Quantum cluster algebras and the dual canonical basis

Dissertation
zur
Erlangung eines Doktortitels (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms Universität Bonn

vorgelegt von
Philipp Lampe
aus

Rheine

Bonn, 2010

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter: Prof. Dr. Jan Schröer
Zweitgutachterin: Prof. Dr. Catharina Stroppel

Tag der Promotion: 28.02.2011
Jahr der Veröffentlichung: 2011

Zusammenfassung

Sei Q ein Dynkinköcher vom Typ A mit alternierender Orientierung oder der Kroneckerköcher. Wir betrachten die direkte Summe M der unzerlegbaren, injektiven Moduln über der Wegealgebra des Köchers und ihrer Auslander-Reiten-Verschiebungen. Sei \mathfrak{g} die zu Q assoziierte komplexe Liealgebra. Sie besitzt eine Dreieckszerlegung $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$. Hierbei ist \mathfrak{n} eine maximal nilpotente Unterliealgebra von \mathfrak{g}. Zu M gehört in natürlicher Weise ein Element w in der Weylgruppe des gleichen Typs. Die Dimensionsvektoren der unzerlegbaren, injektiven Moduln und ihrer Verschiebungen entsprechen nach dem Satz von Gabriel bzw. nach dem Satz von Kac positiven Wurzeln im Wurzelsystem der Liealgebra \mathfrak{g}. Ihre Anordnung erbringt einen reduzierten Ausdruck für das Weylgruppenelement w.

Die vorliegende Arbeit erbringt den Nachweis, dass geschickt gewählte Erzeuger der zu w gehörigen Unteralgebra $U_{q}^{+}(w)$ der quantisierten universellen einhüllenden Algebra $U_{q}(\mathfrak{n})$ in sich überlappende Mengen, sogenannte Cluster, gruppiert werden können, so dass $U_{q}^{+}(w)$ die Struktur einer quantisierten Clusteralgebra erhält.

Aus der Konstruktion der quantisierten Clusteralgebrenstruktur auf $U_{q}^{+}(w)$ und der Wahl der Erzeuger ergeben sich folgende Eigenschaften:

Erstens: Die quantisierten Clustervariablen stimmen jeweils bis auf eine Potenz des Deformationsparameters q mit einem Element im Dualen der von Lusztig definierten kanonischen Basis unter Kashiwaras Bilinearform überein.

Zweitens: Geiß-Leclerc-Schröer haben für ein derartiges w eine azyklische Clusteralgebra konstruiert. Sie wird realisiert als Unteralgbera der graduiert dualen Hopfalgebra der universellen einhüllenden Algebra $U(\mathfrak{n})$. Unsere quantisierte Clusteralgebra degeneriert zu Geiß-Leclerc-Schröers Clusteralgebra im klassischen Limes $q=$ 1. Sowohl die quantisierte als auch die gewöhnliche Clusteralgebra hat eingefrorene sowie mutierbare Clustervariablen.

Drittens: Bestimmte Elemente in der dualen kanonischen Basis erfüllen nennerfreie Rekursionsgleichungen. Die Rekursionsgleichungen implizieren die Austauschrelationen für quantisierte Clusteralgebren.

Die Arbeit ist in zwei Teile gegliedert. Der erste Teil behandelt den Fall des Dynkinköchers vom Typ A mit alternierender Orientierung, der zweite Teil behandelt den Kroneckerköcher. Nach einem Satz von Lusztig besitzt die Algebra $U_{q}^{+}(w)$ in beiden Fällen eine Poincaré-Birkhoff-Witt-Basis, die sich aus dem reduzierten Ausdruck für w ergibt. Die duale kanonische Basis kann mit Hilfe der Poincaré-Birkhoff-Witt-Basis über eine Invarianz- und eine Gittereigenschaft charakterisiert werden.

Wir beschreiben zunächst die Begradigungsrelationen der Erzeuger von $U_{q}^{+}(w)$ aus der Poincaré-Birkhoff-Witt-Basis. Sodann leiten wir nennerfreie Rekursionsgleichungen für bestimmte Elemente in der dualen kanonischen Basis her. Die Nennerfreiheit erlaubt es, die Invarianz- und die Gittereigenschaft nachzuweisen. Es folgen die Austauschrelationen der quantisierten Clusteralgebra.

Contents

Summary 3
1 Introduction 5
2 Quantum cluster algebras of type A 10
2.1 Introduction 10
2.2 Representation theory of the quiver of type A and cluster algebras 11
2.3 The preprojective algebra and rigid modules 13
2.4 Notations from Lie theory 18
2.5 The cluster algebra attached to the terminal module 20
2.6 The description of cluster variables 21
2.7 Definition of the quantized enveloping algebra 25
2.8 The subalgebra $U_{v}^{+}(w)$ and the Poincaré-Birkhoff-Witt basis 28
2.9 The quantum shuffle algebra and Euler numbers 30
2.10 The straightening relations for the generators of $U_{v}^{+}(w)$ 33
2.11 The dual Poincaré-Birkhoff-Witt basis 38
2.12 The dual canonical basis 40
2.13 The quantum cluster algebra structure induced by the dual canonical basis 44
3 A quantum cluster algebra of Kronecker type 53
3.1 Representation theory of the Kronecker quiver 53
3.2 The preprojective algebra 54
3.3 The δ-functions and the cluster algebra structure 54
3.4 Mutations of rigid modules 57
3.5 Bases of the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$ 59
3.6 The quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ of type $A_{1}^{(1)}$ 59
3.7 The Poincaré-Birkhoff-Witt basis 61
3.8 The derivation of the straightening relations 63
3.9 The dual canonical basis 65
3.10 A recursion for dual canonical basis elements 67
3.11 The quantized version of the explicit formula for cluster variables 71
3.12 The quasi-commutativity of adjacent quantized cluster variables and the quantum exchange relation 74
3.13 Conclusion 75
Bibliography 77

1 Introduction

Cluster algebras are commutative algebras created in 2000 by Fomin-Zelevinsky [14] in the hope to obtain a combinatorial description of the dual of Lusztig's canonical basis of a quantum group.

A cluster algebra of rank n (for some natural number n) is a subalgebra of the field $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ of rational functions in n variables. Its generators are called cluster variables. Each cluster variable belongs to several overlapping clusters. Every cluster, and hence every cluster variable, is obtained from an initial cluster by a sequence of mutations. Every mutation replaces an element in a cluster by an explicitly defined rational function in the variables of that cluster. A cluster together with the exchange matrix that describes the mutation rule is called a seed. We refer to Fomin-Zelevinsky [14] for definitions and to Fomin-Zelevinsky [16] for a good survey about cluster algebras.

A cluster algebra is said to be of finite type if it exhibits only finitely many seeds. Fomin-Zelevinsky [15] classified cluster algebras of finite type. They are parametrized by the same Cartan-Killing types as semisimple Lie algebras. The classification of cluster algebras of finite type indicates a strong connection to Lie theory, and in fact it quickly turned out that Fomin-Zelevinsky's theory of cluster algebras has many interesting applications and coheres with various mathematical objects. Let us mention the representation theory of quivers and finite-dimensional algebras, the representation theory of preprojective algebras, root systems of Kac-Moody algebras, Calabi-Yau categories, quantum groups, and Lusztig's canonical basis of universal enveloping algebras.

A momentous step in the development was the categorification of acyclic cluster algebras by cluster categories. Cluster categories were defined by Buan-Marsh-Reineke-Reiten-Todorov [4]. The cluster category \mathcal{C}_{Q} associated with a quiver Q is an orbit category of the bounded derived category of the category of representations of a quiver. Keller [29] proved that cluster categories are triangulated categories. Key ingredients for the verification of the categorification of acyclic cluster algebras by cluster categories are due to Geiß-Leclerc-Schröer [23, 24] and Caldero-Keller [8, 9]. The process of mutation in the cluster algebra resembles tilting in the cluster category. Hence, we obtain a link between quiver representations and triangulated categories on one side and a large class of cluster algebras on the other side.

Furthermore, Geiß-Leclerc-Schröer [21] provided a categorification of cluster algebras by Kac-Moody groups und unipotent cells. In this construction the categorified cluster algebras are not necessarily acyclic. Let \mathfrak{g} be a Kac-Moody Lie algebra and let $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$ be its triangular decomposition. Geiß-Leclerc-Schröer's construction is related to preprojective algebras Λ associated with quivers Q. Buan-Iyama-ReitenScott [3] attached to every element w in the Weyl group of corresponding type a subcategory $\mathcal{C}_{w} \subset \bmod (\lambda)$. The category \mathcal{C}_{w} is a Frobenius category, so we can construct its stable category $\mathcal{\mathcal { C }}_{w}$. It is a Calabi-Yau category of dimension two. Geiß-LeclercSchröer [21] prove that the categories \mathcal{C}_{w} categorify cluster algebras. They endow the coordinate ring $\mathbb{C}[N(w)]$ of the unipotent group $N(w)$ with the structure of a cluster algebra. Here, N denotes the pro-unipotent pro-group associated with the completion $\widehat{\mathfrak{n}}$ and $N(w)=N \cap\left(w^{-1} N_{-} w\right)$. The coordinate ring $\mathbb{C}[N(w)]$ is naturally isomorphic to a subalgebra of the graded dual $U(\mathfrak{n})_{g r}^{*}$ of the universal enveloping algebra of \mathfrak{n}. All cluster monomials lie in the dual semicanonical basis.

In this thesis we transfer to the quantized setup and investigate quantum cluster algebra structures on subalgebras of the quantized universal enveloping algebra $U_{q}(\mathfrak{n})$
of \mathfrak{n} attached to Weyl group elements w.
Let us mention that cluster algebras also gained popularity in other branches of mathematics, for example Poisson geometry, see Gekhtman-Shapiro-Vainshtein, Teichmüller theory, see Fock-Goncharov [13], combinatorics, see Musiker-Propp [45], integrable systems, see Fomin-Zelevinsky [18], etc.

Now we give a more detailed description of the structure and the results of the thesis. Let $Q=\left(Q_{0}, Q_{1}\right)$ be an acyclic quiver, i.e., a directed graph without oriented cycles whose set of vertices is denoted by Q_{0} and whose set of arrows is denoted by Q_{1}. The thesis focuses on two examples, namely alternating quivers of type A and the Kronecker quiver.

Figure 1: Alternating quivers of type A_{3} and A_{5} and the Kronecker quiver
Let k be a field. A representation M of Q is defined to be a collection $M=$ $\left(\left(V_{i}\right)_{i \in Q_{0}},\left(\phi_{a}\right)_{a \in Q_{1}}\right)$ of k-vector spaces V_{i} associated with every vertex i and k-linear maps $\phi_{a}: V_{i} \rightarrow V_{j}$ associated with every arrow $a: i \rightarrow j$ in Q_{1}. A morphism $F: M \rightarrow$ N from M to another representation $N=\left(\left(W_{i}\right)_{i \in Q_{0}},\left(\psi_{a}\right)_{a \in Q_{1}}\right)$ is a collection of k linear maps $F_{i}: V_{i} \rightarrow W_{i}$ such that the diagram

commutes for every $a: i \rightarrow j$ in Q_{1}. The finite-dimensional representations of Q together with their morphisms form an abelian category $\operatorname{rep}_{k}(Q)$. In particular, there is a direct sum $M \oplus N$ for every two representations M and N. The category rep ${ }_{k}(Q)$ is equivalent to the category $\bmod (k Q)$, where $k Q$ is the path algebra of the quiver, given as follows: As a vector space $k Q$ is generated by all paths in the quiver (including a path of length zero for every $i \in Q_{0}$). The product of two paths is the concatenation of paths if possible and zero otherwise. The vector $\underline{\operatorname{dim}}(M)=\left(\operatorname{dim} V_{i}\right)_{i \in Q_{0}} \in \mathbb{N}^{Q_{0}}$ is called the dimension vector of M.

The quiver Q is called representation-finite if Q admits only finitely many (isomorphism classes of) indecomposable representations. Gabriel's theorem [19] asserts that Q is representation-finite if and only if Q is an orientation of a Dynkin diagram of type A, D, or E. For example, the alternating quiver of type A_{3} form above is representation-finite. It admits six (isomorphism classes of) indecomposable representations. The Auslander-Reiten quiver in Figure 2 epitomizes the category $\operatorname{rep}_{k}(Q)$. Representations are displayed by their dimension vectors.

On the other hand the Kronecker quiver is representation-infinite. But it is a tame quiver. Albeit there are infinitely many (isomorphism classes of) indecomposable $k Q$ modules, the indecomposable $k Q$-modules can be classified. The three kinds of indecomposables are called preprojective, preinjective, and regular. A part of the prein-

Figure 2: The Auslander-Reiten quiver of type A_{3}
jective component of the Auslander-Reiten quiver of the Kronecker quiver is shown in Figure 3.

We are interested in the injective modules I_{i} (for $i \in Q_{0}$) and their AuslanderReiten translates $\tau\left(I_{i}\right)$ (for $i \in Q_{0}$). Put $Q_{0}=\{1,2, \ldots, n\}$. Thus, we consider $2 n$ modules. In the examples of Figures 2 and 3 these are all indecomposable modules in the Auslander-Reiten quiver of type A_{3} and the four modules at rightmost position in the preinjective component of the Auslander-Reiten quiver of the Kronecker quiver. The direct sum M of the injective modules and their Auslander-Reiten translates is a terminal $k Q$-module in the sense of Geiß-Leclerc-Schröer [21]. With the $2 n$ modules we associate an element w in the Weyl group of the Kac-Moody Lie algebra of corresponding type together with a reduced expression for it.

Figure 3: A part of the preinjective component of the AR quiver of the Kronecker quiver

Geiß-Leclerc-Schröer [21] attached to w a cluster algebra $\mathcal{A}(w)$ of rank n. For the terminal module M from above the initial seed of Geiß-Leclerc-Schröer's cluster algebra $\mathcal{A}(w)$ contains n mutatable and n frozen cluster variables. In the case of A_{n} there are only finitely many cluster variables. In the particular example of A_{3} from above the exchange graph is a Stasheff polyhedron. The cluster algebra attached to M in the Kronecker case is generated by two frozen cluster variables p_{0}, p_{1} and a sequence $\left(x_{n}\right)_{n \in \mathbb{Z}}$ of mutatable cluster variables. Starting with an initial cluster $\left(x_{0}, x_{1}, p_{0}, p_{1}\right)$ we get all further cluster variables by a sequence of mutations.

If we put $p_{0}=p_{1}=1$, then the exchange relation which allows to switch between adjacent clusters becomes $x_{k+1} x_{k-1}=x_{k}^{2}+1$ for $k \in \mathbb{Z}$. If we furthermore specialize $x_{0}=x_{1}=1$, then we get $x_{2}=2, x_{3}=5, x_{4}=13, x_{5}=34, x_{6}=89$, etc. Every term in the sequence is a natural number. (In fact, the sequence is every other Fibonacci number.) The integrality is an instance of the Fomin-Zelevinsky's Laurent phenomenon [14]: Every cluster variable is a Laurent polynomial in x_{0} and x_{1}. Caldero-Zelevinsky [10] gave an explicit formula for the cluster variables in terms of binomial coefficients by interpreting coefficients as Euler characteristics of quiver Grassmannians arising in the Caldero-Chapoton map [7].

A monomial in the cluster variable of a single cluster is called cluster monomial.
The representation theory of the path algebra $k Q$ is closely related to the representation theory of the corresponding preprojective algebra Λ. Ringel [48] proved that the category $\bmod (\Lambda)$ is isomorphic to a category called $C(1, \tau)$. The objects in the category $C(1, \tau)$ are pairs (X, f) consisting of a $k Q$-module X and a $k Q$-module homomorphism $f: X \rightarrow \tau(X)$ from X to its translate $\tau(X)$; morphisms in $C(1, \tau)$ from a pair (X, f) to a pair (Y, g) are given by a $k Q$-module homomorphism $h: X \rightarrow Y$ for which the diagram

commutes. The algebra Λ is finite-dimensional if and only if Q is an orientation of a Dynkin diagram, see Reiten [47, Theorem 2.2a].

To construct the cluster algebra $\mathcal{A}(w)$, Geiß-Leclerc-Schröer [21] attached to every terminal $\mathbb{C} Q$-module M a natural subcategory $\mathcal{C}_{M} \subseteq \operatorname{nil}(\Lambda)$ of nilpotent Λ-modules. The category \mathcal{C}_{M} is a Frobenius category. The stable category $\underline{\mathcal{C}}_{M}$ is triangulated by a theorem of Happel [26, Section 2.6]. Geiß-Leclerc-Schröer [21, Theorem 11.1] showed that if $M=I \oplus \tau(I)$ where I is the direct sum of all indecomposable injective representations, then there is an equivalence of triangulated categories $\underline{\mathcal{C}}_{M} \simeq \mathcal{C}_{Q}$ between $\underline{\mathcal{C}}_{M}$ and the cluster category \mathcal{C}_{Q} as defined by Buan-Marsh-Reineke-Reiten-Todorov [4] to be the orbit category $\mathcal{D}^{b}(\bmod (k Q)) / \tau_{\mathcal{D}}^{-1} \circ[1]$.

Geiß-Leclerc-Schröer [21, Section 4] implemented the cluster algebra $\mathcal{A}(w)$ as a subalgebra of the graded dual of the universal enveloping algebra $U(\mathfrak{n})$ of the maximal nilpotent subalgebra \mathfrak{n} of the symmetric Kac-Moody Lie algebra \mathfrak{g} attached to the quiver Q, i.e., $\mathcal{A}\left(\mathcal{C}_{M}\right) \subseteq U(\mathfrak{n})_{g r}^{*}$. Moreover, Geiß-Leclerc-Schröer [21] also proved that all cluster monomials are in the dual of Lusztig's semicanonical basis. There is an isomorphism between $U(\mathfrak{n})$ and an algebra \mathcal{M} of \mathbb{C}-valued functions on Λ. We refer to [21] for a precise definition of \mathcal{M}. It is generated by functions $d_{\mathbf{i}}$ that map a Λ-module X to the Euler characteristic of the flag variety of X of type i. Prominent elements in $\mathcal{A}\left(\mathcal{C}_{M}\right)$ are (under the described isomorphism) the δ-functions of certain rigid Λ modules. Additionally, there is an isomorphism $\mathcal{A}\left(\mathcal{C}_{M}\right) \simeq \mathbb{C}[N(w)]$ where $\mathbb{C}[N(w)]$ is the coordinate ring of the unipotent subgroup $N(w)$ attached to the adaptable Weyl group element w of M. Therefore, we may call the \mathcal{C}_{M} a categorification of the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$.

We transfer to the quantized setup. The quantized universal enveloping algebra $U_{q}(\mathfrak{n})$ is a self-dual Hopf algebra. Following Lusztig [42] we attach to w a subalgebra $U_{q}^{+}(w)$ of $U_{q}(\mathfrak{n})$. The subalgebra is generated by $2 n$ elements that satisfy straightening relations; it degenerates to a commutative algebra in the classical limit $q=1$.

The generators are constructed via Lusztig's T-automorphisms. The algebra $U_{q}^{+}(w)$ possesses four distinguished bases, a Poincaré-Birkhoff-Witt basis, a canonical basis, and their duals. The thesis concerns the dual of Lusztig's canonical basis of the subalgebra $U_{q}^{+}(w)$ under Kashiwara's bilinear form [28]. The dual canonical basis elements can be described as linear combinations of dual Poincaré-Birkhoff-Witt basis elements satisfying a lattice property and an invariance property.

It is conjectured (see for example [33]) that the quantized coordinate ring $\mathbb{C}_{q}[N(w)]$ is quantum cluster algebra $\mathcal{A}_{q}(w)$ in the sense of Berenstein-Zelevinsky [6] and that the set \mathcal{M}_{q} of all quantum cluster monomials, taken up to powers of q, is a subset of the dual canonical basis \mathcal{B}^{*}, i.e., the following diagram commutes:

The thesis is divided into two parts. The first part concerns alternating quivers of type A_{n}, the second part concerns the Kronecker quiver. In both cases, we prove recursions for dual canonical basis elements in $U_{q}^{+}(w)$. The recursions imply quantum exchange relations so that the integral form of $U_{q}^{+}(w)$ becomes (after extending coefficients) a quantum cluster algebra $\mathcal{A}_{q}(w)$. It follows that the quantum cluster variables are, up to a power of q, elements in the dual of Lusztig's canonical basis under Kashiwara's bilinear form.

The proof relies on the exact form of the straightening relations. In the case A_{n}, the description of the straightening relations features (besides Lusztig's T-automorphisms) Leclerc's embedding [36] of $U_{q}(\mathfrak{n})$ in the quantum shuffle algebra. The straightening relations for the Kronecker case are due to Leclerc [37]. The exact form of the straightening relations enables us to verify that recursively defined variables satisfy the lattice property and the invariance property of the dual canonical basis.

In the case of the Kronecker quiver, we give explicit formulae for the quantum cluster variables that quantize Caldero-Zelevinsky's formulae [10] for the ordinary cluster variables. In this case we also provide formulae for expansions of products of dual canonical basis elements.

Acknowledgements: I am heartily thankful to my supervisor, Jan Schröer, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop an understanding of the subject. I am also grateful to Bernard Leclerc for invaluable discussions. I would like to thank the Bonn International Graduate School in Mathematics (BIGS) for financial support.

2 Quantum cluster algebras of type A

2.1 Introduction

Cluster algebras are commutative rings defined by Fomin-Zelevinsky [14] to investigate total positivity and canonical bases. The study of cluster algebras promptly extended over various branches of mathematics. One of the two original motivations, namely the connection between cluster algebras and canonical bases, has only been observed in a few cases. The passage from cluster algebras to canonical bases features Berenstein-Zelevinsky's quantum cluster algebras [6].

To give a more detailed description of this connection we introduce the following notations from Lie theory: Let \mathfrak{g} be a complex Kac-Moody Lie algebra with Cartan matrix C. It admits a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$. There exist quantizations of the universal enveloping algebras of \mathfrak{g} and \mathfrak{n}, called $U_{v}(\mathfrak{g})$ and $U_{v}(\mathfrak{n})$, respectively. With every Weyl group element $w \in W$ Lusztig [42] associates a subalgebra $U_{v}^{+}(w) \subset U_{v}(\mathfrak{n})$. Lusztig's construction [42] of $U_{v}^{+}(w)$ involves the evaluation of T automorphisms at initial subsequences of a reduced expression $\underline{i}=\left(i_{r}, \ldots, i_{1}\right)$ for w. According to Lusztig [42] $U_{v}^{+}(w)$ possesses several bases: For every reduced expression \underline{i} of w there is a Poincaré-Birkhoff-Witt basis. Furthermore, there is the canonical basis. It is conjectured that the integral form of the subalgebra $U_{v}^{+}(w) \subset U_{v}(\mathfrak{n})$ is (after extending coefficients) a quantum cluster algebra.

The conjecture has only been verified in very few cases, see Berenstein-Zelevinsky [5] for type A_{2} and A_{3}, and the author [34] for an example of Kronecker type. Therefore, particular instances are worthwile. In this note we focus on type A_{n} (for a natural number n) and a particular Weyl group element w of length $2 n$. We are going to prove that $U_{v}^{+}(w)$ carries indeed a quantum cluster algebra structure. In this case $\mathfrak{g}=\mathfrak{s l}_{n+1}$ is the complex semi-simple Lie algebra of traceless $(n+1) \times(n+1)$ matrices and \mathfrak{n} consists of all strictly upper triangular matrices.

The topic is truely linked with the representation theory of quivers. The case $\mathfrak{g}=$ $\mathfrak{s l}_{n+1}$ is related to Dynkin quivers of type A_{n}. We choose a particular orientation: Let $Q=\left(Q_{0}, Q_{1}\right)$ be a Dynkin quiver of type A_{n} with an alternating orientation beginning with a source. We denote the set of vertices by $Q_{0}=\{1,2, \ldots, n\}$. Figure 4 illustrates the example $n=13$. The choice of the orientation matches the choice of the Weyl group element w. The reduced expression of w (that is used to construct $U_{v}^{+}(w)$) and its initial subsequences (that are used to construct the generators $U_{v}^{+}(w)$) are related to the indecomposable injective modules over the path algebra of Q and their AuslanderReiten translates, respectively.

Figure 4: The quiver Q of type A_{13}
We denote the resulting quantum cluster algebra by $\mathcal{A}_{v}(w)$. It is a deformation of the cluster algebra $\mathcal{A}(w)$ Geiß-Leclerc-Schröer [21] attached to w. In Geiß-LeclercSchröer's setting, the cluster variables are δ-functions of rigid modules over the preprojective algebra of Q. The cluster algebra $\mathcal{A}(w)$, just as the quantum cluster algebra $\mathcal{A}_{v}(w)$, is of type A_{n}. Every cluster contains n frozen and n mutatable cluster vari-
ables. Altogether there are $n+\frac{n(n+1)}{2}$ mutatable and n frozen cluster variables. Most of the cluster variables can be realized as minors of certain matrices, see Section 2.6. The structure of these minors implies that there is (besides the usual cluster exchange relation) a recursive way to compute these cluster variables avoiding denominators. Theorem 2.70, the main theorem, asserts that the recursion can be quantized to a recursion for the corresponding quantum cluster variables. The quantized recursions imply quantum exchange relations so that the integral form $U_{v}^{+}(w)_{\mathbb{Z}}$ of $U_{v}^{+}(w)$ becomes (after extending coefficients) a quantum cluster algebra.

Furthermore, it follows from our construction that the quantum cluster variables are (up to a power of v) elements in the dual of Lusztig's canonical basis under Kashiwara's bilinear form [28].

2.2 Representation theory of the quiver of type A and cluster algebras

Let k be a field. In what follows we study the category $\operatorname{rep}_{k}(Q)$ of finite-dimensional k-representations of Q over the field k. (For more detailed information on representations of quivers see for example Crawley-Boevey [11].) The category $\operatorname{rep}_{k}(Q)$ is equivalent to the category $\bmod (k Q)$ of finite-dimensional modules over the path algebra $k Q$. Gabriel's theorem [19] asserts that the quiver Q admits (up to isomorphism) only finitely many indecomposable representations. In fact there are $\frac{(n+1) n}{2}$ indecomposable representations (up to isomorphism) and they are in bijection with the set of intervals $[i, j]=\{i, i+1, i+2, \ldots j\} \subset \mathbb{Z}$ with $1 \leq i \leq j \leq n$. The indecomposable representation associated with the interval $[i, j]$ is $V_{[i, j]}=\left(\left(V_{s}\right)_{s \in Q_{0}},\left(V_{a}\right)_{a \in Q_{1}}\right)$ defined by k-vector spaces

$$
V_{s}= \begin{cases}k, & \text { if } i \leq s \leq j \\ 0, & \text { otherwise }\end{cases}
$$

associated with vertices s, and k-linear maps

$$
V_{a}= \begin{cases}1, & \text { if } V_{s}=V_{t}=k \\ 0, & \text { otherwise }\end{cases}
$$

associated with arrows $a: s \rightarrow t$.
All further considerations will basically depend on the parity of n. For a compact and effective handling of all cases we make the assumption that n is odd. Denote by $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}\right)$ to be the quiver obtained from Q by removing the vertex n. The quiver Q^{\prime} is of type A_{n-1}, and the examination of both Q^{\prime} and Q covers all cases. Note that every representation of Q^{\prime} can be viewed as a representation of Q supported on the first $n-1$ vertices. An example of the quiver Q^{\prime} is shown in Figure 5.

Figure 5: The quiver Q^{\prime} of type A_{12}
If $n=1$, i.e., the quiver has one vertex and no arrows, then the category $\operatorname{rep}_{k}(Q)$ can easily be described. In this case modules over the path algebra $k Q$ are k-vector

Figure 6: The Auslander-Reiten quiver for $n=2$
spaces, and the k-vector space k of dimension 1 is the only irreducible module. In the other cases, the most suggestive way to illustrate the category $\operatorname{rep}_{k}(Q)$ is given by its Auslander-Reiten quiver. For an introduction to Auslander-Reiten theory we refer to Assem-Simson-Skowronski [1, Chapter IV].

The simplest non-trivial example is the Auslander-Reiten quiver of type A_{2} which can be seen in Figure 6. In this case there are (up to isomorphism) three indecomposable representations, two of which are injective. The representations are displayed by their graded dimension vectors. The solid arrows represent irreducible maps; the dashed arrow represents the Auslander-Reiten translation. Note that the AuslanderReiten translate of the injective representation associated with vertex 2 is the zero representation.

In what follows we are interested in the indecomposable injective $k Q$-modules I_{i} associated with vertices $i \in Q_{0}$ and their Auslander-Reiten translates $\tau_{k Q}\left(I_{i}\right)$. Similarly, we are interested in the indecomposable injective $k Q^{\prime}$-modules I_{i}^{\prime} associated with vertices $i \in Q_{0}^{\prime}$ and their Auslander-Reiten translates $\tau_{k Q^{\prime}}\left(I_{i}^{\prime}\right)$. (For simplicity, we drop from now on the index attached to τ whenever it is clear which algebra we are referring to.) The choice of the alternating orientions of the quivers Q and Q^{\prime} ensure that from type A_{3} onwards we have $\tau(I) \neq 0$ for every indecomposable injective $k Q$ module. (This would not be true for the linear orientation of the Dynkin diagram A_{n}. The Auslander-Reiten translate of the indecomposable injective representation corresponding to the sink would be zero in this case.) The direct sum $M=\bigoplus_{i=1}^{n} I_{i} \oplus \tau\left(I_{i}\right)$ is a terminal $k Q$-module in the sense of Geiß-Leclerc-Schröer [21, Section 2.2], and so is the $k Q^{\prime}$ module $M^{\prime}=\bigoplus_{i=1}^{n-1} I_{i}^{\prime} \oplus \tau\left(I_{i}^{\prime}\right)$.

Figure 7: The Auslander-Reiten quiver for $n=3$
The small cases A_{3} and A_{4} will have to be treated separately. Figure 7 and Figure 8 display the indecomposable injective modules (red), their Auslander-Reiten translates (blue), and irreducible maps between them for the case $n=3$ and $n=4$, respectively. We visualize the modules by their graded dimension vectors.

If $n=3$, then M is the direct sum of all indecomposable $k Q$-modules, i.e.,
$\bmod (k Q)=\operatorname{add}(M)$.

Figure 8: A part of the Auslander-Reiten quiver for $n=4$
From A_{5} onwards a uniform description is possible. For type A_{n} (remember that n is assumed to be odd) the indecomposable components of M can be written down explicitly:

$$
\begin{array}{ll}
I_{i}=V_{[i, i]}, & \text { if } \mathrm{i} \text { is odd and } 1 \leq i \leq n, \\
I_{i}=V_{[i-1, i+1]}, & \text { if } \mathrm{i} \text { is even and } 2 \leq i \leq n, \\
\tau\left(I_{1}\right)=V_{[2,3]}, & \text { if } \mathrm{i} \text { is odd and } 3 \leq i \leq n-2, \\
\tau\left(I_{i}\right)=V_{[i-2, i+2]}, & \\
\tau\left(I_{n}\right)=V_{[n-2, n-1]}, & \text { if i is even and } 4 \leq i \leq n-3, \\
\tau\left(I_{2}\right)=V_{[2,5]}, & \\
\tau\left(I_{i}\right)=V_{[i-3, i+3]}, & \\
\tau\left(I_{n-1}\right)=V_{[n-4, n-1]} . &
\end{array}
$$

We display the relevant part of the Auslander-Reiten quiver of A_{n} in Figure 9 for the case $n=13$. As above, the indecomposable injective modules are colored red, their Auslander-Reiten translates blue.

There are only a few changes if we restrict Q to Q^{\prime}. Observe that $I_{i}^{\prime}=I_{i}$ for $i \in\{1,2, \ldots, n-3\}$, and that $\tau\left(I_{i}^{\prime}\right)=\tau\left(I_{i}\right)$ for $i \in\{1,2, \ldots, n-3\}$. Note that the latter modules are $k Q$-modules supported on the first $n-1$ vertices and may therefore be viewed as $k Q^{\prime}$-modules. Furthermore, we have

$$
\begin{aligned}
& I_{n-1}^{\prime}=V_{[n-2, n-1]}, \\
& \tau\left(I_{n-3}^{\prime}\right)=V_{[n-6, n-1]}, \\
& \tau\left(I_{n-2}^{\prime}\right)=V_{[n-4, n-1]}, \\
& \tau\left(I_{n-1}^{\prime}\right)=V_{[n-4, n-3]} .
\end{aligned}
$$

An example of type A_{12} is illustrated in Figure 10.

2.3 The preprojective algebra and rigid modules

The representation theory of the path algebra $k Q$ is closely related to the representation theory of the corresponding preprojective algebra Λ defined as follows. For every arrow $a: s \rightarrow t$ in Q_{1} introduce an additional arrow $a^{*}: t \rightarrow s$ in reverse direction and

Figure 9: A part of the Auslander-Reiten quiver of $\bmod (k Q)$

Figure 10: A part of the Auslander-Reiten quiver of $\bmod \left(k Q^{\prime}\right)$
denote by $Q_{1}^{*}=\left\{a^{*}: a \in Q_{1}\right\}$ the set of all reversed arrows. The double quiver of Q is by defined to be the quiver $\bar{Q}=\left(\bar{Q}_{0}, \bar{Q}_{1}\right)$ given by a vertex set $\bar{Q}_{0}=Q_{0}$ and an arrow set $\bar{Q}_{1}=Q_{1} \cup Q_{1}^{*}$. The preprojective algebra is defined to be

$$
\Lambda=k \bar{Q} /(c)
$$

where the ideal (c) is the two-sided ideal generated by the element

$$
c=\sum_{a \in Q_{1}}\left(a^{*} a-a a^{*}\right) \in k \bar{Q} .
$$

The algebra Λ is finite- dimensional, since Q is an orientation of a Dynkin diagram, see Reiten [47, Theorem 2.2a]. The category $\bmod (\Lambda)$ of finite-dimensional Λ-modules is equivalent to the category $\operatorname{rep}_{k}(\bar{Q},(c))$ of finite-dimensional representations $M=$ $\left(\left(M_{s}\right)_{s \in Q_{0}},\left(M_{a}\right)_{a \in \bar{Q}_{1}}\right)$ of \bar{Q} such that for any two vertices $s, t \in Q_{0}$ and any linear combination $\sum_{i=1}^{m} \lambda_{i} p_{i} \in(c)$ of paths $p_{i}: s \rightarrow t$ with scalars $\lambda_{i} \in k$ the associated linear map $\sum_{i=1}^{m} \lambda_{i} M_{p_{i}}$ is zero.

There is a restriction functor $\pi_{Q}: \bmod (\Lambda) \rightarrow \bmod (k Q)$ given by forgetting the linear maps associated with a^{*} for all $a \in Q_{1}$ in the corresponding representation of the quiver \bar{Q}. Ringel [48, Theorem B] proved that the category $\bmod (\Lambda)$ is isomorphic to a category called $C(1, \tau)$. The objects in the category $C(1, \tau)$ are pairs (X, f) consisting of a $k Q$-module X and a $k Q$-module homomorphism $f: X \rightarrow \tau(X)$ from X to its translate $\tau(X)$; morphisms in $C(1, \tau)$ from a pair (X, f) to a pair (Y, g) are given by a $k Q$-module homomorphism $h: X \rightarrow Y$ for which the diagram

commutes.
Using the correspondence from above Geiß-Leclerc-Schröer [21, Section 7.1] constructed for every $i \in Q_{0}$ and any natural numbers a, b satisfying $0 \leq a \leq b \leq 1 \mathrm{a}$ Λ-module $T_{i,[a, b]}=\left(I_{i,[a, b]}, e_{i,[a, b]}\right)$ where $I_{i,[a, b]}=\bigoplus_{j=a}^{b} \tau^{j}\left(I_{i}\right)$ and the map

$$
e_{i,[a, b]}: I_{i,[a, b]} \rightarrow \tau\left(I_{i,[a, b]}\right)=\bigoplus_{j=a+1}^{b+1} \tau^{j}\left(I_{i}\right)
$$

is identity on every $\tau^{j}\left(I_{i}\right)$ for $a+1 \leq j \leq b$ and zero otherwise. We study Λ-modules $T_{i,[a, b]}$ for $i \in Q_{0}$ and $0 \leq a, b \leq 1$. We display the modules by their graded dimension vectors in Figures 11, 12, 13.

The modules $T_{i,[a, b]}$ for $i \in Q_{0}$ and $0 \leq a, b \leq 1$ are rigid and nilpotent. Recall that a Λ-module T is said to be rigid if $\operatorname{Ext}_{\Lambda}^{1}(T, T)=0$ and it is said to be nilpotent if there exists an integer $N>0$ such that for each path $a_{1} a_{2} \cdots a_{N}$ of length N in \bar{Q} the associated linear map $T_{a_{1}} T_{a_{2}} \cdots T_{a_{N}}$ is zero. Rigidity follows from Geiß-LeclercSchröer [21, Lemma 7.1]; nilpotency follows from Lusztig [44, Proposition 14.2].

Similarly, the representation theory of the path algebra $k Q^{\prime}$ is closely related to the representation theory of the corresponding preprojective algebra Λ^{\prime}.

Figure 11: The modules $T_{i,[0,0]}$

Figure 12: The modules $T_{i,[0,1]}$

Figure 13: The modules $T_{i,[1,1]}$

2.4 Notations from Lie theory

The representation theory of the quiver Q is related with Lie theory. Let $k=\mathbb{C}$. The Lie algebra associated with the Dynkin diagram A_{n} is $\mathfrak{g}=\mathfrak{s l}_{n+1}$, i.e., the Lie algebra of $(n+1) \times(n+1)$ matrices with complex entries and vanishing trace. It admits a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$. Here, \mathfrak{n} and \mathfrak{n}_{-}denote the Lie algebras of strictly upper and strictly lower triangular $(n+1) \times(n+1)$ matrices, respectively, and \mathfrak{h} denotes the Lie algebra of $(n+1) \times(n+1)$ diagonal matrices. The Lie algebra \mathfrak{n} is called the positive part of \mathfrak{g}.

Let $C=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the Cartan matrix associated with the quiver Q; its entries are:

$$
a_{i j}= \begin{cases}2, & \text { if } i=j \\ -1, & \text { if }|i-j|=1 \\ 0, & \text { otherwise }\end{cases}
$$

The Lie algebra \mathfrak{g} is studied by its roots. The root lattice Q is defined to be the free abelian group generated by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. The elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are called simple roots. (By an abuse of notation the variable Q is double assigned, but it should be clear from the context whether Q denotes the quiver or the root lattice.) By $Q^{+} \subset Q$ we denote the set of all linear combinations $\sum_{i=1}^{n} c_{i} \alpha_{i}$ with $c_{i} \in \mathbb{N}^{+}$. There is a symmetric bilinear form $(\cdot, \cdot): Q \times Q \rightarrow \mathbb{R}$ which is on generators given by $\left(\alpha_{i}, \alpha_{j}\right)=a_{i j}$ for $1 \leq i, j \leq n$. By $\Delta^{+} \subseteq Q$ we denote the set of positive roots of the corresponding root system. Then $\Delta^{+}=\left\{\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}: 1 \leq i \leq j \leq n\right\}$. Under the bijection of Gabriel's theorem, a positive root $\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}$ with $1 \leq i \leq j \leq n$ is mapped to the indecomposable representation $V_{[i, j]}$ from Section 2.2.

The simple reflections $s_{1}, s_{2}, \ldots, s_{n}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ act on the simple roots by

$$
s_{i}\left(\alpha_{j}\right)= \begin{cases}-\alpha_{i}, & \text { if } i=j \\ \alpha_{i}+\alpha_{j}, & \text { if }|i-j|=1 \\ \alpha_{j}, & \text { otherwise }\end{cases}
$$

The group W generated by the simple reflections is called the Weyl group of type \mathfrak{g}. The simple reflection satisfy the following relations

$$
\begin{align*}
s_{i} s_{j} & =s_{j} s_{i}, & & \text { if }|i-j| \geq 2 \tag{1}\\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j}, & & \text { if }|i-j|=1 \tag{2}\\
s_{i}^{2} & =1, & & \tag{3}
\end{align*}
$$

for all $1 \leq i, j \leq n$. Therefore, the Weyl group W is isomorphic to the symmetric group S_{n}.

To every terminal $k Q$-module Geiß-Leclerc-Schröer [21, Section 3.7] attach a $Q^{o p_{-}}$ adapted Weyl group element. The $Q^{o p}$-adapted Weyl group element associated with the terminal module M from Section 2.2 is

$$
\begin{equation*}
w=s_{1} s_{3} s_{5} \cdots s_{n} s_{2} s_{4} s_{6} \cdots s_{n-1} s_{1} s_{3} s_{5} \cdots s_{n} s_{2} s_{4} s_{6} \cdots s_{n-1} \tag{4}
\end{equation*}
$$

The given expression for w is reduced. Let $j_{1}, j_{2}, \ldots, j_{2 n} \in[1, n]$ such that for the reduced expression for w from above we have $w=s_{j_{1}} s_{j_{2}} \cdots s_{j_{2 n}}$. We abbreviate $\beta_{k}=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k-1}}\left(\alpha_{j_{k}}\right)$ for $1 \leq k \leq 2 n$. Denote by $\Delta_{w}^{+}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{2 n}\right\} \subseteq$ Δ^{+}the set of all β_{k} with $1 \leq k \leq 2 n$. Note that the notation is well-defined. If we choose another reduced expression $w=s_{j_{1}^{\prime}} s_{j_{2}^{\prime}} \cdots s_{j_{2 n}^{\prime}}$ for w, then

$$
\left\{s_{j_{1}^{\prime}} s_{j_{2}^{\prime}} \cdots s_{j_{k-1}^{\prime}}\left(\alpha_{j_{k}^{\prime}}\right): 1 \leq k \leq 2 n\right\}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{2 n}\right\}
$$

Furthermore, notice that under the bijection of Gabriel's theorem, the $2 n$ positive roots β_{k} with $1 \leq k \leq 2 n$, correspond to the dimension vectors of the indecomposable direct summands of M (compare Figure 4). More precisely, for $n \geq 5$,

$$
\begin{aligned}
\Delta_{w}^{+}= & \left\{\alpha_{i}: \text { is odd and } 1 \leq i \leq n\right\} \\
& \cup\left\{\alpha_{i-1}+\alpha_{i}+\alpha_{i+1}: \text { is even and } 2 \leq i \leq n-1\right\} \\
& \cup\left\{\alpha_{2}+\alpha_{3}\right\} \cup\left\{\alpha_{n-2}+\alpha_{n-1}\right\} \\
& \cup\left\{\alpha_{i-2}+\cdots+\alpha_{i+2}: \text { is odd and } 3 \leq i \leq n-3\right\} \\
& \cup\left\{\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right\} \cup\left\{\alpha_{n-4}+\alpha_{n-3}+\alpha_{n-2}+\alpha_{n-1}\right\} \\
& \cup\left\{\alpha_{i-3}+\cdots+\alpha_{i+3}: \text { is even and } 4 \leq i \leq n-4\right\} .
\end{aligned}
$$

The universal enveloping algebra $U(\mathfrak{n})$ of \mathfrak{n} is the associative \mathbb{C}-algebra generated by $E_{i}(1 \leq i \leq n)$ subject to the relations

$$
\begin{array}{ll}
E_{i} E_{j}=E_{j} E_{i}, & \text { for }|i-j| \geq 2 \\
E_{i}^{2} E_{j}-2 E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0, & \text { for }|i-j|=1 \tag{6}
\end{array}
$$

The last relation is called Serre relation.
Similarly, the representation theory of the quiver Q^{\prime} of type A_{n-1} is linked with the Lie algebra $\mathfrak{g}^{\prime}=\mathfrak{s l}_{n}$ with Weyl group W^{\prime}. The Lie algebra $\mathfrak{g}^{\prime}=\mathfrak{s l}_{n}$ similarly admits a triangular decomposition $\mathfrak{g}^{\prime}=\mathfrak{n}_{-}^{\prime} \oplus \mathfrak{h}^{\prime} \oplus \mathfrak{n}^{\prime}$. The Weyl group element associated with M^{\prime} is $w^{\prime}=s_{1} s_{3} s_{5} \cdots s_{n-2} s_{2} s_{4} s_{6} \cdots s_{n-1} s_{1} s_{3} s_{5} \cdots s_{n-2} s_{2} s_{4} s_{6} \cdots s_{n-1} \in W^{\prime}$. The universal enveloping algebra $U\left(\mathfrak{n}^{\prime}\right)$ may be viewed as the subalgebra of $U(\mathfrak{n})$ generated by $E_{i}(1 \leq i \leq n-1)$.

2.5 The cluster algebra attached to the terminal module

To the terminal $\mathbb{C} Q$-module M from Section 2.2 Geiß-Leclerc-Schröer ([21, Section 4]) attached a category $\mathcal{C}_{M} \subseteq \operatorname{nil}(\Lambda)$ of nilpotent Λ-modules. The projective and injective objects in \mathcal{C}_{M} coincide, so \mathcal{C}_{M} is a Frobenius category and there is a stable category \mathcal{C}_{M}. By a theorem of Happel [26, Section 2.6] the stable category \mathcal{C}_{M} is a triangulated category. Furthermore, Geiß-Leclerc-Schröer [21, Theorem 11.1] showed that there is an equivalence of triangulated categories $\underline{\mathcal{C}}_{M} \simeq \mathcal{C}_{Q}$ between $\underline{\mathcal{C}}_{M}$ and the cluster category \mathcal{C}_{Q} as defined by Buan-Marsh-Reineke-Reiten-Todorov [4] to be the orbit category $\mathcal{D}^{b}(\bmod (k Q)) / \tau_{\mathcal{D}}^{-1} \circ[1]$. The category \mathcal{C}_{Q} is indeed triangulated by a result of Keller [29].

With every \mathcal{C}_{M} Geiß-Leclerc-Schröer [21, Section 4] associated a cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$; it is constructed as a subalgebra of the graded dual of the universal enveloping algebra of the positive part of the corresponding Lie algebra, i.e., $\mathcal{A}\left(\mathcal{C}_{M}\right) \subseteq U(\mathfrak{n})_{g r}^{*}$. For a definition of and a general introduction to cluster algebras see Fomin-Zelevinsky [17]. The cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$ is also called $\mathcal{A}(w)$.

There is an isomorphism between $U(\mathfrak{n})$ and an algebra \mathcal{M} of \mathbb{C}-valued functions on Λ. We refer to Geiß-Leclerc-Schröer [21] for a precise definition of \mathcal{M}. It is generated by functions $d_{\mathbf{i}}$ that map a Λ-module X to the Euler characteristic of the flag variety of X of type i. Prominent elements in $\mathcal{A}\left(\mathcal{C}_{M}\right)$ are (under the described isomorphism) the δ-functions of the rigid Λ-modules $T_{i,[a, b]}$ with $i \in Q_{0}$ and $0 \leq a \leq b \leq 1$. For $1 \leq i \leq n$ put

$$
\begin{aligned}
& P_{i}=\delta_{T_{i,[0,1]} ;} ; \\
& Y_{i}= \begin{cases}\delta_{T_{i,[0,0]}}, & \text { if } i \text { is odd } \\
\delta_{T_{i,[1,1]}}, & \text { if } i \text { is even; }\end{cases} \\
& Z_{i}= \begin{cases}\delta_{T_{i,[0,0]},}, & \text { if } i \text { is even; } \\
\delta_{T_{i,[1,1]},}, & \text { if } i \text { is odd }\end{cases}
\end{aligned}
$$

The initial seed of the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$ for the case $n=9$ is shown in Figure 14. The vertices represent the cluster variables in the initial cluster, the arrows describe the initial exchange matrix. Just as in Keller's mutation applet [30], the blue vertices are frozen, the red vertices are mutatable. The frozen variables $P_{1}, P_{2}, \ldots, P_{n}$ may be viewed as coefficients in the sense of Fomin-Zelevinsky [16]. The cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$ is of type A_{n}, and therefore of finite type. Besides the n frozen variables there are $n+\frac{n(n+1)}{2}$ mutatable cluster variables grouped into $C_{n+1}=\frac{1}{n+2}\binom{2 n+2}{n+1}$ clusters, where C_{n+1} denotes the $(n+1)^{\text {th }}$ Catalan number (see Fomin-Zelevinsky [15, Section 12]). The Catalan number C_{n+1} is the number of triangulations of a convex polygon with $n+3$ sides using only diagonals.

The δ-functions of P_{i}, Y_{i}, and Z_{i} for $i \in Q_{0}$ are not algebraically independent. For example, the equation

$$
\begin{equation*}
P_{i}=Y_{i} Z_{i}-Z_{i-1} Z_{i+1} \tag{7}
\end{equation*}
$$

holds for every $i \in Q_{0}$. The equations are due to Geiß-Leclerc-Schröer [21, Theorem 18.1] and called determinantal identities. Here and in what follows we use the convention $Z_{0}=Z_{n+1}=1$.

Similarly, we can construct a cluster algebra $\mathcal{A}\left(\mathcal{C}_{M^{\prime}}\right)$ associtated with the terminal $\mathbb{C} Q^{\prime}$-module M^{\prime} from Section 2.2. The initial seed of $\mathcal{A}\left(\mathcal{C}_{M^{\prime}}\right)$ is obtained from the

Figure 14: The initial seed for the case $n=9$
initial seed of $\mathcal{A}\left(\mathcal{C}_{M}\right)$ by ignoring the vertices Y_{n} and P_{n} and all incident arrows. We denote the corresponding cluster variables of $\mathcal{A}\left(\mathcal{C}_{M^{\prime}}\right)$ by $P_{i}^{\prime}, Y_{i}^{\prime}$, and Z_{i}^{\prime} (for $1 \leq i \leq$ $n-1$).

2.6 The description of cluster variables

In this subsection we describe the cluster variables explicitly. Note that our desription of cluster variables differs from the explicit description of Geiß-Leclerc-Schröer [21, Section 18.2] due to a different choice of orientation of the quiver. Put $c_{i}=\frac{Z_{i-1} Z_{i+1}}{Z_{i}}$ for $1 \leq i \leq n$.

Definition 2.1. For two natural numbers i, j with $1 \leq i \leq j \leq n$ put $\Delta_{i, j}=$ $c_{i} c_{i+1} \cdots c_{j} \operatorname{det}\left(M_{i j}\right)$ where $M_{i j}=\left(\left(M_{i j}\right)_{r s}\right)_{i \leq r, s \leq j}$ is the $(j-i+1) \times(j-i+1)$ matrix defined by

$$
\left(M_{i j}\right)_{r s}= \begin{cases}\frac{y_{r}}{c_{r}}, & \text { if } r=s \\ 1, & \text { if } s>r \text { or } r=s+1 \\ 0, & \text { otherwise }\end{cases}
$$

i.e., $\Delta_{i, j}$ is given by the following determinant

$$
\Delta_{i, j}=c_{i} c_{i+1} \cdots c_{j}\left|\begin{array}{cccccccc}
\frac{Y_{i}}{c_{i}} & 1 & 1 & 1 & \cdots & 1 & 1 & 1 \\
1 & \frac{Y_{i+1}}{c_{i+1}} & 1 & 1 & \cdots & 1 & 1 & 1 \\
0 & 1 & \frac{Y_{i+2}}{c_{i+2}} & 1 & \cdots & 1 & 1 & 1 \\
0 & 0 & 1 & \frac{Y_{i+3}}{c_{i+3}} & \cdots & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \frac{Y_{j-2}}{c_{j-2}} & 1 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & \frac{Y_{j-1}}{c_{j-1}} & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & \frac{Y_{j}}{c_{j}}
\end{array}\right| .
$$

Remark 2.2. Note that

$$
\Delta_{i, j}=\left|\begin{array}{cccccccc}
Y_{i} & c_{i} & c_{i} & c_{i} & \cdots & c_{i} & c_{i} & c_{i} \\
c_{i+1} & Y_{i+1} & c_{i+1} & c_{i+1} & \cdots & c_{i+1} & c_{i+1} & c_{i+1} \\
0 & c_{i+2} & Y_{i+2} & c_{i+2} & \cdots & c_{i+2} & c_{i+2} & c_{i+2} \\
0 & 0 & c_{i+3} & Y_{i+3} & \cdots & c_{i+3} & c_{i+3} & c_{i+3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & Y_{j-2} & c_{j-2} & c_{j-2} \\
0 & 0 & 0 & 0 & \cdots & c_{j-1} & Y_{j-1} & c_{j-1} \\
0 & 0 & 0 & 0 & \cdots & 0 & c_{j} & Y_{j}
\end{array}\right|
$$

for $1 \leq i \leq j \leq n$. It follows that each $\Delta_{i, j}(1 \leq i, j \leq n)$ is actually a polynomial in $Y_{i}(1 \leq i \leq n)$ and $Z_{i}(1 \leq i \leq n)$, i.e., $\Delta_{i, j} \in \mathbb{Z}\left[Y_{k}, Z_{k}: 1 \leq k \leq n\right]$ for all $i \leq j$. Polynomiality follows from Geiß-Leclerc-Schröer [21, Theorem 3.4], but is also follows directly from the formula above once we notice that $c_{i} c_{i+1} \cdots c_{j} \in \mathbb{Z}\left[Z_{k}: 1 \leq\right.$ $k \leq n]$ for all i, j with $1 \leq i<j \leq n$.

Proposition 2.3. For all i, j with $1 \leq i \leq j \leq n$ and $j-i \geq 3$ the equation $\Delta_{i, j}=$ $Y_{j} \Delta_{i, j-1}-Z_{j+1} P_{j-2} \Delta_{i, j-3}$ holds.

Proof. Perform a Laplace expansion of the determinant on the last row. The last row has only two non-zero entries and it is easy to see that the two occuring summands in the Laplace expansion are the two summands in the recursion formula.

For $1 \leq i \leq n$ let $\Delta_{i, i-1}, \Delta_{i, i-2}$, and $\Delta_{i, i-3}$ be the unique elements from $\mathbb{Q}\left(Y_{k}, Z_{k}: 1 \leq k \leq n\right)$ such that the recursion formula from Proposition 2.3 also holds for $j=i+2, \bar{j}=\bar{i}+1$, and $j=i$. Explicitly, we put $\Delta_{i, i-1}=1, \Delta_{i, i-2}=\frac{1}{y_{i-1}-c_{i-1}}$, and $\Delta_{i, i-3}=0$. The next lemma follows easily from Proposition 2.3.

Lemma 2.4. For all i, j with $1 \leq i \leq j \leq n$ the equation $\Delta_{i, j} Z_{j}=P_{j} \Delta_{i, j-1}+$ $Z_{j+1} P_{j-1} \Delta_{i, j-2}$ holds.

Proof. Fix i. We prove prove Lemma 2.4 by induction on j. The statement is true for $j=i$ since $Y_{i} Z_{i}=P_{i}+Z_{i+1} Z_{i-1}$. If the statement is true for $j-1$, then by Proposition 2.3

$$
\begin{aligned}
\Delta_{i, j} Z_{j} & =Y_{j} Z_{j} \Delta_{i, j-1}-Z_{j+1} Z_{j} P_{j-2} \Delta_{i, j-3} \\
& =P_{j} \Delta_{i, j-1}+Z_{j+1} Z_{j-1} \Delta_{i, j-1}-Z_{j+1} Z_{j} P_{j-2} \Delta_{i, j-3} \\
& =P_{j} \Delta_{i, j-1}+Z_{j+1} P_{j-1} \Delta_{i, j-2}
\end{aligned}
$$

and the statement is true for j.
Lemma 2.5. The mutatable cluster variables are $Z_{1}, Z_{2}, Z_{3}, \ldots, Z_{n}$ and $\Delta_{i, j}$ for $1 \leq$ $i \leq j \leq n$.

Proof. Starting with the initial seed (which is shown in Figure 14 for the case $n=$ 9) perform mutations at the odd vertices $1,3,5, \ldots, n$, consecutively. In each step, because of the equation $Y_{i} Z_{i}=P_{i}+Z_{i-1} Z_{i+1}$, the cluster variable Y_{i} for odd i with $1 \leq i \leq n$ is replaced by the cluster variable Z_{i}. Therefore, the mutations generate a seed whose mutatable cluster variables are $Z_{1}, Z_{2}, Z_{3}, \ldots, Z_{n}$. We refer to that seed as the base seed. The exchange matrix of the base seed is described by the associated quiver. By the rules of quiver mutation the mutatable vertices of the base seed form an

Figure 15: The base seed for the case $n=9$
alternating quiver of type A_{n} isomorphic to Q. The only other arrows are the following. For every i with $1 \leq i \leq n$ there is an arrow between Z_{i} and P_{i} starting in P_{i} if i is odd and starting in Z_{i} if i is even. The quiver of the base seed for the example $n=9$ is shown in Figure 15.

We now claim that starting from the base seed the cluster variable obtained by consecutive mutation at $i, i+1, i+2, \ldots, j$ is $\Delta_{i, j}$ for all $1 \leq i \leq j \leq n$. The equation $\Delta_{i, j} Z_{j}=P_{j} \Delta_{i, j-1}+Z_{j+1} P_{j-1} \Delta_{i, j-2}$ from Lemma 2.4 is the exchange relation. For a proof consider the mutation of the quiver of the base seed. Fix i. Wlog assume that i is odd. (If i is even reverse all arrows in the following argumentation.) We prove the statement by induction on j. The statement is true for $i=j$ since mutation at i yields $\left(P_{i}+Z_{i-1} Z_{i+1}\right) / Z_{i}=Y_{i}=\Delta_{i, i}$. It is also true for $j=i+1$ because $\Delta_{i, i+1} Z_{i+1}=P_{i+1} \Delta_{i, i}+Z_{i+2} P_{i} \Delta_{i, i-1}=P_{i+1} \Delta_{i, i}+Z_{i+2} P_{i}$.

Now assume that $j \geq i+2$ and that mutation at $i, i+1, i+2, \ldots, j-1$ obtains cluster variables $\Delta_{i, i}, \Delta_{i, i+1}, \ldots, \Delta_{i, j-1}$. Let us describe the quiver after these mutations; let us first concentrate on the subquiver given by all mutatable vertices. It is easy to see that the subquiver supported on vertices $\left(Z_{1}, Z_{2}, \ldots, Z_{i-1}\right)$ is the same as in the base quiver; similarly, the subquiver supported on vertices $\left(Z_{j}, Z_{j+1}, \ldots, Z_{n}\right)$ is unchanged. The description of the other remaining part depends on the parity of j. If j is even, then it contains of the two sequences $Z_{i-1} \rightarrow \Delta_{i, i} \rightarrow \Delta_{i, i+2} \rightarrow \Delta_{i, i+4} \rightarrow$ $\cdots \rightarrow \Delta_{i, j-1}$ and $\Delta_{i, j-2} \rightarrow \Delta_{i, j-4} \rightarrow \cdots \rightarrow \Delta_{i, i+3} \rightarrow \Delta_{i, i+1}$ and a triangle $Z_{j} \rightarrow \Delta_{i, j-1} \rightarrow \Delta_{i, j-2} \rightarrow Z_{j}$. If j is odd, then it contains of the two sequences $Z_{i-1} \rightarrow \Delta_{i, i} \rightarrow \Delta_{i, i+2} \rightarrow \Delta_{i, i+4} \rightarrow \cdots \rightarrow \Delta_{i, j-2}$ and $\Delta_{i, j-1} \rightarrow \Delta_{i, j-3} \rightarrow \cdots \rightarrow$ $\Delta_{i, i+3} \rightarrow \Delta_{i, i+1}$ and a triangle $Z_{j} \rightarrow \Delta_{i, j-2} \rightarrow \Delta_{i, j-1} \rightarrow Z_{j}$.

Now let us consider frozen vertices. Consider a natural number k with $i \leq k \leq j$. We are interested in the vertices Z_{l} resp. $\Delta_{i, l}$ with $k \leq l \leq j-1$ to which P_{k} is connected. In the base seed the vertex P_{k} is only connected with Z_{k}. Wlog let us assume that k is even. (If k is odd reverse all arrows in the following argumentation.) We have an arrow $Z_{k} \rightarrow P_{k}$ in the base seed. The adjacency relations for P_{k} remain unaffected by mutations at $i, i+1 \ldots, k-1$. After mutation at k the arrows reverses (and Z_{k} is replaced by $\Delta_{i, k}$) and we get an additional arrow $Z_{k+1} \rightarrow P_{k}$. Mutation at $k+1$ cancels the arrow $P_{k} \rightarrow \Delta_{i, k}$ whereas the arrow $Z_{k+1} \rightarrow P_{k}$ is replaced by an arrow $P_{k} \rightarrow \Delta_{i, k+1}$. Afterwards all adjacency relations for P_{k} with vertices Z_{l} for $k \leq l$ remain unaffected.

The adjacency relations for the vertices together with the induction hypothesis and

Figure 16: The mutated seed for even j (left) and odd j (right)
the mutation rule for cluster variables imply that $\left(P_{j} \Delta_{i, j-1}+Z_{j+1} P_{j-1} \Delta_{i, j-2}\right) / Z_{j}$ is the cluster variable obtained from consecutive mutation at $i, i+1, \ldots, j$. By Lemma 2.4 it is equal to $\Delta_{i, j}$.

The number of mutatable cluster variables of a cluster algebra of finite type is the sum of the rank of the cluster algebra and the number of positive roots of the associated root system. Since the $n+\frac{n(n+1)}{2}$ cluster variables $Z_{1}, Z_{2}, Z_{3}, \ldots, Z_{n}$ and $\Delta_{i, j}$ for $1 \leq i \leq j \leq n$ are all distinct these must be all mutatable cluster variables.

By Lemma 2.5 the recursion provided by Proposition 2.3 allows to compute iteratively every cluster variable in terms of the Y_{i} and $Z_{i}(1 \leq i \leq n)$.

Example 2.6. Let us look at an example. We put $n=3$. The initial cluster contains three mutatable and three frozen variables. It is $\left(P_{1}, P_{2}, P_{3}, Y_{1}, Z_{2}, Y_{3}\right)$. One can check, by hand or by using Keller's mutation applet [30], that the following figure describes the exchange graph of the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$ in the case $n=3$. This particular exchange graph is known as associahedron or Stasheff polytope K_{5}. The mutatable cluster variables are colored red, the frozen cluster variables blue. Beside the $3+3$ initial cluster variables there are 6 further cluster variables, namely Z_{1}, Y_{2}, Z_{3},

$$
\begin{aligned}
\Delta_{1,2} & =\left|\begin{array}{ll}
Y_{1} & c_{1} \\
c_{2} & Y_{2}
\end{array}\right|=Y_{1} Y_{2}-Z_{3}, \quad \Delta_{2,3}=\left|\begin{array}{ll}
Y_{2} & c_{2} \\
c_{3} & Y_{3}
\end{array}\right|=Y_{2} Y_{3}-Z_{1} \\
\Delta_{1,3} & =\left|\begin{array}{ccc}
Y_{1} & c_{1} & c_{1} \\
c_{2} & Y_{2} & c_{2} \\
0 & c_{3} & Y_{3}
\end{array}\right|=Y_{1} Y_{2} Y_{3}-Y_{1} Z_{1}-Y_{3} Z_{3}+Z_{2} .
\end{aligned}
$$

The cluster variables are grouped into $C_{4}=14$ clusters.
Remark 2.7. Formulae for cluster variables in $\mathcal{A}\left(\mathcal{C}_{M^{\prime}}\right)$ can be obtained from these formulae by setting $Y_{n}=Z_{n}=P_{n}=1$.

Remark 2.8. The cluster variables correspond to δ-functions of indecomposable rigid objects. The indecomposable rigid objects in \mathcal{C}_{M} for this case have classified by Rohleder [49, Theorem 7.3]. Besides the $3 n$ objects of the form $T_{i,[a, b]}$ for $1 \leq i \leq n$ and $0 \leq a \leq b \leq 1$, these are (when viewed as elements in $C(1, \tau)$) the objects $M_{i, j}$

$$
\bigoplus_{\substack{i<r<j \\ r \text { odd }}} I_{i} \oplus \bigoplus_{\substack{i<r<j \\ r \text { even }}} \tau\left(I_{i}\right) \stackrel{f}{\longrightarrow} \bigoplus_{\substack{i<r<j \\ r \text { odd }}} \tau\left(I_{i}\right) \oplus \bigoplus_{\substack{i<r<j \\ r \text { even }}} \tau^{2}\left(I_{i}\right)
$$

for $1<j \leq n$ where $\left.f\right|_{\tau\left(I_{i}\right)} ^{\tau\left(I_{i \pm 1}\right)}=1$ for all even i and $\left.f\right|_{x} ^{y}=0$ for all other direct summands X, Y.

2.7 Definition of the quantized enveloping algebra

The quantized universal enveloping algebra $U_{v}(\mathfrak{g})$ is a deformation of the ordinary universal enveloping algebra $U(\mathfrak{g})$. To describe this construction we introduce quantized integers and quantized binomial coefficients.

Definition 2.9. For a natural number k, denote by

$$
[k]=\frac{v^{k}-v^{-k}}{v-v^{-1}} \in \mathbb{Q}(v)
$$

the quantum integer and by $[k]!=[k][k-1] \cdots[1]$ the quantized factorial. For two natural numbers k and l, define the quantum binomial coefficient by

$$
\left[\begin{array}{c}
k \\
l
\end{array}\right]=\frac{[k]!}{[l]![k-l]!} \in \mathbb{Q}(v)
$$

Remark 2.10. Both $[k]$ and $\left[\begin{array}{l}n \\ k\end{array}\right]$ are actually Laurent polynomials in v. If we specialize $v=1$, then $[k]=k,\left[\begin{array}{l}n \\ k\end{array}\right]=\binom{n}{k}$, and $[k]!=k!$. Some authors such as Kac-Cheung [27] use a different convention for quantum integers.
Definition 2.11. The quantized enveloping algebra $U_{v}(\mathfrak{g})$ is the $\mathbb{Q}(v)$-algebra generated by $E_{i}, F_{i}, K_{i}, K_{i}^{-1}$ for $i=1,2, \ldots, n$, subject to the following relations

$$
\begin{array}{ll}
K_{i} K_{j}=K_{j} K_{i}, & (i \neq j) \\
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, & (i=1,2, \ldots, n) \\
K_{i} E_{j} K_{i}^{-1}=v^{a_{i j}} E_{j}, & (1 \leq i, j \leq n) \\
K_{i} F_{j} K_{i}^{-1}=v^{-a_{i j}} F_{j}, & (1 \leq i, j \leq n) \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{v-v^{-1}}, & (1 \leq i, j \leq n) \\
E_{i}^{2} E_{j}-[2] E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0, & |i-j|=1, \\
F_{i}^{2} F_{j}-[2] F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0, & |i-j|=1, \\
E_{i} E_{j}=E_{j} E_{i}, & |i-j| \geq 2, \\
F_{i} F_{j}=F_{j} F_{i}, & |i-j| \geq 2,
\end{array}
$$

where $\delta_{i j}$ is the Kronecker delta function. Note that $[2]=v+v^{-1}$, so we may write equation (13) as $E_{i}^{2} E_{j}-\left(v+v^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0$.
Definition 2.12. The subalgebra generated by E_{i} for $i=1,2, \ldots, n$ is called the quantized enveloping algebra $U_{v}(\mathfrak{n})$.

The only relations in $U_{v}(\mathfrak{n})$ remain (13) and (15). These are called quantized Serre relations. The algebra $U_{v}(\mathfrak{n})$ specializes to $U(\mathfrak{n})$ in the limit $v=1$.
Remark 2.13. The algebra $U_{v}(\mathfrak{g})$ is a graded algebra. It is graded by the root lattice Q if we set $\operatorname{deg}\left(E_{i}\right)=\alpha_{i}, \operatorname{deg}\left(F_{i}\right)=-\alpha_{i}$, and $\operatorname{deg}\left(K_{i}\right)=0$ for all $1 \leq i \leq n$. Note that $\operatorname{deg}(A) \in Q^{+}$for all $A \in U_{v}(\mathfrak{n})$. We also use the abbreviation $\operatorname{deg}(A)=|A|$ for $A \in U_{v}(\mathfrak{n})$.
Remark 2.14. Put $\sigma(v)=v^{-1}$ and $\sigma\left(E_{i}\right)=E_{i}$ for all i with $1 \leq i \leq n$. By the symmetry of the relations (13) and (15) in $U_{v}(\mathfrak{n})$ the map σ extends to an algebra antihomomorphism $\sigma: U_{v}(\mathfrak{n}) \rightarrow U_{v}(\mathfrak{n})$, i.e., a \mathbb{Q}-linear map $\sigma: U_{v}(\mathfrak{n}) \rightarrow U_{v}(\mathfrak{n})$ such that $\sigma(A B)=\sigma(B) \sigma(A)$ for all $A, B \in U_{v}(\mathfrak{n})$. By construction σ is an antiautomorphism and an involution, i.e., $\sigma^{2}(A)=A$ for all $A \in U_{v}(\mathfrak{n})$. Compare the construction of the antiautomorphism σ with Lusztig's bar involution [42, Section 1.2.10].

Remark 2.15. In literature the deformation parameter v is sometimes called q. There are also different sign conventions for the exponent of the deformation parameter. We adopt Lusztig's convention [42]. It matches Leclerc's usage [36] if we set $q=v^{-1}$.
Remark 2.16. The quantized enveloping algebra $U_{v}\left(\mathfrak{g}^{\prime}\right)=U_{v}\left(\mathfrak{s l}_{n}\right)$ associated with Q^{\prime} is defined similarly and may be regarded as the subalgebra of $U_{v}(\mathfrak{g})=U_{v}\left(\mathfrak{s l}_{n+1}\right)$ generated by the elements $E_{i}, F_{i}, K_{i}, K_{i}^{-1}$ for $1 \leq i \leq n-1$.

2.8 The subalgebra $U_{v}^{+}(w)$ and the Poincaré-Birkhoff-Witt basis

We introduce Lusztig's T-automorphisms. For $1 \leq i \leq j$ put

$$
\begin{aligned}
& T_{i}\left(E_{j}\right)= \begin{cases}-K_{i}^{-1} F_{i}, & \text { if } i=j ; \\
E_{j} E_{i}-v^{-1} E_{i} E_{j}, & \text { if }|i-j|=1 ; \\
E_{j}, & \text { if }|i-j| \geq 2 ;\end{cases} \\
& T_{i}\left(F_{j}\right)= \begin{cases}-E_{i} K_{i}, & \text { if } i=j ; \\
F_{i} F_{j}-v F_{j} F_{i}, & \text { if }|i-j|=1 ; \\
E_{j}, & \text { if }|i-j| \geq 2 ;\end{cases} \\
& T_{i}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j} .}
\end{aligned}
$$

Lusztig [42, Chapter 37] shows that every T_{i} can be extended to an $\mathbb{Q}(v)$-algebra homomorphism $T_{i}: U_{v}(\mathfrak{g}) \rightarrow U_{v}(\mathfrak{g})$. (In Lusztig's book [42] it is called $T_{i,-1}^{\prime}$.) In fact, every T_{i} is an $\mathbb{Q}(v)$-algebra automorphism. The images of the generators of $U_{v}(\mathfrak{g})$ under the inverse T_{i}^{-1} are given by

$$
\begin{aligned}
& T_{i}^{-1}\left(E_{j}\right)= \begin{cases}-F_{i} K_{i}, & \text { if } i=j ; \\
E_{i} E_{j}-v^{-1} E_{j} E_{i}, & \text { if }|i-j|=1 ; \\
E_{j}, & \text { if }|i-j| \geq 2 ;\end{cases} \\
& T_{i}^{-1}\left(F_{j}\right)= \begin{cases}-K_{i}^{-1} E_{i}, & \text { if } i=j ; \\
F_{j} F_{i}-v F_{i} F_{j}, & \text { if }|i-j|=1 ; \\
E_{j}, & \text { if }|i-j| \geq 2 ;\end{cases} \\
& T_{i}^{-1}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j} .} \quad
\end{aligned}
$$

Remark 2.17. If $g \in U_{v}(\mathfrak{g})$ is homogeneous of degree β, then $T_{i}(g)$ is homogeneous of degree $s_{i}(\beta)$.

Remark 2.18. Furthermore, the T_{i} satisfy braid relations. For brevity we write $T_{i} T_{j}$ for $T_{i} \circ T_{j}$ for all $i, j \in Q_{0}$. The braid relations are

$$
\begin{aligned}
T_{i} T_{j} & =T_{j} T_{i}, & & \text { if }|i-j| \geq 2 \\
T_{i} T_{j} T_{i} & =T_{j} T_{i} T_{j}, & & \text { if }|i-j|=1 .
\end{aligned}
$$

Definition 2.19. To $w=s_{1} s_{3} s_{5} \cdots s_{n} s_{2} s_{4} s_{6} \cdots s_{n-1} s_{1} s_{3} s_{5} \cdots s_{n} s_{2} s_{4} s_{6} \cdots s_{n-1}$ we attach elements in $U_{v}(\mathfrak{g})$. If $j_{1}, j_{2}, \ldots, j_{2 n} \in[1, n]$ are indices such that for the reduced expression from above we have $w=s_{j_{1}} s_{j_{2}} \cdots s_{j_{2 n}}$, then we consider the elements $T_{j_{1}} T_{j_{2}} \cdots T_{j_{k-1}}\left(E_{j_{k}}\right)$ for $1 \leq k \leq 2 n$. Since

$$
\operatorname{deg}\left(T_{j_{1}} T_{j_{2}} \cdots T_{j_{k-1}}\left(E_{j_{k}}\right)\right)=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k-1}}\left(\alpha_{j_{k}}\right)=\beta_{k}
$$

for all k, we introduce the shorthand notation $E\left(\beta_{k}\right)=T_{j_{1}} T_{j_{2}} \cdots T_{j_{k-1}}\left(E_{j_{k}}\right)$ for all $1 \leq k \leq 2 n$.

Definition 2.20. For $i \in Q_{0}$ and $a \in \mathbb{N}$ put $E_{i}^{(a)}=\frac{1}{[a]!} E_{i}^{a} \in U_{v}(\mathfrak{n})$. For a natural number k with $1 \leq k \leq 2 n$ and $a \in \mathbb{N}$ put $E^{(a)}\left(\beta_{k}\right)=T_{j_{1}} T_{j_{2}} \cdots T_{j_{k-1}}\left(E_{j_{k}}^{(a)}\right)=$ $\frac{1}{[a]!} E(\beta)^{a}$.

The following theorem is due to Lusztig [42, Theorem 40.2.1]. Theorem 2.21 also contains the definition of the subalgebra $U_{v}^{+}(w)$ which is crucial for our further studies; moreover, it enables us to define the Poincaré-Birkhoff-Witt basis of $U_{v}^{+}(w)$. For an idea of a proof different from Lusztig's [42] see Bergman's diamond lemma [2].

Theorem 2.21. The set

$$
\mathcal{P}=\left\{E^{\left(a_{1}\right)}\left(\beta_{1}\right) E^{\left(a_{2}\right)}\left(\beta_{2}\right) \cdots E^{\left(a_{2 n}\right)}\left(\beta_{2 n}\right):\left(a_{1}, a_{2}, \ldots, a_{2 n}\right) \in \mathbb{N}^{2 n}\right\}
$$

is linearly independent over $\mathbb{Q}(v)$. It forms a basis of a $\mathbb{Q}(v)$-subalgebra $U_{v}^{+}(w) \subset$ $U_{v}(\mathfrak{n})$. Moreover, $U_{v}^{+}(w)$ is well-defined in the sense that it is independent of the choice of the reduced expression for w. If we choose another reduced expression $w=$ $s_{j_{1}^{\prime}} s_{j_{2}^{\prime}} \cdots s_{j_{2 n}^{\prime}}$ for w, then the set of all

$$
E_{j_{1}^{\prime}}^{\left(a_{1}\right)} \cdot T_{j_{1}^{\prime}}\left(E_{j_{2}^{\prime}}^{\left(a_{2}\right)}\right) \cdots T_{j_{1}^{\prime}} T_{j_{2}^{\prime}} \cdots T_{j_{2 n-1}^{\prime}}\left(E_{j_{2 n}^{\prime}}^{\left(a_{2 n}\right)}\right)
$$

for all sequences $\left(a_{1}, a_{2}, \ldots, a_{2 n}\right) \in \mathbb{N}^{2 n}$ is also a basis of the same subalgebra $U_{v}^{+}(w) \subset U_{v}(\mathfrak{n})$.

Remark 2.22. The basis \mathcal{P} is called the Poincaré-Birkhoff-Witt basis of $U_{v}^{+}(w)$ associated with the reduced expression (4). Unlike the canonical basis which we will define later the Poincaré-Birkhoff-Witt \mathcal{P} basis depends on the choice of the reduced expression for w. Every choice of a reduced expression for w induces a bijection between $\mathbb{N}^{2 n}$ and a basis for $U_{v}^{+}(w)$. In this sense \mathcal{P} is not canonical. The various bijections are called Lusztig parametrizations.

Remark 2.23. Theorem 2.21 particularly implies that $E\left(\beta_{k}\right) \in U_{v}(\mathfrak{n})$ for every $1 \leq$ $k \leq 2 n$ which is not abvious from the definition of the T-automorphisms.

For any $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right) \in \mathbb{N}^{2 n}$ we introduce the shorthand notation $E[\mathbf{a}]$ for $E^{\left(a_{1}\right)}\left(\beta_{1}\right) E^{\left(a_{2}\right)}\left(\beta_{2}\right) \cdots E^{\left(a_{2 n}\right)}\left(\beta_{2 n}\right)$. We also use a different notation for $E\left(\beta_{k}\right)$ with $1 \leq k \leq 2 n$; namely we put

$$
\begin{array}{ll}
u_{i}=T_{1} T_{3} T_{5} \cdots T_{i-1}\left(E_{i}\right), & \text { for odd } i \text { with } 1 \leq i \leq n, \\
v_{i}=T_{1} T_{3} T_{5} \cdots T_{n} T_{2} T_{4} \cdots T_{i-2}\left(E_{i}\right), & \text { for even } i \text { with } 2 \leq i \leq n-1, \\
w_{i}=T T_{1} T_{3} T_{5} \cdots T_{i-1}\left(E_{i}\right), & \text { for odd } i \text { with } 1 \leq i \leq n, \\
x_{i}=T T_{1} T_{3} T_{5} \cdots T_{n} T_{2} T_{4} \cdots T_{i-2}\left(E_{i}\right), & \text { for even } i \text { with } 2 \leq i \leq n-1,
\end{array}
$$

where $T=T_{1} T_{3} T_{5} \cdots T_{n} T_{2} T_{4} T_{6} \cdots T_{n-1}$. In what follows we use the convention $T_{i}=\mathrm{id}_{U_{v}(\mathfrak{g})}$ for $i \notin Q_{0}$. Because of the braid relation $T_{i} T_{j}=T_{j} T_{i}$ for $|i-j| \geq 2$ and $T_{i}\left(E_{j}\right)=E_{j}, T_{i}\left(F_{j}\right)=F_{j}$, and $T_{i}\left(K_{j}\right)=K_{j}$ for $|i-j| \geq 2$ the formulae simplify to

$$
\begin{array}{ll}
u_{i}=E_{i}, & \text { for odd } i \text { s.t. } 1 \leq i \leq n, \\
v_{i}=T_{i-1} T_{i+1}\left(E_{i}\right), & \text { for even } i \text { s.t. } 2 \leq i \leq n-1, \\
w_{i}=T_{i-2} T_{i} T_{i+2} T_{i-1} T_{i+1}\left(E_{i}\right), & \text { for odd } i \text { s.t. } 1 \leq i \leq n, \\
x_{i}=T_{i-3} T_{i-1} T_{i+1} T_{i+3} T_{i-2} T_{i} T_{i+2} T_{i-1} T_{i+1}\left(E_{i}\right), & \text { for even } i \text { s.t. } 2 \leq i \leq n-1
\end{array}
$$

Note that $w_{i}=T u_{i}$ for all odd i with $1 \leq i \leq n$ and $x_{i}=T v_{i}$ for all even i with $2 \leq i \leq n-1$.

Remark 2.24. The degrees of these variables are the dimension vectors of the indecomposable direct summands of the terminal module T, compare Figure 9 .

Remark 2.25. Similarly, we can associate elements $E\left(\beta_{k}\right) \in U_{v}\left(\mathfrak{n}^{\prime}\right) \subset U_{v}(\mathfrak{n})$ for $1 \leq$ $k \leq 2(n-1)$ to the reduced expression $s_{1} s_{3} s_{5} \cdots s_{n-2} s_{2} s_{4} s_{6} \cdots s_{n-1} s_{1} s_{3} s_{5} \cdots s_{n-2}$ $\cdot s_{2} s_{4} s_{6} \cdots s_{n-1}$ of the Weyl group element $w^{\prime} \in W^{\prime}$. The elements generate an algebra $U_{v}^{+}\left(w^{\prime}\right) \subset U_{v}\left(\mathfrak{n}^{\prime}\right)$, and the set of all ordered products of the $E\left(\beta_{k}\right)$ is a Poincaré-Birkhoff-Witt basis of $U_{v}^{+}\left(w^{\prime}\right)$ just as above. Elements $u_{i}^{\prime}, w_{i}^{\prime}$ (for odd i with $1 \leq i \leq n-2$) and $v_{i}^{\prime}, x_{i}^{\prime}$ (for even i with $2 \leq i \leq n-1$) in $U_{v}\left(\mathfrak{n}^{\prime}\right)$ are defined analogously. Under the inclusion $U_{v}\left(\mathfrak{n}^{\prime}\right) \subset U_{v}(\mathfrak{n})$ they are literally the same as the corresponding elements except for

$$
\begin{aligned}
& v_{n-1}^{\prime}=T_{n-2}\left(E_{n-1}\right) \\
& w_{n-2}^{\prime}=T_{n-4} T_{n-2} T_{n-3} T_{n-1}\left(E_{n-2}\right), \\
& x_{n-3}^{\prime}=T_{n-6} T_{n-4} T_{n-2} T_{n-5} T_{n-3} T_{n-1} T_{n-4} T_{n-2}\left(E_{n-3}\right), \\
& x_{n-1}^{\prime}=T_{n-4} T_{n-2} T_{n-3} T_{n-1} T_{n-2}\left(E_{n-1}\right) .
\end{aligned}
$$

2.9 The quantum shuffle algebra and Euler numbers

In this section we study the quantum shuffle algebra $(\mathcal{F}, *)$. The quantum shuffle algebra is defined in combinatorial terms. Leclerc [36, Section 2.5, 2.6] shows there is an embedding $U_{v}(\mathfrak{n}) \hookrightarrow \mathcal{F}$. For some calculations it will be useful to view $U_{v}(\mathfrak{n})$ as a subalgebra of \mathcal{F}.
Definition 2.26. Let r, s be natural numbers. A permutation $\pi \in S_{r+s}$ is called a shuffle of type (r, s) if $\pi(1)<\pi(2)<\cdots<\pi(r)$ and $\pi(r+1)<\pi(r+2)<\cdots<$ $\pi(r+s)$.

The following definition is due to Leclerc [36, Section 2.5].
Definition 2.27. For every sequence $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in Q_{0}^{r}$ of elements in Q_{0} of length $r \geq 0$ define a symbol $w\left[i_{1}, i_{2}, \ldots, i_{r}\right]$. (Especially, we have a symbol $w[]$ for the empty sequence.) Let \mathcal{F} be the $\mathbb{Q}(v)$-vector space generated by all $w\left[i_{1}, i_{2}, \ldots, i_{r}\right]$ for all $r \geq 0$. Define the quantum shuffle product on two basis elements by

$$
w\left[i_{1}, i_{2}, \ldots, i_{r}\right] * w\left[i_{r+1}, i_{r+2}, \ldots, i_{s}\right]=\sum_{\substack{\pi \text { shuffle } \\ \text { of type }(r, s)}} v^{e(\pi)} w\left[i_{\pi(1)}, i_{\pi(2)}, \ldots, i_{\pi(r+s)}\right],
$$

where the function $e: S_{r+s} \rightarrow \mathbb{Z}$ is defined as

$$
e(\pi)=\sum_{k \leq r<l, \pi(k)<\pi(l)}\left(\alpha_{i_{\pi k}}, \alpha_{i_{\pi(l)}}\right) .
$$

It is easy to see that the product is associative. We extend the product bilinearly to map *: $\mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}$. The algebra $(\mathcal{F}, *)$ is called the quantum shuffle algebra.
Remark 2.28. The shuffle product $*$ on the quantum shuffle algebra \mathcal{F} is associative, but it is not commutative. Hence, \mathcal{F} is an associative $\mathbb{Q}(v)$-algebra. The quantum shuffle algebra \mathcal{F} degenerates to the classical shuffle algebra when we specialize $v=1$. The quantum shuffle algebra \mathcal{F} is graded by the root lattice if we set $\operatorname{deg}(w[i])=\alpha_{i}$ for all $i \in\{1,2, \ldots, n\}$.

Lemma 2.29. The map $E_{i} \rightarrow w[i]$ extends to an embedding of graded algebras $U_{v}(\mathfrak{n}) \hookrightarrow \mathcal{F}$. In other words, $U_{v}(\mathfrak{n})$ is isomorphic to the subalgebra of \mathcal{F} generated by all $w[i]$ for $i \in Q_{0}$.

Proof. See Leclerc [36, Theorem 4].
From now on we view $U_{v}(\mathfrak{n})$ as a subalgebra of \mathcal{F}. In the rest of the section we expand the generators $u_{i}, v_{i}, w_{i}, x_{i} \in U_{v}^{+}(w)$ in the shuffle basis. The following elements will be important for the description.

Definition 2.30. For integers i, j such that $1 \leq i \leq j \leq n$ put

$$
X_{i, j}=T_{i}^{(-1)^{i-1}} T_{i+1}^{(-1)^{i}} \cdots T_{j-1}^{(-1)^{j-2}}\left(E_{j}\right) .
$$

By definition, $X_{i, j} \in U_{v}(\mathfrak{n}) \subset \mathcal{F}$.
Example 2.31. Let us give some examples of $X_{i, j}$ expanded in the shuffle basis: First of all, we have $X_{1,1}=E_{1}=w_{1}$. Moreover,

$$
\begin{aligned}
X_{1,2} & =T_{1}\left(E_{2}\right)=E_{2} E_{1}-v^{-1} E_{1} E_{2} \\
& =w[2] * w[1]-v^{-1} w[1] * w[2] \\
& =w[1,2]+v^{-1} w[2,1]-v^{-1}\left(w[2,1]+v^{-1} w[1,2]\right) \\
& =\left(1-v^{-2}\right) w[1,2]
\end{aligned}
$$

is a second example.
The next lemma shows that we can compute the expansion of $X_{i, j}$ for all pairs (i, j) in the shuffle basis explicitly.

Lemma 2.32. Let i, j be integers such that $1 \leq i \leq j \leq n$. Then

$$
X_{i, j}=\left(1-v^{-2}\right)^{j-i} \sum_{\pi} w[\pi(i), \pi(i+1), \ldots, \pi(j)]
$$

where the sum runs over all permutations π of $\{i, i+1, \ldots, j\}$ such that for every even number k with $i \leq k \leq j-1$ we have $\pi^{-1}(k)>\pi^{-1}(k+1)$ and for every even number k with $i+1 \leq k \leq j$ we have $\pi^{-1}(k)>\pi^{-1}(k-1)$.

Proof. By backwards induction on i we see that the $X_{i, j}$ (for $1 \leq i<j \leq n$) satisfy the following recursion:

$$
X_{i, j}= \begin{cases}E_{j} X_{i, j-1}-v^{-1} X_{i, j-1} E_{j}, & \text { if } j \text { is even } \\ X_{i, j-1} E_{j}-v^{-1} E_{j} X_{i, j-1}, & \text { if } j \text { is odd }\end{cases}
$$

Now fix i. We proceed by induction on $j-i$. The statement is trivial for $j=i$. Suppose that $j>i$ and that

$$
X_{i, j-1}=\left(1-v^{-2}\right)^{j-1-i} \sum_{\pi} w[\pi(i), \pi(i+1), \cdots, \pi(j-1)],
$$

where sum is taken over all permutations of $\{i, i+1, \ldots, j-1\}$ such that for every even number k with $i \leq k \leq j-2$ we have $\pi^{-1}(k)>\pi^{-1}(k+1)$ and for every even number k with $i+1 \leq k \leq j-1$ we have $\pi^{-1}(k)>\pi^{-1}(k-1)$.

We consider two cases. First of all, assume that j is even. Let π be a permutation of $\{i, i+1, \ldots, j-1\}$ as above. When shuffling the sequence (j) of length 1 with the sequence $(\pi(i), \pi(i+1), \ldots, \pi(j-1))$ of length $j-i$, we get $j-i+1$
permutations of $\{i, i+1, \ldots, j\}$. Among these we distinguish two kinds of permutations. The permutations π_{1} where j comes after $j-1$ satisfy $\pi_{1}^{-1}(k)>\pi_{1}^{-1}(k+1)$ and $\pi_{1}^{-1}(k)>\pi_{1}^{-1}(k-1)$ for all even numbers k such that $i \leq k \leq j-1$ or $i+1 \leq k \leq j$, respectively. Conversely, every permutation π_{1} of $\{i, i+1, \ldots, j\}$ satisfying these conditions is uniquely obtained from shuffling (j) with a such a sequence $(\pi(i), \pi(i+1), \ldots, \pi(j-1))$ such that j comes after $j-1$.

We also get permuations π_{2} where j occurs before $j-1$. Now we see that

$$
\begin{aligned}
w[j] * w[\pi(i), \pi(i+1), \ldots, \pi(j-1)] & =\sum_{\pi_{1}} w\left[\pi_{1}\right]+v^{-1} \sum_{\pi_{2}} w\left[\pi_{1}\right] \\
w[\pi(i), \pi(i+1), \ldots, \pi(j-1)] * w[j] & =v^{-1} \sum_{\pi_{1}} w\left[\pi_{1}\right]+\sum_{\pi_{2}} w\left[\pi_{2}\right] .
\end{aligned}
$$

It follows by induction hypothesis that $X_{i, j}=w[j] * X_{i, j-1}-v^{-1} X_{i, j-1} * w[j]=$ $\left(1-v^{-2}\right)^{j-i} \sum_{\pi_{1}} w\left[\pi_{1}\right]$.

The other case where j is odd is proved similarly.
Remark 2.33. The number $a(i, j)$ of permuations of $\{i, i+1, \ldots, j-1\}$ such that for every even number k with $i \leq k \leq j-2$ we have $\pi^{-1}(k)>\pi^{-1}(k+1)$ and for every even number k with $i+1 \leq k \leq j-1$ we have $\pi^{-1}(k)>\pi^{-1}(k-1)$ only depends on $j-i$. The table displays some values of $a(i, j)$.

$\mathrm{j}-\mathrm{i}$	0	1	2	3	4	5	6
$a(i, j)$	1	1	2	5	16	61	272

The sequence is known as Euler numbers. It is listed as A000111 in Sloane's Encyclopedia of Integer Sequences [53]. Its exponential generating function is $\sec (x)+\tan (x)$.
Lemma 2.34. The following formulae for the generators of $U_{v}^{+}(w)$ are valid:

$$
\begin{array}{ll}
u_{i}=E_{i}, & \text { for odd } i \text { with } 1 \leq i \leq n ; \\
v_{i}=T_{i-1} T_{i}^{-1}\left(E_{i+1}\right), & \text { for even } i \text { with } 2 \leq i \leq n-2 \\
w_{1}=T_{2}^{-1}\left(E_{3}\right) ; & \\
w_{i}=T_{i-2} T_{i-1}^{-1} T_{i} T_{i+1}^{-1}\left(E_{i+2}\right), & \text { for odd } i \text { with } 3 \leq i \leq n-3 ; \\
w_{n}=T_{n-2}\left(E_{n-1}\right) ; & \\
x_{2}=T_{2}^{-1} T_{3} T_{4}^{-1}\left(E_{5}\right) ; & \\
x_{i}=T_{i-3} T_{i-2}^{-1} T_{i-1} T_{i}^{-1} T_{i+1} T_{i+2}^{-1}\left(E_{i+3}\right), & \text { for even } i \text { with } 4 \leq i \leq n-4 ; \\
x_{n-1}=T_{n-4} T_{n-3}^{-1} T_{n-2}\left(E_{n-1}\right) ; &
\end{array}
$$

Proof. The equation $u_{i}=E_{i}$ for odd i follows from definition. Note that by definition of Lusztig's T-automorphisms we have $T_{i+1}\left(E_{i}\right)=T_{i}^{-1}\left(E_{i+1}\right)$ for $1 \leq i \leq n-1$ and that $T_{i-1}\left(E_{i}\right)=T_{i}^{-1}\left(E_{i-1}\right)$ for $2 \leq i \leq n$. The first equation is equivalent to $T_{i} T_{i+1}\left(E_{i}\right)=E_{i+1}$, the second one is equivalent to $T_{i} T_{i-1}\left(E_{i}\right)=E_{i-1}$.

Therefore, for even i we have $v_{i}=T_{i-1} T_{i+1}\left(E_{i}\right)=T_{i-1} T_{i}^{-1}\left(E_{i+1}\right)$.
For all further calculations the formula

$$
\begin{equation*}
T_{i} T_{i-1} T_{i+1}\left(E_{i}\right)=T_{i-1}^{-1} T_{i}\left(E_{i+1}\right)=T_{i+1}^{-1} T_{i}\left(E_{i-1}\right) \tag{17}
\end{equation*}
$$

which holds for $2 \leq i \leq n-1$ will be crucial. To verify formula (17) note that by the braid relation we have $T_{i-1} T_{i} T_{i-1} T_{i+1}\left(E_{i}\right)=T_{i} T_{i-1} T_{i} T_{i+1}\left(E_{i}\right)=T_{i} T_{i-1}\left(E_{i+1}\right)=$
$T_{i}\left(E_{i+1}\right)$. Application of T_{i-1}^{-1} gives the first part of equation (17), the second part is proved analogously.

Now we compute $w_{1}=T_{1} T_{3} T_{2}\left(E_{1}\right)=T_{3} T_{1} T_{2}\left(E_{1}\right)=T_{3}\left(E_{2}\right)=T_{2}^{-1}\left(E_{3}\right)$. Similarly, $w_{n}=T_{n-2} T_{n} T_{n-1}\left(E_{n}\right)=T_{n-2}\left(E_{n-1}\right)$. Furthermore, for odd i with $3 \leq i \leq n-2$ we compute

$$
\begin{aligned}
w_{i} & =T_{i-2} T_{i} T_{i+2} T_{i-1} T_{i+1}\left(E_{i}\right)=T_{i-2} T_{i+2} T_{i} T_{i-1} T_{i+1}\left(E_{i}\right) \\
& =T_{i-2} T_{i+2} T_{i-1}^{-1} T_{i}\left(E_{i+1}\right)=T_{i-2} T_{i-1}^{-1} T_{i} T_{i+2}\left(E_{i+1}\right) \\
& =T_{i-2} T_{i-1}^{-1} T_{i} T_{i+1}^{-1}\left(E_{i+2}\right) .
\end{aligned}
$$

Moreover, we have $x_{2}=T_{1} T_{3} T_{5} T_{2} T_{4} T_{1} T_{3}\left(E_{2}\right)=T_{1} T_{3} T_{5} T_{4} T_{1}^{-1} T_{2}\left(E_{3}\right)=$ $T_{3} T_{5} T_{4} T_{2}\left(E_{3}\right)=T_{5} T_{2}^{-1} T_{3}\left(E_{4}\right)=T_{2}^{-1} T_{3} T_{5}\left(E_{4}\right)=T_{2}^{-1} T_{3} T_{4}^{-1}\left(E_{5}\right)$, and

$$
\begin{aligned}
x_{n-1} & =T_{n-4} T_{n-2} T_{n} T_{n-3} T_{n-1} T_{n-2} T_{n}\left(E_{n-1}\right) \\
& =T_{n-4} T_{n-2} T_{n} T_{n-3} T_{n}^{-1} T_{n-1}\left(E_{n-2}\right) \\
& =T_{n-4} T_{n-2} T_{n-3} T_{n-1}\left(E_{n-2}\right) \\
& =T_{n-4} T_{n-3}^{-1} T_{n-2}\left(E_{n-1}\right) .
\end{aligned}
$$

Finally, for even i with $4 \leq i \leq n-3$, the equation

$$
\begin{aligned}
x_{i} & =T_{i-3} T_{i-1} T_{i+1} T_{i+3} T_{i-2} T_{i} T_{i+2} T_{i-1} T_{i+1}\left(E_{i}\right) \\
& =T_{i-3} T_{i-2}^{-1} T_{i-2} T_{i-1} T_{i-2} T_{i+1} T_{i+3} T_{i+2} T_{i} T_{i-1} T_{i+1}\left(E_{i}\right) \\
& =T_{i-3} T_{i-2}^{-1} T_{i-1} T_{i-2} T_{i-1} T_{i+1} T_{i+3} T_{i+2} T_{i-1}^{-1} T_{i}\left(E_{i+1}\right) \\
& =T_{i-3} T_{i-2}^{-1} T_{i-1} T_{i-2} T_{i+1} T_{i+3} T_{i+2} T_{i}\left(E_{i+1}\right) \\
& =T_{i-3} T_{i-2}^{-1} T_{i-1} T_{i-2} T_{i+3} T_{i}^{-1} T_{i+1}\left(E_{i+2}\right) \\
& =T_{i-3} T_{i-2}^{-1} T_{i-1} T_{i}^{-1} T_{i-2} T_{i+3} T_{i+1}\left(E_{i+2}\right) \\
& =T_{i-3} T_{i-2}^{-1} T_{i-1} T_{i}^{-1} T_{i+1} T_{i+2}^{-1}\left(E_{i+3}\right) .
\end{aligned}
$$

holds which is the last equation to be checked.
Remark 2.35. Lemma 2.34 shows all generators $u_{i}, v_{i}, w_{i}, x_{i}$ (for appropriate i) of $U_{v}^{+}(w)$ are of the form $X_{i^{\prime}, j^{\prime}}$ (for appropriate i^{\prime}, j^{\prime}). Hence, the formula of Lemma 2.32 applies. In each case, $V_{\left[i^{\prime}, j^{\prime}\right]}$ is the associated $k Q$-module from Figure 4. In other words, in each case $\operatorname{deg}\left(X_{i^{\prime}, j^{\prime}}\right)=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j}$.

Remark 2.36. With the same argument we can conclude that $v_{n-1}^{\prime}=T_{n-2}\left(E_{n-1}\right)$, $w_{n-2}^{\prime}=T_{n-4} T_{n-3}^{-1} T_{n-2}\left(E_{n-1}\right), x_{n-1}^{\prime}=T_{n-4}\left(E_{n-3}\right)$, and

$$
x_{n-3}^{\prime}=T_{n-6} T_{n-5}^{-1} T_{n-4} T_{n-3}^{-1} T_{n-2}\left(E_{n-1}\right)
$$

Hence, Lemma 2.34 and Remark 2.35 also true for the generators $u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime}$ (for appropriate i) of $U_{v}^{+}\left(w^{\prime}\right)$.

2.10 The straightening relations for the generators of $U_{v}^{+}(w)$

The following lemma expands every $E\left(\beta_{j}\right) E\left(\beta_{i}\right)$ with $1 \leq i<j \leq 2 n$ in the Poincaré-Birkhoff-Witt basis \mathcal{P}. The relations of Lemma 2.37 are called straightening relations. Iterative use of the straightening relations from Lemma 2.37 allows us to
write an arbitrarily ordered monomial in the generators $E\left(\beta_{k}\right)$ with $1 \leq k \leq 2 n$ (and hence every element in $U_{v}^{+}(w)$) as a linear combination of Poincaré-Birkhoff-Witt basis elements $E[\mathbf{a}]$ with $\mathbf{a} \in \mathbb{N}^{2 n}$.

Lemma 2.37. The generators of $U_{v}^{+}(w)$ satisfy the following relations

$$
\begin{aligned}
& v_{i+1} u_{i}=v u_{i} v_{i+1}, \quad \text { for } i=1,3, \cdots, n-2, \\
& v_{i-1} u_{i}=v u_{i} v_{i-1}, \quad \text { for } i=3,5, \ldots, n, \\
& w_{i+2} u_{i}=v u_{i} w_{i+2}, \quad \text { for } i=1,3, \ldots, n-2 \text {, } \\
& w_{i-2} u_{i}=v u_{i} w_{i-2}, \quad \text { for } i=3,5, \ldots, n, \\
& w_{1} u_{1}=v^{-1} u_{1} w_{1}+v_{2} \text {, } \\
& w_{i} u_{i}=u_{i} w_{i}+\left(v-v^{-1}\right) v_{i-1} v_{i+1}, \quad \text { for } i=3,5, \cdots, n-2 \text {, } \\
& w_{n} u_{n}=v^{-1} u_{n} w_{n}+v_{n-1} \text {, } \\
& x_{i+3} u_{i}=v u_{i} x_{i+3}, \quad \text { for } i=1,3, \ldots, n-4, \\
& x_{i-3} u_{i}=v u_{i} x_{i-3}, \quad \text { for } i=5,7, \ldots, n \text {, } \\
& x_{i-1} u_{i}=u_{i} x_{i-1}+\left(v-v^{-1}\right) v_{i+1} w_{i-2}, \quad \text { for } i=3,5, \ldots, n-2, \\
& x_{n-1} u_{n}=v^{-1} u_{n} x_{n-1}+w_{n-2} \text {, } \\
& x_{2} u_{1}=v^{-1} u_{1} x_{2}+w_{3} \text {, } \\
& x_{i+1} u_{i}=u_{i} x_{i+1}+\left(v-v^{-1}\right) v_{i-1} w_{i+2}, \quad \text { for } i=3,5, \ldots, n-2, \\
& w_{i+1} v_{i}=v v_{i} w_{i+1}, \\
& \text { for } i=2,4, \ldots, n-1 \text {, } \\
& w_{i-1} v_{i}=v v_{i} w_{i-1}, \\
& \text { for } i=2,4, \ldots, n-1 \text {, } \\
& x_{i+2} v_{i}=v v_{i} x_{i+2}, \\
& x_{i-2} v_{i}=v v_{i} x_{i-2}, \\
& x_{i} v_{i}=v_{i} x_{i}+\left(v-v^{-1}\right) w_{i-1} w_{i+1} \text {, } \\
& x_{i+1} w_{i}=v w_{i} x_{i+1}, \\
& x_{i-1} w_{i}=v w_{i} x_{i-1}, \\
& \text { for } i=2,4, \ldots, n-3 \text {, } \\
& \text { for } i=4,6, \ldots, n-1 \text {, } \\
& \text { for } i=2,4, \ldots, n-1 \text {, } \\
& \text { for } i=1,3, \ldots, n-2 \text {, } \\
& \text { for } i=3,5, \ldots, n \text {. }
\end{aligned}
$$

For every i, j with $1 \leq i<j \leq 2 n$ such that $E\left(\beta_{j}\right) E\left(\beta_{i}\right)$ is not listed on the left-hand side above the commutativity relation $E\left(\beta_{j}\right) E\left(\beta_{i}\right)=E\left(\beta_{i}\right) E\left(\beta_{j}\right)$ holds.

Proof. Let i be an integer with $1 \leq i \leq n-1$. We have

$$
\begin{align*}
T_{i} T_{i+2}\left(E_{i+1}\right)= & T_{i}\left(E_{i+1} E_{i+2}-v^{-1} E_{i+2} E_{i+1}\right) \\
= & \left(E_{i+1} E_{i}-v^{-1} E_{i} E_{i+1}\right) E_{i+2}-v^{-1} E_{i+2}\left(E_{i+1} E_{i}-v^{-1} E_{i} E_{i+1}\right) \\
= & E_{i+1} E_{i} E_{i+2}-v^{-1} E_{i} E_{i+1} E_{i+2} \\
& -v^{-1} E_{i+2} E_{i+1} E_{i}+v^{-2} E_{i} E_{i+2} E_{i+1} . \tag{18}
\end{align*}
$$

Now let i be an odd integer with $1 \leq i \leq n-2$. Then $u_{i}=E_{i}$ and $v_{i+1}=$
$T_{i} T_{i+2}\left(E_{i+1}\right)$. By equation (18) the following relations hold:
$v_{i+1} u_{i}=\left(E_{i+1} E_{i}^{2}-v^{-1} E_{i} E_{i+1} E_{i}\right) E_{i+2}+E_{i+2}\left(v^{-2} E_{i} E_{i+1} E_{i}-v^{-1} E_{i+1} E_{i}^{2}\right)$,
$u_{i} v_{i+1}=\left(E_{i} E_{i+1} E_{i}-v^{-1} E_{i}^{2} E_{i+1}\right) E_{i+2}+E_{i+2}\left(v^{-2} E_{i}^{2} E_{i+1}-v^{-1} E_{i} E_{i+1} E_{i}\right)$.
By equation (36) we get $v_{i+1} u_{i}-v u_{i} v_{i+1}=0$. The equation $v_{i-1} u_{i}=v u_{i} v_{i-1}$, for odd i with $3 \leq i \leq n$, is proved analogously. Application of T to the last two equations yields $x_{i+1} w_{i}=v w_{i} x_{i+1}$, for odd integers i with $1 \leq i \leq n-2$, and $x_{i-1} w_{i}=v w_{i} x_{i-1}$, for odd integers i with $3 \leq i \leq n$.

Now let i be an even integer with $2 \leq i \leq n-1$. Then $v_{i}=T_{i-1} T_{i+1}\left(E_{i}\right)$ and $w_{i+1}=T_{i-3} T_{i-1} T_{i+1} T_{i+3} T_{i} T_{i+2}\left(E_{i+1}\right)$. With he same argument as above we have $T_{i} T_{i+2}\left(E_{i+1}\right) E_{i}=v E_{i} T_{i} T_{i+2}\left(E_{i+1}\right)$. Let us apply the the automorphism $T_{i-3} T_{i-1} T_{i+1} T_{i+3}$ to the last equation. Using the equation $T_{i-3} T_{i-1} T_{i+1} T_{i+3}\left(E_{i}\right)=$ $T_{i-1} T_{i+1}\left(E_{i}\right)=v_{i}$ we get $w_{i+1} v_{i}=v v_{i} w_{i+1}$. Similarly, the equation $w_{i-1} v_{i}=$ $v v_{i} w_{i-1}$ holds.

Let i be an integer with $1 \leq i \leq n-1$. We have

$$
\begin{aligned}
-T_{i+1}\left(E_{i+2}\right) F_{i} K_{i} & =-v^{-1}\left(E_{i+2} E_{i+1}-v^{-1} E_{i+1} E_{i+2}\right) F_{i} K_{i} \\
& =-F_{i} K_{i}\left(E_{i+2} E_{i+1}-v^{-1} E_{i+1} E_{i+2}\right)=-F_{i} K_{i} T_{i+1}\left(E_{i+2}\right) .
\end{aligned}
$$

Application of the composition of automorphisms $T_{i} T_{i+2} T_{i+4} T_{i+3}$ yields

$$
\begin{equation*}
T_{i} T_{i+2} T_{i+4} T_{i+1} T_{i+3}\left(E_{i+2}\right) E_{i}=v E_{i} T_{i} T_{i+2} T_{i+4} T_{i+1} T_{i+3}\left(E_{i+2}\right) \tag{19}
\end{equation*}
$$

Now let i be more specifically an odd integer with $1 \leq i \leq n-2$. The previous equation (19) asserts that $w_{i+2} u_{i}=v u_{i} w_{i+2}$. The equation $w_{i-2} u_{i}=v u_{i} w_{i-2}$, for odd i with $3 \leq i \leq n$, is proved analogously. Now let i be an even integer with $2 \leq i \leq n-3$. From (19) we see after application of $T_{i-1} T_{i+1} T_{i+3} T_{i+5}$ that $x_{i+2} v_{i}=v v_{i} x_{i+2}$. The equation $x_{i-2} v_{i}=v v_{i} x_{i-2}$, for even i with $4 \leq i \leq n-1$, is proved analogously.

Furthermore, there holds:

$$
\begin{aligned}
& -F_{1} K_{1}\left(E_{1} E_{2}-v^{-1} E_{2} E_{1}\right) \\
& =-v F_{1} E_{1} E_{2} K_{1}+F_{1} E_{2} E_{1} K_{1} \\
& =v\left(\frac{K_{1}-K_{1}^{-1}}{v-v^{-1}}-E_{1} F_{1}\right) E_{2} K_{1}+E_{2}\left(E_{1} F_{1}-\frac{K_{1}-K_{1}^{-1}}{v-v^{-1}}\right) K_{1} \\
& =-v\left(E_{1} E_{2}-v^{-1} E_{2} E_{1}\right) F_{1} K_{1}+\frac{1}{v-v^{-1}}\left(E_{2} K_{1}^{2}-v^{2} E_{2}-E_{2} K_{1}^{2}+E_{2}\right) \\
& =-v\left(E_{1} E_{2}-v^{-1} E_{2} E_{1}\right) F_{1} K_{1}-v E_{2} .
\end{aligned}
$$

Application of the map $T_{1} T_{3}$ yields to $u_{1} w_{1}=v w_{1} u_{1}-v v_{2}$ which is equivalent to $w_{1} u_{1}=v^{-1} u_{1} w_{1}+v_{2}$. The next equation $w_{n} u_{n}=v^{-1} u_{n} w_{n}+v_{n-1}$ is proved analogously.

Let i be an integer with $2 \leq i \leq n-1$. Put $S=T_{i-1} T_{i+1}\left(E_{i}\right)=E_{i} E_{i-1} E_{i+1}-$ $v^{-1} E_{i-1} E_{i} E_{i+1}-v^{-1} E_{i+1} E_{i} E_{i-1}+v^{-2} E_{i-1} E_{i+1} E_{i}$. We have $K_{i} S=S K_{i}$, so:

$$
\begin{aligned}
-F_{i} K_{i} S= & \left(-F_{i} E_{i} E_{i-1} E_{i+1}+v^{-1} E_{i-1} F_{i} E_{i} E_{i+1}\right. \\
& \left.+v^{-1} E_{i+1} F_{i} E_{i} E_{i-1}-v^{-2} E_{i-1} E_{i+1} F_{i} E_{i}\right) K_{i} \\
= & -S F_{i} K_{i}+\frac{1}{v-v^{-1}}\left[\left(K_{i}-K_{i}^{-1}\right) E_{i-1} E_{i+1}\right. \\
& -v^{-1} E_{i-1}\left(K_{i}-K_{i}^{-1}\right) E_{i+1}-v^{-1} E_{i+1}\left(K_{i}-K_{i}^{-1}\right) E_{i-1} \\
& \left.+v^{-2} E_{i-1} E_{i+1}\left(K_{i}-K_{i}^{-1}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & -S F_{i} K_{i}+\frac{1}{v-v^{-1}}\left[\left(v^{-2}-v^{-2}-v^{-2}+v^{-2}\right) E_{i-1} E_{i+1} K_{i}^{2}\right. \\
& \left.+\left(-v^{2}+2-v^{-2}\right) E_{i-1} E_{i+1}\right] \\
= & -S F_{i} K_{i}+\left(v^{-1}-v\right) E_{i+1} E_{i-1} . \tag{20}
\end{align*}
$$

Now let i be more specifically an odd integer with $3 \leq i \leq n-2$. After application of $T_{i-2} T_{i} T_{i+2}$ the previous equation (20) asserts that $u_{i} w_{i}=w_{i} u_{i}+\left(v^{-1}-\right.$ v) $v_{i+1} v_{i-1}$. If i is an even integer with $2 \leq i \leq n-1$, then application of the composition $T_{i-3} T_{i-1} T_{i+1} T_{i+3} T_{i-2} T_{i} T_{i+2}$ to equation (20) yields $v_{i} x_{i}=x_{i} v_{i}+\left(v^{-1}-\right.$ v) $w_{i+1} w_{i-1}$.

Let i be an odd integer with $1 \leq i \leq n-4$. Since $T_{i+1} T_{i+2} T_{i+4}\left(E_{i+3}\right)$ is a linear combination of monomials in $E_{i+1}, E_{i+2}, E_{i+3}$, and E_{i+4} with each factor appearing once, we see that

$$
\begin{equation*}
-T_{i+1} T_{i+2} T_{i+4}\left(E_{i+3}\right) F_{i} K_{i}=-v F_{i} K_{i} T_{i+1} T_{i+2} T_{i+4}\left(E_{i+3}\right) . \tag{21}
\end{equation*}
$$

Applying $T_{i} T_{i+2} T_{i+4} T_{i+6} T_{i+3} T_{i+5}$ to (21) yields $x_{i+3} u_{i}=v u_{i} x_{i+3}$. The equation $x_{i-3} u_{i}=v u_{i} x_{i-3}$, for odd i with $5 \leq i \leq n$, is proved analogously.

Consider the three elements $T_{2}^{-1}\left(-F_{1} K_{1}\right), T_{1} T_{3}\left(E_{2}\right)$, and E_{3}. We abbreviate $X=T_{2}^{-1}\left(-F_{1} K_{1}\right)=\left(v F_{2} F_{1}-F_{1} F_{2}\right) K_{1} K_{2}$. We have

$$
\begin{aligned}
& \left(v F_{2} F_{1}-F_{1} F_{2}\right) E_{1} \\
& =v F_{2}\left(E_{1} F_{1}-\frac{K_{1}-K_{1}^{-1}}{v-v^{-1}}\right)-\left(E_{1} F_{1}-\frac{K_{1}-K_{1}^{-1}}{v-v^{-1}}\right) F_{2} \\
& =E_{1}\left(v F_{2} F_{1}-F_{1} F_{2}\right)+\frac{1}{v-v^{-1}}\left[-v F_{2}\left(K_{1}-K_{1}^{-1}\right)+\left(K_{1}-K_{1}^{-1}\right) F_{2}\right] \\
& =E_{1}\left(v F_{2} F_{1}-F_{1} F_{2}\right)+F_{2} K_{1}^{-1} .
\end{aligned}
$$

Therefore, $X E_{1}=v E_{1} X+v F_{2} K_{2}$. Similarly, $X E_{2}=v E_{2} X+v F_{1} K_{1} K_{2}^{2}$. Furthermore, $X E_{3}=v^{-1} E_{3} X$. Hence

$$
\begin{aligned}
& X\left(E_{2} E_{1}-v^{-1} E_{1} E_{2}\right) \\
& =\left(v E_{2} X+v F_{1} K_{1} K_{2}^{2}\right) E_{1}-\left(E_{1} X+F_{2} K_{2}\right) E_{2} \\
& =v\left(v E_{1} X+v F_{2} K_{2}\right)+v^{2} F_{1} K_{1} E_{1}-E_{1}\left(v E_{2} X+v F_{1} K_{1} K_{2}^{2}\right)-F_{2} K_{2} E_{2} \\
& =v^{2}\left(E_{2} E_{1}-v^{-1} E_{1} E_{2}\right) X+v^{2}\left(E_{2} F_{2}-F_{2} E_{2}\right) K_{2}+v\left(F_{1} E_{1}-E_{1} F_{1}\right) K_{1} K_{2}^{2} .
\end{aligned}
$$

Abbreviate $Y=E_{2} E_{1}-v^{-1} E_{1} E_{2}$ and

$$
\begin{aligned}
R & =v^{2}\left(E_{2} F_{2}-F_{2} E_{2}\right) K_{2}+v\left(F_{1} E_{1}-E_{1} F_{1}\right) K_{1} K_{2}^{2} \\
& =\frac{1}{v-v^{-1}}\left[v^{2} K_{2}^{2}-v^{2}-v K_{1}^{2} K_{2}^{2}+v K_{2}^{2}\right] .
\end{aligned}
$$

Then $R E_{3}-v^{-2} E_{3} R=-v E_{3}$. Note that $T_{1} T_{3}\left(E_{2}\right)=Y E_{3}-v^{-1} E_{3} Y$ is equal to a v-commutator. Hence

$$
\begin{align*}
X T_{1} T_{3}\left(E_{2}\right) & =X\left(Y E_{3}-v^{-1} E_{3} Y\right) \\
& =\left(v^{2} Y X+R\right) E_{3}-v^{-2} E_{3}\left(v^{2} Y x+R\right) \\
& =v\left(Y E_{3}-v^{-1} E_{3} Y\right)-R E_{3}-v^{-2} E_{3} R \\
& =v T_{1} T_{3}\left(E_{2}\right)-v E_{3} . \tag{22}
\end{align*}
$$

Application of $T_{1} T_{3} T_{5} T_{2} T_{4}$ to equation (22) yields to $u_{1} x_{2}=v x_{2} u_{1}-v w_{3}$ which is equivalent to $x_{2} u_{1}=v^{-1} u_{1} x_{2}+w_{3}$. The equation $x_{n-1} u_{n}=v^{-1} u_{n} x_{n-1}+w_{n-2}$ is proved analogously.

Now let i be an odd integer with $3 \leq i \leq n-2$. Let us consider the four elements $T_{i+1}^{-1}\left(-F_{i} K_{i}\right), T_{i-1} T_{i} T_{i+2}\left(E_{i+1}\right), E_{i+2}$, and E_{i-1}. Now denote by X the element $T_{i+1}^{-1}\left(-F_{i} K_{i}\right)$. Similarly as above, we have $X E_{i}=v E_{i} X+v F_{i+1} K_{i+1}, X E_{i+1}=$ $v E_{i+1} X+v F_{i} K_{i} K_{i+1}^{2}, X E_{i+2}=v^{-1} E_{i+2} X$. Furthermore, we have $X E_{i-1}=$ $\left(v F_{i+1} F_{i}-F_{i} F_{i+1}\right) K_{i} K_{i+1} E_{i-1}=v^{-1} E_{i-1} X$. Note that

$$
\begin{aligned}
& T_{i-1} T_{i} T_{i+2}\left(E_{i+1}\right) \\
& =T_{i-1}\left(E_{i+1} E_{i} E_{i+2}-v^{-1} E_{i} E_{i+1} E_{i+2}-v^{-1} E_{i+2} E_{i+1} E_{i}+v^{-2} E_{i} E_{i+2} E_{i+1}\right) \\
& =T_{i} T_{i+2}\left(E_{i+1}\right) E_{i-1}-v^{-1} E_{i-1} T_{i} T_{i+2}\left(E_{i+1}\right)
\end{aligned}
$$

With the same argument as above one can prove that

$$
X T_{i} T_{i+2}\left(E_{i+1}\right)=v T_{i} T_{i+2}\left(E_{i+1}\right) X-v E_{i+2}
$$

From this equation it follows that

$$
\begin{align*}
& X T_{i-1} T_{i} T_{i+2}\left(E_{i+1}\right) \\
& =\left(v T_{i} T_{i+2}\left(E_{i+1}\right) X-v E_{i+2}\right) E_{i-1}-v^{-2} E_{i-1}\left(v T_{i} T_{i+2}\left(E_{i+1}\right) X-v E_{i+2}\right) \\
& =\left(T_{i} T_{i+2}\left(E_{i+1}\right) E_{i-1}-v^{-1} E_{i-1} T_{i} T_{i+2}\left(E_{i+1}\right)\right) X+\left(v^{-1}-v\right) E_{i+2} E_{i-1} . \tag{23}
\end{align*}
$$

Application of the automorphism $T_{i-2} T_{i} T_{i+2} T_{i+4} T_{i+1} T_{i+3}$ to equation (23) gives $u_{i} x_{i+1}=x_{i+1} u_{i}+\left(v^{-1}-v\right) w_{i+2} v_{i-1}$. The equation $u_{i} x_{i-1}=x_{i-1} u_{i}+\left(v^{-1}-\right.$ $v) w_{i-2} v_{i+1}$ is proved analogously.

After multiplying with appropriate T-automorphisms, all others pairs $E\left(\beta_{i}\right)$ and $E\left(\beta_{j}\right)$ of generators become $\mathbb{Q}(v)$-linear combinations of momomials $E_{i_{1}} E_{i_{2}} \cdots E_{i_{k}}$ and $E_{i_{1}^{\prime}} E_{i_{2}^{\prime}} \cdots E_{i_{k^{\prime}}^{\prime}}$, respectively, where the two occuring sequences $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ and $\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k^{\prime}}^{\prime}\right)$ of indices come from two intervals of distance at least two. Hence they commute.

Remark 2.38. In the straightening relations of Lemma 2.37, for all i, j with $1 \leq i<$ $j \leq 2 n$, the coefficient in front of $E\left(\beta_{i}\right) E\left(\beta_{j}\right)$ in the expansion of $E\left(\beta_{j}\right) E\left(\beta_{i}\right)$ in the Poincaré-Birkhoff-Witt basis is $v^{\left(\beta_{i}, \beta_{j}\right)}$.
Remark 2.39. Similarly, there are straightening relations for the generators $u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}$, x_{i}^{\prime} (for appropriate i) of $U_{v}^{+}\left(w^{\prime}\right)$ that enable us to expand every element of $U_{v}^{+}\left(w^{\prime}\right)$ in the Poincaré-Birkhoff-Witt basis. Let us describe them. First of all, note that $v_{n-1}^{\prime}=T_{n}^{-1}\left(v_{n-1}\right), w_{n-1}^{\prime}=T_{n}^{-1} w_{n-1}, x_{n-3}^{\prime}=T_{n}^{-1} x_{n-3}$, and that T_{n}^{-1} leaves all generators invariant except for $v_{n-1}^{\prime}, w_{n-1}^{\prime}, x_{n-3}^{\prime}$, and x_{n-1}^{\prime}. Therefore, the straightening relations of $U_{v}^{+}\left(w^{\prime}\right)$ are the same as the ones for $U_{v}^{+}(w)$ except for the straightening relations involving x_{n-1}^{\prime}.

Calculations similar to those in Lemma 2.37 show that the straightening relations involving x_{n-1}^{\prime} are commutativity relations except for:

$$
\begin{aligned}
& x_{n-1}^{\prime} w_{n-2}^{\prime}=v w_{n-2}^{\prime} x_{n-1}^{\prime}, \\
& x_{n-1}^{\prime} v_{n-3}^{\prime}=v v_{n-3}^{\prime} x_{n-1}^{\prime}, \\
& x_{n-1}^{\prime} v_{n-1}^{\prime}=v^{-1} v_{n-1}^{\prime} x_{n-1}^{\prime}+w_{n-2}^{\prime}, \\
& x_{n-1}^{\prime} u_{n-2}^{\prime}=v^{-1} u_{n-2}^{\prime} x_{n-1}^{\prime}+v_{n-3}^{\prime}, \\
& x_{n-1}^{\prime} u_{n-4}^{\prime}=v u_{n-4}^{\prime} x_{n-1}^{\prime} .
\end{aligned}
$$

Note that Remark 2.38 is also true in this case.
Remark 2.40. The commutation exponent of Remark 2.38 and a weaker (non-explicit) form the straightening relations of Lemma 2.37 is given by the Lemma of LevendorkiìSoibelman [41, Proposition 5.5.2]. See also Kimura [33, Theorem 4.24].

2.11 The dual Poincaré-Birkhoff-Witt basis

Kashiwara [28] introduced operators $E_{i}^{\prime} \in \operatorname{End}\left(U_{v}(\mathfrak{n})\right)$ for $1 \leq i \leq n$ such that the following two properties hold: First of all, $E_{i}^{\prime}\left(E_{j}\right)=\delta_{i, j}$ for all i, j. Secondly, the Leibniz rule $E_{i}^{\prime}(x y)=E_{i}^{\prime}(x) y+v^{\left(\alpha_{i},|x|\right)} x E_{i}^{\prime}(y)$ holds for all i and all homogeneous elements $x, y \in U_{v}(\mathfrak{n})$. Furthermore, Kashiwara [28] introduced a non-degenerate symmetric bilinear form

$$
(\cdot, \cdot): U_{v}(\mathfrak{n}) \times U_{v}(\mathfrak{n}) \rightarrow \mathbb{Q}(v)
$$

It is characterized by the assumption that the endomorphism E_{i}^{\prime} of $U_{v}(\mathfrak{n})$ is adjoint to the left multiplication with E_{i}, i.e., $\left(E_{i}^{\prime}(x), v\right)=\left(x, E_{i} y\right)$ for all $x, y \in U_{v}(\mathfrak{n})$ and $i \in\{1,2, \ldots, n\}$.

The algebra $U_{v}(\mathfrak{n})$ is a Hopf algebra. The E_{i}^{\prime} may be viewed as elements in the graded dual Hopf algbera $U_{v}(\mathfrak{n})_{g r}^{*}$. We refer to Berenstein-Zelevinsky [5, Appendix] for details.

Lusztig [42, Section 1.2] defined a different non-degenerate symmetric bilinear form $(\cdot, \cdot)_{L}: U_{v}(\mathfrak{n}) \times U_{v}(\mathfrak{n}) \rightarrow \mathbb{Q}(v)$. Both bilinear resemble each other. In this paper we use Kashiwara's form. Both forms can be compared, see Leclerc [36, Section 2.2].

According to Lusztig [42, Proposition 38.2.3] the Poincare-Birkhoff-Witt basis is orthogonal with respect to Lusztig's bilinear form. The comparison between both forms shows that it is also orthogonal with respect to Kashiwara's bilinear form. More precisely, for all $\beta, \gamma \in \Delta^{+}$, we have (see Leclerc [36, Equation 21] where the author uses the variable q^{-1} intead of v)

$$
\begin{array}{ll}
(E(\beta), E(\gamma))=0, & \text { if } \beta \neq \gamma ; \\
(E(\beta), E(\beta))=\frac{\prod_{i=1}^{n}\left(1-v^{-\left(\alpha_{i}, \alpha_{i}\right)}\right)^{c_{i}}}{1-v^{-(\beta, \beta)}}, & \text { if } \beta=\sum_{i=1}^{n} c_{i} \alpha_{i} \text { with } c_{i} \in \mathbb{N} .
\end{array}
$$

Compare also with Kimura [33, Proposition 4.18].
Remark 2.41. Every $\beta \in \Delta^{+}$fulfills $(\beta, \beta)=2$; every α_{i} with $i \in Q_{0}$ fulfills $\left(\alpha_{i}, \alpha_{i}\right)=2$. Hence, if $\beta=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j} \in \Delta^{+}$, then $(E(\beta), E(\beta))=$ $\left(1-v^{-2}\right)^{j-i}$.

Definition 2.42. The dual Poincaré-Birkhoff-Witt basis \mathcal{P}^{*} of $U_{v}^{+}(w)$ is defined to be the basis adjoint to the Poincaré-Birkhoff-Witt basis with respect to Kashiwara's form. For every natural number k with $1 \leq k \leq 2 n$ we denote by $E^{*}\left(\beta_{k}\right) \in \mathcal{P}^{*}$ the dual of $E\left(\beta_{k}\right) \in \mathcal{P}$, i.e., the unique scalar multiple of $E\left(\beta_{k}\right)$ such that $\left(E\left(\beta_{k}\right), E^{*}\left(\beta_{k}\right)\right)=1$.

Remark 2.43. Assume that k is an integer with $1 \leq k \leq 2 n$. Let i, j be the integers with $1 \leq i \leq j \leq n$ such that we can write $\beta_{k} \in \Delta^{+}$as $\beta_{k}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j}$. By Lemma 2.32 we have

$$
E^{*}\left(\beta_{k}\right)=\left(1-v^{-2}\right)^{i-j} X_{i, j}=\sum_{\pi} w[\pi(i), \pi(i+1), \ldots, \pi(j)]
$$

where the sum runs over all permutations π of $\{i, i+1, \ldots, j\}$ such that for every even number k with $i \leq k \leq j-1$ we have $\pi^{-1}(k)>\pi^{-1}(k+1)$ and for every even number k with $i+1 \leq k \leq j$ we have $\pi^{-1}(k)>\pi^{-1}(k-1)$.

Definition 2.44. We also introduce a shorthand notation for $E^{*}\left(\beta_{k}\right)$ with $1 \leq k \leq 2 n$. To reflect similarities with the cluster algebra from Section 2.5 we put

$$
\begin{array}{ll}
y_{i}=u_{i}^{*}, & \text { for odd } i \text { with } 1 \leq i \leq n, \\
z_{i}=v_{i}^{*}, & \text { for even } i \text { with } 2 \leq i \leq n-1, \\
z_{i}=w_{i}^{*}, & \text { for odd } i \text { with } 1 \leq i \leq n, \\
y_{i}=x_{i}^{*}, & \text { for even } i \text { with } 2 \leq i \leq n-1 .
\end{array}
$$

Remark 2.45. The straightening relations of Lemma 2.37 now become

$$
\begin{array}{ll}
z_{i+1} y_{i}=v y_{i} z_{i+1}, & \text { for } i \text { odd with } 1 \leq i \leq n-2 \\
z_{i-1} y_{i}=v y_{i} z_{i-1}, & \text { for } i \text { odd with } 3 \leq i \leq n \\
z_{i+2} y_{i}=v y_{i} z_{i+2}, & \text { for } i \text { odd with } 1 \leq i \leq n-2, \\
z_{i-2} y_{i}=v y_{i} z_{i-2}, & \text { for } i \text { odd with } 3 \leq i \leq n \\
z_{1} y_{1}=v^{-1} y_{1} z_{1}+\left(1-v^{-2}\right) z_{2}, & \\
z_{i} y_{i}=y_{i} z_{i}+\left(v-v^{-1}\right) z_{i-1} z_{i+1}, & \text { for } i \text { odd with } 3 \leq i \leq n-2,
\end{array}
$$

$$
z_{n} y_{n}=v^{-1} y_{n} z_{n}+\left(1-v^{-2}\right) z_{n-1}
$$

$$
y_{i+3} y_{i}=v y_{i} y_{i+3}, \quad \text { for } i \text { odd with } 1 \leq i \leq n-4
$$

$$
y_{i-3} y_{i}=v y_{i} y_{i-3}, \quad \text { for } i \text { odd with } 5 \leq i \leq n
$$

$$
y_{i-1} y_{i}=y_{i} y_{i-1}+\left(v-v^{-1}\right) z_{i+1} z_{i-2}, \quad \text { for } i \text { odd with } 3 \leq i \leq n-2
$$

$$
y_{n-1} y_{n}=v^{-1} y_{n} y_{n-1}+\left(1-v^{-2}\right) z_{n-2}
$$

$$
y_{2} y_{1}=v^{-1} y_{1} y_{2}+\left(1-v^{-2}\right) z_{3}
$$

$$
y_{i+1} y_{i}=y_{i} y_{i+1}+\left(v-v^{-1}\right) z_{i-1} z_{i+2}, \quad \text { for } i \text { odd with } 3 \leq i \leq n-2
$$

$$
z_{i+1} z_{i}=v z_{i} z_{i+1}, \quad \text { for } i \text { even with } 2 \leq i \leq n-1
$$

$$
z_{i-1} z_{i}=v z_{i} z_{i-1}, \quad \text { for } i \text { even with } 2 \leq i \leq n-1
$$

$$
y_{i+2} z_{i}=v z_{i} y_{i+2}
$$

$$
\text { for } i \text { even with } 2 \leq i \leq n-3
$$

$$
y_{i-2} z_{i}=v z_{i} y_{i-2}
$$

$$
y_{i} z_{i}=z_{i} y_{i}+\left(v-v^{-1}\right) z_{i-1} z_{i+1}
$$

$$
y_{i+1} z_{i}=v z_{i} y_{i+1}, \quad \text { for } i \text { odd with } 1 \leq i \leq n-2
$$

$$
y_{i-1} z_{i}=v z_{i} y_{i-1}, \quad \text { for } i \text { odd with } 3 \leq i \leq n
$$

Definition 2.46. Consider $U_{v}^{+}(w)_{\mathbb{Z}}=\bigoplus_{\mathbf{a} \in \mathbb{N}^{2 n}} \mathbb{Z}\left[v, v^{-1}\right] E[\mathbf{a}]^{*}$, the integral form of $U_{v}^{+}(w)$. Furthermore, put $\mathcal{A}(w)_{1}=\mathbb{Q} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} U_{v}^{+}(w)_{\mathbb{Z}}$; we call the algebra $\mathcal{A}(w)_{1}$ the classical limit of $U_{v}^{+}(w)$ or the specialization of $U_{v}^{+}(w)$ at $v=1$. Furthermore,
the $\mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right]$-algebra $\mathcal{A}_{v}(w)=\bigoplus_{\mathbf{a} \in \mathbb{N}^{2 n}} \mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right] E[\mathbf{a}]^{*}$ is the integral form of the algebra $\mathbb{Q}\left[v^{ \pm \frac{1}{2}}\right] \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} \mathcal{A}(w)$ and will be useful in further considerations.

Remark 2.47. Note that, by the form of the straightening relations for the dual variables from above, $\mathcal{A}(w)_{1}$ is a commutative algebra.

Definition 2.48. Define a function $b: \mathbb{N}^{2 n} \rightarrow \mathbb{Z}$ by $b(\mathbf{a})=\sum_{k=1}^{2 n}\binom{a_{k}}{2}$ for a sequence $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right) \in \mathbb{N}^{2 n}$.

Proposition 2.49. For every sequence $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right) \in \mathbb{N}^{2 n}$ we have $E[\mathbf{a}]^{*}=$ $v^{-b[\mathbf{a}]} E^{*}\left(\beta_{1}\right)^{a_{1}} E^{*}\left(\beta_{2}\right)^{a_{2}} \cdots E^{*}\left(\beta_{2 n}\right)^{a_{2 n}}$.

Proof. Follows from Lusztig's evaluation [42, Proposition 38.2.3] for of the bilinear form at Poincaré-Birkhoff-Witt basis elements together with Leclerc's conversion formula [36, Section 2.2]. (Compare with the argument from Leclerc [36, Section 5.5.3].)

2.12 The dual canonical basis

In this section we present the dual canonical basis of $U_{v}^{+}(w)$. It is the dual of Lusztig's canonical basis from Lusztig [42, Theorem 14.2.3]. We need some auxiliary notations. Compare the following definitions with Leclerc [36, Section 2.7].
Definition 2.50. For $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right) \in \mathbb{N}^{2 n}$ write $\operatorname{deg}\left(E[\mathbf{a}]^{*}\right)=\sum_{k=1}^{2 n} a_{k} \beta_{k} \in$ Q^{+}as a \mathbb{N}-linear combination in the simple roots, i.e., $\operatorname{deg}\left(E[\mathbf{a}]^{*}\right)=\sum_{k=1}^{2 n} a_{k} \beta_{k}=$ $\sum_{i=1}^{n} c_{i} \alpha_{i}$ with $c_{i} \in \mathbb{Z}$. Put

$$
N(\mathbf{a})=\frac{1}{2}\left(\operatorname{deg}\left(E[\mathbf{a}]^{*}\right), \operatorname{deg}\left(E[\mathbf{a}]^{*}\right)\right)-\sum_{i=1}^{n} c_{i} .
$$

We call N the norm of the sequence $\mathbf{a} \in \mathbb{N}^{2 n}$. We also use the convention

$$
N\left(\sum_{i=1}^{n} c_{i} \alpha_{i}\right)=\frac{1}{2}\left(\sum_{i=1}^{n} c_{i} \alpha_{i}, \sum_{i=1}^{n} c_{i} \alpha_{i}\right)-\sum_{i=1}^{n} c_{i}
$$

for elements in the root lattice.
Proposition 2.51. For every natural number k with $1 \leq k \leq 2 n$ the following equation holds

$$
\sigma\left(E^{*}\left(\beta_{k}\right)\right)=v^{N\left(\beta_{k}\right)} E^{*}\left(\beta_{k}\right) .
$$

Proof. Leclerc [36, Lemma 7] proves that a homogeneous element $f \in \mathcal{F}$ satisfies $\sigma(f)=v^{N(|f|)} f$ if and only if all coefficients in the expansion of f in the basis of shuffles are invariant under σ. By Remark 2.43 all coefficients are 0 or 1 in the case of $E^{*}\left(\beta_{k}\right)$.

Definition 2.52. We define a partial order \triangleleft on the parametrizing set $\mathbb{N}^{2 n}$ of dual Poincaré-Birkhoff-Witt basis elements. For every k with $1 \leq k \leq 2 n$ let $\mathbf{e}_{k} \in \mathbb{N}^{2 n}$ be the vector satisfying $\left(\mathbf{e}_{k}\right)_{l}=\delta_{k, l}$ for all l. For every integer i with $1 \leq i \leq n$ let $k_{i}, l_{i}, m_{i}, n_{i} \in\{1,2, \ldots, 2 n\}$ be the indices for which $\left|y_{i}\right|=\beta_{k_{i}},\left|z_{i-1}\right|=\beta_{l_{i}}$, $\left|z_{i+1}\right|=\beta_{m_{i}},\left|z_{i}\right|=\beta_{n_{i}}$. (Note that k_{1} and n_{n} are not defined. We put $\mathbf{e}_{k_{1}}=\mathbf{e}_{n_{n}}=$ 0.) Put $\mathbf{v}_{i}=\mathbf{e}_{k_{i}}-\mathbf{e}_{l_{i}}-\mathbf{e}_{m_{i}}+\mathbf{e}_{n_{i}}$. Now we say that $\mathbf{a}, \mathbf{b} \in \mathbb{N}^{2 n}$ satisfy $\mathbf{a} \triangleleft \mathbf{b}$ if and only if $\mathbf{b}-\mathbf{a}=\bigoplus_{i=1}^{n} \mathbb{N}_{i}$.

Remark 2.53. The straightening relations of Lemma 2.37 imply the following fact: If $\mathbf{a} \in \mathbb{N}^{2 n}$ and we expand $E^{*}\left(\beta_{2 n}\right)^{a_{2 n}} E^{*}\left(\beta_{2 n-1}\right)^{a_{2 n-1}} \cdots E^{*}\left(\beta_{1}\right)^{a_{1}}$ in the dual Poincaré-Birkhoff-Witt basis, then we get a $\mathbb{Q}(q)$-linear combination of $E[\mathbf{b}]^{*}$ with $\mathbf{b} \in S(\mathbf{a}) \cup\{\mathbf{a}\}$.

Definition 2.54. For $\mathbf{a} \in \mathbb{N}^{2 n}$ put $S(\mathbf{a})=\left\{\mathbf{b} \in \mathbb{N}^{2 n}: \mathbf{a} \triangleleft \mathbf{b}, \mathbf{a} \neq \mathbf{b}\right\}$.
Theorem 2.55. There exist elements $B[\mathbf{a}]^{*} \in U_{v}^{+}(w)$ parametrized by sequences $\mathbf{a} \in$ $\mathbb{N}^{2 n}$ such that the set $\mathcal{B}^{*}=\left\{B[\mathbf{a}]^{*}: \mathbf{a} \in \mathbb{N}^{2 n}\right\}$ is a basis of $U_{v}^{+}(w)$ and the following two properties hold.
(1) For every $\mathbf{a} \in \mathbb{N}^{2 n}$ we have $B[\mathbf{a}]^{*}-E[\mathbf{a}]^{*} \in \bigoplus_{\mathbf{b} \in S(\mathbf{a})} v^{-1} \mathbb{Z}\left[v^{-1}\right] E[\mathbf{b}]^{*}$.
(2) For every $\mathbf{a} \in \mathbb{N}^{2 n}$ we have $\sigma\left(B[\mathbf{a}]^{*}\right)=v^{N(\mathbf{a})} B[\mathbf{a}]^{*}$.

The elements $B[\mathbf{a}]^{*} \in U_{v}^{+}(w)$ are uniquely determined by these two properties.
Proof. Note that if $\mathbf{a} \triangleleft \mathbf{b}$, then $\left|E[\mathbf{a}]^{*}\right|=\sum_{k=1}^{2 n} a_{k} \beta_{k}=\sum_{k=1}^{2 n} b_{k} \beta_{k}=\left|E[\mathbf{b}]^{*}\right|$ since the straightening relations are relations in a Q-graded algebra. For $\gamma \in Q$ in the root lattice, consider the (finite) set $S_{\gamma} \subset \mathbb{N}^{2 n}$ of all $\mathbf{a}=\left(a_{i}\right)_{1 \leq i \leq 2 n}$ with $\sum_{k=1}^{2 n} a_{k} \beta_{k}=$ γ. We extend the partial order \triangleleft on S_{γ} to a total order $<$. Let $\mathbf{a}_{1}<\mathbf{a}_{2}<\ldots<$ \mathbf{a}_{m} be the elements of S_{γ} written in increasing order. Now we prove by backward induction that for every $k=m, m-1, \ldots, 2,1$ there exist linearly indpendent $B\left[\mathbf{a}_{k}\right]$, $B\left[\mathbf{a}_{k+1}\right], \ldots, B\left[\mathbf{a}_{m}\right]$ satisfying (1) and (2).

Put $B\left[\mathbf{a}_{m}\right]=E\left[\mathbf{a}_{m}\right]$. It clearly satisfies property (1). Let $\mathbf{a}_{m}=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$. Since there are no $\mathbf{b} \in S_{\gamma}$ such that $\mathbf{a}_{m}<\mathbf{b}$, the dual Poincaré-Birkhoff-Witt element $E\left[\mathbf{a}_{m}\right]^{*}$ cannot be straightened, i.e., all $E^{*}\left(\beta_{k}\right)$ for with $a_{k} \neq 0$ are v-commutative. Therefore, by Remark 2.38 we have

$$
\begin{aligned}
\sigma\left(E\left[\mathbf{a}_{m}\right]^{*}\right)= & \sigma\left(v^{-b[\mathbf{a}]} E^{*}\left(\beta_{1}\right)^{a_{1}} E^{*}\left(\beta_{2}\right)^{a_{2}} \cdots E^{*}\left(\beta_{2 n}\right)^{a_{2 n}}\right) \\
= & v^{b[\mathbf{a}]} v^{\sum_{k=1}^{2 n} a_{k} N\left(\beta_{k}\right)} E^{*}\left(\beta_{2 n}\right)^{a_{2 n}} \cdots E^{*}\left(\beta_{2}\right)^{a_{2}} E^{*}\left(\beta_{1}\right)^{a_{1}} \\
= & v^{b[\mathbf{a}]} v^{\sum_{k=1}^{2 n} \frac{1}{2} a_{k}\left(\beta_{k}, \beta_{k}\right)-\sum_{k=1}^{2 n} a_{k}\left\|\beta_{k}\right\|} \\
& \cdot v^{\sum_{k<l}\left(\beta_{k}, \beta_{l}\right)} E^{*}\left(\beta_{1}\right)^{a_{1}} E^{*}\left(\beta_{2}\right)^{a_{2}} \cdots E^{*}\left(\beta_{2 n}\right)^{a_{2 n}} \\
= & v^{\frac{1}{2}\left(\sum_{k=1}^{2 n} \beta_{k}, \sum_{k=1}^{2 n} \beta_{k}\right)-\sum_{k=1}^{2 n} a_{k}\left\|\beta_{k}\right\|} E\left[\mathbf{a}_{m}\right]^{*} \\
= & v^{N\left(\mathbf{a}_{m}\right)} E\left[\mathbf{a}_{m}\right]^{*} .
\end{aligned}
$$

Here $\left\|\beta_{k}\right\|$ denotes the sum of the coefficients of β_{k} when expanded as a \mathbb{Z}-linear combination of simple roots as in Definition 2.50. Hence, the variable $E\left[\mathbf{a}_{m}\right]$ also satisfies property (2).

Now let $1 \leq k<m$ and assume that properties (1) and (2) hold for \mathbf{a}_{k+1}, $\mathbf{a}_{k+2}, \ldots, \mathbf{a}_{m}$. We expand $\sigma\left(E\left[\mathbf{a}_{k}\right]^{*}\right)$ in the dual Poincaré-Birkhoff-Witt basis. Note that by the same argument as above (and ignoring terms of lower order) we see that the coefficient of the leading term $E\left[\mathbf{a}_{k}\right]^{*}$ is $v^{N\left(\mathbf{a}_{k}\right)}$. Thus, we have

$$
\sigma\left(E\left[\mathbf{a}_{k}\right]^{*}\right)=v^{N\left(\mathbf{a}_{k}\right)} E\left[\mathbf{a}_{k}\right]^{*}+\sum_{k<l \leq m} f_{l} E\left[\mathbf{a}_{l}\right]^{*}
$$

for some $f_{l} \in \mathbb{Z}\left[v, v^{-1}\right]$. By induction hypothesis every $B\left[\mathbf{a}_{l}\right]^{*}$ with $l>k$ is a $\mathbb{Z}\left[v, v^{-1}\right]$-linear combination of $E\left[\mathbf{a}_{l}^{\prime}\right]^{*}$ with $l^{\prime}>l$. By solving an upper triangular
linear system of equations we see that every $E\left[\mathbf{a}_{l}\right]^{*}$ with $l>k$ is a $\mathbb{Z}\left[v, v^{-1}\right]$-linear combination of $B\left[\mathbf{a}_{l}^{\prime}\right]^{*}$ with $l^{\prime}>l$. Hence, we may write

$$
\sigma\left(E\left[\mathbf{a}_{k}\right]^{*}\right)=v^{N\left(\mathbf{a}_{k}\right)} E\left[\mathbf{a}_{k}\right]^{*}+\sum_{k<l \leq m} g_{l} B\left[\mathbf{a}_{l}\right]^{*}
$$

for some $g_{l} \in \mathbb{Z}\left[v, v^{-1}\right]$. We apply the antiinvolution σ to the last equation:

$$
E\left[\mathbf{a}_{k}\right]^{*}=v^{-N\left(\mathbf{a}_{k}\right)} \sigma\left(E\left[\mathbf{a}_{k}\right]^{*}\right)+\sum_{k<l \leq m} v^{N\left(\mathbf{a}_{l}\right)} \sigma\left(g_{l}\right) B\left[\mathbf{a}_{l}\right]^{*} .
$$

Note that $N\left(\mathbf{a}_{k}\right)=N\left(\mathbf{a}_{l}\right)$ for all l. Comparing coefficients yields $v^{2 N\left(\mathbf{a}_{l}\right)} \sigma\left(g_{l}\right)=-g_{l}$. It follows that $\sigma\left(v^{-N\left(\mathbf{a}_{l}\right)} g_{l}\right)=-v^{-N\left(\mathbf{a}_{l}\right)} g_{l}$. Thus, we my write $v^{-N\left(\mathbf{a}_{l}\right)} g_{l}=h_{l}-\sigma\left(h_{l}\right)$ for some $h_{l} \in v^{-1} \mathbb{Z}\left[v^{-1}\right]$. Now put

$$
B\left[\mathbf{a}_{k}\right]^{*}=E\left[\mathbf{a}_{k}\right]^{*}+\sum_{k<l \leq m} h_{l} B\left[\mathbf{a}_{l}\right]^{*}
$$

It is easy to see that properties (1) and (2) are true for $B\left[\mathbf{a}_{k}\right]^{*}$ and that $B\left[\mathbf{a}_{k}\right]^{*}, B\left[\mathbf{a}_{k+1}\right]^{*}$, $\ldots, B\left[\mathbf{a}_{m}\right]^{*}$ are linearly independent.

For the uniqueness, suppose that k is some index such that there are variables $B\left[\mathbf{a}_{k}\right]_{1}^{*}$ and $B\left[\mathbf{a}_{k}\right]_{2}^{*}$ fulfilling the two properties of the theorem. Then their difference $B\left[\mathbf{a}_{k}\right]_{1}^{*}-B\left[\mathbf{a}_{k}\right]_{2}^{*} \in \bigoplus_{l>k} v^{-1} \mathbb{Z}\left[v^{-1}\right] B\left[\mathbf{a}_{l}\right]^{*}$. Application of σ and multiplication with $v^{-N\left(\mathbf{a}_{k}\right)}$ afterwards yields $B\left[\mathbf{a}_{k}\right]_{1}^{*}-B\left[\mathbf{a}_{k}\right]_{2}^{*} \in \bigoplus_{l>k} v \mathbb{Z}[v] B\left[\mathbf{a}_{l}\right]^{*}$, so $B\left[\mathbf{a}_{k}\right]_{1}^{*}=B\left[\mathbf{a}_{k}\right]_{2}^{*}$.

Remark 2.56. It is known that the dual of Lusztig's canonical basis under Kashiwara's bilinear form obeys the two properties of Theorem 2.55, compare Leclerc [36, Proposition 39]. By uniqueness, the set $\mathcal{B}^{*}=\left\{B[\mathbf{a}]^{*}: \mathbf{a} \in \mathbb{N}^{2 n}\right\}$ is the dual of Lusztig's canonical basis, or the dual canonical basis for short.

We call $E[\mathbf{a}]^{*}$ (for $\mathbf{a} \in \mathbb{N}^{2 n}$) the leading term in the expansion of $B[\mathbf{a}]^{*}$ in the Poincaré-Birkhoff-Witt basis. In what follows we use the convention $z_{0}=z_{n+1}=1$. Prominent elements in \mathcal{B}^{*} are

$$
\begin{array}{ll}
p_{i}=y_{i} z_{i}-v^{-1} z_{i-1} z_{i+1}, & \text { for } i \text { odd with } 1 \leq i \leq n, \\
p_{i}=z_{i} y_{i}-v^{-1} z_{i-1} z_{i+1}, & \text { for } i \text { even with } 2 \leq i \leq n-1 .
\end{array}
$$

The first property of Theorem 2.55 is obvious and the second follows easily from a calculation using the straightening relations. The variables are v-deformations of the δ-functions of the \mathcal{C}_{M}-projective rigid Λ-modules from Section 2.3. The non-deformed δ-function associated with these modules are frozen cluster variables in Geiß-LeclercSchröer's cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$, compare Section 2.5.

Lemma 2.57. For every pair (i, k) of natural numbers such that $1 \leq i \leq n$ and $1 \leq k \leq 2 n$ the elements $p_{i}, E^{*}\left(\beta_{k}\right) \in U_{v}^{+}(w)$ are v-commutative, i.e., there is an integer a such that $p_{i} E^{*}\left(\beta_{k}\right)=v^{a} E^{*}\left(\beta_{k}\right) p_{i}$.

Proof. Let i be an odd integer such that $1 \leq i \leq n$. Note that

$$
p_{i}=y_{i} z_{i}-v^{-1} z_{i-1} z_{i+1}=v^{-\left(\left|z_{i}\right|,\left|y_{i}\right|\right)} z_{i} y_{i}-v z_{i-1} z_{i+1}
$$

by property (2) of Theorem 2.55. From the straightening relations of Lemma 2.37 it is clear that p_{i} commutes with every y_{j} with $|j-i| \geq 4$ and with every z_{j} with $|j-i| \geq 3$. If $i \geq 5$, then $y_{i-3} p_{i}=y_{i-3} y_{i} z_{i}-v^{-1} y_{i-3} z_{i-1} z_{i+1}=v y_{i} z_{i} y_{i-3}-z_{i-1} z_{i+1} y_{i-3}=$ $v p_{i} y_{i-3}$. Now assume that $i \geq 3$. We have $y_{i-2} p_{i}=y_{i-2} y_{i} z_{i}-v^{-1} y_{i-2} z_{i-1} z_{i+1}=$ $v^{-1} y_{i} z_{i} y_{i-2}-v^{-2} z_{i-1} z_{i+1} y_{i-2}=v^{-1} p_{i} y_{i-2}$. Furthermore, the equation $z_{i-2} p_{i}=$ $z_{i-2} y_{i} z_{i}-v^{-1} z_{i-2} z_{i-1} z_{i+1}=v y_{i} z_{i} z_{i-2}-z_{i-1} z_{i+1} z_{i-2}=v p_{i} z_{i-2}$ holds. The calculation

$$
\begin{aligned}
y_{i-1} p_{i}= & y_{i-1} y_{i} z_{i}-v^{-1} y_{i-1} z_{i-1} z_{i+1} \\
= & v^{\left(\left|y_{i-1}\right|,\left|y_{i}\right|\right)}\left(y_{i} y_{i-1}+\left(v-v^{-1}\right) z_{i+1} z_{i-2}\right) z_{i} \\
& -v^{-1}\left(z_{i-1} y_{i-1}+\left(v-v^{-1}\right) z_{i} z_{i-2}\right) z_{i+1} \\
= & v^{\left(\left|y_{i-1}\right|,\left|y_{i}\right|\right)}\left(v y_{i} z_{i} y_{i-1}-z_{i-1} z_{i+1} y_{i-1}\right)=v^{1+\left(\left|y_{i-1}\right|,\left|y_{i}\right|\right)} p_{i} y_{i-1}
\end{aligned}
$$

shows that p_{i} also v-commutes with y_{i-1}. It also v-commutes with z_{i-1} as the calculation shows: $z_{i-1} p_{i}=z_{i-1} y_{i} z_{i}-v^{-1} z_{i-1}^{2} z_{i+1}=y_{i} z_{i} z_{i-1}-v^{-1} z_{i-1} z_{i+1} z_{i-1}=$ $p_{i} z_{i-1}$. Now assume that $i \geq 1$.The following equation is true:

$$
\begin{aligned}
y_{i} p_{i} & =y_{i}^{2} z_{i}-v^{-1} y_{i} z_{i-1} z_{i+1} \\
& =y_{i}\left(v^{-\left(\left|y_{i}\right|,\left|z_{i}\right|\right)} z_{i} y_{i}+\left(v^{-1}-v\right) z_{i-1} z_{i+1}\right)-v^{-1} y_{i} z_{i-1} z_{i+1} \\
& =v^{-\left(\left|y_{i}\right|,\left|z_{i}\right|\right)} y_{i} z_{i} z_{i}-v y_{i} z_{i-1} z_{i+1} \\
& =v^{-\left(\left|y_{i}\right|,\left|z_{i}\right|\right)}\left(y_{i} z_{i}-v^{-1} z_{i-1} z_{i+1}\right) y_{i}=v^{-\left(\left|y_{i}\right|,\left|z_{i}\right|\right)} p_{i} y_{i} .
\end{aligned}
$$

Finally we see that $z_{i} p_{i}=z_{i} y_{i} z_{i}-v^{-1} z_{i} z_{i-1} z_{i+1}=v^{\left(\left|y_{i}\right|,\left|z_{i}\right|\right)}\left(v^{-\left(\left|y_{i}\right|,\left|z_{i}\right|\right)} z_{i} y_{i}-\right.$ $\left.v z_{i-1} z_{i+1}\right) z_{i}=v^{\left(\left|y_{i}\right|,\left|z_{i}\right|\right)} p_{i} z_{i}$. The v-commutativity relations of p_{i} is elements with index $j>i$ are proved in the same way.

The case of even i can be handled with similar arguments.
Remark 2.58. 1. The v-commutativity relations of Lemma 2.57 will crucial for the construction of the initial quantum seed of $\mathcal{A}(w)_{v}$. Another verification of v-commutativity relations for the initial seed is due to Kimura [33, Section 6].
2. Multiplicative properties of (dual) canonical basis elements have also been studied by Reineke [46].
3. As observed by Leclerc, the v-deformations of the δ-functions of \mathcal{C}_{M}-projective rigid Λ-modules also v-commutate with the generators of $U_{v}^{+}(w)$ in the Kronecker cases for w of length 4 , see the author [34, Section 4.1].
4. A consideration of the leading terms of the two occuring variables in Lemma 2.57 is sufficient to determine the integer a.

Remark 2.59. The techniques in this section work with the same proofs for the case $U_{v}^{+}\left(w^{\prime}\right)$ as well. We use a similar notation $y_{i}^{\prime}, z_{i}^{\prime} \in U_{v}^{+}\left(w^{\prime}\right)$ for the elements dual to $u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime} \in U_{v}^{+}(w)$ (for appropriate indices i). The straightening relations for the dual variables can be computed using the same methods.

2.13 The quantum cluster algebra structure induced by the dual canonical basis

In this section we are going to prove that the integral form $\bigoplus_{\mathbf{a} \in \mathbb{N}^{2 n}} \mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right] E[\mathbf{a}]^{*}$ is a quantum cluster algebra in the sense of Bereinstein-Zelevinsky [6]. The corresponding non-quantized cluster algebra is Geiß-Leclerc-Schröer's [21] cluster algebra $\mathcal{A}(w)$.

Natural Quantum cluster algebra structures have only been observed in very few cases, see for example Grabowski-Launois [20], Rupel [50], and the author [34]. For a study of bases of quantum cluster algebras of type $\tilde{A}_{1}^{(1)}$ see Ding-Xu [12].
Definition 2.60. For $1 \leq i \leq j \leq n$ define $\Delta_{i, j}^{v} \in \mathcal{B}^{*}$ to be the dual canonical basis element with leading term $\prod_{i \leq r \leq j, r \text { odd }} y_{r} \prod_{i \leq r \leq j, ~ r e v e n ~} y_{r}$.
Remark 2.61. We provide some examples of elements in the dual canonical basis \mathcal{B}^{*} of the form $\Delta_{i, j}^{v}$ with $1 \leq i \leq j \leq n$. We focus on examples where the interval $[i, j]$ is small, i.e., $j \leq i+2$. First of all, we clearly have $\Delta_{i, i}^{v}=y_{i}$ for all i. Furthermore, an elementary calculation using the straightening relations shows that: $\Delta_{1,2}^{v}=y_{1} y_{2}-$ $v^{-1} z_{3}=v y_{2} y_{1}-v z_{3}, \Delta_{n-1, n}^{v}=y_{n} y_{n-1}-v^{-1} z_{n-2}=v y_{n-1} y_{n}-v z_{n-2}$, and that for $2 \leq i \leq n-2$

$$
\Delta_{i, i+1}^{v}= \begin{cases}y_{i} y_{i+1}-v^{-1} z_{i-1} z_{i+2}=y_{i+1} y_{i}-v z_{i+2} z_{i-1}, & \text { if } i \text { is odd } \\ y_{i+1} y_{i}-v^{-1} z_{i+2} z_{i-1}=y_{i} y_{i+1}-v z_{i-1} z_{i+2}, & \text { if } i \text { is even }\end{cases}
$$

Recall the convention $z_{0}=z_{n+1}=1$. The formulae simplify to $\Delta_{i, i+1}^{v}=y_{i} y_{i+1}-$ $v^{-1} z_{i-1} z_{i+2}$ for odd i and $\Delta_{i, i+1}^{v}=y_{i+1} y_{i}-v^{-1} z_{i+2} z_{i-1}$ for even i. With the same convention we can compute:

$$
\begin{aligned}
\Delta_{1,3} & =y_{1} y_{3} y_{2}-v^{-1} y_{1} z_{4} z_{1}-v^{-1} y_{3} z_{3}+v^{-2} z_{2} z_{4} \\
& =v y_{2} y_{1} y_{3}-v z_{3} y_{3}-v^{2} z_{1} z_{4} y_{1}+v^{2} z_{2} z_{4},
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{n-2, n} & =y_{n} y_{n-2} y_{n-1}-v^{-1} y_{n} z_{n-3} z_{n}-v^{-1} y_{n-2} z_{n-2}+v^{-2} z_{n-1} z_{n-3} \\
& =v y_{n-1} y_{n} y_{n-2}-v z_{n-2} y_{n-2}-v^{2} z_{n} z_{n-3} y_{n}+v^{2} z_{n-1} z_{n-3} .
\end{aligned}
$$

For odd i such that $3 \leq i \leq n-4$ we have:

$$
\begin{aligned}
\Delta_{i, i+2} & =y_{i} y_{i+2} y_{i+1}-v^{-1} y_{i} z_{i+3} z_{i}-v^{-1} y_{i+2} z_{i-1} z_{i+2}+v^{-2} z_{i-1} z_{i+1} z_{i+3} \\
& =y_{i+1} y_{i+2} y_{i}-v z_{i} z_{i+3} y_{i}-v z_{i+2} z_{i-1} y_{i+2}+v^{2} z_{i-1} z_{i+1} z_{i+3} .
\end{aligned}
$$

For odd i such that $3 \leq i \leq n-4$ we have:

$$
\begin{aligned}
\Delta_{i, i+2} & =y_{i+1} y_{i} y_{i+2}-v^{-1} z_{i} z_{i+3} y_{i}-v^{-1} z_{i+2} z_{i-1} y_{i+2}+v^{2} z_{i-1} z_{i+1} z_{i+3} \\
& =y_{i} y_{i+2} y_{i+1}-v y_{i} z_{i+3} z_{i}-v y_{i+2} z_{i+2} z_{i-1}+v^{2} z_{i-1} z_{i+1} z_{i+3}
\end{aligned}
$$

Remark 2.62. In what follows we prove recursions for the $\Delta_{i, j}^{v}$ with $1 \leq i \leq j \leq$ n. The formulae turn out to be quantized versions of the formulae for the $\Delta_{i, j}$ from Section 2.6. The quantized recursions will be crucial for the verification of the quantum cluster algebra struture on $U_{v}^{+}(w)$ in the next section.

To formulate the recursion effectively the following definitions are helpful. First of all we introduce the convention $\Delta_{i, i-1}^{v}=1$ for all i. Furthermore, we give the following two definitions.

Definition 2.63. For $1 \leq i, j \leq n$ put

$$
s_{i, j}=\sum_{i \leq s \leq j}\left|y_{s}\right| ; \quad o_{i, j}=\sum_{\substack{i \leq s \leq j \\ s \text { odd }}}\left|y_{s}\right| ; \quad e_{i, j}=\sum_{\substack{i \leq s \leq j \\ s \text { even }}}\left|y_{s}\right| .
$$

Definition 2.64. For all i, j with $1 \leq i, j \leq n$ and $j-i \geq 2$ define

$$
A_{i, j}= \begin{cases}-1, & \text { if } j-i \leq 3 \\ -2, & \text { if } j-i \geq 4\end{cases}
$$

Proposition 2.65. For all pairs (i, j) of integers such that $1 \leq i \leq j \leq n$ the following equation is true:

$$
N\left(s_{i, j}\right)-N\left(s_{i, j-1}\right)-N\left(\left|y_{j}\right|\right)= \begin{cases}\left(\left|y_{j}\right|, o_{i, j-1}\right), & \text { if } j \text { is even } \\ \left(\left|y_{j}\right|, e_{i, j-1}\right), & \text { if } j \text { is odd }\end{cases}
$$

Proof. The proposition follows easily from the observation $\frac{1}{2}\left(s_{i, j}, s_{i, j}\right)=\frac{1}{2}\left(e_{i, j}+\right.$ $\left.o_{i, j}, e_{i, j}+o_{i, j}\right)=(j-i+1)+\left(e_{i, j}, o_{i, j}\right)$.

Proposition 2.66. Let i, j be integers such that $1 \leq i \leq j \leq n$ and $j \geq i+2$. The following equation holds:

$$
\begin{aligned}
N\left(s_{i, j}\right)-N\left(s_{i, j-3}\right)- & N\left(\left|p_{j-2}\right|\right)-N\left(\left|z_{j+1}\right|\right)= \\
& \begin{cases}\left(\left|y_{j}\right|+\left|y_{j-2}\right|, o_{i, j-3}\right)+\left(\left|y_{j-1}\right|, e_{i, j-4}\right), & \text { if } j \text { is even; } \\
\left(\left|y_{j}\right|+\left|y_{j-2}\right|, e_{i, j-3}\right)+\left(\left|y_{j-1}\right|, o_{i, j-4}\right), & \text { if } j \text { is odd. }\end{cases}
\end{aligned}
$$

Proof. The elements $y_{j}, y_{j-1}, z_{j+1}, z_{j-2} \in Q^{+}$satisfy the equation $\left|y_{j}\right|+\left|y_{j-1}\right|=$ $\left|z_{j+1}\right|+\left|z_{j-2}\right|$, compare Figure 18. With this fact the proposition follows just as above from the observation $\frac{1}{2}\left(s_{i, j}, s_{i, j}\right)=\frac{1}{2}\left(e_{i, j}+o_{i, j}, e_{i, j}+o_{i, j}\right)=(j-i+1)+$ $\left(e_{i, j}, o_{i, j}\right)$.

Remark 2.67. By definition, the leading term of $\Delta_{i, j}^{v}$ (where $1 \leq i \leq j \leq n$) is $\prod_{i \leq r \leq j, r \text { odd }} y_{r} \prod_{i \leq r \leq j, r e v e n} y_{r}$. Therefore, $\Delta_{i, j}^{v}$ is a $\mathbb{Z}\left[v, v^{-1}\right]$-linear combination of terms of the form

$$
\prod_{\substack{i \leq r \leq j \\ r \text { odd }}} y_{r}^{1-a_{r}} \prod_{\substack{i-1 \leq r \leq j+1 \\ r \text { even }}} z_{r}^{a_{r+1}+a_{r-1}-a_{r}} \prod_{\substack{i-1 \leq r \leq j+1 \\ r \text { odd }}} z_{r}^{a_{r+1}+a_{r-1}-a_{r}} \prod_{\substack{i \leq r \leq j \\ r \text { even }}} y_{r}^{1-a_{r}}
$$

for some $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ such that $a_{1}=a_{2}=\ldots=a_{i-1}=0$, $a_{j+1}=a_{j+1}=\ldots=a_{n}=0$, and $a_{r+1}+a_{r-1}-a_{r} \geq 0$ for all r. We denote this term by $\Delta_{i, j}^{v}[\mathbf{a}]$.

We know that p_{j+1} commutes, up to a power of v, with every $\Delta_{i, j}^{v}[\mathbf{a}]$. The following proposition shows that much more is true: The commutation exponent only depends on the pair (i, j), but not on $\mathbf{a} \in\{0,1\}^{n}$.

Proposition 2.68. Let i, j be integers such that $1 \leq i \leq j \leq n-1$. The variables $\Delta_{i, j}^{v}[\mathbf{a}]$ and p_{j+1} are v-commutative. More precisely: If j is even, then $\Delta_{i, j}^{v}[\mathbf{a}] p_{j+1}=$ $v^{\left(\left|y_{j+1}\right|, e_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v}[\mathbf{a}]$, and if j is odd, then $\Delta_{i, j}^{v}[\mathbf{a}] p_{j+1}=$ $v^{-\left(\left|y_{j+1}\right|, o_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v}[\mathbf{a}]$.

Proof. Assume that j be even. By Lemma 2.57 we know that p_{j+1} commutes, up to a power of v, with every $\Delta_{i, j}^{v}[\mathbf{a}]$. To determine the appropriate power of v, we compare the leading terms. The leading term of p_{j+1} is $y_{j+1} z_{j+1}$. By Remark 2.38 we see that

$$
\begin{aligned}
\Delta_{i, j}^{v}[\mathbf{a}] p_{j+1}= & v^{a_{j}\left(\left|y_{j+1}\right|,\left|z_{j+1}\right|+\left|z_{j-1}\right|-\left|y_{j}\right|-\left|-z_{j}\right|\right)} \\
& \cdot v^{a_{j-1}\left(\left|y_{j+1}\right|,\left|z_{j}\right|+\left|z_{j-2}\right|-\left|z_{j-1}\right|\right)} \\
& \cdot v^{a_{j-2}\left(\left|y_{j+1}\right|,\left|z_{j-1}\right|-\left|z_{j-2}\right|\right)} \\
& \cdot v^{a_{j}\left(\left|z_{j+1}\right|,\left|y_{j}\right|-\left|z_{j}\right|\right)} \\
& \cdot v^{a_{j-1}\left(\left|z_{j+1}\right|,\left|y_{j-1}\right|-\left|z_{j}\right|+\left|z_{j-2}\right|\right)} \\
& \cdot v^{\left(\left|y_{j+1}\right|, e_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v}[\mathbf{a}] .
\end{aligned}
$$

Note that $\left(\left|y_{k}\right|,\left|y_{k-2}\right|\right)=\left(\left|y_{k}\right|,\left|y_{k-4}\right|\right)=0$ for all $k,\left(\left|y_{k}\right|,\left|y_{l}\right|\right)=0$ for $|k-l| \geq$ 4 , $\left(\left|y_{k}\right|,\left|z_{l}\right|\right)=0$ for $|k-l| \geq 3$, and that $\left|y_{j}\right|+\left|z_{j}\right|=\left|z_{j+1}\right|+\left|z_{j-1}\right|$ for all k. Furthermore, notice that $\left(\left|z_{k+1}\right|,\left|y_{k}\right|\right)=\left(\left|z_{k+1},\left|z_{k}\right|\right)\right.$ for all k. Hence, we have $\Delta_{i, j}^{v}[\mathbf{a}] p_{j+1}=v^{\left(\left|y_{j+1}\right|, e_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v}[\mathbf{a}]$.

By a similar argument we can show that for odd j the equation $\Delta_{i, j}^{v}[\mathbf{a}] p_{j+1}=$ $v^{-\left(\left|y_{j+1}\right|, o_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v}[\mathbf{a}]$ holds.

The independence of the commutation exponent of $\mathbf{a} \in\{0,1\}^{n}$ implies the corollary.

Corollary 2.69. Let i, j be integers as above. Then the variables $\Delta_{i, j}^{v}$ and p_{j+1} are v-commutative. More precisely: If j is even, then

$$
\Delta_{i, j}^{v} p_{j+1}=v^{\left(\left|y_{j+1}\right|, e_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v}
$$

and if j is odd, then

$$
\Delta_{i, j}^{v} p_{j+1}=v^{-\left(\left|y_{j+1}\right|, o_{i, j}\right)+\left(\left|z_{j+1}\right|, e_{i, j}\right)-\left(\left|z_{j+1}\right|, o_{i, j-1}\right)} p_{j+1} \Delta_{i, j}^{v} .
$$

Having established these conventions, definitions and proposistions, we are now able to formulate a theorem that provides a recursion for the $\Delta_{i, j}^{v}$ and a quantized version of the exchange relation. These are the parts (a) and (b) of Theorem 2.70. For a proof of the theorem, we proceed by induction. For a functioning induction step we include also the v-commutator relations in part (c) and (d).

Theorem 2.70. Let i, j be integers such that $1 \leq i, j \leq n$ and $j-i \geq 2$.
(a) The dual canonical basis element $\Delta_{i, j}^{v}$ can be computed recursively from elements $\Delta_{i, j^{\prime}}^{v}$ with $j^{\prime}<j$. More precisely, if j is even, then we have:

$$
\begin{aligned}
\Delta_{i, j}^{v}= & \Delta_{i, j-1}^{v} y_{j}-v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
= & v^{-\left(\left|y_{j}\right|, o_{i, j-1}\right)} y_{j} \Delta_{i, j-1}^{v} \\
& -v^{-A_{i, j}-\left(\left|y_{j}\right|+\left|y_{j-2}\right|, o_{i, j-3}\right)-\left(\left|y_{j-1}\right|, e_{i, j-4}\right)} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v} .
\end{aligned}
$$

If j is odd, the we have:

$$
\begin{aligned}
\Delta_{i, j}^{v}= & y_{j} \Delta_{i, j-1}^{v}-v^{A_{i, j}} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v} \\
= & v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} y_{j} \\
& -v^{-A_{i, j}-\left(\left|y_{j}\right|+\left|y_{j-2}\right|, e_{i, j-3}\right)-\left(\left|y_{j-1}\right|, o_{i, j-4}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1}
\end{aligned}
$$

(b) Furthermore, the following quantum cluster exchange relation holds:

$$
\Delta_{i, j}^{v} z_{j}= \begin{cases}\Delta_{i, j-1}^{v} p_{j}+v^{1-\left(\left|y_{j-1}\right|, e_{i, j-2}\right)} \Delta_{i, j-2}^{v} p_{j-1} z_{j+1}, & \text { if } j \text { is even } ; \\ v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} p_{j}+v^{-1-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-2}^{v} p_{j-1} z_{j+1}, & \text { if } j \text { is odd }\end{cases}
$$

(c) If $j+1 \leq n$, then the following v-commutator relation holds. If j is even, then

$$
y_{j+1} \Delta_{i, j}^{v}=v^{-\left(\left|y_{j+1}\right|, e_{i, j}\right)} \Delta_{i, j} y_{j+1}+v^{-1-\left(\left|y_{j-1}\right|, e_{i, j-2}\right)}\left(v^{-1}-v\right) \Delta_{i, j-2}^{v} p_{j-1} z_{j+2} .
$$

If j is odd, then

$$
y_{j+1} \Delta_{i, j}^{v}=v \Delta_{i, j}^{v} y_{j+1}+v^{1-\left(\left|y_{j}\right|, e_{i, j-3}\right)}\left(v-v^{-1}\right) \Delta_{i, j-2}^{v} p_{j-1} z_{j+2} .
$$

(d) If $j+2 \leq n$, then $\Delta_{i, j}^{v}$ and y_{j+2} are v-commutative. More precisely, if j is even, then $\Delta_{i, j}^{v} y_{j+2}=v^{-1} y_{j+2} \Delta_{i, j}^{v}$, and if j is odd, then $\Delta_{i, j}^{v} y_{j+2}=v y_{j+2} \Delta_{i, j}^{v}$.

Proof. We proceed by induction on $j-i$. Using the explicit formulae provided by Remark 2.61 it is easy to see that Theorem 2.70 is true for $j-i=2$. Now let $j-i \geq 3$ and assume that Theorem 2.70 is true for all smaller values of $j-i$. We distinguish two cases.

Assume that j is even. It follows that $4 \leq j \leq n-1$. Put

$$
A=\Delta_{i, j-1}^{v} y_{j}-v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1}
$$

We have to prove that $A=\Delta_{i, j}^{v}$, i.e., we have to show that A satisfies properties (1) and (2) of Theorem 2.55. First of all, we verify property (1). We expand the dual canonical basis elements $\Delta_{i, j-1}^{v}, \Delta_{i, j-3}^{v}$ according to Remark 2.67. We see that

$$
\Delta_{i, j-1}^{v}=\sum_{\mathbf{a}} f_{\mathbf{a}} v^{\sum-\binom{a_{r+1}+a_{r-1}-a_{r}}{2}} \prod_{\substack{i \leq r \leq j-3 \\ r \text { odd }}} y_{r}^{1-a_{r}} \prod_{\substack{i-1 \leq r \leq j \\ r \text { even }}} z_{r}^{a_{r+1}+a_{r-1}-a_{r}}
$$

where the sum is taken over all the admissible sequences $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ $\{0,1\}^{n}$ as in Remark 2.67 and $f_{\mathbf{a}} \in v^{-1} \mathbb{Z}\left[v^{-1}\right]$ except for $f_{0}=1$. Here, we have used that $-\binom{1-a_{r}}{2}=0$ for all terms a_{r} in such a sequence. It is clear that $\Delta_{i, j-1}^{v} y_{j}-$ $\Delta_{i, j-1}^{v}[0] y_{j} \in \bigoplus_{\mathbf{b} \in S(\mathbf{a})} v^{-1} \mathbb{Z}\left[v^{-1}\right] E[\mathbf{b}]^{*}$ and that $\Delta_{i, j-1}^{v}[0] y_{j}$ is the dual Poincaré-Birkhoff-Witt basis element from Definition 2.60 that serves as leading term.

Furthermore, we have

$$
\begin{aligned}
\Delta_{i, j-3}^{v}=\sum_{\mathbf{a}} g_{\mathbf{a}} v^{\sum-\left(\begin{array}{c}
a_{r+1}+a_{r-1}-a_{r}
\end{array}\right)} \prod_{\substack{i \leq r \leq j-3 \\
r \text { odd }}} y_{r}^{1-a_{r}} \prod_{\substack{i-1 \leq r \leq j-2 \\
r \text { even }}} z_{r}^{a_{r+1}+a_{r-1}-a_{r}} \\
\cdot \prod_{\substack{i-1 \leq r \leq j-3 \\
r \text { odd }}} z_{r}^{a_{r+1}+a_{r-1}-a_{r}} \prod_{\substack{i \leq r \leq j-4 \\
r \text { even }}} y_{r}^{1-a_{r}}
\end{aligned}
$$

where the sum is taken over all the admissible sequences $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ $\{0,1\}^{n}$ as in Remark 2.67 and $g_{\mathbf{a}} \in v^{-1} \mathbb{Z}\left[v^{-1}\right]$ except for $g_{0}=1$. Now we consider
$v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1}$. Note that the generator z_{j+1} commutes with all occuring terms in this expansion. For p_{j-2}, by Lemma 2.57 the v-commutativity relation

$$
\left(\prod_{\substack{i \leq r \leq j-4 \\ r \text { even }}} y_{r}^{1-a_{r}}\right) p_{j-2}=v^{\left(1-a_{j-4}\right)\left(\left|z_{j-2}\right|,\left|y_{j-4}\right|\right)} p_{j-2}\left(\prod_{\substack{i \leq r \leq j-4 \\ r \text { even }}} y_{r}^{1-a_{r}}\right)
$$

holds. Hence, in each summand we can transfer p_{j-2} to the left of the product. We get a factor $v^{\left(1-a_{j-4}\right)}$ since $\left(\left|z_{j-2}\right|,\left|y_{j-4}\right|\right)=1$ for all j. We concentrate on a single summand. Write $p_{j-2}=z_{j-2} y_{j-2}-v^{-1} z_{j-3} z_{j-1}$. This decomposition splits the sum into two parts. Consider the summand coming from $z_{j-2} y_{j-2}$. To write this term in the dual PBW basis we have to tranfer z_{j-2} to the left of the product of the odd z_{r}. We get a factor $v^{a_{j-4}-a_{j-3}}$. Now all the monomials are in the right order. The generators z_{j+1} and y_{j-2} do not occur in the expansion of $\Delta_{i, j-3}^{v}$ in the dual PBW basis, but z_{j-2} may. In the summands where z_{j-2} occurs, we have increased the exponent from 1 to 2. So all coefficients in the dual PBW expansion of these summands have the form

$$
g_{\mathbf{a}} v^{A_{i, j}} v^{1-a_{j-4}} v^{a_{j-4}-a_{j-3}} v\binom{1+a_{j-3}}{2} .
$$

Note that $A_{i, j} \leq-1$ and that $\binom{1+a_{j-3}}{2}-a_{j-3}=0$ for $a_{j-3} \in\{0,1\}$. Hence, all coefficients are in $v^{-1} \mathbb{Z}\left[v^{-1}\right]$. Now consider the summand coming from $z_{j-3} z_{j-1}$. The monomials are already in the right order. We may have increased the exponent of z_{j-3} from 1 to 2 . It is easy to see that all coefficients are in $v^{-1} \mathbb{Z}\left[v^{-1}\right]$. This shows that A satisfies property (1).

To conclude to $A=\Delta_{i, j}^{v}$, we have to verify property (2) of Theorem 2.70. We use parts (c) and (d) of the induction hypothesis for the for the pair $(i, j-1)$ to obtain the following equation. Note that if $j-i \leq 3$, then $\left(\left|y_{j-1}\right|,\left|e_{i, j-4}\right|\right)=0$, and if $j-i \geq 4$, then $\left(\left|y_{j-1}\right|,\left|e_{i, j-4}\right|\right)=1$, therefore

$$
\begin{aligned}
A= & \Delta_{i, j-1}^{v} y_{j}-v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
= & v^{-1} y_{j} \Delta_{i, j-1}^{v}+v^{-\left(\left|y_{j-1}\right|,\left|e_{i, j-4}\right|\right)}\left(v^{-1}-v\right) \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
& -v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
= & v^{-1} y_{j} \Delta_{i, j-1}^{v}+v^{1-\left(\left|y_{j-1}\right|,\left|e_{i, j-4}\right|\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} .
\end{aligned}
$$

It is easy to see that z_{j+1} commutes with p_{j-2}. Furthermore, it commutes with $\Delta_{i, j-3}^{v}$ since it commutes with every $E^{*}\left(\beta_{k}\right)$ in every summand in the dual PBW expansion of $\Delta_{i, j-3}^{v}$ according to Remark 2.67. Lemma 2.57 implies

$$
\Delta_{i, j-3}^{v} p_{j-2}=v^{-\left(\left|y_{j-2}\right|, o_{i, j-3}\right)-\left(\left|z_{j-2}\right|, o_{i, j-3}\right)+\left(\left|z_{j-2}\right|, e_{i, j-4}\right)} p_{j-2} \Delta_{i, j-3}^{v} .
$$

The assumptions $j-i \geq 3$ and $j<n$ imply $\left(\left|y_{j}\right|, o_{i, j-1}\right)=\left(\left|y_{j}\right|, o_{i, j-3}\right)=1$ and $\left(\left|z_{j-2}\right|, o_{i, j-3}\right)=1$. The observation $\left(\left|z_{j-2}\right|, e_{i, j-4}\right)=0$ for $j-i \leq 3$, and $\left(\left|z_{j-2}\right|, e_{i, j-4}\right)=1$ for $j-i \geq 4$ yields $\left(\left|z_{j-2}\right|, e_{i, j-4}\right)=-A_{i, j}-1$. It follows that

$$
\begin{aligned}
A= & v^{-\left(\left|y_{j}\right|, o_{i, j-1}\right)} y_{j} \Delta_{i, j-1}^{v} \\
& -v^{-A_{i, j}-\left(\left|y_{j}\right|+\left|y_{j-2}\right|, o_{i, j-3}\right)-\left(\left|y_{j-1}\right|, e_{i, j-4}\right)} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v} .
\end{aligned}
$$

By Propositions 2.65 and 2.66 the last equation is equivalent to property (2). Thus $A=\Delta_{i, j}^{v}$. Incidentally, we have verified part (a) for the pair (i, j).

Now we prove that the new defined $\Delta_{i, j}^{v}$ satisfies the quantized cluster recursion (b) of Theorem 2.70 using the induction hypothesis for part (b):

$$
\begin{aligned}
\Delta_{i, j}^{v} z_{j} & =\Delta_{i, j-1}^{v}\left(p_{j}+v z_{j-1} z_{j+1}\right)-v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} z_{j} \\
& =\Delta_{i, j-1}^{v} p_{j}+\left(v \Delta_{i, j-1}^{v} z_{j-1}-v^{1+A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j}\right) z_{j+1} \\
& =\Delta_{i, j-1}^{v} p_{j}+\left(v \Delta_{i, j-1}^{v} z_{j-1}-v^{-\left(\left|y_{j-1}\right|, e_{i, j-2}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j}\right) z_{j+1} \\
& =\Delta_{i, j-1}^{v} p_{j}+v^{1-\left(\left|y_{j-1}\right|, e_{i, j-2}\right)} \Delta_{i, j-2}^{v} p_{j-1} z_{j+1} .
\end{aligned}
$$

Now we prove that the new defined $\Delta_{i, j}^{v}$ satisfies property (c) of Theorem 2.70. By induction hypothesis we know that part (c) is true for the pair $(i, j-1)$. Note that $\left(\left|y_{j+1}\right|,\left|z_{j+1}\right|\right)=\left(\left|y_{j}\right|,\left|y_{j+1}\right|\right)=-\delta_{j, n-1}$. The following calculation verifies part (c) of the theorem:

$$
\begin{aligned}
y_{j+1} \Delta_{i, j}^{v}= & y_{j+1} \Delta_{i, j-1}^{v} y_{j}-v^{A_{i, j}} y_{j+1} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
= & v^{-1} \Delta_{i, j-1}^{v}\left(v^{-\left(\left|y_{j}\right|,\left|y_{j+1}\right|\right)} y_{j} y_{j+1}+\left(v^{-1}-v\right) z_{j+2} z_{j-1}\right) \\
& -v^{A_{i, j}-1} \Delta_{i, j-3}^{v} p_{j-2}\left(v^{-\left(\left|y_{j+1}\right|,\left|z_{j+1}\right|\right)} z_{j+1} y_{j+1}+\left(v^{-1}-v\right) z_{j} z_{j+2}\right) \\
= & v^{-\left(\left|y_{j+1}\right|, e_{i, j}\right)} \Delta_{i, j} y_{j+1} \\
& +v^{-1}\left(v^{-1}-v\right)\left(\Delta_{i, j-1}^{v} z_{j-1}-v^{A_{i, j}} \Delta_{i, j-3}^{v} p_{j-2} z_{j}\right) z_{j+2} \\
= & v^{-\left(\left|y_{j+1}\right|, e_{i, j}\right)} \Delta_{i, j} y_{j+1}+\left(v^{-1}-v\right) v^{-1-\left(\left|y_{j-1}\right|, e_{i, j-2}\right)} \Delta_{i, j-2}^{v} p_{j-1} z_{j+1} .
\end{aligned}
$$

It remains to verify part (d). Note that in each monomial of the dual PBW expansion of $\Delta_{i, j-1}^{v}$ either y_{j-1} or z_{j} occurs (depending on whether a_{j-1} in Remark 2.67 is zero or one). The variable y_{j+2} commutes with all other terms. Thus, we have $\Delta_{i, j-1}^{v} y_{j+2}=v^{-1} y_{j+2} \Delta_{i, j-1}^{v}$ It follows that $\Delta_{i, j} y_{j+2}=y_{j} \Delta_{i, j-1}^{v} y_{j+2}-$ $v^{A_{i, j}} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v} y_{j+2}=v^{-1} y_{j} y_{j+2 \Delta_{i, j-1}^{v}}^{v}-v^{-1+A_{i, j}} y_{j+2} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v}=$ $v^{-1} y_{j+2} \Delta_{i, j}$.

Now assume that j is odd. Put $A=y_{j} \Delta_{i, j-1}^{v}-v^{A_{i, j}} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v}$. We prove that $A=\Delta_{i, j}^{v}$. By the same arguments as above A fulfills property (1) of the theorem. To conclude to $A=\Delta_{i, j}^{v}$, we have to verify property (2) of Theorem 2.70. We use parts (c) and (d) of the induction hypothesis for the pair $(i, j-1)$ to obtain the following equation:

$$
\begin{aligned}
A= & y_{j} \Delta_{i, j-1}^{v}-v^{A_{i, j}} z_{j+1} p_{j-2} \Delta_{i, j-3}^{v} \\
= & v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} y_{j}+v^{-1-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)}\left(v^{-1}-v\right) \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
& -v^{A_{i, j}} v^{-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)-\left(\left|z_{j-2}\right|, e_{i, j-3}\right)+\left(\left|z_{j-2}\right|, o_{i, j-4}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} .
\end{aligned}
$$

Note that $\left(\left|z_{j-2}\right|, e_{i, j-3}\right)=1$, and that $\left(\left|z_{j-2}\right|, o_{i, j-4}\right)=0$ for $j-i \leq 3$ and $\left(\left|z_{j-2}\right|, o_{i, j-4}\right)=1$ for $j-i \geq 4$. Hence, $A_{i, j}-\left(\left|z_{j-2}\right|, o_{i, j-4}\right)\left(\left|z_{j-2}\right|, o_{i, j-4}\right)=-2$ yielding

$$
A=v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} y_{j}-v^{-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1}
$$

The equation $-A_{i, j}-\left(\left|y_{j}\right|, e_{i, j-3}\right)-\left(\left|y_{j-1}\right|, o_{i, j-4}\right)$ finishes the proof the second equation of part (a). By Propositions 2.65 and 2.66 the last equation is equivalent to property (2). Hence, $A=\Delta_{i, j}^{v}$.

Now we prove that the new defined $\Delta_{i, j}^{v}$ satisfies property (b) of Theorem 2.70. First of all assume that $j<n$. We obtain:

$$
\begin{aligned}
\Delta_{i, j}^{v} z_{j}= & v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v}\left(p_{j}+v^{-1} z_{j-1} z_{j+1}\right) \\
& -v^{-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} z_{j-1} \\
= & v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} p_{j} \\
& +\left(v^{-1-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} z_{j-1}-v^{-1-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j-1}\right) z_{j+1} \\
= & v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-1}^{v} p_{j}+v^{-1-\left(\left|y_{j}\right|, e_{i, j-1}\right)} \Delta_{i, j-2}^{v} p_{j-1} z_{j+1}
\end{aligned}
$$

Here we used he fact that $\left(\left|y_{j}\right|, e_{i, j-1}\right)=1$ to adopt the induction hypothesis. For $j=$ n we have $\left(\left|y_{j}\right|, e_{i, j-1}\right)=0$, but this defect is compensated by the relation $z_{j-1} z_{j+1}=$ $z_{j+1} z_{j-1}$ (due to $z_{j+1}=1$) instead of $z_{j-1} z_{j+1}=v^{-1} z_{j+1} z_{j-1}$.

Now we prove that the new defined $\Delta_{i, j}^{v}$ satisfies property (c) of Theorem 2.70. By induction hypothesis we know that part (b) is true for the pair $(i, j-1)$. Note that $\left(\left|y_{j}\right|, e_{i, j-3}\right)=\left(\left|y_{j}\right|, e_{i, j-1}\right)$ and that $1=-A_{i, j}-\left(\left|y_{j-1}\right|, o_{i, j-4}\right)$. We also use the fact that z_{j+1} commutes with $\Delta_{i, j-3}^{v}$ since it commutes with every factor of every monomial in the PBW expansion of $\Delta_{i, j-3}^{v}$. The following equation is true:

$$
\begin{aligned}
y_{j+1} \Delta_{i, j}^{v}= & v^{-\left(\left|y_{j}\right|, e_{i, j-1}\right)} y_{j+1} \Delta_{i, j-1}^{v} y_{j} \\
& -v^{-A_{i, j}-\left(\left|y_{j}\right|+\left|y_{j-2}\right|, e_{i, j-3}\right)-\left(\left|y_{j-1}\right|, o_{i, j-4}\right)} y_{j+1} \Delta_{i, j-3}^{v} p_{j-2} z_{j+1} \\
= & v^{-\left(\left|y_{j}\right|, e_{i, j-3}\right)+1}\left[\Delta_{i, j-1}^{v}\left(y_{j} y_{j+1}+\left(v-v^{-1}\right) z_{j-1} z_{j+2}\right)\right. \\
& \left.-v^{1-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)} \Delta_{i, j-3}^{v} p_{j-2}\left(z_{j+1} y_{j+1}+\left(v-v^{-1}\right) z_{j} z_{j+2}\right)\right] \\
= & v \Delta_{i, j}^{v} y_{j+1}+v^{-\left(\left|y_{j}\right|, e_{i, j-3}\right)+1}\left(v-v^{-1}\right)\left[\Delta_{i, j-1}^{v} z_{j-1}\right. \\
& \left.-v^{1-\left(\left|y_{j-2}\right|, e_{i, j-3}\right)} \Delta_{i, j-3}^{v} p_{j-2} z_{j}\right] z_{j+2} \\
= & v \Delta_{i, j}^{v} y_{j+1}+v^{-\left(\left|y_{j}\right|, e_{i, j-3}\right)+1}\left(v-v^{-1}\right) \Delta_{i, j-2}^{v} p_{j-1} z_{j+2}
\end{aligned}
$$

Part (d) is proved similarly as in the case where j is even.
Remark 2.71. By symmetry there is also a recursion for every $\Delta_{i, j}^{v}$ (with $j-i \geq 2$) in terms of various $\Delta_{i^{\prime}, j}^{v}$ with $i^{\prime}>i$.

Now we conclude to the quantum cluster algebra structure on the $\mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right]$-algebra $\mathcal{A}_{v}(w)=\bigoplus_{\mathbf{a} \in \mathbb{N}^{2 n}} \mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right] E[\mathbf{a}]^{*}$
Theorem 2.72. The $\mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right]$-algebra $\mathcal{A}_{v}(w)=\bigoplus_{\mathbf{a} \in \mathbb{N}^{2 n}} \mathbb{Z}\left[v^{ \pm \frac{1}{2}}\right] E[\mathbf{a}]^{*}$ is a quantum cluster algebra in the sense of Berenstein-Zelevinsky [6]. The mutatable quantum cluster variables are $v^{\frac{1}{2}} z_{i}$ for $1 \leq i \leq n$, and $v^{\frac{1}{4}\left(s_{i, j}, s_{i, j}\right)} \Delta_{i, j}^{v}$ for $1 \leq i \leq j \leq n$. The frozen quantum cluster variables are $v^{\frac{1}{4}\left(\left|y_{i}\right|+\left|z_{i}\right|,\left|y_{i}\right|+\left|z_{i}\right|\right)} p_{i}$ for $1 \leq i \leq n$.

Note that $\frac{1}{2}\left(s_{i, j}, s_{i, j}\right)=j-i+1+\left(e_{i, j-1}, o_{i, j-1}\right) \in \mathbb{Z}$.
Proof. We quantize the proof of Lemma 2.5. We construct a seed of a quantum cluster algebra similar to the base seed in Figure (15). The cluster variables Z_{i}, P_{i} (for $1 \leq i \leq n)$ are replaced by the quantum cluster variables $v^{\frac{1}{2}} z_{i}, v^{\frac{1}{4}\left(\left|y_{i}\right|+\left|z_{i}\right|,\left|y_{i}\right|+\left|z_{i}\right|\right)} p_{i}$ (for $1 \leq i \leq n$). Notably, every pair of quantum cluster variables in the base seed forms
a quantum torus, i.e., it satisfies a v-commutativity relation. (The v-commutativity relations among the z_{i} follow from the straigthening relations; the v-commutativity relations between the P_{i} and the z_{i} follow from Lemma 2.57; the v-commutativity relations among the P_{i} can be checked using the straightening relations.) These relations are strict commutativity relations except for the following v-commutativity relations:

$$
\begin{array}{rlrl}
z_{i} z_{j}=v^{-\left(\left|z_{i}\right|,\left|z_{j}\right|\right)} z_{j} z_{i}, & & i \text { even, } j \text { odd, } \\
z_{i} p_{j}=v^{\left(\left|z_{i}\right|,\left|y_{j}\right|\right)} p_{j} z_{i}, & & i, j \text { even, } \\
z_{i} p_{j}=v^{-\left(\left|z_{i}\right|,\left|y_{j}\right|\right)} p_{j} z_{i}, & & i, j \text { odd, } \\
p_{i} p_{j}=v^{-\left(\left|z_{i}\right|,\left|z_{j}\right|\right)+\left(\left|z_{i}\right|,\left|y_{j}\right|\right)+\left(\left|y_{i}\right|,\left|z_{j}\right|\right)+\left(\left|y_{i}\right|,\left|y_{j}\right|\right)} p_{j} z_{i}, & & i \text { even, } j \text { odd. } \\
p_{i} p_{j}=v^{-\left(\left|z_{i}\right|,\left|y_{j}\right|\right)+\left(\left|y_{i}\right|,\left|z_{j}\right|\right)} p_{j} z_{i}, & & i, j \text { even, } \\
p_{i} p_{j}=v^{\left(\left|z_{i}\right|,\left|y_{j}\right|\right)-\left(\left|y_{i}\right|,\left|z_{j}\right|\right)} p_{j} z_{i}, & i, j \text { odd. }
\end{array}
$$

Now it is easy to see that the B-matrix induced from the quiver in Figure 15 and the Λ matrix induced from the v-commutativity relations form a compatible pair in the sense of Berenstein-Zelevinsky [6, Definition 3.1]. Hence, the base seed is a valid initial quantum cluster.

Now fix an integer i such that $1 \leq i \leq n$. Beginning with the base we perform mutations at vertices $i, i+1, \ldots, j$, consecutively, as in the proof of Lemma 2.5. We prove by induction on j that the new quantum cluster variable X that occurs after the sequence of mutations from above is equal to $\Delta_{i, j}^{v}$. The case $i=j$ is trivial. Note that part (c) of Theorem 2.70 makes also sense for $j=i+1$. We distinguish two cases. First of all, assume that j is even. By Berenstein-Zelevinsky [6, Proposition 4.9] we have

$$
X=M^{\prime}+M^{\prime \prime}
$$

where definition of M^{\prime} and $M^{\prime \prime}$ involves v-commutativity relations among the quantum cluster variables in the previous seed. To describe M^{\prime} we compute

$$
\Delta_{i, j-1}^{v} p_{j} z_{j}^{-1}=v^{-\left(\left|y_{j}\right|, o_{i, j-1}\right)} z_{j}^{-1} p_{j} \Delta_{i, j-1}^{v}
$$

Therefore, the summand M^{\prime} is given by the following equation:

$$
\begin{aligned}
M^{\prime} & =v^{\frac{1}{2}\left(\left|y_{j}\right|, o_{i, j-1}\right)} \cdot v^{\frac{1}{2}(j-i)+\frac{1}{2}\left(e_{i, j-2}, o_{i, j-1}\right)} \Delta_{i, j-1}^{v} \cdot v p_{j} \cdot v^{-\frac{1}{2}} z_{j}^{-1} \\
& =v^{\frac{1}{2}(j-i+1)+\frac{1}{2}\left(e_{i, j}, o_{i, j-1}\right)} \Delta_{i, j-1}^{v} p_{j} z_{j}^{-1} .
\end{aligned}
$$

Furthermore, to describe $M^{\prime \prime}$ we obtain:

$$
\begin{aligned}
\Delta_{i, j-2}^{v} p_{j-1} z_{j+1} z_{j}^{-1}= & v^{-\left(\left|z_{j}\right|,\left|z_{j+1}\right|\right)-\left(\left|z_{j}\right|,\left|z_{j-1}\right|\right)+\left(\left|z_{j}\right|,\left|y_{j-1}\right|\right)-\left(\left|z_{j-1}\right|,\left|y_{j-1}\right|\right)} \\
& \cdot v^{\left(e_{i, j-2},\left|y_{j-1}\right|+\left|z_{j-1}\right|-\left|z_{j}\right|\right)} \\
& \cdot v^{\left(o_{i, j-3},-\left|y_{j-1}\right|-\left|z_{j-1}\right|+\left|z_{j}\right|\right)} z_{j}^{-1} z_{j+1} p_{j-1} \Delta_{i, j-2}^{v} \\
= & v^{-2+\left(e_{i, j-2},\left|y_{j-1}\right|\right)-\left(o_{i, j-3},\left|y_{j}\right|\right)} z_{j}^{-1} z_{j+1} p_{j-1} \Delta_{i, j-2}^{v}
\end{aligned}
$$

Therefore, the summand M^{\prime} is given by the following equation:

$$
\begin{aligned}
M^{\prime \prime}= & v^{1-\frac{1}{2}\left(e_{i, j-2},\left|y_{j-1}\right|\right)+\frac{1}{2}\left(o_{i, j-3},\left|y_{j}\right|\right)} \cdot v^{\frac{1}{2}(j-i-1)+\frac{1}{2}\left(e_{i, j-2}, o_{i, j-3}\right)} \Delta_{i, j-2}^{v} \\
& \cdot v^{1-\frac{1}{2}\left(\left|y_{j}\right|,\left|y_{j-1}\right|\right)} \cdot v^{\frac{1}{2}} z_{j+1} \cdot v^{-\frac{1}{2}} z_{j}^{-1} \\
= & v^{1-\left(\left|y_{j-1}\right|, e_{i, j-2}\right)} v^{\frac{1}{2}(j-i+1)+\frac{1}{2}\left(e_{i, j}, o_{i, j-1}\right)} \Delta_{i, j-2}^{v} p_{j-1} z_{j+1} z_{j}^{-1} .
\end{aligned}
$$

A comparison with the formula in part (c) of Theorem 2.70 shows that $X=\Delta_{i, j}^{v}$ which completes the induction step.

The case with odd j is treated similarly.
Remark 2.73. By adjusting the forms we similarly equip $U_{v}^{+}(w)$ with a quantum cluster algebra structure.

Remark 2.74. Note that $\operatorname{deg}\left(\Delta_{i, j}\right)=\underline{\operatorname{dim}}\left(M_{i, j}\right)=s_{i, j}$ for all $1<i<j<n$. Thus, the object $M_{i, j}$ from Remark 2.8 is the indecomposable rigid object in $\mathcal{A}\left(\mathcal{C}_{M}\right)$ corresponding to the cluster variable $\Delta_{i, j}$. The corresponding quantum cluster variable is the dual canonical basis $\Delta_{i, j}^{v}$ scaled by a factor $v^{\frac{1}{4}\left(s_{i, j}, s_{i, j}\right)}$. By [22, Lemma 3.12] the exponent can be interpreted as $\frac{1}{4}\left(s_{i, j}, s_{i, j}\right)=\frac{1}{2} \operatorname{dim}\left(\operatorname{End}\left(M_{i, j}\right)\right)$. The same relation is true for the other (mutatable and frozen) quantum cluster variables.

3 A quantum cluster algebra of Kronecker type

3.1 Representation theory of the Kronecker quiver

The quiver $Q=\left(Q_{0}, Q_{1}\right)$ with vertex set $Q_{0}=\{0,1\}$ and arrow set $Q_{1}=\left\{a_{1}, a_{2}\right\}$ with $a_{1}, a_{2}: 0 \rightarrow 1$ is called the Kronecker quiver (see Figure 17).

Figure 17: The Kronecker quiver
Let k be a field. The category $\operatorname{rep}_{k}(Q)$ of finite-dimensional representations of Q can be identified with the category $\bmod (k Q)$ of finite-dimensional modules over the path algebra $k Q$. (For more information on representations of quivers, see, for example Crawley-Boevey [11].)

The Kronecker quiver is a tame quiver. There are infinitely many indecomposable $k Q$-modules which are classified as preprojective, preinjective or regular. A part of the preinjective component of the Auslander-Reiten quiver of $\bmod (k Q)$ is shown in Figure 18. The modules are represented by their dimension vectors. For example, the dimension vector

The maps are given by 1×2 matrices, if we choose a basis of the vector spaces. The solid arrows display the space of irreducible maps; the dotted arrows display the Auslander-Reiten translation τ.

We consider the direct sum $M=I_{0} \oplus I_{1} \oplus \tau\left(I_{0}\right) \oplus \tau\left(I_{1}\right)$ of the four gray modules. These four modules are the two indecomposable injective modules I_{0} and I_{1} asssociated with the vertices 0 and 1 and their Auslander-Reiten translates, $\tau\left(I_{0}\right)$ and

Figure 18: A part of the preinjective component of $\bmod (k Q)$
$\tau\left(I_{1}\right)$. The module M is a terminal $k Q$-module in the sense of Geiß-Leclerc-Schröer [21, Section 2.2]. According to Geiß-Leclerc-Schröer [21, Theorem 3.3] the terminal $k Q$-module M gives rise to a cluster algebra structure. To explain this theorem, let us introduce some notation.

3.2 The preprojective algebra

Let Λ be the preprojective algebra; it is defined as $\Lambda=k \bar{Q} /(c)$. Here, \bar{Q} denotes double quiver of Q, which is by definition given by a vertex set $\bar{Q}_{0}=Q_{0}$ and an arrow set $\bar{Q}_{1}=Q_{1} \cup\left\{a_{1}^{*}, a_{2}^{*}\right\}$ with two additional arrows $a_{1}^{*}, a_{2}^{*}: 1 \rightarrow 0$. The ideal (c) is the two-sided ideal generated by the element

$$
c=\sum_{a \in Q_{1}}\left(a^{*} a-a a^{*}\right) \in k \bar{Q}
$$

The algebra Λ is infinite-dimensional, because Q is not an orientation of a Dynkin diagram. There is a restriction functor $\pi_{Q}: \bmod (\Lambda) \rightarrow \bmod (k Q)$ given by forgetting the linear maps associated with a_{1}^{*} and a_{2}^{*} in a Λ-module, i.e., a representation of \bar{Q} such that the linear maps satisfy relations corresponding to the ideal (c). Ringel [48, Theorem B] proved that the category $\bmod (\Lambda)$ is isomorphic to a category called $C(1, \tau)$. The objects in the category $C(1, \tau)$ are pairs (X, f) consisting of a $k Q$ module X and a $k Q$-module homomorphism $f: X \rightarrow \tau(X)$ from X to its translate $\tau(X)$; morphisms in $C(1, \tau)$ from a pair (X, f) to a pair (Y, g) are given by a $k Q$ module homomorphism $h: X \rightarrow Y$ for which the diagram

commutes. Using this correspondence, Geiß-Leclerc-Schröer [21, Section 7.1] constructed, for every $i=0,1$, and any natural numbers $a \leq b$ a Λ-module $T_{i,[a, b]}=$ $\left(I_{i,[a, b]}, e_{i,[a, b]}\right)$, where $I_{i,[a, b]}=\bigoplus_{j=a}^{b} \tau^{j}\left(I_{i}\right)$, and the map

$$
e_{i,[a, b]}: I_{i,[a, b]} \rightarrow \tau\left(I_{i,[a, b]}\right)=\bigoplus_{j=a+1}^{b+1} \tau^{j}\left(I_{i}\right)
$$

is identity on every $\tau^{j}\left(I_{i}\right)$ for $a+1 \leq j \leq b$ and zero otherwise. We are interested in the six Λ-modules $T_{i,[a, b]}$ for $i=0,1$ and $0 \leq a, b \leq 1$. We display the modules by their graded dimension vectors.

All six modules are rigid and nilpotent.

3.3 The δ-functions and the cluster algebra structure

In this section, let $k=\mathbb{C}$. The δ-functions of the modules $T_{i,[a, b]}$ satisfy generalized determinantal identities, see Geiß-Leclerc-Schröer [21, Theorem 18.1]. Let U_{0}, U_{1}, U_{2}, and U_{3} be the δ-functions of $T_{0,[0,0]}, T_{1,[0,0]}, T_{0,[1,1]}$ and $T_{1,[1,1]}$ respectively; let P_{0} and P_{1} be the δ-functions of $T_{0,[0,1]}$ and $T_{1,[0,1]}$, respectively. The determinantal identities

$$
\begin{aligned}
& T_{0,[0,0]}=0 \quad T_{1,[0,0]}=\begin{array}{ccc}
0 & & 0 \\
& 1
\end{array}
\end{aligned}
$$

Figure 19: The modules $T_{i,[a, b]}$
in this case read as follows:

$$
\begin{align*}
& P_{0}=U_{2} U_{0}-U_{1}^{2}, \tag{24}\\
& P_{1}=U_{3} U_{1}-U_{2}^{2} . \tag{25}
\end{align*}
$$

These relations may be regarded as first exchange relations of a cluster algebra, called $\mathcal{A}\left(\mathcal{C}_{M}\right)$ in Geiß-Leclerc-Schröer [21], with initial cluster $\left(U_{0}, U_{1}, P_{0}, P_{1}\right)$, initial exchange matrix visualized by the the quiver in Figure 20 and the frozen variables P_{0} and P_{1}. The frozen variables P_{0} and P_{1} may be regarded as coefficients of the cluster algebra, see Fomin-Zelevinsky [16].

Figure 20: Initial cluster
Consecutive mutations at U_{0} and U_{1} yield to the new cluster variables U_{2} and U_{3}, namely $U_{2}=\frac{U_{1}^{2}+P_{0}}{U_{0}}$ and $U_{3}=\frac{U_{2}^{2}+P_{1}}{U_{1}}$. The associated quiver encodes the exchange relation; it also gets mutated. The mutated quivers are shown in Figure 21.

If we specialize the coefficients $P_{0}=P_{1}=1$, then we obtain a coefficient-free cluster algebra of rank 2 with initial exchange matrix $B=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)$; the specialized cluster variables $U_{n}(n \in \mathbb{Z})$ satisfy the recursion $U_{n+1} U_{n-1}=U_{n}^{2}+1$ for every $n \in \mathbb{Z}$. Caldero-Zelevinsky [10, Theorem 4.1] proved that

$$
\begin{equation*}
U_{n+2}=\frac{1}{U_{1}^{n} U_{0}^{n+1}} \sum_{k, l}\binom{n-k}{l}\binom{n+1-l}{k} U_{1}^{2 k} U_{0}^{2 l} \tag{26}
\end{equation*}
$$

where the sum is taken over all $k, l \in \mathbb{N}$ such that either $k+l \leq n$ or $(k, l)=(n+1,0)$. Musiker and Propp [45] gave nice combinatorial descriptions of the coeffcients. The

Figure 21: The cluster after mutation at U_{0} and U_{1}, consecutively
author [35] gives a different formula for the coefficients. Szántó [54] shows that a quantized version of the formula is related to the number of points in a Grassmannian over a finite field \mathbb{F}_{q} in the context of Hall algebras.

Equation (26) illustrates the Fomin-Zelevinsky's Laurent phenomenon [14]: every cluster variable $U_{n}(n \in \mathbb{Z})$ is a Laurent polynomial in U_{1} and U_{0}.

Caldero-Zelevinsky [10] derive formula (26) using the Caldero-Chapoton map [7] and computing Euler characteristics of Grassmannians of quiver representations. Later Zelevinsky [55] gave a simpler proof for formula (26). He observed that the expression

$$
T=\frac{1+U_{n}^{2}+U_{n+1}^{2}}{U_{n} U_{n+1}}
$$

is invariant of n. Thus, the non-linear exchange relation $U_{n+1} U_{n-1}=U_{n}^{2}+1$ may be replaced by a linear three-term recursion $U_{n+1}=T U_{n}-U_{n-1},(n \in \mathbb{Z})$, when we define

$$
T=\frac{1+U_{1}^{2}+U_{2}^{2}}{U_{1} U_{2}} .
$$

Note that $T=U_{3} U_{0}-U_{2} U_{1}$.
Recently, Keller-Scherotzke [32] observed that linear exchange relations exist for cluster variables of affine quivers in general.

In analogy to these formulae, the cluster variables U_{n} of the cluster algebra with initial exchange matrix

$$
B=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
0 & -1 \\
1 & 0
\end{array}\right)
$$

initial seed $\left(U_{1}, U_{2}, P_{0}, P_{1}\right)$, and frozen variables P_{0} and P_{1} satisfy the exchange relation $U_{n+1} U_{n-1}=U_{n}^{2}+P_{1}^{n-1} P_{0}^{n-4}$ for $n \geq 4$. The cluster variables are explicitly given by

$$
\begin{equation*}
U_{n+3}=\frac{1}{U_{1}^{n+1} U_{2}^{n}} \sum_{k, l}\binom{n-k}{l}\binom{n+1-l}{k} P_{1}^{n+1-k} U_{2}^{2 k} U_{1}^{2 l} P_{0}^{n-l} \tag{27}
\end{equation*}
$$

where the sum is taken over the same index set as above. For reasons that will become clear later on we have switched our initial seed from $\left(U_{0}, U_{1}\right)$ to $\left(U_{1}, U_{2}\right)$.

Geiß-Leclerc-Schröer realized the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$ as a subalgebra of the graded dual $U(\mathfrak{n})_{g r}^{*}$ of the positive part \mathfrak{n} of the universal enveloping algebra of the Kac-Moody Lie algebra of type $A_{1}^{(1)}$.

Figure 22: The quiver of T

A striking feature is polynomiality: every U_{n} is actually a polynomial in U_{3}, U_{2}, U_{1}, U_{0}. For example, one may check that $U_{4}=U_{3}^{2} U_{0}-2 U_{3} U_{2} U_{1}+U_{2}^{3}$. A priori the cluster variables U_{n} are only rational functions in $U_{3}, U_{2}, U_{1}, U_{0}$. If we plug $P_{0}=U_{2} U_{0}-U_{1}^{2}$ and $P_{1}=U_{3} U_{1}-U_{2}^{2}$ in equation (27) and use the binomial theorem we see that

$$
\begin{equation*}
U_{n+3}=\sum_{a, b} c_{n, a, b} U_{3}^{a} U_{2}^{n+2-2 a+b} U_{1}^{n-1-2 b+a} U_{0}^{b} \tag{28}
\end{equation*}
$$

with coefficients

$$
\begin{equation*}
c_{n, a, b}=\sum_{k, l}(-1)^{k+l+a+b+1}\binom{n-k}{l}\binom{n+1-l}{k}\binom{n+1-k}{a}\binom{n-l}{b} . \tag{29}
\end{equation*}
$$

Polynomiality implies the combinatorially non-trivial binomial identity $c_{n, a, b}=0$ if either $n+2-2 a+b<0$ or $n-1-2 b+a<0$.

3.4 Mutations of rigid modules

In the following subsection we describe the mutation of rigid Λ-modules. We use the abbreviations $T_{0}=T_{0,[0,0]}, T_{1}=T_{1,[0,0]}, P_{0}=T_{0,[0,1]}$, and $P_{1}=T_{1,[0,1]}$; recall that the Λ-modules on the right hand sides are displayed in Figure 19.

The Λ-module $T=T_{0} \oplus T_{1} \oplus P_{0} \oplus P_{1}$ is rigid. Moreover, T is maximal rigid, i.e., every indecomposable Λ-module \tilde{T} for which $T \oplus \tilde{T}$ is rigid is isomorphic to a direct summand of T. The quiver of T is given in Figure 22. Note the similarity with Figure 20.

The dimension of the 16 homomorphism spaces between the direct summands of T are put in a matrix C_{T} called Cartan matrix. In our example we have

$$
C_{T}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
1 & 2 & 4 & 6 \\
0 & 1 & 2 & 4
\end{array}\right)
$$

where rows and columns are ordered in accordance with the order $T_{0}, T_{1}, P_{0}, P_{1}$. For $\operatorname{example} \operatorname{dim}\left(\operatorname{Hom}\left(T_{0}, T_{0}\right)\right)=1, \operatorname{dim}\left(\operatorname{Hom}\left(T_{1}, T_{0}\right)\right)=2, \operatorname{dim}\left(\operatorname{Hom}\left(P_{0}, T_{0}\right)\right)=3$, etc.

There is a mutation process for maximal rigid Λ-modules analogous to the mutation process for cluster algebras. We refer to Geiß-Leclerc-Schrer [22] for a detailed exposition. (Geiß-Leclerc-Schrer [22] work with Dynkin quivers Q, but same procedures apply to the general setup as well.) The modules P_{0} and P_{1} are projectiveinjective and cannot be mutated; they correspond to frozen variables in the cluster
algebra. Both T_{0} and T_{1} can be mutated. Let us describe the mutation for T_{0}. There is a (unique up to isomorphism) Λ-module T_{2} such that $T_{2} \not \neq T_{0}$ and the module $T_{2} \oplus T / T_{0} \cong T_{2} \oplus T_{1} \oplus P_{0} \oplus P_{1}$ is again maximal rigid; two short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow T_{0} \longrightarrow P_{0} \longrightarrow T_{2} \longrightarrow 0 \\
& 0 \longrightarrow T_{2} \longrightarrow T_{1} \oplus T_{1} \longrightarrow T_{0} \longrightarrow 0
\end{aligned}
$$

characterize T_{2}. The appearence of P_{0} and $T_{1} \oplus T_{1}$ as middle terms is an incarnation of the fact that there is one arrow form T_{0} to P_{0} in the quiver of T and two arrows form T_{1} to T_{0}. We see that $T_{2}=T_{0,[1,1]}$.

Denote the mutated module by $T^{\prime}=\mu_{T_{0}}(T)=T_{2} \oplus T_{1} \oplus P_{0} \oplus P_{1}$. The Cartan matrix and the quiver of T^{\prime} are shown in Figure 23. The quiver of T^{\prime} is obtained from the previous quiver by quiver mutation. A combinatorial recursion for the Cartan matrices is given in [22, Proposition 7.5].

$$
C_{T^{\prime}}=\left(\begin{array}{cccc}
1 & 0 & 1 & 2 \\
2 & 1 & 2 & 3 \\
3 & 2 & 4 & 6 \\
2 & 1 & 2 & 4
\end{array}\right)
$$

Figure 23: The Cartan matrix and the quiver of T^{\prime}
Mutation of rigid modules is involutive just as mutation of cluster algebras, i.e., $\mu_{T_{2}}\left(T^{\prime}\right)=T$. Since P_{0} and P_{1} are not mutatable, the only non-trivial further mutation is $T^{\prime \prime}=\mu_{T_{1}}\left(T^{\prime}\right)$. Using short exact sequences we see that $T^{\prime \prime}=T_{2} \oplus T_{3} \oplus P_{0} \oplus P_{1}$ with $T_{3}=T_{1,[1,1]}$. Iteration of the mutation process gives rise to a sequence of Λ modules $\left(T_{n}\right)_{n \in \mathbb{N}}$. Similarly to cluster variables, one obtains a sequence $\left(T_{n}\right)_{n \in \mathbb{N}^{-}}$of Λ-modules by starting with mutation of T at T_{1}.

$$
C_{T^{\prime}}=\left(\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & 1 & 0 & 1 \\
3 & 4 & 4 & 6 \\
2 & 3 & 2 & 4
\end{array}\right)
$$

Figure 24: The Cartan matrix and the quiver of $T^{\prime \prime}$
Using [22, Proposition 7.5] and one proves by mathematical induction that for $n \geq$ 3 the Cartan matrix of $T_{n} \oplus T_{n+1} \oplus P_{0} \oplus P_{1}$ is

$$
\left(\begin{array}{cccc}
(2 n-5)^{2} & (2 n-4)^{2}-2 & 3 n-9 & 5 n-14 \\
(2 n-4)^{2} & (2 n-3)^{3} & 3 n-6 & 5 n-9 \\
5 n-11 & 5 n-6 & 4 & 6 \\
3 n-6 & 3 n-3 & 2 & 4
\end{array}\right)
$$

Especially, we have dim $\left(\operatorname{End}\left(T_{n}\right)\right)=(2 n-5)^{2}$.

3.5 Bases of the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$

Several authors studied various bases of the cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$. In this subsection we describe the semicanonical basis of Caldero-Zelevinsky [10], the canonical basis of Sherman-Zelevinsky [51], and the dual semicanonical basis of Geiß-Leclerc-Schrer [21]. To define these bases, we introduce the normalized Chebyshev polynomials of the first and second kinds.

Definition 3.1. Define a sequence $\left(T_{k}\right)_{k=0}^{\infty}$ of polynomials $T_{k} \in \mathbb{Z}[X]$ recursively by $T_{0}=2, T_{1}=X$, and $T_{k+1}=X T_{k}-T_{k-1}$ for $k \geq 1$; another sequence $\left(S_{k}\right)_{k=0}^{\infty}$ of polynomials $S_{k} \in \mathbb{Z}[X]$ is defined recursively by $S_{0}=1, S_{1}=X$, and $S_{k+1}=$ $X S_{k}-S_{k-1}$ for $k \geq 1$.

k	0	1	2	3	4
T_{k}	2	x	$x^{2}-2$	$x^{3}-3 x$	$x^{4}-4 x^{2}+2$
S_{k}	1	x	$x^{2}-1$	$x^{3}-2 x$	$x^{4}-3 x^{2}+1$

Figure 25: Normalized Chebyshev polynomials of the first and second kind

The polynomial T_{k} is called the $k^{\text {th }}$ normalized Chebyshev polynomial of the first kind; the polynomial S_{k} is called the $k^{t h}$ normalized Chebyshev polynomial of the second kind. Figure 25 displays the Chebyshev polynomials with lowest indices.

A monomial $U_{n+1}^{a_{1}} U_{n}^{a_{2}} P_{1}^{a_{3}} P_{0}^{a_{4}}$ (with $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{N}$) in the cluster variables of a single cluster is called a cluster monomial. Let Mono be the set of all cluster monomials. Put $z=U_{3} U_{0}-U_{2} U_{1}=\frac{P_{1} P_{0}+P_{1} U_{1}^{2}+P_{0} U_{2}^{2}}{U_{1} U_{2}}$ and

- $\underline{\mathcal{B}}=\underline{\text { Mono }} \cup\left\{\left.\left(P_{1} P_{0}\right)^{\frac{k}{2}} T_{k}\left(z\left(P_{1} P_{0}\right)^{-\frac{1}{2}}\right) \right\rvert\, k \geq 1\right\}$,
- $\underline{\mathcal{S}}=\underline{\text { Mono }} \cup\left\{\left.\left(P_{1} P_{0}\right)^{\frac{k}{2}} S_{k}\left(z\left(P_{1} P_{0}\right)^{-\frac{1}{2}}\right) \right\rvert\, k \geq 1\right\}$,
- $\underline{\Sigma}=\underline{\text { Mono }} \cup\left\{z^{k} \mid k \geq 1\right\}$.

The elements $s_{k}=\left(P_{1} P_{0}\right)^{\frac{k}{2}} S_{k}\left(z\left(P_{1} P_{0}\right)^{-\frac{1}{2}}\right) \in \underline{\mathcal{S}}$ obey the relation $s_{k+1}=z s_{k}-$ $P_{1} P_{0} s_{k-1}$ for $k \geq 2$ which resembles the relation $U_{k+1}=z U_{k}-P_{1} P_{0} U_{k-1}$ for $k \geq 4$ for cluster variables.

Theorem 3.2 ($[10,51,21])$. Each of $\underline{\mathcal{B}}, \underline{\mathcal{S}}$, and $\underline{\Sigma}$ is a \mathbb{Q}-basis of $\mathcal{A}\left(\mathcal{C}_{M}\right)$.
The basis $\underline{\mathcal{B}}$ is known as the canonical basis of $\mathcal{A}\left(\mathcal{C}_{M}\right), \underline{\mathcal{S}}$ is the semicanonical basis of $\mathcal{A}\left(\mathcal{C}_{M}\right)$, and $\underline{\Sigma}$ is the dual semicanonical basis of $\mathcal{A}\left(\mathcal{C}_{M}\right)$.

3.6 The quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ of type $A_{1}^{(1)}$

Let $C=\left(a_{i j}\right)_{1 \leq i, j \leq 2}$ be the Cartan matrix associated with the Kronecker quiver Q, i.e.,

$$
C=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)
$$

Furthermore, let \mathfrak{g} be the Kac-Moody Lie algebra of type C; it admits a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$. The Lie algebra \mathfrak{n} is called the positive part of \mathfrak{g}.

The Lie algebra \mathfrak{g} is studied by its root lattice. There are two simple roots, α_{1} and α_{2}. By Δ^{+}we denote the set of positive roots. There are two kinds of positive roots called real and imaginary roots, i.e., $\Delta^{+}=\Delta_{r e}^{+} \cup \Delta_{i m}^{+}$with real roots $\Delta_{r e}^{+}=\left\{(n+1) \alpha_{1}+n \alpha_{2}: n \in \mathbb{N}\right\} \cup\left\{n \alpha_{1}+(n+1) n \alpha_{2}: n \in \mathbb{N}\right\}$ and imaginary roots $\Delta_{i m}^{+}=\left\{n \alpha_{1}+n \alpha_{2}: n \in \mathbb{N}^{+}\right\}$. Note that the real positive roots correspond to dimension vectors which admit a unique irreducible $k Q$-module. Examples are displayed in Figure 18. They are also the g-vectors of the cluster algebra of type $A_{1}^{(1)}$ introduced above, see [16].

Let W be the Weyl group of type \mathfrak{g}; it is generated by two simple reflections $s_{1}, s_{2} \in$ W which act on the simple roots by $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{1}, s_{2}\left(\alpha_{1}\right)=$ $\alpha_{1}+2 \alpha_{2}$, and $s_{2}\left(\alpha_{2}\right)=-\alpha_{2}$.

In Section 3 we mentioned the universal enveloping algebra $U(\mathfrak{n})$ of \mathfrak{n}. It is the \mathbb{C}-algebra generated by E_{1} and E_{2} subject to the Serre relations

$$
\begin{aligned}
& E_{1}^{3} E_{2}-3 E_{1}^{2} E_{2} E_{1}+3 E_{1} E_{2} E_{1}^{2}-E_{2} E_{1}^{3}=0 \\
& E_{2}^{3} E_{1}-3 E_{2}^{2} E_{1} E_{2}+3 E_{2} E_{1} E_{2}^{2}-E_{1} E_{2}^{3}=0
\end{aligned}
$$

It is known that $U(\mathfrak{n})$ can be endowed with a comultiplication $\Delta: U(\mathfrak{n}) \rightarrow U(\mathfrak{n}) \otimes$ $U(\mathfrak{n})$ defined by $\Delta(x)=1 \otimes x+x \otimes 1$ for all $x \in \mathfrak{n}$ (using the canonical embedding $\iota: \mathfrak{n} \rightarrow U(\mathfrak{n}))$ and an antipode so that $U(\mathfrak{n})$ becomes a cocommutative Hopf algebra. It is graded by the root lattice. The graded dual of $U(\mathfrak{n})$, the Hopf algebra $U(\mathfrak{n})_{g r}^{*}$, is a commutative \mathbb{C}-algebra.

By introducing a deformation parameter q one can construct a series of Hopf algebras $U_{q}(\mathfrak{n})$ that are not cocommutative but specialize to $U(\mathfrak{n})$ if we set $q=1$. To describe this construction we introduce quantized integers and quantized binomial coefficients.

Remarkably, $U_{q}(\mathfrak{n}) \cong U_{q}(\mathfrak{n})_{g r}^{*}$ is a self-dual Hopf algebra whereas $U(\mathfrak{n}) \neq U(\mathfrak{n})^{*}$.
Definition 3.3. For two integers n, k, let

$$
[k]=\frac{q^{k}-q^{-k}}{q-q^{-1}} \in \mathbb{Q}(q), \quad\left[\begin{array}{l}
n \tag{30}\\
k
\end{array}\right]=\frac{[n][n-1] \cdots[n-k+1]}{[k][k-1] \cdots[1]} \in \mathbb{Q}(q)
$$

denote the quantum integer and the quantum binomial coefficient. Furthermore, for a natural number k, let $[k]!=[k][k-1] \cdots[1]$ denote the quantized factorial.

Both $[k]$ and $\left[\begin{array}{l}n \\ k\end{array}\right]$ are actually Laurent polynomials in q. Note that $[k]=k,\left[\begin{array}{l}n \\ k\end{array}\right]=$ $\binom{n}{k}$, and $[k]$! $=k$! if we specialize $q=1$. Examples of quantum integers include $[0]=0,[1]=1,[2]=q+q^{-1}$, and $[3]=q^{2}+1+q^{-2}$.

Note that some authors, for example [27], use a different notation for quantum integers. Note also that quantum binomial coefficients, just as ordinary binomial coefficients, are defined for negative integers n, k as well. For example, $\left[\begin{array}{c}-2 \\ 1\end{array}\right]=-q-q^{-1}$, but $\left[\begin{array}{l}n \\ k\end{array}\right]=0$ if $k<0$.

Quantized integers are related with the normalized Chebyshev polynomials S_{k}, for $k \geq 0$, of the second kind from Subsection 3.5. More precisely, there holds $[k]=$ $S_{k-1}([2])=S_{k-1}\left(q+q^{-1}\right)$ for $k \geq 1$.

Definition 3.4. The quantized enveloping algebra $U_{q}(\mathfrak{g})$ is a $\mathbb{Q}(q)$-algebra generated by $E_{i},(i=1,2), F_{i},(i=1,2)$, and $K_{i}, K_{i}^{-1},(i=1,2)$ subject to the following relations

$$
\begin{array}{ll}
K_{i} K_{j}=K_{j} K_{i}, & (i \neq j) \\
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, & (i=1,2) \\
K_{i} E_{j} K_{i}^{-1}=q^{a_{i j}} E_{j}, & (1 \leq i, j \leq 2) \\
K_{i} F_{j} K_{i}^{-1}=q^{-a_{i j}} F_{j}, & (1 \leq i, j \leq 2) \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1}}, & (1 \leq i, j \leq 2) \\
E_{1}^{3} E_{2}-[3] E_{1}^{2} E_{2} E_{1}+[3] E_{1} E_{2} E_{1}^{2}-E_{2} E_{1}^{3}=0, & \\
E_{2}^{3} E_{1}-[3] E_{2}^{2} E_{1} E_{2}+[3] E_{2} E_{1} E_{2}^{2}-E_{1} E_{2}^{3}=0, & \\
F_{1}^{3} F_{2}-[3] F_{1}^{2} F_{2} F_{1}+[3] F_{1} F_{2} F_{1}^{2}-F_{2} F_{1}^{3}=0, & \\
F_{2}^{3} F_{1}-[3] F_{2}^{2} F_{1} F_{2}+[3] F_{2} F_{1} F_{2}^{2}-F_{1} F_{2}^{3}=0, &
\end{array}
$$

where $\delta_{i j}$ is the Kronecker delta function.
The subalgebra generated by E_{1} and E_{2} is called the quantized enveloping algebra $U_{q}(\mathfrak{n})$. The only relations in $U_{q}(\mathfrak{n})$ remain (36) and (37). These are called quantized Serre relations. The algebra $U_{q}(\mathfrak{n})$ specializes to $U(\mathfrak{n})$ in the limit $q=1$.

3.7 The Poincaré-Birkhoff-Witt basis

To construct a basis of $U_{q}(\mathfrak{n})$ Lusztig [42, Chapter 37] defines T-automorphisms. We will use the notation $E_{i}^{(k)}=E_{i}^{k} /[k]$! for $i=1,2$ and the similar notation for F_{i}. For every $i=1,2$ define

- $T_{i}\left(E_{i}\right)=-K_{i}^{-1} F_{i}$,
- $T_{i}\left(F_{i}\right)=-E_{i} K_{i}$,
- $T_{i}\left(E_{j}\right)=\sum_{r+s=2}(-1)^{r} q^{-r} E_{i}^{(r)} E_{j} E_{i}^{(s)}$ for $j \neq i$,
- $T_{i}\left(F_{j}\right)=\sum_{r+s=2}(-1)^{r} q^{r} F_{i}^{(s)} F_{j} F_{i}^{(r)}$ for $j \neq i$,
- $T_{i}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j}}$ for $i=1,2$.

Lusztig shows that T_{i} can be extended to an algebra homomorphism $T_{i}: U_{q}(\mathfrak{g}) \rightarrow$ $U_{q}(\mathfrak{g})$. (It is denoted $T_{i,-1}^{\prime}$ in Lusztig's book [42, Chapter 37] where the variable q is called v instead.) Furthermore, T_{i} is an algebra automorphism. The images of the generators under the inverse T_{i}^{-1} are given by (see Lusztig [42, Chapter 37])

- $T_{i}^{-1}\left(E_{i}\right)=-F_{i} K_{i}$,
- $T_{i}^{-1}\left(F_{i}\right)=-K_{i}^{-1} E_{i}$,
- $T_{i}^{-1}\left(E_{j}\right)=\sum_{r+s=2}(-1)^{r} q^{-r} E_{i}^{(s)} E_{j} E_{i}^{(r)}$ for $j \neq i$,
- $T_{i}^{-1}\left(F_{j}\right)=\sum_{r+s=2}(-1)^{r} q^{r} F_{i}^{(r)} F_{j} F_{i}^{(s)}$ for $j \neq i$,
- $T_{i}^{-1}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j}}$ for $i=1,2$.

The automorphisms T_{i} are sometimes called braid operators. This terminology comes from the fact that the operators T_{i} can be defined for abitrary quivers Q and that they satisfy braid group relations. In this particular case it means that $T_{1} T_{2}$ has infinite order because $s_{1} s_{2} \in W$ has infinite order.

For every reduced expression $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ of a Weyl group element $w \in W$ Lusztig [42, Proposition 40.2.1] constructs a Poincaré-Birkhoff-Witt basis.

Theorem 3.5 (Lusztig). Let $w \in W$ and let $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ be a reduced expression for w. Then all elements

$$
p_{i}(\mathbf{c}):=\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{k-1}}\right)\left(E_{i_{k}}^{\left(c_{k}\right)}\right) \cdots\left(T_{i_{1}} \circ T_{i_{2}}\right)\left(E_{i_{3}}^{\left(c_{3}\right)}\right) T_{i_{1}}\left(E_{i_{2}}^{\left(c_{2}\right)}\right) E_{i_{1}}^{\left(c_{1}\right)}
$$

parametrized by sequences $\mathbf{c}=\left(c_{1}, \cdots, c_{k}\right) \in \mathbb{N}^{k}$, form a $\mathbb{Q}(q)$-basis of a subalgebra called $U_{q}^{+}(w)$ of $U_{q}(\mathfrak{n})$ which does only depend on w but not on the choice of the reduced expression for w.

Let us make some remarks.

1. The basis $\left\{p_{i}(\mathbf{c}): \mathbf{c} \in \mathbb{N}^{k}\right\}$ is called a $P B W$-type basis of $U_{q}^{+}(w)$.
2. The basis is not canonical in the sense that it depends on the choice of the reduced expression for w. Every choice of a reduced expression gives a bijection between \mathbb{N}^{k} and a basis of $U_{q}^{+}(w)$. The bijections are known as Lusztig parametrizations.
3. The same theorem holds for other quivers. For a Dynkin quiver Q there is a unique longest element $w_{0} \in W$. In this case $U_{q}^{+}\left(w_{0}\right)=U_{q}(\mathfrak{n})$. Thus, in the Dynkin case we get a PBW basis of the whole algebra $U_{q}(\mathfrak{n})$ whereas in the present case we have to restrict ourselves to an appropriate subalgebra.
4. It is not obvious that $\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{l-1}}\right)\left(E_{i_{l}}^{\left(c_{l}\right)}\right) \in U_{q}(\mathfrak{n})$ for all $1 \leq l \leq k$ since the T-automorphisms are maps $T_{i}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})$.
5. The algebra $U_{q}(\mathfrak{n})$ is graded by the root lattice R if we set $\operatorname{deg}\left(E_{i}\right)=\alpha_{i}$ for $i=1,2$. Then $\operatorname{deg}\left(\left(T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ T_{i_{l-1}}\right)\left(E_{i_{l}}^{\left(c_{l}\right)}\right)\right)=s_{i_{1}} s_{i_{2}} \cdots s_{i_{l-1}}\left(\alpha_{i_{l}}\right)$ for all $1 \leq l \leq k$.

Let us consider the reduced expression $s_{1} s_{2} s_{1} s_{2}$ associated with the terminal $k Q$ module M defined in Section 3. It is an $Q^{o p}$-adapted reduced expression for the given orientation. Note that under the bijection between positive roots and dimension vectors of indecomposable modules given by Kac's theorem, the positive roots $\alpha_{1}, s_{1}\left(\alpha_{2}\right)=2 \alpha_{1}+\alpha_{2}, s_{1} s_{2}\left(\alpha_{1}\right)=3 \alpha_{1}+2 \alpha_{2}$, and $s_{1} s_{2} s_{1}\left(\alpha_{2}\right)=4 \alpha_{1}+3 \alpha_{2}$ correspond to the dimension vectors of the four preinjective modules $I_{0}, I_{1}, \tau\left(I_{0}\right), \tau\left(I_{1}\right)$ that are the direct summands of the terminal $k Q$-module M from Section 3. Therefore we introduce the notation

$$
v_{0}=E_{1}, \quad v_{1}=T_{1}\left(E_{2}\right), \quad v_{2}=\left(T_{1} \circ T_{2}\right)\left(E_{1}\right), \quad v_{3}=\left(T_{1} \circ T_{2} \circ T_{1}\right)\left(E_{2}\right)
$$

Monomials of the form $v[\mathbf{a}]=v_{3}^{\left(a_{3}\right)} v_{2}^{\left(a_{2}\right)} v_{1}^{\left(a_{1}\right)} v_{0}^{\left(a_{0}\right)}$ with $\mathbf{a}=\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \in \mathbb{N}^{4}$ form a basis of the subalgebra $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$. Call the basis $\mathcal{P}=\left\{v[\mathbf{a}]: \mathbf{a} \in \mathbb{N}^{4}\right\}$. We call the basis \mathcal{P} the $P B W$ basis of $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$.

3.8 The derivation of the straightening relations

The aim of this subsection is to write arbitrary monomials in the elements $v_{3}, v_{2}, v_{1}, v_{0}$, for example $v_{0}^{7} v_{2}^{3}$, as a $\mathbb{Q}(q)$-linear combination of basis elements $v[\mathbf{a}]$. Clearly, $v_{0}^{7} v_{2}^{3} \in$ $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ but $v_{0}^{7} v_{2}^{3}$ is not in \mathcal{P} since v_{0} and v_{2} are multiplied in a different order.

First of all let us compute v_{1}. We have

$$
\begin{aligned}
v_{1} & =T_{1}\left(E_{2}\right)=E_{2} E_{1}^{(2)}-q^{-1} E_{1} E_{2} E_{1}+q^{-2} E_{1}^{(2)} E_{2} \\
& =\frac{1}{[2]}\left(E_{2} E_{1}^{2}-\left(q^{-2}+1\right) E_{1} E_{2} E_{1}+q^{-2} E_{1}^{2} E_{2}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
v_{1} v_{0}-q^{2} v_{0} v_{1}=\frac{1}{[2]}(& E_{2} E_{1}^{3}-\left(q^{-2}+1\right) E_{1} E_{2} E_{1}^{2}+q^{-2} E_{1}^{2} E_{2} E_{1} \\
& \left.-q^{2} E_{1} E_{2} E_{1}^{2}+\left(1+q^{2}\right) E_{1}^{2} E_{2} E_{1}-E_{1}^{3} E_{2}\right)=0
\end{aligned}
$$

by the quantum Serre relation. Thus we know that $v_{0} v_{1}=q^{-2} v_{1} v_{0}$. Applying the composition $T_{1} \circ T_{2}$ to this equation we get $v_{2} v_{3}=q^{-2} v_{3} v_{2}$. By an analogous argument with interchanged role of E_{1} and E_{2} we get $v_{1} v_{2}=q^{-2} v_{2} v_{1}$.

Note that we my write v_{1} as a commutator $v_{1}=\frac{1}{[2]}\left(E_{2} E_{1}-q^{-2} E_{1} E_{2}\right) E_{1}-$ $E_{1} \frac{1}{[2]}\left(E_{2} E_{1}-q^{-2} E_{1} E_{2}\right)$ of E_{1} and an element which we will abbreviate as $A=$ $\frac{1}{[2]}\left(E_{2} E_{1}-q^{-2} E_{1} E_{2}\right)$. For symmetry let us introduce an element $B=\frac{1}{[2]}\left(E_{1} E_{2}-\right.$ $q^{-2} E_{2} E_{1}$). The next lemma is useful for further computations.

Lemma 3.6. The equation $T_{1}(A)=B$ holds. Similarly, $T_{2}(B)=A$.
Proof. We only prove the first statement. The second is similar. Note that

$$
\begin{align*}
T_{1}\left(E_{1} E_{2}-q^{-2} E_{2} E_{1}\right)= & -K_{1}^{-1} F_{1}\left(E_{2} E_{1}^{2}-\left(q^{-2}+1\right) E_{1} E_{2} E_{1}+q^{-2} E_{1}^{2} E_{2}\right) \\
& +q^{-2}\left(E_{2} E_{1}^{2}-\left(q^{-2}+1\right) E_{1} E_{2} E_{1}+q^{-2} E_{1}^{2} E_{2}\right) K_{1}^{-1} F_{1} \\
= & -K_{1}^{-1} F_{1}\left(E_{2} E_{1}^{2}-\left(q^{-2}+1\right) E_{1} E_{2} E_{1}+q^{-2} E_{1}^{2} E_{2}\right) \\
& +K_{1}^{-1}\left(E_{2} E_{1}^{2}-\left(q^{-2}+1\right) E_{1} E_{2} E_{1}+q^{-2} E_{1}^{2} E_{2}\right) F_{1} \tag{40}
\end{align*}
$$

because $E_{2} K_{1}^{-1}=q^{-2} K_{1}^{-1} E_{2}$ and $E_{1} K_{1}^{-1}=q^{2} K_{1}^{-1} E_{1}$ by relation (33). Now we use (35) to deduce that

$$
\begin{align*}
E_{2} E_{1}^{2} F_{1} & =F_{1} E_{2} E_{1}^{2}+E_{2} \frac{K_{1}-K_{1}^{-1}}{q-q^{-1}} E_{1}+E_{2} E_{1} \frac{K_{1}-K_{1}^{-1}}{q-q^{-1}}, \tag{41}\\
E_{1} E_{2} E_{1} F_{1} & =F_{1} E_{1} E_{2} E_{1}+\frac{K_{1}-K_{1}^{-1}}{q-q^{-1}} E_{2} E_{1}+E_{1} E_{2} \frac{K_{1}-K_{1}^{-1}}{q-q^{-1}}, \tag{42}\\
E_{1}^{2} E_{2} F_{1} & =F_{1} E_{1}^{2} E_{2}+\frac{K_{1}-K_{1}^{-1}}{q-q^{-1}} E_{1} E_{2}+E_{1} \frac{K_{1}-K_{1}^{-1}}{q-q^{-1}} E_{2}, \tag{43}
\end{align*}
$$

The first terms on the RHS of equations (41),(42), and (43) cancel out with corresponding terms if we substitute in equation (40). We sum up the appropriate linear combinations of the remaining terms on the RHS of equations (41),(42) and (43). Using again relation (33) we get

$$
\begin{aligned}
& T_{1}\left(E_{1} E_{2}-q^{-2} E_{2} E_{1}\right) \\
& \begin{aligned}
&=\frac{K_{1}^{-1} K_{1}}{q-q^{-1}}\left(q^{2} E_{2} E_{1}+E_{2} E_{1}-\left(q^{-2}+1\right) E_{2} E_{1}\right. \\
&\left.-\left(q^{-2}+1\right) E_{1} E_{2}+q^{-2} E_{1} E_{2}+q^{-4} E_{1} E_{2}\right) \\
&-\frac{K_{1}^{-1} K_{1}^{-1}}{q-q^{-1}}\left(q^{-2} E_{2} E_{1}+E_{2} E_{1}-\left(q^{-2}+1\right) E_{2} E_{1}\right. \\
&\left.\quad-\left(q^{-2}+1\right) E_{1} E_{2}+q^{-2} E_{1} E_{2}+E_{1} E_{2}\right) \\
&= E_{2} E_{1}-q^{-2} E_{1} E_{2} .
\end{aligned}
\end{aligned}
$$

Multiplying with $\frac{1}{[2]}$ gives $T_{1}(A)=B$.
We know that $v_{1}=A v_{0}-v_{0} A$. Similarly, $T_{2}\left(E_{1}\right)=B E_{2}-E_{2} B$. Applying T_{1} yields to $v_{2}=A v_{1}-v_{1} A$. Applying $T_{1} \circ T_{2}$ to the first equation yields to $v_{3}=$ $A v_{2}-v_{2} A$.

Thus, every v_{i}, for $1 \leq i \leq 3$, satifies the commutator relation $v_{i}=A v_{i-1}-v_{i-1} A$.
Lemma 3.7. The equation $v_{i} v_{i+1}=q^{-2} v_{i+1} v_{i}$ holds for $0 \leq i \leq 2$, the equation $v_{i} v_{i+2}=q^{-2} v_{i+2} v_{i}+\left(q^{-2}-1\right) v_{i+1}^{2}$ holds for $0 \leq i \leq 1$, and the equation $v_{i} v_{i+3}=$ $q^{-2} v_{i+3} v_{i}+\left(q^{-4}-1\right) v_{i+2} v_{i+1}$ holds for $i=0$.

Proof. The equations in the first line have already been checked. Now

$$
\begin{aligned}
v_{0} v_{2} & =v_{0} A v_{1}-v_{0} v_{1} A=\left(A v_{0}-v_{1}\right) v_{1}-q^{-2} v_{1}\left(A v_{0}-v_{1}\right) \\
& =q^{-2} A v_{1} v_{0}-v_{1}^{2}-q^{-2} v_{1} A v_{0}+q^{-2} v_{1}^{2}=q^{-2} v_{2} v_{0}+\left(q^{-2}-1\right) v_{1}^{2} .
\end{aligned}
$$

By interchanging the role of E_{1} and E_{2} and applying T_{1} we also get $v_{1} v_{3}=q^{-2} v_{3} v_{1}+$ $\left(q^{-2}-1\right) v_{2}^{2}$. These are the equations in the second line of the Lemma. Furthermore

$$
\begin{aligned}
v_{0} v_{3} & =v_{0} A v_{2}-v_{0} v_{2} A=\left(A v_{0}-v_{1}\right) v_{2}-\left(q^{-2} v_{2} v_{0}+\left(q^{-2}-1\right) v_{1}^{2}\right) A \\
& =A v_{0} v_{2}-v_{1} v_{2}-q^{-2} v_{2} v_{0} A+\left(q^{-2}-1\right) v_{1}^{2} A \\
& =A\left(q^{-2} v_{2} v_{0}+\left(q^{-2}-1\right) v_{1}^{2}\right)-q^{-2} v_{2} v_{1}-q^{-2} v_{2} v_{0} A-\left(q^{-2}-1\right) v_{1}^{2} A \\
& =q^{-2}\left(A v_{2}-v_{2} A\right) v_{0}+\left(q^{-2}-1\right) A v_{1}^{2}-\left(q^{-2}-1\right) v_{1}^{2} A .
\end{aligned}
$$

Now the rest of the lemma follows from $A v_{1}^{2}-v_{1}^{2} A=\left(v_{1} A+v_{2}\right) v_{1}-v_{1}\left(A v_{1}-v_{2}\right)=$ $v_{2} v_{1}+v_{1} v_{2}=\left(q^{-2}+1\right) v_{2} v_{1}$.

These relations are called straightening relations; they enable us to write every element in $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ as a $\mathbb{Q}(q)$-linear combination of basis elements in \mathcal{P}, i.e. elements of the form $v_{3}^{\left(a_{3}\right)} v_{2}^{\left(a_{2}\right)} v_{1}^{\left(a_{1}\right)} v_{0}^{\left(a_{0}\right)}$ with $a_{3}, a_{2}, a_{1}, a_{0} \in \mathbb{N}$ and coefficients in $\mathbb{Q}(q)$.

The straightening relations tell us that $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ becomes a commutative subalgebra of $U(\mathfrak{n})$ if we specialize $q=1$. This is remarkable because $U(\mathfrak{n})$ is a noncommutative algebra. (For instance, $E_{1} E_{2} \neq E_{2} E_{1}$ in $U(\mathfrak{n})$.) The specialization $q=1$ is sometimes called the classical limit.

3.9 The dual canonical basis

The definitions, results, and proofs from Subsection 3.9 and Lemma 3.9 from Subsection 3.10 are due to Leclerc ([37]). Since [37] is not published we give a brief sketch.

To study the algebra $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ Lusztig [42] and Kashiwara [28] introduced (slightly different) non-degenerate bilinear forms (.,.) : $U_{q}(\mathfrak{n}) \times U_{q}(\mathfrak{n}) \rightarrow \mathbb{Q}(q)$. We work with Kashiwara's form. As described in [36] the dual PBW basis is defined to be the basis adjoint to \mathcal{P} with respect to the bilinear form. The generators v_{i}, for $0 \leq i \leq$ 3 , satisfy (compare [36, Section 4.7] and note the difference in sign conventions)

$$
\left(v_{i}, v_{i}\right)=\left(E_{(i+1) \alpha_{1}+i \alpha_{2}}, E_{(i+1) \alpha_{1}+i \alpha_{2}}\right)=\frac{\left(1-q^{-2}\right)^{2 i+1}}{1-q^{-2}}=\left(1-q^{-2}\right)^{2 i}
$$

Therefore, the duals are given by $u_{i}=\frac{1}{\left(1-q^{-2}\right)^{2 i}} v_{i}$. We see that the $u_{i}, 0 \leq i \leq 3$, satisfy the same straightening relations,

$$
\begin{array}{lr}
u_{i} u_{i+1}=q^{-2} u_{i+1} u_{i}, & (0 \leq i \leq 2) \\
u_{i} u_{i+2}=q^{-2} u_{i+2} u_{i}+\left(q^{-2}-1\right) u_{i+1}^{2}, & (0 \leq i \leq 1) \\
u_{i} u_{i+3}=q^{-2} u_{i+3} u_{i}+\left(q^{-4}-1\right) u_{i+2} u_{i+1}, & (i=0)
\end{array}
$$

It is also possible to derive the straightening relations using Leclerc's algorithm from [36] which features quantum shuffles.

To study the algebra $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ Leclerc [37] introduced the following structures:

- a ring anti-automorphism $\sigma: U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right) \rightarrow U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ by $\sigma(q)=q^{-1}$ and $\sigma\left(u_{i}\right)=q^{2 i} u_{i}$ for $i \in\{0,1,2,3\}$,
- a $\operatorname{norm} N: \mathbb{N}^{4} \rightarrow \mathbb{Z}$ by $N\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=\left(a_{3}+a_{2}+a_{1}+a_{0}\right)^{2}-7 a_{3}-5 a_{2}-$ $3 a_{1}-a_{0}$,
- a partial order \triangleleft on \mathbb{N}^{4} by saying that $\mathbf{a}, \mathbf{b} \in \mathbb{N}^{4}$ satisfy $\mathbf{a} \triangleleft \mathbf{b}$ if and only if $\mathbf{b}-\mathbf{a} \in \mathbb{N}(-1,2,-1,0) \bigoplus \mathbb{N}(0,-1,2,-1)$,
- a set $S(\mathbf{a})=\left\{\mathbf{b} \in \mathbb{N}^{4}: \mathbf{a} \triangleleft \mathbf{b}\right.$ and $\left.\mathbf{a} \neq \mathbf{b}\right\}$,
- a function $b: \mathbb{N}^{4} \rightarrow \mathbb{Z}$ by $b\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=\binom{a_{3}}{2}+\binom{a_{2}}{2}+\binom{a_{1}}{2}+\binom{a_{0}}{2}$.

Using these definitions one can describe the dual PBW basis and construct another basis of $U_{q}^{+}(w)$, the dual canonical basis. Both bases are parametrized by \mathbb{N}^{4}. For every $\mathbf{a}=\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \in \mathbb{N}^{4}$ the dual PBW basis element corresponding to $\mathbf{a}, E[\mathbf{a}]$, is given by $E[\mathbf{a}]=q^{b(\mathbf{a})} u_{3}^{a_{3}} u_{2}^{a_{2}} u_{1}^{a_{1}} u_{0}^{a_{0}}$, see [36, Section 5.5]. It is a rescaling of the PBW basis and for every $\mathbf{a} \in \mathbb{N}^{4}$ we have $(E[\mathbf{a}], v[\mathbf{a}])=1$. In what follows we often use the fact that $N(\mathbf{a})=N(\mathbf{b})$ if $\mathbf{b} \triangleleft \mathbf{a}$.
Theorem 3.8 (Leclerc, [37]). There is a basis $\left\{B[\mathbf{a}]: \mathbf{a} \in \mathbb{N}^{4}\right\}$ of $U_{q}^{+}(w)$ such that for every $\mathbf{a} \in \mathbb{N}^{4}$ the following two conditions hold

- $B[\mathbf{a}]-E[\mathbf{a}] \in \bigoplus_{\mathbf{b} \in S(\mathbf{a})} q \mathbb{Z}[q] E[\mathbf{b}]$,
- $\sigma(B[\mathbf{a}])=q^{-N(\mathbf{a})} B[\mathbf{a}]$.

Proof. For every $k \in \mathbb{N}$ consider the set $W_{k}=\left\{\mathbf{a} \in \mathbb{N}^{4}: a_{3}+a_{2}+a_{1}+a_{0}=k\right\}$. Extend the partial order \triangleleft on W_{k} to a total order $<$ so that $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{l}$ are the elements of W_{k} written in increasing order.

We induct backwards. We can start with $B\left[\mathbf{a}_{l}\right]=E\left[\mathbf{a}_{l}\right]$. For the induction step, suppose that $\mathbf{a}_{m+1}, \mathbf{a}_{m+2}, \ldots, \mathbf{a}_{l}$ satisfy the two conditions of Theorem 3.8. Expand $\sigma\left(E\left[\mathbf{a}_{m}\right]\right)$ in the dual PBW basis using the straightening relations. We get a $\mathbb{Z}\left[q, q^{-1}\right]$ linear combination of basis elements $E[\mathbf{b}]$ with $b \in\left\{\mathbf{a}_{m}, \mathbf{a}_{m+1}, \ldots, \mathbf{a}_{l}\right\}$, so that

$$
\sigma\left(E\left[\mathbf{a}_{m}\right]\right)=\sum_{i=m}^{l} c_{i} E\left[\mathbf{a}_{i}\right]
$$

with $c_{i} \in \mathbb{Z}\left[q, q^{-1}\right]$. A short calculation shows that $c_{m}=q^{-N(\mathbf{a})}$; to get $E\left[\mathbf{a}_{m}\right]$ you always have to choose the first summand when straightening a monomial.

By induction hypothesis we know that each $B\left[\mathbf{a}_{i}\right]$, for $m+1 \leq i \leq l$, is a $\mathbb{Z}\left[q, q^{-1}\right]$-linear combination in the elements $E\left[\mathbf{a}_{i}\right], E\left[\mathbf{a}_{i+1}\right], \ldots, E\left[\mathbf{a}_{l}\right]$. The vector $\left(B\left[\mathbf{a}_{m+1}\right], B\left[\mathbf{a}_{m+2}\right], \ldots, B\left[\mathbf{a}_{l}\right]\right)$ is obtained from $\left(E\left[\mathbf{a}_{m+1}\right], \ldots, E\left[\mathbf{a}_{l}\right]\right)$ by multiplication with an upper triangular matrix with diagonal entries 1. By inverting we may write each $B\left[\mathbf{a}_{i}\right]$, for $m+1 \leq i \leq l$, as a $\mathbb{Z}\left[q, q^{-1}\right]$-linear combination of $B\left[\mathbf{a}_{i}\right]$, $B\left[\mathbf{a}_{i+1}\right], \ldots, B\left[\mathbf{a}_{l}\right]$. Thus,

$$
\sigma\left(E\left[\mathbf{a}_{m}\right]\right)=q^{-N\left(\mathbf{a}_{m}\right)} E\left[\mathbf{a}_{m}\right]+\sum_{i=m+1}^{l} d_{i} B\left[\mathbf{a}_{i}\right]
$$

for some $d_{i} \in \mathbb{Z}\left[q, q^{-1}\right]$. Apply σ, an involution, to get

$$
E\left[\mathbf{a}_{m}\right]=q^{N\left(\mathbf{a}_{m}\right)} \sigma\left(E\left[\mathbf{a}_{m}\right]\right)+\sum_{i=m+1}^{l} \sigma\left(d_{i}\right) q^{-N\left(\mathbf{a}_{i}\right)} B\left[\mathbf{a}_{i}\right] .
$$

The $B\left[\mathbf{a}_{i}\right]$, for $m+1 \leq i \leq l$, are linearly independent. Multiply the first equation with $q^{N\left(\mathbf{a}_{i}\right)}$ (and remember that $N\left(\mathbf{a}_{i}\right)=N\left(\mathbf{a}_{m}\right)$) to get $q^{N\left(\mathbf{a}_{i}\right)} d_{i}=-q^{-N\left(\mathbf{a}_{i}\right)} \sigma\left(d_{i}\right)=$ $-\sigma\left(q^{N\left(\mathbf{a}_{i}\right)} d_{i}\right)$. Therefore, there are polynomials $\phi_{i} \in q \mathbb{Z}[q]$ such that $q^{N\left(\mathbf{a}_{i}\right)} d_{i}=$ $\phi_{i}(q)-\phi_{i}\left(q^{-1}\right)$. Now $B\left[\mathbf{a}_{m}\right]=E\left[\mathbf{a}_{m}\right]+\sum_{i=m+1}^{l} \phi_{i} B\left[\mathbf{a}_{i}\right]$ satisfies the two conditions of Theorem 3.8.

The two conditions of Theorem 3.8 imply that the basis $\left\{B[\mathbf{a}]: \mathbf{a} \in \mathbb{N}^{4}\right\}$ is adjoint to a basis $\left\{b[\mathbf{a}]: \mathbf{a} \in \mathbb{N}^{4}\right\}$ with respect to the bilinear form from above that satisfies the following two properties. On one hand we have $(b[\mathbf{a}], b[\mathbf{a}]) \in 1+q \mathbb{Z}[[q]]$ for every $\mathbf{a} \in \mathbb{N}^{4}$. On the other hand we have $\overline{b[\mathbf{a}]}=b[\mathbf{a}]$ for every $\mathbf{a} \in \mathbb{N}^{4}$. Here, the symbol

- denotes the bar involution from [36, Proposition 6]. It follows from [42, Theorem 14.2.3] that $\left\{b[\mathbf{a}]: \mathbf{a} \in \mathbb{N}^{4}\right\}$ is Lusztig's canonical basis. Therefore, $\left\{B[\mathbf{a}]: \mathbf{a} \in \mathbb{N}^{4}\right\}$ is the dual of the canonical basis, or the dual canonical basis to put it shortly.

The two conditions of Theorem 3.8 uniquely determine the dual canonical basis.
The simplest elements in the dual canonical basis are given by $B[1,0,0,0]=u_{3}$, $B[0,1,0,0]=u_{2}, B[0,0,1,0]=u_{1}$, and $B[0,0,0,1]=u_{0}$. Further examples include

- $B[1,0,1,0]=u_{3} u_{1}-q^{2} u_{2}^{2}$,
- $B[0,1,0,1]=u_{2} u_{0}-q^{2} u_{1}^{2}$,
- $B[1,0,0,1]=u_{3} u_{0}-q^{2} u_{2} u_{1}$,
- $B[2,0,0,1]=q u_{3}^{2} u_{0}-\left(q+q^{3}\right) u_{3} u_{2} u_{1}+q^{5} u_{2}^{3}$,
- $B[1,0,0,2]=q u_{3} u_{0}^{2}-\left(q+q^{3}\right) u_{2} u_{1} u_{0}+q^{5} u_{1}^{3}$,
- $B[2,0,0,2]=q^{2} u_{3}^{2} u_{0}^{2}-\left(2 q^{3}+q^{4}\right) u_{3} u_{2} u_{1} u_{0}-q^{6} u_{2}^{3} u_{0}-q^{6} u_{3} u_{1}^{3}+q^{8} u_{2}^{2} u_{1}^{2}$.

Note that $B[1,0,1,0]$ and $B[0,1,0,1]$ are q-deformations of the elements P_{1} and P_{0}. We introduce the abbreviations $p_{1}=u_{3} u_{1}-q^{2} u_{2}^{2}$ and $p_{0}=u_{2} u_{0}-q^{2} u_{1}^{2}$. As observed by Leclerc, the elements p_{0} and p_{1} have the remarkable property that they q-commute with each other and with each of the generators u_{3}, u_{2}, u_{1} and u_{0}. More precisely, there holds $p_{0} p_{1}=q^{-4} p_{1} p_{0}$ and $p_{0} u_{0}=q^{2} u_{0} p_{0}, p_{0} u_{1}=u_{1} p_{0}, p_{0} u_{2}=q^{-2} u_{2} p_{0}, p_{0} u_{3}=$ $q^{-4} u_{3} p_{0}, p_{1} u_{0}=q^{4} u_{0} p_{1}, p_{1} u_{1}=q^{2} u_{1} p_{1}, p_{1} u_{2}=u_{2} p_{1}, p_{1} u_{3}=q^{-2} u_{3} p_{1}$. These relations can be checked by elementary calculations using the straightening relations.

3.10 A recursion for dual canonical basis elements

Let us introduce the convention that $B[\mathbf{a}]=0$ for some $\mathbf{a}=\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \in \mathbb{Z}^{4}$ if there is an $i \in\{0,1,2,3\}$ such that $a_{i}<0$. Note that $B[0,0,0,0]=1$.
Lemma 3.9 (Leclerc, [37]). For every $\mathbf{a}=\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \in \mathbb{N}^{4}$ the equations

$$
\begin{aligned}
& B\left[a_{3}, a_{2}+1, a_{1}, a_{0}+1\right]=q^{a_{2}+2 a_{1}+3 a_{0}} B[\mathbf{a}] p_{0}=q^{4 a_{3}+3 a_{2}+2 a_{1}+a_{0}} p_{0} B[\mathbf{a}] \\
& B\left[a_{3}+1, a_{2}, a_{1}+1, a_{0}\right]=q^{3 a_{3}+2 a_{2}+a_{1}} p_{1} B[\mathbf{a}]=q^{a_{3}+2 a_{2}+3 a_{1}+4 a_{0}} B[\mathbf{a}] p_{1}
\end{aligned}
$$

hold.
Proof. We only prove the equation $B\left[a_{3}+1, a_{2}, a_{1}+1, a_{0}\right]=q^{3 a_{3}+2 a_{2}+a_{1}} p_{1} B[\mathbf{a}]$. The other equations are similar. We prove that $q^{3 a_{3}+2 a_{2}+a_{1}} p_{1} B[\mathbf{a}]$ satisfies the two conditions of Theorem 3.8. Let us expand $B[\mathbf{a}]$ in the dual PBW basis, i.e. $B[\mathbf{a}]=$ $\sum c_{b_{3}, b_{2}, b_{1}, b_{0}} g^{b\left(b_{3}, b_{2}, b_{1}, b_{0}\right)} u_{3}^{b_{3}} u_{2}^{b_{2}} u_{1}^{b_{1}} u_{0}^{b_{0}}$ where the sum is taken over all vectors $\mathbf{b}=$ $\left(b_{3}, b_{2}, b_{1}, b_{0}\right) \in \mathbb{N}^{4}$ such that $\mathbf{b} \triangleleft \mathbf{a}$ and $c_{\mathbf{b}} \in \mathbb{Z}[q]$. If $\mathbf{b} \neq \mathbf{a}$, then $c_{\mathbf{b}} \in q \mathbb{Z}[q]$.

Next, $u_{3}^{b_{3}} u_{2}^{b_{2}} u_{1}^{b_{1}} u_{0}^{b_{0}} p_{1}=q^{2 b_{3}-2 b_{1}-4 b_{0}} p_{1} u_{3}^{b_{3}} u_{2}^{b_{2}} u_{1}^{b_{1}} u_{0}^{b_{0}}$. If $\mathbf{b} \triangleleft \mathbf{a}$, then $2 b_{3}-2 b_{1}-$ $4 b_{0}=2 a_{3}-2 a_{1}-4 a_{0}$. Therefore, we can conclude that $p_{1} B[\mathbf{a}]$ is invariant under σ up to a power of q. More precisely, we have

$$
\begin{aligned}
\sigma\left(q^{3 a_{3}+2 a_{2}+a_{1}} p_{1} B[\mathbf{a}]\right) & =q^{-3 a_{3}-2 a_{2}-a_{1}} q^{-N(1,0,1,0)} q^{-N(\mathbf{a})} B[\mathbf{a}] p_{1} \\
& =q^{-3 a_{3}-2 a_{2}-a_{1}} q^{-N(1,0,1,0)} q^{-N(\mathbf{a})} q^{2 a_{3}-2 a_{1}-4 a_{0}} p_{1} B[\mathbf{a}] \\
& =q^{-N\left(a_{3}+1, a_{2}, a_{1}+1, a_{0}\right)} q^{3 a_{3}+2 a_{2}+a_{1}} p_{1} B[\mathbf{a}] .
\end{aligned}
$$

Recall that $p_{1}=u_{3} u_{1}-q^{2} u_{2}^{2}$. Thus, $q^{3 a_{3}+2 a_{2}+a_{1}} p_{1} B[\mathbf{a}]$ is equal to

$$
\sum c_{\mathbf{b}} q^{b(\mathbf{b})} q^{3 a_{3}+2 a_{2}+a_{1}}\left(u_{3} u_{1} u_{3}^{b_{3}} u_{2}^{b_{2}} u_{1}^{b_{1}} u_{0}^{b_{0}}-q^{2} u_{2}^{2} u_{3}^{b_{3}} u_{2}^{b_{2}} u_{1}^{b_{1}} u_{0}^{b_{0}}\right) .
$$

One can check by induction that for every positive integer l there holds $u_{1} u_{3}^{l}=$ $q^{-2 l} u_{3}^{l} u_{1}+\left(q^{-4 l+2}-q^{-2 l+2}\right) u_{3}^{l-1} u_{2}^{2}$. The sum above simplifies to

$$
\begin{aligned}
& \sum c_{\mathbf{b}} q^{b(\mathbf{b})} q^{3 a_{3}+2 a_{2}+a_{1}}\left(q^{-2 b_{3}} u_{3}^{b_{3}+1} u_{1} u_{2}^{b_{2}} u_{1}^{b_{1}} u_{0}^{b_{0}}-q^{-2 b_{3}+2} u_{3}^{b_{3}} u_{2}^{b_{2}+2} u_{1}^{b_{1}} u_{0}^{b_{0}}\right) \\
& \quad=\sum c_{\mathbf{b}} q^{b\left(b_{3}+1, b_{2}, b_{1}+1, b_{0}\right)} u_{3}^{b_{3}+1} u_{2}^{b_{2}} u_{1}^{b_{1}+1} u_{0}^{b_{0}} \\
& \quad-\sum c_{\mathbf{b}} q^{b_{3}+b_{1}+1} q^{b\left(b_{3}, b_{2}+2, b_{1}, b_{0}\right)} u_{3}^{b_{3}} u_{2}^{b_{2}+2} u_{1}^{b_{1}} u_{0}^{b_{0}}
\end{aligned}
$$

The coefficients $c_{\mathbf{b}}$ are in $q \mathbb{Z}[q]$ except for $c_{\mathbf{a}}=1$.
The preceding lemma enables us two write every dual canonical basis element $B\left[a_{3}, a_{2}, a_{1}, a_{0}\right]$ as a product of powers of dual canonical basis elements p_{1}, p_{0}, a power of the parameter q and an element of the form $B\left[a_{3}, a_{2}, 0,0\right], B\left[0, a_{2}, a_{1}, 0\right]$, $B\left[0,0, a_{1}, a_{0}\right]$ or $B\left[a_{3}, 0,0, a_{0}\right]$.

We have $B\left[a_{3}, a_{2}, 0,0\right]=E\left[a_{3}, a_{2}, 0,0\right], B\left[0, a_{2}, a_{1}, 0\right]=E\left[0, a_{2}, a_{1}, 0\right]$ and $B\left[0,0, a_{1}, a_{0}\right]=E\left[0,0, a_{1}, a_{0}\right]$, because these sequences are maximal elements with respect to the partial order \triangleleft. Therefore, dual canonical basis elements of the form $B\left[a_{3}, 0,0, a_{0}\right]$ are particularly interesting. The elements $B\left[a_{3}, 0,0, a_{0}\right]$ with $\left|a_{3}-a_{0}\right| \leq$ 1 can be computed recursively.
Theorem 3.10. For every $n \geq 1$ the following recursions

$$
\begin{aligned}
B[n, 0,0, n-1] & =q^{n-1} u_{3} B[n-1,0,0, n-1]-q^{2 n-1} u_{2} B[n-1,0,1, n-2] \\
& =q^{3 n-3} B[n-1,0,0, n-1] u_{3}-q^{2 n-3} B[n-1,0,1, n-2] u_{2}, \\
B[n-1,0,0, n] & =q^{n-1} B[n-1,0,0, n-1] u_{0}-q^{2 n-1} B[n-2,1,0, n-1] u_{1} \\
& =q^{3 n-3} u_{0} B[n-1,0,0, n-1]-q^{2 n-3} u_{1} B[n-2,1,0, n-1], \\
B[n, 0,0, n] & =q^{n-1} B[n, 0,0, n-1] u_{0}-q^{2 n} B[n-1,1,0, n-1] u_{1} \\
& =q^{3 n-1} u_{0} B[n, 0,0, n-1]-q^{2 n-2} u_{1} B[n-1,1,0, n-1] \\
& =q^{n-1} u_{3} B[n-1,0,0, n]-q^{2 n} u_{2} B[n-1,0,1, n-1] \\
& =q^{3 n-1} B[n-1,0,0, n] u_{3}-q^{2 n-2} B[n-1,0,1, n] u_{2},
\end{aligned}
$$

for the dual canonical basis elements parametrized by $(n, 0,0, n-1),(n-1,0,0, n)$, and $(n, 0,0, n)$ hold.

The recursions allow us to compute the dual canonical basis elements $B[n, 0,0, n-$ 1], $B[n-1,0,0, n]$, and $B[n, 0,0, n]$ from the likewise elements with lower indices.

Proof. We prove the three statements simultaneously by mathematical induction on n. For $n=1$ the equations become $B[1,0,0,0]=u_{3}=u_{3}, B[0,0,0,1]=u_{0}=u_{0}$, and $B[1,0,0,1]=u_{3} u_{0}-q^{2} u_{2} u_{1}=q^{2} u_{0} u_{3}-u_{1} u_{2}$. Using the explicit formulae for $B[2,0,0,1], B[1,0,0,2]$ and $B[2,0,0,2]$ from above and the straightening relations one can check that the equations are true for $n=2$. Suppose that $n \geq 3$ and that the three statements are true for all smaller n. Define $f=q^{n-1} u_{3} B[n-1,0,0, n-1]-$ $q^{2 n-1} u_{2} B[n-1,0,1, n-2]$. We claim that
(i) $f-E[n, 0,0, n-1] \in \bigoplus_{\mathbf{b} \in S((n, 0,0, n-1))} q \mathbb{Z} E[\mathbf{b}]$,
(ii) $\sigma(f)=q^{-N(n, 0,0, n-1)} f$.

The two claims imply that $f=B[n, 0,0, n-1]$.
Let us expand $B[n-1,0,0, n-1]$ in the dual PBW basis, i.e. $B[n-1,0,0, n-$ 1] $=\sum c_{a_{3}, a_{2}, a_{1}, a_{0}} q^{b\left(a_{3}, a_{2}, a_{1}, a_{0}\right)} u_{3}^{a_{3}} u_{2}^{a_{2}} u_{1}^{a_{1}} u_{0}^{a_{0}}$ where the sum is taken over all $\mathbf{a}=$ $\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \in \mathbb{N}^{4}$ such that $(n-1,0,0, n-1) \triangleleft \mathbf{a}$. This implies that $a_{3} \leq n-1$. By definition of the dual canonical basis all coefficients obey $c_{a_{3}, a_{2}, a_{1}, a_{0}} \in q \mathbb{Z}[q]$ except for $c_{n-1,0,0, n-1}=1$. Then

$$
\begin{aligned}
& q^{n-1} u_{3} B[n-1,0,0, n-1] \\
& =\sum c_{\mathbf{a}} q^{-\binom{a_{3}+1}{2}+\binom{a_{3}}{2}+n-1} q^{b\left(a_{3}+1, a_{2}, a_{1}, a_{0}\right)} u_{3}^{a_{3}+1} u_{2}^{a_{2}} u_{1}^{a_{1}} u_{0}^{a_{0}} .
\end{aligned}
$$

But $q^{-\binom{a_{3}+1}{2}+\binom{a_{3}}{2}+n-1}=q^{n-1-a_{3}} \in \mathbb{Z}[q]$, so $c_{\mathbf{a}} q^{n-1-a_{3}} \in q \mathbb{Z}[q]$ except for the coefficient $q^{n-1-(n-1)} c_{n-1,0,0, n-1}=1$.

Now let us expand $B[n-1,0,1, n-2]$ in the dual PBW basis, i.e. $B[n-1,0,1, n-$ $2]=\sum d_{a_{3}, a_{2}, a_{1}, a_{0}} q^{b\left(a_{3}, a_{2}, a_{1}, a_{0}\right)} u_{3}^{a_{3}} u_{2}^{a_{2}} u_{1}^{a_{1}} u_{0}^{a_{0}}$ where the sum is taken over all $\mathbf{a}=$ $\left(a_{3}, a_{2}, a_{1}, a_{0}\right) \in \mathbb{N}^{4}$ such that $(n-1,0,1, n-2) \triangleleft \mathbf{a}$. This implies that $a_{3} \leq n-1$. By definition of the dual canonical basis all coefficients obey $d_{a_{3}, a_{2}, a_{1}, a_{0}} \in \mathbb{Z}[q]$. Then

$$
\begin{aligned}
& q^{2 n-1} u_{2} B[n-1,0,1, n-2] \\
& =\sum d_{\mathbf{a}} q^{-a_{2}+2 n-1-2 a_{3}} q^{b\left(a_{3}, a_{2}+1, a_{1}, a_{0}\right)} u_{3}^{a_{3}} u_{2}^{a_{2}+1} u_{1}^{a_{1}} u_{0}^{a_{0}} .
\end{aligned}
$$

Since $(n-1,0,1, n-2) \triangleleft \mathbf{a}$, there exists non-negative integers r, s such that

$$
\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=(n-1,0,1, n-2)+s(-1,2,-1,0)+r(0,-1,2,-1)
$$

Thus, $a_{2}=2 s-r$ and $a_{3}=n-1-s$ so that $-a_{2}+2 n-1-2 a_{3}=r+1$. So $d_{\mathbf{a}} q^{-a_{2}+2 n-1-2 a_{3}} \in q \mathbb{Z}[q]$. So the first claim is satisfied.

Note that $N(n, 0,0, n-1)=4 n^{2}-12 n+2$. Put $N=4 n^{2}-12 n+2$. We apply the anti-automorphism σ to f and use the fact that $B[n-1,0,0, n-1]$ and $B[n-1,0,1, n-2]$ are, up to a power of q, invariant under σ to get

$$
\begin{aligned}
& q^{N} \sigma(f)= \\
& =q^{3 n-3} B[n-1,0,0, n-1] u_{3}-q^{2 n-3} B[n-1,0,1, n-1] u_{2} \\
& =q^{3 n-3} B[n-1,0,0, n-1] u_{3}-q^{5 n-9} p_{1} B[n-2,0,0, n-2] u_{2} \\
& =q^{3 n-3}\left(q^{n-2} u_{3} B[n-2,0,0, n-1]-q^{2 n-2} u_{2} B[n-2,0,1, n-2]\right) u_{3} \\
& \quad-q^{5 n-9} p_{1}\left(q^{n-3} u_{3} B[n-3,0,0, n-2]-q^{2 n-4} u_{2} B[n-3,0,1, n-3]\right) u_{2} \\
& = \\
& \quad q^{4 n-5} u_{3} B[n-2,0,0, n-1] u_{3}-q^{5 n-5} u_{2} B[n-2,0,1, n-2] u_{3} \\
& \quad-q^{6 n-12} p_{1} u_{3} B[n-3,0,0, n-2]-q^{7 n-13} p_{1} u_{2} B[n-3,0,1, n-3] u_{2} .
\end{aligned}
$$

The first and the third summand in the last expression add up to

$$
\begin{aligned}
& q^{n-1} u_{3}\left(q^{3 n-4} B[n-2,0,0, n-1] u_{3}-q^{5 n-13} p_{1} B[n-3,0,0, n-2] u_{2}\right) \\
& =q^{n-1} u_{3}\left(q^{3 n-4} B[n-2,0,0, n-1] u_{3}-q^{2 n-4} p_{1} B[n-2,0,1, n-2] u_{2}\right) \\
& =q^{n-1} u_{3} B[n-1,0,0, n-1] ;
\end{aligned}
$$

whereas the second and the fourth summand add up to

$$
\begin{aligned}
& q^{5 n-5} u_{2} B[n-2,0,1, n-2] u_{3}-q^{7 n-13} p_{1} u_{2} B[n-3,0,1, n-3] u_{2} \\
& =q^{8 n-14} u_{2} p_{1} B[n-3,0,0, n-2] u_{3}-q^{7 n-13} p_{1} u_{2} B[n-3,0,1, n-3] u_{2} \\
& =q^{5 n-7} u_{2} p_{1}\left(q^{3 n-7} B[n-3,0,0, n-1] u_{3}-q^{2 n-6} B[n-3,0,1, n-3] u_{2}\right) \\
& =q^{5 n-7} u_{2} p_{1} B[n-2,0,0, n-2]=q^{2 n-1} u_{2} B[n-1,0,1, n-2] .
\end{aligned}
$$

Altogether we get $q^{N} \sigma(f)=q^{n-1} u_{3} B[n-1,0,0, n-1]-q^{2 n-1} u_{2} B[n-1,0,1, n-$ $2]=f$. We see that $f=B[n, 0,0, n-1]$ and that the equations of Theorem 3.10 hold.

By the same argument one can show that

$$
\begin{aligned}
B[n-1,0,0, n] & =q^{n-1} B[n-1,0,0, n-1] u_{0}-q^{2 n-1} B[n-2,1,0, n-1] u_{1} \\
& =q^{3 n-3} u_{0} B[n-1,0,0, n-1]-q^{2 n-3} u_{1} B[n-2,1,0, n-1]
\end{aligned}
$$

By a very similar argument with the established recursion for $B[n-1,0,0, n]$ and by the inductively known recursion for $B[n-2,0,0, n-1]$ one can show just as above that an element $g=q^{n-1} u_{3} B[n-1,0,0, n]-q^{2 n} u_{2} B[n-1,0,1, n-1]$ is indeed the dual canonical basis element $B[n, 0,0, n]$ and derive the equations

$$
\begin{aligned}
B[n, 0,0, n] & =q^{n-1} u_{3} B[n-1,0,0, n]-q^{2 n} u_{2} B[n-1,0,1, n-1] \\
& =q^{3 n-1} B[n-1,0,0, n] u_{3}-q^{2 n-2} B[n-1,0,1, n] u_{2}
\end{aligned}
$$

with the same technique one can derive the other equations

$$
\begin{aligned}
B[n, 0,0, n] & =q^{n-1} u_{3} B[n-1,0,0, n]-q^{2 n} u_{2} B[n-1,0,1, n-1] \\
& =q^{3 n-1} B[n-1,0,0, n] u_{3}-q^{2 n-2} B[n-1,0,1, n] u_{2}
\end{aligned}
$$

From the previous lemma we get a corollary.
Corollary 3.11. The following equations

$$
\begin{aligned}
& B[n, 0,0, n-1] B[1,0,0,1]=q^{3-4 n} B[n+1,0,0, n]+q^{4-4 n} B[n, 1,1, n-1], \\
& B[1,0,0,1] B[n, 0,0, n-1]=q^{1-4 n} B[n+1,0,0, n]+q^{-4 n} B[n, 1,1, n-1], \\
& B[n, 0,0, n] B[1,0,0,1]=q^{-4 n} B[n+1,0,0, n+1]+q^{-4 n} B[n, 1,1, n] \\
& B[1,0,0,1] B[n, 0,0, n]=q^{-4 n} B[n+1,0,0, n+1]+q^{-4 n} B[n, 1,1, n] .
\end{aligned}
$$

hold for every integer $n \geq 1$.
The last two equations were conjectured by Leclerc.
Proof. We prove the statement by mathematical induction. The case $n=1$ can be checked in a short calculation using the straightening relations. Note also that the last two equations in Corollary 3.11 make sense and are true for $n=0$. Suppose that the equations hold for n and all smaller numbers. Let us write down the first equation of Theorem (3.10) for three consecutive integers $n+1, n$, and $n-1$,
$B[n+1,0,0, n]=q^{n} u_{3} B[n, 0,0, n]-q^{2 n+1} u_{2} B[n, 0,1, n-1]$,
$B[n, 0,0, n-1]=q^{n-1} u_{3} B[n-1,0,0, n-1]-q^{2 n-1} u_{2} B[n-1,0,1, n-2]$,
$B[n-1,0,0, n-2]=q^{n-2} u_{3} B[n-2,0,0, n-2]-q^{2 n-3} u_{2} B[n-2,0,1, n-3]$.

Multiply (46) from the right by $q^{4 n-5} p_{0} p_{1}$ to get

$$
q^{4-4 n} B[n, 1,1, n-1]=q^{-3 n+3} u_{3} B[n-1,1,1, n-1]-q^{n+1} u_{2} p_{1} B[n-2,1,1, n-2]
$$

multiply (45) from the right by $B[1,0,0,1]$ to get

$$
\begin{align*}
& B[n, 0,0, n-1] B[1,0,0,1] \\
& =q^{n-1} u_{3} B[n-1,0,0, n-1] B[1,0,0,1] \tag{47}\\
& -q^{5 n-3} u_{2} p_{1} B[n-2,0,0, n-2] B[1,0,0,1] \tag{48}
\end{align*}
$$

multiply (44) by $q^{3-4 n}$ to get

$$
q^{3-4 n} B[n+1,0,0, n]=q^{3-3 n} u_{3} B[n, 0,0, n]-q^{n+1} u_{2} p_{1} B[n-1,0,0, n-1] .
$$

Using the induction hypothesis for $n-1$ and n we see that

$$
B[n, 0,0, n-1] B[1,0,0,1]=q^{3-4 n} B[n+1,0,0, n]+q^{4-4 n} B[n, 1,1, n-1] .
$$

The other equations in Corollary 3.11 can be proved in a similar way.
The last two equations in Corollary 3.11 imply that the dual canonical basis element $B[1,0,0,1]$ commutes with every $B[n, 0,0, n](n \in \mathbb{Z})$. A conjecture by Berenstein and Zelevinsky (see [5]) says that the product of two dual canonical basis elements b_{1} and b_{2} is, up to a power of q, again a dual canonical basis element if and only if b_{1} and $b_{2} q$-commute, that is $b_{1} b_{2}=q^{s} b_{2} b_{1}$ for some $s \in \mathbb{Z}$. The conjecture turns out to be wrong. Using his quantum shuffle algorithm from [36], in [38] Leclerc constructs five counterexamples. The last two equations of Corollary 3.11 give infinitely many counterexamples to Berenstein and Zelevinsky's conjecture. The commutativity of $B[1,0,0,1]$ and $B[n, 0,0, n]$ implies q-commutativity, but the product $B[n, 0,0, n] B[1,0,0,1]$ is a linear combination of two dual canonical basis elements.

Several authors, e.g. Reineke in [46], emphasized the importance of multiplicative properties of dual canoncial basis elements. Corollary 3.11 gives four series of expansions of products of dual canonical basis elements in the dual canonical basis.

3.11 The quantized version of the explicit formula for cluster variables

We may view Corollary 3.11 as a quantization of linear exchange relation for cluster variables from Section 3.5. Define the integral form $\mathcal{A}_{\mathbb{Z}}$ of $U_{q}^{+}(w)$ as $\mathcal{A}_{\mathbb{Z}}=$ $\bigoplus_{\mathbf{a} \in \mathbb{N}^{4}} \mathbb{Z}\left[q, q^{-1}\right] u[\mathbf{a}]$; define an algebra \mathcal{A}_{1} to be $\mathcal{A}_{1}=\mathbb{Q} \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} \mathcal{A}_{\mathbb{Z}}$. Then $\mathcal{A}_{1}=$ $\mathbb{Q}\left[U_{0}, U_{1}, U_{2}, U_{3}\right]$ with $U_{i}=1 \otimes u_{i}$ for $i=0,1,2,3$. We see that $\mathcal{A}_{1}=\mathcal{A}\left(\mathcal{C}_{M}\right)$.

Note that $B[1,0,0,1]=u_{3} u_{0}-q^{2} u_{2} u_{1} \in \mathcal{A}_{\mathbb{Z}}$ becomes $1 \otimes B[1,0,0,1]=z \in \mathcal{A}_{1}$ in the specialization $q=1$. The elements $p_{1}=u_{3} u_{1}-q^{2} u_{2}^{2}$ and $p_{0}=u_{2} u_{0}-q^{2} u_{1}^{2}$ specialize to $P_{1}=U_{3} U_{1}-U_{2}^{2}$ and $P_{0}=U_{2} U_{0}-U_{1}^{2}$. Corollary 3.11 means that the elements $B[n, 0,0, n-1]$ are quantized cluster variables, because $B[n, 1,1, n-1]$ is equal to $B[n-1,0,0, n-2] p_{1} p_{0}$ up to a power of q. Similarly, the specialization of $B[n, 0,0, n]$ at $q=1$ is an element in Caldero-Zelevinsky's semicanonical basis of $\mathcal{A}\left(\mathcal{C}_{M}\right)$, because Corollary 3.11 provides a quantized version of the Chebyshev recursion $s_{k+1}=z s_{k}-P_{1} P_{0} s_{k-1}$ for $k \geq 2$.

In the rest of this section we want to study the quantized cluster algebra structure of $U_{q}^{+}(w)$. We will work with quantum binomial coefficients instead of ordinary binomial coefficients as in Section 3.

Proposition 3.12. The following quantized version of the addition rule in Pascal's triangle

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+q^{k-n}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]=q^{-k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

for quantum binomial coefficients holds.
Proof. See [27], p. 17-18.
Definition 3.13. Define two functions $f, g: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ by $f(n, k, l)=n(n-2)+k(n+$ $2)+l(n+1)-2 k l$, and $g(n, k, l)=n(n-3)+k(n+1)+l(n+1)-2 k l$.

Theorem 3.14. For every natural number $n \geq 0$ we have

$$
\begin{align*}
& u_{2}^{n} B[n+1,0,0, n] u_{1}^{n+1}=\sum_{k, l} q^{f(n, k, l)}\left[\begin{array}{c}
n-k \\
l
\end{array}\right]\left[\begin{array}{c}
n+1-l \\
k
\end{array}\right] p_{1}^{n+1-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-l} \\
& u_{2}^{n} B[n, 0,0, n] u_{1}^{n}=\sum_{k, l} q^{g(n, k, l)}\left[\begin{array}{c}
n-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-l} \tag{49}
\end{align*}
$$

The summation in the first case runs over all pairs $(k, l) \in \mathbb{N}^{2}$ such that $k+l \leq n$ or $(k, l)=(n+1,0)$; the summation in the second case runs over all pairs $(k, l) \in \mathbb{N}^{2}$ such that $k+l \leq n$.

Proof. We prove the theorem by mathematical induction. One can check that both equations hold for $n=0$ and $n=1$. Let $n \geq 2$ and suppose that the equations hold for all smaller values of n. By Theorem 3.10 we have

$$
\begin{aligned}
B[n, 0,0, n] & =q^{n-1} B[n, 0,0, n-1] u_{0}-q^{2 n} B[n-1,1,0, n-1] u_{1} \\
& =q^{n-1} B[n, 0,0, n-1] u_{0}-q^{5 n-6} B[n-1,0,0, n-2] p_{0} u_{1} .
\end{aligned}
$$

In the following calculations we intensively use the fact that the four variables p_{1}, p_{0}, $u_{2}, u_{1} q$-commute with each other, see Subsection 3.9. By induction hypothesis we can assume that

$$
\begin{align*}
& u_{2}^{n} q^{n-1} B[n, 0,0, n-1] u_{0} u_{1}^{n} \\
& =q^{-n-1} u_{2}^{n} B[n, 0,0, n-1] u_{1}^{n} u_{0} \\
& =\sum_{k, l} q^{f(n-1, k, l)-n-1}\left[\begin{array}{c}
n-1-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] u_{2} p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-1-l} u_{0} \\
& =\sum_{k, l} q^{f(n-1, k, l)+n-3+2 l}\left[\begin{array}{c}
n-1-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-1-l} u_{2} u_{0} . \tag{51}
\end{align*}
$$

Now we use the identity $u_{2} u_{0}=p_{0}+q^{2} u_{1}^{2}$. The sum (51) splits into two summmands, namely

$$
\sum_{k, l} q^{f(n-1, k, l)+n-3+2 l}\left[\begin{array}{c}
n-1-k \tag{52}\\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-l},
$$

and

$$
\begin{align*}
& \sum_{k, l} q^{f(n-1, k, l)+n-1+2 l}\left[\begin{array}{c}
n-1-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l+2} p_{0}^{n-1-l} \\
& \quad=\sum_{k, l} q^{f(n-1, k, l)+n-3+2 l}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{c}
n+1-l \\
k
\end{array}\right] p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-l} . \tag{53}
\end{align*}
$$

In the last step we shifted the index from l to $l-1$. Again by induction hypothesis we have

$$
\begin{align*}
& u_{2}^{n} q^{5 n-6} B[n-1,0,0, n-1] p_{0} u_{1}^{n} \\
& =\sum_{k, l} q^{f(n-2, k, l)+5 n-6}\left[\begin{array}{c}
n-2-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-1-l \\
k
\end{array}\right] p_{1}^{n-1-k} u_{2}^{2 k+2} u_{1}^{2 l+2} p_{0}^{n-1-l} \\
& =\sum_{k, l} q^{f(n-2, k-1, l-1)+5 n-6}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{c}
n-l \\
k-1
\end{array}\right] p_{1}^{n-k} u_{2}^{2 k} u_{1}^{2 l} p_{0}^{n-l} . \tag{54}
\end{align*}
$$

A calculation shows that $f(n-1, k, l)-g(n, k, l)=-n+3-l, f(n-1, k, l-1)-$ $g(n, k, l)=-2 n+3-l$ and $f(n-2, k-1, l-1)-g(n, k, l)=-5 n+7+k$. Thus, by comparing coefficients in (52), (53) and (54) it is enough to show that

$$
\begin{aligned}
{\left[\begin{array}{c}
n-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right]=q^{l}\left[\begin{array}{c}
n-1-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] } & +q^{-n+l}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{c}
n+1-l \\
k-1
\end{array}\right] \\
& -q^{k+1}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{c}
n-l \\
k-1
\end{array}\right]
\end{aligned}
$$

But, by Proposition 3.12,

$$
\begin{aligned}
{\left[\begin{array}{c}
n-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right]-q^{l}\left[\begin{array}{c}
n-1-k \\
l
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] } & =\left[\begin{array}{c}
n-l \\
k
\end{array}\right]\left(\left[\begin{array}{c}
n-k \\
l
\end{array}\right]-q^{l}\left[\begin{array}{c}
n-k \\
l
\end{array}\right]\right) \\
& =q^{l+k-n}\left[\begin{array}{c}
n-l \\
k
\end{array}\right]\left[\begin{array}{c}
n-k-1 \\
l-1
\end{array}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
& q^{-n+l}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{c}
n+1-l \\
k
\end{array}\right]-q^{k+1}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{l}
n-l \\
k-1
\end{array}\right] \\
& =q^{n-l}\left[\begin{array}{c}
n-k-1 \\
l-1
\end{array}\right]\left(\left[\begin{array}{c}
n+1-l \\
k
\end{array}\right]-q^{l+k-n+1}\left[\begin{array}{c}
n-l \\
k-1
\end{array}\right]\right) \\
& =q^{k+l-n}\left[\begin{array}{c}
n-1-k \\
l-1
\end{array}\right]\left[\begin{array}{c}
n-l \\
k
\end{array}\right] .
\end{aligned}
$$

This proves (49). Once we have established equation (49), equation (50) is proved similarly using a recursion for $B[n+1,0,0, n]$ from Theorem 3.10 involving $B[n, 0,0, n]$ and $B[n, 0,1, n-1]$.

Theorem 3.14 is a quantized version of the formula (27) for the cluster variables in Section 3. There is an analogous formula for $B[n, 0,0, n+1]$.

It is possible to give an explicit expansion of dual canonical elements of the form $B[n, 0,0, n-1]$ in the (dual) PBW basis. Therefore we have to write powers of p_{1} and
p_{0} in the (dual) PBW basis. The following relations can be proved by induction. For every natural number k the relations

$$
\begin{align*}
& p_{1}^{k}=\sum_{i=0}^{k}(-1)^{i} q^{2 i^{2}-i k-k^{2}+i+k}\left[\begin{array}{c}
k \\
i
\end{array}\right] u_{3}^{k-i} u_{2}^{2 i} u_{1}^{k-i}, \tag{55}\\
& p_{0}^{k}=\sum_{i=0}^{k}(-1)^{i} q^{2 i^{2}-i k-k^{2}+i+k}\left[\begin{array}{c}
k \\
i
\end{array}\right] u_{2}^{k-i} u_{1}^{2 i} u_{0}^{k-i} \tag{56}
\end{align*}
$$

hold. Substituting (55) and (56) in (49) yields to

$$
\begin{array}{r}
B[n+1,0,0, n]=\sum_{k, l, r, s}(-1)^{k+l+s+r+1}\left[\begin{array}{c}
n-k \\
l
\end{array}\right]\left[\begin{array}{c}
n+1-l \\
k
\end{array}\right]\left[\begin{array}{c}
n+1-k \\
s
\end{array}\right]\left[\begin{array}{c}
n-l \\
r
\end{array}\right] \\
\cdot q^{-l-2 k l+2 n+k n+l n-3 r-l r-r^{2}+s-k s+2 r s-s^{2}} \\
\cdot E[s, n+2-2 s+r, n-1-2 r+s, r]
\end{array}
$$

here the sum is taken over all $k, l, r, s \in \mathbb{N}$ such that $0 \leq s \leq n+1-k, 0 \leq r \leq n-l$ and either $k+l \leq n$ or $(k, l)=(n+1,0)$. The formula is an q-analogue of (29).

3.12 The quasi-commutativity of adjacent quantized cluster variables and the quantum exchange relation

We prove that adjacent quantized cluster quasi-commute, i.e., they are commutative up to a power of q.

Lemma 3.15. For every $n \geq 1$ the elements $B[n+1,0,0, n]$ and $B[n, 0,0, n-1]$ are q-commutative. More precisely, $B[n, 0,0, n-1] B[n+1,0,0, n]=q^{2} B[n+$ $1,0,0, n] B[n, 0,0, n-1]$.

Proof. We prove the theorem by mathematical induction. We can verify the statement for $n=1$ in a short calculation using the straightening relations. Suppose that the statement holds for $n-1$. Combine Lemma 3.9 with Corollary 3.11 to get

$$
\begin{aligned}
B[n+1,0,0, n]= & q^{4 n-1} B[1,0,0,1] B[n, 0,0, n-1] \\
& -q^{8 n-14} B[n-1,0,0, n-2] p_{1} p_{0} \\
= & q^{4 n-3} B[n, 0,0, n-1] B[1,0,0,1] \\
& -q^{8 n-12} B[n-1,0,0, n-2] p_{1} p_{0} .
\end{aligned}
$$

Multiply the first expression for $B[n+1,0,0, n]$ from the left and the second from the right with $B[n, 0,0, n-1]$. It remains to show that $B[n, 0,0, n-1] B[n-1,0,0, n-$ $2] p_{1} p_{0}=q^{4} B[n-1,0,0, n-2] p_{1} p_{0} B[n, 0,0, n-1]$, which follows from the induction hypothesis and the relation $B[n, 0,0, n-1] p_{1} p_{0}=q^{6} p_{1} p_{0} B[n, 0,0, n-1]$, which follows from Lemma 3.9.

Lemma 3.15 says that two adjacent quantized cluster variables $B[n+1,0,0, n]$ and $B[n, 0,0, n-1]$ form a quantum torus. If we specialize $q=1$, the elements $B[n+1,0,0, n]$ and $B[n, 0,0, n-1]$ become cluster variables in the same cluster of $\mathcal{A}\left(\mathcal{C}_{M}\right)$.

Lemma 3.16. For $n \geq 2$ we have

$$
B[n+1,0,0, n] B[n-1,0,0, n-2]=q^{2} B[n, 0,0, n-1]^{2}+q^{2 n^{2}-6 n+8} p_{1}^{n+1} p_{0}^{n-2} .
$$

Proof. The statement is true in the case $n=2$. We use mathematical induction. Consider the product $p=B[n, 0,0, n-1] B[1,0,0,1] B[n-1,0,0, n-2]$. We evaluate p according to Corollary 3.11 in two different ways. On one hand we get

$$
\begin{aligned}
p= & B[n, 0,0, n-1]\left(q^{5-4 n} B[n, 0,0, n-1]+q^{4-4 n} B[n-1,0,0, n-2]\right) \\
= & q^{5-4 n} B[n, 0,0, n-1]^{2}+q^{4 n-17} B[n, 0,0, n-1] B[n-2,0,0, n-3] p_{1} p_{0} \\
= & q^{5-4 n} B[n, 0,0, n-1]^{2} \\
& +q^{4 n-17}\left(q^{2} B[n-1,0,0, n-2]^{2}+q^{2 n^{2}-10 n+16} p_{1}^{n} p_{0}^{n-3}\right) p_{1} p_{0} .
\end{aligned}
$$

In the above equations we have used Lemma 3.9 and the induction hypothesis. On the other hand

$$
\begin{aligned}
p & =\left(q^{3-4 n} B[n+1,0,0, n]+q^{4-4 n} B[n, 1,1, n-1]\right) B[n-1,0,0, n-2] \\
& =q^{3-4 n} B[n+1,0,0, n] B[n-1,0,0, n-2]+q^{4 n-15} B[n-1,0,0, n-2]^{2} p_{1} p_{0} .
\end{aligned}
$$

Comparing both expressions for p gives $B[n+1,0,0, n] B[n-1,0,0, n-2]=$ $q^{2} B[n, 0,0, n-1]^{2}+q^{2 n^{2}-6 n+8} p_{1}^{n+1} p_{0}^{n-2}$.

Lemma 3.16 is a quantized version of the exchange relation for the cluster algebra.

3.13 Conclusion

In the last subsection we draw the conclusion that $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ carries a quantum cluster algebra structure as defined by Berenstein-Zelevinsky in [6].

To be in accord with [6] we rescale our quantized cluster variables. Recall that the generators u_{0}, u_{1}, u_{2}, and u_{3} of $U_{q}^{+}\left(s_{1} s_{2} s_{1} s_{2}\right)$ correspond to the Λ-modules T_{0}, T_{1}, T_{2}, and T_{3} of Subsection 3.4, the dual canonical basis elements $B[n-2,0,0, n-3]$ corresponds to the Λ-module T_{n}, and p_{0} and p_{1} correspond to the Λ-modules P_{1} and P_{0}. We rescale each of the above elements by a power of q; the exponent is $-\frac{1}{2}$ times the dimension of the endomorphism algebra of the associated Λ-module. More precisely, introduce elements

- $X_{0}=q^{-\frac{1}{2}} u_{0}, X_{1}=q^{-\frac{1}{2}} u_{1}, X_{2}=q^{-\frac{1}{2}} u_{2}, X_{3}=q^{-\frac{1}{2}} u_{3}$,
- $Y_{0}=q^{-2} p_{0}, Y_{1}=q^{-2} p_{1}$,
- $X_{n}=q^{-\frac{1}{2}(2 n-5)^{2}} B[n-2,0,0, n-3]$ for $n \geq 3$
in the the algebra $\mathbb{Q}\left[q^{ \pm \frac{1}{2}}\right] \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} U_{q}^{+}(w)$ and analogous elements X_{n} for $n<0$. Here we have enlarged the field of coefficients $\mathbb{Q}(q)$ of $U_{q}^{+}(w)$ to contain a square root of q.

Note that in the above examples, the dimension of the endomorphism algebra of the Λ-module corresponding to $B\left[a_{3}, a_{2}, a_{1}, a_{0}\right]$ is equal to $\left(a_{3}+a_{2}+a_{1}+a_{0}\right)^{2}$. The exact form of the rescaling exponent was suggested by Leclerc.

For $n \geq 3$ consider four variables $\left(X_{n}, X_{n+1}, Y_{0}, Y_{1}\right)$ which we group into a cluster. By Lemma 3.9 and Lemma 3.15 the variables q-commute; more precisely, we have $X_{n} X_{n+1}=q^{2} X_{n+1} X_{n}, X_{n} Y_{0}=q^{2 n-2} Y_{0} X_{n}, X_{n} Y_{1}=q^{-2 n+8} Y_{1} X_{n}$,
$X_{n+1} Y_{0}=q^{2 n} Y_{0} X_{n+1}, X_{n+1} Y_{1}=q^{-2 n+6} Y_{1} X_{n+1}$, and $Y_{0} Y_{1}=q^{-4} Y_{1} Y_{0}$. The matrix

$$
L=\left(\begin{array}{cccc}
0 & 2 & 2 n-2 & -2 n+8 \\
-2 & 0 & 2 n & -2 n+6 \\
-2 n+2 & -2 n & 0 & -4 \\
2 n-8 & 2 n-6 & 4 & 0
\end{array}\right)
$$

describes the exponents that occur in the commutation relations. The matrix L, the exchange matrix

$$
B=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
n-3 & -n+4 \\
n & -n+1
\end{array}\right),
$$

(which is the same as the exchange matrix for the ordinary cluster algebra $\mathcal{A}\left(\mathcal{C}_{M}\right)$) and the cluster $\left(X_{n}, X_{n+1}, Y_{0}, Y_{1}\right)$ form a quantum seed (compare [6, Definition 4.5]). With every $\mathbf{a}=\left(a_{4}, a_{3}, a_{2}, a_{1}\right) \in \mathbb{Z}^{4}$ Berenstein-Zelevinsky (see [6, Equation 4.19]) associate an expression

$$
\begin{aligned}
M\left(a_{1}, a_{2}, a_{3}, a_{4}\right) & =q^{\frac{1}{2} \sum_{i>j} a_{i} a_{j} L_{i j}} X_{n}^{a_{1}} X_{n+1}^{a_{2}} Y_{0}^{a_{3}} Y_{1}^{a_{4}} \\
& =q^{-\frac{1}{2} \sum_{i>j} a_{i} a_{j} L_{i j}} Y_{1}^{a_{4}} Y_{0}^{a_{3}} X_{n+1}^{a_{2}} X_{n}^{a_{1}} .
\end{aligned}
$$

We have $\frac{1}{2} \sum_{i>j} a_{i} a_{j} L_{i j}=-a_{1} a_{2}-(n-1) a_{1} a_{3}+(n-4) a_{1} a_{4}-n a_{2} a_{3}+(n-$ 3) $a_{2} a_{4}+2 a_{3} a_{4}$. Lemma 3.16, written in terms of X_{n}, X_{n+1}, Y_{0}, and Y_{1}, says that

$$
X_{n+2} X_{n}=q^{-2} X_{n+1}^{2}+q^{-2 n^{2}+6 n-3} Y_{1}^{n} Y_{0}^{n-3}
$$

Thus, we get an equation for the quantized cluster variable X_{n+2}. There holds

$$
\begin{align*}
X_{n+2} & =q^{-2} X_{n+1}^{2} X_{n}^{-1}+q^{-2 n^{2}+6 n-3} Y_{1}^{n} Y_{0}^{n-3} X_{n}^{-1} \\
& =M(-1,2,0,0)+M(-1,0, n-3, n) \tag{57}
\end{align*}
$$

Equation (57) is equal to the exchange relation [6, Equation 4.23] of Berenstein and Zelevinsky.

The direct sum $\bigoplus_{\mathbf{a} \in \mathbb{N}^{4}} \mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right] u[\mathbf{a}]$ is a $\mathbb{Z}\left[q, q^{-1}\right]$-algebra, since the straightening relations involve only polynomials in q. It is an integral form of the algebra $\mathbb{Q}\left[q^{ \pm \frac{1}{2}}\right] \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} U_{q}^{+}(w)$ defined above. It is generated by X_{0}, X_{1}, X_{2}, and X_{3} and furthermore contains each X_{n} for $n \in \mathbb{Z}$. Therefore, it coincides with the $\mathbb{Z}\left[q, q^{-1}\right]$ algebra generated by all X_{n} with $n \in \mathbb{Z}$ which is by definition equal to the quantum cluster algebra as defined in [6].

We conclude with the theorem.
Theorem 3.17. The $\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$-algebra

$$
\bigoplus_{\mathbf{a} \in \mathbb{N}^{4}} \mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right] u[\mathbf{a}] \subseteq \mathbb{Q}\left[q^{ \pm \frac{1}{2}}\right] \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} U_{q}^{+}(w)
$$

is a quantum cluster algebra.

References

[1] Assem, I., Simson, D., Skowronski, A. Elements of the representation theory of associative algebras. Cambridge: Cambridge University Press, 2006.
[2] Bergman, G. "The diamond lemma for ring theory." Advances in Mathematics 29, no. 2 (1978): 178-218.
[3] Buan, A., Iyama, O., Reiten, I., Scott, J. "Cluster structures for 2-Calabi-Yau categories and unipotent groups." Compositio Mathematica 145, (2009): 10351079.
[4] Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G. "Tilting theory and cluster combinatorics." Advances in Mathematics 204, no. 2 (2006): 572-618.
[5] Berenstein, A., Zelevinsky, A. "String bases for quantum groups of type A_{r}." In I. M. Gel'fand Seminar, 51-89. Providence: Advances in Soviet Mathematics 16, Part 1, 1993.
[6] Berenstein, A., Zelevinsky, A. "Quantum cluster algebras." Advances in Mathematics 195, no. 2 (2005): 405-455.
[7] Caldero, P., Chapoton, F. "Cluster algebras as Hall algebras of quiver representations." Commentarii Mathematici Helvetici 81, no. 3 (2006): 595-616.
[8] Caldero, P., Keller, B. "From triangulated categories to cluster algebras." Inventiones Mathematicae 172, no. 1 (2008): 169-211.
[9] Caldero, P., Keller, B. "From triangulated categories to cluster algebras II." Annales Scientifiques de l'École Normale Supérieure (4) 39, no. 6 (2006): 983-1009.
[10] Caldero, P., Zelevinsky, A. "Laurent expansions in cluster algebras via quiver representations." Moscow Mathematical Journal 6, no. 3 (2006): 411-429, 587.
[11] Crawley-Boevey, W. "Lectures on Representations of Quivers." Lecture notes, available at the author's website.
[12] Ding, M., Xu, F. "Bases of Quantum cluster algebra of type $\tilde{A}_{1}^{(1)}$." Preprint arXiv:1004.2349.
[13] Fock, V., Goncharov, A.. "Moduli spaces of local systems and higher Teichmüller theory." Publications Mathématiques. Institut de Hautes Études Scientifiques 103 (2006): 1-211.
[14] Fomin, S., Zelevinsky, A. "Cluster algebras I: Foundations." Journal of the American Mathematical Society 15, no. 2 (2002): 497-529.
[15] Fomin, S., Zelevinsky, A.. "Cluster algebras II: Finite type classification." Inventiones Mathematicae 154, no. 1 (2003): 63-121.
[16] Fomin, S., Zelevinsky, A.. "Cluster algebras IV: Coefficients." Compositio Mathematica 143, no. 1 (2007): 112-164.
[17] Fomin, S., Zelevinsky, A. "Cluster algebras: notes for the CDM-03 conference." In Current developments in mathematics, 1-34. Somerville: International Press, 2003.
[18] Fomin, S., Zelevinsky, A. "Y -systems and generalized associahedra." Annals of Mathematics 158, no. 3 (2003): 977-1018.
[19] Gabriel, P. "Unzerlegbare Darstellungen. I." Manuscripta Mathematica 6 (1972): 71-103.
[20] Grabowski, J., Launois, S. "Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite type cases." Preprint arXiv:0912.4397.
[21] Geiß, C., Leclerc, B., Schröer, J. "Cluster algebra structures and semicanonical bases for unipotent groups." Preprint arXiv:math/0703039.
[22] Geiß, C., Leclerc, B., Schröer, J. "Rigid modules over preprojective algebras." Inventiones Mathematicae 165 (2006): 589-632.
[23] Geiß, C., Leclerc, B., Schröer, J. "Semicanonical bases and preprojective algebras." Annales Scientifiques de l'École Normale Supérieure (4) 38, no. 2 (2005): 193-253.
[24] Geiß, C., Leclerc, B., Schröer, J. "Semicanonical bases and preprojective algebras II: A multiplication formula." Compositio Mathematica 143, (2007): 1313-1334.
[25] Gekhtman, M., Shapiro, M., and Vainshtein, A. "Cluster algebras and Poisson geometry." Moscow Mathematical Journal 3, no. 3 (2003): 899-934.
[26] Happel, D. Triangulated categories in the representation theory of finite-dimensional algebras. Cambridge: London Mathematical Society Lecture Notes Series, 119, Cambridge University Press, 1988.
[27] Kac, V., Cheung, P. Quantum Calculus. New York: Springer-Verlag, 2001.
[28] Kashiwara, M. "On crystal bases of the q-analogue of universal enveloping algebras." Duke Mathematical Journal 63, no. 2 (1991): 465-516.
[29] Keller, B. "Cluster algebras, quiver representations and triangulated categories." Preprint arXiv:0807.1960.
[30] Keller, B. "Quiver mutation in Java." Java applet available at the author's home page.
[31] Keller, B., and Reiten, I. "Acyclic Calabi-Yau categories." Compositio Mathematica 144, no. 5 (2008): 1332-1348.
[32] Keller, B., Scherotzke, S. "Linear recurrence relations for cluster variables of affine quivers." Preprint arXiv:1004.0613.
[33] Kimura, Y. "Quantum Unipotent Subgroup and dual canonical basis." Preprint arXiv:1010.4242.
[34] Lampe, P. "A quantum cluster algebra of Kronecker type and the dual canonical basis." Preprint arXiv:1002.2762.
[35] Lampe, P. "Cluster Algebren vom Rang 2." Bonn: Diplomarbeit am Mathematischen Institut (2007), available at the author's website.
[36] Leclerc, B. "Dual canonical bases, quantum shuffles and q-characters." Mathematische Zeitschrift 246, no. 4 (2004): 691-732.
[37] Leclerc, B. "A canonical basis in type $A_{1}^{(1)}$." Private communication.
[38] Leclerc, B. "Imaginary vectors in the dual canonical basis of $U_{q}(\mathfrak{n})$." Transformation Groups 8, no. 1 (2003): 95-104.
[39] Leclerc, B. "Canonical and semicanonical bases." Talk at the University of Reims, http://loic.foissy.free.fr/colloque/Leclerc.pdf.
[40] Leclerc, B., M. Nazarov, and J.-Y. Thibon. "Induced representations of affine Hecke algebras and canonical bases of quantum groups." In Studies in memory of Issai Schur, 115-153. Boston: Progress in Mathematics, 210, Birkhäuser, 2003.
[41] Levendorkiĭ, S., Soibelman, Y. "Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori." Communications in Mathematical Physics 139, no. 1 (1991): 141-170.
[42] Lusztig, G. Introduction to quantum groups. Boston: Progress in Mathematics, 110, Birkhäuser, 1993.
[43] Lusztig, G. "Canonical bases arising from quantized enveloping algebras." Journal of the American Mathematical Society 3, no. 2 (1990): 447-498.
[44] Lusztig, G. "Quivers, perverse sheaves, and quantized enveloping algebras." Journal of the American Mathematical Society 4, no. 2 (1991): 365-421.
[45] Musiker, G., and J. Propp. "Combinatorial interpretations for rank-two cluster algebras of affine type." Electronic Journal of Combinatorics 14, no. 1 (2007): R15.
[46] Reineke, M. "Multiplicative Properties of Dual Canonical Bases of Quantum Groups." Journal of Algebra 211, no. 1 (1999): 134-149.
[47] Reiten, I. "Dynkin diagrams and the representation theory of algebras." Notices of the American Mathematical Society 44, no. 5 (1997): 546-556.
[48] Ringel, C. M. "The preprojective algebra of a quiver." In Algebras and modules, II (Geiranger), 467-480. Providence: CMS Conference Proceedings, 24, Amer. Math. Soc., 1998.
[49] Rohleder, D. Cluster-Kategorien vom Typ \mathbb{A}_{n}. Bonn: Diplomarbeit am Mathematischen Institut (2007).
[50] Rupel, D. "On Quantum Analogue of The Caldero-Chapoton Formula." Preprint arXiv:1003.2652.
[51] Sherman, P., and A. Zelevinsky, "Positivity and canonical bases in rank two cluster algebras of finite and affine types." Moscow Mathematical Journal 4, no. 4 (2004): 947-974.
[52] Skandera, M. "The cluster basis of $\mathbb{Z}\left[x_{1,1}, \ldots, x_{3,3}\right]$." Electronic Journal of Combinatorics 14, no. 1 (2007): R76.
[53] Sloane, N. J. A. "Sequence A000111." The On-Line Encyclopedia of Integer Sequences.
[54] Szántó, C. "On the cardinalities of Kronecker quiver Grassmannians." Preprint arXiv:0903.1928.
[55] Zelevinsky, A. "Semicanonical basis generators of the cluster algebra of type $A_{1}^{(1)}$." Electronic Journal of Combinatorics 14, no. 1 (2007): R4.

