures of both compounds and led to the anticipation that two differentially reducing PKS 

could be involved in the biosynthesis of these sorbicillactone metabolites. This would mean 

that a first PKS makes a ß-reduced “advanced” starter-unit (corresponding to the sorbyl 

moiety of both sorbicillactones), which is then passed to a second PKS for further extension 

in the non-reducing manner according to Cox et al. [50].  

The next assumption that was crucial for further experiments within the current study, and 

subsequent to the sorbicillactone A biosynthetic route proposed by Bringmann et al., is that 

the hexaketide thiolester intermediates of sorbicillactone A and B are probably released in an 

aldehyde form by a C-terminal reductase encoded by a RED domain. Such polyketide release 

via the RED domain of MOS synthase was already proven in the case of 3-

methylorcinaldehyde biosynthesis in Acremonium strictum [170]. Taking in account the rarity 

of the RED domain in NR PKSs, the current study focused on isolation of such fungal type I 

PKS systems from the genome of P. chrysogenum E01-10/3 strain. For this purpose, the 

genomic library of analysed strain with about 4800 individual clones was constructed (i.e. 

five time coverage of P. chrysogenum genome; see 7.1). This genomic library was screened 

for the presence of the sorbicillatone gene cluster by aid of hybridization (see 7.2) and PCR 

(see 7.3). 

Despite efforts to screen the genomic library using different protocols for hybridization, no 

fosmid clone was detected to carry the genomic region potentially involved in the 

biosynthesis of sorbicillactone A and B (see 7.4). On the other hand, the PCR studies with the 

genomic DNA of P. chrysogenum E01-10/3 amplified three partial PKS sequences shown to 

be putative members of NR clade III according to the BLAST search results (see 6.1) and the 

subsequent phylogenetic study (see 6.2). Some members of the NR clade III, like PKSct [33] 

and MOS [170], have been reported to posses a RED domain, which makes this subclade 

particularly interesting for the search of putative sorbicillactone cluster. Thus, for each of 
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these three sequences (KHKS1, KHKS32 and AT-9-11) specific primer pairs were designed 

and used in complex genomic library screening procedure (see 7.3.1, 7.3.2 and 7.3.3).  

However, during subcloning and sequencing of KHKS1 cluster candidates no homology was 

found to ß-keto reducing domains, neither for MT and/or RED domains that are all 

prerequisite for the creation of hexaketide intermediates of both sorbicillactones biosynthesis. 

Moreover, via clear amplification of KHKS32-specific DNA sequence from AT-9-11 fosmid 

candidates it was proven that these two partial PKS sequences (KS and AT, respectively) 

belong to the same putative NR clade III PKS. Further on, subcloning and sequencing of the 

AT-9-11 genomic region revealed that one putative reducing PKS (homology over ER 

domain) and one non-reducing PKS (homology over SAT, MT and RED domains) were next 

to each other. Thus, the insert of the 42H12 fosmid clone, that has been anticipated to carry 

the core of the putative AT-9-11 PKS gene cluster, was completely sequenced and analysed 

(see 8.1). 

By use of the “Fgenesh” [199] free online software, ten putative ORFs were detected within 

46.91 kb of the recognised coding DNA sequence. All ORFs were analysed via BLASTP in 

order to detect putative protein homologues from public databases. Two of these ORFs (orf9 

and orf10) were found to be cloning vector sequences and were thus excluded from further 

analysis. Deduced amino acid sequences of other eight putative ORF matched fungal protein 

sequences from public databases and were further analyzed as shown in section 8.2. 

The first identified gene encodes for a putative transcriptional regulator (slr or orf1), which 

could coordinate expression of the structural genes in the cluster. This putative regulatory 

gene is followed up by the gene encoding for one putative monooxygenase (slmox or orf2) 

that may be responsible for one post-PKS hydroxylation reaction during sorbicillactone A and 

B biosynthesis. The core of the identified gene cluster contains two PKS genes (PKSSL1/orf3 

and PKSSL2/orf4) located next to each other in opposite orientations. The second putative 

transcriptional regulatory gene (sltr or orf5) appears as a fifth ORF in the lane and is placed 

next to a putative gene for a MFS transporter protein (slMFS or orf6). As mentioned before, 

transporter genes are usually associated with gene clusters responsible for the biosynthesis of 

active secondary metabolites and play a role in excretion of potentially harmful intracellular 

metabolites to a surrounding environment as a kind of self-defence mechanism. The product 

encoded from the seventh ORF (slox or orf7) could be an oxidoreductase whose putative role 

in biosynthesis of sorbicillactones still cannot be predicted with certainty, although 

InterProScan online software recognised the FAD-linked oxidase domain that is characteristic 

for oxygen-dependent oxidoreductases. The last identified ORF that showed putative 
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homology to fungal proteins was orf8 that shared significant similarity with fungal actin 

cytoskeleton-regulatory complex proteins. This ORF was excluded from the predicted 

sorbicillactone gene cluster model, since its involvement in cytoskeleton dynamics is not 

likely to be required for biosynthesis nor transport of sorbicillactones. 

In order to screen for the missing PLP-dependent aminotransferase and N-acyl-transferase 

(i.e. external AT) protein functions expected to be encoded on the sorbicillactone gene cluster 

for the proposed biosynthetic route [136], a 12.5 kb of F2 from the 49C8 fosmid clone were 

additonaly subcloned and sequenced (see 8.3). Despite efforts, no sequence was found to 

unambiguously support the presence of such two functions within the analysed AT-9-11 

genomic region of the studied P. chrysogenum strain. It is possible that the required protein 

functions are encoded on a genomic region placed downstream from orf8 that was up to now 

not analysed due to time limitation matter. Of course, it can not be that additional protein 

functions could be encoded from genes localised somewhere else in the genome of the 

fungus. Nevertheless, the localization of aminotransferase and acyltransferase activities and 

bringing them in connection to biosynthesis of the two sorbicillactones is necessary in order 

to disclose these biosynthetic routes. 

In order to revise the BLASTP-inferred reducing characters of the whole-length PKS genes, 

the whole-length KS domains of these two PKSs were used to construct the phylogenetic tree 

with whole-length KS domains of the selected forty-eight protein sequences available from 

online supporting material by Kroken et al. [167] (see 8.4). The resulting bootstrapped NJ 

consensus tree constructed from MEGA 4.0, supported the predictions made by the previous 

BLASTP analysis (see 8.2). Accordingly, the P. chrysogenum ORF3/PKSsl1 KS domain 

grouped with members of NR clade III, while the KS domain of ORF4/PKSsl2 clustered to 

the R clade I. 

The next task within current study was to analyse exact domain organisation of the identified 

P. chrysogenum PKS genes – pksSL1and pksSL2, in order to be able to predict their putative 

routes in sorbicillactone A and B biosynthesis. This was mainly done through alignment of 

the PKSsl1 and PKSsl2 protein sequences with members of corresponding fungal PKS clades 

(R/ NR) and subclades (I-IV). The results of BioEdit alignment and additional InterProScan 

protein domain analysis supported the subclade distribution and putative domain organisation 

of these two PKS genes. Moreover, the performed protein sequence analysis showed that 

domain organisation of PKSsl1 (see Figure 35) is consistent with the one expected for the 

members of NR clade III: SAT-KS-AT-PT-ACP-MT-RED. All known PKS active site motifs 

were conserved and the analysed domains were not fragmented. These facts supported the 



 Results and Discussion  

 - 162 -

prediction that they are active in P. chrysogenum PKSsl1. Additionally, the phylogenetic 

analysis of the PT domain gave clear hint that PKSsl1 could work as a tetraketide synthase 

(Figure 34). 

Based on the domain analysis it was confirmed that PKSsl2 has the typical domain structure 

of a R clade I PKS: KS-AT-DH-(MT)-ER-KR-ACP [167]. Thus, PKSsl2 could be sufficient 

for biosynthesis of the advanced triketide starter unit, since it contains all domains required 

for condensation (KS, AT and ACP) and the complete processing of a ß-carbon (KR, DH and 

ER). Additionally, the domains had conserved consensus sequences within active sites and 

were not fragmented. On the other hand, there is a high chance that the detected PKSsl2 MT 

domain has no activity since the consensus sequence within its active site is not preserved 

(Figure 37). Such non-methylated, reduced triketide starter unit could be produced by PKSsl2 

within two successive condensation and ß-processing rounds. This advanced starter unit may 

be then accepted by the SAT domain of PKSsl1 that probably makes three additional 

nonreducing extension rounds, since it was predicted to be a putative tetraketide synthase as 

mentioned before. At the end of the discussed putative sorbicillactone polyketide routes (see 

8.6), it was proposed that hexaketide thiolester intermediates of sorbicillactone biosynthesis 

(63 and 71) are released in an aldehyde form by the RED domain encoded reductase, followed 

by the release of the free holo-ACP thiol of PKSsl1 (see Figure 39). 

The comparative analysis of deduced amino acid sequences from the identified putative 

sorbicillactone gene cluster enabled prediction of protein functions by means of previously 

identified genes deposed in the GeneBank database. Nevertheless, functional studies of these 

putative genes are necessary in order that their functions do not remain speculative. The fact 

that the analysed P. chrysogenum strain retained its capability for sorbicillactone A 

production is encouraging for future functional studies of the identified cluster. As illustrated 

in the introduction section, such studies focused on the generation and characterization of 

mutants for a gene of interest can be highly complex and time consuming. Especially, steps of 

DNA introduction and its integration into a fungal host represent obstacles for positive 

outcome of functional studies and can not be only species-specific but also dependent on the 

genetic background of particular fungal strain. Despite possible difficulties, encouraging for 

future functional studies on the putative sorbicillactone gene cluster is that several labs 

reported a successful transformation of P. chrysogenum strains [263-271] as well as a gene 

knock-out in P. chrysogenum [272, 273]. As it was shown in examples of NSAS of A. 

parasiticus, WAS from A. nidulans and THNS of C. lagenarium active site mutations or even 

complete removal of particular PKS domain are manageable in the fungal type I PKS systems 
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and provide valuable information on a single domain function [50]. Moreover, domain swap 

experiments were proven feasible in the case of the fungal type I PKS as well: The KS 

domain from Cochliobolus heterostrophus TTS1 was inserted into FUMS of Gibberella 

fujikuroi by Du and coworkers [221]. However, up to now, such experiments were not 

performed in our lab due to time and resource limitations.  

Nevertheless, of special interest for the future investigation of the sorbicillactone pathway 

would be to elucidate the exact functions of two putative oxidoreductases (Slmox/ ORF2 and 

Slox/ORF7) encoded on the localised putative sorbicillactone gene cluster. More light on the 

biosynthetic routes of the sorbicillactones could be put by analyzing roles of particular 

domains from both identified putative PKS (PKSsl1/ORF3 and PKSsl2/ORF4) through 

functional protein studies. Especially, it would be interesting to point out if the ER domain of 

PKSsl2 is responsible for “unwanted” hydration of the C2´/C3´double bond in the early 

polyketide biosynthesis of both sorbicillactones. This is the only chemical difference between 

sorbicillacton A and its 2’,3’-dihydro derivate (sorbicillactone B) that consequently “decides” 

upon their bioactivities [136, 262]. Otherwise, an external (non-PKS) oxidoreductase, as a 

part of the cluster, could be responsible for the hydration of the double bond at the later time 

point.  

In general, feeding experiments with radioactively labelled precursor molecules can be used 

to approve proposed biosynthetic pathways [50]. Similarly, P. chrysogenum E01-10/3 strain 

cultures were fed with 13C2-labelled sorbicillin and 13C2-labelled sorbic acid in order to check 

time point of nondesirable hydration at C-2´/C-3´. Besides, feeding of fungal cultures with 

marked sorbic acid was aimed to test the hypothesis that two different (sorbyl-related) 

triketide precursors (63 and 71) of sorbicillactone A and B biosynthesis, could serve as 

advance starter-units that are successively accepted by PKSsl1. These experiments were 

performed by the working groups of Professor Imhoff (Kiel) and Professor Bringmann 

(Würzburg). Unlabelled precursors were used for an initial optimization of culture conditions. 

Afterwards, radioactively marked precursors were used in optimised experimental settings 

with bigger cultures (see section 9). Despite efforts, the feeding experiments could not prove 

nor disprove the incorporation of 13C2-labelled sorbicillin. In the future, the main problem 

concerning the isolation of sufficient amount of radioactively labeled sorbicillin could be 

overcome by the use of a higher number of independently grown small single cultures, instead 

of small numbers of big cultures, in order to increase the probability of sorbicillactone A 

production. 
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Similarly, feeding experiments with sorbic acid were not able to show that sorbic acid itself is 

a precursor molecule for the biosynthesis of sorbicillactone A. the interesting point of this 

experiment was that labelled sorbic acid could not be detected within the produced 

sorbicillactone A and B, neither it could be identified in fungal cultures itself. This led to the 

proposal [262] that labelled sorbic acid could be metabolised by the fungus as energy source 

or its free form is not suitable as precursor of sorbicillactone A biosynthesis. According to 

Gulder T. A., the use of ß-oxidation inhibitors could prevent that sorbic acid as putative 

precursor gets metabolised within the fungus for the reason of energy gain. Besides for the 

future experiments, the use of activated sorbic acid thioesters might answers the question of 

the precursor molecule for sorbicillactone A biosynthesis. 

The nine putatively different fungal type I PKS genes of P. chrysogenum E01-10/3 represent 

the result of intensive PCR, hybridization, sequencing and bioinformatics studies that were 

performed within the course of the presented dissertation. Taking in account the number and 

potential bioactivities of polyketides isolated from marine-derived fungi (see 1.3 and 3), the 

number of compounds reported up to date from different P. chrysogenum strains (see 1.4), as 

well as in this study identified genetic potential of P. chrysogenum E01-10/3 for polyketide 

production, it becomes apparent that this particular marine-derived strain may be a valuable 

source of pharmacologically useful polyketides. Besides, dynamic and engagement within this 

research field (see 2.4) assure that concomitant with motivation and effort the fungal society 

will be soon able to answer many more questions related to these fascinating multi-enzymatic 

proteins and their polyketide products. 
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MATERIALS AND METHODS 

11 Materials 

11.1  Media 

11.1.1 Media for cultivation of Penicillium crysogenum 

Malt extract medium (MEM) 

Yeast extract 3 g, malt extract 3 g, peptone 5 g, glucose 10 g, NaCl 5g, purified water 

1000 ml. Set up pH 6.7 before autoclaving ( with HCl). 

11.1.2 Media for the cultivation of E. coli Strains 

LB Medium (Sambrook et al., 2001) [274] 

Tryptone 10.0 g, yeast extract 5.0 g, NaCl 10.0 g, agar 15.0 g (optional), purified water 

1000 ml. 

2 × YT Medium 

Tryptone 16.0 g, yeast extract 10.0 g, NaCl 5.0 g, purified water 1000 ml. 

SOC Medium (Sambrook et al., 2001) 

Bacto tryptone 20 g, yeast extract 5 g, NaCl 0.5 g, KCl 0.186 g, MgCl2 0.95 g, glucose 3.6 g, 

purified water 1000 ml, pH 7.0 (adjust with 5N NaOH). After autoclaving and cooling the 

medium up to 60 °C (at least) MgCl2 and glucose were added to the medium from sterile 

stock solutions. 

For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was 

then autoclaved. For the antibiotic selection of E. coli transformants, ampicillin (100 mg/l) or 

chloramphenicol (12.5 mg/l) were added to the autoclaved medium after cooling it to 

approximately up to 50 °C. For blue/white selection of E. coli transformants, 40 μl IPTG (20 

mg/ml) and 40μl X-gal solution (20 mg/ml in 2% indimethylformamide) was plated on a 90 

mm plate and the plate was incubated at 37 °C for at least 30 min before use. 

11.2 Buffers and solutions 

11.2.1 Buffers for plasmid DNA preparation from E. coli 

Solution I (E. coli cell suspension buffer) (Sambrook et al., 2001) [274]: 50 mM glucose, 25 

mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0). The solution was stored at 4 °C after 

autoclaving. 
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Solution II (E. coli lysis buffer) (Sambrook et al., 2001) [274]: 0.2 M NaOH (fresh diluted 

from a 10 M stock), 1% (w/v) SDS The solution was prepared freshly and used at room 

temperature (RT). 

Solution III (neutralizing buffer) (Sambrook et al., 2001): 

Potassium acetate (5 M)  60.0 ml 
Glacial acetic acid  11.5 ml 
Purified water 28.5 ml 

 
The resulting solution was 3 M with respect to potassium and 5 M with respect to acetate and 

stored at 4 °C. 

TE Buffer: 

Tris-HCl (2 M, pH 8.0) 5 ml 
Sodium EDTA (0.25 M, pH 8.0) 4 ml 
Purified water  991 ml 

 

11.2.2 Buffers for electrophoresis 

50× TAE Buffer (Sambrook et al., 2001) [274]: Tris base 242 g, glacial acetic acid 57.1 ml, 

EDTA ( 0.5M, pH 8.0) 100 ml. The concentrated buffer was usually diluted into 1× TAE as 

working solution. 

6× Gel-loading Buffer (Sambrook et al., 2001) [274]: Sucrose 40 g, purified water 100 ml, 

bromophenol blue 0.25 g. 

11.2.3 Buffers and solutions for isolation of genomic DNA from P. chrysogenum 

This method was adapted from Mutasa et al. [192]. 

Lysis buffer: The following sterile solutions were mixed together: 

EDTA (0.5M, pH 7.5) 4 ml 
20% sarkosyl 1 ml 
Proteinase K stock solution (20 mg/ml) 200 µl 
Purified water 14.8 ml 

 
20x SSC: NaCl 175.32 g, tri-sodium citrate 2-hydrate 88.23 g, purified water 1000 ml 20× 

SSC has 3M NaCl and 0.3 M sodium citrate. The concentrated buffer was usually diluted for 

use as e.g. 1× SSC. 

10x TEN: The following sterile solutions were mixed together: 

Tris-Cl (1M, pH 7.5) 100 ml 
EDTA (0.5M, pH 7.5)  20 ml 
NaCl (5M) 200 ml 
Purified water 680 ml 
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Proteinsase K Stock Solution (20 mg/ml): The following sterile solutions were mixed 

together: 

Proteinase K 40 mg 
Ca(C2H3O2)2 (30mM) 100 µl 
Tris-Cl (1M, pH 8.0) 100 µl 
Purified water 1.8 ml 

 
20% Sarkosyl: 20 g of sarkosyl (N-laurosylsarcosine sodium salt) were dissolved in 100 ml 

of purified water and mixed thoroughly.  

11.2.4 Solutions for preparation of competent E. coli cells by chemical method 

TFB I: The following sterile solutions were mixed together:  

Potassium acetate (5 M) 0.6 ml 
CaCl2 (1 M) 1 ml 
KCl (1 M) 10 ml 
MnCl2 (1 M) 5 ml 
Glycerol (100%) 15 ml 
Purified water 68.4 ml 

 
TFB II: The following sterile solutions were mixed together:  

MOPS (1 M) 1 ml 
CaCl2 (1 M) 7.5 ml 
KCl (1 M) 1 ml 
Glycerol (100%) 15 ml 
Purified water 75.5 ml 

 

11.2.5 Buffers and solutions for hybridization 

Denaturation Solution (0.5M NaOH, 1.5M NaCl; for neutral DNA transfer, double-stranded 

DNA targets only): NaOH 20 g, NaCl 87.66 g, purified water 1000 ml 

Neutralization Buffer (0.5M Tris HCL, 1.5M NaCl): Tris base 60.57 g, NaCl 58.44 g. 

The pH of the buffer was adjusted to 7.4 with HCl. 

20× SSC: NaCl 175.32 g, tri-sodium citrate 2-hydreate 88.23 g, purified water 1000 ml 

20× SSC has 3M NaCl and 0.3 M sodium citrate. The concentrated buffer was usually 

diluted for use as e.g. 2× SSC, 5× SSC. 

10% SDS: Sodium lauryl sulphate 100g, purified water 1000 ml. Heated to 68 °C for better 

dissolution. The pH was adjusted to 7.2 by addition of a few drops of concentrated HCl. 

Primary wash buffer without urea (0.4% SDS, 0.5/0.1x SSC): 4g of sodium lauryl sulfate, 

25/5 ml of 20x SSC, purified water 1000 ml. A stringent washing is increased by the use of a 

lower final concentration of SSC. The colony hybridization wash buffer without urea (0.1% 
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SDS; 2x SSC) was used as a final step for the fixation of DNA before the exposure to the UV 

light in the crosslinker. 

ECL Golden Hybridization Buffer: 

Composition of buffer in  100 ml 
Gold hybridization buffer 100 ml 
Blocking reagent 5 g (5%) 
Sodium chloride (0.5 M) 2.922 g 

 
Both gold hybridization buffer and blocking reagent were provided by the manufacturer. All 

content of one bottle of the gold hybridization buffer (500 ml) from ECL direct kit was 

transferred into a 1000 ml glass bottle. While vigorously stirring on a magnetic stirrer, 25 g 

of blocking reagent were added. 14.61 g of sodium chloride were added to the buffer as well. 

Solution was heated on the magnetic stirrer and stirred continuously for 2-3 hours. Aliquots 

of the buffer were dispensed into a 50 ml falcon tubes and stored in a freezer at -20 °C before 

usage. 

Church Buffer preparation: The following sterile solutions were mixed together: 

Sodium phosphate buffer (0.5M pH 7.2)  500 ml 
EDTA (0.5M) 2 ml 
BSA 10 g 
SDA 70 g 
Purified water  450 ml 

 
Sodium phosphate buffer preparation:  

The following sterile solutions were mixed together: 

Solution A 342 ml 
Solution B 158 ml 
Purified water 500 ml  
Set up pH to 7.2 before autoclaving  

 
Solution A: 177.9 g of Na2HPO4x2H2O was dissolved in 1000 ml of purified water. Final 

concentration was 1 M. 

Solution B: 137.99g of NaH2PO4xH2O was dissolved in 1000 ml of purified water. Final 

concentration was 1 M. 
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11.3 Strains, vectors and plasmids 

Table 22: Used strains and their characteristics 
 
Strain Characteristics Reference or source 

E. coli EPI300™-T1R F– mcrA D(mrr-hsdRMS-mcrBC) f80dlacZDM15 
DlacX74 recA1 endA1 araD139 D(ara, leu)7697 
galU galK l– rpsL nupG trfA tonA dhfr 

Epicentre Biotechnologies 
(Madison, USA) 

E. coli DH5α SupE44 ∆lacU169 (Φ80 lacZ∆M15) hsdR17 recA1 
endA1 gyrA96 thi-1 relA1 

Hanahan, 1983 

E. coli XL1blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F´ 
proAB lacIqZΔM15 Tn10 (Tetr)] 

Stratagene, Amsterdam 
(NL) 

P. chrysogenum 
E01-10/3 

Sorbicillactone A producer IFM-GEOMAR collection 

 
 
Table 23: Used vectors and their characteristics. 
 
Vector Size (kb) Replicon Origin References 

pBluescript KS- 3.0 pMB1 lacZ orif1 bla Stratagene, Amsterdam (NL) 

pCC1FOS 8.0 RepE lacZ oriV cam Epicentre Biotech (Madison, USA) 

pGEM-T Easy 3.0 --- lacZ orif1 amp Promega (Mannheim, Germany) 

 
 
Table 24: Used vectors and their characteristics 
 
Construct Size (kb) Vector Insert Resistance 

pMA1 3.7 pGEM-T Easy 0.7 kb PCR fragment (LC3/LC5c primers) 
from P. chrysogenum (template) 

AmpR 

pMA2 3.3 pGEM-T Easy 0.3 kb PCR fragment (CMeT1/ CMeT2c 
primers) from P. chrysogenum (template) 

AmpR 

pMA3 3.3 pGEM-T Easy 0.3 kb PCR fragment (CMeT1/ CMeT2c 
primers) from P. chrysogenum (template) 

AmpR 

pMA4 3.7 pGEM-T Easy 0.7 kb PCR fragment (LC1/LC2c primers) 
from P. chrysogenum (template) 

AmpR 

pMA5 3.7 pGEM-T Easy 0.7 kb PCR fragment (LC1/LC2c primers) 
from P. chrysogenum (template) 

AmpR 

pMA6 3.7 pGEM-T Easy 0.7 kb PCR fragment (LC1/LC2c primers) 
from P. chrysogenum (template) 

AmpR 

pMA7 3.7 pGEM-T Easy 0.7 kb PCR fragment (LC1/LC2c primers) 
from P. chrysogenum (template) 

AmpR 

pMA8 3.7 pGEM-T Easy 0.7 kb PCR fragment (LC3/LC5c primers) 
from P. chrysogenum (template) 

AmpR 
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Construct Size (kb) Vector Insert Resistance 

pMA9 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA10 3.3 pBluescript - 0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA11 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA12 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA13 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA14 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA15 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA16 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA17 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA18 3.3 pBluescript  0.3 kb PCR fragment (KHKS2/KHKS3c 
primers) from P. chrysogenum (template) 

AmpR 

pMA19 ~18 pBluescript  15 kb BamHI fragment from fosmid 49C8 AmpR 

pMA20 ~15.5 pBluescript  12.5 kb BamHI fragment from fosmid 49C8 AmpR 

pMA21 ~13 pBluescript  10 kb BamHI fragment from fosmid 42H12 AmpR 

pMA22 ~10.2 pBluescript  7.2 kb BamHI fragment from fosmid 42H12 AmpR 

pMA23 ~10 pBluescript  7 kb BamHI fragment from fosmid 31F1 AmpR 

pMA24 ~10 pBluescript  7 kb BamHI fragment from fosmid 31F1 AmpR 

pMA25 ~9 pBluescript  6 kb BamHI fragment from fosmid 46H11 AmpR 

pMA26 ~ 6.2 pBluescript  3.2 kb BamHI fragment from fosmid 46H11 AmpR 

pMA27 ~5.5 pBluescript  2.5 kb BamHI fragment from fosmid 46H11 AmpR 

pMA28 ~ 5.1 pBluescript  2.1 kb BamHI fragment from fosmid 49C8 AmpR 

pMA29 ~ 4.5 pBluescript  1.5 kb BamHI fragment from fosmid 49C8 AmpR 

pMA30 ~ 7 pBluescript  4 kb PstI subfragment of fragment 2 from 
fosmid 49C8 

AmpR 

pMA31 ~ 6.2 pBluescript  3.2 kb PstI subfragment of fragment 2 from 
fosmid 49C8 

AmpR 

pMA32 ~ 5.7 pBluescript  2.7 kb PstI subfragment of fragment 2 from 
fosmid 49C8 

AmpR 

pMA33 ~ 4.8 pBluescript  1.8 kb PstI subfragment of fragment 2 from 
fosmid 49C8 

AmpR 
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Construct Size (kb) Vector Insert Resistance 

pMA34 ~ 4.4 pBluescript  1.4 kb PstI subfragment of fragment 2 from 
fosmid 49C8 

AmpR 

pMA35 ~ 4.2 pBluescript  1.2 kb PstI subfragment of fragment 2 from 
fosmid 49C8 

AmpR 

pMA36 ~ 7 pBluescript  4 kb BamHI fragment from fosmid 11D12 AmpR 

pMA37 ~ 5.8 pBluescript  2.8 kb BamHI fragment from fosmid 11D12 AmpR 

pMA38 ~ 5.2 pBluescript  2.2 kb BamHI fragment from fosmid 11D12 AmpR 

pMA39 ~ 4.8 pBluescript  1.8 kb BamHI fragment from fosmid 11D12 AmpR 

pMA40 ~ 4.6 pBluescript  1.6 kb BamHI fragment from fosmid 11D12 AmpR 

pMA41 ~ 4.2 pBluescript  1.2 kb BamHI fragment from fosmid 11D12 AmpR 

pMA42 ~ 21 pBluescript - 18 kb HindIII fragment from fosmid 17B9 AmpR 

pMA43 ~ 12 pBluescript   9 kb HindIII fragment from fosmid 17B9 AmpR 

pMA44 ~ 8 pBluescript  5 kb HindIII fragment from fosmid 17B9 AmpR 

pMA45 ~ 6.2 pBluescript  3.2 kb HindIII fragment from fosmid 17B9 AmpR 

pMA46 ~ 5.8 pBluescript  2.8 kb HindIII fragment from fosmid 17B9 AmpR 

pMA47 ~5 pBluescript  2 kb HindIII fragment from fosmid 17B9 AmpR 

pMA48 ~ 4.7 pBluescript  1.7 kb HindIII fragment from fosmid 17B9 AmpR 

pMA49 ~ 4.5 pBluescript  1.5 kb HindIII fragment from fosmid 17B9 AmpR 

pMA50 ~ 4.4 pBluescript  1.4 kb HindIII fragment from fosmid 17B9 AmpR 

pMA51 ~ 4 pBluescript  1kb HindIII fragment from fosmid 17B9 AmpR 

pMA52 ~ 3.95 pBluescript  0.95 kb HindIII fragment from fosmid 17B9 AmpR 

pMA53 ~ 3.85 pBluescript  0.85 kb HindIII fragment from fosmid 17B9 AmpR 

pMA54 ~ 3.8 pBluescript  0.80 kb HindIII fragment from fosmid 17B9 AmpR 

pMA55 ~ 3.7 pBluescript  0.75 kb HindIII fragment from fosmid 17B9 AmpR 

FOS AN1 F2 ~ 47.5 pEpiFOSTM-5 AN1034.2 locus A. nidulans FGSCA4 ChlR 

FOS AN1 G11 ~ 47.5 pEpiFOSTM-5 AN1034.2 locus A. nidulans FGSCA4 ChlR 

FOS AN3 B5 ~ 47.5 pEpiFOSTM-5 AN3386.2 locus A. nidulans FGSCA4 ChlR 

FOS AN3 G8 ~ 47.5 pEpiFOSTM-5 AN3386.2 locus A. nidulans FGSCA4 ChlR 

 

11.4 Antibiotics and enzymes 

Table 25: Used antibiotics and their concentrations. 
 
Antibiotic Working concentration Company 

Ampicilin 50-100 µg/ml Roth (Karlsruhe, Germany) 
Chloramphenicol 12.5 µg/ml Fluka (Buchs, Switzerland) 
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Table 26: Used enzymes and their buffers. 
 
Enzyme Reaction buffer Company 

BamHI BamH I NEBuffer + BSA NEB (Frankfurt/M, Germany) 

ClaI NEBuffer 4 + BSA NEB (Frankfurt/M, Germany) 

EagI NEBuffer 3 NEB (Frankfurt/M, Germany) 

EcoRI EcoR I NEBuffer NEB (Frankfurt/M, Germany) 

EcoRV NEBuffer 3 + BSA NEB (Frankfurt/M, Germany) 

HindIII NEBuffer 2 NEB (Frankfurt/M, Germany) 

KpnI NEBuffer 1 + BSA NEB (Frankfurt/M, Germany) 

NotI NEBuffer 3 + BSA NEB (Frankfurt/M, Germany) 

PstI NEBuffer 3 + BSA NEB (Frankfurt/M, Germany) 

RsaI NEBuffer 1 NEB (Frankfurt/M, Germany) 

SacI NEBuffer 1 + BSA NEB (Frankfurt/M, Germany) 

SalI NEBuffer 3 + BSA NEB (Frankfurt/M, Germany) 

SmaI NEBuffer 4 NEB (Frankfurt/M, Germany) 

SpeI NEBuffer 2 + BSA NEB (Frankfurt/M, Germany) 

XbaI NEBuffer 2 + BSA NEB (Frankfurt/M, Germany) 

XhoI NEBuffer 2 + BSA NEB (Frankfurt/M, Germany) 

T4 DNA Ligase 1 x T4 DNA Ligase Buffer NEB (Frankfurt/M, Germany 

Shrimp Alkalane Phosphatase 
(SAP) 

1 x SAP Buffer Fermentas (St. Leon-Rot, Germany) 

Proteinase K Lysis buffer Merck (Darmstadt, Germany) 

Ribonuclease A Plasmid preparation solution I Roth (Karlsruhe, Germany) 

Taq DNA Plolymerase 1 x PCR Buffer NEB (Frankfurt/M, Germany) 

TaqBead Hot Start Polymerase 1 x PCR Buffer Promega (Mannheim, Germany) 

 

11.5 PCR primers 

Table 27: Used primers and their characteristics. 
 
Primer Function Sequence (5'─ 3') Reference 

CMeT1 Amplification of MT 
domain of fungal pks 

GARATIGGIGSIGGIACIGG Bingle et al., 
1999 

CMeT2c Amplification of MT 
domain of fungal pks 

ATIARYTTICCICCIGGYTT Bingle et al., 
1999 

CMeT3c Amplification of MT 
domain of fungal pks 

ACCATYTGICCICCIGGYTT Bingle et al., 
1999 

LC1 Amplification of KS 
domain of NR fungal 
pks 

GAYCCNMGNTTYTTYAAYATG Nicholson et al., 
2001 
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Primer Function Sequence (5'─ 3') Reference 

LC2c Amplification of KS 
domain of NR fungal 
pks 

GTNCCNGTNCCRTGCATYTC Nicholson et al., 
2001 

LC3 Amplification of KS 
domain of PR fungal 
pks 

GCNGARCARATGGAYCCNCA Nicholson et al., 
2001 

LC5c Amplification of KS 
domain of PR fungal 
pks 

GTNGANGTNGCRTGNGCYTC Nicholson et al., 
2001 

CMeT2c-F1 
Amplification of MT 
domain of fungal pks 

AARCCIGGIGGIAARYTIAT Modification of 
Bingle et al., 
1999 

CMeT3c-F2 
Amplification of MT 
domain of fungal pks 

AARCCIGGIGGICARATGGT Modification of 
Bingle et al., 
1999 

RED-F1a Amplification of RED 
domain of funga pks 

GTRGAIGGNGCNCARGG This study 

RED-F1b Amplification of RED 
domain of fungal pks 

GTYGAIGGNGCNCAYGG This study 

RED-R1a Amplification of RED 
domain of fungal pks 

CCYTGIGCNCCNTCYAC This study 

RED-R1b Amplification of RED 
domain of fungal pks 

CCRTGIGCNCCNTCRAC This study 

RED-R2 Amplification of RED 
domain of fungal pks 

TGYTCNACNGGRTTCCARTAICC This study 

RED-R3a Amplification of RED 
domain of fungal pks 

ATNAGNCCNCCRCANGACAT This study 

RED-R3b Amplification of RED 
domain of fungal pks 

ATYAANCCNCCRCARCTCAT This study 

RED-F.AN1 Amplification of RED 
domain of A. nidulans 
(FGSC A4) locus 
AN1034.2 pks 

GTCACTGGTGCGACTGGCAGC This study 

RED-R.AN1 GTGCTCGACCGGGTTCCAGAAAACC This study 

RED-F.AN3 Amplification of RED 
domain of A. nidulans 
(FGSC A4) locus 
AN3386.2 pks 

GTCACTGGGGCCACAGGTAGC This study 

RED-R.AN3 ATGCTCGGCCGTGTTCCAGTACCC This study 

KS-F.AN1 Amplification of KS 
domain of A. nidulans 
(FGSC A4) locus 
AN1034.2 pks 

GATACGGCGTGTTCCTCCTCGGCGGTG This study 

KS-R.AN1 TGCATTCGACCCGCAAGCGCCGTAGTT This study 

KS-F.AN3 Amplification of KS 
domain of A. nidulans 
(FGSC A4) locus 
AN3386.2 pks 

GATACAGCGTGTTCTGGCTCTGCTGTA This study 

KS-R.AN3 AGCATTAGACCCACAAGCTCCATAATT This study 

MTnrIII_Fa 

Amplification of MT 
domain of fungal NR 
clade III pks 

GARATGGGNGSIGGNCAIGG This study 

MTnrIII_Fb GARRTIGGNGCIGGNTTYGG This study 

MTnrIII_R1a SSAAYGCIRTICAYGCNCA This study 

MTnrIII_R1b CANAAYTGYRTICAYGCICA This study 
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Primer Function Sequence (5'─ 3') Reference 

KHKS2 
Amplification of KS 
domain of fungal NR 
clade III pks 

GCIGAYGGITAYTGYMGIGG Bailey et al., 
2007 

KHKS3c GTICCIGTICCRTGIGCYTC Bailey et al., 
2007 

Sorb1-FFK-for 
Amplification of KS 
domain of fungal NR 
clade III pks 

AYTAYGAYACNTTYGAYCAYAARTTYT
TYAA 

This study 

Sorb2-PTG-
rev 

RAANGGYTTRCAYTGNCCNGTNGG This study 

Sorb3-KPF-for Amplification of KS 
domain of fungal NR 
clade III pks 

NCCNACNGGNCARTGYAARCCNTT This study 

Sorb4-GAS-
rev 

GCRTTNSWNCCNSWNGCNCC This study 

Sorb5-ASG-
for Amplification of AT 

domain of fungal NR 
clade III pks 

CNYTNATHAAYAAYTAYGGNGCNWSNG
G 

This study 

Sorb6-PVI-rev ACYTGNCCNCCRAARCANARDATNACN
G 

This study 

Sorb7-GQV-
for Amplification of AT 

domain of fungal NR 
clade III pks 

CNGTNATHYTNTGYTTYGGNGGNCARG
T 

This study 

Sorb8-VVG-
rev 

TCNCCRAANSWRTGNCCNACNAC This study 

Sorb9-FGE-for Amplification of AT 
domain of fungal NR 
clade III pks 

GTNGTNGGNCARWSNTTYGGNGA This study 

Sorb10-AFH-
for 

AAYGTNACNAAYGCNTTYCA This study 

Sorb11-IWL-
rev 

Amplification of AT 
domain of fungal NR 
clade III pks 

TTNSWNCCNGCYTCNARCCADAT This study 

Sorb12-IFL-
rev 

TTNSWNCCNGCYTCNARYAADAT This study 

Sorb13-PPY-
rev 

WYTTYTCRAAYTGRTANGGNGG This study 

Sorb14-SLG-
for 

Amplification of RED 
domain of fungal NR 
clade III pks 

GTNACNGGNGCNACNGGNWSNYTNGG This study 

Sorb15-IVHS-
rev 

GGCCANGCNSWRTGNACDAT This study 

Sorb16-IVHN-
rev 

GGCCANGCRTTRTGNACDAT This study 

Sorb17-
WNP1-rev 

AANGCNAARTGYTCNACNGGRTTC This study 

Sorb18-
WNP2-rev 

AANGCNAARTGYTCNACNGGRTTCCA This study 

Sorb-spec1-for 
Screening genomic 
library for KS domain 
of KHKS1 pks 
sequence 

GGGGAGAGGGAGCAGGACTA This study 

Sorb-spec2-for GGACTAGTTGTTCTACGACCCTTAGCAG This study 

Sorb-spec1-rev CCAGCAGGGGCCTTCCGATAA This study 

Sorb.spec2-rev CGTAAGTGRCGTCTTCTGGAGGAATC This study 

Sorb 9-11 spec 
f1 

Screening genomic 
library for AT domain 
of Sorb 9-11 pks 
sequence 

GTCCATGGCCGGTCGAAGATTAT This study 

Sorb 9-11 spec 
r1 

CCAAATGGCCTCCGGATACTGAC This study 
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Primer Function Sequence (5'─ 3') Reference 

32 triple f1 Screening genomic 
library for KS domain 
of KHKS32 pks 
sequence 

GCCGTGTTCTTGAAGAAATTATCC This study 

32 triple r1 CCTTGCCGACAACGTTCTGG This study 

pCC1™/pEpiF
OS™ (FP) 

End sequencing of 
fosmid clones from P. 
chrysogenum library 

GGATGTGCTGCAAGGCGATTAAGTTGG 
From 
CopyControlTM 

pCC1FOSTM 
vector (Epicentre 
Biotechnologies, 
Madison, USA) 

pCC1™/pEpiF
OS™ (RP) 

CTCGTATGTTGTGTGGAATTGTGAGC 

M13-FP Shotgun sequencing 
of putative 
sorbicillactone gene 
cluster 

TGTAAAACGACGGCCAGT From pCR4 
blunt Topo® 
(Invitrogen; 
Karlsruhe, 
Germany) 

M13-RP CAGGAAACAGCTATGACC 

 

11.6 Equipment and expendable materials 

Table 28: Used equipment and material. 
 
Equipment/Material Model, Company 

Agarose gel electrophoresis chambers Sub-cell GT, BioRad (Munich, Germnay) 

Balances 440-47N (max 2000 g), Kern & Sohn (Balingen, 
Germany) 

BP 110 (max 10 g), Sartorius (Göttingen, Germany) 

Autoclave V 65, Systec (Wettenberg, Germany) 

Centrifuges  5417R, Eppendorf (Hamburg, Germany)  

Micro 200, Hettich (Tuttlingen, Germany) 

Rotina 35 R, Hettich (Tuttlingen, Germany) 
Z 513 K, Hermle (Wehingen, Germany) 

Disposable reagent reservoir 25/50/100 ml Matrix Technologies Corporation 

Serological plastic pipettes 5/10/25 ml Sarstedt (Nümbrecht, Germany) 

Hybridization transfer membrane Hybond-N+, Amersham Biosciences 

Centrifuge tubes, 15 ml Sarstedt (Nümbrecht, Germany) 

Centrifuge tubes, 50 ml Sarstedt (Nümbrecht, Germany) 

Dialysis membrane Cellulose MWCO1000; Roth (Karlsruhe, Germany) 

Microfuge tubes,0.2/0.5/1.5/2.0 ml Sarstedt (Nümbrecht, Germany) 

Flasks 0.1-2.0 l Simax (Sázava, Czech Republic) 

Miracloth filtre paper Ø22-25µm Calbiochem (Darmstadt, Germany) 

Gel blotting paper 460 x 570 mm Whatman (Dassel, Germany) 

Agarose gel imaging system Gene Genius, Syngene 

Heating agitator Combimag RCT, Ika-Labortechnik (Staufen, Germany) 

Hybridization oven OV 5, Biometra (Göttingen, Germany) 

Hybridization glass tubes Biometra (Göttingen, Germany) 

Incubator Heraeus (Hanau, Germany) 
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Equipment/Material Model, Company 

Incubation shaker Certomat BS-1, Sartorius (Göttingen, Germany 

Dark room lamp (660 nm, LED) Cluster 50 RT, Kingbright (Issum, Germany) 

Laminar flow (Biological Safety Cabinet) Biowizard, Kojair (Trendelburg-Langenthal, Germany) 

Microtiter plates Sarstedt (Nümbrecht, Germany) 

Parafilm Alcan (Neuhausen, Switzerland) 

Petri dishes, 8 cm(2) Sarstedt (Nümbrecht, Germany) 

pH-Meter pH 211, Hanna instruments 

Pipetts 0.5-10, 2-20, 10-200, 100-1000 µl (Pipetman) Gilson (Limburg-Offheim, Germany) 

Multipipett 10-200 µl Eppendorf (Hamburg, Germany) 

Pipettes tips Sarstedt (Nümbrecht, Germany) 

Rotational evaporator Concentrator 5301, Eppendorf (Hamburg, Germany) 

Serological glass tubes Roth (Karlsruhe, Germany) 

Thermal PCR cycler T-gradient, Biometra (Göttingen, Germany) 

Thermo paper for gel documentation UPP 110HD, Sony (Berlin, Germany) 

Tooth sticks Roth (Karlsruhe, Germany) 

Vortex Mixer UZUSIO VTX-3000L, LMS Consult 
(Brigachtal, Germany) 

Water baths GFL Labortechnik (Burgwedel, Germany) 

JULABO Labortechnik (Seelbach, Germany) 

Voltage supply sources Standard Power Pack P25, Biometra (Göttingen, 
Germany) 

BioRad (Munich, Germnay) 

X-ray casette Rego (Augsburg, Germany) 

X-ray film(18x24 cm) Hyperfilm ECL; Amersham Bioscience 

HPLC device AS-2057 Plus, Jasco (Groß-Umstadt, Germany) 

Thermo-mixer Comfort, Eppendorf (Hamburg, Germany) 

Shaker Rotmax 120, Heidolph (Schwalbach, Germany) 

Sterile filters (MWCO of 0.22 µm) Millipore GmbH (Schwalbach, Germany) 

Ultraviolet crosslinker CL-1000, UVP (Cambridge, United Kingdom) 

Microwave  Lifetec (Mülheim/Ruhr, Germany) 

Replicator (96-well plates) Boekel Sceintific (Feasterville, USA; Key distributor in 
Germany: Fisher scientific, Schwerte) 

Photometer Biophotometer, Eppendorf (Hamburg, Germany) 

Timer Oregon Scientific (Neu-Isenburg, Germany) 

Micropulser BioRad (Munich, Germany) 

Hybridization glass trays Pyrex (Staffordshire, United Kingdom) 

Gene Pulser Cuvette 0.2 cm electrode BioRad (Munich, Germnay) 

Reagent glass bottles 30-2000 ml Simax (Sázava, Czech Republic) 

Digital graphic printer (gel documentation) BioRad (Munich, Germnay) 
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11.7 Chemicals and solvents 

Table 29: Used chemicals and solvents. 
 
Chemical/Solvent Company 

Acetic acid Merck (Darmstadt, Germany) 

Acetone Merck (Darmstadt, Germany) 

Acetonitrile Roth (Karlsruhe, Germany) 

Agar-agar Roth (Karlsruhe, Germany) 

Agarose Roth (Karlsruhe, Germany) 

Agarose Low Melt Roth (Karlsruhe, Germany) 

Bromophenol blue sodium salt AppliChem (Darmstadt, Germany) 

BSA (albumin fraction V),protease free Roth (Karlsruhe, Germany) 

Calcium chloride  Roth (Karlsruhe, Germany) 

Chlorofom  Roth (Karlsruhe, Germany) 

Dimethylsulfoxide (DMSO) Roth (Karlsruhe, Germany) 

DNA ladder,100 bp,extended Roth (Karlsruhe, Germany) 

DNA ladder, 1k bp Roth (Karlsruhe, Germany) 

dNTP's mix Invitrogen (Karlsruhe, Germany) 

Ethanol Roth (Karlsruhe, Germany) 

Ethidium bromide Roth (Karlsruhe, Germany) 

Ethylacetate Sigma-Aldrich (Steinheim, Germany) 

Fosmid Control DNA Epicentre Biotechnologies (Madison, USA) 

Glycerol Merck (Darmstadt, Germany) 

Glucose  Merck (Darmstadt, Germany) 

Hydrochloric acid  Merck (Darmstadt, Germany) 

IPTG Roth (Karlsruhe, Germany) 

Isoamylalcohol Roth (Karlsruhe, Germany) 

Kodak GBX developer and replenisher Sigma-Aldrich (Steinheim, Germany) 

Kodak GBX fixer and replenisher Sigma-Aldrich (Steinheim, Germany) 

Malt extract Difco (Lawrence, USA) 

Magnesium chloride hexahydrate  Roth (Karlsruhe, Germany) 

Magnesium sulphate dried Roth (Karlsruhe, Germany) 

3-(N-morpholino) propane sulphonic acid (MOPS) Roth (Karlsruhe, Germany) 

Orange G Sigma-Aldrich (Steinheim, Germany) 

Phenol/chloroforme/isoamylalcohol (25:24:1) Roth (Karlsruhe, Germany) 

Potassium acetate Roth (Karlsruhe, Germany) 

Potassium chlorate Roth (Karlsruhe, Germany) 

2-Propanol Merck (Darmstadt, Germany) 

Sarkosyl Merck (Darmstadt, Germany) 

Sodium chloride  Roth (Karlsruhe, Germany) 

tri-Sodium citrate dihydrate  Roth (Karlsruhe, Germany) 

Sodium dihydrogen phosphate dihydrate Roth (Karlsruhe, Germany) 

Sodium dodecyl sulphate (SDS) Roth (Karlsruhe, Germany) 

Sodium hydrogen carbonate Roth (Karlsruhe, Germany) 

di-Sodium hydrogen phosphate dihydrate Roth (Karlsruhe, Germany) 

Sodium hydroxide  Roth (Karlsruhe, Germany) 
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Chemical/Solvent Company 

Tetramethylammonium chloride Sigma-Aldrich (Steinheim, Germany) 

Tris Roth (Karlsruhe, Germany) 

X-Gal AppliChem (Darmstadt, Germany) 

Yeast extract Difco (Lawrence, USA) 

 

11.8 Commercial kits 

Table 30: Used commercial kits and their origin. 
 
Kit Company 

ECL direct nucleic acid labelling and detection  Amersham Biosciences (Braunschweig, Germany) 

pGEM Teasy kit Promega (Mannheim, Germany) 

QIAquick PCR Purification Kit Qiagen GmbH (Hilden, Germany) 

QIAquick Gel Extraction Kit Qiagen GmbH (Hilden, Germany) 

CopyControl™ Fosmid Library Production Kit Epicentre Biotechnologies (Madison, USA) 

 

11.9 Special computer programs and internet resources 

Table 31: Used programs and internet sources for analysis of biological sequence information. 
 
Program/ 
Resource 

Function Web address* Source (available at) 

FGENESH HMM-based gene structure 
prediction in Eukaryota (multiple 
genes, both chains) 

http://linux1.softberry.com/
berry.phtml?topic=fgenesh
&group=programs&subgrou
p=gfind 

At SoftBerry web site 

BLAST Finds regions of local similarity 
between protein or nucleotide 
sequences 

http://blast.ncbi.nlm.nih.gov
/Blast.cgi 

 

NCBI web site 

PSI-BLAST Provides means of detecting 
distant relationships between 
proteins 

http://blast.ncbi.nlm.nih.gov
/Blast.cgi 

 

NCBI web site 

Advanced 
BLAST 

A local alignment sarch tool 
similar to NCBI-BLAST 

http://www.ch.embnet.org/s
oftware/aBLAST.html 

 

At EMBnet (European 
Molecular Biology 
network) web site 

InterProScan Web available algorithm that 
identifys protein signatures from 
the InterPro member databases 

http://www.ebi.ac.uk/Tools/
InterProScan/ 

 

EMBL-EBI 
(European Molecular 
Biology Laboratory- 
European 
Bioinformatics 
Institute) web site 

Pfam The Pfam database is a large 
collection of protein families, each 
represented by multiple sequence 
alignments and HMMs 

http://pfam.sanger.ac.uk/sea
rch 

 

Sanger Instutute web 
site 
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Program/ 
Resource 

Function Web address* Source (available at) 

VecScreen System for quickly identifying 
segments of a nucleic acid 
sequence that may be of vector 
origin 

http://www.ncbi.nlm.nih.go
v/VecScreen/VecScreen.ht
ml 

 

NCBI web site 

SEARCHPKS Program for detection and 
analysis of PKS domains 

http://www.nii.res.in/search
pks.html 

 

National Institute of 
Immunology New 
Delhi, India 

Lasergene 
Version 7 

Software package, which 
comprises several modules (see 
12.19), is suitable for alignment of 
sequences, contigs assembly, 
primers design, and restriction 
mapping. 

http://www.dnastar.com/ 

(only information) 

DNASTAR, Inc, USA 

FinchTV (Finch 
Trace Viewer) 
Version 1.4.0 

A graphic viewer for DNA 
chromatogram files 

http://www.geospiza.com/Pr
oducts/finchtv.shtml 

 

Geospiza web site 

MEGA 4.0 Integrated tool for conducting 
automatic and manual sequence 
alignment, inferring phylogenetic 
trees, mining web-based 
databases, estimating rates of 
molecular evolution, and testing 
evolutionary hypotheses. 

http://www.megasoftware.n
et/index.html 

 

MEGA web site 

FramePlot 
Version 2.3.2 

Web based tool for prediction of 
protein-conding regions in 
bacterial DNA with high GC 
content** 

http://www0.nih.go.jp/~jun/
cgi-bin/frameplot.pl 

 

Japanese Institute of 
Infectious Diseases 
web site 

TreeView 
Version 1.6.6 

Program for displaying 
phylogenies on Apple Macintosh 
and Windows personal computers 

http://taxonomy.zoology.gla
.ac.uk/rod/treeview.html 

Taxonomy and 
Systematics web site 
of the Glasgow 
University 

BioEdit Version 
7.0.0 

Protein and nucleic acids 
sequence alignment editor and 
sequence analysis program 

http://www.mbio.ncsu.edu/
BioEdit/page2.html 

 

Brown Lab web site 

ClustalX 
Version 1.8 

Multiple protein and nucleic acids 
sequence alignment computer 
program 

http://www.clustal.org/ 

 

Clustal web site 

FDA It is an agency of the United 
States Department for Health and 
Human Services. It has 
responsibility to regulates and 
supervises the safety of foods, 
dietary supplements, drugs, 
vaccines, biological medical 
products etc. 

http://www.fda.gov/Drugs/E
mergencyPreparedness/Biot
errorismandDrugPreparedne
ss/ucm072755.htm 

 

FDA web site 

* if applicable 
** guanine-cytosine content 
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12 Methods 

12.1 Centrifugation 

Centrifugation of small sample volumes in Eppendorff tubes was performed using the 5417R 

centrifuge model (Eppendorf; Hamburg, Germany) and the Micro 200 (Hettich; Tuttlingen, 

Germany), while centrifugation of larger sample volumes in falcon tubes was performed 

using the Rotina 35 R centrifuge model (Hettich; Tuttlingen, Germany) and the Z 513 K 

model (Hermle; Wehingen, Germany) centrifuge models. 

12.2 Sterilization 

Heat-stable media, buffers, other solutions and glassware were sterilised in a steam autoclave 

Autoklav V65Systec, Wettenberg. at least 121 °C for 60-120 minutes (min). Millipore filters 

(Millipore GmbH, Schwalbach) with an MWCO of 0.22 µm were used to sterilise heat 

sensitive solutions. Purest water was obtained from deionised water applying a Milli-Q 

Reagent-Water system. It was sterilised under the given condition. If not stated differently 

this water was used for all media, buffers and solutions in molecular biological methods. 

12.3 Cultivation of fungus P. chrysogenum E01-10/3 

Agar plates with malt extract media (MEM) were inoculated with fungal spores. After 5-6 

days of incubation at 30 °C fungal spores were collected and stored in glycerol (up to 20%) 

or used for inoculation of liquid cultures. The fungus was grown in flasks containing 40-400 

ml of liquid MEM depending on the purpose of the experiment - isolation of chromosomal 

DNA or detection sorbicillactone A production. Liquid cultures were incubated 3-10 days at 

temperature 28-30 °C with shaking (150 rpm; submerged cultures; collection of mycelium 

for DNA isolation) or without shaking (surface cultures; detection of sorbicillactone A 

production). In case of genomic DNA isolation, young mycelial cultures were preferred. 

12.4 Cultivation of E. coli cells 

A single colony was inoculated onto 3 ml of LB liquid medium or a LB agar plate and 

incubated at 37 °C overnight for isolation of plasmid DNA or detection of covalently closed 

circular (CCC) DNA plasmid size. For selection of correct clones, different antibiotics were 

added to media at the appropriate concentration (see Table 25). E. coli DH5α and Xl1blue 

strains served as hosts for routine subcloning of plasmids. E. coli cells were concentrated by 

centrifugation and resuspended up to 20% glycerol for preservation at -80 °C. 
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12.5 Isolation of chromosomal DNA from P. chrysogenum 

This method was established analogue to Mutasa et al. [192]. For the purpose of running 

PCRs and the creation of genomic library of P. chrysogenum E01-10/3, high molecular 

weight (HMW) DNA was isolated from this strain. Flasks containing 40 ml liquid MEM 

were inoculated with P. chrysogenum spores and liquid cultures were grown for 2-3 days at 

30 °C with shaking conditions of 200 rpm. The fungal mycelium was harvested by filtration 

trough thin filter (Miracloth filtre paper Ø22-25 µm, see Table 28). The harvested mycelium 

was freeze dried by submersion into liquid nitrogen and than immediately grinded or stored 

at -80 °C prior to use. Approximately 2 g of freeze-dried mycelium was grinded in pre-

chilled mortar (-80 °C, for 0.5-1 h) by addition of some sterile sand. The grinded powder was 

dissolved in 20 ml of 1x SSC (0.15 M NaCl, 0.015 sodium citrate, pH 7.4). Subsequently an 

equal volume (20 ml) of lysis buffer was added to the mixture. The mixture was incubated 

for 2 h at 55 °C in waterbath. The fungal mycelium was separated via centrifugation at 

11,000 rpm for 10 min. After removal of mycelium, the mixture was extracted two times 

with phenol/chlorophorm/isoamylalkohol (IAA: 25:24:1) and once with chloroform/IAA 

(24:1) respectively. All centrifugation steps were run at the speed of 11,000 rpm for 10 min. 

Approximately 2-5 ml of recovered aqueous phase was dialysed (dialysis membrane, 

cellulose MWCO1000; Roth) against 2-4 ml of 1x TEN buffer (10 mM Tris pH 7.5, 1 mM 

EDTA, 100 mM NaCl) in a fridge at 4 °C. Samples were dialysed overnight (12-17 h) with 

continuous stirring. The content of dialysis membranes containing purified DNA was 

recovered in fresh falcon tubes. The DNA was precipitated by addition of one volume of 

isopropanol and centrifugation at 10,000 rpm for 5 min. The precipitated DNA was dissolved 

overnight at 4 °C in 1 ml of sterile water. 

 

Lysis buffer: 0.1 M EDTA, 1% sarkosyl, 200 µg/ml proteinase K 

 

12.6 Determination of DNA concentration and purity 

The DNA concentration and purity were measured by means of a spectrophotometer 

(Biophotometer, Eppendorf). The absorption of 1.0 at 260 nm (1 cm thickness) corresponds 

to a concentration of 50 µg/ml of double stranded DNA. The degree of purity was 

determined by use of the A260 nm to A280 nm ration. This quotient was aspired to a value of 

about 2.0 (Sambrook et al., 2001) [274]. 
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Alternatively, the concentration and the quality of DNA was estimated performing agarose 

gel electrophoresis via comparison with appropriate DNA ladder that was applied as a DNA 

size and concentration standard. 

12.7 Restriction enzyme digestion of DNA 

The restriction endonucleases cleave double stranded DNA into discrete fragments. The 

enzymes were used in a 0.5-10 U/µg DNA ration. The incubation occurred according to the 

manufacturer’s instructions (1-3 h, 25 °C/37 °C) utilizing the appropriate reaction buffer. The 

list of endonucleases that were used within this study is given in Table 26. 

12.8 Amplification of DNA using polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is the procedure for the in vitro enzymatic 

amplification of a specific segment of DNA. The basis of this method is formed by a segment 

of double-stranded DNA  to be amplified. Two single-stranded oligonucleotide primers flank 

this segment. The primers hybridise the opposite strands of the DNA in the manner that they 

are oriented with their 3’ ends facing each other. A thermostabile DNA polymerase, 

catalyzing growth of new strands in 5’-3’ direction, extends the DNA strand starting from the 

3’ ends of the primers. Thus, a new DNA strand is synthesised across the segments of DNA 

between the primers. The first cycle of synthesis results in new DNA strands of 

indeterminate length. The second cycle produces two single stranded products that together 

compose a discrete double-stranded DNA segment, which is exactly the length between the 

primer ends. In this manner, the discrete product accumulates exponentially with each 

successive cycle of amplification. Within each cycle of amplification the following steps 

occur; denaturation of the double stranded DNA, annealing of primers to the template DNA 

and primer extension by means of DNA polymerase (Goblet et al., 1989) [275]. For PCR a 

thermocycler (T-gradient, Biometra; Göttingen, Germany) was used. In all PCRs, 

thermostabile Taq polymerase (Thermus aquaticus) was applied. This polymerase does not 

exhibit proofreading activity, a 3’-5-exonuclease activity causing an adjustment of incorrect 

nucleotides.  

12.8.1 PCR protocols 

The optimization of particular reaction condition was necessary to improve the yield of the 

desired product. 
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Final concentration of MgCl2: Usually an appropriate 10x PCR buffer was used to 

guarantee the optimal ion concentration and pH-value for the Taq polymerase. Final 

concentration of MgCl2 varied between 1.5 and 4.5 mM. 

DMSO: Dimethylsulfoxide is used to reduce unacceptably high levels of mispriming and to 

increase the efficiency of amplification of G + C rich templates [86]. Thus, PCR conditions 

were modified concerning the presence or absence of DMSO as cosolvent. 

BSA: Bovine serum albumin (BSA) was used in the PCR solution, since BSA, which has no 

direct effect on the enzymatic reaction itself, can stabilise enzymes and neutralise inhibitory 

contaminants that may be present in the DNA template preparation or in the reaction 

buffers [276]. BSA also prevents adhesion of the enzyme to reaction tubes and pipette 

surfaces (New England Biolabs). The utilization of BSA was helpful for optimization of the 

PCR protocol for screening the genomic library of P. chrysogenum. Usually, the 

concentration of BSA in PCR reaction was 50 ng/µl. 

Primer concentration: The primer concentration was modulated depending on the degree of 

primer degeneracy. Primers were used in concentrations between 20 to 100 pmol. 

Hot-Start PCR: The hot-start PCR is a common technique to reduce non-specific 

amplification due to the assembly of amplification reactions at room temperature or on ice. 

At these lower temperatures, PCR primers can anneal to template sequences that are not 

perfectly complementary. Since thermostable DNA polymerases have activity at these low 

temperatures (although in most cases the activity is less than 25%) the polymerase can extend 

misannealed primers. This newly synthesised region is perfectly complementary to the DNA 

template, allowing primer extension and the synthesis of undesired amplification products. 

However, if the reaction is heated to temperatures >60 °C before polymerization begins, the 

stringency of primer annealing is increased, and the subsequent synthesis of undesired PCR 

products is avoided or reduced. The hot-start PCR can also reduce the amount of primer-

dimer synthesised by increasing the stringency of primer annealing. The formation of 

nonspecific products and primer-dimers can compete for reagent availability with the 

amplification of the desired product. Thus, hot-start PCR can improve the yield of the 

specific PCR products [277]. DNA polymerase can be sequestered in a wax bead, which 

melts as the reaction is heated to 94 °C during the denaturation step, releasing the component 

only at higher temperatures [278-280]. In this study, TaqBead™ Hot Start Polymerase 

(Promega Mannheim, Germany) was used to increase the specificity of the PCR with 

genomic DNA of P. chrysogenum.  

Genomic DNA and plasmid DNA PCR: 
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Basic PCR: 

Forward primer (50 µM) 0.5 µl  final conc., 0.5 µM 

Reverse primer (50 µM)  0.5 µl  final conc., 0.5 µM 

10x PCR buffer 5 µl  final conc., 1x 

dNTPs mix (10 mM for each)  0.25 µl  final conc., 0.2 mM 

Taq DNA polymerase (5 U/µl) 0.25 µl  final conc., 1.25 U 

Template DNA 1 µl  10 – 100 ng 

sterile purified water 42.5 µl   

Total reaction volume:  50 µl   

 
Hot start PCR: 

Forward primer (50 µM)   1 µl  final conc., 1.0 µM 

Reverse primer (50 µM)   1 µl  final conc., 1.0 µM 

10x PCR buffer (Mg-free)   5 µl  final conc., 1x 

MgCl2 solution (25 mM)  3 – 6 µl  final conc., 1.5 – 3.0 
mM 

dNTPs mix (10 mM for each)    1 µl  final conc., 0.8 mM 

Taq DNA polymerase (1.25 U/bead)    1 bead  final conc., 1.25 U 

Template DNA   1 µl  10 – 100 ng 

Sterile purified water 37 µl   

Total reaction volume:  50 µl   

 
Genomic library screening PCR: 

The main difference between the following two PCR protocols is the material that is used as 

a DNA template through the screening procedure of clones containing particular PKS genes. 

The plasmid pool PCR protocol uses plasmid DNA that contains DNA from 96 clones from 

one microtiter plate. The whole-cell PCR protocol utilises a bacterial cell suspension that 

represents lane pools, or alternatively single clones from each lane, that originated from 

microtiter plates from genomic library of P. chrysogenum. 

Plasmid pool PCR: 

Forward primer (50 µM) 0.25 µl  final conc., 0.5 µM 

Reverse primer (50 µM) 0.25 µl  final conc., 0.5 µM 

10x PCR buffer    2.5 µl  final conc., 1x 

dNTPs mix (10 mM for each) 0.25 µl  final conc., 0.4 mM 

BSA (50 ng/µl) 0.125 µl  6.25 ng 

Taq DNA polymerase (5 U/µl) 0.0625 µl  final conc., 0.3 U 

Template: superpool plasmid DNA 1 µl  50 - 100 ng 

Sterile purified water 20.56 µl   

Total reaction volume: 25 µl   

 
Whole-cell PCR: 

Forward primer (50 µM) 0.25 µl  final conc., 0.5 µM 

Reverse primer (50 µM) 0.25 µl  final conc., 0.5 µM 

10x PCR buffer 2.5 µl  final conc., 1x 
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dNTPs mix (10 mM for each) 0.25 µl  final conc., 0.4 mM 

BSA (50 ng/µl) 0.125 µl  6.25 ng 

Taq DNA polymerase (5 U/µl) 0.0625 µl  final conc., 0.3 U 

Template: cell suspension 0.5 -1 µl   

Sterile purified water 20.56 µl   

Total reaction volume: 25 µl   

12.8.2 PCR programs 

In order to improve the yield of the desired product, the following conditions were modified: 

Extension time: The extension time depended on the expected size of the amplicon. In 

general, for the amplification of gene fragments size up to 1 kb and extension time of 1 min 

was used. 74 °C or 75 °C were used as extension temperatures for PCR programs within this 

study.  

Annealing temperature: The annealing temperature is significantly responsible for the 

product specifity of the polymerase chain reaction. To calculate the melting temperature of 

oligonucleotides, the Wallace-rule (Thein et al., 1986) [281] was utilised: 

Tm [°C] = 2(A+T) + 4(G+C) 

Temperature gradient: For the purpose of working with the degenerate primers, the 

temperature gradient for primer annealing step was set up in range of 22 °C with the middle 

point temperature of 53 °C in the programs using the genomic DNA of P. chrysogenum. In 

the PCR programs used for screening the genomic library of P. chrysogenum for the presence 

of fosmids containing PKS gene clusters, the annealing step was set up in range of 5 °C with 

the middle point temperature of 57.5 °C that was in accordance to the predicted melting 

temperatures of specific primers used. 

For pks screening with genomic DNA of P. chrysogenum 

Denaturation:  94°C, 2 min 

Denaturation:  94°C, 30 sec 

Primer annealing: 53°C, 1 min  34 cycles 

Extension:  75°C, 1 min 

Final extension: 75°C, 10 min 

For pks screening of the library with plasmid superpool DNA PCR protocol 

Denaturation:  95°C, 2 min 

Denaturation:  95°C, 1 min 

Primer annealing: 58/59°C, 1 min 35 cycles 

Extension:  74°C, 1 min 

Final extension: 74°C, 10 min 
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For pks screening of the library with whole-cell PCR protocol 

Denaturation:  95°C, 5 min 

Denaturation:  95°C, 1 min 

Primer annealing: 58/59°C, 1 min 39 cycles 

Extension:  74°C, 1 min 

Final extension: 74°C, 10 min 

The primer annealing temperatures were slightly different dependent on the specific primers 

used. Generally, the specific primers were designed in such a way that their annealing 

temperatures were higher in order to prevent the unspecific annealing of the primers and the 

generation of false positive results. 

12.9 Agarose-gel-electrophoresis 

For the gel electrophoresis of DNA, 1-2% (w/v) agarose in 1x TAE buffer was dissolved in 

the microwave and then supplemented with 0.1 µg/ml ethidiume bromide. After pouring and 

hardening of the gel, prior to the samples the gel pockets were loaded with loading buffer. 

The choice of loading buffer was dependent on the size of the expected fragments. Only for 

very small fragments a 6x Xylencyanol loading buffer was used, otherwise a 6x Bromphenol 

blue loading buffer was required. Alternatively, a 1.5% (w/v) agarose gel in 1x TAE buffer 

was applied for gel electrophoresis. Either a 0.6 – 1 µl of a 1 kb- or a 100 bp DNA marker 

was used for labeling. After filling the gel pockets the gel electrophoresis was started with a 

90 – 100 V in 1x TAE buffer. The bands were then analyzed by UV light gel-documentation.  

12.10 Purification of DNA fragments from solutions or agarose gel  

The GFX PCR DNA and the Gel Band Purification Kit (Amersham Biosciences; 

Braunschweig, Germany) was used to purify DNA (e.g. PCR products or restriction 

fragments) from solution and from TAE and TBE agarose gel bands. For purification of 

DNA from gel bands, the gel slice containing the desired DNA fragment was measured and 

treated with the same volume of capture buffer. For example, 300 mg of gel slice afforded 

300 µl of capture buffer. The mixture was incubated at 60 C until the agarose was 

completely dissolved. After brief centrifugation to collect the sample at the bottom of the 

tube, the sample was transferred to a fresh GFX column. After centrifugation in a 

microcentrifuge at full speed for 30 seconds, the flow-through was discarded and the column 

was washed with 500 µl of wash buffer by centrifugation at full speed for 30 seconds. The 

GFX-column was transferred to a fresh 1.5 ml microcentrifuge tube and the DNA was eluted 
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with 10-50 µl of purified water at room temperature for 1 min. Finally, the purified DNA was 

recovered by centrifugation at full speed for 1 min. For purification of DNA from solution, 

the DNA solution (up to 100 µl) was mixed with 500 µl of capture buffer and transferred to 

the GFX column for centrifugation at full speed for 30 seconds. The following procedures for 

washing and elution are the same as described above. 

12.11 Preparation of high quality plasmid DNA from E. coli  

For the preparation of high quality plasmid DNA 1.5 ml of the overnight culture was 

decanted into an Eppendorf tube and centrifuged in a benchtop centrifuge at 13,000 rpm for 1 

min. After complete removal of the supernatant, the cell pellet was carefully resuspended in 

200 µl of solution I (see 11.2.1). 200 µl of freshly prepared solution II (see 11.2.1) was 

added, and the tube was inverted several times. Then 200 µl of pre-cooled solution III (see 

11.2.1) was added to the mixture, and the sample was inverted several times without 

vortexing. After centrifugation at 13,000 rpm for 3 min, the supernatant was transferred to a 

clean tube containing 500 µl of chloroform, which was added in order to remove proteins. 

After mixing and centrifugation, the aqueous supernatant was transferred into a new tube 

containing 350 µl of isopropanol, mixed by inversion and centrifuged for 20 min. The DNA 

pellet was additionally washed with 70% ethanol, centrifuged at 13,000 rpm for 10 min and 

dried under reduced pressure. At the end of procedure DNA pellet was dissolved in 40 µl TE 

buffer. 

12.12 Cloning of PCR products with the pGEM-T Easy Vector System 

The GFX PCR DNA and Gel Band Purification Kit (Amersham Bioscience) was used to 

purify DNA from solution or from TAE and TBE agarose gel bands as described in 12.10. 

The purified DNA fragments were then ligated into the pGEM-T Easy Vector (Promega 

GmbH) by using 0.5 µl of vector (50 ng/µl). 

Ligation reaction: 

Rapid ligation buffer (2x) 5 µl 

pGEM-T Easy Vector (50 ng) 0.5 µl 

PCR product (~200 ng/µl) 3 µl 

T4 DNA Ligase (3 units/µl) 1 µl 

Total volume 10 µl 

 
The reaction was mixed by pipetting and incubated for 1 hour at room temperature or at 4 °C 

overnight to get the maximum number of transformants. Half of the volume of the reaction 

incubate was used for the transformation of competent E. coli cells (XL1 Blue or DH5α, see 
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Table 22), and transformants were selected by blue/white screening. 40 µl X-gal (20mg/ml) 

and 40 µl IPTG (200 mg/ml) solutions were spread on the agar LB plate containing 

appropriate antibiotics (e.g. ampicilin or chloramphenicol) prior to transformation. After 

overnight incubation at 37 °C, the desired clones, which did not contain active β-

galactosidase due to insertion of foreign DNA, appeared as creamy-white. Transformants that 

contained only vector (without insert) were pale blue. Bacterial clones that contained inserts 

were transferred on a fresh LB agar plate. 

12.13 Preparation of the TA cloning vector  

The attempts to clone PCR products as blunt-ended fragments were very inefficient due to 

the template-independent terminal transferase activity of Taq polymerase. This activity 

results in the addition of a single nucleotide at the 3' end of the fragment, which is almost 

exclusively an adenosine due to the strong preference of the polymerase for dATP. Thus, 

cloning the products as blunt-ended fragments requires enzymatic processing to remove of 

the 3' overhang using an enzyme with 3' to 5' exonuclease activity. This template-

independent activity of Taq polymerase can be exploited to create a cloning scheme, which 

has the efficiency of sticky end cloning, but requires no additional enzymatic modification of 

the PCR product. The 3' overhangs of PCR products have been exploited in a commercially 

prepared cloning system like the previously described pGEM T Easy Vector System 

(Promega GmbH, see 12.12). The simple procedure outlined here can be readily adapted to 

any plasmid or viral DNA based vector with a unique blunt-ended restriction endonuclease 

site. The T-vector generated in this protocol contains a single deoxythymidine (T) residue at 

the 3' ends. This T residue on the vector will hybridise to the single A overhang on the PCR 

product and increase the efficiency of ligation(according to Marchuk et al. 1990) [282]. 

12.13.1 Enzymatic digestion of the pBluescript plasmid – introduction of blunt ends  

The plasmid preparation was made from overnight cultures of the Xl1 Blue E. coli strain. 

The pBluescript plasmid was digested with EcoRV enzyme to introduce blunt ends into a 

plasmid. The set up of the restriction digestion was as follows below. 

Digestion reaction: 

pBluescript miniprep (100-200 ng/µl) 10 µl 

EcoRV enzyme (20 U/µl) 2.5 µl 

Buffer 3 3 µl 

BSA (50 ng/µl) 0.5 µl 

Purified water 32 µl 

Total volume 48 µl 
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The digestion reaction was incubated for 2 h at 37 ˚C. EcoRV endonuclease was heat 

inactivated 20 min at 80 ˚C. 

12.13.2 Enzymatic introduction of 3’ T overhangs into the pBluescript plasmid 

To 48 µl of inactivated reaction from the previous step 0.5 µl of Taq Polymerase (20U/µl) 

was added (1 U/µg of plasmid/ 20 µl volume) together with 10 µl of 10 mM dTTPs (final 

concentration of 2 mM). The reaction was incubated 2 h at 70 ˚C.  

12.13.3 Chloroform extraction and precipitation of pBluescript plasmid with 3’T 

overhangs 

The pBluescript plasmid was extracted with chlorophorm to remove rest enzyme activity and 

to generate purified vector that is ready to be directly ligated with PCR product. 

100 µl of chloroform was added to the 50 µl of the reaction incubate from the previous step. 

The mixture was vigorously mixed and centrifuged for 5 min at 13,000 rpm. The supernatant 

was transferred to a fresh microfuge tube that contained 70 µl of isopropanol. A sample was 

firstly mixed via inversion and than centrifuged for 20 min at 13,000 rpm and 4 ˚C to 

precipitate plasmid DNA. The supernatant was carefully removed via pipetting and washed 

with 200 µl of ice-cold 70% ethanol. After short centrifugation at 13,000 rpm ethanol was 

removed via pipetting and pellet was dried under reduced pressure and dissolved in 10 µl of 

purified water. The T-vector was ready for ligation reaction with PCR product. 0.5-1 µl of 

vector was used in each ligation reaction. 

12.14 Introduction of DNA into E. coli 

12.14.1 Preparation and transformation of competent cells by the chemical method 

A single colony was inoculated in 3 ml of LB liquid medium for overnight culturing. On the 

next day, 1 ml of the overnight culture was transferred into 100 ml fresh LB broth and 

incubated at 37 ˚C until the OD560 reached 0.4-0.5 value. E. coli cells were harvested by 

centrifugation at 5,000 rpm for 6 min at 4 °C. The pellet was gently resuspended in 25 ml of 

ice-cooled TFB I buffer (see 11.2.4). After centrifugation at 5,000 rpm for 5 min at 4 °C, 

cells were resuspended in 4 ml of TFB II buffer (see 11.2.4). The aliquots of 100 µl 

competent cells were dispensed into sterile microfuge tubes and stored at -80 °C. Up to 20 µl 

DNA solution was added to one tube containing thawed competent cells. After incubation on 

ice for ca. 20 min cells were heat shocked at 37 °C for 2 min (or 42 °C for 90 sec). The tube 
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was cooled down on ice and after 2 min 0.9 ml of fresh LB broth was added to cell 

suspension. After incubation at 37 °C for about 1 hour cells were spread on selective plates 

for overnight incubation at 37 °C.  

12.14.2 Transformation of E. coli cells by electroporation 

This method was adapted from Chassy et al. [283]. A single colony of E. coli was inoculated 

from a fresh agar plate into 50 ml of LB medium and cultured overnight at 37 °C with 

vigorous aeration (200 rpm). 1000 ml of pre-warmed LB medium was inoculated with 25 ml 

of the overnight bacterial culture and incubated at 37 °C with agitation until OD600 reached 

~0.4. The culture was transferred into several ice-cold centrifuge tubes (50 ml) and cooled 

down on ice for 15-30 min. The cells were harvested by centrifugation at 2,500 rpm for 15 

min at 4 °C. The supernatants were decanted and the cell pellets were resuspended in 500 ml 

of ice-cold pure water. After centrifugation at 2,500 rpm for 20 min at 4 °C, the cells were 

washed three times with 500 ml, 250 ml and 10 ml of ice-cold 10% glycerol in turn. The cells 

were harvested by centrifugation at 2,500 rpm for 20 min at 4 °C and all liquids were 

carefully removed. Finally, the pellet was resuspended in 2 ml of ice-cold 10% glycerol. 

Aliquots of 50 µl of the suspension were dispensed into sterile Eppendorf tubes and stored at 

–80 °C. For the transformation reaction a volume of 1-2 µl DNA solution was added to 50 µl 

of the freshly thawed electrocompetent cells and mixed by pipetting for several times. The 

mixture was transferred to the bottom of an ice-cold electroporation cuvette while avoiding 

bubbles. The outer side of the cuvette was dried with paper tissues before electroporation. A 

pulse of electricity was delivered to the cells at 25 µF capacitance, 2.5 kV and 200 Ohm 

resistance. As quickly as possible after the pulse, 1 ml of LB medium was added at RT and 

the mixture was transferred to a sterile eppendorf tube and incubated by gentle rotation for 1 

hour at 37 °C. Different volumes (accordingly to expected transformation rates) of the culture 

were spread onto a LB agar plate containing appropriate antibiotics for selection of clones. 

12.15 Preparation of genomic library of P. chrysogenum  

This protocol was modified from “EPICENTRE” CopyControl Fosmid Library Production 

Kit protocol. However, all components of the kit were used for the preparation of the 

genomic library. 
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12.15.1 Preparative gel purification of genomic DNA 

Isolated genomic DNA of P. chrysogenum was size-selected through a 20 cm long 1% 

LMPagarose gel. 100 µl of genomic DNA preparation containing approximately 2 µg DNA 

(20 ng/µl) was loaded into a 8-10 cm wide genomic DNA loading lane together with some 

loading dye. 100 ng of 40 kb control DNA was loaded into each of the outside lanes to be 

used as a marker for the isolation of correctly sized genomic DNA. Samples were resolved 

via gel electrophoresis: initial run 10-30 min at 60-70 V enabled that samples fast enter gel 

and thus prevented loss of DNA. After initial run gel was run overnight (12-14h) at 35-45 V. 

On the next day, using a sharp razor blade, 2 cm gel slices from both sides of the gel were 

made. These gel slices contained approximately 1 cm (each) of the well into which the 

genomic DNA was loaded. Both slices were stained with ethidium bromide for 20-30 min. 

UV light was used to locate the band of high molecular weight (HMW) genomic DNA (~ 40 

kb) in the stained edge slices of the gel. By using a clean razor blade 5 mm wide gel slices 

from the central part of the non-stained gel was cut out. This slice contained P. chrysogenum 

genomic DNA corresponding to 40 kb of control DNA. 

12.15.2 Recovery of the size-fractionated genomic DNA 

The gel slice containing the genomic DNA was placed in a pre-weighed 15 ml falcon tube. 

LMP agarose was melted by incubation at 70 °C for 10-15 min. The tube was transferred at 

45 °C, and pre-warmed 50x GELase Buffer (Epicentre Biotechnologies) was added to a tube 

(final concentration 1x). 1 U (i.e.1µl) of GELase enzyme stock was added to the tube for 

each 500 µl of melted agarose. The reaction was incubated at 45 °C for at least one hour. The 

GELase enzyme was inactivated at 70 °C for 10 min and the mixture was transferred to an 

ice bath for 5 min to cool down. The sample was centrifuged at a speed of 10,000 rpm for 20 

min to a pellet of insoluble oligosaccharides. The DNA was precipitated by the addition of 

2.5 volume of ethanol and 0.1 volume of sodium acetate (pH 7.0). The sample was incubated 

for 10 min at RT and then centrifuged at 16,000 rpm for 20 min. The supernatant was 

carefully removed from the pelleted DNA. The pellet was washed two times with ice cold 

70% ethanol with subsequent centrifugation and removal of supernatant. A pellet was then 

air-dried for 5-10 min under the clean bench and dissolved in 60 µl of TE buffer. The 

dissolving of DNA was eased by an incubation of 1-2 h at 50 °C or an overnight incubation 

at 4 °C. The DNA concentration and quality was determined by running an aliquot (0.5 μl) of 

the DNA on an agarose gel using dilutions of known amounts of the 40kb control DNA as 

standard. 
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12.15.3 End repairing of purified size-fractionated genomic DNA 

This step generates blunt-ended, 5'-phosphorylated DNA. The end-repair reaction can be 

scaled up or scaled down by the amount of DNA available. The set up of the end repair 

reaction is as follows below. 

End repair reaction: 

Purified sterile water 0 µl 

10x End-repair buffer (Epicentre) 8 µl  

dNTP mix (2.5 mM) 8 µl 

ATP (10 mM) 8 µl 

HMW genomic DNA (~1 µg ) 52 µl 

End-repair enzyme mix (Epicentre) 4 µl  

Final reaction volume 80 µl 

 
The reaction was incubated at the RT for 45 min. The end-repair enzyme mixture was heat 

inactivated for 10 min at 70 °C. End repaired genomic DNA was precipitated by addition of 

the following components directly to the 80 µl of reaction. 

Precipitation of end repaired genomic DNA: 

End repair reaction volume 80 µl 

Purified sterile water 140 µl 

Sodium acetate (pH 5.0) 20 µl 

Isopropanol 120 µl 

Final reaction volume 340 µl 

 
Further, the sample was gently mixed via inversion and incubated for 30 min at RT. The 

DNA was precipitated via centrifugation at maximum speed (16,000 rpm), and the 

supernatant was removed carefully by pipetting. The pellet was washed by the addition of 

70% ice cold ethanol and centrifuged for 5 min (max. speed). The supernatant was removed 

and the pellet was air-dried under a clean bench for 20-30 min. 20 µl of TE buffer was added 

to the pellet, and the sample was incubated 1-2 h at 50 °C prior to quality and concentration 

check via gel electrophoresis. 

12.15.4 Ligation reaction 

In this step the CopyControl pCC1FOS vector provided by the kit was ligated to size-selected 

and end-repaired genomic DNA of the fungus P. chrysogenum.A 10:1 molar ratio of the 

CopyControl pCC1FOS vector to insert DNA was proven to be optimal. 

In a new tube at RT, the following reagents were combined in the order listed and mixed 

thoroughly after each addition: 

Purified sterile water 0 µl 
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10x Fast-Link Ligation Buffer (Epicentre) 1 µl  

ATP (10 mM) 1 µl 

CopyControl pCC1FOS Vector (0.5 µg/µl) 0.5 µl 

Concentrated insert DNA (20 ng/µl; 0.13 µg 
overall) 

 
6.5 µl 

Fast-Link DNA Ligase (Epicentre) 1 µl 

Total reaction volume 10 µl 

 
The reaction was incubated at RT for 2 hours. Subsequently, the sample was incubated for 10 

min at 70 °C in order to inactivate the Fast-Link DNA ligase (Epicentre). At this point the 

sample could be directly used for packaging reaction or stored at -20 °C prior to use. 

12.15.5 In vitro packaging and titering the packaged fosmid clones 

The day before performing the packaging reactions, a single colony of EPI300-T1R cells was 

inoculated into 50 ml of LB broth supplemented with 10 mM MgSO4 and shaken overnight 

at 37°˚C. On the next day, 5 ml of the overnight culture was transferred into 50 ml of 

supplemented fresh LB broth and shaken at 37°˚C until the OD600 reached 0.8-1.0. The cells 

were then stored at 4°˚C up to 72 hours.  

10 µl of the ligated fosmid DNA was pipetted into a tube containing 25 µl of thawed 

MaxPlax Packaging (Epicentre Biotechnologies) extract and incubated at 30°˚C for 90 min. 

At the end of the incubation time, additional 25 µl of thawed MaxPlax Packaging extract was 

added to the mixture, which was further incubated at 30°˚C for the additional 90 min. 

Subsequently, phage dilution buffer [10 mM Tris-HCl (pH 8.3), 100 mM NaCl, 10 mM 

MgCl2] was added to 1 ml volume. At the end, 25 µl of chloroform were added at the top of 

the mixture and homogenised by gentle vortexing. 

To determine the titer of the packaged fosmids, a 1:10 dilution of packaged fosmids was 

made by adding 90 µl of phage dilution buffer to 10 µl of originally packaged fosmids. 10 µl 

of the 1:10 dilution was added to 100 µl of prepared EPI300-T1R host cells at RT for 20 min 

and spread on LB-chloramphenicol selection plates at 37°˚C overnight. The colonies were 

counted and titer was calculated. 

(x of colonies) (dilution factor) (1000 µl/ml)  (400 cfu) (10) (1000 µl/ml)   
  =   = 400 000 cfu/ml 
(volume of phage plated (µl))  (10 µl)   

 
The total number of clones that could be obtained with the cosmid library was calculated by 

multiplying the titer (cfu/ml). The number of clones required to ensure that any given DNA 

sequence will be found in the cosmid library varies with the size of the genome.  
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N = ln (1-P) / ln (1-f ) 
 
Where P is the desired probability (expressed as a fraction); f is the proportion of the genome 

contained in a single clone; and N is the required number of cosmid clones. For example, the 

number of clones required to ensure a 99.9% probability of a given DNA sequence of 

Penicillium chrysogenum is contained within a cosmid library composed of 40 kb inserts: 

 
N = ln (1-0.999) / ln (1- (4 × 104 bases /34 x 106)) = -6.9077/ -0.0012= 5750 number of clones 
 
Finally, a sufficient number (~5000) of clones were inoculated into 51 ninety-six-well plates 

with 100 µl of LB medium containing chloramphenicol (12.5 µg/µl). After shaking at 37°˚C 

overnight, 100 µl of 40% glycerol was added to the 100 µl culture of each clone for storing at 

-80°˚C.  

12.16 Screening the genomic P. chrysogenum fosmid library via PCR 

For screening the genomic library of P. chrysogenum via PCR, fosmid pools from genomic 

library were made in 50 ninetysix well plates. Large (15 cm) Petri dishes were made with LB 

agar medium supplemented with 12.5 µg/ml chloramphenicol. Each of the ninetysix well 

plates from the library was replicated onto such an agar plate. The overnight cultures were 

grown at 37°˚C and on the next day fosmid clones were striped off from the agar with sterile 

inoculation loop and by the addition of 1-2 ml fresh liquid LB medium containing 

chloramphenicol at the same concentration as LB agar plate. 750 µl of the fosmid clones 

suspension was mixed with an equal amount of 40% glycerol. Superpools were stored in a 

freezer at -80°˚C. Plasmid preparations were made from each superpool after overnight 

growth of LB liquid cultures at 37°˚C and 200 rpm. These superpool plasmid preparations 

were used for screening for PKS positive plates in the first round of PCR screening. One µl 

of diluted (1:2, 1:4) superpool plasmid DNA was used for screening according to the plasmid 

superpool PCR protocol (see 12.8.1). The primers used for screening of genomic library via 

the PCR method are presented in Table 27 (see under “function”). 

These plate plasmid superpools were also used for screening library via the Southern 

hybridization method (see 12.17). 

Lane pools were made for each PKS positive ninety-six-well plate by taking out 20 µl from 

12 fosmid glycerol stocks that belong to one lane. In that manner, eight pools were made per 

each ninety-six-well plate and were screened with whole-cell PCR protocol (1 µl of cell 

suspension per PCR reaction). From each positive lane 10 µl of each clone were aliquoted to 

a fresh PCR microfuge tube in order to make a lane pool. From each of lane pools, a 0.5-1 µl 
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was used directly in the whole-cell PCR (see 12.8.1). PKS positive fosmids that 

corresponded to the same gene cluster were digested with the set of same restriction 

enzymes. One restriction pattern was chosen for subcloning of fragments into the pBluescript 

KS(-) vector. Subcloned fragments were end-sequenced via GATC Biotech (Konstanz, 

Germany). In some cases, for the purpose of gaining more sequence data, fragments were cut 

with the second restriction enzyme, subcloned into pBluescript vector and end-sequenced. 

12.17 Screening of the genomic fosmid library via hybridization  

12.17.1 Southern hybridization 

Capillary transfer and fixation of DNA 
This method was adapted from Sambrook et al. [274]. As mentioned in 12.16, the prepared 

ninetysix well plate’s plasmid superpools were used for screening the library via Southern 

hybridization method as well. All 50 plate’s plasmid preparations were electrophoretically 

separated (12.9). After completion of electrophoresis, the agarose gel containing DNA 

samples was stained with ethidium bromide and photographed under UV light. Subsequently, 

a gel was immersed in 0.25 M HCl solution for two times 15 min at RT with constant gentle 

agitation until bromophenol blue indicator turned yellow. After washing the gel with purified 

water, it was soaked in denaturation solution for two times 15 min by gentle agitation. 

Afterwards, the gel was briefly rinsed with purified water and soaked into neutralization 

buffer two times for 20 min with gentle agitation. Just before transfer, the gel was soaked in 

transfer buffer (10-20x SSC; see 11.2.5) for several min by gentle agitation. A nylon 

membrane (Hybond-N+, Amersham) was cut in such a way that the membrane was 

approximately 1 mm larger than the gel. Two sheets of thick blotting paper were cut to the 

same size as the membrane. The membrane was floated on the surface of a dish of purified 

water until it was completely wet, and then immersed in 2x SSC for at least 5 min before use. 

The following items were put on a smooth, flat surface in the order listed: 

1. A 3 mm Whatman paper saturated with transfer buffer (to serve as a bridge soaked on 

both sides into a transfer buffer). 

2. Two 3 mm Whatman papers larger 2 cm larger than a gel from each side. 

3. Nylon membrane prewet and saturated with transfer buffer. 

4. Three pieces of Whatman papers same size as gel (or smaller) saturated with transfer 

buffer. 

5. Paper towels 
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6. A light weight to keep all layers compressed. 

The gel was surrounded with a plastic wrap or parafilm in order to prevent two layers of gel 

blotting papers getting in contact with each other. The transfer of DNA was usually 

proceeded within 12-48 h. The DNA was fixed to the membrane by UV-crosslinking (2 min, 

120.000 microjoules per cm2). 

Labeling of the probes (according toECL Direct-labeling and detection system, 
“Amersham Bioscience”) 
The DNA hybridization probes were derived from cloned PCR fragments that were cleaned 

from cloning vector used by enzymatic restriction (see 12.7). Alternatively, the purified PCR 

fragments (see 12.10) were directly used as hybridization probes. Prior to labelling the DNA 

concentration of samples was adjusted to 10 ng/µl. The amount of DNA for a single 

hybridization reaction (per a glass tube) was 600 ng (for Southern blottings; see previous 

subsection) and 300 ng (for colony hybridization; see 12.17.2). The DNA was denaturated 

for 5 min in the heating block at 99 °C. The samples were incubated on ice for 5 min. 

Furthermore, samples were shortly centrifuged in order to collect the content of the tubes. 

After that, for each 10 µl of the sample (100 ng DNA) the same volume of labelling reagent 

was added and gently mixed by pipetting. In the following step, glutaraldehyd solution was 

added in a volume equivalent to the volume of the sample (i.e. 1:1) and thoroughly mixed by 

pipetting. The samples were incubated at 37 °C for 10 min in a water bath and once more 

shortly centrifugated to collect the content of the tubes. The labelled probes were combined 

with the small aliquot of pre-warmed ECL hybridization buffer (warmed up to hybridization 

temperature) and added to the prehybridised membranes. 

 

Hybridization and stringency washing in the tubes (ECL Amersham) 
The ECL golden hybridizaton buffer (see 11.2.5) was preheated to 42 °C in a water bath. In a 

suitable container, nylon membranes were pre-wetted in 5xSSC (see 11.2.5). The 5xSSC was 

added to the glass tubes up to the 1/3 volume of the tube. The dry membranes were rolled up 

in order to ease their introduction into hybridization tubes. After introduction in the 

hybridization tubes membranes were gently un-rolled by addition of 5xSSC solution. Nylon 

membranes were washed in a hybridization oven for 5 min. The 5xSSC solution was 

decanted and an appropriate volume of hybridization buffer (0.0625-0.125 ml/cm2) was 

added to the tubes. The membranes were pre-hybridised in a hybridization oven for 30-60 

min. In the meantime, as described before, nucleic acid probe was labelled according to ECL 



 Materials and Methods  

 - 197 -

protocol. After pre-hybridization, labelled probe was added to the small aliquot of pre 

warmed hybridization buffer (42 °C) and mixed with the hybridization buffer in the tubes. 

The samples were hybridised overnight in a hybridization oven at 42 °C. On the next day, 

appropriate volume of primary wash buffer without urea (see 11.2.5) was pre-warmed to 

42 °C. The hybridization buffer was discarded and replaced with the 50-100 ml of 5x SSC 

(not necessary to be pre warmed) and the membranes were washed for 5 min. The 5x SSC 

solution was discarded and replaced with the primary wash buffer up to 1/3 volume of the 

tube (around 100 ml). The membranes were washed 1-2 times with primary wash buffer 

(each time 15-20 min). The rate of the primary wash buffer (0.1/0.5x SSC; see 11.2.5) was 

adjusted to the type of the probe used for hybridization (e.g. homologous or non-homologous 

DNA probes). After discarding the primary wash buffer  the membranes were washed 1-2 

times for 5 min with excess of the secondary wash buffer – 2x SSC (see 11.2.5) . 

Detection of chemiluminescence with X-ray films 
After all wash out steps were completed the membranes were taken out from the 

hybridization glass tubes and the excess of the secondary washing buffer was drained off 

from the membranes. Furthermore, the membranes were put in a container with the 3MM 

Whatman paper soaked into fresh 2x SSC buffer (see 11.2.5). The membranes were kept on 

this paper until detection reagent was prepared. For detection reaction equal volumes 

(depending on the size of a blot) of ECL detection reagent 1 and ECL detection reagent 2 

(provided by the manufacturer; composition not given) were mixed (0.125 ml/ cm2 

recommended), and the mixture was put on a membrane (side carrying the DNA up). The 

reaction was incubated for 1 min at RT. Excess of detection reagent was drained off from the 

blots, and they were wrapped into transparent plastic wrap by avoiding air pockets. The 

wrapped membranes were placed into film cassettes (see Table 28)and the membranes were 

then exposed to the autoradiography film (see Table 28) for a initial time of 10-30 min. After 

first evaluation of the intensity of the signal, the new film was put on the membranes for the 

next 1-6 h. The developing procedure was performed with Kodak GBX developer and fixer 

system (see Table 28). The films were soaked into developing reagent for 1-5 min, while the 

duration of the fixing procedure that followed was 2 min. Between these two steps, films 

were shortly rinsed with the distilled water. At the end of the detection procedure, films were 

washed in excess of water and dried out. Kodak GBX developer and fixer were prepared 

from stock solutions in accordance to the instructions of the manufacturer. 
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12.17.2 Colony hybridization 

Induction of the fosmid clones of the P. chrysogenum genomic library 
(EPICENTRE, procedure adapted for 96-well plates) 
The fosmid clones were induced to a high copy number in order to obtain a large amount of 

DNA on the colony blots (i.e. nylon membranes). For that purpose 10 µl of chloramphenicol 

stock solution (25 mg/ml, in ethanol) were added to 20 ml of LB liquid medium. Sterile 96-

well microtiter plates were prepared, and 200 µl of LB medium (12.5 µg/ml 

chloramphenicol) were added to each vial. The plates were replicated with a sterilised 96-

replicator and shaked at 100 rpm overnight at 37 °C. The aeration (i.e. shaking) was the 

crucial factor for receive a high copy number of plasmids per clone. On the next day 

chloramphenicol was added to 10 ml of fresh LB liquid medium to a final concentration of 

12.5 µg/ml. The 20 µl of 1000x Copy Control Induction solution (provided by the 

manufacturer; see Table 30) was added to the LB medium (amount calculated for 96 clones). 

The 100 µl of overnight cultures from microtiter plate were added to the corresponding clone 

positions of the fresh 96-well plate by use of a multipipetor (see Table 28). The microtiter 

plates were incubated at 37 °C with 100 rpm for at least 5 h. The high copy number induced 

plates were replicated on a nylon membrane immediately or were frozen at -80 °C. 

Lysing colonies and binding of DNA to the filters (Sambrook et al., 2001) [274] 
Four pieces of Whatman 3MM paper were cut to a size to fit bottoms of four plastic trays. 

Papers were saturated with one of the following solutions: 

1. 10% SDS (3 min) 

2. denaturizing solution (5 min) 

3. neutralizing solution (5 min) 

4. 2xSSC (5 min) 

A blunt-ended forceps was used to peel the nylon membranes from the agar plates. Further 

on, the membranes were placed with the colony side up first on a SDS-impregnated 3MM 

paper and then subjected to the order of solutions and incubation times as mentioned before. 

The membranes were always transferred in the same order in which they were removed from 

their agar plates. After exposure of membranes to the final solution (i.e. 2X SSC), the 

membranes were dried on a fresh Whatman 3MM paper for about 20-30 min. The DNA was 

then fixed to the membranes by UV crosslinking (2 min, 120,000 microjoules per cm2). 

Optionally, cell debris was removed via submerging the membranes into washing solution 

(2x SSC, 0.1% SDS) and mechanical removal of colony debris with cotton pads. The 
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membranes were transferred to a Whatman 3MM paper freshly saturated with 2xSSC for 2 

min. Afterwards, the membranes were dried on a clean and dry 3MM Whatman paper for 

about 20-30 min and sandwiched between papers until future use. The membranes were then 

hybridised according to the ECL direct nucleic acid labelling and detection systems 

(Amersham Biosciences; Braunschweig, Germany) presented before in section 12.17. 

Optionally, for the colony hybridization, the hybridization time was reduced from overnight 

(12-16 h) to just 4-5 h in order to reduce the colony background that may appear as a result 

of unspecific binding of the labelled DNA probe to the nylon membrane. 

12.17.3 Dot blot hybridization 

Optionally, the plasmid microtiter plate (MP) pools preparations were directly used to check 

for the presence of homology with PKS derived DNA probes. The plasmid DNA was directly 

applied to a nylon membrane (Hybond-N+, Amersham) in steps of 1 µl, thus allowing DNA 

sample to dry between two applications. In total, 2-5 µl of each plasmid MP superpool 

preparation were applied onto nylon membrane. The DNA was fixed according to the 

protocol used for lysing and fixation of colony blots (see 12.17.1). Hybridization and 

detection procedures were performed in accordance to the manufacture protocol of the ECL 

direct nucleic acid labelling and detection systems (Amersham Biosciences; Braunschweig, 

Germany) as described before. 

12.18 Automated DNA sequencing  

All samples within this study were sequenced via the service of GATC Biotech (Konstanz, 

Germany). The DNA sequencing was performed according to the dideoxy-mediated chain 

termination method (Sanger et al., 1977) [284]. This cycle sequencing technique combines in 

vitro amplification of the target DNA via polymerase chain reaction with specific base chain 

termination. 

12.18.1 Sequencing of cloned PCR products and restriction fragments  

PCR products or restriction fragments were routinely cloned into the pGEM-T Easy 

(Promega; Mannheim, Germany) or pBluescript KS (-)(see 12.13). 30 µl of each plasmid 

preparation (100-200 ng DNA/µl) was sent to GATC Biotech (Konstanz, Germany) for 

sequencing with T7 or/and T3 primers. The sequences were further analyzed as outlined in 

12.19 section (i.e. in silico sequence analysis). 
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12.18.2 Shot gun sequencing of fosmid DNA 

The shotgun sequence assembly approach is based on building up the master sequence 

directly from the short sequences obtained from individual sequencing experiments, simply 

by examining the sequences for overlaps (Brown 2002) [197]. 

The plasmid DNA of fosmid 42H12, estimated to contain approx. 40 kb of genomic fragment 

from P. chrysgogenum E01-10/3, was sent for complete sequencing by the shotgun approach. 

The first step was a breakage of the plasmid DNA into fragments by sonication, a technique 

that uses high-frequency sound waves to make random cuts in DNA molecules. Following 

this procedure, the fragments were electrophoresed and those fragments in the range 1.5–2.0 

kb were removed from the agarose gel (Brown 2002) [197]. The cloning of the shotgun 

fragments was performed with the vector system pCR4 blunt Topo®. For the sequencing 

reactions the primers M13-RP and M13-FP were used. All clones from one 384-well plate 

were sequenced in forward and reverse direction. After evaluation of all sequences, 625 

trimmed sequences were left. With those sequences the total amount of 503,520 bases was 

reached representing 10.4 times of the sequenced fosmid insert and thus enabling the 

generation of a single contig of cloned P.chrysogenum fosmid 42H12 without any finishing 

step. 

12.19 In silico sequence analysis 

The DNA and protein sequences were analyzed by the Lasergene 7 software package 

(DNASTAR, Inc, USA). This software, which comprises several modules, is suitable for 

alignment of sequences, contigs assembly, primers design, and restriction mapping. The 

module “EditSeq” allows translating, back-translating and reverse complementing of 

sequenceses. For assembling sequences and managing contigs the module “SeqMan” was 

applied. “PrimerSelect” is a module applied for designing of primers or comparison of self-

designed primers against a sequence template. The restriction maps of plasmids were created 

with the help of the module “MapDraw”. Prior to analysis, all sequences were checked for 

cloning vector sequences by “VecScreen” system at the NCBI homepage. The algorithm 

named “FinchTV” (Geospiza web site) served as graphic viewer for DNA chromatogram 

files. The “BioEdit Version 7.0.0” was used for the alignment of nucleic acids and protein 

sequences (available at “Brown Lab” web site). Alternatively, “ClustalX Version 1.8” was 

used for the same purpose of sequence alignment (“Clustal” web site). 

For the identification of open reading frames, two internet programs were used: “Fgenesh” 

that is specialised for eukaryotic gene recognition, and “FramePlot 2.3.2.” for bacterial gene 
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recognition. The homology searches of nucleotide and protein sequences were performed 

online (www.ncbi.nlm.nih.gov/BLAST/) with the help of the “BLAST” program 

(“BLASTX”, “BLASTP“or “PSI-BLAST” modules) at the National Center for 

Biotechnology Information (NCBI, USA). Besides, the “Advanced BLAST” program at 

EMBnet (European Molecular Biology network) web site was used with its extended features 

for sequence homology search. The protein domains within the deduced amino acid sequence 

were identified by “InterProScan” search algorithm at EMBL-EBI (European Molecular 

Biology Laboratory-European Bioinformatics Institute) or by search algorithm within the 

“Pfam” database (Sanger Instutute homepage). Specifically, PKS domains were analyzed by 

the software “SEARCHPKS” at the homepage of the National Institute of Immunology - 

New Delhi, India. The “MEGA 4.0” internet-software (MEGA web site) was used to infer 

the phylogenetic trees from cloned PKS sequences. Furthermore, the freeware “TreeView 

Version 1.6.6” was used to display generated phylogenetic trees (Taxonomy and Systematics 

web site of the Glasgow University). For details and sources (i.e. web addresses) for used 

programs see Table 31. 

12.20 Detection of sorbicillactone A from P. chrysogenum liquid cultures 

The malt extract agar medium plates were inoculated with 1 µl of frozen P. chrysogenum 

spores. The agar cultures were grown 5-7 days at 29 °C before a small piece of mycelium 

was transferred to 300 ml of malt extract liquid medium which was adjusted to pH 6.0 – 6.5 

proved to be optimal for the sorbicillacton A production (Bringmann et al 2002). After 10-14 

days of growth at 29 °C the mycelium started to become yellow indicating the production of 

sorbicillacton. The liquid culture medium was collected via pipetting, and the pH was 

adjusted to slightly acidic dropwise with 1 M HCL. The liquid medium was then extracted 

with ethyl acetate in a ratio of 2:1. The extraction was repeated two more times in the same 

manner before upper ethyl acetate yellowish phase was collected into a fresh flask. This 

phase was than filtrated through round filter papers (150 mm, Schleicher & Schüll) and dried 

in an evaporator for 10-15 min at 4 °C. Before HPLC both sorbicillactone A standard and 

culture extract were dissolved in acetonitrile and then subjected to HPLC with the following 

parameters (Bringmann et al. 2002): 

Type of HPLC: analytical 

Column: PerfectSil Target ODS-3-C18 250 x 4.0 mm x 5 µm 

Eluent: acetonitrile + 0.05% TFA, Water + 0.05% TFA 

Gradient: from 10% acetonitrile to 90% acetonitrile in 30 min 

Flow: 1 ml/min 
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Detection: 254 nm 

 
The sorbicillactone A standard were eluted between 20 and 21 min. The same peak with the 

same absorption characteristics (lamda.sub.max 215, 271, 379 nm) was detected at the 

culture extract chromatogram. 
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APPENDIX 

13 UV spectrrum of sorbicillactone A 

 

 
Figure 42: UV spectrum of sorbicillactone A. Links: extracted compound from the liquid culture of P. chrysogenum. Rechts: reference compound sorbicillactone A. 
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14 Degenerate primer design 

Table 32: NR PKS clade III specific KS domain degenerate primer design: 

Seguence name* 
Conserved amino acid sequences 

Region of homology I (KS) Region of homology II (KS) Region of homology III (KS) 

PKSct Mp, M. purpureus 
PKS17 Bf, Botryotinia fuckeliana 
Q5BG07 An, A. nidulans 
PKS3 Gm, Gibberella moniliformis  
Q0CSA2 At, A. terreus 
Q1DRI2 Ci, Coccidioides immitis 
Q2GPS7 Cg, Chaetomium globosum 
Q0CCC2 At, A. terreus 
Q2TXJ8 Ao, A. oryzae 
Q4WFD7 Af, A. fumigatus 
Q0CF73 At, A. terreus 
Q1DVU2 Ci, Coccidioides immitis 
Q5BEJ6 An, A. nidulans 
Q2U7I0 Ao, A. oryzae 
Q5BBP8 An, A. nidulans 
Q5B8A0A An, A. nidulans 
Q2GR18 Cg, Chaetomium globosum 
Q5B7U4 An, A. nidulans 
Q2UNE1 Ao, A. oryzae 

NYDTFDHKFFKKSPR 
NYNTFDHKFFKKSPR 
EYDTFDHKFFQKSPR 
DPSEFDARFFNISPR 
DHDAFDHKFFQKSPR 
GHDMFDHKFFKKSPR 
DHDTFDHKFFKKSPR 
DIDAFDHKFFRKVPR 
DIDAFDHKFFKKVPR 
DYDAFDHRFFKKSPR 
DGDAFDHKFFKRSPR 
DVDAFDHRFFKRSPR 
DGDAFDHKFFKRSPR 
DVDAFDHKFFKRSPR 
DPDAFDHKFFKKSPR 
DRSQFDHSFFKMSPR 
DTAVFDHKFFKKSPR 
DIDAFDHKFFRKSPR 
DYDAFDHKFFQKSPR 

 

SFLSPTGQCKPFD 
SFLSPTGQCKPFD 
SFLSPTGQCKPFD 
HFLSRTGNCKTFD 
SFLSQTGPCKPFD 
SFLSTTGQCKPFD 
SFLSPTGQCKPWD 
SFVSPTGPCKPFD 
SFVSPTGPCKPFD 
SFLSPTGACKPFD 
SFVSPTGQCKPFD 
SFLSPTGQCKPFD 
SFVSPTGQCKPFD 
SFLSPTGQCKPFD 
SFISPTGQCKPFD 
SFLSPTGQCKPFD 
------------- 
SFLSPTGPCKPFD 
SFLSPTGQCKPFD 

ALINNYGASGSNASMVV 
ALINNYGASGSNASMVV 
ALLNNYGASGSNASLVV 
VFVNNFSAAGGNSALLI 
ALINNYGASGSNASMIV 
ALINNYGASGSNASMVI 
ALINNYGASGSNASMVV 
VLINNYGASGSNASMVI 
ALINNYGASGSNASMVI 
ALINNYGASGSNASLVV 
ALLNNYGACGSNASMII 
ALINNYGASGSNAAMVV 
ALLNNYGACGSNASMIV 
VLINNYGASGSNAAMVV 
ALINNYGACGSNSSAIV 
ALVNSYGASGSNTSMVI 
AMINNYGAAGSNASILI 
ALINNYGACGSNASMVI 
ALINNYGASGSNASLVI 

Conserved motif(s)** (N/D)YDTFDHKFFK PTGQCKPF GASGSNA 

Designed primers sorb1-FFK-for sorb2-PTG-rev, sorb3-KPF-forv sorb4-GAS-rev 

 

* Shortened name of each sequence with full name of fungus that it originates from; for sequence legend see table ( ). ** Conserved amino acid motif that was chosen from 
displayed conserved amino acid sequences from alignment; chosen motif was used for design of degenerate primers that are shown in the same column below the motif they 
correspond to. Position of conserved motif within the chosen region of homology is shown underlined. Dashed lane indicates that no conserved sequence was found within region 
of homology.  
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Table 33: NR PKS clade III specific AT domain degenerate primer design. 

Seguence name* 
Conserved amino acid sequences 

Region of homology III (KS) Region of homology I (AT) Region of homology II (AT) 

PKSct Mp, M. purpureus 
PKS17 Bf, Botryotinia fuckeliana 
Q5BG07 An, A. nidulans 
PKS3 Gm, Gibberella moniliformis  
Q0CSA2 At, A. terreus 
Q1DRI2 Ci, Coccidioides immitis 
Q2GPS7 Cg, Chaetomium globosum 
Q0CCC2 At, A. terreus 
Q2TXJ8 Ao, A. oryzae 
Q4WFD7 Af, A. fumigatus 
Q0CF73 At, A. terreus 
Q1DVU2 Ci, Coccidioides immitis 
Q5BEJ6 An, A. nidulans 
Q2U7I0 Ao, A. oryzae 
Q5BBP8 An, A. nidulans 
Q5B8A0A An, A. nidulans 
Q2GR18 Cg, Chaetomium globosum 
Q5B7U4 An, A. nidulans 
Q2UNE1 Ao, A. oryzae 

ALINNYGASGSNASMVV 
ALINNYGASGSNASMVV 
ALLNNYGASGSNASLVV 
VFVNNFSAAGGNSALLI 
ALINNYGASGSNASMIV 
ALINNYGASGSNASMVI 
ALINNYGASGSNASMVV 
VLINNYGASGSNASMVI 
ALINNYGASGSNASMVI 
ALINNYGASGSNASLVV 
ALLNNYGACGSNASMII 
ALINNYGASGSNAAMVV 
ALLNNYGACGSNASMIV 
VLINNYGASGSNAAMVV 
ALINNYGACGSNSSAIV 
ALVNSYGASGSNTSMVI 
AMINNYGAAGSNASILI 
ALINNYGACGSNASMVI 
ALINNYGASGSNASLVI 

 

PVILCFGGQVSTYVGL 
PVILCFGGQVSTYVGL 
PVILCFGGQRSSFVGL 
KVVFTFTGQGAQYPGM 
PVILCFGGQISRFVGL 
PVVLCFGGQVSTFIGL 
PVIMCFGGQVSSFVGL 
PVVLCFGGQVSTFVGL 
SIVLCFGGQVSTFVGL 
PVILCFGGQTSTFVGL 
PVVLCFGGQVSRFVGL 
PVVLCFGGQVSTFVGL 
PVILCFGGQISRFVGL 
PVVLCFGGQVSTFVGL 
PVILCFGGQVSTFIGL 
PVILCFGGQVSTFVGL 
PVILAFGGQVGKVVGL 
PLVLCFGGQVGRSIGL 
PVILCFGGQKSNFVGL 

SVVGHSFGELIALCV 
AAIGHSFGELTALCV 
ALVGHSFGELTAMCV 
AVVGHSLGEYAALNV 
AVVGHSFGELTALCI 
AVVGHSFGELTALCV 
AVVGHSFGELTALCV 
AVVGHSFGELTSLCV 
AVVGHSFGELTALCI 
AVVGHSFGELTALCI 
AVVGHSFGEITALCI 
SVVGHSFGELTALCI 
ALVGHSFGEITALCV 
SVIGHSFGELTALCI 
SVVGHSFGEITALCV 
AVVGHSFGELTALSI 
ALVGHSFGELTALCI 
AVIGHSFGELTALCI 
ALVGHSFGELTAMCV 

Conserved motif(s)** ALINNYGASG PVILCFGGQV VVGHSFGE 

Designed primers sorb5-ASG-for sorb6-PVI-rev, sorb7-GQV-for sorb8-VVG-rev, sorb9-FGE-for 
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* Sequence shortened name with name of fungus it originates from; for sequence legend see table ( ). ** Conserved amino acid motif that was chosen from displayed conserved 
amino acid sequences from alignment; chosen motif was used for design of degenerate primers that are shown in the same column below the motif they correspond to. Position of 
conserved motif within the chosen region of homology is shown underlined. 
 

 

Seguence name* 
Conserved amino acid sequences 

Region of homology III(AT) Region of homology IV (AT) Region of homology V (AT) 

PKSct Mp, M. purpureus 
PKS17 Bf, Botryotinia fuckeliana 
Q5BG07 An, A. nidulans 
PKS3 Gm, Gibberella moniliformis  
Q0CSA2 At, A. terreus 
Q1DRI2 Ci, Coccidioides immitis 
Q2GPS7 Cg, Chaetomium globosum 
Q0CCC2 At, A. terreus 
Q2TXJ8 Ao, A. oryzae 
Q4WFD7 Af, A. fumigatus 
Q0CF73 At, A. terreus 
Q1DVU2 Ci, Coccidioides immitis 
Q5BEJ6 An, A. nidulans 
Q2U7I0 Ao, A. oryzae 
Q5BBP8 An, A. nidulans 
Q5B8A0A An, A. nidulans 
Q2GR18 Cg, Chaetomium globosum 
Q5B7U4 An, A. nidulans 
Q2UNE1 Ao, A. oryzae 

KRLNVTNAFHSVLV 
KKLNVTNAFHCHLV 
KSLETSHAFHSTLV 
TLLKVPYAFHSSQL 
KKLSVSNAFHSTLV 
EETECYQCISLCFA 
KRLNVTHAFHSVLV 
KRLSVTNAFHSSLV 
KRLFVTNAFHSDLV 
KRLNVSNAFHSTLV 
KRLSVTNAFHSALV 
KRLNVTNAFHSSLV 
KRLNVTNAFHSSLV 
KRLNVTNAFHSSLV 
KRLNVTNAFHSALV 
KRLNVTNAFHCSLV 
KRIHVTNAFHSGLV 
KRLEVTNAFHSTLV 
KQLDTTHAFHSVLV 

 

AIWLEAGSNSTITAM 
ATWLEAGSNSTVTTM 
SIWLEAGSGSGVTNL 
SMVLEVGPHPAVSGM 
AIWLEAGSNSTITRM 
CIFLEAGSNSTITSM 
AAWIEAGSASTITNM 
CVWLEAGSNSTITLM 
CVWLEAGSNSTITYM 
AIWLEAGSNSTITNM 
AIFLEAGSSSTITIM 
AIFLEAGSSSTITVM 
AIFLEAGSSSTITVM 
AIFLEAGSSSTITVM 
AIFLEAGSNSTITVM 
SIWLEAGSNSTITTM 
AIWLEAGSNSTITNM 
AIWLEAGSNSTITSL 
SIWLEAGSGSGVTAL 

VLLPPYQFEKS 
VILPPYQFEKS 
LLLPPYQFAKS 
VDLPAYSWDLK 
LLLPPYQFEKS 
LLLPPYQFDKV 
LFLPPYQFEKV 
VLLPPYQFEKS 
MFLPPYQFEKS 
LLLPPYQFELF 
LLLPPYQFDTS 
ILLPPYQFEKA 
LLLPPYQFDTS 
ILLPPYQFEKA 
LLLPPYQFEKT 
LILPPRQFART 
IMLPPYQFERN 
LLLPPYQFERT 
LLLPPYQFAKT 

Conserved motif(s)** NVTNAFH IWLEAGSN IFLEAGSN PPYQFEK 

Designed primers sorb10-NAFH-for sorb11-IWL-rev sorb12-IFL-rev sorb13-PPY-rev 
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Table 34: NR PKS clade III specific MT domain degenerate primer design. 

Seguence name* 

Conserved amino acid sequences 

Region of homology Ia (MT) Region of homology II (MT) 

Q5BEJ6 An, A. nidulans 
Q5B7U4 An, A. nidulans 
PKSct Mp, M. purpureus 
PKS17 Bf, Botryotinia fuckeliana 
PKS18 Bf, Botryotinia fuckeliana 
PKS21 Ch, Cochliobolus heterostrophus 
PKS16 Bf, Botryotinia fuckeliana 
PKS22 Ch, Cochliobolus heterostrophus 

VLEMGAGTGG 
ILEMGAGTGG 
ILEMGAGTGG 
ILEMGAGTGG 
ILEIGGGTGG 
ILEMGAGTGA 
ILEVGAGFGG 
ILEIGAGFGG 

 

SNAIHAT 
SNAVHAT 
TNCVHAT 
TNCVHAT 
TNCIHAT 
SNAVHAT 
TNCVHAT 
TNCVHAT 

Conserved motif(s)** EMG(A/G)GTG E(I/V)GAGFG SNA(V/I)HAT TNC(V/I)HAT 

Designed primers MTnr III_Fa MTnr III_Fb MTnr III_R1a MTnr III_R1b 

 

* Sequence shortened name with name of fungus it originates from; for sequence legend see table ( ). ** Conserved amino acid motif that was chosen from displayed conserved 
amino acid sequences from alignment; chosen motif was used for design of degenerate primers that are shown in the same column below the motif they correspond to. Position of 
conserved motif within the chosen region of homology is shown underlined. 
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Table 35: NR PKS clade III specific RED domain degenerate primer design. The five sequences alingment. 
 

Seguence name* 
Conserved amino acid sequences 

Region of homology Ib (MT) Region of homology III (RED) Region of homology IV (RED) 

PKSct Mp, M. purpureus 
PKS17 Bf, Botyiotinia fuckeliana 
Q5BG07 An, A. nidulans 
PKS3 Gm, Gibberella moniliformis 
Q4WFD7 Af, A. funimgatus 

VLVTGATGSLGSHVV 
VLVTGTTGSLGSHIV 
VLVTGATGSLGSHLV 
VLVTGASGGLGSHLV 
VLVTGATGSLGSHLV 

 

GHWNPVEH 
GYWNPVEH 
GYWNPVEH 
GYWNPMEH 
GYWNPVEH 

MSCGNLILDT 
MSCGGLILDT 
MSCGGMILDT 
MACGGLVLDV 
MACGGVVLDT 

Conserved motif(s)** VLVTGATG GYWNPVEH MSCGGLI 

Designed primers 
RED-F1a, RED-F1b 

RED-R1a, RED-R1b 

RED-F2, RED-R2 RED-R3a, RED-R3b 

 
* Sequence shortened name with name of fungus it originates from; for sequence legend see table ( ). ** Conserved amino acid motif that was chosen from displayed conserved 
amino acid sequences from alignment; chosen motif was used for design of degenerate primers that are shown in the same column below the motif they correspond to. Position of 
conserved motif within the chosen region of homology is shown underlined. 
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Table 36: NR PKS clade III specific RED domain degenerate primer design. The five sequences alingment. 

Seguence name* 
Conserved amino acid sequences 

Region of homology Ib (MT) Region of homology II (RED) Region of homology III (RED) 

PKSct Mp, M. purpureus 
PKS17 Bf, Botryotinia fuckeliana 
Q5BG07 An, A. nidulans 
PKS3 Gm, Gibberella moniliformis  
Q0CSA2 At, A. terreus 
Q1DRI2 Ci, Coccidioides immitis 
Q2GPS7 Cg, Chaetomium globosum 
Q0CCC2 At, A. terreus 
Q2TXJ8 Ao, A. oryzae 
Q4WFD7 Af, A. fumigatus 
Q0CF73 At, A. terreus 
Q1DVU2 Ci, Coccidioides immitis 
Q5BEJ6 An, A. nidulans 
Q2U7I0 Ao, A. oryzae 
Q5BBP8 An, A. nidulans 
Q5B8A0A An, A. nidulans 
Q2GR18 Cg, Chaetomium globosum 
Q5B7U4 An, A. nidulans 
Q2UNE1 Ao, A. oryzae 

VLVTGATGSLGSHVV 
VLVTGTTGSLGSHIV 
VLVTGATGSLGSHLV 
VLVTGASGGLGSHLV 
VLVTGATGSLGAHLV 
VLVTGATGSLGSHII 
VLITGATGSLGTHLV 
VLVTGTTGSLGSHIA 
VLLTGATGSLGSHIV 
VLVTGATGSLGSHLV 
VLVTGATGSLGSHLV 
IIVTGATGSLGAHVV 
VIVTGATGSLGSHIV 
VIVTGATGSLGVHVV 
VIVTGASGSLGSHLV 
VIITGATGSLGSHLV 
VLVTGATGSLGSHIV 
ILVTGATGSLGSHLV 
VLVTGATGSLGSHLV 

THIVHSAWPMS 
THIVHNAWPMS 
TDVVHNAWAMS 
THIIHNAWPMS 
TAIVHNAWPMS 
TDIIHNAWLMN 
TGILHNAWPMS 
THIIHNAWPMN 
THIIHNAWPMN 
THVVHNAWPMT 
TDIVHNAWPMS 
SHIVHSAWPLS 
TDIIHNAWPMS 
SHIVHSAWPLS 
THIIHNAWPMS 
THIVHNAWPMS 
THIIHNAFPVN 
THIIHNAWPMN 
TDVAHNAWAMS 

GHWNPVEHFAF 
GYWNPVEHFAS 
GYWNPVEHLVH 
GYWNPMEHFGF 
GYWNSLEHLSF 
GYWNPMEHLSF 
GYWNPVEHFCF 
GCWNPSEHLPA 
GCWNTAEHFPA 
GYWNPVEHLAF 
GFWNPVEHFAF 
GVWNSVEQIPF 
GFWNPVEHFAF 
GVWNSVEQVPF 
GFWNPVEHFPF 
GCWPHTEHMPL 
GYWNHVEVLAF 
GYWNTAEHFPA 
GYWNPVEHLVH 

Conserved motif(s)** VTGATGSLG IVHSAWP IVHNAWP WNPVEHFAF 

Designed primers 
sorb14-SLG-for sorb15-IVHS-rev sorb16-IVHN-rev sorb17-WNP1-rev 

sorb18-WNP2-rev 

 

* Shortened name of each sequence with full name of fungus that it originates from; for sequence legend see table ( ). ** Conserved amino acid motif that was chosen from 
displayed conserved amino acid sequences from alignment; chosen motif was used for design of degenerate primers that are shown in the same column below the motif they 
correspond to. Position of conserved motif within the chosen region of homology is shown underlined.  
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Table 37: Predicted size of PCR products for different combinations of forward and reverse primers - amplification of RED domain.  
Primers CMeT1c CMeT2c-F1 CMeT3c-F2 RED-F1a RED-F1b RED-R1a RED-R1b RED-F2 RED-R2 RED-R3a RED-R3b 

CMeT1c - - - - - 375-696 bp 375-696 bp - 1035-1356 bp 1425-1746 bp 1425-1746 bp 

CMeT2c-F1 - - - - - 414 bp 414 bp - 1074 bp 1464 bp 1464 bp 

CMeT3c-F2 - - - - - 414 bp 414 bp - 1074 bp 1464 bp 1464 bp 

RED-F1a - - - - - - - - 660 bp 1050 bp 1050 bp 

RED-F1b - - - - - - - - 660 bp 1050 bp 1050 bp 

RED-R1a * * * - - - - - - - - 

RED-R1b * * * - - - - - - - - 

RED-F2 - - - - - - - - - 390 bp 390 bp 

RED-R2 * * * * * - - - - - - 

RED-R3a * * * * * - - * - - - 

RED-R3b * * * * * - - * - - - 

 

Given numbers represent PCR product length in base pairs (bp). A dash (-) represents absence of PCR product due to incompatibility of the given primer pair; such PCRs were 
not performed. Asterisk represents the combination of primers for the PCR products shown in Figure 20. 
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15 Nucleotide sequences of amplified PKS gene fragments 

 KSpr-MI seq  
CCGAGCAGATGGATCCTCAGCAGCGAATTGCCCTCGAAGTTGCCTGGGAGGCCTTGGAAG  
ATGCTGGAATCTCTCCTTCCCGTCTTGCGGGTTCAAACACGTCCGTATACATGGGTGTCA  
ACTCCGATGACTATGCCAAACTGGTCTTGGAAGACCTTCCCAATGTCGGTGCCCATATGG  
GCGTGGGCACAGCCTACTGCGGCATTCCCAGCCGTATATCCTATCTGCTGGATTTGATGG  
GTCCTAGCGTTGCACTGGATGCGGCGTGTGCATCATCCCTGGTCGCTGTACACCATGCCC  
GTCAGGCTATCCGTGCTGGCGAGACTGACCTAGCTATCGCAGGTGGTGTCAACGCACTCC  
TGGGACCAGGTTTGACCCGGGTGCTGGACGAAGCTGGGGCTATCTCCGCGGATGGAAAGT  
GCCGTTCCTTCGATGACTCCGCTAACGGGTACGGTAGAGGCGAAGGAGCGGGTGTGGTCA  
TCTTAAAGCGTCTGGATAAGGCCTTCGCGGACGGTGACCAAGTGCTAGCCGTACTCAAGG  
GCAGTGCCGTGGCCTCAGACGGCAAGACACTTGGGATCATGGCCCCCAATGCGCAGGCAC  
AGCTTCTCGTTGCCCAAAAGGCGCTGAAAGAGGCAAAAGTGACGTCTGACTCCATCAGTT  
ATATCGAGGCTCATGCCACATCGACA 

KSnr-7 

CCCCGTGAAGCGCTTCAAGCAGACCCTGCTCAACGTCTGGCACTTCTTACGGCTTATGAGGCGTTGGAAATGGCGGGATT
CATCCCAGACAGCACGCCCTCTACGCAAAAGAACCGTGTGGGTGTCTTCTATGGAATGACCAGCGATGATTACCGTGAGA
TCAACAGTGGTCAGGACATTGACACCTACTTTATCCCGGGTGGTAACCGTGCTTTCACTCCTGGTCGCATCAACTACTAT
TTCAAGTTCAGCGGCCCTAGTGTCAGTGTGGATACAGCTTGTTCCTCGAGTCTTGCAGCAATTCATGTCGCCTGTAATTC
CCTGTGGAGGAATGAATGTGACTCTGCCGTCGCCGGTGGCGTCAATATTCTGACAAATCCTGACAACCATGCGGGCCTTG
ACCGTGGACACTTCCTCTCAAGGACTGGAAACTGTACCACCTTTGATGATGGGGCTGATGGCTATTGCAGAGCAGATGGA
ATTGGCTCCATTGTCATTAAGAGACTCGAAGATGCTCAGGCAGACAACGATCCCATCTACGGTGTCATTGGAGGAGCTTA
CACCAACCACTCCGCAGAGGCTGTATCAATTACGCGGCCTCATGTAGGAGCACAGTCCTTCATCTTTGACAAGCTTCTCA
ACGAGTCCAACAGCGACCCGAAGGAGATCAGCTATATTGAAATGCACGGTACAGGAACAATCACTAN 

KSnr-8 

GATCCCCGATTTTTCAACATGTCTCCCCGTGAAGCGCTTCAAGCAGACCCTGCTCAACGTCTGGCACTTCTTACGGCTTA
TGAGGCGTTGGAAATGGCGGGATTCATCCCAGACAGCACGCCCTCTACGCAGAAGAACCGTGTGGGTGTCTTCTATGGAA
TGACCAGCGATGATTACCGTGAGATCAACAGTGGTCAGGACATTGACACCTACTTTATCCCGGGTGGTAACCGTGCTTTC
ACTCCTGGTCGCATCAACTACTATTTCAAGTTCAGCGGCCCTAGTGTCAGTGTGGATACAGCTTGTTCCTCGAGTCTTGC
AGCAATTCATGTCGCCTGTAATTCCCTGTGGAGGAATGAATGTGACTCTGCCGTCGCCGGTGGCGTCAATATTCTGACAA
ATCCTGACAACCATGCGGGCCTTGACCGTGGACACTTCCTCTCAAGGACTGGAAACTGTACCACCTTTGATGATGGGGCT
GATGGCTATTGCAGAGCAGATGGAATTGGCTCCATTGTCATTAAGAGACTCGAAGATGCTCAGGCAGACAACGATCCCAT
CTACGGTGTCATTGGAGGAGCTTACACCAACCACTCCGCAGAGGCTGTACCAATTACGCGGCCTCATGTAGGAGCACAGT
CCTTCATCTTTGACAAGCTTCTCAACGAGTCCAACAGCGACCCGAAGGAGATCAGCTATATTG 

KSnr-10 

GACCCAAGTTTCTTTAACATGTCTCCCCGTGAAGCGCCTCAAGCAGACCCTGCTCAACGTCTGGCACTTCTTACGGCTTA
TGAGGCGTTGGAAATGGCGGGATTCATCCCAGACAGCACGCCCTCTACGCAAAAGAACCGTGTGGGTGTCTTCTATGGAA
TGACCAGCGATGATTACCGTGAGATCAACAGTGGTCAGGACATTGACACCTACTTTATCCCGGGTGGTAACCGTGCTTTC
ACTCCTGGTCGCATCAACTACTATTTCAAGTTCAGCGGCCCTAGTGTCAGTGTGGATACAGCTTGTTCCTCGAGTCTTGC
AGCAATTCATGTCGCCTGTAATTCCCTGTGGAGGAATGAATGTGGCTCTGCCGTCGCCGGTGGCGTCAATATTCTGACAA
ATCCTGACAACCATGCGGGCCTTGACCGTGGACACTTCCTCTCAAGGACTGGAAACTGTACCACCTTTGATGATGGGGCT
GATGGCTATTGCAGAGCAGATGGAATTGGCTCCATTGTCATTAAGAGACTCGAAGATGCTCAGGCAGACAACGATCCCAT
CTACGGTGTCATTGGAGGAGCTTACACCAACCACTCCGCAGAGGCTGTATCAATTACGCGGCCTCATGTAGGAGCACAGT
CCTTCATCTTTGACAAGCTTCTCAACGAGTCCAACAGCGACCCGAAGGAGATCAGCTATATTGAAAT 

KHKS1  

GCGGACGGGTATTGTCGGGGAGAGGGAGCAGGACTAGTTGTTCTACGACCCTTAGCAGAC  
GCAATTCGCAACGGAGACCCCATTCTTGCCGTAATTGGCGGGTCTGCGGTCAACCAGGGA  
TCCAACTGCTCCCCGATCACTGTGCCAGACTCGAACTCCCAGAGATCCCTTTATCGGAAG  
GCCCTGCTGGCATCTGGGATTCCTCCAGAAGACGTCACTTACGTTGAGGCCCACGGCACC  
GGCACAAT 

KHKS3  

GCGGATGGGTATTGTCGGGGTGAAGGGATTGCGGCCATCTTTCTAAAGACTCTTTCTCGT  
GCCCTGGCAGATGGAGACCACATTGAGGGCATCATCCGAGAAACCGGCGTGAACTCGGAT  
GGTCGTACTCGAGGCATTACAATGCCTAGTGCTGACGCTCAGCTTTCTTTGATCAGAGCC  
ACTTACAAGAAAGCTGGGTTGGATCCCCTGAATCCAGATCAACGCTGCCAGTACTTCGAG  
GCCCACGGCACCGGCACAA 

KHKS9  

AGCGGCCCCACGAGTCGAGGTATCGATAGCTTGATTGCGGACGGGTATTGCCGGGGAGAC  
GTTCAGGACTAGTTGTTCTACGACCCTTAGCAGACGCAATTCTCAACGGAGACCCCATTC  
TTGCCGTAATTGGCGGGTCTGCGGTCAACCAGGGATCCAACTGCTCCCCGATCACTGTGC  
CAGACTCGAACTCCCAGAGATCCCTTTATCGGAAGGCCCTGCTGGCATCTGGGATTCCTC  
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CAGAAGACGTCACTTACGTTGAAGCCCACGGCACCGGCACAATCGAATTC  

KHKS27 

GATTGTGCCGGTGCCGTGGGCCTCGAAGTACTGGCAGCGTTGATCTGGATTCAGGGGATC  
CAACCCAGCTTTCTTGTAAGTGGCTCTGATCAAAGAAAGCTGAGCGTCAGCACTAGGCAT  
TGTAATGCCTCGAGTACGACCATCCGAGTTCACGCCGGTTTCTCGGATGATGCCCTCAAT  
GTGGTCTCCATCTGACAGGGCACGAGAAAGAGTCTTTAGAAAGATGGCCGCAATAACTTC  
ACCCCGACAATACCCGTCCGCAATCAAGCTATCGTACCTCGACTCCAGGG  

KHKS32 

AGGTCGACGTATCTATAGCTTGATTGTGCCGGTGCCGTGGGCCTCGACCATTATATATCA  
TTAACTTCCAACTCGGCCTTGCCGACAACGTTCTGGAACACGATGGTCAGGGGGGACGGG  
TTGGGAACAAAGATCGGAGTATCGTTTTGATTCTGGTTGATGGCGGTTGCCGAAATCACA  
CCCAGTATCTGATCGCCGTCGGCAATAGCATCGGATAATTTCTTCAAGAACACGGCGCCA  
ATAGCCTCACCCCGGCAATACCCATCCGCAATCGAATT 
 

KHKS37  

GATTGCGGATGGGTACTGCCGGGGAGAGGGAGCAGGACTAGTTGTTCTACGACCCTTAGC  
AGACGCAATTCGCAACGGAGACCCCATTCTTGCCGTAATTGGCGGGTCTGCGGTCAACCA  
GGGATCCAACTGCTCCCCGATCACTGTGCCAGACTCGAACTCCCAGAGATCCCTTTATCG  
GAAGGCCCTGCTGGCATCTGGGATTCCTCCAGAAGACGTCACTTACGTTGAGGCCCACGG  
CACCGGCACAATCGAATTC 

KHKS42 

TTCGATTGTGCCGGTGCCGTGGGCCTCGACGACCGAGATATCATTAACTTCCAACCCGGC  
CTTGCCGACAACGTTCTGGAACACGTTGGTCAGGGAAGACGGGTTGGGAACAAAGATCGG  
AGTATCGTTTTGATTCTGGTTGATGGCGGTTGCCGAAATCACACCCAGTATCTGATCGCC  
GTCGGCAATAGCATTGGATAATTTCTTCAAGAACACGGCGCCAATAACCTCACCCCGACA  
ATACCCGTCCGCAATCAAGCTATCGATACCTCGACTCGTGGGGCCG 

KHKS44 

GGATCCCCCGGGCTGCAGGAATTCGATTGCGGATGGGTACTGCAGGGGTGAAGGGATTGC  
GGCCATCTTTCTAAAGACTCTTTCTCGTGCCCTGGCAGATGGAGACCACATTGAGGGCAT  
CATCCGAGAAACCGGCGTGAACTCGGATGGTCGTACTCGAGGCATTACAATGCCTAGTGC  
TGACGCTCAGCTTTCTTTGATCAGAGCCACTTACAAGAAAGCTGGGTTGGATCCCCTGAA  
TCCAGATCAACGCTGCCAGTACTTCGAGGCCCACGGCACCGGCACAATCAAGCTATCGAT  
ACCTCGACCC  

KHKS46 

GAGGCCCCTCAGGTGAGGTATCGATAGCTTGATTGCGGATGGGTACTGCCGGGGTGCTAC  
CCTGGGCGCCGTGTTCTTGAAGAAATTATCCAATGCTATCTCTGAGGGCGATCAGATACT  
GGGTGTGATTTCGGCAACCGCCATCAACCAGAATCAAAACGATACTCCGATCTTTGTTCC  
CAACCCGTCTTCCCTGACCAACGTGTTCCAGAACGTTGTCGGCAAGGCCGGGTTGGAAAT  
CGAATTC 

KHKS51 

GGGCCCCTGAGTCGAGGTTCGATAGCTTGATTGCGGATGGGTACTGCCGGGGAGAATTTT  
CAACGTTCTGTACCTGAAACGTGTGTCGGATGCAATTCGGGACGGTGATCCTATCCGTGG  
AGTTATTCGAGGATCTTCATTAACTGCGTAAGCTACTCATATCCTGCCCATTATTGCCCT  
TTGGGCGTATGCTGAGACACAAATGCATACAGCAACGGCAAAAATAACGGAATCACTCTC  
CCCAGTGCTCTTGCTCAAGAGCTGTCTATCCGAAAGGCATACGAGCATTCAGGGCCTCTT  
GACTATAATTCAGTTGGTTACGTGGAGGCCCACGGCACCGGCACAATCGA  

CMeT-3 

CCATCTGGCCGCCGGGCTTCAACAGCGATCGAAGGTTCGATAATGCGTTATGCAGGTTTGCAGTAGCGTGAATGACATTG
CCAGCAAATATCAGGTCATATGTCCCCAGCTGGAATCCCTGGTCGACGGGGCTTCGCTCAATATTGAGCGATTGGAAGTT
CATGATATCGGACCATGGCTGGAAACGCTGTTTTGCTTTCTCGAAGAAGCCGGATGAAATGTCAGTGAATGTGTAGCTGG
CAATGTTTCCTTTGGTCTTTGCAAGGTCTGGCGAAAGGACGGCCAGGACTTCAGCAGTGAAGCTTCCCGTCCCCCCCCCC
ATCTCA 

CMeT-9 

GAGATGGGGGGGGGGACGGGTGGTGCCACCTTGCCTATTTTGCAGAGGTTGGGCGGAGGCGAAGGAGGATCTACGCCTCG
GTTCGGCCACTACATCTACACCGACATCTCTCCCGCCTTCTTTGAAAAGGCAAAGACAAAGTTCGAGAGCTGGGGAAATC
TCATGACGTACCAGGCACTAGATGTGTCGGATGACCCCACTGCCCAAGGCTTCAGTAATGGCACATACGACGTTGTGGTT
GCTTGCAACGTGCTGCATGCTACTCCCGACATCAGCCAGACAATGTCAAACATCCGAGGCCTTTTGAAGCCCGGCGGCCA
GATGGTA 

AT-9-11 

TGTAGTCGGGCAGAGGTTCGGGGAACTCACCGCACTTTGCGTATCAGGCATCCTCAGCCT  
GGAGGATGCGCTCAAGCTCGTCCATGGCCGGTCGAAGATTATCAAAGAGAGCTGGGGCCC  
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GGAGAAGGGGTCCATGATTGCAGTTGAAGCGGACCGAAACGATGTGGAAAAGCTCTTGGT  
TGCTTCAAATGCGCGTCTTGGTGAAACTGAACGGGCTGGACATGCGACAATTGCCTGTTT  
CAATGGCCCGAAGAGCTTCACCATCGCTGGTTCAGCCGCTGCAATTGATGCTGTGCAGCA  
GACAGTTTCAACCCTTGATATCCCAATTAAACACAAGAGGCTAGACGTGACTAATGCATT  
CCATTCGACCCTAGTTGAGCACTTGAGGCCACAACTGGAGGCCCTGGGCCGCAGTCTGAG  
CTTTGGAAATGCCCACATACCTCTCGAAAGGGCAACCGAGCAGCGGGAGACCGGTCCGAT  
CTCACCTGCTTACGTTGCTGAGCACATGAGGAATCCTGTCTACTTCGACCATGCCGTCCA  
AAGACTTGCGAGTCAGTATCCGGAGGCCATTTGGCTGGAGGCAGGCAGGAAA 

16 Nucleotide sequence of shot-gun sequenced 42H12 fosmid clone  

TCACACCGTCAGCAGCAGCGGCGGCAACCGCCTCCCCCATCCAGGTCCTGACCGTTCTGT 
CCGTCACTTCCCAGATCCGCGCTTTCTCTGTCCTTCCTGTGCGACGGTTACGCCGCTCCA 
TGAGCTTATCGCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCT 
GGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGAT 
CGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTT 
TTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGA 
TATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCA 
GTTGCTCAATGTACCTAYRRCCMGACCSYTYAGCTGGATATTACGGCCTTTTTAAAGACC 
GTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATG 
AATGCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGT 
GTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGT 
GAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTAC 
GGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCC 
AATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTC 
GCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTG 
GCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAA 
TTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGG 
TGCCCTTAAACGCCTGGTTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGA 
AATTCGATGATAAGCTGTCAAACATGAGAATTGGTCGACGGCCCGGGCGGCCGCAAGGGG 
GTTCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGG 
GCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTAC 
ACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAG 
GAAACAGCTATGACCATGATTACGCCAAGCTATTTAGGTGAGACTATAGAATACTCAAGC 
TTGCATGCCTGCAGGTCGACTCTAGAGGATCCCACGTCGGAGGATGAACGACACAAATCT 
CAAATGACGAGTATTGGGTTGGTCTTTCTTTTGGTTTAGTTTGGTGTCGGTGTTAGGCAT 
TATGGGGATGTTCTTTTTTCCTGTTTCAATGTATAGCTCATCGCATACTGCTAGTACAGT 
ATTTCTGCATATGAAGTAATTGTGATCACCACTACTGAACATAGCAATATTGCCTTGTAA 
GGCCATTGAAGGTTATAGGGATGGACCCGTAGCTCACCGTCATTGTCGTTGTCGTTGTCT 
TGTCGTCAGTCATCAGCCTCAGTGGTTTTAGTCCAGTTCCTTCCTCTCTGTAGTTTCTTC 
GTTTCTCCTTTCCTTGCAGTTTCAGTAGCCTTAGCAATTCATCGTCCACCACTTGTCAAA 
ATCTAGCCACTTGCCTTCTCCAGAAGCTACATCGGTCACTTGGGCATTCGTCCCTCTTAA 
GCTGCGTAAGCCAATCATCATTAGCATGCAGTCTATCTCGGCCTTTTCTCTTCCTTGGTA 
TCCCGATCTTGGGGAAACCCTACCGTCTCCGATATACCCAAACAGAATACGTTCATATAA 
AGGATACCGGATCTAGAATGTCTATTTTTTTTAACCCGTATATAGATAGAGAAATTCATT 
GGTCTATATATCTCCTTATAAAGGAAATTTAGTTTATGTAACCTCTATCCACTAGTTATT 
GCCTAAGGGCAGGGAAGTGTAATTCTCACACTTAGGACCAAAAGACCATAGCAACAATCG 
GAACGCCCGATTATCGCTGTAACGGTGTGTATATCAGGCCCCCGATCTCCATTAGGGATC 
TTAAGCAGTTATGGCGTAATCCATGTGGGAGCTGACCACCCCAAAACACCGTAATAAGCG 
ACATATTCTACGCTTAAATCTTAGAAGGTTCTTATCTTGTTTCATTGTTTGTCGATAGTT 
CAGCACTATATGTTAGTTTGGGACCTGGAAGCTATATTGCCACGATACCAGCTAGAAATA 
TATATCTTAATCTCCAAATTAGAAAAGAAAAGAACATCTTTAAATTTCCCAAGGAGGTTA 
GATTTTGCGTGAAGACCATTAGGCTGTAAGGAACAGTTCCTATAGGCAACCGTTGCTGCG 
ATATCATGGTGTGATATATCGCATGTGAATTACGTTATGGTATTTACATCGGTCCATATG 
CGCCTCGAACCTGTTTGGGAAGTTTTCGTATACGACATTAAATCAGCCTTCTACTCCCCA 
AATATTGGGGTAGCATGTGGATGGATGGATGGATGGATGGCTTGAGGGATGCTGATTCTG 
CCCAATTGGTAAATATCTTTATGCCAGAGCGGATCACATTTAGGGTCCTCGCAACTGTGA 
TGCGGGTGACTGGAGATTAACACATACATGGGCCTGCAGTAAGAGTGCACTGAAACTATT 
GAGTCTGATAGGCCCCCTTTAAAGCATCTCACGCCTATTTACTCCGTGGGTCTCTTTCAT 
TTCCCAAACCTCGCTTTCTGTTCGTCTCCGAATATGTCGATTCACTTCCCGTTCACTCCT 
GGGGGCCAATAGTCAAGATGGTGACCCCAGGAGCCGTACAAACTCCTGGTAGTTCGTACA 
TGTTGCTTGTCGATCGACTCAGCCAGAACAGCCGTGAGTGAAATGCTATCGTATCAATGG 
GATGGAATTCCTGAGAGCGGGAAGTTAAGAGATGGGCGGGACGGAAGCCGTGTAAGATAA 
GATTAAACGTGAGATTTTAGCGTATTCCTGATTCCTGAAATTGCTGACATGCAGTGACTG 
CTGAACCCCGCTCGGAGTCGGATAGCCAGAGAGTCAGAGAGACCAGAGAGACCACATAGC 
GGGTCACGTTATGCCCCAAATGTGACTCTTTCTCGGAAGAGCTTAGTTTCCCAAGTTTGG 
CCTCTAAGACTTGGGATTATCCCATCCTCCCCATGGGGTATTACACTTGAAGGCCGTATA 
AGTGTAGCCCTTTGCCGCGGGTACCGGGATGGCGAAAAATAAGGTGCCAAGAAGGGGCGC 
TGAGAGGATCATAGGGTGTAGCCGCCAATCCACGGGCAGCCAAGACAGGTACAGGTCTTG 
TATAGTGTCAGATCACGTCAATCTCCAAACCGTGAAGGCTCGAGCGGAGGCGCCTTGAGT 
CTTGCCGTCCGCTTGTTTAGGAAAATCTACAAGCCACCACTTGGGTGGCATTTTTCGTCA 
GCCAAGAAGCCAAACCCTAACGAGAGGATGATCGTTGCACTCACTTTCTGGGATTACGGG 
AAGATTTCCCGGTGCTCGTGTCCAACCACTGTGGCTTCCAATGTTGTAACAGTTTGATAC 
TAGGTGTGGTCTTGGCAAGTTAGTGGCCACTGCATATGTAGGGTCTGGAGCTTCACTTAT 
TTCGGAGAAAGCACGGCAATCGATAGTGGCGATCGAATGTTGGTGACTTCCTCCGTTGAA 
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TCAATCGCAACCTCCGGAGTACAGAACACGTGGAAATAAGTGGCTCCATGCCCTCGGCTA 
TGCCAAAGGGGTTCCGCCTCCCTGCATAGCGAGCATATCTAGAGTGTCTAAGAACCATAC 
CATCGTCTACCTTTTGCCTGTTCCAGCTAATAGAGAATAGGGGACTGGCATCGTTGGAAC 
ACATTATCATCCCTGTGAGCCAGTTTGCCATTGATTCGGCCCTGGCGGAGCGCCGAGAAT 
CATGCACAGGAATAGGGCGTCCAGATATATCCCTGTCTGCCAGGGTCCTTCCCCACGGAC 
CTCCCAAACTGGGGCCGTCGACAGCCGCTGAGGAGGATTCAACTTACGCTTGAAGCTTGA 
AGAGAGCAATTCACATGTTAATTGATGGTATAACTATTGGAACATGCTCTCGCTTCGCTC 
CGTTGCCAAGTCTTCAAGATAAAGGATGCAACATCGTAATTGCTTGGTTGCGCAAGCCAA 
GTGGCTAAAAATATACCTTTGGCAATACGAGGCATTGAGGGGATTTTTGTTCCGGAGGCA 
GAACAGCCCACCGAGGAAACAATGGACCCATGAGGAGGGTCTCCAAGGTTGTCCATTGGA 
TGCCAAGGGACCTGGCGATGACCAAGATGGGGCCGATGCGTATTGTCCGAACACCTGGCG 
CCGCAAAGGGCTAGGATAACAACAACACACGAGGTCTTCAGGGTCCATAAGGGGTCGCGA 
TCCTCGATCCATTCGAAGGTTTGGTTGTTTTTTCTTTTTTTTCTTTTTGGCCTGAGCGTC 
CAATACGAGACTGGGGTTTCGCGATTGTAGTTTGATTACTATAAAATCTCCCGCTCGAGC 
CTGCAGATCCCCATCTGCATATCAGGTAGCCAGAGACTTGATATAACCGTCAGCAATCGA 
CTAACCCTCGCACACTTCGAGAAAAAAAGAAAAAGAAAGATGAGAAGGCAACAGTCTGGG 
CTGGCTTGCGAGGAATGTCGTCGACGGAAAGCACGATGCGATCGTGTGCGTCCTCAGTGC 
GGTATATGCGCCGATGCAGGCCGTACTTGCATCGTCGTTGATAAAAGATCTCCACGAGGC 
CCCAAGAAGGGACAATTAAAGGATTTGCGATATCGGTTAGGTGAGTCGGGTCTAGTTGAA 
GAGCTCTGGCAATAGTGTCCACTGACCTAGACGGGCTACCACAGCGGTGATCGAACAACA 
ACTGATCAATCAGAACCAGTCCCTTGACAGTAGTCACATATTACCAGACTCAAATAGAGG 
AAGCCTGGAACGAGAAGCGTCAAATGAACTTCACTGTGAAGATGGCACGATAGGATGCGA 
CATGGATGAGTTGCAAATGTTGAACTTTGCTTCATCTGAAAGTATCTCCGCGTCTGACGG 
GCAGGAGGCAATTGACTGGACGTTGGCGTATGATTGTCGGGAAGAGAGATCGGGTACTTG 
GAATCATCTCGATATAAGCAACCCTCGCCCATGTATCATCACTCCTATTTCGCCCATTCA 
AACTTCTGCAAGCGAGATGACGCCCAAGGGGGAGCTGGATATGTCCGACCTCATGCAAGC 
TGATCTGTATGGAGGTTATGGTCCCTAAAACACAGGGTCTGAAAGCTGATATTACTGCAT 
CTTTATAGGGATCTACTATATTTTGAGCGAGTCCATCCAATTGTCCCGATGATACACAAA 
CGACGCTATCTTTCATGGGCCAACGAGAAAACGGTCTCACCTGCCCGAGCTTGCTTGCGC 
TCAGCCATGCGCACCATCGCTGCCGCCATGTCCGCTCAGTTCTGCGCGTTTTCCGATAAA 
CTCTATGCCTGTACCCGAAGTATGCTGGAGATGCAAGACGTACAGGGCGAGAACGGTTTG 
CCATGGATGACAACCACGAGAGCGTCTCGCCGCCGGATTGAACACGAGATGATTCAGGCA 
TGGCTCTTACTTGCCCATTGCGAGTTCTTACGCAAGCCTGAGCAGGACGCCCTCCTTGCC 
TCAACCAGGGCGGTTAGGCTTCTCCAGCTCTCTCGGCTATTTGATATTGACATGCACGAT 
GATGAGACCTCGCCGAATGAGAACTCAGGGTCCTGTCCGTCAGTTTCTCCTTCCACGACG 
CAGAATCTCCCAGATGAAGCGTGGATAGAGACCGAAGAGAAGCGGCGAACGCTGTGGACA 
GCCTTTGTCCTTGACTGTTTATCCAGTATGCTTAGCGATCGACCGTCAATGTTGCACGAA 
GAGATGGTCGGTGAACTGCTCCTCTCCTTTCCTTGTGACAATAGACAGTTCAGCTAACAA 
GATTGACCCTACAGATAAACACACGTCTTCCGATGCCCGAGAGGGATTTTCAAGGTGGCC 
AGCGACCAACCCCTATGGGCTTCCTACCCGAAACAATGGGCAAGACCGGTGACTGCGAGA 
CACTGTCCTCTTTTGCCCAGTGCGTTGTGCTCGCAAACCTTTTCGGGCGTTGCATAGCAC 
ACCGGCGGCTCGCACAGTCAGTATCCTTTCCGGAGTCTGGCTCCGAGTCAAAATCGCGGC 
AGTTTTGGATGAGGCACGAATGGCTGGCCGCGGCAGCCGCCCATGCAACAAGGACGATGC 
CACCGACACAAGCCCCCAATGAGTGTAAATCTGAGACCACAAAGTGTGATCCATTGGCTG 
CTTTCAATCGTATCCTCGCCTACAGTGCATGCATATCCCTTAGCGAGACGGCCGAAGCAA 
GGGCATGGGAGACCCTCGACGATCACACGCTGGCTTTGTCATATAGACAGGTAGCCAGCC 
AAGCCGCATACGAAATCGCTCTACTTATTCAAAAGGCGCCTCGGATAGCTTTCTTTAAGA 
TGCATCCTGTCCTTCCTAATGCAATATACTTGGCTGCCAGGTTTCTCAGAACTACGACGC 
CACACTTCGCGACTCCAGCAGAACATGACCACAACAGCATTCACCATCTACTCGTCGCCC 
TGGGTTATCTTAGCAGTGTCAATAATCTGGCCCGAGACCTGCTGGTCAAAGCCGAAGCAG 
ACGTTGGGAAAAGTGCACGGATAGCAACTGAAGTGACGGGGTCAAATTGGGATGCGTTAA 
TGGGCGATACATCTAGACATATAGGCATGATGGAAACATCTATATCAGTGTAAAATCCAA 
ATAAACTCAAAGCCATTACCGGCGTTATGTCTCCCGGTCGCCAAAGCTGCCTTTCATTTG 
TCTGAGGTAGATGTGAAATTATAATATATACGTTATCATCGTGCTTTGTCCGCTTCCCTG 
GCAGGTATAGATCTAGATGCAGTTATCTGAACGTGCTTTCGGGATTCAAGAGGTGCGAAA 
TAACACCGAACCGACAATGAAGGCCCTTCACCTGCAGATCCAAATCGACGATAGGATGAC 
AGCCGCGTCTCCGATAAATCCCCCAGAGGCTCAGAATGCAGTGTCTGCGCCCCTAACTCG 
CTCTCCCAAGATAGCCAAAGCGTCGCTTACCATACCAGCAGTATCGTGATCCCATAATTG 
ATGACTACGGCTAATTATATCACGACTCAGCTCTTCAGCTGCCAGCCCCCAGTCACGATC 
CTTCCAAGTACACAGTTCACCTGTTCGCCTGCTACTCCGAACCAGCCACTGTGACCTCTC 
GTACCGTACCTCACTGTACACGGCCAATGCTTCCGATGCCACAATACCTGAGACATTCGG 
TGCTTCCGCCAACACAGCCAATACCTCCGCGAGAACCAGAGCGTCTTCTATCCCAAATCC 
AGCTCCGCCTCCCTGGTTTGGCGTTGAGGCATGTGCCGCATCCCCAGCTAAGCAAACACG 
GCCCTTGGCAAACGTCGGTACCGGTGCTTCTAGCATATCAAACACGGCCCATTTTTCTAG 
CTTCTCCGGGAACATCGACACAGCTGACCGGACAGTTGGACCAAATTCGGCAAATGCTTT 
GGTTGCCTCGTTCCGCGTTGCCGGGAGTACATATCTCTTGCTATCGCTACTTGTTTGAAC 
CTCAGGCCATTCTTCCTTGTCCATGATGAAAGCCTCGATGTGCATTGCATGCACCTCGGC 
GAGGGGGATAGTGAGTACAAATGCGCCTGGACCAGTATGAAGTACCGCACTGGATGTCTT 
TTCTGGGCCGAGCACAGCGGTTGCTTGCGCTAAAGGCACCATACCACGGTATCCTAGTTG 
GTGTGAGTACTGGGCCCGAGGACAAAGTTCATCGGTTCCGAACATGGACGCGCGGACTTG 
AGATCTAATCCCATCACAGCCAATGACTATTGCTATTATTAGTACCGCCATGTTATTCAA 
CAACCGGCAGCGCCTGATCCATTAACTCACCAACATCAGCATGGGCAATTTCGCCATCCC 
TGAACTTTAGCACTGCCCTCCCGGATTCATGATCTGTCTCAATCGAATCTAGCCATTTCC 
GGTATTGAACGCAGTCTTTCGGGATATGTTGGACAATTTGGTCGACGAAGTCGCACCGCC 
GACACGCCTTGTAGCCTCCCTTTACGTGAAGTTGAAACAACAATGCTGCGGTTGATGTGC 
GAGGATCTTCGCTGCCTTGTTCTCGAACACCGTCCACAAAATTGATCGTTCCACCTGACG 
GCGCACTCGCCACATTGGTAAAGCTTTGAAGGACGCATGGATCCAGCGCCTCCATGGCGC 
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GCTGCGCGTTGGGTGTGAAGGTGATGCCGACGCCCAACTCACCAAAATTCTCGGCTCGTT 
CATAAATGGTGAAGCTAACATTCCGCTTCAACAGCCCGACAGCGAGGGCTAGGCCAGTGA 
TGCCGCCGCCGACGATGGCAACCTCGAATGGGCTGTTGGCGGATCGAGTCATATTGAGGT 
CGGGTCGCGCGATAAACCGATGGGTGGATTTGAGGAATAACGACCTGGGCTAGATGAGTC 
TTATCATCCTCGATATTGTCCACATCAATAATCTTCTAGACGGAGTTTCTGCCGCTTCAA 
TGACGTGGTTGGCTTTGTATCGGCGGACTCCGGAGTTTTTGTCGAACAAACCGGAGCCAC 
ATCTACTCCGAAGTACGTTGTTTGAAACTTGGCGCGGGGCCATAGAACAAAGAACACAGC 
TGATATGCGTTTCGAGATGGCGTCAGGTCAACCTCGTGTACGGTGGGTCTGAGTTATTGG 
AACAGTATAACCTCTACATAACAGATCTCCTCTGCCGGAGCTTTCCTATCTCAGTCACCA 
CTGTGAGCTCAAAGTCAGGGCTGCCCAGTGCCACGTGATAAACCAGTGTGGACTATGGTC 
GAGAATATAGGCAAAATTGCACATTTTCTAAGGTATTTTGACTGAGCGCCTGCCTGGTTG 
ATAATTAACCACCGAGGTCAGGTAGATTTCTAGGGTGATGAGTTAGATATGCTGCAAGAA 
ATGGGATCGCATCATTCTTCTATTCTTCATCAGCCTGTCTGGTAAATAAGTCAGCCTTTT 
CACAGCCCAAATCAGGTGGAAGTTACCGAGGAATACATCAGAGCAGTTTTACAAAGATCA 
AACGAATGAAGCTTGGAAAATACAGATTGTAGGCGAGAAATATATCTAGAGTAGAGCTAT 
CATTCTATATAATCCATGGAGGTAGACAAATGTGCAACTAGGATTAAAAAAAAGAAAACC 
ATCAACGCAGGAACCCAGTGTCCTTCCAAACCTGGAAGTATTTCATAACTACCGCGTCAG 
CCACCGGCTGCACGCCTCTCAGTGTCGGCGAATGCTCCACGGCATTATTCGTGGCCATGG 
TGACCCCACCGCAAGACATGTGCTGGAACTTGTGCTCAAAGAAATCGATCGCCTTGCCCG 
CGGGGTTATCCCAGGGGTCCTCACCAGGGAATGCCTTCACCCGTCTCAGCCAGTCATCTA 
GTGGGACAATCCCTTTCTCTGGGATGCCTAGAGCCTGAGCTAGTACAGGGACGATCTCTG 
CCCAAGGCTTCCGCACCGGGTTATCCACATGGTAAACGGGATGGCAGTCCGGCGCATCAC 
GTAGTAGTAGGTCTGCTAGCGTAGCCGAGGCTTGCTCGAGGGGCAGCCAGGTTAAGATGC 
CTTCCACCGCTGGGAAAGAACGCAGGGTCTGAGCGGACTTGAACAGGAACCCGAGAACTT 
CCATGTGGTTCCAGTACCCAGTCTCCATGGATCCTGATAGCTGACCCAATCGGACTGTCA 
TTGCGCGGAAACGCTCCGGGTACTGACCCAATGTCTCGTGGAGGATCCGCTCACATATGA 
CTTTCGCCCCGCCGTAGCCGTTCGGAAGAGCACTGTCGATATTCAGATGTTCTTCCGGAA 
CTTGAATCTCGCCGGCGTGGACGGATGGGTATTTACCCACCGCCGACAGGGAAGAGATGA 
ATTGGAAGGCGAACTTGAAGTCGGTGGCCTTGCGGCGAGCTGAGATCTCTGCTGCAAGGT 
CCACAAGATTGCGCATGATCGTGAACTGGGCCTCATTTTGCTTGAGAGAGCGCAGGCCGT 
TGACAGGGAAGGCATTGTGGATAATGTGAGTGACGTGGCAAAGTAAATGTTTGTACTCCT 
CTGTGTCTAGACCCAACTGTGCTTTGGAGGAGTCAGTCTCGATTACTTTCAATTTGGCGA 
GTTGTGAGGCATCTAGGGCAATGGACTTTGACTCCAGCGATTGAAGCTGGCGGTGCAATG 
GGTCACGAGGGGTAGCGTCCTTAGCTCTCGCACCTCCGATCGCCGGTCGATTCAGGCAGT 
AGACCCGGTCGACCGAAGGAAGAGAGACTAAATGGGCAATAATGTGGCTTCCAAGACTCC 
CGGTCGTCCCTGTGACGAGGACAGCCTTGCCGTACTCAGAAGAGTCAGTGAGATCTCCGG 
AGTAGGCAGGGATTGTGAAGCCTCGGATAGTTTCTTTGACATAGTCATCAGCAACCTGCT 
TTTTCTCGTTCAATTCCTCCTCGGATAGGTCATGGTCGTCAACTTGTTGCTTGGCGACAG 
GGGGAAGACGACCAACGTTCTGCTCGACATCGTCGGCCAGAGCGATTATGACCCGTTGGA 
CACGCACTTCGGGTAGCTTCCCATCGGTCCACTCAACATGTTTGTAGCCTGCATCGAGTA 
GCTCCTTTTCCCATTGGCGTTCGTCTACAACGGCGTGCGTGCGTCCGTCTTCAAAGAGCC 
ACCAGCCTTCCAGAGTACCCCAAACGACGTCCACCCAATGCAGCGTGCTGTTCATTTCCA 
GCAACATCAGAAAGCCATCTGGGCGCAGGAATTTGCGGATATTTTGCGTCGAGACTTGGA 
GTGAGTGTGTAGCATGCACAGCGTTACTAGCAATCACAATGTTTTGCGAGCCGATCAGTA 
GCGGGTCGGACGGAGGTTGTTCAATGTCGTGCACAGCGAACTTCATGAAGGGGTACTGTT 
TGAACTTCTTCTTGGCTTGCGCCACAAGAGACGGCGAAAGGTCGGTAAAGGTGTACTCGA 
CGGGGATTCCAAGCTTGGCCAGCGCGGGAACGAGAACTTTGGTTGTCCCGCCAGTCCCAG 
CACCCATCTCAAGGATCTTCAAGGGACCACGATTCTGAGCGCAAAGTCTCAAGCTTTCTG 
CAATACGGGAGAGGAAATCAGCCATCAGCTGGAAATACAGCTTGTTGAACGGCAGCTCGC 
CATAGAAAGCGGCAACTAGTTCACGATTTTTGGCATCTCCAAAAATGAGTTGGGGACCAT 
CGGCCTTTCCCGACAAAACGTCTGCCATCCGAGAACCTATATTGTACGTAAGCTGGTGGG 
AAGGGCCATCGTCCGGGTGGTGGGACATGAGGTCGTCCAATATGGCTTGGGAGGACTGTG 
TAGGGAGAGGAAGGGCGGTGCGAGTAATGATGCCTTCGTCCACGTCTATGATTCTCGTCT 
CTTCGAGCATCTTGTACAAGTATTCATGGAAGCGGTGATGGCGAGGAACAAAGGGTACGG 
GCTGCAGCACTTCCCCCGGCTTGGCGGCCACCAGGTCGCAGCCCAGCTGCTTGAAGGCAT 
CGCTTGTAAGCACGAGGCACAGTCTGGTTTGCTTCTGGGAGGCACCATCAAGATAGCCGG 
CGCATTTCCATTTCTTCAAGTAGGCATCGGTCTGCTCATTAGCTGCGCGGAAGGCCTCGA 
TAACGGCAAATGCCGGCAGGCCCACCTCGTTGCCAAGGTCGATATAAGATCTAGAAATGT 
CCTCTTCTTCCAGCTTGGGGCTTGGCGTGGCAAGAATCCCGTCGTTGCTGGATGGAGGAG 
TGTTTCGGGACGAAGAAGCTGCATCCGAAGACTGCGAGGCATCATCCTCACCCTCAAGCC 
CAAGTGTAGACTGAAGGAAAGCGAGAATGCCTGGTACGTCAAAGATACTCATGAGTTCAG 
ACTGTTCCAAGGTGCAATTAAAGGTGGTTTCGACCTCGCGGGCCATCTCCATTCCCATCA 
GAGAATCAATCCCAATGTCTGCCAGTGCATCGGTTTCATTGATTTCCTCAGGCTCGAGTC 
CAGAGATATCTGCCAGGACGGGAAGAAGCTTCGCCCATAGCTCAGTCTTGGTGTTCCTCT 
TTTGAACCTGAGCACGAGCGGGCGGTGATGTCGTCATAGATGAATACTGGTTCTCAGTTG 
GCGCAGAACTGATGGGAGCAATTGTAGCGGGGAACGGTACAGGCGGTGCGGCAATAACAA 
CGTTCGTGAAAAGTTCACTCCTTTAAGCTATATCAGAATCGTGATTCGTAGGCGGAATAA 
AATACTCACATGGATCTAGCACTGAATTTGACGCCAAGTAGGGCCTCGTCAAGTAGCCTA 
GATGCCGAATCGAACACAAAAATGTCTGTTATAAAGGTGTCTCCTTCTGTGCGCTTGTGT 
GTCGCAAGGATTTGCCATTCGCTTTGATGGTCGGCGTAAGATCCTTCGCTGATTTTCCGC 
AGGAGACTCGGTGACCTCATCCATTGCTCAATGCCATCGGCAATATAGACGGTGTCATCT 
GCGGTGTTCCGGCCCGGAGCAAGACAGTTCACCCAAATGCTGCCAACCTGGGAAAAAGTC 
TCCCCGAGGGCGAAGTCAAGCCAGGAGTCCCGAGACCGTCGCTTCACAGCTCGGCCAGCT 
GACTCGCTCGGTCGCCCAACCAGCCTTTGCAGGCCGCGGAATTTGGGGGCGTAGCTCACG 
AGGTCCGAGTAAACTTTATATATGCTCTGCCCTTGAATCACTTCGTCAGCATCGTCAGCA 
GACTCCAACGCCCGCAGGCATCGTTCATGCGTTACAAGCCGCTCCAGCCTACTAAACTCG 
AAGTTTGAGCGGGCGTCATCGGCACGGTGGAACTCAAGCTGTCCGCTCAGATGCACAGTC 
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TTGCTAGAGTCGTCGGCTTCACTGGTCAACTTGAACTTCCAACCTTCAGGGGCATGTCCA 
GAACGTTCGAATTCAAGAAATACTGCCCTTGTTGGATCCATCACAAGCGGGAGGTGATTC 
AAGACGTTATAAATGTGGGGATGCAGCTCATTGGCCGCAATGACTTCCAGTCGAACGCTT 
GTGATTGCCTGGATTGCGGTGTCAATCCCGAATATGGGCGGACAGGCCTGGACAGTTTTT 
CCCAATGTGTATCCTGAGACAATATCGACATATGATTTCGTGGTTGTATTGATGCGGAAC 
CGACAATCGGTCTCAGTCTTGTCGCCGTATCCCATGAAAGTGTAGAGGCCTGGTGCCGGA 
GCTTCTTGGTCCACACCACCGTTTTCATACACCAGTCGCTCGATTACCACCGGCTTTGGG 
GGCGGCTTAAACTCGAGCCAATGGCGATACTTCTCGAATTGGTACGGTGGGAGCATGATG 
GGTGCATATCCATAGGTTTGCGCCCGGGAGTGTGGCCAGAACGAGCAGGGCAACCCAGCA 
TTCCACAGACTCATGGTCACGTCGGCGAGTTGTCGGGTCCCCTGAGTGGTGCCAGTGACA 
CTGACTGGCTGGAAGGTGGAACCCTTCGGCATCCCCAACGCCCTGCCTGTCATTGTCGTT 
ATGGTGGAATTAGAGCCAGCCTCCAACCAGATGGCCTCCGGATACTGACTCGCAAGTCTT 
TGGACGGCATGGTCGAAGTAGACAGGATTCCTCATGTGCTCAGCAACGTAAGCAGGTGAG 
ATCGGACCGGTCTCCCGCTGCTCGGTTGCCCTTTCGAGAGGTATGTGGGCATTTCCAAAG 
CTCAGACTGCGGCCCAGGGCCTCCAGTTGTGGCCTCAAGTGCTCAACTAGGGTCGAATGG 
AATGCATTAGTCACGTCTAGCCTCTTGTGTTTAATTGGGATATCAAGGGTTGAAACTGTC 
TGCTGCACAGCATCAATTGCAGCGGCTGAACCAGCGATGGTGAAGCTCTTCGGGCCATTG 
AAACAGGCAATTGTCGCATGTCCAGCCCGTTCAGTTTCACCAAGACGCGCATTTGAAGCA 
ACCAAGAGCTTTTCCACATCGTTTCGGTCCGCTTCAACTGCAATCATGGACCCCTTCTCC 
GGGCCCCAGCTCTCTTTGATAATCTTCGACCGGCCATGGACGAGCTTGAGCGCATCCTCC 
AGGCTGAGGATGCCTGATACGCAAAGTGCGGTGAGTTCTCCGAATGAGTGGCCAACCAAG 
GCTGCTGGTTCAACGCCGCAATCGATCCAGCTCAACGCACATGAATACTGCATGGAAAGG 
AGCAGCGGCTGGAGTACGGCCGGGTCAAGGATCGGCTCGCTTTGGAATATTCCCGGGTAG 
ATACTACCCGCCCCGATCGACTTGCAGACACTGTCGCATCGATCGAGGTATTTACGTAGC 
ACTGTGGCTTTGTCAAAGACTCCTCGGTCGAGGCCAACGGATTTGGACACCTGGCCCCCG 
AAGCACAAGATAACAGGTCGTACGGAAGGCACCGCAAATGTTTCGAAAGACGCCAGCTTT 
TCTTCGAGTTCAGTGATGGACTCGGCGCCGAACACGAAGCCCCGGCTAAGCGACCAGTTA 
GATTGCCGATTGACGTTGAATGACAAGTTCTCAATTCCTAGTACGTCTCTCGAGATGACC 
TTGTTCTTGATGAATTGGCGCAGTCGTGTGGCATAGGCCCGAATGGCTTTGTCGTCGAGC 
CCAGAAATATAAAATGGACATCTGAAAGTGGAAGTCGGCGATGTTAGATCCGCGCTTCCG 
TGACCGACTGCTTCACTTCCTGAGGGGTATTTCGGTGCCTGCTTAATCACCATGGAAGCA 
TTTGAGCCAGCTGCGCCATAATTGTTGATGAGTGCTACCTTGGACTCGTCTTCCCAAGGG 
AGGGCTGCTTTCGTGATCTCCATATTATCCGCAGGTGAAGCCTTGATAGACGCGCTCATG 
GAGGTAAAGCTGGCCTGTGGGGGTATGCGACTTTCTTGCATCATCAACAACATCTTGATC 
AGTGCTACAACCCCAGAGGCACCCTCAGTATGACCAATCAGCCCCTTCACAGAGCCGAGT 
TGAAGAGGCTTTAGCCCCGCGCGGACGGAGCCACCAAAGACCTGGCGAATGCTGTCGTAC 
TCTGCTGGGTCACCAACCGGAGTTCCTGTCCCATGAGCCTCGACGACCGAGATATCATTA 
ACTTCCAACCCGGCCTTGCCGACAACGTTCTGGAACACGTTGGTCAGGGAAGACGGGTTG 
GGAACAAAGATCGGAGTATCGTTTTGATTCTGGTTGATGGCGGTTGCCGAAATCACACCC 
AGTATCTGATCGCCGTCGGCAATAGCATTGGATAATTTCTTCAAGAACACGGCGCCAATA 
GCCTCACCTCGACAATATCCATCAGCCTTTGCATCAAACGGCTTGCATTGCCCAGTAGGA 
CTGAGGAACGATCCTGCAGCCAGGTTCTGGAAGAACATCGGGGTGCTATAAAAGTTCGTG 
CCACCCGCCAAGGCAGCAGAACAATCACCGCTCAGGATAGCCCGGCAGGCTAGATCTATG 
GCGACAGTTGATGCTGAGCACGCGGTATCGAGCATCATTCCTGGGCCCGTCCAACCAAAG 
TAATGACTAACCTTCCCAGCGATGTAGCTTCGAAGGGCACCTGTGGCGGAAAAGGCCGTC 
GGGGAAGTATGAGAGATATTGTTTTCATAGTCATTGGCGACGCAGCCAATATAGCATCCA 
ATTCGGCGATCTGCACCAGGCCTGTGATAGTAGCCCGACTGTGCCACGGCCTGATAGGCA 
GTCTGCAAAATCAGTCGTTGCTGTGGATCCATGTGGAGGACCTCGCGAGGAGACTTCCTG 
AAAAACTTGTAGTCGAAAGCGTCGTAGTCATCGATGAAGTTTCCGTACCATTTCCTGTCC 
TCGCCGTCCTGGCCAGGTCGGAATACAGTCTCCATTGCAAAACGCTCGTTAGGGACAAGG 
TTCTTGTGCTGCGATCGGCCTTCCAACAGGATATTCCAGTACTGCTCCAAATCCTGTGCC 
CCGGCGACCTGGCATGACATGCCAATTACAGCGATATCGTTGTCGATACATCCTGACGGC 
ATATCTGGATTTGAATGGCGTTGGCCAGTACTCTGAAATTCGTAGTGGGTGACTTGGCTG 
TTTAGTCTTCGCAGGAGGGTGGGCGGGACACATCGCTCTGGGCCAAATTCAATGACCTTA 
GAAGTCCTATCTTGCAATGAACTGGACACTGCGGAACGGAAGGTCTTCACCCAGTTAAAT 
TGTTCCACCAGGAACGCACGCGAAGCAACTTCTAGTAGACTGTCATTGTCTGCTAGGATC 
TTCTCGGAGTTGACCCGTGTGCGAAGAATGAGAGAAGAAGCATCGGGCAATTGGAAAAGG 
GGATCTTTTCTACAGAAGCTAAACAGGGCTTCAAGATCGTTATTGTAGAGCTCGCCTGCA 
TGAAAGCGTCCATGAAACTCGGTTTCGCTAGCTGTAAACCCTGCTCGTGAAAGATGTCCC 
TTCAAGTCGGAGGCAATTCGGGAAGGCGTTGTCACCGTAGCTCGATTATCGTCATATAGG 
ACAGATATGTAAGCCTGTGCGTGTGGCTTGTTAGACTGAATCAGAAAAGCGAGAAATGGA 
GACTCACGCCCGGACAAATTTCCAGCACTTTCTTTAAGTCGGACAAAGATTGCCCACCTC 
TCCAGAAAGCGATCAATGACACTGATGATCCAGTCACATCAGAGATGTCTTGTGCGTCAG 
AGAGAGCTCCTAATACAAAGACTTTGCGAAGCACCGCCGCGGCATTGTGGTGGAACTTTG 
CCCAGGATGAGCTGCTCGATACCACCAGGGCACTGAAAACGCCTAGGCAGCAGCCCACTG 
TCTCTGTTTGGGCGGTAGAAGGTAATTGAAACAGCTTGCCATCTCCATTCGCTGACTGTG 
ATGACTCGACATATTGTAGGTATTCCACAAGTTGTGCGATGATGACAAGTGGCCCAAGAA 
TGGCGTTGGGCAAATTTGCAACCGTAGTTCGAGGAGTAATGACTCCTGTTCGAAGCCATT 
CTGCTAGCCTACGGGCGTGGTCTGCGCCGGGAGTCTGTTGTAGTTTGGGAATTGATTCAG 
ACAGAGCATCCCAGCCACTCTCGATGTCCTCGATAGCGCGGACAGCCCATTGGCTGGCAG 
CATCATCTTTGACGAATGACAGAATCCGACTGAAATACGTCTGGTCAAGGCTCATGGCCC 
CAGGCCCAAACAAAAGCAATGTCTTAGCACTCGGCATTGCCATAGTTGATGTGGTATCAG 
GTTGGGAAGCTGGACTGACGATCAAGTGGCAGTGTTGAGTACCACAAGTCTTACTTCAAG 
ATGTATTTCGACTACTCAGGTCAAGAGTGCCATGGGATGAGGGTTTAGAAGTAACCATAT 
AGAAGCCCGGAGAAACCATCTCCTTTCTGTGGCCGCCATGACAGACTCAGACAACTAACC 
TGCATTAGGAATATCGTCGGCCGTATTGCCAGACTGCGGCGCGGACTTGGAGAAAAACAC 
GTCCCTGTGAACCGGAGTTTGATACCCTCGGCCGGAGTTTTCGGCCATATCCGGGGTCCA 
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TCGTCCTGGAGATAGCCATGGATGTAAAATGATGATATTCTGGGGCTGACCATCGGAGAT 
GACCAACGGGAGAGGCAAAACTGTTAACTAGATACAGTGGGATCGAAGTATTGGGCTAAC 
TACCTAGGTAGTTAACCCTTGTACCTAGCTAGGTGTACCGCCTTATATACCGCCTCGCTT 
TTAATATACTGCTATGAAAATAAACAGTAAGCCGCTTATGCGACCGTGTACTTCTCCGGT 
AGTATTCTCCCATAGTCTTTTTATGTATATTTTTAGTGGTCTTTTTGTAGCAGTCTCCCT 
TTTTACATACCTTTGACTGCTTAGTGTTGCTAGATCATGTGGCTAGGTACATACTAACTG 
CGAACACTTAACTAGAGTTTTAGTCCGGCAGAAGCGGCAGAATTTGGAGAGCGGTATATC 
TAGGTACATCTTTCGGAGGTCCCACATACGGCACATCGTCCAAGGAGACATGATAGAGAG 
ATTTTACAATGAAATTGATTGCTCGACTATGTGTACGGCAAATAGCTTCCAGGTCACTAA 
CCTGGCGCGTTGAGTGGTTCACTTGGATAGGAAAATATATATATCTGGTGAATATCTTCA 
AAATAAGTCTGGTTTCACCCCACTCAGATTGAGTAGTCGTTTCCACACCACAGGATAATC 
CAGAGACTTGGGCCGAATACGGGAACTAATCTGCCTGCATGGGCTTTCATCCAGGACATG 
TCGTGATGTGGCCTCATTGTTGTGGTTTCTCCGCAGGACTTGGAATAACTCCAACTCCGC 
CTCACAGAATCACAGCATGTACCCCGACACCACTGATTACTCCGATCCCCAATGTCCATT 
GTCCGGGAACGAGATAATGAATACTGAGCCATCCGCATGCCCTCTAATTTACCCAACGAA 
GCCCTGGGTATCTAAGAGGCAGGGGCATAGATCTGGATTCCCACTGCAGGTTCGCCCAAA 
TCCCATGGTATCTATCCCACGGCACGAAGGCCTATCCTTTCAACCTAGTTGTCGACATCT 
AAACAACACAATATGGGAAGCATCGATAACACGGCACGCGGGTCATCCGCCAGCGAGCCG 
ATCGCCATCATTGGCATGAGCGCCAAATTTGCTGGCGACGCAACCAACACCGACAATCTC 
TGGCGCATGTTAATTGAGGGAAGAAGCGGTTGGTCGCCCTTCCCCGACTCTAGATTTCGA 
TCAGAAGGCGTCTACCATCCAAATAATGAACGACTCAATAGTGTGAGGCCTCACCCCGCA 
CTCCTACAGAAAGAAGTCTTAACAAAAGTCATTGCCTAGACACATGTGAAGGGTGCACAT 
TTTCTCGCAGAGGATGTCGGACTGTTCGACGCGGCATTTTTTGGTTACTCGGGTGAAACA 
GCGGCAGTGAGTGCTTTGCTGGGTCAGCTTCTTGGACTTGACGCCTACTGACCATGACTT 
TAAGTCAATGGACCCGCAGTACAGACTCCAGCTCGAGTCCGTCTACGAGGCATTGGAAAA 
TGGTGAGAGAAACGTTCCCTTCACAGCCTTTTTCTTTGAAAAGTCTTTAACCAAGCATCA 
CAGCCGGTCTGCCATTGACGAAGATCGCTGGTTCCAACACCTCGGTGTTCACAGGAGTGT 
TTGTACACGATTATAGAGATGGCTTACTCCGCGATGCCGACAACTTACCCCGGTTGATGG 
CCACTGGCACGGGTGTTCCCATGATGGCGAACCGTGTATCACATTTCTTTGACCTGCGCG 
GCGCCAGTATGACAATAGAGACGGCGTGCTCCTCGGGAATGGTGGCAGTGCATCAAGCCG 
TTCAAAGCTTGAGGACTGGAGAGGCGGATATGTCCATTGTTGGCGGTGCCAACCTGACGC 
TCAACCCAGATATGTTCAAGGCGCTAGGTTCTGCTGGGTAAGTCAAGTACCCTAACTACC 
GTAATAGAACGAATGGCTGAATTGTTTATGAAAGGTTTCTTTCTGCCGACGGCAAGTCCT 
ATGCATTTGATTCCCGCGCCAGTGGATATGGCCGCGGCGAAGGTGTTGGAACACTAGTCG 
TGAAGCGCTTGTCAGACGCCCTTGCCGCAGGAGATCCGATTAGGGCTGTGATTCGAGAAT 
CGATGCTCAACCAAGATGGCAAAACTGAAACAATTACGTCCCCGAGTCTAGAGGCACAAG 
AAGCCTTGGTGCGCGGATGCTATCAAAAAGCAGGTCTCGACCCTCGAGAAACGCAATATT 
TTGAGGCACATGGCACTGGTACGCAGGCCGGGGATACTATTGAGGCACAGGGCATTGCAA 
CTGTTTTCGCATCACGTCAAGAACCATTGCTCATCGGATCGATCAAGACAAACGTTGGCC 
ACACAGAGGCCGCAAGCGGACTTGCAAGCATCATCAAAACTGCACTAGCCATGGAAAATG 
GAGTCATCCCGCCTTCTATCAACTTCGAGAAGCCTAACCCGAAGATCAGCTTGGATGATT 
GGAATCTGAAGCTTGTTCGGGAAGTGGAAACATGGCCAGCGGGCCCCATCAGACGCGCAT 
CAATCAACAACTTCGGATATGGAGGAAGCAATGCGCACATAATCTTAGAAGATAGCGCTT 
CGTGGGTCAAGGCTATTGGTGGCCAGAATGGACGTACCAATGGGTTCGCGGATGGACATT 
CGAACGGACCAAACGCAAATGGTCACCACTCCACGCTGGACCCACATGTGCAAGAAAGCC 
AAGTTATCTCAAAGGTCCTTGTATTGAGTGGGAAGGACAAGCAGGCGTGCGAGAAAATGA 
CAGCGAACCWTGCGGACTACCTGAGACAAACCCAGTCAACAAACTCCAATCCACGAGAGC 
TCCTCGACAGTTTGATCTATACGCTAGGTCAACGGCGCAGCCGCTTCCCATGGGTAGTAG 
CACATCCAATACCAGTTACGGAGGGGTATGAAACCGTAGTTCAGACTCTCCAGTCGCCCA 
AATTCAAACCAACACGCACTTCGCGTCGACCTCGGATCGGTATGGTGTTTACAGGCCAGG 
GGGCACAGTGGAATGCCATGGGAAGGGAGCTCATCGAGGCCTATCCCGTATTCAAAGCAT 
CTCTTCAAGAGGCCGCAGGATATCTTGAACAGTTTGGCGCCGAATGGTCATTGATGGATG 
AGTTAATGCGAGATGCCGAAAAAAGCCGCATCAATGAAGTCGGCTTGAGTACTCCGATCT 
GCGTGGCAGTACAGATCTCGCTTGTGCGCTTGTTACGGGCTTGGGGAATCGTTCCTGTCG 
CTGTTACCAGCCATTCGAGTGGAGAGATTGCCGCCGCTTACAGTGCGGGTGCCGTAAGTT 
ACAAAACAGCTATGGCCTTTTCCTACTACCGTGCGGTGCTGGCGGCAGACAAGAGCCTAC 
GCGGGCCAGTCAAGGGCGGCATGATTGCCGTCGGACTTGGATTAGAAGAGACGGAATCCT 
ATCTTCGCCGGCTGAGCTCAGAGGGCCAAGCTGCCATAGCTTGCATCAACAGCCCGTCTA 
GCATAACGGTCTCCGGTGACCTTTCGGCAGTGGTAGAGCTGGAGGATCTGGCCAATGCAG 
ATGGTGTATTTGCTCGTCGTCTGAAGGTGGACACGGCCTGGCACTCGCATCATATGACTC 
CAATTGCGAATGTCTATTGCGAAGCCTTGGAGAATACACGAGCTGAAAAGATTGACCGAG 
ATGCTCTGACCACCGTTGCATTCTCATCTCCAGTAACTGGAGGTCGTATTACAGATGCTC 
AACAGATCGCGCGCCCGGAGCACTGGGTTGAAAGCTTGGTACAGCCTGTGCAGTTTGTCG 
CCGCTTTCACCGATATGGTACTCGGCGGCTCGGGATCTGTTGGCTCTAACGTGGATGTGG 
TCGTTGAGGTGGGCCCGCATACAGCGCTGGGAGGCCCGATCCAGGAGATCCTTGGACTGC 
CCGAGTTCAAAGATTTGAACATTCCATATTATGGAACTCTCGTTCGCAAATTAGACGCCC 
GGGACAGCATGCATGCACTTGCTTCTAGTCTTCTACGAGAAGGCTATCCTGTTAATATGG 
GAGCAGTGAATTTTGCACATGGGCGGGGACAGTACGTCAAAGTACTGACCAACCTACCAT 
CGTACCCCTGGAACCACCAGGCAAAGCACTGGGCTGAGCCACGGCTAAATCGGGCCATAC 
GTGAACGATCCCAGCCTCCTCATGACTTGCTCGGATCCATCGTCGAAGGCTCAAATCCAA 
ATGCACCGTCTTGGCGACACATCCTTCGAATGTCCGAGTCACCGTGGACCAGAGATCACG 
CTATTCAATCCAACGTCATCTATCCAGCCGCTGGGTACATTTGCCTGGCTATCGAGGCAA 
GCCGTCAGCTTCATGTGCTCAATCAAACGGCCGGAGAGATTGGTGGATACCGGCTTCGCG 
ACGTTGATTTCTTACAGGCCCTCATGATTCCGGATAGCTCAGACGGCATCGAGATTCAAA 
CGACGATACGTCCAGTCAGCGAGAAGGACATTGCCTCGCAAGGATGGAGGCATTTCGAGG 
TCTGGTCCGTTACAACAGACAACCGCTGGACCCAACACGCAAAAGGGTTGGTCTCTGTTG 
AACTTGGAGAGTCTTCTGTCCGGATGTCCCGACCAGCTAGGAAGAACATTACTGGCTACA 
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CGCGGCGAATTCTTCCTGCTGATCTATTTGCCAACTTGAGGAATCTGGGGATTACACACG 
GGCCGGTTTTCCAGAATATGGACAGCATCATCCAGTCTGGTTCTGAAATGCGAAGTGTGG 
TGAGCATGACTTTGCCCGACGTCTCTGTTCCCAATGACCTTCCCCGAAACCACATTCTGC 
ATCCCGTCACGTTGGACTCGGTAATCACGGCCCCTTACTCAGCAGTCCCTGGAGCTGCTG 
CCCGTGAAATTACTGCCAAGGTGCCCAGGTCTGTTGAGAGATTCTGGGTATCCAGCAAGA 
TAAGCCACGATGCGGGACATTCGTTGGAGGCAGACACGACGCTCATCCGCGATGATGATC 
AAGGAATGGCGGCAGATGTGCTGGTTTCTGATCATGACACCGGAAATATTATGCTCGAAA 
TGAATGGCTTTTCTTACCAGTCTTTGGGACGGAGCACGTCACTACAGAAATCCGAATCTT 
GGCCGAATGAGCTGTGCAACAAGGTAGTTTGGTCGCTCGATATTTCCACGCCTTTGCCTG 
CTACCTTGGCTGCAGTGAGAAATGAATTGGCCTGTACCGTCCAATCTGCTGAATGTGACA 
CTACAAAAGCTACATTGCGTGCGTGTATCTACTTTATGCAACTGGCTCTCGTCGCTCTGG 
ACTCGCACGACATAGCTGAGATGGAGCAACATAATGCGTCATACTATACATGGATGAAGG 
ACACTGTCGAGCTGGCCAGCTCGGGAAAACTGTTCGAAGGTAGCGCCGAATGGTTATACC 
ATTCAGAGAATGAGAGGCAGCTTCATATTGAACAGGTTCAGACCAGATTGGATGGGGAGA 
TCGTGTGTCGGCTGGGAACTCAGCTGGTAGACATATTGCGCGGACATACCGGAGCACTCG 
ACCTGGTCATGCAAGACAATCTGCTATCTCGTTTCTACAGCTATGCTCCACGGTGGAAAC 
GGGCGGGGACGCAGATCGCAGGACTTCTTCGCCATCTCTCCCACAAGAATCCCCGTGCTC 
GCATTTTGGAGGTGGGTGCGGCCACAGGCGCCATTGCACTCCATGCCCTTGGAGCCCTAG 
GCACGTCTGACTCGGGTGGTCCCAATGCCTCCATGTACCACTTTACGGACACTTCTACGG 
CTTTGTTCGAGACAGCGAGAGAAAGCCTGCAGCCCTGGGCTGATCTGCTGTCCTTCGATG 
AACTCGACATTGAGCATGATCCAGCATCGCAGGGGTATACACCCGGGACCTACGATATAG 
TGATCGCCTCAAATATCCGATCTATCTCTGAGTCCACATCGCAAGCGCTGAGCAACATCA 
GCTCCCTGCTAAAGCCCGGCGGCACCCTCTTGCTGGTGGAACCTTTGAAATACGAGGTCG 
ATGTTCACTTTGTCCGTCGGCTACTTCCTGGCCGGTGGTGGGACGATAGCACAGAGCTGA 
AGGCAAACCTATGTCTGGATATGCCATCCTGGGAAAATCAACTCCTAAGCGCCGGTTTCA 
CAGGTGTTGAACTCGAGTTGCTGGATCGTGAAGACCCCCAAGAAGCCGCTTTGGTGACTT 
TCATGTCCACTGTGCAATTACCACAGCCACCAAAATCAAATGTGGATGCGGACCAAGTGG 
TCATTGTCACAAGTCGAAACGGATGTCCTCCAGCTGCTTGGGTGAAGGGCCTCAAGGATG 
CCATCGCTGCCTACACCGTCAGTGAAGGGAAACTAGGTCCCATTGTTCAGGATTTAGAAT 
CCTTAGCTGCAACAGCTGCGTCTTATGCGGACAAGATCTGTATCTTCCTTGGCGAGGTGG 
ATGAAGGCATCCTATACAACTTGAATTCGACATTATTGGAGGGAATTCGTTCAATGAGCA 
CCAACTCTAAAGGATTGATCTGGGTGACGCGTGGTGGTGCTGTGGACTGTGAAAGGCCAG 
AAATGAGTTTGGCGACCGGGTTCATTCGTTCCCTGCGCAATGAATATGTCGGTCGCAAGC 
TGCTGACCCTCGACCTGGATCCCAAGGGAACACCGTGGTCTGACGTTAGTATGGCTGCAA 
TTGCCAAGATTCTGGGTACGGTCATTGGGAATTCCGCCGGTGGCTCTATGGTAGAGAAAG 
GTGCCGTGGAGCTCGAGTACGCCGAACGAGATGGCGTTATCTTGATCCCGCGAATCTACC 
ATGATGTGACGAGAAACCGAATGCTTTCCCCCGATGCATCAGATGCCGCCATGGAGAAAA 
TCTCAATTGAGAATTTCTACCAACCAACCCGCCCTTTGTGTTTAAAACCGGATTTGCTAG 
TCTTCGGTGACGATGACTTCTCTGCCGATTATCTTGAACATCTCCCACCGGCATCCCTGG 
AAGTGCAACCTAAGGCGTATGGTGCTACACTGAACAGTGTCGGTGATCATATCGCTGGCT 
TTGAGTGTGCCGGAATAATTACGCAAGTTGGGGAAGAAGCAGCAGCCCAAGGCTATGCAG 
TCGGTGATCGCGTTCTCTCAGTCTTGCGACATTCATCTTTTCCGAGCCGGGCTGTCGTCG 
ACTGGAAACTGACGACGCGCATGCCAACTGACATGACCTTCCAGGAAGGAGCATCACTTC 
CGTTGTCTTTCCTCAGTGCATACTTTGCCCTGGTCGAAATCGCGCGACTGCAGCGTTCTC 
GGTCAGTCTTGATTCACGCTGGTGCTGGAGATGTTGGGCAAGCTGCAATCATGGTTGCCC 
AGCATCTCGGGGCGGAGGTATATGTGACAGTTGGTAGCCCTGCAGAGCGTGGCCTGCTCA 
TACTGAAATATGGTCTGCCGGCGGATCATATCTTCAGTTGTACAGACTTGTCACTTGCAA 
ATGCGGTAGTAGCTGCGACACAAGGCCGTGGAGTTGACGTGGTTCTCAACTCACTGACTG 
GCCCGCTCTTTCAAGAAAGTCTTAACCTTGTGGCCCCGCTTGGCCACTTTGTGGAGATTG 
GCAGGCGCAATACCCAGACAAATGGCTATATGCACATGCGGCCATTCGATCGTGGCATTT 
CATTCGCGACCCTTGATATACCTAGCTTGCTGGAGTATCGGGCGATGGATGTTCACCGTT 
GCCTCGCTGAGTTGACACGTCTCATCGAGTTAAAAGCCGTGACACCTGTCCACCCAATCA 
CCTTCCATGCCATAGGAGAGATCGCGGAGGCATCTCGTCTCTTAAAAGCGGGAGACCAGA 
TTGGCAAAGTGGTCTTGTCGGTCGATGAGCATTCAACGGTTACTGCCGTGCCATCCAAGC 
CGGCTGCAAAGCTCTCTTCCGAGGTCTCGTACTTGATCGTCGGTGGCAGTGGCGGCTTAG 
CCCAGTCTGTGGCGCACTGGATGGTCAACCGTGGAGCAAGAAATCTGGTCCTTCTATCTC 
GGAGTGCTGGGACGAGCGAGAAGACCGCTGCATTTGCCGAGGATCTCCGCCAGGCAGGAT 
GTCGTCGAGTTTTGCCCATCAGCTGCGATGTTGCCAATGAGGAAAGTTTGGGCGACGCCA 
TCAATCAATGTGCTCAAGAGGGCTTACCCCCCATCAGAGGTATCATTCATGCTGCGTTTG 
TTCTTCGTGTAAGTGTCGAAAACTCCAACCGTAATCCTGAAATAAAACAACTAACCGCGT 
ATCTAACAGGATGCCTTCGTGGAGAAAATGACCCTTGATGACTGGACATACACTATTCAG 
AGCAAGGTCGCCGGCACCTGGAACCTGCACAACCAGTTTAATTTGCCCGGCGACCTCGAC 
TTCTTCGTCTTGTTCTCTTCTATCAATGGAATTCTTGGATATGCCAGCCAGTCTGCATAT 
TCCGCAGCTGGTGCATACGAAGACGCCCTCGCCCACTGGCGAGTCAAGCATTGTGGCCTT 
CCCGCTGTGTCAATTGACCTCTCCGTCGTCAACGCGGTCGGCTACGTTGCCGAGGCAAAC 
GCATCCGAAACACTACGCCGGTCTCTCCTCAGAGCTGGCCGCAGAGTCATCGATGAAGAT 
CATGTTCTTGGCTCGCTAGAGTCTGCCATTCTATCGCCCTTCGACCCACAATTCGTGGTC 
GGTGGTATAAACTCCGGGCCAGGTCCCCATTGGGATCTTGACGGCGATCTAGGCCGTGAC 
ATGCGTGTCTTGCCACTCAAGTATCGCCCTCCGGCTGTAACCGGACAGAGTCAGGACGAT 
GATTCTAGCAGCGACTCTCTCGCCGCAAAAATGATCGCCTGCGAGTCACAGGGCGATGCC 
GTTCGTGTTGTTGGGACTGCCATCGCAGAAATGCTGGCTGAAATGTTCCTTGTTCCTATT 
GAGGATGTCGATCTAGGCCAGTCCCCCTCGCAGCAAGGAGTTGACTCTCTTGTAGCAGTT 
GAGGTCCGGAACATGCTTTTCAGCCAGGCCGGTGCTGAAGTTTCCATCTTCAATATCATG 
CAAAGCCCCAGCCTGACGCAACTAGCGATTGATGTTGTGGATCGCAGTGCGCACGTCAAG 
CTTGCCGGTTGATCATATTATTGGTCATGTCCGAGAAGCTGTCAATTTTTGTATAGACCA 
CGGGAGCGATGTCAGGCTGCATCGGCAGCGCTAGTCTTGCTTCTATGGGTGATCAATATT 
ATTGGAGAGCCGGAGTTGGGGTTTATATTGACTACATACTGAGGATTGATTGGGATTCTC 
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AACATTTCGTGGGCATCTTTCTCAAGTCTCCTCTGGAGCTTTTATATGAATAAATTCGTA 
CAACTTCATGGAATGAAGTGGATAGCACTTCTAGGACAGGTAGATTTACATTTGCTTTGA 
ATTTCTACACATTACGGCTTGTACCAGTCTCGACAATAGGGCAAATGTCAGTTGCCACTA 
AACCAACCCTTCTCCAAAGTCCTCAGGCCCAAATATAAAATTGTCAAAGTCGAAATTGAT 
ATCCTTGAAAATGTCGTCGAATGAAACTCCCGAAGACCCGTCTACCATCAAACCACACCC 
ACCGCCATCCATACTGGGGTAAGGCTTGCCCGTGATCCTGGCTGCGAGGGTCTCAAACGT 
CCACAGGCACTGCTGGACATAAGGACTCAAGTGCTCATGAGCGCGGAGCGCCAGCATAAC 
ACTTTCCCAAGACTGGGAAACAGAATCTGTGAATAGCTCCGATCGAAACATAGCTGCGAG 
GAAGTTGGCACCCGCGATGTGAAGGTAGTATATTCTGTACCACCACGGAAGGAGTCCAAT 
CGGCTCATCCGGCTCAAGCGTCTCGTTAACTAATGACGCCACCTGTTGCGCGGCTTCGAT 
GCACATGCTGGCGCTTTCACGGAGGAGTCGGTGGCTTAGGCTGGGTGATTTGTGTAAAGG 
CTGGGTGTCTGGTTTCATCGCGTAAAATCGGGCGAGCATGGGTCTGTATAGAAAGATCCG 
GTGGTGGAGGTAGCTACATAGAACGATAAAAATCGATTTTGGTGAGGATAAAGGGATTGT 
TGGCTTACCGGAGATGAAGCAAGTATCTCTCAGCTCTAGACGACCTGTCGGTCACCATTC 
TGAGGTTCCGAGGTTGCCAATCGCTGGGGATACTATTTTCCCAATCTTGAAGACATGCAT 
CTAGTTGCAATGCCGCGTTATGGTACTCGTCTTGTTGAGATAGGAGTGGAGGGCGGAATC 
TGGCTGCGAGACTAGTTCGATTCTGTATCTGTGCCAGTTGAATTTGGTTCCCGATTTCGT 
GGAGTCTTAATCCCAAGGTATCATGCATCGCGTTTTCACCTAGTTGTTGGGGGCTACTCG 
GTGGTGGGGACGGAATTAGCACCAATGCCGACGTCTTACCCAATGACCAGGAGATGCATC 
TACCTGAGGTCAGCTGGAGAATACTATAGAAGAGCGATCACTCGATGACATACCGATCGA 
GCGCAACACAGCTAGCCCATACTTTCTGTTTCAAGGCTTTGTCGTCACTGGAGCCTTTCA 
ACAAGGGCGTCTCGGTGAGATGGCAGCACATGCTTTGCGCAATTCGCATCGCCAGACCTG 
CTGTCGTCCATGTCTTCTGCTGGTTATTGGTGCAGTGGAGGTATCGATTCATCAGCATCA 
GACACTGTACGAGCTCGAGTGATCCAGGTTTCCATAGCATAGACTCAGCTGGAAGCAGGA 
CCCATGCGCGCTGAAAAAATCGATTTGCTTCCTCGTTTCTTTGGTGCAGCGGATTGAGTT 
CCTGTCTTTGAACTGCCAGAGCAAATACTACATTGAGGATACCAAGCCAGAGGTCGTAGT 
CTGCACAGAGTGGTGTTATGGGTGTTGAATATGCTTTTTCATAGTTTTCAAGAAAACGCT 
GGCGATCTAGAACTGGCTCCATAGGGTCAACGTGTTGCCAGTATATGTCAATTAACTGAT 
CGGCATATGCCCGGGGAGGCAATTCGGTCGACGAAGACAAGGCACAAGATTGAGAAGGCA 
GGTTGAGGTCTCCAAATAGCGGCGCATCTACCAGTGGGACCTGATTACAGGTGGCCGGAA 
TGAGACCTGCCCTTTCGTTTATGGCAGCGGCGACCTGGCCGGCAAACCGCCCATGTGCGG 
TATAGTATGCCCGGTTTTTCTCCAGGTCAGGCTCTGCCTCTGGATCTTCATTCACATGGT 
GAGACACAGGTATTGAATCGACCGTGGGAGGTGACGCAGCCACTGATTCTGGCGGAGTCT 
CCAATGAAGGTGCCGAAGATATGGGAGGCACCAGCATAGGAACAGGCATGTGAACTGATG 
ATGCTTGCCCACGAGGTTTATGCACTGTCTGCTTCTCGACGGCACCTTGGCCATAGGCAC 
ACGTCTTGCCTCTAGCCTTGCATCTGGCGCATGCTTTATGGTATGTGTCAGCCTTATGCA 
CGAACTCTGCAGGTCAATGAAACAATGAAGGGAGAGATACCTGGCCGAGCACCATCACAT 
TTGATCTTCCTCGAGCGACATACTTGGCAAGCGCTTGTTACTCTTAGCCTCTGCCTGCGT 
AAAGGCTTCGAGTGCGTATGCTGATCAATTATCACTTCATTCATCACGTCTTTATCGAAC 
AGTTGGGGATGGAGAGTGGAGTGCCCCGTCAATCAGGGCCCCGGATCTACCTGATTGATA 
ATCAGCAGTTCGCCAATCAGATAACTCGCCGCTTTTTCAATAGACCCGCAGCGGAAAGCT 
CTGTTATTCGCTAGTCTGCTTTCACTTCCCGCAATTCTCGAAAGCAGCCAATGAGAAGTG 
CATCCATTTTCCATGTGTCAACCAATGAAATAGCAGTCCGTCTTTGATGGCTTCCGCAGT 
AAATAACTCCGCCGTCCGGTAAGCCGTTATATAGATCGAACGCTTTGAGAAAAAAAGAAG 
AGTCTCCTGCTACACAGCCTAGAATTTAAGTCTATGCACTTAATATTCTCCAATTTTTTA 
GACGGAGCTTCCTCCCTTCCCCTCTTCTTTTTCAGCCTTGTCCATAGTCAATACAGTGGT 
ATTGATCTCTCCCCTTCCTCACTTGCACCGCTAAGACAAATCCATGTCTCATACAGAGCC 
AAAGGCTCCTGTCAACACAGGCGAGGTTGAAAATGGTCACTTATACGATGGCTCCGGCAC 
CGAAGATGACCCATTCATCGTGGAGTTCCAAAAAGACGACCCCGGCAATCCGATGAACTG 
GGGTCAGTCCCGTAAGTGGTTCATTGCAGCCATTGCGACCCTCTCGGTCTTTGCCGTTAC 
TTTTACCTCCTCTGCATACTCGGTATCGGCAAATGAAGTCTTCAAGGACTTTGACATCAG 
CACCGAGGTCTTCATTGTCGGGCTTTCTCTCTTTGTGCTCGGATTTGCGATTGGTCCTGC 
CGTATGGGGTCCTTTGGTAAGCCATTAAACCATTTTGCATTTTCATGGAGCCCAGCTAAC 
CATACGTTGCTTCACAGTACGTTTCGATGGTGCCATCCTATTCACATACTATACACATTC 
AGCTAACATTGGCTTAAGGTCCGAACTGTACGGAAGACAGATACTGTGGATTATCACTCA 
CATCGCCATGGTCGCCTTTCTAGGAGGGTCCGCAGGCAGCCAAAACGTGGCCACGCTCCT 
CATCCTGAGATTCTTTGCCGGCACATTTGGCGGCTCTCCACTCGTCAACTCTGGCGGAAC 
AATTGCTGATCTCTTCCCACCTGCTCAGCGTGGTCTGGCATTGACCATCTATTGCGTTGC 
GCCCTTCCTCGGCCCCATCTTGGGGCCAATCGTGGGCGGATTCGTGTCTGAGAGCGTCGG 
GTGGAGATGGGTCCAGGGTGTCTGCGTGATCTTCATTGGCGTGGTCGGCATTCTGGGAAT 
CGTCTTCATTCCTGAGACATATGGCCCGGTATTGCTTCAGCGACGGACACATCAACTGGC 
CAAAGCTGATGGCAAGATCTACGTGAGCGTTTTGGAGAAGAACCAGGGAAAGAAGCTGCC 
ATCGGAAGTCTTCAAGCGTGCTTTGTTCCGTCCCTGGATCTTCTTGTTCCTTGAGCCCAT 
TGTCTTGATAGCGTCAGTTTACATGGCTATCATTTACGGCACGGTCTATATGTTCATGGG 
TGCCATGCCCATCGTGTACAACGAGGACCGTGGTTGGAGCGTGGGCATCGGCGGACTGGC 
GTTCTTGGGAATTGCTGTTGGCATCATCTTTGGCCTAGTTTATGCCATCTGGGACAACAA 
CGTCCGCTACATGAAGCTTTTTGCGGCAAAATCTGCAAACCCCGAATCTCGCCTTCCACC 
TGCAATTGTTGGAGGTGTTGCCCTCCCCATTGGCATGTTCGCCTTTGCCTGGACCAACTA 
CCCCAGCATACACTGGTCTGTCAGTATAATACTGTCTGCACCGTTTGGATTCGGCTGCGT 
GCTGGTCATCCTGCCTATCATGAACTATTTGATCGACACTTACACCATCTATGCGGCCTC 
TGTCCTGGCTGCAGCTGCCATCTTCCGCTCAGTCGTGGGCGCTGTGTTTCCTCTTTTCAC 
GACACAGATGTACCACAATTTAGGAATTCACTGGGCTTCCTCTATCCCAGCATTTTTGAC 
TCTTCTGTGCATGCCATTCCCGTTGATCATGTATCGCTACGGTGAAGCGGTCCGGATGAA 
GTGCAAGTACTCATTCGAAGCGGCAGAGATGATGAGGAAGATGCAATTGCAGCAAACAGC 
TGCTGCTACTACTACAGAGAAGGACAAGGACTCTTCCTCTGAGTGAGAGCTGTTAGAAAT 
GGGCCCCTTAGTCCGGCATCAATGGAGGGCCAAGGCTTGGGGGTCTATCATTGGAGGATC 
GCCGCATATAAATATCAATATCTGCCCTAGAAAATAGTTAATTAACTGTTAAATCAACTC 
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AACTCATCGGAGTCCCTAGAAGTTGATTATCACCTCTCTAATGTGCATGTTCTCCTTACA 
GACTAGCAATAATATTTATGTCTATCAAAGTGTTTCTAGTAGTTTCCCGGCTCTAGTCTT 
TGAGATACAGTATCTGTGTACATAGTTGATATTGGGGTATCAAGCCAAGGTGTGATAGGG 
TAAAGGAATCCTGTATGTCGAACTTGCTTAAGATTGCACTTTCGGGTTAGTCTGTAAATA 
TCCGTGGACATATTATTGATTCATCTCGTGTCCGGAGTTGAGAATACTCCGTAGTGAGGC 
TGTTTTATAGTTCCGGAATGTGCGTGCCAATGAGAATCGTCGAACTTGTTCCTTGCAGCG 
GAGAAGAGTAGATCAACTGTCTGGATATTTTTTGGTCCCCGTTCGACCTCGGAGTTGTCC 
CAAGGCAAGACCACGGAGTTCGGAGTTATAAGTAGCTATACAATGGTCTCGGAACTCTCC 
CGCGCACAAGAGCCTCATATATAACCCAACGAGTTCAATGACGAAATAATCCTAGCTTTA 
TAGAATTACAATCTCAAAATGCAGGCCGCCAGTGCATTTGCGACCTGTCTCTTGGCTTCA 
GTGGGTGGCAACAGCAGCGCCGTCGCCTTTCCAAACCAAGCCAACTATTCTACTCTTGTC 
GCGCCGTACAATTTCGATCTTCTCACCACCCCTTCCGCCATTGTCTGGCCCCAGGATACA 
CAGCAGGTAGCAGCCGCCGTCAAATGTGCCGTGGATTCAGACATCAAAGTTCAACCGAAA 
AGCGGCGGACACAACTATGGCAACTATGGATCAACCACCGGCGAGCTGTCTGTGAATCTG 
GACAATCTGCAGCACTTCAGCATGGATGAAACCAGCTGGACTGCCAGATTGGGACCAGGT 
AACCGCCTAGGCCGAGTCACCGAGCTCATGTATAACAACGGTGGTCGACATGTTCCACAT 
GGGACGACCTTCACGGTGGGACTCGGTGGACACGCAACTGTTGGAGGTGCCGGAGCGGCA 
TCACGAATGCACGGACTGTTGCTCGACTATGTGGAGGAGGTAGAGGTTGTTCTGGCCAAC 
TCATCCATCGTCCGAGCATCCAAGTCTCACAACGAGGATCTTTTCTTCGCCGTGCGTGGT 
GCCGCTTCAAGCGTTGGCATTGTGACCGACTTTTCTATACGCACCGAGCCCGTTCCCGTA 
TCCAGCGTCACTTACTCTTATATCTGGGAGGGGACAGATCCAGCAGCCCGCGCAGAAGTA 
TTCTTGACTTGGCAGTCATTGCTCGCCGGTGGCTCTTTGCCCCAACACATGGCCTACGAT 
CTGGTTGCGACGGCGAATAGCATGATACTGGGTGGGGCTTACTTTGGCAGTCAGGAGGAC 
TTCGAGGCCTTTAACCTCAGCAGCCACTTCAAAGTAGCGCCAGACGTCGCACATATAAAA 
ACATATACCAACTTCTTCGACTTCTCCGCCGCCGCAAGCGCTCAGACTAAAGCAGCTGGG 
ATTGCTTCCCCGTCGCATTTCTATGCCAAATCTCTCGTCTTCAATCAACAGACTCTCATA 
CCTGATGATGCTGCTGAGGAGGTCTTCAAGTACTTGGCCACGACCAAGAATGGTACTGAT 
TTGTACGCGGTCACTTTCGCCGCATTGGGTGGTGCGGTGAGGGACGTCTCGGCATCAGAA 
ACAGCTTTCTATCACCGTGATGCTTCATACTTTATGTTCTCCTTTGGAAGGACTAGTGGA 
GACCTGACTGACACGACGGTGCAGTTCCTGGATGGGCTGAGCGAAGTTCTGACTAGTGGG 
CAACCCGATGCCTACTACGGCCAGTACGTGGGGAATGTCGATCCCAGACAATCAACTGAC 
AAGGCATTGACGGGGTATTATGGCAAGAATCTGCATCGCCTGCAGCAGATCAAGTCTGCG 
GTAGACCCGAATGATGTTTTCCATAACCAGCAGAGTATCCCACCTCTGTCCTAGTCTGTC 
GGTGCCGGATTTCTGTTAGTCTTAAGATTGTCGTTGATCGTGCACAATTGAACGCCATTT 
GTACTCATTGGGCAGAAATCACAATATACTATGGAGTATAACAGCCAACACACAAGAATT 
TGTAATGGAATAAAATCACGGCATTATTCCATTCGACCAACAAAAAAACCAAGGTTACTG 
TACATGGCCTAACGGAGACCATATCCCCGTTTGACAATTTGGTTTGTGACAAAAATATCC 
GACATAGGGATTCTGTAGGTAACTTATGCAGTTGTTTCGGGTAGTCCATGAGCCCTGGCA 
GGTGTATATGTACCTAAGCTACGTAGGTAGATAGTAATGTTAGTTCGACCAGACTGGAGT 
AGCCCCAGCAGTATCTTTGCAGTAGTCAATGAATCAGACGTGTTTAAGGCTCCAGGGGGT 
TGAAACAGCCCCTGGAATGAAGCATTGGAAGATTTGGGCAGAGGTTAGGGTATGATGAAA 
ATAAACAAAACCGATGAGTATTCCAAGAAAAGTACGGAAACAGCTAACTACTCGCTAACT 
ACCCTCCCATTATCCGCTGACCTCGTCACCTTACCCTCCAATCATGTAGGTACGGTCATG 
TCTTTCCCGTCAACTCTGCATCTGTACAGTATGTAGTCTCAAAACGAAAATCAAAAGAGT 
GCCCAATTCCATCTTCACAGCACGCGTCCAGCCGATGAGCTGGTGCTACGGTCATTCACT 
TGAGTCTTCCTCAGGGACTTGCCTTGCTGGATAGACGCAAGGAGGGCGCCTCGGCCAGCG 
CCACCGGCAGCAGCTGGGGGAGCAGGTGGAGGCGGGATGCCAGCTGGAGGGGGTGGCGGG 
GGAGCAGAGGGGGCTCCGCCAGGGGGCGGGGGCGGAGGCATAGCAGGAGCACCAGCTCCC 
CCTGGTGGGGGAGGCGGAGGTGGGGGAGGGGGAGGTACTGCAGATGGAGCGGCTGGTGGG 
GAGGCGGAGTCGCTAGGGCTTGGTATAGCAGGAACAGGAGGCAGAGTCGCTGGGGGTGGG 
GGCGGAGGTGCAACAGGGCTTTCCTGTACCGGGGTAGTGTATTTCGAGGGAGACACGTCT 
TCGTCCATAGCACTCAGAGGACGTGGAGGCGCCATAGTGCCGAACAGGATGCTGGCAAGT 
TGTTTGGCGCTGCCACCAGTTGGACGGTCGTCCTCATCATCAGACGAATCAACCTCGGAT 
CCAGCAGCGGACCAGTCATCGTCTTCCTCGGGGCGAGCACGAGTCTTGCGTTCCAGGGGG 
GCTGCACCGGTGAAGGTGGGCTTGATAGGTTCTGGCTGGGTCAAACGGTGGAAGGGGTTC 
GTAGACTGAGCTGTGGTTGGCGGCGAGGTCGCTTGGGTGGGTTCGGAAGGCTGAGCCTTG 
TGCTTGAAGTATGGGTTCTTGGACTCAGCATCGGGCGCGACCGCAGGAACACCACGGCTG 
CTTTCGGGGGAGCTCACTTCGCTCGGCACACTTTCGGGGGCGGCARGKKCAGRAATMGCK 
RYCGTGGRCACGGGAGGCGGGGTAGGGAGAATCTGGCTCTGCGTCGGTGTGCTGTACTGG 
GGCGTAATGTCGGCAGGCCCTTCGTCATCGGACGATGACTCGTCAAGGCCCTCGAGTTCA 
CGCTGCAGCTGTCGCTCACGTTCCTTAGCCGCCTCCAGTTCAACGCGTTGGGCTTCAAGC 
ATAGCTTCCTGCTCTTTGGCCTGTCGGCTAGCCTCTTCCCTGCGGCGCTTCTCTTCCTGC 
TTCTTAATCTTGCCCTGGCGGACTTGTTCCTCAAGAGCACGAAGTCGCTCGGCTTGGGCA 
TCCTTCTCCCGTTGGAATTCCAGCTCCCGTTGGCTTGCCTCACCCCTGTAAATGTATTAG 
CCAAGCCCACTACTTTTGTCTTTATCCGCTGTGGATTACTCACTCTAGACGCTTAGTCTC 
TGCCTCCTGCACCTCTTGCTCTTCCTTGATAGCCTGCTCACGGGCAGCCTGGTCCGCTTT 
GGATTCCTCTTCCTTCTTGGCATCGGCTTGGCCGGCACTGTCCGTCCGAGCCCTGCGAGT 
GGGCGGCGCCGGTGGTGGTTTCTTGCCTGCAGCCTTGGGAGCTGCCTCACTAGGACCGCC 
CCGTTCCTCGGCGAGGCGACGCTGTCTCTCCTGTTCCCGCTTAGCATCCTCTTCCTCGGC 
GCGTTTGACACGATCTTCGCGCTCCTTCTTCTCACGCTCCTGGCGTTGCGCAAGGGTCTC 
AGTAGCGTCATTGGGCTTCAGACCAGCAGCAGCCATGCGCTCAGCAATACGCTTCTGTGC 
ACGCTCTCGAGCAGCTGCCACACGATCTTCATGCGTGCTACCCGGAAGAGAGCTTGAGGA 
GTCCACGGACGGGGGCATCGAAGGGCGCGCAGCGGCAGATTCAGCCGCTGGAGATGCTCG 
AGATTGCACATCCGGGGAAGGTCTCTCTCGCCTATGGATTGTCAGTAATGGACACTCTTT 
TTGATTAAGGGCGAGAWTMRCRKMCKCTWMTTCTCSCKWATATTCGCTGTTCGCGCATTG 
CGGCTCAGGTCGTAGATGAAGTCGCGGATGACGTCCTCAACTCCCAATGCCTCTTCCCAA 
CGACGCTTCTCAYGCTCACGTGTGGAGTTCTGGCCTTCTTCCCGGAGACTGTCCTCCAAA 
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CTGCGAGCGAAGTCACGGACACTTTCCTCAACGTCGCGGGTCATGGTGTCATTGCGCTCC 
CGCTCCATCTTCACGTTAGTGCTCTCAGACTCCAGACGACGAGCTGCTTGGCCATCGTCA 
TCTTCCGTCGCGGGTGCAGGGCGCCCAGCAAGCTCGGCAGCCCGGGCTTGCATACGTGCA 
CGCGCGCGAGCCTTGATTCGATCTGATTCAGTCACAGTACCGCCAGGGCCAGTGCCAATG 
ATGTTAGAGGCACCACCGGGGTGTGCCTTGGCATCCTTGAGACGGAAGAGTTCGAGCTTC 
GCATCGGCGATTTCACGCTCAAGACGACGCACATCAGATGCAACCTGGGGAACTTGATCT 
TCAAAAGACTGCAATTGGCGACGAAGAGCCCTGCGATCTGCTCCACTGTCCACTTGGCGG 
AAGGCAGCATTGGGGTGGGTATCGAGATCGTCCTGCACACGCCGGATACGGTCCATGAGA 
CTCTCTGCCTCACGGCGATCCTGGCGGTCTAGAGCATCATCATCCTCGGCTCGGTTCTCG 
TCCTCGAAGTCGGCAGCGTCAATCATAACTTTGGCTTCGCGGATCTTCTTGTGCAGCTGT 
TCCACAGAATACTCCTCATCTGACGCGCCGGAGGCGGCTGGTGACGGGGTACGAGCCTCG 
TTACCAACGCGACGACGTGCACTAGAGCGGTATCCACCGGCGGAGTCATTGTTCTTGAAC 
ATCGTTGCATCCTTGCGGCCAGCCCCAGAAGCGCCTGCTGCACCACCACGGAATGAGTGA 
TCTTTAAGGTAGCTGACACCAGTCTTCTGGGGCTGCAGGAACGCCCCGGTAGCCTTGCGA 
GTTTCAGCATCCTGAGAGAGCAGAGACTTGACGGTACCGATAGAGTCATTTAAGTGTCTC 
GTAGAAGGAGGGACAAGCTCGGGTGGTAGACGGCTGGGAACTGGGTACCCATTCAGAGCA 
CGGTAGATCAAGTGCATAGCCACGGCGAACTCATCCATGTTTAGTCGGCCGCGGTTATGG 
GGATCAGCCAGGGTCCAGATCCGTTCCAGATCTTTTCTATTCAGACCACTTTGGCCCATG 
ATCTCGATGGCAGTCTCGCCACTGATGAAGCCCTTGCGGAAACCGTCCCATGCGCGGAAA 
AGTTCATCGTAAATCTTCTTCTCCTCCTTCGTAATTGCCCAGGCAACTGTGGCATTTCCT 
GAAAGGCCAACAGCACTGAACCCGCCTTCACGCCCAGGCTGCGGCATGAGCTGCTGCTTC 
ATAGCATCGATGTTGGGCAGACCCTGCGCTGGGGTGTTGATGAATCCCCATTGACCTGGC 
ATGCCCGTAGGTTGCGCTGCCAGACCTGTAGGCTGCACACTCAGGCCTTGCATTCCACCG 
GTCTGGGCGGGGCTGAGGTTCGACCCGTAACCAGTAGGCATAGGCGGCATCGGAGGCCGA 
GGGCCGGTATATCCAGTAGCCTGCGGGTTAGTCATGAAACCTGTCTGCTGAGGCTGCAGG 
AATTGAGACTGGTTCTGGCCCGGGAAGCCCGTCTGGTTGGGCTGCTGGATACCAGTCTGC 
TGGGGGAAGAACCCAGTAGGCTGTGCGGTCAGCTGCGACAGGAGCGTGGCATTGTTAGGT 
TGCTGCGGAACGGGTTGCTGAACAACTGGGGGTGTCGACTTGTTCTCTATGAGTGGCGCA 
TCGAAGTTGGGGACGTTTGTTCGTTGTTGGACCGGCGGCGGCTGTGTATCGGGAACATCG 
AATGAGATGATGTCAACCATACTAGAAACCTCGTTCTTGATCGTCTCGGGTAGGGAAGAA 
GGAAGATCGCGTCCGGTCAGACGAATGTTGCAGAGGTACATAGCCAATGCGAATTCGGGG 
AATAGCAACTGTCCGGATTTAGTGGTATCAGACAAGACCCAGATCTTAGAAAGATCAGCG 
CCCGACAACTTGGAGCGCAACAAAAGATCTCTTGCTTTGTCGCCTATTGTGACCAGTCAG 
TACTACCATCCAAGCCATAACATGGGGCCCACTGGGTGTACGGAAACCTACCATCCATTG 
TCTTGCTATCGCCAACCGCAGACTTGAAGAGCTGCTCGAACCTCGCCTGATCCTGCGCCG 
TGATAAAAGAAAGCCGAATGCTCGGGATCTTTGATCCTGTCTTTGGCGGCACCTGAGGAG 
GCGCCCCAGATCCAGCAGCATCTTGGAAGGAGTTTGCGATATCGCTAGAGGTCTTGAATC 
GAGTTGGTATCTGCGGCACCGGAGGAGGCTGCTGTGCTTGGTTTAGAGGAGGGTATCCAG 
TGTATTGTTGCTGGAAGCTTTGAGCTTGCGGCTGCTGAGGTTGCTGGGGCGCGGCACCGG 
GGAAGCCAGTGAATTGCGGCTGAAGCTGTCCTGCGGGGAATCCGGTGGCTTGAGGCTGTA 
GCTGCGAGCTACCGAACGGGGAGGGCTGGCCGGCAAATCCGGTCGGCTGTGGAGCAATAC 
CAGTGGGCTGCGGAGCAAATCCAGTCGGTTGAGGTTGTTGGATTGATGGCGGCTGCTGGC 
CTTGGGGGAATTGCGAATAGGGGGGTTGTTGTTGCTGTTGCATGAATGGTGCCTGGCCGG 
GACGGCCAGTGGCACCACCCCCGAGGAAATTATTCGACGAGGAAAACATCAGAGACACCG 
CGCTTGCATGAGCAAAAGGATGCAGTAAAGCCAACAAGAAATTGACAAGAAAAACGAATG 
CAAAGTAGTAAGTGAGTTGAGTCTCAGGAGGATGCGAATGACGCCGTTGCTGGACGGGGA 
CGCACCTGCGCTAACCTCATCGGGCGCTTAGTCATGTGCTCGGGATATTTTTGGATCTAC 
GTCTGGAATACTGGGTTGTGGATACAAGTGATGATGATTTAAAGCTTTATACTTGTAAAT 
TTGTCGGCATCCGCTGAACGATGGGGATAACTGAGCCTCTCAGAAACTGCAAAAAGCAAA 
AAGAAAAGAAAACGCGCCCGTAAAAAAAAAAAAGGGGTGGGATCCCCGGGTACCGAGCTC 
GAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNCTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAG 
CTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCTGAAT 
GGCGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGC 
ATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACAC 
CCGCCAACACCCGCTGACGCGAACCCCTTGCGGCCGCATCGAATATAACTTCGTATAATG 
TATGCTATACGAAGTTATTAGCGATGAGCTCGGACTTCCATTGTTCATTCCACGGACAAA 
AACAGAGAAAGGAAACGACAGAGGCCAAAAAGCTCGCTTTCAGCACCTGTCGTTTCCTTT 
CTTTTCAGAGGGTATTTTAAATAAAAACATTAAGTTATGACGAAGAAGAACGGAAACGCC 
TTAAACCGGAAAATTTTCATAAATAGCGAAAACCCGCGAGGTCGCCGCCCCGTAACCTGT 
CGGATCACCGGAAAGGACCCGTAAAGTGATAATGATTATCATCTACATATCACAACGTGC 
GTGGAGGCCATCAAACCACGTCAAATAATCAATTATGACGCAGGTATCGTATTAAKTGRT 
MKGCATCAAMTYMACGTAAAAKCAAYTTCAGACAWTAMWWATCWGCRWCACTKAATACRR 
RGCAACYTCATGWCMSARMTCGCGASCTCGWMKACRGCGRCACACYTGCATCGGATSCAG 
CYCGGYKARCKYGYCGRCASSGMCWSRSTWRCMWSGKATKYWGYCCRSWTAACCGTGCGS 
MAMRKSYTGTGGATAASCAGGACACWGCMRCAATCCACAGCAGGMATASWWSYGSAYAMC 
SAGGWTACTSCGTTCTACAGGTTACGACGACAYGWSRATACTTGCCSTTKACAGGCATTG 
ATGGAATCGWARTSTCACGMTRATWGTCTSWTCGACARYAYWRRTGGRAYCGTRGTCYCA 
SRCYGATARTCWGAYCGACAAYACRAGTGGGAYCGTGGTCCCAGACYRATAATCAGACCG 
ACRAYACGAGTGGGAYCGTGGTCCCAGACTAATAATCAGACCGACGATACGAGTGGGACC 
GTGGTTCCAGACTAATAATCAGACCGACGATACGAGTGGGACCGTGGTCCCAGACTAATA 
ATCAGACCGACGATACGAGTGGGACCATGGTCCCAGACTAATAATCAGACCGACGATACG 
AGTGGGACCGTGGTCCCAGTCTGATTATCAGACCGACGATACGAGTGGGACCGTGGTCCC 
AGACTAATAATCAGACCGACGATACGAGTGGGACCGTGGTCCCAGACTAATAATCAGACC 
GACGATACGAGTGGGACCGTGGTCCCAGTCTGATTATCAGACCGACGATACAAGTGGAAC 
AGTGGGCCCAGAGAGAATATTCAGGCCAGTTATGCTTTCTGGCCTGTAACAAAGGACATT 
AAGTAAAGACAGATAAACGTAGACTAAAACGTGGTCGCATCAGGGTGCTGGCTTTTCAAG 
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TTCCTTAAGAATGGCCTCAATTTTCTCTATACACTCAGTTGGAACACGAGACCTGTCCAG 
GTTAAGCACCATTTTATCGCCCTTATACAATACTGTCGCTCCAGGAGCAAACTGATGTCG 
TGAGCTTAAACTAGTTCTTGATGCAGATGACGTTTTAAGCACAGAAGTTAAAAGAGTGAT 
AACTTCTTCAGCTTCAAATATCACCCCAGCTTTTTTCTGCTCATGAAGGTTAGATGCCTG 
CTGCTTAAGTAATTCCTCTTTATCTGTAAAGGCTTTTTGAAGTGCATCACCTGACCGGGC 
AGATAGTTCACCGGGGTGAGAAAAAAGAGCAACAACTGATTTAGGCAATTTGGCGGTGTT 
GATACAGCGGGTAATAATCTTACGTGAAATATTTTCCGCATCAGCCAGCGCAGAAATATT 
TCCAGCAAATTCATTCTGCAATCGGCTTGCATAACGCTGACCACGTTCATAAGCACTTGT 
TGGGCGATAATCGTTACCCAATCTGGATAATGCAGCCATCTGCTCATCATCCAGCTCGCC 
AACCAGAACACGATAATCACTTTCGGTAAGTGCAGCAGCTTTACGACGGCGACTCCCATC 
GGCAATTTCTATGACACCAGATACTCTTCGACCGAACGCCGGTGTCTGTTGACCAGTCAG 
TAGAAAAGAAGGGATGAGATCATCCAGTGCGTCCTCAGTAAGCAGCTCCTGGTCACGTTC 
ATTACCTGACCATACCCGAGAGGTCTTCTCAACACTATCACCCCGGAGCACTTCAAGAGT 
AAACTTCACATCCCGACCACATACAGGCAAAGTAATGGCATTACCGCGAGCCATTACTCC 
TACGCGCGCAATTAACGAATCCACCATCGGGGCAGCTGGTGTCGATAACGAAGTATCTTC 
AACCGGTTGAGTATTGAGCGTATGTTTTGGAATAACAGGCGCACGCTTCATTATCTAATC 
TCCCAGCGTGGTTTAATCAGACGATCGAAAATTTCATTGCAGACAGGTTCCCAAATAGAA 
AGAGCATTTCTCCAGGCACCAGTTGAAGAGCGTTGATCAATGGCCTGTTCAAAAACAGTT 
CTCATCCGGATCTGACCTTTACCAACTTCATCCGTTTCACGTACAACATTTTTTAGAACC 
ATGCTTCCCCAGGCATCCCGAATTTGCTCCTCCATCCACGGGGACTGAGAGCCATTACTA 
TTGCTGTATTTGGTAAGCAAAATACGTACATCAGGCTCGAACCCTTTAAGATCAACGTTC 
TTGAGCAGATCACGAAGCATATCGAAAAACTGCAGTGCGGAGGTGTAGTCAAACAACTCA 
GCAGGCGTGGGAACAATCAGCACATCAGCAGCACATACGACATTAATCGTGCCGATACCC 
AGGTTAGGCGCGCTGTCAATAACTATGACATCATAGTCATGAGCAACAGTTTCAATGGCC 
AGTCGGAGCATCAGGTGTGGATCGGTGGGCAGTTTACCTTCATCAAATTTGCCCATTAAC 
TCAGTTTCAATACGGTGCAGAGCCAGACAGGAAGGAATAATGTCAAGCCCCGGCCAGCAA 
GTGGGCTTTATTGCATAAGTGACATCGTCCTTTTCCCCAAGATAGAAAGGCAGGAGAGTG 
TCTTCTGCATGAATATGAAGATCTGGTACCCATCCGTGATACATTGAGGCTGTTCCCTGG 
GGGTCGTTACCTTCCACGAGCAAAACACGTAGCCCCTTCAGAGCCAGATCCTGAGCAAGA 
TGAACAGAAACTGAGGTTTTGTAAACGCCACCTTTATGGGCAGCAACCCCGATCACCGGT 
GGAAATACGTCTTCAGCACGTCGCAATCGCGTACCAAACACATCACGCATATGATTAATT 
TGTTCAATTGTATAACCAACACGTTGCTCAACCCGTCCTCGAATTTCCATATCCGGGTGC 
GGTAGTCGCCCTGCTTTCTCGGCATCTCTGATAGCCTGAGAAGAAACCCCAACTAAATCC 
GCTGCTTCACCTATTCTCCAGCGCCGGGTTATTTTCCTCGCTTCCGGGCTGTCATCATTA 
AACTGTGCAATGGCGATAGCCTTCGTCATTTCATGACCAGCGTTTATGCACTGGTTAAGT 
GTTTCCATGAGTTTCATTCTGAACATCCTTTAATCATTGCTTTGCGTTTTTTTATTAAAT 
CTTGCAATTTACTGCAAAGCAACAACAAAATCGCAAAGTCATCAAAAAACCGCAAAGTTG 
TTTAAAATAAGAGCAACACTACAAAAGGAGATAAGAAGAGCACATACCTCAGTCACTTAT 
TATCACTAGCGCTCGCCGCAGCCGTGTAACCGAGCATAGCGAGCGAACTGGCGAGGAAGC 
AAAGAAGAACTGTTCTGTCAGATAGCTCTTACGCTCAGCGCAAGAAGAAATATCCACCGT 
GGGAAAAACTCCAGGTAGAGGTACACACGCGGATAGCCAATTCAGAGTAATAAACTGTGA 
TAATCAACCCTCATCAATGATGACGAACTAACCCCCGATATCAAGTCACATGACGAAGGG 
AAAGAGAAGGAAATCAACTGTGACAAACTGCCCTCAAATTTGGCTTCCTTAAAAATTACA 
GTTCAAAAAGTATGAGAAAATCCATGCAGGCTGAAGGAAACAGCAAAACTGTGACAAATT 
ACCCTCAGTAGGTCAGAACAAATGTGACGAACCACCCTCAAATCTGTGACAGATAACCCT 
CAGACTATCCTGTCGTCATGGAAGTGATATCGCGGAAGGAAAATACGATATGAGTCGTCT 
GGCGGCCTTTCTTTTTCTCAATGTATGAGAGGCGCATTGGAGTTCTGCTGTTGATCTCAT 
TAACACAGACCTGCAGGAAGCGGCGGCGGAAGTCAGGCATACGCTGGTAACTTTGAGGCA 
GCTGGTAACGCTCTATGATCCAGTCGATTTTCAGAGAGACGATGCCTGAGCCATCCGGCT 
TACGATACTGACACAGGGATTCGTATAAACGCATGGCATACGGATTGGTGATTTCTTTTG 
TTTCACTAAGCCGAAACTGCGTAAACCGGTTCTGTAACCCGATAAAGAAGGGAATGAGAT 
ATGGGTTGATATGTACACTGTAAAGCCCTCTGGATGGACTGTGCGCACGTTTGATAAACC 
AAGGAAAAGATTCATAGCCTTTTTCATCGCCGGCATCCTCTTCAGGGCGATAAAAAACCA 
CTTCCTTCCCCGCGAAACTCTTCAATGCCTGCCGTATATCCTTACTGGCTTCCGCAGAGG 
TCAATCCGAATATTTCAGCATATTTAGCAACATGGATCTCGCAGATACCGTCATGTTCCT 
GTAGGGTGCCATCAGATTTTCTGATCTGGTCAACGAACAGATACAGCATACGTTTTTGAT 
CCCGGGAGAGACTATATGCCGCCTCAGTGAGGTCGTTTGACTGGACGATTCGCGGGCTAT 
TTTTACGTTTCTTGTGATTGATAACCGCTGTTTCCGCCATGACAGATCCATGTGAAGTGT 
GACAAGTTTTTAGATTGTCACACTAAATAAAAAAGAGTCAATAAGCAGGGATAACTTTGT 
GAAAAAACAGCTTCTTCTGAGGGCAATTTGTCACAGGGTTAAGGGCAATTTGTCACAGAC 
AGGACTGTCATTTGAGGGTGATTTGTCACACTGAAAGGGCAATTTGTCACAACACCTTCT 
CTAGAACCAGCATGGATAAAGGCCTACAAGGCGCTCTAAAAAAGAAGATCTAAAAACTAT 
AAAAAAAATAATTATAAAAATATCCCCGTGGATAAGTGGATAACCCCAAGGGAAGTTTTT 
TCAGGCATCGTGTGTAAGCAGAATATATAAGTGCTGTTCCCTGGTGCTTCCTCGCTCACT 
CGACCGGGAGGGTTCGAGAAGGGGGGGCACCCCCCTTCGGCGTGCGCGGTCACGCGCACA 
GGGCGCAGCCCTGGTTAAAAACAAGGTTTATAAATATTGGTTTAAAAGCAGGTTAAAAGA 
CAGGTTAGCGGTGGCCGAAAAACGGGCGGAAACCCTTGCAAATGCTGGATTTTCTGCCTG 
TGGACAGCCCCTCAAATGTCAATAGGTGCGCCCCTCATCTGTCAGCACTCTGCCCCTCAA 
GTGTCAAGGATCGCGCCCCTCATCTGTCAGTAGTCGCGCCCCTCAAGTGTCAATACCGCA 
GGGCACTTATCCCCAGGCTTGTCCACATCATCTGTGGGAAACTCGCGTAAAATCAGGCGT 
TTTCGCCGATTTGCGAGGCTGGCCAGCTCCACGTCGCCGGCCGAAATCGAGCCTGCCCCT 
CATCTGTCAACGCCGCGCCGGGTGAGTCGGCCCCTCAAGTGTCAACGTCCGCCCCTCATC 
TGTCAGTGAGGGCCAAGTTTTCCGCGAGGTATCCACAACGCCGGCGGCCGGCCGCGGTGT 
CTCGCACACGGCTTCGACGGCGTTTCTGGCGCGTTTGCAGGGCCATAGACGGCCGCCAGC 
CCAGCGGCGAGGGCAACCAGCCGAGGGCTTCGCCCTGTCGCTCGACTGCGGCGAGCACTA 
CTGGCTGTAAAAGGACAGACCACATCATGGTTCTGTGTTCATTAGGTTGTTCTGTCCATT 
GCTGACATAATCCGCTCCACTTCAACGTAACACCGCACGAAGATTTCTATTGTTCCTGAA 
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GGCATATTCAAATCGTTTTCGTTACCGCTTGCAGGCATCATGACAGAACACTACTTCCTA 
TAAACGCTACACAGGCTCCTGAGATTAATAATGCGGATCTCTACGATAATGGGAGATTTT 
CCCGACTGTTTCGTTCGCTTCTCAGTGGATAACAGCCAGCTTCTCTGTTTAACAGACAAA 
AACAGCATATCCACTCAGTTCCACATTTCCATATAAAGGCCAAGGCATTTATTCTCAGGA 
TAATTGTTTCAGCATCGCAACCGCATCAGACTCCGGCATCGCAAACTGCACCCGGTGCCG 
GGCAGCCACATCCAGCGCAAAAACCTTCGTGTAGACTTCCGTTGAACTGATGGACTTATG 
TCCCATCAGGCTTTGCAGAACTTTCAGCGGTATACCGGCATACAGCATGTGCATCGCATA 
GGAATGGCGGAACGTATGTGGTGTGACCGGAACAGAGAACGTCACACCGTCAGCAGCAGC 
GGCGGCAACCGCCTCCCCAATCCAGGTCCTGACCGTTCTGTCCGTCACTTCCCAGATCCG 
CGCTTTCTCTGTCCTTCCTGTGCGACGGTTACGCCGCTCCATGAGCTTATCGCGAATAAA 
TACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCG 
GGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCA 
ACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTT 
CAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATAT 
CCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATM 
ACSWGWYCATGCACCGGATCTGTTGCCGCAGCCAGTGGTAGATCCAGATATACGCAACCG 
CTGTTGGGATGACAAAAAGGTCGATGCGCACCACGCCATCATTCCGACCGCACGGAGTTC 
TGCGATCAACCTGACGGAGAACGAAGCGAAGGTCTATAACCTGATTGCCCGTCAGTATCT 
GATGCAATTCTGCCCGGATGCGGTGTTCCGCAAGTGTGTTATCGAACTGGACATTGCCAA 
AGGCAAATTTGTCGCTAAAGCGCGTTTTCTTGCTGAAGCAGGCTGGCGCACGCTGTTAGG 
CAGCAAAGAGCGCGATGAAGAAAACGACGGCACGCCACTGCCTGTGGTGGCGAAAGGCGA 
TGAGTTGCTGTGTGAAAAAGGTGAAGTGGTAGAGCGGCAAACCCAGCCGCCGCGCCATTT 
TACCGATGCAACACTGCTTTCGGCGATGACCGGGATCGCGCGCTTTGTGCAGGATAAAGA 
TCTGAAAAAGATCCTCCGTGCGACCGATGGTCTGGGGACAGAGGCAACGCGTGCCGGGAT 
TATTGAACTGTTGTTCAAGCGTGGTTTCCTGACCAAAAAAGGGCGCTATATCC 
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17 Fgenesh identification of ORFs within conting-7 DNA sequences 
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Figure 43: Identification of ORFs within contig 4 (or 7) with Fgenesh program. 
10 ORF were identified as shown in grey on the left side of each ruler lane (1-10). The number of putative 
exones that were identified for each ORF is also shown in gray color above each exon. Different types of exons 
are shown in different colors: CDSf (in red) stands for first exon in an ORF that starts with a start codon; CDSi 
(in grey) represents internal exon(s) that was identified within an ORF; CDSl (in blue) is a signature for the last 
coding segment ending with a stop codon. CDSo (in orange) stands for a singular exon within a particular ORF. 
(+) or (-) on the left side of the exon numeration represents orientation of the detected exon (ORF): direct or 
opposite DNA chain. TSS (in turquoise) represents position of transcriptional start (TATA-box position). PolA 
(in green) is a symbol for polyadenylation signal sequence. 
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